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In this paper, the optimal position control of an underactuated robotic �nger is presented. Two trajectories, one for the proximal
and the other for the medial phalanx, are proposed in order to emulate the �nger’s �exion/extension movements. A Mandani
fuzzy control is proposed due to the lack of a precise dynamical model of the system. In order to obtain the control parameters, an
optimization strategy based on the membership functions is applied. Genetic algorithms (GA) are commonly used as an op-
timization method in diverse applications; however, in this case, the use of an autoadaptive di�erential evolution method is
proposed in order to obtain a superior convergence behavior. Simulations of the virtual prototype are carried out usingMATLAB/
Simulink software to display the trajectory tracking.�e results show that the maximum error between the proposed and obtained
trajectories is 3.1352E− 04 rad.

1. Introduction

Currently, control development for robotic hands continues
to be a topic of interest as researchers seek to recreate human
hand interaction with their environment when developing
prototypes and their interaction with the environment. �is
objective is di�cult to achieve due to the challenging nature
of controlling robotic hands, as they are relatively complex
mechatronic systems, which allow the user to hold, ma-
nipulate, and make use of di�erent objects and tools. As a
possible solution, some researchers have focused on im-
proving control tasks in order to generate a robust grasp to
reliably hold any object. In addition, the selection criteria of
actuators are an important factor because the size, weight,
and torque are variables that must be considered. Generally,
the control systems have a closed-loop structure, since they
seek to reduce errors so that the hand �nger can maintain a
speci�c desired position [1, 2], by using pneumatic [3–5] and

touch [6–8] sensors. In the literature, the most common
control schemes are the proportional-integral-derivative
(PID) control [9–11] and fuzzy control [12–14]. Controllers
based on fuzzy logic are an alternative solution that does not
require a mathematical model such as the PID [15]. A fuzzy
logic controller (FLC) is a heuristic approach composed of a
rules base proposed by the designer. �e FLC is a nonlinear
system with a knowledge based on fuzzy If-�en rules, and
in most cases, the fuzzy rules are proposed by an expert who
knows the process. In order to generate an output, mem-
bership functions are used to specify the degree of mem-
bership based on inputs. FLC must have a �exible behavior
to adapt to various situations, as well as being robust to
maintain the state of the desired output.�e implementation
of FLC is fairly common for solving problems, where (a) the
systems are partially de�ned, (b) systems with variables that
cannot be measured, and (c) system with large disturbances
[12, 14, 16]. �e principal fuzzy systems are Mandani and
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Takagi-Sugeno. In particular, the Mandani systems use
various techniques that allow fuzzy set membership function
tuning, such as genetic algorithms (GA) [16], adaptive neural
networks [17, 18], artificial bee colony optimization [19–21],
ant colony optimization [22–24], and evolutionary algo-
rithms [25–27].

Recently, fuzzy logic systems have been combined with
nonlinear approaches in order to obtain adaptive control
systems. Zhang et al. [28] proposed an FLC combined with
sliding-mode technique for controlling underactuated sys-
tems.)e authors provided a detailed stability analysis and a
numerical example of a nonspecified system to prove the
performance of the closed-loop system. However, the fuzzy
system is not optimized. Li et al. [29] combined a fuzzy logic
system with a back-stepping controller and a fuzzy state
observer to solve the tracking problem for a class of un-
certain nonlinear systems with unmodeled dynamics and
disturbances. )e stability of the systems is proven to be
input-to-state practically stable based on the small-gain
theorem, but the fuzzy logic system’s membership functions
are not optimized. Chang et al. [30] presented an adaptive
fuzzy tracking control for a class of pure feedback and
switched nonlinear systems with unknown gain.)e authors
did not provide details on the fuzzy system, such as the
procedure to determine the membership functions.

Optimization methods have helped with the complex
task of finding the appropriate parameter values and
structure for the fuzzy systems.)emost used algorithms for
fuzzy systems optimization are GA because they are con-
sidered as global optimizers, unlike derivative methods that
have the disadvantage of being prone to local minimum
stagnation. )ey are also considered as good optimizers
because of the existence of a population of potential solu-
tions, which may be used to discard several local minima,
meaning that there is a higher probability of finding the
global minimum [31]. Several proposals search for optimal
membership function parameters. For example, in [32] the
authors proposed a methodology for optimizing a fuzzy
controller for the speed of a permanent magnet synchronous
motor (PMSM) without expert knowledge. For this ap-
proach, 14 variables are used for the optimization, 5 for the
rule base parameters, 6 for the membership functions, and 3
for the scaling factors. A method for automatically gener-
ating fuzzy rules is presented for a system with 25 fuzzy rules
needed, and each rule needs 3 bits [33]. A fuzzy controller
applied to the wellhead back pressure control systems is
optimized through the membership function, control rules,
quantization, and scaling factors. )e parameters are error,
rate, scale, integral, and differential scale factors [34]. De-
spite this, there are other methods, such as the differential
evolution (DE), which have more advantages compared to
GA, one example being that they are more effective at
searching for numerical problems and finding the optimum
global solution [35, 36].

Motivated by the limitations of GA and other optimi-
zation methods, this paper presents the implementation of
an auto adaptive differential evolution algorithm (AADE)
[37] for optimizing the parameters of a fuzzy logic controller
(FLC) for an underactuated robotic finger in order to track

the trajectory that represents the flexion-extension finger
movements. )is optimization algorithm does not require
gradient information, which means that the optimization
problem does not need to be differentiable. In addition,
AADE is based on symmetrical discourses and fuzzy nor-
malized systems, and the parameters F (factor scale) and Cr
(crossover constant) show evidence of self-adaptation
during the evolution phase, unlike GA or classical differ-
ential evolution (DE) algorithms, increasing its power and
execution.

)e remainder of this paper is organized as follows. In
Section 1, a brief description of the prototype is presented. In
Section 2, the development of the FLC and the application of
AADE for parameter optimization is described. In Section 3,
details of the numerical implementation of the optimized
FLC are provided. Final remarks and some proposed future
works for this research are given in Section 4.

2. Materials and Methods

2.1. Prototype Design. )e robotic hand AMH-II (anthro-
pomorphic metamorphic hand), originally presented in [38],
has four fingers, all of which have three joints except for the
thumb. )e index, middle, and ring fingers are powered by
an underactuated mechanism in order to use a single motor,
thereby reducing the weight of the finger. )is configuration
allows the hand to perform the flexion/extension finger
movements. )e thumb has three joints, although only two
of them are used for the flexion/extension movements, while
the other one is used for the rotational movement. Details on
the design and kinematic analysis of the AMH-II are pre-
sented in [38]. )e virtual prototype is shown in Figure 1,
and as can be observed, each finger has two motors to
control movement. )e motors employed are Pololu
micromotors 100 :1360 RPM 6V, and the joints are con-
nected to these motors through a transmission system
comprised of a worm-gear mechanism. )e palm, unlike
other robotics hands, can be moved through a motor fixed at
the joint of the link, where the fingers are located and the
link, where the thumb is located (thumb motor). Table 1
shows the ranges of motion for flexion/extension move-
ments of the hand, corresponding to each finger joint
(except for the thumb). Similarly, the movement mea-
surements and ranges of the phalanges of the presented
prototype are also shown.

2.2. Implemented Controller. For the control system, a
Mandani fuzzy system was implemented, which includes a
micro-motor that controls the position of the fingers. )e
transfer function corresponding to the servo motor used was
obtained from [39].

G(s) �
V(s)

θ(s)
�

24
s
2

+ 24s + 10
, (1)

where V(s) is the input voltage applied to the motor, while
θ(s) is the rotor position in radians (rads) after applying a
specific voltage. )is value is used as feedback as shown in
the schematic diagram in Figure 2.
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�e reference block represents the desired trajectory,
while e and de are the error signal and its derivative, re-
spectively, which serve as inputs for the fuzzy logic controller
(FLC). �is block sends a voltage signal to the motor block
and its position is evaluated by the AADE so that the
membership function parameters are changed to reduce the
error.

�e fuzzy system has three variables, error (e) and error
change (c) are the inputs, and voltage (v) is the system
output. Moreover, the variables have their own discourse
universe range (Table 2) [37]. �e con�guration of the fuzzy

system is established in 9 rules as shown in Table 3. Symbols
NE, ZE, and PE are the linguistic terms for “negative error,”
“zero error,” and “positive error”; NC, ZC, and PC are the
linguistic terms for “negative change,” “zero change,” and

Proximal

Middle

Distal

(a)

Motor 1
Motor 2

Palm motor

Thumb motor

(b)

Figure 1: AMH-1: (a) phalanges of the hand and (b) motors’ position.

Table 1: Ranges for �exion/extension movements comparison.

Phalanx Length of the prototype (mm) Range of human hand movement Range of prototype movements
Distal (index and middle) 14 0–90° 0–85°
Middle (index and middle) 38.16 0–90° 0–75°
Proximal (index and middle) 41.89 0–90° 0–75°

Auto-Adaptive
Differential

Evolution (AADE)Fitness
function

Reference

e
+

-

de
dt FLC

Voltage
v (t)

DC Motor

Phalanx
24

s2 + 24s + 10

Θ

Θ (t)

Figure 2: Block diagram of the control system.

Table 2: Ranges for the fuzzy system.

Variable Discourse ranges
Position error e [0 , (π/2)]
Error change c [0 , (π/6)]
Voltage v [−8.19, 8.19]
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“positive chance”; and NV, ZV, and PV are the linguistic
terms for “negative voltage,” “zero voltage,” and “positive
voltage.”

�e fuzzy function proposed for the control is Gaussian
for ZV, ZE, and ZC. Sigmoid functions were used, as were Z
shape membership functions for NE, NC, and NV, and for
the rest of the variables, the S shape function was imple-
mented. �ree parameters are needed in order to de�ne a
Gaussian function, while 2 parameters are needed for sig-
moid functions. �e optimization problem is then de�ned
by 21 parameters. �e number of variables requires a
considerable amount of computation time and the use of
resources for the optimization algorithm. �erefore, the
following methodology was implemented in order to reduce
the number of variables.

2.3.Methodology. In [37] a method for reducing the number
of parameters for a fuzzy set control through the use of

symmetrical discourses was proposed. In basic terms, these
variables can distribute several sets to the positive part of the
discourse universe, and then re�ect them all in the negative
part. It is important to consider that not all the applications
can be addressed with these variables, as it is preferable that
every consequent action of the fuzzy system has the same
magnitude in both positive and negative directions. In this
case, the symmetrical discourses can be applied because the
servomotors have the same range for the output in the
positive and negative response.

For example, in Figure 3, di�erent membership func-
tions (MFs) are shown, all of which are symmetrical. �e
NULL or Zero set corresponding to the triangular function is
located exactly in the middle of the discourse universe (red
line) while the opening of the triangular function is varied,
denoted as d1e . In order to achieve a symmetric function, the
provided value is changed to negative and as a result, the
complete function is obtained. �e parameters of S function
are de�ned by d2e and d

3
e , and to obtain the Z function, the S

Table 3: Rules set.

Voltage NC ZC PC
Position error
NE NV(1) NV(2) PV(3)

ZE NV(4) ZV(5) PV(6)

PE PV(7) PV(8) PV(9)

NE ZE PE

1

e

NV ZV PV

1

v

NC ZC PC

1

c

d2
e

d2
c

d1
e d2

e d3
e d1

c d2
c d3

c d1
v d2

v d3
v

d1
c

d3
c

d1
e

d3
e

d3
v

d1
v

d2
v

Figure 3: Example of a symmetrical variables.
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parameter functions are reflected. With this approach, the
shape of the error sets can be defined with three parameters.
)is same approach is also applied for the change and
voltage variables. When applying this method to the pro-
posed problem, the number of parameters is reduced from
21 to 9.

In the methodology proposed in [37], GA was used as an
optimization method, while in this paper the auto adaptive
differential evolution proposed by [40] is used. )is is be-
cause it tends to converge to the solution in fewer iterations
(ten), and does not depend on the number of the population
as with GA. A description of the algorithm is presented in
the next section.

2.4. Autoadaptive Differential Evolution Algorithm (AADE).
)e AADE is a type of evolutionary algorithm used for
multidimensional real-valued functions. )is method does
not require gradient information, which means that the
optimization problem does not need to be differentiable. In
addition, it has an efficient memory utilization as well as
being effective and robust [36, 40–42]. )e main feature of
AADE is that parameters, such as F (factor scale) and Cr
(crossover constant), show evidence of self-adaptation
during an evolution phase, unlike GA or classical differential
evolution (DE) algorithms, increasing its power and exe-
cution. Figure 4 summarizes the AADE operation flow chart.
More specifically AADE’s basic strategy can be described as
shown below.

2.4.1. Population. )e population is a vector x defined as

x � x1, x2, . . . , xD( 􏼁, (2)

whereD is the dimensionality of the function f.)e variables
domains are defined by their lower and upper bounds: xj,low
and xj,upp; j ϵ {1, . . ., D}. )e initial population is selected
randomly between the lower (xj,low) and upper (xj,upp)
bounds defined for each variable xj.)e bounds are specified
according to the user.

2.4.2. Mutation. In every iteration (generation) G, DE uses
the mutation operation for producing the donor vector. For
each target vector xi, G, i� 1, 2, 3, . . ., NP, a mutant vector

vi � vi,1, vi,D􏽮 􏽯 is generated according to a specific mutation
scheme. )e most widely used in differential evolution are

DE

rand/1vi( 􏼁
� xr1 + F xr2 + xr3( 􏼁,

DE

best/1vi( 􏼁
� xbest + F xr1 + xr2( 􏼁,

DE

rand/2vi( 􏼁
� xr1 + F xr2 + xr3( 􏼁 + F xr4 + xr5( 􏼁,

(3)

where r1, r2, r3, r4, and r5 are random integers within the
range [1, NP] and are different to index i
(r1≠ r2≠ r3≠ r4≠ r5≠ i). F is a real and constant factor, which
controls the amplification of the differential variation.

2.4.3. Crossover. )e crossover operator is used to increase
the perturbed parameter vectors’ diversity. )e trial vector

Ui,G+1 � U1i,G+1, U1i,G+1, . . . , UDi,G+1􏼐 􏼑, (4)

is formed, where

Uji,G+1 �
Uji,G+1, if(rand b(j) ≤ CR) or j � rnbr(i),

xji,G, if(rand b(j) >CR) and j≠ rnbr(i),

⎧⎨

⎩ j � 1, 2, . . . , D, (5)

where rand b (j) is the jth evaluation of a uniform random
number generator within the range [0, 1], which has to be
determined by the user. rnbr (i) is a randomly chosen index
ϵ1, 2, . . ., D, which ensures that Ui,G+1 receives at least one
parameter from Ui,G+1.

2.4.4. Selection. )e trial vectorUi,G+1 is compared to the target
vector xi, G using the greedy criterion in order to decide whether
or not it should become amember of generationG + 1. If vector
Ui,G+1 yields a smaller cost function value than xi, G, thenxi,G+1 is
set to Ui,G+1; otherwise, the old value xi, G is retained.

Start

First generation
initialization

Fitness
evaluation

Stop
criteria

End

yes

no

Selection
method

Mutation

Crossover

Set new
values for F

and Cr

Figure 4: DE flow chart.
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2.4.5. F and Cr Value Adjust. �e estimation of the F and Cr
values depends on the following equations:

Fi+1,G � Fi+1,G − randi,j[0, 1]∗
f Ui,G( ) − f Yi,G( )

f Ui,G( )
 ,

Cri+1,G � Cri+1,G − randi,j[0, 1]∗
f Ui,G( ) − f Yi,G( )

f Ui,G( )
 ,

FG+1 � randi,j[0, 1]∗
max −min

max
( ),

CG+1 � randi,j[0, 1]∗
max −min

max
( ),

(6)

where Fi+1,G and Cri+1,G represent the estimation of the F and
Cr of each vector. f(Ui,G) is the new vector and f(Yi,G) is the
current vector. FG+1 andCG+1 are the new F andCR values for
the next generation. In addition, the max and min are values
obtained from an array that contains all Fi+1,G and Cri+1,G.

�e methodology implemented is as follows:

(1) Start AADE algorithm

(a) Set the initial parameters.
(b) Initialize all NP individuals with random

positions.
(c) Generate three and four individuals from the

current population randomly based on the
mutation used.

(d) Apply the mutation operator to form the donor
vector using equation (6).

(e) Apply the crossover operator in order to increase
diversity.

(f ) Calculate the �tness of each individual.

(g) Calculate the new F and Cr values.

(2) Once the best individual is found, every parameter
must be assigned to its corresponding set.

(3) Evaluate the fuzzy system.

2.5. Simulations and Results

2.5.1. Experimental Con�guration. �e numerical experi-
ments were carried out on a Legion Y540-15IRH laptop with
Core i7 9th gen processor, 16GB RAM, and a clock speed of
2.6GHz with turbo boost of up to 4.5GHz.

Considering the range of �exion/extension movements
generated by the human �nger, a middle part of a sinusoidal
trajectory was proposed as a reference for the position
control. Due to the robotic �nger design con�guration, the
amplitude of the function is 1.4835 rad (85°) for the proximal
phalanx and 1.3962 rad (80°) for the medial phalanx. �e
equation of the mean squared error (MSE) is used in order to
measure the performance of the fuzzy controller. �e goal
function is as follows:

min
1
N
∑
N

k�1
[x(k) − y(k)]2 +M1h1





, (7)

where h1 (x)� 0 ⟶ the values are in the range.h1 (x)� 1
⟶ otherwise.

In equation (1), x (k) represents the value at time k, y (k)
is the value produced by the system at time k, and N rep-
resents the total number of samples. M1 is a constant of a
very high value that penalize the goal function when the
constraint fails.

�e optimization problem is de�ned by

(i) Design variables X� [ d1e , d2e , d3e , d1c , d2c , d3c , d1v , d2v
, d3v ].

-K- +
-

∆u
∆t ∆u
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Figure 5: Block diagram of the �nger control system.
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(ii) Limits of the variables: d1
e , d2

e , d3
e ∈ [0, (π/2)]; d1

c , d2
c ,

d3
c ∈ [0, (π/6)]; and d1

v , d2
v, d3

v ∈ [−8.16, 8.16].
(iii) Parameters of the algorithm:

Population size� 50.

Generation limit� 150.
F� 0.5.
Crossover rate� 0.2.

Table 4: Parameters for set distribution with different mutation strategies.

Mutation strategy d1e d2e d3e d1c d2c d3c d1v d2v d3v
DE/rand/1 0.5677 0.0873 0.0014 0.1883 0.3423 0.1870 0.9259 5.7279 7.6088
DE/best/1 0.7120 0.0957 0.0053 0.2691 0.4952 0.2781 3.6487 4.0871 6.5742
DE/rand/2 0.3860 0.0406 0.0180 0.2568 0.2537 0.3045 0.3248 6.003 6.6644

Table 5: Comparison of different mutations strategies in terms of error value.

Mutation strategy Fitness Pha1 Fitness Pha2
DE/rand/1 3.1352E− 04 2.7109E− 04
DE/best/1 7.2511E− 04 6.4323E− 04
DE/rand/2 4.1357E− 04 4.0554E− 04
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Figure 6: Membership function obtained for inputs: (a) error and (b) change.
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�e proposed optimization algorithm was implemented
using Matlab software, while the parallel mode was used
because it increases the convergence speed, thereby dem-
onstrating another advantage of using this approach. �e
algorithm was iterated using the mutation strategies from
equations (5)–(7), with 30 total iterations, and 10 per each
mutation strategy. In order to evaluate the proposed fuzzy
control, some simulations were carried out using the
Simulink environment. For simulation purposes, a �nger
from the hand model presented in Figure 1 was exported to
Simmechanics, and the control was implemented in two
parts: one for the proximal phalanx and another for the
middle phalanx. �is is because the distal and middle
phalanxes are connected through a link resulting in a
subactuated mechanism. Only one �nger is simulated be-
cause it is the same movement for the other �ngers. �e
block diagram is shown in Figure 5.

3. Results and Discussion

Table 4 shows the best performance solutions for the �nger
control with the three used mutation strategies.

�e �tness of each solution is shown in Table 5. Pha1 and
Pha2 represent the proximal and middle phalanges, re-
spectively. All solutions are acceptable because the error is
very close to zero, although the best solution is presented by
DE/rand/1, followed by DE/rand/2 and DE/best/1.

Using DE/rand/1 solution, the input and output values
of the fuzzy system are de�ned. Figures 6 and 7 show the
membership functions and Figure 8 shows the 3D surface
viewer of the fuzzy logic controller to get a perspective of
rules design.

�e results of the virtual prototype and comparison
between the desired trajectory and the trajectory by the
control of each phalanx are shown in Figures 9 to 11.
Figure 9 shows the virtual con�guration of the robotic
underactuated �nger, while the position of the distal phalanx
depends on the movement of the middle phalanx, which is
transmitted by the P bar.

Based on Figure 10, DTPP represents the desired tra-
jectory of the proximal phalanx and OTPP is the obtained
trajectory. �e maximum rotation value of the proximal
phalanx is 1.4835 rad due to the con�guration of the

mechanism. As can be seen in the �nger’s �nal position, the
base is represented by the B block and the movement by the
A block. �e time simulation is 3.2 s, and the OTPP con-
verges to DTPP with an error of 3.1352E− 04 rad. �is error
is more visible in two intervals, from 1.3 to 2 and from 2.5 to
3.2. Between the trajectories, there are oscillations that
cannot be appreciated because they are very small (1
E− 03 rad) and appear in the interval from 0 to 1.4 s.

Referring to the results of Figure 11, DTMP and OTMP
are the desired and obtained trajectories of the medial
phalanx. �e maximum rotation value is 1.3089 rad due to
the �nger structure. Compared to the human �nger range
there is a di�erence of 16.66%, meaning that the �nger is not
able to grasp small cylindrical objects (diameter of less than
60mm). �e error between trajectories is 2.7109E− 04 rad.

