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As the mode share of the subway in Seoul has increased, the estimation of passenger travel routes has become a crucial issue to
identify the congestion sections in the subway network.,is paper aims to estimate the travel train of subway passengers in Seoul.
,e alternative routes are generated based on the train log data. ,e travel route is then estimated by the empirical cumulative
distribution functions (ECDFs) of access time, egress time, and transfer time. ,e train choice probability is estimated for
alternative train combinations and the train combination with the highest probability is assigned to the subway passenger. ,e
estimated result is validated using the transfer gate data which are recorded on private subway lines. ,e result showed that the
accuracy of the estimated travel train is shown to be 95.6%. ,e choice ratios for no-transfer, one-transfer, two-transfer, three-
transfer, and four-transfer trips are estimated to be 53.9%, 37.7%, 6.5%, 1.5%, and 0.4%, respectively. Regarding the practical
application, the passenger kilometers by lines are estimated with the travel route estimation of the whole network. As results of the
passenger kilometer calculation, the passenger kilometer of the proposed algorithm is estimated to be 88,314 million passenger
kilometer. ,e proposed algorithm estimates the passenger kilometer about 13% higher than the shortest path algorithm. ,is
result implies that the passengers do not always prefer the shortest path and detour about 13% for their convenience.

1. Introduction

In 2004, the municipal government of Seoul introduced the
automatic fare collection (AFC) system. ,e AFC system
makes it possible to analyze the travel behavior of transit
passengers. With smart card data obtained from the AFC
system, it has much attention to estimate the travel route of
passengers on subway networks [1]. Seoul’s transit fare
system charges passengers based on their travel distance, so
it is essential to ascertain the passenger’s travel routes [2].
Smart card data of the AFC system provide travel route
information of bus trips and transfer trips between the bus

and subway networks [3, 4]. ,e travel routes of the subway
passengers, however, are still hard to identify since the smart
card data do not provide route information of subway
passengers [5]. ,e card reader of the subway AFC system is
installed at the gates of the station, which is outside of the
platform. Since the information is only recorded at the
station gates that a passenger departs or arrives, thus there is
no way to know which route a passenger has traveled. ,e
crucial problem of estimating the travel routes of subway
passengers is that there is no information about transfer trips
between public subway lines [6]. Only privately owned lines
have installed the transfer gates, which are located on the
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transfer aisle. Travel route information of trips made
through the private lines can be identified with the transfer
gate data. For the transfer trips of public lines, the travel
route information is not provided since there is no transfer
gate at the transfer station.

,e travel routes of urban railways have traditionally
been estimated based on utility maximization or regret
minimization models [7, 8]. However, these models could
not be valid for several reasons. ,e train arrival time is not
always consistent with the train schedule in a complex urban
railway system. Also, passengers might not choose the es-
timated travel route depending on their tap-in time and train
arrival time. Passengers could choose unexpected travel
routes with instantaneous decisions. ,us, the traditional
models were not always correct in these specific situations,
and the advanced method is required to estimate the travel
route [9].

Recently, many studies have explored route preference
using smart card data [10–14]. For example, Sun et al. [15]
estimated the passenger’s location with smart card data of
the Singapore MRT system. ,e spatiotemporal density of
passengers was estimated, and the trains’ trajectories were
identified from the move of estimated density. ,ese results
were derived from the railway network in which consecutive
trains followed the same route without transfers. Similarly,
Kusakabe et al. [16] explored the passenger’s train choice
behavior with smart card data.,e route with the longest in-
vehicle time was selected as the traveled route rather than the
earliest departing or arriving routes. Lee et al. [17] also
estimated the express train choice behavior using smart card
data. ,e Gaussian mixture model was used to decompose
the travel time distribution into two distributions, i.e., ex-
press train and local train. Each passenger was assigned to an
express or local train according to a density probability.

Many previous studies have sought to accurately explore
passenger’s train preferences using smart card data and train log
data, i.e., train logs or train schedules [18, 19]. For example, Sun
andXu [20] estimated the egress time, access time, transfer time,
and in-vehicle time with the smart card data, train schedules,
and complementary manual surveys. With these estimated
attributes, the travel time distribution of each route was
established, and the passenger preference was explored. Zhou
andXu [13] also estimated the traveled route to assign passenger
flow. With the train schedule data, feasible routes were gen-
erated, and each passenger was assigned to the route, which had
aminimum surplus time. Similarly, Zhu et al. [21] estimated the
train choice behavior with real timetables and smart card data.
,e choice set was generated by the deletion algorithm, and the
route choice probability was estimated by Manski’s paradigm.
Sun and Schonfeld [22] proposed a route choice model using
smart card data.,e choice set was generated based on the train
schedule connection network.,e access time, egress time, and
transfer time were considered to assign passengers to the
generated route. Similarly, Hong et al. [23] also proposed a train
choice model with smart card data and train log data. ,e
passengers who have a unique route were defined as reference
passengers, and the traveled routes of passengers who have
multi-route were estimated by matching the reference
passengers.

Although these previous studies attempted to estimate
the travel route, some improvements still remained. First,
the accuracy of the route estimation needed to be improved
using passenger’s experienced travel time attributes, i.e.,
access time, egress time, transfer time, and in-vehicle time.
,e distribution forms of the travel time attributes are all
different by stations and origin-destination (O-D) pairs.
,us, travel time attributes are required to estimate without
the distribution assumption. Second, there was a limitation
on validating themodel performance since passenger’s travel
route information, such as transfer information, was not
recorded on smart card data. Previous studies have proposed
many methods to estimate travel routes. However, there is a
limit to identifying the accuracy of the method due to the
absence of revealed preference data of travel routes. To shed
light on these issues, this study proposed a methodology that
estimates passenger’s travel route (train) using smart card
data and train log data. ,e contributions of this study were
presented as follows: (1) the empirical distribution without
distribution assumption was developed to estimate the
probability of each travel time attribute; (2) model perfor-
mance was validated with revealed route information
(transfer gate) data; and (3) the practical application, such as
efficiency evaluation of each subway line, was performed
using estimated results of the whole subway passengers in
Seoul.

,is study estimated the travel route of individual
subway passengers using the smart card data and train log
data. ,e alternative routes were generated based on the
train log data. ,e travel route was then estimated by the
empirical cumulative distribution functions (ECDFs) of
access time, egress time, and transfer time. With the ECDFs
of the time attributes, the train choice probability was es-
timated for alternative train combinations. Among the al-
ternative train combinations, the train combination with the
highest probability was assigned to the subway passenger.
,e smart card data of the private lines were employed to
validate the results of the travel train estimation since it had
the exact information about the travel route transaction.,e
proposed algorithm was then applied to estimate the travel
train of all subway passengers on the entire subway network
in Seoul.

2. Data Description

2.1. Description of the Network (Seoul Metropolitan Area).
,e subway network in Seoul consists of 11 lines numbering
from 1 to 9, Bundang Line, and Shinbundang Line. ,e
subway network has 327 stations, including 127 transfer
stations to serve Seoul and its surroundings. Among 11 lines,
Line 9 and the Shinbundang Line are owned by private
companies. ,e total number of trips of the subway network
in Seoul is 6,313,176 trips per day. ,e headway of the
subway trains is about 6 minutes on average. ,e minimum
and maximum headways are about 2 and 26 minutes, re-
spectively. ,ere is no way to identify the travel route with
the public lines. However, private lines have transfer gates at
all transfer stations to collect fares. With the data from the
transfer gate, it is possible to validate the results of the travel
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route estimation. Line 9 consists of 30 stations with nine
transfer stations, and the Shinbundang Line consists of 12
stations with five transfer stations. ,e number of trips of
Line 9 and Shinbundang Line is 472,436 trips per day. Since
the percentage of private trips accounts for about 7.4% of all
trips, it is possible to validate the estimation result.

,e travel route estimation for the trips traveled private
lines was conducted to validate the performance of the
proposed algorithm. ,e process of estimating train choices
for the individual passenger was explained with an illus-
tration network that has two alternative routes for the same
O-D pair. ,e travel route for the subway network in Seoul
was also estimated to ascertain the practical applicability of
the algorithm. ,e subway network in Seoul is shown in
Figure 1.

2.2. Descriptions of the Smart Card Data and Train Log Data.
,e smart card data store about 20 million trip information
per day, including about 7 million subway trips and 12
million bus trips. ,e smart card data can be obtained from
the Korea Transportation Safety Authority (KTSA) and
contain 38 data information for each trip. To estimate the
train choice, we used smart card data of October 31, 2017.
Among the 38 data information, we used 10; card ID,
transaction ID, line ID, boarding station ID, alighting station
ID, boarding time, alighting time, total travel time, transfer
station ID, and transfer time.,e data information related to
the transfer is provided only from the trips on the two
private lines.,us, it is possible to identify the travel route of
passengers who traveled on private lines. ,e data infor-
mation of the smart card data are shown in Table 1.

,e train log data contain about 175,000 logs of real-time
train operation data per day. ,e train log data can be
obtained from the Open Data Portal (data.seoul.go.kr), and
it includes the arrival time information of the train at each
station.,e reliability of the train log data is ensured because
it is the actual arrival time of the train. By integrating train
log data with the smart card data, it is possible to estimate the
passenger travel route. ,e train log data used in this study
are also from October 31, 2017. It contains eight data in-
formation, of which seven data information were used: line
ID, arrival time, the direction of train, train ID, train type,
boarding station ID, and alighting station ID. ,e data
information of train log data is shown in Table 2.

3. Methodology

,e proposed train choice algorithm has two main meth-
odologies, i.e., choice set generation algorithm and empirical
cumulative distribution functions (ECDFs). ,e choice set
generation algorithm is used to generate the available train
combinations for each passenger. ,e ECDFs methodology
is used to estimate the passenger’s choice probability for each
alternative. ,e proposed train choice algorithm consists of
seven steps using a choice set generation algorithm and
ECDFs. ,e visualized concept of the train choice algorithm
and definition of notations are shown in Figure 2 and Table
3, respectively. For a better understanding of the proposed
train choice algorithm, the remainder of the methodology
section is organized as follows: the concept of choice set
generation algorithm and the concept of ECDFs is described
in order. ,en, the seven steps of the proposed train choice
model are explained step by step.

3.1. Choice Set Generation. In this part, we proposed an
algorithm to generate alternative train combinations for an
individual passenger using the tap-in time and tap-out time
of smart card data, and train arrival time of train log data.
,e alternative train combination connects the passenger’s
origin and destination stations during his/her travel time.
With the proposed algorithm, it is possible to generate all
train choice alternatives for each subway passenger.

,e choice set generation is performed for each pas-
senger. ,us, alternative train combinations could be dif-
ferent for the passengers even with the same origin to
destination (O-D). ,e proposed algorithm considered all
alternative routes using alternative train combinations
during the passenger’s travel time. choice combinations
during the passenger’s travel time. ,e mathematical ex-
pression of the algorithm of generating the alternative train
combination is shown in equations (1) to (4). Equation (3) is
to find all available trains which depart the origin and arrive
at the destination stations between the tap-in and tap-out
times of an individual passenger. If there is a transfer station,
the train choice combination is generated by connecting
transferable trains and the available trains. Equation (4)
shows the mathematical expression of the alternative train
combination set of the trip i.

N � 1, 2, 3, . . . , 363{ }, (1)

pi � t
in
i , t

out
i , oi, di􏼐 􏼑, o ∈ N, d ∈ N, (2)

r � δ, tr
1
in, tr

1
out, tr

2
in, tr

2
out, . . . , tr

k
in, tr

k
out, α, o, d􏼐 􏼑, o ∈ N, d ∈ N, (3)

ROD pi( 􏼁 � r|δ ≥ t
in
i , α≤ t

out
i , o � oi, d � di􏽮 􏽯. (4)
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3.2. Empirical Cumulative Distribution Function. ,e ECDF
is a nonparametric estimator of the typical CDF of a
random variable. ECDF has an advantage in estimating
probabilities because assumptions are relatively free. For
example, distributions of the travel time attributes are
difficult to define in the specific form since the distri-
bution of each station and O-D pairs is all different. If
there are plenty of samples, the ECDF can improve the
accuracy of the model. In other words, the ECDF ap-
proximates the true CDF with the large samples. It esti-
mates a probability of 1/j to each sample, orders the
samples from smallest to largest in value, and calculates
the sum of the estimated probabilities up to and including
each sample value. ,e result is a step function that in-
creases by 1/j at each sample value. ,e ECDF is usually
denoted by fj or Pj(X≤x), and mathematical expression
is defined as follows:

fj(x) � Pj(X≤ x) � j
− 1

􏽘

j

i�1
I xi ≤ x( 􏼁. (5)

I(xp ≤x) is the indicator function and has two values. If
the event inside the brackets occurs, the value is 1, and if not,
the value is 0.

I xp ≤x􏼐 􏼑 �
1, whenxp ≤ x,

0, whenxp > x.

⎧⎨

⎩ (6)

3.3. Train Choice Algorithm. To estimate the passengers’
travel train combinations, we developed a train choice
algorithm using smart card data and train log data. ,e

proposed algorithm consists of seven steps. Step 1 is to
extract information about passengers who have a clear
train combination to travel. In this case, the passenger has
only one train available to travel from the origin station to
the destination station between tap-in time and tap-out
time. In Step 2, the time attributes, i.e., access time, egress
time, and transfer time, are calculated by the extracted
passenger’s tap-in time and tap-out time and train arrival
time and departure time. In Step 3, the ECDFs of access
time, egress time, and transfer time for each station are
developed using the calculated time attributes. Step 4 is
for generating alternative train choices for a passenger
who has more than two alternative trains on his/her route.
In Step 5, the choice probability is estimated for each
alternative train. ,e train choice probability is calculated
by multiplying the probability of time attribute, i.e., access
time, egress time, and transfer time for all of the alter-
native trains. ,e probability of each travel time attribute
converges to 1 as it approaches the mode value. In step 6,
the train combination with the highest choice probability
is assigned to a passenger. Step 7 is the iteration step for
estimating the next passenger’s travel train combination.
,e mathematical expression of the travel train estimation
algorithm is shown in equations (7) to (19).

Step 1. Select the set of passengers who have only one al-
ternative train combination during his/her travel time.

,e passenger group with one train available is selected
by comparing the tap-in time and tap-out time of smart card
data to the train arrival time at the origin station of the train
log data. Specifically, all available train combinations during
the tap-in time and tap-out time of each passenger are

O-D from SNUE to Dangsan station (example network)
Private lines (validation network)
Entire subway network in Seoul (application network)

N

5 km0

S

Figure 1: Subway network in Seoul.
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checked, and a passenger who has only one available train is
selected in this step.

U � pi|n ROD pi( 􏼁( 􏼁 � 1, pi ∈ P􏼈

� p1, p2, p3, . . . , pi . . . , p6,313,176􏽮 􏽯􏽯.
(7)

Step 2. Calculate the travel time attributes of the set of
passengers who have only one alternative train combination.

,e access time, the egress time, and the transfer time of
individual passengers are estimated using the tap-in time
and tap-out time from the smart card data and train arrival
time at the origin, transfer, and destination stations.

ai � δ − t
in
i , (8)

ei � t
out
i − α, (9)

tri � tr
k
out − tr

k
in. (10)

Subject to

r � δ, tr
1
in, tr

1
out, tr

2
in, tr

2
out, . . . , tr

k
in, tr

k
out, α, o, d􏼐 􏼑 ∈ ROD pi( 􏼁.

(11)

pi � t
in
i , t

out
i , oi, di􏼐 􏼑 ∈ U. (12)

Step 3. Develop the empirical cumulative distribution
function (ECDF) of time attributes.

ECDFs are set up using the access time, the egress time,
and the transfer time of individual passengers who have only
one train available.

F
o
a a

o
u( 􏼁 � fj a

o
u( 􏼁, for u s.t.pu ∈ U, (13)

F
d
e e

d
u􏼐 􏼑 � fj e

d
u􏼐 􏼑, for u s.t. pu ∈ U, (14)

F
k
tr tr

k
u􏼐 􏼑 � fj tr

k
u􏼐 􏼑, for u s.t. pu ∈ U. (15)

Step 4. Generate alternative train combinations for a pas-
senger who has multiple alternatives.

,e set of passengers could be generated when they have
multiple trains available at origin, transfer, and destination
stations between their tap-in time and tap-out time.

M � pi|n ROD pi( 􏼁( 􏼁> 1, pi ∈ P􏼈

� p1,p2, p3, . . . ,pi . . . ,p6,313,176􏽮 􏽯􏽯.
(16)

Step 5. Calculate the choice probability of each alternative
train.

,e choice probability of each alternative train was es-
timated by multiplying three probabilities of access time,
transfer time, and egress time. ,e probability of the mode
value was assumed to be 100% since the travel time attributes
formed the skewed distribution. As the travel time attributes
become closer to the mode value, there will get a higher
chance to board the train. ,erefore, the probability was
defined based on the distance from the mode value as the
probability of the corresponding time attributes.

Table 1: Description of the smart card data.

No. Data information
1 Card ID∗
2 Transaction ID∗
3 Mode code
4 Line ID∗
5 Name of the transit line
6 Vehicle ID
7 Vehicle number
8 Boarding station ID∗
9 Alighting station ID∗
10 Name of boarding station
11 Name of alighting station
12 Boarding (tap-in) time∗
13 Alighting (tap-out) time∗
14 Number of transfer
15 Total travel distance
16 Total travel time∗
17 Boarding fare
18 Alighting fare
19 ,e number of users
20 Boarding violation penalty
21 Alighting violation penalty
22 General user code
23 Student user code
24 Child user code
25 Other user code
26 User division
27 User group
28 Company code
29 Company name
30 Time code
31 Starting run time
32 Ending run time
33 Boarding date
34 Alighting date
35 Year
36 Zone code
37 Transfer station ID
38 Transfer time
∗Used in this study.

Table 2: Description of the train log data.

No. Data information
1 Name of affiliate
2 Line ID
3 Arrival time
4 ,e direction of the train
5 Train ID
6 Train type
7 Boarding station ID
8 Alighting station ID
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pr � pra ∗pre ∗prtr, (17)

pra � 1 − F
o
a a

o
m( 􏼁 − F

o
a ma

o
u( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, (18)

pre � 1 − F
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m􏼐 􏼑 − F

d
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d
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􏼌􏼌􏼌􏼌􏼌, (19)

prtr � 1 − F
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m􏼐 􏼑 − F
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􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, for u s.t. pu ∈ U form s.t. pm ∈M. (20)

Step 6. Assign the train combination with the highest choice
probability to a passenger.

Among the multiple train combinations, the train
combination with the highest choice probability is assigned
to a passenger. ,e train choice probability is estimated by
multiplying the probability of each travel time attribute. ,e
calculation is based on the multiplication rule probability. If
the passenger has an alternative route with transfers, the
choice probability of transfer is multiplied as a transfer
penalty. If not, the train choice probability is estimated with
the choice probability of access time and egress time. ,e
mathematical expression of estimating the train choice
probability is shown in the following equation:

v
∗

� v,

s.t.pr
v

� max pr
1
, pr

2
, pr

3
, . . . pr

v
, . . . , pr

w
􏼐 􏼑.

(21)

Step 7. Go to Step 4 to estimate the next passenger’s travel
train combination until no remains.

,e steps from 4 to 7 operate iteratively until estimating
all passengers’ train choices, since the proposed algorithm
estimates the train choice for each passenger.

3.4. Performance Measure for Validating Train Choice.
,e performance measures, e.g., precision, recall, accuracy,
and F1 score, were used to validate the model performance.
,e precision, recall, accuracy, and F1 score are well-known
measures for validating the performance of the model in
each passenger. ,e values of performance measures were
estimated by comparing the passenger’s explored route from
the assigned train combination and the actual route
recorded in smart card data. Precision is defined as the
accuracy of estimating true positives from the true negatives
and false positives, as in equation (22). ,e recall is the
number of true positives among the true negatives and false
positives as in equation (23). ,e accuracy is the number of
true positives and true negatives among all the passengers, as
in equation (24). ,e F1 score is the trade-off between recall
and precision, and has equal importance as in equation (25):

Precision �
TP

TP + FP
, (22)

Recall �
TP

TP + FN
, (23)

Accuracy �
TP + TN

TP + FN + FP + TN
, (24)

Step 1: Select the set of passengers who
have only one alternative train combination.

Step 6: Assign the train combination with the
highest choice probability to a passenger.

Step 7: Go to step 4 to estimate the next
passenger’s train combination until no remains.

Step 2: Calculate the travel time attributes of
passengers who have only one alternative.

Step 3: Develop the empirical cumulative
distribution function (ECDF) of time attributes.

Step 4: Generate train combinations for a
passenger who has multiple alternatives.

Step 5: Calculate the choice probability of
each alternative train.

Figure 2: Visualized concept of train choice algorithm.
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F1 score � 2 ×
Precision × Recall
Precision + Recall

, (25)

where TP is the true positives, FP is the false positives, TN is
the true negatives, and FN is the false negatives.

4. Application

4.1. Validation of the Travel Route Estimation Results. ,e
results of estimated travel routes and train combinations for
individual passengers are validated with smart card data
obtained from two private lines, i.e., Line 9 and the Shin-
bundang Line. ,e route information of passengers who get

in or get off the private lines as part of their travel routes
could be easily produced since the private lines facilitate
transfer gates at their transfer stations. ,e results of the
travel route estimation are compared with the actual route of
trips recorded in smart card data. For example, O-D pair in
Figure 3 was selected to illustrate the process of the train
choice estimation. Figure 3 shows the route of the Seoul
National University of Education (SNUE) Station to
Dangsan Station. ,ere are two alternative routes between
SNEU Station and Dangsan Station: no-transfer route and
one-transfer route. Route 1 directly connects O-D stations
with no transfers, and route 2 contains one transfer at
Express Terminal Station on their route. Route 1 is the no-
transfer route, which is on a single line. Route 2 is a one-

Table 3: Definition of notations.

Choice set generation algorithm
N: the set of the subway station number
pi: the vector of the travel attributes of the passenger i

tini : the tap-in time of the passenger i

tini : the tap-out time of the passenger i

oi: the origin station of the passenger i

di: the destination station of the passenger i

r: the vector of the attributes of the train combination
δ: the train departure time at the origin station
trk

in: the arrival time of the train for the previous segment (before transfer) at the transfer station k

trk
out: the departure time of the train for the next segment (after transfer) at the transfer station k

α: the train arrival time at the destination station
o: the origin station of the train combination
d: the destination station of the train combination
ROD(pi): the set of the alternative train combination for the passenger i

ECDF
fj(x): ECDF of the attribute x

Train choice algorithm
Choice set-related notations
U: the set of the passengers who have only one alternative train combination
M: the set of the passengers who have more than two alternative train combinations
P: the set of the passengers
n(ROD(pi)): the number of the alternative train combination of passenger i

Travel time attribute-related notations
ai: the access time of passenger i

ei: the egress time of passenger i

tri: the transfer time of passenger i

ao
i : the access time at the origin station o

ed
i : the egress time at the destination station d

trk
i : the transfer time at the transfer station k

mao
u: the mode value of the access time of the passenger u

med
u: the mode value of the egress time of the passenger u

mtrk
u: the mode value of the transfer time at the transfer station k of the passenger u

ECDF-related notations
Fo

a: the ECDF of the access time at the origin station o

Fd
e : the ECDF of the egress time at the destination station d

Fk
tr: the ECDF of the access time at the origin station k

Choice probability-related notations
pr: the choice probability of the train combination
pra: the probability of access time of the alternative train combination
pre: the probability of egress time of the alternative train combination
prtr: the probability of transfer time of the alternative train combination
v∗: the number of the train combination with the highest choice probability
w: the number of the alternative train combination
prv: the choice probability of alternative train combination v
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transfer route, where the Express Terminal Station connects
the two lines. All ECDFs for each direction of origin station,
destination station, and transfer stations were used to select
the appropriate travel train combination. ,e alternative
routes from SNUE Station to Dangsan Station are shown in
Figure 3.

Figures 4(a) and 4(b) illustrate the cumulative distri-
bution of travel time attributes, which are access time, egress
time, and transfer time of routes 1 and 2.

As a result of the developed distributions, the mean of
the access time of route 1 was estimated to be 135 seconds.
,e mode of egress time of route 1 was also estimated to be
38 seconds, and the standard deviation was 102 seconds.
,e mean, mode, and standard deviation of the egress time
of route 1 were estimated to be 115, 90, and 48 seconds,
respectively. For route 2, the average of access time, egress
time, and transfer time was estimated to be 221, 132, and
168 seconds, respectively. ,e mode value of access time,
egress time, and transfer time of route 2 was estimated to be
152, 104, and 64 seconds, respectively. ,e standard de-
viations of access time, egress time, and transfer time were
estimated to be 123, 50, and 101 seconds, respectively.
Figures 4(c) and 4(d) show the travel time distributions of
the two routes. ,e grey histogram in Figure 4(c) and the
grey line in Figure 4(d) represent the total travel time
distribution of passengers from SNUE Station to Dangsan
Station. ,is total travel time distribution is shown as the
mixed distribution of two routes’ travel time. With the
distributions of access time, egress time, and transfer time,
the total travel time distribution was decomposed by two
distributions of respective routes. ,e results of the
decomposed distributions are colored yellow for route 1
and blue for route 2. ,e mean of total travel time of OD is
2,170 seconds, and the standard deviation is 372 seconds.
For route 1, the average travel time is estimated to be 2,256
seconds and the standard deviation is 307 seconds. Route 2
has 2,043 seconds for the average travel time and 427
seconds for the standard deviation of travel time. ,e result

of the travel route estimation from SNUE Station to
Dangsan Station is shown in Figure 4.

,e comparison analysis was conducted to evaluate the
performance of the proposed model. ,ree comparison
models were used to compare with the proposed model.
,ree comparison models consist of the Gaussian mixture
model (GMM) [17], maximum route length model (MRL)
[9], and parametric distribution model (PDM) [20]. GMM
decomposed the travel time distribution into the number of
routes, assuming the Gaussian distribution. GMM assigned
the train combination to a passenger with the probability
distribution of each route travel time. MRL assigned the
train combination to a passenger with the maximum route
length (time duration) that fits within the tap-in and tap-out
time of the journey. PDM assigned the train combination to
a passenger based on the travel time attribute distributions,
e.g., access, egress, transfer, and in-vehicle time. ,e access,
egress, and transfer time were assumed to be gamma dis-
tribution. ,e waiting time and in-vehicle time were as-
sumed to be the Poisson and uniform distributions,
respectively. Each parameter of distribution was estimated to
explore the passengers’ route choice preference. Overall,
four models, including the proposed model, were compared
to evaluate the model performance.

As a result of the comparison analysis, the choice
probability of route 1 was estimated to be 54.4% to 64.8%.
Among the four models, the proposed model had the
most similar probability at 59.3% compared with the
actual route choice probability. Regarding individual
train combination choice, the F1 scores of GMM, MRL,
PDM, and proposed model were estimated to be 0.688,
0.739, 0.918, and 0.963, respectively. Overall, the pro-
posed model showed the highest performance in both
aggregated probabilities, such as choice probability and
individual choice estimation. PDM also showed good
performance with 0.918 F1 score. However, the F1 score
of PDM was estimated to be lower than that of the
proposed model since the errors due to the assumption of

Figure 3: Illustration network with alternative routes from SNUE Station to Dangsan Station.

8 Journal of Advanced Transportation



distribution are involved. Especially, the assumption of
uniform distribution had the greatest influence on the
inaccuracy. ,ese results implied that the proposed
model estimates passengers’ train choice preference
more accurately than the GMM, MRL, and PDM. ,e
travel route estimation result of the comparison models
is shown in Table 4.

,e results of the proposed algorithm are validated using
the trips made through the private lines. As mentioned
before, smart card data from the private lines provide

transfer information and make it possible to identify the
passenger’s travel route.

