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Over recent years, feature selection (FS) has gained more attention in intelligent diagnosis. This study is aimed at evaluating FS
methods in a unified framework for mammographic breast cancer diagnosis. After FS methods generated rank lists according
to feature importance, the framework added features incrementally as the input of random forest which performed as the
classifier for breast lesion classification. In this study, 10 FS methods were evaluated and the digital database for screening
mammography (1104 benign and 980 malignant lesions) was analyzed. The classification performance was quantified with the
area under the curve (AUC), and accuracy, sensitivity, and specificity were also considered. Experimental results suggested that
both infinite latent FS method (AUC, 0:866 ± 0:028) and RELIEFF (AUC, 0:855 ± 0:020) achieved good prediction
(AUC ≥ 0:85) when 6 features were used, followed by correlation-based FS method (AUC, 0:867 ± 0:023) using 7 features and
WILCOXON (AUC, 0:887 ± 0:019) using 8 features. The reliability of the diagnosis models was also verified, indicating that
correlation-based FS method was generally superior over other methods. Identification of discriminative features among high-
throughput ones remains an unavoidable challenge in intelligent diagnosis, and extra efforts should be made toward accurate
and efficient feature selection.

1. Background

Feature selection (FS) or variable selection plays an impor-
tant role in intelligent diagnosis. It is used to identify a
subset of features or to weight the relative importance of
features in target representation that makes a computer-
aided diagnosis model cost-effective, easy to interpret, and
generalizable. So far, FS methods have been explored in
target recognition [1], logistic regression [2], disease detec-
tion and diagnosis [3–6], bioinformatics [7–9], and many
industrial applications [10–12].

According to the interaction with machine learning clas-
sifiers (MLCs), FS methods can be broadly categorized into
three groups [13–16]: (1) filter method that selects features
regardless of MLCs. It estimates the correlation between
quantitative features and target labels, and the features with
strong correlations to data labels are further considered. This
kind of approach is efficient and robust to overfitting; how-

ever, redundant features might be selected. (2) Wrapper
method that uses learning algorithms to select one among
the generated subsets of features. It allows for possible interac-
tions between features, while it considerably increases compu-
tation time, in particular with a large number of features. (3)
Embedded method that is similar to the wrapper method,
while it performs FS and target classification simultaneously.

Few studies have addressed the efficiency comparison of
FS methods. Wang et al. [17] have compared six filter
methods, such as chi-square [18] and RELIEFF [19], and
ranked features were further analyzed by using different
MLCs and performance metrics. Experimental results indi-
cated that the selection of performance metrics is crucial for
model building. Furthermore, Ma et al. [20] have examined
eight FS methods and found that support vector machine-
(SVM-) based recursive feature elimination [6] is a suitable
approach for feature ranking. In addition, they strongly
suggested performing FS before object classification.
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Moreover, Cehovin and Bosnic [21] have evaluated five
methods and discovered that RELIEFF [19] in combination
to random forest (RF) [21] achieves highest accuracy and
reduces the number of unnecessary attributes. Vakharia
et al. [12] have compared five FS methods for fault diagnosis
of ball bearing in rotating machinery, reporting that both the
combination of Fisher score and SVM [22] and the combina-
tion of RELIEFF and artificial neural network (ANN) [23]
have good accuracy. Additionally, Upadhyay et al. [24] have
explored three methods to select informative features in
wavelet domains. Specifically, they used the least square
SVM and discovered that Fisher score has the highest
discrimination ability for epilepsy detection.

This study performed an evaluation of FS methods, and
a total of 8 filter methods, 1 wrapper method, and 1 embed-
ded method were involved. Specifically, the evaluation was
conducted in a proposed unified framework where features
were ranked and incrementally added; RF was the classifier,
and 4 metrics were used to assess the classification perfor-
mance. Notably, the digital database for screening
mammography (DDSM) [25] was investigated which con-
tains 1104 benign and 980 malignant lesions. In the end,
a test-retest study was concerned and the reliability of built
models was discussed.

2. Methods

2.1. Data Collection. The DDSM is one of the largest data-
bases for mammographic breast image analysis [25–27],
which is available online (http://www.eng.usf.edu/cvprg/
Mammography/Database.html). The database includes 12
volumes of normal cases, 16 volumes of benign cases, and
15 volumes of malignant mass lesion cases. Each case is
represented by 6 to 10 files, i.e., an “ics” file, an overview
16-bit portable gray map (PGM) file, four image files com-
pressed with lossless joint photographic experts group
(LJPEG) encoding, and a zero to four overlay files.

Using the toolbox DDSM Utility (https://github.com/
trane293/DDSMUtility) [28], a total of 2084 histologically
verified breast lesions (1104 benign and 980 malignant
lesions) and 4016 mammographic images were obtained.
Full details on how to convert the dataset from an outdated
image format (LJPEG) to a usable format (i.e., portable net-
work graphic) and on how to extract these outlined regions
of interest are described in the toolbox manual.

2.2. Lesion Representation. Previous studies have suggested
computational and informative features for mammographic
lesion representation [29, 30]. In this study, 18 features were
used to characterize breast mass lesions among which 7
features (mean, median, standard deviation, maximum, mini-
mum, kurtosis, and skewness) represent the statistical analysis
of mass intensity, 8 features (area, perimeter, circularity, elon-
gation, form, solidity, extent, and eccentricity) describe the
lesion shape, and 3 features (contrast, correlation, and
entropy) are derived from the texture analysis using the
grey-level cooccurrence matrix (GLCM) [31]. Full informa-
tion to these quantitative features can be referred to [32].

2.3. Feature Selection Methods. In total, 10 feature selection
methods (8 filter methods, 1 wrapper method, and 1 embed-
ded method) were evaluated. Specifically, there were 6
methods based on unsupervised learning and 4 methods
based on supervised learning (Table 1).

Brief description of each method is as below

(a) Correlation-based feature selection (CFS) was used
to quantify the relationship between feature vectors
using Pearson’s linear correlation coefficient [33]. It
takes the minimal correlation coefficient of one fea-
ture vector to the other feature vectors as the score
which represents the information redundancy.
Finally, features were sorted according to the scores
in ascending order

(b) Feature selection via eigenvector centrality (ECFS)
[34] recasts the FS problem based on the affinity graph
and the nodes in the graph present features. It esti-
mates the importance of nodes through the indicator
of eigenvector centrality (EC). And the purpose of
EC is to quantify the importance of a feature with
regard to the importance of its neighbors and these
central nodes are ranked as candidate features

(c) Infinite latent feature selection (ILFS) [35] is a prob-
abilistic latent FS approach that considers all the
possible feature subsets. It further models feature
“relevancy” through a generative process inspired
by the probabilistic latent semantic analysis [36].
The mixing weights are derived to measure a graph
of features, and a score of importance is provided
by the weighted graph for each feature, which indi-
cates the importance of the feature in relation to its
neighboring features

(d) Laplacian score (LAPLACIAN) [37] evaluates the
importance of a feature by its power of locality
preserving. It constructs a nearest neighbor graph
to model the local geometric structure, and it seeks
the features that respect this graph structure

(e) Least absolute shrinkage and selection operator
(LASSO) [38] performs feature selection and regu-
larization simultaneously and thus, it can balance
prediction accuracy and model interpretability.
LASSO is L1-constrained linear least squares fits,
and the importance of each feature is weighted

(f) Feature selection using local learning-based clustering
(LLCFS) [39] estimates the feature importance during
the process of local learning-based clustering (LLC)
[40] in an iterative manner. It associates a weight to
each feature, while the weight is incorporated into
the regularization of the LLC method by considering
the relevance of each feature for the clustering

(g) RELIEFF [19] estimates the weight of each feature
according to how well its value can differentiate
between itself and its neighboring features [41].
Thus, if the difference in feature values is observed
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in a neighboring instance pair with the same class, its
weight decreases; while if there are different classes,
its weight increases

(h) ROC is an independent evaluation criterion [42]
which is used to assess the significance of every fea-
ture in the separation of two labeled groups. It stands
for the area between the empirical receiver operating
characteristic (ROC) curve and the random classifier
slope. Higher area value indicates better separation
capacity

(i) Unsupervised feature selection with ordinal locality
(UFSOL) [43] is a clustering-based approach. It pro-
poses a triplet-induced loss function that captures the
underlying ordinal locality of data instances. UFSOL
can preserve the relative neighborhood proximities
and contribute to the distance-based clustering

(j) Wilcoxon rank-sum test (WILCOXON) or Mann-
Whitney U test is a nonparametric test [44]. It
requires no assumption of normal distribution of
feature values. The test provides the most accurate
significance estimates, especially with small sample
sizes and/or when the data do not approximate a
normal distribution

Among these methods, 4 methods consider statistical anal-
ysis on differentiating each other features or on label classifica-
tion (CFS, RELIEFF, ROC, and WILCOXON); 3 methods
build a graph to map the relationship between features, and
weights of features are quantified by the specificmeasure spaces
(ECFS, ILFS, and LAPLACIAN); 2 methods concern data clus-
tering (LLCFS and UFSOL) for feature weighting; and 1
method merges feature selection into a regularization problem
to balance prediction accuracy and model interpretability
(LASSO). During the procedure, FS methods put a weight to
each feature and thus, these features can be ranked according
to their weights from the most to the least important.

2.4. Performance Metrics. In this study, four metrics, the area
under the curve (AUC), accuracy (ACC), sensitivity (SEN),
and specificity (SPE), were used to quantify the classification
performance [45]. In particular, AUC presents the overall

capacity of a model in lesion classification and it refers to
the area under the ROC curve.

Based on histological verification, true positive (TP) is
the number of positive cases that were correctly predicted
as “positive,” false negative (FN) represents the positive cases
that were misclassified as “negative,” true negative (TN)
represents the true negative cases that were predicted
correctly, while false positive (FP) is true negative cases that
were predicted as “positive.” ACC, SEN, and SPE can be
formulated using the formula (1), (2), and (3), respectively.

ACC = TP + TN
TP + FN + FP + TN

, ð1Þ

SEN =
TP

TP + FN
, ð2Þ

SPE =
TN

TN + FP
: ð3Þ

2.5. Experiment Design. Given 2084 lesion cases (1104 benign
and 980 malignant lesions) of 4016 mammographic images,
we took one image per lesion in the test study (a total of
1104 benign images and 980 malignant images) and the
remaining images (1017 benign lesion images and 915 malig-
nant lesion images) were used to retest the trained diagnostic
models in the test study. Specifically, in the test study, 400
benign lesion images and 400 malignant lesion images were
randomly picked for training and the other images were used
for testing. The experiment was carried out 100 times, and
performance metrics were reported on average.

RF is used as the classifier in this study. It is an
ensemble learning method that has been widely applied
for prediction, classification, and regression [20, 21, 46],
and Strobl et al. utilized it to measure the variable impor-
tance [47]. The most important parameter in RF algorithm
is the number of trees, and Oshio et al. stated that increas-
ing the number of trees does not always mean the perfor-
mance improvement [48]. Therefore, the number of trees
is set as 10 and fewer trees indicates more generalizable
of a trained model with regard to thousands of lesion
cases in the DDSM database.

The unified framework is shown in Figure 1. It consists of
feature ranking, incremental feature selection, RF optimiza-
tion, and performance evaluation. Furthermore, feature rank-
ing is based on the whole images in the study. In addition,
after the RF-based model was built and evaluated on the test-
ing samples, the model was further used to predict the malig-
nance of the lesion images in the retest study. It is worth of
note that parameters of FS methods are set as default.

2.6. Software Platform. Involved feature selection methods
were implemented with MATLAB (MathWorks, Natick,
MA, USA) where seven methods were from the Feature
Selection Library [49], two methods (ROC and WIL-
COXON) were from the function rankfeatures, and one
method (RELIEFF) was from the function relieff. Further-
more, the classifier RF was based on the function
randomForest [50] in R (https://www.r-project.org/). The
experiments were run on a personal laptop, and the laptop

Table 1: Feature selection methods.

ID Acronym Class Learning strategy

A CFS Filter Unsupervised

B ECFS Filter Supervised

C ILFS Filter Supervised

D LAPLACIAN Filter Unsupervised

E LASSO Embedded Supervised

F LLCFS Filter Unsupervised

G RELIEFF Filter Supervised

H ROC Filter Unsupervised

I UFSOL Wrapper Unsupervised

J WILCOXON Filter Unsupervised

3BioMed Research International
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was equipped with dual Intel (R) Cores (TM) of 2.50GHz
and 8GB DDR RAM. The implementation did not rely on
any optimization or strategies for algorithm acceleration.

2.7. Statistical Analysis. Quantitative metrics were summa-
rized as the mean ± standard deviation (SD) (MATLAB,
MathWorks, Natick, MA, USA). Comparison between
performance metrics is made with Wilcoxon rank-sum test
or two sample t-tests when appropriate. All statistical tests
are two sided, and p values less than 0.05 are defined as
significant difference.

3. Results

3.1. Perceived Increase of AUC Values. Figure 2 shows that
the AUC values increased when features were added for
mass lesion representation (red lines). When using top 2
features, both ECFS and CFS achieved AUC values that were
averagely larger than 0.70 and AUC values from other FS
methods that were larger than 0.60. Yet, the AUC values
from UFSOL and LLCFS were <0.60, and the values did
not show any obvious improvement until top 6 and 5
features were integrated in breast lesion classification,
respectively. Compared to the baseline of AUC equal to
0.85 (green lines), both ILFS and RELIEFF obtained higher
values when at least 6 features were used, followed by CFS
(7 features) and WILCOXON (8 features), and other FS
methods that required 9 to 10 features. In addition, for each
diagnostic model, the error-bar plot of AUC in the retest
study overlapped quite well with the plot in the test study.

3.2. Result Summary. Table 2 summarizes the number of fea-
tures and corresponding performance metrics when a model
achieves its AUC surpassing the baseline with the least fea-
ture number. It was observed that half of the methods
required 10 or more features. In particular, when the first-
time model exceeded the baseline, its SEN was higher than
0.85, while its ACC and SPE were relatively lower, indicating
the potential false positive.

Table 3 summarizes the metric values when top two fea-
tures are used for lesion representation. It was found that

ECFS and CFS achieve AUC larger than 0.70, while three
out of other eight methods reach AUC less than 0.60. We
also found that ECFS, CFS, and ILFS reach SPE values larger
than 0.50, while other methods tend to misclassify benign
lesions into malignant ones.

The feature selection results are shown in Table 4 where
the top-most important features of each model are
highlighted in red. Frequency analysis of these features indi-
cates that the 8th feature and the 16th feature are selected
eight times, followed by the 4th feature 7 times, while other
features are equally used or less than 6 times.

4. Discussion

This study evaluated 10 FS methods in a unified framework
for mammographic breast cancer diagnosis where RF is used
as the classifier. Besides, the reliability of each diagnosis
model was verified. Experimental results suggested that
CFS has the ability to retrieve generally discriminative fea-
tures. Based on the features ranked by CFS, the classification
performance keeps improving. In addition, the CFS-based
model achieved the 2nd best performance when using top 2
features and it surpassed the baseline (AUC = 0:85) by using
the top 7 features.

Some methods lead to unchanged or decreased perfor-
mance at certain points when the number of features
increases (Figure 2), which might be the selected features
are redundant. These methods are ECFS, ILFS, LASSO,
LLCFS, and ROC. In feature ranking, some methods omit
the relationship between features. For instance, features i_
mean and i_median (Appendix A) correlated well (Pearson’s
correlation coefficient, p = 0:99) and the two features are
near each other in 8 out of 10 ranked feature lists
(Table 4). Thus, it is helpful to remove the redundant
features and continue to update diagnosis models in order
to reach the optimal solution.

The use of a reasonable number of features is desirable in
intelligent diagnosis since it implies a model lightweight
computing; it is easy to interpret and can be generalized to
other related applications. Investigation of top-ranked two
features revealed that 7 out of 10 methods failed in distin-
guishing benign lesions from malignant ones (SPE < 0:5,
Table 3). ECFS and CFS can achieve relatively good perfor-
mance (AUC > 0:71, ACC > 0:63, SEN > 0:71, and SPE >
0:57). When the number of features increases, ILFS,
RELIEFF, and CFS begin to exceed the baseline (Figure 2).
On the other hand, except for AUC and SEN, other metrics
have important roles since they allow for model evaluation
from another perspectives. By comparing AUC, ACC, SEN,
and SPE metrics, we found that most ACC and SPE values
were lower than 0.80 when both AUC and SEN were larger
than 0.85, which indicated that considerably benign lesions
were misclassified and thereby, these patients would be
exposed to unnecessary biopsies and would suffer from
psychological anxiety.

Over recent years, FS has gained increasing attention.
Notably, a series of models have been developed in radio-
mics [51–53]. Radiomics explores to represent one target
from various perspectives where tens of thousands features

Feature collection

Feature ranking

Feature selection

Random forest

Metrics

A test study A retest study

Training data Testing data

Metrics

Figure 1: The proposed unified framework. It includes feature
ranking, incremental feature selection, RF-based lesion
classification, and performance evaluation, where features were
precollected.
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can be crafted. Consequently, the selection of these discrim-
inative features is a crucial, indispensable, but challenging
step. On the other hand, the efficiency of feature subsets is
hard to compare due to number of reasons such as FS being
data dependent, which means that different data splitting
may lead to change in the feature weights. Moreover, differ-
ent FS methods might lead to distinct results because of
theoretical frameworks, and this study obtained ten different
selection results (Table 4).

This study has several limitations. First, few features
were considered. It is known that massive features can be
handcrafted based on mass intensity, shape, and texture in

various transformed domains [30, 51–53], while it might
make FS become challenging if hundreds of thousands fea-
tures are involved, in particular for high dimension but small
sample data analysis [54]. Second, this study evaluated a
total of 10 FS methods among which 8 methods belong to
the filter method group. Since filter methods are indepen-
dent of classifiers, it avoids classifier selection and thus,
computes efficiently. On the other hand, if more wrapper
and embedded methods are compared, the conclusion that
CFS having better performance would be more strongly sup-
ported. However, it is worth noting that this imbalance of FS
methods does not affect the use of the proposed framework.
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Figure 2: AUC. A baseline (green) of AUC equal to 0.85 is added to the plots. In each plot, the red solid line indicates the test result, while
the blue dashed line shows the retest result. Besides, error bars are added. Please note that the figure can be enlarged to perceive details.
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Table 2: Performance comparison. The metric values in bold come from the test study, while the values in the line below are from the retest
study with corresponding features and model.

No. AUC ACC SEN SPE

CFS
7 0:867 ± 0:023 0:733 ± 0:035 0:883 ± 0:018 0:793 ± 0:023

0:896 ± 0:020 0:724 ± 0:035 0:900 ± 0:018 0:806 ± 0:022

ECFS
9 0:887 ± 0:018 0:739 ± 0:028 0:894 ± 0:011 0:806 ± 0:014

0:926 ± 0:013 0:717 ± 0:034 0:915 ± 0:012 0:816 ± 0:017

ILFS
6 0:866 ± 0:028 0:678 ± 0:044 0:854 ± 0:030 0:763 ± 0:031

0:907 ± 0:025 0:665 ± 0:043 0:884 ± 0:027 0:779 ± 0:029

LAPLACIAN
12 0:863 ± 0:018 0:730 ± 0:030 0:880 ± 0:013 0:790 ± 0:016

0:891 ± 0:013 0:716 ± 0:028 0:893 ± 0:011 0:799 ± 0:014

LASSO
10 0:858 ± 0:020 0:685 ± 0:030 0:851 ± 0:013 0:763 ± 0:016

0:862 ± 0:019 0:692 ± 0:025 0:856 ± 0:011 0:772 ± 0:013

LLCFS
10 0:855 ± 0:020 0:735 ± 0:027 0:876 ± 0:009 0:789 ± 0:013

0:887 ± 0:014 0:714 ± 0:025 0:891 ± 0:009 0:796 ± 0:012

RELIEFF
6 0:855 ± 0:020 0:718 ± 0:026 0:868 ± 0:011 0:780 ± 0:013

0:880 ± 0:015 0:695 ± 0:037 0:876 ± 0:012 0:782 ± 0:019

ROC
10 0:878 ± 0:019 0:728 ± 0:029 0:885 ± 0:013 0:796 ± 0:016

0:919 ± 0:012 0:706 ± 0:035 0:908 ± 0:013 0:807 ± 0:018

UFSOL
10 0:858 ± 0:020 0:731 ± 0:028 0:877 ± 0:011 0:788 ± 0:013

0:889 ± 0:016 0:709 ± 0:029 0:892 ± 0:009 0:794 ± 0:014

WILCOXON
8 0:887 ± 0:019 0:726 ± 0:027 0:890 ± 0:013 0:799 ± 0:015

0:925 ± 0:013 0:707 ± 0:036 0:910 ± 0:013 0:810 ± 0:019

Table 3: Performance comparison when using top two features for lesion representation.

No. AUC ACC SEN SPE

CFS
2 0:711 ± 0:012 0:636 ± 0:013 0:714 ± 0:027 0:572 ± 0:030

0:715 ± 0:011 0:642 ± 0:012 0:718 ± 0:019 0:573 ± 0:026

ECFS
2 0:734 ± 0:013 0:660 ± 0:012 0:755 ± 0:026 0:581 ± 0:024

0:759 ± 0:010 0:677 ± 0:011 0:785 ± 0:018 0:579 ± 0:021

ILFS
2 0:678 ± 0:012 0:606 ± 0:012 0:698 ± 0:023 0:530 ± 0:026

0:724 ± 0:011 0:635 ± 0:011 0:752 ± 0:016 0:529 ± 0:025

LAPLACIAN
2 0:649 ± 0:014 0:603 ± 0:012 0:738 ± 0:025 0:492 ± 0:024

0:626 ± 0:014 0:590 ± 0:011 0:737 ± 0:023 0:458 ± 0:020

LASSO
2 0:557 ± 0:014 0:526 ± 0:013 0:651 ± 0:025 0:422 ± 0:028

0:552 ± 0:010 0:525 ± 0:010 0:653 ± 0:023 0:410 ± 0:023

LLCFS
2 0:517 ± 0:013 0:499 ± 0:013 0:645 ± 0:028 0:379 ± 0:024

0:507 ± 0:012 0:498 ± 0:011 0:648 ± 0:025 0:363 ± 0:025

RELIEFF
2 0:611 ± 0:013 0:568 ± 0:014 0:689 ± 0:022 0:486 ± 0:028

0:604 ± 0:073 0:574 ± 0:066 0:668 ± 0:021 0:490 ± 0:129

ROC
2 0:632 ± 0:013 0:582 ± 0:013 0:694 ± 0:025 0:491 ± 0:027

0:616 ± 0:011 0:571 ± 0:011 0:716 ± 0:021 0:440 ± 0:034

UFSOL
2 0:543 ± 0:015 0:514 ± 0:012 0:654 ± 0:027 0:399 ± 0:021

0:527 ± 0:013 0:513 ± 0:011 0:652 ± 0:024 0:388 ± 0:023

WILCOXON
2 0:605 ± 0:015 0:563 ± 0:015 0:686 ± 0:024 0:461 ± 0:028

0:629 ± 0:075 0:587 ± 0:069 0:679 ± 0:020 0:505 ± 0:133
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Third, RF performs as the classifier, since it is important in
classification tasks due to its interpretability [21]. From the
technical perspective, other MLCs, such as ANN and SVM,
are also feasible [12, 17, 20, 21, 24, 30]. It is also desirable to
investigate the effects of RF parameters on the lesion diagnosis.
However, it might lead to massive result reports and thus, only
the number of trees is empirically determined and other
parameters are set as default. Last but not the least, how to
choose a proper FS method is a long-term problem in the field
of computer-aided diagnosis. It should be admitted that feature
extraction, FS methods, and MLCs are closely related to the
ultimate goal of breast cancer diagnosis. Depending on specific
purposes, such as diagnosis accuracy, model simplicity, inter-
pretability, and generalization capacity, the selection of features,
FS methods, and MLCs is different. Fortunately, the proposed
framework can be expanded to incorporate more features as
radiomics, more FS methods, and MLCs for classification or
diagnosis tasks. Therefore, it is promising that systematic and
comprehensive analysis on additional mammographic data-
bases could deepen our understanding of breast cancer diagno-
sis from mammographic images.

5. Conclusions

This study evaluated ten feature selection methods for breast
cancer diagnosis based on the digital database for screening
mammography, where the random forest served as the
machine learning classifier. Different methods led to distinct
feature ranking results, and the correlation-based feature
selection method was found to have superior performance
in general. The way to find discriminative features out of
thousands of features is challenging but indispensable for
intelligent diagnosis and thus, extra efforts should be made
towards accurate and efficient feature selection.
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Table 4: Feature selection results. The top-most important features that achieve AUC larger than 0.85 are in bold to each FS method.

The most to the least important features

CFS 16 7 14 3 11 5 15 6 2 8 13 17 10 9 1 4 12 18

ECFS 8 9 17 4 10 2 1 16 12 3 14 6 13 15 7 11 5 18

ILFS 11 14 18 5 3 15 13 1 4 2 10 6 9 7 16 12 8 17

LAPLACIAN 8 5 4 3 9 2 1 16 7 18 6 11 15 10 13 14 17 12

LASSO 17 18 15 13 6 16 4 1 2 8 9 5 3 7 11 14 10 12

LLCFS 3 5 4 2 1 8 9 7 16 11 18 6 15 10 14 13 17 12

RELIEFF 10 14 11 7 18 8 4 12 3 9 13 17 16 6 15 5 1 2

ROC 9 17 4 8 10 2 1 16 3 12 11 15 6 14 13 18 7 5

UFSOL 9 1 2 3 5 4 8 16 7 11 18 6 17 12 15 10 13 14

WILCOXON 10 16 9 17 4 12 6 8 14 2 1 13 3 18 7 11 15 5
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Objectives. To build and validate random forest (RF) models for the classification of bone tumors based on the conventional
radiographic features of the lesion and patients’ clinical characteristics, and identify the most essential features for the
classification of bone tumors. Materials and Methods. In this retrospective study, 796 patients (benign bone tumors: 412 cases,
malignant bone tumors: 215 cases, intermediate bone tumors: 169 cases) with pathologically confirmed bone tumors from
Nanfang Hospital of Southern Medical University, Foshan Hospital of TCM, and University of Hong Kong-Shenzhen Hospital
were enrolled. RF models were built to classify tumors as benign, malignant, or intermediate based on conventional
radiographic features and potentially relevant clinical characteristics extracted by three musculoskeletal radiologists with ten
years of experience. SHapley Additive exPlanations (SHAP) was used to identify the most essential features for the classification
of bone tumors. The diagnostic performance of the RF models was quantified using receiver operating characteristic (ROC)
curves. Results. The features extracted by the three radiologists had a satisfactory agreement and the minimum intraclass
correlation coefficient (ICC) was 0.761 (CI: 0.686-0.824, P < :001). The binary and tertiary models were built to classify tumors
as benign, malignant, or intermediate based on the imaging and clinical features from 627 and 796 patients. The AUC of the
binary (19 variables) and tertiary (22 variables) models were 0.97 and 0.94, respectively. The accuracy of binary and tertiary
models were 94.71% and 82.77%, respectively. In descending order, the most important features influencing classification in the
binary model were margin, cortex involvement, and the pattern of bone destruction, and the most important features in the
tertiary model were margin, high-density components, and cortex involvement. Conclusions. This study developed interpretable
models to classify bone tumors with great performance. These should allow radiographers to identify imaging features that are
important for the classification of bone tumors in the clinical setting.

1. Introduction

The bone tumor is relatively rare, but the malignant bone
tumor is the third leading cause of cancer-related death in
individuals before 20 years old. In the United States, in
2020, an estimated 3,600 individuals (2,120 males, 1,480
females) will be diagnosed with primary malignant tumors
of the bone and joints, and 1,720 individuals (1000 males,
720 females) will die from the disease [1].

The fourth edition of the World Health Organization
(WHO) Classification of Tumours of Soft Tissue and Bone
published in 2013 classifies bone tumors as benign, malig-
nant, and intermediate [2]. Compared with the third edition,
the most significant change is the addition of intermediate
bone tumors. Intermediate bone tumors include the locally
aggressive type and occasional metastatic type. Locally
aggressive type often has a recurrence after resection, which
is typical of osteoblastoma [2, 3]. Occasionally, metastatic
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type has the ability of distant metastasis, which is typically
represented by giant cell tumors of bone [4]. However, the
aggression and metastasis degree is lower than that of malig-
nant bone tumors. Therefore, this classification method can
better guide the formulation of clinical treatment plans. In clin-
ical practice, bone tumor classification involves a comprehen-
sive evaluation of a patient’s demographics, medical history,
and the lesion’s imaging features [5]. There are significant
differences in the treatment of different bone tumors; hence,
the early classification of bone tumors helps guide therapy
and improve patient management [6–9].

Conventional radiography is the preferred imaging
modality for evaluating primary bone tumors [10]. Although
the benefits of early classification of bone tumors are widely
acknowledged, differentiating between bone tumor types can
be difficult. Challenges include the variation in the imaging
manifestation and their rarity, making it difficult for radiolo-
gists to make an accurate diagnosis [2]. Several studies have
classified benign and malignant bone tumors based on patient
characteristics such as age, gender, and imaging features such
as tumor location, margins, periosteal reaction, and minerali-
zation [11, 12]. Despite these efforts, no single radiographic
criteria for bone tumor classification have been identified,
increasing the risk for diagnostic error.

Machine learning refers to models designed to evaluate
and make predictions about relationships between data [13,
14]. Classifying bone tumors using machine learning models
based on predefined radiographic or clinical features may
help radiologists differentiate between various bone tumors.

A random forest model is an ensemble classifier that
consists of many decision trees [15]. The random forest
model outputs the class voted by a majority of the individual
trees or the mean individual tree prediction [16]. It generates
an internal unbiased estimate of the generalization error in
the forest building processes and uses a nodes’ splitting pro-
cess to estimate the essential variables [17]. Random forest
models are highly predictive as classifiers when analyzing
medical imaging data [18, 19].

We hypothesize that a random forest model with high pre-
dictive accuracy for bone tumor classification may benefit the
clinical setting. This study’s objectives were to (1) build and val-
idate a random forest model to classify bone tumors based on
the conventional radiographic features of the lesion and patients’
clinical characteristics and (2) identify the most important con-
ventional radiographic features for the bone tumor classification.

2. Materials and Method

This retrospective study was approved by the research ethics
review board of Nanfang Hospital of Southern Medical
University. The necessity to obtain written informed consent
from included patients was waived. Data was collected by
Nanfang Hospital of Southern Medical, Foshan Hospital of
TCM, and University of Hong Kong-Shenzhen Hospital.

2.1. Study Population. The study collected 796 patients
(26 ± 18 years) with pathologically confirmed bone tumors
from Nanfang Hospital of Southern Medical University
between 2014 and 2019, Foshan Hospital of TCM, and Uni-

versity of Hong Kong-Shenzhen Hospital between 2018 and
2019 as a data set. The inclusion criteria were as follows: (1)
patients who underwent at least one preoperative conven-
tional radiographic examination in one of the three academic
medical centers between 2014 and 2019 and (2) patients who
had a pathological diagnosis via biopsy. The exclusion
criteria were as follows: (1) patients who relapse after surgery,
(2) patients with poor quality preoperative conventional
radiographic images, and (3) there is a foreign body in the
conventional radiographic images.

For each included patient, the first preoperative conven-
tional radiographic examination was defined as the index
examination.

2.2. Conventional Radiography. All conventional radio-
graphic images were collected from the picture archiving
and communication system (PACS) of three hospitals. Ante-
roposterior and lateral views showing the bone tumor were
obtained from each included patient.

2.3. Feature Analysis. Preoperative conventional radiographic
features and potentially relevant clinical characteristics were
extracted and compiled in a structured database by three
musculoskeletal radiologists (with ten years of experience)without
knowledge of pathological diagnoses. PACS was used to capture
conventional radiographic features of each bone tumor, including
location, margin, eccentric growth, expansive growth, sclerotic
border, periosteal reaction, radiographic density, high-density
components, the pattern of bone destruction, source, pathological
fracture, and cortex involvement. The radiologists independently
extracted features from the conventional radiographic images in
DICOM format. Medical records were reviewed for patients’ clin-
ical characteristics, including erythrocyte sedimentation rate
(ESR), age, gender, redness and hyperemia, swelling, warmth,
pain, palpable mass, and dyskinesia (Table 1).

The radiologists independently scored each conventional
radiographic feature, and scores were averaged across radiolo-
gists. The presence/absence of nominal features was scored on
a scale from 0 to 1, where 0 indicated none of the radiologists
had a positive opinion and 1 indicated all three radiologists
had a positive opinion. For example, if 2 of 3 radiologists con-
sider the margin of the bone tumor to be “sharp,” whereas the
remaining 1 of 3 radiologists considered it to be “ill-defined,”
the score was sharp=0.67 (2/3) and ill-defined=0.33 (1/3).
Age and ESR were assigned numerical values.

2.4. Random Forest Classifier. Patients were randomly divided
into a 70% training and validation data set and a 30% testing
data set. A 6-fold cross-validation method was used to
establish random forestmodels and verify the classification accu-
racy. The study used recursive feature elimination (RFE) to select
features related to the classification during training, which
enables feature interaction. RFE returns a ranking of all features
by recursively training random forest models and removing the
feature with the smallest ranking score. At each iteration, the fea-
ture’s removal least affects the objective function. The iterations
continued until the best performance of models was reached.

A binary model was built to classify tumors as benign or
malignant based on the imaging and clinical data from 627
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patients. The training and validation set included data from
438 patients. The test set included data from 189 patients.
A tertiary model was built to classify tumors as benign,
malignant, or intermediate based on the imaging and clinical
data from 796 patients. The training and validation set con-
sisted of data from 557 patients. The test set included data
from 239 patients.

SHapley Additive exPlanations (SHAP) was used to
describe the most important conventional radiographic
features for the classification. The diagnostic performance of
the random forest classifiers was evaluated in the test sets using
area under curve (AUC), accuracy, sensitivity, and specificity.

2.5. Statistical Analysis. Statistical analysis was conducted
using the SPSS version 20.0 software (SPSS, Chicago, Ill). Clin-
ical variables were compared among patients with benign,
malignant, and intermediate bone tumors using one-way anal-
ysis of variance (ANOVA). The intraclass correlation coeffi-
cient (ICC) was used to assess three radiologists’ agreement
who extracted radiographic features. The weights of all input
variables were calculated during training and verification; the
higher value of the weight indicates the greater importance.
Statistical significance was set at P < 0:05.

3. Results

3.1. Study Population. The study enrolled 412 patients with
benign bone tumors (23 ± 16 years), 215 patients with malig-

nant bone tumors (33 ± 20 years), and 169 patients with
intermediate bone tumors (24 ± 16 years). The most com-
monly benign, malignant, and intermediate bone tumors
were osteochondroma (36.1%), osteosarcoma (45.5%), and
giant cell tumor (38.5%), respectively.

For the binary classification model, the training and valida-
tion set (n = 438; 26 ± 18 years) consisted of 298 patients
(68.0%) with a benign bone tumor and 140 (32.0%) patients
with a malignant bone tumor. The test set (n = 189, mean
age, 27 ± 18 years) consisted of 114 patients (60.3%) with a
benign bone tumor and 75 (39.7%) patients with a malignant
bone tumor. For the tertiary classification model, the training
and validation set (n = 557; 26 ± 18 years) consisted of 289
(51.9%) patients with a benign bone tumor, 118 (21.2%)
patients with an intermediate bone tumor, and 150 (26.9%)
patients with a malignant bone tumor. The test set (n = 239;
mean age, 26 ± 18 years) consisted of 123 (51.5%) patients with
a benign bone tumor, 51 (21.3%) patients with an intermediate
bone tumor, and 65 (27.2%) patients with a malignant bone
tumor (Table 2). The details of the tertiary model’s test set were
shown in the supplement section (available here).

The clinical characteristics of the included patients strati-
fied by bone tumor type (benign, intermediate, or malignant
bone tumor) were summarized in Table 3. Patients with a
malignant bone tumor were significantly older than those with
a benign bone tumor (33 vs. 23 years old; P < 0:001). The path-
ological type of bone tumor was significantly associated with all
clinical parameters examined except gender (P > 0:05).

Table 1: Preoperative radiographic features and clinical characteristics with potential clinical importance for diagnosis.

Features Feature class Permissible value ICC

Location∗ Categorical Upper tibia (a)/inferior femur (b)/upper humerus (c)/middle humerus (d) 0.954

Location Categorical Epiphysis (a)/metaphysis (b)/diaphysis (c)/not applicable (d) 0.854

Eccentric growth Binary Without (0)/with (1) 0.921

Expansive growth Binary Without (0)/with (1) 0.888

Margin Binary Sharp(0)/ill-defined (1) 0.832

Sclerotic border Binary Without (0)/with (1) 0.796

Periosteal reaction Categorical Without (a)/continuous (b)/interrupted (c) 0.899

Radiographic density Categorical Mixed (a)/low (b)/high (c) 0.863

High-density components Categorical Without (a)/calcification or ossification (b)/tumor bone (c)/unrecognizable (d) 0.761

Pattern of bone destruction Categorical Geographic (a)/moth-eaten (b)/permeated (c)/not applicable (d) 0.812

Source Binary Medullary (0)/cortical (1) 0.909

Pathological fracture Binary Without (0)/with (1) 0.888

Cortex involvement Categorical Complete cortex (a)/cortical expansion and thinning (b)/interrupted cortex (c) 0.870

Clinical data

ESR Numerical —

Age Numerical —

Gender Binary Male (0)/female (1) —

Redness and hyperemia Binary Without (0)/with (1) —

Swelling Binary Without (0)/with (1) —

Warmth Binary Without (0)/with (1) —

Pain Binary Without (0)/with (1) —

Palpable mass Binary Without (0)/with (1) —

Dyskinesia Binary Without (0)/with (1) —

Note: ∗The location details are shown in supplement section.
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3.2. Radiographic Features. The ICC agreement of three radi-
ologists for feature extraction was high (ICC >0.75), with the
lowest 0.761 for components (CI: 0.686-0.824, P < :001) and
the highest 0.954 for location (CI: 0.936-0.967, P < :001), as
per Table 1.

Examples of the conventional radiographic features of
bone tumors and their scores from 3 patients are shown in
Figure 1. Patient A was an 8-year-old female with a benign
bone tumor. Patient B was a 34-year-old man with an inter-
mediate bone tumor. Patient C was a 46-year-old man with a
malignant bone tumor. Images were scored for the presence
or absence of sharp vs. ill-defined margins, geographic vs.
moth-eaten vs. permeated pattern of bone destruction, and
with vs. without expansive growth.

3.3. Random Forest Models. Two random forest models were
used to classify bone tumors based on imaging and clinical
data (Figure 2). The binary classification model consisted of

15 random decision trees and the maximum tree depth was
10. The tertiary classification model consisted of 85 random
decision trees and the maximum tree depth was 8.

The binary classification model classified bone tumors as
benign or malignant. The 19 predictor variables included age,
location, ESR, margin, cortex involvement, the pattern of
bone destruction, high-density components, radiographic
density, source, eccentric growth, gender, swelling, warmth,
pain, dyskinesia, sclerotic border, location relationship with
epiphysis, periosteal reaction, and pathological fracture.

The tertiary classification model classified bone tumors as
benign, malignant, or intermediate. The 22 predictor vari-
ables included all the extracted conventional radiographic
features and clinical characteristics.

In descending order of importance, the binary model
features were as follows: margin, cortex involvement, the
pattern of bone destruction, and high-density components.
The important features for the tertiary model were as follows:

Table 2: Patients characteristics: training, validation and test sets.

Characteristics
Binary model Tertiary model

Training and validation set Test set Training and validation set Test set

No. of patients 438 189 557 239

Age (y)∗ 26 ± 18 27 ± 18 26 ± 18 26 ± 18
ESR∗ 19:01 ± 22:20 20:47 ± 24:09 19:95 ± 23:16 20:97 ± 24:70
Pathological results

Biopsy benign for bone tumor 298 (68.0) 114 (60.3) 289 (51.9) 123 (51.5)

Biopsy malignant for bone tumor 140 (32.0) 75 (39.7) 150 (26.9) 65 (27.2)

Biopsy intermediate for bone tumor 0 0 118 (21.2) 51 (21.3)

Note: unless otherwise indicated, data are numbers (%) of patient. ∗Data are means ± standard deviation.

Table 3: Clinical characteristics of the included patients stratified by benign, intermediate, or malignant bone tumor.

Clinical characteristics
All

(N = 796)
Benign

(N = 412)
Malignant
(N = 215)

Intermediate
(N = 169) P value

Age 26 ± 18 23 ± 16 33 ± 20 24 ± 16 <0.001∗

ESR 20:26 ± 23:63 12:25 ± 14:96 33:25 ± 28:24 23:25 ± 26:38 <0.001∗

Male 496 (62.3) 253 (61.4) 135 (62.8) 108 (63.9)
0.841

Female 300 (37.7) 159 (38.6) 80 (37.2) 61 (36.1)

Redness and hyperemia 20 (2.5) 5 (1.2) 13 (6.0) 2 (1.2)
0.018∗

Without redness and hyperemia 776 (97.5) 407 (98.8) 202 (94.0) 167 (98.8)

Swelling 211 (26.5) 79 (19.2) 85 (39.5) 47 (27.8) <0.001∗
Without swelling 585 (73.5) 333 (80.8) 130 (60.5) 122 (72.2)

Warmth 92 (11.6) 12 (2.9) 59 (27.4) 21 (12.4) <0.001∗
Without warmth 704 (88.4) 400 (97.1) 156 (72.6) 148 (87.6)

Pain 472 (59.3) 173 (42.0) 174 (80.9) 125 (74.0) <0.001∗
Without pain 324 (40.7) 239 (58.0) 41 (19.1) 44 (26.0)

Palpable mass 275 (34.5) 169 (41.0) 73 (34.0) 33 (19.5) <0.001∗
Without palpable mass 521 (65.5) 243 (59.0) 142 (66.0) 136 (80.5)

Dyskinesia 171 (21.5) 53 (12.9) 69 (32.1) 49 (29.0) <0.001∗
Without dyskinesia 625 (78.5) 359 (87.1) 146 (67.9) 120 (71.0)
∗P < 0:05.
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Figure 1: Examples of the features (upper panel) and scores depicting the presence or absence of sharp vs. ill-defined bone margins,
geographic vs. moth-eaten vs. permeated pattern of bone destruction, and with vs. without expansive growth (lower panel) as seen on
conventional radiographic images obtained from 3 patients. Patient A was an 8-year-old female with nonossifying fibroma. Patient B was
a 34-year-old man with a giant cell tumor of bone, and Patient C was a 46-year-old woman with osteosarcoma.
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margin, high-density components, cortex involvement, and
pattern of bone destruction (Figure 3).

3.4. Random Forest Model Performance. The random forest
models were tested for their ability to classify bone tumors
as benign, malignant, or intermediate (Table 4). Overall, the
binary classification model outperformed the tertiary classifi-
cation model. For the binary classification model, AUC, accu-
racy, sensitivity, and specificity were 0.97, 94.71%, 93.33%, and
95.61%, respectively. For the tertiary classification model,
AUC, accuracy, sensitivity and specificity were 0.95, 84.94%,
86.18%, and 83.62%, respectively, for predicting benign bone
tumor; 0.98, 92.05%, 90.77%, and 92.53%, respectively, for
predicting malignant bone tumor, and 0.89, 86.19%, 58.82%,
and 93.62%, respectively, for predicting intermediate bone
tumor. Figure 4 shows the receiver operating characteristic
curves for the random forest models.

4. Discussion

This study built, validated, and tested random forest models
for the bone tumors classification based on the lesion’s con-
ventional radiographic features and patients’ clinical charac-
teristics and identified the most important conventional
radiographic features for bone tumors classification. A ran-
dom forest model with high performance for bone tumors
classification will have utility in the clinical setting.

In this study, the most important features influencing the
binary classification model were margin, cortex involvement,
pattern of bone destruction, and high-density components,
indicating that malignant bone tumors were more destructive
and aggressive than benign bone tumors. Consistent with these
results, previous reports indicate that conventional radio-
graphic features such as lesion margins, cortical destruction,
presence and type of periosteal reaction, and matrix minerali-
zation can be applied in differentiating benign from malignant

bone tumors [20, 21]. However, these studies failed to quantify
which feature was more important. Regarding imaging fea-
tures, the margin is considered the most critical reflection of
a primary bone tumor’s malignant or benign nature. Malig-
nant tumors typically manifest as ill-defined and indistinct
margins with a broad transition zone between the tumor and
normal bone, while benign tumors exhibit a sclerotic rim
and a narrow transition zone. In terms of high-density compo-
nents, malignant bone tumors such as osteosarcoma usually
include more calcified and ossified components than benign
bone tumors [20]. However, some malignant tumors, includ-
ing Ewing sarcoma and plasmacytoma, did not show this
feature in the present study.

As for the tertiary classification model, the most impor-
tant features were margin, high-density components, cortex
involvement, and pattern of bone destruction. Overall, these
findings support the hypothesis that an interpretable model
based on conventional radiographic features and clinical
characteristics can be reliably applied to classify bone tumors
in clinical practice.

The binary and tertiary classification models’ perfor-
mances were evaluated in the test sets using AUC value, accu-
racy, sensitivity, and specificity. The tertiary classification
model relied on more features than the binary classification
model to learn and predict, while the binary model was more
accurate than the tertiary model. This may be because some
imaging features of intermediate bone tumors are similar to
those of benign or malignant bone tumors. For example, giant
cell tumor of bone appears as an eccentric lytic lesion without
marginal sclerosis and may have cortical destruction on radi-
ography [22, 23], and eosinophilic granuloma of the bone
appears as a moth-eaten lytic-bone lesion without marginal
sclerosis, but with a continuous periosteal reaction [24]. Retro-
spective analysis of misclassified cases in this study revealed
that 92.3% of misclassifications involved benign vs. intermedi-
ate bone tumors or malignant vs. intermediate bone tumors.

Sample

Majority -voting

Final prediction

Prediction
X-1

Prediction
2

Prediction
1

Prediction
X

Figure 2: Flow chart of the random forest models. The binary classification model consisted of an ensemble of 15 random decision trees and
maximum depth set to 10. The tertiary classification model consisted of an ensemble of 85 random decision trees and maximum depth set to
8. Output from all decision trees determines the final prediction.
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Applying machine learning to classify bone tumors is
scarce in the current study, probably because of bone tumor’s
rareness, variable location, and appearance, making data col-
lection a challenge. Benndorf et al. built a pretest probabilistic
(naive Bayes) classifier for primary malignant bone tumors

based on the patient’s age, sex, and tumor localization.
Results from ten-fold cross-validation showed that the pretest
probability of primary malignant bone tumor was correctly
raised in 79.8% of cases [25]. Do et al. used a naive Bayes
machine that processed 18 demographic and radiographic
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Figure 3: The most ten important features influencing the classification of bone tumors in the binary (a) and tertiary (b) models. The features
are presented in descending order according to their absolute impact on the classification of bone tumor. The SHAPmodel takes into account
all possible combinations of features in the presence/absence of a specific feature to evaluate its contribution to the prediction.

Table 4: The performance of random forest models.

AUC Sensitivity Specificity Accuracy Overall accuracy Micro AUC

Binary model 0.97 93.33% 95.61% 94.71%

Tertiary model

Benign 0.95 86.18% 83.62% 84.94%

82.77% 0.94Malignant 0.98 90.77% 92.53% 92.05%

Intermediate 0.89 58.82% 93.62% 86.19%

Note: AUC: area under the receiver operating characteristic curve. All the results were obtained in the test set of two models.
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features to evaluate primary and differential accuracy for the
diagnosis of bone tumors. Primary accuracy was 62% and
differential accuracy was 80% for the top 10 most common
diagnoses [26]. In the present study, the binary and tertiary
classification models’ accuracy was 94.71% and 82.77%, indi-
cating that these random forests outperformed previously
reported models with superior accuracy. Unlike the previous
study, this study evaluated model performance using AUC,
which is more suitable for medical bias data.

The random forest model with reliable classification per-
formance may assist radiologists in bone tumor diagnosis.
Misdiagnosis and inappropriate treatment can also be reduced
to a certain extent. It can improve the cure rate and prognosis
of patients with bone tumors to a great extent eventually.

To the author’s knowledge, the present study is the first to
identify the most important conventional radiographic
features for the bone tumor classification [27–29]. Thirteen
conventional radiographic features were used to distinguish
among benign, malignant, and intermediate bone tumors.
Data from three medical centers were used to train, validate,
and test the models, implying that the models are widely
applicable across various clinical settings. This contrasts with
other approaches based on image analysis, such as radiomics,
which can be limited by different healthcare institutions’
scanner parameters and image processing software [30, 31].

There are several limitations to this study. First, the
classificationmodels were based on conventional radiographic
features without considering other imaging modalities such as
computed tomography (CT) and magnetic resonance imaging
(MRI). Thus, some imaging features that are important for the
classification may have been missed. However, conventional
radiography is the preferred imaging modality for evaluating
primary bone tumors. Therefore, models based on conven-
tional radiographic features provide suitable and convenient
solutions to guide clinical decision-making in bone tumor
classification. Second, some patients’ clinical characteristics

were incomplete, and several specific biochemical markers of
bone tumors, such as alkaline phosphatase, were not collected.

In conclusion, our study developed binary and tertiary
models trained on a data set of linked conventional radio-
graphic features and clinical characteristics to classify bone
tumors, which obtained outstanding performance. Unlike
previous studies, the SHapley Additive exPlanations was used
to help radiologists, and other physicians recognize imaging
features that are important for bone tumor classification. This
approach may allow doctors to understand models easily so
that they can integrate it into clinical practice to make precise
diagnoses. In the future, the models may be enhanced by
integrating CT and MRI features, potentially improving bone
tumor classification and patient outcomes.
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Slice-to-volume reconstruction (SVR) method can deal well with motion artifacts and provide high-quality 3D image data for fetal
brainMRI. However, the problem of sparse sampling is not well addressed in the SVRmethod. In this paper, we mainly focus on the
sparse volume reconstruction of fetal brain MRI from multiple stacks corrupted with motion artifacts. Based on the SVR
framework, our approach includes the slice-to-volume 2D/3D registration, the point spread function- (PSF-) based volume
update, and the adaptive kernel regression-based volume update. The adaptive kernel regression can deal well with the sparse
sampling data and enhance the detailed preservation by capturing the local structure through covariance matrix. Experimental
results performed on clinical data show that kernel regression results in statistical improvement of image quality for sparse
sampling data with the parameter setting of the structure sensitivity 0.4, the steering kernel size of 7 × 7 × 7 and steering
smoothing bandwidth of 0.5. The computational performance of the proposed GPU-based method can be over 90 times faster
than that on CPU.

1. Introduction

Magnetic resonance imaging (MRI) is an ideal diagnostic
technique for researchers to investigate the development
of the fetal brain [1]. Its advantages are the absence of
ionizing radiation, the availability of different contrast
options (T1-weighted, T2-weighted, and diffusion-
weighted imaging), and the superior contrast of soft tissue
compared with ultrasonography, and MRI is also a safe
and noninvasive procedure for patients and fetuses [2–4].
For these reasons, MRI has been widely used to investigate
the developing fetal brain in vivo [5]. For fetal brain MRI,
the high-quality volume representation of 3D acquisition
has significant clinical meaning [6]. By the observation of
the reconstructed volume data, researchers can study the
mechanism of brain development and maturation [7]
and identify the fetal brain abnormality or potential injury
[8, 9], such as brain tumors, vascular malformations, and

posterior fossa abnormalities. Fetal brain MRI can provide
abundant information about aid clinical management,
prognostication, and counseling [10].

The duration of an examination is typically 45 to 60
minutes for fetal brain MRI [1]. One major problem of fetal
brain MRI is motion artifacts caused by fetal and maternal
motion, because of the long acquisition times of 3D MRI
scanning. Maternal motion may be avoided by some mea-
sures, but fetal motion is usually fast and unpredictable, espe-
cially for the younger fetus. Thus, it is still challenging to
reconstruct high-fidelity image for fetal brain MRI due to
the presence of fetal motion. For fetal motion, different strat-
egies can be adopted to reduce the motion artifacts on MRI
[11]. The first strategy tries to prevent the motion occurring
during the examination, such as maternal sedation. The sec-
ond one tries to quicken the data sampling speed. The faster
the acquisition techniques for fetal brain MRI are, the lower
the motion occurs. For example, the single-shot fast spin
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echo (SSFSE) T2-weighted imaging can acquire a slice at 1-
second speed [12]. On the other hand, sparse data sampling
technique can be applied to shorten the time of data acquisi-
tion. The last strategy tries to reconstruct high-quality image
through advanced postprocessing motion detection and cor-
rection algorithms, such as the SVR method [13].

For the SVR framework [14], it includes the following
steps to reduce the fetal motion and reconstruct the high-
quality 3D result: motion identification and exclusion step,
registration step, reconstruction step, and regularization step.
For the motion identification and exclusion step, we should
estimate the amount of motion and exclude the slices with
large amount of motion corruption. Early reconstruction
approaches need to manually exclude the motion corrupted
slices. The intersection-based motion correction approach
can automatically detect and reject motion corrupted and
incorrect registration slices by the abnormal level of their
mean squared intensity difference with respect to all other
intersecting slices [15]. In [16], Kainz et al. have proposed
an approach to automatically estimate the amount of motion
based on the low-rank decomposition for linearly correlated
image slices [17]. Using this approach, we can reject stacks
with large motion and choose the stack with the least motion
as the template to prepare for the registration step. Registra-
tion step can be utilized to correct the motion between slice
and the reconstructed volume. Rousseau et al. [18] combined
the 2D/3D registration with the PSF to achieve the 3D recon-
struction. PSF [14] is a mathematical function to model the
actual appearance of data points in physical space. By PSF,
we can physically correct estimation of the image acquisition
process. Subsequently, the SVR method was modified to
improve the robustness of the 2D/3D registration [19]. For
the reconstruction step, superresolution methods [20, 21]
are utilized to reconstruct the 3D volume. In [22], Gholi-
pour and Warfield combined the superresolution method
with slice-to-volume registration to reduce the burring
effect. Because the motion identification and exclusion
steps can exclude the slice of which the motion amount
is greater than the threshold, the amounts of the slightly
corrupted slices are still preserved for reconstruction.
Using the robust superresolution volume reconstruction
method [23], the weight of slightly corrupted and misa-
ligned slices would be reduced to minimize the effect of
motion. During the process of superresolution reconstruc-
tion, maximum likelihood estimation (MLE) is treated as
an optimum solution to estimate the point’s value [24].
To get better results, we should minimize the difference
between the estimated slices and the acquired slices. Since
the minimization only depends on the acquired samples,
the estimation in the MLE framework is ill-posed and
inaccurate when the samples are sparse [23]. The regular-
ization step is used to solve the overfitting problem, and it
can reduce image noise and registration errors. In [25],
Charbonnier et al. proposed a deterministic edge-
preserving regularization method to deal with image.
However, this method makes it difficult to avoid the
smoothing of edges. Adaptive regularization techniques
can be employed to reduce the smoothing effects of regu-
larization [26]. In [27], Rousseau et al. took advantage of

total variation regulation to extend the superresolution
reconstruction method.

The general SVR framework with the superresolution
reconstruction method has been developed in [28]. One
important way to alleviate fetal motion is to quicken the data
acquisition time by the sparse data sampling technique.
However, the traditional SVR method could not deal well
with the sparse sampling problem and cannot provide high-
quality image. In this paper, we utilize the SVR method with
adaptive kernel regression to cope with the sparse volume
reconstruction withminimummotion artifacts under the con-
dition of sparse data acquisition. The key improvements com-
pared to previous works are as follows: firstly, we make use of
the sparse samples to get faster speed of data acquisition in
fetal brain MRI. Next, the adaptive kernel regression-based
reconstruction method [29] with robust statistics calculation
[24] can reconstruct high-quality volume under the condition
of sparse sampling. In general, our comprehensive recon-
struction method for fetal brain MRI mainly includes slice-
to-volume registration, the robust statistics calculation, the
PSF-based volume update, and adaptive kernel regression-
based volume update.

The rest of the paper is organized as follows. The detailed
methodology is discussed in Section 2. We design the actual
implementation of the algorithm in Section 3. Section 4
involves the experiment results and compares with those of
superresolution methods. In this section, we also discuss
how to determine the optimal values of related parameters
using GPU-based fast reconstruction. Finally, we make a
brief conclusion in Section 5.

2. Methods

2.1. Model of Data Acquisition and Motion Estimation. Dur-
ing data acquisition of fetal brain MRI, we collected several
stacks of 2D slices in different orientations. Because of the
fetal motion, the movement could be observed between these
slices. Assume that the acquired k misaligned 2D slices are
I j ∈ Rn×h, j = 1,⋯, k, and the corresponding sparse 2D slices

are Isj ∈ Rn×h, j = 1,⋯, k. During the slice acquisitions of
MRI, the inhomogeneity of the magnetic field Bj, j = 1,⋯, k
, affects the intensities of the slices and the scaling factor Sj′,
j = 1,⋯, k, is potentially different for each acquired slices.
In [30], the logarithmic transformation was chosen to make
the bias additive. However, field in-homogeneities are known
to be multiplicative. Differently, we use the multiplicative
bias field to form the multiplicative exponential model which
replaces the logarithmic model. So the scaled and bias cor-
rected slice I j′ can be modeled as

Isj = sparse I j
� �

,

vec I j′
� �

= Sj′ ⋅ exp −Bj

� �
⋅ vec Isj

� �
,

ð1Þ

where Isj is the sparsely sampled slice coming from the sparse
operator sparseð∙Þ, vecð∙Þ is the vectorization operator that
transforms a m-pixel (m = n × h) image Rn×h into a vector
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of intensity values Rm. The corresponding k-aligned 2D
ground-truth slices are I∗j ∈ Rn×h, j = 1,⋯, k. The relation-

ship between corrected slices I j′ and the ground-truth slices
I∗j can be denoted as follows:

vec I j′
� �

= θj ⋅ vec I∗j
� �

+ vec ej
� �

, j = 1,⋯, k, ð2Þ

where ej is the motion error, and θj denotes the unknown
motion transformation parameter of slice I∗j . Then, we can
define the following data matrix:

D = vec I1′
� �

;⋯ ; vec Ik′
� �h i

∈ Rm×k,

X = vec I∗1ð Þ ;⋯ ; vec I∗kð Þ½ � ∈ Rm×k,

E = vec e1ð Þ ;⋯ ; vec ekð Þ½ � ∈ Rm×k,

T total = θ1 ;⋯ ; θk½ � ∈ Rm×k:

ð3Þ

where D, X, E, and T total denote the observed data matrix,
reconstructed data matrix, motion error matrix, and the rigid
transformation matrix. Given these definitions, the observed
data matrix D can be described as D = T total∙X + E. The
motion error matrix E is mainly caused by misaligned slices.
The misaligned slices can cause the inaccurate reconstructed
volume, and we want to exclude the stack which has many
misaligned slices. However, we cannot directly calculate the
amount of stack motions for the observed data matrix D,
but a low-rank approximation D∗ as surrogate estimate can
be used to evaluate the stack motion indirectly [16]. It has
been shown that D∗ provides the best approximation to D
[31]. The difference value between D∗ and D measures the
motion error E. The smaller difference value indicates that
the stack has fewer motions. To provide the low-rank
approximation, the singular value decomposition is used to
decompose the data matrix D as Dm×k =Um×kSk×kV

T
k×k. The

singular value decomposition of D produces three matrices
U , S, and V . U and V are both orthogonal matrices, and S
is the diagonal matrix containing the singular values on the
diagonal. And the singular value decomposition of D∗ is the
first r singular values of the original matrix D, i.e., D∗

m×k =
U∗

m×rS
∗
r×rV

∗T
r×k, r = 1,⋯, k. U∗ and V∗ are the first r columns

of U and V , and S∗ is the top left r × r submatrix of S. The
relative error based on the Frobenius norm kD −D∗k is used
to measure the approximation between D∗ and D, i.e. δr =
kD −D∗

r k/kDk. For the different values of r = 1,⋯, k, we
can find the minimal rank r for each stack that satisfies the
given threshold β, i.e., arg minrfδr < βg. Combining δr and
r, the surrogate estimate for the amount of motion is given
by μr = δr∙r.