According to analysis of its behavior, the controller
presents a fast response due to the extremely small error
tolerance (0.1 approx.), based on the membership function
intersection (Figure 6(a)). Under the same conditions and
modifying only the d3e values, the system response speed
decreases. On the other hand, after only modifying the
parameter d3c to values less than 0.2, the system does not
present changes. It means that the motor does not change
the direction of rotation and its velocity is the same under
any condition. In this way, the values for d1e , d

2
e , and d

3
e a�ect

the response speed of the controller, the signal to change
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Figure 7: Membership function obtained for the output.
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rotation of themotor is de�ned by the parameters d1c , d2c , and
d3c . �e rest of the parameters de�ne the motor rotation
speed.

Table 6 shows a comparison between the present work
and some results previously reported in the literature, and it
can be observed that almost all of the �nger models are
underactuated. �e most common technique for controlling
the position of the robotic �nger is the PID controller with
some variants. A fuzzy controller is also used but the

parameters are manually selected. Based on information in
the table, in some cases, the �nger dynamic model is pre-
sented in order to control the three joints. In [10, 12, 14], the
authors report a step response with a steady-state error (SSE)
of 0, although in [10] the time response is more than 10 sec.
On the other hand, the numerical results presented in
[12, 14] show settling times of less than 5 sec, but the control
parameters are manually obtained. Tasar et al. [11] used a
PID controller for a regulation problem of a full-actuated

(a)

A

P

B

(b)

Figure 9: Finger position: (a) initial and (b) �nal.
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Figure 10: Comparison of desired and obtained trajectory for proximal phalanx.
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robotic �nger. A maximum overshoot of 14.902° was
achieved for a reference of 90° for each actuated phalanx.
Sinusoidal trajectories are proposed in [43] and di�erent
control techniques are presented. As in previous cases, the
control parameters are tuned manually. �e considered
trajectory is a sinusoidal function with an amplitude range
[0–(−1)] rad in PID and SMC (sliding model control) cases,
which is very similar to what is reported in this work but
with a larger error.�emain di�erence with our work is that
the controller parameters are automatically adjusted, and the
obtained error is the smallest in all the presented trajectories.

Regarding the optimization of the fuzzy control, other
works have presented methods that, in some cases, optimize
more than 10 variables [29]. Moreover, the most common
algorithm is GA, although one of the main problems with
this type of algorithm is that it is largely dependent on the
population size. Moreover, the selection of the initial pa-
rameters represents a challenge because selecting the wrong
values can lead to the algorithm not converging. In order to
avoid this problem, the methods applied in this paper show

that it is possible to reduce the number of parameters,
considering that the fuzzy set is symmetrical. Instead of
using a GA algorithm, it was decided to implement an
AADE algorithm because the control parameters F and CR
are automatic and the time convergence is smaller compared
to GA. Another advantage is that the AADE has the potential
to generate a fuzzy control with no previous knowledge of
the system.

4. Conclusion

When removing the empiricism of a fuzzy controller, a
nonlinear problem with several dimensions appears, which
can be solved by focusing on the membership function to
generate a desired control. In this paper, the auto adaptive
di�erential evolution algorithmwas implemented because of
the limitations of other methods such as genetic algorithms,
arti�cial bee colonies, or ant colonies. �e chosen method
performs a sophisticated local search through the recom-
bination method, and the way in which the mutated method

1.4

1.2

0.8

0.6

0.4

0.2

0

1

Po
sit

io
n 

(r
ad

)

0 0.5 1.5 2 2.5 31
Time (S)

Medial phalanx trajectory

DTMP
OTMP

Figure 11: Comparison of desired and obtained trajectory for medial phalanx.

Table 6: Comparison between di�erent control strategies.

Author Control Finger dynamic model Trajectories Error
Calderon et al. [10] PI No Step 17mm SSE 0
Tasar et al. [11] PID Yes Step (for three phalanxes) SSE 0.255 deg (max)
Ghazali et al. [14] Fuzzy-PID No Step 90 deg SSE 0 deg
Ghazali et al. [14] Fuzzy No Step 90 deg SSE 0.12 deg
Raković et al. [12] Fuzzy No Step 100 rad SSE 0 rad
Jalani et al. [43] PID Yes Sinusoidal [0–(−1)] rad 0.0159 rad
Jalani et al. [43] Adaptive Yes Sinusoidal [0–4] rad 0.0791 rad
Jalani et al. [43] SMC Yes Sinusoidal [0–(−1)] rad 0.0167 rad
Our proposal Optimized fuzzy No Sinusoidal [0–1.483] rad 3.1352E− 04 rad
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vector is calculated means that the algorithm depends less on
an initial position. Furthermore, another advantage is that F
and Cr values are calculated automatically. Additionally, the
use of the symmetrical discourses is different to other
methods for finding the membership function mentioned in
the introduction. Specific information about the system is
neither not needed nor necessary to work with all the
variables shown in the proposed problem. At the start of the
process, it was composed of 21 variables, and before applying
the method, the variables were reduced to 9. With the
obtained vector, the MFs were generated to the fuzzy
control. From the simulation, the obtained results proved
that the control is able to perform flexion-extension
movements following the proposed trajectory with an error
of almost zero, despite not having a mathematical model of
the robotic hand. It would be very difficult to achieve these
results by selecting the controller parameters empirically.

)e following step in this research is to prove experi-
mentally the effectiveness of the proposed controller by
carrying out tests on the physical prototype reported in [38].
In addition, future studies will focus on the optimization of
membership functions to generate movement in the palm
and doing fingers able to perform different kinds of grasps to
evaluate the efficiency of this type of control scheme. An-
other interesting topic to be addressed in future works is the
consideration of type-3 fuzzy logic systems (T3FLS) to
improve the control system performance. T3FLS have been
proposed to handle an increased number of uncertainties
[44]. However, their main disadvantages are that the
structure of the fuzzy sets has been assumed to be constant
and themembership computation is complicated. Moreover,
studies on the parameter optimization of T3FLS have been
scarcely reported in literature [45]. )erefore, combining
AADE algorithms with T3FLS could be a promising alter-
native to provide robustness and improve the fuzzy logic
controller performance.
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Aiming at the chattering problem of traditional sliding mode observer (SMO) in surface-mounted permanent magnet syn-
chronous motor (SPMSM) control system when estimating rotor position and speed and adaptive sliding mode observer (ASMO)
is designed in this paper..e observer can reduce chattering and avoid the introduction of the low-pass filter, which simplifies the
system structure, considering the difficulty in determining the sliding mode gain of the existing sliding mode observer, and an
adaptive law is designed to adjust the sliding mode gain with the change of the back electromotive force, to meet the operation
requirements of the system and improve the control accuracy of the sensorless control system. Finally, the simulation is built
through Matlab/Simulink platform. It is proved that the proposed control strategy can satisfy the system’s accuracy and si-
multaneously reduce the chattering and solve the problem that the gain is difficult to determine.

1. Introduction

Surface-mounted permanent magnet synchronous motor
has obvious advantages of high mechanical efficiency and
high power factor [1], so it is widely used in wind power
generation systems. Because wind turbines often operate in
harsh environments, mechanical sensors’ installation and
use will increase the system’s cost and reduce its reliability
[2]. .erefore, speed sensorless control has become a re-
search hotspot. At present, the commonly used algorithms
include sliding mode observer, model reference adaptive
control [3–7], extended Kalman filter [8–11], and artificial
intelligence method [12–14]. .e sliding mode observer has
been widely used in speed sensorless SPMSM rotor position
and speed estimation due to its insensitivity to disturbance
and parameters, fast response, and other advantages [15].
However, the slidingmode control structure’s characteristics
bring strong robustness and cause system chattering, which
hinders its application in practical engineering. .erefore,
the low-pass filter introduced in the traditional SMO al-
gorithm filters the back EMF. Because the cutoff frequency
of the traditional low-pass filter is fixed, the ripple com-
ponent in the back EMF cannot be eliminated, which se-
riously affects the estimation accuracy of rotor position [16].

To obtain a smooth estimation of the back EMF and SMO
based on a variable cutoff frequency low-pass filter and a
modified back EMF, the observer is proposed in the liter-
ature [17]. .e SMO can effectively suppress the high fre-
quency and ripple components of the back EMF. However,
the filter’s introduction causes the system’s phase delay to a
certain extent, and the two-stage filtering structure also
causes the system’s design complexity. It is not easy to
implement. In literature [18], a sliding mode observer with a
sinusoidal saturation function is designed to reduce chat-
tering. However, because the saturated boundary layer is
closely related to the approaching velocity and buffeting,
how to choose a reasonable boundary layer is a big problem.
In literature [19, 20], a sliding mode observer with improved
reaching law is proposed to reduce the chattering caused by
sliding mode control. Although the purpose is achieved in
some cases, the method will be invalid when the control
deviation changes to zero, and the sliding mode gain is also
zero.

To avoid introducing a low-pass filter, a new type of
sliding mode observer was designed in the literature [21].
.e hybrid nonsingular sliding mode terminal sliding
surface was applied to the traditional linear sliding mode
surface, which reduced the phase lag and chattering
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problems. However, the optimization of hybrid non-
singular sliding mode design is complicated, and the
hardware requirements are relatively high, so it is not easy
to realize. Literature [22–25] proposed a sliding mode
observer based on the super-twisting algorithm. Although
the scheme can effectively suppress sliding mode chatter-
ing, it is not easy to choose a good sliding mode gain. .e
sliding mode gain’s stability condition is related to the
control function error. Literature [26] proposed a neural
network estimation strategy that is used to obtain sliding
mode gain. Although this scheme can weaken chattering,
the designed variable parameters make the system more
complex. Literature [27] proposed a sliding mode observer
based on fuzzy radial basis function (RBF) neural network
to adjust sliding mode gain to better adapt to external
disturbances parameter changes. It needs experience in
practice and is difficult to master. .e super twisting sliding
mode observer based on the adaptive algorithm avoids the
introduction of complex neural network on the basis of
solving the difficulty in determining the sliding mode gain,
but only limited time to enter the sliding mode variable
contains households within the neighborhood of plaster-
ing, damaging the convergence precision of the algorithm
[28].

To avoid the above problems, a sliding mode observer
based on the adaptive algorithm is proposed in this paper.
.e observer has the characteristics of a first-order low-pass
filter, which can effectively filter the high-frequency sliding
mode noise contained in the estimated back EMF without
adding a low-pass filter. Simultaneously, an adaptive gain
law varying with the back EMF is designed to adjust the
observer’s parameters online, which solves excessive gain
and effectively suppresses the system’s chattering. Finally,
the information on rotor position and speed is estimated by
using the arctangent function.

2. Traditional SMO

In the αβ two-phase stationary coordinate system, the
mathematical model of SPMSM can be expressed as [17]

_iα � −
Rs

L
iα +

uα
L

−
zα
L

_iβ � −
Rs

L
iβ +

uβ
L

−
zβ
L

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

, (1)

where uα, uβ iα, iβ are the stator currents and voltages of α-β
axis, respectively; Rs is the stator resistance; L is the stator
inductance; zα, zβ are the back EMFs of the α-β axis; and the
expression is

zα � −ψfωe sin θe

zβ � ωeψf cos θe
􏼩, (2)

where ψf is the rotor flux linkage, θe is the rotor position
angle, and ωe is the electric angular velocity of the rotor.

According to (1), the SPMSM sliding mode observer can
be constructed.

_􏽢iα � −
Rs

L
􏽢iα +

uα
L

−
hα
L

_􏽢iβ � −
Rs

L
􏽢iβ +

uβ
L

−
hβ
L

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

, (3)

where 􏽢iα, 􏽢iβ are the α-β axis estimation values of the stator
current.

.e stator current error system can be obtained by
subtracting (1) from (3).

_iα � −
Rs

L
iα −

zα − hα
L

_iβ � −
Rs

L
iβ −

zβ − hβ
L

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

, (4)

where iα � 􏽢iα − iα and iβ � 􏽢iβ − iβ are the errors between the
observed current value and the actual current value. hα, hβ
are the SMO control laws, and the expression is

hα � ksign(iα)

hβ � ksign(iβ)

⎫⎬

⎭, (5)

where k is the sliding mode gain, and k>max(|zα|, |zβ|).
When the system state reaches the sliding mode surface

and enters the sliding mode, the system state remains on the
sliding mode surface and satisfies iα � 0, iβ � 0, and
according to (5), it can be obtained.

zα � hα � ksign(iα)

zβ � hβ � ksign(iβ)

⎫⎬

⎭. (6)

Equation (6) contains a nonlinear switching function,
which will cause high-frequency chattering of the system,
and is not conducive to extracting continuous estimation of
the back EMFs. .erefore, the first-order LPFs should be
introduced for filtering processing, namely:

􏽢zα �
wc

S + wc
zα

􏽢zβ �
wc

S + wc
zα

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

, (7)

where 􏽢zα, 􏽢zβ is the estimated value of the back EMFs; S is a
complex frequency; wc is the cutoff frequency of LPFs. Due
to the introduction of a first-order low-pass filter, and to
obtain a better filtering effect, a lower cutoff frequency
should be selected, but this will lead to a large phase lag in the
estimation of the back electromotive force, which requires
phase compensation for the rotor position. .e estimated
value of rotor position and speed after compensation is

􏽢θe � −arctan
􏽢zα
􏽢zβ

􏼠 􏼡 + arctan
􏽢ωe

wc
􏼠 􏼡

􏽢ωe �
􏽢z
2α + 􏽢z

2β􏼐 􏼑
1/2

ψf

⎫⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

. (8)
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3. Design of the ASMO

To accurately estimate the SPMSM sensorless control system
of the rotor position and speed, and to avoid the intro-
duction of the first-order low-pass filter, this paper proposes
a sliding mode observer based on the adaptive algorithm,
which weakens the chattering phenomenon of the system
and reduces LPFs estimation error.

3.1. ASMO. For the SPMSM model (1) and (2), the SMO is
constructed [29, 30].
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L
iα +

uα
L

−
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L
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1/2sign(iα)
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−
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1/2sign(iβ)
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􏽢zβ � 􏽚 Nsign(iβ)dt
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, (9)

where 􏽢iα, 􏽢iβ are the α-β axis estimated currents; 􏽢zα, 􏽢zβ are
the α-β axis estimated back EMFs; M, N are the sliding
mode gains.

.e stator current error system can be obtained by
subtracting (1) from (9).
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· sign(iα)
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· sign(iα)
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, (10)

where zα � 􏽢zα − zα and zβ � 􏽢zβ − zβ are the errors between
the observed voltage value and the actual voltage value.

When the system state reaches the sliding mode surface
and enters the sliding mode, the system state remains on the
sliding mode surface and satisfies iα � 0, iβ � 0, and
according to (9), it can be obtained.

􏽢zα

􏽢zβ
􏼢 􏼣 �

zα

zβ
􏼢 􏼣 �

􏽚 Nsign(iα)dt

􏽚 Nsign(iβ)dt

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (11)

From (11), it can be seen that the estimated back EMFs is
a continuous function for the partial derivative of time
because of the integral term. .erefore, it is unnecessary to
introduce first-order LPF for filtering, and the phase delay of
the estimated value of the back EMFs is not caused, which
further simplifies the system structure.

To prove the stability of STA-SMO, the Lyapunov
function is

G1 �
1
2

iα2 + iβ2􏼐 􏼑. (12)

.e derivative of (12) can be obtained.
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When _G1< 0, the observed current of SMO converges in
finite time. So M should be designed to be [30].
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where sup represents the upper bound.
When the current of the system converges in finite time,

namely, _iα � iα � _iβ � iβ � 0, from (10) that

sign(iα) � −
zα

M · L · |iα|
1/2,

sign(iβ) � −
zβ

M · L · |iβ|
1/2.
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(15)

By combining (11) and (15), we get
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M · L · |iα|
1/2,

_􏽢zβ � −
N · zβ

M · L · |iβ|
1/2.
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(16)

By deriving (2), we get

_zα � −ψfωe cos θe � −zβωe

_zβ � −ωeψfsinθe �� zαωe
􏼩. (17)

(16) and (17) can be subtracted:
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M · L · |iα|
1/2 + ωe · zβ,
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(18)

Similarly, the Lyapunov function can define as

G2 �
1
2

zα2 + zβ2􏼐 􏼑. (19)

By deriving (19), we get

_G2 � −N
z
2α

M · L · |iα|
1/2 +

z
2β

M · L · |iβ|
1/2􏼢 􏼣

+ ωe · zβ · zα − ωe · zα · zβ.

(20)

To ensure the convergence of SMO, namely, G2< 0, N

should be designed as

Mathematical Problems in Engineering 3



N> sup
M · L · ωe · (zβ · zα − zα · zβ)

z
2α/|iα|
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􏼐 􏼑 + z
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⎫⎬
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3.2. Design and Analysis of Adaptive Law. Compared with
the traditional sliding mode control, the algorithm’s control
structure is simple and easy to implement. However, it can
be seen from (9) and (15) that the observer’s stability
condition requires that the sliding mode gain is more sig-
nificant than the supremum of a function about the control
error. However, the control error cannot be determined in
the existing system, so the system’s stability condition
cannot directly determine the sliding mode’s selection range.
So, in reality, we often try to choose more extensive pa-
rameters, which leads to the increase of system chattering,
and even the system cannot usually run. When the sliding
mode variable is near the sliding mode surface, the chat-
tering of the system is increased due to the overestimation of
the control gain, thus affecting the stability of the system. At

the same time, in order to prevent the sliding mode variable
away from the sliding mode surface, because the control gain
estimate is too small, the system rapidity is affected.

.erefore, in this paper, M and N are designed as sliding
mode gains that change with the change of the back EMF,
namely,

M � λ1 + ζ1
�������
􏽢zα + 􏽢zβ

􏽰
,

N � λ2 + ζ2
�������
􏽢zα + 􏽢zβ

􏽰
,

⎧⎨

⎩ (22)

where λ1 and λ2 are both small numbers greater than 0; ζ1
and ζ2 are adaptive coefficients more significant than 0, and
it is shown in Figure 1.

Stability analysis is given as follows.
From (13), −Rs/L(i

2α + i
2β) and −M(|iα|3/2 + |iβ|3/2) are

terms that are always less than 0.
.erefore, a sufficient condition for the existence of (15)

is constructed as follows:
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(23)

Since −Rs/L(i
2α + i

2β)< 0, −M(|iα|3/2 + |iβ|3/2)< 0, it
can be deduced that the condition satisfying _G1< 0 is as
follows:

N>max(|zα|, |zβ|) � |ωe|ψf �

�������
􏽢zα + 􏽢zβ

􏽱

. (24)

.erefore, N can be designed as

N � λ2 + ζ2
�������
􏽢zα + 􏽢zβ

􏽱

. (25)

From (21), we can know N> sup M{ }. According to (21),
M can be designed as

M � λ1 + ζ1
�������
􏽢zα + 􏽢zβ

􏽱

, (26)

where λ1 is less than λ2; ζ1 is less than ζ2.

4. Simulation

.e vector control strategy id� 0 is adopted to establish the
system simulation model based on MATLAB/Simulink to
realize the sensorless control of SPMSM. Its principal block
diagram is shown in Figure 2. Rated motor parameters used
in the simulation are shown in Table 1.

.e parameters of SMO are k� 200. .e STA-SMO
parameter configuration isM� 5000, N� 35000. .e ASMO
parameter configuration is λ1 � 235, ζ1 � 65, λ2 � 3800,
ζ2 � 450.

.e initial speed of the system is 600 r/min, and no load
is started. At 0.05 s, 5N m load torque is applied; at 0.1 s, the
speed changes to 1000 r/min; in the first variable speed stable
operation stage (0.15 s), the load torque changes to 10N m;

at 0.2 s, the speed changes to 300 r/min; in the second
variable speed stable operation stage (0.25 s), the load torque
changes to 15N·m.

From Figures 3 and 4 the response speed of STA-SMO
and ASMO is faster than that of SMO, no matter in the
motor start-up stage, speed shift stage, and load torque
mutation stage. Especially at 0.2 s, when the speed decreases
from 1000 r/min to 300 r/min, the SMO speed waveform has
an obvious lag phenomenon due to introducing a low-pass
filter. At 0.25 s, the torque load suddenly increases to 15N·m,
and the phenomenon of the rapid drop of SMO is apparent.

It can be seen that SMO is not as good as the previous
two control strategies when dealing with external
disturbances.

From Figures 3–5 and Table 2, compared with traditional
SMO, the speed errors of ASMO at different speed stages are
2.65%, 3.51%, and 3.5% of SMO, respectively. Compared
with STA-SMO, ASMO’s speed errors at different speeds are
72.581%, 92.857%, and 59.231% of STA-SMO, respectively.

From the above results and the simulation figures
analysis, it can be seen that the speed error of the three
control strategies is proportional to the speed. SMO has the
largest chattering and speed error, and the response speed is
slow. Compared with SMO, STA-SMO, because of the
function of integral function, can well suppress sliding mode
chattering, reduce the rotation speed error, avoid the phe-
nomenon of rotation speed waveform lag caused by the
introduction of the low-pass filter, and enhance the response
speed of the system. However, because the sliding mode gain
is a fixed value, it cannot meet high precision speed regu-
lation requirements..e slidingmode gain of the ASMO can
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be adjusted online with speed, and the speed error and the
speed waveform chattering can be minimized. .e problem
of excessive gain can be solved well, and the robustness of the
system is enhanced.

From Table 3, the rotor position errors of ASMO at
different speed segments are 29.13%, 4.69%, and 4% of SMO,
respectively. Compared with STA-SMO, ASMO’s rotor
position errors at different speeds are 75%, 96.83%, and
55.56% of STA-SMO, respectively.