From smart card data, the number of trips on private lines
was counted as 472,436 trips per day. ,e numbers of no-
transfer, one-transfer, two-transfer, and three-transfer trips are
counted as 220,239, 241,114, 10,738, and 345, respectively.
Table 5 shows the validation results of the travel route esti-
mation of the proposed algorithm compared with the counted
number of passengers who get in or get out of the private lines,
Line 9 and Shinbundang Line, during their journey.,e results
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Figure 4: Estimation results of SNUE Station to Dangsan Station trips. (a) Cumulative distribution for no-transfer route. (b) Cumulative
distributions for one-transfer route. (c) Histogram of travel time. (d) Distribution of travel time.
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of no-transfer trips estimated by the proposed algorithm
showed 99.7% of accuracy. For the one-transfer trips, 223,117
trips of 241,114 trips were estimated correctly, and the accuracy
was estimated to be 92.5%. As a result of the two- and three-
transfer trips, the accuracy was declined to be 81.1% and 71.6%,
respectively. Taken together, the accuracy of the estimation
result for the total trips was estimated to be 95.6%. Since the
number of no-transfer and one-transfer trips accounts for
97.6% of the total validation trip samples, the estimation ac-
curacy of the trips was estimated to be high enough to apply the
proposed algorithm to the Seoul subway networks.,e result of
the travel route estimation is shown in Table 5.

4.2. Travel Route Estimation for Subway Network in Seoul.
,e travel trains for 6,313,176 daily trips were estimated to
identify the route choice preference using the proposed
algorithm. As results, the numbers of no-transfer, one-
transfer, two-transfer, three-transfer, and four-transfer trips
were estimated to be 3,402,763; 2,382,288; 411,475; 91,554;
and 25,096 trips, respectively. Regarding the trip ratios of
total trips, no-transfer, one-transfer, two-transfer, three-
transfer, and four-transfer trips were estimated to be 53.9%,
37.7%, 6.5%, 1.5%, and 0.4%, respectively. ,e trip ratios of
peak and nonpeak hours show similar patterns. ,e results
of the travel route estimation on the whole network in Seoul
are shown in Table 6 and Figure 5.

4.3. Evaluating the Efficiency of Subway Lines in Seoul Using
the Proposed Algorithm. ,e proposed algorithm was
applied to evaluate the efficiency of 11 subway lines on the
Seoul subway network. ,e algorithm can produce the
passenger kilometer metric for evaluating the transport
efficiency of 11 lines. ,e Seoul Transportation Corpo-
ration (STC) has been trying to aggregate link trips using
smart card data since those are the basic statistics to
operate the subway network. STC roughly calculated the
passenger kilometer by assigning the passenger to the
shortest path because smart card data do not provide
travel route information. Regarding this practical need,
the travel route estimation could provide useful statistics
such as passenger kilometer. ,e results of the travel

route estimation in this study were used to measure the
passenger kilometer of 11 subway lines in Seoul.

,e most widely used metric to measure transport ef-
ficiency is the value of passenger kilometer [24, 25]. Pas-
senger kilometer is calculated by multiplying the number of
passengers by the travel distance. ,e mathematical ex-
pression of the passenger kilometer is shown in the following
equation:

pkm � 􏽘
G

g

tpcg × tdcg, (26)

where pkm is the passenger kilometer value, i is the travel
route (G � 1, 2, 3, . . . , g), tpc is the number of passengers
who traveled with the route g, and tdc is the distance of the
route g (km).

As a result of the passenger kilometer analysis, the
passenger kilometer of STC was estimated to be 78,194
million passenger kilometer, and the passenger kilometer of
the proposed algorithm was estimated to be 88,314 million
passenger kilometer. Since the STC assigned the passenger to
the shortest path, the passenger kilometer of the proposed
algorithm was estimated to be about 13% higher than that of
STC.

,e passenger kilometer and the number of passengers
were calculated by 11 subway lines. ,e result of the
passenger kilometer of Line 2 was estimated to be 27,002
million passenger km, which is the highest value among
the 11 lines. ,e lowest value was 1,553 million
passenger kilometer, of Line 8. Since Line 2 goes through
the major commercial and business areas of central Seoul,
the passenger kilometer of Line 2 was estimated to be the
highest among the 11 lines. For Line 8, the passenger
kilometer was estimated to be the lowest because there are
only 16 stations along the line and Line 8 serves on the
outskirts of Seoul.

Regarding the passenger kilometer per service distance,
the efficiencies of 11 lines are evaluated in the order of Line
2, Line 3, and Line 7. ,e efficiency order based on the
number of passengers per service distance is somewhat
different from that of the passenger kilometer unit. ,e
efficiency of 11 lines based on the number of passenger
units is evaluated in the order of Line 2, Line 5, and Line 7.
,e evaluation results of 11 lines based on two metrics are
presented in Table 7.

Table 4: Travel route estimation result of the comparison models.

Division
Estimated number

of trips
Estimated choice
probability (%) F1 score

Route 1 Route 2 Route 1 Route 2
Actual 145 108 57.3 42.7 —
GMM 164 89 64.8 35.2 0.688
MRL 138 115 54.5 45.5 0.739
PA 157 96 62.1 37.9 0.918
Proposed 150 103 59.3 40.7 0.963
GMM: Gaussian mixture model. MRL: maximum route length model. PA:
parametric distribution model

Table 5: Result of travel route estimation with private subway lines.

Division Precision Recall Accuracy F1 score
No-transfer trips 0.997 1.000 0.997 0.998
One-transfer trips 0.947 0.962 0.925 0.954
Two-transfer trips 0.832 0.946 0.811 0.885
,ree-transfer trips 0.789 0.833 0.716 0.811
Total 0.968 0.979 0.956 0.974
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Table 6: Results of travel route estimation for urban subway network in Seoul.

Division Total trips (trip ratio, %)
Peak hour trips (trip ratio, %)

Nonpeak hour trips (trip ratio, %)
AM (7:00∼9:00) PM (18:00∼20:00)

No-transfer trips 3,402,763 (53.9) 563,952 (54.1) 513,662 (55.6) 2,325,149 (53.5)
One-transfer trips 2,382,288 (37.7) 386,933 (37.1) 337,247 (36.5) 1,658,108 (38.2)
Two-transfer trips 411,475 (6.5) 70,884 (6.8) 57,512 (6.2) 283,079 (6.5)
,ree-transfer trips 91,554 (1.5) 15,753 (1.5) 12,557 (1.4) 63,244 (1.5)
Four-transfer trips 25,096 (0.4) 5,189 (0.5) 3,305 (0.4) 16,602 (0.4)
Total 6,313,176 (100.0) 1,042,711 (100.0) 924,283 (100.0) 4,346,182 (100.0)
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Figure 5: Visualization of estimated link trips of subway network in Seoul. (a),e number of link trips for a day. (b) Link trip density at peak
A.M. (c) Link trip density at peak P.M.
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5. Conclusion

,is study proposed the travel route estimation algorithm
using smart card data and train log data. ,e process of
travel route estimation consisted of three stages: (1) gen-
eration of the train choice combinations, (2) calculation of
passenger travel time attributes, and (3) development of
ECDFs.,e algorithm was proposed to estimate train choice
for an individual subway passenger. ,e alternative train
choice combination was generated using the passenger tap-
in time and tap-out time of smart card data, and train arrival
time of train log data. ,e travel time attributes of the
passenger were calculated by each alternative train combi-
nation. ,e ECDFs of each type of travel time, i.e., access
time, egress time, transfer time, were developed with the trip
information that could only be traveled by a single train set.
,ese developed ECDFs were used to estimate the travel
route for passengers who have several alternative train
combinations. ,e travel route was deduced by an estimated
train combination with the highest probability among the
alternative train combinations. ,e analysis is performed in
two stages, i.e., validation with private subway lines and
application to the entire subway network in Seoul. For the
first stage, the smart card data of the private subway lines
were employed to validate the results of the estimated travel
train combination, since it has the exact information about
the travel route transaction. For the second stage, the
proposed algorithm is then applied to estimate the travel
train combinations of all subway passengers on the entire
subway network in Seoul.

As a result of the comparison analysis, the F1 scores of
GMM, MRL, PA, and proposed model were estimated to be
0.688, 0.739, 0.918, and 0.963, respectively. ,is result im-
plied that the proposed model based on ECDF estimated
passengers’ choice behavior more accurately than the
parametric, nonparametric, and rule-based models. In
particular, the proposed model could have strengths in
complex subway networks such as many lines, stations, and
short headways. As a result of the validation, the accuracy for

the no-transfer trips, one-transfer trips, two-transfer trips,
and three-transfer trips is estimated to be 99.7%, 95.1%,
84.2%, and 71.2%, respectively. ,e result of total trips is
about 96.9%, which is reasonable to analyze the whole
subway network. As a result of the travel route estimation of
the whole network in Seoul, the trip ratio for no-transfer,
one-transfer, two-transfer, three-transfer, and four-transfer
trips was estimated to be 53.9%, 37.7%, 6.5%, 1.5%, and
0.4%, respectively. Regarding the practical application, the
passenger kilometers by lines were estimated with the travel
route estimation of the whole network. As a result of the
passenger kilometer calculation, the passenger kilometer of
the proposed algorithm was estimated to be 88,314 million
passenger kilometer. Since the STC assigned the passenger to
the shortest path, the passenger kilometer of the proposed
algorithm was estimated to be about 13% higher than that of
STC. Among the 11 subway lines, the passenger kilometer of
Line 2 showed the highest value of 27,002 million passenger
kilometer.

,ere are three main contributions to this study. First,
the empirical distributions of the travel time attributes, i.e.,
access time, egress time, transfer time, and in-vehicle time,
were developed using smart card data and train log data.
Specifically, the subway station’s walking characteristics
were reflected on access time and egress time without as-
suming a specific distribution form, i.e., the Poisson and
uniform distribution. Second, the real data of passengers’
travel routes were used to validate the proposed method.
,is revealed route information (transfer gate) data pro-
vided that the proposed method showed notable accuracy in
estimating the travel route of subway passengers. ,ird, the
practical application was performed by estimating whole
passengers’ travel routes. ,e results of the efficiency eval-
uation of each subway line implied that passengers do not
always prefer the shortest route.

,e results of this paper help subway operators manage
in-train and route congestion. ,e results also contribute to
an in-depth investigation of route choice behaviors by
quantifying the penalty factors on routes: transfer time and

Table 7: Results of passenger kilometer for subway lines in Seoul.

Subway lines

Service distance
(km) Number of passengers (trips) Passenger kilometer (million km)

Distance (A) Rank Total (B) Trips/service dist.
(B/A) Rank Total (C) Passenger kilometer/service dist. (C/A) Rank

Line 1 195 1 7,754,053 39,764 9 12,237 63 10
Line 2 57 3 23,686,939 415,560 1 27,002 474 1
Line 3 55 5 8,027,244 145,950 4 9,523 173 2
Line 4 68 2 5,783,969 85,058 7 6,813 100 8
Line 5 50 8 7,989,509 159,790 2 8,105 162 4
Line 6 34 9 4,269,248 125,566 5 3,780 111 5
Line 7 56 4 8,714,031 155,608 3 9,531 170 3
Line 8 17 11 1,477,962 86,939 6 1,553 91 9
Line 9 51 7 3,650,051 71,570 8 5,152 101 7
Bundang Line 53 6 1,451,587 50,055 11 2,900 100 11
Shinbundang Line 31 10 1,015,097 35,003 10 3,168 109 6
Total trips of the Seoul subway network: 6,313,176 trips/day. Estimated passenger kilometer of Seoul network: STC, 78,194 m-pkm (100%); proposed
algorithm, 88,314 m-pkm (113%).
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distance, access time and distance, waiting time, the number
of stairs, and the congestion rate on the platform. Although
we estimated the traveled trains and routes using ECDFs of
time attributes, some issues remain. First, the impact of
crowding and potentially being left behind needs to be
considered. Second, it is required to decompose the walking
time and the waiting time distribution for the access time
and the transfer time. In addition, information on station
amenities, such as restrooms and convenience stores, needs
to be considered. Hence, our future work will incorporate
crowding and facility factors to estimate the travel route of
the subway passengers.
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(is paper presents the numerical study on propagative waves in a periodically supported rail below 6000Hz. A periodic rail
model, which considers the effects of both the periodic supports and the rail cross section deformation, has been established based
on the periodic structure theory and the finite element method. Two selection approaches are proposed to obtain the concerned
dispersion curves from the original calculation results of dispersion relations. (e differences between the dispersion curves of
different support conditions are studied. (e propagative waves corresponding to the dispersion curves are identified by the wave
modes. (e influences of periodic supports on wave modes in pass bands are revealed. Further, the stop band behaviors are
investigated in terms of the bounding frequencies, the standing wave characteristics, and the cross-sectional modes. (e results
show that eight propagative waves with distinct modes exist in a periodically supported rail below 6000Hz. (e differences
between the dispersion curves of periodically and continuously supported rails are not obvious, apart from the stop band
behaviors. All the bounding-frequency modes of the stop bands are associated with the standing waves. Two bounding-frequency
modes of the same stop band can be regarded as two identical standing waves with the longitudinal translation of the quarter-
wavelength, one of which is the so-called pinned-pinned resonance.

1. Introduction

(e high-frequency rail behaviors play a significant part in
the generation of railway rolling noise. It also significantly
contributes to the generation of rail corrugation via the
dynamic interaction with the wheels [1, 2]. Investigation of
rail vibration behavior is crucial to elucidate these matters.
An accurate model for the rail dynamics should take the
cross-sectional deformation, waveguide structure, and pe-
riodic supports into account. In addition, the effective fre-
quency range for the prediction should extend up to at least
5000Hz [3].

(e continuously welded rail can be seen as infinitely
long. (e models which truncate the rail at a particular
length will artificially introduce modal behaviors. Besides,
the rail is a waveguide, that is, a structure which has a
uniform cross section and extends in the longitudinal di-
rection. (us, its motion is not composed of normal

vibration modes but a series of guided waves [4]. A complex
wavenumber can be used to describe the velocity and phase
of the wave through the real part and the amplitude decay
through the imaginary part.

Several numerical methods have been adopted to in-
vestigate the guided waves in rails. Ryue et al. [5] established
a finite element (FE) model of a short length of the rail with
symmetric or antisymmetric boundary conditions at both
ends of its length. (e modal analysis results were then used
to obtain the dispersion relations, group velocities, and
mode shapes. An alternative numerical method, known as
the guided wave-based finite element method, has been
widely employed. (is method is also referred to as the
semianalytical FE method [6], the waveguide FE method [7],
and the wavenumber FE method [5]. In this method, the
two-dimensional FE approach is used to discretize the cross
section of the waveguide, while a wave solution is assumed in
the longitudinal direction. (erefore, it has great advantages
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in modeling wave propagation of waveguides, such as rails.
Initial relevant works were done by [8] to obtain the dis-
persion relations and cross-sectional mode shapes of
propagative waves in a free undamped rail. Ryue et al. [5]
investigated the waves propagating in the continuously
supported rail for frequencies up to 80 kHz. Furthermore, Li
et al. [9] improved the rail model by allowing multiple layers
of the support to be considered in the modeling and then
obtained the dispersion relations of waves. (e rail supports,
such as rail pads, sleepers, and ballast, are treated as a
continuous layer of equivalent springs connected to the rail
foot.

(e straight railway track structure consists of the same
units placed repeatedly along the longitudinal direction of
the railway line. (e perfect railway track can be seen as a
one-dimensional periodic structure. (erefore, the periodic
structure theory has also been introduced to investigate the
wave propagation. (e periodic rail support is the essential
characteristic of the standard track structure, which has
gained much attention. Tassilly [10] analyzed the propa-
gation of bending waves in a periodically supported rail
whose deflection was described by a differential equation of
the fourth order. Predictions were made for a rail of a typical
European railway track. Wang et al. [11] modeled the rail as
a periodically supported Timoshenko beam considering the
bending-torsion coupling. (e dispersion relations of waves
were calculated according to the transfer matrix method and
Bloch’s theorem.

One of the main effects of periodic supports is the oc-
currence of the pinned-pinned frequencies, where the
wavelengths of different orders are closely related to the
fastener spacing [12].(e pinned-pinned frequency has been
associated with some forms of rail corrugation, which leads
to the problems of noise and track structure damage [13].
Moreover, existing researches show that the dispersion re-
lations of waves propagating in a periodic structure exhibit
stop and pass band behaviors [14–16]. (e stop bands (also
called band gaps) are the frequency ranges between the
dispersion curves, where wave propagation is prohibited.
(e other frequency ranges are called pass bands, where the
dispersion curves exist and waves can propagate freely.
Reference [11] used beam models to explore the stop and
pass band behaviors of waves propagating in the periodically
supported rail.

Although many studies as previously described focused
on the wave propagation in the rail, few attempted to put
insight into the effects of both the periodic supports and the
rail cross-section deformation. (ese two factors are the key
to an accurate prediction of wave propagation for rails in a
real state. However, it is difficult to include the periodic
support in the guided wave-based finite element method due
to the model assumption, while the rail cross-section de-
formation cannot be considered in the periodically sup-
ported beam model. Beam models are not accurate at high
frequencies since the cross section of the rail deforms sig-
nificantly above 1500Hz [17]. As the FE method has the
advantage of calculating rail cross-section deformation and
the periodic structure theory is particularly useful for

periodically supported rails, they are both utilized to study
the propagative waves in a periodically supported rail.

In this paper, a periodic rail model has been estab-
lished, which considers the effects of both the periodic
supports and the rail cross-section deformation. Two se-
lection approaches are proposed to obtain the concerned
dispersion curves from the original calculation results of
dispersion relations. (e differences between the disper-
sion curves of different support conditions are studied. (e
propagative waves corresponding to the dispersion curves
are identified by the wave modes.(e influences of periodic
supports on wave modes in pass bands are revealed.
Further, the stop band behaviors are investigated in terms
of the bounding frequencies, standing wave characteristics,
and cross-sectional modes.

2. Modeling of a Periodically Supported Rail

2.1. Unit Cell. (e periodic rail model is established in this
section, as shown in Figure 1. A short rail and a rail pad form
the model which can be seen as a unit cell of the infinitely
long and periodically supported rail.

A CHN60 rail considered as the isotropic elastic material
is modeled with three-dimensional solid elements. (e
length of the model is equal to the fastener spacing. A rail
pad is laid beneath the middle of the model, which is
modeled with multiple discrete linear springs. (e upper
nodes of the springs are connected to the rail foot, while the
lower nodes are fixed. (ese springs are modeled homo-
geneously in the rectangular rail pad area, whose width is
equal to that of the bottom of the rail foot. (e rail pad
inflicts constraints on the rail in three directions, that is,
vertical, longitudinal, and lateral stiffnesses. (e damping is
not considered in the model. (e parameter values are listed
in Table 1.

2.2. Periodic Boundary Condition. When an ideal elastic
medium (continuous, homogeneous, isotropic, and perfectly
elastic) deforms slightly, the governing equation of motion
without body force can be expressed as follows [18]:

ρ
z
2u(r, t)

zt
2 � (λ + μ)∇∇ · u(r, t) + μ∇2u(r, t), (1)

where u (r, t) is the displacement field, r is the coordinate
vector, t is the time, ρ is the density, λ and μ are the Lamé
constants, ∇ is the Hamilton differential operator, and • is
the inner product. According to Bloch theorem, the solution
of equation (1) for a periodic structure can be expressed as
follows [19]:

u(r) � eiK·ruK(r), (2)

where K is the wave vector in the reciprocal space and uK (r)
is a periodical function with the same periodicity as the unit
cell. (e periodicity can be expressed as follows:

uK(r + a) � uK(r), (3)
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where a is the periodic constant vector. Substituting
equation (3) into equation (2) yields the periodic boundary
condition:

u(r + a) � eiK·(r+a)uK(r + a) � eiK·aeiK·ruK(r) � eiK·au(r).
(4)

As the model is a one-dimensional periodic structure,
the periodic constant vector a, the wave vector K, and the
coordinate vector r can be substituted by the length of the
model L, the wavenumber k, and the longitudinal coordinate
x, respectively.(en, the periodic boundary condition can be
written as follows:

u(x + L) � eikLu(x). (5)

(e period boundary condition is set on two sides of the
rail. (e combination of the periodic boundary condition
and the modal analysis gives the eigenvalue problem in-
volving the dispersion relation. (en, the dispersion curves
of waves propagating in a periodically supported rail can be
obtained by calculating the eigenfrequencies at different
wavenumbers, while the corresponding eigenvectors can be
used to describe the wave modes. (e dispersion curves are
complex with damping considered in the model, whereas
they will be real if damping is not considered. Since the
wavenumber is set artificially prior to solving the eigenvalue

problem, it is feasible to set the real wavenumbers rather
than complex wavenumbers. Consequently, the damping is
not considered in the model, and the focus of this paper is on
the propagative waves, which can occur at frequencies above
their “cut-on” frequencies.

2.3. Calculation of Dispersion Relations Using the Finite El-
ement Method. To calculate the dispersion relations of
propagative waves in a periodically supported rail, the finite
element software is utilized to solve the model. (e rail is
meshed with eight-node hexahedral solid elements. In the
rail pad area, each node of the bottom of the rail foot is
connected by a linear three-directional spring element,
which represents the constraints of the fastener. To capture
the wave features at high frequencies, the in-plane mesh size
of the rail cross section is shorter than 5mm, while the mesh
size in the longitudinal direction does not exceed 1 cm. (e
mesh sizes are proved to be fine enough in the frequency
range of interest because the finer meshing gives nearly the
same results.(emesh of the periodic rail model is shown in
Figure 1.

By letting the wavenumber k sweep the real interval
[−4π/L, 6π/L] at regular intervals of π/L/30 and then cal-
culating the corresponding eigenfrequencies, we can obtain
the original dispersion relation results, as shown in Figure 2.

2.4. Selection of the Concerned Dispersion Curves. Let fn (k)
denote the nth eigenfrequency when the wavenumber is
equal to k. From Figure 2, we can find that the original
results of dispersion relations have three features. First, the
dispersion relations are symmetric with respect to k� 0,
which means fn (k)� fn (−k). Because the model is a periodic
and symmetric structure, there exist two propagative waves,
which propagate in opposite directions and have the same
propagation characteristics. Second, fn (k) is a periodic
function with the period 2π/L. We transform equation (5)
into the following:

u(x + L) � eikLu(x) � ei(kL+2π)u(x) � ei(k+2π/L)Lu(x) � eik∗Lu(x) k∗ � k +
2π
L

. (6)

From equation (6), we can find that the same modal
results will be obtained if the wavenumber k is substituted by

k∗. (us, we can get fn (k)� fn (k∗−); that is, fn (k)� fn
(k+ 2π/L−). (ird, fn (k) is symmetric with respect to

PBC
xy

z

Multiple
springs Mesh

Railpad
area

wr lr

Lp
PBC

Figure 1: (e periodic rail model.

Table 1: Model parameters.

Track component Parameter Value

CHN60 rail

Young’s modulus E� 210GPa
Poisson’s ratio ]� 0.3

Density ρ� 7830 kg/m3

Length L� 0.65m

Rail pad

Width wr � 0.15m
Length lr � 0.16m

Vertical stiffness kv � 70 kN/mm
Longitudinal stiffness kl � 20 kN/mm

Lateral stiffness kL � 30 kN/mm
Fastener spacing d� 0.65m

Journal of Advanced Transportation 3



k�mπ/L, where m denotes the integer. (is feature can be
derived from the first two features, shown as follows:

fn(k) � fn(−k)⇒fn(k) � fn ±
2π
L
± . . . ±

2π
L

􏼒 􏼓 − k􏼒 􏼓⇒fn(k) � fn m
2π
L

− k􏼒 􏼓⇒fn(k) � fn m
π
L

− k − m
π
L

􏼒 􏼓􏼒 􏼓. (7)

Based on three features, the whole dispersion relations
can be obtained by the translations and symmetric trans-
formations of the part where wavenumbers are in the in-
terval [0, π/L].(is interval is called the irreducible Brillouin
zone of the one-dimensional periodic structure. However,
the dispersion relations in Figure 2 include much redundant
information. Although all the points are calculated by the
mathematical derivation, some dispersion curves are
physically unacceptable for this model. For example, the
curve where the frequency decreases with the increasing
wavenumber indicates the wave having a negative group
velocity; that is, the direction of the group velocity is op-
posite to the propagation direction. In addition, the dis-
persion curves of the same shape, which can be obtained by
the horizontal translations of each other, indicate the same
wave due to the periodicity.(ese phenomena arise from the
mathematical mechanism, which need to be removed
artificially.

Two approaches are utilized for the selection of the
concerned dispersion curves. First, as previously mentioned,
the dispersion curves can be obtained by the translations and
symmetric transformations of the part within the irreducible
Brillouin zone. Second, we can identify the wave modes of
different points in the dispersion relations and then select
the concerned curves from points where the corresponding
wave modes are of the same type. (e first approach is il-
lustrated in Figure 3 for the case of wave A.

3. Dispersion Curves and Wave Modes in
Pass Bands

3.1. Dispersion Curves. By applying the selection approaches
to Figure 2, we can obtain the dispersion curves of

propagative waves in a periodically supported rail below
6000Hz, as shown in Figure 4.

Eight propagative waves (denoted by A ∼H) are found
in a periodically supported rail below 6000Hz. To in-
vestigate the effect of the periodic supports on the dis-
persion curves and simultaneously verify the precision of
the model, the dispersion curves of continuously sup-
ported and free rails are calculated and shown in Figure 5.
In the periodic rail model of a continuously supported
rail, the rail pad area evenly covers the entire rail foot. (e
total stiffness of the discrete linear springs in three di-
rections is equivalent to that of a periodically supported
rail.

Below 6000 Hz, eight propagative waves are also
found in continuously supported and free rails. By
comparing the shapes and locations of the dispersion
curves, we can find that the results for continuously
supported and free rails perfectly match those of existing
works done by the guided wave-based finite element
method [8], which verifies the precision of the periodic
rail model.

Figure 5 reveals that the overall differences between
the dispersion curves of three support conditions are
small, above 2000 Hz, where the wave motion in the rail
has been effectively isolated from the rest of the track
structure. From the comparison between the periodically
supported and free rails, we can find that the periodic
supports have significant effects on waves A ∼E near their
cut-on frequencies. However, the overall difference be-
tween the dispersion curves of periodically and contin-
uously supported rails is not obvious below 6000 Hz. (ey
almost coincide with each other, even near the cut-on
frequencies.
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Figure 3: Selection of the dispersion curve of wave A.
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3.2. Wave Modes. To further characterize these waves, the
wave modes corresponding to the marked points (denoted
by a∼h) in Figure 4 are shown in Figure 6, which contains the
total displacements of the model, the out-of-plane and in-
plane displacements of different cross sections, and the front
view of the in-plane displacements of the cross section in the
middle of the model. (e colors indicate the displacement
values in the particular phase state. (e black lines represent
the undeformed profile.

It is noteworthy that the wave modes of a wave vary
with the increasing frequency. By scanning the wave modes
in the whole frequency range, waves A ∼H can be con-
sidered as the lateral bending wave, the vertical bending
wave, the torsion wave, the bending-torsion wave, the

longitudinal-vertical wave, the bending-torsion wave, the
longitudinal-vertical wave, and the vertical-longitudinal
wave, respectively.

As the free and continuously supported rails have
uniform cross sections and boundary conditions, their
modes of all cross sections are the same. (e displacement
amplitudes of different cross sections are identical, while the
values are not same because of the phase difference.
However, the periodic supports of fasteners lead to distinct
boundary conditions at different positions. To compare the
modes of different cross sections for a periodically supported
rail, the wave modes with the increasing frequency are
shown in Figure 7. (e colors indicate the displacement
amplitude, which is different to Figure 6.
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Figure 7 shows that the periodic supports result in the
cross-sectional mode differences between the rail pad and
non-rail pad areas. (e influences of periodic supports on
eight propagative waves are as follows: (1) the modes of
different cross-sections for wave A are same at low fre-
quencies.(e periodic supports have little influence on wave
A. (2) (e upper bounds of influenced frequency ranges for
waves B∼G are about 1500Hz, 2000Hz, 1700Hz, 2500Hz,
4100Hz and 5600Hz, respectively. (e influences vanish
above those frequencies. (3) (e cross-sectional modes of
rail pad and non-rail pad areas are different below 6000Hz
for wave H.