Based on the low-rank decomposition method, we can
choose one stack with minimal motion as the target template
and first perform the 3D rigid volumetric registration
between the target template and the other stacks (stack to

template registration). During the first registration, we can
get the corresponding rigid global transformation matrix
Tglobal. Then, second, the 3D rigid volumetric registration
between the reconstructed volume and all slices (slice to
reconstructed volume registration) can produce local trans-
formation matrix T local. The prerequisite for two registra-
tions is that all stacks and reconstructed volume should
be mapped to the world coordinates. Thus, we need to
define two transformations to map each pixel in the 2D
slice and each voxel in the reconstructed volume to a con-
tinuous location in the world coordinates. The first one is
world transformation Ws = ½θw1 ,⋯, θwk � that transforms the
discrete coordinates of a pixel ps = ½i, j, 0, 1�T ∈ Isj in the
acquired slice to the continuous local world coordinates.

The second one is world transformation Wr = ½θw′
1 ,⋯, θw′

k �
that transforms the discrete coordinates of a voxel pr =
½x, y, z, 1�T ∈ X in the reconstructed volume to the continu-
ous local world coordinates. Meanwhile, the mapping and
registrations can be combined and formulated as Equation
(4). Thus, Figure 1 illustrates the whole transformation pro-
cess from the pixels in the sparse slice to voxels in the 3D
reconstructed volume.

pr = W−1
r ⋅ T total ⋅Ws

� �
⋅ ps = W−1

r ⋅ Tglobal ⋅ T local
� �

⋅Ws
� �

⋅ ps:

ð4Þ

2.2. PSF-Based Volume Update. To model the actual appear-
ance of sampling data points in physical space, the point
spread functions (PSFs) are used to make the exact estima-
tion for every voxel value in the reconstructed target volume.
For the MRI ssFSE sequence in this paper, the exact shape of
the PSF has been measured using a phantom and rotating
imaging encoding gradient in [14]. The resulting shapes of
the PSF in in-plane and in through-slice are given by a sinc
function and the slice profile, respectively. Since the ideal
rectangle profile has the very dense and inefficient spatial
sampling, Kuklisova-Murgasova et al. [28] have proposed
to use the 3D Gaussian function with the full width at half
maximum (FWHM) equal to the slice thickness as an
approximation for the sinc function. The PSF function based
on 3D Gaussian profile is used to approximately model the
SSFSE sequence and is expressed as follows:

PSFG = exp −dx2

2σ2x
+ −dy2

2σ2y
+ −dz2

2σ2z

 !
, ð5Þ

where dx, dy, and dz are the offsets from the center of a
reconstructed voxel, σx and σy are the full width at half max-
imum (FWHM) in the in-plane x - and y -directions, and the
σz equals to the slice thickness in the through-plane direc-
tion. For each pixel in the sampled slice, the PSFG is applied
to obtain the corresponding PSF coefficient matrix. Since
every sampling pixel (i.e., ps) does not perfectly align itself
with the reconstructed voxel (i.e., pr), one ps contributes to
more than one pr. To model this, every voxel is sampled
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around its local surrounding neighbor in the reconstructed
volume to make sure that it has at least one correspond-
ing pixel in the acquired slices. Then, the PSF coefficients
are used to weigh the pixel’s contribution during thenth
iteration.

pr = W−1
r ⋅ T total ⋅W

� �
⋅ ps

� 	
, eps = W−1

r ⋅ T total ⋅W
� �−1

pr,

X pn+1r
� �

= PSF ps − eps� �
⋅ Sj′ ⋅ exp −Bj

� �
⋅ Iij psð Þ + X pnrð Þ,

ð6Þ

where b∙c is the operation that finds the nearest voxel center in
the space of the reconstructed volume. The reconstructed
volume X is updated iteratively through the PSF-based data
sampling model, and every voxel of X is filled at an arbi-
trarily chosen voxel size.

2.3. Robust Outlier Removal. Once the target volume is
updated based on the Gaussian PSF, the simulated slices Iss

= ½Iss1 ,⋯, Issk � ∈ Rn×h can be generated from the updated
reconstructed volume. Then, the misaligned error e∗ between
the corrected acquired sparse slices I ′ and simulated slices Iss

can be computed as

E e∗ð Þ = I ′ psð Þ − Iss psð Þ: ð7Þ

In [28], an EM model-based robust statistics approach
was proposed to classify each slice pixel into two classes:
inliers and outliers. Specially, the probability density function
(PDF) for the inlier class is modeled as a zero-mean Gaussian
distribution with variance σ2: E ~Nð0, σ2Þ, and the PDF for
the outlier class is modeled as a uniform distribution with
constant density, which is a reciprocal of the range ½a, b�
: E ~Uða, bÞ. Then, the likelihood of the observing error e∗

can be expressed as

P e∗ ∣ σ, cð Þ = c ⋅Nσ e∗ð Þ + 1 − cð Þ ⋅U , ð8Þ

where c is a mixing proportion of inliers representing the cor-
rectly matched voxels. Then, the posterior probability of a
voxel being an inlier can be computed using the expectation
step as

pij =
c ⋅Nσ e∗ij

� �
c ⋅Nσ e∗ij

� �
+ 1 − cð Þ ⋅U

: ð9Þ

The variables σ and c are updated by the following max-
imization step:

σ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑pij ⋅ e∗ij

� �2
∑pij

vuuut ,

c =
∑pij
∑Nj

,

ð10Þ

whereN is the number of the pixels in the slice. By constantly
iterating, we can get the best parameters σ and c. The inlier
probability can be used to weigh the PSF-based volume
update. By the same way, each slice is classified into inlier
and outlier as well using the EM algorithm. The probability

of an inlier slice is defined as pslicej =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑ip

2
ij/Nj

q
. The slices

inferred to be an outlier are excluded from the PSF-based vol-
ume update to remove artifacts of motion corruption and
misregistration.

�e sparse slices
Template

Reconstructed volume

�e world coordinates

�e image coordinates �e target coordinates

Stack

Tglobal Tlocal

Wr

WS

p′r

pr

ps

p′s

Figure 1: The illustration of the whole transformation process from pixels ps to voxel pr.
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The purpose of the outlier removal is to make the frame-
work more robust by rejecting the outlier slices. The outlier
removal module is adopted directly from the cited previous
work [16], where the accuracy of the motion recognition
and outlier removal has been evaluated in detail by simulat-
ing the slice motion at a variety of amplitudes and comparing
the known motion amplitude to the surrogate measure pro-
vided through rank approximation. They have shown that
there was strong correlation between the amplitude of the
known motion and the values of μr derived from the stack
data matrices.

2.4. Steering Kernel Regression-Based Volume Update. For
sparse reconstruction, it is experimentally found that the
reconstructed volume still remains unallocated or inaccurate
voxels after PSF-based volume update and the reconstructed
result is noise as shown in Figure 2.

In [32], the kernel regression can make better nonpara-
metric estimation for the empty pixels. In this paper, the
steering kernel regression approach [29] is introduced to
update the voxels for the previous sparse volume data. The
model for the kernel regression is expressed as

Yi = r Xið Þ + εi, i = 1,⋯,M, ð11Þ

where rð∙Þ is the function of kernel regression, Xi = ðxi, yi, ziÞ
is the 3D coordinate of the voxel, εi is a zero-mean Gaussian
noise with variance σ2

0 as X ~Nð0, σ2
0Þ, and Yi is the voxel

after PSF-based Gaussian volume update.
Assuming that the voxel Xi is close to the known voxel X

in the reconstructed volume, we have the following approxi-

mation for rðXiÞ using the N-term-order Taylor series:

r Xið Þ ≈ r Xð Þ + ∇r Xð Þf gT Xi − Xð Þ
+ 1
2! Xi − Xð ÞT Ηr Xð Þf g Xi − Xð Þ+⋯

= β0 + βT1 Xi − Xð Þ + βT2 vech
� Xi − Xð Þ Xi − Xð ÞT
n o

+⋯,

ð12Þ

where ∇ and Η are, respectively, the gradient (3 × 1) and
Hessian ð3 × 3Þ operators; β0 = rðXÞ, which is the voxel value
of interest; and the vectors β1 and β2 are defined as

β1 = Gx,Gy,Gz

� �T = ∂r Xð Þ
∂x

, ∂r Xð Þ
∂y

, ∂r Xð Þ
∂z

� �T
, ð13Þ

β2 =
1
2

"
∂2r Xð Þ
∂x2

, 2 ∂
2r Xð Þ
∂x∂y

, 2 ∂
2r Xð Þ
∂x∂z

,

∂2r Xð Þ
∂y2

, 2 ∂
2r Xð Þ
∂y∂z

, ∂
2r Xð Þ
∂z2

#T
:

ð14Þ

vechð∙Þ is the half-vectorization operator that transforms the
upper triangular portion of a symmetric matrix into a
column-stacked vector, i.e.,

vech
a b c

b d e

c e f

2664
3775

0BB@
1CCA = a b c d e f½ �T : ð15Þ

Based on the least-squares formula, we can optimize
Equation (12) as

min
βnf gNn=0

〠
L

i=1

�
Yi − β0 − β1 Xi − Xð Þ

− β2 Xi − Xð Þ2−⋯�2 ⋅ 1
h
K

Xi − X
h

 �
,

ð16Þ

where L is the number of known voxels within the neighbor-
hood window, Kð∙Þ is the distance-weighted kernel function
which penalizes distance away from the local position, and h
is the smoothing parameter that controls the strength of the
penalty. The kernel function is chosen as the exponential
function, Gaussian function, or other functions which satisfy
the following conditions:

ð
tK tð Þdt = 0,ð
t2K tð Þdt = c:

ð17Þ

For the computation simplicity, the Gaussian-based

Figure 2: The reconstructed volume after PSF-based volume
update.
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kernel function is chosen in the steering kernel regression
[33]. The steering kernel adapts locally to image structures
(e.g., edges, flat, and texture areas), which are captured by
the kernel footprint. For example, the kernel footprint is large
in the flat areas, elongated in edge areas, and compact in tex-
ture areas. The 3D steering kernel function takes from

Ks Xi − Xð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det Cið Þp
2πh2

exp −
1
2h2

C1/2
i Xi − Xð Þ�� ��2

2

� �
,

ð18Þ

where k∙k22 is the L2 norm and Ci is the symmetric covariance
matrix. Since the local image structure is highly related to the
gradient covariance, we can make the data-dependent

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 5: The original and spare slices: (a) the typical 30th original slice; (b–j) the corresponding simulated sparse slice by removing once
every 10% proportion pixels ranging from 10% to 90%.

Steering kernel
regression
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𝛽1(0)
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𝛽1(iter) = [Gx (iter), Gy (iter),Gz (iter)]T

C(iter) Yes
Converged?

Smoothing matrix
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Initial gradient
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Figure 4: The iterative steering kernel regression.
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registration
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Multiple MRT
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Figure 3: Flowchart of the proposed algorithm.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 6: Continued.
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covariance matrix estimation utilizing the local edge gradi- ents:

Ĉi ≈

〠
Xiϵw

Gx Xið ÞGx Xið Þ 〠
Xiϵw

Gx Xið ÞGy Xið Þ 〠
Xiϵw

Gx Xið ÞGz Xið Þ

〠
Xiϵw

Gx Xið ÞGy Xið Þ 〠
Xiϵw

Gy Xið ÞGy Xið Þ 〠
Xiϵw

Gy Xið ÞGz Xið Þ

〠
Xiϵw

Gx Xið ÞGz Xið Þ 〠
Xiϵw

Gy Xið ÞGz Xið Þ 〠
Xiϵw

Gz Xið ÞGz Xið Þ

266666664

377777775
,

ð19Þ

(m) (n) (o)

(p) (q) (r)

(s) (t)

Figure 6: Reconstruction results of different data removal ratio by Kainz et al. method (2015) and our proposed method. (a), (c), (e), (g), (i),
(k), (m), (o), (q), (s) are the reconstructed results by Kainz et al. method for the sparsely sampled dataset with once every 10% data removal
ratio ranging from 0% to 90% respectively. (b), (d), (f), (h), (j), (l), (n), (p), (r), (t) are the reconstructed results by the proposed methodfor the
sparsely sampled dataset with once every 10% data removal ratio ranging from 0% to 90%, respectively. The red rectangle points to the
obvious difference, which appears as artifacts in the reconstructed image if no steering kernel regression volume updated is used.
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where w is a local analysis window and Gxð∙Þ, Gyð∙Þ, and
Gzð∙Þ are the gradients along the x-, y-, and z-directions.

Equation (16) can be expressed in the matrix form as

B̂ =min
b

Y −XFBk k2W =min
b

Y −XFBð ÞTW Y −XFBð Þ, ð20Þ

where Y = ½Y1, Y2,⋯, YL�T is the vector set of all known vox-

els, B = ½β0, βT
1 ,⋯, βT

N �
T
is the vector set of all estimated

parameters, W = diag ½KsðX0 − XÞ, KsðX1 − XÞ,⋯, KsðXL −
XÞ� is the diagonal matrix whose elements on the diagonal
are the value of Ksð∙Þ, and the other elements are zero.
According to the least-squares method, we have the following
solution:

B̂ = XT
FWXF

� �−1XT
FWY, ð21Þ

where B = ½β0, βT
1 ,⋯, βT

N �
T
, r̂ðXiÞ = bβ0 = eT1 ðXT

FWXFÞ−1XT
F

WY is the voxel value estimated by the steering kernel regres-

sion, bβ1 = ½Gx,Gy ,Gz�T is applied for computing the symmet-

ric covariance matrix Ĉi+1 iteratively, and XF is a coordinate
matrix expressed as follows:

XF =

1 X0 − Xð ÞT vechT X0 − Xð Þ X0 − Xð ÞT
n o

⋯

1 X1 − Xð ÞT vechT X1 − Xð Þ X1 − Xð ÞT
n o

⋯

: : : ⋯

: : : ⋯

1 XL − Xð ÞT vechT XL − Xð Þ XL − Xð ÞT
n o

⋯

266666666664

377777777775
: ð22Þ

Once the reconstructed volume is updated based on the
steering kernel regression, we update the simulated slices Iss

and the misaligned error Eðe∗Þ according to Equation (7).
To remove artifacts caused by motion corruption and mis-
registration and enhance image edges, we further update

the reconstructed volume using the following equation:

X pn+1r
� �

= PSF ps − eps� �
⋅ pslicej ⋅ pij ⋅ E e∗ð Þ + X pnrð Þ: ð23Þ

3. Implementation

The experiment computer is equipped with Intel Core i5
2.6GHz CPU, and the operating system is Windows 7 64
bit. We have implemented the proposed algorithm using
the Microsoft Visual Studio 2012 and Image Registration
Toolkit (IRTK) software package which includes many useful
methods to do registration, transformation, and other image
processing. In this section, we discuss the key implementa-
tion details. The diagram of the total algorithm is expressed
in Figure 3.

The first step is to evaluate the stack motion according to
the method of low-rank decomposition. We estimate the
amount of the stack motion by the surrogate μr = δr∙r and
choose the stack with the minimum amount of stack motion
as the template. The second step is to perform the global reg-
istration, which calculates the matrix of global transforma-
tion Tglobal from the other stacks to the template. The third
step is the iterative registration-based volume reconstruction,
which consists of the outer registration step and the inner
reconstruction step. The outer loop step includes the PSF-
based volume update, robust outlier removal, steering kernel
regression-based volume update, and slice to volume regis-
tration. The PSF-based volume update step makes the initial
estimation of the reconstructed volume based on Equation
(6). Then, the simulated slices are created and used for the
robust misaligned error calculation between the simulated
slices and the acquired slices as described in Section 2.3.
The robust statistic calculation achieves the classification of
outlier slices and inlier slices. The outlier slices are excluded
to remove artifacts of motion corruption and misregistration.
The slice to volume registration is to calculate the local trans-
formation T local from slices to reconstructed volume. The
whole transformation process is described by Equation (4).
The volume update based on the adaptive steering kernel
regression is aimed at reconstructing the accurate volume iter-

atively as shown in Figure 4. The initial gradients bβ1ð0Þ =
½Gxð0Þ,Gyð0Þ,Gzð0Þ�T are estimated by the classical kernel
regression. Then, the gradient information is used to calcu-
late the covariance smoothing matrix ĈðiterÞ (i.e., Equation
(19)). We use smoothing matrix to update the voxel valuebβ0ðiterÞ and its corresponding gradients bβ1ðiterÞ according
to Equation (21), respectively. To obtain a more reliable voxel
estimation, the process is iterated three times in our
experiment.

4. Experimental Results and Evaluation

4.1. Evaluation of Image Quality. In the experimental evalua-
tion, we used the datasets from the fetal MRI datasets [16],
which were acquired by a Philips Achieva 3T MR scanner.
During the experiment, the volunteers were lying at a 20° tilt
on the left side to avoid the pressure on the inferior vena cava.

Table 1: The RMSE and SSIM value comparison of fetal brain
reconstruction with different removal proportions, respectively.

Different
removal
proportions

RMSE MSSIM
Kainz et al.’s
method (2015)

Our
method

Kainz et al.’s
method (2015)

Our
method

0% 19.096 19.096 1 1

10% 32.578 29.120 0.9752 0.9759

20% 38.043 33.947 0.9690 0.9691

30% 43.171 36.790 0.9591 0.9608

40% 49.194 41.027 0.9478 0.9458

50% 55.894 45.480 0.9202 0.9366

60% 67.053 53.305 0.9063 0.9271

70% 81.522 62.964 0.8667 0.8993

80% 111.917 78.886 0.7862 0.8449

90% 180.483 112.249 0.6338 0.7407
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The volunteer’s womb was scanned with single-shot fast spin
echo (SSFSE) T2-weighted sequence. Three stacks of images
from axial, coronal, and sagittal orientation are used to con-
struct the final high-resolution volume. To obtain the sparse
stacks, we randomly remove different proportions of pixels of
the stack once every 10% proportion ranging from 10% to
90%. The different removal proportions control the removal
number of pixels. The typical 30th slice of the collected stack
and its corresponding simulated spare slices are illustrated in
Figure 5.

For different data removal ratios, the sparse stacks are
used to reconstruct the high-resolution 3D fetal brain MRI
volume with the method of Kainz et al. [16] (SVR with super-
resolution) and our proposed method. Figure 6 shows the
reconstructed results by Kainz et al.’s method and the pro-
posed method for the sparsely sampled dataset with once
every 10% data removal ratio ranging from 0% to 90%,
respectively. In Figure 6, we can observe that as the removal
ratio increases, the reconstructed results by Kainz et al.
method have muchmore noise for the sparse sampled dataset
compared with our proposed method. On the other hand, the
proposed method is capable of reconstructing high-

resolution images without obvious artifacts even for the
90% data removal ratio.

For the sake of quantitative evaluation, the image quality
assessment index of root mean square error (RMSE) [9] and
mean structure similarity (MSSIM) [34] is introduced to
quantitatively assess the algorithms under different removal
ratios. The RMSE score can be computed by the following
equation:

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N
〠
N

i=1
z ið Þ − g ið Þð Þ2

vuut , ð24Þ

Table 2: The running time comparison of the adaptive kernel regression method for fetal brain reconstruction based on CPU and GPU,
respectively.

Processor
Single-threaded

CPU
Multithreaded

CPU
GPU

Single-threaded
CPU vs. GPU

Multithreaded
CPU vs. GPU

Gradient information (s) 416.960 108.762 5.047 82.62 21.55

Covariance smoothing matrix (s) 46.082 48.902 0.580 79.45 84.31

Steering kernel regression (s) 1402.727 887.629 15.091 92.95 58.82

Total time (s) 1865.769 1045.293 20.718 90.06 50.45

Table 3: The RMSE and MSSIM values and running time comparison of fetal brain reconstruction with different window sizes ranging from
3 × 3 × 3 to 9 × 9 × 9, respectively.

Window size w w = 3 w = 5 w = 7 w = 9
RMSE 125.061 125.869 129.298 126.929

MSSIM 0.6796 0.6663 0.6606 0.6763

TIME (s)
7:056 = 4:810 + 0:534 +ð

1:712Þ
10:268 = 4:822 + 3:714 +ð

1:732Þ
124:678 = 4:801 + 118:211∗ +ð

1:666Þ
222:353 = 4:798 + 215:888∗ +ð

1:667Þ
Note: TIME denotes the time caused only by running the adaptive kernel regression method. T = ðA + B + CÞ: A is the time to calculate the gradient
information. B is the time to calculate the covariance smoothing matrix. C is the time to calculate steering kernel regression function. T is the sum of A, B,
and C. ∗ indicates that CPU is chosen as the running processor for the covariance matrix calculation due to the limitation of GPU kernel memory for the
large window size.

(a) (b) (c) (d)

Figure 7: Reconstructed results of the MRI data with different window sizes w: (a) w = 3, (b) w = 5, (c) w = 7, and (d) w = 9.

Table 4: The RMSE and MSSIM value comparison of fetal brain
reconstruction with different structure sensitivities α ranging from
0.1 to 0.5, respectively.

Structure sensitivity α = 0:1 α = 0:2 α = 0:3 α = 0:4 α = 0:5
RMSE 125.06 112.10 99.927 91.073 97.556

MSSIM 0.6823 0.7117 0.7584 0.7712 0.7523
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where zð∙Þ is the reconstructed result, gð∙Þ is the ground-
truth volume, and N is the number of voxels. A good recon-
struction method is capable of estimating the removal data
very close to the original data. Given zð∙Þ and gð∙Þ, a low
RMSE value represents that the estimated result is satisfying
while a high RMSE means that the interpolation accuracy is
poor.

The structure similarity (SSIM) index explores the struc-
tural information for image quality assessment based on the
main idea that the pixels have strong interdependency when
they are spatially close. The SSIM metric is calculated based
on the intensity, contrast, and structure and is computed as

SSIM z, gð Þ =
2μzμg + c1
� �

2σzg + c2
� �

μ2z + μ2g + c1
� �

σ2z + σ2g + c2
� � , ð25Þ

where μz , μg, σz , σg, and σzg denote the mean, variance, and
covariance on square window, which moves pixel by pixel in
images zðiÞ and gðiÞ, respectively. The two variables c1 = k1L
and c2 = k2L are used to stabilize the division with weak
denominator. Here, L is the dynamic range of pixel value
(e.g., 255 for 8-bit grayscale image), with k1 = 0:01 and k1 =
0:03 by default. Since the SSIM metric is calculated on vari-
ous windows of a volume image, the mean SSIM (MSSIM)
index is used in this experiment to assess the overall image
quality:

MSSIM z, gð Þ = 1
M

〠
M

i=1
SSIM zi, gið Þ, ð26Þ

where M is the number of local windows in the image.
MSSIMðz, gÞ ∈ ½0, 1�; the higher MSSIM indicates better
structural similarity between two images.

For the clinical datasets, it is impractical to obtain the
ground-truth volume in advance. For the sake of fair com-
parison among different methods, the quantitative evaluation
is performed based on an average reconstructed volume. We
first use the original stacks without data removal to recon-
struct a complete volume by Kainz et al.’s method (2015)
and our method (e.g., Figures 6(a) and 6(b)), respectively.
Both volumes are adopted to create an average volume as
the ground truth. Table 1 shows the quantitative results of
the RMSE and MSSIM values with different data removal

ratios for each method. As can be seen, the results of Kainz
et al.’s method produce the highest RMSE scores and lowest
scores for all sampling rates. Both the high RMSE value and
low MSSIM value for Kainz et al.’s method indicate poor
image quality because of the artifacts and noise. For all levels
of sampling rate, the proposed method performs better than
the Kainz et al.’s method. More importantly, both of the dif-
ference of the RMSE and MSSIM index between Kainz et al.’s
method and our method increase while the data removal
ratio increases, indicating that our method outperforms
much more compared with the Kainz et al.’s method when
the data removal ratio increases.

4.2. Evaluation of Computational Efficiency. Our approach is
capable of reconstructing the accurate volume from the
highly sparse sampling dataset, but it requires largely compu-
tational burden as well due to the iterative kernel regression
estimation. To reduce the long processing time of the adap-
tive kernel regression, the proposed method is accelerated
by the GPU-based parallel implementation based on the
NVIDIA GeForce GTX 1080 and CUDA 8.0 libraries. In
the experiment, we make the evaluation of the computational
efficiency of the adaptive kernel regression method, including
the computation of the gradient information, the covariance
smoothing matrix, and the steering kernel regression. The
computational efficiency of the other modules (i.e., motion
estimation, stack-to-template registration, PSF-based volume
update, robust outlier removal, and slice-to-volume registra-
tion) has been evaluated in detail in [16]. The comparisons
are based on the single-threaded CPU, multithreaded CPU,
and GPU for the dataset of 80% data removal ratio under
the parameter setting as the kernel size kc = 5 and the
smoothing parameter hc = 2:0 in the initial gradient estima-
tion step based on the classical kernel regression, the steering
kernel size ks = 7 and the steering smoothing parameter hs

(a) (b) (c) (d)

Figure 8: Reconstructed results of the MRI data with different structure sensitivities α: (a) α = 0:2, (b) α = 0:3, (c) α = 0:4, and (d) α = 0:5.

Table 5: The RMSE and MSSIM value comparison of fetal brain
reconstruction with the regularization parameter λ ranging from
0.1 to 2.0, respectively.

Regularization
parameter λ

λ = 0:1 λ = 0:5 λ = 1:0 λ = 1:5 λ = 2:0

RMSE 91.073 91.447 91.276 91.566 91.071

MSSIM 0.7720 0.7710 0.7708 0.7684 0.7732
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= 0:5 in the steering kernel regression step, and the window
size w = 3, the regularization parameter λ = 2:0, and the
structure sensitivity α = 0:4. The practical running time for
the proposed method is shown in Table 2. For single-
threaded CPU, the running time of the adaptive kernel
regression method is 1865.769 s, which includes the compu-
tation of the gradient information in 416.96 s, the covariance
smoothing matrix in 46.082 s, and the steering kernel regres-
sion in 1402.727 s. For the multithreaded CPU, we use 4
threads to run the adaptive kernel regression method and
its computational time is 1045.293 s, indicating less improve-

ment compared with the single-threaded CPUs. The running
time of the GPU implementation is 20.718 s in total. From
Table 2, it can be observed that the GPU-based processing
time has significantly decreased by 98.89% and 98.02%, com-
pared with the single-threaded CPU and the multithreaded
CPU, respectively.

4.3. The Choice of the Adaptive Kernel Regression Parameters.
There are seven parameters which can be adjusted to affect
the reconstructed image quality for the proposed method.
These parameters include the kernel size kc and the smooth-
ing parameter (i.e., the kernel bandwidth) hc in the initial
gradient estimation step based on the classical kernel regres-
sion, the steering kernel size ks and the steering smoothing
parameter hs in the steering kernel regression step, and the
window sizew, the regularization parameter λ, and the struc-
ture sensitivity α (0 ≤ α ≤ 0:5) in the covariance matrix esti-
mation step. In our method, kc and hc are related with the
initial calculation of gradient information and have a negligi-
ble effect in the experiment. For the adaptive sparse

(a) (b) (c) (d)

Figure 9: Reconstructed results of the MRI data with different regularization parameters λ: (a) λ = 0:5, (b) λ = 1:0, (c) λ = 1:5, and (d) λ = 2:0.

Table 6: The RMSE and MSSIM values and running time comparison of fetal brain reconstruction with different steering kernel sizes ks
ranging from 3 × 3 × 3 to 9 × 9 × 9, respectively.

Steering kernel size ks = 3 ks = 5 ks = 7 ks = 9
RMSE 91.07 79.554 79.005 81.502

MSSIM 0.7791 0.7973 0.8054 0.7781

TIME (s)
7:907 = 5:407 + 0:581 +ð

1:919Þ
11:995 = 5:404 + 0:581 +ð

6:010Þ
21:148 = 5:402 + 0:581 +ð

15:165Þ
37:333 = 5:408 + 0:581 +ð

31:344Þ
Note: TIME denotes the time caused only by running the adaptive kernel regression method. T = ðA + B + CÞ: A is the time to calculate the gradient
information. B is the time to calculate the covariance smoothing matrix. C is the time to calculate the steering kernel regression function. T is the sum of A,
B, and C.

(a) (b) (c) (d)

Figure 10: Reconstructed results of the MRI data with different kernel window sizes: (a) ks = 3, (b) ks = 5, (c) ks = 7, and (d) ks = 9.

Table 7: The RMSE and MSSIM value comparison of fetal brain
reconstruction with different steering smoothing parameters hs
ranged from 0.1 to 2.5, respectively.

Steering smoothing
parameter

hs = 0:1 hs = 0:5 hs = 1:0 hs = 1:5 hs = 2:0

RMSE 79.005 78.886 79.230 79.159 82.87

MSSIM 0.7927 0.8092 0.7933 0.7944 0.7946
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reconstruction, covariance matrix estimation and steering
kernel estimation are the two of the important steps and their
parameters (i.e., w, α, λ, ks, and hs) play an important role in
the volume reconstruction and deserve much more
investigation.

With the help of GPU-based fast implementation, we
firstly adjust the parameters (i.e., w, α, and λ) of the covari-
ance matrix estimation one by one. The window size w
decides how many neighbor points in the gradient matrix
are taken for the estimation of the covariance matrix.
Table 3 shows the RMSE and MSSIM values and the running
time for different window sizes. Both of the RMSE and
MSSIM values differ slightly, indicating that the window size
has a negligible influence on the reconstructed image quality,
as shown in Figure 7. However, the running time increases
with the increase of window size. It can be observed that
the window size ofw = 3 is chosen because of its faster imple-
mentation and lower RMSE value.

Table 4 shows the RMSE and MSSIM values influenced
by the structure sensitivity parameter α, and the lowest
RMSE value and highest MSSIM value are obtained for the
structure sensitivity α = 0:4 indicating the best performance
of the algorithm. Figure 8 shows the corresponding recon-
structed images for different α values. As can be seen, the
result with large structure sensitivity (e.g., α = 0:5) results in
oversmoothing image, while small structure sensitivity
(e.g., α = 0:2) overemphasizes the image edges. The experi-
ment shows that the structure sensitivity α has a significant
influence on the reconstructed volume.

Under different regularization parameter settings, the
RMSE and MSSIM measurements of the reconstructed
results are calculated and shown in Table 5. The illustrative
results are further shown in Figure 9. The regularization
parameter λ is used to suppress the noise. However, the reg-
ularization parameter has negligible influence on the recon-
structed image quality in the experiments.

The next group parameters (i.e., ks and hs) come from the
steering kernel regression for the adaptive voxel value estima-
tion. The kernel window size ks has a great impact on the
processing time for the kernel regression-based algorithm
under different data removal proportions. When the kernel
window increases, the estimation of each voxel involves
more nearby pixels and leads to more computation [32].
The smaller the kernel window size is, the faster our algo-

rithm runs. On the other hand, if the size of the kernel win-
dow is too small, we could obtain the fault result, because
there are not enough samples to make the current voxel
estimation, especially for large data removal proportion.
The larger the data removal proportion is, the sparser the
sampled data will be. The RMSE and MSSIM index and
processing time measurement of the reconstructed results
under different kernel window sizes are shown in Table 6.
With the increase of the kernel window size, the running
time of steering kernel regression function is becoming lon-
ger. The corresponding images of different steering kernel
sizes are shown in Figure 10. The proper kernel window
size (i.e., 7 × 7 × 7) produces a trade-off between the pro-
cessing time and the reconstruction accuracy under differ-
ent removal proportions.

Table 7 shows the RMSE and MSSIM values and run-
ning time with different steering smoothing parameters hs.
As can be seen, the results with the steering smoothing
parameter (i.e., hs = 0:5) achieve the lowest RMSE value
and highest MSSIM value among these settings. The recon-
structed results produced by different steering smoothing
parameters are shown in Figure 11. In [33], it has been given
that the steering smoothing parameter indicates the “foot-
print” of the kernel function. The large footprint of the ker-
nel function could reduce the noise but at the cost of
oversmoothing details, while small footprints are desirable
to preserve the edges. In the experiment, the footprint set-
ting hs = 0:5 is chosen for reaching a trade-off between the
noise reduction and edge preservation. Finally, all parame-
ters of the adaptive steering kernel regression algorithm are
determined as follows: the window size w = 3, the regulariza-
tion parameter λ = 2:0, the structure sensitivity α = 0:4, the
steering kernel size ks = 7, and the steering smoothing
parameter hs = 0:5. Under such parameter setting, the RMSE
value decreases from 126.47 to 78.89, indicating the quality
improvement by 37.62%.

5. Conclusion

In this paper, we proposed an adaptive reconstruction
method to deal with the sparse sampling dataset for fetal
brain MRI. Our method combines the latest SVR framework,
including the stack motion evaluation, PSF-based volume
update, robust outlier removal, slice-to-volume registration,

(a) (b) (c) (d)

Figure 11: Reconstructed results of the MRI data with different steering smoothing parameters: (a) hs = 0:5, (b) hs = 1:0, (c) hs = 1:5, and (d)
hs = 2:0.
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and the proposed adaptive kernel regression-based volume
update. Compared with the existing SVR framework, our
method has advantages of sparse volume reconstruction
and is capable of reconstructing superresolution image even
for 80%~90% data removal. With the capability of sparse
reconstruction, the data sampling time can be greatly short-
ened and thus, the motion artifacts can be reduced indirectly.
To accelerate the voxel estimation, we use the CUDA to
implement the steering kernel regression approach. For the
proposed method, the running times of GPU-based imple-
mentation are speeded up to 90x than that of the CPU. The
GPU-based parallel implementation of the proposed method
is more practical to meet the requirements of fetal brain MRI.
Meanwhile, we make the detailed investigation on the choice
of parameters for the adaptive kernel regression-based vol-
ume reconstruction with the help of GPU-based fast imple-
mentation. To summarize, the structure sensitivity α and
the steering kernel window size ks are two of the important
parameters on sparse kernel regression volume reconstruc-
tion. Meanwhile, the kernel window size has a strong rela-
tionship with the running time. Larger window size
requires longer processing time. Overall, our approach is
used to reconstruct superresolution image from the highly
sparse sampled dataset of fetal brain MRI corrupted with
motion artifacts. One of its potential applications includes
other motion organ MRI reconstruction, such as the heart
MRI with the heart beating motion artifacts.

Data Availability

The test data was downloaded from the publicly available
dataset on GitHub (https://github.com/bkainz/fetalRecons-
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This study established an interpretable machine learning model to predict the severity of coronavirus disease 2019 (COVID-19) and
output the most crucial deterioration factors. Clinical information, laboratory tests, and chest computed tomography (CT) scans at
admission were collected. Two experienced radiologists reviewed the scans for the patterns, distribution, and CT scores of lung
abnormalities. Six machine learning models were established to predict the severity of COVID-19. After parameter tuning and
performance comparison, the optimal model was explained using Shapley Additive explanations to output the crucial factors.
This study enrolled and classified 198 patients into mild (n = 162; 46:93 ± 14:49 years old) and severe (n = 36; 60:97 ± 15:91
years old) groups. The severe group had a higher temperature (37:42 ± 0:99°C vs. 36:75 ± 0:66°C), CT score at admission,
neutrophil count, and neutrophil-to-lymphocyte ratio than the mild group. The XGBoost model ranked first among all models,
with an AUC, sensitivity, and specificity of 0.924, 90.91%, and 97.96%, respectively. The early stage of chest CT, total CT score
of the percentage of lung involvement, and age were the top three contributors to the prediction of the deterioration of
XGBoost. A higher total score on chest CT had a more significant impact on the prediction. In conclusion, the XGBoost model
to predict the severity of COVID-19 achieved excellent performance and output the essential factors in the deterioration
process, which may help with early clinical intervention, improve prognosis, and reduce mortality.

1. Introduction

Coronavirus disease 2019 (COVID-19), pneumonia caused
by severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2), is a highly infectious respiratory disease with a
variable incubation period ranging from 1 to 14 days, and
people are generally vulnerable to the virus.

Reverse transcription-polymerase chain reaction (RT-
PCR) for SARS-CoV-2 is the standard for diagnosing
COVID-19. However, RT-PCR takes 1–2 days to complete
and may report false-negative results. Some areas even faced
a shortage of RT-PCR testing kits [1, 2]. Under these circum-
stances, chest computed tomography (CT) played a vital role
in detecting and assessing patients with COVID-19, especially
in detecting patients with COVID-19 in the early stage [3].

According to clinical presentation, patients with
COVID-19 were classified into four categories: mild type,
moderate type, severe type, and critical type [4]. Most
patients were classified as the mild type and moderate type
with mild symptoms, whereas a small group of patients may
experience acute respiratory distress syndrome (ARDS),
septic shock, coagulation dysfunction, and multiple organ
failure. These patients required ventilators and extracorpo-
real membrane oxygenation during an expensive treatment
and had a high death rate [5]. Previous researchers showed
that up to 5.0% of the patients were admitted to the inten-
sive care unit (ICU), 2.3% of the patients needed invasive
mechanical ventilation, and 1.4% of patients died eventually
[6]. It is unclear why some patients develop into severe or
critical cases, while others only get mild or no symptoms.
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The crucial factors in the deterioration process remain
unknown.

Early identification of severity and crucial factors are
of great value, prompting early clinical intervention and
preventing deterioration of patients’ condition. However,
it is hard for the doctor to identify those patients under
the human limitation on information processing. Hence,
artificial intelligence has been widely applied in the medi-
cal domain, enabling radiologists to make full use of data,
including imaging information, and explore the images’
biological nature. Since the initial outbreak, attempts have
been made to detect COVID-19 using chest CT.

In this study, we established a machine learning model,
combining clinical information, laboratory tests, and chest
CT features for early prediction of the severity and crucial
factors of patients with COVID-19. Our model may help
identify patients who require early clinical intervention to
improve prognosis and reduce mortality.

2. Materials and Methods

2.1. Study Participants. This retrospective study evaluated
de-identified data and involved no potential risk to the
patients. Therefore, the institutional review board waived
the requirement of obtaining written informed consent.
This study included patients with COVID-19, as con-
firmed by RT-PCR, admitted to the People’s Hospital of
Honghu and Honghu Xiaotangshan Hospital from January
1 to March 27, 2020. The inclusion criteria were as fol-
lows: (a) a positive RT-PCR result for SARS-CoV-2 infec-
tion, (b) patients who underwent a chest CT scan and
laboratory tests at admission in the two hospitals men-
tioned above, and (c) no other viral infection or serious
complication. The exclusion criteria were as follows: (a)
patients who underwent a chest CT scan and laboratory
tests in other hospitals and (b) patients whose chest CT
images showed no lesion in the lungs.

Patients’ triage, sex, age, symptoms, pre-existing diseases,
the temperature at admission, and laboratory tests, such as
white blood cell (WBC), neutrophil, and lymphocyte counts,
were collected. Patients with COVID-19 were classified into
four categories [4]: (1) The mild type includes those who
have mild clinical symptoms and no pneumonia manifesta-
tions found in imaging. (2) The moderate type includes the
patients who have symptoms such as fever and respiratory
tract symptoms with pneumonia manifestations seen on
imaging. (3) The severe type fulfilled the following criteria:
respiratory frequency ≥ 30/minute, blood oxygen saturation
≤ 93%, arterial partial pressure of oxygen (PaO2)/oxygen
concentration (FiO2) ratio < 300, and lung infiltrates > 50%
within 24–48 hours. (4) The critical type meets any of the fol-
lowing criteria: occurrence of respiratory failure requiring
mechanical ventilation and the presence of shock and other
organ failures that require monitoring and treatment in the
ICU.

In this study, all patients were classified into four clinical
types according to the criteria mentioned above during treat-
ment. The mild type was excluded because of no pneumonia
manifestations found in imaging. The moderate type was

classified into the mild group. Concerning the rareness of
the critical type, the severe type and critical type were classi-
fied into the severe group in this study (Figure 1).

2.2. Imaging Techniques. Chest CT scanning (Go Now, Sie-
mens Healthcare, Germany; GE optima 680, GE Healthcare,
USA) was performed at the end of full inspiration in the
supine position. The images were acquired and reconstructed
with 80–130kV tube voltage and automatic tube current mod-
ulation (up to 400mA). The slice thicknesses were 0.6mm
(GE optima CT680) and 1.5mm (Go Now), respectively.
The lung window setting was at a window level of -600Houns-
field units (HU) and a window width of 1500HU. The scan-
ning range was from the apex to the lung base.

2.3. Image Interpretation. All chest CT images were reviewed
by two radiologists with over five years of clinical experience
in the respiratory system independently. Any disagreement
was resolved by discussion and consensus. The following
aspects were reviewed for each patient: (1) stage (early stage,
progress stage, or restoration stage); (2) distribution (sub-
pleural, scatter, or diffuse) and shape (nodular, patchy, or
large patchy); (3) number of lung lobes involved; (4) presence
of ground-glass opacity (GGO); (5) presence of consolida-
tion, fibrotic lesions, reticular shadow, crazy paving pattern,
air bronchogram, pleural effusion, pleural thickening, and
mediastinal lymphadenopathy (axil diameter > 10mm); and
(6) CT scores of the percentage of lung involved [7, 8]. Each
lobe was evaluated for the percentage involved on a scale of
0–4 (0: 0% involvement, 1: <25% involvement, 2: 25%–50%
involvement, 3: 50%–75% involvement, and 4: ≥75% involve-
ment). The total score on the chest CT was the summation of
all five lobes. The maximum possible score was 20.

2.4. Statistical Analysis. Statistical analyses were performed
using SPSS (version 26.0). Continuous variables are
expressed as means and standard deviations and compared
by an independent-sample t-test; categorical variables are
expressed as counts and frequencies (%) and compared
using Fisher’s exact test between the mild and severe
groups. Statistical significance was set at p < 0:05. The area
under the curve (AUC) of different models was compared
by the DeLong test using MedCalc (version 19.4.1).

2.5. Interpretable Machine Learning Model Building. A data-
set was built, including clinical information, laboratory tests,
and chest CT features, from 198 patients with COVID-19, as
confirmed by RT-PCR. The machine learning model was
established using Python 3.7. We randomly split the dataset
into a 70% training and validation set and a 30% test set.
All quantitative features were normalized to the range of 0
to 1. The categorical features were transformed into a one-
hot numerical array. Six machine learning models, including
logistic regression (LR), k-nearest neighbor (KNN), decision
tree (DT), random forest (RF), support vector machine
(SVM), and eXtreme gradient boosting (XGBoost), were
built based on the features after preprocessing. After param-
eter tuning, the model’s performance was assessed using the
AUC. The receiver operating characteristic (ROC) curve of
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each model was further evaluated using DeLong’s test on
MedCalc (Figure 2).

Based on Shapley values from coalitional game theory,
Shapley Additive explanations (SHAP) were used to explain
the model [9, 10]. The SHAP explains the model prediction
by computing each feature’s contribution individually or
jointly to the prediction. With kernelSHAP, treeSHAP,
and deepKernal subclasses, SHAP can explain any machine
learning model’s output.

3. Results

3.1. Statistical Analysis. This study enrolled 198 patients
(mild group: 162 cases and severe group: 36 cases), including
80 males and 118 females. The average age of the mild
(46:93 ± 14:49 years) and severe (60:97 ± 15:91 years) groups
was significantly different. Patients in the mild group were
admitted to the hospital 10:40 ± 5:58 days after the onset,
which is longer than that in the severe group (8:00 ± 4:88

days, p = 0:038). However, the temperature of patients in
the severe group was higher than that of those in the mild
group (37:42 ± 0:99°C vs. 36:75 ± 0:66°C). Fever, cough,
shortness of breath, and dyspnea were significant features
associated with the severe group. In terms of basic diseases,
22.22% (8/36) and 6.79% (11/162) of patients in the severe
and mild groups, respectively, had high blood pressure
(p = 0:008) (Table 1).

There were 9:35 ± 7:44 and 6:44 ± 4:08 days between the
first CT scan and onset of chest CT features in the mild and
the severe groups, respectively. However, the total CT score
and the number of different lobes involved in the severe
group were significantly higher than those in the mild group.
Patients with diffuse (23/36, 63.89%) and large patchy (18/36,
50.00%) appearances were likely to deteriorate. In contrast,
patients with diffuse location and patchy shape of the mild
group were 35.80% and 81.48%, respectively. Moreover,
80.6% of severe group patients showed lung lesions that
had invaded five lobes at admission, compared to 39.5% of

Initial cases identified through database search
(n = 1281) 

Cases with positive RT-PCR (n = 432)

Cases underwent laboratory test and chest CT
at admission in this hospital (n = 277) 

Cases without other viral infection or serious
complication at admission (n = 243) 

Excluded: n = 849
Cases with negative RT-PCR result

Excluded: n = 155
Cases who underwent chest CT scan and

laboratory tests in other hospitals 

Excluded: n = 34
Cases with other infection or serious

complication at admission 

Excluded: n = 45
Cases with no pneumonia manifestations

found in imaging at admission (mild type) 

Mild group
(n = 162)

Severe group
(n = 36)

Moderate type
(n = 162)

Severe type
(n = 28)

Critical type
(n = 8)

Figure 1: Flow diagram of patient enrollment.
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Figure 2: Illustration of the modeling framework.
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the mild patients (p = 0:001). The manifestations of pleural
effusion, consolidation, crazy paving, and air bronchogram
played an essential role in predicting COVID-19 deteriora-
tion, indicating that these patients were more likely to
develop into severe and critically ill patients (Table 2).

As for laboratory tests, the severe group had a higher
WBC count, neutrophil count, and neutrophil ratio and a
lower lymphocyte count and lymphocyte ratio than the mild

group. Furthermore, the neutrophil-to-lymphocyte ratio
(NLR) in the severe group was significantly higher than that
in the mild group (8:12 ± 9:69 vs. 3:04 ± 2:75) (Table 1).

3.2. Machine Learning Model Performance and
Interpretability. A dataset was built, including enrolled
patients’ clinical information, laboratory tests, and chest CT
features. We randomly split the dataset into a 70% training

Table 1: Demographic, clinical characteristics, and laboratory tests of the patients.

Mild group (n = 162) Severe group (n = 36) p

Age (years)

Mean (SD) 46:93 ± 14:49 60:97 ± 15:91 <0.001
Range 17-81 28-86

Median age 46 64.50

Gender 0.513

Male 67 (41.36%) 13 (36.11%)

Female 95 (58.64%) 23 (63.89%)

Signs and symptoms at admission

Days from onset (days) 10:40 ± 5:58 8 ± 4:88 0.038

Temperature (°C) 36:75 ± 0:66 37:42 ± 0:99 <0.001
Fever∗ 119 (73.46%) 27 (75.00%) <0.001
Cough∗ 96 (59.29%) 23 (63.89%) <0.001
Fatigue 34 (20.99%) 10 (27.78%) 0.352

Shortness of breath∗ 16 (9.88%) 7 (19.44%) 0.140

Chest tightness∗ 13 (8.02%) 3 (8.33%) 1

Dyspnea∗ 6 (3.70%) 7 (19.44%) 0.002

Fear of cold∗ 6 (3.70%) 5 (13.89%) 0.026

Diarrhea∗ 8 (4.94%) 1 (2.78%) 1

Headache∗ 8 (4.94%) 1 (2.78%) 1

Dizziness 4 (2.47%) 3 (8.33%) 0.105

Palpitation∗ 1 (0.62%) 3 (8.33%) 0.018

Preexisting disease

Hypertension∗ 11 (6.79%) 8 (22.22%) 0.008

Diabetes∗ 6 (3.70%) 4 (11.11%) 0.077

CAD∗ 5 (3.09%) 2 (5.56%) 0.356

Lung cancer∗ 0 1 (2.78%) 0.176

Myocardial infarction∗ 0 1 (2.78%) 0.176

Cerebral infarction∗ 0 1 (2.78%) 0.176

Tuberculosis∗ 0 1 (2.78%) 0.176

Laboratory tests

WBC (×109/L) 5:53 ± 2:30 7:11 ± 3:53 0.014

Neutrophil (×109/L) 3:61 ± 2:10 5:80 ± 3:50 0.001

Neutrophil ratio (%) 62:48 ± 13:15 76:15 ± 12:11 <0.001
Lymphocyte (×109/L) 1:40 ± 0:50 0:99 ± 0:47 <0.001
Lymphocyte ratio (%) 27:33 ± 10:07 16:80 ± 9:71 <0.001
NLR 3:04 ± 2:75 8:12 ± 9:69 0.004

CAD: coronary artery disease; WBC: white blood cell; NLR: neutrophil-to-lymphocyte ratio. ∗Fisher’s exact test.
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and validation set (138 cases, 113 in the mild group and 25 in
the severe group) and a 30% test set (60 cases, 49 in the mild
group and 11 in the severe group). Six machine learning
models were built, validated, and tested based on the dataset.
The performance of the models is reported in Table 3. Five
of the six models showed a good fit, except for the DT model
with an AUC of 0.707 (95% confidence interval (CI) (0.575,
0.817), p = 0:0097). The AUC of XGBoost ranked first for all
models, with an AUC of 0.924 (95% CI (0.826, 0.976), p <

0:0001). XGBoost achieved 90.91% sensitivity (95% CI
(58.7%, 99.8%)) and 97.96% specificity (95% CI (89.10%,
99.90%)). The RF model achieved a 0.907 AUC (95% CI
(0.804, 0.967), p < 0:0001), 90.91% sensitivity (95% CI
(58.7%, 99.8%)), and 95.92% specificity (95% CI (80.4%,
97.7%)). The KNN model obtained a 100% sensitivity (95%
CI (71.5%, 100.00%)); however, KNN had a 0.857 AUC
(95% CI (0.743, 0.934), p < 0:0001) and 61.22% specificity
(95% CI (46.2%, 74.8%)). The difference in AUCs between

Table 2: Chest CT features of the patients.

Mild group (n = 162) Severe group (n = 36) p

Stage 0.208

Early stage 44 (27.16%) 10 (27.78%)

Progress stage 105 (64.81%) 26 (72.22%)

Restoration stage 13 (8.02%) 0

Location 0.002

Subpleural 50 (30.86%) 2 (5.56%)

Scatter 54 (33.33%) 11 (30.56%)

Diffuse 58 (35.80%) 23 (63.89%)

Shape <0.001
Nodular 11 (6.79%) 1 (2.78%)

Patchy 132 (81.48%) 17 (47.22%)

Large patchy 19 (11.73%) 18 (50.00%)

Number of lobes involved <0.001
1 22 (13.58%) 0

2 22 (13.58%) 1 (2.78%)

3 20 (12.35%) 1 (2.78%)

4 34 (20.99%) 5 (13.89%)

5 64 (39.51%) 29 (80.56%)

Image manifestations

Pleural effusion 1 (0.62%) 4 (11.11%) 0.004

Fibrosis 64 (39.51%) 15 (41.67%) 0.811

Consolidation 85 (52.47%) 28 (77.78%) 0.006

Reticular shadow 95 (58.64%) 34 (94.44%) <0.001
Crazy paving 9 (5.56%) 15 (41.67%) <0.001
Air bronchogram 55 (33.95%) 26 (72.22%) <0.001
Pleural thickening 62 (38.27%) 24 (66.67%) 0.002

Lymphadenovarix 10 (6.17%) 4 (11.11%) 0.493

GGO 162 (100.00%) 36 (100.00%) —

Nodules 68 (41.98%) 19 (52.78%) 0.211

Quantitative features

CT from onset (days) 9:36 ± 7:44 6:44 ± 4:08 0.002

Total score 4:24 ± 2:54 8:50 ± 4:44 <0.001
UOR 0:75 ± 0:65 1:75 ± 1:23 <0.001
MOR 0:62 ± 0:66 1:36 ± 0:90 <0.001
IOR 1:10 ± 0:68 2:00 ± 1:20 <0.001
UOL 0:73 ± 0:59 1:53 ± 0:97 <0.001
IOL 1:04 ± 0:67 1:86 ± 1:13 <0.001

GGO: ground-glass opacity; UOR: upper lobe of right lung; MOR: middle lobe of right lung; IOR: inferior lobe of right lung; UOL: upper lobe of left lung; IOL:
inferior lobe of left lung.

5BioMed Research International



Table 3: The AUC, sensitivity, and specificity comparisons.

AUC (95% CI) Sensitivity (95% CI) Specificity (95% CI) p

LR 0.891 (0.783, 0.956) 90.91 (58.7, 99.8) 93.88 (83.1, 98.7) 0.1306

KNN 0.857 (0.743, 0.934) 100.00 (71.5, 100.0) 61.22 (46.2, 74.8) 0.2844

DT 0.707 (0.575, 0.817) 45.45 (16.7, 76.6) 95.92 (86.0, 99.5) 0.0095

RF 0.907 (0.804, 0.967) 90.91 (58.7, 99.8) 95.92 (86.0, 99.5) 0.1915

SVM 0.892 (0.785, 0.958) 90.91 (58.7, 99.8) 91.84 (80.4, 97.7) 0.2006

XGBoost 0.924 (0.826, 0.976) 90.91 (58.7, 99.8) 97.96 (89.1, 99.9) —

Two-sided p values were calculated by comparing AUC for the XGBoost model with the other models. AUC comparisons were evaluated using the DeLong test;
LR: logistic regression; KNN: k-nearest neighbor; DT: decision tree; RF: random forest; SVM: support vector machine; XGBoost: eXtreme gradient boosting.
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Figure 3: The contribution of various features to the prediction model. The features are listed in descending order according to their
contribution to the prediction of a patient becoming severe or critically ill. (a) The importance of features measured by the mean absolute
Shapley values according to their contribution. (b) The combination of feature importance and feature effects. The color shows the value
of the features from high to low. The horizontal location shows whether the effect of that value caused a higher or lower prediction. Each
point is a Shapley value for a feature and an instance.
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Figure 4: With the help of an interpretable module, we can know how the machine learning model concludes each individual. A 69-year-old
patient was predicted to be deteriorating with a possibility of 0.978 (97.8%). The days from symptom onset to hospital admission was seven
days, and the temperature at admission was 37.4°C. The neutrophil was 11 × 109/L, with a neutrophil ratio of 92.5% and an NLR of 17.46.
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the XGBoost and RF models was not statistically significant
(p = 0:192). The sensitivity of the two models remained the
same; however, XGBoost had higher specificity. Although
the AUC between XGBoost and LR, KNN, and RF showed
no statistical difference, XGBoost acquired the highest Youden
index, sensitivity, and specificity. In general, XGBoost was the
best model in this dataset.

We further explored the interpretability of XGBoost
using the TreeExplainer of SHAP [11]. Figure 3(a) shows
the top 19 features that influenced the severe group predic-
tion in descending order. The early stage of chest CT, total
CT score of the percentage of lung involvement, and age were
the top three contributors to the prediction of deterioration
(Figure 3(a)). Patients in the early stage of chest CT at admis-
sion were more likely to deteriorate. Moreover, a higher chest
CT total score meant that a broader area of the lung was
involved; the patients had an increased risk of becoming
severe or critically ill (Figure 3(b)). Specifically, injury to
the inferior lobe of the right lung (IOR) and upper lobe of
the left lung (UOL) had a more significant impact on the
prediction than the other lobes.

The high neutrophil count, neutrophil ratio, and NLR
were also useful in predicting severe and critically ill patients.
We can take one step further to explore the feature contribu-
tion in individual predictions. The model outputs the proba-
bility of a patient becoming severe or critically ill, followed by
the specific weight of contribution in the single prediction.
Figure 4 shows an example of a SHAP. While the conven-
tional machine learning model merely outputs the predic-
tion, SHAP was able to show the details of how AI concluded.

4. Discussion

The universal manifestation of COVID-19, such as GGO, has
low specificity, making it difficult to distinguish COVID-19
from other types of pneumonia solely based on chest CT
appearance [12, 13]. It would be even harder, more time-con-
suming, and often unfeasible for radiologists to assess the dis-
ease severity based on the lobar extent, type of pulmonary
opacities, clinical information, and laboratory tests, especially
in urgent situations or high demand [8, 14, 15]. Since the
COVID-19 outbreak, attempts using AI have been made to
integrate the information from molecular, medical, and epi-
demiological scales [16, 17]. The cluster computing power
of AI can help with early and improved disease detection
and diagnosis, treatment monitoring, and contact tracing of
infected individuals, which may help predict the future
course of COVID-19 [18]. Moreover, AI can help with
designing and developing vaccines and drugs [19–21]. This
study took a step further and established six machine learn-
ing models to predict COVID-19 patients’ prognosis;
XGBoost ranked first in performance.

Homayounieh et al. [22] performed multiple logistic
regression tests combined with the radiomics of chest CT,
clinical information, and laboratory tests on 115 RT-PCR
positive patients to predict the possibility of ICU admission,
i.e., severe patients. They achieved a 0.84 AUC (95% CI
(0.78, 0.85), p < 0:02). In comparison, the XGBoost model
showed a 0.924 AUC (95% CI (0.826, 0.976), p < 0:0001),

90.91% sensitivity (95% CI (58.7%, 99.8%)), and 97.96%
specificity (95% CI (89.10%, 99.90%)) based on the clinical
information, laboratory tests, and chest CT features. Another
issue with AI applications is interpretability. Most AI-
predicted models are a “black box”; that is, it is not possible
to know further details about each feature’s contribution
towards model prediction, an important issue with AI appli-
cations in clinical settings. Therefore, we established an inter-
pretable XGBoost-based module called SHAP.

This interpretable module outputs the contribution of
important features. Patients with features on the list have
a higher possibility of deteriorating to severe or critically
ill condition. In this cohort, the early stage of chest CT
manifestation made the most significant contribution to
the prediction, followed by the total score of chest CT
and age. Lesions in the severe and critically ill patients
seem to be more extensive than mild cases, meaning a
higher total score of chest CT and presence of diffused
patchy and large patchy appearances on the CT image.
Similar to MERS-CoV, patients in the severe group were
usually older than those in the mild group, indicating that
the elderly tends to develop severe or critical forms of
COVID-19, possibly due to comorbidities such as hyper-
tension and underlying immune response [23]. Fever was
a typical symptom of COVID-19, and those with a higher
temperature at admission were more likely to worsen in
the future. The cough was another common symptom,
whereas fatigue, shortness of breath, and dyspnea were
more common in the severe group, which is consistent
with previous research [24, 25]. Furthermore, higher neutro-
phil count, neutrophil ratio, and NLR ratio increased the pos-
sibility of deterioration. Lymphocytopenia is a characteristic
of COVID-19 [26]. The virus proliferates in the respiratory
system, causing a series of immune responses, leading to
changes in lymphocytes and other immune cells [25]. The
lower lymphocyte count and lymphocyte ratio, higher WBC
and neutrophil counts, and higher neutrophil ratio and
NLR may be related to the severity and mortality rate of
COVID-19 [27]. Similar to the days from onset to admission,
the days from symptom onset to the first CT scan for the
severe group were shorter than those for the mild group,
meaning that the initial symptoms were serious, resulting in
early hospital presentation. In contrast, the lesions appeared
to be more extensive in the severe group, suggesting the rapid
progression of COVID-19 in these patients. It is worth noting
that the more extensive injuries in the IOR and UOL, the
more significant their contribution to the deterioration.

With the interpretable machine learning model’s applica-
tion, the medical institutions could identify the potential
severe type and critical type patients, hence applying the
main observation since admission. Once the crucial factors
change during treatment, the doctors could take the early
clinical intervention to stop deterioration in the early stage.

Our study has some limitations. First, the small sample
size and differences in the number of mild and severe patients
may have affected the statistical power of our study. In this
study, we applied stratified sampling in data segmentation
to reduce the influence brought by imbalanced numbers.
Second, the prognostic prediction model may be further
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improved by combining chest CT radiomics or deep learning
models. The application of radiomics and deep learning
models may eliminate subjective bias and improve perfor-
mance. Attempts have been made in a previous study on
the detection, outcome, and prognosis prediction of
COVID-19 [2, 28, 29]. Third, this was a retrospective study,
indicating uncontrollable data loss in the collection, such as
procalcitonin and C-reactive protein. In order to ensure a
sufficient data size, we had to give up some laboratory results,
which may have decreased the performance of the model.
Given the limited scale and data, the established XGBoost
model requires further clinical validation.