From Figures 6–9 and the analysis of the above results,
the estimated rotor position waveform of SMO has obvious
chattering. When the speed drops to 300 r/min, the

chattering is further aggravated, and the rotor position error
is the largest, which seriously affects the system control
accuracy. Compared with SMO, the rotor position error of
STA-SMO is small, and the chattering phenomenon is
weakened, but because its sliding mode gain is a fixed value
when the speed is 300 r/min, the rotor position error in-
creases, which is not conducive to the system high precision
control needs. Compared with the above two control
strategies, the ASMO rotor position error is the smallest, and
under different disturbances, the estimated rotor position is
the same as the actual rotor position. It satisfies the high
precision control requirements of the system.
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Figure 2: SPMSM speed sensor-less control block diagram of ASMO.

Table 1: Parameters of the SPMSM.

Quantity Name of unit Symbol
Rs 2.875 Ω
ψf 0.175 Wb
L 8.5e−3 H
DC bus voltage 311 V
Rotational inertia 0.003 kg m2

Rated power 2.3 kW
Rated speed 1000 r/min
Rated torque 15 N·m
Pole pairs numbers 4

uαβ iαβ

iαβ

iαβ

Zαβ

ωe

θe

dt
dθe

Zβ

Zα

Zα+ZβSPMSM

ASMO

N . sign( )dt

Rotor position and
speed estimation

arctan –
+

– –

iαβ
–SMO

Eq. (9)

M=λ2+ζ 2

Zα+ZβM=λ1+ζ1

Figure 1: Block diagram of ASMO.
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Table 2: Speed error.

Results SMO STA-SMO ASMO Symbol
Error (a) 17 0.62 0.45 r/min
Error (b) 18.5 0.7 0.65 r/min
Error (c) 11 0.65 0.385 r/min

Table 3: Rotor position error.

Results SMO STA-SMO ASMO Symbol
Error (a) 0.00206 0.0008 0.0006 Deg
Error (b) 0.013 0.00063 0.00061 Deg
Error (c) 0.025 0.0018 0.001 Deg
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Figure 5: Speed error response diagram.
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5. Conclusion

.is paper presents a speed sensorless control technology of
surface-mount permanent magnet synchronous motor
based on ASMO..e proposed observer can effectively filter
the high-frequency sliding mode noise when estimating the
back EMF and avoid the lag caused by introducing the low-
pass filter, thus reducing the system’s complexity.

Secondly, to solve the difficulty of the observer’s sliding
mode gain, an adaptive law is designed that changes with the
back EMF. By adjusting the sliding mode gain online, the
control precision of the system is further enhanced.

Finally, by comparing with the simulation experiments
of traditional SMO and STA-SMO control strategies, it can
be seen that the proposed control strategy can effectively
suppress sliding mode chattering, improve the accuracy of
rotor position estimation, and better meet the requirements
of the system speed regulation.
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In this work, a novel family of exact nonlinear control laws is developed for trajectory tracking of unmanned aerial vehicles. ,e
proposed methodology exploits the cascade structure of the dynamic equations of most of these systems. In a first step, the vehicle
position in Cartesian coordinates is controlled by means of fictitious inputs corresponding to the angular coordinates, which are
fixed to a combination of computed torque and proportional-derivative elements. In a second step, the angular coordinates are
controlled as to drive them to the desired fictitious inputs necessary for the first part, resulting in a double-integrator 3-input
cascade control scheme. ,e proposal is put at test in two examples: 4-rotor and 8-rotor aircrafts. Numerical simulations of both
plants illustrate the effectiveness of the proposed method, while real-time results of the first one confirm its applicability.

1. Introduction

Unmanned aerial vehicles (UAVs) have become a topic of
interest in many works due to the fact that they are capable
of operating in degraded environments which might be
dangerous for humans. ,ese vehicles are designed to fly
with high agility and rapid maneuvering, even under wind
gusts. For all these qualities, the UAVs have a wide variety of
applications such as military [1], 3D mapping and aerial
photography [2, 3], and inspection of places that are not
easily accessible or are too dangerous for humans [4], among
others [5, 6].

,ere is a great variety of UAVs that can be classified by a
broad number of performance characteristics such as their
structure, weight, endurance, range, speed, and so on [7]. In
this work, we will focus on plants with a cascade structure
that allows for a family of novel cascade nonlinear control
laws to be applied, e.g., the quadrotor and the 8-rotor air-
crafts. ,ese plants consist in a structure of symmetrical
links and 4 or 8 rotors at its ends, respectively. In the case of

the quadrotor, given that the front and the rear motors rotate
counter-clockwise while the other two rotate clockwise,
gyroscopic effects and aerodynamic torques tend to cancel
during flight. A similar situation is produced in the 8-rotor
aircraft. Both plants include the rotation motion of three
axes and the linear motion of the center of gravity along
three axes. ,us, there are six motions: back/front, left/right,
up/down, yaw, pitch, and roll. ,e quadrotor has 4 control
inputs and 6 degrees of freedom; its dynamics has the
characteristics of nonlinearity and strong coupling [8]. On
the other hand, the 8-rotor has 6 control inputs and 6
degrees of freedom [9].

In the literature, there are many works about control
laws applied to UAVs. Most of them do not require precise
or complete knowledge of the dynamic equations of the
plant. Indeed, one of the most basic control structures, the
family of proportional-integral-derivative (PID) controllers,
which requires tuning of its gains, can be applied successfully
to these plants as they are capable of bringing the error
signals to zero in trajectory tracking [10–12]. Other reports
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incorporate fuzzy logic in combination with PID controllers,
thus easing the tuning of the gains and increasing the
adaptability of the control law to changing plant or envi-
ronment parameters; they usually have better performance
than classic PID [13–16]. Dead-zone and actuator faults have
also been studied in this context [17]. Recent works present
solutions based on neural networks for the autonomous
landing of a quadrotor both on fixed and moving targets for
maritime search-and-rescue applications [18]. In [19], a
neural network adaptive scheme is combined with sliding
mode control, which preserves the advantages of both
methods, namely, adaptability and robustness against cou-
pled perturbations.

On the other hand, there are also control laws that re-
quire knowledge of the plant, such as linear quadratic
regulator (LQR) techniques that can be found in [20], where
a linearization of the plant is necessary to design the con-
troller; nonlinear dynamic models based on quaternions for
attitude and LQR control are presented in [21]; in [22], a
controller design using the backstepping approach has been
applied to the state-space model of a quadrotor, while in
[23], the model is used in the Lagrange–Euler form; in [24], a
backstepping control and nonlinear disturbance observer
have been developed; the observer is constructed separately
from the controller to estimate the external disturbances and
compensate for the negative effects of the disturbances such
as wind gusts.

Yet, another category of controllers uses partial infor-
mation of the model, e.g., sliding modes in [25–27], which
besides being robust and simple, produces high-frequency
switching of the control signals (chattering phenomenon);
integral predictive and nonlinear robust H∞ strategy [28],
where the integral of the position error is considered,
allowing the achievement of a null steady-state error when
sustained disturbances are acting on the system; and a
hybrid finite-time control approach [29] for trajectory
tracking with unknown dynamics and disturbances. Fur-
thermore, many recent works have shown different ap-
proaches for trajectory tracking of the quadrotor such as
finite-time output feedback schemes [30], adaptive control
[31, 32], supertwisting [33], active disturbance rejection [34],
and neural networks with backstepping [35].

1.1. Contribution. ,e contribution of this article is to
provide a family of exact nonlinear cascade control schemes
for UAV plants such as the quadrotor and the 8-rotor
aircraft, which, due to their characteristics, have a cascade
interconnection of groups of states. In contrast with other
schemes in the literature, the control laws are exact, not
approximate, and allow a variety of options to be easily
incorporated via linear matrix inequalities (LMIs) [36],
which are efficiently solved via convex optimization software
[37].

1.2. Organization. ,e remainder of this study is organized
as follows: Section 2 defines the family of systems to be
studied, the basics on the computed torque technique, the
mathematical models of the UAVs under study, and the

difficulties for implementing a computed torque-like control
scheme: a problem statement is made; in Section 3, the main
results concerning the family of exact nonlinear cascade
controllers are presented; in Section 4, numerical simula-
tions are provided proving the flexibility and efficiency of the
control proposal; real-time results are shown in Section 5;
and finally, conclusions are gathered in Section 6 along with
a discussion on future work.

2. Preliminaries

,is section describes the mathematical structure expected
for the plants under consideration, the specific dynamic
models of the two UAVs that will be used for illustration of
the proposal, basics on the computed torque technique, and
the problem statement of this work.

2.1. Cascade Plants. ,e plants under consideration must
have one or more nested cascade structures of the following
form:

η(t) � f ξ, u1( 􏼁,

ξ(t) � u2,
(1)

where η ∈ Rn− p and ξ ∈ Rp are associated with the plant
states; the control inputs are u1 ∈ Rm− p and u2 ∈ Rp;
f: Rp × Rm− p⟶ Rn− p is a sufficiently smooth nonlinear
function in a domain D that contains the origin (η, ξ) �

(0, 0) with f(0, 0) � 0. As it will be seen later, UAVs belong
to the former class as η is usually associated with Cartesian
coordinates, ξ stands for the angular coordinates, u1 and u2
are usually the result of a simplification of the original inputs
(i.e., from the voltage/speed inputs to the minimum number
of torque ones), and f(·, ·) is clearly a nonlinear input
distribution vector from the point of view of ξ and u1: this
point of view will be exploited later.

Most UAVs require trajectory tracking in the Cartesian
coordinate space; therefore, following the analogy estab-
lished between the model (1) and a UAV model, it is clear
that trajectory tracking reduces to find inputs such that η(t)

is asymptotically driven to a desired trajectory ηd(t). Note
that, despite the cascade structure, backstepping is not di-
rectly applicable as the double-integrator and strong cou-
pling of states in the first equation, precludes the designer
from following the usual path. Indeed, most UAVs do not
have polynomial coupling of states, but trigonometric ones.
,is means that backstepping cannot be performed as
normally done because the required fictitious inputs cannot
be straightforwardly determined [38].

Moreover, backstepping asymptotic stability of the or-
igin is guaranteed via the direct Lyapunov method. But
trajectory tracking requires writing the dynamic equations
of the tracking error system in a form suitable for Lyapunov
analysis, i.e., given the tracking error e(t) � ηd(t) − η(t),
being able to write

e(t) � ηd(t) − η(t) � ηd(t) − f ξ, u1( 􏼁

� F η, _η, ηd, _ηd, xi, u1( 􏼁e(t),
(2)
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where, obviously, the form of F(·) might be very hard or
impossible to obtain. ,e methodology to be presented in
this study will circumvent this problem; once this is done, if a
system can be put in a series of cascade connections such as
the one presented above, the technique can be recursively
applied.

2.2. UAV Dynamic Models. Since the UAVs employed for
illustration of our proposal have similar underlying physical
principles, we will focus on the development of the quad-
rotor model. ,is is standard material which, nevertheless,
may help the reader understanding the origin and meaning
of certain terms in the model.

,e configuration of the quadrotor is composed by a
rigid cross frame and four rotors as shown in Figure 1. ,e
quadrotor is an underactuated and nonlinear coupled sys-
tem with six degrees of freedom; its mathematical model will
be obtained using the well-known Lagrangian method. To
this end, let us define q � (η, ξ) ∈ R6 as the generalized
coordinates vector for the quadrotor, where
η � (x, y, z) ∈ R3 is the position of the center of mass of the
quadrotor relative to the frame Ro (Figure 1), and
ξ � (ψ, θ, ϕ) ∈ R3 are the Euler angles (yaw, pitch, and roll)
that describe the orientation of the aircraft. ,e kinetic
energy of both translational and rotational motions are
expressed, respectively, as

Ttra �
m

2
_ηT

_η,

Trot �
1
2

_ξ
T
J _ξ,

(3)

where m denotes the mass of the aircraft, and J � WT
nIWn

is the inertia matrix for the rotational kinetic energy, with

Wn �

−sin θ 0 1

sinϕ cos θ cos ϕ 0

cosϕ cos θ −sinϕ 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

I �

Ixx 0 0

0 Iyy 0

0 0 Izz

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(4)

,e only force that contributes to the potential energy is
the force due to gravitational acceleration, which is
expressed as U � mgz, where z is the altitude of the
quadrotor, and g is the gravitational constant. ,us, the
Lagrangian is given by

L(q, _q) � Ttra + Trot − U �
m

2
_ηT

_η +
1
2

_ξ
T
J _ξ − mgz. (5)

Considering the Euler–Lagrange equations and taking
into account the vector of generalized external forces, the
dynamic model of the quadrotor is defined as

d
dt

zL

z _q
−

zL

zq
� F, (6)

where F � FT
η τT􏽨 􏽩

T
is the vector of generalized forces. Fη

groups the forces produced by the control inputs that
produce a translational movement, and τ is the vector of
generalized moments produced by the control inputs to
perform rotational movements. ,e small body forces are
ignored due to their being much smaller compared to the
forces produced by the main control inputs. ,en, the forces
applied to the quadrotor with respect to the referenceRb are
given by

Fb �

0

0

u

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

τ �

τψ
τθ
τϕ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(7)

where u � f1 + f2 + f3 + f4, fi � kiw
2
i for i � 1, 2, 3, 4, and

ki, a positive constant parameter depending on the density of
air, and wi is the angular speed of the ith motor. ,is set of
forces expressed in Ro is transformed into

Fη � RFb, withR �

cos θ cosψ sinϕ sin θ cosψ − sinψ cosϕ sinψ sinϕ + sin θ cos ϕ cosψ

sinψ cos θ sinϕ sin θ sinψ + cos ϕ cosψ sin θ sinψ cosϕ − sinϕ cosψ

−sin θ sinϕ cos θ cos ϕ cos θ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (8)

z

z

y

y

ψ

x
ϕ

θ

x

ξ = (ψ, θ, ϕ)

Rb

Ro

Figure 1: Scheme of the quadrotor system.

Mathematical Problems in Engineering 3



where R is the transformation matrix representing the
orientation of the quadrotor from Rb to Ro. Furthermore,
the vectors of generalized moments acting on variables ξ are
as follows:

τψ � 􏽘
4

1
kMiw

2
i ,

τθ � f2 − f4( 􏼁lc,

τϕ � f3 − f1( 􏼁lc,

(9)

where kMi is the moment constant of the ith motor, and lc is
the distance between the axes of the motors and the center of
gravity. Since the Lagrangian (5) does not contain any cross-
term combining η and ξ, the Euler–Lagrange equation (6)
can be split into two subsystems, one for the translational
dynamics η and the other for the rotational dynamics ξ as
follows:

mη + 0 0 mg􏼂 􏼃
T

� Fη,

Jξ + C(ξ, _ξ) _ξ � τ,
(10)

where C(ξ, _ξ) is the Coriolis matrix. In order to simplify the
analysis, the following change of the input variables is
proposed:

τ � C(ξ, _ξ) _ξ + J􏽥τ. (11)

Here, 􏽥τ � 􏽥τψ 􏽥τθ 􏽥τϕ􏽨 􏽩
T

are the new inputs ([8] for
details). ,en, ξ � 􏽥τ and equation (10) are rewritten as

x �
(sinϕ sinψ + sin θ cosϕ cosψ)u

m
,

y �
(sin θ sinψ cos ϕ − sinϕ cosψ)u

m
,

€z �
(cos θ cos ϕ)u

m
− g,

ψ � 􏽥τψ,

θ
..

� 􏽥τθ,

ϕ � 􏽥τϕ,

(12)

where the horizontal plane coordinates are represented by
(x, y), the vertical position is represented by z, ψ is the yaw
angle around the z axis, θ is the pitch angle around the y axis,
and ϕ is the roll angle around the x axis. ,e system (12) has
four control inputs u, 􏽥τψ, 􏽥τθ, and 􏽥τϕ.

2.3. Computed Torque. Computed torque control is a
technique used for trajectory tracking in rigid robotic ma-
nipulators consisting of open kinematic chains [39]. ,is
sort of models is amenable to the Lagrange–Euler form:

M(q)q(t) + V(q, _q) + F(q, _q) + G(q) � τ(t), (13)

where q ∈ Rn is a vector gathering the n joint variables of the
kinematic chain, M(q) ∈ Rn×n is the inertia matrix,
V(q, _q) ∈ Rn is the Coriolis vector, F(q, _q) ∈ Rn accounts for
the friction forces (whether viscous, dry, or others),
G(q) ∈ Rn is the gravity vector, and τ(t) ∈ Rn is the gen-
eralized force vector. Traditional computed torque control
considers the plant as fully actuated, i.e., all entries in τ(t) are
available for control purposes or it has one available actuator
per joint. A desired trajectory qd(t) can be asymptotically
tracked by q(t) if the following control law is used:

τ(t) � M(q) qd(t) − u(t)( 􏼁 + V(q, _q) + F(q, _q) + G(q),

(14)

where u(t) is responsible for stabilizing the tracking error
system:

_e(t)

e(t)
􏼢 􏼣 �

0 I

0 0
􏼢 􏼣

e(t)

_e(t)
􏼢 􏼣 +

0

I
􏼢 􏼣u(t), (15)

with e(t) � qd(t) − q(t). Control law (14) is known as the
inner-loop control feedback; it is based on exact feedback
linearization [40]. Control law u(t) is known as the outer-
loop control feedback; it stabilizes the error system (15), a
task usually achieved by linear state feedback or PD control:

u(t) � −Kpe(t) + Kv _e(t), (16)

where for simplicity, gains Kp and Kv are the diagonal
constant matrices with positive entries.

Clearly, computed torque is critically dependent on the
precise knowledge of the model and does not take advantage
of the nonlinear structure of the plant, let alone the cascade
form of UAV models.

2.4. Problem Statement. For a UAV model of the form (1) to
perform trajectory tracking of a Cartesian path
ηd(t) � xd(t) yd(t) zd(t)􏼂 􏼃 by means of its inputs u1 and
u2, i.e., limt⟶∞e(t) � 0 with e(t) � ηd(t) − η(t),
η(t) � x(t) y(t) z(t)􏼂 􏼃, ξ � ψ θ ϕ􏼂 􏼃, backstepping is
not a straightforward option. Indeed, the double-integrator
and the trigonometric functions in ξ impede its application.

Moreover, computed torque cannot be applied either
because, following its notation, the joint vector
q � x y z ψ θ ϕ􏼂 􏼃

T and the generalized force vector
τ � u 􏽥τψ 􏽥τθ 􏽥τϕ􏽨 􏽩

T
do not share dimensions, i.e., there is

not enough number of actuators as required by the
computed torque technique.

In the next section, a novel family of exact nonlinear
control laws is developed for trajectory tracking of UAVs; it
will exploit the cascade structure without recurring to
backstepping and will be able to deal with the underactuated
characteristics that the computed torque technique is unable
to cope. In contrast with other proposals, no approximations
are employed; all the nonlinearities are taken into account
for control purposes.

Notation: in matrix expressions, 0 and I stand for a zero
and identity matrix, respectively, whose dimensions can be
inferred from the context; > and < stand for positive and
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negative-definiteness; the symbol (∗ ) denotes the transpose
of the expression on the left, i.e., A + (∗ ) � A + AT.

3. Main Results

In this section, a family of nonlinear cascade controllers for
trajectory tracking of UAVs with cascade model structure is
proposed. To begin with, we reproduce the general math-
ematical model of the UAVs under consideration:

η(t) � f ξ, u1( 􏼁,

ξ(t) � u2,
(17)

where η ∈ R3 and ξ ∈ R3 are associated with Cartesian and
angular coordinates, respectively; the simplified control
inputs are u1 ∈ Rm and u2 ∈ R3; f(·, ·): R3 × Rm⟶ R3 is
a sufficiently smooth nonlinear function in a domain D that
contains the origin (η, ξ) � (0, 0) with f(0, 0) � 0.

Consider a desired trajectory in Cartesian coordinates
ηd ∈ R3 such that ηd(t) � xd(t) yd(t) zd(t)􏼂 􏼃

T, where
xd(t), yd(t), and zd(t) are the desired trajectories in the
direction of the x, y, and z axis, respectively; let the cor-
responding tracking error be eη(t) � ηd(t) − η(t); thus,
taking into account (17), we have

eη(t) � ηd(t) − η(t) � ηd(t) − f ξ, u1( 􏼁, (18)

ξ(t) � u2. (19)

,anks to the cascade structure above, the following
assumption can be made:

Assumption 1. ,ere exists ξd and u1 such that

ηd − f ξ, u1( 􏼁 � −Kpηeη − Kvη _eη, (20)

where Kpη ∈ R3×3 and Kvη ∈ R3×3 are the matrices with
proportional and derivative gains, respectively, to be defined
(usually diagonal with positive entries); otherwise, claim the
approach fails.

Despite its complexity, note that the existence of ξd and
u1 holding Assumption 1 is not only guaranteed for most of
the UAV models but also a family of solutions. Indeed, as
variables in ξ are angle coordinates, they come into trigo-
nometric expressions which naturally lead to multiple so-
lutions, if any.

Once ξd and u1 holding Assumption 1 are found, the
next problem is to drive ξ towards ξd, i.e., to drive the
tracking error eξ(t) � ξd(t) − ξ(t) to 0 as t⟶∞. To this
end, computed torque techniques come at the hand, i.e.,
from (19), we have

u2 � ξd + Kpξeξ + Kvξ _eξ , (21)

where Kpξ ∈ R3×3 and Kvξ ∈ R3×3 are the matrices with
proportional and derivative gains, respectively, to be defined
(usually diagonal with positive entries).

,e whole tracking error system, once Assumption 1 and
computed torque control law (21) are employed, is given by

d
dt

eη

_eη

eξ

_eξ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

0 I 0 0

−Kpη −Kvη 0 0

0 0 0 I

0 0 −Kpξ −Kvξ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

eη

_eη

eξ

_eξ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (22)

,e main result of this work can now be stated by de-
fining the overall tracking error signal as
e � eT

η _eT
η eT

ξ _eT
ξ􏽨 􏽩

T
.