4. Stop Band Behaviors

As can be seen in Figure 4, the dispersion curves of prop-
agative waves in a periodically supported rail are discon-
tinuous.(e stop bands alternate with the pass bands. In this
section, the stop band behaviors are analyzed in terms of the
bounding frequencies, the standing wave characteristics, and
the cross-sectional modes.

4.1. <e Bounding Frequencies. As the wave B (vertical
bending wave) is typical in the track dynamics studies, this
section takes it as an illustration to elaborate the bounding-
frequency properties. (e dispersion curves and stop bands
of the wave B are shown in Figure 8.

Figure 8 reveals that the dispersion relations are discon-
tinuous at k� nπ/L. No curve enters into the frequency ranges
of 962.5–1001.5Hz, 2584.2–2597.5Hz, 4027.9–4034.9Hz,
5006.45–5006.48Hz, and 5717.2–5721.2Hz. (ese frequency
intervals are called the stop bands, and therefore, five stop
bands of the wave B exist below 6000Hz.

(e bounding frequencies of wavesA∼G are summarized
in Table 2. (e wave H has no stop band below 6000Hz.

Below 6000Hz, the numbers of the stop bands of waves
A∼G are six, five, four, three, two, two, and one, respec-
tively. For each wave, the wavenumber and the wavelength

of the Nth stop band are given by kN �Nπ/L�Nπ/d and
λN � 2π/kN � (2/N) d, respectively; the first stop band has the
maximum width compared with the higher-order stop
bands.

4.2. <e Standing Wave Characteristics. (e wave modes at
the stop-band bounding frequencies of waves A∼G are
shown in Figure 9. (e colors indicate the displacement
values in the particular phase state.

All the bounding-frequency modes of the stop bands are
associated with the standing waves.(e typical cross sections
of these standing waves can be divided into two groups. (e
section group #1 includes the sections above the center of the
rail pad area and at the N-equal-part division points of the
span. (e section group #2 includes the sections at the
centers of N-equal-part segments of the span. (ese two
section groups can be used to locate the cross-sections of
nodes and antinodes.

One of two bounding-frequency modes of the same stop
band is the so-called pinned-pinned resonance, that is, the
modes with the red asterisks at their top-left corners in
Figure 9. Either the lower-bounding-frequency mode or the
upper-bounding-frequency mode corresponds to the pin-
ned-pinned resonance, which is related to the order of the
stop band. Besides, the lower-bounding-frequency mode of
the first stop band of the wave E corresponds to the first-
order longitudinal pinned-pinned resonance.(e sections of
group #1 have no out-of-plane displacements in this lower-
bounding-frequency mode.

Furthermore, we can find that the two bounding-fre-
quency modes of the same stop band can be regarded as two
identical standing waves with the longitudinal translation of
the quarter-wavelength. (us, the minimal longitudinal
distance between the cross sections of nodes (or antinodes)
in two bounding-frequency modes is given by λN/4. Cross
sections of nodes and antinodes in the lower-bounding-
frequency mode coincide with those of antinodes and nodes
in the upper-bounding-frequency mode, respectively.

Table 2: (e bounding frequencies of stop bands.

Stop band
1st 2nd 3rd 4th 5th 6th

Bounding frequencies width (Hz)

A 445.2–459.7 1424.5–1430.2 2746.9–2750.5 4005.2–4005.4 4991.4–4996.1 5975.7–5981.1
14.5 5.7 3.6 0.2 4.7 5.4

B 962.5–1001.5 2584.2–2597.5 4027.9–4034.9 5006.45–5006.48 5717.2–5721.2
39.0 13.3 7 0.03 4

C 763.0–827.7 2157.6–2183 3438.5–3449.7 4755.1–4755.3
64.7 25.4 11.2 0.2

D 1815.1–1855.3 2725–2741.6 4287.2–4288.8
40.2 16.6 1.6

E 3982.7–3985.1 5601.2–5617.3
2.4 16.1

F 4371.1–4379 5295.1–5298.1
7.9 3

G 5457.8–5480.4
22.6

Wavenumber (rad/m) π/d� 4.833 2π/d� 9.666 3π/d� 14.500 4π/d� 19.333 5π/d� 24.166 6π/d� 28.999
Wavelength (m) (2/1) d� 1.3 (2/2) d� 0.65 (2/3) d� 0.433 (2/4) d� 0.325 (2/5) d� 0.26 (2/6) d� 0.217
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4.3. Cross-Sectional Modes. To elaborate the wave motion
and the deformation at different bounding frequencies, the
cross-sectional modes of the typical cross sections (i.e.,
section groups #1 and #2) are investigated in terms of in-
plane and out-of-plane displacements in this section. (e

cross-sectional modes of propagative waves at the lower-
bounding frequencies are shown in Table 3.

With regard to the cross sections of two section groups in
a lower-bounding-frequency mode, either in-plane or out-
of-plane displacements are zeros, but not both. Besides, if
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Figure 9: (e wave modes at the stop-band bounding frequencies of waves A∼G.
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one section group has no in-plane displacement, the other
section group must have no out-of-plane displacement, and
vice versa. For waves A, B, and E, the sections without in-
plane or out-of-plane displacements may come from either
section group, which is determined by the order of the stop
band.

As previously mentioned, the two bounding-frequency
modes of the same stop band can be regarded as two
identical standing waves with the longitudinal translation
of the quarter-wavelength. For each stop band of waves, the
cross-sectional modes of section group #1 at lower and
upper boundary frequencies are identical to those of group
#2 at upper and lower boundary frequencies, respectively.
It has been verified by investigating the cross-sectional
modes of propagative waves at the upper-bounding
frequencies.

5. Conclusions

(e main conclusions can be drawn as follows:

(1) Eight propagative waves with distinct modes exist in
a periodically supported rail below 6000Hz. (e
overall differences between the dispersion curves of
three support conditions (periodic supports, con-
tinuous supports, and no supports) are small, above
2000Hz. (e differences between the dispersion
curves of periodically and continuously supported
rails are not obvious, apart from the stop band be-
haviors. However, the periodic supports result in the
cross-sectional mode differences between the rail pad
and non-rail pad areas.

(2) (e stop-band numbers of eight propagative waves
are six, five, four, three, two, two, one, and zero,
respectively. For each wave, the wavenumber and the
wavelength of the Nth stop band are given by Nπ/d
and (2/N) d, where d is the fastener spacing; the first
stop band has the maximum width compared with
the higher-order stop bands.

(3) All the bounding-frequency modes of the stop bands
are associated with the standing waves. Two
bounding-frequency modes of the same stop band
can be regarded as two identical standing waves with
the longitudinal translation of the quarter-wave-
length, one of which is the so-called pinned-pinned
resonance.

(4) With regard to typical standing-wave sections in
bounding-frequency modes, either in-plane or
out-of-plane displacements are zeros, but not
both. (ese typical standing-wave sections can be
divided into two groups. If one section group has
no in-plane displacement, the other section group
must have no out-of-plane displacement, and vice
versa.
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In recent years, customized bus (CB), as a complementary form of urban public transport, can reduce residents’ travel costs,
alleviate urban traffic congestion, reduce vehicle exhaust emissions, and contribute to the sustainable development of society. At
present, customized bus travel demand information collection method is passive. )ere exist disadvantages such as the amount of
information obtained is less, the access method is relatively single, and more potential travel demands cannot be met. )is study
aims to combine mobile phone signaling data, point of interest (POI) data, and secondary property price data to propose a method
for identifying the service areas of commuter CB and travel demand. Firstly, mobile phone signaling data is preprocessed to
identify the commuter’s location of employment and residence. Based on this, the time-space potential model for commuter CB is
proposed. Secondly, objective factors affecting commuters’ choice to take commuter CB are used asmodel input variables. Logistic
regression models are applied to estimate the probability of the grids being used as commuter CB service areas and the probability
of the existence of potential travel demand in the grids and, further, to dig into the time-space distribution characteristics of people
with potential demand for CB travel and analyze the distribution of high hotspot service areas. Finally, the analysis is carried out
with practical cases and three lines are used as examples. )e results show that the operating companies are profitable without
government subsidies, which confirms the effectiveness of the method proposed in this paper in practical applications.

1. Introduction

As a new innovative public transport mode, the CB advo-
cates energy saving and emission reduction, green travel,
alleviating urban traffic congestion, and providing people
with high-quality travel services in a “point-to-point” way
[1, 2]. CB originated from the idea of “car-sharing.” It was
introduced in 1948 by the organization “Sefage” in Sweden
to save transportation costs for families who did not own a
car [3]. Travel demand is an important part of customized
bus route planning. Before most scholars study the route
planning framework, they need to analyze the travel demand
initially. K Tsubouchi et al. [4] applied the Internet and big
data to develop a demand-responsive bus system that could
be adapted to different city types. Qiu et al. [5] investigated a
method to improve the performance of flexible route buses
in an operational environment with uncertain travel

demand. Scott et al. [6] researched both ‘point-to-point’ and
‘round-trip’ modes in London and predicted future demand
for customized buses in London. ANand Lo [7] proposed a
two-stage solution algorithm, compared to the traditional
robustness formulation to determine the service with reli-
ability using a two-stage formulation. Liu et al. [8] proposed
a new commuter minibus transit system with on-demand
interaction. )e authors evaluated and compared the per-
formance of CB, PC, and conventional public transportation
systems through travel cost, travel time, and fuel con-
sumption. Lyu et al. [9] proposed a CB-Planner method for a
bus line planning framework with multiple travel data
sources and designed a heuristic solution framework.

China’s CB development started late and is still in the
development stage. Zhong et al. [10] collected passenger
travel demand information through online questionnaires
and a mobile phone app and identified a suitable passenger
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flow catchment area division method. By considering the
station traffic volume and regional capacity allocation, a
suitable regional clustering method for passenger flow
distribution is established. Cheng et al. [11] used the data
from the public bus smart card tomine potential CB demand
points. Yu et al. [12] planned CB stops and routes based on
large amounts of demands data. Liu et al. [13] proposed a
visual analysis method. )ey evaluated the actual, dynam-
ically changing travel demand and planned the routes for the
nighttime CB system. )e reliability of the method was
verified with cases.

At present, many scholars mainly research line opti-
mization, station location, and price strategy and have
achieved certain research achievements [14–16]. And the
research on commuter CB travel demand is rather inade-
quate. Existing ways of collecting information on CB travel
demand are mainly through online collection (e.g., Ma et al.
proposed a framework of CB methods based on online
questionnaires to obtain travel demand [17]) or through
offline questionnaires in some large residential areas,
commercial areas, transportation hubs, and other areas (e.g.,
Li et al. used RP and SP questionnaires to research the factors
of influencing the potential travel demand for CB in
Shanghai, China [18]). However, this passive way of col-
lecting travel demand information is time-consuming and
costly. In addition, due to the incomplete coverage and low
audience level of the current CB travel demand information
collection, the mining of the potential commuter CB travel
demand population is neglected. Only by collecting data
online or offline for a certain region, it is inevitable that the
data collected for the study of travel demand is not large
enough and the coverage is not extensive. )ere are more
potential travel demands that cannot be met.

In view of the existing problems and combined with big
data processing technology, this paper proposes commuter
CB service areas and travel demand identification method
based on mobile phone signaling data. With the following
main contributions: (1) Combining mobile phone signaling
data and using big data processing technology, the distri-
bution characteristics of commuters’ workplace and resi-
dence are identified. Based on the above, a time-space
potential model of commuter CB travel is established and an
algorithm is designed to solve it. (2) Using the unit grid as
the fundamental unit, we choose the factors affecting pas-
sengers’ choice of the commuter CB as the input parameters
of the model. )e logistic regression model is constructed
and solved by SPSS software, to study the time-space dis-
tribution characteristics of people with potential commuter
CB travel demand and to further identify the service areas of
commuter CB and travel demand.

)e rest of the paper is organized as follows. In Section 2,
a brief description of the data types used in the paper is
given. In Section 3, the commuter CB service areas and travel
demand identification method are proposed.)e central city
of Chongqing, China, is used as a case study for demon-
stration in Section 4. )e main findings of the paper are
briefly summarized, and further perspectives on the fol-
lowing research on CB travel demand are discussed in
Section 5.

2. Data Description

)e data used in this paper involve three parts: mobile phone
signaling data, POI data of rail stations and bus stops, and
data of secondary housing prices around where commuters
reside.

(i) Mobile phone signaling data: it is provided by the
operator of China Unicom in Chongqing, China. It
has covered 38 districts and counties in the city for
mobile phone signaling monitoring, with signaling
collection interval of 30–60min. )e average
number of daily subscribers is 4.7 million. )e
average number of valid signaling data records for a
single user is 26. In this paper, about 43 million data
pieces of China Unicom in August 2019 are selected
as the research data to identify the space-time
distribution characteristics of commuters’ occupa-
tion and residence. And 175,794 users from 7:00
a.m. to 9:00 a.m. on a working day in August are
chosen as the research data for potential travel
demand mining.

(ii) POI data of rail stations and bus stations: the POI
data of the study area including 10,780 bus stations
and 158 rail stations are crawled in Python pro-
gramming language by retrieving the Gaode API
interface. )e POI attributes information included
station ID, longitude, and latitude.

(iii) Secondary house prices data: by crawling the sec-
ond-hand house prices on the websites of 58
TongCheng and LianJia in China, we obtain the
name of each community, convert it to latitude and
longitude coordinates, and obtain its spatial geo-
graphic information. )e mean value of the sec-
ondary house price near the commuter’s residence
is used as the input parameter of the model, and this
feature is used to represent the income of the
commuter.

3. Identification Method of Service Areas and
Travel Demand

In the process of generating mobile phone signaling data, the
natural environment, interference from human factors, and
other conditions can lead to error in the location of cellular
cells, and there may be missing data and duplication. At first,
the abnormal data are cleaned, and on this basis, the origin
(O) and destination (D) of commuters in the study area are
identified using the training method proposed in [19]. )e
characteristics of commuters’ occupational and residential
distribution are obtained. Based on the time-space distri-
bution characteristics of commuter travelers’ occupations
and residences, a time-space potential model of commuter
CB is established. We considered the influence factors as the
input parameters of the model and established logistic re-
gression model. We use the model to predict the study area
and select the areas that meet the conditions as the com-
muter CB service area. Based on this, we further identify the
potential commuter CB travel demand population.
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3.1. Time-Space Potential Model. In this paper, based on
mobile phone signaling data, the travel regularity of com-
muters, the similarity of travel time and spatial distribution
of work and residence, and the possibility of taking com-
muter CB in time-space distribution are comprehensively
considered. Based on the shared travel model framework,
the distribution characteristics in two dimensions of time
and space are considered, and based on the literature [20],
the time-space potential model of commuter CB is proposed.

)e model takes commuter travelers as the research
object. We take the time difference between commuters
leaving their places of residence and the distance difference
between commuters’ places of work and residence as in-
dependent variables. Due to the difference between time and
distance units, maximum-minimum normalization is used
to convert them into dimensionless expressions and in-
troduce weighting factors. )e objective function is to cal-
culate the value of time-space potential between commuters.
)e model takes into account the shorter time difference
between commuters in terms of travel time and the smaller
distance between commuters’ residence and workplace in
the spatial dimension. To a certain extent, it indicates the
greater potential of commuters who can travel by the same
transportation mode.)erefore, when certain conditions are
met, it is considered that there is a potential similar travel
demand between commuters in both temporal and spatial
dimensions. )e formula of the model is defined as

TPV(i, j) � α
T(i, j) − min(T)

max(T) − min(T)
􏼢 􏼣 + c

S(i, j) − min(S)

max(S) − min(S)
􏼢 􏼣

+ λ
L(i, j) − min(L)

max(L) − min(L)
􏼢 􏼣.

(1)

Equation (1) constraint is

T(i, j) �
t(i, j)

ΔT
,

t(i, j) � ti − tj,

T< δ,

S(i, j)< ε,

L(i, j)< ε,

(2)

where TPV(i, j) denotes the time-space potential between
the commuter and the commuter, and the magnitude of the
value indicates the likelihood that the commuter will travel
in time and space by commuter CB. i, j are commuters. ΔT is
time period of study. S(i, j) denotes the difference in dis-
tance between commuter i and the place of residence of j.
L(i, j) denotes the difference in distance between commuter
i and the place of job of j. t(i, j) denotes the time difference
between commuters i and j when leaving their place of
residence. S is the sets composed by S(i, j). L are the sets
composed by L(i, j). T are the sets composed by t(i, j)/ΔT,
and ε is the distance threshold, which takes the value of

300–500m in general. δ is the time threshold. α, β, c are
weighting factors.

According to equation (1), the time-space potential value
TPV(i, j) of commuter CB between commuters i and j is
inversely proportional to S(i, j), L(i, j), and t(i, j). )ere-
fore, the smaller the value of TPV(i, j), the greater the
potential for commuters between i and j to take commuter
CB travel together. Passengers are similar in space and time
of travel, showing a more similar time space of commuting
travel. )e likelihood that they will share commuter CB
travel is higher.

3.2. SolutionofTime-SpacePotentialModel. Firstly, the study
area is gridded and the boundaries of the study area are
adjusted to generate 5729 1 km× 1 km grids. Secondly, a
time window constraint is established to calculate the time-
space potential values between commuters in the grid with
each cell grid. Finally, all grids in the study area are iterated
to obtain the potential value between any commuters. )e
steps are as follows.

Step 1: the study area is divided into a unit grid of
1 km× 1 km, denoted by Uc, and the unit grid within
the entire study area is defined as a set U, and the
commuters located in the unit grid form a set PCk

,
where PCk

⊆P, and P is the set of commuters.
Step 2: establish time window constraint TWt.
Step 3: iterate over all the grids in the study area in
terms of the unit cell grid Uc and calculating the values
of S(i, j), L(i, j) and t(i, j) among the commuters in
each grid.
Step 4: if T> δ or S(i, j), L(i, j)> ε, then it indicates that
i and j do not have the potential for commuter CB.
Step 5: if T≤ δ and S(i, j), L(i, j)≤ ε, then calculate the
time-space potential values between i and j. )e entire
algorithm process is iterated through all grids until all
the time-space potential values of CB between com-
muters in the study area are calculated.

Algorithm 1 for calculating the time-space potential
values of commuter CB is designed according to the cal-
culation process.

3.3. Service Areas and Potential Travel Demand. )is section
is the core of the paper. Based on the results of the time-
space potential value calculation of CB and referring to the
literature [21], the threshold of time-space potential value is
0.5. When the time-space potential value is less than 0.5, the
distance difference between commuters’ residence, work-
place, and time difference from home is the smallest. At that
time, the commuters have more potential to travel together
and the possibility of using the same transportation mode is
higher. )e unit grids with time-space potential values less
than 0.5 are sorted in descending order by the number of
commuters. )e top 30% of the sorted grids and the last 30%
of the sorted grids are taken as the sample set. It is assumed
that the 30% unit grids with the higher number of com-
muters are the high demand area, so that it is equal to “1.”
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)e 30% unit grids with lower number of commuters are the
low demand area, so that it is equal to “0”. Considering the
factors that influence commuters’ choice of commuter CB
travel as the input parameters of the model, construct a
logistic regression grid model. Based on the model results,
the commuter CB initial service areas and potential travel
demand are obtained.

3.3.1. Logistic Regression Model. Logistic regression model is
a classification algorithm of machine learning. )e algo-
rithm predicts in a classification way and can calculate the
probability of each category, which fits the filtering of the
grid in the study area of this paper. Firstly, based on the
time-space potential model of commuter CB, we initially
selected commuters with time-space potential value less than
0.5 and identified their geographical location in the unit
grids. Secondly, we choose the average commuting distance,
average commuting time, average income, number of bus
stations, number of subway stations, average distance from
neighboring bus stations, and average distance from
neighboring rail stations of commuters in the grids as the
input parameters of the logistic regression model. Finally, a
binary logistic regression grid model is constructed to
predict the unit grid, and the model is solved by SPSS
software. )e unit grids of high hotspots are filtered and
probability values are obtained to mine the potential pop-
ulation of commuter CB.

(i) Logistic regression model theory: logistic regression
is the search for the vector of independent variables
X � (X1, X2, . . . , Xn) and the binary response Y
[21]. )e probability of Y belonging to a particular
class is modeled.

P(X) � Pr(Y � 1 ∣ X) � β0 + β1X1 + β2X2 +, . . . , + βpXp.

(3)

In fact, logistic regression classification is the process
of finding a function, mapping the function values
for the 0 to 1 interval, and then classifying the data
into two categories. Based on continuous explora-
tion, an ideal “unit-step function” is eventually
found, and the function value P(X) is mapped to a 0
or 1 class label according to its positivity or
negativity.

However, the direct design of the step function value
in this way is discontinuous, and it is not possible to
perform some relevant derivations, which is not
conducive to the optimization calculation later.
)us, the Sigmoid function is chosen as the classi-
fication function in the Logistic Regression algo-
rithm, and the function expression is as follows:

g(z) �
1

1 + e
− z. (4)

)e Sigmoid function is an s-shaped curve, with
g(z) taking values in the interval [0, 1]; when z� 0,
g(z) � 0.5, when z⟶ +∞, g(z) tends to 1, and
when z⟶ −∞, g(z) tends to 0.
)en we have

P(X) �
e
β0+β1X1+β2X2+,...,+βpXp

1 + e
β0+β1X1+β2X2+,...,+βpXp

. (5)

)e coefficients of the logistic regression model are
usually estimated by the maximum likelihood esti-
mation method.

L(β) � 􏽙
i:yi

p Xi( 􏼁 􏽙

x′:yi
′

p Xx′( 􏼁,
(6)

where

β � β0, β1, β2, . . . , βp􏼐 􏼑,

Xi � Xi1, Xi2, . . . , Xip􏼐 􏼑.
(7)

(ii) Characteristic values: based on the existing basic
data, the study is carried out to fully explore the
travel demand and service areas of CB. We choose
seven important factors as input parameters for the
Logistic Regression model, which are strongly
influencing commuters to take commuter CB travel.

① Average commuting distance: based on the
longitude and latitude information of mobile
phone signaling data, we calculate the difference
between the Euclidean distance of commuters
leaving their place of residence and arriving at
their place of job.

② Average commuting time: based on the time
difference between the user’s departure from the

Input left lng, left lat, right lng, right lat, sample set D � x1, x2, x3, . . . , xn􏼈 􏼉

(1) for i, j ingriddo (i � 1, 2, 3, . . . , len(grid))

(2) if t[i], t[j] inTW[i] do
(3) S(i, j) � 2 × asin(sqrt(a)) × 6371 × 1000
(4) L(i, j) � 2 × asin(sqrt(b)) × 6371 × 1000
(5) t(i, j) � timestamp1[i] − timestamp2[j]

(6) if S(i, j)< ε and L(i, j)< ε and t(i, j) < δ do
(7) TPV[i, j] � a × S(i, j) + b × L(i, j) + c × t(i, j)

Output TPV

ALGORITHM 1: CBTPV algorithm.
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place of residence and arrival at the place of work
recorded by the mobile phone signaling data, we
consider personal business trips or out of work,
etc., and take the average commuting time of
three working days in a week as the average
commuting time. )en, counting the number of
commuters in each unit grid, we calculate the
average commuting time of each unit grid.

③ Secondary house prices: considering that the
prices of secondary houses can characterize
people’s income to some extent, based on this,
secondary house prices are used as a substitute
variable for people’s income. )e mean value of
the price of second-hand houses nearby where
commuters reside is calculated as a characteristic
to represent the income of commuters.

④ Number of bus stops: invoke Gaode map API
interface, use the Python programming language
to crawl the latitude and longitude of bus stops in
the study areas, and count the number of bus
stops in the unit grids.

⑤ Number of rail stops: similar to ④, the Gaode
map API interface is retrieved and the Python
programming language is used to crawl the lat-
itude and longitude of rail stations in the study
area and count the number of rail stations in the
unit grids.

⑥ Distance of commuters’ neighboring bus stops:
the distance of commuters from bus stops and
rail stops will influence whether they choose to
take CB for commuting. )e average value of the
shortest distance between bus stops and rail stops
in the grid of commuters’ neighboring cells is
considered as the input parameter of the logistic
regression model.

⑦ Distance of commuters’ neighboring rail stations:
the distance of commuters from the rail station
platform will influence whether they choose to
take CB for commuting. )e average value of the
shortest distance of rail stations in the grids of
commuters’ neighboring units is considered as
the input parameter of the logistic regression
model.

3.3.2. Service Areas and Potential Travel Demands. Based on
the Logistic Regression model, the parameters of the model
are input to predict the grids in the study area. )rough the
theory of the Logistic Regression model, it is known that
when P≥ 0.5, the prediction result has good predictive value,
and the grids are considered as high hotspots grids; on the
contrary, when P< 0.5, the unit grids are low hotspots grids.
)us, the high hotspots grid area can be used as the com-
muter CB service areas. And, the commuters that exist in the
high hotspot grids are considered as the potential commuter
CB travel demand people.

4. Case Study

4.1. Background of the Case. In this study, the commuter CB
travel demand and service areas identification method is
proposed in the paper.)emethod is applied to a real case in
the central city of Chongqing, China. )e distribution of
commuters’ occupational and residential locations is iden-
tified and visualized based on the commuter OD identifi-
cation algorithm. In Figure 1, it can be seen that commuters’
residence is mainly concentrated in the central area of the
central city, and the areas are also the commuters’ work
gathering area.

4.2. Case Results

4.2.1. Analysis of the Results of Calculating the Time-Space
Potential Value of Commuter CB. Algorithm 1 is designed in
Python to calculate the potential values between commuters
in the unit grids between 7:00 a.m. and 9:00 a.m. )e results
are shown in Figure 2. )e average value of potential values
between commuters in the unit grids is statistically analyzed.
And the grids with potential values less than 0.5 in the unit
grids are chosen to prepare for the logistic regression model
to be established below.

4.2.2. Analysis of Logistic Regression Model Prediction
Results. Based on the calculation results of the commuter
CB travel potential model, the unit grids with an average
travel potential value less than 0.5 (471 units) are chosen and
sorted in descending order by the number of commuters in
the unit grids. )e upper 30% and the lower 30% of the
sorted units are taken as the sample set. Since the number of
commuters in the upper 30% of the unit grids is higher, they
are identified as Y� 1, and similarly, the lower 30% of the
unit grids are identified as Y� 0. )e total number of unit
grids is 282.

)e binary logistic regression model is solved by SPSS
software.)e fitted results show that the average commuting
time, the average distance of neighboring bus stations, the
number of bus stations, and the income level had positive
effects on the identification of the areas served by commuter
CB. )e summary table of parameters of the model is shown
in Table 1, and the table of prediction accuracy is shown in
Table 2.

From Table 1, Wald is 84.817, P≤ 0.01. According to the
logistic regression theory, it is known that it passed the
significance level test and the model is statistically signifi-
cant. While Cox–Snell R Square is 0.260 and Nagelkerke R
Square is 0.346, the fit of the model is high and the model
explains the original data at a desirable level.

As can be seen from Table 2, the Sigmoid function takes
values in the range of 0-1 interval, with 0.5 as the dividing
line. )e prediction cannot be used as a commuter CB unit
grid in the prediction accuracy rate of 71.6%, the prediction
as the service areas has 100 unit grids, and the prediction
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correct rate is 70.9%. )e total prediction accuracy rate is
71.3%, the accuracy rate is 71.43%, the recall rate is 70.92%,
and AUC value is 0.811 (as shown in Figure 3). )ese in-
dicators show that the prediction model is more ideal and
the prediction effect is perfect.