In conclusion, this study established an interpretable
machine learning model based on the XGBoost algorithm
combined with clinical information, laboratory tests, and
chest CT features, aimed at predicting the possibility of
COVID-19 patients becoming severe and critically ill, which
achieved excellent performance. Furthermore, we explored
the most important features in the deterioration process
using the interpretable SHAP module, which enabled us to
determine the factors that put the patients at risk of develop-
ing ARDS and dying from respiratory failure and take neces-
sary clinical interventions to improve the patient prognosis
and reduce mortality among the severe and critically ill
patients.
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Accurate segmentation of abdominal organs has always been a difficult problem, especially for organs with cavities. And MRI-
guided radiotherapy is particularly attractive for abdominal targets compared with low CT contrast. But in the limit of
radiotherapy environment, only low field MRI segmentation can be used for stomach location, tracking, and treatment
planning. In clinical applications, the existing 3D segmentation network model is trained by the low field MRI, and the
segmentation result cannot be used in radiotherapy plan since the bad segmentation performance. Another way is that historical
high field intensity MR images are directly used for data expansion to network learning; there will be a domain shift problem.
How to use different domain images to improve the segmentation accuracy of deep neural network? A 3D low field MRI
stomach segmentation method based on transfer learning image enhancement is proposed in this paper. In this method, Cycle
Generative Adversarial Network (CycleGAN) is used to construct and learn the mapping relationship between high and low
field intensity MRI and to overcome domain shift. Then, the image generated by the high field intensity MRI through the
CycleGAN network is with transferred information as the extended data. The low field MRI combines these extended datasets
to form the training data for training the 3D Res-Unet segmentation network. Furthermore, the convolution layer, batch
normalization layer, and Relu layer together were replaced with a residual module to relieve the gradient disappearance of the
neural network. The experimental results show that the Dice coefficient is 2.5 percent better than the baseline method. The over
segmentation and under segmentation are reduced by 0.7 and 5.5 percent, respectively. And the sensitivity is improved by 6.4
percent.

1. Introduction

Image-guided radiotherapy has become the mainstream of
radiotherapy for gastric cancer, and it is very important to
refer to the precise contour of target organs in the process
of image-guided radiotherapy. CT has low contrast for soft
tissue, so it is very difficult to locate and trace accurately
abdominal organs. Dynamic Magnetic Resonance Imaging
(dMRI) has the flexibility to image in the orientations most
relevant to organ and tumor motion and for a prolonged
duration without ionizing radiation. Therefore, MRI-guided
radiotherapy is particularly attractive for abdominal targets.
The normal MRI can provide a high spatial resolution anat-
omy and morphology proton distribution information of

organs to get accurately tumor contour [1–3]. But it cannot
meet the requirements of image-guided radiotherapy since
high field interferes radiotherapy equipment. In order to real-
ize the real-time MRI-guided radiotherapy, American View-
Ray company developed the MRIdian system with a
magnetic field intensity of 0.35T, which makes the peak
signal-to-noise ratio (PSNR) and spatial resolution of the
images are very low.

At present, the low field MRI-guided radiotherapy is very
few, which leads to the serious shortage of low field MR
images. If high field MRI are directly used for data expansion
training, domain shift will reduce greatly the segmentation
performance of the existing deep learning model. Inspired
by transfer learning and CycleGAN model, one way of
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meeting clinical application is to make high field intensity
MRI transfer to low field intensity MRI to expand training
data of the deep neural network [4].

Recently, many segmentation models based on UNet [5,
6] have been proposed in the last few years, like HDenseUNet
[7], nnUnet res-Unet [8, 9], and LW-HCN, in which res-
Unet achieved state-of-the-art performance on segmentation
tasks in a different medical dataset. But these networks
(Unets) are based on single domain segmentation task. And
few reports were on the multidomain segmentation problem.
To reduce the appearance gap cross-image modalities, a gen-
erative adversarial network (GAN) has been proposed to
generate an image following a distribution. Nie et al. [10]
introduced the GAN in medical image synthesis. Tanner
et al. proposed a GAN for MR-CT deformable registration.
Zhu et al. [11, 12] proposed the Cycle Generative Adversarial
Network (CycleGAN) for the image translation from differ-
ent domains. Compared with the GAN, it can be efficiently
trained by the unpaired image data. This advantage can
benefit to the cross-domain medical image registration. In
particular, for the cross-modal medical images with big
appearance and morphological gaps, CycleGAN can be
introduced to map relieve domain shift.

In this paper, an automated segmentation method for
low field 3D stomach MRI using transferred learning image
enhancement network (TLLASN) is proposed. In the
TLLASN model, our proposed multiscale 3D CycleGAN
method is used to map the relationship between high and
low field intensity MRI images, which overcomes domain
shift between high and low field intensity images. And res-
u-net is as the basic network, and then the convolution layer,
batch normalization layer, and Relu layer together were
replaced with a residual module. Furthermore, Dice loss
function is selected to deal with the label sample unbalance
in order to improve the segmentation ability of the proposed
algorithm.

2. Dataset and Preprocessing

The experimental dataset included the low field MRI that
were taken from 14 patients and the high field MRI that were
taken from 9 patients in tumor radiation from the University
of California, Los Angeles. The parameters of low field inten-
sity MRI data acquisition are as follows: the thickness of
scanning layer is 2-5mm, the resolution of each scanning
layer is 1:5 × 1:5mm2, and the magnetic field intensity of
scanning surface is 0.35T. The parameters of high field inten-
sity MRI data acquisition are as follows: the thickness of
scanning layer is 2-5mm, the resolution of each scanning
layer is 1:5 × 1:5mm2, and the magnetic field intensity of
scanning surface is 3T. In order to ensure the accuracy of
data labeling, all the data are labeled by a radiologist. We ran-
domly selected the images of four groups of patients from the
data of 14 patients as the test set, and the rest of the images as
the training set for deep network training and selected 20% of
the training set as the validation set.

In the course of magnetic resonance imaging, because of
the change of magnetic field, MRI scan often shows intensity
inhomogeneity, and the same tissue has also bright inhomo-

geneous change in vision. This change is called the bias field.
Because the change of signal intensity is not due to anatom-
ical differences, bias field will bring many problems to the
subsequent image processing, which will aggravate the class
imbalance and affect the image segmentation. Therefore,
three preprocess strategies are made as follows:

(Step 1) Bias field correction: we use N4 bias field correc-
tion technology [13] to correct the image by
extracting the bias field to ensure that each tis-
sue type has the same intensity in a single image,
as is shown in Figure 1.

(Step 2) Image resampling: all data were resampled with
SimpleITK toolkit, and the resolution was
uniformly sampled to 1:5 × 1:5 × 3.

(Step 3) Image cutting: (1) 2500 seed points were ran-
domly scattered in the inner region of the whole
3D MRI image. (2) A 64 × 64 × 32 image patch
is cut out centered on the selected point. (3)
The label of each image is processed in the same
way as (1) and (2). (4) Detect the number of
pixels in the image patch cut out of the label
one by one. If the number is more than 5, the
image patch is retained; otherwise, the image
patch and the corresponding MRI image patch
are deleted together.

(Step 4) Data normalization: the gray value of the image
needs be normalized to the [0, 1], when the full
convolution neural network is used for image
segmentation. The following normalization
formula is taken on all images:

X̂ = X −min Xð Þ
max Xð Þ −min Xð Þ : ð1Þ

3. Algorithm

The lack of low field intensity stomach MRI data and the
large amount of 3D segmentation network parameters lead
to overfit of the model. Zhang and his group have proved that
the traditional data expansion is effective in reducing over fit
and improving the generalization performance, especially
without a large label training set. Therefore, expanding the
existing low field MRI is the best way, such as rotating, flip-
ping, and shearing the images. However, the traditional data
enhancement methods lead to a high correlation between the
expanded image and the original image, so the improvement
of segmentation accuracy is limited. Another way of image
expansion is to enhance the image by synthesizing the data
with the same distribution as the target domain. The synthe-
sized data does not come from the target domain directly and
was obtained by a transferred image in different domains,
which contains abundant anatomical and topological infor-
mation, and is a good supplement to the target and image.
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Chartsias and his group [14] used CycleGAN to generate
paired synthetic MRI and corresponding myocardial masks
from paired CT slices and their myocardial segmentation
masks. The authors based on CycleGAN image synthesis
module, because it neither needs to match CT and MR image
nor demands these images belonging to the same patient.
Once the synthetic data was generated, synthetic MRI and
original MRI are used to train the myocardial segmentation
model and the segmentation performance increased 15%
compared with the training of myocardial segmentation
models only using real MRI.

Inspired by the study, the most direct solution is to
enlarge the existing low field intensity MRI to improve the
segmentation model. We expand training data by style trans-
fer high field intensity MRI for network training in this
paper, so that the trained model has good generalization abil-
ity. Cyclic Generation Adversarial Network can get the fake
low field intensity MRI to map relationship between high
and low field intensity MRI. Then, the fake low field intensity
images generated by high field intensity magnetic resonance
images through CycleGAN network are used as the extended
data with transferred information. The low field MRI
combines the extended dataset to train the 3D Res-Unet

segmentation network, so as to overcome the problem of
domain shift between high and low field intensity images.

3.1. Proposed Model. This paper proposes a low field 3DMRI
segmentation model based on transfer learning image
enhancement, which is mainly composed of two parts: one
is the high and low field intensity MRI image transfer net-
work based on 3D CycleGAN model to map relationship,
and the other is the stomach segmentation network based
on 3D res-u-net. The model structure is shown in Figure 2.

3.2. Model Optimization. The model structure of the 3D
CycleGAN used is shown in Figure 3. There are five optimi-
zation strategies for the network to modify the traditional
CycleGAN. First, two-dimensional convolution in Cycle-
GAN is replaced by three-dimensional convolution. Sec-
ondly, in the generator part, the encoder decoder structure,
i.e., the U-shaped structure, is adopted, and jump connection
is added in the convolution layer corresponding to the
encoder and decoder to fuse features of different scales.
Thirdly, considering a certain correlation between the image
patches of MRI, in the discriminator part, referring to the
idea of PatchGan, the final output is 8 × 8 × 4 matrix, and

Original image Image a�er bias
field correction

Figure 1: Image comparison before and after bias field correction.

High field MRI
images

Generate
countermeasure network

Generate low field
MRI images

3D-Res-U-Net
segmentation network

Segmentation
resultsLow field MRI images

Figure 2: The architecture of the overall model.
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then, the mean value of the matrix was calculated as true or
false output. Fourthly, the stomach tag and MRI are used as
the input of generator and discrimination, which makes the
network pay more attention to the gastric region. Fifthly,
label smoothing is used to reduce the label of real image from
1 to 0.9, which can avoid overconfidence of discriminator
and improve the stability of model training.

There are three optimization to res-u-net the network.
Firstly, the convolution layer, batch normalization layer,
and Relu layer in 3D res-u-net are replaced together with a
residual module, which increases the fitting ability of the net-
work and alleviates the gradient disappearance of deep neural
network. In order to reduce the parameters of the network
without reducing the fitting ability of the network, a module
with 1 × 1 × 1 convolution kernel is added before and after
each convolution kernel is 3 × 3 × 3 modules, and its modi-
fied structure is shown in Figure 4.

Secondly, Dice loss is used as the loss function to solve the
imbalance problem of positive and negative samples. The
expression is rewrite as follows:

LDC = 1 −DC A, Bð Þ: ð2Þ

Thirdly, the convolution neural network generally
requires that the input image size is fixed. For different size
images, it is necessary to cut them to adapt to the input size
of the network. In order to make the network adaptive to seg-
mentation of any size images and reduce the memory con-
sumption, the patch (64 × 64 × 32) is used to train the
network here. In the test phase, the window is used to seg-
ment the image for patch prediction. The overlap between
image patches is maintained (32 × 32 × 16), and the average
value of the prediction results of overlapped parts is taken

to reduce the patching effect and improve the accuracy of
segmentation.

3.3. Evaluation Metrics. We used Dice coefficient (DC), sen-
sitivity (SEN), specificity (SPE), Hausdorff distance (Haus),
over segmentation rate (OR), and under segmentation rate
(UR) to quantitatively analyze the segmentation results. Dice
coefficient is used to measure the coincidence between the

Discriminator A

Decision

Start

Start

Input_A

Input_B

Cyclic_A

Cyclic_B

Generated_A

Generated_B

Decision

Discriminator A

Discriminator B

Decision

Decision

Discriminator BGenerator GB2A

Generator GB2A

Generator GA2B

Generator GA2B

Figure 3: Structure diagram of high and low field intensity image transfer model.

Input

BN+ReLU+Conv(1×1×1)

BN+ReLU+Conv(1×1×1)

Addition

Identity
mapping

BN+ReLU+Conv(3×3×3)

Figure 4: Bottleneck residual module.
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segmentation results and the gold standard. The larger the
value, the higher the coincidence degree. It is more sensitive
to the internal filling of segmentation results.

The calculation formula of Dice coefficient is as follows:

DC = 2 × X ∩ Yj j
X ∪ Yj j : ð3Þ

The sensitivity and specificity are calculated as follows:

Sen = X ∩ Yj j
Y

,

Spe = Xc ∩ Ycj j
Yc :

ð4Þ

Hausdorff distance is the maximum distance between the
segmentation result and the nearest point in the gold stan-
dard. The smaller the value is, the higher the similarity is,
and it is more sensitive to the boundary of segmentation
results. The formula is as follows:

dH X, Yð Þ =max dXY , dYXj j
=max maxx∈X miny∈Yd x, yð Þ, maxy∈Y minx∈Xd x, yð Þ� �

,
ð5Þ

where dðx, yÞ is the Euclidean distance between the pixel in
the segmentation result and the pixel in the gold standard.

The over segmentation ratio refers to the ratio of pixels
whose segmentation results are beyond the gold standard.
The calculation formula is as follows:

OR = OS

RS +OS
, ð6Þ

where OS is the number of pixels that should not have been
included in the segmentation results, but actually are in the
segmentation results, and RS is the number of pixels in the
segmentation results that coincide with the gold standard.

The under segmentation ratio refers to the ratio of pixels
missing in the segmentation result within the gold standard.
The calculation formula is as follows:

UR = US

RS +OS
, ð7Þ

where US is the number of pixels that should have been
included in the segmentation results, but are not actually in
the segmentation results.

3.4. Implementation Details. Our experiments were carried
out using Keras with Ten-sorflow, whose backend is Python
3.5, and used Nvidia Ge-Force RTX2080, Cuda 9.0, and
Cudnn v7.3.1 toolkit for parallel acceleration. The hardware
configuration of the computer is 4.0 GHz Intel Core i7-
4790k CPU. During optimization, Adam is used to optimize
the generator and discriminator of cyclic generation counter-
measure network. The weight of momentum is set to 0.5. The
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Figure 5: High field intensity MRI, axial image, and gray histogram of MRI were generated.
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learning rate of the generator and discriminator is set to
0.0001 and 0.0004, respectively. In the segmentation net-
work, the size of input image patch is 64 × 64 × 32, the batch
size is set to 4, the optimizer uses Adam as the optimizer, the
learning rate is 0.0001, and early stop is used to prevent over
fitting.

4. Results

Figure 5 shows the axial and gray histogram of some high
field MRI and the axial and gray histogram of the generated
MRI images. The first column of each row is the axial image
of the original high field intensity MRI, the second column is
the gray histogram of the original high field intensity MRI,
the third column is the fake image generated by CycleGAN,
and the fourth column is the gray histogram corresponding
to the transformed image. It can be seen that the histogram
distribution of the transformed image is similar and follows
the same distribution. From the perspective of anatomical
structure, the position and shape of each organ in the image
did not change, but the gray distribution was different, which
is equivalent to the style migration, so the high field MRI
label can be used as the label of the transferred image for
segmentation network training.

In order to analyze the segmentation of different experi-
ments more intuitively, the segmentation results are 3D
reconstructed. Figure 6 shows the low field MRI images and

their 3D segmentation style of different patients using 4 deep
networks, in which “Proposed1” means the segmentation
method for traditional image enhance the low field intensity
MRI by flipping and rotating and “Proposed2” means the

Table 1: Comparison of Dice coefficient (DC) index of four
segmentation methods.

Method
#patient

Mean
1 2 3 4

3D U-net 0.562 0.704 0.648 0.349 0.566

V-net 0.613 0.759 0.597 0.493 0.616

Proposed1 0.684 0.865 0.681 0.532 0.690

Proposed2 0.654 0.874 0.730 0.631 0.722

Table 2: Comparison of Hausdorff distance index of four
segmentation methods.

Method
#patient

Mean
1 2 3 4

3D U-net 10.05 10.1 7 7 8.54

V-net 9 8.1 6.71 8.60 8.10

Proposed1 9 7.87 6.71 8.60 8.04

Proposed2 9 7.87 6.4 8.60 7.97

Low field intensity
MR images

Ground-truth 3D U-Net V-Net Proposed1 Proposed2

Figure 6: Image enhancement based on transfer learning in low field MR stomach segmentation.

6 BioMed Research International



segmentation method for traditional image enhance combin-
ing with transfer learning.

Compared with the segmentation results of 3D u-net and
v-net, we can see that 3D u-net can segment the general
stomach shape; however, under segmentation is more seri-
ous. V-net has improved to the under segmentation, but it
is over segmentation. Compared with v-net and Proposed1,
it can be seen that after the transfer learning image enhance-
ment, the high field intensity MRI is transformed into the
pseudo low field intensity MRI with the similar distribution
as the low field intensity MRI by using CycleGAN, which
increases the diversity of training samples and improves the
segmentation performance significantly. Although “Pro-
posed1” segmentation results also have partial over segmen-
tation, the stomach region is smoother than that of 3D u-net
and v-net. Compared with the results of the other three
methods, “Proposed2” is a little over segmentation and under
segmentation regions. To sum up, “Proposed2” has more
completed region consistency and clear contour, which is
closest to the ground truth.

Table 1 and Table 2 show the comparison of Dice coeffi-
cient and Hausdorff distance of segmentation results of dif-
ferent algorithms. From the point of view of Hausdorff
distance, the indexes of different algorithms are almost the
same, but the average Hausdorff distance of the proposed

algorithm on the test set is optimal. From the perspective of
Dice coefficient, there are different degrees of improvement
in each test sample by using image enhancement strategy.
The result of “Proposed2” shows that the use of high field
intensity MRI transformed by CycleGAN network increases
the diversity of training samples, alleviates the over fitting
phenomenon to a certain extent, and improves the generali-
zation ability of the network.

In order to analyze the under segmentation and over seg-
mentation of 4 methods, we use indexes of sensitivity, speci-
ficity, over segmentation rate, and under segmentation rate
for comparison, as shown in Tables 3–6. In Table 5, the over
segmentation rate of the 4 methods is generally low, which
shows that the over segmentation is not obvious in the seg-
mentation results. This is consistent with the high specificity
index in Table 4. The over segmentation rate of the algorithm
we proposed is the lowest. Although the under segmentation
rate of patient 3 in method 4 was slightly higher than that in
method 2, its sensitivity was 1% higher. On the whole, the
indexes of method 4 are better than those of the other three
methods, which means that the segmentation model based
on transfer learning image enhancement is effective for stom-
ach segmentation of low field intensity MRI images.

Table 7 shows the comparison of segmentation results
between the traditional data enhancement method and the
combining image enhancement method. Traditional_based
is to enhance the low field intensity MRI by flipping and
rotating, CycleGAN_based is to enhance an image by using

Table 3: Sensitivity index comparison of four segmentation
methods.

Method
#patient

Mean
1 2 3 4

3D U-net 0.395 0.568 0.495 0.212 0.417

V-net 0.472 0.697 0.539 0.396 0.526

Proposed1 0.535 0.811 0.551 0.509 0.602

Proposed2 0.497 0.814 0.600 0.465 0.594

Table 4: Comparison of specificity indexes of four segmentation
methods in test set.

Method
#patient

Mean
1 2 3 4

3D U-net 0.999 0.999 0.999 0.999 0.999

V-net 0.999 0.999 0.999 0.999 0.999

Proposed1 0.999 0.999 0.999 0.999 0.999

Proposed2 0.999 0.999 0.999 0.999 0.999

Table 5: Comparison of over segmentation rate of four
experimental methods in test set.

Method
#patient

Mean
1 2 3 4

3D U-net 0.011 0.044 0.031 0.003 0.023

V-net 0.063 0.122 0.211 0.172 0.142

Proposed1 0.029 0.064 0.064 0.025 0.045

Proposed2 0.023 0.044 0.043 0.008 0.029

Table 6: Comparison of four segmentation methods.

Method
#patient

Mean
1 2 3 4

3D U-net 0.598 0.413 0.489 0.785 0.571

V-net 0.494 0.266 0.364 0.499 0.406

Proposed1 0.491 0.180 0.382 0.530 0.396

Proposed2 0.451 0.174 0.419 0.478 0.381

Table 7: Comparison of segmentation results of different image
enhancement methods.

Method Metric
#patient

Mean
1 2 3 4

Traditional_based

DC 0.643 0.853 0.621 0.544 0.665

Haus 9 8.062 6.708 8.485 8.064

Sen 0.494 0.781 0.475 0.403 0.538

Spe 0.999 0.999 0.999 0.999 0.999

OR 0.039 0.047 0.052 0.073 0.053

UR 0.486 0.208 0.497 0.553 0.436

CycleGAN_based

DC 0.684 0.865 0.681 0.532 0.690

Haus 9 7.874 6.708 8 7.895

Sen 0.535 0.814 0.551 0.509 0.602

Spe 0.999 0.999 0.999 0.999 0.999

OR 0.029 0.064 0.064 0.026 0.046

UR 0.451 0.174 0.419 0.478 0.381
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the trained CycleGAN network, which transformed the high
field intensity MRI image into a pseudo low field intensity
MRI image as the low field intensity MRI. From the perspec-
tive of segmentation index, each segmentation index of the
CycleGAN_based is better than that of Traditional_based.
Dice coefficient of CycleGAN_based is 2.5 percent higher
than that of Traditional_based, over segmentation rate and
less segmentation rate of CycleGAN_based are 0.7 and 5.5
lower percent than those of Traditional_based, respectively,
and sensitivity of CycleGAN_based is higher 6.4 percent than
that of Traditional_based.

5. Conclusion

The stomach is a kind of cavity organ in the abdomen, which
is easy to deform and has uneven gray distribution. More-
over, low field intensity stomach MRI are noisy and lacking
of data, which increases the difficulty of stomach segmenta-
tion in 3D images. TLLASN is proposed to cope with these
problems. CycleGAN can get the fake low field intensity
MRI to reduce the difference between high and low field
intensity MRI. In other words, domain adaption between
high and low field intensity images is achieved. In this study,
the fake low field intensity images transferred information to
train 3D Res-Unet segmentation network. High field inten-
sity MRI is used to expand training data by style transfer
for network training in this paper, so that the trained model
has good generalization ability. The experimental results
show that the automated segmentation method for low field
3D stomach MRI using transferred learning image enhance-
ment network effectively increases the amount and diversity
of training data and achieves good segmentation results.
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Among orbital lymphoproliferative disorders, about 55% of diagnosed cancerous tumors are orbital lymphomas, and nearly 50% of
benign cases are immunoglobulin G4-related ophthalmic disease (IgG4-ROD). However, due to nonspecific characteristics, the
differentiation of the two diseases is challenging. In this study, conventional magnetic resonance imaging-based radiomics
approaches were explored for clinical recognition of orbital lymphomas and IgG4-ROD. We investigated the value of radiomics
features of axial T1- (T1WI-) and T2-weighted (T2WI), contrast-enhanced T1WI in axial (CE-T1WI) and coronal (CE-T1WI-
cor) planes, and 78 patients (orbital lymphoma, 36; IgG4-ROD, 42) were retrospectively reviewed. The mass lesions were
manually annotated and represented with 99 features. The performance of elastic net-based radiomics models using single or
multiple modalities with or without feature selection was compared. The demographic features showed orbital lymphoma
patients were significantly older than IgG4-ROD patients (p < 0:01), and most of the patients were male (72% in the orbital
lymphoma group vs. 23% in the IgG4-ROD group; p = 0:03). The MR imaging findings revealed orbital lymphomas were mostly
unilateral (81%, p = 0:02) and wrapped eyeballs or optic nerves frequently (78%, p = 0:02). In addition, orbital lymphomas
showed isointense in T1WI (100%, p < 0:01), and IgG4-ROD was isointense (60%, p < 0:01) or hyperintense (40%, p < 0:01) in
T1WI with well-defined shape (64%, p < 0:01). The experimental comparison indicated that using CE-T1WI radiomics features
achieved superior results, and the features in combination with CE-T1WI-cor features and the feature preselection method
could further improve the classification performance. In conclusion, this study comparatively analyzed orbital lymphoma and
IgG4-ROD from demographic features, MR imaging findings, and radiomics features. It might deepen our understanding and
benefit disease management.

1. Introduction

Orbital lymphoproliferative disorders (OLPDs) consist of a
broad range of benign and malignant tumors [1, 2]. Among
diagnosed cancerous tumors, nearly 55% of cases are orbital
lymphomas [3], while luckily, most orbital lymphomas are
primary, low-grade, and amendable to low-dose radiother-
apy [1–3]. To improve the diagnosis performance, many
studies explored to figure out some discriminative character-
istics. Eckardt et al. evaluated the diagnostic approach in 11
orbital lymphoma patients and found that orbital swelling,
pain, and motility impairment were the leading clinical
symptoms [4]. Another study observed the proptosis, eyelid

lesions, decreased visual acuity, and optic nerve compression
in 26 cases with orbital lymphoma [5]. Moreover, Priego et al.
described different orbital lymphoma patterns at diagnosis
and follow-up in 19 cases, and superior-lateral quadrant
and extraconal location were predominantly observed on
imaging scans [6]. The patterns were further confirmed by
Jin et al. who evaluated the computed tomography (CT)
imaging and magnetic resonance imaging (MRI) features of
primary orbital lymphoma to establish a differential diagno-
sis in 14 cases, reporting that periorbital preseptal tissues
were mainly involved in the upper lateral quadrant of the
orbit [7]. They also suggested that MRI may be very useful
for assessing the location, configuration, inner structure,
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and characteristic manifestations of orbital lymphomas [7].
However, these symptoms were either qualitative such as
laterality or nonspecific such as decreased visual acuity; thus,
they could not have a wider application [1–8].

It is also figured out that nearly 50% of benign OLPD
cases are immunoglobulin G4-related ophthalmic disease
(IgG4-ROD) [1, 9]. IgG4-ROD is an inflammatory disease
of unknown etiology, which can be treated using corticoste-
roid therapy [1, 2]. Typical IgG4-ROD is characterized by
painless enlarging masses over the lacrimal gland with or
without proptosis. Bilateral disease is common but not neces-
sarily symmetrical; visual acuity is usually not impaired.
Besides the lacrimal gland, IgG4-ROD has been reported in
various orbit tissues, including muscle, fat, eyelid, and nerve
[9]. A short summary of related publications indicated that
the signs and symptoms of IgG4-ROD included chronic non-
inflammatory lid swelling and proptosis. Moreover, patients
often had a history of allergic disease and increased serum
levels of IgG4, IgE, and hypergammaglobulinemia [10]. In
addition, a study comparing both IgG4-ROD and non-
IgG4-ROD European patients revealed that infraorbital
nerve enlargement was frequently presented in IgG4-ROD
patients [11].

Except for conventional MR images, diffusion-weighted
imaging (DWI) has been extensively explored over the years.
The apparent diffusion coefficient (ADC) values have been
revealed useful in diagnosing OLPDs [12, 13]. Haradome
et al. observed that the mean ADC of orbital lymphomas
was significantly lower than that of benign OLPDs (p < 0:01
). In addition, an optimal cutoff of ADC values could yield
a superior prediction of orbital lymphoma, and the predic-
tion was even better than that using the contrast-
enhancement ratio of lesions [1]. Xu et al. also found signif-
icantly lower ADC (p < 0:001) in malignant OLPDs when
compared to benign ones, and a receiver operating character-
istic curve analysis indicated ADC alone could achieve an
optimal sensitivity in the classification of benign and malig-
nant OLPDs [2]. In addition, ElKhamary et al. suggested that
median ADC was significantly different between benign and
malignant OLPDs, and an ideal threshold of ADC values
benefited the classification of diffuse orbital masses [14].
Notably, Lecler et al. [15] and Maldonado et al. [16] also
reported similar results.

CT is another useful imaging approach for analyzing
OLPDs. Jin et al. [7] found that isodense soft tissue masses
characterized primary orbital lymphoma with clear demarca-
tion on CT images; the lesions showed homogeneously
marked enhancement when contrast medium was used.
Simon et al. [17] discovered that benign lesions were more
likely hyperdense or hypodense on CT in comparison with
inflammatory and malignant tumors. Briscoe et al. [5] sug-
gested that bone changes were more common on CT images
when orbital lymphomas were suspected. Thus, combining
CT and MR imaging could be useful for accurate diagnosis
of OLPDs.

Preoperative identification of orbital lymphoma and
IgG4-ROD facilitates disease management, treatment plan-
ning, and health care [1–3]. Yet, due to nonspecific present-
ing signs and symptoms and lack of qualitative findings,

diagnosis is still somehow challenging. For diagnosis, a
biopsy is routinely utilized in clinics. However, considering
the tumor’s specific location, i.e., orbital lesions, a biopsy is
difficult, and thus, may lead to misdiagnosis, mistreatment,
and even missed diagnosis [9].

Radiomics has been widely explored for intelligent diag-
nosis [18–20]. It extracts quantitative features from medical
images using advanced algorithms [21–23], and the features
are further mined for disease diagnosis and cancer staging
[24–27]. However, to the best of our knowledge, no machine
learning-based radiomics models have yet been designed for
orbital lymphoma and IgG4-ROD. Since previous studies
suggested that MR imaging is a promising tool to accurately
visualize the location, shape, and internal structure of orbital
lymphoma [1, 2, 7, 11]; in this study, we assessed the value of
conventional MR images in machine learning-based radio-
mics approaches for clinical identification of orbital lym-
phoma and IgG4-ROD.

2. Materials and Methods

2.1. Patients and Data Collection. This retrospective study
was approved by the institutional review board of the Second
Hospital of Jilin University, and written informed consent
from patients was waived. Through a review of our hospital
database, 36 cases of orbital lymphoma and 42 cases of
IgG4-RODwere identified. All patients were historically con-
firmed by surgical biopsy between March 2013 and Septem-
ber 2018. It should be noted that all patients received MR
imaging before the surgical biopsy.

Histopathologic features were used for pathologic diag-
nosis. Orbital lymphoma was diagnosed using flow cytomet-
ric and gene rearrangement analysis. IgG4-ROD was
identified according to the immunohistochemical staining
results, which require the number of IgG4-positive plasma
cells more than 50 cells per high-power field samples, the
ratio of IgG4-positive plasma cells over IgG-positive plasma
cells >40%, and serum IgG4 concentration of 1.35 g/L [28].

All diagnosed patients were without a history of previous
treatment or surgery. They had no history of orbital diseases
or other tumors. All imaging was performed using a 3.0-T
MR equipment (GE MR 750) with imaging parameters as
in Table 1. Axial fast spin-echo (FSE) T1-weighted (T1WI)
and T2-weighted (T2WI) images, contrast-enhanced T1WI
in the axial (CE-T1WI) and coronal (CE-T1WI-cor) planes
were acquired using Gd-DTPA (dose: 0.1mmol/kg; and
injection rate: 2.0ml/s).

2.2. Manual Annotation and Feature Extraction.Mass lesions
were manually outlined by using the ITK-SNAP software
(version 3.8.0). Two board-certified radiologists with 6 and
10 years of experience in head and neck imaging performed
the manual annotation together and were blinded to clinical
information and histologic diagnosis. If consensus was not
reached, the annotation was further arbitrated by a senior
radiologist with 16 years of experience to ensure the annota-
tion quality.

Manual annotation and feature extraction were per-
formed as follows: MR images of one patient were imported
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into the ITK-SNAP. Then, the radiologists performed the
image analysis from the laterality (left/right/bilateral) and
the shape of the margins (well-defined or ill-defined) to fig-
ure out obvious lesion boundaries. If the lesion boundaries
were ambiguous, MR images from the four imaging
sequences were displayed for observation, and CE-T1WI
and CE-T1WI-cor were set as the baseline. After discussion,
the consensus was reached, and lesion delineation was per-
formed slice by slice. Specifically, the delineation was made
from the head to the feet direction to avoid bone structures
and eyeball regions. When eye muscles and/or optic nerves
were involved, eye muscles and organ tissues were outlined
if necessary, as the lesion was our point of interest.

Two representative examples are shown in Figure 1. The
top row represents a case of orbital lymphoma, and the bot-
tom row shows a case of IgG4-ROD. From left to right is
one slice of T1W1, T2W1, CE-T1WI, and CE-T1WI-cor
image in addition to the mask of volume region of interest.
In each slice, the region in red lines represents the mass
lesion.

Annotated tumors were quantified using a public pack-
age Pyradiomics (version 3.0), and a total of 99 features were
computed. Among the features, 14 were for shape descrip-
tion, 18 were from first-order histogram analysis, 22 were
from gray-level cooccurrence matrix (GLCM) analysis, 14
were from gray-level run-length matrix (GLRLM) features,
16 were from gray-level size zone matrix (GLSZM) analysis,
and 15 were from gray-level differential matrix (GLDM)
analysis. These features have been applied for lesion repre-
sentation, radiomics, and intelligent diagnosis [29].

2.3. Disease Differentiation. Figure 2 shows the workflow of
disease differentiation using elastic net fitting [30]. First, a
data set was divided into a training set and a testing set by
random splitting. The Wilcoxon rank-sum test was option-
ally used to figure out these statistically significant features
by comparing the two groups of data samples. Consequently,
the default parameters of the elastic net were tuned, finally
generating a trained model. At the testing stage, the trained
elastic net was evaluated via a testing data set, and its perfor-
mance was assessed. The rectangle with a dashed line indi-
cated a comparison study to investigate the effect of the
Wilcoxon rank-sum test in disease diagnosis.

2.4. Experimental Design. This study investigated the effect
of single modality, multiple modalities, and preselection of
important features on disease classification performance.
Single modality data sets included T1WI, T2WI, CE-
T1WI, and CE-T1WI-cor; multiple modality data sets
comprise different combinations of single modality data

(T1WI + T2WI + CE-T1WI, T1WI + T2WI + CE-T1WI-
cor, CE-T1WI + CE-T1WI-cor, and T1WI + T2WI + CE-
T1WI + CE-T1WI-cor). In addition, the effect of selecting
statistically important features using a nonparametric test of
Wilcoxon rank-sum test on disease diagnosis was observed.

The elastic net has been widely used in feature selection,
regularized regression, and data classification [30]. It line-
arly combined both L1 and L2 penalties using a parameter
α to overcome some limitations of the least absolute shrink-
age and selection operator (LASSO) [31]. In this study, the
elastic net was used for feature selection and classification
(α = 0:75). First, 80% of data samples were randomly
selected for training the elastic net model, and 10-folder
cross-validation was used for automatic parameter tuning.
Next, the trained elastic net model was tested on the testing
samples. Then, the prediction performance was evaluated
using four metrics, including the area under the curve
(AUC), accuracy (ACC), sensitivity (SEN), and specificity
(SPE) [32]. In addition, the procedure was repeated 100
times, and the performance metrics were averaged. The
whole procedure was implemented with MATLAB2018a
(MathWorks, USA) and the elastic net using the embedded
function “lasso.m.”

2.5. Statistical Analysis. The group differences were assessed
by a two-tailed t-test or Pearson’s chi-squared test based on
the SPSS software (version 25.0, IBM Corp., Armonk, NY).
p value <0.05 was considered statistically significant.

3. Results

3.1. Patient Characteristics and Tumor Distribution. Table 2
shows patient characteristics and tumor distribution between
the two groups. Significant differences were found between
groups. Patients with orbital lymphoma were 9 years older
than patients with IgG4-ROD. Moreover, most patients with
malignant tumors were male (26/36, 72%). In the IgG4-ROD
group, 10/42 (23%) were male. Yet, no statistical difference in
gender was found between the two groups. In addition, most
orbital lymphomas were unilaterally involved (29/36, 81%),
while IgG4-RODs were equally unilateral and bilateral.

Table 3 summarizes MR features between the two groups.
Significant differences were found in 3 attributes. First, the
shape of margins of IgG4-ROD lesions was well-defined
(27/42, 64%) in comparison with that of orbital lymphomas
(14/36, 39%). Second, the lesions were more frequently
wrapped around eyeballs and/or optic nerves in patients with
orbital lymphomas (28/36 (78%)) compared to those with
IgG4-RODs (22/42 (52%)). Third, in T1WI images, orbital
lymphoma was perceived as isointense (36/36, 100%), while

Table 1: MR imaging parameters on the 3.0-T scanner.

TR (ms) TE (ms) Slice thickness (mm) Slice gap (mm) Matrix size Field of view ([mm, mm])

T1W1 515 17 3.0 0.3 [512, 512] [15, 15]

T2WI 2000 85 3.0 0.3 [512, 512] [15, 15]

CE-T1WI 463 8.5 3.0 0.3 [512, 512] [15, 15]

CE-T1WI-cor 650 8.8 3.0 0.3 [512, 512] [15, 15]
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IgG4-ROD as isointense (25/42, 60%) or hyperintense
(17/42, 40%). We also found that some patients in both
groups had flow void sign and in-homogeneity in lesion
regions. Moreover, most orbital lymphomas (26/36, 72%)
and IgG4-RODs (31/42, 74%) were perceived as hypointense
signals in T2WI images.

3.2. Parameter Optimization. Figure 3 shows the automated
optimization λ when training samples were fitted by elastic
net using 10-folder cross-validation (CV). The x-axis indi-
cates the change of λ value, and the y-axis corresponds to
the mean square error (MSE). In addition, the green dotted
line locates the λ with minimum CV error, and the solid blue
line points to the minimum CV error plus one standard devi-
ation (SE). In this study, a larger λ was used when the MSE
was within one SE of the minimum one for the consideration
of model reliability.

3.3. Performance Using Single versus Multiple Modality Data.
Table 4 summarizes the performance when using single or
multiple modality data for disease classification. The best
result was obtained when using CE-T1WI, followed by CE-
T1WI-cor. Both T1WI and T2WI caused poor SPE (<0.50),
while T1WI led to a fair AUC value (<0.60). The application
of multimodality increased the diagnosis results. The addi-

tion of CE-T1WI-cor increased the AUC and SPE by 5%
and 9%, respectively. However, adding T1WI and T2WI to
the combination of CE-T1WI + CE-T1WI-cor did not
improve the classification performance.

3.4. Performance with Feature Preselection. The results with
feature preselection are shown in Table 4. By comparing both
Table 4 and Table 5, we found that feature preselection
improved the combination of CE-T1WI and CE-T1WI-cor
(p < 0:02) and benefited single- (such as CE-T1WI and CE-
T1WI-cor) and other multiple modality data (such as
T1WI + T2WI + CE-T1WI) based disease differentiation.

3.5. Feature Analysis. Wilcoxon rank-sum test indicated that
13, 18, 75, and 40 features were with statistical significance
(p < 0:05) corresponding to T1WI, T2WI, CE-T1WI, and
CE-T1WI-cor. In disease classification, elastic net further
verified that 1, 5, 6, and 4 features were frequently selected
(>50 times) between the two groups of patients on T1WI,
T2WI, CE-T1WI, and CE-T2WI-cor, respectively. It is worth
noting the elastic net model with the superior performance
required 6 features, among which 5 were computed from
CE-T1WI (1 shape feature, major axis length; 2 GLCM fea-
tures, correlation and autocorrelation; 1 GLDM feature, large
dependence high gray-level emphasis; 1 GLRM feature, long-

(a) (b) (c) (d)

(e) (f) (g)

(h) (i) (j)

Figure 1: Two representative cases. The top row shows a 60-year male patient with orbital lymphoma, and the bottom row shows a 60-year
female patient with IgG4-ROD. In each case, one image of T1WI, T2WI, CE-T1WI, and CE-T1WI-cor and the volume mask are shown from
left to right. Mass lesions are the region in red lines. Note that images are cropped for display purposes.
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run high gray-level emphasis), and 1 GLDM feature (large
dependence high gray-level emphasis) from CE-T2WI-cor.
In addition, frequently selected features were all from post-
contrast T1WI images, and the GLDM feature was
highlighted.

4. Discussion

This study investigated demographic characteristics, MR
imaging features, and radiomics models of orbital lymphoma
and IgG4-ROD, thus aiming to facilitate preoperative diag-
nosis of these two different tumor types. Seventy-eight
patients were retrospectively reviewed, and mass lesions were
manually annotated. Clinical characteristics, MR findings,
and the performance of single and multimodality data with
and without feature preselection were analyzed.

Demographic characteristics revealed that orbital lym-
phoma patients were significantly older than IgG4-ROD
patients. This has also been previously reported by other
studies that examined the difference between orbital lym-
phoma and other diseases, such as benign OLPDs [1, 2],

pseudotumor [33], and lymphoma subtypes [34]. Thus, the
patient’s age should be considered when performing a diag-
nosis. Moreover, we discovered that most patients with
orbital lymphoma (72%) were male, yet there was no signifi-
cant difference between patients with orbital lymphoma and
those with IgG4-ROD, which is consistent with data pub-
lished by Olsen and Steffen [34] and inconsistent with some
other studies [1, 2, 33]. Therefore, the predominance of male
patients in orbital lymphoma requires to be further investi-
gated by future clinical studies.

MR imaging features suggested orbital lymphomas had
unilateral involvement compared to benign OLPDs, which
was consistent with previous data [1, 2, 6–8, 33, 34]. More-
over, orbital lymphomas were frequently located around
organs, such as eyeballs, and compress optic nerves, which
might explain the decreased visual acuity, eye irritation,
excessive tearing, and pain in the eye in these patients [6, 8,
34]. In addition, when comparing the signal intensity with
that of the cerebral cortex, orbital lymphomas showed isoin-
tense in T1WI and hypointense signals in T2WI. At the same
time, IgG4-RODs had iso- or hyperintense signals in T1WI

A data set

Training set Testing set

Wilcoxon rank
sum test

Elastic net

A trained elastic net model

Performance evaluation

Figure 2: The procedure of disease diagnosis. It includes data
splitting, identification of significant features, elastic net-based
feature selection, disease diagnosis, and performance assessment.

Table 2: Patient characteristics and tumor distribution.

Orbital lymphoma
(n = 36)

IgG4-ROD
(n = 42)

p
value

K
value

Age (years) < 0.01

Mean ± std 64:89 ± 10:30 55:21 ± 13:88
Range [38, 84] [25, 78]

Gender 0.03 4.85

Male 26 20

Female 10 22

Laterality 0.02 7.53

Left 18 11

Right 11 11

Bilateral 7 20

Table 3: Perceived MR imaging features.

Orbital
lymphoma
(n = 36)

IgG4-ROD
(n = 42)

p
value

K
value

Margin
<

0.01
37.05

Well-defined 14 27

Ill-defined 22 15

Local spread of eyeball
or optic nerve

0.02 5.43

Yes 28 22

No 8 20

Extraocular muscles
involved

0.12 2.47

Yes 15 25

No 21 17

Flow void sign present
on T2WI

0.23 1.44

Yes 14 11

No 22 31

Signal intensity on
T1WI

<
0.01

18.63

Low 0 0

Iso 36 25

High 0 17

Signal intensity on
T2WI

0.59 1.04

Low 26 31

Iso 9 8

High 1 3

Homogeneity 0.75 0.10

Yes 29 35

No 7 7
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and hypointense signals in T2WI. As to the shape of margins,
most IgG4-RODs were well-defined, which was verified by
prior disease classification [7]. However, these MR findings,
nonspecific, qualitative, and subjective, could be found
between orbital lymphoma and other non-IgG4-ROD. Thus,
these nondiscriminative features might require other
advanced imaging modalities for deeper understanding.

Experimental results highlighted the importance of CE-
T1WI for disease classification. CE-T1WI achieves superior
performance, and in combination with CE-T1WI-cor and
preselection of features, it could further improve the diagnos-
tic performance. Contrast-enhanced T1-weighted MR imag-
ing was highlighted in this study. Six discriminative features
(5 from CE-T1WI and 1 from CE-T1WI-cor) were retrieved.
As these features were quantitative and meaningful, they can
help understand the machine learning-based radiomics
models. On the other hand, two studies explored machine
learning methods for the quantitative analysis of ocular
adnexal lymphoma and idiopathic orbital inflammation.

Guo et al. discovered that five features (4 from CE-T1WI
and 1 from T2WI) achieved a larger AUC (> 0.70) [35].
Hou and his colleagues found bag-of-words features from
CE-T1WI may significantly outperform the features from
no-enhanced MR images [36]. In general, both studies indi-
rectly provided support for our findings, suggesting that
contrast-enhanced MR imaging may improve the differenti-
ation between orbital lymphoma and IgG4-ROD.

To our knowledge, this is the first study that aimed at
building a machine learning model for the differentiation of
orbital lymphoma and IgG4-ROD. The elastic net is the
backbone of the proposed radiomics model. It retrieves infor-
mative features for data representation and also acts as the
classifier for disease prediction. When analyzing the perfor-
mance of single- and multimodal data, CE-T1WI resulted
as the most informative. To reduce the feature number,
improve the prediction performance, and enhance the model
interpretability, feature preselection via statistical compari-
son was conducted, and a handful of features were identified.

0.12
10–1 10–2

Lambda

Cross-validated MSE of elastic net fit
Alpha = 0.75

10–3

0.14

0.16

0.18

0.2

0.22

M
SE

0.24

0.26

0.28

0.3

Mse with error bars
LambdaMinMSE
Lambda1SE

Figure 3: Automated optimization of the parameter λ when the training samples are fitted by elastic net using 10-folder cross-validation
(CV). The x-axis shows the change of λ, and the y-axis indicates the mean square error (MSE). The green dotted line locates the λ with
minimum CV error, and the solid blue line points to the minimum CV error plus one standard deviation (SE).

Table 4: Disease classification using single or multiple modality data.

AUC ACC SEN SPE

T1WI 0:54 ± 0:10 0:53 ± 0:13 0:79 ± 0:16 0:29 ± 0:20
T2WI 0:63 ± 0:12 0:62 ± 0:13 0:79 ± 0:11 0:46 ± 0:18
CE-T1WI 0:74 ± 0:10 0:74 ± 0:11 0:81 ± 0:16 0:67 ± 0:16
CE-T1WI-cor 0:72 ± 0:10 0:72 ± 0:11 0:83 ± 0:14 0:61 ± 0:21
T1WI + T2WI + CE-T1WI 0:70 ± 0:12 0:70 ± 0:12 0:79 ± 0:10 0:62 ± 0:14
T1WI + T2WI + CE-T1WI-cor 0:71 ± 0:12 0:69 ± 0:14 0:85 ± 0:10 0:58 ± 0:16
T1WI + T2WI + CE-T1WI + CE-T1WI-cor 0:78 ± 0:10 0:77 ± 0:10 0:82 ± 0:14 0:74 ± 0:17
CE-T1WI + CE-T1WI-cor 0:79 ± 0:11 0:78 ± 0:11 0:82 ± 0:15 0:76 ± 0:19
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The present study proposed a radiomics model, which
revealed the importance of CE-T1WI in the classification
and might further be used to screen and diagnose eye
diseases.

This study also has a few limitations. First, T1WI, T2WI,
and CE-T1WI are conventional MR imaging modalities, yet
other modalities, such as DWI and CT, and some other
parameters, such as contrast-enhancement ratio and ADC,
should also be considered. Second, a limited number of fea-
tures were collected for tumor description; more features
should be collected to quantify mass lesions from various
perspectives. Third, this study applied elastic net for feature
selection and disease diagnosis. Several other approaches,
such as feature ranking methods [37], can be used for feature
selection in this binary classification task. Finally, the sample
size was small, and large-scale studies are required to confirm
these findings.

5. Conclusion

In the present study, several quantitative MR features were
identified as relevant for differentiation of orbital lymphoma
and IgG4-ROD. The machine learning-based radiomics
model verified that contrast-enhanced T1 MR imaging was
discriminative in disease classification. The next step is to
incorporate other modalities and advanced techniques to fur-
ther explore the differences between diseases.
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Objective. To evaluate the efficiency of a radiomics model in predicting the prognosis of patients with acute paraquat poisoning
(APP). Materials and Methods. Chest computed tomography images and clinical data of 80 patients with APP were obtained
from November 2014 to October 2017, which were randomly assigned to a primary group and a validation group by a ratio of
7 : 3, and then the radiomics features were extracted from the whole lung. Principal component analysis (PCA) and least
absolute shrinkage and selection operator (LASSO) regression were used to select the features and establish the radiomics
signature (Rad-score). Multivariate logistic regression analysis was used to establish a radiomics prediction model incorporating
the Rad-score and clinical risk factors; the model was represented by nomogram. The performance of the nomogram was
confirmed by its discrimination and calibration. Result. The area under the ROC curve of operation was 0.942 and 0.865,
respectively, in the primary and validation datasets. The sensitivity and specificity were 0.864 and 0.914 and 0.778 and 0.929,
and the prediction accuracy rates were 89.5% and 87%, respectively. Predictors included in the individualized predictive
nomograms include the Rad-score, blood paraquat concentration, creatine kinase, and serum creatinine. The AUC of the
nomogram was 0.973 and 0.944 in the primary and validation datasets, and the sensitivity and specificity were 0.943 and 0.955,
respectively, in the primary dataset and 0.889 and 0.929 in the validation dataset, and the prediction accuracy was 94.7% and
91.3%, respectively. Conclusion. The radiomics nomogram incorporates the radiomics signature and hematological laboratory
data, which can be conveniently used to facilitate the individualized prediction of the prognosis of APP patients.

1. Introduction

Although some countries have banned the use of paraquat
(PQ), paraquat can still be obtained on the market by other
forms of preparations. In recent years, the incidence rate of
paraquat poisoning is still high in some areas of China, and
paraquat poisoning has become the first cause of death of
poisoning. After ingestion, PQ is rapidly absorbed and dis-
tributed to the lung, liver, kidney, and muscle, and if left
untreated, the accumulation of PQ can cause fulminant mul-
tiple organ failure, including pulmonary edema and heart,
kidney, and liver failure [1], with a mortality rate of up to
50%~90% [2]. However, there is still no effective antidote.

PQ mainly accumulates in the lung, where it is retained even
when blood levels start to decrease, resulting in a free radical
build-up that triggers inflammatory responses and leading to
lung fibrosis [3, 4]. Lung damage and respiratory failure are
common causes of death [5, 6]. Although many studies sug-
gested that the lung injury caused by paraquat is irreversible,
a case study, in fact, by Lee et al. [7] showed that lung damage
may not be irreversible if treated in time. Thus, evaluation of
lesions in the lungs and their severity at the early stage of poi-
soning may be crucial to guide the clinical adjustment of the
treatment plan and improve patient outcomes.

Chest computed tomography (CT) has been demon-
strated to be useful in detecting early lung lesions and
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assessing long-term damage in PQ-poisoned survivors [1]. In
the 1990s, Im et al. [8] and Lee et al. [4] described the radio-
logic high-resolution CT (HRCT) manifestations of PQ-
induced pulmonary damage, with special emphasis on the
sequential changes, but without quantitative studies.
Recently, the number of injured lung segments and the vol-
ume or area ratio of gross glass density shadow (GGO) found
in CT examination in patients with acute PQ poisoning have
been used to predict the prognosis of PQ poisoning [5, 6, 9];
although these studies obtained a certain accuracy rate, their
observation object was limited to a single injury sign, which
lacked estimation of the total lung injury and ignored a large
part of the CT image information.

Although studies have shown that many blood laboratory
indicators can also be used to predict the prognosis of
patients with PQ poisoning [10–17], most of these studies
used only one or several indicators that were almost lung
nonspecific, which cannot effectively reflect the major causes
of death of APP patients: injury of the lung. A comprehensive
predictive model, which combines CT lung injury signs and
blood laboratory indicators, to evaluate multisystem injury
or functional failure is yet to be developed. Previous studies
have also shown that objective and quantitative imaging
descriptors could potentially be used as prognostic or predic-
tive biomarkers. The combined analysis of a panel of bio-
markers, rather than individual analyses, as a signature is
the most promising approach that is powerful enough to
change clinical management [18–20]. As is shown in
Figure 1, the two patients had similar lung damage at the ini-
tial stage of poisoning. However, CT examination showed
that the severity of pulmonary disease was different after 2
months of follow-up so as the prognosis. Radiomics, as one

of the most representative methods, is the process of the con-
version of medical images into high-dimensional, mineable
data via high-throughput extraction of quantitative features,
followed by subsequent data analysis for decision support,
which has been demonstrated useful in many kinds of focal
lesions [21, 22]. However, to our best knowledge, rare radio-
mics applications for diffuse lesions were reported yet.

Therefore, the purpose of this study is to explore the fea-
sibility of radiomics for the study of diffuse inflammatory dis-
eases and to develop and validate a nomogram based on CT
radiomics features and clinical prognostic risk factors for
predicting the prognosis of patients with APP.

2. Patients and Methods

This study was approved by the Hospital Ethics Committee,
and the requirement for written informed consent was
waived.

2.1. Participants. Initial clinical baseline data and CT exami-
nation images of acute paraquat-poisoned patients, who were
admitted to the emergency department from November 2014
to October 2017 and received individualized comprehensive
treatment (Data Supplement (available here)), were collected.
The patient screening process is shown in Figure 2. Data Sup-
plement presents the inclusion and exclusion criteria.

The initial clinical baseline data of the poisoned patients
included the following: age, gender, PQC, and blood routine
and biochemical indicators within 24 hours, which included
white blood cell count (WBC), high-sensitivity C-reactive
protein (hsCRP), lactate dehydrogenase (LDH), creatine
kinase isoenzyme (CK-MB), alanine aminotransferase

(a) (b)

(c) (d)

Figure 1: (a, b) CT images of paraquat poisoning in a 53-year-old man at the beginning and 2 months later. (c, d) CT images of paraquat
poisoning in a 40-year-old woman at the beginning and 2 months later.
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(ALT), aspartate aminotransferase (AST), albumin (ALB),
urea, creatinine (Cr), amylase (AMY), and glucose (GLU), a
total of 12 indicators.

Finally, 80 patients were included in the study. According
to the follow-up outcome of 30 days after PQ ingestion,
patients were divided into the survival group (>30 days)
and the death group. All 80 patients were randomly divided
into two groups according to a ratio of 7 : 3.

2.2. CT Image Acquisition. Chest CT examinations were per-
formed using a GE LightSpeed/16-slice scanner. CT scanning
parameters were the same as those of the chest: 120 kV,
100mA, 5mm thickness and slice interval, and standard lung
window (window width, 1500HU; window level, -700HU)
were selected. Within 7 days after taking PQ, a chest CT
examination was performed every average of 3 days.

2.3. Image Segmentation: ROI Drawing Methods and
Modification Criteria. We used the region growing method
in the ITK-SNAP software (version 3.6.0, https://www
.itksnap.org) to sketch the whole lung as the ROI, which
was then manually modified by two physicians with licensed
physician qualifications. The interobserver correlation coeffi-
cients (ICCs) were used to assess the agreement of radiomics
features by two-level radiologists. Data Supplement presents

the ROI drawing methods and modification criteria in
Figure 3.

The region growing method is mainly divided into three
steps. (1) The seed points were selected from the seed area
that can represent the extraction area, and the seed was a
small area including a couple of pixels. (2) Determine the cri-
teria for region growing andmeasure whether the pixels adja-
cent to the seed point meet the criteria. The standards
outlined in this study were as follows: the lower threshold
was -1200HU, and the upper threshold was -100HU. (3)
Stop growing [18]. After region growing, the boundary
between the apex of the lung and the edge of the lung needed
manual modification.

The criteria for manual modification were as follows. (1)
In the boundary between the chest wall and the lung, the
lesion-free areas were automatically outlined without modifi-
cation; those areas with lesions (but the lesions were not
totally included in the ROI) were manually modified. (2) If
the demarcation of lung atelectasis caused by pleural effusion
was unclear, automatic delineation of results was used with-
out manual modification. (3) For the higher density of lung
lesions, such as cords and nodules, which were not covered
in the ROI, manual delineation was applied. (4) For lung
lesions that were not included in the ROI automatically,
manual delineation was applied. (5) For the vascular and

�e emergency department diagnosed and confirmed PQ

poisoning cases from November 2014 to October 2017 (n = 506)

Mixed organic phosphorus, pyrethroid and other drug
poisoning (n = 68)
Intoxication for more than 24 hours (n = 74)
�ere is a past medical history (severe lung disease,
pulmonary tuberculosis, idiopathic pulmonary
fibrosis) that does not meet the inclusion criteria
(n = 67)
Blood system and other serious diseases (n = 35)

Collect clinical hematology data and early and mid-term chest
CT (within 7 days) n = 262

No CT examination on admission (n = 117)

Loss of follow -up cases within 30 days (n = 65)

Death

n = 31
Survival

n = 49

Figure 2: Flow chart of study enrollment.
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bronchi, the ROI contained no main and leaf bronchi; if the
segmental and inferior bronchi were connected to pixels that
were distinguishable by the naked eye, we did not sketch
them into the ROI. Otherwise, we sketched them into the
ROI; the small scattered bronchus of lungs was contained
in the ROI. (6) For those lesions with a poor borderline in
the hilum, the principle was not missing lesions as far as pos-
sible. (7) For the apex and bottom of the lung, slices without
lung tissue were removed manually; slices with lung tissue
but only scattered pixels in the border were included; we
modified the ROI to the edge of the lung tissue manually.

2.4. Radiomics Feature Extraction. Analysis Kit software (GE
Healthcare, Life Sciences, China) was utilized to extract the
radiomics features. A total of 385 radiomics features, includ-
ing 42 histogram features, 154 grey-level cooccurrence
matrix (GLCM) features, 180 run-length matrix (RLM) fea-
tures, and 11 grey-level zone size matrix (GLZSM) features,
were extracted from the ROI. Details of the radiomics feature
extraction methodology and the individual parameters can
be found in the Data Supplement. The interobserver correla-
tion coefficient (ICC) between two radiologists’ agreement is
0.823 (0.762 to 0.971, 95% CI).

2.5. Feature Selection and Radiomics Signature Building. The
principal component analysis (PCA) and the least absolute
shrinkage and selection operator (LASSO) method were used
to select the most useful predictive features from the primary
cohort. A radiomics signature (here we called the Rad-score)
was calculated for each patient via a linear combination of

selected features that were weighted by their respective
coefficients.

2.6. Radiomics Signature Validation.We evaluated the ability
of the Rad-score to differentiate survival and death in the pri-
mary cohort and then validated it in the validation cohort.
Sensitivity, specificity, and AUC (area under the ROC curve)
were used to evaluate the diagnostic efficiency. The diagnos-
tic accuracy rate was shown as a color bar chart.

2.7. Development of an Individualized Prediction Model. Sta-
tistical analysis and ROC curve analysis were performed for
each initial clinical baseline data, and backward logistic
regression was used to select clinical risk factors to be
included in the nomogram.

An individualized prediction model was established
based on the primary dataset by incorporating the radiomics
signature with the clinical risk factors. And it was presented
with a radiomics nomogram so as to provide the clinicians
with a quantitative tool to predict prognosis. Calibration
curves were plotted to assess the calibration of the radiomics
nomogram. Decision curve analysis (DCA) was conducted to
determine the clinical usefulness of the radiomics nomogram
by quantifying the net benefits at different threshold proba-
bilities in the testing dataset.

2.8. Statistical Analysis. Statistical analyses were performed
by using SPSS 21.0.P < 0:05 was considered statistically sig-
nificant. A chi-squared test was used for the comparison of
count data. Measurement data were compared by using the
independent-samples t-test if the data satisfied the normal

(a) (b)

(c) (d)

Figure 3: Image segmentation diagram. (a) Seed points were selected in three higher density lesions, lower density lesions, and normal lung
tissue in both lungs. (b) The seed points began to grow. (c) Growth of seed points completed basically. (d) ROI obtained after manual
modification.
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distribution, otherwise by using the Mann-Whitney U test.
Measurement data were generally expressed as the mean ±
standard deviation or the median and the interquartile range
according to whether satisfying normal distribution.

Feature selection and model building were conducted
with R software (version 3.3.2; http://www.Rproject.org).

3. Results

3.1. Clinical Risk Factor Selection. The statistical test results of
demography and initial blood laboratory data and are shown
in Table 1. The results showed that PQA, PQC, WBC, CK-
MB, LDH, Cr, and GLU were statistically significant among
the survival and death groups (P < 0:05), and the ROC curve
showed AUC of PQA, PQC, WBC, CK-MB, and Cr were
all above 0.7. Finally, PQC, CK-MB, and Cr were selected
by backward logistic regression to be included in the
nomogram.

3.2. Feature Selection and Radiomics Signature Building.
Among the 385 original features from the primary dataset
extracted, 23 constant terms were deleted first; 8 features with
a cumulative variance contribution rate of 95% were retained
after PCA (Appendix Figure A1 is given in the Data Supple-
ment). The seven most relevant features were finally selected
using LASSO, which gave the minimum mean classification
error of cross-validation (Figures 4(a) and 4(b)).

