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Due to the sharing and open-access characteristics of the wireless medium, wireless sensor networks (WSNs) can be easily
attacked by jammers. To mitigate the effects of a jamming attack, one reliable solution is to locate and remove the jammer
from the deployed area within the WSN. To realize the jammer’s localization in the WSN, many range-free methods have been
proposed. However, most of these methods are sensitive to the distribution of nodes and the parameters of the jammer. For
this reason, a jammer location-aware method based on Fibonacci branch search (FBS) is proposed in this article. First, the
interference region is estimated by using the interference region mapping service of sensors in wireless sensor networks. Then,
the search point is selected in the jamming area and the fitness function is designed according to the average distance from the
search point to the boundary sensor. According to the basic branch structure and interactive search rules, the global optimal
solution is obtained in the jamming area. Finally, the position of the search point with the best fitness value is used as the
estimation of the jammer position. Compared with the existing typical range-free methods, rich simulation experiments
demonstrate that the FBS algorithm is superior in the location-aware method for jammers with a higher precision and a lower
sensitivity to the distribution of nodes and the parameters of the jammer, respectively.

1. Introduction

Wireless sensor networks (WSNs) are seriously threatened
by radio interference attacks due to the sharing and open-
access characteristics of wireless mediums [1–3]. The radio
interference attacks, which are also known as jamming
attacks, can seriously disrupt normal communication
between legitimate sensors. By occupying the wireless com-
munication channel or disrupting the workflow of network
protocols, WSN jamming attacks can be easily initiated [4].
To reduce the impact of jamming attacks on network perfor-
mance and ensure the security of WSNs, various prevention
jamming strategies [5] have been proposed, such as covert
timing channels [6], channel hopping [7], protocol optimi-
zation [8], channel-aware decision fusion [9], and spatial
retreat [10]. In addition to these strategies, jammer location
awareness is an effective method that helps us remove the
jammer based on the jammer’s location [11].

To date, most jammer location-aware problems have
been extensively investigated and several location perception

algorithms have been designed. In general, existing location-
aware strategies can be classified as range-free methods and
range-based methods [12]. Range-based methods usually
estimate the distance information by measuring some phys-
ical attributes of jammer signals [13]. The relevant physical
attributes mainly include received signal strength indicators
(RSSIs) [14], time difference of arrival (TDoA) [15], time of
arrival (ToA) [16], and angle of arrival (AoA) [17]. The loca-
tion of the jammer is calculated by the Euclidean distance or
angle size between legitimate nodes and the jammer. Differ-
ent calculation algorithms will greatly affect the positioning
accuracy. Typical algorithms include triangulation [18], tri-
lateration [19], and algorithms based on multidimensional
scaling (MDS), such as MDS [20], MDS-MAP [21], MDS-
MAP(P) [22], and SMDS [23]. However, due to the small
size of sensors in WSNs, battery life is limited and the life
of the sensor is directly affected by the life of the battery
[24], which further affects the life of the entire network to
maximize the life cycle of the sensor network. Therefore,
the seniors in WSNs are usually not allowed components
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that can realize the distance between the sensors and the
jammer. At the same time, sensors in the jammed area have
difficulty communicating with each other because of jammer
interference. Even though every sensor is equipped with
ranging components, the jammed sensor cannot obtain the
location information of neighboring sensors to locate the
jammer’s position. For these reasons, range-free methods
are more suitable for WSNs to achieve the localization of
jammers in the network [25].

Range-free location-aware algorithms make use of the
geometric relationship of the jammed area to realize the
localization of the jammer. At the same time, the problem
of jamming detection was briefly researched by Wood et al.
[26] and further investigated by Xu et al. [27]. Wood et al.
proposed a scheme that could map a jammed region, and
Xu et al. presented several measurements to detect jamming
attacks in WSNs. To calculate the jammer localization,
Bulusu et al. proposed centroid localization (CL) [28], which
estimates the coordinates of the jammer by calculating the
average relative coordinates of all jammed nodes. CL is easy
to realize, but the localization error is large. To improve the
location-aware accuracy, Blumenthal et al. proposed
weighted centroid localization (WCL) [29], which is based
on the assumption that the influence degree of different
nodes on the localization of the jammer is different. The
closer the node is to the jammer, the greater the weight value
of the node is. WCL needs RSSI to realize the computation
of the weight, which is difficult in some scenarios. To further
improve the location-aware accuracy, Shoari and Seyedi pro-
posed an algorithm based on the minimum enclosing rect-
angle center [12]. In the algorithm, the position of the
jammer is calculated as the center of the smallest enclosing
rectangle covering all of the jamming nodes. Liu et al. pro-
posed virtual force iterative localization (VFIL) to locate
the jammer [30]. The concepts of pull force, push force,
and joint force are defined in the VFIL. The jammed node
produces a pulling force to constantly pull the jammer to
itself, and the boundary sensors push the jammer away from
itself through a push force. The final location awareness of
the jammer is realized through the joint force produced by
the jammed nodes and the boundary nodes in the jammed
area. To reduce the sensitivity of the distribution of nodes
when locating the jammer, Wang et al. proposed a heuristic
optimization evolutionary algorithm named the gravita-
tional search algorithm (GSA) [1]. This method merges
mass interactions and Newton’s law of universal gravitation.
After iterations, the coordinates of the most massive particle
are adopted as the coordinates of the jammer. In addition,
for multijammer scenarios, Cheng et al. designed two
methods to calculate the localization of jammers based
on M-clusters and X-rays [31]. Wang et al. utilized the
k-means clustering algorithm to estimate the location of
the jammer according to the location information of neigh-
boring nodes [32].

The distributed sensors and the parameters of the jam-
mer can easily affect the performance of range-free methods.
In this paper, to decrease the sensitivity of range-free
methods and improve the location-aware accuracy, a robust
location-aware algorithm based on the Fibonacci branch

search (FBS) is designed. Meanwhile, the reachability and
convergence of FBS are proven mathematically, which fur-
ther verifies the validity of the theory for the FBS strategy.
The location-aware algorithm based on FBS uses the power-
ful global searchability and the high convergence speed of
the technology. It improves the location-aware performance
by preventing the loss of the best trajectory. Aiming at the
abovementioned problems in target node location, the main
contribution of this paper includes three aspects.

(1) In this paper, a robust location sensing algorithm based
on Fibonacci branch search (FBS) is designed to reduce
the sensitivity of distance-independent methods and
improve the accuracy of location sensing. At the same
time, the reachability and convergence of FBS are
provedmathematically, which further verifies the effec-
tiveness of the FBS strategy theory

(2) Based on the FBS algorithm, interactive global search
and local optimization rules are used alternately to
realize global optimization. Finally, the coordinates
of the search point with the highest fitness value
are taken as the coordinates of the jammer. Com-
pared with many existing location aware algorithms,
the proposed method has higher performance in
complex scenes with different parameter settings

(3) Experiments show that the proposed method can
locate the target node when it is unable to range
the target node, and in terms of optimization ability,
due to other similar algorithms, at the same time,
even if the deployment area of the wireless sensor
network has the characteristics of low density and
low communication distance, the positioning error
based on FBS is still less than other algorithms

The rest of this paper is described as follows. Section 2
describes the network model and the jamming model. Sec-
tion 3 illustrates the main principle of the FBS algorithm.
The location-aware method of jammers based on FBS is pre-
sented in Section 4. Section 5 illustrates and discusses the
simulation results. Section 6 presents our conclusions.

2. System Models

The scenario with a WSN and a jammer is shown in
Figure 1, where the jammer is surrounded by sensors. In this
section, the network model and the jamming model are
outlined.

2.1. Network Model. Assume that NS homogeneous
sensors are deployed in the area to form a WSN.
S = ½s1, s2,⋯, sNS

�T ∈NS × 2 are the coordinates of all of
the sensors, and si = ½xsi , ysi �, i = 1, 2,⋯,NS. The sensors can
be aware of their locations through GPS or other location-
aware algorithms, e.g., when the distances between the sen-
sors are obtained, algorithms based on MDS can be used to
realize location awareness. Once deployed, this article con-
siders the location of the sensor to remain unchanged. Every
sensor in the network is equipped with an omnidirectional
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antenna and can communicate with other sensors within a
communication range RS. There are no isolated subnets or
isolated sensors in the network. For sensors that are not in
the communication range, sensors can communicate with
each other in a multihop manner. According to the above-
mentioned assumptions, the network model of the WSN in
Figure 1 is shown in Figure 2.

2.2. Jamming Model. In this model, we assume that the jam-
ming power remains stable and the jammer location stays
static. This jammer continuously transmits radio signals,
which can be implemented using a waveform generator that
continuously transmits radio signals or a normal wireless
device that keeps sending random bits to the channel without
following any MAC layer protocol. Due to the large coverage
of the omnidirectional antenna, the jammer is equipped with
an omnidirectional antenna with the same direction effect.
Under the effect of the jammer, the sensors in the WSN are
divided into three types: jammed sensors, boundary sensors,
and unaffected sensors. Jammed sensors are located in the
jammed area and cannot communicate with any neighboring
sensors. Boundary sensors are usually located at the edge of
the jammed area. Although they struggle with jamming
attacks, the sensors can still communicate with neighboring
sensors. Unaffected sensors outside the jammed area can
receive information from neighboring sensors even if the jam-
mer appears. B = ½b1, b2,⋯, bNB

�T ∈NB × 2 contains the

coordinates of all of the boundary sensors, and bi = ½xBi , yBi �,
i = 1, 2,⋯,NB, where NB is the number of boundary sensors
in the network.

According to the abovementioned assumptions, the jam-
ming model of the WSN is shown in Figure 3.

When a node detects itself as jammed, the node broad-
casts notification messages to its neighboring nodes, as
shown in Figure 4(a). Mapping is conducted by the neigh-
boring sensors of jammed sensors who receive the interfer-

ence message. Each receiver becomes a mapping member
and adds nearby jammed sensors to form a local group. As
shown in Figure 4(b), adjacent sensors contain mapping
messages for the local exchange of group information. Adja-
cent groups are condensed together to form a mapped area,
as shown in Figure 4(c), which can be used as an estimation
of the jammed area [26]. The sensors that constitute the
mapped area are all boundary nodes. The notations that will
be used throughout the paper are summarized in Table 1.

3. Fibonacci Branch Search Algorithm

The Fibonacci optimization method has proven the effec-
tiveness and convergence of solving a series of nonlinear
benchmark functions in one-dimensional space [33]. How-
ever, the method is rarely used in the properties of multidi-
mensional space search optimization problems. In addition
to the structure itself, there are few variants implemented
in localized applications reported in the public literature.

Coordinates-available

Wireless link

Jammer

Sensor

Figure 1: Scenario diagram of a WSN and a jammer.

Sensor
Wireless link

Figure 2: The network model of the WSN.
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In this section, we will briefly introduce the traditional
Fibonacci sequence method and explain the principle and
in-depth understanding of the FBS-based method.

3.1. Basic Principle of the Fibonacci Method. The Fibonacci
sequence, also known as the golden section sequence, was
first proposed by Fibonacci [34], and its general formula is
as follows [35].

F 1ð Þ = F 2ð Þ = 1,
F jð Þ = F j − 1ð Þ + F j − 2ð Þ, j ≥ 3,

ð1Þ

where Fj indicates the jth Fibonacci sequence, which is a
general term.

This paper studies the optimization method of the
Fibonacci sequence to solve the minimization problem of a
unimodal continuous function in the interval. The Fibonacci
sequence optimization method compresses the search inter-
val proportionally according to the Fibonacci sequence
items. Then, the initial optimization point converges to the
best method in a defined interval, which is considered to
be the most effective solution of a one-dimensional unimo-
dal question. We assume that there is a single-peak function
on the interval. First, the technique starts to select two feasi-
ble points and performs the first iteration within a given
range. Then, we need to reduce the area of the initial box to
a sufficiently small box, involving the minimum value of the
unimodal function f ðxÞ (after an iterative step). The smallest
lie can be reduced by providing the function value known in
two different ranges of points. The realization of the classic
Fibonacci sequence optimization algorithm was given in
[36], and no further detailed description is given here.

3.2. The Fibonacci Branch Structure and the FBS Algorithm.
The basic Fibonacci strategy has difficulty effectively solving
the multivariable problem, nor can it reliably evaluate the
best fit of the multimodal function [35]. The FBS algorithm
mainly uses the framework constructed by segmentation
points and endpoints in the basic structure to search for
the global optimal solution. Comparing the fitness value of

each search point by calculation, the search point closest to
the global optimal solution is obtained. In the next iterative
calculation, we set the point with the best fitness value
obtained in this optimization at the top of the search point
set and the points corresponding to the suboptimal fitness
value are arranged in the order from good to bad below
the best. Through continuous iteration, the search point set
is updated in each optimization stage. Then, the algorithm
can complete the optimization of the objective function in
the search space while the Fibonacci branch grows. The basic
structure of the Fibonacci algorithm is shown in Figure 5.

In Figure 5, there are three points in D-dimensional
Euclidean space, x*A, x*B, and x*C . x*A and x*B indicate
the coordinates corresponding to the search endpoint of
the tree structure, which can be generated by the specified
optimization rule, and x*C indicates the coordinates of the
partition point obtained according to the given calculation
criteria. In the search process, they should satisfy the fol-
lowing equation:

x*C − x*A

 
x*B − x*A

  =
x*B − x*C

 
x*C − x*A

  =
Fp

Fp+1
, ð2Þ

where Fp represents the pth Fibonacci number.
Considering the minimum multimodal function of mul-

tivariable f ðX*Þ in the search space, the calculation formula
of the split point is

x*C =
x*A +

Fp

Fp+1
x*B − x*A

� �
, f x*A

� �
< f x*B

� �
,

x*A +
Fp

Fp+1
x*A − x*B

� �
, f x*A

� �
≥ f x*B

� �
:

8>>><
>>>:

ð3Þ

In [37], a similar algorithm was described but the pro-
cess and theory of the algorithm were not described in detail.
This section expounds on the main part of FBS, expounds on
the implementation content of FBS, and standardizes the
implementation process of FBS.

Considering the basic structure of FBS, the process of
obtaining the global optimal solution, including the process
of building searching elements in FBS, is delimited into
two stages: global search and local optimization [38]. These
two stages are the corresponding rules of interaction. Gp is
the set of objective function points to be searched in the
pth iterative optimization stage; lenðGpÞ = Fp is the number
of whole sets, where Fp is the intensity of the Fibonacci wave.
Using the corresponding interactive optimization initial
value and fitness value, the segmentation points are obtained
through formula (3). After a comparison, the algorithm
obtains the best fitness value corresponding to the latest best
solution. In the next iteration stage, the best advantage of the
adaptable value is concentrated in the corresponding front of
the set and the nodes of the suboptimal adaptable value are

Jammed
sensor

Unaffected
sensor Boundary

sensor

Jammer

Figure 3: The jamming model of the WSN.
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placed in the order from good to bad in the optimal selection.
Through the abovementioned operations, we update points
in each optimization stage and increase the Fibonacci path
and community optimization search space.

In the process of FBS optimization, it is necessary to
update the search endpoint according to two interactive
iterative criteria and combine the calculation formula of

the subdivision point to calculate the subdivision point.
The two iterative updating criteria are as follows:

In rule one, the end nodes x*A and x*B of the structure are
indicated as follows:

x*A

n o
=Gp = x*q qj = 1, FP½ �

n o
,

x*B

n o
= X

*
X
*��� ∈

YD
f=1

x*
f
lb, x

*f
ub

h iu( )
,

ð4Þ

Gp is composed of the coordinates of all the search

points in the pth iteration, x*q are the search nodes in set
Gp, and q is the sequence number corresponding to the first

to the pth Fibonacci sequences. x*A takes all points of Gp in

the pth iteration. The other unselected endpoints x*B ran-
domly take nodes, and the length of x*B is equivalent to Fp.
When the dimension is f , D is the dimension of the points

and the search nodes are between x*
f
lb and x*

f
ub. Given that

∀x* ∈ fx*Bg, the component x in point X
*
is a random variable

uniformly distributed in the interval ½x*lb, x
*
ub�

U
, in which

the normal characteristic U represents the uniform distribu-
tion of the variable, and the probability distribution of the
component can be calculated as

Notification
message

Jammed
area

(a) Broadcast notification message

Mapping
messages

(b) Transmission of mapping messages

Mapped
area

(c) Construction of a mapped area

Figure 4: Overview of sensors collaboratively mapping a jammed area.

Table 1: Notations and definitions.

Notations Definitions

NS The number of homogeneous sensors

S The coordinates of all of the sensors

B The coordinates of all of the boundary sensors

NB The number of boundary sensors

R The branch depth

Fj The jth Fibonacci sequences

Gp
The set of objective function points to be searched

in the pth iterative optimization stage

r̂ The estimated result of the jammer’s coordinates

r The real location of the jammer

x*A, x
*
B Search endpoint

x*C Split point
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P xð Þ =U x*lb, x
*
ub

� �
= 1

x*ub − x*lb

: ð5Þ

We can use the end nodes x*A and x*B to determine the
partition points x*S1 through equation (3).

In rule two, in the local optimization stage, assume that
x*best represents the search point with the optimal fitness
value in the iterative process of the algorithm, as follows:

x*best = best Gp

À Á
: ð6Þ

Bestð⋅Þ is the optimal fitness value search node in the
search node set.

Afterwards, we define the end nodes x*A = x*best and find

f x*A

� �
=min f x*q

� �
, q = 1, Fp

Â Ãn o
,

x*B = x*q

���x*q ∈Gp∧x
*

q ≠ x*A

n o
:

ð7Þ

According to the end points defined in formula (7), the par-
tition point x*S2 can be determined according to the split point
calculation formula in the second local optimization stage.

According to the abovementioned two interactive search
rules, two different optimization stages generate 3Fp new

points, involving endpoints x*A and x*B and segmentation
points x*S1 and x*S2. By assessing the cost function of the
new nodes, the fitness of the new points is determined and
the new points are ranked from good to bad according to

XA

Xs1

XB

(a) Fibonacci scatter search global search phase

XA

XB

Xs2

(b) Local optimization phase of Fibonacci scatter search

Figure 6: Schematic diagram of the Fibonacci rambler tectonic process.

Search endpoint Search endpointSplit point

xA xc xB

Figure 5: Basic search structure of the proposed Fibonacci branch search.
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Start

Initialize the branch depth R and the 
maximum iterations N

Initialize the search points set Gp and the
branch layer number Fp = len (Gp)

Generate the global random points XB and the 
segment points Xs1 according to iterative rule one

Select the optimum solution from the points formed
by rule one in the first stage

Based on the points with best fitness to generate the
segment points Xs2 by iterative rule two

The top best FP + 1 points generated in the two
optimization stages are saved

and the set Gp is updated to new saved points

No

No
Yes

Yes

Len (Gp) – FR?

Iteration number
reach N ?

Output point with the best fitness value

Stop

Fitness value

Fitness function
model

P = P + 1

Figure 7: Flowchart of the Fibonacci branch search algorithm.

Input: B, R, N ,Gp

Output: r̂
Fp ⟵ lenðGpÞ
for i = 1 : N do

for j = p : R do

Create the overall random nodes x*B and the split points x*S1 by the rule one
Calculate the fitness value for each search point based on the coordinates of the search point to all sensors in B
Find the best result from the nodes formed by rule one
Based on the points with optimum fitness value to adaptable points x*S2 by rule two

Sort the all-search points from good to bad according to the fitness value of every search point
The top best Fj+1 points are retained and the search points set Gj is renewed to the new retained points

end for
end for

Algorithm 1: Location-aware of the jammer based on FBS in WSNs.
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Figure 8: Continued.
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the fitness. We take the Fibonacci series as the total number of
search nodes, and we need to save the most suitable Fp+1 set of
these points. Then, we need to remove other 3Fp − Fp+1 nodes.
The search space set in the pth iteration is updated from the
saved points.

Corresponding to the global and local search stages, a
schematic diagram of the Fibonacci branching process is
shown in Figure 6.

The depth of the Fibonacci branching layer shown in
Figure 6 is set to the expected value at the beginning,
and the total number of nodes in each branching layer
is stored in the Fibonacci sequence. In Figure 6, the white
dotted circle is the search point set in the previous
iteration process, the black solid border circle represents
the endpoint of this iteration x*A, and the gray real circle
represents the global random endpoint x*B. Figure 6(a)
depicts the global search phase, which is the first stage
of the whole process, in which the partition point x*S1
represented by a white circle solid is made up based on
the uniformly distributed points and x*A. In Figure 6(b),
other end nodes are fitted optimally in the local optimi-
zation stage x*A and x*B in the current iterative space is
merged. Then, a new split node x*S2 is obtained through
the iterative rules. The adaptable values of x*A, x*B, x*S1,
and x*S2 are assessed, and the optimal Fp+1 solution of
the objective function evaluation is preserved.

Figure 7 discloses a flow chart of a general process for a
specific implementation of FBS.

3.3. Proof of Reachability and Convergence in FBS for Global
Optimization of Multimodal Functions. In this section,
according to the properties of abovementioned Fibonacci,
the reachability and convergence of Fibonacci are studied.
Through strict mathematical proof, it is proven that the
FBS-based algorithm proposed in this paper can determine
the global optimal solution and ensure that the FBS algo-
rithm converges to the optimal solution.

3.3.1. Accessibility Investigation of the FBS Algorithm. Math-
ematical proof I FBS obtains the set of the solution objective
function space by searching the reachable set in the space.

From the characteristics of the abovementioned algorithm,
we know that after a sufficiently long iteration n < +∞, rule 1
generates uniformly distributed endpoints x*B in a constrained

space, such as ∀X
*
∈ x*B,X

*
= ðx*dÞD×1. D are dimensions of

points, their probability distribution is Pðx*dÞ =Uðx*min, x
*

maxÞ,
and x*d satisfies the following relationship of the objective
function field:

ð
⋯D

ð 1
x*max − x*min

dx*d = 1: ð8Þ

The abovementioned theoretical proof process shows that

∀X
*
∈ x*B obeys X

*
∈ B; optimization set B is the reachable set of

x*B obtained by the FBS algorithm.
In mathematical proof II, for the FBS algorithm, the

overall situation optimality of the objective function in the
search field is feasible.

Assume that the overall optimal solution x*
∗
of the search

field is in the field B. It is proved by theory that the solution x*
∗

is in reachable B. After that, we assume that the probability in a
uniform distribution is P and then assume that the result

obtained by the algorithm is x*
L
. On the basis of the proof,

after a sufficiently long iteration, the probability of FBS reach-
ing the saddle point is P∗ ≤

Qn
i=1ð1 − PÞ to obtain the result

lim
n⟶+∞

P∗ ≤ lim
n⟶+∞

Yn
i=1

1 − Pð Þ = 0: ð9Þ

From this point of view, the FBS algorithm can obtain
the overall best solution of the objective function in the
search space.
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Figure 8: Behavior results of the point location history in FBS.
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Therefore, according to the abovementioned proofs, we
can obtain that the overall optimal solution of the objective
function field is accessible in the search field.

3.3.2. Convergence Analysis of the FBS Algorithm. Assuming
that FBS achieves a sufficiently long iteration n < +∞ to find
the overall optimal solution, the existing G of the basic con-
struction generated by FBS could become a gradually opti-
mized node set fx*Tg = fx*t jx*best ∈ Stg, t = 1, 2,⋯, n. x*best
is the best result of the iteration set. Afterwards, we construct

the probability PðtÞ = PðjX*
∗
− x*tj ≥ ςÞ of FBS converging to

the overall best result. ς indicates a small pinned variable.
According to the rules PðtÞ = P

X
*ðtÞ + PςðtÞ, PX

*ðtÞ is the
chance of creating an equidistribution of random nodes of
the field defined by rule 1, while PςðtÞ is the chance of
creating an equidistribution of random nodes of the field
defined by the radius parameter ς of rule 2. Thus, when there
are t iterations of FBS, the search point does not reach the

ς interval region around the global optimal solution, X
*∗

,

~PðtÞ = PðjX*
∗
− x*t j ≥ ςÞ; then, lim

t⟶+∞
~PðtÞ = 0 is obtained

and the following results are obtained:

P n<+∞ð Þ > P tð Þ = 1 − ~P tð ÞP n<+∞ð Þ > 0: ð10Þ

Letting t⟶ +∞, we can obtain

P n<+∞ð Þ = 1: ð11Þ

It is proven that FBS converges to the overall best
result with a probability of 100%.

Through the proof in Sections 3.3.1 and 3.3.2 above, the
results show that the designed FBS algorithm is feasible and
convergent and finally can obtain the overall best result.

4. Jammer Location-Aware Method Based on
Fibonacci Branch Search

FBS-based jammer location awareness mainly includes three
steps: a selection of initial search points, a clarification of the
fitness function, and a search point update.

In the process of location awareness, to narrow the search
scope, the search points should be all within the mapped area.
In the pth iteration, we assume that Fp search points are
selected in the mapped area randomly and the coordinates
of the ith search point are pi = ½xPi , yPi �, i = 1, 2,⋯, Fp.

To evaluate the performance of the estimation result of
the jammer’s location quantitatively, the fitness function is
designed in this section. When a jamming attack is con-
ducted, the jammed area is approximately a circle and the
distance between the jammer and the farthest boundary
node is approximately equal to the jamming radius. Based
on the analysis result in Section 2.2, we can obtain the coor-
dinates of the boundary nodes. Then, the distances between
the boundary nodes and the search point are calculated as
the fitness function.

In the pth iteration, there are Fp search points in the
mapped area and the coordinates of the ith search point
are denoted as pi = ½xPi , yPi �, 1 ≤ i ≤ Fp. Then, the fitness
function at the pth iteration for the ith search point is
denoted as

Fiti pð Þ = 1
NB

〠
NB

j=1
dij pð Þ − �di pð Þ�� ��, i = 1, 2,⋯,NB, ð12Þ

where NB is the number of boundary nodes, ½xBj , yBj � are
the coordinates of the jth boundary node, and dijðpÞ is
the distance between the ith search point and the jth
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Figure 9: Behavior results of the point location history in GSA.

Table 2: Simulation experiment parameters.

Param. Value

Size of area 1 km × 1 kmð Þ
Number of sensors NS 100

Transmitting range of sensors RS 150m

Jamming range of jammer RJ 150m

Routing protocol OSPF
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boundary node. �diðpÞ is the average distance between the i
th search point and all of the boundary nodes. dijðpÞ is
calculated as

dij tð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xPi pð Þ − xBj

� �2
+ yPi pð Þ − yBj
� �2

r
, ð13Þ

and �diðtÞ is calculated as

�di tð Þ =
1
NB

〠
NB

j=1
dij tð Þ
À Á

: ð14Þ

After the fitness value of each search point is calcu-
lated, all of these points are sorted in a descending order

from the best to the worst; the top Fp+1 points are saved,
while the Fp+1 search points form a new set Gp+1 for the
next optimization.

In the process of location awareness, the goal is to search
for the search point of the smallest fitness value. The pseu-
docode of the FBS-based location-aware algorithm is shown
in Algorithm 1. The input is the boundary sensors’ coordi-
nate set B, the branch depth R, the maximum iterations N ,
and the initial search point set Gp, and the output is the esti-
mated result of the jammer’s coordinates r̂.

The coordinates of the search node with the best adapt-
able value are selected as the coordinates of the jammer
which is represented as r̂.

The implementation of FBS is completed by generating
search elements and search branches. Assuming that the

Boundary sensor

Target node

Search endpoint

Split point

1 2
3

(a) The first of the iteration of the global search

1 2

3

45

Boundary sensor

Target node

Search endpoint

Split point

(b) The first iteration of the local search

5
4

6

7
89

Boundary sensor

Target node

Search endpoint

Split point

(c) The second iteration of the global search

7

5
4

8

611

9

10

Boundary sensor

Target node

Search endpoint

Split point

(d) The second iteration of the local search

Figure 10: Schematic diagram of positioning process based on FBS.
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optimization space is considered Ne when FBS is used in
location awareness of the jammer, the comparison dimen-
sion in the search element is set as Nc; then, the algorithm
complexity of FBS is approximate OðCf NeðNcÞ2Þ, where
Cf =∑N

i=1ðFiÞ is the final sum of the searched elements in
the Fibonacci search branch under the maximum number
of loop iterations. Thus, it can be seen from the abovemen-
tioned FBS complexity analysis that the computational com-
plexity of our proposed optimization algorithm mainly
depends on the dimension of the search element and the
maximum number of iterations.

5. Simulation Experiments

In this section, we analyze the performance of the proposed
FBS algorithms using abundant computer simulations. The
simulation is realized in EXata, which is an excellent simula-
tor for wireless networks, and the analysis of the simulation
result is realized in MATLAB.

5.1. Location History of the Search Points in FBS for the
Rastrigin Function. In this part, the proposed edge-back
method with global optimization capabilities proves that
the use of location historical search points in the optimiza-
tion iteration process finds the global optimal solution
instead of falling into the benchmark of local optimization
and is combined with the gravity search algorithm (GSA).
The benchmark function selected in this part is the Rastrigin
function, which has multiple local optimal solutions and a
globally optimal solution.

The performance of the proposed fullback movement
trajectory search points is scattered in the best solution,

and the search space for the optimal convergence point in
Rastrigin is shown in Figure 8. This digital display of the
fullback model can simulate the three-dimensional position
of the historical search point and the trajectory profile in
different iterations. To compare the performance of the
FBS-based algorithm, we compared the algorithm with
GSA and the result of GSA is shown in Figure 9. In FBS
and GSA, the initial position of the search point is set at
the extreme local optimal point.

As shown in Figures 8 and 9, the search points
constantly explore the potential areas in the solution space
and finally cluster around the global optimal value in a
multimodal Rastrigin mode. The experiments displayed in
Figure 9 show that with the increase of the number of itera-
tions, the point cluster of the GSA algorithm is gradually in
the extreme point and continues to maintain the local opti-
mal conditions, with almost no particles searching for the
global optimal extreme point. Based on a local optimum of
the Rastrigin function, it is further proven that the algorithm
is essentially trapped by the local optimum condition and
falls into the local search space. It can be found under the
same conditions from the search point trajectory and the
3D version shown in Figure 8. Although the Rastrigin func-
tion is asymmetric and multichannel and has different
mountain levels, it is found that the global best challenge
comes from many local variables. The minimum value is
in the search space. It is worth noting that with the help of
a global random search, FBS can be jumped out from the
local optimal solution at the extreme point and from the
notch solution at the local optimal point. Throughout the
historical process of locating search points, in the two-
dimensional and three-dimensional space iterations, the
points converging to the global optimal condition and the
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Figure 11: Analysis of location-aware errors when the number of sensors NS = 100 and the jamming range RJ = 150 m.
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regions initializing the optimal growth point are often scat-
tered in the extreme points and gradually move to the opti-
mal solution in the search space. After the first 50 iterations,
more than half of the agents are close to the global optimal
valley and begin to converge to the optimal valley. As the
number of iterations increases, an increasing number of
agents gather and disperse near the extreme point, especially
in the global optimal target region. Finally, the search point
finds the global optimum solution and converges to the
global optimum, which can be investigated and reasoned
by introducing the concept of global randomness into an

endpoint generated by FBS rule 1. To ensure the conver-
gence of the algorithm, local development and optimization
capabilities are emphasized at other endpoints. Because the
global random point performs a global search in space, it
usually moves from a less suitable universe to a more suit-
able universe. The best universe will be saved and moved
to the next search. Therefore, these capabilities and behav-
iors will help the FBS algorithm not fall into a local optimum
and quickly converge to the optimal target point.

Simulation and discussion prove the effectiveness and
convergence of the FBS algorithm. The algorithm proposed
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Figure 12: The CDF of location-aware errors when the number of sensors is different, and the jamming range RJ = 150m.
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in this article can find the global optimal solution in the
solution space.

5.2. Parameters Setting and Benchmark in the Location-
Aware Method. For every experiment, the sensors and the
jammer are all randomly deployed in the ð1 km × 1 kmÞ area.
The simulation experiment parameters of the sensors and
the jammer are listed in Table 2.

To realize the quantitative analysis of location-aware
results, the average location-aware error is utilized to evalu-
ate the performance of each method, which is denoted by E
and given by

E = r − r̂k k
N Eð Þ , ð15Þ

where NðEÞ is the number of simulation experiments, r is
the real location of the jammer, and r̂ is the jammer coordi-
nate calculated by the algorithm. In addition, the cumulative
distribution functions (CDFs) of the average location-aware
error are also considered.

5.3. Performance Comparison and Result Analysis. Use the
FBS-based noncooperative target node location algorithm
to locate the communication node in the wireless sensor net-
work and take Figure 10 as an example to describe the loca-
tion process.

Figure 10(a) shows the global search stage during the first
iteration. First, randomly select a search point (node 1) in the
mapping area as the search endpoint. Then, randomly select a
node (node 2) as the search endpoint and obtain the split point
(node 3) according to the calculation formula of the split
point. The fitness values of node 1, node 2, and node 3 are cal-
culated and sorted, and the fitness value of node 2 is the best,

which is used as the endpoint for local optimization. As shown
in Figure 10(b), randomly select a search point (node 4) as the
endpoint, find the split point (node 5) according to criterion 2,
sort the fitness values of all nodes, and select the best two
nodes (node 4 and node 5) used as the endpoints of the second
iteration. In the global search process of the second iteration of
Figure 10(c), two search points (node 6 and node 7) are ran-
domly selected and the split point between node 4 and node
6 (node 8). The dividing point between node 5 and node 7
(node 9). Calculate and sort the fitness values of all nodes in
the area. In the second local search stage of Figure 10(d), node
6 with the best fitness value is selected as the endpoint. Ran-
domly select the search point (node 10) as another search
point, and find the split point between node 6 and node 10
(node 11). Calculate and sort the fitness values of node 4, node
5, node 6, node 7, node 8, node 9, node 10, and node 11, and
select node 6, node 10, and node 11 as the search for the third-
iteration endpoint.

For every scenario, 103 experiments are conducted, and in
every scenario, we compare the performance of FBS with CL,
WCL, MER, VFIL, and GSA. The CDF of the average
location-aware error when NS = 100, RJ = 150m is shown in
Figure 11(a). Figure 11(b) shows the average location-aware
errors of different location-aware algorithms. As we can see
from the results, the error of the FBS-based location-aware
algorithm is lower than those of the other algorithms.

Assuming that the area size is constant, the sensor num-
ber can be used to reflect the sensor density in the area. To
analyze the influence of different node densities on the per-
formance of different algorithms when the jamming range of
the jammer is set as 150m, the number of sensors is set as
200 and 300. The CDF of location-aware errors for different
node densities is presented in Figure 12 after conducting 103
experiments independently. Figure 12(a) presents the CDF
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of location-aware errors when NS =200, and Figure 12(b)
presents the CDF of location-aware errors when NS =300.
The average location-aware error change with different node
densities is shown in Figure 13. As we can find in Figure 13,
the average location-aware error of FBS is smaller than other
algorithms, which means that the performance of FBS is
better than the other algorithms. CL, WCL, MER, and VFIL
are more sensitive to the distribution of sensors than GSA
and FBS.

To analyze the influence of different jamming ranges on
the performance of different algorithms, the number of
sensors in the area is set as 100 and the jamming ranges are
set as 150m, 200m, and 250m. After conducting 103 experi-
ments independently, the CDF of location-aware errors for
different jamming ranges is presented in Figure 14.
Figure 14(a) presents the CDF of location-aware errors when
RJ =200m, and Figure 14(b) presents the CDF of location-
aware errors when RJ =250m. The average location-aware

Different jamming range

0

10

20

30

40

50

60

A
ve

ra
ge

 er
ro

r (
M

)

CL
WCL
MER

VFIL
GSA
FBS

150 200 250

Figure 15: Influence of the jamming range on average location-aware errors of different algorithms.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CD
F

Error (M)

0 10 20 30 40 50 60 70 80 90 100

CL
WCL
MER

VFIL
GSA
FBS

(a) Jamming range RJ = 200m

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CD
F

Error (M)

0 10 20 30 40 50 60 70 80 90 100

CL
WCL
MER

VFIL
GSA
FBS

(b) Jamming range RJ = 250m

Figure 14: CDF of location-aware errors when the number of sensors NS = 100; the jamming range is different.

16 Journal of Sensors



error change with different jamming ranges is shown in
Figure 14(b). As we can see in Figure 15, the average
location-aware error of FBS is smaller than that of the other
algorithms, which illustrates the better performance of FBS;
when RJ = 250m, the average location-aware error of FBS is
approximately 15m.

6. Conclusion and Future Work

Predicting the active location of jammers and removing
them can ensure the safety of WSNs. This paper proposes
an evolutionary algorithm FBS based on the Fibonacci
sequence method, which reduces the sensitivity of existing
algorithms to the deployment and parameters of WSN jam-
mer location awareness. Although this FBS has been studied
in part of the literature, the accessibility and convergence of
the FBS algorithm have not been proven. In this paper, the
reachability and convergence of FBS are strictly proven,
which further verifies the validity of the theory and supports
the previous view. In the process of jammer location aware-
ness, the boundary sensors in the jammed area are identified
by the map service of the jammed area and the fitness func-
tion is constructed by the distance from the search point to
all boundary sensors. After iteration, the position of the best
fitness search point is estimated as the position of the jam-
mer. The experimental results are compared with the Cl,
WCL, mer, vfil, and GSA algorithms. The experimental
results show that the location-aware algorithm based on
FBS has a good performance, and the location-aware result
is more accurate than that of the other algorithms.

In the real world, the jammer may be in a mobile state all
the time, which increases the difficulty of positioning the
jammer. At the same time, wireless sensor networks have
hardware limitations on battery power due to cost; complex
jammer location-aware algorithms will consume a lot of
energy. Therefore, designing a simple and efficient algorithm
that can get awareness of the location of mobile jammers is
our future research direction.
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The vitality of corn seeds is a significant indicator for assessing the quality and yield of crops. In recent years, numerous
information technologies have been adopted to analyze the seed vitality and provide support for efficient equipment. However,
there are still some shortcomings in these technologies, which decrease the accuracy of identifying the seed vitality for various
practical applications. In this paper, a synthesized classification method for seed vitality was proposed based on multisensor
hyperspectral imaging. Firstly, hyperspectral images in the range of 370-1042 nm were collected for waxy corn seeds, which
were subjected to aging processing with four periods of time (0, 3, 6, and 9 d). Besides, some preprocessing techniques
including standard normal variate, multiplicative scatter correction, Savitzky-Golay smoothing, and first-order and second-
order derivatives were employed to suppress noise interference in raw spectra. In addition, principal component analysis
(PCA), 2nd derivatization, and successive projection algorithm (SPA) were adopted to select feature wavelengths. Moreover,
SVM classification models based on full spectra and feature wavelengths were established. The results showed that, based on
feature wavelengths selected by SPA, the SVM model preprocessed by multiplicative scatter correction (MSC) had the optimal
performance. The training accuracy and testing accuracy of this model were 100% and 97.9167%, respectively. RMSE was
0.018 and R2 was 0.875. Therefore, it can be demonstrated that the pattern recognition algorithm could achieve a high
accuracy in classifying accelerated aging seeds. This algorithm provides a new method for machine learning (ML) in
nondestructive detection of crops.

1. Introduction

Seed vitality is one of the most important parameters that is
directly related to seed germination performance and seed-
ling emergence [1]. A suitable method for seed vitality detec-
tion can help farmers and seed companies reduce the deficit
and favorably engage in agricultural production activities.
The traditional method mainly relies on a manual germina-
tion test to distinguish seed vitality. It is time-consuming,
inefficient, and inaccurate. Therefore, there is an urgent
demand for a rapid and high-accuracy method for seed vital-
ity detection.

The methods for seed vitality classification mainly con-
tain chemical/biological methods and hyperspectral imaging

methods, apart from the manual germination test. Mcdo-
nough et al. studied the vitality change trend of corn, sor-
ghum, and sorghum flour under different aging grades by
detecting the biological features of seeds and the chemical
composition obtained by gel chromatography [2]. Cheyed
measured the activities of amylase, phospholipase, protease,
and phytase and explored the viability of wheat seeds in dif-
ferent storage periods [3]. The hydrogen peroxide (H2O2),
ascorbic acid, and activity of catalase were determined to
distinguish the stigma vitality of the rice [4]. RNA sequenc-
ing and DNA affinity purification sequencing analysis were
performed to probe into the molecular mechanism of the
rice seed germination [5]. Wei et al. investigated the protein
and ultrastructure of the cotyledon and embryo, in an
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attempt to classify the quality of different soybean seeds [6].
Although these methods are objective and accurate, they
have such common disadvantages as heavy workload, ineffi-
ciency, and high professional requirements. Therefore, it can
be hypothesized that they cannot detect the seed vitality
efficiently.

Hyperspectral imaging is an emerging technique that
integrates both spectroscopic and imaging techniques into
one system [7]. It can be employed to reflect the internal
information of seeds [8]. In recent years, it has been widely
used in seed detection and has achieved excellent results.
Yang et al. built a predicted model to detect whether the
sugar beet seeds can germinate based on hyperspectral
reflectance [9]. Şentaş et al. conducted an investigation into
the yield of soybean (Glycine max) seeds based on the
hyperspectral reflectance, which had favorable robustness
[10]. Zhang et al. constructed models with spectral data to
quickly, nondestructively, and accurately determine the ger-
minated power of seeds [11]. Dumont et al. evaluated the
seed quality of Norway spruce. They divided these seeds into
three categories based on sparse logistic regression feature
selection, and the accuracy of spectrum measurement
reached 99% [12]. Hyperspectral technology provides a
new way for rapid and nondestructive detection of seeds.
However, each sample in the hyperspectral remote-sensing
image has high-dimensional features and contains rich spa-
tial and spectral information, which dramatically increase
the difficulty of feature selection and mining [13]. With the
advancement of artificial intelligence (AI), intelligence has
been considered as the major challenge in promoting the
economic potential and production efficiency of precision
agriculture [14].

As an AI method, ML can effectively solve the problem
of hyperspectral information feature selection and mining.
Since the 1990s, AI has received extensive attention and
has been adopted as a new learning method. The purpose
is to determine the rules contained in a series of known sam-
ples, so that the machine can acquire a certain self-learning
ability for unknown samples. A learning method, named
support vector machine (SVM), has been developed on the
basis of ML theory. It is a novel small sample learning
method and can avoid the traditional process from “induc-
tion” to “deduction.” SVM could simplify the usual classifi-
cation problems and has presented multiple advantages
over existing methods. Scholars maintain that SVM will
strongly promote the development of ML theories and tech-
nologies [15].

SVMwas the first classifier developed from the generalized
portrait algorithm in pattern recognition. It was proposed by
Soviet scholars Vladimir N. Vapnik and Alexander Y. Lerner
in 1963 [16]. With the progression of theoretical research,
SVM is gradually theorized and becomes a part of statistical
learning theory. After decades of technical accumulation,
SVM has been extensively applied in the field of classification
and regression, including portrait recognition, text classifica-
tion, handwritten character recognition, and bioinformatics.

In recent years, SVM has also been widely used in seed
detection and has achieved excellent results. Baek et al.
developed an SVM model to detect those rice seeds stained

with lesions. The results showed that it was feasible to screen
diseased rice seeds based on ML algorithms and spectral
imaging technology [17]. Pattern recognition technology
and data mining methods have become hotspots in chemo-
metrics. SVM has been employed to classify different corn
seeds based on spectral data. It has a high classification accu-
racy, which demonstrates the effectiveness of this method
[18]. Despite the fact that significant efforts have been made
to conduct investigations with respect to precision agricul-
ture in previous studies, there remains a lack of a mature
detection method for corn (Jingke 2000), an important eco-
nomic crop, based on hyperspectral technology. Hence, the
main purpose of this study is to explore the utilization of
the SVM method to achieve rapid detection of the vitality
of waxy corn seeds under different aging degrees. The main
research contents are elucidated as follows.

(1) Elaborate on the relationship between seed vitality
level and artificial aging time through standard ger-
mination tests, which could provide an experimental
basis for the model construction

(2) Obtain the hyperspectral data of waxy corn seeds
under different accelerated aging periods of time
and use five preprocessing methods, including S-G
smoothing, MSC, and SNV

(3) Adopt PCA and two other methods to filter feature
wavelengths for the subsequent classification models

(4) Construct and compare SVM classification models
under different pretreatment and feature selection
methods, in an attempt to select the optimal model
to identify waxy corn seeds

2. Related Works

The ML methods can be applied to the processing of hyper-
spectral imaging data, so as to realize the detection of seed
vitality. Puneet et al. compared data visualization methods,
such as principal component analysis (PCA) with multidi-
mensional scaling (MDS), etc. They divided six kinds of
tea into three different processing degrees according to the
near-infrared spectral information [19]. Baek et al. tested
several spectral preprocessing methods, such as continuous
wavelet transform and feature selection methods, and
improved the predicted accuracy by partial least square
regression (PLSR) [20]. Wang et al. proposed an orthogonal
signal correction (OSC) method for noise reduction and
applied SPA to select the optimal wavelengths. A favorable
PLSR model was obtained and can be employed to predict
seed hardness based on hyperspectral imaging [21]. Insuck
et al. used variable importance in projection (VIP) to remove
redundant information and reduce the computation time for
data processing. Two kinds of soybeans were classified by
partial least square discrimination analysis (PLS-DA) based
on spectra, which was confirmed to be feasible and effective
[22]. These researchers continue to optimize the PLS model;
for example, the PLS model processed by the orthogonal sig-
nal correction (OSC) method reduces the calculation factor
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and improves the accuracy. Meanwhile, the PLS model proc-
essed by the variable importance in projection (VIP) method
removes redundant information and improves the efficiency
of the model. Nevertheless, the accuracy of the model is not
significantly improved. Additionally, the PLS method is
more suitable for the construction of a linear model, and it
cannot accurately simulate the nonlinear relationship
between seed vitality and spectra. However, the SVM model
based on finding the optimal hyperplane for the feature
space division is more suitable for analyzing the correlation
between seed vitality and spectra. There are only a few sup-
port vectors that can be adopted to determine the classifica-
tion results, due to the fact that they can grasp the key
samples and remove the majority of redundant samples.
The SVM method is characterized by high usability and bet-
ter “robustness.” Therefore, the SVM model was adopted in
this study to classify the waxy corn seeds with different vital-
ity levels based on hyperspectral imaging. Further, some
other parameters were also analyzed.

3. Materials and Methods

The detailed flowchart of using SVM to detect the seed vital-
ity of waxy corn is shown in Figure 1. The ultimate goal is to
select the optimal SVM model combined with other pre-
treatment methods to detect seed vitality rapidly.

3.1. Modeling Methods

3.1.1. Preprocess Methods. After selecting the region of inter-
est (ROI) of all corn seeds, the spectral data were prepro-
cessed with five methods: MSC, SNV, S-G smoothing, 1st
derivative, and 2nd derivative.

(1) Multiplicative Scatter Correction (MSC). MSC can be
employed to compare the difference between the ideal spec-
tra and the actual one [23]. It uses linear regression to
achieve baseline correction and drift correction, which can
correct the effects of scattering.

The basic steps are presented as follows.

(1) Average spectra calculation:

�X = 〠
n

i=1

Xi

n
: ð1Þ

(2) Linear regression analysis:

Xi =mi
�X + bi, ð2Þ

where X represents the matrix of all spectral data, Xi
represents the spectral reflectance of the i-th sample,

Artificial aging Waxy corn seed samples Standard germination tests

Hyperspectral data acquisition

Hyperspectral data preprocessing
SNV, MSC, SG,
1ST derivative,
2ND derivative

Full wavelengths

PCA, SPA,
2ND derivative

Extraction of characteristic
wavelengths

Recognition
based on SVM 

Accuracy evaluation and comparison

Selecting optimal model

Figure 1: Flowchart for detection of waxy corn seed vitality based on SVM and hyperspectral imaging.
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and mi and bi represent the slope and intercept
parameters, respectively between Xi and the average
spectra.

(3) Correction using slope mi and intercept bi:

Xi MSCð Þ =
Xi − bi
mi

, ð3Þ

where XiðMSCÞ represents the spectral matrix after
multiplicative scatter correction. This method can
be employed to successfully correct all spectra and
reduce the effects of scattering.

(2) Standard Normal Variate (SNV). SNV is a process in
which each spectral curve is processed by standard normal
transformation. It can weaken such interfering effects as
scattering effects and light path changes [23]. It is more suit-
able for processing spectral data with large differences in
samples. It can be assumed that in each spectrum, the spec-
tral absorption value of each wavelength satisfies some con-
ditions, such as a normal distribution; SNV can be employed
to perform standard normal transformation processing on
each spectrum, namely,

ISNV =
I − μ

σ
, ð4Þ

where I represents the original spectra value, μ represents
the average value of the spectra, and σ represents the stan-
dard deviation of the raw data.

(3) Savitzky-Golay Smoothing. S-G smoothing is a filtering
method based on local polynomial least square fitting to
eliminate high-frequency random errors. Its prominent fea-
ture is that it can keep the shape and width of the signal
unchanged while filtering the noise [24]. The basic theory
can be illustrated by Figure 2.

A column of data x½n� is represented by solid dots in the
figure. A set of 2M + 1 data can be considered to be centered
on n = 0. It can be fitted with the following polynomial:

P nð Þ = 〠
N

k=0
akn

k: ð5Þ

The residual of the least square fit is

εN = 〠
M

n=−M
p nð Þ − x n½ �ð Þ2 = 〠

M

n=−M
〠
N

k=0
akn

k − x n½ �
 !2

: ð6Þ

Only the constant term of the fitted polynomial needs to
be obtained. It can be realized by convolution operation:

y n½ � = 〠
M

m=−M
h m½ �x n −m½ � = 〠

n+M

m=n−M
h n −m½ �x m½ �: ð7Þ

(4) Derivative Analysis. The 1st-derivative and 2nd-
derivative analyses can be adopted to reduce baseline correc-
tion and smooth background interference. It provides higher
resolution and clearer spectral profile changes than the orig-
inal spectra. The basic principle is to calculate the derivative
of the spectral information [25].

The 1st-derivative formula is as follows:

f xð Þ′ = f x + 1ð Þ − f xð Þ
Δx

: ð8Þ

The 2nd-derivative formula is as follows:

f xð Þ} = f ′ x + 1ð Þ − f ′ xð Þ
Δx

: ð9Þ

3.1.2. Principal Component Analysis (PCA). The basic princi-
ple of principal component analysis (PCA) is to explore the
correlation between multiple variables. The main principle
of PCA is to project the original features onto the
information-rich dimension to achieve dimensionality
reduction, and the first few principal components (PCs)
contain much of the useful information [26].

It can be assumed that the data have a total of D = fx1,
x2,⋯, xng; if you want to reduce it to the m dimension,
the basic operation of PCA is as follows:

(1) Centralize all features and remove the mean value:

xi ⟵ xi −
1
n
〠
n

i=1
xi: ð10Þ

(2) Calculate the covariance matrix XXT /n

(3) Calculate the eigenvalues of the covariance matrix
XXT and the matching eigenvectors

(4) The original feature is projected onto the feature vec-
tor; the unit feature vector corresponding to the larg-
est m feature values is w1,w2,⋯,wn; and the new m
-dimensional feature after dimensionality reduction

x (m) or x (n)

0 10 m or n

Figure 2: Schematic diagram of S-G smoothing.
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is obtained. The output is the projection matrix W
= ðw1,w2,⋯,wnÞ.

3.1.3. Feature Extraction Methods. The amount of spectral
data obtained from hyperspectral images is very large and
contains a lot of redundant information, which will increase
the burden of data processing and affect the accuracy of the
model [27]. Therefore, it is necessary to select feature wave-
lengths to reduce input and improve the performance of
models [28].

The peaks and valleys with significant differences in the
2nd-derivative spectra can be selected as the feature wave-
lengths. It can eliminate interference from other back-
grounds and highlight useful information in the spectra [29].

The successive projection algorithm (SPA) can be
employed to compare the projection vectors of different
wavelengths on others and extract the largest vector as the
feature wavelength [30]. During the operation of this algo-
rithm, a wavelength would be arbitrarily selected at first;
then, the wavelength corresponding to the vector with the
largest projection would be put into the variable group; it
would operate in a circular selection mode until the end of
the last variable.

The principle of the continuous projection algorithm is
as follows. Let m be the spectra matrix of the collected sam-
ples, where n represents the number of samples, m repre-
sents the number of wavelengths, and N represents the
number of variables:

(1) First, select j columns from the spectral data to form
the spectral matrix xj

(2) The remaining spectra are aggregated:

Ω = j, 1 ≤ j ≤ J , j ∉ k 0ð Þ,⋯, k n − 1ð Þf gf g: ð11Þ

(3) Calculate the projection of the column vector:

Pxj
= xj − xTj xk n−1ð Þ

� �
xk n−1ð Þ xTk n−1ð Þxk n−1ð Þ

� �−1
, j ∈Ω,

ð12Þ

k nð Þ = arg max Pxj

��� ���� �h i
, j ∈Ω, make xj = Pxj

, j ∈Ω:

ð13Þ

(4) Let n = n + 1; if n <N, return to equation (11), and the
final feature wavelength is fxðkn = 0Þ,⋯,N − 1g

3.1.4. Discriminant Model. The support vector machine
(SVM) can be employed to map the raw data from a low
dimension to a higher dimension and utilize hyperplanes
to define the decision boundaries for classification [31].
The core of the SVM algorithm is to determine the optimal
hyperplane separation class. The basic theory is illustrated as
Figure 3.

This hyperplane can be described by the following equa-
tion:

w ⋅ Xi + b = 0, ð14Þ

where w and b represent the normal vector and offset of the
hyperplane, respectively. In the training process, the deter-
mination of the optimal hyperplane can achieve the maxi-
mum discrimination of training samples while minimizing
misclassification. The two types of support vectors in the
two planes parallel to the optimal hyperplane are defined
as w ⋅ Xi + b = ±1. Thus, the solution of this optimal plane
can be transformed into a constrained optimization prob-
lem:

min
1
2

wk k2
� �

+ C〠
n

i=1
ξi,

s:t: ξi + yi w ⋅ Xi + bð Þ − 1 ≥ 0, ξi ≥ 0,

8><
>: ð15Þ

where ξi represents the distance between the misclassified
sample and the corresponding classification hyperplane. C
represents the penalty coefficient, which determines the
importance of the outlier value. According to Lagrange dual-
ity [32], the optimal hyperplane can be expressed as a com-
bination of linear variances:

f xð Þ =w ⋅ X + b = 〠
n

i=1
yi∂iξiXiX + b,

∂i ≥ 0,

8><
>: ð16Þ

where αi represents the Lagrange multiplier, corresponding
to the correlation coefficient of each sample, and the varia-
tion range is between 0 and C.

Kernel function is important for conducting SVM [33].
There are some popularly used kernel functions, such as
polynomial kernel function, linear kernel function, sigmoid
kernel function, and radial basis function (RBF). Among
them, RBF has the advantages of high efficiency and fast
approaching speed [34]. Simultaneously, according to the
feature of small feature dimension and the normal number

y

x

w · x
 + b = 1

w · x
 + b = 0

w · x
 + b = –1

w

w

w

2

b

˙

Figure 3: Schematic diagram of SVM.
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of this data sample, the derivation formula can be expressed
as follows:

K X1,X2,ð Þ = φ X1,ð Þ ⋅ φ X2ð Þ = exp −
X1 − X2,
�� ��

σ2

 !
, ð17Þ

where φðX1Þ and φðX2Þ represent the mapping functions of
objects X1 and X2, and σ represents the width parameters of
the function.

3.1.5. Model Evaluation Index. In this study, the quality of
the corresponding model was evaluated based on accuracy,
root mean square error, and coefficient of determination.

(1) Accuracy. Accuracy indicates the percentage of the num-
ber of positive and negative samples that is correctly pre-
dicted to the number of all samples [35]. The overall
prediction situation of the applied model can be presented.
It can be expressed as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
, ð18Þ

where TP represents true if it is a positive sample and the
model prediction is also a positive sample, TN represents
true if it is a negative sample and the model prediction is also
a negative sample, FP represents true if it is a negative sam-
ple but the model prediction is a positive sample, and FN
represents true if it is a positive sample but the model pre-
diction is negative sample.

(2) Root Mean Square Error (RMSE). RMSE subtracts the
predicted value from the actual value, finds the square of
the square and adds the average value, and finally opens
the root sign [36]. The model detection ability is stronger
when the RMSE is smaller. When the RMSE is 0, that is,
the predicted value is completely equal to the true value,
the model performance is optimal; the larger the RMSE,
the greater the prediction error of the model.

The RMSE calculation formula is as follows:

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1/N〠

n

y − y
Λ

� �2
s

: ð19Þ

(3) Coefficient of Determination (R2). R2 can also be called
the coefficient of determination. It is mainly employed to
evaluate the stability of the model based on the mean value
and compared with the prediction error [37].

The R2 calculation formula is as follows:

R2 =
SSR
SST

=
SSR

SSR + SSE
=
∑ yi − y

Λ

i

� �2

∑ yi − �yið Þ2 , ð20Þ

where SSR represents the sum of squares due to regression
and SSE represents the sum of squares due to errors.

When R2 = 1, the predicted value of this model is equal
to the true value of the sample, and the error is 0; when R2

= 0, the predicted value of this model is equal to the mean
value of the sample. R2 can reflect the stability of the model.
The more R2 tends to 1, the more stable the model.

(4) Receiver Operating Characteristic (ROC) Curve. The ROC
curve is a comprehensive index that reflects the sensitivity
and specificity of continuous variables. It can be employed
to calculate the sensitivity and specificity by setting different
critical values and generating the ROC curve. The larger the
area under the ROC curve (AUC), the better the perfor-
mance of the model.

The formula for calculating the horizontal axis value is

FPR =
FP

TN + FP
: ð21Þ

The formula for calculating the vertical axis value is

TPR =
TP

TP + FN
, ð22Þ

where FPR is the false positive rate and TPR is the true pos-
itive rate.

3.2. Data Analysis Materials

3.2.1. Sample Preparation. The variety of corn seeds used in
this study is a kind of waxy corn named Jingke 2000. The
residual granules, overly dry granules, and impurities were
removed in advance. A total of 384 seeds were selected as
samples, and they were randomly divided into four groups
(96 samples in each group). Information on the samples is
shown in Table 1. One group was used as a control group,
and the other three groups were placed in an artificial aging
box for 3, 6, and 9 days of aging treatment. After the treat-
ment was completed, 48 seeds in each group were randomly
selected for standard germination analysis, and the hyper-
spectral data of each seed of the other half of the samples
were collected every 5 minutes.

3.2.2. Standard Germination Tests. Before obtaining the
hyperspectral image, the selected samples were tested for
germination according to the International Seed Testing
Association (ISTA) standard [38]. The corn seeds were cul-
tured for 10 days at 25°C with a relative humidity of 99%.
The sprout length was manually measured, and the germina-
tion rate was calculated according to the ISTA standard.

Table 1: Information of samples for germination and modeling.

Accelerated aging time (days) Germination Modeling

0 48 48

3 48 48

6 48 48

9 48 48
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3.2.3. Hyperspectral Imaging System. The experiment was per-
formed using a hyperspectral imaging system (Figure 4(a))
composed of a hyperspectral imager, two halogen lamps, a
mobile platform, and a computer. The hyperspectral imager
SOC 710-VP manufactured by Polytec, France, was used to
obtain reflected light from the seeds. It could cover a spectral
range of 370–1042 nm with a spectral resolution of 4.7 nm
and spatial resolution of 696 × 520 pixels. Each of the 24
corn seeds was placed in a specific sample holder with
24 holes (Figure 4(b)). The exposure time of the imaging
system was set to 3ms, and the platform movement speed
was 20mm/s. The obtained spectra were processed by dark
and white calibration initially to calibrate the system. The
postdata processing and model construction were per-
formed by the MATLAB R2018a software (The Math
Works, Natick, MA, USA).

4. Results

4.1. Germination Test Analysis. Table 2 lists the germination
rate and average sprout length of waxy Jingke 2000 with dif-
ferent aging periods of time. It can be seen that during the
aging process of corn seeds from 0 to 9 days, both the germi-
nation rate and the sprout length decrease with the increase
of aging time.

The overall results show that the longer the aging time,
the relatively lower the seed vitality. This indicates that it is
justified to prepare samples of different vitality classes by
varying aging periods of time in this study. These findings
provide experimental support for later seed vitality detection
with SVM at different levels of aging.

4.2. Spectral Profile. The raw spectral reflectance curves of all
corn samples in the spectral range of 370–1042 nm and the
average spectra of the samples at four different aging times

are shown in Figures 5(a) and 5(b), respectively. The corn
seeds in the same variety have similar change trends of the
spectral reflectance curves under different aging processes.
The spectral reflectance gradually increases in the range of
400-650 nm, with a clear absorption peak near 650nm; then,
the reflectance decreases, reaching a minimum value in the
first stage near 700nm. After that, the curve rises sharply,
reaching a maximum around 750nm; then, it falls and rises
again, reaching a minimum in the second stage around
850 nm; subsequently, the reflectance continues to fall.

The average spectra of corn seeds preprocessed by S-G
smoothing and 2nd derivative are shown in Figure 6. A
five-point model was applied in S-G smoothing. Compared
with the unpretreated spectra, it shows that after S-G
smoothing, the spurs in the original curve are obviously
eliminated and the noise is smoothed. Moreover, the prepro-
cessing with the 2nd-derivative algorithm also removes some
high-frequency noise and mutual interference of different
components. Therefore, it can be concluded that both the
S-G smoothing and the 2nd-derivative algorithm could
improve smoothness and reduce noise interference. They
can be used to preprocess other continuous and irregular
data.

4.3. PCA. PCA was conducted on the average spectra of corn
seeds, in an attempt to obtain the weight coefficients of dif-
ferent PCs. The first three PCs were adopted for qualitative
analysis, due to the fact that they contained much of the corn
seed information, with 99.98% explained variance for Jingke
2000 (95.06% for PC1, 2.83% for PC2, and 0.94% for PC3).
The contribution rate of PC1, PC2, and PC3 is shown in
Figure 7(a). The weight coefficients of PC1, PC2, and PC3
are shown in Figures 7(b)–7(d), respectively. Similarly, the
weight coefficients of PC2 and PC3 can also be obtained.
The first three PCs were selected as the input of the models
for the further processing.

4.4. Classification Models Based on Full Spectra. An SVM
model was constructed to detect corn seeds with different
aging periods of time. Besides, the sample data of each grade
were randomly divided into a training set and a testing set at
a ratio of 3 : 1 (the training set contained 36 seeds, and the
testing set contained 12 seeds). The RBF kernel function
was applied to this model. The grid optimization method
was used for parameter optimization. The penalty coefficient
c was 100 and the regularization coefficient was 10.

(a) (b)

Figure 4: (a) Hyperspectral imaging system; (b) corn samples in Petri dishes.

Table 2: Germination rate and sprout length of Jingke 2000 under
different accelerated aging periods of time.

Accelerated aging time
(days)

Germination
rate (%)

Average sprout length
(cm)

0 91.67 1.76

3 83.33 1.01

6 60.42 0.70

9 47.92 0.40
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The overall classification results are shown in Table 3. As
shown in Table 3, the overall classification accuracy of the
training set for the waxy corn under PCA is relatively higher
than that for the raw data. The training accuracy is 93.75%
and the testing accuracy is 89.5833%. It can be inferred that
PCA can reduce the dimension of the data and increase the
accuracy of the classification model. As for the PCA-SVM
model, RMSE is 0.0262 and R2 is 0.834, which improves
the stability of model detection errors. Due to the fact that
the spectral data processed by PCA can represent as many
data features as possible without relying on too many com-

ponents, the calculation time of the later model is signifi-
cantly reduced, and the redundant information in the raw
data is removed at the same time.

4.5. Feature Wavelength Selection. In this study, the 2nd
derivative and SPA were adopted to select feature wave-
lengths. The RMSE of different wavelengths selected after
SPA preprocessing and the selected variables are shown in
Figure 8. The number of wavelengths with a locally lowest
RMSE value is regarded as the number of feature wave-
lengths. The selected feature wavelengths are shown in
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Figure 5: (a) Raw spectra of corn seeds; (b) average spectra of corn seeds.
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Figure 6: (a) Spectra preprocessed by S-G smoothing; (b) spectra preprocessed by 2nd derivative.
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Table 4. A total of 20 and 8 feature wavelengths are obtained,
finally, to reduce the data volume.

4.6. Classification Models Based on Feature Wavelengths.
Table 5 shows the detection results of the SVM model con-
structed based on the feature wavelengths selected by the
2nd derivative and SPA. The classification accuracy of both
the training set and the testing set is over 95%, which is sig-
nificantly higher than the overall results based on the full
spectra. The highest accuracy of the training set is 98.75%,
and that of the testing set is 97.1111%. As for the SPA-
SVM model, RMSE is 0.0238 and R2 is 0.9435. Through
the feature wavelength selection, the effective information

is highlighted, so that the accuracy of the model is improved.
Therefore, it is of great significance to adopt a classification
model based on feature wavelengths. Meanwhile, SPA is
more suitable for feature wavelength selection.

Figure 9 shows the ROC curves of the two classification
models. The AUC of the SPA-SVM model is higher, reach-
ing 0.9783, while the AUC of the 2nd-derivative-SVMmodel
is 0.9416. Both the classification accuracy and the AUC of
the SPA-SVM model are higher than those of the 2nd-
derivative-SVM model, which indicate that the SPA-SVM
model has better performance and generalization ability in
the classification of corn seeds.

The overall results of SVM models using the feature
wavelengths selected by SPA spectra with different process-
ing methods are listed in Table 6.

The accuracy of the training set is higher than that of the
model based on the raw spectra, all over 90%. The accuracy
of the testing set is over 85%, which indicates that the SVM
classification model constructed based on hyperspectral data
can effectively achieve the detection of corn seeds with dif-
ferent vitality levels. The results of the MSC method are bet-
ter than those of other pretreatment methods. The accuracy
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Figure 7: (a) Contribution rate of PC1, PC2, and PC3; (b) weight coefficient of PC1; (c) weight coefficient of PC2; (d) weight coefficient of
PC3.

Table 3: The classification accuracy of SVM models using full
spectra.

Methods Variables
Training
accuracy

(%)

Testing
accuracy

(%)
RMSE R2

Raw-SVM 128 87.5 83.3333 0.05 0.834

PCA-SVM 3 93.75 89.5833 0.0262 0.9332
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of the training set is 100% and the accuracy of the testing set
is 97.9167%, followed by the 2nd derivative, with the accu-
racy of 96.5278% in the training set and 95.8333% in the

testing set. Besides, the RMSE of the two is the lowest among
all the methods, and R2 is the highest. In terms of the MSC-
SPA-SVM model, RMSE is 0.018 and R2 is 0.875. In terms of
the 2nd-derivative-SPA-SVM model, RMSE is 0.0343 and R2

is 0.888. It can be proven that the SVM model based on fea-
ture wavelengths is better after being preprocessed with the
MSC and the 2nd derivative. Further, the classification accu-
racy is significantly improved compared with those based on
the raw spectra data. Moreover, the robustness of the models
has also been improved. The preprocessing method has great
significance for improving the accuracy of the classification
models.

5. Discussion

As mentioned above, several preprocessing and feature
wavelength selecting methods are employed to construct
the SVM model based on the spectral information of Jingke
2000 waxy corn. As is revealed from Table 3, the SVMmodel
based on PCA could achieve a significantly higher accuracy
in the training set and the testing set compared with the
model based on the raw spectra. The spectral data processed
by PCA can represent as comprehensive features as possible
with fewer PCs. The redundant information in the raw data
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Figure 8: (a) RMSE distribution diagram; (b) feature wavelengths by SPA.

Table 4: Corresponding feature wavelengths selected by the 2nd derivative and SPA.

Methods Variables Feature wavelengths (nm)

2nd derivative 20
466.8984, 518.3363, 554.5661, 564.9512, 580.5571, 601.4174, 648.5726, 664.3586, 711.9191, 738.4728, 775.8057,

791.8618, 856.4238, 878.0646, 888.9074, 894.3345, 905.1999, 937.8861, 976.1908, 1014.679

SPA 8 502.8656, 544.196, 622.3378, 674.9013, 685.459, 696.0318, 738.4728, 943.3469

Table 5: The classification accuracy of SVM models using the 2nd derivative and SPA using feature wavelengths.

Methods Variables Training accuracy (%) Testing accuracy (%) RMSE R2

2nd-derivative-SVM 20 96.5278 95.8333 0.0385 0.9218

SPA-SVM 8 98.75 97.1111 0.0238 0.9435
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Figure 9: ROC curves of SPA-SVM model and the 2nd-derivative-
SVM model.
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is removed, and the time of the subsequent model calcula-
tion is significantly reduced. From Tables 3 and 5, it can
be concluded that the detection results of the model based
on the feature wavelengths have been improved compared
with the model based on the full wavelengths. This indicates
that feature extraction can eliminate some irrelevant infor-
mation in the spectral data and make the remaining features
more obvious. The ROC-AUC curve of the classification
model based on the 2nd derivative and SPA shows that the
classifier has better generalization performance under differ-
ent thresholds. The ROC curve of the SPA-SVM model is
closer to the upper left corner of the coordinate and has a
larger AUC, indicating a higher accuracy. SPA can be
employed to compare the projection vectors of different
wavelengths on the others and extract the feature wave-
lengths corresponding to the largest vector. It can achieve a
better performance in minimizing the correlation of the
wavelengths and extracting features than other methods.
After extracting the feature wavelengths by SPA, different
preprocessing methods are applied to the performance com-
parison. The results suggest that the accuracy of the model
has been further improved, with MSC achieving the optimal
performance, followed by the 2nd derivative. The MSC
method can be employed to remove noise and stray light
interference from the raw spectra. The 2nd derivative can
be adopted to eliminate the noise and the baseline drift,
through which the features of the spectral curve can be high-
lighted. Other methods can only be adopted to smooth the
noise horizontally, with a poor performance. The SVM
model for the classification of waxy corn seed vitality with
MSC preprocessing and the SPA method to extract the fea-
ture wavelengths could achieve the optimal performance.
The accuracy of the training set is 100%, the accuracy of
the testing set is 97.9167%, and there are few samples with
incorrect classification. RMSE is 0.018 and R2 is 0.875, which
means that the deviation is also within the acceptable range,
thus ensuring the robustness of the model. This method is
faster and more nondestructive than traditional and chemi-
cal methods. The SVM model has improved the accuracy
and robustness compared with other ML methods, such as
PLS. Therefore, the MSC-SPA-SVM model is of great signif-
icance for the classification of Jingke 2000 waxy corn seeds.

6. Conclusions

The SVM model based on hyperspectral imaging is quite
effective for detecting the waxy corn seeds with different

vitality levels. The detection results of the SVM model based
on the feature wavelengths combined with different prepro-
cessing methods are generally better than the model based
on the full spectra. The MSC-SPA-SVM model could
achieve the highest accuracy of 97.9167% in the testing set.

Through this study, it can be concluded that it is feasible
to use ML algorithms to detect the vitality of waxy corn
seeds. They are fast and nondestructive during the classifica-
tion compared with traditional methods. Besides, they can
achieve a higher accuracy, showing great potential in the
future.

However, there are some limitations and threats in the
results due to the restriction of the experimental environ-
ment and other conditions. The spectral imager in this study
could only cover 370nm-1042nm, and the wavelength range
should be expanded to enrich the spectral features of the
seed vitality. Therefore, it is required to explore the application
of SVM and other ML algorithms in crop detection. Besides,
the structure and parameters to improve the classification
accuracy and versatility of the model should be optimized. In
the future, it is necessary to explore its potential in datamodel-
ing, predictive analytics, and deep-learning methods [39–43].
Moreover, we will conduct further application explorations
for the development of other fields including crop identifica-
tion and food hazard detection [44–49].

Data Availability

All data included in this study are available upon request by
contacting the corresponding author.

Conflicts of Interest

The authors declare no conflict of interest.

Authors’ Contributions

Conceptualization was overseen by Jinghua Wang and Lei
Yan; methodology was overseen by Jinghua Wang; software
was handled by Jinghua Wang; validation was overseen by
Jinghua Wang and Fan Wang; formal analysis was handled
by Lei Yan and Fan Wang; investigation was overseen by
Lei Yan and Fan Wang; resources were overseen by Lei
Yan; data curation was handled by Jinghua Wang and Lei
Yan; original draft preparation was handled by Jinghua
Wang; review and editing were handled by Jinghua Wang
and Shanshan Qi; visualization was overseen by Jinghua

Table 6: The classification accuracy of SVM models using different processing methods based on feature wavelengths.

Methods Number of correct recognition Training accuracy (%) Testing accuracy (%) RMSE R2

2nd-derivative-SVM 20 96.5278 95.8333 0.0385 0.9218

SNV-SVM 133 94.4444 93.75 0.0424 0.855

MSC-SVM 144 100 97.9167 0.018 0.875

S-G smoothing-SVM 138 95.8333 91.6667 0.0359 0.864

1st-derivative-SVM 126 91.4766.5 89.2501 0.05 0.834

2nd-derivative-SVM 139 96.5278 95.8333 0.0343 0.888

11Journal of Sensors



Wang; supervision was handled by Lei Yan; project adminis-
tration was overseen by Lei Yan; funding acquisition was
handled by Lei Yan. All authors have read and agreed to
the published version of the manuscript.

Acknowledgments

This research was funded by the National Key Research and
Development Program of China (No. 2021YFD2100605), the
National Natural Science Foundation of China (Nos.
62006008, 62173007, and 31770769), and the Fundamental
Research Funds for the Central Universities (No. 2015ZCQ-
GX-03).

References

[1] N. Kapoor, A. Arya, M. A. Siddiqui, H. Kumar, and A. Amir,
“Physiological and biochemical changes during seed deteriora-
tion in aged seeds of rice (Oryza sativa L.),” Plant Physiology,
vol. 6, pp. 28–35, 2011.

[2] C. M.Mcdonough, C. D. Floyd, R. D.Waniska, and L. W. Roo-
ney, “Effect of accelerated aging on maize, sorghum, and sor-
ghum meal,” Journal of Cereal Science, vol. 39, no. 3,
pp. 351–361, 2004.

[3] S. H. Cheyed, “Effect of storage method and period on vitality
and vigour of seed wheat,” Indian Journal of Ecology, vol. 47,
no. 10, pp. 27–31, 2020.

[4] J. Chen, W. Miao, K. Fei et al., “Jasmonates alleviate the harm
of high-temperature stress during anthesis to stigma vitality of
photothermosensitive genetic male sterile rice lines,” Plant Sci-
ence, vol. 12, 2021.

[5] C. C. Zhu, C. X. Wang, C. Y. Lu et al., “Genome-wide identifi-
cation and expression analysis of OsbZIP09 target genes in rice
reveal its mechanism of controlling seed germination,” Inter-
national Journal of Molecular Sciences, vol. 22, no. 4, p. 1661,
2021.

[6] J. Wei, H. Zhao, X. Liu, S. Liu, L. Li, and H. Ma, “Physiological
and biochemical characteristics of two soybean cultivars with
different seed vigor during seed physiological maturity,” Prote-
omics, vol. 18, no. 1, pp. 71–80, 2021.

