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The aim of this special issue is to focus on recent develop-
ments and achievements in the theory of function spaces,
sequences spaces and their geometry, and compact oper-
ators and their applications in various fields of applied
mathematics, engineering, and other sciences. The theory
of sequence spaces is powerful tool for obtaining positive
results concerning Schauder basis and plays a fundamental
role in creating the basis of several investigations conducted
in nonlinear analysis. The compactness is very often used in
fixed point theory and its applications to the theories of differ-
ential, functional differential, integral, and integrodifferential
equations.

The research papers in this special issue cover various
topics like geometry of Banach spaces, Schauder basis and
dual spaces, sequence spaces and their topological and geo-
metric properties, approximation of positive linear operators
by matrix and nonmatrix methods, convergence and stability
results for iterative process, applications of iterative methods
to a nonlinear integral equation, Littlewood-Paley operators
on Morrey spaces, matrix transformations between certain
sequence spaces, measures of noncompactness and their
applications in characterizing compact matrix operators,
fixed point theorems and their applications, and so on.
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We construct a new general class of derivative free n-point iterative methods of optimal order of convergence 2"~ using rational
interpolant. The special cases of this class are obtained. These methods do not need Newton’s iterate in the first step of their iterative
schemes. Numerical computations are presented to show that the new methods are efficient and can be seen as better alternates.

1. Introduction

The problem of root finding has been addressed extensively
in the last few decades. In 1685, the first scheme to find the
roots of nonlinear equations was published by John Wallis.
Its simplified description was published in 1690 by Joseph
Raphson and was called Newton-Raphson method. In 1740,
Thomas Simpson was the first to introduce Newton’s method
as an iterative method for solving nonlinear equations. The
method is quadratically convergent but it may not converge
to real root if the initial guess does not lie in the vicinity
of root and f '(x) is zero in the neighborhood of the real
root. This method is a without-memory method. Later, many
derivative free methods were defined, for example, Secant’s
and Steffensen’s methods. However, most of the derivative
free iterative methods are with-memory methods; that is,
they require old and new information to calculate the
next approximation. Inspite of the drawbacks of Newton’s
method, many multipoint methods for finding simple root
of nonlinear equations have been developed in the recent
past using Newton’s method as the first step. However, many
higher order convergent derivative free iterative methods
have also appeared most recently by taking Steffensen type
methods at the first step. A large number of optimal higher
order convergent iterative methods have been investigated
recently up to order sixteen [1-3]. These methods used
different interpolating techniques for approximating the first
derivative.

In the era of 1960-1965, many authors used rational
function approximation for finding the root of nonlinear
equation, for example, Tornheim [4], Jarratt, and Nudds [5].

In 1967, Jarratt [6] effectively used rational interpolation
of the form

x-a
Y o textd M
to approximate f(x) for constructing a with-memory scheme
involving first derivative. The order of the scheme was 2.732
and its efficiency was 0.2182.

In 1987, Cuyt and Wuytack [7] described a with-memory
iterative method involving first derivative based on rational
interpolation and they also discussed two special cases of
their scheme having order 1.84 with efficiency 0.1324 and
order 2.41 with efficiency 0.1910.

In 1990, Field [8] used rational function to approximate
the root of a nonlinear equation as follows:

Xip1 = X; +d;, (2)

where d;, the correction in each iterate, is the root of the
numerator of the Pade approximant to the Taylor series:
0 f(j) ( x,) .
i
f) =) =" (x-x). (3)
=
He proved that x; converges to the root & with order
m + n + 1, where m and n are degrees of the denominator
and numerator of the Pade approximant.
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In 1974, Kung and Traub [9] conjectured that a multipoint
iterative scheme without memory for finding simple root of
nonlinear equations requiring n functional evaluations for
one complete cycle can have maximum order of convergence
2" with maximal efficiency index 2", Multipoint meth-
ods with this property are usually called optimal methods.
Several researchers [1-3, 10] developed optimal multipoint
iterative methods based on this hypothesis.

In 2011, Soleymani and Sharifi [10] developed a four-
step without-memory fourteenth order convergent iterative
method involving first derivative having an efficiency index of
1.6952. The first derivative at the fourth step is approximated
using rational interpolation as follows:

w, = ¢8 (‘xn’ yn’zn)

Xn+1

—w. — (1+b4 (wn_xn))2 w
=T ) by (wy— 3) @ by () )
(4)

where ¢ is an optimal eighth order convergent method and
the rational interpolant is given as:

_b+by(t—x)+by(t - x)°

1+b,(t—x) ©)

m(t)

In 2012, Soleymani et al. [3] developed a three-step
derivative free eighth order method using rational interpo-
lation as follows:

Zy = ¢>4 (xn’ Y wn) 4

(1 +a; (Zn B xn))2

ay — aya, +2a, (2, - x,,) + @a3(z, - x,,)

ACHE
(6)

w

where ¢, is any two-step fourth order convergent derivative
free iterative method. They used the same rational interpolant
as given in (5). The constants are determined using the
interpolating conditions.

In 2012, Soleymani et al. [2] added his contribution by
developing a sixteenth order four-point scheme using Pade
approximation. The scheme required four evaluations of
functions and one evaluation of first derivative and achieved
optimal order of sixteen and and an efficiency index 1.741. The
scheme was of the form

wy, = (/58 (xn’ Yns> Zn) ?
Xps1 = Wy — ((1 + bS (wn - xn))zf (wn))

X (f’ (xn) + 2b3 (wn - xn) + (3b4 + b3b5) (wn - xn)2

-1

+2b,b5(w, - x,)°)
(7)
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where ¢g is eighth order optimal method. They used the
rational interpolant of the following form:

b b (t—x) +b(t—x)? + byt - x)°
- 1+bs (t—x) '

Recently in 2013, Sharma et al. [1] developed a three-step
eighth order method and its extension to four-step sixteenth
order method using rational interpolation. In the scheme,
the first three steps are any arbitrary eight order convergent
method. The fourth step is the root of the numerator of the
method, which is given as

tn = ¢8 (xn’ Zp» wn) >

p() (8)

=x — Plf [Zn’ wn] + Qlf [xn’ wn] + Rf [tn’ wn]f(x )
" P,L+Q,M + RN "
)
where,
I = f (wn) f [xn’ Zn] B f (Zn) f [xn’wn] ,
w, —zn
M= f (wn) f’ (xnll__fjfxn) f [xn’ wn] ,
N = f (wn) f [xn’ tn] __J: (tn) f [xn’ wn] , (10)
P = (xn - tn)f(xn) f(tn) >
Ql = (tn - Zn) f (tn) f (Zn) >
R= (Zn - xn) f (Zn) f (xn) >
and rational polynomial of the following form:
(x=—x;)+ A
Ps(x) = (11)

ux—x) +o(x-x) +E(x—x) +1
The efficiency index of the above sixteenth order method is
1.741. The method involves one derivative evaluation.

In this paper, we present a general class of derivative free
n-point iterative method which satisfies Kung and Tarub’s
Hypothesis [9]. Proposed schemes require # functional eval-
uations to acquire the convergence order 2" and efficiency
index can have 2"/ The contents of the paper are sum-
marized as follows. In Section 2, we present a general class
of n-point iterative scheme and its special cases with second,
fourth, eighth, and sixteenth order convergence. Section 3
consists of the convergence analysis of the iterative methods
discussed in Section 2. In the last section of the paper, we give
concluding remarks and some numerical results to show the
effectiveness of the proposed methods.

2. Higher Order Derivative
Free Optimal Methods

In this section, we give a general class of n-point iterative
method involving » functional evaluations having order of
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convergence 2" ', Thus, the scheme is optimal in the sense
of the conjecture of Kung and Traub [9].
Consider a rational polynomial of degree n— 1 as follows:

_ pi (@)
Ty (£) = PN (12)

where,
pi(t) =ag+a, (t-x),

Guy ) =14b (t-x)+---+b,,(t-x)"> n=2, (13)

qo = 1.

We approximate f(x) by rational function given by (12)
to construct a general class of n-point iterative scheme. Then,
the root of nonlinear equation f(x) = 0 is the root of
the numerator of the rational interpolant of degree n — 1
for the n-point method. The unknowns a,, a,, b,,...,b,_; are
determined by the following interpolating conditions:

rnfl (x) = f(x) >
ro (i) = f (W), k=1,...

Then, the general n-point iterative method is given by

(14)
,n—1, n>2.

w, =x+ Bf (x),
(15)
a
w,=x—-—, nx2.
a

Now, we are going to derive its special cases. For n = 2 in
(14)-(15),

ri(t)=ay+a (t—x). (16)

We find a,, and g, such that

r (%) = f (), r(wy) = f(wy). 17)
So, the two-point iterative scheme becomes
w, = x+ Bf (x),
L I® (18)
T Flwnal

The iterative scheme (18) is the same as given by Steffensen
[11] for B = 1; thus, is a particular case of our scheme given
by (14)-(15).

For n = 3, we have

ag +a, (t —x)

t) = .
A B 9)
We find g, a,, and b, using the following conditions:
(%) = f (%), ry (w) = f (wy),
(20)

ry(w,) = f (w,).

3
By using conditions (20), we have
a = f(x),
a = f [wy,x] + b f (wy), 1)

flwy, x] = f [wy, x]
fw)=f(w)

b =

Now, using (21), we have the following three-point iterative
scheme:

w;, = x + Bf (x),
A C))
R T (22)

B f @) (f (wy) = f (w1))
f(wy) f [wy, x] —f(wl)f[wz,x]'

wy =X

For n = 4, we have the following rational interpolant:

3 ay+a, (t—x)
3(t) = 1+b (t-x)+ byt - x)* (23)
such that
r3 (x) = f (x), r3(wy) = f (wy),
(24)

ry(w,) = f(wz)) r; (wy) = f(w3).

The conditions (24) are used to determine the unknowns a,,
aj, by, and b,. Thus, we attain a four-point iterative method as
follows:

wy = x+ ff (%),
v e r T
’ f[wl’x]’
w, = £ (f (w,) = f (wy)) (25)

T W) flwn ] - £ (w) f [wx]”

f (x) (hy +hy + hsy)
hy f [wy, x] +hy f [wy, x] + by f [ws, x]

>

Wy =X —

where,

hy, = f (w) f (w3) (w, - w,), (26)



For n = 5, we have the following five-point iterative scheme:

w, =x+ Bf (x),

f(x)
f [wl’x],

S ) (f (wy) - f (w1))

wy =X -

O (wy) fTwp ] — f (wy) S [wyo ]
W = x— fx) (hy + hy + hy)
! hy f [wy, x] + hy f [w,, x] + by f [ws, x] ’
Ws = X — ;L(l),
where,
a ag +a; (t —x)
ra(t) = 1+b, (t —x) +by(t — x)* +by(t — x)>
such that

re(x) = f(x), ry(w) = f(w)),
ry(wy) = f(wy), ry(ws) = f (wy),
ry(wy) = f (wy).

The interpolating conditions (29) yield

ay = f(x),

ay = (my f [wy, x] +m, f [w,, x] +ms f [w;, x]

+my f [wy, x]) (my +my +my + m4)71,

where,

my = f () f (ws) f (wy)
x = (w; - x) (wy - x) (wy - w;)
+ (W, = x) (wy - x) (wy - wy)}
= (w; = x) (ws = x) by f (wy)
my = f (w)) f (ws) f (w,)

27)

(28)

(29)

(30)
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x{(w; = x) (wy = x) (wy —w;)
= (wy = x) (wy = x) (wy —w))}
— (w; = x) (w; = x) b f (wy)
my = f (w) f(w,) f (wy)
x A= (w; = x) (w; = %) (wy - w,)
+ (W = x) (wy = x) (wy - wy)}
— (w; - %) (w, - x) by f (wy)
my = f (W) f (wy) f (w5)
x{(w; = x) (w; = x) (w; —w,)
= (wy = x) (w; = x) (w; - w,)}

+(w; = x) (w, = x) hs f (w3),
(31)

and hy, h,, h; are given as in (26). Hence, we obtain the
following iterative method:

w; =x+ ff (%),
)

T Flweal”

f ) (f (wy) = f (w1))
f(w,) f [wi,x] = f (w)) f [wy x]”

(32)
_ f () (hy +hy + hs)
o f [wi, x] + by f [wy, x] + hs f [wy, x]”

ws = x — (f (x) (M, + my + my +my))

w; =X —

wy =X

x (my f [wy, x] +m, f [w,, x]
+my f [ws, x| +my f [w4,x])71.

We, now, give the convergence analysis of the proposed
iterative methods (18), (22), (25), and (32).

3. Convergence Analysis

Theorem 1. Let us consider w € I as the simple root of
sufficiently differentiable function f : I € R — R in the
neighborhood of the root for interval I. If x is sufficiently close
to w, then, for every 8 € R\ {—1}, the iterative methods defined
by (18) and (22) are second and fourth order convergent,
respectively, with the error equations given by

€ut1 :02(1 +ﬁ)ei+o(62)’
€ni1 = (Cﬁ” —6G+ Z‘é?’ﬂ + “2352 (33)

~26,68 - 66" ) e, + O (e3),
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respectively, where,

_ 1Y)
TR ()

=2,3,... (34)

Proof. Let x = w + e,,, where w is the root of f and e, is the
error at nth step. Now, using Taylor expansion of f(x) about
the root w, we have

f(x)= f/ (w) [en + Gzei + c3efl + c4ei
(35)
+---+csei+O(ez)] ,

where ¢ is defined by (34). Taylor’s expansions for w; and

f(w,) are

w, =en+w+l3(en+czei+c3efl
(36)
+c4e:ll + Csef,) +0 (e:) ,
f(wy)
= @[ +P)e,+ (3pa+ o +0p ),
+(2c22[3+2(22[32 + ¢+ 4fc¢
+ 303[32 + c3ﬁ3) ez
2 3
+ (56Be + 8¢ + 3¢, 8
+¢, +5B¢, + 6°¢, + 4c,
teft C23/32) ¢
2 3 4
+ (c5 +6B¢; + 10¢; 5 + 10¢; 8” + 5¢5 3
+ 658 + 66, ¢, + 14cyc, B + 12¢,6,8°
+40B" + 566 + 3¢+ 6c
+ 305ﬂ3622 + 3052[33) e +0 (eg)] .

(37)

Using (35), (36), and (37), we have

w,=w+c(1+p)e
+ (—2022 - 2022/3 + 26+ 3f¢ + %[32 - 622[32) efl
+ (4c23 + 5C§ﬁ - 76,6, — 10¢, B¢y — 7olﬁzc3 (38)
+ 3c23ﬁ2 —26,8°c, + 3¢, + 6c, + 4c, B,

+c4ﬁ3 + cfﬁz')ei + O(efl),

which shows that the method (18) is quadratically convergent
for all B € R\ {-1}. Again using Taylor expansion of f(w,),
we have

Fw)=f'@e(+pe
+ (26 - 2] B + 2¢
+3fc; + Csﬁz - szﬁz) eZ
+ (5023 +76 B~ 76,6, — 106, e
~ 7P + 46
- 26,%¢, + 3¢, + 63c,
+4c, 82 + ¢, + cjﬁ3) efl +0 (efl)] .

(39)

Now, using (35)-(39), we see that the order of convergence of
the method (22) is four and the error equation is given by

€1 = (623 + 2523/3 - 66 —266f

(40)
—oaf o) e, +0(e).

O
Theorem 2. Let us consider w € I as the simple root of
sufficiently differentiable function f : I € R — R in the
neighborhood of the root for interval 1. If x is sufficiently close to
w, then for all B € R\{-1}, the iterative methods defined by (25)

and (32) are eighth and sixteenth order convergent, respectively,
with the error equations given by

e =6 (6B - 3608 +466 + i f!
+ 263202/34 - 12%c23ﬁ3 + 6c25[32
—aaB + 406 B + 866 - 18cq B
+46 - 4o, 8 + 6c,6; B
+ 12c§czf32 - 12%cz3ﬁ + 025 - 6¢,6,8°
+4c,co B+ 8[302632 -3c¢
—4cy¢, + c22c4 + 202c32 - c3c4) ei +0 (ei) ,
Cur1 = ((4625%55 — et + 2666 + 2666
— 4666, — 5666 — Gy + 1866
- 13ag603c4 - 9éc§c4 + ZCZSCZ + cglc4

- 2%%5 - C27C5 - 7%905 + 3C§C4



+116¢; - 2166 + 18 ¢;
+2‘5225354C5 + CZH) C;'BS
bt (4(;25(,5% - c32c4c5 + chcfcf + 202c§’c5
_ 4C§C3CZ - 5(23052% - C;C4C5
18, 13 -9l
+ 2c25cf + c§c4 - 202635 - C27C5 - 7C2963
+3cy¢, + 1166, — 2156 + 18¢¢;
+20066,65 + 6211) ‘é) e’ +0 (6317) >
(41)

where,

1 P W)

%= (@) =2,3,... (42)

Proof. Let x = w + e,,, where w is the root of f and e,, is the
error in the approximation at nth iteration. We will use (35),
(37), (39), and (40) up to O(eflo) in this result and set

w;=w+ (c23 +2c23ﬁ—ozc3 -26,6p3
_%63/32 + C;ﬁz) eﬁ
+(16p'g - 20’ - 6B - ap’s
— 4B, + 146 ey — 66, B2 — 4G B (43)
+ 186 Be, - 56,c, — 8¢ - 5B
—4c;1 -20¢ + 8&22% - 2c32) ef,

+---+O(efl°).
Again, using Taylor expansion of f(ws), we have

fws) = f1 @) [(g +26 8- a6 - 2008
—oaf’+ B e,
+ (46’6 - 268 - 6B - af’c
— 46, + 1465 — 66 B ~ 4

+186)Be; — 56,y — 86, — 56,

5
n

—4(5l —26¢ + 8c22c3 - 2C32) e

+---+O(ef,°)]. )
44
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Now, using (35)-(39), (43), and (44), we see that the method
(25) has eighth order convergence with the error equation

et =6 (6B~ 3608 +46 + g !
+ 2c3202[34 - 12c3cl3[33 + 6c25ﬁ2
—aft+ 454022183 + 863252/33 - 18C3C§/32
+ 4%5[; — 4,00 + 6C4szﬁ2
+ 12668 - 1266 B + ¢ — 66,658
+ 4c4c22[5 + Sﬁgcf - 3(;23c3

—4fcs¢, + czzc4 + ZQ%2 - c3c4) efl +0 (e:) .
(45)

To find the error equation of (32), we use (45) up to O(eflo)

and set

2( 54 34 5 3 2t
wy =& (B -360B" +45 B + ¢ B
2 4 353 52 4
+266B - 1266 + 66,5 - cyi5
+46,6 P + 856" 1866 B
+ 4625ﬂ - 46463[33 + 6c4022ﬁ2
(46)
+ 12c3202ﬁ2 - 1263c23[5 + c25 — 6c,658°
2 2 3
+4¢,6 B+ 8PBc,¢5 — 36565
—4fcs¢y + 02264 + 2c,lc32 - %64) efl

+~-+O(eflo).
Taylor expansion of f(wy) is

fw) = @[(Gf +qu+q+ap'y
- 6226463 - c463[54c22 + 8c23c§[33
+2B'cc + 8¢ B +12¢, s
- 18%553/32 - 1202563/3 - 3/34025‘33
+ 6c;1c4,82 + 4cjc4ﬁ3 + 4cfc4/3
— 1268 +6c) B +4c) B + 4c) B
- 3(;503 + 2c23c32 - 6c3ﬁ2c4Q2
40 pe - daG6h’)e,

+---+O(ef’1°)]. .
47
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TABLE 1: Test functions and exact roots.

Numerical example

Exact roots

fi(x) = Vx* + 8sin(r/(x* +2)) + x°/(x* + 1) — V6 + 8/17
f>(x) = sin(x) — x/100

f3(x) = (1/3)x* = x* = (1/3)x + 1

falx) = e 1 x/5

f5(x) = xe* — (sin(x))* + 3 cos(x) + 5

fe(x) =™ + cos(x)

fr(x) = 10xe™ -1

folx) = x> +4x* — 15

w, =-2
w, =0
w; =1
w, =0

ws = —1.207647827130919
we = 1.746139530408013
w, = 1.679630610428450
wg = 1.631980805566063

Hence, using (35)-(39), (43), (44), (46), and (47), we see that
iterative method (32) is sixteenth order convergent with the
error equation given by

€1 = ((4C§(}5C5 - c32c465 + 202c3ch + 2¢;zc33c5

- 4(23c3c: - 50363265 - (‘;16465

+ 18c;c52c4 - 13026c3c4 - 902263364 + 2c25c:

+ cglc4 - 202c35 - c27c5 - 7(‘29C3

+36¢ + 116 - 2166 + 18¢)ca

+26 36465 + (_211) S p°

+oet (46256365 - 6326465 + 202c3ch + 2(‘263?65

- 4c2363cf - 5623632c5 - c§c4c5 + 18624632c4
- 136266364 - 9CZZC§C4 + 262565 + c;1c4 - Zcch
- cz7c5 - 762963 + 3c§c4 + 11c23c;l
- 2165633 + 18c27c32 + 2622636465

+c2“) cf) e}f +0 (eif) .
(48)

O

Remark 3. From Theorems 1 and 2, it can be seen that the
iterative schemes (18), (22), (25), and (32) are second, fourth,
eighth, and sixteenth order convergent requiring two, three,
four, and five functional evaluations, respectively. Hence,
the proposed iterative schemes (18), (22), (25), and (32) are
optimal in the sense of the hypothesis of Kung and Traub [9]
with the efficiency indices 1.414, 1.587, 1.681, 1.741. Also, it
is clear that (14)-(15) is a general n-point scheme with optimal

order of convergence 2"~ The efficiency index of this scheme
is 201D/,

4. Numerical Results

In this section, we present some test functions to demon-
strate the performance of the newly developed sixteenth

order scheme (32) (FNMS-16). For the sake of comparison,
we consider the existing higher order convergent methods
based on rational interpolation. We consider the fourteenth
order method of Soleymani and Sharifi (4) (SS-14), the
sixteenth order method of Soleymani et al. (7) (SSS-16),
and the sixteenth order method of Sharma et al. (9) (SGG-
16). All the computations for the above-mentioned methods
are performed using Maple 16 with 4000 decimal digits
precision. The test functions given in Table 1 are taken from
[1, 2, 10]. We used almost all types of nonlinear functions,
polynomials, and transcendental functions to test the new
methods. Table 2 shows that the newly developed sixteenth
order methods are comparable with the existing methods
of this domain in terms of significant digits and number of
function evaluations per iteration. In many examples, the
newly developed methods perform better than the existing
methods. It can also be seen from the tables that, for the
choice of initial guess, near to the exact root or far from the
exact root, the performance of the new methods is better.

5. Attraction Basins

Let w; be the roots of the complex polynomial p,(x), n >
1, x € C, wherei = 1,2,3,...,n. We use two different
techniques to generate basins of attraction on MATLAB
software. We take a square box of [-2,2] x [-2,2] € C in the
first technique. For every initial guess x,, a specific color is
assigned according to the exact root, and dark blue is assigned
for the divergence of the method. We use | f(x;)| < 107 as the
stopping criteria for convergence and the maximum number
of iterations are 30. “Jet” is chosen as the colormap here.
For the second technique, the same scale is taken but each
initial guess is assigned a color depending upon the number
of iterations for the method to converge to any of the roots
of the given function. We use 25 as the maximum number
of iterations; the stopping criteria are the same as above
and colormayp is selected as “hot” The method is considered
divergent for that initial guess if it does not converge in the
maximum number of iterations and this case is displayed by
black color.

We take three test examples to obtain basins of attraction,
which are given as p;(x) = x° — 1, py(x) = x* — 10x” + 9,
and ps(x) = x° — 1. The roots of p3(x) are 1.0, —0.5000 +
0.866051,and —0.5000—-0.866051, the roots of p,(x) are -3, 3,
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TaBLE 2: Comparison of various iterative methods.

(), %, (SS-14) (SGG-16) (SSS-16) (FNMS-16)
firxg=-12

| f1(xp)] 3e—13 le—15 le-13 le—15

| f1(x,)] le - 181 .Ge — 248 le-211 Se — 245

| f1(x3)] .6e — 2538 .6e — 3751 7e —3379 .6e — 3916
fixo=-3

| f1(x)] le-5 3e-6 3e-7 2e-38

| f1(xy)] Ade—75 le—96 2e—113 le—132

| f1(x3)] Je - 1050 3e - 1545 2e - 1812 Se - 2123
frxy =15

| (x| 95 95 .64 3e—4

| £5(x,)] le—10 le—4 3e-6 Se — 100

| £05)] 2e— 88 5e—90 le—111 Ae — 1632
Jxe=3

| f2(x)] 2e—24 le—25 3e-27 2e—44

| f2(x,)] 8¢ —358 8¢ — 425 2e — 452 e — 743

| f2(x3)] 0 0 0 0
f3 %9 =05

| f5()] S5e-8 6e -9 3e-9 9e - 10

| £5(x,)] 8e—-114 3e— 144 Ade — 149 6e — 238

| f5(x3)] 2e — 1595 le — 2307 de — 2386 0
fx9 =15

| f5(x)] 2e—11 2e-13 2e—11 le—11

| f3(x,)] 2e—158 .6e — 214 le—179 .6e — 183

| f3(x3)] 3e—2218 8¢ — 3423 2e — 2869 .6e — 2935
foxg=5

| fa(x)] 8e—1 25 8e—1 le-2

| fa(x)| de—15 le-6 3e-16 3e - 56

| fi(x3)] le—213 e —109 9e —262 le—914
foxo=4

| fa(x)] .92 e -1 2.51 dle—17

| fa(xy)] Ae-5 le-25 6e—3 3e—295

| fa(x3)] dle—-73 le—423 .6e — 49 0
forxo=-1

| f5(x)] le-3 le-7 8e—4 Je—5

| f5(x,)] 2e - 66 Se — 144 9e — 80 4e—-92

| f5(x5))] e — 946 8e — 2327 de — 1294 .6e — 1488
f5x9 =—0.6

| f5(x)] 2e44770 Ade—1 2e44770 1

| f5(x,)] 4e44769 Ae—40 7e44768 3e-23

| f5(x3)] 5e44767 Ae — 664 2e44767 8e— 386
fer %o =0.5

| fs(x)] 6e—7 9e-9 3e-38 le—14

| fs(x)] 8e—116 dle—152 7e — 145 le — 254

| f5(x3)] de— 1748 Je - 2456 9e — 2332 le — 3999
forxo =3

| fo(x)] 7 53 79 0.7¢ — 8

| fs(x,)] 9e -5 Ae—16 2e-5 2e— 145
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TABLE 2: Continued.

f(x), x, (SS-14) (SGG-16) (SSS-16) (FNMS-16)

| fo(x5)] 7e - 102 le - 269 5e—125 0.3¢ — 2345
fr% =0

|5 ()] le-6 2e-9 le-5 8e—12

|5 ()] S5e—99 3e— 161 .6e — 98 le—199

| f5(x3)] 3e - 1394 .6e — 2562 .5e — 1575 3e — 3205
frxe=22

|5 ()] 1 9e -2 1 8e-38

| f7(x,)] 1 .6e — 40 D e — 136

| f5(5)) D Se - 651 D e —2183
ferx9 =05

| fs(x)] le7 97 le7 1.0

| fs(x,)] 16856.81 2e-25 16856.81 8e—15

| f(x3)] 183.46 3e—435 183.46 le-256
Jorxo=1

| fs(x)] 2e-2 5e—5 2e-2 6e—3

| f5(x2)] 2e—65 Jle —109 2e—65 Te—67

| f5(x3)] .6e — 1073 e - 1782 .6e — 1073 Je - 1089

*D stands for divergence.

2

e}

)}

o~

[\S]

-2 . . . . -2 -15 -1 =05 0 0.5 1 1.5 2

FIGURE 1: Basins of attraction of method (7) for p;(x).
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FIGURE 2: Basins of attraction of method (9) for p;(x).
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FIGURE 3: Basins of attraction of method (32) for p,(x).
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FIGURE 4: Basins of attraction of method (7) for p,(x).

1.5

0.5

-2 -15 -1 =05 0 0.5 1 1.5 2 -2 -15 -1 =05 0 0.5 1 1.5 2

FIGURE 5: Basins of attraction of method (9) for p,(x).
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FIGURE 6: Basins of attraction of method (32) for p,(x).
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FIGURE 7: Basins of attraction of method (7) for p5(x).

-2 -15 -1 =05 0 0.5 1 1.5 2

FIGURE 8: Basins of attraction of (9) for p;(x).
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FIGURE 9: Basins of attraction of (32) for ps(x).

—1,1,and for ps(x) roots are 1.0,0.3090+0.951051, —0.8090+
0.587781, —0.8090 — 0.58778I, and 0.30902 — 0.951051.

We compare the results of our newly constructed method
(32) with some existing methods (7) and (9), as given in
Section 1. Figures 1, 2, 3, 4, 5, 6, 7, 8, and 9 show the dynamics
of the methods (7), (9), and (32) for the polynomials X -
1, x* = 1, and x° — 1. Two types of attraction basins are
given in all figures. One can easily see that the appearance
of darker region shows that the method consumes a fewer
number of iterations. Color maps for both types are given
with each figure which shows the root to which an initial
guess converges and the number of iterations in which the
convergence occurs.
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In this paper, we essentially deal with Kothe-Toeplitz duals of fuzzy level sets defined using a partial metric. Since the utilization of
Zadeh’s extension principle is quite difficult in practice, we prefer the idea of level sets in order to construct some classical notions.
In this paper, we present the sets of bounded, convergent, and null series and the set of sequences of bounded variation of fuzzy
level sets, based on the partial metric. We examine the relationships between these sets and their classical forms and give some
properties including definitions, propositions, and various kinds of partial metric spaces of fuzzy level sets. Furthermore, we study
some of their properties like completeness and duality. Finally, we obtain the Kothe-Toeplitz duals of fuzzy level sets with respect

to the partial metric based on a partial ordering.

1. Introduction

By w(F), we denote the set of all sequences of fuzzy numbers.
We define the classical sets bs(H), c¢s(H), and csy(H) con-
sisting of the sets of all bounded, convergent, and null series,
respectively; that is

bs(H) := {u = () € w(F): (i”k) €l (H)} ,

k=0

cs(H) = {u:(uk)ew(F):<Zn:uk)EC(H)}, 1)
k=0

csy (H) = {u = (u) € w(F): <Zuk> € cO(H)]» :
k=0

We can show that bs(H), c¢s(H), and csy(H) are complete
metric spaces with the partial metric H* defined by

HE (u,v) := sup <[iHS (tger vk)} , (2)

neN | k=o

where u = (u;) and v = (v;) are the elements of the sets bs(H),
cs(H), or csy(H).

Secondly, we introduce the sets bv(H), bv,(H), and
bv(H) consisting of sequences of g-bounded variation
by using the partial metric H® with respect to the partial
ordering Cyy, as follows:

bv(H) = <|u = (u) €ew(F): OZ():HS [(Au)k,ﬁ] < oo} ,

k=0

k=0

bv, (H) := {u = (u) €ew(F): iHS[(Au)k,ﬁ]q < oo} ,

bv,, (H) := {u = (u) € w(F) : supH’ [(Au)k,a] < oo} ,
keN
(©)
where the distance function H® denotes the partial metric of

fuzzy level sets defined by

H (u,v) = sup p([ul),[v]))
A€[0,1]
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= sup {max{u;,v;} - min{u;,v;}}
A€[0,1]

= max {uy, vy} — min {u,,v,},

H® (u,v) = 2H (u,v) — H (u,u) — H (v, v),
(4)

for any u,v € E' with the partial ordering Cp. One
can conclude that the sets bv(H), bvq(H), and bv (H) are
complete metric spaces with the following partial metrics:

H® (u,v) == ) H [(Au), (Av)],
k=0

- 1/q
HqA (u,v) := {ZHS[(AL{)]{, (Av)k]q]» , ®)
k=0

HS (u,v) = sup H* [(Aw)y, (Av)y ],

respectively, where u = (u;) and v = (v;) are the elements of
the sets bv(H), bvq(H), or bv (H) and (Au), = uy, — uy,, for
allk e N.

Many authors have extensively developed the theory of
the different sets of sequences and its matrix transformations
[1, 2]. Following Basar [3, page 347], we note that Mursaleen
and Basarir [4] have recently introduced some new sets
of sequences of fuzzy numbers generated by a nonnegative
regular matrix A some of which reduced to the Maddox’s
spaces €, (p; F), c(p; F), ¢y(p; F), and €(p; F) of sequences of
fuzzy numbers for the special cases of that matrix A. Quite
recently, Talo and Basar [5] have extended the main results
of Basar and Altay [6] to fuzzy numbers and defined the
alpha-, beta-, and gamma-duals of a set of sequences of fuzzy
numbers and gave the duals of the classical sets of sequences
of fuzzy numbers together with the characterization of the
classes of infinite matrices of fuzzy numbers transforming
one of the classical set into another one. Also, Kadak and
Basar [7-9] have recently studied fourier series of fuzzy
valued functions and gave some properties of the level sets
together with some inclusion relations, in [10]. Finally, Kadak
and Ozluk [11-13] have introduced the sets €, (H), c(H),
¢(H), and EP(H ) of classical sequences of fuzzy level sets
and sufficient conditions for partial completeness of these are
established by means of fuzzy level sets.

The rest of this paper is organized as follows. In Section 2,
some required definitions and consequences related with the
partial metric and fuzzy level sets, sequences, and conver-
gence are given. Section 3 is devoted to the completeness
of the sets of sequences bs(H), c¢s(H), csy(H) and bv(H),
bv (H), bvq(H ) of fuzzy level sets and some related notions.
In the final section of the paper, the Kothe-Toeplitz duals of
some classical sets are determined and given some properties
including solidness.
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2. Preliminaries, Background and Notation

Motivated by experience from computer science, nonzero
self-distance seen to be plausible for the subject of finite and
infinite sequences.

Definition 1 (see [14]). Let X be a nonempty set and p be
a function from X x X to the set R of nonnegative real
numbers. Then the pair (X, p) is called a partial metric space
and p is a partial metric for X, if the following partial metric
axioms are satisfied for all x, y,z € X:

(P1) x = y ifand only if p(x, x) = p(x, ¥) = p(y, ),
(P2) 0 < p(x,x) < p(x, y),

(P3) p(x, y) = p(y, x),

(P4) p(x,2) < p(x, y) + p(y,2) = p(3, ).

Proposition 2 (Nonzero self-distance [15]). Let S* be the set
of all infinite sequences x = (X, x,,X,,...) over a set S. For
all such sequences x and y let d (x, y) = 27, where k is the
largest number (possibly co) such that x; = y; for each i < k.
Thus dy(x, y) is defined to be 1 over 2 to the power of the length
of the longest initial sequence common to both x and y. It can
be shown that (S, d,) is a metric space.

Each partial metric space thus gives rise to a metric
space with the additional notion of nonzero self-distance
introduced. Also, a partial metric space is a generalization of a
metric space; indeed, if an axiom p(x, x) = 0is imposed, then
the above axioms reduce to their metric counterparts. Thus,
a metric space can be defined to be a partial metric space in
which each self-distance is zero.

It is clear that p(x, y) = 0 implies x = y from (P1) and
(P2). But, x = y does not imply p(x, y) = 0, in general. A
basic example of a partial metric space is the pair (R”, p)
where p(x, y) = max{x, y} forall x, y € R*.

Remark 3 (see [16]). Clearly, a limit of a sequence in a partial
metric space need not be unique. Moreover, the function
p(-,-) need not be continuous in the sense that x, — x
and y, — yimply p(x,,,) — p(x,y). For example, if
X = [0,+00) and p(x, y) = max{x, y} for x, y € X, then for
{x,} = {1}, p(x,,x) = x = p(x, x) for each x > 1 and so, for
example, x, — 2and x, — 3 whenn — oo.

Proposition 4 (see [17]). Let x, y € X and define the partial
distance function p by

p:XxX—R"

(%, 7) = p (% y) = max{x, y},
p:XxX—R"

(6)

(%, 7) = p(x,y) = —min{x, y},

For X = R" and X = R7, respectively. Then, (R, p) is com-
plete partial metric space where the self-distance for any point
x € R" is its value itself. The pair (R, p) is complete partial
metric space for which p is called the usual partial metric on
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R™, and where the self-distance for any point x € R is its
absolute value.

Proposition 5 (see [18]). If p is a partial metric on X, then the
function p* defined by

P XxX —R'

(., y) — p’ (x,y) =2p(x,y) - p(x, %) — p(», y)(, |
7

is a usual metric on X. For example, in (R, p), where p is
the usual partial metric on R™, we obtain the usual distance
in R™ since for any x, y € R™, p*(x, y) = 2p(x, y) — p(x, x) —
p(y,y) =x+y-2min{x, y} =[x - yl.

Definition 6 (see [15]). A partial order on X is a binary
relation C on X such that

(i) x C x (reflexivity),
(ii) if x © y and y C x then x = y (antisymmetry),

(iii) if x C y and y C z then x C z (transitivity).

A partially ordered set (or poset) is a pair (X, E) such that C is
a partial order on X. For each partial metric space (X, p) let
C, be the binary relation over X such that xC, y (to be read,
x is part of y) if and only if p(x, x) = p(x, y). Then it can be
shown that (X, Ep) is a poset.

For the partial metric max{a, b} over the nonnegative
reals, C ., is the usual > ordering. For intervals, [a, b]C ,[c, d]

if and only if [c, d] is a subset of [a, b].

Definition 7 (cf. [17-20]). Let (X, p) be a partial metric space
and (x,,) a sequence in (X, p). Then, we say the following:

(a) A sequence (x,,) converges to a point x € X if and
only if p(x, x) = lim,,_, o, p(x,,, x).

(b) A sequence (x,,) is a Cauchy sequence if there exists
(and is finite) lim,, ,, _, o, p(x,, X,,,).

(c) A partial metric space (X, p) is said to be complete
if every Cauchy sequence (x,,) in X converges, with
respect to the topology 7, to a point x € X such that
plx,x) = lim,, , . p(x,,x,). It is easy to see that
every closed subset of a complete partial metric space
is complete.

(d) A mapping f: X — X is called to be continuous at
xo € X if for every € > 0, there exists § > 0 such that

F(By(x0:8)) € B,(f(x0), ).

(e) A sequence (x,) in a partial metric space (X, p)
converges to a point x € X, for any € > 0 such that
x € B,(x, ), there exists 1y > 1 so that for any n > n,,
x, € Bp(x, €).

Lemma 8 (see [18]). Let (X, p) be a partial metric space. Then,

(i) (x,) is a Cauchy sequence in (X, p) if and only if it is a
Cauchy sequence in the metric space (X, p*),

(ii) a partial metric space (X, p) is complete if and only
if the metric space (X, p°) is complete. Furthermore,
lim,_, ., p'(x,,x) = 0 if and only if p(x,x) =
lim, , o, p(x,, x) = lim,, , , o, p(x,, x,,).

In the partial metric space (R7, p), the limit of the sequence
(=1/n) is 0 since one has lim,,_, ., p*(~1/n,0), where p* is the
usual metric induced by pon R™.

2.1. 'The Level Sets of Fuzzy Numbers. A fuzzy number is a
fuzzy set on the real axis, that is, a mapping u : R — [0, 1]
which satisfies the following four conditions.

(i) u is normal; that is, there exists an x, € R such that
u(x,) = 1.

(ii) u is fuzzy convex; that is, u[Ax + (1 — A)y] =
minf{u(x), u(y)} forall x, y € R and for all A € [0, 1].

(iii) u is upper semicontinuous.

(iv) The set [u], = {x € R:u(x)> 0} is compact (cf.
Zadeh [21]), where {x € R : u(x) > 0} denotes the
closure of the set {x € R : u(x) > 0} in the usual
topology of R.

We denote the set of all fuzzy numbers on R by E' and call

it as the space of fuzzy numbers. A-level set [u], of u € E' is
defined by

(8)

{xeR:u(x)>A}, 0<A<I,
[u]) =

{xeR:u(lx)>A}, A=0.

The set [u], is closed, bounded, and nonempty interval for
each A € [0,1] which is defined by [u], = [u”(A),u"(1)]. R
can be embedded in E', since each r € R can be regarded as
a fuzzy number 7 defined by

p— 1)
rx) = {0, X#T.

X=rt,

)

Representation Theorem 1 (see [22]). Let [u], = [u (1),
u" ()] foru € E! and for each A € [0, 1]. Then the following
statements hold.

(i) u™ is a bounded and nondecreasing left continuous
function on ]0, 1].

(ii) u* is a bounded and nonincreasing left continuous
function on ]0, 1].

(iii) The functions u~ and u® are right continuous at the
point A = 0.

(iv) u™ (1) < u*(1).

Conversely, if the pair of functionsu™ and u” satisfies conditions
(i)-(iv), then there exists a unique u € E! such that [ul, =
[u"(A),u"(A)] for each A € [0,1]. The fuzzy number u
corresponding to the pair of functions u~ and u"* is defined by
u:R — [0,1], u(x) =sup{A: u (1) < x <u" (W)}

Now we give the definitions of triangular fuzzy numbers
with the A-level set.



Definition 9 (triangular fuzzy number, [23, Definition, page
137]). The membership function g, of a triangular fuzzy
number u represented by (u;, u,, u3) is interpreted, as follows:

xX—u
, U S X S Uy,
U~y
=4 u;—x
By (x) 37X <x<us, (10)
Uz — Uy
0, X < Uy X > Us.

Then, the result [u], = [u”(A), u"(A)] = [(uy —u)A+uy, (uy—
u3)A + u3] holds for each A € [0, 1].

Letu, v,w € E' and & € R. Then the operations addition,
scalar multiplication, and product defined on E' by u + v =
w e [w]y = [u]y+[v]) forall A € [0,1]thenw™ (L) = u” (A)+
v~ (L) and wr()) = u" (L) + v" () forall A € [0,1].

Let W be the set of all closed bounded intervals A of real
numbers with endpoints A and A; thatis, A := [A, A]. Define
the relation d on W by d(A, B) := max{|A - B|, |A - B|}. Then
it can easily be observed that d is a metric on W (cf. Diamond
and Kloeden [24]) and (W, d) is a complete metric space, (cf.
Nanda [25]). Now, we can define the metric D on E! by means
of the Hausdorft metric d as

D (u,v) := sup d([uly, [v]))
A€l0,1]

= sup max{lu” (A) —-v V)|, [u" V) -v" )|}

A€(0,1]
(11)

Proposition 10 (see [26]). Let u,v,w,z € E' and « € R.
Then, the following statements hold.

(i) (E',D)isa complete metric space (cf. Puri and Ralescu
[27]).
(ii) D(ou, av) = || D(u, v).
(iii) D(u + v, w + v) = D(u, w).
(iv) D(u+v,w + z) < D(u, w) + D(v, z).
(v) |D(u,0) — D(v,0)| < D(u, v) < D(u,0) + D(v,0).

Definition 11 (see [28]). The following statements hold.

(a) A sequence u = (1) of fuzzy numbers is a function
u from the set N into the set E'. The fuzzy number u;
denotes the value of the function at k € N and is called
as the general term of the sequence.

(b) A sequence (u,) € w(F) is called convergent to u €
E', if and only if for every & > 0 there exists an n, =
ny(€) € N such that D(u,,, u) < € for all n > n,,.

(c) A sequence (u,) € w(F) is called bounded if and only
if the set of its terms is a bounded set. That is to say
that a sequence (u,,) € w(F) is said to be bounded if
and only if there exist two fuzzy numbers m and M
such that m < u, < M for all n € N. This means
thatm™ (1) < u, (A) < M~ (L) and m™(A) < u’(A) <
M*(A) forall A € [0, 1].
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The boundedness of the sequence (u,) € w(F) is equivalent
to the fact that

supD (un,ﬁ) = sup sup max {|u, ()|, |u; (V)|} < co.
neN neN A€[0,1]
(12)

If the sequence (1) € w(F) is bounded then the sequences
of functions {u; (1)} and {u; (1)} are uniformly bounded in
[0,1].

3. Completeness of the Sets of Sequences with
Respect to the Partial Metric

Following Kadak and Ozluk [11], we give the classical sets
o (H), c(H), ¢y(H), and £,(H) consisting of the bounded,
convergent, null, and p-summable sequences of fuzzy level
sets with the partial metric H, as follows:

¢, (H) = {u = (u) € w(F) : supH’ (uk,ﬁ) < 0o,
keN

EEEI},

c(H) := {u = (u) € w(F): leHgOHS (ut) =0

for someu € El} R (13)

¢ (H) = {u = () € w(F): leHéOHS (uk,ﬁ) = 0},

¢, (H) = <|u = (u) € w(F): iHs(uk,ﬁ)P < oo} ,

k=0
(1<p<oo).
One can show that ¢ (H), c(H), and ¢,(H) are complete

metric spaces with the partial metric H,, defined by

H (u,v) = iulND {H (u i)} (14)

where u = (1) and v = (v;) are the elements of the sets c(H),
¢(H), or £, (H). Also, the space ¢,(H) is complete metric
space with the partial metric H,, defined by

w 1/p
H, (u,v) := {ZHS(uk,vk)p]» , (1<p<oo), (15

k=0
where u = (1) and v = (v;) are the points of EP(H).
Theorem 12. Let u(H) denote any of the spaces bs(H), cs(H),

and csy(H), and u = (uy.), v = (v) € u(H). Define the partial
distance function HY, on u(H) by

HE :u(H)xu(H) — R”

(u,v) — HE (u,v) := sup {iHS (uk,vk)} .

neN | k=o
(16)

Then, (u(H), HZ.) is a complete metric space.



The Scientific World Journal

Proof. Since the proof is similar for the spaces cs(H) and
cso(H), we prove the theorem only for the space bs(H). Let
u=(u),v= ), and w = (wy,) € bs(H). Then,

(i) by using the axiom (P1) in Definition 1, it is trivial that

u=ve HE (u,v) = sup {ZH (Uk"’k)]’

neN k=0

= SuPZ {2H (uy, vie) = H (uge 1y)
nENk -0

~H (vjo vi)} =

‘:’SUHPZ * (ugo )} —Slipz {H* (v vi)} = 0

& H? (u,v) = H?, (u,u) = HE (v,v).
(17)

(ii) By using the axiom (P2) in Definition 1, it follows that

H? (u,u) = sup {ZH Uy, uk)]»

neN | k=o (18)

< sup {ZH Uy, vk)} =H? (u,v).

neN | k=o

(iii) By using the axiom (P3) in Definition 1, it is clear that

H? (u,v) = sup {iHs (uk,vk)]»
" k=0

(19)
= sup { iHS (vk,uk)} =H (v,u).
n k=0

(iv) By using the axiom (P4) in Definition1 with the
inequalities H(uy, wy) < H(u,v,) + H(vp, wy) —
H(vg, v;) and H®(uy, 1) = 0, we have

Hgo (u, w)

n

=sup ) {H' (u,wy) : k € N}
" k=0

n

= sup Y. {2H (i)~ H (1, 16) ~ H (s )

n

: sgpkz {2 [H (e vie) + H (vio wye) — H (vieo vi0)]
—H (u ) — H (wy, wy.)}

n

= supz {2H (i vie) = H (o 1) = H (v i)
" k=0

+2H (vio wy) — H (vio v) — H (wy wy )}

5
<sup ) {2H (o vie) = H (v i) = H (vio vi)}
" k=0
+ Supz {2H (vio w) = H (vie, vie) — H (wy, )}
" k=0
= sup )" {H* (u, vi0)} + sup ) {H (v, wy)}
" k=0 " k=0
- stipz * (Vi i)}
=H? (u,v) + HY (v,w) - H, (v,v).
(20)

Therefore, one can conclude that (bs(H )>H£o) is a partial
metric space on bs(H). It remains to prove the completeness
of the space bs(H). Let (u,,) be any Cauchy sequence on

bs(H), where u,, = {ugm), ug’"), ...}. Then, for any € > 0, there
exists N € N for all m,r > N such that

HE (um,u,)—sup{ZH (uk ,ug))} <e. (21)

neN | k=o

A fortiori, for every fixed k € N and for m,r > N

n n
H* <Zu,(cm), Zu?) <e. (22)
k=0 k=0

Hence for every fixed k € N, by using the completeness of
(E, Hs) in Theorem 3.1 [11], we say the sequence (u my =

{uk ,uk ,...} is a Cauchy sequence and is uniformly con-

(m)

vergent. Now, we suppose that lim,, _, ., 1" = v and u =
(u;, Uy, . ..). We must show that
Mim HE (u,,,u) =0, uebs(H). (23)

The constant N € N for all m > N, taking the limit for » —
00 in (22), we obtain

(Zuk , Zuk> <€ (24)
k=0

forall k € N. Since (u ) € bs(H), there exists a number M >

0 such that H*(Y}_, ug”),O) < M for all k € N. Thus, (24)
gives together with the triangle inequality of partial metric
for m > N that

H5<kz:)uk,5>
<H' (kzouk’zuk >+H (lczou Zo) (25)
iy (;u zuw)SHM.



It is clear that (25) holds for every k € N whose right-hand
side does not involve k. This leads us to the consequence that
u = (U, U,,...)is bounded sequence of fuzzy numbers hence
u € bs(H). Also, from (24) we obtain for m > N that

H? (u,,,u) = sup {iHs (u,((m),uk)} <e.  (26)

keN (k=0

This shows that (23) holds and lim,, Hgo(um, u) = 0. Since
(u,,,) is an arbitrary Cauchy sequence, bs(H) is complete. [

Theorem 13. Define the distance functions H,(u, v), HqA(u, V),
and Hﬁo(u, v) by

(o]

H® (u,v) = Z {H’ [(Au)y, (Av), ]},
k=0

o 1/q
H2 (1,v) 1= {ZHS[(Au)k,(Av)k]q]» . @

k=0

HS (u,v) = iug {H* [(Au)g, (Av), ]},

where u = (u), v = (v;) are the element of the spaces
bv(H), bv,(H), or bv, (H), respectively. Then, (bv(H), HY),
(bvq(H), HqA), and (bv,,(H), Hgo) are complete metric spaces.

Proof. Since the proof is similar for the spaces bv(H) and
bv,, (H), we prove the theorem only for the space bv, (H). One
can easily establish that HqA defines a metric on bvq(H ). Let
X = {x(()i), x(li), ...} be any Cauchy sequence on bvq(H). Then
for every € > 0, there exists a positive integer #1,(e) € N for all
i, j > ny, such that

HE () = Y ([, e} <6 8)
n=0

where (Ax), = x, — x,_, and x_, = 0. We obtain for each
fixed n € N from (28) that

H' [(Ax);, (Ax)]] <&, (29)

foralli, j > ny(e), which leads us to the fact that the sequence
{(Ax),} is a Cauchy sequence and is convergent. Now, we

suppose that (Ax)il — (Ax), asn — o00. We have from
(29) for each m € Nand 4, j > n,(e), that

iHS[(Ax);C, axf]" s HY (' x7) <€l (30)
k=0

Take any i > ny(€). Let firstly j — oo and nextlym — oo
in (30) to obtain HqA(x’, x) < e. Finally, by using Minkowski’s
inequality for each m € N

. 1/
{ S (Ax)k,ﬁ)q]» < H (%) + H (+40)
=0

< e+HqA (xi,ﬁ) < 00,

31)
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which implies that x € bvq(H ). Since HqA(x",x) < € for all

i > ny(e), it follows that x> xasi — oo. Since (x') is
an arbitrary Cauchy sequence, the space bv,(H) is complete.
This step concludes the proof. O

4. The Duals of the Sets of Sequence with
the Partial Metric

The idea of dual sequence space, which plays an important
role in the representation of linear functionals and the
characterization of matrix transformations between sequence
spaces, was introduced by Kéthe and Toeplitz [29], whose
main results concerned a-duals. An account of the duals of
sequence spaces can be found in Kothe [30]. One can also find
about different types of duals of sequence spaces in Maddox
[31].

In this section, we focus on the alpha-, beta- and gamma-
duals of the classical sets of sequences of fuzzy numbers with
partial metric. For the sets A(H), u(H), and S(A(H), u(H)) of
sequences defined by

S(AH),u(H)) :={w = (wy) € 0 (F) : (wrz) € pu(H)
Vz = (z) € A(H)},
(32)

is called the multiplier sets of A(H) and u(H) for all k € N.
One can easily observe for a sequence set v(H) of fuzzy level
sets that the inclusions

S(A(H),u(H)) < S(v(H), u (H))
S(A(H),u(H)) c S(A(H),v(H))

it v(H) cA(H),

if u(H) cv(H),
(33)

hold. The alpha-, beta- and gamma-duals {A(H)}", {A\(H )}'B ,
and {A(H)}" of aset A(H) C w(F) are, respectively, defined by

AHE)F = {w = (wy) € w (F) : (wezy) € €, (H)
Vz = (z;) € A(H)},

AH) = {w = (wy) € 0 (F) : (wpz) € cs (H) G
Vz = (z;) € A(H)},

AEY = {w = (w;) € w (F) : (wezi) € bs (H)
Vz = (z) € A(HD)},

where (w, z;) the coordinatewise product of the sequences w

and z of level sets for all k € N. Then {A(H )}ﬁ is called 3-dual
of A(H) or the set of all factor sequences of A(H) are in cs(H).
Firstly, we give a remark concerning with the convergence
factor sequences of fuzzy level sets with partial metric.

Remark 14. Let 0 +# AMH) < w(F). Then the following
statements are valid.

(a) {/\(H)}ﬁ is a set of sequence and ¢(F) < {)L(H)}ﬁ <
w(F) (“<” stands for “is a linear subset of ”) where

@(F)={u=():IN €N, Yk 2 N, 1, =0}.  (35)
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(b) If M(H) ¢ u(H) € w(F) then {u(H)}* < (A\(H)}P.
(0) AM(H) c {MHEP = (AH)P)P.
(d) {p(F)}* = w(F) and {w(F)}f = ¢(F).

Proof. Since the proof is trivial for conditions (b) and (c), we
prove only (a) and (d). Letm = (m;) and n = (1) € {/\(H)}ﬁ.

(a) Let I € A(H). Then we get (myl,) € cs(H); (nly) €
cs(H) and (my + m)l, = (mly) + (mly) € cs(H).
Since [ is arbitrary, m + n € {/\(H)}ﬁ. For any ¢ € R

andw = (wy,) € {/\(H)}ﬁ we have

(awg) = a (wily) € es(H), (36)

and we get aw € {)\(H)}ﬁ. Therefore, {)\(H)}ﬁ is a
linear subset of w(F).

(d) Using (a) we need only show {cu(F)}‘6 C @(F). Suppose
that w = (w,) € {w(F)}'B and z = (z,) be given with
geometric division by z,, := (1/w,) ifw, # 0and z, :=
0 otherwise. By taking into account the set ¢(F) from
the case (a), then there exists an integer N € N for all
n > N such that w, = 0. Thus, we have

iwnzn = ZI (u)n # 6). (37)
n=0 n

Further, (w,z,) € cs(H) implies that w € ¢(F). The
rest is an immediate consequence of this part; we omit
the detail. -

Theorem 15. The following statements hold.
(@) {(H)}F = {c(H)Y = (e, (H)}YF = €,(H).
(b) {&,(H)}Y = €, (H).

Proof. (a) Obviously {€.,(H)}¥ c {c(H)}f c {q(H)} by
Remark 14(b). Then we must show that ¢,(H) ¢ {EOO(H)}ﬁ

and {CO(H)}ﬁ C ¢,(H). Now, consider w = (w) € ¢,(H) and
z = (z;.) € £,,(H) are given. Then
Y H* (wyz,0) < supH (2:0) Y H* (wy,0) < 00, (38)
k=0 k=0

which implies that wz € c¢s(H). So the condition ¢,(H) ¢
{e.,(H)}* holds.

Conversely, for a given y = (y;) € w(F) \ ¢,(H) we prove
the existence of an x € ¢y(H) with yx ¢ cs(H). According
to y ¢ ¢,(H) we may take an index sequence (np) which is
a strictly increasing real valued sequence with n, = 0 and

Yl H(3,0) > p (p € N). If we define x = (x;) € ¢(H)
p-1

by x; := ((sgn y,)/ p), where the real signum function defined

by

i, u#0,
sgn (u) == 1 |ul 5 (39)

0, u=

>

7
forall u = (1) € E', thus, we get
n},—l 1 n,—1
Z ex) =~ Y ye(sgny) =~ 3 H(7.0) > 1,
.l pk:np,l k=n,_,
(40)

foralln, ; < k < n,. Therefore yx ¢ cs(H) and thus y ¢

{o(FN)}Y¥. Hence {c,(F)}¥ < €, (H).

(b) From the condition (c) of Remark 14 we have £,,(H) C
{e(H)P)P = {e,(H)}? since {€. (H)} = £,(H). Now we
assume the existence of a w = (w,) € {¢; (H)}'g \ € (H).
Since w is an unbounded sequence there exists a subsequence
(w,,,) of (w,) such that Hs(wnk,(_)) > (k+1)* forallk € N,.
x,,) is defined by x,, := (sgn(w,, )/(k + 1)%) if
n = ny and 0 otherwise. Then x € ¢,(H). However

The sequence (

H* (w,,0)
(k + 1)? ;1 - “y

Q= )~

n k

Hence w ¢ {¢,(H )}ﬁ , which contradicts our assumption and
{e,(H )}ﬁ C €., (H). This step completes the proof. O

Further to the statements in Remark14 we make the
following remarks which are immediate consequences of the
definition of the {-duals (¢ € {e, 3, y}).

Remark 16. Let @ # A(H) < w(F). Then the following
statements are valid.

(@) p(F) < (AH)* < (AE)F < (MH)Y < w(F); in
particular, {A(H )¥ is a set of sequence.
(b) If A(H) < u(H) < w(F) then {u(H)}* < {(A\(H)}*.

(c) If I is an index set, if A(H); are sets of sequences and

if M(H) = J;¢; M(H);, then
AE) = NiaE,), (42)
iel

where the notation “()” stands for the span of linear
subset in R.

(d) IFACH) < (ACH)YE = (AEDI)C. (€ € {o, By y))

Proof. Condition (b) is obviously true, and (a) follows from
¢, (H) < cs(H) < bs(H). We only show conditions (c) and
(d) taking ¢ = «. Other parts can be obtained in a similar way.

(c) Now, as an immediate consequence A(H); ¢ (A(H))
that the following conditions

AHD® < {ME)Y, Q) < fAEY, (43

i€l

hold by (b). On the other hand, if y € (;.,{A(H);}%,
thatis y € {A(H),;}", then xy € ¢,(H) forall x € A(H)
and therefore y € {A(H)}* ¢ (A(H))".



(d) We prove A(H) < {AM(H)}**. Letw € A(H); then,wz €
¢,(H) for all z € {A(H)}; thus, w € {A(H)}* and
AMH) < {A(H)}** by (a). 0

In general A(H) + {A(H )}“ as we get from Theorem 15(a) in
the case of { = fand A(H) := ¢, (H). We have {cO(H)}ﬁ'B =
o (H) # ¢y(H). This remark gives rise to the following
definition.

Definition 17 ({-space, Kothe space). Let( € {a, 3, y}, and let
A(H) be a set of sequence. A(H) is called {-space if A(H) =

{AMH )}“. Further, an a-space is also called a Kéthe space or
perfect sequence space.

From Remarks 4.3(d) and (b) we obtain immediately the
following remark.

Remark 18. If A(H) is a set of sequence over real field and
(¢ € {a B y}), then {A(H)}® is a {-space; that is, {A(H)}* =
A,

Now we look for sufficient conditions for {A(H)}* =
{AMH )}‘6 = {A(H)}". This gives rise to the notion of solidity.

Definition 19 (Solidness). Let A(H) be a set of sequence over
the field R. Then A(H) is called solid if

{u = (u) € w(F):3(x;) € A(H) VkeN: H (uk,ﬁ)

< H' (x:,0)} < A(H).
(44)

Theorem 20. Consider A(H) < w(F) is any set of sequence
over the field R; then, the following statements hold.
(a) If A(H) is a Kdthe space, then A(H) is solid.
(b) If M(H) is solid, then {A\(H)}* = AH)YP = (AE)Y.
(c) If \(H) is a Kothe space, then A(H) is a {-space.

Proof. Let A(H) < w(H) be a set of sequence over the field R.

(a) If A(H) is a Kothe space and u € w(F), then u €
{A(H)}* ifand only if the condition uz € ¢, (H) holds
forall z € {A(H)}". Besides this we obtain H*(v;, 0) <
Hs(uk,a) foru = () € MH) and v = (v) € w(F)
and the statement

;Hs (V21 0) < ;HS (421 0) < 00, (45)

holds for each z € {A(H)}". Therefore vz € £,(H).
Hence v € A(H) and A(H) is solid over the real field.
(b) Consider A(H) is solid. To show {A\(H)}* = {A(H)}ﬁ =
{A(H)}, it suffices to verify {A(H)}" < {A(H)}" as we
have Remark 16 (a). So, let v = (v;) € {A(H)}"; that is,

sup {ZHS (ukvk,ﬁ)]» <oo forevery u= ()€ A(H).
neN k=0

(46)
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By taking into account solidness of A(H), for z =
(z,) € A(H), where z;, = uysgn(u,v,) and the
condition Hs(zk,a) < Hs(uk,a) holds; there exists a
sequence u = (u;) € AMH) for all k € N. Therefore
by combining this with the inclusion (46) we deduce
that the condition

N N N
ZHS (ukvk,(_)) = kauk sgn (uvy) = H' <kazk,6>
k=0 k=0 k=0

n
<sup {H' [ Y 2,0 |t < 0o,
neN k=0

holds and uv € ¢;(H). Hence v € {A(H)}" and
{AHE)Y < {(A(H)}™.

(c) This is an obvious consequence of Remark 18 and
conditions (a), (b) in Theorem 20. 0

(47)

Theorem 21. The following statements hold.

(a) The sets o(F), w(F), EP(H), ¢(H), and €. (H) of se-
quences are solid.

(b) The sets c(H) and bv(H) of sequences are not solid;
therefore, none of them is a Kothe space.

(c) For each { € {«, 3,7}, then

(i) {€&,(H)Y* = €, (H) and {€,,(H)}* = €,(H),
(ii) {w(F)}* = o(F) and {p(F)}* = w(F).

(A IfC € {a, By} and y(H) < u(H) < €. (H), then
{w(H)Y = €,(H) and p(H) ¢ {u(H)} = €,,(H). In
particular {CO(H)}C = {C(H)}( = ¢,(H), and each of
c(H), ¢,(H) is not a {-space.

Proof. Given specified sets are solid in (a) and (b) is an
immediate consequence of their definition. Additionally, the
parts (i) and (ii) of (c) can be obtained Theorem 15 and
Remark 14(d). Since ¢y(H) and €, (H) are solid, we know that

{cO(H)}( = {KOO(H)}( = ¢,(H). So the statements in (d) obtain
from Remark 16(b). ]

Next, we determine the {-duals of the spaces cs(H),
bs(H), bv(H), and bv(H). We will find that none of these sets
is solid; in particular, none of them is a Kéthe space.

Theorem 22. The following statements hold.
@) {es(H)}* = {bv(ED}* = {bvo(ED}* = {bs(H)}* =
& (H).

(b) {es(H)Y = by(H), {bv(H)}F = cs(H), {bvy(H)Y =
bs(H), {bs(H)}¥ = bv,(H).

(©) {es(EDY = bv(H), {bv(H)} = bs(H), {bvo(H)}' =
bs(H), {bs(H)}Y = bv(H).
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In particular the sets cs(H), bs(H), bv(H), and bvy(H) of
sequences are f-spaces, but they are not Kothe spaces.
Moreover, the sets bs(H) and bv(H) of sequences are y-
spaces, whereas both cs(H) and bv,(H) are not y-spaces.
None of the spaces cs(H), bs(H), bv(H), and bv,(H) is solid.

Proof. We prove the cases for the spaces {cs(H )}C’ Cefa, By}
and the proofs of all other cases are quite similar.

(a) Let x = (x) € cs(H) and y = (y,) € ¢,(H). Then,

ZH (ykxk, ) < supH (xk, )ZH (yk, ) < 00
(48)
Vk € N.

Therefore, y € {cs(H)}* which gives that £,(H) ¢
{es(FD)}*.

Conversely, suppose that y = (y;.) € {cs(H)}*\ ,(H).
Then we can construct an index sequence (11,) with

n, < n,, and Z:‘:nlpﬂ H'(y,,0) > 4P. Define x =
(x¢) by
ko=p
X = (-1D)"2°F, n, <k S Npit> (49)
0, otherwise.

Then x = (x;) € cs(H). According to the choice of n,
the inequalities

p+1

2H (96 0) 2 ZZ Py H(n0)2 )2 (50

k k=n,+1 P

hold. Thus xy ¢ ¢,(H), which implies y ¢ {cs(H)}".

This contradicts that y € {cs(H)}*. Therefore
es(HDY* © &,(H).
As well if we take the sequence (x;) by
2P n <k<n
= R A 51
Xk {0, otherwise, S

the condition {bv,(H)}* c ¢,(H) holds.
(b) Let u = (u) € {cs(H)}ﬁ and w = (wy) € ¢(H).

Define the sequence v = () € cs(H) by v, = (wy, —
Wy,,) for all k € N. Therefore, Y, 1, v) converges, but

n n—-1
Z (Wi ~ W) i = [Zwk (u — “k—1)] — Wyl (52)
k=0 k=1

and the inclusion ¢,(H) < cs(H) yields that (1) €
{es(H)Y < {€,(H)}} = €, (H). Then we derive by
passing to the limit in (52) as # — oo which implies
that

(o)
(Wi = Wyeyy) g = Zwk (v = 1) (53)
k=0

18

=
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o

for every k € N. Hence (u;, — uy_,) € {cO(H)}ﬂ =
{H)}* = £,(H); that is, u € bv(H). Therefore,
{es(H)YF < bv(H).

Conversely, suppose that u = (1) € bv(H). Then,
(uy — ug_q) € €(H). Further, if v = (v;) € cs(H),
the sequence (w,) defined by w, = Y _ v forall k €
N, is an element of the space c(H). Since {c(H)}" =
¢,(H), the series Y wy (u;, — uy,1) is convergent. Also,
we have

Z (Wi = wyey) 1y < [Zwk ~ U :|

W, Uy, — Wy Uy,

(54)

Since (w,) € c(H) and (1) € bv(H) c c(H), the
right-hand side of inequality (54) converges to zero
asm,n — ©00. Hence, the series Y 0 (wy — wy_;)uy
or Y o, trVy converges and bv(H) € {CS(H)}‘B.

(c) By using (a), it is known that bv(H) < {cs(H )}/3 and
since {cs(H)}¥ ¢ {cs(H)Y, so bv(H) < {cs(H)}.
We need to show that {cs(H)}Y < bv(H). Let u =
(u,) € {cs(H)} and v = (v,) € ¢(H). Then, for the
sequence (w,,) € cs(H) defined by w,, = (v,,—v,,,) for
all n € N, we can find a number K > 0 such that
H' (Y} o 4wy, 0) < K forall n € N. Since (v,) €
¢(H) and (u,) € {cs(H)}Y c € (H), there exists a
real number M > 0 such that H*(u,,v,,0) < M for all
n € N. Therefore,

H’ (i (e — 1) Vk’6>

k=0

n+l _ 55
SHS(Z”k(Vk_VkH)’O) &)

k=1

+ HS (Vn+2un+1’6) < K + M'

Hence (u, — u;_y) € {(H)} = {(H)}* = ¢,(H);
that is, (u,) € bv(H). Therefore, since the inclusion
{cs(H)}Y ¢ bv(H) holds, we conclude that {cs(H)}" =
bv(H), as desired. O

5. Conclusion

Partial metrics are more flexible than metrics; they generate
partial orders and their topological properties are more
general than the one for metrics, argued by the fact that the
self-distance of each point need not be zero. They are useful
in partially defined information for the study of domains and
semantics in computer science.

The concept of level sets associated with a fuzzy set was
originally introduced by Zadeh. With the aid of level sets we
are able to provide a formulation for a fuzzy set in terms of
crisp subsets via the representation theorem. The importance
of having such a representation is that it can allow us to extend
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operations defined on crisp sets to the case of fuzzy sets. Our
focus here is on using the idea of level sets to construct the sets
of sequences of fuzzy numbers within partial metric spaces.

This work presents the alpha-, beta-, and gamma-duals of
the sets of bounded, convergent, and null series and the set of
sequences of bounded variation of fuzzy level sets, based on
the partial metric. The potential applications of the obtained
results include the characterization of matrix transformations
between these sets of sequences.
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We give some results concerning the existence of tripled fixed points for a class of condensing operators in Banach spaces. Further,
as an application, we study the existence of solutions for a general system of nonlinear integral equations.

1. Introduction and Preliminaries

Measures of noncompactness are very useful tools in func-
tional analysis, for instance, in metric fixed point theory and
in the theory of operator equations in Banach spaces. The
first measure of noncompactness, denoted by y, was defined
and studied by Kuratowski [1] in 1930. In 1955, Bana$ and
Goebel [2] used the function y to prove his fixed point
theorem. Darbo’s fixed point theorem [2] is a very important
generalization of Schauder’s fixed point theorem [3] and
several authors had used this concept for the resolution of
nonlinear equations, some of whom are Aghajani et al. [4, 5],
Banas [6], Bana$ and Rzepka [7], Mursaleen and Mohiuddine
[8], and many others. Recently in [9], Aghajani et al. give a
generalization of Darbo’s fixed point theorem. Moreover, they
present some results on the existence of coupled fixed points
for class of condensing operators. In this paper, we generalize
these results to obtain the existence of tripled fixed points for
the same class of operators.