3.3. Diagnostic Validation of the Radiomics Signature. ROC
curves were plotted to evaluate the diagnostic efficiency of
the logistic regression models (Figure 5(a)). The accuracy of
the Rad-score is shown in Table 2. Distributions of the
Rad-score and prognosis status in the primary and validation
cohorts are given in the Data Supplement Appendix Figure
A2.

3.4. Development of Individualized Prediction Comprehensive
Models. Incorporated clinical factors included PQC, CK-MB,
and Cr with the Rad-score; using multivariable logistic
regression analysis, an individualized prediction model was
built and is shown as a nomogram in Figure 6. The ROC
curves were plotted to evaluate the diagnostic efficiency of
the comprehensive model and are shown in Figure 5(b) and
Table 2.

3.5. Clinical Use. The calibration curves of the primary data-
set and validation dataset showed good agreement between
prediction probability and real probability (Figure 7(a)).
The decision curve showed that if the threshold probability
of a patient or doctor is >10%, using the Rad-score to predict
the prognosis of the patients adds more benefit than either
the treat-all-patients scheme or the treat-none scheme. If
the threshold probability exceeds 30%, the nomogram com-
bining the Rad-score and clinical risk factors will be the best
choice to maximize the net benefit (Figure 7(b)).

4. Discussion

Our study results revealed 385 radiomics features of pulmo-
nary CT images, and we reduced them to 7 potential predic-

tors and established the radiomics signature. The AUC of the
primary dataset and validation dataset, respectively, were
0.942 (95% CI 0.886-0.997) and 0.865 (95% CI 0.658-1),
and the sensitivity and specificity, respectively, were 0.864
and 0.914 and 0.778 and 0.929. The prediction accuracy of
primary and validation datasets was 89.5% and 87%, respec-
tively, which showed that the Rad-score had a good perfor-
mance in the prediction of patient prognosis.

In previous studies about prognosis based on the pulmo-
nary CT, Zhang et al. [5] found significantly fewer involved
lung segments, or the presenting lesions were observed in
baseline CT images (average admission 2.4 days) from the
survivor group than the nonsurvivor group, indicating a
smaller baseline disease extent in surviving patients. In their
study, the sensitivity and specificity to predict prognosis were
72.2% and 28.6%, respectively, and the AUC was 0.767 (95%
CI 0.656-0.878), based on the number of injured lung seg-
ments in the baseline CT examination. Their sensitivity and
specificity were not very high for patient prognostic evalua-
tion. Kim et al. [9] calculated the ratio of the sum of the areas
of GGO at five levels (the top of the aortic arch, AP window,
LUL bronchus, right inferior vein, and the top of the left dia-
phragm, respectively) and the sum of the area of the total
lungs at the respective levels of pulmonary HRCT images 7
days after PQ ingestion, thinking that the area of GGO in
the lung was an additional useful predictor for survival, espe-
cially when the PQ level was low. Kang et al. [6] calculated
the maximum GGO volume ratio to the whole lung within
the first 5 days after intoxication and showed that the AUC
was 0.871 (95% CI 0.857-0.884), the sensitivity was 85.4%,
the specificity was 89.3%, and the diagnostic accuracy was
87.6%. However, their study lacked independent validation;
thus, the reliability of the obtained results needed to be fur-
ther studied. Early lung injury of PQ intoxication mainly
manifested as alveolitis, which was often shown as GGO
and consolidation in pulmonary CT images. Therefore,

Table 1: The demography and initial blood laboratory.

Factors Survival group Death group P value AUC

Age (years) 34:29 ± 10:98 37:61 ± 14:38 0.468 —

Gender
Male 25 (51%) 18(58.1%) — —

Female 24 (49%) 13(41.9%) — —

PQC (mL) 3.84 (3.12) 8.60 (4.93) 0.000 0.804

WBC (×109/L) 10.60 (4.15) 14.90 (8.30) 0.000 0.759

hsCRP (mg/L) 1.05 (3.78) 1.90 (6.70) 0.410 0.564

LDH (U/L) 205.50 (54.15) 228.55 (58.68) 0.031 0.698

CK-MB (U/L) 17.00 (5.83) 25.15 (15.23) 0.000 0.759

ALT (U/L) 16.55 (13.53) 19.15 (11.68) 0.253 0.562

AST (U/L) 19.95 (7.08) 22.35 (9.88) 0.277 0.550

ALB (g/L) 46.30 (4.53) 45.50 (8.95) 0.445 0.483

K (mmol/L) 3.71 (0.45) 3.56 (0.63) 0.091 0.387

Urea (mmol/L) 3.90 (2.40) 5.05 (2.10) 0.078 0.633

Cr (μmol/L) 63.00 (19.20) 86.10 (41.00) 0.000 0.732

AMY (U/L) 109.50 (164.65) 92.00 (137.00) 0.698 0.468

GLU (mmol/L) 6.38 (1.69) 7.05 (2.24) 0.024 0.699
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GGOs could reflect a certain extent of lung injury. The rela-
tively accurate results of previous studies proved that the
range of lung injury was an important factor for patient prog-
nosis. However, the number of injured lung segments, GGO
area ratio or volume ratio, could not completely reflect the
extent of lung injury involving the whole lung and neglected

other lung injuries that were not easily quantified, such as the
thickening of bronchovascular bundles. In addition, all the
GGO lesions in their study were manually delineated, result-
ing in large errors and poor consistency; and regarding calcu-
lating the area ratio or volume ratio, lesions and whole lungs
needed to be delineated twice or even repeatedly examined.
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Figure 4: The number of features that LASSO selected after cross-validation. The underlined part is the value of log (lambda) and the number
of features when the misclassification error is minimum.
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Figure 5: The ROC curve for the Rad-score and nomogram of the primary dataset and validation dataset.

Table 2: The accuracy of the Rad-score.

Information
Rad-score Nomogram

Train dataset Validation dataset Train dataset Validation dataset

AUC (95%) 0.942 (0.886-0.997) 0.865 (0.658-1) 0.973 (0.936-1) 0.944 (0.844-1)

ACC 0.895 0.87 0.947 0.913

Specificity 0.914 0.929 0.955 0.929

Sensitivity 0.864 0.778 0.943 0.889

Threshold 0.358 0.358 0.607 0.607
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Not only was the work inefficient, but it also further
increased the error.

In this study, the region growing method was used to
semiautomatically delineate the ROI. The whole lung was
selected as the ROI of the CT images that the lung injury
reached the peak (mainly 2-4-day images). Not only did it
cover all the signs of lung injury we observed, but it was also
easier to study ubiquitous lesions that are difficult to quan-
tify, such as the thickening of the bronchovascular bundle.
This provided a comprehensive measure of the extent and
severity of lung injury, which would not ignore the micro-
structure changes that were invisible to naked eyes. More-
over, the more injury signs were observed in the same
image, the more rapidly the lung injury developed, so the
whole lung was selected as the ROI and was more scientific
and rigorous.

In the early stage of lung injury caused by PQ poisoning,
CT image mainly manifested as lung texture enhancement,
GGO or consolidation, and was mainly distributed under
the pleura. The features of density, range, and distribution
of the above lung injuries may be the response of microstruc-
tural changes, including cell morphological changes and apo-

ptosis, alveolar rupture and alveolar collapse, vascular
basement membrane rupture, fibroblast precursor prolifera-
tion, and Clara cell migration [3, 23–27]. The Rad-score cal-
culated based on the radiomics features that were extracted
from CT images can effectively distinguish the different
prognoses of the patients; thus, we guess that the radiomics
features, such as the first-order histogram features and tex-
ture features, not only reflected the visible injuries by the
naked eyes but also suggested the changes of the lung
microstructure.

Among the laboratory data obtained at presentation, the
levels of potassium, protein, arterial pH, PaCO2, bicarbonate,
albumin, amylase, AST, BUN, creatinine, and glucose were
significantly related with prognosis by univariable analysis
in a previous study [17]. However, among many similar stud-
ies, the strength of the correlation of various indicators with
prognosis was different, which may be explained by the dif-
ferent equipment used, the follow-up time of prognosis,
and patients’ specificity. Our results showed that the PQC,
CK-MB, and Cr were significantly different between the sur-
vival group and the death group. A large number of studies
[28, 29] showed that the PQC was significantly associated
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Figure 6: Radiomics nomogram was developed in the primary dataset.

0.0

0.0

0.2

0.2

0.4

0.4

0.6

0.6

0.8 1.0

0.8

1.0

Ac
tu

al
 p

ro
ba

bi
lit

y

Predicted Pr (response=1) 
B = 1000 reputation, boot Mean absolute error = 0.025, n = 57

Ac
tu

al
 p

ro
ba

bi
lit

y

0.0

0.0

0.2

0.2

0.4

0.4

0.6

0.6

0.8 1.0

0.8

1.0

Predicted Pr (response=1) 
B = 40 reputation, boot Mean absolute error = 0.055, n = 23

Ideal

Apparent

Bias-corrected

(a)

0.0 0.2 0.4 0.6 0.8
�reshold probability

0.0

0.1

0.2

0.3

0.4

0.5

0.6

N
et

 b
en

efi
t

None
All

Rad-score
Nomogram

(b)

Figure 7: (a) Calibration curves of the radiomics nomogram. (b) Decision curve analysis for the radiomics nomogram.
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with the prognosis of APP patients; our results also proved
this point of view but, unfortunately, did not reach the same
high correlation of prognosis compared with previous stud-
ies. PQ itself had direct nephrotoxicity; renal failure also
impaired the excretion of PQ through the kidney; therefore,
renal function injury may have a significant contribution to
the mortality of APP [3]; the increase of Cr could suggest kid-
ney injury [30]. CK-MB is the most specific and common
indicator in the diagnosis of myocardial and skeletal muscle
diseases, and a previous study that examined skeletal muscles
obtained in both the biopsy and the autopsy of APP patients
revealed extensive degeneration and fibrosis [3].

Compared with the single Rad-score, the nomogram that
combined the clinical risk factors improved sensitivity, spec-
ificity, AUC, and diagnostic accuracy. The possible reason
was that the CT image radiomics features mainly reflected
the lung injury; by adding the clinical risk factors, the nomo-
gram could reflect the damage of PQ to other tissues such as
the liver, kidney, and muscle, so the performance of the
model can be improved. However, the contribution of clini-
cal risk factors was still lower than the radiomics signature,
which indicated that the lung injury was the main prognostic
factor in the early stage of poisoning.

In the previous studies about the mortality of APP
patients, more attention was focused on lung nonspecific
indicators. Many blood laboratory indicators were demon-
strated to be useful in predicting the prognosis of patients
with PQ poisoning [11, 14, 28]. These studies suggested that
various laboratory indicators were related to prognosis in dif-
ferent degrees, but they all lacked independent validation. In
a recent study [31], among 103 APP patients, aspartate ami-
notransferase, prothrombin time, prothrombin activity, total
bilirubin, direct bilirubin, indirect bilirubin, alanine amino-
transferase, urea nitrogen, and creatinine were found to be
the most highly correlated indices in PQ poisoning and
showed statistical significance (P < 0:05) in predicting PQ
poisoning prognosis. Based on the above indicators, they
established the grey wolf optimization-extreme learning
machine (GWO-ELM) model. And the 10-fold cross-
validation achieved a prediction accuracy of 81.45%, sensitiv-
ity of 81.24%, and specificity of 90.48%, respectively.
Although the single-clinical factor model or multiclinical fac-
tor prediction model reached a certain accuracy, they were
still lower than the prediction results of the Rad-score clinical
model. This may be explained by two reasons; firstly, the
baseline clinical data cannot specifically reveal the lung dam-
age, which was the main cause of death; secondly, the data
collection time was too early to fully reflect the damage of
PQ toxicity to various organs. It was expected that lung CT
images contained complementary and interchangeable infor-
mation compared to other indexes, such as demographics,
pathology, blood biomarkers, and genomics; combining the
information would improve individualized treatment selec-
tion and monitoring [32].

This study has several limitations. Firstly, when choosing
the ROI, mediastinal emphysema or pneumothorax and
pleural effusion were not included; the main reason is that
these signs may conceal the damage caused by PQ to the lung
tissue, but the previous studies [6, 33] showed the appearance

of mediastinal emphysema or pneumothorax, which sug-
gested that the prognosis is bad and the mortality is high,
so these signs’ value of prognosis should be further studied.
Secondly, in this study, the clinical risk factors of prognosis
are not rich, such as urine PQ concentration, and arterial
blood gas analysis was not included in the study, which was
mainly restricted by hospital conditions. Whether there are
significant differences in these clinical factors between the
two groups and whether they can increase the performance
of the prediction model need to be further discussed. Lastly,
the relatively small sample number is another limitation of
our study, which may have brought some deviation to the
result, so it is necessary to make a further multicenter valida-
tion with a large number of samples in the future.

5. Conclusion

This study presents a radiomics nomogram that incorporates
both the radiomics signature and the clinical risk factors and
can be conveniently used to facilitate the individualized pre-
diction of prognosis in patients with paraquat poisoning. Our
study also proved that radiomics can also be applied to non-
tumor and diffuse diseases.
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Purpose. Preoperative prediction of isocitrate dehydrogenase 1 (IDH1) mutation in lower-grade gliomas (LGGs) is crucial for
clinical decision-making. This study aimed to examine the predictive value of a machine learning approach using qualitative and
quantitative MRI features to identify the IDH1 mutation in LGGs. Materials and Methods. A total of 102 LGG patients were
allocated to training (n = 67) and validation (n = 35) cohorts and were subject to Visually Accessible Rembrandt Images
(VASARI) feature extraction (23 features) from conventional multimodal MRI and radiomics feature extraction (56 features)
from apparent diffusion coefficient maps. Feature selection was conducted using the maximum Relevance Minimum
Redundancy method and 0.632+ bootstrap method. A machine learning model to predict IDH1 mutation was then established
using a random forest classifier. The predictive performance was evaluated using receiver operating characteristic (ROC) curves.
Results. After feature selection, the top 5 VASARI features were enhancement quality, deep white matter invasion, tumor
location, proportion of necrosis, and T1/FLAIR ratio, and the top 10 radiomics features included 3 histogram features, 3 gray-
level run-length matrix features, and 3 gray-level size zone matrix features and one shape feature. Using the optimal VASARI or
radiomics feature sets for IDH1 prediction, the trained model achieved an area under the ROC curve (AUC) of 0:779 ± 0:001 or
0:849 ± 0:008 on the validation cohort, respectively. The fusion model that integrated outputs of both optimal VASARI and
radiomics models improved the AUC to 0.879. Conclusion. The proposed machine learning approach using VASARI and
radiomics features can predict IDH1 mutation in LGGs.

1. Introduction

Diffuse lower-grade gliomas (LGGs; World Health Organiza-
tion (WHO) grade II or III) are infiltrative neoplasms which
account for about 33%-45% of all adult gliomas [1, 2].
Although LGGs are usually less aggressive with better treat-
ment response and prolonged prognosis compared with
glioblastomas (WHO grade IV), many cases eventually

progress to glioblastoma. Previous studies have shown that
the high tumor heterogeneity in clinical behavior depends
on genetics more than histology [1–3]. Therefore, the 2016
WHO classification of Tumors of the Central Nervous Sys-
tem integrates molecular biomarkers with histology for gli-
oma diagnosis [4].

Isocitrate dehydrogenase (IDH) is one of the most
important molecular biomarkers in gliomagenesis. In the
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2016 WHO classification scheme, IDH mutation status
serves as the first molecular determinant beyond histology,
and accordingly, LGG is classified into IDH-mutant and
IDH-wildtype entities [4]. Patients with an IDH-mutated gli-
oma have a longer survival duration than those with an IDH-
wildtype tumor. Recent evidence has also suggested that IDH
may be a potential therapeutic target in IDH-mutant gliomas
[5]. Therefore, preoperative prediction of IDH mutation sta-
tus is crucial for prognosis and therapeutic decision-making.

MRI can facilitate glioma diagnosis in a noninvasive
manner [6, 7]. Qualitative MRI analysis still remains the basis
in imaging diagnosis. For interpretation accuracy and consis-
tency, Visually Accessible Rembrandt Images (VASARI) lex-
icon based on conventional MRI has been proposed to
describe the features and guidelines. Previous studies have
shown the biological or clinical relevance of the VASARI fea-
tures in gliomas. For example, Zhou et al. [6] reported that
VASARI features including proportion of necrosis and lesion
size were associated with IDH1 mutation status.

Quantitative MRI has emerged as a promising tool in the
evaluation of gliomas as it can provide information on tumor
functionality. Apparent diffusion coefficient (ADC) calcu-
lated from diffusion-weighted imaging (DWI) is one of the
most clinically useful quantitative measurements [8–10].
Radiomics, a recently developed high-throughput approach,
can add value to the routine MRI to a greater extent by
extracting and mining a large number of imaging traits
[11]. Growing evidence has revealed the feasibility and clini-
cal implications of radiomics in the characterization of gli-
oma phenotypes [6, 12].

We hypothesized that the use of both qualitative and
quantitative MRI features could facilitate better IDH geno-
type discrimination. In this study, we aimed to develop a
machine learning approach based on VASARI and ADC
radiomics features to characterize the IDH1 mutation status
in LGGs.

2. Materials and Methods

2.1. Subjects. This retrospective study was approved by the
local institutional review board with a waiver of the written
informed consent from patients. Patients were identified by
searching the database of our institution for radiologic and
histopathologic records from January 2015 to December
2018. The inclusion criteria for the study patients were as fol-
lows: (a) histologically proven LGG; (b) available IDH1
mutation records; (c) complete preoperative MRI data
including native T1- and T2-weighted imaging (T1W and
T2W); T2 fluid attenuation inversion recovery (FLAIR),
DWI, and postcontrast T1W; and (d) sufficient image qual-
ity. Patients who had received treatment for glioma prior to
MRI were excluded. Finally, 102 LGG patients (60 men and
42 women; age range, 18-77 years; mean age, 45:3 ± 16:3
years) were included for the subsequent analyses. Subjects
were randomly divided into two subsets, a training cohort
(n = 67) and a validation cohort (n = 35).

2.2. MRI. Images were acquired using a 3 Tesla MRI system
(Signa HDxt; GE Medical Systems, Milwaukee, Wis, USA)

with an eight-channel head coil. The protocol included
native T1W, T2W, FLAIR, and DWI in the axial plane and
postcontrast T1W in three orthogonal planes. Postcontrast
imaging was achieved with intravenous administration of
0.1mmol/kg dose of gadopentetate dimeglumine (Magne-
vist; Bayer Healthcare, Berlin, Germany). In all native
sequences, the same asymmetric field of view (260 × 260
mm2), section thickness (5mm), and intersection gap
(20%) were used. DWI was performed before the injection
of contrast material with repetition time = 4850ms, echo
time = 74ms, acquisitionmatrix = 160 × 160, b value = 0 and
1000 sec/mm2, and number of averages = 2.

2.3. Feature Extraction. For qualitative image analysis, read-
ings were performed on all sequences with a Digital Imaging
and Communications in Medicine viewer (RadiAnt DICOM
Viewer; Poznan, Poland) by two neuroradiologists (Mengqiu
Cao and Yan Zhou, with 6 and 19 years of experience in neu-
rological MRI interpretation, respectively) in consensus.
Each tumor was scored according to the VASARI lexicon,
which consists of 23 imaging traits related to the morphology
of brain tumors. Detailed descriptions of the VASARI feature
set are available in Supplementary Table S1.

For quantitative ADC analysis, segmentation of the
tumor area was first manually performed using the 3D Slicer
software (version 4.7; https://www.slicer.org). The tumor
area was defined as the abnormal hyperintensity area on
FLAIR images. The volume of interest (VOI) was generated
by including all consecutive image sections containing tumor
areas. Independent analysis of the segmentation labels (from
30 randomly selected subjects in the training set) by two neu-
roradiologists was conducted to evaluate the interobserver
reliability of the segmentation. The Dice similarity coefficient
(DSC) [13] was measured over the two labels per case from
the two neuroradiologists. A DSC value of 0 indicates no
overlap and a value of 1 corresponds to exact overlap. After
registering ADC maps to FLAIR images, VOI was propa-
gated to ADC maps. A total of 56 radiomics features were
then extracted from the volumetric ADC data including 3
shape features, 13 first-order histogram features, 9 gray-
level co-occurrence matrix (GLCM) features, 13 gray-level
run-length matrix (GLRLM) features, 13 gray-level size zone
matrix (GLSZM) features, and 5 neighborhood gray-tone dif-
ference matrix (NGTDM) features [14]. Before the feature
selection process, all the radiomics features were normalized
to the range of [0, 1] for standardization, so that features of
different orders of magnitude could be reasonably compared.
Feature extraction was performed using the Matlab software
(version 2016a; MathWorks, Natick, Mass, USA). Detailed
calculations of the radiomics features are provided in Supple-
mentary Table S2.

2.4. Feature Selection. Our study adopted a two-step feature
selection scheme to identify the most predictive variables.
First, the maximum Relevance Minimum Redundancy
(mRMR) method was used to select features that had the
maximal mutual information with respect to the target class
(maximum relevance) and minimal mutual information with
respect to each other (minimum redundancy). Second, the
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0.632+ bootstrap method and the area under the receiver
operating characteristic curve (AUC) metric were used to
explore the features with optimal discrimination perfor-
mance on the training data set [14]. A random forest classi-
fier was chosen as a statistical model in this process.
According to the AUC metric, the top 5 VASARI and 10
radiomics features were finally selected for further predictive
model building.

2.5. Machine Learning-Based Prediction. Predictive models of
different orders (1–5 for VASARI features and 1–10 for
radiomics features) were constructed separately on the opti-
mal combinations of VASARI and radiomics features. Ran-
dom forest classifiers were trained on the training cohort.
The prediction performance was evaluated with the 0.632+
bootstrap AUC method. Sensitivity, specificity, accuracy,
and AUC were calculated for each condition.

The random forest prediction models were then validated
on the validation cohort. Further, the fusion model from the
optimal VASARI model and radiomics model was obtained
by integrating the predicted probability of both models. The
weight value of fusion of the two models was set according
to the weighted average fusion strategy, that was, 0.5. When
analyzing a new case, we separately calculated the prediction
probability of VASARI and radiomics models and, then,
averaged the two values as the final prediction probability.
To demonstrate the complementary roles of VASARI and
radiomics features in the fusion model, the correlation anal-
ysis was performed using the Pearson correlation coefficient.
The prediction performance of the fusion machine learning
model was evaluated. The influence of common clinical var-
iables including age and gender on the prediction perfor-
mance was also tested.

The flowchart of the experimental design of the machine
learning approach is illustrated in Figure 1. All the machine
learning algorithms were implemented using the Matlab
software.

2.6. Statistical Analysis. Comparison of categorical character-
istics between groups was performed with the chi-square test
or Fisher’s exact test and comparison of continuous charac-
teristics with Student’s t-test. Receiver operating characteris-
tic (ROC) curves were generated on the basis of the
classification results of random forest models. Results with
P values less than 0.05 were considered to indicate a signifi-
cant difference. All the statistical analyses were performed
using the Matlab software and IBM SPSS Statistics software
(version 21; SPSS, Chicago, Ill, USA).

3. Results

3.1. Patient Characteristics. Of all the 102 LGG patients, 61
(59.8%) were diagnosed as WHO grade II glioma and 41
(40.2%) with WHO grade III. Among them, 50 (49%) and
52 (51%) patients were confirmed with IDH1-mutant and
IDH1-wildtype LGG, respectively. Patient characteristics of
the whole cohort, the training cohort, and the validation
cohort were summarized in Table 1. No significant difference

in age, gender, WHO grade, or IDH1 mutation status was
noted between the training and validation cohorts (P > 0:05).

3.2. Interobserver Reliability of Segmentation. Interobserver
reliability analysis of the manual segmentation showed good
agreement between the neuroradiologists, with a DSC score
of 0:879 ± 0:046. A representative case showing the interob-
server reliability of segmentation is illustrated in Figure 2.

3.3. IDH1 Mutation Prediction with VASARI Features. After
feature selection, the top 5 VASARI features were enhance-
ment quality, deep white matter invasion, tumor location,
proportion of necrosis, and T1/FLAIR ratio (Table 2). Pre-
diction models with orders 1 to 5 were generated by incorpo-
rating the above optimal features. On the training cohort, the
highest AUC of 0:827 ± 0:031 was reached, with a sensitivity
of 0:671 ± 0:058 and a specificity of 0:712 ± 0:049, respec-
tively. Using the optimal feature set (the single enhancement
quality feature), the trained model achieved an AUC of
0:779 ± 0:001 on the validation cohort, with a sensitivity of
0:718 ± 0:070, a specificity of 0:733 ± 0:100, and an accuracy
of 0:726 ± 0:017, respectively. Representative cases of IDH1-
mutant and IDH1-wildtype LGGs are shown in Figures 3 and
4.

3.4. IDH1 Mutation Prediction with Radiomics Features. In
ADC radiomics analysis, the top 10 quantitative features
were listed in Table 2. On the training cohort, the highest
AUC of 0:849 ± 0:027 was reached, with a sensitivity of
0:790 ± 0:038 and a specificity of 0:770 ± 0:043, respectively.
Using the optimal feature set (all the 10 features), the trained
model achieved an AUC of 0:849 ± 0:008 on the validation
cohort, with a sensitivity of 0:724 ± 0:035, a specificity of
0:761 ± 0:017, and an accuracy of 0:743 ± 0:022, respectively.

3.5. IDH1 Mutation Prediction with a Fusion Model with
Optimal VASARI and Radiomics Features. The fusion model
was constructed with the optimal VASARI model (enhance-
ment quality) and radiomics model (the top 10 radiomics
features). Results of the Pearson correlation analysis showed
that these two types of features remained very low correlation
(Figure 5), demonstrating their complementary roles in the
fusion model. The fusion model improved the AUC to
0.879, with a sensitivity of 0.765, a specificity of 0.778, and
an accuracy of 0.771, respectively. ROC curves of the optimal
VASARI model, radiomics model, and the fusion model with
VASARI and radiomics features are illustrated in Figure 6.
The inclusion of clinical variables including age and gender
to the model did not benefit the prediction performance
(AUC = 0:859).

4. Discussion

In this study, the machine learning algorithm was used to
explore the predictive value of VASARI features based on
preoperative conventional MRI images and the radiomics
features based on ADC maps in IDH1 genotyping of LGG
patients. The results obtained by random forest classifiers
showed that the AUCs were 0.779 and 0.849 on the optimal
VASARI and radiomics feature sets, respectively, and the
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fusion model with both feature sets achieved an improved
AUC of 0.879 on the validation.

MRI is one of the essential methods for preoperative gli-
oma diagnosis. Different imaging sequences can reveal differ-

ent characteristics of tumor texture, blood supply, border,
edema, hemorrhage, etc., and these characteristics are
extremely important for the final diagnosis. The VASARI
lexicon extracts features from routine MRI and provides
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Figure 1: The flowchart of the experimental design of the machine learning approach.
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standardized visual grading of MRI findings. In our study,
enhancement quality was the most significant one for IDH1
mutation prediction among all VASARI features. IDH1-
wildtype LGGs tended to represent a higher degree of con-
trast enhancement on the postcontrast T1W images com-
pared with IDH1-mutant LGGs, which is consistent with
previous studies [15–17]. Kickingereder et al. [18] found
that IDH1-wildtype gliomas showed increased HIF1A acti-
vation, thus leading to a transcriptome signature induced
by upregulating vasculo- and angiogenesis-related signaling
pathways. Increase in proangiogenic molecules could result
in more contrast agent uptake and more marked contrast
enhancement on postcontrast T1W images. Besides
enhancement quality, other VASARI features of strong pre-
dictive power for IDH1 mutation status included deep white
matter invasion, tumor location, proportion of necrosis, and
T1/FLAIR ratio. These findings are in line with those from
previous studies [6, 15, 19, 20]. Among these features, tumor
location in the frontal lobe in IDH1-mutant gliomas has been
reported by many investigators in existing literature [21].
The frontal lobe predominance of IDH1-mutant gliomas
may be because this type of tumors probably originates from
glial progenitors in the forebrain subventricular zone [22].
VASARI-based random forest classifier showed an AUC of
0.779 on validation in predicting IDH1 mutation in LGGs,
similar to the result reported by Park et al., who constructed
a multivariable model with an AUC of 0.778 [20].

Radiomics is a method to extract quantitative features
that are difficult to detect by human eyes from medical
images and to use data mining and machine learning algo-
rithms for diagnostic decision-making. In this study, radio-
mics analysis of ADC maps was conducted by extracting
57 quantitative features and subsequently building a predic-
tion model with 10 optimal features. Given that the choice of
classifier depends on the specific task as well as disease type,
thus, comparative experiments were conducted, and ulti-
mately random forest was chosen with the best performance

for IDH1 prediction. The prediction performance on the
independent validation set using different classifiers is
shown in Supplementary Figure S1. Our optimal radiomics
model achieved an AUC of 0.849 for IDH1 prediction in
LGGs. ADC was used for radiomics analysis in our study,
since ADC has been established as the most commonly used
quantitative MRI metric, thus enabling first-order statistical
features comparable between individuals. Previous studies
have shown the benefit of ADC first-order statistical
features in identifying IDH1 genotypes [23–25]. Our study
further demonstrated the added value of ADC high-order
radiomics features to first-order features for this purpose.
Additionally, radiomics on other MRI modalities has also
been investigated in terms of its relationship with IDH1
mutation status. Zhou et al. [6] found that random forest
analysis of T2W-based texture features could predict IDH1
mutation status in LGGs with an AUC of 0.86, a sensitivity
of 0.75, and a specificity of 0.89. By performing radiomics
analysis on FLAIR images, Yu et al. [26] reported AUCs of
0.86 and 0.79 on the training and validation cohorts,
respectively, in IDH1 prediction of LGGs. Interestingly, these
results are consistent with ours on ADC radiomics analysis.

The major strength in our study design was the model
building using both qualitative semantic and quantitative
radiomics features, which were usually separately investi-
gated in some previous studies [20, 27]. Results showed that
the fusion model that integrated outputs of the optimal
VASARI model and ADC-based radiomics model improved
the AUC to 0.879 in IDH1 genotype prediction of LGGs,
indicating that the fusion model was superior to the model
using a single type of features. These findings suggest that
radiomics analysis may add value to routine qualitative
image analysis for IDH1 classification. Similarly, a recent
study [28] also showed that the VASARI feature combined
with ADC texture analysis could improve the accuracy of
IDH1 mutation detection in anaplastic gliomas. In this study,
although the mean age of patients with IDH1-wildtype LGG
was higher than that of patients with IDH1-mutant LGG
(47.3 years vs. 43.2 years), there was no statistical difference
between the two groups (P = 0:201, independent sample t
-test). Therefore, the inclusion of age factor in the final model
failed to improve the accuracy of LGG IDH1 genotype
identification.

Recently, with its rapid advancement in various fields
within the past few years, deep learning has gained particular
attention in the radiology domain. For example, Chang et al.
[29] has used a deep learning method implemented with con-
volutional neural networks to classify genetic mutations in
gliomas and a high accuracy of 0.94 in IDHmutation predic-
tion was reached. Deep learning is advantageous in that it
does not need human-derived feature extraction or prior fea-
ture selection [29]. However, big data are essential for a
robust training process. A head-to-head comparison between
conventional machine learning and deep learning methods is
warranted in the future.

Apart from the intrinsic limitations of any retrospective
study, several other limitations are discussed as follows. First,
the cases were collected from a single center, and the patient
population was relatively small. Further validation on diverse

Table 1: Patient characteristics.

Characteristic
Whole
cohort

(n = 102)

Training
cohort
(n = 67)

Validation
cohort
(n = 35)

P
value∗

Age (years)† 45:3 ± 16:3 45:7 ± 17:1 44:6 ± 14:9 0.75

Gender

Male 60 (58.8%) 38 (56.7%) 22 (62.9%) 0.55

Female 42 (41.2%) 29 (43.3%) 13 (37.1%)

WHO grade

II 61 (59.8%) 44 (65.7%) 17 (48.6%) 0.10

III 41 (40.2%) 23 (34.3%) 18 (51.4%)

IDH1 status

Mutant 50 (49.0%) 33 (49.3%) 17 (48.6%) 0.95

Wildtype 52 (51.0%) 34 (50.7%) 18 (51.4%)

Unless otherwise specified, data are counts (percentages). WHO: World
Health Organization; IDH 1: isocitrate dehydrogenase 1. †Data are means
± standard deviations. ∗P value was obtained by comparing each variable
between training and validation cohorts.
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large data sets acquired frommultiple vendors and across dif-
ferent centers is needed. Second, the numbers of included
IDH1-mutant and IDH1-wildtype patients were similar
(50 : 52), which did not reflect the actual prevalence of IDH

mutation in LGG (around 80%) [3]. However, a balanced
sampling could contribute to the model training process.
Third, radiomics analysis was not performed on other rou-
tine MRI modalities. Routine MRI data were used to extract

(a) (b)

(c)

A 

S 

R 

(d)

Figure 2: Interobserver reliability of contours between the two neuroradiologists. (a) One original section of the volumetric data. (b) Contour
delineated by the first neuroradiologist. (c) Contour delineated by the second neuroradiologist. (d) Overlaid 3D volume rendering image (AP
view).

Table 2: List of selected VASARI and radiomics features.

Feature selection
Top 5 VASARI features AUC value Top 10 radiomics features AUC value

Enhancement quality 0.752 GLRLM short run low gray-level emphasis 0.756

Deep white matter invasion 0.738 GLRLM low gray-level run emphasis 0.682

Tumor location 0.684 GLRLM run-length variance 0.678

Proportion of necrosis 0.682 Histogram minimum 0.677

T1/FLAIR ratio 0.632 Eccentricity 0.662

GLSZM large zone high gray-level emphasis 0.641

GLSZM low gray-level zone emphasis 0.628

Histogram energy 0.616

Histogram standard deviation 0.612

GLSZM zone-size nonuniformity 0.607

VASARI: Visually Accessible Rembrandt Images; AUC: area under the receiver operating characteristic curve; GLRLM: gray-level run-length matrix; GLSZM:
gray-level size zone matrix.
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T2 FLAIRT2W

ADCT1W C+

Figure 3: A 26-year-old man with an IDH1-mutant glioma (diffuse astrocytoma, WHO grade II). The tumor is located in the frontal lobe
with no contrast enhancement, no deep white matter invasion, no necrosis, and an expansive tumor behavior (T1~FLAIR).

T2W T2 FLAIR 

ADCT1W C+

Figure 4: A 65-year-old man with an IDH1-wildtype glioma (diffuse astrocytoma,WHO grade II). The tumor is located in the brainstem with
marked contrast enhancement, deep white matter invasion, a necrosis proportion of <33%, and a mixed tumor behavior (T1<FLAIR).
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semantic features, as is performed in clinical routine. How-
ever, the results on ADC maps were consistent with those
on T2W images or FLAIR images reported before [6, 26].
Advanced MRI techniques such as perfusion-weighted imag-
ing and magnetization transfer imaging were also not
adopted for radiomics analysis. The inclusion of advanced
MRI modalities could provide more comprehensive func-
tional and metabolic information and should be considered
in further studies. Fourth, interobserver agreement of image
segmentation was evaluated in our study. However, interob-
server agreement of features was not analyzed, although it
has proven to be satisfactory for both VASARI and radiomics
features in previous studies [6, 20]. Fifth, considering the
small sample size of our study, we did not perform weight
optimization in order to avoid overfitting of the training data.
Although this weighting method may lose a little perfor-
mance improvement (not always), we believe that the fusion
results would be more robust, especially for new data, with-
out performance bias. It can be seen from the results that
our weighted average fusion strategy played a positive role

in guiding the overall forecast performance. Last, according
to the 2016 WHO classification of Tumors of the Central
Nervous System, 1p/19q codeletion is also an important
prognostic marker in molecular diagnosis of LGGs [4]. In
the study, 1p/19q codeletion status was not evaluated because
this information was not available on most subjects due to
the retrospective nature.

5. Conclusion

In conclusion, preoperative MRI VASARI features and ADC
radiomics features can effectively predict IDH1mutation sta-
tus in LGG, and the fusion model integrating both predictive
features shows even better prediction performance. The pro-
posed image-based machine learning approach may provide
an alternative to the conventional workflow for the noninva-
sive identification of IDH1 genotypes. However, these find-
ings should be validated in large multicenter data sets in
future studies.
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Colorectal imaging improves on diagnosis of colorectal diseases by providing colorectal images. Manual diagnosis of colorectal
disease is labor-intensive and time-consuming. In this paper, we present a method for automatic colorectal disease classification
and segmentation. Because of label unbalanced and difficult colorectal data, the classification based on self-paced transfer VGG
network (STVGG) is proposed. ImageNet pretraining network parameters are transferred to VGG network with training
colorectal data to acquire good initial network performance. And self-paced learning is used to optimize the network so that the
classification performance of label unbalanced and difficult samples is improved. In order to assist the colonoscopist to
accurately determine whether the polyp needs surgical resection, feature of trained STVGG model is shared to Unet
segmentation network as the encoder part and to avoid repeat learning of polyp segmentation model. The experimental results
on 3061 colorectal images illustrated that the proposed method obtained higher classification accuracy (96%) and segmentation
performance compared with a few other methods. The polyp can be segmented accurately from around tissues by the proposed
method. The segmentation results underpin the potential of deep learning methods for assisting colonoscopist in identifying
polyps and enabling timely resection of these polyps at an early stage.

1. Introduction

The International Agency for Research on Cancer released
research data on global cancer status in 2018. The report
reported the incidence and mortality of 36 types of tumors
in 185 countries around the world, comprehensively. The
data showed that the incidence of colorectal cancer ranked
third (10.2%), and the mortality rate ranked second (9.2%)
[1]. As we known, the mortality rate of colorectal cancer
can be reduced significantly by early removal of polyps
[2] which can be found according to the early screening.
Colorectal polyp, a benign disease, has specific imaging
characteristics such as shape or surface structure and
color [3]. Colorectal colonoscopy is the main method of
diagnosing intestinal diseases. With a great number of
colorectal images, the microscopic examination presents
labor-intensive and time-consuming problems [4]. In
addition, the pathological diagnosis of colonoscopy biopsy

samples is prone to deviations due to individual patholo-
gists’ experience and knowledge [5]. The accuracy of
diagnosis depends on the experience of the microscopy
doctor, and the difference in diagnosis accuracy between
experienced doctors and less experienced doctors is
greater than 10%. Therefore, it is necessary to distinguish
polyps from normal tissue and tumor using colorectal
optical images.

However, it is difficult for the diagnosis of colorectal
optical images. Firstly, the low light and interference of
liquid often result in poor imaging quality of colorectal
images. Secondly, the edges of normal tissue and polyp
types are blurred. It causes the classification accuracy of
normal tissue, polyp, and tumor to be low. Thirdly, the
individual differences of polyps are mainly manifested in
shape, color, and surface contour for polyps. And colorec-
tal polyps are heterogeneous resulted that the segmenta-
tion of polyp becomes challenging.
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Previous research showed that deep learning has given
good results in medical images processing, such as tumor
detection, classification, segmentation, retrieval, and predic-
tion, especially for diagnosis and treatment of the brain
[6, 7], breast [8], lung [9, 10], gastric [11], prostate cancers
[12, 13], and histopathology [14]. Meanwhile, endoscopy-
assisted diagnosis has also made some progress using deep
learning, especially in colorectal endoscopy. There are two
types for colorectal image detection: pathology and optical
colonoscopy images. Here is the introduction to the image
diagnosis progress.

For the pathology colorectal images, the recent advance-
ment of deep learning is adapted. Thakur et al. [15] reviewed
the development of an AI system in CRC pathology image
analysis using deep learning. Korbar et al. [16] proposed an
automatic image-understanding method to help pathologists
with histopathological characterization and diagnosis of
colorectal polyps. Sena et al. [17] propose a deep learning
approach to recognize four different stages of cancerous
tissue development. Lizuka et al. [18] trained convolutional
neural networks (CNNs) and recurrent neural networks
(RNNs) on biopsy histopathology whole-slide images (WSIs)
of stomach and colon. For the optical colorectal images,
there are lots of researches on detection and segmentation
of colorectal polyps. Some methods take into account time
series: Urban et al. [19] used deep learning to localize and
identify polyps in real time with 96% accuracy in screen-
ing colonoscopy. Klare et al. [20] proposed the APDS with
which the colonoscopy system of the video stream is cap-
tured by a frame-grabber device in HD. Wang et al. [21]
used real-time automatic detection system to increase
colonoscopic polyp and adenoma detection rates; some
methods take into account spatial information: Li et al.
[22] used a fully convolutional neural network structure
for segmenting colorectal polyps. Yang et al. [23] devel-
oped convolutional neural network (CNN) models which
automatically categorized colorectal lesions into several
stages ranging from nonneoplastic lesions to advanced
CRC with conventional white-light colonoscopy images.
Zhang et al. [24] developed a fully automatic algorithm
to detect and classify hyperplastic and adenomatous colo-
rectal polyps. Others are from the semantic information:
Wickstrom and Kampffmeyer [25] proposed a novel
method for estimating the uncertainty associated with
important features in the input and demonstrated how
interpretability and uncertainty can be modeled for seman-
tic segmentation of colorectal polyps. The above colorectal
image processing methods using deep learning have achieved
good performance.

Based on the above analysis of colonic pathology and
optical colorectal image literature, deep learning methods
are proposed on detection or segmentation of colorectal
polyps. However, unlike the recent research based on single
task, our method takes into account multitask: colorectal
image classification and polyp image segmentation. In the
proposed STVGG, transfer learning and self-paced learning
are used to solve the unbalance and the difficult sample learn-
ing. STVGG transfers ImageNet network parameters to VGG
network and calculates the loss value of each image in the for-

ward propagation with the age parameter. In addition, the
trained STVGG model of colorectal classification is shared
to Unet segmentation model to deal with distinguishing
polyp and normal tissues.

2. Materials and Methods

2.1. Data Acquisition and Preprocessing. A total of 50 patients
were examined under colonoscopies, and images were col-
lected from the anorectal department of a hospital in Shaanxi
Province, China, under ethical approval. Three experienced
endoscopists were invited to classify the normal tissue, polyp,
and tumor, and the ground truth was acquired. The data
preprocessing was as follows:

Firstly, data filtering: uncleaned or unclear colorectal
images were removed. After image filtering, the set of endo-
scopic images consisted of 487, 1374, and 1200 images with
normal tissue, polyp, and tumor, respectively, taken under
either white light (WL) or narrow band imaging (NBI)
endoscopy.

Secondly, dataset split: the data were divided into train-
ing set, validation set, and test set according to the ratio of
2 : 1 : 2.

Thirdly, data argumentation: the argumentation methods
were rotation, flip, translation, and cropping. The training set
and validation set were argumentized by four times

Finally, data resizing: the data was resized to 440 ×
440 × 3 to maintain the integrity of the intestinal wall.

2.2. Automatic Classification in Colorectal Endoscopy Based
on STVGG. Because the performance of training network
is poor by using colorectal images directly, Network pre-
trained on ImageNet is introduced to obtain a good classi-
fication result. Meanwhile, polyp areas are more difficult to
be classified than normal tissue and tumor. This paper
introduces self-paced regularization items to assign differ-
ent sample weights for training samples. Self-paced learn-
ing injects the difficulty metric into the optimization
model and updates the model parameters based on the
current sample ordering and the metric based on the
learning effect. It obtains a new round of difficulty order-
ing of samples and finally achieves the purpose of adaptive
sample ordering.

In our method, in order to fully use data of ImageNet,
the parameters of C1 and C2 from pretrained VGG19
model on ImageNet are transferred to STVGG. And the
practical colorectal images are used as training data to
update other layer parameters of the STVGG model. The
self-paced learning algorithm is introduced to STVGG
for dealing with those difficult and unbalance samples to
improve classification performance. The overview of
STVGG classification method is shown in Figure 1, where
Ci represents the ith convolutional patch, F represents the
fully connected layer, and G represents the global average
pooling layer. In this study, the first fully connected layer
F6 of VGG19 is replaced with the global average pooling
layer G6 to reduce the amount of model parameters and
prevent overfitting and to get the pretrained model with
the parameters of C1 and C2 layers.
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The cross-entropy is selected as loss function lðyi, gðXiÞÞ.
Forward propagation is used to calculate the loss l in STVGG
network:

l yi, g Xið Þð Þ = −〠
c

j=1
I yi = jf g log eω

T
j z

l
i

∑c
k=1e

ωT
k z

l
i

 !
: ð1Þ

In the Eq. (1), c is the number of disease categories in the
colorectal endoscopy dataset, and ωT

j is the weight parameter

of the jth output node. z li represents the output vector in the
last fully connected layer of the network. Ifyi = jg∈f0, 1g,
when the predicted result of the sample is consistent with
the label I = 1, otherwise I = 0.

Furthermore, self-paced learning is used to modify the
STVGG network. The network objective function is rewritten
as follows:

min
ω,b

Espl w, bð Þ =min
ω,b

1
n
〠
n

i=1
vi · l yi, g Xið Þð Þ + f vi, λð Þ

" #
ð2Þ

Parameters w and b are the weight and bias of the
STVGG network, respectively, v = ½v1 ⋯ vi ⋯ vn� represents
the weight of n samples, and f ðvi, λÞ is the binary self-
paced regular term defined in Eq. (3).

f H vi, λð Þ = −λvi ; vi ∗ l, λð Þ =
1 if l < λ,

0 if l ≥ λ:

(
ð3Þ

w, b, and v of the STVGG network are optimized by iteration
until the model converges to get a good classification net-
work. Flowchart of STVGG algorithm is shown in
Algorithm 1.

2.3. Automatic Segmentation in Polyp Image. After classifica-
tion task is completed, the parameters C1 − C5 of the trained
STVGG in the colorectal endoscopy classification task is
shared to the segmentation task as the code part, while the

Unet network framework is used in colorectal endoscopy
segmentation task. And the decoding part of the original
Unet is also adjusted with the corresponding encode part.
Compared with the original Unet, the channel number of
downsampling in the last layer is not increased for the pro-
posed model. The framework of our segmentation model is
shown in Figure 2.

Each rectangular box corresponds to a multichannel
feature map. The number on the left side of the rectangu-
lar box indicates the size of each channel of the feature
map. The number at the top of the rectangle indicates
the channel number in the feature map. The blue, red,
green, and purple arrows indicate the convolution opera-
tion with a convolution kernel size of 3 × 3, the max pool-
ing with stride of 2 × 2, and the upsampling and the
convolution with a convolution kernel size of 1 × 1,
respectively. The gray arrow indicates that the feature
map of the encoding part is cropped and copied with
the feature map of the decoding part.

2.4. Comparison with Other Methods. The selection of
comparison methods is based on the baseline VGG model
adding some training strategies, and the specific strategies
are as follows:

(1) VGG19 with transfer learning strategies (VGG+TL)
The parameters C1 − C2 in VGG19 are transferred from

ImageNet network to extract low-level features well shared
with natural images in colorectal endoscopy images.

(2) VGG19 with the strategy of structure retention color
normalization (VGG+SRCN)

The data are collected from different periods, different
patients, and equipment in different periods. Therefore,
SRCN strategy is used so that color features of processed
image tend to be consistent and reduce intraclass differences.

(3) VGG19 with strategy of spatial pyramid pooling
(VGG+SPP)

SPP [26] layer on the VGG19 network is adopted, and it
obtains a fixed length feature vector to aggregate the features
and avoid geometric distortion in feature maps.

C1
C2 C3

C4 C5 F6 F7 F8

C1
C2 C3

C4 C5 G6 F7 F8 Classification
results

Colorectal
endoscopy

images

ImageNet
images

STVGG

VGG

Figure 1: The overview of STVGG classification method.
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2.5. Evaluation of the Classification and Segmentation. The
segmentation results are evaluated both visually and
quantitatively, given the ground truth, our classification and
segmentation results. The segmentation performance is eval-

uated by these evaluation metrics: accuracy, sensitivity, spec-
ificity, and dice similarity coefficient (DSC). We use TP, FP,
TN, and FN to represent true positive, false positive, true
negative, and false negative. And L1 and L2 represent the

Flowchart of STVGG algorithm.
Input: Training set D = fðxi, yiÞ, i = 1⋯ ng, xi represents the ith training data, and yi is the i

th data label.
Initialization parameter: “age parameter”λ, a suitable initial value is given according to the approximate value range of the presample
training error value; initialize the sample weight vector v.
Model training parameter settings: total number of training iterations epoch, minimum batch size for training and verification, initial
learning rate during model training α, and decay rate of learning rate φ; update increment of age parameters k, k > 0.
a) Calculate network weights w and bias b by Eq. (2)
b) Calculate and update loss function lðyi, gðXiÞÞ
c) Calculate self-paced regular term f ðvi, λÞ and update weight vector v
d) Calculate and update min

ω,b
Esplðw, bÞ

e) Update age parameters λ and learning rate α, λ = λ + k, α = a ⋅ φ, φ < 1
f) Repeat steps a to e until the number of iterations epoch = 0
output: network weights w and bias b

Algorithm 1.
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Figure 2: The framework of our segmentation model.
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manual annotation and our method segmentation results,
respectively, and these indexes are defined as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
, ð4Þ

Sensitivity =
∣L1 ∩ L2 ∣
∣L1 ∣

, ð5Þ

Specificity =
∣ ~ L1 ∣ L2ð Þ∣
∣ ~ L1 ∣

, ð6Þ

DSC =
2 ∣ L1 ∩ L2 ∣
∣L1∣+∣L2 ∣ð Þ : ð7Þ

3. Experimental Results and Discussion

In this paper, the experimental environment was set in
Python3.6.0, Tensorflow-GPU 1.7.0, Keras 2.1.3, SimpleITK
0.8.1, Nvidia Titan Pascal GPU (1080 Titan), and Cudnn
V9.0. Verified by experiment, the colorectal image size of
440 was superior to 330 and 540. The average accuracy of
the final test set was 0.03 and 0.01 higher than the latter
two, respectively. The colorectal data with original image size
range of 228 to 586 was resized to 440 × 440.

Choosing optimization functions. Experiments showed
that the average classification accuracy of SGD is 0.02 and
0.05 higher than RmSprop and Adam, respectively. There-
fore, SGD was finally selected as our optimization function.

Selecting transfer layers. Experiments froze the parame-
ters of the 4, 8, 12, and 16 layers, respectively. It showed that
when the parameters of the first 4 layers were frozen, the best
average classification accuracy was achieved.

Cross-entropy are chosen as loss function. The relevant
parameters were as follows: learning rate is 0.0001, decay =
1e − 6, and the parameter of Nesterov Momentum was set
to 0.9. The batch size was 8. λ was initialized to 1.1, and the
updating step was 0.05. As training began, λ became larger
and the tolerance of difficult samples was greater.

3.1. Colorectal Endoscopy Image Classification. The colorectal
endoscopy image classification accuracy is shown in Table 1.
It can be seen from Table 1 that the polyp accuracy of VGG
network was the lowest. The classification accuracies of
VGG+SRCN on polyps and normal tissue are improved as
it could decrease the intraclass differences. VGG+SPP also
improved the classification accuracies of normal tissue and
colorectal polyp but polyp accuracy was relatively low
because the edges of normal tissue and polyp types are
blurred. As an improvement strategy, the accuracy of

VGG+TL was also improved. But compared with strategies
of SRVN and SPP, the effect is not significant. In this
study, STVGG was proposed and the experimental results
showed that the overall accuracies were greatly improved.

The main reason is that STVGG can classify difficult-to-
classify samples, for example, the small inflammatory or
hyperplastic polyps which are very similar to normal colo-
noscopy images, and the polyps with ulcers, large areas of
bleeding, and reticulated polyps, which are closer to the char-
acteristics of tumor. The STVGG method can significantly
improve the accuracy of polyp under the condition of ensur-
ing the classification accuracy of tumor and normal ones, and
the method converges in about 10 generations of training.

3.2. Polyp Image Segmentation. In the above colorectal endos-
copy image classification task, a relatively good classification
result was obtained by STVGG model. Therefore, polyp seg-
mentation was designed based on classification task. Doctors
usually used polyp’s images to make a decision whether sur-
gical resection is required based on pathological diagnosis.
Figure 3 shows five sequences of polyp images. (Ai) is the
original image, (Bi) is ground truth, (Ci) is the segmentation
result of Segnet network, (Di) is the segmentation result of
Unet network, (Ei) is the segmentation result of TLVGG net-
work, and (Fi) is the segmentation result of STVGG network.

Figure 3 indicates that the results of Segnet method are
greatly affected by the surrounding environment, and the
segmentation result is not good. The results of Unet method
are more superior than those of Segnet in big target but the
effect is not obvious. Compared to those methods, the results
of TLVGG method made great progress especially in sur-
rounding and small target, but the segmentation results of
large targets are not ideal. Our method shows the best results,
no matter it is segmentation of large and small objects or
environmental interference.

Table 2 shows that the Segnet segmentation method does
not segment the polyp in its complete shape. Using Unet for
segmentation of polyps is accurate, but oversegmentation is
also obvious. The Unet is more sensitive to light spots in
the imaging process, and it is easy to treat the reflective part
as a polyp.

The segmentation performances of the TLVGG network
were obviously better than Segnet and Unet. The segmenta-
tion target contour was close to the real target, but there were
still missed detections. The STVGG model worked best
because ImageNet network parameters were transferred to
VGG network to acquire good initial network. And self-
paced learning was used to optimize the network so that
the classification performance of label unbalanced samples
was improved.

Table 1: Classification accuracy obtained for different methods.

Category VGG VGG+SRCN VGG+SPP VGG+TL STVGG

Tumor 0.98 0.98 0.94 0.96 0.98

Normal tissue 0.90 0.94 0.99 0.95 0.99

Polyp 0.7 0.84 0.91 0.89 0.95

Average accuracy 0.76 0.87 0.93 0.91 0.96
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4. Conclusions

To address this issue of label unbalanced and difficult colo-
rectal data, we presented an automatic processing pipeline
for classification and segmentation based on colorectal
images. STVGG network used transfer learning and self-
paced learning in order to acquire good initial network and
solve the problem of label unbalanced and difficult sample
classification. And then STVGG network was shared as the
encoding part of Unet as encoder of the segmentation task,
and image segmentation task was achieved. The experimen-
tal illustrated that the proposed method obtained higher clas-
sification accuracy (96%) and segmentation performance
compared with other a few methods. This proposed method
may be applied to other image researches, such as stomach,
ear, nose, and throat. Possible future improvements can be
made in parameter adaptation.
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Table 2: Segmentation indexes obtained from different methods.

Segnet Unet TLVGG STVGG

DSC 0:6210 ± 0:2370 0:6980 ± 0:3005 0:8267 ± 0:2066 0:8455 ± 0:2030

Sen 0:6916 ± 0:2677 0:7591 ± 0:3317 0:8222 ± 0:2462 0:8323 ± 0:2201

Spe 0:9766 ± 0:0180 0:9834 ± 0:0235 0:9933 ± 0:0095 0:9949 ± 0:0067

A1 B1 C1 D1 E1 F1

A2 B2 C2 D2 E2 F2

A3 B3 C3 D3 E3 F3

A4 B4 C4 D4 E4 F4

A5 B5 C5 D5 E5 F5

Figure 3: Segmentation in colorectal endoscopy images. (Ai) Original images, (Bi) ground truth, (Ci) Segnet, (Di) Unet, (Ei) TLVGG, and
(Fi) ours.
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Purpose. A recurrent neural network (RNN) and its variants such as gated recurrent unit-based RNN (GRU-RNN) were found to be
very suitable for dose-volume histogram (DVH) prediction in our previously published work. Using the dosimetric information
generated by nonmodulated beams of different orientations, the GRU-RNN model was capable of accurate DVH prediction for
nasopharyngeal carcinoma (NPC) treatment planning. On the basis of our previous work, we proposed an improved approach
and aimed to further improve the DVH prediction accuracy as well as study the feasibility of applying the proposed method to
relatively small-size patient data. Methods. Eighty NPC volumetric modulated arc therapy (VMAT) plans with local IRB’s
approval in recent two years were retrospectively and randomly selected in this study. All these original plans were created using
the Eclipse treatment planning system (V13.5, Varian Medical Systems, USA) with ≥95% of PGTVnx receiving the prescribed
doses of 70Gy, ≥95% of PGTVnd receiving 66Gy, and ≥95% of PTV receiving 60Gy. Among them, fifty plans were used to
train the DVH prediction model, and the remaining were used for testing. On the basis of our previously published work, we
simplified the 3-layer GRU-RNN model to a single-layer model and further trained every organ at risk (OAR) separately with
an OAR-specific equivalent uniform dose- (EUD-) based loss function. Results. The results of linear least squares regression
obtained by the new proposed method showed the excellent agreements between the predictions and the original plans with the
correlation coefficient r = 0:976 and 0.968 for EUD results and maximum dose results, respectively, and the coefficient r of our
previously published method was 0.957 and 0.946, respectively. The Wilcoxon signed-rank test results between the proposed
and the previous work showed that the proposed method could significantly improve the EUD prediction accuracy for the
brainstem, spinal cord, and temporal lobes with a p value < 0.01. Conclusions. The accuracy of DVH prediction achieved in
different OARs showed the great improvements compared to the previous works, and more importantly, the effectiveness and
robustness showed by the simplified GRU-RNN trained from relatively small-size DVH samples, fully demonstrated the
feasibility of applying the proposed method to small-size patient data. Excellent agreements in both EUD results and maximum
dose results between the predictions and original plans indicated the application prospect in a physically and biologically related
(or a mixture of both) model for treatment planning.
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1. Introduction

Due to the complex tumor volumes in close proximity to
critical structures, the nasopharyngeal carcinoma (NPC)
radiation therapy (RT) plan was of great difficulty and
experience-dependent [1–4]. In recent years, numbers of
researches to aid in treatment planning using knowledge-
based planning (KBP) techniques had improved the
consistency of the plan quality and reduced the required opti-
mization time [5–13]. The most popular tools [14–18] were
developed to predict the dose-volume histogram from the
organ at risk (OAR)—planning target volume (PTV) anat-
omy, which could assist in treatment planning by giving
the appropriate OAR constraints and enabling the produc-
tion of high-quality plans. The most widely used tools for
quantifying the OAR-PTV anatomy, namely, the overlap
volume histogram (OVH) [15, 16] and the distance-to-
target histogram (DTH) [17, 18], were equivalent when
the Euclidean form of the distance function was used in
the DTH.

Compared to 3D-dose prediction [19–32] in the stage of
academic research, DVH prediction has been clinically
applied for years; for example, the commercial software
named RapidPlan was developed based on the DTH
approach by Varian Medical Systems (Palo Alto, California,
US). However, one concern regarding the DTH and OVH
was that their simplicity might lead to inaccurate presenta-
tion of the interpatient variations in anatomical features,
which might have an impact on the dose deposition [12, 15,
33]. Another concern regarding the existent research was
that the ignorance of the radiobiological difference in
different structures or the different key features make dose
distribution acceptable or unacceptable in clinic. For exam-
ple, for an organ like the spinal cord, the maximum dose
was considered to have the highest priority.

In our previously published works [12, 13], a multilayer
gated recurrent unit-based recurrent neural network (GRU-
RNN) was established to predict the DVHs for NPC
treatment planning using the DVHs generated by the
nonmodulated beams of different orientation. Using dosi-
metric information such as GRU-RNN inputs, the GRU-
RNN was capable of accurate DVH prediction. Similar
results were also obtained by other dosimetric information-
driven researches [11, 30, 31]. RNN and its variants, such
as the GRU-RNN used in this study, were particularly suit-
able for predicting the entire DVH. Its directionality was of
great relevance for predicting the sequential data, such as
DVH, a monotone decreasing sequence. And more impor-
tantly, compared to other models such as CNN, a great
reduction of the parameter number in RNN and its variants
indicated great potential in robust learning when applying
to small-size data. The equivalent uniform dose (EUD) was
the homogeneous dose inside an organ that has the same
radiobiological effect as the given arbitrary dose distribution
[34]. On the basis of our previous work, an EUD-based loss
function was introduced in this study. By considering biolog-
ical characters in different structures, the new method could
pay more attention to the key dosimetric features such as

maximum dose for the spinal cord and make the predicted
DVH of more clinical value.

Aiming to improve the DVH prediction accuracy for
NPC RT treatment planning, we proposed an improved
approach in this work, which trained every OAR separately
using a simplified GRU-RNN model with an equivalent
uniform dose- (EUD-) based loss function, and study the fea-
sibility of applying the proposed method to relatively small-
size patient data.