[7] M. Huang, J. B. Tang, Q. Z. Yang, and Q. Zhu, “Classification
of maize seeds of different years based on hyperspectral imag-
ing and model updating,” Computers and Electronics in Agri-
culture, vol. 122, pp. 139–145, 2016.

[8] H. L. Huang, M. O. N. Liu, and M. Ngadi, “Recent develop-
ments in hyperspectral imaging for assessment of food quality
and safety,” Sensors, vol. 14, no. 4, pp. 7248–7276, 2014.

[9] B. Insuck, K. Dewi, M. K. Lalit et al., “Rapid measurement of
soybean seed viability using kernel-based multispectral image
analysis,” Sensors, vol. 19, no. 2, p. 271, 2019.

[10] A. Şentaş, İ. Tashiev, and F. Küçükayvaz, “Performance
evaluation of support vector machine and convolutional neu-
ral network algorithms in real-time vehicle type classification,”
in International Conference on Emerging Internetworking,
Springer, Cham, 2018.

[11] L. Zhang, J. Sun, X. Zhou, A. Nirere, X. Wu, and R. Dai, “Clas-
sification detection of saccharin jujube based on hyperspectral
imaging technology,” Journal of Food Processing and Preserva-
tion, vol. 44, no. 8, 2020.

[12] M. Y. Najafabadi, H. J. Earl, and T. Dan, “Application of
machine learning algorithms in plant breeding: predicting

yield from hyperspectral reflectance in soybean,” Frontiers in
Plant Science, vol. 11, p. 2169, 2020.

[13] W. Cai, B. Liu, Z. Wei, M. Li, and J. Kan, “TARDB-Net: triple-
attention guided residual dense and BiLSTM networks for
hyperspectral image classification,” Multimedia Tools and
Applications, vol. 80, no. 7, pp. 11291–11312, 2021.

[14] Y. Y. Zheng, J. L. Kong, X. B. Jin, X. Y. Wang, T. L. Su, and
M. Zuo, “CropDeep: the crop vision dataset for deep-
learning-based classification and detection in precision agri-
culture,” Sensors, vol. 19, no. 5, p. 1058, 2019.

[15] A. M. Fernando, A. C. Karen, S. Christy, G. Amanda, L. Renfu,
and D. K. James, “Testing of canned black bean texture (Pha-
seolus vulgaris L.) from intact dry seeds using visible/near
infrared spectroscopy and hyperspectral imaging data,” Jour-
nal of the Science of Food and Agriculture, vol. 98, pp. 283–
290, 2018.

[16] L. Wang, H. Sun, D. W. Pu, D. Liu, Q. Wang, and Z. Xiong,
“Application of hyperspectral imaging for prediction of tex-
tural properties of maize seeds with different storage periods,”
Food Analytical Methods, vol. 8, no. 6, pp. 1535–1545, 2015.

[17] J. Yang, L. Sun,W. Xing, G. Feng, H. Bai, and J. Wang, “Hyper-
spectral prediction of sugarbeet seed germination based on
gauss kernel SVM,” Spectrochimica Acta Part A: Molecular
and Biomolecular Spectroscopy, vol. 253, p. 119585, 2021.

[18] A. Medeiros, L. Silva, J. Ribeiro et al., “Machine learning for
seed quality classification: an advanced approach using merger
data from FT-NIR spectroscopy and X-ray imaging,” Sensors,
vol. 20, no. 15, p. 4319, 2020.

[19] M. Puneet, N. Alison, T. Julius, L. Guoping, R. Sally, and
M. Stephen, “Near-infrared hyperspectral imaging for non-
destructive classification of commercial tea products,” Journal
of Food Engineering, vol. 238, pp. 70–77, 2018.

[20] I. Baek, M. Kim, B. K. Cho et al., “Selection of optimal hyper-
spectral wavebands for detection of discolored, diseased rice
seeds,” Applied Sciences, vol. 9, no. 5, p. 1027, 2019.

[21] J. Dumont, T. Hirvonen, V. Heikkinen et al., “Thermal and
hyperspectral imaging for Norway spruce (Picea abies) seeds
screening,” Computers & Electronics in Agriculture, vol. 116,
pp. 118–124, 2015.

[22] T. L. Liu, Q. Su, Q. Sun, and L. M. Yang, “Recognition of corn
seeds based on pattern recognition and near infrared spectros-
copy technology,” Spectroscopy & Spectral Analysis, vol. 32,
no. 5, pp. 1209–1212, 2012.

[23] R. Candolfi, D. Maesschalck, R. Jouan, and D. L. Hailey, “The
influence of data pre-processing in the pattern recognition of
excipients near-infrared spectra,” Journal of Pharmaceutical
and Biomedical Analysis, vol. 21, no. 1, pp. 115–132, 1999.

[24] R. Sonobe, H. Yamashita, H. Mihara, A. Morita, and T. Ikka,
“Estimation of leaf chlorophyll a, b and carotenoid contents
and their ratios using hyperspectral reflectance,” Remote Sens-
ing, vol. 12, no. 19, p. 3265, 2020.

[25] H. Chen, Q. Song, G. Tang, Q. Feng, and L. Lin, “The combined
optimization of Savitzky-Golay smoothing and multiplicative
scatter correction for FT-NIR PLS models,” Spectroscopy,
vol. 2013, pp. 1–9, 2013.

[26] R. Jahani, H. Yazdanpanah, and S. Ruth, “Novel application of
near-infrared spectroscopy and chemometrics approach for
detection of lime juice adulteration,” Iranian journal of phar-
maceutical research (IJPR), vol. 19, no. 2, pp. 34–44, 2020.

[27] S. Zhang, D. Zhang, and H. Jie, “NIR spectroscopy identifica-
tion of persimmon varieties based on pca-svm,” in In

12 Journal of Sensors



International Conference on Computer and Computing Tech-
nologies in Agriculture, vol. 345, pp. 118–123, Springer, Berlin,
Heidelberg, 2010 Oct 22.

[28] D. Liu, J. Ma, D. W. Sun et al., “Prediction of color and pH of
salted porcine meats using visible and near-infrared hyper-
spectral imaging,” Food and Bioprocess Technology, vol. 7,
no. 11, pp. 3100–3108, 2014.

[29] Y. Zhao, S. S. Zhu, C. Zhang, X. P. Feng, L. Feng, and Y. He,
“Application of hyperspectral imaging and chemometrics for
variety classification of maize seeds,” Royal Society of Chemis-
try, vol. 8, pp. 1337–1345, 2018.

[30] M. C. U. Araújo, T. C. B. Saldanha, R. K. H. Galvão et al.,
“The successive projections algorithm for variable selection
in spectroscopic multicomponent analysis,” Chemometrics
and Intelligent Laboratory Systems, vol. 57, no. 2, pp. 65–
73, 2001.

[31] A. Savitzky and M. J. Golay, “Smoothing and differentiation of
data by simplified least squares procedures,” Analytical Chem-
istry, vol. 36, no. 8, pp. 1627–1639, 1964.

[32] C. Zhang, X. Feng, J. Wang, F. Liu, Y. He, andW. Zhou, “Mid-
infrared spectroscopy combined with chemometrics to detect
Sclerotinia stem rot on oilseed rape (Brassica napus L.) leaves,”
Plant Methods, vol. 13, no. 1, p. 39, 2017.

[33] L. V. Utkin, “An imprecise extension of SVM-based machine
learning models,” Neurocomputing, vol. 331, pp. 18–32, 2019.

[34] O. Devos, C. Ruckebusch, A. Durand, L. Duponchel, and J. P.
Huvenne, “Support vector machines (SVM) in near infrared
(NIR) spectroscopy: focus on parameters optimization and
model interpretation,” Chemometrics and Intelligent Labora-
tory Systems, vol. 96, no. 1, pp. 27–33, 2009.

[35] P. Z. Rodrigo, T. T. Miguel, and C. F. Auat, “A pattern recog-
nition strategy for visual grape bunch detection in vineyards,”
Computers and Electronics in Agriculture, vol. 151, pp. 136–
149, 2018.

[36] A. Jiménez-Cordero, J. M. Morales, and S. Pineda, “A novel
embedded min-max approach for feature selection in nonlin-
ear support vector machine classification,” European Journal
of Operational Research, vol. 293, no. 1, pp. 24–35, 2021.

[37] J. Omar, A. Boix, and F. Ulberth, “Raman spectroscopy for
quality control and detection of substandard painkillers,”
Vibrational Spectroscopy, vol. 111, article 103147, 2020.

[38] S. Singha, S. Pasupuleti, S. S. Singha, and S. Kumar, “Effective-
ness of groundwater heavy metal pollution indices studies by
deep-learning,” Journal of Contaminant Hydrology, vol. 235,
no. 6, article 103718, 2020.

[39] J. Kong, H. Wang, X. Wang, X. Jin, X. Fang, and S. Lin, “Multi-
stream hybrid architecture based on cross-level fusion strategy
for fine-grained crop species recognition in precision agricul-
ture,” Computers and Electronics in Agriculture, vol. 185, arti-
cle 106134, 2021.

[40] J. Kong, C. Yang, J. Wang et al., “Deep-stacking network
approach by multisource data mining for hazardous risk iden-
tification in IoT-based intelligent food management systems,”
Computational Intelligence and Neuroscience, vol. 2021,
1194516 pages, 2021.

[41] J. Xuebo, Z. Weizhen, K. Jianlei et al., “Deep-learning forecast-
ing method for electric power load via attention-based
encoder-decoder with Bayesian optimization,” Energies,
vol. 14, no. 6, p. 1596, 2021.

[42] X. B. Jin, W. Z. Zheng, J. L. Kong et al., “Deep-learning tempo-
ral predictor via bi-directional self-attentive encoder-decoder

framework for IOT-based environmental sensing in intelligent
greenhouse,” Ariculture, vol. 11, no. 8, p. 802, 2021.

[43] X.-B. Jin, W.-T. Gong, J.-L. Kong, Y.-T. Bai, and S. Ting-Li,
“PFVAE: a planar flow-based variational auto-encoder predic-
tion model for time series data,” Mathematics, vol. 10, no. 4,
p. 610, 2022.

[44] X.-B. Jin, W.-T. Gong, J.-L. Kong, Y.-T. Bai, and S. Ting-Li, “A
variational Bayesian deep network with data self-screening
layer for massive time-series data forecasting,” Entropy,
vol. 24, no. 3, p. 335, 2022.

[45] X.-B. Jin, J.-S. Zhang, J.-L. Kong, S. Ting-Li, and Y.-T. Bai, “A
reversible automatic selection normalization (RASN) deep
network for predicting in the smart agriculture system,”
Agronomy, vol. 2, p. 1587277, 2022.

[46] J.-L. Kong, H.-X. Wang, C.-C. Yang, X.-B. Jin, M. Zuo, and
X. Zhang, “A spatial feature-enhanced attention neural net-
work with high-order pooling representation for application
in pest and disease recognition,” Agriculture, vol. 12, 2022.

[47] Y. Tong, L. Yu, S. Li, J. Liu, H. Qin, andW. Li, “Polynomial fit-
ting algorithm based on neural network,” ASP Transactions on
Pattern Recognition and Intelligent Systems, vol. 1, no. 1,
pp. 32–39.

[48] X. Ning, Y. Wang, W. Tian, L. Liu, and W. Cai, “A biomimetic
covering learning method based on principle of homology
continuity,” ASP Transactions on Pattern Recognition and
Intelligent Systems, vol. 1, no. 1, pp. 9–16, 2021.

[49] L. Zhang, X. Wang, X. Dong, L. Sun, W. Cai, and X. Ning,
“Finger vein image enhancement based on guided tri-
Gaussian filters,” ASP Transactions on Pattern Recognition
and Intelligent Systems, vol. 1, no. 1, pp. 17–23, 2021.

13Journal of Sensors



Research Article
Improved TLBO for Fusion of Infrared and Visible Images

Jinghua Wang ,1,2 Lei Yan ,1 Fan Wang,1 and Shulin Li 3

1School of Technology, Beijing Forestry University, Key Lab of State Forestry Administration for Forestry Equipment
and Automation, Beijing 100086, China
2National Engineering Laboratory for Agri-Product Quality Traceability, Beijing 100048, China
3School of Health Sciences, The University of Manchester, Oxford Rd, Manchester, M13 9PL, UK

Correspondence should be addressed to Lei Yan; mark_yanlei@bjfu.edu.cn

Received 26 October 2021; Revised 7 February 2022; Accepted 28 March 2022; Published 19 April 2022

Academic Editor: Bingxian Mu

Copyright © 2022 Jinghua Wang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Image fusion is an image enhancement method in modern artificial intelligence theory, which can reduce the pressure in data
storage and obtain better image information. Due to different imaging principles, information of the infrared image and visible
images’ information is complementary and redundant. The infrared image can be fused with a visible image to obtain both the
high-resolution texture details and the edge contour of the infrared image. In this paper, the fusion algorithm of forest sample
image is studied at the feature level, which aims to accurately extract tree features through information fusion, ensure data
stability and reliability, and improve the accuracy of target recognition. The main research contents of this paper are as
follows: (1) teaching learning-based optimization (TLBO) algorithm was used to optimize the weighted coefficient in the fusion
process, and the value range of random parameters in the model was adjusted to optimize the fusion effect. Compared with
before optimization, image information increased by 2.05%, and spatial activity increased by 15.27%. (2) Experimental data
show that the target recognition accuracy of feature-level fusion results was 93.6%, 13.9% higher than that of the original
infrared sample image, and 18.8% higher than that of the original visible sample image. Pixel-level and feature-level fusion
have their characteristics and application scopes. This method can improve the quality of the specified region in the image and
is suitable for detecting intelligent information in forest regions.

1. Introduction

With the rapid development of sensor technology, single vis-
ible light mode is gradually developed into a variety of sen-
sor modes. They differ in imagining mechanism, working
environment, and requirements as well as functions. They
also work in different wavelength ranges. Due to the limited
information of data acquired by a single sensor, it is often
difficult to meet the needs of applications. At the same time,
more comprehensive and reliable information of observa-
tion targets can be obtained by using multisource data.
Therefore, in order to take full advantage of increasingly
complex source data, various data fusion techniques have
been rapidly developed with the aim of incorporating more
supplementary information into a new data set by means
of more information than can be obtained from any single

sensor [1]. Image fusion technology, as a very important
branch of multisensor and visual information fusion, has
aroused widespread concern and research upsurge in the
world in the past twenty years. The main idea of image
fusion is to combine multisource images from multiple sen-
sors into a new image by using algorithms, so that the fused
image has higher reliability, less uncertainty, and better
comprehensibility [2].

Image fusion technology was first used in remote sensing
image analysis and processing. In 1979, Daily et al. first
applied the composite image of radar image and Landsat-
MSS image to geological interpretation, and its processing
process can be regarded as the simplest image fusion [3].
In 1981, Laner and Todd conducted a fusion experiment of
Landsat-RBV and MSS image information [4]. In the middle
and late 1980s, image fusion technology has been applied to
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the analysis and processing of remote sensing multispectral
images, beginning to attract attention. It was not until the
end of 1980 that people began to apply image fusion tech-
nology to general image processing (visible image, infrared
image, etc.) [5]. Since the 1990s, the research of image fusion
technology has been on the rise, showing great application
potential in the fields of automatic recognition, computer
vision, remote sensing, robotics, medical image processing,
and military applications. For example, the fusion of infra-
red and low-light images helps soldiers see targets in the
dark [6]. The fusion of CT and MRI images is helpful for
doctors to diagnose diseases accurately [7]. Jin et al.
extracted more accurate and reliable feature information
from images by fusion of infrared and visible images, thus
achieving accurate face recognition [8]. Using image fusion,
Liu et al. made images with different focal lengths comple-
ment each other and improve the resolution of fusion results
[9]. In recent years, image fusion has become an important
and useful technique for image analysis and computer
vision.

The main purpose of this paper is to find an image
fusion algorithm suitable for forest environment perception,
using visible light image and infrared thermal image fusion
technology, to collect the image fusion processing, improve
the fusion effect, accurately extract effective forest informa-
tion, and obtain information for forest intelligent detection.
The main research contents are as follows:

(1) The fusion background of visible and infrared
images, different image processing methods, and
the effects of different image fusion processing are
introduced

(2) The process of fusion coefficient optimization based
on teaching learning based optimization (TLBO)
algorithm is introduced. The random parameters in
the model are set by TLBO optimization algorithm
to optimize the fusion effect. The forest images are
used for image fusion experiments, and the fusion
results are evaluated by objective evaluation indexes

(3) In order to enhance the search ability of the algo-
rithm and improve the evaluation index value to a
greater extent, the value range of the optimization
coefficient Ri and T f of TLBO algorithm is further
set according to the entropy value, and then evalua-
tion index is used for corresponding evaluation

2. Related Works

Multisource image fusion algorithm also has broad applica-
tion prospects in the field of forestry intelligent detection.
Using feature-level image fusion algorithm, Bulanona et al.
extracted data information of fruits in fruit forests and mon-
itored fruit growth status in real time in 2009 [10]. In 2013,
Lei et al. identified obstacles in forest images by using the
results obtained by fusion algorithm and two-dimensional
laser data and intelligently and accurately distinguished
trees, rocks, and animals in the images with an accuracy rate
of more than 93.3% [11]. Furthermore, by improving the

fusion algorithm, the data accuracy of objects such as trees
in the image is improved, and the accuracy of target recogni-
tion is increased by 95.3% [12]. The quality of information
fusion directly affects the accuracy of forest information
detection and is an important part of research on artificial
intelligence. This paper is an important branch of research
on information fusion algorithm-infrared and visible image
fusion algorithm. Due to different imaging principles, the
information of infrared image and visible image is comple-
mentary and redundant. The target in infrared image has
clear edge features and is easy to be segmented and
extracted. The texture details and background information
of visible image are more prominent, but the target informa-
tion is difficult to extract because of complex image content.
Therefore, the purpose of fusion is to synthesize comple-
mentary information, reduce redundancy, improve image
quality, and express and extract useful features in images
more succinctly and accurately. In this paper, the effective
forest information is extracted accurately by fusion of infra-
red and visible images, and the obtained information is used
for intelligent forest detection.

3. Materials and Methods

The detailed process of visible and near-infrared image sam-
ple fusion is shown in Figure 1. The ultimate goal is to
enhance the search ability of the algorithm, improve the
evaluation index value to a greater extent, and obtain the
fusion image more suitable for the intelligent detection of
forest information.

3.1. Data Modeling Methods

3.1.1. Pixel Level Image Fusion Algorithm

(1) Image Fusion Algorithm Based on Wavelet Transform.
Wavelet transform theory was first proposed by Morlet
and Gorsmsna in 1984, and its principle is developed on
the basis of Fourier transform. Different from Fourier trans-
form, wavelet transform is the local transform of frequency,
which can effectively extract the signal in the image. Its
advantage is to carry out multiscale analysis of the image
without losing the information [13]. Stephane and Matllat
proposed fast discrete wavelet and built a bridge between
wavelet transform and multiscale image fusion [14].

Two-dimensional image samples after wavelet decompo-
sition can be represented by four subband components:

f x, yð Þ = Ajf +D1
j f +Dj21 f +D3

j f , ð1Þ

Ajf = f x, yð Þ,∅j,m,n x, yð Þ� �
, ð2Þ

D1
j f = f x, yð Þ, ψ1

j,m,n x, yð Þ
D E

, ð3Þ

D2
j f = f x, yð Þ, ψ2

j,m,n x, yð Þ
D E

, ð4Þ

D3
j f = f x, yð Þ, ψ3

j,m,n x, yð Þ
D E

, ð5Þ
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where f represents the original sample, j represents the
decomposition frequency of this layer, A represents the
low-frequency component, and D represents the high-
frequency component in different directions. ∅j,m,n is the
scale coefficient that makes up the canonical orthogonal
basis of the wavelet, and the wavelet function ψj,m,n makes
up the canonical orthogonal basis of the space.

(2) Image Fusion Algorithm Based on PCA Transform. Prin-
cipal component analysis (PCA) transform, also known as
principal component analysis, is a multidimensional linear
transform based on the statistical characteristics of images,
which has the function of centralizing variance information
and compressing data volume is mathematically called K − L
transform.

The PCA transformation and fusion process of multisen-
sor images is as follows:

(1) PCA was applied to the low-resolution multispectral
image to obtain three principal components: P1, P2,
and P3

(2) The high-resolution image was stretched and made
to have the same mean and variance as the first prin-
cipal component P1 of the multispectral image

(3) The stretched high-resolution image was used to
replace P1 as the first principal component, and a
new fusion image P was generated with components
P2 and P3 through PCA inverse transformation

(3) Image Fusion Algorithm Based on Contourlet Transform.
Contourlet transform, also called contourlet transform, is a
multiresolution image representation method proposed by

Do and Vetterli in 2002 [15]. In contourlet transform, image
multiscale decomposition is realized by Laplace tower
decomposition (LP) [16]. The multiscale decomposition of
an approximate image can be obtained by repeated Lapla-
cian tower decomposition [17]. However, in the process of
image decomposition and reconstruction by contourlet
transform, the image needs to be further sampled and
upward sampled, which makes the contourlet transform lack
shift-invariance (invariance) [18]. As a result, the spectrum
of the signal will overlap to some extent, and the Gibbs phe-
nomenon is obvious in the image fusion.

(4) Low-Frequency Coefficient Processing Based on PCNN. In
the low-frequency domain of image fusion, Laplacian
energy, as excitation input to PCNN, is processed as follows:

ML i, jð Þ = 2I i, jð Þ − I i − step, jð Þ − I i + step, jð Þj j
+ 2I i, jð Þ − I i, j − stepð Þ − I i, j + stepð Þj j
+ 2I i, jð Þ − I i − step, j − stepð Þ − I i + step, j + stepð Þj j
+ 2I i, jð Þ − I i − step, j + stepð Þ − I i + step, j + stepð Þj j,

ð6Þ

where step represents the variable distance between the coef-
ficients (in this paper, step = 1); Iði, jÞ is the coefficient at
point ði, jÞ.

In order to eliminate the block effect or grayscale distor-
tion that may be caused by the boundary discontinuity at the
junction between the clear area and the fuzzy area, the sum
of modified Laplacian (SML) in the field centered on point
ði, jÞ is defined as

SML i, jð Þ =〠
p

〠
q

W p, qð Þ ML i + p, j + qð Þ½ �2, ð7Þ

Research on pixel level
image fusion algorithm

Image segmentation
objective extraction

Research on feature and
image fusion algorithm

Research on
TLBO algorithm

Image quality evaluation

Objective evaluation
index

Comparison of fusion results

Algorithm research Image
samples Quality evaluation

Figure 1: Flowchart for research on infrared and visible image fusion algorithm.
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where Wðp, qÞ is the corresponding window function. Expe-
rience shows that the best highlighting effect of the window
center pixel and its changing boundary should be set as

W p, qð Þ = 1
15

1 2 1
2 3 2
1 2 1

2
664

3
775: ð8Þ

The sum of modified Laplacian can well represent the
edge details of the image, reflect the sharpness of the image,
and show superior fusion performance in the fusion image.

(5) High-Frequency Coefficient Processing Based on PCNN.
The high-frequency subband image represents the edge
details of the image, so the coefficients decomposed by
NSCT can be directly input into PCNN as excitation in the
process of high-frequency coefficient fusion. The specific
steps are as follows:

The PCA transformation and fusion process of multisen-
sor images is as follows:

(1) In high-frequency subband images, the normalized
gray values of each pixel are directly taken as the
external input of PCNN to calculate the ignition
times of each input excitation. The formula is
expressed as

Tk
ij nð Þ = Tk

ij n − 1ð ÞYk
ij nð Þ: ð9Þ

(2) The processing steps for the same low-frequency
coefficient are as follows:

Dk
ij,F N1ð Þ = 1, if : Tk

ij,A N1ð Þ ≥ Tk
ij,B N1ð Þ,

0, others,

(
ð10Þ

IkF i, jð Þ =
IkA i, jð Þ, if : Dk

ij,F N1ð Þ = 1,

IkB i, jð Þ, if : Dk
ij,F N1ð Þ = 1,

8<
: ð11Þ

where IkFði, jÞ, IkAði, jÞ, and IkBði, jÞ, respectively, represent the
gray values of the fusion image and the original image A and
Bði, jÞ, and k represents the NSCT decomposition of the k
-layer. After each fusion subband image is obtained, the
fusion image is obtained by NSCT inverse transformation.

3.1.2. Feature-Level Fusion Algorithm

(1) Low-Frequency Domain Fusion Rule Based on Fuzzy
Logic. Based on fuzzy rules, fusion can also be divided into
two types: spatial domain fusion and frequency domain
fusion. Teng et al. fuzzified all pixel points into five fuzzy
subsets based on the gray value of the image, then deter-
mined the membership degree of each fuzzy subset in the
corresponding domain by a triangular membership func-
tion, and formulated fusion rules on this basis to obtain
fusion results [19]. Cai and Wei first decomposed the source
image into the frequency domain and then formulated the
fusion rules in the low-frequency domain by using the fuzzy
logic criterion to maximize the information content of the
fusion sub-band image in the low-frequency domain [20].
In this paper, Gaussian membership function is used to
determine the weight coefficient of image fusion, whose def-
inition is expressed as

λ1 i, jð Þ = exp −
f1 i, jð Þ − μð Þ2
2 kσð Þ2

" #
, ð12Þ

where σ is the standard deviation of the sub-band image,
f1ðⅈ, jÞ is the low-frequency decomposition coefficient of
point ði, jÞ, μ is the average value of the decomposition coef-
ficient, and k is a constant.

(2) High-Frequency Domain Fusion Rules Based on Segmen-
tation Results. The role of high-frequency fusion rules is to
solve the problem that the target is not significant in the
pixel-level fusion results and then improve the texture
energy and other features of trees in the fusion results, so
that the tree features extracted from the fusion results are
more accurate. The flow chart is shown in Figure 2.

(3) Fusion Coefficient Optimization Algorithm. Teaching-
learning-based optimization algorithm (TLBO) is a swarm
intelligence algorithm proposed by Rao et al., an Indian
scholar, in 2011 [21]. It imitates the learning process model
of students and can be divided into two parts: teaching and
learning phases. In 2014, Jin and Wang first applied TLBO
optimization algorithm to image fusion to optimize the
fusion coefficient and improve the image quality evaluation
index [22].

Infrared image high-
frequency subband

Visible image high-
frequency subband

Characteristics of the target Background region

Anisotropy calculation Big coefficient chosen

Fusion of high
frequency subbands

Figure 2: Flowchart for high-frequency fusion.
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(1) Teaching phase

In the teaching phase, the overall optimization can be
achieved by encouraging top students. Figure 3 shows the
schematic diagram of the overall optimization process in this
phase.

As shown in the curve for a group of student’s overall
academic record in Figure 3, the result agrees with the nor-
mal distribution, with its average representing students’ over-
all level. In each optimization process, the teacher scored the
best by students is defined, and then the level of the teacher is
further optimized in the overall level of students through
their influence.

(2) Learning phase

In the learning phase, the target function index can be
improved through mutual learning among individuals. The
process is carried out according to the following rules:

if f xið Þ < f xj
� �

, xnew,i = xold,i + ri xi − xj
� �

,

else, xnew,i = xold,i + r j xj − xi
� �

:
ð13Þ

Compared with PSO, GA, and other optimization algo-
rithms, the coefficient in TLBO has less influence on the opti-
mization effect, with better convergence but requires shorter
optimization time.

The detailed optimization steps are as follows:

(a) The weight coefficients determined by Gaussian
membership function during image fusion were con-
verted into a row of vectors, which were used as a
group of samples. Another 9 groups of vectors with
the same size were randomly generated to form the
model to be tested

(b) The entropy value of fusion image was selected as
the objective function

(c) The model was put into the TLBO system, and the
fusion coefficient group under the optimal entropy
value was obtained through the cycle until the con-
vergence of objective function

(d) The cycle was terminated

(4) Improved TLBO Parameter Optimization Algorithm. The
basic TLBO algorithm can find the global optimal value
when solving simple low-dimensional problems, but when
solving complex multimode high-dimensional problems, it
is easy to fall into the local optimal value and cannot find
the values adjacent to the global optimal value. Many
scholars have improved the TLBO algorithm. Rao et al. sup-
plemented and improved the structure of TLBO algorithm.
Gao et al. introduced the crossover operation of differential
evolution algorithm into the algorithm to further improve
the local search ability of the algorithm [23]. All the indexes
of the image optimized by using the basic TLBO algorithm
were improved but not quite significantly. Therefore, in
order to enhance the search ability of the algorithm and
improve the evaluation index value to a greater extent, the
value range of optimization coefficients Ri and T f of TLBO
algorithm was further adjusted.

The detailed optimization steps of the improved TLBO
are as follows:

(1) The weight coefficients determined by Gaussian
membership function during image fusion were con-
verted into a row of vectors, which are used as a
group of samples. Another 9 groups of vectors with
the same size were randomly generated to form the
model to be tested

(2) The entropy value of fusion image was selected as
the objective function

(3) The value range of T f was kept unchanged, the range
of parameter Ri was set to compare the influence of
Ri in different ranges on the image entropy, and then
the optimal Ri was selected

(4) The model was put into the TLBO system, and the
fusion coefficient group under the optimal entropy
value was obtained through the cycle until the con-
vergence of the objective function

(5) The Ri value range was kept unchanged, the param-
eter T f range was set to compare the influence of T f

1

0.8

0.6

0.4

0.2

0
1050

Before optimization
After optimization

–5 15 20

Figure 3: Schematic diagram of optimization process.
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in different ranges on the image entropy value, and
then the optimal T f was selected

(6) The model was then brought into the TLBO system,
and the fusion coefficient group under the optimal
entropy value was obtained through the cycle until
the convergence of objective function

(7) The cycle was terminated

3.1.3. The Evaluation Index. In this paper, information
entropy, mean gradient, standard deviation, spatial resolu-
tion, and interactive information are selected as image eval-
uation indicators.

(1) Information Entropy. Information entropy is the most
widely used objective evaluation index of images at present,
which quantitatively describes the information contained in
images, and its mathematical definition is expressed as

E = −〠
255

i=0
Pi log Pi, ð14Þ

where E represents information entropy, and P represents
the proportion of the number of pixels with gray value of I
in the total pixel points. The larger the information entropy
is, the more scattered the gray value of image pixels is, the
richer the content is, the larger the information is, and the
better the fusion effect is.

(2) Average Gradient. The average gradient reflects the dif-
ference between adjacent pixels in the image. The larger
the average gradient is, the greater the image contrast is,
the more obvious the edge effect of objects in the image is,
and the clearer the texture details are. The mean gradient
is defined as

grad = 1
m − 1ð Þ n − 1ð Þ 〠m−1

〠
n−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F i, jð Þ − F i + 1, jð Þð Þ2 + F i, jð Þ − F i, j + 1ð Þð Þ2

2

r
,

ð15Þ

where grad represents the average gradient; m and n are the
size of the image; Fði, jÞ represents the pixel gray value of
coordinate ði, jÞ.

(3) Standard Deviation. Standard deviation represents the
dispersion degree of pixel gray value distribution. The larger
the value is, the more discrete the gray value distribution of
image pixels is, and the stronger the contrast. The mathe-
matical expression of standard deviation is defined as

std =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑ F i, jð Þ − �F
� �2

n − 1ð Þ

s
, ð16Þ

where STD stands for standard deviation, Fði, jÞ stands for
pixel value at point ði, jÞ, and �F stands for pixel mean of
all pixel points.

(4) Spatial Resolution. Spatial frequency is a parameter used
to represent the activity degree of images in space. The
higher the value is, the higher the activity degree of images
in space is and the better the quality of images is. The for-
mula of spatial frequency is expressed as

RF =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

M ×N
〠
M

i=1
〠
N

j=2
F i, jð Þ − F i, j − 1ð Þ½ �2

vuut , ð17Þ

CF =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

M ×N
〠
M

i=2
〠
N

j=1
F i, jð Þ − F i − 1, jð Þ½ �2

vuut , ð18Þ

SF =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RF2 + CF2

p
, ð19Þ

where SF is spatial frequency, RF and CF represent spatial
column frequency and spatial row frequency, respectively.
M,N represent the number of rows and columns of the
image, and Fði, jÞ is the gray value of pixel point ði, jÞ.

(5) Interactive Information. Interactive information, also
known as mutual information, is usually used to demon-
strate the correlation between multiple variables. In the
image quality evaluation system, it is used to evaluate the
correlation between fusion results and original samples.
The greater the amount of interaction information, the
higher the correlation between the fusion result and the orig-
inal sample, and the more information can be obtained from
the original sample:

MIAF = E Að Þ + E Fð Þ − E AFð Þ, ð20Þ

MIBF = E Bð Þ + E Fð Þ − E BFð Þ, ð21Þ
MI =MIAF +MIBF, ð22Þ

where MI is the interactive information, A, B represents the
original sample, F is the fusion result, and E is the image
entropy value.

3.2. Data Analysis Materials. Nearly 400 groups of forest
infrared and visible images were collected in this study.
The equipment used is Fluke TI55 infrared thermal imager.
The time period selected in this experiment is the morning
and evening when the temperature difference is large, and

Figure 4: Fluke Ti55 infrared thermal imaging camera.
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Table 1: Technical parameters of Fluke Ti55.

Visible lens Infrared lens

Detector type 1280∗1024 full color pixel 320∗240 focal plane array

Calibration temperature range -20~600°C -20~600°C
Visual angle — 23°∗ 17°

Spatial resolution 0.47mrad 1.30mrad

Minimum focus 0.6m 0.15m

Accuracy 2% —

NETD — ≤0.05°C
Spectral band — 8~ 14 μm
Detector type 1280∗1024 full color pixel 320∗240 focal plane Array

Calibration temperature range -20~600°C -20~600°C

(a) (b)

Figure 5: Examples of infrared image and visible image ((a) infrared image; (b) visible image).

(a) (b)

(c)

Figure 6: Pixel level fused result ((a) wavelet transform; (b) PCA; (c) contourlet and PCNN).
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Table 2: Quality assessment of pixel-level fusion result.

Information entropy Average gradient Standard deviation Spatial resolution Interactive information

Wavelet transform 7.5953 62.1048 19.8465 28.9314 5.4801

PCA transform 6.8579 55.7364 16.6849 23.3580 5.2299

Contourlet +PCNN 7.6367 56.3843 18.6997 29.2188 5.5820

(a) (b)

Figure 7: Fusion result of pixel level and region-based level ((a) pixel-level; (b) region-based level).

Table 3: Quality assessment of pixel-level and region-based level fusion results.

Information
entropy

Average
gradient

Standard
deviation

Spatial
resolution

Interactive
information

Pixel-level image fusion results 7.6367 56.3843 18.6997 29.2188 5.5820

Feature level image fusion results 7.3981 46.2270 15.4640 29.9097 5.8198

Table 4: Quality assessment of region-based level and TLBO optimization fusion results based on image samples.

Information entropy Average gradient Standard deviation Spatial resolution Interactive information

Region-based level 7.3981 46.2270 15.4640 29.9097 5.8198

TLBO optimization 7.5121 54.9715 17.4434 33.1374 6.0479

(a) (b)

Figure 8: Fusion result of region-based level and TLBO optimization based on image samples ((a) region-based level; (b) TLBO
optimization).
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the afternoon when the visual effect is easily affected. The
image sample collection experiment and experimental
equipment of this study are shown in Figure 4, and its tech-
nical parameters are shown in Table 1.

The infrared lens captures the spectral information in
the 8-14 band, which is the middle and far infrared image.
The contour of forest edge in infrared samples is obvious
and thus easy to be segmented and extracted, but the accu-
racy of target recognition cannot be guaranteed due to the
lack of details such as texture. Visible light samples contain
rich texture details, but there is a very small gray difference
between trees and background area without any pronounced
characteristics, so it is difficult to achieve the stable extrac-
tion of tree information alone. Therefore, the purpose of this
study is to improve image quality and accurately extract for-
est tree feature information by integrating the characteristics
of infrared and visible images through fusion processing to
ensure the accuracy of recognition.

4. Results

4.1. Pixel-Level Image Fusion Results. Figure 5 shows samples
of infrared and visible forest images. Figure 6 shows the
results of wavelet decomposition algorithm, PCA fusion
algorithm, and contoulet combined with PCNN fusion algo-
rithm, respectively. In wavelet transform, the image is
decomposed into a low-frequency domain and a high-
frequency domain in three directions, including horizontal
high-frequency domain, vertical high-frequency domain,
and oblique high-frequency domain. Wavelet decomposi-
tion can overcome the instability of Laplace decomposition
and effectively reduce the influence of noise on the image.
However, due to the defect of wavelet decomposition basis,
jagged block error is likely to occur when processing smooth
curves. PCA transformation of the principal component
information is relatively high, using the gray value of pan-

chromatic band image to replace PCA, and then inverse
transformation of the enhanced multispectral band image,
the information is vulnerable to loss. Contourlet decomposi-
tion +PCNN transform can avoid block effect and grayscale
distortion while improving image definition and contrast,
avoiding generating new noise and expanding the informa-
tion of a single image.

From the perspective of subjective evaluation, the fusion
results synthesize the features of the source image, expand
the information content of a single image, and improve the
image clarity. Based on contourlet decomposition, this algo-
rithm is a multiscale and multidirection computing frame-
work for discrete images. It can be regarded as the
enhancement technology of contourlet decomposition,
which can carry out multidirection decomposition and mul-
tiscale decomposition of images, respectively. By the
improved method, contourlet decomposition +PCNN trans-
form can eliminate the aliasing effect caused by using con-
tourlet and provide a good and stable input signal for the
subsequent fusion.

In order to quantitatively evaluate the quality of the
fusion results, the image was quantitatively analyzed, as
shown in Table 2. As can be seen from the table, the stan-
dard deviation and mean gradient data distortion of wavelet
fusion are caused by the fact that wavelet transform cannot
effectively process the smooth curve in the image, which is
likely to result in the jagged noise and interferes with the sta-
tistical characteristics of the image. Contourlet decomposi-
tion +PCNN transform can avoid block effect and
grayscale distortion, while improving image definition and
contrast, avoiding generating new noise, and expanding the
information of a single image. It can also more accurately
describe the forest area of the tree information and its scene
details. In terms of quantitative data analysis, the results
obtained by contourlet combined with PCNN algorithm
are better than those obtained by the other two algorithms

Table 5: Quality assessment of region-based level and TLBO optimization fusion results based on the other group images.

Information entropy Average gradient Standard deviation Spatial resolution Interactive information

Region-based level 7.2378 38.5448 18.2632 31.9562 5.7235

TLBO optimization 7.3910 45.8079 18.8261 32.5719 5.2021

(a) (b)

Figure 9: Fusion result of region-based level and TLBO optimization based on the other group images ((a) region-based level; (b) TLBO
optimization).
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in entropy, spatial resolution, and interactive information,
and they also have slightly lower standard deviation and
mean gradient is slightly lower than the traditional algo-
rithm, but higher than PCA.

Therefore, the fusion result of contourlet decomposition
+PCNN transform has a larger amount of information,
stronger contrast, and better visual effect. At the same time,
it can effectively avoid grayscale distortion and block effect
easily caused by the fusion between forest infrared and visi-
ble images while avoiding the influence of noises. Therefore,
compared with common pixel-level fusion algorithms, this
algorithm performs better in improving image information
and sharpness.

4.2. Feature-Level Image Fusion Results. Compared with the
pixel-level image fusion algorithm, the high-frequency
domain fusion algorithm proposed in Figure 7 improves
the visual effect of the image. In the forest image, the back-
ground area has little influence on the target area, which

reduces the block effect and ringing effect behind. The con-
tour is clearer and more information about the target area is
retained. Compared with the pixel pole fusion image, the
block effect is significantly reduced. As can be seen from
Table 3, pixel-level fusion images have the best data in terms
of entropy, mean gradient, standard deviation, and spatial
frequency, indicating that pixel-level fusion images are bet-
ter in terms of information content, contrast, and spatial
activity. The spatial resolution and interactive information
of feature-level fusion images are optimal, which indicates
that the image is better than other fusion images in terms
of the degree of association with the source image and noise
interference prevention.

As can be seen from the table, the result obtained by the
feature-level fusion algorithm has a larger amount of infor-
mation and better visual effect. It effectively avoids grayscale
distortion and block effect easily caused by the fusion of for-
est infrared and visible images while avoiding the influence
of noises. Among different evaluation indexes, pixel-level

(a) (b)

(c) (d)

(e)

Figure 10: Comparison of fusion result based on UN-CAMP images ((a) infrared light sample; (b) visible light sample; (c) feature-level
fusion; (d) original TLBO algorithm; (e) improved TLBO algorithm).
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and feature-level fusion results are better, so different fusion
methods can be adapted according to different requirements.

4.3. Results of TLBO Algorithm. The feature-level image
fusion results of the infrared and visible images mentioned

above are shown in Table 4. It can be seen from the table
that its entropy value was 7.3981, but was 7.5121 after the
optimization of the original TLBO model. Figure 8 shows
the comparison between the optimized image and the origi-
nal feature pole fusion image.

Table 8: Quality assessment of region-based level and improved TLBO optimization fusion results based on the other group images.

Information entropy Average gradient Standard deviation Spatial resolution Interactive information

Region-based level 7.2378 38.5448 18.2632 31.9562 5.7235

TLBO optimization 7.3910 45.8079 18.8261 32.5719 5.2021

Improved TLBO optimization 7.3979 45.8553 18.6944 32.3447 5.2667

Table 6: Quality assessment of region-based level and improved TLBO optimization fusion results based on UN-CAMP images.

Information entropy Average gradient Standard deviation Spatial resolution Interactive information

Region-based level 7.0048 35.2247 4.5529 10.0739 4.8237

TLBO optimization 7.0858 37.6909 5.3584 10.5275 4.8651

Improved TLBO optimization 7.1483 39.9000 5.8673 11.6199 4.9080

(a) (b)

(c)

Figure 11: Comparison of fusion result based on image samples ((a) feature-level fusion; (b) original TLBO algorithm; (c) improved TLBO
algorithm).

Table 7: Quality assessment of region-based level and improved TLBO optimization fusion results based on image samples.

Information entropy Average gradient Standard deviation Spatial resolution Interactive information

Region-based level 7.3981 46.2270 15.4640 29.9097 5.8198

TLBO optimization 7.5121 54.9715 17.4434 33.1374 6.0479

Improved TLBO optimization 7.6921 57.0801 17.6343 29.7725 5.5715
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The entropy value, standard deviation, and mean gradi-
ent increased by 1.16%, 7%, and 17.69%, respectively. All
the indexes of the optimized image were improved, but not
quite significantly.

The feature-level image fusion results of the other group
of infrared and visible images are shown in Table 5. It can be
seen from the table that its entropy value was 7.2378, but
was 7.3910 after the optimization of the original TLBO
model. Figure 9 shows the comparison between the opti-
mized image and the fusion image of the original feature
pole.

The entropy value, standard deviation, and mean gradi-
ent increased by 2.12%, 18.84%, and 3.10%, respectively.
Except for interactive information, all the indexes of the
optimized image were improved, but not quite significantly.
The interaction information represents the relationship
between the fusion image and the source image, and the
larger the value is, the better the fusion effect is. However,
in the fusion image, more infrared image information is
needed to obtain a more obvious contour and detailed tex-
ture with a better entropy value, so the parameters of inter-
action information are relatively low.

4.4. Results of Improved TLBO Algorithm. Figures 10(a) and
10(b) are a group of infrared and visible light sample images
named UN-CAMP, which have been applied to effect com-
parison in many domestic and foreign literature on image
fusion algorithms. Figure 10(c) is the feature-level fusion
image. Figures 10(d) and 10(e) are, respectively, the opti-
mized results of the original TLBO algorithm and the
improved TLBO algorithm after the random parameter set-

ting. Table 6 shows the corresponding index evaluation
results.

The data in the above table show that all quantitative
evaluation indexes of the results after optimization of fusion
parameters were improved. Compared with before optimiza-
tion, the amount of information and spatial activity of
images increased by 2.05% and 15.27%, respectively, and
the standard deviation and mean gradient of image sharp-
ness and visual effect increased by 13.27% and 28.87%,
respectively.

For the infrared and visible image samples selected
above, after the same random parameter setting process,
the entropy value of the fused image reached the optimal
value when the value range of the random parameter Ri
and T f were fixed at [0.4,0.9] and [0.5,1], respectively.
Figure 11 shows the feature-level fusion image and the opti-
mized results of the original TLBO algorithm and the
improved TLBO algorithm after random parameter setting.

Table 7 shows the evaluation results of corresponding
indicators. For this sample, when all entropy values, stan-
dard deviation, and mean gradient were improved, the spa-
tial resolution and interactive information data decreased
compared with the feature fusion results. Due to complex
background information, the improved TLBO algorithm is
better in terms of the information content, contrast, and spa-
tial activity of the optimized image. However, the processing
results are different from the source image in terms of visual
effect due to the excessive influence of background informa-
tion. In general, the algorithm is quite effective in improving
the quality of fusion images and execution efficiency and in

(a) (b)

(c)

Figure 12: Comparison of fusion result based on the other group images ((a) feature-level fusion; (b) original TLBO algorithm; (c) improved
TLBO algorithm).
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achieving better extraction results of target forest images
than other algorithms.

For the infrared and visible images of the other group,
after the same random parameter setting, the entropy value
of the fused image reached the optimal value when the value
range of the random parameter Ri and T f were fixed at
[0.3,0.8] and [0.5,1], respectively. Figure 12 shows the
feature-level fusion image, the optimized results of the orig-
inal TLBO algorithm, and the improved TLBO algorithm
after random parameter setting.

Table 8 shows the evaluation results of corresponding
indicators. As can be seen from the table, when the entropy
value and standard deviation indicators were improved, the
spatial resolution and mean gradient data became lower
than the original optimization results, but still higher than
the feature-level fusion image. In the algorithm, the amount
of information and contrast of the optimized image are bet-
ter. By comparing the results obtained from multiple sets of
data, it can be seen that for different image samples, the algo-
rithm has relatively optimized effects in improving the qual-
ity of fusion images and execution efficiency and could
achieve better extraction results of target forest images than
other algorithms.

5. Discussion and Conclusions

In the pixel-level image fusion algorithm research, the pulse
coupled neural network model relying on contourlet trans-
form is applied to avoid block effect and grayscale distortion
caused by the fusion of infrared and visible images. Given
the significant difference in gray level between infrared and
visible forest images, a reasonable threshold value is selected
in the low-frequency domain fusion processing. The points
with different output pulse signals are treated differently,
and the fusion rules are explicitly formulated. Thus, gray-
scale distortion and block effect are avoided, but the quality
of the fusion image can be effectively improved, and all eval-
uation indexes of the image can be improved to some extent.
In the research of feature-level image fusion algorithms, the
PCNN model was used to eliminate the influence of noise in
path optimization. The segmentation consequences are suffi-
cient to meet the needs of feature-level fusion research even
though they are disturbed by confusable issues. Based on the
fuzzy logic rules, the fusion rules in the low-frequency
domain are formulated by calculating the degree of dissimi-
larity between corresponding points of source images. The
fusion rules in the high-frequency domain are determined
by combining the image segmentation results. While ensur-
ing the visual effect of the fused image, the detailed charac-
teristic information of the target region in the image was
displayed, making the research on image fusion a more tar-
geted and purposeful algorithm into the algorithm to
improve further the local search ability of the algorithm
[24, 25]. The experimental results show that the feature-
level image fusion algorithm ensures image quality, achieves
the detailed display of the tree target area in the image, and
improves quality evaluation indexes. Compared with the
pixel-level fusion results, the tree texture obtained by this
method is more evident, with more apparent edges.

In the research of feature-level image optimization, the
teaching learning-based optimization (TLBO) parameter
optimization algorithm is introduced to optimize the fusion
coefficient in the fusion process to improve the fusion
image’s index data. In order to obtain better image results,
the optimal parameter combination for different image
groups to achieve the optimal effect by setting the value
range of random parameters in the TLBO model and various
quantitative evaluation indexes of fused images was
improved. Pixel-level and feature-level fusion algorithms
have appropriate advantages for different occasions. Pixel-
level fusion has advantages in improving image information
and sharpness, but it takes twice as long to process informa-
tion as feature-level fusion. Feature-level fusion has a
broader application space in forestry intelligent information
detection as it can highlight the target area and reduce com-
putation. The setting of algorithm parameters has an impor-
tant influence on its optimization ability. The teaching factor
of the basic TLBO algorithm varies only, which affects the
optimization performance of the algorithm. Therefore, an
improved TLBO optimization algorithm is proposed to
design the teaching factor by segmenting strategy to process
the image. Experimental results verify the algorithm’s effec-
tiveness, which has good searching ability and fusion image
quality. In the future, this proposed method will be extended
to theoretical research and practical applications including
time-serial prediction and pattern recognition [16, 26–28].
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With sixth generation (6G) communication technologies, target sensing can be finished in milliseconds. The mobile tracking-
oriented Internet of Things (MTT-IoT) as a kind of emerging application network can detect sensor nodes and track targets
within their sensing ranges cooperatively. Nevertheless, huge data processing and low latency demands put tremendous
pressure on the conventional architecture where sensing data is executed in the remote cloud and the short transmission
distance of 6G channels presents new challenges into the design of network topology. To cope with the above difficulties, this
paper proposes a new resource allocation scheme to perform delicate node scheduling and accurate tracking in multitarget
tracking mobile networks. The dynamic tracking problem is formulated as an infinite horizon Markov Decision Process
(MDP), where the state space that considers energy consumption, system responding delay, and target important degree is
extended. A model-free reinforcement learning is applied to obtain satisfied tracking actions by frequent iterations, in which
smart agents interact with the complicated environment directly. The performance of each episode is evaluated by the action-
value function in search of the optimal reward. Simulation results demonstrate that the proposed scheme shows excellent
tracking performance in terms of energy cost and tracking delay.

1. Introduction

With the new technologies in 6G, ultralow latency for huge
data transfer dramatically enlarges the target sensing appli-
cation field. Mobile target sensing in Wireless Sensor Net-
works (WSNs), which is dedicated to monitoring the
supervisory field in the military and civilian fields for secu-
rity, is a kind of special Internet of Things (IoT) application
[1, 2]. In the military field, this application can be applied in
countering terrorism, unmanned aerial vehicle (UAV) navi-
gation, and space exploration, etc. Relatively speaking, no-
flying zone monitoring of airports and information collect-
ing also used this application for security and data acquire-
ment [3]. Specially, the sensor nodes detect whether the
suspicious target intrudes into the ground for target sensing
and establish a communication connection with the sink
node. Controlling data is issued for scheduling potential sen-
sors to execute sensing task on the sink node. Consequently,

the sink node is regarded as a controller with sufficient com-
puting capacity for the sensor nodes.

However, optimal sensing time delinquency becomes
common due to high latency response in the traditional cen-
tralized architecture. Specifically, computing time is obvi-
ously increased when the massive data is required from
sensor nodes in WSNs. New technologies of 6G, such as ter-
ahertz channels, may provide enough bandwidth for the
huge data transmission [4], but the unstable and short trans-
mission link put new constraints on the topology control of
the sensor network [5]. Furthermore, redundant data has
also emerged because more than one sensor node can detect
the same target with target nodes moving and the coverage
areas of sensor nodes could have overlapping in the practical
scenario. Besides, transmission congestion and data queue
still exist in the MTT-WSNs. As a consequence, sensing time
moves backwards in turn, missing the best sensing
opportunity.
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In addition, the low energy consumption of WSNs has
always been the focus of attention, with the characteristics
of battery power. Generally speaking, energy cost is mainly
divided into transmission cost and sensing cost, in which
sensing cost is more than transmission cost when the
detected target nodes break away from control. How to
schedule the proper sensor nodes for saving energy cost is
the other exposed challenge. In order to improve the target
sensing performance of WSNs, many scholars and engineers
have done a lot of researches.

In recent years, satisfactory results have been obtained
by vast studies on disparate sensing performances. In terms
of a compromise solution between sensing quality and
energy efficiency, the authors of [6] design a sensing scheme
named “t-tracking,” which enhances quality of sensing by
increasing network throughput. Sensing performance is
optimized by Luo et al. [7] in improvement of localization
by a cooperative localization scheme. Tracking accuracy is
promoted by the combination of the off-line phase and the
on-line phase, which largely offsets the slower response time.
Edge computing provides a new paradigm for good tracking
performance. The authors of [8, 9] introduced a similar
cooperative tracking algorithm based on edge computing
technology with minimum energy consumption, in which
the computing device is located near the sensor node. Wan
et al. [10] propose a joint Doppler-angle estimation solution
for improving multitarget tracking efficiency.

In general, the multitarget tracking of WSNs faces main
challenges as follow:

(i) When targets with different important degrees
invade the monitoring area, it is difficult to accu-
rately identify the targets’ threat level. In some
important monitoring areas, the highest important
degree targets may be missed

(ii) Task-oriented WSNs have the problem of unrea-
sonable bandwidth utilization. Low important
degree intrusion targets may consume limited band-
width, so communication for monitoring high
important degree targets cannot be guaranteed

(iii) The limited mobility and coverage ability of sensor
nodes may lead to the targets with high important
degree be missed or misjudged. As a result, the
tracking accuracy may be not satisfactory

(iv) The high-intensity computing consumption of the
central server leads to high tracing delays and can-
not meet the requirements of real-time control.
Effective feedback cannot be guaranteed

Motivated by the observations, we propose a distributed
multitarget tracking scheme with intelligent edge device in
this paper, which is different from those of target tracking
system with edge computing or localization algorithms
[11]–[12]. On the one hand, compared with the edge com-
puting system, the offloading strategy needs a joint decision,
including whether to schedule, which sensor to schedule,
and which target to track, which makes the offloading strat-

egy more challenging. On the other hand, compared with
the traditional location algorithm, the response time can be
reduced rapidly by locating the distributed edge devices.
The optimal target is transferred from minimum energy cost
or tracking delay to joint consideration of energy cost and
tracking performance. The main contributions are summa-
rized as follows:

(i) We propose a new distributed multitarget tracking
architecture, where real-time scheduling is
enhanced by requiring computing results from
resource caches. Besides, we improve the tracking
efficiency by introducing mobile cloud server pro-
viding resources for sink nodes. Missing probability
is reduced with the assistance of collaborative per-
ception among sensor nodes

(ii) Based on our proposed architecture, the perfor-
mance multitarget tracking is improved with joint
consideration of system cost, response time, and
important degree of targets. Minimum energy cost
with low tracking delay is transferred as MDP with
free model representation which depends on the
current system state

(iii) Self-adaption is proposed by an elastic mechanism,
which optimizes energy consumption and response
time. Based on the MDP model, we establish the
action-value function to evaluate the scheduling
strategies with the energy cost and tracking delay
of sensor nods. A deep Q-learning Network
(DQN) algorithm is utilized for optimizing real-
time scheduling strategies to adapt to different sce-
narios for different purposes, such as targets with
key tasks or high mobility. Simulation results dem-
onstrate that our intelligent cooperative scheme
shows good tracking performance according to the
self-adaption scheme

The rest of this paper is organized as follows. System
model is given by Section II. The scheduling strategy is ana-
lysed by Section III. Section IV presents the simulation eval-
uation. Finally, Section V concludes this paper.

2. Related Work

Energy consumption, delay, coverage, sensor deployment,
and accuracy are crucial factors in sensor networks about
target tracking [13]. In recent years, many researchers have
done a lot of work to address these challenging issues
[14]–[15].

To begin with, some researches have studied the prob-
lem of tracking coverage. The purpose of [16] is to provide
an effective coverage method for applications such as target
location, environmental monitoring, and vehicle target
tracking. Some intelligent algorithms, such as neural net-
works, adaptive distributed filtering, and fuzzy framework,
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are used to obtain the optimal filter. A new adaptive Kalman
estimation method based on distribution consistency is pro-
posed [17]. The average inconsistency of the optimal filter
gain and the estimated value are considered in the filter
design. Optimal Kalman gain is obtained by minimizing
mean square estimation error to estimate the states of the
target more accurately. In order to get better filter perfor-
mance, an adaptive consistency factor is used to adjust the
optimal gain. In the information exchange of filters, dynamic
clustering selection and two-level hierarchical fusion struc-
ture are used to obtain more precise estimation [18].

Meanwhile, the architecture of WSNs is extensively stud-
ied. One of the most popular applications in WSNs is vehicle
tracking. Generally speaking, vehicle tracking involves edge
computing, edge intelligence, etc [19]. Many researches
focus on improving the tracking accuracy and energy saving
of target vehicles on WSNs. A decentralized vehicle tracking
strategy is proposed to dynamically adjust the active area,
improve the energy-saving effect, and tracking accuracy.
[20] introduces novel mobile sensor networking architecture
for a swarm of microunmanned vehicles (MAVs) using soft-
ware defined network (SDN) technology. The proposed
architecture was aimed at enhancing the performance of
user/control plane data transmission between MAVs. In
[21], the authors propose a novel system architecture and
MAC protocol, which includes how to select the target coop-
erative sensor node and which sensing data should be
retransmitted by using the decided cooperative sensor node.

Moreover, due to the extensive research on machine
learning, lots of researches have upgraded and extended
the algorithm, which can be widely used in WSNs [22]. In
[23], they proposed a double time scale Q-learning algo-
rithm with function approximation to alleviate the curse of
dimension problems. Although all of the above algorithms
alleviate the state explosion problem, it is necessary to solve
the action explosion problem to obtain the scalable solution.
The edge intelligent computing of WSNs has also been
widely studied, such as the basic wireless cache networks,
in which the source server is connected to the base station
(BS) supporting cache, which serves multiple requesting
users [24]. In order to solve the problem of how to improve
the cache hit rate under the condition of dynamic content
popularization, a dynamic content update strategy based
on deep reinforcement learning is proposed. In [25], the
authors considered a WSN with a great number of sensors
and multiple clusters. Each cluster has a cluster head and
several cluster members, and the sensors are distributed ran-
domly. Cluster members only measure environmental
parameters like humidity, atmospheric pressure, and tem-
perature. The cluster head is responsible for fusing the mea-
surement data from the cluster members and forwarding the
data to the base station through single hop or multihops.

Furthermore, with the development of WSNs and UAV
technologies, which is popularly used in target tracking,
the enhancement of coverage, the comprehensive utilization
of data resources, and the stability of network systems, espe-
cially the cooperative network composed of WSNs and
UAV, are expected to provide immediate long-term benefits
in military and civil fields. Previous work mainly focused on

how to use UAV assisted WSNs for sensor and data collec-
tion, or use a single data source for target location in the
monitoring system, but the potential of multiple UAV sen-
sor networks has not been fully explored. In [26], the prob-
lem of target tracking for a class of wireless positioning
system with degradation measurement and quantization
effect is investigated. In order to track the state of the object
as accurately as possible, a recursive filtering algorithm is
proposed. First, an upper bound of filter error covariance
is derived, and then, the upper bound is minimized by prop-
erly designing the filter gain at each sampling time. [27] pro-
posed a new network platform and a system structure for
multiple UAVs’ cooperative monitoring, including design-
ing idea of cooperative resource scheduling and tasking allo-
cation scheme for multiple UAVs. Due to the complexity of
the monitoring area, [28] discussed the establishment of a
suitable algorithm based on machine learning.

3. System Model

In this section, a state-action model is established for the dis-
tributed multitarget tracking system. State space is added
which incorporates requiring latency, queue length, and dif-
ferent important degree of targets. Each indicator is specifi-
cally designed in the following communication model and
request model.

As shown in Figure 1, the efficient computing resources
enabled MTT network is made up of one UAV-assisted
mobile station, N target nodes, M sensor nodes, and K sink
nodes. Sink nodes are selected from the set M, i.e., K ⊂M .
Each sensor node is an energy-limited device with powered
battery. Let N = f1, 2,⋯Ng denotes the set of target nodes
and M = f1, 2,⋯Mg denotes the set of sensor nodes,
respectively. Let t ∈ f1, 2,⋯, T g denotes the discrete time
for tracking. Sensor nodes perceive targets each time and
report to sink nodes which are equipped with a certain
amount of computing resources. The computing recourses
are set as C ⊂N . Sink nodes schedule proper sensor nodes
to execute tracking tasks under the assistance of UAV. We
assume that each sink node owns corresponding network
information, in which UAV obtains the information via each
fixed period by information sharing.

3.1. Analysis of Communication Model and Action. In this
subsection, the communication model and action space are
analysed. We assume that arrival of target nodes is on the
basis of an independently identically distribution (IID).
Once the probability happens, energy consumption is pro-
duced at time t. Hence, we depict the energy consumption
as er,t . Requiring to be scheduled is real time for sensor node
m, and the overhead of fetching transmission should be con-
sidered as follows:

er,t = λelec × 2 + λamp × d2, ð1Þ

where λelec is the circuit consumption and λamp is the gain
consumption of amplifier consumption of one bit. Downlink
of 1 bit can realize scheduling strategy, i.e., 0 is prohibition
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otherwise is permission. d is the distance between the sensor
and the sink node.

Sink node provides a proper scheduling scheme to track
wisely, and the scheduled probability of tracking target n at
time t is denoted as pm,n,t . The energy consumption of the
sensor node m as a candidate at time t is denoted as es,t . In
the dynamic self-recognized network, it is noteworthy that
the information of the sensor nodem is absent for the region
r when the sensor node moves from the region h to the
region r. However, the corresponding data can be obtained
from UAV and the fetching cost is associated. Let bm denote
the cost between UAV and the sink node, the fetching cost is
written as follows:

Fm = 1 m ∉ Cmð Þbm, Cm ⊂C , ð2Þ

where 1ð∗Þ is the indicator function. If ∗ is generated, cost
will be incurred, otherwise, cost is zero.

In the multitarget tracking network, the energy of the
sensor nodes and the relative distance between each target
node are considered for evaluating the potential tracking
capacity. Letat ∈A ≜ fM ∪ 0gdenotes the decision-making
variable for real time tracking at timet, whereinat = 0
denotes no decision for sink node,at =mdenotes sensor
nodemand is scheduled at timet,andA is the action space.

3.2. Analysis of Request and Delay Model. In this subsection,
the request model and delay model are analysed, incorporat-
ing the design of the request queue and delay. At each time t,
a sensor node can only receive information of one target
node. Each sensor node reports to the corresponding sink
node. When tracking target n, other sensor nodes may
receive broadcasting data of target n. Starting at time t, sink
nodes requested by the set of sensor nodes is set asMb

n,t , and

Mb
n,t ⊂ fM ∪ 0g. When the number of targets invading the

monitoring area is none, Mb
n,t =∅. Md

n,t is the set of sensor
nodes when requesting sink nodes to track target n at time t,

and the dynamic renewal process is described as follows:

Mb
n,t+1 =Mb

n,t ∪Md
n,t , ð3Þ

Mb
n,t+1

��� ��� = M \Md
n,t

��� ���, if rt = n

0, otherwise

8<
: , ð4Þ

where rt = n indicates the sink nodes receive request from
sensor nodes to track target node n. Otherwise, there is no
request.

At each time t, the queue for requesting sink nodes at the
beginning of the next time t + 1 is based on the last time. If
sensor nodes have no idea for target node m, the number of
requests should be computed with a view to number of
requests at time t during the next time t + 1. The size of
request unit length isμm,n,t , and the request queue length
exceptionRn,t+1at timet + 1is represented as follows:

Rn,t+1 = 〠
M

m=1
μm,n,t : ð5Þ

The scheduling set is explored as a subset of the request
queue. In case of Rn,m,t = 0, the scheduling set is empty. Oth-
erwise, the scheduling set belongs to the request queue. The
N ×M state matrix Rt is constructed, and Rt ∈ R, where R
is the state space of the request queue. The independence
between sensor nodes leads the scheduling policy not to be
related to the request probability but only related to the non-
empty request queue.

At the beginning of time t, sensor node m transmits its
own information to the sink node and is traversed according
to the corresponding node ID which is stored in the comput-
ing resources. After that, the policy notifies the sink node to
make processing. The fetching transmitting delay is analysed
and requesting nodes with probability pn,m,t is scheduled.
The penalty of delayed sensor nodes is generated in a subset
of request nodes. Heterogeneous target nodes with different
delay constraints are considered to be associated with differ-
ent delay penalties. At time t, the delay constraint range for
target node n is written as In,t ∈ In ∈ ½0,�In�, where the maxi-
mum delay is �In. I denotes the delay state space and �In ∈ I .
Therefore, the dynamic delay is described as

In,t+1 =
0, ifμn,t = 0
min I pn,t

� �
,�In,t+1

� �
, otherwise

(
, ð6Þ

where Ið∗Þ is a utility function of the delay, which mainly
includes transmitting delay, and fetching delay between the
sink nodes and the UAV.

In the MTT-WSNs, penalties will increase by
approaching the upper bound of delay constraint. In order
to avoid high transmission delays and interminable request
queues, let σi,t , ∀i ∈N denotes the important degree of target
node m which also expresses the degree of not missing target
n. Important degrees for target node are denoted as σt = ½

UAV

Computing
resource
Sensor
node

Service layer

Computing layer

Sensing layer

Target

Sink
node

Figure 1: System components and transmitting modes based
collaboration and scheduling solution in MTT-WSNs.
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σ1,t , σ2,t , σn,t�, and σt ∈ σ, where σ belongs to the following
state space.

As consequence, we describe the system state as S = R
× I × σ by integrating the state space of delay, request queue,
and important degree. Meanwhile, we take a single self-

organized network in consideration to simplify the complex-
ity for the reason that the same policy can be realized in dif-
ferent self-organized regions. The state space S is reduced to
S1 = R1 × I1 × σ1. At time t, the state space is given by

S1 = st = R1,t × I1,tσ1,t pj I1,m,t × σ1,n,t R1,m,t
��� �� �

, ð7Þ

where delay constraint only appeared when request queue is
nonempty.

4. Scheduling Strategy for MTT-WSNs

The exploring strategy is analysed in this section by means
of self-adaptation deep learning, in which the interacting
learning is designed between a smart agent and a complex
monitoring environment.

4.1. Problem Formulation. Given a state space s ∈ S1, the
action, which is evaluated with a corresponding penalty or
reward, resulted from the state space. Policy π is a function

Environment

Action
space

Primary
network

Target
network

Action

Replay 
memory

States

Update

Update

Figure 2: DQN-based scheduling strategy and interacting process between the agent and MTT-WSNs.

Initialize the replay memory D to capacity N and action- value Q with random weights
Input: set vector st, step number N, discount factor γ, learning rate α, the number of step M
1: for each interaction with environment episode =1, M

do
2: for t =1, T do
3: With probability ? select a random action αt
4: The corresponding penalty D is computed and stored in memory;
5: Get a batch of samples from replay memory, and compute difference function based on (17);
6: Calculate the gradient of weight α;
7: Updating: according to (18);
8: if step = N then
9: Q ← Q ′
10: end if
11: end for
12: end for
Output: Q

Algorithm 1: DQN-based scheduling strategy.

Table 1: Simulation parameters of MTT-WSNs’ environment.

Parameter description Value

Area of each region 100m × 100m
Number of target nodes 2

Velocity of target nodes 1m/s

Number of sensor nodes 40

Velocity of sensor nodes 2m/s

Maximum tolerate delay of target nodes 5 s,6 s

Primary energy of each sensor nodes 40 J

Primary coordinate of target nodes (0m,30m),(0m,60m)

Energy consumption for static nodes 0.2 J/unit time

Energy consumption for moving nodes 0.8 J/unit time
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Figure 3: The systematic energy consumption under the condition of ξ1 = ξ2 = 0:5.
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Figure 4: The systematic energy consumption under the condition of ξ1 = 0:9, ξ2 = 0:1.
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Figure 5: The systematic delay cost under the condition of ξ1 = 0:9, ξ2 = 0:1.
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Figure 6: The comparison with RSN under the condition of ξ1 = ξ2 = 0:5.
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mapping from state space to action space, which is given by

s⟶
π

A : ð8Þ

In the MTT-WSNs, the optimal solution is unavailable
by using existing deep learning algorithms such as deep Q-
learning for the state space S1 with multiple dimensions.
Thus, the problem is solved by training in the neural net-
work instead of finding in the Q-table. The solution can cope
with the curse of dimension because of multiple tensors of
the neural network. Specifically, multidimensional state
space as input is learned to obtain a policy through deep
neural network with weighted values. Action is obtained by
the branch of policy and is executed in a dynamic and com-
plex environment, which generates a new state and the cor-
responding reward or penalty. If this evaluation is a positive
reward, a new state value is set as the next input. Otherwise,
this action will be punished. Corresponding reward or pen-
alty is responsible for adjusting weight parameters for the
deep neural network [23].

In a practical mobile target tracking system, energy con-
sumption can be represented for sensor node m at time t by
the (state and action) pair. For a given target node n, the sys-
tematic energy consumption is written as

E πð Þ = 〠
T

t=1
Et st , atð Þ, ð9Þ

Et st , atð Þ = 〠
T

t=1
μm,ter,t + pm,tes,t + Fm,t , ð10Þ

where Etðst , atÞ denotes the system energy consumption
at time t, and we give expectations for whole MTT-WSNs.
Fm,t is the fetching cost corresponding to the Equation (2).

When execution latency exceeds the given deadline, the
delay penalty is generated and is denoted by

D πð Þ = 〠
T

t=1
Dt st , atð Þ, ð11Þ

Dt st , atð Þ = 〠
N

n=1
xn In,tð Þ, ð12Þ

where Dtðst , atÞ denotes the penalty of the system delay, and
xð∗Þ denotes the delay of total target nodes with diverse
delay constraints. In order to ensure real-time tracking, tar-
get nodes with different important degrees are detected and
tracked, and the trajectories in dynamic scenarios are ran-
dom. Therefore, our purpose is to minimum the delay and
the penalty of the system delay that can be written as

Dt st , atð Þ =
xn θn,tð Þ, if θn,t ≤�In
yn θn,tð Þ, if θn,t >�In

(
, ð13Þ

where θn,t denotes the practice delay for tracking target n at
time t .Any delay will be punished, and the punishment

intensity ynð∗Þ is much weighted than xnð∗Þ . Once the
delay θn,t exceeds the threshold In,t , the punishment will
gradually increase.

For a dynamic MTT-WSNs, it is difficult to use polyno-
mial time to obtain the optimal policy, so the deep Q-
network algorithm is employed in the MTT-WSNs. Our
object is to minimize the systematic energy consumption
and the system delay jointly. Therefore, the utility function
of the joint optimization can be described as

U πð Þ = ξ1E πð Þ + ξ2D πð Þ, ð14Þ

where ξ1 and ξ2 are the weighted parameters which satisfy
ξ1 + ξ2 = 1, respectively. At time t,

U st , atð Þ = ξ1E st , atð Þ + ξ2D st , atð Þ, ð15Þ

denotes the utility function to minimize the system cost.
As mentioned above, an optimal strategy π that mini-

mizes the system cost should be obtained. Consequently,
the scheduling problem is described as

P1 : u∗ =min U st , atð Þ, ð16Þ

where u∗ is the optimal joint solution produced by optimal
policy π∗. Then, the optimal strategy is learned through
interaction between the agent and the MTT-WSNs.

4.2. DQN-Based Scheduling Strategy. The scheduling process
is modelled as MDP with quaternary-state which includes
state space, action space, penalty, and the state transformed
equation. We use a value function based on the Bellman
equation to define the potential value for state s at time t
in the future which is given by

P2 : vt sð Þ =
1
T
E 〠

T

t=1
γtU st , atð Þ s1j = 0

( )
, ð17Þ

where γ is the discount factor, and P2 denotes the exception
function for a long-term accumulation process. The iteration
process is represented as follows

vt+1 sð Þ =min 〠
s′ ,Dt

p s′,Dt s, aj
	 


Dt + γvt+1 s′
	 
	 


: ð18Þ

In DQN, the agent interacts with the dynamic environ-
ment using a dynamic programming method to alleviate
the above issue. The learning process with Q value is repre-
sented as follows, which is embodied as an approximating
value function,

Q st , atð Þ = E Dt + E Q st+1, at+1ð Þ½ �½ �, ð19Þ

8 Journal of Sensors



and the updating process is given by

Q s, að Þ =Q s, að Þ + α D +max
a′

Q s′, a′
	 


−Q s, að Þ
	 
� �

,

ð20Þ

where α is the learning rate.
In Figure 2, we describe the specific interaction process.

In order to minimize the loss, state variables as input of pri-
mary network are learned and updated through replay
memory. Each time the network is trained, a sample is
selected randomly to reduce the relevance of data. To
improve the stability of the algorithm, target network is
established, the same as the primary network which is used
to update the network parameters. Target network is applied
to update Q value. It is noteworthy that the two networks are
asynchronous.

Meanwhile, the DQN-based scheduling strategy algo-
rithm is shown below,

The time complexity is given for algorithm analysis.
Based on the mention above discussions, the feedback pro-
cess of neural networks is mainly considered with high
resource consumption. It implements the matrix computing
with inverse operation. For our designed intelligent comput-
ing algorithm, we focus on the constructed hidden layers of
neural networks and the number of iterations. Explicitly, the
action a is sampled from a set of action A with a time com-
plexity Oð1Þ for each iteration [22]. In the hidden layers, the
main consideration focuses on back propagation. According
to [12], its time complexity is OðkðvÞTM1Þ. Thereafter, the
algorithmic complexity is given as OðkðϕÞTM1jCkA1jÞ,
where A1 and M1 are the reduced action space and set of
target nodes, C is the number of sink nodes, and kðvÞ is
the a function of the depth and number of the hidden layers
v.

5. Performance Evaluation

In this section, we present numerical results to illustrate the
performance of the proposed optimal policy.

5.1. Simulation Set-up. To begin with, the DQN agent
obtains policy from MTT-WSNs’ environment. Considering
the mobile target tracking scenario in a stable region, we set
the number of target nodes asN = 2, the number of sensor
nodes asM = 40, and the distribution of sensor nodes is uni-
form. Meanwhile, the velocity of sensor nodes and targets is
2m/s and 1m/s, respectively. The maximum tolerate delays
are 5 seconds and 6 seconds, respectively. We set the pri-
mary energy of each sensor node as 40 J. The coordinates
of running into each region for two targets are given, and
the moving trajectory is the stochastic distribution. The
energy consumption of static nodes is set as 0.2 J and 0.8 J
for each moving sensor. Parameters of the MTT-WSNs’
environment in our system are listed in Table 1. The simula-
tion is based on Python 3.0 and Tensor Flow framework.

6. Simulation Results and Discussion

Figure 3 depicts the systematic energy consumption under
the consideration of fairness between energy and delay, i.e.,
ξ1 = ξ2 = 0:5. With the different learning rates, system con-
sumption is converging quickly when the number of itera-
tions arrives at 120 steps approximately. It is obvious that
different learning rates give diverse capability for conver-
gence, and convergent velocity is faster correspondingly
when the learning rate is equal to 0.6 which has the least
fluctuations and fastest convergence speed after 90 itera-
tions. When the value of the horizontal ordinate is 90, the
agent can use the learned experience to schedule diverse sen-
sor nodes considering self-energy and relative distance from
each target.