Throughout this paper, X is assumed to be a Banach
space and BC (R") is the space of all real functions defined,
bounded and continuous on R". The family of bounded
subset, closure, and closed convex hull of X are denoted by

By, X, and ConvX, respectively.

Definition I (see [10]). Let X be a Banach space and %y the
family of bounded subset of X. A map

U Bx — [0,00) 1

is called measure of noncompactness defined on X if it
satisfies the following.

(1) u(A) = 0 & Aisaprecompact set.
(2) AcB= u(A) < u(B).

(3) u(A) = u(A), VA € By.

(4) p(ConvA) = p(A).

(5) pWAA+(1-A)B) < Au(A) + (1-A) u(B), for A €
[0,1].

(6) Let (A,,) be a sequence of closed sets from %y such
that A,,; € A,, (n>1), and lim, _,  u(4,) = 0.
Then, the intersection set A, = [, A,, is nonempty
and A, is precompact.

Theorem 2 (see [2]). Let C be a nonempty closed, bounded,
and convex subset of X. If T : C — C is a continuous mapping

u(TA) <ku(4), kelo,1), )
then T has a fixed point.

Theorem 3 (see [9]). Let C be a nonempty closed, bounded,
and convex subset of X and T : C — C a continuous mapping
such that for any subset A of C

u(TA) < B(u(A)u(A), 3)
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where f: R, — [0,1); thatis, B(t,) — 1impliest, — 0.
Then, T has at least one fixed point.

The following result is a corollary of the previous theorem.

Corollary 4 (see [9]). Let C be a nonempty closed, bounded,
and convex subset of X and T : C — C a continuous mapping
such that for any subset A of C

u(TA) < ¢ (u(4)), (4)

where ¢ : R, — R, is a nondecreasing and upper semicon-
tinuous functions; that is, for every t > 0, ¢ (t) < t. Then, T
has at least one fixed point.

Definition 5 (see [11]). A coupled fixed point of a mapping
G: XxX — Xisan element (x,y) € X x X such that
G(x,y)=xand G(y,x) = y.

Theorem 6 (see [12]). Let py, Uy, ..., 4, be measures of non-
compactness in Banach spaces E,, E,, ..., E,, (respectively).
Then, the function

EX)=F(p (X)), (XZ)""’AMH (Xn))’ (5)

defines a measure of noncompactness in E; xE, x- - -xE,,, where

X; is the natural projection of X on E,, fori = 1,2,...,n, and
F is a convex function defined by
F:[0,00)" — [0,00), (6)
such that
F(x),%...,%,) =0 x; =0,
(7)

fori=1,2,...,n

Remark 7. Aghajani and Sabzali [13] illustrated the previous
theorem by the following example. Let the mapping F be as
follows:

F(x,y) =max{x,y}, or F(x,y)=x+y,
(8)
for any (x,y) € [0,00)°.
They showed that
f(X) = max (g, (X,), 4, (X)), )
or
AX) = (X)) + 1y (X5) (10)
defines a measure of noncompactness in the space E; x E,,
where, for i = 1,2, y; are measure of noncompactness in

E; and X, i = 1,2 are the natural projections of X on E;.

Theorem 8 (see [9]). Let Q) be a nonempty, bounded, closed,
and convex subset of a Banach space E and let ¢ : R* — R”.
Assume that ¢ is a nondecreasing and upper semicontinuous
function. Let G : Q x Q — Q be a continuous operator

satisfying

|

2 (1)

X, X, €Q,
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for any measure of noncompactness . Then, G has at least a
coupled fixed point.

2. Main Results

Definition 9 (see [14]). A tripled (x, y,z) of a mapping G :
X x X xX — Xiscalled a tripled fixed point if

G(x,y.2) =x,
G(y,x,z) =y, (12)
G(z y,x) =z

Remark 10. We can notice that by taking

F(x, y,z) = max{x, y, 2},
(13)
for any (x, y,2) € [0,c0)’,

or
F(x,y,2) =x+y+z, forany (x ¥2)€[0,00)° (14)

F satisfies the conditions of Theorem 6. Thus, for a measure
of noncompactness y; (i = 1,2, 3), we have that

i (X) = max (#1 (Xl) > (Xz) > U3 (Xa)) > (15)

or

(X)) =y (X)) + iy (X5) + 15 (X5) (16)

defines a measure of noncompactness in the space E x E X E
where X, i = 1,2, 3 are the natural projections of X on E;.

So, we obtain the following theorem.

Theorem 11. Let QO be a nonempty, bounded, closed, and
convex subset of a Banach space E and let ¢ : R* — R" be
a nondecreasing and upper semicontinuous function such that
@ (t) < tforallt > 0. Then, for any measure of noncompactness
U, the continuous operator G : QA x Q x Q — Q satifying

(Xl)w(Xz)w(Xs))
3 ,

y(G(Xszxxg))w(”

X, X,, X, €0Q
(17)

has at least a tripled fixed point.

Proof. To prove this theorem, let us define the measure of
noncompactness ji by

AX) =y (X)) + iy (X5) + 3 (X5) (18)
and the mappingG: Qx QA x Q — Q

G(x9.2) = (G(x1.2),G(1,%2),G(z y,x)). (19)
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Since
7(G(X)) < (G (X, x X, x X3) x G (X, x X, x X3)
x G(X;x X, x X;))
= u(G(X; x X, x X3)) +u(G(X, x X; x X3))
+u(G(X; x X, x X))

<¢<”(X1)+V(Xz)+M(X3))

3

+(P(#(X1)+M(Xz)+#(xs))

3

+¢<H(X1)+V(X2)+P‘(X3))

3

u (X)) +p(X;) +u(X;5)
= 3g0( 3 ) o

and ji' = (1/3) ji is a measure of noncompactness, we get

7(GX) <o (i (). (2)
By Corollary 4, we obtain that G has at least a tripled fixed
point. O
3. Applications

We can see an application of Theorem 11 in the study of exis-
tence of solutions for systems of integral equations defined on
the Banach space BC (R*) endowed with the norm

llxll = sup {|x (£)] : £ > 0} (22)

The measure of noncompactness on BC (R") for a positive
fixed £ on By g+) is defined as follows:

U(X) = wy (X) +lim sup diam X (), (23)

t— 0o
such that

diam X (t) = sup {|x (t) = y (t)| : x, y € X},
24
where X () = {x(t) : x € X}. -

Before defining w, (X), we need first to introduce the modu-
lus of continuity.
Letx € X and e > 0;

wT(x,e) =sup{lx(t) —x(s)|:t,s € [0,T],|t —s| <€},

for T > 0,
(25)

3
is the modulus of continuity of x on [0, T'] and let
w’ (X,€) = sup {wT (x,€):x € X} ,
@ (X) = lima” (X ), (26)

wy (X) = Tlgqlmwg (X).

Assume that

(i) &1,9 : R, — R, are continuous and & (f) — oo as
I — 00;

(ii) the functiony : R — Ris continuous and there exist
positive 8, a such that

lw (1)) —w (t,)] <8t - 1,]%, (27)

foranyt,,t, € R;

(iii) f: R, xRxR xR xR xR — Ris continuous and
there exists a nondecareasing continuous function @ :
R — R with ®@ (0) = 0, so that

|f (t,xl,xz,x3,x4) _f(t>)’1’J’2’J’3’J’4)|
1
< 5(‘P(|x1 = |+ %0 = ya| + |5 = 35]) (28)

+0 (|x4 - ;V4|);

(iv) the function defined by | f (,0,0,0,0)| is bounded on
R,; that is,

M, =sup{f (t,0,0,0,0): t € R,} < o0; (29)

(VM h:R, xR, xRxR — R isa continuous function
and there exists a positive solution r;, of the inequality

%(p 3r)+ M, +® (D) <, (30)
where D is positive constant defined by the equality

(t)
D = sup {U: (t.s,x (1)), 5 (1(5)),2 (1 (s)))ds

LseR,,x,y,z€ BC(RJ},

q(t)
tim, [ [ (5% (1), (19,2 (1 (9)

€—

—h(tsu(n(9),v(16)),w(n(s)))]ds =0,
(31)

uniformly with respect to x, y, z,u, v,w € BC(R,).



Theorem 12. Suppose that (i)-(v) hold; then the system of
integral equations

x (t)

= f(Rx(E(t)),y(E(t))>Z(E(t)),

o[ nesr o)y @) 2@ ).
()

= f(t,y(f(t)),x(f(t)),Z(E(t)),

o[ s r00)x@o) 206 ).

z (t)

= f(t,Z(f(t))»)/(f(t)),x(cf(t)),

o[ hesz @)y o) x o) as)

(32)

has at least one solution in the space BC (R,) x BC(R,) x
BC (R,).

Proof. Let G : BC(R,)xBC(R,)xBC(R,) — BC(R,)be
an operator defined by

G(x,y,2) (1)

= f(LX(E(t)),y(E(t)),Z(E(t)),

o[ hesx o)y o) 2onas) )

(33)

For (x, y,z) € BC(R,) x BC(R,) x BC(R,), let

(€7 Z)”BC(RJxBC(&)xBC(RJ (34)

= xlloo + [¥]loo + 12llco-

We can easily prove that the solution of (32) in BC(R,) x
BC(R,) x BC(R,) is equivalent to the tripled fixed point of
G.
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Obviously, G (x, y,z) (t) is continuous for any (x, y,z) €
BC(R,)x BC(R,) x BC(R,). Hence, we have

|G (x, 3, 2) (t)]

<

f<t,x(f(t)),y(f(t)),z(f(t)),
q(t)
o[ he s @)y 00).copas)

- (0,0, 0)|
+|f(£,0,0,0,0)|
< To(REO) + [y €O + |y €N

ro(fo(J1 nesx @) s o).z o) i)

+]|f(£,0,0,0,0)|

)

<30 (xE@]+ Y EO) + [y €O
q(t) o
+®(6‘(L h(t,s,x(n(s)),y(n(s)),z(n(s)))ds) )

+|f(t,0,0,0,0)|.

(35)
Then, by (29) and (30), we get
IG (. 3.2
. (36)
< 30 (I¥llo + [l + N2lleo) + My + @ (D) < 7.
So, we obtain
G(B, xB, xB, ) CB,. (37)

Now, we prove that G : Ero X ETO X Ero - Ero is continuous.
Let (x, ¥, 2), (u,v,w) € ETO X E,O X E,o such that, for € > 0,

I(x y.2) - v w5 5, 5, <e (38)
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Then,
|G (x,3.2) () = G (w,v,w) (8)]

= If(t)x(f 1), yE@®),zE®),
q(t)
W(JO h(t,S»X(n(s)),y(ﬂ(s)),Z(n(s)))dS))

—f<t,x(f(t)),y(f(f)),Z(f(f)),

q(t)
v <L h(t,s,u(n(s)),v(n(s)),

wlro)as) )

<%¢Ox@6%ﬂME®DLWyGUD—VK&D
FEW) -wE®))

ro(y([nes ).y 10 2 r0)as)
([ s ) @) as))

< %‘P (Ix €& —u@®N[+ |y € ®) - vE®))
+ zE®) -wE®))
q(t)
ro (o[ hes 9.y (19 2 o)

)

(39)

q(t)
- Jo h(t,s,u(n(s)),v(n(s),w(n(s)))ds

Using condition (iii) and (29), there exists T' > 0 such that if
t > T, then

q(t)
® (6“0 h(t,s,x(7(s),y((s),z(5(s)))ds)

(40)
1
< —€,
3
for any x,y,z € BC (R, ). We notice two cases.
Case 1. If t > T, then from (39) and (40)

|G (x,9,2) (t) = G (u, v, w) (t)| < %go (€) + %e. (41)

Case 2. Similarly, for t € [0, T], we have

G (x,3.2) (1) = G (w,vow) ()]

< %ﬁo (|xE® -u@E@)|+|yEw®) -vE®)))
+ |2 (1) - w (& ®)])

q(t)
j h(ts.x (7)., y (1), (1())) ds

0

+®(6

)

q(t)
- [ resu 0190 (1) wln () ds

< %q) () +D (5(6]Tﬁ (6))a)

< %e + 0 (8(qrf(©)"),

(42)
where g = sup {q (t) : t € [0,T]}, and
B(e) = sup{|h(t,s,x,y,z) —h(t,s,u,v,w)|:
t€[0,T],s € [0,g7],
(43)

X, Y, 2, U, V,W € [T, 7],

ICx, y.2) = (W v w)|| < €} .

Since B is continuous on [0, T] x [0, g7 ] X [~7o, 7] X [-70> 70>
we have () — 0ande — 0. Thus, using (iii), we get

) (S(qTﬁ (e))“) — 0, ase—0. (44)

Finally, from (42) and (41), we conclude that G is a continuous
function from B, x B, x B, into B, .

Now, we show that the map G satisfies all the conditions
of Theorem 11. To do this, for an arbitrary fixed T > O and € >
0, assume that X, X,, and X; are nonempty chosen subsets

ofE,O and t,,t, € [0,T], with |t, - ;| < e. Without loss of
generality, let

q(t;) <q(t,). (45)

For an arbitrary (x, y,2) € X; x X, x X3,
|G (x,3,2) (t:) = G (x, 3, 2) (1))

<f<%x@@0%y®00%2@00%

o([" htsx 60y a6) 2o as))
—f(mx@a»xy@agxz@u»»
o[ hsxwo.

y@@»z@@mdﬁﬂ



ol (o €00 2 ).
w(fﬁhﬂ%&xWSDd%ﬂﬂhdnw»dg)
- f (€ @) € ) 26 w),
w(f“%ﬂmaqu»,
y(n(9),2(7()) ds»’

; f(w(& (L)), y (1)) (E (1)),

o[ ns )00 o))
() €02 €0,
w(f“%wm&xm@»,

Y (1)1 <s>>>ds))]

; f(tz,x(s (L)), y ()2 (E (1)),

([ hesx ).y ) 2 i)
f (tmz ()9 (1), 2 (1)),
o[ hesxae).

Y1)z (1 <s>>>ds))]

¢ (Jx (€ (1) = x (E@))] + [y (E (1)) - ¥ (§ (1))
+ ]z (€ (1) -2 (E ()] + “’3;,D1 (f; “3))

+d><8

U-)Ir—l

q(t2)
[ 1 sx(r9) 7 (019).2 (1)

0

—h(t,sx(n),y (),
z(n(s))]d )
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o
+® (6 >

(0] (U)T ()C, CUT (5) 6)) + wT (y’ wT (E) 6))

(t2)
Jy 00501y (109,21 69) s

alt

<

[SSH=

+wl (z, w' (&, e)) + er(»Dl (f, e))
0] (S(qurTo (h, e))“) +® (S(Uz;wT (g 6))a) ,

(46)
where
o' (& e) = sup {|(&(t,) =& (t)))| - t1t, <& |t, —t)| <€},

o (x,0” €€)) = sup {|(x (t,) - x (1)) tuotr € 0,71,

|t, — t,] Sa)T(E,e)},
D, = qrsup {|h(t,s,x,y,2)|,£ € [0,T],s € [0,q7],
X, ¥,z € [-15, 10}
@, (fr€) = sup{|f (2% 3 2.d) - f (1,5 y 2.d)
t,,t, €[0,T],
|t, -t <€&x 3,z € [-rp1y],
d € [-Dy, D]},
o (1,6) = supll (i 302) = £ (tr55302)]
thty € [0,T], |t - ty] <6,
s€[0,qr],x .2z € [-r, 1]},
UTT0 = sup {|h(t;,s, %, y,2)| : t; € [0, T],

s € [0,qr],x, v,z € [-ro, 1]}

(47)
we obtain
o' (G(X, x X, X X;),€)
< %(p (o (Xpo' (E6) +0 (Xpo! Ee)
o (Xp0" G 0)) +arp, (fe) 49

) (S(qurTo (h, e))a) + @ (S(UZ;wT (g e))“) :

Further, by the uniform continuity of f and / on the compact
sets [0, T] x [~7g, 7] X [~70» 7o) X [~70» 7o) X [-D;, D;] and
[0,T] % [0,q7] X [-79 7o) X [-70-70] X [0 75|, respectively,
we get ero,Dl (f.€) — 0and erO (h,e) > Oase — 0.
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Moreover, @ is a nondecreasing continuous function with
@ (0) = 0 and (iii), and we obtain

) (S(qu,TO (h, e))“) +@ (S(UrTowT (g e))“) — 0,

(49)
€ — 0.
By (48), we get
@, (G (X % X, x X3))
L T T (50)
< 59" (“’o (X)) + @y (X5) + w, (X3))-
Taking the limit T — oo in (50), we obtain
w, (G (X x X, x X3))
(51)

< 39 (@ (%) +0, () + @y (X,)).

Then, for arbitrary (x, ,2), (u,v,w) € X; x X, x X3, and
t € R,, we have

|G (x,3.2) () = G (u, v, w) (8)]
< %qo (Jx € @) —uE @) + |y € @®) - vE @)
+ 2 @€ M) -wEm)])

o (a ‘ j:“) [ (65 x (1), y (19) 2 (19)))

)

< %go (diam X, (£ (¢)) + diam X, (£ (t)) + diam X; (£ ()))

—h(t,su(n(s),

v(n(s)),w(n(s)))]ds

o (a U:“) (652 07) 3 (1(9)) 2 (7))

|

—h(t,s,u(n(s),

v(n(s)),w(n(s)))] ds

(52)

Since (x, ¥, z), (u, v, w), and t are arbitrary in (52),

diam G (X, x X, x X3) (t)

< %go (diam X, (£ (t)) + diam X, (& (t)) + diam X; (£ (£)))

o (a U:(” (6,5 (7). y (1(9)) 2 (7))

—h(tsu(n(s),v(n(s),
w(n(s))) (&5x (1)),

y(1n(5),2(n(s)))] ds “> .

(53)

Taking again T — oo in (53), we obtain

limsup sup diam G (X, x X, x X3) () + w,

t — 0o

< %go <lim sup diam X, (¢ (t)) + lim tsup diam X, (£ (¢))

t— 00

+ lim sup diam X; (¢ (t))).
t— 00
(54)
We conclude from (51) and (54) that

lim sup w, (G (X; x X, x X3)) (t) + wy (G (X; x X, x X3))

t— 00

< %(p <lim sup diam X, (¢ (t)) + lim tsup diam X, (£ (¢))

t—o00

+ lim sup diam X; (& (t)))

t— 00
1
+ g‘P (w (X7) + @ (X,) + wy (X3)) -
(55)
Since ¢ is a concave function, (55) implies

lim sup diam G (X, x X, x X3) (t)

t— 00

+wy (G (X, x X, x X3))

3 t— 0o

< sv(l [“m sup diam X, (£ (0) + @y (XI)D (56)

+¢ (l [lim sup diam X, (§ (1)) + w, (Xz)D
|

3 t— 00

U(X) = wy (X) +lim sup diam X (¢), (57)

t— 00

+¢ (l [lim sup diam X; (& (1)) + w, (X5)

3 t— 00

Finally, since p is defined by



we get

#(G (X, x X, x X3))
<¢(V(X1)+["(X2)+["(X3)). (58)

3

Hence, by Theorem 11, T' has at least a tripled fixed point in
BC(R,)xBC(R,)xBC(R,). O

Example 1. 'We consider the following system of integral
equations

x(t) =

S RlGRPIORELD

+ LT (x(s)s[sin y ()] |cos z (¢)]
+e* (1+x%(s)) (1+5sin’y (5))
- (1+cos’z(s)))
(e (1457 (9) (1 +5in’y (s))

. (1 + cos’z (s)))_lds,

YO = 5y O+ x O +20)

T
+ J (y (s) ssinx (¢)| |cos z (2)]
0

+é (1 +y° (s)) (1 + sin’x (s)) (59)
. (1 +cos’z (s)))
. (et (1 + y2 (s)) (1 +sin’x (s))

. (1 + cos’z (s)))ilds,

z(t) = z({t)+y(t) +x(t)

3+12
T
+ J. (z (s) s|sin y ()| [cos x ()]
0
+e (1+2°(s)) (1+5in’y (5))
. (1 + cos’x (s)))
. (et (1 +7° (s)) (1 +sin’y (s))

. (1 + cos’x (s)))_lds.
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We notice that by taking

1 1 1
f(t,x,y,z,p) = mxi' §y+ §Z+p,
h(t,s,x,y,z)

xs|sin y||cos z| + €° (1 + x2) (1 + sinzy) (1 + coszz)

>

et (1 +x2) (1 +sin?y) (1 + cos’z)
nt) =& =q) =Y 1) =0 () =t

pt)=t-3,
(60)

we get the system integral equations (32).
To solve this system, we need to verify conditions (i)-(v).
Obviously, &,77,q : R, — R, are continuous and & —

00 as t — oo. Further, the functiony : R — R is
continuous for § = a = 1, and we have
lw (6,) —w (t,)] < 8|t —t,]%, (61)

forany t,,t, € R,. Conditions (i) and (ii) hold.
Now, let

[f (65,32 p) - f (t.w, v, p)|
| 1
3+¢2

1 1
+ v+ §w+p>|

11
X+=y+-2+p- u
3/ T3ETP <3+t2 3

N

1
g[|x—u|+|y—v|+|z—w|]+|p—p|

1
9k —ul+ ]y —v|+1z-wl) + @ (|p-p|).

(62)

Then, (iii) also holds.
Moreover,

M, =sup |{f (£,0,0,0,0) : t € R, }| = 0; (63)

then, (iv) is valid.
Let us verify the last condition (v). First,

|h(t,s,x, y,2) = h(t,s,u,v,w)|

xs|sin y||cos z| + €° (1 + xz) (1 + sinzy) (1 + coszz)

et (1+x2)(1+sin’y) (1 + cos’z)

us |sinv| [cosw| + €° (1 + uz) (1 + sinzv) (1 + coszw)

et (1+u?)(1+sin*v) (1 + cos’w)

Xs |sin y| |cos z|

et (1+x2)(1+sin’y) (1 + cosz)

B us |sin v| |cos w|
et (1+u?) (1 +sin®v) (1 + cos?w)

1ls 1ls s
<

<| X s u s +
~ X T —; X .
2t 2e et

1+x%e 1+u?et

(64)
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Hence,
tim [ Jhsx (79). (7(69) 2 (1)
—h(t,su(n(s)),v(n(s),w(n(s))|ds (65)
(s,
< tlingo _L st =0.

Furthermore, for any x, y,z € BC (R,)xBC (R, )xBC(R,),

[ o5 (r9). 5 (1602 ) s

<[ It x ).y 062 )]s

trs ¢ #2 1
<l (= +2 )ds=—+1-—
o \2et ¢t 4et et
44 -4
B 4et

(66)

Thus,

t
sup {Uo h(t,s,x(n(s)),y (1)), z(n(s)))ds|,

fseR,,x 7,2 € BC(R,) x BC(R,) x BC(IR+)}

2 t
t"+4e -4
= sup{4—:t,t € R+} =1.
(67)

It is easy to see that, for any r > 0, we have that
1
5(;)(31’) +M,+® (D) <r (68)

holds and condition (v) is valid.
Consequently, the system has at least one solution in
BC(R,)xBC(R,) xBC(R,).
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We put forward a new general iterative process. We prove a convergence result as well as a stability result regarding this new iterative

process for weak contraction operators.

1. Introduction and Preliminaries

Throughout this paper, by N, we denote the set of all positive
integers. In this paper, we obtain results on the stability and
strong convergence for a new iteration process (3) in an
arbitrary Banach space by using weak contraction operator
in the sense of Berinde [1]. Also, we obtain that the iteration
procedure (3) can be useful method for solution of delay
differential equations. To obtain solution of delay differential
equation by using fixed point theory, some authors have done
different studies. One can find these works in [2, 3]. Many
results of stability have been established by some authors
using different contractive mappings. The first study on the
stability of the Picard iteration under Banach contraction
condition was done by Ostrowski [4]. Some other remarkable
results on the concept of stability can be found in works of the
following authors involving Harder and Hicks [5, 6], Rhoades
[7, 8], Osilike [9], Osilike and Udomene [10], and Singh
and Prasad [11]. In 1988, Harder and Hicks [5] established
applications of stability results to first order differential
equations. Osilike and Udomene [10] developed a short proof
of stability results for various fixed point iteration processes.
Afterward, in following studies, same technique given in [10]
has been used, by Berinde [12], Olatinwo [13], Imoru and
Olatinwo [14], Karakaya et al. [15], and some authors.

Let (E,d) be complete metric spaceand T : E — Ea
self-map on E; and the set of fixed points of T' in E is defined

by F = {p € E: Tp = p}. Let {x,}, C E be the sequence
generated by an iteration involving T which is defined by

X1 = f(T,x,) n=0,1,..., (1)

where x, € E is the initial point and f is a proper function.
Suppose that sequence {x,}, . converges to a fixed point p of
T.Let {y,},cn € E and set

en:d(ynﬂ’f(T’yn)) n=0,1,.... (2)

Then, the iteration procedure (1) is said to be T stable or
stable with respect to T if and only if lim,, _, €, = 0 implies
limn—> coVn = P-

Now, let C be a convex subset of a normed space E and
T : C — C aself-map on E. We introduce a new two-
step iteration process which is a generalization of Ishikawa
iteration process as follows:

xy=x €C,
f (T’ xn) = (1 - pn) X, + EnTxn + (pn - En) Tyn’ (3)

Yn = (1 - (n) X, t+ CnTxn’
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for n > 0, where {,}, {g,}, and {{,} satisfy the following
conditions
(C1) [ En,
(C) 1 = Euhor 10uhaos (Cuhcor 1l € 10,11,
(C3) 2020 00 = 0.
In the following remark, we show that the new iteration

process is more general than the Ishikawa and Mann iteration
processes.

Remark 1.

(1) If &, = 0, then (3) reduces to the Ishikawa iteration
process in [16].

(2) If §, = 0, then (3) reduces to the Mann iteration
process in [17].

Lemma 2 (see [18]). If§ is a real number such that 0 < § < 1
and {e,},cn IS a sequence of positive real numbers such that
lim €, = 0, then for any sequence of positive numbers

n—00"n

{u,},,cn satisfying
Uy <Ou,+€, n=0,1,... (4)
one has
nlLrIgo u, = 0. (5)
Lemma 3 (see [2]). Let {s,},. be a sequence of positive real
numbers including zero satisfying

Sp+1 S (1 - “n) Sn- (6)
If{u,}  (0,1) and Y2 u, = 0o, thenlim,,_, s, = 0.

A mapping T : C — E is said to be contraction if there
is a fixed real number a € [0, 1) such that

ITx - Ty| < afx -yl (7)

forall x, y € C.

This contraction condition has been generalized by many
authors. For example, Kannan [19] shows that there exists b €
[0,1/2) such that, forall x, y € C,

|Tx = Ty|| < b[llx = Txl| + |y - Ty]]. (8)

Chatterjea [20] shows that there exists ¢ € [0,1/2) such
that, forall x, y € C,

|72 = Tyl < e [lx = Ty| + ||y = Tx]]. ©)
In 1972, Zamfirescu [21] obtained the following theorem.

Theorem 4 (see [21]). Let (X, d) be a complete metric space
and T : X — X a mapping for which there exist real numbers
a,b, and c satisfying a € (0,1), b,c € (0,1/2) such that, for
each pair x, y € X, at least one of the following conditions is
performed:

(i) d(Tx, Ty) < ad(x, y),
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(if) d(Tx, Ty) < bld(x, Tx) + d(y, Ty)],
(iii) d(Tx, Ty) < c[d(x, Ty) + d(y, Tx)].
Then T has a unique fixed point p and the Picard iteration
{x,},.en defined by
X, =Tx, n=0,1,2,... (10)

converges to p for any arbitrary but fixed x, € X.

In 2004, Berinde introduced the definition which is a
generalization of the above operators.

Definition 5 (see [1]). A mapping T is said to be a weak
contraction operator, if there exist L > 0 and § € (0, 1) such
that

ITx ~ Ty| < 8|} - y|| + LlIx - Tx]| ()
forall x, y € E.

Theorem 6 (see [1]). Let (E, ||-||) be Banach space. Assume that
C < E is a nonempty closed convex subset and T : C — Clisa
mapping satisfying (11). Then F(T) # 0.

Definition 7 (see [22]). Let {u,},. and {v,}, .y be two itera-
tion processes and let both {u,,}, ., and {v,}, . be converging
to the same fixed point p of a self-mapping T'. Assume that

tim =P
"= v~ pl

Then, it is said that {u,}, . converges faster than {v,}, . to
fixed point p of T'.

(12)

The rate of convergence of the Picard and Mann iteration
processes in terms of Zamfirescu operators in arbitrary
Banach setting was compared by Berinde [22]. Using this
class of operator, the Mann iteration method converges faster
than the Ishikawa iteration method that was shown by Babu
and Vara Prasad [23]. After a short time, Qing and Rhoades
[24] showed that the claim of Babu and Vara Prasad [23] is
false. There are many studies which have been made on the
rate of convergence as given in [15, 25, 26] which are just a
few of them.

2. Main Results

Theorem 8. Let C be a nonempty closed convex subset of an
arbitrary Banach space E and let T : C — C be a mapping
satisfying (11). Let {x,,}, . be defined through the new iteration
(3) and x, € E, where {p, — &,}720, {p, 1o 1,1 {0} € [0,1]
with g, satisfying Y20 @, = 00, @, > &, Then {x,}
converges strongly to fixed point of T.

neN

Proof. From Theorems 4 and 6, it is clear that T has a unique
fixed point in C and F(T) # 0.
From (3), we have

"xn+1 _p”
= "(1 - pn) X, + (pn - En) Tyn + EnTxn - P"
< (1 - pn) ||xn - P" + (pn - En) ”Tyn - p” + En "Txn - P"
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< (1—[@1) “xn_p"+(@n_£n)8"yn_p|l
+(9n = &) L - Tp| + &8 %, - pl + &L | p - Tp|
= [1 . +En8] ”xn _p" + (Pn - En)éllyn _p"

+paLp=Tp|-
(13)

In addition,
Iy = 2l = (1 = 3,) %, + 8, Tx, - p
< (1=8) [ = ol + 6 Tx, - £
< (1=8) [, = pll + 8 |1, = pll +SL [P - Tp|

=(1-¢,(1-8)|x, - p|+¢L|p-Tp|-
(14)

Substituting (14) in (13), we have the following estimates:
%01 = P
< [1 -, + &3] |x, - 2l
+ (0, =€) 8 [(1 -8, (1= 8)) |x, = pl + &L - Tp|]
+aL|p - Tp|
=[1-g, + &8+ (0, ~ &) 0 (1=, (1-98)] |x, - p|
+ (9, = &) 8, + wa] Llp - Tp].

(15)
Since ||p — Tpll = 0, we have
%1 = 2l < (1=, (1= 8)]|x, - pl
It = £l < (1=, (1= 8)) |Ix, - pl
I = pll < (1= @ (1= 8)) [Ix,os = P
Ixs = Pl < (1 = g, (1= 8) %, — 1
e, = pll < (1=, 1 =) %, - p| 16)

i =l < (1 =90 (1 =8) [lxo - P

%1 = 2]l < H [1-p,(1-8)]x|x, - p

i=0

< ||x0 - p|| % e Zino[-0:(1-0)

-(1-0) YL i
_ ”xo _p" x 1O Tio )
foralln e N.
Since0 < 8 < 1, g, € [0,1],and Y2 9, = 00, we have

Jim_ sup [x,,, - p
(17)

; (-(1-8) XLy 1)
< lim sup o — p|| x e 08 < 0.

So lim,, _, llx, — pll = Oyields x, — p € F(T). This
completes the proof of theorem. O

Theorem 9. Let (E,| - ||) be Banach space and T : E —
E a self-mapping with fixed point p with respect to weak
contraction condition in the sense of Berinde (11). Let {x,},x
be iteration process (3) converging to fixed point of T, where
©n 2 En and {pn - En}SzO’ {pn}ZC:)O’ {En}ZZO’ {Cn}zio € [0‘1] such
that 0 < g < g,, for all n. Then two-step iteration process is T
stable.

Proof. Let {x,},.y be iteration process (3) converging to p.
Assume that {y, }, . C E is an arbitrary sequence in E. Set

€n = ||yn+1 - (1 - g"n) nt (K‘jn - fn) Tvn + EnTyn"
n=0,1,...,

(18)

e, =0.

n—00"n

= p. Using contraction

where v, = (1 -,)y, + (,Ty,. Suppose that lim
Then, we shall prove that lim
condition (11), we have

fl*?()Oyrl

1yt = 21 < 1y = (1= 00) 2 + (g0, = &) TV + T

+ (1 =,) 3 + (90 = &) Tv + ET, = B

<&+ (1= 0,) v + (00 = &) TV + &1, — P

<&+ (1=0,) [y — Pl + (00— &) [T, - p
+& [Ty - pl

<&+ (1=0,) [y — Pl + (0, — &) 8 v — pll
+&:8 |y, = pll + (0~ &) LIp - T
+&,L|p - Tp|

=&+ (1=, +8,0) [y, - 1l
+ (00 = &) v — 2l

+ (g0 = &) LIp = Tpl| + &L |p — Tp] -

(19)
We estimate [|v, — p| in (19) as follows:
Iv, = 2l = (1 = ¢.) 3 + &, Ty, - |
< (1= lyn =2l + 8Ty - pl
< (1=8) |y =Pl + 88y - Pl (20)

+ G (lp - Tpl)

= (l_cn(1_6))||yn_p"+ n(P("p_TP")



Substituting (20) in (19), we have

19001 = 2l
<&+ (1=, +£0) [y, — pl + L [P - Tp|
+ (0, = &) [(1-3,(1-8) |y, - 2l
+ &L p - Tpl]
=g+ [1-0, +§0+ (g, &) 0 (1=, (1-9))]

x "yn_p“ + [(Pn_gn)cn8+((3n]L||P_Tp||

(21)

Since ||p — Tpll = 0, we have

17 = Pl
<et[1-0, +8,0+ (0, - &) (1-4,(1-8)] (22)
X ”yn_p" =g+ [1 _pn(l _8)] "yn_p“'

Since 0 < 1-¢,(1-9) < 1 and using Lemma 2, we obtain

llrrlf'lH OOyT’l = p'
Conversely, letting lim,,_, ¥,
€, = 0 as follows:

= p, we show that
lim

n— 00

&n = [Vt = (1= 04) = (00 = &) TV = &, T
< =2l + 2= (1= 04) 70 = (00 = &) TV = &, T
< e = 2l + (1 =) |y = 2l + (00 = &) TV, - £
+& [Ty, - pl
<y = 2l + [1 = 00+ 88,1 [y - £l
+ (00 = &) v — 2l
< yner = Pl + [1 -, +88,]
[y = Pl + (9, = £ 8 (1=, (1= 8)) [y - p
< yuer = Pl + [1 -, + 88,
+ (9, = &) 8 (1=, (1 =) |y, — pl

<y — I+ 1 -0, A =]y, - 2| -
(23)

Sincelim,, _, .1y, — pll = 0, it follows that lim,, _, ¢, = 0.
Therefore the iteration scheme is T stable. O]

Example 10 (see [24]). Let T : [0,1] — [0,1], Tx = x/2,
009, =0,n=1,2,...,15and &, = 1/2 - 2/+/n, g, =
1/2 +2/n, ¢, = 9, = 4/+/n, for alln > 16. It is easy
to show that T is a weak contraction operator satisfying (11)
with a unique fixed point 0. Furthermore, for all n > 16,
4/, 1/2-2//n, 1/242/y/n € [0,1],and Y2 (1/2+2/~/n) =
00. Then the new iterative process is faster than the Ishikawa
iterative process. Assume that 1, = w, # 0 is initial point for
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the new and Ishikawa iterative processes, respectively. Firstly,
we consider the new iterative process, and we have

Upp1 = (1 - pn) U, + (pn - En) T((l - (n) U, + (nTun)

(2 2)
(Ce2)(2)

><T<<1 - %)u,ﬁ %Tun>

(33
ST(CEAMERY

+<1_2>1u
2 m)2 "

Secondly, we consider the Ishikawa iterative process, and
we have

Wy = (1-¢)w, +{,T((1-9,)w, +9,Tw,)
(- e (- e )
(- e () )

(- e 30 )
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—— Ishikawa
--- New iteration process

FIGURE I: It shows the value functions found by successive steps of
the Ishikawa and new iteration methods.

o m ()

i

I
—_ 2
[=)}
S
—
|
e
|
1
——
S
(=)

(25)
Now, taking the above two equalities, we obtain
Uny — 0 ‘
Wy —0
Ty (1= 1/Vi=4/i—1/4)u,
[T (1= 2/Vi = 4/i) w,
n (1-1/Vi-4/i-1/4)
=[] (26)

i (1-2/Vi-4/i)

R —1/\ﬁ+1/4]
- H[l 1-2/\i-4fi

i=16

|fi -

i=16

i—4+i
4i —8+i-16

It is clear that

1 3 i—4\i '
0< 1m11_1[6[1 8\[—16 =0 (27)

Therefore, the proof is completed.

Now, we can give Table 1 and Figures 1 and 2 to support
and reinforce our claim in the Example 10.

Finally, we check that this iteration procedure can be
applied to find the solution of delay differential equations.

2.1. An Application. Throughout the rest of this paper, the
space C[a, b] equipped with Chebyshev norm [|x -yl
maXx,cp,;x(t) — y(t)| denotes the space of all continuous

TABLE 1: Iterative values of the rate of convergence to zero of the
Ishikawa and new iteration process.

X, Ishikawa New iteration process
X 1,990000000000000 1,990000000000000
X, 0,556472918237748 0,541618812060050
X3 0,155609099865344 0,147412531445900
X, 0,043513693420310 0,040121306615323
X5 0,012167935658745 0,010919826345371
X 0,003402576213543 0,002972051946272
x; 0,000951478148280 0,000808904142975
Xg 0,000266066242117 0,000220159648738
Xg 0,000074401335777 0,000059920908248
X1 0,000020805190171 0,000016308689016
Xy 0,000005817851703 0,000004438740086
X1, 0,000001626872822 0,000001208093031
X3 0,000000454929983 0,000000328806991
X4 0,000000127214179 0,000000089491483
X5 0,000000035573490 0,000000024356920
X16 0,000000009947580 0,000000006629229
X7 0,000000002781688 0,000000001804279
X8 0,000000000777856 0,000000000491071
X9 0,000000000217516 0,000000000133655
Xy 0,000000000060825 0,000000000036377
Xy 0,000000000017009 0,000000000009901
Xy, 0,000000000004756 0,000000000002695
Xy3 0,000000000001330 0,000000000000733
Xy 0,000000000000372 0,000000000000200
Xy5 0,000000000000104 0,000000000000054
Xa6 0,000000000000029 0,000000000000015
Xy 0,000000000000008 0,000000000000004
Xog 0,000000000000002 0,000000000000001
X5 0,000000000000001 0,000000000000000

functions. It is well known that C[a, b] is a real Banach space
with respect to | - ||, norm; more details can be found in
(2,27].

Now, we will consider a delay differential equation such
that

X (1) =gt,x(6),x(t-¢), telt,,b] (28)

and an assumed solution

x(t)=9(t), telty=Gto]. (29)

Assume that the following conditions are satisfied:
(C) tpbeR, ¢c>0,
(CZ) g € C([t0> b] X RZ) R))
(C3) §0 € C([to -G t()]) R))
(C,) there exists the following inequality:
|9 (& 70512) = 9 (6:41,4,)]

(30)
<K, [y =il + |y, = Aol + Ly = T
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FIGURE 2: It shows the derivative functions of the Ishikawa and new
iteration methods.

forall y;,A; € R (i = 1,2) and t € [t,, b] such that
Kg > 0,

(Cs) 2Kg(b - t,) < 1, and according to a solution
of problem (28)-(29) we infer the function x €

C([ty -6, bl,R) N Cl([to,b], R). The problem can be
reconstituted as follows:
(Ce)
x (t)
P (), ift € [ty—¢ 1ty

t
¢ (to) + Jt gt,x(s),x(s—¢))ds, ifte[ty,b].

(31)

Also, themap T : C([t,—¢,b],R) — C([t;—¢,b],R)
is defined by the following form:

T (x) (1)

@ (t), ift € [ty—¢ 1y,

¢ (to) + L gt,x(s),x(s—¢))ds, ifte[ty,b].
0 (32)

Using weak-contraction mapping, we obtain the follow-
ing.

Theorem 11. We suppose that conditions (C,)-(Cs) are per-
formed. Then the problem (28)-(29) has a unique solution in

C([t, - ¢ bl,R) N C'([ty, b], R).

Proof. We consider iterative process (3) for the mapping T.
The fixed point of T' is shown via p such that Tp = p.
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For the first part, that is, for t € [t, — ¢, ], it is clear that
= p. Therefore, letting t € [t,, b], we obtain

lim,, .,
%1 = Plloo

= [I(1 = ,) x, + &, T, + (0, = &) Ty = Plloo

< (1= ,) [%0 = Pllo + &l T, = Tp|

+ (00 = &) [ Tyn = Trl

< (1= @) %0 = Pl

+ & T, = Tpll o + (00 = &) 1 T2 = Tp o

= (1-p,) [0 = Pllo + E”teﬁfffb] |Tx,, (t) = Tp (0)]

*lpn=8) max [Ty, (- Tp )

= (1 - pn) ”xn - p"oo

+¢&, max
te[ty—c.b]

¢ (to) + L g(t:x,(s),x,(s—¢))ds

_‘P(fo)—J g(t,p(s),p(s—q))ds

ty

+ (. - §,) max ] lo (to)

€ [to —G,b

t
+L 9,5, (5), , (s —¢))ds

-9 (ty) - L gt p(s),

p(s—c))ds|
= (1= 0,) %2 = Pl

+¢, max
te[ty—c.b]

J; g (t’ Xn (S) > Xy (5 - C)) ds

0

‘L (6 p(),p(s—)ds

t
J g(t’yn (S)’yn (S_C)) dS

ty

+ (@n - En) max

te[to—c.b]

[ 9tr©.pe-a)as
< (1 - pn) ”'xn - p"oo + fn
t
X tefga}z(,b] J;O lg (t,x,(s),x, (s =)

—g(tp(s),p(s=q)|ds
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+(g,-§) max jlgtm) I (s—9)
te[to—cb] Jt

-g(t,p(s),p(s—¢))|ds
<(1-0,) %0 = Plloo

+&, max J [K (|, () = p(s)]

te[ty—c.b] Jt
+|x,(s=¢) = p(s—9)|)
+L|x, (s) - Tx, (s)| | ds

(9, ~&,) max J (K, (3 5) - p (9

te[to-cb]
+[y,(s=¢) = p(s=9)|)
+L 1y, (s) = Ty, (s)] ] ds.
(33)
Hence, we obtain
%1 = Plloo < (1 =) 1% = Pllos
+&,K, (b~ 1,) e ERGESIO!

+]x, (6) = p ()]}
+&,L(b-t,) max |x (t) - Tx, (1)

teoc

+(p, — &) K, (b—t)
X e {lyn @ =p®]+]y, ) - p O}

te[t
+ (g9, = &) L (b~ 1)

X max |yn(t) Ty, (t)]

te[ty—c.b
= (1 - pn) "xn - p”oo + Zgan (b - tO)

X max |xn (t) - p(t)|
te[ty—c.b]

+2(p, - &) K, (b-1t,)

X max |yn(t) p (@)

e[ty
=(1-p,) IIxn ~ Pl

+28,K, (b~ 10) x4~ Pl

+2 (g0, = &) Ky (6= 10) [y = Pl
= (1 -, + 28,K, (0-1)) |x, — Pl

+2 (@n - En) Kg (b - tO) "yn - p“oo
(34)

By continuing this way, we have

17 - Pl
= (1= &) %, + 8 Tx, = plloy
< (1=8,) %0 = Plloo + Gall T = Pl
< (1=8,) [xn = Plloo
+{, max |Tx (t) - Tp (1)]

te th
:(1_ n ”xn_p"oo

+{, max
te[to—c.b]

t
o (ty) + Jt g(t,x,(s),x,(s—¢))ds

~9)- | 9(tp©),pls-)ds
= (1 _cn) ”xn _P"oo

+(, max Jt g(t,x,(s),x,(s—¢))ds
te[ty—c.b] |1,

t
-] 9(tp©.p-0)ds
< (1 _Cn) ”xn _p"oo

+ (”telﬁgb] L |9 (t,x, (), x, (s = ©))

~g(t:p(s), p(s— )| ds
<(1-8) [, - Pl

#4| [Ky (= p @)+, =)= p (6=

+ L |xn (s) - Tx, (s)| ] ds.
(35)

Hence, we obtain

15 = Pl
< (1 - (n) “xn - p"oo
+,K, (b—-to) fnax {|x, () = p @)

tlx, (=) = p(t =)}
+(,L(b-t,) max |x (t) - Tx, (t)|

te|ty— b

< (1-8) x - Pl
+(,2K, (b -to) Enax |x, (t) = p ()]



(1 - Cn) ”xn - p"oo + (nng (b - tO) ”xn - p"oo
(1 - (n (1 - 2Kg (b - tO))) ”xn - p"oo

(36)
Substituting (36) into (34), we obtain
i1 = Plloo < (1= g0+ 26,K, (b~ 10)) |, ~ Pl
+ (g9, = &) 2K, (b - 1)
x (1-8, (1-2K, (b~ 10))) %, = Pl
=(1-p, +26,K, (b-t,)
+ (90 = &) 2K, (b - 1)

X (1 - (n (1 - 2Kg (b - tO)))) ||xn - p"oo
(37)

Since (1 — ZKg(b —ty)) < 1, we have

i1 = Plloo < (1= G0 (1= 2K, (0= 10))) s = Plloo: 38)
g9

We take {,(1 — 2Kg(b —ty) = 4, < land |x, - pll, =
s,» and then the conditions of Lemma 3 immediately imply
lim,, _, lx, - pll, = 0.
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We study a special property of free cumulants. We prove that coefficients of a reciprocal generating function correspond to “free

cumulants with the first two elements in the same block.”

1. Introduction

The original motivation for this paper comes from a desire to
understand the results on free probability method in the book
of Nica and Speicher [1]. Free probability is a mathematical
theory that studies noncommutative random variables. The
freeness or free independence property is the analogue of the
classical notion of independence, and it is connected with free
products. This theory was initiated by Dan Voiculescu around
1986 in order to attack the free group factors isomorphism
problem, an important unsolved problem in the theory of
operator algebras (see [2]).

It is natural to study relations between classical analysis
and free probability. We will present a theorem which gives
us a new relation between reciprocal generating function and
free cumulants. The free cumulant (introduced by Speicher)
[3] plays a major role in the free probability theory. It is related
to the lattice of noncrossing partitions of the set {1,...,n}
in the same way in which the classic cumulant functional is
related to the lattice of all partitions of that set.

Since these beginnings of free probability theory have
evolved into a theory with a lot of links in quite different
fields, in particular, there exists a combinatorial facet: main
aspects of free probability theory can be considered the
combinatorics of noncrossing partitions. It is worthwhile
to mention the work of [4], where authors introduced the
so-called Bercovici-Pata bijection. This bijection, which we
denote by A, is a correspondence between the probability
measures on the real line that are infinitely divisible with

respect to the classical convolution # and the ones which
are infinitely divisible with respect to the free convolution
@. This mapping has several useful algebraic and topolog-
ical properties and preserves the properties of cumulant,
that is, determines the uniqueness between classical and
free cumulant. Moreover, by suitable definition of the free
cumulant transform, the connection between the free and
classical Lévy-Khintchine representations of a probability
law in ID(%) and its counterpart A in ID(@) is determined
simply by ¢ and A(u) having the same characteristic triplet
(classical and free, resp.). The main aim of the paper is to show
new property of free cumulants; that is, we will show that
coeflicients of a reciprocal generating function correspond to
“cumulant with the first two elements in the same block”” This
topic has not been extensively studied in the past. The only
result of which I am aware is Wright’s [5]. Wright gave an
asymptotic formula for the coefficient in some special case
of power series. Recently, this topic has also been studied in
[6], where the concept of composita of reciprocal generating
function is used for obtaining a unique triangle, when only
the generating function for the central coefficients of that
triangle is known. In this paper, we present a new method
using free cumulants to compute coeflicients of a reciprocal
generating function.

2. Free Cumulants and Indication

In this section, we provide a short and self-contained sum-
mary of the basic definitions and facts needed for our study.
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In free probability, we assume that our probability space is a
von Neumann algebra &/ with a normal faithful tracial state
T:9 — C;thatis, 7(-) is linear and weak”-continuous and
7(XY) = 7(¥X), 7() = 1, 7(XX") > 0, and 7(XX"*) = 0
imply X = 0 forall X,Y € &/. A (noncommutative) random
variable X is a self-adjoint (X = X*) element of <. Below,
we introduce the concept of noncrossing cumulants without
using this abstract object.

Definition 1. Let w = {V},...,V,} be a partition of the linear
orderedset 1,...,n; thatis, the V; # 0 are ordered and disjoint
sets whose union is {1,...,n}. Then 7 is called noncrossing if
a,c € V;and b,d € VJ with a < b < ¢ < d which implies
i = j.'The sets V; € m are called blocks. We will denote the set
of all noncrossing partitions of the set {1,...,n} by NC(n).

Now we can define the free cumulants by induction. An
important technical tool is a formula, that is, (2), to factorize
in a product according to the block structure of noncrossing
partition. This formula is actually at the basis of many of our
forthcoming results in this paper and allows elegant proofs of
many statements.

Definition 2. Leta,,a,, ... be a sequence of C. The free (non-

crossing) cumulants are the sequence R, := Ri(ay,...,a;)
defined by the recursive formula
a, = Z Rv(al’aZ""’ n)’ (1)
veNC(n)
where
Rv (al’a2> LR n) = I—[BGVRIBI (ai (i€ B) (2)

and NC(n) is the set of all noncrossing partitions of
{1,2,...,n} (see [1, 7]).

Example 3. For n = 3, we have

NC(3) = {{(1,2),(3)},{(1,3),(2)},{(2,3), (1)},
{(1,2,3)},{(1),(2), B}

as = Z R, (ay,a5,05)
veNC(3)

(3)
=R, (ay,a,) R, (a3) + R, (a;,a3) R, (a,)

+R, (aya3) R, (a,) + Rs (ay, a5, a5)

+R, (a;) R, () R, (a3) -

Definition 4. 'The ordinary generating function of a sequence
(ag>ay,a,,...), whereg; € C, is

G(z) = Za,-zi. (4)
i=0

In this paper, we assume that g, # 0 above series is
convergent for sufficiently small z.
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FIGURE 1: The main structure of noncrossing partitions of
{1,2,3,...,n} with the first and j + 2 element in the same block.

The following lemma is a sequence version of Lemma 2.3
in [9] with k = 1 (the proof is also similar).

Lemma 5. Let a,,a,,... be a sequence of C. Then

n-2
a, = Z“i Z R, (ay,...,a, ) + a1a,_y, (5)

=0 yeNC" (n-i)
where

(i) n is positive integer greater than two;
(if) @y = 1;
(iii) NC"(n) is the set of all noncrossing partitions of

{1,2,...,n} with the first two elements in the same
block.

Proof. At first, we will consider partitions with singleton 1;
thatis, 7 € NC(n) and 7 = {V;, ...,V }, where V| = {1}. Itis
clear that the sum over all noncrossing partitions of this form
corresponds to the term a,qa,,_;.

On the other hand, for such partitions v € NC(n), let
k = k(v) € {3,4,...,n} denote the most-left element of the
block containing 1. This decomposes NC(n) into the n — 1
classes NC;'(n) = {v e NC(n) : k(v) = j+2},j =0,
1,2,...,n — 2. The set NC;'(n) can be identified with the
product NC(j) x NC"(n - j) for j > 0 and NCG'(n) =
NC" (n). Indeed, the blocks of v € NC;’(n), which partition
the elements {2,3,4,...,j + 1}, can be identified with an
appropriate partition in NC(j), and (under the additional
constraint that the first two elements 1, j + 2 are in the same
block) the remaining blocks, which partition the set {1, j +
2,j+3,...,n}, can be uniquely identified with a partition in
NC" (1~ j). The above situation is illustrated in Figure 1. This
gives the formula

a, = Z R,(ay,...,a,)

veNC(n)

n-2

5 Raena)

i=0 yeNC(i)

x Z R, (ay,...

yeNC" (n—i)

(6)

> an—i) a4,

’ an—i) +a,0, >

Z R, (ay,...

veNC" (n—i)

n—2
= Zai
=0

i

which proves the lemma. O
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Definition 6. Let ay,a,,a,,... € Cand gy # 0. We define

2 2
P = (ag,a,,a,,...,a,)
B Z R, (al o an> ™)
veNC" (n) ao %

for n > 2 and the functions (power series)
Cc?(z) = Zc(z) " (8)

for sufficiently small |z] < e and z € C. This series is
convergent because we consider only (a,,a,,...) such that

| Y%, a,2"| < co. This implies that ¥, ¢'?2" is convergent

and the proof of this fact follows from the main result.

3. The Main Result

The following is our main results of the paper.

Theorem 7. Let ay,a,,a,, ... be a sequence of C (a, # 0) with
the generating function G(z) = ay + Y o) a;z', and then

1L _1(_co,y_ %
G(z)_ao (1 (2) aoz). 9)

In other words, sequence (1/ay, —al/ag,—cz(z)/ao, —c3 /ao, ..
is the generating function of 1/G(z).

Proof. 1t is clear from Lemma 5 that we have

aA
i (2) 2"
G (a0’a1’a2>"" n— 1)

3
0o n—2
i z 2 n—i
= Z - n aO’al’QZ""’an—i)z
n=2 i=0 aO
00
+ 4, [1 + sznl]
aﬂ n=2 aO
1 (2) a;
=—G(z)C7 (2) + 52G(2),
ay a,
(10)

where g, = 1, and, in the last equality, we use the Cauchy
product of two series. This proves the Theorem. O

Corollary 8. Ifa, = 1, then one gets
1

(2)
e ) -C7(z) —ayz. 11)

Example 9. The nth Catalan number is given directly in terms
of binomial coefficients by (1/(n + 1)) (2"). Let b, = 1 and

0, for n odd,

b, = 1 ( n ) (12)
n |, for n even.
n/2+1 5

Then the b, is the nth moment of Wigner semicircle law of
mean 0 and variance 1 (see [10]). The free cumulant of b,
is the number of noncrossing partitions of the set {1, 2n}
in which every block is of size 2 (see, e.g., [3, 8, 11- 13]) that
is, b, = Y encen Ry(by, by, ..., b,), where R, (b, 4y, ..., b,) =
HBE‘VR|B| (bl ti € B) and

1, forn=2,
R,(b,b,....b,) = 13
n(b by ) 10, otherwise. (13)
Thus, we get
? =P (1,b,,by,...,b,)
0, for n odd,
N A~ 4 - > f >
-2 /2+1 n22 or n even

-Z’G (2).

zzn (2)

i=2

G (z)

Example 10. In random matrix theory, the Marcenko-Pastur
distribution, or Marcenko-Pastur law, describes the asymp-
totic behavior of singular values of large rectangular random
matrices. The theorem is named after Ukrainian mathemati-
cians Marcenkoand Pastur who proved this result in 1967 (see
[7]). Moments of the Marcenko-Pastur law (with rate 1 and
jump size 1) are

n

1
d =

1 (n\(n-1
-2 "

Iy
o



Then, d,, have free cumulants, which are constant; that is,
R,(d,,d,,...,d,) =1 (see [8,10]). Thus, if d;, = 1, then

=P (1,d,d,....d,)=d,,. (16)
Indeed, the first block of v € NC" (1) (which contains {1, 2})
can be identified with an appropriate block in NC(n— 1) (i.e.,
which contains {1}) because R, are constant. Thus, we get

1 > (2)
=l-z-)z¢ ' =1-z2-2(G(2)-1)
G(2) ;

(17)
=1-2zG(z2).

Open Problem. It would be worth to show whether Theorem 7
is true for noncommutative c-free cumulants (for more
details, see [14]).
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We first introduce some related definitions of the bounded linear operator L in the reproducing kernel space W,"(D). Then we show

spectral analysis of L and derive several property theorems.

1. Introduction

It is well known that spectral analysis of linear operators [1]
is an important topic in functional analysis. For example, the
matrix eigenvalue in linear algebra and eigenvalue problems
for differential equation have been discussed emphatically.
Two major reasons are as follows. Firstly, spectral analysis
arises from vibration frequency problems and the stability
theory of system. Secondly, spectral analysis comes from
the need of discussing the structure of the operator and
solving the corresponding equation by using the eigenvalue
and spectral theorem. Also, spectral analysis can be used
to study the structure of the solution for homogeneous or
nonhomogeneous differential system and the normalized
form of matrix which can be obtained clearly by matrix
eigenvalues.

So far, the spectral decomposition method [2] has become
a central topic in the theory of spectral analysis of linear
operators. This method has been successfully applied in
Hilbert space and perfect spectral decomposition theorem
[3]. In recent years, the spectral decomposition method has
been developed into spectral theorems of spectral operators
and decomposable operators in Banach space [4, 5].

To our knowledge, reproducing kernel space has been
applied in many fields, such as linear systems [6-8], nonlin-
ear systems [9-11], operator equation, stochastic processes,
wavelet transform, signal analysis, and pattern recognition
[12-17]. Since the reproducing kernel space is a Hilbert space,

this paper will apply the theory of spectral analysis for linear
operator in the reproducing kernel space W,"(D) and derive
some useful conclusions.

The paper is organized as follows. In Section 2, we
introduce some related definitions for the eigenvalue of the
bounded linear operator L in the reproducing kernel space
W,"(D). In Section 3, the regular point and the spectral
point of bounded linear operator L in W,"(D) are given. In
Section 4, we show spectral analysis of the bounded linear
operator L and also establish several theorems. Section 5 ends
this paper with a brief conclusion.

2. Related Definitions

Definition 1. Let D be an abstract set, W," (D) the reproducing
kernel space, and BL[W,"(D) — W,'(D)] the bounded linear
operator space. VL € BLIW,"(D) — W, (D)] withm,n € N,
if there exists nonvanishing vector u € W,"(D), such that

Lu=Au or AM-L)u=0. 1)

Then A is called an eigenvalue of L and u is called the
eigenvector of L according to A, where I denotes the identity
operator.

Definition 2. VL € BL[W;"(D) — W,(D)] and all
eigenvectors and zero vector of L compose the eigenvector
space which is denoted by Ej.
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Obviously, E, is a linear closed subspace of W,"(D).

Definition 3. Denote the dimension of E, by dim E,; it is
called the multiplicity of eigenvalue A. That is, dim E, is the
number of vectors of maximum linear independence.

Example 4. Let K(s,t) be a binary function on D = {(s,t) |
a<s<ba<t<b}LeBLW" D) - W' (D)],mneN
with
b
Lu(s) = J K (s,t) u(t)dt,

a

ueWw,"(D); (2)

then A is the eigenvalue of L if and only if the following
integral equation has nonzero solution:

b

Au(s) - J K(s,t)u(t)dt = 0. (3)
a

If K(s,t) = Yo, fi(s)g:(), {f;}i, is a linear independence

vector system, then (3) can be converted into the equivalent

equation

n b
M-y | a0ud-o (4)
i=1 a

Thus we have the following results.

(a) If A = 0, then (4) has nonzero solution if and only if

w € WD) and [0 g(u®)dt = 0,i = 1,2,....n.
It follows that, for the eigenvalue A = 0 of L, the
eigenvector space is infinite-dimensional.

(b) If A # 0, then the solution of (4) can be denoted by

u(s) =Y Cif; (s), ©)
i=1

where C; (i = 1,2,...,n) are constants.

Combine (5) with (4) and, in view of the linear indepen-
dence of {f;}i., in (5), C; must satisfy the following linear
equation system:

n b
chjgi(t)fj(t)dt:)tc,., i=1,2,...,n.  (6)
e

Summing up the above results, we can see that eigenvalues
of (3) and (5) are equivalent, where C; (i = 1,2,...,n) are
undetermined coeflicients. In addition, in order to solve the
eigenvector, we just need to solve C; (i = 1,2,...,n) in (5).

3. Regular Point and Spectral Point

In Definitions 1-3, we introduce the eigenvalue, eigenvector,
eigenvector space, and dim E, of L for the homogeneous
equation (1). However, for many problems in mathematics
and physics, we just need to solve the following nonhomo-
geneous equation:

(AI-Lyu=f, 7)
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where L is a given operator, f is a given vector, and u is an
unknown vector. In order to discuss this problem, we need to
introduce the following definitions and theorems.

Definition 5. Let L € BL[W,"(D) — W, (D)], m,n € N,
D(L) € W,"(D), and R(L) < W, (D), where D(L) denotes
the domain of L and (L) denotes the range of values of L. If
the inverse operator L™" of L exists and is linearly bounded,
then L is called a regular operator.

Let L be a linear operator; 2(L) ¢ W,"(D) and Z(L) ¢
W,(D); if L™ exists, then L™'L = Iy and LL™' = Iy,
where Iy, 1) and I, ;) are, respectively, identity operators of
subspace D (L) and R(L). Inversely, if there exists a linear
operator C : W;'(D) — W,"(D), such that CL = I, and
LC = Iy then L™ exists and I = C. In fact, Yu,,u, €
D(L); if Lu; = Lu,, then u; = CLu; = CLu, = u,. Hence,
L is invertible. Since LC = Ig (), then Vv € P(C); we have
u = Cv such that Lu = v. That is, 2(C) € Z(L).

Summing up the above disscusion, Z(L) = D(C). Hence,
we have L™! = (CL)L™! = CLL™! = C. Particularly, when
2(C) = W,(D) and C is a bounded linear operator, we can
derive the following results.

Theorem 6. Let L € BL[W,"(D) — W,(D)], m,n € N;
then L is a regular operator if and only if 3C € BL[W, (D) —
WZm(D)], such that CL = I@(L) and LC = I@(C)

Theorem 7. Let L € BL[W,"(D) — W;(D)], m,n € N; if
L is a regular operator, then L* is also a regular operator and
(L*)71 — (L_l)*.

Proof. Since L e BLIW, (D) — W,*(D)],m,n € N, and

-1 -1, _
by taking conjugate on both sides of the above formulas, we
obtain
w(r-1\* —1\* %
(L) = Ly oy (L)L =Ly e 9
In view of Theorem 6, we can see that L is a regular operator
and (L*)™" = (L™")*. The proof is complete. O

Definition 8. Let Z(L) € W,"(D), m € N, A € C; C denotes
the complex number field.

(1) AI - L1is aregular operator, that is, AI — L is a one-to-
one linear operator from 2 (L) to W,"(D). In addition,
the inverse operator (AI — L)™' is a linear bounded
operator. Then A is called a regular point of L. All
regular points compose the regular set of L, which is
denoted by p(L).

(2) If A is not a regular point, then A is called a spectral
point of L. All spectral points compose the spectral set
of L, which is denoted by o(L).

In view of Definition 8, we have p(L)|Jo(L) = C. Then
we have the following property results.



The Scientific World Journal

Lemma 9. Let L be a bounded linear operator in reproducing
kernel spaceW," (D), m € N; then A is a regular point of L if and
only ifV f € W,"(D), there exists a solution g of (AI-L)g = f,
which satisfies ||gll < ml| fIl, where m is a positive constant.

Proof. = Since R(AI — L) = W,"(D), then Vf € W,"(D),
g € W,"(D) such that (AI — L)g = f. In addition, in view
of the boundedness of (AI — L)™! and the Cauchy-Schwartz
inequality, we have

lal = A1 -07" f| < Jar-D7'| | Qo)

Let m = ||(M — L)"}|| > 0; then gl < mll fll.

& Since (AI - L)g = f, we have Z(Ml — L) = W,"(D).
Next, we will prove that AI — L is one-to-one. In fact, Vf €
W) (D); if (Al — L)g, = f, (M — L)g, = f, then

(M =L1)(g, - 9,) = 0; (11)

namely, the image of g, — g, is 0. Hence, |lg, — g, < m|l0];
thatis, g, = g,. Therefore, AI - L is one-to-one and (AI - L) ™"
exists. Furthermore, since ||g|l < m| f|l, we have

|ar-1)7 f| < m| £ (12)
that is,

|Ar-1)7| < m. (13)

Hence, (A — L)™" exists and is a bounded linear operator.
Summing up the above, AI — L is a regular operator, where
A is a regular point of L. O

Lemma 9 shows that Vf € W;"(D); when L is a
continuous linear operator and A is the regular point of L,
(AI = L)g = f has a unique solution g. Furthermore, the
continuity of g depends on the right term. In other words,
if {f;}\, are column vectorsand f,, — f,theng, — g.

Lemma 10. Let L be a bounded linear operator in the repro-
ducing kernel space W,"(D), m € N. If A is not the eigenvalue
of Land (AI-L)g, = (AI-L)g,, one has L(g,—g,) = Mg,—9>)
g1 = G- That is, AI — L is invertible.

Proof. Otherwise, the invertible operator can convert the
nonvanishing vector to nonvanishing vector. Hence, there
exists g # 0 such that (AI — L)g = 0. That is, A is not the
eigenvalue of L.

When W,"(D) is a finite dimension space and A is not
the eigenvalue of L, we can derive that C = AI — L is an
invertible mapping. Obviously, Z(C) = W,"(D). In fact, let
{e;}", be the basis of W,"(D); then {(AI — L)e;}", is a linear
independent system in W,'(D) and also a basis of W, (D).
Therefore, Z(L) = W, (D). In view of the inverse operator
Theorem, (A — L)™" is bounded. It follows that A € p(L).

So, the proof of the theorem is complete. O

Lemma 10 shows that regular point and spectral point
are absolutely opposite for finite dimension normed spaces.
That is, spectral point of L can only be an eigenvalue in finite

dimension normed space. This is entirely consistent with the
conclusion of the theory of linear algebra. But if W;"(D) is an
infinite-dimensional space and A is not the eigenvalue of L,
then A may not be a regular point of L, so far as AI — L is not
a map from W,"(D) to W, (D).

For example, let

b
Lu = J u(t)dt, uew,"(D); (14)

a

VA € C, Lb u(t)dt = Au(t) has only zero solutions. Hence,
L has not eigenvalue. That is, zero is not the eigenvalue.
However, the range of values is all functions of the from
J: u(t)dt for (0I — L). This shows that the spectral point is
complex in infinite-dimensional space for the operator L.
Now, we will classify the spectral set by three situations.

(a) If AI — L is not one-to-one, then A is called point
spectral of L; the set of point spectral is denoted by

(IP(L).

(b) If AI — L is one-to-one and Z(AI — L) is dense in
W,"(D), then A is called continuous spectral of L; the
set of continuous spectral is denoted by o(L).

(c) If AI — L is one-to-one and Z(AI — L) is not dense in
W,"(D), then A is called residual spectral of L; the set
of residual spectral is denoted by o, (L).

Obviously, O‘P(L), o.(L), and 0,(L) are mutually disjoint
setsand o(L) = O’P(L) Uo.(L)Uao,(L).

4. Spectral Analysis

Let L € BLW/(D) — W!D), mn € N, r =
lim, , o V/IL”[, Ve > 0, 3N € N* Vn > N, such that
LM < r+¢e < 1;thatis, [L"] < (r + €)". In view of the
completeness of W,"(D), there exists 7 > N, such that

ZL" < Z L") < Z(r+s)"
n=m n=m n=m (15)

=(r+&)"(1-r-¢ "
Hence, Y2 L" converges in the sense of | - || and the limit is
denoted by C = Y2 L".
LetC,, = Y, L"; then
1

C,I-L)y=(I-L)C,,=I-L"". (16)

For |C,, - C|| — 0,m > N, we have
L™ < r+e™" = 0. 17)

Ifm — oo, then

CI-L)=(I-L)C=1 (18)

Namely, 1 € p(L) and (I - L)™' = Y2 L".



For ||L|| < 1, one obtains

o] =1c1< Y 171 - 19

1
1-|ILI

Summing up the above parts, we have the following
theorems.

Theorem 11. Let L € BL[W,"(D) — W, (D)], m,n € N, then
one has the following.

(1) Consider 1 € p(L).
(2) Consider (I-L)™" =¥ L".
(3) When |IL|l < 1, |(I - L)™' < 1/(1 - |LLI)).

Theorem 12. Let L € BLIW,"(D) — W,(D)], m,n € N; if
r =1lim,_, VIL"|, then one has the following.

(1) [Al > r if and only if A is a regular point of L.
(2) When [A| > r, (AT - L)™' = Y20 (L"/A™).
(3) When A > ILIL, IA = L)7M < (1Al = ILI) ™.

Proof. VA # 0, since (AI — L) = A(I = L/A), A € p(L) if and
onlyif 1 € p(L/A). Replacing L by L/A in Theorem 11, we have

n
n“l%od i_ B ﬁnlin%o”"”" <L (20)
namely,
. L
Al> lim YT =r, e p(X). (21)

Furthermore, we have

L -1 [e'e] L n () n
I-2) =Y(2) =Y=.
(-3) ;( P) L (22)
Then we obtain
401 N &I
AT-L)" = X(I - X) - ;Mﬂ. (23)

It follows that A is a regular point of L and [[(AI — L7 <
(A = LI with [A] > 7.