Based on the learned model, logistic regression is applied
to predict 5729 grids in the central city of Chongqing, China.

)e machine learning model is solved by SPSS software, and
the prediction results are shown in Figure 4.

4.2.3. High Hotspot Grids and Potential Travel Demand.
Based on the above analysis of the model results, it can be
learned that the prediction results for the area of high

Value
High:2076.81

Low:0

(a)

Value
High:653.461

Low:0

(b)

Figure 1: Heat map of where commuters reside and where they work. (a) Heat map of population distribution in the place of residence. (b)
Heat map of the population distribution of the workplace.

0 200 400 600 800 1000 1200
Serial number

0.5

0.4

0.3

0.2

0.1

0.0

TP
V

Figure 2: Distribution of time-space potential values of CB.

Table 1: Summary table of model parameters.

Parameters Wald P value Cox–Snell R square Nagelkerke R square
Values 84.817 ≤0.01 0.260 0.346

Table 2: Prediction accuracy.

Actual prediction
Prediction

Accuracy rate (%)Y
0 1

Y 0 101 40 71.6
1 41 100 70.9

Total accuracy rate (%) 71.3
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hotspot unit grids (as shown in Figure 5(a)) have advantages
for the operation of commuter CB routes. )e high hotspot
grids areas are considered as the service areas of commuter
CB. And, the commuters in the high hotspot unit grids are
the potential commuter CB travel demand crowd (as shown
in Figure 5(b)).

4.2.4. Examples of Commuter CB Line Planning. By ana-
lyzing the distribution of high hotspot grids and travel
demand, we randomly chose one high hotspot unit grid each
in Shapingba District, Beibei District, and Yubei District of
Chongqing, China, as an example to plan commuter CB
routes. )e commuters in the high hotspot unit grids are
considered as potential commuter CB travel demand. )e
lines information is shown in Table 3.

In this paper, the place of residence is considered as the
pickup area and the place of work as the drop-off area.)ree
randomly selected residential grid areas are surveyed by
random sampling to verify the accuracy of the model

prediction results. And, in the chosen areas, conduct a
questionnaire survey of the commuter CB SP for passengers.
)e purpose of the SP questionnaire is that the general travel
intentions of people in the unit grid represent the travel
intentions of potential commuters of CB travel in the unit
grid.

One hundred questionnaires are distributed to each of
the three chosen areas, for a total of 300 questionnaires,
including 95 valid questionnaires for grid ID 4309, 98 valid
questionnaires for grid ID 4342, and 94 valid questionnaires
for residential grid ID 2654, for a total of 287 valid ques-
tionnaires. )e results of the questionnaire survey show that
the number of passengers in each grid who are inclined to
choose commuter CB travel is greater than the predicted
number of potential commuter CB travel demand people
obtained from the model, which verifies the validity of the
model prediction results.

Based on the number and distribution of commuter CB
travel demands, the k-means clustering algorithm is used to
spatially cluster the travel demand. Since the k-value has a

Figure 4: Model prediction results.
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Figure 3: ROC curve.
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large impact on the result of the k-means clustering algo-
rithm, the appropriate k-value is initially determined by
applying the Silhouette Coefficient. )en, spatial clustering
is carried out, respectively, for residential and workplace

travel demand, and line planning is performed for the area
based on the clustering results. )rough line planning, three
vehicles are allocated to meet the passenger travel demand.
From the perspective of enterprise operation, the company’s

(a) (b)

Figure 5: High hotspot grids and potential travel demand distribution. (a) High hotspot grids. (b) Potential travel demand distribution heat
map.

Table 3: Line information of example.

Line ID Grid ID of residence Grid ID of workplace Distance (km) Demand (person)
1 4309 3708 10.7 14
2 4342 3900 12 11
3 2654 2597 13 13

Pick-up point
Drop-off point

Workplace grid
Residency grid

Travel demand of residence
Travel demand of workplace

Figure 6: Example of line planning.
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constant cost is 240 RMB, the variable cost is 25.23 RMB,
and the enterprise’s fare revenue is 304 RMB. Without
considering the government subsidy, the total revenue is
38.77 RMB, which ensures that the operating enterprise is in
a profitable state. )e line planning results are shown in
Figure 6.

5. Conclusion

Based on the current status of research by many scholars,
this paper focuses on the current shortcomings and carries
out an in-depth study on the issue of commuter CB travel
demand and service areas.)emain research contents of this
paper are as follows:

(i) Firstly, based on the preprocessing of mobile phone
signaling data and commuter OD identification, a
commuter CB travel time-space potential model is
proposed. )en, the study area is gridded, by de-
signing an algorithm to solve the model.

(ii) Considering commuters who meet certain condi-
tions, Logistic Regressionmodel is applied to analyze
the unit grid as the basic cell. We choose the ob-
jective factors that influence passengers’ choice to
take commuter CB as the output parameters of the
model and deeply mine the potential population of
commuter CB travel demand. We consider the high
hotspot grids output of the model as the commuter
CB service areas. Finally, using Chongqing, China, as
a study case and three routes as examples, the results
show that the operating companies are in a profitable
state without government subsidies. )e case results
prove the effectiveness of the method proposed in
this paper in practical applications.

In addition, some issues in this paper need to be further
discussed:

(i) )e data used in this paper are mobile phone sig-
naling data based on COO cellular cell location
technology, and there are certain defects in data
accuracy. )e article chooses to sort the samples of
the upper 30% and the lower 30% of the grids, and
other methods are also feasible, such as the upper
20% and the lower 20%.

(ii) )e paper is not sufficient to justify the value of
some model parameters, and it is expected that the
parameters of the model can be further studied later
to improve the accuracy of the model.

(iii) )e operating company can combine the spatial and
temporal distribution characteristics of the potential
commuter CB travel demand obtained from this
paper to introduce intentional routes to specific
areas. )is way can provide people with convenient
travel services.
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Passenger travel flows of urban rail transit during holidays usually show distinct characteristics different from normal days. To
ensure efficient operation management, it is essential to accurately predict the distribution of holiday passenger flow. Based on
Automatic Fare Collection (AFC) data, this paper explores the passengers’ destination choice differences between normal days and
holidays, as well as one-way tickets and public transportation cards, which provides support for variable selection in modeling.
&en, a forecasting model of holiday travel distribution is proposed, in which the destination choice model is established for
representing local and nonlocal passengers. Meanwhile, explanatory variables such as land matching degree, scenic spot dummy,
and level of service variables are introduced to deal with the particularity of holiday passengers’ travel behavior. &e parameters
calibrated by the improved weighted exogenous sampling maximum likelihood (WESML) method are applied to predict
passenger flow distribution in different holiday cases with annual changes in the metro network, using the data collected from
Guangzhou Metro, China. &e results show that the proposed model is valid and performs better than the other comparable
models in terms of forecasting accuracy. &e proposed model has the capability to provide a more universal and accurate
passenger flow distribution prediction method for urban rail transit in different holiday scenarios with network changes.

1. Introduction

With the development of the economic level, the travel
activities and frequencies of urban residents continue to
increase, which leads to the rapid growth of urban residents’
demand for urban public transport. Urban rail transit has
developed rapidly in recent years, and its superiority of
traffic volume, speed, and punctuality are popular among
people, which helps spur a boom in urban rail construction
[1]. In recent years, a large number of new lines have opened
and connected to the metro network, making the network
operation effect of many cities particularly evident, signif-
icantly affecting regional accessibility and passenger flow
distribution in the metro network. Furthermore, in regard to
holidays, because of the exceptional flexibility of departure
time and the diversity of destinations, the passenger travel
characteristics are quite distinct from normal days, and the

spatiotemporal distribution of holiday travel demand
presents complex characteristics [2, 3].

With the rapid change of the metro network, the op-
erations have undergone quantitative and qualitative
changes [4]. &e particularity of holidays also aggravates
travel demand’s complexity, which poses a significant
challenge to the metro system. Besides, the same holiday
only occurs once a year, which is not conducive to study the
characteristics in terms of lacking data sources. &erefore, to
effectively organize the large passenger flow and alleviate
traffic congestion during holidays, it is essential to accurately
predict the distribution of holiday passenger flow, which is
the basis of a reasonable train operation plan-making and
the development of passenger flow induction strategy.

&e traditional four-stepmethods and their modification
models have been widely used in passenger flow distribution
forecasting. It mainly includes the aggregate model method
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based on statistical rules of historical data and the disag-
gregate model method based on behavior analysis.

In the study of the aggregate model methods, many
researchers have investigated the gravity model by im-
proving it in different contexts. Grosche et al. [5] proposed
two gravity models to estimate the air passenger flow be-
tween city-pairs. &ey introduced geoeconomic variables
describing the general economic activity and geographical
characteristics as independent factors. Wang et al. [6]
combined the gravity model considering the distance and
free-flow travel time with the Fratar method to predict the
seed O-D matrix of the expressway. More recently, Ren et al.
[7] proposed three types of land-use function comple-
mentarity indices introduced into spatial interaction to
improve the gravity model. In these studies, the appropriate
variables are introduced to modify the model. Besides, the
constrained gravity model is also used as a researching point.
Tsekeris and Stathopoulos [8] used a doubly constrained
gravity model that additionally incorporates the intraperiod
evolution for forecasting the dynamic trip distribution. Jin
et al. [9] proposed an O-D estimation model based on the
doubly constrained gravity model, where the comparison of
singly and doubly constrained models was made. However,
the aggregate gravity model tends to overestimate when the
distance-deterrence function is small, and the variables are
usually less and simple, which cannot reflect the forming
mechanism of passenger flow and travel behavior
objectively.

&e disaggregate model can reveal the internal mecha-
nism of the passengers’ destination choice from the per-
spective of behavior interpretation by establishing definable
variables. Specifically, previous studies on the disaggregate
model have focused on travel behavior analysis and demand
forecasting. For example, in the research of influencing
factors of travel behavior, Tsirimpa et al. [10] proposed a
multinomial logit model and a mixed multinomial logit
model to examine the impact of information acquisition on
switching travel behavior. Yang et al. [11] proposed mul-
tinomial and nested logit models to analyze battery electric
vehicle drivers’ charging and route choice behaviors.
Nguyen-Phuoc et al. [12] adopted a multinomial logit model
to explore factors affecting changes in the event of major
public transport disruptions. In addition, the discrete choice
modeling technology based on random utility-based is
mainly used for destination choice modeling. Faghih-Imani
[13] used a multinomial logit model to study the decision
process of identifying destination locations at a bicycle
station. Kelly [14] built multinomial logit models to analyze
the destination choice behaviors of pedestrians within an
entire region. Orvin [15] developed a random parameter
latent segmentation-based logit model to investigate trip
destination choice behavior of the dockless bike-sharing
users. &ese studies show that individual attributes and
alternative factors influence passenger behavior and the
decision process, assisting transit agencies in getting man-
agement guidance.

Focusing on the demand forecasting, Timmermans [16]
proposed a model combining transportation mode selection
and destination selection and predicted shopping-oriented

travel. To strengthen the forecasting power, Jovicic and
Hansen [17] constructed a nested logit model, where log-
sums integrate generation, distribution, and mode choice
models as submodels. Ashiabor et al. [18] developed the
nested and mixed logit model to estimate county-to-county
travel demand. Travel time, cost, and traveler’s household
income were used in the explanatory variables. Furthermore,
recent studies [19] proposed a multistage demand fore-
casting model that considers the discrete choice approach,
such as the binomial and multinomial logit model, for each
decisional level. Moreover, Li [20] presented a new itinerary-
based nonlinear demand estimator that estimates the dis-
tribution of demand based on a nested logit model. &ese
studies contribute to the accurate prediction of travel de-
mand with the improved disaggregate model. However, it is
usually necessary to use questionnaires, such as the stated
and revealed preference surveys, to obtain the data that
include individual and alternative attributes for studying the
behavioral characteristics. When applied to prediction, it is
easy to be restricted by data conditions and difficult to use
effectively.

In addition, many emerging data mining technologies
and methods are used to study traffic or passenger flow
demand. Ye and Wen [21] proposed a destination choice
model based on link flows by constructing algorithms ob-
serving the detected data from part of the links. By using data
mining, Wang et al. [22] developed cell phone location
tracking algorithms to track cross-region traffic activities
and derived the O-D traffic flow and travel demand. In the
machine learning approaches, Wang et al. [23] designed a
grid embedding network via graph convolution and
established a multitask learning network for forecasting the
demands of O-D pairs in ride-hailing. Although the pre-
diction accuracy of the data-driven approach depending on
long-term collection may be higher, it is hard to apply the
network structure changes because of lacking the newly
added stations’ data in the metro. Moreover, it is often a
black-box process that does not illustrate the internal be-
havior mechanism.

Generally, due to the holidays that occurred only once a
year, it is not easy to continuously collect stable and long-
term data. And with the rapid development of the metro
system, the network structure of holidays usually changes
every year, which makes it hard to use the statistical models
for prediction. Previous relevant studies focused on
researching the passenger flow on normal days. However,
little work has explored passengers’ choice behavior to
construct special variables to effectively forecast the sce-
narios of holidays in the metro system. Besides, since the
source of disaggregate data limits the forecasting application,
new data sources are considered to replace the conventional
questionnaires in this paper.

At present, the Automatic Fare Collection (AFC) system
is widely adopted in the urban rail transit system, which is
the main support data in this paper. Under the premise of
ensuring validity, this paper applies the aggregate data
obtained by the AFC to the disaggregate model by modifying
the maximum likelihood estimation method, which over-
comes the difficulty of getting the disaggregate model data.
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Based on fully exploiting the holiday passenger travel rules
and considering the differences in the choice behavior of
different ticket type passengers, this paper constructs a
holiday passenger flow distribution prediction model, in
which some novel explanatory variables (such as land
matching degree) are introduced. &e proposed model
structure can not only be suitable for the changes of urban
rail transit network structure but also take into account the
unique characteristics of holidays so as to have good
interpretability.

&e remainder of this paper is organized as follows. In
the next section, the holidays’ data collection effort and
passenger flow characteristics are analyzed herein. &en, the
modeling methodology and the explanatory variables of the
utility function are described. After that, the proposedmodel
is estimated and applied to the holiday distribution fore-
casting with comparisons of other traditional methods.
Finally, concluding remarks are presented in the last section.

2. Data and Passenger Flow’s Characteristic

2.1. Data. Urban rail transit adopts the AFC system to im-
plement management methods such as ticketing, ticket
checking, and billing. &e data are gathered and transmitted
into the center and automatically store passenger travel in-
formation. &e data types are shown in Table 1. Under such
limited data conditions and types, how to use them to
construct a forecastingmodel suitable for the holiday scenario
is the primary goal. In data processing, the data cleaning has
been done by identifying outliers, such as judging whether the
enter and exit stations are inconsistent, whether the enter and
exit time, and the in-train time are reasonable. Besides, the
stations are regarded as transportation analysis zones (TAZs)
in the urban rail transit system. &e boarding (origin) and
alighting (destination) stations of passengers’ trips can be
obtained from the AFC system directly.

&ere are eight lines and 140 stations in Guangzhou
Metro by the beginning of 2016. &e daily average of raw
data amounts to more than 4 million that need further
processing. And more than one million passengers use one-
way tickets per day during New Year’s Day, which is almost
1.84 times the weekdays. Compared with January 1, 2016,
there are seventeen new stations and three new lines con-
nected to the network on January 1, 2017. &e road network
structure has tremendous changes.

2.2. Passenger Flow’s Characteristics. Based on Guangzhou
Metro’s AFC data, the passenger flow of each station during
the New Year’s Day holiday from 2016 to 2017 is collected,
and some travel characteristics have been found. &e pas-
senger flow, for instance, is closely related to the nature of
land-use and the intensity of development around stations.

As shown in Figure 1, the entrance passenger flows of
four typical stations from December 30, 2015, to January 4,
2016, are given. &e passenger flow of Zhujiangxincheng
station, which is dominated by office areas, declined sig-
nificantly during the New Year’s Day. Similarly, the pas-
senger flow of Dashadong station also decreased, as

residential areas surround there. However, Guangzhouta
and Beijinglu stations’ passenger flow increased significantly
during the holidays, with the main areas, respectively,
surrounded by scenic spots and commercial districts.

Similarly, the passenger flow, from the origin station to
the destination station (O-D station) during the holidays,
shows different distinct characteristics, compared with
weekdays. As shown in Figure 2, there are different pas-
senger flow trends between O-D stations with different land-
use types, and some of which increased significantly in
holidays, while others, such as residential stations to office
stations, dropped significantly.

From another perspective, there are also great differ-
ences in the distribution of people who use one-way tickets
and public transportation cards during holidays. Generally,
many one-way passengers are nonlocal passengers, who tend
to go to scenic spots, business districts, and hub stations. In
contrast, transportation card passengers are mostly local
residents, whose travel purposes are diversified. &is char-
acteristic of choice behavior is especially evident during
holidays. As shown in Figure 3, the passenger flow of one-
way tickets and public transportation cards at Guangzhouta
and Beijinglu stations has increased, while the growth rate of
one-way ticket is significantly higher, indicating that the
stronger attraction of one-way ticket passengers.

Furthermore, other characteristics can also be obtained
by analyzing the passenger flow. For example, the O-D
passenger flow on the same line is usually larger than that on
different lines. And in the case of satisfying the purpose of
passengers, they would give priority to the destination with a
short ride time and transfer time. However, these features
are influenced by many factors. &ey should be reflected in
some explanatory variables to analyze how various factors
jointly affect the behavior and improve the subsequent
forecasting performance when modeling. Next, the ap-
proach considering passenger flow’s characteristics of hol-
idays is introduced in detail.

3. Methodology

Considering that the metro network scale is rapidly devel-
oping, the spatial passenger flow distribution of O-D stations
also changes fast. New stations divert the passenger flow of
old stations, and it is not easy to obtain the development data
of all O-D pairs in time series, especially for newly added
stations. &erefore, based on the above analysis of passenger
flow’s features, this paper constructs a destination choice
model to describe the characteristics of passengers. &en, a
forecasting model of holiday passenger flow distribution is
developed, which is suitable for the structural change of the
network and does not depend on long-term data collection.
Meanwhile, considering different passengers’ characteristics,
the utility functions for passengers who use one-way tickets
and public transportation cards are constructed separately.

3.1. Model Structure. &e theory of random utility maxi-
mization refers to the alternatives in which traffic behavior
decision-makers choose the most effective ones in their
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choice sets under certain conditions. If the destination
choice sets of passengers from station i are Ai and the utility
of the alternative n is Uin, the requirement that the

passengers select the destination j from Ai is Uij >Uin.
Among them, the utility function U has divided into two
parts: a deterministic term Vij and an error term εij.
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Figure 2: Comparison of O-D passenger flow during weekdays and New Year’s Day in 2016.

Table 1: &e Automatic Fare Collection data types.

Name Field type Form
Card type Varchar One-way ticket, public transportation card, etc.
Card number Int 1000139∗∗∗
Enter line Varchar Line 1, Line 2, etc.
Enter station name Varchar Guangzhou East, Donghu station, etc.
Enter time Datetime “2016-01-01 08 : 00 : 00”
Exit line name Varchar Line 1, Line 2, etc.
Exit station name Varchar Guangzhou East, Donghu station, etc.
Exit time Datetime “2016-01-01 08 : 00 : 00”
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&erefore, the utility function Uij can be formulated as
follows:

Uij � Vij + εij � 􏽘 βk
X

k
ij + εij, (1)

where βk is an estimable parameter of attribute k; Xk
ij is an

observable attribute as the explanatory variable; εij is the
error term that is used to address the unobserved factors that
influence the choices taken by the passengers.

&e researcher observes some attributes of the alterna-
tives as faced by the decision maker, labeled Xij, and can
specify a function that relates these observed factors to the
decision maker’s utility [24]. &e term εij is treated as
random, and it captures the factors that affect utility but are
not included in Vij. When the error term εij obeys the
independent Gumbel distribution, multinomial logit (MNL)
models can be derived. For the origin station i, the prob-
ability for choosing j is calculated as follows:

Pij �
exp Vij􏼐 􏼑

􏽐nεAi
exp Vin( 􏼁

, jεAi. (2)

Equation (2) is the destination choice model. &e prob-
ability that a passenger chooses another station as the des-
tination can be calculated. &e production trips from each
station are then distributed to all other stations based on the
choice of probability destination. &at is, the passenger flow
distribution qij from the origin station i to the destination
station j is computed. &e formula is shown as follows:

qij � Qi · Pij, (3)

where Qi is the entrance passenger flow in station i.
Considering the different levels of sensitivity of travel

characteristics of different types of passengers in the par-
ticularity of holidays, two utility functions in the proposed
model are constructed with passengers who use one-way
tickets and public transportation cards for representing local

and nonlocal passengers. &e trip distribution is applied
separately for each ticket type of passengers who have
characteristic travel behavior, with different model param-
eters.&en, the distribution results of the two ticket types are
added together. &e formula is shown as follows:

qij � q
one
ij + q

ptc
ij , (4)

where qoneij is the one-way ticket passengers’ distribution
prediction; q

ptc
ij is the public transportation card passengers’

distribution prediction.
Equation (4) is the forecasting model of passenger flow

distribution. However, it is a singly constrained model so far.
&ere is no guarantee that the sum of the passenger flow from
each station to the destination station j is equal to the attracted
trips of station j. &erefore, it is necessary to modify the travel
flow to enforce constraints between total origins and desti-
nations. &e Fratar method is widely used in distribution
adjustment due to its fast convergence speed and high cal-
culation accuracy. &e idea of the Fratar method is a dis-
tribution of horizon year trips from a zone that is proportional
to the base year trip distribution pattern modified by the
growth factors of the zones under consideration [25, 26].
&erefore, this paper uses the Fratar method for equalization
processing. &e approach is shown as follows:

q
m+1
ij � q

m
ij · F

m
Oi · F

m
Dj ·

Li + Lj

2
􏼠 􏼡,

Li �
O

m
i

􏽐jq
m
ij · F

m
Dj

,

Lj �
D

m
j

􏽐iq
m
ij · F
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,
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where qij is the passenger flow of station i to station j; FOi is
the growth rate of the entrance passenger flow in station i;
FDj is the growth rate of the exit passenger flow in station j;
Li is the adjustment coefficient of station i; Lj is the ad-
justment coefficient of station j; Oi is the entrance passenger
flow in station i; Dj is the exit passenger flow in station j;m is
the m-th iteration.

3.2. Model Specifications. Although personal characteristics
affect destination choice, it is unable to obtain personal at-
tributes data from the AFC directly. &erefore, seven indexes
as the utility function of characteristic variables that could be
extracted from the urban rail transit network are considered in
the destination choice model, including in-vehicle travel time,
transfer time, station position relationship, and matching
degree of land-use types. &e seven variables are mainly used
to characterize three categories of explanatory attributes,
namely, the accessibility of the destination, the attractiveness
of the destination, and matching degree of O-D stations,
through which the choice behavior mechanism of passengers
can be characterized.

According to the choice behavior characteristics of the
one-way ticket and the public transportation card passen-
gers, and through the multiple calibration experience of the
model, the utility functions Vone

ij and V
ptc
ij of the destination

choice model are constructed, as shown in equations (6) and
(7), respectively:

V
one
ij � β1Dj + β2Zij +

β3T
train
ij

3600
+
β4N

trans
ij

3600
+ β5Gij + β6Sij + β7Lj,

(6)

V
ptc
ij � β8Dj + β9Zij +

β10T
train
ij

3600
+
β11N

trans
ij

3600
+ β12Gij + β13Sij,

(7)

where β1 − β13 is the parameter to be calibrated for each
variable; Dj is the exit passenger flow of destination station j,
ten thousand person trips; Zij is the matching degree of land-
use type; Ttrain

ij is the in-vehicle travel time from the origin
station i to the destination station j, second;Ntrans

ij is the transfer
time from the origin station i to the destination station j,
second; Gij is a dummy variable, and if the sum of trip
generation at origin station i and the attraction at destination
station j is larger than a specific scale, the value is 1; Sij is a
dummy variable, and if the origin station i and destination
station j are in the same line, the value is 1; Lj is a dummy
variable, and if the land-use type of destination station j is
scenic, commercial, or hub, the value is 1.

For one thing, these variables are introduced to fa-
cilitate data acquisition, and for another, the character-
istics of holidays are considered so as to improve the
interpretability and prediction effect of the model further.
It should be noted that the travel cost is a sensitive variable
to influence the choice behavior, which was included in
the variable sets at the beginning. However, when the
variables are checked for multicollinearity, the travel cost
shows a strong correlation with the travel time. &erefore,

the travel cost was eliminated in the utility functions.
Compared to one-way ticket passengers, the public
transportation card utility functions do not have the
variable Lj, as adding this variable would reduce the
model’s accuracy.

Moreover, the acquisition of the matching degree of land-
use types Zij and the scenic destination station variables Lj

need to be additionally explained. &e distribution of pas-
senger flow between stations is closely related to land-use
nature around the station, especially the significant difference
between holidays and normal days. It is necessary to quantify
the impact of land-use interaction. &erefore, Zij is con-
structed to describe the degree of attraction between different
types of stations. Based on this, the metro stations need to be
clustered to determine the category of the station first.

Due to the land-use properties are a relatively stable
indicator and it usually shows a certain relationship with the
passenger flow characteristics, the K-means clustering
method is used to classify the stations of the whole network
of Guangzhou Metro. K-means is a vector quantization
method that is popular for cluster analysis in data mining
[27]. &rough the analysis of passenger flow characteristics,
the morning and evening peak flow has a greater correlation
with the nature of land-use around stations. And the pro-
portion of one-way tickets and all-day passenger flow at
comprehensive transportation hubs is usually larger, while
the passenger flow at commercial and scenic stations tends
to increase significantly during holidays. &erefore, the five
variables are used as inputs for clustering as shown in Table 2.
In the clustering research of metro stations, the stations are
usually divided into five categories according to weekday
travel data [28, 29]. However, since the research scenarios are
aimed at holidays, we set eight cluster numbers as preset
categories according to the land-use and application re-
quirements of the model. &e clustering results are shown in
Table 3 (figures in brackets denote the sum number of
clustering stations), and they are representative and matched
with the preset types.

&erefore, the value of Lj can be obtained directly through
the clustering results. Besides, the matching degree of land-
use type Zij needs further processing. Based on the above
clustering results, the average O-D passenger flow with dif-
ferent cluster types could be calculated. &en, the logarithm
function is used to normalize the values of various types to
differentiate passenger flow better. &e formula is as follows:

Zij �
ln Qij − lnmini,jQij􏼐 􏼑

lnmaxi,jQij − lnmini,jQij􏼐 􏼑
, (8)

where Zij is land matching degree from type i to type j; Qij is
the average O-D passenger flow of the stations from type i to
type j.

A case result of Zij is shown in Table 4 (the vertical column
indicates the type of the origin station, and the horizontal row
indicates the type of the destination station), where the value
from Type1 to Type 1 is zero. &is means that the passenger
flow is the lowest of all type pairs, mainly because the attraction
between residential stations is less during holidays in all type
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pairs. In contrast, the connections between transportation hubs
are strengthened, reflected in the maximum value from Type 8
to Type 8.

3.3. Parameter Estimation. For the parameters β in equation
(1), the personal travel survey is generally performed by the
simple random sampling method to obtain the disaggregate
type data of the individual choice, thereby using the max-
imum likelihood estimation method to calibrate the pa-
rameters. However, in this paper, the aggregate data
obtained by the AFC should be transformed into the dis-
aggregate form for application in the destination choice
model. When being applied, it needs methods to deal with
the original aggregate data. Yao and Takayuki [30] proposed
an integrated model that combines estimation across mul-
tiple data sources such as SP, RP, and aggregate data.
&erefore, the maximum likelihood estimation method is
improved by introducing a weight factor to realize the
application of AFC data in the destination choice model’
calibration.