Under the consideration of collaborative perception, we
also obtain the performance of trade-off between energy
and delay penalty. When we mainly consider energy, i.e.,
ξ1 = 0:9, ξ2 = 0:1 in Figure 4, the performance of convergent
velocity is also compared with Figure 3. In this case, the
lower energy consumption is realized while guaranteeing
the convergence. When systematic energy consumption is
convergent, energy consumption is reduced to 42.85%
approximately compared with Figure 3, wherein energy con-
sumption and delay are analysed simultaneously.

Figure 5 depicts the systematic delay cost, which mainly
considers the delay, i.e., ξ1 = 0:1, ξ2 = 0:9. Tendency is con-
vergent when the value of the horizontal ordinate is 75 and
the learning rate is 0.9. Due to the randomly sampled replay
and updated memory, the convergence exists a little tremble,
and the performance is better than convergence of system-
atic energy consumption.

Figure 6 shows the comparison with the Randomly
Selecting Node (RSN) algorithm. Considering the energy
and delay fairly, we obviously extract that the capability of
DQN-based collaborative perception algorithm is better
than RSN. We analyse the whole interacting process of the
agent and MTT-WSNs when the value of horizontal ordi-
nate is fewer than 120, and the energy consumption is
reduced to 76.2%, 67.3%, and 70.9% when learning rate are
0.6, 0.8, and 0.9, respectively. The effect is obviously remark-
able compared with RSN not only in energy consumption
but also when the convergence outperforms RSN algorithm.

7. Conclusions

In this paper, we have studied the mobile multitarget track-
ing scheduling management in the complex MTT-WSNs.
The problem of mobile scheduling is formulated as a
MDP, taking account of diverse important degree for differ-
ent target nodes and diverse tracking capabilities for differ-
ent sensor nodes. Moreover, the multiregional tracking and
scheduling strategy is treated as an important component
to reduce the size of state space with a low computational
complexity. To cope with the mobile multitarget tracking
in a complex scenario, collaborative perception among sen-
sor nodes and the deep Q-learning algorithm is adopted to
obtain the optimal scheduling strategy. Since the agent
learns important information from MTT-WSNs through
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the interacting process, the proposed scheme can enhance
the network performance obviously and reduce the tracking
delay as illustrated in simulation experiments. Furthermore,
the systematic energy consumption can be reduced by the
scheduling policy through sink nodes. Finally, the time com-
plexity is analysed to promote further work smoothly.
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Aiming at the problem that the dark channel prior algorithm is not ideal in removing fog at the distant view and the sudden
change of depth, this paper proposes an adaptive bright and dark channel combined with defogging algorithm based on the
depth of field. The algorithm divides the image into a distant area and a near area based on the depth of field. The near area
uses the dark channel to remove the fog, and the distant area uses the bright channel to remove the fog, combined with the
use of adaptive superpixel segmentation to give the content-based local area division and defogging control factor based on
depth of field. It better solves the problem of large transmittance deviation and defogging distortion under content changes
and sudden depth of field changes. From the subjective and objective indicators, the algorithm in this paper has achieved a
good defogging effect, and the main indicators and comprehensive defogging quality are better than common algorithms.

1. Introduction

Fog has a great impact on the application of visual recogni-
tion in intelligent transportation. Dense fog will lead to sys-
tem imaging blur and recognition failure. Images taken by
image sensors in poor weather environments such as fog,
rain, and haze will have serious degradation problems,
which brings many difficulties in extracting useful informa-
tion from images and has an important impact on the appli-
cation of remote sensing, target detection, intelligent
transportation, and other fields [1, 2]. The research of image
defogging has received widespread attention. The existing
image defogging algorithms are mainly divided into
enhancement algorithms, restoration algorithms, and deep
learning algorithms.

The enhanced defogging algorithm improves the image
quality through image enhancement technology, mainly
including adaptive histogram equalization [3, 4], wavelet
transform [5, 6], homomorphic filtering [7], and Retinex
enhancement [8–10] algorithms. The adaptive histogram
equalization defogging algorithm [3, 4] is an improvement
on the basic histogram algorithm, which can indistinguish-
ably improve the image contrast, suppress the slope of the

transformation function to some extent, and avoid the phe-
nomenon that rising too fast resulting weak image contrast
and oversaturation. However, such methods will amplify
the noise in the image when there is a lot of noise in the
image. The wavelet transform method divides the image into
high-frequency region and low-frequency region and uses
the enhancement method for the high-frequency region to
achieve the purpose of image defogging by improving the
image contrast [5, 6], but it is not suitable for the situation of
too bright or too dark and uneven illumination. The homo-
morphic filtering algorithm composes the illumination com-
ponent and reflection component of the image, respectively,
and processes them in the frequency domain, highlighting
the details by enhancing the high-frequency information of
the image [7]. It can effectively solve the problem of uneven
illumination, but the Fourier transform used causes high
computational complexity. The defogging algorithm based
on Retinex generally adopts the multiscale Retinex with color
restoration (MSRCR) method, which can obtain good defog-
ging effect to a certain extent, but the defogging effect in dense
fog scene is not ideal [8–10]. Thanh et al. successively pro-
posed single image dehazing based on adaptive histogram
equalization and linearization of gamma correction [11] and
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single image dehazing with optimal color channels and
nonlinear transformation [12]. The method is fast and effec-
tive, and the processed image is better than the comparison
algorithm in visual and objective indexes.

Restoration defogging algorithms mainly include defog-
ging algorithms based on partial differential equations [13,
14] and defogging algorithms based on prior knowledge
[15–25]. The defogging algorithm based on partial differen-
tial equation uses multiple images to realize image defogging
according to the polarization characteristics of light. Wu
et al. [13] and Guo and Meng [14], respectively, proposed
a series of improvement measures for the partial differential
equation model. The defogging algorithm based on prior
knowledge infers the cause of image degradation based on
assumptions or prior information and estimates the atmo-
spheric light and transmittance based on the atmospheric
scattering model to obtain a fog-free image. The most typical
one is the dark channel prior defogging algorithm. The dark
channel prior defogging algorithm proposed by He et al. [15]
has better effects in close and dark areas, but there are prob-
lems with distortion and poor defogging effects in distant
and bright areas. Yan et al. proposed the bright channel
prior [16], which uses the combination of bright channel
and dark channel prior to achieve image deblurring, but
did not consider the influence of different depths of field
on the dehazing effect. Gao et al. proposed a far and near
scene fusion defogging algorithm based on the prior of
dark-light channel, and the saturation and sharpness of the
image have been improved to a certain extent [17]. Yang
et al. proposed adaptive haze estimation and transmittance
estimation algorithms and achieved a certain dehazing effect
[18, 19]. However, there is oversaturation in areas where
dense fog and mist change drastically. Zhu et al. proposed
a color attenuation prior. The depth of field information is
obtained based on this prior, but the sample collection pro-
cess of this method is difficult, and the theoretical basis is
slightly lacking [20]. Fan et al. successively proposed an
adaptive defogging algorithm based on color attenuation
[21], single image defogging algorithm based on three-
region division [22], an iterative defogging algorithm based
on pixel-level atmospheric light map [23], and image defog-
ging algorithm based on sparse representation [24]. The
sharpness and contrast of the image after defogging are
greatly improved. Kumar et al. proposed a region-based
adaptive denoising and detail enhancement method, pro-
posed the autocolor transfer method to strengthen the dark
regions of the hazy image, and also considered the variation
in haze levels in different regions of the image for adaptive
adjustment [25].

The deep learning defogging algorithm achieves defog-
ging by training the model. It has a good defogging effect,
but it requires a lot of calculation and needs to build a large
dataset [26]. Cai et al. proposed to use the DehazeNet convo-
lutional neural network to estimate the transmittance of the
fog map, but the convolutional neural network takes a long
time and has poor real-time performance [27]. Luan et al.
proposed a classification algorithm based on a learning
framework, using a support vector regression model to
obtain accurate transmittance, but the feature extraction

process is complicated [28]. Liu et al. designed an end-to-
end convolutional neural network GridDehazeNet for image
defogging and realized multiscale estimation based on atten-
tion [29]. Such algorithms require a large amount of datasets
during the training process and are prone to overfitting. It is
suitable for a single scene and depends too much on the
foggy images and nonfoggy images in the datasets. The
defogging effect in the real scene is poor.

Aiming at the deficiencies of the above research, this
paper proposes an adaptive bright and dark channel com-
bined with defogging algorithm based on depth of field,
which solves the problem of distortion in the distant view
and poor defogging effect in the sudden depth of field. The
segmentation window is adaptively determined based on
the image content, and the defogging control factor and
transmittance are adaptively determined based on the depth
of field. The dark channel is used to defog in near areas and
dark areas, and the bright channel is used to defog in distant
areas and bright areas, so as to give play to their advantages
in different areas. At the same time, based on the depth of
field, the dark channel and the bright channel are adaptively
divided and the defogging control factor is determined; the
superpixel segmentation algorithm is used to give the
content-based division of the local areas in the two channels.
The two results are applied to the bright and dark channel
defogging algorithm, which solves the problem in the orig-
inal dark channel defogging algorithm. From the experi-
mental results, good defogging effects have been obtained
in both the distant and near areas, and the main indica-
tors and comprehensive defogging quality are better than
common algorithms.

2. Atmospheric Scattering Model and
Principle of Bright and Dark Channels

2.1. Atmospheric Scattering Model. The atmospheric scatter-
ing model describes the imaging process under fog and haze
conditions, and it is the theoretical basis of the restoration
image defogging algorithms. Its mathematical model is

I xð Þ = J xð Þ ∗ t xð Þ + A ∗ 1 − t xð Þð Þ: ð1Þ

In the formula, x represents the image pixel position,
IðxÞ represents a foggy image, JðxÞ represents a fog-free
image, tðxÞ represents transmittance, and A represents the
atmospheric light. If β represents the atmospheric scattering
coefficient and dðxÞ represents the depth of field, that is, the
distance from the target position to the camera, the transmit-
tance tðxÞ can be expressed as

t xð Þ = e−βd xð Þ: ð2Þ

According to the atmospheric scattering model, when
tðxÞ and A are obtained, the fog-free image JðxÞ can be
obtained backward according to formula (1).

2.2. Dark Channel Prior. The dark channel prior is the rule
that He et al. [15] summarized by counting the characteris-
tics of a large number of outdoor fog-free images, that is,
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for a fog-free image, in addition to the sky and bright areas,
the value of pixels in its local area at least on one channel is
very low and tends to zero. For any input image, its dark
channel can be defined as

Jdark xð Þ = min
y∈Ω xð Þ

min
c∈ r,g,bf g

Jc yð Þ
� �

,⟶ 0 ð3Þ

where min represents the operation of taking the minimum
value, ΩðxÞ represents the local area centered on pixel x, c
represents one of the three channels of r, g, b, JcðyÞ repre-
sents the pixel in area ΩðxÞ, and JdarkðxÞ represents the dark
channel image.

Assuming that the atmospheric light value A is known,
and in the window ΩðxÞ, the transmittance tðxÞ is a fixed
value and denoted as ~tðxÞ. The minimum values of both
sides of equation (1) are

min
y∈Ω xð Þ

min
c
Ic yð Þ

� �
=~t xð Þ ∗ min

y∈Ω xð Þ
min
c

Jc yð Þ
� �

+ A ∗ 1 −~t xð Þ� �
:

ð4Þ

The dark channel value of a foggy image is represented
by IdarkðxÞ, then

Idark xð Þ =~t xð Þ ∗ Jdark xð Þ + A ∗ 1 −~t xð Þ� �
: ð5Þ

It can be known from the dark channel prior that Jdark

ðxÞ approaches 0, and the above formula can be approxi-
mated as

Idark xð Þ = A ∗ 1 −~t xð Þ� �
: ð6Þ

The transmittance can be obtained by formula (6):

~t xð Þ = 1 −w xð Þ ∗ Idark xð Þ
A

, ð7Þ

where wðxÞ is the defogging control factor, which is used to
adjust the defogging intensity and prevent the image distor-
tion caused by too strong defogging. wðxÞ can take a fixed
value (such as w = 0:95) or a variable value.

Dark channel defogging is the process of obtaining the
transmittance ~tðxÞ according to the foggy image IðxÞ
and the estimated atmospheric light A and then obtain-
ing the defogging image according to the atmospheric
scattering model.

2.3. Bright Channel Prior. According to the dark channel
prior, the dark channel values of sky area, dense fog area,
bright area, and white area are relatively large, which does
not satisfy the dark channel prior. Yan et al. [16] proposed
the bright channel prior through statistical analysis, that is,
in natural scene images, for image blocks of white objects,
sky, bright areas, light intensity areas, etc., there is at least
one color channel with a very large value, close to 1. The
bright channel of an image can be defined as

Jbright xð Þ = max
y∈Ω xð Þ

max
c∈ r,g,bf g

Jc yð Þ
� �

,⟶ 1 ð8Þ

where JbrightðxÞ represents the bright channel image, max
represents the operation of taking the maximum value.

Similar to the dark channel prior defogging process,
assuming that the atmospheric light value A is known, and
the transmittance tðxÞ in the window ΩðxÞ is a fixed value
~tðxÞ. The maximum values on both sides of equation (1) are

max
y∈Ω xð Þ

maxcIc yð Þð Þ =~t xð Þ ∗ max
y∈Ω xð Þ

maxc Jc yð Þð Þ + A ∗ 1 −~t xð Þ� �
:

ð9Þ

The left side of the above formula is the bright channel of
the foggy image, denoted as IbrightðxÞ; then,

Ibright xð Þ =~t xð Þ ∗ Jbright xð Þ + A ∗ 1 −~t xð Þ� �
: ð10Þ

According to the theory of bright channel prior,
JbrightðxÞ approaches 1, which can be approximately
obtained as follows:

Ibright xð Þ =~t xð Þ + A ∗ 1 −~t xð Þ� �
: ð11Þ

By simplifying the above formula and introducing the
defogging control factor wðxÞ, the transmittance can be
obtained:

~t xð Þ = 1 −w xð Þ ∗ 1 − Ibright xð Þ� �
1 − Að Þ : ð12Þ

Similarly, a certain degree of defogging can be achieved
according to the bright channel prior.

Obviously, dark channel defogging and bright channel
defogging have their own applicable areas and failure areas,
so both have their limitations. However, after analysis, it is
not difficult to find that the applicable areas of them are
complementary. Therefore, this paper proposes an adaptive
bright and dark channel combined with defogging algorithm
based on depth of field, which combines the two defogging
methods. For the area where the dark channel prior is applica-
ble, the dark channel is used to obtain the transmittance. For
the area where the bright channel prior is applicable, the
bright channel is used to obtain the transmittance. The areas
are adaptively determined by the depth of field, and the defog-
ging control factor also changes adaptively following the
depth of field. The window ΩðxÞ is a content-based special-
shaped area obtained by the superpixel segmentationmethod.

3. Adaptive Bright and Dark Channel
Combined with Dehazing Algorithm Based
on Depth of Field

The framework of adaptive bright and dark channels com-
bined with defogging algorithm based on depth of field is
shown in Figure 1. The algorithm is mainly divided into
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three parts: depth estimation, adaptive transmittance, and
atmospheric light estimation based on depth of field, and
bright and dark channel estimation based on superpixels.
According to the positive correlation between depth of field
and brightness [18], the Retinex method was used to calcu-
late brightness and then obtain the estimation of depth of
field. The maximum depth of field is the sky, which is
approximate to atmospheric light, so atmospheric light A is
estimated from the maximum depth of field. At the same
time, an adaptive defogging control factor wðxÞ is obtained
according to the negative correlation between the defogging
control factor and the depth of field. According to the depth
of field, the near area and the distant area are separated. The
dark channel was used to obtain the transmittance in the
near areas, and the bright channel was used to obtain the
transmittance in the distant area. The local area in the bright
and dark channel is obtained by adaptive superpixel seg-
mentation method. The obtained area changes according
to the content, and the shape is irregular, which is more in
line with the characteristics of the image, and solves the
problem that the content jump cannot be adapted when
the regular area is divided. After obtaining atmospheric light
and transmittance, a defogging image is obtained according
to the atmospheric scattering model.

3.1. Depth Estimation Algorithm Based on Retinex. Observ-
ing statistics on multiple foggy images, it is found that the
fog density in the foggy image increases with the increase
of the scene depth; the brightness of the foggy image gradu-
ally increases with the increase of the fog density [18].
Therefore, it can be assumed that the depth of field is posi-
tively correlated with the fog density and also positively
correlated with the image brightness, that is,

d xð Þ∝ c xð Þ∝ v xð Þ, ð13Þ

where dðxÞ, cðxÞ, and vðxÞ, respectively, represent the scene
depth, fog density, and brightness value at x, and ‘∝’ repre-
sents a direct ratio.

According to the characteristics of the positive correla-
tion between the depth of field brightness, this paper first
uses Retinex to obtain the fog mask [30] and then obtains
the optimized brightness map, so as to obtain the image
depth of field. The specific process is shown in Figure 2.

First, the foggy image is transferred to the YCbCr color
space, the normalized brightness component YðxÞ is
extracted, and the Gaussian smoothing function FðxÞ is used
to convolve with it to obtain the image fog mask L̂ðxÞ, that is,

L̂ xð Þ = Y xð Þ ⊗ F xð Þ,
F xð Þ = K ∗ e,

ð14Þ

where ‘ ⊗ ’ represents the convolution operation; K is the
normalization factor; σ is the standard deviation, the mag-
nitude of which controls the smoothness of the function
FðxÞ; m and n represent the horizontal and vertical coor-
dinates at x.

The uniform fog mask �L is the mean value of L̂ðxÞ,
namely,,

�L = ∑H
m=1∑

W
n=1L̂ xð Þ

H ∗W
, ð15Þ

where H andW represent the height and width of the image,
respectively. However, �L is only applicable when the fog is
evenly distributed. In reality, the fog distribution is positively
correlated with the depth of field. Therefore, in this paper, the
uniform fog mask �L and the brightness component Y(x) of
the foggy image are processed according to equation (16) to
obtain the fog mask L′ðxÞ related to the depth of field:

L′ xð Þ = Guided Filter Y xð Þ, 1 − Y xð Þ ∗ �L
� �

, r, eps
� �

, ð16Þ

where Guided Filter represents the guided filtering operation,
YðxÞ represents the guided image, ð1 − YðxÞ ∗ �LÞ represents
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Figure 1: The framework of adaptive bright and dark channels combined with defogging algorithm based on depth of field.
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the input image, r represents the local window radius, and
eps represents the regularization parameter.

Since high-brightness areas such as white objects will be
misjudged as those with a far depth of field, a minimum fil-
ter of 9 × 9 and bilateral filtering is performed on L′ðxÞ to
eliminate blocking effects and optimize to obtain the bright-
ness map LðxÞ; Finally, according to the linear relationship
model between the depth of field and the brightness compo-
nent [16], the depth map dðxÞ is obtained:

d xð Þ = L xð Þ − Lmin
Lmax − Lmin

∗ L xð Þ, ð17Þ

where Lmin and Lmax represent the minimum and maxi-
mum values of the optimized brightness map LðxÞ,
respectively.

The depth of field obtained based on the Retinex depth
of field estimation algorithm is shown in Figure 3.

3.2. Adaptive SLIC Superpixel Segmentation Algorithm.
Superpixel segmentation [31, 32] divides adjacent and sim-
ilar parts into a region, and the result is an irregular win-
dow which changes according to the content. The bright
and dark channels and their transmittances are obtained
by using the divided window instead of the fixed rectangu-
lar window, which can solve the block effect problem at
the depth change well.

The size of the superpixel segmentation window has a
great impact on the bright and dark channels and defogging
effect. For the dark channel image, when the segmentation
window is too large, there are more dark channels in the
window, the high pixel value in the dark channel image is
reduced, the details of the defogging image are blurred, the
level is not obvious, and the edge of the dark channel image
is easily expanded; If the segmentation window is too small,
although the image details are clear and the levels are rich,
the local bright area does not conform to the dark channel
prior theory, and the pixel value is prone to be too high,
resulting in inaccurate estimated transmittance. For the
bright channel image, the opposite is true. In order to avoid
the influence of different segmentation windows on the
bright and dark channel images, this paper does not select
a fixed segmentation window when obtaining the bright
and dark channel images but adaptively determines the win-
dow size according to the size of the image. When the image
resolution is relatively large, the segmentation window is
correspondingly increased, and when the image resolution

is relatively small, the segmentation window is correspond-
ingly reduced. This paper uses a simple linear iterative clus-
tering algorithm (SLIC) for segmentation. The distance
between the seed points of the segmented superpixel block
is related to the parameter s. The larger the s, the larger the
segmentation window, and vice versa. In this paper, the
superpixel segmentation window size is controlled by deter-
mining the parameter s, which is as follows:

s = floor max 15,H ∗ 0:01,W ∗ 0:01½ �ð Þð Þ, ð18Þ

where floor represents rounding towards negative infinity.
Figure 4 shows the segmentation results of the adaptive

SLIC superpixel and the bright and dark channel images.
Figure 4(a) is the result of super pixel segmentation of the
image in Figure 3, from which it can be seen that the bound-
ary of the super pixel block formed after segmentation is rel-
atively clear. Figure 4(b) is the process image, the superpixel
segmentation result is overlaid on the minimum channel
image. Figure 4(c) is a dark channel image obtained by using
the result of superpixel segmentation. The level is clear and
the window size is moderate. In the contour of the mountain
and the boundary area between the sky and the scene, the
pixels with similar depth values can be better segmented
into the same window. Figure 4(d) is the bright channel
image obtained by using the superpixel segmentation
result. It can be seen from the figure that in the sky and
areas with relatively bright brightness, the pixel value is
relatively high, and the bright area can be clearly seen in
the image after segmentation.

3.3. Acquisition of Adaptive Transmittance. It can be seen
from the foregoing that the idea of obtaining the transmit-
tance is to first determine the defogging control factor wðxÞ
and atmospheric light A; Then, it is divided into the near area
and the distant area, and the transmittance of each part is
calculated according to equations (7) and (12) with dark
channel and bright channel, respectively. After fusion, it
becomes the transmittance of the image.

3.3.1. Determination of Adaptive Defogging Control Factor.
The defogging control factor represents the degree of defog-
ging. The defogging control factor in the dark channel
defogging algorithm of He defaults to 0.95. This value has
a better defogging effect for foggy images in the near area,
while excessive defogging is likely to cause distortion in the
distant area. Through experimentation, it is found that when
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the value is 0.55, the distortion problem at the distant area is
solved, but the defogging effect at the near area is not ideal.
In this paper, the nearest point is set to 0.95, and the farthest
point is set to 0.55. According to the linear relationship that
the depths of field dðxÞ and w are negatively correlated, its
size changes adaptively according to the depth of field value.
The adaptive defogging control factor is obtained as follows:

w xð Þ = 0:95 − 0:4 ∗ d xð Þ − dminð Þð Þ
dmax − dminð Þ , ð19Þ

where dmin and dmax represent the minimum and maximum
values of the depth of field map, respectively.

3.3.2. Estimation of Atmospheric Light Value. The atmo-
spheric light value is an important parameter in the physical
model. The larger the atmospheric light value, the darker
the restored image, and vice versa [33]. The depth of field
of the image has been estimated in Section 3.1, the bright
area represents the distant area, the brightness of the sky
at infinity is similar to atmospheric light. Therefore, this

paper selects the top 0.1% of the brightest pixels in the
depth map and uses the average value of the brightness
of the foggy image pixels corresponding to these brightest
pixels as the atmospheric light A.

3.3.3. Calculate the Transmittance of Bright and Dark
Element Priors. According to the positive correlation
between the depth of field and the fog density, the fog den-
sity in the distant view in the image is relatively large. The
dense fog, highlights, and white areas in the image do not
accord with the prerequisites for dark primary colors. This
paper proposes an improved algorithm for bright and dark
element priors. The dark channel is used to estimate the
transmittance in the near area, and the bright channel is
used to estimate the transmittance in the distant area. The
division of the distant area and the near area is adaptively
determined according to the depth of field. According to
the characteristics of the depth of field, set the depth of field
threshold dBL to divide the bright channel and the dark
channel. The area greater than the depth of field threshold
is defined as the bright primary color area in the distant area,

(a) (b)

(c) (d)

Figure 4: Adaptive SLIC superpixel segmentation results and bright and dark channel images, (a) original image adaptive SLIC
superpixel segmentation, (b) adaptive SLIC superpixel segmentation with minimum channel image, (c) dark channel image, and (d)
bright channel image.

Figure 3: The original image and its depth of field map.
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and the area less than the depth of field threshold is defined
as the dark primary color area of the near area. And then the
transmittance is obtained according to the dark and bright
element priors:

t xð Þ =
1 −w xð Þ ∗ Idark xð Þ/A dmin ≤ d ≤ dBL

1 −w xð Þ ∗ 1 − Ibright xð Þ
� �

/ 1 − Að Þ dBL ≤ d ≤ dmax

8<
:

9=
;

ð20Þ

where dBL = dmin + 3 ∗ ðdmax − dminÞ/4. The parameter 3/4 in
the threshold is the optimal value selected after multiple
experiments. In order to ensure that the transmittance value
is valid, the lower threshold value t0 = 0:1 is set to limit the
transmittance range, and the obtained atmospheric light A
and transmittance tðxÞ are substituted into equation (21)
to obtain the defogging image JðxÞ:

J xð Þ = I xð Þ − Að Þ
max t xð Þ, t0ð Þ + A ð21Þ

4. Experimental Results and Analysis

The experimental samples are selected from 5 foggy images
in different scenes. The images contain different buildings,
sceneries, sky, trees, etc., which are well representative. They
are foggy images without ground truth. In order to better
obtain experimental results, outdoor and indoor image pairs
are added, respectively, for extended experiments, and O-
HAZE [34] and I-HAZE [35] datasets are selected. O-
HAZE contains 45 pairs of foggy images and corresponding
fog-free outdoor images. I-HAZE contains 35 pairs of foggy
images and corresponding fog-free indoor images. In this
paper, we only use the foggy images in the datasets. It is

analyzed from both subjective and objective aspects and
compared with He’s algorithm [15], MSR algorithm [8],
and three-region algorithm [22]. The experimental test envi-
ronment is the MATLAB 2018a software platform, the CPU
is Intel Core i5, the memory is 8GB, and the operating
system is Windows 10.

4.1. The Experimental Results and Analysis of the Algorithm
in This Paper. In this paper, several images containing sky
regions and different sceneries are selected for experiments,
and the results are shown in Figure 5. It can be seen from
the figure that the contrast and sharpness of the image after
defogging have been greatly improved, the overall defogging
effect is better, and the distortion problem in the distant area
has also been solved. Comparing the local magnification of
the image before and after defogging, it can be seen that the
image details are clear, the color is bright, and there is no too
dark phenomenon. In Figure 5(c), the first image after defog-
ging improves the contrast of the image as a whole. The details
of the ship restored in the near view are richer, the outlines of
houses and trees in the distant view are clearly visible, and the
defogging effect of the image at the junction with the sky is
good. In Figure 5(d), the second image after defogging has
no color distortion and disorder as a whole. There is no over-
saturation, and the color of the image is restored. Trees, roofs,
etc. in the close range can better restore the sharpness of the
image, avoiding the problem of overdarkness. The outline of
the mountain in the distant view is also clearer.

4.2. Comparison with Other Algorithms. This paper selects
three images with different sceneries and, respectively, uses
the algorithm in this paper, He dark channel defogging algo-
rithm [15], MSR algorithm [8], and three-area defogging
algorithm [22] to conduct defogging experiments. The

(a) (b)

(c) (d)

Figure 5: Comparison of the algorithm before and after defogging, (a) the first foggy image, (b) the second foggy image, (c) the first image
after defogging, (d) the second image after defogging.
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results are shown in Table 1. The box below the figure is an
enlarged view of a local area.

In image 1, the color distortion of the image processed
by the He algorithm is serious, and the mountain area is
too dark. Although there is no distortion after processing
by the MSR algorithm, the details of the image after defog-
ging are blurred and the definition is not high. After the
three-area algorithm is processed, the overall defogging
effect is good, but the cloud texture in the sky is not clear.
The color of the image processed by the algorithm in this
paper is not oversaturated, and the details are richer.

In image 2, after the He algorithm is processed, the
image in the near view is too dark, and halos appear in some
areas of the sky and red light areas. After the MSR algorithm
is processed, the whole image has a color cast, the boundary
between the sky and the nonsky area is not obvious, and the
local details are not clear enough, which affects the visual
effect. The color of the sky area processed by the three-area
algorithm is unnatural, and a halo appears in the boundary
area of the sky. The overall layering of the image processed
by the algorithm in this paper is more distinct, the color is
real and natural, and the overall brightness is moderate.

Table 1: Experimental results of several defogging algorithms.

Image 1s Image 2 Image 3

Original image

He
algorithm

MSR
algorithm

Three-area
algorithm

This paper
algorithm
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In image 3, the overall brightness of the image processed
by the He algorithm is low, and the sky area is oversaturated,
and the color is severely distorted. The overall color of the
image processed by the MSR algorithm is true and natural,
but the details are blurred. After the three-area algorithm
processing, the sky area in the distant view is too bright,
rough, and grainy. After processing by the algorithm in this
paper, there is no overexposure in the distant view, and the
color contrast of the image in the near view is maintained,
the details are clear, and there is no overdark phenomenon.

In order to better evaluate the quality of defogging
image, Table 2 lists the seven evaluation indicators of the
experimental results in Table 1: Peak Signal to Noise Ratio
(PSNR), Mean Gradient, Information Entropy, Structural
Similarity (SSIM), ratio of newly added visible edges e, Nat-
ural Image Quality Evaluator (NIQE), and Blind Reference-
less Image Spatial Quality Evaluator (BRISQUE). Among
them, PSNR, SSIM, and e are reference image quality assess-
ments; and Mean Gradient, Information Entropy, NIQE,
and BRISQUE are blind image quality assessments. PSNR
reflects the degree of image distortion. The larger the PSNR,
the smaller the image distortion. The mean gradient reflects
the ability of the image to express small details. The larger
the mean gradient, the clearer the image. Information
entropy measures the richness of image information and
reflects the amount of information carried by the image.
The greater the information entropy, the richer the informa-
tion of the image and the better the quality of the image. e
refers to the ratio of the newly added visible edges of the
defogged image to the original foggy image. The larger the
e is, the richer the edge details on the image and the better
the contrast after defogging. NIQE can measure the differ-
ence of the image in the multivariate Gaussian distribution,
and the smaller the value, the higher the quality of the image.

BRISQUE is a reference-free spatial domain image quality
evaluation algorithm, which is evaluated based on the statis-
tical law of image brightness. The smaller the result, the
smaller the image distortion.

It can be seen from Table 2 that the PSNR of the three
defogging images recovered by the algorithm is close to 13
on average, the mean gradient is 0.0456 on average, the
information entropy is 7.4327 on average, the SSIM is
0.7880 on average, the ratio of newly added visible edges is
1.7821 on average, the NIQE is 4.1626 on average, and the
BRISQUE is 30.5407 on average. Compared with the He
algorithm, MSR algorithm and the three-region algorithm,
the algorithm in this paper has the highest average value of
PSNR, mean gradient, information entropy, and the ratio
of newly added visible edges. The difference between SSIM,
NIQE, and BRISQUE is not much different from the
comparison algorithm. The results of all indexes show the
effectiveness of the algorithm in this paper.

For better experimental analysis, we conducted extended
experiments on O-HAZE and I-HAZE datasets. As shown in
Table 3, the PSNR of the algorithm in this paper is close to
13.3 on average, the mean gradient is 0.019, the information
entropy is 7.0301 on average, the SSIM is 0.7238 on average,
the ratio of new visible edges is 2.7738 on average, the NIQE
is 3.3171 on average, and the BRISQUE is 32.4422 on aver-
age. Compared with the other three algorithms, the values
of PSNR, information entropy, and SSIM of the proposed
algorithm are higher than those of He’s algorithm and
three-region algorithm, and slightly lower than those of
MSR algorithm. The mean gradient is significantly higher
than other comparison algorithms. The ratio of new visible
edges is not different from that of the three-region
algorithm, but obviously higher than that of the other two
algorithms. The values of NIQE and BRISQUE are similar

Table 2: Defogging evaluation indexes of several defogging algorithms.

Image Defogging algorithms PSNR
Mean

Gradient
Information entropy SSIM e NIQE BRISQUE

Image 1

He 10.1357 0.0263 6.8766 0.5862 1.7784 3.4024 18.8705

MSR 15.0943 0.0194 7.1412 0.6800 0.1615 3.4159 28.6994

Three-area 10.2196 0.0312 7.0154 0.5846 1.0736 3.4442 29.5627

This paper 12.8986 0.0244 7.2291 0.7349 2.2603 4.2828 28.7157

Image 2

He 12.1694 0.0144 7.5352 0.7645 2.1924 3.9991 42.0466

MSR 11.2837 0.0072 7.3140 0.7863 1.2204 6.1299 45.8880

Three-area 12.3719 0.0109 7.3370 0.7745 1.1582 5.3956 41.7019

This paper 12.9303 0.0137 7.2816 0.8188 2.8474 4.4764 41.9678

Image 3

He 9.6292 0.0934 7.0651 0.6339 0.2011 5.6333 30.4511

MSR 12.4145 0.0704 7.2044 0.9188 0.1285 4.1773 28.3339

Three-area 10.9292 0.0698 7.5335 0.6673 0.1665 4.2227 20.0357

This paper 13.0165 0.0986 7.7875 0.8102 0.2387 3.7285 20.9386

Average of three images

He 10.6448 0.0447 7.1590 0.6615 1.3906 4.3449 30.4561

MSR 12.9308 0.0323 7.2198 0.7950 0.5035 4.5744 34.3071

Three-area 11.1736 0.0373 7.2953 0.6755 0.7994 4.3542 30.4334

This paper 12.9485 0.0456 7.4327 0.7880 1.7821 4.1626 30.5407
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to those of the comparison algorithm. Combining the sub-
jective visual effect and objective evaluation index, the supe-
riority of the proposed algorithm is illustrated.

In addition, we also make statistics on the average execu-
tion time of the algorithm, as shown in Table 4. The algo-
rithm in this paper is mainly divided into three parts. The
time of solving the adaptive transmittance and atmospheric
light estimation based on the depth of field and using the
atmospheric scattering model for defogging is 1.8922
seconds, and the time of calculating the depth of field and
bright and dark channel is 3.8147 seconds and 8.6052 sec-
onds, respectively. The algorithm in this paper has achieved
good defogging effect, but it takes a long time. Most of the
time is spent on the calculation of depth of field and bright
and dark channel. The next step will study how to improve
the running speed of the algorithm.

5. Conclusions

Aiming at the inapplicable problem of the dark channel
prior defogging in the bright area of the image and the
blocking effect at the sudden depth of field, this paper pro-
poses an adaptive bright and dark channel combined with
defogging algorithm based on the depth of field. On the
one hand, the dark channel prior and the bright channel
prior are combined to achieve the complementation of the
bright and dark areas. On the other hand, based on the
depth of field and superpixel segmentation, it realizes the
division of content-based abnormity area and the determi-
nation of adaptive defogging control factor based on depth
of field. It is confirmed that the problem of large transmit-
tance deviation and defogging distortion under content
changes and sudden changes in depth of field is well solved.
From the experimental results, the algorithm in this paper

has achieved a good defogging effect, with high image clarity,
good color recovery, and no block effect at the depth muta-
tion. Under objective indicators, most of the indicators are
in the first place, and the average defogging quality is better
than common algorithms. Although the algorithm in this
paper has achieved good results, there are still some prob-
lems to be improved. On the one hand, the shortcomings
of the dark channel algorithm are not completely eliminated,
and the defogging results are still dark in some scenes. On
the other hand, the running speed of the algorithm needs
to be improved.
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Aiming at the problem of low response speed and unbalanced distribution of data resources of production process (DRPP) for the
distributed workshop production environment, an optimization scheduling method of DRPP based on a multicommunity
cooperative search algorithm is proposed. A heuristic data resource service scheduling framework including a load manager
and dynamic scheduling engine is first built to deal with the uncertainty of data resource service response and the imbalance of
resource allocation; a core scheduling optimization mathematical model with the objectives: resource service efficiency, reduced
response time, and load balancing, is established. Then, a multicommunity cooperative search algorithm for the scheduling
model is presented, and the mapping relationship between the particle position vector and resource allocation is established via
binary coding. Thus, the optimization algorithm is mapped to discrete data space, and the multicommunity bidirectional
driving evolutionary mechanism is used to realize the cooperative and interactive search between common and model
community, which enhances the adaptability of the algorithm to dynamic random scheduling tasks. Finally, the effectiveness of
the proposed method is verified by an example of multiprocess quality prediction service scheduling in silk production process,
which provides an effective means for solving the complex scheduling problem of production process data.

1. Introduction

The intelligent workshop integrates modern sensing tech-
nology, network technology, automation technology, and
other advanced technologies, and a large number of intelli-
gent equipment such as sensors and data acquisition devices
have been put into use in the workshop [1–3]. And thus, the
production workshop has become the collection center of
information flow, material flow, and control flow. In the
process of product production, a large amount of produc-
tion, environment, status, and equipment operation data
are generated at an unprecedented speed, thus forming
workshop big data, which presents the new characteristics
of multitask, cross-process, heterogeneous, and polymor-
phic. However, data has no subjective initiative. To realize
the real-time perception and prediction of the production

process, we must first realize the scheduling and optimiza-
tion of “data,” that is, the scheduling and optimization of
production process data. It is noted that the traditional
manufacturing mode, data of information flow, material
flow, and control flow are still isolated from each other in
each stage of production execution, and it is difficult to form
a joint force due to the lack of effective data resource sched-
uling mechanism, which restricts the further improvement
of production efficiency and system intelligence level [4].
Therefore, the research on on-demand scheduling of work-
shop data resources is one of the core problems of intelligent
manufacturing in production workshop.

Recently, most scholars at home and abroad focus on the
methods and algorithms of workshop data collection, analy-
sis and mining, such as machine vision preprocessing algo-
rithm [5], neural network prediction algorithm [6, 7],
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intelligent decision algorithm [8], and multiobjective opti-
mization algorithm [9]. However, the data have no subjec-
tive initiative; the data-based analysis and processing
algorithm can not actively serve the business needs such as
perception, decision-making, and execution of the produc-
tion process; and the current research has not comprehen-
sively considered the coupling and impact among demand,
service, resources, and energy efficiency in the production
process.

However, the research of domestic and foreign scholars
on workshop process production scheduling and collabo-
rative job scheduling has a good reference for the develop-
ment of this work. Considering workshop process and
production scheduling, literature [10] based on the depen-
dence of the production planning, and scheduling problem
of continuous production line on timing, a repair and
optimization solution is proposed to solve the problem
of energy efficiency in the production process. For the
scheduling problem of complex products in multiwork-
shop production, literature [11] studies the characteristics
of BOM structure and process route of complex products.
Based on the construction of multilevel process network
diagram, an improved particle swarm optimization algo-
rithm is used to ensure the effectiveness of the algorithm
search path. Literature [12] considers the problems of pro-
cess connection and blocking of prefabricated parts in the
process of workshop assembly line operation and estab-
lishes a scheduling model to minimize the total penalty
cost of advance and delay, which improves the production
efficiency of Prefabrication Yard. Literature [13] uses a
machine learning method to assign jobs based on the pri-
ority rules of the decision tree as the scheduling method,
which shows good performance in the case scenario with
completion goal and total delay goal. Considering from
workshop production collaborative job scheduling, Litera-
ture [14] estimates the process processing time in the pro-
duction process through machine learning and uses the
estimated processing time to schedule and optimize paral-
lel machines, which reduces the maximum completion
time by about 30% on average. Aiming at the optimal
comprehensive production and transportation plan of a
group of parallel batch machines, literature [15] constructs
a 0-1 mixed integer programming model, solves the
model, and completes the comprehensive scheduling
through an improved genetic algorithm, which reduces
the transportation cost. The above research provides an
idea for this paper to realize on-demand scheduling data
resources for production process.

On the other hand, it should be noted that the workshop
production process involves multiprocess cross-production
line business collaboration and business requirements. In
the process of data resource scheduling, we should not only
consider the association and cooperation relationship
between different production tasks but also consider the
transmission time of data resources between different pro-
duction tasks, in particular, the uncertainty of concurrent
service access affecting demand response, and the impact
of these dynamic and uncertain factors on the balance of
data resource allocation [16–18].

This paper is concerned with production-oriented data
resources scheduling, thus transforming DRPP into a ser-
vice, and finally into economic benefits. Consequently, this
study is to integrate the load manager and dynamic task
scheduling engine, and combine them with scheduling pro-
cesses to form a scheduling scheme, so as to provide intelli-
gent support for production process. Following this idea, this
paper is organized as follows: the heuristic data resource ser-
vice scheduling framework is constructed in Section 1. The
problem to be studied and the scheduling mathematical
model are proposed in Section 2. Section 3 is devoted to
establish the asynchronous parallel scheduling strategy and
optimization method, simulation results are given in Section
4, and conclusions are made in Section 5.

2. DRPP Scheduling Process Analysis

According to the execution status of the DRPP in the sched-
uling center, the data in the resource pool are mobilized to
form the optimal execution scheme of tasks. DRPP schedul-
ing is one of the key links in the production decision process.
Figure 1 presents a framework of DRPP scheduling that
includes decomposition of business requirements, service
task analysis, dynamic scheduling of DRPP, load monitor-
ing, and service task execution. Firstly, during production
operation, different processes send requests to the schedul-
ing center according to task execution requirements. By
queuing, merging, and analyzing the service requirements,
the task analyzer degrades the vague and miscellaneous ser-
vice tasks to form a set of low-granularity service tasks that
can be directly served by DRPP. Secondly, the dynamic
scheduler preliminarily matches the DRPP according to the
task request and then matches the execution task character-
istics with the static and real-time attributes of the DRPP to
obtain the DRPP set that meets the current production busi-
ness requirements. The load supervisor of the scheduling
center dynamically adjusts the DRPP by monitoring the
operation and load of the DRPP in the business process
and solves the service interruption caused by uncertain
events to ensure the accomplishment of the service process.
Finally, the DRPP scheduling engine uses the integrated
intelligent optimization algorithm to combine and match
the state information of the DRPP and the real-time infor-
mation of the service task to form the optimal resource ser-
vice allocation scheme and submits it to the center for
execution, so as to complete the scheduling process of the
resource service.

Throughout the entire scheduling process, multiservice
tasks are executed interactively, and there is a complex rela-
tionship between tasks. With the dynamic growth of produc-
tion business scale, the response time of service tasks must
be considered. Additionally, a large number of dynamic
and uncertain factors will seriously affect the ability and
effectiveness of DRPP service scheduling. The traditional
resource scheduling method has low search efficiency and
accuracy, which can easily lead to the problems of low
response speed and the uneven distribution of resources in
the service process. It is difficult to adapt to the allocation
of STRs on demand. Therefore, this paper considers
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improving service efficiency while solving the problem of the
unreasonable allocation of DRPP caused by the uncertainty
of service response and the unbalanced load of nodes.

3. The Multiobjective Optimal Scheduling
Model of DRPP

3.1. The Response Uncertainty Modeling. The invocation
relationship of DRPP in the business process is complex,
especially when a data resource service is invoked by multi-
ple business processes, and these business processes run
simultaneously; there will be concurrent access. In different
service scenarios, there are some fluctuations and uncer-
tainties in the access frequency, concurrency probability,
and response time of users in the entity industry. There are
certain fluctuations and uncertainties in the access fre-
quency, concurrency probability, and response time of dif-
ferent business links in the production process, such as
sequence, selection, parallelism, and the cycle of business
processes [19, 20]. Therefore, the uncertainty of the service
response of DRPP can be described by service access
frequency.

In the following formula, k represents the number of ser-
vice tasks. l represents the total DRPP resources. p represents
the process of any service tasks. θ represents the probability
of performing service task i. μ represents the probability of

invoking DRPP j for the service task i. ε represents the prob-
ability of a service business being accessed. γ represents the
probability of any process branch being selected.

Assuming that there are j DRPP for I subtasks to call
when the scheduling center performs a certain service task,
and these subtasks are completed on a specific node accord-
ing to the service process; then, the probability that the pro-
cess of the service task is executed is

ε = 〠
l

j=1
〠
k

i=1
θμ 1 ≤ i ≤ I 1 ≤ j ≤ J: ð1Þ

When multiservice tasks are executed interactively, con-
current access often occurs in service invocation. Accom-
plishing a task involves invoking multiple resource service
processes. When there is a selection structure in the process
and a process branch covers concurrent access services, the
probability of concurrent access to services is as follows:

Ρca = 〠
p

p=1
εγ 1 ≤ p ≤ L: ð2Þ

When all the selected branches in the service process
cover the current concurrent access service, the probability
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of concurrent access to the services is

Ρca = 〠
p

p=1
ε 1 ≤ p ≤ L: ð3Þ

3.2. The Modeling of Unbalanced Resource Allocation. Sup-
pose a service task Ω = ft1, t2,⋯, tng needs to call k subtasks
to complete, the total number of the DRPP that can provide
services is l. These subtasks are completed in different tasks
node according to the service process and resource require-
ments. The expected completion time of task ti invoking
technology resource r j is defined as

Tij =
ILi
ESj

, ð4Þ

where ILi is the total instruction length of service task ti and
ESj is the execution speed that the DRPP rj are distributed
invocation.

The average load of k different service tasks scheduling l
DRPP is defined as the quotient between the total instruc-
tion length of k service tasks and the total execution speed
of l data resources distributed scheduling, i.e., the comple-
tion time of the total service task is

Tt =
∑k

i=1ILi
∑l

j=1ESj
: ð5Þ

For the above scheduling scheme, the load balancing of
service resources invoked can be defined as

σ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l‐1 〠

l

j=1
Tt j − Tt
� �2

vuut , ð6Þ

where Ttj represents the completion time of the service task
j. Obviously, a smaller σ indicates a more balanced task load
service scheduling.

3.3. The Multiobjective Optimal Scheduling Model. Consider-
ing the DRPP response and the unbalance of resource alloca-
tion, this paper established a multiobjective optimal
scheduling mathematical model including the service effi-
ciency, response time, and load balance of resource
invocation.

In the production process, if eij represents the state of
service node i performing subtask j, N represents the sub-
tasks, and M represents the total number of DRPP provided
by service tasks; then, the state set of resource services is E

= ðeijÞM×N
, 1 ≤ i ≤M, 1 ≤ j ≤N . The set of service efficiency

is Se = fseijgM×N
, 1 ≤ i ≤M, 1 ≤ j ≤N , the response frequency

set is Rt = frtijgM×N
, 1 ≤ i ≤M, 1 ≤ j ≤N , and the load balan-

cing set is δ = fσijgM×N
1 ≤ i ≤M, 1 ≤ j ≤N . In these equa-

tions, seij is the service efficiency of service node i executing

scheduling task j, rtij is the response time of executing

resource scheduling task j for service node i, and σij is the
service efficiency load balancing of resource scheduling task
j for service node i. The service status of any resource service
node executing a task can then be expressed as

eij = seij, rt
i
j, σ

i
j

n o
: ð7Þ

The set of DRPP mapped by N service tasks is X = fx1
, x2,⋯, xNg, where x is a DRPP invoked for a service sub-
task. Thus, the mathematical model of multiobjective opti-
mal scheduling considering the uncertainty of service
response and the imbalance of resource allocation is as fol-
lows:

min F xð Þ = X, Eð Þ = Se xð Þ, Rt xð Þ, δ xð Þð Þ,

s:t:

xj ∈ R and x ≤M,

seij ≥ semin,

0 ≤ rtij ≤ rtmax,

0 ≤ σij ≤ σmax,

8>>>>>>>>><
>>>>>>>>>:

ð8Þ

where semin is the minimum service efficiency value in line
with business requirements, rtmin is the maximum service
response time that a DRPP node can take, and σmax is the
highest load balancing of a DRPP node.

Set the weights of the service efficiency, load balancing,
and response frequency of user requesting DRPP as ωSe,
ωRt , and ωδ, respectively, and ωSe + ωRt + ωδ = 1.

The optimal scheduling model of DRPP considering the
target weight of user demand is as follows:

F xð Þ = ωSeSe Xð Þ + ωRtRt Xð Þ + ωδδ Xð Þ: ð9Þ

4. The Optimal Scheduling Algorithms of DRPP
Based on Multicommunity
Collaborative Search

4.1. The Evolution Model of Multicommunity Cooperative
Network. The basic particle swarm optimization (PSO) algo-
rithm is a single-community optimization model with global
optimal particles as its core, which cannot solve the mixed
and changeable scheduling problem very well. If this model
is extended to task-related multicommunity cooperative
optimization, the evolutionary information interaction and
association will be generated among these communities,
and then, a multicommunity cooperation network (MCCN)
with high adaptability to the task will be formed [21, 22].
From a mathematical point of view, a network can be
regarded as a combination of a vertex set and edge set. To
better describe MCCN and establish its evolution model,
the following definitions are first provided.
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Definition 1. The threshold FT for community type determi-
nation is

FT =
∑n

i=1Fi

n
, ð10Þ

where Fi is the global optimal fitness of community i and n
is the number of communities in the cooperative network.

According to the threshold FT of community type deter-
mination, the particle community in the collaboration net-
work can be divided into the model community and
common community. If Fi satisfies the criterion Fi ≥ FT,
the community has a strong ability of local optimization,
which can be divided into model communities and recorded
as MCi. On the contrary, if Fi satisfies the criterion Fi < FT,
the community has a strong ability of global exploration, so
it can be divided into common communities and recorded as
CCi.

Definition 2. Let the cooperative search activity among dif-
ferent communities be a binary group ðC, RÞ, where C = f
c1, c2,⋯cj,⋯cng ð1 ≤ j ≤ nÞ is the sequence of communities
participating in the cooperative search activity and R : C ×
C is the interdependency among communities in the search
process. ∀ðrs : hci, cjiÞ ∈ R, ðs = 1, 2, 3Þ is called the coopera-
tive relationship unit, where r1 represents the cooperative
relationship between a model community and a common
community, r2 is the cooperative relationship between any
two model communities, and r3 is the cooperative relation-
ship between any two common communities. The number
of cooperative units among different communities in a coop-
erative relationship set is called the module of the coopera-
tive relationship set, which is recorded as kRk.

Generally, if rsðc1, c2Þ = 1, there is an edge between two
cooperative communities, and the more cooperative rela-
tionship units, the greater the edge weight between two dif-
ferent nodes. If there is no cooperative relationship between
different communities, then rsðc1, c2Þ = 0.

Definition 3. Let ωi,j =∑kRk
s=1 rsðc1, c2Þ be the cooperative

weights among different communities in MCCN, where the
cooperative weight between ci and cj is also called the edge
weight of MCCN.

To complete the comprehensive quantitative evaluation
of community nodes, the evaluation indexes of the optimum
value gbesti of community nodes are introduced: collabora-
tion distance Hi and responsivity ei.

Definition 4. Collaboration distance. The global optimal
value Gbesti of the community i is, respectively, compared
with the individual optimal position pbestj of the m particles,
and the absolute value is obtained, that is to say, the cooper-
ative distance of the global optimal value Gbseti is Hi = ðh1,
h2,⋯, hmÞ.

Definition 5. Responsivity. The threshold D of the qualified

distance is set. According to the formula evi =
0, hi >D,

1, hi <D,

(
,

the response value of the community particle to the optimal
value gbesti of the node can be obtained by traversing the
cooperative distance Hi, and then, the responsivity ei of the
global optimal value Gbesti can be obtained by adding the
response values in sequence.

Definition 6. Community node strength. In MCCN, the
strength of the community nodes is defined as si

si = 〠
cj∈U j

ωij + ei ð11Þ

where ωij is the cooperative weight between the community
node ci and cj, ei is the responsivity of the community node,
and Ui is the neighborhood of the community node ci, and it
satisfies

Ui cj ∨
Rk k
s=1

rs ci, cj
� �

≠ 0
����

� �
: ð12Þ

Generally, MCCN can be represented by its adjacency
matrix as AðGÞn×n = ðBÞn×n. If En×1 = ½e1, e2,⋯, en� is the
responsivity matrix of MCCN, then the node strength
matrix is as follows: Sn×1 = ½ω11AðGÞ11 + ω12AðGÞ12+⋯ω1n
AðGÞ1n + e1, ω21AðGÞ21 +

ω22AðGÞ22 +⋯ω2nAðGÞ2n + e2,⋯, e1, ωn1AðGÞn1 + ωn2A
ðGÞn2+⋯ω11AðGÞ11+en�.

Definition 6 shows that the strength of community
nodes not only takes into account the cooperative weights
among the nodes of the community but also the optimiza-
tion of the particles within the node itself. It is a comprehen-
sive evaluation of the community’s local information and the
ability of the community itself, which can better reflect the
community’s ability to seek optimal guidance in the entire
cooperative network.

Therefore, MCCN can be represented by undirected
weighted graphs GðC, R,W, SÞ. C = fc1, c2,⋯, cng represents
different types of cooperative community node set, R = fr1ð
c1, c2Þ, r2ðc1, c2Þ,⋯, rkðc1, c2Þ,⋯, rsðc1, c2Þg represents coop-
erative relationship edge set, W = fω11,ω12,⋯ωij,⋯ωnng ð
1 ≤ i, j ≤ nÞ is the cooperative edge weight set among, and S
= fs1, s2,⋯, sng is the strength set of community nodes,
where si is the value of the i-th row of the node strength
matrix, representing the attributes of community nodes to
measure their search ability. By Definition 6, MCCN can
be expressed by adjacent augmentation matrix M as follows:
MðGÞ = ðB, EÞn×ðn+1Þ. The evolution model of the MCCN

cooperative network is therefore
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Bn×n = B i, j½ �n×n =
ω, ∨

Rk k
s=1

rs ci, cj
� �

= 1, rs ∈ R,

0, ∨
Rk k
s=1

rs ci, cj
� �

= 0, or i = j, rs ∈ R:

8>><
>>:

ð13Þ

On this basis, the asynchronous parallel search strategy
among different communities is formulated to reduce the
communication between communities, and the efficient
search is realized through the driving evolution mechanism
to improve the optimization ability of the algorithm to the
task scheduling. The rules of multi-population coevolution
are as follows.

Rule 1. Evolutionary rules within microbial communi-
ties. In the process of multicommunity coevolution, the par-
ticles in a single community can be iteratively optimized
according to formula (13) for speed and location updating,
and the global optimum value can be generated within the
community.

vt+1id = ω ⋅ vtid + c1 ⋅ r1 ⋅ Pt
id − xtid

� �
+ c2 ⋅ r2 ⋅ Pt

gd − xtid
� 	

,

xt+1id = xtid + vt+1id , i = 1, 2,⋯,m, d = 1, 2,⋯,D,

8<
:

ð14Þ

where t is the number of iterations of particle search, ω is the
inertial weight, c1 = c2 = 2 is the acceleration constant, and r1
and r2 are two random functions varying in the range of ½0
, 1�.

Rule 2. Driving coevolution rules between communities.
Rule 2.1. ∀ðr1 : hCCi,MCjiÞ ∈ R, ∃gbesti =max fgbest1,

gbest2,⋯, gbestmg, Gbestj =min fGbest1,Gbest2,⋯,Gbestng, and
gbesti ≥ Gbest j. The common community is CC, and the
model community is MC. The particulate CCi in CC enters
MC, and the last communityMCj inMC is eliminated. After
introducing the model learning factor pn into the internal
evolution rules of CC, the new iterative evolution formula
is as follows:

vt+1id = ω ⋅ vtid + c1 ⋅ r1 ⋅ Pt
id − xtid

� �
+ c2 ⋅ r2 Pt

gd − xtid
� 	

+ c3 Pt
nd − xtid

� �
,

xt+1id = xtid + vt+1id , i = 1, 2,⋯,m, d = 1, 2,⋯,D,

8<
:

ð15Þ

where Pnd =∑n
i=1Gbesti/n and c3 is a random function and

satisfies the convergence constraints c1r1 + c2r2 + c3 ∈ ½0, 4�.
Rule 2.2. ∀ðr2 : hMCi,MCjiÞ ∈ R, ∃ the community node

strength SMCi satisfiesSMCi ≥ SMCj for any SMCj.
⇒Global optimum value of model community: PG =

Gbesti.
Rule 2.3. ∀ðr3 : hCCi, CCjiÞ ∈ R, ∃ the community node

strength SCCi satisfies SCCi ≥ SCCj for any SCCj.
⇒Global optimum value of common community: Pg =

gbesti.

4.2. The Coding Strategy for Optimal Scheduling of DRPP.
Particle swarm optimization (PSO) is a computational
model for real continuous space, and it is difficult to solve
the task scheduling problem in discrete space [23]. There-
fore, the binary system is used to encode the speed and posi-
tion of particles, and the mapping from the particle swarm
optimization algorithm to discrete space, and from the par-
ticle search space to the optimal scheduling scheme, is real-
ized by reconstructing the particle expression.

In the above algorithm, an n row, n column matrix X
: n × n is defined as the position vector matrix of particles.
The rows represent the situation of providing STR when
any service task is executed, the columns indicate the distri-
bution of service tasks in the scheduling process, and any
particle represents the potential solution of the scheduling
problem. The coding of the particle position is as follows:

X =

x11 x12 ⋯ x1n

x21 x22 ⋯ x2n

⋮ ⋮ ⋱ ⋮

xn1 xn2 ⋯ xnn

2
666664

3
777775, ð16Þ

where xij ∈ f0, 1g, ∑n
j=1xij = 1.

According to the coding scheme, each row of the loca-
tion matrix X has one and only one element value is 1, which
indicates that DRPP are allocated to service task R. Each
DRPP can be invoked by multiple service tasks simulta-
neously, and the execution of any scheduling task cannot
be interrupted.

The defined speed V : n × n is shown in equation (16),
which represents the basic exchange order of particle’s
assignments to the execution of tasks.

V =

v11 v12 ⋯ v1n

v21 v22 ⋯ v2n

⋮ ⋮ ⋱ ⋮

vn1 vn2 ⋯ vnn

2
666664

3
777775,

vij ∈ 0, 1f g, vij + vji = 0 or 1:

ð17Þ

The exchange operations of addition, subtraction, multi-
plication, and division in the algorithm are defined as Θ, θ,
⊗ , and ⊕ , respectively. The specific operation rules are as
follows:

(1) A ⋅ θ ⋅ B: represents ∃xij = vij ⇒ xij = vij = 0 in posi-
tion matrix A and velocity matrix B; on the contrary,
it is 1; ∃xij = vij+n = 1⇒ vij+n = 0

(2) AΘB: indicates ∃xij = vij ⇒ xij = vij = 0 in position
matrix A and velocity matrix B; the other elements
are randomly chosen as 0 or 1

(3) ci ⊗ B: indicates whether the particle performs a Θ
operation or not with matrix B according to the
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corresponding probability value of the random num-
ber ci

(4) A ⊕ B: represents ∀xia = 1, xjb = 1, ∃vij = 1⇒ xib = 1,
xja = 1 in position matrix A and velocity matrix B.
According to the above definition of switching oper-
ation rules, formula (10) can be updated as follows:

vt+1id = vtidΘc1 ⊗ Pt
id ⋅ θ ⋅ x

t
id

� �
Θc2 ⊗ Pt

gd ⋅ θ ⋅ x
t
id

� 	
,

xt+1id = xtid ⊕ vt+1id , i = 1, 2,⋯,m ; d = 1, 2,⋯,D

8<
:

ð18Þ

The coding scheme is simple and feasible and thus meets
the requirements of multiservice task scheduling of DRPP. It
also clearly describes the mapping relationship between the
particle population evolution space and the service task
scheduling scheme, thus avoiding repeated searches in the
process of particle evolution.

4.3. The Optimal Scheduling Algorithms of DRPP Based on
Multicommunity Collaborative Search. Based on the multi-
community cooperative search algorithm and its coding
scheme, the optimal scheduling process of multiservice tasks
for distributed DRPP is shown in Figure 2. The specific steps
are as follows.

Step 1. Initialization of population particles. According
to the encoding strategy between the particle search space
and the task scheduling scheme described in Section 3.2,
the initialization of n communities is carried out, and a ran-
dom location (DRPP allocation scheme) and speed of popu-
lation particles are given. The number of communities, the
number of iterations of particles within the community
members, and the acceleration coefficient of particles and
the inertia weight coefficient are set.

Step 2. Initialized population particles are evenly distrib-
uted into the q process to form a community of size int ðn
/qÞ. Residual particles are randomly allocated to the q pro-
cess. The fitness of each particle in the q community is calcu-
lated according to the comprehensive optimization
scheduling function constructed in Section 3.3.

Step 3. Asynchronous parallel evolutionary computation
is performed by running each community separately in the q
process.

Step 4. Calculate the fitness values Fi of each community
and divide all communities into either the model commu-
nity or common community according to the threshold
value.

Step 5. According to the interactive evolution mecha-
nism between different particle populations in Section 3.1,
the position and velocity of particles are updated according
to formula (14), and the global optimal locations of the
model and common communities are saved to the optimal
storage area.

Step 6. If all the particle populations satisfy the search
termination condition, then the algorithm ends, the global
optimal solution is obtained from the storage area, and the

optimal scheduling scheme is output; otherwise, it will
return to step 5.

5. Application Cases and Analysis

In this section, a DRPP scheduling case for the silk produc-
tion line quality prediction and early warning service are
given to validate the proposed model and algorithm. As
shown in Figure 3, the quality prediction and early warning
service include the “ single operation quality prediction and
early warning,” “ multiprocess quality prediction and early
warning,” “ quality prediction and optimization of the whole
production line,” and many other services, where each ser-
vice activity needs to invoke DRPP using service tasks, such
as the modle, standards, algorithm, and component to pro-
vide on-demand service for different business links of the
the tobacco production line.

For the task of quality prediction and optimization of
silk drying process service in the service platform, it is
divided into five subtasks: online data reading, prediction
algorithm call, online real-time prediction, prediction result

Pre-processing scheduling tasks and DRPP,
and parameter initialization of intelligent

scheduling algorithms

Multi-community
partitioning

Calculate the local optimal
fitness value of each

community Fi

Fi≥FT

Model
community MCi

Common
community CCi

Update the position of particles
based on bidirectionally driven 

coevolutionary rules

Get the global optimal
value

Termination
conditions are met?

Output the best scheduling
solution

no

no

yes

yes

Figure 2: Flow chart of scheduling optimization.
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analysis, optimization algorithm call, and optimization
parameter return, which is recorded as task set Ω = ft1, t2,
⋯, t5g. And then, the available DRPP set corresponding to
task set Ω isX = fx1, x2,⋯, xNg. Following the idea pro-
posed in Sections 1 and 2, the DRPP invoking process can
be implemented as follows:

(1) Coding settings

Define the location vector of the particle in the schedul-
ing algorithm as the matrix X : 5 × 5, as shown in Table 1.
Row i represents the allocation of service task ti, and column
j represents the service situation of DRPP; if xij = 1, it means
that the task ti is served by data resources Xj. At this time,
each particle represents a service task scheduling scheme.

(2) Scheduling algorithms

To verify the effectiveness of the presented scheduling
method, the simulation experiment is carried out on the ser-
vice platform based on the Xeon E5-2609V2 processor and
RAM64G, and the service efficiency, response time, and load
balancing in the process of multiservice task scheduling are
collected as sample data. For comparison, the previously
reported ERTPSO algorithm [24], DPSO algorithm [25],
LAPSO algorithm [26], and the M-CBDCSM algorithm pro-
posed in the present study are used to solve the optimal

Figure 3: The DRPP service platform.

Table 1: Particle encoding diagram.

Sub-tasks
Resources

X1 X2 X3 X4 X5 X6

t1 x11 x12 x13 x14 x15 x16
t2 x21 x22 x23 x24 x25 x26
t3 x31 x32 x33 x34 x35 x36
t4 x41 x42 x43 x44 x45 x46
t5 x51 x52 x53 x54 x55 x56
t6 x61 x62 x63 x64 x65 x66
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scheduling scheme for the engine fault identification and
maintenance service. The simulation parameters are speci-
fied as the population size q = 30-500, the dimension 30,
the evolutionary algebra i = 500, the inertia weight ω = 1:1,
and the acceleration constant c1 = c2 = 2. Moreover, a ran-
dom function rand ðÞ is introduced into the service response
time Rtd ; Rtd = Rt + n ⋅ rand ðÞ, where rand ðÞ varies ran-
domly in a range ½0, 1�, and n = 0, 1, 2, 3. All the simulation
experiments were carried out 500 times, and other parame-
ters are the same to those used in the relevant literature.

Simulation results of the relevant algorithm are provided
in Figure 4. It is shown that the multicommunity coopera-
tive search algorithm can better adapt to the random
changes of service response time in the process of
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Figure 4: Comparison of simulation experiments.

Table 2: Comparative experimental results of different task sizes.

Task
scale

Convergent
algebra

Optimal
value

Standard
deviation

Average
error

5 15 60 1:73e − 011 1:21e − 012

10 15 130 2:81e − 011 1:61e − 012

15 17 185 1:58e − 010 2:57e − 012

20 18 255 3:95e − 010 3:43e − 012

25 18 300 6:12e − 010 2:69e − 011

(n = 0, iteration = 200).
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multiservice task scheduling, in particular for the interactive
evolutionary rules between communities are selected adap-
tively, the algorithm converges to the global optimal value
quickly and stably. In particular, the optimal scheduling
scheme can be found before 50 generations under different
search conditions corresponding to the discrete particle
swarm optimization (DPSO). Especially in the face of
dynamic and random multitask scheduling, hybrid genetic
algorithm is difficult to adaptively carry out individual muta-
tion and cross-operation and then can not track the dynamic
change of service scheduling, which makes it difficult to
avoid premature phenomenon under high random search
conditions, and its algorithm performance is far lower than
multicommunity cooperative search algorithm.

To further validate the strong adaptability of the algo-
rithm in the face of multiple scheduling tasks, the experi-
ments of large population based on multi scheduling tasks
is also simulated. For this purpose, the population and the
scheduling tasks can be given as p = 1000, t = 5-20. The cor-
responding results are provided in Table 2. Although the
number of service tasks is increasing, the convergence rate
of multi community cooperative search algorithm does not
decline significantly in the process of scheduling. From
aforementioned results, one can conclude that the proposed
algorithms in this paper can achieve better performance for
large population and tasks-varying parameters in terms of
convergence speed and steady-state errors.

6. Conclusion

This paper addresses the multitask adaptive scheduling of
DRPP. A heuristic scheduling framework are employed to
deal with the uncertainty of DRPP service response and
the imbalance of resource allocation. The load manager
and dynamic scheduling engine are employed to approxi-
mate the uncertainty of scheduling service. Moreover, we
propose novel cooperative search algorithm of the task
scheduling model driven by scheduling objectives with ser-
vice efficiency, reduced response time, and load balancing,
so that fast scheduling convergence can be proved even in
the dynamic random sense. The proposed scheduling
schemes are robust against dynamic random disturbances.
To guarantee the discrete data space of optimization algo-
rithm, a binary coding strategy to map the particle position
vector to resource allocation is introduced. Simulation
examples are provided to verify the efficacy of the proposed
algorithm.
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Since there are many interferences in the indoor environment, it is difficult to achieve the precise positioning of the mobile robot
using a single sensor. This paper presents a position estimation and positioning error correction method of mobile robots based on
multisensor data. The robot’s positioning sensor includes ultra-wideband (UWB) components, inertial measurement unit (IMU),
and encoders. UWB multipath interference causes more ranging errors, which can be reduced by the correction equation after
data fitting. The real-time coordinates of the UWB robot tag can be calculated based on multiple UWB anchor data and the
least squares method. The coordinate data ðxc, ycÞ are acquired by UWB positioning subsystem, and the velocity data ð _xc, _ycÞ
are collected by IMU together with encoders. The multisensor data continuously update Kalman filter and estimate robot
position. In the positioning process, the positioning data of different sensors can be mutually corrected and supplemented. The
results of UWB ranging correction experiments indicate that data fitting can improve the UWB positioning accuracy. In the
multisensor positioning experiments, compared with a single sensor, the positioning method based on data fusion of UWB,
IMU, and encoders has higher accuracy and adaptability. When UWB signals are interfered or invalid, other sensors can still
work normally and complete the robot positioning process. The multisensor positioning method not only improves the robot
positioning accuracy but also has stronger environmental adaptability.

1. Introduction

Various positioning methods and sensors have been devel-
oped and applied to different fields, such as underground
garages, smart factories, airports, and restaurants. In out-
door positioning, Global Positioning System (GPS) is an
important positioning method, which can perform ranging
and positioning of cars, ships, and mobile phones through
satellites. However, due to the interference of obstacles (such
as roofs, walls, and furniture) in the indoor environment, it
is more difficult to achieve high-precision positioning. Posi-
tioning of indoor mobile robots has also become one of the
research hotpots in recent years. Using different positioning
sensors, the robot can obtain more accurate position infor-
mation. Accurate positioning and navigation can improve
the automation and intelligence of mobile robots.

There are many indoor positioning methods with differ-
ent sensors, such as Radio-Frequency Identification (RFID)

positioning [1], ultrasonic positioning, Bluetooth position-
ing, wireless sensor networks (WSN) [2, 3], UWB position-
ing [4], Inertial Navigation System (INS), and Concurrent
Mapping and Localization (CML/SLAM). The combination
of ranging sensors is beneficial to improve the positioning
and navigation accuracy of mobile robots, for example, a
localization and pose estimation method for mobile robot
navigation using passive RFID [5], a lightweight indoor
robot positioning system which operated on cost-effective
WiFi-based received signal strength (RSS) [6], a novel accu-
rate hybrid global self-localization algorithm for mobile
robots based on ultrasonic localization system [7], and an
efficient indoor localization algorithm based on a light detec-
tion and ranging (LiDAR) device. The UWB positioning
method has been gradually applied due to the advantages
of long positioning distance and high stability [8–11].

Compared with other positioning methods, UWB posi-
tioning devices can be installed and implemented in a short
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time. UWB positioning technology utilizes distributed sen-
sor devices for distance estimation. The distances between
multiple UWB anchors and the UWB robot tag are mea-
sured simultaneously to estimate the robot position. The
positioning methods include the Angle of Arrival (AOA)
algorithm [12], the received signal strength (RSS) algorithm
[13], the Time of Arrival (TOA) algorithm [14], the Time
Difference of Arrival (TDOA) algorithm [15], and other
hybrid algorithms [16–18]. The stability and accuracy of
measured data are critical to the robot positioning. However,
in the indoor environment, obstacle interference may reduce
UWB positioning accuracy and even cause UWB position-
ing failure. Usually, increasing the number of UWB anchors
can expand its positioning range, but it will also bring more
errors and cause instability. Therefore, the error correction
of UWB positioning data is necessary to improve its posi-
tioning accuracy.

It is difficult for a single sensor to achieve high accuracy
due to sensor error or instability. The combined applications
of multiple sensors are beneficial to improve positioning
accuracy and stability. A method to accurately locate persons
indoors by fusing INS with active RFID was presented in
[19]. A method to integrate LiDAR and IMU was proposed
to overcome the problem of the low accuracy and large accu-
mulated errors of indoor mobile navigation and positioning
[20]. In order to improve the accuracy of the data fusion fil-
ter, a tightly coupled UWB/INS-integrated scheme for
indoor human navigation was investigated [21]. UWB has
also been combined with other sensors for data fusion to
achieve more precise positioning [22, 23].

Due to the interference of obstacles in the indoor envi-
ronment, data fusion and filtering of UWB and multisensors
are developed to improve the positioning accuracy of mobile
robots. This paper proposed a position estimation and error
correction method based on multisensor data. The robot
positioning system can simultaneously acquire and integrate
the data from UWB, IMU, and encoders. The double-sided
two way ranging (DS-TWR) and data fitting method is used
to improve the UWB ranging accuracy and correct errors
caused by multipath signals. Meanwhile, the robot position
coordinates were estimated by UWB anchors and the robot
UWB robot tag. In the process of multisensor robot posi-
tioning, the heading angle error of IMU can be corrected
by UWB positioning data. The velocity data calculated by
IMU together with encoders and the UWB positioning data
continuously update Kalman filter to estimate the robot
position. The multisensor positioning method is conducive
to improve the robot positioning accuracy. Even if UWB sig-
nals are interfered or shielded, the robot positioning can still
be executed by other sensor data, which improves the prac-
ticability and anti-interference ability of the robot position-
ing system.
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2. Positioning System Design

2.1. Positioning System Architecture. In a complex and multi-
interference environment, multisensor cooperation has the
ability of improving positioning accuracy. As shown in
Figure 1, the robot positioning system consists of a UWB
positioning subsystem, a remote control computer, and a
mobile robot. The UWB positioning subsystem includes a
UWB robot tag and some UWB anchors, which are fixedly
installed in the surrounding environment. Based on the
measured distance between the UWB robot tag and UWB
anchors, the remote control computer executes positioning
algorithms to calculate the position and coordinate of the
robot.

The remote control computer communicates with the
robot through the wireless module. It is used to process posi-
tioning data, calculate robot’s coordinate, and control the
mobile robot. The main functions include interactive com-
munication, robot control, position estimation, data fusion
and processing, and robot position display.

A mecanum wheeled mobile robot is considered in this
work. As shown in Figure 2, the mobile robot consists of a
central controller, four DC motors, four drivers, four
encoders, and four mecanum wheels. The encoders are used
to measure the rotational speed of each wheel and calculate
the robot’s velocity in self coordinate system based on the
kinematic equations. An IMU sensor, composed of a three-
axis accelerometer, a three-axis gyroscope, and a three-axis
magnetometer, is installed on the robot. This sensor is used
to estimate the heading angle of the robot during driving.

In terms of sensors that we used in the robot positioning
system, the positioning data (i.e., the robot’s position and
velocity) are obtained by three different sensors: UWB,

encoders, and IMU. Each sensor inevitably has some errors
during the positioning process, which may contain one or
more of the following:

(1) During the running process, if the robot wheel slips,
their rotational speeds measured by the encoders will
have some errors. The heading angle and mileage of
the robot integrated by velocities also have cumula-
tive errors, which will increase over time

(2) The robot’s heading angle calculated by the IMU has
less error in a short operating time. However, if the
correction is not carried out for a long time, larger
cumulative angle errors will occur

(3) UWB positioning is a direct positioning method; the
positioning error will not accumulate over time.
However, the accuracy and stability of UWB posi-
tioning are not as good as expected. Besides, UWB
positioning may be invalid due to the interference
of obstacles in the environment

As discussed above, different positioning sensors have
their own errors and shortcomings; we proposed a multisen-
sor data fusion algorithm. By fusing the data of UWB, IMU,
and encoders, the algorithm can effectively improve posi-
tioning accuracy, reduce cumulative errors, and eliminate
obstacle interference. The positioning data obtained by the
sensors are mutually corrected and supplemented. On the
one hand, encoders and IMU have higher accuracy and free-
dom from obstacles in a short time but have larger cumula-
tive errors. The cumulative angle errors can be reduced by
using UWB positioning data, which will correct the heading
angle calculated by the IMU. On the other hand, due to
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Figure 3: Software interface of the robot positioning system.
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environmental interference, the positioning error of UWB
may become larger. The UWB’s positioning error can be
corrected through the IMU and encoder data as well, which
will improve the robot positioning accuracy.