In addition, when |A| > ||L||, we have |L/A| < 1. In view
of (2) of Theorem 11, we have

4 1 LI\ ! 4
Jar-07) < 5 (0-[3]) = e
The proof is complete. O

Theorem13. Let L € BL[W," (D) — W,(D)], m,n € N; then
one has the following.
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(1) p(L) is an open set.

(2) When p(L) is nonempty, VA, € p(L); if ry =
lim,, _, o {/Il(AgI = L)™"|l, then A is a regular point of L
and AL = L)™' = ¥ (=1)"(AI = L) ™D (A = 1),
where |A — A,| < 1/r,\0.

(3) o(L) is a closed set.

(4) Consider sup,¢,)IAl < lim,, _, o /IL7.

Proof. (1) If p(L) = 0, the conclusion is obvious. If p(L) # 0,
then

M—-L=(MA-A)I+(AJI—-L)
(25)
= [T+ (A-2) (AOI—L)_I] (Al - L),

where (1,I — L)™' is a bounded linear operator in the repro-
ducing kernel space W,"(D). We use (A — Aq)(A,I - L)!
instead of L in Theorem 11, such that

lim {/
n—00

That is, when [A = Aol < 1/, [[+ (A= A)(Aol - L)'
exists and is bounded. Hence, when [A-A¢| < 1/7; , A € p(L);
that is, p(L) is an open set.

(2) If p(L) is nonempty, VA, ¢

A -2 QoI -1) '] <1 @0)

p(L), let n, =

s oo MIIAI = L)™"|I. In view of (2) of Theorem 11 and (1)
of Theorem 13, we have

lim

M =L) " = (Al = L) [T+ (A= A) (Aol - L)_l]_l

™ (27)
= Y (1" (Al - L) "V (A= 2"

n=0

(3) Since p(L) | Jo(L) = C and (1), o(L) is a closed set.
(4) In view of (1) of Theorem 12 and r = lim, _, . VIL"(|,
we have o(L) € {A | |A| < r}, which means that supAEJ(L)I/XI <

lim,,_, o, V7.

The proof is complete. O

Definition 14. Let L € BLIW,"(D) — W,(D)], m,n € N,
r(L) = max, ., |Al; 7(L) is called the spectral radius of L.

From the purpose of solving equations, spectral radius
has the following meanings.

(1) For [A| > (L), due to the fact that A is a regular point
of L, then for any f € W,"(D), (AI - L)g = f hasa
unique solution g.

(2) For |A| < r(L), it cannot guarantee this equation has
a solution for any f € W,"(D). In many practical
problems, in order to calculate the spectral range, one
needs to estimate the spectral radius. In terms of (4) of
Theorem 13, we can get (L) < ||L||. In practical terms,
this estimate is convenient, but it is imprecise.



The Scientific World Journal

Theorem15. Let L € BL[W,"(D) — W,'(D)], m,n € N; then
(L) = sup, oyl Al = lim,, _,  VIL"|.

Proof. In terms of (4) of Theorem 13, r(L) < lim
Hence, one only needs to prove that 7(L) > lim
For |A| > ||IL|l, one obtains

VIL".
VIL .

n— 00

n— 00

n

/\n+1

M-L)" = z (28)
Consider Vf € WJ(D), f(AL - L)) = Y, (F(L")/A").
If [A| > (L), then A is a regular point of L. In addition, since
{A | [A] > (L)}, then Laurent expansions of f((AI — L) Y are
established, where |A| > r(L).

Leta = r(L), Ve > 0; we have

& f(L)

29
n=0 (a + s)n+1 ( )

Let B, = L"/(a+¢)",Vf € W™ (D); then
sti}l) |f (B,)] < oco. (30)

In terms of the resonance Theorem, {B,} must be
bounded. It follows that there exists a positive constant M,

such that ||B,|| < M and [[L"]| < (a+¢&)"|B"| < (a+¢)"M.
Namely,
nangom <a+e. (31)
Lete — 0; then
r(l)=a> lim L. (32)
The proof is complete. O

Theorem16. Let L € BL[W,"(D) — W,(D)],m,n € N; then
o(L) # 0.

Proof. If o(L) = 0, in view of the properties of the
reproducing kernel space, W,"(D) # {0}; hence, I # {0},
where the unit element is denoted by I. In terms of the
functional extension Theorem, 3f € Wzm (D), such that
f(I) # 0.1In addition, VA, € p(L) and 3r) € R; when
A=Al < l/rAO, we have

(M-L) Z( D"AJ-L) "' (A=1,)". (33)
Note that
FA=D) = Y0 (Al =D ) (A= 24)",
n=0

(34)

in terms of the assumption that (L) = @ and Theorem 15;
when |A| > | L||, one obtains

f(Ar-on™)= (35)

5
Therefore, when |A| > ||L| + 1, we have
oy i
(=07 = 21 e < 1 g = A1
(36)

That is, f((AI - L)™!) is bounded. In terms of the Liouville
Theorem, f((AI — L)"') must be a constant, so we have o(L) #
0.

The proof is complete. O

Definition 17. If L € BL[W,"(D) — W;(D)], m,n € N,
lim, , VIL"| = O, then L is called a generalized nilpotent
operator.

Definition 17 is the finite-dimensional space concept
nilpotent operator in the infinite-dimensional space to pro-
mote. In the spectral theory of operators, generalized nilpo-
tent operator is a kind of important operator.

In terms of Theorem 16 and the spectral radius theorem,
one can obtain that the generalized nilpotent operator has
only a spectral point 0. For example, let L € BL[W,"(D) —
W (D)],m,n € N, [a,t] € D,

(Lu) (t) = J. u(p)du, uew,"(D). (37)

In terms of the property of L, one obtains

t tl tn—l
'y = J J J u(u)dudt,_, ---dt,. (38)

a Ja a

Note that

way@l<pa | [ [

we have

u(y)dudt,_, ---dt; (39)

L7 < %(b —a)" ull, uew," (D). (40)

This shows that L is a generalized nilpotent operator; spectral
point A = 0 is not the eigenvalue of L.

Definition 18. Let L € BLIW," (D) — W,(D)], m,n € N,
A € G; if there exists {u,},2, € W,"(D), such that (AI -
L)u, — 0, then A is called an approximate spectral point.
All approximate spectral points are denoted by o,(L); the
other spectral point is called remainder spectral point. All the
remainder spectral points are denoted by o, (L).

Theorem19. Let L € BLIW," (D) — W,(D)], m,n € N; then
(1) 0,(L) € 0, (L)
(2) 0,(L)(o,(L) =0, and 0,(L)|Jo,(L) = o(L),
(3) 0,(L) is an open set,

(4) 0o(L) < a,(L), where 0o(L) denotes the boundary of
o(L),

(5) 0,(L) is a nonempty closed set.



Proof. (1)IfA € O'p(L), then there exists nonzero element u of
W, (D), such that

(L-A)u=0. (41)

Without loss of the generality, let |lu| = 1; we choose u,, = u,
n=1,2,...,and then |u,| = 1 and (L — AI)u,, — 0; namely,
A € g,(L); this shows that 0,(L) € 0,(L).

(2) In terms of Definition 18, one obtains o,,(L) () o,(L) =
¢ando,(L)Jo,(L) = o(L).

(3)If A € 0,(L), then A ¢ o,(L). Hence, 3o € N*, such
that

IL=ADull > afull, uewW," (D). (42)

When |\ - A| < a/2,Vu € W,"(D), we have
|2 -1y u] > 0@ - ADyul = A= 2]l > 5l (43)

It shows that for any A" which satisfies [A' — A| < o/2 it is
impossible to be an approximate spectral point of L. Hence,
if one can prove that when M = Al < a/2, ) isnota regular
point of L, then A" € o,(L). That is, A is an inner point of
0,(L), so 0,(L) is an open set.

Now, we prove that when N =A< af2, ) ¢ p(L). But
not vice versa, 31 € C, [A; — A| < a/2; then A, € p(L). Note
that [|(L = A'Dul| > (L = ADull = [A = A'[llull > (a/2)llull; if
A' = A,, then

(=207 < 2 (44)

In view of (2) of Theorem 13, let u be a regular point of L; if
lu = Aol < 1/r),, then

ra, = lim (Al = L) < [(Ael - L) = 2 (45)

In a particular case, let 4 = A; note that

o 1
|.”_/\0|:|A_Ao|<5<;; (46)

0

then A € p(L). This is a contradiction with A € o,.(L). It
follows that ,(L) is an open set.

(4) Since o(L) is a closed set, when A € 0o(L), A € o(L).In
addition, A ¢ 0,(L),d0(L) ¢ 0,(L), so wehavedo(L) € 0,(L).

(5) Since 0,(L) = o(L) — 0,(L), then 0,(L) is a closed set.
Furthermore, since do(L) € 0,(L), 0,,(L) # 0, this shows that
00(L) and 0,(L) are all nonempty sets.

The proof is complete. O

5. Conclusions

This paper first introduces the eigenvalue, eigenvector, eigen-
vector space, and dim E, of the bounded linear operator
L in the reproducing kernel space W,"(D). Then we show
some definitions and properties of the regular operator. The
regular set and spectral set of bounded linear operator are also
introduced. From the solvability of the equation, we show the
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spectral classification and give three conditions. Finally, we
introduce the spectral analysis of the bounded linear operator
L. Tt includes the definitions of spectral radius, nilpotent
operator, approximate spectral point, and remainder spectral
point. We also establish some property theorems of the
bounded linear operator in the reproducing kernel space
W,"(D).
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We extend the path lifting property in homotopy theory for topological spaces to bitopological semigroups and we show and prove
its role in the Cy-fibration property. We give and prove the relationship between the Cy-fibration property and an approximate
fibration property. Furthermore, we study the pullback maps for Cy-fibrations.

1. Introduction

In homotopy theory for topological space (ie., spaces),
Hurewicz [1] introduced the concepts of fibrations and path
lifting property of maps and showed its equivalence with
the covering homotopy property. Coram and Duvall [2]
introduced approximate fibrations as a generalization of cell-
like maps [3] and showed that the uniform limit of a sequence
of Hurewicz fibrations is an approximate fibration. In 1963,
Kelly [4] introduced the notion of bitopological spaces. Such
spaces were equipped with its two (arbitrary) topologies. The
reader is suggested to refer to [4] for the detail definitions and
notations. The concept of homotopy theory for topological
semigroups has been introduced by Cerin in 2002 [5]. In this
theory, he introduced Sy -fibrations as extension of Hurewicz
fibrations. In [6], we introduced the concepts of bitopological
semigroups, c-bitopological semigroups, and Cy-fibrations
as extension of Sy-fibrations.

This paper is organized as follows. It consists of five
sections. After this Introduction, Section 2 is devoted to some
preliminaries. In Section 3 we show the pullbacks of S-maps
which have the Cy-fibration property that will also have this
property and the pullbacks of Cy;-fibrations are Cy,-fibrations
under given conditions. In Section 4 we develop and extend
path lifting property in homotopy theory for topological
semigroups to theory for bitopological semigroups. Some
results about Hurewicz fibrations carry over. In Section 5 we

give and prove the relationship between the C - -fibration
property and an approximate fibration property.

2. Preliminaries

Throughout this paper, by all X, we mean all topological
spaces (X, 7) which will be assumed Hausdorff spaces. By
all X ~we mean all bitopological spaces (X, 7;, ;). For two
bitopological spaces X, andY, ,ap-maph:X, — Y,
is a function from X into Y that is continuous function (i.e., a
map) from a space X, into a space Y, and from X, intoY,
[4].
Recall [5] that a topological semigroup or an S-space is a
pair (X, *) consisting of a topological space X, and a map
% 1 X, x X, — X, from the product space X, x X, into
X, such that (x, *(y,z)) = *(x(x, y),2) forall x, y,z € X.
An S-space (A, ') is called an S-subspace of (X, *) if A is
a subspace of X, and the map * takes the product A x A
into A and *'(x, y) = #(x,y) for all x,y € A. We denote
the class of all S-spaces by N. For every space X, by P(X,),
we mean the space of all paths from the unit closed interval
I = [0,1] into X, with the compact-open topology. Recall
[5] that, for every S-space (X, *), (P(X,), p(*)) is an S-space
where p(*) : P(X,) x P(X;) — P(X,) is a map defined
by p(=)(a, B)(t) = =(a(t), B(t)) forall o, B € P(X,), t € I
The shorter notion for this S-space will be P(X_, ). For every
space X, the natural S-space is an S-space (X, m;), where


http://dx.doi.org/10.1155/2014/675761

m; is a continuous associative multiplication on X given by
m(x, ¥) = x and 71, (x, y) = y for all x, y € X. We denote the
class of all natural S-spaces (X, ) by 4, where m = 7}, 7,.

Recall [5] that the function f: (X,, *) — (O, °)is called
an S-map if f isa map of a space X, into O, and f(x(x, y)) =
o(f(x), f(y)) forall x, y € X. The function f : X, — O, of
a natural S-space (X, ) into (O, 7r) is an S-map if and only
if it is continuous. The S-maps f,g : (X, *) — (O,,) are
called S-homotopic and write f = g provided there is an S-
map H : (X,, *) — P(O,,) called an S-homotopy such that
H(x)(0) = f(x)and H(x)(1) = g(x) forall x € X.

A bitopological semigroup is a pair (X , *) consisting of a
bitopological space X and the associative multiplication *
on X such that * is an p-map from the product bitopological
space (X x X,7; X 73,7, X T,) into X . For B € X, by Bl _
we mean the bitopological subspace (B, 7,5, ,|p) of X, . If
the p-map * takes the product B x B into B then the pair
(B, ,» *) will be a bitopological semigroup and will be called
an b-subspace of (X , *).

The function A : (Xfu’ *) — (YPu, o) is called an S;-map
from (X, ,*) into (Y, ,°) provided h is an S-map from a
function S-space (Xr,» ) into an S-space (Y, . o), where i =
1,2. We say that h is an Sp-map if it is an S;-map and S,-map.

An c-bitopological semigroup is a triple (X, , *, Z) con-
sisting of bitopological semigroups (X, ,*) and an S- map
A (sz’ %) — (Xrl, ) from an S-space (sz’ %) into an
S-space (X, , *). In our work, for any S-space, (O,, ) can be
regarded as an c-bitopological semigroup (O, °, id) where id
is the identity S-map on (O o). That is, (O 0) = (O 02 id).

An c-map from (X, ,* ,SZ) into (O,, o) is a pair f12 =

(fi» f) (Xe, X)) = (O,0) of an S;-map f;
(Xe>*) — ( o) and S,-map f, : (X ,*) — (O,,°) such
that f; o X = f2.

Definition 1 (see [6]). Let f : (X,,*) — (O,,°) and h :

(XL, #") = (X,,*) be two S-maps. An S-map f is said to
have the Cy-fibration property by an S-map / provided for
every (Y,,*) € N and, given two S-maps g : (Y, *) —
(XL, #)and G : (Y,,*) — P(O,,°) with G, = f o (hog),

there exists an S-homotopy H : (Y,,*) — P(X,, *) such
that Hy=heogand f o H, =G, forallt € I.

Definition 2 (see [6]). An c-map f;, : (XT , 5, — (Op,o)
is called an C-fibration if an §;-map f; : (XT %) = (Op,0)
has the Cy-fibration property by an S-map - (Xg, %) —

(X;» *). That s, for every (Y,,, *) € N and given two S-maps
g: (Y, %) = (X, *) andG : (Y, *) — P(O,,°) with G, =
f> © g, there exists an S-homotopy H : (Y, ) — P(X,, *)
suchthat Hy = X o gand f; c H, =G, forallt € I.

Let (X, ,*, %) be an c-bitopological semigroup and let
(Bl *) be an b- subspace of (X;,,» *)- The c- bitopological
semlgroup (BIT , %, B) is called an c- subspace of (XT , %, )
provided %B(b) = X'(b) for all b € B.

Theorem 3 (see [6]). Let f, : (Xru,*,.fl’) — (Op,o) be
an c-map and (Bl °) be an S-subspace of (O,,°) such that
f'(B) = f,"(B). Then the triple (B~ | % L1p-) is an c-
subspace of (X, ,*, ) and a pair fi,|lg- = (filg-> folp-) is
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an c-map from an c-bitopological semigroup (B | MAPS)

into (B|, o), where B~ = £1(B).

Ty *,

Corollary 4 (see [6]). Let fi, : Xz, % L) = (0,,0°) be an
Cy-fibration and let (Blp, o) be an S-subspace of (Op, o) such
that ffl(B) = f;l(B). Then the restriction c-map

folg (B ], Zlg-) — (Blyo) (1)

is an Cy~fibration, where B~ = f; ' (B).

3. The Pullback c-Maps

In this section, we show that the pullbacks of S-maps which
have the Cy-fibration property will also have this property
and the pullbacks of Cy-fibrations are Cy-fibrations under
given conditions.

Let f1, : (X;,, % Z) — (O,,°) be an c-map and let h :
Q,0) — (O , )be an S-map. Let

={(x,b) € X x Q| fi (x)

wherei =1,2.

=h(b)}, )

Lemma 5. Let fi, : (X, ,*2) — (O,¢) be an c-map
and let h : (Q,,0) — (O ,®) be an S-map. Then the pair

(xM |7, x> *X@) is an b-subspace of the bitopological semigroup
(X X Q) 0o * X ©), wherei =1,2.

Proof. It is clear that X" |7 xo and Xhzl-rlzxv are subspaces of
a bitopological space (X x O), .. Since his an S-map and f,

is an S;-map, then, for all (x, b), (x',b") e XM,
h(bob')=h®) h(b)=fi(x)e f(x') = fi (x=x").
3)
This implies
(x,b) (* x ©) (x',b') = (x * x',b@b’) e xM (4)

for all (x,b), (x',b') € X" That is, (X", ..,
subspace of the bitopological semigroup ((X x O)

©). Similarly, (Xh2|TIZXU,* X ©) is an b-subspace of the
bitopological semigroup ((X x O); ., * X ). O

* X @) is an b-

Ty XV? * X

Henceforth, in this paper, by ., and 7,, we mean the
usual first and the second projection S-maps (or maps),
respectively.

Theorem 6. Let fi, : (X,,*Z) — (O,,°) be an Cy-

fibration and let h : (QU,O) — (0,,°) be an S-map. Then the
S-map f* + (X", 1 % x©) = (Q,,©) has the Cy-fibration
property by an S-map X" = X xid| e such that f* (x,b) = b
for all (x,b) € X™.

Proof. Since f,, is an c-map then, for all (x, b) € X",

Fi (X (x) = f,(x) = h(D). (5)
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Thatis, (2(x),b) € X™ forall (x,b) € X". Hence, by the last
lemma, 2" is a well-defined S-map taking (X" * X Q)
into (Xh1|T1XU, * X Q).

Now let (Y, x) € Nandletg: (Y,,*) — (Xhzlrzxv, * X
0)and G : (Y,,x) — P(Q,,®) be two S-maps with G, =
fhl ° (g-h o g)

Takean S-map g’ = £, 09 : (Y, x) — (X,,» *) and an
S-homotopy

XV

G =hoG:(Y,,*) — P(O,°). (6)
‘We observe that

G (») O =h[G) O] =h[(f"2")(g(»)]
=h{f" 2 (7, (g (), 72 (g W]}

=h[ 7)) = L1 O] = £(4 ()
(7)

forall y € Y. Thatis, G, = f,og'. Since f;, is an Cy-fibration,
then there is an S-homotopy H' : (Y, %) — P(X, , ) such
that H)= 2 o g' and f, o H = G, forallt € I.

Define an S-homotopy H : (Y,, x) — P(X"|
by

* X Q)

T XV?

H(y)®=[H () ®),G(y)®)] (8)

forall y € Y,t € I. We observe that f*' o« H, = G, forall t € I
and

H(y) (0) = [H' () (0),G(y)(0)]
=[2(d' ). (" 2") (9 (»))]
=[Z(F1(g(), 72 (g ()] )
= 2" [71(g(1). 72 (g (»)]
=2"(9(») = (2"°9)(»)

forall y € Y. Thatis, H, = " o g. Hence f™ has the Cy-
fibration property by an S-map " h O

In the last theorem, if f; = f, (i.e., f;, is an Sp-map), let

f=fi = fythen

X" = X xidlyn : (X", # x©) — (X", 0 * x O)
(10)

is a well-defined S-map taking (Xh|12xw* X ©) into

(Xhl'rlxv’ * x @), where X" = X" = X" That is, the triple
h

(X, o

a pullback c-bitopological semigroup of (X
from f;, by h. The pair

* X ©,2™) is an c-bitopological semigroup, called
%, 2) induced

T2’

fo= (" ") - (X 1y x vl 7, x 0l x) g — (Q,,©)
(11

which is given by f"(x,b) = b for all (x,b) € X" is an c-map,
called a pullback c-map of f,, induced by h. We observe that

(ffo2")(xb) = (X (x).b)=b=f"(x,b) (12)
for all (x,b) € X".

Theorem 7. Let fi, = (f, f) : (X, ,* ) — (Op,o) be an
Cy-fibration and let h : (Q,,0) — (Op, o) be an S-map such
that X" N X" # ¢. Then the pullback c-map flh2 of f, induced
by h is an C-fibration.

Proof. It is obvious by the last theorem and the second part
in Definition 2. 0

4. The c-Lifting Functions

In this section, we define the path lifting property for c-maps
by giving the concept of an c-lifting property and we show its
role in satisfying the Cy,-fibration property.

Recall [5] that for an S-map f : (X,,*) — (Op, o),
the map: « — f o« forall « € P(X,) is an S-map
from P(X,, %) into P(O,,°), denoted by f. Then for every
c-bitopological semigroup (X, ,*, Z), Z is an S-map from
P(X, , %) into P(X , *). That is, the triple (P(X)sz, p(), Z)
is an c-bitopological semigroup where 7] and 75 are compact-
open topologies on P(X) which are induced by 7, and
T,, respectively. The shorter notion for this c-bitopological
semigroup will be P(X ,*,Z).

Foramap f: X, — O,, by A(f), we mean the set

A(f)={xa) e X, xP(0,) |a(0)=f(x)}. (13

Proposition 8. Let f : (X, *) — (Op, o) be an S-map.
Then (A(f)l,xpc, s X p(o)) is an S-subspace of an S-space ((X x
P(O))gype> * X plo)), where p© is a compact-open topology on
P(O) which is induced by p.

Proof. It is clear that A(f)|,, oo isa subspace of a space (X x
P(O)) - We observe that, for all (x, a), (', a') € A(f),

(ap@)a’) () =a (0 ea’ (0)=f(x)o f(x')=f(x*x).
(14)

That is,
(x, ) * Xp (o) (x’,oc') = (x # x',ap (o) oc') eA(f). (15)

Hence (A(f)lrxpc, % X p(o)) is an S-subspace of an S-space
(X X P(O)) o> * X p(o)). O

In the last theorem, the shorter notion for the S-space

(A(f)zxpe> * x ple)) will be A(f)l 7y pe-

Definition 9. Let f, : (X
An S-map

#, ) — (O,,0) be an c-map.

T2 0

L:A(fy) |y — P(X %) (16)

from an S-space A(f,)l, ¢ into P(X, , *) is called an c-lifting
function for an c-map f;, provided L satisfies the following:



(1) L(x, )(0) = Z(x) for all (x, ) € A(f,);
(2) fi o L(x,a) = a for all (x, ) € A(f,).

And A ¢ will be denoted to c-lifting function for an c-map f;5,
if it exists.

Example 10. Let(X ,*,Z’)bean c-bitopological semigroup.
For every S-space (O, °), the Sp-map

fo=(Ff): (Xx0)y p % x 0, xid) — (O,,0)
(17)

is an c-map, where f(x, y) = yforall x € X, y € O. Note that
[fo (X xid)] (%, y) = f(X(x),9)=y=f(xy) (8
forall x € X, y € O. This c-map has an c-lifting function
Ap i D) lpxppepr — P((XXO)p oy x0)  (19)
which is given by
s (b)) () = (2 (), ()
V((x,b),a) e A(f), tel.
Note that
s ((x,6),@) (0) = (2 (x),a(0)
= (X (), f (x,b))
= (2 (x),b) (21)
= (I xid) (x,b),
[fods (b)) = f(X(x),a(t) = a)
forall ((x,b), ) € A(f),t €I

The following theorem clarifies the existence property for
c-lifting function in Cy-fibration theory. That is, it clarifies
that the existence of c-lifting function for any Cy-fibration is
necessary and sufficient condition.

Theorem 11. An c-map fi, = (X ,*, ) — (Op,o) is an
Cy-fibration if and only if there exists an c-lifting function for
fro-

Proof. Suppose that f;, is an Cy-fibration. Take A(f,)l, ¢ €
N. Define two S-maps

91 8] — (Xen)s

G+ Mf)lrype — P(Opr)

(22)

by g(x,«) = x and G(x,a) = « for all (x,&) € A(f,),
respectively. We observe that

G(xa)(0)=a(0) = f,(x)=(f,°9)(xa). (23)
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Since f,, is an Cy-fibration, then there exists an S-homotopy
H : A(fz)lfzxpc — P(X,,*) such that Hy = & o g and
fieH, =G, forallt € I. Define an S-map

Aps 8| — P (Xeo) (24)
by
Ap(ma) () =Hxa) () Yxa)eA(f,). (25)
We observe that, for all (x, «) € A(f,),
s (%) (0) = H (x,) (0) = (2 ° g) (x,0) = L ()
fieds(na) = fioH(x,a) =G (x,a) = a. 26)

That is, A ; is an c-lifting function for fi,.

Conversely, suppose that there exists an c-lifting function
/\f for f,. Let (Y, x) € Nandletg: (Y,,*) — (sz’ %) and
G: (Y, *) = P(O,,°) be two given S-maps with G = f,°g.
Define an S-homotopy H : (Y, *) — P(X,, )by

H(y)®)=As[g(y).G(»)]®)

We observe that
H(y)(0)=21;[g(»),G(»](0)=(L°g)(y),

(28
AHG) O] = fi[Al9().GN®] =G(y) @)

forall y e Y,t € I. Thatis, Hy = & o g and f, o H, = G, for
allt € I. Hence f;, is an Cy-fibration. O

VyeY, tel. (27)

Theorem 12. Let f, : (X
fibration. Then the c-map

fo=(ffo) : P(X,,5.Z) — P(0,,0) (29)

is an Cy-fibration.

) — (Op,o) be an Cy-

T2’

Proof. Since f,, is an Cy-fibration, then there exists c-lifting
function

As i ACSH)|

for f,, such that

o p (XTI, *) (30)
Ay (6,a)(0) = 2 (),

h o/\f(x,oc) =«

for all (x,a0) € A(f,). Let (Y, %) € Randlet g : (Y,,*) —
P(X,,%)and G : (Y,, %) — P[P(O), p(°)] be two given
S-maps with

(31)

(G(») ©]©) = (fro9) (¥) () (32)

forall y € Y, s € I, where p° is a compact-open topology
on P(O) which is induced by p. Define an S-homotopy H :
(Yy» %) = P[P(X)ye, p(+)] by

[H(y) ()] ) =A;[g(»)(s),G(y)(s)] ()
VyeY, s;tel

(33)



The Scientific World Journal

We observe that
[H (y) ()] (0) = A;[g () (5),G () ()] (0)
=Z[g() ] =(Z-9) (1)),
(fioH)(»)® =(fior;[9(»)(9),G(»)®)])®
=[G(y) ()] @),

forall y € Y, s,t € I. Thatis, Hy = 2 o g and f, o H, = G, for
all s € I. Hence f, is an Cy-fibration. O

An c-lifting function A ; is called regular if for every x €

Xe» Ap(x, fr0X) = Z(x), where X is the constant path in X

(i.e., X(t) = x), similar for m An Cy-fibration f, is called
regular if it has regular c-lifting function.

Example 13. In Example 10, the c-lifting function A ; which is
given by

A ((x,0), ) (1) = (X (x), ()
V((x,b),a) € A(f), tel

(35)

is regular. Note that, for every (x,b) € (X x O)Tz,

A (b, fr0(68)) (1) = (2 (), (fy o (x.0)) (1)
= (T (%), f,(x.b))
= (X (x),b) = (X xid) (x,b)

= (X xid)(x,b) (1)
(36)

forallt € I.

The following theorem is an analogue of results of Fadell
in Hurewicz fibration theory [7].

Theorem 14. Let f1; : (X, ,,* ) — (O,,°) be a regular
Cy-fibration and let

MiP(Xe) = A, )

be an S-map defined by M;(«) = («(0), f;o«) forall« € P(XTi)
wherei = 1,2. Then

(1) Ml OAf S &"X ldlA(fz)’

(2) Ao M, = X preserving projection. That is, there is an
S-homotopy

H:P(X,,*) — P[P(X), p(+)] (38)

between two S-maps A o M, and X such that
FHLH@E@)($))®)] = fr(alt)) forallt,s € I € P(X,).

Proof. For the first part, we observe that, for every (x,a) €

A(f),
(My o ds)(x,0) = My [A g (x,0)]
=(A; (%00, fiod;(x) (39
= (X (x),a) = (X xid) (x,q).
Thatis, M, o A ;= 2 x id|;,)-

For the second part, for ae P(X,)ands € I, define a
path B~ € P(O,) by

for0<t<1-s,
forl-s<t<l.

frla(s+1),

f2 (“(1))a (40)

/31—3 (t) — {

By the regularity of A, we can define an S-homotopy H :
P(X,,,*) = P[P(X), p(+)] by

EAIGIE for0<t<s,
[H () (5)] (t) = {Af ((X (S))ﬂl—s)(t_s)) fors<t<l,
(41)

foralls € I, € P(X_ ). Then

[H (o) (0)] (1) = A s ((0), B") (1)
= A (a(0),p) ()
=As(a(0), feo) (1) (42)
=(Apo M) (@) (®),

[H () ()] (1) = X [ec(8)] = X (o) (1)

foralla € P(X,),t € I. Thatis, A o M, =, Z. Also we get
that

[f1 o (H (o) (5))] (¢)
A& [a@®)]), for0<t<s,
B fl[/\f<‘x(5),ﬁ17$)(t—s)], fors<t<1;
[frta@)y, foros<t<s,
BTt =), fors<t<;
(43)
_L®), for0<t<s,
| fas+t-s), fors<t<l;
| fole(®), for0<t<s,
| AH@@), fors<t<;
= f(« (),

forall s,t € I, « € P(X,)). Hence A ¢ o M, =,  preserving
projection. O



5. Approximate Fibrations

Coram and Duvall [2] introduced approximate fibrations as
a generalization of cell-like maps [3] and showed that the
uniform limit of a sequence of Hurewicz fibrations is an
approximate fibration. A map f : X, — O, of compact
metrizable spaces X, and O,, is called an approximate fibra-
tion if, for every space Y, and for given € > 0, there exists § >
0 such that whenever g : Y, — X andH :Y,xI — O, are
maps with d[H(y,0), (f » g)(y)] < 8, then there is homotopy
G:Y,xI — X, suchthatG, = gand

d[H(,t),(f°G)(y.t)]<e VyeY,tel  (44)

One notable exception is that the pullback of approximate
fibration need not be an approximate fibration.

The following theorem shows the role of the C, -
fibration property in inducing an approximate fibration
property.

For an S-map f : (X,,71) — (Op,rt) with metrizable
spaces X, and O,, by d, and d ,, we mean the metric functions
on X and O, respectively; by X x O we mean the product
metrizable space of X and O, with a metric function

d((xb),(x,b")) = max{d, (x.x"),d, (b,b')}; (45)

by €/ we mean the graph of f (ie., gl = {(x, fx) :x €
X1}) which is an S-subspace of ((X x O)zxp> )3 for a positive
integer n > 0, by €"( f), we mean the (1/n)-neighborhood of
©/ in a metrizable space X x O which is also S-subspace of
(X X O) x> 7).

Theorem 15. Let f : X, — O, be a map with compact
metrizable spaces X, and O,. Then f is an approximate
fibration if and only if, for every positive integer n > 0, there
exists a positive integer m > n such that the S-map f, :
(&"(f),m) — (O,,m) has the C,,,_-fibration property by the
inclusion S-map .7, : (§"(f),n) — (&"(f),n), where
Ju(x,b) = b forall (x,b) € E"(f).

Proof. Let n be any positive integer. For € = 1/n > 0, let § be
given in the definition of approximate fibration. Since §/2 > 0
and f is a continuous function, then let 8’ be chosen such that
if x,x' € X and d_(x,x") < &', then dp(f(x),f(x')) < €/2.
Choose a positive integer m > n, such that 1/m < &', 8/2.
Now let (Y,,m) € &, andlet g : (Y,,m) — (Z"(f),m)
and G : (Y, m1) — P(Op,ﬂ) be two given S-maps with
Gy = f,°(I" og). Defineamap g : Y, — X,by
g'(y) = 7,[g(y)] and a homotopy G : Y, xI — O,
by G'(y, t) = G(y)(t) forall y € Y andt € I. We get that

gly) = (g'(y),G'(y, 0)) for all y € Y. Since g(y) € &"(f),
then there exists x € X such that

a[(x £ ()9 0] < - (46)
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Then

d.(x.g'(y)) < i <&,

d,(fx),G (50) <

< -, (47)

[SRReZ)

1
m

<

NS

1
m

d,(f ). f (g () <
for all y € Y. This implies

d,(f (g ().G (»0)

<d,(f(d (), f®)+d,(f(x),G (50)) (48)
<8

forall y € Y. Hence, since f is an approximate fibration, there
exists a homotopy H' : Y,, x I — X, such that H; = g’ and

d. (G'(»t),(foH) (y) <e (49)

forall y € Y, t € I. Define an S-homotopy H : (Y,,n) —
P(G"(f),m) by

H(y)(®)=(H (51),G(y)(t)) V¥yeY, tel (50)

Then we get that
H(y)(0) = (H' (5,0),G(») () = (¢' ()G (») (@)

=g(»)=(Fne9) ()
(51)

forall y € Y and f, o H, = G, for all t € I. Hence f, has the
C.y_-fibration property by .77 .

Conversely, let € > 0 be given. Since f is a continuous
function, then let 8’ be chosen such that if x,x’ € X and
d.(x,x") < &, then dp(f(x),f(x')) < €/2. Choose a positive
integer n > 0 such that 1/n < &', €/2. By hypothesis, there
exists a positive integer m > n such that f, has the C -
fibration property by .77, .

Take § = 1/m. Let Y, be any space andletg : Y, — X,
and G : Y, xI — O, be two given maps with

d,[G(5,0),(f=9) (y)] <o (52)

forall y € Y. Define an S-map g’ : (Y,, ) — (¥"(f),n) by
g (y) = (g(»),G(y,0)) and an S-homotopy G’ : (Y,,7) —
P(Op,z) by G/(y)(t) = G(y,t)forall y € Yandt € I. Since
Gy = f, o (I% o g'), then there exists an S-homotopy F :
(Y, ) — P(Z"(f),7)suchthat Fy = 7" o g’ and f, o F, =
G; for all t € I. By the last part, we can define a homotopy
H:Y,xI — X_ by

H(y,t) = 7, [F(y) ®)]

We get that F(y)(t) = (H(y,t),G(y,t)). Since F(y)(t) €
Z"(f), then there exists x € X such that

VyeY, tel (53)

a[(x f (), F() @] < - (54)
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Then

1 ' 1
d. (e H(n1) < <8, d,(f).G(n) <+ < g

<

X

S =
[N}

d, [f ), f (H (1)) <
(55)

This implies
d, [G (1), f (H (5.1))]
<d, [ (H(3.0)), f ()] +d, (F (.G (31)) < e
(56)

forall y € Y,t € I. Hence f is an approximate fibration. [J
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We have given a four-step, multipoint iterative method without memory for solving nonlinear equations. The method is constructed
by using quasi-Hermite interpolation and has order of convergence sixteen. As this method requires four function evaluations and
one derivative evaluation at each step, it is optimal in the sense of the Kung and Traub conjecture. The comparisons are given with
some other newly developed sixteenth-order methods. Interval Newton’s method is also used for finding the enough accurate initial
approximations. Some figures show the enclosure of finitely many zeroes of nonlinear equations in an interval. Basins of attractions

show the effectiveness of the method.

1. Introduction

Let us consider the problem of approximating the simple root
x* of the nonlinear equation involving a nonlinear univariate
function f:

f(x)=0. €]

Newton’s method and its variants have always remained as
widely used one-point without memory and one-step meth-
ods for solving (1). However, the usage of single point and
one-step methods puts limit on the order of convergence and
computational efficiency is given as

E= pl/e, (2)

where p is the order of convergence of the iterative method
and 0 is the cost of evaluating f and its derivatives.

To overcome the drawbacks of one-point, one-step meth-
ods, many multipoint multistep higher order convergent
methods have been introduced in the recent past by using
inverse, Hermite, and rational interpolation [1, 2]. In develop-
ing these methods, so far, the conjecture of Kung and Traub
has remained the focus of attention. It states the following.

Conjecture 1. An optimal iterative method without memory
based on n evaluations would achieve an optimal convergence

order of 2", hence, a computational efficiency of 20" V/"

In [3, 4], Petkovi¢ presented a general optimal n-point
iterative scheme without memory defined by

Xpa1 = G (%) = N,y (Nn—z ( " (Nz (‘//f (xk))) e )))
k=0,1,2,...,

3)

where x; is the approximation of the root x™ at the kth iter-
ation and y¢(x;) = ¢,(x;) is an arbitrary fourth-order, two-
point method requiring three function evaluations:

) )
¢m+1 (xk) - Nm (¢m) - ¢m f, (¢m)7 2,...

,n—1
(4)

is Newton’s method. The derivative at m + 1-step is approx-
imated through quasi-Hermite interpolatory polynomial of
degree m + 1, denoted by 1! (,,,)-

Using this approach, Sargolzaei and Soleymani [5] pre-
sented a three-step optimal eighth-order iterative method.
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However, since the authors approximated the derivative at
the fourth step by using Hermite interpolatory polynomials
of degree three, therefore the fourth-step method given by
Sargolzaei and Soleymani has order of convergence fourteen
including five function evaluations, which is not optimal in
the sense of Kung and Traub.

In this paper, we present an optimal four-step four-point
sixteenth-order convergent method by using quasi-Hermite
interpolation from the general class of Petkovi¢ [3, 4]. The
interpolation is done by using the Newtonian formulation
given by Traub [6]. The numerical comparisons are given
in Section 4 with recent optimal sixteenth-order convergent
methods based on rational interpolants. Since, the first step of
our method is Newton’s method, thus to overcome the draw-
backs of Newtons method we have calculated, in Section 5,
accurate initial guess required for the convergence of this
method for some oscillatory functions.

2. Construction of Method

We define the following:

b L)
)

2y = V/f (xn’yn) >

©)
t, = (Pf (xn’ yn’zn) >
A
f1(t)
where y(x,, y,,) and ¢ ((x,, ¥, z,,) are any arbitrary fourth-
and eighth-order, multipoint methods. We, now, approximate

f'(t,) with a quasi-Hermite interpolatory polynomial of
degree four satisfying

f(x) = hy(x,),
I (%) = (),
F ) =hs(3) (6)
f(zn) =hy(z,),
f(tn) =hy(t,).

To construct the interpolatory polynomial h(t), satisfying
the above conditions, we apply the Newtonian representation
of the interpolatory polynomial satisfying the conditions

p&) (x,-,j) = f&) (x,-,j), ki=01,....y;-1,

Xn+1 = tn

(7)
YjZL j=0>1,2,3,....
Traub [6, p. 243] have given this as follows:
hy (t) = Py, (1)
3 -1 .
= Z Z Cl,Jj (t) f [xi’ Yos Xi—15 Y55 xi—j)l + 1] s
=0 1=0
(8)
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j-1 -1
(t—x0)"
k=0 0

Cry 0 =(t- )

The confluent divided differences involved here are defined
as

f ['xi’ Yos--- ;xi—q’ Yq; S Xy V5 X YH]
1
(xi*q _xi*r)
X (f [xi,yo;...;xi_q,yq;...;xi_r,yr - 1;...;x,~_n,yn]

_f[xi,yo;...;xi_q,yq -1
;xi*n’ Yn] )>

O (x, .
flxpl+1] = #

..;xl;r,yr;...

(10)

In particular, f[x;_ i 1] = flx;_ j] is the usual divided differ-
ence. Here, we take x; = t,, x;_| = 2,, X;5 = V,» Xj_3 = X,
and hence, y, = 1,9, = 1,9, = 1, and y; = 2. Expanding (8),
we get

hy (£)
= f(t) +(t=t,) f [t 2]
+(t = 1,) (t = 2,) f [t 2 7]
+(t=t,) (t = 2,) (t = 2) £ [t 2> Y %]
+(t =) (t = 2,) (t = 3,) (t = %) [ [t 2o Yoo X0 2] -
(11)

Differentiating (11) with respect to “t” and substituting ¢ = t,,
in the above equation, we obtain

hzll (tn) = f [thn] + (tn - Zn) f [tn’zn’ yn]
+ (tn - Zn) (tn - yn) f [tn’ Zp> yn’xn]

+ (tn - Zn) (tn - yn) (tn - xn) f [tn’zn’ Yo Xn> 2] >
(12)

where

f [tn’zn’ yn] = ( (f [tn’zn] _f[tn’yn])’

tn - yn)
S [t 20> Yo %]
1

= m (f [tn’zn] _f [Zn’yn])

. : 2] = f D))

(tn - xn) (Zn —Xn




The Scientific World Journal

f [tn’ Zp> V> Xp> 2]

1
B (tn - xn)z (tn - yn) (f [t”’ Z”] f [zn) yn])
1
I R
1
(20 = %) (s = x,) (f [z 3] = f [y x4])

N 1
(tn - xn) (Zn - xn) (yn - xn)

X (f [yn’xn] - f’ (xn)) .

(13)

Using representation (12) of hfl(tn) in place of f '(t,) at the
fourth step, the new four-step iterative method is obtained as

Zp = 1//f (xn’yn) >
t, = (Pf (xn’ yn’zn) >

S
TG

where y((x,,y,) and @/(x,, ,,2,) are any fourth- and
eighth-order convergent methods, respectively, and

Ry () = f [t 2] + (8, = 2,) f [t 20 2]
+ (0= 24) (tn = 3) S [t 2 Y %]
+ (= 24) (b0 = 3) (5 = %) f [t 20> Yoo X0 2] -
(15)

(14)

Theorem 2. Let one consider x* as a root of nonlinear equa-
tion (1) in the domain D and assume that f(x) is sufficiently
differentiable in the neighbourhood of the root. Then the
iterative method defined by (14) is of optimal order sixteen and
has the following error equation:

€1 = Xnp1 — X* = _Czbl (aICS - bl) 6:16 +0 (627) > (16)
where ¢, for i > 2, are defined by

_1(f0K)

LAt f(x)

Proof. We write the Taylor series expansion of the function f

about the simple root x* in nth iteration. Lete, = x,, — x™.
Therefore, we have

), i=0,1,2,3,.... (17)

Fl) = f1 (") [en + ey +aey +ae, + e, "
18
+ céefl + 076; + csefl +0 (e?l)] .

Also, we obtain

f(x,) = f (x*) [1 +20e, + 3c3ei + 46462 + 5656;11 )
19
+ 6c6e,51 + 70762 + SCSeZ, +0 (ef,)] .

Now, we find the Taylor expansion of y,, the first step, by
using the above two expressions (18) and (19). Hence, we have

Vo = czefl + (2c3 - 2(;22)(32 + (3c4 —766 + 4c23) efl

+ (4c5 = 10¢,¢, — 6c32 + 20c3c22 - 8(24) ei +0 (e:) .
(20)

Also, we need the Taylor expansion of f(y,); thatis
S ()
= f'(x7)
X [czefl —2(622 —@)eft + (3c4 -766 +5623)e:t

-2 (—2c5 +56¢, + 3c33 ~ 1266 + 6a§) e +0 (32)] .
(1)

In second step, we take a general fourth-order convergent
method as

z, = alez + azez + a3efl + 6146’71 + asefl +0 (ez) ,
! ® 4 5 6
f (Zn) = f (x ) [alen + 5he, + ase, (22)
+ a4ezl + (czaf + as) ei +0 (ez)] .

Now, we find the Taylor expansion of each divided difference
used at the third step. We thus obtain

%0 7]
=f () [1+ae,+(a+q)e

+(c 4366 -26) e +---+0(e))].
f % 2]

= f(x") [1 +6e, +c3ei e

n
+(c5+c2a1)efl+--~+0(6,9,)],

I 2]

= f’ (x7) [1 +c22efl -2¢, (—c3 + é)ez
+02(3c4—6czc3+4c23+a1)efl+-~-

f [ %0 %]

= f’ (x7) [Gz +26e, + (3¢, + Gz%)zei

+ (ZQQ1 - 2(:3(;22 + 4c5 +2c32)efl e +O(e9)].

n

(23)

In the third step, we take a general eighth-order convergent
method as follows:

8 9 10 11 12 17
t, = be, +be, +be, +be, +bse, +---+O(en ),

(24)



and the Taylor expansion for f(t,) is

f(t,)
= f1(x%)
X [blefl + bzef, + b3erll° + b4e,111 + b5e,1,2 +--+0 (erlf)] .
(25)

Now, we find the Taylor expansion of divided differences used
at the last step. We, thus, obtain

f [tn’ Zn> yn]

= ' (x") [oz +(2c3efl -2¢ (—03 +622)ei +---+O(e:l7)] ,
f [tn’ Zn’ yn’ xn]

= f’ (x%) [53 +cge, + (00 + C5)efl
+(2%c4—622c4+c6+0265)e2+-~

S [t 2o Y %21

= f(x") [c4 +2cse, + (3¢5 + 665) efl

+ (20266 +4c, + 2c365 — Zszcs)ez +eeet O(e”)].

n

(26)
Hence, our fourth step defined in (14) becomes
Xp1 = —Gby (@16 —b) e, +O (67117) , (27)

which manifests that (14) is a four-step iterative method
of optimal order of convergence of sixteen consuming four
function evaluations and one derivative evaluation. ]

Remark 3. Tt is concluded from Theorem 2 that the new
sixteenth-order convergent iterative method (14) for solv-
ing nonlinear equations satisfies the conjecture of Kung
and Traub that a multipoint method without memory with
four evaluations of functions and a derivative evaluation can
achieve an optimal sixteenth order of convergence (2* = 16)

and an efficiency index of 2*/° = 1.741.

3. Some Particular Methods

In this section, we consider some particular methods from
the newly developed family of the sixteenth-order convergent
iterative methods.

3.1 Iterative Method M1. Here, we take y¢(x,, ,,) as two-step
fourth-order convergent method defined by Geum and Kim
[7] and the third-step ¢ ((x,, ¥, 2,) is replaced by the third
step of eighth-order convergent method given by [5] using
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Hermite interpolation. Hence, our four-step method
becomes
X
= f,( n
[ (%)
2
o= (1 L) L0
fG) ) f (%)
tw =2, — f (Zn)

X (Zf [xn’ Zn] + f [yrvzn] - 2f [xn’ yn]

-1

+ (yn _Zn)f[yn’xn’xn]) >
f(t)

Xyl = tn - héll (tn)’

(28)

where hfl(tn) is given by (15).

3.2. Iterative Method M2. Here, we define y ((x,, y,,) as King’s
two-step fourth-order convergent method [8] with § = 0, as

IACH
T )

L) fls)
T ) ) =20 )

Hence, our four-step iterative method becomes

S
T )

o f (5,
) F ) -2 O

tn =z, = f (Zn) (30)
X (Zf [xn’zn] + f [yn’ Zn] - Zf [xn’ yn]
+ (yn - Zn)f[yn’ Xy xn])_l’

A
EACHE

(29)

=t

Xn+1

where hg(tn) is given by (15).

4. Numerical Results and Computational Cost

In this section, we compare our newly constructed family
of iterative methods of optimal sixteenth-order M1 and M2
defined in (28) and (30), respectively, with some famous
equation solvers. For the sake of comparison, we consider
the fourteenth-order convergent method (PF) given by Sar-
golzaei and Soleymani [5] and the optimal sixteenth-order
convergent methods (JRP) and (FSH) given by Sharma et al.
[1] and Soleymani et al. [2], respectively. All the computations
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TABLE 1: Numerical examples.

Numerical example Exact zero
X
i) = sin (%) = £ x* = 0.0000000000000000
i X
fo (x) =™ _1 - 5 x* = 0.0000000000000000
£y (%) = €™ + cos (x) x* = 1.7461395304080130
(%) = x* +4x* - 15 x* = 1.6319808055660635
fo (%) = 10xe™ — 1 x* = 1.6796306104284499

fo (%) = Vx2+2x+52sin (x)-x*+3 X" = 2.3319676558839640

TaBLE 2: Comparison table for f;(x).

fl(x), Xo =-09 n |f1(x1)| |f1(x2)| |f1(x3)|
PF 3 0.602107°  0.244107'%°  0.907 10721
JRP 3 0234107 0205107 0.133107%%*
FSH 30149107  0.286107'%  0.2481077%
3
3

Ml 0.13810°  0.561107"°  0.349107%%
M2 0.419107  0.737107'*  0.107107*"

TaBLE 3: Comparison table for f,(x).

(%), x,=10 n [ f5(x) | £5(x,)] [ £5(x5)]

PF 3 0.17810° 0455107 0.2271070%°
JRP 3 0815107  0.143107%¢  0.1241073%°
FSH 3 037510 0299107  0.139107'%°
M1 3 023910°% 0610107 0.192107%**
M2 3 020210°% 0631107 05101073

TaBLE 4: Comparison table for f;(x).

fa(x)> Xo = 05 n |f3(x1)| |f3(~x2)| |f3(x3)|

PF 30628107  0.899107'¢  0.1971077*
JRP 30992107 0.111107%%  0.734107%%°
FSH 30335107 0.701107'%  0.942107%*
Ml 3 014310°  0.850107"°'  0.204107%*%
M2 3 010310° 0197107  0.655107%¢

are done using software Maple 13 with tolerance ¢ = 107'°%°

and 4000 digits precision. The stopping criterion is

|f (x,)] < & 31)

Here, x* is the exact zero of the function and x, is the initial
guess. In Tables 1-9, columns show the number of iterations
n, in which the method converges to x”, the absolute value
of function | f(x,,)| at nth step, for n = 1, 2, 3. The numerical
examples are taken from [1, 2].

We now give the numerical results of our new schemes
in comparison with Newton’s method for three oscillatory
nonlinear functions, f,(x) = —cos(2 - x2) + log(x/7) +
(1/10) in the domain [1, 15] having 69 zeroes, fg(x) = (x* -
4) sin (100x) on the interval [0, 10] having 320 zeroes, and
folx) =™ (log(x) cos (20x)) _ 5 i1y the domain [2, 10] having 51
zeroes using the same precision, stopping criterion, and tol-
erance as given above. The first two functions f,(x) and fg(x)

5
TaBLE 5: Comparison table for f,(x).

fu(x), x=3.0 n | f4(x)) [ f4(x,)] [ f4(x5)]
PF 3 0.00023181 0.47110°%"  0.410107*
JRP 3 0.00001307 0.455107'°  0.214107'%78
FSH 3 0.00023181  0.471107%"  0.410107'%*
Ml 3 0.00023181  0.471107%"  0.410107'%*
M2 3 0.890107°  0.159107'°  0.180107'7**

TaBLE 6: Comparison table for f5(x).

fs(x): X0 =00 n |f5(x1)| |f5(X2)| |f5(X3)|

PF 303221077 0.430107%°  0.247 107

JRP 30186107  0.128107%2 0

FSH 30101107 0230107 0

M1 30955107 0.884107%% 0

M2 3 0860107 0511107 0
TABLE 7: Comparison table for f,(x).

fs(x): Xo = 20 n |f5(x1)| |f6(xz)| |f5(x3)|

PF 30125107 0.336107%¢  0.354107*

JRP 30263107 02731071 0

FSH 30346107 0.549107°" 0.2107%%

Ml 30138107 0.119107% 0

M2 3 0.156107%  0.165107*'€ 0

TaBLE 8: Comparison table for f,(x), fg(x), and fy(x).

f(x) NM Ml M2
17 (x) n 10 3 3
=32 |5 (x,)] 0.118107"°% 0.135107*"° 0.243107°°°
x* 3.253180973  3.253180973  3.253180973
f7 (x) n 13 4 4
X, = 3.0 |5 (x,)] 0.1261077% 010107  0.101077*
x* 3.253180973  3.253180973  3.253180973
17 (x) n — — -
B L - -
x D D D
fi (x) n 10 3 3
Xy =28 |fs (x,)] 0.1261077% 0.115107*° 0.115107*°
x* 2796017462 2.796017462  2.796017462
fs (x) n 11 4 3
Xy = 2.4 |fs (x,)] 0221107 07261077  0.706 107"
x* 2.481858196  2.481858196  2.387610416
fs (x) n 12 4 3
% = 140 |fs (x,)] 0.587107%% 0.594107"* 0.580 107"
x* 14.01150324  14.01150324  14.01150324
fo (x) n 11 3 3
Xy =218 |fs (x,)] 0170107 0.175107°  0.156 107**
x* 2188557091 2188557091  2.188557091
fo (x) n 12 4 4
Xy = 215 |fo (x,)] 0120107 0.10107*  0.10107*
x* 2188557091 2188557091  2.188557091
fo (x) n — — -
B - -
x D D D

D stands for divergence.
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TABLE 9: Comparison of computational costs.
Order Addition/subtraction Multiplication/division Total

PF 14 27 21 48
JR 16 30 41 71
ES 16 69 66 135
Ml 16 32 35 67
M2 16 31 34 65

are taken from [9] and f,(x) is taken from [2]. Table 8 shows
the importance of accurate initial guesses for the convergence
of Newton’s method (NM) for these types of highly fluctuat-
ing functions. The results include the number of iterations #,
the absolute value of each function at the nth iterate | f(x,)],
and the root x* to which the methods converge.

Table 9 shows the cost of executing each method for solv-
ing a nonlinear equation. The table clearly depicts that except
that of the fourteenth-order convergent method given by
Sargolzaei and Soleymani (PF) [5] all other methods of res-
pective domain require more computational effort compared
to our methods M1 and M2.

5. Newton’s Method and Zeroes of Functions

The new sixteenth-order iterative method developed in this
paper includes Newton’s method as the first step. Although
Newton’s method is one of the most widely used methods, still
it has many drawbacks; that is, proper initial guess plays a cru-
cial role in the convergence of this method; an initial guess,
which is not close enough to the root of the function, may
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lead to divergence as shown in Table 8. Moreover, another
drawback is the involvement of derivative which may not
exist at some points of the domain. To overcome these two
main drawbacks of Newton’s method, Moore et al. in 1966
([10], Chapter 9) gave a method called interval Newton’s
method which can generate the safe initial guesses to ensure
the convergence of Newton’s method in vicinity of the root.
However, interval Newton’s method for handling nonlinear
equations has a restriction that if the interval extension of
initial guess X © contains a zero of the function f '(x), then
every kth iteration X® contains the zero of f'(x) for
all k = 0,1,2,3,..., which thus leads to failure of this
method. Thus, X%’ forms a nested sequence converging to x
onlyif0 ¢ F "(X?). To remove this restriction and to allow
the range of values of the derivative f '(x) to contain zero,
Moore etal. ([10], Chapter 5) gave an extension of this method
by splitting the quotient f(x)/f'(X) occurring in interval
Newton’s method into two subintervals, where each subin-
terval though contains a zero of the function but excludes
the zero of the derivative of f(x). This method is known
as extended interval Newton’s method. We, herein, find the
intervals enclosing all the zeroes of the function by using
extended interval Newton’s method defined in [10]. The end-
points of these subintervals are approximated up to 10 dec-
imal places which may serve as initial guesses, good enough
to show convergence for all the zeroes of oscillatory nonlinear
functions.

By using Maple, we find the subintervals for f,(x),
fs(x), and fo(x) defined above in Section 4. For f,(x), 69
subintervals are calculated as follows:

[14.91409469, 14.91907799] , [14.87618033, 14.87882406] , [14.70253913, 14.70832763] ,

[14.66422750, 14.66485977] , [14.48793933, 14.49176427] , [14.44786835, 14.44826560] ,

[14.26995241, 14.27656721] , [14.22604037, 14.23066461] , [14.04552680, 14.05497489] ,

[14.00282091, 14.00616288] , [13.81848674, 13.82996307] , [13.77545098, 13.77899594] ,

[13.59080017, 13.60161684] , [13.54513440, 13.54762734] , [13.36096809, 13.36958249] ,

[13.31111271,13.31195699], [13.12910597, 13.13311931], [13.06857536, 13.07318658] ,

[12.88867541, 12.89225623] , [12.82502646, 12.82959150] , [12.64414769, 12.64629550] ,

[12.57794309, 12.58168834] , [12.39221606, 12.39604347] , [12.32427994, 12.33155620] ,

[12.13933578,12.14152125], [12.06589114, 12.06949432] , [11.87681567, 11.88836316] ,

[11.80257913,11.80785022],[11.61017387,11.61417336] , [11.52580093, 11.53582338],

[11.33855318, 11.34565854], [11.25371239, 11.25707075] , [11.05782638, 11.06375050] ,

[10.97106243,10.97617210] , [10.77402365, 10.77570682] , [10.67229899, 10.68264897] ,

[10.48006360, 10.48312670] , [10.37979979, 10.38123836] , [10.17800639, 10.17943511] ,

[10.07090553, 10.07387957] , [9.866768415,9.868206263] , [9.752713256, 9.754776613] ,

[9.542656144, 9.546467439], [9.423111972,9.425145592] , [9.209671918,9.212909453] ,
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[9.081311827, 9.085205858] , [8.866105341, 8.868806136] , [8.723516543, 8.727512993] ,
[8.507376755,8.509833917] , [8.355789454, 8.356573732] , [8.133209509, 8.133391926] ,
[7.967541337,7.968419812] , [7.740477001, 7.741246284] , [7.560115543,7.560177140] ,
[7.327235639, 7.327826668] , [7.128324205, 7.128337654] , [6.889745558, 6.889772255]
[6.667942072, 6.668081225] , [6.422938778, 6.423097661] , [6.172706697, 6.173230855] ,
[5.917397368, 5.920842381] , [5.632674465, 5.632904614] , [5.372683988, 5.375017239]
[5.031577748, 5.033245710] , [4.765041785, 4.765502794] , [4.346558913, 4.346610460] ,

[4.073130785, 4.073647556] , [3.516479084, 3.516796449] , [3.253019201, 3.253316980] .
(32)

Likewise, for the nonlinear function fg(x), the interval [0, 10]
is subdivided into 320 subintervals given as

[9.990184044, 10] , [9.955946724, 9.959695063] , [9.921726460, 9.927528356] ,

[9.895991269,9.901813845] , [9.860932807, 9.867395738] , [9.833013483,9.842299773] ,
[9.798356795,9.802371500] , [9.764625542, 9.770416585] , [9.738902076, 9.744714230] ,
[9.703232575,9.709925323] , [9.675902793, 9.685025935] , [9.641179727, 9.645245491] ,
[9.607542832,9.613332772] , [9.581821638, 9.587633073] , [9.546128339, 9.552831077] ,
[9.518599577,9.527156111] , [9.483395827, 9.487943109] , [9.450441211,9.456225830] ,
[9.424726523,9.430533040] , [9.388258511, 9.395312094] , [9.361797477,9.362112523] ,
[9.327254150,9.331188503] , [9.293391113,9.299187867] , [9.267665764, 9.273484771] ,
[9.232219640,9.238827421] , [9.204564556, 9.213401510] , [9.169580781,9.173885974] ,
[9.136290459,9.142079783] , [9.110573681, 9.116385739] , [9.074453010, 9.081345324] ,
[9.047440909,9.056141780] , [9.012398012, 9.016770408] , [8.979207819, 8.984996872] ,
[8.953492707, 8.959304932] , [8.917330060, 8.924242464] , [8.890031492, 8.898238370] ,
[8.854549244, 8.859511211] , [8.822106558, 8.827894687] , [8.796393961, 8.802205670] ,
[8.759426649, 8.766743202] , [8.733620068, 8.737367181] , [8.700194918, 8.703778580] ,
[8.665140340, 8.670997704] , [8.639361807, 8.645242888] , [8.605076793, 8.611338461] ,
[8.576524492, 8.576819799] , [8.542723242, 8.546366963] , [8.508031342, 8.513867105] ,
[8.482275207, 8.488135298] , [8.447441739, 8.453855727] , [8.419442565, 8.419733454] ,
[8.385642791, 8.389273297] , [8.350952363, 8.356789480] , [8.325196573, 8.331058521] ,
[8.290472928, 8.296852876] , [8.262306529, 8.262599657] , [8.227975566, 8.231819589] ,
[8.193839383, 8.199655788] , [8.168105345, 8.173947253] , [8.132631531, 8.139267983] ,
[8.105301657, 8.108754352] , [8.071887350, 8.075485577] , [8.036821970, 8.042687844] ,

[8.011041930, 8.016933569], [7.976738061, 7.983014238] , [7.948206312, 7.948506710] ,
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[7.914414622,7.918069963] , [7.879712050, 7.885556070] , [7.853954900, 7.859825409] ,
[7.819100301,7.825530412] , [7.791127469, 7.791426462] , [7.757383380, 7.761016594] ,
[7.722636327,7.728484673] , [7.696876988, 7.702752410] , [7.662184799, 7.668566032] ,
[7.633999479, 7.634293225] , [7.599741530, 7.603562482] , [7.565522523, 7.571349577] ,
[7.539785779, 7.545640712] , [7.504367753, 7.510993040] , [7.473598085, 7.477903415] ,
[7.445535699, 7.445741224] , [7.409526765, 7.415709324] , [7.376633149, 7.382748116] ,
[7.350628015, 7.356769948] , [7.316205621, 7.320727946] , [7.288433978, 7.288634901] ,
[7.252187667,7.258500302] , [7.219382270, 7.225665666] , [7.193227785, 7.199537852] ,
[7.159100616,7.163628382] , [7.131354615, 7.131554070] , [7.095214411, 7.101441457] ,
[7.062406422, 7.068587545] , [7.036345992, 7.042555094] , [7.001343483, 7.006374052] ,
[6.974208505, 6.974430846] , [6.937739087, 6.944121686] , [6.911502119, 6.917912067] ,
[6.878629934, 6.885058820] , [6.845557212, 6.849712217] , [6.817229629, 6.817372349] ,
[6.781328958, 6.787520738] , [6.748326672, 6.754431355] , [6.722341155, 6.728475853] ,
[6.688217195,6.692543011] , [6.660135374, 6.660349224] , [6.624020054, 6.630322401] ,
[6.591095561, 6.597348936] , [6.564978649, 6.571261929] , [6.531350276, 6.535539635] ,
[6.503067732, 6.503242835] , [6.467150640, 6.473357071] , [6.434150065, 6.440272246] ,
[6.408154615, 6.414308468] , [6.373988633, 6.378364826] , [6.345971330, 6.346185408] ,
[6.314591592,6.314801811] , [6.283130684, 6.283189482] , [6.251439225, 6.251792397] ,
[6.219732001, 6.223771957] , [6.188797959, 6.189152266] , [6.157480535, 6.157523164] ,
[6.120271452, 6.126143816] , [6.094516232, 6.100424165] , [6.062632401, 6.066666282] ,
[6.031713707, 6.032062120] , [6.000404602, 6.000443419] , [5.963159907, 5.969063625] ,
[5.937378306, 5.937652790] , [5.905762388, 5.910128802] , [5.874676316, 5.875173796] ,
(5.843267432, 5.843366441] , [5.811903897, 5.811997045] , [5.780439491, 5.780578109] ,
[5.748846678, 5.753534709] , [5.717642569, 5.718446131], [5.686026171, 5.686297214] ,
[5.649589507, 5.654965745] , [5.623410417, 5.623560314] , [5.591995021, 5.592085462] ,
[5.560617933, 5.560647031] , [5.529050201, 5.529379409] , [5.494655569, 5.498548325] ,
[5.466333793, 5.466594000] , [5.434917226, 5.435007765] , [5.403538504, 5.403560842] ,
[5.371986243, 5.372310224] , [5.337627395, 5.341510491] , [5.309259066, 5.309710904] ,
[5.277842856, 5.277931374] , [5.246459480, 5.246465096] , [5.214949689, 5.215260016] ,
(5.180745879, 5.184567812] , [5.152175433, 5.152483750] , [5.120757973, 5.120850212] ,
[5.089379473, 5.089393976] , [5.057853016, 5.058169633] , [5.023599984, 5.027444216] ,
[4.995089639, 4.995134322] , [4.963669800, 4.963761292] , [4.931962692, 4.932342959] ,
[4.898577516,4.902594687] , [4.869459724, 4.871816598] , [4.838049762, 4.838119448] ,
[4.806585813, 4.806656799] , [4.774807982, 4.775256312] , [4.740143422, 4.744730700] ,

[4.712320646, 4.712554905] , [4.680971224,4.681013199] , [4.649505766, 4.649581859] ,
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[4.617729602,4.618176851] , [4.586717450, 4.586839669] , [4.555222666, 4.555463069] ,
[4.523886327,4.524034761] , [4.492422625, 4.492489967] , [4.460687549, 4.461092742] ,
[4.429626928, 4.429896951] , [4.398061805, 4.398325942] , [4.366778548, 4.366815736] ,
[4.335349171,4.335447559] , [4.303567341, 4.304025136] , [4.269958287, 4.274126308] ,
[4.241130124, 4.241188163] , [4.209730675, 4.209803528] , [4.178264652, 4.178341647] ,
[4.146497230, 4.146938490] , [4.115477159, 4.115614121] , [4.083976127, 4.084225147] ,
[4.052653043, 4.052680415] , [4.021185210, 4.021271957] , [3.989407736, 3.989860744] ,
[3.958398563, 3.958520073] , [3.926898618, 3.927159520] , [3.895568291, 3.895695440] ,
[3.864101345,3.864176810] , [3.832368110, 3.832776502] , [3.801307500, 3.801582245] ,
[3.769733594, 3.770018057] , [3.737666515, 3.738555787] , [3.707036303, 3.707258802] ,
[3.675589856, 3.675724815] , [3.644022999, 3.644272546] , [3.612664809, 3.613201841] ,
[3.581242406, 3.581427897] , [3.549951324, 3.550099814] , [3.518316545, 3.518639229] ,
[3.487139359,3.487171164] , [3.455421928, 3.455797823] , [3.424086427, 3.424354779] ,
[3.392871166, 3.393040380] , [3.361225117, 3.361561856] , [3.330058543, 3.330091857] ,
[3.298317177,3.298716019] , [3.267222476, 3.267259278] , [3.235785801, 3.235916398] ,
[3.203947909, 3.204476592] , [3.173007152, 3.173020607] , [3.141578336, 3.143519185] ,
[3.109138236,3.110261707] , [3.078714790, 3.079011324] , [3.047231464, 3.047417939] ,
[3.015713510,3.015956944] , [2.984302733, 2.984850517] , [2.952829764, 2.953121570] ,
[2.921627101,2.921839766] , [2.889886911, 2.890332100] , [2.858821551, 2.858853753] ,
[2.827044564, 2.827488073] , [2.795383138, 2.796077943] , [2.764547903, 2.764847380] ,
[2.732879774,2.733264371] , [2.701691670, 2.701782470] , [2.670004074, 2.670487492] ,
[2.638703303, 2.638964768] , [2.607457669, 2.607717839] , [2.575554284, 2.576183720] ,
[2.544682213,2.544691854] , [2.513257101, 2.513304406] , [2.481645703, 2.482108351] ,
[2.450259771, 2.450475846] , [2.418980937, 2.419491975] , [2.387353600, 2.387757870] ,
[2.356161477,2.356486619] , [2.324746316, 2.325055200] , [2.293356484, 2.293386906] ,
[2.261862260, 2.262729261] , [2.229815864, 2.230705785] , [2.198955277, 2.200863128] ,
[2.167010175,2.167980140] , [2.136137801, 2.136331276] , [2.104659623, 2.106463624] ,
[2.073438362,2.073482179] , [2.041868337, 2.042183784] , [2.009607591, 2.011490024] ,
[1.999321992,2.000867238] , [1.979075768, 1.979403681] , [1.947483742, 1.948823227] ,
[1.915715167, 1.916831748] , [1.884748724, 1.885972930] , [1.853395782, 1.854072910] ,
[1.821703180, 1.822445009] , [1.790679838, 1.790831120] , [1.759031149, 1.759348389] ,
[1.727645494, 1.727906376] , [1.696406397, 1.696726589] , [1.664770896, 1.665247435] ,
[1.633595310, 1.633854746] , [1.602189721, 1.602326032] , [1.570689948, 1.570808034] ,
[1.539356239, 1.539522903] , [1.507823837, 1.508168009] , [1.476527951, 1.476727588] ,

[1.445011590, 1.445147118], [1.413454259, 1.413736717] , [1.382250070, 1.382713354] ,
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[1.350528569, 1.350962287] , [1.319436348, 1.319792183] , [1.288006269, 1.288122893] ,
[1.256626812, 1.256637997] , [1.225208939, 1.225321263] , [1.193725250, 1.193981936] ,
[1.162375566, 1.162556404] , [1.130894263, 1.130987988] , [1.099210832, 1.099581028] ,
[1.068130784, 1.068242783] , [1.036648438, 1.036884688] , [1.005295008, 1.005511280] ,
[0.9738188397,0.9739004934] , [0.9421678445,0.9424969036] , [0.9110567268,0.9111176941] ,
[0.8796104016, 0.8797644727] , [0.8482209514, 0.8483759597] , [0.8167520110, 0.8168256101] ,
[0.7850137932,0.7854241593] , [0.7539774035, 0.7540419814] , [0.7225301690, 0.7227499657] ,
[0.6911404930,0.6913237876] , [0.6596741127,0.6597407949] , [0.6279686776, 0.6283402978] ,
[0.5969009283, 0.5969287896] , [0.5654760243, 0.5654943094] , [0.5340653229, 0.5341890824

]

]

]

]

]

[
[
[
[
[0.5026034884, 0.5026633333] , [0.4708183984, 0.4712683612] , [0.4398218509, 0.4398447467
[
[
[
[

>

>

[0.4084003236, 0.4084110725] , [0.3769864778,0.3771074902] , [0.3455273844, 0.3455812080] ,
[0.3141592392,0.3141593917] , [0.2827428736, 0.2827564026] , [0.2513252985,0.2513279205] ,
[0.2199082241, 0.2200133160] , [0.1884516594, 0.1884996544] , [0.1570796264, 0.1570796692] ,
[0.1256635747,0.1256707687] , [0.09424771546, 0.09424778634] ,

]
]
]
]
]
]

[0.06283185165, 0.06283185330] , [0.03141592644, 0.03141592674] , [0.,0.00003862611601] .
(33)

Similarly, we find out that the function f,(x) has 51 zeroes
in subintervals

[9.989560628,9.992137465] , [9.800306886, 9.800592868] , [9.676233039, 9.681699494] ,
[9.479678599, 9.487508694] , [9.361916677, 9.366649388] , [9.167915476,9.172598808] ,

[9.047316788,9.053357092] , [8.855747880, 8.857383666] , [8.732241020, 8.737239224] ,
[8.539956314, 8.543464735] , [8.421410405, 8.426221913] , [8.224527618, 8.230816552] ,
[8.106288875, 8.111000572] , [7.909883981, 7.914797928] , [7.790388775, 7.796772894] ,
[7.596487817,7.599819788] , [7.478101387, 7.482505409] , [7.280935917, 7.286251169] ,
[7.165355153, 7.170463555] , [6.966512553, 6.972261500] , [6.851637227, 6.855738225] ,
[6.651964539, 6.657088997] , [6.536662954, 6.542243912] , [6.340108479, 6.340747429] ,
[6.223746207, 6.227585293] , [6.024753773, 6.026603725] , [5.910192772, 5.914790060] ,
[5.708719363, 5.714342230] , [5.596962948, 5.601063643] , [5.394445916, 5.397139080] ,
[5.285123399, 5.287582209] , [5.078257731, 5.082630331] , [4.970931153, 4.974798339] ,
[4.765173416,4.765494072] , [4.658574438, 4.662674653] , [4.449250236, 4.451201750] ,
[4.346033601, 4.348540346] , [4.133210243, 4.136240815] , [4.033004562, 4.035802815] ,
[3.817884685, 3.818161353] , [3.722030098, 3.724036626] , [3.501280126, 3.501552691] ,
[3.409742652, 3.412729435] , [3.182864306, 3.185008382] , [3.100066834, 3.100836733] ,
[2.864997815,2.865471627] , [2.789473642, 2.791666167] , [2.543047934, 2.545369212] ,

[2.484628981,2.484810607] , [2.212216544,2.212720982] , [2.188542314, 2.188577325] .
(34)
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FIGURE 1: Graph of first and tenth iteration of extended interval Newton’s method for f,(x).
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FIGURE 2: Graph of first and tenth iteration of extended interval Newton’s method for f;(x).

