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Methods of numerical linear algebra are concerned with the
theory and practical aspects of computing solutions of math-
ematical problems in engineering such as image and signal
processing, telecommunication, data mining, computational
finance, bioinformatics, optimization, and partial differen-
tial equations. In recent years, applications of methods of
numerical linear algebra in engineering have received a lot
of attention and a large number of papers have proposed
several methods for solving engineering problems. This
special issue is devoted to publishing the latest and significant
methods of numerical linear algebra for computing solutions
of engineering problems.

We received twenty-five papers in the interdisciplinary
research fields. This special issue includes ten high quality
peer-reviewed articles.

In the following, we briefly review each of the papers that
are published.

In the paper entitled “Amodel based on cocitation for web
information retrieval,” Y. Xie and T.-Z. Huang propose a new
hyperlink weighting scheme to describe the strength of the
relevancy between any two webpages.

In the paper entitled “Optimal grasping manipulation for
multifingered robots using semismooth Newtonmethod,” C.-H.
Ko and J.-S. Chen perform the optimal grasping control to
find both optimal motion path of the object and minimum
grasping forces in the manipulation.

In the paper entitled “(Anti-)Hermitian generalized (anti-)
Hamiltonian solution to a system of matrix equations,”

J. Yu et al. propose the necessary and sufficient conditions for
the existence of and the expression for the (anti-)Hermitian
generalized (anti-)Hamiltonian solutions to the system of
matrix equations 𝐴𝑋 = 𝐵, 𝐶𝑋 = 𝐷.

In the paper entitled “Dynamicmodel of a wind turbine for
the electric energy generation,” J. de J. Rubio et al. introduce a
novel dynamic model for the modeling of the wind turbine
behavior.

In the paper entitled “The extrapolation-accelerated mul-
tilevel aggregation method in PageRank computation,” B.-
Y. Pu et al. present an accelerated multilevel aggregation
method for calculating the stationary probability vector of an
irreducible stochastic matrix in PageRank computation.

In the paper entitled “A double-parameter GPMHSS
method for a class of complex symmetric linear systems
from Helmholtz equation,” C.-X. Li and S.-L. Wu introduce
a double-parameter GPMHSS (DGPMHSS) method for
solving a class of complex symmetric linear systems from
Helmholtz equation.

In the paper entitled “The explicit identities for spectral
norms of circulant-type matrices involving binomial coeffi-
cients and harmonic numbers,” J. Zhou et al. investigate
the explicit formulae of spectral norms for circulant-type
matrices.

In the paper entitled “Dynamic stability of Euler beams
under axial unsteady wind force,” Y.-Q. Huang et al. study the
critical frequency equation for simply supported Euler beams
with uniform section under arbitrary axial dynamic forces.
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In the paper entitled “A modified conjugacy condition
and related nonlinear conjugate gradient method,” S. Yao et
al. present a nonlinear conjugate gradient method that is
globally convergent under the strongWolfe Powell line search
for general functions.

In the paper entitled “Spectral properties of the iteration
matrix of the HSS method for saddle point problem,” Q.-F. Cui
et al. discuss spectral properties of the iteration matrix of the
HSS method for saddle point problems.
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Based on the preconditioned MHSS (PMHSS) and generalized PMHSS (GPMHSS) methods, a double-parameter GPMHSS
(DGPMHSS) method for solving a class of complex symmetric linear systems from Helmholtz equation is presented. A parameter
region of the convergence for DGPMHSS method is provided. From practical point of view, we have analyzed and implemented
inexact DGPMHSS (IDGPMHSS) iteration, which employs Krylov subspace methods as its inner processes. Numerical examples
are reported to confirm the efficiency of the proposed methods.

1. Introduction

Let us consider the following formof theHelmholtz equation:

−Δ𝑢 + 𝜎
1
𝑢 + 𝑖𝜎

2
𝑢 = 𝑓, (1)

where 𝜎
1
, 𝜎
2
are real coefficient functions and 𝑢 satisfies

Dirichlet boundary conditions in𝐷 = [0, 1] × [0, 1].
Using the finite difference method to discretize the

Helmholtz equation (1) with both 𝜎
1
and 𝜎

2
strictly positive

leads to the following system of linear equations:

𝐴𝑥 = 𝑏, 𝐴 ∈ C
𝑛×𝑛

, 𝑥, 𝑏 ∈ C
𝑛
, (2)

where 𝐴 = 𝑊 + 𝑖𝑇 ∈ C𝑛×𝑛 and 𝑖 = √−1 with real symmetric
matrices 𝑊,𝑇 ∈ R𝑛×𝑛 satisfying −𝑊 ⪯ 𝑇 ≺ 𝑊 under certain
conditions. Throughout the paper, for ∀𝐵, 𝐶 ∈ R𝑛×𝑛, 𝐵 ≺ 𝐶

means that 𝐵 − 𝐶 is symmetric negative definite and 𝐵 ⪯ 𝐶

means that 𝐵 − 𝐶 is symmetric negative semidefinite.
Systems such as (2) are important and arise in a variety of

scientific and engineering applications, including structural
dynamics [1–3], diffuse optical tomography [4], FFT-based
solution of certain time-dependent PDEs [5], lattice quantum
chromodynamics [6], molecular dynamics and fluid dynam-
ics [7], quantum chemistry, and eddy current problem [8,
9]. One can see [10, 11] for more examples and additional
references.

Based on the specific structure of the coefficientmatrix𝐴,
one can verify that the Hermitian and skew-Hermitian parts
of the complex symmetric matrix 𝐴, respectively, are

𝐻 =
1

2
(𝐴 + 𝐴

∗
) = 𝑊, 𝑆 =

1

2
(𝐴 − 𝐴

∗
) = 𝑖𝑇. (3)

Obviously, the above Hermitian and skew-Hermitian split-
ting (HSS) of the coefficient matrix 𝐴 is in line with the
real and imaginary parts splitting of the coefficient matrix 𝐴.
Based on theHSSmethod [12], Bai et al. [2] skillfully designed
the modified HSS (MHSS) method to solve the complex
symmetric linear system (2). To generalize the concept of this
method and accelerate its convergence rate, Bai et al. in [3, 13]
designed the preconditioned MHSS (PMHSS) method. It is
noted that MHSS and PMHSS methods can efficiently solve
the linear system (2) with𝑊 ≻ 0 and 𝑇 ⪰ 0.

Recently, Xu [14] proposed the following GPMHSS
method for solving the complex symmetric linear systems (2)
with −𝑊 ⪯ 𝑇 ≺ 𝑊 and it is described in the following.

The GPMHSS Method. Let 𝑥(0) ∈ C𝑛 be an arbitrary initial
guess. For 𝑘 = 0, 1, 2, . . .until the sequence of iterates {𝑥(𝑘)}∞

𝑘=0
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converges, compute the next iterate 𝑥
(𝑘+1) according to the

following procedure:

(𝛼𝑉 + 𝑊 − 𝑇) 𝑥
(𝑘+1/2)

= (𝛼𝑉 − 𝑖 (𝑊 + 𝑇)) 𝑥
(𝑘)

+ (1 + 𝑖) 𝑏,

(𝛼𝑉 + 𝑊 + 𝑇) 𝑥
(𝑘+1)

= (𝛼𝑉 + 𝑖 (𝑊 − 𝑇)) 𝑥
(𝑘+1/2)

+ (1 − 𝑖) 𝑏,

(4)

where 𝛼 is a given positive constant and 𝑉 ∈ R𝑛×𝑛 is a
prescribed symmetric positive definite matrix.

Theoretical analysis in [14] shows that the GPMHSS
method converges unconditionally to the unique solution of
the complex symmetric linear system (2). Numerical exper-
iments are given to show the effectiveness of the GMHSS
method.

In this paper, based on the asymmetric HSS and gen-
eralized preconditioned HSS methods in [15, 16], a natural
generalization for the GMHSS iteration scheme is that we can
design a double-parameter GMHSS (DGPMHSS) iteration
scheme for solving the complex symmetric linear systems (2)
with −𝑊 ⪯ 𝑇 ≺ 𝑊. That is to say, the DGPMHSS iterative
scheme works as follows.

The DGPMHSS Method. Let 𝑥(0) ∈ C𝑛 be an arbitrary initial
guess. For 𝑘 = 0, 1, 2, . . .until the sequence of iterates {𝑥(𝑘)}∞

𝑘=0

converges, compute the next iterate 𝑥
(𝑘+1) according to the

following procedure:

(𝛼𝑉 + 𝑊 − 𝑇) 𝑥
(𝑘+1/2)

= (𝛼𝑉 − 𝑖 (𝑊 + 𝑇)) 𝑥
(𝑘)

+ (1 + 𝑖) 𝑏,

(𝛽𝑉 + 𝑊 + 𝑇) 𝑥
(𝑘+1)

= (𝛽𝑉 + 𝑖 (𝑊 − 𝑇)) 𝑥
(𝑘+1/2)

+ (1 − 𝑖) 𝑏,

(5)

where 𝛼 is a given nonnegative constant, 𝛽 is a given positive
constant, and 𝑉 ∈ R𝑛×𝑛 is a prescribed symmetric positive
definite matrix.

Just like the GPMHSS method (4), both matrices 𝛼𝑉 +

𝑊−𝑇 and 𝛽𝑉+𝑊+𝑇 are symmetric positive definite. Hence,
the two linear subsystems in (5) can also be effectively solved
either exactly by a sparse Cholesky factorization or inexactly
by a preconditioned conjugate gradient scheme. Theoret-
ical analysis shows that the iterative sequence produced
by DGPMHSS iteration method converges to the unique
solution of the complex symmetric linear systems (2) for a
loose restriction on the choices of 𝛼 and 𝛽. The contraction
factor of the DGPMHSS iteration can be bounded by a
function, which is dependent only on the choices of 𝛼 and 𝛽,
the smallest eigenvalues ofmatrices𝑉−1(𝑊−𝑇) and𝑉

−1
(𝑊+

𝑇).
This paper is organized as follows. In Section 2, we

study the convergence properties of the DGPMHSS
method. In Section 3, we discuss the implementation
of DGPMHSS method and the corresponding inexact
DGPMHSS (IDPGMHSS) iteration method. Numerical
examples are reported to confirm the efficiency of the
proposed methods in Section 4. Finally, we end the paper
with concluding remarks in Section 5.

2. Convergence Analysis for
the DGPMHSS Method

In this section, the convergence of the DGPMHSS method is
studied.The DGPMHSS iterationmethod can be generalized
to the two-step splitting iteration framework. The following
lemma is required to study the convergence rate of the
DGPMHSS method.

Lemma 1 (see [13]). Let 𝐴 ∈ C𝑛×𝑛, 𝐴 = 𝑀
𝑖
− 𝑁
𝑖
(𝑖 = 1, 2) be

two splittings of 𝐴, and let 𝑥(0) ∈ C𝑛 be a given initial vector. If
{𝑥
(𝑘)

} is a two-step iteration sequence defined by

𝑀
1
𝑥
(𝑘+1/2)

= 𝑁
1
𝑥
(𝑘)

+ 𝑏,

𝑀
2
𝑥
(𝑘+1)

= 𝑁
2
𝑥
(𝑘+1/2)

+ 𝑏,

(6)

𝑘 = 0, 1, . . ., then

𝑥
(𝑘+1)

= 𝑀
−1

2
𝑁
2
𝑀
−1

1
𝑁
1
𝑥
(𝑘)

+ 𝑀
−1

2
(𝐼 + 𝑁

2
𝑀
−1

1
) 𝑏,

𝑘 = 0, 1, . . . .

(7)

Moreover, if the spectral radius 𝜌(𝑀−1
2
𝑁
2
𝑀
−1

1
𝑁
1
) < 1, then

the iterative sequence {𝑥
(𝑘)

} converges to the unique solution
𝑥
∗
∈ C𝑛 of system (1) for all initial vectors 𝑥(0) ∈ C𝑛.

Applying this lemma to the DGPMHSS method, we get
convergence property in the following theorem.

Theorem 2. Let 𝑊̂ = 𝑅
−𝑇

(𝑊 − 𝑇)𝑅
−1
, 𝑇̂ = 𝑅

−𝑇
(𝑊 + 𝑇)𝑅

−1,
and 𝑉 = 𝑅

𝑇
𝑅, where 𝑅 ∈ R𝑛×𝑛 is a prescribed nonsingular

matrix. Let 𝐴 = 𝑊 + 𝑖𝑇 ∈ C𝑛×𝑛 be defined in (2), 𝛼

a nonnegative constant, and 𝛽 a positive constant. Then the
iteration matrix𝑀

𝛼,𝛽
of GPMHSS method is

𝑀
𝛼,𝛽

= (𝛽𝑉 + 𝑊 + 𝑇)
−1

(𝛽𝑉 + 𝑖 (𝑊 − 𝑇))

× (𝛼𝑉 + 𝑊 − 𝑇)
−1

(𝛼𝑉 − 𝑖 (𝑊 + 𝑇)) ,

(8)

which satisfies

𝜌 (𝑀
𝛼,𝛽

) ≤ max
𝜆𝑖∈𝜆(𝑊̂)

√𝛽2 + 𝜆
2

𝑖

𝛼 + 𝜆
𝑖

max
𝜇𝑖∈𝜇(𝑇̂)

√𝛼2 + 𝜇
2

𝑖

𝛽 + 𝜇
𝑖

, (9)

where 𝜆(𝑊̂) and 𝜇(𝑇̂), respectively, are the spectral sets of the
matrices 𝑊̂ and 𝑇̂.

In addition, let 𝜇min and 𝜆min, respectively, be the smallest
eigenvalues of the matrices 𝑊̂ and 𝑇̂. If

√𝛼2 + 𝜇
2

min − 𝜇min ≤ 𝛽 < √𝛼2 + 2𝛼𝜆min, (10)

then the DGPMHSS iteration (5) converges to the unique
solution of the linear system (2).

Proof. Let

𝑀
1
= 𝛼𝑉 + 𝑊 − 𝑇, 𝑁

1
= 𝛼𝑉 − 𝑖 (𝑊 + 𝑇) ,

𝑀
2
= 𝛽𝑉 + 𝑊 + 𝑇, 𝑁

2
= 𝛽𝑉 + 𝑖 (𝑊 − 𝑇) .

(11)
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Obviously,𝛼𝑉+𝑊−𝑇 and𝛽𝑉+𝑊+𝑇 are nonsingular for any
nonnegative constants 𝛼 or positive constants 𝛽. So formula
(8) is valid.

The iteration matrix𝑀
𝛼,𝛽

is similar to

𝑀̂
𝛼,𝛽

= (𝛽𝑉 + 𝑖 (𝑊 − 𝑇)) (𝛼𝑉 + 𝑊 − 𝑇)
−1

× (𝛼𝑉 − 𝑖 (𝑊 + 𝑇)) (𝛽𝑉 + 𝑊 + 𝑇)
−1

.

(12)

That is,

𝑀̂
𝛼,𝛽

= 𝑅
𝑇
(𝛽𝐼 + 𝑖𝑅

−𝑇
(𝑊 − 𝑇)𝑅

−1
)

× 𝑅𝑅
−1
(𝛼𝐼 + 𝑅

−𝑇
(𝑊 − 𝑇)𝑅

−1
)
−1

𝑅
−𝑇

× 𝑅
𝑇
(𝛼𝐼 − 𝑖𝑅

−𝑇
(𝑊 + 𝑇)𝑅

−1
)

× 𝑅𝑅
−1
(𝛽𝐼 + 𝑅

−𝑇
(𝑊 + 𝑇)𝑅

−1
)
−1

𝑅
−𝑇

= 𝑅
𝑇
(𝛽𝐼 + 𝑖𝑅

−𝑇
(𝑊 − 𝑇)𝑅

−1
)

× (𝛼𝐼 + 𝑅
−𝑇

(𝑊 − 𝑇)𝑅
−1
)
−1

× (𝛼𝐼 − 𝑖𝑅
−𝑇

(𝑊 + 𝑇)𝑅
−1
)

× (𝛽𝐼 + 𝑅
−𝑇

(𝑊 + 𝑇)𝑅
−1
)
−1

𝑅
−𝑇

= 𝑅
𝑇
(𝛽𝐼 + 𝑖𝑊̂) (𝛼𝐼 + 𝑊̂)

−1

× (𝛼𝐼 − 𝑖𝑇̂) (𝛽𝐼 + 𝑇̂)
−1

𝑅
−𝑇

.

(13)

Therefore, we have

𝜌 (𝑀
𝛼,𝛽

)

= 𝜌 (𝑀̂
𝛼,𝛽

)

= 𝜌 (𝑅
𝑇
(𝛽𝐼 + 𝑖𝑊̂) (𝛼𝐼 + 𝑊̂)

−1

× (𝛼𝐼 − 𝑖𝑇̂) (𝛽𝐼 + 𝑇̂)
−1

𝑅
−𝑇

)

= 𝜌 ((𝛽𝐼 + 𝑖𝑊̂) (𝛼𝐼 + 𝑊̂)
−1

(𝛼𝐼 − 𝑖𝑇̂) (𝛽𝐼 + 𝑇̂)

−1

)

≤
󵄩󵄩󵄩󵄩󵄩󵄩
(𝛽𝐼 + 𝑖𝑊̂)(𝛼𝐼 + 𝑊̂)

−1󵄩󵄩󵄩󵄩󵄩󵄩2

×
󵄩󵄩󵄩󵄩󵄩󵄩
(𝛼𝐼 − 𝑖𝑇̂) (𝛽𝐼 + 𝑇̂)

−1󵄩󵄩󵄩󵄩󵄩󵄩2
.

(14)

Since 𝑊 ∈ R𝑛×𝑛 and 𝑇 ∈ R𝑛×𝑛, respectively, are symmetric
positive definite and symmetric positive semidefinite and 𝑅

is a nonsingular matrix, 𝑊̂ and 𝑇̂ are symmetric positive
definite and symmetric positive semidefinite, respectively.
Therefore, there exist orthogonal matrices 𝑆

1
, 𝑆
2
∈ R𝑛×𝑛 such

that

𝑆
𝑇

1
𝑊̂𝑆
1
= Λ
𝑊̂
, 𝑆

𝑇

2
𝑇̂𝑆
2
= Λ
𝑇̂
, (15)

where Λ
𝑊̂

= diag(𝜆
1
, 𝜆
2
, . . . , 𝜆

𝑛
) and Λ

𝑇̂
=

diag(𝜇
1
, 𝜇
2
, . . . , 𝜇

𝑛
) with 𝜆

𝑖
> 0(1 ≤ 𝑖 ≤ 𝑛) and

𝜇
𝑖
≥ 0(1 ≤ 𝑖 ≤ 𝑛) being the eigenvalues of the matrices 𝑊̂

and 𝑇̂, respectively.
Through simple calculations, we can get that

𝜌 (𝑀
𝛼,𝛽

) ≤ max
𝜆𝑖∈𝜆(𝑊̂)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝛽 + 𝑖𝜆
𝑖

𝛼 + 𝜆
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

max
𝜇𝑖∈𝜇(𝑇̂)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝛼 − 𝑖𝜇
𝑖

𝛽 + 𝜇
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= max
𝜆𝑖∈𝜆(𝑊̂)

√𝛽2 + 𝜆
2

𝑖

𝛼 + 𝜆
𝑖

max
𝜇𝑖∈𝜇(𝑇̂)

√𝛼2 + 𝜇
2

𝑖

𝛽 + 𝜇
𝑖

,

(16)

which gives the upper bound for 𝜌(𝑀
𝛼,𝛽

) in (9). The next
proof is similar to that of Theorem 1 in [17]. Here it is
omitted.

The approach to minimize the upper bound is very
important in theoretical viewpoint. However, it is not prac-
tical since the corresponding spectral radius of the iteration
matrix𝑀

𝛼,𝛽
in (9) is not optimal. How to choose the suitable

preconditioners and parameters for practical problem is still
a great challenge.

3. The IDGPMHSS Iteration

In the DGPMHSSmethod, it is required to solve two systems
of linear equations whose coefficient matrices are 𝛼𝑉+𝑊−𝑇

and𝛽𝑉+𝑊+𝑇, respectively. However, thismay be very costly
and impractical in actual implementation. To overcome this
disadvantage and improve the computational efficiency of the
DGPMHSS iteration method, we propose to solve the two
subproblems iteratively [12, 18], which leads to IDGPMHSS
iteration scheme. Its convergence can be shown in a similar
way to that of the IHSS iterationmethod, usingTheorem3.1 of
[12]. Since 𝛼𝑉+𝑊−𝑇 and 𝛽𝑉+𝑊+𝑇 are symmetric positive
definite, some Krylov subspace methods (such as CG) can
be employed to gain its solution easily. Of course, if good
preconditioners for matrices 𝛼𝑉+𝑊−𝑇 and 𝛽𝑉+𝑊+𝑇 are
available, we can use the preconditioned conjugate gradient
(PCG) method instead of CG for the two inner systems that
yields a better performance of IDGPMHSS method. If either
𝛼𝑉 +𝑊 − 𝑇 or 𝛽𝑉 +𝑊 + 𝑇 (or both) is Toeplitz, we can use
fast algorithms for solution of the corresponding subsystems
[19].

4. Numerical Examples

In this section, we give some numerical examples to demon-
strate the performance of the DGPMHSS and IDGPMHSS
methods for solving the linear system (2). Numerical compar-
isons with the GPMHSS method are also presented to show
the advantage of the DGPMHSS method.

In our implementation, the initial guess is chosen to be
𝑥
(0)

= 0 and the stopping criteria for outer iterations is
󵄩󵄩󵄩󵄩󵄩
𝑏 − 𝐴𝑥

(𝑘)󵄩󵄩󵄩󵄩󵄩2

‖𝑏‖2

≤ 10
−6
. (17)

The preconditioner 𝑉 used in GPMHSS method is chosen to
be𝑉 = 𝑊−𝑇. For the sake of comparing, the corresponding
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Table 1: The experimentally optimal parameters and the corre-
sponding spectral radii for the iteration matrices of GPMHSS and
DGPMHSS with 𝑉 = 𝑊 − 𝑇 and𝑚 = 8.

𝜎
2

10 50 80 100
GPMHSS

𝛼
∗

𝐺
1.1 1.5 2.2 2

𝜌(𝑀
𝛼
∗

𝐺

) 0.5009 0.5222 0.5667 0.6274

DGPMHSS
𝛼
∗

𝐷
1.1 1.5 2.2 2

𝛽
∗

𝐷
1 0.9 0.8 0.8

𝜌(𝑀
𝛼
∗

𝐷
,𝛽
∗

𝐷

) 0.5001 0.4986 0.5012 0.4901

preconditioner𝑉 used in DGPMHSSmethod is chosen to be
𝑉 = 𝑊−𝑇. Since the numerical results in [2, 3] show that the
PMHSS iteration method outperforms the MHSS and HSS
iteration methods when they are employed as precondition-
ers for the GMRES method or its restarted variants [20], we
just examine the efficiency of DGPMHSS iterationmethod as
a solver for solving complex symmetric linear system (2) by
comparing the iteration numbers (denoted as IT) and CPU
times (in seconds, denoted as CPU(s)) of DGPMHSSmethod
with GPMHSS method.

Example 3 (see [5, 21–23]). Consider the following form of
the Helmholtz equation:

−Δ𝑢 + 𝜎
1
𝑢 + 𝑖𝜎

2
𝑢 = 𝑓, (18)

where 𝜎
1
, 𝜎
2
are real coefficient functions and 𝑢 satisfies

Dirichlet boundary conditions in 𝐷 = [0, 1] × [0, 1]. The
above equation describes the propagation of damped time
harmonic waves. We take 𝐻 to be the five-point centered
differencematrix approximating the negative Laplacian oper-
ator on a uniform mesh with mesh size ℎ = 1/(𝑚 + 1).
The matrix 𝐻 ∈ R𝑛×𝑛 possesses the tensor-product form
𝐻 = 𝐵

𝑚
⊗𝐼+𝐼⊗𝐵

𝑚
with𝐵

𝑚
= ℎ
−2

⋅tridiag(−1, 2, −1) ∈ R𝑚×𝑚.
Hence, 𝐻 is an 𝑛 × 𝑛 block-tridiagonal matrix, with 𝑛 = 𝑚

2.
This leads to the complex symmetric linear system (2) of the
form

[(𝐻 + 𝜎
1
𝐼) + 𝑖𝜎

2
𝐼] 𝑥 = 𝑏. (19)

In addition, we set 𝜎
1
= 100 and the right-hand side vector 𝑏

to be 𝑏 = (1+ 𝑖)𝐴1, with 1 being the vector of all entries equal
to 1. As before, we normalize the system by multiplying both
sides by ℎ

2.

As is known, the spectral radius of the iteration matrix
may be decisive for the convergence of the iteration method.
The spectral radius corresponding to the iteration method
is necessary to consider. The comparisons of the spectral
radius of the two different iteration matrices derived by
GPMHSS and DGPMHSS methods with different mesh size
are performed in Tables 1, 2, 3, and 4. In Tables 1–4, we used
the optimal values of the parameters 𝛼 and 𝛽, denoted by 𝛼

∗

𝐺

Table 2: The experimentally optimal parameters and the corre-
sponding spectral radii for the iteration matrices of GPMHSS and
DGPMHSS with 𝑉 = 𝑊 − 𝑇 and𝑚 = 16.

𝜎
2

10 50 80 100
GPMHSS

𝛼
∗

𝐺
1.1 1.5 2.2 1.8

𝜌(𝑀
𝛼
∗

𝐺

) 0.5010 0.5230 0.5697 0.6337

DGPMHSS
𝛼
∗

𝐷
1.1 1.5 2.2 1.8

𝛽
∗

𝐷
1 1 0.9 0.9

𝜌(𝑀
𝛼
∗

𝐷
,𝛽
∗

𝐷

) 0.5004 0.5063 0.5235 0.5097

Table 3: The experimentally optimal parameters and the corre-
sponding spectral radii for the iteration matrices of GPMHSS and
DGPMHSS with 𝑉 = 𝑊 − 𝑇 and𝑚 = 24.

𝜎
2

10 50 80 100
GPMHSS

𝛼
∗

𝐺
1.1 1.5 2.2 1.6

𝜌(𝑀
𝛼
∗

𝐺

) 0.5011 0.5234 0.5708 0.6360

DGPMHSS
𝛼
∗

𝐷
1.1 1.5 2.2 1.8

𝛽
∗

𝐷
1 1 1 1

𝜌(𝑀
𝛼
∗

𝐷
,𝛽
∗

𝐷

) 0.5005 0.5081 0.5289 0.5091

Table 4: The experimentally optimal parameters and the corre-
sponding spectral radii for the iteration matrices of GPMHSS and
DGPMHSS with 𝑉 = 𝑊 − 𝑇 and𝑚 = 32.

𝜎
2

10 50 80 100
GPMHSS

𝛼
∗

𝐺
1.1 1.5 2.2 1.7

𝜌(𝑀
𝛼
∗

𝐺

) 0.5011 0.5235 0.5714 0.6372

DGPMHSS
𝛼
∗

𝐷
1.1 1.5 2.2 1.8

𝛽
∗

𝐷
1 1 1 1

𝜌(𝑀
𝛼
∗

𝐷
,𝛽
∗

𝐷

) 0.5005 0.5089 0.5310 0.5139

for GPMHSS method, and 𝛼
∗

𝐷
, 𝛽∗
𝐷
for DGPMHSS method.

These parameters are obtained experimentally with the least
spectral radius for the iteration matrices of the two methods.

From Tables 1–4, one can see that with the mesh size
creasing, the trend of the experimentally optimal parameter
of the GPMHSS and DGPMHSS methods is relatively stable.
In Tables 1–4, we observe that the optimal spectral radius of
DGPMHSSmethod is still smaller than those of theGPMHSS
method, which implies that the DGPMHSS method may
outperform the GPMHSS method. To this end, we need
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Table 5: RES, CPU(s), and IT for PMHSS and GPMHSS with 𝑉 =

𝑊 − 𝑇 and𝑚 = 8.

𝜎
2

10 50 80 100
GPMHSS

RES 9.818𝑒 − 7 9.8917𝑒 − 7 9.1469𝑒 − 7 6.306𝑒 − 7

CPU(s) 0.015 0.016 0.016 0.016
IT 20 21 24 30

DGPMHSS
RES 9.0916𝑒 − 7 7.0211𝑒 − 7 4.9072𝑒 − 7 6.5183𝑒 − 7

CPU(s) 0.015 0.015 0.015 0.013
IT 20 19 18 17

Table 6: RES, CPU(s), and IT for PMHSS and GPMHSS with 𝑉 =

𝑊 − 𝑇 and𝑚 = 16.

𝜎
2

10 50 80 100
GPMHSS

RES 9.8506𝑒 − 7 9.4015𝑒 − 7 8.9127𝑒 − 7 9.4832𝑒 − 7

CPU(s) 0.031 0.046 0.046 0.063
IT 20 21 24 29

DGPMHSS
RES 9.3425𝑒 − 7 7.2018𝑒 − 7 7.4847𝑒 − 7 8.9905𝑒 − 7

CPU(s) 0.031 0.032 0.031 0.031
IT 20 20 20 19

Table 7: RES, CPU(s), and IT for PMHSS and GPMHSS with 𝑉 =

𝑊 − 𝑇 and𝑚 = 24.

𝜎
2

10 50 80 100
GPMHSS

RES 9.8907𝑒 − 7 9.6059𝑒 − 7 9.7633𝑒 − 7 7.5427𝑒 − 7

CPU(s) 0.094 0.094 0.11 0.125
IT 20 21 24 29

DGPMHSS
RES 9.5055𝑒 − 7 9.5856𝑒 − 7 7.8461𝑒 − 7 7.6081𝑒 − 7

CPU(s) 0.078 0.078 0.094 0.094
IT 20 20 21 20

to examine the efficiency of the GPMHSS and DGPMHSS
methods for solving the systems of linear equations 𝐴𝑥 = 𝑏,
where 𝐴 is described.

In Tables 5, 6, 7, and 8, we list the numbers of itera-
tion steps and the computational times for GPMHSS and
DGPMHSS iteration methods using the optimal parameters
in Tables 1–4. In Tables 5–8, “RES” denotes the relative
residual error.

From Tables 5–8, we see that the DGPMHSS method
is the best among the two methods in terms of number of
iteration steps and computational time. For theGPMHSS and
DGPMHSSmethods, the CPU’s time grows with the problem
size whereas the presented results in Tables 5–8 show that in
all cases the DGPMHSS method is superior to the GPMHSS

Table 8: RES, CPU(s), and IT for PMHSS and GPMHSS with 𝑉 =

𝑊 − 𝑇 and𝑚 = 32.

𝜎
2

10 50 80 100
GPMHSS

RES 9.9181𝑒 − 7 9.8976𝑒 − 7 6.0829𝑒 − 7 9.1273𝑒 − 7

CPU(s) 0.172 0.172 0.203 0.235
IT 20 21 25 28

DGPMHSS
RES 9.5956𝑒 − 7 5.5697𝑒 − 7 5.6167𝑒 − 7 5.5736𝑒 − 7

CPU(s) 0.156 0.156 0.187 0.172
IT 20 20 22 21

method. That is to say, under certain conditions, compared
with the GPMHSS method, the DGPMHSS method may be
given the priority for solving the complex symmetric linear
system (𝑊 + 𝑖𝑇)𝑥 = 𝑏 with −𝑊 ⪯ 𝑇 ≺ 𝑊.

As already noted, in the two-half steps of the DGPMHSS
iteration, there is a need to solve two systems of linear
equations, whose coefficientmatrices are𝛼𝑉+𝑊−𝑇 and𝛽𝑉+

𝑊 + 𝑇, respectively. This can be very costly and impractical
in actual implementation. We use the IDGPMHSS method
to solve the systems of linear equations (2) in the actual
implementation.That is, it is necessary to solve two systems of
linear equations with 𝛼𝑉+𝑊−𝑇 and 𝛽𝑉+𝑊+𝑇 by using the
IDGPMHSS iteration. It is easy to know that 𝛼𝑉+𝑊−𝑇 and
𝛽𝑉 + 𝑊 + 𝑇 are symmetric and positive definite. So, solving
the above two subsystems, the CG method can be employed.

In our computations, the inner CG iteration is terminated
if the current residual of the inner iterations satisfies

󵄩󵄩󵄩󵄩󵄩
𝑝
(𝑗)󵄩󵄩󵄩󵄩󵄩2

󵄩󵄩󵄩󵄩𝑟
(𝑘)󵄩󵄩󵄩󵄩2

≤ 0.1𝜏
(𝑘)

,

󵄩󵄩󵄩󵄩󵄩
𝑞
(𝑗)󵄩󵄩󵄩󵄩󵄩2

󵄩󵄩󵄩󵄩𝑟
(𝑘)󵄩󵄩󵄩󵄩2

≤ 0.1𝜏
(𝑘)

, (20)

where 𝑝
(𝑗) and 𝑞

(𝑗) are, respectively, the residuals of the 𝑗th
inner CG for 𝛼𝑉+𝑊−𝑇 and 𝛽𝑉+𝑊+𝑇. 𝑟(𝑘) is the 𝑘th outer
IDGPMHSS iteration; 𝜏 is a tolerance.

Some results are listed in Tables 9 and 10 for 𝑚 = 24

and 32, which are the numbers of outer IDGPMHSS iteration
(it.s), the average numbers (avg1) of inner CG iteration for
𝛼𝑉 +𝑊 − 𝑇 and the average numbers (avg2) of CG iteration
for 𝛽𝑉 + 𝑊 + 𝑇.

In our numerical computations, it is easy to find the
fact that the choice of 𝜏 is important to the convergence
rate of the IDGPMHSS method. According to Tables 9
and 10, the iteration numbers of the IDGPMHSS method
generally increase when 𝜏 decreases.Meanwhile, the iteration
numbers of the IDGPMHSSmethod generally increase when
𝜎
2
increases.

5. Conclusion

In this paper, we have generalized the GPMHSS method to
the DGPMHSS method for a class of complex symmetric
linear systems (𝑊 + 𝑖𝑇)𝑥 = 𝑏 with real symmetric matrices
𝑊,𝑇 ∈ R𝑛×𝑛 satisfying −𝑊 ⪯ 𝑇 ≺ 𝑊 under certain con-
ditions. Theoretical analysis shows that for any initial guess
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Table 9: Convergence results for the IDGPMHSS iteration with𝑚 = 24.

(𝛼
∗

𝐺
, 𝛽
∗

𝐺
) 𝜎

2

𝜏 = 0.95 𝜏 = 0.9 𝜏 = 0.85

it.s avg1 avg2 it.s avg1 avg2 it.s avg1 avg2
(1.1, 1) 10 51 20.9 18.2 68 26.1 23.7 84 30.4 28.3
(1.5, 1) 50 54 23.5 18.3 70 28.0 23.9 86 33.0 28.4
(2.2, 1) 80 57 25.0 20.1 72 30.0 25.3 88 34.2 30.0
(1.8, 1) 100 58 27.5 18.9 74 31.9 24.3 89 36.1 28.7

Table 10: Convergence results for the IDGPMHSS iteration with𝑚 = 32.

(𝛼
∗

𝐺
, 𝛽
∗

𝐺
)(𝛼
∗

𝐺
, 𝛽
∗

𝐺
) 𝜎

2

𝜏 = 0.95 𝜏 = 0.9 𝜏 = 0.85

it.s avg1 avg2 it.s avg1 avg2 it.s avg1 avg2
(1.1, 1) 10 66 27.1 23.6 90 34.2 31.1 111 40.0 37.2
(1.5, 1) 50 70 30.6 23.7 93 37.5 31.3 114 43.4 37.4
(2.2, 1) 80 75 35.0 24.2 97 41.1 31.8 118 47.0 37.8
(1.8, 1) 100 77 36.1 25.3 98 42.2 32.4 119 48.0 38.3

the DGPMHSS method converges to the unique solution of
the linear system for a wide range of the parameters. Then,
an inexact version has been presented and implemented
for saving the computational cost. Numerical experiments
show that DGPMHSS method and IDGPMHSS method are
efficient and competitive.
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We discuss spectral properties of the iteration matrix of the HSS method for saddle point problems and derive estimates for the
region containing both the nonreal and real eigenvalues of the iteration matrix of the HSS method for saddle point problems.

1. Introduction

Consider the following saddle point problem:

A𝑥 ≡ [
𝐴 𝐵
𝑇

−𝐵 0
] [

𝑢

V] = [
𝑓

−𝑔
] ≡ 𝑏, (1)

with symmetric positive definite 𝐴 ∈ R𝑛×𝑛 and 𝐵 ∈ R𝑚×𝑛

with rank (𝐵) = 𝑚 ≤ 𝑛. Without loss of generality,
we assume that the coefficient matrix of (1) is nonsingular
so that (1) has a unique solution. Systems of the form (1)
arise in a variety of scientific and engineering applications,
such as linear elasticity, fluid dynamics, electromagnetics,
and constrained quadratic programming. One can see [1] for
more applications and numerical solution techniques of (1).

Recently, based on the Hermitian and skew-Hermitian
splitting ofA:A = 𝐻 + 𝑆, where

𝐻 = [
𝐴 0

0 0
] , 𝑆 = [

0 𝐵
𝑇

−𝐵 0
] , (2)

the HSS method [2] has been extended by Benzi and Golub
[3] to solve the saddle point problem (1) and it is as follows.

The HSS Method. Let 𝑥(0) ∈ C𝑛 be an arbitrary initial guess.
For 𝑘 = 0, 1, 2, . . . until the sequence of iterates {𝑥(𝑘)}∞

𝑘=0

converges, compute the next iterate 𝑥(𝑘+1) according to the
following procedure:

(𝛼𝐼 + 𝐻) 𝑥
(𝑘+(1/2))

= (𝛼𝐼 − 𝑆) 𝑥
(𝑘)

+ 𝑏,

(𝛼𝐼 + 𝑆) 𝑥
(𝑘+1)

= (𝛼𝐼 − 𝐻) 𝑥
(𝑘+(1/2))

+ 𝑏,

(3)

where 𝛼 is a given positive constant.
By eliminating the intermediate vector 𝑥

(𝑘+(1/2)), we
obtain the following iteration in fixed point form as

𝑥
(𝑘+1)

= 𝑀
𝛼
𝑥
(𝑘)

+ 𝑁
𝛼
𝑏, 𝑘 = 0, 1, 2, . . . , (4)

where𝑀
𝛼
= (𝛼𝐼 + 𝑆)

−1
(𝛼𝐼 −𝐻)(𝛼𝐼 +𝐻)

−1
(𝛼𝐼 − 𝑆) and𝑁

𝛼
=

2𝛼(𝛼𝐼+𝑆)
−1
(𝛼𝐼+𝐻)

−1. Obviously,𝑀
𝛼
is the iteration matrix

of the HSS iteration method.
In addition, if we introduce matrices

𝐵
𝛼
=

1

2𝛼
(𝛼𝐼 + 𝐻) (𝛼𝐼 + 𝑆) , 𝐶

𝛼
=
1

2𝛼
(𝛼𝐼 − 𝐻) (𝛼𝐼 − 𝑆) ,

(5)

then A = 𝐵
𝛼
− 𝐶
𝛼
and 𝑀

𝛼
= 𝐵
−1

𝛼
𝐶
𝛼
. Therefore, one can

readily verify that the HSS method is also induced by the
matrix splittingA = 𝐵

𝛼
− 𝐶
𝛼
.

The following theorem established in [3] describes the
convergence property of the HSS method.

Theorem 1 (see [3]). Consider problem (1) and assume that
𝐴 is positive real and B has full rank. Then the iteration (3) is
unconditionally convergent; that is, 𝜌(𝑀

𝛼
) < 1 for all 𝛼 > 0.
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In fact, one can see [4] for a comprehensive survey on the
HSSmethod. As is known, the iterationmethod (3) converges
to the unique solution of the linear system (1) if and only if the
spectral radius 𝜌(𝑀

𝛼
) of the iteration matrix𝑀

𝛼
is less than

1.The spectral radius of the iterationmatrix is decisive for the
convergence and stability, and the smaller it is, the faster the
iteration method converges when the spectral radius is less
than 1. In this paper, we will discuss the spectral properties of
the iteration matrix𝑀

𝛼
of the HSS method for saddle point

problems and derive estimates for the region containing both
the nonreal and real eigenvalues of the iterationmatrix𝑀

𝛼
of

the HSS method for saddle point problems.
Throughout the paper, 𝐵𝑇 denotes the transpose of a

matrix𝐵 and 𝑢∗ indicates its transposed conjugate. 𝜆
𝑛
, 𝜆
1
≥ 0

are the smallest and largest eigenvalues of symmetric positive
semidefinite 𝐴, respectively. We denote by 𝜎

1
, . . . , 𝜎

𝑚
the

decreasing ordered singular values of 𝐵. R(𝜃) and I(𝜃),
respectively, denote the real part and imaginary part of 𝜃 ∈ C.

2. Main Results

In fact, the iteration matrix𝑀
𝛼
can be written as

𝑀
󸀠

𝛼
= (𝛼𝐼 + 𝑆)

−1
(𝛼𝐼 + 𝐻)

−1
(𝛼𝐼 − 𝐻) (𝛼𝐼 − 𝑆) . (6)

Therefore, we are just thinking about the spectral properties
of matrix 𝑀󸀠

𝛼
. That is, we consider the following eigenvalue

problem:

(𝛼𝐼 − 𝐻) (𝛼𝐼 − 𝑆) 𝑥 = 𝜆 (𝛼𝐼 + 𝐻) (𝛼𝐼 + 𝑆) 𝑥, (7)

where (𝜆, 𝑥) is any eigenpair of𝑀󸀠
𝛼
. From (7), we have

(1 − 𝜆) (𝛼
2
𝐼 + 𝐻𝑆) 𝑥 = (1 + 𝜆) 𝛼A𝑥. (8)

Note that 𝜌(𝑀
𝛼
) < 1 for all 𝛼 > 0. From (8), we have

A𝑥 =
(1 − 𝜆) 𝛼

(1 + 𝜆)
(𝐼 +

1

𝛼2
𝐻𝑆)𝑥. (9)

Let

𝜃 =
(1 − 𝜆) 𝛼

(1 + 𝜆)
, from which 𝜆 =

𝛼 − 𝜃

𝛼 + 𝜃
= 1 −

2𝜃

𝛼 + 𝜃
. (10)

Obviously, 𝜃 ̸= 0. Therefore, (9) can be written as

(𝐻 + 𝑆) 𝑥 = 𝜃 (𝐼 +
1

𝛼2
𝐻𝑆)𝑥. (11)

That is,

[
𝐴 𝐵
𝑇

−𝐵 0
] 𝑥 = 𝜃[

[

𝐼
1

𝛼2
𝐴𝐵
𝑇

0 𝐼

]

]

𝑥, (12)

which is equal to

B𝑥 ≡ [

[

𝐴 +
1

𝛼2
𝐴𝐵
𝑇
𝐵 𝐵
𝑇

−𝐵 0

]

]

𝑥 = 𝜃𝑥. (13)

It is easy to see that the two eigenproblems (7) and (13) have
the same eigenvectors, while the eigenvalues are related by
(10). Obviously, if the spectrum of B can be obtained, then
the spectrum of (7) can be also derived.

From [5, Lemma 2.1], we have the following result.

Lemma 2. Assume that 𝐴 is symmetric and positive definite
and𝐾 = 𝐼+(1/𝛼

2
)𝐵
𝑇
𝐵. For each eigenpair (𝜆, 𝑥) of (7), all the

eigenvalues 𝜆 of the iterationmatrix𝑀
𝛼
are 𝜆 = (𝛼−𝜃)/(𝛼+𝜃),

where 𝜃 ̸= 0 satisfies the following.

(1) If I(𝜃) ̸= 0, then

R (𝜃) =
1

2

𝑢
∗
𝐾𝐴𝐾𝑢

𝑢∗𝐾𝑢
, |𝜃|

2
=
𝑢
∗
𝐾𝐵
𝑇
𝐵𝑢

𝑢∗𝐾𝑢
. (14)

(2) If I(𝜃) = 0, then

min{𝜆
𝑛
,

𝛼
2
𝜎
2

𝑚

𝜆
1
(𝛼2 + 𝜎2

𝑚
)
} ≤ 𝜃 ≤ 𝜆

1
(1 +

𝜎
2

1

𝛼2
) . (15)

From (14), it is easy to verify that 0 ≤ |𝜃|
2
≤ 𝜎
2

1
, and if

𝑚 = 𝑛, then 𝜆
𝑛
(1 + (𝜎

2

𝑚
/𝛼
2
)) ≤ 2R(𝜃) ≤ 𝜆

1
(1 + (𝜎

2

1
/𝛼
2
)), or

if𝑚 < 𝑛, then 𝜆
𝑛
≤ 2R(𝜃) ≤ 𝜆

1
(1 + (𝜎

2

1
/𝛼
2
)).

In the sequel, we will present the main result, that is,
Theorem 3.

Theorem 3. Under the hypotheses and notation of Lemma 2,
all the eigenvalues 𝜆 of the iteration matrix 𝑀

𝛼
are such that

the following hold.