Theorem 1. 7e origin e � 0 of the tracking error system (22)
is asymptotically stable if there exists matrices X1 ∈ R6×6,
X2 ∈ R6×6, X1 � XT

1 , X2 � XT
2 , Mpη ∈ R3×3, Mvη ∈ R3×3,

Mpξ ∈ R3×3, and Mvξ ∈ R3×3, such that the following LMIs
hold:

X1 > 0,

X2 > 0,

0 I

0 0
􏼢 􏼣X1 +

0

I
􏼢 􏼣 Mpη Mvη􏽨 􏽩< 0,

0 I

0 0
􏼢 􏼣X2 +

0

I
􏼢 􏼣 Mpξ Mvξ􏽨 􏽩< 0.

(23)

In that case, the gains are given by

−Kpη −Kvη􏽨 􏽩 � Mpη Mvη􏽨 􏽩X
−1
1 ,

−Kpξ −Kvξ􏽨 􏽩 � Mpξ Mvξ􏽨 􏽩X
−1
2 .

(24)

Proof. ,e closed-loop tracking error system (22) can be
rewritten as two independent ones, namely,

d
dt

eη

_eη

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ �

0 I

0 0
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ +

0

I

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ −Kpη −Kvη􏽨 􏽩⎛⎝ ⎞⎠
eη

_eη

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦,

d
dt

eξ

_eξ

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦ �

0 I

0 0
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ +

0

I

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ −Kpξ −Kvξ􏽨 􏽩⎛⎝ ⎞⎠
eξ

_eξ

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦.

(25)

Let us focus on the first one as the proof follows the same
lines for both of them. Consider the quadratic Lyapunov
function candidate V � e

T
η _e

T
η􏽨 􏽩P1 eT

η _eT
η􏽨 􏽩

T
, where

P1 � X−1
1 > 0; its time derivative is

_V �
eη

_eη

⎡⎣ ⎤⎦

T

P1

_eη

eη

⎡⎣ ⎤⎦ +
_eη

eη

⎡⎣ ⎤⎦

T

P1

eη

_eη

⎡⎣ ⎤⎦

eη

_eη

⎡⎣ ⎤⎦

T

P1
0 I

0 0
􏼢 􏼣 +

0

I
􏼢 􏼣 −Kpη −Kvη􏽨 􏽩􏼠 􏼡 +(∗ )􏼠 􏼡

eη

_eη

⎡⎣ ⎤⎦.

(26)

Condition _V< 0 for (eη, _eη)≠ (0, 0) is satisfied if
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P1
0 I

0 0
􏼢 􏼣 +

0

I
􏼢 􏼣 −Kpη −Kvη􏽨 􏽩􏼠 􏼡 +(∗ )< 0, (27)

which pre and postmultiplying by X1 � P−1
1 is equivalent to

the third LMI in (23), provided that
−Kpη −Kvη􏽨 􏽩X1 � Mpη Mvη􏽨 􏽩, thus proving that V(t) is

a valid Lyapunov function establishing asymptotic stability
of eT

η _eT
η􏽨 􏽩

T
� 0.

,e same analysis establishes asymptotic stability of
eT
ξ _eT

ξ􏽨 􏽩
T

� 0, thus concluding the proof. □

Remark 1. As pointed out before, for any UAV model
belonging to the family of systems under consideration,
there is always a variety of solutions leading to a linear
tracking error system; in this sense, the technique mimics
computed torque control [39]. Since some states are
employed as fictitious control signals in order to drive
another set of states to a desired reference, the technique
mimics backstepping [38]. Nevertheless, the proposal does
not belong to any of the former approaches.

Remark 2. Notice that, in contrast with computed torque
techniques, the gains Kpη, Kvη, Kpξ , and Kvξ are not asked to
be diagonal, which provides greater flexibility to the con-
troller design. Moreover, these gains are determined via
LMIs, which are solved in polynomial time by commercially
available software. ,e LMI formulation has additional
advantages as performance specifications such as decay rate,
input/output constraints, or H∞ disturbance attenuation
can be straightforwardly added [36].

4. Simulation Results

In this section, two examples illustrating our proposal are
presented: the first one concerns a quadrotor performing
trajectory tracking; the second one is an 8-rotor UAV. In
both cases, a member of a family of exact nonlinear cascade
control laws for trajectory tracking is used.

Example 1. Consider the quadrotor system (12), reproduced
for convenience with a split of the state vector corresponding
to (17), where the Cartesian coordinates are governed by

η ≡

x

y

z

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

(sinϕ sinψ + sin θ cosϕ cosψ)u

m

(sin θ sinψ cos ϕ − sinϕ cosψ)u

m

(cos θ cosϕ)u

m
− g

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (28)

and angular coordinates are driven by

ξ ≡

ψ

θ
..

ϕ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

􏽥τψ
􏽥τθ
􏽥τϕ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (29)

where u1 � u and u2 � 􏽥τψ 􏽥τθ 􏽥τϕ􏽨 􏽩
T
in the notation of (17).

Focusing on the dynamic equation (28) governing the
position in Cartesian coordinates, it is clear that, with the
exception of u, angular variables ψ, θ, and ϕ can be seen as
virtual inputs; their ideal values being those necessary to
drive the Cartesian coordinates as desired for trajectory
purposes; let us name these ideal signals as ψd, θd, and ϕd,
which results in (28) being rewritten as the steady-state
dynamic equations:

x �
sinϕd sinψd + sin θd cosϕd cosψd( 􏼁u

m
,

y �
sin θd sinψd cos ϕd − sinϕd cosψd( 􏼁u

m
,

z �
cos θd cos ϕd( 􏼁u

m
− g,

(30)

where it is supposed that the angles are already in their
sought behaviour.

Since the control objective is that the system tracks a
reference in Cartesian coordinates, the error signals are
defined as ex � xd − x, ey � yd − y, and ez � zd − z, where
xd, yd, and zd are the desired trajectories in x, y, and z

coordinates, respectively. ,us, taking into account the
dynamic equations above, the error system (18) is given by

ex � xd − x � xd −
sinϕd sinψd + sin θd cos ϕd cosψd

m
u,

ey � yd − y � yd −
sin θd sinψd cos ϕd − sinϕd cosψd

m
u,

ez � zd − z � zd −
cos ϕd cos θd

m
u + g.

(31)

Following the methodology, equation (20) in Assump-
tion 1 is expressed as

xd −
sinϕd sinψd + sin θd cos ϕd cosψd

m
u

yd −
sin θd sinψd cos ϕd − sinϕd cosψd

m
u

zd −
cosϕd cos θd

m
u + g

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� −Kpη

ex

ey

ez

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
− Kvη

_ex

_ey

_ez

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(32)
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where Kpη ∈ R3×3 and Kvη ∈ R3×3 are the constant gains to
be found. If the above equations hold, the tracking x⟶ xd,
y⟶ yd, and z⟶ zd will be performed; they are 3
equations with 4 variables, namely, u, ψd, θd, and ϕd. Due to
their nonlinear trigonometric nature, there is an infinite
number of solutions, each of them yielding a family of
controllers that guarantee the tracking error goes to zero. In
order to obtain a particular solution, we simplify the analysis
considering that the gains Kpη and Kvη have a diagonal form,
i.e.,

Kpη �

Kpx 0 0

0 Kpy 0

0 0 Kpz

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Kvη �

Kvx 0 0

0 Kvy 0

0 0 Kvz

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(33)

,us, from the last equation in (32), it is clear that the
choice

u �
m

cos ϕd cos θd

zd + g + Kpzez + Kvz _ez􏼐 􏼑, (34)

will drive the error signal ez to zero, i.e., z⟶ zd.
Substituting (34) in the first two equations in (32), we have

tanϕd sinψd

cos θd

+ tan θd cosψd �
xd + Kpxex + Kvx _ex

zd + g + Kpzez + Kvz _ez

,

sinψd tan θd −
cosψd tanϕd

cos θd

�
yd + Kpyey + Kvy _ey

zd + g + Kpzez + Kvz _ez

.

(35)

,ere are many ways to find a set of solutions to the
equations above. One choice is to solve for θd and ϕd, which
will depend on ψd, the other variables in the expression
being known. Nevertheless, regardless of the value of ψd, the
equalities will be fulfilled; therefore, it is enough to drive ψ to
ψd � 0. Now that the control signal u and the virtual inputs
ψd, θd, and ϕd are known, time derivatives _ψ, θ

.

d, _ϕd, ψ, θ
..

d,
and ϕd can be calculated in order to use them in the
computed torque control (21). ,e latter consists in de-
signing 􏽥τ such that the orientation angles go to their cor-
responding desired signals, that is, ψ⟶ ψd, θ⟶ θd, and
ϕ⟶ ϕd as t⟶∞. ,us, considering that gains Kpξ and
Kvξ in (21) have the following structure,

Kpξ �

Kpψ 0 0

0 Kpθ 0

0 0 Kpϕ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Kvξ �

Kvψ 0 0

0 Kvθ 0

0 0 Kvϕ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(36)

the control law (21) is given by

􏽥τψ � ψd + Kpψeψ + Kvψ _eψ,

􏽥τθ � θ
..

d + Kpθeθ + Kvθ _eθ,

􏽥τϕ � ϕd + Kpϕeϕ + Kvϕ _eϕ,

(37)

where Kpψ , Kpθ, Kpϕ, Kvψ , Kvθ, and Kvϕ are the constant
gains to be found.

,e LMIs in ,eorem 1 can now be programmed; they
yield the following feasible solution:

X1 �

0.2639 0 0 −0.4342 0 0

0 0.2639 0 0 −0.4342 0

0 0 0.4827 0 0 −0.4972

−0.4342 0 0 0.9186 0 0

0 −0.4342 0 0 0.9186 0

0 0 −0.4972 0 0 0.5507

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

X2 �

0.2302 0 0 −0.438 0 0

0 0.2302 0 0 −0.438 0

0 0 0.2302 0 0 −0.438

−0.438 0 0 0.8885 0 0

0 −0.438 0 0 0.8885 0

0 0 −0.438 0 0 0.8885

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Kpη �

20 0 0

0 20 0

0 0 30

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Kvη �

10 0 0

0 10 0

0 0 28

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Kpξ �

80 0 0

0 80 0

0 0 80

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Kvξ �

40 0 0

0 40 0

0 0 40

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(38)

Figure 2 shows the simulation results of the position and
control signals where the quadrotor follows the
desired trajectory xd � 1 + cos(t), yd � −sin(t), and
zd � 1 + 0.2 sin(2t). ,e initial conditions for simulation
are x(0) � 0, y(0) � −1, z(0) � 2, _x(0) � _y(0) � _z(0) � 0,
and ψ(0) � θ(0) � ϕ(0) � _ψ(0) � θ

.

(0) � _ϕ(0) � 0. High-
frequency signals are customary during the transient of
UAV control due to the very fast dynamics of these plants;
this is the case of the control signals on the right.

Example 2. Consider the 8-rotor aircraft system whose
mathematical model is given by
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mx � ux cos θ cosψ − uy(cosϕ sinψ − cosψ sin θ sinϕ) + uz(sinϕ sinψ + cos ϕ cosψ sin θ),

my � ux cos θ sinψ + uy(cos ϕ cosψ + sinψ sin θ sinϕ) − uz(sinϕ cosψ − cos ϕ sinψ sin θ),

mz � −ux sin θ + uy cos θ sinϕ + uz cos θ cosϕ − mg,

ψ � 􏽥τψ,

θ
..

� 􏽥τθ,
ϕ � 􏽥τϕ,

(39)

where (x, y, z) represent the position of the aircraft in
Cartesian coordinates, (ψ, θ, ϕ) are the orientation angles, m

is the mass of the aircraft, and g is the gravitational constant.
In contrast with the quadrotor, this model has six control
inputs ux, uy, uz, 􏽥τψ , 􏽥τθ, and 􏽥τϕ (see [9] for modelling
details).

Following the methodology shown in Section 3, the error
signals of interest are defined as ex � xd − x, ey � yd − y,
and ez � zd − z. Dynamic equations of the error system (18)

can be straightforwardly written (omitted for brevity). In
contrast with the previous example where variables ϕ, θ, and
ϕ were considered as auxiliary/virtual control inputs, in the
case of the 8-rotor aircraft, there are two more authentic
control inputs; therefore, it is not necessary to take other
signals as virtual control ones. In this case, considering the
gains structure (33), Assumption 1 is given by the following
equations, and it is fulfilled solving for u1 � ux uy uz􏽨 􏽩

T

regardless of ξ � ψ θ ϕ􏼂 􏼃
T,

ex � xd −
ux

m
cos θ cosψ +

uy

m
(cos ϕ sinψ − cosψ sin θ sinϕ) −

uz

m
(sinϕ sinψ + cos ϕ cosψ sin θ)

� −Kpxex − Kvx _ex,

ey � yd −
ux

m
cos θ sinψ −

uy

m
(cos ϕ cosψ + sinψ sin θ sinϕ) +

uz

m
(sinϕ cosψ − cos ϕ sinψ sin θ)

� −Kpyey − Kvy _ey,

ez � zd +
ux

m
sin θ −

uy

m
cos θ sinϕ −

uz

m
cos θ cos ϕ + g � −Kpzez − Kvz _ez.

(40)

If equalities above are satisfied, the tracking errors are
guaranteed to go to zero as time tends to infinity; thus, the
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Figure 2: Quadrotor simulation results for trajectory tracking: position (a) and control (b).
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control signals ux, uy, and uz can be solved. By way of il-
lustration, the shortest of them is provided, namely,
uy � uyn/uyd, where

uyn � − 2 yd cos ϕ cosψ − xd cosϕ sinψ + zd cos θ sinϕ + xd cosψ sinϕ sin θ((

+ yd sinϕ sinψ sin θ + Kvy _ey cos ϕ cosψ + Kpyey cos ϕ cosψ − Kvx _ex cosϕ sinψ

− Kpxex cosϕ sinψ + Kvz _ez cos θ sinϕ + Kpzez cos θ sinϕ + gm cos θ sinϕ

+ Kvx _ex cosψ sinϕ sin θ + Kpxex cosψ sinϕ sin θ + Kvy _ey sinϕ sinψ sin θ

+Kpyey sinϕ sinψ sin θ􏼑􏼑,

uyd � 4cos2ϕcos2ψ − 4cos2ϕ − 4cos2ψ − 2cos2θ − sin(2θ) + 2cos2ϕcos2θ + 4cos2ψcos2θ

+ 2cos2ϕ cos θ sin θ − 4cos2ϕcos2ψcos2θ + 4 cosϕ cosψ sinϕ sinψ sin θ + 2.

(41)

Once the control signals ux, uy, and uz have been found,
the remaining ones 􏽥τψ , 􏽥τθ, and 􏽥τϕ are proposed with a simple
PD form, such that ψ⟶ 0, θ⟶ 0, and ϕ⟶ 0 as
t⟶∞. ,us,

􏽥τψ � −Kpψψ − Kvψ _ψ,

􏽥τθ � −Kpθθ − Kvθθ
.

,

􏽥τϕ � −Kpϕϕ − Kvϕ
_ϕ.

(42)

Figure 3 shows the simulation results for initial condi-
tions x(0) � 0, y(0) � −1, z(0) � 2, _x(0) � _y(0) � _z(0)

� 0, and ψ(0) � θ(0) � ϕ(0) � _ψ(0) � θ
.

(0) � _ϕ(0) � 0. It
can be seen in 3(a) that the position of the aircraft follows the
desired trajectory xd � 1 + cos(t), yd � −sin(t), and
zd � 1 + 0.2 sin(t). ,e gains used are Kpx � Kpy

� Kpz � 20, Kvx � Kvy � Kvz � 10, Kpψ � Kpθ � Kpϕ � 80,
and Kvψ � Kvθ � Kvϕ � 40. Control signals are shown 3(b).
Since in this case, it was not necessary to take signals as
virtual control inputs, the initial conditions for the angles are

zero, and the control signals 􏽥τψ, 􏽥τθ, and 􏽥τϕ are zero during
simulation.

,e previous solution does not exploit the cascade
structure of the system; in this sense, it is a 0-level cascade
one. A 1-level one is, nevertheless, possible; such control law
does not only serve artificial purposes but also can help
standing against actuator fails. To illustrate this alternative,
the design can take up from the error equations in (40); any
variable in these expressions can be considered as a control
signal, which results in a cascade structure and in turn
represents a family of solutions. Indeed, considering the
control input uz as

uz �
mg + mθ + ux sin θ − uy sinϕ sin θ

cos ϕ cos θ
, (43)

the dynamics of the z position can be rewritten as z � θ.
,us, θ can be seen as a fictitious control input, thus
resulting in a cascade control. Renaming θ as θd and
substituting (43), Assumption 1 yields

xd −
ux

m
cos θd cosψ +

uy

m
cosϕ sinψ − cosψ sin θd sinϕ( 􏼁

−
gm + mθd + ux sin θd − uy sinϕ sin θd􏼐 􏼑 sinϕ sinψ + cosϕ cosψ sin θd( 􏼁

m cos ϕ cos θd

� −Kpxex − Kvx _ex,

yd −
ux

m
cos θd sinψ −

uy

m
cos ϕ cosψ + sinψ sin θd sinϕ( 􏼁

+
gm + mθd + ux sin θd − uy sinϕ sin θd􏼐 􏼑 sinϕ cosψ − cos ϕ sinψ sin θd( 􏼁

m cos ϕ cos θd

� −Kpyey − Kvy _ey,

zd − θd � −Kpzez − Kvz _ez,

(44)

which can be solved for ux, uy, and θd, such that Assumption 1
holds.

Once the control signals ux, uy, uz, and the virtual input
θd are determined, the time derivatives θ

.

d and θ
..

d can be
calculated to be used in the computed torque control (21),

which consists in designing 􏽥τ, such that the orientation
angles go to their corresponding desired signals, i.e.,
θ⟶ θd as t⟶∞. ,us, considering that the gains Kpξ
and Kvξ have the structure (36), the control law (21) is given
by
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􏽥τψ � ψd + Kpψeψ + Kvψ _eψ ,

􏽥τθ � θ
..

d + Kpθeθ + Kvθ _eθ,

􏽥τϕ � ϕd + Kpϕeϕ + Kvϕ _eϕ,

(45)

where Kpψ , Kpθ, Kpϕ, Kvψ , Kvθ, and Kvϕ are the constant
gains to be found.

LMIs in ,eorem 1 have been found feasible with the
following solution:

X1 �

0.2126 0 0 −0.3695 0 0
0 0.3192 0 0 −0.5168 0
0 0 0.3192 0 0 −0.5168

−0.3695 0 0 1.2294 0 0
0 −0.5168 0 0 1.0959 0
0 0 −0.5168 0 0 1.0959

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

X2 �

0.2609 0 0 −0.4959 0 0
0 0.2609 0 0 −0.4959 0
0 0 0.2609 0 0 −0.4959

−0.4959 0 0 1.0065 0 0
0 −0.4959 0 0 1.0065 0
0 0 −0.4959 0 0 1.0065

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Kpη �
15 0 0
0 20 0
0 0 20

⎡⎢⎢⎣ ⎤⎥⎥⎦,

Kvη �
5 0 0
0 10 0
0 0 10

⎡⎢⎢⎣ ⎤⎥⎥⎦,

Kpξ �
80 0 0
0 80 0
0 0 80

⎡⎢⎢⎣ ⎤⎥⎥⎦,

Kvξ �
40 0 0
0 40 0
0 0 40

⎡⎢⎢⎣ ⎤⎥⎥⎦.

(46)

Figure 4(a) shows the simulation results of the position
where the aircraft follows the desired trajectory xd � 1
+ cos(t), yd � 0.5 − sin(t), and zd � 1 + 0.2 sin (t) + 0.2 cos

(2t). Initial conditions are x(0) � 0, y(0) � −1, z(0) � 2,
_x(0) � _y(0) � _z(0) � 0, and ψ(0) � θ (0) � ϕ (0) � _ψ(0)

� θ
.

(0) � _ϕ(0) � 0. Figure 4(b) shows the control signal.
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Figure 3: Octarotor simulation results for trajectory tracking: position (a) and control (b).
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5. Real-Time Results

To corroborate the effectiveness of the proposed results in
the previous section, its implementation on an experimental
platform is presented; such implementation has been made
in the National Laboratory of Autonomous Vehicles and
Exoskeletons from the Autonomous University of Hidalgo
State. ,e system used for the experiments is from the DJI
Matrices 100 quadrotor (Figure 5). Some details about the
performance of this platform are given in Table 1, while the
specifications of the structure are given in Table 2 [41].