The graphs of the first and tenth iteration of extended interval
Newton’s method for each function obtained by using Maple
are shown in Figures 1, 2, and 3, representing the enclosure of
exact zeroes at each interval.

6. Basins of Attraction

We consider complex polynomials p,(x), n > 1, x € C. To
generate basins of attraction, we use two different techniques.
In the first technique, we take a square box of [-2,2] x
[-2,2] € C. Now for every initial guess x,, we assign a colour
according to the root to which an iterative method converges.
For divergence, we assign the colour dark blue. The stopping
criteria for convergence are |f(x;)| < 107>, and the maxi-
mum number of iterations is 30. In the second technique, we
take the same scale, but we assign a colour for each initial
guess depending upon the number of iterations in which
the iterative method converges to any of the roots of the

given function. The maximum number of iterations taken
here is 25; stopping criterion is same as given earlier. If an
iterative method does not converge in the maximum number
of iterations, we consider the method as divergent for that
initial guess and the method thus is represented by black
colour.

To obtain basins of attraction, we take four test examples
which are 5given as ps(x) = X -1, palx) = xt = 10x% + 9,
ps(x) = x> — 1,and p,(x) = x” — 1. The roots of p,(x) are
1.0, -0.5000+0.866051, —0.5000 - 0.866051; roots of p,(x) are
-3,3, -1,1, and for ps(x) roots are 1.0, 0.3090 + 0.95105I,
—0.8090 + 0.587781, —0.8090 — 0.587781, 0.30902 — 0.951051.
And roots of p,(x) are 1.0, 0.6234 + 0.781831, —0.2225 +
0.974921, —0.9009 + 0.433881, —0.9009 — 0.433881, —0.2225 —
0.9749271, 0.6234 — 0.7818311.

We compare the results of our newly constructed method
M1 with those of well-known sixteenth-order convergent
methods PF [5], JR [1], and FS [2] (see Figures 4, 5, 6, 7, 8,
9,10,11,12,13, 14,15, 16, 17,18, and 19).
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FIGURE 11: Basins of attraction of method FSH for p,(x).
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7. Conclusions

A general four-step four-point iterative method without
memory has been given for solving nonlinear equations. This
iterative method has been obtained by approximating the first
derivative of the function at the fourth step by using quasi-
Hermite interpolation. An analytic proof for the order of con-
vergence of this method was given which demonstrates that
the method has an optimal order of sixteen. For this method
the number of function evaluations is five per full step,
so the efficiency index of the method is 1.741. Numerical com-
parisons in the form of Tables 2, 3, 4, 5, 6, and 7 with the
methods based on rational interpolation, that is, methods
with comparably more arithmetic cost as shown in Table 9,
reveal the robust performance of this method compared to
existing methods of this domain. Moreover, extended interval
Newton’s method is also introduced which is very effective in
finding enough accurate initial guesses for solving nonlinear
functions having finitely many zeroes in an interval. The
basins of attraction show that our new method requires less
number of iterations to converge to a root compared to the
methods of [2, 5].
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It has been shown that a normal S-iterative method converges to the solution of a mixed type Volterra-Fredholm functional
nonlinear integral equation. Furthermore, a data dependence result for the solution of this integral equation has been proven.

1. Introduction

The scientists working in almost every field of science are
faced with nonlinear problems, because nature itself is intrin-
sically nonlinear. Such problems can be modelled as non-
linear mathematical equations. Solving nonlinear equations
is, of course, considered to be a matter of the uttermost
importance in mathematics and its manifold applications.
There are numerous systematic approaches which are classi-
fied as direct and iterative methods to solve such equations
in the existing literature. Indeed, by using direct methods,
finding solutions to a complicated nonlinear equation can be
an almost insurmountable challenge. In this context, iterative
methods have become very important mathematical tools for
finding solutions to a nonlinear equation. For a comprehen-
sive review and references to the extensive literature on the
iterative methods, the interested reader may refer to some
recent works [1-8].

Recently, Sahu [9] and Khan [10], who was probably
unaware of Sahu’s work, introduced the following iterative
process which has been called normal S-iterative method
and Picard-Mann hybrid iterative process by Sahu and Khan,
respectively, and hereinafter referred to as the “normal S-
iterative method”

Definition 1. Let X be an ambient space and let T' be a self-
map of X. A normal S-iterative method is defined by

x € X,

X1 = TV

y”:(l_sn)'xn-l—fnTxn) nEN)

)

where {En}flio is a real sequence in [0, 1] satisfying certain
control condition(s).

It has been shown both analytically and numerically in
[9,10] that iterative method (1) converges at a rate faster than
all Picard [11], Mann [12], and Ishikawa [13] iterative processes
in the sense of Berinde [14] for the class of contraction
mappings.

This iterative method, due to its simplicity and fastness,
has attracted the attention of many researchers and has been
examined in various aspects; see [15-20].

In this paper, inspired by the performance and achieve-
ments of normal S-iterative method (1), we will give some
of its applications. We will show that normal S-iterative
method (1) converges strongly to the solution of the following
mixed type Volterra-Fredholm functional nonlinear integral
equation which was considered in [21]:

x(t)=F (t,x(t),r --.Ith(t,s,x(s))ds,

a A

J:Jl fm H (t,s,x(s)) ds) ,

m
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where [a;;b,] x -+ X [a,,;b,,] is an interval in R™, K, H :
la;b] X -+ x [a,3b,] x [a;b] x---x[a,;b,] xR - R
continuous functions, and F : [a; b, ]x- - -x[a,,; b,,]xR® — R.

Also we give a data dependence result for the solution
of integral equation (2) with the help of normal S-iterative
method (1).

We end this section with some known results which will
be useful in proving our main results.

Theorem 2 (see [21]). We suppose that the following condi-
tions are satisfied:

(Al) K, H ¢ C([al;bl] X e
(@3 b,,] X R);

X [a,;b,) % [a;3b,] x -+ %

(A,) F € C([a;;b,] x -~ x [a,;b,,] x R);

(A;) there exist nonnegative constants o, f3, and y such that

|F (t’ul’vl’wl)_F(t’uZ’VZ’w2)| 3)

<aluy —u| + vy = vof +y |wy - wyl,
forallt € [a;;b] x -+ x[a,;b,], u, vy w; e R, i=1,2;

(A,) there exist nonnegative constants L and Ly such that

K (t,s,u) =K (t,s,v)| < Lg|lu-v|,

(4)
|H (t,s,u) —H(t,s,v)| < Ly lu—v|,

forallt, s € [a;;b] -+ % [a,;b,], u,veR;
(A5) a+ (BLg +yLy)(by —ay) - (b, —a,,) < L.

Then (2) has a unique solution x* € C([a;;b] x -+ x
(@5 b))

Lemma 3 (see [22]). Let {B,};2 be a nonnegative sequence for
which one assumes there exists ny € N, such that for all n > n,
one has satisfied the inequality

ﬁnﬂ S (1 - [’ln) ﬁn + UnVn> (5)

where p, € (0,1), foralln € N, Y72 u, = 0o, and y, > 0, for
alln € N. Then the following inequality holds:

0 <lim sup B, <lim sup y,,. (6)

n—00 n— 00

2. Main Results

Theorem 4. One opines that all conditions (A;)-(As) in
Theorem 2 are performed. Let {En}zio c [0,1] be a real
sequence satisfying Y o0&, = ©0o. Then (2) has a unique
solution, say x*, in C ([a;;b,] X - - - X [a,,,3 b,,]) and normal S-
iterative method (1) converges to x*.
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Proof. We consider the Banach space B = C([a;; ;] x -+ X
(@5 b,,], | - o), where || - || is Chebyshev’s norm. Let {x,}72,
be an iterative sequence generated by normal S-iterative
method (1) for the operator A : B — B defined by

t t
Ax) () = F(t,x(t),J J K (t,s,x(s)) ds,

a m

Lbl me H (t,s,x(s)) ds) .

We will show that x,, — x™ asn — oo.
From (1), (2), and assumptions (A,)-(A,), we have that

7)

[ner =71

= Ay, - x"| = [A(y,) (1) - A(x") ()]

t t
:‘F<t’yn(t)>J J K(t,S,yn(S))dS,

a, Am

jbl jbm H (6,5, 3,(5) ds)

a,

_F (t,x* @), Jtl Itm K(ts,x" (s))ds,

Jbl me H(t,s,x" (s)) ds)

< OC|)/” (t) - X* (t)l

J'tl
a

+p Jtm K (t,s,y,(s))ds

A

.. Jtm K (t,s,x" (s))ds

Jbl me H(t,s, y,(s))ds

_ r" Jb"' H(t,s,x" (s))ds

a Am

< (x|yn (t) - x* (t)l

+P Ll ...Lm |K (5,9, (s)) = K (t,5,x" (s))|ds

m

b by
+VJ J |H (t5, 3, (5)) - H (£, 5, x" (5))| ds

a Am
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sl ®-x O +8] o [ Ll -5 ) ds

m

b b,
+yI J Ly |y, (s) = x" (s)| ds

A

o) § ) [

(8)
1y, = x|
<(1-8,) |x, () - x" (0]
+&,|A(x,) () - A(x") @)
= (1=&,) |x, (t) - x" (1)]
F (t, x, (t), Jtl ... Jtm K (t,s x,(s))ds,
b b,
J J H(t,s, x, (s))ds)
t t
—F(t,x* (t),J J K(t,s,x" (s))ds,
o 9)

bl bm
Jﬂl Jﬂ

m

H(t,s,x" (s)) ds)

=& |x, () = x" )| + & |x, (1) = x7 (1)

B[ [ Ll 9= 9

am

b, b,
+Enyj J Ly |x, (s) = x" (s)| ds

m

< {1_€n<1_ |i‘x+(ﬁLK+yLH)ﬁ(bi_ai)]>}

x ||x, - x*| .
Combining (8) with (9), we obtain

s = 7]

< [06 +(BLx + VLH)ﬁ(bi —al-)]

s (1 s e fle-w] )}

x|, = %7, w0
10

3
or, from assumption (Ag),
[ = x|
< J[l -&, (1 - |:(x+ (ﬁLK+yLH)ﬁ(bi _ai)D} (11)
i=1
x [, = x7].
Thus, by induction, we get
lPnir = x[ < flo = 7
xH{1 —£k<1— [(x+(ﬁLK+yLH)
o).
. (12)

Since &, € [0, 1] for all k € N, assumption (A;) yields

1—£k<1— [(x+(ﬁLK+yLH)H(bi—ai):|> <1. (13)
i=1
Having regard to the fact that e* > 1 — x for all x € [0, 1], we

can rewrite (12) as

—(1=[a+(BLg+yL )T Ty (B=a)]) Yoo &k
(14)

[ner = *7[ < Jlxo = %7

which yields lim,,_, . [|lx,, — x*|| = 0. O

We now prove the data dependence of the solution for
integral equation (2) with the help of the normal S-iterative
method (1).

Let B be as in the proof of Theorem 4 and T, T : B — B
two operators defined by

T(x)() = (t x (1), J J K (t,s,x(s))ds,
) (15)
J JMH(t s,x(s))ds)
T(x)(t)=F (tx(t),J J K (t,s,x(s))ds,
(16)

[ [ res

where K, K, H, H € C([a; b,] x - x [
[a,,:b,] x R).

s))ds)
a,; b, x[a;b]x---x

Theorem 5. Let F, K, and H be defined as in Theorem 2
and let {x,}°  be an iterative sequence defined by normal



S-iterative method (1) associated with T. Let {X,},>, be an
iterative sequence generated by

X, € B,
Xpe1 = Tyn’ (17)

yn:(l_gn)in-f'&n’fxn’ nen,
where B is defined as in the proof of Theorem 4 and {&,},° isa
real sequence in [0, 1] satisfying (i) 1/2 < &, for alln € N,
and (ii) ¥.2, &, = ©0. One supposes further that (iii) there
exist nonnegative constants &, and &, such that |K(t,s,u) —
K(t,s,u)| < & and |H(t,s,u) - H(t,s,u)| < &, forallu € R
and for allt,s € [a;;b,] X -+ x [a,,;b,,].

If x* and X* are solutions of corresponding equations (15)
and (16), respectively, then one has that

3(Bey +ye) [, (b - a;)
1—[a+ (BLg +yLy) [T, (b - )]

Proof. Using (1), (15), (16), (17), and assumptions (A,)-(A,)
and (iii), we obtain

[« - %] < (18)

”xn+1 - xn+1 "

= ||Tyn - Tjjn

= ’F <t, Y, (1), Jtl Jtm K (t,s, y,(s))ds,

a, An

jbl jbm H(t:55,(9)) ds)

a Am

_F (t, 7, (t),Jtl .--Jt"’ R(t,s,7,(s))ds,

a, An

jhl jb'" A(t:57,() ds)

a Am

<aly, () -7, ®)

tl t _
+ﬁJ; ...J'a |K(t,s,yn(5))—K(t,s,f/n(s))|ds

b
e

<aly, () -7, ®)

by, —
: J 'H (t s, y,(s))—H(t.s, 9, (s))' ds

B[] (K s ) - K (65,5, 00)

m

+ 'K (t,s,7,(5)) - K (t,s, 7, (s))') ds

b b,
ey | e | T (H s, ) - H 6.5, 0)

a m

+ 'H (t,s, 7,(s)) - H(t,s, 7, (s))') ds
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<aly, ) - 7,0

f t
] I IS TACES ACIE P

b, b,
[ | @l 05,0+ &) ds

m

<oy, = 7l + B(Lic [y = ull +21) ﬁ(bi -a)

i=

—_

+ Y(LH “yn - )771" + 82) 1_[ (bz - ai)
i=1

< |+ (BLg +yLy) H B =a) | |yn— 7l
i=1

+(Be; +ye,) H (b -a),
i=1
(19)
”yn - yn“

<(1-8,)|x, () - %, ()]
+&|T (x,) (6) - T (%,) (1)
<(1-&)|x, () - %, 1)

+&, {oc |xn (1) - X, (t)|

+ﬁL1_,,Jm{LK|xn(s)—fn(s)|+sl}ds

um

b, by,
+yj J {LH|xn(s)—fn($)| +:32}ds}>

a A

i=1

< ‘{1—@(1_ I:“+(ﬁLK+VLH)ﬁ(bi_ai)j|>}

X "xn - 55”“ + fn (ﬁsl + VSZ) H (bz - ai)'

(20)

Combining (19) with (20) and using assumptions (A5) and
1/2 < &, in the resulting inequality, we get

“xn+1 _kvn+1"
< {1—5;1(1— |:‘X+(ﬁLK+YLH)ﬁ(bi_ai):|>}
x "xn_frt”
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+fn<1 - [“+(ﬁLK+YLH)ﬁ(bi—“i)])

i=1

3(Bey +ye) [112, (b - a;)
1—[a+ (BLg +yLy) [TZ, (b - a)]

(21)
Denote that

ﬁn = nxn_k‘nl
H :§n<l - |:“+(ﬁLK+YLH)lﬂ[(bi_ai):|> €(0,1),

_ 3 (Be; +ye,) HZ1 (b -a) 0
" o (BLg + L) T, (b —a)]

>

(22)

It is clear that inequality (21) satisfies all conditions in
Lemma 3, and hence it follows that

" < 3 (/381 + )/82) HZ] (bi _ ai) |
" 1= [a+ (BLx +yLy) [T2, (b - a;)]

(23)
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We consider a new iterative method due to Kadioglu and Yildirim (2014) for further investigation. We study convergence analysis
of this iterative method when applied to class of contraction mappings. Furthermore, we give a data dependence result for fixed
point of contraction mappings with the help of the new iteration method.

1. Introduction

Recent progress in nonlinear science reveals that iterative
methods are most powerful tools which are used to approx-
imate solutions of nonlinear problems whose solutions are
inaccessible analytically. Therefore, in recent years, an inten-
sive interest has been devoted to developing faster and more
effective iterative methods for solving nonlinear problems
arising from diverse branches in science and engineering.

Very recently the following iterative methods are intro-
duced in [1] and [2], respectively:

Xy € D,
X1 = Tyn’
ey

Yn = (1 _(Xn) Zp +(anzn’

Zy = (1 - ﬁn) X, + ﬁnwa

u, € D,

nenN,

Uy =TV,

)

v, =(1-a,) Tu, + a,Tw,,

w, = (1 - ﬁn) U, + ﬁnTun’

where D is a nonempty convex subset of a Banach space B, T
is a self map of D, and {«,},°, {B,},-, are real sequences in
[0,1].

neN,

While the iterative method (1) fails to be named in [1],
the iterative method (2) is called Picard-S iteration method in
[2]. Since iterative method (1) is a special case of SP iterative
method of Phuengrattana and Suantai [3], we will call it here
Modified SP iterative method.

It was shown in [1] that Modified SP iterative method (1)
is faster than all Picard [4], Mann [5], Ishikawa [6], and S [7]
iterative methods in the sense of Definitions 1 and 2 given
below for the class of contraction mappings satisfying

ITx-Ty| <8|x-y|, &6€(0,1),Vx,yeB. (3)

Using the same class of contraction mappings (3), Giirsoy and
Karakaya [2] showed that Picard-S iteration method (2) is
also faster than all Picard [4], Mann [5], Ishikawa [6], S [7],
and some other iterative methods in the existing literature.

In this paper, we show that Modified SP iterative method
converges to the fixed point of contraction mappings (3).
Also, we establish an equivalence between convergence of
iterative methods (1) and (2). For the sake of completness, we
give a comparison result between the rate of convergences of
iterative methods (1) and (2), and it thus will be shown that
Picard-S iteration method is still the fastest method. Finally, a
data dependence result for the fixed point of the contraction
mappings (3) is proven.

The following definitions and lemmas will be needed in
order to obtain the main results of this paper.
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Definition1(see [8]). Let{a,} 2, and {b,} 2, be two sequences
of real numbers with limits a and b, respectively. Suppose that

|2, - a|
lim - =1 4
s |6, - b] (4)
exists.

(i) If I = 0, then we say that {a,},>, converges faster to a

than {b,},° to b.

(ii) If 0 < I < 0o, then we say that {a,},>, and {b,}°, have
the same rate of convergence.

Definition 2 (see [8]). Assume that for two fixed point
iteration processes {u,},>, and {v,}>2 both converging to the
same fixed point p, the following error estimates,

I~ pll <4, Wnen,

(5)
[va =Pl < b,

VneN,

are available where {a,}>) and {b,},_, are two sequences of
positive numbers (converging to zero). If {a,} >, converges
faster than {b,},°, then {u,} > converges faster than {v,} 2,

to p.

Definition 3 (see [9]). Let T,T : B — Bbe two operators.

We say that T is an approximate operator of T if for all x € B
and for a fixed € > 0 we have

“Tx - Tx” <e. (6)

Lemma 4 (see [10]). Let {0,},>, and {p,},°, be nonnegative
real sequences and suppose thatfor alln > ny, 1, € (0,1),
Yo T, =00, and p,/T, — Oasn — o

n+1 = (1 )0 +Pn (7)

holds. Then lim o, =0.

n—-0o0-n

Lemma 5 (see [11]). Let {0,},2, be a nonnegative sequence
such that there exists ny € N, for all n > ny; the following
inequality holds. Consider

Opy1 S (1 - Tn) 0y + Tulhy> (8)

where 7, € (0,1), foralln € N, Y72 1, = coandn, > 0,
Vn € N. Then

0 <lim sup o0, <lim sup Uy )

n—00

2. Main Results

Theorem 6. Let D be a nonempty closed convex subset of a
Banach space Band T : D — D a contraction map satisfying
condition (3). Let {x,},, be an iterative sequence generated
by (1) with real sequences {a,}oeo, {Ba}oey in [0, 1] satisfying
Yoo & = 00. Then {x,}>2 converges to a unique fixed point
of T, say x,.
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Proof. The well-known Picard-Banach theorem guarantees
the existence and uniqueness of x,. We will show that x,, —
x, asn — 00. From (3) and (1) we have

lner = = 1Ty = Tx. |
<8y, —x.
<8{(1-a,) [z, - x.| + @0z, = .}

<8[l-a,(1-98)] |z, - x

<6[1-a,(1-98)]

X {(1 _ﬁn) "xn_x*" +ﬂn8 ”xn_x*"}
S(S[l_(xn(l_a)] [1_ﬂn(1_8)] ”xn_'x*"
<8[l-a,(1-08)]]|x, - x.]-

(10)
By induction on the inequality (10), we derive
n
[ %1 = %] < Jlxo = x.]| 8"+1H [1-a (1-9)]
k=0 (11)
< g = x, [ 8" e 07O Ticok,

Since Y2, o = 00, taking the limit of both sides of inequality
(11) yields lim,, _, . llx,, — x, |l = 0; thatis, x, — x,asn —

00. O

Theorem 7. Let D, B, and T with fixed point x, be as in
Theorem 6. Let {x,}7 0, {u,},c, be two iterative sequences
deﬁned by (1) and (2), respectively, with real sequences {e,},°,
{Baoc, in [0, 1] satisfying Y22 ax B = 00. Then the following
are equwalent

(i) {x,},2, converges to x,;

(ii) {u,}o2, converges to x,.

Proof. We will prove (i)=(ii). Now by using (1), (2), and
condition (3), we have

lasr =t = (T3 = T,
<8y, =il
=6|(1-a,)z, +a,Tz, - (1 -a,) Tu,
—a, Tw, |
0{(1 - a,) 2, = Tz, + (1 - @,) |12 10,

'Hxn(S “Zn - wn“}
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< (1-a,) 8%, — u,
+(1-a,) 08, [ Tx, - x,
t a0z, —w,] + (1 - a,) |z, - Tz
<(1-a,) 8 [x,—u, | + (1-,) 3B, | T,
+a,8[1-B,(1=8)]|x, -
+(1-a,) ||z, — Tz,
<[1-a, (1-8)]|x, - u,|

+(1-a,) 0B, |Tx,—x,|+(1-a,) |z,-Tz,| -

(12)
Define
o R
T,:=a,(1-0) €(0,1), (13)
pn = (1= a,) 0B, [, = Tx, || + (1 - a,) [z, = Tz,
Since lim,, _, ,llx,, — x| = 0 and Tx, = x,, lim,_, lx, —

Tx,| = lim,_, Iz, — Tz,| = 0 which implies p,/7, — 0as
n — oo. Since also «,,, 3, € [0,1] foralln € N

B, < A (14)

hence the assumption Y o, o f3 = 0o leads to

Zcxk = 00. (15)
k=0

Thus all conditions of Lemma 4 are fulfilled by (12), and so
lim,, , o llx, — u,ll = 0. Since
et = . < s = 2l + [l = %]
. (16)
nll)néo [u, - x.| =o.
Using the same argument as above one can easily show
the implication (ii)=(i); thus it is omitted here. O

Theorem 8. Let D, B, and T with fixed point x, be as in

Theorem 6. Let {a,}.°0, {B,}ne, be real sequences in (0,1)
satisfying
(i) lim a, = lim =0.

n— 00 n—>oo/5n

For given x, = uy € D, consider iterative sequences {x,},
and {u,}.°, defined by (1) and (2), respectively. Then {u,}’,
converges to x, faster than {x,},°, does.

Proof. The following inequality comes from inequality (10) of
Theorem 6:

N A R e

" (17)
< [T - (-] [1-B(1-9)].
k=0

The following inequality is due to ([2], inequality (2.5) of
Theorem 1):

"”n+1 - x*" < ||u0 — x*" 62(n+1)
- (18)
XH[I_“kﬁk(l—é)].
k=0

Define

a, = Jug — x, | VT [1 - B (1 - 9],
k=0

b, =[x = x| " [ [1 - o (1 = 8)] [1 = B (1-8)].
k=0
(19)
Since x, = u,

g o Ol [1-p1-9) (20)

" b [l [l-a(1-8)][1-B(1-0)]

Therefore, taking into account assumption (i), we obtain

im q [1 B (xn+1/3n+1 (1 B 8)]
n—»oo[l — Xpt1 (1 - 8)] [1 - ﬁnJrl (1 - 6)] (21)

=0<1.

lim 6n+1
n— 00 en

It thus follows from well-known ratio test that )',° 6, < co.
Hence, we have lim,, _, .6, = 0 which implies that {u,},", is
faster than {x,} 2.

In order to support analytical proof of Theorem 8 and to
illustrate the efficiency of Picard-S iteration method (2), we
will use a numerical example provided by Sahu [12] for the
sake of consistent comparison.

Example 9. Let B=Rand D = [0,00). LetT: D — Dbea
mapping and for all x € D, Tx = V/3x + 18. T is a contraction
with contractivity factor § = 1/ V18 and x, = 3; see [12]. Take
a, = B, =V, = 1/(n+ 1) with initial value x, = 1000. Tables
1, 2, and 3 show that Picard-S iteration method (2) converges
faster than all SP [3], Picard [4], Mann [5], Ishikawa [6], S
[7], CR [13], S* [14], Noor [15], and Normal-S [16] iteration
methods including a new three-step iteration method due to
Abbas and Nazir [17].

We are now able to establish the following data depen-
dence result.

Theorem 10. Let T be an approximate operator of T satisfying
condition (3). Let {x,},_, be an iterative sequence generated by
(1) for T and define an iterative sequence {X,,},_ as follows:

X, €D,
£n+1 = Tyn’

_ (22)
jin = (1 - “n) 2n + (anzw

zZ,=(1-B,)%,+B,TX, neN,
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TaBLE 1: Comparison speed of convergence among various iteration methods.

Number of iterations Picard-S Abbas and Nazir Modified SP S*

1 3.101431265 3.944094141 3.101431265 3.101431265

2 3.000970459 3.032885422 3.003472396 3.006099262
3 3.000010797 3.001099931 3.000191044 3.000474311

4 3.000000126 3.000033381 3.000012841 3.000040908
5 3.000000001 3.000000928 3.000000964 3.000003733
6 3.000000000 3.000000024 3.000000078 3.000000354
7 3.000000000 3.000000000 3.000000007 3.000000034
8 3.000000000 3.000000000 3.000000001 3.000000004
9 3.000000000 3.000000000 3.000000000 3.000000000

TaBLE 2: Comparison speed of convergence among various iteration methods.

Number of iterations CR Normal S S Picard

1 3.101431265 3.944094141 3.944094141 14.45128320
2 3.004853706 3.056995075 3.079213170 3.944094141
3 3.000341967 3.004449310 3.007910488 3.101431265
4 3.000027911 3.000384457 3.000829879 3.011228065
5 3.000002459 3.000035123 3.000088928 3.001247045
6 3.000000227 3.000003324 3.000009637 3.000138554
7 3.000000022 3.000000323 3.000001051 3.000015395
8 3.000000003 3.000000032 3.000000115 3.000001710
9 3.000000000 3.000000003 3.000000013 3.000000190
10 3.000000000 3.000000000 3.000000001 3.000000021
1 3.000000000 3.000000000 3.000000000 3.000000002
12 3.000000000 3.000000000 3.000000000 3.000000000

TaBLE 3: Comparison speed of convergence among various iteration
methods.

Number of

Tx, =x,andTX, = X, suchthatX,, — X, asn — oo, then
we have

) ) SP Noor Ishikawa Mann

iteratlons 3101431265 3.101431265 3.944094141 14.45128320 e 2.0 < = (23)
. . . . 1-o

2 3.017380074 3.053700718 3.500544608 9.197688670

3 3006056041 3037176288 3346363527 732609407 Ly 0o b pumber and 6 € (0,1),

4 3.002849358 3.028678163 3.267333303 6.346715746

5 3001583841 3.023463545 3218710750 5744057924 Proof. It follows from (1), (3), (22), and assumption (if) that

6 3.000979045 3.019921623 3.185684999 5.333095485

7 3.000651430 3.017350921 3.161716071 5.034023149 ~

8 3.000457519 3.015395770 3.143487338 4.806124994 1%i = Zpur| = |79 = T3, + T3, - T3,

9 3.000334906 3.013856108 3129133091 4.626397579 _

10 3.000253300 3.012610550 3.117521325 4.480838008 s||Tyn—T)7,,||+||T)7,,—T)7,,

1 3.000196722 3.011581068 3.107924338 4.360421594 <oy, -7 +e

12 3.000156165 3.010715155 3.099852480 4.259063398

13 3.000126272 3.009976148 3.092963854 4.172507477 <86(1-a,) |z, -z,

where {&,},2 0, {B,} o are real sequences in [0, 1] satisfying (i)
1/2 < a,, (ii) B, < o, for alln € N, and (iii) ¥ 2o o, = c0. If

+0a, |Tz, - TZ,| + 0a, HTZn - Tin" +e
<8[1-a,(1-0)] |z, — Z,| + Ocx,e + &

S8[1_an(l _8)] [1_ﬂn(1_6)] ||xn_§n||
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+8[1-a,(1-08)]B,e+0a,e+e

<[1-a,(1-08)]]|x, - %,|| + 2, + .

(24)
From assumption (i) we have
1<2a, (25)
and thus, inequality (24) becomes
“xn+1 - §n+1" < [1 & 1- 5)] “xn - )Aén“ +4oe
< [1 -, (1 _8)] “xn_"?n“ (26)
4e
1-6 .
+a, ( ) s
Denote that
o, = |x, - %,/ 7,:=a,(1-0) € (0,1),
de (27)
b= 178
It follows from Lemma 5 that
- ~ . 4e
0 < lim sup |x, - X,,|| < lim sup . (28)
n— o0 n— oo 1 - 8

From Theorem 6 we know that lim x, = x,. Thus, using

n— 00
this fact together with the assumption lim, _, . X, = X, we
obtain
4e
X, =X, | < . 29
I s (29)
O
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By applying the vector-valued inequalities for the Littlewood-Paley operators and their commutators on Lebesgue spaces with
variable exponent, the boundedness of the Littlewood-Paley operators, including the Lusin area integrals, the Littlewood-Paley g-
functions and g, -functions, and their commutators generated by BMO functions, is obtained on the Morrey spaces with variable

exponent.

1. Introduction and Main Results

Let w € L'(R") and satisfy the following:

(i) [0 w(x)dx = 05
(i) [y(x)] < C1+ )™
(i) [y + ) = w()] < Clyl (L + 1) 7775, 1x] = 21y,

where C,¢,y are all positive constants. Denote v,(x) =
t"y(x/t) with t > 0 and x € R". Given a function f €
L},.(R™), the Lusin area integral of f is defined by

dy dt\'?
g4 ) )

SN = ([ e ror %

I, (x)

where I, (x) denote the usual cone of aperture one
Fa(x):{(t,y)ERTI:|y—x|<at, azO}. (2)

As a = 1, we denote Sw)a(f) as Sw(f).

Now let us turn to the introduction of the other
two Littlewood-Paley operators. It is well known that the
Littlewood-Paley operators include also the Littlewood-Paley
g-functions and the Littlewood-Paley g;—functions besides
the Lusin area integrals. The Littlewood-Paley g-functions,
which can be viewed as a “zero-aperture” version of S, and

g; -functions, which can be viewed as an “infinite-aperture”
version of S, are, respectively, defined by

s@=([Twesrord)

0 t
. pn dydt\'"
a0 =([ (=) e ror )
u>0.
(4)

If we take ¥ to be the Poisson kernel, then the functions
defined above are the classical Littlewood-Paley operators.

Letting b € L} (R"), m > 1, the corresponding m-order
commutators of Littlewood-Paley operators above generated
by a function b are defined by

6", 9,] () )

(VI -0 r o6 £)

(5)
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[bm’ Su/,a (f) (%)

2dydr '
= (J J- b (x)-b )"y, (y-2) f (z)dz )n/+1t> ,
L (x) 1 JR" t
(6)
b762] () 69
t “"
) (JRTI (H Ix—yl)
2dydr\"?
X J [b(x) - b))y, (y-2) f (z)dz el > ,
R t
(7)
where p > 0.

The Littlewood-Paley operators are a class of important
integral operators. Due to the fact that they play very
important roles in harmonic analysis, PDE, and the other
fields (see [1-3]), people pay much more attention to this class
of operators. In 1995, Lu and Yang investigated the behavior
of Littlewood-Paley operators in the space CBMO,, (R") in
[4]. In 2005, Zhang and Liu proved the commutator [b, 9y

is bounded on Lf(w) in [5]. In 2009, Xue and Ding gave the
weighted estimate for Littlewood-Paley operators and their
commutators (see [6]). There are some other results about
Littlewood-Paley operators in [7-9] and so forth.

On the other hand, Lebesgue spaces with variable expo-
nent LF*)(R") become one class of important research subject
in analysis filed due to the fundamental paper [10] by Kovacik
and Rakosnik. In the past twenty years, the theory of these
spaces has made progress rapidly, and the study of which
has many applications in fluid dynamics, elasticity, calculus
of variations, and differential equations with nonstandard
growth conditions (see [11-15]). In [16], Cruz-Uribe et al.
stated that the extrapolation theorem leads the boundedness
of some classical operators including the commutator on
LPY(R™). Karlovich and Lerner also independently obtained
the boundedness of the singular integrals commutator on
Lebesgue spaces with variable exponent in [17]. In 2009
and 2010, Izuki considered the boundedness of vector-valued
sublinear operators and fractional integrals on Herz-Morrey
spaces with variable exponent in [18, 19], respectively. In
2013, Ho in [20] introduced a class of Morrey spaces with
variable exponent ./ ., ,, and studied the boundedness of the
fractional integral operators on . -

Inspired by the results mentioned previously, in this
paper we will consider the vector-valued inequalities of the
Littlewood-Paley operators and their m-order commutators
on Morrey spaces with variable exponent. Before stating our
main results, we need to recall some relevant definitions and
notations.

Let E be a Lebesgue measurable set in R” with measure
|E| > 0.

Definition I (see [10]). Let p(:) : E — [1, 0c0) be a measurable
function.
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The Lebesgue space with variable exponent L? O(E) is
defined by

p(x)
v (E) = {f is measurable: J <M) dx < 0o
E n

for some constant # > 0} .

8)
The space Lﬁf'c)(E) is defined by

loc

= { f is measurable: f € PO (K)

for all compact subsets K C E} .
€

The Lebesgue space L? O(E) is a Banach space with the
norm defined by

p(x)
o=t - [ (L) o}

Remark 2. (1) Note that if the function p(x) = p, isa constant
function, then L") (R") equals L? (R"™). This implies that the
Lebesgue spaces with variable exponent generalize the usual
Lebesgue spaces. And they have many properties in common
with the usual Lebesgue spaces.

(2) Denote p_ := essinf{p(x) x € E}Lp, =
ess sup{p(x) : x € E}. Then 9P(E) consists of all p(-) satisfying
p- > 1land p, < co.

(3) The Hardy-Littlewood maximal operator M is defined

by

1
M (f)(x) = supio JQ |f ()] dy. (1)

Denote %B(E) to be the set of all functions p(-) € 9P(E)
satisfying the condition that M is bounded on L?"(E).

(4) Let p(-) € B(R"). Denote Koy =supig > 1:p(-)/q €
B(R™)} and €y is the conjugate exponent of Ky (see [20]).

Definition 3 (see [20]). Let p(x) € L®(R"),1 < p(x) < oo.
If there exists a constant C > 0 such that, for any x € R" and
r > 0, Lebesgue measurable function u(x, r) : R" % (0,00) —
(0, 00) satistying

< ) (R™ .
"XB(x,r) “LPU(R ) y (x’ 2]+1r) <Cu (x, r) , (12)
j=0 ||XB(X,2j+1T) ||LP(-)(Rn)

then one says u is a Morrey weight function for L*)(R"). One
denotes the class of Morrey weight functions by W,
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Definition 4 (see [20]). Let p(x) € B(R"), u(x,r) € W)
Then the Morrey spaces with variable exponent ./, ,(R")
are defined by

My (R") = {fis measurable: ”fll//lp(.),u(R") < oo}, (13)

where
_ 1
“f”/%ﬂ,),u(uan) = xei{"}gwu ) "fXB(x,R) ”Lp(-)(w)- (14)

Remark 5. (1) If u(x,r) = 1, then M oy

spaces with variable exponent L OR™M.

(2) Notice that if p(x) = p, 1 < p < 00, is a constant
function, then formula (12) can be rewritten as an integral
in form. To be precise, formula (12) can be rewritten in the
following form (see [20]):

u(x,t u(x,r
( )dt <C ( ),
1/ p+l 1/ p

(R™) is the Lebesgue

r>0, Vx € R". (15)

Let 0 < a < n. By the the conditions of Morrey weight
functions mentioned in [21]

0 yP (x,t
J ( )dt <C
tn—a/p+1

uf (x,71)
rn—a/p

, r>0, Vx e R" (16)

and Hoélder’s inequality, via simple calculation, we have

jo"u(x,t)dt

/p+1

of[ e,

. tn—ot/p+1

l/P (o) 1 I/P’
A
o oP +1

u(x,r)

<C
P

From this, it follows that if p(x) = p,1 < p < oo,isa
constant function, then condition (12) is weaker than condi-
tion (16). Thus, the class of the Morrey spaces introduced in
Definition 4 is more wide than that satisfying condition (1.8)
in [21]. More studies of common Morrey spaces can be seen
in [22, 23] and so forth.

(3) If u(x,r) = |B(x,r)|PO7149 p(x) < g(x), then
the space mentioned in Definition 4 is the Morrey space
with variable exponent introduced in [24]. And when 1 <
$ < Ky 1/p(x) — 1/q(x) < 1 — 1/s, it is easy to see
u(x,r) satisfying condition (12). That is because it follows
from p(x) € B(R"), 1 < s < Kyl (x)> that (see [20])

Moo oy <CP"UD yx eRY, r>0, jeN.

“XB(x,Zj“V) "LP(') D)
(18)

For Littlewood-Paley operators S, ;, g,,, and g;, in this
paper, we have the following results.

Theorem 6. Suppose that function v € L'(R") satisfies

(i)-(iii) and Sy is defined by (1). If u € Wo, p() €

BR"), 1 < r < o0, then there exists a constant C > 0
independent of f such that, for any function sequences { f,},,

with [{X, |fh|r}1/r||/”ﬂ_>u(w) < 00, the following inequality

holds:
. 1/r 1/r
‘ {Sis.. 0} f5ir}

Theorem 7. Suppose that g,, is defined by (3). Then under
the same condition as the one in Theorem 6, there exists a
constant C > 0 independent of f such that, for any function

sequences {fy},o, with |{Y, Ifhlr}l/rll/%p(l),u(w) < oo, the

following inequality holds:
1/r
3
h

1/r
‘H;L@W (fh) T}

Theorem 8. Suppose that g; is defined by (4) and p > 3 +

2(e + y)/n, 0 < y < & Then under the same condition
as the one in Theorem 6, there exists a constant C > 0
independent of f such that, for any function sequences { f,},,

with |{}, Ifhlr}l/rll/%ﬂ_w(w) < 00, the following inequality

holds:
(aar}’|  «dfzar}

For commutators [bm,Sw)a], [bm,gw], and [bm,g;], we
have the following results.

<C

M i (R") M i (R")

(19)

<C

M iy (R?) My, (R™)

(20)

<C

9u (f)

M iy, (R™) M iy, (R™)

(21)

Theorem 9. Suppose that function v € L'(R") satisfies (i)-
(iii) and [bm,SV,’a] is defined by (5). Let b € BMO(R"), p(-) €
BR", m=1,1<r < oo lf forany x € R" andry > 0,
function u satisfies

S "XB(x,rg) LPO(R?)

jMu(x%,27"r) < Cu(x,15),  (22)

j=0 ”XB(x,Zj“ro) LPO (R

then there exists a constant C > 0 independent of
f such that, for any function sequences {f},2, with

12 |fh|r}1/r||/,lp(.),u(Rn) < 00, the following inequality holds:

r}”r
e}

Theorem 10. Suppose that [b", g, ] is defined by (6). Then
under the same condition as the one in Theorem 9, there exists

[H;ubm,sw,a] ")

‘ﬂP(-%u(R")
(23)

<C

/%P('),u (R™)



a constant C > 0 independent of f such that, for any function
sequences {f,}p2, with [[{Y, |fh|r}1/r||/%}7(_)’u(w) < oo, the
following inequality holds:

{zimalcar}”

s}

Theorem 11. Suppose that [b", g,] is defined by (7), u >
3+ 2+ 9y)n and 0 < y < e Then under the same
condition as the one in Theorem 9, there exists a constant C > 0
independent of f such that, for any function sequences { f,},,
with {3, Ifhlr}l/rll/ﬂp(l),u(w) < 00, the following inequality
holds:

‘/%P(-),u (R")

(24)

<C

‘/%P('),u(Rn)

1/r
‘H;I[b'",g;] (fh>|’}

four}

Remark 12. (1) It is easy to see that condition (22) in
Theorem 9 is stronger than condition (12) in Definition 3.
Therefore, if a function u satisfies condition (22), then u €
Wiy
(2) The function u which satisfies (22) exists. In fact, if we

taket:0<7<1 /ep(,) such that function u satisfies

A (R
(25)

<C

M (R

2
U2 _om e e R > 0, (26)

u(x,r)

thenu € W,,,. Thatis because, for any 7 < 1/e,,,, there exists

S <Ky suchthatt <1-1/s<1- l/Kp:(_) - l/ep(,). Hence,
it follows from (18) that
© |xseen o ge j
(26,r) [l LPO (R™) jmu (X, 2]+1r)
j=0 "XB(x,Zj“r) ”Lp(‘)(Rn)
(27)

[ee]
<CY 2 My (1) < Cu(x,7)
j=0

We end this section by introducing some conventional
notations which will be used later. Throughout this paper,
given a function f, we denote the mean value of f on E by
fg = (1/|E]) _[E f(x)dx. p'(-) means the conjugate exponent
of p(-); namely, 1/p(x) + 1/p'(x) = 1 holds. C always means
a positive constant independent of the main parameters and
may change from one occurrence to another.

2. Preliminary Lemmas

In this section, we introduce some conclusions which will be
used in the proofs of our main results.
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Lemma 13 (see [10] (generalized Holder’s inequality)). Let
P()> P1()> Pz() € *@(Rn)

(1) For any f € LPO(R"), g € LY O(R™),

JW |f (x) g ()] dx < Cp|l f]l ooy

g"Lp’(-)(Rn)) (28)

where C, = 1+1/p_—1/p,.

(2) For anyf € LPl(')(IR")’g € LPZ(')(R”), when l/p(x) _
1/p,(x) + 1/ p,(x), one has

||f(x)g(x)"LP<')(R”) <Cpp ||f”m<’>(uz<")

g||LPz(~)(RN)’ (29)
where C =({1+1/p, -1/p )1/‘”’.
P1>p2 1 1,

Lemma 14 (see [17]). If p(-) € B(R"), then there exist
constants 8,,8,,C > 0, such that, for all balls B ¢ R" and
all measurable subsets S C B,

Ielro@n _ 18I

”XS“U’("(R") N

"XS“LP'(-)(Rn) - C(ﬂ )81)

B (30)

||XB||LP’<->(W> -

Ixsll ooy < C(ﬂfz.
”XB”LP(')([R”) |BI

Remark 15. From formula (12), it follows that

—“XB(X’T)”U(‘)(R") u(x, 2j+11’) <Cu(x,r), VjeN. (31)
||XB(x,2f*1r) “L,DO(R")
Thus, by Lemma 14, we have, Vj € N,

u (x, 2/ r)

u(x,r)

"XB(x,zfr) ||LP(')(Rn) g |B (x, 2jr)|

< <C2Y.
“XB(x,r) ”Lp(‘)(Rn) |B (X, T")l

(32)

Lemma 16 (see [18]). If p(-) € B(R"), then there exists
constant C > 0, such that, for all balls B ¢ R”",

1
mnXslle(R") X8l 0@ < C- (33)
Lemma 17 (see [25]). Let b € BMO(R"); m is a positive
integer. There exist constants C > 0, such that, for any k, j € Z
with k > j,

(©) C 1617 < sups(1/ sl o gy 16 — bs) ™ Xl o gy <
Clbl;

() IItb = bz )" x| ) < Cle= D708, sy

U’(‘)(R“
Lemma 18 (see [26]). Let v € L'(R") satisfy (i)-(iii). If
p() € B(R"), 1 < q < oo, then for all bounded compactly
support functions f; such that {f}3, € LPO19), that is,
"(zj(| fjl)q)llq"LP(‘)(lR") < oo, the following vector-valued
inequalities hold:
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(D) 1 184, UDID o gy < CUE LDy gy

(@) 119y DDy gy < CUE DY sy

3 1195 DDy gy < CHE LD gy
where > 2, 0 <y < min{(u — 2)n/2, e}

Lemma 19 (see [26]). Let b € BMO,y € L'(R") satisfy (i)-
(iii), m € N\ {0}. If p(*) € B(R"),1 < q < o0, then for all
bounded compactly support functions f; such that { fj}?zl €

LI, that is, 1CZ;0£DD ., @ < 0O the following
vector-valued inequalities hold:

() NS 17 Sy d DD o g
<CIE; 1D o gy

@) 1, 117, g )DL
<CICE 11D M s oy

(3) I 116", gl A
<CICE; 1D oy

where > 2, 0 < y < min{(y — 2)n/2, €}.

3. Proofs of Main Results

Next, let us show the proofs of Theorems 6-11, respectively.

Proof of Theorem 6. Let |{ f}ull € M ., (R"); for any x, €

R", ry > 0, denote
ful®) 2 f )+ Y £l (x), (34)
j=1

where f]’(l) = thB(xU,Zro)’ fi:l’ =
{0}.

Noting that, in order to prove Theorem 6, it is enough to
show that the following inequality holds:

FnXBxo 2 ro\Bxg2ire)> J € N\

1/r
‘[Z|5wa £l ]’ XB(xoro)

u (xo» ”o

ffgur}

L}’“)(R")
(35)

My, (R")

5
Thus,
1/r
u(x r) {Z|Sw(fh)| } XB(xro) o
1/r
= uler) u(xo,ro) {ZW‘ } S .
1/r
PRl | DY) pte
£ D, +D,.
(36)

For the term D,, notice that supp f}? C B(xy,2r,); using
Lemma 18 and (32), it is easy to see that

}l/r
Cu(xO,ZrO) 1

”(xo’ro) u(x0,2r0)
1/r
X {Zifhr]’ XB(xy,2r0)
h

<C2" sup !
yeR",R>0U (y, )

C

D, < ———
' ”‘(xo>”0)

{2

LFOR")

1r0) (R")
(37)

1/r
x {Z};WF]’ XB(y,R)

1/r
e «{zmr}
h

LPOR")

MP(-),M(IR”)

We now turn to estimate D,. To do this, we need to consider
Sy.a first. Without loss of generality, we may assume that a >
1. Let

r'= {ye R": |y - x| < at, y§2j+1r0},
' (38)
" = {ye R": |y - x| < at, y>21+1r0}.



Then, by Minkowski’s inequality, we have

Sya (£]) ()

(ol
[y,
J

Z)jﬂ(z)dz

tn+1

2dydt>1/2

IN

1/2
)| dy dt) dz
1/2

y : Z)| dydt> dz

by

a

Lrel(] e
Jorel(f fe

IN

1/2
dy dt) dz.
(39)

Observe that if x ¢ B(Xo,2j+1fo) \

B(x,,2'7,), j = 1, then

B(xy,79), 2 €

|x - |
a

t+|y—z|> +|y -z
(40)
bl Bl P W e R
- a T a  2a
Therefore, it follows from condition (ii) that
0 _ 2
j j t—3n—1 W(J} Z) d)/ dt
o Jr' t
0 _ 2(n+e)
= Jo Jr' t‘3"‘1< |y t l ) dy dt
J~2j+1r0 J~ t2£—n—1 d d
< ————aydt
0 r (t + |y _ Z|)2(?l+€)
J~oo J~ t2£—n—1
+ ————dydt
2ty Jrt (t n |y _ Z|)2(n+s)
2(n+e) 2ty (41)
a 0 2e-n-1
|Z|2(n+s J.O J.Ix yl<at g dy dt

aZn 0o I
_3n—
|Z| 201y, J|x—yl<at

2(n+s) 2j+1r0
< CW J antzs_ldy dt
z 0
[e)
+CJ a’
271y,

t7" dydt

-2n

< Ca3"+2£(2jr0)
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On the other hand, we denote

oL (59

dy dt

[ _ 2
SCJ J F%4w<z—f)—w<z)dym
o Jrv t t (42)
[} 2
+CJ J t%*1w<z>cht
0 r t
=T +1I.
Note that if y > 2j+1r0, thent > |x — yl/a = (|x| - |y|)/a >

(27*'ry = 1y)/a = 27r,/a. Thus, by condition (iii), we get

(o) 2y
ISCJ J t‘3"‘1<@> 1+m
2iry/a JT" t t
i Ny [ 3n-2p-1
< C(2'r,) £y dt
2iry/a J|x-yl<at

N X o
< C(ero) ya"J 2" dy dt
2Jry/a

—2(n+y+e)

dy dt
(43)

; —2n
< Ca3"+2”(2]r0)

And by condition (ii), similar to the estimate of I, we obtain

H<cj°° Jt_an_1<@)2( Iyl)
B 2iry/a JT" t t

o) 2e—n-1
<cl, oy .
Profa I (¢ +]y])

-2n

2(n+e)

dy dt

< Ca3"(2jr0)

Hence, from the estimates above, it follows that

Wa(ﬂJ(x)<Ca%ﬂﬂH£2] 'UAhIW (45)
Thus,
p,s L3 {Z a7 (2ln)
u(xg7o) j=1 h ’
. r Ur
ST
LPO(R™)
< a3n/2+y+e xo’r )Z(Z r, n”XB(xo)ro) o

1/r
r}

x {;If;

LR
(46)
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Therefore, applying the generalized Hoélder’s inequality,
Lemma 16, and (12), we have

D2Sa3n/2+y+sLozoz(zjro)fn”XB(x Mo
u(xo,19) 5 oo lLrO ()
1r
DT S
n LO@™)

= u(xo,ro)Z( YO) n| (xO’ZjHrO)'

1/
”XB(XO 7o) || Lp '
i
"XB(xo 27r) [l L0 () LPOR™)
(47)
C & “XB(XOJ’O) LP(')([R") j+1
< u (xo, 2 ro)
u (x(,, ”o) j=1 ||XB(x0,2f+1r0) 1O (R")
1/r
X —— lfhlr]’ Xy 2
u (xo’ 2]+1r0) {; (0,27 79) o
1/r
<C sup ‘[Z|fh ]’ XB(y,R)
yeR"R>0 U y, LOR?)
1/r
o|{zuar}
g My, (R")
Adding up the estimates of D,, D,, we obtain
1/r
<|Z:|S\;/a fh } XB(xo,ro)
u (xO’ rO) LP(')(R”)
48)
1/r
b
" Mpu(®")
This completes the proof of Theorem 6. O

Now let us prove Theorems 7 and 8 in brief.

Proof of Theorem 7. For g, similar to the estimate of S, ;, via
a simple calculation, we get that (see [26]) if x € B(xy, 1),

supp flj C B(xg, 27" rg) \ B(xg, 271), j = 1, then

gy (1) 0 < (@) | £l s sy (49)

Hence, similar to the proof of Theorem 6, it follows from
inequality (2) in Lemma 18 that

1/r 1/r
)r} <C {Zlfhl’}

This accomplishes the proof of Theorem 7. O

“ <IZ:|91;/ (fh
h ®") ®")

(50)

p()u P()u

Proof of Theorem 8. For g;, by the definitions of S,
we have

9u () %)
t w Ldyde "’
L () e or )

n 2
h t g zdydt)1
<L x— y|<t<t+|x y|) Illjt *f()/)| ]

oo 00 t un
! ; (Jo JZHtSIx—y|<21t < t+ |x — y| )

1/2
dydt
<l 5 P L)

<8, (f) )+ Y (1427
=1

and g,

<

Syata (f7) ().
(51)

According to the estimate of S, , in the proof of Theorem 6,

we know that if x € B(x,7,), supp f}f C B(xy,2""'ry) \
B(xy,2ry), j =1, then
3n/2+s+y ]
(fh) (x) < Ca 2'r “fh ||L1(Rn) (52)

Thus, as y > 3 + 2(e + y)/n, we obtain

(o)
g, (f]) x) < ca™rer (1 + Zz(3ﬂ/2+5+}’ﬂn/2)>

=1

o (27) "1 &9

<Ca 3n/2+e+y 2] ”fh ”Ll(R”)

Hence, also similar to the proof of Theorem 6, and from
inequality (3) in Lemma 18, it follows that

1/r 1/r
‘Hz WﬁW} <c{;uw}

This finishes the proof of Theorem 8. O

M iy, (R™) A iy, (R™)

(54)

Proof of Theorem 9. Let b € BMO, [[{f,}, I, € ﬂp(,))u(R”).
For any x, € R”, r, > 0, denote

fu) 2 )+ £l (%), (55)
j=1

0 _ Jj o .
where f} = thB(xo,Zro) and fh = thB(xo,Zf“ro)\B(xU,ero)’ J €

N\ {0}



To finish the proof of Theorem 9, we only need to prove

1/r
u(xo 7‘0 {Z| bm ](fh)lr} XB(x.ry)

g}

LPO(R™)
(56)

Mp(y,u(R")

Thus,

1/r
{Z| b S (fh)lr} XB(xo,rO)

u (xO 7'0 LP(‘)(R")

1/r
' } XB(xg70)
LPO(R™)

1/r
N7
fp{)' } XB(xo,ro)

HIVC

- ”(xo 7’0

) | DA LR

2 E, +E,.

LPO(R")

(57)

For the term E,, notice that supp f;?
Lemma 19 and inequality (32), we have

{Zm }m

u (xg, 215)
u(xg,1o) (X 2"0)

1/r
‘{Zlfh ]‘ XB(y,R)

C  B(xy,2ry); by

= “(xo 7’0) LPOR?)

1/r
{Zlfh } XB(xO,ZrO)

LPO(R")

<C2"
yeR R>0u )/ R)

g}

0 (R™)

M

pC)u (R™)

(58)

Now we turn to estimate E,. According to the estimate of S,
in the proof of Theorem 6, we see that if x € B(x,1,), z €
B(xg,2""'79) \ B(xg, 2/r), j =1, then

Spa (£1) ) < Ca2 (D)) | ] e 59
Therefore,
167 Sya] (1) )]
= [Sy.0 [0 () - b)" f] ()| (60)

< Ca" 1 () |6 0 = 0" F]
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Thus,
_<
T u (xo’ 7’0)

. - 1/r
S S0l
j=1 "

X XB(x[, 7o)

LPO(R™)

C /i \n
< 2/
”(Xo’ro);( 1’0)

1/r
{Zl(b () -b)"f} Ir}
h

XB(xg.ry)
L'(R")

LPO(R™)

<< i(zj%)in”(b‘bm ) Ksor)
u ('xO’ r())j:l ) 070

1/r
x {Zlfzi’}
h

© o,
Z (ZJ 1’0) "XB(xO,rO)

u (xO’rO)jzl

1/r
{Zl B(xo ro ' }

LPO(R")

LY(R")

LPO(R™)

LR
(61)

Using Holder’s inequality and Lemma 17, we get

E, <

u (xo ) Z(ero)

1/r
x {Zlf;il’}
h

7o) | LPO (R7)

”XB<xo,2f“ro>

' O(R
LPO(R™)
©
2J
”(xo,ro)j;( ") ol )
1/r
ar
<{zir}
h LPO(R™)
m
X ”(b - bB(X(]Jo)) XB(xg271 1) 7 O R
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= u(xo,ro)z<2 o) " [ + 11101

|LP(‘>(R")

1

X ||XB(’C0J0)

{;If,f

And then, it follows from Lemma 16 and (22) that

r|r
||XB(x0,2f“rO)

LPOR?)

' O®ny”

(62)

o0 . _ .
< C||M|Tﬁ;(2]ro) n]"” 'B (X0,21+1r0)|
||XB(x0 ro) LPO(R™) X 1
’ , 2]+1 -
||XB(xo»2j*‘ro) LPOR) ( ' 1’0) u (xq,27%11)
1/r
ir
{ZM{ }
h LPO(R™)
< C||b|| c S "XB(xo 7o) | L0 ()
(X(); 7’0) "XB(xO 27*1ry) LO@n

j+1
X u (x0’2]+ ro)

X sup
yeR?, R>O u y,

1/r
e {zmr}
h

1/r
{Z|fh ]’ XB(y,R)

LPO(R™)

Mpy,u(R")

(63)

Hence, Adding up the results of E,, E,, we have

1/r
bm (f ") } X
u (Xo, rO {Z| W ‘ | Heto) LP(')(R")
1/r (64)
<l{ i |
h My (R")

The proof of Theorem 9 is accomplished. O

Proof of Theorem 10. For [b™, g, ], according to the estimate
of g,, in the proof of Theorem 7, we see that if x € B(x,, 1),

supp f; ¢ B(x,27" 1) \ B(xg, 2'15), j > 1, then

g9, (f}) (x) < c(27ry) ™" (65)

oy

Thus,

[67,9,] = |9, [® ) = b)" ] ()]
(66)

<C 2]r0 H(b()_b) fh“Ll(R"'

Hence, similar to the proof of Theorem 9, and from inequality
(2) in Lemma 19, it follows that

1/r
u{zm <fh>|’}

gy P (67)
<ql{zar |
" R
The proof of Theorem 10 is completed. O

Proof of Theorem 11. For [b"™, g; ], according to the estimate of
[b™, g,,] in the proof of Theorem 8, we get that if x € B(x, 1),

supp f}{ C B(xg, 27 ry) \ B(xg, 27ry), j = 1, then

gﬂ (fh) (.X) < Ca3n/2+s+y 2] (68)

”Ll (R™)"

Thus,
[0, g:] = |9 [0 ) - &) f] ()
< CaPrery 2] "(b( y-b)" fh “LI(R")

Hence, also similar to the proof of Theorem 9, it follows from
inequality (3) in Lemma 19 that

1/r
s

g}

The proof of Theorem 11 is accomplished. O

(69)

'%P(‘)M(Rn)
(70)

My, u(R")
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We extend the concept of relaxed a-monotonicity to mixed relaxed «-f-monotonicity. The concept of mixed relaxed «-p-
monotonicity is more general than many existing concepts of monotonicities. Finally, we apply this concept and well known KKM-
theory to obtain the solution of generalized equilibrium problem.

1. Introduction

Generalized monotonicities provide a way of finding param-
eter moves that yield monotonicity of model solutions and
allow studying the monotonicity of functions or subset
of variables. In recent past, many researchers have pro-
posed many important generalizations of monotonicity such
as pseudomonotonicity, relaxed monotonicity, relaxed «-
B-monotonicity, quasimonotonicity, and semimonotonicity;
see [1-3]. Karamardian and Schaible [4] introduced various
kinds of monotone mappings which in the case of gradient
mappings are related to generalized convex functions. For
more details, we refer to [5-7].

Many problems of practical interest in optimization,
economics, and engineering involve equilibrium in their
description. The techniques involved in the study of equilib-
rium problems are applicable to a variety of diverse areas and
proved to be productive and innovative. Blum and Oettli [8]
and Noor and Oettli [9] have shown that the mathematical
programming problem can be viewed as special realization
of abstract equilibrium problems.

Inspired and motivated by the recent development of
equilibrium problems and their solutions methods, in this
paper, we extend the concept of relaxed «-monotonicity
to mixed relaxed a-f-monotonicity. Finally, this concept is
applied with KKM-theory to solve a generalized equilibrium

problem. The results of this paper can be viewed as general-
ization of many known results; see [10-13].

2. Preliminaries

Let K be a nonempty subset of real Banach space X. Let ¢ :
KxK — Rbeareal-valued functionandlet f: KxK — R
be an equilibrium function; that is, f(x,x) = 0, forall x € K.
We consider the following generalized equilibrium problem:
find x € K such that

fEy)+¢(xy)-¢Fx) 20,

Problem (1) has been studied by many authors in different
settings; see, for instance, [14].

If ¢ = 0, then the problem (1) reduces to the classical
equilibrium problem, that is, to find X € K such that

f(x,y)=0, with f(x,x)=0, Vye€K. (2)

Problem (2) was introduced and studied by Blum and Oettli
[8].

We need the following definition and results in the sequel.

Vy € K. (1)

Definition 1. A real-valued function defined on a convex
subset K of X is said to be hemicontinuous if

tlirgl+f(tx+(1—t)y)=f(y), for each x,y € K. (3)
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Definition 2. Let f : K — 2% be a multivalued mapping.
The f is said to be a KKM-mapping if, for any finite subset

122 yub of K, cofyy, ys s yb € ULy f(9), where
co denotes the convex hull.

Lemma 3 (see [15]). Let K be a nonempty subset of a topolog-
ical vector space X and let f : K — 2% be a KKM-mapping.
If f(y) is closed in X for all y € K and compact for at least one

y € K, then ﬂyer(y)qﬁgb.

Definition 4. Let X be a Banach space. A mapping f: X — R
is said to be lower semicontinuous at x,, € X, if

f (o) < liminf f (x,), (4)
for any sequence {x,} of X such that x,, — x,.

Definition 5. Let X bea Banach space. A mapping f: X — R
is said to be weakly upper semicontinuous at x;, € X, if

f(x0) = limssup f (x,), )
for any sequence {x,} of X such that x, — x,.

Now, we extend the definition of relaxed a-monotonicity
[11] to mixed relaxed «-3-monotonicity.

Definition 6. A mapping f: K x K — Ris said to be mixed

relaxed a-3-monotone, if there exist mappings« : K — R

with a(tx) = Pa(x), forallt > 0and f: K x K — R, such
that

fley)+fpx)<aly-x)+B(xy), Vxye K,( |

6

where

_ [Pa(y-x) Blxty+(1-1)x)
lim +

£t—0 t t =0, @)

and p > 1 is a constant.
If 5 = 0, then Definition 6 reduces to the definition of
generalized relaxed a-monotone; that is,

fly)+fnx)<aly-x), Vx,yeK,  (8)

where
tPoa(y —x
tlin}) [%] =0, p>1isaconstant. (9)
If « = 0, then Definition 6 reduces to the definition of

generalized relaxed 3-monotone; that is,
feey)+f(nx)<Blxy), VxyeK — (10)

where

i PO A=0%) (11)
t—0 t
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If both « = 0 = f3, then Definition 6 coincides with the
definition of monotonicity; that is,

f(xy)+f(yx)<0, Vx,yeK. (12)
Definition 7. A mapping ¢ : K x K — R U {+0} is said to
be o-diagonally convex if, for any finite subset {x,, x5, ..., x,}

of Kand A; > 0 (i = 1,2,...,n) with Y| A; = land X =
Y, A;x;, one has

i)up (%, x;) = 0. (13)
i=1

3. Existence of Solution for Generalized
Equilibrium Problem

We establish this section with the discussion of existence of
solution for generalized equilibrium problem by using mixed
relaxed «-f-monotonicity.

Theorem 8. Suppose f: K x K — R is mixed relaxed «-[3-

monotone, hemicontinuous in the first argument and convex in

the second argument with f(x,x) = 0, forallx € K. Let ¢ : Kx

K — R be convex in the second argument. Then, generalized

equilibrium problem (1) is equivalent to the following problem.
Find x € K such that

fFrx)+¢xx)-¢(Xy) <aly-x)+B(%y), "
Vy eK,
where a(tx) = tPa(x) and p > 1 is a constant.

Proof. Suppose that the generalized equilibrium problem (1)
admits a solution; that is, there exists x € K such that

fEy)+¢(xy)-¢xx) 20,
Since f is mixed relaxed a--monotone, we have
fEY)+f(nx)<aly-x)+p(xy),
X)) <a(y-%)+pEy) - f(xy),
Adding ¢(%, %) — ¢(%, x) on both sides of (17), we have
f(x)+EX)-¢(xy)
<a(y-x)+BEy) - [f(%y) +o(xy) - ¢ x)]
<a(y-x)+p(xy), Vyek.

Vy e K. (15)

Vy e K, (16)

Vy e K. (17)

(18)

Hence, ¥ € K is a solution of problem (14).
Conversely, suppose that x € K is a solution of problem
(14); that is,

fX)+o®ZD -¢(xy)<a(y-%)+p(%y), 1)
Vy e K.
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Letx, = ty+(1-t)x,t € [0,1],and y € K;thenclearly x, € K
as K is convex. Thus from (17), we have

f(xpX)+¢ %) —¢(x,x,) <a(x, - %)+ B (X x,).
(20)

Since f is convex in the second argument, we have
0=f(xpx) <tf(x, )+ (1 -1 f(x.%) (2D
which implies that
tLf (x0%) = f (xpy)] < f (x5 %). (22)
Also as ¢ is convex in the second argument, we have
p(Ex) <tdp(Xy)+(1-1)¢(xX),
~t¢(%y) < -p(Fx)+(1-D¢(E%),  (23)
t (%, %) — ¢ (%, y) < (%, %) - ¢ (%, x,),
tHpED-¢F )] <pE® -¢(%x). (24)
Adding (22) and (24), we have
t[f (x0%) = f(xpy) + ¢ (%%) - ¢ (%, y)]
< f(x:%) + (%) - ¢ (%, x,) (25)
<a(x,—%)+p(%x,).
It follows that
f(xe%) = f(x0p) +¢(E%) - ¢ (X y)

o (xt - E) B (2 xt)
=T T (26)

_aly-%)  pEx)
t t

, p>1

Since f is hemicontinuous in the first argument, taking t —
0, we have

fED-f@y)+oE@x)-¢(xy) <0 (27)
that is, we have
fEy)+¢(xy)-¢(x%) 20,

Hence x € K is a solution of generalized equilibrium problem
D). O

Vy e K. (28)

Theorem 9. Let K be a nonempty bounded closed convex
subset of a real Banach space X. Let f : KxK — R be a mixed
relaxed o-3-monotone, hemicontinuous in the first argument,
convex in the second argument with f(x, x) = 0, o-diagonally
convex, and lower semicontinuous. Let ¢ : K x K — R be
convex in the second argument, o-diagonally convex, and lower
semicontinuous; o« : K — R is weakly upper semicontinuous
and 3 : K x K — R is weakly upper semicontinuous in
the second argument. Then the mixed equilibrium problem (1)
admits a solution.