2.2. Software Development. As shown in Figure 3, we devel-
oped a software interface of the robot system. Visualized
software is developed on the remote control computer, and

the main functions include coordinate display of UWB
anchors, real-time coordinate and trajectory display of the
robot, robot control, and data processing.

3. UWB Positioning and Error Correction

3.1. UWB Ranging Method. The UWB positioning subsys-
tem performs positioning and coordinate calculation by
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measuring the distances between the UWB tag and multi-
ple UWB anchors. Time of Fly (TOF) method is used to
measure the UWB signal flight distance; the formula is

Δd = Cu ⋅ Δt, ð1Þ

where Cu is the UWB signal transmission speed, which
approximately equals to the speed of light, and Δt is the
time difference of signal flight.

However, due to the inability to accurately synchronize
the clock between the UWB robot tag and UWB anchors,
the clock error will cause a large measurement error. For
example, 1 ns clock deviation can cause a 30 cm ranging
error. The DS-TWR method [24] was proposed to reduce
the ranging error caused by clock unsynchronization and
clock skews. As shown in Figure 4, the DS-TWR method
can achieve more accurate UWB ranging by measuring the
three round-trip times between the UWB robot tag and the
UWB anchors. Figure 5 shows the working flowchart of
the UWB robot tag and UWB anchors.

The UWB signal flight time Tp between the UWB tag
and the UWB anchor is

Tp =
Tround1 × Tround2 − Treply1 × Treply2
� �
Tround1 + Tround2 + Treply1 + Treply2
� � : ð2Þ

Because the signal flight time Tp is much shorter than
the processing data time Treply1 and Treply2, the flight time
of the signal after adding the clock errors approximately
equals to

T̂p ≈
2 ⋅ 1 + erð Þ 1 + eað Þ
1 + erð Þ + 1 + eað Þ Tp, ð3Þ

where er and ea are the clock skews of the UWB tag module
and UWB anchor module, respectively.

As a result, the ranging error by the DS-TWR method is

Te = T̂p − Tp =
er + ea + erea

2 1 + erð Þ 1 + eað Þ T̂p ≈
er + ea

2 T̂p: ð4Þ

Figure 6 shows the DS-TWR ranging error curve
between the UWB robot tag and the UWB anchors at differ-
ent distances and different clock skews. The results indicate
that the ranging errors caused by clock skews are much
smaller than the UWB measurement accuracy (about
100mm). When the measuring distance is 300m and the
clock skew is 20 PPM, the ranging error is about 6mm. Dur-
ing the robot actual positioning process, the UWB module
with 5PPM clock was adopted to improve the measurement
accuracy.

3.2. Multipath Error Correction. As shown in Figure 7(a),
in a line-of-sight (LOS) environment [25], UWB signals
can transmit in a straight line without any obstruction.
However, multipath interference may exist due to the
reflection of walls and objects. Signals often transmit
through multiple paths and cause some ranging errors.
As shown in Figure 7(b), paths A and B are direct paths,
and paths C and D are multipath interference; their
length relationship is D ≈ C > B ≈ A. Although UWB has
a strong ability to resist multipath interference, it is diffi-
cult to guarantee its ranging accuracy due to its ultrawide
bandwidth and interference of complex indoor reflection
environment.

The ranging error caused by multipath is related to the
real environment. The method of data fitting is proposed
to correct the error and improve the positioning accuracy.
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Assume that the relationship equation between the real dis-
tance and the UWB measurement distance is

dt = a0 + a1dm + a2dm
2+⋯+akdmk, ð5Þ

where dt is the real distance value and dm is the UWB mea-
sured value. By measuring multiple sets of UWB data ðdmi
, dtiÞ in the LOS environment, we can get

dti = a0 + a1dmi + a2dm
2
i +⋯+akdmi

k, i = 1, 2,⋯, n: ð6Þ

Suppose Ac = ½a0 a1 ⋯ ak�T and Dt = ½dt1 dt2 ⋯ dtn�T ; the
matrix form of Equation (6) is

Dt =DmAc, ð7Þ

where Dm is

Dm =

1 dm1 ⋯ dm
k
1

1 dm2 ⋯ dm
k
2

1 dm3 ⋮ ⋮

1 dm4 ⋯ dm
k
n

2
666664

3
777775: ð8Þ

Solving the matrix equation by the principle of least
squares, we have

Ac = Dm
TDm

� �−1Dm
TDt: ð9Þ

By substituting the coefficient matrix Ac = ½a0 a1 ⋯ ak�T
into Equation (5), the relationship between the UWB mea-
sured distance and the real distance can be calculated. Data
fitting is conducive to correcting the errors caused by
UWB multipath and improving the ranging accuracy. A
large number of experiments we have conducted indicate
that when the data fitting equation is dt = a0 + a1dm, the
ranging accuracy is high enough to satisfy the operating
requirements.

3.3. First Path Power. Due to the interference of UWB sig-
nals, the ranging accuracy of UWB anchors cannot be
guaranteed. It means that if severely disturbed ranging
data is taken into account, the positioning accuracy of
the mobile robot will be greatly reduced. To solve this
problem, the first path power (or direct path power) of
UWB signals is collected to determine the availability of
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Figure 7: Broadcast environment analysis of UWB signals: (a) LOS environment without obstructions; (b) UWB multipath interference.
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UWB ranging data, which can be calculated as

PF = 10 × log10
F1

2 + F2
2 + F3

2

N0
2

� �
− P0 dBmð Þ, ð10Þ

where F1, F2, F3, and N0 are internal register variables of
the UWB module and P0 is a constant.

The first path power can reflect the signal propagation
state between the UWB robot tag and UWB anchors. When
the UWB signal is blocked, the first path power will decrease
significantly. Figure 8 shows the first path power of the
UWB signal under occlusion. In a noninterference environ-
ment, the first path power of the UWB signal is usually
maintained between -76 dBm and -72 dBm. When the signal
is blocked by obstacles, the first path power will drop dra-
matically to -82 dBm or lower.

By analyzing the first path power strength of UWB sig-
nals, the data availability of UWB anchors can be confirmed.
For accurate positioning, the ranging data with power below
a certain value will be discarded. It is considered that there
are obstacles between the UWB robot tag and the UWB
anchor; thus, this UWB anchor is invalid. If the number of
available UWB anchors cannot satisfy the requirement of
the robot positioning, UWB positioning will fail and the
robot coordinate cannot be calculated.

3.4. UWB Anchor Layout Analysis. In the UWB positioning
subsystem, multiple UWB anchor data are used simulta-
neously to calculate the robot position. The layout of UWB
anchors has a significant impact on the robot positioning
accuracy. For high-precision robot positioning, the layout
and installation positions of the UWB anchors should meet
the following principles:

(1) The operating area of the robot should be covered by
at least 3 UWB anchor signals

(2) The signal coverage of UWB anchors should be fully
utilized

(3) The horizontal dilution of precision (HDOP) of
UWB positioning should be small enough and
UWB anchors should avoid being clustered in a
small area

If the real distance between UWB anchors and the UWB

robot tag is dðrÞi , ði = 1, 2, 3⋯ Þ and the UWB ranging error
is εðε ≥ 0Þ, the measured distance can be expressed as

d mð Þ
i ∈ d rð Þ

i − ε, d rð Þ
i + ε

h i
i = 1, 2, 3⋯ð Þ: ð11Þ

As shown in Figure 9(a), assuming that three UWB
anchors are located at points A1,A2, andA3, their measured

distances are dðmÞ
1 , dðmÞ

2 , and dðmÞ
3 . The three circles, with

points A1, A2, and A3 as the centers and dðmÞ
1 , dðmÞ

2 , and

dðmÞ
3 as the radii, intersect to form Zone BCDEFG, which is

the possible coordinate range of the robot. Its area SBCDEFG
represents the robot positioning error.

Because ε is small, Zone BCDEFG is approximately
hexagon bcdef g in Figure 9(b), which is the circumscribed
hexagon of circle T . The relative angles of three UWB
anchors are α12, α23, and α13, respectively. According to its
symmetry,

STmbh ≈ ST jek

STidj ≈ STlgm

STkf l ≈ SThci

8>><
>>: : ð12Þ

The area of triangle Tid is

STid =
ε2

2 tan α23
2

� �
: ð13Þ
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Figure 9: Geometrical relationship of UWB anchor layout: (a) measured distance error analysis; (b) layout analysis of UWB anchors.
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Therefore, we have

STidj = ε2 tan α23
2

� �
: ð14Þ

Similarly,

STmbh = ε2 tan α12
2

� �
, STkf l = ε2 tan α13

2
� �

: ð15Þ

The area of hexagon bcdef g is

Sbcdef g = 2ε2 tan α13
2

� �
+ tan α12

2
� �

+ tan α23
2

� �� �
, α13 + α12 + α23 = πð Þ:

ð16Þ

When α13 = α12 = α23, Sbcdef g has the smallest value:

Sbcdef g = 6ε2 13 tan α13
2

� �
+ tan α12

2
� �

+ tan α23
2

� �� �
≥ 6ε2 tan π

6
� �

:

ð17Þ

When three UWB anchors are used for robot positioning,
the equilateral triangle layout is conducive to reducing posi-
tioning errors. Similarly, when the number of UWB anchors
is four, the square layout is more favorable for the positioning.

4. Robot Position Estimation

4.1. UWB Coordinate Estimation. The UWB positioning
subsystem includes UWB anchors and a UWB robot tag.
UWB anchors are generally fixed at certain positions with
known coordinates, and the UWB robot tag is installed on
the robot. As shown in Figure 10, there are some UWB
anchors with known coordinatesðxi, yiÞ on a 2D plane:
Anchor 1, Anchor 2, Anchor 3, ..., Anchor n, and the coor-
dinate of the UWB robot tag is ðxc, ycÞ. The distances from
the UWB robot tag to the UWB anchors measured by the
robot positioning system are diði = 1, 2,⋯, nÞ. From the geo-
metric relationship, we can get

xc − x1ð Þ2 + yc − y1ð Þ2 = d1
2

xc − x2ð Þ2 + yc − y2ð Þ2 = d2
2

xc − x3ð Þ2 + yc − y3ð Þ2 = d3
2

⋯

xc − xnð Þ2 + yc − ynð Þ2 = dn
2

8>>>>>>>><
>>>>>>>>:

: ð18Þ

The following matrix equation can be obtained by Equa-
tion (18):

AuXu =Du, ð19Þ

where,

Au =

2 x1 − xnð Þ 2 y1 − ynð Þ
2 x2 − xnð Þ 2 y2 − ynð Þ

2 x3 − xnð Þ 2 y3 − ynð Þ
⋮

2 xn−1 − xnð Þ 2 yn−1 − ynð Þ

0
BBBBBBBB@

1
CCCCCCCCA
,

Du =

x1
2 − xn

2 + y1
2 − yn

2 + dn
2 − d1

2

x2
2 − xn

2 + y2
2 − yn

2 + dn
2 − d2

2

x3
2 − xn

2 + y3
2 − yn

2 + dn
2 − d3

2

⋮

xn−1
2 − xn

2 + yn−1
2 − yn

2 + dn
2 − dn−1

2

0
BBBBBBBB@

1
CCCCCCCCA
,Xu =

xc

yc

" #
:

ð20Þ

Because the UWB positioning subsystem has some posi-
tioning error, equation (19) can be corrected as

AuXu +N =Du, ð21Þ

where N is an error vector with n − 1 dimensions.
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When N =Du −AuXu is the smallest, the measurement
error will be the smallest. Supposef ðxÞ =Du −AuXu, the
least square estimate of X is

Xu = Au
TAu

� �−1Au
TDu: ð22Þ

Therefore, ðxc, ycÞ is the estimated coordinate value of
the robot. When positioning the mobile robot in the plane,

at least three UWB anchors are required. Generally, more
UWB anchors can improve the robot positioning accuracy
and stability. However, too many UWB anchor data may
cause more calculations and other possible errors.

4.2. Robot Velocity Calculation. In the robot positioning pro-
cess, the robot’s absolute coordinate ðxc, ycÞ can be calcu-
lated by the UWB positioning subsystem. Meanwhile, the
rotation speeds of the wheels are recorded by four encoders.

According to the robot kinematics, we can get
where _θi is the rotation speed of robot’s wheels, β is the incli-
nation angle of the inner rollers of the mecanum wheels, and
β = π/4. W and L are the half of robot’s width and length,
respectively. The running velocities of the robot are ðvx, vy ,

ωcÞ, which represent the forward velocity, transverse veloc-
ity, and rotation velocity, respectively.

Based on the Madgwick algorithm [26], the IMU can cal-
culate the three-axis angle of the robot ðθc, αc, φcÞ, which,
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UWB Tag

(a)

UWB Anchor 

UWB Tag 

(b)

Figure 13: UWB ranging correction experiments: (a) indoor correction experiment; (b) outdoor correction experiment.
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respectively, represents the roll angle, heading angle, and tilt
angle. Since these angles have cumulative errors over time,
robot’s absolute coordinates ðxc, ycÞ acquired by the UWB
positioning subsystem are used to correct them. During the
positioning process, the UWB positioning subsystem
records the robot’s moving trajectory in real time at a fre-
quency of 50Hz. Within a certain period of time, the robot’s
coordinates fðxi, yiÞ, i = 1, 2,⋯,Ng are used to evaluate line-
arity of the moving trajectory. When the linearity is greater
than 0.9, the slope of the moving trajectory is used to correct
the IMU heading angle. Otherwise, the robot moving trajec-
tory is regarded as nonlinear, and the IMU heading angle
will be not corrected.

Some errors may be caused by the sliding of robot’s
mecanum wheels, and the heading angle integrated by
robot’s rotation velocity ωc may be inaccurate. As shown
in Figure 11, the IMU heading angle αc and the robot’s run-
ning velocities ðvx , vyÞ are combined to calculate robot veloc-
ities ð _xc, _ycÞ in the absolute coordinate system xOy:

_xc = vx ⋅ cos αc − vy ⋅ sin αc,
_yc = vx ⋅ sin αc + vy ⋅ cos αc:

(
ð24Þ

4.3. Multisensor Position Estimation. As we mentioned
above, environmental interference can cause UWB posi-
tioning errors. Therefore, a multisensor position estima-
tion method is proposed to improve the positioning
accuracy of the robot. As shown in Figure 12, the robot

multisensor data are fused and combined for more accu-
rate position coordinate estimation. Robot positioning data
are acquired by multiple sensors, including UWB position-
ing subsystem, IMU, and encoders.

As the accuracy of the UWB positioning data ðxc, ycÞ is
not high enough and ð _xc, _ycÞ has cumulative errors over
time, Kalman filter is used to fuse multisensor data. Both ð
xc, ycÞ and ð _xc, _ycÞ are fed into the Kalman filter to estimate
the robot coordinates and velocities ðxk, yk, _xk, _ykÞ. The
robot position estimation and prediction include two steps:
first, combine the robot motion model and predict the robot
state ðxk, yk, _xk, _ykÞ at time k based on the optimal estimation
ðxk−1, yk−1, _xk−1, _yk−1Þ at time k − 1; second, use the measured
data (UWB positioning subsystem, IMU, and encoders) to
correct the predicted state and its parameters.

During the positioning process, the robot receives coor-
dinate data ðxc, ycÞ and velocity data ð _xc, _ycÞat frequencies
of 50Hz and 100Hz, respectively. In each time period,
assuming that the robot performs uniform motion, the state
equation of the robot is

Xk =Φ ⋅Xk‐1 + Γwk−1,(24)
where Xk = xk _xk yk _yk½ �T is the state vector of the

robot and Φ is the state transition matrix of the uniform
motion model.

Φ =

1 dt uið Þ 0 0
0 1 0 0
0 0 1 dt uið Þ

0 0 0 1

2
666664

3
777775, ð25Þ

where dtðuiÞ is the sampling period of positioning data. Due
to the different update frequencies of multisensor data, dtðuiÞ

includes two cases: dtðuÞ is the sampling period of UWB
positioning dataðxc, ycÞ, and dtðiÞ is the sampling period of
velocity data ð _xc, _ycÞ.

Suppose the noise of the robot motion system is Γwk:

Γ =

dt uið Þ

1
0
0

0
0

dt uið Þ

1

2
666664

3
777775,

wk =
ux

uy

" #
,

ð26Þ

where ux and uy are white Gaussian noise.
The measurement equation of the robot positioning sys-

tem is

Zk =H uið Þ ⋅Xk + vk, ð27Þ

where Zk = xm ym½ �T is the measurement vector, including
UWB positioning data ðxc, ycÞ and velocity data ð _xc, _ycÞ. vk is

Table 1: Measured distance results of UWB indoors and outdoors.

Num
Actual

distance (m)
Measured distance

indoor (m)
Measured distance

outdoor (m)

1 1.00 0.62 0.83

2 2.00 1.68 1.87

3 3.00 2.71 2.87

4 4.00 3.71 3.89

5 5.00 4.75 4.90

6 6.00 5.83 5.90

7 7.00 6.75 6.90

8 8.00 7.83 7.92

9 9.00 8.85 8.94

10 10.00 9.77 9.95

11 11.00 10.8 10.97

12 12.00 11.85 11.97

13 13.00 12.91 13.00

14 14.00 13.89 13.98

15 15.00 14.88 15.00

16 16.00 15.96 16.01

17 17.00 16.94 17.01

18 18.00 17.94 18.03

19 19.00 18.92 19.02

20 20.00 19.94 20.04
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the measurement noise. HðuiÞ represents the transfer rela-
tionship matrix from the state vector Xk to the measurement
vector Zk. The observation matrices HðuiÞ corresponding to
ðxc, ycÞ and ð _xc, _ycÞ are

H uð Þ =
1 0 1 0
1 0 1 0

" #
,

H ið Þ =
0 1 0 1
0 1 0 1

" #
:

ð28Þ

Based on the state equation and measurement equation
of the robot positioning system, Kalman filter prediction

equation can be constructed as follows:

X k∣k−1ð Þ =Φ ⋅X k−1∣k−1ð Þ +w kð Þ, ð29Þ

where wðkÞ is noise, Xðk−1∣k−1Þ is the optimal estimation vec-
tor at time k − 1, and Xðk∣k−1Þ is the prediction vector at time
k predicted by positioning data at time k − 1.

The covariance of the robot system at time k is

P k∣k‐1ð Þ =Φ ⋅ P k‐1∣k‐1ð Þ ⋅ΦT +Q, ð30Þ

where Pðk‐1∣k‐1Þ is the covariance matrix of the robot system
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Figure 14: UWB ranging errors: (a) original ranging errors; (b) correctional ranging errors.
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at time k − 1 and Q is the covariance of system noise:

Q =G ⋅GT ⋅ Ke,

G =

et
2

2
et

0
0

0
0
et
2

2
et

2
6666664

3
7777775
:

ð31Þ

In the robot positioning process, Ke = 0:25 and et = 0:02.
The optimal estimation vector of the robot system at

time k is

X k∣kð Þ =X k∣k‐1ð Þ +Kg kð Þ Z kð Þ −H uið ÞX kð Þ
� �

, ð32Þ

where ZðkÞ is the measured value, including two types of

data: ðxc, ycÞ andð _xc, _ycÞ. The HðuiÞcorresponding to different
measurement data is HðuÞ and HðiÞ. Kalman filter gain KgðkÞ
is

Kg kð Þ = P k∣k−1ð ÞH uið ÞT H uið ÞP k∣k−1ð ÞH uið ÞT + R uið Þ
� �−1

, ð33Þ

where RðuiÞ is the covariance matrix of the observed noise.
The value of RðuiÞ represents the fluctuation of the observed
data. Its value is larger, while the credibility of the data is
lower, and its influence on the final estimation result is
smaller; conversely, the smaller value of RðuiÞ has a greater
effect on the estimation result. The matrix RðuiÞ correspond-
ing to UWB positioning data ðxc, ycÞ and velocity
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Figure 15: UWB ranging power and availability analysis: (a) the first path power of UWB anchors; (b) measured distances of UWB anchors.
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datað _xc, _ycÞ is

R uð Þ =
0:09 0
0 0:09

" #
,

R ið Þ =
0:01 0
0 0:01

" #
:

ð34Þ

Covariance matrix Pðk∣kÞ of the robot system at time k is

updated to

P k∣kð Þ = I −Kg kð ÞH uið Þ
� �

P k∣k−1ð Þ: ð35Þ

The optimal estimation ðxk, _xk, yk, _ykÞ of the robot posi-
tion at time k can be calculated from Equation (32). Based
on the optimal estimate and the covariance matrix at time
k, combined with the measured data at time k + 1, the opti-
mal estimate ðxk+1, _xk+1, yk+1, _yk+1Þ at time k + 1 can be pre-
dicted successively.
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Figure 17: Experiment environment and robot moving trajectory.
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In the process of multisensor data fusion and robot posi-
tioning, no matter which set of positioning data (ðxc, ycÞ or
ð _xc, _ycÞ) is acquired, it will be fed to the Kalman filter to esti-
mate the robot’s position and velocities. At the same time,
the covariance matrix of the Kalman filter is updated. If
the UWB positioning signal is temporarily lost or interfered,
the robot can still estimate its position using the data from
IMU and encoders. Certainly, the robot can also complete
the positioning operation only with UWB positioning data.
Based on the method of data fusion and position estimation,
multiple positioning data are mutually corrected and supple-
mented to improve robot positioning accuracy.

5. Experiments and Results

5.1. UWB Ranging Correction Experiments. In the UWB
ranging correction experiments, the UWB measured dis-
tance and the actual distance were collected and data fitting
was performed to correct the ranging error. In the LOS envi-
ronment, the distance between a UWB tag and a UWB
anchor was measured by the DS-TWR method. In order to
verify the reliability of the method, the experiment was
implemented in two different environments: indoor correc-
tion experiment (Figure 13(a)) and outdoor correction
experiment (Figure 13(b)). It is worth to note that there
was no obstruction between the UWB tag and the UWB
anchor.

Table 1 shows the comparison of multiple UWB mea-
surement distances and actual distances. After data fitting,
the correction equations for UWB indoor and outdoor

ranging are

dt in = 0:9846 × dm + 0:3327,
dt out = 0:9898 × dm + 0:1564,

ð36Þ

where dm is the original UWB measured value, dt in and
dt out are correctional value in indoor and outdoor environ-
ments, respectively. The correction equation is used to
reduce the ranging error and improve the measurement
accuracy.

Figure 14 shows the curves of the original UWB ranging
error and the correctional UWB ranging error. The correc-
tional ranging error is significantly smaller than the original
ranging error. In the indoor environment (Figure 14(a)), the
root mean square error (RMSE) of the original UWB rang-
ing data is 0.19m, and the RMSE of correctional UWB data
is 0.04m. In the outdoor environment (Figure 14(b)), the
RMSE of the original and correctional UWB ranging data
is 0.08m and 0.01m, respectively.

Compared with the outdoor environment, the indoor
environment has lower ranging accuracy due to UWB mul-
tipath interference. The experimental results indicate that
the correction method of data fitting can effectively reduce
the UWB ranging error, especially in the case of severe
UWB multipath interference. The maximum indoor ranging
error is reduced to 0.1m from original 0.4m. Similarly, the
maximum error of outdoor UWB ranging is corrected from
0.17m to 0.04m.
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Figure 19: Robot coordinate errors by three positioning methods: (a) X coordinate errors; (b) Y coordinate errors.
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5.2. UWB Availability Experiment. In the indoor environ-
ment, the UWB robot tag may exceed the visible range
of UWB anchors due to the occlusion of walls or obsta-
cles, which will cause inaccurate UWB data at this case.
As a result, during UWB positioning progress, the first
path power of the UWB anchor signal will be captured
to confirm the availability of UWB data. If the communi-
cation power of a UWB anchor is too low, the ranging
data of this UWB anchor is unreliable; then, it will be
discarded.

Figure 15 shows the first path power and ranging results
of four UWB anchors as the robot’s position changed. When
the robot was in Position I, Anchor 0 was blocked and inter-
fered; its signal power was very low. At this stage, the rang-
ing data of Anchor 0 was unstable, so it was discarded.
When the robot moved to Position II, Anchor 0 was in the
visible range of the robot, and its signal power gradually
increased. All UWB anchors had stable signals, and their
positioning data were available. When the robot left Position
II and entered Position III, Anchor 3 left the visible area of
the robot. The signal power of Anchor 3 gradually decreased,
and its ranging data was discarded due to inaccuracy.

In the process of robot positioning, if the first path
power of a UWB anchor is lower than -95 dBm, the robot
positioning system will discard the ranging data of this

anchor. When the total number of available UWB anchors
is less than three, the UWB positioning status of the robot
will be considered invalid at this time.

5.3. Multisensor Positioning Experiments. Multisensor posi-
tioning experiments were carried out to verify effects of the
data fusion and robot positioning by UWB, IMU, and
encoders. Figure 16 shows the experimental equipment and
environment, the UWB robot tag was installed on the
mobile robot, and three UWB anchors (Anchor 1, Anchor
2, and Anchor 3) were distributed around. Meanwhile, the
robot’s velocities were calculated based on the IMU sensor
(MPU9250) and encoders. The laser tracker was used to
record the running trajectory and position coordinates of
the robot in real time. Within the coverage of UWB signals,
multisensor data based on UWB, IMU, and encoders were
simultaneously captured and used; outside the coverage of
UWB signals, the robot could only use IMU and encoders
for positioning.

The given running path of the mobile robot is shown in
Figure 17. The robot started from point S, passed through
point M, and finally reached point E. In the experimental
environment, zone A was completely covered by UWB sig-
nals. UWB signals in ZoneBwere slightly disturbed by walls,
and those in Zone C were invalid due to severe interference.
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Figure 20: Changing curves of the robot’s heading angle: (a) SM stage; (b) ME stage.
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Three positioning methods were tested and compared in
the experiments:

(1) Positioning only by IMU and encoders (IMU
positioning);

(2) Positioning only by the UWB subsystem (UWB
positioning);

(3) Positioning by IMU, encoders, and UWB subsystem
(IMU+UWB positioning).

In the multisensor positioning experiments, the robot
positioning system adopted these three different positioning
methods to estimate the coordinates and angle of the mobile
robot. The robot coordinate system XOY was established,
with Anchor 1 as the coordinate origin. Figure 18 shows
the coordinate system and the running trajectories of the
robot by three positioning methods. The coordinates of
three UWB anchors were (0, 0), (2.0, 3.0), and (1.0, 6.0). In
the first stage, the robot started from point S (1.0,1.0) and
reached point M (1.0, 5.6) along the direction of the Y coor-
dinate axis. In the second stage, the robot rotated 90° and
then moved along the direction of the X coordinate axis to
the point E (-8.0, 5.6).

As shown in Figure 18, the red lines represent the run-
ning trajectory of the robot using IMU positioning. In the
whole process, the robot coordinates can be estimated and
used, but as time accumulates, the positioning error gradu-
ally increases. The blue lines are the running trajectory of
the robot using UWB positioning. In the Zone C, the robot
positioning fails because the UWB signals are invalid. The
green lines represent the running trajectory of the robot
using IMU+UWB positioning. In Zone A and Zone B, the
robot uses data fusion of UWB, IMU, and encoders for posi-
tioning, and the robot can still complete positioning using
IMU and encoder data in Zone C.

Figure 19 shows the coordinate error of the robot using
three positioning methods. Figure 19(a) shows the X coordi-
nate errors when the robot moved from point S to point M
(SM stage). In the initial stage, the error of IMU positioning
is very small, but it keeps increasing over time. The error of
UWB positioning is the largest. Since the UWB data has
been used to correct the heading angle of IMU, the error
of IMU+UWB positioning has some fluctuations while its
high accuracy is guaranteed. The maximum X coordinate
error of IMU+UWB positioning is less than 0.05m.

Figure 19(b) shows the Y coordinate error when the
robot moved from point M to point e (ME stage). The error
of IMU positioning keeps increasing, and the maximum
error is close to 0.4m. As UWB signals in Zone B are dis-
turbed, the error of UWB positioning continues to increase.
In Zone C, the method of UWB positioning fails and cannot
estimate the robot coordinates. In the whole process, the
error of IMU+UWB positioning is relatively small. Even if
the UWB signals are invalid in Zone C, the robot can still
complete the positioning with high accuracy. The Y coordi-
nate error is kept within 0.16m.

Based on mathematical statistics, the RMSEs of IMU
positioning, UWB positioning and IMU+UWB Positioning

are 0.1972m, 0.0902m, and 0.0821m, respectively. The
experimental results indicate that the multisensor fusion
positioning method based on UWB, IMU, and encoders
has higher positioning accuracy and stability. The multisen-
sor positioning method uses different sensor data to correct
and supplement each other, thus having stronger anti-
interference ability. Even if one sensor fails, the robot posi-
tioning can still operate normally based on other sensors.

Figure 20 shows changing curves of the robot’s heading
angle in the experiments. In the SM stage (Figure 20(a)),
the desired heading angle of the robot is 90°. In a short time,
the heading angle of IMU positioning is more stable, but the
angle error cannot be corrected automatically. The heading
angle of UWB Positioning is calculated by coordinates with
some large fluctuations. This is because UWB data is used
to correct IMU errors, the heading angle of IMU+UWB
positioning also has some slight fluctuations. In the ME
stage (Figure 20(b)), the desired heading angle of the robot
is 180°. The cumulative angle error of the IMU positioning
gradually increases, which will cause greater positioning
error. As UWB signals are interfered, UWB positioning
has more angle errors, and it fails in Zone C, whereas the
heading angle of IMU+UWB positioning is more stable. It
can still operate normally in Zone C.

The experimental results indicate that the positioning
accuracy of the multisensor positioning method has been
greatly improved. The UWB data can correct the cumulative
angle error of IMU, and the heading angle is more stable.
When UWB signals are interfered or invalid, the robot can
still use IMU and encoder data for positioning, which has
stronger environmental adaptability.

6. Discussion of the Experiments

Compared with the single-sensor positioning method, the
positioning system based on UWB and multisensors can
improve the positioning accuracy and adaptability of the
robot. Through data fitting, the robot positioning system
can effectively reduce the UWB ranging error caused by
multipath interference. The indoor and outdoor maximum
ranging errors are increased to 0.1m and 0.04m, respec-
tively. According to the first path power of the UWB anchor
signals, the robot positioning system can judge the availabil-
ity of UWB positioning data and prevent the error position-
ing data from being used. Meanwhile, the positioning system
can select stable UWB anchors to collect positioning data.

In general, the developed robot positioning system based
on data fusion and error correction has the following
advantages:

(1) The mutual correction of multisensor data improves
the stability and accuracy of positioning data. During
the movement of the robot, IMU heading angle can
be corrected by UWB data, which reduces the cumu-
lative angle error

(2) Based on multisensor data fusion, the robot posi-
tioning system can achieve higher-precision posi-
tioning. When multisensor data are available
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simultaneously, the positioning error of the robot is
less than 0.05m

(3) The robot positioning system has better anti-
interference ability and environmental adaptability.
Even if UWB positioning data is disturbed, the robot
can still use IMU and encoder data for positioning,
and the maximum positioning error is within 0.16m

7. Conclusion

This paper presents a position estimation and positioning
error correction method of mobile robot based on UWB,
IMU, and encoders. The robot positioning system includes
a mecanum wheeled mobile robot, a remote control com-
puter, and UWB positioning subsystem. UWB ranging error
is corrected by the DS-TWR method and data fitting. The
UWB positioning system is composed of UWB anchors,
and a UWB robot tag can calculate robot position coordi-
nates. The multisensor positioning method can improve
the robot positioning accuracy. The robot coordinates ðxc,
ycÞ are captured by the UWB subsystem, and the robot
velocities ð _xc, _ycÞ are calculated by the IMU and encoders.
Multisensor data are continuously fed to the Kalman filter
to estimate the robot position. In the positioning process,
UWB data are also used to reduce the cumulative angle error
generated by the IMU. In the UWB ranging correction
experiments, the correction equation after data fitting can
effectively improve the UWB ranging accuracy. The first
path power of the UWB anchor signal is captured to confirm
the availability of UWB data. In the multisensor positioning
experiments, the multisensor positioning method (IMU
+WB positioning) has higher accuracy and stability than a
single-sensor positioning method (IMU positioning and
UWB positioning). The experimental results indicate that
the multisensor positioning method based on UWB, IMU,
and encoders can effectively improve the positioning accu-
racy of the mobile robot, and this method has stronger
anti-interference ability.

In the future, we will optimize the robot positioning sys-
tem to improve the positioning accuracy. For instance, more
different types of sensors can be combined in the process of
robot positioning and error correction. Besides, more multi-
sensor positioning tests will be carried out to expand its
application scope.
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In the process of eddy current testing (ECT) of surface and subsurface defects of aviation aluminum alloy plates, the setting of
parameters is important to the test results. Inappropriate test parameters can cause false detection or even missed detection of
defects. To address this problem, the effects of probe type, coil size, and excitation frequency on the accurate identification and
quantitative evaluation of surface and subsurface defect detection were studied and analyzed in this study to determine the best
testing parameters. The experimental results show that the absolute probe with an outer radius of 3.3mm has better detection
performance for aviation aluminum alloy plate defects. There are different optimal excitation frequency ranges for the surface
and subsurface defects. An excitation frequency of 80 kHz to 90 kHz can be used for the detection of unknown defects.

1. Introduction

Aluminum alloy materials are widely used in the manufac-
ture of civil aircraft flaps, skins, and other structural parts
owing to their advantages, such as low density, high
strength, good processability, and strong corrosion resis-
tance. According to the statistics, in ordinary civil aviation
aircraft, the use of aluminum alloy materials exceeds 60%
of the total weight of the aircraft. However, owing to the
influence of the service environment and long-term high-
load operation, various corrosion and fatigue crack defects
inevitably occur in aircraft. The existence of defects in air-
craft can cause safety hazards to the aircraft structure as well
as major safety threats and economic losses. Therefore, it is
critical to detect, identify, and accurately quantify the defects
in aluminum alloy plates over time.

Among various nondestructive testing (NDT) technolo-
gies, eddy current testing (ECT) is the most suitable for the
detection of corrosion and fatigue cracks in aircraft alumi-
num alloy plates owing to its fast detection speed, wide

detection range, easy automation, and higher detection per-
formance for surface and subsurface defects of detected
objects [1–5]. By combining principal component analysis
and k-means classification, Kim et al. conducted feature
extraction of a deeper crack in an aircraft to realize defect
detection and location [6]. Based on the time-frequency
analysis of the pulsed eddy current defect detection signal,
combined with k-means clustering and expectation maximi-
zation, Hosseini and Lakis realized the automatic detection
of the distribution of subsurface defects in each layer of a
multilayer aluminum alloy plate structure [7]. He et al. real-
ized the automatic detection of layered defects of an aircraft
two-layer aluminum alloy plate structure based on the con-
structed defect feature and support vector machine classifi-
cation algorithm and further studied the influence of
different lift-off distances on the detection results [8]. Li
et al. studied the subsurface defect detection of aluminum
alloy plates based on pulse-modulated eddy currents, which
improved the detection performance of subsurface defects
[9]. For the detection of subsurface defects in aluminum
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alloy plates, Perumal et al. conducted a simulation analysis
from multiple excitation frequencies, and combined with
the optimization of excitation frequency, the depth of differ-
ent subsurface defects can be located [10]. Yan et al. used the
improved Canny algorithm to identify the edge of the defect
ECT image of aluminum alloy materials, which improved
the accuracy of corrosion edge detection under coating
[11]. Considering the influence of edge effects on defect
detection, Xie et al. conducted finite element simulation
from the design of probe parameters to improve the ability
of edge defect detection [12]. In addition, for defect detec-
tion, some studies have been conducted on the combination
of the probe type and defect scanning method.

However, in the existing research on defect detection of
aluminum alloy plate materials, most of the studies are based
on single detection parameter optimization and detection
signal processing algorithms for defect detection and quanti-
tative analysis [13–16], thus insufficient accuracy of subsur-
face defect detection and defect edge extraction. Starting
from the detection parameters, in this study, we analyze
the effects of probe type, coil size, and excitation frequency
on the surface and subsurface defect detection of aviation
aluminum alloy plates and construct a finite element model
to optimize the detection parameters. The rest of this paper
is organized as follows: First, the theoretical method of probe
coil design is analyzed in Section 2. Second, the finite ele-
ment model of the ECT is constructed, and several testing
parameters are set in Section 3. Next, the simulation results
are analyzed in detail in Section 4. Finally, conclusions and
further research are outlined in Section 5.

2. Theoretical Method

ECT is an NDT method based on the change in the electro-
magnetic properties of the tested conductor to analyze its
properties and defects. This method is based on electromag-
netism theory. When a current of a certain frequency flows
into the excitation coil, under the action of electromagnetic
induction, the induced eddy current is generated in the
detected conductor. Furthermore, the induced eddy current
generates a magnetic field and reacts on the test coil, thus
affecting the voltage and current of the coil.

The ECT coil is composed of multiple turns of metal
enameled wire; thus, the coil itself has inductance. In addi-
tion, there is resistance between the winding enameled wire,
as well as a coupling capacitor between each turn of the coil.
In actual detection and calculation, the capacitance distrib-
uted between each turn of the coil is usually ignored. The
coil can be expressed as a series circuit of inductance L1
and resistance R1, and the complex impedance of the coil
itself can be expressed as

Z1 = R1 + jωL1: ð1Þ

Under the action of the induced eddy current excited by
the excitation coil, the conductor can be expressed as a sec-
ondary circuit composed of inductance and resistance in
series. The complex impedance of the coil is affected by the
equivalent impedance Zz of the conductor.

Zz = Rz + jωLz =
ω2M2

R2
2 + ω2L2

2 R2 + jω
ω2M2

R2
2 + ω2L2

2 L2: ð2Þ

L2 and R2 are the equivalent inductance and resistance of
the conductor under test, M is the mutual inductance
between the coil and the conductor, and M can be expressed
as

M = k lð Þ
ffiffiffiffiffiffiffiffiffi

L1L2
p

: ð3Þ

kðlÞ is the coupling coefficient, which is related to the
lift-off distance between the coil and conductor. The change
in the electromagnetic properties of the conductor affects its
equivalent impedance Zz and, consequently, affects the com-
plex impedance of the detection coil. The conductivity,
permeability, defect, and thickness (sheet) of the conductor
can be obtained by collecting and analyzing the impedance
signal of the detection coil.

The design of the ECT probe coil should follow the
appropriate inductance value, resistance value, and higher
Q value (i.e., quality factor, Q = ωL/R). For a multiturn coil,
without considering the influence of the capacitance
between the turns of the enameled wire, the inductance L
is proportional to the square of the number of turns N of
the coil, that is,

L∝N2 = r2 − r1ð Þ2h2
d4

: ð4Þ

r2, r1, and h are the outer radius, inner radius, and height
of the coil, respectively, and d is the diameter of the enam-
eled wire.

The resistance of the coil itself can be calculated accord-
ing to the following formula:

R = ρ
l
S
= 4ρπ r2

2 − r1
2� �

h

d4
: ð5Þ

Combining Equations (3) and (5), the quality factor Q of
the coil can be expressed as follows:

Q= ωL
R

∝
ωh
ρ

⋅
r2 − r1
r2 + r1

: ð6Þ

It can be observed from the above equation that when
the wire of the coil is determined, Q is determined by the
excitation frequency and coil size. In the defect detection
process, if the coil is significantly small, the excitation cur-
rent of the coil must be reduced accordingly. Moreover, if
the excitation current is significantly small, the detected
induction signal reduces, which further causes the defect sig-
nal to be submerged in noise, thus the inability to obtain an
effective detection signal. However, if the coil radius is
increased, a coil that is considerably large creates a difference
between the detected defect edge and the actual defect edge;
thus, defect edge detection becomes difficult.

For the ECT of surface and subsurface defects of aviation
aluminum alloy plates, in this study, we simulated and

2 Journal of Sensors



optimized the probe type, coil radius, and excitation fre-
quency to improve the accuracy of defect detection and
defect edge recognition.

3. Simulation Experiment Modeling

To accurately analyze the effects of probe type, coil size, and
excitation frequency on the accuracy of surface and subsur-
face defect detection and edge recognition of aviation alumi-
num alloy plates, a finite element model of ECT based on
COMSOL multiphysical field simulation platform was con-
structed in this study, as shown in Figure 1. The simulation
model included an aluminum alloy specimen, eddy current
probe, and vacuum domain. In this model, different parame-
ters, such as the probe type, coil size, and excitation fre-
quency, were simulated and calculated. The depth and
position of the defects in the specimen and the size of the coil
were set according to different research contents.

The specimen chosen for this study was a 6000 series
aluminum alloy plate with a thickness of 5mm that contains
defects of different sizes. The coil was composed of copper
enameled wire and placed above the specimen. The distance
between the coil and the specimen was set to 1mm. The
electromagnetic properties of simulation model materials
are shown in Table 1.

Before the simulation calculation, the model should be
meshed and divided into multiple elements. It is necessary

to consider the accuracy and efficiency of calculation simul-
taneously when meshing. The smaller the element is, the
higher the calculation accuracy will be, and the calculation
time will increase accordingly. Considering that the inspec-
tion object constructed was an aluminum alloy thin plate,
a smaller mesh division did not significantly increase the
calculation time; thus, extremely fine mesh generation was
adopted in this study, as shown in Figure 2.

Based on meshing, the combination of parametric scan-
ning and frequency domain analysis was used for simulation
calculation. The scanning path of defects in the simulation
process is shown in Figure 1. Assuming the defect as the cen-
ter, the left and right sides were both 25mm for scanning of
the defect, and the scanning step is 0.5mm. After the simu-
lation solution, the coil impedance at different positions and
frequencies was obtained.

3.1. Simulation of Coil Structure. In the process of fatigue
crack detection and analysis of aircraft aluminum alloy
plates, different probe types have an impact on the accuracy
of defect detection and edge recognition. The common eddy
current probe selection includes the absolute and differential
types. As shown in Figure 3, the excitation and receiving
coils are the same as those in the absolute probe. In
Figure 4, the excitation of the differential probe consists of
two inversely connected coils, and the receiving coil is placed
between the two excitation coils (differential excitation).

Probe

Defect

Aluminum alloy plate 

Scanning direction
0

0

0
100

100

200200

20

mm

mm
mm

Figure 1: Finite element simulation model of ECT.

Table 1: Electromagnetic properties of the simulation model.

Material
Electromagnetic properties

Conductivity (MS/m) Relative permeability

6000 series aluminum alloys specimen 26 1

Probe coil made of copper 58 0.99

Vacuum computing region 0 1
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Another form of differential probe is that the receiving coil is
completed by two reverse-connected coils, and the excitation
coil is placed in the middle of the receiving coil, that is, dif-
ferential reception. Compared with the differential receiving
probe, the differential excitation probe exhibited stronger
anti-interference. Therefore, the differential excitation probe
was used for the simulation experiment analysis of defect
detection in this study.

According to Equation (6), it can be observed that the
quality factor is determined by the inductance and resistance
of the coil, which can be further transformed into the rela-
tionship with the coil size. Considering that the detection
object was the defect of the aluminum alloy plate, the change
in the coil height did not affect the detection of the defect
edge. The quality factor was further simplified as the rela-
tionship between the inner and outer diameters of the coil.
The inner and outer radius ranges were 1–4mm and 2–
5mm, respectively, and the corresponding coil quality factor
was calculated. The results are shown in Figure 5.

From the simplified calculation results, the quality factor
was affected by the outer radius. The larger the outer radius,
the higher the quality factor. The quality factor was not
affected by the change of coil inner radius. When the ratio
of inner radius to outer radius was less than 0.6, it can be
considered to be in an appropriate range. However, in the
process of defect detection, we should be able to accurately
identify the existence of defects, as well as accurately identify
the edge of defects from the detection signal, in order to
make quantitative analysis of defects. Therefore, the larger
the outer diameter of the coil used for defect detection is
not the better.

In the defect scanning shown in Figure 1, it is necessary
to accurately identify the defect and its edge information
from the detection signal. To study the influence of different
probe selections on defect edge recognition, 2mm and
20mm defects with different widths were set, and the simu-
lation parameters are listed in Table 2.

To study the coil size of probe suitable for crack defect
detection of aviation aluminum alloy plate, the scanning
experiments of coils with different sizes were carried out
on the simulation model constructed in Figure 1. The exper-
imental parameters are shown in Table 3; seven coil outer
radii of different sizes are set. When the inner radius of the
coil is 0.3~0.6 times of the outer radius, the appropriate
quality factor Q of the coil can be guaranteed [17].

3.2. Simulation of Excitation Frequency. Owing to the skin
effect of the eddy current, the penetration depth of the eddy
current decreases sharply with an increase in the excitation
frequency. If the excitation frequency is significantly small,
the resolution of the ECT signal to defects becomes insuffi-
cient, making it difficult to accurately identify defects. If
the excitation frequency is considerably large, deeper defects
cannot be detected, and an excessive excitation frequency
causes the eddy current signal to be more susceptible to
noise interference. Therefore, it is necessary to determine a
more suitable excitation frequency for the defect detection
of aviation aluminum alloy plates.

Four surface defects and subsurface defects with different
depths were constructed in an aviation aluminum alloy
plate, and the defects were detected by frequency sweeping.

Coil

Air core

r1
r2

Top viewSectional view

h

r2

r1

Figure 3: Schematic diagram of absolute probe.
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Figure 2: Meshing of the simulation model.
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The defects with different sizes are shown in Figure 6, and
the simulation parameters are shown in Table 4.

4. Analysis of Experimental Results

4.1. Simulation Analysis of Coil Structure. According to the
simulation parameters set in Table 2, the scanning results of
different probe types for defect detection based on the con-
structed simulation model are shown in Figures 7 and 8,
respectively. The horizontal and vertical axes represent the
position and impedance value of the probe, respectively, and
0 in the horizontal axis represents the defect center. From
the scanning results of the absolute probe on the defect in
Figure 7, the signal in the entire defect area can be clearly iden-

tified, and the defect edge information can be accurately
reflected in the scanned signal. However, in the scanning
results of the differential probe for defects shown in Figure 8,
the eddy current signal has multiple upward and downward
trends in both defect areas, and the defect area and the edge
information of the defect cannot be clearly identified from
the scanned signal. It can be observed that the absolute probe
is suitable for defect detection and quantitative analysis.

According to the above analysis, the detection signal is
required to meet easy defect identification and edge detec-
tion simultaneously during defect detection, that is, accurate
defect classification and quantitative analysis. For the defect
detection signal obtained by simulation, the impedance dif-
ference Zdiff between the detection coil at the defect and

r2
r1

r02
r01

Excitation
coil 1

Excitation
coil 2 

Receiver coil

Sectional view Top view

Figure 4: Schematic diagram of differential probe.
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 0.6
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 0.
4⁎
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 0.

2⁎
r 2

4.5

3.5

2.5

1.5

0.5 1.5 2.5 3.5
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Figure 5: The relationship between coil quality factor and inner and outer radius.

Table 2: Parameters of absolute and differential probes for scanning defects.

Excitation frequency (kHz) Excitation current (mA)
Coil parameters

Defect information
(length × width × depth

(mm))
Turns r1, r01 (mm) r2, r02 (mm) h (mm) #1 #2

100 50 300 2 3 1 40 × 2 × 1 40 × 20 × 1
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nondefect and the proportion Pratio of the scanning points of
the actual defect area to the defect area determined by the
scanning signal are calculated. According to the notes in
Figure 7, Zdiff and Rratio are calculated as follows:

Zdiff = Zdefect − Znondefect,

Pratio =
Dactual
Dtest

× 100:
ð7Þ

The simulation solution was conducted according to the
parameters set in Table 3, and Zdiff and Pratio were calculated
for the solution results of different outer radii. The simula-
tion and calculation results are shown in Figure 9.

As shown in Figure 9, with the increase of the outer
radius of the coil, the impedance difference Zdiff also gradu-
ally increases; that is, a larger coil radius is conducive to the
detection of defects. However, the proportion Pratio decreases
with the increase of the coil radius; that is, the larger the coil

Table 3: Influence of different outer radius of coil on defect detection.

r2 (mm) r1 (mm) Excitation frequency (kHz) Excitation current (mA)
Defect information

(length × width × depth (mm))

2, 2.5, 3, 3.5, 4, 4.5, 5 0:3 ~ 0:6 × r2 100 50 40 × 1 × 1

4mm3mm2mm1mm
C1 C2 C3 C4

(a) Surface defects

4mm3mm2mm1mm
S1 S2 S3 S4

(b) Subsurface defects

Figure 6: Schematic diagram of specimen defects.

Table 4: Influence of excitation frequency on defect detection.

Frequency range (kHz) Step (kHz)
Depth of defect (mm)

r2 (mm) r1 (mm)
Surface defects Subsurface defects

10~1000 10 1, 2, 3, and 4 1, 2, 3, and 4 3 1.5

0 5
1

Defect area
with a width

of 20 mm

Defect area
with a width

of 2 mm

Znon-defect

Zdefect

Dactual

Dtest

1.018

1.016

1.014

1.012

1.01

1.008

1.006

1.004

1.002

–25 –20 –15 –10 –5

Position (mm)

10 15 20 25

Defect with a width of 2mm
Defect with a width of 20mm

Figure 7: Scanning signal of absolute probe to defect.
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radius, the more difficult it is to identify the edge informa-
tion of the defect from the detection signal. From the com-
prehensive analysis of the simulation results, when the
outer radius of the coil is 3.3mm, both defect detection
and edge recognition can achieve higher accuracy.

4.2. Simulation Analysis of Excitation Frequency. According
to the simulation parameters set in Table 4, the parametric
scanning detection is conducted for surface and subsurface
defects, as well as the impedance difference Zdiff between
defect and nondefect is calculated using the constructed

0 5

0

1

Defect area
with a width

of 20 mm

Defect area
with a width

of 2mm

1.2

0.8

0.6
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–0.8

–1

–1.2
–25 –20 –15 –10 –5 10 15 20 25
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Defect with a width of 2mm
Defect with a width of 20mm

Figure 8: Scanning signal of differential probe to defect.
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Figure 9: Simulation of coils with different sizes.
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simulation model. The detection results of surface defects
and subsurface defects are shown in Figures 10 and 11,
respectively.

In the surface defect simulation results shown in Figure 10,
for defects with different depths, the impedance difference
Zdiff increases with an increase in the excitation frequency.
However, with the increase in surface defect depth, the imped-
ance difference Zdiff tends to be stable at higher frequencies,

and there is no increasing trend. The deeper the defect, the
earlier it shows a stable trend.

In the simulation results of subsurface defects shown
in Figure 11, the change in impedance difference Zdiff is
complex. Within a certain excitation frequency range, the
impedance value at the defect is greater than that at the
nondefect; that is, the impedance difference Zdiff is posi-
tive. With an increase in the excitation frequency, the
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impedance difference gradually decreases. The impedance
difference Zdiff of defects S1–S4 is 0 at different excitation
frequencies; that is, the impedance value at the defect is
equal to that at the nondefect. When the excitation fre-
quency is increased, the impedance value at the defect is

less than that of the nondefect, and the impedance differ-
ence Zdiff is negative.

According to the previous analysis, in the ECT process,
the greater the difference in signals between different defects,
the more conducive to the identification, classification, and
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Figure 12: Influence of different excitation frequencies on impedance difference of surface defects at different depths.
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quantitative analysis of defects. To further determine the
optimal excitation frequency for defect detection of aviation
aluminum alloy plates, the difference in impedance between
adjacent defects was calculated. The calculated differences
between surface defects and subsurface defects are shown
in Figures 12 and 13, respectively.

In the statistics of impedance difference of surface
defects shown in Figure 12, the impedance difference of
adjacent defects under six frequency excitations of 80 kHz,
90 kHz, 100 kHz, 200 kHz, 300 kHz, 400 kHz, and 500 kHz
was analyzed. It can be observed that as the defect depth
increases, the impedance difference corresponding to each
excitation frequency decreases, and the impedance value
of deeper defects is less than that of shallow defects at
higher excitation frequencies. Combined with the analysis
of Figures 10 and 12, for the surface defects of the aviation
aluminum alloy plate, the excitation frequency can achieve
an accurate detection effect in the range of 80 kHz to
400 kHz.

Similarly, in order to accurately classify, identify, and
quantitatively analyze a variety of subsurface defects, the
impedance difference of adjacent defects was analyzed from
six excitation frequencies of 50 kHz, 60 kHz, 70 kHz, 80 kHz,
and 90 kHz, as shown in Figure 13. In shallow subsurface
defects, such as 1mm, 2mm, and 3mm deep defects, the
impedance difference increases with an increase in the exci-
tation frequency. However, when the defect depth is 3–4mm
and the excitation frequency is 50 kHz, the impedance value
of shallow defects is greater than that of deep defects, which
further causes difficulty in defect classification and identifi-
cation as well as quantitative evaluation.

Through comprehensive analysis of the optimal excita-
tion frequency of defect detection shown in Figures 12 and
13, surface defects and subsurface defects can achieve good
detection results in the excitation frequency range of
80 kHz~90 kHz. In the actual defect detection process, the
80 kHz~90 kHz excitation frequency can be used to prelimi-
narily judge the defect type and then adjust the excitation
frequency for different types of defects to collect defect sig-
nals to realize accurate identification, classification, and
quantitative analysis of defects. The simulation analysis
results of the ECT parameters for aviation aluminum alloy
plate defects are listed in Table 5.

When ECT technology was used for defect detection of
aviation aluminum alloy plates, an absolute probe with an
outer radius of 3.3mm was used as the probe, and the inner
radius of the coil was less than 0.6 times its outer radius. At
this time, the probe can simultaneously meet the accuracy of

defect detection and edge recognition. In addition, for the
setting of the excitation frequency during defect detection,
the frequency adaptation ranges of surface and subsurface
defects are 80~400 kHz and 60~90 kHz, respectively. An
excitation frequency of 80~90 kHz can be used for detection
to realize accurate detection, identification, and quantitative
analysis of defects.

5. Conclusion

To address the problem of surface and subsurface defect
detection as well as quantitative analysis of aviation alumi-
num alloy plates, a comprehensive simulation optimization
analysis was conducted using probe type, coil size, and exci-
tation frequency. Compared with the differential probe, the
absolute probe has better defect identifiability and defect
edge detection ability. Meanwhile, when the outer radius is
3.3mm, the absolute probe can further improve the defect
detection ability and defect edge detection accuracy. In addi-
tion, for the excitation frequency range of 80 kHz to 90 kHz,
the detection ability for unknown defects was further
improved. The optimization analysis of the parameter set-
tings of defect detection through simulation modeling can
guide the probe design and excitation frequency setting in
the actual detection process. In addition, it can promote
the application of computer-aided design and optimization
in the eddy current detection of aviation aluminum alloy
defects. The future work of this paper will continue from
two aspects: First, we will combine simulation signals and
intelligent algorithms to further improve the accuracy of
defect edge recognition; thereafter, we will verify and
improve it with the measured signal. Second, we will com-
bine the simulation model and the measured signal to study
the influence of different scanning paths on defect detection.
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To improve the positioning accuracy of collaborative robots, a novel modeling and calibration method for collaborative robots is
proposed based on position information and modified local product of exponentials (LPoE). The kinematic error model is derived
from the kinematic model through differential transformation. To solve the problem of the high redundancy and complexity of
the error model that is difficult to identify, the errors of the kinematic parameters are all transferred to the initial position and
posture matrix of the local coordinate system, which simplifies the error model and improves the speed and accuracy of the
identification calculation. However, the simplified error model still requires posture data which are very difficult to acquire in
practice. For this reason, the position error is separated from the kinematic model, and an error model based on position data
is established. Then, a kinematic calibration method of the collaborative robot based on position data is proposed, which
simplifies the measurement process and improves the efficiency of calibration. The effectiveness of the method is verified by
simulations and experiments on a six degree-of-freedom collaborative robot.

1. Introduction

With the development of robots and the change of
manufacturing mode, the working field of robots is expand-
ing to realize natural interaction with humans, e.g., collabo-
rative robots begin to be applied in unstructured
environments to cooperate with humans. The collaborative
robot is a new type of industrial robots, which can directly
interact with people in the designated cooperative area [1].
Compared with traditional industrial robots, collaborative
robots have the advantages of high security, universality,
sensitivity, easy to use, and man-machine cooperation,
which can be applied in the field of industrial production,
family services, and rehabilitation medicine [2–4]. Generally,
the actual kinematic parameters of the robot are inconsistent
with the nominal parameters in its controller for the error of
manufacturing and assembly and the stress deformation of
joints and linkages, which results in control errors and
reduces the positioning accuracy of the robot. Moreover,
the collaborative robot is an open-chain mechanism with
low stiffness and error accumulation and amplification.
Therefore, the accuracy of the collaborative robot is much

lower than that of traditional orthogonal instruments, and
it cannot be applied to cases with high accuracy require-
ments, such as measuring, precision assembly, turning, and
milling [5, 6].

Kinematic calibration is one of the main methods to
improve the absolute positioning accuracy of robots, which
is the process of identifying the actual kinematic parameters
of the robots by using advanced measurement means and
model-based parameter identification method, and compen-
sating them to the controller of robots or compensating to
improve positioning accuracy [7]. Kinematic calibration
has been a research hotspot in the field of robots [8–10],
which consists of four steps:kinematic modeling, pose mea-
suring, parameter identification, and compensation [11].
Most kinematic models in the controller of robots are based
on Denavit-Hartenberg (D-H) method [12]. However, when
two adjacent axes of the robot are parallel, the Jacobian
matrix of the D-H model will be singular [13]; that is, the
kinematic solution has abrupt changes and discontinuities,
which results in coupling problem between some of the
kinematic parameters [14]. To solve the singularity, Park
et al. [15] proposed a kinematic modeling method, i.e.,
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PoE, which only needs to build the base and tool coordinate
systems on the 0th linkage and the end. Nevertheless, the
PoE error model contains a finite integral term, which is
not an explicit form and is inconvenient to use leading to
the identifiability of its kinematic parameters cannot be
determined [16]. He et al. [17] modified the PoE model by
deriving the differential solution formula of exponential
mapping on joint twists and variables and established an
error model based on PoE model with explicit expression,
which is the main PoE method used in kinematic calibration
at present. Jiang et al. [18] used the PoE model to analyze the
position space relationship of joints’ axis under different
geometric errors and proposed a calibration model including
joint errors. Wang et al. [19] proposed a self-kinematic sys-
tem for an on-orbit space manipulator based on PoE for-
mula, which can measure the position and posture of the
manipulator without using external measurement devices.

In the kinematic parameter identification of robots, the
D-H model only needs the end position data of robots, while
the traditional PoE model also needs to obtain the position
and posture data of robots. It is difficult to obtain posture
data in practice. The operation is cumbersome, time-con-
suming, and difficult to ensure its accuracy [20]. Therefore,
the traditional PoE model is difficult to be applied in the
actual kinematic calibration of robots.

There are 13 × n parameters in the traditional PoE-based
error model which is very difficult to be identified. In this
paper, to simplify the error model and improve the redun-
dancy, the error model is simplified by transferring all the
errors of the kinematic parameters to the initial position
and posture matrix, to avoid the use of posture data which
is difficult to obtain. The position error is separated from
the kinematic model, and an error model based on position
data is established. Then, a kinematic calibration method of
collaborative robot based on position data is proposed,
which simplifies the measurement process and improves
the efficiency of calibration.

2. Kinematic Modeling based on LPoE for the
Collaborative Robot

In this section, the transformation of the local coordinate
system of the adjacent linkages is derived, based on which
the LPoE kinematic model of a typical six degree-of-
freedom collaborative robot is established.

2.1. Description of the Coordinate System of Adjacent
Linkages. Figure 1 shows a typical six degree-of-freedom col-
laborative robot. Unlike general industrial robots, the axes of
the second, third, and fourth joints of the collaborative robot
are parallel to each other.

Like the D-H model, the LPoE model uses a local coor-
dinate system to describe the motion relationship of adjacent
links [21]. As shown in Figure 2, the relationship between
the adjacent linkages i − 1 and i can be written as (1).

Ti−1,i qið Þ = Ti−1,i 0ð Þeŝiqi , ð1Þ

where Ti−1,ið0Þ ∈ SEð3Þ is the initial transformation matrix

between coordinate systems of i and i − 1, ŝi ∈ soð3Þ denotes
the twist of joint i, qi denotes the rotation angle of joint i,
and eŝiqi is a matrix:

eŝiqi =
eŵiqi viqi

0 1

" #
, ð2Þ

where eŵiqi = I + ŵi sin qi + ŵ2
i ð1 − cos qiÞ.

Furthermore, ŝi can be written in the coordinate system i
:

ŝi =
ŵi vi

0 0

" #
, ð3Þ

where vi = ½vix, viy , viz�T ∈ℜ3×1 and ŵi ∈ soð3Þ are the cross-

product matrixes of wi = ½wix ,wiy ,wiz� ∈ℜ3×1. ŵi can be

Figure 1: The six degree-of-freedom collaborative robot.
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Figure 2: The coordinate systems of adjacent joints.
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written as

ŵi =

0 −wiz wiy

wiz 0 −wix

−wiy wix 0

2
664

3
775: ð4Þ

To be consistent with existing robot position and posture
description methods, Ti−1,ið0Þ ∈ SEð3Þ can be written as the
form of position and posture matrix:

Ti−1,i 0ð Þ =
Ri−1,i 0ð Þ di−1,i 0ð Þ

0 1

" #
, 7 ð5Þ

where Ri−1,ið0Þ ∈ SOð3Þ and di−1,ið0Þ ∈ℜ3×1 denote the initial
posture and position , respectively.

2.2. Kinematic Modeling for the Robot. Based on the coordi-
nate systems of adjacent joints, the kinematic model of the
six degree-of-freedom collaborative robot can be derived as
follows:

T0,6 q1, q2,⋯, q6ð Þ = T0,1 q1ð ÞT1,2 q2ð Þ⋯ T5,6 q6ð Þ
= T0,1 0ð Þeŝ1q1T1,2 0ð Þeŝ2q2 ⋯ T5,6 0ð Þeŝ6q6 :

ð6Þ

T6,7 is used to denote the transformation from the flange
to the tool of the robot. Then, the position and posture
matrix of the tool will be

T0,7 q1, q2,⋯, q6ð Þ = T0,1 0ð Þeŝ1q1T1,2 0ð Þeŝ2q2 ⋯ T5,6 0ð Þeŝ6q6T6,7:

ð7Þ

Following the method of LPoE, the coordinate systems
of the robot were established as shown in Figure 3. The
nominal value of the twists is s1 = s2 = s3 = s4 = s5 = s6 =
½0 0 1 0 0 0�T . The nominal kinematic parameters can be
determined according to the structural size of the robot, as
shown in Table 1.

3. The Error Modeling Based on LPoE for the
Collaborative Robot

In this section, the error modeling of the collaborative robot
based on LPoE is proposed and simplified. Then, the pose-
based and position-based error models are derived, respec-
tively. The identification method and flow chart based on
the least square method are presented.

3.1. Error Modeling and Simplifying. The kinematic model, i.
e., (7) can be written as the function of T ð0Þ, s, and q:

T = f T 0ð Þ, s, qð Þ, ð8Þ

where Tð0Þ = ½T0,1ð0Þ, T1,2ð0Þ,⋯, T6,7ð0Þ�T , s =
½s1, s2,⋯, s6�T , and q = ½q1, q2,⋯, q6�T .

By linearization of (8), the error model can be derived:

δTT−1 =
∂f

∂T 0ð Þ δT 0ð Þ + ∂f
∂s

δs +
∂f
∂q

δq
� �

T−1, ð9Þ

where δTT-1 denotes the error of position and posture of the
tool in the base coordinate system, which can be calculated
by subtracting the measuring position and posture from
the nominal ones. Kinematic parameters can be obtained
by identification with the measuring data and the error
model. The objective function of the identification model is
generally set as the least square solution, i.e.,

Min 〠 δTT−1 −
∂f

∂T 0ð Þ δT 0ð Þ + ∂f
∂s

δs +
∂f
∂q

δq
� �

T−1
����

����
� �

:

ð10Þ

There are 13 parameters to be identified in each joint in
(10), and there are 6 joints in the collaborative robot. So,
many parameters make the parameter identification model
highly redundant and complicated. It is very difficult to
directly identify the parameters.

To solve the problem of high redundancy and complex-
ity of the error model based on LPoE, the simplified error
model will be presented. As shown in Figure 4, the nominal
coordinate system of joint i foixiyizig and the actual coordi-
nate system foiaxiayiaziag are not coincident for the error of
kinematic parameters, i.e., the nominals Ti−1,ið0Þ, si and qi
are not equal to the actual Ta

i−1,ið0Þ, sia, and qi
a. For the

local coordinate system of LPoE can be assigned arbitrarily,
the following two assumptions are proposed [21]: (1) the
kinematic error only exists in the initial position and posture
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Figure 3: The coordinate systems and twists of the robot.

Table 1: The kinematic parameters of the robot.

Name H1 W1 L1 W2 L2 W3 H2 W4

Value [mm] 96 138 418 114 398 98 98 89
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of the local coordinate system T ð0Þ, and (2) the nominal
values of qi and si remain unchanged in the whole parameter
identification calculation process.

Based on these assumptions, a new local coordinate system
Ti

cð0Þ = foicxicyiczicg is set at each joint as the intermedia
coordinate system in the following identification, as shown in
Figure 4. Then, qi

c and si
c will remain unchanged as qi and si

in the identification. Therefore, (9) and (10) can be simplified as

δTT−1 =
∂f

∂T 0ð Þ δT 0ð ÞT−1,

Min 〠 δTT−1 −
∂f

∂T 0ð Þ δT 0ð ÞT−1
����

����
� �

:

ð11Þ

3.2. ErrorModeling Based on Position and Posture.According to
Chasles theorem [22], for a given homogeneous transformation
matrix T ∈ SEð3Þ, there is at least one coordinate twist p̂ ∈ seð3Þ
such that ep̂=T. Then, one can obtain (12) according to (1).

ep̂i = Ti−1,i 0ð Þ, ð12Þ

where p̂i ∈ seð3Þði = 1, 2,⋯, 7Þ. Then, (7) can be rewritten as

T0,7 = ep̂1eŝ1q1ep̂2eŝ2q2 ⋯ ep̂6eŝ6q6ep̂7 : ð13Þ

Let δp̂i denote the error of p̂i. Then, one can obtain δp̂i =
e−p̂iδðep̂iÞ and δðep̂iÞ = ep̂iδp̂i. By linearization of (13), one can
get

δT0,7 = δ ep̂1
� �

eŝ1q1ep̂2eŝ2q2 ⋯ ep̂6eŝ6q6ep̂7

+ ep̂1eŝ1q1δ ep̂2
� �

eŝ2q2 ⋯ ep̂6eŝ6q6ep̂7+⋯

+ep̂1eŝ1q1 ⋯ ep̂5eŝ5q5δ ep̂6
� �

eŝ6q6ep̂7

+ ep̂1eŝ1q1 ⋯ ep̂6eŝ6q6δ ep̂7
� �

= ep̂1δp̂1e
ŝ1q1ep̂2eŝ2q2 ⋯ ep̂6eŝ6q6ep̂7

+ ep̂1eŝ1q1ep̂2δp̂2e
ŝ2q2 ⋯ ep̂6eŝ6q6ep̂7

+⋯+ep̂1eŝ1q1 ⋯ ep̂5eŝ5q5ep̂6δp̂6e
ŝ6q6ep̂7

+ ep̂1eŝ1q1 ⋯ ep̂6eŝ6q6ep̂7δp̂7:

ð14Þ

Right multiplying T−1
0,7 both sides of (14), one can get (15) in

the form of adjoint transformation.

δT0,7T
−1
0,7 = Ad

ep̂11
δp̂1 + Ad

ep̂11 eŝ1q1
Adep̂2δp̂2+⋯

+Adep̂1 eŝ1q1 ep̂2 eŝ2q2⋯ep̂6 eŝ6q6 Adep̂7δp̂7,
ð15Þ

where δT0,7T
−1
0,7 ∈ SEð3Þ denotes the total error of kinematic

parameters of the robot relative to the base coordinate system.
Ad is the adjoint transformation defined as

Ad : SE 3ð Þ↦R6×6, g =
R P

0 1

" #
↦Adg =

R P̂R

0 R

" #
,

ð16Þ

where g is a homogeneous transformation matrix, R is the
orthogonal matrix in g, and P̂ is the antisymmetric matrix of
P. According to the matrix logarithm calculation formula
defined in SE (3), δT0,7T

−1
0,7 can be written as

δT0,7T
−1
0,7 = log Ta

0,7T
−1
0,7

� �
, ð17Þ

where Ta
0,7 denotes the actual position and posture. Compo-

nents of SE(3) can be expressed by δp̂i ↦ δpi ∈R
6×1 and

log ðTa
0,7T

−1
0,7Þ↦ log ðTa

0,7T
−1
0,7Þ∨ ∈R6×1. Then, (15) can be
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Figure 4: The error of kinematic parameters in coordinate systems.
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Figure 5: The flow chart of kinematic parameters identification by
the iterative least square method.
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rewritten as

log Ta
0,7T

−1
0,7

� �∨ = AdT0,1 0ð Þδp1 + AdT0,1
AdT1,2 0ð Þδp2+⋯

+AdT0,6
AdT6,7 0ð Þδp7,

ð18Þ

where T0,7 = ep̂1eŝ1q1ep̂2eŝ2q2 ⋯ ep̂6eŝ6q6ep̂7 denotes the transfor-
mation from coordinate system 0th to 7th. The initial position
and posture transformation of linkage i relatively to i − 1 is

Tc
i−1,i 0ð Þ = ep̂i eδp̂i = Ti−1,i 0ð Þeδp̂i : ð19Þ

(18) can be written in the form of linear equations:

y = Ax, ð20Þ

where

y = log Ta
0,7T

−1
0,7

� �∨ ∈R6×1,

x = δp1, δp2,⋯, δp7½ �T ∈R6 7ð Þ×1,

A = AdT0,1 0ð Þ, AdT0,1
AdT1,2 0ð Þ,⋯, AdT0,6

AdT6,7 0ð Þ
h i

∈R6×6×7:

ð21Þ

T−1
0,7 and A can be obtained from the nominal model.

Ta
0,7 can be obtained by measuring, usually a laser tracker.

x denotes the error of the kinematic parameters to be iden-
tified. To improve the accuracy and robustness of the iden-
tification, it is usually necessary to measure the position and
posture of the tool under different configurations of the
robot. If m times of measuring are required, at the i -th

Table 2: The setting error of the robot.

Joint δpi ′ δsi ′ δqi ′
0-1 (0, 0.001, 0.002, 2, 1.5, 0.5)T (0, 0, 0, 0, sin (0.01), −1 + cos (0.01))T 0

1-2 (0, 0.002, 0.003, -2, 1.2, 2.4)T (0, 0, 0, 0, -sin (0.015), -1 + cos (0.015))T 0.03

2-3 (0.001, 0.004, 0.003, 2, -1, 2)T (0, 0, 0, sin (0.023), 0, −1 + cos (0.023))T 0.01

3-4 (0.001, 0.005, 0.002, 2, 1.5, -1)T (0, 0, 0, -sin (0.004), 0, −1 + cos (0.004))T 0.02

4-5 (0.002, 0.003, 0, -1, 1.6, 2.3)T (0, 0, 0, 0, sin (0.031), -1 + cos (0.031))T 0.015

5-6 (0.003, 0.001, -0.004, 2, 3, 1)T (0, 0, 0, sin (0.013), 0, -1 + cos (0.013))T 0.02

6-7 (0.005, 0.002, -0.003, 1.6, 2, 3.2)T — —
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Figure 6: The process of iterative convergence.
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time, the position and posture error yi and the correspond-
ing adjoint mapping matrix Ai can be obtained. After fin-
ishing acquiring m measuring data, yi and Ai are
substituted into (22).

Y =

y1

⋮

ym

2
664

3
775 =

A1

⋮

Am

2
664

3
775x = Ax, ð22Þ

where

Y = y1, y2,⋯, ym½ �T ∈R6m×1,

x = δp1, δp2,⋯, δp7½ �T ∈R6×7×1,

A = A1, A2,⋯, Am½ � ∈R6m×6×7:

ð23Þ

Since the model consists of 6 ×m linear equations and
variables, when m > 7, the linear least squares algorithm
can be used for parameter identification, and the least
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Figure 7: The position error in directions of x, y, and z before and after calibration in simulations.
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squares solution of x is

x = ATA
� �−1

ATY , ð24Þ

where ðATAÞ−1AT is the pseudoinverse of A.
Tð0Þ can be initialized with the nominal value, i.e., Tð0Þ

= ½T0,1ð0Þ, T1,2ð0Þ,⋯, T6,7ð0Þ�T . x can be calculated by
acquired data and (24). Then, Tð0Þ can be updated by (19) till
the objective function approaches 0 or T(0) converges to a sta-
ble value. Then, the stable Tð0Þ is set as the initial position and
posture, i.e., Tð0Þ = ½T0,1ð0Þc, T1,2ð0Þc,⋯, T6,7ð0Þc�T . (7) can
be written as (25) after the nominal position and posture
matrix is substituted with the above identified one.

T0,7 = Tc
0,1 0ð Þeŝ1q1Tc

1,2 0ð Þeŝ2q2 ⋯ Tc
5,6 0ð Þeŝ6q6Tc

6,7: ð25Þ

3.3. Error Modeling Based on Position. In practice, the posture
of the robot is very difficult to obtain, which is time consuming
and complicated. One error modeling method based on posi-
tion is presented in this paper.

Right multiplying P0 both sides of (13), one can get

P

1

" #
= T0,7P0 = ep1eŝ1q1ep2eŝ2q2 ⋯ ep6eŝ6q6ep7P0, ð26Þ

where P denotes the position of the tool, P0 = ½0,0,0,1�T .
Then, the position error model can be obtained by differen-
tiating (26):

δP

0

" #
= δT0,7

P0
1

" #
+ T0,7

δP0

0

" #
: ð27Þ

According to the assumptions above, i.e., the kinematic
error only exists in the initial position and posture of the
local coordinate system Tð0Þ, (27) can be written as

δP

0

" #
= δT0,7

P0

1

" #
= δT0,7T

−1
0,7

� �
T0,7

P0

1

" #

= δT0,7T
−1
0,7

� � P

1

" #
=

−P̂ I3

0 0

" #
δT0,7T

−1
0,7

� �∨
:

ð28Þ

By substituting (18) into (28), one can get

δP = −P̂I3
	 


AdT0,1 0ð Þδp1 + AdT0,1
AdT1,2 0ð Þδp2+⋯+AdT0,6

AdT6,7 0ð Þδp7
� �

:

ð29Þ

(29) can be simplified as

y = Jx, ð30Þ

where y = δP = Pa − Pn ∈R
3×1, Pn denotes the nominal posi-

tion, Pa denotes the actual position, x = ½δp1, δp2,⋯δp7�T ∈

R6×7×1, and J = −P̂ I3
	 
½AdT0,1ð0Þ, AdT0,1

AdT1,2ð0Þ,⋯AdT0,6

AdT6,7ð0Þ� ∈R6×6×7.
The position of the tool can be measured m times at dif-

ferent configurations. Then, with these measured data, the
kinematic parameter identification equations can be
obtained as shown in (31).