(1) If I(𝜃) ̸= 0, then

|𝜆|
2
≤ 1 − 2

𝜆
𝑛
(1 + (𝜎

2

𝑚
/𝛼
2
)) 𝛼

𝛼2 + 𝜆
𝑛
(1 + (𝜎2

𝑚
/𝛼2)) 𝛼 + 𝜎

2

1

. (16)

(2) If I(𝜃) = 0, then

𝛼 − 𝜆
1
(1 + (𝜎

2

1
/𝛼
2
))

𝛼 + 𝜆
1
(1 + (𝜎

2

1
/𝛼2))

≤ 𝜆 ≤

𝛼 −min {𝜆
𝑛
, 𝛼
2
𝜎
2

𝑚
/𝜆
1
(𝛼
2
+ 𝜎
2

𝑚
)}

𝛼 +min {𝜆
𝑛
, 𝛼2𝜎2
𝑚
/𝜆
1
(𝛼2 + 𝜎2

𝑚
)}
.

(17)

Proof. Let 𝑥 = [𝑢
∗
, V∗]∗ be an eigenvector with respect to 𝜃.

From (13), we get

𝐴𝐾𝑢 + 𝐵
𝑇V = 𝜃𝑢, (18)

−𝐵𝑢 = 𝜃V. (19)

By (19), we get V = −𝜃
−1
𝐵𝑢. Substituting it into (18) yields

𝜃𝐴𝐾𝑢 − 𝐵
𝑇
𝐵𝑢 = 𝜃

2
𝑢. (20)

Multiplying (20) from the left by 𝑢∗𝐾, we arrive at

𝜃
2
𝑢
∗
𝐾𝑢 − 𝜃𝑢

∗
𝐾𝐴𝐾𝑢 + 𝑢

∗
𝐾𝐵
𝑇
𝐵𝑢 = 0. (21)



Mathematical Problems in Engineering 3

Let 𝜃 = R(𝜃) + 𝑖I(𝜃). For symmetric matrix𝐴, the quadratic
equation (21) has real coefficients so that its roots are given by

𝜃
±
=
1

2

𝑢
∗
𝐾𝐴𝐾𝑢

𝑢∗𝐾𝑢
± √

1

4
(
𝑢
∗
𝐾𝐴𝐾𝑢

𝑢∗𝐾𝑢
)

2

−
𝑢
∗
𝐾𝐵
𝑇
𝐵𝑢

𝑢∗𝐾𝑢
. (22)

Eigenvalues with nonzero imaginary part arise if the discrim-
inant is negative.

IfI(𝜃) ̸= 0, from (14) we have

2R (𝜃) =
𝑢
∗
𝐾𝐴𝐾𝑢

𝑢∗𝐾𝑢
> 0, |𝜃|

2
=
𝑢
∗
𝐾𝐵
𝑇
𝐵𝑢

𝑢∗𝐾𝑢
. (23)

In this case, from (23) we have

|𝜆|
2
=
𝛼 − 𝜃

𝛼 + 𝜃
⋅
𝛼 − 𝜃

𝛼 + 𝜃

=
𝛼 − 𝜃

𝛼 + 𝜃
⋅
𝛼 − 𝜃

𝛼 + 𝜃

=
𝛼
2
− 2R (𝜃) 𝛼 + |𝜃|

2

𝛼2 + 2R (𝜃) 𝛼 + |𝜃|
2

(<1)

= 1 − 2
2R (𝜃) 𝛼

𝛼2 + 2R (𝜃) 𝛼 + |𝜃|
2

= 1−2
(𝑢
∗
𝐾𝐴𝐾𝑢/𝑢

∗
𝐾𝑢) 𝛼

𝛼2+(𝑢
∗𝐾𝐴𝐾𝑢/𝑢∗𝐾𝑢) 𝛼+(𝑢

∗𝐾𝐵𝑇𝐵𝑢/𝑢∗𝐾𝑢)

≤ 1 − 2

𝜆
𝑛
(1 + (𝜎

2

𝑚
/𝛼
2
)) 𝛼

𝛼2 + 𝜆
𝑛
(1 + (𝜎2

𝑚
/𝛼2)) 𝛼 + 𝜎

2

1

.

(24)

IfI(𝜃) = 0, then 𝜃 > 0 from (22). Combing (10) with (15),
we have

min{𝜆
𝑛
,

𝛼
2
𝜎
2

𝑚

𝜆
1
(𝛼2 + 𝜎2

𝑚
)
} ≤

(1 − 𝜆) 𝛼

(1 + 𝜆)
≤ 𝜆
1
(1 +

𝜎
2

1

𝛼2
) .

(25)

That is,

1

𝛼
min{𝜆

𝑛
,

𝛼
2
𝜎
2

𝑚

𝜆
1
(𝛼2 + 𝜎2

𝑚
)
} ≤

1 − 𝜆

1 + 𝜆
≤
1

𝛼
𝜆
1
(1 +

𝜎
2

1

𝛼2
) .

(26)

Further, we have

−
1

𝛼
𝜆
1
(1 +

𝜎
2

1

𝛼2
) ≤

𝜆 − 1

𝜆 + 1
≤ −

1

𝛼
min{𝜆

𝑛
,

𝛼
2
𝜎
2

𝑚

𝜆
1
(𝛼2 + 𝜎2

𝑚
)
} .

(27)

Therefore,

−
1

𝛼
𝜆
1
(1 +

𝜎
2

1

𝛼2
) ≤1 −

2

𝜆 + 1

≤ −
1

𝛼
min{𝜆

𝑛
,

𝛼
2
𝜎
2

𝑚

𝜆
1
(𝛼2 + 𝜎2

𝑚
)
} .

(28)

So, we have

1

𝛼
min{𝜆

𝑛
,

𝛼
2
𝜎
2

𝑚

𝜆
1
(𝛼2 + 𝜎2

𝑚
)
} ≤

2

𝜆 + 1
− 1 ≤

1

𝛼
𝜆
1
(1 +

𝜎
2

1

𝛼2
) .

(29)

That is,

1 +
1

𝛼
min{𝜆

𝑛
,

𝛼
2
𝜎
2

𝑚

𝜆
1
(𝛼2 + 𝜎2

𝑚
)
} ≤

2

𝜆 + 1

≤ 1 +
1

𝛼
𝜆
1
(1 +

𝜎
2

1

𝛼2
) .

(30)

By the simple computations, we have

1

1 + (1/𝛼) 𝜆
1
(1 + (𝜎

2

1
/𝛼2))

≤
𝜆 + 1

2
≤

1

1 + (1/𝛼)min {𝜆
𝑛
, 𝛼2𝜎2
𝑚
/𝜆
1
(𝛼2 + 𝜎2

𝑚
)}
.

(31)

Obviously, we also have

2

1 + (1/𝛼) 𝜆
1
(1 + (𝜎

2

1
/𝛼2))

≤ 𝜆 + 1 ≤
2

1 + (1/𝛼)min {𝜆
𝑛
, 𝛼2𝜎2
𝑚
/𝜆
1
(𝛼2 + 𝜎2

𝑚
)}
.

(32)

That is to say,

1 − (1/𝛼) 𝜆
1
(1 + (𝜎

2

1
/𝛼
2
))

1 + (1/𝛼) 𝜆
1
(1 + (𝜎

2

1
/𝛼2))

≤ 𝜆 ≤

1 − (1/𝛼)min {𝜆
𝑛
, 𝛼
2
𝜎
2

𝑚
/𝜆
1
(𝛼
2
+ 𝜎
2

𝑚
)}

1 + (1/𝛼)min {𝜆
𝑛
, 𝛼2𝜎2
𝑚
/𝜆
1
(𝛼2 + 𝜎2

𝑚
)}
.

(33)

3. Numerical Experiments

In this section, we consider the following two examples to
illustrate the above result.

Example 1 (see [6–9]). Consider the following classic incom-
pressible steady Stokes problem:

−Δ𝑢 + grad𝑝 = 𝑓, in Ω,

− div 𝑢 = 0, in Ω,

(34)

with suitable boundary condition on 𝜕Ω. That is to say, the
boundary conditions are 𝑢

𝑥
= 𝑢
𝑦
= 0 on the three fixed

walls (𝑥 = 0, 𝑥 = 1, and 𝑦 = 0) and 𝑢
𝑥
= 1, 𝑢

𝑦
= 0 on

the moving wall (𝑦 = 1). The test problem is a “leaky” two-
dimensional lid-driven cavity problem in square (0 ≤ 𝑥 ≤ 1,
0 ≤ 𝑦 ≤ 1). Using the IFISS software [10] to discretize
(34), the finite element subdivision is based on 8 × 8 and
16 ×16 uniform grids of square elements and themixed finite
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Table 1: The region for all the eigenvalues of𝑀
𝛼
withI(𝜃) = 0 and

8 × 8.

𝛼 𝐸min 𝐿min 𝜆min 𝜆max 𝑈max 𝐸max

0.1 0 −0.9978 −0.9978 0.9957 0.9971 0.0014
0.2 0 −0.9846 −0.9846 0.9977 0.9985 0.0008
0.3 0.0001 −0.9568 −0.9567 0.9985 0.9990 0.0005
0.4 0.0002 −0.9176 −0.9174 0.9988 0.9992 0.0004
0.5 0.0006 −0.8723 −0.8717 0.9990 0.9994 0.0004
0.6 0.001 −0.8249 −0.8239 0.9992 0.9995 0.0003
0.7 0.0015 −0.7779 −0.7764 0.9993 0.9996 0.0003
0.8 0.0021 −0.7325 −0.7304 0.9994 0.9996 0.0002
0.9 0.0026 −0.6892 −0.6866 0.9995 0.9997 0.0002
1 0.0031 −0.6482 −0.6451 0.9995 0.9997 0.0002

Table 2:The region for all the eigenvalues of𝑀
𝛼
withI(𝜃) = 0 and

16 × 16.

𝛼 𝐸min 𝐿min 𝜆min 𝜆max 𝑈max 𝐸max

0.1 0 −0.9929 −0.9929 0.9997 1 0.0003
0.2 0 −0.9608 −0.9608 0.9998 1 0.0002
0.3 0.0001 −0.9135 −0.9134 0.9999 1 0.0001
0.4 0.0002 −0.8635 −0.8633 0.9999 1 0.0001
0.5 0.0004 −0.8154 −0.8150 0.9999 1 0.0001
0.6 0.0006 −0.7702 −0.7696 0.99996 1 0.00004
0.7 0.0007 −0.7278 −0.7271 0.99998 1 0.00002
0.8 0.001 −0.6880 −0.6870 0.99997 1 0.00003
0.9 0.001 −0.6504 −0.6494 0.99998 1 0.00002
1 0.001 −0.6147 −0.6137 0.99998 1 0.00002

element used is the bilinear-constant velocity pressure:𝑄
1
−𝑃
0

pair with stabilization (the stabilization parameter is zero).
The coefficient matrix generated by this package is singular
because 𝐵 corresponding to the discrete divergence operator
is rank deficient. The nonsingular matrix A is obtained by
dropping the first two rows of 𝐵 and the first two rows and
columns of matrix 𝐶. Note that matrix 𝐶 is a null matrix,
which is the corresponding (2,2) block of (1). In this case,
𝑛 = 162 and 𝑚 = 62 correspond to 8 × 8, and 𝑛 = 578

and𝑚 = 254 correspond to 16 × 16. For the Stokes problem,
the (1, 1) block of the coefficient matrix corresponding to the
discretization of the conservative term is symmetric positive
definite.

By calculations, the values given in Tables 1 and 2 are
obtained, which are to verify the results of Theorem 3. In
Tables 1 and 2, 𝐿min, 𝑈max, respectively, denote the lower and
upper bounds of all the eigenvalues of 𝑀

𝛼
. 𝐸min = |𝐿min −

𝜆min| and 𝐸max = |𝑈max − 𝜆max|.

From Tables 1 and 2, it is not difficult to find that the
theoretical results are in line with the results of numerical
experiments. Further, for 8 × 8, the average error in the lower
bounds for 10 different values of 𝛼 is 0.00112 and the average
error in the upper bounds for 10 different values of 𝛼 is
0.00047. For 16 × 16, the average error in the lower bounds
for 10 different values of 𝛼 is 0.0005 and the average error
in the upper bounds for 10 different values of 𝛼 is 0.000091.

Table 3: All the nonreal eigenvalues of𝑀
𝛼
withI(𝜃) ̸= 0.

𝛼 max |𝜆| Upper bound
0.05 0.963349 0.999793
0.1 0.977199 0.999878
0.3 0.979200 0.999894
0.5 0.959713 0.999860
1 0.865509 0.999774

That is, Theorem 3 provides reasonably good bounds for the
eigenvalue distribution of the iteration matrix𝑀

𝛼
of the HSS

method when the iteration parameter 𝛼 is taken in different
regions.

Example 2 (see [11]). The saddle point system is from the
discretization of a groundwater flow problem using mixed-
hybrid finite elements [11]. In the example at hand, 𝑛 = 270

and 𝑚 = 207. By calculations, here we have 𝜆
𝑛
= 0.0017,

𝜆
1
= 0.010, 𝜎

1
= 2.611, and 𝜎

𝑚
= 0.19743.

In this case there are nonreal eigenvalues (except for
very small 𝛼). In Table 3 we list the upper bounds given in
Theorem 3 when I(𝜃) ̸= 0. From Table 3, it is not difficult
to find that the theoretical results are in line with the
results of numerical experiments.That is,Theorem 3 provides
reasonably good bounds for the eigenvalue distribution of
the iteration matrix 𝑀

𝛼
with I(𝜃) ̸= 0 when the iteration

parameter 𝛼 is taken in different regions.
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Wemainly solve three problems. Firstly, by the decomposition of the (anti-)Hermitian generalized (anti-)Hamiltonianmatrices, the
necessary and sufficient conditions for the existence of and the expression for the (anti-)Hermitian generalized (anti-)Hamiltonian
solutions to the system of matrix equations 𝐴𝑋 = 𝐵, 𝑋𝐶 = 𝐷 are derived, respectively. Secondly, the optimal approximation
solution min

𝑋∈𝐾
‖𝑋 − 𝑋‖ is obtained, where 𝐾 is the (anti-)Hermitian generalized (anti-)Hamiltonian solution set of the above

system and 𝑋 is the given matrix. Thirdly, the least squares (anti-)Hermitian generalized (anti-)Hamiltonian solutions are
considered. In addition, algorithms about computing the least squares (anti-)Hermitian generalized (anti-)Hamiltonian solution
and the corresponding numerical examples are presented.

1. Introduction

Throughout this paper, the set of all 𝑚 × 𝑛 complex matrices,
the set of all 𝑛 × 𝑛 Hermitian matrices, the set of all 𝑛 × 𝑛

anti-Hermitian matrices, the set of all 𝑛 × 𝑛 unitary matrices,
and the set of all 𝑛 × 𝑛 antisymmetric orthogonal matrices
are denoted, respectively, byC𝑚×𝑛,𝐻C𝑛×𝑛, 𝐴𝐻C𝑛×𝑛, 𝑈C𝑛×𝑛,
and 𝐴𝑆𝑂R𝑛×𝑛.The symbol 𝐼

𝑛
represents an identity matrix of

order 𝑛 and 𝑟(𝐴), 𝐴
†, and𝐴

∗, respectively, stand for the rank,
the Moore-Penrose inverse, and the conjugate transpose of
matrix 𝐴. For two matrices 𝐴, 𝐵 ∈ C𝑚×𝑛, the inner product is
defined by ⟨𝐴, 𝐵⟩ = tr(𝐵∗𝐴). Obviously, C𝑚×𝑛 is a complete
inner product space. The norm ‖ ⋅ ‖, induced by the inner
product, is called the Frobenius norm. 𝐴 ∗ 𝐵 stands for
the Hadamard product of two matrices 𝐴 and 𝐵. For 𝐴 ∈

C𝑚×𝑛, two matrices 𝐿
𝐴
and 𝑅

𝐴
, respectively, represent two

orthogonal projectors 𝐿
𝐴

= 𝐼
𝑛

− 𝐴
†
𝐴 and 𝑅

𝐴
= 𝐼

𝑚
− 𝐴𝐴

†,
both of which satisfy

𝐿
𝐴

= (𝐿
𝐴

)
2

= (𝐿
𝐴

)
∗

= (𝐿
𝐴

)
†

,

𝑅
𝐴

= (𝑅
𝐴

)
2

= (𝑅
𝐴

)
∗

= (𝑅
𝐴

)
†

.
(1)

The Hamiltonian matrices defined as in [1] are very
important in engineering (see [2] and the references therein).
Moreover, using Hamiltonian matrices to solve algebraic
matrix Riccati equation is a very effective method in optimal
control theory [3–5]. As the extension of the Hamiltonian
matrices, the following four definitions, which can also be
found in [1, 6, 7], are given. Without special statement, we
in this paper always assume that 𝐽 ∈ 𝐴𝑆𝑂R2𝑘×2𝑘 satisfies

𝐽
𝑇

= −𝐽, 𝐽
𝑇
𝐽 = 𝐽𝐽

𝑇
= 𝐼

𝑛
. (2)

Definition 1. A matrix 𝑋 ∈ 𝐻𝐻C2𝑘×2𝑘 is said to be a Herm-
itian generalized Hamiltonian matrix if 𝑋 = 𝑋

∗ and 𝐽𝑋𝐽 =

𝑋
∗.

Definition 2. Amatrix𝑋 ∈ 𝐻𝐴𝐻C2𝑘×2𝑘 is said to be a Herm-
itian generalized anti-Hamiltonian matrix if 𝑋 = 𝑋

∗ and
𝐽𝑋𝐽 = −𝑋

∗.

Definition 3. A matrix 𝑋 ∈ 𝐴𝐻𝐴𝐻C2𝑘×2𝑘 is said to be an
anti-Hermitian generalized anti-Hamiltonian matrix if 𝑋 =

−𝑋
∗ and 𝐽𝑋𝐽 = −𝑋

∗.
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Definition 4. Amatrix 𝑋 ∈ 𝐴𝐻𝐻C2𝑘×2𝑘 is said to be an anti-
Hermitian generalized Hamiltonian matrix if 𝑋 = −𝑋

∗ and
𝐽𝑋𝐽 = 𝑋

∗.

The well-known system of matrix equations

𝐴𝑋 = 𝐵, 𝑋𝐶 = 𝐷, (3)

with unknown matrix 𝑋, has attracted much attention
and has been widely and deeply studied by many authors.
For example, Khatri and Mitra [8] in 1976 established the
Hermitian and nonnegative definite solution to the system
(3). Mitra [9] in 1984 gave the system (3) the minimal rank
solution over the complex field C. Wang in [10] and Wang
et al. [11], respectively, investigated the bisymmetric and
centrosymmetric solutions over the quaternion algebra and
obtained the bisymmetric nonnegative definite solutionswith
extremal ranks and inertias to the system (3). Xu in [12]
studied the common Hermitian and positive solutions to the
adjointable operator equations (3). Yuan in [13] presented the
least squares solutions to the system (3). Some other results
concerning the system (3) can be found in [14–23].

As special cases of the system (3), the classical matrix
equations 𝐴𝑋 = 𝐵 and 𝑋𝐶 = 𝐷 have also been investigated
(see, e.g., [1, 2, 5–7, 24–31]). For instance, Dai [24], by means
of the singular value decomposition, derived the symmetric
solution to equation 𝐴𝑋 = 𝐵. Guan and Jiang [6], using
the decomposition of the anti-Hermitian generalized anti-
Hamiltonian matrices, derived the least squares solution to
equation 𝐴𝑋 = 𝐵. Zhang et al. in [29] and [1], respec-
tively, obtained the general expression of the least squares
Hermitian generalized Hamiltonian solutions to equation
𝑋𝐶 = 𝐷 and got the unite optimal approximation solution
in the least squares solutions set and gave the solvable
conditions and the general representation of the Hermitian
generalized Hamiltonian solutions to equation 𝐴𝑋 = 𝐵, by
using the singular value decomposition and the properties of
Hermitian generalized Hamiltonian matrices.

As far as we know, there has been little informa-
tion on studying the (anti-)Hermitian generalized (anti-)
Hamiltonian solution to the system (3) over C2𝑘×2𝑘. So,
motived by the work mentioned above, especially the work
in [6, 7, 26, 29, 30], we, in this paper, are mainly concerned
with the following three problems.

Problem 5. Given 𝐴, 𝐵 ∈ C𝑚×2𝑘, 𝐶, 𝐷 ∈ C2𝑘×𝑞, find 𝑋 ∈

𝐻𝐻C2𝑘×2𝑘 (𝐻𝐴𝐻C2𝑘×2𝑘, 𝐴𝐻𝐻C2𝑘×2𝑘, or 𝐴𝐻𝐴𝐻C2𝑘×2𝑘)

such that the system (3) holds.

Problem 6. Given 𝑋 ∈ C2𝑘×2𝑘, find 𝑋 ∈ 𝐾 such that
󵄩󵄩󵄩󵄩󵄩
𝑋 − 𝑋

󵄩󵄩󵄩󵄩󵄩
= min
𝑋∈𝐾

󵄩󵄩󵄩󵄩󵄩
𝑋 − 𝑋

󵄩󵄩󵄩󵄩󵄩
, (4)

where 𝐾 is the solution set of Problem 5.

Problem 7. Let 𝐴, 𝐵 ∈ C𝑚×2𝑘, 𝐶, 𝐷 ∈ C2𝑘×𝑞. Find 𝑋 ∈

𝐻𝐻C2𝑘×2𝑘 (𝐻𝐴𝐻C2𝑘×2𝑘, 𝐴𝐻𝐻C2𝑘×2𝑘, or 𝐴𝐻𝐴𝐻C2𝑘×2𝑘)

such that

min
𝑋

= ‖𝐴𝑋 − 𝐵‖
2

+ ‖𝑋𝐶 − 𝐷‖
2
. (5)

The remainder of this paper is arranged as follows. In
Section 2, some lemmaswill be introduced,whichwill be use-
ful for us to obtain the solutions to Problems 5–7. In Section 3,
by applying the decomposition of the (anti-)Hermitian gener-
alized (anti-)Hamiltonian matrices, the solvability condition
and the explicit expression of the solution to Problem 5
will be derived. In Section 4, the optimal approximation
solution to Problem 6 will be established. In Section 5, the
solution to Problem 7 will be investigated and meanwhile the
minimumnormof the solutionwill be obtained. In Section 6,
algorithms and numerical examples about computing the
solution to Problem 7 will be provided. Finally, in Section 7,
some conclusions will be made.

2. Preliminaries

In this section, we focus on introducing some lemmas, which
will play key roles in solving Problems 5–7.

Taking into account Definitions 1–4 and the eigenvalue
decomposition of thematrix 𝐽 ∈ 𝐴𝑆𝑂R2𝑘×2𝑘, it is not difficult
to conclude that the following decompositions of the (anti-)
Hermitian generalized (anti-)Hamiltonian matrices hold,
some of which can also be seen in [6, 26, 29, 30].

Lemma 8. Let the eigenvalue decomposition of matrix 𝐽 ∈

𝐴𝑆𝑂R2𝑘×2𝑘 be

𝐽 = 𝑃 (
𝑖𝐼
𝑘

0

0 −𝑖𝐼
𝑘

) 𝑃
∗
, (6)

where 𝑃 ∈ 𝑈C2𝑘×2𝑘. Then 𝑋 ∈ 𝐻𝐻C2𝑘×2𝑘 if and only if 𝑋 can
be expressed as

𝑋 = 𝑃 (
0 𝑋

12

𝑋
∗

12
0

) 𝑃
∗
, (7)

where 𝑋
12

∈ C𝑘×𝑘 are arbitrary.

Lemma 9. Let the eigenvalue decomposition of matrix 𝐽 ∈

𝐴𝑆𝑂R2𝑘×2𝑘 be (6). Then 𝑋 ∈ 𝐴𝐻𝐴𝐻C2𝑘×2𝑘 if and only if 𝑋

can be expressed as

𝑋 = 𝑃 (
0 𝑋

12

−𝑋
∗

12
0

) 𝑃
∗
, (8)

where 𝑋
12

∈ C𝑘×𝑘 is arbitrary.

Lemma 10. Let the eigenvalue decomposition of matrix 𝐽 ∈

𝐴𝑆𝑂R2𝑘×2𝑘 be (6). Then 𝑋 ∈ 𝐻𝐴𝐻C2𝑘×2𝑘 if and only if 𝑋 can
be expressed as

𝑋 = 𝑃 (
𝑋
11

0

0 𝑋
22

) 𝑃
∗
, (9)

where 𝑋
11

, 𝑋
22

∈ 𝐻C𝑘×𝑘 are arbitrary.

Lemma 11. Let the eigenvalue decomposition of matrix 𝐽 ∈

𝐴𝑆𝑂R2𝑘×2𝑘 be (6). Then 𝑋 ∈ 𝐴𝐻𝐻C2𝑘×2𝑘 if and only if 𝑋

can be expressed as

𝑋 = 𝑃 (
𝑋
11

0

0 𝑋
22

) 𝑃
∗
, (10)

where 𝑋
11

, 𝑋
22

∈ 𝐴𝐻C𝑘×𝑘 are arbitrary.
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Lemma 12 (see [20]). Given 𝐴 ∈ C𝑚×𝑛, 𝐵 ∈ C𝑝×𝑙, 𝐶 ∈

C𝑚×𝑝, and 𝐷 ∈ C𝑛×𝑙, then the system of matrix equations

𝐴𝑋 = 𝐶, 𝑋𝐵 = 𝐷 (11)

has a solution 𝑋 ∈ C𝑛×𝑝 if and only if

𝐴𝐴
†
𝐶 = 𝐶, 𝐷𝐵

†
𝐵 = 𝐷, 𝐴𝐷 = 𝐶𝐵, (12)

in which case the general solutions can be expressed as

𝑋 = 𝐴
†
𝐶 + 𝐷𝐵

†
− 𝐴

†
𝐴𝐷𝐵

†
+ (𝐼 − 𝐴

†
𝐴) 𝑊 (𝐼 − 𝐵𝐵

†
) ,

(13)

where 𝑊 ∈ C𝑛×𝑝 is arbitrary.

By applying the singular value decomposition, similar to
the proof of Theorem 1 in [24], the following lemma can be
shown.

Lemma 13. Assume 𝐸, 𝐹 ∈ C𝑚×𝑛. Let the singular value
decomposition of 𝐸 be

𝐸 = 𝑈 (
Σ 0

0 0
) 𝑉

∗
, (14)

where

𝑈 ∈ 𝑈C
𝑚×𝑚

, 𝑉 ∈ 𝑈C
𝑛×𝑛

,

Σ = diag (𝛼
1
, . . . , 𝛼

𝑟
) , 𝛼

𝑖
> 0,

𝑖 = 1, . . . , 𝑟; 𝑟 = 𝑟 (𝐸) .

(15)

Partition

𝑉𝑋𝑉
∗

= (
𝑋
11

𝑋
12

𝑋
∗

12
𝑋
22

) ,

𝑈
∗
𝐹𝑉 = (

𝐹
11

𝐹
12

𝐹
21

𝐹
22

) ,

(16)

where

𝑋
11

∈ 𝐻C𝑟×𝑟, 𝑋
22

∈ 𝐻C(𝑛−𝑟)×(𝑛−𝑟),

𝐹
11

∈ C𝑟×𝑟, 𝐹
22

∈ C(𝑚−𝑟)×(𝑛−𝑟).
(17)

Then the matrix equation

𝐸𝑋 = 𝐹 (18)

has Hermitian solutions if and only if

𝐸𝐸
†
𝐹 = 𝐹, 𝐸𝐹

∗
= 𝐹𝐸

∗
,

𝐹
21

= 0, 𝐹
22

= 0,

(19)

in which case the Hermitian solution can be expressed as

𝑋 = 𝑉 (
Σ
−1

𝐹
11

Σ
−1

𝐹
12

𝐹
∗

12
Σ
−1

𝑋
22

) 𝑉
∗
, (20)

where 𝑋
22

∈ 𝐻C(𝑛−𝑟)×(𝑛−𝑟) is arbitrary.

By the similar way, the following lemma can also be
verified.

Lemma 14. Assume 𝑀, 𝑁 ∈ C𝑚×𝑛. Let the singular value
decomposition of 𝑀 be

𝑀 = 𝑈 (
Π 0

0 0
) 𝑉

∗
, (21)

where

𝑈 ∈ 𝑈C
𝑚×𝑚

, 𝑉 ∈ 𝑈C
𝑛×𝑛

,

Π = diag (𝛽
1
, . . . , 𝛽

𝑠
) , 𝛽

𝑖
> 0,

𝑖 = 1, . . . , 𝑠; 𝑠 = 𝑟 (𝑀) .

(22)

Partition

𝑉𝑋𝑉
∗

= (
𝑋
11

𝑋
12

−𝑋
∗

12
𝑋
22

) ,

𝑈
∗
𝑁𝑉 = (

𝑁
11

𝑁
12

𝑁
21

𝑁
22

) ,

(23)

where

𝑋
11

∈ 𝐴𝐻C𝑠×𝑠, 𝑋
22

∈ 𝐴𝐻C(𝑛−𝑠)×(𝑛−𝑠),

𝑁
11

∈ C𝑠×𝑠, 𝑁
22

∈ C(𝑚−𝑠)×(𝑛−𝑠).
(24)

Then the matrix equation

𝑀𝑋 = 𝑁 (25)

has an anti-Hermitian solution if and only if

𝑀𝑀
†
𝑁 = 𝑁, 𝑀𝑁

∗
= −𝑁𝑀

∗
,

𝑁
21

= 0, 𝑁
22

= 0,

(26)

in which case the anti-Hermitian solution can be expressed as

𝑋 = 𝑉 (
Π
−1

𝑁
11

Π
−1

𝑁
12

−𝑁
∗

12
Π
−1

𝑋
22

) 𝑉
∗
, (27)

where 𝑋
22

∈ 𝐴𝐻C(𝑛−𝑠)×(𝑛−𝑠) is arbitrary.

Lemma 15 (see [31]). Given 𝐴
󸀠
, 𝐵
󸀠

∈ C𝑘×(𝑚+𝑞), 𝐶
󸀠
, 𝐷

󸀠
∈

C𝑘×(𝑚+𝑞), suppose that the matrices 𝐴
󸀠 and 𝐶

󸀠, respectively,
have the following singular value decompositions:

𝐴
󸀠

= 𝑃
1

(
Γ 0

0 0
) 𝑄

∗

1
, 𝐶

󸀠
= 𝑈

1
(

Λ 0

0 0
) 𝑉

∗

1
, (28)
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where

𝑃
1

= (𝑃11 𝑃
12) ∈ 𝑈C

𝑘×𝑘
, 𝑃

11
∈ C

𝑘×𝑡1 ;

𝑄
1

= (𝑄11 𝑄
12) ∈ 𝑈C

(𝑚+𝑞)×(𝑚+𝑞)
,

𝑄
11

∈ C
(𝑚+𝑞)×𝑡1 ;

𝑈
1

= (𝑈11 𝑈
12) ∈ 𝑈C

𝑘×𝑘
, 𝑈

11
∈ C

𝑘×𝑡2 ;

𝑉
1

= (𝑉11 𝑉
12) ∈ 𝑈C

(𝑚+𝑞)×(𝑚+𝑞)
,

𝑉
11

∈ C
(𝑚+𝑞)×𝑡2 ;

Γ = diag (𝛿
1
, 𝛿
2
, . . . , 𝛿

𝑡1
) , 𝛿

𝑖
> 0,

1 ≤ 𝑖 ≤ 𝑡
1
; 𝑡
1

= 𝑟 (𝐴
󸀠
) ;

Λ = diag (𝛾
1
, 𝛾
2
, . . . , 𝛾

𝑡2
) , 𝛾

𝑖
> 0,

1 ≤ 𝑖 ≤ 𝑡
2
; 𝑡
2

= 𝑟 (𝐶
󸀠
) .

(29)

Then the solution set of the problem

𝑓 (𝑋
12

)
Δ

=
󵄩󵄩󵄩󵄩󵄩󵄩
(𝐴

󸀠
)
∗

𝑋
12

− (𝐵
󸀠
)
∗󵄩󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
𝑋
12

𝐶
󸀠
− 𝐷

󸀠󵄩󵄩󵄩󵄩󵄩

2

= min
(30)

consists of matrices 𝑋
12

∈ C𝑘×𝑘 with the following form:

𝑋
12

= 𝑃1 (
𝜙 ∗ (𝑃

∗

11
𝐷
󸀠
𝑉11Λ + Γ𝑄

∗

11
(𝐵
󸀠
)
∗

𝑈12) Γ
−1
𝑄
∗

11
(𝐵
󸀠
)
∗

𝑈12

𝑃
∗

12
𝐷
󸀠
𝑉11Λ

−1
𝑋
󸀠

22

)𝑈
∗

1
,

(31)

where

𝜙 = (𝜙
𝑖𝑗
) , 𝜙

𝑖𝑗
=

1

𝛿
2

𝑖
+ 𝛾

2

𝑗

,

1 ≤ 𝑖 ≤ 𝑡
1
, 1 ≤ 𝑗 ≤ 𝑡

2
,

(32)

and 𝑋
󸀠

22
∈ C(𝑘−𝑡1)×(𝑘−𝑡2) is arbitrary.

Lemma 16. Given 𝐸, 𝐹 ∈ C𝑚×𝑛, let the singular value
decomposition of 𝐸, the partitions of 𝑉𝑋𝑉

∗ and 𝑈
∗
𝐹𝑉 be,

respectively, as in (14)–(16). Then the least squares Hermitian
solution to the matrix equation (18) can be expressed as

𝑋 = 𝑉 (
Φ ∗ (Σ𝐹

11
+ 𝐹

∗

11
Σ) Σ

−1
𝐹
12

𝐹
∗

12
Σ
−1

𝑋
22

) 𝑉
∗
, (33)

where

Φ = (
1

𝛼
2

𝑖
+ 𝛼

2

𝑗

) , 1 ≤ 𝑖, 𝑗 ≤ 𝑟, (34)

and 𝑋
22

∈ 𝐻C(𝑛−𝑟)×(𝑛−𝑟) is arbitrary.

Proof. Combining (14)–(16) and the unitary invariance of the
Frobenius norm, it is easy to obtain that

‖𝐸𝑋 − 𝐹‖
2

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(
Σ 0

0 0
) 𝑉

∗
𝑉 (

𝑋
11

𝑋
12

𝑋
∗

12
𝑋
22

) − 𝑈
∗
𝐹𝑉

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(
Σ𝑋

11
Σ𝑋

12

0 0
) − (

𝐹
11

𝐹
12

𝐹
21

𝐹
22

)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩Σ𝑋

11
− 𝐹

11

󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩Σ𝑋

12
− 𝐹

12

󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝐹
21

󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝐹
22

󵄩󵄩󵄩󵄩

2

.

(35)

Then ‖𝐸𝑋 − 𝐹‖
2 reaches its minimum if and only if

󵄩󵄩󵄩󵄩Σ𝑋
11

− 𝐹
11

󵄩󵄩󵄩󵄩

2

, (36)

󵄩󵄩󵄩󵄩Σ𝑋
12

− 𝐹
12

󵄩󵄩󵄩󵄩

2 (37)

reach theirminimum. For𝑋
11

= (𝑥
𝑖𝑗
) ∈ 𝐻C𝑟×𝑟, 𝐹

11
= (𝑓

𝑖𝑗
) ∈

C𝑟×𝑟, since 𝑥
𝑖𝑗

= 𝑥
∗

𝑖𝑗
, 1 ≤ 𝑖, 𝑗 ≤ 𝑟, then

󵄩󵄩󵄩󵄩Σ𝑋
11

− 𝐹
11

󵄩󵄩󵄩󵄩

2

=

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

(𝛼
𝑖
𝑥
𝑖𝑗

− 𝑓
𝑖𝑗
)
2

=

𝑟

∑

1≤𝑖,𝑗≤𝑟

[(𝛼
2

𝑖
+ 𝛼

2

𝑗
)

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨

2

+ 2 (𝛼
𝑖
𝑓
𝑖𝑗

+ 𝛼
𝑗
𝑓
∗

𝑖𝑗
) 𝑥

𝑖𝑗
+ 2

󵄨󵄨󵄨󵄨󵄨
𝑓
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨

2

] .

(38)

Hence, there exists a unique solution 𝑋
11

= (𝑥
𝑖𝑗
) ∈ 𝐻C𝑟×𝑟

for (36) such that

𝑥
𝑖𝑗

=

𝛼
𝑖
𝑓
𝑖𝑗

+ 𝛼
𝑗
𝑓
∗

𝑖𝑗

𝛼
2

𝑖
+ 𝛼

2

𝑗

, 1 ≤ 𝑖, 𝑗 ≤ 𝑟. (39)

That is,

𝑋
11

= Φ ∗ (Σ𝐹
11

+ 𝐹
∗

11
Σ) , (40)

where

Φ = (
1

𝛼
2

𝑖
+ 𝛼

2

𝑗

) , 1 ≤ 𝑖, 𝑗 ≤ 𝑟. (41)

When 𝑋
12
can be expressed as

𝑋
12

= Σ
−1

𝐹
12

, (42)

(37) gets its minimum.Therefore, the least squares Hermitian
solution to (18) can be described as (33).

By the similar way, the following result can be obtained.

Lemma 17. Given 𝑀, 𝑁 ∈ C𝑚×𝑛, let the singular value
decomposition of 𝑀, the partitions of 𝑉𝑋𝑉

∗, and 𝑈
∗
𝑁𝑉
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be, respectively, as in (21)–(23). Then the least squares anti-
Hermitian solution to the matrix equation 𝑀𝑋 = 𝑁 can be
expressed as

𝑋 = 𝑉 (
Ψ ∗ (Π𝑁

11
− 𝑁

∗

11
Π) Π

−1
𝑁
12

−𝑁
∗

12
Π
−1

𝑋
22

) 𝑉
∗
, (43)

where

Ψ = (
1

𝛽
2

𝑖
+ 𝛽

2

𝑗

) , 1 ≤ 𝑖, 𝑗 ≤ 𝑠, (44)

and 𝑋
22

∈ 𝐴𝐻C(𝑛−𝑠)×(𝑛−𝑠) is arbitrary.

Lemma 18 (see [20]). Given 𝐹 ∈ C𝑚×𝑛, 𝐺 ∈ C𝑝×𝑞, and 𝐿 ∈

C𝑚×𝑞, then the matrix equation 𝐹𝑋𝐺 = 𝐿 has a solution if and
only if

𝐹𝐹
†
𝐿𝐺

†
𝐺 = 𝐿, (45)

in which case the general solution is

𝑋 = 𝐹
†
𝐿𝐺

†
+ 𝑌 − 𝐹

†
𝐹𝑌𝐺𝐺

†
, (46)

where 𝑌 ∈ C𝑛×𝑝 is arbitrary.

The following lemma is due to [25, 32] or [29, Lemma 5].

Lemma 19. Let 𝑀, 𝑁 ∈ C𝑚×𝑛. Then there exists a unique
matrix 𝑊

1
∈ C𝑚×𝑛 such that
󵄩󵄩󵄩󵄩𝑊

1
− 𝑀

󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑊

1
− 𝑁

󵄩󵄩󵄩󵄩

2

= min
𝑊∈C𝑚×𝑛

(‖𝑊 − 𝑀‖
2

+ ‖𝑊 − 𝑁‖
2
) ,

(47)

where

𝑊
1

=
𝑀 + 𝑁

2
. (48)

3. The Solvability Conditions and the
Expression of the Solution to Problem 5

In this section, our purpose is to derive the necessary and
sufficient conditions of and the explicit expression of the
solution to Problem 5 by using the results introduced in
Section 2.

Theorem 20. Given 𝐴, 𝐵 ∈ C𝑚×2𝑘, 𝐶, 𝐷 ∈ C2𝑘×𝑞, let the
decomposition of 𝑋 ∈ 𝐻𝐻C2𝑘×2𝑘 be (7). Partition

𝐴𝑃 = (𝐴1
𝐴
2) , 𝐴

1
∈ C

𝑚×𝑘
, 𝐴

2
∈ C

𝑚×𝑘
; (49)

𝐵𝑃 = (𝐵1 𝐵
2) , 𝐵

1
∈ C

𝑚×𝑘
, 𝐵

2
∈ C

𝑚×𝑘
; (50)

𝑃
∗
𝐶 = (

𝐶
1

𝐶
2

) , 𝐶
1

∈ C
𝑘×𝑞

, 𝐶
2

∈ C
𝑘×𝑞

; (51)

𝑃
∗
𝐷 = (

𝐷
1

𝐷
2

) , 𝐷
1

∈ C
𝑘×𝑞

, 𝐷
2

∈ C
𝑘×𝑞

; (52)

𝐴
󸀠

= (
𝐴
1

𝐶
∗

1

) , 𝐵
󸀠

= (
𝐵
2

𝐷
∗

2

) , (53)

𝐶
󸀠

= (𝐴
∗

2
𝐶
2) , 𝐷

󸀠
= (𝐵

∗

1
𝐷
1) . (54)

Then Problem 5 has a solution 𝑋 ∈ 𝐻𝐻C2𝑘×2𝑘 if and only if

𝐴
󸀠
(𝐴

󸀠
)
†

𝐵
󸀠

= 𝐵
󸀠
, 𝐷

󸀠
(𝐶

󸀠
)
†

𝐶
󸀠

= 𝐷
󸀠
,

𝐴
󸀠
𝐷
󸀠

= 𝐵
󸀠
𝐶
󸀠
,

(55)

in which case the Hermitian generalized Hamiltonian solution
to Problem 5 can be expressed as

𝑋 = 𝑃 (
0 𝑋

12

𝑋
∗

12
0

) 𝑃
∗
, (56)

where

𝑋
12

= (𝐴
󸀠
)
†

𝐵
󸀠
+ 𝐷

󸀠
(𝐶

󸀠
)
†

− (𝐴
󸀠
)
†

𝐴
󸀠
𝐷
󸀠
(𝐶

󸀠
)
†

+ 𝐿
𝐴
󸀠𝑊𝑅

𝐶
󸀠

(57)

and 𝑊 ∈ C𝑘×𝑘 is arbitrary.

Proof. It follows from (7) and (49)–(52) that the system
(3) can be transformed into the following system of matrix
equations:

𝐴
1
𝑋
12

= 𝐵
2
, 𝑋

12
𝐴
∗

2
= 𝐵

∗

1
,

𝐶
∗

1
𝑋
12

= 𝐷
∗

2
, 𝑋

12
𝐶
2

= 𝐷
1
.

(58)

Then, combining (53) and (54) yields that

𝐴
󸀠
𝑋
12

= 𝐵
󸀠
, 𝑋

12
𝐶
󸀠

= 𝐷
󸀠
. (59)

Thus, by Lemma 12, the system (59) has a solution𝑋
12

∈ C𝑘×𝑘

if and only if all equalities in (55) hold, in which case the
solution can be written as (57). So the solution to system (3)
can be expressed as (56).

Remark 21. Let 𝐶 and 𝐷 vanish inTheorem 20. Partition

𝐴𝑃 = (𝐴1
𝐴
2) , 𝐴

1
∈ C

𝑚×𝑘
, 𝐴

2
∈ C

𝑚×𝑘
;

𝐵𝑃 = (𝐵1 𝐵
2) , 𝐵

1
∈ C

𝑚×𝑘
, 𝐵

2
∈ C

𝑚×𝑘
.

(60)

Then thematrix equation𝐴𝑋 = 𝐵 has Hermitian generalized
Hamiltonian solutions if and only if

𝐴
1
𝐴
†

1
𝐵
2

= 𝐵
2
, 𝐴

2
𝐴
†

2
𝐵
1

= 𝐵
1
,

𝐴
1
𝐵
∗

1
= 𝐵

2
𝐴
∗

2
,

(61)

in which case its solution can be described as

𝑋 = 𝑃 (
0 𝑋

12

𝑋
∗

12
0

) 𝑃
∗
, (62)

where

𝑋
12

= 𝐴
†

1
𝐵
2

+ 𝐵
∗

1
(𝐴

†

2
)
∗

− 𝐴
†

1
𝐴
1
𝐵
∗

1
(𝐴

†

2
)
∗

+ 𝐿
𝐴1

𝑊𝐿
𝐴2

(63)

and𝑊 ∈ C𝑘×𝑘 is arbitrary. It is clear that this result is different
fromTheorem 3.1 given in [1].
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Similarly, by Lemmas 9 and 12, we can get the anti-
Hermitian generalized anti-Hamiltonian solution to system
(3).

Theorem 22. Given 𝐴, 𝐵 ∈ C𝑚×2𝑘, 𝐶, 𝐷 ∈ C2𝑘×𝑞, let the
decomposition of 𝑋 ∈ 𝐴𝐻𝐴𝐻C2𝑘×2𝑘 be (8). 𝐴𝑃, 𝐵𝑃, 𝑃

∗
𝐶, and

𝑃
∗
𝐷, respectively, have the partitions as in (49)–(52). Put

𝐴 = (
𝐴
1

𝐶
∗

1

) , 𝐵 = (
𝐵
2

−𝐷
∗

2

) ,

𝐶 = (𝐴
∗

2
𝐶
2) , 𝐷 = (−𝐵

∗

1
𝐷
1) .

(64)

Then Problem 5 has a solution 𝑋 ∈ 𝐴𝐻𝐴𝐻C2𝑘×2𝑘 if and only
if

𝐴𝐴
†
𝐵 = 𝐵, 𝐷𝐶

†
𝐶 = 𝐷, 𝐴𝐷 = 𝐵𝐶, (65)

in which case the anti-Hermitian generalized anti-Hamil-
tonian solution to Problem 5 can be expressed as

𝑋 = 𝑃 (
0 𝑋

12

−𝑋
∗

12
0

) 𝑃
∗
, (66)

where

𝑋
12

= 𝐴
†
𝐵 + 𝐷𝐶

†
− 𝐴

†
𝐴𝐷𝐶

†
+ 𝐿

𝐴
𝑍𝑅

𝐶̃
(67)

and 𝑍 ∈ C𝑘×𝑘 is arbitrary.