,e mathematical model of the experimental platform
above is (10). To implement the controller (11), (34), and
(37), first a simulation was conducted using the DJI flight
simulator provided by themanufacturer, later to program on
the experimental platform Android Studio and DJI Mobile
SDK (software development kit). Using the data given in the previous tables, the values of

the Coriolis C and inertia J matrices are

C(ξ, _ξ) �

c11 c12 c13

c21 c22 c23

c31 c32 c33

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

J �

Ixx 0 −Ixx sin(θ)

0 Iyycos
2
(ϕ) + Izzsin

2
(ϕ) Mn1

−Ixx sin(θ) Mn2 Mn3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

(47)

where Ixx � 0.023442, Iyy � 0.025871, and Izz � 0.0264413,
c11 � 0,
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Figure 4: Octarotor simulation results for trajectory tracking: position (a) and control (b).
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c12 � −Ixx
_ψ cos(θ) + Iyy θ

.

sin(ϕ)cos(ϕ) + _ψ cos(θ)sin2(ϕ) − _ψ cos(θ)cos2(ϕ)􏼒 􏼓

− Izz
_ψ cos(θ)sin2(ϕ) − _ψ cos(θ)cos2(ϕ) + θ

.

sinϕ cos ϕ􏼒 􏼓,

c13 � Iyy
_ψcos2(θ)sin(ϕ)cos(ϕ) − Izz

_ψcos2(θ)sin(ϕ)cos(ϕ),

c21 � Ixx
_ψ cos(θ) + Iyy −θ

.

sin(ϕ)cos(ϕ) + _ψ cos(θ)cos2(ϕ) − _ψ cos(θ)sin2(ϕ)􏼒

+ Izz
_ψ cos(θ)sin2(ϕ) − _ψ cos(θ)cos2(ϕ) + θ

.

sin(ϕ)cos(ϕ)􏼒 􏼓,

c22 � −Iyy
_ϕ sin(ϕ)cos(ϕ) + Izz

_ϕ sin(ϕ)cos(ϕ),

c23 � −Ixx
_ψ sin(θ)cos(θ) + Iyy

_ψ sin(θ)cos(θ)sin2(ϕ) + Izz
_ψ sin(θ)cos(θ)cos2(ϕ),

c31 � −Ixxθ
.

cos(θ) + Iyy
_ψcos2(θ)sin(ϕ)cos(ϕ) − Izz

_ψcos2(θ)sin(ϕ)cos(ϕ),

c32 � Ixx
_ϕ sin(θ)cos(θ) − Iyy θ

.

sin(θ)sin(ϕ)cos(ϕ) + _ϕ cos(θ)sin2(ϕ) − _ϕ cos(θ)cos2(ϕ)􏼒

+ _ψ sin(θ)cos(θ)sin2(ϕ)􏼑 + Izz
_ϕ cos(θ)sin2(ϕ) − _ϕ cos(θ)cos2(ϕ)􏼐

− _ψ sin(θ)cos(θ)cos2(ϕ) + θ
.

sin(θ)sin(ϕ)cos(ϕ)􏼓,

c33 � Ixxθ
.

sin(θ)cos(θ) + Iyy −θ
.

sin(θ)cos(θ)sin2(ϕ) + _ϕcos2(θ)sin(ϕ)cos(ϕ)􏼒 􏼓

− Izz θ
.

sin(θ)cos(θ)cos2(ϕ) + _ϕcos2(θ)sin(ϕ)cos(ϕ)􏼒 􏼓,

Mn1 � cos(θ)cos(ϕ)sin(ϕ) Iyy − Izz􏼐 􏼑,

Mn2 � cos(θ)cos(ϕ)sin(ϕ) Iyy − Izz􏼐 􏼑,

Mn3 � Ixxsin
2
(θ) + Iyycos

2
(θ)sin2(ϕ) + Izzcos

2
(θ)cos2(ϕ).

(48)

Table 1: Performance of experimental platform.

Hovering accuracy (P-mode with GPS) Vertical: 0.5m, horizontal: 2.5m
Max. angular velocity Pitch: 300°/s, yaw: 150°/s
Max. tilt angle 35°
Max. speed of ascent 5m/s
Max. speed of descent 4m/s
Max. wind resistance 10m/s

Max. speed 22m/s (ATTI mode, no payload, no wind)
17m/s (GPS mode, no payload, no wind)

Hovering time (with TB47D battery) No payload: 22min; 500 g
Payload: 17min; 1 kg payload: 13min

Table 2: Structure specifications of experimental platform.

Length of the frame arm (l) 0.65m
Distance to center of gravity (lc) l/2
Mass of the frame arm (mbc) 0.05 kg
Radius of the frame arm (rbc � dc/2) 0.01m
Mass of the motor (mm) 0.106 kg
Radius of the motor (rm) 0.025m
Height of the motor (hm) 0.03m
Mass of the battery (mb) 0.6 kg
Width of the battery (bw) 0.08m
Height of the battery (bh) 0.04m
Length of the battery (ba) 0.135m
Net weight (m) 2.335 kg
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Here, the desired trajectory of the quadrotor is
xd � 1 + 5 cos(t), yd � 5 sin(t), and zd � 2 + 0.2 sin(t). ,e
initial conditions are x(0) � y(0) � 0, z(0) � 1,

_x(0) � _y(0) � _z(0) � 0, and ψ(0) � θ(0) � ϕ(0) � _ψ(0) �

θ
.

(0) � _ϕ(0) � 0. For the input signal (24), Kpx � Kpy � 50,
Kpz � 60, and Kvx � Kvy � 10.5 and Kvy � 28 are proposed.
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Figure 6: Quadrotor simulation results for trajectory tracking (2D).
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While, for the equation (26), the gains used are Kpθ � Kpϕ �

Kpψ � 80 and Kvθ � Kvϕ � Kvψ � 40.
Figures 6 and 7 show the performance of the DJI Matrice

100 quadrotor using the flight simulator provided by the
manufacturer. ,e video with the simulation results can be
seen at the following link: https://youtu.be/Igoobvl61AE.

Figures 8 and 9 show the performance of the DJI Ma-
trices 100 quadrotor in real-time. ,e video where these
results are shown can be consulted in the following link:
https://youtu.be/oGN5N7M3UZw.

6. Conclusions

A family of exact nonlinear cascade control laws for tra-
jectory tracking of unmanned aerial vehicles has been
presented. It has been shown that the control scheme can be
applied to UAVs because it takes advantage of their
underactuated characteristics, which produce a cascade
model suitable for Lyapunov-based design.,e proposal has
been proven to produce an infinite number of solutions
which guarantee that the position in Cartesian coordinates
of the aircraft follows a desired trajectory. ,e methodology
has been illustrated via numerical simulations in 4- and 8-
rotor systems. Real-time results have been provided on the
quadrotor, which confirm the applicability of the presented
approach. Future work is on course for including robustness
and more general classes of underactuated systems.
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1is paper presents a control scheme that allows height position regulation and stabilization for an unmanned planar vertical
takeoff and landing aircraft system with an inverted pendular load. 1e proposed controller consists of nested saturations and a
generalized proportional integral (GPI). 1e GPI controls the aircraft height and the roll attitude; the latter is used as the fictitious
input control. Next, the system is reduced through linear transformations, expressing it as an integrator chain with a nonlinear
perturbation. Finally, the nested saturation function-based controller stabilizes the aircraft’s horizontal position and the pen-
dulum’s angle. Obtaining the control approach was a challenging task due to the underactuated nature of the aircraft, particularly
ensuring the pendulum’s upright position. 1e stability analysis was based on the second method of Lyapunov using a simple
candidate function. 1e numerical simulation confirmed the control strategy’s effectiveness and performance. Additionally, the
numerical simulation included a comparison against a PD controller, where its corresponding performance indexes were es-
timated, revealing that our controller had a better response in the presence of unknown disturbances.

1. Introduction

1e control of underactuated mechanical systems is a widely
studied field and continuously increases knowledge, mainly
because controlling this kind of system is challenging since it
has fewer controllers than degrees of freedom. 1e inverted
pendulum system is a classic example of an underactuated
system. It consists of a freely spinning load around an axis and
attached to a base that freely moves forward and back-
ward—multiple authors have proposed control laws to stabilize
this kind of system in its inverted position. Block and Spong [1]
proposed the partial feedback collocated and noncollocated
control law for the stabilization around the origin of the
acrobot and the pendubot. Fantoni and Lozano [2] proposed a
nested saturation control for the wheeled inverted pendulum
that enables stabilization around the origin. Ibañez and Frias
[3] proposed a nested saturation control for the nonlinear

perturbed wheeled inverted pendulum, expressed it as a chain
of integrators. 1e proposed control demonstrates asymptot-
ical stability around the origin through the Lyapunov method
when the pendulum angle is in the upper half-plane. 1e
Furuta pendulum is another challenging system that has
attracted the attention of several researchers, who have pre-
sented many interesting approaches to control this kind of
pendulum. For instance, in [4], the authors proposed a Lya-
punov-based control method for the stabilization around the
origin, Furuta pendulum stabilization around the origin, while
in [5], the authors introduced an active disturbance rejection-
based control and its stability analysis. Another exciting ex-
ample of underactuated systems is the unmanned aerial vehicle
(UAV) such that this kind of system has been of high interest in
the present century because of wide applications for different
fields such as farming, photography, exploration, and military
[6–8]. A typical example of a UAV is the planar vertical takeoff
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and landing (PVTOL) aircraft, a simplified model of the actual
vertical takeoff and landing aircraft [9], which encompasses
almost all the dynamics found in real UAVs. 1e PVTOL has
been used as a suitable benchmark to test new and existing
controllers because it behaves like the well-known quadrotor in
a two-dimensional plane.1ere existmanyworks that tackle the
PVTOL stabilization problem. For instance, Aguilar-Ibanez
et al. [10] proposed a control scheme using controlled La-
grangian for PVTOL stabilization. Fantoni et al. [11] introduced
a control scheme using the PVTOL attitude as fictitious control
and nested saturation technique for the stabilization at the
origin. In [12], Lozano et al. showed that once controlling the
PVTOL aircraft height, the system resembles an inverted
pendulum, and using a change of coordinates, it can be seen as
an integrator chain with nonlinear disturbance. Also, in this
study, the authors present a nested saturation-based control and
demonstrated asymptotic stabilization at the origin. In [13],
based on the image-based visual servoing method and the
backstepping technique, the authors presented a novel control
strategy to force a vertical takeoff and landing (VTOL) aircraft.
Works [14, 15] can be valuable sources for the readers interested
in this problem.

Combining the inverted pendulum and UAV systems
adds a degree of freedom, obtaining a system noneasy to
stabilize. Hehn et al. [16] proposed this problem in 2011 and
named it the flying inverted pendulum, consisting of an
inverted pendulum attached to a quadcopter. 1e control
goals of this study are stabilization at the origin and tracking
a circular trajectory for the quadcopter, using linear qua-
dratic regulator (LQR) control in both cases.1e fact that the
pendulum weights less than 5% of the UAV weight allows us
to separate its corresponding dynamics. Some works found
in the specialized literature deal with the control of the flying
inverted pendulum using different control ideas [17–20],
and some others consider the control of UAVs carrying
loads (commonly known as the flying crane).1is problem is
closely related and relevant to the central control problem in
this study. For instance, Nicotra et al. [21] showed that the
linearized model of a quadcopter with a suspended load
could be stabilized at the origin using nested saturation
functions. Pizetta et al. in [22] proposed a total feedback
control with an auxiliary controller to accomplish tracking
trajectory; almost all the references therein were developed to
test the PVTOL system indoors, mainly to avoid counteracting
the undesirable effect of the wind, which is not an easy task.
However, techniques for nonlinear systems can be applied to
obtain robust controllers, as the controller developed in this
study. Of these techniques, perhaps the most used are back-
stepping control [23, 24], fuzzy control [25–27], active dis-
turbance rejection control approach [28], and others [29]. To
the authors’ knowledge, a general solution for stabilizing this
type of system has not yet been reported in the literature.

In this context, we propose a control scheme for a
PVTOL aircraft system with an inverted pendular load
(PVTOL-ASIPL). 1is scheme mainly consists of a gener-
alized proportional integral (GPI) controller and a nested
saturation-based control. 1e GPI controller accomplishes
height and roll attitude control, using the roll attitude angle
as fictitious input control. 1en, proposing a set of

convenient linear transformations and reducing the system
can be expressed as a chain of integrators with a nonlinear
perturbation. Finally, we design a nested saturation func-
tion-based controller to stabilize the horizontal position and
the pendulum angle. Applying the second method of Lya-
punov assures boundedness of the whole state and as-
ymptotic convergence to the origin.

1e main contributions of this study are as follows:

(i) An algorithm control that uses a fictitious control,
and we propose a combination of a GPI controller
and a controller-based saturation for the takeoff and
landing maneuvers

(ii) A set of convenient transformations, in which a
high-order system can be expressed as a various
low-order system

(iii) A control strategy for the PVTOL aircraft system
with an inverted pendular load controls the height,
roll attitude, horizontal position, and roll angle
simultaneously, even in the presence of exogenous
disturbance

1e organization of the rest of this study is as follows.
Section 2 introduces the model of PVTOL-ASIPL externally
perturbed, obtained from the Euler–Lagrange formalism.
Section 3 develops the control scheme design, while Section
4 presents the results of the numerical simulations. Finally,
Section 5 is devoted to the concluding remarks and future
work.

2. Dynamic Model

1is section presents the dynamic model of the PVTOL
aircraft system with an inverted pendular load (see Figure 1).
1e dynamic equations were obtained by the
Euler–Lagrange formalism as follows:

L � Ek − Ep, (1)

where Ek and Ep are, respectively, the system kinetic and
potential energies. Besides, the inverted pendular load base is
in the PVTOL aircraft center of mass, Pv � (xv, yv), α is
defined as the angle between the PVTOL aircraft and the
horizontal axis, and θ is the angle between the inverted
pendular load and the vertical axis. Finally, the inverted
pendular load center of mass (PP � (xp, yp)) is defined as

xp � xv − lp sin θ,

yp � yv + lp cos θ.
(2)

1erefore, Lagrangian of the system can be expressed as

L �
mv

_Pv
_P
⊺
v

2
+

mp
_Pp

_P
⊺
p

2
+
α2iv
2

+
θ2ip
2

− mvgyv − mpgyp, (3)

where mv is the PVTOL aircraft mass, mp is the pendular
load mass, g is the gravity force, iv is the PVTOL aircraft
inertia, and ip is the inverted pendular load inertia.

1e Euler–Lagrange equations of motion for the
PVTOL-ASIPL system are in the form of
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d

dt

zL

z _q
−

zL

zq
� τ + D, (4)

where q � (xv, yv, α, θ) is the generalized coordinate vector,
τ is the input control vector, and D is the external distur-
bance vector; without loss of generality, iv � 1 and ip � 0.

Developing Euler–Lagrange equation (4) leads to

lpmp sin(θ) _θ
2

+ mv + mp􏼐 􏼑 €xv
− lpmp cos(θ)€θ � −u1 sin(α) + Dx, (5a)

−lpmp cos(θ) _θ
2

+ mv + mp􏼐 􏼑 g + €yv − lpmp􏼐 sin(θ)€θ � u1 cos(α) + Dy, (5b)

iv _α � u2 + Dα, (5c)

−lpmp cos(θ) €xv − lpmp􏼐 sin(θ) g + €yv( 􏼁( + ip + l
2
pmp􏼐 􏼑€θ � 0. (5d)

1en, the equations in (5a) represent the PVTOL-ASIPL,
and they can be expressed in a compact form as

M€q + C(q, _q) _q + G � U + D, (6)

with

M �

mv + mp 0 0 −lpmp cos(θ)

0 mv + mp􏼐 􏼑 0 −lpmp sin(θ)

0 0 i 0
−lpmp cos(θ) −lpmp sin(θ) 0 ip + l

2
pmp􏼐 􏼑

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

C �

0 0 0 lpmp sin(θ) _θ

0 0 0 −lpmp cos(θ) _θ
0 0 0 0
0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

G �

0
mv + mp

0
−lpmp sin(θ)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

U �
−u1 sin(α) u1 cos(α) u2 0􏼔 􏼕

⊺
,

D � Dx Dy Dα Dθ􏽨 􏽩
⊺
,

(7)

where M is a positive semidefinite matrix, C is the Coriolis
matrix, G is the gravity matrix, U is the input control matrix,
and D is the external disturbance matrix. 1e terms Dx, Dy,

and Dα are assumed to be unmodelled owing to the external
disturbances and are defined as follows [30, 31]:

Dx � ax _xv, (8a)

Dy � ay _yv, (8b)

Dα � aα _α, (8c)

Dθ � 0. (8d)

Finally, because M is not a singular matrix, it is possible
to represent the dynamical model of the PVTOL aircraft
system with an inverted pendular load as

€xv �
ex1 + ex2

2mv mv + mp􏼐 􏼑
, (9a)

€yv �
ey1 + ey2

2mv mv + mp􏼐 􏼑
, (9b)

€α � u2 + aα _α, (9c)

€θ �
−u1 sin(α − θ) + ax cos(θ) _xv + ay sin(θ) _yv

lpm
, (9d)

f1

f2
u2

u1

g mv

g mp

xv

yv

α

θ

Figure 1: 1e PVTOL aircraft system with an inverted pendular load.
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where

ex1 � −u1 2mv + mp􏼐 􏼑sin(α) + mp sin(α − 2θ)􏼐 􏼑,

ex2 � ax 2mv + mp + mp cos(2θ)􏼐 􏼑 _xv + aymp sin(2θ) _yv − 2lpmvmp sin(θ) _θ
2
,

ey1 � −2gmv mv + mp􏼐 􏼑 + 2mv + mp􏼐 􏼑u1 cos(α) − mpu1 cos(α − 2θ),

ey2 � axmp sin(2θ) _xv + ay 2mv + mp − mp cos(2θ)􏼐 􏼑 _yv + 2lpmvmp cos(θ) _θ
2
.

(10)

2.1. Problem Statement. 1e control goal consists in pro-
posing an algorithm to accomplish stabilization at the origin
of the PVTOL aircraft system with an inverted pendular
load.1emaneuvers are trajectory tracking tasks involving a
step-by-step procedure, consisting of (1) the stabilization of
the coordinate α; (2) the stabilization of the coordinate yv;
and (3) further stabilization of coordinates xv and θ, even in
the presence of disturbances due to the aerodynamic effects.

We have expressed the system in its minimal repre-
sentation form, which will allow us to decouple it and
simplify it. Instead of working with a complex system, we
work with a few simple systems that embody the dynamics of
the original one. We are now in a position to design and
propose the control scheme in the following section.

3. Control Scheme

1is section establishes the framework to solve the main
control problem. To this end, please consider that the input
control u2 acts over α plus disturbance Dα. So, it is possible
to design a control law for α using a fictitious controller for
the PVTOL aircraft with an inverted pendular load [9, 11].
1en, through linear transformations, a GPI law is used for
the PVTOL takeoff and landing maneuvers. Once the GPI
law stabilized the PVTOL aircraft height, a change of co-
ordinates allows expressing the system as a chain of inte-
grators nonlinearly perturbed, allowing to propose the
nested saturation function-based stabilizing controller.
Figure 2 presents the schematic diagram of the closed-loop
system.

3.1. Controlling the PVTOL Aircraft Attitude (α). It is clear
that the third equation (9c) consists of a double-chain in-
tegrator with nonlinear disturbance Dα and control input u2.
1en, a control law for tracking trajectory is searched for α.

3.1.1. Control Statement. 1e dynamical equation for the
roll attitude angle (α) can be expressed as

€α � u2 + ξ(t), (11)

where ξ(t) is a lumped generalized disturbance input.
Also, according to Lozano Hernández et al. and Fliess

et al. [31, 32], to overcome the lack of available mea-
surements of _α, an integral reconstructor (􏽢_α � 􏽒

t

0 u(τ)dτ)

can be proposed, and using the local approximation of the
disturbance input, it is possible to propose the control
input u2 as

u2 � €αd − kα4 _eα − kα3eα − kα2 􏽚
t

τ1�0
eαdτ1 − kα1 􏽚

t

τ1�0
􏽚
τ1

τ2�0
eαdτ2dτ1

− kα0 􏽚
t

τ1�0
􏽚
τ1

τ2�0
􏽚
τ2

τ3�0
eαdτ3dτ2dτ1,

(12)

where αd is a smooth reference signal for the state α, which is
twice differentiable. Also, _eα � 􏽢_α − _αd and eα � α − αd, and
the relation between the actual value of _α and 􏽢_α is expressed
by

_α � 􏽢_α + 􏽚
t

0
ξ(τ)dτ + _α(0). (13)

Substituting (12) into (11) and expressing the resulting
dynamics in terms of the tracking error, the following dy-
namics are obtained:

e
(5)
α + kα4e

(4)
α + kα3e

(3)
α + kα2€eα + kα1 _eα + kα0eα � 0, (14)

where kαi
, with i � 0, . . . , 4, are selected such that charac-

teristic polynomial s5 + kα4s
4 + kα3s

3 + kα2s
2 + kα1s + kα0 � 0

is Hurwitz, reducing the undesirable effects of the non-
linear disturbances [33, 34]. So, the dynamic error is ex-
ponentially asymptotically stable at the origin. 1is fact
allows using αd as a fictitious control for subsystems (9a),
(9b), and (9d). 1is proposal was previously used in other
works dealing with the stabilization of PVTOL aircrafts
[9, 12].