Manski and Lerman [31] proposed a weighted exoge-
nous sampling maximum likelihood (WESML) method,
introducing weights into log-likelihood functions to cali-
brate the bias between the sample and population data. It can
be expressed as follows:

L(θ) � 􏽘
iεAn

􏽘
n

δinwi ln Pin( 􏼁, (9)

wi �
Qi

Hi

, iεC, (10)

where δin is 1 if the passenger n chooses selected branch i as
destination and 0 otherwise; wi is weights; Qi is the pro-
portion of the selected branch i in the population; Hi is the
proportion of i in the sample.

To improve the practicability of the method, Cosslett’s
research [32] proves that it can be transformed as follows:

wi �
Qi

Ni/N
, (11)

where Ni is the data amount of the selected branch i; N is the
sum of the data amounts of the respective selected branch.

However, in terms of urban rail transit, passengers with
the same origin and destination station have the same
characteristics; that is, they all make the same choice for the
destination. &us, the amount of O-D passenger flow can be
expressed as the selection result of individuals. &e weight
factor is suited for adjusting the likelihood function of the
dataset. &erefore, according to the characteristics of the data
that can be extracted, equation (11) is corrected as follows:

Table 2: &e variables for K-means.

Variables Description
Morning peak hour factor &e passenger flow of morning peak hour (7 : 00–9:00) divided by all-day passenger flow
Evening peak hour factor &e passenger flow of evening peak hour (17 : 00–19 : 00) divided by all-day passenger flow
Proportion of one-way ticket &e proportion of passengers using one-way ticket
All-day passenger flow &e all-day passenger flow in the stations
Passenger flow growth rate &e passenger flow of the holiday divided by the weekdays before the holiday

Table 3: Station types’ clustering results based on the surrounding area’s land-use.

Type Attribute Description Clustering results
Type 1 Residential &e station is surrounded by residential areas Nanpu, Sanxi, Dongpu, etc. (30)

Type 2 &e majority of residential area &e station is surrounded by majority
of residential areas Shiqiao, Meihuay, Xicun, etc. (25)

Type 3 Office &e station is surrounded by office areas Haizhuguagnc, Quzhuang, etc. (20)
Type 4 &e majority of office area &e station is surrounded by majority of office areas Donghu, Ximenkou, etc. (21)
Type 5 Comprehensive &e station is surrounded by various types of land-use Shibi, Fangcun, Shiergong, etc. (28)
Type 6 Commercial &e station is surrounded by commercial areas Jinzhou, Jinronggaoxinqu, etc. (14)
Type 7 Scenic &e station is close to scenic spot Diyong, Guangzhouta, etc. (14)
Type 8 Hub center &e station functions as transportation hub center Guagnzhou South, Airport South, etc. (5)

Table 4: Land matching degree values of different types of O-D stations.

Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 Type 7 Type 8
Type 1 0.00 0.08 0.24 0.08 0.10 0.18 0.28 0.55
Type 2 0.09 0.15 0.28 0.15 0.16 0.24 0.29 0.63
Type 3 0.09 0.17 0.35 0.18 0.18 0.20 0.27 0.61
Type 4 0.22 0.25 0.28 0.29 0.22 0.22 0.29 0.64
Type 5 0.11 0.15 0.24 0.16 0.22 0.22 0.36 0.60
Type 6 0.17 0.23 0.25 0.18 0.23 0.14 0.26 0.59
Type 7 0.28 0.26 0.25 0.19 0.34 0.22 0.39 0.59
Type 8 0.51 0.59 0.61 0.55 0.57 0.56 0.58 1.00
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wi �
qi

􏽐 qi

· R, (12)

where qi is the O-D passenger flow in the selected branch i; R
is the number of individuals, that is, the sum of O-D station
pairs.

4. Results and Analysis

4.1. Model Estimation and Analysis. In the construction of
the selection set, there are 140 stations in the 2016 New
Year’s Day.&at is to say, 139 stations should be put into the
alternative set except for the real choice of each traveler.
However, for general disaggregate models, the size of the
alternatives is too large, which would affect the speed of
model estimation and is not conducive to application. Ben-
Akiva and Lerman [33] demonstrated that the consistency of
model parameters is not lost when extracting subselective
branches for parameter estimation in the selection set.
&erefore, this paper constructed the subselection set by
randomly extracting nine stations from the alternative set. It
could reduce the difficulty of calibration and increase the
operability while ensuring the consistency of the model’s
calibrated parameters.

In the process of parameter calibration, the values of
seven variables are obtained in combination with the net-
work topology and train operation plan of Guangzhou
Urban Rail Transit. By using the parameter estimation
method described in the section before, the undetermined
parameters of the utility function are calibrated. Especially,
after several tests, the scale dummy variable Gij was set to 1 if
it exceeds 7,000 person trips. &e calibration results of the
New Year’s Day are shown in Table 5 as a study case. All
absolute t-values are greater than 1.96, indicating statistical
significance and variables’ validation. Moreover, the ad-
justed ρ2 of this model is over 0.2, which can be regarded as a
satisfactory goodness-of-fit [34].

&e estimated parameters are provided with practical
significance and expected signs in the sense of explaining
passenger destination choice behavior in either the one-way
ticket model or public transportation card model. An ob-
vious example is that the parameter of destination attraction
variable is positive, indicating that the greater attraction of
destination station is, the more passengers choose.

As for the negative parameters of travel time and transfer
time, the longer the travel time and transfer times are, the
less probability of destination station would be chosen,
which is consistent with common sense and inversely
proportional to destination choice preference. Moreover, the
units are the same, but the estimated parameters are not
close, which means the travelers have different perceptions.
&e trade-off between travel and transfer time shows that an
increase of 10 minutes in transfer time is equivalent to an
increase of 68 minutes in travel time for one-way ticket
passengers and 55 minutes for public transportation card
passengers in the case of New Year’s Day. It reveals that
travelers have a significant negative impact on lengthy
transfer times. For public transportation card passengers, the
absolute parameters of travel time and transfer time are both

larger than the one-way ticket passengers, indicating that the
passengers who used the card care more about the time when
other variables remain unchanged.

Besides, the land matching degree’s parameter is pos-
itive, which indicates that when the relationship between
O-D station’s land-use types is strong, the destination
stations will be more likely to be chosen. &e scale and
collinear variable’s parameters are positive, revealing that
when the origin and destination stations’ travel scale is
more extensive, or the O-D station stands on the same line,
the probability of the destination station being chosen is
greater.

For the scenic variable in the one-way ticket model, its
parameter is positive. It is also in line with the charac-
teristics of passengers traveling on holidays because there
are plenty of tourists who use the one-way tickets. In
general, the estimated results are statistically significance
and can explain the choice behavior mechanism on the
New Year’s Day to some degree. However, it is worth
emphasizing that the parameters should be recalibrated so
as to regain the travel behaviors when applying other
different holidays.

4.2. Model Application and Comparison. To test the pre-
dictive effect of the proposed forecasting model, the cali-
brated results are used to predict the New Year’s Day of
Guangzhou Metro on January 1, 2017, where the data of the
predicted year are used as the test-set and do not participate
in the calibration.&ere are seventeen new stations and three
new lines connected to the network. Meanwhile, the singly
constrained gravity (SCG) model in the traditional statistical
model, the support vector machine (SVM), the back
propagation (BP) neural network, and radial basis function
(RBF) neural network in machine learning model are se-
lected for comparison under the same data source and
conditions. And the traffic impedance function in the form
of the exponential function is used in the gravity model, as
shown in equation (13). &e least-square method is used to
transform it into a linear form for parameter estimation [35]:

fij � exp −μTij − τ nij􏼐 􏼑T
−c
ij , (13)

where Tij and nij are travel time and transfer time from the
origin station i to the destination station j, respectively; μ, τ,
and c are the coefficients to be determined.

As shown in Figure 4(a)–4(e), the predicted values are
compared with the actual passenger travel data, and the
prediction deviation graph is drawn.&e error fluctuation of
the singly constrained gravity model and the other three
machine learning models is larger than the proposed
forecasting model established in this paper. &e mean ab-
solute error of the whole network in the gravity model is
130.2 person trips, the SVM model is 140.9, the BP neural
network is 139.1, and the RBF neural network is 157.3, while
the proposed model is 54.6 that is far better.

Furthermore, the detailed prediction error statistics of
the five models, in this case, are shown in Table 6. Compared
with the other four models, the mean absolute error of the
proposed model is reduced by 58.05%, 61.21%, 60.72%, and
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Figure 4: Prediction deviation of the proposed model and the comparison models on the New Year’s Day. (a)&e proposed model. (b)&e
gravity model. (c) &e support vector machine model. (d) &e back propagation neural network model. (e) &e radial basis function neural
network model.

Table 5: Model estimation results.

Characteristic variable

Case1: the New Year’s Day Case2: the National Day

One-way ticket Public transport
card One-way ticket Public transport

card
βi t-value βi t-value βi t-value βi t-value

Destination attraction (Dj) 0.301 37.989 0.084 26.818 0.290 38.791 0.211 28.646
Land matching degree (Zij) 0.311 3.641 0.424 6.802 0.257 2.367 0.532 8.481
Collinear variable (Sij) 0.533 18.190 0.549 18.759 0.493 17.179 0.553 18.812
Scale variable (Gij) 0.638 29.106 0.533 23.835 0.629 29.519 0.517 23.696
Travel time (T train

ij ) −0.815 −18.286 −1.172 −25.162 −0.508 −11.884 −1.094 −23.556
Transfer time (N trans

ij ) −5.507 −18.324 −6.449 −20.833 −5.975 −20.316 −6.766 −21.519
Scenic variables (Lij) 0.084 3.971 — — 0.092 3.350 — —

Model summary

Observations 17954 18314 17534 17747
L(θmax) −32640.37 −33441.36 −31654.83 −32615.35

L(0) −41340.61 −42169.54 −40373.53 −40863.98
Adjusted ρ2 0.210 0.207 0.216 0.202
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65.26%, respectively.&e proportion of absolute errors of the
proposed model under 50 person trips reaches 73.1%, and
the relative error less than 50% is 66.83%, where the errors
are better than that of the other four models.

A detailed comparison of absolute error and its cu-
mulative percentage can be seen in Figure 5. &e statistics
also show that the proposed model accuracy is better than
the conventional gravity model, SVM, and the two neural
network models as a whole. However, the proposed model
has a slightly weak performance in terms of relative error,
mainly because there are many O-D stations with small basic
flow, leading to a large relative error. For example, the
proportion of relative error more than 200% is 6.78%, where
the average absolute error is 41.0 person trips. Moreover, the
proportion of relative error more than 500% is 1.70%, where
the average absolute error is 35.40 person trips, which is
below the total average absolute error. &erefore, it does not

mean that the poorer the relative error, the larger the ab-
solute error, and the worse the prediction performance. &e
prediction effect of the proposed model can still be
guaranteed.

Besides that, the error results of different categories
between new lines and existing lines in the models are shown
in Table 7.&e proposed model’s mean absolute error results
are relatively low when predicting the new line, namely, only
23.14 and 23.26 person trips. In the prediction performance
of the existing line to existing line, the error is relatively
larger than that of others, mainly because of the large basic
flow between existing stations.

In this case, the holiday of New Year’s Day is chosen for
analysis. However, other holidays might be a little longer in
time, and passenger flow patterns and choice behavior would
be different in some ways. &e proposed destination choice
model could be used to reflect the choice behavior

Table 6: Statistics of model deviation in the New Year’s Day.

Case1: the New Year’s Day SCG SVM BP RBF &e proposed model
Maximum of absolute error (person trips) 5071 6099 6240 5932 2506
Mean absolute error (person trips) 130.22 140.86 139.08 157.27 54.63
Proportion of absolute errors over 50 trips (%) 50.13 56.12 57.57 66.3 26.90
Proportion of absolute errors over 100 trips (%) 31.31 31.83 35.71 39.29 14.78
Proportion of absolute errors over 200 trips (%) 16.27 15.17 14.74 17.15 5.90
Proportion of relative error over 20% (%) 84.60 85.11 84.00 85.95 62.74
Proportion of relative error over 50% (%) 66.78 64.34 64.08 68.37 33.17
Proportion of relative error over 100% (%) 40.45 37.55 45.70 46.07 16.39
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Figure 5: Comparison of absolute error and cumulative percentage.
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characteristics and passenger flow rules, so the methodology
applies to all holidays. Considering the validation and
portability of the proposed method, this study supplemented
a case of the National Day (seven-day holiday) for a rela-
tively comprehensive experimental design. One day of the
National Day in 2014 was randomly selected for model

estimation (that is, October 2, 2014), and the proposed
method was used to predict the passenger flow distribution
on the same day of next year.

&ere is one small difference in the calibrated parameters
as shown in Table 5 above, which reflects the slight distinction
of the travel characteristics in different holidays. However, all

Table 7: Mean absolute error of prediction results.

Category
Mean absolute error (person trips)

SCG SVM BP RBF &e proposed model
Existing to new lines 49.92 99.81 67.26 82.96 23.14
New line to existing line 48.07 76.62 119.80 105.64 23.26
New line to new line 90.03 141.72 96.56 131.55 41.30
Existing line to existing line 154.94 152.50 152.12 171.68 64.10
Whole network 130.22 140.86 139.08 157.27 54.63
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Figure 6: Prediction deviation of the proposed model on the National Day.
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Figure 7: Scatter plot of predicted and actual value result presentation.

Table 8: Statistics of model deviation in the National Day.

Case2: the National Day SCG SVM BP RBF &e proposed model
Maximum of absolute error (person trips) 5681 8931 6730 4320 2467
Mean absolute error (person trips) 129.07 110.29 109.25 79.58 51.63
Proportion of absolute errors over 50 trips (%) 51.58 43.63 48.34 37.53 23.49
Proportion of absolute errors over 100 trips (%) 32.44 26.16 26.99 20.68 12.55
Proportion of absolute errors over 200 trips (%) 16.53 12.58 12.40 9.70 5.47
Proportion of relative error over 20% (%) 81.10 84.66 82.45 73.06 65.15
Proportion of relative error over 50% (%) 55.40 62.93 59.80 43.66 31.61
Proportion of relative error over 100% (%) 31.86 35.73 38.52 26.56 14.06
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absolute t-values are still greater than 1.96, and the adjusted ρ2
is over 0.2, which indicates that the model is still applicable
and reliable. &e prediction deviation graph is also drawn to
show the overall error, as shown in Figure 6. For the con-
venience of reading, the scatter plot is given as shown in
Figure 7, which is consistent with the meaning expressed in
Figure 6. &e graph plots values for the modeled prediction
along the Y-axis and the corresponding actual count along the
X-axis. If all of the predictions match the actual value exactly,
the points on the graph would match up with the red line (45
degree line) drawn in the graph. &e prediction results of the
proposed model are mostly close to the red line, illustrating
that the prediction performs well. &e National Day’s com-
parison models’ error statistics are shown in Table 8. In
summary, the prediction effect and accuracy are still ideal
than the other models. &e validation and applicability in
other holiday scenarios can still be guaranteed. And it can be
more effectively applied to practical engineering.

5. Conclusions

&is paper utilizes AFC data to propose a forecasting model
for passenger flow distribution for urban rail transit, which is
suitable for network structure and the unique characteristics
of holidays. &e weighted exogenous sampling maximum
likelihood (WESML) estimation method is used to calibrate
the parameters. &e aggregate data extracted from AFC are
transformed into the disaggregate form, which realizes the
valid calibration of the parameters. It reduces the difficulty of
data acquisition and enhances the applicability of the model,
meanwhile ensuring acceptable accuracy.

In the proposed model, the destination choice model
defines destination attraction, land matching degree, and
others as explanatory variables.&is is the main advantage of
the model’s interpretability and predictive power.&emodel
presents reasonable performance because t-values are all
greater than 1.96, and the moderately adjusted ρ2 is over 0.2.
Moreover, the calibration results show that both travel and
transfer time have significant negative effects on passengers’
destination choice, while other variables such as destination
attraction and land matching degree have a positive influ-
ence. &e results also show that the public transportation
card passengers care more about both travel and transfer
time when other variables remain unchanged. &e dummy
variables used to describe the attractiveness and accessibility
of the destination also have reasonable interpretability and
significance. &e proposed model is applied to predict two
cases of Guangzhou Metro on New Year’s Day and National
Day. Compared with the gravity model, SVM, BP, and RBF
models, the proposedmodel’s error is greatly reduced, which
proves the validation and applicability of the prediction
model in different holiday scenarios with network changes.

As more cities rely on metro systems, accurately fore-
casted holiday passenger flow distribution could provide
important primary data for the metro operation manage-
ment department to develop a useful organization scheme
before the holiday period, which is conducive to easing
congestion and improving holiday emergency response
capabilities.

Since it is difficult to obtain real land-use data around
stations, this paper clusters the stations with similar pas-
senger flow characteristics and defines new variables de-
scribing the land-use connection into the model.
Nonetheless, the impact of significant land-use changes on
passenger flow is hard to capture accurately. Furthermore,
the dynamic characteristics of traffic flow distribution could
be an extending study, which has not yet been considered in
this paper. In future research, more land-use attributes and
dynamic traffic distribution could be taken into account to
develop the distribution forecasting model.
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In this study, a hybrid method combining extreme learningmachine (ELM) and particle swarm optimization (PSO) is proposed to
forecast train arrival delays that can be used for later delay management and timetable optimization. First, nine characteristics
(e.g., buffer time, the train number, and station code) associated with train arrival delays are chosen and analyzed using extra trees
classifier. Next, an ELM with one hidden layer is developed to predict train arrival delays by considering these characteristics
mentioned before as input features. Furthermore, the PSO algorithm is chosen to optimize the hyperparameter of the ELM
compared to Bayesian optimization and genetic algorithm solving the arduousness problem of manual regulating. Finally, a case is
studied to confirm the advantage of the proposed model. Contrasted to four baseline models (k-nearest neighbor, categorical
boosting, Lasso, and gradient boosting decision tree) across different metrics, the proposedmodel is demonstrated to be proficient
and achieve the highest prediction accuracy. In addition, through a detailed analysis of the prediction error, it is found that our
model possesses good robustness and correctness.

1. Introduction

With the rapid development of society and the continuous
improvement of people’s quality of life, people have put
forward higher requirements for the reliability and punc-
tuality of high-speed railway transportation [1]. However,
the train will inevitably be disturbed by a large number of
random factors in the process of running, which will lead to
the train delay. For one thing, train delay will change the
structure of train diagram, increase the cost of railway
operation and the difficulty of reasonable utilization of
transportation resources, and have a great negative impact
on the reliability and punctuality of high-speed railway
operation. For another, it will increase the travel time of
passengers, affect their travel plans, and bring serious in-
convenience to passengers [2]. 'erefore, accurate forecast
of train delay is of great significance for high-speed train
operation organization, transportation service quality im-
provement, and operation safety [3].

'e traditional models are a classical approach for train
delay prediction, such as probability distribution models [4, 5],
regression models, event-driven methods, and graph theory-
based approaches. For the probability distribution model,
Higgins and Kozan proposed an exponential distribution
model, which applied a three-way, two-block station train delay
propagation signal system, to estimate delays of trains caused
by train operational accidents [4]. 'rough the assessment of
the linear relationship between several independent features
and dependent features [2], regression models were widely
employed to predict train delays, dwell times, and running
times [6, 7]. However, the main drawback of regressionmodels
is that the ability of linear analytic model relies much on in-
ternal and mathematical assumptions. 'ey are good at cap-
turing the linear relationship between features and dealing with
low-dimensional data, not simple linear data, such as train
operation data [8]. For event-driven and graph theory-based
methods, Kecman and Goverde [9] used timed event graph
with dynamic weight to predict train running time. Milinković
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et al. [10] used fuzzy Petri net to predict the train delays; the
model considers the characteristics of the hierarchical structure
and fuzzy reasoning to simulate the train operation and pre-
dicts the train delays in different delay scenarios. Huang et al.
[8] used graph theory to calculate the degree and propagation
range of train delay under specific condition. Although the
traditional model started early in the study of delay prediction,
it generally has the limitation of poor generalization perfor-
mance and is only suitable for specific scenarios.

Recently, the application of machine learning methods
to predict train delays has been widely concerned by re-
searchers, which makes up for the shortcomings of tradi-
tional methods [2]. 'e purpose of Peters et al. was to utilize
the historical travel time between stations to predict the train
arrival time more precisely [11]. 'e moving average al-
gorithm of historical travel time and KNNs of last arrival
time algorithm were employed and estimated. Some re-
searchers are devoted to ANNs to predict train delays
[12–14].'e aim of [14] was to propose preeminent ANNs to
predict the train delay of Iran railway with three different
models, including standard real number, binary coding, and
binary set encoding inputs. Nevertheless, the prediction
accuracy of ANNs cannot meet the needs of actual delay
management, and the parameter adjustment is complex.
Marković et al. [2] proposed a support vector regression
model in train delay problem of passenger train, which
captured the relationship between the arrival delay and a
variety of changing external factors, and compared it with
the artificial neural networks. 'e results indicated that the
support vector regression method outperformed the ANNs.
Another neural network has been proposed in recent years.
A Bayesian network model for predicting the propagation of
train delays was presented by [15]. In view of the complexity
and dependence, three different BN schemes for train delay
prediction were proposed, namely, heuristic hill-climbing,
primitive linear, and hybrid structures [16]. 'e results
turned out to be quite satisfying. Recently, it has become
popular to combine several models to capture various
characteristics of train operation data to predict train delay.
A study developed a train delay prediction model, which
combines convolutional neural networks, long short-term
memory network, and fully-connected neural network ar-
chitectures to solve this issue [17].

To improve the backpropagation algorithm and simplify
the setting of learning parameters of general machine
learning models, the ELM algorithm was proposed by Bin
Huang et al. [18]. ELM has the advantages of small com-
putation, good generalization, and fast convergence. On
account of these advantages, ELM has been frequently ap-
plied to regression problems in the real world [19–22].
'erefore, a new study that combined a shallow ELM and a
deep ELM tuned via the threshold out technique was
employed to predict train delays, taking the weather data
into account [23].

Parameter adjustment is another critical factor to
guarantee the good performance of machine learning
models [24, 25]. Although the well-known random search
algorithm can achieve the purpose of optimization, it
generates all the solutions randomly without considering the

previous solutions. An adjusting parameter model, called
PSO, has become one of the widely used parameter ad-
justment methods because of its ability to address intractable
matters in the real world. Only the optimal particle of PSO
transmits the information to the next particle in the iterative
evolution process. As a consequence, the searching speed of
PSO is faster than random search and grid search [26]. 'e
experiment [27] did just prove the advantage of PSO. By
comparing the performance of PSO with random search
algorithm for the optimal control problem, [27] found out
that PSO was capable of locating better solution with the
same number of fitness function calculations than random
search algorithm.

'erefore, according to what the author has learnt, we
propose PSO to optimize the hyperparameter of ELM to
forecast train arrival delays.

'e contributions this paper makes are as follows:

(1) 'emain features affecting the train delay prediction
are evaluated by the extra trees classifier. 'en, the
proposed model is constructed based on these fea-
tures which possess spatiotemporal characteristics
(train delays at each station). In this way, the in-
terpretability of the proposed model is improved.

(2) 'e proposed model is applied to the arrival delay
prediction of trains on HSR line, which suggests a
brand-new perspective for the train delay prediction
problem. In addition to solving the drawbacks of
backpropagation algorithm, the advantage of ELM-
PSO is also to solve the arduous problem of manual
regulating the hidden neurons of ELM better than
random search and Bayesian optimization at accu-
racy and efficiency.

(3) We perform experiments on a section of theWuhan-
Guangzhou (W-G) HSR line. 'e proposed model
not only is compared to other two adjusting pa-
rameter models, but also is contrasted with four
prediction models from different perspectives. Our
model turns out to have an extraordinary ability in
managing large-scale data in accuracy.

'e remainder of this paper is distributed as follows: in
Section 2, the train delay problem and selection of char-
acteristic features are described. 'e hybrid ELM-PSO ap-
proach is introduced in detail in Section 3. 'e data
description and experimental settings are presented in
Section 4.'e performance analysis is discussed in Section 5.
Finally, conclusions are presented in Section 6.

2. Description of the Train Delay Problem

Train delay problem is visualized in Figure 1 to assist in
comprehending this abstract problem. 'e train delay
contains two contents, train arrival delay and train departure
delay. For a station sn, tAsn represents the time that one train
is scheduled to arrive at station sn and the same goes for tDsn,
which implies the time that one train is scheduled to depart
at station sn. Certainly, the train will have its own actual
timetable due to changing external factors, which are
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expressed as tAsn′ and tDsn′ , respectively. 'e difference be-
tween the actual and scheduled arrival time at station sn,
tAsn′ − tAsn, is referred to as the train arrival delay. 'e same
goes for the train departure delay tDsn′ − tDsn. 'is is the
primitive description of the train delay problem.

'is paper only focuses on the train arrival delay pre-
diction. We suppose that there is an aimed train Tk, which is
at present station sn at time tAsn. Our purpose is to predict
the arrival delay (tAsn+1′ − tAsn+1) of the targeted train Tkat its
following station sn+1 for all conditions according to the
information of train k at stations sn, sn+1, and sn−1, which is
made up of the following nine features:

(1) 'e station code (X1)
(2) 'e train number (X2), which indicates the number

of the trains
(3) 'e length between the present station and the next

station (Dsn+1 − Dsn) (X3)
(4) 'e scheduled running times between the present

station and the previous station (tAsn − tAsn−1) (X4)
(5) 'e actual running times between the present station

and the previous station (tAsn′ − tAsn−1′ ) (X5)
(6) 'e scheduled running times between the present

station and the next station (tAsn+1 − tAsn) (X6)
(7) 'e actual running times between the present station

and the next station (tAsn+1′ − tAsn′ ) (X7)
(8) Buffer time, which indicates the difference between

X6 and actual minimum running time of all trains
between the present station and the next station
(X6 − min T1(tAsn+1′ − tAsn′ ) · · · Tk(tAsn+1′ − tAsn′ )􏼈 􏼉)
(X8)

(9) 'e arrival delay time at the present station
(tAsn′ − tAsn) (X9)

Y represents the arrival delay time at the next station sn+1
of train Tk (tAsn+1′ − tAsn+1).

'ere are multiple potential interdependent features
(e.g., the train number, the length between two adjacent
stations) that are intently related to train delay prediction.

Based on the collected data and the experience of dis-
patchers, we ultimately select nine features that are possible
to influence train delays.

We apply extra trees classifier to analyze the correlation
between all features and train delays. 'e results are
exhibited in Figure 2. As shown in the figure, the deeper the
red, the higher the importance.'ere is no doubt that X9 has
the highest importance with Y. 'e actual and scheduled
running times between the present station and the next
station also contribute largely to the accurate prediction of
Y. Moreover, the buffer time, which is an important factor
affecting the length of the train recovery time, is also
comparatively prominent in delay prediction process.
Taking the buffer time into account allows us to obtain more
realistic prediction results.

'e train arrival delay prediction problem in this paper is
transformed into the following expression:

Y � f X1, X2, X3, X4, X5, X6, X7, X8, X9( 􏼁, (1)

where Xi is the information of train Tk running through
stations sn, sn+1, and sn−1, Y is the arrival delay time at the
following station sn+1 of train Tk, and f(x) is the prediction
process.