Proof. Consider a multivalued mapping F : K — 2% such
that

F(y)={xeK: f(x,y)+¢(xy)-¢(x%) =0},
Vy e K.

We show that [],.x F(y) = ¢; that is, X € K is a solution of
generalized equilibrium problem (1).

Our claim is that F is a KKM-mapping. Suppose to
contrary that is F is not a KKM-mapping; then there exists
a finite subset {x, x,,...,x,} of Kand A; >0 (i = 1,2,...n)
with Y| A; = 1 such that

Xp = z/\ixi ¢ UF () (30)
i=1 i=1
It follows that

/ (xo’xi) +¢ (xo, Xi) -¢ (XO,XO) <0,

fori=1,2,...,n.
(31)

Also we have

n

Z/\i [f (%05 ;) + ¢ (20, ;) — ¢ (0, %0)] < O,
= (32)

fori=1,2,...,n,

which contradicts the o-diagonal convexity of f and ¢. Hence
F is a KKM-mapping.

Now consider another multivalued mapping G : K —
2% such that

G(y)={xeK: f(y»x)+¢xX) -¢(x )
<a(y-x)+B(xy)}, Vyek

We will show that F(y) ¢ G(y),Vy € K.Foranygiven y € K,
let x € F(y); then

fxy)+¢(xy)-¢ %) =0. (34)

It follows from the mixed relaxed - 3-monotonicity of f that
f(rR)+oEx0) - (%)
<a(y-3)+pEy)-[fxy)+¢(Ey)-¢ D)

<a(y-x)+p(xy); -
35

that is, ¥ € G(y). Thus F(y) ¢ G(y) and consequently G is
also KKM-mapping.

Since f and ¢ both are convex in the second argument
and lower semicontinuous, thus they both are weakly lower
semicontinuous. From weakly upper semicontinuity of a,
weakly upper semicontinuity of  in the second argument,
and the construction of G, it is accessible to see that G(y) is
weakly closed for all y € K. Since K is closed, bounded, and
convex, it is weakly compact and consequently G(y) is weakly



compact in K for all y € K. Therefore, from Lemma 3 and
Theorem 8, we have

mF()’): ﬂG(y)#(/); (36)

yeK yeK
that is, there exists x € K such that
fEy)+¢(xy)-¢(E%) 20,

Thus, the generalized equilibrium problem (1) admits a
solution. O

VyeK. (37)
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We introduce the notion of weighted A-statistical convergence of a sequence, where A represents the nonnegative regular matrix.
We also prove the Korovkin approximation theorem by using the notion of weighted A-statistical convergence. Further, we give
a rate of weighted A-statistical convergence and apply the classical Bernstein polynomial to construct an illustrative example in

support of our result.

1. Background, Notations, and Preliminaries

We begin this paper by recalling the definition of natural
(or asymptotic) density as follows. Suppose that E € N :=
{1,2,...}and E,, = {k < n: k € E}. Then

8 (E) = lim1 |E, | )
nn

is called the natural density of E provided that the limit exists,
where | - | represents the number of elements in the enclosed
set.

The term “statistical convergence” was first presented by
Fast [1] which is a generalization of the concept of ordinary
convergence. Actually, a root of the notion of statistical
convergence can be detected by Zygmund [2] (also, see [3]),
where he used the term “almost convergence” which turned
out to be equivalent to the concept of statistical convergence.
The notion of Fast was further investigated by Schoenberg [4],
Salét [5], Fridy [6], and Conner [7].

The following notion is due to Fast [1]. A sequence x =
(x;) s said to be statistically convergent to L if §(K,) = 0 for
every € > 0, where

K.:={keN:|x - L| >€}. (2)

Equivalently,
lirrlnn_lHkSn: |xe — L| > €}| = 0. 3)

In symbol, we will write S-limx = L. We remark that
every convergent sequence is statistically convergent but not
conversely.

Let X and Y be two sequence spaces and let A = (a,,;) be
an infinite matrix. If for each x = (x;) in X the series

o0
Apx = Zan,kxk = Zan,kxk (4)
3 k=1

converges for each n € N and the sequence Ax = (A,x)
belongs to Y, then we say that matrix A maps X into Y. By the
symbol (X, Y) we denote the set of all matrices which map X
intoY.

A matrix A (or a matrix map A) is called regular if A €
(¢, ¢), where the symbol ¢ denotes the spaces of all convergent
sequences and

limA,x = liin Xy (5)

for all x € c. The well-known Silverman-Toeplitz theorem
(see [8]) asserts that A = (a,, ;) is regular if and only if

(i) lim,a, ; = 0 for each k;


http://dx.doi.org/10.1155/2014/437863

(ii) lim,, Yy @, = 1;
(iii) sup,, 'y la, x| < co.

Kolk [9] extended the definition of statistical convergence
with the help of nonnegative regular matrix A = (a,,) calling
it A-statistical convergence. The definition of A-statistical
convergence is given by Kolk as follows. For any nonnegative
regular matrix A, we say that a sequence is A-statistically
convergent to L provided that for every € > 0 we have

ll}ln Z an)k =1L. (6)

k:|x,—L|>e

In 2009, the concept of weighted statistical convergence
was defined and studied by Karakaya and Chishti [10] and
further modified by Mursaleen et al. [11] in 2012. In 2013,
Belen and Mohiuddine [12] presented a generalization of this
notion through de la Vallée-Poussin mean. Quite recently, Esi
[13] defined and studied the notion statistical summability
through de la Vallée-Poussin mean in probabilistic normed
spaces.

Let p = (p;) be a sequence of nonnegative numbers such
that p, > 0 and

n
Pn:Zpk—>oo as n — 00. 7)
k=0
Let
1 n
t,=— ppXp n=0,1,2.... (8)
P

We say that the sequence x = (x) is (N, p,)-summable to L
iflim, , t, = L.

The lower and upper weighted densities of E € N are
defined by

85 (E) = limninf% |{fk<P,:keE}, 9)

3 (E) = lim supI_i) l{k <P,:keE}, (10)

respectively. We say that E has weighted density, denoted by
0y (E), if the limits of both of the above densities exist and are
equal; that is, one writes

85 (E) =1i£n%|{kSPn:k€E}|. (11)
The sequence x = (x;) is said to be weighted statistically

convergent (or Sy-convergent) to L if, for every e > 0, the set
{k € N: plx; — L| > €} has weighted density zero; that is,

1
lirrlnF [{k <P, :pp|xc—L| =€} =0. (12)
n
In this case we write L = Sg-lim x.
Remark 1. If p, = 1 for all k, then (N, p,)-summable
is reduced to (C, 1)-summable (or Cesaro summable) and

weighted statistical convergence is reduced to statistical
convergence.
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On the other hand, let us recall that €[a, b] is the space of
all functions f continuous on [a, b]. We know that €|[a, b] is
a Banach space with norm

I £l = s If )|, fe%labl. 1)

Suppose that L is a linear operator from €/[a, b] into €[a, b].
Itis clear thatif f > 0implies Lf > 0, then the linear operator
L is positive on €[a, b]. We denote the value of Lf at a point
x € [a,b] by L(f; x). The classical Korovkin approximation
theorem states the following [14].

Theorem 2. Let (T,) be a sequence of positive linear operators
from €|[a, b] into €la,b]. Then,

lim | T,,(f, %) = f(x)] o, = 0, (14)
forall f € €la,b] if and only if
lim | 7,,(f;, %) = fi()] o = 0, (15)

where f;(x) = xandi=0,1,2.

Many mathematicians extended the Korovkin-type
approximation theorems by using various test functions in
several setups, including Banach spaces, abstract Banach
lattices, function spaces, and Banach algebras. Firstly, Gadjiev
and Orhan [15] established classical Korovkin theorem
through statistical convergence and display an interesting
example in support of our result. Recently, Korovkin-type
theorems have been obtained by Mohiuddine [16] for
almost convergence. Korovkin-type theorems were also
obtained in [17] for A-statistical convergence. The authors
of [18] established these types of approximation theorem in
weighted L, spaces, where 1 < p < 00, through A-sum-
mability which is stronger than ordinary convergence. For
these types of approximation theorems and related concepts,
one can be referred to [19-27] and references therein.

2. Korovkin-Type Theorems by Weighted
A-Statistical Convergence

Kolk [9] introduced the notion of A-statistical convergence
by considering nonnegative regular matrix A instead of
Cesaro matrix in the definition of statistical convergence due
to Fast. Inspired from the work of Kolk, we introduce the
notion of weighted A-statistical convergence of a sequence
and then we establish some Korovkin-type theorems by using
this notion.

Definition 3. Let A = (a,;) be a nonnegative regular matrix.
A sequence x = (x;) of real or complex numbers is said

to be weighted A-statistically convergent, denoted by Sf—
convergent, to L if for every e > 0

lim ) a,=0, (16)
keE(pie)
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where

E(p,€) ={k e N: p|x; — L| > €}. (17)

In symbol, we will write Sf—lim x=1L.
Remark 4. One has the following.

(i) If we take A = I, where I denotes the identity matrix,
then weighted A-statistical convergence of a sequence
is reduced to ordinary convergence.

(ii) If we take A = (C, 1), where (C, 1) denotes the Cesédro
matrix of order one, then weighted A-statistical con-
vergence of a sequence reduces to weighted statistical
convergence.

(iii) If we take A = (C,1) and p, = 1 for all k,
then weighted A-statistical convergence of a sequence
reduces to statistical convergence.

Note that convergent sequence implies weighted A-
statistically convergent to the same value but the converse is
not true in general. For example, take A = (C,1) and p, = 1
for all k and define a sequence x = (x;) by

e 2
xk:{l, it k=n", (18)

0, otherwise,

where n € N. Then this sequence is statistically convergent to
0 but not convergent; in this case, weighted A-statistical con-
vergence of a sequence coincides with statistical convergence.

Theorem 5. Let A = (a,;) be a nonnegative regular matrix.
Consider a sequence of positive linear operators (M) from
€la, b] into itself. Then, for all f € €|a,b] bounded on whole
real line,

SY-lim|[My (f.x) = f(0)], = 0 (19)
if and only if
Sylim|M; (1,x) - 1], = 0.
Sf'h}(n"Mk (v, x) - x|, =0, (20)
N 1.
Sy —hIEn“Mk (vz,x) - x2||OO =0.

Proof. Equation (20) directly follows from (19) because each
of 1, x, x* belongs to €[a, b]. Consider a function f € €la, b].
Then there is a constant C > 0 such that | f(x)| < C for all
x € (—00, 00). Therefore,

|f (v) - f(x)] <2C,

—00 < ¥, X < 00. (21)

Let e > 0 be given. By hypothesis thereisa § := 6(¢) > 0 such
that

|f(v)—f(x)|<e V|v—x|<d. (22)

Solving (21) and (22) and then substituting Q(v) = (v - x)?,
one obtains

|f(v)—f(x)|<e+2—§(2, Viv—-x| <d. (23)

Equation (23) can also be written as

2C

—e— 5

Q<f(v)—f(x)<e+28—]\2/[(2. (24)

Operating M (1,x) to (24) since My (f,x) is linear and
monotone, one obtains

M (1) (- 220) < ML) (F ) - £ ()
(25)
< M (1,x) <e + i—gﬂ)

Note that x is fixed, so f(x) is constant number. Thus, we
obtain from (25) that

—eM; (1,x) — ;—EM,( (Q,x) < My (fx) = f (x) My (1,x)

< €Mk (1, x) + fS_SMk (Q, x) .
(26)

The term “M;(f,x) — f(x)M(1,x)” in (26) can also be
written as

My (fix) = f () My (1, x) = My (fox) = f (%) o)
— f(x)[M(1,x)-1].

Now substituting the value of M (f, x)— f (x)M,(1, x) in (26),
we get that

M (fix) = £ () < €My (1) + 22 My (0,)

(28)
+ f () (M (1, x) = 1)
We can rewrite the term “M;(Q, x)” in (28) as follows:
M, (Q,x) = M, ((v - x)z, x)
= M, (vz, x) +2xM; (v, x) + szk (1, x)
(29)

= [Mk (vz, x) - xz] - 2x [Mj (v, x) — x|

+x° [M, (1,x) - 1].



Equation (28) with the above value of M, (Q, x) becomes

M (f,x) = f (%)
< eM (1, x)

+ g—(; {[Mk (vz,x) - xz] +2x [My (v, x) — x|

+x7 [My (1, %) = 1]} + £ (0) (M, (1,x) - 1)

=e[M,(1,x)-1] +¢
2C P 2
+ g{[Mk(V ,x)—x ] +2x[Mk(v,x)—x]

+x° [M, (1,x) - 1]} + f (x) [Mg (1, x) - 1].

(30)
Therefore,
20
|Mk (f:x) _f(x)l < (€+ Sl +C> |Mk(l,x) - 1|
. fS_C M, (v, %) - ] (3D

4Cb
t s |M; (v, x) = x|,

where b = max |x|. Taking supremum over x € [a,b], one
obtains

IMi (fix) = f )l < [ €+ £fz +C) M (L2 - 1],
5
C
AU

4Cb
+F||Mk(1’» %) = o

(32)
or
My (£, %) = f )]
<T{IMy (Lx) - 1 + M (Pox) -7 (33)
+ || M (v, x) - x||oo},

where
T::max{e+2§—52+c,i—g,48izb} (34)

Hence,

pelMi (i x) = f ()]
< TP My (1L x) = 1), + peMi (Vo x) - 2| 35)

+ e Mi(v, %) - x| } -
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For a given & > 0, choose € > 0 such that € < «, and we will
define the following sets:

E={keN: p My () - £ )], = o

o —€
E; = ik eN: p|M, (1, %) - 1|, = 3T }

oc—e}) (36)

E, = {k e N: p|M; (v, x) — x|, > 3

By = ke N: pmi (Vox) - ) 2 225
It is easy to see that
ECE UE,UE,. (37)

Thus, for each n € N, we obtain from (35) that

Zan,k < Z an,k + Z an’k + Z an’k. (38)

keE keE, k€E, keE,

Taking limit n — o0 in (38) and also (20) gives that

lim ), = 0. (39)
keE
This yields that
sf-n]glan( f:%) = f)]|o = 0, (40)
forall f € ©[a,b). O

We also obtain the following Korovkin-type theorem for
weighted statistical convergence by writing Cesaro matrix
(C, 1) instead of nonnegative regular matrix A in Theorem 5.

Theorem 6. Consider a sequence of positive linear operators
(My,) from €la, b] into itself. Then, for all f € €[a,b]

Sy-lim [ My (f, %) = ()] = 0 (41)
if and only if
sﬁ-liin [ My (1,x) - 1], =0, (42)
Sﬁ—liin [ My (v, x) = x|, =0, (43)
Sxlim [ M, (v, x) - 7 =o. (44)

Proof. Following the proof of Theorem 5, one obtains
ECE UE,UE; (45)
and so
05 (E) € 85 (E;) + O (E,) + 65 (E5). (46)
Equations (42)-(44) give that

Sy-lim [ My (. %) = f()]|o, = O (47)
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Remark 7. If we replace nonnegative regular matrix A by
Cesaro matrix and choose p, = 1 for all k, in Theorem 5,
then we obtain Theorem 1 due to Gadjiev and Orhan [15].

Remark 8. By Theorem 2 of [10], we have that if a sequence
x = (x;) is weighted statistically convergent to L, then it is
strongly (N, p,)-summable to L provided that py|x, — L| is
bounded; that is, there exists a constant C such that p;|x; —
L| < Cfor all k € N. We write

- {x = (x;) : lip%nk;)pk |x¢ = L| = 0 for some L]»
(48)

N, p,

for the set of all sequences x =
(N, p,)-summable to L.

(x) which are strongly

Theorem 9. Let M, : €la,b] — €la,b] be a sequence of
positive linear operators which satisfies (43)-(44) of Theorem 6
and the following condition holds:

lim M (1, %) = 1], = 0. (49)
Then,
lim— ZPk M (f %) = f()]| oo (50)
L

forany f € €la,b].

Proof. It follows from (49) that [[M(1, %)l ., < C', for some
constant C' > 0 and for all k € N. Hence, for f € €la,b], one
obtains

pk”Mk (f’ x) - f(x)“oo < Px ("f”oo"Mk (1’x)”oo + ”f"oo)

< pC(C'+1).
(51)

Right hand side of (51) is constant, so py[|M;(f, x) = f(x)ll,
is bounded. Since (49) implies (42), by Theorem 6 we get that

Sx-lim|| M, (f, x) - f(x)], = 0. (52)
By Remark 8, (51) and (52) together give the desired result.
O

3. Rate of Weighted A-Statistical Convergence

First we define the rate of weighted A-statistically convergent
sequence as follows.

Definition 10. Let A = (a,,;) be a nonnegative regular matrix
and let (g;) be a positive nonincreasing sequence. Then, a
sequence x = (x;) is weighted A-statistically convergent to
L with the rate of o(ay) if for each € > 0

ll,gn— Y =0 (53)

”keE(pe

5
where
E(p,€) ={k e N: p|x; — L| > €}. (54)
In symbol, we will write
-L= Sf—o () as k — oo. (55)

We will prove the following auxiliary result by using the
above definition.

Lemma 11. Let A = (a,;) be a nonnegative regular matrix.
Suppose that (a,) and (b,) are two positive nonincreasing
sequences. Let x = (x;) and y = (y,) be two sequences such

that x; — L, = S -o(a,) and y, — L, = S\-o(by). Then,
(D) (e~ Ly) = (g — L) = SY-0(cy),
(ii) (x5 = L) (g — L) = S -0()s

(iii) a(xp — L;) = Sf—o(ak),for any scalar «,
where ¢, = max{ay, b }.

Proof. (i) Suppose that

X =Ly = ST‘O (@), Ye—La= Sf—o ().  (56)

Given € > 0, define

E'={keN:p |- L)+ (y - L) 2 ¢,
€
:{kEN:pk|Xk—L1|ZE}, (57)
/II €
"= {keN: pelye- 1o 2 £},
It is easy to see that
E'cE'"UE". (58)
This yields that
_zank< Zank+ Z A (59)
Cn keE’ Cn keE" Cn keE"

holds for all n € N. Since ¢, = max{ay, b}, (59) gives that
—Zak<—2ank+ Za (60)
Cn kep' % e ”keE”’
Taking limitn — o0 in (60) together with (56), we obtain
hm Z a,; = (61)
Cn keE'

Thus,
(e = L) % (3 — L) = Sy-0(c0). (62)

Similarly, we can prove (ii) and (iii). O



Recall that the modulus of continuity of f in €[a,b] is
defined by

@ (£,0) =sup{|f ()~ f (y)| : %,y € [a,b],[x - y[ < &}

(63)

It is well known that

rw-solsetro(E2). e

Theorem 12. Let A = (a,;) be a nonnegative regular matrix.
If the sequence of positive linear operators My : €la,b] —
€la, b] satisfies the conditions

() 1M, (15 %) — 1, = SY-0(ay),

(i) w(f,Ay) = SN-o(b) with Ay, = /M (pyx) and
Pe(y) = (y - x)%

where (a,) and (b,) are two positive nonincreasing sequences,
then

|M(fix) ~ f)], = S¥-0 (). (65)

forall f € €la,b], where ¢, = maxiay, b }.

Proof. Equation (27) can be reformed into the following
form:

My (fsx) = f (0 < M (|f (9) = f (9)]5%)
+|f ()| [ My (1;%) = 1]

< Mk(1+|y6;x|;x)w(f,8)
+|f ()] My (1;x) - 1
SMk<1+ (y(;z o) ) (f.9)

1 @ M (1520 -1

IN

(M 159 + 55 My (93%) ) (£.0)
+|f ()| [My (1x) - 1
|My (1;x) = 1| w (£, 6)

+ |f(x)||Mk(l;x)—1|+w(f,8)

IN

+ 5 My (P ) @ (£5).

(66)
Choosing & = A, = /M (¢,; x), one obtains
1My (fs %) = f ()]l < TIM (15%) = 1, + 20 (£ Ag)
+ | My (1,x) = 1] o (fs Ae) s
(67)
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where T = | f||. For a given € > 0, we will define the follow-
ing sets:
Ep = {keN: p M (fix) = f (9] 2 €}
, e
By = {ken: pmean -1l = =},
(68)
E, = {kEN pew (fidi) 2 }
!
By = fkeN: po(£2) 1M 0 - 1], > 5.
It follows from (67) that
_Zank< Zank+ Zank+ Zank (69)

Cn keE] Cn keE) Cn keE} Cn keE]
holds for n € N. Since ¢, = max{ay, b}, we obtain from (69)

that

_Zank<

”keE’

Zank'l'

n keE,

Zank+

” keE}

Z k- (70)

n keE]

Taking limitn — 00 in (70) together with Lemma 11 and our
hypotheses (i) and (ii), one obtains

hm Z Ay = (71)
Cn keE;
This yields
|Mi(fi %) = F)], = S¥-0(c) - (72)
O

4. Example and the Concluding Remark
The operators B,, : €[0;1] — €[0; 1] given by

- k
B(9=Ypus(y) 0

where p,;(x) are the fundamental Bernstein polynomials
defined by

P00 = () - 74)

for any x € [0,1], any k € {0,1,...,n}, and any n € N, are
called Bernstein operators and were first introduced in [28].
Let the sequence (A,) be defined by A, : €[0,1] — €][0,1]
with A, (f,x) = (1+x,)B,(f, x), where x = (x;) is a sequence
defined by

cr 2
x=(xk)={\/%’ 1fk—n.,n€N, (73)

0, otherwise.
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That is, (x;) = (1,0,0,2,0,0,0,0,3,0,...,0,4,0,0,...). Let
P = k(k = 1,2,...) and consider a nonnegative regular
matrix A = (C, 1). Then,

Pexi = (1,0,0,8,0,0,0,0,27,0,...,0,64,0,0,...),

i B n(n+1) (76)

Since

n;}% k<P, : pele— 0| =€l
’ (77)

1 1
cimlfm-—L o
n PV \nn+ 1) )2
(x;) is weighted statistically convergent to 0 but not conver-
gent. It is not difficult to see that

B,(1,x) =1, B, (t,x) = x,

(78)
B, (tz,x) =x*+ x =

n

and the sequence (A,,) satisfies conditions (20). This yields
that

Sty im A, (£ = F(0)], = o. (79)

On the other hand, one obtains A, (f,0) = (1 + x,,) f(0),
since B,,(f,0) = f(0), and hence

[A.(f, %) = f()] o, 2 A, (£,0) = f(O)] = x, | f <0>|

It follows that (A,) does not satisfy the Korovkin theorem,
since (x,) and hence (A,) is not convergent. Finally, we
conclude that Theorem 5 is stronger than Theorem 2.
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In some cases, the most general linear operator between two sequence spaces is given by an infinite matrix. So the theory of matrix
transformations has always been of great interest in the study of sequence spaces. In the present paper, we introduce the matrix
transformations in sequence spaces over the field C* and characterize some classes of infinite matrices with respect to the non-
Newtonian calculus. Also we give the necessary and sufficient conditions on an infinite matrix transforming one of the classical
sets over C” to another one. Furthermore, the concept for sequence-to-sequence and series-to-series methods of summability is

given with some illustrated examples.

1. Introduction

The theory of sequence spaces is the fundamental of summa-
bility. Summability is a wide field of mathematics, mainly in
analysis and functional analysis, and has many applications,
for instance, in numerical analysis to speed up the rate of
convergence, in operator theory, the theory of orthogonal
series, and approximation theory. This subsection serves
as a motivation of what follows. The classical summability
theory deals with the generalization of the convergence of
sequences or series of real or complex numbers. The idea is
to assign a limit of some sort to divergent sequences or series
by considering a transform of a sequence or series rather
than the original sequence or series. One can ask why we
employ the special transformations represented by infinite
matrices instead of general linear operators. The answer to
this question is that, in many cases, the most general linear
operators between two sequence spaces are given by an
infinite matrix. Many authors have extensively developed the
theory of the matrix transformations between some sequence
spaces we refer the reader to [1-13].

As an alternative to the classical calculus, Grossman and
Katz [14-16] introduced the non-Newtonian calculus consist-
ing of the branches of geometric, quadratic, and harmonic
calculus, and so forth. All these calculi can be described

simultaneously within the framework of a general theory. We
decided to use the adjective non-Newtonian to indicate any
of calculi other than the classical calculus. Every property in
classical calculus has an analogue in non-Newtonian calculus
which is a methodology that allows one to have a different
look at problems which can be investigated via calculus. In
some cases, for example, for wage-rate (in dollars, euro, etc.)
related problems, the use of bigeometric calculus which is
a kind of non-Newtonian calculus is advocated instead of a
traditional Newtonian one.

Bashirov et al. [17, 18] have recently concentrated on
the non-Newtonian calculus and gave the results with
applications corresponding to the well-known properties
of derivatives and integrals in the classical calculus. Also,
Uzer [19] has extended the non-Newtonian calculus to
the complex valued functions and was interested in the
statements of some fundamental theorems and concepts
of multiplicative complex calculus and demonstrated some
analogies between the multiplicative complex calculus and
classical calculus by theoretical and numerical examples.
Further, Misirli and Gurefe have introduced multiplicative
Adams Bashforth-Moulton methods for differential equa-
tions in [20]. Quite recently, Kadak [21, 22] have determinated
Kéthe-Toeplitz dual between classical sets of sequences over
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the non-Newtonian complex field and have constructed
Hilbert spaces over the non-Newtonian field.

The main purpose of the present paper is to characterize
some matrix classes between certain sequence spaces over the
non-Newtonian complex field.

2. -Arithmetics and Some
Related Applications

A generator is a one-to-one function whose domain is R and
whose range is a subset of B € R, the set of real numbers. Each
generator generates exactly one arithmetic, and, conversely,
each arithmetic is generated by exactly one generator. For
example, the identity function generates classical arithmetic
and exponential function generates geometric arithmetic. As
a generator, we choose the function f§ such that its basic
algebraic basic algebraic operations are defined as follows:

B-addition x + y = {ﬁ_l (x)+ B! (y)};
B-subtraction x = y = f3 {[371 (x)-p* (y)} ,
B-multiplication x X y = {ﬁ_l (x)x B (}’)} ;

s . 3 €]
B-division x / y, 5 = /3{[3 (x)+ B ()’)}

(B () #0),
-order x< y &= B (x) < B (¥),

for all x, y € R where the non-Newtonian real field Ry :=
{B{x} : x € R} asin [23].

The fB-positive real numbers, denoted by IRE, are the
numbers x in Rg such that 0 < x; the B-negative real numbers,

denoted by Ry, are those for which x < 0. The beta-zero, 0,

and the beta-one, 1, turn out to be B(0) and f(1). Further,
B(=p) = BB (p)} = Zpholds forall p € Z*. Thus the set of
all B-integers turns out to be the following:

Zg=1{..,f(-2),B(-1),B(0),f(1),(2),...}

= (., 25,70,0,1,3,.. )

2)

Definition 1 (see [21]). Let X be a nonempty set and let d* :
XxX — Rpgbeafunction such that forall x, y, z € X, then
the following axioms hold:

(NM1) d*(x, y) = 0 ifand only if x = y,

(NM2) d*(x, y) = d"(y,x),

(NM3) d*(x, y) < d*(x,2) ¥+ d*(z, y).

Then, the pair (X,d") and d* are called a non-Newtonian
metric space and a non-Newtonian metric on X, respectively.

Definition 2 (see [23]). Let X = (X, d") be a non-Newtonian
metric space. Then the basic notions can be defined as
follows.
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(a) A sequence x = (x;) is a function from the set N into
the set Rj. The B-real number x; denotes the value of
the function at k € N and is called the kth term of the
sequence.

(b) A sequence (x,,) in a metric space X = (X, d") is said
to be #-convergent if for every given € > 0 there exists
ann, = ny(e) € Nand x € X such thatd*(x,,x) < ¢
for all n > ny and is denoted by *lim,, _, . x,, = x or
X, 5 xasn — oo.

(c) A sequence (x,) in X = (X,d") is said to be non-
Newtonian Cauchy (*-Cauchy) if for every e30 there
is an n, = ny(e) € N such that d*(x,, x,,,) < ¢ for all
m,n > n.

Remark 3 (see [21]). Leth € B c R. Then the number bxb
is called the 3-square and is denoted by b*. Let b € [RE. Then

B{\/B1(b)} is called the B-square root of b and is denoted by
b Further, for each b € B we can write b? = [5’{[[3_1('15)]?} =
B{bP} forall p € N.

The p-absolute value of a number x in B ¢ R(N)
is defined as ﬁ(lﬁ_l(x)l) and is denoted by leﬂ. For each

number x in A ¢ R(N), V&2 = |x|; = B (x)]). Then
we say

X, x30
xlg= 40,  x=0=p{p" )|} (3)
0-x, x<0.

The non-Newtonian distance between two numbers x; and
x, is defined by |x; =x,|g = BUB (x)) = B} =
ﬁ{lﬁ_l(xz) - ,B_I(xl)l} =[x, = x1|/3- Similarly, by taking into
account the definition for alpha-generator in (3), one can
conclude that the equality |x; = x,|, = |x, - x|, holds for
all x,, x, € R.

Now, we give a new type calculus for non-Newtonian
complex terms, denoted by =*-calculus, which is a branch
of non-Newtonian calculus. From now on we will use *-
calculus type with respect to two arbitrarily selected generator
functions.

2.1. =-Arithmetic. Suppose that « and f are two arbitrarily
selected generators and (“star-”) also is the ordered pair
of arithmetics (B-arithmetic, «-arithmetic). The sets
(B,+,%,%, /) and (A, +,%,/) are complete ordered
fields and beta(alpha)-generator generates beta(alpha)-
arithmetics, respectively. Definitions given for f-arithmetic
are also valid for a-arithmetic.

The important point to note here is that a-arithmetic is
used for arguments and f-arithmetic is used for values; in
particular, changes in arguments and values are measured by
a-differences and f-differences, respectively. The operators
of this calculus type are applied only to functions with
arguments in A and values in B. The *-limit of a function f
at an element a in A is, if it exists, the unique number b in B
such that for every sequence (a,) of arguments of f distinct



The Scientific World Journal

from g, if (a,) is a-convergent to a, then { f(a,)} S-converges
to b and is denoted by lim,_, , f(x) = b. That is,

*giinaf(x):bmv‘sif), 363505 |f (%) lb|ﬁ2£
(4)

Vx € A, |x4a|a <é.

A function f is *-continuous at a point a in A if and only
if a is an argument of f and *lim,_ ,f(x) = f(a). When
« and f are the identity function I, the concepts of *-limit
and =-continuity are identical with those of classical limit and
classical continuity.

The isomorphism from «-arithmetic to -arithmetic is
the unique function « (iota) that possesses the following three
properties.

(i) ¢is one to one.
(ii) ¢is from A onto B.

(iii) For any numbers © and v in A,
t(usv) =1(u) “i(v),
H(ufv)=1@)1v);  (5)

usvesi(u) <1(v).

t(utv)=1(u) F1(v),
Huxv) =@ i),
v#0,

It turns out that «(x) = ﬁ{oc_l(x)} for every x in A and that
i(nn) = # for every integer n. Since, for example, u + v =
Hi(u) ¥ 1(v)}, it should be clear that any statement in «a-
arithmetic can readily be transformed into a statement in 3
arithmetic.

2.2. Non-Newtonian Complex Field and Some Inequalities.
Leta(a) =a € (A,+,-,%,/)and f(b) =b € (B,+,-, %, /) be
arbitrarily chosen elements from corresponding arithmetics.

Then the ordered pair (4, b) is called a *-point. The set of all -
points is called the set of *-complex numbers and is denoted
by C*; that is,

C ={z"=(ab)lac AcRbeBCcR}. (6)

Define the binary operations addition (&) and multiplication
(®) of *-complex numbers z; = (d5,b,) and zy = (a5, by) as
follows:

@ C'xC"—C"
(z1,2) — 2" @z
= (afa; +a,},B1{b +b,})
= (a,+a,b, b))
o . @
o C xC —C
(5]) o 5 02
= (a{aja, - bb},
Blab, +biay}),

where d,,d, € Aand b, b, € B.

Theorem 4 (see [24]). (C*,®,0) is a field.

Following Grossman and Katz [15], we can give the
definition of *-distance and some applications with respect
to the *-calculus which is a kind of calculi of non-Newtonian
calculus.

The *-distance d* between two arbitrarily elements z; =

(a,,b,) and z; = (dy,b,) of the set C* is defined by
d*: C*xC" —[0,00)=B' cB

(z1,23) —d" (21, 2;)

o S B

=p {\/(a1 - “2)2 + (b, - bz)z} .

Up to now, we know that C* is a field and the distance
between two points in C* is computed by the function d*,
defined by (8).

Definition 5 (see [21]). Given a sequence (z;) of *-complex
numbers, the formal notation

(o9
*Zz,f:zgeazfeaz;e---@z,’:e)---, VkeN, (9
=0

is called an infinite series with #-complex terms, or simply
complex N-series. Also, for integers n € N, the finite *-sums
Sy =2 2r. are called the partial sums of complex N-series.
If the sequence *-converges to a complex number s* then we
say that the series *-converges and write s* = Y2 z.. The
number s* is then called the *-sum of this series. If (s,) *-
diverges, we say that the series *-diverges, or that it is =-

divergent.

Remark 6. Given a sequence (x;) of B-real numbers Rg, the
formal notation

ixkzﬁ{iﬁ‘l {xk}} =x i FagdeFag ke
Pr=o k=0
(10)

is called an infinite non-Newtonian series with f3 real terms.
Also, for integers n € N, the finite sums s,= 5>} _ x are
called the partial sums of the N-series. If the sequence f3-
converges to a real number s then we say that the series [3-
converges and write s=5 Y’ 2 x. The number s is then called
the sum of this series. If (s,) B-diverges, we say that the N-
series is 3-divergent.

Proposition 7 (see [24]). For any z|,z; € C". Then the
following statements hold.

() liz; @zl <liz; 1+ iz 0. (x-triangle inequality)

(i) lz; @ 231 = Iz %Mz |l



(iii) Let p>1 and z;,t; € C* for k € {0,1,2,3,...,n}
Then,

n 1/p
I * *..p
(*Zuzk ot )

k=0

" . ..p l/p L . ..P 1/p (11)
s<*z||z;|| ) 4(2'“:’2" )
k=0 k=0

(Minkowski’s inequality) .

Folllowing Tekin and Bagar [24], we can give the *-norm
and next derive some required inequalities in the sense of
non-Newtonian complex calculus.

Let z* € C be an arbitrary element. The distance
function d” (z",0") is called *-norm of z* and is denoted by
i - iI. In other words,

liz*l =" (",6")
IO (5-0) 2)
= p{Va + 17},
where z* = (a,b) and 6* = (0, 0). Moreover, since for all

z},z; € C* wehave d*(z},z}) = |z} © z; || which d* is the
induced metric from || - || norm.

Definition 8 (see [21], complex conjugate). Let z* = (4, b) e
C". We define the *-complex conjugate z* of z* by z* =
(afal, [3{—[371(25)}) = (a,2b). Conjugation changes the sign
of the imaginary part of z* but leaves the real part the same.
Thus,
Re(Z") = Re(z")= (" @Z") [2=a,

(13)

Im(Z)=2Im(z") = (z"eZ") ]2 =D.

Theorem 9 (see [24]). (C*,d") is a complete metric space,
where d* is defined by (8).

Corollary 10 (see [24]). C* isa Banach space with the *-norm

ii -l defined by liz*i = \[u@))? + )% z* = (a,b) e C*.

3. Non-Newtonian Infinite Matrices

A non-Newtonian infinite matrix A = (a;;.) of non-
Newtonian complex numbers is a double sequence of com-
plex numbers defined by a function A from the set N x N
into the complex field C*, where N denotes the set of natural
numbers, that is, N = {0,1,2,...}. The complex number a;.
denotes the value of the function at (i, j) € NxN and is called
the entry of the matrix in the ith row and jth column.
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The addition (@) and scalar multiplication (©) of the
infinite matrices A = (a;) = (é,-j,Sij) and B = (b ) = (fj> 73;7)

are defined by
AeB=(aj0b]) = (&5;) ® (47i;)
= (& + gy S ¥ i)
= (afey + i} B8, + 7)) (14)
MoA=(Voar)=(Mi)o(ed;)
= (a{re; —A8;} . B{re; +A8,}).

where the elements ¢, &, ¢ 11 are inRand \* = (L, A)isa
non-Newtonian scalar in C*. The product A®B of the infinite
matrices A = (ai )and B = (b ) is defined by

o0
(AoB),; = *Zai’; o by
=0

<‘X {Z (Sikﬂkj - 5ik’1kj)]’ > 15)

k=0

B {Z (sikﬂkj + 6ik.“kj)]’ > » Vi jeN,

k=0

provided that the series on the right hand side of (15) *-
converge for all 7, j € N, where (A © B),; denotes the entry of
the matrix A® B in the ith row and jth column. For simplicity
in notation, here and in what follows, the summation without
limits runs from 0 to co. On the other hand, the series on the
right hand side of (15) *-converges if and only if

Z (sik.”kj - 6ik’7kj) >
k

Z (%k’?kj + 5ik.“kj) (16)
k

are convergent classically for all k,n € N. However the series
(15) may *-diverge for some, or all, values of , j; the product
A © B of the infinite matrices may not exist.

Definition 11 (see [25]). Consider the following system of
an infinite number of linear equations in infinitely many
unknown x;,x7,X,,... elements by .}, a; © x; = y; for
all i € N. If we construct a non-Newtonian infinite matrix
A = (aj) with the coefficients a;; of the unknowns x; and
denote the *-vectors of unknowns and constants by X and
Y, then the above sum can be expressed in matrix form as
AoX =Y. Alsol, oA =A06I, = A wherel, = (5;) is
called #-unit matrix and is defined by

1" =(i,1), i=j
8;; = (17)
0" =(0,0), i+j.
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A very important application of infinite matrices is used
in the theory of summability of divergent sequences and
series which is considered based on non-Newtonian mean
in next chapter. A simple example of the non-Newtonian
Cesaro mean, denoted by #-Cesaro mean of order one, which
is the analog of the well-known method of summability given
below.

(e, e) (1,1)
(Ve.ve) (Ve e)

(", ") ("6 "R) (" "W&) - (", &) -

where 6° = (a(0),3(0)) = (1,1) and e is a logarithmic
number. The important point to note here is that the infinite
matrix can be obtained in a similar way by using different
generator functions above mentioned.

The *-zero matrix 0* is the matrix whose entries are all
equal to 6. Thus, it is obvious that A@ 0" = 0" 0 A = 6",
But, as classical, A® B = 8" does not imply A = 6" or B=0".
Further, the conjugate A of a complex matrix A = (a;.) is the
matrix A = (@;;) where a;; is the conjugate of the complex

number aij. in Definition 8.

3.1. Non-Newtonian Matrix Transformations. Let u), y; C
w* and A = (@) = (£,48,4) be an infinite matrix of non-
Newtonian complex numbers for all & € R, and §, € R 8-
Then, we say that A defines a matrix mapping from y; into p,
and denote it by writing A : u; — u,, if for every sequence
z = (z;) € p the sequence Aoz = {(Az),,}, the A-transform
of z, exists and is in ‘u; , where

* * e * CICRY
g0 o1 o z
* * e * e
9o 9 Dk z
Aoz= o ' o
* * e * e
Ao A Ak ZZ

* * * *
Ay © 2z ®ay, Oz @ -+

* * * *
a,0z;®a;,0z,® -

* * * *
4y ©Zy ®ay OZ @ -+

Example 12 (Cesaro mean). Define the matrix C] = (c,;) by

1 *
. ( ) 0<k<n,
Cuk = n+1
0", k> n.

(18)

If we choose the generator functions as & = exp and f3 = exp
the calculus is bigeometric calculus [14, 15], then we obtain an
infinite matrix with complex terms as follows:

(Vede)  (eve) (Vo) (L1)

, (19)
*%agk o (Az),
*%al*sz'; (Az),
Saos wa, |
(20)
and, in this way, we transform the sequence z = (z;) =

(b 7iie)> with gy € R, and 7j € Rp, into the sequence {(Az),}
by

(A2), = Y an 0z = (0‘ {Z (Co Snkrlk)]’ ,
p p

(21)

B ‘{; (&aktlic + 5nk#k)} )

foralln € Njand 6,4, € R.Thus, A € (y; : p,) if
and only if the series on the right side of (21) *-converges
for each n € N and every z € u;, and we have Ao z =
{(Az),},en € W, forall z € pf. On the other hand, we say
A € (yy : py) if and only if the series Y (€t — O,tfie) and
Y (€t + 0,z ) are convergent classically forall k, n € Nj. A
sequence z is said to be A-summable to y if A®z *-converges
toy € C* which is called as the A-"lim of z. We denote the
nth row of a matrix A = (a,,) by A}, for all n € N; that is,
A = f{an }e, for all n € N. Following Basar [25], we give
some lines about ordinary and absolute summability of non-
Newtonian complex numbers.

Let A = (a,,) be an infinite matrix of non-Newtonian
complex numbers throughout. We define two kinds of



summability: ordinary and absolute summability, as shortly
mentioned, below.

(a) Ordinary Summability. A sequence z = (z;) € w" is said
to be summable Atoay € C* if the A-lim of zisy = (y,, )
forall y;,y, € Ry thatis, “lim, _, d*((Az),,y) = 6" which

implies that
Z (&bt = O
k

Y (et + Suitti) — 12
k

nk’?k) — Vb

(22)

in classical mean for each k,n € N;. The matrix A defines a
summability method A or a matrix transformation by (21).

(b) Absolute Summability. A sequence z = (z;) € w" is said to
be absolutely summable with index p to a number { € C* if
the series on the right hand side of (21) *-converge for each
n € N and

Y d*((Az),,0

n=0

*)ﬁzf (1< p<oo). (23)

The Cesaro transform of a sequence z = (z;) € w" is
given by C] © z = {(C{2),} > Where the Cesaro method
C] of one order is given by Example 12. Now, following
Example 12, we may state the Cesaro summability with
respect to the non-Newtonian calculus which is analogous to
the classical Cesaro summable.

Example 13. Suppose that z = (z;) is an infinite sequence

defined by
1%,  keven,
z = (24)

el”, k odd,

where ©1* = (+1,21) € C". One can easily conclude that
z; € £\ c¢*. Then, since 0*<[(C;2),[ < (1/(n+1))" for
alln € N, "lim,_, (Cz), = 6. This means that the -
divergent sequence (z; ) is C} -summable to 6”.

Tekin and Basar [24] have introduced the sets €, c”,
cg and E; of all bounded, convergent, null, and absolutely
p-summable sequences over the complex field C* which
correspond to the sets £, ¢, ¢; and £, over the complex field
C, respectively. That is to say that

e = 12;* = (z;) € 0" :supfizi < 00}»
keN
= {Z*:(ZZ)Q(U*:EZGC*B *limzz=l},
k— oo

*hmz;;:e*},

*
Cy, = 12 =
0 { k— 0o

~
*
1]

P ‘[ lezkll<oo} (1<p<o).

(25)
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It is not hard to show that the sets £, ¢*, ¢;, and E; are the
* . * % ¥ *
subspaces of the space w™. This means that €__, c”, ¢;, and € b

are classical sequence spaces over the field C* and complete
metric spaces with corresponding metrics.

Quite recently, Kadak [21] have introduced the sets bs™,
cs”, and cs; consisting of the sets of all bounded, convergent,
and null series based on the non-Newtonian calculus, as
follows:

* * . L .
: lxll, = supll Y xli < oo} ,

neN k=0

{x—(xk)ew :<*I;)xk)6c }, 06)
{x—(xk)ew :<*ixk>€cg},

0" ={x=(x):x, € C"Vk e N}.
Theorem 14 (see [24]). The following statements hold.
(a) The sets £, c*, ¢, and €,; p > 1 are sequence spaces.
(b) Let A* denote any of the spaces €., c*, and ¢, and
z = (z;), t = (t;) € A". Define d on the space A"
by d’ (z,t) = SqueN"ZZ et i. Then, (A", d.) isa
complete metric space.

(c) The spaces £-., c*, and ¢; are Banach spaces with the
norm ||z|}, defined by
Izll?, = supliz;f; z=(z) €A,
keN (27)
A e {6}

(d) The space 6;
defined by

is Banach spaces with the norm ||Z||;

i7p
I (Zuzkn> P z=(z)e. @8)

Theorem 15 (see [21]). Let u* denote any of the spaces bs",
cs®, and csy, and z = (z;), t = (t;) € u”. Define dfjo on the
space y* by

di:y*xy*ﬂRﬁ

(z,t) — dY (1)

-l (5 )

for arbitrarily chosen «, 3 operators and corresponding func-
tion1 = Pa". Then, (u*,dY ) is a complete metric space.

(29)
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Corollary 16 (see [21]). The spaces bs*, cs*, and cs, are
Banach spaces with the norm || x|, defined by

Il = Il = supll Y
neN =) (30)
x=(x,) €L, Ae{bscscsp}-
Theorem 17 (see [21]). Let d, be defined on the space bv* by
dy:bv" xbv' — Ry

(z,t) — dj (2,1) (1)

i
Mg

{d" [(A2), (An) ]}

*
il
(=]

where z = (z;), t = (t;) € bv*, and (Az), = 2, © zi,;. Then,
(bv*,d,) is a complete metric space.

Firstly, we give the alpha-, beta-, and gamma-duals of a
set " C " which are, respectively, denoted by {A*}, (A*1P,
and {1*}?, as follows:

P ={w=(w)ew :woz
= (wjoz) et Vz=(z) e},

WY =jw=(w)ew 1woz
(32)
=(w; 0z ) €ecs" Vz=(2)) e A"},
AV ={w=(v) e :woz
= (wg0z;) ebs" Vz=(z;) € A"},
where (w;; © z;) is the coordinatewise product of *-complex

numbers w and z for all k € N. Then {/\*}ﬁ is called beta-
dual of A" or the set of all convergence factor sequences of
A" in c¢s”. Firstly, we give a remark concerning with the -
convergence factor sequences.

Theorem 18 (see [21]). The following statements hold.
@ g1 = (e = (e = ¢
®) {e7}F = €2,
Theorem 19 (see [21]). The following statements hold.
(@) {cs*)" = {v*}* = {bv;}“ = .
) {cs*} = bv*, bv* ) = cs*, Vi) = bs*, {bs*) =
bvy.
(c) {es"}
bv*.

bs*, {bs*} =

', v} = bs7, {bvp)

Now, we give the characterizations of some matrix classes
and state the necessary and sufficient condition on non-
Newtonian matrix transformations by using the results given
on Kéthe-Toeplitz duals in [21].

7
Theorem 20. The following statements hold:
(i) A =(ay) € (&, :€.) if and only if
M=sup 3 liayfizco. (33)
neN " g
(i) A = (ay) € (c" : €) ifand only if (33) holds.
(iii) A = (a,4) € (¢; : €.,) if and only if (33) holds.
(iv) A = (ay) € (€, : &) if and only if
C = sup ﬁZHa:k"‘DZoo, (0<p<o0). (34)
neN "

Proof. Since the proof can also be obtained in the similar
way for other cases, to avoid the repetition of the similar
statements, we prove only case (i).

Suppose that condition (33) holds and x = (x;) € €.
In this situation, since (a7 )y € {€7,}F = €] for every fixed
n € N, the * A-transform of x exists. Taking into account the
hypothesis, one can easily observe that

neN neN

supd” ((Ax),,0") = supd” (*Za;k o} xk,0*>
‘ (35)

SlxllgXsup > Tlagdl < oo,
neN "

which leads us to the fact that A © x € £}, as desired.
Conversely, suppose that A € (¢, : €, ). Put Ao x =
{(Ax),,} ,eny and observe that (Ax),, is a sequence of bounded
linear operators on € such that sup, d*((Ax),,0") < oo.
Hence the results are obtained similarly from an application
of Banach-Steinhaus theorem in classical mean. O

Example 21. Let (x;) = (¢, 0;) € €% and define the matrix
A = (ay) by

xe, k=n,
ay = (36)
0", k#n,

for all k,n € N. Then [la’, ] = Bi\/&; + 67} holds for k = n

otherwise 6. By taking into account (x; ) € €., we obtain

neN

=sug{ﬁ\/sé+8§,[3\/e%+6%,...,[3\/sﬁ+8ﬁ,...,} <00
ne

(37)

sup > llayl
k

for all &, 5, € R. This shows, by (i) of Theorem 20, that A =
(ay) € (€, : €2).



We state and prove the Kojima-Schur theorem which
gives the necessary and sufficient conditions on an infinite
matrix with respect to the non-Newtonian calculus, that maps
the space ¢* into itself. A matrix satisfying the conditions of
the Kojima-Schur theorem is called a conservative matrix or
convergence preserving matrix.

Theorem 22 (Kojima-Schur). A = (a);,) € (" : ¢*) if and
only if (33) holds, and there exist oy, 1 € C* such that

:leroloa:k = oy for each k € N, (38)
im > ay =1 (39)
k

Proof. Suppose that the conditions (33), (38), and (39) hold
and x = (x;) € ¢ withx;, — s € C"ask — oo. Then,

since (@, )xen € 1c*}F = €7 for each n € N, the * A-transform
of x exists. In this situation, the equality

*Za;k Ox; = {*Za;k o(xg e s)} ® {s o} *Za:k} (40)
X x %

holds for each n € N. In (40), since the terms on the right
hand side tend to .}, &y © (x; © s) by (38) and the second
term on the right hand side tends to / ® s by (39) asn — oo,
in the sense of *-limit, we have

“lim_ *%a:k Ox; = { *%(xk o(x; o s)} olos. (41)

Hence, Ax € c*; that is the conditions are sufficient.
Conversely, suppose that A = (a,,) € (c* : ¢*). Then
A © x exists for every x € c*. By e and e, we denote the
sequences such thate, = 1* fork = 0,1,...,and e™ = 1* and
el(c") = 6" (k #n). The necessity of the conditions (38) and (39)
is immediate by taking x = e and x = e, respectively. Since
¢* c €., the necessity of the condition (33) is obtained from
Theorem 20(i). O

Theorem 23. A = (a,) € (¢, : ¢*) if and only if (33) holds
and there exists (o) € w* such that

Jim d” (a0 ) = 67 (42)

foreachk e N.IfA = (ay) € (¢, : c*), then (o) € €] and
lim,, | o W20 @2 = D0 O 2.
k k

Proof. Suppose that (33) and (42) hold. Then there exists an
ng € Nfor K € Nand & > 0 such that

k
ﬂZd* (G ) <&, (43)

k=0
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for all n > ny. Since

k 13 k
Y (0,092 Y d" (age00)F Y d" (a307)
k=0 k=0

k=0 (44)

<EFM

for n > ng, by (42), one can see that (&) € ¢ and
B2k d*(e,0") < M. Letz = (z;) € ¢ . Then, one can
choose a k, € N for & > 0 such that d*(z;,0")<é, for each
fixed k > k,. Additionally, since a, 5 o, asn — oo by
(42), we have a;, © z; 5 a ©z;,asn — oo for each
fixed k € N. That is to say that “lim, , ., d"(a, © z;,q; ©
z;) = 0". Hence, there exists an N = N(k,) € N such that

k .. .
plisod (ay © 20,0 ©2;)<E, foralln > N. Thus, since
* * * % *
d <*Zank 0z, *Zock 0z )
k k

- * * * * *
SﬁZd (A © 2, 0, © 21)
k

ko

* * * * *
= ﬁZd (an 02,0, 07)
k=0

(9]
PO d (@ agz)
k=ky+1
(o)
6t Y [d (ap0z,0") Fd' (4 02,0")]
k=ky+1
(45)
o0
Lt ) d (ay.07)d" (2.67)
k=ky+1

i Bk-kz ld* (a,07)d* (z,0")

<& [, % (M+M,)]

for all n > N, the series , Y, a, © z; are x-convergent for

eachneNand, ), a, 0z 5 D0 Oz, asn — oo. This
means that Aoz € ¢”.

Conversely, let A = (a,;) € (¢; : ¢*)andletz = (z;) € ¢;.
Then, since A ® z € ¢” exists and the inclusion (¢; : ¢*) C
(¢ : &) holds, the necessity of (33) is trivial by (iii) of
Theorem 20. Now, if we take the sequence 2" = {z,(c")} €¢>
then A 0 2" = {an )2, € c” holds for each fixed k € N;
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that is, condition (42) is also necessary. Thus, the proof is
completed. O

As an easy consequence of Theorem 23, we have the
following corollary.

Corollary 24. A = (a;;) € (¢, : ¢ ) if and only if (33) holds
and (42) also holds with o, = 0" for all k € N.

<n42—2>* ((n+12)’:n+2)>*

One can easily conclude that sup,,. ﬁZk ||c 200 for all
k € N and (33) holds. On the other hand,
() o 2m-k+1) \"
1 @jj = = <—) = 48
Jdim fle,, 7l m || D 2) l (48)

$0 (42) also holds with ; = 0" for all k € N. Therefore C; €
(cy 1 6y)-

A matrix satisfying the conditions of the Silverman-
Toeplitz theorem is called a Toeplitz matrix or regular matrix.
By (¢* : c";p), we denote the class of Toeplitz matrices.
Now, we may give the corollaries characterizing the classes

of (c* : c*; p).

Corollary 26 (Silverman-Toeplitz Theorem). A = (a,,) €
(c* : ¢*;p) if and only if (33) holds and (38) and (39) also
hold with o, = 6" for allk € N and | = 1%, respectively.

Example 27. Example 25 can be given as an example of
Silverman-Toeplitz theorem. Because the conditions (33)
and (38) hold with oy = 0". Furthermore we have

“lim, _, o Xk ||c )i = 1* and (39) also holds.

Theorem 28. A = (a,;) € (£, : ¢;) if and only if

(49)

lim, Y (050 =6
k

Proof. Let A = (a),) € (€, : ¢;) and u = (u;) € €;,. Then,
the series , ), a,;, ©uy *-converges to 8" for each fixed n € N,
since Aou exists. Hence, A, := {a), };2, € {E;}ﬁ foralln € N.

Example 25. Let k,n,r € N and r > 0. The Cesaro means of
order r is defined by the matrix C; = (c:k(r)) as

n—k+r—1) *
—k) ifk<n

- |l

(") (46)
0% otherwise.
Taking r = 2 we obtain an infinite matrix as follows:
0* 0* o* ...
0* 0* o* ...
Qoo e
. . . (47)

Define the sequence u = (u;) € €, by u; := (1",1°,1%,...,)
for all k € N. Then, A © u € ¢, which yields for all n € N that

*lim Za L OUp = ’;ll)ngo *Za;:k ol1”
*

n— oo
(50)
= :15%0 *Za:k =0".
k
Furthermore we obtain
hm Zd nk, hm Z"ank"
(51)

< lim Y and =
k
Conversely, suppose that (49) holds and u = (u;) € €.

Then, since A}, € {E;O}ﬁ = ¢, for each n € N, A © u exists.
Therefore, one can observe, by using condition (49), that

hmd <Zak®uk, )
< lim, D" (
k

cL oK. *
< lim, 2 (
= fim, A" (@06

<supd” (u,0%)
keN

%lim  'd" (a,,0") = 6"
k

"lim d” ((Aw),, 0"
Ay © Uy, 07)

% d* (u,0%)

(52)

which means that A © u € ¢, as desired. O
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Theorem 29.
and

A = (ay) € (cs™ : c”) ifand only if (38) holds,

sup Zd (Aa),,0") <co
neN (53)

* * *
where Aa,; = a, © A Vn, k € N.

Proof. Let x = (x;) € cs” with .}, x; = sand y, = Zk 0X;
for all k € N. Define the infinite matrix B = (b,;) by B =
(by) = (Aa,,) forall k,n € N. Suppose thatA € (cs* : c").
Then, A © x exists for every x = (xk) € c¢s" and is in ¢”.
Since this also holds for x = ¢® € ¢s* for each fixed k € N,
the necessity of (38) is clear. Consider the following relation
obtained from mth-partial sums of the series .Y, a, © x;
by applying Abel’s partial summation. In this situation, the
equalities

3

Zank ox; = {

(Aay)© yy } ®ay,, Oy,

)
(=]

—

(Aa, )@(yZGS)}
o Suils

= {*Z (Aaik)e(yZGS)}

k=0

1]
——t—
b

By © Vi (54)

3

®[so(a,0a,,)]

a,, ©y, VYmmneN.

* *

o0 0
* * * *
Gy @ ayg Gy @ ay,

_ * * * * * *
C= Ggg @ a1 @ ay, ag ®a;; ®ay;

* * * * *
Ay @A) ®---®a,, d, ®a;; S -

for all k,n € N. Suppose that A = (a,) € (cs™ : cs*). Then,
A0 x exists for every x = (x;) € c¢s” and is in ¢s”. This yields
for x = e® € ¢s* for each fixed k € N that the condition (58)
is necessary. It is clear that the following equality

Ms

2.

j=0 k:

m
ay © Z
jk

HM:

m
P = D Oxe  (60)
0 k=0

* * * *
®a, a,®a,®---®aq,
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Therefore, we derive by passing to limit in (54) asm — oo
that

(Ax), = *Za:k o x;
3

(55)

{*zb:ke(yz es>} o (s0a)

for all n € N. Since *lim, (Ax),, exists and *lim,a,, = o, we
see by lettingn — oo in (55) that “lim,, Y, by ©(y; ©s) also
exist. This yields the fact that B € (¢; : ¢*), because yo's € ¢/
ifand only if x € cs*. Hence, the matrix B = (b, ) satisfies the
condition (33) which is equivalent to the condltlon (53); that
is the condition (53) is necessary.

Conversely, suppose that conditions (38) and (53) hold.
First, (53) implies A, = (a,;)ren € fcs” }ﬁ =bv" C € for
every fixed n € N; hence, A O x exists for every x € cs” “Also

(38) and (53) imply by Corollary 24 that B = (b,,) € (¢; : ;).
Thus, it follows from (55) that
“lim_ Yajox;=soa. (56)
k

Hence A = : ¢). This completes the proof.  [J

(cs™ : ¢cs™) if and only if

sup Z d* <*zn:Aa;k,0*> <00, (57)
=0

(ay) € (cs”

Theorem 30. A = (a,) €

neN k

tim ( Taa ) -0 )

n

where oy, € C” for each k € N.
Proof. Let x = (x;) € cs” and define the matrix C = (c,;) by

Gik =+ j=o @i as follows:
) o Aok
Gy @ ay, Aor @ Ay

g ® gy ® ayy (59)

* * *
ag, ®a,, ®ay,

* * *
C Ay ®a - Da,

derived from nth and mth-partial sums of the double series
«2j «2k G © xi holds for all m,n € N. Therefore, by letting

m — oo in (60) we have

Y(Ax); = (Cx), VneN. (61)
j=0

Then, since A ® x € cs” by the hypothesis, “lim,, Z;L:O(Ax) i
exists, on the left hand side of (61), which leads us to the
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consequence that C = (¢, ) € (cs” : ¢*). Therefore, condition
(53) of Theorem 29 is satisfied by the matrix C = (c,;) which
is equivalent to condition (57).

Conversely, suppose that conditions (57) and (58) hold,
which imply the existence of the A-transform of x €
cs”. Then, since (61) also holds, the matrix C satisfies the
conditions of Theorem 29. Hence, *lim,(Cx),, exists which
says by (61) that A © x € ¢s™, as was desired. O

Theorem 31. A = (a,) € (c* : cs*) if and only if (58) holds
and

n
sup »d* Za;k,e* <oo, (62)
neN A j=0

Z *Za:k is w-convergent, Vk,neNy. (g3
Tk

Proof. Let x = (x;) € ¢* and define the matrix C = (¢, ) as in
the proof of Theorem 30. Suppose that A = (a,,) € (" : cs™).
Then, A®x exists for every x € ¢* and isin cs”. This yields for
x =e® € ¢ and x = e € ¢* which give the necessity of the
conditions (58) and (63), respectively. It is clear that we have
the relation (61), derived by the same way used in the proof
of Theorem 30. Then, since A ©® x € cs*, that is, the series
« 2.j(Ax); #-converges by the hypothesis “lim,, , Z;':O(Ax) i
exists, on the left hand side of (61), which leads us to the
consequence that C = () € (¢* : ¢*). Therefore, condition
(33) in Kojima-Schur theorem, is satisfied by the matrix C =
(¢,) which is equivalent to condition (62).

Conversely, suppose that conditions (58), (62), and (63)
hold, which imply the existence of the A-transform of x €
c¢*. Then, since (61) also holds, the matrix C = (c,;) satisfies
the conditions of Kojima-Schur theorem. Hence, *lim,(Cx),
exists which says by (61) that A® x € ¢s*, as was desired. [

4. Conclusion

At the beginning of 1981, the wage-rate in dollars per hour
at a certain company was w, and the cost of living index
for the United States was ¢,. At the end of 1981, the amounts
were w,; and ¢, respectively. Company and union negotiators
had agreed at the beginning of 1981 that, thereafter, the wage-
rate would be adjusted to reflect changes in the cost of
living index. Assuming that the cost of living index is always
increasing and that the wage-rate changes “uniformly” and
continuously relative to the cost of living index, find the wage-
rate w, at time t in terms of the constants ¢, ¢;, wy, and w; the
cost of living index ¢, at time ¢. There is no unique solution to
this problem; we shall give two reasonable solutions (cf. [14]).

Firstly, since the wage-rate changes “uniformly” relative
to the cost of living index, we may reasonably assume that
equal differences in the cost of living index give rise to equal
differences in the wage-rate. Furthermore, since the changes
are “continuously” relative to the cost of living index, it can
be proved that

Wy — Wy

] (¢ —co)- (64)

wt:wo+[
G

1

Secondly, since the changes are “continuously” relative to the
cost of living index, it can be given that

Ing-Ing,

1/(In¢;-In¢y)
wt:w0|:<%> ] , (65)
0

We shall see that the expression within the brackets
represents a new gradient that plays a fundamental role
in the bigeometric calculus which is a branch of non-
Newtonian calculus. On the other hand, in the mathematical
solution of many fundamental physical problems we are
naturally led to series whose terms contain factors which
are the mathematical representations of the damping factors
of the physicist. These same factors may be interpreted as
convergence factors for summable series, since they satisfy
the conditions of the general theorems. Thus, the use of
convergence factor theorems and the theory of summable
series frequently serves to extend the domain of applicability
of the mathematical solution of physical problems.

The table on the characterizations of the matrix trans-
formations between certain spaces of sequences with real
or complex terms was given by Stieglitz and Tietz [26]. To
prepare the corresponding table for certain sequence spaces
over the non-Newtonian complex field C*, we characterize
some classes of infinite matrices. Of course, to complete the
table of matrix transformations from the set y; to the set y,,
there are several open problems depending on the choice of
generator functions.

The main results given in final section of the present paper
will be based on examining the domain of some matrices in
the classical sets of sequences. This is a new development of
the matrix transformations between sequence spaces over C*.
Finally, we should note from now on that our next papers
will be devoted to the matrix domains of the classical sets of
sequences over C*.
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The important point to note is that the non-Newtonian calculus is a self-contained system independent of any other system of
calculus. Therefore the reader may be surprised to learn that there is a uniform relationship between the corresponding operators
of this calculus and the classical calculus. Several basic concepts based on non-Newtonian calculus are presented by Grossman
(1983), Grossman and Katz (1978), and Grossman (1979). Following Grossman and Katz, in the present paper, we introduce the
sets of bounded, convergent, null series and p-bounded variation of sequences over the complex field C* and prove that these are
complete. We propose a quite concrete approach based on the notion of Kothe-Toeplitz duals with respect to the non-Newtonian
calculus. Finally, we derive some inclusion relationships between Kothe space and solidness.

1. Introduction

It is certainly not unusual to measure deviations by ratios
rather than differences. For instance, during the Renaissance,
many scholars, including Galileo, discussed the following
problem. Two estimates, 10 and 1000, are proposed as the
value of a horse, which estimates, if any, deviates more from
the true value of 100? The scholars who maintained that
deviations should be measured by differences concluded that
the estimate of 10 was closer to the true value. However,
Galileo eventually maintained that the deviations should be
measured by ratios, and he concluded that two estimates
deviated equally from the true value. From the story, the
question comes out this way, what if we measure by ratios?
The answer is the main idea of non-Newtonian calculus
which consists of many calculuses such as the classical,
geometric, anageometric, and bigeometric calculus.
Bashirov et al. [1, 2] have recently concentrated on
the non-Newtonian calculus and gave the results with
applications corresponding to the well-known properties
of derivatives and integrals in the classical calculus. Quite
recently, Uzer [3] has extended the non-Newtonian calculus

to the complex-valued functions and was interested in the
statements of some fundamental theorems and concepts
of multiplicative complex calculus and demonstrated some
analogies between the multiplicative complex calculus and
classical calculus by theoretical and numerical examples.
In particular, Bashirov et al. [2] have studied the multi-
plicative differentiation for complex-valued functions and
established the multiplicative Cauchy-Riemann conditions.
Further, Tekin and Basar have introduced some certain
sequence spaces over the non-Newtonian complex field by
using *-calculus in [4] and many authors have introduced
multiplicative calculus in biomedical image analysis and have
derived non-Newtonian calculus as an alternative to the
quantum calculus in [5, 6].

Following Tekin and Basar [4] we can construct the
sets bs”, cs*, and cs; consisting of the sets of all bounded,
convergent, null series based on the non-Newtonian calculus,
as follows:

<00, Or

bs" := {x=(x;) € " : x|, = sup
neN
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bs" :

I
—t—
=
Il
—~
tad
T
S

{x o ( £)- },

@

where 0* = {x = (x;) : x, € C*forall k € N}. One can
conclude that the sets bs*, cs*, and cs; are complete non-

Newtonian metric spaces with the metric d%} defined by

dY = sup {d*<*z Xpo *Z yk>]>. ()
k=0 k=0

neN

Secondly, we introduce several sets bv* bvp, and bv, of
bounded variation sequences in the sense of non-Newtonian
calculus, as follows:

bv* = {x = (x) € @™ |Ixllp, = *Z[l'(Ax)L"' < oo]» ,
k=0

dy (x,y) = i{ [ ()]}

x_(xk

w YA’ < oo},
k=0

o ip
dy (x,7) = { > d (A0 (8y),]° } (1<p<co),

k=0

b, = {x = (x;) € 0" : supf[ (Ax)ff < oo]» ,

keN

s, (x,y) = sup {d* [(Ax) (8p), ]}
(3)

One can easily see that the sets bv*, by, and by are complete
with corresponding metrics on the right-hand side with
(Ax); = x, © x4y, x_; = 0 and (Ax); = x; © xp,, for all
ke N.

2. }-Arithmetics and Some
Related Applications

A generator is a one-to-one function whose domain is R and
whose range is a subset of B € R, the set of real numbers. Each
generator generates exactly one arithmetic, and conversely
each arithmetic is generated by exactly one generator. As
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a generator, we choose the function f such that its basic
algebraic operations are defined as follows:

B-add
xiy=p{F W+ O}

B-subtraction

xZy=p{F -}
B-multipl.

xky=B{B ) x B (M)}
B-division x/y,

5 =B{p =B M}

B-order

(4)

x<y = Bx)<B(y),

for all x,y € R(N), where the non-Newtonian real field
R(N) = {B{x} : x e R} asin [7].

The f-positive real numbers, denoted by R*(N), are the
numbers x in R such that 0 < x; the -negative real numbers,
denoted by R™(N), are those for which x < 0. The beta-zero,
0, and the beta-one, 1, turn out to be A(0) and S(1). Further,

B(-1) = “1. Thus the set of all B-integers turns out to be the
following:
Z(N) ={....p(=2), B(-1), B(0), (1), (). }

:{"')_2)_1)0)1;2)'..}.

Definition 1. Let X be a nonempty setand letd” : X x X —
R(N) be a function such that, forall x, y, z € X, the following
axioms hold:

(NM1) d*(x, y) = 0 ifand only if x = y,
(NM2) d*(x, y) =d"(y,x),
(NM3) d*(x, y)<d*(x,2) +d* (2, y).

Then, the pair (X,d") and d* are called a non-Newtonian
metric space and a non-Newtonian metric on X, respectively.

Definition 2 (see [7]). Let X = (X,d") be a non-Newtonian
metric space. Then the basic notions can be defined as
follows.

(a) A sequence x = (x;) is a function from the set N into
the set R(IN). The B-real number x; denotes the value
of the function at k € N and is called the kth term of
the sequence.

(b) A sequence (x,,) in a metric space X = (X, d") is said
to be x-convergent if for every given & 3 0 there exist
ann, = ny(e) € Nand x € X such thatd*(x,,x)<e

for all n > ny and is denoted by *lim,, _, . x,, = x or
%

X, ™ X,asn — 00.
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(c) A sequence (x,) in X = (X,d") is said to be non-
Newtonian Cauchy (*-Cauchy) if for every & > 0 there
is an n, = ny(e) € N such that d*(x,, x,,,) < ¢ for all
m,n > n.

Remark 3. Letb € B € R. Then the number bx bis called the
B-square and is denoted by b*. Let b be a nonnegative number
in B. Then B{1/B71(b)} is called the B-square root of b and is

denoted by Vb. Further for each b € B we can write b* =
)
BB ()]} = i’
The [-absolute value of a number x in B ¢ R(N)
is defined as [3(|,B_1(x)|) and is denoted by leﬁ. For each

number x in B ¢ R(N), Vi = lxlg = ﬁ(lﬁ_l(x)l). Then
we say

X, x30
xlg=10,  x=0=B{p" |} (6)
0Zx, x<0.