3.2. Simplified PVTOL Aircraft System with an Inverted
Pendular Load. After α⟶ αd and applying the controller
u2, the following system of equations represents the PVTOL
aircraft system with an inverted pendular load:

€xv �
ex1 + ex2

2mv mv + mp􏼐 􏼑
, (15a)

€yv �
ey1 + ey2

2mv mv + mp􏼐 􏼑
, (15b)
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€θ �
−u1 sin αd − θ( 􏼁 + ax cos(θ) _xv + ay sin(θ) _yv

lpm
, (15c)

with

ex1 � −u1 2mv + mp􏼐 􏼑sin αd( 􏼁 + mp sin αd − 2θ( 􏼁􏼐 􏼑,

ex2 � ax 2mv + mp + mp cos(2θ)􏼐 􏼑 _xv + aymp sin(2θ) _yv − 2lpmvmp sin(θ) _θ
2
,

ey1 � −2gmv mv + mp􏼐 􏼑 + 2mv + mp􏼐 􏼑u1 cos αd( 􏼁 − mpu1 cos αd − 2θ( 􏼁,

ey2 � axmp sin(2θ) _xv + ay 2mv + mp − mp cos(2θ)􏼐 􏼑 _yv + 2lpmvmp cos(θ) _θ
2
,

(16)

where αd and u1 are the input controls.
1us, we propose the following control laws [12]:

u1 �

������

r
2
1 + r

2
2

􏽱

, (17a)

αd � arctan
r2

r1
􏼠 􏼡, (17b)

where r1 > 0 and r2 > 0 are auxiliary control inputs.
To obtain the dynamic model, the following change of

coordinates is applied to model (15a)–(15c):

xv �
􏽢xv

2mv mv + mp􏼐 􏼑
, (18a)

yv �
􏽢yv

2mv mv + mp􏼐 􏼑
, (18b)

θ �
􏽢θ

lpmv

. (18c)

1erefore, models (15a)–(15c) transform into the fol-
lowing system:

€􏽢xv � − 2mv + mp􏼐 􏼑 r2 − ax _xv( 􏼁 + mp cos(2θ) −r2 + ax
_􏽢xv􏼐 􏼑

+ mp sin(2θ) r1 + ay
_􏽢yv􏼐 􏼑 − 2lpmvmp sin(θ) _θ

2
,

€􏽢yv � −2gmv mv + mp􏼐 􏼑 + 2mv + mp􏼐 􏼑r1 − mp r1 cos(2θ) + r2 sin(2θ)( 􏼁,

(19)

+ axmp sin(2θ) _􏽢xv + ay 2mv + mp − mp cos(2θ)􏼐 􏼑 _􏽢yv + 2lpmvmp cos(θ) _θ
2

€̂θ � cos(θ) −r2 + ax
_􏽢xv􏼐 􏼑 + sin(θ) r1 + ay

_􏽢yv􏼐 􏼑.
(20)

Stabilization
of height yv

Control for
(xv, θ)

auxiliary
controls

attitude
control α

αd

PVTOL aircraft
system with an

inverted pendularu1

v1

v2

u2

u1u2 x

y
(x· v, xv)

(α·, α)
α

θ

(y·v, yv)

(θ·, θ)

Figure 2: Control scheme of the PVTOL aircraft system with an inverted pendular load.
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Hence, system (19) takes the compact form
€􏽢xv

€􏽢yv

⎡⎣ ⎤⎦ � M2
r1

r2
􏼢 􏼣 + C2, (21)

with

M2 �
mp sin(2θ) − 2mv + mp + mp cos(2θ)􏼐 􏼑

2mv + mp􏼐 􏼑 − mp(cos(2θ)) − mp(sin(2θ))

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦,

C2 �
− 2lpmvmp sin(θ) _θ

2

− 2gmv mv + mp􏼐 􏼑 + 2lpmvmp cos(θ) _θ
2

− 2gmv mv + mp( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦.

(22)

1en, given system (19) and ignoring the effect of the
disturbances, the following partial feedback control can be
proposed [1, 9]:

r1

r2
􏼢 􏼣 � M

−1
2 −C2 +

v1

v2
􏼢 􏼣􏼠 􏼡, (23)

where v1 and v2 are new auxiliary control inputs. 1us, the
system defined by equation (19), in a closed loop with
control model (23), leads us to obtain the following system:

€􏽢xv � v1 + ax 2mv + mp + mp cos(2θ)􏼐 􏼑 _􏽢xv + aymp sin(2θ) _􏽢yv, (24a)

€􏽢yv � v2 + axmp sin(2θ) _􏽢xv + ay 2mv + mp − mp cos(2θ)􏼐 􏼑 _􏽢yv, (24b)

€θ �
cos(θ) v1 + 2ax mv + mp􏼐 􏼑 _􏽢x􏼐 􏼑 + sin(θ) 2gmv mv + mp􏼐 􏼑 + v2 + 2ay mv + mp􏼐 􏼑 _􏽢y􏼐 􏼑

2 mv + mp􏼐 􏼑
. (24c)

Notice that the above system is the reducedmodel for the
PVTOL aircraft system with an inverted pendular load, with
v1 and v2 as the control inputs.

3.3. Stabilization of Height yv. A GPI controller with a
saturation function is applied to obtain the height position
control, allowing the tracking control to accomplish the

takeoff and landing of the PVTOL aircraft system with an
inverted pendular load.

3.3.1. Control Statement. Consider the vertical displacement
yv described by (25), and let v2 be the control input defined
as (26):

v2 � σa €yd − ky4
_ey − ky3

ey − ky2
􏽚

t

τ1�0
eydτ1 − ky1

􏽚
t

τ1�0
􏽚
τ1

τ2�0
eydτ2dτ1􏼠

−ky0
􏽚

t

τ1�0
􏽚
τ1

τ2�0
􏽚
τ2

τ3�0
eydτ3dτ2dτ1􏼡 � σa ugpi􏼐 􏼑,

(25)
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where yd is a smooth reference signal twice derivable and
ey � yd − 􏽢yv.

Also, σL(q) is a saturation function defined as

σa(q) �

if q> a, a,

if q< − a, −a,

if − a< q< a, q.

⎧⎪⎪⎨

⎪⎪⎩
(26)

1us, the tracking trajectory error ey is exponentially
asymptotically stable.

Proof. 1e proof is split into two parts. First, it is proven
that a saturation function in finite time bounds the error
dynamics ey. 1en, we demonstrate exponentially asymp-
totic stability. □

3.3.2. Error Bounded. 1e tracking trajectory error is de-
fined as

ey � yd − 􏽢yv, (27)

where yd is the desired height position.
Let us define the following state variables as

e1 � ey; e2 � _ey. (28)

1erefore, the dynamic error is transformed into the
following system:

_e1 � e2, (29a)

_e2 � yd − v2 − axmp sin(2θ) _􏽢xv

− ay 2mv + mp − mp cos(2θ)􏼐 􏼑 _􏽢yv,
(29b)

where v2 is the control input.
Now, to use the second method of Lyapunov, consider

the following candidate function:

Vy �
e
2
1
2

+
e
2
2
2

, (30)

which is positive definite, with time derivative

_Vy � e1e2 + e2 _e2 � e1e2 + e2 €yd − σa ugpi􏼐 􏼑 − axmp sin(2θ) _􏽢xv − ay 2mv + mp − mp cos(2θ)􏼐 􏼑 _􏽢yv􏼐 􏼑. (31)

1us, the first and second time derivatives of yd are
known and bounded as |Myd

|. Besides, in a close neigh-
bourhood where e1 and e2 are such that |e1|≤ δe1

and
|e2|≤ δe2

, the saturation function fulfills sσa(s)⩽0. So, pa-
rameters were designed as kyi

in ugpi such that e2 is dom-
inant, and e2σa(ugpi)> 0. Finally, the last terms of equation
(31) satisfy the following:

axmp sin(2θ)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ δx, (32)

ay 2mv + mp − mp cos(2θ)􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ δy. (33)

1erefore, computing the time derivative of the candi-
date Lyapunov function leads to

_Vy � δe1
δe2

+ δe2
Myd

− e2σa ugpi􏼐 􏼑 − δe2
δx

_􏽢xv − δe2
δy

_􏽢yv,

(34)

and if _􏽢xv and _􏽢yv are small enough such that
e2σa(ugpi)> δe1

δe2
+ δe2

Myd
− δe2

δx
_􏽢xv − δe2

δy
_􏽢yv, then _Vy < 0

and 􏽢yv are bounded in finite time. 1us, after time T, when
this condition is satisfied, control law (26) takes the fol-
lowing structure:

v2 � yd − ky4
_ey − ky3

ey − ky2
􏽚

t

τ1�0
eydτ1 − ky1

􏽚
t

τ1�0
􏽚
τ1

τ2�0
eydτ2dτ1

− ky0
􏽚

t

τ1�0
􏽚
τ1

τ2�0
􏽚
τ2

τ3�0
eydτ3dτ2dτ1.

(35)

From the above, equation (24b) is expressed as
€􏽢yv � v2 + ξ1(t), (36)

where ξ1(t) is a lumped generalized disturbance input.
1en, to overcome the lack of available measurements of

_􏽢yv, the following integral reconstructor is introduced [31]:

_􏽢yv
� 􏽚

t

0
v2(τ)dτ. (37)

Using the local approximation of the disturbance input,
the relation between the actual value of _􏽢yv and _􏽢yv is
expressed by

_􏽢yv � _􏽢yv
+ 􏽚

t

0
ξ(τ)dτ + _􏽢yv(0). (38)

Now, differentiating equation (38) and substituting into
(36), the control law v2 takes the form
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v2 � €yd − ky4
_ey − ky3

ey − ky2
􏽚

t

τ1�0
eydτ1 − ky1

􏽚
t

τ1�0
􏽚
τ1

τ2�0
eydτ2dτ1

− ky0
􏽚

t

τ1�0
􏽚
τ1

τ2�0
􏽚
τ2

τ3�0
eydτ3dτ2dτ1,

(39)

with ey � yv − yd and _ey � _􏽢yv − _yd.
Substituting (39) into (36) is possible to express the

dynamic error ey as follows:

e
(5)
y + ky4

e
(4)
y + ky3

e
(3)
y + ky2

€ey + ky1
_ey + ky0

ey � 0. (40)

1e coefficients ky4
, ky3

, ky2
, ky1

, and ky0
are selected

such that the polynomial
S(5) + ky4

S(4) + ky3
S(3) + ky2

S2 + ky1
S + ky0

is Hurwitz,
eliminating the nonlinear disturbances [33]. 1en, tracking
trajectory error ey is exponentially asymptotically stable to
zero.

3.4. Control for (xv, θ). 1is section proposes a nested sat-
uration-based controller strategy to stabilize the PVTOL-
ASIPL horizontal position and roll angle. Notice that the
nested saturation-based controller strategy allows stabilizing
nonlinear systems that can be approximately expressed as a
chain of integrators [35–37]. 1us, our stability problem will
be solved as follows. First, we introduce a linear transfor-
mation for the stabilizing controller. 1en, we demonstrate
that the proposed controller guarantees boundedness and
converges to zero, in finite time, of the whole state.

3.5. Expressing the PVTOL-ASIPL as a Chain of Integrators.
After the application of the controller v2, system (25) can be
reduced to the subsystem (􏽢xv, θ) as follows:

€􏽢xv � v1 + ax 2mv + mp + mp cos(2θ)􏼐 􏼑 _􏽢xv,

€θ �
2gmv mv + mp( 􏼁sin(θ) + cos(θ) v1 + 2ax mv + mp􏼐 􏼑 _􏽢xv􏼐 􏼑

2 mv + mp􏼐 􏼑
.

(41)

1en, introduce the following coordinates’ change:

􏽢xv � xv −2gmv mv + mp􏼐 􏼑􏼐 􏼑,

􏽢θ � θ gmv( 􏼁,

v1 � 2 mv + mp􏼐 􏼑 gmv(v sec(θ) − tan(θ)) − ax _xv( 􏼁.

(42)

System (42) takes the following form:

€xv � v sec(θ) − tan(θ) − ϵx sin (θ)
2

_xv,

€θ � v,
(43)

where ϵx sin (θ)2 _xv is considered as a nonlinear disturbance
and ϵx is an unknown constant that depends on variables
mv, mp, g, and ax (Note that ϵx � (mp/g∗mv ∗ (mv+

mp))ax.). Notice that subsystem (43) is similar to the cart-
pole system plus a nonlinear disturbance [38].

3.5.1. Control Statement. Based on work [3], we define the
following state variables x1 � xv, x2 � _xv, θ1 � θ, and θ2 � θ

.

.
1en, we express the dynamic system as

_x1 � x2,

_x2 � −v sec θ1( 􏼁 + tan θ1( 􏼁 + ϵx sin θ1( 􏼁
2
x2,

_θ1 � θ2,
_θ1 � v.

(44)

To express system (44) as a chain of integrators with a
nonlinear perturbation and propose a controller for the
stabilization of the subsystem (xv, θ), applying the decou-
pling theorem [3, 39], the following global nonlinear
transformation is introduced:

z1 �
1 + tan θ1/2( 􏼁

1 − tan θ1/2( 􏼁
+ x1, (45a)

z2 �
θ2

cos θ1( 􏼁 + x2
, (45b)

ω1 � tan θ1( 􏼁, (45c)

ω2 � θ2sec
2 θ1( 􏼁, (45d)

vf � sec2 θ1( 􏼁v + 2θ22 tan θ1( 􏼁sec2 θ1( 􏼁. (45e)

Hence, the transformed system into a chain of inte-
grators is given by

_z1 � z2,

_z2 � ω1 +
ω1ω

2
1

1 + ω2
1􏼐 􏼑

+
ϵxω2ω

2
1

1 + ω2
1􏼐 􏼑

3/2 −
ϵxz2ω

2
1

1 + ω2
1

,

_ω1 � ω2,

_ω2 � vf.

(46)

3.6. Nested Saturation Function-Based Controller.
Inspired by Teel [40], a linear transformation is proposed to
obtain the stabilizing controller for system (46) as follows:

q1

q2

q3

q4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

1 3 3 1

0 1 2 1

0 0 1 1

0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

z1

z2

ω1

ω2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (47)

Applying transformation (47) to system (46) leads to
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_q1 � vf + q2 + q3 + q4 + 3G1 q3 − q4( 􏼁q
2
4

+ 3G2 q3 − q4( 􏼁q4ϵx + 3G3 q3 − q4( 􏼁 q2 − 2q3 + q4( 􏼁ϵx,

_q2 � vf + q3 + q4 + G1 q3 − q4( 􏼁q
2
4

+ G2 q3 − q4( 􏼁q4ϵx + G3 q3 − q4( 􏼁 q2 − 2q3 + q4( 􏼁ϵx,

_q3 � vf + q4,

_q4 � vf,

(48)

for which the following nested saturation function-based
stabilizing controller is proposed:

vf � −σc1
q4 + σc2

q3 + σc3
q2 + σc4

q1( 􏼁􏼐 􏼑􏼐 􏼑􏼐 􏼑, (49)

where σci
is defined by equation (26), and Gi with i � 1, 2, 3 is

given by

G1(s) �
s

1 + s
2

􏼐 􏼑
3/2, (50a)

G2(s) �
s
2

1 + s
2

􏼐 􏼑
3/2, (50b)

G3(s) �
s
2

1 + s
2.

(50c)

Remark 1. Note that max(G1(s)) � K1 � 2/(3
�
3

√
)when s �

1/
�
2

√
and min(G1(s)) � −2/(3

�
3

√
) when s � −1/

�
2

√
and

lims⟶infG1(s) � 0. Besides, max(G2(s)) � K2 � 2/(3
�
3

√
)

when s � ±
�
2

√
and min(G1(s)) � 0 when s � 0 and

lims⟶infG2(s) � 0. Additionally, min(G3(s)) � 0 when s �

0 and lims⟶infG3(s) � K3 � 1.

3.7. Whole State Boundedness. Now, we prove that the
proposed controller (49) ensures whole state boundedness.
Moreover, the bound of each state directly depends on the
designed parameters of the controller.

Step 1. A positive definite function is defined as

V4 �
q
2
4
2

. (51)

1e time derivative of V4 is expressed by
_V4 � q4 _q4 � q4vf � −q4σc1

q4 + σc2
q3 + σc3

q2 + σc4
q1( 􏼁􏼐 􏼑􏼐 􏼑􏼐 􏼑,

(52)

where c1 and c2 are selected such that c1 > 2c2. It is clear that
_V4 < 0 when ∣q4 ∣ ≥ c2; therefore, there exists a finite time

T1 > 0 such that

q4
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ c2, ∀t>T1. (53)

1us, when this condition is satisfied, the control law
(49) takes the following structure:

vf � −q4 − σc2
q3 + σc3

q2 + σc4
q1( 􏼁􏼐 􏼑􏼐 􏼑. (54)

Step 2. Behaviour analysis of q3: let us consider the following
positive definite function:

V3 �
q
2
3
2

. (55)

Differentiating it with respect to time and after
substituting (54) into _q3, the following expression is
obtained:

_V3 � q3 _q3 � q3 vf + q4􏼐 􏼑 � −q3σc2
q3 + σc3

q2 + σc4
q1( 􏼁􏼐 􏼑􏼐 􏼑.

(56)

To ensure that _V3 < 0 is achieved, the following condi-
tions must be satisfied:

c2 > 2c3, q3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≥ c3. (57)

1en, there exists a finite time T2 >T1 after which

q3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ c3, ∀t>T2. (58)

1erefore, q3 is bounded, and the control law takes the
following form:

vf � −q4 − q3 − σc3
q2 + σc4

q1( 􏼁􏼐 􏼑. (59)

Step 3. 1e following positive definite function is
introduced:

V2 �
q
2
2
2

. (60)

Differentiating V2 and after substituting (60) into the
second equation of (48), the following is obtained:

_V2 � q2 _q2 � −q2 σc3
q2 + σc4

q1( 􏼁􏼐 􏼑 − G1 q3 − q4( 􏼁q
2
4􏽨

−G2 q3 − q4( 􏼁q4ϵx − G3 q3 − q4( 􏼁 q2 − 2q3 + q4( 􏼁􏼃,

(61)

where c3 and c2 must satisfy the relation
c3 > 2c4 + G1(q3 − q4)

2
4 + G2(q3 − q4)q4ϵx + G3(q3 −

q4)(q2 − 2q3 + q4). It is easy to observe that if
|q2|> c4 + G2(q3 − q4)q4ϵx + G3(q3 − q4)(q2 − 2q3 + q4),
_V2 < 0. Hence, there exists a finite time T3 >T2 after which

q2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ c4 + G2 q3 − q4( 􏼁q4ϵx
+ G3 q3 − q4( 􏼁 q2 − 2q3 + q4( 􏼁; ∀t>T3.

(62)

1erefore, q2 is bounded, and the control vf is revealed
to be

vf � −q4 − q3 − q2 − σc4
q1( 􏼁. (63)

Step 4. Substituting (63) into the first equation of (48), we
obtain
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_q1 � −σc4
q1( 􏼁 + 3G1 q3 − q4( 􏼁q

2
4 + 3G2 q3 − q4( 􏼁q4ϵx

+3G3 q3 − q4( 􏼁 q2 − 2q3 + q4( 􏼁ϵx.
(64)

To demonstrate that q1 is bounded, a positive definite
function is defined as follows:

V1 �
q
2
1
2

. (65)

Differentiating V1 along the trajectories of (66) leads to

_V1 � q1 _q1 � −q1 σc4
q1( 􏼁 − 3G1 q3 − q4( 􏼁q

2
4􏼐

− 3G2 q3 − q4( 􏼁q4ϵx − 3G3 q3 − q4( 􏼁 q2 − 2q3 + q4( 􏼁􏼁,

(66)

where c4 must be selected so that c4 > 3G1(q3 − q4)q
2
4 +

3G2(q3 − q4)q4ϵx + 3G3(q3 − q4)(q2 − 2q3 + q4) and
|q1|> 3G1(q3 − q4)q

2
4 + 3G2(q3 − q4) q4ϵx + 3G3(q3 − q4)

(q2 − 2q3 + q4) to achieve V1 < 0. 1erefore, there exists a
finite time T4 >T3 such that

q1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌< 3G1 q3 − q4( 􏼁q
2
4 + 3G2 q3 − q4( 􏼁q4ϵx + 3G3 q3 − q4( 􏼁 q2 − 2q3 + q4( 􏼁, ∀t>T4. (67)

Consequently, q1 is also bounded. Finally, the values of
parameters c1, c2, c3, and c4 can be determined by the fol-
lowing inequalities:

c1 > 2c2,

c2 > 2c3,

c3 > 2c4 + G1 q3 − q4( 􏼁q
2
4 + G2 q3 − q4( 􏼁q4ϵx + G3 q3 − q4( 􏼁 q2 − 2q3 + q4( 􏼁,

c4 > 3G1 q3 − q4( 􏼁q
2
4 + 3G2 q3 − q4( 􏼁q4ϵx + 3G3 q3 − q4( 􏼁 q2 − 2q3 + q4( 􏼁.

(68)

From the above conditions, the set of control parameters
can be selected as

c1 � 28r,

c2 � 14r,

c3 � 7r,

c4 � 3r,

(69)

where r is directly related to the magnitude of the system
disturbances.

3.8.WholeStateConvergence toZero. Here, we prove that the
closed-loop system, provided by (48) and (49) and satisfying
(70), is asymptotically stable.

Notice that, after t>T4, the control law (49) is no longer
saturated; that is,

vf � −q4 − q3 − q2 − q1, (70)

and the closed-loop system turns out to be

_q1 � −q1 + 3G1 q3 − q4( 􏼁q
2
4

+ 3G2 q3 − q4( 􏼁q4ϵx + 3G3 q3 − q4( 􏼁 q2 − 2q3 + q4( 􏼁ϵx,

_q2 � −q1 − q2 + G1 q3 − q4( 􏼁q
2
4

+ G2 q3 − q4( 􏼁q4ϵx + G3 q3 − q4( 􏼁 q2 − 2q3 + q4( 􏼁ϵx,

_q3 � −q1 − q2 − q3,

_q4 � −q1 − q2 − q3 − q4.

(71)

To demonstrate whole state convergence to zero, the
following Lyapunov function is used:

V �
1
2
q
⊺
q, (72)

where q � [q1, q2, . . . , q3, q2]
⊺, and differentiating V along

the trajectories of equation (72), it is obtained that

_V � −q
⊺
Mq + 3q1 + q2( 􏼁 G1 q3 − q4( 􏼁q

2
4􏼐

+G2 q3 − q4( 􏼁q4ϵx + G3 q3 − q4( 􏼁 q2 − 2q3 + q4( 􏼁ϵx􏼁,

(73)

and
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M �

1
1
2

1
2

1
2

1
2

1
1
2

1
2

1
2

1
2

1
1
2

1
2

1
2

1
2

1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (74)

with M being positive definite with λmin(M)1/2.
From Remark 1, it is shown that the following relations

are satisfied:

3q1 + q2( 􏼁G1 q3 − q4( 􏼁q
2
4

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌<

K1

2
3q1 + q2( 􏼁q

2
4

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌<

K1

2
3q1 + q2( 􏼁

2
+ q

4
4􏼐 􏼑,

3q1 + q2( 􏼁G2 q3 − q4( 􏼁q4ϵx
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌<
K2ϵx
2

3q1 + q2( 􏼁q4
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌<
K2ϵx
2

3q1 + q2( 􏼁
2

+ q
2
4􏼐 􏼑,

3q1 + q2( 􏼁G3 q3 − q4( 􏼁q2ϵx
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌<
K3ϵx
2

3q1 + q2( 􏼁q2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌<
K3ϵx
2

3q1 + q2( 􏼁
2

+ q
2
2􏼐 􏼑,

3q1 + q2( 􏼁G3 q3 − q4( 􏼁q4ϵx
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌<
K3ϵx
2

3q1 + q2( 􏼁q4
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌<
K3ϵx
2

3q1 + q2( 􏼁
2

+ q
2
4􏼐 􏼑.