Now, we investigate the Hermitian generalized anti-
Hamiltonian solution to the system (3).

Theorem 23. Given 𝐴, 𝐵 ∈ C𝑚×2𝑘, 𝐶, 𝐷 ∈ C2𝑘×𝑞, let the
decomposition of 𝑋 ∈ 𝐻𝐴𝐻C2𝑘×2𝑘 be (9). 𝐴𝑃, 𝐵𝑃, 𝑃

∗
𝐶, and

𝑃
∗
𝐷, respectively, have the partitions as in (49)–(52). Denote

𝐴 = (
𝐴
1

𝐶
∗

1

) , 𝐵 = (
𝐵
1

𝐷
∗

1

) , (68)

𝐶 = (
𝐴
2

𝐶
∗

2

) , 𝐷 = (
𝐵
2

𝐷
∗

2

) . (69)

Let the singular value decompositions of 𝐴 and 𝐶 be, respec-
tively,

𝐴 = 𝑈 (
Σ 0

0 0
) 𝑉

∗
, (70)

𝐶 = 𝑄 (
Π 0

0 0
) 𝑅

∗
, (71)

where
𝑈 ∈ 𝑈C(𝑚+𝑞)×𝑘, 𝑉 ∈ 𝑈C𝑘×𝑘,

Σ = diag (𝛼
1
, . . . , 𝛼

𝑟
) , 𝛼

𝑖
> 0,

𝑖 = 1, . . . , 𝑟; 𝑟 = 𝑟 (𝐴) ,

𝑄 ∈ 𝑈C
(𝑚+𝑞)×𝑘

, 𝑅 ∈ 𝑈C
𝑘×𝑘

,

Π = diag (𝛽
1
, . . . , 𝛽

𝑠
) , 𝛽

𝑗
> 0,

𝑗 = 1, . . . , 𝑠; 𝑠 = 𝑟 (𝐶) .

(72)

Set

𝑉𝑋
11

𝑉
∗

= (
𝑋
11

𝑋
12

𝑋
∗

12
𝑋
22

) ; (73)

𝑈
∗
𝐵𝑉 = (

𝐵
11

𝐵
12

𝐵
21

𝐵
22

) ; (74)

𝑅𝑋
22

𝑅
∗

= (
𝑋
11

𝑋
12

𝑋
∗

12
𝑋
22

) ; (75)

𝑄
∗
𝐷𝑅 = (

𝐷
11

𝐷
12

𝐷
21

𝐷
22

) , (76)

where

𝑋
11

∈ 𝐻C
𝑟×𝑟

, 𝑋
11

∈ 𝐻C
𝑠×𝑠

,

𝑋
22

∈ 𝐻C
(𝑘−𝑟)×(𝑘−𝑟)

, 𝑋
22

∈ 𝐻C
(𝑘−𝑠)×(𝑘−𝑠)

,

𝐵
11

∈ C
𝑟×𝑟

, 𝐷
11

∈ C
𝑠×𝑠

,

𝐵
22

∈ C
(𝑚+𝑞−𝑟)×(𝑘−𝑟)

, 𝐷
22

∈ C
(𝑚+𝑞−𝑠)×(𝑘−𝑠)

.

(77)

Then Problem 5 has a solution 𝑋 ∈ 𝐻𝐴𝐻C2𝑘×2𝑘 if and only if

𝐴(𝐴)
†

𝐵 = 𝐵, 𝐴(𝐵)
∗

= 𝐵(𝐴)
∗

,

𝐵
21

= 0, 𝐵
22

= 0,

(78)

𝐶(𝐶)
†

𝐷 = 𝐷, 𝐶(𝐷)
∗

= 𝐷(𝐶)
∗

,

𝐷
21

= 0, 𝐷
22

= 0,

(79)

in which case the Hermitian generalized anti-Hamiltonian
solution to Problem 5 can be described as

𝑋 = 𝑃 (
𝑋
11

0

0 𝑋
22

) 𝑃
∗
, (80)

where

𝑋
11

= 𝑉 (
Σ
−1

𝐵
11

Σ
−1

𝐵
12

(𝐵
12

)
∗

Σ
−1

𝑋
22

) 𝑉
∗
, (81)

𝑋
22

= 𝑅 (
Π
−1

𝐷
11

Π
−1

𝐷
12

(𝐷
12

)
∗

Π
−1

𝑋
22

) 𝑅
∗
, (82)

and 𝑋
22

∈ 𝐻C(𝑘−𝑟)×(𝑘−𝑟), 𝑋
22

∈ 𝐻C(𝑘−𝑠)×(𝑘−𝑠) are arbitrary.

Proof. It can be derived from (9), (49)–(52), and (68)-(69)
that the system (3) is consistent if and only if the following
two equations:

𝐴𝑋
11

= 𝐵, (83)

𝐶𝑋
22

= 𝐷, (84)

are solvable. By (70), (73), and (74), and then combining
Lemma 13, we can obtain that there exists Hermitian solution
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𝑋
11

such that (83) holds if and only if all equalities in (78)
hold, in which case the solution can be written as (81). By
the similar way, there exists Hermitian solution𝑋

22
such that

(84) holds if and only if all equalities in (79) hold, in which
case the solution can be described as (82). Therefore, the
Hermitian generalized anti-Hamiltonian solution to Problem
5 can be expressed as (80).

From Lemmas 11 and 14, it is not difficult to obtain the
anti-Hermitian generalizedHamiltonian solution to Problem
5, which can be described as follows.

Theorem 24. Given 𝐴, 𝐵 ∈ C𝑚×2𝑘, 𝐶, 𝐷 ∈ C2𝑘×𝑞, let the
decomposition of 𝑋 ∈ 𝐴𝐻𝐻C2𝑘×2𝑘 be (10). 𝐴𝑃, 𝐵𝑃, 𝑃

∗
𝐶, and

𝑃
∗
𝐷, respectively, have the partitions as in (49)–(52). Denote

𝐴 = (
𝐴
1

𝐶
∗

1

) , 𝐵 = (
𝐵
1

−𝐷
∗

1

) ,

𝐶 = (
𝐴
2

𝐶
∗

2

) , 𝐷 = (
𝐵
2

−𝐷
∗

2

) .

(85)

Let the singular value decompositions of 𝐴 and 𝐶 be, respec-
tively,

𝐴 = 𝑈 (
Σ 0

0 0
) 𝑉

∗
,

𝐶 = 𝑄 (
Π 0

0 0
) 𝑅

∗
,

(86)

where

𝑈 ∈ 𝑈C
(𝑚+𝑞)×𝑘

, 𝑉 ∈ 𝑈C
𝑘×𝑘

,

Σ = diag (𝛼
1
, . . . , 𝛼

𝑟
) , 𝛼

𝑖
> 0,

𝑖 = 1, . . . , 𝑟; 𝑟 = 𝑟 (𝐴) ,

𝑄 ∈ 𝑈C
(𝑚+𝑞)×𝑘

, 𝑅 ∈ 𝑈C
𝑘×𝑘

,

Π = diag (𝛽
1
, . . . , 𝛽

𝑠
) , 𝛽

𝑗
> 0,

𝑗 = 1, . . . , 𝑠; 𝑠 = 𝑟 (𝐶) .

(87)

Set

𝑉𝑋
11

𝑉
∗

= (
𝑋
11

𝑋
12

−𝑋
∗

12
𝑋
22

) ;

𝑈
∗
𝐵𝑉 = (

𝐵
11

𝐵
12

𝐵
21

𝐵
22

) ;

𝑅𝑋
22

𝑅
∗

= (
𝑋
11

𝑋
12

−𝑋
∗

12
𝑋
22

) ;

𝑄
∗
𝐷𝑅 = (

𝐷
11

𝐷
12

𝐷
21

𝐷
22

) ,

(88)

where

𝑋
11

∈ 𝐻C
𝑟×𝑟

, 𝑋
11

∈ 𝐻C
𝑠×𝑠

,

𝑋
22

∈ 𝐻C
(𝑘−𝑟)×(𝑘−𝑟)

, 𝑋
22

∈ 𝐻C
(𝑘−𝑠)×(𝑘−𝑠)

,

𝐵
11

∈ C
𝑟×𝑟

, 𝐷
11

∈ C
𝑠×𝑠

,

𝐵
22

∈ C
(𝑚+𝑞−𝑟)×(𝑘−𝑟)

, 𝐷
22

∈ C
(𝑚+𝑞−𝑠)×(𝑘−𝑠)

.

(89)

Then Problem 5 has a solution 𝑋 ∈ 𝐴𝐻𝐻C2𝑘×2𝑘 if and only if

𝐴𝐴
†
𝐵 = 𝐵, 𝐴𝐵

∗
= −𝐵𝐴

∗
,

𝐵
21

= 0, 𝐵
22

= 0,

𝐶𝐶
†
𝐷 = 𝐷, 𝐶𝐷

∗
= −𝐷𝐶

∗
,

𝐷
21

= 0, 𝐷
22

= 0,

(90)

in which case the anti-Hermitian generalized Hamiltonian
solution to Problem 5 can be described as

𝑋 = 𝑃 (
𝑋
11

0

0 𝑋
22

) 𝑃
∗
, (91)

where

𝑋
11

= 𝑉 (
Σ
−1

𝐵
11

Σ
−1

𝐵
12

−𝐵
∗

12
Σ
−1

𝑋
22

) 𝑉
∗
,

𝑋
22

= 𝑅 (
Π
−1

𝐷
11

Π
−1

𝐷
12

−𝐷
∗

12
Π
−1

𝑋
22

) 𝑅
∗
,

(92)

and 𝑋
22

∈ 𝐴𝐻C(𝑘−𝑟)×(𝑘−𝑟), 𝑋
22

∈ 𝐴𝐻C(𝑘−𝑠)×(𝑘−𝑠) are
arbitrary.

4. The Expression of the Unique
Solution to Problem 6

In this section, our aim is to derive the optimal approximation
solution to Problem 6.

Theorem 25. Given 𝑋 ∈ C2𝑘×2𝑘, under the hypotheses of
Theorem 20, let

𝑃
∗
𝑋𝑃 = (

𝑋
11

𝑋
12

𝑋
21

𝑋
22

) , 𝑋
11

∈ C
𝑘×𝑘

, 𝑋
22

∈ C
𝑘×𝑘

. (93)

If Problem 5 has Hermitian generalized Hamiltonian solutions,
then Problem 6 has a unique solution 𝑋 ∈ 𝐻𝐻C2𝑘×2𝑘 if and
only if

𝐿
𝐴
󸀠 (

𝑋
12

+ (𝑋
21

)
∗

2
− 𝑋

0
) 𝑅

𝐶
󸀠 =

𝑋
12

+ (𝑋
21

)
∗

2
− 𝑋

0
,

(94)

in which case the unique solution 𝑋 can be expressed as

𝑋 = 𝑃 (
0 𝑋

0

(𝑋
0
)
∗

0
) 𝑃

∗
, (95)
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where

𝑋
0

=

𝑋
12

+ (𝑋
21

)
∗

2
,

𝑋
0

= (𝐴
󸀠
)
†

𝐵
󸀠
+ 𝐷

󸀠
(𝐶

󸀠
)
†

− (𝐴
󸀠
)
†

𝐴
󸀠
𝐷
󸀠
(𝐶

󸀠
)
†

.

(96)

Proof. When the Hermitian generalized Hamiltonian solu-
tion set𝐾 of Problem 5 is nonempty, it is not difficult to verify
that 𝐾 is a closed convex set. Then by [33], Problem 6 has a
unique solution 𝑋 ∈ 𝐻𝐻C2𝑘×2𝑘. From Theorem 20, for any
𝑋 ∈ 𝐾, 𝑋 can be expressed as

𝑋 = 𝑃 (
0 𝑋

0

𝑋
∗

0
0

) 𝑃
∗

+ 𝑃 (
0 𝐿

𝐴
󸀠𝑊𝑅

𝐶
󸀠

𝑅
𝐶
󸀠𝑊

∗
𝐿
𝐴
󸀠 0

) 𝑃
∗
,

(97)

where

𝑋
0

= (𝐴
󸀠
)
†

𝐵
󸀠
+ 𝐷

󸀠
(𝐶

󸀠
)
†

− (𝐴
󸀠
)
†

𝐴
󸀠
𝐷
󸀠
(𝐶

󸀠
)
† (98)

and 𝑊 ∈ C𝑘×𝑘 is arbitrary.Then it follows from the equalities
in (93) and (97) and the unitary invariance of the Frobenius
norm that

󵄩󵄩󵄩󵄩󵄩
𝑋 − 𝑋

󵄩󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩󵄩
𝑃
∗
𝑋𝑃 − 𝑃

∗
𝑋𝑃

󵄩󵄩󵄩󵄩󵄩

2

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(
𝑋
11

𝑋
12

− 𝑋
0

− 𝐿
𝐴
󸀠𝑊𝑅

𝐶
󸀠

𝑋
21

− 𝑋
∗

0
− 𝑅

𝐶
󸀠𝑊

∗
𝐿
𝐴
󸀠 𝑋

22

)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩󵄩
𝑋
11

󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
𝑋
22

󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
𝑋
12

− 𝑋
0

− 𝐿
𝐴
󸀠𝑊𝑅

𝐶
󸀠

󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
𝑋
21

− 𝑋
∗

0
− 𝑅

𝐶
󸀠𝑊

∗
𝐿
𝐴
󸀠

󵄩󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩󵄩
𝑋
11

󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
𝑋
22

󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
𝐿
𝐴
󸀠𝑊𝑅

𝐶
󸀠 − (−𝑋

0
+ 𝑋

12
)
󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
𝐿
𝐴
󸀠𝑊𝑅

𝐶
󸀠 − (−𝑋

0
+ 𝑋

∗

21
)
󵄩󵄩󵄩󵄩󵄩

2

.

(99)

Thus, Problem 6 has a unique solution 𝑋 ∈ 𝐻𝐻C2𝑘×2𝑘 if and
only if there exists 𝑊 such that

󵄩󵄩󵄩󵄩󵄩
𝐿
𝐴
󸀠𝑊𝑅

𝐶
󸀠 − (−𝑋

0
+ 𝑋

12
)
󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩󵄩
𝐿
𝐴
󸀠𝑊𝑅

𝐶
󸀠 − (−𝑋

0
+ (𝑋

21
)
∗

)
󵄩󵄩󵄩󵄩󵄩󵄩

2
(100)

reaches its minimum. Therefore, by Lemma 19, (100) arrives
at its minimum if and only if there exists 𝑊 such that the
matrix equation

𝐿
𝐴
󸀠𝑊𝑅

𝐶
󸀠 =

−𝑋
0

+ 𝑋
12

− 𝑋
0

+ (𝑋
21

)
∗

2

=

𝑋
12

+ (𝑋
21

)
∗

2
− 𝑋

0

(101)

holds, which, by Lemma 18, has a solution if and only if (94)
holds, in which case the solution can be expressed as

𝑊 = 𝐿
𝐴
󸀠 (

𝑋
12

+ (𝑋
21

)
∗

2
− 𝑋

0
) 𝑅

𝐶
󸀠 + 𝑍 − 𝐿

𝐴
󸀠𝑍𝑅

𝐶
󸀠 ,

(102)

where 𝑍 ∈ C𝑘×𝑘 is arbitrary. Inserting (102) into (97), and
then combining (94) yields (95).

Analogously, the following theorem can be shown.

Theorem 26. Given 𝑋 ∈ C2𝑘×2𝑘, under the hypotheses of
Theorem 22, let

𝑃
∗
𝑋𝑃 = (

𝑋
11

𝑋
12

𝑋
21

𝑋
22

) , 𝑋
11

∈ C
𝑘×𝑘

, 𝑋
22

∈ C
𝑘×𝑘

. (103)

If Problem 5 has anti-Hermitian generalized anti-Hamiltonian
solutions, then Problem 6 has a unique solution 𝑋 ∈

𝐴𝐻𝐴𝐻C2𝑘×2𝑘 if and only if

𝐿
𝐴

(

𝑋
12

− (𝑋
21

)
∗

2
− 𝑋

0
) 𝑅

𝐶̃
=

𝑋
12

− (𝑋
21

)
∗

2
− 𝑋

0
,

(104)

in which case the unique solution 𝑋 can be expressed as

𝑋 = 𝑃 (
0 𝑋

0

−(𝑋
0
)
∗

0
) 𝑃

∗
, (105)

where

𝑋
0

=

𝑋
12

− (𝑋
21

)
∗

2
,

𝑋
0

= (𝐴)
†

𝐵 + 𝐷(𝐶)
†

− (𝐴)
†

𝐴𝐷(𝐶)
†

.

(106)

Now, we give the unique Hermitian generalized anti-
Hamiltonian solution to Problem 6.

Theorem 27. Given 𝑋 ∈ C2𝑘×2𝑘, under the hypotheses of
Theorem 23, let

𝑃
∗𝑋 + 𝑋

∗

2
𝑃 = (

𝑋
󸀠

11
𝑋
󸀠

12

(𝑋
󸀠

12
)
∗

𝑋
󸀠

22

) ,

𝑋
󸀠

11
∈ 𝐻C

𝑘×𝑘
, 𝑋

󸀠

22
∈ 𝐻C

𝑘×𝑘
;

(107)

𝑉
∗
𝑋
󸀠

11
𝑉 = (

𝑋
∘

11
𝑋
∘

12

(𝑋
∘

12
)
∗

𝑋
∘

22

) ,

𝑋
∘

11
∈ 𝐻C

𝑟×𝑟
, 𝑋

∘

22
∈ 𝐻C

(𝑘−𝑟)×(𝑘−𝑟)
;

(108)

𝑅
∗
𝑋
󸀠

22
𝑅 = (

𝑋
󸀠

11
𝑋
󸀠󸀠

12

(𝑋
󸀠󸀠

12
)
∗

𝑋
󸀠󸀠

22

) ,

𝑋
󸀠󸀠

11
∈ 𝐻C

𝑠×𝑠
, 𝑋

󸀠󸀠

22
∈ 𝐻C

(𝑘−𝑠)×(𝑘−𝑠)
.

(109)
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If Problem 5 hasHermitian generalized anti-Hamiltonian solu-
tions, then the unique solution 𝑋 ∈ 𝐻𝐴𝐻C2𝑘×2𝑘 to Problem 6
can be expressed as

𝑋 = 𝑃 (
𝑋
∘

11
0

0 𝑋
∘

22

) 𝑃
∗
, (110)

where

𝑋
∘

11
= 𝑉 (

Σ
−1

𝐵
11

Σ
−1

𝐵
12

(𝐵
12

)
∗

Σ
−1

𝑋
∘

22

) 𝑉
∗
, (111)

𝑋
∘

22
= 𝑅 (

Π
−1

𝐷
11

Π
−1

𝐷
12

(𝐷
12

)
∗

Π
−1

𝑋
󸀠󸀠

22

) 𝑅
∗
. (112)

Proof. When the Hermitian generalized anti-Hamiltonian
solution set 𝐾 of Problem 5 is nonempty, it is easy to prove
that 𝐾 is a closed convex set. Then, Problem 6 has a unique
solution 𝑋 ∈ 𝐻𝐴𝐻C2𝑘×2𝑘 by the aid of [33]. For any 𝑋 ∈ 𝐾,
due to Theorem 23, 𝑋 can be expressed as

𝑋 = 𝑃 (
𝑋
11

0

0 𝑋
22

) 𝑃
∗
, (113)

where 𝑋
11

and 𝑋
22

have the expressions as in (81) and (82).
Combining the equalities in (80)–(82) and (107) and the
unitary invariance of the Frobenius norm yields that

󵄩󵄩󵄩󵄩󵄩
𝑋 − 𝑋

󵄩󵄩󵄩󵄩󵄩

2

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑋 −
𝑋 + 𝑋

∗

2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑋 − 𝑋
∗

2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑃 (
𝑋
11

0

0 𝑋
22

) 𝑃
∗

−
𝑋 + 𝑋

∗

2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑋 − 𝑋
∗

2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(
𝑋
11

0

0 𝑋
22

) − (
𝑋
󸀠

11
𝑋
󸀠

12

(𝑋
󸀠

12
)
∗

𝑋
󸀠

22

)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑋 − 𝑋
∗

2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩󵄩
𝑋
11

− 𝑋
󸀠

11

󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
𝑋
22

− 𝑋
󸀠

22

󵄩󵄩󵄩󵄩󵄩

2

+ 2
󵄩󵄩󵄩󵄩󵄩
𝑋
󸀠

12

󵄩󵄩󵄩󵄩󵄩

2

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑋 − 𝑋
∗

2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

.

(114)

So,

min
𝑋∈∈𝐻𝐴𝐻C2𝑘×2𝑘

󵄩󵄩󵄩󵄩󵄩
𝑋 − 𝑋

󵄩󵄩󵄩󵄩󵄩

2

holds

⇐⇒ min
𝑋11∈𝐻C𝑘×𝑘

󵄩󵄩󵄩󵄩󵄩
𝑋
11

−𝑋
󸀠

11

󵄩󵄩󵄩󵄩󵄩

2

holds

and min
𝑋22∈𝐻C𝑘×𝑘

󵄩󵄩󵄩󵄩󵄩
𝑋
22

−𝑋
󸀠

22

󵄩󵄩󵄩󵄩󵄩

2

holds.

(115)

By (81), (108), and the unitary invariance of the Frobenius
norm, we obtain

󵄩󵄩󵄩󵄩󵄩
𝑋
11

− 𝑋
󸀠

11

󵄩󵄩󵄩󵄩󵄩

2

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(
Σ
−1

𝐵
11

Σ
−1

𝐵
12

(𝐵
12

)
∗

Σ
−1

𝑋
22

) − (
𝑋
∘

11
𝑋
∘

12

(𝑋
∘

12
)
∗

𝑋
∘

22

)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩󵄩
Σ
−1

𝐵
11

− 𝑋
∘

11

󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
𝑋
22

− 𝑋
∘

22

󵄩󵄩󵄩󵄩󵄩

2

+ 2
󵄩󵄩󵄩󵄩󵄩
Σ
−1

𝐵
12

− 𝑋
∘

12

󵄩󵄩󵄩󵄩󵄩

2

.

(116)

Then

min
𝑋11∈𝐻C𝑘×𝑘

󵄩󵄩󵄩󵄩󵄩
𝑋
11

−𝑋
󸀠

11

󵄩󵄩󵄩󵄩󵄩

2

ℎ𝑜𝑙𝑑𝑠

⇐⇒ min
𝑋22∈𝐻C(𝑘−𝑟)×(𝑘−𝑟)

󵄩󵄩󵄩󵄩󵄩
𝑋
22

−𝑋
∘

22

󵄩󵄩󵄩󵄩󵄩

2

ℎ𝑜𝑙𝑑𝑠.

(117)

Therefore, when 𝑋
22
can be expressed as

𝑋
22

= 𝑋
∘

22
, (118)

min
𝑋11∈𝐻C𝑘×𝑘‖𝑋

11
− 𝑋

󸀠

11
‖
2 holds. Then combining (81) yields

(111). Similarly, we can derive the expression in (112) by (82)
and (109).Thus, (110) is the unique solution to Problem 6.

By the method used in Theorem 27, the following theo-
rem can also be shown.

Theorem 28. Given 𝑋 ∈ C2𝑘×2𝑘, under the hypotheses of
Theorem 24, let

𝑃
∗𝑋 − 𝑋

∗

2
𝑃 = (

𝑋
󸀠

11
𝑋
󸀠

12

−(𝑋
󸀠

12
)
∗

𝑋
󸀠

22

) ,

𝑋
󸀠

11
∈ 𝐴𝐻C

𝑘×𝑘
, 𝑋

󸀠

22
∈ 𝐴𝐻C

𝑘×𝑘
;

𝑉
∗
𝑋
󸀠

11
𝑉 = (

𝑋
∘

11
𝑋
∘

12

−(𝑋
∘

12
)
∗

𝑋
∘

22

) ,

𝑋
∘

11
∈ 𝐴𝐻C

𝑟×𝑟
, 𝑋

∘

22
∈ 𝐴𝐻C

(𝑘−𝑟)×(𝑘−𝑟)
;

𝑅
∗
𝑋
󸀠

22
𝑅 = (

𝑋
󸀠󸀠

11
𝑋
󸀠󸀠

12

−(𝑋
󸀠󸀠

12
)
∗

𝑋
󸀠󸀠

22

) ,

𝑋
󸀠󸀠

11
∈ 𝐴𝐻C

𝑠×𝑠
, 𝑋

󸀠󸀠

22
∈ 𝐴𝐻C

(𝑘−𝑠)×(𝑘−𝑠)
.

(119)

If Problem 5 has anti-Hermitian generalized Hamiltonian
solutions, then the unique solution 𝑋 ∈ 𝐴𝐻𝐻C2𝑘×2𝑘 to
Problem 6 can be expressed as

𝑋 = 𝑃 (
𝑋
∘

11
0

0 𝑋
∘

22

) 𝑃
∗
, (120)

where

𝑋
∘

11
= 𝑉 (

Σ
−1

𝐵
11

Σ
−1

𝐵
12

−𝐵
∗

12
Σ
−1

𝑋
∘

22

) 𝑉
∗
,

𝑋
∘

22
= 𝑅 (

Π
−1

𝐷
11

Π
−1

𝐷
12

−𝐷
∗

12
Π
−1

𝑋
󸀠󸀠

22

) 𝑅
∗
.

(121)
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5. The Expression of the Solution to Problem 7

If the solvability conditions of linear matrix equations are not
satisfied, the least squares solution is usually considered. So,
in this section, the solution to Problem 7 is constructed.

Theorem 29. Given 𝐴, 𝐵 ∈ C𝑚×2𝑘, 𝐶, 𝐷 ∈ C2𝑘×𝑞,
let the decomposition of 𝑋 ∈ 𝐻𝐻C2𝑘×2𝑘 be (7).
𝐴𝑃, 𝐵𝑃, 𝑃

∗
𝐶, 𝑃

∗
𝐷, 𝐶

󸀠, and𝐷
󸀠, respectively, have the partitions

as in (49)–(52) and (54). Denote

𝐴
󸀠

= (𝐴
∗

1
𝐶
1) , 𝐵

󸀠
= (𝐵

∗

2
𝐷
2) . (122)

Let the singular value decompositions of 𝐴
󸀠 and 𝐶

󸀠 be as
given in (28). Then the least squares Hermitian generalized
Hamiltonian solution to Problem 7 can be described as (7),
where 𝑋

12
has the expression as in (31).

Proof. Combining (7), (49)–(52), (54), (122), and the unitary
invariance of the Frobenius norm yields that

‖𝐴𝑋 − 𝐵‖
2

+ ‖𝑋𝐶 − 𝐷‖
2

=
󵄩󵄩󵄩󵄩󵄩󵄩
(𝐴

󸀠
)
∗

𝑋
12

− (𝐵
󸀠
)
∗󵄩󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
𝑋
12

𝐶
󸀠
− 𝐷

󸀠󵄩󵄩󵄩󵄩󵄩

2

.

(123)

Therefore, by Lemma 15, if 𝑋
12

has the expression as in
(31), then (123) reaches its minimum. Then, substituting (31)
into (7), we obtain the least squares Hermitian generalized
Hamiltonian solution to Problem 7.

Corollary 30. Given 𝐴, 𝐵 ∈ C𝑚×2𝑘, 𝐶, 𝐷 ∈ C2𝑘×𝑞, under
the conditions of Theorem 29, the least squares Hermitian
generalized Hamiltonian solution with minimum norm to
Problem 7 can be described as (7), where𝑋

12
has the expression

as in (31) with 𝑋
󸀠

22
= 0.

By the same way, we can also derive the least squares anti-
Hermitian generalized anti-Hamiltonian solution to Problem
7.

Theorem 31. Given 𝐴, 𝐵 ∈ C𝑚×2𝑘, 𝐶, 𝐷 ∈ C2𝑘×𝑞, let the
decomposition of 𝑋 ∈ 𝐴𝐻𝐴𝐻C2𝑘×2𝑘 be (8). 𝐴𝑃, 𝐵𝑃, 𝑃

∗
𝐶, and

𝑃
∗
𝐷, respectively, have the partitions as in (49)–(52). Denote

𝐴
󸀠

= (𝐴
∗

1
𝐶
1) , 𝐵

󸀠
= (𝐵

∗

2
−𝐷

2) ,

𝐶
󸀠

= (𝐴
∗

2
𝐶
2) , 𝐷

󸀠
= (−𝐵

∗

1
𝐷
1) .

(124)

Let the singular value decompositions of 𝐴
󸀠 and 𝐶

󸀠 be as in
(28). Then the least squares anti-Hermitian generalized anti-
Hamiltonian solution to Problem 7 can be described as (8),
where 𝑋

12
has the expression as in (31).

Corollary 32. Given 𝐴, 𝐵 ∈ C𝑚×2𝑘, 𝐶, 𝐷 ∈ C2𝑘×𝑞, under
the conditions of Theorem 31, the least squares anti-Hermitian
generalized anti-Hamiltonian solution with minimum norm to
Problem 7 can be described as (8), where𝑋

12
has the expression

as in (31) with 𝑋
󸀠

22
= 0.

At present, we give the least squares Hermitian general-
ized anti-Hamiltonian solution to Problem 7.

Theorem 33. Assume 𝐴, 𝐵 ∈ C𝑚×2𝑘, 𝐶, 𝐷 ∈ C2𝑘×𝑞. Let the
decomposition of 𝑋 ∈ 𝐻𝐴𝐻C2𝑘×2𝑘 be (9). 𝐴𝑃, 𝐵𝑃, 𝑃

∗
𝐶, 𝑃

∗
𝐷,

𝐴, 𝐵, 𝐶, and 𝐷, respectively, have the partitions as in (49)–
(52), (68), and (69). Let the singular value decompositions
of 𝐴 and 𝐶 be, respectively, (70) and (71), 𝑉𝑋

11
𝑉
∗
, 𝑈

∗
𝐵𝑉,

𝑅𝑋
22

𝑅
∗
, and 𝑄

∗
𝐷𝑅 have the partitions as in (73)–(76). Then

the least squares Hermitian generalized anti-Hamiltonian
solution to Problem 7 can be expressed as (9) with

𝑋
11

= 𝑉 (
Φ
1

∗ (Σ𝐵
11

+ 𝐵
∗

11
Σ) Σ

−1
𝐵
12

𝐵
∗

12
Σ
−1

𝑋
22

) 𝑉
∗
, (125)

𝑋
22

= 𝑅 (
Φ
2

∗ (Π𝐷
11

+ 𝐷
∗

11
Π) Π

−1
𝐷
12

𝐷
∗

12
Π
−1

𝑋
22

) 𝑅
∗
, (126)

where

Φ
1

= (
1

𝛼
2

𝑖
+ 𝛼

2

𝑗

) , 1 ≤ 𝑖, 𝑗 ≤ 𝑟;

Φ
2

= (
1

𝛽
2

𝑖
+ 𝛽

2

𝑗

) , 1 ≤ 𝑖, 𝑗 ≤ 𝑠,

(127)

and 𝑋
22

∈ 𝐻C(𝑘−𝑟)×(𝑘−𝑟), 𝑋
22

∈ 𝐻C(𝑘−𝑠)×(𝑘−𝑠) are arbitrary.

Proof. It follows from (9), (49)–(52), (68), (69), and the
unitary invariance of the Frobenius norm that

‖𝐴𝑋 − 𝐵‖
2

+ ‖𝑋𝐶 − 𝐷‖
2

=
󵄩󵄩󵄩󵄩󵄩
𝐴𝑋

11
− 𝐵

󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
𝐶𝑋

22
− 𝐷

󵄩󵄩󵄩󵄩󵄩

2

.

(128)

Then

‖𝐴𝑋 − 𝐵‖
2

+ ‖𝑋𝐶 − 𝐷‖
2 (129)

gains its minimum value if and only if

min =
󵄩󵄩󵄩󵄩󵄩
𝐴𝑋

11
− 𝐵

󵄩󵄩󵄩󵄩󵄩

2

ℎ𝑜𝑙𝑑𝑠, (130)

min =
󵄩󵄩󵄩󵄩󵄩
𝐶𝑋

22
− 𝐷

󵄩󵄩󵄩󵄩󵄩

2

ℎ𝑜𝑙𝑑𝑠. (131)

So, by (68), (70), (73), and (74) and then combining
Lemma 16, we get that if 𝑋

11
has the expression as in (125),

then (130) holds. Similarly, if 𝑋
22

has the expression as in
(126), then (131) holds. Thus, the least squares Hermitian
generalized anti-Hamiltonian solution to Problem 7 can be
expressed as (9), where 𝑋

11
and 𝑋

22
have the expressions as

in (125) and (126).

Corollary 34. Given 𝐴, 𝐵 ∈ C𝑚×2𝑘, 𝐶, 𝐷 ∈ C2𝑘×𝑞, under
the conditions of Theorem 33, the least squares Hermitian
generalized anti-Hamiltonian solution with minimum norm to
Problem 7 can be expressed as (9)with 𝑋

11
and 𝑋

22
having the

expressions as in (125) and (126), where 𝑋
22

= 0, 𝑋
22

= 0.

At last, on the basis of Lemma 17, we can obtain the least
squares anti-Hermitian generalized Hamiltonian solution to
Problem 7, the proof of which is analogous to the proof of
Theorem 33.
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Theorem 35. Given 𝐴, 𝐵 ∈ C𝑚×2𝑘, 𝐶, 𝐷 ∈ C2𝑘×𝑞, let
the decomposition of 𝑋 ∈ 𝐴𝐻𝐻C2𝑘×2𝑘 be (10). 𝐴𝑃, 𝐵𝑃,

𝑃
∗
𝐶, 𝑃

∗
𝐷, 𝐴, 𝐵, 𝐶, and 𝐷, respectively, have the partitions as

in (49)–(52), (85). Assume that the singular value decom-
positions of 𝐴 and 𝐶 are, respectively, expressed as in (86)
and 𝑉𝑋

11
𝑉
∗
, 𝑈

∗
𝐵𝑉, 𝑅𝑋

22
𝑅
∗
, 𝑄

∗
𝐷𝑅 have the partitions as

in (88). Then the least squares anti-Hermitian generalized
Hamiltonian solution to Problem 7 can be expressed as (10)
with

𝑋
11

= 𝑉 (
Ψ
1

∗ (Σ𝐵
11

− 𝐵
∗

11
Σ) Σ

−1
𝐵
12

−𝐵
∗

12
Σ
−1

𝑋
22

) 𝑉
∗
,

𝑋
22

= 𝑅 (
Ψ
2

∗ (Π𝐷
11

− 𝐷
∗

11
Π) Π

−1
𝐷
12

−𝐷
∗

12
Π
−1

𝑋
22

) 𝑅
∗
,

(132)

where

Ψ
1

= (
1

𝛼
2

𝑖
+ 𝛼

2

𝑗

) , 1 ≤ 𝑖, 𝑗 ≤ 𝑟;

Ψ
2

= (
1

𝛽
2

𝑖
+ 𝛽

2

𝑗

) , 1 ≤ 𝑖, 𝑗 ≤ 𝑠,

(133)

and 𝑋
22

∈ 𝐴𝐻C(𝑘−𝑟)×(𝑘−𝑟), 𝑋
22

∈ 𝐴𝐻C(𝑘−𝑠)×(𝑘−𝑠) are
arbitrary.

Corollary 36. Given 𝐴, 𝐵 ∈ C𝑚×2𝑘, 𝐶, 𝐷 ∈ C2𝑘×𝑞, under
the conditions of Theorem 35, the least squares anti-Hermitian
generalized Hamiltonian solution with minimum norm to
Problem 7 can be expressed as (10) with 𝑋

11
and 𝑋

22
having

the expressions as in (132), where 𝑋
22

= 0, 𝑋
22

= 0.

6. Algorithms and Numerical Examples

In this section, algorithms are given to compute the solution
to Problem 7, and meanwhile some numerical examples are
presented to show that the algorithms provided are feasible.
Note that all the tests are performed by MATLAB 7.6.

An algorithm is firstly presented to compute the least
squaresHermitian generalizedHamiltonian solution to Prob-
lem 7.

Algorithm 37. Step 1. Input 𝐴, 𝐵, 𝐶, 𝐷, 𝐽.

Step 2.Compute the eigenvalue decomposition of 𝐽 according
to (6).

Step 3. Compute 𝐴𝑃, 𝐵𝑃, 𝑃
∗
𝐶, 𝑃

∗
𝐷 according to (49)–(52).

Step 4. Compute 𝐴
󸀠
, 𝐵
󸀠
, 𝐶
󸀠
, 𝐷

󸀠 according to (53) and (54).
If the conditions in (55) hold, then compute the Hermitian
generalized Hamiltonian solution to Problem 5 according to
(56) and (57). Otherwise, turn to Step 5.

Step 5. Compute 𝐴
󸀠
, 𝐵
󸀠
, 𝐶
󸀠
, 𝐷

󸀠 according to (53) and (122).

Step 6.Compute the singular value decompositions of𝐴
󸀠 and

𝐶
󸀠 according to (28).

Step 7. Compute 𝑋
12
according to (31).

Step 8. Compute 𝑋 according to (7), and output 𝑋.

Example 38. Given

𝐴 = (
3 + 6𝑖 2 + 𝑖 7 − 2𝑖 8 + 3𝑖

2 − 3𝑖 5 − 4𝑖 1 + 4𝑖 9 + 3𝑖
) ,

𝐵 = (
2 − 4𝑖 3 + 2𝑖 5 + 𝑖 4 + 𝑖

6 + 𝑖 2 − 5𝑖 1 + 6𝑖 5 + 3𝑖
) ,

𝐶 = (

4 + 7𝑖 10 + 3𝑖 7 + 𝑖

8 + 7𝑖 3 + 9𝑖 1 − 6𝑖

2 − 5𝑖 5 + 6𝑖 2 + 7𝑖

2 3𝑖 3 + 7𝑖

) ,

𝐷 = (

7 + 3𝑖 5 2𝑖

5 + 2𝑖 2 − 3𝑖 6 − 𝑖

3 + 𝑖 9 − 𝑖 4

4 − 2𝑖 5 + 2𝑖 1 + 4𝑖

) ,

𝐽 = (

0 0 0 1

0 0 −1 0

0 1 0 0

−1 0 0 0

) ,

(134)

it can be easily verified that the conditions in (55) are not
satisfied. Then, according to Algorithm 37, the least squares
Hermitian generalized Hamiltonian solution 𝑋 to Problem 7
can be expressed as

𝑋 = (

0.0865 − 𝑖 0.0141 − 0.0359𝑖 0.0317 − 0.0312𝑖 0.1174 + 0.0824𝑖

0.0141 + 0.0359𝑖 −0.0148 −0.0201 − 0.0682𝑖 0.1189 + 0.0954𝑖

0.0317 + 0.0302𝑖 −0.0201 + 0.0682𝑖 −0.0724 0.1114 + 0.0359𝑖

0.1173 − 0.0824𝑖 0.1189 − 0.0954𝑖 0.1114 − 0.0359𝑖 0.0006

) ,

min
𝑋∈𝐻𝐻C2𝑘×2𝑘

󵄩󵄩󵄩󵄩𝑋 − 𝑋
∗󵄩󵄩󵄩󵄩 = 0.0000,

min
𝑋∈𝐻𝐻C2𝑘×2𝑘

󵄩󵄩󵄩󵄩𝑋
∗

− 𝐽𝑋𝐽
󵄩󵄩󵄩󵄩 = 0.6000.

(135)
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Remark 39. (1) There exists a unique least squares Hermitian
generalized Hamiltonian solution to Problem 7 if and only
if both 𝐴

󸀠 and 𝐶
󸀠 in Theorem 29 have full row ranks.

Example 38 just illustrates it.
(2) Similarly, the algorithm about computing the least

squares anti-Hermitian generalized anti-Hamiltonian solu-
tion to Problem 7 can be shown. We omit it here.

Now, we provide another algorithm to compute the least
squares Hermitian generalized anti-Hamiltonian solution to
Problem 7.

Algorithm 40. Step 1. Input 𝐴, 𝐵, 𝐶, 𝐷, 𝐽.

Step 2. Compute the eigenvalue decomposition of 𝐽 according
to (6).

Step 3. Compute 𝐴𝑃, 𝐵𝑃, 𝑃
∗
𝐶, 𝑃

∗
𝐷 according to (49)–(52).

Step 4. Compute 𝐴, 𝐵, 𝐶, 𝐷 according to (68) and (69).

Step 5. Compute the singular value decompositions of 𝐴 and
𝐶 according to (70)-(71).

Step 6. Compute the partitions of 𝑈
∗
𝐵𝑉, 𝑄

∗
𝐷𝑅 according to

(74) and (76). If the conditions in (78) and (79) are all satisfied,
then compute the Hermitian generalized anti-Hamiltonian
solution to Problem5 according to (80)–(82).Otherwise, turn
to Step 7.

Step 7. Compute 𝑋
11
and 𝑋

22
according to (125) and (126).

Step 8. Compute 𝑋 according to (9), and output 𝑋.

Example 41. Let 𝐴, 𝐵, 𝐶, 𝐷, 𝐽 be as given in Example 38.
It is not difficult to prove that the conditions in (78) and

(79) do not hold. So, according to Algorithm 40, the least
squares Hermitian generalized anti-Hamiltonian solution to
Problem 7 can be written as

𝑋 = (

0.3671 0.1579 − 0.1804𝑖 0.1822 + 0.1400𝑖 0.0179 − 0.0012𝑖

0.1579 + 0.1804𝑖 0.2324 0.0179 + 0.1149𝑖 −0.0662 − 0.1400𝑖

0.1822 − 0.1400𝑖 0.0179 − 0.1149𝑖 0.2143 0.1221 − 0.0849𝑖

0.0179 + 0.0012𝑖 −0.0662 + 0.1400𝑖 0.1221 + 0.0849𝑖 0.5764

) ,

min
𝑋∈𝐻𝐴𝐻C2𝑘×2𝑘

󵄩󵄩󵄩󵄩𝑋 − 𝑋
∗󵄩󵄩󵄩󵄩 = 0.0000,

min
𝑋∈𝐻𝐴𝐻C2𝑘×2𝑘

󵄩󵄩󵄩󵄩𝑋
∗

+ 𝐽𝑋𝐽
󵄩󵄩󵄩󵄩 = 0.8309.

(136)

Remark 42. (1)There exists a unique least squares Hermitian
generalized anti-Hamiltonian solution to Problem 7 if and
only if both 𝐴 and 𝐶 in Theorem 33 have full column ranks.
Example 41 is just the case.

(2) Similarly, the algorithm about computing the least
squares anti-Hermitian generalized Hamiltonian solution to
Problem 7 can be obtained. We also omit it here.

7. Conclusions

In the previous sections, using the decomposition of the
(anti-)Hermitian generalized (anti-)Hamiltonian matrices,
the necessary and sufficient conditions for the existence of
and the expression for the solution to Problem 5 have been
firstly derived, respectively. Then the solutions to Problems 6
and 7 have been individually given. Finally, algorithms have
been given to compute the least squares Hermitian general-
ized Hamiltonian solution and the least squares Hermitian
generalized anti-Hamiltonian solution to Problem 7, and the
corresponding examples have also been presented to show
that the algorithms are reasonable.
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Dynamic instability of beams in complex structures caused by unsteady wind load has occurred more frequently. However, studies
on the parametric resonance of beams are generally limited to harmonic loads, while arbitrary dynamic load is rarely involved.The
critical frequency equation for simply supported Euler beams with uniform section under arbitrary axial dynamic forces is firstly
derived in this paper based on the Mathieu-Hill equation. Dynamic instability regions with high precision are then calculated by a
presented eigenvalue method. Further, the dynamically unstable state of beams under the wind force with any mean or fluctuating
component is determined by load normalization, and the wind-induced parametric resonant response is computed by the Runge-
Kutta approach. Finally, a measured wind load time-history is input into the dynamic system to indicate that the proposedmethods
are effective. This study presents a new method to determine the wind-induced dynamic stability of Euler beams. The beam would
become dynamically unstable provided that the parametric point, denoting the relation between load properties and structural
frequency, is located in the instability region, no matter whether the wind load component is large or not.

1. Introduction

The simply supported Euler beam, an important research
object on the dynamic instability of elastic systems, is a com-
mon form of members in modern structures [1, 2]. Modern
building structures are being constructed with greater height
or span, resulting in smaller natural frequencies of beams in
them, so parametric resonance of the beamsmay occur under
unsteady strong wind forces. For example, many cases of roof
collapse in windstorms caused by instability of significant
beams have been reported [3, 4].