3. Methodology

'is paper proposes a hybrid model of ELM and PSO for
train delay prediction. ELM is widely used in regression
problems because of its advantages of small computation,
good generalization performance, and fast convergence
speed [19–21]. PSO algorithm is a random and parallel
optimization algorithm, which has the advantages of fast
convergence speed and simple algorithm [25, 28]. 'erefore,
we aim to combine the advantages of ELM and PSO algo-
rithm to improve the behavioral knowledge in the delay
prediction domain. For the principle of ELM and PSO, one
can refer to Li et al. [29], Perceptron et al. [30], and Zhang
et al. [31]. 'e running process of the proposed hybrid
method is as follows:

Dwell time

Sn–1 Sn–1 Sn Sn Sn+1 Sn+1

Sn–1 Sn–1 Sn Sn Sn+1 Sn+1

tAsn–1 tDsn–1 tAsn tDsn tAsn+1 tDsn+1

t′Asn–1 t′Dsn–1 t′Asn t′Dsn t′Asn+1 t′Dsn+1

Arrival delay time

Nominal
timetable

Actual
timetable

Breakdown

Figure 1: Conversion from the train itinerary to mathematical notation.
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Step 1: data preprocessing. First, 9 features mentioned
in Section 2 are generated a N × 9 matrix, where N

represents the total number of events according to the
train operation records. Second, remove abnormal
delay (trains may be canceled due to some emergencies)
to reduce its interference with predictions. 'ird, fill in
the missing data according to the adjacent data around
the missing ones.
Step 2: initializing the parameters and population.
Parameters such as maximal iteration number, pop-
ulation size, and speed and position of the first particle
are initialized. Each particle l has its own position
Al(ite) and speed Vl(ite). 'e position of each particle
in the population is equivalent to the number of
neurons in the hidden layer of ELM.'erefore, there is
merely one dimension of each particle:

Al(ite) � hl(ite), l � 1, . . . , k, (2)

where hl(ite) represents the number of hidden layer
neurons of ELM in the iteth iteration.
Step 3: ELM (hidden layer activation function: sigmoid
function) is used. 'e processed feature set X and the
position of particles (the number of hidden layer
neurons) generated by PSO are input into ELM.
Consequently, ELM can output the weight matrix
under the current number of hidden layer neurons.'e
function of calculating the fitness of particles is as
follows:

pl(ite) � fitness Al(ite), X( 􏼁 �

����������������

􏽐
N
n�1 yn − fn(x)( 􏼁

2

N

􏽳

,

Al(ite) � hl(ite), l � 1, . . . , k,

(3)

where N is the number of samples, yn is the actual
output value on test set, and fn(x) is the predicted
output value on test set.
Step 4: calculate the fitness of each particle, and
compare to update the current best fitness and its
particle location.
Step 5: start the iteration. PSO will update the positions
and velocities of all particles, and then repeat step 4. If
the maximum number of iterations is exceeded, it will
end the process.
Step 6: output the results. We can obtain the output
value on test set as well as the optimal number of
hidden layer neurons.

'e specific flowchart is shown in Figure 3.

4. Application to a Case Study

4.1. Dataset Description. 'e data employed to verify the
ELM-PSO are obtained from the dispatching office of a
railway bureau.'e 15 stations applied in the study include a
section, the length of which is 1096 km from CBN to GZS on
the double-track W-G HSR line. 'ere are more than
400,000 data points used in this study, with a time span from
October 2018 to April 2019.'e train original operation data
and route map of the targeted 15 stations on the W-G HSR
line are shown in Table 1 and Figure 4.

Analysis of the delay ratio of each station reveals not only
the condition of each station but also an increasing emphasis
on the indispensability of train arrival delay prediction,
which contributes to improving the ability of each station to
cope with and even inhibit the increase in train arrival
delays. Trains with arrival delay greater than 4 minutes are
considered as delayed trains. What is intuitively presented in
Figure 5 is that the delay ratios of all the stations are basically

0.0569 

0.0193 

0.0132 

0.0165 

0.0355 

0.236 

0.015 

0.0151 

0.5924

0 0.2 0.4 0.6
Important to Y

X9

X8

X7

X6

X5

X4

X3

X2

X1

In
pu

t v
ar

ia
bl

es

Figure 2: Bar chart of the correlations between the nine input features and output Y.
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Input data

Output predicted delay

Data preprocessing

Initializing the parameters and population

Updating the positions
and velocities of all particles

Maximum number
of iterations?

No

ite = ite + 1

Yes

Calculating the fitness of
each particle and updating the current best fitness

Figure 3: 'e flowchart of ELM-PSO method.

Table 1: Train operation data format in the database.

Station Station code Date Actual arrival Actual departure Train Scheduled arrival Scheduled departure
GZS 369 2018/7/27 12:04 12:04 G100 12:05 12:05
GZN 368 2018/7/27 12:19 12:19 G100 12:19 12:19
QY 367 2018/7/27 12:26 12:26 G100 12:26 12:26
YDW 366 2018/7/27 12:37 12:37 G100 12:38 12:38

Wuchang (WC)

Xianningbei (XNN)
Chibibei (CBN)

Yueyangdong (YYE)

Miluodong (MLE)

Changshanan (CSS)
Zhuzhouxi (ZZW)

Hengshanxi (HSW)

Hengyangdong (HYE)
Leiyangxi (LYW)
Chenzhouxi (CZW)
Lechangdong (LCE)
Shaoguan (SG)
Yingdexi (YDW)
Qingyuan (QY)
Guangzhoubei (GZN)

Guangzhounan (GZS)

Qingsheng (QS)

HFSCQN

NN

Hong Kong

N

Wuhan-Guangzhou
high-speed railway
line (W-G HSR line)

NWC

GY

Figure 4: Map of the W-G HSR line.
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not optimistic. At the same time, the delay ratios of the two
targeted stations, CZW and GZN, are particularly dreadful,
with arrival delay ratios of 0.12. Our goal is to minimize the
arrival delay ratio by predicting the arrival delay at each
station.

4.2. Experimental Settings

4.2.1. Baseline Models. In order to compare the performance
of our proposed method, the k-nearest neighbor (KNN),
categorical boosting (CB), gradient boosting decision tree
(GBDT), and Lasso are used as baseline models. We take
20% of the dataset as the test set and the rest as the training
set. 'e experiment runs in Python in an environment with
an Intel® Core i5-6200U processor 2.13GHz and 8GB RAM.
Briefly, an overview description and hyperparameter set-
tings of each model are as follows:

(1) KNN: KNN algorithm is extensively applied in
differing applications massively, owing to its sim-
plicity, comprehensibility, and relatively promising
manifestation [32].

① N_neighbors� 15
② Weights� uniform
③ Leaf_size� 30
④ P� 2

(2) CB: CB is a machine learning model based on
gradient boosting decision tree (GBDT) [33, 34]. CB
is an outstanding technology, especially for datasets
with heterogeneous features, noisy data, and com-
plex dependencies.

① Depth� 3
② Learning_rate� 0.1
③ Loss_function�RMSE

(3) GBDT: GBDT has been employed to numerous
problems [35], which has many nonlinear trans-
formations and strong expression ability and does

not need to do complex feature engineering and
feature transformation.

① N_estimators� 30
② Loss� ls
③ Learning_rate� 0.1

(4) Lasso: Lasso is a prevailing technique, capable of
simultaneously performing regularization and fea-
ture filtering. Furthermore, data can be analyzed
from multiple dimensions by Lasso [36].

① Alpha� 3.0.
② Max_iter� 1000.
③ Selection� cyclic.

4.2.2. Evaluation Metrics. Root mean squared error
(RMSE), mean absolute error (MAE), and R-squared are
selected to assess the models. 'e definitions of the error
metrics are shown in equation (4), equation (5), and
equation (6):

MAE �
􏽐

N
i�1 yi − 􏽢yi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

N
, (4)

RMSE �

������������

􏽐
N
i�1 yi − 􏽢yi( 􏼁

2

N

􏽳

, (5)

R − squared � 1 −
􏽐

N
i�1 yi − 􏽢yi( 􏼁

2

􏽐
N
i�1 yi − yi( 􏼁

2, (6)

where yi is an observed value, 􏽢yi is a predicted value, yi is the
average value of yi, and N represents the sample size.

4.2.3. Hyperparameter Tuning Models. We compare PSO
with the other two hyperparameter tuning models to as-
certain the most satisfying one. 'e overview and hyper-
parameter settings of each model are as follows:

CBN YYE MLE CSS ZZW HSW HYE LYW CZW LCE SG YDW QY GZN GZS
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Figure 5: Arrival delay ratio for each station.
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(1) PSO: to locate the optimal hyperparameter of the
ELM, the parameter settings of the PSO algorithm
are as follows. PSO has 20 particles at each iteration,
and there are altogether 20 iterations, which is
equivalent to 400 iterations of Bayesian
optimization.

① Number of particles� 20
② Fitness function: RMSE on test set
③ Search dimension� 1
④ Particle search range� [1, 2000]
⑤ Maximum number of iterations� 20

(2) BO (Bayesian optimization): BO calculates the
posterior probability distribution of the first n points
through a substitution function and obtains the
objective function of each hyperparameter at each
value point.

① Objective function: RMSE on test set
② Substitution function: Gaussian process

regression
③ Acquisition function�UCB (upper confidence

bound)
④ Hyperparameter search range� [1, 2000]
⑤ Maximum number of iterations� 400

(3) GA (genetic algorithm): the traditional iterative
model is easy to fall into the trap of local minima,
which makes the iteration impossible to continue.
GA overcomes the phenomenon of “dead loop” and
is a global optimization algorithm [37].

① Objective function: RMSE on test set
② Hyperparameter search range� [1, 2000]
③ Generations� 20
④ Population size� 20
⑤ Maximum number of iterations� 400

5. Performance Analysis

5.1. PSO Optimization Result Comparison. 'e process of
PSO tuning the hyperparameter is shown in Figure 6. 'e
fitness value achieves minimum after five iterations.'e best
fitness value is 1.0387 on test set when there are 1462
neurons of the ELM.'e structure of the network is optimal
correspondingly.

'e search range [1–2000] of hyperparameter is deter-
mined by manually trying several values in the range of
[1–10000]. When the hyperparameter value is greater than
2000, the fitness tends to be stable. Also, the time con-
sumption is multiplied acutely. Ultimately, we decide to
limit the search range to [1–2000], weighing time con-
sumption and precision.

'e computational cost is shown in Table 2, and the
results are the optimal results of each model running several
times. We gain two observations from this table. First, the
optimal particle number of ELM-PSO always focuses on
1462; the only difference is the number of iterations at best
RMSE. Second, compared with ELM-BO and ELM-GA,

ELM-PSO is the ideal model that takes the shortest time to
locate the optimal fitness on the test set.

5.2. Model Accuracy Comparison. In this section, the per-
formance comparison between ELM-PSO and baseline
models is performed.

First, we compare the overall performance of the five
models.'e evaluation metrics are R-squared, the MAE, and
the RMSE.'e corresponding results on test set and training
set are summarized in Tables 3 and 4, respectively.'e ELM-
PSOmodel performs optimally among the five models in not
only the training set (R-squared� 0.9973; MAE� 0.3377;
RMSE� 0.8247), but also the test set (R-squared� 0.9955;
MAE� 0.3490; RMSE� 1.0387). Although the running time
of our model has no obvious advantage compared with other
models on test set, it is within the tolerable range. Also, we
notice that there are models that perform well in the training
set, but are not good in the test set, which reveals the
paramountcy of enough generalization ability of models in
the prediction problem.

'en, by separating the delay duration into three bins
(i.e., [0–1200 s], >1200 s, and all delayed trains (trains with
arrival delay greater than 240 seconds)), we attempt to
measure the capability of the benchmark models and our
model to seize the features of train delays to varying degrees
on test set. As is distinctly shown in Table 5, the proposed
model outperforms the other benchmark models in each
time horizon and each evaluation metric, achieving, for
example, an RMSE of 0.5201 in the first bin. 'is finding is
taken as evidence that our model can constantly adjust itself
to capture the characteristics of varying degrees of train
delays to enhance the prediction accuracy. To further assess
the performance of our model, the comprehensive analyses
are discussed in a later section.

5.3. Further Analysis. On the basis of the previous section,
we will evaluate the performance of the ELM-PSO model
from other angles, including the prediction errors for each
station precisely, the prediction correctness, and the
robustness.

First and foremost, the errors of the ELM-PSOmodel for
the predicted arrival delays are calculated at the station level
on test set. Viewing the overall situation in Figure 7, we have
noticed that the prediction errors are low. 'e MAE and R-
squared both remain stable at each station. And the RMSEs
for different stations are mostly less than 90s. However, great
fluctuations occur at the YYE and QY stations. Reasons
resulting in such phenomena are that the two stations are
close to the transfer stations and the buffer times of YYE and
QY are both small. 'e prediction accuracy at these stations
tends to be slightly hindered by these factors.

In addition, to put forward more detailed and embedded
results, we describe the correctness of the absolute residual
between the predicted values and the actual values for each
station from three intervals (i.e., <30 s, 30 s–60 s, and
60 s–90 s) (Figure 8). In <30 s interval, the correctness of
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each stations exceeds 75%. In brief, the overall results
confirm the impressive prediction correctness of the pro-
posed model.

At last, we investigate the robustness of our model to
data size. In detail, we further train and test our model using
10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, and 90%, re-
spectively, of the total data as test set, and compare the
results with the baseline models. 'e data sizes used in the
experiments are shown in Figure 9. 'e performance of our
model on both training and test set is more outstanding than
others. As we can see, the RMSEs of our model stay pretty
stable using data with different sizes, while the RMSEs of

other models are higher and fluctuating. 'ese figures show
that the proposed model has the smallest predictive RMSE,
MAE, and R-squared for all trains, which demonstrates the
robustness of our model to different data sizes.

5.4. Statistical Tests. In this section, the Friedman test (FT)
and Wilcoxon signed rank test (WSRT) are used to verify
the advantages of our proposed method compared with
other methods [35, 38]. 'e results FT and WSRT are
shown in Table 6. FT algorithm is a nonparametric sta-
tistical tool, which determines the difference by ranking
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Figure 6: Convergence discriminant graph of PSO optimization.

Table 2: 'e performance of each hyperparameter setting model.

Model Maximum number of iterations 'e number of iterations at best RMSE RMSE Neurons Time (s)
ELM-PSO 20 5 1.0387 1462 90000
ELM-BO 400 120 1.0708 1279 129600
ELM-GA 20 6 1.0668 1494 108000

Table 3: Prediction errors on each model’s test set for the W-G HSR line.

Model RMSE MAE R-squared Time (s)
ELM-PSO 1.0387 0.3490 0.9955 856
CB 1.6808 1.0464 0.9883 9
GBDT 1.9976 1.2031 0.9835 18
Lasso 1.9852 0.9240 0.9847 9
KNN 1.6488 0.5025 0.9887 27

Table 4: Prediction errors on each model’s training set for the W-G HSR line.

Model RMSE MAE R-squared
ELM-PSO 0.8247 0.3377 0.9973
CB 1.6368 1.0407 0.9896
GBDT 1.9495 1.2107 0.9852
Lasso 1.6046 0.9199 0.9893
KNN 1.4681 0.4558 0.9916
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the performance of each method. It can be seen from the
table that the proposed method has better ranking than
CB, GBDT, Lasso, and KNN at 5% significance level; that
is, the efficiency is better. In addition, the results of WSRT
showed that the p-value was less than 0.05 (5%

significance level), which rejected the null hypothesis. It
means that there is a statistical difference between the
proposed method and other methods. 'at is, the per-
formance of the proposed method is better than that of
other methods.

Table 5: Model performance comparison on test set for the five models for different delay bins.

Delay bin (seconds) Model RMSE MAE R-squared

[0, 1200]

ELM-PSO 0.5201 0.3006 0.9655
CB 1.2628 0.9223 0.7967

GBDT 1.3968 0.9886 0.7513
Lasso 1.0957 0.7903 0.8469
KNN 1.0195 0.5278 0.8675

>1200

ELM-PSO 5.6009 2.8249 0.9924
CB 6.2335 3.1986 0.9906

GBDT 8.0733 4.8589 0.9843
Lasso 6.5023 3.1169 0.9898
KNN 9.0247 4.8611 0.9804

All delayed trains (>240)

ELM-PSO 3.3116 1.3457 0.9951
CB 4.0469 2.2680 0.9927

GBDT 5.1561 3.1498 0.9881
Lasso 3.9251 1.7418 0.9931
KNN 5.5878 2.8828 0.9860
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Figure 7: Prediction errors in terms of the RMSE, MAE, and R-squared for different stations.
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6. Conclusion

In this paper, a hybrid ELM-PSO method is proposed to
predict train delays. 'e ELM can overcome the short-
comings of backpropagation training algorithm, and the
advantage of PSO is its excellent ability in searching the best
hyperparameter. Four benchmark models, CB, KNN,
GBDT, and Lasso models, are selected to compare with
proposed model. 'ese models were run on the same data
collected from China Railways. ELM-PSO tends to have a

better performance and generalization ability (R-
squared� 0.9955, MAE� 0.3490, RMSE� 1.0387) than the
other models on the test set. Our work can not only provide
sufficient time and auxiliary decision for the dispatcher to
make reasonable optimization and adjustment plan, but also
have practical significance for improving the quality of
railway service and helping passengers estimate their travel
time.

'e dataset used in this paper contains train delays under
all types of scenarios. 'erefore, in the future, we will
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Figure 9: MAE, RMSE, and R-squared values on training and test sets with different data sizes (LASSO1 represents the performance on
training set; LASSO2 represents the performance).

Table 6: Friedman ranking test and WSRT results.

Models Mean rank FT p value Model 1 vs. model 2 WSRT Z-score WSRT p value
ELM-PSO (M1) 1.50

≤0.001

— — —
CB (M2) 3.55 M1-M2 −259.200 ≤0.001
GBDT (M3) 4.08 M1-M3 −261.312 ≤0.001
Lasso (M4) 3.53 M1-M4 −257.456 ≤0.001
KNN (M5) 2.34 M1-M5 −174.373 ≤0.001
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consider dividing all the data into certain types of delay
scenarios according to particular rules and implementing
currently prevalent models to train and predict each scenario
to achieve a higher accuracy. Finally, in terms of the input
features, all the information of the features in this paper can
be obtained from train timetables. In the future, other types
of features, such as the infrastructure, weather features, and
other HSR lines obstruction, will be taken into account.

Data Availability

'e data used to support the findings of this study were
supplied by China Railway Guangzhou Bureau Group Co.
Ltd. under license and so cannot be made freely available.
Access to these data should be considered by the corre-
sponding author upon request, with permission of China
Railway Guangzhou Bureau Group Co. Ltd.

Conflicts of Interest

'e authors declare that they do not have any commercial or
associative interest that represents conflicts of interest in
connection with the paper they submitted.

Authors’ Contributions

Xu Bao contributed to conceptualization, prepared the
original draft, was responsible for software, and visualized
the study. Yanqiu Li prepared the original draft, was re-
sponsible for software, and visualized the study. Jianmin Li
contributed to methodology and reviewed and edited the
manuscript. Rui Shi contributed to supervision and data
curation. Xin Ding contributed to data curation.

Acknowledgments

'is work was financially supported by the Fundamental
Research Funds for the Central Universities of China
(2019JBM077) and the Open Fund for Jiangsu Key Labo-
ratory of Traffic and Transportation Security (Huaiyin In-
stitute of Technology).

References

[1] J. L. Espinosa-Aranda and R. Garćıa-Ródenas, “A demand-
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Urban mobility pattern recognition has great potential in revealing human travel mechanism, discovering passenger travel
purpose, and predicting and managing traffic demand. )is paper aims to propose a data-driven method to identify metro
passenger mobility patterns based on Automatic Fare Collection (AFC) data and geo-based data. First, Point of Information (POI)
data within 500 meters of the metro stations are captured to characterize the spatial attributes of the stations. Especially, a fusion
method of multisource geo-based data is proposed to convert raw POI data into weighted POI data considering service ca-
pabilities. Second, an unsupervised learning framework based on stacked auto-encoder (SAE) is designed to embed the spa-
tiotemporal information of trips into low-dimensional dense trip vectors. In detail, the embedded spatiotemporal information
includes spatial features (POI categories around the origin station and that around the destination station) and temporal features
(start time, day of the week, and travel time). )ird, a density-based clustering algorithm is introduced to identify passenger
mobility patterns based on the embedded dense trip vectors. Finally, a case of Beijing metro network is used to verify the feasibility
of the above methodology. )e results show that the proposed method performs well in recognizing mobility patterns and
outperforms the existing methods.

1. Introduction

)e number of urban residents is increasing significantly,
and human mobility is becoming unpredictable and com-
plex, posing major challenges to public safety and health
(such as the COVID-19 epidemic). In recent years, urban
mobility pattern recognition has become a hotspot due to its
ability to reveal resident life routines, assist in transportation
planning, estimate and manage travel demand, predict
passenger travel purposes, and provide location-based ser-
vices [1–5]. As an important part of urban transportation,
the metro system has increasingly become an indispensable
choice for urban residents. )erefore, studying metro pas-
senger mobility patterns is essential for analyzing urban
mobility characteristics.

Fortunately, the continuous development of digitaliza-
tion has provided strong support for urban planning and
transportation services. Currently, large-scale spatiotem-
poral travel-related data provide the possibility for the
analysis of passenger mobility patterns. From the perspective
of the types of raw data, the recognition of urban mobility
patterns can be divided into two categories, namely, re-
searches based on trajectory data and that based on AFC
data. )e former is mainly meant to reproduce the move-
ment track of residents through GPS data, social media data,
or mobile phone signaling data to identify mobility patterns
[6–12]. Unlike this, the latter often uses the tap-in or tap-out
data of passengers to describe the travel process in order to
realize the analysis of travel patterns [1, 13–20]. However,
there are some shortcomings in trajectory data. First,
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trajectory data are often obtained when the mobile phone
user turns on the positioning function, which means that the
behavior of the user to turn on or off the positioning
function has a direct impact on the collection of trajectory
data. Second, the accuracy of trajectory data depends on the
reliability of positioning technology. In fact, most posi-
tioning methods often have unavoidable errors, especially in
densely populated areas or underground multistory build-
ings, resulting in blurred trajectories. Conversely, an indi-
vidual trajectory identified by AFC data is error-free at the
spatial level of stops and stations [15]. Admittedly, AFC data
cannot pinpoint the specific activity location of passengers.
However, it is possible to use the land-use data around the
station to infer the possible activity locations of passengers,
because passengers often complete the displacement before
tap-in or after tap-out by walking [21].

It is undeniable that trajectory data and AFC data have
their own advantages and disadvantages in identifying
passenger mobility patterns. For metro managers and op-
erators, AFC data are relatively accurate and easily available.
Using AFC data to analyze passenger mobility patterns and
behavior characteristics can significantly improve the metro
service level. )is paper aims to propose a data-driven
approach to explore the possibility of AFC data in inferring
passenger mobility patterns. In the existing research on
mobility patterns, the tap-in timestamp, tap-out timestamp,
and travel time are usually fused to mine the temporal
characteristics. However, the discovery of spatial features
usually stays at the station level. )e common method is to
characterize the latent spatial characteristics by dividing the
stations into several different clusters, which makes it dif-
ficult to infer the specific mobility patterns of passengers. In
view of the above analysis, AFC data are selected to extract
passenger travel information. In addition, multisource geo-
based data are captured to provide the necessary land-use
information to realize passenger mobility recognition. In
this paper, each AFC travel record is processed by an un-
supervised method into a low-dimensional vector con-
taining spatiotemporal features. )ere are two advantages.
First, the concrete spatial information and temporal infor-
mation being transformed into abstract vector forms are
convenient for large-scale processing by computers (for
example, similarity calculation). Second, vectorization can
extract the characteristics of travel records to the maximum
extent while saving storage space to explore the internal
mechanism of passenger mobility [7].

)e contribution of this paper is threefold. First, a
multisource data fusion method is presented. )is method
adds the residential area information provided by the
housing trading platform and the building information
provided by the geographic information service to the raw
POI data to convert the raw POI data into weighted POI data
considering service capabilities. It avoids the drawbacks of
using POI numbers to quantify land-use characteristics in
the existing works [21]. Second, an unsupervised deep
learning framework based on SAE is proposed to embed the
spatiotemporal information of passenger travel, so as to
realize the conversion of a passenger travel record into a low-
dimensional dense vector. In this framework, the self-

encoding is utilized to realize the embedding of spatio-
temporal information without the labeled data and super-
vised training, which can extract the features of travel
records more comprehensively than existing methods
[22, 23]. )ird, a density-based clustering algorithm is used
to identify passenger mobility patterns. It can generate the
number of clusters according to the data distribution
without manually specifying the number of clusters,
avoiding the human intervention of existingmethods [7, 24].

)e structure of this paper is as follows. In Section 2, the
existing studies onmobility pattern recognition are classified
and summarized. In Section 3, themethodology of this paper
is introduced in detail, including an overview of the method
and three main steps, namely, the fusion of multisource geo-
based data, embedding spatiotemporal semantics in trip
records, and mobility pattern recognition based on the
embedded vectors. In Section 4, a case based on the Beijing
metro network is introduced to verify the effectiveness of the
proposed method, and the results of the case study are
compared with existing methods. Besides, potential appli-
cations based on passenger mobility pattern recognition are
explained. Finally, the paper is summarized and discussed in
Section 5.

2. Literature Review

Passenger mobility pattern recognition aims to discover the
identifiable travel categories formed by passengers in the
long-term travel history, such as working, going home,
entertainment, etc. Existing research has revealed that urban
mobility exhibits a high degree of regularity in time and
space [7, 25]. )is allows us to discover the daily routines
and social state of travelers through mobility analysis. To do
this, many methods have been proposed in the existing
work. Macroscopically, these methods can be classified into
two categories, namely, empirical models and data-driven
models.

Intuitively, the empirical method is to quantitatively
analyze passenger behavior by features or thresholds of the
known activity categories. )e abovementioned features and
thresholds tend to be artificially designated by researchers or
experts. For example, a rule was established by [18] that the
cardholder’s first tap-in station or the last tap-out station can
be considered as his/her potential home location. An al-
gorithm based on “center point” is proposed to infer
cardholder’s exact home location based on multiple po-
tential locations. )e effectiveness of this method is verified
by a case of Beijing metro system, in which 88.7% of pas-
sengers’ home locations were successfully inferred. Similarly,
a passenger’s home location was determined to be the most
visited location between 7 pm and 8 am on weekends and
weekdays, as suggested by [11]. It was presented by [9] that a
passenger’s home and work place are the most visited and
second most visited locations. Although the above as-
sumptions can help infer the passenger’s home and work
locations to a certain extent, they are not universal. )e rules
are often subjective, and their application effects rely heavily
on the domain knowledge of experts or scholars [23].
Furthermore, the empirical method is incapable of

2 Journal of Advanced Transportation



discovering new mobility patterns, resulting in the inability
to keenly estimate the changing trend of urban mobility with
the increase in population and the complexity of the urban
transportation network.

In order to avoid the above shortcomings, data-driven
methods have emerged. As mentioned in Section 1, large-
scale datasets provided more possibilities for mobility anal-
ysis. In the past few years, a variety of datasets have been used
to describe urban mobility, such as mobile phone signing
data, GPS data, media data, AFC data, sociodemographic
data, and census and administrative data [1, 26, 27]. Faced
with such diverse datasets, many data-driven methods have
also been proposed by researchers to mine passenger mobility
patterns. For instance, multi-objective Convolutional Neural
Network (CNN) was designed to infer the social demographic
attributes and mobility features of passengers based on media
data and land-use data [28]. Support vector machines (SVM)
were introduced to divide passenger travel data into several
types, and the passenger purpose was analyzed according to
the characteristics of each type using sociodemographic data
[8]. )is method was applied to data from a large number of
Californian families. )e application results showed that this
method performed better than the traditional multinomial
logit models. Moreover, smart card data can also be utilized to
construct land-use function complementation indices to
improve the performance of the classic gravity model in
analyzing the humanmobility between different types of areas
in the city [29].)e case of Shenzhenmetro showed that these
indices were effective tools to reveal the mechanism of spatial
interaction and had a significant effect on improving the
prediction of spatial flow and travel distribution. )e naive
Bayes probability model was improved to observe the con-
tinuous long-term changes in the attributes of metro pas-
senger trips using AFC data and census data [13]. )e
verification results of real cases showed that 86.2% of pas-
sengers’ travel purpose can be estimated. A data-driven robust
method using AFC data and the General Transportation
Feedback Specification (GTFS) was designed to infer the most
likely movement trajectory of each passenger [20]. )e use of
GTFS data reduced many assumptions about the passenger
travel process in previous studies (the threshold assumptions
of transfer travel time, time window assumptions for selecting
vehicles and journeys, threshold assumptions for waiting and
boarding time, etc.). )is method was used in the analysis of
passenger travel trajectories in Minnesota and proved to be
superior to traditional trajectory inference methods. Besides,
to recognize the patterns of passengers’ variation over time
and analyze the spatial heterogeneity of the dynamic space
around the metro stations, an eigendecomposition method
was proposed [30]. In this work, the datasets were decom-
posed into a combination of principal components and ei-
genvectors, where the principal components represent the
common pattern of passenger movement, and the corre-
sponding elements in the eigenvectors mean the attributes of
metro stations. )e above method was verified in the case of
the Shenzhen metro system and proved to be effective in
improving urban planning. A method based on the Hidden
Markov Model (HMM) was addressed to infer the sequence
of passenger activities, and the model parameters were

calibrated using Baum–Welch algorithm based on land-use
data around the stations [31]. )e abovementioned data-
driven methods excavated the rules of passenger mobility
from different aspects, but there are still shortcomings of high
computational cost and poor interpretability.