Y =

y1

⋮

ym

2
664

3
775 =

J1

⋮

Jm

2
664

3
775x = Jx: ð31Þ

One can solve (31) by the iterative least square method
with the termination condition of the iteration as ‖x‖<ε, as
shown in Figure 5. And the least square solution is

x = JT J
� �−1

JTY : ð32Þ

4. Simulations

In the simulation, the twists are set as Figure 3, and the kine-
matic parameters are set as Table 1. To simulate the measur-
ing error and test the stability of the error model, Gaussian
noise with an expectation of 0 and a variance of 0.2 is
applied to the data of positions calculated by the kinematic
model of the robot. The settings when calculated the data
of positions are the following: (1) the errors of kinematic
parameters are δpi ′, δqi ′, and δsi ′, and (2) the actual initial
position and posture is set as follows:

Ta
i−1,i 0ð Þ = Ti−1,i 0ð Þeδp̂i′ i = 1, 2,⋯, 7ð Þ: ð33Þ

The actual position is calculated by

Pa
0,7 =

Y6
i=1

Ta
i−1,i 0ð Þe ŝi+δŝi′ð Þ qi+δqi′ð Þ� �

Ta
6,7 0ð ÞP0: ð34Þ

All the joints of the robot are one freedom; so, the setting

error should meet: ‖wi + δwi
’‖ = 1, ðwi + δwi

’ÞTðvi + δvi
’Þ

= 0, si = ðvi,wiÞT , and δsi
’ = ðδvi’, δwi

’ÞT , as shown in
Table 2.

Collaborative robotLaser tracker

PC with SA software

Figure 8: The experimental system of calibration for the
collaborative robot.
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100 groups of joint angle data are randomly generated,
which are substituted to (34) to obtain the actual position
data. The position data are divided into two groups: identifi-
cation group and verification group. With the identification
group of position data, the process of iterative convergence
is shown in Figure 6 which shows that after 1st iteration,
the objective function is reduced greatly; after 10 iterations,
the maximum error is reduced from 29.597mm to
0.146mm, and the average error is reduced from 6.831mm
to 0.037mm. The identified parameters are substituted to
the kinematic model of the robot to calculate the position
error in the three directions of the coordinate system with

the verification group of data, and the results are shown in
Figure 7 which shows that the maximum error in x, y, and
z directions is reduced from 19.797mm to 0.094mm,
26.548mm to 0.092mm, and 14.626mm to 0.095mm,
respectively.

5. Experiments

To further verify the calibration method based on position
information and LPoE model proposed in this paper, a cali-
bration experiment was carried out on a six degree-of-
freedom collaborative robot, the repeated positioning
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Figure 9: The position error in directions of x, y, and z before and after calibration in experiments.
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accuracy of which is 0.03mm. The measuring instrument is
RADIAN Pro R20 of API, and the measuring radium and
accuracy are 20m and 15μm+ 0:7 μm/m, respectively. The
measuring software is Spatial Analyzer (SA) of New River
Kinematics. The experimental system is shown in Figure 8.

100 groups of joint angles are generated in the measur-
able space of the laser tracker, 70 groups of which are iden-
tification sets and the other 30 groups are verification sets.
According to Figure 5, the kinematic parameters are identi-
fied, and the verification results are shown in Figure 9. The
results show that after calibration, the maximum error in x
, y, and z directions is reduced from 3.171mm to
0.393mm, 3.258mm to 0.678mm, and 3.297mm to
0.560mm, respectively. Therefore, the accuracy of the col-
laborative robot is increased greatly by the proposed calibra-
tion method based on position data and improved LPoE.

6. Conclusions

The kinematic model of the collaborative robot based on the
LPoE model was established, and the corresponding error
model and calibration method were derived. The calibration
method was verified by simulation, which proved the valid-
ity of the error model and the calibration method. A six
degree-of-freedom collaborative robot was used as the
experimental objective, and the API RADIAN Pro R20 laser
tracker was used as the measurement equipment to perform
kinematic parameter calibration experiments which show
that the positioning errors of the six degree-of-freedom col-
laborative robot decrease from 3.171mm, 3.258mm, and
3.297mm to 0.393mm, 0.678mm, and 0.560mm in the
directions of x, y, and z, respectively, after kinematic param-
eter calibration. Therefore, the proposed calibration method
is effective.

However, the residuals are still about 0.6mm after cali-
bration. The main reason is that kinematic calibration can-
not eliminate the influence of nongeometric errors such as
the elastic deformation of the joint. In the future, relevant
research work will be carried out on nongeometric errors
to further improve the positioning accuracy of the robot.
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In this paper, the trajectory tracking problem of industrial manipulator with fixed periodic external force on human-robot
cooperative assembly line is studied. An advanced fuzzy adaptive supertwisting sliding mode control (FASTSMC) algorithm is
proposed to realize the rapid convergence and continuous control of nonlinear control system. In order to enhance the
robustness of the system, an arctangent terminal sliding mode surface is designed to deal with the concentrated uncertain
disturbance. The supertwisting method is used to overcome the chattering problem in the control law. The fuzzy adaptive
technique is used to compensate the centralized disturbance with unknown upper bound. A stiffness identification model is
designed to estimate the deviation of the manipulator under external force. Finally, the feasibility of the proposed control
scheme is verified by a simulation example of a 4-DOF manipulator.

1. Introduction

The development of Industry 4.0 has led to great changes in
manufacturing specifications and aims to reduce human
participation by replacing industrial robots to perform the
most repetitive tasks [1]. Human-robot cooperation is a rep-
resentative technology, which has become the key technol-
ogy of the future factory. For example, this technology has
been used in assembly lines in the automotive industry such
as the Volkswagen factory in Wolfsburg, Germany. It com-
bines the advantages of human workers and assistant robots
and allows different degrees of automation in the workplace
to meet the increasing flexibility needs of manufacturing sys-
tems. In the hybrid team of human and robot, the organiza-
tion needs intelligent planning and control algorithms. The
system must be reconfigured quickly to meet the needs of
high production of different products, but human participa-
tion is inevitable [2]. Human-robot cooperative system is a
nonlinear time-varying dynamic system with uncertain
interference, in which the uncertainty and external interfer-
ence greatly improve the complexity of the system. Many

researchers have designed corresponding controllers for this
technical problem, such as variable impedance control
method [3], adaptive admittance controller [4], underactu-
ated redundant low impedance method [5], and efficiency
weighting strategy [6]. However, the existing methods lack
ideal solutions to three main challenges: (1) the control sys-
tem cannot guarantee the convergence of stable equilibrium.
(2) The robustness of human-robot cooperative system is
endangered by uncertainty and external interference. (3)
The nature and characteristics of external interference are
difficult to identify and compensate.

Although many advanced control methods, such as
adaptive control [7], neural network control [8], and vari-
able structure control [9], can be applied to human-robot
cooperation manipulator control system, they all have some
limitations. Deng [10] developed a novel finite-time com-
mand filter backstepping method, which allows the tradi-
tional command filter backstepping control and ensures
the finite-time convergence. Figueredo et al. [11] proposed
a robust dual-quaternion-based H-infinity task-space kine-
matic controller for robot manipulators, and this controller
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provides higher precision and faster response than the con-
ventional H-infinity control. Although the above schemes
have achieved some positive conclusions, the design of these
controllers is complex, and the steps of adjusting parameters
in practical engineering application are cumbersome, which
is not conducive to wide popularization. Therefore, this
paper attempts to improve the more easily realized sliding
mode control and apply it to the end trajectory tracking con-
trol of human-robot cooperation manipulator.

The conventional sliding mode control principle is to use
the symbolic function to make a decision on the input signal
and then process the feedback, respectively, so that the con-
trol system can obtain strong robustness. The conventional
linear sliding mode control can only achieve the asymptotic
convergence of the state. Generally, increasing the gain to
make the actuator saturate quickly is a common method to
accelerate the convergence speed of tracking error [12]. In
order to make the sliding mode control more in line with
the needs of practical application, many improved schemes
of sliding mode control have been proposed one after
another. In reference [13], a terminal sliding mode control
of PID type is proposed to strengthen the nonlinear relation-
ship between state variables and control inputs. In reference
[14], combining the sliding mode control method and the
fast exponential convergence method, the sliding mode sur-
face can be obtained faster, and the tracking error converges
in the form of fast exponential convergence. In addition, ter-
minal sliding mode control has the characteristics of reduced
control gain, strong anti-interference ability, and finite-time
convergence. It is also often used in the control of manipu-
lator. For example, based on the terminal sliding mode con-
trol scheme proposed in reference [15], the low gain control
of the manipulator system is realized. For the stabilization of
underactuated robotic systems, reference [16] designed a fast
terminal sliding mode control technology based on distur-
bance observer, estimated the external disturbance of the
system by using the finite-time disturbance observer, and
established the finite-time control law. In order to eliminate
the singularity in the control process, a nonsingular contin-
uous terminal sliding mode control system is designed by
using the power reaching law in reference [17]. Tracking
control of manipulator system can be realized by establish-
ing reference signal and synchronizing it. Reference [18]
uses neural network technology and sliding mode control
method to design controller. In reference [19], the combina-
tion of sliding mode control method and fault-tolerant con-
trol is adopted. In the design of the manipulator controller,
the supertwisting method is used to eliminate the control
chattering and realize the finite-time tracking control. An
adaptive finite-time sliding mode control is applied to cha-
meleon chaotic systems with uncertainties and disturbances
[20]. Alattas et al. [21] applied the optimal integral terminal
sliding mode control based on the control Lyapunov method
to the asymmetric nonholonomic robot system with external
disturbances and obtained positive conclusions. In reference
[22], the finite-time tracking control is realized by formulat-
ing the boundary layer. The sliding mode control method
realizes quasi-sliding mode control by adjusting symbolic
function and exponential function. However, this method

has the disadvantage of reducing the dynamic accuracy of
the system.

There are many research achievements in the end trajec-
tory tracking control of manipulator based on sliding mode
control scheme and the solution of human-robot coopera-
tion. In reference [23], an impedance control structure for
monitoring the contact force between the end effector and
the environment is proposed, and the model-free fuzzy slid-
ing mode control strategy is used to design the position con-
troller and force controller. A fuzzy controller is proposed in
reference [24]. A nonlinear model is used to track the trajec-
tory of the micro robot in the human vascular system. In
addition, the application of sliding mode control in the field
of external force control of manipulator not only improves
the robustness of the controller but also improves the esti-
mation of force through sliding disturbance observer, so as
to avoid the use of expensive force sensors in connecting
rods and joints, such as reference [25]. The estimation of
force is closely related to the stiffness identification of
manipulator link and joint. Some studies identify the change
of manipulator stiffness matrix and then calculate the
change of external force, but it requires high accuracy of sen-
sor for stiffness measurement [26, 27]. In the above research,
in addition to the research on the manipulator control sys-
tem in the fixed application field, the impact of stiffness
change on the end trajectory tracking control effect is rarely
considered in the related research using the general manipu-
lator dynamic model. The main difficulty is that special sen-
sors need to be added to measure the change of stiffness, and
the installation position of the sensor is difficult to determine
because the trigger point of the change of manipulator link
or joint stiffness is not fixed in different application environ-
ments. On the premise of considering the elastic deforma-
tion law under the influence of external force, the elastic
deformation law model is introduced into the general
manipulator model, and the compensation mechanism is
introduced. The most common case of periodic variation
of elastic deformation is the scene where the manipulator
works repeatedly on the assembly line.

During the observation of the production process, it is
found that in the common scene of human-robot coopera-
tion in industrial production, the external force generated
by man on the manipulator often has a periodic law, which
often occurs in the assembly line. Because the operation of
the workpiece in the assembly line is cyclic and unified, the
physical contact rate between man and the manipulator will
appear in a specific action. Therefore, this paper believes that
the stiffness change caused by this external force can be sum-
marized into the corresponding model. The main innovation
of this paper is to solve the elastic deformation law of manip-
ulator joints and links, combined with the stiffness identifi-
cation model, and combined with the general dynamic
model of manipulator. The trajectory deviation caused by
external force contact is no longer regarded as uncertain dis-
turbance, which improves the performance of the controller.
In addition, the fuzzy adaptive supertwisting sliding mode
controller proposed in this paper uses the arctangent func-
tion to replace the symbolic function, which improves the
performance of the controller. In addition, 2-DOF and 4-
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DOF manipulators are used to verify the effectiveness of the
proposed algorithm and control scheme. From the perspec-
tive of practical application, the scheme proposed in this
paper does not need to add additional sensors on the manip-
ulator and will not increase the economic cost of industrial
production.

2. Model Derivation and Control Objectives

Based on the general dynamic equation of the manipulator,
the dynamic equation of the n-DOF manipulator under
external disturbance can be obtained as follows [28].

M qð Þ€q + C q, _qð Þ _q +G qð Þ + F _qð Þ = τ + τd , ð1Þ

where q, _q, and €q ∈ Rn are the vectors of joint positions,
velocities, and accelerations, respectively. MðqÞ ∈ Rn×n is
the positive definite inertia matrix of the manipulator; Cðq
, _qÞ ∈ Rn×n is the Coriolis force and centrifugal force matrix
of the manipulator; GðqÞ ∈ Rn is the gravity matrix of the
manipulator; Fð _qÞ ∈ Rn is the friction matrix; τ ∈ Rn is the
control torque of the manipulator joint; τd ∈ Rn is the uncer-
tain external disturbances. In practical industrial applica-
tions, the values of these physical parameters cannot be
accurately obtained due to modelling errors, payload
changes, external interference, other inherent factors, and
human factors. Therefore, the uncertainty caused by the sys-
tem parameter error can be expressed as

M qð Þ =M0 qð Þ − ΔM qð Þ,
C q, _qð Þ = C0 q, _qð Þ − ΔC q, _qð Þ,
G qð Þ =G0 qð Þ − ΔG qð Þ,
F _qð Þ = F0 _qð Þ − ΔF _qð Þ,

8>>>>><
>>>>>:

ð2Þ

where the subscript has the symbol of 0, such as M0, which
means the nominal matrix of manipulator parameters, and
the symbol with Δ in front means the uncertain part of the
robot arm control system, such as ΔM.Combined with for-
mulas (1) and (2), a new dynamic equation of manipulator
can be obtained.

M qð Þ€q + C q, _qð Þ _q + G qð Þ + F _qð Þ
= τ + τd + ΔM qð Þ€q + ΔC q, _qð Þ _q + ΔG qð Þ + ΔF _qð Þ: ð3Þ

Then, through the above analysis, it can be concluded
that in the presence of uncertainty and interference, the
dynamic equation (3) can be expressed as

€q =M0 qð Þ−1 −C0 q, _qð Þ _q −G0 qð Þ − F0 _qð Þ + τ + τdf
+ ΔM qð Þ€q + ΔC q, _qð Þ _q + ΔG qð Þ + ΔF _qð Þ g: ð4Þ

In order to facilitate representation and calculation, a
simplified dynamic model can be obtained according to
equation (4), which is written as

€q = f0 q, _qð Þ +M0 qð Þ−1τ tð Þ +D tð Þ, ð5Þ

where DðtÞ is the uncertainty and disturbance in the manip-
ulator control system and f0ðq, _qÞ represents a nonlinear
function with known boundary.

As can be seen from (1), the parameters in the manipu-
lator control system are highly coupled and are also affected
by dynamic time-varying parameters, which will affect the
stability of the system. In practical engineering, it is very dif-
ficult to accurately obtain the mathematical model, such as
unknown parameters, unmodeled nonlinear functions, and
payload changes. However, some prior knowledge of the
model can be obtained by analyzing the dynamic time-
varying characteristics. Therefore, in the design of model-
based manipulator controller, we should not give up consid-
ering the influence of unknown disturbances but summarize
the corresponding approximate mathematical model
through the existing data. Based on the above classical
model, this paper considers the cooperative work of the
manipulator in the task, and this cooperation is different
from the parallel manipulator in most cases. It may be
human-robot cooperation or the cooperative work of multi-
ple independent mechanical systems, so it is inevitable to
have direct or indirect mutual contact and collision. In this
paper, the resulting external force and influence are
expressed by the following equation.

Fe =M€~x +D _~x +Κ~x, ð6Þ

where Fe is the external generalized force exerted by the
manipulator on the environment and Κ ∈ Rn×n is the stiff-
ness matrix. While ~x = xr − x is the end effector tracking
error with xr being the reference trajectory, it is worth noting
that there is a difference in meaning between the end trajec-
tory error here and the end position error later. The trajec-
tory error here refers to the trajectory error generated
during the execution of the task, and the end position error
later refers to the signal error between the controller and the
sensor.

For the end control of the manipulator, the goal is to
design a robust sliding mode control to ensure high-
precision tracking of the desired known trajectory of the
manipulator in the presence of uncertainty and external
interference.

lim
t⟶t f

ej j = lim
t⟶t f

q − qdj j = 0, ð7Þ

where qd ∈ R
n is a desired trajectory, e = q − qd is trajectory

tracking error, and t f is finite time. Then, the controller is
designed according to the control objectives mentioned in
the paper. In order to ensure the rationality of the designed
controller, the stability is analyzed through the following
basic assumptions and lemmas.

The assumptions are as follows:

(i) Joint position and speed status are data that can be
measured by manipulator sensors

(ii) The total uncertainty ψDðtÞ satisfies the following
conditions, jψDðtÞj ≤ ω0 and jψ _DðtÞj ≤ ω1, where ψ
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is a constant diagonal matrix, which is formulated in
advance. Constants ω0 and ω1 are unknown and
positive

Through the above assumptions and according to the
relevant lemmas, the stability of the following invariant sys-
tem can be proved.

_z = f zð Þ: ð8Þ

Suppose there is a continuous function VðzÞ in the sys-
tem shown in equation (7), which satisfies the following con-
ditions, i.e., it is a positive definite function on D ⊆ Rn and
satisfies constraint condition:

_V zð Þ + kVλ zð Þ ≤ 0, ð9Þ

where k > 0 and λ ∈ ð0, 1Þ, it can be concluded that the sys-
tem based on equation (7) is locally finite time stable. If D
= Rn is satisfied, the system is globally finite time stable.

3. FASTSMC of Manipulator with External
Force Prediction

3.1. Design of Sliding Surface. The nonlinear sliding surface
describing the manipulator control system in equation (5)
can be defined as

σ tð Þ = ψ θ tð Þ − θ 0ð Þe−βt
� �

, ð10Þ

θ tð Þ = _e tð Þ + λe tð Þ, ð11Þ
where eðtÞ = q − qd is the joint space tracking position error
with qd ∈ R

n as the known desired position trajectory. From
these, we can get the result that _eðtÞ = _q − _qd represents the
tracking speed error of the joint, _qd means the desired speed
trajectory given by the control system, ψ is a constant diag-
onal matrix, and λ and β are the positive coefficients. Then,
the derivative of equation (10) with respect to t can be
obtained.

_σ tð Þ = ψ _θ tð Þ + βθ 0ð Þe−βt
� �

= ψ €e tð Þ + λ_e tð Þ + βθ 0ð Þe−βt
� �

:

ð12Þ

Combining equation (5), equation (12) can be rewritten
as

_σ tð Þ = ψ f0 q, _qð Þ − €qd + λ_e tð Þ + βθ 0ð Þe−βt +M0 qð Þ−1τ tð Þ +D tð Þ
� �

:

ð13Þ

The above formula can be further simplified to obtain

_σ tð Þ = ψ f0 q, _qð Þ − €qd + λ_e tð Þ + βθ 0ð Þe−βt
� �
+ ψM0 qð Þ−1 + ψD tð Þ = f tð Þ + h tð Þτ tð Þ + ω tð Þ:

ð14Þ

3.2. Sliding Mode Controller. Firstly, the conventional super-
twisting algorithm formula is rewritten as

_σ tð Þ = −l1 tð ÞΛ σ tð Þð Þ sgn σ tð Þð Þ + ϖ tð Þ, ð15Þ

_ϖ tð Þ = −l2 tð Þ sgn σ tð Þð Þ + η tð Þ, ð16Þ
where ΛðσðtÞÞ = diag ½jσ1ðtÞj1/2 ⋯ jσnðtÞj1/2�, l1 = diag
l11 ⋯ l1n½ �, and l2 = diag l21 ⋯ l2n½ � are diagonal
positive matrices and ηðtÞ is the unknown bounded uncer-
tainties, same as ψDðtÞ stated in the above assumptions.
Moreover, it is necessary to keep σðtÞ = _σðtÞ = 0 for a finite
time [29].

When the uncertainty boundary ω0 of the error is known,
the parameters l1 and l2 can be taken according to the method
of reference [17], i.e., l1 = diag 1:5 ffiffiffiffiffi

ω0
p ⋯ 1:5 ffiffiffiffiffi

ω0
p� �

and
l2 = diag 1:1ω0 ⋯ 1:1ω0½ �. It should be added that in the
above case, l1 and l2 are constants, and the gain l2 must be
greater than the boundary ω0 in order to switch the term l2
sgn ðσðtÞÞ. The uncertainty term ηðtÞ can be controlled. It is
worth noting that in many cases, the control gain may be over-
estimated, resulting in increased chattering. Later, we will design
a fuzzy adaptive compensation method to reduce chattering.

According to the conclusion in reference [18], equivalent
control on the sliding surface means average control. Once
the control system reaches the sliding surface, equivalent
control will occur. In order to keep the system moving on
the sliding surface, the sliding mode gain should not be less
than the upper limit of uncertainty. Obviously, due to the
switching characteristics of sliding mode control, the motion
of the system on the sliding model surface is discontinuous,
but the system controller needs to be continuous and equiv-
alent approximate. Therefore, it is necessary to use a low-
pass filter to obtain equivalent control.

s tð Þ = K tð Þ − 1
μβ0

∣ueq tð Þ∣ − ϵ, ð17Þ

where 0 < μ < 1/β0 < 1 and ϵ > 0 A is a positive scalar and
cannot be too large and ueqðtÞ = ηðtÞ = l2 sgn ðσðtÞÞ is equiv-
alent control on the sliding surface. The proposed adaptive
control law KðtÞ is defined as

K tð Þ = k0 + _k tð Þ, ð18Þ

k tð Þ = −ϱ tð Þ sgn s tð Þð Þ, ð19Þ
ϱ tð Þ = r0 + r tð Þ, ð20Þ
r tð Þ = γ s tð Þj j, ð21Þ

where k0, r0, and γ are positive constants and ϱðtÞ is a time-
varying scalar.

In (15) and (16), discontinuous symbolic functions exac-
erbate the chattering of sliding mode control. For sliding
mode control, the effective method to suppress chattering
is to select the appropriate switching function to improve
its continuity and smoothness. The common method is to
replace the traditional symbolic function with the saturation
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function, so that the boundary layer can be a continuous
state linear feedback control, but there is a problem of
uneven transition stage, resulting in drastic changes in slope.
In order to improve the smoothness of boundary layer tran-
sition stage, some recent studies use hyperbolic tangent
function as switching function. As shown in the figure, the
transition of hyperbolic tangent function is smooth in the
boundary layer, and the curve slope in the transition stage
of hyperbolic tangent function changes little near the bound-
ary layer. In addition, it is a continuous state feedback con-
trol in the boundary layer to improve the smoothness.

Different from the existing sliding mode control, this
paper uses the arctangent function as the switching function.
It can be seen from Figure 1 that the characteristics of the
arctangent function and the hyperbolic tangent function
are similar when they are used as the switching function.
However, there is an exponential function in the hyperbolic
tangent function. In the operation process, especially when
calculating the derivative, the amount of operation is large,
and the occupation of operation resources is more obvious
when calculating the high-dimensional model. Therefore,
considering the above reasons, equation (19) in system
(17) is rewritten as

_k tð Þ = −ϱ tð Þ arctan s tð Þð Þ: ð22Þ

Considering that the robotic manipulator system (1) sat-
isfies the above assumptions and proposes the control equa-
tion as equation (17), it can guarantee the finite-time
convergence of the error eðtÞ to zero point, and it can track
even in the presence of uncertainty and external distur-
bances asymptotically expected known trajectory qd .

We can get the convergence of systems (15) and (16) in a
finite time. Especially σðtÞ = 0, then from equation (10), we
can get the following result:

θ tð Þ = θ tð Þ 0ð Þ exp −βtð Þ: ð23Þ

Then, (23) can be regarded as the solution of the following
first-order differential equation:

_θ tð Þ + βθ tð Þ = 0: ð24Þ

Since β > 0, θðtÞ will converge gradually to zero; there-
fore, it can be inferred that when t⟶∞, θðtÞ⟶ 0, and
this will cause eðtÞ⟶ 0 and q⟶ qd . This just verifies the
closed-loop stability of the controller in the manipulator
system.

3.3. Fuzzy Adaptive Sliding Mode Controller. Sliding mode
control is an effective control technology to solve the zero
dynamic problem of nonminimum phase nonlinear systems.
However, in these designs, the concern about chattering has
not been completely solved without reducing the robustness
of the closed-loop system. High-order sliding mode control
and integral sliding mode control are alternative control
methods to effectively solve the chattering problem and fur-
ther enhance the robustness of the closed-loop system. How-
ever, the design of these controllers still requires a priori

knowledge of the uncertainty boundary. This paper adopts
the construction of fuzzy rules as the formulation standard
of uncertainty boundary in controller design, and these rules
and membership functions often rely on empirical
knowledge.

Aiming at the problem of manipulator control with
unknown model uncertainty and external interference, this
paper uses fuzzy logic inference algorithm to compensate
for the unknown uncertainty of the system. Among them,
the fuzzy function contains the adaptive parameters of slid-
ing mode control to realize the adaptive sliding mode
control.

The sliding surface θðtÞ and _θðtÞ are selected as the
inputs of the fuzzy system. Input and output fuzzy sets are
defined as NL NM ZO PM PLf g, where NL repre-
sents negative large, NM represents negative medium, ZO
represents zero, PM represents positive medium, and PL
represents positive large. The Gaussian membership func-
tion of fuzzy system can be expressed as

μz Ωið Þ = exp −
Ωi − α

ρ

� �2
" #

, ð25Þ

where Ωi is the input and output of the fuzzy system, the
subscript z of the membership function represents the fuzzy
rule set, α and ρ represent the center and width of the fuzzy
rule set z, respectively.

When the state trajectory deviates from the sliding mode
surface or the approaching speed is small, the output should
be increased appropriately to make it reach the sliding mode
surface quickly. When the state trajectory approaches the
sliding surface or the approaching speed is large, the output
should be appropriately reduced to suppress chattering.

sgn(x) arctan(x)

tanh(x)

sat(x)

2

2

–2

–2
0

Figure 1: Switching function.
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According to the above analysis, the determination of fuzzy
rules is shown in Table 1.

In the rule base, the central average defuzzification and
product reasoning methods are adopted, and the output of
the fuzzy system can be expressed as

y =
∑m

j=1 θ j
	 
 Qn

i=1μi xið Þ	 

∑m

j=1
Qn

i=1μi xið	 
 = ΓTΨ, ð26Þ

where Γ = Γ1 ⋯ Γi ⋯ Γm½ �T and Ψ =
Ψ1 ⋯ Ψi ⋯ Ψm½ �T .

This paper defined Γi shown as

Γi xð Þ =
Qn

i=1μi xið Þ
∑n

j=1
Qn

i=1μi xið Þ	 
 : ð27Þ

Therefore, the fuzzy function can be obtained.

Ρ = ΓT xð ÞΨ, ð28Þ

where ΓT is a membership function and Ψ is an adaptive
fuzzy parameter. The adaptive fuzzy parameters are formu-
lated as follows:

_Ψ = δ M−1 qð Þ	 
T
Γs, ð29Þ

where δ > 0 is a scalar design parameter.

3.4. Simulation. This part will take a 2-link manipulator as
an example to complete a simple trajectory, observe the
effectiveness of the proposed FASTSMC in the basic exam-
ple, and compare it with the classical sliding mode control
[30] and the conventional supertwisting sliding mode con-
trol [31] to reflect the application performance of the pro-
posed method. The desired trajectory given by this
simulation is qd = cos ð0:5tÞ 2 sin ð0:5tÞ½ �T .

It can be seen from Figure 2 that the tracking effect of
classical sliding mode control is poor, the convergence speed
is slow, and it is not stable enough in the tracking process.
After stabilization, some errors will still occur sometimes.
Supertwisting sliding mode control is a high-order sliding
mode control method. It has the advantage of realizing the
finite-time convergence of sliding mode variables and their
derivatives, can avoid the singularity problem existing in
other sliding mode control methods, and can make the chat-
tering in the output control signal more subtle. As shown in
Figure 3, the track tracking effect of supertwisting sliding
mode control is very excellent, but the convergence speed
is not satisfactory, which is difficult to apply in the case of
uncertainty in the system. The FASTSMC proposed in this
paper can quickly and accurately maintain trajectory track-
ing. Compared with the above two traditional methods, as
shown in Figure 4, the method proposed in this paper has
better performance in convergence speed and stability.

Then, the complexity of the algorithm proposed in this
paper is shown in Table 2. The computational complexity
of the algorithm proposed in this paper is expressed by the

time required for operation in MATLAB. The simulation is
run using MATLAB 2020a on a personal computer with
Intel Core, CPU i7-7700 @ 3.60GHz, and 8GB RAM. It is
not only compared with the above sliding mode control
and supertwisting sliding mode control but also with the
computational complexity of quantum interference artificial
neural network proposed in [8]. In order to make the test
results more accurate, each scheme was tested ten times,
and the calculation time was taken as their average.

It can be seen from Table 2 that the processing time of
the control scheme proposed in this paper is longer than that
of some conventional sliding mode control schemes, which
is mainly caused by MATLAB calling fuzzy logic module.
Compared with other novel schemes, the method proposed
in this paper has advantages in complexity.

3.5. Predict Joint Stiffness Model. In the manipulator control
system with n rotating joints, the driving system of the joint
can be regarded as a cantilever system, and its stiffness can
be expressed by the spring constant kθ. On this basis, the
joint stiffness of the manipulator system can be expressed
as the following diagonal matrix:

Κ = diag kθ1 , kθ2 ,⋯,kθn
	 


: ð30Þ

In the use of industrial manipulator, because the end
effector of the manipulator is affected by external contact
force, each joint will deform, resulting in the change of the
direction of the end effector. By analyzing the mechanical
characteristics of the industrial manipulator, it can be found
that there is the following relationship between the elastic
deformation at the joint of the manipulator and the torque
applied at the joint:

τk =Κek tð Þ, ð31Þ

where ekðtÞ is the vector representing the deformation of
joint angle under the influence of joint stiffness change.

Firstly, the stiffness of each joint of the manipulator is
assumed to be known, and the model between each joint is
established by Jacobian matrix, and the mapping relation-
ship with the elastic deformation of the end joint is obtained.
After that, through the kinematic model of the manipulator,
the law between the end deformation of the manipulator and
the deformation of other joints can be obtained as follows:

ΔX = J ek tð Þ, ð32Þ

Table 1: Fuzzy control rules.

s _s
NB NM ZO PM PL

NL PL PL PL PM ZO

NM PL PM PM ZO NM

ZO PM PM ZO NM NM

PM PM ZO NM NM NM

PL ZO NM NL NL NL
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where ΔX is a vector used to describe the relationship
between the joint deformation of the manipulator and the
position deviation of the end actuator of the manipulator

and J is the Jacobian matrix calculated by the vector product
method according to the kinematic model of the
manipulator.
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Figure 2: The joint trajectories and position errors of the manipulator with classical sliding mode control.
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Figure 3: The joint trajectories and position errors of the manipulator with conventional supertwisting sliding mode control.
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The influence of joint friction and gravity has been con-
sidered above, and these factors are ignored in this part.
Therefore, the relationship between the joint torque caused
by compensation deformation and the applied generalized
force can be obtained:

τk = JT Fe: ð33Þ

Substituting (31) and (32) into (33), respectively, we can
get

ΔX = JΚ−1 JT Fe: ð34Þ

Assuming that the Jacobian matrix and the terminal gen-
eralized force vector are known, we can obtain the joint
deformation mapping of the manipulator in the workspace
and calculate the joint torque caused by the change of joint
stiffness caused by external force. Therefore, we define a

model predictive control, which links the deformation law
of the rigid body with the sliding mode control above. The
system assumption of the stiffness part has no uncertainty,
and the dynamics is given by a simple integrator chain and
controlled by v.

v = argmin〠
d

j=0
_σk+j

�� ��2: ð35Þ

If there is no activation constraint, the nominal solution
can be obtained from the model predictive control conclu-
sion v by minimizing the square norm of the prediction
derivative of the sliding vector evaluated using the nominal
dynamics. Otherwise, a compromise will be reached to meet
the constraints. The prediction derivative can be easily cal-
culated from the state prediction without uncertainty [32].

_σk = Κ D M½ �
xr

_xr

€xr

2
664

3
775 −

x

J _q

J _q + Jv

2
664

3
775

0
BB@

1
CCA − Fe: ð36Þ

The predicted values referenced by the model are direct
because they are designed by the user. For external forces
without high-order information, it is obvious that the longer
the delay time, the less effective the assumption is, resulting
in performance degradation during contact transients. The

Table 2: Comparison of processing time of control schemes.

Control scheme
Processing time

(s)

Sliding mode control 2.230

Supertwisting sliding mode control 2.520

Quantum-interference artificial neural
network

132.565

FASTSMC (proposed in this paper) 7.372
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Figure 4: The joint trajectories and position errors of the manipulator with the method proposed in this paper.
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Table 3: Parameters used in controller simulation.

Type Parameter Value

Controller parameters

λ (in equation (11)) 5

β0, k0, r0, γ (in equations (17)-(21)) 1.99, 3, 3, and 5

ω0 (in equations (15) and (16)) 4

α, ρ (in equation (25)) 3, 1.4

Manipulator weight (kg)

Link 1 and Dynamixel MX106 0.45

Link 2 and Dynamixel MX64 0.30

Link 3, Dynamixel MX64, and actuator 0.50

Manipulator length (m)

Link 1 0.25

Link 2 0.15

Link 3 0.15

Link 4 0.05
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Figure 6: Comparison of tracking results in Case 1.
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predicted slip vector can be easily calculated by (36). The
same method applies to each joint.

4. Simulation Results

In this part, the manipulator model is established by using
MATLAB 2021a, and the designed controller is simulated.
The simulated manipulator adopts the practical 4-DOF
manipulator. In the simulation of this paper, fixed kinematic
parameters are assumed, but we introduce serious 15%
uncertainty in other parameters, that is, connecting link
mass, connecting link inertia, and connecting link centroid
position, and periodically introduce 20% torque error to
simulate periodic collision caused by human-robot coopera-
tion. The structure diagram of the controller is shown in
Figure 5.

In the simulation part, we compare the proposed scheme
with sliding mode control [30], supertwisting sliding mode
control [31], and model predictive control [33], which are
common methods used in manipulator trajectory tracking
control. And we design two case examples to illustrate the
application effect of the algorithm under different condi-
tions. In the simulation, the controller parameters and
manipulator mechanical parameters of the scheme proposed
in this paper are shown in Table 3

Case 1. In this case, we designed a large-area cutting scheme
of the manipulator. There are no sharp turns in the whole
track. In order to respond to the interference of human-
robot cooperation, a periodic external force is added at the
second joint, and the trajectory tracking results are shown
in Figure 6.
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From the track tracking effect shown in Figure 6 and the
tracking error shown in Figure 7, it can be seen that the
adopted method does not cause obvious error under the
influence of periodic external force, which shows that these
classical algorithms have strong robustness, and the selected
comparison scheme is suitable for manipulator control.

Case 2. In this case, we designed the cutting work of the
small area sharp turning process of the manipulator. There
are many turning points in the trajectory, but no external
force interference is added. The track tracking results are
shown in Figure 8.

As can be seen from Figure 8, the method proposed in
this paper can track the desired trajectory faster than other
methods after the turning of the trajectory. This shows that
the proposed method still has performance advantages in
trajectory tracking control even without direct external
force. As shown in Figure 9, the method proposed in this

paper has an advantage in convergence speed, and the trajec-
tory can track the desired trajectory quickly after errors arise
from uncertain disturbances and acute trajectories.

Case 3. In this case, the trajectory of the manipulator is the
same as that in Case 2. At the same time, the same periodic
external force as in Case 1 is added. The track tracking
results are shown in Figure 10.

From the tracking effect of model predictive control in
Figure 10, it can be seen that the error with the desired tra-
jectory is larger than that in Figure 8, which shows that the
influence of the applied external force on trajectory tracking
is obvious. For other sliding mode control methods, due to
the model prediction of stiffness matrix, it can actively com-
pensate the influence caused by the external force. There-
fore, it can be seen in Figure 11. In terms of error and
convergence time, there is little difference between several
sliding mode controls and Figure 9, which reflects the
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effectiveness of the joint stiffness model prediction proposed
in this paper.

It should be noted that since the tracking effect of the
model predictive control has a large error, in order to
describe the convergence process of the control method
simultaneously with other methods, in Figures 9 and 11,
the error of the model prediction is based on the deviation
between the interpolation projection points of the nearest
sampling point and the next sampling point.

In order to illustrate the performance of the scheme pro-
posed in this paper in practical application in manipulator as
much as possible, a 4-DOF manipulator model is established
by using MATLAB/Simscape, and the external force is added
at the joint to verify the performance of the scheme in the
human-robot cooperation application of the assembly line.
Because Simscape involves many variables and the coupling
between parameters is strong, the simulation needs a lot of
calculation. With the permission of computer performance
and time, we will increase the number of simulation itera-
tions as much as possible. The following figure shows the
simulation results of the 10th iteration.

Firstly, the coordinate data of the desired trajectory of
the manipulator in the motion space are read, and the con-
straints of the motion process are fitted according to the
physical model established based on the mechanical charac-
teristics of the manipulator. Secondly, the stiffness identifica-
tion model is used to process the trajectory deviation caused
by external force, which is converted into servo motor con-
trol signal and provided to the joint controller. Finally, the
motion process obtained after Simscape simulation is visual-
ized in MATLAB, and the proposed stiffness matrix com-
pensation method will be used to correct the error before
entering the next iteration. The specific process described
above is shown in Figure 12.

The experiment of two closed curves is designed accord-
ing to the process in Figure 12. In the application process of
industrial manipulator, the requirements of closed pattern
are high. It needs to overlap the starting point and terminal
point, and this standard should still be maintained after
repeated operations; otherwise, waste workpieces or unqual-
ified products will be produced. The experiments of the two
closed curves shown in Figure 13 take the effect after the
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10th iteration, and the applied periodic external force is 20
± 2N. The difference between the two groups of experi-
ments is that the length of the connecting rod of the manip-
ulator is different, but as shown in Figures 13(a) and 13(b),
the starting point and end point can be kept coincident,
which shows that the specification of the manipulator has
little impact on the application effect of the scheme proposed
in this paper.

5. Conclusion

In this paper, the arctangent terminal sliding mode surface
and sliding mode controller are designed for the manipula-
tor with fixed periodic external force on the assembly line
applied to human-robot cooperation, so as to track the refer-
ence trajectory quickly and accurately. In order to suppress
the influence of uncertain disturbance on the controller,
the fuzzy logic adaptive parameters are constructed, com-
bined with sliding mode control to enhance the robustness
in the control process. Then, the supertwisting and fuzzy
adaptive theory are used to reduce the chattering and com-
pensate the concentrated disturbance of the manipulator
under the action of external force. Then, because the sensor
has some limitations in stiffness measurement, this paper
designs a stiffness identification model to estimate the dis-
turbance caused by the applied external force, which saves
the hardware cost of the sensor and improves the control
effect. The feasibility of the proposed FASTSMC is verified
by the simulation of 4-DOF manipulator system.

In the future, we will study the trajectory tracking con-
trol of the manipulator under the influence of external forces
with more complex characteristics, so as to reduce the tor-
que amplitude and disturbance on the premise of ensuring
the convergence speed. In addition, the stiffness identifica-
tion method proposed in this paper is only limited to the
case that the manipulator receives the influence of strong
periodic external force, which has certain limitations in
practical applications. In the follow-up research, we will

study a reasonable data-driven method and combine the
end trajectory offset caused by deformation law with stiffness
identification to improve the robustness of the controller.
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In multisensor cooperative detection network, some random disturbances, energy carried by sensor, distance between target and
sensor node, and so on all affect the sensor selection scheme. To effectively select some sensors for detecting the target, a novel
sensor selection method considering uncertainty disturbance is proposed under constraints of estimation accuracy and energy
consumption. Firstly, the sensor selection problem is modeled as a binary form optimization problem with a penalty term to
minimize the number of sensors. Secondly, some factors (precision, energy, and distance, etc.) affecting the sensor selection
scheme are analyzed and quantified, and energy consumption matrix and estimation precision threshold are given by matrix
tra‘nsformation. Finally, the problem of minimizing sensor number after relaxation is solved by convex optimization method,
obtaining sensor selection scheme by discretization and legitimization of the suboptimal solution after convex relaxation.
Simulation results show that the proposed algorithm can ensure the minimum number of sensors, improving accuracy of state
estimation and saving network energy.

1. Introduction

Wireless Sensor Network (WSN) is a self-organization
wireless network composed of large numbers of microsen-
sor nodes. Due to it being easy to deploy and inexpensive,
WSN widely is applied in areas such as the military, avia-
tion, and agriculture [1]. At the same time, all sensor
nodes in WSN can be used to obtain the most compre-
hensive information related to target; however, it leads to
the energy consumption and processing burden of the net-
work. Thus, according to measurement accuracy require-
ments, selecting part sensor nodes can save network
energy, reduce response delay, and prolong the lifetime
of the network [2].

1.1. Related Works. Some researches of sensors selection
have been applied in target tracking system, cooperative
detection system, and so on [3, 4]. Jamali et al. embedded
a penalty item into objective function of sensors selection
to enhance sparsity of solver, and it was only used in low
dimension scene [5]. A greedy algorithm called FrameSense
was proposed by Ranieri et al., and it iteratively removed the

sensor corresponding to the maximum cost function [6].
FrameSense’s algorithm could obtain optimal sensor selec-
tion scheme, but heavy compute burden and multiple con-
straint conditions were needed. Minimum eigenspace
method was proposed by Jiang et al., which could quickly
converge to obtain sensor selection scheme; however, lower
estimation accuracy was its disadvantage [7], so an improved
minimum eigenspace method with group greedy scheme
was proposed by Jiang et al. to improve about 63% estima-
tion accuracy expect heavy compute burden [8].

In spite of sensor selection can be modeled as integer
programming, it is NP-hard problem. Branch and bound
(BBD) was an effective global optimal method correspond-
ing to integer programming; however, computation com-
plexity was exponentially growing with increase of
dimension corresponding to optimized variable [9]. Based
on convex method, Joshi and Boyd proposed a heuristic
method to approximately obtain sensor selection scheme
[10]. Since the constraint of the problem was relaxed, Joshi
and Boyd’s method could reduce the accuracy of measure-
ment. So, some local optimum techniques were proposed
by Joshi to enhance accuracy corresponding to sensor
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selection problem, while it had good detection performance
with a small number of sensors.

Besides, communication performance and remaining
energy of sensors are two key factors in multisensor coopera-
tive detection network, and they should be considered in sen-
sor selection too. Sensor selection technique with time, energy,
and communication constraints was discussed by Rusu et al.
[11]; they modeled the sensor selection problem as a 0-1 opti-
mization problem, then used a convex relaxation method to
solve the objective function. However, the influence of some
factors (sensor measurement capability, sensor location, etc.)
on sensor scheduling was not involved in Rusu et al.’s paper.
In addition, some various factors (uncertainty disturbance,
vibration disturbance, etc.) caused by complexity environment
may decrease measurement accuracy of selected sensors. So, it
is important that selecting suitable sensors under some con-
straints including measurement accuracy, energy consump-
tion and communication capability.

1.2. Contributions. Under some conditions including
bounded disturbance of sensor measurement and sensor
location, a new sensor selection algorithm based on the con-
straints of energy and estimation accuracy is proposed. By
using convex relaxation technology, the minimum number
of sensor selection set is obtained, and it balances network
energy and measurement accuracy to ensure the perfor-
mance of the multisensor cooperative detection system.
The main contributions are as follows:

(1) A binary form optimization model with penalty term
is proposed to obtain the sensor selection scheme,
which is used to minimize number of sensors. Com-
paring with tradition algorithms, our energy penalty
term is used to balance energy consumption

(2) The distance weight between sensor and target is
adaptively given. It directly reflects that the closer
the sensor is to target, the greater probability of
being selected, and the better detection accuracy of
sensor. So, compared with the traditional method,
the number of selected sensors can be effectively
reduced

(3) The energy consumption matrix and state estimation
precision are regarded as constraints of the sensor
selection problem; it more reflects various factors of
the complex environment

(4) We introduce techniques including the convex relax-
ation, discretization, and legitimization of bounded
interval [0,1], which are used to handle Np-hard
problem of sensor scheduling and receive subopti-
mal solution. The proposed method has lower com-
putation complexity than traditional methods

1.3. Paper Organization and Notation. The rest of this paper
is organized as follows. Section 2 is problem statement for
knowledge research background. Section 3 proposes the
improved method for the sensor selection scheme under var-
ious constraints including precision, energy, and distance. In

this section, sensor selection with penalty term, sensor selec-
tion considering uncertainty disturbance, optimization of
sensor selection, and description of the proposed algorithm
are given separately. Section 4 shows simulation results
and analysis. Some conclusions about this paper are given
in Section 5.

The symbol denotement of this paper is descripted as
shown in Table 1.

2. Problem Statement

Consider a target x with N-dimensional state is coopera-
tively detected by sensor set Ω which composed of M sen-
sors. Measurement matrix Φ is related to set Ω, which can
be defined as Φ = ½φ1, φ2,⋯,φM�T ∈ RM×N ,M >N , and φi ∈
RN×1 is the measurement vector corresponding to sensor i.
At a sampling time t, kt sensors are selected to form mea-
surement sensor set Ωkt (Ωkt ⊆Ω); at the same time, mea-
surement of target state xt is described as follows:

yt =Φtxt + νt , ð1Þ

where Φt ∈ Rkt×N , kt >N is the measurement matrix and yt
∈ Rkt is the measurement of sensors.

Therefore, the minimum unbiased estimate of target

state xt is x̂t =Φ†
t yt = ðΦT

t ΦtÞ−1ΦT
t yt , and its mean square

error (MSE) can be expressed as [12]

MSE x̂tð Þ = tr ΦT
t Φt

� �−1� �
= 〠

n

i=1

1
λi Φ

T
t Φt

� � : ð2Þ

3. The Proposed Algorithm for Sensor Selection

To solve the problem of sensor selection under some con-
straints, the optimization problem of sensor selection is
given under some constraints including environment,
energy, and distance between node and target. After being
quantized, constraints can be described with the energy con-
sumption matrix and state estimation precision to be
regarded as constraints of the optimization problem.
Besides, the distance weight between the sensor and target
is adaptively given to reflect that the closer the sensor is to
target, the greater the probability of being selected. Convex
relaxation methods are considered to handle optimization
problem of sensor selection, and discretization and legitimi-
zation of suboptimal solution after convex relaxation are
used to obtain the suboptimal solution of the sensor selec-
tion scheme.

3.1. Problem of Sensor Selection. Obviously, state estimation

accuracy of target x is the highest γ0 = trððΦTΦÞ−1Þ when
sensor set Ωkt =Ω, i.e., all sensors of sensor cooperative
detection system are used to detect target. However, it con-
sumes a lot of energy; moreover, there are some uncertain
environment factors such as temperature, humidity, and vis-
ibility, which reduce the estimation accuracy of the target
state. Therefore, considering environment factors and esti-
mation performance, the problem of sensor selection can
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be expressed as the minimum cardinal of sensor measure-
ment set Ωkt as follows:

minimize
Ωkt

〠
T

t=1
card Ωktð Þ,

s:t: r ΦT
t Φt

� �−1� �
≤ τγ0 − C,

C − γ0 τ − 1ð Þ ≤ 0,

ð3Þ

where card ð⋅Þ is the function of minimum cardinal. T is the
total sampling time. τ > 1 is the accuracy level which increases
with the decrease of accuracy requirement. C = V/ðpht0Þ (V,
p, h, t0 express visibility, environmental factor parameter,
humidity, and temperature, respectively) is the environment
factor. When τ increases, it means that fewer sensors can be
used to meet estimated accuracy requirement; besides, inequal-
ityC − γ0ðτ − 1Þ ≤ 0is used to restrict the estimation accuracy
which does not exceed the optimal estimation accuracy.

In short, equation (3) indicates that we want to choose a
sensor set with minimum cardinal satisfying estimation
accuracy constraint conditions. To describe the problem of
sensor selection,M-dimensional vector ωt ∈ f0, 1gM is intro-
duced to express the selected state of sensors in sensor set Ω
at t sampling time, and ðωtÞi encodes whether the i -th sen-
sor is selected. The selected state of sensors at all sampling
timeTcan be described by matrixΘ = ½ω1, ω2,⋯,ωT �. Thus,
the optimization problem of sensor selection described in

equation (3) can be transformed into the following equation:

minimize
Θ∈ 0,1f gM×T

〠
T

t=1
αTt ωt ,

s:t: tr ΦT diag ωtð ÞΦ� �−1� �
≤ τγ0 − C,

C − γ0 τ − 1ð Þ ≤ 0,

ð4Þ

where weight vector αt ∈ RM and ðαtÞi = ððωtÞi + ϵÞ−1
(i = 1,⋯,M); ϵ is a small number to avoid denominator 0
during iterative processing.

3.2. Optimization Model with Penalty Term. As it is known,
energy consumption of sensor is positively related to distance
between sensor and target, at the same time, some sensors die
after repeated use, shortening network lifetime. So, it is impor-
tant that considering the balance of energy consumption to
avoid some selected sensors from dying too quickly. Here,
we introduce sensor usage factor into problem of sensor selec-
tion to constrain energy consumption of selected sensors.

First of all, considering each sensor to be selected at least
once for detecting target, we add equation (5) into equation
(4) and regard it as the constraint of optimization problem
of sensor selection

〠
T

t=1
ωt ≥ 1: ð5Þ

Then, to increase the measurement efficiency, some sen-
sors near the target should be selected with high probability.
Therefore, the constraint condition (4) in equation (4) can
be modified as follows:

tr ΦT diag Hð ÞΦ� �−1� �
≤ τγ0 − C, ð6Þ

where the weight vector of distance is H = ðSMωtÞ ⊙ dM , and
ðdMÞi = 1/kmi − bk2, SM = SC/M. SM is a relative area by
monitoring area S, environmental factor C, and number of
sensor nodesM.

Next, considering the measurement and processing cost
of sensors, we add equation (7) into the constraint condition
of equation (4).

diag sð ÞΘ1ð Þ ⊙ PL ≤ e0 + E, ð7Þ

where s = ½kφ1k22, kφ2k22,⋯,kφMk22�
T
∈ RM

+ is the cost of mea-
surement and data processing about all selected sensors, and
ðsÞi is the cost about the i-th sensor. ðPLÞi = ðdMÞηi represents
the distance-dependent Rayleigh channel attenuation of the i
-th sensor, and η is the channel attenuation factor. e0 ∈ RM

+ is
the available reference energy of the sensor, and ðe0Þi is the
energy about the i-th sensor; besides, the extra energy
beyond the reference energy is expressed by E ∈ RM .

Obviously, to avoid excessive energy consumption of sen-
sors, it is necessary to add a penalty term gðEÞ relating to the
extra energy in equation (4); therefore, it is revised as follows:

Table 1: Symbol denotement.

Symbol Denotement

Φ (or ν) Measurement matrix (vector)

⋅ð Þi i-th element of vector

1 Vector with proper dimension whose entry is 1

diag ⋅ð Þ Diagonal of matrix

card ⋅ð Þ Cardinal of given set

λi ⋅ð Þ i-th eigenvalue of matrix

⋅ð ÞT Transposition of matrix

⋅ð Þ−1 Inverse of matrix

tr ⋅ð Þ Trace of matrix

⊙ Hadamard product

⋅k k2 2-Norm

⋅k kF F-Norm
⋅k k∞ ∞-Norm

t Sampling time

xt State of target x sampling time t

kt Number of sensors

Φt Composed of kt rows in matrix Φ

νt Zero mean Gaussian noise with σ2I covariance
yt Measurement of sensor

b Coordinate of target x
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minimize
E>0,Θ∈ 0,1f gM×T

〠
T

t=1
αTt ωt + λg Eð Þ,

s:t: tr ΦT diag Hð ÞΦ� �−1� �
≤ τγ0 − C,

C − γ0 τ − 1ð Þ ≤ 0,

diag sð ÞΘ1ð Þ ⊙ PL ≤ e0 + E,

〠
T

t=1
ωt ≥ 1,

ð8Þ

where penalty term gðEÞ = kEk22, λ is a regularization
coefficient.

3.3. Sensor Selection considering Uncertainty Disturbance.
Various uncertainty disturbances may refluent the measure-
ment performance and position of the sensor; thus, we assume
that the upper bounds of measurement disturbance and the
channel attenuation disturbance are δΦ and δPL, respectively.
Based on the above upper bounds, equation (8) can be trans-
formed as follows:

minimize
E>0,Θ∈ 0,1f gM×T

ΔΦk k2<δΦ , ΔPLk k∞<δpL

 〠
T

t=1
αTt ωt + λg Eð Þ,

s:t: tr Φ + ΔΦð ÞT diag Hð Þ Φ + ΔΦð Þ
� �−1

� �
≤ τγ0 − C,

C − γ0 τ − 1ð Þ ≤ 0,

diag sð ÞΘ1ð Þ ⊙ PL + ΔPLð Þ ≤ e0 + E,

〠
T

t=1
ωt ≥ 1,

ð9Þ

where ΔΦ ∈ RM×N and ΔPL ∈ RM×1 are the change of measure-
ment disturbance and channel attenuation disturbance,
respectively.

Obviously, the 0-1 constraint Θ ∈ f0, 1gM×T is noncon-
vex; thus, it is necessary to relax the 0-1 constraint to a poly-
hedral constraint Θ ∈ ½0, 1�M×T , and equation (9) is rewritten
as follows:

minimize
E>0,Θ∈ 0,1½ �M×T

ΔΦk k2<δΦ , ΔPLk k∞<δpL

 〠
T

t=1
αTt ωt + λg Eð Þ,

s:t: tr Φ + ΔΦð ÞT diag Hð Þ Φ + ΔΦð Þ
� �−1

� �
≤ τγ0 − C,

C − γ0 τ − 1ð Þ ≤ 0,

diag sð ÞΘ1ð Þ ⊙ PL + ΔPLð Þ ≤ e0 + E,

〠
T

t=1
ωt ≥ 1,

ð10Þ

where constraint conditions kΔΦk∞ < δΦ and (10) can be
transformed into linear matrix inequality form through
matrix transformation as follows (see Appendix A):

tr U−1� �
≤ τγ0 − C,

ΦT diag Hð ÞΦ −U − βI ΦT diag Hð Þ

diag Hð ÞΦ diag Hð Þ + β

δΦ
2

� �
I

2
64

3
75 ≽ 0, β ≥ 0:

ð11Þ

Besides, constraints kΔPLk∞ < δPL and (10) can also be

Input: initialization parameters.
Output: sensor scheduling matrix Θ ∈ f0, 1gM×T .
1: Setting initial weight αt = 1, sensor scheduling matrix Θ0 = 0M×T .
2: Initializing unselected sensor node set N =∅, and selected node set K =∅.
3: Calculating minimum MSE γ0.
4: FOR st: =1 to Maxst DO
5: Obtaining current Θ by solving optimization problem (14) based on Θ0Maxst.
6: Updating set N = fn ∣ΘðnÞ ≤ ϵg and K = fk ∣ΘðkÞ ≥ 1 − ϵg.
7: IF kΘ −Θ0k2F ≤ ϵ THEN
8: K ⟵ K ∪ farg max

k
ΘðkÞ, k ∉ Kg.

9: ELSE IF jNj + jKj =M × T THEN
10: Going to step 15.
11: ELSE
12: Setting sensor scheduling matrix Θ0 ⟵Θ, and updating weights based on ðαtÞi ⟵ ððωtÞi + ϵÞ−1, then going to step 5.
13: END IF
14: END FOR
15: Getting sensor scheduling matrix Θ.

Algorithm 1: The pseudocode of proposed algorithm.
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transformed into vector form as follows (see Appendix B):

diag sð ÞΘ1ð Þ ⊙ PL +Πð Þ ≤ e0 + E, ð12Þ

where

Π = δPL, δPL,⋯, δPL|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
M

2
4

3
5
T

: ð13Þ

3.4. Optimization of Sensor Selection. Based on the equations
(11) and (12), equation (10) can be rewritten as follows:

minimize
E>0,Θ∈ 0,1½ �M×T

 〠
T

t=1
αTt ωt + λg Eð Þ,

s:t: 
ΦT diag Hð ÞΦ −U − βI ΦT diag Hð Þ

diag Hð ÞΦ diag Hð Þ + β

δΦ
2

� �
I

2
64

3
75 ≽ 0,

diag sð ÞΘ1ð Þ ⊙ PL +Πð Þ ≤ e0 + E,
tr U−1� �

≤ τγ0 − C,

β ≥ 0,

C − γ0 τ − 1ð Þ ≤ 0,

〠
T

t=1
ωt ≥ 1:

ð14Þ

Obviously, equation (14) is a standard convex optimiza-
tion problem of sensor selection, and the relaxed sensor

scheduling matrix Θ can be obtained by solving this optimi-
zation problem.

Of course, the solution of the relaxed equation (14) can-
not directly extend to the original equation (9); thus, we
handle this problem by the discretization and legalization
method [13].

3.5. Description of the Proposed Algorithm. Algorithm 1
shows the proposed algorithm of sensor selection.

4. Simulation Results and Analysis

To test the performance of the proposed algorithm SS-
CEED, we compare it with the existing algorithms Spare-
Sense [5], FrameSense [6], CON-REL [10], and SS-TECC
[11] in a variety of settings as detailed next. We implement
all algorithms in MATLAB and the SDP relaxation scheme
via CVX [14]. Besides, all simulations are run on a computer
with 1.8GHz Intel Core i5-8250U CPU and 8.00GB RAM.
We give simulation results and analysis on the distribution
and number of sensor node selection, besides the estimation
accuracy of algorithms with or without disturbance, which
are used to describe the performance of the proposed
algorithm.

We assume that M stationary sensor nodes carrying the
same energy and one target are randomly deployed in simu-
lation scenes 1, 2, and 3. The parameters with respect to sim-
ulations are shown in Table 2; at the same time, for the
measurement matrix Φ with constraint ΦTΦ = αI, the selec-
tion threshold corresponding to the convex relaxation is set
to 0.35 [11].

Figure 1 shows five distributions of sensors and target for
the four algorithms in scene 1.

Table 2: Parameters of simulation.

Name Symbol
Value

Scene 1 Scene 2 Scene 3

Area S 40m× 40m 70m× 70m 100m× 100m
Number of sensors M 100 150 200

Dimensional of target state N 20 30 40

Position of target bx , by
	 


20, 20ð Þ 35, 35ð Þ 50, 50ð Þ
Uncertainty bound of sensor position δPL 0.8 1.6 2.4

Level of accuracy of estimation τ 4

Attenuation factor of channel η -0.5

Regularization parameter λ 1000

Environmental factor μ 100

Relative humidity h 50%

Temperature t0 25°C

Visibility V 500m

Measure matrix α 100

Energy of sensors e0 0 J

Environmental regulation parameter p 100m/°C
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Figure 1: Continued.
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In Figure 1, symbols “□,” “◇,” and “∗” represent the tar-
get, working sensor nodes, and nonworking sensor nodes,
respectively. The number of nodes selected by CON-REL,
FrameSense, SpareSense, SS-TECC, and SS-CEED is 24, 21,

39, 48, and 21, respectively. It can be found that the least
sensor nodes are selected by the proposed SS-CEED algo-
rithm and the FrameSense algorithm, and the number of
selected nodes is greater than the dimension of target N
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(e) SS-CEED

Figure 1: Sensor distribution of five algorithms.
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Figure 2: Node selection of algorithms under different scenes.
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(N = 20).The reason is that the FrameSense algorithm excludes
one node at every time of selecting the senor until the remaining
number is N + 1, i.e., there have 21 sensors at this time. Other
algorithms are similar in selecting sensor nodes. Besides, com-
pared with other algorithms, distance weight is considered in
the SS-CEED algorithm, leading to the sensor nodes nearby
the target being selected to work; it can effectively decrease
energy consumption of communication.

4.1. Analysis of Node Selection. To clearly describe the algo-
rithm performance in different scenes, Figure 2 gives the
average number of selected sensors by 100 times Monte
Carlo simulation.

In Figure 2, the five algorithms’ number of selected sensor
nodes increases when the number of deployed nodes increases

in different scenes. The proposed SS-CEED algorithm selects
the sensor number as 23, 35, and 44 under three scenes. Com-
pared with other algorithms excluding FrameSense, selecting
the sensor number of the proposed SS-CEED algorithm is
minimum, and this conclusion is consistent with the analysis
result in Figure 1. Although the FrameSense algorithm can
select the least number of sensors, it requires that the number
of selected sensor nodes must be onemore than the dimension
of sensor measurement; however, the above constraint is not
necessary for the SS-CEED algorithm.

4.2. Analysis of Estimation Error. To show selection perfor-
mance of five algorithms, this paper gives MSE of target state
estimation after deploying selected sensors under different
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Figure 3: MSE comparison of state estimation.
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algorithms. Regarding scene 1 as the simulation background,
we compare the MSE and WCE of algorithms under mea-
surement bounded disturbance δΦ = 1:2. Figures 3 and 4
give MSE and WCE of algorithms under different selected
sensor numbers, respectively.

The logarithm of MSE (logMSE) is displayed to clearly
describe the estimation error in Figure 3. It is found that
all logMSEs are decreased when the number of selected sen-
sor nodes increase. The reason is that estimation accuracy
improves and MSE decreases with the number of sensor
nodes used for state estimation increases. In this figure, the
logMSE of the proposed SS-CEED algorithm has the smal-
lest value of 0.5529 when the number of selected sensors is
40, and it is 0.1764, 0.2609, 0.3289, and 0.6671 lower than
that of SS-TECC, SpareSense, FrameSense, and CON-REL,
respectively. The reason is that the SS-CEED algorithm con-
siders measurement and position disturbance of sensors,
leading to its estimation performance being the best.

Similar to Figure 3, all WCEs are decreased when the
number of selected sensor nodes increases in Figure 4. Com-
pared with SS-TECC, SpareSense, FrameSense, and CON-
REL, the proposed SS-CEED algorithm has the smallest
WCE, meaning accuracy of state estimation is best.

4.3. Performance Analysis under Different Disturbances. To
analyze the influence of different measurement disturbances
on the estimation accuracy of the SS-CEED algorithm, this
paper gives the result of MSE and WCE after 100 times
Monte Carlo simulation under scene 1. Similar to Figure 3,
in order to clearly describe the results, the logarithms of
MSE and WCE are shown in Figures 5 and 6, named as
logMSE and logWCE, respectively.

Assuming the bound measurement disturbances are 0,
2.25, 4.5, and 6.75, Figure 5 shows the logMSE curve of the
proposed algorithm. The logMSE of the proposed algorithm
is the lowest without measurement disturbance. When there
is measurement disturbance, taking 40 sensor nodes as an
example, the logMSE with disturbance boundary of 2.25 is
0.0889 smaller than the disturbance boundary of 4.5 and is
0.1157 smaller than the disturbance boundary of 6.75. It is
found from different curves of selected sensor nodes. In
short, considering measurement disturbance, the estimation
accuracy of the proposed algorithm decreases as the mea-
surement disturbance boundary increases.

Similar to logMSE in Figure 5, the logWCE of the pro-
posed algorithm is the lowest without measurement distur-
bance in Figure 6. And taking 40 sensors as an example,
the logWCE with a disturbance boundary of 2.25 is 0.0299
smaller than the disturbance boundary of 4.5 and is 0.0398
smaller than the disturbance boundary of 6.75. Similarly,
the estimation accuracy of the proposed algorithm decreases
as the measurement disturbance boundary increases under
considering measurement disturbance.

4.4. Analysis of Sensor Node Selection in Different Times. Dif-
ferent from other algorithms, the SS-TECC algorithm and
the proposed SS-CEED algorithm involve sensor node selec-
tion in different working times. In Figure 7, comparison of
selection number between the SS-TECC algorithm and the
SS-CEED algorithm under all scenes is within T = 10 times.

It can be seen from Figure 7, in observation period of the
three scenarios, the number of sensors selected by the SS-
CEED algorithm and the SS-TECC algorithm changes little;
that is, the number of sensor nodes selected by the two
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algorithms changes within 5 to save energy. It is obvious that
the number of sensors selected by the SS-CEED algorithm is
less than that by the SS-TECC algorithm, and the sensor
number variation of the SS-CEED algorithm is stationary.
In short, compared with the SS-TECC algorithm, the SS-
CEED algorithm selects fewer sensors nodes, which can save
more network energy.

5. Conclusions

Random disturbances, energy carried by the sensor, distance
between the target and the sensor node, and so on affect the
performance of sensor selection, so this paper regards the
sensor selection problem as a binary optimization problem
for sensor scheduling to effectively select sensors to deploy.
The optimization problem aimed at the minimum number
of selected sensor nodes is constructed, and the constraints
such as energy consumption and precision are given. Using
matrix transformation and convex relaxation techniques,
the optimization problem is solved, and the sensor selection
scheme is given. The proposed algorithm not only meets the
target state estimation accuracy but also effectively reduces
sensor resources and network energy consumption.

Appendix

A. Transformation of Matrix Inequality (11)

Setting �Φ =Φ + ΔΦ, kΔΦk2 < δΦ, then the optimization con-
straint (10) can be expressed as

tr U−1� �
≤ τγ0 − C,

U≺ �ΦT diag Hð Þ�Φ,
ΔΦk k2 < δΦ,

ðA:1Þ

where U ∈ RN×N is a symmetric positive definite matrix.
Assuming ΔΦ is bounded, the equation (11) can be

transformed into linear matrix inequality. The proof is as
follows.

First, the constraint kΔΦk2 ≤ δΦ is transformed into

ΔΦ
TΔΦ≺δΦ

2I, then �Φ =Φ + ΔΦ is substituted into U≺ �Φ
T

diag ðHÞ�Φ, and inequality (A.2) is received

U≺ΦT diag Hð ÞΦ +ΦT diag Hð ÞΔΦ

+ ΔΦ
T diag Hð ÞΦ + ΔΦ

T diag Hð ÞΔΦ,

ΔΦ
TΔΦ≺δΦ

2I:

ðA:2Þ

Theorem 3.3 in [15] shows that the above semi-infinite
quadratic matrix inequality holds if and only if the following
matrix inequality (A.3) holds.

ΦT diag Hð ÞΦ −U − βI ΦT diag Hð Þ

diag Hð ÞΦ diag Hð Þ + β

δΦ
2

� �
I

2
64

3
75 ≽ 0, β ≥ 0:

ðA:3Þ

Thus, the equation (A.1) can be converted into the fol-
lowing inequality:

tr U−1� �
≤ τγ0 − C,

ΦT diag Hð ÞΦ −U − βI ΦT diag Hð Þ

diag Hð ÞΦ diag Hð Þ + β

δΦ
2

� �
I

2
64

3
75 ≽ 0, β ≥ 0:

ðA:4Þ

B. Transformation of Inequality (12)

Setting �PL = PL + ΔPL, kΔPLk∞ < δPL, then the optimization
constraint (10) can be expressed as

sup diag sð ÞΘ1ð Þ ⊙ �PL

� �
i
≤ e0 + Eð Þi  ΔPLk k∞ < δPL, i = 1,⋯,M:

ðB:1Þ

The left-hand side of equation (B.1) can be expressed as

sup diag sð ÞΘ1ð Þ ⊙ �PL

� �
i

� �
= diag sð ÞΘ1 ⊙ PLð Þi + sup diag sð ÞΘ1ð Þ ⊙ ΔPLð Þi

� �
 i = 1,⋯,M

= diag sð ÞΘ1 ⊙ PLð Þi + δPL diag sð ÞΘ1ð Þi i = 1,⋯,M:

ðB:2Þ

Making

Π = δPL, δPL,⋯, δPL|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
M

2
4

3
5
T

, ðB:3Þ

we can vectorize the scalar representation and get the
following inequality:

diag sð ÞΘ1ð Þ ⊙ PL +Πð Þ ≤ e0 + E: ðB:4Þ
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Tracking ground moving target with sensors proves to be a challenge due to the uncertainty of target motion area, the existence of
Doppler blind zone (DBZ), and the complex terrain. In this paper, a multisensor management method based on DBZ information
is presented, in which the available sensors are selected to obtain the best operational revenues for ground moving target tracking.
First, the ground target motion model is established considering the off-road/on-road state based on road topology information.
Second, the sensor measurement model is given combined with the DBZ information, and a decorrelation method of
measurement noise is proposed. Third, a target state estimation algorithm is derived using particle filter, in which the DBZ
information is regarded as prior information. Then, combined with the variable structure interacting multiple model method,
an estimation algorithm for tracking maneuvering target is proposed. Furthermore, an optimization model of nonmyopic
sensor management is constructed to obtain the best sensor management scheme. Finally, the advancement and effectiveness
of the proposed management method are verified in the simulations.

1. Introduction

With the development of sensing technology and informa-
tion fusion technology, multisensor systems have been
widely used in the military field [1–5]. How to determine a
reasonable and effective sensor management method to
obtain the best operational revenues has become a research
hotspot for many scholars.

In terms of decision-making methods in sensor manage-
ment, there are two kinds of methods, including the myopic
sensor management method [6] and the nonmyopic sensor
management method [7]. The myopic method decides the
management scheme based on predicting the one-step reve-
nue in the future. On the contrast, the nonmyopic method
decides the management scheme based on predicting the mul-
tistep revenues, which can obtain a better management perfor-
mance than the myopic method, but with a large computing
time.

At present, scholars usually focus their research on the
sensor management method based on the optimization indi-
cator, whose connotation is to set an objective function

closely related to the optimization indicator to maximize
the desired operational revenues [8, 9]. According to the
selected optimization indicator, the sensor management
methods can be divided into three main categories:
information-indicator-based management methods, risk-
indicator-based management methods, and task-indicator-
based management methods. The information-indicator-
based methods focus on managing sensors to maximize the
information gain, thus reducing the uncertainty in the obser-
vation. Commonly used information indicators are the
Shannon entropy [10, 11], the Kullback-Leibler divergence
[12], and the Rényi information divergence [13, 14]. How-
ever, the disadvantage of the methods is that the meaning
of the used information indicators is too abstract to describe
their concrete physical meaning, which may make it difficult
for commanders to understand their connotation accurately.
The risk-indicator-based management methods are mainly
used in scenarios where sensor resources are scarce. The
methods consider that the sensor management is performed
to reduce the losses due to measurement uncertainty, rather
than to maximize measurement performance. Commonly

Hindawi
Journal of Sensors
Volume 2022, Article ID 8555692, 17 pages
https://doi.org/10.1155/2022/8555692

https://orcid.org/0000-0002-2300-2207
https://orcid.org/0000-0003-2884-8583
https://orcid.org/0000-0003-1547-8253
https://orcid.org/0000-0003-0340-6439
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/8555692


used risk indicators include the threat assessment risk [15],
the target loss risk [16, 17], and the sensor radiation risk
[18–20]. The task-indicator-based management methods
focus on the combat task, and the relevant indicators are
directly related to the tasks. Unlike the risk-indicator-based
method, the methods are applicable when the sensor
resources are redundant. Typical indicators are the covari-
ance matrix of target state [21, 22], the target detection prob-
ability [23], and the posterior Cramér-Rao lower bound
(PCRLB) [24, 25]. Among the three kinds of sensor manage-
ment methods mentioned above, methods for target tracking
have been most studied, and the representative work is
shown in [19, 25, 26]. In [19], a nonmyopic sensor manage-
ment method is applied to track aerial targets for the trade-
off between the tracking accuracy and the radiation risk.
Mohammadi and Asif [25] present a dynamic sensor sched-
uling for tracking problems in distributed sensor networks,
in which the PCRLB is used to quantify the tracking accu-
racy. Gostar et al. [26] present a constrained sensor manage-
ment method for the multitarget tracking based on
information divergence, and the labeled multi-Bernoulli fil-
ter was proposed for estimating the target state.

However, most of the existing studies about sensor man-
agement methods mainly focus on aerial targets and neglect
ground targets. In the actual battlefield, there is inevitably a
need for tracking ground targets, whose motions are uncer-
tain and often subject to the terrain information [27–29]. In-
ground target tracking, the most widely used terrain infor-
mation, is the road information, and the representative work
is shown in [30–35]. In [30], an on-road target tracking is
proposed, in which the linear roads are mapped to the
ground coordinate system and the road network is estab-
lished as a one-dimensional linear mode. Koch et al. [31]
propose a road map extraction method to reduce the error
of the road map. In [32], the road network is modeled as
constant curvature segments, and the nonlinear road-
constrained Kalman filtering is used in target state estima-
tion. In [33], the widths of road segments are considered
in the state model of road target which influences the transi-
tion of the target state. Zheng and Gao [34] introduce the
Gaussian mixture probability hypothesis density filter in
the ground target tracking and proposed a multitarget track-
ing method in clutter combined with the road constraints. In
[35], a ground moving target indication (GMTI) tracking
problem is presented, and a variable structure interacting
multiple model (VSIMM) particle filter was applied in the
switching problem of road segments.

Meanwhile, the ground target detection sensors, such as
the GMTI radar, mostly used the pulsed Doppler techniques
to reduce the effect of clutters [36]. However, the Doppler
blind zone (DBZ) problem has become a great challenge in
target tracking. The low-Doppler targets, whose Doppler
magnitude falls (i.e., the radial velocity of the target) below
the minimum detectable velocity (MDV), cannot be detected
by the sensor [37]. This results in a significant decrease in
tracking accuracy. For the target tracking in the presence
of the DBZ, most previous works focus on improving the fil-
ter and data fusion algorithms [38–40], but few works utilize
sensor management to solve it.

To solve the problem mentioned above, we propose a
multisensor management method for ground moving target
tracking based on the DBZ information. The study focuses
on the following points.

First, a more realistic ground moving target tracking sce-
nario is considered in which the target can move in different
motion areas and its movement is constrained by road
topology information. That is to say, the target motion state
is divided into two categories: off-road and on-road.

Second, a sensor measurement model under measure-
ment uncertainty is presented considering the DBZ informa-
tion. Meanwhile, Lei and Han in [41] indicate that the
measurement noise of the range and the radial velocity are
statistically correlated. To solve this problem, we propose a
decorrelation method of measurement noise.

Third, combined with the particle filter (PF) algorithm, a
target state estimation algorithm based on the DBZ informa-
tion is proposed, in which the DBZ is regarded as prior
information. Then, a VSIMM-PF-DBZ algorithm is pro-
posed for tracking the maneuvering target combining the
VSIMM method.

Finally, we introduce the PCRLB to quantify the tracking
accuracy in the future and establish a nonmyopic sensor
management optimization model to obtain the optimal
management scheme.