The dynamic instability of Euler beams has attracted wide
attention of scholars in the early stage. Beliaev [5] analyzed
the dynamic responses of simply supported Euler beams
under axial load with the form of

𝑃 (𝑡) = 𝑃
0
+ 𝑃
𝑡
cos 𝜃𝑡. (1)

Main frequencies of parametric resonance were calculated,
and the Mathieu-Hill equation for structural dynamic insta-
bility was derived. As a complement to Beliaev’s analysis,

Krylov and Bogoliubov [6, 7] studied the influence of arbi-
trary boundary conditions on dynamic instability of Euler
beams by the Galerkin method. To successfully solve the
Mathieu-Hill equation for the problem of dynamic instability
of Euler beams, Shtokalo [8] established the stability of linear
differential equationwith variable coefficients.McLachlan [9]
discussed the theory and application of Mathieu equation.
Based on these theories, Bolotin [10] built the critical fre-
quency equation for structural dynamic instability and gave
the approximate formula of the first three dynamic instability
regions.With the development of finite element (FE) theories,
Briseghella et al. [11] computed dynamic instability regions
of Euler beams by FE method. He also compared the FE
results with those obtained from the analytical method. Yang
and Fu [12] discussed the dynamic instability of Euler beams
with layered composite materials. Sochacki [13] concerned
on simply supported Euler beams with additional elastic
elements. Yan et al. [14] analyzed the effect of cracks on
dynamic instability of Euler beams. However, in these previ-
ous studies for the engineering applications of the Mathieu-
Hill equation, axial loads are all assumed as harmonic loads,
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whereas the wind load is arbitrary and cannot be simplified as
a single harmonic wave in studyingwind-induced parametric
resonance.Therefore, it is necessary to establish an analytical
method for computing the dynamic instability of Euler beams
under arbitrary dynamic load.

In this research, the critical frequency equation of simply
supported Euler beams with a uniform section under arbi-
trary dynamic load is firstly derived based on the Mathieu-
Hill equation. An eigenvalue algorithm is then developed
to compute dynamic instability regions with high precision.
Further, the approaches for judging dynamically unstable
state under any unsteady wind force and calculating wind-
induced resonant responses are presented. Finally, a mea-
sured wind load time-history is adopted to describe the
application of the proposed methods. At the same time, a
discussion on the characteristics of wind-induced dynamic
instability of Euler beams is also given.

2. Mathieu-Hill Equation for Arbitrary
Dynamic Axial Load

The studied simply supported Euler beam with a uniform
section is shown in Figure 1, whose length is 𝑙, Young’smodule
is 𝐸, and the moment of inertia of the section is 𝐼. Under the
action of axial unsteady wind force 𝑓(𝑡), the deflection of the
beam can be denoted as [15]

𝜐 (𝑥, 𝑡) =

∞

∑

𝑖=1

𝑞
𝑖
(𝑡) sin 𝑖𝜋𝑥

𝑙
, (2)

where 𝜐(𝑥, 𝑡) is the time-varied deflection along the beam,
sin(𝑖𝜋𝑥/𝑙) is the 𝑖th modal shape of the beam, and 𝑞

𝑖
(𝑡) is the

𝑖th modal coordinate.
The arbitrary force 𝑓(𝑡) with the duration of 𝑡max can be

transformed into Fourier series by even prolongation [16]:

𝑓 (𝑡) = 𝑓
0
+

∞

∑

𝑘=1

(𝑓
𝑘
cos 𝑘𝜃𝑡) , 𝑡 ∈ [0, 𝑡max] , (3)

𝑓
0
=

1

𝑡max
∫

𝑡max

0

𝑓 (𝑡) 𝑑𝑡, (4)

𝑓
𝑘
=

2

𝑡max
∫

𝑡max

0

𝑓 (𝑡) cos 𝑘𝜃𝑡 𝑑𝑡, (5)

where 𝑓
0
and ∑∞

𝑘=1
(𝑓
𝑘
cos 𝑘𝜃𝑡) are the mean and fluctuating

component of 𝑓(𝑡), respectively. 𝑓
𝑘
and 𝑘𝜃 are the amplitude

and angular frequency of the 𝑘th harmonicwave, respectively,
and 𝜃 = 𝜋/𝑡max.

If 𝑓(𝑡) is measured by wind force time-history composed
of 𝑁 discrete data from wind tunnel lab or in field, the
maximum 𝑘 is𝑁 − 1.

Under the wind force, the Mathieu-Hill equation, corre-
sponding to the 𝑖th mode of the undamped Euler beam, can
be written as [10]

̈𝑞
𝑖
+ Ω
2

𝑖
[1 −

∞

∑

𝑘=1

(2𝜇
𝑖,𝑘
cos 𝑘𝜃𝑡)] 𝑞

𝑖
= 0, (6)

x

l

E, I

𝜐(t)

f(t)

Figure 1: The simply supported Euler beam under wind force.

where Ω
𝑖
is the 𝑖th natural frequency of the beam loaded by

𝑓
0
and 𝜇

𝑖,𝑘
is the excitation parameter of the 𝑘th harmonic

wave for the 𝑖th normal mode.
Ω
𝑖
and 𝜇

𝑖,𝑘
can be gained by

Ω
𝑖
= 𝜔
𝑖
√1 −

𝑓
0

𝑓
∗𝑖

,

𝜇
𝑖,𝑘
=

𝑓
𝑘

2 (𝑓
∗𝑖
− 𝑓
0
)
,

𝑓
∗𝑖
= 𝑖
2
𝑓
∗
=
𝑖
2
𝜋
2
𝐸𝐼

𝑙2
,

(7)

where 𝜔
𝑖
is the 𝑖th natural frequency of the unloaded beam

and 𝑓
∗
represents Euler’s critical buckling axial load of the

beam.
The Mathieu-Hill equations corresponding to normal

modes of different orders have the same form as long as
𝜇
𝑖,𝑘

and Ω
𝑖
are calculated from the same order of mode, so

the distributions of dynamic instability regions in different
modes are identical. Consequently, the subscript 𝑖 in (6)-
(7) can be omitted, and all calculations later will use the
data corresponding to 𝑖 = 1. The Mathieu-Hill equation is
rewritten as

̈𝑞 + Ω
2
[1 −

∞

∑

𝑘=1

(2𝜇
𝑘
cos 𝑘𝜃𝑡)] 𝑞 = 0. (8)

As is well known, the dynamic instability regions are
surrounded by two solutions of the Mathieu-Hill equation
with the same period, while the dynamic stability regions
are encompassed by two solutions with different periods
[10]. Hence, provided the condition that there exist periodic
solutions of the period 𝑇 or 2𝑇 (𝑇 = 2𝑡max) in (8) is found,
the dynamic instability regions can be determined.

Periodic solutions of 2𝑇 can be written in the form of
Fourier series:

𝑞 (𝑡) =

∞

∑

𝑛=1,3,5

(𝑎
𝑛
sin 𝑛𝜃𝑡

2
+ 𝑏
𝑛
cos 𝑛𝜃𝑡

2
) , (9)

where 𝑎
𝑛
and 𝑏
𝑛
are constant coefficients.

Substituting (9) into (8) and making the coefficients of
terms of sin(𝑛𝜃𝑡/2) or cos(𝑛𝜃𝑡/2) be zero generate homoge-
neous system of linear equations with respect to 𝑎

𝑛
and 𝑏
𝑛
:

(1 + 𝜇
1
−

𝜃
2

4Ω2
)𝑎
1
− (𝜇
1
− 𝜇
2
) 𝑎
3
− (𝜇
2
− 𝜇
3
) 𝑎
5
+ ⋅ ⋅ ⋅ = 0,

− (𝜇
1
− 𝜇
2
) 𝑎
1
+ (1 + 𝜇

3
−
9𝜃
2

4Ω2
)𝑎
3
− (𝜇
1
− 𝜇
4
) 𝑎
5
+ ⋅ ⋅ ⋅ = 0,
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− (𝜇
2
− 𝜇
3
) 𝑎
1
− (𝜇
1
− 𝜇
4
) 𝑎
3
+ (1 + 𝜇

5
−
25𝜃
2

4Ω2
)𝑎
5
+ ⋅ ⋅ ⋅ = 0,

...

(1 − 𝜇
1
−

𝜃
2

4Ω2
)𝑏
1
− (𝜇
1
+ 𝜇
2
) 𝑏
3
− (𝜇
2
+ 𝜇
3
) 𝑏
5
+ ⋅ ⋅ ⋅ = 0,

− (𝜇
1
+ 𝜇
2
) 𝑏
1
+ (1 − 𝜇

3
−
9𝜃
2

4Ω2
)𝑏
3
− (𝜇
1
+ 𝜇
4
) 𝑏
5
+ ⋅ ⋅ ⋅ = 0,

− (𝜇
2
+ 𝜇
3
) 𝑏
1
− (𝜇
1
+ 𝜇
4
) 𝑏
3
+ (1 − 𝜇

5
−
25𝜃
2

4Ω2
)𝑏
5
+ ⋅ ⋅ ⋅ = 0,

....
(10)

If and only if the coefficient determinant is equal to zero,
(10) has nonzero solutions. Therefore, the condition that (8)
has periodic solutions of 2𝑇 is that the coefficient determinant
of (10) is equal to zero. Considering both cases of 𝑎

𝑛
and 𝑏
𝑛
,

the critical frequency equation corresponding to 2𝑇 periodic
solutions is obtained:

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 ± 𝜇
1
−

𝜃
2

4Ω2

−𝜇
1
± 𝜇
2

1 ± 𝜇
3
−
9𝜃
2

4Ω2
symmetry

−𝜇
2
± 𝜇
3

−𝜇
1
± 𝜇
4

1 ± 𝜇
5
−
25𝜃
2

4Ω2

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

−𝜇
𝑖−1
± 𝜇
𝑖

⋅ ⋅ ⋅ −𝜇
𝑖−𝑗
± 𝜇
𝑖+𝑗−1

⋅ ⋅ ⋅ 1 ± 𝜇
2𝑖−1

−
(2𝑖 − 1)

2
𝜃
2

4Ω2
⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= 0. (11)

The critical frequency equation contains the relationship
between the frequency spectrum characteristics (amplitude
and frequency characteristics) of wind load and structural
natural frequency. By solving the equation, the boundary of
dynamic instability region 𝜃

∗
/2Ω, expressed by the ratio of

critical load frequency and structural frequency, would be
obtained. 𝜃/2Ω is called the frequency ratio, and 𝜃

∗
/2Ω is

called the critical frequency ratio.
Similarly, in order to gain the periodic solution condition

of the period 𝑇, the periodic solution of period 𝑇 is written
in the following form:

𝑞 (𝑡) = 𝑏
0
+

∞

∑

𝑛=2,4,6

(𝑎
𝑛
sin 𝑛𝜃𝑡

2
+ 𝑏
𝑛
cos 𝑛𝜃𝑡

2
) . (12)

By substituting (12) into (8) and making the coefficients
of terms of sin(𝑛𝜃𝑡/2) or cos(𝑛𝜃𝑡/2) be zero, the critical
frequency equation corresponding to the periodic solutions
of period 𝑇 is acquired:

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 + 𝜇
2
−
4𝜃
2

4Ω2

−𝜇
1
+ 𝜇
3

1 + 𝜇
4
−
16𝜃
2

4Ω2
symmetry

−𝜇
2
+ 𝜇
4

−𝜇
1
+ 𝜇
5

1 + 𝜇
6
−
36𝜃
2

4Ω2

. . . . . . . . . . . . . . . . . .

−𝜇
𝑖−1
+ 𝜇
𝑖+1

. . . −𝜇
𝑖−𝑗
+ 𝜇
𝑖+𝑗

. . . 1 + 𝜇
2𝑖
−
(2𝑖)
2
𝜃
2

4Ω2
. . .

. . . . . . . . . . . . . . . . . .

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= 0, (13)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 −𝜇
1

−𝜇
2

. . . −𝜇
𝑖−1

. . .

−2𝜇
1

1 − 𝜇
2
−
4𝜃
2

4Ω2

−2𝜇
2

−𝜇
1
− 𝜇
3

1 − 𝜇
4
−
16𝜃
2

4Ω2
symmetry

. . . . . . . . . . . . . . . . . .

−2𝜇
𝑖−1

. . . −𝜇
𝑖−𝑗
− 𝜇
𝑖+𝑗−2

. . . 1 − 𝜇
2𝑖−2

−
(2𝑖 − 2)

2
𝜃
2

4Ω2
. . .

. . . . . . . . . . . . . . . . . .

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= 0. (14)
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By solving (11) with 𝑚 order determinant, the first 𝑚
odd dynamic instability regions are obtained. Besides, by
solving (13) with 𝑚 order determinant and (14) with 𝑚 +

1 order determinant, the first 𝑚 even dynamic instability
regions are achieved. Thus, the first 2𝑚 dynamic instability
regions can be determined. Meanwhile, it is known from the
above derivation that 2𝑚 should not exceed the maximum
harmonic number𝑁 − 1.

3. Eigenvalue Algorithm for
Computing Instability Boundary

Based on the critical frequency equation, the method of mul-
tiple scales or successive approximation is commonly used
to determine the boundaries of dynamic instability regions
[17–20]. However, the computation complexity or large time
consuming of these methods generally increases rapidly
with solution precision requirement. To ensure computation
efficiency, less order of the determinant is usually selected,
which results in less accurate instability boundaries. Here, a
fast algorithm based on the eigenvalue problem is attempted
to be established for acquiring instability boundaries with
high precision.

Take the critical frequency equation (11); for example,
matrices A and B can be defined as follows:

A =

[
[
[
[

[

1 ± 𝜇
1

−𝜇
1
± 𝜇
2

1 ± 𝜇
3

symmetry
−𝜇
2
± 𝜇
3

−𝜇
1
± 𝜇
4

1 ± 𝜇
5

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

−𝜇
𝑖−1
± 𝜇
𝑖

⋅ ⋅ ⋅ −𝜇
𝑖−𝑗
± 𝜇
𝑖+𝑗−1

⋅ ⋅ ⋅ 1 ± 𝜇
2𝑖−1

⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

]
]
]
]

]

,

B =

[
[
[
[
[
[
[

[

1

9

25

d
(2𝑖 − 1)

2

d

]
]
]
]
]
]
]

]

.

(15)

Thus, (11) can be expressed as

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

A − (
𝜃

2Ω
)

2

B
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= 0. (16)

It is obvious that (16) converts the problem of solving
dynamic instability regions to the eigenvalue problem [21,
22]. Since the eigenvalue problem is easy to be solved by
means of a computer and the order of determinant has few
effects on calculated amount, much more order of the deter-
minant can be selected to meet high precision requirement.
For matrices A and B of 𝑚 order, there are 2𝑚 eigenvalues
𝜃
∗
/2Ω, which generate boundary points of 𝑚 dynamic

instability regions. By altering the value of 𝜇
1
, 𝜇
2
, . . . , 𝜇

2𝑚−1
,

the spatial instability region in 2𝑚-dimensional coordinate
system (𝜃/2Ω, 𝜇

1
, 𝜇
2
, . . . , 𝜇

2𝑚−1
) can be constructed [23]. For

the beam with known natural frequency, any unsteady wind
force determines a point in the spatial coordinate system. If
the point is located in an instability region, the beam would

become dynamically unstable under such wind force and
dynamic instability wouldnot occur otherwise.

Analogously, the instability boundaries according to the
periodic solution of 𝑇 can be determined by solving the crit-
ical frequency equations (13) and (14) through the eigenvalue
algorithm. For (13), the matrices A and B are

A =

[
[
[
[

[

1 + 𝜇
2

−𝜇
1
+ 𝜇
3

−𝜇
2
+ 𝜇
4

. . . −𝜇
𝑖−1
+ 𝜇
𝑖+1

. . .

−𝜇
1
+ 𝜇
3

1 + 𝜇
4

−𝜇
1
+ 𝜇
5

. . . . . . . . .

−𝜇
2
+ 𝜇
4

−𝜇
1
+ 𝜇
5

1 + 𝜇
6

. . . −𝜇
𝑖−𝑗
+ 𝜇
𝑖+𝑗

. . .

. . . . . . . . . . . . . . . . . .

−𝜇
𝑖−1
+ 𝜇
𝑖+1

. . . −𝜇
𝑖−𝑗
+ 𝜇
𝑖+𝑗

. . . 1 + 𝜇
2𝑖

. . .

. . . . . . . . . . . . . . . . . .

]
]
]
]

]

,

B =

[
[
[
[
[
[
[

[

4

16

36

d
(2𝑖)
2

d

]
]
]
]
]
]
]

]

.

(17)

The matrices A and B in (14) can be expressed as follows:

A =

[
[
[
[

[

1 −𝜇
1

−𝜇
2

. . . −𝜇
𝑖−1

. . .

−2𝜇
1

1 − 𝜇
2

−𝜇
1
− 𝜇
3

. . . . . . . . .

−2𝜇
2

−𝜇
1
− 𝜇
3

1 − 𝜇
4

. . . −𝜇
𝑖−𝑗
− 𝜇
𝑖+𝑗−2

. . .

. . . . . . . . . . . . . . . . . .

−2𝜇
𝑖−1

. . . −𝜇
𝑖−𝑗
− 𝜇
𝑖+𝑗−2

. . . 1 − 𝜇
2𝑖−2

. . .

. . . . . . . . . . . . . . . . . .

]
]
]
]

]

,

(18)

B =

[
[
[
[
[
[
[

[

0

4

16

d
(2𝑖 − 2)

2

d

]
]
]
]
]
]
]

]

. (19)

4. Calculation of Wind-Induced Dynamic
Instability Region and Resonant Response

The value of 𝑚 is usually fairly large to meet precision
requirement, so it is difficult to graphically display the 2𝑚-
dimensional spatial instability region and prejudge the
dynamic instability state. Here, a proportional load strategy
is adopted to augment the mean or fluctuating component of
wind force and set up the two- or three-dimensional dynamic
instability regions [24, 25].

The wind force 𝑓(𝑡) as expressed in (3), called the initial
load here, is firstly normalized as follows:

𝑓 = max
𝑘

󵄨󵄨󵄨󵄨𝑓𝑘
󵄨󵄨󵄨󵄨 , (20)

𝑓
󸀠󸀠
(𝑡) =

𝑓 (𝑡) − 𝑓
0

𝑓

=

∞

∑

𝑘=1

𝑓
𝑘

𝑓

cos 𝑘𝜃𝑡, (21)

where 𝑓 is the maximum harmonic amplitude of 𝑓(𝑡) and
𝑓
󸀠󸀠
(𝑡) is the normalized wind force, called the basic load here.
According to (20) and (21), it is clear that the mean value

and maximum harmonic amplitude of the basic load are
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0 and 1, respectively. Each harmonic amplitude of the basic
load is 𝑓 times less than that of the initial load 𝑓(𝑡).

Let 𝑓󸀠󸀠
𝑘
denote the harmonic amplitude of the basic load,

and then the basic load can be written as

𝑓
󸀠󸀠
(𝑡) =

∞

∑

𝑘=1

𝑓
󸀠󸀠

𝑘
cos 𝑘𝜃𝑡. (22)

Thus a new wind force 𝑓󸀠(𝑡) can be generated by defining
two parameters 𝛼 and 𝛽 to linearly increase the mean and
fluctuating components of wind force based on the basic load:

𝑓
󸀠
(𝑡) = 𝑓

󸀠

0
+ 𝑓
󸀠

𝑘𝑚
𝑓
󸀠󸀠
(𝑡) = 𝛼𝑓

∗
+ 𝛽𝑓
∗
𝑓
󸀠󸀠
(𝑡)

= 𝛼𝑓
∗
+

∞

∑

𝑘=1

𝛽𝑓
∗
𝑓
󸀠󸀠

𝑘
cos 𝑘𝜃𝑡 = 𝛼𝑓

∗
+

∞

∑

𝑘=1

𝛽𝑓
∗

𝑓

𝑓
𝑘
cos 𝑘𝜃𝑡,

𝛼 =
𝑓
󸀠

0

𝑓
∗

,

𝛽 =
𝑓
󸀠

𝑘𝑚

𝑓
∗

,

(23)

where𝑓󸀠(𝑡) is the newly generated wind force;𝑓󸀠
0
and𝑓󸀠
𝑘𝑚

are
themean component and themaximumharmonic amplitude
of 𝑓󸀠(𝑡), respectively; 𝛼 and 𝛽 are the ratios of 𝑓󸀠

0
and 𝑓󸀠

𝑘𝑚

to Euler’s critical load of the beam. The reason why Euler’s
critical load is adopted to denote the mean and fluctuating
components is that the structural natural frequency and
excitation parameter are both related to Euler’s critical load
as shown in (7).

For the new load, its mean component of is 𝛼𝑓
∗
and

its fluctuating component or harmonic amplitude is 𝛽𝑓
∗

times that of the basic load, while the harmonic frequency
composition is identical to the initial load or the basic load.

𝑓
󸀠
(𝑡) is further simplified as follows:

𝑓
󸀠
(𝑡) = 𝑓

󸀠

0
+

∞

∑

𝑘=1

𝑓
󸀠

𝑘
cos 𝑘𝜃𝑡, (24)

where 𝑓󸀠
𝑘
denotes the harmonic amplitude of 𝑓󸀠(𝑡).

Meanwhile, the natural frequency and excitation param-
eter corresponding to 𝑓󸀠(𝑡) can be computed by

Ω
󸀠
= 𝜔√1 −

𝑓
󸀠

0

𝑓
∗

= 𝜔√1 −
𝛼𝑓
∗

𝑓
∗

= 𝜔√1 − 𝛼,

𝜇
󸀠

𝑘
=

𝑓
󸀠

𝑘

2 (𝑓
∗
− 𝑓
󸀠

0
)
=

(𝛽𝑓
∗
/𝑓)𝑓
𝑘

2 (𝑓
∗
− 𝛼𝑓
∗
)

=

(𝛽/𝑓)𝑓
𝑘

2 (1 − 𝛼)
=

𝛽

2 (1 − 𝛼)
𝑓
󸀠󸀠

𝑘
.

(25)

The expression of excitation parameter can be further
simplified by defining

𝜇
󸀠
=

𝛽

2 (1 − 𝛼)
, (26)

where 𝜇󸀠 represents the ratio of excitation parameter and
harmonic amplitude of the basic load.

Thus, the excitation parameter of generated wind force
can be calculated by harmonic amplitude of the basic load:

𝜇
󸀠

𝑘
= 𝜇
󸀠
𝑓
󸀠󸀠

𝑘
. (27)

Moreover, the Mathieu-Hill equation consistent with
𝑓
󸀠
(𝑡) is

̈𝑞 + Ω
2
[1 − 2𝜇

󸀠

∞

∑

𝑘=1

(𝑓
󸀠󸀠

𝑘
cos 𝑘𝜃𝑡)] 𝑞 = 0. (28)

That is

̈𝑞 + Ω
2
[1 − 2𝜇

󸀠
𝑓
󸀠󸀠
(𝑡)] 𝑞 = 0. (29)

Therefore, various 𝜇󸀠 can be obtained only by adjust-
ing 𝛼 or 𝛽, and then the two-dimensional parametric
plane (𝜃/2Ω, 𝜇

󸀠
) or three-dimensional parametric space

(𝜃/2Ω, 𝛼, 𝛽) for dynamic instability regions can be graph-
ically established according to the theory in Section 3 of
this paper. For different wind forces, various distributions
of instability regions will be drawn. Because the mean
component and the peak harmonic amplitude are generally
less than Euler’s critical load, there exist 𝛼 ∈ [0, 1] and 𝛽 ∈

[0, 1].
When the parametric point (𝜃/2Ω, 𝜇󸀠) is located in the

instability region, the beam is deemed to be dynamically
unstable. In order to verify such a conclusion,modal response
𝑞(𝑡) of the beam can be calculated through the Mathieu-Hill
equation (29). 𝑞(𝑡) should keep increasingwith timewhen the
beam is unstable.

The Mathieu-Hill equation shown in (29) can be con-
verted to the following form:

̇𝑥 = − Ω
2
[1 − 2𝜇

󸀠
𝑓
󸀠󸀠
(𝑡)] 𝑞,

̇𝑞 = 𝑥.

(30)

Let

y = {𝑥
𝑞
} . (31)

Equation (29) is expressed in the vector type

̇y = 𝑓 (y, 𝑡) . (32)

For differential equations with the form of (32), the
fourth-order Runge-Kutta method can be used to solve the
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Figure 2: Rigid model in the wind tunnel tests.

unknowns [23, 26].The response 𝑞(𝑡) at the 𝑛th iteration step
can be obtained by the following iteration formula:

y
𝑛
= y
𝑛−1

+
ℎ

6
(k
1
+ 2k
2
+ 2k
3
+ k
4
) ,

k
1
= 𝑓 (𝑡

𝑛−1
, y
𝑛−1
) ,

k
2
= 𝑓(𝑡

𝑛−1
+
ℎ

2
, y
𝑛−1

+
ℎ

2
k
1
) ,

k
3
= 𝑓(𝑡

𝑛−1
+
ℎ

2
, y
𝑛−1

+
ℎ

2
k
2
) ,

k
4
= 𝑓 (𝑡

𝑛−1
+ ℎ, y
𝑛−1

+ ℎk
3
) .

(33)

The time step length is set as ℎ = 0.002 s and initial
disturbance of response is 𝑞(𝑡 = 0) = 0.001m in the latter
computation.

5. Case Study

In order to describe the application of the above approaches,
a real wind force time-history is taken from a wind tunnel
test. The rigid model tests of a cylindrical reticulated shell,
with the span of 103m, the longitudinal length of 140m, and
the height of 40m, were carried in a TJ-2 wind tunnel of
Tongji University, China, in order to obtain the time-histories
of wind pressure on the shell (Figure 2). Detailed information
on the test can be referred to Zhou et al. [27]. Here, wind
pressure at one node of the shell is extracted and converted
to full scale, and the area of 16m2 is employed to construct
wind force 𝑓(𝑡) on the beam, as shown in Figure 3.

The wind load data number is 𝑁 = 6000, and the
sampling frequency is 𝐹

𝑠
= 9.58Hz, so the load duration is

𝑡max = 𝑁/𝐹𝑠 = 626.3 s. The load is simulated by the periodic
load𝑓(𝑡)with period 2𝑡max according to (3)–(5). Comparison
of 𝑓(𝑡) and the measured data is shown in Figure 4(a). To
appreciate the two sets of data more clearly, a comparison of
shorter load duration is also given in Figure 4(b). It can be
seen that the original data are well fitted by the Fourier series.
Mean component of the wind force is 𝑓

0
= 4.19e3N and the

maximum harmonic amplitude is 𝑓 = 288.87N by (4), (5),
and (20). The relationship between harmonic amplitude 𝑓

𝑘

and corresponding harmonic frequency 𝑘/(2𝑡max) is shown in
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Figure 3: Measured wind force acting on the beam.
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(a) Load duration = 𝑡max
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Figure 4: Comparison of measured and fitted wind forces.

Figure 5, which indicates that larger amplitudes correspond
to smaller frequencies.Moreover, the natural frequency of the
beam is defined as 𝜔 = 5Hz.

Normalizing the initial load through (20)–(22) produces
the basic load 𝑓󸀠󸀠(𝑡), whose magnitude and the relationship
between harmonic amplitude and frequency are shown in
Figure 6. Comparing with the initial load (Figures 4 and 5)
shows that mean component and the maximum harmonic
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Figure 6: Time-history and frequency feature of the basic load.

amplitude of the basic load are 0 and 1m, respectively. Both
the fluctuating components and harmonic amplitudes are
reduced to 𝑓 times, while the harmonic frequencies are
invariant.

New wind load can be generated through (23)-(24) based
on the basic load, and the dynamic instability regions can
be established by substituting excitation parameters of the
new load into (15)–(19). Figure 7 gives the left and right
boundaries of the first dynamic instability region when 𝑚
is equal to 10, 40, and 80, respectively. It is obvious that the
boundary values vary with 𝑚 and larger 𝑚 results in close
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Figure 7: Comparison of the first instability regions under different
𝑚’s.
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Figure 8: Comparison of the first instability regions by the approx-
imate formula and eigenvalue method.

boundaries with higher precision. Since the results under
𝑚 = 40 and𝑚 = 80 are close,𝑚 is set for 40 in the following
calculations. Meanwhile, for convenience, only the first 100
data of wind force are selected for later computations (𝑁 =

100).
Bolotin [10] has pointed out that, if diagonal elements of

the critical frequency equation are ignored, the boundary of
the 𝑘th instability region under arbitrary dynamic load can
be calculated by the following approximate formula:

𝜃
∗

2Ω
≈
1

𝑘
√1 ± 𝜇

𝑘
. (34)

Equation (34) indicates that the 𝑘th instability region only
depends on the 𝑘th harmonic wave. Figure 8 compares the
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Figure 9: Modal response 𝑞(𝑡) of the parametric points A and B.

first instability regions gained by (34) and the eigenvalue
method, respectively. It is seen that twomethods produce dif-
ferent results, especially under larger excitation parameters.
Comparing other regions brings similar conclusions. This is
because the influence of the 𝑖th harmonic wave on the width
of the 𝑘th instability region is the order of (𝜇

𝑘
± 𝜇
𝑖
)
2 [10],

while the value of (𝜇
𝑘
± 𝜇
𝑖
)
2 under wind load could be fairly

large. Therefore, the interaction between different harmonic
waves cannot be ignored for wind-induced dynamic instabil-
ity analysis.

In order to further verify the precision of the eigenvalue
method, points A(0.65, 0.8) and B(1.31, 0.8) on the parametric
plane of Figure 8 are selected. Point A is located in the
unstable region of the approximate formula while in the
stable region of the eigenvalue method. Point B is located
in the stable region of the approximate formula while in the
unstable region of the eigenvalue method. Modal responses
𝑞(𝑡) corresponding to points A and point B are calculated
through (33), as shown in Figure 9. The modal response of
point A is confined in a scope of about 0.01m, while that of
point B increases rapidly to about 5.0m in the same duration.
Hence, the structural system corresponding to point A is
dynamically stable, but that corresponding to point B is
dynamically unstable, which is consistent with the conclusion
of the eigenvalue algorithm.This indicates that the eigenvalue
algorithm provides more accurate dynamic instability region
for arbitrary dynamic load.

Distribution of the first 40 dynamic instability regions
(the first 20 odd regions corresponding to period 2𝑇 and the
first 20 even regions corresponding to period 𝑇) is shown
as the shaded area in Figure 10. When the parametric point
(𝜃/2Ω, 𝜇

󸀠
) corresponding to the specific structure and wind

force falls in the shaded area, structural dynamic instability
occurs. In addition, according to the instability regions, the
scope of critical instability frequency can be obtained for
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Figure 10: Distribution of the first 40 instability regions on the
parametric plane (𝜃/2Ω, 𝜇󸀠).

certain 𝜇
󸀠 denoting the magnitude of wind force and the

range of 𝜇󸀠 causing dynamic instability can also be evaluated
when the frequency ratio 𝜃/2Ω is fixed.

When 𝛼 = 𝛽 = 0.5 is assumed, we have 𝜇󸀠 = 0.5

according to (26). By 𝑡max = 100/9.58 = 10.44 s, we get
𝜃 = 𝜋/𝑡max = 0.3Hz and 𝜃/2Ω = 0.043. Thus, the wind
force and the beam correspond to a parametric point C(0.043,
0.5), which is located in the shadow area of the parametric
plane in Figure 11. Figure 11 is the partial enlarged view of
Figure 10 in the scope of 𝜃/2Ω between 0.02 and 0.065. The
modal response 𝑞(𝑡) of point C is also shown in Figure 12. It
is shown that the deflection of the beam increases rapidly in
a very short time. Therefore, obvious dynamic instability is
caused by this wind force.

The above analysis indicates that the dynamic instability
of simply supported Euler beam with uniform section under
any wind load can be determined according to the values
of 𝛼, 𝛽, 𝑡max, and 𝜔. For any wind load, its basic load can
be constructed and the distribution of dynamic instability
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regions similar to Figure 10 can be drawn to determine the
state of dynamic stability.

In order to study the influence of mean or fluctuating
component on the scope of critical load frequency, paramet-
ric planes (𝜃/2Ω, 𝛼) and (𝜃/2Ω, 𝛽) can be built. Figure 13
provides the first 40 instability regions on the plane (𝜃/2Ω,
𝛽) when 𝛼 = 0, 0.5 and 0.99. It is demonstrated that the
increase of 𝛽 generally widens the scope of critical frequency
ratio under the same 𝛼. That is, when mean component of
wind load is fixed, increase of fluctuating component may
transform the beam from dynamically stable state to unstable
state. Moreover, even though the mean component is zero,
increasing fluctuating component could also cause dynamic
instability. In addition, when the mean component is close

to Euler’s critical load, the beam would become dynamically
unstable regardless of the value of 𝛽 or 𝜃.

Figure 14 illustrates the first 40 instability regions on the
plane (𝜃/2Ω, 𝛼) when 𝛽 = 0.5. It can be seen that the
scope of critical frequency ratio is enlarged in general with
the increase of 𝛼 under constant fluctuating components.
Therefore, mean component growth would make the beam
easier to be dynamically unstable.

The impact of 𝛼 or 𝛽 on the dynamic instability region
is actually the impact of 𝜇󸀠 according to the solving process
of dynamic instability regions. Increase (decrease) of 𝛼 or 𝛽
will enhance (reduce) the value of 𝜇󸀠. The point C

1
(0.043,

0.35) in the shaded area with smaller 𝜇󸀠 than the point C
is selected in Figure 11. Modal response of C

1
is shown in

Figure 15. It can be found that the wind load corresponding
to C
1
makes the beam become dynamically unstable, but

the development trend of instability of C
1
is not as obvious

as that of C. Therefore, larger mean or fluctuating compo-
nent of wind load would produce more evident trend of
instability.

Another two points C
2
(0.043, 0.13) and C

3
(0.043, 0.09)

are also selected in Figure 11. C
2
is located in the unshaded

area, while C
3
is located in the shaded area. Modal responses

corresponding to the two points are shown in Figure 16. It is
clear that, even though the mean or fluctuating component
corresponding to point C

3
is less than that of C

2
, the beam

is dynamically unstable under the wind load of C
3
, while it

is stable under the load of C
2
. Consequently, when judging

whether the structure is dynamically stable or not, the key
does not lie in the magnitude of wind load but that the
corresponding parametric point falls in dynamic instability
regions or not. Because the shape of instability regions under
complicated wind force is irregular, the beam might still
become dynamically unstable even if the load component is
very small. To determine the structural dynamic instability
under anywind force, it is required to establish the parametric
plane of instability regions and judge the position of the
corresponding parametric point.

Furthermore, in order to express vividly the relationship
between mean component, fluctuating component, and fre-
quency ratio, three-dimensional parametric space (𝜃/2Ω, 𝛼,
𝛽) can be built. Figure 17 shows the first 4 spatial instability
regions. According to the spatial instability regions, dynamic
instability of simply supported Euler beam can be determined
by any load parameters 𝛼, 𝛽 and the frequency relationship
𝜃/2Ω of wind force and the beam.

6. Conclusions

Through establishing the Mathieu-Hill equation under arbi-
trary wind force and the computation approach of dynamic
instability regions based on the eigenvalue algorithm, a
new method for analyzing the dynamic stability of simply
supported Euler beam of uniform section under unsteady
wind force is established. By introducing the basic load,
two-dimensional or three-dimensional parametric coordi-
nate system can be built to determine dynamic instability
of the beam and the dynamic instability is verified by
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calculating wind-induced resonant response. Analysis under
the measured wind load shows that any unsteady wind load
can be simulated by Fourier series for dynamic instabil-
ity study and the eigenvalue method achieves sufficiently
high precision in computing dynamic instability boundaries.
When the parametric point corresponding to specific wind
force and structure is located in the instability region,
structural response augments divergently. Increase of mean
or fluctuating component of wind force would generally
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Figure 15: Modal response 𝑞(𝑡) of the parametric point C
1
.

widen the scope of instability region and produce more
obvious development trend of dynamic instability. However,
the magnitude of wind force is not the only factor deciding
the dynamic instability state, and the key point is that the
magnitude and frequency of wind load should meet a certain
relationship with the natural frequency of the structure.
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The conjugate gradient (CG) method has played a special role in solving large-scale nonlinear optimization problems due to
the simplicity of their very low memory requirements. In this paper, we propose a new conjugacy condition which is similar to
Dai-Liao (2001). Based on this condition, the related nonlinear conjugate gradient method is given. With some mild conditions,
the givenmethod is globally convergent under the strongWolfe-Powell line search for general functions.Thenumerical experiments
show that the proposed method is very robust and efficient.

1. Introduction

The conjugate gradient (CG)method has played a special role
in solving large-scale nonlinear optimization problems due to
the simplicity of their iterations and their very low memory
requirements. In fact, the CGmethod is not among the fastest
ormost robust optimizationmethods for nonlinear problems
available today, but it remains very popular for engineers
and mathematicians who are interested in solving large-scale
problems.The conjugate gradientmethod is designed to solve
the following unconstrained optimization problem:

min {𝑓 (𝑥) | 𝑥 ∈ 𝑅
𝑛
} , (1)

where𝑓(𝑥) : 𝑅𝑛 → 𝑅 is a smooth, nonlinear function whose
gradient will be denoted by 𝑔(𝑥). The iterative formula of the
conjugate gradient method is given by

𝑥
𝑘+1

= 𝑥
𝑘
+ 𝑠
𝑘
, 𝑠

𝑘
= 𝛼
𝑘
𝑑
𝑘
, (2)

where 𝛼
𝑘
is a step-length which is computed by carrying out

a line search, and 𝑑
𝑘
is the search direction defined by

𝑑
𝑘
= {

−𝑔
𝑘

if 𝑘 = 1

−𝑔
𝑘
+ 𝛽
𝑘
𝑑
𝑘−1

if 𝑘 ≥ 2,
(3)

where 𝛽
𝑘
is a scalar and 𝑔

𝑘
denotes the gradient ∇𝑓(𝑥

𝑘
). The

different conjugate gradient methods correspond to different
computing ways of 𝛽

𝑘
. If 𝑓 is a strictly convex quadratic

function, namely,

𝑓 (𝑥) =
1

2
𝑥
𝑇
𝐻𝑥 + 𝑏

𝑇
𝑥, (4)

where 𝐻 is a positive definite matrix, and if 𝛼
𝑘
is the exact

one-dimensional minimizer along the direction 𝑑
𝑘
, then the

method with (2) and (3) is called linear conjugate gradient
method. Otherwise, it is called nonlinear conjugate gradient
method. The most important feature of linear conjugate
gradient method is that the search directions satisfy the
following conjugacy condition:

𝑑
𝑇

𝑖
𝐻𝑑
𝑗
= 0, 𝑖 ̸= 𝑗. (5)

For nonlinear conjugate gradient methods, (5) does not hold,
since the Hessian ∇

2
𝑓(𝑥) changes at different iterations.

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2014, Article ID 710376, 9 pages
http://dx.doi.org/10.1155/2014/710376

http://dx.doi.org/10.1155/2014/710376


2 Mathematical Problems in Engineering

Somewell-known formulae for𝛽
𝑘
are the Fletcher-Reeves

(FR), Polak-Ribière (PR), Hestense-Stiefel (HS), and Dai-
Yuan (DY), which are given, respectively, by

𝛽
FR
𝑘

=

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩

2

󵄩󵄩󵄩󵄩𝑔𝑘−1
󵄩󵄩󵄩󵄩

2
;

𝛽
PR
𝑘

=
𝑔
𝑇

𝑘
(𝑔
𝑘
− 𝑔
𝑘−1

)

󵄩󵄩󵄩󵄩𝑔𝑘−1
󵄩󵄩󵄩󵄩

2
;

𝛽
HS
𝑘

=
𝑔
𝑇

𝑘
(𝑔
𝑘
− 𝑔
𝑘−1

)

(𝑔
𝑘
− 𝑔
𝑘−1

)
𝑇

𝑑
𝑘−1

;

𝛽
DY
𝑘

=

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩

2

(𝑔
𝑘
− 𝑔
𝑘−1

)
𝑇

𝑑
𝑘−1

,

(6)

where ‖ ‖ denotes the Euclidean norm. Their corresponding
conjugate methods are abbreviated as FR, PR, HS, and DY
methods. In the past two decades, the convergence properties
of these methods have been intensively studied by many
researchers (e.g., [1–9]). Although all these methods are
equivalent in the linear case, namely, when 𝑓 is a strictly
convex quadratic function and 𝛼

𝑘
are determined by exact

line search, their behaviors for general objective functions
may be far different.

For general functions, Zoutendijk [10] proved the global
convergence of FR method with exact line search. (Here and
throughout this paper, for global convergence, we mean that
the sequence generated by the corresponding methods will
either terminate after finite steps or contain a subsequence
such that it converges to a stationary point of the objective
function from a given initial point.) Although one would
be satisfied with its global convergence properties, the FR
method performs much worse than the PR and HS methods
in real computations. Powell [11] analyzed a major numerical
drawback of the FR method; namely, if a small step is
generated away from the solution point, the subsequent steps
may be also very short. On the other hand, in practical
computation, the HS method resembles the PR method, and
both methods are generally believed to be the most efficient
conjugate gradient methods since these two methods essen-
tially perform a restart if a bad direction occurs. However,
Powell [12] constructed a counterexample and showed that
the PR and HS methods without restarts can cycle infinitely
without approaching the solution.This example suggests that
these twomethods have a drawback that they are not globally
convergent for general functions.Therefore, over the past few
years, much effort has been put to find out new formulae
for conjugate methods such that they are not only globally
convergent for general functions but also have robust and
efficient numerical performance.

Recently, using a new conjugacy condition, Dai and Liao
[13] proposed two new methods. Interestingly, one of their
methods is not only globally convergent for general functions
but also performs better than HS and PR methods. In this
paper, similar to Dai and Liao’s approach, we propose a new
conjugacy condition. Based on the proposed condition, a new
formula for computing 𝛽

𝑘
is given. And then, we analyze

the convergence properties for the given method and also
carry the numerical experiment which shows that the given
method is robust and efficient.

The remainder of this paper is organized as follows.
In Section 2, after a short description of Dai and Liao’s
conjugacy condition and related methods, the motivations
of this paper are represented. According to the motivations,
we propose a new conjugacy condition and related method
at the end of Section 2. In Section 3, convergence analysis
for the given method is presented. In the last Section we
perform the numerical experiments by testing a set of large-
scale problems and do some numerical comparisons with
some existing methods.

2. Motivations, New Conjugacy Condition,
and Related Method

2.1. Dai-Liao’s Methods. It is well-known that the linear
conjugate gradient methods generate a sequence of search
directions 𝑑

𝑘
such that conjugacy condition (5) holds. Denote

𝑦
𝑘−1

to be the gradient change, which means that

𝑦
𝑘−1

= 𝑔
𝑘
− 𝑔
𝑘−1

. (7)

For a general nonlinear function 𝑓, we know by the mean
value theorem that there exists some 𝑡 ∈ (0, 1) such that

𝑦
𝑇

𝑘−1
𝑑
𝑘
= 𝛼
𝑘−1

𝑑
𝑇

𝑘
∇
2
𝑓 (𝑥
𝑘−1

+ 𝑡𝛼
𝑘−1

𝑑
𝑘−1

) 𝑑
𝑘−1

. (8)

Therefore, it is reasonable to replace (5) with the following
conjugacy condition:

𝑦
𝑇

𝑘−1
𝑑
𝑘
= 0. (9)

Recently, extension of (9) has been studied by Dai and
Liao in [13]. Their approach is based on the quasi-Newton
techniques. Recall that, in the quasi-Newton method, an
approximation matrix 𝐻

𝑘−1
of the Hessian ∇

2
𝑓(𝑥
𝑘−1

) is
updated such that the new matrix 𝐻

𝑘
satisfies the following

quasi-Newton equation:

𝐻
𝑘
𝑠
𝑘−1

= 𝑦
𝑘−1

. (10)

The search direction𝑑
𝑘
in quasi-Newtonmethod is calculated

by

𝑑
𝑘
= −𝐻

−1

𝑘
𝑔
𝑘
. (11)

Combining these two equations, we obtain

𝑑
𝑇

𝑘
𝑦
𝑘−1

= 𝑑
𝑇

𝑘
(𝐻
𝑘
𝑠
𝑘−1

) = −𝑔
𝑇

𝑘
𝑠
𝑘−1

. (12)

The above relation implies that (9) holds if the line search
is exact since in this case 𝑔

𝑇

𝑘
𝑑
𝑘−1

= 0. However, practical
numerical algorithms normally adopt inexact line searches
instead of exact line search. For this reason, it seems more
reasonable to replace conjugacy condition (9) with the con-
dition

𝑑
𝑇

𝑘
𝑦
𝑘−1

= −𝑡𝑔
𝑇

𝑘
𝑠
𝑘−1

𝑡 ≥ 0, (13)

where 𝑡 ≥ 0 is a scalar.
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To ensure that the search direction 𝑑
𝑘
satisfies conjugacy

condition (13), one only needs to multiply (3) with 𝑦
𝑘−1

and
use (13), yielding

𝛽
DL1
𝑘

=
𝑔
𝑇

𝑘
(𝑦
𝑘−1

− 𝑡𝑠
𝑘−1

)

𝑑
𝑇

𝑘−1
𝑦
𝑘−1

. (14)

It is obvious that

𝛽
DL1
𝑘

= 𝛽
HS
𝑘

− 𝑡
𝑔
𝑇

𝑘
𝑠
𝑘−1

𝑑
𝑇

𝑘−1
𝑦
𝑘−1

. (15)

For simplicity, we call the method with (2), (3), and (14) as
DL1 method. Dai and Liao also proved that the conjugate
gradient method with DL1 is globally convergent for uni-
formly convex functions. For general functions, Powell [12]
constructed an example showing that the PR method may
cycle without approaching any solution point if the step-
length 𝛼

𝑘
is chosen to be the first local minimizer along 𝑑

𝑘
.