The non-Newtonian distance between two real numbers x;,
and x, is defined by |x,~x,|s = BUB () = BHx)l} =
ﬁ{lﬁ_l(xz) - ,B_I(xl)l} = |x, lxllﬁ. Similarly by taking into
account the definition for alpha-generator in (6) one can
conclude that the equality |x, - x,[, = |x, — x|, holds for all
X, %, € R

Now, we give a new type calculus for non-Newtonian
complex terms, denoted by =*-calculus, which is a branch
of non-Newtonian calculus. From now on we will use *-
calculus type with respect to two arbitrarily selected generator
functions.

2.1. =-Arithmetics with respect to the Complex Field. Suppose
that o and 8 are two arbitrarily selected generators and
(“star-") also are the ordered pair of arithmetics (-arithmetic
and a-arithmetic). The sets (B, ¥, =, %, /) and (A, +, -, X, /) are
complete ordered fields and beta(alpha)-generator generates
beta(alpha)-arithmetics, respectively. Definitions given for
B-arithmetic are also valid for a-arithmetic.

The important point to note here is that «-arithmetic is
used for arguments and f-arithmetic is used for values; in
particular, changes in arguments and values are measured by
a-differences and fS-differences, respectively. The operators
of this calculus type are applied only to functions with
arguments in A and values in B. The *-limit of a function
with two generators « and f3 is defined by

i}i_}nlaf(x) =b e Ve30,
36503 |f (0], 2 @
Vx € A,|x~al <.
A function f is *-continuous at a point a in A if and only

if a is an argument of f and *lim,_ ,f(x) = f(a). When
« and f are the identity function I, the concepts of *-limit

and *-continuity are identical with those of classical limit and
classical continuity.

The isomorphism from «-arithmetic to -arithmetic is
the unique function ¢ (iota) that possesses the following three
properties:

(i) ¢ is one to one.
(ii) ¢ is from A onto B.

(iii) For any numbers, u and v in A,

t(u=v)=1(u) “1(v)
L(u/v) =1(u)i(v); (8)

t(ut+v)=1() +1(v),
t(uxv)=1(u) xi(v),

v#0, u<ve=i(u) <i(v).

It turns out that «(x) = ,B{oc_l(x)} for every x in A and that
i(n) = # for every integer n. Since, for example, u+v =
Hi(u) 1(v)}, it should be clear that any statement in «-
arithmetic can readily be transformed into a statement in f3-
arithmetic. ) ) )

Leta(a) =a € (A, +,—,%,/)and f(b) =b € (B, +,-, %, /)
be arbitrarily chosen elements from corresponding arith-

metics. Then the ordered pair (4, b) is called a *-point. The
set of all *-points is called the set of *-complex numbers and
is denoted by C*; that is,

C ={z"=(ab)lac A beBcR}. )

Define the binary operations addition (&) and multiplication
(®) of *-complex numbers z; = (4, b,) and z5 = (dy, b,):
@:C"'xC" —C"
(z,2;) — 2 82, = (a{a +ar}, B{b + by})
= (a4 4, b, b))
(10)
:C"'xC" —C"
(z1,23) — 2] 02, = (a{ma, —bby},

Blab, + bay}),

where d,,d, € Aand b,,b, € B.
Theorem 4 (see [4]). (C*,®,0) is a field.

Following Grossman and Katz [8] we can give the def-
inition of *-distance and some applications with respect to
the #-calculus which is a kind of calculi of non-Newtonian
calculus.



The s-distance d* between two arbitrary elements z; =
(a,,b,) and z; = (4,,b,) of the set C* is defined by

d*:C*xC* — [0,00)=B ¢cB

(z1,23) —d" (2, 2;)

= \/[‘ (4 _az)]z"'(bl_bz)z w

=p {\/(al - a2)2 + (b - bz)z} .

Up to now, we know that C* is a field and the distance
between two points in C* is computed by the function d*,
defined by (11).

Definition 5. Given a sequence (z; ) of *-complex numbers,
the formal notation,

[ee]

% % # 5 #
Dz =202, 02, 0Dz @
k=0

VkeN, (12)

is called an infinite series with *-complex terms or simply
complex N-series. Also, for integers, n € N, the finite *-

sums s, = Y2 are called the partial sums of complex

N-series. If the sequence *-converges to a complex number
* . . *

s”, then we say that the series #-converges and write s* =

. 24=02,- The number s” is then called the #-sum of this

series. If (s,) *-diverges, we say that the series *-diverges or
it is *-divergent.

Proposition 6 (see [4]). For any z|,z, € C", the following
statements hold:

() liz; @ z; i <llzf1l ¥ 1251 (+-triangle inequality).

(i) liz; @ z311 = liz; 1 % liz; 0.
(iii) Let p>1 and 2t € C* fork € {0,1,2,3,...,n}
Then,

" 1/p " 1/p " 1/p
({nzkeatku ) = <*ankn ) 3 <*Zntkn )
k=0 k=0 k=0
(M inkowski's inequality) .
(13)

Following Tekin and Basar [4], we can give the *-norm
and next derive some required inequalities in the sense of
non-Newtonian complex calculus.

Let z* € C” be an arbitrary element. The distance
function d*(z",0") is called #-norm of z* and is denoted by
i - II. In other words,

iz"i=d" (z",07) = Q/[l @0 4(b-0) = p [V + 17},

(14)

where z* = (4,b) and 6* = (('),"ﬁ). Moreover, since for all
z;,z; € C* wehaved*(z},z;) = llz] ©z; |, d" is the induced
metric from || - || norm.
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Definition 7 (complex conjugate). Let z* = (a, b) € C*.
We define the *-complex conjugate z° of z* by z° =
(a{a}, [3’{—[3’_1(5)}) = (a,~D). Conjugation changes the sign
of the imaginary part of z* but leaves the real part the same.
Thus

Re(Z") = Re(z") = (2" ®Z") 2 =4,
o (15)
Im(z")=-Im(z")=(z"ez")/2=0b.
Remark 8. (i) Let z* = (a,b), w* = (¢,d) € C*. We can give
the *-division as

ZOw = (d,B)@(é,c'l')

_(a{ac+bd} ﬁ{bc—ad}> (16)
B A+d? ]’ | e2+dr ) )

(ii) Let o and f3 be the same generator functions and z* €
C*. Then the following condition holds

"0z = (a,b)o(a,2b) = («{a’ + b}, 5(0))

= pla* +v} = p{(p g + b2)2} - (iiz")’.
(17)

Theorem 9 (see [4]). (C*,d") is a complete meiric space,
where d* is defined by (11).

Corollary 10 (see [4]). C* is a Banach space with the x-norm
i+l defined by iz°]l = \((@)*1(®)’; 2" = (@, b) € C*.

3. Completeness of the Sets of
Bounded, Convergent, and Null Series
over the Geometric Complex Field

Quite recently Tekin and Bagar [4] have introduced the sets

e, c", ¢, and {f; of all bounded, convergent, null, and

absolutely p-summable sequences over the complex field C*
which correspond to the sets £, ¢, ¢, and €, over the
complex field C, respectively. That is to say,

28 {z* =(z;) ew” :supfiz | < oo]» ,
keN

(o
I

. {z*:(z;;)ew*:azm*a “lim z;:z},

k— o0

; {z* =(z;) €ew": "lim z; =9*},

k— 00

o}
1]

-
1l

(o] .
* * * 0w P
{z =(z) ew™ : Yzl <oo}, (1<p<o0).
k=1
(18)
It is not hard to show that the sets £, ¢", ¢;, and £, are the

* . * % ¥ *
subspaces of the space w”. This means that £;, ¢, ¢y, and £,

are classical sequence spaces over the field C* and complete
metric spaces with corresponding metrics.
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Theorem 11 (see [4]). The following statements hold.

(a) The sets €, c*, ;, and £, p > 1, are sequence spaces.

(b) Let A* denote any of the spaces €., c*, and ¢, and
z = (z;), t = (t;) € A". Define d on the space "
by d (z,t) = supke,\,]izz= e t;II Then, (A*,d.) is a
complete metric space.

(c) The spaces €., c*, and ¢, are Banach spaces with the
norm || z||% defined by

Izll%, = supliz;f; z=(z) €A,
keN (19)

Aefl.c.cf-

(d) The space €; is Banach spaces with the norm ||z||;
defined by

o \IIP
||z||p:=<*2uzkn> P z=(g)ee. QO
k=0

In the present section, we introduce the sets bs", cs”, cs;
and bv", bv,,, by, consisting of all bounded, convergent, null

series and the sets of bounded variation sequences in the
sense of non-Newtonian calculus which correspond to the
sets bs, cs, csy and by, bv,, b, over the complex field C,
respectively.

Theorem 12. Let u* denote any of the spaces bs*, cs”, and cs,
andz = (z;), t = (t;) € u*. Define dY on the space u* by

dN ot xut — R(N)

(z,t)—>d§’o(z,t) :=sup<[ ( sz, Ztk>}
neN k=0
(21)

for arbitrarily chosen w, 3 operators and corresponding func-
tion1 = Pa". Then, (u*,dY ) is a complete metric space.

Proof. Since the proof is similar to the spaces cs* and cs,
we prove the theorem only for the space bs”. Let the *-sums

n % n * * _ % _ * %
J2k=0%k> 2k-otr € C',wherez = (z),t = (t;) € C".
Then the following metric axioms in Definition 1 are valid.

(NML1) From (11) it can be easily obtained that

DICCIPN

k=0 k=0

dY (z,t) = 0 & sup
neN

(22)

n n

=0 = Zz,’:= Zt,’:<=>z=t.
* *
k=0 k=0

(NM2) It is trivial that the condition dfjo(z, t)
dY (t, z) holds.

(NM3) We show that striangle inequality in
Definition1 holds for z = (z0), t = (t;),
w = (w;) € C". In fact by taking into account
Proposition 6 (i)

dgo (z,t)

sze Zwk@ Zwke Ztk

= sup
neN

sze Zwk Zwke Ztk

dY (z,t) <dY (z,w) $d5 (w,1).

<sup
neN

>

¥ sup
neN

(23)

Since the axioms (NM1)-(NM3) are satisfied, (bs*,doNo) is
a non-Newtonian metric space. It remains to prove the
completeness of the space bs*.

Let (x™) be a *-Cauchy sequence in bs",
{xg ,x(zm), ...}. Then, for every ¢ >0, there is an element 7,
such that, for all m, r > ny,

where x” =

dONO(xm,xr):sup{ <Zx ,*Z ’)]» <e (24)

neN k=0

A fortiori, for every fixed k € N and for all m,r > n,

(zx 3 >< 5

Hence, for every fixed k €

{xk ,x,(cz), .. .,x,(cm ,...} is a *-Cauchy sequence. Before that,
by using the completeness of C* in Theorem 9, it *-converges;

that is, x,((m) 5 x; asm — o00. Using these infinitely many

limits x,,x,,..., we define x = (x;,x,,...) and show that
x € bs". From (25) letting r — ©0 and m > n, we have

N, the sequence (x,,) =

<Zx kzo )és. (26)

Since (x™) € bs”, there exists p € R(N) such that IIx || <p
for all k € N. Thus, (26) gives together with the *- trlangle
inequality for m > n,

d* < *i xk,0>
k=0

n n n
Sd*< Zxk, *Z x,(cm)> id ( *Z x,im),f))ée-'ﬁji.
k=0 k=0 k=0

(27)



It is clear that (26) holds for every k € N whose right-hand
side does not involve k. Hence (x;) is a bounded sequence of
geometric complex numbers; that is, x = (x;) € bs*. Also
from (26) we obtain for m > n,

N m * : (m)
do, (x ,x)=sup{d <*Zxk ,
k=0

neN

k=0

«
Hence, as we have seen above that x” — x,asm — oo for
an arbitrary #-Cauchy sequence (x™). Hence bs™ is complete.

O

Thus it is known by Theorem 12 that the spaces bs”,
cs*, and cs; are complete metric spaces with the metric d’,
induced by the norm || - ||, or || - |I,. Now, as a consequence of
Theorem 12, the following corollary presents for these spaces
to be Banach space.

Corollary 13. The spaces bs*, cs*, and cs, are Banach spaces
with the norm || x|, defined by

;o x=(x) €A,

lollps = llxllZs = sup
neN (29)

A € {bs,cs,csp} -

To avoid undue repetition in the statements we give the
next theorem which is on the complete metric space bv"
without proof since the proof can be obtained similarly as
Theorem 12.

Theorem 14. Let d, be defined on the space bv* by
dy:bv" xbv'® — R(N)

X , (30)
() —da (% 9) =, Y {d" [(ax) (Ay) ]}

k=0

where x = (x), y = (y) € bv*, and (Ax);, = x; © Xgyy.
Then, (bv*,d,) is a complete metric space. Similarly, one can
conclude that the other bounded variation sets (bv;,d}%) and

(bvy, dﬁo) are also complete.

Corollary 15. The space bv* is a Banach space with the norm
Ixl,, defined by

[ee]
lxlly, =) [(Ax)d, (M) = (x4 © Xppy) , Yk € N
k=0

(31)

4. The Duals of the Sets of Sequences over
the Geometric Complex Field

The idea of dual sequence space which plays an important
role in the representation of linear functionals and the
characterization of matrix transformations between sequence
spaces was introduced by Kéthe and Toeplitz [9], whose main
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results concerned alpha-duals. An account of the duals of
sequence spaces can be found in Kothe [10]. One can also
know about different types of duals of sequence spaces in
Maddox [11].

In this section, we focus on the alpha-, beta-, and gamma-
duals of the classical sequence spaces over non-Newtonian
complex field. For A%, u* € C*, the set S(A*, u*), defined by

SA ") ={w=(w) e 1 woz=(w0z) €y,

Vz =(z;) € A"},
(32)

is called the multiplier space of A* and y* for all k € N.
One can easily observe for a sequence space v* of #-complex
numbers that the inclusions S(A*, u*) ¢ S(v*, u*) if v* c A
and S(A*, u*) < S(A*,v*) if p* c 7" hold.

Firstly, we define the alpha-, beta-, and gamma-duals of a
set A* C " which are, respectively, denoted by {A*}“, A8
and {A*}?, as follows:

MV ={w=(w) o :woz=(wo0z)ec,
Vz =(z) € A"},

MY ={w=w) ew :woz=(woz)€cs,
(33)
Vz =(z) € A"},

A ={w=(w) cw :woz=(w0z)ebs",
Vz = (z) € A"},

where (w;, © z;) is the coordinatewise product of *-complex

numbers w and z for all k € N. Then {A* }‘8 is called beta-dual
of A* or the set of all convergence factor sequences of A in
cs”. Firstly, we give a remark concerning the %-convergence
factor sequences.

Throughout the text, we also use the notation “<” for a
non-Newtonian linear subspace which was created in [7].

Remark 16. Let + A" C w". Then the following statements
are valid.
(a) {A*}” is a sequence space if 9* < {1*} < w*, where
¢* :={x=(x;) : IN € N,Vk > N, x; = 0}.
(b) IFA* C 4 C w", then {u*}F < (A*}F.
() A" c (P o= (P,
(d) {9} = 0" and {0*}F = ¢".

Proof. Since the proof is trivial for the conditions (b) and (c),
we prove only (a) and (d). Let w = (wy), m = (my), and n =
(m) € (AP

(a) Ttis trivial that {A*}* < w* holds from the hypothesis.
We show that meén € {A*}f form,n € {A*}P. Suppose
that/ € A*. Then (m © 1) € cs” and (n, © 1) € cs”
foralll € A*. We can deduce that

Vie ).
(34)

((mk S7] Ylk) © lk) = (mk © lk) S7] (nk © lk) € CS*,
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Hence, m® n € {A*}ﬁ. Now, we show that t © w €
(A*}8 for anyt € C*andw = (wy) € {A*}B, since
(wp @) € ¢s”" foralll € A*. Combining this with
(trow)ol) =t 0(w,ol) € cs* foralll € A*
we gett © w € {1*}P. Therefore, we have proved that
A*Pisa subspace of the space w*.

(d) Using (a) we need only to show ('} ¢". Suppose
that w = (w,) € {w*}ﬁ and z = (z,) are given with
#-division by z, o w, = 1" ifw,#0" and z,, := 1"
otherwise. By taking into account the set ¢* from
inclusion (a), then there exists an integer N € N for
all n > N such that w,, = 0. Thus, we have

o0
*Z w,0z,=[(w,0z) @ &(w 0z)]
n=1

® (wy © zy) ® (Wyy1 © Zn41)
(35)
0" 00" ®---

(o)

= Z 1" < c0.
*
n=1

Further, w®z € cs” implies that w € ¢*. The rest is an
immediate consequence of this part and we omitted
the details. L

Theorem 17. The following statements hold:
@ {1 ={c VW = (e} = ¢
(b) {&} = ¢,

Proof. (a) Obviously {E;}ﬁ c{c*¥f ¢ {c;}ﬁ by Remark 16 (b).
Then we must show that £ C {Eso}ﬁ and {¢; ¥ ¢;. Now,
consider that w = (wy) € ¢ and z = (z;) € £, are given. By
taking into account the cases (c)-(d) of Theorem 11, we have

n
D we ozl 2lzll, % lwl} < o, VkeN,
k=0 (36)

(¢ efaprh)

which implies that w © z € ¢s”. So the condition ¢, C {E;‘O}ﬁ
holds.

Conversely, for a given y = (y;) € w* \ €], we prove the
existence of an x € ¢, with y © x ¢ c¢s*. According to y ¢
¢/ we may confirm an index sequence (n,) which is strictly

increasing with n, = 0 and ZZ{;I 1 iv05ps(p € N). By
* = p—
taking into account Remark 8 (i), if we define x = (x;) € ¢

by x; = (sgn” y; @ p), the non-Newtonian complex signum
function is defined by

* _®“ “’ #6,
sgn” (y) = {g o i (37)

where y is given complex conjugate in Definition 7 for all
y = (y) € C". Finally, by using Remark 8 (ii) taking the
generators o = [3, we get

n,—1 nP—l

»
*Z Vi © X = *Z [y @ (sgn”yc @ p)]
k=n,_, k=n,
(38)
np—l
—2x Y ipdzi
k=n

p-1

foralln, ; <k < n,.Therefore yox ¢ cs* and thus y ¢ {¢; 1P,
Hence {c;}ﬁ ce.

(b) From the condition (c) of Remark 16 we have €. ¢
({E;}’B)ﬁ = {e;‘}ﬁ since {Ego}ﬁ = ¢;. Now we assume the
existence ofaw = (w,) € {¢] LAY ¢;.. Since w is unbounded
there exists a subsequence (w, ) of (w,) and we can find a real
number (k + 1)? such that Hwnk i 2 (k+1)*forall k € N,. The
sequence (x,,) is defined by x,, := (sgn*(wnk) o (k+ 1% if
n = ;. and 0 otherwise. Then x € ¢;". However,

1 I
w,0x, = olw, |z 1 = 0.
*; n n *;(k+1)2 My *% (39)

Hence, w ¢ {¢; }'B , which contradicts our assumption and
{€:}P c e7.. This step completes the proof. O

In addition to the statements in Remark 16 we make the
following remarks which are immediate consequences of the
definition of the {-duals (¢ € {a, 5, y}).

Remark 18. Let 0+ A" C w". Then the following statements
are valid:

(@) 9" < {A"}* < AP < (A < 0*;in particular, e
is a sequence space over C*;

(b) if A* < p* < ", then {u*}* < (A*}5;
(c) Iisanindexset,if A are sequence spaces, and if A" :=

Ui A7 then (A%)¢ = M, 1A}, where the notation
"()" stands for the span of linear subspace over C*;

(d) A" c (A= (A0

Proof. The case (b) obviously is true, and (a) follows from
£: < cs* < bs". We only show the cases (c) and (d) taking
( = alpha. The rest of the parts can be obtained in a similar

way.

(c) Now, as an immediate consequence A; C (A") the
following (A*)* ¢ {11} and (A*)® (s {A}}% hold
by (b). On the other hand, if y € [);;{A}}%, that is,
y € {A;}*, thenxoy € ¢ forall x € A" and therefore
Ve c (A



(d) We can deduce A* ¢ {A*}**. Letw € \*;thenw o z €
¢ forallz € {A"}% thusw € {A"}** and 1* c A"}
by (a). OJ

Here A* # {1* ¢ as we get from Theorem 17 (a) in the case
of { = Band A" := ¢ We have [ }*F = €7, # . This remark
gives rise to the following definition.

Definition 19 ({-space, Kothe space). Let ¢ € {w, 5,7y} and let
LA™ be a sequence space over the field C*. 1™ is called {-space
ifA* = {A*}°. Further, an a-space is also called a Kothe space
or perfect sequence space.

From Remark 18 (d) and (b) we obtain immediately the
following remark.

Remark 20. 1f 1™ is a sequence space over the field C* and
(¢ € {a, B, y}), then {1"} is a {-space; that is, {A*}* = {A*}*.

Now we look for sufficient conditions for {A*}% = {A*}F =
{A*}". This gives rise to the notion of solidity.

Definition 21 (solid sequence space). Let X be a sequence
space. Then X is called solid if

{u = (u) € " :3(x;) € X Vk e N: fJuyi £ IkaII} cX.
(40)

Theorem 22. Let A* be a sequence space over the field C*.
Then A* is solid if and only if

{y=0) e :3(x) € A" Vk e Nyl = lixdlf < 2™
(41)

Proof. Letu = () € 0* and x = (x) € A* with [l | € fix
be given. Further, let (x;) = (§,7j,) € w*, where &,7, € R.
Obviously the condition X = (%) = (§,<#,) € A" holds
because ||xk|| = ||x_k|| Letuy = (1/'/k,(§k) € w*, where ¥, 8, €
R. We obtain B{\[y7 + 67} < B{\|& + 1} so yp +0F < &+t
since IIukII < IkaII for all k € N. We may choose a real number
Ve € Rwithy; +9; = & +#; and consider w = (w) defined
by (we) = (¥ ). Then fiwgll = fixyfi; thus w € 1™ and w =
(W) € A". From Definition 7 we get ¥, = (w ® w)/2 € A".
Determining {; € R such that {; + 8; = & + #; it follows

similarly that u = (i) = ({,8;) € 0" and i = (i) € A7,
which imply &, = (u e m)/2 € A*. Hence vy, = (44, 8;) € A*.
This step completes the proof. O

Theorem 23. Consider that A* < w” is any sequence space
over the field C*; then the following statements hold.

(a) If A" is a Kothe space, then A™ is solid.
(b) If A" is solid, then {A"}* = A =y
(c) If A" is a Kothe space, then A" is a {-space.
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Proof. Let A" < w”" be a sequence space over the field C*.

(a) If 1™ is a Kothe space and u € @", then u € {A"}*"
if and only if the condition u © z € ¢; holds for all
z € {A*}“ Besides this we obtain [v, || = [ju ]| for u =
(u) € A" and v = (v;) € 0" and the statement

*Z”Vk ozl = *Z””k ozl <00 (42)
3 3

holds for each z € {A*}". Therefore vo z € ¢;'. Hence
w € A and A” is solid over the field C*.

(b) Consider that A* is a solid sequence space over C*. To
show {A*}* = {)L*}‘B = {A*}, it is sufficient condition
to verify {A*}" < {A*}" in Remark 18 (a). So, let v =
() € {A"}; that is,

sup <oo foreveryu = (u;) € A*. (43)

neN

.
*Z (e 0 v)
k=0

By taking into account solidness of 1%, for z = (z;) €
A", the condition ||zk|| = IIukll holds and there exists
a sequence u = (1) € A" for all k € N. Therefore by
combining this with the inclusion (43) we deduce that
the condition

N . . N . .
*Z lug @ viell = *Z llzi © vl
k=0 k=0

i . "
*Z Zj @Vk

k=0

. i
D z o
k=0

< 00

< sup
neN

(44)

holdsand u © v € ¢ < c¢s*. Hence v € {A*}" and
AP < A"}

(c) This is an obvious consequence of Remark 20 and the
cases (a)-(b) in Theorem 23. ]

Theorem 24. The following statements hold.
(a) The sets ¢", w", £,,, ¢y, and €, of sequences are solid.

(b) The sets c* and bv™ of sequences are not solid; therefore
none of them is a Kéthe space.

(c) For each { € {a, 3, y}, then

() () =€ and (€2} = €5
(i) {w*}* = ¢" and {(p*}c =w".

(d) If§ € {a, B,y and ¢y < u* < €, then {y*}( = ¢, and
urc {‘u*}“ = €. In particular, {cg}( = {c*) = e,
and each of ¢*, ¢, is not a {-space.
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Proof. That the specified spaces in cases (a-b) are solid is an
immediate consequence of their definition. Additionally, the
cases (i-ii) of (c) can be obtained Theorem 17 and Remark 16
(d). Since ¢; and € are solid, we know that {¢; }C = {8;}( =
¢;'. So the statements in (d) are obtained from Remark 18 (b).

O

Next, we determine the {-duals of the spaces cs*, bs™, bv™,
and bv,. We will find that none of these sequence spaces is
solid; in particular, none of them is a Kéthe space.

Theorem 25. The following statements hold:
() {cs™}* = {bv*}* = {bvg}* = €5 {bvy} =bv N¢y
(b) {es*}F = bv*, v }F = cs*, ()P = bs”, {bs™}F
bvy;
(0) {es™}
bv*.

bv*, {bv*} = bs", (b} = bs, {bs"}

In particular, the sets cs*, bs", bv", and bv; of sequences
are f3-spaces ([ = beta), but they are not Kothe spaces.
Moreover, the sets bs* and bv* of sequences are y-spaces
({ = gamma), whereas both c¢s* and bv; are not y-spaces.
None of the spaces cs*, bs”, bv*, and by, is solid.

Proof. We prove the cases for the spaces {cs*}(, ¢ efa, Byl
and the proofs of all other cases are quite similar.
(a) Let x = (x;) € cs™ and y = (y;) € ¢;. Then,

*Z]i)’k kaii < ||9C||:S X *leykll <00, VkeN, (45)
k k

where ||x[|; is defined by (27). Therefore, y € {cs*}" which
gives the fact that £ ¢ {cs*}".

Conversely, suppose that y = (y;) € {cs"}* \ ¢;. Then to
every natural number p we can construct an index sequence
(n,) with n, < n,,, and *Zki:l,ﬂ 7]l < 4% for all p € N.

Define x = (x;) by

PN
X = g—l) 122, n, <k<mnpy,, (46)
0, others.

By using the algebraic operations in (4) and Remark 3 the f3-
division (ii)kﬁij can be evaluated as ﬁ{(—l)kTP} for n, <
k< M- Then x = (x;) € cs”. According to the choice of n,,,
the inequalities

”p+1

Sinoxds itz Y
k p

k=ny+1

iydiz D3P =00 (47)
P

hold, where the sum Y 2 = B{}, B3P = BLY, 2P} *-
diverges since the classical geometric series ), 2 diverges.
Thus, x © y ¢ €;, which implies y ¢ {cs*}". This contradicts
the fact that y € {cs*}". Therefore {cs"}* c ¢/

The condition {bv;}* < £; holds as well if we take the
sequence (x;) by

X, = (2) » n, <k<ng, (48)
0, others.

(b) Let u = () € {cs*} andw = (w) € ¢. Define the
sequence v = (v;) € ¢s” by v, = (w, © wy,,) forall k € N.
Therefore, 3, © v *-converges, but

n

*Z (Wi © W) © 1y
k=0
(49)

n—-1

= *Z ka(ukeuk—l) O W,y OUy,
k=0

and the inclusion ¢;" C cs” yields (1) € {cs*}ﬁ c{ef }ﬁ =0
Then we derive by passing to the =-limit in (49) asn — oo
which implies that

(o] o0
*Z (wkewkﬂ)oukz*z Wi © (e ©1yy) (50)
k=0 k=0

for every k € N. Hence, (0 1_;) € {g; - {1 = €] that
is, u € bv*. Therefore, {cs*}ﬁ c bv*.

Conversely, suppose that u = (1) € bv". Then, (y; ©
u_,) € ¢ . Further, if v = (v) € cs”, the sequence (w,,)
defined by w,, = *ZZ:O v, for all k € N is an element of the
space ¢*. Since {c*}* = ¢/, the N-series 2k WO (e o1y y)
is *-convergent. Also, we have

n

*Z (Wi © W) © 1y

k=m

n—1
< *Z w0 (you,)|e(w,ou,)e(w,  ou,).
k=m
(51)

Since (w,) € ¢* and (u;) € bv*“ C ¢*, the right-hand side of
inequality (51) *-converges to 0 as m,n — ©00. Hence, the
series Yo (Wy © wyy,) @ or Y12ty © vy *-converges.
Hence bv* ¢ {cs*}P.

(c) By using (a), it is known that bv* ¢ {cs*}ﬁ and since
fes* )P {es*}, bv* € {cs*}Y. We need to show that {cs*}” ¢
bv*. Letu = (u,) € {cs"} andv = (v,) € . Then, for
the sequence (w,) € cs” defined by w, = (v, © v,,,) for
alln € N, we can find a non-Newtonian real number K >0
such that || *ZZ=0 u, © wi | <K for all n € N. Since (v,) € [
and (u,) € {cs"}" c €, there exists a non-Newtonian real
number M 3> 0 such that ]iu,pvnii < M foralln € N. Therefore,

n

*Z (ue © the_y) O v

k=0
. (52)
n+1 . .
< *Z U © (Ve © Vi) | V12 @ty [| S KFM.
k=0

Hence (i © u_y) € {} = {g}" = £ thatis, (u,) €
bv*. Therefore, since the inclusion {cs*}’ < bv" holds, we
conclude that {cs*}¥ = bv", as desired. O
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5. Concluding Remarks

Although all arithmetics are isomorphic, only by distinguish-
ing among them, we do obtain suitable tools for construct-
ing all the non-Newtonian calculi. But the usefulness of
arithmetics is not limited to the construction of calculi; we
believe there is a more fundamental reason for considering
alternative arithmetics; they may also be helpful in developing
and understanding new systems of measurement that could
yield simpler physical laws.

We trust that the basic ideas of the non-Newtonian
calculus have been presented in sufficient detail to enable
interested persons to develop the theory in various directions.
For example, consider the concept the average speed. The defi-
nition “distance traveled per unit time” is incomplete because
it fails to provide a method of determining the average speed
of an accelerated particle. The definition “distance divided
by time,” though not incorrect, is a gross oversimplification
that fails to reveal the underlying issues. Fortunately there is
a completely satisfactory definition, which undoubtedly was
known to Galileo. Then we isolate a constant in each given
uniform motion by defining speed to be the distance traveled
in any unit time-interval. Finally, for a particle that moves
nonuniformly in a distance d in time ¢, we define the average
speed to be the speed that a particle in uniform motion must
have in order to travel a distance d in time ¢. In our opinion,
neither the simplicity nor the obviousness of the answer, d/t,
justifies its use as the definition of average speed (cf. [12]).

Of course, we can only speculate as to future applications
of the non-Newtonian calculi. Perhaps they can be used
to define new scientific concepts, to yield new or simpler
scientific laws, to solve heretofore unsolved problems, or
to formulate and solve new problems. For example, one
constructs non-Newtonian calculi of functions of two or
more real variables by choosing an arithmetic for each axis. It
might even be profitable to seek deeper connections among
the corresponding operators of the calculi. Like as, some of
them are postponed to our future works.
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The notion of modular metric spaces being a natural generalization of classical modulars over linear spaces like Lebesgue, Orlicz,
Musielak-Orlicz, Lorentz, Orlicz-Lorentz, and Calderon-Lozanovskii spaces was recently introduced. In this paper we investigate
the existence of fixed points of generalized «-admissible modular contractive mappings in modular metric spaces. As applications,
we derive some new fixed point theorems in partially ordered modular metric spaces, Suzuki type fixed point theorems in modular
metric spaces and new fixed point theorems for integral contractions. In last section, we develop an important relation between
fuzzy metric and modular metric and deduce certain new fixed point results in triangular fuzzy metric spaces. Moreover, some
examples are provided here to illustrate the usability of the obtained results.

1. Introduction and Basic Definitions

Chistyakov introduced the notion of modular metric spaces
in [1, 2]. The main idea behind this new concept is the physical
interpretation of the modular. Informally speaking, whereas
a metric on a set represents nonnegative finite distances
between any two points of the set, a modular on a set
attributes a nonnegative (possibly, infinite valued) “field of
(generalized) velocities™: to each “time” A > 0 the absolute
value of an average velocity w, (x, y) is associated in such a
way that in order to cover the “distance” between points x, y €
X it takes time A to move from x to y with velocity w, (x, y).
But the way we approached the concept of modular metric
spaces is different. Indeed we look at these spaces as the
nonlinear version of the classical modular spaces introduced
by Nakano [3] on vector spaces and modular function spaces
introduced by Musielak [4] and Orlicz [5, 6].

For the study of electrorheological fluids (for instance
lithium polymethacrylate), modeling with sufficient accuracy
using classical Lebesgue and Sobolev spaces, L¥ and W"?,
where p is a fixed constant is not adequate, but rather the
exponent p should be able to vary [7]. One of the most
interesting problems in this setting is the famous Dirichlet

energy problem [8, 9]. The classical technique used so far in
studying this problem is to convert the energy functional, nat-
urally defined by a modular, to a convoluted and complicated
problem which involves a norm (the Luxemburg norm). The
modular metric approach is more natural and has not been
used extensively. In recent years, there was a strong interest
to study the fixed point property in modular function spaces
after the first paper [10] was published in 1990. For more on
metric fixed point theory, the reader may consult the book
[11] and for modular function spaces [12, 13].

Let X be a nonempty set. Throughout this paper for a
function w : (0,00) x X x X — [0, 0o], we will write

W (% y) =0 (bx,y), M
forallA > 0and x, y € X.

Definition 1 (see [1, 2]). A function @ : (0,00) x X x X —
[0, 00] is said to be modular metric on X if it satisfies the
following axioms:

(i) x = yifand only if w, (x, y) = 0, forall A > 0;

(ii) wy(x, ¥) = wy(y,x), forall A > 0, and x, y € X;
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(i) )1, (%, y) < ) (x,2) + w, (2, y), forall A, > 0 and
x, ¥,z € X.
If instead of (i), we have only the condition i"
wy (6, x)=0, VA>0, xeX 2)

then w is said to be a pseudomodular (metric) on X. A
modular metric w on X is said to be regular if the following
weaker version of (i) is satisfied:

x=y iffwy(x,y)=0, for some A > 0. (3)

Finally, w is said to be convex if for A, 4 > 0 and x, ¥,z € X,
it satisfies the inequality

A U
wA+/4 (x’y) < )L+‘uw)‘ (x,Z)+ /\+MwM (Z,y). (4)

Note that for a metric pseudomodular w on a set X and any
x,y € X, the function A — w,(x, y) is nonincreasing on
(0,00). Indeed, if 0 < p < A, then

0 (53) S0, (50 + 0, (63) =0, (53). ()

Following example presented by Abdou and Khamsi [14]
is an important motivation of the concept of modular metric
spaces.

Example 2. Let X be a nonempty set and X a nontrivial o-
algebra of subsets of X. Let & be a §-ring of subsets of X,
suchthat ENA € Pforany E € P and A € X Let
us assume that there exists an increasing sequence of sets
K, € & such that X = [JK,,. By & we denote the linear space
of all simple functions with supports from 9. By /., we will
denote the space of all extended measurable functions; that
is, all functions f : X — [-00,00] such that there exists a
sequence {g,} < &, g, < |fl,and g,(x) — f(x) for all
x € X. By 1, we denote the characteristic function of the set
A.Letp: M., — [0,00] be a nontrivial, convex, and even
function. We say that p is a regular convex function pseudo-
modular if

(i) p(0) = 0;
(ii) p is monotone; that is, | f(x)| < |g(x)| forall x € X
implies p(f) < p(g), where f,g € M ;
(iii) p is orthogonally subadditive; that is, p(f1,,5) <
p(f1,4) + p(f1p) for any A,B € X such that A n
B#0, f € M;

(iv) p has the Fatou property; that is, | f,(x)| T | f(x)| for
all x € X implies p(f,,) T p(f), where f € M ;

(v) p is order continuous in &; that is, g, € & and
lg,(x)| | 0implies p(g,,) | 0.

Similarly, as in the case of measure spaces, we say that a set
A € Xis p-null if p(gl,) = O for every g € &. We say
that a property holds p-almost everywhere if the exceptional
set is p-null. As usual we identify any pair of measurable sets
whose symmetric difference is p-null as well as any pair of
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measurable functions differing only on a p-null set. With this
in mind we define

M (X%, P,p) = {f € Moos|f (x)| < c0p-ae},  (6)

where each f € (X, X, P, p) is actually an equivalence class
of functions equal to p-a.e. rather than an individual function.
Where no confusion exists we will write .# instead of
M(X,Z, P, p). Let p be a regular function pseudomodular.

(a) We say that p is a regular function semimodular if
plaf) = 0 for every > 0 implies f = 0 p-a.e.

(b) We say that p is a regular function modularif p(f) = 0
implies f =0 p-a.e.

The class of all nonzero regular convex function modulars
defined on X will be denoted by R. Let us denote p(f, E) =
p(flg) for f € JM,E € X. It is easy to prove that p(f, E) is
a function pseudomodular in the sense of Definition 2.1.1 in
[13] (see also [15,16]). Let p be a convex function modular.

(a) The associated modular function space is the vector
space L ,(X, %), or briefly L ,, defined by

L,={fe;p(Af) — 0as A — 0}. (7)

(b) The following formula defines a norm in L 5 (fre-
quently called Luxemburg norm):

, f ) }
=inf{a>0;p( = |<1¢t. 8
111, = nf {a > 05p (2 ®
A modular function space furnishes a wonderful example of

amodular metric space. Indeed, let L , be a modular function

space. Define the function modular w by

wMﬁa)w(%) 9)

forall A > 0,and f,g € L,. Then w is a modular metric on
L. Note that w is convex ifP and only if p is convex. Moreover
we have

If - al, =4 (f.9). (10)
forany f,g € L,.
Other easy examples may be found in [1, 2].
Definition 3. Let X, be a modular metric space.

(1) The sequence (x,,),,n in X, is said to be w-convergent
tox € X, ifand onlyifforeach A > 0,w,(x,,x) — 0,
asn — 00. x will be called the w-limit of (x,,).

(2) The sequence (x,,),cy in X, is said to be w-Cauchy if
foreach A > 0, wy (x,,,x,,) — 0,asm,n — 0.
(3) A subset M of X, is said to be w-closed if the w-limit

of a w-convergent sequence of M always belongs to
M.
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(4) A subset M of X, is said to be w-complete if any w-
Cauchy sequence in M is a w-convergent sequence
and its w-limit is in M.

(5) A subset M of X, is said to be w-bounded if we have

8, (M) = sup{w, (x, y);x, y € M} < c0. (11)

In 2012, Samet et al. [17] introduced the concepts of a-
y-contractive and «-admissible mappings and established
various fixed point theorems for such mappings defined on
complete metric spaces. Afterwards Salimi et al. [18] and
Hussain et al. [19-21] modified the notions of a-y-contractive
and a-admissible mappings and established certain fixed
point theorems.

Definition 4 (see [17]). Let T be self-mapping on X and « :

XxX — [0,+00) a function. One says that T is an a-admis-

sible mapping if
xyeX, a(xy)>2l=a(Tx,Ty)>1. (12)

Definition 5 (see [18]). Let T be self-mapping on X and «, 7 :
X x X — [0,+00) two functions. One says that T is an «-
admissible mapping with respect to # if

a(x,y) 21 (xy) = a(Tx, Ty)
>n(Tx,Ty).

x,y€X,
(13)

Note that if we take #(x, y) = 1 then this definition reduces
to Definition 4. Also, if we take, a(x, y) = 1 then we say that
T is an #-subadmissible mapping.

Definition 6 (see [20]). Let (X, d) be a metric space. Leta, 77 :
XxX — [0,00)and T : X — X be functions. One says T
is an a-x-continuous mapping on (X, d), if, for given x € X
and sequence {x,,} with

xn —Xxasn-— 0o, o (xn>xn+1) 2 }7 (xn’anrl)

VneN = Tx, — Tx.
(14)

Example 7 (see [20]). Let X = [0,00) and d(x, y) = |x — y|
be a metricon X. Assume T : X — Xanda,: X xX —
[0, +00) are defined by

x°, if x € [0,1],

Tx =4 . .
sintx + 2, if(1,00),
(15)

X+ 41, ifx,ye[0,1],

- |

0, otherwise

and #(x, y) = x*. Clearly, T is not continuous, but T is a-#-
continuous on (X, d).

A mapping T : X — X is called orbitally continuous at
p € Xiflim,_, T"x = p implies that lim, ,  /TT"x = Tp.
The mapping T is orbitally continuous on X if T is orbitally
continuous for all p € X.

Remark 8 (see [20]). Let T : X — X be self-mapping on an
orbitally T-complete metric space X. Definea,7: X x X —
[0, +00) by

3, ifx,yeO(w)

»y) =1, 16
0, otherwise, n(xy) (16)

x|

where O(w) is an orbitof a pointw € X. If T : X — X isan
orbitally continuous map on (X, d), then T is «-#-continuous
on (X,d).

In this paper, we investigate existence and uniqueness of
fixed points of generalized a-admissible modular contractive
mappings in modular metric spaces. As applications, we
derive some new fixed point theorems in partially ordered
modular metric spaces, Suzuki type fixed point theorems in
modular metric spaces and new fixed point theorems for
integral contractions. At the end, we develop an important
relation between fuzzy metric and modular metric and
deduce certain new fixed point results in triangular fuzzy
metric spaces. Moreover, some examples are provided here
to illustrate the usability of the obtained results.

2. Fixed Point Results for
Implicit Contractions

Let us first start this section with a definition of a family of
functions.

Definition 9. Assume that A 5 denotes the collection of all

6
continuous functions #Z : R — R satisfying the following.

(1) X is increasing in its 1th variable and nonincreasing
in its 5th variable.

(72) ifu,v € R" withu, v > 0and #(u, v, v, u, v+u,0) < 0,
then, there exists y € ¥ such that

usy(). (17)

Notice that here we denote with ¥ the family of non-
decreasing functions v : [0,+0c0) — [0,+00) such that
Yoo ¢ (t) < +oo forallt > 0, where y" is the nth iterate

of y.

Example 10. Let Z'(t,,t5,t5, 4 ts,ts) = t; — y(maxit,, (t; +
t4)/2, (ts + tg)/2}), where ¢ € W; then # € A 4.

Example 11. Let Z(t|,t,,t5,t4,t5,ts) = t; — w(max{t,, (1 +
t)t, /(1 +t,)}), where ¢ € Vs then # € A 4.

Theorem 12. Let X, be a complete modular metric space and
T:X, — X, self-mapping satisfying the following assertions:
(i) T is an a-admissible mapping with respect to 1;
(ii) there exists x, € X such that a(xy, Txy) = n(xg, Tx);

(iii) T is an a-n-continuous function;



(iv) assume that there exists Z' € A g such that for all
x,y € X, and A > 0 with n(x, Tx) < a(x, y) we have

I (wpye (T, Ty), wyyp (%, y) sy (6, Tx) @y (35 Ty)

Wy (% Ty), wyy (3, Tx)) <0,
(18)

where0 <l < c.

Then T has a fixed point. Moreover, if for all x, y € Fix(T) we
have n(x, x) < a(x, y) and Z (u,u,0,0,u,u) > 0 for allu > 0,
then T has a unique fixed point.

Proof. Let x, € X such that a(x,, Tx,) > n(x,, Tx,). For
x, € X, we define the sequence {x,} by x,, = T"x, = Tx,,.
Now since T is an «-admissible mapping with respect to #
then a(xy, x;) = alxg, Txy) = y(xg, Txy) = 1(xg,x,). By
continuing this process we have

n (xnfl’ Txnfl) =7 (xnfl’ xn) S« (xnfl’ xn) (19)

for all n € N. Also, let there exists ny € X such that x, =
Xp,+1- Then x, is fixed point of T and we have nothing to
prove. Hence, we assume x,, # x,,,; for all n € N U {0}. Now
by taking x = x,,_; and y = x,, in (iv) we get

4 (w/\/c (Tan» Txn) > Wy (xn—l’ xn) > Wy (xn—l’ Tan) >

w/\/l (xn’ Txn) > w2/\/l (xn—l’ Txn) > w/\/l (xw Txn—l)) <0
(20)

which implies

4 (w)t/c (xw xn+l) > W)y /1 (xn—l’ xn) » W) /1 (xn—l’ xn)’
(21)

@1 (% X41) > @a0 71 (X015 X41) 5 0) < O

On the other hand,

W1 (%15 Xpy1) < Wy (%15 %) + W) (% X141)
< @y (Xpors X) + @xge (X X)) (22)

w)»/l ('xn’ xn+1) < w)t/c ('xn’ xn+1) .

Now since # is nonincreasing in its 5th variable, so by
(21) and (22) we obtain

4 (w/\/c (xn’ xn+1) > Wy ('xn—l’ xn) > Wy (xn—l’ xn) >
@ e (X Xpg1) » @a1 (%015 %) (23)
+w) /e (%, %,41)50) < 0.
From (1) we deduce that

w)t/c (xn’ xn+1) < v (w/\/l (xn—l’ xn)) < v (w/\/c (xn—l’xn)() . )
24

Inductively, we obtain

w)t/c (xn’ xn+1) < V/n (w)t/c (x0> xl)) . (25)
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Taking limit as#n — oo in the above inequality we get
nli_)néow]t/c (xn’ xn+1) =0. (26)

Suppose m,n € N with m > nand € > 0 be given. Then there
exists 11—,y € N such that

€

w]t/c(m—n) (xn’ xn+1) < (27)

c(m—n)

for alln > n,y (). Therefore we get

wA/c ('xn"xm) < w){/c(m—n) (xn’ xn+1)
+ w)t/c(m—n) ('xn+1’ xn+2) +-

+ w)t/c(m—n) ('xm—l’ xm)

€ € €

+ + 4o
cim-n) cm-n) cm-n)

_c
c(m—n)

(N0

(28)

for all m,n > ny,_,. This shows that {x,} is a Cauchy
sequence. Since X, is complete, so there exists x* € X, such
that lim, |, ,x, = x*. Now since T is an a-y-continuous
mapping, so Tx,, — Tx" asn — oo. Therefore,

Tx" = lim Tx, = Jim x, = x". (29)

Thus T has a fixed point. Let all x,y € Fix(T) we have

n(x,x) < alx, y) and #(u,1u,0,0,u,u) > 0 forallu > 0.
Then by (iv)

T (@ry1 (%, ) @171 (%, ) 50,0, (%, ) w0 (3, %))
< H (wye (% 9) > wr (%, 7),0,0,
Wor/n (x, )’) > W) /1 ()” x))
= I (e (Tx, Ty), wpy (%, y), 0y (%, Tx)

(1 Ty) s g (% Ty) s wyy (35 Tx)) < 0.
(30)

Now if w, ;(x, y) > 0, then

0 < I (wyy (% y), @y (x9),0,0,
(31)

wy (%6 y) w0y (,%)) <0

which is a contradiction. Hence, w ;;(x, y) = 0. Thatis, x = y.
Thus T has a unique fixed point. O
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Corollary 13. Let X, be a complete modular metric space and
T:X, — X, aself-mapping satisfying the following asser-
tions:
(i) T is an a-admissible mapping;

(i) there exists x, € X such that a(xy, Tx,) > 1;

(iii) T is an a-continuous function;

(iv) assume that there exists Z' € A g such that for all

x,y € X, and A > 0 with a(x, y) > 1 we have

I (e (Tx, Ty), wpy (% 3) 00 (6, TX) s w1 (3 Ty) s

Wy (% Ty), wyy (3, Tx)) <0,
(32)
where0 <l < c.

Then T has a fixed point. Moreovet, if for all x, y € Fix(T') we
have 1 < a(x, y) and F (u,u,0,0,u,u) > 0 for allu > 0, then
T has a unique fixed point.

Theorem 14. Let X, be a complete modular metric space and
T:X, — X, self-mapping satisfying the following assertions:
(i) T is an a-admissible mapping with respect to n;
(ii) there exists x, € X such that a(xy, Txy) = n(xg, Tx);
(iii) if {x,} is a sequence in X such that «(x,,x,,,;) =
(X, X41) With x,, — x asn — 0o, then either
n (Txn, szn) <a(Tx,,x) or
(33)
n (szn, T3x,,) <a (szn, x)
holds for alln € N;
(iv) condition (iv) of Theorem 12 holds.

Then T has a fixed point. Moreover, if for all x, y € Fix(T) we
have n(x, x) < a(x, y) and I (u,u,0,0,u,u) > 0 for allu > 0,
then T has a unique fixed point.

Proof. As in proof of Theorem 12, we can deduce a sequence
{x,} such that x,,,, = Tx, with a(x,, x,.,;) > 5(x,, x,,,) and
there exists x* € X, such that x, — x" asn — co. From
(iii) either
1 (x,, Tx,) < a(x,,x") or
(34)
n (xn+1’ Txn+1) <o (xn+1> X*)

holds foralln € N. Let#(x,, Tx,,) < a(x,, x*). Then by taking
x = x,and y = x" in (iv) we have

4 (‘UA/C (waTx*) > W1 (xn,x*) > Wy (waxn) >

@y (x5, Tx7) sy (%, Tx™) sy (%7, Tx,,)) < 0
(35)

which implies

s (wA/c (xnﬂ’ Tx*) > Wy (xn’ x*) >
@yt (X X1 > @y (27, TX7), (36)

oy (% TX) s @y (%7, %,41)) <O

Taking limit as#n — oo in the above inequality we obtain

H (w/\/c (x*,Tx*) )0> 0)
(37)
w/\/l (X*,Tx*) ’wZ)L/l (X*, Tx*) ,0) <0.

Now since, wy;(x*, Tx") < wy;(x", Tx"), wy,(x", Tx") <
wy(x*,Tx"),  is increasing in its 1th variable and nonin-
creasing in its 5th variable, so we obtain

H ((U/\/l (x*,Tx*) ,0, 0,
(38)
w/\/l (X*,Tx*) ,w/\/l (X*,TX*) ,0) <0

which is a contradiction. Now by taking u = w,;(x*, Tx")
and v = 0, from (#2) we have

wy (x%,Tx") <y (0) = 0. (39)

Hence, w, ;(x", Tx") = 0; that is, x* = Tx". Similarly we can
deduce that Tx* = x* when 1, (x,,,1, Tx,4) < 0 (%1, x").

By using Example 10 and Theorem 14 we can obtain the
following corollary.

Corollary 15. Let X, be a complete modular metric space.
LetT : X, — X, be self-mapping satisfying the following
assertions:

(i) T is an a-admissible mapping with respect to 1;

(ii) there exists x, € X such that a(x,, Tx) = 1(xy, Txy);

(iii) if {x,} is a sequence in X such that o(x,,x,,,) >
(x5 X,41) With x,, — xasn — oo, then either

n (Txn, szn) <a(Tx,, x) or
(40)
n (szn, T3xn) <« (szn, x)

holds for alln € N;

(iv) forallx, y € X, and A > 0 with n(x, Tx) < a(x, y) we
have

Wy (Tx, Ty) <y (max ‘lwA/l (%)

wy (6 Tx) + wyy (3, Ty)
2

W1 (x, Ty) + W/ (. Tx) } )
2 bl

>

(41)

wherey e Yand0 <[ <c.

Then T has a fixed point. Moreover, if for all x, y € Fix(T) we
have y(x, x) < a(x, y), then T has a unique fixed point.



Corollary 16. Let X, be a complete modular metric space.
LetT : X, — X, be self-mapping satisfying the following
assertions:
(i) T is an a-admissible mapping with respect to 1;
(ii) there exists x, € X such that a(xy, Txg) = 1n(xg, Tx);
(iii) if {x,} is a sequence in X such that o(x,,x,,;) >

(x> Xpy1) With x,, — x asn — 0o, then either

n (Txn,szn) < a(Tx,,x) or
(42)
i (szn, T3x,,) <a (szn, x)

holds for alln € N;

(iv) forallx, y € X, and A > 0 with n(x, Tx) < a(x, y) we
have

W) /e (Tx, T)’)

(14w (x,Tx)] wy (9, Ty) })

< W(max ‘[w)t/l (x.y), L+ @y (%, )

(43)

wherey € Yand0 <1 <c.

Then T has a fixed point. Moreover, if for all x, y € Fix(T') we
have y(x, x) < a(x, y), then T has a unique fixed point.

Corollary 17. Let X, be a complete modular metric space. Let
T:X, — X, beself-mapping satisfying the following asser-
tions:
(i) T is an a-admissible mapping with respect to 1;
(ii) there exists x, € X such that a(xy, Tx,) = 1(xy, Txy);
(iii) if {x,} is a sequence in X such that «(x,,x,,;) =

N(x,,, Xpp1) With x,, = x asn — 00, then either

n (Txn, szn) < a(Tx,, x) or
(44)
i (szn, T3xn) <a (szn, x)

holds for alln € N;

(iv) forallx, y € X, and A > 0 with n(x, Tx) < a(x, y) we
have

Wy (Tx, Ty) < awy; (x, y)

b [1+ @y (x, Tx)] @y (3, Ty) (45)

1+ (% y)

>

wherea+b < land0 <1 <c.

Then T has a fixed point. Moreover, if for all x, y € Fix(T) we
have y(x, x) < a(x, y), then T has a unique fixed point.
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Example 18. Let X, = [0,+00) and w; (x, y) = (1/A)|x — y|.
DefineT : X, — X, an:X,xX, — [0,00),and y :
[0,00) — [0, 00) by

—x°, if x € [0,1],

16

sin’x + cos x + 1
Vx2 +1 ’

7x +In x,

Tx

if x € (1,2],

if x € (2,00),
(46)
, ifx,y€[0,1],
axy)=
, otherwise,

= o~ N

n(xy)= v () = %t-

7

Let a(x, y) > #(x, y); then x,y € [0,1]. On the other
hand, Tw € [0,1] for all w € [0,1]. Then, a(Tx,Ty) >
n(Tx, Ty). Thatis, T is an a-admissible mapping with respect
to n. If {x,} is a sequence in X such that a(x,,x,,;) >
H(X, X,p,) With x,, — xasn — oo, then Tx,, T*x,, T°x,, €
[0,1] for all n € N. That is,

n (Txn, sz,,) <a(Tx,,x),
(47)
n (szn, T3xn) <a (szn, x)

hold for all n € N. Clearly, (0, T0) > #(0,T0). Let a(x, y) >

n(x,Tx). Now, if x ¢ [0,1] or y ¢ [0,1], then 1/8 > 1/4,
which is a contradiction. So, x, y € [0, 1]. Therefore,

21
W2 (Tx,Ty) = < — x* - J’2|

=L|x—y||x+y|< le—yl
81 )

_l;| |
“anap Y

1
= 590/ (% y) = V/(w/\/(l/z) (%, »))

sy (max {wA/l (xy)

[1+ @y (x, Tx)] wy (3, Ty) D

1+wy, (%)
(48)

Hence all conditions of Corollary 16 hold and T has a unique
fixed point.

Let (X, X) be a partially ordered modular metric space.
Recall that T : X, — X, is nondecreasing if for all x,
y € X,x 2y = T(x) 2 T(y). Fixed point theorems
for monotone operators in ordered metric spaces are widely
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investigated and have found various applications in differ-
ential and integral equations (see [20, 22-25] and references
therein). From results proved above, we derive the following
new results in partially ordered modular metric spaces.

Theorem 19. Let (X,,<) be a complete partially ordered
modular metric spaceand T : X, — X, self-mapping satisfy-
ing the following assertions:

(i) T is nondecreasing;
(ii) there exists x, € X such that x, < Tx,;
(iii) T is continuous function;
(iv) assume that there exists # € Ag, such that for all
x,y € X, and A > 0 with x < y we have
T (rse (Tx, Ty)» w0 (%, y) > (6 Tx) s wyy (35 T)

Wy (% Ty), wyy (3 Tx)) <0,
(49)
where 0 < [ < c.

Then T has a fixed point. Moreover, if for all x, y € Fix(T) we
have x < y and 7 (u,u,0,0,u,u) > 0 forallu > 0, then T has
a unique fixed point.

Theorem 20. Let (X,,<) be a complete partially ordered
modular metric space and T : X, — X, self-mapping
satisfying the following assertions:

(i) T is nondecreasing;
(ii) there exists x, € X such that x, X Tx;
(iii) if {x,} is a sequence in X such that x,, < x,., with
X, — xasn — oo, then either

Tx, <x or T’x,<x (50)

holds for alln € N;
(iv) assume that there exists Z' € A g such that for all
x,y € X, and A > 0 with x < y we have
K (wpge (Tx, Ty) s wp (3, ), wrpy (6, Tx) s w0 (3, Ty)

Wy (. Ty), wyy (35 Tx)) <0,
(51)
where0 <[ <c.

Then T has a fixed point. Moreover, if for all x, y € Fix(T') we
have x < y and % (u,u,0,0,u,u) > 0 for allu > 0, then T has
a unique fixed point.

Corollary 21. Let (X,,<) be a complete partially ordered
modular metric space and T : X, — X, self-mapping
satisfying the following assertions:

(i) T is nondecreasing;
(ii) there exists x, € X such that x, < Txy;

(iii) if {x,} is a sequence in X such that x,, < x,., with
X, — xasn — 0o, then either

Tx,<x or T’x,<x (52)

holds for alln € N;

(iv) assume that for all x, y € X, and A > 0 with x < y we
have

Wy (Tx, Ty)

Wy (6, Tx) + wy (. Ty)
<y (max {le (x%,9), )

2

W1 (2, Ty) + Wi (. Tx) } )
3 ,
(53)

wherey e Yand0 <l <c.

Then T has a fixed point. Moreover, if for all x, y € Fix(T) we
have x Xy, then T has a unique fixed point.

Corollary 22. Let (X,,<) be a complete partially ordered
modular metric space and T : X, — X, self-mapping
satisfying the following assertions:

w

(i) T is nondecreasing;
(ii) there exists x, € X such that x, X Tx;
(iii) if {x,} is a sequence in X such that x,, < x,., with
X, — xasn — 0o, then either

Tx,<x or T’x,<x (54)

holds for alln € N;

(iv) assume that for all x, y € X, and A > 0 with x < y we
have

W) /c (Tx’ T)’)

[1+wy (x,Tx)] wy (9, Ty) })

< w(max {wA/l (x,y) > 1+ Wy (x J’)

(55)

wherey e Yand 0 <1 < c.

Then T has a fixed point. Moreover, if for all x, y € Fix(T) we
have x < y, then T has a unique fixed point.

Corollary 23. Let (X,,<) be a complete partially ordered
modular metric space and T : X, — X, self-mapping
satisfying the following assertions:

(i) T is nondecreasing;
(ii) there exists x, € X such that x, < Tx,;

(iii) if {x,} is a sequence in X such that x, < x,,, with
X, — xasn — 0o, then either

Tx, <x or T’x,=<x (56)

holds for alln € N;

(iv) assume that for all x, y € X, and A > 0 with x < y we
have

W) /e (Tx, Ty)
b [1+ wy (%, Tx)] W) (3, Ty) (57)
1+wy (%) )

< aww (x,y) +

wherea+b < land0<Il<c.



Then T has a fixed point. Moreover, if for all x, y € Fix(T') we
have x Xy, then T has a unique fixed point.

3. Suzuki Type Fixed Point Results in
Modular Metric Spaces

In 2008, Suzuki proved a remarkable fixed point theorem, that
is, a generalization of the Banach contraction principle and
characterizes the metric completeness. Consequently, a num-
ber of extensions and generalizations of this result appeared
in the literature (see [26-30] and references therein). As an
application of our results proved above we deduce Suzuki type
fixed point theorems in the setting of modular metric spaces.

Theorem 24. Let X, be a complete modular metric space and
T continuous self-mapping on X. Assume that

w1 (%, Tx) < wyyp (x, )

= %(w/l/c (Tx, Ty) > W)/ (%, ),
(58)
Wi (x,Tx), W (y, T)’) >
Wy (% Ty) @y (3, Tx)) <0

forallx,y € X, and A > 0, where 0 < | < c. Then T has a
fixed point. Moreover, if Z (u,u,0,0,u,u) > 0 for allu > 0,
then T has a unique fixed point.

Proof. Define a, 7 : (0,00) x X, x X, — [0,00) by
a(xy)=wy(xy), n(xy)=wy(xy). (59

Clearly, n(x,y) < a(x,y) forall x,y € X, and A > 0.
Since T is continuous, T is a-#-continuous. Thus conditions
(i)-(iii) of Theorem 12 hold. Let #(x,Tx) < «(x, y). Then
wy1(x, Tx) < wy;(x, ). So from (58) we obtain

x (wA/c (Tx’ T)’) > W1 (x, ;V) > W1 (x, Tx) > W1 (;V, T)’)a

Wy (. Ty), wy (35 Tx)) < 0.
(60)

Therefore all conditions of Theorem 12 hold and T has a
unique fixed point. O

Theorem 25. Let X, be a complete modular metric space and
T self-mapping on X. Assume that

1-
1_bsa“M (%, Tx) < wy 5 (%, y)

= wy (Tx, Ty) < awy;; (x, y)

b [1+ @y (x, Tx)] wyy (3, Ty)
1+wy, (%)

(61)

forallx,y € X, and A > 0, where0 <l < canda+b < 1.
Then T has a unique fixed point.
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Proof. Define o,y : X, x X, — [0, 00) by

a(x,y) =wyy(xy), (% y) =kaoy (x,y),  (62)

where k = (1-b)/(1 -b+a). Clearly, n(x, y) < a(x, y) for all
x,y € X, and A > 0. Then conditions (i)-(ii) of Corollary 17
hold. Let {x,} be a sequence such that x, — xasn — oo.
Since kwy (T, T*x,,) < wy 5 (Tx,, T*x,,) for all n € N, from
(61) we obtain

(U/\/l (szn, T3xn)
< Wy (szn, T3xn)

< awy (Txn,szn)

(63)
[1 + wA/l (Txn, szn)] “)A/l (szn, T3xn)
1+ w/\/l (Txn, szn)
< aw)y (Txn, T2xn) +bw, (szn,T3xn>
which implies
wl/l (szn, T3xn) < ﬁa)h/l (Txn, szn) . (64)
Suppose there exists n, € N, such that
n (Txno,szno) > o (Txno,x) or
(65)
n (sz"()’ T3xno) > o (sz"o’ x) ;
then
kaw, (Txno,szno) > W) (Txno,x) or
(66)

kaw, (szno, T3xn0) > Wy (szno,x) .
Therefore,

w}»/l (Txno s szno )

< Wy (Txno, x) + Wy (szno,x)

< kle (Txno’ szno) * kw/\/l (szno’ T3xno)

< kwy (Txno, sznn) + kli—bw’w (Txno, sz”o)

< <k + k%—b) w,\/l (Txno, szno)

= w/\/l (Txno’ szno)
(67)
which is a contradiction. Hence, (iii) of Corollary 17 holds.

Thus all conditions of Corollary 17 hold and T has a unique
fixed point. U

Corollary 26. Let X, be a complete modular metric space and
T self-mapping on X. Assume that

1
——wy (%, Tx) < w5 (%, y)
l1+a / / (68)

= W)/ (Tx, Ty) < awy (%, )
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forallx,y € X, and A > 0, where0 <l < canda < 1. ThenT
has a unique fixed point.

4. Fixed Point Results for
Integral Type Contractions

Recently, Azadifar et al. [31] and Razani and Moradi [32]
proved common fixed point theorems of integral type in
modular metric spaces. In this section we present more
general fixed point theorems for integral type contractions.

Theorem 27. Let X, be a complete modular metric space and
T:X, — X, self-mapping satisfying the following assertions:

(i) T is an a-admissible mapping with respect to 1;
(ii) there exists x, € X such that a(xy, Tx,) = 1(xy, Txy);
(iii) T is an a-n-continuous function;

(iv) assume that there exists Z' € A g such that for all
x,y € X, and A > 0 with n(x, Tx) < a(x, y) we have

wMC(Tx,Ty) w,\/,(x,y)
%(] pwﬂj p(®)dt,
0

0

wrn(y,Ty)

)1 (x,Tx)
J p(t)dt, (69)

p(t)dt, J

0

J“UzA/z(X,T}’) wy(3.Tx)

p(t)dt, J p(t) dt) <0,

0

where 0 < I < ¢, p:[0,00) — [0,00) is a Lebesgue-
integrable mapping satisfying joe p(t)dt > 0 fore > 0.

Then T has a fixed point. Moreovet, if for all x, y € Fix(T) we
have n(x, x) < a(x, y) and Z (u,u,0,0,u,u) > 0 for allu > 0,
then T has a unique fixed point.

Theorem 28. Let X, be a complete modular metric space and

T:X, — X, self-mapping satisfying the following assertions:
(i) T is an a-admissible mapping with respect to 1;

(ii) there exists x, € X such that a(xy, Txg) = 1n(xg, Tx);

(iii) if {x,} is a sequence in X such that a(x,,x,,;) =

(X, Xppp1) With x,, = x asn — 00, then either

n (Txn, szn) < a(Tx,, x) or
(70)
i (szn, T3xn) <a (szn, x)

holds for alln € N;
(iv) condition (iv) of Theorem 27 holds.
Then T has a fixed point. Moreover, if for all x, y € Fix(T) we

have n(x, x) < a(x, y) and (1, u,0,0,u,u) > 0 for allu > 0,
then T has a unique fixed point.

Theorem 29. Let X, be a complete modular metric space and
T continuous self-mapping on X. Assume that

w1 (x,Tx)
J p(t)dt

0

wy(x,y)

SJ p(t)dt

0

wy1(%,)

)y (Tx,Ty)
| p(t)dt,

:%( p(t)dt,J

0 0

w) 1 (x,Tx) w1 (y:Ty)
|7 pwan | T pwar
0 0

J‘wz/\/z(x,T;V) wy(y,Tx)

p(t) dt> <0
(71)

p(t)dt, j

0

forall x,y € X, and A > 0, where 0 < | < ¢, p :
[0,00) — [0,00) is a Lebesgue-integrable mapping satisfying
jos p(t)dt > 0 for e > 0. Then T has a fixed point. Moreover, if
I (u,1,0,0,u,u) > 0 for allu > 0, then T has a unique fixed
point.

Theorem 30. Let X, be a complete modular metric space and
T self-mapping on X. Assume that

1-b w1 (x,Tx)
Toval PO
wy/a1(%,y) wy(Tx,Ty)
< JO p(t)dt = L p () dt

wy () (72)
<a J p(t)dt
0

[1 4 J‘(;‘))L/I(XsTx)p(t) dt] JJ’A/I(%TJ')p(t) dt

+b

1+ j(;"“’(x’y) p (1) dt

forallx,y € X, and A > 0, where0 <[ < c¢,a+b < 1and
p:[0,00) — [0,00)isa Lebesgue-integrable mapping satisfy-
ing IOS p(t)dt > 0 for e > 0. Then T has a unique fixed point.

5. Modular Metric Spaces to
Fuzzy Metric Spaces

In 1988, Grabiec [33] defined contractive mappings on a fuzzy
metric space and extended fixed point theorems of Banach
and Edelstein in such spaces. Successively, George and Veera-
mani [34] slightly modified the notion of a fuzzy metric space
introduced by Kramosil and Michalek and then defined a
Hausdorft and first countable topology on it. Since then, the
notion of a complete fuzzy metric space presented by George
and Veeramani has emerged as another characterization of
completeness, and many fixed point theorems have also been
proved (see for more details [35-39] and the references
therein). In this section we develop an important relation
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between modular metric and fuzzy metric and deduce in
fixed point results in a triangular fuzzy metric space.

Definition 31. A 3-tuple (X, M, =) is said to be a fuzzy metric
space if X is an arbitrary set,  is a continuous t-norm and M
is fuzzy set on X* x (0, 00) satisfying the following conditions,
forall x, y,z € Xandt,s > 0:

(i) M(x, y,t) > 0;
(ii) M(x, y,t) = 1forallt > Oifand only if x = y;
(iii) M(x, y,t) = M(y,x,1);
(iv) M(x, y,t) = M(y,z,s) < M(x,z,t +5);
(v) M(x, y,.) : (0,00) — [0, 1] is continuous.

The function M(x, y,t) denotes the degree of nearness
between x and y with respect to ¢.

Definition 32 (see [36]). Let (X, M, *) bea fuzzy metric space.
The fuzzy metric M is called triangular whenever
1 1 1
-1< -1+
M (x, y,t) M (x,z,t) M (z, y,t)

-1 (73)
forall x, y,z € X andall t > 0.

Lemma 33 (see [33, 35]). For all x,y € X, M(x,y,-) is
nondecreasing on (0, 00).

Asan application of Lemma 33, we establish the following
important fact that each triangular fuzzy metric on X induces
a modular metric.

Lemma 34. Let (X, M, *) be a triangular fuzzy metric space.
Define

1

W (%, y) = m -1 (74)

forallx,y € X and all A > 0. Then w, is a modular metric on
X.

Proof. Lets,t > 0. Then we get

M (x,y,8) = M(x,y,s) * 1
(75)
=M (x,y,5) * M(x,x,t) < M (x, y,s +1t)

forallx, y € Xands,t > 0. Now, since (X, M, #) is triangular,
then we get

1
> :—_1
w)Hy (x }’) M(x,y,//t+/\)
< ! -1+ ! -1
T M(x,z,u+A) M(z,y,pu+A)
< ! -1+ ! -1
~ M(x,z,M) M (z,y, 1)
=wy (x,2) +w, ().
(76)
O
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As an application of Lemma 34 and the results proved
above we deduce following new fixed point theorems in
triangular fuzzy metric spaces.