The research framework of this paper is as follows. Sec-
tion 2 describes the sensor management problem. The
ground target motion model and the sensor measurement
model are established in Section 3 and Section 4, respec-
tively. In Section 5, the target state estimation algorithm
based on the DBZ information is proposed. In Section 6,
the VSIMM-PF-DBZ algorithm is presented. The sensor
management optimization model is given in Section 7. Sec-
tion 8 makes some simulations to illustrate the effectiveness
and advancement of the proposed management method.
Finally, conclusions are given in Section 9.

2. Problem Description

Sensors are Doppler radars in this paper. The target tracking
scene is shown in Figure 1. Assume that there areNsensors
to track a ground moving target, which can move on the
road or off-road. The data processing center unifies the mea-
surements obtained by the sensors, searches the sensor man-
agement scheme with the best revenues, and sends the
corresponding commands to control the working of the sen-
sor system. Note that we use the nonmyopic sensor manage-
ment method in which the management scheme is decided
based on the cumulative revenues over a time horizon in
the future [7, 42].

At time k, the sensor management scheme is denoted as
Ak = ðankÞN×1, where a

n
k indicates the working state of sensor

n. If sensor n is activated to track the target at time k, then
ank = 1; otherwise, ank = 0. Then, the management scheme
sequence over the H − step time horizon is denoted as
Ak:k+H−1 = ½Ak, Ak+1,⋯, Ak+H−1�.

For the convenience of presentation, we set the following
two constraints related to Ak:k+H−1:
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(1) One target must be tracked by only one sensor at
each time

(2) Due to the sensors cannot be switched frequently in
practice, we consider the minimum dwell time tmin
in sensor selecting. Before the working sensor can
be switched, its continuous working time must
exceed tmin

The above constraints can be written as

〠
N

n=1
ank+h−1 = 1, 1 ≤ h ≤H

t Ak+h−1ð Þ ≥ tmin

8><
>: , ð1Þ

where tðAk+h−1Þ represents the continuous working time of
the switched sensor at time k + h − 1.

3. Ground Target Motion Model

The ground target state at time k is Xk = ½xk, _xk, yk, _yk�T,
where xk and yk are the position coordinates in the real-
world coordinate system and _xk and _yk are the correspond-
ing velocities. When a target moves on the road, its motion
state is mainly affected by the road topology [43]. For the
off-road target, its motion is relatively free. Therefore, differ-
ent state models are required to describe the characteristics
of the target motion in different areas.

3.1. Off-Road State Model. The off-road state model can be
described as [19]

Xk = Foff ‐road
i Xk−1 +Goff‐road

i εoff‐roadk , ð2Þ

where Foff ‐road
i is the state transition matrix of motion model

i, Goff ‐road
i is the corresponding process noise gain matrix,

εoff‐roadk is the zero means Gaussian process noise with
covariance matrix Qoff ‐road

k = diag ðσx, σyÞ, and τ is the sam-
pling interval. In this paper, two typical motion models are
considered, including the constant velocity (CV) model
and the constant turn (CT) model. Thus, the corresponding
state transition matrixes and process noise gain matrices are

as follows [24].

Foff ‐road
CV =

1 τ 0 0

0 1 0 0

0 0 1 τ

0 0 0 1

2
666664

3
777775, ð3Þ

Fof f−road
CT =

1 sin φπ/φ 0 − 1 − cos φπð Þ/φ
0 cos φπ 0 −sin φπ

0 1 − cos φπð Þ/φ 1 sin φπ/φ

0 sin φπ 0 cos φπ

2
666664

3
777775,

ð4Þ

Goff‐road
CV = Goff ‐road

CT =

τ2/2 0

τ 0

0 τ2/2

0 τ

2
666664

3
777775, ð5Þ

where φ is the turn rate of the target.

3.2. On-Road State Model. The information of road seg-
ments can be collected from geographic information systems
(GIS) [43]. Then, the mathematical model of the road net-
work is established by using relevant information to repre-
sent the road network as a connection of many road
segments, as shown in Figure 2. When the target is moving
continuously on the road, it can be considered as moving
along the road centerline without deviating largely normal
to it.

When the target is moving along the centerline of road
segment l whose start point is ðxstartl , ystartl Þ and end point is
ðxendl , yendl Þ, its state constraint can be described as

alxk + blyk + cl = 0,

_xk, _yk½ �T, ς!
D E

= 0,

8<
: ð6Þ

with

al = ystartl − yendl ,

bl = xendl − xstartl ,

cl = yendl − ystartl

� �
xstartl − xendl − xstartl

� �
ystartl ,

8>>><
>>>: ð7Þ

where h½ _xk, _yk�T, ς!i represents the angle between two vec-

tors, ς! is the direction vector of the road segment direction,
al, bl, and cl are the coefficients of the centerline equation.

Equation (6) considers the state constraint when the tar-
get moves along the centerline, but the target may slightly
deviate to the centerline because of the presence of the pro-
cess noise. Combined with equation (6), the target state

Multi-sensor system

Measurement

Data processing center
Command

Target

Figure 1: Target tracking scene.
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constraint can be expressed as

d xk, ykð Þ alx + bly + cl = 0j½ � ≤ Δd

_xk, _yk½ �T, ς!
D E

≤ Δv

8<
: , ð8Þ

where d½ðxk, ykÞjalx + bly + cl = 0� represents the distance
from point ðxk, ykÞ to line alx + bly + cl = 0 and Δd and Δv
are the deviation threshold of the distance and velocity
angle, respectively.

While satisfying the above state constraint, the on-road
state model can be described as

Xk = Fon‐road
i Xk−1 + Gon‐road

i εon‐roadk : ð9Þ

In this paper, we consider that the on-road target men-
tioned only moves in CV model. Therefore, Fon‐road

i =
Foff‐road
CV , and Gon‐road

i =Goff‐road
CV .

We denote the variances of the process noise along the
road and orthogonal to the road as σ2

∥ and σ2⊥ (σ2
⊥ ≪ σ2∥),

respectively. The covariance matrix Qon‐road
k after projecting

it to the X-Y coordinate system can be written as [33]

Qon‐road
k =

cos θl −sin θl

sin θl cos θl

" #
σ2∥ 0

0 σ2⊥

" #
cos θl −sin θl

sin θl cos θl

" #T

,

ð10Þ

where θl represents the orientation angle of road segment l.
Note that the state transition of the on-road target is also

determined by the road segment on which they are located,
while the state transition of the off-road target is mainly
determined by its motion model (CV or CT).

3.3. Motion Area Transitions. Obviously, the motion areas of
the target can be switched between on-road and off-road. In
this paper, parametermkis used to indicate the area in which
the target is moving at timek, wheremk = 0represents the tar-
get moving on the off-road area andmk = 1represents the tar-
get moving on the road. The transition process of motion
area can be approximated as a Markov process, and the cor-

responding transition matrix can be stated as

Tk =
p00 p01

p10 p11

" #
=

p mk = 0 mk−1 = 0jð Þ p mk = 1 mk−1 = 0jð Þ
p mk = 0 mk−1 = 1jð Þ p mk = 1 mk−1 = 1jð Þ

" #
,

ð11Þ

with

p mk = 0 mk−1 = 0jð Þ = 1 − exp −ϑ ⋅ dentryk

� �
,

p mk = 1 mk−1 = 0jð Þ = exp −ϑ ⋅ dentryk

� �
,

p mk = 0 mk−1 = 1jð Þ = exp −ϑ ⋅ dexitk

� �
,

p mk = 1 mk−1 = 1jð Þ = 1 − exp −ϑ ⋅ dexitk

� �
:

8>>>>>>>>><
>>>>>>>>>:

ð12Þ

Here, dentryk and dexitk represent the distance to the nearest
entry point and nearest exit point of the road network,
respectively. ϑ is a probability parameter (in this paper, ϑ =
0:04).

4. Sensor Measurement Model

4.1. Sensor Measurement Equation. The Doppler sensor can
obtain the distance, azimuth, and radial velocity information
of the target, and the corresponding measurement equation
can be expressed as [19]

Zn
k =Hn Xkð Þ + υn =

rnk

φn
k

_rnk

2
664

3
775 +

υnr

υnφ

υn_r

2
664

3
775, ð13Þ

with

rnk =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xk − xnsð Þ2 + yk − ynsð Þ2,

q
φn
k = arctan yk − yns

xk − xns

� �
,

_rnk =
_xk xk − xnsð Þ + _yk yk − ynsð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xk − xnsð Þ2 + yk − ynsð Þ2
q ,

8>>>>>>>>><
>>>>>>>>>:

ð14Þ

where the measurement information ½rnk φn
k _rnk �T repre-

sent the range, azimuth, and radial velocity of the target at
time k and the noise υn = ½υnr υnφ υn_r �T represent the
Gaussian measurement noise with zero means. xns and yns
are the position coordinates of sensor n.

If the target is not detected successfully, the sensor can-
not obtain the measurement information. When the DBZ
is not considered, the detection probability of sensor n can

Figure 2: Road network modeling schematic.
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be written as [44]

~pnd Xkð Þ = pnf
� �1/ 1+SNRð Þ

, if the target is inside line‐of‐sight region

0, otherwise

8<
: ,

ð15Þ

with

SNR = SNRn
min

Rn
max
rnk

� �4
, ð16Þ

where SNR is the signal to noise ratio and pnf , SNRn
min, and

Rn
max represent the false probability, the minimum detectable

SNR, and the maximum detection distance of sensor n,
respectively.

When the DBZ is considered, the target with radial
velocity below than MDV will not be detected, which is an
important priori information for sensor management. The
corresponding detection probability can be calculated by
[37]

pnd Xkð Þ =
~pnd Xkð Þ 1 − exp −log 2

nc Xkð Þ
Vn

MDV

� �2
" #( )

,
if target is inside line‐of ‐sight region
and _rkj j > Vn

MDV

0, otherwise

8>><
>>:

ð17Þ

where Vn
MDV is the MDV of sensor n and ncðXkÞ is called the

clutter notch function (see [37] for details).
Combined with the detection probability, the measure-

ment equation can be written as

Zn
k = ηHn Xkð Þ + υn, ð18Þ

where η represents a random number, which is taken as 0 or
1 according to the detection probability pndðXkÞ, that is

p ηð Þ =
pnd Xkð Þ, η = 1

1 − pnd Xkð Þ, η = 0

(
: ð19Þ

4.2. Decorrelation Method of the Measurement Noise.
According to [41], the range measurement noise υnr and
the radial velocity measurement noise υn_r are statistically cor-
related, which cannot be ignored in the process of target
tracking. Hence, we propose a decorrelation method of mea-
surement noise to improve the accuracy of target tracking in
this paper.

We define σ2ðυnr Þ, σ2ðυnφÞ, and σ2ðυn_r Þ as the variances of
υnφ, υ

n
φ, and υn_r , respectively. The correlation coefficient of

σ2ðυnr Þ and σ2ðυn_r Þ is denoted as ϖ. Then, the covariance
matrix of measurement noise can be written as

Rn =

σ2 υnrð Þ 0 ϖσ υnrð Þσ υn_rð Þ
0 σ2 υnφ

� �
0

ϖσ υnrð Þσ υn_rð Þ 0 σ2 υn_rð Þ

2
6664

3
7775: ð20Þ

Rewrite equation (20) as

Rn =
Rn
r,φ Rn

r,_r
� �T

Rn
r,_r Rn

_r,_r

" #
, ð21Þ

with

Rn
r,φ = diag σ2 υnrð Þ, σ2 υnφ

� �h i
,

Rn
r,_r = ϖσ υnrð Þσ υn_rð Þ, 0½ �,

Rn
_r,_r = σ2 υn_rð Þ:

8>>><
>>>: ð22Þ

To eliminate the correlation of the elements in Rn, we
use the Cholesky decomposition method and construct the
decomposition matrix

Bn =
I2×2 0

Ln 1

" #
, ð23Þ

with

Ln = −Rn
r,_r Rn

r,φ

� �−1
= −ϖσ υn_rð Þ/σ υnrð Þ, 0½ �, ð24Þ

where I2×2 is an identity matrix.
Multiplying both sides of equation (18) simultaneously

left by Bn, the decorrelated measurement equation is
obtained as follows

~Z
n
k = η

rnk

φn
k

" #
+

υnr

υnφ

" #
,

~ψn
k = ηψn

k + υnψ,

8>><
>>: ð25Þ

where ~ψn
k represents the pseudomeasurement of the radial

velocity and ψk and υnψ are the measurement value and noise
of ~ψn

k , respectively, which can be calculated by

ψn
k =

−ϖσ υn_rð Þ
σ υnrð Þ rk + _rk, ð26Þ

υnψ =
−ϖσ υn_rð Þ
σ υnrð Þ υnr + υn_r : ð27Þ

Obviously, υnψ is the Gaussian noise with zero means,
whose variance can be expressed as

σ2 υnψ

� �
= cov υnψ, υ

n
ψ

� �
= 1 − ϖ2� �

σ2 υn_rð Þ: ð28Þ

Therefore, the new measurement equation can be
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written as

Z
_n

k = ηH
_n

Xkð Þ + υ_n = η

rnk

φn
k

ψn
k

2
664

3
775 +

υnr

υnφ

υnψ

2
664

3
775: ð29Þ

The corresponding covariance matrix of the measure-
ment noise is

R
_n

=

σ2 υnrð Þ 0 0

0 σ2 υnφ

� �
0

0 0 1 − ϖ2� �
σ2 υn_rð Þ

2
6664

3
7775: ð30Þ

5. Target State Estimation Algorithm Based on
the DBZ Information

In the process of sensor management, estimating the target
state at each moment is a prerequisite for system decision-
making. When the DBZ is considered, the sensors will lose
the measurements in some cases, and the target state only
can be obtained by prediction based on the recurrence of
the target motion models. At this time, the tracking accuracy
will be greatly reduced, which is not conducive to the stable
tracking of the target.

It is known that the target state in the DBZ satisfies a cer-
tain constraint relationship, that is, the radial velocity of the
target is below than the MDV of the sensor, which can be
used to improve the tracking performance as prior informa-
tion when the sensor cannot obtain the measurements.
Therefore, we propose a particle filter algorithm based on
the DBZ information (PF-DBZ) for target state estimation
in this paper.

For the convenience of expression, the multimodel and
motion area transitions of the target are not considered in
this section.

5.1. Process of the PF-DBZ. The generated particles are
divided into two categories: one is the particles outside the
blind zone called unconstrained particles with a number of
MUN, denoted as fXi

UN,k : i = 1, 2,⋯,MUNg; another is the
particles in the DBZ with a number of MDBZ, called DBZ
particles, denoted as fXi

DBZ,k−1 : i = 1, 2,⋯,MDBZg, which
are constrained by the DBZ information. At time k, the
occurrence probability of the two kinds of particles is pUN,k
and pDBZ,k, respectively. Then, the processes of PF-DBZ are
as follows.

Step 1. State prediction.

For the unconstrained particles, the prediction state
~X
i
UN,kði = 1, 2,⋯,MUNÞ can be calculated based on the state

model mentioned in Section 3:

~X
i
UN,k = FXi

UN,k−1 +GkQk Gkð ÞT: ð31Þ

For the DBZ particles, if pDBZ,k−1 > 0, the prediction state
~X
i
DBZ,kði = 1, 2,⋯,MDBZÞ can also be obtained by equation

(31), but the state must meet the following DBZ information
constraint.

_~x
i
DBZ,k − _xns

� �
~xiDBZ,k − xns
� �

+ _~y
i
DBZ,k − _yns

� �
~yiDBZ,k − yns
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~xiDBZ,k − xns
� �2 + ~yiDBZ,k − yns

� �2q ≤ Vn
MDV:

ð32Þ

Step 2. Measurement update.

At time k, whether sensor n can obtain the measurement
is an uncertain event. Therefore, different cases will be dis-
cussed as follows.

(1) Calculate the weight of the particles. The weights of

the unconstrained particles ~X
i
UN,k can be obtained

according to the likelihood function corresponding

to the sensor measurement equation, that is, ωi
UN,k

~ pðZ_
n

k j~X
i
UN,kÞ. In this paper, the likelihood function

is

p Z
_n

k
~X
i
UN,k

			� �
=

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π ~Rn		 		q exp −

1
2

Z
_n

k −H
_

~X
i
UN,k

� �h iT
R
_n� �−1

Z
_n

k −H
_

~X
i
UN,k

� �h i
 �

ð33Þ

(2) Normalize the weights:

ωi
UN,k =

ωi
UN,k

∑MUN
i=1 ωi

UN,k

ð34Þ

(3) Update the occurrence probability of two kinds of
particles. Set pUN,k = 1 and pDBZ,k = 0

(1) Calculate the weight of the particles. Set ωi
UN,k =

ωi
UN,k−1 and ωi

DBZ,k = 1/MDBZ

(2) Update the occurrence probability of two kinds of
particles. Set pUN,k = 1 − ~pndðXkÞ andpDBZ,k = ~pndðXkÞ

(1) Calculate the weight of the particles. Set ωi
UN,k =

ωi
UN,k−1 and ωi

DBZ,k = 1/MDBZ

(2) Update the occurrence probability of two kinds of
particles. Set pUN,k = ½1 − ~pndðXkÞ�pUN,k−1 and pDBZ,k
= 1 − pUN,k
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Case 1. Measurement Zn
k is existing.

Case 2. Zn
k is not existing and pDBZ,k−1 = 0.

Case 3. Zn
k is not existing and pDBZ,k−1 > 0 (continuous miss-

ing detection).

Step 3. State estimation.

The state estimation and covariance matrix after
weighted average are given by

with

X̂UN,k = 〠
MUN

i=1
ωi
UN,k

~X
i
UN,k,

X̂DBZ,k = 〠
MDBZ

i=1
ωi
DBZ,k

~X
i
DBZ,k:

8>>>>><
>>>>>:

ð36Þ

5.2. Correction Method of Target State. According to Section
5.1, the prediction state of the DBZ particles must meet the
Doppler information constraint in the process of state pre-
diction. For the particles that do not meet the constraint,
the DBZ information can be used to correct their state to
improve the accuracy of target state prediction.

For the prediction state ~X
i
DBZ,k = ½~xiDBZ,k, _~x

i
DBZ,k, ~y

i
DBZ,k,

_~y
i
DBZ,k� of DBZ particles, when its radial velocity _~r

n
k >Vn

MDV
, the correction method is expressed as

_~x
i
DBZ,k = _~x

i
DBZ,k − _~r

n
k − Vn

MDV

� �
sin ~φn

kð Þ,

_~y
i
DBZ,k = _~y

i
DBZ,k − _~r

n
k − Vn

MDV

� �
cos ~φn

kð Þ,

8><
>: ð37Þ

where ~φn
k is the prediction value of the azimuth.

When _~r
n
k < −Vn

MDV, the correction method is expressed
as

_~x
i
DBZ,k = _~x

i
DBZ,k − _~r

n
k +Vn

MDV

� �
sin ~φn

kð Þ,

_~y
i
DBZ,k = _~y

i
DBZ,k − _~r

n
k +Vn

MDV

� �
cos ~φn

kð Þ:

8><
>: ð38Þ

5.3. Judgment Method of Measurement Loss Causes. In
ground moving target tracking, the occlusion of obstacles
may also cause continuous missed detection. Therefore, it
is necessary to distinguish whether the target is occluded
by obstacles or enters the DBZ. According to the motion
characteristics of the ground target, the radial velocity has

a general tendency to decrease gradually before the target
enters the DBZ. Therefore, a radial velocity sliding window
is used to judge measurement loss causes in this paper.

The length of the sliding window is set to 5, and the his-
torical radial velocity f_rnk−1, _rnk−2, _rnk−3, _rnk−4, _rnk−5g is stored in
the sliding window at time k. Then, we define ∇_rnk−i as the
radial velocity change rate, which is expressed as

∇_rnk−i = _rnk−ij j − _rnk− i−1ð Þ
			 			� �

/τ, i = 1, 2, 3, 4, ð39Þ

where τ is the sampling interval.
Using the three-fourths judgment rule, when three

inequalities in equation (40) satisfy the condition, it is
judged that the reason of losing measurement is entering
the DBZ. In this case, the PF-DBZ and correction method
of target state proposed in this paper can be used. Otherwise,
it shows that the target is occluded by obstacles, and the tar-
get state only can be obtained by prediction based on the
recurrence of the target motion models.

∇_rnk−1 = _rnk−1j j − _rnk−2j jð Þ/τ ≤ 0,

∇_rnk−2 = _rnk−2j j − _rnk−3j jð Þ/τ ≤ 0,

∇_rnk−3 = _rnk−3j j − _rnk−4j jð Þ/τ ≤ 0,

∇_rnk−4 = _rnk−4j j − _rnk−5j jð Þ/τ ≤ 0:

8>>>>><
>>>>>:

ð40Þ

6. VSIMM-PF-DBZ Algorithm

The target state estimation algorithm mentioned in Section 5
is suitable for the target with a single motion model. How-
ever, according to Section 2, the motion of the ground target
involves the switching of the motion model, the located road
segment, and the motion area, which is difficult to describe
its motion characteristics by only a single model. Hence,
we combine the PF-DBZ algorithm with the VSIMM (see
[45] for details) and propose a VSIMM-PF-DBZ algorithm
to estimate the state of maneuvering target. In the VSIMM
method, the motion model set of the target is variable at

X̂k = pUN,k 〠
MUN

i=1
ωi
UN,k

~X
i
UN,k++pDBZ,k 〠

MDBZ

i=1
ωi
DBZ,k

~X
i
DBZ,k,

Pk = pUN,k 〠
MUN

i=1
ωi
UN,k X̂UN,k − ~X

i
UN,k

� �
X∧UN,k − ~X

i
UN,k

� �T
+ pDBZ,k 〠

MDBZ

i=1
ωi
DBZ,k X̂DBZ,k − ~X

i
DBZ,k

� �
X∧DBZ,k − ~X

i
DBZ,k

� �T
,

8>>>>><
>>>>>:

ð35Þ
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each time, which can accurately describe the motion state of
the multimodel maneuvering target.

At time k, the motion model set is denoted as Jk = f
Joff‐roadk , Jon‐roadk g, where Joff‐roadk and Jon‐roadk represent the
model set of off-road and on-road, respectively. In this
paper, Joff ‐roadk is fixed which contains CV and CT models,
and Jon‐roadk changes in real time according to the target loca-
tion. Therefore, updating Jk means updating Jon‐roadk .

When the target moves in the road network, its motion
is mainly constrained by the road topology, so the road
information can be used to assist the target estimation. Since
the road information can be obtained from GIS in advance
and generally does not change in target tracking, the motion
model set update strategy can be designed based on the road
information.

6.1. Motion Model Set Update Strategy. The motion model of
the target moving on a certain road segment will generally
not change, and only at intersections will the target switch
the road segment and its motion model will be changed.
Therefore, to update the model set of the next time, it is nec-
essary to determine which road segment the target will be
located at the next time and whether the target is close to
the intersection.

As seen from Figure 3, the possible location of the target
can be obtained according to the target state X̂

n
k−1. Then, it

can be judged whether the target is close to the intersection,
such as the ellipse region in Figure 3. The elliptic region can
be expressed as an inequality

x − x̂k−1, y − ŷk−1½ �Ppos
k−1

x − x̂k−1

y − ŷk−1

" #
≤ β, ð41Þ

where Ppos
k−1 is the position component of Pk−1 and β repre-

sents the gate threshold (in this paper, β = 6).
If intersection i with coordinates ðxiintersection, yiintersectionÞ

satisfies inequality (41), it means that the target is close to
the intersection, and the model set needs to be updated.
The processes of updating Jon‐roadk−1 are as follows.

Step 1. Get the target state ðX̂k−1, Pk−1Þ and model set Jon‐roadk−1
at time k.

Step 2. Judge whether the target has closed to the intersec-
tion according to equation (41). If the target is close to the
intersection, the corresponding motion models of all the
links connected to the intersection are added to the model
set Jon‐roadk ; otherwise, go to Step 3.

Step 3. Determine the road segment to which the target
belongs at time k according to X̂

n
k−1. If the target belongs to

the road section changes, the motion model of the previous
road segment is discarded and the motion model of the
new road segment is added in Jon‐roadk ; otherwise, Jon‐roadk =
Jon‐roadk−1 .

6.2. Process of the VSIMM- PF-DBZ Algorithm. Based on the
motion model set updating strategy, the VSIMM-PF-DBZ
algorithm is proposed by combining the VSIMM with the
PF-DBZ algorithm. Due to the uncertainty of the target
motion area, we use dual filter algorithm to obtain the target
state estimation of off-road state and on-road state and then
apply the weighted fusion method according to motion area

X̂k−1

X̂k−2

Road segment 1

Ro
ad

 se
gm

en
t 2

Road segment 3

Figure 3: Schematic diagram of intersection.
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Figure 4: Schematic diagram of target tracking scene.

Table 1: The parameters of the sensors.

Sensor
number

Coordinates

The
standard

deviation of
the range
noise

The
standard

deviation of
the azimuth

noise

The standard
deviations of
the radial

velocity noise

1 (0, 500) m 40m 5mrad 10m/s

2
(1000, -250)

m
20m 5mrad 5m/s

3
(1000,
1500) m

25m 8mrad 10m/s

4
(2550, 500)

m
35m 5mrad 15m/s

5 (4000, 0) m 45m 5mrad 25m/s

6
(5500,
1500) m

50m 7.5mrad 20m/s
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transition probability to obtain the overall state estimation.
The steps of VSIMM-PF-DBZ are as follows.

Step 1. Initialization.

Obtain the target state ðX̂k−1, Pk−1Þ, the motion model set
Jk−1, and the parametermk−1. Then, according to Section 3.3,
calculate the motion area transition matrix Tk, and obtain
pðmk = 0jmk−1Þ and pðmk = 1jmk−1Þ.

Step 2. Update the motion model set.

According to the motion model set update strategy pro-
posed in Section 6.1, obtain the model set Jon‐roadk of on-road
state.

Step 3. State estimation.

Use the PF-DBZ algorithm in the framework of the
VSIMM [45] to predict and update the target states and cor-
responding covariance matrices of all motion models. Then,
the target state estimation of the on-road state and off-road

state can be obtained, which are stated as ðX̂on‐road
k , Pon‐road

k Þ
and ðX̂off ‐road

k , Poff‐road
k Þ, respectively.

Step 4. Overall estimation.

Combined with ðX̂on‐road
k , Pon‐road

k Þ, ðX̂off‐road
k , Poff ‐road

k Þ, p
ðmk = 0jmk−1Þ, and pðmk = 1jmk−1Þ, the overall estimation
of the target state is calculated as

7. Sensor Management Optimization Model

The core of sensor management is predicting the revenue cor-
responding to different decision schemes in the future and
selecting the schemes with the best revenue [19]. Therefore,
it is important to select an optimization index for quantifying
the revenue. The trace of PCRLB can predict the theoretical
lower bound of the target state estimation error, which is often
used to reflect the sensor tracking performance [24]. Hence, in
this paper, the trace of PCRLB is used as the optimization
index in the sensor management process.

According to the relevant theory of PCRLB [24], the fol-
lowing inequality exists.

Ε X̂k − Xk

� �
X∧k − Xkð ÞT

h i
≥Ψ X∧kð Þ−1, ð43Þ

where ΨðX∧kÞ−1 represents the PCRLB of X̂k, which is the
inverse of the Fisher information matrix ΨðX̂kÞ.

ΨðX̂kÞ satisfies the following recurrence relation:

Ψ X̂k

� �
=D22

k−1 −D21
k−1 Ψ X∧k−1ð Þ +D11

k−1
� �−1

D12
k−1 +DZ

k , ð44Þ

with

D11
k−1 = Ε −∇Xk−1

Xk−1
log p Xk ∣ Xk−1ð Þ

h i
,

D12
k−1 = D21

k−1
� T = Ε −∇Xk

Xk−1
log p Xk ∣ Xk−1ð Þ

h i
,

D22
k−1 = Ε −∇Xk

Xk
log p Xk ∣ Xk−1ð Þ

h i
,

DZ
k = Ε −∇Xk

Xk
log p Zk ∣ Xkð Þ

h i
,

8>>>>>>>>><
>>>>>>>>>:

ð45Þ

where the symbol ∇ represents the second-order derivative
and DZ

k is the Fisher information gain. When the sensor
cannot obtain the measurement, there is DZ

k = 0. Further-
more, for the Gaussian system discussed in this paper,
there is

D11
k−1 = Fkð ÞT Qkð Þ−1Fk,

D12
k−1 = D21

k−1
� T = − Fkð ÞT Qkð Þ−1,

D22
k−1 = Qkð Þ−1,

DZ
k = pnd Xkð Þ h

_n

 �T

R
_n� �−1

h
_n

,

8>>>>>>>><
>>>>>>>>:

ð46Þ

where h
_n

is the Jacobian matrix of measurement function

H
_nðXkÞ and Fk and Qk represent the state transition
matrix and covariance matrix of the process noise corre-
sponding to the real target motion model at time k,
respectively. Obviously, it is impossible to obtain the real
target motion model at time k in the process of deci-
sion-making, so the motion model corresponding to the
maximum distribution probability at the current time is
selected to do prediction [24].

In this paper, the sensor management method is non-
myopic, in which the management scheme is decided based
on the cumulative revenues over a time horizon in the
future. When the decision step is H, combining the sensor
management scheme Ak:k+H−1 in the time domain ½k, k +H
− 1� and the constraints equation (1), the objective

X̂k = p mk = 1 mk−1jð ÞX̂on‐road
k + p mk = 0 mk−1jð ÞX̂off‐road

k ,

Pk = p mk = 1 mk−1jð Þ Pon‐road
k + X̂

on‐road
k − X̂k

� �
X∧on‐road

k − X∧k

� �T

 �

+ p mk = 0 mk−1jð Þ Poff‐road
k + X̂

off‐road
k − X̂k

� �
X∧off‐road

k − X∧k

� �T

 �

:

8><
>:

ð42Þ
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optimization function is established as follows.

min R Ak:k+H−1ð Þ = tr Ψ X∧k, Akð Þ−1� |fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
One‐step revenue

+〠H−1
h=1 γ

htr Ψ X∧k+h, Ak+hð Þ−1� |fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Future expected revenue

,

s:t:
〠
N

n=1
ank+h−1 = 1, 1 ≤ h ≤H

t Ak+h−1ð Þ ≥ tmin

8><
>: ,

ð47Þ

where tr½ΨðX∧k, AkÞ−1� represents the trace of PCRLB after

executing sensor management scheme Ak and γð0 ≤ γ ≤ 1Þ
is a discount coefficient that indicates. The optimal solution
Aopt
k:k+H−1 of the objective function is the best sensor manage-

ment scheme in the time domain ½k, k +H − 1�.

8. Numerical Simulations

As can be seen from Figure 4, in our simulations, six Dopp-
ler sensors are used to track a ground moving target that can
move on the road or off-road. Besides, there are some obsta-
cles in the battlefield which may obstruct the detection of the
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Figure 5: The radial velocities of the target relative to all sensors.
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target. The sensor sampling interval is 1 s and the simulation
duration is 100 s.

The initial position and velocity of the target are (0, 0) m
and 60m/s, respectively. The target moves off-road by turn-
ing right at an angle of 4∘ during 46-70 s, moves off-road in
uniform straight line during 71-85 s, and maintains uniform
straight line on road during other times. The process noise
variance along the X and Y directions are 20m and 20m,
and the process noise variances along the road and orthogo-
nal to the road are 20m and 1m.

All sensors have the same MDV VMDV = 25m/s, the
minimum dwell time tmin = 3s, the false alarm probability
pf = 10−6, the minimum detectable SNR SNRmin = 15db,
and the maximum detection distance Rmax = 10km. The
other parameters of the sensors are shown in Table 1.

The other parameters used in simulations are displayed
as follows: the discount coefficient γ = 0:9, the correlation
coefficient ϖ of the measurement noise is 0.5, and the num-
ber of the unconstrained and DBZ particles is 100 in the PF-
DBZ algorithm.

All the results were obtained by 100 trials of Monte
Carlo simulations.

Figure 5 shows the radial velocities of the target relative
to all sensors. Obviously, for each sensor, there is a situation
where the radial velocity of the target is below than MDV,
which means that the target will enter the DBZ of the sensor
at some times and a single sensor cannot achieve continuous
tracking of the target. Therefore, it is necessary for tracking
the target to use an effective sensor management method.

8.1. Determination of the Decision Step. The decision step H
is a very important parameter in sensor management,
which can directly affect the effectiveness of target tracking
[24]. Hence, the performances of target tracking under dif-
ferent H are studied in our simulations, and the corre-
sponding result is used as a basis to determine the value
of H. Figures 6 and 7 show the comparisons of the root
mean square error (RMSE) and the root time average
square error (RTAMSE) of the target under different H,
respectively.
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Figure 6: Comparisons of the RMSE under different decision steps.
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As can be seen from Figures 6 and 7, when H = 1 ~ 3,
with the increase of H, the RMSE and RTAMSE of the target
decrease gradually, which means that the effect of tracking

target is getting better and better. However, when H > 3,
the corresponding tracking errors (RMSE and RTAMSE)
increase instead of decreasing with the increase of H.
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Figure 8: The occurrence probabilities of blind zones under different sensor management methods.
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Especially when H = 4, the corresponding errors are larger
than the errors underH = 3. The reason for these is that with
the increase of H, the prediction error of the target state in
the future will also increase, resulting in the increase of the
target tracking error. At the same time, the occurrence of
measurement uncertainty events such as the target enters
the DBZ which will also lead to the increase of the tracking
error in the multistep prediction. Therefore, it is not the case

that a larger decision step is better for tracking. Based on the
above analysis, we choose H = 3 in next simulations.

8.2. Analysis of the Proposed Sensor Management Method. In
order to clearly analyze the performance of the proposed
sensor management method (PSMM) in this paper, we
selected three existing sensor management methods to com-
pare with it:
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Figure 14: Comparisons of the RMSE under different measurement noise treatment methods (ϖ = 0:1).
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(1) The myopic sensor management method (MSMM),
in which the management scheme is decided based
on one-step revenues in the future

(2) The closest sensor management method (CSMM), in
which the sensor closest to the target is selected for
tracking [19]

(3) The fixed sensor management method (FSMM), in
which the fixed sensor is selected for tracking in
the simulation duration (in our simulations, sensor
1 is selected)

The occurrence probabilities of blind zones under differ-
ent sensor management methods in 100 repeated simulations
are shown in Figure 8. For the convenience of presentation, we
call the target to enter the visual blind zone (VBZ) when it is
blocked by obstacles. Compared with the other methods, we
can see that the DBZ and VBZ appear the least times under
the PSMM. This is due to the PSMM considering not only
the one-step revenue of the sensor system but also the future
expected revenue in decision-making, which can better predict
the target state and thus select the nonblind sensor for track-
ing. The MSM only considers the one-step revenue in
decision-making which is myopic for tracking, so the corre-
sponding blind zone occurrence probability is higher than
those of PSMM. The CSMM and FSMM do not select the sen-
sor based on the tracking revenue in the future, which makes
the blind zones occurred many times in the tracking.

Figures 9 and 10 show the comparisons of the RMSE and
RTAMSE under different sensor management methods,
respectively. Obviously, the PSMM can obtain the best
tracking performance compared with the other methods.
Besides, the position RMSE curves and velocity RMSE
curves under PSMM are relatively stable in the simulation
duration, and the corresponding error is basically not
sharply increased, which means that it can achieve continu-
ous and stable tracking of the target by the PSMM.

Figure 11 shows the sensor management schemes of the
PSMM, which is the optimal solution of the objective func-
tion (47). It can be seen that the minimum continuous work-
ing time of the selected sensor satisfies the constraint that
the minimum dwell time tmin = 3s in tracking, which verified
that the management scheme is reasonable and effective.

Furthermore, in order to show that the proposed target
state estimation algorithm based on the DBZ information
is effective and advanced, the VSIMM-PF-DBZ algorithm
is compared with the VSIMM-PF algorithm [43] in which
the DBZ information is not be used. It can be seen from
Figure 8(d) that the DBZ will appear continuously during
4-8 s under the FSMM. Therefore, we compare the two algo-
rithms during 0-20 s under the FSMM in Figure 12, so as to
study the tracking performance of them. Obviously, the
tracking errors of the VSIMM-PF-DBZ are less than
VSIMM-PF when the DBZ appears (4-8 s), which indicates
that the estimation algorithm proposed in this paper can
reasonably use the DBZ information to track the target.

8.3. Analysis of the Proposed Motion Model. In this paper, a
more realistic target motion model is established based on

road topology information. To analyze the effect of utilizing
road topology information in terms of tracking perfor-
mance, the proposed motion model is compared with the
model without utilizing any road topology information.
Note that if no information is used, equation (2) is always
used to describe the target motion in proposed tracking
algorithm. Figure 13 shows the comparisons of the RMSE
under different motion models. Obviously, the position
and velocity RMSE under the proposed motion model are
less than those under the motion model without road topol-
ogy information. Especially when the target moves on the
road (0~45 s and 86~100 s), the difference between the
results with the two kinds of models is obvious. From the
comparisons, we can see that the tracking accuracy is
improved by utilizing road topology information to describe
the target motion.

8.4. Analysis of the Proposed Decorrelation Method of the
Measurement Noise. To analyze the performance of the pro-
posed decorrelation method of the measurement noise, the
results of tracking errors corresponding to using and not
using decorrelation methods are compared. Note that the
correlation coefficient ϖ is set as two values, 0.1 and 0.8,
and the other parameters remain unchanged.

Figures 14 and 15 show the comparison of the RMSE
when ϖ = 0:1 and ϖ = 0:8, respectively. As can be seen, there
is little difference between the results of the two methods
when ϖ = 0:1. On the contrary, when ϖ = 0:8, the results
with decorrelation method are much better than those with-
out decorrelation method. The comparison results show that
the proposed decorrelation method is effective, especially
when the correlation coefficient is large.

9. Conclusions

In this paper, a sensor management method for ground
moving target tracking is proposed, in which the DBZ infor-
mation is used to improve the tracking accuracy in the pres-
ence of the DBZ. Firstly, a more realistic motion model of
the ground target is established, in which the target motion
state is divided into two categories: off-road and on-road.
Secondly, a sensor measurement model under measurement
uncertainty is presented, and a decorrelation method is pro-
posed to solve the problem that the measurement noises are
statistically correlated. Third, a target state estimation algo-
rithm based on the DBZ information is proposed, in which
the DBZ information is fully utilized. Furthermore, com-
bined with the VSIMM, an estimation algorithm is given
to track the maneuvering target with multiple models.
Finally, the PCRLB is used to quantify the tracking accuracy
in the future, and a nonmyopic sensor management optimi-
zation model is established. Simulation results indicate that
the proposed sensor management method can track the tar-
get accurately by selecting the suitable sensor management
scheme at each time. Meanwhile, the proposed motion
model and decorrelation method of the measurement noise
are verified to be effective. As future work, we will study
the sensor management method for multitarget tracking in
the presence of the DBZ.
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We consider the secure state estimation of linear time-invariant Gaussian systems subject to dynamic malicious attacks. An error
compensator is proposed to reduce the impact of local error data on state estimation. Based on that, a new estimation algorithm
based on the Gaussian mixture model (GMM) aiming at dynamic attacks is proposed, which can cluster the local state estimates
autonomously and improve the remote estimation accuracy effectively. The superiority of the proposed algorithm is verified by
numerical simulations.

1. Introduction

Cyberphysical systems (CPSs), such as transportation net-
works and smart grids, integrate sensing, computing, and
control technologies with a communication infrastructure.
Tight integration and cooperation between cyber and
physical components are the features of CPSs [1]. However,
CPSs are vulnerable to any successful attacks especially net-
work attacks on the data and communication channels,
which causes serious harms to the national economy and
social security, for example, the Stuxnet storm reported in
[2], StuxNet malware [3], power blackouts in Brazil [4],
and Maroochy water bleach [5]. Due to the widespread
application of CPSs in many real-life critical infrastructures
[6], the security of CPSs has become an increasingly
important issue which has attracted attention from many
researchers in the past decades.

In the recent literature, the secure state estimation is an
important research direction of CPSs security. In [7], a
distributed state estimation method based on parallelized
stream computing is proposed, which can not only signifi-
cantly improve the speed of state estimation calculation
but also reduce the interregional convergence correlation
and the residual pollution. In [8], a new sequential estima-
tion method is proposed to improve the estimation accuracy,

which sequentially estimates states by the particle filter
(PF) and parameters by the separable natural evolution
strategy (SNES). The state estimation of three-phase power
system models is studied in [9]. In [10], a Bayesian net-
work based on the wireless power transfer (WPT) system
state estimation algorithm is proposed, which can estimate
the WPT system states in a distributed way using the
Bayesian tree structure. In [11], a robust generalized maxi-
mum likelihood (GM) estimator, which leverages modified
projection statistics and a Huber convex score function, is
designed to bound the influence of observation outliers while
maintaining its high statistical estimation efficiency. In [12],
a distributed dynamic state estimation method for micro-
grids incorporating distributed energy resources is presented.
In [13], a robust generalized maximum-likelihood Koopman
operator-based Kalman filter (GM-KKF) is designed, which
can estimate the rotor angle and speed of synchronous gener-
ators. In [14], a correlation-aided robust adaptive unscented
Kalman filter (UKF) for power system decentralized dynamic
state estimation with unknown inputs is presented, which
has lower requirement of number of measurements for
dynamic state estimation while achieving better robustness
against bad data. In [15, 16], the state estimation method
based on undamaged sensors is studied. In [17, 18], the state
estimation for different systems is studied based on the
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convex optimization methods. In [19], by modeling and
adopting a variety of models, a random Bayesian approach
is proposed to solve the state estimation against switching
patterns and signal attacks. In [20], the state estimation
against fixed target attacks, switched target attacks with dis-
turbance, and sparse sensor attacks are considered, and the
sufficient condition for the existence of the switched observer
is given. In [21], a fusion algorithm based on the Gaussian
mixture model is presented to solve the estimation of a linear
time-invariant Gaussian system under stealth attacks. How-
ever, the dynamic attacks are not considered. In [22], a
dynamic combination strategy and a distributed Kalman fil-
ter are proposed, which improve the robustness of the system
against random error data injection and replay attacks.

Most of the studies mentioned above have focused on
static attacks. However, dynamic attacks are very common
in real systems. Therefore, this paper considers the state esti-
mation for a networked system suffering from dynamic
adversaries as shown in Figure 1. The different sensors are
attacked randomly at each time instant, and it is assumed
that the number of attached sensors does not exceed half
of the sensors.

Inspired by [21], we have designed an error compensator
to reduce the impact of incorrect data on state estimation.
Based on that, a new GMM-based state estimation algorithm
is presented, which can effectively improve the state estima-
tion accuracy against the dynamic adversaries. The contribu-
tions of this article are listed as follows:

(1) A new error compensator is proposed to alleviate the
influence of wrong data on state estimation, which
can judge whether the beliefs generated by the
expectation-maximum (EM) algorithm are accurate
based on the observability of the system, and correct
the doubtful beliefs

(2) By introducing the error compensator, a new GMM-
based estimation algorithm is presented, which can
improve the estimation accuracy effectively. The
proposed algorithm can fuse the local data by adopt-
ing the modified beliefs as the weights of the local
data with the centralized Kalman filter

The rest of the paper is organized as follows. Section II
formulates the model of the considered system and the prob-
lem of interest. Section III proposes the error compensator
and the new GMM-based state estimation algorithm against
dynamic adversaries. In Section IV, the effectiveness of the
proposed algorithm is demonstrated by numerical simula-
tions. Conclusions are given in Section V.

Notation: ℕ and ℝ are the sets of positive integers and
real numbers, respectively. ℝn denotes the n-dimensional
Euclidean space. Sn

+ðSn
++Þ is the set of n × n positive semide-

finite (definite) matrices. We write X ≥ 0ðX > 0Þ when X ∈
Sn
+ðSn

++Þ. X ′ denotes the transpose of matrix X. E½·� is the
expectation of a random variable. N ðμ, ΣÞ is the Gaussian
distribution with mean μ and covariance matrix Σ, and
X ~N ðμ, ΣÞ denotes X follows the Gaussian distribution
N ðμ, ΣÞ. Diagf·g denotes a block diagonal matrix.

2. Problem Formulation

Consider the following networked system under attacks:

xk+1 = Axk +wk, ð1Þ

yi,k = Cixk + vi,k + ai,k, ð2Þ

where xk ∈ℝn denotes the system state, yi,k ∈ℝ
mi represents

the measured value from sensor i at time k, and ai,k ∈ℝmi is
attack signal. The number of sensors is denoted by N .
wk ∈ℝn is the process noise, and wk ~N ð0,QÞ. vi,k ∈ℝmi

is the measurement noise, and vi,k ~N ð0, RiÞ. Meanwhile,
it is assumed that E½wkwl′� = δklQ ðQ ≥ 0Þ, E½vi,kvj,l′ � = δijδkl
Ri ðRi > 0Þ, where i = jði ≠ jÞ, δi,j = 1ðδi,j = 0Þ. E½wkvi,l′ � = 0,
∀k, l ∈ℕ, i, j = 1, 2,⋯,N . The initial state x0 is indepen-
dent of wk and vi,k for all k ≥ 0 and x0 ~N ð0,Π0Þ. ðA, CiÞ
and ðA, ffiffiffiffi

Q
p Þ are detectable and controllable, respectively.

The malicious attack ai,k ∈ℝmi satisfies the following
assumptions:

Assumption 1. Any s (s ≤N/2) sensors can be corrupted by
the adversary, and the output values of the sensors are chan-
ged. Only when sensor i is unattacked, ai,k = 0.

Assumption 2. The number of attacked sensors s is
unknown, stochastic, and variable.

Assumption 3. The system parameters and noise statistics are
known for the adversary.

Assumption 4. ai,k is statistically independent of fwKgK>k
and fvi,Kg

K>k, respectively.

Remark 1. According to [23, 24], it is impossible to accu-
rately reconstruct the state of a system when more than half
the sensors are attacked. Thus, we assume that the maxi-
mum number of damaged sensors does not exceed N/2 in
this paper, i.e., the upper limit of s is N/2.

Attacks

Sensor 1

Sensor N

State

estimation

mechanism

State

estimation

mechanism
Remote

estimator

Xk

Xk
y1,k

yN,k

Process

Xk
ˆ

Figure 1: The networked system under attacks.
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When the system is not attacked, the measurements at
time instant k can be stacked as

yk = Cxk + vk, ð3Þ

where

yk ≜ y1,k′ y2,k′ ⋯ yN ,k′
h i

′,

vk ≜ v1,k′ v2,k′ ⋯ vN ,k′
h i

′,

C ≜ C1′C2′⋯ CN′
h i

′,

R ≜Diag R1, R2,⋯, RNf g:

ð4Þ

Then, we adopt a centralized Kalman filter as the remote
estimator:

x̂−k = Ax̂k−1,

P−
k = APk−1A′ +Q,

Kk = P−
kC′ CP−

kC′ + R
� �−1

,

x̂k = x̂−k + Kk yk − Cx̂−kð Þ,
Pk = I − KkCð ÞP−

k ,

ð5Þ

where x̂−k and x̂k are the priori and the posteriori estimation
of the system state xk, respectively. P

−
k and Pk are the priori

and posteriori estimation error covariance, respectively. Kk
is the Kalman filter gain.

From [21], we know that the information-form Kalman
filter can be expressed as

x̂k = x̂−k + PkC′R−1 yk − Cx̂−kð Þ, ð6Þ

Pkð Þ−1 = P−
k−1ð Þ−1 + C′R−1C: ð7Þ

Similarly, the local Kalman filter for sensor i can be
written as

x̂i,k = x̂−i,k + Pi,kCi′R−1
i yi,k − Cix̂

−
i,k

� �
,

Pi,kð Þ−1 = P−
i,k−1

� �−1 + Ci′R−1
i Ci:

ð8Þ

It is noted that Pk and Pi,k can be calculated offline.
According to [25], the Kalman filter converges from any
initial condition exponentially when ðA, CiÞ and ðA, ffiffiffiffi

Q
p Þ

are detectable and controllable, respectively. The steady-

state values of local and centralized Kalman filter are
defined as

�Pi ≜ lim
k⟶+∞

Pi,k, �P
−
i ≜ lim

k⟶+∞
P−
i,k,

P ≜ lim
k⟶+∞

Pk, P− ≜ lim
k⟶+∞

P−
k :

ð9Þ

It is assumed that the system starts from the steady state
with Pi,0 = �Pi and P0 = P, and the fixed-gain of local and
centralized Kalman filters can be represented as:

Ki = �PiCi′R−1
i = �P−

i Ci′ Ci
�P−
i Ci′+ Ri

� �−1
,

K = PC′R−1 = P−C′ CP−C′ + R
� �−1

:

ð10Þ

The objective of this paper is to design a new GMM-
based estimation method for systems suffering from dynamic
adversaries.

3. The GMM-Based State Estimation

In this section, an error compensator and the GMM-based
state estimation algorithm against dynamic adversaries are
proposed.

3.1. Modeling and the EM Algorithm. For a Gaussian mixture
model with ℚ components [21], the mean and covariance of
the q-th component Qq ðq ∈ f1, 2,⋯,ℚgÞ are expressed as

μðqÞ and ΣðqÞ, respectively. πðqÞ is the mixture component
weights of Qq, and ∑ℚ

q=1π
ðqÞ = 1. In this case, the mixture

density of a Gaussian mixture model can be expressed as

p xð Þ = 〠
ℚ

q=1
p x ∣Qq

� �
Pr Qq

� �
= 〠

ℚ

q=1
π qð Þ f x ; μ qð Þ, Σ qð Þ

� �
,

ð11Þ

where pðx ∣QqÞ and Pr ðQqÞ are the Gaussian distribution
density and weight of the q-th component, respectively.
Function f ðx ; μ, ΣÞ is the probability density function (pdf)
for Gaussian random variables:

f x ; μ, Σð Þ = 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πð Þn Σj jp exp −

1
2 x − μð Þ′Σ−1 x − μð Þ

� �
:

ð12Þ

At time instant k, we denote the means of the state vari-

ables for sensor i as μð1Þk under the unattacked scenario and

μð2Þk under the attacked-scenario, respectively. Σð1Þ
k and Σð2Þ

k
represent the covariance when sensor i is unattacked and
attacked, respectively. The local state estimation x̂i,k follows
different distributions depending on whether sensor i is
attacked or not. According to the definition of GMM and
the analysis of Kalman filtering in [25], it can be known that
when sensor i is unattacked (defined as the first component),
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x̂i,k follows the Gaussian distribution with the mean μð1Þk and

the fixed covariance Σð1Þ
k = �Pi, i.e., pðx̂i,k ∣Q1Þ ~N ðμð1Þk , �PiÞ,

∀i ∈N . When sensor i is attacked (defined as the second com-
ponent), the exact distribution of x̂i,k is unknown since the spe-
cific type and the starting time of attacks are unknown. In this
case, similar to [21], we can adopt a Gaussian distribution with

the first and second moments, i.e., pðx̂i,k ∣Q2Þ ~N ðμð2Þk , Σð2Þ
k Þ,

∀i ∈N, to approximate the distribution of all local estimates in
the second component. Then, x̂i,k can be described by the fol-
lowing 2-component Gaussian mixture model:

p x̂i,kð Þ = 〠
2

q=1
p x̂i,k ∣Qq

� �
Pr Qq

� �
= π

1ð Þ
k p x̂i,k ∣Q1ð Þ + π

2ð Þ
k p x̂i,k ∣Q2ð Þ

= π
1ð Þ
k f x̂i,k ; μ

1ð Þ
k , �Pi

� �
+ π

2ð Þ
k f x̂i,k ; μ

2ð Þ
k , Σ 2ð Þ

k

� �
,

ð13Þ

where πð1Þ
k and πð2Þ

k are the weights of the first and second com-
ponents at time k, respectively.

The observation data set is defined as Zk = fx̂i,kgNi=1.
According to [26, 27], it is known that the expectation-
maximization (EM) algorithm can be adopted to find the max-

imum likelihood estimates for the parameter Φk = fπðqÞ
k , μðqÞk ,

Σð2Þ
k g2q=1 using Zk = fx̂i,kgNi=1. The log likelihood is shown as

L Φk ;Zkð Þ = 〠
N

i=1
log π

1ð Þ
k f x̂i,k ; μ

1ð Þ
k , �Pi

� ��
+ π

2ð Þ
k f x̂i,k ; μ

2ð Þ
k , Σ 2ð Þ

k

� ��
:

ð14Þ

Generally, the EM algorithm is divided into two steps: the
expectation and maximization step. First, initializing the
parameter Φk at each time k, then the expectation step gener-

ates a belief γðqÞi,k ðq = 1, 2Þ based on Φk and x̂i,k for each sensor:

γ
1ð Þ
i,k =

π
1ð Þ
k f x̂i,k ; μ

1ð Þ
k , Σ 1ð Þ

k

� �
π

1ð Þ
k f x̂i,k ; μ

1ð Þ
k , Σ 1ð Þ

k

� �
+ π

2ð Þ
k f x̂i,k ; μ

2ð Þ
k , Σ 2ð Þ

k

� � , ð15Þ

γ
2ð Þ
i,k = 1 − γ

1ð Þ
i,k , ð16Þ

where γð1Þi,k and γð2Þi,k represent the probability of sensor i belong-
ing to the component Q1 and Q2, respectively.

Given all beliefs γð1Þi,k and γð2Þi,k , the parameters fπðqÞ
k ,

μðqÞk , Σð2Þ
k g2q=1 are reestimated in the maximization step:

π
qð Þ
k = ∑N

i=1γ
qð Þ
i,k

N
, ð17Þ

μ
qð Þ
k = ∑N

i=1γ
qð Þ
i,k x̂i,k

∑N
i=1γ

qð Þ
i,k

, ð18Þ

Σ
2ð Þ
k =

∑N
i=1γ

2ð Þ
i,k x̂i,k − μ

2ð Þ
k

� �
x∧i,k − μ

2ð Þ
k

� �
′

∑N
i=1γ

2ð Þ
i,k

: ð19Þ

The expectation and maximization steps iterate until
they converge to a certain value. This iterative procedure
maximizes the concave lower bound of the log likelihood
in (14).

3.2. The Error Compensator. In this subsection, an error
compensator is proposed to reduce the influence of incorrect
data on the state estimation.

According to 3.1, the EM algorithm can be used to calcu-
late the GMM parameters and find the maximum likelihood
estimation. However, the convergence and clustering results
of the EM algorithm are affected by the initial parameters. In
this paper, the first and second moments are adopted as the
initial parameters of the second cluster. Due to the random-
ness of dynamic adversary and its specific type is unknown,
the output of some attacked sensors may be similar to that of

normal sensors at some moments. In this case, γð1Þi,k will be

miscalculated as γð2Þi,k in the iterative process (15)-(19), since
the observed data are considered to be closer to the second
cluster by the EM algorithm. When the above case occurs,
the estimation accuracy will be reduced seriously because
the number of data available for fusion is less than N/2.
On the other hand, the measurements that are similar to
the true measurements can provide useful information for
the remote state estimation, which means that the data
belonging to the second cluster can be adopted to estimate
system state. Hence, a compensator is designed to solve the
above problem.

�γð2Þk represents the average of all γð2Þi,k at time instant k,
which can be calculated as follows:

�γ
2ð Þ
k = ∑N

i=1γ
2ð Þ
i,k

N
: ð20Þ

According to the EM algorithm, γð2Þi,k tends to 1 if and
only if sensor i is attacked, and the expectation step is

accurate, which causes ∑N
i=1γ

ð2Þ
i,k to approach s. When the

expectation step is miscalculated, ∑N
i=1γ

ð2Þ
i,k tends to N − s

since γð2Þi,k approachs 0 for the attacked sensor i. According
to Assumptions 1–4, the maximum number of damaged
sensors does not exceed N/2 (namely, s ≤N/2), which

means N − s >N/2. Hence, it can be known that γð1Þi,k and

γð2Þi,k are miscalculated if ∑N
i=1γ

ð2Þ
i,k >N/2. Based on the above

analysis, the compensator is designed as follows:

bγ 1ð Þ
i,k =

γ
1ð Þ
i,k , �γ

2ð Þ
k ≤ ε

γ
2ð Þ
i,k , �γ

2ð Þ
k > ε

8<: ,

bγ 2ð Þ
i,k = 1 − bγ 1ð Þ

i,k ,

ð21Þ
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where bγð1Þ
i,k and bγð2Þ

i,k are the modified beliefs, and ε ≥ s/N
represents a threshold, which can be adjusted according
to the performance requirements of the actual system.

3.3. The GMM-Based State Estimation Approach against
Dynamic Attacks. In this subsection, a GMM-based estima-
tion algorithm is proposed to deal with the dynamic attacks,
which can improve the estimation accuracy effectively.

x̂−k = Ax̂k−1, ð22aÞ

P−
k = APk−1A′ +Q, ð22bÞ

x̂k = x̂−k + 〠
N

i=1
bγ 1ð Þ
i,k PkCi′R−1

i yi,k − Cix̂
−
k

� �
, ð22cÞ

Pk = P−
kð Þ−1 + 〠

N

i=1
γ∧ 1ð Þ

i,k Ci′R−1
i Ci

" #−1

, ð22dÞ

where the initial values x̂0 and P0 are the steady-state values
of the remote estimator when k ≤ 0.

1 // Run Kalman filter to steady state.
2: Initialize x̂i,−∞ = 0, Pi,−∞ =Πi, x̂−∞ = 0, P−∞ =Π;
3: for k = −∞ : 0 do
4: // Local data reaches steady state.
5: For i = 1 : N do

6: Pi,k = ½ðAPi,k−1A′ +QÞ−1 + Ci′R−1
i Ci�

−1
;

7: x̂i,k = Ax̂i,k−1 + Pi,kCi′R−1ðyi,k − CiAx̂i,k−1Þ ;
8: end for
9: // The remote estimator reaches steady state.

10: Pk = ½ðAPk−1A′ +QÞ−1 + C′R−1C�−1 ;
11: x̂k = Ax̂k−1 + PkC′R−1ðyk − CAx̂k−1Þ ;
12: end for
13: // GMM clustering by the EM algorithm.

14: Set �Pi = Pi,0, Σ
ð1Þ
i = Pi,0

15: for k = 1 : +∞ do
16: for i = 1 : N do
17: x̂i,k = Ax̂i,k−1 + �PiCi′R−1

i ðyi,k − CiAx̂i,k−1Þ;
18: end for
19: // the EM algorithm.

20: Initialize πð1Þ
k , πð2Þ

k , μð1Þk , μð2Þk , Σð2Þ
k ;

21: while LðΦk;ZkÞ not achieve the maximum likelihood estimates do

22: The expectation step: calculate γð1Þi,k and γð2Þi,k according to Equation (15)-(16).

23: The maximization step: calculate fπðqÞ
k , μðqÞk , Σð2Þ

k g2q=1 by Equation (17)-(19).

24: end while
25: // the error compensator.

26: �γð2Þk =∑N
i=1γ

ð2Þ
i,k /N

27: for i = 1 : Ndo

28: if �γð2Þk > ε ðε ⩾ ðjsj/NÞÞ then
29: bγð1Þ

i,k = γð2Þi,k ;

30: bγð2Þ
i,k = γð1Þi,k ;

31: else

32: bγð1Þ
i,k = γð1Þi,k ;

33: bγð2Þ
i,k = γð2Þi,k ;

34: end if
35: end for
36: // Remote state estimation.
37: x̂−k = Ax̂k−1 ;
38: P−

k = APk−1A′ +Q ;
39: x̂k = x̂−k +∑N

i=1bγð1Þ
i,k PkCi′R−1

i ðyi,k − Cix̂
−
k Þ ;

40: Pk = ½ðP−
k Þ−1 +∑N

i=1γ∧
ð1Þ
i,k Ci′R−1

i Ci�
−1
;

41: end for

Algorithm 1: The GMM-based state estimation against dynamic attacks.
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Theorem 2. Consider the linear time-invariant system (1)-(2)
and the dynamic adversary satisfying Assumptions 1–4, and
the remote state estimation x̂k can be calculated by

Proof. According to the Definition 2 in [16, 28], if sðs ≤N/2Þ
sensors are attacked, the following system is still observable
in the absence of attacks:

xk+1 = Axk +wk,
y�s,k = C�sxk + v�s,k,

ð23Þ

where �s ⊆ f1, 2,⋯,Ng is the set of unattacked sensors, and
y�s,k is the measurement stacked by the set �s. Similarly, C�s

and v�s,k are the system parameter and the measurement
noise stacked by the set �s, respectively. The pair ðA, C�sÞ is
observable.

According to Section II, Equation (6) can be expanded as

x̂k == x̂−k + PkC′R−1 yk − Cx̂−kð Þ

= x̂−k + Pk

C1′

⋮

CN′

26664
37775′

R1 0 0

0 ⋱ 0

0 0 RN

26664
37775
−1 y1,k

⋮

yN ,k

26664
37775 −

C1′

⋮

CN′

26664
37775x̂−k

0BBB@
1CCCA

= x̂−k + Pk

C1′R−1
1

⋮

CN′ R−1
N

26664
37775′

y1,k − C1′ x̂−k
⋮

yN ,k − CN′ x̂−k

26664
37775

= x̂−k + 〠
N

i=1
PkCi′R−1

i yi,k − Cix̂
−
k

� �
,

ð24Þ

where the default weight of each sensor is equal to 1 when
the sensor is not attacked.

Based on the above analysis, we can calculate the remote
state estimation x̂k by adopting the undamaged sensors. The

belief bγð1Þ
i,k represents the probability that the sensor i is

undamaged. Then, we can fuse the local data by adoptingbγð1Þ
i,k as the new weight of the local data, and then the Equa-

tions (22a)-(22d) can be obtained.
The system is assumed to reach steady state before time

k = 0. The adversary can launch dynamic attacks at any time
when k ≥ 1. Starting from time k = 1, the local state estima-
tion x̂i,k is calculated utilizing the measurement of sensor i
at each time instant k. Based on that, the remote estimator
clusters the local state estimates and calculates the parameter
Φk by the EM algorithm according to Equation (15)-(19).
Then, the error compensator is used to correct the error

beliefs. Finally, based on the modified belief bγð1Þ
i,k , the local

data can be fused by Theorem 2 to obtain the state estima-
tion x̂k. The whole process is summarized in Algorithm 1.

4. Numerical Simulation

In this section, the effectiveness of the GMM-based esti-
mation algorithm is verified through numerical simula-
tions. Similar to literature [21], we consider a linear
time-invariant dynamic process which is measured by 15
sensors. The system parameters A and Q are randomly
generated from intervals [0.4, 0.99] and [0.5, 2], respec-
tively. Matrices Ci and Ri, i ∈N , are randomly generated
from intervals [1, 2]. The system reaches steady state
before t = 30, and the attack signal starts from time t =
31, assuming that s ð1 ≤ s ≤ 6Þ sensors are attacked by
ai,k at each time instant tðt ≥ 31Þ.
4.1. Example 1. In this example, the estimation accuracy of
GMM-based method with and without compensator against
dynamic attacks has been compared. Similar to [15], the
attack signal ai,k can be assumed to be a linear function of
the measurement noise:

ai,k = βvi,k +Θ, ð25Þ

where β and Θ are real number from the interval [-5, 5] and
[-10, 10], respectively. Meanwhile, ai,k satisfies Assumptions
1–4.
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State estimation without compensator
State estimation with compensator

Figure 2: The actual states and its remote estimation with different approaches.
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Set the threshold ε = 0:45 in the following example. In
Figure 2, the trajectories of the actual state and the states
estimated by the GMM-based estimation method with
and without compensator are plotted. It is shown that
the estimated states of the GMM-based method with
compensator (dotted line) are closer to the actual state
than that without compensator (red line). Figure 3 shows
the estimation error covariance for the GMM-based
method with and without compensator, respectively. It

is observed that the estimation error covariance of the
method without compensator (red line) is larger than that
with compensator (black line), which means that the
error compensator proposed in this paper can effectively
reduce the impact of faulty data on state estimation.
According to Figures 2 and 3, the estimation accuracy
of the GMM-based estimation method with the compen-
sator is higher than that without the compensator against
dynamic attacks.
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Figure 4: The number of attacked sensors at each moment when T ⩾ 31.
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The number of attacked sensors at each moment when
T ≥ 31 is plotted in Figure 4, and the state estimation and
corresponding error covariance of the GMM-based algo-
rithm when the compensator takes different thresholds are
shown in Figures 5 and 6, respectively. It is seen that the state

estimation accuracy is higher when ε = 0:45 and 0.65 than ε
= 0:15 and 0.95, which is indicated that the performance of
the remote estimator will deteriorate while ε is too large or
too small. Hence, the threshold can be adjusted according
to the actual performance requirements of the real system.
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Figure 7: The actual states and its remote estimation based on different methods.
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4.2. Example 2. Distributed and centralized χ2 false-data
detectors are common, and they determine whether an
attack exists based on the statistical characteristics of the
innovation yi,k − Cix̂

−
i,k and yk − Cx̂−k , respectively. From

[21], a well-designed dynamic attack can successfully bypass
the distributed χ2 detector but fails to remain stealthy to the
centralized χ2 false-data detector. In this subsection, we have
compared the proposed approach and the estimation
methods based on different χ2 false-data detectors.

Similar to [21], the attack signal ai,k is set as

ai,k = −2yi,k + 2Cix̂
−
k , ð26Þ

where ai,k satisfies Assumptions 1–4.
In Figure 7, the trajectories of the actual state and the

state estimated by estimation methods based on different
detectors are plotted, respectively. It is seen that the GMM-
based state estimation (black line) is closer to the actual state
than the state estimation based on the distributed and
centralized χ2 detector (red and green). Figure 8 shows the
estimation error covariance of the corresponding methods,
and it is observed that the GMM-based estimation error
covariance is much smaller than that based on the distrib-
uted and centralized χ2 detector. It can be seen that the
GMM-based estimation approach proposed in this paper
can improve the performance effectively.

5. Conclusion

This paper studies the state estimation problem against
dynamic malicious attacks. An error compensator is pre-
sented, which can reduce the influence of local error data
on state estimation effectively. Based on that, a new GMM-
based state estimation algorithm is proposed to improve
the estimation accuracy for the system suffering from
dynamic attacks. Finally, the effectiveness of the proposed
algorithm is verified by numerical simulations. We will
extend the GMM-based approach further to systems with
parametric uncertainties in the future.
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Although solving the robust control problem with offline manner has been studied, it is not easy to solve it using the online
method, especially for uncertain systems. In this paper, a novel approach based on an online data-driven learning is suggested
to address the robust control problem for uncertain systems. To this end, the robust control problem of uncertain systems is
first transformed into an optimal problem of the nominal systems via selecting an appropriate value function that denotes the
uncertainties, regulation, and control. Then, a data-driven learning framework is constructed, where Kronecker’s products and
vectorization operations are used to reformulate the derived algebraic Riccati equation (ARE). To obtain the solution of this
ARE, an adaptive learning law is designed; this helps to retain the convergence of the estimated solutions. The closed-loop
system stability and convergence have been proved. Finally, simulations are given to illustrate the effectiveness of the method.

1. Introduction

Existing achievements of control techniques are mostly
acquired under the assumption that there are no dynamical
uncertainties in the controlled plants. Nevertheless, in practi-
cal control systems, there are many external disturbances
and/or model uncertainties, so the system lifetimes are
always affected by those uncertainties. The factors of uncer-
tainties must be taken into consideration in the design of
the controller such that the closed-loop systems must have
good responses even in the presence of such uncertain
dynamics. We say a controller is robust if it works even
though the practical system deviates from its nominal model.
Therefore, it creates the problem of robust control design,
which has been widely studied during the past decades [1,
2]. The latest research [1, 3] shows that the robust control
problem can be addressed via using the optimal control
approach for the nominal system. Nevertheless, the online

solution for the derived optimal control problem is not han-
dled in [1].

Considering optimal control problems, recently, many
approaches have been presented [4, 5]. A linear system opti-
mal control problem is described to address the associated
linear quadratic regulator (LQR) problem, where the opti-
mal control law can be obtained. The theory of dynamic pro-
gramming (DP) has been proposed to study the optimal
control problem in the past years [6]; however, there is an
obvious disadvantage for DP, i.e., with the increase in the
dimensions of system state and control input, there is an
alarming increase in the amount of computation and stor-
age, which is called “curse of dimensionality.” To overcome
this problem, the neural network (NN) is used to approxi-
mate the optimal control problem [7], which leads to recent
research work on adaptive/approximate dynamic program-
ming (ADP); the tricky optimal problem can be tackled via
ADP method; thus, we can get the online solution of the
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optimal cost function [8]. Recently, robust control design
based on adaptive critic idea has gradually become one of
the research hotspots in the field of ADP. Many methods
have been proposed one after another, which are collectively
referred to as the robust adaptive critic control. A basic
approach is to transform the problem to establish a close
relationship between robustness and optimality [9]. In these
literatures, the closed-loop system generally satisfies the uni-
formly ultimately bounded (UUB). These results fully show
that the ADP method is suitable for the robust control
design of complex systems in uncertain environment. Since
many previous ADP results are not focus on the robust per-
formance of the controller, the emergence of robust adaptive
critic control greatly expands the application scope of ADP
methods. Then, considering the commonness in dealing
with system uncertainties, the self-learning optimization
method combined with ADP and sliding mode control tech-
nology provides a new research direction for robust adaptive
critic control [10]. In addition, the robust ADP method is
another important achievement in this field. It is worth
mentioning that the application of robust ADP methods in
power systems has attracted special attention [11], leading
to a higher application value in industrial systems.

Based on the above facts, we develop a robust control
design for uncertain systems via using an online data-
driven learning method. For this purpose, the robust control
problem of uncertain systems is first transformed into an
optimal control problem of the nominal systems with an
appropriate cost function. Then, a data-driven technique is
developed, where Kronecker’s products and vectorization
operations are used to reformulate the derived ARE. To
solve this ARE, a novel adaptive law is designed, where the
online solution of ARE can be approximated. Simulations
are given to indicate the validity of the developed method.

The major contributions of this paper include the
following:

(1) To address the robust control problem, we transform
the robust control problem of uncertain systems into
an optimal control problem of the nominal system.
It provides an approach to address the robust control
problem

(2) Kronecker’s products and vectorization operations
are used to reformulate the derived ARE, which
can help to rewrite the original ARE into a linear
parametric form. It gives a new pathway to online
solve the ARE

(3) A newly developed adaptation algorithm driven by
the parameter estimation errors is used to online
learn the unknown parameters. The convergence of
the estimated unknown parameters to the true values
can be guaranteed

This paper is organized as follows: In Section 2, we intro-
duce the robust control problem and transform the robust
control problem into an optimal control problem. In Section
3, we design an ADP-based data-driven learning method to
online solve the derived ARE, where Kronecker’s products

and vectorization operations are used. Section 4 gives some
simulation results to illustrate the effectiveness of the pro-
posed method. Some conclusions are stated in Section 5.

2. Preliminaries and Problem Formulation

A continuous-time (CT) uncertain system can be written as

_x tð Þ = A dð Þx + Bu +D xð Þ, ð1Þ

where x ∈ℝn and u ∈ℝm are the system state and the con-
trol action, respectively. A ∈ℝn×n is the system matrix and
B ∈ℝn×m is the input matrix. d ∈Ω denotes the uncertain
parameter involved in the system, and DðxÞ denotes the
bounded nonlinearities. The purpose of this paper is design-
ing a controller to make the system (1) asymptotically stable
under uncertainties d ∈Ω.

In this paper, we study the case, i.e., the matching condi-
tion is satisfied; in other words, the uncertainty is in the
range of B; thus, the uncertainty is in matrix A which can
be rewritten as AðdÞ − Aðd0Þ = BωðdÞ for uncertain ωðdÞ,
where d0 ∈Ω is the nominal value of d. Let F denote the
upper bound of ωðdÞ; then, for all d ∈Ω, we have ωTðdÞωð
dÞ ≤ F. In this paper, we will resolve following problem,
i.e., realize the online solution for robust control with uncer-
tain system (1). Then, the above robust control problem can
be rewritten as

_x tð Þ = A d0ð Þx + Bu + Bω dð Þx: ð2Þ

To obtain the robust control solution, the classical
method is linear matrix inequality (LMI) [12] in an offline;
online resolving the robust control problem is not easy. To
overcome this problem, the authors in [1, 9] reported that
the robust control problem of uncertain systems can be
transformed into an optimal control problem of nominal
systems, which provides a new pathway to address the
robust control problem. Hence, consider the nominal plant
of the system (1).

_x tð Þ = A d0ð Þx + Bu: ð3Þ

The aim is to find a control action u to minimize the fol-
lowing continuous cost function:

V xð Þ =
ð∞
t

xT Fx + xTQx + uTRu
� �

dι, ð4Þ

where Q =QT > 0 ∈ℝn×n and R = RT > 0 ∈ℝm×m are the
weight matrices.

It should also be noted that the upper bound F of the
uncertainties ωðdÞ is involved in the cost function (4) to
address their effects. The following Lemma summarizes the
equivalence between the robust control of the system (1)
or (2) and the optimal control of the system (3) with cost
function (4).

Lemma 1 (see [9]). If the solution to the optimal control
problem of the nominal system (3) with cost function (4)
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exists, then it is a solution to the robust control problem for
system.

Lemma 1 exploits the relationship between the robust
control and optimal control and thus provides a new way
to address the robust control.

To address the optimal control problem of (3), an Alge-
braic Riccati equation (ARE) can be derived via the cost
function (4) as

ATP∗ + P∗A +QT − P∗BR−1BTP∗ = 0, ð5Þ

where P∗ is the solution of (5), QT =Q + F, and A = Aðd0Þ.
Then, based on the optimal principle, its optimal action
can be given as

u = −Kx = −R−1BTP∗x: ð6Þ

3. Online Solution to Robust Control via Data-
Driven Learning

This section will propose a data-driven learning method to
resolve the robust control, the schematic of the proposed
control method as given Figure 1.