Since the DL1method reduces to the PR method in the case
that 𝑔𝑇

𝑘
𝑑
𝑘−1

= 0 holds, this implies that the method with (14)
need not converge for general functions. To get the global
convergence, Dai and Liao made a restriction on 𝛽

DL1
𝑘

as
follows

𝛽
𝑘
= max {𝛽PR

𝑘
, 0} . (16)

Dai and Liao replaced (14) by

𝛽
DL
𝑘

= max{
𝑔
𝑇

𝑘
𝑦
𝑘−1

𝑑
𝑇

𝑘−1
𝑦
𝑘−1

, 0} − 𝑡
𝑔
𝑇

𝑘
𝑠
𝑘−1

𝑑
𝑇

𝑘−1
𝑦
𝑘−1

= max {𝛽HS
𝑘
, 0} − 𝑡

𝑔
𝑇

𝑘
𝑠
𝑘−1

𝑑
𝑇

𝑘−1
𝑦
𝑘−1

.

(17)

We also call the method with (2), (3), and (17) as DL
method; Dai and Liao show that DL method is globally
convergent for general functions under sufficient descent
condition (31) and some suitable conditions. Besides, some
numerical experiments in [13] indicate the efficiency of this
method.

Similar to Dai and Liao’s approach, Li et al. [14] proposed
another conjugate condition and related conjugate gradient
methods. And they also proved that the proposed methods
are globally convergent under some assumptions.

Recently, based on a modified secant condition given by
Zhang et al. [15], Yabe and Takano [16] derive an update
parameter 𝛽

YT
𝑘

and show that the YT+ scheme is globally
convergent under some conditions:

𝛽
YT
𝑘

=
𝑔
𝑇

𝑘+1
(𝑧
𝑘
− 𝑡𝑠
𝑘
)

𝑑
𝑇

𝑘
𝑧
𝑘

, (18)

where

𝑧
𝑘
= 𝑦
𝑘
+ (

𝜌𝜃
𝑘

𝑠
𝑇

𝑘
𝑢
𝑘

)𝑢
𝑘
,

𝜃
𝑘
= 6 (𝑓

𝑘
− 𝑓
𝑘+1

) + 3(𝑔
𝑘
+ 𝑔
𝑘+1

)
𝑇

𝑠
𝑘
,

(19)

𝜌 ≥ 0 is a constant

𝛽
YT+
𝑘

= max{
𝑔
𝑇

𝑘+1
𝑧
𝑘

𝑑
𝑇

𝑘
𝑧
𝑘

, 0} − 𝑡
𝑔
𝑇

𝑘+1
𝑠
𝑘

𝑑
𝑇

𝑘
𝑧
𝑘

. (20)

2.2. Motivations. From the above discussions, Dai and Liao’s
approach is effective; the main reason is that the search
directions 𝑑

𝑘
generated by DL1 method or DL method not

only contain the gradient information but also contain some
Hessian ∇

2
𝑓(𝑥) information. From (15) and (17), 𝛽DL1

𝑘
and

𝛽
DL
𝑘

are formed by two parts; the first part is 𝛽HS
𝑘

and the
second part is −𝑡(𝑔𝑇

𝑘
𝑠
𝑘−1

/𝑑
𝑇

𝑘−1
𝑦
𝑘−1

). So we also consider DL1
and DL methods as the modified forms of the H𝑆 method
by adding some information of Hessian ∇

2
𝑓(𝑥) which is

contained in the second part.
From the structure of (17), we know that the

parameter 𝛽
DL
𝑘

may be negative since the second part
−𝑡(𝑔
𝑇

𝑘
𝑠
𝑘−1

/𝑑
𝑇

𝑘−1
𝑦
𝑘−1

) may be less than zero. In conjugate
gradient methods, if the 𝛽

𝑘
< 0 and |𝛽

𝑘
| is large, then the

generated directions 𝑑
𝑘
and 𝑑

𝑘−1
may tend to be opposite.

This type of methods is susceptible to jamming.
On the other hand, in conjugate gradient methods, the

following strong Wolfe-Powell line search is often used to
determine the step size 𝛼

𝑘
:

𝑓 (𝑥
𝑘
+ 𝛼
𝑘
𝑑
𝑘
) − 𝑓 (𝑥

𝑘
) ≤ 𝛿𝛼

𝑘
𝑔
𝑇

𝑘
𝑑
𝑘
, (21)

󵄨󵄨󵄨󵄨󵄨󵄨
𝑔(𝑥
𝑘
+ 𝛼
𝑘
𝑑
𝑘
)
𝑇

𝑑
𝑘

󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝜎

󵄨󵄨󵄨󵄨󵄨
𝑔
𝑇

𝑘
𝑑
𝑘

󵄨󵄨󵄨󵄨󵄨
, (22)

where 0 < 𝛿 < 𝜎 < 1; a typical choice of 𝜎 is 𝜎 = 0.1.
From the structure of (17), we know that 𝛽DL

𝑘
depends on

the directional derivative 𝑔𝑇
𝑘
𝑑
𝑘−1

which is determined by the
line search. For PRP+ algorithmwith the strongWolfe-Powell
line search, in order to make sufficient descent condition
(31) hold, people often used Lemarechal [17], Fletcher [18],
or Moré and Thuente’s [19] strategy to make the directional
derivative |𝑔𝑇

𝑘
𝑑
𝑘−1

| sufficiently small. Under this strategy, the
second part of 𝛽DL

𝑘
will tend to vanish. This means that the

DL method is much line-search-dependent.
The above discussions motivate us to propose a modi-

fied conjugacy condition and the related conjugate gradient
method, which should possess the following properties

(1) Nonnegative property 𝛽
𝑘
≥ 0.

(2) The new formula contains not only the gradient
information but also some Hessian information.

(3) The formula should be less line-search-dependent.

2.3. The Modified Conjugacy Condition and Related Method.
From the above discussion, it seems reasonable to replace
conjugacy condition (13) with the following modified conju-
gacy condition:

𝑑
𝑇

𝑘
𝑦
𝑘−1

= −𝑡𝑔
𝑇

𝑘−1
𝑠
𝑘−1

, 𝑡 > 0. (23)
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To ensure that the search direction 𝑑
𝑘
satisfies condition

(23), one only needs to multiply (3) with 𝑦
𝑘−1

and use (23),
yielding

𝛽
MDL
𝑘

=
𝑔
𝑇

𝑘
𝑦
𝑘−1

− 𝑡𝑔
𝑇

𝑘−1
𝑠
𝑘−1

𝑑
𝑇

𝑘−1
𝑦
𝑘−1

. (24)

It is obvious that

𝛽
MDL
𝑘

= 𝛽
HS
𝑘

− 𝑡
𝑔
𝑇

𝑘−1
𝑠
𝑘−1

𝑑
𝑇

𝑘−1
𝑦
𝑘−1

. (25)

For simplicity, we call the method with (2), (3), and (25) as
MDLmethod. Similar to Gilbert and Nocedal’s [4] approach,
we propose the following restricted parameter 𝛽MDL+

𝑘
:

𝛽
MDL+
𝑘

= max {𝛽HS
𝑘
, 0} − 𝑡

𝑔
𝑇

𝑘−1
𝑠
𝑘−1

𝑑
𝑇

𝑘−1
𝑦
𝑘−1

. (26)

And we call the method with (2), (3), and (26) as MDL+
method and give the nonlinear conjugate gradient algorithm
as below.

Algorithm 1 (MDL+). Step 1. Given 𝑥
1
∈ 𝑅
𝑛, 𝜀 ≥ 0, set 𝑑

1
=

−𝑔
1
, 𝑘 = 1 if ‖𝑔

1
‖ ≤ 𝜀, then stop.

Step 2. Compute 𝛼
𝑘
by the strong Wolfe-Powell line search.

Step 3. Let 𝑥
𝑘+1

= 𝑥
𝑘
+ 𝛼
𝑘
𝑑
𝑘
, 𝑔
𝑘+1

= 𝑔(𝑥
𝑘+1

); if ‖𝑔
𝑘+1

‖ ≤ 𝜀,
then stop.

Step 4. Compute 𝛽
𝑘
by (26) and generate 𝑑

𝑘+1
by (3).

Step 5. Set 𝑘 := 𝑘 + 1 and go to Step 2.

3. Convergence Analysis

In the convergence analysis of conjugate gradient methods,
we often make the following basic assumptions on the
objective functions.

Assumption A. (i) The level set Γ = {𝑥 ∈ 𝑅
𝑛
: 𝑓(𝑥) ≤ 𝑓(𝑥

1
)}

is bounded; namely, there exists a constant 𝐵 > 0 such that

‖𝑥‖ ≤ 𝐵, ∀𝑥 ∈ Γ. (27)

(ii) In some neighborhood𝑁 of Γ, 𝑓 is continuously dif-
ferentiable, and its gradient is Lipschitz continuous; namely,
there exists a constant 𝐿 > 0 such that

󵄩󵄩󵄩󵄩𝑔 (𝑥) − 𝑔 (𝑦)
󵄩󵄩󵄩󵄩 ≤ 𝐿

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 , ∀𝑥, 𝑦 ∈ 𝑁. (28)

Under the above assumptions of𝑓, there exists a constant 𝛾 ≥

0 such that
󵄩󵄩󵄩󵄩∇𝑓 (𝑥)

󵄩󵄩󵄩󵄩 ≤ 𝛾, ∀𝑥 ∈ Γ. (29)

We say the descent condition holds if for each search
direction 𝑑

𝑘
,

𝑔
𝑇

𝑘
𝑑
𝑘
< 0 ∀𝑘 ≥ 1. (30)

In addition, we say the sufficient descent condition holds
if there exists a constant 𝑐 > 0 such that, for each search
direction 𝑑

𝑘
, we have

𝑔
𝑇

𝑘
𝑑
𝑘
≤ −𝑐

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩

2

∀ 𝑘 ≥ 1. (31)

Under Assumption A, based on the Zoutendijk condition
in [10], for any conjugate gradient method with the strong
Wolfe-Powell line search, Dai et al. in [20] proved the
following general result.

Lemma 2. Suppose that Assumption A holds. Consider any
conjugate gradient method in the form (2)-(3), where 𝑑

𝑘
is a

descent direction and 𝛼
𝑘
is obtained by the strongWolfe-Powell

line search. If

∑

𝑘≥1

1

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩

2
= ∞, (32)

we have that
lim inf
𝑘→∞

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩 = 0. (33)

If the objective functions are uniformly convex, we can prove
that the norm of 𝑑

𝑘
generated by Algorithm 1 (MDL+) is

bounded above. Thus by Lemma 2 we immediately have the
following result.

Theorem 3. Suppose that Assumption A holds. Consider
MDL+ method, where 𝑑

𝑘
is a descent direction and 𝛼

𝑘
is

obtained by the strong Wolfe-Powell line search. If the objective
functions are uniformly convex, namely, there exists a constant
𝜇 > 0 such that

(∇𝑓 (𝑥) − ∇𝑓 (𝑦))
𝑇

(𝑥 − 𝑦) ≥ 𝜇
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

,

∀𝑥, 𝑦 ∈ Γ,

(34)

we have that
lim
𝑘→∞

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩 = 0. (35)

Proof. It follows from (34) that

𝑑
𝑇

𝑘−1
𝑦
𝑘−1

≥ 𝜇𝛼
𝑘−1

󵄩󵄩󵄩󵄩𝑑𝑘−1
󵄩󵄩󵄩󵄩

2

. (36)

By (3), (24), (28), (29), and (36), we have that
󵄩󵄩󵄩󵄩𝑑𝑘

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑔𝑘

󵄩󵄩󵄩󵄩 +
󵄨󵄨󵄨󵄨󵄨
𝛽
MDL
𝑘

󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑑𝑘−1
󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑔𝑘

󵄩󵄩󵄩󵄩 +

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑔
𝑇

𝑘
𝑦
𝑘−1

− 𝑡𝑔
𝑇

𝑘−1
𝑠
𝑘−1

𝜇𝛼
𝑘−1

󵄩󵄩󵄩󵄩𝑑𝑘−1
󵄩󵄩󵄩󵄩

2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑑𝑘−1
󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑔𝑘

󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑔𝑘 − 𝑔

𝑘−1

󵄩󵄩󵄩󵄩 + 𝑡
󵄨󵄨󵄨󵄨󵄨
𝑔
𝑇

𝑘−1
𝑠
𝑘−1

󵄨󵄨󵄨󵄨󵄨

𝜇𝛼
𝑘−1

󵄩󵄩󵄩󵄩𝑑𝑘−1
󵄩󵄩󵄩󵄩

2

󵄩󵄩󵄩󵄩𝑑𝑘−1
󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑔𝑘

󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩 𝐿

󵄩󵄩󵄩󵄩𝑠𝑘−1
󵄩󵄩󵄩󵄩 + 𝑡

󵄩󵄩󵄩󵄩𝑔𝑘−1
󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑠𝑘−1

󵄩󵄩󵄩󵄩

𝜇𝛼
𝑘−1

󵄩󵄩󵄩󵄩𝑑𝑘−1
󵄩󵄩󵄩󵄩

2

󵄩󵄩󵄩󵄩𝑑𝑘−1
󵄩󵄩󵄩󵄩

≤ 𝛾 +
𝛾𝐿

󵄩󵄩󵄩󵄩𝑠𝑘−1
󵄩󵄩󵄩󵄩 + 𝑡𝛾

󵄩󵄩󵄩󵄩𝑠𝑘−1
󵄩󵄩󵄩󵄩

𝜇𝛼
𝑘−1

󵄩󵄩󵄩󵄩𝑑𝑘−1
󵄩󵄩󵄩󵄩

2

󵄩󵄩󵄩󵄩𝑑𝑘−1
󵄩󵄩󵄩󵄩

= 𝛾𝜇
−1
(𝜇 + 𝐿 + 𝑡) ,

(37)
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which implies the truth of (32). Therefore, by Lemma 2, we
have (33), which is equivalent to (35) for uniformly convex
functions. The proof is completed.

For the method with 𝛽
MDL+
𝑘

, if descent condition (30)
holds and 𝛼

𝑘
satisfies Wolfe-Powell condition (22), then the

parameter 𝛽MDL+
𝑘

is nonnegative.

Lemma 4. In any conjugate gradient method, if the parameter
𝛽
𝑘
is computed by (26) and 𝑑

𝑘
is a descent direction, when 𝛼

𝑘
is

determined by strong Wolfe-Powell line search conditions (21)
and (22), then

𝛽
MDL+
𝑘

≥ 0. (38)

Proof. By SWP condition (22), we have 𝑑
𝑇

𝑘−1
𝑦
𝑘−1

≥ 𝜎𝑔
𝑇

𝑘−1

𝑑
𝑘−1

− 𝑔
𝑇

𝑘−1
𝑑
𝑘−1

≥ 0 and 𝑔
𝑇

𝑘−1
𝑠
𝑘−1

< 0. So we have

𝛽
MDL+
𝑘

= max {𝛽HS
𝑘
, 0} − 𝑡

𝑔
𝑇

𝑘−1
𝑠
𝑘−1

𝑑
𝑇

𝑘−1
𝑦
𝑘−1

,

≥ 0

(39)

The proof is completed.

Theorem 5. Suppose that Assumption A holds. Consider
MDL+ method, where 𝑑

𝑘
is a sufficient descent direction and

𝛼
𝑘
is obtained by strongWolfe-Powell line search. If there exists

a constant 𝛾 > 0 such that
󵄩󵄩󵄩󵄩𝑔𝑘

󵄩󵄩󵄩󵄩 ≥ 𝛾, ∀𝑘 ≥ 1, (40)

then 𝑑
𝑘

̸= 0 and

∑

𝑘≥2

󵄩󵄩󵄩󵄩𝑢𝑘 − 𝑢
𝑘−1

󵄩󵄩󵄩󵄩

2

< ∞, (41)

where 𝑢
𝑘
= 𝑑
𝑘
/‖𝑑
𝑘
‖.

Proof. First, note that 𝑑
𝑘

̸= 0; otherwise (31) is false.Therefore
𝑢
𝑘
is well defined. In addition, by relation (40) and Lemma 2,

we have that

∑

𝑘≥1

1

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩

2
< ∞. (42)

Now, we divide formula 𝛽MDL+
𝑘

into two parts as follows:

𝛽
1

𝑘
= max {𝛽HS

𝑘
, 0} , 𝛽

2

𝑘
= −𝑡

𝑔
𝑇

𝑘−1
𝑠
𝑘−1

𝑑
𝑇

𝑘−1
𝑦
𝑘−1

, (43)

and define

𝑟
𝑘
:=

𝜗
𝑘

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩

, 𝛿
𝑘
:= 𝛽
1

𝑘

󵄩󵄩󵄩󵄩𝑑𝑘−1
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩

, (44)

where 𝜗
𝑘
= −𝑔
𝑘
+ 𝛽
2

𝑘
𝑑
𝑘−1

.
Then by (3) we have, for all 𝑘 ≥ 2,

𝑢
𝑘
= 𝑟
𝑘
+ 𝛿
𝑘
𝑢
𝑘−1

. (45)

Using the identity ‖𝑢
𝑘
‖ = ‖𝑢

𝑘−1
‖ = 1 and (45), we can obtain

󵄩󵄩󵄩󵄩𝑢𝑘 − 𝛿
𝑘
𝑢
𝑘−1

󵄩󵄩󵄩󵄩

2

= 1 + 𝛿
2

𝑘
− 2𝛿
𝑘
𝑢
𝑇

𝑘
𝑢
𝑘−1

, (46)

󵄩󵄩󵄩󵄩𝛿𝑘𝑢𝑘 − 𝑢
𝑘−1

󵄩󵄩󵄩󵄩

2

= 1 + 𝛿
2

𝑘
− 2𝛿
𝑘
𝑢
𝑇

𝑘
𝑢
𝑘−1

, (47)
󵄩󵄩󵄩󵄩𝑟𝑘

󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩𝑢𝑘 − 𝛿

𝑘
𝑢
𝑘−1

󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩𝛿𝑘𝑢𝑘 − 𝑢

𝑘−1

󵄩󵄩󵄩󵄩 . (48)

Using the condition 𝛿
𝑘
= max{𝛽HS

𝑘
, 0}(‖𝑑

𝑘−1
‖/‖𝑑
𝑘
‖) ≥ 0, the

triangle inequality, and (48), we obtain

󵄩󵄩󵄩󵄩𝑢𝑘 − 𝑢
𝑘−1

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩(1 + 𝛿

𝑘
) 𝑢
𝑘
− (1 + 𝛿

𝑘
) 𝑢
𝑘−1

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑢𝑘 − 𝛿

𝑘
𝑢
𝑘−1

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝛿𝑘𝑢𝑘 − 𝑢

𝑘−1

󵄩󵄩󵄩󵄩

= 2
󵄩󵄩󵄩󵄩𝑟𝑘

󵄩󵄩󵄩󵄩 .

(49)

On the other hand, line search condition (22) gives

𝑦
𝑇

𝑘−1
𝑑
𝑘−1

≥ (𝜎 − 1) 𝑔
𝑇

𝑘−1
𝑑
𝑘−1

> 0. (50)

Equations (22), (31), and (50) imply that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑔
𝑇

𝑘−1
𝑑
𝑘−1

𝑑
𝑇

𝑘−1
𝑦
𝑘−1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
1

1 − 𝜎
. (51)

It follows from the definition of 𝜗
𝑘
, (27), (29), and (51) that

󵄩󵄩󵄩󵄩𝜗𝑘
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩 + 𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑔
𝑇

𝑘−1
𝑠
𝑘−1

𝑑
𝑇

𝑘−1
𝑦
𝑘−1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑑𝑘−1
󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝑔𝑘

󵄩󵄩󵄩󵄩 + 𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑔
𝑇

𝑘−1
𝑑
𝑘−1

𝑑
𝑇

𝑘−1
𝑦
𝑘−1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑠𝑘−1
󵄩󵄩󵄩󵄩

≤ 𝛾 + 𝑡
1

1 − 𝜎
2𝐵.

(52)

So we have

∑
󵄩󵄩󵄩󵄩𝑢𝑘 − 𝑢

𝑘−1

󵄩󵄩󵄩󵄩

2

≤ 4∑
󵄩󵄩󵄩󵄩𝑟𝑘

󵄩󵄩󵄩󵄩

2

≤ 4∑
𝜗
2

𝑘

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩

2

≤ 4(𝛾 + 𝑡
1

1 − 𝜎
2𝐵)

2

∑
1

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩

2

< ∞

(53)

and the proof is completed.

Gilbert and Nocedal [4] introduced property (∗) which is
very important for the convergence analysis of the conjugate
gradientmethods. In fact, with AssumptionA, (40), and (50),
if (31) holds with some constant 𝑐 > 0, the method with
𝛽
MDL+
𝑘

possesses such property (∗).

Property 1 (∗). Consider a method of forms (2) and (3).
Suppose that

0 < 𝛾 ≤
󵄩󵄩󵄩󵄩𝑔𝑘

󵄩󵄩󵄩󵄩 ≤ 𝛾 ∀𝑘 ≥ 1. (54)
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We say that the method has property (∗), if, for all 𝑘, there
exist constants 𝑏 > 1, 𝜆 > 0 such that |𝛽

𝑘
| ≤ 𝑏, and if ‖𝑠

𝑘−1
‖ ≤

𝜆, we have |𝛽
𝑘
| ≤ 1/2𝑏.

In fact, by (31), (40), and (50), we have

𝑑
𝑇

𝑘−1
𝑦
𝑘−1

≥ (𝜎 − 1) 𝑔
𝑇

𝑘−1
𝑑
𝑘−1

≥ 𝑐 (1 − 𝜎)
󵄩󵄩󵄩󵄩𝑔𝑘−1

󵄩󵄩󵄩󵄩

2

≥ (1 − 𝜎) 𝑐𝛾
2
.

(55)

Combining (55) with (27) and (28) and (29), we obtain

󵄨󵄨󵄨󵄨󵄨
𝛽
MDL+
𝑘

󵄨󵄨󵄨󵄨󵄨
≤
𝛾𝐿

󵄩󵄩󵄩󵄩𝑠𝑘−1
󵄩󵄩󵄩󵄩 + 𝑡𝛾

󵄩󵄩󵄩󵄩𝑠𝑘−1
󵄩󵄩󵄩󵄩

(1 − 𝜎) 𝑐𝛾
2

≤
2𝐵 (𝐿 + 𝑡) 𝛾

(1 − 𝜎) 𝑐𝛾
2
=: 𝑏. (56)

Note that 𝑏 can be defined such that 𝑏 > 1. Therefore we can
say that 𝑏 > 1. As a result, we define

𝜆 :=
(1 − 𝜎) 𝑐𝛾

2

2𝑏 (𝐿 + 𝑡) 𝛾
, (57)

and we get from the first inequality in (56) that if ‖𝑠
𝑘−1

‖ ≤ 𝜆,
then

󵄨󵄨󵄨󵄨󵄨
𝛽
MDL+
𝑘

󵄨󵄨󵄨󵄨󵄨
≤

𝛾 (𝐿 + 𝑡) 𝜆

(1 − 𝜎) 𝑐𝛾
2

=
𝛾 (𝐿 + 𝑡)

(1 − 𝜎) 𝑐𝛾
2

(1 − 𝜎) 𝑐𝛾
2

2𝑏 (𝐿 + 𝑡) 𝛾
=

1

2𝑏
.

(58)

Let𝑁∗ denote the set of positive integers. For 𝜆 > 0 and
a positive integer Δ, denote

𝐾
𝜆

𝑘,Δ
:= {𝑖 ∈ 𝑁

∗
: 𝑘 ≤ 𝑖 ≤ 𝑘 + Δ − 1,

󵄩󵄩󵄩󵄩𝑠𝑘−1
󵄩󵄩󵄩󵄩 > 𝜆} . (59)

Let |𝐾𝜆
𝑘,Δ

| denote the number of elements in 𝐾
𝜆

𝑘,Δ
. From the

above property (∗), we can prove the following theorem.

Theorem 6. Suppose that Assumption A holds. Consider
MDL+ method, where 𝑑

𝑘
satisfies condition (31) with 𝑐 > 0,

and 𝛼
𝑘
is obtained by the strongWolfe-Powell line search.Then

if (40) holds, there exists 𝜆 > 0 such that, for any Δ ∈ 𝑁
∗ and

any index 𝑘
0
, there is an index 𝑘 ≥ 𝑘

0
such that

󵄨󵄨󵄨󵄨󵄨
𝐾
𝜆

𝑘,Δ

󵄨󵄨󵄨󵄨󵄨
>
Δ

2
. (60)

The proof of this theorem is similar to the proof of Lemma
3.5 in [13]. So, we omit the proof.

According to the above lemmas and theorems, we
can prove the following convergence result for the MDL+
method.

Theorem 7. Suppose that Assumption A holds. Consider
MDL+ method, where 𝑑

𝑘
satisfies condition (31) with 𝑐 > 0,

and 𝛼
𝑘
is obtained by the strongWolfe-Powell line search.Then

we have lim inf
𝑘→∞

‖𝑔
𝑘
‖ = 0.

Proof. We proceed by contradiction. If lim inf
𝑘→∞

‖𝑔
𝑘
‖ > 0,

then (40) must hold.Then the conditions ofTheorem 6 hold.
Defining 𝑢

𝑖
= 𝑑
𝑖
/‖𝑑
𝑖
‖, we have, for any indices 𝑙, 𝑘, with 𝑙 ≥ 𝑘,

𝑥
𝑙
− 𝑥
𝑘−1

=

𝑙

∑

𝑖=𝑘

𝑥
𝑖
− 𝑥
𝑖−1

=

𝑙

∑

𝑖=𝑘

𝛼
𝑖−1

𝑑
𝑖−1

=

𝑙

∑

𝑖=𝑘

𝑢
𝑖−1

󵄩󵄩󵄩󵄩𝑠𝑖−1
󵄩󵄩󵄩󵄩

=

𝑙

∑

𝑖=𝑘

󵄩󵄩󵄩󵄩𝑠𝑖−1
󵄩󵄩󵄩󵄩 𝑢𝑘−1 +

𝑙

∑

𝑖=𝑘

󵄩󵄩󵄩󵄩𝑠𝑖−1
󵄩󵄩󵄩󵄩 (𝑢𝑖−1 − 𝑢

𝑘−1
) .

(61)

Consider ‖𝑢
𝑖
‖ = 1; (27) and (61) give that

𝑙

∑

𝑖=𝑘

󵄩󵄩󵄩󵄩𝑠𝑖−1
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑥𝑙 − 𝑥
𝑘−1

󵄩󵄩󵄩󵄩 +

𝑙

∑

𝑖=𝑘

󵄩󵄩󵄩󵄩𝑠𝑖−1
󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑢𝑖−1 − 𝑢

𝑘−1

󵄩󵄩󵄩󵄩

≤ 2𝐵 +

𝑙

∑

𝑖=𝑘

󵄩󵄩󵄩󵄩𝑠𝑖−1
󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑢𝑖−1 − 𝑢

𝑘−1

󵄩󵄩󵄩󵄩 .

(62)

Let 𝜆 > 0 be given by Theorem 6 and define Δ := ⌈8𝐵/𝜆⌉

to be the smallest integer not less than 8𝐵/𝜆. By Theorem 6,
we can find an index 𝑘

0
≥ 1 such that

∑

𝑖≥𝑘0

󵄩󵄩󵄩󵄩𝑢𝑖−1 − 𝑢
𝑘−1

󵄩󵄩󵄩󵄩

2

≤
1

4Δ
. (63)

With this Δ and 𝑘
0
, Theorem 6 gives an index 𝑘 ≥ 𝑘

0
such

that

󵄨󵄨󵄨󵄨󵄨
𝐾
𝜆

𝑘,Δ

󵄨󵄨󵄨󵄨󵄨
>
Δ

2
. (64)

For any index 𝑖 ∈ [𝑘, 𝑘 + Δ − 1], by Cauchy-Schwarz, the
geometric inequalities, and (63),

󵄩󵄩󵄩󵄩𝑢𝑖 − 𝑢
𝑘−1

󵄩󵄩󵄩󵄩 ≤

𝑖

∑

𝑗=𝑘

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑗
− 𝑢
𝑗−1

󵄩󵄩󵄩󵄩󵄩

≤ (𝑖 − 𝑘 + 1)
1/2

(

𝑖

∑

𝑗=𝑘

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑗
− 𝑢
𝑗−1

󵄩󵄩󵄩󵄩󵄩

2

)

1/2

≤ Δ
1/2

(
1

4Δ
)

1/2

=
1

2
.

(65)

From relations (64) and (65), by taking 𝑙 = 𝑘 + Δ − 1 in (62),
we get

2𝐵 ≥
1

2

𝑘+Δ−1

∑

𝑖=𝑘

󵄩󵄩󵄩󵄩𝑠𝑖−1
󵄩󵄩󵄩󵄩 >

𝜆

2

󵄨󵄨󵄨󵄨󵄨
𝐾
𝜆

𝑘,Δ

󵄨󵄨󵄨󵄨󵄨
>
𝜆Δ

4
. (66)

Thus Δ < 8𝐵/𝜆, which contradicts the definition of Δ. The
proof is completed.
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4. Numerical Results

In this section, we report the performance of Algorithm 1
(MDL+) on a set of test problems. The codes were written in
Fortran 77 and in double precision arithmetic. All the tests
were performed on the same PC (Intel Core i3 CPU M370
@ 2.4GH, 2GB RAM). The experiments were performed
on a set of 73 nonlinear unconstrained problems collected
by Neculai Andrei. Some of the problems are from CUTE
[21] library. For each test problem, we have performed 10
numerical experiments with a number of variables 𝑛 = 1000,
2000,. . ., 10000.

In order to assess the reliability of the MDL+ algorithm,
we also tested this method against the DL method and
HS method using the same problems. All these algorithms
terminate when ‖𝑔

𝑘
‖ ≤ 10

−5. We also force the routines to
stop if the iterations exceed 1000 or the number of function
evaluations reaches 2000. The parameters 󳵻 and 𝜎 in Wolfe-
Powell line search conditions (21) and (22) are set to be 10−4
and 10

−1 respectively. For DL method, 𝑡 = 0.1, which is the
same with [13]. We also test MDL+ algorithm with different
parameters 𝑡 to see that 𝑡 = 0.05 is the best choice.

The comparing data contain the iterations, function,
and gradient evaluations and CPU time. To approximatively
assess the performance of MDL+, HS, and DL methods, we
use the profile of Dolan and Moré [22] as an evaluated tool.

Dolan and Moré [22] gave a new tool to analyze the
efficiency of algorithms. They introduced the notion of a
performance profile as a means to evaluate and compare the
performance of the set of solvers 𝑆 on a test set 𝑃. Assuming
that there exist 𝑛

𝑠
solvers and 𝑛

𝑝
problems, for each problem

𝑝 and solver 𝑠, they defined 𝑡
𝑝,𝑠

= computing cost (iterations
or function and gradient evaluations or CPU time) required
to solve problem 𝑝 by solver 𝑠.

Requiring a baseline for comparisons, they compared
the performance on problem 𝑝 by solver 𝑠 with the best
performance by any solver on this problem; that is, using the
performance ratio

𝑟
𝑝,𝑠

=

𝑡
𝑝,𝑠

min {𝑡
𝑝,𝑠

: 𝑠 ∈ 𝑆}

. (67)

Suppose that a parameter𝑀 ≥ 𝑟
𝑝,𝑠

for all𝑝, 𝑠. Set 𝑟
𝑝,𝑠

= 𝑀

if and only if solver 𝑠 does not solve problem 𝑝. Then they
defined

𝜌
𝑠
(𝜏) =

1

𝑛
𝑝

size {𝑝 ∈ 𝑃 : 𝑟
𝑝,𝑠

≤ 𝜏} . (68)

Thus 𝜌
𝑠
(𝜏) is the probability for solver 𝑠 that a performance

ratio 𝑟
𝑝,𝑠

is within factor 𝜏 ≥ 1 of the best possible ratio.
Then function 𝜌

𝑠
is the distribution function for the perfor-

mance ratio. The performance profile 𝜌
𝑠
is a nondecreasing,

piecewise constant function.That is, for subset of themethods
being analyzed, we plot the fraction 𝑃 of the problems for
which any given method is within a factor 𝜏 of the best.

For the testing problems, if all three methods can not
terminate successfully, then we got rid of it. In case one
method fails, but there is another method that terminates
successfully, then the performance ratio of the failed method
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Figure 1: Iterations.
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Figure 2: Function and gradient evaluations.

is set to be 𝑀 (𝑀 is the maxima of the performance ratios).
The performance profiles based on iterations, function and
gradient evaluations, and CPU time of the three methods are
plotted in Figures 1, 2, and 3, respectively.

From Figure 1, which plots the performance profile based
on iterations, when 𝜏 = 1, the HS method performs better
thanMDL+ and DLmethods.With the increasing of 𝜏, when
𝜏 ≥ 1.3, the profile ofMDL+method outperformsHS andDL
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Figure 3: CPU time.

methods. This means that, from the iteration points of view,
for a subset of problems, HSmethod is better thanMDL+ and
DLmethods. But, for all the testing problems, DML+method
is much robuster than HS and DL methods.

From Figure 2, which plots the performance profile based
on function and gradient evaluations, it is easy to see that, for
all 𝜏 ≥ 1, MDL+ method performs much better than HS and
DL methods. It is an interesting phenomenon, since, when
𝜏 ≤ 1.3, the profiles of HS based on iterations outperform
DML+ method. This means that, during process of iteration,
the required function and gradient evaluations of MDL+
method are much less than HS and DL methods. Form this
point of view, the CPU time consumed by MDL+ method
should be much less than HS and DL methods, since the
CPU time is mainly dependent on function and gradient
evaluations. Figure 3 validates that the CPU time consumed
by MDL+ method is much less than HS and DL methods.
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[22] E. D. Dolan and J. J. Moré, “Benchmarking optimization soft-
ware with performance profiles,”Mathematical Programming B,
vol. 91, no. 2, pp. 201–213, 2002.



Research Article
A Model Based on Cocitation for Web Information Retrieval

Yue Xie and Ting-Zhu Huang

School of Mathematical Sciences, University of Electronic Science and Technology of China, Sichuan, Chengdu 611731, China

Correspondence should be addressed to Ting-Zhu Huang; tingzhuhuang@126.com

Received 16 August 2013; Revised 13 January 2014; Accepted 13 January 2014; Published 27 February 2014

Academic Editor: Masoud Hajarian

Copyright © 2014 Y. Xie and T.-Z. Huang. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

According to the relationship between authority and cocitation in HITS, we propose a new hyperlink weighting scheme to describe
the strength of the relevancy between any two webpages. Then we combine hyperlink weight normalization and random surfing
schemes as used in PageRank to justify the new model. In the new model based on cocitation (MBCC), the pages with stronger
relevancy are assigned higher values, not just depending on the outlinks.Thismodel combines both features ofHITS and PageRank.
Finally, we present the results of some numerical experiments, showing that the MBCC ranking agrees with the HITS ranking,
especially in top 10. Meanwhile, MBCC keeps the superiority of PageRank, that is, existence and uniqueness of ranking vectors.

1. Introduction

In the past, search engines ranked pages by using word fre-
quency or similar measures. However, the relevancy of web-
pages returned by this traditional web information retrieval
is still lacking, because the webpages are created with varying
qualities. Recently, some new algorithms have been created
that greatly improve rankings. One of the popular ideas is to
use hyperlinks to determine the value of different webpages.
This hyperlink graph contains useful information: if webpage
𝑖 has a link pointing to webpage 𝑗, it usually indicates that the
creator of 𝑖 considers 𝑗 to contain relevant information for 𝑖.
Such useful opinions and knowledge are therefore registered
in the formof adjacencymatrix which is denoted by𝐿.𝐿

𝑖𝑗
= 1

if there is a link from 𝑖 to 𝑗, or 0, otherwise.
Twomost popular ranking algorithms based on hyperlink

analysis are the PageRank algorithm [1, 2] and the HITS
(Hyper-text Induced Topic Selection) algorithm [3]. Gener-
ally, PageRank considers the hyperlink weight normalization
and the equilibrium distribution of random surfers as the
citation score. For more information about the calculation
methods of PageRank refer to [4–6]. HITS makes the dis-
tinction between hubs and authorities and then computes
them in a mutually reinforcing way. For each of these two
algorithms, the ranking vector is the dominant eigenvector
of some matrix describing the network. How this matrix is
defined differs in each method. There are other works which

have recognized that the hyperlink structure can be very
valuable for locating information [3, 7, 8].

This paper is organized as follows. In Section 2, we
introduce the PageRank and HITS algorithms and briefly
discuss the limitations in HITS. Then in Section 3, we
emphasize the role of cocitation (Figure 1) and provide a
hyperlink weighting scheme to describe the strength of the
relevancy between any two webpages. In order to ensure the
existence of solutions and uniqueness of solutions in the new
model (MBCC), we also combine ideas from PageRank. In
Section 4, some experiments are presented. The result shows
that the MBCC ranking is close well to the HITS ranking.
Conclusions are given in Section 5.

2. PageRank and HITS

We treat the web as a directed graph 𝐷 = (𝑉, 𝐸): the nodes
in 𝑉 correspond to the pages, and a directed edge (𝑖, 𝑗) ∈ 𝐸
indicates the existence of a link from 𝑖 to 𝑗. We say that the
out-degree of a node 𝑖 denoted by 𝑑out(𝑖) is the number of
nodes it has links point to, and the in-degree of 𝑖 denoted by
𝑑in(𝑖) is the number of nodes that have links point to it. We
also denote that

𝑑out = (𝑑out (1) , . . . , 𝑑out (𝑛))
𝑇

,

𝑑in = (𝑑in (1) , . . . , 𝑑in (𝑛))
𝑇

.

(1)
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2.1. Review of PageRank. PageRank [1, 2] uses a web surfing
model based on a random walk process. Suppose there is a
link from page 𝑖 to page 𝑗; that is, (𝑖, 𝑗) ∈ 𝐸. Consider a
random surfer visiting page 𝑖 at time 𝑡. Then at the next time
𝑡+1, the surfer lands at page 𝑗with probability 1/𝑑out(𝑖). Once
the above is done, the PageRank algorithm assigns a rank
value 𝑥

𝑖
for the page 𝑖 as a function of the rank of the pages

that point to it:

𝑥
𝑖
= ∑

(𝑗,𝑖)∈𝐸

𝑟
𝑖

𝑑out (𝑗)
. (2)

If the page 𝑖 has no outlink, that is, 𝑑out(𝑖) = 0, then,
at time 𝑡 + 1, the surfer chooses any page with probability
1/𝑛. Thus, we replace 𝑑out(𝑖) = 0 with 𝑑out(𝑖) = 𝑛. Then
the stationary distribution 𝑥 is determined by the following
matrix form:

𝑥 = 𝑃
𝑇
𝑥, 𝑃

𝑇
= (𝐿 + 𝑑𝑒

𝑇
)
𝑇

𝐷
−1

out. (3)

Here 𝑥 = (𝑥
1
, . . . , 𝑥

𝑛
)
𝑇, 𝐿 is the adjacency matrix of the

directed web graph,𝐷out = diag(𝑑out), and 𝑒 = (1, . . . , 1)
𝑇. In

the vector𝑑, the element𝑑
𝑖
= 1 if the 𝑖th row of𝐿 corresponds

to a dangling node (𝑑out(𝑖) = 0), or 0, otherwise.
In order to calculate the above recursive equation and get

a unique stationary probability distribution, it is important
to guarantee that (3) is convergent. This problem can be
solved if the directed graph 𝐷 is strongly connected, which
is generally not the case for the directed graph. In the context
of computing PageRank, the standard way of ensuring this
property is to add a new set of complete outgoing transitions,
with small transition probabilities (in this work, we set each of
them as 1/𝑛), to all nodes in𝐷. Then the modified transition
probability called Google matrix is

𝐺
𝑇
= 𝛼(𝐿 + 𝑑𝑒

𝑇
)
𝑇

𝐷
−1

out + (1 − 𝛼) (
1

𝑛
) 𝑒𝑒
𝑇
, (4)

where 𝛼 = 0.8 ∼ 0.9. Here 𝑒 = (1, . . . , 1)𝑇; thus 𝑒𝑒𝑇 is a matrix
of all 1’s. The PageRank algorithm is to solve the eigenvector
of the Google matrix 𝐺𝑇

𝑥 = 𝐺
𝑇
𝑥,

𝑛

∑

𝑖=1

𝑥
𝑖
= 1, (5)

where 𝐺𝑇 is stochastic and irreducible.
PageRank models two types of random jumps on the

Internet. With probability 1 − 𝛼 a surfer randomly chooses a
new page. Otherwise, the surfer follows one of directed edges
from the present node.

2.2. Review of HITS. In the HITS algorithm [3], each web-
page 𝑖 has both a hub score 𝑦

𝑖
(based on the links going

from the page) and an authority score 𝑥
𝑖
(based on the links

going to the page). Let 𝑥 = (𝑥
1
, . . . , 𝑥

𝑛
)
𝑇 denote the vector

of all authority weights, let 𝑦 = (𝑦
1
, . . . , 𝑦

𝑛
)
𝑇 denote the

vector of all hub weights, and let 𝐿 be the adjacency matrix
of the directed web graph. In HITS, there are two operations

at each iteration. One is defined as operation I which sets
the authority vector to 𝑥 = 𝐿

𝑇
𝑦. It indicates that a good

authority is pointed by many good hubs. Another is defined
as operation O which sets the hub vector to 𝑦 = 𝐿𝑥. It
indicates that a good hub points to many good authorities.
This mutually reinforcing relationship can be written in the
following matrix representations:

𝑥 =
1

𝜆∗
𝐿
𝑇
𝐿𝑥,

𝑛

∑

𝑖=1

𝑥
2

𝑖
= 1,

𝑦 =
1

𝜆∗
𝐿𝐿
𝑇
𝑦,

𝑛

∑

𝑖=1

𝑦
2

𝑖
= 1.

(6)

The final authority and hub scores are the principal
eigenvectors of 𝐿𝑇𝐿 and 𝐿𝐿𝑇 which are corresponding to the
dominant eigenvalue 𝜆∗. Since 𝐿𝑇𝐿 and 𝐿𝐿𝑇 determine the
authority ranking and hub ranking, we call 𝐿𝑇𝐿 the authority
matrix and 𝐿𝐿𝑇 the hub matrix.

In the fields of citation analysis and bibliometrics, it has
shown that the authority matrix has interesting connections
to cocitation [3]. Here cocitation is defined as the number of
webpages that cocite 𝑖, 𝑗 [9]. In the authoritymatrix, (𝐿𝑇𝐿)

𝑖𝑖
=

Σ
𝑛

𝑘=1
𝐿
𝑘𝑖
𝐿
𝑘𝑖
= Σ
𝑛

𝑘=1
𝐿
𝑘𝑖
is the in-degree of page 𝑖; that is,

(𝐿
𝑇
𝐿)
𝑖𝑖
= 𝑑in (𝑖) . (7)

This implies that

diag (𝐿𝑇𝐿) = 𝐷in. (8)

For 𝑖 ̸= 𝑗, (𝐿𝑇𝐿)
𝑖𝑗
= Σ
𝑛

𝑘=1
𝐿
𝑘𝑖
𝐿
𝑘𝑗
is the number of webpages

that cocite 𝑖, 𝑗 that is denoted by 𝐶
𝑖𝑗
. Therefore the authority

matrix 𝐿𝑇𝐿 is the sum of in-degree and cocitation [10, 11]

𝐿
𝑇
𝐿 = 𝐷in + 𝐶. (9)

The self cocitation 𝐶
𝑖𝑖
in 𝐶 is not defined and is usually set to

0.

2.3. Existence and Uniqueness of Ranking Vectors. In this
section, we present the existence and uniqueness of ranking
vectors in the above two algorithms.

Since the Google matrix 𝐺𝑇 in (4) is stochastic and irre-
ducible, for the PageRank algorithm, the PageRank ranking
vector exists, and it is unique and positive. See the equivalent
theorem in [12, Theorem 3.8]. For the HITS algorithm, it
has been proved that the hub and authority ranking vectors
exist but may not be unique. In [12], they show that the
HITS algorithm badly behaved on certain networks, meaning
that (i) it can return ranking vectors that are not unique but
depend on the initial seed vector or (ii) it can return ranking
vectors that inappropriately assign zeroweights to parts of the
network.

There are also other limitations for HITS; see [12, 13].
Thus, to address these limitations, a modification for HITS
is needed, for example, exponentiated input method in [12].
In the next section, we combine both features of HITS
and PageRank. The ranking produced by the new model is
expected to be unique and close to the HITS ranking.
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Figure 1: Webpages 𝑖, 𝑗 are cocited by webpage 𝑘.

3. A Model Based on Cocitation (MBCC)

In HITS, according to (9), the authority ranking value 𝑥
𝑖
can

be expressed as

𝑥
𝑖
=
1

𝜆∗
𝑑in (𝑖) 𝑥𝑖 +

1

𝜆∗

𝑛

∑

𝑗=1

𝐶
𝑖𝑗
𝑥
𝑗
, (10)

revealing the close relationship between authorities and
cocitations. It also implies that, if two distinct webpages 𝑖, 𝑗
are cocited by many other webpages 𝑘 as shown in Figure 1,
then 𝑖, 𝑗 are likely to be related in some sense. In this paper,
we present a property for HITS corresponding to (10).