In recent years, various types of topic models have
gradually become the mainstream methods for the analysis
of urban mobility patterns [6, 9, 23]. In these studies,
mobility pattern recognition was regarded as a topic mining
problem in the field of natural language processing (NLP). In
the model, each passenger was treated as an article, each trip
record of the passenger is processed as a word in the article,
and the previous and subsequent trips of a certain trip were
considered as the context of the current trip. Correspond-
ingly, passenger mobility pattern recognition can be un-
derstood as mining several topics in the corpus composed of
multiple articles. For example, a multi-directional proba-
bilistic factorization model based on tensor decomposition
and probabilistic latent semantic analysis (PLSA) was pro-
posed, which used a simple latent semantic structure to
describe the multi-directional mobility characteristics of
passengers involved in high-order interactions [16]. )e
multi-directional mobility analysis of urban residents in
Singapore verified the practicality of the model. A Bayesian
n-gram model was constructed to predict the location and
time of individual passenger activities, and its prediction
result was expressed as an ordered set of passenger potential
activities, which contains the location and time of each
activity [32]. On this basis, a spatiotemporal topic model
based on Latent Dirichlet Allocation (LDA) was presented to
classify passenger activities into several topics to realize
mobility pattern recognition [23]. )e above method was
verified by the travel data of more than 10,000 users of the
London Underground in 2 years, and the results showed that
the median accuracy of travel prediction could reach 80%.
)e obtained passenger mobility patterns could well reveal
the temporal and spatial attributes of work-related and
home-related activities. Unfortunately, the abovementioned
researches only analyzed mobility from the perspective of
temporal characteristics, without considering spatial infor-
mation, which makes the results poor in interpretability.
Considering spatial features, methods based on word vector
were introduced for exploring mobility patterns. For ex-
ample, a habit2vec method was proposed by [7] to embed a
passenger’s current visit to a POI type during a time slice.
Besides, the inbound flow, the outbound flow, and the
surrounding POIs were used as elements to construct the
target station vector suggested by [21]. In this work, it was
worth noting that the Term Frequency–Inverse Document
Frequency (TF-IDF), which was an indicator in the NLP
field, was applied to quantify categories of the target station.
Nevertheless, it is unreasonable to determine station cate-
gories only by the frequency or TF-IDF of different cate-
gories of POI around the station due to the significant
difference in service capabilities of different categories of
POI. For example, although a residential area and a cafe are
both displayed as POIs on the map, the service capacity of
the former is obviously greater than that of the latter.
)erefore, a POI needs to be weighted according to its
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service capability to be meaningful in describing passenger
mobility.

In a nutshell, the existing works on passenger mobility is
in the ascendant, but there are still defects such as high
computational cost, lack of consideration of spatial features,
and poor interpretability. In this paper, weighted POI is first
generated through multisource geo-based data. )en,
through the unsupervised learning framework based on
SAE, the temporal and spatial features are simultaneously
embedded into the trip vector of passengers to identify the
mobility patterns. )e following is the methodology of this
work.

3. Methodology

)e overview of the methodology is shown in Figure 1. )e
goal is to design an efficient method to transform trip
records into standard forms that can be processed by
computers, so as to simplify mobility pattern recognition
into a clustering problem. After obtaining AFC records, the
following three steps are required to achieve the above goal.
First, a fusion of multisource, geo-based data method is
proposed to weight the raw POI data and provide a basis for
spatial semantic estimation. Second, a low-dimensional
dense trip vector containing both spatial and temporal at-
tributes is generated to represent the given record. )ird,
clustering analysis on low-dimensional dense trip vectors is
addressed to distinguish between different trip clusters to
realize mobility pattern recognition. Details of these three
steps are described in the following sections.

3.1. Fusion of Multisource Geo-Based Data. POI is a point
unit in geographic information systems to mark the location
of human activity. A POI contains the POI name, category
label, longitude, latitude, and land-use type information of the
point unit [1]. Some existing studies infer the travel purpose of
passengers through the category label of POIs around the
target station. For example, when the POIs around a pas-
senger’s origin station are mostly residential and the POIs
around the destination station are mostly working, the pas-
senger’s travel purpose can be considered to have a high
probability of going to work [21]. Note that a POI can be a
residential neighborhood, a shopping center, or a kinder-
garten. )e service capacity of a residential neighborhood is
obviously greater than that of a kindergarten. So, it is inac-
curate to infer travel purpose from the number of POIs due to
the difference in service capacity of different types of POIs.
)e goal of this section is to generate weighted POIs con-
sidering service capacity using multisource, geo-based data.

)e geo-based data involved in this paper are obtained
from three data sources, namely, Amap, Lianjia, and Arctiler.
Among them, Amap (https://www.amap.com/) is a provider of
digitalmap content, navigation, and location services solutions.
It provides the raw POI data. It should be noted that Amap
divides all POIs into 24 categories. For details of the classifi-
cation, please refer to the website (https://lbs.amap.com/api/
webservice/download). In this paper, from the perspective of
travel purpose, these categories are integrated into 8 categories,

as shown in Table 1. In addition, some POIs that are not closely
related to the travel purpose, such as public toilet and traffic
light, are deleted. Besides, Lianjia (https://www.lianjia.com/) is
a housing trading platform that can provide the neighborhood
properties containing the name, housing price, property
management fee, the number of buildings, and the number of
households in a targeted residential neighborhood. For the
residential POI in Table 1 (category 6), we use the number of
households to represent its actual service capacity. Further,
Arctiler (http://www.arctiler.com/) is a geographic information
service provider that can provide the building physical
properties containing the name, building category, usable area,
and the number of floors of a target building. For different
types of buildings, the per capita service area is stipulated by the
Technical Measures for National Civil Building Engineering
Design (http://www.chinabuilding.com.cn/book-1815.html).
)erefore, we can calibrate the actual service capacity of the
nonresidential POI in Table 1 by combining the building
physical properties and per capita service area. With the above
processing, the raw POI data have been converted into
weighted POI data considering service capacity.

It should be noted that due to different data sources, the
POI name may be different from the building name or the
residential area name for the same point unit on the map,
making data fusion difficult to achieve. Here, a data
matching method is designed, as shown in Figure 2. For a
given target POI, a building is selected from the Arctiler
database, and the distance between the two is calculated to
determine whether it matches each other. Note that it is
necessary to convert the longitude and latitude of the
building base outline obtained from Arctiler to that of the
building base center. And then, the actual distance between
the two coordinates can be calculated as follows:

distance(A, B) � θA,B ·
2π
360

· REarth · 1000,

(1)

θA,B � arccos(cos(A.lat)cos(B.lat)cos(A. ln g

−B. ln g) + sin(A.lat)sin(B.lat)),
(2)

where Distance(A, B) represents the actual distance between
the two coordinate points A and B, in meters, A.lat(B.lat)
and A.lng(B.lng) represent the latitude and longitude of A
(B), and REarth represents the radius of the earth, which is
6371 km. All longitudes and latitudes in this paper are based
on the World Geodetic System 1984 (WGS-84) coordinate
system. Finally, it is judged whether the obtained distance is
less than the threshold, which is set to 50 meters. If it is, the
actual service capacity of the target POI is calibrated
according to the per capita service area obtained from the
Technical Measures for National Civil Building Engineering
Design, that is, the weighted POI, otherwise, another
building is selected from the Arctiler database to rematch the
target POI. )e data fusion process of residential POI is
similar to this, and will not be repeated here. At this point,
the raw POIs have been converted into weighted POIs based
on multisource, geo-based data.
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3.2. Embedding Spatiotemporal Semantics in Trip Records.
A passenger trip record R from AFC system is composed
of four components, namely, the tap-in time tR

in, the tap-in
station sR

in, the tap-out time tR
out, and the tap-out station

sR
out. In this paper, the above four components are

transformed into five attribute vectors to describe the
passenger trip. )ey are the origin station vector ΟR, the
destination station DR, start time of the day TR, the day of
weekWR, and travel timeHR. Symbolically, a trip record R

corresponds to a vector R, which can be represented as

Table 1: POI categories and contents.

ID Category Contents

1 Entertainment Recreation center, night club, KTV, disco, pub, game center, card and chess room, lottery center, Internet bar,
recreation place, etc.

2 Working Construction company, medical company, machinery and electronics, chemical and metallurgy, commercial trade,
telecommunication company, mining company, etc.

3 Shopping Shopping plaza, shopping center, shops, duty-free shop, convenience store, digital electronics, supermarket, plants
and pet market, home building materials market, etc.

4 Transportation Airport, railway station, passenger port, tourist routes bus station, common bus station, parking lot related, etc.

5 Education Museum, exhibition Hall, convention and exhibition center, art gallery, library, planetarium, cultural palace,
university and college, middle school, etc.

6 Residential Hotel, residential area, villa, residential quarter, dormitory, community center, etc.
7 Hospital Hospital, health center, clinic, disease prevention, pharmacy, medical supplies, etc.

8 Government Governmental organization and institution, foreign embassy and consulate, representative office of international
organizations, etc.

�e target POI

Piking ith building

POI latitude and 
longitude

Longitude of building 
base outline

Latitude of building 
base outline

Longitude of building 
base center

Latitude of building 
base center

Calculating the 
distance

�e distance is less 
than the threshold?

Calibrate the actual 
service capacity

Building type

�e per capita service 
area

No

Yes

Building physical 
property data from 

arctiler
i = 1

Weighted POI

i = i + 1

Technical Measures for
National Civil Building

Engineering Design

Figure 2: Fusion of multisource, geo-based data.
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Figure 1: Overview of the methodology.
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ΟR,DR,TR,WR,HR􏼈 􏼉. In this section, the goal is to rep-
resent the above attributes as spatiotemporal semantics in
the form of vectors for subsequent mobility pattern rec-
ognition. To do this, a SAE-based framework is built to
embed spatiotemporal semantics, the structure of which is
shown in Figure 3. First, weighted POIs calibrated in
Section 3.1 and one-hot encoding are addressed to gen-
erate spatial/temporal attribute vectors. Subsequently, the
above vectors are assembled to form a high-dimensional
sparse trip vector. )is method proved to be reasonable
and feasible [7, 21]. It should be noted that although the
high-dimensional vector contains a variety of travel in-
formation, the sparsity makes the mobility pattern diffi-
cult to be recognized effectively. To solve this problem, we
train a SAE model to transform the high-dimensional trip
vector into a low-dimensional dense vector to represent
spatiotemporal semantics. Here are the details.

In the existing researches, the radius of the service area of
a metro station is generally set as 500meters [18, 21].

)erefore, in terms of spatial semantic, weighted POIs
within 500meters of the target station are utilized to rep-
resent the station. Define P as the set of all weighted POIs in
the research area. For the tap-in station sR

in and the tap-out
station sR

out, the weighted POIs within 500meters can be
expressed as follows:

psR
in

� p|distance p, s
R
in􏼐 􏼑≤ 500,∀p ∈ P􏽮 􏽯, (3)

psR
out

� p|distance p, s
R
out􏼐 􏼑≤ 500,∀p ∈ P􏽮 􏽯. (4)

As shown in Table 1, the weighted POIs have been di-
vided into 8 categories, so ΟR and DR can each be repre-
sented as an 8-dimensional vector. )e value of a weighted
POI represents its service capacity, and the larger the value,
the greater the probability of becoming the departure point
or destination point of passengers at the station. ΟR and DR

can be expressed as follows:

ΟR
�

􏽐 p1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

􏽐 p
R
in

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
,

􏽐 p2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

􏽐 p
R
in

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
, . . . ,

􏽐 p8
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

􏽐 p
R
in

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
, pi ∈ p

R
in, i � 1, 2, . . . , 8, (5)

DR
�

􏽐 p1
􏼌􏼌􏼌􏼌
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􏽐 p
R
out

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
,

􏽐 p2
􏼌􏼌􏼌􏼌
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􏽐 p
R
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⎪⎩

⎫⎪⎬

⎪⎭
, pi ∈ p

R
out, i � 1, 2, . . . , 8. (6)

where 􏽐 |pi| represents the sum of value of weighted POI of
the ith category, 􏽐 |pR

in| and 􏽐 |pR
out| represent the sum of all

weighted POIs within 500meters of the tap-in station sR
in and

the tap-out station sR
out. )e order of POI categories cor-

responds to the row order in Table 1, namely, Entertainment,
Working, Shopping, Transportation, Education, Residential,
Hospital, and Government.

As for temporal semantic, one-hot coding is adopted to
represent three attributes. For the convenience of expres-
sion, we divide a day into several discrete slots with a fixed
interval. )emetro service is not available between 0 am and
5 am. Here, the interval is set to be one hour, resulting in 19
slots in a day. So TR can be easily characterized as a 19-
dimensional vector. For example, if tR

in is 5 :16 : 29 (between
5 and 6), it can be expressed as 1, 0, 0, . . . , 0{ }. If tR

in is 22 : 51 :
33 (between 22 and 23), it can be expressed as
0, 0, 0, . . . , 0, 1, 0{ }. Similarly, because there are 7 days a
week,WR can be represented as a 7-dimensional vector. If tR

in
is on Monday, it can be expressed as 1, 0, 0, 0, 0, 0, 0{ }. As for
travel time, since most passengers travel within 240 minutes,
we divide the travel time into 8 slots with the interval of 30
minutes [33]. If the travel time of R is 57 minutes (between
30 and 60), HR can be expressed as 0, 1, 0, 0, 0, 0, 0, 0{ }. In
summary, the trip vector R � ΟR,DR,TR,WR,HR􏼈 􏼉 has
been represented as a 50-dimensional (8 + 8 + 19 + 7 + 8)
sparse vector.

We train a SAE model to extract the mixed spatio-
temporal semantics of trip record R to avoid the adverse

effects of the sparsity of high-dimensional vector [34].
Essentially, the auto-encoder is an unsupervised algorithm
that can automatically learn features from unlabeled data
and can give a better feature description than the original
data. It can be regarded as a neural network, which au-
tomatically generates an optimal coding strategy by con-
tinuously optimizing the weight parameters, resulting in
the output vector being consistent with the input vector. As
an extension of the classic auto-encoder, SAE is a deep
neural network model constructed by stacking multiple
auto-encoders, where the output of the nth layer of auto-
encoder is used as the input of the (n + 1)th layer of auto-
encoder [35]. Structurally, SAE can be divided into two
components, namely, the encoder and decoder. )e former
transforms the input sparse vector into a dense vector
through several layers of coding, and the latter is the reverse
process of the former to reconstruct high-dimensional
vectors. As shown in Figure 3, the input 50-dimensional
sparse vector R is firstly upgraded to a 64-dimensional
vector to extract abstract features, and then the dimen-
sionality is reduced to 16-dimensional and 8-dimensional
vectors layer by layer to realize the representation of dense
vectors. Formulaically, the above process can be expressed
as follows:

hn+1 � fa Wnhn + bn( 􏼁, (7)

where hn and hn+1 represent the output vector of the nth and
the (n + 1)th layer,Wn and bn represent the weight parameter
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matrix and the bias from the nth layer to the (n+ 1)th layer,
and fa(·) represents the activation function, which is the
rectified linear unit (ReLU) in this paper. It can be seen that
the parameters that need to be estimated in the model areWn

and bn. Particularly, when n � 1, hn is R. Since the dimension
of h1 is smaller than that of h2 (50< 64), it is necessary to avoid
invalid training of the weight parameters [36]. )e weight
parameters of this layer need to be pretrained, where the
greedy layer-wise pre-training method is used. See details in
reference [37]. )e loss function is constructed as follows and
the regularization is used in this process.

loss � L(x, g(f(x))) +Ω(h). (8)

Here, h � f(x) represents the output of the encoder, and
g(f(x)) represents the output of the decoder. Besides,
L(x, g(f(x))) represents the difference between x and
g(f(x)), which can be measured by the mean square error
(MSE). Further, Ω(h) represents the regularization term,
which is the l1-norm here. Using the above procedure, the
weight parameters of this layer can be initialized. As for the
weight parameters of other layers, truncated normal ini-
tializer can be used.

And then, MSE is chosen as the loss function of the
whole SAE. Define the dense vector as Rdense and the output
reconstruction high-dimensional vector as Rrc, then the loss
function floss can be expressed as follows:

floss � MSE Rrc( 􏼁 �
􏽐N Ri − Rrc,i􏼐 􏼑

2

N
, (9)

where N represents the total number of trip records, Ri and
Rrc,i represent the ith element in vector R and Rrc. As for
training parameters, back propagation is used to fine-tune
the parameters based on the value of the loss function. In this
way, R is converted to Rdense.

3.3. Mobility Pattern Recognition Based on the Embedded
Vectors. )e goal of this section is to cluster Rdense through
the cluster algorithm and achieve mobility pattern recog-
nition through the spatiotemporal characteristics (obtained
by decoder) displayed by the clustering results. It is found
that passenger trajectories tend to show a high degree of
temporal and spatial regularity. Passengers follow simple
reproducible patterns, indicating that each individual is
characterized by a significant probability to return to a few
highly frequented locations [38, 39]. Since the Rdense ob-
tained in the previous section is a dense vector with spa-
tiotemporal semantics, we can identify mobility patterns by
clustering these dense vectors. In this section, the DBSCAN
algorithm, a density-based clustering method, is applied to
cluster dense trip vectors. For two trip vectors (i.e., Rdense)
containing mixed spatiotemporal information, the distance
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Figure 3: Embedding spatiotemporal semantics using SAE.
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between them represents their spatiotemporal similarity.
Additional details of the DBSCAN algorithm can be found in
the study by [22]. One advantage of DBSCAN is that the
number of clusters does not need to be manually specified in
advance, which greatly reduces human intervention [40].
Instead, two parameters, the parameter of sample neigh-
borhood size δ and the parameter of distance ε, are designed
to describe the relationship between different samples to
achieve clustering [31]. Here, we define a core sample to
mean that there are at least δ other samples within the ε
distance of a sample in the data set, and these samples are
designated as neighbors of the core sample. For the trip
vector, a core sample indicates that there are at least δ
samples in the data set that have a spatiotemporal similarity
less than ε. )e flowchart of DBSCAN algorithm is shown in

Figure 4. It can be seen that the key of the algorithm is to
determine whether the sample is the core sample using the
two parameters (δ and ε). Formally, assuming that the set of
all dense trip vector isRD, given two dense trip vectorsR1

dense
and R2

dense, R
1
dense,R

2
dense ∈ RD, the Manhattan distance is

used to represent the difference in spatiotemporal semantics
between them, which can be written as follows:

dm R1
dense,R

2
dense􏼐 􏼑 � 􏽘

8

i�1
R1
dense,i − R2

dense,i
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, (10)

where R1
dense,i and R2

dense,i represent the ith element in vector
R1
dense and R

2
dense. )e neighbor of the given trip vector Rdense

can be expressed as follows:

neighbor Rdense( 􏼁 � Ri
dense|dm Rdense,R

x
dense( 􏼁≤ ε,Rdense ≠R

x
dense,∀R

x
dense ∈ RD􏽮 􏽯. (11)

)e condition that Rdense is the core sample can be
expressed as follows:

neighbor Rdense( 􏼁≥ δ. (12)

It needs to be clear that the values of parameters δ and ε
need to be set in conjunction with the characteristics of the
data set and the clustering target. Different values of the
parameters have a significant impact on the clustering re-
sults. Here, two indicators are used to quantify algorithm
performance, namely, the within-cluster sum of squared
errors (SSE) and the silhouette coefficient (SC) [41]. Among
them, SSE reflects the difference between different passen-
gers who are identified as having the same mobility pattern.
SSE in this paper can be calculated as follows:

SSE � 􏽘
K

k�1
􏽘

Mk

m�1
􏽘

8

i�1
Rm
dense,i − RKμ

dense,i􏼐 􏼑
2
, (13)

where K represents the number of clusters, Mk represents
the number of samples in the kth cluster, Rm

dense,i represents
the ith element in the mth vector of the kth cluster, and
RKμ
dense,i represents the ith element in the center vector of the

kth cluster. )e smaller the value of SSE, the better the
clustering performance. It means that passengers who are
recognized as having the same mobility pattern have smaller
identifiable differences, indicating that the pattern recog-
nition is accurate. Besides, SC is a comprehensive index that
combines cohesion and separation. Among them, the co-
hesion reflects the average difference between an individual
passenger and other passengers identified as having the same
mobility pattern. On the contrary, the separation means the
smallest difference between the individual passenger and
passengers with other mobility patterns. And then, SC in this
paper can be expressed as follows:

SC �
1
RD

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
· 􏽘

RD| |

m�1

bm − am

max am, bm( 􏼁
, (14)

where am reflects the degree of cohesion within a cluster, and
bm reflects the degree of separation between clusters. Spe-
cifically, for a trip vector Rm

dense(R
m
dense ∈ RD), belonging to

the kth cluster, the corresponding values of am and bm can be
calculated as follows:

am �
1

Mk − 1
􏽘

Mk

x�1,x≠m

􏽘

8

i�1
Rm
dense,i − Rx

dense,i􏼐 􏼑
2
,

(15)

bm � min bm,k′􏼐 􏼑, k′ ∈ (1, 2, . . . , K), k′ ≠ k, (16)

bm,k′ �
1

Mk′ − 1
􏽘

M
k′

x�1,x ≠m

􏽘

8

i�1

Rm
dense,i − Rx

dense,i􏼐 􏼑
2
. (17)

Indeed, from the above formulation, it is can be seen that
−1≤ SC≤ 1. If SC is close to 1, the data are well-clustered,
indicating that the mobility pattern recognition is good.)at
is, the spatiotemporal characteristics of an individual pas-
senger are highly similar to those of passengers in the same
cluster. In contrast, passengers with different identified
mobility patterns have significant differences in the spa-
tiotemporal characteristics of travel. When SC is negative or
even close to −1, it indicates that passengers with different
travel spatiotemporal characteristics are identified as having
the same pattern, which is obviously not ideal. In summary,
the smaller SSE and larger SC (close to 1) characterize better
mobility pattern recognition results.

4. Case Study and Applications

4.1. CaseDescription. A case study of Beijing metro network
is presented to evaluate the proposed method. A total of
176.81 million passenger travel records from September to
October 2018 are acquired to identify mobility patterns.
Correspondingly, the POI data in Beijing during this period
is also crawled from Amap.
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First, the weighted POIs are generated by fusing mul-
tisource data from Lianjia and Arctiler using the method
designed in Section 3.1. A total of 11,382 residential POIs
were captured from Amap within the influence area of the
metro station. Among them, 10927 residential POIs were
successfully matched through the residential area data from
Lianjia, indicating that the matching rate reached 96%. As
for building data, a total of 6,887 buildings were captured
from Amap. Among them, 6336 buildings were correctly
matched through the Arctiler datasets, indicating a 92%
match rate. It can be found that although there are some
matching failures, the matching rates were higher than 90%,
which proves that the proposed method can effectively
weight the original POI data into weighted POIs. Residential
POIs are used as examples to illustrate the advantages of
weighted POI data, as shown in Figure 5. Among them,
Figure 5(a) shows the distribution of Beijing metro stations,
while Figures 5(b) and 5(c), respectively, show the distri-
bution heat map of raw POIs and weighted POIs within 500

meters of metro stations. It can be seen that the residential
POIs in Figure 5(b) are more evenly distributed and have a
higher density in the urban center. On the contrary, the
residential POIs in Figure 5(c) are concentrated in suburban
areas in an extremely uneven manner. )e reason for the
above difference is that the residential POIs in the central
area of the city are mainly hotels, villas, and residential
buildings with few floors, while that in the suburban areas
are mainly high-density, multistory residential communi-
ties. Furthermore, 4 high-density residential areas can be
clearly observed in Figure 5(c), which are located in the
north, east, and southwest of the city. Comparing existing
studies, it can be found that the above regions correspond to
Changping, Tongzhou, Fangshan, and Daxing, respectively
[42–44].)e above areas have similar characteristics, such as
low housing prices, high housing density, and a large
number of commuters living in the area. It shows that
weighted POI data can more accurately reflect the categories
of land use around metro stations.
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Figure 4: DBSCAN algorithm flowchart.
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Second, the spatiotemporal semantics are embedded
using the SAE-based framework in Section 3.2. Figure 6
shows how the MSE changes with the number of iterations
when training the SAE model. It can be seen that when the
number of iterations reaches 40, the value of MSE remains
stable. )at is, SAE can encode the spatiotemporal features
of the input trip records in a stable way, transforming the
high-dimensional sparse vectors into low-dimensional
dense vectors.

)ird, the dense trip vectors are clustered using
DBSCAN algorithm to realize the mobility pattern recog-
nition. Since the number of clusters is not manually specified
but is automatically generated according to the parameters δ
and ε, it is necessary to check the number of clusters and
algorithm performance corresponding to different values of
parameters. )is paper aims to identify passenger mobility
patterns, so the number of clusters is required not to be too
large (difficult to explain the potential activities of passen-
gers) or too small (difficult to distinguish passenger cate-
gories) in order to balance practicality and interpretability.
)rough pre-experiments, we found that the number of
clusters decreases as δ and ε increase. Further, when δ < 8
and ε< 7, the number of clusters is verified to be greater than
30, which makes it difficult to accurately describe the po-
tential activities represented by each mobility pattern. When
δ > 18 and ε> 10, the number of clusters is less than 3, which
is obviously not conducive for our exploration of passenger
mobility patterns. )erefore, the parameter value range is
determined as: δ ∈ [8, 18] and ε ∈ [7, 10]. Figure 2 lists
several results of the number of clusters and algorithm
performance quantified by SSE and SC under different
parameter values. It can be found that the value of SSE
decreases with the increase of δ, and the influence of ε on SSE
is limited. )e relationship between SC and parameters is
more complicated. Furthermore, the relationship between δ,

ε, and SC is shown in Figure 7. From a global perspective, SC
increases with the increase of parameters δ and ε. When δ
reaches 16 and ε reaches 9.5, the value of SC decreases with
the increase of parameters. Combining the above two in-
dicators, a parameter combination of δ � 16 and ε � 9.5 is
selected. Herein, SSE � 23715 and SC � 0.815, showing
good clustering performance.

4.2. Results Analysis. )e mobility pattern is recognized
using the proposed method with the above parameters.
Figure 8 shows the results when δ � 16 and ε � 9.5. Each
color represents a recognized mobility pattern and C1–C6
means the mobility features of cluster 1 to cluster 6. Among
them, Figures 8(a) and 8(b) show the distribution of POI
categories around the origin station and that around the
destination station, which reveals the spatial features. )e
distributions of the start time of the day, the distribution of
the day of week, and the distribution of travel time are
presented in Figures 8(c)–8(e), respectively.