To this end, the system states are multiplied on both
sides of ARE (5); we have

xT ATP∗ + P∗A − P∗BR−1BTP∗� �
x = −xTQTx: ð7Þ

We apply two operations (vecð⋅Þ and ⊗ ) on (7) yielding

2 x ⊗ Axð ÞTvec P∗ð Þ + x ⊗ xð ÞTvec QTð Þ − vec BR−1BT� �
⊗ x ⊗ xð Þ� �Tvec P∗ ⊗ P∗ð Þ = 0:
ð8Þ

Since the vecðP∗ ⊗ P∗Þ is involved in (8), then the
dimension of (8) is very high. To overcome this issue, a
dimensionality reduction operation on (7) is given

xT ATP∗ + P∗A − KTR−1K
� �

x = −xTQTx, ð9Þ

then we can apply two operations (vecð⋅Þand ⊗ ) on (9)
yielding

2 x ⊗ Axð ÞTvec P∗ð Þ + x ⊗ xð ÞTvec QTð Þ − vec Rð Þ ⊗ x ⊗ xð Þð ÞTvec K ⊗ Kð Þ = 0:

ð10Þ

Hence, above equation (10) can be rewritten as a com-
pact form

ϕ = −WTϑ, ð11Þ

where W = ½vecðP∗Þ, vecðK ⊗ KÞ�T , ϑ = ½2ðx ⊗ AxÞ,−vecð
RÞ ⊗ ðx ⊗ xÞ�, and ϕ = ðx ⊗ xÞvecðQTÞ.
3.1. Online Solution of Robust Control. From (11), we have
that only variable W is unknown due to involving the
unknown matrices P∗ and K ; thus, the next operation is

design an online learning method to update the unknown
variable W. Consequently, the unknown matrices P∗ and
K can be online estimated based on the estimate Ŵ of W.
To this end, we define two auxiliary variables, i.e., Y ∈ℝl×l

and N ∈ℝlas

_Y = −ℓY + ϑϑT , Y 0ð Þ = 0,
_N = −ℓN + ϑϕT ,N 0ð Þ = 0,

(
ð12Þ

with ℓ > 0 being the learning parameter. Then, its solution
can be calculated as

Y =
ðt
0
e−ℓ t−rð Þϑ ιð ÞϑT ιð Þdι,

N =
ðt
0
e−ℓ t−rð Þϑ ιð ÞϕT ιð Þdι:

8>>><
>>>:

ð13Þ

To realize the online estimation for Ŵ based on the esti-
mation error ~W, an auxiliary vector M ∈ℝl is defined as

M = YŴ +N: ð14Þ

After taking (11) into (13), we have N = −YW; thus, we
can rewrite (14) as

M = YŴ +N = −Y ~W, ð15Þ

with ~W =W − Ŵ being the estimation error. Then, we can
design the adaptive learning law as

_̂W = −κM, ð16Þ

with κ being the learning gain.
For adaptive law (16), auxiliary vector M of (14)

obtained based on and ϑ using (15) contains the information
on the parameter estimation error Y ~W. Thus,M can be used
to drive parameter estimation. Consequently, parameter
estimation Ŵ can be updated along with the estimation
error ~W extracted by using the measurable system states x.
Thus, this adaptive algorithm clearly differs to the gradient
descent algorithms used in other ADP literatures.

Robust
control

Controlled
system

Cost function

Data-driven
learning

ARE

u x

P

Figure 1: Schematic of the proposed control method.
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Since the fact M = −Y ~W is true, then we can obtain the
following lemma as follows.

Lemma 2 (see [13, 14]. Assume that the variable ϑ provided
in (12) meets persistently excited, then the matrix Y given in
(12) can be considered as positive definite, which means that
λminðYÞ > σ > 0 for any positive constant σ.

Lemma 2 shows the positivity of the variable ϑ, then we
can summarize the convergence of proposed adaptive learn-
ing law (16) as follows.

Theorem 3. Consider (11) with adaptive learning law (16),
when variable ϑ provided in (11) satisfies PE condition, then
the estimation error ~W is convergence to the origin.

Proof. A Lyapunov function can be chosen as V1 = ð1/2Þð
~W

T
κ−1 ~WÞ, then we can calculate its _V1 as

_V1 = ~W
T
κ ~W = − ~W

T
Y ~W ≤ −σ ~W

�� ��2 ≤ −μV1, ð17Þ

with μ = 2σ/λmaxðκ−1Þ > 0. Hence, we have the estimated
error ~W ⟶ 0. This completes the proof.☐

The step-by-step implementation of proposed learning
algorithm is given as follows.

Remark 4. For the above designed adaptive learning law (16),
which is derived by the estimation error. To this end, the
control input u and system states x are used; this is clearly
different to the existing results [15]. In particular, two oper-
ations vecð⋅Þ and ⊗ are applied to the derived ARE; this
helps to realize the online learning. Consequently, faster
convergence can be retained compared to the previous gra-
dient method-based adaptive laws designed.

Remark 5. It is a fact that some ADP methods are applied to
address the robust control problem successfully. However,
most existing ADP techniques focus on H-infinity control
problem. For proposed robust control problem in this paper,
we know the uncertain parameter d are involved in system
matrix A such that AðdÞ, so we can consider the system con-
tains unmolded dynamics. To obtain the uncertain term
bound, we should do some operations such that AðdÞ − Að
d0Þ, which will be used in the cost function (4). Assume that
the system dynamics are completely unknown, the uncertain
bound may not be used in cost function as expected. Hence,
the system matrix must be known in this paper; future work

will try to solve the output-feedback robust control under
completely unknown dynamics.

3.2. Stability Analysis. Before the stability analysis of the
closed-loop system, we first define the practical optimal con-
trol as

u = −R−1BTP̂x, ð18Þ

with P̂ being the estimated P.
Taking (18) into (3), we have the closed-loop system

dynamics

_x = Ax + Bu = A − BR−1BTP̂
� �

x: ð19Þ

To complete the stability analysis, we use the following
assumptions as follows.

Assumption 6. The dynamic matrices A ≤ bA and B ≤ bB for
bA, bB > 0, the estimated matrix P̂ ≤ bP for bP > 0.

In fact, the above assumptions are not stringent in prac-
tical systems and have been widely used in many results [13,
14, 16].

Now, some results can be included as follows.

Theorem 7. Consider the system (3) with adaptive learning
law (16), if the variable ϑ is PE, then the parameter estima-
tion error ~W converges to zero, and the derived control is con-
vergence to its optimal control, i.e., ku − u∗k⟶ 0.

Proof. Consider a Lyapunov function as

J = J1 + J2 =
1
2

~W
T
κ−1 ~W

� �
+ Γ1x

Tx + K1V
∗, ð20Þ

where V∗ is the optimal cost function provided in (4) and
Γ1 > 0 and K1 > 0 are the positive constants.

From (17), we have _J1 as

_J1 = − ~W
T
Y ~W ≤ −σ ~W

�� ��2: ð21Þ

1) (Initialization): given the initial parameter Ŵð0Þ and gains κ, ℓ for adaptive learning law (16)
2) (Measurement): measure the system input\output data and construct the regressors ϕ, ϑ in (10) and (11)
3) (Online adaptation): solve Y , N , and M and learn the unknown parameter Ŵ with (16) to obtain the control u
4) (Apply control): apply the derived output-feedback control u on the system

Algorithm 1: (Step-by-step Implementation for Online Robust Control Solution of Uncertain Systems).
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Then, the _J2 can be derived from systems (3) and (19) as

_J2 = 2Γ1x
T _x + K1 _V

∗ = 2Γ1x
T Ax − BR−1BTP̂
� �

x

+ K1 −xTQTx − u∗Ru
� �

≤ 2Γ1 bA − λmax R−1� �
b2BbP

�
− K1λmin QTð ÞÞ xk k2 − K1λmin Rð Þ u∗k k2:

ð22Þ

Thus, based on (21) and (22), we have _J as

_J ≤ J1 + J2 = −σ ~W
�� ��2 − 2Γ1 bA − λmax R−1� �

b2BbP
�

− K1λmin QTð ÞÞ xk k2 − K1λmin Rð Þ u∗k k2:
ð23Þ

Then, the parameters Γ1 and K1 can be chosen fulfilling
following conditions

K1 > max 1
λmin

Rð Þ, 1
λmin

QTð Þ
� �

,

Γ1 >
bA − λmax R−1� �

b2BbP − K1λmin QTð Þ
2 :

ð24Þ

Therefore, we can rewrite (23) as

_J ≤ −a1 ~W
�� ��2 − a2 xk k2 − a3 u∗k k2, ð25Þ

where a1, a2, and a3 are represented as

a1 = σ,
a2 = 2Γ1 bA − λmax R−1� �

b2BbP − K1λmin QTð Þ� �
,

a3 = K1λmin Rð Þ:
ð26Þ

Thus, we have J ⟶ 0 for t⟶∞ via Lyapunov theo-
rem, then the estimation error ~W converges to zero, i.e., Ŵ
⟶W. Consequently, we can obtain the error between u
and u∗as

u − u∗k k = −R−1BTP̂ − R−1BTP∗ = −R−1BT P̂ − P∗� �
⟶ 0:

ð27Þ
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−0.1
1

−0.05

1

Er
ro

r

0

0.5
x1

0
x2

0.05

0
−0.5

−1 −1

Figure 3: The error between P̂ and P.

5Journal of Sensors



This implies the practical optimal control convergence to
0 is true. This completes the proof.☐

4. Simulation

4.1. Example 1: Second-Order System. We consider a CT
second-order system as

_x =
0 1

−0:5 + d −0:5 + d

" #
x +

0
1

" #
u ð28Þ

where d ∈ ½−0:3, 0:3� denotes the uncertainties in system and
x = ½x1, x2�T is the state variable. The purpose of the paper is
to design a control u making the system (28) stable. In this

paper, we define d0 = 0, then based on the stated in Section
2, we can rewrite the system (28) as

_x =
0 1

−0:5 −0:5

" #
x +

0
1

" #
u +

0
1

" #
d d½ �

0
1

" #
x, ð29Þ

then we can extract the uncertain term as ωðdÞ = ½d, d�.
Thus, the upper bound F can be calculated as

ωT dð Þω dð Þ =
d

d

" #
d d½ � ≤ 0:32 0:32

0:32 0:32

" #
= F: ð30Þ

To complete the simulation, we set the initial system
states as x = ½0:5,−0:5�T , the weights matrices are Q = I, R =
1, and learning gains are ℓ = 8:9 and κ = 96:5. To show the
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effectiveness of the proposed algorithm, the offline solution
of ARE is given as

P∗ =
1:5128 0:6180
0:6180 1:0767

" #
: ð31Þ

Figure 2 gives the estimation of the matrix P̂ with online
adaptive learning law (16); based on the ideal solution in

(31), we have that the estimated solution P̂ is convergence
to its optimal solution P∗. This is also found in Figure 3,
where the normal error, i.e., kP̂ − P∗k, is provided. The good
convergence will contribute to the rapid convergence of the
system states, which can be found in Figure 4, the system
states are bounded and smooth. Since the estimated P̂ fast
convergence to P∗, then the system response is quite fast;
this also can be found in Figure 4. The corresponding con-
trol input is given in Figure 5, which is bounded.
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4.2. Example 2: Power System Application. This section will
provide a power system to test the proposed learning algo-
rithm; thus, we choose x = ½ς1, ς2, ς3� ∈ℝ3 as system states,
where x1 = ς1 is the incremental change of the frequency
deviation, x2 = ς2 defines the generator output, and x3 = ς3
denotes the governor value position. Therefore, the state-
space expression of this power system can be given as

_x =

−
1
TG

0 −
1

FrTG

Kt

Tt
−
1
Tt

0

0
Kg

Tg
−

1
Tg

2
666666664

3
777777775
x +

1
TG

0
0

2
6664

3
7775u, ð32Þ

then we can give some parameters of the proposed power
system as follows.

TG = 5ðHz/MWÞ is the time of the governor, Tt = 10ðsÞ
denotes the time of the turbine model, Tg = 10ðHz/MWÞ
is the time of the generator model, Fr = 0:5ðsÞ indicates the
feedback regulation constant, Kt = 1ðsÞ is the gain constant
of the turbine model, and Kg = 1ðsÞ shows the gain constant
of the generator model.

In order to complete this simulation, one assumes that
this system is disturbed by an uncertain term as example 1.
The initial system states are set as x0 = ½−0:3, 0:5, 1�T , Q = I,
and R = 1; the learning parameters are given as ℓ = 0:5 and
κ = 100. Similar to example 1, the offline solution of ARE
can be given as

P∗ =
2:5817 1:4963 −1:7575
1:4963 7:7916 3:2394
−1:7575 3:2394 11:4129

2
664

3
775: ð33Þ

Figure 6 shows the convergence of estimated matrix P;
based on the offline solution given in (33), we have that
the estimated solution P can converge to its optimal solution
P∗; this in turn affects the system state response (as shown in

Figure 7). Figure 7 gives the system state response, which is
smooth and bounded. The system control input is given in
Figure 8.

5. Conclusion

In this paper, an online data-driven ADP method is pro-
posed to solve the robust control problem for continuous-
time systems with uncertainties. The robust control problem
can be transformed into the optimal control problem. A new
online ADP scheme is then introduced to obtain the solution
of ARE via using the vectorization operator and Kronecker
product. Finally, the closed-loop system stability and the
convergence of the robust control solution are all analyzed.
Simulation results are presented to validate the effectiveness
of the proposed algorithm. It is worth noting that the
research results are satisfied to the matched uncertainty con-
dition. In our future work, we will extend the proposed idea
to address the robust tracking control problem, which allows
to carry out practical experimental validations based on
existing test-rigs in our lab.
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Although some reliability importance measures and maintenance policies for mechanical products exist in literature, they are
rarely investigated with reference to weakest component identification in the design stage and preventive maintenance interval
during the life cycle. This paper is mainly study reliability importance measures considering performance and costs (RIMPC) of
maintenance and downtime of the mechanical hydraulic system (MHS) for hydraulic excavators (HE) with energy regeneration
and recovery system (ERRS) and suggests the scheduled maintenance interval for key components and the system itself based
on the reliability RiðtÞ. In the research, the required failure data for reliability analysis is collected from maintenance crews and
users over three years of a certain type of hydraulic excavators. Minitab is used for probable distribution estimation of the
mechanical hydraulic system failure times, and the model is verified to obey Weibull distribution. RIMPC is calculated by
multiplying the reliability RiðtÞ and weighting factor Wi and then compared with other classical importance measures. The
purpose of this paper is to identify the weakest component for MHS in the design stage and to make appropriate maintenance
strategies which help to maintain a high reliability level for MHS. The proposed method also provides the scientific
maintenance suggestion for improving the MHS reliability of the HE reasonably, which is efficient, profitable, and organized.

1. Introduction

With development of society and the progress of science and
technology, crisis of lack of energy and serious environmen-
tal pollution has become increasingly prominent. As the
second-largest internal combustion engine product in addi-
tion to autoindustry, construction machinery pollutes envi-
ronment more seriously than other industries, since its
large engine capacity, high oil consumption, and high emis-
sions. To achieve energy conservation, pollution reduction,
and sustainable development, various energy-saving tech-
nologies have been applied in construct machinery, such as
hybrid, energy recovery, electronic control, and new ener-
gies. Among these, the favorite for customers and manufac-
turers is energy recovery technology, for its low cost and
high production efficiency. The hydraulic system of con-

struction machines become more complicated when
upgraded with energy recovery unit; hence, quality and reli-
ability analyses for complex hydraulic system become the
most important task in the stages of design, running, and
maintenance. Importance measures are utilized to evaluate
the effect of parts on a system when single or multiple parts
fail or their states change; they are functions of reliability
parameters and system structures. In system design stage,
the weakest part of system could be sought out by importance
analysis, which applied for supporting system promotion from
a design perspective. In system operational stage, the preven-
tive maintenance policies or replacement scheme can be per-
formed in right time by means of important measures
analysis, which could ensure system operated normally.

In this study, importance measure calculation of individ-
ual component which belongs to the subsystem is used to
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measure the effectiveness of the reliability for complex
mechanical hydraulic system with energy recovery system.
Reliability models are established for important measure cal-
culation, and some assumptions are made as follows; a
binary system is formed from two functional states: perfect
functionality and complete failure. For energy regeneration
and recovery system (ERRS) of construction machinery have
the characteristics of multicircuit, nonlinearity, and uncer-
tainty, it is difficult to do reliability analysis and reliability
design optimization in practical production. The RIMPC is
proposed for importance measure, and prevention scientific
maintenance is suggested for improving the ERRS reliability
of the HE reasonably. It is significant to do the important
analysis for key subsystems of complex system, for manufac-
turers to put their effort to the analyzed main parts.

The major contributions of this paper include the
following:

(1) Assessment index RIMPC is presented to evaluate
system reliability; it is convenient and practical for
maintenance crew

(2) Develop a new reliability importance measure and
identify the manufacturing bottleneck of energy
regeneration and recovery system assessment of con-
struction machinery in the design stage

(3) Suggest appropriate preventive maintenance interval
of system for maintenance crew to keep high reliabil-
ity for new system

The upcoming sections will cover the following: Section
2 reviews prime importance measures briefly for the binary
and multistate systems. In Section 3, a new reliability impor-
tance measure is proposed, and preventive maintenance
interval is suggested. An energy regeneration and recovery
system of hydraulic excavator is taken as illustration in Sec-
tion 4 to explain how the proposed measure works and then
discovers by new method, and various importance measures
are compared and discussed. The conclusion comes in Sec-
tion 5.

2. Review of Importance Measures for Binary
and Multistate Systems

Numerous importance measures and reliability assessment
methods have been developed in recent years, like Birn-
baum method and the optimization measures, Monte
Carlo simulation, Markov chain, and Fault Tree Analysis,
most of which are utilized in the field of electronics and
aerospace [1, 2].

This section reviews kinds of classic importance mea-
sures in reliability system design. Birnbaum proposed the
classic binary importance measures of components in a
coherent system in the 1960s [3], categorizing importance
measures into three classes, namely, the structure impor-
tance measure, the reliability importance measure, and the
lifetime importance measure. Recent advances and exten-
sions to multistate components on importance measures

have been successfully developed and applied for various
purposes as shown in the literature [4].

Lambert conducted on fault trees for decision-making in
system analysis and criticality importance measure [5];
Vesely and Fussell implemented Fussell-Vesely importance
measure [6, 7], concerned with component failures contrib-
uting to system failure, which refers to the probability of sys-
tem failure when at least one of the minimum cut sets fails,
and represented the ratio of the minimum cut set of compo-
nent failure to system failure. Armstrong and Hong intro-
duced joint reliability importance of components and k
-out-of-n systems and analyzed the influence of primary
and secondary components on system reliability [8, 9].

Binary decision diagram is a method proposed by Akers
in the 1970s and developed in recent years based on fault
tree analysis [10], for the advantages such as in low compu-
tational complexity and easy implementation, this method-
ology is popularly utilized in practical applications [11–17].

Barlow and Wu defined a system state function for
coherent systems with multistate components and investi-
gated its properties. They supposed that the results for the
theory of binary structures could be applied in multistate
component fault by natural extensions in terms of system
function [18].

Lisnianski et al. defined multistate systems (MSSs) as
they had different performance levels and several failure
modes with various effects on the entire system’s perfor-
mance. He reviewed methods and tools used in the field of
reliability assessment, optimization, and application [19].
The research team also did a lot of work in solving a family
of MSS problems, such as structure optimization, optimal
expansion, maintenance optimization, and optimal multi-
stage modernization. And they also proposed an approach
based on the universal generating function technique for
the evaluation of some commonly used importance mea-
sures. [20, 21] presented a new method of dynamic availabil-
ity and perform ability analysis for a large-scale multistate
system based on robotic sensors [22, 23].

The composite importance measure proposed by
Ramirez-Marquez and Coit about importance measures
was to disclose critical part in a system so that the mainte-
nance crew could rank the components in a system by
means of their impact to performance reduction and pro-
duction loss [24].

Natvig presented a probability model of operations and
maintenance, described various types of MSSs, and searched
on the measures of component importance in nonrepairable
and repairable multistate strongly coherent systems [25,
26].Wu et al. proposed new utility importance of a compo-
nent state in MSS, clarified the difference with importance
measures suggested by William S. Griffith, and overcome
some drawbacks. They also discussed the impact of an indi-
vidual part to the performance utility of an MSS, so as to
optimize it [27].

Zhang developed a heuristic policy for maintaining mul-
tistate systems for allocating maintenance resources to sys-
tems with higher importance [28]. The criticalities of
different parts and the long-term effects of successful main-
tenance activities on the throughput of a production system

2 Journal of Sensors



in a certain period to be solved by Ahmed and Liu and two
types of importance measures prioritize the critical parts in
the maintenance schedule to be presented [29]. Dao and
Zuo presented some models based on reliability analysis to
figure out the reliability of a complex system and assigned
the reliabilities of its parts in a range of states varying from
perfect functioning to complete failure [30].

Do and Bérenguer developed a novel time-dependent
importance measure that could be utilized to rank the parts
or groups of parts through their ability and to promote the
system reliability for a given mission according to the condi-
tional reliability evaluation of the system [31]. Borgonovo
introduced the differential importance measure, a new sensi-
tivity measure for probabilistic safety assessment [32, 33],
proposed a new importance measure for time-independent
reliability analysis, and offered a rank comparison with other
time-dependent and time-independent reliability impor-
tance measures [34].

Peng et al. proposed two new importance measures for
systems with S-independent degrading components and
with S-correlated degrading components considering the
continuously changing status of the degrading components
and the correlation between components [35]. Ahmadi
et al. evaluated the reliability, availability, and maintainabil-
ity of the tunneling equipment and analyzed the material
hauling system in an earth pressure balance tunnel boring
machine [36]. Proper importance measures can help to iden-
tify design weakness or operation bottlenecks, conduct opti-
mal modifications for system upgrades and maintenance,
and provide information about the importance of compo-
nents on the system performance, which includes reliability,
availability, productivity, safety, and detectability [37].

3. Proposed Method

In this paper, a new reliability importance measure consider-
ing performance of mechanical hydraulic system (MHS) and
cost of maintenance and downtime of construction machine
caused by MHS’ failures is proposed for the whole machine
whose reliability and performance can be improved effec-
tively if the weakest part is predicted as early as possible.
For complex systems, limited resources are supposed to allo-
cate according to how important the components are to the
system in the design, enhancement, and maintenance stage

efficiently. In this study, an optimal strategy is implemented
economically to identify the improvable part for system per-
formance taking into system reliability, operation perfor-
mance, maintenance cost, and losses in downtime account.
Figure 1 is block diagram of the proposed reliability impor-
tance measure.

3.1. Explanation of the Principle of Reliability Importance
Measures. All components and a system under consideration
have the set of reliability states s = f0, 1,⋯, Kg and s ≥ 1.
The state of component i is ordered as siðkÞ. sið0Þ denotes
component i as complete failure, siðkÞ denotes component
i as perfect function, and states degrade with time t. The
probability matrix P of the components is presented as P;
for all components, k ∈ s, 0 ≤ pik ≤ 1, and in each row P adds
up to 1.

P = pik½ � =
p00 ⋯ p0K

⋮ ⋱ ⋮

pK0 ⋯ pKK

2
664

3
775,

RIMPC = Ri t, ·ð Þ:

ð1Þ

Riðt, ·Þ = ½Riðt, 0Þ, Riðt, 1Þ⋯ , Riðt, kÞ� is called the multi-
state reliability function of a component i, Riðt, ·Þ = P, where
Riðt, ·Þ is calculated based on the Weibull model of compo-
nents’ historical failure data. The Weibull distribution is
used to transform the data effectively to Weibull model in
machine reliability analysis, which shows effective ability of
describing the wear-out failures and the product lifetime.
The mathematical expressions of the Weibull distribution
are shown in Appendix A. Reliability analysis based on Wei-
bull approach probably be considered to generate better
solution when system reliability expectation is high
[38–40]. The weighting factor Wi in Equation (1) is used
to calculate RIMPC which takes performance and cost of
machine operation into account in after-sales stage. Suppose
the ith component has n kinds of failure modes, where Wi is
defined as follows:

Wi = 〠
n

j=1
SijOijDijLijCij: ð2Þ

RIMpc

Reliability

Detectivity

Economic
effect

Occurrence of failure modes (O)

Failure effect
to the system performance (S)

Detectivity (D)

Losses of downtime (L)

Maintenance or replacement
costs of failure mode (C)

Figure 1: Reliability importance measure.
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Sij:The severity of the failure modes effect to the system
performance, 10 ranks

Oij:Occurrence of the failure modes, 10 ranks
Dij:Detectability of the failure modes, 10 ranks
Lij:Losses of downtime under the failure mode, losses of

downtime of the machine include economic losses of the
systems stop running, 10 ranks

Cij:Costs of the maintenance or replacement when the
failure happens, 10 ranks.

The detailed ranking of S, O, D, L, and C is shown in
Tables 1–5, which are worked out with the database belong-
ing to HE manufacture. It can also be used for other con-
struction machines after being revised.

3.2. New Approach for ERRS Preventive Maintenance
Interval. It is necessary to make proper preventive mainte-
nance strategies in the design stage to reduce machine
downtime, increase operation time, and improve the avail-
ability of the equipment during use. There are three main
types of maintenance in machine life cycle management.
One is routine maintenance; it is easy to implement with less
cost; the second one is restorative maintenance, which
requires low cost and short time; and the third one is
replacement maintenance, which replaces the parts that have
lost their functions and makes the equipment repair as new.
Hydraulic excavators are usually used in harsh environment
with higher failure rates, so that the economic benefits for
users are affected if as the traditional maintenance plan.

According to the calculated reliability of the old excava-
tor hydraulic system, new maintenance method is put for-
ward to guide the maintenance of energy recovery system,
reduce the failure rate, improve the service life, and make
users gain greater economic benefits. Moreover, the study
results can help to improve excavators manufactures’ main-
tenance management, to change users’ one-sided under-
standing of excavator hydraulic system management,
operation, maintenance, and other technical requirements,
and further, to improve the reliability of the whole machine.

According to the standard regulation of the construction
equipment maintenance, the driver performs routine main-
tenance per shift, and maintenance crew implement restor-

ative maintenance per 200 hours, replacement maintenance
per 600 hours, and overhaul per 1800 hours. Most of the
manufacturers recommended maintenance intervals at oper-
ation time of machines are 250 hours, 500 hours, 1000
hours, 2000 hours, 4000 hours, and 5000 hours, respectively.
The predictive maintenance process proposed in this paper
is shown in Figure 2.

Routine maintenance TM is the same as traditional
maintenance per shift, and preventive maintenance TP is
defined as per 500 hours. Restorative maintenance TF1 ,TF2
,…TFn is determined by the value of RiðtÞ at the operation
time t. If the RiðtÞ of one component in the system is lower
than the RsetðtÞ, which was described in the paper [38], the
first restorative maintenance TF1 should be taken. Since
there is time-delay for R(t) rising, R(t) will decrease first
and then rise after restorative maintenance but not as high
as initial value.TF is decreasing with increasing usage time
of the machine, so all the values of the TFn are different
and gradually decrease. Replacement maintenance TR is
implemented at the time when the components’ R(t)
achieves the minimum value as the preset. Overhaul period
TD is determined as

TD =
T
t0
∙

γ

β − 1

� �1/β
: ð3Þ

T :Denotes the average maintenance time
t0:Denotes the average routine maintenance time
β:Denotes the estimated shape parameter of mainte-

nance parts.
The scheduled maintenance time of ERRS is shown in

Figure 3.

4. Unit Case Study

4.1. Description of Energy Regeneration and Recovery System
for Hydraulic Excavator. The case studied in this paper MHS
with energy regeneration and recovery system (ERRS) which
is newly developed and used in hydraulic excavators. The
ERRS is designed based on the balancing theory; the sche-
matic principle of HE with ERRS is shown in Figure 4 [41,

Table 1: Suggested ranking system for the occurrence of failure
modes [37].

Rank (Oij) Comment Failure frequency Coefficient

10 Extremely high ≥0.2 0.1

9 Very high ≥0.1 0.2

8 Repeated failures ≥0.05 0.3

7 High ≥0.03 0.4

6 Moderately high ≥0.02 0.5

5 Moderate ≥0.01 0.6

4 Relatively low ≥0.005 0.7

3 Low ≥0.003 0.8

2 Remote ≥0.0005 0.9

1 Nearly impossible ≥0.0001 1.0

Table 2: The ranking of downtime losses caused by the failure
mode.

Losses Ranking Coefficient

<0.5 1 1.0

0.5-1 2 0.9

1-1.5 3 0.8

1.5-2.0 4 0.7

2.0-2.5 5 0.6

2.5-3.0 6 0.5

3.0-3.5 7 0.4

3.5-4.0 8 0.3

4.0-4.5 9 0.2

4.5-5.0 10 0.1
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42]. Reversing valves 6, 11, and 12 are moving to the left side
when the boom goes down, then the hydraulic oil(HO) is
pumped into the rod cavity of main boom cylinder
(RCMBC) 10 through reversing valve 6. One branch of
HO is carried into the two rod cavity of balance cylinders
(RCBC) 9 via reversing valve 12; another branch of HO in
the piston cavity of main boom cylinder (PCMBC) 10
returns to the tank by reversing valve 11; and the self-
gravity potential energy generated during the boom down
is accumulated into hydraulic accumulator (HA) as hydrau-
lic energy via valve 7 [39]. The hydraulic accumulator (HA)
is used for storing and releasing energy; accumulator’s pres-
sure acting on the boom always shows itself as a balancing
weight for the load [43].

Reversing valves 6, 11, and 12 are all linked on the right
side when the boom goes up; then, HO is pumped from the
tank into the PCMBC 10 by reversing valve 6, HO accumu-
lated in accumulator is released into RCBC 9, and HO in
RCMBC 10 and RCBC 9 return to the tank through revers-
ing valve 11 and valve 12, respectively [42].

For a complex mechanical hydraulic system, the system
reliability is based on the component reliability. It is critical
to know the importance of each part of MHS; severe failure
of the component may lead to collapse of the whole system if
it had not been discovered in time. Various factors in the
process of maintenance must be considered, such as mainte-
nance cost, difficulty, and time [44, 45].

For example, leakage of hydraulic cylinder will reduce
the work efficiency of MHS; before any obvious fault occurs,
it must be anticipated with preventive measures. Any one
tiny failure of subsystem may cause the failure of the entire
system if there are no backups for these components.

4.2. Schematic Diagram of the Mechanical Hydraulic System.
A schematic diagram of the MHS of ERRS is illustrated in
Figure 5. Some components of the system are unlikely to
fail during the machine lifetime, as known from engineer-
ing experience, like throttle valves and solenoid valves.
Therefore, these kinds of components are not conducted
importance analysis in this work. However, servo valves,
cylinders, pumps, reversing valves, booms, tubes, and
accumulators, which with higher failure rates throughout

the whole energy recovery and release process, are most
likely to be vulnerable components.

In actual operation of excavators with ERRS, all the
hydraulic components do not have backups due to high cost.
How to balance the system reliability improvement and cost
reduction is very important for excavator manufactures.

4.3. Calculation of Reliability Importance Measures. To study
the importance and identify the weakest components of the
MHS, this paper collects the failure data of the 30 Ton HE
for three years from the maintenance database. The number
of working HE in all is 973, recorded by GPS, and the num-
ber of failure data of the mechanical hydraulic system is 197.

In this case, the following assumptions are made for
mechanical hydraulic components and system:

(I) All components have two states: functioning and
failed

(II) All components are in a perfect state at the
beginning

(III) Behaviors of components are mutually statistically
independent

(IV) All the components are repairable to new when
they fail

As a universally adaptive distribution, the Weibull law is
widely used to describe the life distribution of mechanical
products for modeling the failure behavior of components.
Minitab is used to fit all the failure times of MHS and to test
the Anderson-Darling goodness. Anderson-Darling (AD)
test is a kind of square-variance statistics. Although the sta-
tistical process is slightly complicated, it can maintain good
performance when using the small sample size. The fitted
results are shown in Table 6 and Figure 6. As shown in
Table 7, the three-parameters Weibull distribution has the
smallest AD statistics, with the value of 0.493, so it has been
clearly seen that the best goodness of fit is the three-
parameter Weibull distribution for ERRS, and the compo-
nents of this ERRS testified to be fitted as a three-
parameter Weibull distribution well.

This paper uses the mean rank order methods to calcu-
late the empirical cumulative distribution function of each
component of MHS and the reliability at 3000 hours,
because the warranty services of repair are during 3000
hours for machine manufactures.

Fm tð Þ = j f mð Þ − 0:3
n + 0:4

, ð4Þ

j f mð Þ = j f m−1ð Þ + nfm∙N f mð Þ, ð5Þ

N f mð Þ = n + 1ð Þ − j f m−1ð Þ
1 + n − nfm − nsu

� � : ð6Þ

jð f mÞðm = 1, 2,⋯nf Þ
n:Sample number
nf :Failure number
ns:Unfailed number.

Table 3: The ranking of components maintenance or replacement
costs (103 RMB).

Costs Ranking Coefficient

<1.0 1 1.0

1.0~5.0 2 0.9

5.0~10.0 3 0.8

10.0~15.0 4 0.7

15.0~20.0 5 0.6

20.0~25.0 6 0.5

25.0~30.0 7 0.4

31.0~35.0 8 0.3

35.0~40.0 9 0.2

40.0~45.0 10 0.1
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The parameters β, γ, and η of cylinders, pump, boom,
reversing valve, tubes, and hydraulic system are fitted by
Origin. Figure 7(b) shows cylinders’ RiðtÞ changes with
operation time, RciðtÞ = 0:9311 when after 3000 hours oper-
ation time. Figure 7(c) shows pumps’ RpiðtÞ changes with
operation time, RpiðtÞ = 0:9798 when after 3000 hours oper-
ation time. Figure 7(d) shows the reversing valves’ RRiðtÞ
changes with operation time, RRiðtÞ = 0:9826 when after1500
hours operation time, for no more failure data about revers-
ing valves from 1500 to 3000 hours, so here, RRiðtÞ = 0:9826
is reckoned stayed there ever until 3000. Figure 7(e) shows
booms’ RBiðtÞ changes with operation time, RBiðtÞ = 0:9301
when after 3000 hours operation time. Figure 7(f) shows
the high-pressure tubes’ RTiðtÞ changes with operation time,

RTiðtÞ = 0:9385 when after 2000 hours operation time, for no
more failure data about reversing valves from 2000 to 3000
hours, so here, RRiðtÞ = 0:9385 is reckoned stayed there ever
until 3000. Figure 7(a) shows the hydraulic systems’ RðtÞ
changes with time, RðtÞ = 0:7636 when after 3000 hours
operation time. And parameters β, γ, and η values are
known from Figure 7. Then, RiðtÞ is calculated by the
parameters, the RiðtÞ of the accumulator and servo valve is
calculated by Equation (4) for its few failure numbers (as is
shown in Table 8).

The importance of components (IPC) is obtained by (1)
and (2); they are listed in Table 9. sik, oik, dik, lik, and
cik are designated based on Tables 1–5. The cylinder,
pump, and boom have two kinds of failure modes; the

Table 5: Detectivity evaluation criteria.

Detectivity Control Ranking Coefficient

Absolute uncertainty
No control. Design control will not and/or cannot detect a potential cause/mechanism

and subsequent failure mode
10 1.0

Very remote
Very remote chance the design controls will detect a potential cause/mechanism and

subsequent failure mode
9 0.9

Remote
Remote chance the design controls will detect a potential cause/mechanism and

subsequent failure mode
8 0.8

Very low
Very low the design controls will detect a potential cause/mechanism and subsequent

failure mode
7 0.7

Low
Low chance the design controls will detect a potential cause/mechanism and subsequent

failure mode
6 0.6

Moderate
Moderate chance the design controls will detect a potential cause/mechanism and

subsequent failure mode
5 0.5

Moderately high
Moderately high chance the design controls will detect a potential cause/mechanism

and subsequent failure mode
4 0.4

High
High chance the design controls will detect a potential cause/mechanism and subsequent

failure mode
3 0.3

Very high
Very high chance the design controls will detect a potential cause/mechanism and

subsequent failure mode
2 0.2

Almost certain
Design controls will almost certainly detect a potential cause/mechanism and

subsequent failure mode
1 0.1

Table 4: Suggested ranking system for the severity of failure modes [38].

Failure effect Failure criterion Ranking Coefficient

Inconsistent with the safety legislation or the
regulations

Hazardous without warning potential safety, health, or
environmental issue

10 0.1

Failure will occur with warning potential safety, health, or
environmental issue

9 0.2

Disruption or decline to facility function
The machine runs malfunctioning 8 0.3

The machine runs properly but moderate disruption to facility
function

7 0.4

Disruption or decline to secondary function
Some portion of secondary function is lost 6 0.5

Moderate disruption to secondary function 5 0.6

Appearance or noise and other functions is
poor

Some portion of process is delayed 4 0.7

Most users (>75%) likely to complain 3 0.8

No discernible effect on safety, environment, or
mission

More than half (>50%)of the users likely to complain 2 0.9

a few users (>25%) likely to complain 1 1.0
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accumulator, servo valve, reversing valve, and tube only
have one failure mode.

As shown in Table 10, the component boom and accu-
mulator have the largest and smallest importance ranking
order, respectively, in all different importance measures.
This means the boom is the least reliable unit, and the accu-
mulator is the most reliable unit in the MHS. The other
component ranking orders change as importance measures
change, but the components importance ranking order is
completely the same in the method Time Integral Impor-
tance Measures (TIIM) and the Criticality Reliability Impor-
tance of Component for system failure.

ITIIM is used to estimate components’ importance better
in their lifecycle and seek out the most responsible compo-
nent for subsystem performance loss while ignoring the
effects from the costs of the maintenance and downtime
by the component failure modes. The criticality time-
dependent lifetime importance for system failure at time
t (Icf ) is defined as the probability when a component failure
causes the given system failure; it does consider the perfor-
mance losses and costs in the process of systems or products
operating. The traditional Birnbaum importance measures
do not consider the criticality and the variety of mean life-
time of a system caused by components.

The proposed method in this study considers the sever-
ity of the components failure, occurrence rate of the different
components failure mode, difficulty level to detect the failure
modes, maintenance costs, and breakdown losses when the
components failure modes occur. All these aspects are
expected to be taken into account in the new system design
stage based on the predecessor. The RIMPC can evaluate the
importance of complex mechanical hydraulic system com-
ponents more simply and effective by historical database
compared with other methods. From the definition of
RIMPC, it can be used to conduct the importance evaluations
not only in multistate system but also in binary system.
Therefore, the conclusions derived from binary-state sys-
tems can also be used for multistate ones.

4.4. Suggestion about the Optimization of ERRS Design and
Maintenance. According to the RIMPC value of components
of MHS shown in Table 9 and the ranking order shown in
Table 10, accumulator and servo valve have higher reliability
but lower failure rate. So, they are lower importance compo-
nents in MHS boom, and cylinders have lower reliability but
higher failure rate; they are higher importance components
in MHS. The ranking order of pump, reversing valve, and
tube is 3, 4, and 5, respectively.

Through the analysis of historical failure database, the
main failure modes of the boom are fracture on the root
and welds cracking between the side plates, because fatigue
strength is insufficient and badly soldered. In MHS, a new
structure of boom has been developed since balance cylin-
ders increase, so methods of robust design optimization in
the design stage and enhancement of welding quality in the
manufacturing stage should be taken to the boom reliability
promotion.

The main failure modes of cylinder include crack, leak-
age, abrasion, and creep. Dominant reasons for the failures
are encounter external impact, instantaneous high pressure,
hydraulic oil pollution, and unreasonably kinematic pair

ERRS design

Historical
data analysis 

Health 
management

predictive

Data acquisition

Health assessment for
hydraulic system of HE 

Maintenance cycle prediction 

Maintenance database

Restorative maintenance

Replacement maintenance 

Routine maintenance

Reliability goals set for ERRS

Data processing

Overhaul

Figure 2: Predictive maintenance process of ERRS.

R(t)

t(h)0

TP

TF1 TF2

TD

TR

Rmin

Figure 3: Scheduled maintenance time of ERRS.
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clearances, respectively. A protective board suggested to be
added on the top of HC which suffers intense impact easily
and reduces the instantaneous high pressure caused by
energy released from accumulator to the system in the
design stage. Promoting assembling accuracy and strength-
ening the final inspection on the assembly line are also good
choice for reliability improvement.

The main failure modes of the tubes are leakage and
burst. The main reason of the failures is that overloaded
transient impacts pressure in high-pressure tubes, which
should be improved in MHS. The abnormal vibration of
the hydraulic piston pump causes the leakage, noise, and
cracking of the pump body; most of them occurred after
2000 hours of operation time. And when the occurrence is
lower at the ranking 0.7, we suggest changing the mainte-
nance interval to enhance pump reliability. The occurrence
of reversing valve leakage can be reduced by optimizing seal
quality; the failures of the accumulator and servo valve have
occurred accidentally, with little effect on the reliability of
the HEs. Further tracing will be performed.

4.5. Explanation of Scheduled Maintenance Time for Key
Components of ERRS and System Itself. In this section, the
scheduled maintenance time of boom will be shown, since
it ranks the first in the importance list of MHS.

Routine maintenance TM is set as the same as traditional
maintenance time 8 hours per shift, and preventive mainte-
nance TP is chosen as per 500 hours.

Restorative maintenance TF1 of boom is the time when
the value of Rset decreases to 0.9, so TF1 is determined
with parameters’ estimated value of β, γ, and η. It is

M 1

5

2 4 4

12

11

99 10

6

7

8

5 55

3

Figure 4: The schematic principle of ERRS. 1: pump; 2: engine; 3:
relief valve; 4: throttle valve; 5: oil tank; 6, 7, 11, 12: reversing valves;
: hydraulic accumulator; 9; balance cylinders; 10: boom cylinder.
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Figure 5: Block diagram of the hydraulic system.

Table 6: The number of failure for each component.

Component Failure number

Cylinders 44

Accumulator 1

Servo valve 3

Pump 21

Boom 81

Reversing valve 12

Tubes 35
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Figure 6: Probability plot of the hydraulic system of HE.

Table 7: Failure time distribution AD test for HS of HE.

Distribution AD

Weibull 0.720

3-parameter Weibull 0.493

Normal 3.152

Lognormal 1.817

3-parameter lognormal 0.991

Gamma 0.598

Exponential 3.026

2-parameter exponential 1.554

Small extreme value 15.805

Large extreme value 3.854

Logistic 7.529

Loglogistic 1.525

3-parameter Loglogistic 1.374
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approximately 3900 working hours. Rmin of boom is set as
increasing 20% as we have 0.5960 in Table 8, so the value
Rmin of boom is 0.7152, and replacement maintenance

time TR is approximately 7000 working hours. Overhaul
period TD of ERRS is determined as Equation (3). Param-
eters γ = 101 and β = 1:08 are obtained from Figure 7(a),
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Figure 7: Reliability of the hydraulic system and key components.
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so TD = 7760 working hours, where T is the average main-
tenance time 100 working hours, and t0 is the average
routine maintenance time 8 working hours.

5. Conclusion

This paper mainly discusses the RIMPC (reliability impor-
tance measures based on performance and costs of mainte-
nance and downtime). Firstly, the definition of RIMPC of
MHS’ components is presented. Secondly, the proposed
method is verified by the type of MHS with ERRS which
belongs to 30 Ton HE. Thirdly, several classical importance
measures are compared with the proposed method, and pros
and cons are analyzed.

The major conclusions are summarized as follows:

(1) Although a components’ deterioration from func-
tion to failure will go through many states, only

functioning and failure are considered in the pro-
cess of machine using, therefore, the multistate sys-
tem has been simplified to a binary system for
reliability importance analysis. RIMPC can be used
to estimate the component importance better in
its lifecycle and seek out the most important com-
ponent for system reliability. Then, more attention
can be paid to the most important one to improve
system performance and reliability efficiently

(2) RIMPC can be used to estimate the importance of
complex MHS’ components of existing product and
predict the reliability of the new-generation product
based on existing product’s historical failure data. It
is also feasible to guide the designers to obtain some
clues of reliability allocation in the design stage, to
identify what is the root cause for the failure of the
part at different operation stage, and to improve
the robustness performance of the part in time

Table 8: Components reliability at t = 3000 hours.

No. Component (i) β γ η Fi tð Þ Ri tð Þ
1 Cylinders 1.2689 -438.33 38267.0 0.0458 0.9542

2 Accumulator / / / 0.0010 0.9990

3 Servo valve / / / 0.0021 0.9979

4 Pump 2.8252 -2374.7 22680 0.0170 0.9830

5 Boom 1.5815 -884.82 4362.3 0.4040 0.5960

6 Reversing valve 1.6789 383.92 13075.2 0.0649 0.9351

7 Tubes 1.4985 37.88 12108.0 0.1143 0.8857

Table 9: Components importance considering performance and costs at t = 3000 hours.

Components Ri tð Þ sik oik dik lik cik RIMPC

Cylinder 0.9542 0.3 0.5 0.7 0.7 0.8 0.2364

0.5 0.6 0.7 0.9 1.0

Accumulator 0.9990 0.9 0.9 0.7 0.7 0.9 0.3569

Servo valve 0.9979 0.7 0.8 0.6 0.8 1.0 0.2682

Pump 0.9830 0.3 0.6 0.9 0.4 0.4 0.2483

0.4 0.7 0.9 0.9 1.0

Boom 0.5960 0.2 0.4 0.9 0.6 0.2 0.0963

0.7 0.3 0.9 0.9 0.9

Reversing valve 0.9351 0.7 0.6 0.9 0.8 0.9 0.2545

Tube 0.8857 0.4 0.4 0.9 1.0 1.0 0.2551

Table 10: Components Importance for different methods at t = 3000 hours.

Component IB Ranking ITIIM Ranking Icf Ranking RIMPC Ranking

Cylinder 0.0643 5 169.44 3 0.0131 3 0.2364 2

Accumulator 0.0007 7 193433.7 7 0.000003 7 0.3569 7

Servo valve 0.0339 2 4254.42 6 0.0009 6 0.2682 6

Pump 0.0464 4 1624.55 5 0.0038 4 0.2483 3

Boom 0.0973 1 30.299 1 0.0283 1 0.0963 1

Reversing valve 0.0462 3 990.35 4 0.0034 5 0.2545 4

Tube 0.0777 6 50.698 2 0.0203 2 0.2551 5
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(3) And to guide the maintenance crew in assigning
maintenance resources to achieve higher perfor-
mance in a relatively long term for new systems
and new products

(4) Determination of preventive maintenance interval
for key components of MHS and system itself based
on the historical reliability of them in the design
stage can help maintenance crew to keep HE with
ERRS functioning effectively

(5) Since the proposed importance measures are devel-
oped to evaluate components in a fixed construc-
tion machine HE, more research work should be
done to find the effects to structural changes, prod-
uct performance, and reliability improvement in
future studies

Appendix

A. A Detailed Description Is Given

If the failure behavior of component I described by Weibull
stochastic process, its lifetime follows a probability density
function is shown as

f tð Þ = β

η

t − γ

η

� �
exp− t−γð Þ/ηð Þβ : ðA:1Þ

The probability distribution function is given by:

F tð Þ = 1 − exp −
t − γ

η

� �β
" #

: ðA:2Þ

The reliability of component can be then evaluated by:

R tð Þ = exp −
t − γ

η

� �β
" #

, ðA:3Þ

where η, β, and γ denote the scale, shape, positional param-
eters of the components.

List of Symbols

HA: Hydraulic accumulator
HC: Hydraulic cylinders
ERRS: Energy regeneration and recovery system
MSSs: Multistate systems
FMEA: Failure mode and effect analysis
PCMBC: Piston cavity of main boom cylinder
FmðtÞ: Cumulative failure distribution function
Wi: Weighting factor of component i
Sij: The serious of the failure modes effect to the sys-

tem performance failure modes j for component i
Oij: Occurrence of the failure modes j for component i
Dij: Detectability of the failure mode j for component

i
Lij: Losses of downtime under the failure mode j for

component i

Cij: Costs of the maintenance or replacement when
the failure happens

HE: traditional excavators
HO: Hydraulic oil
RiðtÞ: Reliability of component i at time t
siðtÞ: Reliability states of component i
RCMBC: Rod cavity of main boom cylinder
RCBC: Rods cavity of balance cylinders
β: Shape parameter of Weibull distribution
η: Scale parameter of Weibull distribution
γ: Location parameter of Weibull distribution
jð f mÞ: Average number of the failure time
n: Sample number
nf : Failure number
ns: Unfailed number
TM: Routine maintenance
TP: Restorative maintenance
TR: Replacement maintenance
TD: Overhaul period
T : Average maintenance time
t0: Average routine maintenance time.
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Electro Hydraulic Coupling Steering (EHCS) system is a new type of intelligent commercial vehicle steering system, having strong
nonlinear characteristics. Besides, the change of load would cause the change of control system parameters, making not easy to
establish an accurate control model of it. To realize the robustness of EHCS under the change of load, the controller based on
the adaptive control method is proposed in this paper. To this end, the cosimulation model of EHCS is first established, where
the constructed control model is simplified to a 2-degree-of-freedom model under reasonable simplification and assumption.
Then, the steering angle controller is designed based on the model reference adaptive theory. Finally, some simulations are
given to show the effectiveness of the proposed control method.

1. Introduction

As commercial vehicles pay more attention to use efficiency
and cost savings, intelligenceof it is more urgent than that of
passenger vehicles. In addition, there is large volume, high
load, and higher center of mass in commercial vehicles and
the demand for driving safety is stronger [1]. The steering
system is an important part of intelligent commercial vehi-
cle, which directly affects the handling, stability, and driving
safety. The steering system of commercial vehicles has grad-
ually developed from mechanical to intelligent and electric
power [2], which has gone through several stages: hydraulic
power (HPS), electronically controlled hydraulic power
(ECHPS), electric power (EPS), and steer-by-wire (SBW),
e.g. The traditional HPS requires a lot of energy and has
the disadvantage that the assist characteristics can not be
adjusted [3], which will make the driver feel heavy when
turning at low speed and float at high speed. ECHPS realizes
the adjustable assist characteristics on the basis of HPS. EPS
can only be installed on light trucks although it has a good
road feel [4]. SBW has no real mechanical feedback, and
safety redundancy measures are not easy to ensure safety
for commercial vehicles. The electrohydraulic coupled steer-
ing (EHCS) system in this paper adds a set of power motor

unit on the basis of traditional HPS, which combines the
advantages of high energy density of hydraulic system and
high intelligence of electronic control system [5]. It can not
only have good steering characteristics but also can be used
as the hardware basis of active lateral control, matching the
intelligent commercial vehicle.

EHCS is a complex nonlinear system, which has strong
nonlinear characteristics such as hydraulic assistance and
friction, e.g. [6]. Then, the load of the steering system will
change with the vehicle speed, axle load, and other factors,
and the parameters of the hydraulic system are time-varying,
so it is not easy to establish an accurate control model [7–9].
Therefore, in order to control the angle of EHCS during
autopilot, a simplified control model of EHCS must be estab-
lished. Domestic and foreign scholars have done a lot of
research on the steering system model. A 2-degree-of-free-
dom nonlinear hydraulic steering system model is proposed
by Dell’Amico [10]. The system parameters are identified by
the bench, and the model is linearized by the first-order Tay-
lor expansion. Acarman et al. [8] approximate the hydraulic
assist curve by using 8-degree polynomials and establish a 4-
degree-of-freedom model of an online hydraulic steering
system. Tai and Tomizuka [11] established a 2-degree-of-
freedom linear model from motor torque to steering wheel
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angle, steering wheel angle to wheel angle by linearizing the
assist curve, and identified the unknown parameters by an
open-loop frequency test. Garcia et al. [12] also established
the state equation model of the self-driving steering system
of commercial vehicles by using the linearized assist curve
and the equivalent model of the mechanical system with 2-
degree-of-freedom. Based on the above facts, the establish-
ment of a 2-degree-of-freedom system model is sufficient
for controller design.

As the low signal-to-noise ratio of the front wheel angle of
the commercial vehicle, it can not be measured by the sensor,
and the path tracking of the intelligent commercial vehicle is
difficult to control the wheel directly. Therefore, the main-
stream angle controller of EHCS uses the steering wheel angle
instead of the wheel angle as the control target [13], and a large
number of control methods have been proposed, such as fuzzy
PID control [14], adaptive sliding control [15], and adaptive
control [16, 17]. The method of a nonlinear robust controller
is proposed by Tai and Tomizuka [11]; a first-order filter is
introduced to reduce the inherent jitter of a nonlinear robust
controller. Acarman et al. [8] designed a sliding mode control-
ler to satisfy the robust stability for the modeling boundary
and parameter uncertainty of the linear hydraulic steering sys-
tem. Based on the linearized 2-degree-of-freedom model of
the EHCS, Garcia et al. [12] designed the steering angle PI
controller. Some simple controllers such as the PI controller
are not easy to adjust the change in EHCS while artificial intel-
ligence control with complex structure needs long adjustment
time, which can not achieve an instantaneous dynamic
response. Adaptive control can automatically compensate for
unpredictable changes such as model parameters and input
signals [18] matching the EHCS, so the model reference adap-
tive theory is used to design the angle controller of EHCS.

From the above discussions, the controller of EHCS based
on the adaptive control method is developed. The 2-degree-of-
freedom control model of EHCS is designed with reasonable
assumptions and simplifies. Based on this model, the control-
ler using model reference adaptive theory is designed by Lya-
punov stability theory. Finally, the simulation results show
that the system has good robustness under different load.

The main contributions of this paper are as follows. The
cosimulation model and simplified 2-degree-of-freedom
model are established for EHCS, which provides the basis for
the development of the application of EHCS in the future. A
controller based on model reference adaptive theory is pro-
posed, which provides a new way to angle control of EHCS,
and verifies the robustness of the controller under different
load changes. It makes a certain contribution to the control
of a steering system in an intelligent commercial vehicle.

The rest of the paper is organized as follows: Section 2
introduces the cosimulink model and simplified model. Sec-
tion 3 designs a controller based on a parameter adaptive
control system. Section 4 is the simulation results and anal-
ysis. Section 5 presents some conclusions.

2. Modeling of EHCS

The structure of EHCS is shown in Figure 1. The EHCS is
divided into three parts: mechanical, hydraulic, and motor,

in which the mechanical model includes a steering wheel,
torsion, worm gear, and circulating ball power steering gear.
Hydraulic module contacts of a rotating valve, hydraulic cir-
cuit, and hydraulic pump. The mechanical and hydraulic
models are built in AMEsim, and the torque control model
of permanent magnet synchronous motor (PMSM) is built
in Simulink.

2.1. Establish Cosimulation Model. The mechanical model
and hydraulic model are established in AMEsim; the
mechanical part is partially simplified as follows. The damp-
ing coefficient between worm gears and worms is ignored.
The intelligent commercial vehicle is driverless, and the
driver input torque is zero. The torsional stiffness of the
upper torsion bar is represented by the rotating spring
damper. The equivalent moment of inertia between the
steering string and the worm gear is represented by the
upper rotating load, while the moment of inertia between
the worm wheel and the lower torsion bar is represented
by the lower rotating load. The lower torsion bar module is
equivalent to a rotating spring with stiffness of 1.5Nm/deg,
and the torsion bar deformation angle signal is collected by
the steering sensor on the both ends of the spring. Motor
driving torque is the only torque input of the model, which
is built in Simulink. The circulating ball power steering gear
is equivalent to a two-stage transmission pair containing a
screw nut transmission pair and a rack tooth fan transmis-
sion pair [19]. The angle acquisition module is used to col-
lect the rotation angle of the rocker shaft, ignoring the
transmission ratio and elastic influence of the steering rod
system. The rotation angle of the rocker shaft is regarded
as the wheel angle.

The main component of the hydraulic module is the
rotary valve, which is equivalent to a variable throttle
according to its working principle [20], and the opening area
of the variable throttle hole is controlled by the torsion bar
deformation angle in the mechanical module. According to
the parameters of the rotary valve and the method shown
in the reference [19–21], the relationship between the over-
flow area of rotary valve port A and the deformation angle
of the torsion bar θlg is calculated as shown in Equation
(1). The hydraulic pump and piston adopt the module
included in AMEsim.

7A + 85θlg − 180 = 0, θlg ∈ −5,−2½ �,
340A + 977θlg − 3486 = 0, θlg ∈ −2,1:4ð �,
8295A − 13083θlg − 69994 = 0, θlg ∈ 1:4,5:35ð �,

8>><
>>: ð1Þ

where A is the overflow area of the rotary valve and θlg is
the deformation angle of the torsion bar.

The cosimulation part with Simulink is established, in
which the input is the steering resistance moment of the
front axle and the motor torque and the output is the rota-
tion angle of the two wheels, the required speed of the motor
and the steering wheel angle. The final model is shown in
Figure 2.
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The dynamic model of the permanent magnet synchro-
nous motor is shown in Equation (2). In order to facilitate
control, the strong coupling current and voltage should be
decoupled. If the d-axis current is controlled to zero, the
motor torque is proportional to the q-axis current. As shown
in Equation (3), the motor torque can be controlled by con-
trolling the q-axis current.

Te = pn ψf iq + Ld − Lq
� �

iqid
h i

,

Te = Je
dωm

dt
+ Rmωm + TL,

ð2Þ

Te1 = pnψf iq, ð3Þ
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Figure 1: Structure diagram of EHCS.
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where Te and Te1 are the motor electromagnetic torque, TL
is the load torque, ψf is the stator winding flux, pn is the
motor pole logarithm, Lq and Ld are the q- and d-axis induc-
tance, respectively, iq and id are the q- and d-axis current,
respectively, Je is the motor moment of inertia, ωm is the
rotor mechanical angular speed, and Rm is the resistance
coefficient.

The space vector pulse width modulation method, the
inverter in Simulink, and the motor torque controller are
used to build the torque control model of the permanent
magnet synchronous motor (PMSM). The input of the
model is the desired speed and q-axis current of the motor,
and the output is the torque of the motor. In the TruckSim,
a two-axle truck is selected, which is 5.5 t at no load and 9.5 t
at full load. The transmission ratio of the steering system is
set to 1, and the flexibility is set to 0. At this time, the wheel
angle of the model in TruckSim is basically equal to the
steering wheel angle. If the steering control of TruckSim is
set to full, the wheel angle calculated in Simulink is input
to the steering wheel angle in TruckSim, and the output of
TruckSim is the steering resistance moment of the wheels
on the front axle.

The cosimulation model is established as shown in
Figure 3, including TruckSim function, AMEsim function,
angle controller, and SVPWM motor controller.

2.2. Simplified Control Model. In order to simplify the EHCS
as a 2-degree-of-freedom model, the following ignoring and
assumptions are made: (1) inertia mass at the upper end of
the lower torsion bar is equivalent to the worm gear, and
inertia mass body at the lower end of the lower torsion bar
is equivalent to the rocker shaft, dividing the whole steering
system into two mass systems [20]; (2) the steering load is
regarded as external interference; (3) the angle influence of
the steering string is ignored; (4) the friction torque of the
system is ignored; (5) the elastic influence of the steering
rod system is ignored; (6) the elastic influence of the upper
end of the upper torsion bar, that is, the steering string, is
ignored. The force analysis of the simplified EHCS system
is shown in Figure 4.

Ignoring the friction force of the system and linearizing
the hydraulic assist force as Th = ψ0Tk2, the dynamic model
is shown in following:

Ju€θu +Du
_θu + k2θu = Tu + nk2θd ,

Jd€θd +Dd
_θd + krw + n2k2 + nψ0k2

� �
θd = n + ψ0ð Þk2θu,

ð4Þ

where Ju is the equivalent moment of inertia from the
inertia mass at the top of the lower torsion bar to the worm
gear, kg/m2; Du is upper mass damping coefficient, Nm/rad/
s; k2 is the elastic stiffness of upper torsion bar, Nm/rad; Jd is
the equivalent moment of inertia from the bottom of the
lower torsion bar to the tooth fan shaft, kg/m2; Dd is lower
mass damping coefficient, Nm/rad/s; krw is the simplified
from steering system load to the stiffness of the spring
model, Nm/rad; T f is friction torque of lower mass body,
Nm; n is the transmission ratio from the screw to the fan
shaft, about 25; and Th is the equivalent moment of the
hydraulic system acting on the lower mass body, Nm.

Based on the above assumptions and ignoring, the steer-
ing wheel angle is approximately the worm gear angle, which
is given as

θs = θu,
θw = θd ,

ð5Þ

where θs is the angle of the steering wheel and θwh is the
angle of the wheel.

The transfer function of the controlled system can be
obtained as shown as

Gp Sð Þ = θw sð Þ
θs sð Þ

= θd sð Þ
θu sð Þ = n + ψ0ð Þk2

Jds2 +Dds + krw + n2k2 + nψ0k2ð Þ :

ð6Þ

After standardizing the transfer function, it is concluded
that the transfer function is in the overdamping state,
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Figure 3: The combined simulation model.
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meaning the response time is too long. In order to lay the
groundwork for the model reference theory in the next
chapter, an ideal transfer function model is proposed on
the basis of the system transfer function. The following
requirements are put forward for the ideal model: (1) It
has a fast dynamic response and the rise time is less than
0.04 s. (2) The output amplitude should accurately express
the input amplitude; in other words, the zero frequency
amplitude should be 1. (3) The bandwidth of the system
should meet the requirements of the steering system of the
whole vehicle. (4) Within the required system bandwidth,
the delay of the system should be less than 15 degrees as
far as possible. The ideal model is a second-order model,
and its transfer function is in a state of underdamping.

3. Angle Control Strategy Based on Model
Reference Adaptive Theory

3.1. Design of Model Reference Adaptive Controller. Model
reference adaptive control originates from the deterministic
servo problem and is developed from the tracking problem.
The system consists of a reference model, a controlled object,
and a controller. The reference model is a given ideal model,
which defines the performance indexes such as overshoot,
damping performance, and adjustment time. The consis-
tency between the controlled model and the reference model
is measured by the state error vector [22]. The adaptive
mechanism is designed according to the system stability cri-
terion, and the corresponding adaptive law is designed to
modify the variable parameters according to the direction
of less deviation, so that the actual performance index of
the system is close to the ideal performance index.

In this paper, aiming at the great variation of steering
resistance moment with variable load of intelligent commer-
cial vehicle and the nonlinear problems in the control of
EHCS, a control framework is proposed based on model
adaptive theory, and the control model is designed according
to the ideal model as a reference model. Firstly, it is pro-
posed that the state equation of the controlled system and
the reference model with single input and single output is

shown as

_xp = Apxp + bpu,

yp = hTxp,
_xm = Amxm + bmu,

ym = hTxm,

ð7Þ

where xp is state vector of the controlled system, u is
controlled vector, yp is the output of a controlled system,
xm is the state vector of the reference model, and ym is the
output of the reference model.

The transfer functions of the controlled system and the
reference model can be obtained from Equation (7) as
shown as

Gp sð Þ = hT sI − Ap

� �−1bp = kp
Np sð Þ
Dp sð Þ ,

Gm sð Þ = hT sI − Amð Þ−1bm = km
Nm sð Þ
Dm sð Þ ,

ð8Þ

where kp and km are gain coefficients.
The angle control of the EHCS takes the steering wheel

angle as the input and the rocker shaft angle as the output.
Define the error between the reference model and the actual
output of the controlled system as e1 = ym − yp, the control
objectives of adaptive systems are shown as

lim
t⟶∞

e1j j = lim
t⟶∞

ym tð Þ − yp tð Þ
��� ��� = 0: ð9Þ

In order to make the adaptive adjustable system match
the reference model completely, the adaptive system should
have enough variable parameters, and the number of vari-
able parameters should be the same as the uncertain param-
eters of the system. Define four variable parameters
σ = ½σ1 σ2 σ3 σ4� and two auxiliary signals in order to
design controller, the auxiliary signal is shown as

_λ1 = Af λ1 + bf u,
_λ2 = Af λ2 + bf yp,

ð10Þ

where Af and bf are related to the NmðsÞ of the transfer
function of the reference model.

Define w is the variable signal of the control system, w
= ½r  − λ1  − yp  − λ2�, the controller is built as shown
in Figure 5.bσ is the variable parameter obtained in the ideal state, δ
is the parameter error, and the augmented equation of state
of the controlled system is obtained by substituting σ = bσ
+ δ into (7) as shown in (11). When δ = 0, the augmented
equation of state of the system in the ideal state, that is,
the augmented equation of state of the reference model, is
obtained as shown as
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Figure 4: Diagram of force acting on a simplified system model.
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_x = Acx + bc bσ1r + δTw
� �

,

_xmc = Amcx + bmcbσ1r,
ð11Þ

where xT = ½xTp λT1 λT2 � and xmc
T = ½xTmp λTm1 λTm2�.

The augmented error state equation can be obtained by
subtraction of Equation (11) as given as

_e = Ace + bcδ
Tw = Ace + bcuc, ð12Þ

where e = ½xp − xm, λ1 − λm1, λ2 − λm2�T and uc = δTw.

3.2. Design of Adaptive Law according to Lyapunov Stability.
The adaptive law is designed by using Lyapunov stability
theory, which is defined according to the Lyapunov function
to satisfy the stability of the system [23], and the Lyapunov
function and its derivatives are defined as shown as

V = 1
2 eTPe + δTΓ−1δ
� �

,

_V = 1
2 e

T PAc + AT
c P

� �
e + δTwbTc Pe++δTΓ−1 _δ

= 1
2 e

T PAc + AT
c P

� �
e + δT wbTc Pe + Γ−1 _δ

� �
= _V1 + _V2:

ð13Þ

It is obvious that the function V is positive definite, but
in order to make the system stable, _V should be negative
definite.

According to Equation (12) and Kalman-Yakubovich
theory [23], the transfer function GeðsÞ of e is strictly positive
real if and only if there are positive definite matrices P and Q
, such that Equation (14) holds. Therefore, when the transfer
function of e is positive real, it can be obtained that PAc +
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AT
c P = −Q; by the words, _V1 is negative definite.

ATP + PA = −Q: ð14Þ

It is obviously to infer the _V will be negative definite
when _V2 is zero. Hence, by defining adaptive law _δ = −Γw
bTc Pe, _V2 will be zero, which satisfies the condition that _V
is negative definite.
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In order to make the strictly positive realness of the error
model, the auxiliary polynomials LðsÞ = s + a are introduced,
and the transfer functions of the system model, the reference
model, and the error model are shown as

wp Sð Þ = L sð ÞGp sð Þ,
wm Sð Þ = L sð ÞGm sð Þ,
we Sð Þ = L sð ÞGe sð Þ:

8>><
>>: ð15Þ

Define ζ = L−1ðSÞw = ½r  − λ1  − yp  − λ2�T /ðs + aÞ,
the adaptive law of system variable parameters designed
according to Lyapunov stability theory is shown as

_σ = _bσ + _δ = −Γζ tð Þe1,
_ζ = −aζ tð Þ +w tð Þ,

8<
: ð16Þ

where Γ is a positive definite symmetric matrix.
The input of the controlled system is shown as

u = σTw tð Þ + e tð ÞζT tð ÞΓζ tð Þ: ð17Þ

By introducing auxiliary polynomials LðsÞ = s + 2, it can
be obviously proved that wpðSÞ, wmðSÞ, and weðSÞ are strictly
positive real. Define Γ = diag fpig, i = 1, 2, 3, 4, according to
the adaptive law of variable parameters as shown as

_σ = −ΓL−1 Sð Þwe1 tð Þ,

σ = −
ðt
0
Γζ tð Þe1 tð Þdτ + σ 0ð Þ:

ð18Þ

The input of the controlled object is shown as

u = σT tð Þw tð Þ + e1 tð ÞζT tð ÞΓζ tð Þ

= −
ðt
0
〠piζie1 tð Þdτ + σ 0ð Þ

� �T
w tð Þ + e1 tð Þ〠piζ

2
i :

ð19Þ

The σð0Þ is the initial value of variable parameters; it can
be optional in theory; however, a bad initial value may cause
the system not to work normally. In addition, the selection
of weighting matrix Γ has a great influence on the approxi-
mation reference model. Therefore, the selection of σð0Þ
and Γ should be careful.

4. Robustness Verification of Angle
Control Strategy

The cosimulation model in Section 2 is used to track the
desired rotation angle of the front wheel under the load of
9.5 t and 5.5 t, respectively, and the sine waveform with a
period of 2 s is selected to verify the simulation control strat-
egy. The control action u and system output yp under the
two loads are shown in Figure 6, respectively. The steering
resistance moment corresponding to the two loads is shown

in Figure 7, and the change of variable parameters during the
operation of the model is shown in Figure 8.

It can be seen from the above facts that given the same
desired rotation angle, the maximum difference of steering
resistance moment under different loads is about 3000Nm,
but under the same expected rotation angle, the actual turn-
ing angle after the control strategy is basically the same.
There is a certain oscillation in the first 0.3 s, which is caused
by the same initial value of the variable parameters, and
then, the system is stable after the variable parameters
change with time. It is proved that the system has good
robustness under the change of load.

5. Conclusion

Aiming at the EHCS with nonlinear uncertain parameters,
after simplifying the control model to a 2-degree-of-freedom
model, a controller based on adaptive theory is proposed by
using Lyapunov stability theory. The adaptive law of variable
parameters is designed, and the proposed control method
can make the parameters change with time and compensate
the nonlinear model disturbance. The load change is used to
analyze the stability of control performance, and the results
show that though the load difference is large, the operation
of the EHCS can be effectively controlled and better perfor-
mance can be obtained when tracking the target angle,
meaning it has great robustness.
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The target localization algorithm is critical in the field of wireless sensor networks (WSNs) and is widely used in many
applications. In the conventional localization method, the location distribution of the anchor nodes is fixed and cannot be
adjusted dynamically according to the deployment environment. The resulting localization accuracy is not high, and the
localization algorithm is not applicable to three-dimensional (3D) conditions. Therefore, a Delaunay-triangulation-based WSN
localization method, which can be adapted to two-dimensional (2D) and 3D conditions, was proposed. Based on the location
of the target node, we searched for the triangle or tetrahedron surrounding the target node and designed the localization
algorithm in stages to accurately calculate the coordinate value of the target. The relationship between the number of target
nodes and the number of generated graphs was analysed through numerous experiments, and the proposed 2D localization
algorithm was verified by extending it the 3D coordinate system. Experimental results revealed that the proposed algorithm
can effectively improve the flexibility of the anchor node layout and target localization accuracy.

1. Introduction

With the rapid development of wireless communication
technology and small embedded devices, WSNs have been
used in numerous applications, such as target localization
[1], environmental monitoring [2], smart factories [3], and
agriculture and field habitat monitoring [4]. In practice, sen-
sor network technology is used to monitor and collect data
on specific targets in the area of interest.

The precise location coordinates of the target are critical
for target monitors, and the data are analysed in data cen-
tres. For example, in sensitive areas involving rescue opera-
tions, the precise location of the target is first obtained.
Typically, the location coordinates of the monitored target
are unknown. Therefore, designing a scheme in which a
WSN is used to accurately locate the target and constantly
adjust the state when the location of the target moves is crit-
ical. Furthermore, the calculation efficiency of the proposed
algorithm and the energy consumption of the nodes should
be balanced. The accuracy of the positioning and compre-
hensive performance of the algorithm determines the quality
of the localization method. GPS positioning systems can

achieve high accuracy, but the systems are not suitable for
indoor environments and complex areas. When the location
information of the target is determined using WSNs, the tra-
jectory of the target can be estimated and drawn by combin-
ing related algorithms. The performance of positioning
technology or methods markedly affects the localization
accuracy and monitoring quality of WSNs.

Localization schemes are typically classified into
distance-based localization schemes and distance-free local-
ization schemes [5]. In distance-based localization scheme,
the distance between the unknown node and the anchor
node is estimated, whereas in the distance-free localization
scheme, the location of the unknown node on the premise
of uncertain distance is calculated [6]. Generally, the
distance-based localization scheme exhibits a high localiza-
tion accuracy, but its algorithm complexity is high, which
requires computation. The distance-independent location
scheme has low localization accuracy and low algorithm
complexity. Range-based localization methods have been
widely studied. The signal time of arrival (TOA) [7], time
difference of arrival (TDOA) [8], angle of arrival (AOA)
[9, 10], and received signal strength (RSS) are calculated.
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The ranging method based on TOA technology is simple,
but it requires considerable hardware performance, numer-
ous computations, and high equipment costs. The TDOA
method is an improvement of the TOA method and can
accurately measure the coordinates of the target. However,
this method requires two transmission signals of different
rates, which results in a large operating overhead for the
network. In addition, the AOA method must calculate
the angle between the transmitting and receiving ends
and must communicate and transmit in a line-of-sight
environment. Therefore, the AOA is not suitable for pre-
cise locations in WSNs. The development of low-cost, fast
calculation speed, and accurate localization methods is
critical in WSN monitoring. Received signal strength
indicator- (RSSI-) based localization methods have been
widely used and commercialized [11–13]. The lost power
between the transmitted and received power can thus be
converted and calculated using a mathematical model.
Furthermore, equipment hardware for WSN node localiza-
tion using the RSSI method is commercialized and does
not require additional separate components. RSSI-based local-
ization technology is suitable for low-cost, high-precision, and
large-scale WSNs.

The triangulation method has been studied in detail in
fields, such as WSN coverage, routing algorithms, and local-
ization, which optimise the node network layout and con-
struct an optimal triangulation network. Therefore, the aim
of this study is to optimise the location distribution of sensor
nodes, improve the localization accuracy and performance
of the localization algorithm, and extend it to the 3D coordi-
nate system for testing.

(1) To solve the problems of layout optimization and
low localization accuracy of anchor nodes occurring
in conventional localization methods, the Delaunay
triangulation method was introduced, and a localiza-
tion scheme was designed to estimate the location
coordinates of the target

(2) Based on the location of the target node, its sur-
rounding triangle or tetrahedron were searched,
and the location algorithm was designed in stages
to accurately calculate the coordinate value of the
target. The relationship between the number of tar-
get nodes and the number of generated graphs was
analysed through numerous experiments, and the
proposed 2D algorithm was verified by extending it
to the 3D coordinate system

(3) We designed an experimental simulation and algo-
rithm comparison and conducted numerous experi-
ments with various parameters to verify the
localization accuracy and reliability of the algorithm

The related work is reviewed in Section 2. In Section 3,
the RSS channel model is presented, and related problems
are described. The strategy we propose is detailed in Sections
4 and 5. In Sections 6 and 7, relevant experimental verifica-
tion and algorithm comparison are designed. Concluding
remarks alongside the future work are given in last section.

2. Related Works

The deployment method and algorithm design of anchor
nodes are a research focus of target localization. In experi-
ment tests performed by many researchers, the coordinate
location distribution of anchor nodes generally occurs in
the shape of a square, rectangle, and triangle [14–16]. There-
fore, before experimentation, it is necessary to fix the loca-
tion of the node in advance. If the location of the anchor
node changed, the localization accuracy calculated also
changed. Therefore, the fixed deployment mode of the
anchor node is not suitable for the environment where
nodes are randomly deployed.