Property 1 (relationship between authority value and cocita-
tion). If the number of webpages that cocite webpages 𝑖 and
𝑗, that is,𝐶

𝑖𝑗
, is larger, the page 𝑖 could receive more authority

value from the page 𝑗, even though there are no links between
𝑖 and 𝑗.

The fact that the webpages cocite two distinct webpages 𝑖
and 𝑗 indicates that 𝑖, 𝑗 have certain commonality. Therefore,
we say that the number of cocitations represents the relevancy
among the pages. Then, in the following, we focus on the use
of cocitation for analyzing the relevancy among the pages.

Note that, in Section 2.1, the rank of a page in PageRank
is divided among its forward links evenly; see (2); that is,
a web surfer could chose the forward outlinks randomly.
However, this process of dividing the rank equally may seem
unrealistic; that is, a web surfer may have a priori idea of
the value of pages, favoring pages from the relevant sites.
Since it shows that the number of cocitations could represent
the relevancy among the pages, we say that the number of
cocitations between two pages can impact the behavior of
web surfers. Therefore, we define a new hyperlink weighting
scheme based on cocitation as follows:

Definition 2 (hyperlink weighting scheme based on cocita-
tion). Let 𝑄

𝑖𝑗
be the number of webpages that cocite two

webpages 𝑖, 𝑗. Specially,𝑄
𝑖𝑖
= 𝑑in(𝑖), and𝑑in(𝑖) is the in-degree

Table 1: The data of Example 1.

(𝑗
1
, 𝑗
1
) (𝑗

1
, 𝑗
2
) (𝑗

1
, 𝑗
3
)

𝑄 3 3 1
𝑊 3/7 3/7 1/7

of webpage 𝑖. Then we define the following function as the
value of 𝑗 which will receive form 𝑖:

𝑊
𝑖𝑗
=

𝑄
𝑖𝑗

∑
𝑘∈𝑉

𝑄
𝑖𝑘

=

𝑄
𝑖𝑗

𝑄
𝑖

, (11)

where 𝑄
𝑖
= ∑
𝑘∈𝑉

𝑄
𝑖𝑘
.

Under this assignment method, the rank value for the
page 𝑗 is determined by

𝑥
𝑗
= ∑

𝑚∈𝑉

𝑊
𝑚𝑗
𝑥
𝑚
. (12)

The matrix form of above equation is 𝑥 = 𝑊𝑥, where
𝑥 = (𝑥

1
, . . . , 𝑥

𝑛
)
𝑇. The problem is that, if at least one page has

zero in-degree, that is, no in-links and𝑄
𝑖
= 0, then thematrix

𝑊 is absorbing and its dominant eigenvector does not exist.
In order to resolve this, similarly to PageRank, we assume
that, if the page 𝑖 has no link that points to it, then at time
𝑡 + 1, the page 𝑖 divides its value equally to any other page
with probability 1/𝑛. The modified matrix𝑊 is given by

𝑊 = (𝐿
󸀠
𝐿 + V𝑒𝑇)

𝑇

𝐷
−1

𝑄
= (𝐿
󸀠
𝐿 + 𝑒V𝑇)𝐷−1

𝑄
, (13)

where we replace 𝑄
𝑖
= 0 with 𝑄

𝑖
= 𝑛, 𝐷

𝑄
= diag(𝑄) and

𝑄 = (𝑄
1
, . . . , 𝑄

𝑛
)
𝑇. 𝑄 can be computed as

𝑄 = (𝐿
󸀠
𝐿 + V𝑒𝑇) 𝑒. (14)

In the vector V, the element V
𝑖
= 1 if the 𝑖-th row of 𝐿

corresponds to a page with no in-degree, or 0, otherwise.
Therefore, the modified matrix 𝑊 becomes a stochastic
matrix, that is, each column in𝑊 sum to 1.

In order to get a unique stationary probability distribu-
tion, it is important to guarantee that 𝑊 is strongly con-
nected. Similarly to PageRank, we add a new set of complete
outgoing transitions. The final transition probability matrix
based on using cocitation as a hyperlink weighting scheme is

𝑊 = 𝛽(𝐿
󸀠
𝐿 + 𝑒V𝑇)𝐷−1

𝑄
+ (1 − 𝛽) (

1

𝑛
) 𝑒𝑒
𝑇
, (15)

where 0 < 𝛽 < 1 and 𝑒 = (1, . . . , 1)𝑇. The model based on
cocitation (MBCC) is to solve the following function:

𝑥
∗
= {𝛽 (𝐿

󸀠
𝐿 + 𝑒V𝑇)𝐷−1

𝑄
+ (1 − 𝛽) (

1

𝑛
) 𝑒𝑒
𝑇
} 𝑥
∗
,

𝑛

∑

𝑖=1

𝑥
𝑖
= 1.

(16)
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Figure 2: (a) Link structure of PageRank. (b) Resigned link structure of MBCC.

Table 2: HITS authority ranking, MBCC authority ranking, and PageRank ranking in top 20.

HITS MBCC PageRank URL
1 1 9 http://www.ics.uci.edu/∼eppstein/geom.html
2 2 10 http://www.geom.uiuc.edu/software/cglist/
3 3 6 http://www.cs.uu.nl/CGAL
4 4 18 http://www.ics.uci.edu/∼eppstein/junkyard
5 6 14 http://www.scs.carleton.ca/∼csgs/resources/cg.html
6 7 20 http://www.geom.uiuc.edu/
7 5 >20 http://www.ics.uci.edu/∼eppstein
8 8 >20 http://www.mpi-sb.mpg.de/LEDA/leda.html
9 10 >20 http://www.inria.fr/prisme/personnel/bronnimann/cgt
10 9 >20 http://www.cs.sunysb.edu/∼algorith/
11 13 >20 http://graphics.lcs.mit.edu/∼seth/pubs/taskforce/techrep.html
12 11 >20 http://www.cs.smith.edu/∼orourke
13 12 >20 http://www.cs.brown.edu/people/rt
14 18 >20 http://www.geom.uiuc.edu/∼nina/
15 >20 >20 http://compgeom.cs.uiuc.edu/∼jeffe/compgeom
16 14 >20 http://www.cs.princeton.edu/∼chazelle
17 >20 >20 http://www.dcc.unicamp.br/∼guialbu/geompages.html
18 16 8 http://www.yahoo.com
19 >20 >20 http://www.ics.uci.edu/∼eppstein/gina/authors.html
20 >20 >20 http://www.cs.brown.edu/people/rt/sdcr/report.html

We assume that the solution of (16) denoted by 𝑥∗ =
(𝑥
∗

1
, . . . , 𝑥

∗

𝑛
) is the MBCC authority ranking vector, and 𝑦 =

𝐿𝐿
𝑇
𝑥
∗ is the MBCC hub ranking vector. Since the matrix

𝑊 in (15) is stochastic and irreducible, just like the Google
matrix 𝐺 in PageRank, the solution of (16) exists, and it is
unique and positive.

4. Numerical Experiments

First, we present an example to describe the assignment
process in Definition 2.

Example 1. Suppose that there are six webpages 𝑉 = (𝑗
1
, 𝑗
2
,

𝑗
3
, 𝑎, 𝑏, 𝑐), and the directed graph is shown in Figure 2. The

conclusion can be found fromTable 1 and Figure 2. In Table 1,
𝑄(𝑖, 𝑗) is the number of webpages that cocite webpages 𝑖 and

𝑗; 𝑊(𝑖, 𝑗) is obtained by (11). In Figure 2, the left one is the
original link structure of PageRank where the value of the
page 𝑗

1
is divided equally to the pages that it points to, and

the right one divides the value of 𝑗
1
based on cocitation.

Then, we compare the MBCC model with HITS and
PageRank, experimenting with dataset from http://www.cs
.toronto.edu/∼tsap/experiments/datasets/. The dataset is
about the topic computational geometry which contains
a total of 1100 webpages. We set 𝛽 = 0.9. Meanwhile, we
use 𝜏 = 10

−10 as the convergence tolerance and measure
the convergence rates of the three algorithms using the L1
norm of the residual vector. Table 2 shows the list of the top
20 authorities with HITS, MBCC, and PageRank. Table 3
shows the list of the top 20 hubs with HITS and MBCC.
It shows that MBCC authority ranking is closer to HITS
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Table 3: HITS hub ranking and MBCC hub ranking in top 20.

HITS MBCC URL
1 2 http://mother.lub.lu.se/ae/bytitle/043501-043550.html
2 1 http://compgeom.cs.uiuc.edu/∼jeffe/compgeom/preprehistory.html
3 3 http://www.dcc.unicamp.br/∼guialbu/geompages.html
4 4 http://www.softlab.ece.ntua.gr/∼cfrag
5 5 http://corelab.cs.ntua.gr/courses/compgeom
6 6 http://compgeom.cs.uiuc.edu/∼jeffe/compgeom/direct.html
7 7 http://mother.lub.lu.se/ae/bydomain/010101-010150.html
8 9 http://www-sop.inria.fr/prisme/personnel/bronnimann/cgt/WWW.html
9 10 http://members.tripod.com/∼GeomWiz/develop.html
10 11 http://geomwiz.tripod.com/develop.html
11 8 http://www.scs.carleton.ca/∼csgs/resources/cg.html
12 13 http://www.ams.sunysb.edu/∼jsbm/hotlist.html
13 14 http://www.graphics.lcs.mit.edu/∼fredo/Book/geoAlgo.html
14 16 http://www.cs.uwaterloo.ca/∼yganjali/r links.html
15 12 http://cs.smith.edu/∼streinu/bookmarks.html
16 15 http://www.cs.umn.edu/scg98
17 >20 http://forum.swarthmore.edu/library/topics/comp geom
18 19 http://www.geom.umn.edu/∼mucke/GeomDir/people.html
19 >20 http://cis.poly.edu/∼aronov
20 20 http://intra.cmkos.cz/∼honza/osvr/odkazy.html

Table 4: Comparison between MBCC and HITS ranking vectors,
for example, top 10 represents a ranking vector agreeing with
another ranking vector in top 10.

Top 10 Top 20 Top 30 Top 40 Top 50
Authority (HITS MBCC) 100% 80% 96.7% 85% 90%
Hub (HITS MBCC) 90% 90% 90% 92.5% 96%

authority ranking than PageRank ranking which is close to
HITS authority ranking. The comparison between MBCC
and HITS ranking vectors in Table 4 indicates that MBCC
ranking agrees well with HITS ranking, especially in top 10.

5. Conclusion

In this work, we emphasize the role of cocitation in defining
authorities. First, we observe that, in the HITS algorithm, if
two distinct webpages 𝑖, 𝑗 are cocited bymany other webpages
𝑘, then 𝑖, 𝑗 are likely to be related in some sense or have certain
commonality. According to this close relationship, we come
to the conclusion that the higher the number of webpages that
cocite webpages 𝑖 and 𝑗, the stronger the relevancy between
the two pages. The page 𝑗 with stronger relevancy should
obtain more values from page 𝑖. Therefore, we develop a
hyperlink weighting scheme for extracting information from
the link structure. Then we combine hyperlink weight nor-
malization and random surfing schemes as used in PageRank
to justify the model.

The experimental results show that the MBCC authority
(hub) ranking is close well to the HITS authority (hub)
ranking in top 20, and in general a surfer seldomly browses

beyond thesewebpages in top 20 [11].Moreover,MBCCkeeps
the superiority of PageRank: the authority vector ofMBCC in
(16) exists, and it is unique and positive, while the authority
and hub vectors of HITS may not be unique. Therefore, we
can use the authority (hub) ranking vector of MBCC as the
authority (hub) ranking vector of HITS.
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A novel dynamicmodel is introduced for themodeling of the wind turbine behavior.The objective of the wind turbine is the electric
energy generation. The analytic model has the characteristic that considers a rotatory tower. Experiments show the validity of the
proposed method.

1. Introduction

Researchers are often trying to improve the total power
of a wind turbine. The dynamic model of a wind turbine
plays an important role in some applications as the control,
classification, or prediction.

Some authors have proposed the equations to model the
dynamic behavior of the wind turbine as shown in [1–5].

This paper presents a novel dynamic model of a wind
turbine; the first dynamic model is for the wind turbine,
the second is for the tower, and both are related. Because
the rotatory tower can turn, it may help the wind turbine
to increase the air intake. Some companies propose wind
turbines that consider rotatory blades; however, in this study,
a rotatory tower is proposed instead of the rotatory blades
because the first dynamic model is easier to obtain than the
second.

The proposed model is linear in the states as the works
analyzed by [6–10] show. The technique provides an accept-
able approximation of the wind turbine behavior.

The paper is structured as follows. In Section 2, the
dynamic model of a windward wind turbine of three blades
with a rotatory tower is introduced. In Section 3, the sim-
ulations of the dynamic model are compared with the real

data obtained by a real wind turbine prototype. Finally, in
Section 4, the conclusion and future research are detailed.

2. Dynamic Model of the Wind Turbine with
a Rotatory Tower

This section is divided into four parts: the first is the descrip-
tion of the mechanic model, the second is the description
of the aerodynamic model, the third is the description of
the electric model, and, finally, the fourth is the combination
of the aforementioned models to obtain the final dynamic
model.

The dynamic model of the wind turbine is, first, the equa-
tions that represent the change between the wind energy and
mechanic energy and, second, the equations that represent
the change between the mechanic energy and electric energy.

2.1. The Mechanic Model. A windward wind turbine of three
blades with a rotatory tower is considered. First, the Euler
Lagrangian method [11, 12] is used to obtain the model that
represents the change from the wind energy to mechanic
energy for the wind turbine and the change from the electric
energy to mechanic energy for the tower. The masses are
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Figure 1: Lateral view of the wind turbine.
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Figure 2: Upper view of the wind turbine.

concentrated at the center of mass. Consider the lateral view
of Figure 1 and upper view of Figure 2.

From Figures 1 and 2, it can be seen that
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is the length to the center of the wind turbine blade in 𝑚.

Consequently, the kinetic energy𝐾
1
,𝐾
2
and potential energy

𝑃
1
, 𝑃
2
are given as

𝐾
1
= 0,

𝐾
2
=
1

2
𝑚
2
𝑙
2

𝑐2
𝑆
2

2

̇𝜃
2

1
+
1

2
𝑚
2
𝑙
2

𝑐2

̇𝜃
2

2
,

𝑃
1
= 𝑚
1
𝑔𝑙
𝑐1
,

𝑃
2
= 𝑙
1
+ 𝑚
2
𝑔𝑙
𝑐2
𝐶
2
,

(2)

where𝑚
1
is the towermass in kg,𝑚

2
is the blademass in kg,𝑔

is the acceleration gravity in m/s2, 𝑙
1
is the constant length of

the tower in m, and 𝑙
𝑐1
is the length to the center of the tower

in m. The torques 𝜏
𝑇1𝑎

and 𝜏
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where 𝜏
2𝑎

is the torque of the generator moved by the blade
in kgm2 rad/s2, 𝜏

1𝑎
is the torque of the motor used to move

the tower in kgm2 rad/s2, 𝑘
𝑏1

and 𝑘
𝑏2

are the spring effects
presented when the blade is near to a stop in kgm2/s2, and 𝑏

𝑏1

and 𝑏
𝑏2
are the shock absorbers in kgm2 rad/s.Using theEuler

Lagrange method in [11, 12] gives the following equations:
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(4)

The angular position of the blade 1 is related to the angular
position of the blades 2 and 3 as follows:

𝜃
3
= 𝜃
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+
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3
𝜋 rad,

𝜃
4
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4
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(5)

where 𝜃
3
and 𝜃

4
are the angular positions for the blades 2

and 3, respectively. Then, using (4), it yields the equations for
blades 2 and 3 as a function of 𝜃

2
as follows:
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where 𝜏
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, and 𝜏
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are the torques applied to move the

blades 2 and 3, respectively. Adding 𝑆2
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Now, adding the three equations of (4), (6), and (7) and using
(8), (9), and (10), it gives
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air received by the three blades. Equation (12) describes the
assumption that the air goes in one direction; if 𝜃

1
= 0,

then the maximum air intake moves the blades of the wind
turbine, but if the tower turns to the left or to the right and
𝜃
1
changes, then the wind turbine turns and the air intake

decreases. From Figures 1 and 2 and [12], 𝜏
1
of (11) is defined

as follows:
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where 𝑘
𝑚
is a motor magnetic flux constant of the tower in

Wb and 𝑖
1
is the motor armature current of the tower in A.

Equations (11), (12), and (13) are the main equations of the
mechanic model that represents the wind turbine and tower.

2.2. Aerodynamic Model. The aerodynamic model is the
dynamic model of the torque applied to the blades. The
mechanic power captured by the wind turbine 𝑃

𝑎
is given by

[2–5]
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where 𝜌 is the air density in Kg/m3,𝐴 = 𝜋𝑅
2 is the area swept

by the rotor blades in m2 with radius 𝑅 in m, 𝑉
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is the wind

speed in m/s, and 𝐶
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(𝜆, 𝛽) is the performance coefficient of

the wind turbine, whose value is a function of the tip speed
ratio 𝜆, defined as [2–5]
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For the purpose of simulation, the following model of
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(𝜆, 𝛽) is presented [2–5]:
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Figure 3: The wind turbine generator.
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where
1

𝜆
𝑖

=
1

𝜆 + 0.08𝛽
−
0.035

𝛽3 + 1
(17)

and the coefficients are 𝑐
1
= 0.5176, 𝑐

2
= 116, 𝑐

3
= 0.4, 𝑐

4
= 5,

𝑐
5
= 21, 𝑐

6
= 0.0068, and 𝛽 is the blade pitch angle in rad.

Using (12), (14), (15), (16), and (17) gives the dynamic model
of the torque applied to the wind turbine blades as follows:
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= 𝐶
1
(𝐹
2𝑎
+ 𝐹
2𝑏
+ 𝐹
2𝑐
) ,

𝐹
2𝑎
=

1

2 ̇𝜃
2

𝜌𝐴𝐶
𝑝
(𝜆, 𝛽)𝑉

3

𝜔
,

𝐹
2𝑏
=

1

2 ̇𝜃
2

𝜌𝐴𝐶
𝑝
(𝜆, 𝛽)𝑉

3

𝜔
,

𝐹
2𝑐
=

1

2 ̇𝜃
2

𝜌𝐴𝐶
𝑝
(𝜆, 𝛽)𝑉

3

𝜔
,

(18)

where 𝐶
1
is defined in (12), 𝜆 is defined in (15), 𝐶

𝑝
(𝜆, 𝛽) is

defined in (16), and 𝜆
𝑖
is defined in (17).

2.3. The Electric Model. Now, analyze the change from the
mechanic to electric energy for the wind turbine gener-
ator and the electric energy to mechanic energy for the
tower motor. Figure 3 shows the wind turbine generator and
Figure 4 shows the tower motor.

In [12, 13], they presented the model of a motor, and
similarly, from Figure 3, a model for the generator is obtained
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by using the Kirchhoff voltage law. Therefore, the dynamic
models of the motor and generator are as follows:

𝑉
1
= 𝑅
1
𝑖
1
+ 𝐿
1
̇𝑖
1
+ 𝑘
1
̇𝜃
1
,

𝑘
2
̇𝜃
2
= 𝑅
2
𝑖
2
+ 𝐿
2
̇𝑖
2
+ 𝑉
2
,

(19)

where 𝑘
1
is the motor back emf constant in V s/rad, 𝑘

2

is the generator back emf constant in V s/rad, 𝑅
1
is the

motor armature resistance inΩ, 𝑅
2
is the generator armature

resistance in Ω, 𝐿
1
is the motor armature inductance in H,

𝐿
2
is the generator armature inductance in H,𝑉

1
is the motor

armature voltage in V, 𝑉
2
is the generator armature voltage

in V, 𝑖
1
is the motor armature current in A, and 𝑖

2
is the

generator armature current in A. For the generator of this
paper, 𝑉

2
= 𝑅
𝑒
𝑖
2
. Thus, (19) becomes

𝑉
1
= 𝑅
1
𝑖
1
+ 𝐿
1
̇𝑖
1
+ 𝑘
1
̇𝜃
1
,

𝑘
2
̇𝜃
2
= (𝑅
2
+ 𝑅
𝑒
) 𝑖
2
+ 𝐿
2
̇𝑖
2
,

𝑉
2
= 𝑅
𝑒
𝑖
2
.

(20)

2.4. The Final Dynamic Model. Thus, (11), (13), and (18) that
represent the change between the wind energy and mechanic
energy and (20) that represents the change between the
mechanic energy and electric energy are considered as the
wind turbine dynamic model with a rotatory tower.

Define the state variables as 𝑥
1
= 𝑖
2
, 𝑥
2
= 𝜃
2
, 𝑥
3
= ̇𝜃
2
,

𝑥
4
= 𝑖
1
, 𝑥
5
= 𝜃
1
, 𝑥
6
= ̇𝜃
1
, the inputs as 𝑢

1
= 𝐹
2
and 𝑢

2
= 𝑉
1
,

and the output as 𝑦 = 𝑉
2
. Consequently, the dynamic model

of (11), (13), (15), (18), and (20) becomes

̇𝑥
1
= −

(𝑅
2
+ 𝑅
𝑒
)

𝐿
2

𝑥
1
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2

𝐿
2
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3
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2
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3
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3
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𝑙
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𝑦 = 𝑅
𝑒
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𝑢
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= 𝐹
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+ 𝐹
2𝑏
+ 𝐹
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,

𝐹
2𝑎
=

1
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𝜌𝐴𝐶
𝑝
(𝜆, 𝛽)𝑉

3

𝜔
,
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,
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,

𝜆 =
𝑥
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𝑉
𝜔

,

(21)

where 𝐶
𝑝
(𝜆, 𝛽) is defined in (16) and 𝜆

𝑖
is defined in (17).

Figure 5: Prototype of a wind turbine with rotatory tower.

Table 1: Parameters of the prototype.

Parameter Value
𝑙
𝑐2

0.5m
𝑚
2

0.5 kg
𝑘
𝑏2

1 × 10
−6 kgm2/s2

𝑏
𝑏2

1 × 10
−1 kgm2rad/s

𝑘
2

0.45Vs/rad
𝑅
2

6.96Ω

𝐿
2

6.031 × 10
−1H

𝑅 𝑙
𝑐2
m

𝜌 1.225 kg/m3

𝑔 9.81m/s2

𝑅
𝑒

30Ω

𝑘
𝑚

0.09Wb
𝑘
𝑏1

1 × 10
−6 kgm2/s2

𝑏
𝑏1

1 × 10
−1 kgm2rad/s

𝑘
1

0.0045Vs/rad
𝑅
1

18Ω

𝐿
1

6.031 × 10
−1H

𝑉
𝜔

5m/s
𝛽 0.5 rad

Remark 1. The model of this research considers a direct
current motor and a direct current generator. This wind
turbine is proposed to be used on the house roof for the
daily usage to feed a light as a renewable source. If more
than one wind turbine is used, more electricity is generated.
The proposed model could be extended to other kinds of
machines by changing (20).

Remark 2. Note that the dynamic model states of the wind
turbine with a rotatory tower (21) is a linear system [6–10].

3. Experiments to Validate the Dynamic Model

Figure 5 shows the prototype of awind turbinewith a rotatory
tower which is considered for the simulations of the dynamic
model. This prototype has three blades with a rotatory tower
which does not use a gear box. Table 1 shows the parameters
of the prototype.The parameters𝑚

2
and 𝑙
𝑐2
are obtained from



Mathematical Problems in Engineering 5

0 20 40 60 80
Time

0

0.1

0.15

0.05

0.2

Real data
Analytic model

0 20 40 60 80
Time

Real data
Analytic model

0 20 40 60 80
−10

−5

0

5

10

Time

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

y

u
1

u
2

Figure 6: Inputs and output of the wind turbine of Example 1.

the wind turbine blades. The parameters 𝑅
1
, 𝐿
1
, and 𝑘

1
are

obtained from the tower motor. The parameters 𝑘
2
, 𝑅
2
, 𝑅
𝑒
,

and 𝐿
2
are obtained from the wind turbine generator. The

parameters 𝑅, 𝜌, 𝑉
𝜔
, and 𝛽 are obtained from [2–5].

The dynamic model of the wind turbine with a rotatory
tower is given by (21) with the parameters of Table 1. 1 × 10−5
are considered as the initial conditions for the plant states
𝑥
1
= 𝑖
2
, 𝑥
2
= 𝜃
2
, 𝑥
3
= ̇𝜃
2
, 𝑥
4
= 𝑖
1
, 𝑥
5
= 𝜃
1
, and 𝑥

6
= ̇𝜃
1
.

The root mean square error (RMSE) is used, and it is given as
[13–15]

RMSE = ( 1
𝑇
∫

𝑇

0

𝑒
2
𝑑𝜏)

1/2

, (22)

where 𝑒2 = 𝑒
2

𝑢𝑗
= (𝑢
𝑗𝑟
− 𝑢
𝑗
)
2, 𝑒2 = 𝑒

2

𝑥𝑖
= (𝑥
𝑖𝑟
− 𝑥
𝑖
)
2, or 𝑒2 =

𝑒
2

𝑦
= (𝑦
𝑟
− 𝑦)
2 and 𝑢

𝑗𝑟
, 𝑥
𝑖𝑟
, and 𝑦

𝑟
are the real data of 𝑢

𝑗
, 𝑥
𝑖
,

and 𝑦, respectively, 𝑖 = 1, 2, . . . , 6, 𝑗 = 1, 2.

3.1. Example 1: The First Behavior. Figures 6 and 7 show the
wind turbine inputs, outputs, and states. Table 2 shows the
RMSE for the errors.

From Figures 6 and 7, it can be seen that the dynamic
model has good behavior described as follows: (1) from 0 s to
2 s, both inputs are fed; consequently, the tower moves far of
the maximum air intake, the generator current is decreased,
and the wind turbine blades stop moving; (2) from 2 s to 4 s,
both inputs are not fed; consequently, current is not generated
and both the tower and wind turbine blades do not move; (3)
from 4 s to 6 s, both inputs are fed, but the air intake is positive
and tower voltage is negative; consequently, the tower returns
to themaximumair intake, the generator current is increased,
and the wind turbine blades move; (4) from 6 s to 8 s, both

Table 2: The RMSE for Example 1.

RMSE
𝑒
2

𝑢1
0.0204

𝑒
2

𝑢2
1.1835

𝑒
2

𝑦
0.0171

𝑒
2

𝑥1
5.7158 × 10

−4

𝑒
2

𝑥2
0.9843

𝑒
2

𝑥3
0.0470

𝑒
2

𝑥4
0.0658

𝑒
2

𝑥5
0.0872

𝑒
2

𝑥6
0.0163

inputs are not fed; consequently, current is not generated and
the tower and wind turbine blades do notmove.The dynamic
model is a good approximation of the wind turbine behavior
because the signals of the first are near to the signals of the
second. From Table 2, it is shown that the dynamic model is
a good approximation of the real process because the RMSE
is near to zero.

3.2. Example 2: The Second Behavior. Figures 8 and 9 show
thewind turbine inputs, outputs, and states. Table 3 shows the
RMSE for the errors.

From Figures 8 and 9, it can be seen that the dynamic
model has good behavior described as follows: (1) from 0 s
to 2 s, the input air is fed and the tower input is not fed;
consequently, the tower remains in the maximum air intake,
the generator current is maximum, and the wind turbine
blades have motion; (2) from 2 s to 4 s, the air is not fed and
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Figure 7: States of the wind turbine of Example 1.
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Mathematical Problems in Engineering 7

TimeTime

TimeTime

0 20 40 60 800 20 40 60 80

0 20 40 60 800 20 40 60 80

Real data
Analytic model

0 20 40 60 80
Time

−5

0

5

10

0

5

10

15

−0.5

0

0.5

1

−0.5

0

0.5

0

0.5

1

1.5

−0.2

0

0.2

Real data
Analytic model

0 20 40 60 80
Time

×10−3

x
1

x
2

x
3

x
4

x
5

x
6

Figure 9: States of the wind turbine of Example 2.

Table 3: The RMSE for Example 2.

RMSE
𝑒
2

𝑢1
0.0288

𝑒
2

𝑢2
0.9423

𝑒
2

𝑦
0.0280

𝑒
2

𝑥1
9.3212 × 10

−4

𝑒
2

𝑥2
1.7209

𝑒
2

𝑥3
0.0766

𝑒
2

𝑥4
0.0523

𝑒
2

𝑥5
0.1324

𝑒
2

𝑥6
0.0162

the tower input is fed; consequently, current is not generated,
the tower moves far of the maximum air intake, and the wind
turbine blades do not have motion; (3) from 4 s to 6 s, the
air is fed and the tower input is not fed; consequently, the
tower does not move, the generator current is minimum,
and the wind turbine blades almost do not move; (4) from
6 s to 8 s, the air is not fed and the tower input is fed with
a negative voltage; consequently, current is not generated,
the tower returns to the maximum air intake, and the wind
turbine blades do not have motion. The dynamic model is
a good approximation of the wind turbine behavior because

the signals of the first are near to the signals of the second.
From Table 2, it is shown that the dynamic model is a good
approximation of the real process because the RMSE is near
to zero.

4. Conclusion

In this paper, a dynamic model of a wind turbine with a
rotatory tower was introduced; the simulations using the
parameters of a prototype showed that the proposed dynamic
model has an acceptable approximation of the wind turbine
behavior. The proposed dynamic model could be used on
control, prediction, or classification. As a future research, the
modeling will be improved using other interesting methods
as the least squares in [16–26], neural networks in [14, 27–32],
or fuzzy systems in [15, 33–35].
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The explicit formulae of spectral norms for circulant-typematrices are investigated; thematrices are circulantmatrix, skew-circulant
matrix, and 𝑔-circulant matrix, respectively. The entries are products of binomial coefficients with harmonic numbers. Explicit
identities for these spectral norms are obtained. Employing these approaches, some numerical tests are listed to verify the results.

1. Introduction

The classical hypergeometric summation theorems are ex-
ploited to derive several striking identities on harmonic
numbers [1]. In numerical analysis, circulant matrices
(named “premultipliers” in numerical methods) are impor-
tant because they are diagonalized by a discrete Fourier
transform, and hence linear equations that contain them
may be quickly solved using a fast Fourier transform. Fur-
thermore, circulant, skew-circulant, and 𝑔-circulant matri-
ces play important roles in various applications, such as
image processing, coding, and engineering model. For more
details, please refer to [2–13] and the references therein.
The skew-circulant matrices were collected to construct
preconditioners for LMF-based ODE codes; Hermitian and
skew-Hermitian Toeplitz systems were considered in [14–
17]; Lyness employed a skew-circulant matrix to construct 𝑠-
dimensional lattice rules in [18]. Recently, there are lots of
research on the spectral distribution and norms of circulant-
type matrices. In [19], the authors pointed out the processes
based on the eigenvalue of circulant-type matrices and
the convergence to a Poisson random measure in vague
topology. There were discussions about the convergence in
probability and distribution of the spectral normof circulant-
type matrices in [20]. The authors in [21] listed the limiting
spectral distribution for a class of circulant-type matrices
with heavy tailed input sequence. Ngondiep et al. showed that

the singular values of 𝑔-circulants in [22]. Solak established
the lower and upper bounds for the spectral norms of cir-
culant matrices with classical Fibonacci and Lucas numbers
entries in [23]. İpek investigated an improved estimation for
spectral norms in [24].

In this paper, we derive some explicit identities of spectral
norms for some circulant-type matrices with product of
binomial coefficients with harmonic numbers.

The outline of the paper is as follows. In Section 2, the
definitions and preliminary results are listed. In Section 3,
the spectral norms of some circulant matrices are studied. In
Section 4, the formulae of spectral norms for skew-circulant
matrices are established. Section 5 is devoted to investigate
the explicit formulae for 𝑔-circulant matrices. The numerical
tests are given in Section 6.

2. Preliminaries

The binomial coefficients are defined by (
𝑛

𝑘
) for all natural

numbers 𝑘 at once by

(1 + 𝑋)
𝑛

= ∑

𝑘≥0

(
𝑛

𝑘
) 𝑋
𝑘
. (1)

Note that (
𝑛

𝑘
) is the 𝑘th binomial coefficient of 𝑛. It is clear

that (
𝑛

0 ) = 1, (
𝑛

𝑛 ) = 1, and (
𝑛

𝑘
) = 0, for 𝑘 > 𝑛.
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The generalized harmonic numbers are defined to be
partial sums of the harmonic series [1]:

𝐻
0

(𝑥) = 0, 𝐻
𝑖
(𝑥) =

𝑖

∑

𝑘=0

1

𝑥 + 𝑘
(𝑖 = 1, 2, . . .) . (2)

For 𝑥 = 0 in particular, they reduce to classical harmonic
numbers:

𝐻
0

= 0, 𝐻
𝑖
= 1 +

1

2
+

1

3
+ ⋅ ⋅ ⋅ +

1

𝑖
(𝑖 = 1, 2, . . .) .

(3)

We recall the following harmonic number identities [1]:
𝑛

∑

𝑖=0

(
𝑛

𝑖
)

2

(
2𝑛 + 𝑖

𝑖
) (𝐻
2𝑛+𝑖

− 𝐻
𝑖
)

= 2(
2𝑛

𝑛
)

2

(𝐻
2𝑛

− 𝐻
𝑛
) ,

𝑛

∑

𝑖=0

(
𝑛

𝑖
) (

2𝑛

𝑖
) (

3𝑛 + 𝑖

𝑖
) (𝐻
3𝑛+𝑖

− 𝐻
𝑖
)

= (
3𝑛

𝑛
)

2

(2𝐻
3𝑛

− 𝐻
2𝑛

− 𝐻
𝑛
) .

(4)

Definition 1 (see [6, 8]). A circulantmatrix is an 𝑛×𝑛 complex
matrix with the following form:

𝐴
𝑐

= (

𝑎
0

𝑎
1

⋅ ⋅ ⋅ 𝑎
𝑛−1

𝑎
𝑛−1

𝑎
0

⋅ ⋅ ⋅ 𝑎
𝑛−2

𝑎
𝑛−2

𝑎
𝑛−1

⋅ ⋅ ⋅ 𝑎
𝑛−3

...
... d

...
𝑎
1

𝑎
2

⋅ ⋅ ⋅ 𝑎
0

)

𝑛×𝑛

. (5)

The first row of 𝐴
𝑐
is (𝑎
0
, 𝑎
1
, . . . , 𝑎

𝑛−1
); its (𝑗 + 1)th row

is obtained by giving its 𝑗th row a right circular shift by one
position.

Equivalently, a circulant matrix can be described with
polynomial as

𝐴
𝑐

= 𝑓 (𝜂
𝑐
) =

𝑛−1

∑

𝑖=0

𝑎
𝑖
𝜂
𝑖

𝑐
, (6)

where

𝜂
𝑐

= (

0 1 0 ⋅ ⋅ ⋅ 0

0 0 1 ⋅ ⋅ ⋅ 0

...
... d

...
0 0 0 ⋅ ⋅ ⋅ 1

1 0 0 ⋅ ⋅ ⋅ 0

)

𝑛×𝑛

. (7)

Obviously, 𝜂
𝑛

𝑐
= 𝐼
𝑛
.

Now, we discuss the eigenvalues of 𝐴
𝑐
. We declare that

the eigenvalues of 𝜂
𝑐
are the corresponding eigenvalues of 𝐴

𝑐

with the function 𝑓 in (6), which is

𝜆 (𝐴
𝑐
) = 𝑓 (𝜆 (𝜂

𝑐
)) =

𝑛−1

∑

𝑖=0

𝑎
𝑖
𝜆(𝜂
𝑐
)
𝑖

. (8)

Whereas 𝜆
𝑗
(𝜂
𝑐
) = 𝜔

𝑗, (𝑗 = 0, 1, . . . , 𝑛 − 1), then 𝜆
𝑗
(𝐴
𝑐
)

can be calculated by

𝜆
𝑗
(𝐴
𝑐
) =

𝑛−1

∑

𝑖=0

𝑎
𝑖
(𝜔
𝑗
)
𝑖

, (9)

where 𝜔 = cos(2𝜋/𝑛) + 𝑖 sin(2𝜋/𝑛).
Similarly, we recall a skew-circulant matrix.

Definition 2 (see [6, 8]). A skew-circulant matrix is an 𝑛 × 𝑛

complex matrix with the following form:

𝐴 sc = (

𝑎
0

𝑎
1

⋅ ⋅ ⋅ 𝑎
𝑛−1

−𝑎
𝑛−1

𝑎
0

⋅ ⋅ ⋅ 𝑎
𝑛−2

−𝑎
𝑛−2

−𝑎
𝑛−1

⋅ ⋅ ⋅ 𝑎
𝑛−3

...
... d

...
−𝑎
1

−𝑎
2

⋅ ⋅ ⋅ 𝑎
0

)

𝑛×𝑛

. (10)

Moreover, a skew-circulant matrix can be described with
polynomial as

𝐴 sc = 𝑓 (𝜂sc) =

𝑛−1

∑

𝑖=0

𝑎
𝑖
𝜂
𝑖

sc, (11)

where

𝜂sc = (

0 1 0 ⋅ ⋅ ⋅ 0

0 0 1 ⋅ ⋅ ⋅ 0

...
... d

...
0 0 0 ⋅ ⋅ ⋅ 1

−1 0 0 ⋅ ⋅ ⋅ 0

)

𝑛×𝑛

. (12)

Obviously, 𝜂
𝑛

sc = −𝐼
𝑛
.

Thus we have to calculate the eigenvalues of 𝐴 sc. For the
same reason, we obtain that

𝜆 (𝐴 sc) = 𝑓 (𝜆 (𝜂sc)) =

𝑛−1

∑

𝑖=0

𝑎
𝑖
𝜆
𝑖
(𝜂sc) . (13)

Whereas 𝜆
𝑗
(𝜂sc) = 𝜔

𝑗
𝛼, (𝑗 = 0, 1, . . . , 𝑛 − 1) 𝜆

𝑗
(𝐴 sc) can

be computed by

𝜆
𝑗
(𝐴 sc) =

𝑛−1

∑

𝑖=0

𝑎
𝑖
(𝜔
𝑗
𝛼)
𝑖

, (14)

where 𝜔 = cos(2𝜋/𝑛) + 𝑖 sin(2𝜋/𝑛), 𝛼 = cos(𝜋/𝑛) + 𝑖 sin(𝜋/𝑛).

Definition 3 (see [21, 25]). A 𝑔-circulant matrix is an 𝑛 × 𝑛

complex matrix with the following form:

𝐴
𝑔

= (

𝑎
0

𝑎
1

. . . 𝑎
𝑛−1

𝑎
𝑛−𝑔

𝑎
𝑛−𝑔+1

. . . 𝑎
𝑛−𝑔−1

𝑎
𝑛−2𝑔

𝑎
𝑛−2𝑔+1

. . . 𝑎
𝑛−2𝑔−1

...
... d

...
𝑎
𝑔

𝑎
𝑔+1

. . . 𝑎
𝑔−1

)

𝑛×𝑛

, (15)

where 𝑔 is a nonnegative integer and each of the subscripts is
understood to be reduced modulo 𝑛.



Mathematical Problems in Engineering 3

The first row of 𝐴
𝑔
is (𝑎
0
, 𝑎
1
, . . . , 𝑎

𝑛−1
); its (𝑗 + 1)th row

is obtained by giving its 𝑗th row a right circular shift by 𝑔

positions (equivalently, 𝑔 mod 𝑛 positions). Note that 𝑔 = 1

or 𝑔 = 𝑛 + 1 yields the standard circulant matrix. If 𝑔 = 𝑛 − 1,
then we obtain the so-called reverse circulant matrix [21].

Definition 4 (see [26]). The spectral norm ‖ ⋅ ‖
2
of a matrix

𝐴 with complex entries is the square root of the largest
eigenvalue of the positive semidefinite matrix 𝐴

∗
𝐴:

‖𝐴‖
2

= √𝜆max (𝐴
∗𝐴), (16)

where 𝐴
∗ denotes the conjugate transpose of 𝐴. Therefore if

𝐴 is an 𝑛 × 𝑛 real symmetric matrix or 𝐴 is a normal matrix,
then

‖𝐴‖2 = max
1≤𝑖≤𝑛

󵄨󵄨󵄨󵄨𝜆𝑖
󵄨󵄨󵄨󵄨 , (17)

where 𝜆
1
, 𝜆
2
, . . . , 𝜆

𝑛
are the eigenvalues of 𝐴.

3. Spectral Norms of Some Circulant Matrices

Now, we will analyse spectral norms of some given circulant
matrices, whose entries are binomial coefficients combined
with harmonic numbers.

Our main results for those matrices are stated as follows.

Theorem 5. Let (𝑛 + 1) × (𝑛 + 1)-circulant matrix 𝐵
1
is as in

(5), and the first row of 𝐵
1
is

((
𝑛

0
)

2

(
2𝑛

0
) (𝐻
2𝑛

− 𝐻
0
) ,

(
𝑛

1
)

2

(
2𝑛 + 1

1
) (𝐻
2𝑛+1

− 𝐻
1
) , . . . ,

(
𝑛

𝑛
)

2

(
2𝑛 + 𝑛

𝑛
) (𝐻
2𝑛+𝑛

− 𝐻
𝑛
)) ,

(18)

where 𝑎
𝑖
= (
𝑛

𝑖 )
2

(
2𝑛+𝑖

𝑖
) (𝐻
2𝑛+𝑖

− 𝐻
𝑖
). Then one has

󵄩󵄩󵄩󵄩𝐵
1

󵄩󵄩󵄩󵄩2
= 2(

2𝑛

𝑛
)

2

(𝐻
2𝑛

− 𝐻
𝑛
) . (19)

Proof. Since circulant matrix 𝐵
1

is normal, employing
Definition 4, we claim that the spectral norm of 𝐵

1
is equal to

its spectral radius. Furthermore, applying the irreducible and
entrywise nonnegative properties, we claim that ‖𝐵

1
‖
2
(i.e.,

its spectral norm) is equal to its Perron value. We select an
(𝑛 + 1)-dimensional column vector V = (1, 1, . . . , 1)

𝑇; then

𝐵
1
V = (

𝑛

∑

𝑖=0

(
𝑛

𝑖
)

2

(
2𝑛 + 𝑖

𝑖
) (𝐻
2𝑛+𝑖

− 𝐻
𝑖
)) V. (20)

Obviously,∑𝑛
𝑖=0

(
𝑛

𝑖 )
2

(
2𝑛+𝑖

𝑖
) (𝐻
2𝑛+𝑖

−𝐻
𝑖
) is an eigenvalue of 𝐵

1

associated with V, which is necessarily the Perron value of 𝐵
1
.

Employing (4), we obtain

󵄩󵄩󵄩󵄩𝐵
1

󵄩󵄩󵄩󵄩2
= 2(

2𝑛

𝑛
)

2

(𝐻
2𝑛

− 𝐻
𝑛
) . (21)

This completes the proof.

Hence, employing the same approaches, we get the
following corollary.

Corollary 6. Let (𝑛 + 1) × (𝑛 + 1)-circulant matrix 𝐵
2
be as in

(5), and the first row of 𝐵
2
is

((
𝑛

0
) (

2𝑛

0
) (

3𝑛

0
) (𝐻
3𝑛

− 𝐻
0
) ,

(
𝑛

1
) (

2𝑛

1
) (

3𝑛 + 1

1
) (𝐻
3𝑛+1

− 𝐻
1
) , . . . ,

(
𝑛

𝑛
) (

2𝑛

𝑛
) (

4𝑛

𝑛
) (𝐻
4𝑛

− 𝐻
𝑛
)) ,

(22)

where 𝑎
𝑖
= (
𝑛

𝑖 ) (
2𝑛

𝑖
) (
3𝑛+𝑖

𝑖
) (𝐻
3𝑛+𝑖

− 𝐻
𝑖
). Then

󵄩󵄩󵄩󵄩𝐵
2

󵄩󵄩󵄩󵄩2
= (

3𝑛

𝑛
)

2

(2𝐻
3𝑛

− 𝐻
2𝑛

− 𝐻
𝑛
) . (23)

Now, we investigate some even-order alternative as fol-
lows, where 𝑚 is odd (i.e., 𝑚 + 1 is even).