2. Materials and Method

2.1. Data Acquisition. 80 NPC volumetric modulated arc
therapy (VMAT) plans in recent two years with local IRB’s
approval were retrospectively and randomly selected for this
study. Of these original plans, 50 were randomly selected for
training and the remaining were used for testing. Following
the ICRU-83 report, radiation oncologists delineated the
gross tumor volume of the nasopharynx (GTVnx), the gross
tumor volume of the metastatic lymph node (GTVnd), the
clinical target volume (CTV), and the OARs in the planning
CT. A margin of 3mm was applied around the GTVnx,
GTVnd, and CTV to create the planning GTVnx (PGTVnx),
the planning GTVnd (PGTVnd), and the planning CTV
(PTV), respectively. All the original VMAT plans were cre-
ated using the Eclipse treatment planning system (V13.5,
Varian Medical Systems, USA) with ≥95% of PGTVnx
receiving the prescribed doses of 70Gy, ≥95% of PGTVnd
receiving 68Gy, and ≥95% of PTV receiving 60Gy. In this
work, the DVHs were resampled by volume bin in percentage
(1% in practice) rather than in absolute volume or dose
values, making the DVHs of equal length. The DVHs of the
nonmodulated beams were generated by a nine-field
conformal plan with multileaf collimators fitting to PTV
and normalizing 95% of PGTV dose to 70Gy. An example
of DVHs induced by nonmodulated beams and that of the
original plan from a patient’s spinal cord are shown in
Figure 1.

2.2. GRU-RNN. A single-layer GRU-RNN as shown in
Figure 2 was established using the PyTorch (Facebook,
US) framework for DVH prediction. Dv was the dose of
original plans at percent volume v as shown in Figure 1,
D′v was the predicted dose, and hv was the hidden state
at volume v. A dropout layer was inserted between GRU
and FC to randomly zero the parameters of hv with a prob-
ability of 0.5. The GRU was trained by the Adam optimizer
with the goal of minimizing the loss function by a learning
rate of 1e − 3.

2.3. Loss Function. The concept of equivalent uniform dose
(EUD) assumes that any two dose distributions are equiva-
lent if they cause the same radiobiological effect, which can
be calculated as follows [34]:

EUD = 〠
i=0

v ·Da
i

 !1/a

: ð1Þ
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Equation (2) shows that different dose values take differ-
ent weights in EUD calculation when a ≠ 1.

d EUDð Þ
d Dið Þ = EUDð Þ1−a ∗Da−1

i , ð2Þ

s Di, að Þ = Da−1
i

∑i=0D
a−1
i

: ð3Þ

sðaÞ represents the sensitivity of the dose value to the EUD
value. The loss function to be minimized in this study is
defined as equation (4) to meet the different dose require-
ments for different OARs. For example, for an OAR like the
spinal cord, the maximum dose is considered to have the

highest priority; therefore, the GRU-RNN model was indi-
vidually trained with k≫ 1.

f DVH′, DVH, k
� �

= 1
n
〠
n

p

〠
i=0

s Di, kð Þ Di′−Di

� �2
: ð4Þ

Here,DVH andDVH′ were the DVH of the original plan
and prediction. k was a positive integer and determined by
trial and error with the goal of accurately predicting both
EUD and maximum dose (only for serial OARs). The trial
and error results were shown, when 8 was used for the brain-
stem, 15 for the spinal cord, 3 and 2 for the left and right optic
nerves, respectively, and 1 for the chiasm, larynx, parotid
glands, and temporal lobes; the most accurate EUD results
(recommended by Allen Li et al. [35], a = 8was used for serial
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and 120 degrees and DVH of an original VMAT plan from a patient spinal cord.
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organs including the brainstem, spinal cord, optic nerves, and
chiasm and a = 1 was used for parallel organs including the
parotids, larynx, and temporal lobes in EUD calculation) were
obtained. A flowchart of the dosimetric information of non-
modulated beam-driven DVH prediction is shown in Figure 3.

2.4. Model Evaluation. μ ± σ was calculated to evaluate the
GRU-RNN performance:

δi =Di′−Di, ð5Þ

μ = 1
n
〠
n

i=1
δi, ð6Þ

σ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑ δi − μð Þ2

n

r
, ð7Þ

where i represents a testing patient and n is the number of
testing patients, Di ′ denotes the predicted EUD or maximum
dose, and Di denotes the result of the original plan. The
results were also compared to those obtained by our previous
work [13] to demonstrate the improvements of the new pro-
posed method in this study. Wilcoxon signed-rank tests were
employed to compare the prediction error, δi=1,2,⋯,30 , among
the 30 testing patients between the proposed method and the
previous one. Differences were considered statistically signif-
icant at p < 0:05.

3. Results

Two randomly selected testing patients’ DVH prediction
results are demonstrated in Figure 4. Though obvious differ-
ences could be seen in the deposited dose between two
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patients especially at the optic nerves and chiasm, the pre-
dicted DVHs of the two patients were still very close to the
original plans.

The correlations of the EUD and maximum dose results
between the predictions and the original plans for the 30 test
patients are plotted in Figure 5. The results of linear least
squares regression showed that the predicted EUD results
and maximum dose results of the proposed method in this
study were both in good agreement with the original plans
with correlation coefficient r = 0:976 (Figure 5(a)) and
0.968 (Figure 5(c)), respectively. The prediction results
obtained following our previous work [13] are also demon-
strated in Figures 5(b) and 5(d), and the coefficient r values

were 0.957 (Figure 5(a)) and 0.946 (Figure 5(c)). The pro-
posed method in this study has better consistency between
the predicted results and those of original plans, which could
be seen in the scatter plots and the coefficient r results
quantitatively.

Table 1 provides a summary (μ ± σ) and a comparison
(p value) over the prediction error (δi=1,2,⋯,30) of the EUD
results and maximum dose results in the 30 testing patients.
The μ ± σ results showed σ decreased by the proposed
method in almost all the OARs except for temporal lobes
for both maximum doses and EUDs. The patient-wise Wil-
coxon signed-rank tests results over δi between the proposed
and the previous method [12] showed that the proposed
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Figure 5: The correlations of the EUD (a, c) and maximum dose (b, d) results between the predictions and the original plans for the 30 test
patients.
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method could significantly improve the EUD prediction
accuracy of the brainstem, spinal cord, and temporal lobes
with p value < 0.01.

The differences between results of the original plans and
the predictions obtained by the proposed method (Prop) as
well as the previous method (Prev) were expressed with a
boxplot in Figure 6. The bottom and top of each box were
the 25th and 75th percentiles of the differences, respectively.
The distance between the bottom and top of each box was the
interquartile difference range, and the lines in the middle of
each box were the median differences. The whiskers were
lines extending above and below each box. Whiskers went
from the end of the interquartile range to the largest differ-
ence. Differences beyond the whisker length were marked
as outliers, which were more than 1.5 times the interquartile
range away from the bottom or top of the box. The proposed
method in this study as shown in Figure 6, compared to the
previous method in both maximum doses and EUDs, had
the median differences closer to 0, smaller interquartile dif-
ferences, and less outliers indicating better prediction accu-
racy and better reliability.

4. Discussion

In this study, we proposed an improved approach, which
trained every OAR separately with a simplified GRU-RNN
model and an equivalent uniform dose- (EUD-) based loss
function. As shown in Figure 5, the new proposed method
in this study improved the consistency of EUD results and
maximum dose results between the predictions and original
plans. For parallel OARs such as the larynx, parotid glands,
and temporal lobes, the k values in equation (4) were set to
1.0, making the sðDi, kÞ term ineffective. The improved pre-

diction accuracy in these OARs indicated that training differ-
ent OARs separately was helpful. In our preliminary trials, we
had also trained the GRU-RNN with k = 1 for the brainstem
and spinal cord, the EUD results of μ ± σ were 0:76 ± 2:94Gy
and 0:29 ± 2:03Gy, and the maximum dose results of μ ± σ
were 0:58 ± 3:16Gy and 0:69 ± 2:37Gy. The results showed
the sðDi, kÞ term was able to improve the prediction accuracy
of EUD and maximum dose. Excellent agreements in both
EUD values and maximum doses between the predictions
and original plans obtained by the new proposedmethod indi-
cated the application prospect in a physically and biologically
related (or a mixture of both) model for treatment planning.

The GRU-RNN models were trained from only 50 DVH
samples, which could reasonably be considered relatively
small-size data. The excellent agreements of the results
between the predictions and original plans fully demon-
strated the feasibility of applying the proposed method to
small-size patient data. As mentioned above, RNN and its
variants, such as GRU-RNN in this study, are particularly
suitable for predicting the entire DVH rather than only fixed
amount of interesting points. Compared to CNN and other
models, its directionality was of great relevance for predicting
the sequential data, such as DVH, a monotone decreasing
sequence. In this study, we trained different OARs separately
and focused the training attention on the interpatient varia-
tions in deposited dose with no need of figuring out the dif-
ferent OARs. Decreasing the training difficulty allowed the
usage of a further simplified model, a single-layer GRU-
RNN in this study, which was of great significance in small-
size sample training. In addition, due to the greatly reduced
complexity of the modeling task, the training time is less than
100 seconds for every OAR with a computer equipped with
i7-4770K CPU, Geforce GTX Titan GPU, and 16GBmemory.

Table 1: A summary (μ ± σ over δ) and a comparison (patient-wise p value over δ) of prediction accuracy in maximum doses and EUDs for
the 30 test patients. Prop was the results obtained by the proposed method, and Prev was the results obtained by the previous method.

OARs δ μ ± σ (Gy) p value
Prop Prev Prop vs. Prev

Brainstem
Dmax 0:34 ± 3:22 −0:27 ± 4:23 0.16

EUD 0:64 ± 2:61 −1:24 ± 3:11 <0.01

Spinal cord
Dmax 0:58 ± 2:29 0:79 ± 3:23 0.29

EUD 0:10 ± 1:96 −0:62 ± 2:20 <0.01

Optic chiasm
Dmax −0:33 ± 6:18 −0:50 ± 6:02 0.57

EUD 0:089 ± 4:58 0:27 ± 5:27 0.51

Optic nerves Lt
Dmax 0:68 ± 4:13 −0:52 ± 6:11 0.27

EUD 0:50 ± 3:13 −0:32 ± 4:65 0.43

Optic nerves Rt
Dmax 1:23 ± 4:70 0:02 ± 7:46 0.37

EUD 1:22 ± 3:71 0:26 ± 5:20 0.41

Larynx EUD −0:66 ± 3:46 −1:48 ± 5:59 0.22

Parotids Lt EUD 0:64 ± 2:32 0:12 ± 2:80 0.13

Parotids Rt EUD 0:24 ± 2:47 0:07 ± 2:14 0.37

Temporal lobes Lt EUD 0:17 ± 0:92 0:69 ± 0:84 <0.01
Temporal lobes Rt EUD 0:32 ± 1:07 0:73 ± 0:98 <0.01
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Different k values of 3.0 and 1.6 for optic nerves seem
unreasonable and illogical due to the similar size, the sym-
metrical distribution, and the same biological characteristics
in left\right optic nerves. A possible reason might be that
the small size of the samples was not enough to represent
the broader cases. In other words, the proposed method in
this study might be a possible way to backtrack the value of
“a” in equation (1) with the results of the existing plan data,
but the values in this study seem too data-dependent to be
repeated.

5. Conclusion

The accuracy of DVH prediction achieved in different OARs
showed the great improvements compared to the previous
works [12, 13] and the potential of this approach being
extended to other disease sites. More importantly, the
effectiveness and robustness showed by the simplified and
well-trained GRU-RNN models trained from relatively

small-size DVH samples fully demonstrated the feasibility
of applying the proposed method to small-size patient data.
In addition, excellent agreements in both EUD values and
maximum doses between the predictions and original plans
indicated the application prospect in a physical and biologi-
cally related (or a mixture of both) model for treatment
planning.

Data Availability

All datasets generated for this study are included in the
article.
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Background. Intracranial solitary fibrous tumor(SFT)/hemangiopericytoma (HPC) is an aggressive malignant tumor originating
from the intracranial vasculature. Angiomatous meningioma (AM) is a benign tumor with a good prognosis. The imaging
manifestations of the two are very similar. Thus, novel noninvasive diagnostic method is urgently needed in clinical practice.
Texture analysis and model building through machine learning may have good prospects. Aim. To evaluate whether a 3D-MRI
texture feature model could be used to differentiate malignant intracranial SFT/HPC from AM. Method. A total of 97 patients
with SFT/HPC and 95 with AM were included in this study. Patients from each group were randomly divided into the train
(70%) and test (30%) sets. ROIs were drawn along the edge of the tumor on each section of T1WI, T2WI, and contrasted T1WI
using ITK-SNAP software. The segmented image was imported into the AK software for texture feature extraction, and the 3D
ROI signal intensity histograms of T1WI, T2WI, and contrasted T1WI were automatically obtained along with all the
parameters. Modeling was performed using the language R. Confusion matrix was used to analyze the accuracy of the model.
ROC curve was constructed to assess the grading ability of the logistic regression model. Results. After Lasso dimension
reduction, 5, 9, and 7 texture features were extracted from T1WI, T2WI, and contrasted T1WI, respectively; additional 8 texture
features were extracted from the combined sequence for modeling. The ROC analyses on four models resulted in an area under
the curve (AUC) of 0.885 (sensitivity 76.1%, specificity 87.9%) for T1WI model, 0.918 (73.1%, 95.5%) for T2WI model, 0.815
(55.2%, 93.9%) for contrasted T1WI model, and 0.959 (92.5%, 84.8%) for the combined sequence model and were enough to
correctly distinguish the two groups in 71.2%, 81.4%, 69.5%, and 83.1% of cases in test set, respectively. Conclusions. The
radiological model based on texture features could be used to differentiate SFT/HPC from AM.

1. Introduction

Intracranial solitary fibrous tumor (SFT)/hemangiopericytoma
(HPC) is a rare malignant tumor originating from the intracra-
nial vasculature, which comprises only 1% of all primary
central nervous system (CNS) tumors [1]. In the past, it was

believed that intracranial SFT/HPC originates from themenin-
ges and thus was considered as a subtype of meningioma [1].
However, with the development of molecular genetics, it was
discovered that SFT/HPC originates from arachnoid cap cells
[2]. SFT/HPC is an aggressive type of neoplasma, which can
easily relapse and metastasize to extracranial tissues.
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Angiomatous meningioma (AM) is a rare World Health
Organization (WHO) grade I histological subtype of menin-
gioma with a good prognosis, accounting for 2.1% of all
meningiomas [3]. AM can be effectively cured through resec-
tion. In radiological images, SFT/HPC mimics AM that is
usually benign [3]. Therefore, preoperative identification of
both is essential.

Screening MRI is the primary method to identify
SFT/HPC and AM; yet, considering that images of both
tumors are very similar, tumor differentiation can be very
challenging. Imaging omics is aimed at maximizing the
potential of medical imaging in disease diagnosis through
high-dimensional image texture features containing patho-
physiological information [4]. Previous studies have shown
that texture analysis software can be used to segment the
tumor area on the image and perform texture analysis [4–
6]; briefly, the characteristic parameters in the image can be
extracted for differential comparison, and the tumor imaging
heterogeneity can be quantitatively analyzed to provide
unrecognizable images by the naked eye. Objective informa-
tion does not depend on the experience and subjective judg-
ment of the imaging physician and has excellent clinical
application value. So far, texture analysis has been applied
to identify intracranial tumors [5, 6], grade meningioma
[7], and for assessment and survival analysis of the therapeu-
tic response of glioma to chemotherapy [6, 8–10]. More
importantly, Kanazawa et al. [11] have suggested that mag-
netic resonance imaging texture analysis can be useful for
distinguishing SFT/HPC from meningioma, especially AM.
Still, his study has certain limitations: (1) it was a relatively
small sample size retrospective study; (2) this study analyzed
only three texture parameters.

This study adopted three-dimensional texture (3D tex-
ture) characteristics based on the overall tumor, which can
more comprehensively and objectively reflect the heteroge-
neity of the tumor. The purpose of this study was to further
improve the diagnostic levels of these two diseases by using
the texture parameters of conventional MRI sequences and
to build the models through machine learning.

2. Materials and Methods

2.1. Patient Selection. The institutional review board
approved the current study. The preoperative MRI was per-
formed on 95 patients with AM (47 males and 48 females;
mean age: 51:54 ± 11:54 years) and 97 with SFT/HPC (47
males and 50 females; mean age: 42:97 ± 14:35 years) at our
institution from May 2012 to March 2019. All MRI results
were retrospectively analyzed.

2.2. Data Acquisition. All MR images were obtained with a
3.0TMR imager (Signa HDxt; GEMedical Systems, Milwau-
kee, WI) with an eight-channel head coil. The imaging proto-
col included unenhanced axial and sagittal T1-weighted
sequences, axial and coronal T2-weighted sequences, and
contrast-enhanced axial, sagittal, and coronal T1-weighted
sequences. The scanning parameters were T1WI (TR/TE,
350msec/9msec); T2WI (TR/TE, 3,500msec/110msec);
thickness, 6.0mm; spacing, 1.0mm; FOV, 220 × 220mm;

matrix, 448 × 256; sagittal and coronal slice, 8.0mm; and
layer spacing, 2.0mm. An enhanced scan bolus Gd-DTPA
(DTPA magnetic display) was given intravenously at a
concentration of 0.1mmol/kg body weight with a flow rate
of 3ml/sec.

2.3. Image Processing. First, based on image segmentation of
the whole tumor, all T1WI, T2WI, and contrasted T1WI data
with Digital Imaging and Communication in Medicine
(DICOM) format were transferred from the picture archiving
and communication system (PACS) workstation (Centricity
PACS 3.1.1.4, GE Healthcare) to ITK-SNAP software. Two
radiologists (residents and deputy chief physicians), who were
blind to the grouping, manually selected the regions of interest
(ROIs) along the edge of the tumor parenchyma on the con-
trasted T1WI, T1WI, and T2WI images; T2WI and contrast-
enhanced T1WI were used as a reference to determine tumor
areas. The ROIs were then manually drawn along the margin
of the tumor parenchyma in each slice, with the intent to
encompass the whole tumor volume. Consequently, the ROIs
of all layers were merged into a 3D ROI (see Figure 1). Finally,
the segmented image was imported into the AK (Artificial
intelligence kit) software for texture feature extraction, and
the 3D ROI signal intensity histograms of T1WI, T2WI, and
contrasted T1WI were automatically obtained along with all
the parameters (see Figure 2).

2.4. Statistical Methods and Modeling. Modeling was per-
formed using the language R (RStudio Version 1.0.143–©
2009-2016 RStudio, Inc.). Approx. 70% of cases from each
group were classified into the train set (133 cases); AM group
(66 cases) and SFT/HPC group (67 cases) were used to estab-
lish the model. The remaining 30% were classified into the
test set (59 cases), AM group (29 cases) and SFT/HPC group
(30 cases), to verify the accuracy of the established model.

A comparison of texture features in T1WI sequences was
analyzed using independent sample t-test and Kruskal-
Wallis test; a P value < 0.05 was considered statistically sig-
nificant. Univariate logistic regression analysis (P < 0:05)
and Spearman’s correlation analysis (P ≥ 0:05 or P < 0:05, r
< 0:9) were used to screen for the parameters with high pre-
dictive power. T2WI and contrasted T1WI sequence texture
feature used the Lasso method to reduce dimensionality
and selected high-performance parameters. Parameters with
high predictive power in the three sequences were further
eliminated using the stepwise iterative method, and the
remaining high-performance parameters were fed into a
multivariate logistic regression analysis to determine an
optimal logistic regression model for tumor classification.
The confusion matrix was used to analyze the accuracy of
the model. ROC curve was constructed to assess the grading
ability of the logistic regression model.

3. Results

3.1. Establishment of T1WI, T2WI, and Contrasted T1WI
Texture Feature Models. After applying the dimension reduc-
tion and stepwise iterative method, the high-performance
parameters of the T1WI texture feature model were kurtosis
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(a) (c)

(d)(b)

Figure 1: (a) Contrasted T1WI. (b) Contrasted T1WI image generated by ITK-SNAP software to depict the ROI of the tumor. (c) 3D ROI
image of the tumor (red area) that is calculated to superimpose at all levels in the contrasted T1WImap. (d) A three-dimensional image of the
tumor.
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Figure 2: A total of 396 texture parameters extracted by AK software.
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(KU), skewness (SK), stdDeviation (ST), GLCMEntropy_
angle90_offset1 (GLCME90-1), and SmallAreaEmphasis
(SAE). The T1WI texture feature modeling formula was the
following:

f T1WIð Þ = −13:4078 + 0:3066 × KU − 1:2143 × SK
+ 0:0351 × ST − 1:1441 × GLCME90‐1
+ 23:9030 × SAE:

ð1Þ

In the train set, the ACC of the T1WI model in identify-
ing SFT/HPC and AM was 0.820, and the area under the
ROC curve (AUC) was 0.885, with the cutoff value of 0.598,
a sensitivity of 76.1%, and a specificity of 87.9%. In the test
set, ACC was 0.712 and AUC was 0.830, with a cutoff value
of 0.598, a sensitivity of 60.0%, and a specificity of 82.8%
(see Figure 3).

The high-performance parameters of the T2WI texture
feature model were GLCMEnergy_AllDirection_offset1_SD
(GLCMEA-1-SD), Inertia_angle90_offset7 (IN90-7), InverseDif-
ferenceMoment_AllDdirection_offset7_SD (IDMA-7-SD),
LongRunLowGreyLevelEmphasis_AllDirection_offset4_SD
(LRLGLEA-4-SD), LowGreyLevelRunEmphasis_AllDirection_
offset7_SD (LGLREA-7-SD), ShortRunEmphasis_angle135_off-
set1 (SRE135-1), ShortRunHighGreyLevelEmphasis_angle90_
offset4 (SRHGLE90-4), HighIntensitySmallAreaEmphasis
(HISAE), and LowIntensityLargeAreaEmphasis (LILAE). The
T2WI texture feature modeling formula was the following:

f T2WIð Þ = 9:78e2 + 1:23e8 × GLCMEA‐1‐SD − 2:81e−3

× IN90‐7 − 2:53e4 × IDMA‐7‐SD + 8:56e−1

× LRLGLEA‐4‐SD − 9:72e10 × LGLREA‐7‐SD
− 9:79e2 × SRE135‐1 − 1:38e−4 × SRHGLE90‐4
+ 9:66e−7 × HISAE + 8:04e4 × LILAE:

ð2Þ

In the train set, the ACC of T2WI model in identifying
SFT/HPC and AM was 0.842, and the area under the ROC
curve (AUC) was 0.918, with a cutoff value of 0.678, a sensitiv-
ity of 73.1%, and a specificity of 95.5%. In the test set, ACCwas
0.814 and AUC was 0.864, with a cutoff value of 0.678, a
sensitivity of 73.3%, and a specificity of 89.7% (see Figure 4).

The high-performance parameters involved in the con-
trasted T1WI texture feature model were Quantile0.025, Rela-
tiveDeviation (RD), VoxelValueSum (VVS),
ClusterProminence_AllDirection_offset1_SD (CPA-1-SD),
GLCMEntropy_AllDirection_offset7_SD (GLCMEA-1-SD),
LongRunHighGreyLevelEmphasis_AllDirection_offset1_SD
(LRHGLEA-1-SD), and ShortRunHighGreyLevelEmphasis_
AllDirection_offset4_SD (SRHGLEA-4-SD). The contrasted
T1WI texture feature model modeling formula was the
following:

f contrastedT1WIð Þ = −6:05e−1 + 2:84e−3 × Quantile0:025
+ 8:38e−1 × RD + 3:12e−8 × VVS
− 1:68e−14 × CPA‐1‐SD + 2:89e−1

× GLCMEA‐1‐SD − 1:05e−4

× LRHGLEA‐1‐SD − 1:07e−5

× SRHGLEA‐4‐SD:

ð3Þ

In the train set, the ACC of contrasted T1WI model in
identifying SFT/HPC and AM was 0.744, and the area under
the ROC curve (AUC) was 0.815, which had a cutoff value of
0.676, a sensitivity of 55.2%, and a specificity of 93.9%. In the
test set, ACC was 0.695 and AUC was 0.772, which had a cut-
off value of 0.676, a sensitivity of 60.0%, and a specificity of
79.3% (see Figure 5).

3.2. Establishment of Total Sequences Combine Texture
Feature Model. After the dimension reduction and stepwise
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Table 1: AUC, ACC, cut-off, sensitivity, and specificity of the four texture feature model.

Task ACC AUC Cut-off Sensitivity Specificity

Train (T1WI) 0.820 0.885 0.598 76.1% 87.9%

Test (T1WI) 0.712 0.830 0.598 60.0% 82.8%

Train (T2WI) 0.842 0.918 0.678 73.1% 95.5%

Test (T2WI) 0.814 0.864 0.678 73.3% 89.7%

Train (contrasted-T1WI) 0.744 0.815 0.676 55.2% 93.9%

Test (contrasted-T1WI) 0.695 0.772 0.676 60.0% 79.3%

Train (combined) 0.887 0.959 0.318 92.5% 84.8%

Test (combined) 0.831 0.939 0.318 90.0% 75.9%
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iterative method, the high-performance parameters of the
total sequences combined texture feature model were Percen-
tile95T1WI, KUT1WI, GLCMEntropy_angle90_off-
set1(GLCME90-1)T1WI, HaraEntroy(HE)contrasted T1WI,
RunLengthNonuniformity_angle90_offset7(RLNU90-1) con-

trasted T1WI, Range(RA)T2WI, ClusterProminence_angle135_
offset4(CP135-4)T2WI, and LongRunHighGreyLevelEmpha-
sis_angle45_offset4(LRHGLE45-4)T2WI. The total sequences
combined model modeling formula was the following:

f total sequences combineð Þ = −8:91 + 1:93e−2 × Percentile95 T1WIð Þ
+ 3:09e−1 × KU T1WIð Þ − 1:22

× GLCME90−1 T1WIð Þ + 2:56e1

× HE contrasted T1WIð Þ + 3:14e−5

× RLNU90−1 contrasted T1WIð Þ − 3:76e−3

× RA T2WIð Þ + 1:01e−8 × CP135‐4 T2WIð Þ
− 1:41e−4 × LRHGLE45‐4 T2WIð Þ:

ð4Þ

According to ROC analysis, the combined model used to
identify AM and SFT/HPC in the train set had an AUC of
0.959 (cutoff value = 0:318, specificity of 84.8%, and sensitiv-
ity of 92.5%), and the accuracy of the combined model was
0.887. In the test set, AUC was 0.939, with a cutoff value of
0.318, a sensitivity of 90.0%, and a specificity of 75.9%, and
the accuracy of the combined model was 0.831 (see Figure 6).

Finally, the AUC, ACC, cut-off, sensitivity, and specificity
of the four models are summarized in Table 1.

4. Discussion

Image segmentation is a critical session for the MRI images
to be used in brain tumor studies. In recent years, semiauto-
matic and fully automatic algorithms for brain tumor seg-
mentation have been developed rapidly. A study presented
a fully automatic brain tumor detection and segmentation
method using the U-Net based deep convolution network
and demonstrated that this method can provide both efficient
and robust segmentation compared to manual delineated
ground truth [12]. Soltaninejad et al. [13] proposed a super-
vised learning based method for segmentation tumour in
multimodal MRI brain images. Supervoxels were calculated
using information fusion from multimodal MRI images,
which also demonstrated promising results in the segmenta-
tion of brain tumor. Even so, there are still several opening
challenges for this task mainly due to the high variation of
brain tumors in size, shape, regularity, location, and their
heterogeneous appearance. In addition, AM and HPC/SFP
are rare diseases, and the data is relatively rare compared to
common diseases. We have certain reasons to believe that
segmentation based on big data may have certain errors.
Considering the above reasons, the segmentation was still
relied on manual delineation by human operators in this
study.

In this study, radiomics method was used to construct
four models to identify the 3D-texture features of SFT/HPC
and AM based on conventional MRI sequence images,
including the T1WI model, T2WI model, contrasted T1WI
model, and a combined sequence model. Briefly, the com-
bined sequence model showed the best performance,
followed by the T2WI model. As a noninvasive predictive
method, all four models can provide reference information
for preoperative treatment planning and patient prognosis.
Due to the relatively large number of cases, we have estab-
lished a relatively accurate MRI radiological model for preop-
erative identification of SFT/HPC and AM. To the best of our
knowledge, this is the first study that established an MRI
radiological model, which can be used to differentiate
SFT/HPC from AM.

Texture features are essential markers for intratumoral
homogeneity. Among the twenty-three texture features that
were involved in building our models, eight were
histogram-based features (KU, SK, ST, RD,VVS, RA, Quan-
tile0.025, and Percentile95), and twelve were matrix-based fea-
tures, including five GLCM features (GLCMEnergy,
GLCMEntropy, IN, IDM, and CP) and one Haralick feature
(HE). Besides, there were six GLRM features (LRHGLE,
LRLGLE, LGLRE, RLNU, SRE, and SRHGLE), and three
GLZSM features (HISAE, LILAE, SAE). Histogram-based
features are first-order statistics that primarily rely on inten-
sity information (or brightness information) within and
around the tumor. These features are used to investigate the
overall distribution of intensity information within and
around the tumor. For example, “kurtosis” is a measure of
the “tailedness” of the median distribution of image ROI,
which can be used to describe the concentration of image
brightness information. Higher kurtosis means that the mass
of the distribution is concentrated at the tail. “Skewness” rep-
resents the measure of “skewness” of the median distribution
of the image ROI and is used to describe the degree of asym-
metric distribution in the histogram. The percentile (%) of a
distribution is defined as the brightness value. IDM repre-
sents the uniformity of pixel signal strength in the image,
which can reflect the heterogeneity of tumor tissues.

Matrix-based features are second-order statistics that can
be used to analyze the complexity within the tumor and
around the tumor, changes in the hierarchy, and thickness
of the texture. For example, inertia reflects the clarity of the
image and texture groove depth. The contrast is proportional
to the texture groove; high groove values produce more clar-
ity, while small values lead to small contrast and fuzzy image.
GLCMEntropy measures the average amount of information
required to encode an image value. SRHGLE measures the
joint distribution of shorter run lengths with higher grey-
level values. Larger value leads to a more complex image
and smaller image grey value. LRLGLE measures the joint
distribution of longer-run lengths with lower grey-level
values. SRE is a measure of short lengths, with larger values
representing shorter lengths and finer textures. GLZSM is
particularly efficient to characterize the texture homogeneity,
nonperiodicity, or speckle like texture.

So far, many studies have reported the use of radiological
models based on the texture features of CT and MRI images
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for the identification/differentiation of tumors. Chen et al.
[14] found that the radiomics model based on contrast-
enhanced computed tomography (CECT) could be used for
predicting acute pancreatitis (AP) recurrence. As a quantita-
tive method, radiomics exhibits promising performance in
alerting relapsed patients to potential preventive measures.
Kang et al. [15] tested the technical feasibility, generalizabil-
ity, and diagnostic performance of a radiomics model using
ADC maps for identification of atypical primary central ner-
vous system lymphoma (PCNSL) mimicking glioblastoma.
His model showed good generalizability and improved diag-
nostic performance than single-parameter measurements in
identifying atypical PCNSL mimicking glioblastoma by pro-
viding robust high-dimensional analyses of conventional
and physiological imaging features. Furthermore, Chen and
colleagues [16] confirmed that anMRI-based combined radi-
ography nomogram can effectively predict the immune score
of HCC and help to make treatment decisions.

Our study showed that the combined sequence model was
superior to any single sequence model in differentiating
SFT/HPC from AM. T2WI sequence is the most commonly
used sequence to evaluate brain pathology and the degree of
tumor invasion. T1WI and contrasted T1WI sequences pro-
vide anatomical information, while tissue enhancement
reflects increased blood-brain barrier permeability [17]. Con-
sidering that each sequence has different functions, combining
multiple sequences may improve the accuracy in differentiat-
ing SFT/HPC from AM. Also, Tian et al. [18] verified the
superiority of radiomics features extracted by multiparameter
MRI in glioma grading and found that the combined applica-
tion of multiparameter MRI has higher classification effi-
ciency, which was consistent with our data. It is worth
noting that in the three sequences of conventional MRI, the
AUC of the radiological model based on T2WI image texture
features was higher than in the other two sequences. One
explanation for this may be that the T2WI sequence has a rel-
atively long echo time and high contrast between tissues, so
the image contains many differential texture features with dis-
criminative value. Among the related studies on breast, one
study suggested that T2WI images have a significant role in
the differentiation of benign and malignant diseases of non-
mass breast tumors [19]. Li et al. [20] confirmed that texture
features of SPAIR T2W-MRI can be classified into three differ-
ent types of single-liver lesions and may serve as an adjunct
tool for accurate diagnosis of these diseases. Surprisingly, we
also found that the contrasted T1WI model had the lowest
AUC among the three conventional MRI sequence models.
Furthermore, Zhang et al. [21] found that T1w+Gd had the
lowest AUC in all MRI sequences when evaluating the feasibil-
ity of texture analysis on preoperative conventional MRI
images in predicting early malignant transformation from
low- to high-grade glioma, which was consistent with our
results. Nevertheless, T1WI+Cwere very useful for visual eval-
uation of tumors.

5. Conclusions

The radiological model based on texture features could be
used to differentiate SFT/HPC from AM. Besides, our texture

analysis results, which extract many quantitative features
from various kinds of digital images, provide the basis for
further radiomics analyses and are a rapidly expanding
research area [22, 23].

5.1. Limitations of the Study. Limitations of this study must
be addressed. (1) This study was a retrospective study, which
means that further prospective studies of a larger range of
patients and multivariate analysis are necessary to verify
these results. (2) In this study, only the parenchymal part of
the tumor was selected for texture analysis. The peritumoral
edema area of the two tumors was not analyzed, and the MRI
signs were further combined with the texture parameters to
improve the discrimination efficiency. (3) The ROIs were
manually determined. Automatic segmentation algorithms
may facilitate the procedure. (4) The correlation between
the significance of various parameters of texture analysis
and the biological mechanism of tumors was still insufficient;
thus, further research is required to confirm our findings.
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This study aims at analyzing the separability of acute cerebral infarction lesions which were invisible in CT. 38 patients, who were
diagnosed with acute cerebral infarction and performed both CT and MRI, and 18 patients, who had no positive finding in either
CT or MRI, were enrolled. Comparative studies were performed on lesion and symmetrical regions, normal brain and symmetrical
regions, lesion, and normal brain regions. MRI was reconstructed and affine transformed to obtain accurate lesion position of CT.
Radiomic features and information gain were introduced to capture efficient features. Finally, 10 classifiers were established with
selected features to evaluate the effectiveness of analysis. 1301 radiomic features were extracted from candidate regions after
registration. For lesion and their symmetrical regions, there were 280 features with information gain greater than 0.1 and 2
features with information gain greater than 0.3. The average classification accuracy was 0.6467, and the best classification
accuracy was 0.7748. For normal brain and their symmetrical regions, there were 176 features with information gain greater
than 0.1, 1 feature with information gain greater than 0.2. The average classification accuracy was 0.5414, and the best
classification accuracy was 0.6782. For normal brain and lesions, there were 501 features with information gain greater than 0.1
and 1 feature with information gain greater than 0.5. The average classification accuracy was 0.7480, and the best classification
accuracy was 0.8694. In conclusion, the study captured significant features correlated with acute cerebral infarction and
confirmed the separability of acute lesions in CT, which established foundation for further artificial intelligence-assisted CT
diagnosis.

1. Introduction

Globally, stroke is still the leading cause of mortality and dis-
ability, and there are substantial economic costs for post-
stroke care [1–4]. In practice, CT is the preferred radiologic
modality for patients with stroke-like clinical manifestation,
since it is immediately available, cost effective, and capable
of differentiating brain disorders [5]. CT is very sensitive in
detecting intracranial hemorrhagic stroke and chronic ische-

mic stroke. CT detects acute cerebral infarction (ACI) in
terms of decrease of CT attenuation, loss of gray-white mat-
ter differentiation, sulcal effacement, and other indirect signs
[6]. In practice, radiologists often encounter poor accuracy in
diagnosing acute infarct by CT, with accuracy rate ≤67%
within 3 hours [5].

Patient, who has stroke-like symptom but CT showed
negative findings, needs MRI [7]. MR diffusion-weighted
imaging (DWI) can detect ischemic lesions within minutes
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of symptoms, which is an extremely sensitive technology and
used for estimating whether thrombolysis is appropriate.
However, MRI is still not the primary modality, because it
is time-consuming, which may lead to miss time window of
thrombolysis, costing expensive, and various contradictions
[8, 9]. Studies demonstrated that better clinical outcomes
correlated with earlier diagnosis of ischemic stroke [10].
Therefore, it is essential to improve the accuracy rate of early
recognizing ACI by CT within the time window.

In this study, we hypothesize that ACI lesions in CT are
separable by combining image registration, accurate lesion
location, radiomic feature extraction, and information gain
calculation, so as to establish a foundation for artificial
intelligence-assisted CT diagnosis.

2. Materials and Methods

2.1. Patients. This retrospective study protocol was reviewed
and approved by the institutional review board of our hospi-
tal. Written informed consent was waived.

Between February 2019 and February 2020, we retrospec-
tively studied 38 patients, who have performed both CT and
MRI and diagnosed as ACI by DWI; meanwhile, CT has no
positive finding by radiologist. Another 18 patients with no
positive finding in either CT or MRI were also enrolled as
normal control (Figure 1).

2.2. CT and MRI. CT images were acquired on a 320-MDCT
scanner (Aquilion ONE, Toshiba Medical System, Otawara,
Japan) with the following parameters: 120 kV and 300mA,

5-mm slice thickness, 512 × 512 matrix, and 0.6mm
collimation.

MRI was acquired on 1.5 T MR scanner (Sonata, Siemens
Healthcare, Erlangen, Germany) and 3.0T MR scanner
(MAGNETOM Skyra, Siemens Healthcare, Erlangen, Ger-
many). The parameters of 1.5T DWI were as follows: TR/
TE == 3800ms/84ms, slice thickness = 5mm, matrix = 128
× 128, FOV = 200 × 220, b value = 1000. The parameters of
3.0 T DWI were as follows: TR/TE == 4950ms/64ms, slice
thickness = 5mm, matrix = 164 × 164, FOV = 220 × 220, b
value = 1000.

2.3. Registration and Candidate Region Acquisition. The
pipeline of our methodology was shown in Figure 2. Since
the position and angle of CT were different from MRI for
one patient, the DWI had to be registered to CT images
(Figure 3). Herein, the CT images were not adjusted to avoid
loss of intact information. The DWI were multiple planners
reconstructed to get a consistent angle with CT and achieve
coarse registration. Then, a series of affine transformations
were performed to get a consistent position and achieve fine
registration, including translation, rotation, and scaling
transformation.

Early cerebral infarction was obvious on DWI which was
sensitive to the restricted Brownian movement of water mol-
ecules in brain tissue [5]. Immediately after registration, we
highlighted the lesion regions in DWI through adjusting
the window width and window level. Because of CT and
DWI were matched, the salient lesion position of DWI was
also used as the lesion label for CT.

91 patients were enrolled
between February 2019 and February 2020

73 performed both CT and MRI

Exlussion:
1 chronic lesion in its symmetrical region
4 sulci in its symmetrical region
4 overlap between lesion and its symmetrical region
18 serious artifacts impacted on highlighting the lesion in DWI

46 performed registration from MRI to CT

8 occured exceptions during registration

38 were eligibility for analysis

18 wer eligibility for analysis
CT and MRI has no positive findingDiagnosed as ACI by MR DWI

CT has no positive finding

Figure 1: Flowchart of the recruitment produce for this study. ACI denotes acute cerebral infarction.
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Besides delineating exact lesion regions in CT projected
from DWI, we took the midline of the brain as the axis of
symmetry and depicted the profile of symmetrical regions
(Figure 4). Instead of simply comparing the left and right
sides of the brain [11–13], the lesion regions and their sym-
metrical regions were served as candidate regions to reduce
redundant information and achieve accurate comparative
analysis.

2.4. Feature Extraction and Analysis. Unlike Lo et al. [13]
who improved a texture feature of radiomics, our scheme
was to extract features from the image firstly, and then used
machine learning techniques to learn these features, so that
the computer can mine the information of cerebral infarction
in CT according to the acquired characteristics and then
identify. Radiomic feature extraction and statistical analysis
were performed to complete the plentiful features extraction

Fe
at

ur
e e

xt
ra

ct
io

n

Candidate region Feature

Classifier

Lesion

Normal
Ca

lc
ul

at
io

n

Figure 2: The pipeline of our methodology included three steps: registration and candidate region acquisition, feature extraction and analysis,
and classifiers establishment. Firstly, CT and MRI were input to obtain lesion regions and their symmetrical regions as candidate regions
through registration. Then, features were extracted and calculated from candidate regions to capture useful features for auxiliary
separating acute cerebral infarction. Finally, the classifiers were introduced to separate candidate region with selected features.

CT

MRI

(a) (b) (c)

Figure 3: Image registration. (a) DWI was adjusted by multiple planner reconstruction to obtain a consistent angle with CT. Dotted line
denoted MRI and point solid line denoted CT. (b) CT and DWI were put together to achieve coarse registration. (c) Fine registration was
performed by a series of affine transformation including translation, rotation, and scaling.

(a) (b)

Figure 4: Candidate region acquisition. (a) The midline of the brain
was the axis of symmetry for projecting symmetric position. (b)
Depict the profile of symmetrical regions for achieving
comparative analysis. The lesion regions and their symmetrical
regions were served as candidate regions.
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and choose features which are contributing to classification,
respectively.

High-throughput feature extraction was applied to search
abundant information in CT images. In this study, we
followed the radiomic method by Lambin et al. [14] for the
extraction process, which were divided into two steps: (1)
image transformation and (2) feature calculation[15]. For
image transformation, feature map was constructed nonli-
nearly from the original images, including wavelet, square
root, and logarithm. For feature calculation, the feature was
calculated on the original and transformed images, including
first-order statistics and gray level cooccurrence matrix.

The information gain was further introduced as a statisti-
cal standard to measure the correlation between radiomic
features and ACI, which was devoted to select significative
information from a great deal features of above [16–18]. Each
feature was calculated out a value in terms of information
gain for dichotomy, lesion, or normal regions, by the equa-
tion below:

H Xið Þ = 〠
x∈Xi

− p xð Þ log p xð Þ, ð1Þ

H Y ∣ Xið Þ = 〠
x∈Xi

p xð ÞH Y ∣ Xi = xð Þ, ð2Þ

IG Xi, Yð Þ =H Yð Þ −H Y ∣ Xið Þ, ð3Þ

where Xi represents the random variable of ith feature value,
x ∈ Xi denotes the possible value of random variable Xi, pðxÞ
represents the probability when the random variable Xi takes
the value x, and Y denotes the random variable of whether or
not a cerebral infarction. IGðXi, YÞ represents the informa-
tion gain which is used to measure the reduction of uncer-
tainty of event Y after X is known.

Theoretically, the feature was effective when the value
was greater than zero, but we chose 0.1 as the minimal
threshold to prevent calculating error and sampling error
[18]. That is, features below the threshold were considered
to be insignificant. The higher the information gain value of

features, the greater contribution to remove noise and retain
significant feature information.

2.5. Classifier Establishment. The classifier was established to
demonstrate the separability of ACI. Given a candidate
region, classifier automatically distinguished lesion or nor-
mal region in terms of the selected features. The classifiers
probably make mistakes, so a classification accuracy score
was calculated when all candidate regions were performed,
which represents the separability of ACI.

In the experiment, we obtained different classification
scores with different features, respectively, which was to con-
firm the effectiveness of features under different thresholds.
We chose 10 common classifiers to obtain a reliable result,
calculated the average classification accuracy, and selected
the best classification accuracy as the final result. Each classi-
fier experiment was repeated 100 times for average, and 4-
fold cross validation was operated to get stable result.

The separation analysis was operated on ACI regions and
their symmetrical regions in CT images. In addition, to
exclude the separability of the left and right sides of the nor-
mal brain, and to explain the separability of the lesion and
normal brain at same region, we performed the same exper-
iments on the normal brain and their symmetrical normal
regions, as well as normal brain and lesion regions.

3. Results

Demographic characteristics of all the patients in this study
were shown in Table 1. For each of the 38 patients, one slice
from CT was selected, which had a prominent lesion in MRI
correspondingly. A total of 38 slices, which are 38 ACI
regions and 38 symmetric noninfarct regions, were obtained.
We extracted 1301 radiomic features from the candidate
regions; meanwhile, the information gain was calculated to
extract key information from abundant features. As shown
in Table 2, there were 280 features with information gain
greater than 0.1, which were considered to be contributory
to classify candidate regions. There were 23 features with
information gain greater than 0.2, and 2 features with infor-
mation gain greater than 0.3, which showed potential

Table 1: Demographic characteristic and multivariate logistic regression results.

Characteristic Total (n = 56) Patients with ACI (n = 38) Patients with no ACI (n = 18) ORα# (OR 95% CI)

Age∗ 64:71 ± 12:92 34:17 ± 6:52 1.458 (1.086~1.957)
Sex(y)†

Woman 24 17 (44.74) 7 (38.89) 1.000

Man 32 21 (55.26) 11 (61.11) 2.748 (0.108~69.973)
Predict value

Negative 10 4 (10.53) 6 (33.33) 1.000

Positive 46 34 (89.47) 12 (66.67) 43.530 (0.640~2960.497)
MRI Diagnosed as ACI No positive finding

CT No positive finding No positive finding
#The value of OR was obtained from binary logistic regression by adjusting αin = 0:1, and αout = 0:15. Dependent is the true value, and covariates are sex, age,
and the predicted value. All the covariates were calculated by the enter method. ∗Data aremean ± standard deviation. †Data in parentheses are percentages. ACI
denotes acute cerebral infarction.
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capability for separating lesion regions and their symmetric
noninfarct regions. The related features were used to build
up 10 classifiers to verify the feature effectiveness in candidate
regions. The average classification accuracy was 0.6467, and
the best classification accuracy was 0.7748 (Table 3).

For each of the 18 patients with no positive finding in
either CT or MRI, three slices from CT were selected to aug-
ment data, which depicted by projecting the lesion labels
obtained from 38 aforementioned MRI. A total of 54 slices,
which are 54 normal brain tissue regions and 54 symmetrical
regions, were obtained. As shown in Table 2, there were only
176 features with information gain greater than 0.1, 1 feature
with information gain greater than 0.2, and no feature with
information gain greater than 0.3. Although the best classifi-
cation accuracy was 0.6782, from the overall classification
results, the classification results were generally low and the
average classification accuracy was only 0.5414 (Table 3).

For each of the 56 aforementioned patients, one slice
from CT were selected. A total of 56 slices, which are 38
lesion regions and 18 normal brain tissue regions, were
obtained. As shown in Table 2, there were 501 features with
information gain greater than 0.1, 126 features with informa-
tion gain greater than 0.2, 51 features with information gain
greater than 0.3, 18 features with information gain greater
than 0.4, and 1 feature with information gain greater than
0.5. The average classification accuracy was 0.7480, and the
best classification accuracy was as high as 0.8694 (Table 3).

Besides, feature map that features reflected on candidate
regions were shown to illustrate the effectiveness of feature

analysis (Figure 5). We visualized one of the first three fea-
tures ordered by information gain on the candidate region.
Among them, it is a clear distinction on lesion and its sym-
metrical region, which explains the separability of ACI. The
left and right sides of the normal region showed no obvious
difference, which confirmed the inseparability of the left
and right sides of the normal brain. The difference between
lesion and normal region was also prominent, which indi-
cated separability of lesion and normal region.

4. Discussion

Sensitively recognizing acute cerebral infarction is a valu-
able research for clinical treatment, within effective throm-
bolytic time. To the best of our knowledge, the finding of
analyzing the separability of acute cerebral infarction
lesions in CT based on image registration, precision posi-
tioning, radiomic feature extraction, and information gain
calculation has not previously been well established in
the literature. The overall concept of the algorithm was
to extract and analyze the feature of regions where there
is cerebral infarction, and more importantly, to separate
lesions from normal regions.

Accurately recognizing acute ischemic stroke by CT
remains challenging, due to the low accuracy of radiologist
diagnosis. A lot of studies focused on prior knowledge,
including decrease of CT attenuation, loss of gray-white mat-
ter differentiation, and sulcal effacement. However, 1/3 cases
were missed since the sensitivity and specificity were low [5].

Table 2: Feature number under different thresholds of information gain on candidate region.

Candidate region
Threshold

0.0 0.1 0.2 0.3 0.4 0.5

Feature number of lesions and their symmetrical regions 1292 280 23 2 0 0

Feature number of normal and their symmetrical regions 1279 176 1 0 0 0

Feature number of lesions and normal regions 1295 501 126 51 18 1

Table 3: The classification accuracy result with selected features under different thresholds of information gain on candidate region.

Classifier
Lesions and their symmetrical

regions threshold

Normal and their
symmetrical regions

threshold

Lesions and normal
regions threshold

0.0 0.1 0.2 0.3 0.0 0.1 0.2 0.0 0.1 0.2 0.3 0.4 0.5

Multilayer perceptron 0.4902 0.4974 0.5694 0.7269 0.5061 0.4983 0.4434 0.5476 0.5242 0.5291 0.5292 0.5125 0.7185

Decision tree 0.5980 0.6138 0.6603 0.6655 0.5941 0.6333 0.5841 0.7155 0.7423 0.7782 0.7742 0.7982 0.8230

Random forest 0.5897 0.6452 0.7036 0.7206 0.6055 0.6782 0.5775 0.7700 0.7932 0.8401 0.8260 0.8162 0.8360

Adaboost 0.5850 0.6263 0.6811 0.6818 0.5946 0.6651 0.6001 0.7071 0.7276 0.7671 0.7862 0.7748 0.8291

Gradient boosting 0.5977 0.6346 0.6838 0.7463 0.5931 0.6505 0.5950 0.7517 0.7564 0.7903 0.7978 0.8017 0.8694

Bagging 0.6217 0.6567 0.6973 0.7249 0.6065 0.6529 0.5745 0.7530 0.7767 0.8169 0.8282 0.8144 0.8307

Bernoulli naive Bayes 0.5100 0.6164 0.6724 0.7105 0.4413 0.5175 0.4318 0.6557 0.6748 0.7253 0.7594 0.7566 0.6785

Gaussian naive Bayes 0.4743 0.6203 0.6661 0.6984 0.4801 0.4574 0.4439 0.3737 0.3935 0.8098 0.7842 0.8323 0.8605

Support vector machine 0.4184 0.4223 0.6903 0.4211 0.4382 0.4299 0.4326 0.6785 0.6785 0.6650 0.8123 0.7942 0.6785

K-nearest neighbor 0.2686 0.4563 0.7188 0.7748 0.2690 0.3492 0.6137 0.5812 0.5585 0.6437 0.8153 0.8010 0.8673

Average
0.5789 0.6743 0.6870 0.5532 0.5296 0.6625 0.7365 0.7712 0.7701 0.7991

0.6467 0.5414 0.7480
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On the other hand, acute ischemic stroke is inconspicuous,
more complex features including texture, need to be intro-
duced [19, 20]. Later, Rajini [11] proposed a method to sep-
arate ischemic stroke regions from normal tissues in CT,
which used segmentation, midline offset, and image features.
Nevertheless, most of these studies involved acute lesions
that were already visible. Instead, Chawla [12] investigated
a two-stage classification system by comparing the image
intensity differences between the two hemispheres, which
can detect hemorrhagic and ischemic stroke. Recently, a pre-
dictive model based on Ranklet features to distinguish
strokes and normal tissues was proposed, which achieved sig-
nificantly high accuracy 81% [13]. Compared with MRI, it is
still a gap which is not sufficient for practice, and artificial
intelligence-assisted CT diagnosis needs more robust fea-
tures. As Petrou [21] suggested, a few features, which are
not sensitive to human vision and tend to be ignored, are
needed to be excavated. Therefore, it is potential for improv-
ing the accuracy of detection ACI by exploring other features
besides texture.

Lesion delineation is the primary premise in medical
image analysis. However, defining the entire lesion bound-
aries in CT might be complicated because of the invisible of
lesion. The next practical way is that ischemic tissues can
be highlighted by comparing the left and right sides, since
inherent anatomical structures in the human brain are sym-
metric [22, 23]. Nevertheless, it is unreliable by simply com-
paring both sides of the brain especially the lesion size was
small because of normal brain tissue overwhelming the char-
acteristic features from small lesion.

In order to solve the conundrum of candidate region
acquisition and feature quantity insufficiency, we matched
exact lesion regions from DWI to CT images. The exact
lesion regions and their symmetrical regions served as candi-
date regions for imaging feature extraction. Inspired by
Lambin et al. [14] who extracted a large number of radiomic
features from medical images and used statistical analysis to
identify features that could characterize disease, we extracted
1301 radiomic features through image transformation and
feature extraction. Note that we do not claim any novelty
in the extraction design. Instead, our contribution lies in
the essence of that constructing more complex feature is
necessary for selecting certain features which contribute to
classification in the next step. Since not all features were

effective, the information gain was further introduced as a
standard to measure the correlation between features and
ACI, which is according to the principle of feature distinction
and independence in mathematical description [16–18]. Fur-
thermore, machine learning is often used as a means to evalu-
ate radiomic analysis [24–26]. Hence, 10 classifiers were
established with selected features to verify the effectiveness.

The sufficient experimental data showed differences
between the cerebral infarction and their symmetrical non-
infarct regions, since the effective features extracted had
great potential in classify lesions and their symmetrical
regions. Simultaneously, to rule out these separable differ-
ences probably coming from the inherently separable
between the left and right sides of the normal brain, we oper-
ated on normal brain tissue and their symmetrical regions.
The results confirmed that the left and right sides of the nor-
mal brain tissues were inseparable. According to effective
features achieved astounding performance in classify lesion
regions and same position of another normal brain tissue,
the lesions which were separable from normal tissue in CT
were further confirmed. More importantly, the classification
results proved the necessity and effectiveness of feature
extraction and screening.

Some limitations are noteworthy in the current study.
We only included 18 patients performed head CT with no
positive finding. They were younger compared to 38 patients
performed with both CT and MRI and diagnosed as ACI by
DWI, since it is difficult to select normal brain tissue in the
elderly. Besides, the size of our population might be consid-
ered small; further studies that include a larger population
are needed to strengthen the statistical power of these
investigations.

5. Conclusion

This study analyzed the separability of acute cerebral
infarction lesions in CT, which facilitates CT diagnosis
directly. Furthermore, the results of the study established
a theoretical foundation for artificial intelligence-assisted
CT diagnosis, which will bring potential benefits for acute
cerebral infarction patients: shortening the waiting time of
thrombolysis, saving the cost of examination, and improv-
ing the prognosis.
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Figure 5: Feature map of (a) lesion region (left) and its symmetric region (right) showed separable by calculating short-run low gray-level
emphasis on the square transformed images, (b) normal region (left) and its symmetric region (right) showed inseparable by calculating
run entropy on the wavelet transformed images, and (c) lesion region (left) and same position of normal region (right) showed separable
by calculating 10th percentile on the wavelet transformed images.
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Cross-modality medical image synthesis between magnetic resonance (MR) images and computed tomography (CT) images
has attracted increasing attention in many medical imaging area. Many deep learning methods have been used to generate
pseudo-MR/CT images from counterpart modality images. In this study, we used U-Net and Cycle-Consistent Adversarial
Networks (CycleGAN), which were typical networks of supervised and unsupervised deep learning methods, respectively, to
transform MR/CT images to their counterpart modality. Experimental results show that synthetic images predicted by the
proposed U-Net method got lower mean absolute error (MAE), higher structural similarity index (SSIM), and peak signal-to-noise
ratio (PSNR) in both directions of CT/MR synthesis, especially in synthetic CT image generation. Though synthetic images by the
U-Net method has less contrast information than those by the CycleGAN method, the pixel value profile tendency of the synthetic
images by the U-Net method is closer to the ground truth images. This work demonstrated that supervised deep learning method
outperforms unsupervised deep learning method in accuracy for medical tasks of MR/CT synthesis.

1. Introduction

Cross-modality medical image synthesis between magnetic
resonance (MR) images and computed tomography (CT)
images could benefit medical procedures in many ways. As
a multiparameter imaging modality, magnetic resonance
imaging (MRI) provides a wide range of image contrast
mechanisms without ionizing radiation exposure, while CT
images outperform MR images in acquisition time and res-
olution of bone structure. CT is also related with electron
density which is critical for PET-CT attenuation correction
and radiotherapy treatment planning [1]. Generating syn-
thetic CT (sCT) images from MR images makes it possible
to do MR-based attenuation correction in PET-MR system
[2–6] and radiation dose calculation in MRI-guided radio-
therapy planning [7–9]. Synthesizing MR images from CT

images can enlarge the datasets for MR segmentation task
and thus improve the accuracy of segmentation [10].

In recent years, there have been many efforts to work
on medical image synthesis between MR and CT images.
Among all these methods, deep learning method exhibited
superior ability of learning a nonlinear mapping from one
image domain to another image domain. It can be classi-
fied into two categories: supervised and unsupervised deep
learning methods. Supervised deep learning methods
required paired images for model training. In the MR/CT
synthesis task, MR and CT images have to be well-
registered at first and then used as inputs and corresponding
labels for the neural network model to learn an end-to-end
mapping. Nie et al. [11] used three-dimensional paired
MR/CT image patches to train a three-layer fully convolu-
tional network for estimating CT images from MR images.
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Other researchers [4, 5, 12–15] have trained deeper network
for MR-based CT image prediction. However, as for medical
image dataset, it is not that easy to get paired MR and CT
images. It may take a long time span to collect patients who
are scanned by both MR and CT scanners. Registration of
certain accuracy between MR and CT images are also neces-
sary to make paired MR-CT dataset.

Unsupervised deep learning methods enabled the possi-
bility of using unpaired images for image-to-image transla-
tion [16–20]. It was first proposed for natural image
synthesis and now has been implemented by many
researchers for medical image synthesis [10, 21–24]. Chart-
sias et al. [10] demonstrate the application of CycleGAN in
synthesizing cardiac MR images from CT images, using MR
and CT images of different patients. Nie et al. [21] synthe-
sized MR images from CT images with a deep convolutional
adversarial network. Since there are plenty of unpaired med-
ical images, the available datasets could be easily enlarged.

Unlike natural images, accuracy is highly emphasized
in medical images. In this paper, we aim to compare the
accuracy of supervised and unsupervised learning-based
image synthesis methods for pseudo-MR/CT generation
tasks. Two typical networks of U-Net [25] and CycleGAN
[17] were introduced as representatives of supervised and
unsupervised learning methods, respectively. Mean absolute
error (MAE), structural similarity index (SSIM), and peak
signal-to-noise ratio (PSNR) of the synthetic results were
calculated to evaluate their performance quantitatively. More
detailed comparisons and discussions about the advantage
and disadvantage of these methods are included in Results
and Discussion.

2. Materials and Methods

2.1. Neural Network Models. In our experiments of pseudo-
MR/CT generation tasks, U-Net and CycleGAN were used
as the typical representative network of supervised and unsu-
pervised deep learning methods, respectively.

U-Net has made a great achievement in segmentation
tasks [25–29]. The advantage of U-Net is that it could use
very few images to make a good performance. In this study,
we adapted U-Net to an end-to-end image synthesis task.

The basic architecture of U-Net consists of a contracting
part to capture features and a symmetric expanding part to
enable precise localization. As shown in Figure 1, we added
LeakyReLU [30, 31] as activation operation before convolu-
tion operation in the contracting part of the network. Activa-
tion operation of LeakyReLU was replaced with ReLU [32] in
the expanding part. Batch normalization [33] was introduced
to U-Net to enable faster and more stable training. In
Figure 1, the number of channels is denoted on top of each
of the convolution operation, and the size of feature maps
is signed in the parentheses.

In the medical image synthesis task, input image and
its corresponding label were fed to the proposed U-Net
to train and learn an end-to-end nonlinear mapping
between them. Figure 1 illustrated the MR-to-CT synthesis
using U-Net architecture, which takes MR images as input
and CT images as label to train a synthetic CT generating

model. On the contrary, when we use CT images as input
and MR images as labels, U-Net could be trained as a syn-
thetic MR-predicting model. The loss function used in the
proposed U-Net is

LU‐Net = Ex, y~P̂data f xð Þ − yk k1
� � ð1Þ

CycleGAN [17] which is proposed by Zhu et al. could
be seen as an updated version of generative adversarial
networks (GAN) [16]. GAN methods can learn a nonlinear
mapping from input image domain to target image domain
by adversarial training. CycleGAN introduced the idea of
cycle consistency to general GAN methods. Cycle consis-
tency adds restriction that the generated pseudoimage in
target domain should be able to be transformed back to the
original input image.