Theorem 35. Let (X, M, *) be a complete triangular fuzzy
metric space and T : X — X self-mapping satisfying the
following assertions:
(i) T is an a-admissible mapping with respect to n;
(ii) there exists x, € X such that a(x,, Tx) = 1(xg, Txy);
(iii) T is an a-n-continuous function;

(iv) assume that there exists Z' € A g such that for all
x,y € Xand A > 0 with n(x, Tx) < a(x, y) we have

>

x ! -1 L
M (Tx, Ty, Alc) M (x, y, A/l

1 1
— 1) —
M (T M) M (y, Ty, M)

1 (77)

1 1
-1, -1)<0,
M (x, Ty, 2A/1) M (y,Tx, /1) )

where0 <[ < c.

Then T has a fixed point. Moreover, if for all x, y € Fix(T) we
have y(x, x) < a(x, y) and F (u,u,0,0,u,u) > 0 forallu > 0,
then T has a unique fixed point.

Theorem 36. Let (X, M, ) be a complete triangular fuzzy
metric space and T : X — X self-mapping satisfying the
following assertions:

(i) T is an a-admissible mapping with respect to 1;

(ii) there exists x, € X such that a(x,, Tx) = 1(xy, Txy);

(iii) if {x,} is a sequence in X such that o(x,,x,,,) >
n(x,, X,1) With x,, — x asn — oo, then either

n (Tx,,, sz,,) < a(Tx,, x) or
(78)
n (szn, T3xn) <« (szn, x)

holds for alln € N;
(iv) condition (iv) of Theorem 35 holds.

Then T has a fixed point. Moreover, if for all x, y € Fix(T) we
have y(x, x) < a(x, y) and I (u,u,0,0,u,u) > 0 forallu > 0,
then T has a unique fixed point.

Theorem 37. Let (X, M, *, <) be a partially ordered complete
triangular fuzzy metric space and T : X — X self-mapping
satisfying the following assertions:

(i) T is nondecreasing;
(ii) there exists x, € X such that x, < Txy;

(iii) T is continuous function;
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(iv) assume that there exists Z' € A g such that for all
x,y € X and A > 0 with x < y we have

1 1
% - 1, - 1)
(M (Tx, Ty, A/c) M (x, y,A/l)

1 1
-1, -1,
M (6 To M) M (y, Ty, M)

(79)

1 1
-1, -1]<0,
M (x, Ty, 2A/1) M (y, Tx, A/l) )

where0 <l < c.

Then T has a fixed point. Moreover, if for all x, y € Fix(T') we
have x < y and % (u,u,0,0,u,u) > 0 for allu > 0, then T has
a unique fixed point.

Theorem 38. Let (X, M, *, <) be a partially ordered complete
triangular fuzzy metric space and T : X — X self-mapping
satisfying the following assertions:

(i) T is nondecreasing;
(ii) there exists x, € X such that x, < Tx;

(iii) if {x,} is a sequence in X such that x,, < x,,, with
X, — xasn — oo, then either

Tx, <x or T’x,<x (80)

holds for alln € N;

(iv) assume that there exists Z' € A g such that for all
x,y € X, and OA > 0 with x < y we have

%( ! -1 ! -1

M (Tx, Ty,Alc) ~ M(x,y, M)
1 1

M@, Tx, M) My, Ty, M)

1 . 1 )
M (x, Ty, 2A/1) M (y,Tx, A/l)

L (81)

1) <o

where0 <l < c.

Then T has a fixed point. Moreover, if for all x, y € Fix(T) we
have x < y and 7 (u,u,0,0,u,u) > 0 for allu > 0, then T has
a unique fixed point.

Theorem 39. Let (X, M, =) be a complete triangular fuzzy
metric space and T continuous self-mapping on X. Assume that

1
—
M (x,Tx, AJl)

1
< ———mMmMm -1
= M= M)

1
1 1
% - 13 - 5
- (M (Tx, Ty, A/c) M (x, y, /1)
! -1 ! ~1
METo M) MO Ty
1 1
-1, -1)<0
M (x, Ty, 2A/1) M (y, Tx, A1) ) :
(82)

forallx,y € X and A > 0, where 0 < | < c. Then T has a
unique fixed point.

Theorem 40. Let (X, M, %) be a complete triangular fuzzy
metric space and T continuous self-mapping on X. Assume that

1-b ( 1 _1>
1-b+a \M(x,Tx, A/l

1 1
< =S ]
Moy A2) - M(Tx Ty, AJc)

(55 )

. b(l/M (x, T, A/D) [(1/M (3, Ty, A1) = 1]
1/M (x, y,A/l)

(83)

forallx,y € X, and A > 0, where0 <[ < canda+0b < 1.
Then T has a unique fixed point.
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Azam et al. (2011), introduce the notion of complex valued metric spaces and obtained common fixed point result for mappings
in the context of complex valued metric spaces. Rao et al. (2013) introduce the notion of complex valued b-metric spaces. In this
paper, we generalize the results of Azam et al. (2011), and Bhatt et al. (2011), by improving the conditions of contraction to establish
the existence and uniqueness of common fixed point for two self-mappings on complex valued b-metric spaces. Some examples

are given to illustrate the main results.

1. Introduction

Banach contraction principle in [1] was the starting point for
many researchers during last decades in the field of nonlinear
analysis. In 1989, Bakhtin [2] introduced the concept of b-
metric space as a generalization of metric spaces. The concept
of complex valued b-metric spaces was introduced in 2013 by
Rao et al. [3], which was more general than the well-known
complex valued metric spaces that were introduced in 2011 by
Azam et al. [4]. The main purpose of this paper is to present
common fixed point results of two self-mappings satisfying
a rational inequality on complex valued b-metric spaces. The
results presented in this paper are generalization of work done
by Azam et al. in [4] and Bhatt et al in [5].

Definition I (see [6]). Let X be a nonempty set and let s > 1
be a given real number. A functiond : X x X — [0, 00) is
called a b-metric if for all x, y, z € X the following conditions
are satisfied:

(i) d(x, y) = 0ifand only if x = y;
(ii) d(x, y) = d(y, x);
(iii) d(x, y) < s[d(x,z) + d(z, )].

The pair (X, d) is called a b-metric space. The number s > 1
is called the coefficient of (X, d).

Example 2 (see [7]). Let (X,d) be a metric space and
p(x,y) = (d(x,y))?, where p > 1 is a real number. Then
(X, p) is a b-metric space with s = 2Pt

Let C be the set of complex numbers and z,,z, € C.
Define a partial order < on C as follows:

z, %22,
@

iff Re(z,) <Re(z;), Im(z)<Im(z,).

Thus z, X z, if one of the following holds:
(1) Re(z,) = Re(z,) and Im(z,) = Im(z,),
(2) Re(z;) < Re(z,) and Im(z,) = Im(z,),
(3) Re(z;) = Re(z,) and Im(z,) < Im(z,),
(4) Re(z;) < Re(z,) and Im(z,) < Im(z,).

We will write z,% z, if z, # z, and one of (2), (3), and (4) is
satisfied; also we will write z; < z, if only (4) is satisfied.

Remark 3. We can easily check that the following statements
are held:

(i) ifa,b e Rand a < b,thenaz x bz forall z € C;

(ii) if 0 X z,%2,, then |z;| < |z,[;
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(iii) if z; < z, and z, < z5, then z; < z;.

Definition 4 (see [4]). Let X be a nonempty set. A function
d: X xX — Ciscalled a complex valued metric on X if for
all x, y, z € X the following conditions are satisfied:
(i) 0 2 d(x, y) and d(x, y) = 0 if and only if x = y;
(ii) d(x, y) = d(y, x);
(iii) d(x, y) 2 d(x,2) + d(z, y).

The pair (X, d) is called a complex valued metric space.

Example 5 (see [8]). Let X = C. Define the mapping d : X x
X — C by

d(x,y)=ilx-y|, Vx,yeX @)

Then (X, d) is a complex valued metric space.

Example 6 (see [9]). Let X = C. Define the mapping d : X x
X — Cby

d(x,y) =e* |x-y|, wherekeR, Vx,yeX. (3)
Then (X, d) is a complex valued metric space.

Definition 7 (see [3]). Let X be a nonempty set and let s >
1 be a given real number. A functiond : X x X — Cis
called a complex valued b-metric on X if for all x, y,z € X
the following conditions are satisfied:
(i) 0 2 d(x, y) and d(x, y) = O ifand only if x = y;
(i) d(x, y) = d(y, x);
(iii) d(x, y) 2 s[d(x,z) + d(z, y)].

The pair (X, d) is called a complex valued b-metric space.

Example 8 (see [3]). Let X = [0, 1]. Define the mapping d :
XxX — Cby

d(xy)=|x-y +ilx-y, vxyex @
Then (X, d) is a complex valued b-metric space with s = 2.

Definition 9 (see [3]). Let (X, d) bea complex valued b-metric
space. Consider the following.

(i) A point x € X is called interior point of a set A € X
whenever there exists 0 < r € C such that B(x,r) :=
{yeX:d(x,y) <r} CA

(ii) A point x € X is called a limit point of a set A
whenever, for every 0 < r € C, B(x,r) N (A - X) #0.

(iii) A subset A € X is called open whenever each element
of A is an interior point of A.

(iv) A subset A < X is called closed whenever each
element of A belongs to A.

(v) A subbasis for a Hausdorff topology 7 on X is a family
F={B(x,r): x € Xand 0 < r}.
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Definition 10 (see [3]). Let (X,d) be a complex valued b-
metric space and {x,} a sequence in X and x € X. Consider
the following.

(i) If for every ¢ € C, with 0 < 7, there is N € N such
that, for all n > N, d(x,,x) < ¢, then {x,} is said to
be convergent, {x,,} converges to x, and x is the limit
point of {x,}. We denote this by lim X, = X or
{x,} - xasn — oo.

n— 00

(ii) If for every ¢ € C, with 0 < r, there is N € N such
that, for all n > N, d(x,, x,,,,) < ¢, where m € N,
then {x,} is said to be Cauchy sequence.

(iil) If every Cauchy sequence in X is convergent, then
(X,d) is said to be a complete complex valued b-
metric space.

Lemma 11 (see [3]). Let (X,d) be a complex valued b-metric
space and let {x,} be a sequence in X. Then {x,} converges to x
if and only if |d(x,,x)] — 0 asn — oo.

Lemma 12 (see [3]). Let (X,d) be a complex valued b-metric
space and let {x,} be a sequence in X. Then {x,} is a Cauchy
sequence if and only if |d(x,, x,,,,,)] — 0 asn — oo, where
m € N.

Theorem 13 (see [4]). Let (X, d) be a complete complex valued
metric space and let A, y be nonnegative real numbers such that
A+p < L. Suppose that S, T : X — X are mappings satisfying

ud (x,8x)d (y, Ty)

dS,T ~Ad )
(Sx,Ty) < Ad (x, y) + T+ d(ny)

(5)

forall x, y € X. Then S, T have a unique common fixed point
in X.

Theorem 14 (see [5]). Let (X, d) be a complete complex valued
metric space and let S, T : X — X be mappings satisfying

ald(x,8x)d (x,Ty) +d (. Ty)d (y,5x)]

d(Sx,Ty) =
(Sx.Ty) 2 d(x,Ty) +d (y,Sx)

(6)

forall x,y € X, where a € [0,1). Then S,T have a unique
common fixed point in X.

2. Main Result

Our next theorem is a generalization of Theorem13 in
complex valued b-metric spaces.

Theorem15. Let (X, d) be a complete complex valued b-metric
space with the coefficient s > 1 and let S,T : X — X be

mappings satisfying

ud (x,8x)d (y, Ty)

’T ~ 3
d(Sx,Ty) 3 Ad (x, y) + T+ d ()

7)

forall x, y € X, where A, u are nonnegative reals with sA + pu <
1. Then S, T have a unique common fixed point in X.
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Proof. For any arbitrary point, x, € X. Define sequence {x,}
in X such that
Xope1 = SXop Xopen = TXppyy, forn=0,1,2,3,.... (8)

Now, we show that the sequence {x,} is Cauchy. Let x = x,,
and y = x,,,,, in (7); we have

d (x2n+1’ x2n+2)
= d (SxZn’ Tx2n+1)

(%3 $%3,1) d (X241> TX41) 9)

pd
< Ad ,
(xZn x2n+1) + 1+d (x2n’ X2n+1)

) . pud (xzw x2n+1) d (x2n+1’ x2n+2)
1+d (X Xg41)

= Ad (X2 X241

>

which implies that
|d (x2n+1’ x2n+2)|

I ld (XZn’ x2n+1)| |d (x2n+1’ x2n+2)|
|1 + d (x2n’ x2n+1)|

<A ld (%205 x2n+1)| +

(10)
Since |1 + d(x,,,, X5,,1) > d(x5,, X5,41)], We get
|d (%215 X202l
11
< Ad (%3 Xonir)| + 1 ]d (X5 X302
and hence
A
|4 (211> Xomi2)| < 1—u | (22 X1 - (12)
Similarly, we obtain
A
|d (%2120 Xome3)| < 1-u |d (%2115 X2n2)| - (13)

SincesA + u < lands>1,wegetd+u < 1.
Therefore, with 8 = A/(1 — ) < 1,and foralln > 0,
consequently, we have

|d (x2n+1’x2n+2)|
< 8|d (% Xpp11)| < & |d (%3021 %5, (14)
<< 8 d (x50, x1)] -

Thus for any m > n, m, n € N, and since s6 = sA/(1 —p) < 1,
we get

| (x|
< sld (o %i)| + 51 (i1 %,0)|
< 51 (2 2%00)| + 57| (015 %002) | + 57 |d (010, 3,)
< s]d ( X01)| +8° | (01 %00)| + 57 [d (1100 %,)

+ 53 |d ('xn+2’ xm)|

< s]d (6 %10)| + 57 [d (K> Xa2)| + 87 [ (60020 3|
oot ST (Xpg X))
+ 5" d (% X)| + 5T (s X))

< s|d (X Xpe)| + s |4 (%15 X2
+5°|d (%420 %)
o )
+ 5" (Xpg Xp1)| + ™7 (X X)) -

(15)
By using (14) we get
|d (x,,x,,)|

< 58" |d (xg, ;)| + 526" |d (x50, %)
+5°6™2|d (x40 x,)]
oo+ ST d (x, Xy )| (16)

I |d (x4, x1)| + $mrem |d (x50, 1)

m-n L
= Z $'8™ 1 d (xg, 1)) -
i=1

Therefore,
|d (%, %)
< z Si+n_15i+n_1 |d (xO’ x1)|
i=1
m—1 .
= 5t6 |d (XO, x1)| (17)
t=n
< Z(s@)t |d (x0, x1)|
t=n
(s8)"
= 1-s |d(x0,x1)|,
and hence
(s6)"

|d (x,, x,,,)| < |d (x4, x,)| — 0 as m,n — co.

(18)

1-3s8

Thus, {x,} is a Cauchy sequence in X.

Since X is complete, there exists some u € X such that
x, — uasn — 00. Assuming not, then there exist z € X
such that

|d (u, Su)| = |z| > 0. (19)
So by using the triangular inequality and (7), we get
z =d (u, Su)
< sd (U Xpp4) + 5 (X040 St1)
= sd (4, X3,12) + 54 (T4, St1)
< sd (1 Xp012) + sAd (14 X,5)

+ spd (u, Su) d (%201, TXoni1)
L+ d (1 %55)




4
= sd (1, X312) + A (4, X210,
sud (u, Su) d ('x2n+1’ x2n+2)
1+d (Ll, x2n+2) )
(20)
which implies that
lz| = |d (u, Su)|
speldd (u, Su)||d (X015 Xanio)| (2D

< s|d (u, xp,5)| + [1+d (4, x3,,,)|

Taking the limit of (21) as n — 0o, we obtain that |z| =
|d(u, Su)| < 0, a contradiction with (19). So |z|] = 0. Hence
Su = u. Similarly, we obtain Tu = wu.

Now we show that S and T have unique common fixed
point of S and T. To show this, assume that u* is another
common fixed point of S and T Then

d(wu”)=d(Su,Tu")

pd (u, Su)d (u*, Tu™)

<Ad () + 1+du,u*)

(22)

<d(uu).

This implies that |d(x, x*)| < |d(u, u")|, a contradiction. So
u = u” which proves the uniqueness of common fixed point
in X. This completes the proof. O

Corollary 16. Let (X,d) be a complete complex valued b-
metric space with the coefficient s > 1 andlet T : X — X

be a mapping satisfying

x,Tx)d (y,Ty)
1+d(x,y)

d(Tx,Ty) 2 Ad (x,y) + pd , (23)

forall x, y € X, where A, y are nonnegative reals with sA + u <
1. Then T has a unique fixed point in X.

Proof. We can prove this result by applying Theorem 15 with
S=T. O

Corollary 17. Let (X,d) be a complete complex valued b-
metric space with the coefficient s > 1 andletT : X — X

be a mapping satisfying

pud (x, T"x)d (y, T"y)

d(T"x,T"y) < A (x,
(T"%,T"y) 3 Ad (x, y) + v d (o)

, (24)

forall x, y € X, where A, y are nonnegative reals with sA + pu <
1. Then T has a unique fixed point in X.

Proof. From Corollary 20, we obtain u € X such that

T"u = u. (25)
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The uniqueness follows from
d(Tu,u) =d(TT"u, T"u) = d (T"Tu, T"u)
pd (Tu, T"Tu) d (u, T"u)

T >
< Ad (Tu,u) + T d(Tuw o6
pd (Tu, T"Tu) d (u, u)
Ad (Tu,
3 Ad (Tu,u) + 1+d(Tu,u)
= A (Tu,u).

By taking modulus of (26) and since A < 1, we obtain
|d(Tu,u)] < Md(Tu,u)| < |d(Tu,u)|, a contradiction. So,
Tu = u. Hence

Tu=T"'u=u. (27)

Therefore, the fixed point of T' is unique. This completes the
proof. 0

Example 18. Let X = C. Define a functiond : X x X — C
such that

d(z1,2,) = |x, - x2|2 +ily; - J’2|2» (28)

where z, = x; + iy, and z, = x, +iy,.

To verify that (X,d) is a complete complex valued b-
metric space with s = 2, it is enough to verify the triangular
inequality condition.

Let z;, 25, and z; € X; then,

d(zl’ZZ)
= lxl —x2|2 + i|)’1 _J’2|2
=lxl—x3+x3—x2|2+i|y1—y3+y3—y2|2
S|x1—x3|2+|x3—x2|2+2|x1—x3||x3—x2|
) 2 2
+’[|)’1_J’3| +|)’3_J’2| +2|)’1_J’3||J’3_)’2|]
2 2 2 2
S IR P o B E e R E Y
) 2 2 2 2
+’[|}’1_J’3| +|)’3_)’2| +|)’1_)’3| +|)’3‘)’2|]
=2{|x —x|2+|x —x|2+i[| - |2+| - |2]}
1 3 3 2 =X Y3 =2

=2[d(z1.23) +d(23.2)] -
(29)

Therefore, s = 2.
Now, define two self-mappings S, T : X — X as follows:

0 ifx,yeQ
. 2 ifxeQyeQ
T :T =
z (x +iy) 2i ifxeQyeQ" (30)
242 ifxeQyeQf

suchthatS = Tandz = x +iy. Let x = 1/m and y = 0, and
since A € [0, 1), we have

d(Tx, Ty) = d(Tl,To)
T
1
:d(2,0) :4>AF (31)

- 1 ud (1/7,T (1/7)) d (0, TO)
_Ad<n’0>+ 1+d(1/m,0)
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Note that T"z = 0 forn > 1, so

ud (x, T"x)d (y, T"y)

d(T"x,T"y) = 0 < Ad (x,
(T"%,T"y) =0 3 Ad (x, y) + v d(ny)

>

(32)
forallx, y € Xand A, 4 > 0 with 24+ < 1. So all conditions
of Corollary 21 are satisfied to get a unique fixed point 0 of T.

Our next theorem is a generalization of Theorem 14 in
complex valued b-metric spaces.

Theorem19. Let (X, d) be a complete complex valued b-metric
space with the coefficient s > 1 and let S,T : X — X be

mappings satisfying
ald(x,8x)d (x,Ty) +d (y,Ty)d (y,5x)]
d(x,Ty) +d(y,Sx)

d(Sx,Ty) 2 ,
(33)
forall x,y € X, where sa € [0,1). Then S, T have a unique
common fixed point in X.

Proof. For any arbitrary point, x, € X. Define sequence {x,,}
in X such that

Xope1 = SXop Xopey = TXppey, for k=0,1,2,3,.... (34)

Now, we show that the sequence {x,} is Cauchy. Let x = x,,
and y = x5, in (33); we have

= d (S TXp41)
< ald (xy8%5,) d (X0 TX 1)
+d (X201, TXoni1) d (Xop41> SX0]
X (d (X3 TXp41) +d (x2n+1’sx2n))_1
= a[d (xym %2ne1) d (X2 Xo42)
+d (Xone1> Xone2) A (%15 X2i1 |

X (d (x2n> x2n+2) +d (x2n+1’ x2n+1))71’
(35)

d (x2n+1 > x2n+2)

which implies that

|4 (%215 X2n02)]
< a[|d (% Xone1)| | (X2 X242
+1d (X241 Xone2)| | (X241 X))
X (|d (2 X3n42) +d (x2n+1’x2n+l)|)_1 (36)
ald (%3 Xoe1)| |4 (%20 Xome2)|
B |d (%205 X312)]

=a |d (x2n>x2n+1)| >

and hence

|d (%2115 x2n+2)| <a |d (xZn’x2n+1)| . (37)

Similarly, we can see that

|d (X242 %2m13)| < @ |d (Xp01 X242)] - (38)

Sincesa < lands>1,wegeta < 1.

Therefore, for all n > 0, consequently, we have
|d (%241 X2ni2)| < @ |d (2 X011
< a’|d (x,-1%5,)] (39)
<-<a™d (x0, x|
Thus for any m > n, m, n € N, we have
| (%, x,)|
< s|d (s Xe1)| + 5 |d (010 X,0)|
< sld (%, %01)| + s |d (Xpi1> Xi2)| + s’ |d (X120 %)
< s]d (% Xp01)| + s |d (X115 X012
+5°|d (X0 %) + 8 |d (X2 X))
< s]d (% X)) + 57 [d (K15 X02)| + 8 [ (3,000, %,
ot ST (Xpg X))
+ "7 (g g )|+ 5" | (1%,
< sld (%, X01)| + s |d (X115 Xi2)| + s’ |d (X120 %)
+oo ST (Xpg X))
+ 5" (X Xo1)| + 57 (s X )| -
(40)
By using (39), we get
CICHE]
< sa” |d (xg x,)| + s2@™ " |d (g, x1)| + 5°a™ |d (0, x7))]
+oo ST d (g, )|

m-n—1 m 2|d(x0,x1)|+sm nam lld(x()’xl)l

+
Z F1d (g0 X))
. (41)

Therefore,

m—-n

|d(x,,,xm)| Z i+n—1 z+n 1|d(x0,x1)|

m—1
Z s'a’ |d (xq, x;)|
t=n (42)

(o)

Z sa)’ |d (xO’x1)|

(sa)

|d (xo,x1)|

Now, since sa < 1, we deduce

4 (e, < S

|d(x0,x1 | —0 asmn— co.
(43)

Thus, {x,} is a Cauchy sequence in X.

Since X is complete, there exists some u € X such that
X, — uasn — 00. Assuming not, then there exist z € X
such that

|d (u, Su)| = |z| > 0. (44)



So by using the triangular inequality and (33), we get
z =d (u,Su)

2 sd (1 Xp42) + 5 (X040, 1)

= sd (1 Xp12) + A (Txy41, S1)

< sd (u, xyp,45) + (sad (u, Su) d (u, Txy,, 1)
+sad (Xpne1, Tp01) d (X341, S4))

x(d (t, Txypy1) +d (x2n+1’Su))_1

= sd (u, Xyy,4,) + (sad (u, Su) d (u, X,,,,,)

+sad (Xone1 Xonr2) 4 (X115 1))

X (d (u, x3,45) +d (x2n+1>S“))71’

(45)
which implies that
2| = |d (u, Su)| < s |d (u, xXp.5)|
+ (sald (u, Su)| |d (u, x,,
( I ( 2 +2)| (46)

tsa |d (%0415 x2n+2)| |d (%2415 S”)l)
X (ld (“’ x2n+2) +d (x2n+1’3”)|)71-

Taking the limit of (48) asn — 00, we obtain that |z] =
|d(u, Su)| < 0, a contradiction with (44). So |z| = 0. Hence
Su = u. Similarly, we obtain Tu = wu.

Now we show that S and T have unique common fixed
point of S and T. To show this, assume that u* is another
common fixed point of S and T. Then

d(u,u")=d(Su, Tu")
L@ [d(u,Su)d (u, Tu*) +d (u*, Tu") d (u*, Su)]
- d(u, Tu*) +d (u*,Su)

<d(uu").
(47)
This implies that |d(x, x*)| < 0,and thenu = u* which proves

the uniqueness of common fixed point in X. This completes
the proof. O

Corollary 20. Let (X,d) be a complete complex valued b-

metric space with the coefficient s > 1 andlet T : X — X

be a mapping satisfying

ald(x,Tx)d (x,Ty) +d(y,Ty)d (y,Tx)]
d(x,Ty)+d(y,Tx)

d(Tx,Ty)

>

(48)

forall x, y € X, where sa € [0,1). Then T has a unique fixed
point in X.

Corollary 21. Let (X,d) be a complete complex valued b-
metric space with the coefficient s > 1 andlet T : X — X
be a mapping satisfying
d(T"x,T"y)
L ald(eT'x)d (% T") +d (. T")d (5. T"x)]
- d(x,T"y)+d(y, T"x)

>

(49)
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forall x,y € X, where sa € [0,1) andn € N. Then T has a
unique fixed point in X.
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We construct some generalized difference Hahn sequence spaces by mean of sequence of modulus functions. The topological
properties and some inclusion relations of spaces h, (%,u, A”) are investigated. Also we compute the dual of these spaces, and

some matrix transformations are characterized.

1. Introduction and Preliminaries

By a sequence space, we understand a linear subspace of
the space w = C" of all real or complex-valued sequences,
where C denotes the complex field and N = 0,1,2,.... For
x = (x) € w, we write I, ¢, and ¢, for the classical
spaces of all bounded, convergent, and null sequences,
respectively. Also by bs, cs, and I, we denote the space of
all bounded, convergent, and p-absolutely convergent series,
which are Banach spaces with the following norms: x|, =

Ixlles = sup,| Y7, x| and lxlly, = (3, 1x17) "2, respectively.
Additionally, the spaces bv” and _[ A are defined by

b= {X=<xk> cw: Y- wal’ <°°}’
€))

jA:{x:(xk)ew:(kxk)eA}.

A coordinate space (or a K-space) is a vector space of numer-
ical sequences, where addition and scalar multiplication are
defined pointwise. That is, a sequence space A with a linear
topology is called a K-space provided that each of the maps
p; : A — C defined by p;(x) = x; is continuous for all
i € N. A BK-space is a K-space, which is also a Banach space
with continuous coordinate functionals fi(x) = x, (k =
1,2,...). A K-space A is called an FK-space provided that A is

a complete linear metric space. An FK-space whose topology
is normable is called a BK-space. If a normed sequence space
A contains a sequence (b,) with the property that for every
x € A there is a unique sequence of scalars («,,) such that

Jim o — (o + by + -+ a,b,)| =0, 2)

then (b,) is called Schauder basis (or briefly basis) for A. The
series ) oyb, which has the sum x is then called the expansion
of x with respect to (b,) and written as x = ) o b,. An FK-
space A is said to have AK property, if § C A and {*} is a
basis for A, where e* is a sequence whose only nonzero term
is 1 in kth place for each k € N and ¢ = span{e’}, the set of all
finitely nonzero sequences. If ¢ is dense in A, then A is called
an AD-space, and thus AK implies AD.

The notion of difference sequence spaces was introduced
by Kizmaz [1], who defined the sequence spaces as follows:

Z(A) = {x=(x) ew: (Axy) € Z}
3
for Z = ¢, ¢yl ©

where Ax = (Axy) = (x; — Xj,;)- The notion was further
generalized by Et and Colak [2] by introducing the spaces.
Let r be a nonnegative integer; then,

Z(A)={x=(x) ew:(A'x;) € Z}
4
for Z = ¢, ¢y 1> @


http://dx.doi.org/10.1155/2014/398203

where A"x = (A"x;) = (A" 'x; — A" x;,,) and A%x; = x;
for all k € N. The generalized difference sequence has the
following binomial representation:

A=Y (1) (,;)ka 5)
m=0

Later concept have been studied by Bektas et al. [3] and Et
and Esi [4]. Another type of generalization of the difference
sequence spaces is due to Tripathy and Esi [5] who studied the
spaces I, (A,), c(A,), and ¢ (A ,). Recently, Esi et al. [6] and
Tripathy et al. [7] have introduced a new type of generalized
difference operators and unified those as follows.

Let r, v be nonnegative integers; then, for Z a given
sequence space, we have

Z(Arv) ={x=(x)ew: (Arvxk) €7z} (6)

for Z = ¢, ¢, and I, where A" x = (A x;) = (A7 'x, -
A x,,) and A% x; = x; forall k € N.

Let X be a linear metric space. A function p: X — Ris
called paranorm, if

(1) p(x) = 0forall x € X,

(2) p(=x) = p(x) forall x € X,

(3) p(x+y) < p(x) + p(y) forall x, y € X,

(4) (A,) is a sequence of scalars with A, — Aasn — oo

and (x,,) is a sequence of vectors with p(x, - x) — 0
asn — 00, then p(A,x, —Ax) — Oasn — oo.

A paranorm p for which p(x) = 0 implies x = 0is called total
paranorm and the pair (X, p) is called a total paranormed
space. It is well known that the metric of any linear metric
space is given by some total paranorm (see [8], Theorem
10.4.2, pp. 183). For more details about sequence spaces (see
[9,10]) and the references therein.

A modulus function is a function f : [0,00) — [0,00)
such that

(1) f(x) =0ifand onlyif x = 0,
(2) fx+y) < f(x)+ f(y), forall x, y > 0,
(3) f is increasing,

(4) f is continuous from the right at 0.

It follows that f must be continuous everywhere on [0, o).
The modulus function may be bounded or unbounded. For
example, if we take f(x) = x/(x + 1), then f(x) is bounded.
If f(x) = x,0 < p < 1, then the modulus function f(x)
is unbounded. Subsequentially, modulus function has been
discussed in ([11-14]) and references therein.

Let A and y be two sequence spaces and A = (a,;) be an
infinite matrix of complex numbers, where k, n € N. Then,
we say that A defines a matrix mapping from A into g, and
we denote it by writing A : A — u for every sequence x =
(x) € A. The sequence Ax = {(Ax),}, the A-transform of x,
is in y, where

(Ax), = ;ankxk for each n € N. )
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For simplicity in notation, here and in what follows, the
summation without limits runs from 0 to co. By (A : u), we
denote the class of all matrices A such that A : A — p.
Thus, A € (A : p) if and only if the series on the right side
of (7) converges for each n € N and each x € A and we have
Ax = {(Ax),},en € pforall x € A. A sequence x is said to
be A-summable to I if Ax converges to [ which is called the
A-limit of x.

The matrix domain A, of an infinite matrix A in a
sequence space A is defined by

Ay={x=(x) ew: Ax € A} (8)

which is a sequence space (for several examples of matrix
domains, see [15] p. 49-176). In [16], Basar and Altay
have defined the sequence space bv,, which consists of all
sequences such that A-transforms of them are in [, where A

denotes the matrix A = (J,;) as follows:

D)%, m-1<k<n);

0, (0O<k<n—-1lork>n) ©)

A:8nk:{

forallk,n € N. The space [[(p)] 4« = bv(u, p) has been studied
by Basar et al. [17], where

(10)

=a, =

v u (—1)"_kuk, m-1<k<n);
A" =a, =
0, (0<k<n-1lork>n).

Hahn [18] introduced the BK-space h of all sequences x =
(x;) such that

h= {x:;k|Axk| < 00, klirréoxk =0}, (11)

where Ax; = x; — X3, for all k € N. The following norm:
”wh:;kMMJ+%PMd (12)

was defined on the space i by Hahn [18] (and also [19]). Rao
([20], Proposition 2.1) defined a new norm on h as x| =
Y klAx;]. G. Goes and S. Goes [19] proved that the space h
is a BK-space.

Hahn proved the following properties of the space h.

Lemma 1. (i) h is a Banach space.
{hcln g
(i) WP =0,

In [19], G. Goes and S. Goes studied functional analytic
properties of the BK-space by, N dl,. Additionally, G. Goes
and S. Goes considered the arithmetic means of sequences
in bv, and bv, N dl; and used an important fact which the
sequence of arithmetic means (1~ Y;_, x;) of x € by, is a
quasiconvex null sequence. And also G. Goes and S. Goes
proved thath =1, N [bv=1,n [bv,.

Rao [20] studied some geometric properties of Hahn
sequence space and gave the characterizations of some classes
of matrix transformations. Balasubramanian and Pandiarani
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[21] defined the new sequence space h(F) called the Hahn
sequence space of fuzzy numbers and proved that 8 and
y duals of h(F) is the Cesaro space of the set of all fuzzy
bounded sequences. Kirisci [22] compiled to studies on Hahn
sequence space and defined a new Hahn sequence space by
Cesaro mean in [23].

In [24], Kirigci introduce the sequence space h,, by

h, = {x : ka|Axk|P < m,klingoxk = 0} , (I1<p<oo),
-1
(13)

where Ax; = x, — X, for all k € N. If we take p = 1,
h, = h which are called Hahn sequence spaces. We denote
the collection of all finite subsets of N by F.

Let # = (f}) be a sequence of modulus functions, p =
(pr) be abounded sequence of positive real numbers, and u =
(u;) be a sequence of strictly positive real numbers. In the
present paper we defined the following sequence space:

h, (F,u,A")
— . \ r Pr . _
- {x : kZ{fk [(k|ukA xi|) ] < 00, klin;oxk = O]» ,
(1<p<o0),
(14)

where A"x = (A'x;) = (A 'x; — A ' x;,,) and A%x; = x;
for all k € N. Define the sequence y = (y), which will be
frequently used, by M-transform of a sequence x = (x;); that
is,

Vi = (Mx) = frank (A x = Ay ) (15)

where M = (m,;) with

n, m=k);
My =1-n m+1=k); (16)
0, other

forall k,n € N.

Ifwetakeu = (u) = 1,7 = land F = fi(x) = x for
all k € N, then we get the sequence space h,, defined by [24]
Kirisci. By takingu = () = 1, ¥ = 1, F = fi(x) = x, and
p = (p) = 1forall k € N, we obtained a Hahn sequence
space defined by Hanh [18].

The following inequality will be used throughout the
paper.

Let p = (pi) be a sequence of positive real numbers with
0 < pp < supypr = H,and let K = max{1, 257!}, Then, for
the factorable sequences (a;) and (b, ) in the complex plane,
we have

|ak + bklpk < K(lak|pk + Ibklpk) . (17)

The main purpose of this paper is to study some difference
Hahn sequence spaces by mean of sequence of modulus

functions. We will study some topological and algebraic
properties of the sequence spaces h,(F,u, A") in Section 2.
In Section 3 we will determine the «-, -, and y-duals of
the spaces h,(#,u,A"). Finally, we also made an attempt
to characterize some matrix transformations on the spaces
hy(F,u, A").

2. Main Results

The purpose of this section is to study the properties like
linearity, paranorm, and relevant inclusion relations in the
spaces h,(F, u, A").

Theorem 2. The sequence space h,(F,u, A") is a linear space
over the complex field C.

Proof. Let x = (x;), ¥ = (yi) € hp(S‘T,u, A")and p, 9 € C.
Then their exist integers M, and N, such that [p| < M, and
lol < N,. By using the inequality (17) and the properties of
modulus function, we have

Mg

Sr [(k |”kAr (pxy + Q)’k)|)Pk]

=~
I
—

< Y fi[(efuy (PA x; + A ) )]
k=1

< Kka [Mp(k l”kArkapk]
=1
(18)

+ K fic [N ey )]
k=1
< KM fie[(k a7 )]
k=1

+ Kkaka [k | y)™] < 0.
=1

Thus, px + ¢y € h,(F,u, A"). This proves that h,(F,u, A")is
a linear space over the field of complex number C. O
Theorem 3. Let & = (f) be a sequence of modulus functions
and u = (u;) be any sequence of strictly positive real numbers.

Then h(F,u,A") is a paranormed space with the paranorm

defined by
9.0 = supl i [(kpad s DI, o)

where H = sup, p, < co and M = max(1, H).



Proof. Clearly g(x) = g(—x) for all x € hp(g, u, A"). Tt is
trivial that 4, A"x;, = 0 for x = 0. Since p/M < 1 using
Minkowski’s inequality, we have

{fk [(k | A" (x + )’k)|)pk”1/M
< {fic [(k (g i + Ay ) )P}
1/M

{fk [(k |”kArxk|)pk]}l/M + {fk [(k I”kArykl)Pk]} .
(20)

1/M

IA

Hence g(x+ y) < g(x) + g(y). Finally to check the continuity
of scalar multiplication, let us take a complex number § by
definition, we have

g(6x) = st;p{fk [(k a0 )P ]} < KEPMg (), (1)

where Kj is a positive integer such that |§] < K5. Letd — 0
for any fixed x with g(x) = 0. By definition for |8] < 1, we
have

Sl/ip{fk [(k |ukArxk|)p"]}1/M <e forn>N(e). (22)

Also for 1 < n < N, taking § small enough, since f is
continuous for each k, we have

Sip{fk [(k l”kArkaPk]}l/M <e (23)

Equations (22) and (23) imply that g(6x) — 0asd — 0.
This completes the proof. O

Theorem 4. Let F = (f}) be a sequence of modulus functions
and ¢ = lim, _, o, (f(t)/t) > 0. Then h,(F, u, A") ¢ hy(u, A").

Proof. Let ¢ > 0. By definition of ¢, we have f,(t) > ¢ - t, for
all t > 0. Since ¢ > 0, we have t < (1/¢) f;.(t) forall t > 0. Let
x = (x;) € hy(F,u, A"). Thus, we have

o0 . 1 [ee] .
Z [(k|ukA xk|)Pk] < ¥ka [(k|”kA xk|)Pk] < 00. (24)
k=1 k=1
Which implies that x = (x;) € hp(u, A"). This completes the
proof. O

Theorem 5. 1,(F,u,A") = L(F,u, A") 0 [ P (F,u,A") =
L(F,u, A7) 0 [ VS (F,u, A").

Proof. We consider
S (kA" ) < fi (i) + froe (A7 (k) - (25)

Then, for x € L,(F,u, AN I b (F,u, A7),

kauk (kA" ) < kauk || + ka“k |A" (k)]
k=1 k=1 k=1
(26)
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and from |a + b|P < 2Px(|alPx + |b|P¥), (1 < p, < 00), we
obtain

ka”k [kpk|Arxk|Pk]

k=1
(27)
n n
< 2P fLuy |:Z|’%|Pk + Z|Ar (kxk)|Pk] .
k=1 k=1
For each positive integer s, we get
S
ka”k [RPEAT 2 [P ]
k=1
(28)
N S
< ZP"fkuk |:Z|Xk|Pk + Z|Arkxklpk:| 5
k=1 k=1
andass — 0o,
(o]
ka“k [kpklArxklpk]
k=
1 (29)

< 2% fru [Z|xk|pk + Z|Ar (kxk)|pk]

k=1 k=1
and limy _, o, = 0. Then x € h,(#,u,A") and
L (F,u, A7) 0 jbvp (Fou, &) €y (Fou, A7) (30)
Let x € hp(g, u, A"), and we consider
o0 oo
];fk“k|xk+l | - ];fk”dN (k)|

31
< kaukkpk|Ar (kxk)lpk.
k=1

Then the series Y o, fithlxis1|P* is convergent from the
definition of I,. Also, ¥, frulA"(kx )P < co, and

therefore x € L,(F,u, A") N Ibvp(gf”,u, A").
en,

hy (F,u,87) < L, (F,1,47) 0 Jbvp (F.uAT).  (32)
From (30) and (32), we have

hy (F,u, A7) = 1 (F, 1 A7) 0 Jva (Fu,AT).  (33)

O

Theorem 6. The sequence space h,(#,u,A") is a BK-space
with AK.

Proof. If x is any sequence, we write 0,,(x) = M, x. Lete > 0
and x € h,(F,u, A"). Then, their exists N such that

o, (%) < § (34)
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for all n > N. Now let 1 > N be given. Then, we have for all
n>m+1by (34)

1/px

O, (x - x[m])| < Z fr (|kukArxk|pk)
k=m+1 (35)

€

=€,
2

< o ()] + o ()| < 5 +

whence [|x — x™ "hp(g,u,Ar) < eforallm > N. This shows that

x = lim,, , x™. O

Since h,(#,u, A") is an AK-space and every AK-space is
AD, we can give the following corollary.

Corollary 7. The sequence space h,(F,u, A") is AD.

3. Duals of Hahn Sequence Space h,(#, u, A")

In this section, we determining the «, 3, and y-duals of the
sequence space (%, u, A"). Let x and y be sequences, X and
Y be subsets of w, and A = (a,); ., be an infinite matrix
of complex numbers. We write xy = (x;y )i X * Y =
facw:ax e Yand M(X,Y) = Nyexx ' Y ={a e w:
ax € Y for all x € X} for the multiplier space of X and Y.
In the special cases of Y = {I}, cs, bs}, we write x* = x s
I, xP=xTxes, x¥ = x! «bsand X* = M(X,1), xP =
M(X,cs), X¥ = M(X,bs) for the a-dual, $-dual, and y-dual
of X. By A,, = (a,)50> We denote the sequence in the nth-
row of A, and we write A, (x) = Y1) auxe n=(0,1,...) and
A(x) = (A, ()2, provided that A, € xP for all n.

Given an FK-space X containing ¢, its conjugate is
denoted by X' and its f-dual or sequential dual is denoted
by X/ and is given by X/ = {all sequences (f(ek)) i fe X'
Let A be a sequence space. Then A is called perfect if A = A**,
normal if y € A whenever |y,| < x|, k > 1 for some x € A,
and monotone if A contains the canonical preimages of all its
stepspace.

Lemma 8. (i) A € (h:1,) if and only if

o0
Y || converges, (k=1,2,3,...),

n=1
(36)
1 oo | k
Sl]:pEr; v;a,w < 0.
(ii) A € (lp : 1)) if and only if
q
supz Zank < 00. (37)
KeF 'k |nek
Lemma9. (i) A € (h: C) if and only if
1]&
- , 38
S:sfk szlanv < 00 (38)
nangoank exists, (k=1,2,3,...). (39)

(ii) A € (lp : C) if and only if (39) holds and
supZ|ank|q <00 1< p<oo. (40)
"ok

Lemma 10. (i) A € (h: 1) if and only if (38) holds.
(ii)) A € (lp : 1) if and only if (40) holds with 1 < p < oo.

Lemmall. (i) A € (h: C,) if and only if (38) holds and
nango Ay = 0. (41)

Lemma 12. (i) A € (h: h) if and only if (41) holds and

[ee]
Zn | — G| converges, (k=1,2,3,...),
n=1

(42)
1& k
Sip%;n ; (anv - an+l,v) < ©0.
Theorem 13. We define the set
1 P
d,= {a =(a) ew: supz Z %fk (|wmA i |) a,| < oo} .
KeF | |nek

(43)
Then, [h,(F,u, A% =d,.

Proof. Let us take any a = (a;,) € w. We define the matrix
D= dnk by

1 r
Efk (lukA |)an’ k> n;

dnk = (44)
0, k<n

forall, k,n e N.
Consider the equation

(b D, = 2 f () ay; = (),
j=n (45)

(neN).

It follows from (45) with Lemma 8(ii) that ax = (a,x,) € [
whenever x = (x;) € h,(#,u, A") if and only if Dy € I,
whenever y = (y) € [,. This means thata = (a,) €
[hp(?,u,Ar)]“, whenever x = (x;) € hp(?,u,Ar) if and
only if D € (hp(PF, u,A") : 1,). This gives the result that
(hy(F,u, AN =d,. O

Theorem 14. Let 1 < p < co. Then [h,(F,u, AN)F = d,,
where

neN

d, = {a =(a) ew: sup(n_l)q

(46)
q

n
Z“j

=

<00

X%fk (A" xi])



Proof. Consider the equation

k=1

" . k y]

= ZEfk('ukA Nac| Y~
k=1 =] (47)
n k 1 .

:Z Z%fJ('uJA )aj>yk
k=1 \ j=1

=(By), (neN),

where B = (b,;) are defined by
kq .
bnk ;%f] ('qu )a]" k= mn; (48)

for all, k, n € N. Thus, we deduce from Lemma 9(ii) with (47)
that ax = (a.x;) € cs whenever x = (x;) € h(F,u,A") if
and only if By € c whenever y = (y,) € . Thus (a;) € cs
and (a;)ind, by (39) and (40), respectively. Nevertheless, the
inclusion d, C ¢s holds, and thus, we have (a;) € d,, whence

[hy(F,u, ADIF = d,. O
Lemma 15. Let X be FK-space with X > ¢. Then,
() XP ¢ XV c x7;
(i) If X has AK, XP = X/;
(iii) If X has AD, XP = X.

From Theorem 6, Corollary 7, and Lemma 15, we can
write the following corollary.

Corollary 16. (i) [h,(F,u, A’ = [h,(F,u, A"))/;
(ii) [hy(F>u, AP = [hy(F,u, AN)]".

Lemma 17. Let A be a sequence space. Then, the following
assertions are true:

(i) Ais perfect = A is normal = A is monotone;
(ii) A is normal = A* = AY;

(iii) A is monotone = A* = AP,

Combining Theorem 13, Theorem 14, and Lemma 17, we
can give the following corollary.

Corollary 18. The space hp(g, u, A") is not monotone and so
it is neither normal nor perfect.

4. Matrix Transformations

In this section we characterize some matrix transformations
on the space h,(F, u, A").
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Lemma 19. Let A, y be any two sequence spaces, A be an
infinite matrix, and U be a triangle matrix. Then, A € (A : y;)
ifand only ifUA € (A : U).

If we define @, = n(a,; — a,,,,)> then we can give the
following corollary from Lemma 19 with U = M defined by
(16).

Corollary 20. (i) A € (I, : h) if and only if
sup Y |au < oo (49)
(ii)) A€ (c:h)=(¢:h) = : h)ifand only if

Sup | < oo. (50)

keK

wpy
KeF 'n

Theorem 21. Suppose that the entries of the infinite matrices
A = (ay) and E = (e ;) are connected with the relation

€k = Ak (51)

for all k,n € N, where a,; = Z?gk(anj/j)[fj(lujArij)] and y
is any sequence space. Then A € (h,(F,u, A") : y) if and only
if {autken € [hy(F,u, AN, foralln e N and E € (h : ).

Proof. Let y be any given sequence spaces. Suppose that (51)
holds between A = (a,;) and E = (e,;), and take into account
that the spaces h,(#,u, A") and h are norm isomorphic. Let
A € (hy(F,u,A") : p) and take any y = y, € h. Then,
EM exists and {a, i € [h,(F,u, A")]P, which yields that
{e, i} en for each n € N. Hence, Ey exists, and thus,

;fk (| A]) ey = ;fk (|4 A"]) e (52)

for all n € N. We have Ey = Ax which leads us to the
consequence E € (h : p). Conversely, let {a,;}rc € d, for
alln € N,and E € (h : p) hold, and take any x = x; €
hp(g ,u, A"). Then, Ax exists. Therefore, we obtain from the
equality that

0 a,; .
D S () aey = [Z—Jj| DS )y (53)
k S
for all n € N. Thus, Ax = Ey and this shows that A ¢
(h,(F,u, A7) : ). O

If we use the Corollary 20 and change the roles of the
spaces h,(#,u, A") with y in Theorem 21, we can give the
following theorem.

Theorem 22. Suppose that the entries of the infinite matrices
A = (a,) and A = (G, are connected with the relation @, =
nf (|l A" x )@=y, 1) forallk, n € N and pis any sequence
space. Then A € (u hp(97, u, A")) ifand only if A € (u: h).
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Proof. Let z = z;. € p and consider the following equality:

m m
Zankzk = ank (lukArl) (ank - an+1,k) Zg>
k=0 k=0 (54)

Vm,n € N

which yields that as m — oo (Kz)n = (M(Az)), for all
n € N. Therefore, one can observe from here that Az ¢
h,(F,u, A") whenever z € u if and only if Az € h whenever
z € p. O
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We extend the notion of generalized weakly contraction mappings due to Choudhury et al. (2011) to generalized a-S-weakly
contraction mappings. We show with examples that our new class of mappings is a real generalization of several known classes
of mappings. We also establish fixed point results for such mappings in metric spaces. Applying our new results, we obtain fixed
point results on ordinary metric spaces, metric spaces endowed with an arbitrary binary relation, and metric spaces endowed with

graph.

1. Introduction

The well-known Banach’s contraction principle has been
generalized in many ways over the years [1-6]. One of the
most interesting studies is the extension of Banach’s con-
traction principle to a case of weakly contraction mappings
which was first given by Alber and Guerre-Delabriere [7]
in Hilbert spaces. In 2001, Rhoades [8] has shown that the
result of Alber and Guerre-Delabriere [7] is also valid in
complete metric spaces. Fixed point problems involving weak
contractions and mappings satisfying weak contractive type
inequalities have been considered in [9-13] and references
therein.

On the other hand, the concept of the altering distance
function was introduced by Khan et al. [14]. In 2011, Choud-
hury et al. [I5] generalized weakly contraction mappings
by using an altering distance control function and proved
fixed point theorem for a pair of these mappings. Some
generalizations of this function of fixed point problems in

metric and probabilistic metric spaces have been studied [16-
18].

Recently, Samet et al. [19] introduced the concepts of
a-y-contraction mappings and a-admissible mappings and
established various fixed point theorems for such mappings
in complete metric spaces. Afterwards, many fixed point
results via the concepts of a-admissible mappings occupied a
prominent place in many aspects (see [20-25] and references
therein).

From the mentioned above, we introduce the concept
of generalized «-f-weakly contraction mappings and give
some examples to show the real generality of these map-
pings. We also obtain fixed point results for such map-
pings. Our result improves and complements several results
in the literatures. As an application of our results, fixed
point results on ordinary metric spaces, metric spaces
endowed with an arbitrary binary relation, and metric
spaces endowed with graph are also derived from our
results.
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2. Preliminaries

In this section, we give some notations and basic knowledge.
Throughout this paper, N denotes the set of positive integers.

Definition I (see [14]). A function y : [0,00) — [0,00) is
called an altering distance function if the following properties
are satisfied:

(i) v is monotone increasing and continuous;
(ii) y(¢t) = 0 ifand only if t = 0.

Definition 2 (see [26]). Let (X, d) be a metric space and let T
be a self-mapping on X. A mapping T is said to be contraction
if, for each x, y € X, one has

d(Tx,Ty) < kd(x,y), ey

where k € [0, 1).

Definition 3 (see [8]). Let (X, d) be a metric space and let
T be a self-mapping on X. A mapping T is said to be weak
contraction if, for each x, y € X, one has

d(Tx,Ty) <d (x,y) - ¢(d(x.y)) (2)

where ¢ [0,00) — [0,00) is a continuous and
nondecreasing function such that ¢(t) = 0 ifand only ift = 0.

In fact, if we take ¢(t) = (1 — k)t for all t > 0, where
0 < k < 1, then the condition (2) becomes (1).

In 2011, Choudhury et al. [15] introduced the concept of a
generalized weakly contractive condition as follows.

Definition 4 (see [15]). Let (X, d) be a metric space and let
T be a self-mapping on X. A mapping T is said to be a
generalized weakly contraction, if, for each x, y € X, one has

y(d(Tx.Ty)) < y (m(x,))
— ¢ (max{d (x,y).d (». Ty)}),

where

m (x, y) = max {d (x,y),d(x,Tx),d (y,Ty),
(4)
(@ (e Ty) +d ()}

N | —

¥ : [0,00) — [0, 00) is altering distance function, and ¢ :
[0,00) — [0,00) is a continuous function with ¢(t) = 0 if
and only ift = 0.

Remark 5. 1t is easy to see that a generalized weakly con-
tractive condition (3) is more general than several general-
ized contractive conditions. The following conditions are an
example of a special case of a generalized weakly contractive
condition (3):
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(i) d(Tx,Ty) < km(x,y) for all x,y € X, where k €
[0,1);

(if) d(Tx, Ty) < m(x, y) forall x, y € X;

(iii) d(Tx, Ty) < m(x, y) — (1 — k) max{d(x, ), d(y, Ty)}
forall x, y € X, where k € [0, 1).

Moreover, the contractive condition (1) is also a special case
of condition (3).

Definition 6 (see [19]). Let X be a nonempty set and let « :
XxX — [0,00)beamapping. A self-mappingT : X — X
is said to be aw-admissible if the following condition holds:

a(x,y)21= a(Tx,Ty) 2 1. (5)

Example 7 (see [19]). Let X = [0,00) and defineT : X — X
anda : X x X — [0,00) by

sz\/}, VXEX,

x,y€X,

S xs g, ©)

“() -]

Then T is ac-admissible.

05 x < y.

3. Main Results

In this section, we introduce the concept of generalized
a-3-weakly contraction mappings and prove the fixed point
theorems for such mappings.

Definition 8. Let (X, d) be a metric space, o, f : X XX —
[0, c0) two given mappings, and T a self-mapping on X. A
mapping T is said to be a generalized a-3-weakly contraction
type A if, for each x, y € X, one has

¥ (d(Tx.Ty)) < B (%, y) y (m(x, )

—a(x,y) ¢ (max{d(x,y).d (. Ty)}),
(7)
where
m (x, y) = max {d (x,y),d(x,Tx),d (y,Ty),
(8)
STy +d ()l
2

¥ : [0,00) — [0, 00) is altering distance function, and ¢ :
[0,00) — [0,00) is a continuous function with ¢(t) = 0 if
and only if t = 0.

Definition 9. Let (X, d) be a metric space, o, : X x X —
[0, 00) two given mappings, and T a self-mapping on X. A
mapping T is said to be a generalized a-3-weakly contraction
type B if, for each x, y € X, one has

a(xy)y (d(Tx.Ty)) < B (% y) y (m(x, y))

- ¢ (max{d (x,y),d (y, Ty)}),
)
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where

m(x, y) = max {d (%, y),d(x,Tx),d (y,Ty),
(10)

%(d(x,Ty) +d(y,Tx))},

y is altering distance function, and ¢ : [0,00) — [0, 00) is
a continuous function with ¢(¢) = 0 if and only if t = 0.

If we take a(x,y) = Plx,y) = lforal x,y € X,
then generalized a-f-weakly contraction mappings type A
and type B become generalized weakly contraction mappings
due to Choudhury et al. [15]. Therefore, classes of general-
ized a-f-weakly contraction mappings type A and type B
are larger than the class of generalized weakly contraction
mappings. Next, we give some examples to show the real
generality of classes of generalized «--weakly contraction
mappings.

Example 10. Let X = [0,1] U {2,3,4,...}. From [27], X isa
complete metric space with metric defined by

|x-y|; x,y€[0,1],
d(x,y)=4x+y; oneof x,y¢[0,1], x£y, (1)
05 x=y.

Leta mapping T : X — X be defined by

g; xe[0,1],
-1; x€{2,3,4,...,10}, (12)

Tx =1y
x%; x €{11,12,13,...}.

First, we show that T is generalized a-f-weakly contractive
type A with the functions v, ¢ : [0,00) — [0,00)and«, f :
X x X — [0,00) defined by

() = t; 0<t<],

L P
(T
2

(/)(f):ql

- t>1,
L2
L x,ye€l01],

a(x,y) =42 oneofx,y¢[0,1], x,y <10,

0; otherwise,

X,y €[0,1]U{2,3,4,...,10},
otherwise.

L
) {v/(d (Tx, Ty))s
(13)

Next we show that T'is a generalized a-3-weakly contraction
mapping type A. For x, y € X, we distinguish the following
cases.

Case 1 (x,y € [0,1]). Without loss of generality, we may
assume that x > y. Now we obtain that

m (x, y) = max {d (x,y),d(x,Tx),d (y,Ty),

3@ Ty) +d (1T}

In case of 0 < y < x/2, we have
¢(max{d(x, y),d(y,Ty)}) = (1/2)(x — y) and then

y(d(TxTy) = 5 (v~ )

= (v-3)-5(x-)
= (x - y) - ¢(max{d(x,y).d(y. Ty)})
< B(xy)y(m(x,y))

—a(x, y) ¢ (max{d(x,y),d(y,Ty)}).
(15)

In case of x/2 < y < x, we have max{d(x, y),d(y, Ty)} =
max{x — y, y/2}.
If max{d(x, y),d(y,Ty)} = y/2, then we have

Y (d(Tx,Ty)) = 5 (x - y)

SRR R

<

LS

=B (xy)y (m(xy))
—a(xy) ¢ (max{d (x, y),d (»Ty)}).
(16)

If max{d(x, y),d(y, Ty)} = x — y, then we have

1o xX_x_x_X
ATy =3 (- <5 - <22

x 1
_E_E(x_y)

=B (xy)y (m(xy))

—a(x, y) ¢ (max{d(x,y),d(y,Ty)}).
(17)



Therefore, for x, y € [0, 1], we get that T satisfies condition
().

Case 2 (x € {2,3,4,...,10} and y € [0,1]). In this case, we
obtain that
2

—x2+xy<0, —x2+(%—y><0, —x*+1<0, (18)

m (x, y) = max {d (x,9),d(x,Tx),d (y,Ty),

1
S [@d(xTy) +d (7,12}

3
=max{x+y,2x—1,7y,%<x+%+y+x—1>}
=max{x+y,2x—1,3—y,l<2x+3—y—1>}

2°2 2
=2x-1

(19)

From (18), we obtain that

y(@d(Tx1y) =y (x-1+2)

2
=<x+)—/—1>
2
2
:x2+xy+yZ—2x—y+l

2

Y

=x2+xy+Z—2x—y+1+3xz—3x2

2

=4x* + (—x2 +xy)+ (—x2 + )’Z —y)
+(—x2 + 1) -2x

< 4x® - 2x

=4x’ - 2x+1-1
2 1
= (x-1) —(2>(5)

=B(xy)y(m(x,y))
—a(x,y) ¢ (max{d(x,y),d(y, Ty)}).
(20)

Therefore, we conclude that T satisfies condition (7) in this
case.

Case 3 (x € [0,1] and y € {2,3,4,...,10}). This case is
similar to Case 2.
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Case 4 (x € {2,3,4,...,10} and y € {2,3,4,...,10}). Now
we obtain that

m(x, y) = max {d(x,y),d(x,Tx),d(y,Ty),
1
S [@d(xTy) +d (7. T2)}
max10,2x - 1,2y - 1,

%(x+y—1+y+x—1)}; x=y,

max{x+y,2x— 1,2y -1,

%(x+y—1+y+x—1)}; X#Y.

2x—1; x=y,
= {max{x+y,2x - 1,2y - 1,
x+y-1}; x#y.
_|2x-1L y<x
- 2y -1, y>x.

(21)
If x = y, we have ¢(max{d(x, y),d(y, Ty)}) = 2x — 1 and so

v (d(Tx,Ty)) = y (0)
=0

-t
=y@x-D-a(xy)p@2x-1)
=B (xy) v (m(x y))

—a(x,y) ¢ (max{d (x, y),d (y. Ty)}).

(22)

If y < x, we have ¢(max{d(x, y),d(y,Ty)}) = 2x — 1, and
hence

v (d(Tx,Ty)) =y (x+y-2)
=(x+y-2)
< (2x - 2)

=(2x-1)*+ (3 - 4x)



The Scientific World Journal

<@x-17-1

= (2x - 1)2—2@)

=y (Q2x-1)-a(xy)¢@2x-1)
=B(xy)y(m(x,y))
—a(x,y) ¢ (max{d (x, y),d (5, Ty)}).

If y > x, we have ¢(max{d(x, y),d(y,Ty)}) = 2y — 1, and
hence

y(d(Tx,Ty)) =y (x+y-2)
= (x+y-2)
<(2y-2)
= (2y-1)+(3-4y)

<(2y-17-1

)
=y(2y-1)-a(xy)¢(2y-1)
=B(xy)y(m(xy))

—a(x,y) ¢ (max{d(x,y),d(y, Ty)}).
(24)

(23)

Now we conclude that T satisfies condition (7) in this case.

Case 5 (one of x, y ¢ [0,1] U{2,3,4,...,10}). If x = y, we
obtain that

y(d(Tx.Ty)) =y 0)
=0
=y (@d(Tx,Ty)) y (m (. 7))
~ (0, 7) ¢ (max {d (x, 7). d (10 T7)})

=B(xy)y(m(xy))
—a(x ) ¢ (max{d (x, y),d (»Ty)}).
(25)
If x # y, we get y(m(x, y)) > 1 and so
y(d(Tx,Ty)) <y (d (Tx, Ty)) y (m (%, )
=B(xy)y(m(xy))
—a(xy) ¢ (max{d (x, y),d (5, Ty)}) -
(26)

Now we conclude that T satisfies condition (7) in this case.
From all cases, we get that T' is generalized «-f-weakly
contraction mapping type A.

Remark 11. From Example 10, we can see that T is not a
generalized weakly contraction mapping. Indeed, putting x =
11 and y = 12, we get

m(11,12) = max{d(n, 12),d (11, T (11)),d (12, T (12)),

% dQ1,T(12)) + d(lZ,T(ll)))} =156,

(27)
v (d (T (11),T(12))) = v (121 + 144)
=165
> 156
> 156 —% (28)

=y (m(11,12))
- ¢ (max{d (11,12),
d(11, T (12))}).

Before presenting the main results in this paper, we
introduce the following concept, which will be used in our
results.

Definition 12. Let X be a nonempty setand f : X x X —
[0,00). A self-mapping T X — X is said to be f3,-
subadmissible if the following condition holds:

xyeX, 0<B(xy)<1=0<p(Tx,Ty)<1. (29)

Definition 13. Let X be a nonempty setand o : X x X —

[0, c0) a mapping.

(i) «is said to be forward transitive iffor each x, y,z € X

for which a(x,y) > 1 and a(y,z) > 1 one has
a(x,z) > 1;
(ii) « is said to be 0-backward transitive if for each

x,y,z € X for which 0 < a(x,y) < land 0 <
a(y,z) < 1onehas0 < a(x,z) < 1.

3.1. Generalized o~ 3-Weakly Contraction Mappings TypeA. In
this subsection, we give the fixed point results for generalized
a-3-weakly contraction mappings type A.

Theorem 14. Let (X,d) be a complete metric space, o, 3 :
X x X — [0,00) two given mappings, andT : X — Xa
generalized a-B-weakly contraction type A; then the following
conditions hold:

(a) T is continuous;
(b) T is a-admissible and -subadmissible;
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(¢) « is forward transitive and f is 0-backward transitive;
(d) there exists x, € X such that 0 < (x5, Txy) < 1 <
alxg, Txg).
Then T has a fixed point in X.

Proof. Starting from x, € X in assumption (d) and letting
X, = Tx, for allm e NU{0}, if there exists n, € NU {0} such
that x,, = x, ., then x,, is a fixed point of T. This finishes
the proof. Therefore, we may assume that x,, # x,,,, foralln €
N U {0}. Since 0 < B(xy, Txy) < 1 < a(xy, T'x), we get

0< B(xpx) <1< a(xgx). (30)
It follows from T is a-admissible and f3,-subadmissible that
0< B(Txy, Tx;) <1< a(Txp, Txy), (31)

and then
0<B(xp,x) <1 <a(x),x,). (32)

By repeating this process, we get that {x, } is a sequence in X
such that x,,,; = T'x,, and

0 < B (X Xpp1) S 1< (X Xp01) s (33)

for all n € N U {0}. By using the generalized «-pB-weakly
contractive condition type A of T, we have

¥ (d (X410 Xpi2))
=y (d (Tx,, Tx,,1))
< B (X X1 W (11 (% %011)) = & (0 X,001)
x ¢ (max {d (x,, x,) ,d (%1, Tx,11)})
<y (m(x %,01))
= ¢ (max{d (x,, X,,1) »d (%115 Xp12)}) »

for all n € N U {0}. Now we obtain that

(34)

m (Xn, xn+1)

= max {d (xn’ xn+1) > d (xn’ Txn) > d (xn+1’ Txn+1) >

(A (5 T) + (5,00, Tx,)) |

8| =

= max {d ('xn’ xn+1) > d (xrv xn+1) > d ('xn+1’ xn+2) >
(35)

(@ (i 12) +d (a1:5000) |

o | =

= max {d (xn’ xn+1) 4 d (xn’ xn+1) > d (xn+1’ xn+2) >

(@ (5 002))}

1
2
< max {d (xn’ xn+1) > d (xn+1’ 'xn+2)} >
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for all n € N U {0}. From (34) and (35), we get

1// (d (anrl’ xn+2))
< l// (maX {d (xn’ xn+1) > d (er—l’ xn+2)}) (36)
- ¢ (max {d (xn’ xn+l) »d (xn+1> xn+2)}) >

for all n € N U {0}.
Suppose that d(x,, x,,,,) < d(x,,,X,,,) for some n €
N U {0}. Then we have

4 (d ('xn+1’ xn+2)) < v (d ('xn+1’ 'xn+2))
- ¢ (d ('xn+l’ xn+2)) (37)
<y (d (xn+1’ ‘xn+2))

which is a contradiction. Hence d(x,,,;, x,,,) < d(x,,X,.1)
foralln € NU{0}. This means that {d(x,,, x,,,;)} is a monotone
decreasing sequence. Since {d(x,, x,,;)} is bounded below,
there exists r > 0 such that

Jim d (x,, %) = 1. (38)
Using (36), we get
¥ (d (X410 %12)) < W (d (X %11))
= ¢ (d (xp X11))

for all n € N U {0}. Taking n — o©0 in the above inequality,
we have

(39)

y(r) sy -¢(r). (40)
This implies that r = 0; that is,
nll,rréod (xrv xn+1) =0. (41)

Next, we will prove that {x,} is a Cauchy sequence.
Suppose that {x,} is not a Cauchy sequence. Then there exists
€ > 0 such that

d (xmk, xnk) >e (42)
for all n, > my > k, where k € N. Further, corresponding
to my, we can choose #; in such a way that it is the smallest
integer with ;. > my;. > k satisfying (42). Then we have

d (xmk,xnk) >, d (xmk,xnk,l) <e (43)
By using (43) and triangular inequality, we get
e< d(xmk,xnk)
<d (xmk,xnk_l) +d (xnk_l,xnk) (44)
<e+d (xnk,l,xnk) .

From (41) and (44), we have

Jim d(x,,,x, ) =« (45)
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From the triangular inequality, we get
d (%%, ) <d (% % 1) + A (K10 X 11)
+d (%, 110X, )
=d (X 110X 1) + A (X X 11)
+d (%, 10X, )
o)+ (o,

+d (xnk, xnkﬂ)

<d (Xpy 10 %, Xy ) (46)

+d(xmk’xmk+1)+d( Xrer1> X )

)+ (%0%,)

+2d (xnk, xnkH) .

<2d (x

mk+1’

Using (45) and (46), we get
Jim d (000 %,00) = & (47)
Again, by the triangular inequality, we get

d (%) <

( mk’xnk”) + d( ”k+1’x”k) >

(48)
d( mk,xnkH) d( nk)+d(xnk,xnk+1).
Using (48), we obtain that
klirréod (xmk,xnkﬂ) =& (49)
Similarly, we can prove
Jim d (x,,,%,,,1) =& (50)

Since « is forward transitive, 3 is 0-backward transitive, and
n, > my, we can conclude that

0< ﬁ(xmk,xnk) <1< oc(xmk,xnk). (51

In view of the fact that T is generalized a-3-weakly contrac-
tive type A mapping and (51), we have

1// (d (xmk+l’ xnk+1 ))

=y (d(Tx,, Tx,))

< B (o 0, ) ¥ (1 (s 30,))

= (s ) & (max [ (%, ) o (26, T, )})
<y (m (s 5,)

- ¢ (max{d (x,,.,.) d (5 T, )})

<y (max {d (xmk, xnk) ,d (xmk, Txmk) ,d (xnk Txnk) ,

2 (@ (3 T, ) +d (3, 7,,))})
-¢ (max {d (xmk,xnk) ,d (xnk, Txnk)})

=y (max {d (xmk, xnk) ,d (xmk, xmk+1) ,d (x,,k, xnkH) ,

3 @) £ (3o, )})

- ('b (max {d (xmk’ x"k) »d (x"k’ x"k“)}) :
(52)

Lettingk — 00, by using (45), (47), (49), and (50), we obtain
that

V) <y - ¢ <y (53)

which is a contradiction. Then, we deduce that {x,} is a
Cauchy sequence. Since X is a complete metric space, then
there exists x* € X such thatx, — x" asn — 0. From the
continuity of T, it follows that

Aim x,, = lim Tx, = Tx". (54)

Using the uniqueness of limit of the sequence, we conclude
that Tx* = x* and the proof is complete. O

In the next theorem, the continuity of a generalized
a-3-weakly contraction mapping type A in Theorem 14 is
replaced by the following condition:

(®) if {x,} is a sequence in X such that 0 < B(x,, x,,,;) <
1 <a(x,,x,,,)foralln e Nand x, — xasn — oo,
then 0 < B(x,,,x) <1 < afx,,x) foralln e N.