(75)

So, _V fulfills

_V< −
1
2

q
2
1 − K1 3q1 + q2( 􏼁

2
− K2ϵx 3q1 + q2( 􏼁

2
− 2K3ϵx 3q1 + q2( 􏼁

2
􏽨 􏽩

−
1
2
q
2
4 1 − K1q

2
4 − K3ϵx􏽨 􏽩 −

1
2
q
2
2 1 − K2ϵx􏼂 􏼃.

(76)

Hence, the previous inequality is strictly negative defi-
nite, and the following constraints are obtained:

q
2
1 − K1 3q1 + q2( 􏼁

2
− K2ϵx 3q1 + q2( 􏼁

2
− 2K3ϵx 3q1 + q2( 􏼁

2 > 0,

1 − K1q
2
4 − K3ϵx > 0,

1 − K2ϵx > 0.

(77)

1erefore, if the restrictions of (77) are fulfilled, _V is
strictly negative, and the state vector q exponentially con-
verges to zero after t>T4.

1e following proposition summarizes the previous
discussion, which is the main result of our study.

Proposition 1. Consider the PVTOL aircraft system with an
inverted pendular load as described in (9) and in a closed loop
with controllers (12), (17a) and (17b), (23), (25), and (49).
Cen, the closed-loop system is exponentially asymptotically
stable provided that the control parameters c1, c2, c3, and c4
satisfy inequalities (69), and kαi

and kyi
are selected such that

the characteristic polynomial is Hurwitz.

Finally, in Figure 3, the steps’ sequence is shown, obtained
from the control laws u1 and u2.

Having designed the control scheme for the PVTOL
aircraft system with an inverted pendular load and carried
out its convergence analysis, we test its effectiveness through
numerical simulations in the following section. It is worth
mentioning that it would be ideal for testing the scheme by
conducting actual experiments—unfortunately, the con-
struction of the needed prototype is still in progress.

4. Numerical Simulations

To test the controllers’ performance, we carried out some
numerical simulations using the MATLAB-Simulink pro-
gram, and the results were obtained based on the numerical
method of Runge–Kutta of the fourth order with a fixed step
of 0.01 s. 1e physical parameters of the system are
mp � 0.2 kg, mv � 0.8 kg, lp � 0.2m, and g � 9.8m/s2. Also,
the tuning parameters proposed for each controller are listed
in Table 1. Notice that the controller parameter values u2 and
v2 were selected such that the error dynamics is equal to the
desired closed-loop polynomial (s2 + 2ζωns + ω2

n)(s + β).
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Besides, the parameters of vf were chosen such that
ci < 1/2ci+1 [40]. Finally, the initial conditions were set as
follows: xv(0) � 0.2m,yv(0) � 0m,α � 0 rad, θ � 0.1 rad,
_xv � 0.15m/s, _yv � 0m/s, _α � 0 rad/s, and θ

.

� 0.05 rad/s.
In the first experiment, the control strategy simulta-

neously carries out height position by performing trajectory
regulation, stabilizing the horizontal position and roll angle
for the PVTOL and the pendulum angle. In this case, the
desired trajectory, yd, was proposed as

yd �
1

1 + e
20− 2t

􏼐 􏼑 1 + e
− 60+2t

􏼐 􏼑
. (78)

To test the effectiveness of the control strategy intro-
duced in this study, we carried out a comparison test against
the classical PD controller, with gains tuned as kp � 1 and
kd � 4. Figure 4 shows the outcome of this experiment,
where we can observe that both strategies successfully
achieve the height position regulation through the trajectory
tracking task and the stabilization of the horizontal position,
the roll angle, and the pendulum angle. Also, the plot in this
figure shows that our controller converges to the desired
values faster than the PD controller does. Figure 5 shows the
behaviours of the angular velocities, and Figure 6 shows the
tracking error between α and αd and the control inputs u1
and u2.

Using the same setup as before, we run a second ex-
periment, but in this case, the system is affected by external
disturbances with parameters fixed as ax � 1.4, ay � 0.8, and
aθ � 2. Figure 7 shows the corresponding plots, where we
can see that our controller is capable of accomplishing height
tracking and position regulation and, simultaneously, sta-
bilizing the horizontal position, roll angle, and pendulum
angle. Also, it can be seen that the PD controller used in the
first experiment regulates the system slower than our con-
troller does and exhibits undesirable oscillations. 1erefore,
our controller has better performance, maneuverability, and
whole stabilization, even when the system is affected by
external disturbances. Figure 8 shows the system angular
velocities, and Figure 9 shows the tracking error behaviour
between α and αd and the control inputs u1 and u2. Please
notice that the proposed control has adequate energy
management, according to the obtained performance index
􏽒 u2

i shown in Figure 10.

Measurement of position
and orientation

yd yv

v2=σa(ugpi)
z1=x1+log ((1+tan(θ1))/(1-tan (θ1)))
z2=x2+θ2/cos (θ1)
w1=tan (θ1)
w2=θ2 sec2 (θ1)

q1=z1+3z2+3w1+w2
q2=z2+2w1+w2
q3=w1+w2
q4=w2

v2 v1

[r1 r2]t=M2
-1 (-C2+[v1 v2]t)

u1=√(r1
2+r2

2)
αd=arctan (r2/r1)

αd

r1 r2

u1 u2

u2=ugpi

vf=-σc1 (q4+σc2 (q3+σc3 (q2+σc4(q1))))
v=vf cos2(θ1)-2θ2

2tan (θ1)
v1=-2 (mv+mp) (g mv (v sec (θ1)-tan (θ1))-axxp)

θ1 θ2x1 x2yv
·

Figure 3: Control strategy sequence.

Table 1: Tuning parameters for controllers.

Controller Control parameter Gain

u2

L 3
kα0 167
kα1 299
kα2 183
kα3 62
kα4 11
a 1.45

ky0
167

ky1
299

v2

ky2
183

ky3
62

ky4
1

c1 0.11

vf

c2 0.24
c3 0.49
c4 0.99

12 Mathematical Problems in Engineering



xv without disturbances

5 10 15 20 25 300
time (s)

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1
x v

 (m
)

xv GPI controller
xv PD controller

(a)

yv without disturbances

0

0.2

0.4

0.6

0.8

1

1.2

y v
 (m

)

5 10 15 20 25 300
time (s)

yv GPI controller
yv PD controller
yd Reference

(b)

α without disturbances

5 10 15 20 25 300
time (s)

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

α 
(r

ad
)

α GPI controller
α PD controller

(c)

θ without disturbances

5 10 15 20 25 300
time (s)

-0.8

-0.6

-0.4

-0.2

0

0.2

θ 
(r

ad
)

θ GPI controller
θ PD controller

(d)

Figure 4: Comparison between the position closed-loop responses of the proposed controller and PD controller. (a) Behaviour of state xv.
(b) Behaviour of state yv. (c) Behaviour of state α. (d) Behaviour of state θ.
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Figure 5: Continued.
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Figure 5: Angular velocities’ closed-loop response of the proposed controller. (a) Behaviour of state _xv. (b) Behaviour of state _yv. (c)
Behaviour of state _α. (d) Behaviour of state _θ.

eα without disturbances

50 15 20 25 3010
time (s)

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

e α
 (r

ad
)

eα GPI controller
eα PD controller

(a)

u1 without disturbances

9.2

9.4

9.6

9.8

10

10.2
u 1

 (N
)

50 15 20 25 3010
time (s)

u1 GPI controller
u1 PD controller

(b)

u2 without disturbances

2010 15 25 3050
time (s)

-5

0

5

u 2
 (N

–m
)

u2 GPI controller
u2 PD controller

(c)

Figure 6: Tracking error of the state α and behavior of controllers u1 and u2. (a) Error tracking dynamics for α. (b) Control action u1. (c)
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Figure 7: Position closed-loop response of the proposed controller in the presence of external disturbances. (a) Behaviour of state _xv. (b)
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Figure 8: Angular velocities’ closed-loop responses of the proposed controller in the presence of external disturbances. (a) Behaviour of
state _xv. (b) Behaviour of state _yv. (c) Behaviour of state _α. (d) Behaviour of state _θ.
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5. Conclusions

1is work presents a nested saturation function-based
controller, combined with a GPI controller, to stabilize the
PVTOL aircraft system with an inverted pendular load. 1e
model of this system was derived using Euler–Lagrange
formalism. 1e main contribution consists of using a fic-
titious control, and then a GPI controller is proposed for the
aircraft angle (α). Several linear transformations and co-
ordinate changes were introduced to express the original
system to a minimal representation. To accomplish the
takeoff and landing maneuvers, we propose a GPI controller
to track the desired trajectory. After stabilizing the PVTOL
height, the system was represented as a chain of integrators
plus nonlinear disturbance, allowing us to use nested sat-
uration functions to design a controller to stabilize the
horizontal position and pendulum angle. 1e stability
analysis was carried out using the second method of Lya-
punov, using a simple candidate function. Designing the
control scheme was not an easy task because the PVTOL
system with an inverted pendular load is underactuated, and
ensuring the pendulum’s upright position makes this
problem even harder to solve. We ran numerical simulations
to assess the performance of our control scheme, having
obtained convincing results. 1ese simulations included a
comparison against the well-established PD control strategy.
1e performance index of both controllers was computed to
compare them, and the outcome revealed that our strategy
has a better performance than the PD controller. It is im-
portant to note that the performance indexes were estimated
in the presence of nonlinear perturbations, whichmeans that
the proposed controller behaves well even in this undesirable
yet unavoidable realistic scenario. It is important to note that
the controller, based on a GPI controller and nested satu-
ration functions, allows us to perform takeoff maneuvers in
the presence of exogenous disturbances.

In future work, we will explore a design to estimate the
disturbance due to wind or robust techniques for parametric
uncertainties of the system. In addition, it is worth men-
tioning that an experimental platform that allows config-
uring the PVTOL with an inverted pendular load system has
been designed, whose construction is in process, 1us,

experimental implementation of the control scheme pro-
posed herein is considered.
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Instituto Politécnico Nacional and they are the ones to
express their gratitude for the support received.

References

[1] D. J. Block and M. W. Spong, “Mechanical design and control
of the pendubot,” SAE Transactions, pp. 36–43, 1995.

[2] I. Fantoni and R. Lozano, “Global stabilization of the cart-
pendulum system using saturation functions,” 42nd IEEE
International Conference on Decision and Control, vol. 5,
pp. 4393–4398, 2003.

[3] C. A. Ibañez and O. G. Frias, “Controlling the inverted
pendulum by means of a nested saturation function,” Non-
linear Dynamics, vol. 53, no. 4, pp. 273–280, 2008.

[4] C. Aguilar-Ibañez, M. S. Suárez-Castañón, and
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Taking into account the gravitational potential energy of the piezoelectric energy harvester, the size effect, and the rotary inertia of
tip magnet, a more accurate distributed parametric electromechanical coupling equation of tristable cantilever piezoelectric
energy harvester is established by using the generalized Hamilton variational principle. 1e effects of magnet spacing, the mass of
tip magnet, the thickness ratio of piezoelectric layer and substrate, and the load resistance and piezoelectric material on the
performance of piezoelectric energy capture system are studied by using multiscale method. 1e results show that the potential
well depth can be changed by reasonably adjusting the magnet spacing, so as to improve the energy capture efficiency of the
system. Increasing the mass of tip magnet can enhance the output power and frequency bandwidth of the interwell motion. When
the thickness of the piezoelectric beam remains unchanged, the optimal load impedance of the system increases along with the
increase of thickness ratio of piezoelectric layer and substrate. Compared with the traditional model, which neglects the system
gravitational potential energy, the eccentricity, and the rotary inertia of the tip magnet, the calculation results of the frequency
bandwidth and the peak power of the modified model have significantly increased.

1. Introduction

1e extensive application of wireless sensors in building
structural health monitoring, environmental monitoring,
and military fields has put forward higher requirements for
the cleanliness and sustainability of the power supply. 1e
piezoelectric energy harvester (PEH) can collect vibration
energy in the surrounding environment and convert it into
sustainable and clean electricity. Due to its simple structure
and compact and easy integration, it has great potential to
implement wireless sensor nodes and has received extensive
attention in recent years [1–4]. 1e primary structure of the
PEH initially is a linear resonator that mainly consists of a
piezoelectric cantilever beam with a tip mass. Such linear
PEH has a narrow frequency bandwidth that can achieve a
peak value only when the external excitation frequency is in

agreement with its resonant frequency [5–7]. 1is makes
such linear PEH difficult to meet the requirements of the
practical application [8, 9]. To make it more applicable, a
variety of complex energy capture systems with active or
adaptive techniques have been developed. Among these
techniques, nonlinear techniques have been proved to be
more suitable for energy harvesting from ambient vibrations
in practical applications due to the less sensitivity to vari-
ations in the excited frequency of the realistic operational
conditions [10,11].

1e nonlinearity of the PEHs caused by the magnetic
force can be generally classified into three main categories,
namely, monostable [12, 13], bistable [14–17], and tristable
[18–20] PEHs. Bistable piezoelectric energy harvester (BPEH)
has two symmetric potential wells and can oscillate between
these two potential wells under low-frequency external
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excitations, which can greatly enhance the power outputs.
Stanton et al. [21] established the distribution parameter
model of the cantilever BPEH. Based on the harmonic balance
method, the analytical expression of the steady-state response
of the energy capture system is obtained and its working
characteristics are analyzed. Tang et al. [22] investigated the
voltage output of a bistable cantilever piezoelectric energy
harvesting system under different excitations and analyzed
the influence of magnet spacing on the system response. Kim
et al. [23] proposed an electromechanical coupling equation
for a hysteresis reversible cantilever-type magnetoelastic
BPEH. Wang et al. [24] designed an asymmetric bistable
piezoelectric energy harvester composed of a piezoelectric
cantilever beam and rotatablemagnets and further proposed a
method for compensating asymmetric potential wells by
appropriately changing the magnet’s declination angle. 1ese
investigations have shown that the working bandwidth and
output power of the BPEH can be greatly improved after
oscillating into an interwell motion. However, when the
external excitation is low, it is difficult for the BPEH to get rid
of the confinement of the potential well and move into the
large interwell motion.

In order to overcome this challenge and to produce high
energy output at low excitation intensity, tristable piezo-
electric energy harvesters (TPEHs) are proposed. Zhu et al.
[25] established a TPEH based on the magnetic bistable
piezoelectric cantilever beam model, when the angle and
distance between two fixed magnets are appropriate, the
potential energy function of the energy capture system
presents a three-steady state and the potential barrier de-
creases. Numerical simulation and experimental results
show that the TPEH can generate higher output power than
the bistable piezoelectric energy harvester in a wider fre-
quency range under lower excitation intensity. Li et al. [26]
analyzed a tristable energy harvester which can obtain a high
harvesting efficiency at low-frequency base excitation by
tristable coherence resonance. Panyam et al. [27] theoreti-
cally and experimentally studied the influence of the elec-
tromechanical coupling coefficient on the effective
bandwidth of the TPEH. Kim et al. [28] proposed potential
energy diagrams and found that the tristability of the TPEH
is initiated by a new pitchfork bifurcation or a degenerate
pitchfork bifurcation that leads to a pair of saddle-node
bifurcations. Leng et al. [29] obtained a more precise
magnetic force model for the TPEH using equivalent
magnetizing current method and the calculation results of
magnetic force are in good agreement with experimental
data. Yang et al. [18,19] investigated the energy harvesting of
the tristable hybrid vibration energy harvester by using
geometric nonlinearity to tune the resonant frequency.

In this paper, considering the gravitational potential
energy of the system, the eccentricity, and rotary inertia of
the tip magnet, a more accurate nonlinear three-steady-state
distribution parameter model of the piezoelectric cantilever
energy harvester is established based on the generalized
Hamilton variational principle, and the analytic solution of
the motion equation of the system is obtained by using the
multiscale method. In the magnetic dipole model, the in-
fluence of eccentricity of the tip magnet is taken into account

and the magnetic potential energy expressed by polynomial
is obtained. 1e effects of the distance between the magnets,
the mass of the tip magnet, the load resistance, the thickness
ratio of the piezoelectric layer to the substrate layer, and the
piezoelectric materials on the performance of the energy
capture system were studied.

2. Theoretical Model of the TPEH

Figure 1 shows the configuration of the TPEH with magnetic
coupling considered in this paper. It mainly consists of a
piezoelectric cantilever beam and three magnets (denoted as
A, B, and C). 1e piezoelectric cantilever beam is fixed at the
base and is composed of a metal substrate and a pair of
piezoelectric layers (PZTs). Two identical PZTs, poled op-
positely in the thickness direction, are tightly bonded on the
upper and lower surfaces of the substrate. 1e two PZTs are
electrically connected in series with an equivalent load re-
sistance (R) represented as a low power electronic device.
Magnet A (named tip magnet) is attached at the tip of the
cantilever beam and two external magnets (B and C) are fixed
at the frame. 1e horizontal gap between the tip magnet and
magnets B and C is dh.1e vertical gap betweenmagnet B and
magnet C is 2dv. Here, l and b denote the length and width of
the piezoelectric cantilever beam, respectively; hs and tp de-
note the thickness of the metal substrate and the PZTs, re-
spectively; e is the eccentricity of the tip magnet.

vb(t) represents the vibration displacement of the base,
and s is the coordinate along the neutral axis of the pie-
zoelectric cantilever beam. v(s, t) represents the displace-
ment of the beam at s relative to its fixed end. 1e modeling
of the PEH is based on the linear Euler-Bernoulli beam
theory and the linear constitutive equations of the piezo-
electric beam are assumed as follows:

T
s
1 � YsS

s
1

T
p
1 � Yp S

p
1 − d31E3( 􏼁

D3 � d31T1 + εT33E3

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

, (1)

where Y is Young’s modulus, subscript/superscript p and s
represent the piezoelectric layers and substrate layer, S1 and
T1 are the strain and the stress of the piezoelectric cantilever
beam, respectively. 1 and 3 indicate x and y directions, D3 is
the electric displacement, d31 is the piezoelectric constant,
and εT33 is the dielectric constant. E3 is the electric field.

1e strain generated in the piezoelectric cantilever beam
can be expressed as

E3 � −
V(t)

2tP( 􏼁
, (2)

S
s
1 � S

p
1 � − yv″. (3)

1e Lagrange function of the piezoelectric energy har-
vesting system is as follows:

L � Tk + We − Ue − Ug − Um, (4)
where Tk is the kinetic energy, Ue is the potential energy,We
is the electrical energy, Ug is the gravitational potential
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energy, and Um is the magnetic potential energy. Tk andWe
are as follows:

Tk �
1
2

􏽚
l

0
m _v + _vb(t)( 􏼁

2ds +
1
2
Mt

· _v(l, t) + e _v′(l, t) + _vb(t)( 􏼁
2

+
1
2

J _v′(l, t)
2
,

We �
1
2
Ypbd31 h +

tp

2
􏼠 􏼡V(t) 􏽚

l

0
v″ds + blεS33

V(t)
2

4tp
,

(5)

where m � 2ρptpb + ρshsb, in which ρp and ρs are the density
of the piezoelectric layers and substrate layer, respectively.
Mt and J are mass and the rotary inertia of the tip mass,
respectively. εs

33 is the permittivity at constant strain.
Ue is expressed as

Ue �
1
2

􏽚
l

0
YIv″2 − Ypbd31 h +

tp

2
􏼠 􏼡V(t)v″􏼨 􏼩ds, (6)

where h � hs/2, YI � (2/3)[Ysbh
3 + Ypb(3h2tp+ 3ht2p + t3p)].

Ug can be expressed as

Ug � mg􏽚
l

0
v + vb(t)( 􏼁ds + Mtg v(l, t) + vb(t)( 􏼁. (7)

According to the magnetic dipole model [25] and
considering the eccentricity of the tip magnet, the magnetic
potential energy can be given by

Um �
μ0
4π

mB

rBA
����

����
3
2

+
mC

rCA
����

����
3
2

−
mB · rBA( 􏼁3rBA

rBA
����

����
5
2

⎡⎢⎢⎣ −
mC · rCA( 􏼁3rCA

rCA
����

����
5
2

⎤⎥⎥⎦ · mA,

(8)

where μ0 � 4π × 10− 7H · m− 1 is the magnetic permeability
constant. As shown in Figure 1, the horizontal displacement
can be evaluated by Δx ≈ e(1 − cos β), where
β � arctan v′(l) is the rotation angle of the tip magnet
A. rBA � − dh − Δx v(l, t) + e sin β − dV􏼂 􏼃 and rCA �

− dh − Δx v(l, t) + e sin β + dV􏼂 􏼃 are the vector directed
from the magnetic moment source of magnet B and C to that
of magnet C, respectively.

mA � MAVA cos β MAVA sin β􏼂 􏼃,mB � − MBVB 0􏼂 􏼃

and mC � − MCVC 0􏼂 􏼃 represent the magnetic moment
vectors of magnet A, B, and C, respectively, where MA (MB
or MC) and VA (VB or VC) are the magnetization intensity
and material volume of the magnet A (B or C), respectively.

Using the Galerkin approach, the displacement v(s, t) is
assumed as the following form:

v(s, t) � φr(s)ηr(t), (9)

where φr(s) and ηr(t) are the R-order mode shape function
and the generalized mode coordinates of the cantilever
beam, respectively.