We used the CycleGAN architecture from Zhu et al. [17]
for our medical image synthesis task. It takes unpaired MR
and CT images as inputs to learn nonlinear mappings
between these two image modalities. As illustrated in
Figure 2, the CycleGAN architecture has two cycles, forward
cycle and backward cycle. The forward cycle consists of three
networks: two generative networks of G and F and one
discriminator of DCT. The backward cycle uses the same gen-
erative networks of F and G and a counterpart discriminator
of DMR .

In the forward cycle, networkGwas used to generate syn-
thetic CT (sCT) from input MR images, while network F
generated synthetic MR (sMR) from network G-generated
sCT images. Network DCT discriminates whether the gener-
ated sCT image is real CT or fake. The backward cycle works
just the opposite way. Network F took CT images as input
images and generated sMR; then, network G synthesized
sCT from the F-generated sMR images. Network DMR was
used to distinguish whether the sMR image is real MR or
fake.

The adversarial losses of CycleGAN are as follows:

LGAN_G_MRtoCT = ECT~Pdata CTð Þ log DCT CTð Þð Þk k1
� �

+ EMR~Pdata MRð Þ log 1 − DCT G MRð Þð Þð Þ½ �k k1
� �

,

LGAN_F_CTtoMR = EMR~Pdata MRð Þ log DMR MRð Þð Þk k1
� �

+ ECT~Pdata CTð Þ log 1 − DMR F CTð Þð Þð Þ½ �k k1
� �

:

ð2Þ

The cycle-consistency loss consists of forward cycle loss
Lforward_cyc and the backward cycle loss Lbackward_cyc. It is rep-
resented as follows:

Lforward_cyc = EMR~Pdata MRð Þ F G MRð Þð Þ −MRð Þk k1
� �

,

Lbackward_cyc = ECT~Pdata CTð Þ G F CTð Þð Þ − CTð Þk k1
� �

,

LCycle−consistency = Lforward_cyc + Lbackward_cyc:

ð3Þ
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Then, we have the full objective as the below equation:

LCycleGAN = LGAN_G_MRtoCT + LGAN_F_CTtoMR + λLCycle−consistency,

ð4Þ

where λ is the weight of the objectives of cycle consistency.

2.2. Cross-Modality MR/CT Image Synthesis and Evaluation.
We used PyTorch to implement the proposed U-Net and
CycleGAN. Both the networks were trained for bidirectional
image synthesis, which includes learning a MR-to-CT model
for generating synthetic CT images from MR images and a
CT-to-MR model for generating synthetic MR images from
CT images.

U-Net and CycleGAN used similar parameters for train-
ing nonlinear mapping models between MRI/CT images.
Adam optimizer was adopted for both the networks. The
batch size was set to 1. Both networks were trained for 200
epochs, with fixed learning rate for the first 100 epochs.

The learning rate decreased linearly to 0 for the following
100 epochs.

Whole 2D slices of axial medical images with size of
256 ∗ 256 pixels were used as inputs. During the training
process, the images would be padded to 286 ∗ 286 pixels
and then random cropped to 256 ∗ 256 for data augmenta-
tion. While U-Net should utilize paired MR and CT datasets
for training nonlinear mapping, CycleGAN can take use of
unpaired MR and CT images as inputs for both the forward
and backward cycles in training procedure. As for the Cycle-
GAN method, we randomly shuffled the MR image input
sequences and CT image input sequences in the paired data-
sets to make the input MR and CT slices unpaired. The MRI
input sequence in unpaired datasets were not the same as that
in paired datasets.

Three metrics were used to quantitatively characterize
the accuracy of the prediction of synthetic images compared
with the ground truth images. The mean absolute error
(MAE) measures the discrepancies by voxels. Structural sim-
ilarity index (SSIM) [34] quantifies the similarities in a whole
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Figure 1: Architecture of proposed U-Net for image synthesis.
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image scale. Peak signal-noise-ratio (PSNR) assesses the
quality of prediction.

These evaluation metrics are expressed as follows:

MAE =
1

H ∗W
〠
H

i=1
〠
W

j=1
X i, jð Þ − Y i, jð Þj j,

SSIM = 2μxμy + c1
� �

2σxy + c2
� �

/ μ2x + μ2y + c1
� �

� σ2x + σ2y + c2
� �

,

c1 = K1Lð Þ2, c2 = K2Lð Þ2,

PSNR = 10 log10 L/MSEð Þ, MSE =
1

H ∗W
〠
H

i=1
〠
W

j=1
X i, jð Þ − Y i, jð Þð Þ2,

ð5Þ

where H and W are the height and width of the images,
respectively. X is the ground truth images, and Y is the pre-
dicted synthetic images. μx and μy are the average values of

ground truth images and synthetic images, respectively. σ2
x

and σ2y are the variance of ground truth images and syn-
thetic images, respectively. σxy represents the covariance
of ground truth images and synthetic images. L denotes

the dynamic range of the voxel values. c1 and c2 are two
variables to stabilize the division with a weak denominator.
Here, we take k1 = 0:01 and k2 = 0:03 by default.

2.3. Dataset Preparing. The datasets contain 34 patients. Each
patient has both T2-weighted MR images and CT images of
the head region. We acquired T2-weighted MR images (TR:
2500ms, TE: 123ms, 1 ∗ 1 ∗ 1mm3, 256 ∗ 256) on a 1.5T
Avanto scanner (Siemens). The CT images (120 kV,
330mA, exposure time: 500ms, 0:5 ∗ 0:5 ∗ 1mm3, 512 ∗
512) were acquired on SOMATOM Definition Flash
(Siemens).

In this experiment, CT images were resampled to a size of
256 ∗ 256 (1 ∗ 1mm2) by bicubic interpolation [35] to match
the voxel size of MR images. Binary head masks were gener-
ated by the Otsu threshold method [36] for MR and CT
images to remove unnecessary background information
around the head region.

Since the head region is mainly a rigid construction of
bone structure, we applied rigid registration to the MR and
CT images to make paired MR/CT images for the proposed
U-Net. CT images were set as a fixed volume. MR images
were set as a moving volume to register with CT images by
Elastix toolbox [37]. The paired datasets were randomly
shuffled to make an unpaired dataset for CycleGAN.

Cycle-consistency loss

Cycle-consistency loss

Input MR

Input CT

Forward cycle

Backward cycle

Synthetic CT

Synthetic CT

Synthetic MR

Synthetic MR

DMR

Real CT

Real MR

G

F

DCT

G

F

Figure 2: CycleGAN architecture for bidirection synthesis of MR and CT images. The forward cycle generated synthetic CT from input MR
by G while F translate the synthetic CT back to the MR image domain. DCT discriminate whether the generated images is real or fake CT. The
backward cycle generated synthetic MR from input CT by F while G translate the synthetic MR back to the CT image domain. DMR
discriminate whether the generated images is real or fake MR. Two cycle-consistency loss was introduced to capture the intuition that the
synthetic image should be translated back to the original image modality.
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In our medical image synthesis task, 28 patients with
4063 image pairs were randomly selected for model training.
The remaining 6 patients with 846 image pairs were used for
evaluation procedure.

3. Results and Discussion

The results of synthetic MR and synthetic CT images gener-
ated by U-Net and CycleGAN and their ground truth are
showed in Figure 3. The first column is the input images,
and the second column is ground truth images. The third
column showed the generated synthetic images predicted
from input images by the two networks. The difference
map between synthetic images and ground truth images
was calculated and showed in the fourth column.

The first two rows in Figure 3 are sCT images synthesized
by U-Net and CycleGAN, respectively. For the task of syn-
thesizing CT images from MR images, the soft tissue area is
translated from high contrast to low contrast. It could be seen
from the difference map images that the soft tissue area of
synthetic CT images by both networks is well-translated with

little error. The translation error mainly occurred in the bone
area. Their difference map demonstrates that the sCT by
CycleGAN synthesized more error than sCT by U-Net in
the bone areas.

The third and fourth rows in Figure 3 are sMR images
generated by U-Net and CycleGAN, respectively. It could
be seen that sMR by CycleGAN seems more realistic for
it has more complex contrast information than sMR by
U-Net. However, the difference map images illustrated that
the CycleGAN method generated much more error than
U-Net does. The abundant image contrast information in
sMR by CycleGAN may be false and unnecessary.

In synthesizing CT tasks, the difference between syn-
thetic images and ground truth mainly occurs in the bone
area. But in synthesizing MR tasks, the error is evenly distrib-
uted in the whole head region. It means synthesizing high
contrast images of MR from low contrast image domain of
CT is tougher than its reverse synthesizing direction.

To compare the image details, 1D profiles of pixel inten-
sity were also plotted. Figure 4 shows the 1D profiles passing
through the short red lines and long blue lines as indicated in

(a)

(b)

(c)

(d)

Figure 3: (a–d) From left to right: the 4 columns are input images, ground truth images, synthetic images, and the difference maps. sCT
results generated by U-Net (a) and CycleGAN (b), respectively; sMR results by U-Net (c) and CycleGAN (d), respectively.
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the corresponding images in the first row. The red line is
overlapped with the blue lines. The 1D profile in the second
row of Figure 4 demonstrates pixel intensities of the long blue
lines. The 1D profiles in the third row are the pixel intensities
of the short red lines of 20 pixels, which shows close-ups of
part of the long blue lines’ 1D profile.

In the profiles, the red curve indicates pixel intensities of
ground truth CT or MR. The blue curve represented for U-
Net and the green curve for CycleGAN. It could be clearly
seen in Figure 4(a) that the blue curve is close to the red
curve, while some of the peaks of the green curve deviated
from the red curve to an opposite direction. It means that
the tendency of 1D profiles in sCT by U-Net was closer to
the ground truth CT, while the CycleGAN method tends to
generate fake contrast information in sCT images.

The profile in Figure 4(b) shows that the blue curve
vibrated less from the red curve. Some peaks of the green
curve deviated more from the red curve. It could be seen in
the close-up 1D profile that some peaks of the green curve
are biased to the opposite from the red curve, while the ten-
dency of the blue cure seems like a smoothened or flattened

red curve. It means that the pixel value of sMR by U-Net
was closer to the ground truth but may lack contrast details.
The pixel value of sMR by CycleGAN exhibits more devia-
tion from the ground truth along the profile whereas the ten-
dency may be false or exaggerated.

The quantitative metrics have been calculated for com-
parison. Figure 5 shows the MAE of sCT and sMR for each
of the 6 patients in the evaluation datasets and the average
result. It is obvious that the U-Net method generated lower
MAE either in sCT image generation or sMR image genera-
tion for all the patients. This also demonstrates the robust
performance of the U-Net method in bidirection MR/CT
image translation tasks.

Figures 5(a) and 5(b) show that the deviations of the
MAE between the U-Net and CycleGAN method for sMR
images of all the 6 patients are not as significant as those
for sCT images. In Figure 3, the difference map of sMR indi-
cated that the main predicted errors are evenly distributed in
the whole head region, while the main error of sCT mainly
occurs mainly in the bone structure. This could be inter-
preted that generating MR images of high soft tissue contrast
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Figure 4: Comparison of 1D profiles of pixel intensity passing through the short red lines and long blue lines as indicated in the images: (a)
1D profile and its close-up marked by the horizontal lines in ground truth CT, U-Net sCT, and CycleGAN sCT images; (b) 1D profile and its
close-up marked by the horizontal lines in ground truth MR, U-Net sMR, and CycleGAN sMR images.
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from CT images of low soft tissue contrast is much complex
than the inverse direction synthesis of generating CT from
MR images.

Table 1 shows the overall statistics of three quantitative
metrics for sCT by both the U-Net and CycleGAN methods.
The SSIM values indicate that the sCT images by both
methods have fairly high similarity with the ground truth
CT images. The U-Net method outperformed the CycleGAN
method with a much lower MAE of 65.36HU, a higher SSIM
of 0.972, and a higher PSNR of 28.84 dB. The average sCT
MAE deviation between the two methods is nearly 30HU.

Table 2 shows the overall statistics of three quantitative
metrics for sMR images by the U-Net method and Cycle-
GAN method. The U-Net method outperformed the Cycle-
GAN method with a lower MAE of 73.43HU, a higher
SSIM of 0.946, and a higher PSNR of 32.35 dB.

The qualitative and quantitative results demonstrate that
the proposed U-Net, a typical supervised learning method,
outperforms CycleGAN, a representative advanced unsuper-
vised learning method, in synthesis accuracy of medical
image translation task. Since medical images highly value
accuracy for the purpose of disease diagnosing, clinical treat-
ment, and therapeutic effect evaluation, the supervised learn-
ing method is more recommended in medical practice.

Nevertheless, the success of supervised learning cannot
do without well-registered image pairs. The performance of
the trained model also depends on the registration accuracy
of the paired images. Unlike natural images, paired medical
images are not that easy to get. It would take a long time span
to collect enough patients who need to be scanned for both
MR and CT images at the same time. It is well-known that
big amount of datasets could greatly improve the perfor-
mance of the deep learning method. Though it outperforms
the unsupervised learning method, the limit of dataset vol-

ume may constrain the further improvement of the super-
vised learning method in medical image synthesis tasks.

From the experiments discussed above, the image synthe-
sis by using unsupervised learning methods still has a long
way to go for practical application in clinic due to their rela-
tively low accuracy. But still, the unsupervised learning
method could benefit when there is lack of paired medical
image datasets. The good news is that there are abundant
easy-to-obtain retrospective unpaired MR and CT images
for the unsupervised learning method to take advantage of.
No registration is needed.

Our experiments show that when the same datasets were
taken as inputs, the unsupervised learning method got infe-
rior quality in the synthesis accuracy for medical image
translation. But nonetheless, if the dataset is large enough,
it could be expected that the performance of the unsuper-
vised learning method would be improved to a certain
acceptable extent in clinical practice.

4. Conclusions

Cross-modality medical image synthesis between MR and
CT images could benefit a lot from the fast growing of deep
learning methods. In this paper, we compared different deep
learning-based image synthesis methods for pseudo-MR/CT
generation, including the unsupervised learning method of
CycleGAN and supervised learning methods of the proposed
U-Net. Synthetic images produced by the CycleGANmethod
contain more but fake contrast information in the whole
image scale. Though the proposed U-Net method blurred
the generated pseudoimages, its pixel value profile tendency
is basically close to the ground truth images. The quantitative
results also indicate that the U-Net method outperformed the
CycleGANmethod, especially in synthesizing CT image task.

Table 1: Quantitative evaluation results between ground truth CT
images and sCT images: MAE, SSIM, and PSNR.

Model MAE ± SD (HU) SSIM ± SD PSNR ± SD (dB)

U-Net 65:36 ± 4:08 0:972 ± 0:004 28:84 ± 0:57

CycleGAN 93:95 ± 5:89 0:955 ± 0:007 26:32 ± 0:55

Table 2: Quantitative evaluation results between ground truth MR
images and sMR images: MAE, SSIM, and PSNR.

Model MAE ± SD (HU) SSIM ± SD PSNR ± SD (dB)

U-Net 73:43 ± 9:16 0:946 ± 0:004 32:35 ± 0:78

CycleGAN 88:71 ± 10:04 0:924 ± 0:003 30:79 ± 0:73
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Figure 5: (a) MAE of sMR images for all the 6 patients in test set and their average value. (b) MAE of sCT images generated for all the 6
patients in test set and their average value. Both the blue columns denoted the U-Net method, and the red columns represented the
CycleGAN method.
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As accuracy is highly demanded in medical procedures, we
recommend the supervised method such as the proposed
U-Net in cross-modality medical image synthesis at present
clinical practice.
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The identification of profiled cancer-related genes plays an essential role in cancer diagnosis and treatment. Based on literature
research, the classification of genetic mutations continues to be done manually nowadays. Manual classification of genetic
mutations is pathologist-dependent, subjective, and time-consuming. To improve the accuracy of clinical interpretation,
scientists have proposed computational-based approaches for automatic analysis of mutations with the advent of next-
generation sequencing technologies. Nevertheless, some challenges, such as multiple classifications, the complexity of texts,
redundant descriptions, and inconsistent interpretation, have limited the development of algorithms. To overcome these
difficulties, we have adapted a deep learning method named Bidirectional Encoder Representations from Transformers
(BERT) to classify genetic mutations based on text evidence from an annotated database. During the training, three
challenging features such as the extreme length of texts, biased data presentation, and high repeatability were addressed.
Finally, the BERT+abstract demonstrates satisfactory results with 0.80 logarithmic loss, 0.6837 recall, and 0.705 F-measure. It
is feasible for BERT to classify the genomic mutation text within literature-based datasets. Consequently, BERT is a practical
tool for facilitating and significantly speeding up cancer research towards tumor progression, diagnosis, and the design of
more precise and effective treatments.

1. Introduction

Nowadays, genomic, transcriptomic, and epigenomic stud-
ies have been benefited from the development of inexpen-
sive next-generation sequencing technologies, which play
essential roles in exploring tumor biology [1–3]. Tumors
usually possess heterogeneities, and the genomic profiling
of tumors normally contains various types of genetic
mutations [4–7]. However, only a small proportion of
mutation genes are involved in boosting tumor growth,
whereas most of them are neutral and irrelevant to tumor
progression [8, 9]. Characterization and identification of
cancer driver genes are important a in clinical trials to
reveal tumor pathogenesis and facilitate diagnosis, progno-
sis, and personalized therapy [10–13]. Despite the impor-

tance of gene classification, the following analysis is
challenging due to the significant amount of manual work
for interpretating genomics, which is time-consuming,
laborious, and subjective. With the increasing availability
of electronic unstructured and semistructured data sources,
automatically categorizing documents has emerged as a
potential tool for information organization. Machine learn-
ing (ML), as a promising optimization tool, has been
widely used in credit scoring, fraud detection, retailers,
market segmentation, manufacturing, education, and
healthcare [14–18]. Hence, using ML to analyze clinical
contextual data automatically is favorable [19–21]. For
example, in 1986, Swanson first discovered the undiscov-
ered links in a large number of scientific literature [22].
Also, Marcotte et al. used Naive Bayesian classification to
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classify the literature focusing on protein-protein interac-
tion [23].

Despite the achievements traditional ML methods have
made, potential drawbacks such as low accuracy exist when
they are applied on clinical text classification. In 2018, Google
proposed that the BERT method achieved state-of-the-art
results in 11 projects, including text classification [24].
Descriptions about clinical research acadamic papers show
high similarities , which blurs the classification boundary,
increases the inconsistancy, and lows the accuracy. Conse-
quently, the advanced ML methods, such as Light Gradi-
ent Boosting Machine (LightGBM), has been proposed to
enable gene multiclassification based on complex literature
[25]. Nevertheless, these methods are limited by complex
calculations when applied to large-scale datasets, particularly
for genomic-related literature datasets that contain millions,
or billions, of annotated training examples [26, 27]. In
addition, the performances of ML are dependent on feature
extraction that requires professional knowledge and long-
term processing [28–31].

To overcome these difficulties, deep learning (DL) has
emerged to handle large-scale and complex datasets since
its performance increases with the enlargement of datasets
[32–34]. For example, the convolutional neural networks
(CNN) [35], recurrent neural networks (RNN) [36], and
their combination [37] have been applied to the sentence
classification successfully. Also, In 2018, Google proposed
that the BERT method achieved state-of-the-art results in
11 projects, including text classification.

Hence, we fine-tune the BERT model to classify mutation
effects (9 classes) using an expert-annotated oncology
knowledge base. Our BERT method is developed based
on the original BERT model and is capable of obtaining
different syntactic and semantic information. Three main
characters of training datasets including extreme length
of text entry, data imbalance, and repetitive description
are engineered during training challenges. We propose
three truncation methods including abstract+head, head
only, and head+tail to deal with extreme length of text
entry and repetitive description. Besides, data imbalance
is relieved by negative sampling. Overall, we improve the
BERT method to classify complex clinical texts, and obtain
0.8074 logarithmic loss, 0.6837 recall, and 0.705 F-measure
scores.

2. Problem Statement

The treatment of cancer is closely related to the identification
of mutant genes [38]. At present, clinicians need review and
classify each mutant gene manually according to the evi-
dence in text-based clinical literature, which is a compli-
cated, time-consuming, and error-prone method [39–42].
To solve this problem, Memorial Sloan Kettering Cancer
Center (MSKCC) has provided an expert-annotated preci-
sion oncology knowledge base with thousands of mutations
manually annotated by world-class researchers and oncolo-
gists for studying gene classification using computer-based
method [43]. On top of that, we design an artificial intelli-
gence algorithm to automatically and accurately classify

mutations for avoiding mistakes caused by manual classifica-
tion, and provide further help for cancer treatments.

In recent years, with the rise of artificial intelligence, nat-
ural language processing, which uses linguistics, computers,
mathematics, and other scientific methods to communicate
between human beings and computers, has developed rap-
idly [44–46]. Among them, text classification is one of the
most basic and critical tasks in natural language processing
[47]. Text classification is the process of associating a given
text within one or more categories according to characteris-
tics of texts (content or attributes) under a predefined classi-
fication system [48–50]. The process of text classification
mainly includes three steps. Firstly, the text is preprocessed,
then the vector representation of the text is extracted. Finally,
the classifier is trained to classify the text [48]. Text classifica-
tion can be divided into single-label text classification and
multilabel text classification according to the number of
labels to which the text belongs. The single-label text refers
to each text belonging to only one category, while multilabel
text refers to each text belonging to one or more categories
[51–53]. The calculation formula for text classification can
be defined as follows:

F D, Cð Þ = True, Falsef g: ð1Þ

In the formula, the collection D = fd1, d2,⋯dng refers to
the set of texts classified, where the ith classified text is repre-
sented by di, and n is the number of classified texts. The col-
lection C = fc1, c2,⋯,cmg is a collection of predefined
classification categories, where the jth category is represented
by cj, and m is the number of predefined categories. F is a
function representing a mapping relationship.

Currently, the most common methods for text classifica-
tion are statistical ML and DL-based methods. Statistical ML
methods usually preprocess texts in the first place, then manu-
ally extract high-dimensional sparse features. Consequently,
they use statistical ML algorithms to obtain classification
results. In 1998, Joachims first employed support for vector
machine (SVM) in text classification and achieved favorable
results [54]. In the following research, many methods based
on statistical ML are used in text classification, including Naïve
Bayes classifier [55], K-nearest Neighbor method (KNN) [56],
decision tree [57], boosting [58], and LightGBM [59]. Among
them, LightGBM is widely used in classification problems due
to its fast speed, low memory consumption, and relatively high
accuracy [60]. Although LightGBM gets good classification
results in some scenes, research related to this approach runs
basically into bottleneck due to its strong dependence on the
effectiveness of features. Also, it is time-consuming and
labor-intensive during feature extraction process.

Although the traditional statistical ML models can clas-
sify texts faster than the manual method, they require manual
feature extraction, which leads to a large amount of labor cost
and is difficult to obtain effective features [61–63]. On the
other hand, the DL methods are superior to traditional statis-
tical ML methods in terms of text feature expression and
automatic acquisition of feature expression capabilities, thus
eliminating complex manual feature engineering processes and
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reducing possible application costs [64]. As we all know, large-
scale pretraining language models have become a new driving
force for various natural language processing tasks [65]. For
example, BERT models can significantly improve model per-
formance by fine-tuning downstream tasks. Google first pro-
posed the BERT model, and it completely subverted the logic
of training word vectors before training specific tasks in natural
language processing [24]. Methods of fine-tuning the BERT
model, such as extended text preprocessing and layer adjust-
ment, have been proved to improve the results substantially
[66]. Wu et al. proposed a conditional BERT method, which
can enhance the text classification ability of original BERT
method by predicting the conditions of masked words [67].
To sum up, it is feasible to employ the fine-tuned model based
on the original BERT to classify genetic mutations.

Hence, we propose an improved BERT model with high
classification accuracy after analyzing the MSKCC mutation
gene interpretation database thoroughly. We believe this
method can be successfully applied to genetic mutation
classification. The main contributions of our work are
summarized as follows:

(1) The text description of the individual sample shows
considered lengths. There are differences in text
lengths between different categories of samples. Some
categories contain shorter words, while others con-
tain miscellaneous descriptions. Generally, texts in a
dataset range from hundreds to thousands of words
in length. However, the lengths of the gene mutation
in this paper are much longer than usual. We use the
BERT method to truncate texts and extract valuable
information in the texts using different methods, thus
avoiding adverse impacts of excessive differences in
text lengths on the results.

(2) There is a deviation of total gene number in all cate-
gories. Individual genes are unevenly distributed in
different categories. Some genes belong to five or more
groups, while others only present in two categories. To
solve the vast differences in the number of samples
between different categories in the dataset, we choose
an undersampled data processing method to balance
the data deviations between different categories.

(3) The whole dataset has a high repeated description.
Different examples belong to different categories
share the same text entry. Some categories show a
high correlation, which may lead to low accuracy.
To solve this problem, we improve the BERT model
and splice the last three layers of the initial model,
which increases the accuracy of the model and
reduces the running time.

(4) To a certain extent, we illustrate the effectiveness of
using DL in the classification of genetic clinical
texts. As the data set increases, the DL model repre-
sented by BERT will learn the characteristics of the
sample better to achieve exceptional results. In the
future, DL models will have better performances
on similar tasks.

3. Materials and Methods

3.1. Description of Datasets. MSKCC sponsored the training
and test datasets in this study for method development and
validation. For the past several years, world-class experts
have created a clinical evidence annotated precision oncology
knowledge database. The annotations contain information
about which genes are oncology clinically actionable. We
sum up three characteristics of the MSKCC datasets
mentioned below:

(i) Textual descriptions of individual samples exhibit
considerable lengths. The text lengths among differ-
ent classes show variabilities. Some of the classes
contain shorter words while other classes contain
redundant descriptions.

(ii) The overall gene numbers presented among the
whole classes show biases. The distribution of indi-
vidual genes in different classes is unequal. Some
genes belong to five classes or more, and some of
the genes only fit in two classes.

(iii) High repetitive descriptions exist in the whole data-
sets. Different samples belong to different classes
that share the same text entry. Classes demonstrate
high correlations.

3.1.1. Length of Entry Text. It is reasonable to analyze the
length of the entry text as a prior task for textual-based clas-
sification. We find that extremely long descriptions with
massive irrelevant information are correlated with samples
(Figure 1). We plot the distribution of text lengths
(Figure 2), and our datasets contain more counted words
than the normal classification datasets in reviews [68]. Con-
sequently, we examine the distribution of text lengths among
different target classes to better understand the uniformity of
datasets. Variabilities are demonstrated among different clas-
ses (Figure 3). Comparing the density of the length distribu-
tions, we divide the classes into three groups. Classes 3, 5, and
6 contain the shortest counted words; classes 1, 2, 4, and 7
exhibite medium counted words; and classes 8 and 9 show
the most counts. Overall, two features that increase the task
difficulty are attracted: considerable lengths of words and
the unequal text length distribution among different classes.

3.1.2. Analysis of the Data Distribution. Analyzing the com-
position of datasets can help us construct algorithms at an
early stage. We sum up the frequency of genes among 9 clas-
ses (Figure 4). The 9 classes correspond to mutation effects
but are annotated using numbers instead of real textural
information to avoid artificial labeling, thus improving the
reliability of our algorithms during the training. The true
information of these labels is listed in Table 1. The distribu-
tion of genes among 9 classes exhibited bias. Genes in class
7 are significantly higher than genes in classes 3, 8, and 9.

We also examin the interactions among different features
within target classes. To reduce calculations, we select the top
20 gene types to illustrate the interrelations instead of the
whole gene types (Table 2). Selected genes are sorted by
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classes (Figure 5). The distribution of genes demonstrate
huge variabilities among different classes. We find that clas-
ses 8 and 9 contain almost none of these genes, and class 3
contain a few of these genes. These distribution biases are
in accordance with our previous gene frequency summary
based on the whole gene types. Similarly, the trends in classes
1, 2, 4, and 7 correspond to our previous results. These com-
parable results indicate that the whole datasets are highly
associated with selected genes. Consequently, discriminatory
differences among classes can impede the feature learning
performances of our algorithms and low the accuracy of the
text classification.

We further explore the distribution of individual genes
within classes, which demonstrates inequitable distributions.
For instance, genes such as CDKN2A, PTEN, and TSC2 only
present in a limited number of classes (lesser than three). In
contrast, BRCA1, ERBB2, FGFR2, and RET are possessed
in the majority of classes. Compared with genes only present
in a few groups, genes that spread among classes are generally
difficult to classify because elaborate texture descriptions can
blur the classification standard. Hence, the accuracy of classi-
fications is dependent on the gene compositions. Commonly,
genes distributed in lesser classes can show more satisfactory
results.

3.1.3. Characteristics of the Datasets. Using typical genes as
samples, we find that these typical genes presented in classes
demonstrated variabilities. To better recognize these biases
and complete potential influences behind them, we conduct
a statistical analysis of the whole datasets from the text entry
aspects. We find that different samples share the same text
entries after extracting common words. The highly repetitive
descriptions increase the difficulties of classification, espe-
cially when samples in different classes share the same
sketches. The worst scenario is the fact that samples belong
to different classes that have the same name, but other clue
information is missing. For example, five possible mutations
of gene BRCA1, the mutation P1749R, M1775R, Y1853X,
5382insC, and Δ1751, may belong to different classes, but
their descriptions are close, even in the same sentence. Simi-
larly, two mutations of EGFR, such as Del 19 and L858R, also
show in pairs (Figure 1). Hence, we can assume that it is
tough to categorize the samples into correct classes by relying
on the name of mutations with limited or without other
valuable information.

Also, class-dependent word similarities are evaluated
using full word lists (Figure 6). Correlation coefficients exhib-
ited high connections (higher than 60%) between classes.
Among them, classes 2 and 7 and classes 1 and 4 demonstrate
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Figure 2: Distribution of the text entry lengths.

BRCA1 || interestingly, BRCA1-associated cancers have an altered spectrum of p53

P1749R, M1775R, Y1853X, 
5382insC, and 1751) that contain single amino acid mutations or short deletions (including 
removal of only the last 11 amino acids in Y1853X) within the C-terminal tandem BRCT 
domains shifted BRCA1 from the nucleus to the cytoplasm (Figure 1).

EGFR || we have conducted an analysis of EGFR mutations in glioblastoma by sequencing 
cDNAs that represent the entire EGFR coding region for each member of a series of tumors 

tumors exhibited common mutations, i.e., Del 19 (40%) or L858R (47%).

KRAS || we note that, surprisingly, this method was able to detect impactful mutations in
oncogenes, including KRAS, despite the presence of an endogenous, activating KRAS 
mutation in A549 cells. KRAS (exon 2) was carried out by fragment analysis and Sanger 
sequencing.

Figure 1: The cut-off document views of the datasets.
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extremely high correlations with 97% and 93% coefficients,
respectively. Therefore, we think substantial work needs to
be done to clarify samples that share similar descriptions in
high correlative classes. Besides, we can not expect high
accuracy when classifying samples with these properties.

3.2. BERT. Compared with traditional ML methods, DL
demonstrates better performances in text feature expression
and automatically obtains feature expression capabilities,
thus removing the complicated manual feature engineering
process and decreasing its application cost. BERT is a new
language representation model based on DL, which was
released by the AI team of Google company in October
2018. The BERT model is divided into two parts: pretraining
and fine-tuning.

3.2.1. Pretraining of Modified BERTModel. In the pretraining
process, a large-scale unlabeled text corpus is used to com-
plete the deep vector representation of text content in the
deep bidirectional neural network through an unsupervised
training method, thus forming the corresponding text pre-
training model. Google has trained two pretrained models.
One is the BERT-base model, which includes 12 trans-
formers, 12 self-attention heads, and 768 hidden sizes. The
other is the BERT-large model, which contains 24 trans-
formers, 16 self-attention heads, and 1024 hidden sizes.

Parameters of BERT-base methods are loaded into the down-
stream BERT classification model so that our model param-
eters can be fine-tuned based on these pretrained models,
which significantly reduces the convergence time of the
model and increases the accuracy of the model. During the
pretraining process, BERT randomly masks out, replaces
some words, and predicts these missing or replaced words
through the remaining ones. The transformer must maintain
a distributed representation of each input token. The
transformer is likely to remember the word masked without
this masking and predicting procedure.

3.2.2. Fine-Tuning of Modified BERT Model. Since the gener-
alization ability of the pretrained model is powerful, the
BERT pretrained model can be applied to various down-
stream tasks after fine-tuning the parameters of the pre-
trained model. For example, it is possible to meet the needs
of a text classification task by adding pooling, full connect,
and Softmax function to the output layer sequence of fine-
tuned BERT model. The fine-tuning process requires much
lesser training resources compared to the pretraining pro-
cess. The method of fine-tuning BERTmodel, such as trunca-
tion and layer adjustment, has been proved to be capable of
improving the result [18]. It implements the process of
unsupervised learning through the mask, thereby predicting
the vocabulary that will appear in the sentence and
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Figure 3: Distribution of the text entry lengths among different classes.
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understanding the specific meaning of the sentence accord-
ing to the context.

3.3. Evaluation Equation. This paper evaluates the perfor-
mances of the model using several evaluation indicators:
Logloss, recall (REC), precision (PRE), F1 score, receiver
operating characteristic (ROC) curve, and confusion
matrix. True Positive (TP), True Negative (TN), False Pos-
itive (FP), and False Negative (FN) can be used to calcu-
late some of the indicators mentioned above. TP is the
number of categories that are correctly predicted. TN is
the number of categories that are correctly predicted as
another class. FP is the number of categories that are
wrongly predicted. FN is the number of categories that
are wrongly predicted as another class.

In multiclassification tasks, Logloss is one of the most
common loss functions, where the predicted input is a
probability value distribution between 0 and 1, and it can
be defined as follows:

Logloss = −
1
Sn

〠
Sn

m=1
〠
N

n=1
ymn log p ymnð Þð Þ, ð2Þ

where M is the number of samples and N is the number of
classifications. ymn is the predicted result of classification,
such as 0 and 1. p ðymnÞ is the predicted probability of ymn.

PRE defines the proportion of genes identified correctly
belonging to this type of mutation:

PRE =
TP

TP + FP
: ð3Þ
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Figure 4: Distribution of the number of genes among 9 classes.

Table 1: Class information corresponds to the annotated number.

Annotated number Class information

1 Likely loss of function

2 Likely gain of function

3 Neutral

4 Loss of function

5 Likely neutral

6 Inconclusive

7 Gain of function

8 Likely switch of function

9 Switch of function

Table 2: List of top 20 genes in the datasets.

Rank Gene name Rank Gene name

1 EGFR 11 FLT3

2 TP53 12 MTOR

3 CDKN2A 13 MAP2K1

4 ERBB2 14 PTEN

5 PDGFRA 15 BRCA1

6 TSC2 16 BRAF

7 PIK3CA 17 BRCA2

8 FGFR2 18 KIT

9 ALK 19 KRAS

10 VHL 20 RET
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REC calculates the proportion of genes identified
correctly belonging to this type of mutation in all this type
of gene:

REC =
TP

TP + FN
: ð4Þ

F1 score takes into account the factors of PRE and
REC. F1 is the standard metric for this task. It combines
precision and recall. Macro-F1 is a parameter index that
can best reflect the effectiveness and stability of the model:

F1 =
2PRE ∗ REC
PRE + REC

: ð5Þ

The ROC curve is created by plotting the TP against
the FP at various threshold settings.

The confusion matrix is a specific table capable of visual-
izing the performance of an algorithm. Individual rows of the
matrix represent the predicted gene classses, while each
column represents the genes in the actual classes.

4. Experiments

For easier comparison with other methods, our training pro-
cess uses the GPU of the server in the lab for training. There
are 3136 training sets and 553 verification sets in total. The
Python language is selected as the programming language
in this experiment. The experiment is completed on Tensor-

flow’s open-source framework and BERT-base. We use the
parameters on BERT-base trained by Google through a large
number of corpus on Wikipedia as pretraining parameters to
accelerate the convergence speed and reduce the convergence
difficulty. Our experimental parameters are batch size 128,
learning rate 3e − 5, and warmup period 0.06; the whole
experiment runs for 30 cycles; the maximum sequence length
of BERT input is 512; and the optimizer is Adam optimizer,
while other model parameters remain unchanged.

4.1. Experiment Procedure. The BERT model can automati-
cally complete the process of converting each word in the text
into a one-dimensional vector by querying the word vector
table and inputting it in the model. The input of the model
contains three sections: the token embeddings, the segmenta-
tion embeddings, and position embeddings.

Because BERT is a pretraining model with high generali-
zation ability, the output layer of BERT can be externally
connected with corresponding layers to complete down-
stream tasks. For example, in this experiment, the processed
data is substituted into the BERT model for training, and the
output layer will connect Softmax function for classification
tasks (Figure 7).

BERT is an unsupervised model that uses whether the
sentences are related to each other as labels and masks some
words to make the masked words as labels, thus avoiding the
tedious process of manually labeling data. Generally, the data
in the dataset are not balanced. Take the samples in the 7th
and 8th categories of the dataset as an example. The
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Figure 7: Scheme of the training.
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difference between their numbers even reaches more than 10
times. In this case, the default classification method makes
classifiers pay too much attention to the category with a
larger number of samples, thus making the generalization
ability of the model weak and unable to obtain satisfactory
results. Therefore, we use random sampling to eliminate the
imbalance between data and extract only a part of samples
from the category within a larger number of samples to
balance the sample number differences between classes.

Simultaneously, because the length of the gene text in the
dataset is greater than 512 tokens, which is the longest length
that can be retained by BERT, we need to use the truncation
method to intercept part of the information in the text. We
take three ways to solve this problem. The head only trunca-
tion method intercepts the first 512 tokens (at most) as input,
the head+tail method intercepts part of the head and part of
the tail to form 512 tokens (at most) as input, and the abstract
+head method sorts the gene text according to importance,
then select the most important 512 tokens (at most) as input.

Finally, the processed data are substituted into the BERT
model for training. Numerous previous works have shown
that fine-tuning a pretrained model which has been trained
with a large amount of corpus can significantly improve the
classification result. As BERT can learn different contents in
different layers, stitching some of the layers together can
make the model get richer information, thereby improving
the accuracy of the model, so the last three layers in the BERT
model are concatenated. Max pooling, fully connected, and
Softmax function are added after the concatenated output
layer to realize the classification of gene text to improve the
classification accuracy of the model.

4.2. Experiment Results and Discussions. It can be seen from
the figure that compared with the LightGBM method, the
BERT methods using three types of truncation have higher
ACC, REC, and F1 score. The confusion matrix shows our
classification situation in a visual way (Figure 6). The red
numbers are nonzero values. It can be observed that type 1
is easy to be confused with types 4 and 5. There are more

machine judgment errors of texts between type 7 and type
2. Overall, the classification of data-lacking types 8 and 9 is
more complicated than other types, possibly because there
are fewer samples of types 8 and 9, and these two types have
fewer intersections with other types of mutation. The lack of
intersection leads to difficulties in distinguishing types 8 and
9 from different types of mutations. The ROC curve can
evaluate the accuracy of the model prediction.

The performance and ranking of the entries for the pro-
posed four methods are shown in Figure 8. All methods share
the same setting of hyperparameters for an unbiased compar-
ison. Overall, deep learning-based algorithms (BERT) per-
form slightly better than machine learning-based methods
(LightGBM). Among the three models using BERT, the
BERT+abstract truncation method has the best performance

LightGBM BERT+head BERT+head+tail BERT+abstract
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Recall
F1_score
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Figure 8: Evaluation of four methods.
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as a single model with 0.8074 logarithmic loss and 0.6837
recall. The 0.705 F-measure score is limited by the extreme
shortage of training data. Better performance should be
obtained when it is applied to large-scale datasets.

Besides, the ROC curves of the other three methods are
below the ROC curve of the BERT+abstract (Figure 9). The
ROC curves for the BERT+abstract, the BERT+head, the
BERT+head+tail, and the LightGBM with the highest and
lowest AUCs are also shown in Figure 9. Compared results
indicate better performance of the BERT+abstract since the
AUC assesses the algorithm’s inherent validity using an effec-
tive and combined measure of sensitivity and specificity. The
accuracy of predicted results is highly dependent on the data-
sets. The performances of our model are limited by the size of
available datasets in our case. However, the capabilities of
deep networks can be improved using expanded data. Our
proposed model is a proof-of-concept, and we believe it is
applicable when applied on large-scale datasets.

Moreover, we compare confusion matrix tables using
predict classes versus true classes among different methods

(Figure 10). The confusion matrix table is an error matrix
which can be used to evaluate the performance of the algo-
rithm. In summary, individual classes of genes are predicted
precisely using the BERT+abstract method, corresponding
with results of Logloss and F1 measurements.

It can be observed that class 1 is easy to be confused with
classes 4 and 5. Furthermore, there are more machine judg-
ment errors of texts between type 7 and type 2. These phe-
nomena can be easily attributed to the similarity of texts
among these classes as we previously described. Also, it is
apparent that classifying classes 8 and 9 is complicated. The
computer may misjudge mutation texts with real labels of 8
or 9 as other types but hardly underestimate other types of
mutation texts as type 8 or 9 since there are fewer samples in
classes 8 and 9. The shortage of samples in classes 8 and 9 also
fails to provide sufficient data to distinguish themselves from
other classes since there are no intersections. Contrastingly,
the classification of class 7 is easier due to the abundant sam-
ples. Therefore, the abundance of data plays essential roles in
improving the efficiency of classification.
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5. Conclusion

In this study, we propose a deep learning algorithm to iden-
tify genomic information within texture-based literature
abstracts. Aiming to address the classification problem in
an extremely long, imbalanced, and repetitive dataset, we test
four methods, including LightGBM and three different trun-
cation BERT methods. By analyzing their Logloss, recall, F1
score, ROC curve, and AUC scores, we notice that the
abstract+head truncation BERT method has superior results
than other algorithms in all indicators.

In this study, our BERT method is limited due to the
shortage of datasets, and its performance can be improved
dramatically with the size of datasets increasing. Moreover,
our approach will be potentially applied on diagnosing and
treating more than 120,000 patients every year around the
world based on the announcement of the MSKCC, which will
provide our opportunity to enhance our methods further
when large-scale datasets are available. We believe BERT is
a promising tool for accelerating tumor genomic-related
research and facilitating tumor diagnosis and treatments.
Besides, this text-based classifier algorithm demonstrated
high universality, and it is applicable not only in tumor-
specific research but also in other types of diseases and in
other nonacademic areas.
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An increasing number of patients infected with nontuberculous mycobacteria (NTM) are observed worldwide. However, it is
challenging to identify NTM lung diseases from pulmonary tuberculosis (PTB) due to considerable overlap in classic
manifestations and clinical and radiographic characteristics. This study quantifies both cavitary and bronchiectasis regions in
CT images and explores a machine learning approach for the differentiation of NTM lung diseases and PTB. It involves 116
patients and 103 quantitative features. After the selection of informative features, a linear support vector machine performs
disease classification, and simultaneously, discriminative features are recognized. Experimental results indicate that
bronchiectasis is relatively more informative, and two features are figured out due to promising prediction performance (area
under the curve, 0:84 ± 0:06; accuracy, 0:85 ± 0:06; sensitivity, 0:88 ± 0:07; and specificity, 0:80 ± 0:12). This study provides
insight into machine learning-based identification of NTM lung diseases from PTB, and more importantly, it makes early and
quick diagnosis of NTM lung diseases possible that can facilitate lung disease management and treatment planning.

1. Introduction

Nontuberculous mycobacteria (NTM) is a major cause of
morbidity and mortality in progressive lung diseases; unfor-
tunately, an increasing number of patients with NTM lung
disease (NTM-LD) are witnessed worldwide [1, 2]. As the
etiologic agents, NTM have been found in a variety of envi-
ronmental sources, and the clinical relevance of NTM-LD
indicates the geographical heterogeneity in distribution
and pathogenicity [3, 4]. Due to similar manifestations, it
is difficult to recognize the lung infection caused by NTM
or by pulmonary tuberculosis (PTB) for early diagnosis
[5–9]. In clinic, as the first choice, microscopic examination
of sputum smear for acid-fast bacillus (AFB) is used to
screen mycobacterial lung infections; however, the presence
of pulmonary mycobacterial infection could also be traced

by AFB-positive [10–13]. Besides elaborate safety precau-
tions, a definite diagnosis of NTM based on bacterial cul-
ture and strain identification lasts for about two months
each time [6, 14]. Once being suspected of PTB with posi-
tive sputum AFB, a patient will take empirical anti-TB
medicine for treatment when the test is ongoing to identify
the bacteria. That means a part of patients receive poten-
tially unnecessary treatment. It might cause the patients
the risk of drug adverse reaction and thus nonessential
healthcare cost [14]. Therefore, early diagnosis of NTM-
LD can improve patients’ life quality and facilitate disease
treatment, and in particular, it benefits developing countries
with resource-poor healthcare systems [1–3].

One challenging task is to differentiate NTM-LD from
PTB lung disease (PTB-LD). Clinical manifestations are first
considered, such as chronic cough, sputum production, and
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appetite loss. Moreover, clinical and radiographic character-
istics are investigated, such as age, history of smoking, and
previous TB treatment, since these characteristics are more
frequently found in patients with NTM-LD than those with
PTB-LD. However, considerable overlaps exist in classic
manifestations, clinical characteristics, and radiographic
features, making the diagnosis subjective and unstable
[7–10, 14–19]. According to the radiographic features of
cavities and bronchiectasis, NTM-LD can be generally
classified into two distinct subtypes. One is characterized
by cavities with areas of increased opacity and usually
located in the upper lobes, and the other is by bronchiectasis
and bronchiolar nodules which are predominant in the mid-
dle lobe and/or lingual. In comparison to PTB-LD patients
with cavities or bronchiectasis, CT findings indicate that
radiographic changes of NTM-LD could lead to subtle differ-
ences, such as thin-walled cavities and less bronchogenic but
more contiguous spread of disease [14, 16, 17]. However,
these observed differences are qualitative or subtle, which
are not sufficient or discriminative to differ the NTM-LD
from PTB-LD patients.

Some studies have explored machine learning methods
for PTB screening. An artificial neural network (ANN) was
used for the prediction of PTB infection [20]. The study
examined blood samples of 115 PTB-LD patients and 60
normal subjects. Based on 39 features, the accuracy of two-
hidden-layered ANN was up to 93.93%. An approach incor-
porating a fuzzy logic controller and an artificial immune
recognition system was proposed [21] which utilized 20 fea-
tures to represent each of 175 data samples and resulted in
high accuracy, sensitivity, and specificity. A convolutional
neural network (CNN) was designed for PTB examination
[22]. The network enabled an end-to-end training from
images to labels and required no objective-specific manual
feature engineering. Its classification performance was larger
than 0.85 (AUC (area under the curve)) on three real data
sets [22]. Transferred learning, deep network, data augmen-
tation, and radiologist involvement were considered, and
high performance of PTB diagnosis was achieved [23]. These
machine learning approaches are advancing the techniques
for PTB-LD diagnosis [24].

The present study explores to build a machine learning
model for the differentiation of NTM-LD and PTB-LD by
using CT images. To the best of our knowledge, there are
no machine learning models available to this challenging
task. The contribution of this study is manifold. First, a
machine learning approach is designed. It involves 116
patients, and to each patient case, 103 quantitative features
are analyzed. Second, the effectiveness of different regions
(cavities, bronchiectasis, and their combination) is investi-
gated. Third, experimental results indicate that bronchiecta-
sis is more informative, and two discriminative features are
figured out. In addition, a simple and interpretable machine
learning model is built which achieves promising classifica-
tion performance. This study provides insight into machine
learning-based differentiation of NTM-LD and PTB-LD
patients, and most importantly, it provides some feasible
clues on the early and quick diagnosis of lung diseases,
benefiting disease management and treatment planning.

2. Material and Methods

2.1. Data Collection. From January 2019 to January 2020, a
total of 1291 AFB smear-positive sputum specimens of previ-
ously untreated cases were retrospectively retrieved in Tian-
jin Haihe Hospital, Tianjin University, China. The sputum
test is required to be conducted at least twice to show varying
degrees of AFB smear positive. After being cultured and
strain-identified, the smear-positive sputum was tested. The
test result verified that 287 specimens were NTM, and 1004
were PTB. Details of PTB and NTM diagnosis are as follows.
In order to find the mycobacteria in a tissue section, an AFB
stain is done for all sputum samples. Based on PCR assays, a
TB polymerase chain reaction (PCR) was performed with in-
house IS6110. Mycobacterium culture was carried out using
Löwenstein-Jensen Medium. Specifically, PTB diagnosis was
in accordance with mycobacteria culture results and guide-
lines from the Chinese Medical Association, and NTM was
based on mycobacterial culture results and guidelines of
the American Thoracic Society (ATS) [25].

The chosen patients were with reliable CT imaging data,
and CT scan images were reviewed independently by three
experienced radiologists (XZH, WL, and ZS) who were blind
to patients’microbiology results. With regard to the chest CT
findings, the final decisions were determined by consensus.
As shown in Figure 1, after an independent review of CT
images, 116 cases (57M. tuberculosis and 59 NTM) with lung
cavities and/or with bronchiectasis were identified for retro-
spective analysis.

In addition, clinical characteristics of patients in both
groups are shown in Table 1. It indicates that most patients
show similar symptoms, including cough, sputum produc-
tion, and fever. It is also found that some patients are
smokers and some are with diabetes mellitus. Most impor-
tantly, no significant difference in symptoms is found
between the two groups of patients.

2.2. CT Image Acquisition. All chest CT examinations were
performed within 3 months of the AFB smear test by using
a helical CT scanner (Aquilion Prime 128, Canon Medical
Systems, Otawara, Japan). Patients were scanned from the
lung apices to the adrenal glands during full inspiration,
and the procedure was repeated during full expiration. The
CT scanning parameters were as follows: 64 × 0:5mm colli-
mation, 120 kV automatic tube current modulation, and
0.5 s gantry rotation time. Contiguous inspiratory CT images
were obtained with a thickness of 5.0mm, at 5.0mm inter-
vals. Images were exported in DICOM format and forwarded
to observers. In addition, CT scans were interpreted at win-
dow settings that were optimal for lung parenchyma (recon-
struction kernel, FC 52; window level, -600HU; window
width, 1500HU) and soft tissue (reconstruction kernel, FC
30; window level, 400HU; window width, 40HU).

2.3. Label Annotation. Both cavitary and bronchiectasis are
labeled by using the software 3D Slicer (version 3.10.2,
http://www.slicer.org/). Seven radiologists participated in
this task. To ensure the accuracy, six radiologists (1 to 3
years’ experience) were trained in a trial-and-error manner.
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Furthermore, to ensure the consistency, after training and
case annotation, a senior radiologist with 10 years’ experience
performed the label verification without clinical information.
Meanwhile, the senior radiologist performed as a supervisor
and summarized the errors and cautions in label annotation
and further gave the junior radiologists a second chance to
rectify their errors. As shown in Figure 2, the whole proce-
dure involves 2-round training, 2-round case labeling, 2-
round modification, 2-round summarization, and 3-round
verification until the labels can be used for the follow-up
analysis.

Figure 3 shows representative examples of cavity (red)
and bronchiectasis (yellow) from NTM-LD and PTB-LD
patients. In CT images, both cavity and bronchiectasis are
well-defined [26]. A cavity is a gas-filled space which is seen
as a lucency or low-attenuation area, within pulmonary con-
solidation, a mass, or a nodule, and notably, no content is in a
cavity. A thin-walled purification cavity is with a basically
uniform wall thickness less than 3mm and a thick-walled
purification cavity is with a substantially uniform wall thick-
ness greater than or equal to 3mm, while a wall-less cavity is

a gas density stove with no walls and smooth inner edges and
located in the consolidated lung tissue. In addition, cavitary is
a cavity that can be clearly imaged on the basis of consolida-
tion. Whether a thick or thin wall, it is always marked as a
cavity, and the outer wall of the lesion edge is the boundary
mark. Morphological criteria of bronchiectasis consider
bronchial dilatation with respect to accompanying pulmo-
nary artery (signet ring sign), lack of tapering of bronchi,
and identification of bronchi within 1 cm of the pleural
surface. There are three types of labeling for bronchiectasis:
(1) saccular: the inner diameter of the bronchus greater than
1.5 times the diameter of the accompanying artery. (2)
Columnar: dilated bronchi with the same proximal and distal
ends of the bronchi, longer than 2 cm. (3) Varicose veins:
dilated bronchus with an uneven wall and tortuous course.
The inner wall was marked as the boundary.

2.4. Feature Extraction. The open-source package Pyradio-
mics (https://pyradiomics.readthedocs.io) was used in this
study, and 103 features were extracted regarding annotated
bronchiectasis and cavity in original-resolution CT images.

From Jan. 2019 to Jan. 2020, a total of 1291 AFB smear-positive sputum
specimens were picked up from untreated cases in Tianjin Haihe Hospital

287 NTM-LD

276 NTM-LD11 cases with pulmonary edema

9 cases with interstitial LD

208 cases with no cavity nor
bronchiectasis on CT images

267 NTM-LD

59 NTM-LD

1004 PTB-LD

583 PTB-LD

577 PTB-LD

559 PTB-LD

57 PTB-LD

421 cases with different scanner

6 cases with pulmonary edema

18 cases with interstitial LD

502 cases without cavity or
bronchiectasis on CT images

Figure 1: The procedure of data collection. After review of CT images, 116 cases remain for analysis.

Table 1: Clinical characteristics of patients.

NTM-LD (n = 59) PTB-LD (n = 57) Chi-squared test p value

Cough 27 (45.76%) 36 (63.16%) 3.535 0.060

Sputum production 25 (42.37%) 31 (54.39%) 1.676 0.196

Fever 17 (28.81%) 20 (35.09%) 0.525 0.469

Chest pain 3 (5.08%) 8 (14.04%) 2.706 0.100

Hemoptysis 7 (11.86%) 7 (12.28%) 0.005 0.945

Fatigue 4 (6.78%) 1 (1.75%) 0.766 0.382

Emaciation 4 (6.78%) 2 (3.51%) 0.141 0.707

Shortness of breath 1 (1.69%) 4 (7.02%) 0.910 0.340

Smoker 15 (25.42%) 14 (24.56%) 0.011 0.915

Diabetes mellitus 9 (15.25%) 8 (14.04%) 0.034 0.853

COPD 5 (8.47%) 5 (8.77%) 0.000 1.000

COPD stands for chronic obstructive pulmonary disease; p < 0:05 indicates significant difference.
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The features consist of 14 shape features, 21 first-order fea-
tures, 22 Gray-Level Cooccurrence Matrix (GLCM) features,
16 Gray-Level Run Length Matrix (GLRLM) features, 16
Gray-Level Size Zone Matrix (GLSZM) features, and 14
Gray-Level Differential Matrix (GLDM) features. These fea-
tures have been widely used for data representation and dis-
ease diagnosis [27, 28].

2.5. A Machine Learning Approach. A simple and interpret-
able machine learning approach is desirable. Given the data,
to simplify the retrieval of informative features, Gini impor-
tance is used to measure the feature importance, since it
defines dependence and independence of variables [29]. Fur-
ther, to reduce the computation burden, several important
features are considered in the follow-up analysis. Due to lim-
ited patient cases, to retrieve a few discriminative features is
reasonable. At last, for good interpretability, linear SVM
[30] performs the differentiation of the NTM-LD and the
PTB-LD patients.

Figure 4 shows the flow chart which attempts to build a
machine learning approach for interpretable diagnosis. The
dashed lines indicate offline feature ranking. Features are
sorted in terms of Gini importance. Assuming k features
are extracted from each data sample, a resultant vector <f1,
f2,⋯, f k > stands for the indexes of the most to the least
important features (1). Then, i top most important features
are kept (2), and all combinations of feature subsets using 2
or 3 features are provided (3).

Potential feature subsets are prepared, and the optimal
one is selected by comparing classification performance as
shown in solid lines in Figure 4. For instance, if a subset of
features is selected, the patient cases were randomly grouped
into the training and the testing set (4). Using the training set,
the parameters of the linear SVM classifier are experimen-

tally determined (5). Once the model is trained, the testing
set is fed into the model (6), and the performance is evaluated
with classification metrics (7).

2.6. Experiment Design. Four experiments are conducted, and
three are shown in Table 2. For each experiment, the number
of patient cases, sex, and ages are reported. The first (TA), the
second (TB), and the third (TC), respectively, use the cavity,
the bronchiectasis, and both for retrieving the most discrim-
inative features in an automated fashion. It should be noted
that the fourth experiment is used to verify the effectiveness
of the combination of retrieved features from TA and TB
for disease classification.

With regard to each experiment, a total of 100 times of
data splitting are conducted at random, and nearly 80% of
cases are portioned into the training set and the rest into
the testing set. After each time of data splitting, all feature
subsets are used one by one for machine learning-based dis-
ease classification.

2.7. Performance Evaluation and Statistical Analysis. Four
metrics are used to evaluate the classification performance,
and they are the area under the curve (AUC), accuracy
(ACC), sensitivity (SEN), and specificity (SPE). To figure
out the best performance, i.e., the subset with the most dis-
criminative features, statistical analyses were conducted
using SPSS 17.0 software for Windows (SPSS Inc., Chicago,
IL, USA), and performance metrics were compared by a
paired t-test.

3. Results

3.1. Gini Importance-Based Feature Importance Ranking.
Table 3 lists the top 10 most important features with regard
to different forms used for lung disease analysis. The indexes
of features that are derived from intensity statistics, shape
representation, and texture analysis are, respectively,
highlighted in italic, bold, and underline. Analysis of the
cavitary form identifies 6 intensity statistics features and 4
texture analysis features, and analysis of the bronchiectatic
form figures out 4 shape representation features and 6 texture
analysis features, while analysis of the combined form
indicates that all features are from the bronchiectatic form
(feature indexes larger than 103), including one intensity sta-
tistics feature, three shape representation features, and six
texture analysis features.

3.2. Cavity-Based Lung Disease Differentiation. Based on the
cavity analysis and automated retrieval of discriminative fea-
tures, three subsets achieving superior performance are listed
in Table 4. It shows that the subset using the 22nd and the 99th

features (in bold) obtains the best or competitive result in
terms of four metrics, while no significant difference is found
(p value > 0.23). The 30th feature is also recognized as impor-
tant; however, no improvement is observed in disease classi-
fication. As to the discriminative features, one (the 22nd)
quantifies the intensity distribution, and the other (the 99th)
shows the texture analysis of the cavity.

Modification
(1st round)

Modification
(2nd round)

Summarization
(1st round)

Summarization
(2nd round)

 Verification
(1st round)

 Verification
(3rd round)

 Verification
(2nd round)

 Case labeling
(1st round)

Label training
(1st round)

Label training
(2nd round)

Benchmarks

Figure 2: The procedure of cavitary and bronchiectasis annotation.
Seven radiologists participated in this task. Six radiologists were
trained in a trial-and-error manner (training, labeling, and
modification), and one senior radiologist helped the verification,
summarization, and training of the six radiologists.
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3.3. Bronchiectasis-Based Lung Disease Differentiation.
Table 5 shows three subsets of features that lead to superior
performance with regard to analyzing bronchiectasis. It

suggests that the subset consisting of the 13th and the 87th

features results in the best performance in terms of AUC
and SPE, and the competitive performance in terms of
ACC and SEN. It is worth noting that there is no significant
difference of each performance metric between any two fea-
ture subsets (p value > 0.37). Moreover, the 48th and the 6th

features are identified for their importance in disease differ-
entiation, and adding one of them causes no enhancement.
In the subset of discriminative features, one (the 13th) aims
for shape representation, and the other (the 87th) analyzes
tissue textures.

(a) NTM-LD cavity (b) PTB-LD cavity

(c) NTM-LD bronchiectasis (d) PTB-LD bronchiectasis

Figure 3: Representative examples of annotated cavity and bronchiectasis. Thick-walled, thin-walled, and wall-less cavities are marked as a
cavity, and the outer wall of the lesion edge is the boundary mark, while bronchiectasis annotation should concern bronchial dilatation with
respect to different factors.

NTM : PTB

(4)

(1)

(2)

<f1, f2, ..., fi>

<f1, f2, ..., ..., fk>

(3)

(5)

(4)

(5)

(5)
(7)

(6)

Metrics

Linear SVM

{[1,2]; [1, 3]; ...; [i-1, i]};
{[1,2,3]; [1, 2, 4]; ...; [i-2, i-1, i]};

NTM (train) : PTB (train) NTM (test) : PTB (test)

Figure 4: The framework for machine learning-based differentiation of NTM-LD and PTB-LD patients. The dashed lines indicate offline
processing, and the solid ones stand for the retrieval of discriminative features for accurate disease diagnosis.