Among the localization algorithm distance-based mea-
surement, the most typical algorithms include the trilateral
centroid localization, triangular measurement, least square
method, and hyperbola localization algorithm. The trilateral
centroid localization method has a small number of nodes
and a low accuracy of target localization and is not suitable
for 3D. The triangular measurement method needs to calcu-
late the angle between the target and node, which undoubt-
edly increased cost. In [17], the author proposed a new
sensor node localization scheme that improved the RSSI
algorithm by considering power transmission and reception
parameters to estimate the initial location of the node. A
genetic algorithm is used to minimize the localization error,
and the optimized coordinates are obtained by combining
mutation and crossover operators. However, the layout
optimization of the nodes is not considered, and the test
environment is not suitable for 3D coordinates. In [18],
two localization algorithms were designed based on anchor
nodes, H-V scanning and diagonal localization algorithms,
to estimate the coordinates of sensor nodes in the monitor-
ing area. Among these algorithms, the diagonal localization
algorithm belongs to the RSSI-based localization technology
which can improve the localization accuracy of unknown
nodes. However, the layout of anchor nodes is not suffi-
ciently flexible to adjust dynamically according to the num-
ber of nodes, which may lead to nonsystematic errors. This
method is suitable for 2D localization conditions but lacks
a test of the real dimension. [19] proposed a robust ranging
method to track the location of the target and used the trilat-
eral localization method based on RSSI ranging. Conse-
quently, the author reports the result of applying the
trilateral localization technology to the measuring point
and calculates the distance error between the ideal measur-
ing point and measuring point through computer simula-
tion. However, the computation speed of the trilateral
localization method is slow, and the localization error is
not accurate. In [20], the authors proposed a non-site-
specific algorithm to better estimate the relationship between
the RSS and distance. The author selected the most appro-
priate RSS value in the original RSS values through an
algorithm to reduce the outlier effect, thereby ensuring the
consistency between the RSS and distance relationship. In
[21], the authors analysed the influence of two types of envi-
ronmental interference on the RSSI value, used Kalman filter
to preprocess the RSSI, and proposed a triangle centroid
localization algorithm based on weighted feature points.
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Experiments reveal that higher localization accuracy can be
achieved, but its network did not have the characteristics
of a self-organizing layout and is not suitable for 3D localiza-
tion. In [14], to improve the precision of inside localization
and optimize the allocation of node resources in WSNs, an
equal-arc trilateral localization algorithm based on RSSI is
proposed from the perspective of increasing measurement
precision and bettering beacon nodes layout. Compared
with the square layout, the triangle layout, and the improved
triangle layout, the localization accuracy of this algorithm
increased by 81%, 54%, and 48%, respectively. Finally, the
author revealed that the proposed equal-arc triangulation
algorithm can improve the localization accuracy and reason-
ably control sensor costs. However, in many applications,
anchor nodes usually must be self-deployed for layout, and
it is not possible to prespecify whether the layout of anchor
nodes is square or other shapes. Delaunay triangulation has
the optimal partition mode and geometric characteristics
and is applied in the research direction of geometric routing,
location, coverage, segmentation, data storage, and process-
ing [22]. Li et al. [23] proposed a simple yet effective
segmentation-based approach to detect trunk position and
Delaunay triangulation (DT) geometry-based localization
method for autonomous robots navigating in a forest envi-
ronment. Experiments show the proposed method reach
accurate global localization precision without a good initial
pose or GPS signal.

The Delaunay division method can optimize the layout
of 2D nodes, and applies to the network layout of 3D sensor
nodes, based on the location coordinates of the nodes.
Delaunay triangle segmentation can improve the flexibility
of node layout and strengthen the correlation between
anchor nodes. Therefore, we used the Delaunay partition
method to optimize the Delaunay network layout for ran-
domly deployed anchor nodes. Consequently, methods are
designed to accurately estimate the coordinates of the target
in 2D and 3D.

3. RSSI Ranging Principle and
Problem Description

3.1. RSSI Ranging Principle. WSN localization methods are
categorised into two ranging localization and localization
without ranging depending on whether to measure the
received signal and the transmitted signal is necessary.
Localization technologies based on ranging primarily
include TOA, TDOA, RSSI, and AOA. However, consider-
ing comprehensive indicators such as hardware cost,
network computing power, and localization accuracy, the
technical method based on RSSI is primarily used, combined
with the improved localization algorithm to accurately locate
the target. The primary principle of using RSSI ranging tech-
nology is used to establish a signal loss or attenuation model
in the propagation process to estimate the distance between
the transmitter and receiver. As displayed in Figure 1, the
red line represents the waveform of the signal intensity vary-
ing with the distance under the ideal path loss model, and
the blue line represents the waveform of the signal interfer-
ence in the environment.

The localization algorithm based on the path loss model
is used to determine the parameters of the path loss model
according to the received RSSI data, and the model is used
to estimate the distance value or further processing. We
assume that the number of RSSIs received isM, and the RSSI
value i received by node k is RSSI ðs, iÞ[24]. Distance
estimation was then performed based on the statistical RSSI
measurement model.

RSSI k,ið Þ = Pk − 10ηk log dkð Þ + v k,ið Þ, ð1Þ

where dk is the distance between the target and the anchor
node k; Pk and ηk are the RSSI path loss model parameters
of the anchor node k; and vðk,iÞ is a zero-mean Gaussian ran-
dom distribution variable whose variance is equal to σk.

dk = 10Ak−RSSIk/10ηk : ð2Þ

The noise in the model obeys a Gaussian distribution,
and the generated random variables are processed using
the average value. When estimating the distance, the median
value of a set of RSSI data is used for estimation RSSIk =
RSSIk =MedianfRSSIðk,iÞ, i = 1,⋯,Mg. The median value
processing method was used to eliminate the random error
of the original RSSI data, where RSSIk represents the median
value of the RSSI data collected by the anchor node k, which
can be expressed as follows.

RSSIk =
1
M

〠
M

i=1
RSSI k,ið Þ: ð3Þ

During propagation, the RSSI obeys the Gaussian distri-
bution Nðμ, σ2Þ of the mathematical expectation μ and
variance σ. The probability density function for any RSSI
value is expressed as follows:

f RSSIk
� �

= 1
σ

ffiffiffiffiffiffi
2π

p e− RSSIk−μð Þ/2σ2 , ð4Þ

where the specific expressions of μ and σ are as follows:

μ = 1
M

〠
M

i=1
RSSI k,ið Þ,

σ2 = 1
M

〠
M

i=1
RSSI k,ið Þ − μ

� �2
:

ð5Þ

In the subsequent experimental verification process,
after multiple sets of distance values measured by the anchor
node, the localization method or algorithm is used to achieve
an accurate estimation of the location of the target.

3.2. Problem Description. The method of using RSSI to deter-
mine the target distance is the first step in localization. Next,
an efficient localization algorithm is designed to estimate the
location coordinates of the target node. In the conventional
method, a trilateral centroid localization algorithm with
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low power consumption and fast measurement speed is used
to solve the coordinates of the target. As displayed in
Figure 2, the location coordinate of the node Tðxt , yt , ztÞ to
be tested is considered T , and the coordinates of the three
anchor nodes, A, B, and C are Aðx1, y1, z1Þ, Bðx2, y2, z2Þ,
and Cðx3, y3, z3Þ, respectively. Thus, the principle of trilat-
eral measurement is that the distances between the three
anchor nodes of A, B, and C to the target T are ra, rb, and
rc. Consequently, the circles formed by their respective mea-
sured radii intersect at a point T , and then, the location
coordinates of the point T can be determined by establishing
a system of equations.

However, in the test, the radii of points ra, rb, and rc are ra,
rb, and rc, respectively, and their three circles cannot intersect
at one point. As displayed in Figures 3 and 4, when the circles
formed using the radii did not intersect at one point, Bulusu
et al. [25] assumed aðxa1, ya1, zz1Þ, bðxb1, yb1, zb1Þ, and cðxc1,
yc1, zc1Þ as the intersection points formed by them. Next,
determine the centre of mass of the three coordinates as the
target coordinates. Thus, the approximate target coordinate
value T can be obtained by calculation, and T = ððxa1 + xb1 +
xc1Þ/3, ðxa2 + xb2 + xc2Þ/3, ðxa3 + xb3 + xc3Þ/3Þ is calculated.
However, the accuracy of the unknown target coordinates esti-
mated by the trilateral centroid localization algorithm is not
high, particularly when a certain height difference exists
between the transmitter and receiver. In the calculation process
for trilateral centroid localization, constraints should be consid-
ered, which is not conducive to large-scale network operations.

4. WSN Target Localization Algorithm Based
on 2D Delaunay

4.1. Building a 2D Delaunay Network. In the Delaunay
method, the region is divided according to the location of

the node and a triangular network with an optimal layout
is generated. According to the properties of Voronoi [26]
and Delaunay [27], only the neighbouring nodes corre-
sponding to the adjacent edges of Voronoi generate the
corresponding triangle network, and the vertices of the
triangle are composed of the nodes in the Voronoi unit body
and its neighbouring nodes. In a nutshell, the vertices of
each triangle in the Delaunay triangle network are composed
of the three nearest nodes, and each side of the triangle will
not intersect. Therefore, the construction of Delaunay trian-
gulation will markedly reduce the localization time of anchor
nodes and improve localization accuracy.

As shown in Figure 5, 70 anchor nodes si were randomly
located on the plane L with an area of SL, and the red dots
represent the anchor nodes. Next, we used the Delaunay
method to divide the area according to the 70 node coordi-
nates siðxi, yi, ziÞ. In Figure 6, the area divided by Delaunay
is a triangular network composed of triangles NΔ with vari-
ous shapes. After the calculations are completed, in area L,
the number of triangles NΔ depends on the location coordi-
nate siðxi, yi, ziÞ of the node and the number of nodes n.
Thus, the greater the number of nodes is, the more triangles
NΔ are generated.

Initially, the number of randomly deployed nodes in area
L = 200 × 200 was n (n = 100), and the number of triangles
in the Delaunay triangulation obtained from the test was
NΔ = 184. The number of triangles was proportional to n,
as listed in Table 1, which revealed the number of triangles
generated by the Delaunay method when n has different
values. Table 1 indicates that as the number of nodes
increases, the number of triangles generated increases
accordingly. Second, the total area S0 of the formed Delau-
nay graph also changed with the number of nodes and loca-
tion coordinates. Consequently, as the number of nodes n
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Figure 1: Schematic of the loss during RSS signal propagation.
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increased, the total area S0 of Delaunay also increased, and
its area ratio S0/SL gradually approached 100%.

4.2. Determining the Target Surrounded by Triangles. First,
the coordinates of the nodes were divided using the Delau-
nay method, and the inner coordinates of each triangle were
determined. The distance between the target and vertices of
the triangle was calculated to determine the triangle sur-
rounded by the target. The coordinates of the target are
unknown; thus, the judgement method is the core step of
positioning. In Figure 7, five black dots represent five nodes

with unknown coordinates. The coordinates of these five tar-
gets are: (127,135), (150,150), (145,170), (90,170), and
(42,130). In a test, the coordinates of an unknown target
cannot be determined in advance. Therefore, determining
the triangle surrounded by the target is difficult. To address
this problem, the area ratio method was used.

Figures 8 and 9, display a partial diagram of a certain
part of the Delaunay triangulation. The coordinates of trian-
gles and △ABC and △BCD are known and are Aðx1, y1Þ, B
ðx2, y2Þ, Cðx3, y3Þ, and Dðx4, y4Þ, respectively. Because the
coordinates of the target T are unknown, the distances
between the four points A, B, C, D, and T can be measured
by Equation (2) as dAT , dBT , dCT , and dDT , respectively.
Therefore, determining whether T is in △ABC or inside
the triangle △BCD is the key in this method.

If point T is inside the triangle △ABC, then the area of
the small triangle formed by T and △ABC satisfies the fol-
lowing conditions: SΔABT + SΔACT + SΔBCT ≤ SΔABC . If point
T is not inside the triangle ΔABC, then it satisfies SΔABT +
SΔACT + SΔBCT > SΔABC . The area of SΔABC can be calculated
using Equation (8), and the area of the small triangle SΔABT ,
SΔACT , SΔBCT can be calculated using Helen formula as follows:

S = 1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d1 + d2 + d3ð Þ d1 + d2 − d3ð Þ d1 + d3 − d2ð Þ d2 + d3 − d1ð Þ½ �

p
,

ð6Þ

where d1, d2, and d3 are the distances between the vertices of
targets T and ΔABC.

Thus, the target T can be estimated to be specifically
located in a certain triangle in the Delaunay triangulation,
and a corresponding localization method can be designed to
calculate the coordinates of target T. Next, the subsequent
localizationmethod is implemented in stages in a real situation.

4.3. WSN Localization Algorithm Based on 2D Delaunay
Partition. After this analysis, a target localization algorithm
based on 2D Delaunay partitioning (2D-DPTL) was pro-
posed, which is categorised into two stages to accurately
locate the target.

Stage 1. When the number of anchor nodes is large,
method 1 is used for localization.

Method 1. First, the number of known nodes n is ran-
domly deployed in a plane with an area of L size. Then,
the corresponding Delaunay triangulation is generated
according to the position coordinates of the known node si
ðxi, yiÞ (i = 1, 2,⋯, n). Thus, in the first step, the judgement
method described in the previous section is used to
determine a triangle surrounded by T . Next, we calculated
and generated the inner coordinates sjðxj, yjÞ corresponding
to each Delaunay triangle. The coordinates of the inner
point of the triangle can be calculated using the follow-
ing expression:

sj xj, yj
� �

= aixi + bixi+1 + cixi+2ð Þ
ai + bi + ciÞ

, aiyi + biyi+1 + ciyi+2ð Þ
ai + bi + cið Þ

� �
,

ð7Þ

T

A (x1, y1, z1)

B (x2, y2, z2)

C (x3, y3, z3)

ra rb

rc

Figure 2: Three-sided positioning.
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Figure 3: Intersect inside.
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Figure 4: External intersection.
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where ai, bi, and ci are the side lengths of the triangle
and ðxi, yiÞ, ðxi+1, yi+1Þ, and ðxi+2, yi+2Þ represent the ver-
tices of the triangle corresponding to the inner centre.

As displayed in Figure 10, the blue five-pointed star rep-
resents the inner point of each triangle in the Delaunay tri-
angle network, and its number is equal to the number NΔ
of triangles. The coordinates of each inner point are num-
bered, and the figure reveals that 126 inner points exist in
total. Based on this method, the triangle surrounded by the
target and its corresponding inner coordinates were deter-
mined. The red triangles in Figure 11 indicate the respective
areas corresponding to the five target points. Next, the area
ratio Sk = Sj/Sm of the triangle to which the target T f ðxf , yf Þ
belongs is calculated. We assume that the area of all triangles
is Sj, j = 1, 2,⋯,NΔ, and the median Sm = ðSj+1, j = 1, 2,⋯,
NΔÞ/2 or Sm = ðSðj+1Þ/2 + SðjÞ/2+1, j = 1, 2,⋯,NΔÞ/2 area of
the triangle is obtained. If Sj ≤ Sm, then the inner coordinate
Gjðxj, yjÞ of the triangle is considered to be the estimated coor-
dinate of the target T f ðxf , yf Þ (i.e., T f ðxf , yf Þ = sjðxj, yjÞ). If
Sj > Sm, the centre of the triangle is used as the estimated value
of T. However, this results in a large error. Thus, method 2 in
stage 2 was used.

Stage 2. When the number of anchor nodes is small,
method 2 is used for localization.

Method 2. When the number of anchor nodes is small,
the number of triangles divided by Delaunay is small. Con-
sequently, the area Sj, j = 1, 2,⋯,NΔ of the triangle where
the target is located is too large, and the accuracy of using
the inner coordinates in method 1 as target’s estimated coor-
dinates is too low. Therefore, in the first step, the method in
phase 1 is used to determine the area ratio. Next, the calcu-
lated inner point Gj connects the vertex coordinates of the
triangles A, B, and C to which it belongs and divides it into
three small triangles, as illustrated in Figure 12, which are
composed of green lines. We subsequently calculated the
inner coordinates G1ðx4, y4Þ of the small triangle where the
target is located. As displayed in Figure 13, the three points
A, B, and C represent a triangle formed in the Delaunay tri-
angulation network, Gðx0, y0Þ represents its inner centre,
and G1ðx4, y4Þ represents the inner coordinate of the small
triangle △BCG. Thus, the coordinates of G1ðx4, y4Þ can be
selected as the estimated coordinates of the target point T
(i.e., G1ðx4, y4Þ = T f ðxf , yf Þ), when the area ratio of the area

ðSl, l = 1, 2,⋯,NLÞ of the small triangle△BCG to the area of
S is Sl/S ≤ 1. For example, the area ΔBCG of a triangle SΔ can
be calculated using Equation (8), and SΔ is a positive value
(usually the absolute value jSΔj).

SΔ =
1
2

x1 y1 1
x2 y2 1
x3 y3 1

								

								
= 1
2 x1y2 + x2y3 + y1x3 − x3y2 − x2y1 − x1y3ð Þ:

ð8Þ

If the ratio of the area ðSl, l = 1, 2,⋯,NLÞ of the small tri-
angle △BCG where the target is located into the area of Sm
satisfies the condition Sl/Sm > 1, the least squares method is
used for calculation. We assumed that T is inside △BCG
and used Equation (2) to measure the distance between each
vertex of the small triangle △BCG and T f ðxf , yf Þ; thus,
d1 = dT1G

, d2 = dT1C
, and d3 = dT1B

. The coordinates of the
three vertices of△BCG are Gðx0, y0Þ, Bðx3, y3Þ, and Cðx2, y2Þ.
Therefore, the following equations can be established:

x0 − xf
� �2 + y0 − yf

� �2
= d1,

x2 − xf
� �2 + y2 − yf

� �2
= d2,

x3 − xf
� �2 + y3 − yf

� �2
= d3:

8>>>>>><
>>>>>>:

ð9Þ

Then, by subtracting d3 from d1 and d2 in Equation (9), the
following equation can be obtained:

x0
2 − x3

2� �
− 2 x0 − x3ð Þxf + y0

2 − y3
2 − 2yf y0 − y3ð Þ = d1

2 − d3
2,

x2
2 − x3

2� �
− 2 x2 − x3ð Þxf + y2

2 − y3
2 − 2yf y2 − y3ð Þ = d2

2 − d3
2:

8<
:

ð10Þ

Equation ((11) can be expressed as a linear equation [28].

HX = b: ð11Þ

Among them,

H =
2 x0 − x3ð Þ 2 y0 − y3ð Þ
2 x2 − x3ð Þ 2 y2 − y3ð Þ

" #
, X =

xf

yf

2
4

3
5, and

b =
x0

2 − x3
2 + y0

2 − y3
2 + d3

2 − d1
2

x2
2 − x3

2 + y2
2 − y3

2 + d3
2 − d2

2

" #
:

ð12Þ

Thus, the coordinate of T can be solved by the following
expression:

X
~
= HTH
� �−1

HTb: ð13Þ

However, the distance d1 = dT1G
from the target T to the

inner heart Gðx0, y0Þ could not be accurately determined. The
distance dG1G

is approximately estimated as the distance of d1,

Table 1: Change in the number of anchor nodes.

L n N
△

S0 (m
2) S0/SL

200 × 200 30 50 29374 73.44%

200 × 200 50 89 34460 86.15%

200 × 200 70 126 30552 87.63%

200 × 200 100 184 36839 92.10%

200 × 200 150 283 36933 92.33%

200 × 200 200 383 37245 93.11%

200 × 200 300 581 37810 94.53%
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that is, dG1G
= d1 = dT1G

. Among them, dG1G
can be calculated

using equation dG1G
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx0 − x4Þ2 + ðy0 − y4Þ2

q
.

In general, methods 1 and 2 can be used in combination
in a real localization process. The proposed 2D Delaunay
target localization method can locate the target quickly
according to the number of nodes.

5. WSN Target Localization Algorithm Based
on 3D Delaunay

The proposed 2D WSN localization algorithm of the Delau-
nay division were extended to 3D. 3D localization algo-
rithms are suitable for practical applications. The trilateral
localization method can be used to determine the approxi-
mate coordinates of the target but cannot be used to measure
the height of the z-axis. Therefore, referring to the localiza-
tion method in Section 5.3, the 3D localization algorithm
was designed according to various stages.

5.1. Three-Dimensional Space Divided by Delaunay. Accord-
ing to the content in Section 4, the Delaunay method is used
to divide the coordinate points in the 2D plane, and the
Delaunay figure obtained is a network composed of many
triangles. When the Delaunay method is used to divide n
the node 3D coordinates, the resulting graph is a 3D net-
work composed of NðN > nÞ tetrahedrons. As displayed in
Figure 14, 100 anchor nodes are randomly deployed in a
space of 200m3, and the blue solid dots represent nodes with
known coordinates. Next, the location coordinates of these
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Figure 7: Set the location of the target.
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Figure 9: T is outside △ABC.
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Figure 10: Drawing the inner point of each triangle.
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Figure 11: Finding the triangle surrounded by the target.
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100 nodes are divided using the Delaunay method, and the
12 edge lengths of cube 200m3 were set as constrained edges.
As displayed in Figure 15, the black 3D graphic network was
composed of many tetrahedrons with different volumes.
Comparing the graphs divided by the 2D Delaunay and 2D
Delaunay methods reveals that the 2D Delaunay diagram
is consisting of a triangular network composed of multiple
small triangles, and the 3D Delaunay diagram is a 3D net-
work consisting of multiple tetrahedrons. When the coordi-
nate value of the node is fixed, the generated Delaunay
network is unique.

The analysis revealed that the density of the triangular
network or the 3D network after Delaunay is primarily
determined by the number of nodes. Therefore, the data in
Table 2 are used to verify the relationship between the 3D
area size L, the number of nodes n, and the number of
tetrahedrons N formed under the given conditions of the
node coordinates.

Table 2 denotes that the greater the number of nodes is,
the greater the number of tetrahedrons is. Thus, the total
volume V of the formed Delaunay graph increases with an
increased number of nodes. The number of inner points
primarily depends on the number of nodes, and the size of
the constraint space has limited effect on it. Many experi-
ments have revealed that the size of V is primarily deter-
mined by the number of nodes and the location of nodes.
Furthermore, the ratio of the total volume V of the tetrahe-
dron formed by Delaunay to the volume V0 of the deploy-
ment area increases as the number of nodes increases.
However, the growth of the volume percentage V/V0 was
not considerably accelerated, and the volume ratio is low
and between 50% and 70%. In Section 6, the distance
between nodes is set through experiments to increase the
volume ratio and optimise the location distribution of
anchor nodes.

5.2. Determining Tetrahedron the Target Is In. The basic
properties of Delaunay do not change with the increase in
dimensionality, but the problems faced by the 3D localiza-
tion method differ from those of 2D localization. When
the coordinates of the nodes are divided using the Delaunay
method, the inner centre of each tetrahedron should be cal-
culated. Currently, estimating the location of the target T in
the Delaunay tetrahedral network is the core step of 3D
localization. The principle of the judgement strategy is sim-
ilar to that of the 2D localization method in Section 4, but
the method and algorithm to be calculated differ. Assuming
that the vertices of each tetrahedron in the divided Delaunay

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

120

140

160

180

200

1

2

3

4

5

67
8

9

10

11
1213

14

15

16

17

18

19

20

2122

23

24

25

26

27

28

29

30

31
32

33

34
35

36

37

38

39

40 41

42

43
44

45

46

47

48

49
50

51

52

53

54

55
56

57

58
5960 61

62

63

64

65

66

67

68

69
70

71
72

73

74

75

7677

78 79

80
81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96
97

98

99

100

101

102

103

104105

106
107108

109

110

111
112

113

114

115116

117
118

119

120

121

122

123 124
125126

 1

 2

 3 4

 5

Figure 12: Delaunay second division.
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Figure 13: Partial schematic.

10 Journal of Sensors



are composed of known anchor nodes, using Equations
(1)–(3), the RSSI values of the three transmission points with
the strongest signal strength and the four closest distances
d4≤k≤6 between the known and unknown nodes can be calcu-
lated. Although the coordinates of the target are unknown,
judging that T is located inside a certain tetrahedron is the
first step in proposing a 3D WSN target localization
algorithm.

As displayed in Figures 16 and 17, the tetrahedron A −
BCD represents a certain tetrahedron in the Delaunay 3D
network, and E − BCD represents the adjacent tetrahedron.
Among these technologies, the coordinates of points A, B,
C, D, and E are known and represent known nodes. The
coordinate position of the unknown target T is uncertain,
but the distance from the vertices A, B, C, D, and E of the tet-
rahedron can be measured by Equation (2) if dAT , dBT , dCT ,
dDT , and dET are assumed. If the point T is inside the tetra-
hedron A − BCD, the sum of the volume V of the tetrahe-

dron formed by the vertices of the target T and A − BCD
or T and E − BCD satisfies the condition VABCT +VACDT +
VABDT +VBCDT ≤VABCDVABET +VAECT +VABCT +VBCET ≤
VABCE . If the target T is not inside a tetrahedron A − BCD,
then VABCT +VACDT +VABDT +VBCDT >VABCD. To calcu-
late the volume A − BCD of the tetrahedron, the correspond-
ing coordinate values are substituted into the Euler
tetrahedron Formula (14).

V = 1
6

1 1 1 1
x1 x2 x3 x4

y1 y2 y3 y4

z1 z2 z3 z4

											

											
= 1
6

x2 − x1 y2 − y1 z2 − z1

x3 − x2 y3 − y2 z3 − z2

x4 − x3 y4 − y3 z4 − z3

								

								
,

ð14Þ

where xi, yi, and zi are the known vertex coordinates of tet-
rahedron A − BCD or E − BCD. The coordinates of the target
T cannot be directly calculated, but the distance between
each vertex of the tetrahedron can be estimated using the
RSSI ranging model, which is set as d1, d2, d3, d4, and d5.
Therefore, tetrahedron’s edge length formula can be used
to calculate the volume, and Equation (15) can be used to
calculate the volume Vl of the small tetrahedrons VABCT ,
VACDT , VABDT , and VBCDT .

Vl
2 = 1

288

0 1 1 1 1
1 0 d1

2 d2
2 d3

2

1 d1
2 0 d4

2 d5
2

1 d2
2 d4

2 0 d6
2

1 d3
2 d5

2 d6
2 0

														

														
: ð15Þ

Among these values, Vl is a positive value. Therefore, the
corresponding tetrahedral volume can be calculated using
Equations (14) and (15) as follows: using the afore-
mentioned method, we determined the tetrahedron in the
Delaunay network target is inside.

5.3. 3D WSN Target Localization Algorithm Based on 3D
Delaunay. A novel WSN target localization algorithm based
on 3D Delaunay was proposed. According to the relation-
ship between the number of nodes and the number of tetra-
hedrons after the Delaunay division, the algorithm was
designed in two stages. In the first stage, the number of
nodes and area range were determined. The number of tetra-
hedrons generated by the 3D Delaunay method was approx-
imately three times greater than the number formed by the
2D Delaunay method. Therefore, the 3D Delaunay method
was more suitable for target localization with many nodes.
In the second stage, the number of nodes is small, and the
analysis and design are performed with reference to the 2D
Delaunay localization method.
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Stage 1. When the number of nodes is large, the coordi-
nates of the centre I of the tetrahedron are mainly used to
estimate the coordinates of the target.

Method 1. First, we calculated the inner coordinates
Iðxi, yi, ziÞ of each tetrahedron. In Figure 18, the red dots
represent the inner points of each tetrahedron, the number
of which is equal to the number of tetrahedrons. According
to the method in Section 5.2, we find the tetrahedron sur-
rounded by the target T and use Equation (16) to calculate
the inner coordinates Iðxi, yi, ziÞ of the tetrahedron.

x1 =
S1x1 + S2x2 + S3x3 + S4x4

S1 + S2 + S3 + S4
,

y1 =
S1y1 + S2y2 + S3y3 + S4y4

S1 + S2 + S3 + S4
,

z1 =
S1z1 + S2z2 + S3z3 + S4z4

S1 + S2 + S3 + S4
:

8>>>>>>>><
>>>>>>>>:

ð16Þ

Assume that the vertex coordinates of the tetrahedron
are ðx1, y1, z1Þ, ðx2, y2, z2Þ, ðx3, y3, z3Þ, and ðx4, y4, z4Þ.
Here, Siði = 1, 2, 3, 4Þ represents the side area of the tetrahe-
dron, and the inner point Iðxi, yi, ziÞ of the tetrahedron can
be calculated using Equation (16). In the experiment, three
unknown target coordinates are given. Next, the tetrahedron
where the target is located is determined by using the method
described in Section 5.2. As displayed in Figure 19, the three
black tetrahedrons each contain three targets.

To avoid selecting the inner points of some tetrahedrons
that are too large, the coordinates of the target are assumed
to be inaccurate. Therefore, the volume ratio of the tetrahe-
dron was determined to solve the afore-mentioned problem.
The volume of all tetrahedrons is V j (j = 1, 2,⋯,Np), where
Np is the number of tetrahedrons. Next, the volume
median Vm = ððV j+1Þ/2, j = 1, 3,⋯,NpÞ or Vm = ðSðj+1Þ/2 +
SðjÞ/2Þ/2, j = 2, 4,⋯,NpÞ of the divided tetrahedron was cal-
culated. Assuming that the volume of the tetrahedron in
which the target T is located satisfies V j ≤Vm, the tetrahe-
dral centre coordinate Gjðxj, yjÞ can be replaced with the
coordinate of the target T , that is, Ff ðxf , yf Þ = I jðxj, yjÞ.
Assuming that V j > Vm, the method in phase 2 is used.

Stage 2. When fewer known node coordinates exist,
and the formed tetrahedron volume satisfies the condition

Table 2: Verifying the relationship between the number of nodes and other variables.

L n N V (m3) V/V0 L n N V (m3) V/V0
200 × 200 × 200 100 512 5.3744e+06 67.18% 200 × 200 × 20 100 483 5.3744e+05 67.18%

200 × 200 × 200 70 327 4.8725e+06 60.91% 200 × 200 × 20 70 319 4.8725e+05 60.91%

200 × 200 × 200 50 228 4.3816e+06 54.77% 200 × 200 × 20 50 211 4.3816e+05 54.77%

200 × 200 × 200 20 61 2.2605e+06 28.26% 100 × 100 × 20 70 323 1.2181e+05 60.90%

200 × 200 × 50 100 479 1.3436e+06 67.18% 100 × 100 × 20 50 214 1.0954e+05 54.77%

200 × 200 × 50 70 333 1.2181e+06 60.90% 100 × 50 × 20 70 319 6.0906e+04 60.91%

A (x1, y1, z1)

B (x2, y2, z2)
D (x4, y4, z4)

C (x3, y3, z3)

T

Figure 16: Point T is inside A − BCD.
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Figure 17: Point T is outside A − BCD.
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Figure 18: Calculating the inner point of a tetrahedron.
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V j >Vm, the inner coordinates cannot be estimated as the
coordinates of the unknown target.

Method 2. When V j >Vm is determined in the first step,
the coordinates of the target T are directly solved using the
least squares method. As displayed in Figures 20 and 21,
the red mark indicates target T , and T is inside the A − BC
D tetrahedron. When the tetrahedron surrounded by the
target T is located for the first time, the least square method
combined with the RSSI ranging principle is used to solve
the problem with less computation time.

Assuming that T is inside A − BCD, we use Equation (2)
to measure the distance between the four vertices of the tet-
rahedron A − BCD and T f ðxf , yf Þ, where d1 = AT , d2 = BT ,
d3 = CT , and d4 =DT . Consequently, the coordinates of
the three vertices of △BCG are known, Aðx1, y1, z1Þ, Bðx2,

y2, z2Þ, Cðx3, y3, z3Þ, and Dðx4, y4, z4Þ, which can be calcu-
lated as follows:

x1 − xf
� �2 + y1 − yf

� �2
+ z1 − zf
� �2 = d1,

x2 − xf
� �2 + y2 − yf

� �2
+ z2 − zf
� �2 = d2,

x3 − xf
� �2 + y3 − yf

� �2
+ z3 − zf
� �2 = d3,

x4 − xf
� �2 + y4 − yf

� �2
+ z4 − zf
� �2 = d4:

8>>>>>>>>>>><
>>>>>>>>>>>:

ð17Þ

Next, subtract d4 from d1, d2, and d3 from Equation (17)
to obtain the following expression:

Next, Equation (18) is rewritten as a system of linear
equations, similar to Equation (11), where

H =
2 x1 − x4ð Þ 2 y1 − y4ð Þ 2 z1 − z4ð Þ
2 x2 − x4ð Þ 2 x2 − x4ð Þ 2 z2 − z4ð Þ
2 x3 − x4ð Þ 2 y3 − y4ð Þ 2 z3 − z4ð Þ

2
664

3
775, X =

xf

yf

z f

2
664

3
775,
ð19Þ

and b can be rewritten as a determinant

b =
x21 − x24 + y21 − y24 + z21 − z24 = d24 − d21

x22 − x24 + y22 − y24 + z22 − z24 = d24 − d22

x23 − x24 + y23 − y24 + z23 − z24 = d24 − d23

2
664

3
775: ð20Þ

Thus, Equation (9) is used to calculate the determinant
coordinate value of the target T , and then the corresponding
value is removed.
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Figure 19: Tetrahedron surrounded by target.

x1
2 − x4

2� �
− 2 x1 − x4ð Þxf + y1

2 − y4
2� �

− 2 y1 − y4ð Þyf + z1
2 − z4

2� �
− 2 z1 − z4ð Þzf = d1

2 − d4
2,

x2
2 − x4

2� �
− 2 x2 − x4ð Þxf + y2

2 − y4
2� �

− 2 y2 − y4ð Þyf + z2
2 − z4

2� �
− 2 z2 − z4ð Þzf = d2

2 − d4
2,

x3
2 − x4

2� �
− 2 x3 − x4ð Þxf + y3

2 − y4
2� �

− 2 y3 − y4ð Þyf + z3
2 − z4

2� �
− 2 z3 − z4ð Þzf = d3

2 − d4
2:

8>>><
>>>:

ð18Þ
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6. Experimental Verification and
Result Analysis

6.1. A Linear Regression Analysis of Relevant Data. Experi-
ment 1. Determining the relationship between the number
of anchor nodes and the number of graphs generated by
the Delaunay division.

Comparing the graphs formed by the 2D and 3D Delau-
nay methods revealed that the 2D Delaunay graph is a trian-
gular network composed of multiple small triangles, while
the 3D Delaunay graph is a 3D network composed of multi-
ple tetrahedrons. When changing L, the number of tetrahe-
drons primarily depends on the number of nodes n. The
relationship between the number of nodes divided by the
2D and 3D Delaunay methods and the number of corre-
sponding graphics were analysed. With the same number
of nodes, the number of triangles generated by the Delaunay
method is considerably smaller than the number of tetrahe-
drons. Thus, the number of graphs generated by the Delau-
nay method is linearly related to the number of nodes. As
displayed in Figure 22, we set the size of the 2D area to
L = 200m2 and the 3D area to L = 200m3. Next, we set
the number of different nodes nð20 ≤ n ≤ 200Þ, obtain the
number of triangles NΔ and the number of tetrahedrons
N , and draw a scatter plot of the two. Figure 22 reveals
that the number of triangles or tetrahedrons formed after
the Delaunay division appears to have a linear relationship
with the number of nodes n. To verify this result, linear
regression analysis was performed using Excel software.

Assume that the linear equations of two of them can be
expressed as follows:

y1 = ax0 + b, 2Dð Þ,
y2 = cx1 + d, 3Dð Þ:

(
ð21Þ

When using Excel software to analyse its linear regres-
sion characteristics, select the confidence area as 95% and
the constant as 0, and generate the corresponding predic-
tive regression and residual plots. Next, the Delaunay lin-
ear regression equation and regression characteristics of
2D and 3D data were calculated, and the linear regression
equation fitting diagram shown in Figure 23 was obtained.

Figure 23 displays the linear regression equation y1 =
1:887x. Among these results, the coefficient of determination
R2 = 1 of the equation y1 indicates that the data fit is excel-
lent and close to 1. The value obtained by the regression
analysis satisfies the condition F value = P value < 0:01,
which indicates that the regression effect of the linear equa-
tion is significant. Similarly, to analyse the data obtained by
the 3D Delaunay division, the equation is y2 = 5:4132x. Fur-
thermore, all the indicators satisfy the linear regression.
Therefore, the number of triangles or tetrahedrons obtained
after Delaunay division is positively linearly related to the
number of nodes.

Finally, residual analysis was used for the 2D and 3D
data, as displayed in the residual diagrams in Figures 24
and 25. In the figures, the two sets of data are evenly distrib-
uted on both sides of the symmetry axis x = 0, which demon-
strates that the variables are linearly distributed. Finally,
through afore-mentioned analysis, the number of triangles
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Figure 22: Delaunay scatter chart.
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Figure 20: T is inside the tetrahedron.
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Figure 21: Distance from T to the tetrahedron vertex.
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or tetrahedrons formed after the Delaunay division and the
number of nodes n satisfy a linear relationship.

6.2. A Setting the Distance Constraint Value K between
Anchor Nodes. Experiment 2. Setting the distance constraint
value k between Delaunay generated anchor nodes.

Data in Tables 1 and 2 were tested. First, the first row of
2D data in Table 1 reveals that when the number of nodes is
small, the calculated area accounts for a low percentage. This
result likely occurs because the distribution of a small num-
ber of randomly generated anchor nodes is uneven, and the
distance between nodes is too close, which results in a low

proportion of the area or volume of the Delaunay network.
After these analyses, when the number of anchor nodes is
small, initial constraints were added to the distance between
the nodes generated randomly to increase the proportion of
the area divided by the Delaunay method; the minimum
constraint distance k is set. The distance dðsi, sjÞ ≤ k between
each node Delaunay is constrained to make it evenly distrib-
uted, where k is a fixed value that can be obtained through
multiple experiments.

In experiment 2, we set the phase parameters as L =
200 × 200, n = 30, and k = 25 for verification. As listed in
Table 3, the experiment randomly generated 10 sets of 2D
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Figure 23: Linear regression analysis.
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Figure 24: 2D data residual plot.
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data and calculated the total proportion S0/SL of each group
of Delaunay generated areas So and total areas SL. By com-
paring the data in Table 3 with the data in the first row of
Table 1, setting the constraint distance value k between
anchor nodes can increase the area ratio of the anchor
nodes. By setting k, the utilization rate of the anchor node
can be improved, and the area of the divided area can be
increased. Second, the calculated average of the total area
ratio of the 10 sets of data in Table 4 is 83.62%, which is
an average increase of 10.18% compared with 73.44% in
Table 1.

Similarly, Table 4 lists the test results of the Delaunay
method, which randomly generates 3D data to verify the
influence of the distance k between the constraint nodes on
the Delaunay volume. First, we set the relevant parameters
L = 200 × 200 × 200, n = 70, and k = 45 for the experiments.
In the experiment, the 3D volume data V formed by the
anchor nodes divided by Delaunay and 10 sets of data for
the total volume of V0/VL were obtained (as listed in
Table 4).

The calculated average volume ratio of Table 4 is 80.17%,
which is an average increase of 19.26% compared with the
60.91% data value in Table 2 under the same conditions.
Therefore, the verification and analysis of the above two sets
of data reveal that when the data were initially randomly
generated; adding the constraint value k of the distance
between anchor nodes could increase the Delaunay genera-
tion area or volume. Consequently, the area and volume
ratio of Delaunay’s divided areas increased, rendering the
layout of the anchor nodes reasonable.

7. Comparison Analysis

In this section, the proposed 2D-DPTL algorithm was com-
pared with the centroid, amorphous, and APIT algorithms
[29]. The degree of irregularity (DOI) represents the degree
of irregularity of the signal and generally is a value in the
range of [0,1]. DOI is defined as the distance change of the
largest wireless signal per unit degree change in the signal
propagation direction [29]. When the DOI value is zero, this
indicates that the signal model is an ideal circular signal
model. In this experiment, the node was deployed in an area
L with a range of 200 × 200, and the communication range
of the node was set to Rc = 20m. Through experimental
tests, we set the relevant parameters of the RSSI path loss
model as follows: noise standard deviation σk = 4, path loss
value ηk = 2:5, and Pk = −24. Next, the neighbour density
(ND), anchor percentage deployment method (random
deployment or uniform deployment), and other parameters
were selected to verify the accuracy of the algorithm.

7.1. Effect of Changing the Number of Nodes on Average
Localization Error. Experiment 3. Effect of changing the
number of anchor nodes on the average localization error
(ALE) of the algorithm.
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Table 3: Setting condition k, the data of the 2D Delaunay graph.

Serial number Delaunay area S0 (m
2) Total area ratio S0/SL (%)

1 3.3977e+04 84.94%

2 3.3350e+04 83.38%

3 3.2263e+04 80.66%

4 3.3672e+04 84.18%

5 3.4795e+04 86.99%

6 3.4602e+04 86.51%

7 3.0426e+04 76.04%

8 3.2313e+04 80.78%

9 3.3888e+04 84.72%

10 3.5203e+04 88.01%

Table 4: Setting condition k, the data of the 3D Delaunay graph.

Serial
number

Delaunay volume V
(m3)

Total volume ratio V/V0
(%)

1 3.3977e+04 84.94%

2 3.3350e+04 83.38%

3 3.2263e+04 80.66%

4 3.3672e+04 84.18%

5 3.4795e+04 86.99%

6 3.4602e+04 86.51%

7 3.0426e+04 76.04%

8 3.2313e+04 80.78%

9 3.3888e+04 84.72%

10 3.5203e+04 88.01%
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First, we analysed the effect of the change in the number
of anchor nodes on the ALE and compared the performance
of the proposed algorithm with other algorithms. Next, the
parameters DOI = 0 and ND = 8 were set, and two sets of
experiments were designed with various node deployment
methods. As displayed in Figure 26, when nodes were
deployed uniformly, the ALE of the five algorithms

decreased as the percentage of anchor nodes increased.
However, the ALE values of the various algorithms differed
considerably. The centroid algorithm (CA) exhibited the
highest ALE and did not consider the optimization of the
anchor node layout, and the calculation method is not rigor-
ous. The proposed 2D-DPTL algorithm exhibited a lower
ALE value than other algorithms because the distance

8 12 16 20 24 28 32 36

Percentage of anchor nodes (%)

0.1

0.2

0.3

0.4

0.5

0.6

A
ve

ra
ge

 lo
ca

tio
n 

er
ro

r

Centroid
APIT

Amorphous
2D-DPTL

Figure 26: Uniform node deployment.
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Figure 27: Random node deployment.
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judgement condition between nodes was added to optimize
the node layout. Consequently, the proposed algorithm
divided the target area twice to improve the localization
accuracy and reduce the ALE of the algorithm.

Comparing Figures 26 and 27 reveals that the deploy-
ment methods differed considerably, and under the same
values of other indicators, the ALE value of randomly
deployed nodes was greater than that of uniformly deployed
nodes. This result likely occurred because the uniform
deployment of anchor nodes rendered the layout of nodes

reasonable and increased the accuracy of target localization.
Consequently, the ALE of the proposed algorithm was
higher than that of other algorithms because the Delaunay
method could optimally divide node’s location according
to its location coordinates from an optimal triangle network,
and the location of the target was estimated, which improved
location accuracy. Second, the proposed algorithm per-
formed a secondary calculation on the problem of target’s
excessive localization range and reduced the ALE value of
the overall network.
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Figure 28: ALE of all algorithms when DOI = 0.
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Figure 29: ALE of all algorithms when DOI = 0:1.
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7.2. Effect of the Density of Neighbour Nodes on ALE. Exper-
iment 4. Effect of changing the density of neighbouring
nodes on the ALE when the DOI differed.

The effect of the change in the neighbour node density of
each algorithm on its ALE was verified. With AP = 28 and
uniform deployment of nodes, we set DOI = 0 and DOI =
0:1 to conduct two sets of experiments, as displayed in
Figures 28 and 29, which reveal that the CA exhibited the
highest ALE because this algorithm estimated the centre of
mass coordinates as the target localisation and failed to
reduce the localisation error. The proposed algorithm used
a phased calculation method to reduce ALE.

In Figure 28, the ALE values of the amorphous and APIT
algorithms decreased as the density of neighbouring nodes
increased, whereas the ALEs of the CA and the proposed
algorithm were not affected by a change in neighbouring
node density. These results were attributed to the absence
of the interaction between the target node and neighbouring
nodes. Figures 28 and 29 reveal that the improvement in sig-
nal irregularity reduces the average localisation accuracy of
the algorithm. Consequently, these experiments reveal that
the localisation accuracy of the proposed algorithm was
superior to that of the other algorithms and can be main-
tained within a certain range.

8. Conclusions

The Delaunay division method can optimize the layout of
2D nodes and can be applied to the network layout of 3D
sensor nodes based on the location coordinates of the nodes.
Delaunay triangle division can improve the flexibility of the
node layout and strengthen the correlation between the
anchor nodes. Therefore, the Delaunay partition method
was used to optimize the Delaunay network layout of ran-
domly deployed anchor nodes. Two localization algorithms
were designed to accurately estimate the position of the tar-
get in 2D and 3D coordinate systems. The proposed algo-
rithm has limitations in the network life cycle and delay
and must be verified in a real-world scenario. The results
of this study provide a critical important direction for future
research.
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Aiming at the problems of severe chattering and difficulty in low-speed operation of the surface-mounted permanent magnet
synchronous motor (SPMSM) sensor-less speed control system based on the traditional sliding mode observer (SMO), this
paper proposes a sensor-less control strategy of supertwisting sliding mode observer based on adaptive feedback gain (AFG-
STA-SMO). This strategy combines the supertwisting algorithm (STA) with the equivalent feedback principle and designs an
adaptive law to compensate for the rotor position error by adjusting the feedback gain coefficient online. Secondly, considering
the ripple component in the back electromotive force (back-EMF), the Kalman filter gets a smoother back-EMF signal, further
improving the rotor position estimation accuracy. The stability of the system is proved by using the Lyapunov function.
Finally, the feasibility and effectiveness of the proposed control strategy are verified by MATLAB/Simulink simulation.

1. Introduction

Surface-mounted permanent magnet synchronous motor
has a small size, high power density, high efficiency, low
rotor loss, and solid environmental adaptability [1–4]. It is
widely used in the wind power generation system and indus-
trial transmission field. In order to realize high-performance
control of permanent magnet synchronous motor, it is nec-
essary to install speed and position sensors such as a photo-
electric encoder to get accurate rotor position and speed
information. However, installing a photoelectric encoder
will increase the system’s cost and require a high operating
environment [5]. As a result, various sensor-less techniques
have been developed to estimate rotor position and speed
over the past few decades.

At present, speed sensor-less control algorithms are
mainly divided into two categories: the high-frequency sig-
nal injection method, which depends on the motor’s salient
spatial characteristics. Accurate rotor position information
can be obtained at all speeds, including zero speed, but it is
only applicable to the built-in motor with much noise. The
second type uses the motor speed parameters (such as the

back-EMF) in the motor fundamental excitation mathemat-
ical model to estimate the rotor position and speed, which
has significant dynamic performance but is only suitable
for the operation range of medium and high-speed. The
commonly used fundamental back-EMF observation algo-
rithms include SMO [6–9], model reference adaptive
[10–11], and extended Kalman filter [12]. SMO has been
widely studied because of its simple implementation, insen-
sitivity to parameter changes, and external interference [13].
However, the chattering caused by the sign switching func-
tion is an inevitable problem in SMO. Therefore, the low-
pass filter (LPF) was introduced to filter the back-EMF.
Since the traditional LPF cut-off frequency is fixed, the
back-EMF’s ripple component cannot be eliminated, seri-
ously affecting the rotor position’s estimation accuracy
[14]. In literature [15], an adaptive filter is proposed to filter
out the sliding mode noise, but the causes of the system’s
phase delay to a certain extent. The literature [16–18] pro-
posed an SMO based on the supertwisting algorithm to
observe back-EMF to solve this problem. This method can
effectively suppress the chattering phenomenon caused by
the switching function, and a good control effect can be
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obtained in the medium and high-speed range. However,
with the decrease of motor speed, the back-EMF gradually
decreases, and the observation accuracy also decreases. In
order to improve the rotor estimation when the motor runs
at low speed, an SMO is based on equivalent feedback pro-
posed in the literature [19]. The observer can feed back on
the estimated back-EMF to the stator current observation
and calculation to achieve the motor’s low-speed operation.
However, the feedback gain coefficient is only selected
according to the speed, so the algorithm lacks adaptability.
Based on the equivalent feedback sliding mode observer, a
feedback gain adaptive algorithm is proposed in the litera-
ture [20, 21] to realize the rotor angle compensation at
different speeds. However, this method still needs to intro-
duce an LPF and compensate for the rotor position delay,
which increases the complexity of the system.

In this paper, an STA-SMO with adaptive feedback gain
was proposed by combining the equivalent feedback princi-
ple with the supertwisting algorithm. The observer feeds
back on the estimated back-EMF to the stator current obser-
vation and calculation and designs an adaptive law to realize
rotor angle compensation at different speeds, which
improves the observer’s low-speed performance and sim-
plifies the selection of sliding mode gain. Simultaneously,
the Kalman filter is used to filter out the ripple component
in the back-EMF and further improve the sensor-less control
precision; the Lyapunov function analyzes the system’s
stability.

2. Design of SMO

2.1. Mathematical Model of SPMSM. The mathematical
model of surface-mounted PMSM, theα-βstationary coordi-
nate system, is [22]

Uα

Uβ

" #
= R + d

dt
L

0

24 0

R + d
dt

L

35 iα

iβ

" #
+

Eα

Eβ

" #
, ð1Þ

where Uαβ, iαβ, Eαβ, R, and L are α-β axis voltages, α-β
axis currents, α-β axis back-EMFs, stator resistance, and sta-
tor inductance, respectively. And Eαβ satisfies

Eα

Eβ

" #
= ωeψfð Þ

−sin θe

cos θe

" #
, ð2Þ

where ψf is the flux linkage, θe is the rotor position angle,
and ωe is the rotational speed.

The derivative of equation (2) is obtained:

d
dt
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= ωe

‐ψfωe
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−Eβ
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" #
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As shown in equation (3), the back-EMF contains the
rotor position and speed information.

2.2. Traditional SMO. In order to obtain the back-EMF,
equation (1) is rewritten as follows:

d
dt
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According to equation (4), the traditional SMO can be
designed as

d
dt
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where îαβ is the observed value of stator current, Uαβ is the
control input of the observer, and vαβ is the estimated value
of the back electromotive force.

vα

vβ

" #
=

k sign îα − iα
� �

k sign îβ − iβ
� �

" #
, ð6Þ

where sign ðÞ is the signum function and k is the sliding
mode gain coefficient.

From equation (6), it can be seen that there is a discon-
tinuous function sign ðÞ in the estimated back-EMF value,
which makes the back-EMF contain a large number of slid-
ing mode noise and harmonic components, so it needs to
introduce a LPF to filter it. Since the phase and amplitude
errors are introduced into the LPF, it must be compensated,
which increases the complexity of the system.

In order to further improve the low-speed performance
of speed sensor-less control, a SMO based on equivalent
feedback electromotive force was proposed in literature
[19], as shown in the following equation:

d
dt
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where ε is the feedback gain coefficient and vαβeq are the
equivalent feedback electromotive force values.

vαeq
vβeq

" #
=

ωc
τs + ωc

vα

ωc
τs + ωc

vβ

264
375, ð8Þ

where ωc is the cut-off frequency of the LPF and τ is the time
constant of the LPF.

When the motor is running at low speed, the SMO based
on the equivalent feedback EMF can improve the value of
the equivalent feedback EMF by reasonably designing
parameter ε, so as to solve the problem that the response
EMF is too small and the rotor position cannot be estimated
effectively, and improve the control precision of the system.
However, the method still needs to introduce a low-pass fil-
ter and conduct behavior compensation.
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In order to retain the advantages of the equivalent feed-
back SMO and avoid using a LPF, a new sliding mode speed
sensor-less control method was designed in literature [23].
In this method, a new state observer is designed to observe
the equivalent feedback signal vαβeq, thus avoiding the use
of a LPF. However, the design and debugging of the state
observer are complicated.

3. Design of AFG-STA-SMO

3.1. Supertwisting Algorithm. The general form of the super-
twisting algorithm [17] is as follows:

dx̂1
dt

= ‐k1 ~x1j j1/2 sign ~x1ð Þ + x2 + ρ1,

dx̂2
dt

= ‐k2 sign ~x1ð Þ + ρ2,
ð9Þ

where xi, x̂i, ~xi, ki, ρi, and sign ðÞ are state variables, estima-
tion of state variables, the error between estimated and
actual state variables, sliding mode gain coefficient, pertur-
bation term, and signum function, respectively.

3.2. AFG-STA-SMO. Since SPMSM high-precision vector
control requires accurate motor speed and rotor position
information, traditional SMO has parameter perturbation
and chattering. This paper combines the principle of equiv-
alent feedback with STA-SMO, and the design is as follows:
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îβ

" #
= ‐R

L

îα
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where l is the feedback gain coefficient, îαβ are the observa-
tion value of the stator currents, Uαβ are α-β axis voltages,
‐ððR/LÞiαÞ + ðð1/LÞUαÞ and ‐ððR/LÞiβÞ + ðð1/LÞUβÞ are
regarded as the perturbation terms, vα = Ð

k2 ⋅ sign ð~iαÞdt
and vβ = Ð

k2 ⋅ sign ð~iβÞdt are the estimated value of back-
EMFs, and vαeq and vβeq are the equivalent feedback elec-
tromotive force values.

The difference between equations (4) and (10) can be
obtained:

d
dt

~iα

~iβ

" #
= ‐Rs

Ls

~iα

~iβ

" #
−

1
Ls

~eα

~eβ

" #
−

k1 ⋅ ~iα
�� ��1/2 ⋅ sign ~iα

� �
k1 ⋅ ~iβ

�� ��1/2 ⋅ sign ~iβ
� �

24 35,
ð11Þ
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where ~iα = îα − iα, ~iβ = îβ − iβ, ~eα = vα + lvαeq − Eα, and ~eβ
= vβ + lvβeq − Eβ.

After the state variable of the observer reaches the sliding
mode surface ~iα = 0 and ~iβ = 0, according to the sliding
mode variable structure equivalent principle, we can get

Eα

Eβ

" #
=

vα + lvαeq
vβ + lvβeq

" #
=

1 + lð Þ ⋅
ð
k2 ⋅ sign ~iα

� �
dt

1 + lð Þ ⋅
ð
k2 ⋅ sign ~iβ

� �
dt

2664
3775:
ð12Þ

From equation (12), the integral term vαβ filters out
high-frequency sliding mode noise, so introducing low-
pass filters and phase compensation is avoided, and the sys-
tem algorithm is simplified. It can be seen from equation
(12) that the sliding mode gain k2 and feedback gain l are
proportional to the speed. When the motor is running at
high speed, the sliding-mode gain k2 and the feedback gain
l are larger. When the motor runs at low speed, the
sliding-mode gain k2 and the feedback gain l are smaller.

3.3. Optimization of AFG-STA-SMO. The derivative of equa-
tion (12) is obtained:

d
dt

Eα = ‐ωe ⋅ Eβ = 1 + lð Þ ⋅ k2 ⋅ sign ~iα
� �

,

d
dt

Eβ = ωe ⋅ Eα = 1 + lð Þ ⋅ k2 ⋅ sign ~iβ
� �

:

8>><>>: ð13Þ

Although the harmonic component is effectively filtered
by integral operation, the back-EMF’s observed value still
contains a ripple component, which will lead to error if used
to estimate the rotor position directly. Therefore, the
Kalman filter is used in this paper to obtain a smoother
back-EMF signal, which further improves the rotor position
estimation accuracy.

According to equation (13), the state equation of the
Kalman filter is designed as [24]

d
dt

Êα

d
dt

Êβ

d
dt

bωe

266666664

377777775
=

‐Êβbωe − ~Eαλ

Êαbωe − ~Eβλ

Êβ~Eα − Êα~Eβ

2664
3775, ð14Þ

where λ is the adaptive gain, bωe is the estimated rotational
speed, Êα and Êβ are the final observed values of back-
EMF, ~Eα = Êα − vα − lvαeq, and ~Eβ = Êβ − vβ − lvβeq.

Considering that the adaptive gain coefficient which is
too large will cause the system to be unstable and too small
will cause the system to converge too slowly, so this paper
designs the adaptive gain according to the actual speed of
the motor as

λ = λa + κωe, ð15Þ
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Figure 4: SPMSM speed sensor-less control block diagram of AFG-STA-SMO.

Table 1: SPMSM parameters.

Parameters Values

Stator resistance Rs 2.875Ω

Pole-pair number 4

Magnetic flux ψf 0.175Wb

D-axis induction Ld 8.5e-3H

Q-axis induction Lq 8.5e-3H

Damping factor B 0

DC bus voltage Udc 310V

Pole-pair number 4

Magnetic flux ψf 0.175Wb

Rotational inertia J 0.001 kg·m2

4 Journal of Sensors



where λa and κ are both normal numbers and ωe represents
the actual speed of the motor.

Stability analysis

V = 1
2

~E
2
α + ~E

2
β + ~ω2e

� �
: ð16Þ

where ~ωe = bωe − ωe.
Since the mechanical time constant is much larger than

the electrical time constant, it is considered that the speed
does not change within an estimation period. which can be
obtained from equation (3) and equation (14):

d
dt

~Eα

d
dt

~Eβ

d
dt

~ωe

266666664

377777775
=

‐Êβ~ωe − ~Eβbωe − ~Eαλ

Êα~ωe + ~Eαbωe − ~Eβλ

Êβ~Eα − Êα~Eβ

2664
3775: ð17Þ

Substitute equation (17) into equation (16) and derive

d
dt

V = ~Eα
d
dt

~Eα + ~Eβ
d
dt

~Eβ + ~ωe
d
dt

~ωe

= ‐~EαÊβ~ωe − ~Eα~Eβbωe − λ~E
2
α + Êα~Eβ~ωe + ~Eα~Eβbωe

− λ~E
2
β + ~EαÊβ~ωe − Êα~Eβ~ωe = ‐λ ~E

2
α + ~E

2
β

� �
≤ 0:

ð18Þ

Therefore, according to the Lyapunov stability criterion,
the system with the Kalman filter is stable. The structure
schematic diagram of AFG-STA-SMO is shown in Figure 1.

3.4. System Stability Analysis. The Lyapunov function can
define as

V1 = 1
2
~iα2 +~iβ2� �

: ð19Þ

From equations (19) and (11), it can be obtained that

d
dt

V1 = ‐R
L

~i
2
α +~i2β

� �
−
1
L

~eα~iα + ~eβ~iβ
� �

− k1 ~iα
�� ��3/2 + ~iβ

�� ��3/2� �
< 0:

ð20Þ

In order to ensure the convergence of the current-sliding
mode observer, ðd/dtÞV1 < 0 must satisfy; then, the sliding
mode gain k1 can be obtained as follows:

0.10.0

7.26

0.147

0.4906 0.4908 0.4910 0.4912

0.282 0.283 0.2840.148 0.149 0.150 0.151 0.152 0.153

79.8

21.65
21.70
21.75
21.80
21.85
21.90
21.95
22.00
22.05

79.9
80.0
80.1
80.2
80.3
80.4
80.5
80.6
80.7
80.8
80.9

7.27
7.28
7.29
7.30
7.31
7.32
7.33
7.34

–100
–50Ea

 (V
)

0
50

100

Ea 1
Ea 2

0.2

(a)

(a)

(c)

(b)

(b)

(c)

0.3
Time (s)

0.4 0.5 0.6

Figure 5: Back-EMF response diagram.

Table 2: Back-EMF fluctuation.

Result Ea1 Ea2 Unit

Back-EMF fluctuation (a) 7.34~7.32 7.325~7.315 V

Back-EMF fluctuation (b) 22.05~21.925 22.025~22.015 V

Back-EMF fluctuation (c) 80.9~ 80.5 80.7~ 80.69 V
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k1 > sup ‐R
L
⋅

~i
2
α +~i2β

� �
~iα
�� ��3/2 + ~iβ

�� ��3/2 −
1
L
⋅

~eα~iα +~eβ~iβ
~iα
�� ��3/2 + ~iβ

�� ��3/2
8<:

9=;,

ð21Þ

where sup fg represents the upper bound.
When the current-sliding mode observer converges, ðd/

dtÞ~iα =~iα = ðd/dtÞ~iβ =~iβ = 0, from equation (11) that

sign ~iα
� �

= ‐ ~eα

k1 ⋅ L ⋅ ~iα
�� ��1/2 ,

sign ~iβ
� �

= ‐ ~eβ

k1 ⋅ L ⋅ ~iβ
�� ��1/2 :

8>>>><>>>>:
ð22Þ

Substitute equation (22) into equation (10) and get

d
dt

vα + lvαeqð Þ = ‐ 1 + lð Þ k2 ⋅~eα
k1 ⋅ Ls ⋅ ~iα

�� ��1/2 ,
d
dt

vβ + lvβeqð Þ = ‐ 1 + lð Þ k2 ⋅~eβ
k1 ⋅ Ls ⋅ ~iβ

�� ��1/2 :

8>>>><>>>>:
ð23Þ

It can be obtained from equations (23) and (3) that

d
dt
~eα = ‐ 1 + lð Þ k2 ⋅~eα

k1 ⋅ Ls ⋅ ~iα
�� ��1/2 + ωe ⋅ Eβ,

d
dt
~eβ = ‐ 1 + lð Þ k2 ⋅~eβ

k1 ⋅ Ls ⋅ ~iβ
�� ��1/2 − ωe ⋅ Eα:

8>>>><>>>>:
ð24Þ

Similarly, the Lyapunov function can be defined as

V2 = 1
2 ~eα2 +~eβ2� �

: ð25Þ

From equations (25) and (24), the following equation
can be obtained:

d
dt

V2 = ‐ 1 + lð Þk2 ~e2α

k1 ⋅ L ⋅ ~iα
�� ��1/2 + ~e2β

k1 ⋅ L ⋅ ~iβ
�� ��1/2

" #
+ ωe ⋅ Eβ ⋅~eα − ωe ⋅ Eα ⋅~eβ < 0:

ð26Þ

To ensure the convergence of the current-sliding mode
observer, ðd/dtÞV2 < 0 must satisfy; then, the sliding mode
gain k2 can be obtained as follows:

1 + lð Þk2 > sup k1 ⋅ Ls ⋅ ωe ⋅ Eβ ⋅~eα − Eα ⋅~eβð Þ
~e2α/ ~iα

�� ��1/2� �
+ ~e2β/ ~iβ

�� ��1/2� �
8<:

9=;: ð27Þ

Equations (21) and (27) give the stability conditions of
the established system.

3.5. Adaptive Law Analysis of Feedback Gain Coefficient. In

equation (20), ‐R/Lð~i2α +~i2βÞ and −k1ðj~iαj3/2 + j~iβj3/2Þ is
always less than 0. A sufficient condition for the existence
of equation (20) is constructed as follows:
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‐R
L

~i
2
α +~i2β

� �
−
1
L

~eα~iα +~eβ~iβ
� �

− k1 ~iα
�� ��3/2 + ~iβ

�� ��3/2� �
< 0, ~iα > 0,~iβ > 0,

‐R
L

~i
2
α +~i2β

� �
−
1
L

‐~eα~iα −~eβ~iβ
� �

− k1 ~iα
�� ��3/2 + ~iβ

�� ��3/2� �
< 0, ~iα < 0,~iβ < 0:

8>><>>:
ð28Þ

Since ‐R/Lð~i2α +~i2βÞ < 0 and −k1ðj~iαj3/2 + j~iβj3/2Þ < 0, it
can be deduced that the condition satisfying ðd/dtÞV1 < 0
is as follows:

1 + lð Þk2 >max Eαj j, Eβj jð Þ = ωej jψf , ð29Þ

where ωe is the actual speed and ψf is the flux linkage.
From equation (29), it can be seen that the selection of l

affects the size of the sliding mode gain of k2. The larger the l
is, the lower the limit of the effective range of k2 is. Con-
versely, the smaller the l is, the higher the lower limit of
the effective range of k2 is.

According to equation (29),

l > ωej jψf
k2 − 1, ð30Þ

where k2 > ψf .
According to equation (30), 1 > ðψf /k2Þ > 0 is known, so

the feedback gain coefficient l can be designed as follows:

l = δ ωej j − 1, ð31Þ

where δ is a normal number, which is related to the gain of
sliding mode k2. So k2 meet the following conditions:

k2 > ψf
δ
: ð32Þ

In order to select δ conveniently, 0 < δ < 1 is set in this
paper.

4. Rotor Position Estimation

Since the sliding mode control is accompanied by high-
frequency chattering in the sliding mode, the high-
frequency chattering phenomenon will estimate in the
back-EMF. The rotor position estimation method based on
the arctangent function will introduce this chattering into
the division operation; significantly, when the observed
value of back-EMF exceeds zero, the rotor error will amplify.
Therefore, PLL [25] is adopted in this paper to replace the
arctangent function to extract the rotor’s position informa-
tion, as shown in Figure 2.

Hypothesis η = ðLd − LqÞðωeid − piqÞ + bωeζf , when jθe
− bθej < π/6 and sin ðθe − bθeÞ = ðθe − bθeÞ is established,
according to Figure 2, can get the following relationship:

ΔE = ‐Êα cos bθe − Êβ sin bθe = η sin θe cos bθe − η sin bθe cos θe
= η sin θe − bθe� �

≈ η θe − bθe� �
:

ð33Þ

0.2 0.5 0.60.40.30.1

8

4
5
6
7

−1
−2

0
1
2
3

0.0

0.15

−0.10

0.06 0.200.180.160.140.120.100.080.04

−0.20
−0.15

−0.05
0.00
0.05
0.10

0.15

−0.10
−0.15

−0.05
0.00
0.05
0.10

0.380.360.340.320.300.280.26

0.600.580.560.540.520.500.48

0.1

0.0

−0.2

−0.1

Sp
ee

d 
er

ro
r (

rp
m

)

Time (s)

(b)

(b)

(c)

(c)

(a)

(a)

Speed error1
Speed error2

Figure 7: Speed error response diagram.

Table 3: Back-EMF fluctuation.

Result FFG-STA-SMO AFG-STA-SMO Unit

Error (a) 0.3225 0.175 Rpm

Error (b) 0.275 0.0975 Rpm

Error (c) 0.27 0.27 Rpm

Position error (a) 0.0043 0.0007 Deg

Position error (b) 0.00037 0.00009 Deg

Position error (c) 0.00016 0.00016 Deg
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At this time, the equivalent block diagram of Figure 2 is
shown in Figure 3.

According to Figure 3, the transfer function of PLL can
be obtained, namely,

G sð Þ =
bθe
θe

= 2ξωn + ω2n
s2 + 2ξωns + ω2n

, ð34Þ

where ωn = ðKp/2Þ ffiffiffiffiffiffiffiffiffi
η/Kip

, ξ = ffiffiffiffiffiffiffiffi
ηKi

p
, and ωn determine the

bandwidth of the PI regulator.

5. Simulation

According to Figure 4, MATLAB is used to build a simula-
tion model, and the control scheme adopts vector control
based on id = 0. The motor parameters in the simulation
experiment are shown in Table 1.

The control system parameters of SPMSM based on the
traditional sliding mode observer are as follows: k = 200. The
control system parameters of SPMSM based on traditional
STA-SMO are as follows: k1 = 5000 and k2 = 200000. The
control system parameters of STA-SMO PMSM based on
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fixed feedback gain are k1 = 5000, k2 = 700, and l = 500. The
control system parameters of PMSM based on AFG-STA-
SMO are as follows: k1 = 5000, k2 = 700, and δ = 0:5.

5.1. Improved AFG-STA-SMO Simulation. When the
SPMSM is under sensor-less control, the rotor position
and speed signals are hidden in the back-EMF observation
value. This paper mainly uses a super spiral sliding mode
observer to extract rotor position and speed information
from the back-EMF observations. Although this strategy
can avoid introducing low-pass filters, it cannot effectively
filter the back-EMF ripple component. In order to obtain a
smooth back-EMF signal, this article introduces a Kalman
filter to filter the back-EMF signal again. The simulation
result is shown in Figure 5. To verify the effectiveness of
the strategy proposed in this paper, the motor adopts a no-
load starting mode with a given speed of 100 r/min. At
0.2 s, the speed is increased to 300 r/min; at 0.4 s, the speed
is increased to 1100 r/min. Figure 5 shows the back-EMF
response waveforms under two different strategies.

Table 2 shows that the back-EMF fluctuations of the
improved strategy proposed in this paper at three different
speed stages are 50%, 8%, and 2.5% of the back-EMF fluctu-
ations of the unimproved strategy, respectively.(Ea1: AFG-
STA-SMO without Kalman filter; Ea2: AFG-STA-SMO with

Kalman filter). By analyzing Figure 5 and the above results, it
can be seen that the introduction of the Kalman filter can
effectively suppress the ripple component in the back-EMF
observation value, thereby obtaining a smoother back-EMF
observation signal and further improving the accuracy of
the rotor position estimation.

5.2. Verification of Adaptive Feedback Gain Adjustment. In
order to verify the validity of the adaptive law proposed in
this article, the motor adopts a no-load starting mode with
a given speed of 100 r/min. At 0.2 s, the speed is increased
to 300 r/min; at 0.4 s, the speed is increased to 1100 r/min.

From Figures 6 and 7 and Table 3, it is shown that the
speed errors of AFG-STA-SMO at three different speed stages
are 54.26%, 35.45%, and 100% of STA-SMO speed errors with
fixed feedback gain (FFG-STA-SMO), respectively.
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Table 4: Speed Error.

Result SMO STA-SMO AFG-STA-SMO Unit

Error (a) 35 3 0.15 Rpm

Error (b) 45 3 0.25 Rpm

Error (c) 40 3 0.6 Rpm
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Figures 8–10 and Table 3 show that the rotor position
errors of AFG-STA-SMO at three different speed stages are
16.28%, 24.32%, and 100% of FFG-STA-SMO rotor position
errors, respectively.

From the above results and the simulation diagram anal-
ysis, it can be seen that under the action of the fixed feedback
gain, when the motor is running at 1000 r/min, the speed
error and rotor position error are minimal. As the speed
continues to decrease, the speed error and rotor position
error are gradually increasing. After introducing adaptive
control, the feedback gain is proportional to the speed. Dur-
ing the entire speed change process, the speed errors are less
than the speed errors of FFG-STA-SMO; the estimated rotor
position and the actual rotor position are the same, enhanc-
ing the system stability.

5.3. Medium and High-Speed Verification Analysis. In order
to verify the advantages of the control strategy proposed in

this paper in medium and high-speed operation, the motor
adopts a no-load starting mode, and the given speed is
600 r/min. At 0.1 s, load torque of 4.5N·m is applied; at
0.2 s, the speed rises to 1000 r/min; at the first variable speed
stable operation stage (0.3 s), the load torque changes to
5N·m; at 0.4 s, the speed is increased to 2000 r/min.

From Figure 11, the application of 4.5N·m and 5N·m of
load torque in 0.1 s and 0.3 s, respectively, causes a slight
speed drop in the actual speed. At this time, the estimated
speed is still tracking the actual speed, and there is also a
slight speed drop that has proved the feasibility and effec-
tiveness of these three control strategies.

Figure 12 and Table 4 show that the speed errors of
AFG-STA-SMO at three different speed stages are 0.429%,
0.556%, and 1.5% of SMO speed errors, respectively. The
speed errors of AFG-STA-SMO at three different speed
stages are 5%, 8.3%, and 20% of STA-SMO speed errors,
respectively.

Table 5: THD and back-EMF fluctuation.

Result SMO STA-SMO AFG-STA-SMO Unit

THD (a) 8.92 8.62 8.68 %

THD (b) 1.84 1.27 1.24 %

THD (c) 1.50 4.28 3.84 %

Back-EMF fluctuation (a) -31.8~-33.725 -32.92~-33 -32.91~-32.92 V

Back-EMF fluctuation (b) -72~-72.36 -72.6~-72.76 -72.685~-72.695 V

Back-EMF fluctuation (c) 143~145 146.35~146.6 46.22~146.23 V
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Figure 13: Response diagram of back-EMF.
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From the above results and simulation waveform analy-
sis, it can be seen that the speed error of SMO increases with
the continuous increase of the speed; the sliding mode chat-
tering is serious, which is not conducive to the system’s sta-
ble operation of the system. There is an obvious lag
phenomenon in the speed rise of 2000 r/min. Compared
with SMO, STA-SMO effectively suppresses sliding mode
chattering due to the characteristics of high-order sliding
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Table 6: Speed error and rotor position error.

Result SMO STA-SMO AFG-STA-SMO Unit

Error (a) 26 3.2 0.17 Rpm

Error (b) 35 3.2 0.4 Rpm

Position error (a) 0.3 0.03 0.0016 Deg

Position error (b) 0.8 0.2 0.006 Deg
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mode and integral operation function and reduces the speed
error, thereby avoiding the lag phenomenon caused by
introducing low-pass filters. Compared with STA-SMO,
the proposed control strategy is based on STA-SMO, and
the Kalman filter and adaptive control are introduced to
suppress further sliding mode chattering so that the speed
error is minimized, and the change of speed error is small
when coping with external disturbance.

Table 5 shows that the back-EMF fluctuations of AFG-
STA-SMO at three different speed stages are 0.75%, 2.78%,
and 0.5% of the back-EMF fluctuations of SMO, respectively.
The back-EMF fluctuations of AFG-STA-SMO at three
different speed stages are 12.5%, 6.25%, and 4% of the
back-EMF fluctuations of STA-SMO, respectively.

Figure 13, Table 5, and the above analysis of the results
show that the SMO’s back-EMF has a lag due to the low-
pass filter’s introduction, which affects the system’s response
speed. However, STA-SMO avoids this phenomenon due to
integral operation. Although these two control strategies can
effectively filter out the harmonic components, there are
many ripple components in the back-EMF value. If they
are directly used to estimate the rotor position, they will
inevitably cause larger errors. Therefore, the Kalman filter is
introduced to perform filtering processing to effectively sup-
press the back-EMF ripple component, thereby obtaining a
smoother back-EMF signal and improving control accuracy.

5.4. Low-Speed Verification Analysis. In order to verify the
advantages of the sensor-less algorithm-controlled speed
control system in low-speed operation situations, simulation

experiments are carried out in low-speed areas. The motor
adopts a no-load start mode, and the given speed is
100 r/min. At 0.2 s, the speed suddenly changes to 15 r/min.

Figure 14, Figure 15, and Table 6 show that the speed
errors of AFG-STA-SMO at two different speed stages are
0.6534% and 1.1423% of the SMO speed errors, respectively.
The speed errors of AFG-STA-SMO at two different speed
stages are 5.3125% and 12.5% of STA-SMO speed errors,
respectively.

Figures 16–19 and Table 6 show that the rotor position
errors of AFG-STA-SMO at two different speed stages are
0.53% and 0.75% of SMO rotor position errors, respectively.
The rotor position errors of AFG-STA-SMO at two different
speed stages are 5.33% and 3% of STA-SMO rotor position
errors, respectively.

From the above results and simulation diagram analysis,
it can be seen that when the motor runs at low speed, the
chattering of SMO speed waveform and rotor estimated
position waveform is serious, and the speed error and rotor
position error are the largest. When the speed is reduced
to 15 r/min, the system almost cannot operate normally.
Compared with SMO, STA-SMO suppresses sliding mode
chattering to a certain extent due to the characteristics of
high-order sliding mode and the function of the integrator.
However, the back-EMF is too small when the motor runs
at low speed, resulting in rotor position error and speed
error deviation. It is not conducive to the stable operation
of the system. Compared with STA-SMO, the estimated
rotor position of AFG-STA-SMO is basically the same as
the actual rotor position due to the introduction of
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equivalent feedback gain, and the speed error and rotor posi-
tion error are minimal, thus avoiding the situation that the
rotor position error is too large due to the small back-EMF.

6. Conclusion

This paper presents a sensor-less control strategy for STA-
SMO with adaptive feedback gain. The adaptive law, which
compensates for rotor angle estimation error by adjusting
the feedback gain coefficient online, effectively solves the
motor’s problems of low-speed operation difficulty and seri-
ous sliding mode chattering.

Secondly, the Kalman filter is used to reduce the ripple
component in the back-EMF. The smoother back-EMF sig-
nal is obtained, and the control precision of the algorithm
is further improved.

The whole system realizes the full speed domain opera-
tion; the dynamic response is fast and has the strong distur-
bance resistance when dealing with the external disturbance.
In the next step, the author intends to implement the pro-
posed control strategy with high-performance DSP chip in
order to improve the operation time extension caused by
the increasing complexity of the control system.
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