Theorem 7. Let (𝑚 + 1) × (𝑚 + 1)-circulant matrix 𝐵
3
be as in

(5), and the first row of 𝐵
3
is

((
𝑚

0
)

2

(
2𝑚

0
) (𝐻
2𝑚

− 𝐻
0
) ,

− (
𝑚

1
)

2

(
2𝑚 + 1

1
) (𝐻
2𝑚+1

− 𝐻
1
) , . . . ,

−(
𝑚

𝑚
)

2

(
2𝑚 + 𝑚

𝑚
) (𝐻
2𝑚+𝑚

− 𝐻
𝑚

)) ,

(24)

where 𝑎
𝑖

= (−1)
𝑖
(
𝑚

𝑖 )
2

(
2𝑚+𝑖

𝑖
) (𝐻
2𝑚+𝑖

− 𝐻
𝑖
). Then there holds

the following identity:

󵄩󵄩󵄩󵄩𝐵
3

󵄩󵄩󵄩󵄩2
= 2(

2𝑚

𝑚
)

2

(𝐻
2𝑚

− 𝐻
𝑚

) . (25)

Proof. Noticing (9) and (17), it is clear that the spectral norm
of 𝐵
3
can be calculated by

󵄩󵄩󵄩󵄩𝐵
3

󵄩󵄩󵄩󵄩2
= max
0≤𝑡≤𝑚

󵄨󵄨󵄨󵄨𝜆𝑡 (𝐵3)
󵄨󵄨󵄨󵄨 = max
0≤𝑡≤𝑚

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑚

∑

𝑖=0

𝑎
𝑖
(𝜔
𝑡
)
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ max
0≤𝑡≤𝑚

{

𝑚

∑

𝑖=0

󵄨󵄨󵄨󵄨𝑎𝑖
󵄨󵄨󵄨󵄨 ⋅

󵄨󵄨󵄨󵄨󵄨󵄨
(𝜔
𝑡
)
𝑖󵄨󵄨󵄨󵄨󵄨󵄨
} =

𝑚

∑

𝑖=0

󵄨󵄨󵄨󵄨𝑎𝑖
󵄨󵄨󵄨󵄨 ,

(26)

where 𝑎
𝑖

= (−1)
𝑖
(
𝑚

𝑖 )
2

(
2𝑚+𝑖

𝑖
) (𝐻
2𝑚+𝑖

− 𝐻
𝑖
), and we employed

that all circulant matrices are normal.
Note that, if 𝑚 is odd, then 𝑚 + 1 is even, and 𝜆

𝑡0
(𝜂
𝑐
) =

𝜔
𝑡0 = −1 is an eigenvalue of 𝜂

𝑐
, so

󵄩󵄩󵄩󵄩𝐵
3

󵄩󵄩󵄩󵄩2
=

𝑚

∑

𝑖=0

󵄨󵄨󵄨󵄨𝑎𝑖
󵄨󵄨󵄨󵄨 . (27)

Combining (4) and (27) yields

󵄩󵄩󵄩󵄩𝐵
3

󵄩󵄩󵄩󵄩2
= 2(

2𝑚

𝑚
)

2

(𝐻
2𝑚

− 𝐻
𝑚

) . (28)

This completes the proof.
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Employing the same approaches, we get the following
corollary.

Corollary 8. Let (𝑚 + 1) × (𝑚 + 1)-circulant matrix 𝐵
4
be as

in (5), and the first row of 𝐵
4
is

((
𝑚

0
) (

2𝑚

0
) (

3𝑚

0
) (𝐻
3𝑚

− 𝐻
0
) ,

− (
𝑚

1
) (

2𝑚

1
) (

3𝑚 + 1

1
) (𝐻
3𝑚+1

− 𝐻
1
) , . . . ,

(
𝑚

𝑚
) (

2𝑚

𝑚
) (

4𝑚

𝑚
) (𝐻
4𝑚

− 𝐻
𝑚

)) ,

(29)

where 𝑎
𝑖

= (−1)
𝑖
(
𝑚

𝑖 ) (
2𝑚

𝑖
) (
3𝑚+𝑖

𝑖
) (𝐻
3𝑚+𝑖

− 𝐻
𝑖
). Then one has

the following identity:

󵄩󵄩󵄩󵄩𝐵
4

󵄩󵄩󵄩󵄩2
= (

3𝑚

𝑚
)

2

(2𝐻
3𝑚

− 𝐻
2𝑚

− 𝐻
𝑚

) . (30)

Similarly, we set 𝐵
3

= −𝐵
3
, 𝐵
4

= −𝐵
4
.

Corollary 9. Let𝐵
3
,𝐵
4
be as above, respectively, and𝑚 is odd.

Then

󵄩󵄩󵄩󵄩󵄩
𝐵
3

󵄩󵄩󵄩󵄩󵄩2
= 2(

2𝑚

𝑚
)

2

(𝐻
2𝑚

− 𝐻
𝑚

) ,

󵄩󵄩󵄩󵄩󵄩
𝐵
4

󵄩󵄩󵄩󵄩󵄩2
= (

3𝑚

𝑚
)

2

(2𝐻
3𝑚

− 𝐻
2𝑚

− 𝐻
𝑚

) .

(31)

4. Spectral Norms of Skew-Circulant Matrices

An odd-order alternative skew-circulant matrix is defined as
follows, where 𝑠 is even.

Theorem 10. Let (𝑠 + 1) × (𝑠 + 1)-circulant matrix 𝐵
5
be as in

(10), and the first row of 𝐵
5
is

((
𝑠

0
)

2

(
2𝑠

0
) (𝐻
2𝑠

− 𝐻
0
) ,

−(
𝑠

1
)

2

(
2𝑠 + 1

1
) (𝐻
2𝑠+1

− 𝐻
1
) , . . . ,

(
𝑠

𝑠
)

2

(
2𝑠 + 𝑠

𝑠
) (𝐻
2𝑠+𝑠

− 𝐻
𝑠
)) ,

(32)

where 𝑎
𝑖
= (−1)

𝑖
(
𝑠

𝑖 )
2

(
2𝑠+𝑖

𝑖
) (𝐻
2𝑠+𝑖

− 𝐻
𝑖
). Then one obtains

󵄩󵄩󵄩󵄩𝐵
5

󵄩󵄩󵄩󵄩2
= 2(

2𝑠

𝑠
)

2

(𝐻
2𝑠

− 𝐻
𝑠
) . (33)

Proof. We employ (14) and (17) to calculate the spectral norm
of 𝐵
5
as follows, for all 𝑡 = 0, 1, . . . , 𝑠:

󵄨󵄨󵄨󵄨𝜆𝑡 (𝐵5)
󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑠

∑

𝑖=0

𝑎
𝑖
(𝜔
𝑡
𝛼)
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤

𝑠

∑

𝑖=0

󵄨󵄨󵄨󵄨𝑎𝑖
󵄨󵄨󵄨󵄨 ⋅

󵄨󵄨󵄨󵄨󵄨󵄨
(𝜔
𝑡
𝛼)
𝑖󵄨󵄨󵄨󵄨󵄨󵄨

=

𝑠

∑

𝑖=0

󵄨󵄨󵄨󵄨𝑎𝑖
󵄨󵄨󵄨󵄨 =

𝑠

∑

𝑖=0

(
𝑠

𝑖
)

2

(
2𝑠 + 𝑖

𝑖
) (𝐻
2𝑠+𝑖

− 𝐻
𝑖
) ,

(34)

where 𝑎
𝑖
= (−1)

𝑖
(
𝑠

𝑖 )
2

(
2𝑠+𝑖

𝑖
) (𝐻
2𝑠+𝑖

− 𝐻
𝑖
).

Since the skew-circulantmatrix is normal, we deduce that
󵄩󵄩󵄩󵄩𝐵
5

󵄩󵄩󵄩󵄩2
= max
0≤𝑡≤𝑠

󵄨󵄨󵄨󵄨𝜆𝑡 (𝐵5)
󵄨󵄨󵄨󵄨 . (35)

If 𝑠 is even, then 𝑠 + 1 is odd. We declare that 𝜆sc = −1

is an eigenvalue of 𝜂sc; then we calculate the corresponding
eigenvalue of 𝐵

5
as follows:

𝜆
𝑡̂
(𝐵
5
) =

𝑠

∑

𝑖=0

𝑎
𝑖
𝜆
𝑖

sc =

𝑠

∑

𝑖=0

𝑎
𝑖
(−1)
𝑖

=

𝑠

∑

𝑖=0

(
𝑠

𝑖
)

2

(
2𝑠 + 𝑖

𝑖
) (𝐻
2𝑠+𝑖

− 𝐻
𝑖
) ,

(36)

where we had employed (14).
Noticing (34), we claim that 𝜆

𝑡̂
(𝐵
5
) is the maximum of

|𝜆
𝑡
(𝐵
5
)|, which means

󵄩󵄩󵄩󵄩𝐵
5

󵄩󵄩󵄩󵄩2
=

𝑠

∑

𝑖=0

(
𝑠

𝑖
)

2

(
2𝑠 + 𝑖

𝑖
) (𝐻
2𝑠+𝑖

− 𝐻
𝑖
) . (37)

Thus, from (4) we obtain

󵄩󵄩󵄩󵄩𝐵
5

󵄩󵄩󵄩󵄩2
= 2(

2𝑠

𝑠
)

2

(𝐻
2𝑠

− 𝐻
𝑠
) . (38)

This completes the proof.

Similarly, we can calculate the identity for 𝐵
6
.

Corollary 11. Let (𝑠 + 1) × (𝑠 + 1)-circulant matrix 𝐵
6
be as in

(10), and the first row of 𝐵
6
is

((
𝑠

0
) (

2𝑠

0
) (

3𝑠

0
) (𝐻
3𝑠

− 𝐻
0
) ,

− (
𝑠

1
) (

2𝑠

1
) (

3𝑠 + 1

1
) (𝐻
3𝑠+1

− 𝐻
1
) , . . . ,

(
𝑠

𝑠
) (

2𝑠

𝑠
) (

3𝑠 + 𝑠

𝑠
) (𝐻
3𝑠+𝑠

− 𝐻
𝑠
)) ,

(39)

where 𝑎
𝑖
= (−1)

𝑖
(
𝑠

𝑖 ) (
2𝑠

𝑖
) (
3𝑠+𝑖

𝑖
) (𝐻
3𝑠+𝑖

− 𝐻
𝑖
). Then there holds

󵄩󵄩󵄩󵄩𝐵
6

󵄩󵄩󵄩󵄩2
= (

3𝑠

𝑠
)

2

(2𝐻
3𝑠

− 𝐻
2𝑠

− 𝐻
𝑠
) . (40)
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Corollary 12. Let𝐵
5

= −𝐵
5
and𝐵

6
= −𝐵
6
, and 𝑠 is even.Then

one has the identities for spectral norm

󵄩󵄩󵄩󵄩󵄩
𝐵
5

󵄩󵄩󵄩󵄩󵄩2
= 2(

2𝑠

𝑠
)

2

(2𝐻
2𝑠

− 𝐻
𝑠
) ,

󵄩󵄩󵄩󵄩󵄩
𝐵
6

󵄩󵄩󵄩󵄩󵄩2
= (

3𝑠

𝑠
)

2

(2𝐻
3𝑠

− 𝐻
2𝑠

− 𝐻
𝑠
) .

(41)

5. Spectral Norms of 𝑔-Circulant Matrices

Inspired by the above propositions, we analyse spectral norms
of some given 𝑔-circulant matrices in this section.

Lemma 13 (see [25]). The (𝑛+1)×(𝑛+1)matrix𝑄
𝑔
is unitary

if and only if

(𝑛 + 1, 𝑔) = 1, (42)

where 𝑄
𝑔
is a 𝑔-circulant matrix with the first row 𝑒

∗
= [1,

0, . . . , 0].

Lemma 14 (see [25]). 𝐴 is a 𝑔-circulant matrix with the first
row [𝑎

0
, 𝑎
1
, . . . , 𝑎

𝑛
] if and only if

𝐴 = 𝑄
𝑔
𝐶, (43)

where

𝐶 = circ (𝑎
0
, 𝑎
1
, . . . , 𝑎

𝑛
) . (44)

In the following part, we set (𝑛 + 1, 𝑔) = 1.

Theorem 15. Let (𝑛 + 1) × (𝑛 + 1)-circulant matrix 𝐵
7
be as in

(15), and the first row of 𝐵
7
is

((
𝑛

0
)

2

(
2𝑛

0
) (𝐻
2𝑛

− 𝐻
0
) ,

(
𝑛

1
)

2

(
2𝑛 + 1

1
) (𝐻
2𝑛+1

− 𝐻
1
) , . . . ,

(
𝑛

𝑛
)

2

(
2𝑛 + 𝑛

𝑛
) (𝐻
2𝑛+𝑛

− 𝐻
𝑛
)) ,

(45)

where 𝑎
𝑖
= (
𝑛

𝑖 )
2

(
2𝑛+𝑖

𝑖
) (𝐻
2𝑛+𝑖

− 𝐻
𝑖
). Then

󵄩󵄩󵄩󵄩𝐵
7

󵄩󵄩󵄩󵄩2
= 2(

2𝑛

𝑛
)

2

(𝐻
2𝑛

− 𝐻
𝑛
) . (46)

Proof. With the help of Lemmas 13 and 14, we know that
the 𝑔-circulant matrix 𝐵

7
is normal; then we claim that the

spectral norm of 𝐵
7
is equal to its spectral radius. Further-

more, applying the irreducible and entrywise nonnegative
properties, we claim that ‖𝐵

7
‖
2
(i.e., its spectral norm) is equal

to its Perron value. We select a (𝑛 + 1)-dimensional column
vector V = (1, 1, . . . , 1)

𝑇; then

𝐵
7
V = (

𝑛

∑

𝑖=0

(
𝑛

𝑖
)

2

(
2𝑛 + 𝑖

𝑖
) (𝐻
2𝑛+𝑖

− 𝐻
𝑖
)) V. (47)

Obviously,∑𝑛
𝑖=0

(
𝑛

𝑖 )
2

(
2𝑛+𝑖

𝑖
) (𝐻
2𝑛+𝑖

−𝐻
𝑖
) is an eigenvalue of 𝐵

7

associated with V, which is necessarily the Perron value of 𝐵
7
.

Employing (4), we obtain

󵄩󵄩󵄩󵄩𝐵
7

󵄩󵄩󵄩󵄩2
= 2(

2𝑛

𝑛
)

2

(𝐻
2𝑛

− 𝐻
𝑛
) . (48)

This completes the proof.

Corollary 16. Let (𝑛 + 1) × (𝑛 + 1)-circulant matrix 𝐵
8
be as

in (15), and the first row of 𝐵
8
is

((
𝑛

0
) (

2𝑛

0
) (

3𝑛

0
) (𝐻
3𝑛

− 𝐻
0
) ,

(
𝑛

1
) (

2𝑛

1
) (

3𝑛 + 1

1
) (𝐻
3𝑛+1

− 𝐻
1
) , . . . ,

(
𝑛

𝑛
) (

2𝑛

𝑛
) (

4𝑛

𝑛
) (𝐻
4𝑛

− 𝐻
𝑛
)) ,

(49)

where 𝑎
𝑖
= (
𝑛

𝑖 ) (
2𝑛

𝑖
) (
3𝑛+𝑖

𝑖
) (𝐻
3𝑛+𝑖

− 𝐻
𝑖
). Then one obtains

󵄩󵄩󵄩󵄩𝐵
8

󵄩󵄩󵄩󵄩2
= (

3𝑛

𝑛
)

2

(2𝐻
3𝑛

− 𝐻
2𝑛

− 𝐻
𝑛
) . (50)

6. Numerical Examples

Example 1. In this example, we give the numerical results for
𝐵
1
and 𝐵

2
.

Comparing the data in Table 1, we declare that the
identities of spectral norms for 𝐵

𝑖
(𝑖 = 1, 2) hold.

Example 2. In this example, we list the numerical results for
𝐵
𝑖
, 𝐵
𝑖

(𝑖 = 3, 4).
With the help of data in Table 2, it is clear that the

identities of spectral norms for 𝐵
𝑖
, 𝐵
𝑖

(𝑖 = 3, 4) hold.

Example 3. In this example, we reveal the numerical results
for alternative skew-circulant matrices 𝐵

𝑖
, 𝐵
𝑖

(𝑖 = 5, 6).
Combining the data in Table 3, we deduce that the

identities of spectral norms for 𝐵
𝑖
, 𝐵
𝑖

(𝑖 = 5, 6) hold.

Example 4. In this example, we show numerical results for 𝐵
7

and 𝐵
8
.

Considering the data in Table 4, we deduce that the
identities of spectral norms for 𝐵

𝑖
(𝑖 = 7, 8) hold.

The above results demonstrate that the identities of
spectral norms for the given matrices hold.

7. Conclusion

This paper had discussed the explicit formulae for identical
estimations of spectral norms for circulant, skew-circulant
and 𝑔-circulant matrices, whose entries are binomial coef-
ficients combined with harmonic numbers. Furthermore,
it is easy to take other entries to obtain more interesting
identities, and the same approaches can be used to verify
those identities. Furthermore, explicit formulas for both
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Table 1: Spectral norms of 𝐵
𝑖
(𝑖 = 1, 2), 𝐶

1,𝑛
= 2(
2𝑛

𝑛
)
2

(𝐻
2𝑛

− 𝐻
𝑛
), and 𝐶

2,𝑛
= (
3𝑛

𝑛
)
2

(2𝐻
3𝑛

− 𝐻
2𝑛

− 𝐻
𝑛
).

𝑛 0 1 2 3 4 5 6
󵄩󵄩󵄩󵄩𝐵
1

󵄩󵄩󵄩󵄩2 0 4 42 4.93𝑒 + 2 6.22𝑒 + 3 8.20𝑒 + 4 1.12𝑒 + 6

󵄩󵄩󵄩󵄩𝐵
2

󵄩󵄩󵄩󵄩2 0 1.05𝑒 + 1 2.96𝑒 + 2 9.69𝑒 + 3 3.44𝑒 + 5 1.28𝑒 + 7 4.95𝑒 + 8

𝐶
1,𝑛

0 4 42 4.93𝑒 + 2 6.22𝑒 + 3 8.20𝑒 + 4 1.12𝑒 + 6

𝐶
2,𝑛

0 1.05𝑒 + 1 2.96𝑒 + 2 9.69𝑒 + 3 3.44𝑒 + 5 1.28𝑒 + 7 4.95𝑒 + 8

Table 2: Spectral norms of 𝐵
𝑖
, 𝐵
𝑖
(𝑖 = 3, 4), 𝐶

1,𝑚
= 2(
2𝑚

𝑚
)
2

(𝐻
2𝑚

− 𝐻
𝑚

), and 𝐶
2,𝑚

= (
3𝑚

𝑚
)
2

(2𝐻
3𝑚

− 𝐻
2𝑚

− 𝐻
𝑚

).

𝑚 1 3 5 7 9 11
󵄩󵄩󵄩󵄩𝐵
3

󵄩󵄩󵄩󵄩2 4 4.93𝑒 + 2 8.20𝑒 + 4 1.55𝑒 + 7 3.15𝑒 + 9 6.68𝑒 + 11

󵄩󵄩󵄩󵄩𝐵
4

󵄩󵄩󵄩󵄩2 10.5 9.69𝑒 + 3 1.28𝑒 + 7 1.96𝑒 + 10 3.20𝑒 + 13 5.49𝑒 + 16
󵄩󵄩󵄩󵄩󵄩
𝐵
3

󵄩󵄩󵄩󵄩󵄩2
4 4.93𝑒 + 2 8.20𝑒 + 4 1.55𝑒 + 7 3.15𝑒 + 9 6.68𝑒 + 11

󵄩󵄩󵄩󵄩󵄩
𝐵
4

󵄩󵄩󵄩󵄩󵄩2
10.5 9.69𝑒 + 3 1.28𝑒 + 7 1.96𝑒 + 10 3.20𝑒 + 13 5.49𝑒 + 16

𝐶
1,𝑚

4 4.93𝑒 + 2 8.20𝑒 + 4 1.55𝑒 + 7 3.15𝑒 + 9 6.68𝑒 + 11

𝐶
2,𝑚

10.5 9.69𝑒 + 3 1.28𝑒 + 7 1.96𝑒 + 10 3.20𝑒 + 13 5.49𝑒 + 16

Table 3: Spectral norms of 𝐵
𝑖
, 𝐵
𝑖
(𝑖 = 5, 6), 𝐶

1,𝑠
= 2(
2𝑠

𝑠
)
2

(𝐻
2𝑠

− 𝐻
𝑠
), and 𝐶

2,𝑠
= (
3𝑠

𝑠
)
2

(2𝐻
3𝑠

− 𝐻
2𝑠

− 𝐻
𝑠
).

𝑠 0 2 4 6 8 10
󵄩󵄩󵄩󵄩𝐵
5

󵄩󵄩󵄩󵄩2 0 42 6.22𝑒 + 3 1.12𝑒 + 6 2.20𝑒 + 8 4.57𝑒 + 10

󵄩󵄩󵄩󵄩𝐵
6

󵄩󵄩󵄩󵄩2 0 2.96𝑒 + 2 3.44𝑒 + 5 4.95𝑒 + 5 7.86𝑒 + 11 1.32𝑒 + 15
󵄩󵄩󵄩󵄩󵄩
𝐵
5

󵄩󵄩󵄩󵄩󵄩2
0 42 6.22𝑒 + 3 1.12𝑒 + 6 2.20𝑒 + 8 4.57𝑒 + 10

󵄩󵄩󵄩󵄩󵄩
𝐵
6

󵄩󵄩󵄩󵄩󵄩2
0 2.96e+2 3.44𝑒 + 5 4.95𝑒 + 5 7.86𝑒 + 11 1.32𝑒 + 15

𝐶
1,𝑠

0 42 6.22𝑒 + 3 1.12𝑒 + 6 2.20𝑒 + 8 4.57𝑒 + 10

𝐶
2,𝑠

0 2.96𝑒 + 2 3.44𝑒 + 5 4.95𝑒 + 5 7.86𝑒 + 11 1.32𝑒 + 15

Table 4: Spectral norms of 𝐵
𝑖
(𝑖 = 7, 8), 𝐶

1,𝑛
= 2(
2𝑛

𝑛
)
2

(𝐻
2𝑛

− 𝐻
𝑛
), and 𝐶

2,𝑛
= (
3𝑛

𝑛
)
2

(2𝐻
3𝑛

− 𝐻
2𝑛

− 𝐻
𝑛
).

𝑛 + 1 5 6 7
𝑔 2 3 4 5 2 3 4 5 6
󵄩󵄩󵄩󵄩𝐵
7

󵄩󵄩󵄩󵄩2 6.22𝑒 + 3 6.22𝑒 + 3 6.22𝑒 + 3 8.20𝑒 + 4 1.12𝑒 + 6 1.12𝑒 + 6 1.12𝑒 + 6 1.12𝑒 + 6 1.12𝑒 + 6

󵄩󵄩󵄩󵄩𝐵
8

󵄩󵄩󵄩󵄩2 3.44𝑒 + 5 3.44𝑒 + 5 3.44𝑒 + 5 1.28𝑒 + 7 4.95𝑒 + 8 4.95𝑒 + 8 4.95𝑒 + 8 4.95𝑒 + 8 4.95𝑒 + 8

𝐶
1,𝑛

6.22𝑒 + 3 6.22𝑒 + 3 6.22𝑒 + 3 8.20𝑒 + 4 1.12𝑒 + 6 1.12𝑒 + 6 1.12𝑒 + 6 1.12𝑒 + 6 1.12𝑒 + 6

𝐶
2,𝑛

3.44𝑒 + 5 3.44𝑒 + 5 3.44𝑒 + 5 1.28𝑒 + 7 4.95𝑒 + 8 4.95𝑒 + 8 4.95𝑒 + 8 4.95𝑒 + 8 4.95𝑒 + 8

norms ‖𝐴‖ and ‖𝐴
−1

‖ help us to estimate the so-called
condition number. It is an interesting problem to investigate
the properties of 𝐵

𝑖
(𝑖 = 1, 2, . . . , 8), such as the explicit

formulations for determinants and inverses, by just using the
entries in the first row.
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[24] A. İpek, “On the spectral norms of circulant matrices with
classical Fibonacci and Lucas numbers entries,” Applied Mathe-
matics and Computation, vol. 217, no. 12, pp. 6011–6012, 2011.

[25] W. T. Stallings and T. L. Boullion, “The pseudoinverse of an
r-circulant matrix,” Proceedings of the American Mathematical
Society, vol. 34, no. 2, pp. 385–388, 1972.

[26] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge
University Press, Cambridge, UK, 1985.



Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2013, Article ID 681710, 9 pages
http://dx.doi.org/10.1155/2013/681710

Research Article
Optimal Grasping Manipulation for Multifingered Robots Using
Semismooth Newton Method

Chun-Hsu Ko1 and Jein-Shan Chen2,3

1 Department of Electrical Engineering, I-Shou University, Kaohsiung 84001, Taiwan
2Department of Mathematics, National Taiwan Normal University, Taipei 11677, Taiwan
3Mathematics Division, National Center for Theoretical Sciences, Taipei, Taiwan

Correspondence should be addressed to Jein-Shan Chen; jschen@math.ntnu.edu.tw

Received 6 July 2013; Accepted 11 September 2013

Academic Editor: Masoud Hajarian

Copyright © 2013 C.-H. Ko and J.-S. Chen. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Multifingered robots play an important role in manipulation applications. They can grasp various shaped objects to perform
point-to-point movement. It is important to plan the motion path of the object and appropriately control the grasping forces
for multifingered robot manipulation. In this paper, we perform the optimal grasping control to find both optimal motion path
of the object and minimum grasping forces in the manipulation. The rigid body dynamics of the object and the grasping forces
subjected to the second-order cone (SOC) constraints are considered in optimal control problem.Theminimumprinciple is applied
to obtain the system equalities and the SOC complementarity problems. The SOC complementarity problems are further recast as
the equations with the Fischer-Burmeister (FB) function. Since the FB function is semismooth, the semismooth Newton method
with the generalized Jacobian of FB function is used to solve the nonlinear equations. The 2D and 3D simulations of grasping
manipulation are performed to demonstrate the effectiveness of the proposed approach.

1. Introduction

Multifingered robots have attracted much attention in
robotics manipulation applications. They can grasp vari-
ous shaped objects and dexterously perform point-to-point
manipulations. Many researches [1–6] have been proposed
for grasping and manipulating objects with multifingered
robots. Miller and Allen [2] proposed a user interface with
grasp quality evaluation for the robot hand design. Yokokohji
et al. [6] proposed a measure of dynamic manipulability
of multifingered grasping for the systems consisting of a
multifingered hand and a grasped object. Xu and Li [5]
proposed a modeling method for the manipulation involving
finger gaits. Kawamura et al. [1] used soft finger tips for
stable grasping. Takahashi et al. [4] proposed robust force
and position control with the information of tactile sensor. It
is important to appropriately control the grasping forces for
multifingered robot manipulation.

Since the grasping manipulation utilizes the contact and
friction forces to hold and move an object, the grasping
forces should satisfy the point-contact friction constraint
and be equal to the dynamic wrench of the grasped object.
It is required to find the minimum forces for moving the
grasped object in the manipulation. Boyd and Wegbreit [7]
used the semidefinite programming and second-order cone
programming to efficiently find the grasping forces. Helmke
et al. [8] proposed quadratically convergent algorithms for
optimal dexterous grasping. Han et al. [9] used the convex
optimization involving linearmatrix inequalities for grasping
forces computation. Liu et al. [10] presented a unified geo-
metric framework for efficient grasping force optimization.
Zheng et al. [11] developed an algorithm to determine the
minimumrequired friction coefficient and the corresponding
reliable minimum contact forces in practice. Ko et al. [12]
proposed a neural network to calculate the optimal grasping
forces. Because the external wrench of the object varies with



2 Mathematical Problems in Engineering

the manipulation path and orientation of the object, it is
important to plan amanipulation trajectory [13] for achieving
the minimum grasping forces.

In this paper, we perform the optimal grasping control
to find both optimal manipulation path of the object and
minimum grasping forces. The rigid body dynamics of the
object and the grasping forces subjected to the second-order
cone (SOC) constraints are considered in the grasping control
problem.Theminimum principle [14] is applied to obtain the
system equalities and the SOC complementarity problems.
The SOC complementarity problems can be recast as the
equations with the Fischer-Burmeister (FB) function. The
semismooth Newton method with the generalized Jacobian
of FB function is then used to solve the equations. Finally,
simulations of optimal grasping manipulation are performed
to demonstrate the effectiveness of the proposed approach.

The remainder of this paper is organized as follows:
Section 2 describes the optimal grasping control problem. In
Section 3, the semismooth Newton method with the gener-
alized Jacobian of Fischer-Burmeister function is addressed.
Section 4 presents the simulation results of 2D and 3D grasp-
ing manipulations. Finally, concluding remarks are given in
Section 5.

2. Optimal Grasping Control

Figure 1 shows the multifingered robot grasping manipula-
tion. The multifingered robot grasps and moves the object
from the initial position to the final position. The dynamic
equation of the object can be expressed with Newton-Euler
equations [15, 16] as

̇𝑦 = V,

̇V =
1

𝑚
𝑅𝐺
1
𝑢 + [0 0 −𝑔]

𝑇

,

̇𝑞 = 𝑄𝜔,

̇𝜔 = 𝐼
−1
(𝑅𝐺
2
𝑢 − 𝜔 × (𝐼𝜔)) ,

(1)

where 𝑦 is the position, V is the velocity, 𝑞 = [𝑞1 𝑞
2
𝑞
3]
𝑇 is

the quaternion,𝜔 is the angular velocity,𝑚 is the object mass,
𝐼 is the matrix of moment of inertia, 𝑔 is the gravity constant,
𝑢means the grasping forces which is represented by amatrix,
[𝐺
1
𝐺
2
] is the contact matrix, 𝑅 is the rotation matrix of the

object, and 𝑄 can be expressed as

𝑄 =
1

2

[

[

𝑞
0

𝑞
3

−𝑞
2

−𝑞
3

𝑞
0

𝑞
1

𝑞
2

−𝑞
1

𝑞
0

]

]

with 𝑞
0
= √𝑞
2

1
+ 𝑞
2

2
+ 𝑞
2

3
. (2)

Moreover, the grasping forces are subject to the contact
friction constraint, expressed as

󵄩󵄩󵄩󵄩(𝑢𝑖2, 𝑢𝑖3)
󵄩󵄩󵄩󵄩 ≤ 𝜇𝑢

𝑖1
, (3)

where 𝑢
𝑖1
is the normal force of the ith finger, 𝑢

𝑖2
and 𝑢

𝑖3
are

the friction forces of the 𝑖th finger, ‖ ⋅ ‖ is the 2-norm, and 𝜇
is the friction coefficient.

Figure 1: Multifingered robot manipulation.

To find the path that can be achieved with the minimum
grasping forces, the optimal control problem can be recast as

min∫
𝑇

0

𝐿 𝑑𝑡,

s.t. ̇𝑥 = 𝑓 (𝑥, 𝑢) ,

𝑥 (0) = 𝑥
0
,

𝑥 (𝑇) = 𝑥
𝑇
,

𝐷𝑢 ∈ K
𝑑
×K
𝑑
× ⋅ ⋅ ⋅ ×K

𝑑
,

(4)

where

𝐿 =
𝑢
𝑇
𝑢

2
, 𝑥 =

[
[
[

[

𝑦

V
𝑞

𝜔

]
]
]

]

. (5)

In addition, 𝑓 represents the right hand side of system (1),
𝑇 is the control duration, 𝑥

0
and 𝑥

𝑇
are the initial and final

states, respectively,𝐷 is the diagonal matrix with the friction
coefficient, and K denotes the second-order cone which is
given by

K
𝑑
:= {[

𝑧
1

𝑧
2

] ∈ R ×R
𝑑−1

|
󵄩󵄩󵄩󵄩𝑧2

󵄩󵄩󵄩󵄩 ≤ 𝑧
1
} . (6)

The optimal control problem (4) can be solved by using
the Pontryagin’s minimum principle, see [14, 17, 18]. In
optimization language, it is to write out the KKT conditions
for problem (4) which consist of two parts. The first part
involves a few equalities about Lagrange multipliers, while
the other part is related to complementarity conditions.More
specifically, with the Hamiltonian function, the first part can
be reformulated as follows:

̇𝑥 − 𝐻
𝜆
= ̇𝑥 − 𝑓 (𝑥, 𝑢) = 0,

̇𝜆 + 𝐻
𝑥
= ̇𝜆 + 𝜆

𝑇
𝑓
𝑥
= 0,

𝐻
𝑢
= 𝐿
𝑢
+ 𝜆
𝑇
𝑓
𝑢
+ 𝜂
𝑇
𝐷 = 0,

𝜙 (𝑥 (0) , 𝑥 (𝑇)) = 0,

𝜆 (0) + 𝜙
𝑇

𝑥(0)
𝜎 = 0,

𝜆 (𝑇) + 𝜙
𝑇

𝑥(𝑇)
𝜎 = 0,

(7)
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Figure 2:Themanipulation path of 90 degrees rotation with𝑇 = 1 s
and 𝜇 = 0.3.

where 𝜆, 𝜂, and 𝜎 are the Lagrange multipliers, and
𝜙(𝑥(0), 𝑥(𝑇)) = [

𝑥(0)−𝑥0

𝑥(𝑇)−𝑥𝑇
]. The second part forms a second-

order cone complementarity problem (SOCCP) as follows:

−𝜂 ∈ K, 𝐷𝑢 ∈ K, 𝜂
𝑇
𝐷𝑢 = 0, (8)

whereK = K𝑑 ×K𝑑 × ⋅ ⋅ ⋅ ×K𝑑.
From [19, 20], we see that the previous SOCCP (8) can be

further recast as a system of equations:

𝜙FB (𝐷𝑢, −𝜂) = 0 (9)

by employing the so-called complementarity function 𝜙FB
which is a vector-valued function defined as

𝜙FB (a, b) := (a2 + b2)
1/2

− (a + b) (10)

for a = [
𝑎1
𝑎2
] ∈ R × R𝑑−1, b = [

𝑏1

𝑏2
] ∈ R × R𝑑−1. We point

out that the square term and square-root term in (10) are
calculated via Jordan product

a ∘ b = [
aTb

𝑎
1
𝑏
2
+ 𝑏
1
𝑎
2

] . (11)

In particular, the expressions for a2 and a1/2 are given by

a2 = [
‖a‖2
2𝑎
1
𝑎
2

] , (12)

a1/2 = [

𝑠
𝑎
2

2𝑠

] with s = √
1

2
(a
1
+ √a2
1
−
󵄩󵄩󵄩󵄩a2

󵄩󵄩󵄩󵄩

2

), (13)

respectively.
In summary, the optimal grasping forces can be obtained

by solving (7) and (9).Then, the semismoothNewtonmethod
is used to solve these equations, which will be described in
next section.
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3. Semismooth Newton Method with
Generalized Jacobian of FB Function

In order to apply the semismooth Newton method [21, 22] to
(7) and (9), we need the following three linear equations:

[
Δ ̇𝑥

Δ ̇𝜆
] − [

𝑓
(𝑘)

𝑥
0

−𝐻
(𝑘)

𝑥𝑥
−(𝑓
(𝑘)

𝑥
)
𝑇][

Δ𝑥

Δ𝜆
] − [

[

𝑓
(𝑘)

𝑢
0

−𝐻
(𝑘)

𝑥𝑢
0

]

]

[
Δ𝑢

Δ𝜂
]

= −[
̇𝑥
(𝑘)

− 𝑓
(𝑘)

̇𝜆
(𝑘)

+ 𝐻
(𝑘)

𝑥

] ,

(14)

[
[
[
[
[
[

[

𝜙
(𝑘)

𝑥(0)
0 0

0 𝐼 (𝜙
(𝑘)

𝑥(0)
)
𝑇

0 0 −(𝜙
(𝑘)

𝑥(0)
)
𝑇

]
]
]
]
]
]

]

[

[

Δ𝑥 (0)

Δ𝜆 (0)

Δ𝜎 (0)

]

]

+

[
[
[
[

[

𝜙
(𝑘)

𝑥(𝑇)
0 0

0 0 0

0 𝐼 0

]
]
]
]

]

[

[

Δ𝑥 (𝑇)

Δ𝜆 (𝑇)

Δ𝜎 (𝑇)

]

]

= −
[
[
[

[

𝜙
(𝑘)

𝜆
(𝑘)
(0) + (𝜙

(𝑘)

𝑥(0)
)
𝑇

𝜎
(𝑘)

𝜆
(𝑘)
(𝑇) + (𝜙

(𝑘)

𝑥(𝑇)
)
𝑇

𝜎
(𝑘)

]
]
]

]

,

(15)
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Figure 6: The manipulation path of 180 degrees rotation with 𝑇 =

1 s and 𝜇 = 0.3.
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[

[

𝐼 𝐷
𝑇

𝑉
(𝑘)

a 𝐷 −𝑉
(𝑘)

b

]

]

[
Δ𝑢

Δ𝜂
] + [

[

𝜆
𝑇
𝑓
(𝑘)

𝑥𝑢
𝑓
(𝑘)

𝑢

0 0

]

]

[
Δ𝑥

Δ𝜆
]

= −[

[

𝐻
(𝑘)

𝑢

𝜙FB (𝐷𝑢
(𝑘)
, −𝜂
(𝑘)
)

]

]

.

(16)

Most information in linear equations (14)–(16) is known
except the generalized Jacobian 𝑉a, 𝑉b in (16). What do they
represent? We provide a brief introduction here. First, we
recall the concept of the 𝐵-subdifferential. Given a mapping
Ψ : R𝑛 → R𝑚, if Ψ is locally Lipschitz continuous, then the
set

𝜕
𝐵
𝐻(𝑧)

:= {𝑉 ∈ R
𝑚×𝑛

| ∃ {𝑧
𝑘
} ⊆ 𝐷

Ψ
: 𝑧
𝑘
󳨀→ 𝑧,Ψ

󸀠
(𝑧
𝑘
) 󳨀→ 𝑉}

(17)
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is nonempty and is called the 𝐵-subdifferential of Ψ at 𝑧,
where 𝐷

Ψ
⊆ R𝑛 denotes the set of points at which Ψ is

differentiable. The convex hull

𝜕Ψ (𝑧) := conv 𝜕
𝐵
Ψ (𝑧) (18)

is the generalized Jacobian of Clarke [23]. From this defi-
nition, we see that the generalized Jacobian of 𝜙FB can be
obtained by computing 𝜕

𝐵
𝜙FB. From [24, Proposition 3.1], the

𝐵-subdifferential of 𝜙FB in (16) is exactly expressed as

𝜕
𝐵
𝜙FB (a, b) = [

[

𝑉
𝑇

a

𝑉
𝑇

b

]

]

. (19)

Moreover, by denoting c := (a2 + b2)1/2, we have

(a) If a2+b2 ∈ int(Kd
), then𝑉a = 𝐿

−1

c 𝐿a and𝑉b = 𝐿
−1

c 𝐿b.
(b) If a2 + b2 ∈ bd(Kd

) and (a, b) ̸= (0, 0), then

𝑉a ∈ {
1

2√2𝑤
1

(
1 𝑤

𝑇

2

𝑤
2
4𝐼 − 3𝑤

2
𝑤
𝑇

2

)𝐿a +
1

2
(

1

−𝑤
2

)𝛼
𝑇
} ,

𝑉b ∈ {
1

2√2𝑤
1

(
1 𝑤

𝑇

2

𝑤
2
4𝐼 − 3𝑤

2
𝑤
𝑇

2

)𝐿b +
1

2
(

1

−𝑤
2

)𝛽
𝑇
}

(20)
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Figure 11: The trajectories of the grasping forces in five-fingered
robot simulation.

for some 𝛼 = [
𝛼1
𝛼2
] ∈ R × R𝑑−1 𝛽 = [

𝛽1

𝛽2
] ∈ R × R𝑑−1

satisfying |𝛼
1
| ≤ ‖𝛼

2
‖ ≤ 1 and |𝛽

1
| ≤ ‖𝛽

2
‖ ≤ 1, where

𝑤
2
= 𝑤
2
/‖𝑤
2
‖.

(c) If (a, b) = (0, 0), then 𝑉a ∈ {𝐿 â}, 𝑉b ∈ {𝐿 b̂} for some
â, b̂ with ‖â‖2 + ‖b̂‖

2

= 1, or

𝑉a ∈ {
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(
1

𝑤
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Figure 12: The 3D manipulation path of the four-fingered robot.
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Figure 13: The 3D manipulation path of the six-fingered robot.
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for some 𝛼 = [
𝛼1
𝛼2
] , 𝛽 = [

𝛽1

𝛽2
] , 𝜉 = [

𝜉1

𝜉2
] , 𝜏 = [

𝜏1
𝜏2
] ∈ R × R𝑙−1

such that

󵄨󵄨󵄨󵄨𝛼1
󵄨󵄨󵄨󵄨 ≤

󵄩󵄩󵄩󵄩𝛼2
󵄩󵄩󵄩󵄩 ≤ 1,

󵄨󵄨󵄨󵄨𝛽1
󵄨󵄨󵄨󵄨 ≤

󵄩󵄩󵄩󵄩𝛽2
󵄩󵄩󵄩󵄩 ≤ 1,

󵄨󵄨󵄨󵄨𝜉1
󵄨󵄨󵄨󵄨 ≤

󵄩󵄩󵄩󵄩𝜉2
󵄩󵄩󵄩󵄩 ≤ 1,

󵄨󵄨󵄨󵄨𝜏1
󵄨󵄨󵄨󵄨 ≤

󵄩󵄩󵄩󵄩𝜏2
󵄩󵄩󵄩󵄩 ≤ 1,

(22)

𝑤
2
∈ R𝑙−1 satisfying ‖𝑤

2
‖ = 1, and 𝛿 = [

𝛿1

𝛿2
] , 𝛾 = [

𝛾1
𝛾2
] ∈

R ×R𝑑−1 satisfying ‖𝛿‖2 + ‖𝛾‖2 ≤ 1/2.
Note that the calculations of 𝐿a and 𝐿

−1

a are given by

𝐿a = [
𝑎
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𝑎
𝑇

2

𝑎
2
𝑎
1
𝐼
] ,

𝐿
−1

a =
1

𝑎
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−
󵄩󵄩󵄩󵄩𝑎2

󵄩󵄩󵄩󵄩

2

[
[

[

𝑎
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𝑇
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−𝑎
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𝑎
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− ‖ 𝑎
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‖
2

𝑎
1

𝐼 +
1

𝑎
1

𝑎
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𝑎
𝑇

2

]
]

]

.

(23)

For more details, please refer to [24]. Now, we write down the
iterative scheme of semismooth Newton method for solving
the optimal grasping control problem.

Algorithm

Step 1. Choose 𝑥0, 𝑢0, 𝜆0, 𝜂0, 𝜎0 and set 𝑘 = 0.

Step 2. If convergence criterion is satisfied, stop.

Step 3. Compute the direction Δ𝑥𝑘, Δ𝑢𝑘, Δ𝜆𝑘, Δ𝜂𝑘, Δ𝜎𝑘 from
the linear equations (14)–(16).

Step 4. Set

[
[
[
[
[
[

[

𝑥
𝑘+1

𝑢
𝑘+1

𝜆
𝑘+1

𝜂
𝑘+1

𝜎
𝑘+1

]
]
]
]
]
]

]

=

[
[
[
[
[
[

[

𝑥
𝑘

𝑢
𝑘

𝜆
𝑘

𝜂
𝑘

𝜎
𝑘

]
]
]
]
]
]

]

+

[
[
[
[
[
[

[

Δ𝑥
𝑘

Δ𝑢
𝑘

Δ𝜆
𝑘

Δ𝜂
𝑘

Δ𝜎
𝑘

]
]
]
]
]
]

]

, 𝑘 = 𝑘 + 1 (24)

and go to Step 2.

A few words about the implementations. From (14)
and (16), the parameters [ Δ𝑢Δ𝜂 ] can be eliminated and the
differential equations regarding [

Δ𝑥

Δ𝜆
] are obtained. With

the boundary conditions (15), the solutions of [ Δ𝑥
Δ𝜆
] can be

achieved. Finally, the solutions of [ Δ𝑢Δ𝜂 ] can be obtained
by (16). Once all linear equations are solved by the above
procedures, the iterative scheme for the calculation of optimal
grasping force is kept going.

4. Simulations

To evaluate the performance of the proposed approach, we do
simulations for 2D and 3D multifingered robots for grasping
manipulations. The 2D grasping simulations are performed
with a plane three-fingered robot.The parameter values of the

object are𝑚 = 1 kg, 𝐼 = 0.01 kgm2, 𝜇 = 0.6, and the grasping
matrices are

𝐺
1
= [

0 1 0 −1 0 −1

−1 0 1 0 1 0
] ,

𝐺
2
= [0 −0.03 −0.03 0.03 0.03 0.03] .

(25)

The first 2D simulation is the manipulation of 90 degrees
rotation of the object. The start and end points (𝑥, 𝑦, 𝜃) are
set to be (0m, 0m, 0 rad) and (1m, 1m, −(𝜋/2) rad), respec-
tively. Figure 2 shows the manipulation path of 90 degrees
rotation with the time 𝑇 = 1 s and the friction coefficient
𝜇 = 0.3. The simulation result indicates that the proposed
scheme grasps the object to the end point smoothly and
accurately. Figure 3 depicts the trajectories of the variables
𝑥, 𝑦, 𝜃, V

𝑥
, V
𝑦
, and 𝜔. We observe that the rotation angle

𝜃 varies around 0 which results in a small grasping force.
Moreover, the translation speeds are kept within 1.8m/s
and the turning speed within 5.5 rad/s. The trajectories of
the grasping forces are shown in Figure 4. The simulation
results show that the normal forces are all nonnegative
and the tangent forces satisfy the friction constraint. To
evaluate the effect of the friction, simulation with a different
value of friction coefficient is also conducted for 90 degrees
rotation simulation. Figure 5 shows the manipulation path
with the friction coefficient 𝜇 = 0.1. We observe that the
manipulation path length becomes longer as the friction
coefficient decreases. Meanwhile, the value of the objective
function 𝐽 is computed to be 3.07 when 𝜇 was 0.3 and it
becomes 3.39 when 𝜇 reduces to 0.1, leading to the increase
in grasping force.