Table 2: The number of patient cases, sex, and age in experiment
design.

NTM (male/female/age) PTB (male/female/age)

TA 44 (28/16/60 ± 15) 54 (40/14/48 ± 18)
TB 45 (28/17/62 ± 15) 54 (41/13/49 ± 17)
TC (TA∩TB) 32 (21/11/64 ± 12) 46 (34/12/49 ± 18)
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3.4. Combined Form for Lung Disease Differentiation. Based
on both the cavity and the bronchiectasis, the subsets of fea-
tures with good performance are presented in Table 6. The
subset including the 190th and the 152nd features leads to
the overall best performance in terms of three metrics
(AUC, ACC, and SEN), and no significant difference is
observed between the performance derived from each of the
three subsets (p value > 0.52). Moreover, the 151st feature is
figured out for its importance in disease classification, while
again, no improvement is found. In addition, both discrimi-
native features are from texture analysis.

3.5. Performance Comparison. Table 7 shows the perfor-
mance of lung disease differentiation with regard to different
regions (TA: cavity; TB: bronchiectasis; TC: combined analy-
sis by using automated feature selection; TD: combined anal-
ysis by using retrieved features from TA and TB). It

demonstrates that the subset of retrieved features from the
bronchiectasis (TB) is the most discriminative in comparison
to each of the other retrieved features. It also indicates that
combining feature subsets (TD) does not improve the differ-
entiation performance, and on the contrary, a slight decrease
is observed from each metric. In particular, it is found that
the subset of features retrieved from the cavity results in infe-
rior performance with AUC 0.70 on average.

Error-bar plots in Figure 5 show the performance of lung
disease differentiation by analyzing different regions. In gen-
eral, using bronchiectasis (TB) achieves the highest AUC,
ACC, and SEN and the second best SPE; using combined
subsets of features (TD) obtains comparative performance,
while using the cavity (TA) produces the worst performance
in lung disease differentiation.

ROC curves are shown in Figure 6. Different colors corre-
spond to different methods. The bronchiectasis (TB, red)
results in the best performance (AUC 0.86), followed by both
regions with combined features (TD, green) with AUC 0.82
and both regions using automated feature selection (TC,
blue) with AUC 0.81, and the worst is the cavitary form
(TA, pink) with AUC 0.73.

4. Discussion

The increasing prevalence of NTM-LD is observed world-
wide. Bacterial culture and strain identification remain the
unique way to identify NTM, while the procedure takes a
long time. Early and quick diagnosis of NTM-LD is urgently
important yet challenging. Massive studies investigate the
manifestations, clinical characteristics, radiographic findings,
and clinical relevance. However, due to considerable overlap
of symptoms and subtle difference in CT images, these find-
ings are not sufficient to differentiate NTM-LD from PTB-
LD patient cases. This study is the first work that explores
machine learning to identify the NTM-LD patients from
the PTB-LD ones, and in CT images, both the cavity and
the bronchiectasis regions are delineated for quantitative
analysis. Experimental results suggest that the proposed
machine learning model achieves promising performance
when two features are used to represent the bronchiectasis.

Quantified bronchiectasis plays an important role in the
machine learning model for the differentiation between
NTM-LD and PTB-LD cases. It enables high performance
(AUC, 0:84 ± 0:06; ACC, 0:85 ± 0:06; SEN, 0:88 ± 0:07; and
SPE, 0:80 ± 0:12) which is obviously higher than those corre-
sponding metrics from the quantified cavity (AUC, 0:70 ±
0:07; ACC, 0:71 ± 0:06; SEN, 0:72 ± 0:09; and SPE, 0:68 ±
0:14). Its performance is slightly superior or competitive to
that using both cavity and nodular bronchiectasis. Predomi-
nance of cavities and bronchiectasis is observed in

Table 3: Ten most important features via Gini importance-based feature ranking.

Form Ranked index of features from the most to less important ones

Cavitary form 2 23 80 35 95 60 99 22 30 25

Bronchiectatic form 13 49 58 94 87 7 48 11 67 6

Combined form 123 190 116 152 109 161 197 170 114 151

Table 4: Cavity-based LD differentiation.

Feature subsets AUC ACC SEN SPE

[99, 22] 0:70 ± 0:07 0:71 ± 0:06 0:72 ± 0:09 0:68 ± 0:14
[99, 30] 0:70 ± 0:08 0:70 ± 0:08 0:70 ± 0:10 0:66 ± 0:15
[22, 99, 30] 0:69 ± 0:07 0:70 ± 0:07 0:72 ± 0:09 0:68 ± 0:11
#The 22nd feature, original_firstorder_interquartilerange; the 30th feature,
original_firstorder_robustmeanabsolutedeviation; the 99th feature,
original_gldm_largedependencelowgraylevelemphasis.

Table 5: Bronchiectatic form-based differentiation of lung diseases.

Feature subsets AUC ACC SEN SPE

[13, 87] 0:84 ± 0:06 0:85 ± 0:06 0:88 ± 0:07 0:80 ± 0:12
[13, 87, 48] 0:82 ± 0:07 0:84 ± 0:07 0:89 ± 0:09 0:74 ± 0:13
[13, 87, 6] 0:83 ± 0:07 0:85 ± 0:07 0:89 ± 0:09 0:76 ± 0:10
#The 6th feature, original_shape_leastaxislength; the 13th feature, original_
shape_minoraxislength; the 48th feature, original_glcm_Imc1; the 87th

feature, original_glszm_zoneentropy.

Table 6: Disease differentiation using both the cavity and the
bronchiectasis.

Feature subsets AUC ACC SEN SPE

[190, 152] 0:82 ± 0:08 0:78 ± 0:08 0:76 ± 0:11 0:88 ± 0:13
[190, 116, 152] 0:81 ± 0:10 0:75 ± 0:09 0:75 ± 0:06 0:89 ± 0:16
[190, 116, 151] 0:82 ± 0:10 0:77 ± 0:06 0:75 ± 0:06 0:86 ± 0:15
#The 116th feature, original_shape_minoraxislength; the 151st feature,
original_glcm_Imc1; the 152nd feature, original_glcm_Imc2; the 190th

feature, original_glszm_zoneentropy.
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radiographic findings of NTM-LD cases. One study indicated
that of the 19 patients evaluated, 84.2% cases were with bron-
chiectasis, and 73.7% were with cavities [31]. One study with
34 patients figured out that nodular lesions (100%) and bron-
chiectasis (85.29%) were the most frequent CT features of
Mycobacterium simiae pulmonary infection [32]. A meta-
analysis study reported that 9.3% of NTM-LD patients were
with bronchiectasis [33]. A comparison of CT findings
between NTM-LD and PTB-LD has also been considered.
A study analyzed 95 CT scans from 159 patients with AFB
smear-positive sputum (75 scans from PTB-LD patients
and 20 scans from NTM-LD patients) and claimed that the
presence of bronchiectasis changes in CT scans was strongly
associated with patients with NTM-LD [16]. A study investi-
gated a total of 4167 untreated cases with AFB smear-positive
sputum (124 cases were with NTM-LD, and 210 cases with
PTB-LD were randomly selected from the remaining cases),
and bronchiectasis and thin-walled cavity were identified
independent predictors for NTM-LD diagnosis via multivar-
iate analysis [14]. A cavity analysis study (128 NTM-LD and

128 PTB-LD patients with matched age and gender) discov-
ered that the major cavities in NTM disease generally have
thinner and more even walls than those in PTB cases [17].
Thus, to investigate cavity and bronchiectasis in CT images
for lung disease differentiation is reasonable. Most impor-
tantly, the current study points out that the quantified bron-
chiectasis seems more informative than the cavity in differing
the NTM-LD from PTB-LD cases.

The machine learning model is well built, and it is simple
and interpretable. It makes use of two quantitative features
for the representation of bronchiectasis in CT images. In
the original images, one feature describes the minor (sec-
ond-largest) axis length of shape, and the other is the zone
entropy of GLSZM texture which describes the randomness
in the distribution of zone sizes and gray levels. Interestingly,
both features have been reported in related clinical studies.
For instance, the minor axis length of shape is important in
the detection of clinically significant prostate cancer in multi-
parametric MR images [34], and the zone entropy of GLSZM
reflects the areas with different gray intensities within the

Table 7: LD differentiation using selected features with regard to different regions.

Retrieved features AUC ACC SEN SPE

TA [99, 22] 0:70 ± 0:07 0:71 ± 0:06 0:72 ± 0:09 0:68 ± 0:14
TB [13, 87] 0:84 ± 0:06 0:85 ± 0:06 0:88 ± 0:07 0:80 ± 0:12
TC [190, 152] 0:82 ± 0:08 0:78 ± 0:08 0:76 ± 0:11 0:88 ± 0:13
TD [99, 22]+[13, 87] 0:81 ± 0:09 0:83 ± 0:07 0:85 ± 0:08 0:78 ± 0:18
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Figure 5: The performance of disease differentiation via analyzing different regions (TA, cavity; TB, bronchiectasis; TC, combined analysis
using automated feature selection; TD, combined analysis using retrieved features from TA and TB). It shows that using bronchiectasis (TB)
achieves overall best performance.
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nodules for lung cancer detection [35]. However, it should be
noted that both features cannot be perceived directly, and
thus, accurate segmentation of the bronchiectasis regions
becomes indispensable. Moreover, the model utilizes an
interpretable classifier of linear SVM, which is widely used
in knowledge discovery. It is worth noting that SVM with a
nonlinear kernel could map data samples into high-
dimension space, and the classification performance might
be further improved. In addition, this simple model supports
good generalization and evolving, and it can avoid the curse
of dimensionality in high-throughput feature analysis.

There are several limitations to the current study. First,
the number of patient cases should be increased, and a
multi-institution study would be better, as it can make the
results more convincing, generalizable, and applicable.
Therefore, our future work will focus on data collection
and multicenter collaboration. Second, advanced techniques
[23, 24, 27, 28] could be used to improve the diagnosis per-
formance, and the hybrid techniques [36–38] that integrate
manifestations and clinical and radiographic features are
feasible. Third, automated annotation and quantification of
bronchiectasis and cavity are also appealing. For instance,
the thickness of cavity walls is helpful, since cavity walls of
NTM-LD patients are found significantly thinner and more
even than those of PTB-LD [17]. However, it requires
advanced algorithms for accurate and objective quantifica-
tion. In the end, this study involves a single hospital and a
limited number of cases. For further verification of our find-
ings, a large-scale experiment should be conducted.

5. Conclusion

The increasing incidence and prevalence of NTM-LD have
become a major public health problem. This study explores
a machine learning approach, and both bronchiectasis and
cavity are delineated for differing NTM-LD patients from

PTB-LD patients. Bronchiectasis is found more informative,
and two quantitative features are identified discriminative
for disease differentiation. The built machine learning model
makes early and quick diagnosis of NTM-LD possible, and it
could further facilitate disease management and treatment
planning and improve patients’ life quality.
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Methylation of the O6-methylguanine methyltransferase (MGMT) gene promoter is correlated with the effectiveness of the current
standard of care in glioblastoma patients. In this study, a deep learning pipeline is designed for automatic prediction of MGMT
status in 87 glioblastoma patients with contrast-enhanced T1W images and 66 with fluid-attenuated inversion recovery(FLAIR)
images. The end-to-end pipeline completes both tumor segmentation and status classification. The better tumor segmentation
performance comes from FLAIR images (Dice score, 0:897 ± 0:007) compared to contrast-enhanced T1WI (Dice score, 0:828 ±
0:108), and the better status prediction is also from the FLAIR images (accuracy, 0:827 ± 0:056; recall, 0:852 ± 0:080; precision,
0:821 ± 0:022; and F1 score, 0:836 ± 0:072). This proposed pipeline not only saves the time in tumor annotation and avoids
interrater variability in glioma segmentation but also achieves good prediction of MGMT methylation status. It would help find
molecular biomarkers from routine medical images and further facilitate treatment planning.

1. Introduction

Glioblastoma multiforme (GBM) is the most common and
aggressive type of primary brain tumor in adults. It accounts
for 45% of primary central nervous system tumors, and the 5-
year survival rate is around 5.1% [1, 2]. The standard treat-
ment for GBM is surgical resection followed by radiation
therapy and temozolomide (TMZ) chemotherapy, which
improves median survival by 3 months compared to radio-
therapy alone [3]. Several studies indicated that O6-methyl-
guanine-DNA methyltransferase (MGMT) gene promoter
methylation reported in 30-60% of glioblastomas [4] can
enhance the response to TMZ, which has been proven to be
a prognostic biomarker in GBM patients [3, 5]. Thus, deter-

mination of MGMT promoter methylation status is impor-
tant to medical decision-making.

Genetic analysis based on surgical specimens is the refer-
ence standard to assess the MGMT methylation status, while
a large tissue sample is required for testing MGMT methyla-
tion status using methylation-specific polymerase chain reac-
tion [6]. In particular, the major limitations are the
possibility of incomplete biopsy samples due to tumor spatial
heterogeneity and high cost [7]. Besides, it cannot be used for
real-time monitoring of the methylation status.

Magnetic resonance imaging (MRI) is a standard con-
ventional examination in diagnosis, preoperative planning,
and therapy evaluation of GBM [8, 9]. Recently, radiomics,
extracting massive quantitative features from medical
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images, has been proposed to explore the correlation between
image features and underlying genetic traits [10–12]. There is
growing evidence that radiomics can be used in predicting
the status of MGMT promoter methylation [13–15]. How-
ever, most previous works utilized handcrafted features. This
procedure includes tumor segmentation, feature extraction,
and informatics analysis [16–19]. In particular, tumor seg-
mentation is a challenging and important step because most
works depend on manual delineation. This step is burden-
some and time consuming, and inter- or intraobserver dis-
agreement is unavoidable. Deep learning which can extract
features automatically has been emerging as an innovative
technology in many fields [20]. The convolutional neural
network (CNN) is proven to be effective in image segmenta-
tion, disease diagnosis, and other medical image analysis
tasks [21–25]. Compared to traditional methods with hand-
crafted features, deep learning shows several advantages of
being robust to distortions such as changes in shape and
lower computational cost. A few studies have shown that
deep learning can be used to segment tumors and predict
MGMT methylation status for glioma [26]. However, to the
best of our knowledge, there is no previous report regarding
building a pipeline for both glioma tumor segmentation
and MGMT methylation status prediction in an end-to-end
manner. Therefore, we investigate the feasibility of integrat-
ing the tumor segmentation and status prediction of GBM
patients into a deep learning pipeline in this study.

2. Methods

2.1. Data Collection. A total of 106 GBM patients were ana-
lyzed in our study. MR images, including presurgical axial
contrast-enhanced T1-weighted images (CE-T1WI) and
T2-weighted fluid-attenuated inversion recovery (FLAIR)
images, were collected from The Cancer Imaging Archive
(http://www.cancerimagingarchive.net). The images were
originated from four centers (Henry Ford Hospital, Univer-
sity of California San Francisco, Anderson Cancer Center,
and Emory University). Clinical and molecular data were
also obtained from the open-access data tier of the TCGA
website.

Genomic data were from the TCGA data portal. MGMT
methylation status analysis was performed on Illumina
HumanMethylation27 and HumanMethylation450 Bead-
Chip platforms. A median cutoff using the level 3 beta-
value present in the TCGA was utilized for categorizing
methylation status. Illumina Human Methylation probes

(cg12434587 and cg12981137) were selected in this study
[27].

Of 106 GBM cases, 87 cases were with CE-T1W images,
and 66 cases with FLAIR images. We randomly split the cases
into training and testing sets with the ratio of 8 : 2 and applied
10-fold cross-validation to the training set with scikit-learn
library (https://scikit-learn.org/stable/). The dataset distribu-
tion is listed in Table 1.

2.2. Image Preprocessing. For general images, the pixel values
contain reliable image information. However, MR images do
not have a standard intensity scale. In Figure 1(a), we show
the density plot of two raw MR images. In each plot, there
are two peaks, the peak around 0 refers to background pixels,
and the other peak refers to white matter. The white matter
peaks of the two images are far away. Thus, MR images nor-
malization is needed to guarantee that the grey values of the
same tissue among different MR images are close to each
other [28].

The piece-wise linear histogram matching was used to
normalize the intensity distribution of MR images [29].
Firstly, we studied standard histogram distribution via aver-
aging the 1st to 99th percentile of all images. Then, we line-
arly mapped the intensities of each image to this standard
histogram. In Figure 1(b), we can see that the white matter
peaks of two images coincide with each other after normali-
zation. Secondly, the images were normalized to zero mean
and unit standard deviation only on valued voxels. At last,
data augmentation was used to increase the dataset size to
avoid overfitting. We rotated images for every 5 degrees from
-20 to +20 degrees, resulting in a 9-fold increment in the
number of MRI scans.

2.3. Segmentation. As for tumor segmentation, one state-of-
the-art model [30] in BraTS 2018 challenge (Multimodal
Brain Tumor Segmentation 2018 Challenge http://
braintumorsegmentation.org/) was adapted. The whole net-
work architecture is shown in Figure 2.

In short, the deep learning model added a variational
autoencoder (VAE) branch to a fully convolutional network
model. The decoder part was shared for both segmentation
and VAE tasks. The prior distribution taken for the KL diver-
gence in the VAE part is Nð0, 1Þ. ResNet blocks used in the
architecture [31] included two 3 × 3 convolutions with nor-
malization and ReLU as well as skip connections. In the
encoder part, the image dimension was downsampled using
stride convolution by 2 and increased channel size by 2. For
the decoder part, the structure was similar to that of the

Table 1: Dataset distribution of each experiment.

Phase
Cases

(methylation/unmethylation)
CE-T1WI slices

(methylation/unmethylation)
FLAIR slices

(methylation/unmethylation)

FLAIR
Training 51 (25/26) 676 (288/388)

—
Testing 15 (7/8) 167 (62/105)

CE-
T1WI

Training 70 (36/34)
—

1208 (609/599)

Testing 17 (10/7) 220 (109/111)

Note: FLAIR: fluid-attenuated inversion recovery; CE-T1WI; contrast-enhanced T1-weighted imaging.
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encoder part but using upsampled. The decoder endpoint
had the same size as the input image followed by sigmoid
activation, and its output was for tumor segmentation. As
for the VAE part, the encoder output was reduced to 256,
and the input image was reconstructed by using a similar
structure as the decoder without skip connection. The seg-
mentation part output the tumor segmentation and the
VAE branch attempted to reconstruct the input image.
Except for the input and output layers, all blocks in

Figure 2 utilized the ResNet block with different channel
numbers (depicted aside each layer). For the input layer, a 3
× 3 convolution was with 3 channels; and for both output
layers, a 3 × 3 convolution with a dropout rate of 0.2 and L2
regularization with weight 1e − 3 were used to avoid overfit-
ting. The loss function consists of 3 terms as shown in

L = LDice + 0:1 × LL2 + 0:1 × LKL, ð1Þ
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where LDice is the soft Dice loss between the predicted seg-
mentation and the ground truth labels. The ground truth
labels were manually annotated with ImageJ (https://imagej
.nih.gov) by one neuroradiologist with 10 years’ experience
specialized in brain disease diagnosis. LL2 is the L2 loss on
the VAE branch output image and the input image, and
LKL is the standard VAE penalty term [32, 33]. Then, the
Dice coefficient as defined in function (2) was calculated to
assess the performance of segmentation:

Dice =〠
i

2 ⋅ pi ⋅ bpi
pik k2 + pi∧k k2 + epsilon

, ð2Þ

where pi is the ground truth, p̂i is the prediction for pixel i,
and epsilon = 1e − 8.

2.4. Status Classification. Meanwhile, for the classification of
MGMT methylation status, a 4-layer CNN was designed.
Further, the classification model was cascaded with the
tumor segmentation model. At the stage of the tumor seg-
mentation model design, the classification network was tried
with different numbers of convolutional layers [2–5], and we
found that 2 convolutional layers with 2 fully connected (FC)
layers performed the best for this task. The first convolutional
layer had 16 filters, and the second one had 4 filters. All the
convolutional layers had a kernel size of 3 × 3 and stride of

(a)

(b)

Figure 3: Automatic segmentation results of brain tumors with FLAIR images. (a) The ground truth of tumor boundaries in FLAIR images
and (b) automatic segmentation results using the proposed network with FLAIR images.

(a)

(b)

Figure 4: Three representative cases of brain tumor manual annotation and automatic segmentation with CE-T1WI images. (a) The manual
annotation and (b) the automatic segmentation results with our proposed network.
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1 followed by LeakyReLU, batch normalization, and max
pooling. LeakyReLU was an advanced ReLU activation that
avoids dead neurons by setting a negative half-axis slope 0.3
instead of 0. Its advantages include good performance in
eliminating gradient saturation, low computational cost,
and faster convergence. Batch normalization was used to
normalize features by the mean and variance within a small
batch. It helped to solve the covariance shift issue and ease
optimization. Max pooling with a 4 × 4 filter was used to
downsample image features extracted through convolutional
layers and then fed into 2 FC layers. ReLU and softmax were
adapted as activation functions for the first and second FC
layers, respectively. The weight initialization of all layers
was done by He-normal [34].

2.5. Parameter Settings and Software. All experiments were
conducted under the open-source framework Keras (https://
keras.io/) on one GeForce RTX 2080Ti GPU. The numbers
of parameters of the segmentation and classification model
are, respectively, 6,014,721 and 3,498. In tumor segmentation,
Adam optimizer was adapted with a self-designed learning
rate scheduler which was initialized with a learning rate 1e −
4; then, the learning rate was divided by 2 when the validation
loss did not reduce in the past 5 epochs. The epoch was set at
50 and batch size at 8. Every epoch took around 50 seconds. In
tumor classification, 4-CNN was trained for 50 epochs which
utilized Adamwith learning rate 2e − 4, and the batch size was
32. If the validation accuracy was observed stable for over 10
epochs, the training process would be ended. The averaged
elapsed time for each epoch was 5 seconds.

2.6. Statistical Analysis. The Dice coefficient was calculated for
evaluating the performance of tumor segmentation. For the
MGMT methylation status classification, the accuracy rate,
recall, precision, and F1 score were calculated according to
equations listed below. In addition, the receiver operating
characteristic (ROC) curve was plotted, and the area under
the ROC curve (AUC) was reported to measure the classifica-
tion accuracy. All the parameters were calculated in PyCharm

with the programming language of Python (version 3.6.8;Wil-
mington, DE, USA; http://www.python.org/):

Accuracy =
TP + TN

TP + TN + FP + FN
,

Recall =
TP

TP + FN
,

Precision =
TP

TP + FP
,

F1 =
2 × Precision × Recall
Precision + Recall

,

ð3Þ

where TP is the true positive, TN is the true negative, FP is the
false positive, and FN is the false negative.

3. Results

3.1. Tumor Segmentation

3.1.1. Qualitative Observation. Tumors could be accurately
delineated by the proposed pipeline. Figure 3 shows the
annotated ground truth (the first row) and corresponding
segmentation results (the second row) of GBM in FLAIR
images. It is observed that tumor boundaries could be accu-
rately localized by using the deep learning network, and the
major hyperintense regions are delineated. The three cases
show that automatic segmentation is quite close to the
ground truth.

Figure 4 shows the GBM in CE-T1WI images, and the
ground truth (the first row) and the segmentation results
(the second row) are presented. Tumor boundaries are local-
ized, and it seems that there is no obvious difference between
the manual annotation and its corresponding segmentation
results obtained from our proposed network, and the suspi-
cious regions are mainly contoured. The three cases show
that segmentation results from the deep network approxi-
mate the manual delineation.

3.1.2. Quantitative Evaluation. The quantitative performance
of automatic tumor segmentation is summarized in Table 2.
The deep network obtained good testing performance on
tumor segmentation using CE-T1WI (Dice score, 0:828 ±
0:108) and FLAIR (Dice score, 0:897 ± 0:007). And the Dice
scores from FLAIR were slightly higher than those from
CE-T1WI across training, validation, and testing sets. The
maximum difference of the Dice score between average Dice
scores from CE-T1W images in training and validation sets
was 0.026, indicating that the model was not overfitting.

3.1.3. Computational Performance. Time consumption
between manual annotation and automatic prediction per
MR slice is compared as shown in Table 3. For the evaluation
of time consumption, we recorded the total time and divided
it by the number of slices. So, the time listed in Table 3 was
the average segmentation time per slice. It was observed that
the deep network was more efficient, and it took less than 0.2
seconds to complete the segmentation of an MR slice, while
manual annotation required more than 30 seconds.

Table 2: Dice scores of the deep network on tumor segmentation
using MR images.

Modality Training Validation Testing

CE-T1WI 0:832 ± 0:009 0:831 ± 0:012 0:828 ± 0:108

FLAIR 0:893 ± 0:004 0:892 ± 0:008 0:897 ± 0:007

Note: the number in the table referred to the mean ± standard deviation
values of 10 cross-validation experiments. CE-T1WI: contrast-enhanced
T1-weighted imaging; FLAIR: fluid-attenuated inversion recovery.

Table 3: Inference time (seconds) of one MR slice for glioma
segmentation.

Modality Manual annotation Deep model

CE-T1WI 50 s 0.11 s

FLAIR 60 s 0.07 s

Note: CE-T1WI: contrast-enhanced T1-weighted imaging; FLAIR: fluid-
attenuated inversion recovery.
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3.2. Classification of MGMT Promoter Methylation Status.
Table 4 shows the prediction performance of MGMT pro-
moter methylation status which is evaluated from four classi-
fication metrics (accuracy, recall, precision, and F1 score) on
three stages (training, validation, and testing) when using dif-
ferent MR images (CE-T1WI, FLAIR). In general, the model
trained with FLAIR achieves better results for all metrics
across three stages, followed by the model trained with CE-
T1WI images. Specifically, the accuracy, recall, precision,
and F1 score of the deep model trained with FLAIR images
reach 0.827, 0.852, 0.821, and 0.836 in the testing stage,
respectively.

ROC curves of the prediction results are demonstrated in
Figures 5 and 6. Figure 5 shows the best status classification
when using FLAIR images for a deep model, which achieves
an AUC of 0.985 (yellow curve), 0.968 (green curve), and
0.905 (red curve) on the training, validation, and testing data-
sets, respectively.

The best status classification when using CE-T1WI
images for deep model training is shown in Figure 6. The
well-trained deep model obtains AUC up to 0.973 (yellow
curve), 0.942 (green curve), and 0.887 (red curve) on the
training, validation, and testing datasets, respectively.

4. Discussion

This study presents an MR-based deep learning pipeline for
automatic tumor segmentation and MGMT methylation sta-
tus classification in an end-to-end manner for GBM patients.
Experimental results demonstrate promising performance on
accurate glioma delineation (Dice score, 0.897) and MGMT
status prediction (accuracy, 0.827; recall, 0.852; precision,
0.821; and F1 score, 0.836) coming from the model trained
with FLAIR images. In addition, the proposed pipeline dra-
matically shortens the inference time on glioma
segmentation.

For glioma segmentation, one state-of-the-art deep
model is utilized and obtains impressive performance on
the involved MGMT dataset for GBM segmentation. Its per-
formance is close to these deep network-based tumor seg-
mentation studies. Hussain et al. [35] reported a CNN
approach for glioma MRI segmentation, and the model
achieved a Dice score of 0.87 on the BRATS 2013 and 2015
datasets. Cui et al. [36] proposed an automatic semantic seg-

mentation model on the BRATS 2013 dataset, and the Dice
score was near 0.80 on the combined high- and low-grade gli-
oma datasets. Kaldera et al. [37] proposed a faster RCNN
method and achieved a Dice score of 0.91 on 233 patients’
data. These studies suggest that deep networks are full of
potential for accurate tumor segmentation in MR images.

Several deep models have been designed for the classifica-
tion of MGMT methylation status in GBM patients. Chang
et al. [38] proposed a deep neural network which achieved
a classification accuracy of 83% for 259 gliomas patients with
T1W, T2W, and FLAIR images. Korfiatis et al. [26] com-
pared different sizes of the ResNet baseline model and
reached the highest accuracy of 94.9% in 155 GBM patients
with T2W images. Han et al. [39] proposed a bidirectional
convolutional recurrent neural network architecture for
MGMT methylation classification, while the accuracy was
around 62% for 262 GBM patients with T1W, T2W, and
FLAIR images. In this study, a shallow CNN is used, and
the classification performance is promising. The best perfor-
mance comes from the model trained with FLAIR images,
and we achieved a satisfactory result with the highest accu-
racy of 0.827 and recall of 0.852 in consideration of the rela-
tively small dataset.

In the previous studies, Drabycz et al. [40] analyzed
handcrafted features to distinguish methylated from
unmethylated GBM and figured out that texture features
from T2-weighted images were important for the prediction
of MGMT methylation status. Han et al. [41] found that
MGMT promoter-methylated GBM was prone to more
tumor necrosis, while T2-weighted FLAIR sequence may be
more sensitive to necrosis than T1-weighted images. Interest-
ingly, we also find that better performances of both GBM seg-
mentation and molecular classification are achieved on
FLAIR images in our study although the images of CE-
T1W and FLAIR did not come from the same patients.

The strengths of this study lie in the fully automatic gli-
oma segmentation and predicting the MGMT methylation
status based on a small dataset. Generally, it takes a radiolo-
gist about one minute per slice in tumor annotation, while
the inference time of the deep learning model is about 0.1
seconds which is around 1/600 times used in manual annota-
tion. Additionally, manual annotation is burdensome and
prone to introduce inter- and intraobserver variability. While
once well trained, a deep learning model can continuously

Table 4: Results of MGMT methylation status classification.

Modality Phase
Classification

Accuracy Recall Precision F1 score

CE-T1WI

Training 0:894 ± 0:012 0:906 ± 0:007 0:886 ± 0:018 0:896 ± 0:010

Validation 0:839 ± 0:046 0:866 ± 0:044 0:823 ± 0:051 0:845 ± 0:045

Testing 0:804 ± 0:011 0:818 ± 0:033 0:798 ± 0:014 0:808 ± 0:015

FLAIR

Training 0:941 ± 0:056 0:943 ± 0:104 0:947 ± 0:026 0:945 ± 0:081

Validation 0:885 ± 0:090 0:941 ± 0:105 0:857 ± 0:028 0:889 ± 0:101

Testing 0:827 ± 0:056 0:852 ± 0:080 0:821 ± 0:022 0:836 ± 0:072

Note: the number in the table referred to themean ± standard deviation values of 10 cross-validation experiments. CE-T1WI: contrast-enhanced T1-weighted
imaging; FLAIR: fluid-attenuated inversion recovery.
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and repeatedly perform tumor segmentation regardless of the
observers. On the other hand, the training strategy in this
study is beneficial for small dataset analysis. In general, a
deep model requires a large number of training instances.
However, it is challenging or impossible to provide massive

high-quality images in medical imaging. Finally, although
several studies tried to use deep networks for automatic gli-
oma segmentation [35, 36, 42] or molecular classification
[26, 38, 39], the proposed network in this study could inte-
grate both glioma segmentation and classification in a
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Figure 5: ROC curves of the best result on the FLAIR images for MGMT promoter methylation status classification on the training,
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seamless connection pipeline. And the performance is com-
petitive to the state-of-the-art studies in tumor segmentation
and classification.

There are several limitations to our study. First, the sam-
ple size is small in the study; we will further confirm the find-
ings in a study with larger samples. Second, a multicenter
research trial is helpful to validate the capability of the pro-
posed pipeline, while the variations of MR imaging
sequences, equipment venders, and other factors could
impose difficulties on model building. Third, we failed to
investigate the value of combined CE-T1WI and FLAIR in
tumor segmentation and classification considering the fewer
samples. In the future, we will explore multiple MR
sequences for MGMT methylation status prediction, such
as amide-proton-transfer-weighted imaging and diffusion-
weighted imaging. These may have great potential to
improve the performance of MGMT methylation status
prediction.

5. Conclusion

AnMRI-based end-to-end deep learning pipeline is designed
for tumor segmentation and MGMT methylation status pre-
diction in GBM patients. It can save time and avoid interob-
server variability in tumor segmentation and help discover
molecular biomarkers from routine medical images to aid
in diagnosis and treatment decision-making.
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Gold nanorods exhibit a wide variety of applications such as tumor molecular imaging and photothermal therapy (PTT) due to
their tunable optical properties. Several studies have demonstrated that the combination of other therapeutic strategies may
improve PTT efficiency. A method called optical droplet vaporization (ODV) was considered as another noninvasive imaging
and therapy strategy. Via the ODV method, superheated perfluorocarbon droplets can be vaporized to a gas phase for
enhancing ultrasound imaging; meanwhile, this violent process can cause damage to cells and tissue. In addition, active targeting
through the functionalization with targeting ligands can effectively increase nanoprobe accumulation in the tumor area,
improving the sensitivity and specificity of imaging and therapy. Our study prepared a nanoparticle loaded with gold nanorods
and perfluorinated hexane and conjugated to a monoclonal antibody (MAGE-1 antibody) to melanoma-associated antigens
(MAGE) targeting melanoma, investigated the synergistic effect of PTT/ODV therapy, and monitored the therapeutic effect
using ultrasound. The prepared MAGE-Au-PFH-NPs achieved complete eradication of tumors. Meanwhile, the MAGE-Au-
PFH-NPs also possess significant ultrasound imaging signal enhancement, which shows the potential for imaging-guided tumor
therapy in the future.

1. Introduction

Melanoma is a malignant neoplasm sourced from melano-
cytes skin cells—with poor prognosis at advanced stages.
Standard cancer treatments can be highly toxic to healthy tis-
sues without differentiating malignant from normal cells,
causing significant adverse effects in patients. Nanoparticle-
based photothermal ablation therapy assisted by near-
infrared (NIR) laser holds a promise to eliminate tumors
noninvasively, reduce tumor resistance, and prevent recur-
rence [1–3]. In addition, active targeting ability through
functionalization with specific ligands can effectively enable
nanoprobes to accumulate in the tumor area [2]. Melanoma-
associated antigens (MAGE) are a specific and highly
expressed family of antigens in malignant melanoma [4–6].

Therefore, MAGE proteins could also be used to functionalize
nanoprobes for molecular imaging and accurate treatment of
melanoma.

Among the available nanoparticle systems, gold nano-
rods (GNRs/Au-NRs) have attracted particular attention in
cancer imaging and photothermal therapy [7–9] due to sev-
eral advantages: biocompatibility, high photothermal conver-
sion efficiency, well-established methods for synthesis in a
wide range of sizes, and ease of biomodification [10]. How-
ever, complete tumor eradication is so far difficult to achieve
with the introduction of these photothermal nanomaterials.
In particular, their low tissue bioabsorption and utilization
result in limited curative effect in deeply located tumors
[11]. Recently, it has been reported that PTT efficiency may
be improved with the combination of other therapeutic
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strategies [12–14]. Phase-changeable liquid fluorocarbon
emulsions can be vaporized and transformed from droplets
to microbubbles under optical irradiation (ODV) [15–18]
which has become an attractive noninvasive theranostic pro-
tocol based on ultrasound imaging and physical therapy [19].
The emulsion significantly increased acoustic impedance
between the tumor and surrounding tissues [20] and causes
physical damage to tumor cells [21].

Poly(D,L-lactide-co-glycolide) (PLGA), as a type of bio-
degradable nanomaterial with an excellent safety profile in
humans [22] and good film-forming ability, has been
approved by FDA for vaccine and drug delivery as well as
tissue engineering [23–25]. Thus, we prepared a MAGE-
targeted PLGA nanomolecular probe encapsulating liquid
perfluorohexane (PFH) and Au-NRs (MAGE-Au-PFH-
NPs) in this work, specifically targeting melanoma cells,
which have been confirmed to possess the potential to
enhance photoacoustic (PA) and ultrasonic imaging in mela-
noma in our previous study. The results from our previous
study showed that MAGE-Au-PFH-NPs could accumulate
and retain in the tumor area, allowing for therapeutic guid-
ance and monitoring [26]. This study went further in explor-
ing the role of the MAGE-Au-PFH-NPs in the treatment of
melanoma based on our previous study. Benefiting from
the high photothermal-conversion efficiency and ODV effect
in MAGE-Au-PFH-NPs, the efficient tumor ablation was
achieved in melanoma-bearing mice, which provides a prom-
ising alternative strategy for imaging-guided phototherapy of
cancer.

2. Materials and Methods

2.1. Materials. Gold nanorods (Au-NRs, 780nm) were
purchased from NanoSeedz Ltd. (Hong Kong SAR), per-
fluorohexane (PFH) was from Ji’nan Daigang Biological
Engineering Co. Ltd. (Jinan, China), and the B16 mouse mel-
anoma cell line was purchased from the Punuosai Company
(Wuhan, China). MAGE-1 antibody was from the Bioye
Company (Shanghai, China), and propidium iodide (PI)
was purchased from Sigma-Aldrich (St. Louis, MO, USA).
Calcein acetoxymethyl ester (Calcein-AM) was purchased
from Santa Cruz Biotechnology (TX, USA). Anti-HSP70
Rabbit pAb was from Servicebio (Wuhan, China). Cy3-
conjugated goat anti-rabbit IgG was from Servicebio
(Wuhan, China).

2.2. Cell Culture and Animal Experiment. B16 mouse mela-
noma cells were cultured in T75 flasks containing Roswell
Park Memorial Institute (RPMI) 1640 medium supple-
mented with 10% foetal bovine serum and 1% penicillin
and streptomycin (antibiotics) and incubated at 37°C under
5% CO2, with medium changes every 2-3 days. For all the
experiments, the cells were harvested using 0.25% trypsin
solution and were then resuspended in fresh medium before
plating.

All the animals (male BALB/c nude mice: ~20 g, 4–6
weeks) were purchased from the Experimental Animal Cen-
ter of Chongqing Medical University and bred at constant
temperature and humidity, with food and water provided

ad libitum. The animals were maintained in accordance with
the National Guidelines for Experimental Animal Welfare
(MOST, China, 2006) at the Centre for Animal Experiments,
and all the experiments and procedures were approved by the
Institutional Animal Care and Use Committee of Chongqing
Medical University. B16 cells were suspended in PBS (1 × 106
B16 cells in 100μL of PBS per mouse) and then injected sub-
cutaneously into the buttock of the BALB/c nude mice to
establish tumor-bearing mice.

2.3. Characterization of the NPs. By reference to our previous
study [26], MAGE-Au-PFH-NPs were prepared by the
double emulsion method. The carbodiimide method was
employed to modify the Au-PFH-NPs with MAGE antibody
to prepare the targeted nanoparticles (MAGE-Au-PFH-
NPs).

The prepared NPs were observed under a confocal laser
scanning microscope (Nikon) and transmission electron
microscope (TEM) (H-7500; Hitachi, ×1.5 k Zoom-1 HC-1
80.0 kv).

The size and zeta potential of MAGE-Au-PFH-NPs were
measured by a Malvern laser particle size analyzer (Malvern,
England). Furthermore, to assess the stability of MAGE-Au-
PFH-NPs, the NP size and zeta potential changes were tested
for 72 hours while incubating in plasma at 37°C. Meanwhile,
the NPs underwent PAI scanning at different wavelengths
ranging from 680nm to 970nm (interval = 5 nm) to deter-
mine the maximum absorbance for optimized PAI by a Vevo
LAZR Photoacoustic Imaging System (Vevo LAZR, Toronto,
Canada).

2.4. In Vitro Photothermal Properties of NPs. In our previous
study, MAGE-Au-PFH-NP temperature was increased to
70°C through photothermal conversion after absorbing near
infrared light [26]. In this study, we evaluated photothermal
capability of NPs in different concentrations at different
power densities by laser irradiation using an 808 nm laser
for 5 minutes in vitro. The infrared radiation (IR) thermal
images and temperature changes were recorded by an infra-
red thermal-imaging camera.

2.5. In Vitro Photothermal Ablation against B16 Cells. To test
the photothermal ablation effects of MAGE-Au-PFH-NPs
in vitro, B16 cancer cells were divided into 4 groups: control
(normal saline (NS) only), NPs only, laser only, and NPs
+laser, and were seeded onto four confocal-specific cell-
culture dishes (1 × 105 cells per dish) overnight. After cell
adhesion, NP suspension was added into two dishes (two
groups: NPs only and NPs+laser), and equal volume
serum-free RPMI 1640 medium was added into the other
two dishes and incubated for another 12 h; cells of two groups
(laser only and NPs+laser) were exposed to laser
(1.00W/cm2) for 10min. Then, the medium was removed,
and the cells of each dish were washed three times with
PBS. The cells of four groups were scanned by confocal
microscopy after costaining with Calcein-AM and propi-
dium iodide.

2.6. Photothermal Conversion Evaluation and Heat Shock
Protein (HSP) Evaluation In Vivo. To investigate the in vivo
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photothermal efficiency of MAGE-Au-PFH-NPs, twenty B16
tumor-bearing mice were randomly divided into four groups
(5 mice per group) when the tumor volumes reached about
100mm3, including MAGE-Au-PFH-NP, Au-PFH-NP, Au-
NP, and NS groups. The mice were intravenously injected
with 100μL MAGE-Au-PFH-NPs, Au-PFH-NPs, and Au-
NPs at a concentration of 25mg/mL, respectively. The same
volume of normal saline was injected into the mice in the
control NS group. The tumors were exposed to the 808 nm
laser (1.00W/cm2) for 10min after injection of NPs and NS
2 minutes later. The temperature changes in tumors and
infrared radiation (IR) thermal images were recorded by an
infrared thermal-imaging camera. To further analyze the
effect of photothermal therapy on local hyperthermia, we
detected the HSP70 expression within tumors by immuno-
fluorescent staining. All the dose and laser irradiation condi-
tions were adjusted to the same level as mentioned above. At
the second day after treatment, mice were sacrificed to collect
tumors for HSP70 immunofluorescent staining. Anti-HSP70
rabbit pAb as primary antibodies was added in the section
and incubated overnight at -4°C; Cy3 conjugated goat anti-
rabbit IgG as secondary antibodies was added in the section
away from light for 50min at room temperature, followed
by DAPI hyperchromatic nucleus and sealing piece. Eventu-
ally, the sections were observed and imaged under a fluores-
cence microscope.

2.7. Targeting Ability In Vitro and In Vivo. To assess the tar-
geting ability in vitro, immunofluorescence imaging observed
under confocal microscopy has been performed. The
melanoma-associated antigens were combined to the tar-
geted nanoparticles to obtain the blocking group (MAGE-
R-Au-PFH-NPs). MAGE-Au-PFH-NPs and the blocking
group (MAGE-R-Au-PFH-NPs) were all treated with DiI
fluorescent dye in the first step of synthesis before the sonica-

tion. B16 cells were seeded in confocal laser dishes at 1 × 105
and coincubated with dyed NPs (MAGE-Au-PFH-NPs,
MAGE-R-Au-PFH-NPs) at 37°C for 30min and then
observed under a laser scanning confocal microscope after
being fixed with 4% paraformaldehyde and stained with
20μL of 4′,6-diamidino-2-phenylindole (DAPI).

To detect whether MAGE-Au-PFH-NPs have a long cir-
culation time compared to that of the Au-PFH-NPs, 6
tumor-bearing mice were randomly divided into two groups
(MAGE-Au-PFH-NPs and Au-PFH-NPs); the two groups of
mice were intravenously injected with 100μL of MAGE-Au-
PFH-NPs and Au-PFH-NPs (25mg/mL). The dynamic dis-
tribution of nanoparticles within the whole body was
measured using fluorescence spectrum.

2.8. Photothermal/ODV Efficiency and Detection In Vivo. To
evaluate the in vivo photothermal and ODV efficiency of
MAGE-Au-PFH-NPs, twenty B16 tumor-bearing mice were
used when the tumor volumes reached about 100mm3. The
mice were divided into four groups (5 mice per group) ran-
domly including the laser only, Au-NP+laser, Au-PFH-NP
+laser, and MAGE-Au-PFH-NP+laser groups, which were
intravenously injected with normal saline solution (100μL),
Au-NP (25mg/mL, 100μL), Au-PFH-NP (25mg/mL,
100μL), and MAGE-Au-PFH-NP suspension (25mg/mL,
100μL), respectively. Then, each mouse was exposed to the
808 nm laser for 10min at a power density of 1.00W/cm2.
The treatment was performed every other day, and one of
the mice in each group was sacrificed on the third day for
pathological section and staining. All the tumor tissues were
collected and fixed in a 4% paraformaldehyde solution,
stained with H&E, TdT-mediated dUTP Nick-End Labeling
(TUNEL), and Proliferating Cell Nuclear Antigen (PCNA)
for histopathology analysis.
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Figure 1: Physicochemical characterization of MAGE-Au-PFH-NPs. (a) Size distribution of MAGE-Au-PFH-NPs. (b) Zeta potential of
MAGE-Au-PFH-NPs. (c) Size distribution of MAGE-Au-PFH-NPs incubating in plasma at 37°C after 12, 48, and 72 h (∗P > 0:05). (d)
Zeta potential of MAGE-Au-PFH-NPs incubating in plasma at 37°C after 12, 48, and 72 h (∗P > 0:05). (e) PA spectrum of MAGE-Au-
PFH-NPs, Au-PFH-NPs, and Au-NPs (25mg/mL) from 680 nm to 960 nm.
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The remaining four mice were maintained for 15 days,
and the mouse weight and tumor volume were measured
every other day after PTT. The tumor-volume changes were
normalized using the relative tumor volumes V/V0 (V0: the
initial tumor volume before the treatment).

In our previous study, CEUS imaging was significantly
enhanced at the tumor site in the MAGE-Au-PFH-NP group
after laser irradiation [26]. Thus, contrast-enhanced ultraso-
nography (Esaote MyLab 90, Genoa, Italy) was performed in
tumor-bearing mice after the treatment to evaluate the ther-
apeutic effect of MAGE-Au-PFH-NPs in vivo in this study.

CEUS-mode images of the tumors were recorded after expo-
sure to the 808 nm laser (1.00W/cm2, 10mins). Echo inten-
sity was acquired and analyzed using a DFY-ultrasonic
image quantitative analyzer (Institute of Ultrasound Imaging
of Chongqing Medical University, Chongqing, China).

2.9. Toxicity Test In Vitro and Biocompatibility In Vivo. To
assess the toxicity of MAGE-Au-PFH-NPs, the typical
CCK-8 assay was used to evaluate the cell viability in endo-
thelial cells and hepatic cells. The test of liver functional
markers (AST, ALT), kidney functional markers (CR,
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Figure 2: Morphological distribution of MAGE-Au-PFH-NPs under the microscope and photothermal properties of NPs in vitro. (a) CLSM
image of DiI-stained MAGE-Au-PFH-NPs (scale bar: 5 μm). (b) TEM image of MAGE-Au-PFH-NP distributions in cells (scale bar: 5 μm).
Red arrow showed the NP distribution in B16 cells. (c) Plot of temperature change of MAGE-Au-PFH-NP suspension at different power
densities of an 808 nm laser (0.12, 0.42, 0.72, and 1.00W/cm2) as a function of irradiation duration (MAGE-Au-PFH-NP concentration:
25mg/mL and 100μL). (d) Plot of temperature change of NS and MAGE-Au-PFH-NP suspension at different levels of concentration
(MAGE-Au-PFH-NP concentrations: 3.125, 6.25, and 13.5, 25mg/mL and 100μL) exposure to an 808 nm laser (1.00W/cm2) as a
function of irradiation duration. (e) Confocal fluorescence imaging of Calcein-AM and PI costained B16 cells after coincubation with NPs
for 12 h followed by different treatments (scale bar = 100 μm).
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BUN), and H&E staining of the major organs (heart, liver,
and kidney) after intravenous injection and laser irradiation
have been performed to evaluate the biocompatibility in vivo.

3. Statistical Analysis

Data were presented as the mean ± standard deviation. Sta-
tistical analyses were done using the SPSS Ver. 19.0. P <
0:05 was considered statistically significant according to
one-way ANOVA and Student’s t-test.

4. Results

4.1. Characterization of NPs and Photothermal Conversion
Efficiency of NPs In Vitro. The size and zeta potential of
MAGE-Au-PFH-NPs were 324:54 ± 21:76nm and −4:76 ±

3:7mV, respectively, measured by a Malvern laser particle
size analyzer. Furthermore, results showed that the size and
zeta potential changes measured at 48h and 72 h had no sta-
tistic difference compared with 12 h that could confirm the
stability of MAGE-Au-PFH-NPs (Figures 1(a)–1(d)). The
result of the PAI scanning showed that the maximum absor-
bance of three groups (Au-NPs, Au-PFH-NPs, and MAGE-
Au-PFH-NPs) had been detected at 780nm which con-
formed to the spectral properties of gold nanorods
(GNRs/Au-NRs) (Figure 1(e)).

The NPs showed a good dispersity under a confocal laser
scanning microscope and were mainly distributed in the
cytoplasm after uptake by cells under a transmission electron
microscope (Figures 2(a) and 2(b)).

The temperature change of NPs after laser irradiation
was recorded by an infrared thermal-imaging camera. The
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Figure 3: Photothermal conversion efficiency and heat shock protein (HSP) evaluation in vivo. (a) IR thermal images of B16 tumor-bearing
mice of the four groups (NS+laser, Au-NP+laser, Au-PFH-NP+laser, andMAGE-Au-PFH-NP+laser groups) taken at different times. (b) Plot
of temperature change of four groups (NS+laser, Au-NP+laser, Au-PFH-NP+laser, and MAGE-Au-PFH-NP+laser groups) in vivo. (c)
Immunofluorescent staining of HSP70 of tumor tissues dissected from different groups on the 1st day post treatments. The scale bar is
50μm. (d) Quantitative analysis of HSP expression from different groups on the 1st day post treatments. (The data is shown as mean ±
SD, n = 5 per group; ∗P < 0:05.).
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temperature in a MAGE-Au-PFH-NP suspension increased
significantly and reached as high as 71°C under NIR irradia-
tion within 5min at a concentration of 25mg/mL as shown
in Figures 2(c) and 2(d), while no temperature change was
found in the normal saline (NS) group. Moreover, the tem-
perature elevated significantly with the increase of NIR irra-
diation power, which demonstrated that the photothermal
conversion efficiency of MAGE-Au-PFH-NPs depended on
both concentration and laser power density.

4.2. In Vitro Photothermal Ablation against B16 Cells. A large
number of B16 cells died and showed a strong red fluores-
cence (Figure 2(e)) in the MAGE-Au-PFH-NP+laser group
in the experiment in vitro, suggesting photothermal effect
induced by MAGE-Au-PFH-NPs under external NIR irradi-
ation. In contrast, dead cells were rarely found in the control
group, which displayed green fluorescence of Calcein-AM
staining (Figure 2(e)). Only a number of dead cells were
shown in the laser- and MAGE-Au-PFH-NP only groups,
as confirmed by the strong green fluorescence and very weak
red fluorescence from PI staining.

4.3. Photothermal Conversion Efficiency and HSP Evaluation
In Vivo. As shown in Figures 3(a) and 3(b), the surface tem-
perature of tumors in the MAGE-Au-PFH-NP+laser group
increased from 31:6 ± 1:09°C to 56:1 ± 2:6°C under irradia-
tion for 10min. The Au-PFH-NP+laser group increased
from 30:1 ± 1:3°C to 52:0 ± 2:1°C under irradiation for
10min. The temperature in the Au-NP+laser group
increased from 31:2 ± 0:9°C to 51:4 ± 1:7°C under irradiation
for 10min. Comparatively, only a slight temperature increase
was found in the tumor region in the laser only group.

The HSP70 expression level was analyzed and is shown in
Figures 3(c) and 3(d). The mice that received MAGE-Au-
PFH-NPs plus laser irradiation showed a remarkably higher
HSP70 expression compared to those treated with Au-PFH-
NPs and Au-NPs followed by laser irradiation. In the control
group (NS with laser irradiation), no evident expression of
HSP70 was found.

4.4. Targeting Ability In Vitro and In Vivo. The biodistribu-
tion of nanoparticles in mice was investigated by in vivo fluo-
rescence imaging. At 1 hour post injection, prominent uptake
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Figure 4: Fluorescence imaging in vivo. (a) Fluorescence images of B16 tumor-bearing mice after intravenous injection of MAGE-Au-PFH-
NPs and Au-PFH-NPs at 0, 1, 2, 24, 48, and 72 h (n = 3 per group). (b) Plot of fluorescence images of B16 tumor-bearing mice after
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of nanoparticles in the tumor was observed in the MAGE-
Au-PFH-NP group; the signals reached a peak 2 hours later
and lasted for 72h. While in the Au-PFH-NP group, fluores-
cent signals were found at 24 h and disappeared after 48 h
(Figures 4(a) and 4(b)). These results confirmed the accumu-
lation and long retention time of MAGE-Au-PFH-NPs
within the tumor area. Fluorescence imaging observed under
confocal microscopy demonstrated a large number of
MAGE-Au-PFH-NPs concentrated in B16 cells, showing
clear red fluorescence, while the blocking group (MAGE-R-
Au-PFH-NPs) presented sparse distribution around the cells
(Figure 4(c)). These results confirmed that the MAGE-Au-
PFH-NPs could specifically target B16 cells.

4.5. Photothermal/ODV Efficiency and Detection In Vivo.
Based on the in vivo photoacoustic imaging experiment,
MAGE-Au-PFH-NPs actively accumulated in the tumor
region, and the signal reached a peak at 2 h post injection
[26]. Therefore, the mice were treated for 10min after 2 h
post injection until the 5th day. Tumor tissue necrosis was
found in mice in the MAGE-Au-PFH-NP+laser group the
second day after treatment, leaving black scars in the initial
tumor regions (Figure 5(a), red arrow). Then, they disap-
peared 15 days later, leading to complete tumor eradication
(Figure 5(a), black arrow), while the tumors in the remaining
three groups grew rapidly. The ultrasound imaging was signif-
icantly enhanced at the tumor site in the MAGE-Au-PFH-NP
group under the laser irradiation. Then, the enhanced ultra-
sound signals gradually decreased with the increase of treat-
ment times and disappeared by day 15 (Figure 5(b)). The
weight and tumor volume of each mouse were recorded every
other day (Figure 5(c)). Then, the tumor-volume change was
normalized as V/V0 (Figure 5(d)).

H&E and TUNEL staining results further confirmed
tumor necrosis in mice in the MAGE-Au-PFH-NP+laser
group, which was more serious compared to those in the

remaining three groups (Figure 5(e)). From the result of the
PCNA assay, the MAGE-Au-PFH-NP+laser group exhibited
a significant suppression effect on tumor cell proliferation. In
contrast, no evident proliferative inhibition was observed in
the remaining three groups.

4.6. Toxicity Test In Vitro and Biocompatibility In Vivo. The
cytotoxicity of MAGE-Au-PFH-NPs was investigated by
the CCK-8 assay. After 24 h incubation, inconspicuous cyto-
toxicity of the NPs on endothelial cells and hepatic cells was
observed since cell viability remained above 80% at NP con-
centration of 25mg/mL. And no significant difference was
found among the groups (NS, Au-NPs, Au-PFH-NPS, and
MAGE-Au-PFH-NPs) (Figure 6(c)). The test of liver func-
tional markers (AST and ALT) and kidney functional
markers (CR and BUN) and H&E staining of the major
organs (heart, liver, and kidney) after intravenous injection
and laser irradiation showed no significant physiological tox-
icity (Figures 6(a), 6(b), and 6(d)).

5. Discussion

Photothermal therapy (PTT) is a minimally invasive tech-
nique for cancer treatment which uses laser-activated photo-
absorbers to convert photon energy into heat sufficient to
induce cell destruction via apoptosis, necroptosis, and/or
necrosis. From the current studies, photothermal therapy
cannot ablate the tumor thoroughly using photothermal
materials due to nonuniform tumor internal heat distribu-
tion. The combination of PTT and other methods may over-
come this disadvantage. Gold NPs (Au-NPs) designed to act
as photothermal sensitizing agents are widely used in cancer
therapy due to their high optical absorption coefficients. In
our previous study, the Au-NRs and PFH were encapsulated
in a PLGA shell through the double emulsion method with a
high encapsulation efficiency and conjugated with the
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Figure 5: Detection of photothermal/ODV efficiency in vivo. (a) Photographs of B16 tumor-bearing mice in the four groups taken during a
15-day period after the various treatments. (b) Ultrasound imaging from the region of interest in B16 tumor-bearing nude mice in theMAGE-
Au-PFH-NP group using CEUS after laser irradiation during a 15-day period. (c) Body weight curves (n = 5, mean ± SD) of the four groups
after different treatments. (d) Tumor growth curves (n = 5, mean ± SD) of the four groups after various treatments. (e) H&E, TUNEL, and
PCNA staining on tumor sections after various treatments. All the scale bars are 50 μm. (The data is shown as mean ± SD, n = 5 per
group; ∗P < 0:05, ∗∗P < 0:01.).
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MAGE-1 antibody for targeting melanoma cells [26]. With
the application of MAGE-Au-PFH-NPs, the temperature
can be raised up to 71°C under laser irradiation, showing
their excellent photothermal effect [27]. These targeted nano-
particles actively accumulated in the tumor area and
enhanced the PTT effect. In addition, the PFH can be vapor-
ized by laser irradiation [28] with the application of MAGE-
Au-PFH-NPs [16], which had also been confirmed in our
in vitro study [26]. Meanwhile, from the in vivo results, the
temperature in the tumor region increased up to 56:1 ± 2:6°
C (Figure 3(b)), which was sufficient to ablate the tumor tis-
sue [29]; meanwhile, it could convert MAGE-Au-PFH-NPs
into bubbles. Then, the physical and mechanical damage
induced by the phase change process can directly kill tumor
cells [21].

Heat shock protein is produced under the induction of
stress agents such as high temperature to induce thermoresis-
tance for cells [30]. In our study, the results showed that
HSP70 expression in the MAGE-Au-PFH-NP group was sig-
nificantly higher compared to that in the groups of Au-PFH-
NPs and Au-NPs with laser irradiation. Only little expression
of HSP70 was found in the NS plus laser group. The results of
HSP70 immunofluorescent staining corresponded well with
those of photothermal conversion effect.

In our study, complete tumor eradication was observed
in the MAGE-Au-PFH-NP+laser group. In contrast, the
tumors of the other three groups grew rapidly. The results
showed that the combination of targeted photothermal ther-
apy and ODV phase transition physical therapy could
achieve better tumor ablation effect. In vivo fluorescence
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Figure 6: Toxicity test in vitro and biocompatibility in vivo. (a, b) Haematological assay of B16 tumor-bearing nude mice. (c) Cell viability
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imaging confirmed that targeted nanoparticles (MAGE-Au-
PFH-NPs) had a longer circulation time compared to the
nontargeted Au-PFH-NPs.

Tumor recurrence was found in the Au-PFH-NP and
Au-NP plus laser therapy groups indicating limited PTT
effect leading to residues in tumor tissue. By combining the
PTT effect and ODV physical damage from MAGE-Au-
PFH-NPs, the tumor ablation was greatly improved. Mean-
while, damage to normal tissues caused by long time laser
irradiation can be avoided.

Besides, when the phase-changeable nanoparticles were
transformed from droplets to microbubbles, the acoustic
impedance of the tumor and surrounding tissues was
increased, which thereby enhanced ultrasound imaging. In
this study, the CEUS imaging was significantly enhanced at
the tumor site in the MAGE-Au-PFH-NP group under laser
irradiation and decreased with the increase of treatment
times, providing a method for monitoring tumor ablation
effect by CEUS.