1e modal shape function satisfies the following or-
thogonal relations:

􏽚
l

0
φs(s)mφr(s)ds + φs(l)Mtφr(l) + φs(l)Mteφr

′(l)

+ φS
′(l) J + Mte

2
􏼐 􏼑φr

′(l) + φS
′(l)Mteφr(l) � δrs,

(10)

􏽚
l

0

d2φs(s)

ds
2 YI

d2φr(s)

ds
2 ds � ωr

2δrs, (11)

where δrs is the Kronecker delta, ωr � λr
2

��������

YI/(ml4)
􏽱

rep-
resents the resonance frequency of the r-th mode, and λr is
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Figure 1: Schematic of the considered TPEH.
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the eigenvalue. 1e calculation of the oscillation function
and eigenvalues is described in the literature [6].

Substituting equation (9) into (8) and considering only
the 1st order mode, Taylor’s expansion of Um at η(t) � 0 can
be written as

Um � k0 −
1
2

k1η1
2

+
1
4

k2η1
4

+
1
6

k3η1
6

+ o η1
7

􏼐 􏼑, (12)

where, k0 � 2κq1/(d2
h + d2

v)2,

k1 �
4κ

d
2
h + d

2
v􏼐 􏼑

5/2 q1 2.5q2 − 17.5q
2
3􏼐 􏼑 − 5q3q4 d

2
h + d

2
v􏼐 􏼑 − q5􏽨 􏽩

k2 �
8κ

d
2
h + d

2
v􏼐 􏼑

5/2 q1 − 2.5q6 − 17.5q3q7 + 4.38q
2
2 − 78.75q2q

2
3 + 144.375q

4
3􏼐 􏼑 + q4 − 2.5q7 − 17.5q2q3 + 52.5q

3
3􏼐 􏼑􏽨 􏽩 d

2
h + d

2
v􏼐 􏼑

+q5 − 2.5q2 + 17.5q
2
3􏼐 􏼑 + 5q3q8 + q9􏽨 􏽩

k3 �
12κ

d
2
h + d

2
v􏼐 􏼑

5/2 q1 − 2.5q10 + 13.125q3q11 + 8.75q2q6 + 4.375q
2
7 − 78.75q

2
3q6 + 78.25q2q3q7 − 288.75q

3
3q7 + 216.55q

2
2q

2
3􏼐􏽨

− 6.56q
2
3 − 938.44q2q

4
3 + 938.44q

6
2􏼑 + q4 1.875q11 − 17.5q3q6 + 8.75q2q7 − 78.75q

2
3q7 + 39.38q

2
2q3 − 288.75q2q

2
3 + 375.375q

5
3􏼐 􏼑

+ q5 − 2.5q6 − 17.5q3q7 + 4.375q
2
2 − 78.75q2q

2
3 + 144.375q

4
3􏼐 􏼑

+q8 − 2.5q7 − 17.5q2q3 + 52.5q
3
3􏼐 􏼑 + q9 − 2.5q2 + 17.5q

2
3 + 5q3q12 + q13􏼐 􏼑􏽩.

(13)

Expressions for the coefficients κ and qi�1···13 are shown
in the appendix.

Considering only the 1st order mode, equation (2) is
substituted into the following Lagrangian variational
equation using equation (9).

d
dt

zL

z _η
􏼠 􏼡 −

zL

zη
� F(t),

d
dt

zL

z _V
􏼠 􏼡 −

zL

zV
� Q(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(14)

where F1(t) � − 2ξ1ω1 _η1(t) is the generalized dissipative
force, ω1 denotes the 1st order resonance frequency, ξ1 is the
damping ratio, and Q(t) represents the generalized output
charge. _Q(t) � V(t)/R, where R denotes the load impedance.
1e electromechanical coupling equations of the piezo-
electric beam energy harvesting system can be obtained by
using equation (13):

€η1 + 2ξ1ω1 _η1 + ω1
2η1 + g0 − k1η1

+ k2η1
3

+ k3η1
5

− θ1V(t) � − Γ1vb(t),

(15)

Cp
_V(t) +

V(t)

R
+ θ1 _η1 � 0, (16)

where ω2
1 � YI􏽒

l

0 φ1″ds, g0 � mg􏽒
l

0 φ1(s)ds + Mtgφ1(l),
Γ1 � m 􏽒

l

0 φ1(s)ds + Mt(φ1(l) + eφ1′(l)), θ1 � Ypbd31(h+

(tp/2)) 􏽒
l

0 φ1″ds, and Cp � blεs
33/2tp.

Assume that the excitation acceleration is
€vb(t) � vb cos(ωet), where vvb denotes the amplitude of
the excitation, ωe denotes the circular frequency, and Cp
denotes the capacitance. Introducing the dimensionless
parameters shown in equation (17), the electrome-
chanical coupling equations (14) and (16) can be re-
written as equations (18) and (19) in the dimensionless
form.

x �
η1
l

,

V �
VCp

lθ1
,

τ � ω1t,

(17)

x + 2ξ1 _x + G0 + 1 − K1( 􏼁x + K2x
3

+ K3x
5

− Θ�V � f cos(ωτ),
(18)

_V + αV + _x � 0, (19)

where G0 � G0/(ω2
1l), K1 � k1/ω2

1, K2 � k2l
2/ω2

1,
K3 � k3l

4/ω2
1, Θ � θ21/Cpω2

1, f � − Γ1vb/ω2
1l, and ω � ωe/ω1,

α � 1/CpRω1.

3. Multiscale Method Analysis

1e total potential energy function of the system can be
expressed as
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U � G0x +
1
2

1 − K1( 􏼁x
2

+
1
4
K2x

4
+
1
6
K3x

6
. (20)

Figure 2 shows the potential energy curve of the system
at different magnet spacing. For the traditional model
(G0 � 0), when 1 − K1 > 0, K2 < 0, K3 > 0 and
K2

2 − 4(1 − K1)K3 > 0, the two symmetric potential wells
associated with the equilibria at xs � ∓������������������������������

(− K2 +
����������������
K2

2 − 4(1 − K1)K3
􏽰

)/(2K3)

􏽱

are separated by the
potential well associated with the trivial equilibrium, xs � 0. In
this scenario, the potential energy function is symmetrically
tristable. With the increase of dv, the middle potential well
depth increases while the outer potential well depth decreases
when dh remains constant. When the dv is constant, the
middle and outer middle potential well depths decrease with
the increase of dh. When the modified model (G0≠ 0) is used,
the potential energy curve will no longer be symmetric, but
the variation pattern of potential well depth with magnet
spacing is consistent with that of the conventional model.

Introducing a small perturbation parameter ε, a new
independent time variable Tn can be expressed as

Tn � εnτ. (21)

1e derivative with respect to τ is

d
dτ

� 􏽘
m

n�0
εn

Dn. (22)

1e displacement and output voltage response of the
system can be respectively expressed as

x(τ, ε) � 􏽘
m

n�0
εn

xn T0, T1, . . . , Tn( 􏼁,

V(τ, ε) � 􏽘
m

n�0
εn

Vn T0, T1, . . . , Tn( 􏼁.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(23)

1e constant parameters such as nonlinear term coef-
ficients, electromechanical coupling coefficients, and the
excitation forcing in equation (18) are scaled so that the
viscous damping effect appears at the same order of the
perturbation problem. 1at is, we let

ξ1 � εξ1,

K2 � εK2,

K3 � εK3,

Θ � εΘ,

f � εf.

(24)

Substituting equation (24) into equation (18), we get

x + ω1
2
x + G0 + ε 2ξ1 _x + K2x

3
+ K3x

5
− ΘV􏽨 􏽩 � εf cos(ωτ),

(25)

where ω1 �
������
1 − K1

􏽰
represents the linearized oscillation

frequency within the middle potential well.

To express the nearness of the excitation frequency to the
linearized resonance frequency within the middle potential
well, we let

ω2
� ω1

2
+ εσ. (26)

Substituting equations (22)–(26) into equation (25) and
truncating at order ε and separating the terms of ε and
equating them to zero, we obtain

O ε0􏼐 􏼑: D
2
0x0 + ω2

x0 � − G0, (27a)

D0V0 + αV0 � − D0x0, (27b)

O ε1􏼐 􏼑: D
2
0x1 + ω2

x1 � − 2D0D1x0 − 2ξ1D0x0 − K2x
3
0

− K3x
5
0 + σx0 + ΘV0 + f cos(ωτ),

(28a)

D0V1 + αV1 � − D0x1 − D1x0 − D1V0. (28b)

1e solutions of equations (27a) and (27b) can be written
as

x0 � A T1( 􏼁exp iωT0( 􏼁 −
G0

ω2 + cc, (29)

V0 � −
ω2

+ iωα
α2 + ω2 A T1( 􏼁exp iωT0( 􏼁 + cc, (30)

where A(T1) is a complex-valued function, A is the
complex conjugate of A, and cc is the complex conjugate
of the preceding term. Substituting equations (29) and
(30) into equation (28a) and eliminating the secular terms,
we get

− 2iωD1A − 2iωξ1A −
ω2

+ iωα
α2 + ω2 ΘA − 3

G0

ω2􏼒 􏼓
2
K2A

− 5
G0

ω2􏼒 􏼓
4
K3A − 3K2A

2
A − 30

G0

ω2􏼒 􏼓
2
K3A

2
A

− 10K3A
3
A
2

+ σA +
f

2
exp iσT1( 􏼁 � 0.

(31)

A can be expressed in the polar form A � 1/2aeiθ, where
a represents the steady-state displacement response am-
plitude and θ is the argument. Introducing c � σT1 − θ,
substituting it into equation (29) and then separating the real
and imaginary parts, we obtain

D1a � − c1a + c2 sin c, (32a)

aD1c � c3a − c4a
3

− c5a
5

+ c2 cos c. (32b)

where c1 � ξ1 + αΘ/2(ω2 + α2), c2 � f/2ω, c3 � σ + (σ/2ω)

− (Θω/2(ω2 + α2))− (3K2/2ω)(G0/ω2)2 − (5K3/2ω) (G0/
ω2)4c4 � (3K2/8ω) + (15K3/4ω)(G0/ω2)2, and c5 � (5K3
/16ω).
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For the steady-state response, let the time derivatives in
equations (32a) and (32b) be equal to zero, and square and
add the resulting equations to obtain

c
2
5a

10
+ 2c4c5a

8
+ c

2
4 − 2c3c5􏼐 􏼑a

6
− 2c3c4a

4

+ c
2
1 + c

2
3􏼐 􏼑a

2
− c

2
2 � 0

(33)

where the steady-state displacement response amplitude a
can be obtained by equation (33). 1e steady-state solutions
for the displacement and the voltage can then be expressed
in the following form:

x(τ) � a cos ωτ + ϕ0( 􏼁, (34a)

V(τ) � u cos ωτ + ϕ0 + φ( 􏼁, (34b)

where u � ω/
������
α2 + ω2

√
a is the steady-state voltage response

amplitude ϕ0 � arc(c1/c3 − c4a
2 − c5a

4), and φ � arctan
(α/ω).

1e steady-state solutions of output power can be
written as follows:

P �
l
2θ21u

2

C
2
pR

. (35)

1e stability of the solution can be determined according
to the Routh–Hurwitz method.

4. Results and Discussion

In this section, we discuss the magnet spacing, the mass of
tip magnet, thickness ratio of piezoelectric layer and sub-
strate, load resistance, and piezoelectric material on the
performance of TPEH for two different computational
models. 1e geometric and material properties are as

follows: l � 75mm, b � 20mm, hs � 0.2mm, Ys � 70Gpa,
ρs � 2700 kg/m3, Mt � 14.9 × 10− 3 kg, MA � MB �

MC � 1.22 × 106 A/m, VA � VB � VC � 1 × 10− 6 m3,
ξ1 � 0.01. PZT-5A: Yp � 60.98Gpa, ρs � 7750 kg/m3,
d31 � − 1.71 × 10− 10 C/N, εs

33 � 1.33 × 10− 8 F/m. PZT-5H:
Yp � 60.61Gpa, ρs � 7500 kg/m3, d31 � − 2.74 × 10− 10 C/N,
and εs

33 � 2.56 × 10− 8 F/m. Figures 3 and 4 depict variations
of displacement and output power versus excited frequency
for different magnet spacing, respectively, in which
Mt � 14.9 g, R� 300 kΩ. Figures 3 and 4 show that the dis-
placement and output power amplitude of the interwell
motion increase while the bandwidth decreases as dh in-
creases for a fixed dv. 1e amplitude of the intrawell motion
displacement of the conventional model decreases as dh
increases, while the amplitude of the intrawell motion
displacement of the modified model is not sensitive to
changes in dh. With the dv increasing, the displacement and
output power amplitude of the interwell motion decreases,
while the bandwidth and intrawell motion displacement
amplitude increases in the case of the fixed dh. 1e trend of
interwell power varies with the distance between magnets
being the same for the conventional model and the modified
model, but the peak power and interwell bandwidth of the
two models differ significantly. Taking dv � 7.5mm,
dh � 20mm and dv � 7.5mm, dh� 21mm as examples, when
the modified model is adopted, the corresponding peak
power of the two cases is increased by 10.4% and 10.8%,
respectively, compared with that of the traditional model,
and the corresponding interwell bandwidth is increased by
25.8% and 27.3%, respectively, compared with that of the
traditional model.

Figures 5 and 6 give the displacement and output power
frequency response curves for different tip magnet masses
Mt when dv � 7.5mm, dh � 20mm, and R� 300 kΩ. Figure 5
shows that increasing the tip magnet mass Mt can signifi-
cantly increase the peak displacement and interwell band-
width. When the excited frequency is low, the displacement
amplitude of the interwell motion increases with tip magnet
mass Mt increasing for the conventional model case while
there is no significant change in interwell motion dis-
placement amplitude for the modified model. As can be seen
from Figure 6, the interwell motion output power amplitude
and peak power for both computational model cases in-
crease significantly with Mt increasing. 1e peak power
calculated by the modified model is 0.13W and 0.23W,
whenMt � 9.9 g andMt � 14.9 g, respectively, which is 21.2%
and 7.4% higher than the peak power of the conventional
model, and the interwell motion bandwidth of the modified
model is 38.1% and 25.5% higher than that of the con-
ventional model, respectively.

Figures 7 and 8 show the steady-state amplitude re-
sponse curves of the interwell motion output voltage with
the variation of the excited acceleration amplitude for dif-
ferent tip magnet massesMt when excited frequency ω� 0.5
and ω� 1. Figures 7 and 8 show that there is an excited
acceleration threshold, and when the TPEH is excited by an
excited amplitude greater than this threshold, it can cross the
potential barrier and enter the high energy orbit. 1e excited
acceleration threshold of interwell motion decreases with the
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Figure 2: Tristable potential energy curve.
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increase of Mt when excited frequency ω� 0.5 and ω� 1.
Compared to the conventional model, the modified model
has a lower excitation acceleration threshold for interwell
motion. In addition, the larger the excitation frequency, the
larger the excitation acceleration amplitude required for the
TPEH to generate interwell motion.

1e variation of output power amplitude with load re-
sistance for the two calculation models at low excited fre-
quency is studied when dv � 7.5mm, dh � 20mm, and

Mt � 14.9 g. Figure 9 shows that the output power amplitude
at each excitation frequency tends to increase at the be-
ginning and decrease afterwards with the increase of load
resistance at each excited frequency. Each excitation fre-
quency corresponds to an optimal load resistance to max-
imize the amplitude of output power of the TPEH, and the
optimal load resistance decreases with the increase of ex-
citation frequency. At lower excited frequencies (in the range
of 0.6 to 1.1), the optimal load resistance of the modified
model is higher than that of the conventional model, but the

0.00

0.04

0.08

0.12

0.16

0.20

0.24

0.28

P 
(W

)

0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
ω

modified model

traditional model

Mt = 9.9g
Mt = 12.4g
Mt = 14.9g
Mt = 9.9g
Mt = 12.4g
Mt = 14.9g

Figure 6: Power frequency response curve in different values ofMt.
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Figure 3: Displacement frequency response curve in different
distance between three magnets.
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corresponding peak power is significantly lower than that of
the conventional model.

1e effect of load resistance R on the peak displacement
of the cantilever beam for two different piezoelectric ma-
terials (PZT-5A, PZT-5H) at dv � 7.5mm, dh � 20mm, and
Mt� 14.9 g is shown in Figure 10. 1e results show that the
load resistance R has little effect on the peak displacement of
the system under the short circuit or open circuit conditions.
1e peak displacements of the two piezoelectric materials are

very similar to each other. 1e reason is that they have
similar elastic modulus and density, the natural frequencies
of short circuit and open circuit are close, and the flexibility
under short circuit or open circuit resonance excitation is
also very close.

Figure 11 depicts the peak power variation curve with
load resistance R for the cantilever beam of two piezoelectric
materials (PZT-5A, PZT-5H) when dv � 7.5mm,
dh � 20mm, Mt � 14.9 g. 1e results show that the peak
power of the system increases sharply with the increase of
the load resistance (the first peak power maximum occurs,
and the corresponding local optimal load resistance is Ropt1),
then decreases slightly and continues to increase (the second
peak power maximum occurs, and the corresponding local
optimal load resistance is Ropt2), and then decreases grad-
ually. Both local optimum load resistances of the PZT-5A
cantilever beam are larger than those of the PZT-5H can-
tilever beam, but the maximum values of the system peak
power with both piezoelectric materials are very close, due to
the fact that the magnitude of the peak power depends on the
flexibility of the piezoelectric cantilever beam. 1e peak
power maximum values of the modified model for both
piezoelectric materials are larger than those of the con-
ventional model, and the corresponding local optimal load
resistance Ropt1 is larger than that of the conventional
model, while Ropt2 is smaller than that of the conventional
model in both cases. Taking the PZT-5A cantilever beam as
an example, the Ropt1 � 59K obtained by using the modified
mode is 10.1% higher than that of the traditional model, and
the Ropt2 � 281K is 21.6% lower than that of the traditional
model. 1e maximum peak power of the modified model is
7% higher than that of the traditional model.

Figure 12 shows the variation curve of peak power of
PZT-5A and PZT-5H cantilever beams with thickness ratio
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TP/HS of piezoelectric layer and substrate under the two
calculation models when the thickness of piezoelectric beam
(2tp+ hS) is 0.6mm. It can be seen from Figure 12 that the
peak power of PZT-5A and PZT-5H cantilever beams under
both calculation models show a trend of increasing sharply
and then leveling off with the increase of tp/hs. Under the
traditional model, when tp/hs< 0.5, the peak power of PZT-
5H cantilever beam is significantly lower than that of PZT-
5A cantilever beam; when tp/hs is between 0.5 and 1.1, the
peak power of PZT-5H cantilever beam is slightly larger than
that of PZT-5A cantilever beam. After that, with the con-
tinuous increase of tp/hs, the peak power of PZT-5H can-
tilever beam is lower than that of PZT-5A cantilever beam
again. Under different piezoelectric materials, when tp/hs is
small, the peak power obtained by the two models is close to
each other, while when tp/hs exceeds a certain value, the peak

power obtained by the modified model is obviously higher
than that obtained by the traditional model.

1e optimal load resistance curves of PZT-5A and PZT-
5H cantilever beams with two excitation frequencies (ω� 0.5,
ω� 0.5) for dv� 7.5mm, dh � 20mm, Mt � 14.9 g, and pie-
zoelectric beam thickness 2tp+ hs � 0.6mm are given in
Figure 13. It shows that the optimal load resistance of PZT-5A
and PZT-5H cantilever beams under both calculation models
decreases with increasing excited frequency and increases
with increasing tp/hs, and the growth rate of optimal load
resistance slows down with increasing tp/hs. 1e optimal load
resistance of both calculated models is greater for the PZT-5A
cantilever beam compared to the PZT-5H cantilever beam for
the same excited frequency and tp/hs. Under the same con-
ditions, the optimal load resistance of the modified model is
larger than that of the conventional model.
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Figure 9: Output power amplitude response of the system with different load resistance: (a) modified model and (b) traditional model.
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5. Conclusions

In this paper, based on the generalized Hamilton variational
principle, considering the gravity potential energy of the
energy harvester, the size effect, and the rotary inertia of tip
magnet, a more accurate electromechanical coupling
equation of the nonlinear tristable piezoelectric cantilever
energy harvester is obtained, and the analytical solution of
the equation is obtained by using the multiscale method.1e
effects of magnet spacing, the mass of tip magnet, thickness
ratio of piezoelectric layer and substrate, load resistance, and
piezoelectric material on the performance of piezoelectric

energy capture system under the modified and conventional
models were investigated and the following conclusions
were obtained:

(1) Increasing dh or decreasing dv can improve the
interwell displacement and output power amplitude.
1e interwell bandwidth decreases with the increase
of dh and increases with the increase of dv.

(2) Increasing Mt can significantly increase the peak
power and bandwidth of the system, but the excited
acceleration threshold to generate interwell motion
decreases with increasing Mt.

(3) 1e maximum peak power of two piezoelectric
cantilever beams (PZT-5A and PZT-5H) is very
close. When tp/hs is very small or too large, the peak
power of PZT-5A cantilever beam is slightly larger
than that of PZT-5H cantilever beam, while when tp/
hs is moderate, the peak power of PZT-5H cantilever
beam is significantly larger than that of PZT-5A
cantilever beam. 1e optimal load resistance of both
piezoelectric material cantilever beams increases
with tp/hs increasing. Under the same excited fre-
quency and tp/hs, the optimal load resistance of PZT-
5A cantilever beam is larger.

(4) 1e effect on the optimal load resistance of the
system is significant after introducing the gravita-
tional potential energy of the TPEH, the eccentricity,
and the rotational inertia of the tip magnet into the
conventional calculation model. In addition, com-
pared with the traditional model, the peak power and
interwell motion bandwidth of the modified model
are significantly increased. 1erefore, it is of great
significance to establish amodifiedmodel to improve
the accuracy of predicting the energy harvesting
efficiency of the TPEH.
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Appendix

κ �
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