The second 2D simulation is the manipulation of
180 degrees rotation of the object. The start and end
points (𝑥, 𝑦, 𝜃) are set to be (0m, 0m, −(𝜋/2) rad) and
(1m, 1m, (𝜋/2) rad), respectively. The friction coefficient is
set as 𝜇 = 0.3. Figures 6-7 depict the manipulation paths
of 180 degrees rotation with the time 𝑇 = 1 s and 𝑇 = 2 s,
respectively. We observe that the object moves down initially
and reaches to the end point accurately. Moreover, the mean
of rotation angle decreases as 𝑇 increases.

The 3D grasping simulation is performed with a five-
fingered robot which has not been implemented in the liter-
ature. The object is considered as a block and its parameter
values were set as

𝑚 = 1 kg, 𝐼
11
= 8.33𝑒 − 3 kgm2,

𝐼
22
= 4.17𝑒 − 3 kgm2, 𝐼

33
= 1.08𝑒 − 2 kgm2.

(26)

The two fingers of the robot grasp the top of the object, while
the other three grasp the bottom of the object. The matrices
𝐺
1
and 𝐺

2
are
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𝐺
1
= [

[

0 1 0 0 1 0 0 1 0 0 1 0 0 1 0

0 0 −1 0 0 −1 0 0 1 0 0 1 0 0 1

−1 0 0 −1 0 0 1 0 0 1 0 0 1 0 0

]

]

,

𝐺
2
= 0.01 ⋅ [

[

0 0 5 0 0 5 6 0 5 −3 0 5 −3 0 5

3 5 0 −3 5 0 0 −5 0 −3√3 −5 0 3√3 −5 0

0 0 −3 0 0 3 0 −6 0 0 3 3√3 0 3 −5√3

]

]

.

(27)

The start and end points (𝑥, 𝑦, 𝑧, 𝑞
0
, 𝑞
1
, 𝑞
2
, 𝑞
3
) are set to be

(0m, 0m, 0m, 1, 0, 0, 0) and (2m, 2m, 2m, 0.5, -0.5, 0.5,
-0.5), respectively. Figure 8 shows the 3D manipulation path
with the time 𝑇 = 2 s and the friction coefficient 𝜇 = 0.3.
As we can see, the object moves and rotates to the end point
smoothly and accurately. Figures 9-10 depict the trajectories
of the variables 𝑥, 𝑦, 𝑧, 𝑞

0
, 𝑞
1
, 𝑞
2
, 𝑞
3
and V

𝑥
, V
𝑦
, V
𝑧
, 𝜔
𝑥
,

𝜔
𝑦
, 𝜔
𝑧
, respectively. We observe that the trajectories are

smooth. The translation speeds are kept within 1.67m/s and
the turning speed within 3.77 rad/s. The trajectories of the
grasping forces are shown in Figure 11.The simulation results
indicate that the grasping forces satisfy the friction constraint.
The 3D grasping simulations are also performed with a four-
fingered robot and a six-fingered robot, respectively. The
four-fingered and six-fingered robots place one finger and
three fingers on the top center of the object, respectively,
while their other three fingers grasping the bottom. Figures
12-13 show the 3D manipulation paths with the four-fingered
and six-fingered robots, respectively. From Figures 8, 12,
and 13, we observe that increasing the number of the robot
fingers can reduce manipulation path length and enhance
the maneuverability. Consequently, the simulation results
show that the proposed scheme can achieve the accurate
manipulation for multifingered robots.

5. Conclusion

In this paper, we have proposed an effective method for
multifingered robot path planning and grasping forces com-
putation. The optimal grasping control problem was formu-
lated with the rigid body dynamics of the object and the
second-order cone constraints of grasping forces. The SOC
complementarity problem was recast as the equations with
the Fischer-Burmeister (FB) function, and the semismooth
Newtonmethodwith the generalized Jacobian of FB function
was used to solve the system equations.The simulation results
show that the optimal grasping forces can accurately move
the object to a goal, demonstrating the effectiveness of the
proposed method.
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[8] U. Helmke, K. Hüper, and J. B. Moore, “Quadratically con-
vergent algorithms for optimal dextrous hand grasping,” IEEE
Transactions on Robotics and Automation, vol. 18, no. 2, pp. 138–
146, 2002.

[9] L. Han, J. C. Trinkle, and Z. X. Li, “Grasp analysis as linear
matrix inequality problems,” IEEE Transactions on Robotics and
Automation, vol. 16, no. 6, pp. 663–674, 2000.

[10] G. F. Liu, J. J. Xu, andZ. X. Li, “On geometric algorithms for real-
time grasping force optimization,” IEEETransactions on Control
Systems Technology, vol. 12, no. 6, pp. 843–859, 2004.

[11] Y. Zheng, M. C. Lin, and D. Manocha, “On computing reliable
optimal grasping forces,” IEEE Transactions on Robotics, vol. 28,
no. 3, pp. 619–633, 2012.

[12] C. H. Ko, J. S. Chen, and C. Y. Yang, “Recurrent neural networks
for solving second-order cone programs,” Neurocomputing, vol.
74, no. 17, pp. 3646–3653, 2011.

[13] D. Prattichizzo, M. Malvezzi, M. Aggravi, and T. Wimbock,
“Object motion-decoupled internal force control for a compli-
antmultifingered hand,” inProceedings of the IEEE International
Conference on Robotics and Automation (ICRA ’12), pp. 1508–
1513, St Paul, Minn, USA, May, 2012.



Mathematical Problems in Engineering 9

[14] F. L. Lewis and V. L. Syrmos, Optimal Control, John Wiley &
Sons, New York, NY, USA, 1995.

[15] W.HamandH.Kwon, “Slidingmode control for the hovering of
helicopter by using quaternion dynamics,” in Proceedings of the
50th Annual Conference on Society of Instrument and Control
Engineers (SICE ’11), pp. 1024–1028, Tokyo, Japan, September
2011.

[16] C. G. Mayhew, R. G. Sanfelice, and A. R. Teel, “On quaternion-
based attitude control and the unwinding phenomenon,” in
Proceedings of the American Control Conference (ACC ’09), pp.
299–304, San Francisco, Calif, USA, July 2011.

[17] H. P. Geering, Optimal Control With Engineering Applications,
Springer, Berlin, Germany, 2007.

[18] D. G. Hull,Optimal ControlTheory for Applications, Mechanical
Engineering Series, Springer, Berlin, Germany, 2003.

[19] J.-S. Chen and P. Tseng, “An unconstrained smooth minimiza-
tion reformulation of the second-order cone complementarity
problem,”Mathematical Programming, vol. 104, no. 2-3, pp. 293–
327, 2005.

[20] M. Fukushima, Z. Q. Luo, and P. Tseng, “Smoothing functions
for second-order-cone complementarity problems,” SIAM Jour-
nal on Optimization, vol. 12, no. 2, pp. 436–460, 2002.

[21] M. Gerdts, “A nonsmooth Newton’s method for control-state
constrained optimal control problems,”Mathematics and Com-
puters in Simulation, vol. 79, no. 4, pp. 925–936, 2008.

[22] L. Q. Qi and J. Sun, “A nonsmooth version of Newton’s method,”
Mathematical Programming, vol. 58, no. 3, pp. 353–367, 1993.

[23] F. H. Clarke, Optimization and Nonsmooth Analysis, vol. 5 of
Classics in Applied Mathematics, SIAM, Philadelphia, Pa, 2nd
edition, 1990.

[24] S. H. Pan and J.-S. Chen, “A damped Gauss-Newton method
for the second-order cone complementarity problem,” Applied
Mathematics and Optimization, vol. 59, no. 3, pp. 293–318, 2009.



Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2013, Article ID 525313, 8 pages
http://dx.doi.org/10.1155/2013/525313

Research Article
The Extrapolation-Accelerated Multilevel Aggregation Method in
PageRank Computation

Bing-Yuan Pu,1,2 Ting-Zhu Huang,1 Chun Wen,1 and Yi-Qin Lin3

1 School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
2Department of Basic Courses, Chengdu Textile College, Chengdu 611731, China
3Department of Mathematics and Computational Science, Hunan University of Science and Engineering, Yongzhou 425100, China

Correspondence should be addressed to Bing-Yuan Pu; skypuby@163.com

Received 22 June 2013; Accepted 11 August 2013

Academic Editor: Masoud Hajarian

Copyright © 2013 Bing-Yuan Pu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

An accelerated multilevel aggregation method is presented for calculating the stationary probability vector of an irreducible
stochastic matrix in PageRank computation, where the vector extrapolation method is its accelerator. We show how to periodically
combine the extrapolationmethod togetherwith themultilevel aggregationmethod on the finest level for speeding up the PageRank
computation. Detailed numerical results are given to illustrate the behavior of this method, and comparisons with the typical
methods are also made.

1. Introduction

The PageRank algorithm for assigning a rank of importance
toweb pages has been the key technique inweb search [1].The
core of the PageRank computation consists in the principal
eigenvector of a stochastic matrix representing the hyperlink
structure of the web. Due to the large size of the web graph
(over eight billion nodes [2]), computing PageRank is faced
with the big challenge of computational resources, both in
terms of the space of CPU and RAM required and in terms
of the speed of updating in time; that is, as a new crawl is
completed, it can be soon available for searching. Among
all the numerical methods to compute PageRank, the Power
method is one of the standard ways for its stable and reliable
performances [1], whereas the low rate of convergence is its
fatal flaw. Many accelerating techniques have been proposed
to speed up the convergence of the Power method, including
aggregation/disaggregation [3–5], vector extrapolation [6–
10], multilevel [11–14], lumping [15, 16], Arnoldi-type [10, 17],
and adaptive methods [4, 18]. To some extent, our work
follows in this vein, that is, seeking amethod to accelerate the
convergence of PageRank computation. In this research, we
introduce a multilevel aggregation method to accelerate the
computation of PageRank, and the acceleration is performed

by vector extrapolation, which aims at combining the old
iteration sequences.

The remainder of this paper is organized as follows.
Section 2 provides preliminary and related works on PageR-
ank and some acceleration techniques. Section 3 describes
our main acceleration algorithm. Section 4 covers our
numerical results and comparisons among the main PageR-
ank algorithms. Section 5 contains conclusion and points out
directions for future research.

2. Preliminaries and Related Works

2.1. Background on PageRank. PageRank [19] is the heart
of software, as Google claims on its webpage, and continues
to provide the basis for all the web search tools. Link-based
PageRank views the web as a directed graph, where each
node represents a page, and each edge from node 𝑖 to node
𝑗 represents the existence of a link from page 𝑖 to page 𝑗,
and at this time, one can view page 𝑗 as “important.” Page
and Brin [1] made another basic assumption: the amount
of importance distributed to 𝑗 by 𝑖 is proportional to the
importance of 𝑖 and inversely proportional to the number
of pages 𝑖 is pointing to. This definition suggests an iterative
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fixed-point computation for determining the importance for
every page on the web. Each page has a fixed rank score
𝜋
𝑖
, forming the rank vector 𝜋. Page and Brin convert the

computation of PageRank to the computation of stationary
distribution vector of the linear system 𝜋

𝑇
= 𝜋
𝑇

𝑃, where 𝑃 is
the adjacency matrix of the web graph 𝐺 normalized so that
each row sums to 1. For 𝑃 to be a valid transition probability
matrix, every node must have at least 1 outlink; that is, 𝑃

should have no rows consisting of all zeros (pages without
outlinks are called dangling nodes). Meanwhile, to guarantee
the uniqueness of a unitary norm eigenvector corresponding
to the eigenvalue 1, by the ergodic theorem forMarkov chains
[20], 𝑃 should be aperiodic and irreducible. To solve these
problems, Page and Brin have introduced a parameter 𝛼 and
transferred matrix 𝑃 to a new one 𝑃

󸀠: 𝑃
󸀠

= 𝛼(𝑃 + 𝑑𝑉
𝑇

) +

(1 − 𝛼)𝐸𝑉
𝑇, where 𝐸 is the vector with all entries equal to

1, 𝑉 is the column vector representing a uniform probability
distribution over all nodes, 𝑉 = [1/𝑛]

𝑛×1
, 𝑑 = 1, while page

𝑖 is dangling and 𝑑 = 0 otherwise, assuming the total page
number is 𝑛. If viewing a surfer as a random walker on the
web, the constant 𝛼 can be explained below: a web surfer
visiting a page will jump to any other page on the web with
probability (1 − 𝛼), rather than following an outlink. Matrix
𝑃
󸀠 is usually called the Googlematrix.Then, PageRank vector

𝜋 is the stationary distribution vector of 𝑃
󸀠; that is,

𝜋
𝑇

= 𝜋
𝑇

𝑃
󸀠
, (1)

obviously, (1) can be rewritten as

𝜋
𝑇

𝐴 = 0, (2)

where 𝐴 = 𝐼 − 𝑃
󸀠, 𝐼 is an identity matrix, and 𝐴 is a singular

𝑀-matrix with the diagonal elements are negative column
sums of its off-diagonal elements. So what remains to do is
to solve the linear system (1) or its homogeneous one (2),
corresponding to an irreducible Markov chain.

2.2. The Vector Extrapolation-Acceleration of PageRank. The
Power method is the standard algorithm for PageRank,
that is, giving the initial uniform distribution 𝑥

(0) of the
system (1), to compute successive iterates 𝑥

(𝑘)
= 𝑥
(𝑘−1)

𝑃
󸀠,

until convergence, that is, when lim
𝑘→∞

𝑥
(𝑘) exists, which

is exactly the PageRank vector. As mentioned in Section 1,
although the Power method is a stable and reliable [1] or even
a fast iteration algorithm [21], accelerating the computation
is still important, since every search engine crawls a huge
number of pages, and each matrix multiplication in iteration
is so expensive, requiring considerable resources both in
terms of CPU and RAM, and hence, the rate of convergence
deteriorates as the number of pages grows larger. Now there
are many acceleration algorithms for PageRank computa-
tion, and among all the algorithms the vector extrapolation
method is a very popular and efficient one. A detailed review
of the vector extrapolation method can be found in the work
of Kamvar et al., Smith et al., and Sidi [9, 22, 23]. To our
knowledge, there are several kinds of extrapolation methods,
such as quadratic extrapolation [9], two polynomial-type

methods including the minimal polynomial extrapolation
method (MPE) of Cabay and Jackson [24] and the reduced
rank extrapolation (RRE) of Eddy [25], and the three epsilon
vector extrapolation methods of Wynn [26]. In recent years,
many papers have discussed the application of vector extrap-
olation method to compute the stationary probability vector
of Markov chains and web ranking problems, see [6, 8,
9, 22, 23, 27] for details. Numerical experiments in these
papers suggest that the polynomial-type methods are in
general more economical than the epsilon vector extrapola-
tion methods in the sense of computation time and storage
requirements. For this reason, our concern in the context is
to consider a polynomial-type vector extrapolation, that is,
the generalization of quadratic extrapolation method (GQE)
proposed in [23]. Now let us discuss simply the strategy of
GQE. As it is known, the starting point of the extrapolation
method is to accelerate the convergence of the sequences
{𝑥
𝑗
} generated from a fixed-point iterativemethod inMarkov

chain of the form

𝑥
𝑗+1

= 𝐹 (𝑥
𝑗
) , 𝑗 = 0, 1, . . . ; 𝐹 : R

𝑛
󳨀→ R

𝑛
, (3)

where 𝑥
0
is an initial guess. Supposve that we have produced

a sequence of iterates {𝑥
𝑖
}
∞

𝑖=1
, where 𝑥

𝑖
≥ 0. Then, at the 𝑘th

outer iteration, let

𝑋 = [𝑥
𝑘
, 𝑥
𝑘−1

, . . . , 𝑥
𝑘−𝑚+1

] ∈ R
𝑛×𝑚 (4)

be a matrix consisting of the last 𝑚 iterates with 𝑥
𝑘
being

the newest, where 𝑚 is called the window size as usual. It is
evident that 𝑋 has the following properties:

𝑥
𝑖

≥ 0,
󵄩󵄩󵄩󵄩𝑥
𝑖

󵄩󵄩󵄩󵄩1
= 1, 𝑖 = 1, 2, . . . . (5)

The problem to be solved is transformed into obtaining a
vector 𝑧 satisfying ∑

𝑚

𝑖=1
𝑧
𝑖

= 1, and, thus we have an updated
probability vector

𝑥
𝑘

= 𝑋𝑧 = 𝑧
1
𝑥
𝑘

+ 𝑧
2
𝑥
𝑘−1

+ ⋅ ⋅ ⋅ + 𝑧
𝑚

𝑥
𝑘−𝑚+1

, (6)

a linear combination of the last 𝑚 iterates. That is to say,
the current iterate can be expressed as a linear combination
of some of the first eigenvectors, combined with the Power
method, up to the converge of the principal eigenvector. GQE
is derived in this light and can be given as follows [23].

Algorithm 1 (the generalization of quadratic extrapolation
(GQE)). (1) Input the vectors 𝑥

0
, 𝑥
1
, . . . , 𝑥

𝑘+1
.

(2) Compute 𝑢
𝑖

= 𝑥
𝑖+1

− 𝑥
0
, 𝑖 = 0, 1, . . . , 𝑘, set 𝑈

𝑘
=

[𝑢
0
, 𝑢
1
, . . . , 𝑢

𝑘
]. Compute the QR-factorization of 𝑈

𝑘
, namely,

𝑈
𝑘

= 𝑄
𝑘
𝑅
𝑘
. Obtain 𝑅

𝑘−1
:= 𝑅
𝑘
(1 : 𝑘, 1 : 𝑘), 𝑄

𝑘−1
= 𝑄
𝑘
(1 :

𝑘, 1 : 𝑘).
(3) Solve the linear system 𝑅

𝑘−1
𝑑 = −𝑄

𝑇

𝑘−1
𝑢
𝑘
, 𝑑 =

[𝑑
0
, 𝑑
1
, . . . , 𝑑

𝑘−1
]
𝑇.

(4) Set 𝑑
𝑘

= 1 and compute 𝑐 = [𝑐
0
, 𝑐
1
, . . . , 𝑐

𝑘
]
𝑇 by 𝑐

𝑖
=

∑
𝑘

𝑗=𝑖
𝑑
𝑗
, 𝑖 = 0, 1, . . . , 𝑘.

(5) Compute 𝑥
𝑘+1

= (∑
𝑘

𝑖=0
𝑐
𝑖
)𝑥
0

+ 𝑄
𝑘
(𝑅
𝑘
𝑐).
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3. Accelerated Aggregation Strategy in
PageRank Computation

The core of PageRank computation, as discussed earlier, is
to solve the large sparse Markov chain problem (2). Thus, it
is evocative of using a especially useful method—multilevel
method based on aggregation of Markov states, which has
attracted considerable attention [11–14, 28, 29]. Isensee and
Horton considered a kind of multilevel methods for the
steady state solution of continuous-time and discrete-time
Markov chains in [13, 14], respectively. De Sterck et al.
proposed a multilevel adaptive aggregation method for cal-
culating the stationary probability vector of Markov matrices
in [11], as shown in their context, which is a special case of the
adaptive smoothed aggregation [30] and adaptive algebraic
multigrid methods [31] for sparse linear systems.

The central idea of multilevel aggregation method is to
convert a large linear system to a smaller one by some
aggregation strategies, and thus, the stationary state solution
can be obtained in an efficient way.

However, aggregation/disaggregation cannot always dis-
solve the algorithmic scalability due to poor approximation
of 𝐴 in problem (2) by unsmoothed intergrid operators,
so a careful choice of aggregation strategy is crucial for
the efficiency of the multilevel aggregation hierarchies. Now
there are many aggregation methods, such as graph aggre-
gation [32], neighborhood-based aggregation, and (double)
pairwise aggregation [4, 13, 14]. In our study, we consider
the neighborhood aggregation method as described in [12–
14], since it is able to result in well-balanced aggregates
of approximately equal size and provide a more regular
coarsening throughout the automatic coarsening process [12,
29, 33]. Our aggregation strategies are based on the problem
matrix by the current iterate 𝐴 = 𝐴 × diag(𝑥

𝑖
), rather than

the original coefficient matrix 𝐴. Let 𝑥
𝑘
denote the current

iterate; then, we say node 𝑖 is strongly connected to node 𝑗 in
the graph of 𝐴 if

−𝑎
𝑖𝑗

≥ 𝜃max
𝑘 ̸= 𝑖

{−𝑎
𝑖𝑘

} or − 𝑎
𝑗𝑖

≥ 𝜃max
𝑘 ̸= 𝑗

{−𝑎
𝑗𝑘

} , (7)

where 𝜃 is a strength of connection parameter and 𝜃 = 0.25

is used there. Suppose that N
𝑖
is the set of all points which

are strongly connected to 𝑖 in the graph of 𝐴 including node
𝑖 itself. Then, we have the neighborhood-based algorithm as
follows (see [12, 29] for more details).

Algorithm 2 (neighborhood-based aggregation, {𝑄
𝑗
}
𝐽

𝑗=1
←

NBA(𝐴, 𝜃)). (1) Preparing: set 𝑅 = {1, . . . , 𝑛} and 𝐽 = 0.
(2) Assign entire neighborhoods to aggregates: for 𝑖 ∈

{1, . . . , 𝑛}, build strong neighborhoods N
𝑖
based on (∗); if

N
𝑖

⊂ 𝑅, then 𝐽 ← 𝐽 + 1, Q
𝐽

← N
𝑖
, 𝑄
𝐽

← N
𝑖
, 𝑅 ← 𝑅 \ N

𝑖
.

(3) Put the remaining points in the most connected
aggregates: while 𝑅 ̸= 0, pick 𝑖 ∈ 𝑅 and set 𝑗 =

argmax
𝑘=1,...,𝐽

card(𝑁
𝑖

∩ 𝑄
𝑘
), set 𝑄

𝑗
← 𝑄
𝑗

∪ {𝑖} and 𝑅 ←

𝑅 \ {𝑖}.
(4) Obtain the aggregation matrix 𝑄: if 𝑖 ∈ 𝑄

𝑗
, 𝑗 =

1, . . . , 𝐽, then 𝑄
𝑖𝑗

= 1, otherwise 𝑄
𝑖𝑗

= 0.

Note that the aggregationmatrix𝑄 inAlgorithm 2has the
following form

𝑄 =

[
[
[
[
[
[
[
[
[
[
[
[

[

1 0 0 0 . . .

1 0 0 0 . . .

0 1 0 0 . . .

0 0 1 0 . . .

0 0 1 0 . . .

0 0 0 1 . . .

0 0 0 1 . . .

...
...

...
... d

]
]
]
]
]
]
]
]
]
]
]
]

]𝑛×𝐽

. (8)

From (8), we find that there exists only one element 𝑄
𝑖𝑗

=

1 in each row, but each column may have several elements
𝑄
𝑖𝑗

= 1, and the sum of the elements in the 𝑗th column
denotes the number of the nodes combined into the 𝑗th
aggregation.

The multilevel aggregation method, based on the
neighborhood-based aggregation strategy, introduced by De
Sterck et al. in [11, 12, 28, 29] can be expressed as follows.

Algorithm 3 (multilevel aggregation method,
𝑥 ← MA(𝐴, 𝑥, ]

1
, ]
2
, 𝛼)). (1) Presmoothing: do ]

1
times

𝑥 ← 𝑁(Relax(𝐴, 𝑥)).
(2) Build𝑄 according to the automatic coarsening process

described below. Obtain 𝑅 ← 𝑄
𝑇 and 𝑃 ← diag(𝑥)𝑄.

(3) Form the coarse-levelmatrix𝐴
𝑐

← RAP and compute
𝑥
𝑐

← 𝑄
𝑇

𝑥.
(4) If on the coarsest level, solve 𝐴

𝑐
𝑥
𝑐

= 0 by a direct
method. Otherwise, apply 𝛼 iterations of this algorithm 𝑥

𝑐
←

MA(𝐴
𝑐
diag(𝑄

𝑇
𝑥)
−1, 𝑥
𝑐
, ]
1
, ]
2
, 𝛼).

(5) Coarse-level correction: 𝑥 ← 𝑃(diag(𝑄
𝑇

𝑥)
−1)𝑥
𝑐
.

(6) Postsmoothing: do ]
2
times 𝑥 ← 𝑁(Relax(𝐴, 𝑥)).

In Algorithm 3, 𝐴 = 𝐴
1
is given in system (2), 𝑥 is

an initial guess vector, 𝐴
𝑐
denotes the coarse-level matrix,

and 𝑥
𝑐
is the corresponding coarse-level vector, where 𝑐 =

1, 2, . . . , 𝐿 is the number of levels, the finest level is 1, and
the coarsest level is 𝐿. 𝑄 is the aggregation matrix generated
by the aggregation method-Algorithm 2, and 𝑃

𝑙
and 𝑅

𝑙
, 𝑙 =

1, 2, . . . , 𝐿 − 1 are the prolongation and restriction operators,
respectively, which are created by an automatic coarsening
process in step 2, and then, we get the coarse-level matrices
by the equation 𝐴

𝑙
= 𝑅
𝑙
× 𝐴
𝑙
× 𝑃
𝑙
. Setting the weighted Jacobi

method with weight 𝜔, a variant of Jacobi method, as the
pre- and postsmoothing approaches and letting ]

1
and ]
2
be

their iteration times, respectively, the matrix 𝐴 in system (2)
is splitted into the following form

𝐴 = 𝐷 − 𝐿 − 𝑈, (9)

where 𝐷 is the diagonal part of the matrix 𝐴 with 𝑑
𝑖𝑖

> 0 for
all 𝑖 and 𝐿 and 𝑈 are the negated strictly lower- and upper-
triangular parts of 𝐴, respectively. Then, the weighted Jacobi
relaxation method can be written as

𝑥 ←󳨀 𝑁 ((1 − 𝜔) 𝑥 + 𝜔𝐷
−1

(𝐿 + 𝑈) 𝑥) , (10)

with weight 𝜔 ∈ (0, 1). Here, we use 𝑁(⋅) to denote the
normalization operator defined by 𝑁(𝑥) := 𝑥/‖𝑥‖

1
for all
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𝑥 ̸= 0. Note that we have carried out the normalization after
each relaxation process inAlgorithm 3 to ensure that the fine-
level iterates 𝑥

𝑖
can be interpreted as approximations to the

stationary probability vector.
It should be noted that the direct method on the coarsest

level, used at step 4 of Algorithm 3, is based on the following
theorem.

Theorem 4 (see [34, Theorem 4.16]). If 𝐴 is an irreducible
singular 𝑀-matrix, then each of its principal submatrices other
than 𝐴 itself is a nonsingular 𝑀-matrix.

If 𝐴
𝐿
is the coarsest-level operator, then we use the direct

method presented in the coarsest-level algorithm below to
solve the coarsest-level equation 𝐴

𝐿
𝑥
𝐿

= 0.

Coarsest-Level Algorithm

Step 1. Compute𝑁
𝐿

:= size(𝐴
𝐿
, 1); % the size of coarsest-level

operator 𝐴
𝐿
.

Step 2.Obtain 𝐴
𝐿𝑝

:= 𝐴
𝐿
(1 : 𝑁

𝐿
− 1, 1 : 𝑁

𝐿
− 1); % the 𝑁

𝐿
− 1

order principal submatrix of 𝐴
𝐿
.

Step 3. Obtain 𝑏
𝐿𝑝

:= −𝐴
𝐿
(1 : 𝑁

𝐿
− 1, 𝑁

𝐿
); % the right-hand

vector corresponding to 𝐴
𝐿𝑝
.

Step 4. Compute 𝑥
𝐿𝑝

:= 𝐴
𝐿𝑝

\ 𝑏
𝐿𝑝
; let 𝑥
𝐿𝑝

(𝑁
𝐿
) = 1; and obtain

the coarsest-level solution 𝑥
𝐿

= 𝑥
𝐿𝑝

/‖𝑥
𝐿𝑝

‖
1
.

Now, let us introduce the main idea of this paper and
the implementation details of the main algorithm. In fact,
our idea is derived from the excellent papers [12, 28, 29].
In the literature, De Sterck et al. studied several strategies
to accelerate the convergence of the multilevel aggregation
method, including the application of a smoothing technique
to the interpolation and restriction operators in [28] and the
analysis of a recursively accelerated multilevel aggregation
method by computing quadratic programming problems
with inequality constraints in [29]. Of particular note, in
[12], they introduced a top-level acceleration of adaptive
algebraicmultilevelmethod by selecting a linear combination
of old iterates to minimize a function over a subset of the
set of probability vectors. Their acceleration strategy was
involved mainly in cases when the window size 𝑚 = 2,
and for larger window size 𝑚, such as 𝑚 = 3 or 4, they
used the active set method from Matlab’s quadprog function
[35]. With this in mind, enough interest is aroused to look
for a general acceleration method for any case of window
size. In view of the effectiveness of vector extrapolation
in improving the convergence of the iterate sequence, now
consider a new accelerated multilevel aggregation method,
combining the multilevel aggregation method and the vector
extrapolationmethod. Giving the finest level iterate sequence
{𝑥
𝑛
} produced by Algorithm 3 in multilevel aggregation, the

updated iterate 𝑥
𝑘
is generated as their linear combination by

Algorithm 1.And sowe canpresent our acceleratedmultilevel
aggregation as follows.

Algorithm 5 (extrapolation-accelerated multilevel aggrega-
tion methods, 𝑥 ← EAMA(𝐴, 𝑥

0
, 𝑚, 𝜖)). (1) Set 𝑘 = 1, if no

initial guess is given, choose 𝑥
0
.

(2) Run the multilevel aggregation method, 𝑥
𝑘

←

MA(𝐴, 𝑥
𝑘−1

, ]
1
, ]
2
, 𝛼).

(3) Set 𝑚 ← min{𝑀, 𝑘}. % set the window size.
(4) Set 𝑋 ← [𝑥

𝑘
, 𝑥
𝑘−1

, . . . , 𝑥
𝑘−𝑚−1

]. % the last 𝑚 + 2

iterates.
(5) Apply GQE algorithms to obtain 𝑥

𝑘
from 𝑋, respec-

tively.
(6) If ‖𝐴𝑥

𝑘
‖
1

> ‖𝐴𝑥
𝑘
‖
1
, then 𝑥

𝑘
← 𝑥
𝑘
.

(7) Check convergence, if ‖𝐴𝑥
𝑘
‖
1
/‖𝐴𝑥
0
‖
1

< 𝜖, then 𝑥
𝑘

←

𝑥
𝑘
/‖𝑥
𝑘
‖
1
, otherwise set 𝑘 ← 𝑘 + 1 and go to step 2.

Note that 𝑚 in Algorithm 5 is the window size and 𝜖 is
a prescribed tolerance. In particular, there exists a difference
in constructing the matrix 𝑋 between our Algorithm 5 and
the algorithm of [36]. From Algorithm 1, the main reason
is that the GQE needs 𝑘 + 2 vectors 𝑥

0
, 𝑥
1
, . . . , 𝑥

𝑘+1
as their

input. That is to say, when the window size is 𝑚 = 2, four
approximate probability vectors given in the matrix 𝑋 =

[𝑥
0
, 𝑥
1
, 𝑥
2
, 𝑥
3
] ∈ R𝑛×4 are required as its input of GQE

algorithms. In particular, the window size 𝑚 = 2 corresponds
to the quadratic vector extrapolation method presented in
[9]. Hence, the matrix 𝑋 is given as the form of step 4
in Algorithm 5. The efficiency of our accelerated multilevel
aggregation algorithms will be shown in the next section,
where the relative advantage of our method over Matlab’s
quadprog function in the Markov chain and over other
methods in PageRank computation will be demonstrated.

4. Numerical Results and Analysis

In this section, we report some numerical experiments to
show the numerical behavior of extrapolation-accelerated
multilevel aggregation methods. All the numerical results are
obtained with a Matlab 7.0.1 implementation on a 2.93GHz
processor with 2GB main memory.

For the sake of justice, the initial guess vector is selected
as 𝑥
0

= 𝑒/‖𝑒‖
1
for all the algorithms. All the iterations are

terminated when the residual 1-norm
󵄩󵄩󵄩󵄩𝐴𝑥
𝑘

󵄩󵄩󵄩󵄩1
󵄩󵄩󵄩󵄩𝐴𝑥
0

󵄩󵄩󵄩󵄩1

≤ tol, (11)

where 𝑥
𝑘
is the current approximate solution and tol is a

user described tolerance. For convenience, in all the previous
tables we have abbreviated the Power method, the generation
of quadratic extrapolation method, and the extrapolation-
accelerated multilevel aggregation method as Power, GQE,
and EAMA, respectively. We use “res” to denote the 1-norm
residual, “lev” to the number of levels in the multilevel
aggregation, “ite” to the number of iterations, and “CPU” to
the CPU time used in seconds.

Example 1. As described in Section 3, the active set method
from Matlab’s quadprog function [12, 35] is usually used for
the acceleration strategy in Markov chains and other prob-
lems. And in this paper, we have suggested the extrapolation-
acceleration strategy instead of theMatlab’s one.This example
aims to compare the two methods and to test the efficiency
of our new method. The test example is a birth-death chain
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Table 1: Numerical comparison results for EAMA and Q-matlab for Example 1.

Method Window size
EAMA 2 3 4

𝑛 lev 𝐶
𝑜𝑝

res it 𝐶
𝑜𝑝

res it 𝐶
𝑜𝑝

res it
27 2 2.0127 7.4095𝑒 − 6 10 2.0127 1.9435𝑒 − 6 10 2.0127 3.9440𝑒 − 6 9
81 3 3.0166 7.0117𝑒 − 6 14 3.0166 6.1956𝑒 − 6 15 3.0166 9.0883𝑒 − 6 13
243 4 4.5433 5.4196𝑒 − 6 22 4.0481 7.4238𝑒 − 6 20 4.0481 7.3145𝑒 − 6 16
1024 5 4.9831 1.2408𝑒 − 6 48 5.5179 6.2320𝑒 − 6 40 4.9831 8.4259𝑒 − 6 31

Q-matlab 2 3 4
𝑛 lev 𝐶

𝑜𝑝
res it 𝐶

𝑜𝑝
res it 𝐶

𝑜𝑝
res it

27 2 2.0127 5.3065𝑒 − 6 10 2.0127 3.8436𝑒 − 6 8 2.0127 6.3351𝑒 − 6 7
81 3 3.0166 7.4583𝑒 − 6 15 3.0166 8.0007𝑒 − 6 14 3.0166 6.4303𝑒 − 6 13
243 4 4.0481 7.5300𝑒 − 6 22 4.0481 9.1973𝑒 − 6 22 4.0481 8.9225𝑒 − 6 18
1024 5 5.8769 3.9990𝑒 − 6 77 4.9831 9.4107𝑒 − 6 50 4.9987 8.6577𝑒 − 6 48

1 1 1

𝜇 𝜇 𝜇

Figure 1: Graph of an M/PH/1 queue.

with invariant birth and death rates as shown in Figure 1 [37–
39], which is usually used in queuing theory, demographics,
performance engineering, or in biology [32, 40].

Setting 𝜇 = 0.96, relaxation parameter 𝜔 = 0.7, and the
strength parameter of connection 𝜃 = 0.25 in our experiment,
we use 𝑄-matlab to denote the Matlab’s quadprog function
accelerationmethod that improves the 𝑊-cycles on the finest
level and “𝑛” to denote the length of Markov chains. “𝐶

𝑜𝑝
”

denotes the operator complexity of the last cycle, which is
defined as the sum of the number of nonzero entries in all
operators on all levels 𝐴

𝑙
, 𝑙 = 1, . . . , 𝐿, divided by the number

of nonzero entries in the finest-level operator 𝐴
1
. That is,

𝐶
𝑜𝑝

= ∑
𝐿

𝑙=1
nnz(𝐴

𝑙
)/nnz(𝐴

1
) where nnz(𝐴) is the number of

nonzero entries in thematrix𝐴. Numerical results for EAMA
and 𝑄-matlab methods have been reported in Table 1.

From Table 1, it is evident that our accelerated multilevel
aggregation method EAMA has better performance than
Matlab’s function𝑄-matlab for the testing problem fromboth
an operator complexity and the iteration count perspective,
and moreover, our method is more efficient with the length
of Markov chain increasing. For instance, when 𝑛 = 1024

and the window size 𝑚: 𝑚 = 2, 3, 4, the EAMA method cuts
the number of iterations by up to 37.7%, 20%, and 35.4%,
respectively, compared to the 𝑄-matlab method.

Example 2. In this example, we consider the performance
of EAMA in the PageRank computation. We take a typical
website of “Hollions” as our numerical example, which has
been listed in Chapter 14 of [41], which contains 6012 web
pages and 23875 hyperlinks. We compare the Power method,
the generalization of quadratic extrapolationmethod, and the
extrapolation-accelerated multilevel aggregation method for
the PageRank problem.

In Algorithm 5, we consider that accelerators, 𝑊-cycles
(𝑟 = 2), and 𝑉-cycles can be treated in a similar way.

Table 2: Comparisons of the residual vectors for the Power, GQE,
and EAMAmethods when given the number of iterations.

Method ite = 5 ite = 10 ite = 20 ite = 30

Power 0.148848 0.02414 0.002329 3.6687𝑒 − 004

GQE 0.029646 0.00210 4.0479𝑒 − 005 1.2882𝑒 − 007

EAMA 0.003400 1.4285𝑒 − 004 2.0306𝑒 − 007 4.7062𝑒 − 010

Some specific sets of parameters are used. We use the
weighted Jacobi as the pre- and postsmoothing approaches
in Algorithm 2, with relaxation parameter 𝜔 = 0.7. Direct
coarsest-level solvers are performed by the coarsest-level
algorithm, and the strength parameter of connection is
chosen as 𝜃 = 0.25.There are somenumerical results reported
in Tables 2 and 3 in the following parts.

The residual analysis in Table 2 indicates that EAMAdoes
much better in PageRank computation than the other two
methods, namely, the classic Power method and GQE, and
EAMA has a more obvious advantage over the other two
methds, with the iteration count increasing.

From Table 3, when an error tolerance is provided and
no matter what value the window size is, the accelerated
multilevel aggregation method outperforms the Power and
GQE, in terms of both iteration count and CPU time. For
instance, when the window size is 3, the number of iterations
by EAMA is about half of the one by GQE and less than one
third of the one by Power.

Example 3. The test matrix is the widely used CS-Stanford
Web matrix, which is available from http://www.cise.ufl.edu/
research/sparse/matrices/index.html. It contains 9914 nodes
and 35,555 links. In this example, we run the Power method,
the generalized quadratic extrapolation method, and our
extrapolation-accelerated multilevel aggregation method.
The convergence tolerance is tol = 10

−5, and the window size
is selected as 𝑚 = 3. Table 4 lists the results.

It is seen from Table 4 that the numerical behavior of the
three algorithms strongly relies on the choice of the damping
factor 𝛼 in PageRank computation. When 𝛼 is high, say 0.95
and 0.99, the computing time and iteration count are sizable.
However, when 𝛼 is moderate, say 0.85, the computing time
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Table 3: Comparisons of the iteration counts and CPU for the
Power, GQE, and EAMAmethods when the residual vector is 10

−5.

Method
Power GQE EAMA

Window size 2 3 4 2 3 4
ite 50 26 24 26 18 14 15
CPU 34.25 28.16 28.67 27.57 23.13 22.63 22.75

Table 4: Numerical results of the three algorithms (with various 𝛼)
on the CS—Stanford Web matrix.

Method
Power GQE EAMA

𝛼 = 0.85

ite 273 147 98
CPU 39.78 36.61 25.31
res 9.9972𝑒 − 006 6.1911𝑒 − 006 3.2462𝑒 − 006

𝛼 = 0.90

ite 379 214 126
CPU 54.13 45.31 38.42
res 9.9718𝑒 − 006 6.3426𝑒 − 006 6.5672𝑒 − 006

𝛼 = 0.95

ite 629 425 253
CPU 90.08 68.33 52.41
res 9.9834𝑒 − 006 8.32671𝑒 − 006 7.4938𝑒 − 006

𝛼 = 0.99

ite 1920 734 527
CPU 263.54 198.32 139.42
res 9.9940𝑒 − 006 7.1028𝑒 − 006 7.3542𝑒 − 006

Table 5:Numerical comparison results of the three algorithms (with
various convergence tolerances) for Example 4.

Method Power GQE EAMA
tol ite CPU ite CPU ite CPU
10
−5 284 68.76 256 57.33 227 48.32

10
−6 316 97.55 283 86.42 248 80.21

10
−8 392 145.72 334 121.75 291 106.43

10
−10 514 234.61 438 178.92 387 152.49

and iteration count are greatly reduced, like, about one-
seventh of the case 𝛼 = 0.99. This just confirms Page and
Brin’s point [1]: 𝛼 = 0.85 is the most common choice.

Besides, just as expected, it is obvious to see that the
GQE method is superior to the Power method, while the
new multilevel aggregation method (EAMA) performs the
best, in both computing time and iteration count terms. For
instance, when 𝛼 is 0.85, comparing with the results by Power
and GQE, the CPU time for EAMA has been reduced by
36.4% and 30.9%, respectively, and the iteration count has
been reduced by 64.1% and 33.3%, respectively.

Example 4. This example aims to examine the influence of the
choice of the convergence tolerance on the algorithms. The
test matrix is the Stanford-Berkeley Web matrix (available
from http://www.stanford.edu/∼sdkamvar/research.html). It

contains 683,446 pages and 7.6 million links. We run
the Power method, the generalized quadratic extrapolation
method, and our extrapolation-accelerated multilevel aggre-
gation method on this problem and choose tol to be 10

−5,
10
−6, 10

−8, and 10
−10, respectively. The window size for the

extrapolation procedure is selected as 𝑚 = 3, and 𝛼 in
PageRank is set as 0.85. Table 5 reports the results obtained.

It is easy to see from Table 5 that our new algorithm,
EAMA, performs the best in most cases, regardless of the
convergence tolerance and both in terms of computing time
and iteration numbers. For instance, when tol varies from
10
−6 to 10

−8, the iteration count needed for the three algo-
rithms (power, GQE, and EAMA) increases 24.1%, 18.0%,
and 17.3%, respectively, but nonetheless, the count for EAMA
is still less than the corresponding one for GQE and far less
than that for the Power, only about 74.2% of the latter. It can
be seen that about the same goes for CPU time.

5. Conclusions

This paper illustrates the accelerated multilevel aggregation
method for calculating the stationary probability vector of
an irreducible stochastic matrix, Google matrix, in PageRank
computation. It is conducted to combine the vector extrapo-
lation method and the multilevel aggregation method, where
the neighborhood-based aggregation strategy [11, 12, 28, 29] is
used, and the vector extrapolation acceleration is carried out
on the finest level. Our approach is inspired byDe Sterck et al.
in [12] where the active set method from Matlab’s quadprog
functionwas used therein for window size𝑚, which is greater
than two. Thus, it is natural to seek for a general acceleration
method for any case of window size, and thus, our EAMA is
produced.

Although our method is effective, however, there are
still many places worth exploring. The Google matrix, for
example, can be reordered according to dangling nodes and
nondangling nodes of the matrix [16, 42–44], which reduces
the computation of PageRank to that of solving a much
smaller problem. And for the special linear system (2) in
Markov chains, there maybe other even better options than
the neighborhood-based aggregation strategy in multilevel
method. With some improvement, our algorithm will be
worth watching and will be a part of future work.
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[33] P. Vaněk, J. Mandel, and M. Brezina, “Algebraic multigrid on
unstructured meshes,” Technical Report X, Center for Compu-
tational Mathematics, Mathematics Department, 1994.

[34] A. Berman and R. J. Plemmons, Nonnegative Matrices in the
Mathematics Science, SIAM, Philadelphia, Pa, USA, 1987.

[35] P. E. Gill, W. Murray, andM. H.Wright, Practical Optimization,
Academic Press, London, UK, 1981.

[36] M. Benzi and D. B. Szyld, “Existence and uniqueness of
splittings for stationary iterative methods with applications to
alternatingmethods,”NumerischeMathematik, vol. 76, no. 3, pp.
309–321, 1997.

[37] I. Marek and P. Mayer, “Convergence theory of some classes
of iterative aggregation/disaggregation methods for computing
stationary probability vectors of stochastic matrices,” Linear
Algebra and Its Applications, vol. 363, pp. 177–200, 2003.

[38] E. Virnik, “An algebraic multigrid preconditioner for a class of
singular 𝑀-matrices,” SIAM Journal on Scientific Computing,
vol. 29, no. 5, pp. 1982–1991, 2007.

[39] W. O. Yuen,W. K. Ching, andM. K. Ng, “A hybrid algorithm for
queueing systems,” Calcolo, vol. 41, no. 3, pp. 139–151, 2004.



8 Mathematical Problems in Engineering

[40] W. J. Stewart, Introduction to the Numerical Solution of Markov
Chains, Princeton University Press, Princeton, NJ, USA, 1994.

[41] A. N. Langville and C. D.Meyer,Google’s PageRank and beyond:
the science of search engine rankings, Princeton University Press,
Princeton, NJ, USA, 2006.

[42] A. N. Langville and C. D. Meyer, “Deeper inside PageRank,”
Internet Mathematics, vol. 1, no. 3, pp. 335–380, 2004.

[43] A.N. Langville andC.D.Meyer, “A reordering for the PageRank
problem,” SIAM Journal on Scientific Computing, vol. 27, no. 6,
pp. 2112–2120, 2006.

[44] I. C. F. Ipsen and T. M. Selee, “PageRank computation, with
special attention to dangling nodes,” SIAM Journal on Matrix
Analysis and Applications, vol. 29, no. 4, pp. 1281–1296, 2007.