6. Conclusion

We successfully constructed MAGE-targeted phase-
changeable gold nanoparticles which could accumulate at
tumor sites. With the combination of PTT and ODV effects,
complete tumor eradiation was achieved and could be mon-
itored by contrast-enhanced ultrasonography. Several advan-
tages such as noninvasiveness, short recovery time, low
complication rate, and monitorable treatment process were
included with this protocol. These novel targeted nanoparti-
cles could be used as a multifunctional theranostic agent for
imaging-guided tumor ablation.
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This study was aimed at building a computed tomography- (CT-) based radiomics approach for the differentiation of sarcomatoid
renal cell carcinoma (SRCC) and clear cell renal cell carcinoma (CCRCC). It involved 29 SRCC and 99 CCRCC patient cases, and to
each case, 1029 features were collected from each of the corticomedullary phase (CMP) and nephrographic phase (NP) image.
Then, features were selected by using the least absolute shrinkage and selection operator regression method and the selected
features of the two phases were explored to build three radiomics approaches for SRCC and CCRCC classification. Meanwhile,
subjective CT findings were filtered by univariate analysis to construct a radiomics model and further selected by Akaike
information criterion for integrating with the selected image features to build the fifth model. Finally, the radiomics models
utilized the multivariate logistic regression method for classification and the performance was assessed with receiver operating
characteristic curve (ROC) and DeLong test. The radiomics models based on the CMP, the NP, the CMP and NP, the subjective
findings, and the combined features achieved the AUC (area under the curve) value of 0.772, 0.938, 0.966, 0.792, and 0.974,
respectively. Significant difference was found in AUC values between each of the CMP radiomics model (0:0001 ≤ p ≤ 0:0051)
and the subjective findings model (0:0006 ≤ p ≤ 0:0079) and each of the NP radiomics model, the CMP and NP radiomics
model, and the combined model. Sarcomatoid change is a common pathway of dedifferentiation likely occurring in all subtypes
of renal cell carcinoma, and the CT-based radiomics approaches in this study show the potential for SRCC from CCRCC
differentiation.

1. Introduction

Sarcomatoid renal cell carcinoma (SRCC) is a special subtype
of renal cell carcinoma (RCC). Rather than an independent
one, it is dedifferentiated from other histological subtypes
of RCC both in epithelial and mesenchymal tissues [1]. SRCC
is uncommon but highly aggressive, accounting for approxi-
mately 1/6 cases of advanced kidney cancers. In particular, it
results in more dismal prognosis than the common subtype
of clear cell renal cell carcinoma (CCRCC) [2]. According
to the newly International Society of Urological Pathology

(ISUP) grading system, RCC will be classified to grade IV
when a sarcomatoid component was identified [3, 4].

Previous studies report that 45%-84% of SRCC have syn-
chronous distant metastases at the time of diagnosis [5–7].
However, most systemic therapies developed for metastatic
RCC are less effective in SRCC [8]. CCRCC can benefit from
surgical resection even in the setting of metastasis, while for
SRCC patients, surgical resection prior to systemic targeted
therapies may worsen the outcomes because it might delay
the administration of systemic therapy [2, 9]. Although abla-
tive technique is an option for small renal masses, there is no
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enough support for using this technique in the small SRCC,
and moreover, the infiltrative nature of SRCC tumors makes
the determination of negative margin more difficult [2].

Preoperative diagnosis of SRCC is a challenging task.
Since recognizable sarcomatoid elements just comprise a var-
iable amount of the whole tumor, the use of biopsy is limited
to confirm this entity [10, 11]. Despite some studies that
reported that preoperative imaging could be used for predic-
tive diagnosis of SRCC, the small sample sizes of such studies
resulted in limited unconvincing consequences [12–15]. In
this study, we explore to use of radiomics for the extraction
and analysis of high-throughput features and both cortico-
medullary phase (CMP) and nephrographic phase (NP)
images during CT imaging are concerned. Incorporated with
clinical information, radiomics could further improve
computer-aided diagnosis, prognosis, and predictive accu-
racy [16–18]. Hence, the purpose of this study is to build a
CT-based radiomics approach that uses quantitative features
and subjective CT findings for the differentiation of SRCC
and CCRCC tumors in a relatively larger sample size.

2. Materials and Methods

2.1. Data Collection. The study was a retrospective study, and
the informed patient consent was waived. Given the predom-
inant number of CCRCC patients and a small number of
SRCC patients in our hospital, the SRCC cases were collected
from January 2007 to October 2017, and the CCRCC cases
were collected from January 2011 to October 2017. To
develop a study group with appropriate cases for building
the radiomics models, the following inclusion criteria were
used: (1) tumors originated from renal; (2) CT with
contrast-enhanced CMP and NP images; and (3) tumor
diameter ≥ 6 cm. The exclusion criteria were (1) CT images

without sufficient quality due to motion artifacts or poor con-
trast injection; (2) the pathology confirmed as CCRCC only
by biopsy; and (3) CT images not acquired in the specified
scanner. Figure 1 shows the recruitment pathway for patient
cases in this study.

2.2. Clinical Assessment of SRCC and Fuhrman Grades of
CCRCC. The determination of SRCC and Fuhrman grade
of CCRCC was gathered from the pathology reports, and
one pathologist with 8 years of experience specializing in
renal pathology reexamined all of the specimens. In this
study, one RCC was considered to be SRCC when it resem-
bles any form of sarcoma with or without atypical spindle
cells, and a minimum proportion of sarcomatoid tumor
was not required to make a diagnosis of sarcomatoid carci-
noma. The criterion was in accordance with the ISUP 2012
Consensus Conference [3].

2.3. CT Imaging Protocol. The CT images were obtained by
the scanner GE Light Speed VCT 64. The scanning parame-
ters were as follows: tube voltage, 120 kVp; the tube current,
250-400mA using automatic modulation; section thickness,
5mm; and reconstruction interval, 5mm. The patients were
injected with 1.0mL/kg of nonionic contrast material (iopro-
mide, Ultravist 370; Bayer, Germany) at rate of 3.5mL/s via
the antecubital vein through a power injector. The CMP
and the NP began 25 and 70 seconds after contrast injection,
respectively.

2.4. Subjective CT Findings. Subjective CT findings for each
patient were independently accessed and recorded in a
blinded manner by two readers with 6 and 10 years of expe-
rience in abdominal imaging, and interreader variability was
evaluated by using Kappa statistics. The solution to the

Searching the pathology database by the term
‘‘renal and sarcomatoid” from Jan. 2007 to Oct. 2017 and
‘‘renal and clear cell renal cell carcinoma” from Jan. 2011

to Oct. 2017

65 items contain ‘‘renal’’
and ‘‘sarcomatoid’’ 803 CCRCCs

54 SRCCs
11 sarcomatoids not

originated from renal
were excluded

756 CCRCCs were
confirmed by surgery

47 CCRCCs confirmed by
biopsy were excluded

49 SRCCs with available
CT images

5 SRCCs without available
CT images were excluded

521 CCRCCs with
available CT images

235 CCRCCs without
available CT images were

excluded

45 SRCCs with a diameter
≥6 cm

4 SRCCs with a diameter
<6 cm were excluded

163 CCRCCs with a
diameter ≥6 cm

378 CCRCCs with a
diameter <6 cm were

excluded

29 SRCCs were included 16 SRCCs scanned in
other CT were excluded 99 CCRCCs were included 64 CCRCCs scanned in

other CT were excluded

Figure 1: Recruitment pathway for patients in this study.
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divergences for the same case was to ask the readers jointly
reviewing it to reach a consensus for further analysis.

Each reader evaluated the tumors for spread pattern,
presence or absence of venous thrombus, intratumoral neo-
vascularity, peritumoral neovascularity, calcification, and
diameter. (a) Spread pattern was categorized into infiltrative
or noninfiltrative. An infiltrative spread pattern was defined
as invasion into the collecting system or neighboring organ,
or interdigitation into adjacent renal parenchyma with the
loss of a clear radiological capsule separating the lesion from
adjacent parenchyma. (b) Intratumoral or peritumoral neo-
vascularity means visible vascularity in the tumor paren-
chyma or perinephric fat adjacent to the mass. (c) Diameter
was the largest transverse diameter measured at the maxi-
mum axial slice.

The difference in the subjective CT findings between the
two patient groups was analyzed by using a chi-squared test
or independent sample t-test, if appropriate. The findings
without significant difference would not be integrated for
the model building. All statistical analysis was completed by
using SPSS (version 21.0).

2.5. Image Segmentation. To obtain the regions of interest
(ROIs), the entire tumor of all contiguous slices was outlined
except for the first and the last one which aimed to minimize
the partial volume effects. Contouring was drawn slightly
within the borders of the tumor masses. It included necrotic,
cystic change, and hemorrhagic areas, while normal renal tis-
sue and perinephric or sinus fat were excluded. The ROIs
were drawn by the two readers both of whom were blinded
to the clinical and pathological information. Figure 2 shows
a representative example of manually outlined patient cases.

2.6. Radiomics Feature Extraction. To each phase image per
patient, 1029 radiomics features were extracted through Rad-
cloud platform (Huiying Medical Technology, http://
radcloud.cn/). The radiomics features were divided into
first-order features, shape features, and texture features.
Shape features were calculated on the original ROI image,
while first-order features and texture features were computed
on the original ROI image and other derived images obtained
by applying several filters, including exponential filter, square

filter, square root filter, logarithm filter, and wavelet decom-
position [19, 20]. Furthermore, texture features were derived
from gray-level cooccurrence matrix (GLCM), gray-level run
length matrix (GLRLM), and gray-level size zone matrix
(GLSZM). As for the full details of radiomics data, please
refer to supplemental S01.

2.7. Assessment of Delineation Consistency and Radiomics
Feature Stability. To estimate the consistency of delineating
CMP and NP images by the two readers, interclass correla-
tion coefficient (ICC) values among 1029 features of each
patient and each phase were calculated. If the ICC value of
one patient in a phase was greater than 0.75, the manual
delineation was considered in good agreement [21, 22] and
the delineated image of the first reader would be used in
follow-up model construction. Otherwise, the delineation
would be repeated by the readers until the ICC met the
requirement.

To ensure the stability and reproducibility of the radio-
mics features, the ICC was also calculated in each radiomics
feature between two readers in the CMP and NP images. Fea-
tures with an ICC greater than 0.75 were regarded as being in
good agreement and retained for further radiomics analysis,
and others were trimmed off.

2.8. Radiomics Feature Selection.Although some of the radio-
mics features with an ICC lower than 0.75 were removed,
there still remained a great quantity of features. In order
to decrease the high degree of redundancy and irrelevance,
feature selection was conducted using the least absolute
shrinkage and selection operator (LASSO) regression method
in Anaconda3 platform (https://www.anaconda.com) with
scikit-learn (https://scikit-learn.org/) and matplotlib pack-
ages (https://matplotlib.org/).

The LASSO regression method has been proved to be
efficient and effective in the high-dimensional data analysis
[23, 24]. It is aimed at minimizing the cost function and at
keeping the features with nonzero coefficients. In this study,
features passing the ICC screening were normalized by Z
-score transform. Then, a 10-fold crossvalidation was carried
out to choose the optimal parameters via the minimum of

(a) (b)

Figure 2: Manual delineation of a SRCC tumor of the same patient at different phases: (a) corticomedullary phase and (b) nephrographic
phase.
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average mean square error. At last, the radiomics features
with nonzero coefficients were used for further analysis.

2.9. Development, Diagnostic Performance, and Comparison
of Classification. In order to evaluate the potential of CT-
based radiomics and subjective CT findings for the differen-
tiation of SRCC and CCRCC tumors, 5 models were built
with the logistic regression method and fivefold crossvalida-
tion strategy. These models differ from each other, since the
selected features are the CMP, the NP, the CMP and NP,
the subjective CT findings, and the combined features and
subjective CT findings.

K-fold crossvalidation is a common model validation
technique and widely used in machine learning studies. It
randomly partitions the whole set into K subsets with equal
or close size of data samples. Among the subsets, one is set
as the validation set and the others as the training set. The
experiment repeats K times to ensure that each of the subsets
will be used exactly once as the validation set.

Specifically, to build the model with the subjective CT
findings, the findings with statistically significant difference
were concerned. In this study, infiltrative spread pattern,
presence of venous thrombus, neovascularity, and calcifica-
tion were set as 1, and noninfiltrative spread pattern and
absence were set as 0. In the combined model, the CT find-
ings were further selected by Akaike information criterion
(AIC) and in the end integrated into a combined model with
these selected CMP and NP features.

The quantitative indices used to assess the performance
of these classification models were the receiver operating
curve (ROC) and the area under the ROC curve (AUC),
accuracy, sensitivity, and specificity. The confidence interval
of AUC was computed by the exact binomial method. The
ROC values of every two models were compared by using
the DeLong test [25]. All the model construction, statistical
computation, and figures were conducted in the Anaconda3
platform with scikit-learn and matplotlib.

3. Results

3.1. Clinical Characteristics. This study involved 128 patients
(89 males and 39 females; mean age, 57:11 ± 10:52 years;
range, 24-80 years). There were 29 (22.66%) SRCC and 99
(77.34%) CCRCC patients. No significant difference was
found in gender (p = 0:593) or age (p = 0:297) between the
patient groups, while it showed significant difference in
tumor size (p < 0:001) and T stage (p < 0:001). Patient char-
acteristics are shown in Table 1.

Specifically, among the SRCC patient cases, 23 were ded-
ifferentiated from CCRCC tumors, followed by chromo-
phobe RCC (4 cases), collecting duct carcinoma (1 case),
and Xp11.2 translocation RCC (1 case), while among the
CCRCC patient cases, the number of Fuhrman I, II, III, and
IV was 4, 51, 40, and 4, respectively.

3.2. Interreader Agreement of Subjective CT Findings and
Radiomics Features. Venous thrombus showed excellent
agreement, with a Kappa value of 0.867 (95% CI (confidence
interval): 0.598-1.000). Both peritumoral neovascularity and

calcification showed good agreement, with Kappa values of
0.629 (95% CI: 0.489-0.761) and 0.787 (95% CI: 0.653-
0.901), respectively. Besides, spread pattern and intratumoral
neovascularity showed moderate agreement, with Kappa
values of 0.571 (95% CI: 0.391-0.733) and 0.404 (95% CI:
0.270-0.537), respectively.

It was found that 1020 CMP radiomics features and 1023
NP radiomics features were with good interreader agree-
ment, and ICC values, respectively, ranged from 0.786 to
0.999 and 0.765 to 0.999. In addition, 9 CMP radiomics fea-
tures and 6 NP radiomics features were with ICC values less
than 0.75, ranging from 0.148 to 0.748 and 0.102 to 0.696,
respectively.

3.3. The Selection of Subjective CT Findings. It was found
out that spread pattern (p < 0:001), venous thrombus
(p = 0:001), peritumoral neovascularity (p = 0:017), calcifi-
cation (p = 0:005), and diameter (p < 0:001) showed signifi-
cant differences between the SRCC and CCRCC groups,
while there was no significant difference of intratumoral neo-
vascularity (p = 0:073) and thus, it was not used in model
building. Subjective CT findings between the two patient
groups are shown in Table 2.

3.4. The Selection of Radiomics Features. Using the regular-
ized regression with the penalty (α is denoted as the weight
of penalty term), the number of CMP features was reduced
to 6 (α = 0:074 and−log ðαÞ = 1:13) and that of NP features
was decreased to 29 (α = 0:028 and−log ðαÞ = 1:55) with non-
zero coefficients. As shown in Figure 3, (a) shows the optimi-
zation of the parameter α by using LASSO, and (b) indicates
the coefficients of selected CMP radiomics features, while (c)
and (d) demonstrate the results of the parameter α and cor-
responding coefficients of selected NP radiomics features.

Table 1: The characteristics of SRCC and CCRCC patient groups.

SRCC (29)
CCRCC
(99)

Whole set
(128)

p value

Gender

Male
19

(65.51%)
70

(70.71%)
89 (69.53%) 0.593a

Female
10

(34.48%)
29

(29.29%)
39 (30.47%)

Age (yrs, mean
± std) 55:3 ± 14:0 57:6 ± 9:3 0.297b

Size (cm, mean
± std) 10:1 ± 3:0 7:7 ± 1:6 <0.001b

T stage

1b 6 (20.69%)
66

(66.67%)
72 (56.25%) <0.001c

2
11

(37.93%)
19

(19.19%)
30 (23.44%)

3
11

(37.93%)
13

(13.13%)
24 (18.75%)

4 1 (3.45%) 1 (1.01%) 2 (1.56%)

yrs: years; std: standard deviation; p < 0:05 is set as significant difference; aχ2

test; bStudent’s t-test; cFisher’s exact test.
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Specifically, the selected CMP features are 3 first-order
features, 1 shape feature, and 2 texture features, and the
selected NP features include 8 first-order features, 3 shape
features, and 18 texture features. The coefficients of selected
features are shown in Table 3.

For the combination model, subjective CT findings
(spread pattern and calcification) with minimum AIC value
were integrated into the selected CMP and NP radiomics
features as the input for tumor differentiation. AIC values
of subjective CT findings are shown in supplemental S02.

3.5. Development, Diagnostic Performance, and Comparison
of Classification Models. Five radiomics approaches were
explored via logistic regression. The subjective CT findings
model considered 4 features (venous thrombus, peritumoral
neovascularity, calcification, and diameter). For radiomics
approaches, one utilized 6 CMP features, one used 29 NP fea-
tures, and one concerned these 35 features (6 CMP features
and 29 NP features). The last model contained those 35
radiomics features and 2 subjective CT findings.

The diagnostic performance of the five models is shown
in Table 4. The subjective CT findings model and the CMP
radiomics model showed inferior values of AUC, sensitivi-
ties, specificity, and accuracy when compared to the models
using NP features, using CMP and NP features, and using
the combined features. The CMP radiomics model showed
the worst performance with AUC (0.772, 95% CI: 0.689-
0.841), accuracy (78.12%), and sensitivity (65.52%), and the
combined model achieved the best AUC (0.974, 95% CI:
0.924-0.992), accuracy (93.75%), and sensitivity (96.55%).

Figure 4 shows ROC curves of the five models. The model
using combined features achieved the best AUC, followed by
the model using the selected CMP and NP radiomics fea-

tures, and the model using NP features. Relatively, the model
using subjective CT findings or CMP radiomics features
obtained relatively worse results. According to the DeLong
test, there was no significant difference of the AUC values
among the NP radiomics model, the CMP and NP radiomics
model, and the combined model (0:2245 ≤ p ≤ 0:6692), as
well as between the CMP radiomics model and the subjective
CT findings model (p = 0:7479). On the other hand, each of
the former three models showed significant improvement
compared with each of the latter two models (the CMP
model, 0:0001 ≤ p ≤ 0:0051; the subjective CT findings
model, 0:0006 ≤ p ≤ 0:0079).

4. Discussion

Sarcomatoid change is believed to be a common pathway of
dedifferentiation likely occurring in all subtypes of RCC
tumors [4], and preoperative identification of the change is
challenging but important in clinic. This study found that
the CT-based radiomics approach could help discriminate
the SRCC and CCRCC tumors and it also achieved superior
performance over the subjective CT findings.

The AUC value using the selected CMP and NP radio-
mics features was significantly higher than that using the sub-
jective findings, while incorporating the subjective CT
findings into the model achieved no incremental predictive
value. The AUC value of the NP radiomics model was higher
with significant difference than that of the model using the
CMP radiomics features. It was slightly lower than that of
the CMP and NP radiomics model and that of the combined
model with no statistical difference. Such an interesting find-
ing indicated that the NP features are important in radiomics
discrimination of SRCC and CCRCC tumors. In addition, the
diagnosis power of the NP features better than the CMP
features has been reported in machine learning-based CT
images [26], which aimed for discriminating fat-poor renal
angiomyolipoma from CCRCC. Thus, it might allow the
omission of CMP acquisition to reduce the radiation dose
in the differentiation of SRCC and CCRCC tumors.

The selected features showed that the “GrayLevelNonU-
niformity” of the GLSZM texture feature was the most fre-
quently selected feature (Table 3). The feature quantifies the
heterogeneity of a tumor. It appeared in the selected SRCC
radiomics features with “squareroot_GrayLevelNonUnifor-
mity” (coefficient, 0.0926) and in the CCRCC features with
“logarithm_GrayLevelNonUniformity” (coefficient, 0.0938)
and with “wavelet-HLL_GrayLevelNonUniformity” (coeffi-
cient, -0.0063). One reason might be attributed to necrosis
which was extremely highly frequent in tumors, for instance,
the component of sarcomatoid carcinoma [15], and showed
low or nonenhanced in CT images. Some previous studies
[27, 28] also highlighted that low enhancement on CT images
could be an independent predictor of the presence of high
tumor grade of CCRCC, since CCRCC was more heteroge-
neous [29, 30]. Moreover, that lesion heterogeneity was a fea-
ture of malignancy and potential marker of survival, and the
patients having heterogeneous tumors with lower uniformity
might be with poorer survival [17]. Since SRCC tumors show
heterogeneous appearance in multiphase CT imaging, this

Table 2: Subjective CT findings of SRCC and CCRCC patient
groups.

Imaging features SRCC (29) CCRCC (99) p value

Spread pattern

Infiltrative 16 (55.17%) 12 (12.12%) <0.001a

Noninfiltrative 13 (44.83%) 87 (87.88%)

Venous thrombus

Present 6 (20.69%) 3 (3.03%) 0.001a

Absent 23 (79.31%) 96 (96.97%)

Intratumoral neovascularity

Present 14 (48.28%) 30 (30.30%) 0.073a

Absent 15 (51.72) 69 (60.70%)

Peritumoral neovascularity

Present 24 (82.76%) 58 (58.59%) 0.017a

Absent 5 (17.24%) 41 (41.41%)

Calcification

Present 13 (44.83%) 19 (19.19%) 0.005a

Absent 16 (55.17%) 80 (80.81%)

Diameter (cm, mean ± std) 10:1 ± 3:0 7:7 ± 1:6 <0.001b

std: standard deviation; p < 0:05 is set as significant difference; aχ2 test;
bStudent’s t-test.
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kind of gray-level nonuniformity feature is difficult to be
quantified by a subjective finding until the radiomics
emerged.

To the subjective CT findings, they figured out that infil-
trative spread pattern, venous thrombus, peritumoral neo-
vascularity, and calcification were more frequently showed
in SRCC tumors, yet the Kappa values of these findings were
relatively lower. The subjective CT findings to discriminate
between SRCC and CCRCC tumors with poor Kappa values
were also reported in [14]. However, there is little focus on
the calcification of renal mass. One study [30] found that
SRCC contained more calcium than RCC (28.6% vs 10.3%)

which presumed that calcification is related to necrosis.
Indeed, calcification was highly frequent in SRCC, particu-
larly in the components of sarcomatoid carcinoma [15]. In
this study, venous thrombus had the highest Kappa value of
0.867, while only 6 out of 29 SRCC and 3 out of 99 CCRCC
manifested this feature, indicating the incidence was too
low to be used. In short, the subjective findings were valuable
but unstable or identifiable in a small cohort, which might
account for unsatisfactory diagnostic performance of the
subjective CT findings model.

At present, the main research of radiomics approaches
for RCC analysis is the renal mass differentiation and nuclear
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Figure 3: Radiomics feature selection by using the LASSO regression method. The optimal α was selected using a tenfold crossvalidation via
the minimum of average mean square error. To the CMP features, α = 0:074 and −log ðαÞ = 1:13 (a) and to the NP features, α = 0:028 and
−log ðαÞ = 1:55 (c). (b) and (d), respectively, showed the coefficient profiles along the full path of possible α values in the CMP and the NP
feature selection. In addition, dashed vertical lines were drawn at the optimal α based on the minimum of average mean square error in
(a–d).
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grade prediction [31], and few studies focus on the differen-
tiation of SRCC and CCRCC tumors. To our knowledge,
one study explored CT-based radiomics approaches to clas-
sify the SRCC and CCRCC tumors [14]. It involved 20 SRCC
and 25 CCRCC cases, and both CT subjective findings and
texture features were analyzed through noncontrast images.
The study indicated that SRCC tumors (7:1 ± 2:7 cm) were
significantly larger than CCRCC tumors (5:0 ± 2:9 cm), peri-
tumoral neovascularity and the size of peritumoral vessels
differed between the SRCC and CCRCC tumors in the sub-
jective analysis, and SRCC tumors were with greater values
of run length nonuniformity and gray-level nonuniformity
features. In addition, the classification performance reached
an AUC value of 0:81 ± 0:08 based on the combined textural
features. Interestingly, as reported in [14], the current study
also figured out SRCC tumors with significantly larger size
over CCRCC tumors. Except for peritumoral neovascularity,
subjective CT findings of spread pattern, venous thrombus,
and calcification showed significant difference. In particular,
the current study achieved superior performance on tumor
differentiation through the analysis of multiphase CT images.
It is worth noting that there are two other studies that con-
cerned SRCC and CCRCC tumors by using MRI. One
study [15] involved 11 patients with SRCC dedifferentiated
from CCRCC tumors, and preoperative renal T1- and T2-
weighted MRI were utilized. Compared to a normal renal
cortex, it showed that the presence of the areas showing a
hypovascular nature and markedly restricted diffusion
might be characteristic findings of SRCC. The other study
[32] collected 17 patients with SRCC and 17 patients with
CCRCC, and dynamic T1-weighted MRI was analyzed. It
indicated that the portion of segmented whole tumor with
MRI signal suggestive of sarcomatoid involvement was cor-
related with histological examination, while the percentage
of sarcomatoid differentiation was underestimated. There-
fore, the current study differs itself from other studies
[14, 15, 32] by using multiphase CT.

Multiphase CT was widely used in RCC analysis, and
both CMP and NP have been proved to be important in renal
lesion differentiation and staging [29]. CMP, the first phase
of contrast enhancement, is between 25 and 70 seconds after
the injection of contrast material, and the renal cortex
enhances more brightly than the renal medulla. NP is the
second phase when the contrast material filters through the
glomeruli into the loops of Henle and the collecting tubules.
At this time, the renal parenchyma becomes homogeneous,
and the difference between a normal renal medulla and
masses is well observed [33]. In the current study, 6 CMP fea-
tures and 29 NP features were retrieved, and the NP radio-
mics approach achieved a significantly higher AUC value
over the CMP radiomics approach. The reasons are mani-
fold. First, various amounts of sarcomatoid differentiation
are presented in SRCC tumors, which leads to inconsistent
CMP imaging features, and in addition, the identified radio-
mics features cannot well differ the SRCC and CCRCC
tumors. Second, NP image features have been reported as
the most sensitive features for characterizing CCRCC from
other subtypes of tumors, since the features coincided with
the maximum tumor-to-kidney contrast [34]. Unfortunately,

Table 3: The selected radiomics features and corresponding
coefficients.

Selected CMP features Coefficients

First-order features

squareroot_Energy 0.0003

squareroot_Maximum 0.0057

wavelet-LHH_Skewness 0.0069

Shape features

original_Minoraxis 0.0312

Texture features

Gray-level run length matrix (GLRLM)

exponential_RunVariance 0.0037

squareroot_GrayLevelNonUniformity 0.0926

Selected NP features

First-order features

wavelet-HLH_Skewness -0.04831

wavelet-LHH_Median -0.0272

wavelet-HHH_Median -0.0076

squareroot_Energy 0.0002

wavelet-LLH_fskewness 0.0019

square_Kurtosis 0.0337

wavelet-LHL_Mean 0.0417

wavelet-LLH_Kurtosis 0.0613

Shape features

original_SurfaceArea 2.85E-5

original_RunVariance 0.0210

original_SphericalDisproportion 0.0226

Texture features

Gray-level cooccurrence matrix (GLCM)

square_Idmn -0.0196

square_Correlation -0.0075

wavelet-HHH_ClusterProminence 0.0152

squareroot_DifferenceVariance 0.0422

Gray-level run length matrix (GLRLM)

wavelet-LLL_ShortRunLowGrayLevelEmphasis -0.0075

square_ShortRunLowGrayLevelEmphasis 0.0017

wavelet-HHH_RunVariance 0.0225

exponential_RunVariance 0.0242

exponential_RunEntropy 0.0246

exponential_ShortRunLowGrayLevelEmphasis 0.0499

Gray-level size zone matrix (GLSZM)

square_ZoneVariance -0.0285

wavelet-HLL_SizeZoneNonUniformityNormalized -0.0173

wavelet-LLL_LowGrayLevelZoneEmphasis -0.0086

wavelet-HLL_GrayLevelNonUniformity -0.0063

wavelet-LLL_ZoneVariance 0.0022

wavelet-HHH_LargeAreaEmphasis 0.0183

logarithm_LargeAreaLowGrayLevelEmphasis 0.0437

logarithm_GrayLevelNonUniformity 0.0938

7BioMed Research International



due to different purposes and specific data sets, there are
conflicts of evidence. For instance, [20] indicated that there
was no significant difference when CMP and MP radiomics
features were independently used for low- and high-grade
CCRCC staging, while [35] showed that CMP features
resulted in better performance. Therefore, the exact reason
why the selected NP features are better than the selected
CMP features in the SRCC and CCRCC differentiation
requires further investigation.

In the current study, SRCC and CCRCC tumors are with
size larger than 6 cm. Two reasons account for this setting.
First, one feature differing SRCC from other tumors is their

larger tumor size [14]. During the data collection, it was
found that almost all SRCC tumors had a diameter larger
than 6 cm. Therefore, to reduce the effect of lesion size on
the outcome, this study concerned a large tumor size. Second,
a large tumor size benefits manual annotation of lesions, and
good interreader agreement can be achieved. It should be
noted that several studies concerned small RCC tumors.
For instance, multiphase CT of tumor attenuation was
explored for the differentiation between renal oncocytomas
and CCRCC tumors (size ≤ 5 cm) [34, 36] and for distin-
guishing subtypes of RCC, angiomyolipoma, and oncocy-
toma tumors (≤4 cm) [21, 37]. Meanwhile, MR image
texture features were also utilized for predicting histologic
grade of CCRCC with tumor size ≤ 4 cm [38].

There are several limitations of the current study. First,
due to the rarity of SRCC, data imbalance occurs. In order
to overcome the risk of overfitting, the K-folder crossvalida-
tion strategy was performed and the built radiomics
approach was verified on an independent data set [39]. To
overcome the issue of data imbalance, potential solutions
include multicenter collaboration and nationwide and world-
wide data sharing. Second, SRCC samples were not stratified
according to the underlying diagnosis and the ratio of sarco-
matoid component. RCC tumors with even a small compo-
nent of sarcomatoid change might have an enormously
adverse outcome, whereas the primary histologic appearance
of SRCC does not have an impact on the prognosis [3, 11].
RCC that contains a sarcomatoid component is categorized
to grade IV in the ISUP system, and there was a consensus
that a minimum proportion of sarcomatoid tumor was
not required to make a diagnosis of sarcomatoid carcinoma
[3, 4]. Third, this study concerned SRCC and CCRCC with
diameters larger than 6 cm. Pilot studies explored predict
histologic grade of CCRCC less than 4 cm using CT and
MRI, and statistically significant features were figured out
[38, 40], which inspire our future investigation of small
RCC samples. Furthermore, MRI features can be embedded
into CT-based radiomics approach for improved differenti-
ation [12, 15]. Last but not the least, novel techniques, such
as full-automated image segmentation [41], feature dimen-
sion reduction [42], multiobjective optimization [43], and
deep learning [44], could be further considered for improv-
ing classification performance.

Table 4: The diagnostic performance of the five radiomics approaches.

AUC (95% CI) Accuracy (%) Sensitivity (%) Specificity (%)

Subjective CT findings 0.792 78.12 82.76 75.76

(0.712-0.859)

CMP features 0.772 78.12 65.52 82.83

(0.689-0.841)

NP features 0.938 90.62 89.66 91.92

(0.881-0.973)

CMP+NP features 0.966 93.75 89.66 94.95

(0.918-0.990)

Combined features 0.974 93.75 96.55 88.89

(0.924-0.992)
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Figure 4: ROC curves of five radiomics approaches for
differentiation of SRCC and CCRCC cases. The models are the
subjective findings model (blue line), the CMP radiomics model
(green line), the NP radiomics model (orange line), the CMP and
NP radiomics model (red line), and the combined model (purple
line). In addition, the brown dashed line shows the prediction
distribution of random inputted features.
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5. Conclusion

Sarcomatoid change is believed to be a common pathway of
dedifferentiation likely occurring in all subtypes of renal cell
carcinoma, and preoperative identification of SRCC helps
determine the therapeutic strategies. This study shows that
the CT-based radiomics approaches could help discriminate
the SRCC and CCRCC tumors and further improve patient
management, treatment, and quality of life.
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To align multimodal images is important for information fusion, clinical diagnosis, treatment planning, and delivery, while few
methods have been dedicated to matching computerized tomography (CT) and magnetic resonance (MR) images of lumbar
spine. This study proposes a coarse-to-fine registration framework to address this issue. Firstly, a pair of CT-MR images are
rigidly aligned for global positioning. Then, a bending energy term is penalized into the normalized mutual information for the
local deformation of soft tissues. In the end, the framework is validated on 40 pairs of CT-MR images from our in-house
collection and 15 image pairs from the SpineWeb database. Experimental results show high overlapping ratio (in-house
collection, vertebrae 0:97 ± 0:02, blood vessel 0:88 ± 0:07; SpineWeb, vertebrae 0:95 ± 0:03, blood vessel 0:93 ± 0:10) and low
target registration error (in-house collection, ≤2:00 ± 0:62mm; SpineWeb, ≤2:37 ± 0:76mm) are achieved. The proposed
framework concerns both the incompressibility of bone structures and the nonrigid deformation of soft tissues. It enables
accurate CT-MR registration of lumbar spine images and facilitates image fusion, spine disease diagnosis, and interventional
treatment delivery.

1. Introduction

Spine is the backbone of body trunk. It protects the most
significant nerve pathway in the spinal cord and the
body. On the other hand, spine injury and disorders
affect up to 80% world population and may cause defor-
mity and disability, which become a major health and
social problem [1–3]. For instance, the lumbar degenera-
tive disease accompanied by pathological changes might
result in lumbocrural pain, neural dysfunction, instability
of facet joints, and spino-pelvic sagittal imbalance, and
thus, the quality of life decreases dramatically. In addi-
tion, due to the aging population, the global burden relat-
ing to spinal disease remedy is expected to raise
significantly in the next decades.

To align intrapatient multimodal images, such as com-
puterized tomography (CT) and magnetic resonance (MR),
benefits clinical diagnosis, treatment planning, and delivery
for lumbar spinal diseases [4, 5]. However, few methods were
dedicated to matching lumbar spine images. Panigrahy et al.
developed a method for CT-MR cervical spine images which
needed anatomical landmarks to guide image registration
[6]. Palkar and Mishra combined different orthogonal wave-
let transforms with various transform sizes for CT-MR spine
image fusion, while interactive localization of control points
was required [7]. Tomazevic et al. implemented an approach
for rigid alignment of volumetric CT or MR to X-ray images
[8]. To simplify the registration problem in real-world sce-
narios, images were acquired from a cadaveric lumbar spine
phantom and three-dimensional (3D) images contained only
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one of the five vertebrae. Otake et al. proposed a registration
method for 3D and planar images which was used for spine
intervention and vertebral labeling in the presence of ana-
tomical deformation [9]. Harmouche et al. designed an artic-
ulated model for MR and X-ray spine images [10]. Hille et al.
presented an interactive framework, and rough annotation of
the center regions in different modalities was used to guide
the registration [11].

Accurate alignment of intrapatient CT-MR images is
challenging. From the anatomy, human spine consists of
inflexible vertebrae surrounded by soft tissues, such as
nerves, vessels, and muscles. Moreover, the vertebrae of lum-
bar spine are connected by facet joints in the back, which
allows for forward and backward extension and twisting
movements. Moreover, spinal deformity imposes difficulties
on multimodal image registration. Specifically, during image
acquisition, patients can lay flatly for a short time due to pain,
and subsequently, motion becomes unavoidable. Last but not
the least, there are intrinsic differences between CT and MR
imaging.

Figure 1 shows a pair of intrapatient CT-MR images. It is
found that in CT images, the lumbar spine region easily high-
lights itself from the rest of soft tissues (the top row), while in
MR images, soft tissues show various intensities and in par-
ticular, it might be hard to distinguish rigid bones from soft
tissues (the bottom row). In the figure, soft tissues in MR
images are with various contrast than those in CT images
(red arrows), undesirable artifacts caused by the bias field
are observed in MR images (green arrows), and these pairs
of images show different imaging field of views. It is obvious
that these facets pose difficulties in image registration.

2. Related Works

Image registration is important in medical image analysis
[12, 13, 14]. Based on similarity metrics, registration methods
could be generally classified into intensity- and feature-based
methods. Among the intensity-based methods, mutual infor-
mation (MI) is well known, and it was primarily presented
for MR breast image alignment [15]. Afterwards, the metric
is used in multimodal medical image registration [16]. For
specific applications, MI has been modified to enhance the
performance of image registration. For instance, normalized
MI (NMI) was proposed for invariant entropy measure
[17], regional MI was implemented to capture volume
changes when local tissue contrast varied in serial MR images
[18], localized MI was designed for atlas matching and pros-
tate segmentation [19], conditional MI was developed to
incorporate joint histogram and intensity distribution for
image description [20], self-similarity weighted αMI was pre-
sented for handheld ultrasound and MR image alignment
[21], and MI was also advanced with spatially encoded infor-
mation [22].

Feature-based methods aim to quantify detected land-
marks with features for image registration. Ou et al. collected
multiscale multiorientation Gabor features to weight mutual-
saliency points for matching [23]. Zhang et al. used scale-
invariant features and corner descriptors for lung image
registration [24]. Heinrich et al. designed modality indepen-

dent neighborhood descriptor (MIND) which extracted the
distinctive structure in small image patches for multimodal
deformation registration [25]. Via principal component
analysis of deformation, a low-dimension statistical model
was learned [26]. Toews et al. combined invariant features
of volumetric geometry and appearance for image alignment
[27]. Determined by the moments of image patches, a self-
similarity inspired local descriptor was presented [28]. Jiang
et al. designed a discriminative local derivative pattern which
encoded images of different modalities into similar represen-
tation [29]. Woo et al. combined spatial and geometric
context of detected landmarks [30], and Carvalho et al.
considered intensity and geometrical features [31] into a
similarity metric. Weistrand and Svensson constrained
image registration with anatomical landmarks for local tissue
deformation [32].

Embedding a proper penalty term into a similarity metric
is helpful in specific applications. Rueckert et al. used a term
to regularize the local deformation to be smooth in breast MR
image registration [33]. Rohlfing et al. designed a local
volume preservation constraint, assuming the soft tissues
incompressible in small deformation [34]. Staring et al. pro-
posed a rigidity penalty and modeled the local transform
when thorax images with tumors were aligned [35]. To
model fetal brain motion, Chen et al. utilized the total-
variation regularization and a penalty was adopted toward
piece-wise convergence [12]. Due to local tissue rigidity
characteristics, Ruan et al. added a regularization term for
aligning inhale-exhale CT lung images [36]. Fiorino et al.
designed the Jacobian-volumehistogram of deforming organs
to evaluate the parotid shrinkage [37].

This study proposes a coarse-to-fine framework to
address the registration of intrapatient CT-MR images of
lumbar spine. It develops a similarity metric that penalizes
a bending energy term into NMI for local deformation of soft
tissues. The most similar work is from the comparison of
bending energy penalized global and local MI metrics in
aligning positron emission tomography and MR images
[38], while this study differs itself from the proposed
coarse-to-fine registration framework, the bending energy
penalized NMI (BEP-NMI) and the application to CT-MR
lumbar spine images.

3. Materials and Methods

3.1. Data Collection. Two data sets were analyzed. One is our
in-house collection which contains 40 pairs of lumbar spine
images from the Department of Radiology, Shenzhen Second
People’s Hospital, the First Affiliated Hospital of Shenzhen
University. CT images were acquired through SIEMENS
SOMATO. The voxel resolution is 0:35 × 0:35 × 1:00mm3,
and the matrix size is 512 × 512 with 180 ± 25 slices. T2-
weighted MR images were acquired using a 1.5 Tesla scanner
(SIEMENS Avanto). The physical resolution is 0:7 × 0:7 × 3
mm3, the matrix size is 256 × 256, and the slice number
ranges between 60 and 75.

The other data set is accessible online, namely SpineWeb
(http://spineweb.digitalimaginggroup.ca). It includes 15 image
pairs of lumbar spine. The physical resolution of CT images is
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(a) (b)

(c) (d)

(e) (f)

Figure 1: Perceived visual difference between CT and MR images of lumbar spine from three perspective views. The difference of imaging
characteristics, fields of view, and unavoidable motion make the registration challenging. Red arrows show different imaging contrast,
green arrows direct to the undesirable artifact of bias field in MR images, and blue arrows indicate different field of views. Note that
images are cropped and scaled for display purpose.
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0:27 × 0:27 × 2:50mm3, the image size is 512 × 512, and the
slice number is 77 per volume. The resolution of T1-weighted
MR images is 0:39 × 0:39 × 5:00mm3, the image size is
512 × 512, and each volume contains 42 slices.

3.2. The Proposed Framework. The proposed framework con-
sists of two steps both of which use intensity-based image reg-
istration methods. An intensity-based registration method can
be treated as an optimization problem, and the similarity met-
ric S performs as the cost function. Given a fixed image IF
: Ω1 ∈ R3 and a moving image IM : Ω2 ∈ R3 in 3D space,
image registration aims for mapping the moving image IM
to the space of the fixed image IF guided by themetric S. When
an additional regularization term of P is penalized into S, the
registration problem can be formulated as,

T̂ = arg min
T

C T ; IF ; IMð Þw:r:t:C Tμ ; IF ; IMð Þ

C Tµ ; IF, IM
� �

= S Tµ ; IF, IM
� �

+ λP Tµ

� � ð1Þ

where T is a transformmodel, λ compromises the metric S
and the regularity term P, μ is the transform coefficients, and
Tμ is the initialized model by μ.

Figure 2 illustrates the proposed framework. It indicates a
rigid registration stage and a hierarchical deformation stage,
and NMI and BEP-NMI, respectively, perform as the similar-
ity metric. Moreover, adaptive stochastic gradient descent
(ASGD) [39] is applied for hyperparameter optimization.
Specifically, an affine transformation with 12 degrees of free-
dom is employed in the first stage, and a B-spline elastic
model is used for free-form deformation in the second stage.

3.2.1. Rigid Registration. An affine transform model is used
here. The transform T : Ω2→Ω1 can be formulated by

Tµ xð Þ = R x − cð Þ + t + c ð2Þ

where R is a matrix that contains the rotation, scale, and
shear coefficients, c is the center of rotation, t is a translation
vector, and μ is a vector of 12 degrees of freedom in volumet-
ric image registration.

Rigid registration attempts for global positioning of the
whole body, and thus, an initial alignment of lumbar spine.
A 3-level recursive pyramid denotes smoothing that down-
samples the source volumes by a factor of 2. Besides, the met-
ric NMI and the affine transform are employed in each scale.

3.2.2. Hierarchical Deformation. Hierarchical deformation is
a coarse-to-fine adjustment procedure [40]. This setup uti-
lizes Gaussian pyramid without downsampling to match
images from the global structures toward the fine details.

B-spline transform. The B-splines are used to depict the
local shape difference between the lumbar vertebrae. To con-
struct the B-spline based free-form deformation model, let
Ω = fðx, y, zÞ ∣ 0 6 x < X, 0 6 y < Y , 0 6 z < Zg be a spatial
domain of a 3D image. A lattice (px × py × pz) of control
points is denoted as Ψ, spanning the integer grid in Ω, and
Φijk denotes the control point at (i, j, k) on the mesh Ψ.
Then, the elastic model can be expressed as a 3D tensor prod-

uct of the uniform B-spline of order 3 as below,

TI x, y, zð Þ = 〠
3

I=0
〠
3

m−0
〠
3

n=0
BI u1ð ÞBm u2ð ÞBn u3ð ÞΦi+l,j+m,k+n ð3Þ

where i = bx/Pxc − 1, j = by/PYc − 1, k = bz/Pzc − 1, u1 = x/
Px − bx/Pxc, u2 = ðy/PyÞby/Pyc, u3 = z/PZ − bz/Pzc, and Bl
repents the lth basis function of the B-spline,

B0 uð Þ = 1 − uð Þ3/6,
B1 uð Þ = 3u3 − 6u2 + 4

� �
/6

B2 uð Þ = −3u3 + 3u2 + 3u + 1
� �

/6

B3 uð Þ = u3/6

8>>>>><
>>>>>:

ð4Þ

where 0 6 u < 1. The basic functions weigh the contri-
bution of each control point to Tlðx, y, zÞ based on its dis-
tance to the point ðx, y, zÞ.

Since the B-splines can be locally controlled, it makes the
computation efficient for a large number of control points. In
particular, changing a control point affects only the trans-
forms of its local neighborhood.

BEP-NMI. The metric MI is preferred in multimodal
image registration. Given IF and IM with intensity bins of f
and m, MI is quantified from a joint probability function pð
IF, IMÞ and marginal probability distribution functions.

of pð f Þ = Pf fpð f ,mÞg and pðmÞ = Pm fpð f ,mÞg. The
metric MI between a pair of images, IF and IM, can be
described as

MI IF ; IMð Þ = H IFð Þ +H IMð Þ::H IF ; IMð Þ
= 〠

f ∈F
〠
m∈M

p f ,mð Þ log p f ,mð Þ
p fð Þp mð Þ
� � ð5Þ

where HðIFÞ and HðIMÞ are the marginal entropy and the
HðIF, IMÞ is the joint entropy of IF and IM.

The metric NMI is more robust to the change of over-
lapped tissue regions. It uses a Parzen-window approach to
estimate the probability density function. The entropy of a
fixed image IF is defined as HðIFÞ = −Pf ∈ F pð f Þlogpð f Þ,
where pð f Þ is a probability distribution estimated by using
Parzen-windows. The entropy of a moving image IM can
be computed in a similar way. And subsequently, the NMI
between IF and IM can be presented as

NMI IF ; IMð Þ = H IFð Þ +H IMð Þ
H IF ; IMð Þ ð6Þ

In order to regularize the B-spline deformation and to
prevent the rigid structures from being smoothed, a BEP
term PðuÞ is added to the NMI. The new cost function,
BEP-NMI, is formulated as

C μð Þ = y1S μð Þ + y2P μð Þ ð7Þ
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where γ1 and γ2 are predefined constants to weigh between
global similarity and local regularity. In this study, off-line
experiments indicated that γ1 = γ2 = 1 was a good choice.

The penalty terms are commonly based on the first or
second-order spatial derivatives of the transform [35, 36].
In this study, the BEP term is composed of the second-
order derivatives [35, 40] in the volumetric space,

PBEP μð Þ =
ð
V

∂2T
∂x2

 !2

+
∂2T
∂y2

 !2

+
∂2T
∂z2

 !2(

+ 2
∂2T
∂x∂y

 !2

+ 2
∂2T
∂y∂z

 !2

+ 2
∂2T
∂z∂x

 !2)
dxdydz

ð8Þ

where V is a 3D image. The Equation (8) can be approxi-
mated as a discretely sampled sum over the volume V as
below,

PBEP =
1
NV

〠
x∈V

ΦT x, y, zð Þ ð9Þ

where N is the number of voxels in V , and Φ denotes a sum
of the squared second-order derivatives of T inside the inte-
gral part in Equation (8) at a voxel location ðx, y, zÞ. Specially,
the derivative approximation with finite differences can be
restricted to the local neighborhood of the control point.

Optimization. Given an initial parameter μ, an optimiza-
tion algorithm updates an incremental Δμ to reduce the cost
function C iteratively. ASGD is used in the study, since it
runs faster and less likely to get trapped in the local minima
when compared to other gradient-based optimization
algorithms [39]. Notably, ASGD implemented in the elastix
package (http://elastix.isi.uu.nl) is used for adaptive step
size prediction and the initial parameters are set as those
in [39, 40].

3.3. A Comparison Method. The MIND is a feature-based
method and it has been widely used in multimodal deform-
able registration [25, 41]. It aims to represent the distinctive
image structure in a local neighborhood and explore the sim-
ilarity of small image patches by using Gaussian-weighted
patch distances [25].

MIND can be formulated by a distance Dp, a spatial
search region R and a variance estimate V as below,

MIND I, x, rð Þ = 1
n
exp

Dp I, x, x + rð Þ
V I, xð Þ

� �
r ∈ R ð10Þ

Dp I, x:x + rð Þ = C ∗ I − I rð Þð Þ2 ð11Þ

where n is a normalization constant, r the search region,
C a convolution filter of size ð2p + 1Þd, ∗ a convolution filter,
and I0ðrÞ a dense sampling on r. As such, an image can be
represented by a vector of size ∣R ∣ at each location x. More-
over, V ðI, xÞ can be computed based on a mean of the patch
distances within a small neighborhood n ðn ∈NÞ

V I, xð Þ = 1
N

〠
n∈N

Dp I, x, x + nð Þ, ð12Þ

In Equation (10) to Equation (12), n = 6 denotes a six-
connected neighborhood and p = 1 indicates a 3 × 3 × 3
volume block.

The similarity metric used in MIND comes from the sum
of absolute difference. To the fixed image (IF) and the
moving image (IM), the local difference at a voxel x is

LD xð Þ = 1
Rj j〠r∈R

MIND IF,x,rð Þ −MIND IM,x,rð Þ�� �� ð13Þ

The default value of ∣R ∣ is 6 and it means 6-connected
neighbors are taken into computation.

3.4. Performance Evaluation

3.4.1. Tissue Overlapping. Tissue overlapping quantifies the
overlapping ratio of outlined tissue regions in the fixed and
its aligned image, which can distinguish the reasonable from
the poor registration [42, 43]. This study focuses on the region
of lumbar vertebrae and blood vessels. Assuming the outlined
tissues in the fixed and aligned image are, respectively,
denoted as OF and OA, the voxel-wise Jaccard (J) index and

Similarity metric
NMI

Rigid
Non-rigid (2)

(1)

BEP-NMI (2)
(1)

Resample
Optimizer

Transformation

Global
positioning

Local
free-form

deformation

Iterator

(adaptive stochastic gradient descent)

Resample Interpolator

Fixed image
(I

F
)

Moving image
(I

M
)

Figure 2: The proposed coarse-to-fine framework for aligning CT-MR lumbar spine images. It consists of two stages. The first stage is for
global positioning via NMI based rigid registration (highlighted in red), and the second stage is for the local deformation of soft tissues via
the bending energy penalized NMI (highlighted in yellow). Both stages utilize the same workflow for iterative optimization.
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Dice (D) coefficient can be, respectively, described as

J =
OF ∩OA

OF ∪OA

����
����,

D = 2
OF ∩OAj j
OFj j + OAj j

ð14Þ

where ∣· ∣ indicates the number of voxels per volume.

3.4.2. Target Registration Errors.As for landmark annotation,
ImageJ (http://imagej.nih.gov/ij/) was used. A pair of CT-MR
images are displayed side-by-side. Then, landmarks are
identified and manually annotated by an imaging radiologist
(3+ year experience) and further confirmed by a senior
radiologist (10+ year experience). Once landmarks are anno-
tated, their locations in 3D space are recorded. In this study,
anatomical landmark points are localized on the vertebral
body center (VBC), neural edge (NE), disc center (DC), and
blood vessel edge (BVE).

Target registration error (TRE) evaluates the distance
between anatomical point pairs in the fixed and moving
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Figure 3: Jaccard index of the vertebrae and blood vessel overlapping on the in-house dataset (a) and the online dataset (b). Box-and-whisker
plots represent the median Jaccard index (horizontal line) and total range (whiskers). The red + indicates an outlier that causes failure in image
registration.
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image. Here, assuming li and , respectively, denotes the cor-
responding landmark point pairs in the fixed and moving
image, the mean TRE for a given T is defined as

TRE =
1
n
〠
n

i

li − T li′
	 
��� ��� ð15Þ

where n is the number of pairs of landmark, and k · k
indicates Euclidian distance in 3D space.

3.5. Software and Platform. The whole framework is
implemented with Insight Segmentation and Registration
Toolkit (http://www.itk.org) and the elastix package [40].
Experiments are performed on a desktop computer equipped
with dual-core Intel i7 CPU (3.70GHz) and 16GB RAM
memory.

4. Results

4.1. Tissue Overlapping. Figure 3 illustrates the tissue overlap-
ping measure J of CT-MR image registration on the in-house

collection (left) and the SpineWeb (right). The left shows that
the proposed framework outperforms the MIND method on
the vertebrae (0:93 ± 0:02 versus 0:69 ± 0:06) and blood ves-
sel (0:81 ± 0:10 versus 0:48 ± 0:07) overlapping. In the right
figure, the framework achieves higher values (vertebrae,
0:89 ± 0:05; blood vessel, 0:81 ± 0:12) than the MIND
method (vertebrae, 0:75 ± 0:12; blood vessel, 0:52 ± 0:33),
and thus, it leads to better performance.

Figure 4 shows the overlapping ratio D of multimodal
image registration on the in-house collection (left) and the
SpineWeb (right). The left figure indicates that the coarse-
to-fine registration framework obtains better results than
the MIND method on the vertebrae (0:97 ± 0:02 versus
0.77±0.05) and blood vessel (0:88 ± 0:07 versus 0:74 ± 0:07)
overlapping. In the right figure, the MIND method (verte-
brae, 0:86 ± 0:12; blood vessel, 0:61 ± 0:33) obtains inferior
performance than the proposed framework (vertebrae,
0:95 ± 0:03; blood vessel, 0:93 ± 0:10).

4.2. Target Registration Errors. Figure 5 demonstrates the
mean TRE value of anatomical landmark points between
the proposed framework and the MIND algorithm on the
in-house collection. The error-bar plot indicates that the
TRE of the proposed framework is less than 3.00mm (DC),
while that of the MIND algorithm is larger than 4.00 mm
(VBC) on average. In addition, statistical analysis indicates
that the proposed framework significantly outperforms the
MIND algorithm in each of the four sets of landmarks
(p < 0:005, two-sample t-test).

Table 1 shows the TRE values (mean ± standard deviation,
mean ± SD) with respect to different landmark sets. The
coarse-to-fine framework achieves TRE between 0:78 ± 0:64
mm (BVE) and 2:01 ± 0:62mm (DC), while the TRE of
the MIND method ranges from 3:77 ± 4:21mm (BVE) to
5:11 ± 3:69mm (DC), correspondingly larger than that from
the proposed framework.

The mean TRE on the SpineWeb dataset is shown in
Figure 6. It is observed that the TRE value of the proposed
framework is less than 3.00mm (VBC and NE), while the
MIND algorithm leads to the TRE values larger than 5.00mm.

Statistical analysis indicates significant difference of the
TRE values between the proposed framework and the MIND
algorithm on aligning the pairs of VBC and BVE landmarks
(0:01 < p < 0:05, two-sample t-test).

Table 2 summarizes the mean TRE values on different sets
of landmark pairs. The proposed framework achieves the TRE
values between 0:66 ± 0:46mm (BVE) to 2:37 ± 0:76mm
(VBC), and the TRE values of the MIND algorithm ranges
from 5:71 ± 3:65mm (BVE) to 6:75 ± 3:80mm (VBC).

4.3. Perceived Quality of Image Alignment. Visual assessment
of registration quality is perceived from the fusion of CT and
MR images and observed from three perspective views in
Figure 7, where ðA, E, IÞ are the CT image, ðB, F, JÞ are the
MR image, ðC,G, KÞ are the aligned image from the proposed
framework, and ðD,H, LÞ are the aligned image from the
MIND algorithm. Red arrows directing to the soft tissue
regions and green arrows directing to the bone regions are used
for comparison. Before registration, both bones and tissues are

Table 1: TRE values (mean ± SD) on the in-house collection
images.

The framework (mm) MIND (mm)

VBC 1:52 ± 0:33 5:02 ± 3:76

NE 1:38 ± 0:29 5:07 ± 4:06

DC 2:01 ± 0:62 5:11 ± 3:69

BVE 0:78 ± 0:64 3:77 ± 4:21
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Figure 6: TRE values of anatomical landmarks on the SpineWeb
dataset.

Table 2: TRE values (mean ± SD) on the SpineWeb images.

The framework (mm) MIND (mm)

VBC 2:37 ± 0:76 6:75 ± 3:80

NE 1:91 ± 0:55 5:41 ± 3:38

DC 2:26 ± 0:98 6:49 ± 3:95

BVE 0:66 ± 0:46 5:71 ± 3:65
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misaligned, such as acantha ðA + BÞ, bones and nerves ðE + FÞ
and muscles ðI + JÞ. After image registration, the proposed
framework aligns these parts in theMR images with fine defor-
mation to the CT images. Specifically, both rigid bones and soft
tissues are well matched, and the anatomical textures shows
consistent distributions in the aligned image. On contrary,

the MIND algorithm fails to overlap the acantha (A +D),
bones and nerves (E +H) and muscles (I + L) accurately.

4.4. Computation Time. Based on the software and platform, it
took about 62 seconds to complete the affine registration and
427 seconds to complete the deformable registration. And

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(i+j) (i+k) (i+l)

(e+f) (e+g) (e+h)

(a+b) (a+c) (a+d)

Figure 7: Perceived visual difference of CT-MR images before and after image registration. The regions directed by the arrows are for
comparison before and after registration. In addition, images are cropped for display purpose.
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thus, it required a total of 8.15 minutes to fulfill the coarse-to-
fine registration for a pair of CT-MR lumbar spine image.

5. Discussion

Intrapatient multimodal image registration can fuse multi-
source information that benefits disease diagnosis and
treatment delivery. This study develops a coarse-to-fine
framework and aligns intrapatient CT-MR lumbar spine
images. It first utilizes the similarity metric NMI for global
positioning, and then, bending energy penalized NMI for
local deformation of soft tissues. The proposed framework
achieves high tissue overlapping ratio and low target registra-
tion error. It not only preserves the incompressibility of
vertebrae but also well matches local soft tissues that provide
accurate elastic registration of lumbar spine images for
clinical applications.

The proposed framework is a coarse-to-fine approach for
multimodal image registration. It aligns anatomical struc-
tures and addresses the potential difference on the fields of
view and the intrinsic differences between medical imaging.
The metric NMI is used, since it is a robust and accurate mea-
sure in multimodal image registration [17, 44]. After global
positioning, a new similarity metric that integrates a bending
energy term into NMI is used for local deformation and reg-
istration of soft tissues in medical images. It is worth of note
that the term encourages smooth displacements in registra-
tion [33]. Ceranka et al. embedded the term to improve
multiatlas segmentation of the skeleton from whole-body
MR images [45], and de Vos et al. integrated the term into
unsupervised affine and deformable image registration by
using a convolutional neural network [46]. Both works
[45, 46] figured out that the term caused significantly less
folding in image registration.

The framework takes the incompressibility of vertebrae
into account. Vertebrae are bony structures which are con-
nected to each other by the ligamentum flavum at the neural
arch [47]. The proposed framework enables global and local
image structures well matched, and inflexible bones and soft
tissues properly deformed. Its superior performance has been
verified on the in-house collection and the SpineWeb data-
base. Experiential results demonstrate that the overlapping
ratio of annotated vertebrae and blood vessels are larger than
0.85, and the target registration error is less than 2.40mm on
average. It outperforms the MIND algorithm partly due to its
proper deformation of local soft tissues and incompressible
lumbar vertebrae. The registration quality is further per-
ceived in a CT-MR image pair. It is found that the marked
tissues keep relative location after image registration by using
the proposed framework, since it not only well tackles the
local soft tissue deformation but also conserves the rigid
lumbar vertebrae.

Even if the proposed framework achieves superior per-
formance on aligning CT-MR lumbar spine images, there is
still room for further improvement. One way to enhance reg-
istration accuracy is by transferring multimodal image regis-
tration into mono-modal image registration. Wachinger and
Navab developed structural representations, such as Entropy
and Laplacian images, which could represent the images in a

third space where the images showed close intensity or gradi-
ent distribution [48]. Moreover, deep networks have been
explored to estimate CT images from MR images directly
and in particular, the mapping between CT and MR images
was learned without any patch-level pre- or postprocessing
[49]. Another straightforward way is to utilize deep networks
to learn the deformation field between different imaging
modalities [50]. In addition, interactive image registration is
admirable in interventional surgery and a doctor user could
localize landmarks to guide and to update the registration
procedure [51].

There are several limitations in this study. One limitation
comes from no comparison of NMI and BEP-NMI on
deformable image deformation, since our off-line experimen-
tal results show that the NMI based deformable registration
is prone to distortion of lumbar spine and unnatural defor-
mation of soft tissues. Moreover, demons and its variants
[52, 53, 54] failed in the registration of lumbar spine images.
Thus, this study reports the performance of the proposed
framework and theMINDmethod. In addition, how to prop-
erly balance the BEP term and the NMI is always a problem
and no existing methods could well tackle this issue, while
prior knowledge [35, 37] could be employed for further
improvement of the registration accuracy.

6. Conclusions

This paper presents a coarse-to-fine framework for the regis-
tration of intrapatient CT-MR lumbar spine images. It inte-
grates the bending energy term into normalized mutual
information for fine deformation of soft tissues around the
incompressible vertebrae. Its high performance benefits
multisource information fusion for accurate spine disease
diagnosis, treatment planning, interventional surgery, and
radiotherapy delivery.
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