Theorem 15. Let (X,d) be a complete metric space, o, 3 :
X x X — [0,00) two given mappings, andT : X — Xa
generalized o-3-weakly contraction type A; then the following
conditions hold:

(a) condition (€) holds;
(b) T is a-admissible and [3,-subadmissible;
(¢) ais forward transitive and f3 is 0-backward transitive;

(d) there exists x, € X such that 0 < (x5, Tx,) <1 <
alxy, Txg).

Then T has a fixed point in X.



Proof. As in the proof of Theorem 14, we can find a sequence
{x,} in X such that x,,; = Tx, foralln € N U {0} and {x,}
is Cauchy sequence which converges to some point x* in X.
Moreover, we have

0 < B(

for all n € N. By using condition (&), we obtain that

Xn> xn+1) <sl<a (xn’xn+l) > (55)

0<B(xpx)<1<alx,x), (56)

for all n € N. Now, let us claim that Tx* = x". Supposing
the contrary, from the fact that T is a generalized a-3-weakly
contractive type A and (55), we get

¥ (d (x50, Tx"))

-y (d (Tx, Tx")
< B x”) y (m(x,,x7))

—a(x,,x7) ¢ (max {d (x,, x7), d (x7, Tx")})

(57)

< B (X )y (m(x,,x7))

~ ¢ (max{d (x,,x") d (x", Tx)})
<y (m(x,,x"))

~ ¢ (max{d (x,,x").d (x", Tx")}).

On the other hand, we obtain that

m(x,,x") = max {d (x,,x"),d(x,,Tx,),d(x*,Tx"),

(d(x,Tx") +d (x*,Tx,,))]»

0| =

= max {d (%, x7),d (%, Xppy1 ) d (x7, TX"),

(@ (o Tx) +d (", 2,0)) |
(58)

N =

forall n € N. Lettingn — o0 in (57), by using (58) and the
continuity of v, we get

y(d(x", Tx")) <y (d (x", Tx"))
- ¢(d(x",Tx")) (59)
<y(d(x*,Tx"))

which is a contradiction. Therefore Tx* = x* and the proof
is complete. O

We obtain that Theorems 14 and 15 cannot claim the
uniqueness of fixed point. To assure the uniqueness of the
fixed point, we will add the following condition:

(©") forall x, y € X there exists z € X such that

0<pB(x2)<l<a(x,z),
(60)
0<B(yz)<1<a(yz).
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Definition 16. Let X be a nonempty set, T : X — X a
mapping, and x, € X. The orbit of T at x, is denoted by
O(T, x,) and defined by

O(T,x,) = {xO,T(xO) ST (%), T2 (%0) 5o s T (%) 5 . } ,
(61)

where T"'x, = T(T"x,) and T%x, = x,,.

Theorem 17. By adding condition (€') to the hypotheses
of Theorem 14 (or Theorem 15) and the limit of orbit O(T, z)
exists, where z is an element in X satisfying (60). Then T has a
unique fixed point.

Proof. Suppose that x and x* are two fixed points of T. By
condition (") there exists z € X such that

0<Bxz)<l<a(x,z),
(62)
0<B(x"z)<1<a(x’,z2).
It follows from T is a-admissible and f3,-subadmissible that
0<B(x,T'z) <1 <a(x,T"z2),
(63)
0<B(x"T'z)<1<a(x",T"z),

foralln € N. Since the limit of O(T, z) exists, we get that {T"z}
converges to some element in X. Let us claim that T"z — x
asn — 00. Suppose the contrary; that is

lim d(T"z,x) =1 > 0. (64)

By the generalized a-3-weakly contractive condition type A
of T, we have

y(d(xT"z))
=y (d(Tx T (T"2)))
< B(xT"2)y (m(x,T"2)) -
x ¢ (max{d (x,T"z),d (T"z, T (
< B(xT"2)y (m(xT2))
~ ¢ (max {d (x, T"z) ,d (T"2, T (T"2))})
<y (m(xT"2))
~ ¢ (max{d (x,T"2),d ("2, T""'2)}),

a(x,T"z)

2))})

(65)

for all n € N. On the other hand, we have

m (x, T"z) = max {d (x,T"2),d (x, Tx), d (T"2, T (T"2)),
% (d (T (T"2)) + d (T"z, Tx))}
= max {d (x,T"z),d (T"z,T""'z),

S(d(eT™2) +d (5 )},
(66)
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for all n € N. From (64), (65), (66), and the property of  and
¢, we obtain that

y(r)<sy(r)=¢(r) <y(r) (67)

which is a contradiction, and hence T"z — xasn — oo.
Similarly, we can show that 7"z — x" asn — 0. Using the
uniqueness of limit of the sequence, we conclude that x = x*
and the proof is complete. O

3.2. Generalized o-3-Weakly Contraction Mappings Type B.
In this subsection, we obtain the existence and uniqueness of
fixed point theorems for generalized a-3-weakly contraction
mappings type B.

Theorem 18. Let (X,d) be a complete metric space, o, 3 :
X x X — [0,00) two given mappings, and T : X — Xa
generalized «-3-weakly contraction type B; then the following
conditions hold:

(a) T is continuous;
(b) T is a-admissible and [B,-subadmissible;
(¢) « is forward transitive and f is 0-backward transitive;

(d) there exists x, € X such that 0 < B(xy,Txy) <1 <
alxy, Txg).

Then T has a fixed point in X.

Proof. As in the proof of Theorem 14, we can find a sequence
{x,} in X such that x,,,, = Tx,, x,, # X,,,;, and

0< ﬁ (xn’ xn+1) <l<a (xn’xn+l) > (68)
for all n € N U {0}. Moreover, for each n € N U {0}, we have
m (xw xn+1) < max {d (xw xn+1) 4 d (xn+1’ xn+2)} . (69)

Since T is a generalized a-f-weakly contraction mapping
type B, for each n € N U {0}, we get

¥ (d (X1 Xn42))
=y (d(Tx,, Tx,1))
< a (% %,010) W (d (T, T, )
< B (% X)W (11 (0 Xp1)
— ¢ (max {d (x,, x,,) , d (%41, %12)}) (70)
<y (m (x %,01))
= ¢ (max {d (x, X1 ) »d (X1 X02)})
<y (max {d (x> X01) - d (X410 %12)})

- ¢> (max {d ('xn’ 'xn+l) .d ('xn+l’ xn+2)}) .

Suppose that d(x,, x,,.,) < d(x,,,,X,,,) for some n € NU{0}.
From (70), we get

4 (d (xn+1’ xn+2)) < v (d (xn+17 xn+2))
- ¢ (d ('xn+1’ 'xn+2)) (71)
<y (d (xn+1> xn+2))

which is a contradiction. Therefore d(x, ;,x,,,) <
d(x,, x,,,) for all n € NU {0}. This means that {d(x,,, x,,,)} is
a monotone decreasing sequence. It follows from a sequence
{d(x,, x,,,,)} bounded below that there exists r > 0 such that

Jim d (x,, x,,,) = 1. (72)
From (70), we get
l// (d (xn+1’ xn+2)) S 1// (d (xn’ xn+1))

- (/5 (d (xn’ xn+1)) >

for all n € N U {0}. Taking n — 00 in the above inequality,
we have

(73)

Y <y @) - ¢, (74)
This implies that r = 0; that is,
lim d (x,, x,,,,) = 0. (75)
Next, we will prove that {x,} is a Cauchy sequence.
Suppose that {x,} is not a Cauchy sequence. Then there exists
£ > 0 such that
d (xmk, xnk) > g, (76)
for all m, > my > k, where k € N. Further, corresponding
to my, we can choose 7, in such a way that it is the smallest
integer with . > m,. > k satisfying (76). Then we have
d(x,,.%, 1) <e (77

d (xmk, xnk) > &,

As the same argument in Theorem 14, we have

klinéod (xmk > x"k) = nhlréod (xmk i x”k+1)

= lim d (xnk, xmkﬂ) (78)
=&
Moreover, we have
0< ﬁ(xmk,xnk) <1<« (xmk,xnk). (79)

In view of the fact that T is generalized a-3-weakly contrac-
tion mapping type B, we have

1// (d (xmk+1’ xnk+1))
= (d (Txmk’ Tx”k))
<a (xmk> xnk) v (d (xmk+1’ xnk+1))
< ﬂ (xmk’ x”k) y (m (xmk’ x”k))
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N ¢ (max {d (xmk’ xnk) »d (x"k’ Tx"k)})
<y (max {d (xmk, xnk) ,d (xmk, Txmk) ,d (xnk, Txnk) ,
% (d (xmk’ Tx”k) +d (x”k’ Txmk))})
- ‘15 (maX {d (xmk’ x“k) > d (x"k’ Tx”k)})
=y (max {d (xmk’ x”k) »d (xmk’ xmk+1) »d (x”k’ x”k+1) >
E (d (xmk’x”k+1) +d (x”k’xmk“))})

1
-¢ (maX {d (xmk’ x”k) »d (x”k’ x"k+1)}) >
(80)

forall k € N. Letting k — 00 in the above relation, we obtain
that

yv(E)<y(e)—¢(e) <yl(e) (81)

which is a contradiction. Therefore, we deduce that {x,} is a
Cauchy sequence and so it converges to some element x* €
X. By the continuity of T', we get

Jim 6, = Jim e, = T )
and hence Tx" = x*. Therefore the proof is complete. O

Theorem 19. Let (X,d) be a complete metric space, «, 3 :
X x X — [0,00) two given mappings, and T : X — Xa
generalized «-[3-weakly contraction type B; then the following
conditions hold:

(a) condition (€) holds;
(b) T is a-admissible and [,-subadmissible;
(¢) « is forward transitive and f3 is 0-backward transitive;

(d) there exists x, € X such that 0 < (x5, Txy) < 1 <
alxg, Txg).

Then T has a fixed point in X.

Proof. As in the proof of Theorem 18, we can find a sequence
{x,} in X such that x,,,, = Tx,, for all n € N U {0} and {x,} is
a Cauchy sequence converging to some point x* in X.

Also, as in the proof of Theorem 15, for each n € N, we get

0<B(xpx")<1<a(x,,x"), (83)

Jim m (x,, x7) =d (x7, Tx"). (84)
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Now, let us claim that Tx* = x". On contrary, assume
that x* #Tx" that is d(x",Tx")#0. By using (83) and a
generalized a-3-weakly contractive condition type B, we get

¥ (d (%00, Tx7)) = 9 (d (T, Tx))
< a(x,x7) y (d(Tx,, Tx"))

< B x" )y (m (%, x7))
= ¢ (max {d (x,,x"),d (x", Tx")})

<y (m(x,x"))

— ¢ (max{d(x,,x"),d(x", Tx")}).
(85)

Lettingn — oo in (85), we get
Y (" Tx)) <y (d (7, Tx7))
—¢(d(x",Tx7)) (86)
<y(d(x*,Tx"))

which is a contradiction. Therefore Tx* = x* and the proof
is complete. O

Theorem 20. By adding condition (€') to the hypotheses of
Theorem 18 (or Theorem 19) and the limit of orbit O(T, z)
exists, where z is an element in A satisfying (60). Then T has a
unique fixed point.

Proof. Apply the proof of Theorem 18 (or Theorem 19) and
Theorem 17. O

4. Applications

In this section, we give the several fixed point results which
are obtained by our results in Section 3.

4.1. Fixed Point Results on an Ordinary Metric Space. Setting
a(x,y) = B(x,y) = 1forall x,y € X in Theorem 14 (or
Theorem 18), we get the following result.

Corollary 21. Let (X,d) be a complete metric space and
T : X — X a continuous generalized weakly contraction
mapping. Then T has a fixed point in X.

By using Remark 5, we obtain the following results.

Corollary 22. Let (X, d) be a complete metric space and T :
X — X a continuous mapping and

d(Tx,Ty) <km(x,y), (87)
forall x, y € X, where k € [0,1) and
m (x, y) = max {d (x,y),d(x,Tx),d (y,Ty),
) (88)
S @1y +d (T}

Then T has a fixed point in X.
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Corollary 23. Let (X, d) be a complete metric space and T :
X — X a continuous mapping and

d(Tx,Ty) <m(x,y), (89)
forall x, y € X, where

m (x, y) = max {d (x,y),d(x,Tx),d (y,Ty),
(90)

1
S @1y +d (T}
Then T has a fixed point in X.

Corollary 24. Let (X,d) be a complete metric space and let
T : X — X bea continuous mapping and

y (d(Tx, Ty)) <m(x, y) - max{d (x, y),d (5 Ty)}, (1)
forall x, y € X, where

m (x, y) = max {d (x,y),d (x,Tx),d (y,Ty),
(92)

%(d(x,Ty)+d(y,Tx))}.

Then T has a fixed point in X.

4.2. Fixed Point Results on Metric Spaces Endowed with
an Arbitrary Binary Relation. In this section, we give the
existence of fixed point theorems on a metric space endowed
with an arbitrary binary relation. Before presenting our
results, we give the following notions and definitions.

Definition 25. Let X be a nonempty set and & a binary
relation over X. One says that T : X — X is a comparative
mapping with respect to X if

xyeX, xRy= (Tx)R(Ty). (93)

Definition 26. Let X be a nonempty set and &£ a binary
relation over X. One says that X has a transitive property with

respect to R if
x,y,z€X, xRy, yRz = xRz (94)

Definition 27. Let (X, d) be a metric space and &% a binary
relation over X. A mapping T : X — X is said to be a
generalized weakly contraction with respect to X if for each
x, ¥y € X for which x% y one has

y(d(TxTy)) <y (m(x y))
- ¢ (max{d (x,y).d (». Ty)}),

(95)

where

m(x, y) = max {d (x,y),d (x,Tx),d (y,Ty),
: (96)
S @1y +d (T},
v : [0,00) — [0, 00) is altering distance function, and ¢ :

[0,00) — [0,00) is a continuous function with ¢(t) = 0 if
and only if t = 0.

1

Theorem 28. Let (X,d) be a metric space and R a binary
relation over X and T X — X a generalized weakly
contraction with respect to R; then the following conditions

hold:
(A) T is continuous;
(B) X has a transitive property with respect to K;
(C) T is comparative mapping with respect to K;
(D) there exists x, € X such that x,R(Tx,).

Then T has a fixed point in X.

Proof. Consider two mappings o, 8 : X x X — [0,00)
defined by

1 if xRy;
0 otherwise.

“() = B0 - |

97)

From condition (D), we get a(x,, Tx,) = Pxg, Txg) = 1.
Since T' is comparative mapping with respect to %, we get
T is a-admissible and f3,-subadmissible. Also, e is forward
transitive and f is 0-backward transitive since X has a
transitive property with respect to %. Since T is a generalized
weakly contraction with respect to %, we have, for all x, y €
X,

v (d(Tx, Ty))
<B(xy)y(m(x.y))
—a(x, y) ¢ (max{d (x,y).d (3 Ty)}),
a(x,y)y (d(Tx, Ty))
< B(xy)y(m(xy))
- ¢ (max{d (x,y).d (3. Ty)}).

This implies that T is generalized «-f-weakly contrac-
tion mapping types A and B. Now all the hypotheses of
Theorem 14 (or Theorem 18) are satisfied and thus the exis-
tence of the fixed point of T follows from Theorem 14 (or
Theorem 18). ]

(98)

In order to remove the continuity of T, we need the
following condition:

(G 4) if {x,} is the sequence in X such that x,%x,,,, for all
n € Nand it converges to the point x € X, then x, %x
foralln e N.

Theorem 29. Let (X, d) be a metric space and R a binary
relation over X and T X — X a generalized weakly

contraction with respect to R; then the following conditions
hold:

(A) the condition (€ &) holds on X;

(B) X has a transitive property with respect to K;
(C) T is comparative mapping with respect to R;
(D) there exists x, € X such that x,R(T'x,).

Then T has a fixed point in X.
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Proof. The result follows from Theorem 15 (or Theorem 19)
by considering the mappings « and S given by (97) and by
observing that condition (€ ) implies property (). O

To assure the uniqueness of the fixed point, we will add
the following condition:

(‘ng%) for all x, y € X there exists z € X such that

xRz, yRz. (99)

Theorem 30. By adding condition (€;) to the hypotheses
of Theorem 28 (or Theorem 29) and the limit of orbit O(T, z)
exists, where z is an element in X satisfying (99). Then T has a
unique fixed point.

Proof. The result follows from Theorem 17 (or Theorem 20)
by considering the mappings « and f3 given by (97) and by
observing that condition (&",,) implies property (). O

4.3. Fixed Point Results on Metric Spaces Endowed with Graph.
Throughout this section, let (X, d) be a metric space. A set
{(x,x) : x € X} is called a diagonal of the Cartesian product
X x X and is denoted by A. Consider a graph G such that
the set V(G) of its vertices coincides with X and the set E(G)
of its edges contains all loops; that is, A € E(G). We assume
G has no parallel edges, so we can identify G with the pair
(V(G), E(G)). Moreover, we may treat G as a weighted graph
by assigning to each edge the distance between its vertices.
A graph G is connected if there is a path between any two
vertices.

In this section, we give the existence of fixed point
theorems on a metric space endowed with graph. Before
presenting our results, we give the following notions and
definitions.

Definition 31. Let (X, d) be a metric space endowed with a
graphGandT : X — X mapping. One says that T preserves
edges of G if

x,y€X, (x,y)€E(G) = (Tx,Ty) € E(G). (100)

Definition 32. Let (X, d) be a metric space endowed with a
graph Gand T : X — X mapping. One says that X has a
transitive property with respect to graph G if

(x,y) € E(G),
(y,2) € E(G) = (x,2) € E(G).

x ¥,z €X,
(101)

Remark 33. It is easy to see that if G is a connected graph,
then X has a transitive property with respect to graph G.

Definition 34. Let (X, d) be a metric space endowed with a
graph G. A mapping T : X — X is said to be a generalized
weakly contraction with respect to graph G if for each x, y € X
for which (x, y) € E(G) one has

v (d(Tx, Ty)) <y (m(x, y))
~ ¢ (max{d (x,y),d (y.,Ty)}),

(102)
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where

m(x, y) = max {d (x,y),d (x,Tx),d (y,Ty),
(103)

%(d(x,Ty) +d(y,Tx))},

¥ : [0,00) — [0, 00) is altering distance function, and ¢ :
[0,00) — [0,00) is a continuous function with ¢(¢) = 0 if
and onlyift = 0.

Example 35. Let (X, d) be a metric space, T : X — Xa
given mapping, ¥ : [0,00) — [0,00) an arbitrary altering
distance function, and ¢ : [0,00) — [0,00) an arbitrary
continuous function with ¢(¢t) = 0 if and only if t = 0.
If ¢(d(x,Tx)) < wy(d(x,Tx)) for all x € X, then T is
trivially generalized weakly contraction with respect to graph
G, where G = (V(G), E(G)) = (X, A).

Theorem 36. Let (X,d) be a metric space endowed with a
graph Gand T : X — X a generalized weakly contraction
with respect to graph G; then the following conditions hold:
(A) T is continuous;
(B) X has a transitive property with respect to graph G;
(C) T preserves edges of G;
(D) there exists x, € X such that (x,, Tx,) € E(G).

Then T has a fixed point in X.

Proof. Consider two mappings o, 3 : X x X — [0,00)
defined by

1 if (x,y) € E(G);

104
0 otherwise. (104)

w() = B) - |

From condition (D), we get a(x,, Tx,) = Blxg, Txg) = 1.
Since T preserves edges of G, we get T is «-admissible and
Bo-subadmissible. Also, « is forward transitive property and
B is 0-backward transitive since X has transitive property
with respect to graph G. Since T is a generalized weakly
contraction with respect to graph G, we get

v (d(Tx, Ty))
<Bxy)y(m(xy))
—a(x,y) ¢ (max{d (x,y),d (y, Ty)}),
a(x,y)y (d(Tx, Ty))
<B(xy)y(m(x.y))
—¢(max{d (x, y).d (. Ty)}),

forall x, y € X. This implies that T is generalized a-3-weakly
contraction mapping types A and B. Therefore, all the
hypotheses of Theorem 14 (or Theorem 18) are satisfied. Now
the existence of the fixed point of T follows from Theorem 14
(or Theorem 18). O

(105)
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In order to remove the continuity of T, we need the
following condition.

Definition 37. Let (X, d) be a metric space endowed with a
graph G. One says that X has G-regular property if {x,} is the
sequence in X such that (x,, x,,;) € E(G) foralln € N and
it converges to the point x € X; then (x,,x) € E(G) for all
neN.

Theorem 38. Let (X,d) be a metric space endowed with a
graph Gand T : X — X a generalized «-[3-weakly con-
traction with respect to graph G; then the following conditions
hold:

(A) X has G-regular property;

(B) X has a transitive property with respect to graph G;

(C) T preserves edges of G;

(D) there exists x, € X such that (xy, Tx,) € E(G).
Then T has a fixed point in X.

Proof. The result follows from Theorem 15 (or Theorem 19)
by considering the mappings « and f3 given by (104) and by
observing that G-regular property implies property (¢). [

To assure the uniqueness of the fixed point, we will add
the following condition:

(%'g) for all x, y € X there exists z € X such that

(x,z) € E(G), (y,2) € E(G). (106)

Theorem 39. By adding condition (€,) to the hypotheses
of Theorem 36 (or Theorem 38) and the limit of orbit O(T, z)
exists, where z is an element in X satisfying (106). Then T has
a unique fixed point.

Proof. The result follows from Theorem 17 (or Theorem 20)
by considering the mappings « and f3 given by (97) and by
observing that condition (&%) implies property (). O

By using Remark 33, we get the following results.

Corollary 40. Let (X,d) be a metric space endowed with a
graph Gand T : X — X a generalized weakly contraction
with respect to graph G; then the following conditions hold:

(A) T is continuous;

(B) G is connected graph;

(C) T preserves edges of G;

(D) there exists x, € X such that (xy, Tx,) € E(G).

Then T has a fixed point in X.

Corollary 41. Let (X,d) be a metric space endowed with a
graph Gand T : X — X a generalized «--weakly con-
traction with respect to graph G; then the following conditions
hold:
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(A) X has G-regular property;

(B) G is connected graph;

(C) T preserves edges of G;

(D) there exists x, € X such that (x,, Tx,) € E(G).

Then T has a fixed point in X.

Corollary 42. By adding condition () to the hypotheses of
Corollary 40 (or Corollary 41), the limit of orbit O(T, z) exists,
where z is an element in X satisfying (106). Then T has a unique
fixed point.
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We unify the concepts of G-metric, metric-like, and b-metric to define new notion of generalized b-metric-like space and discuss
its topological and structural properties. In addition, certain fixed point theorems for two classes of G-a-admissible contractive
mappings in such spaces are obtained and some new fixed point results are derived in corresponding partially ordered space.
Moreover, some examples and an application to the existence of a solution for the first-order periodic boundary value problem are
provided here to illustrate the usability of the obtained results.

1. Introduction and Mathematical
Preliminaries

The concept of a b-metric space was introduced by Czerwik
[1]. After that, several interesting results about the existence
of fixed point for single-valued and multivalued operators in
(ordered) b-metric spaces have been obtained (see, e.g., [2-
1)).

Definition I (see [1]). Let X be a (nonempty) setand s > 1 a
given real number. A functiond : X x X — R isa b-metric
on X if, for all x, y, z € X, the following conditions hold:

(b)) d(x,y) =0ifand onlyif x = y,

(b,) d(x, y) = d(y, x),
(bs) d(x,2) < s[d(x, y) +d(y, 2)].

In this case, the pair (X, d) is called a b-metric space.

The concept of a generalized metric space, or a G-metric
space, was introduced by Mustafa and Sims [12].

Definition 2 (see [12]). Let X be a nonempty set and G : X x
X x X — R" afunction satisfying the following properties:

(G)) G(x,y,2z) =0ifand onlyif x = y = 2;

(G,) 0 < G(x,x, y), forall x, y € X with x # y;
(G3) G(x, x, ) <G(x, y,2), forall x, y,z € X with y # z;

(Gy) G(x, y,2z) = G(p{x, y, z}), where pisany permutation
of x, ¥, z (symmetry in all three variables);

(Gs5) G(x, y,2) < G(x,a,a)+G(a, y,z), forall x, y,z,a € X
(rectangle inequality).

Then, the function G is called a G-metric on X and the
pair (X, G) is called a G-metric space.

Definition 3 (see [13]). A metric-like on a nonempty set X is
amappingo : X x X — R7 such that, forall x, y,z € X, the
following hold:

(0,) o(x, y) = 0 implies x = y;
(03) o(x, y) = 0(y,x);
(03) o(x,y) <0o(x,2) +0(z, y).
The pair (X, 0) is called a metric-like space.
Below, we give some examples of metric-like spaces.
Example 4 (see [14]). Let X = [0, 1]. Then, the mapping o, :

XxX — R defined by o, (x, y) = x+ y—xy is a metric-like
on X.
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Example 5 (see [14]). Let X = R; then the mappings o; : X X
X — R™(i € {2,3,4}) defined by

0, (%, y) = x| +|y| + a,
o3 (x, ) =Ix-bl+|y-1|, 1)

o, (x,y) =x*+y°

are metric-likes on X, wherea > 0 and b € R.

Definition 6 (see [15]). Let X be a nonempty set and s > 1
a given real number. A function oy, : X x X — R"isab-
metric-like if, for all x, y, z € X, the following conditions are
satisfied:

(0p1) 0y(x, y) = 0 implies x = y;
(%2) Ub(x) J’) = Ub()’, X);
(03,3) 0,(x, y) < sloy(x, 2) + 0,(2, ¥)].

A b-metric-like space is a pair (X, 03,) such that X is a
nonempty set and oy, is a b-metric-like on X. The number s is
called the coefficient of (X, 03,).

In a b-metric-like space (X, 0;,) if x, y € X and g (x, ) =
0, then x = y, but the converse may not be true and o;,(x, x)
may be positive for all x € X. It is clear that every b-metric
space is a b-metric-like space with the same coeflicient s but
not conversely in general.

Example 7 (see [8]). Let X = R",let p > 1 be a constant, and
leto, : X x X — R* be defined by

o, (%, 9) = (x+y) Vx,yeX (2)

Then, (X, 03,) is a b-metric-like space with coefficient s =
2Pt

The following propositions help us to construct some
more examples of b-metric-like spaces.

Proposition 8 (see [8]). Let (X, o) be a metric-like space and
op(x, ) = [o(x, y)]P, where p > 1 is a real number. Then, oy,
is a b-metric-like with coefficient s = 2P,

From the above proposition and Examples 4 and 5, we
have the following examples of b-metric-like spaces.

Example 9 (see [8]). Let X = [0, 1]. Then, the mapping o;,, :
X x X — R" defined by 0, (x, y) = (x + y — xy)?, where

p > lisareal number, is a b-metric-like on X with coefficient
s =20,

Example 10 (see [8]). Let X = R. Then, the mappings oy, :
Xx X — R*(i € {2,3,4}) defined by

o (%, ) = (Ix] +|y| + a)?,
03 (%, y) = (Jx = bl + |y = b])", 3)

s (%, 7) = (x* + )"

are b-metric-like on X, where p > 1,a > 0,and b € R.
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Each b-metric-like 0}, on X generates a topology 7,, on X
whose base is the family of all open g,-balls {B,, (x,¢) : x €
X, & > 0}, where ng(x,s) ={y € X :|op(x, y) —0,(x, x)| < €}
forallx € X and e > 0.

Now, we introduce the concept of generalized b-metric-
like space, or G, -metric space, as a proper generalization of
both of the concepts of b-metric-like spaces and G-metric
spaces.

Definition 11. Let X be a nonempty set. Suppose that a
mapping G, : X x X x X — R satisfies the following;

(Gg,1) G, (x, y,2) = 0 implies x = y = z;

(G,,2) G, (x, ¥,2) = G, (p{x, y,2}), where p is any permu-
tation of x, y, z (symmetry in all three variables);

(ng.’a) Gab(x, y,2) < s[ng(x, a,a) + ng(a, y,2)] for all
X, ¥,2z,a € X (rectangle inequality).

Then, G, is called a G, -metric and (X, G,,) is called a
generalized b-metric-like space.

The following proposition will be useful in constructing
examples of a generalized b-metric-like space.

Proposition 12. Let (X,0,) be a b-metric-like space with
coefficient s. Then,

G, (%, 3,2) = max{oy, (x, ), 04 (1,2) 0 (2, X)} “
4
Gy, (%.3,2) = 0, (x, ) + 0, (y,2) + 0, (2, %)

are two generalized b-metric-like functions on X.

Proof. Ttis clear that G and G, satisty conditions G,, 1 and
G,,2 of Definition 11. So, we only show that G,, 3 is satisfied
by G and G, . Let x, y, z,a € X. Then, using the triangular
inequality in b-metric-like spaces, we have

Gy, (x, y,2) = max{oy, (x, ), 0, (y,2) 0 (2, 0)}
< max {s (0, (x,a) + 0, (a, ),
0, (:2),5 (0} (2,a) + 0 (a, %))}
< max {s (0, (x,a) + 0, (@, ),
s(oy (3,2) + 0y (0,0))
s(ay, (z,a) + 0, (@, X))}
= smax {0}, (x,a) , 0}, (a,a) , 0, (@, x)}
+smax {o, (a. )03, (1. 2) 0, (z:2)}

=s (GZ; (x,a,0) + G, (a, y, z)) .
(5)
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Also,
G, (%, 3,2) = 0, (%, y) + 03, (1, 2) + 0, (2, %)
< s (0, (x.a) + 0, (@ y))
+ 0, (1.2) + 5 (0, (z,a) + 0, (@ X))
< s (0, (x,a) + 0, (@ y))
+5(0y, (1,2) + 0, (a,a)) (6)
+s(oy (z,a) + 0, (a,x))
= s(0, (x,a) + 0, (@ a) + 0, (a, X))
+5(0y (a,9), 0, (1.2) 0, (2,))
=5(G, (x,a,a) + G, (a,7,2)).
O

According to the above proposition, we provide some
examples of generalized b-metric-like spaces.

Example 13. Let X = R, let p > 1 be a constant, and let
G, G, : X x X x X — R" be defined by

Gy (x,9.2) = max{(x+ Wy +2)f,(z+ x)p},
7)
Gy, (x.2.2) = (x+ )" + (y+2)" + (z + 0)F,

Oy

forall x, y,z € X. Then, (X, G;’Z) and (X, G;b) are generalized

b-metric-like spaces with coefficient s = 277!, Note that, for
x=y=2>0Gy(xxx) = (2x)? > 0 and G, (x,x,x) =
3(2x)F > 0.

Example 14. Let X = [0, 1]. Then, the mappings GZ:,I’G;M :
Xx X xX — R defined by

62, (53.2)
= max{(x+y—xy)P,(y+z—yz)P,(z+x—zx)p},
G, (57:2)

=(x+y-xp) +(y+z-y2)’ +(z+x-2zx)P,

(8)

where p > 1 is a real number, are generalized b-metric-like
spaces with coefficient s = 2°7!,

By some straight forward calculations, we can establish
the following.

Proposition 15. Let X be a G, -metric space. Then, for each
X, ¥,2,a € X, it follows that:

1 ng(x, y,¥) >0 forx+y;

(2) G, (x, y,2) < s(G,, (3, %, y) + Gy, (x, %, 2));

3) ng(x, ¥, y) < 2sG,, (y, x, x);

(4) G,y (6,7,2) <
sngb (z,a,a).

sGGb(x,a,a) + szGab(y,a,a) +

Definition 16. Let (X,G,,) be a G, -metric space. Then, for
any x € X and r > 0, the G, -ball with center x and radius r
is

Bg, (x.r) = {y €X| |Ga,, (%, %, y) = Gy, (x, x,x)| < +r}.
)

The family of all G, -balls
F:{BG% (x,r)IxEX,r>0} (10)

isabase ofa topology 7(G,, ) on X, which we call it G, -metric
topology.

Definition 17. Let (X, G,, ) be a G, -metric space. Let {x,,} be
a sequence in X. Consider the following.

(1) A point x € X issaid to be alimit of the sequence {x,,},
denoted by x, — x, if lim,, _, G, (x, x,, x,,) =
G,, (x, x, x).

(2) {x,} is said to be a Gob—Cauchy sequence, if
lim,, ,, _, o Gg, (X5 X, X,,,) €Xists (and is finite).

(3) (X,G,,) is said to be G, -complete if every G, -
Cauchy sequence in X is G, -convergent to an x € X
such that

lim G, (%0 X > X,y) = lim G, (%, %, %) = G, (%, %, %).
(11)

Using the above definitions, one can easily prove the
following proposition.

Proposition 18. Let (X, G,, ) be a G, -metric space. Then, for
any sequence {x,} in X and a point x € X, the following are
equivalent:

) {x,}is G, -convergent to x;
(2) Gab(xn,xn,x) — G(,b(x, X,X), ASN — 00;

3) Gab(xn,x, x) — Gab(x, X,X), asn — 00;

Definition 19. Let (X, Gab) and (X', G('Tb) be two generalized
b-metric like spaces and let f : (X, Gob) — (X,’G;,,) be
a mapping. Then, f is said to be G, -continuous at a point
a € X if, for a given ¢ > 0, there exists § > 0 such
that x € X and |G, (a,a,%) - G, (a,a,a)] < & imply
that |G,, (f(a), f(a), f(x)) = G, (f(a), f(a), f(@))| < e The
mapping f is G,, -continuous on X ifit is G,, -continuous at
all a € X. For simplicity, we say that f is continuous.

Proposition 20. Let (X, G,,) and (X', G;b) be two generalized
b-metric like spaces. Then, a mapping f : X — X' is G, -
continuous at a point x € X if and only if it is G, -sequentially
continuous at x; that is, whenever {x,} is G, -convergent to x,
{f(x,)}is G, -convergent to f(x).



We need the following simple lemma about the G, -
convergent sequences in the proof of our main results.

Lemma 21. Let (X,G,,) be a G, -metric space and suppose
that {x,}, {y,}, and {z,} are G, -convergent to x, y, and z,
respectively. Then, we have

1 1
5—3ng (%, y,2) - S—ZG% (x, %, x)

1
-G, (33, ¥) =Gy, (2,2,2)

< liminfG,, (x,» ¥,n2) (12)

< lim squGb (x,,,y,,, Z,,)
n—00
< 5°G,, (x, y,2) + 5G,, (x, x,x)

+5°G,, (9,3, ¥) +5°G,, (2,2,2).

In particular, if {y,} = {z,} = a are constant, then
1
;Gab (x,a,a) — Gab (x, x, x)

<liminf G, (x,,a,a) < lirrlrisolip G, (xppa,a) (13)

<sG, (x,a,a)+sG, (x,x,x).
(43 [

Proof. Using the rectangle inequality, we obtain
Go, (%, 3,2) < Gy, (%, %,) + 5°Go, (3 Yo 32)

+ SSGGh (Z, Zn> zn) + S3Gah (xn’ Yn> zn) ’

Gy, (X Yo 20) < $Gy, (%, %, X) + 5°Gy, (¥ 95 ¥)

+ SSG% (zp2,2) + 53G(,b (%, 3,2).
(14)

Taking the lower limit as # — co in the first inequality and
the upper limitasn — o0 in the second inequality, we obtain
the desired result.

If {y,} = {z,} = a, then

G,, (x,a,a) < 5G, (X, x,,x,) + G (x,,a.a),
(15)
G, (x,pa,a) < 5G, (x,, %, %) + 3G, (x,a,a).

Again taking the lower limitasn — 00 in the first inequality
and the upper limit as # — 0o in the second inequality, we
obtain the desired result. O

2. Main Results

Samet et al. [16] defined the notion of a-admissible mappings
and proved the following result.

Definition 22. Let T be a self-mappingon X and o : XxX —
[0, co) a function. We say that T' is an «-admissible mapping
if

x,y€X, a(xy)>1= a(Tx,Ty) > 1. (16)
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Denote with ¥’ the family of all nondecreasing functions
¥ : [0,00) — [0,00) such that Yoo ¢"(f) < co forallt > 0,
where y" is the nth iterate of y.

Theorem 23. Let (X, d) be a complete metric space and T an
a-admissible mapping. Assume that

a(x,y)d(Tx,Ty) <y (d(xy)), (17)

wherey € W', Also, suppose that the following assertions hold:

(i) there exists x, € X such that «(xy, Tx,) > 1;

(ii) either T is continuous or, for any sequence {x,} in X
with a(x,,, x,,,,) = 1 for alln € NU{0} such that x,, —
xasn — 00, we have a(x,, x) > 1 for alln e NU {0}.

Then, T has a fixed point.

For more details on o-admissible mappings, we refer the
reader to [17-20].

Definition 24 (see [21]). Let (X, G) be a G-metric space, let
f be a self-mapping on X, and let « : X - [0,0) be a
function. We say that f is a G-w-admissible mapping if

a(x,y,2) 21 = a(fx, fy, fz) > 1.
(18)

x, ¥,z €X,

Motivated by [22], let # denote the class of all functions
B :10,00) — [0,1/s) satistying the following condition:

limsupf (t,) = 1 lim supt,, = 0. (19)
n— 0o N n— 0o

Definition 25. Let f: X —» Xanda: XxXxX — R.
We say that f is a rectangular G-a-admissible mapping if

(T1) a(x, y,z) = 1 implies a( fx, fy, fz) =2 1, x, v,z € X;
(T2) {z((’;);z));l implies a(x,z,2) > 1,x, y,z € X.

From now on, let a : X> — [0, 00) be a function and

M (x, y,2)

= max <|Gab (%, y,2),

Gy, (%, fx, fx) Gy, (3> 3> f¥) G, (2, f2, f2) } _

L+5°Gg (fx, fy: f2)
(20)

Theorem 26. Let (X,G,,) be a G, -complete generalized b-
metric-like space and let f : X — X be a rectangular G-a-
admissible mapping. Suppose that

sa(x, y,2) G, (fx, fy, fz)
(21

< B(G,, (%, 3:2)) M, (x, ,2)

forallx,y,z € X.
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Also, suppose that the following assertions hold:

(i) there exists x, € X such that a(x,, fx,, fx,) = 1;

(ii) f is continuous and, for any sequence {x,} in X with
(X Xy 15 Xpy1) = 1 foralln € NU{O} such that x,, —
xasn — 00, wehave a(x, x,x) > 1 foralln € NU{0}.

Then, f has a fixed point.

Proof. Let x, € X be such that «(x,, fx,, fx;) > 1. Define
a sequence {x,} by x,, = f"x, for all n € N. Since f is a G-
a-admissible mapping and a(xg, x1, x;) = alxy, fxg, fxy) =
1, we deduce that a(x;,x,,x,) = a(fx,, fx;, fx;) = L
Continuing this process, we get a(x,,, x,,,1>X,,,) = 1 for all
n e NuU {0}.

Step I. We will show that lim,, _, ., G, (X, X115 Xpp1) = 0. If
X, = X, for somen € N, then x,, = fx,,. Thus, x,, is a fixed
point of f. Therefore, we assume that x, # x,,,, foralln e N.
Since a(x,,, X1, X,;;) = 1 for each n € N, then we can
apply (21) which yields
SGah ('xn’ Xnt1> xn+1)
= SGG;, (fxn—l ’ fxn’ fxn)
< ﬁ (Gub (xnfl’ Xy xn)) Ms (xnfl’ Xy xn) (22)
1
< ;Gah (xn—l’ Xn> xn)
S Gab (xnfl’ X xn) >
Ms (xn—l’ X xn)

= max {Gab (xn,l, xn,xn) >

(Gab (xn—l’fxn—l’fxn—l)
XGJb (xn’ fxn’ fxn) GG;, (xn’ fxn’ fxn))

-1

><(1 + 52G<2;b (fxn,l,fxn,fxn)) }
= max {Gah (xn—l’ xn’xn) >

(Gob (xn—l’ Xn> xn)
XGJ;, (xn’ Xn+1> xn+1) Gab (xn’ Xn+1> xn+1))

-1
X(l + SZG(Zrb ('xn’ xn+1’xn+1)) }

= Gab (xnfl’ xn’ xn) .
(23)

Therefore, {G,, (x,, X,.1.1> X,,1)} is a decreasing and bounded
sequence of nonnegative real numbers. Then, there exists r >
0 such that nlLIréong(xn,an,an) = r. Lettingn — ooin

(22), we have
sr <. (24)

5
Since s > 1, we deduce that r = 0, that is
nILI%OGUb (xn’ Xun+1> xn+1) =0. (25)
By Proposition 15(2), we conclude that
Jim Gy, (x> X, Xp41) = 0. (26)

Step II. Now, we prove that the sequence {x,} is a G, -Cauchy
sequence. For this purpose, we will show that

lim supG,, (x5, X, X,,) = 0. (27)

m,n — 0o

Using the rectangular inequality with (21) (as a(x,, x,,,, x,,,) =
1, since f is a rectangular G-a-admissible mapping), we have

Gah (xn’ Xm> xm)
< SGob (xn’ xn+1’ xn+1)
+ SZG% (xn+1’ xm+1’ xm+1) + SZGU;, (merl’ xm’ xm)

< SGG,, ('xn’ Xnt1> xn+1)

+ 5/3 (Gob (xn’ Xm> xm)) Ms (xn’ Xm> xm)

2
+s Gab (xm+1’ xm’xm) .
(28)

Taking limit as m,n — oo in the above inequality and
applying (25) and (26), we have

lim supG, (%, X, X,)
m,n — o0

< slimsupf (ng (%, Xy xm)) lim supM; (x,,, X,y X,) -
n,m— 0o n,m— 00
(29)

Here,
Gab (xn’ Xm> xm)

S MS (xﬂ’ xm’ xm)

= max § Gy, (X, Xp> Xp) »

Gy (X f2 1) [Goy s P f5m)|
1+ G2, (f [ [5m)

= max Gab (xn,xm,xm),

2
Gah (xn’ Xnt1> 'xn+1) [Gab ('xm’ Xm+1> xm+1)]

272
l+s ng (xn+1’ Xm+1> xm+1)

(30)



Letting m,n — o0 in the above inequality, we get

lim sup M (x,,, X, X,,,) = limsup Gy, (%0 X,) - (31)

m,n — 00 m,n — 00
Hence, from (29) and (31), we obtain

lim squUb (xn) xm’ xm)

m,n — 0o

< slim supp (G(,b (%> X xm)) lim sup G, (%, X5 X, -

e (32)
Iflimsup,,, , G, (X,> X,> X,,) # 0, then we get
L.
S s lilrg_s)ligﬁ (Gab (%> X xm)) : (33)
Since 3 € &, we deduce that
lim sup G, (X, %5 X,,) = 0, (34)

m,;n— 0o

which is a contradiction. Consequently, {x,} is a G, -Cauchy
sequence in X. Since (X, G,, ) is G, -complete, there exists u €
X such that x, — u,asn — ©o. Now, from (34) and G,, -
completeness of X,

nli_,rréOGab (u’ X xn) = m}iir_)nooGah (xw Xin> xm)
(35)
=G, (u,u,u) = 0.

Step III. Now, we show that u is a fixed point of f.
Using the rectangle inequality, we get

G, (s fu, fu) < sG,, (s fx,, fx,) + 5Gg, (fxy furs fur).
(36)

Letting n — o0 and using the continuity of f and (35), we
obtain

Gy, (1t fus, fu) < s lim Gy, (u, fxy )
+slim Gy, (fx, fu fu)  (37)

= Gy, (fu fu, fu).
Note that, from (21), as a(u, u, ) > 1, we have
sG,, (fu, fu, fu) < B (Gab (u,u, u)) M, (u,u,u), (38)
where, by (37),

M, (u,u,u)

= max {Gob (u, u,u),

Go, (u, fu, fu) Gy, (u> fu, fu) Gy, (u, fu, fu) }
1+5°G2 (fu, fu, fu)

<G, (u, fu, fu).
(39)
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Hence, as S(t) < 1 for all t € [0,00), we have sGab(fu,
fu, fu) < ng(u, fu, fu). Thus, by (37), we obtain that
sG,, (fu, fu, fu) = G, (u, fu, fu). But then, using (38), we
get that

G, (, fu, fu) = sG, (fu, fu, fu)

<p (Gah (u,u, u)) M, (u, u, u) (40)

1
< Gy, (w fu fu),

which is a contradiction. Hence, we have fu = u. Thus, uisa
fixed point of f. O

We replace condition (ii) in Theorem 26 by regularity of
the space X.

Theorem 27. Under the same hypotheses of Theorem 26,
instead of condition (ii), assume that whenever {x,} in X is a
sequence such that a(x,,, X,,, > X,.1) = 1 for alln e NU{0} and
X, — xasn — 00, onehasa(x,, x,x) > 1 foralln € NU{0}.
Then, f has a fixed point.

Proof. Repeating the proof of Theorem 26, we can construct
a sequence {x,} in X such that a(x,, x,,,,,x,,;) > 1 for all
n € NU{0}and x, — u € X for some u € X. Using the
assumption on X, we have a(x,,, u,u) > 1 for alln e N U {0}.
Now, we show that u = fu. By Lemma 21 and (35),

1
s [;Gob (u, fu, fu) - G,, (uu, H)]
< slim Squab (xn+1’ fu’ fu)
n— 00

(41)
< lim sup (/j’ (ng (x,o s u)) M, (x,, u, u))

< Liim supM, (x,, u,u),

S n—>o
where
Jim M (x,,, u, u)

lim max <|G0b (x,pu, 1),

(G, (% f 1)) [Goy (s fuis )]
L+ SG2, (fx, fur fu)

— nll’ngo max <|G0h (xpu,ut),

[Gab (xrv Xn+1> xn+1)] [Gob (u’ fu’ fu)]z
1+ G2, (1> fts 1)

max {G(,b (u, u,u), 0} =0 (see(25)and (35)).

(42)

Therefore, we deduce that G, (u, fu, fu) < 0. Hence, we have
u= fu. O
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A mapping ¢ : [0,00) — [0,00) is called a comparison
function if it is increasing and ¢"(t) — 0,asn — oo for any
t € [0,00) (see, e.g., [23, 24] for more details and examples).

Definition 28. A function ¢ : [0,00) — [0, 00) is said to be
a (c)-comparison function if

(¢;) ¢ is increasing,

(c,) there exists k, € N, a € (0, 1), and a convergent series
of nonnegative terms Y>, v such that ¢**'(t) <

ag®(t) + v, for k > ky and any t € [0, c0).

Later, Berinde [5] introduced the notion of (b)-
comparison function as a generalization of (c)-comparison
function.

Definition 29 (see [5]). Lets > 1 be areal number. A mapping
@ : [0,00) — [0,00) is called a (b)-comparison function if
the following conditions are fulfilled:

(1) ¢ is increasing;

(2) there exist k, € N, a € (0, 1), and a convergent series
of nonnegative terms Y5, v such that s**'¢**!(¢) <
askq)k(t) + vy for k > ky and any t € [0, 00).

Let ¥, be the class of all (b)-comparison functions ¢ :
[0,00) — [0,00). It is clear that the notion of (b)-
comparison function coincides with (¢)-comparison function
fors = 1.

Lemma 30 (see [25]). If ¢ : [0,00) — [0,00) is a (b)-
comparison function, then we have the following:

(1) the series Y 1oy s*@*(t) converges for any t € R;

(2) the function b, : [0,00) — [0, 00) defined by b,(t) =
Yoo s*oF(t), t € [0, 00), is increasing and continuous
at 0.

Remark 31. Ttis easy to see that if ¢ € ¥, then we have ¢(0) =
0 and ¢(t) < t for each t > 0 and ¢ is continuous at 0.

In the next example, we present a class of (b)-comparison
functions.

Example 32. Any function of the form y(¢) = In((a/s)t+1) for
all t € [0,00) where 0 < a < 1is a (b)-comparison function.

Proof. From the part (1) of Lemma 30, the necessary condi-
tion is that the series ) ;> s*¢"(t) converges for any t € R,.
But, for each t > 0 and k > 1, we have

0" (1) = o (¢ (1)

_ K a k-1 kA k-1
—sln<s(p (t)+l>£55go (t) (43)

So, according to the comparison test of the series, we should
have a < 1. On the other hand, we have

Sk+1(/)k+1 (t) _ Sk+1(P ((Pk (t))

_ k+1 a k
=s ln(s(p (t)+1> (44)

< sk“g(pk (t) = s*agp" (t).
s

Therefore, for any convergent series of nonnegative terms
Yo, Vi and each k > k, = 1, we have

ML) < askq)k () < ask(pk (£) + . (45)

5k+l(P
O

For example, for s = 2 and a = 1/2, the function y(t) =
In(t/4 + 1) is a (b)-comparison function.

Theorem 33. Let (X,G,,) be a G, -complete generalized b-
metric-like space and let f : X — X be a G-a-admissible
mapping. Suppose that

sac(x,y,2) Gy, (f%, fy, f2) <y (M (%, 3,2)),  (46)
forall x, y,z € X where y € ¥}, and

Ms (.X,)/,Z)

= max ‘[Ga,, (x,y,2),

Gy, (%%, fx) Gy, (3,3, f¥) Gy, (2,2, f2) } ‘

1+25°GS (fx, fy, fz)
(47)

Also, suppose that the following assertions hold:

(i) there exists x, € X such that a(x,, fxg, f>x,) = 1;
(ii)

(a) f is continuous and, for any sequence {x,,} in X
with a(x,,, x,,.1, X,,,,) = 1foralln e NU{0} such
that x, — xasn — 00, one has a(x,x,x) > 1
for all n € N U {0};

(b) assume that whenever {x,} in X is a sequence
such that a(x,,, x,,,,, x,,,) = 1 foralln € NU{0}
andx,, — xasn — 00,onehasa(x,,x,x) > 1
for all n € N U {0}.

Then, f has a fixed point.

Proof. Let x, € X be such that a(x,, fx,, f°x,) > 1. Define
a sequence {x,} by x,, = f"x, for all n € N. Since f is a G-a-
admissible mapping and a(xy, X;, X,) = a(xXq, fXq, f250) =
1, we deduce that a(x;,x,,x;) = a(fxg, fx, fx,) = L.
Continuing this process, we get a(x,,, x,,, 1, X,,,) = 1 for all
n € N U {0}.



If there exists n, € N such that x, = x, ,;, thenx, =
fx,, and so we have nothing to prove. Hence, for all n € N,
we assume that x,, # x,,,;.

Step I (Cauchyness of {x,}). As a(x,;, X,11>X,4) = 1 for all
n > 0, using condition (46), we obtain
Gy, (%> Xy 1> Xpi2)
< S0 (X1, Xy Xpy1) G, (%> Xy 1> X2
=sa (xn—l’ X xn+1) Gol,, (fxn—l’ e fxn+1)
<Y (M (%15 X0 X11)) -

Using Proposition 15(2) as x,, # x,,,,, we get

(48)

M (X1 Xy Xpy1)
= max {G% (%01 X X 11 ) »
(Gob (%1 Xo1s [Xp1)
X Gy, (%> Xps fX,)
xG, (X1 X1> fxn+1))
X(l + 252sz;,, (1> fXp fxn+1))_1}
= max {Gab (%1 X X1 »

(Gab (xn—l’ Xp-1> xn)

X Gob (xn’ Xn> xn+1)
XGab (xn+1’ Xn+1> xn+2))

-1
X(l + 252G¢27b (xn’ Xn+1> xn+2)) }

< max {Gab ('xn—l’ xn’ xn+1) >

ZSG% (xnfl’ Xn> xn+1) Gib (xn’ Xni1> xn+2) }
I+ ZSZG%% (xn’ xn+1’ xn+2)

= Gab (xnfl’ xn’ xnﬂ) .
(49)

Hence,
Gah (xn’ Xn+1> xn+2)

s SGU,, (xn>xn+1’xn+2) < 4 (Gob (xn—1>xn’ xn+1)) .

(50)
By induction, since x,, # x,,,,, we get that
G, (%> X 1> X12)
=y (Gab (xn—l’xn’xn+l))
(51)

< 1//2 (Gab (xan’xnfl’ xn))
<-- <yt (ng (xo,xl,xz)).

Let € > 0 be arbitrary. Then, there exists a natural number N
such that
[ee]

Z s'y" (Gab (x0>x1)x2)) < 2% (52)

n=N
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Let m > n > N. Then, by the rectangular inequality and
Proposition 15(2) as x,, # x,,.,, we get

Gab (xn’ Xm> xm)
< SGab (xn’ Xnt1> xn+1) + SZG% (x’”'l’ Kt x”+2)
oot sm_n_lGo,b (xm—l’ X xm)
<2s (SG% (xn’ Xn> xn+1) + SZGJ}; (x"+1’ Xnt1> x”+2)
oot sminilGob (xm—l’xmfl’xm))
< 2s (SG% (xn’ Xn+1> xn+2) + SZGUb (x'”'l’ Xn+2> x”+3)
+eeet+ sminilGab (xm—l’xm’ xm+1))

-2
< Zsmz sy (Gob (xg> X1, xz))
k=n

[oe)
< ZsZskwk (Gab (Xo’xpxz)) <e&
k=n
(53)

Consequently, {x,} is a G, -Cauchy sequence in X. Since
(X, G,,) is G, -complete, so there exists u € X such that

nh_,ngoGab (u’ Xp> xn) = m,LiglooG‘fh (xn’ X xm)

(54)
=G,, (u,u,u) = 0.

Step II. Now, we show that u is a fixed point of f. Suppose to
the contrary, that is, fu #u, then, we have G, (u, u, fu) > 0.
Let the part (a) of (ii) holds.
Using the rectangle inequality, we get

Gy (16 ) < 5Gy, (fit i 15,) 4 5Goy (it ).

(55)
Lettingn — oo and using the continuity of f, we get
G, (u,u, fu) < sG, (fu, fu, fu). (56)
From (46) and part (a) of condition (ii), we have
sG, (fu, fu, fu) <y (M, (u,u,u)), (57)

where, by using (56), we have

M, (u,u,u)
= max {Gab (u,u,u),

G, (w,u, fu) G, (u,u, fu) G, (u,u, fu) ’}
1+25°G2 (fu, fu, fu)

< G, (u,u, fu).
(58)

Hence, from properties of vy, sGg,(fu, fu, fu) <
Gob (u, u, fu). Thus, by (56), we obtain that

Gy, (u,u, fu) = sG, (fu, fu, fu). (59)
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Moreover, (57) yields that Gab(u, u, fu) < w(M,(u,u,u)) <
¥(G,, (u, u, fu)). This is impossible, according to our assump-
tions on y. Hence, we have fu = u. Thus, u is a fixed point of

Now, let part (b) of (ii) holds.

As {x,} is a sequence such that «(x,,, x,,, ;, X,,,,) = 1 forall
neNU{0}and x, — xasn — 00, we have a(x,,x,x) > 1
for alln € N U {0}.

Now, we show that u = fu. By (46), we have

SGO‘;, (fu> fu> xn) < sa (u> u, xn—l) Gab (fu’ fu’ fxn—l)

60
< v (M, (w10%,,)). 0

where

Ms (Ll, u, xn—l)

= max {G% (wu,x,_;),

[Gab (u’ u, fu)]ZGUb (xnfl’ Xn-1> fxnfl) }
1+ [5Gy, (fus fu fx,)]
(61)

Letting n — o0 in the above inequality and using (54) and
Lemma 21, we get

Jim M, (w,u,x,_;) =0. (62)

Again, taking the upper limit as # — co in (60) and using
(62) and Lemma 21, we obtain

1
s [;Go,, (u, fu, fu) - G,, (u,u, u)]
< slimsupG,, (x,,, fu, fu)
n— 00

< lim supy (M, (1,1, %, ,)) ()

=y (lim supM, (u, u, xn,1)>
=y (0) =0.
So, we get G, (u, fu, fu) = 0. Thatis, fu = u. O

Let (X,G,,,<) be a partially ordered G, -metric-like
space. We say that T is an increasing mapping on X if
Vxy € X, x < y = T(x) = T(y) [26]. Fixed point
theorems for monotone operators in ordered metric spaces
are widely investigated and have found various applications in
differential and integral equations (see [27-30] and references
therein). From the results proved above, we derive the
following new results in partially ordered G,,-metric-like
space.

Theorem 34. Let (X,G, ,<) be a partially ordered G, -
complete generalized b-metric-like space and let f : X — X
be an increasing mapping. Suppose that

sGy, (fx. 7, f2) < B(Gy, (% 3,2)) M, (%, 7,2), (64)

9
forall x,y,z € X with x < y < z, where
Ms ('x> Vs Z)
= max {G% (%, y,2),
Gy, (% fx, f%) Go, (3 3, ) Go, (2, f2, f2) }
1+5°G} (fx. f, f2)
(65)

Also, suppose that the following assertions hold:

(i) there exists x, € X such that x, < fx;

(ii) f is continuous or assume that whenever {x,} in X is
an increasing sequence such that x, — x asn — 00,
one has x,, < x for alln € N U {0}.

Then, f has a fixed point.
Proof. Definea : X x X x X — [0, +00) by

1, ifx<xy=<z (66)

o (% 9,2) = {

0, otherwise.

First, we prove that f is a triangular «-admissible mapping.
Hence, we assume that a(x, y, z) > 1. Therefore, we have x <
y = z. Since f is increasing, we get fx < fy < fz; thatis,
a(fx, fy, fz) = 1. Also, let a(x, y, y) > 1 and a(y, 2,2) > 1;
then x < y and y < z. Consequently, we deduce that x < z;
that is, a(x,2,2z) > 1. Thus, f is a triangular a-admissible
mapping. Since f satisfies (64) so, by the definition of o, we
have

5@ (3% ,2) Gy (5 S )
< B(G,, (x,3,2)) M, (x, ,2)

for all x,y,z € X. Therefore, f satisfies the contractive
condition (21). From (i), there exists x, € X such that
Xy = fxg; that is, a(xy, fxg, fx,) = 1. According to (ii), we
conclude that all the conditions of Theorems 26 and 27 are
satisfied and so f has a fixed point. O

(67)

Similarly, using Theorem 33, we can prove following
result.

Theorem 35. Let (X,G,, ,<) be an ordered G, -complete
generalized b-metric-like space and let f : X — X be an
increasing mapping. Suppose that

sGo, (f% fy, f2) <y (M, (%, ,2)), (68)
forallx,y,z € X withx < y < zwherey € ¥}, and
M, (x, y,2)

= max ‘[Ga,, (% »,2),

Gy, (%, %, fx) Gy, (3, 3, f) Gy, (2,2, f2) }
1+25°G2 (fx, fy, fz) '

(69)
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Also, suppose that the following assertions hold:

(i) there exists x, € X such that x, < fx;
(ii)

(a) f is continuous;

(b) assume that whenever {x,} in X is an increasing
sequence such that x, — x asn — 00, one has
x, < x foralln e NU {0}.

Then, f has a fixed point.

We conclude this section by presenting some examples
that illustrate our results.

Example 36. Let X = [0,(-1 + v/5)/2] be endowed with
the usual ordering on R. Define the generalized b-metric-like
function G,, given by

Gy, (%, y,2) = max {(x + y)z, (y+ z)z, (z + x)z} (70)

with s = 2. Consider the mapping f : X — X defined by
f(x) = (1/4)x Ve &+(14V5)/2)" and the function f € F
given by (t) = (1/2)e",t > 0, and p0) € [0,1/2). It
is easy to see that f is an increasing function on X. We
show that f is G, -continuous on X. By Proposition 20, it is
sufficient to show that f is G,, -sequentially continuous on X.
Let {x,} be a sequence in X such thatlim, _, .G, (x,,x,x) =
x, + x)%,4x%} =

x, = « < x. On the other

G, (x,x,x), so we have max{(lim,,_, o,

4x* and, equivalently, lim
hand, we have

nli—yn(lx)GGb (fxn’ f‘x’ fX)
= lim max {(fxn + fx)2,4f2x}

= lim max{i(x \/e*(anr(*lJrﬁ)/Z)2
n— 00 16 n
2
+x \/e*(’”(*HV?)/Z)Z) i

lxze—(x+(—1+x@)/2)z}

n— 00

4
= max {i ( lim x \/e*(limnaoox,ﬁ(—uﬁ)/z)z
16 \n—oo "

2
+x\/e—<x+<—1+®/z)z> i

}sze—(ﬁ(—lﬂ@)/z)z }

— max i (x\’ef(och(flJr\@)/Z)z
16
2
+x\/e-(x+<—1+®/2>2> i

lxze—(x+(—1+\@)/2)2]>
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_ }sze—(x+(—1+v5)/2)2

= G, (fx, fx, fx).
@)

So, f is G, -sequentially continuous on X.
For all elements x, y,z € X, and the fact that g(x) =

— 2 . . . .
x%e™ is an increasing function on X, we have

Go, (5, 7. £2)
= 2max {(fx+ fy)', (fy + f2)°, (2 + f2)°}

= 2 max { (l x\e-CeH(-1v5)/2)”
4
LY V5)/2)" ’
+1y e~ Ut (=14V5)/2) )
Loeorcrsvmpy?
4
1 2\
+Zz\/e—(z+<—1+ﬁ)/2) ,
1 2
2 o \e- @ 1v5)2)
4
1 2\’
+£_lx e_(x+(_1+\/§)/2)
<2 1 —(.x+y)2 1 —(;v+x)2 ’
< Z2max Zx\/e +Zy \/e , (72)
2
<ly\/ef(;v+2)2 + lz\/e,(ﬂy)z) ,
4 4
2
<lz\/ef(2+x)2 + lx\/e,(,ﬁz)z) },
4 4

—(x+y)?

~(y+2)’

é max {(x +y)e (y+z)e

2
(Z+x)26—(z+x) }

_ le- max{(x+y)%,(y+2)%(z+x)%}
8
X max {(x + ) (y+2) (2 + x)z}

l e max{(x+y)2,(y+z)2,(z+x)2}

2
X max {(x + y)z, (y+ Z)z, (z + x)z}

B(Gy, (5.7.2)) Gy, (x,3,2)
< B(Gy, (x,2.2)) M, (x,3.2).

IN

Hence, f satisfies all the assumptions of Theorem 34 and thus
it has a fixed point (which is u = 0).

Example 37. Let X = [0, 1] with the usual ordering on R.
Define the generalized b-metric-like function G,, given by
G,, (%, y,2) = max{(x + )%, (y + 2), (z + x)*} with s = 2.
Consider the mapping f : X — X defined by f(x) =
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In(1 + xe */4) and the function y € ¥, given by w(t) =
(1/8)t,t > 0. It is easy to see that f is increasing function.
Now, we show that f is a G, -continuous function on X.

Let {x,} be a sequence in X such that lim, _, ,,G,, (x,,

X, X) = G,, (x, x, x), so we have max{(lim X, +x)%,4x%) =

n— 00

x, = « < x. On the other hand, we

n—00""'n

4x* and, equally, lim
have

lim G, (fx, fx, fx)

i max (75, 37475}
max {<ln (1 + hmnqooxze“mnwoxn )
n(157)
4<ln <1 " xjx ))2} .
max {<ln<1 + ocj“) +ln(1 + xz‘x>>2’
4<ln (1 + xix >>2}
= 4<ln (1 + xi_x ))2

= G, (fx fx, fx).

So, f is G, -sequentially continuous on X.
For all elements x, y,z € X, we have

sG,, (fx, f, f2)

x —y a2
=2max{<ln<l+xe >+ln<1+&>>
4 4
- Lz N2
<ln<l+&>+ln(l+ ¢ >>,
4 4
-z —x 2
<ln<1+ze >+ln<1+xe )}
4 4
x “y\2 y z\2
szmax{<xe +ye ))(ye +ze ))
4 4 4 4
2 )
ze xe
+
(5 )|
max{(x + ) (y+2) (2 + x)z}

1
8
(G, (%, 7,2))
v (M, (x,y,2)).

>

I

IN

IN

(74)

Hence, f satisfies all the assumptions of Theorem 35 and thus
it has a fixed point (which is u = 0).

1

3. Application

In this section, we present an application of our results to
establish the existence of a solution to a periodic boundary
value problem (see [30, 31]).

Let X = C([0,T]) be the set of all real continuous
functions on [0,T]. We first endow X with the b-metric-like

0 (wv) = sup (ju(B)] + v (D))’ )
te(0,T]

for all u,v € X where p > 1 and then we endow it with the
generalized b-metric-like G, defined by

ng (u, v, w)

= max{ sup (Ju ()] + v (O)F,

te[0,T]
sup (|v(£)] + |w @®)])?, (76)
te[0,T]
sup (lw(1)] + |u(t)|)P} ,
te(0,T]

Clearly, (X, G,, ) is a complete generalized b-metric-like space
with parameter K = 27!, We equip C([0, T]) with a partial
order given by

x=<y iftx(t)<y(t) Vtel0,T]. (77)

Moreover, as in [30], it is proved that (C([0, T']), <) is regular;
that is, whenever {x,,} in X is an increasing sequence such that
x, — xasn — 00, we have x,, < x for alln € N U {0}.

Consider the first-order periodic boundary value prob-
lem

)= fltx@®),  x(0)=x(T), (78)

wheret € I = [0,T],withT > 0,and f: IxR — Risa
continuous function.

A lower solution for (78) is a function & € C'[0,T] such
that

o ()< flta), 9)
a(0) <a(l),

wheret € I = [0,T].
Assume that there exists A > 0 such that, for all x, y €
C[0,T], we have

|f (x @)+ Ax (8)| + | f (£, y (1) + Ay (1))
A
< F(jln (%(|x(t)| Fly @) + 1),

where 0 < a < 1. Then, the existence of a lower solution for
(78) provides the existence of a solution of (78).
Problem (78) can be rewritten as

x () +Ax(t) = £t x 1)+ Ax (£),

(80)

x(0) =x(T). @D
Consider
x )+ Ax(t) =6, () =F(t,x (1)), 82)
x(0) = x(T),
where t € I.
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Using variation of parameters formula, we get
x(t) =x(0)e ™+ Lt e_MH)(Sx (s)ds (83)
which yields

T
x(T)=x(0)e " + J e M98 _(s)ds. (84)
0

Since x(0) = x(T'), we get
T
x(0) [1 3 e—AT] _ e—).TJ eA(s)(Sx (s)ds (85)
0
or

£(0)=

T
— L 5. (s) ds. (86)

Substituting the value of x(0) in (83), we arrive at

T
x(t) = J G(t,s)8, (s)ds (87)
0
where
)\(TJrsft)
—_— 0<s<t<T
/\T > =T ==
G (t, S) = A(S t)l (88)
ﬁ) 0<t<s<T.

Now, define the operator S : C[0,T] — C[0,T] as
T
Sx (t) = J G (t,s)F(s,x(s)) ds. (89)
0

The mapping S is increasing [31]. Note that if u € C[0,T] isa
fixed point of S, then u € C'[0, T] is a solution of (78).
Let x, y,z € C[0, T]. Then, we have

2P 1Sx (1)) + Sy )]

= P71 [

<2F! LT |G (t, s)|
X [IF (s, x (s))| + |F (s, y (5))|] ds

T
p-1
<2 L G (9] 55

x dln(%(lx(tﬂ Hly ) + 1>ds

T
J G(t,s)F(s,x(s))ds
0

+

T
J G(t,s)F (s, y(s))ds
0
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a
< A{/ln(zz’j% (x,y)+ 1)

[t MTHs1) T A1)
X ds + J ——ds
| JO eAT -1 ¢ AT ]

AT _
= /\</ln (;—_lah (x, )+ 1)
X FA(eA; 1) < T+H)|:) * eMSt)LT)]
= A(/ln(zp ——0 (%, ) + 1)

e)L(T—t) + eA(Tft) _ 1):|

1 (e/\T
LA (M - 1)

= i/ln(%ab (x, y) + 1>

a
< dln (ﬁG% (X, 2 Z) + 1)

< {/ln(zp —M(x, y,z)+l)

X

(90)

Similarly,

2671 Sy (1)] + 1Sz (1)] < (]ln ——M (x,y,2) + 1)

(o1

2771 S ()] + [Sz (8)] < dln(%M(x,y, 2)+ 1),

where

M (x,y,2)

= max {G% (%, 1,2),

Gy, (%, 5%, 5%) G,, (,Sy,Sy) G,, (2,52, S2)
1 +22P- 1G2 (Sx, Sy, Sz)

(92)

Equivalently,

Sln(%M(x,y,z)+1>,
(2,,1 (x,9,2) + ) (93)

(21’ 1M(x,y,z)+ 1)

(227115 ()] + sy (1)])"
(277 sy ()] + 18z (1)) <1

(277 18x ()] + ISz (1)])” < In

which yields that

(x,y,2) + 1),

— a
2P g, (Sx,Sy) < In <FM
2P, (Sy,8z) < In (%M (%, y,2) + 1), (94)

2P g, (Sx,82) < In (2;1_,1M (x,y,2) + 1) .
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Finally, it is easy to obtain that
- a
277G, (Sx,Sy,82) < In (FM (x,3.2) + 1). (95)

Finally, since « is a lower solution for (78), so it is easy to show
that o < S(«) [31].

Hence, the hypotheses of Theorem 35 are satisfied, with
y(t) = In((a/2P7 1)t + 1) where 0 < a < 1. Hence, there exists
a fixed point X € C[0, T] such that SX = X which is a solution
to periodic boundary value problem (78).
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