(a) (b)

Changping

Fangshan

Daxing

Tongzhou

(c)

Figure 5: Comparison of weighted POIs and raw POIs. (a) )e distribution of metro stations. (b) )e distribution of raw POIs within
500meters of metro stations. (c) )e distribution of weighted POIs within 500meters of metro stations.
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)e characteristics of the six mobility patterns identi-
fied above are summarized, as shown in Table 2. Among
them, C1 and C5 account for 35.808% (13.716%+ 22.092%),
representing the work-related mobility during the work-
days. More specifically, C1 reveals long-distance working
mobility, where the start time is between 7 and 8 am, and
travel time is mainly 40–80min. In contrast, C5 represents
short-distance working, where the start time is between 7
and 9 am (later than the start time in C1), because travelers
need to spend short travel time (mainly within 40min). It
can be found that although the temporal information is in
line with the typical mobility patterns of commuters, the
POIs around the destination station include multiple
categories (not only working), such as entertainment,
working, hospital, and shopping, which characterize the
various possible work places of passengers. Besides, C3
(accounting for 13.908%) shows entertainment and
shopping activities that mainly take place on weekends due
to the large number of entertainment and shopping POIs
surrounding the destination station. )e start time of this
type of mobility is between 9 am and 7 pm, and the travel
time is within 60min. Correspondingly, C2 and C4 account
for 34.323% (19.817%+ 14.506%), revealing the home-re-
lated mobility, most of which occurs on weekdays and
Sundays. It can be seen that the destination POIs are mainly
residential. )e difference is that the start time of the
mobility represented by C2 is all after 5 pm, while that
represented by C4 is mainly concentrated between 5 pm
and 7 pm. In C2 and C4, the various types of POIs (en-
tertainment, working, shopping, etc.) around the origin
station represent passengers at different working locations.
Finally, C6 (accounting for 15.961%) represents a kind of

mobility pattern. wherein it is difficult to directly identify
the purpose of travel, where the origin location is mainly
entertainment, shopping, and hospital POIs, the start time
is between 11 am and 5 pm, and the travel time is within
40min. )e travel purpose of this pattern is difficult to be
accurately identified, but it can be regarded as a short-
distance travel that occurs during off-peak hours on
weekdays.

)e above analysis shows that mobility patterns related
to working and home are the easiest to identify and explain,
which is consistent with the conclusions of existing studies
[23, 45, 46]. On the one hand, according to multidimen-
sional temporal features, work-related mobility patterns can
be divided into long-distance mobility and short-distance
mobility. In this case, the number of short-distance travelers
is 1.611 times (22.092%/13.716%) that of long-distance
travelers, which shows that a large percentage of commuters
work close to their places of residence. Nevertheless, there
are still many commuters living far away from their working
places, reflecting a serious imbalance between working and
housing [43, 44]. On the other hand, home-related mobility
patterns encompass more categories, because travelers can
choose the time to go home more freely than the time to
work. Taking C2 and C4 as examples, trips related to going
home are clearly divided into two patterns. )e start time of
C2 is after 5 pm, and that of C4 is mainly between 5 and 7
pm. It can be inferred that the start time of the traveler’s
home trip is related to their work. In addition to working
and going home, activities related to entertainment and
shopping are displayed in C3. Most of them appear on
weekends and their start time is between 9 am and 7 pm,
which shows that passengers are more casual in choosing
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Figure 8: Six mobility patterns recognized by the proposed method when δ � 16 and ε � 9.5. (a) POI categories around the origin station.
(b) POI categories around the destination station. (c) )e start time of the day. (d) )e day of week. (e) Travel time.
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start time when engaging in entertainment and shopping
activities. )e above phenomenon is consistent with our
empirical observation [18, 23]. It should be noted that the
current analysis is based on the parameter settings of δ � 16
and ε � 9.5. When the number of clusters decreases, several
work-related patterns may be merged. Conversely, when the
number of clusters increases, more mobility patterns may be
found, but the difficulty of interpreting the pattern recog-
nition results also increases.

It should be noted that sometimes the spatial infor-
mation of the clustering results is confusing. For example,
both clusters C1 and C3 have trips from residential POI to
shopping POI. Nevertheless, C1 and C3 are interpreted as
different potential activities (long-distance working/enter-
tainment and shopping). )is reflects the uncertainty of
identifying passenger mobility patterns only through spatial
information and the necessity of using spatiotemporal in-
formation jointly. For trips with the similar spatial infor-
mation, temporal information can assist in inferring
mobility patterns. Passengers who intend to shop are un-
likely to choose to travel during the morning peak hours.
)ey tend to choose off-peak hours to avoid crowded
conditions and obtain higher travel comfort. It can be
inferred that passengers in C1 who travel during the
morning rush hours with shopping POIs as destinations are
composed of most of the staff working in the mall and a
small number of shoppers. Conversely, in C3, the potential
activity of passengers traveling on weekends with shopping
POIs as destinations is more likely to be shopping. When
classifying a passenger’s mobility pattern, the proposed
embedding method can be used to embed the passenger’s
spatiotemporal information into a low-dimensional vector
space. )e distance between the embedded vector and the
vector of each cluster center can be calculated to obtain the
most likely mobility patterns and reduce the confusion
caused by spatial information.

4.3. Sensitivity Analysis of Parameters. In this section, the
sensitivity of parameters on the recognition results is ana-
lyzed. As shown in Table 3, the parameters of the clustering
algorithm have a significant impact on the recognition per-
formance. Here, we show the results when δ � 14 and ε � 10
in Figure 9 and that when δ � 8 and ε � 10 in Figure 10. In
Figure 9, the trip vectors are divided into 3 patterns,
SSE� 23647, and SC� 0.793. Obviously, it reveals the three
most basic patterns of urban mobility: working, home, and
others. Among them, C2 describes working-related trips,
where the start time ismainly from 7 am to 9 am onweekdays,
and the POIs around the origin station are mainly residential.
Correspondingly, C3 represents trips related to going home,
where the start time is mainly after 5 pm onweekdays, and the
POIs around the destination station are dominated residential
POIs. In addition, C3 represents trips that include enter-
tainment, shopping, etc., where the start time is mainly
distributed between 10 am and 5 pm on weekends. In Fig-
ure 10, the passenger trip vectors are identified as 11 clusters,
SSE� 23133 and SC� 0.712. Compared with Figure 8, it can
be seen that more passenger activities are identified.

Among them, C1, C9, and C11 are the three most easily
explained patterns.)ey characterize working-related trips.
In more detail, travel time of C1 is mainly 60–80min, while
that of C9 is within 40min, and that of C11 is mainly
20–60min. )e travel time reflects the length of the
journey. )e three clusters C3, C8, and C10 represent
home-related mobility. )eir proportions are 13.606%,
7.478%, and 7.555%, respectively. In detail, the start time of
C3 is mainly 5 pm–7 pm, while that of C8 is 7 pm–10 pm,
and that of C10 is mainly 6 pm–8 pm. )is shows that
passengers are more flexible in time selection when going
home.)e remaining clusters represent mobility other than
working and home, which are a refinement set of C3 and C6
in Table 2. Obviously, the mobility represented by these
clusters is more dispersed in POI categories and more free

Table 2: Characteristics of mobility patterns.

ID Proportion
(%)

Spatial features Temporal features
Possible activity

)e origin station )e destination station )e start
time

)e day of
week Travel time

C1 13.716 Mainly residential POIs
Mainly entertainment,
working, hospital, and

shopping POIs

Mainly
7–8

Mainly
weekdays

Mainly 40
min–80min

Working (long
distance)

C2 19.817
Mainly entertainment,
working, shopping, and

education POIs
Mainly residential POIs After 17 Weekdays

and Sundays Within 40min Home (short
distance)

C3 13.908 Mainly residential,
entertainment POIs

Mainly entertainment and
shopping POIs 9–19 Mainly

weekends Within 60min Entertainment
and shopping

C4 14.506
Mainly entertainment,
working, and shopping

POIs
Mainly residential POIs Mainly

17–19
Weekdays

and Sundays
Mainly 40

min– 80min
Home (long
distance)

C5 22.092 Mainly residential POIs
Mainly entertainment,
working, shopping, and

POIs

Mainly
7–9

Mainly
weekdays

Mainly within
40min

Working (short
distance)

C6 15.961
Mainly entertainment,
shopping, and hospital

POIs

Mainly entertainment,
shopping, and residential

POIs

Mainly
11–17 Weekdays Mainly within

40min Others
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in the start time, which is in line with the diversified
characteristics of weekend entertainment activities. Inev-
itably, as the number of clusters increases, the interpretability
of the results is weakened. For example, there is no significant
difference in the proportion of each category of POI around the
origin station and the destination station in C4, which makes it
difficult to find a known activity to explain its spatiotemporal
characteristics. A feasible method is to investigate the purpose
of the passengers in C4 to explain the above phenomenon. In
summary, there must be a trade-off between the number of
clusters and interpretability of the results.

4.4. Comparison of Methods. First, we compare the results
with different vector forms. Here, sparse vectors (50 di-
mensions) and dense vectors (8 dimensions) are used to

identify passenger mobility patterns, respectively. We ex-
amine the performance with different vector forms when the
number of clusters is 6. It should be noted that after many
pre-experiments, when sparse vectors are used and the
number of clusters is 6, the input parameters are δ � 22 and
ε � 72. )e comparison results are shown in Table 4. It can
be seen that the calculation time using sparse vectors is much
longer than that using dense vectors. )is is because dense
vectors need to consume less computing resources in the
calculation process. In addition, compared to sparse vectors,
using dense vectors can give better results, showing a smaller
SSE and a larger SC. )e reason is that the SAE-based
embedding method efficiently extracts the spatiotemporal
information in passenger travel records, which proves the
necessity and superiority of embedding spatiotemporal
semantics.

Next, we compare the performance of different methods.
Here, two baseline methods are selected from the existing
studies. )e first one is a cluster-based method from liter-
ature [22]. Different from this paper, this method aims to
mine the spatiotemporal travel patterns from the long-term
historical travel database, whereas OD stations are regarded
as spatial features and the timestamps of entering and exiting
stations are regarded as temporal features. )e second
baseline method is a topic model based on LDA from lit-
erature [23]. In this model, the four features are considered
to describe a passenger trip—they are the location (station),
start time of day, start day of week, and the duration. It
should be noted that this model is a “soft-cluster” method,
where a probability distribution is used to quantify the
relationship between a trip and mobility patterns.

Due to the lack of real activity labels for passenger travel
records, it is challenging to quantify and compare the
performance of various methods in mobility pattern rec-
ognition in terms of accuracy. One way to deal with this
problem is to design a stated preference (SP) survey to
determine the actual travel purpose of passengers, which
can be utilized as a benchmark to calculate the accuracy of
the mobility pattern recognition results [47]. Nevertheless,
SP surveys often require huge manpower and material
resources, especially in large-scale analysis. In this section, a
compromise method is adopted to evaluate the perfor-
mance of models by using the SSE calculated by equation
(13) and the SC calculated by equation (14). )ese two
indicators can measure the ability of the pattern recogni-
tion results to characterize the distribution of the data,
evaluating the models without real activity labels [23].
Based on the data in Section 4.1, the number of clusters is
set to 3, 6, and 11 respectively, and the above two methods
are used to recognize mobility patterns. Figure 11 shows the
values of the two indicators (SSE and SC) corresponding to
the results obtained by different methods, in which the K
represents the number of clusters. It can be found that
when the number of cluster is 3 and 6, the SSE of baseline 2
and that of the proposed method are relatively small, while
that of baseline 1 is larger. When the number of clusters is
11, the three methods have comparable SSE. )is means a
significant intra-cluster difference of identified mobility
patterns when the OD stations are regarded as the spatial

Table 3: )e number of clusters and algorithm performance based
on different parameters.

ID δ ε K SSE SC
1 8 7 27 33136 0.466
2 8 7.5 29 33407 0.473
3 8 8 24 30895 0.439
4 8 8.5 18 34989 0.139
5 8 9 16 31018 0.621
6 8 9.5 15 31731 0.568
7 8 10 11 23133 0.712
8 10 7 24 28931 0.248
9 10 7.5 22 29168 0.38
10 10 8 19 27447 0.421
11 10 8.5 14 27925 0.361
12 10 9 13 27374 0.616
13 10 9.5 12 28828 0.621
14 10 10 9 27158 0.657
15 12 7 19 26676 0.295
16 12 7.5 17 26224 0.379
17 12 8 16 26786 0.424
18 12 8.5 11 26077 0.188
19 12 9 11 26775 0.614
20 12 9.5 10 26596 0.56
21 12 10 6 26638 0.686
22 14 7 18 25702 0.356
23 14 7.5 16 24084 0.381
24 14 8 12 25114 0.503
25 14 8.5 10 23429 0.597
26 14 9 9 23796 0.646
27 14 9.5 9 23889 0.596
28 14 10 3 23647 0.793
29 16 7 18 24333 0.348
30 16 7.5 14 22281 0.38
31 16 8 10 23117 0.502
32 16 8.5 10 23255 0.487
33 16 9 9 23760 0.646
34 16 9.5 6 23715 0.815
35 16 10 5 23568 0.596
36 18 7 17 22439 0.151
37 18 7.5 13 21892 0.364
38 18 8 10 23129 0.25
39 18 8.5 7 22538 0.507
40 18 9 7 23407 0.681
41 18 9.5 7 23436 0.629
42 18 10 6 23675 0.654
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features. Conversely, the proposed method and baseline 2
perform better in terms of SSE. Nevertheless, with the same
number of clusters, the proposed method has a larger SC
value than baseline 2. )is shows that baseline 2 fails to
distinguish the trips in different patterns well. In summary,
the proposed method performs well in mobility analysis,
which illustrates the necessity of using weighted POIs based
on multisource data to characterize spatial attributes and
the superiority of using coding-based methods to vectorize
passenger trips.

4.5. Applications Based on Passenger Mobility Patterns.
)e ultimate goal of mobility pattern recognition is to ac-
curately grasp the characteristics of passenger needs and
assist subway operators and managers to provide passengers
with high-quality travel services. As described in Section 4.2,
with the help of mobility pattern recognition, the time
preferences, start location preferences, and the attributes of
potential activities of different types of passengers can be
explored. Furthermore, when a certain passenger’s historical
travel data are given, his/her mobility mode type can be
calculated through similarity calculation, individual travel
preferences can be estimated, and demand characteristics
can be clarified. Based on this, it has become possible to
provide personalized services according to individual travel
needs.

On the one hand, individual mobility pattern helps
generate more accurate personalized passenger guidance
strategies. In traditional practice, metro operators empiri-
cally recommend the route with the shortest travel time or
the lowest travel cost to passengers. Nevertheless, existing
studies have shown that passengers with different travel

purposes pay different attention to different factors [47, 48].
For example, commuters may be more concerned about
travel time reliability. On the contrary, travelers do not have
high requirements for travel time reliability but are more
concerned about the comfort of travel. )e identification
and analysis of mobility patterns can help provide per-
sonalized guidance strategies.

On the other hand, mobility pattern recognition can be
used as a powerful tool to guide business applications. Here,
the applications in advertising and Mobility-as-a-Service
(MaaS) design and promotion are introduced. For adver-
tisers, it would be wise to consider the passenger demand of
the station when placing advertisements at a designated
station, which can be obtained through the research of this
paper. Related researches have been conducted in recent
years to support mobility-pattern-based advertising [21, 49].
For example, it is obvious that in stations where many
commuters live in the surrounding area, recruitment and
job-hunting advertisements are very competitive. Besides, as
a technological innovation with the potential to revolu-
tionise the urban mobility paradigm, MaaS is emerging and
closely related to mobility pattern recognition. MaaS is a
service offered to the user in a single mobile app platform,
which integrates all aspects of the travel experience, in-
cluding booking, payment, and information, both before
and during the trip [50]. )e latest research shows that
understanding passengers’ mobility patterns and expecta-
tions is key for designing successful MaaS technologies [51].
And then, researches also show that willingness to use MaaS
is strongly correlated with age and lifecycle stage, which can
be identified by the proposed method in this paper [52]. For
example, young individuals who are employed full-time are
most likely to use MaaS.
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It should be noted that mobility pattern recognition also
has important applications in the prevention and control of
epidemic spreading and the assessment of social and economic
development. For details, please refer to references [10, 27].

5. Conclusions and Discussion

)is paper presents a SAE-based unsupervised learning
framework to explore the potential of AFC data in recog-
nizing passenger mobility patterns. )e proposed model

converts the travel records of passengers into trip vectors in
an embedded manner to facilitate large-scale pattern rec-
ognition. Each trip vector contains spatial attributes (POIs
around the origin station, POIs around the destination sta-
tion) and temporal attributes (start time, day of the week, and
travel time), which enhance the interpretability of the mo-
bility analysis results. Specifically, the spatial characteristics
are obtained through the fusion of multisource, geo-based
data. A density-based clustering algorithm is introduced to
group the trip vectors into multiple clusters to realize the
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Figure 10: Elevenmobility patterns recognized by the proposedmethod when δ � 8 and ε � 10. (a) POI categories around the origin station.
(b) POI categories around the destination station. (c) )e start time of the day. (d) )e day of week. (e) Travel time.

Table 4: Comparison of results with different vector forms.

Vector form Computing time (second) SSE SC
Sparse vector 2674 28706 0.602
Dense vector 144 23715 0.815
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mobility pattern recognition. A case of Beijing metro network
is used to verify the feasibility of the above methods. In this
case, six typical mobility patterns are identified, two of which
are related to working (accounting for 36.702%), three of
which are related to home (accounting for 46.057%), and one
of which is related to entertainment and studying (accounting
for 17.242%), revealing the mobility distribution character-
istics of Beijingmetro passengers. Furthermore, the sensitivity
analysis of the parameters is done. It is found that as the
number of clusters in the results increases, the identified
mobility patterns can reflect more detailed passenger activity
characteristics and at the same time have greater inexplica-
bility. )e comparison with the other two baseline methods
proves that the proposed method can better explore the
passenger mobility patterns based on multisource data than
the existing methods. )is research provides a way of em-
bedding complex, multisource, and different-dimensional
spatiotemporal information into dense trip vectors, which is
suitable for large-scale calculations to identify mobility
patterns.

Admittedly, the proposed method still has several lim-
itations that can be considered in the future works. First,
geographic information needs to be processed more finely.
)is paper divides the captured POIs into 8 categories as
shown in Table 1, and each category contains multiple
subcategories. )ere may be great differences between
subcategories. For example, Card & Chess Room and
Camping Site are considered the same category (enter-
tainment) in this paper. In fact, these two kinds of POIs can
be treated separately as indoor entertainment and outdoor
sports, which helps to discover more detailed features of
passenger activities. Second, the dependence between
multiple trips of a passenger needs to be considered. )is
paper only embeds the spatiotemporal features of the cur-
rent trip into the dense vector, and does not consider the
previous and subsequent trips, which limits the application
of the proposed method in the generation of passenger
activity chains and the prediction of trips [32]. For example,
a point of view is widely agreed that, due to geographical
constraints, the origin station of the current trip is likely to
be the destination station of the previous trip. It means that
considering the information of previous and subsequent
trips to complete the embedding of the current trip has
potential application value. )ird, although the validity of
the matching between the selected multiple data sources is
acceptable, there are still some matching failures. )e se-
lection of data sources with better matching is worth ex-
ploring to improve the proposed data fusion method. )is
will be the focus of the future studies.
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Connected and automated vehicles (CAVs) trajectories not only provide more real-time information by vehicles to in-
frastructure but also can be controlled and optimized, to further save travel time and gasoline consumption. )is paper
proposes a two-level model for traffic signal timing and trajectories planning of multiple connected automated vehicles
considering the random arrival of vehicles. )e proposed method contains two levels, i.e., CAVs’ arrival time and traffic
signals optimization, and multiple CAVs trajectories planning. )e former optimizes CAVs’ arrival time and traffic signals
in a random environment, to minimize the average vehicle’s delay. )e latter designs multiple CAVs trajectories considering
average gasoline consumption. )e dynamic programming (DP) and the General Pseudospectral Optimal Control Software
(GPOPS) are applied to solve the two-level optimization problem. Numerical simulation is conducted to compare the
proposed method with a fixed-time traffic signal. Results show that the proposed method reduces both average vehicle’s
delay and gasoline consumption under different traffic demand significantly. )e average reduction of vehicle’s delay and
gasoline consumption are 26.91% and 10.38%, respectively, for a two-phase signalized intersection. In addition, sensitivity
analysis indicates that the minimum green time and free-flow speed have a noticeable effect on the average vehicle’s delay
and gasoline consumption.

1. Introduction

Traffic congestion has become a common traffic phenom-
enon in many cities [1]. In the United States, the trans-
portation sector consumed about 143 billion gallons of
gasoline in 2017 [2]. Moreover, traffic congestion leads to
additional transportation emissions and travel delays. In
2017, due to traffic congestion, drivers in the United States
waste an average of 41 hours per year during peak hours [3].
)erefore, it is urgent to save gasoline consumption and
travel time in cities [4, 5].

As one of the effective methods to alleviate urban traffic
congestion [6], traffic signal control [7] first appeared in

London, England, in 1868. Currently, traffic signal control
mainly consists of three strategies: fixed-time control, ve-
hicle-actuated control, and traffic signal adaptive control.
)ese strategies allocate space-time right of way to vehicles
in different conflict directions to resolve traffic flow conflicts
at intersections [8]. However, these control strategies rely on
traffic data from infrastructure-based vehicle detection
systems, such as loop detectors, radar, or cameras [9–11].
Infrastructure-based vehicle detection systems only provide
limited discrete data, and their installation and maintenance
costs are considerably high [9]. Recently, with the devel-
opment of wireless communication and automatic driving
technologies, CAVs can realize the information exchange
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between vehicles and infrastructure (i.e., traffic signal
equipment) [12, 13]. )erefore, traffic signals and vehicle
trajectories can be optimized and designed for connected
automated vehicles (CAVs) to improve traffic efficiency and
save gasoline consumption.

Many works have been conducted to search the optimal
traffic signal and vehicle trajectories in the CAVs envi-
ronment [14]. )ese works can be divided threefold. Firstly,
a large number of signal control algorithms were proposed
to optimize traffic signals with CAVs data [12, 15–20].
Secondly, many studies designed vehicle trajectories for
CAVs to save gasoline consumption [21–26].)irdly, several
methods focused on optimizing traffic signals and CAVs’
trajectories to save travel time and gasoline consumption
[8, 27–29].

However, there are several limitations to current inte-
grated optimization methods. First, Feng et al. [8] and Yu
et al. [29] only optimized the leading vehicle trajectory of a
platoon and a car-following model that calculates the other
vehicles’ trajectories. Second, Xu et al. [28] proposed a
vehicle trajectory designing model that considered a safe
front vehicle distance. Still, they did not consider optimizing
the trajectory of all CAVs at the same time. )erefore, this
study would fill in this gap by showing a two-level model for
traffic signal timing and trajectories planning of multiple
connected automated vehicles considering the random ar-
rival of vehicles.

)e contribution of this paper consists of extending the
optimal framework in Feng et al. [8]. First, instead of op-
timizing traffic signals by dynamic programming [8], we
formulate an optimal arrival time calculation model for each
CAV based on traffic signal timing and optimize traffic
signals and vehicles’ arrival time for random arrival CAVs to
minimize average vehicle’s delay. Second, unlike Feng et al.
[8] and Yu et al. [29], only optimizing the leading vehicle
trajectory of a platoon, the other vehicle trajectories are
generated by a car-following model. Here, we proposed a
multiple CAVs trajectories planning model, which is solved
by the GPOPS [30]. Compared with Feng et al. [8], Yu et al.
[29], and Xu et al. [28], the proposed model can optimize the
trajectories of multiple CAVs at the same time. )ird, we
develop a two-level optimization framework and algorithm.
Finally, we design the numerical examples and investigate
the influence of critical parameters on the proposed
method’s performance.

)e remainder of the paper is organized as follows.
Section 2 reviews the research on traffic signal and trajectory
optimization. Section 3 introduces some assumptions, two-
level model, and solution algorithm. Section 4 presents
numerical experiments, discussions, and sensitivity analysis.
Finally, conclusions and recommendations are delivered in
Section 5.

2. Literature Review

Connected and automated vehicles (CAVs) have great po-
tential in improving traffic efficiency and reducing traffic
congestion and have gained a wide application in the
transportation field during the last decade [31]. )ese

applications mainly focus on CAV-based trajectories
planning [22, 23, 25, 26, 32–34] and CAV-based signal
timing optimization [9, 12, 16, 35] and even further to design
traffic signals and CAVs trajectories simultaneously
[8, 27, 29, 34, 36, 37]. )ese studies showed that CAVs
applications in trajectories planning and signal timing op-
timization could further reduce gasoline consumption,
pollutant emissions, delays, and stops caused by more stable
speed change and fewer stops at the intersection [38].

To our knowledge, the first approach focuses on vehicle
trajectory planning [39, 40]. He et al. [32] proposed a speed
optimization model to give ecodriving suggestions consid-
ering queues on a signalized arterial. Wan et al. [22] de-
veloped a speed advisory model (SAM) based on a given
signal timing plan. )en, an analytical driving strategy is
obtained to minimize fuel consumption. )e results indi-
cated that the SAM reduces fuel consumption and benefitted
human-driven vehicles (HDVs), and the platoon fuel con-
sumption decreased with the increase of CAVs’ penetration
rates. Zhao et al. [25] designed an ecological driving strategy
to coordinate the platoon mixed with CAVs and HDVs. A
model predictive control is proposed to save platoons’ fuel
consumption with a fixed-time traffic signal. )e results
showed that the driving strategy could further smooth out
the trajectory and save fuel consumption. )erefore, these
studies mainly focus on optimizing CAVs trajectories based
on a preset traffic signals.

)e second method optimizes signal timing plans by
CAVs data [41, 42]. Goodall et al. [35] optimized traffic
signal with a predictive microscopic simulation algorithm
(PMSA). )e connected vehicles (CVs) data, including lo-
cations and speeds, were used to predict future traffic
conditions via the microscopic simulation method. A 15-
second rolling horizon was chosen to minimize vehicles’
delay, stops, and decelerations. Feng et al. [9] presented a
real-time traffic adaptive signal control algorithm to mini-
mize vehicle delay and queue length via connected vehicle
(CVs) data. )e simulation results indicated that the pro-
posed algorithm reduced vehicle delay and balanced each
phase’s queue length. However, they did not consider op-
timizing the CAVs trajectories at the same time.

)erefore, to address this gap, the third approach si-
multaneously optimizes CAVs trajectories and traffic sig-
nals. Xu et al. [28] presented a two-level method to optimize
traffic signal and speed for CAVs. )e first level optimized
traffic signals and CAVs arrival times to minimize travel
time; the second level planned CAVs trajectories to save
individual vehicles’ fuel consumption. )e results indicated
that this method could improve transportation efficiency
and fuel economy significantly. Yu et al. [29] developed
mixed-integer linear programming to optimize vehicle
trajectories and traffic signals at a signalized intersections.
Simulation results showed that this method was superior to
actuated control in vehicle’s delay, intersection capacity, and
CO2 emission. Feng et al. [8] proposed a two-stage method
with traffic signal optimization and vehicle trajectory
planning. )e optimal control theory and dynamic pro-
gramming (DP) are applied to optimize vehicle trajectories
and traffic signals to minimize vehicle delay and fuel
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consumption. Results showed that the proposed method
could reduce vehicle delay and fuel consumption under
different demand compared to fixed-time traffic signal
control. However, these joint optimization methods only
optimize the trajectory of the leading vehicle in a platoon; a
car-following model is used to calculate the other vehicle’s
trajectory in the platoon. Ghiasi et al. [27] considered the
joint optimization algorithm’s computational efficiency; an
analytical solution to joint CAVs trajectories and traffic
signals optimization problem was proposed in their study.
)e numerical experiment showed that the proposed model
could reduce travel delay and fuel consumption significantly.

)is study proposes a two-level model for traffic signal
timing and trajectories planning of multiple CAVs con-
sidering the random arrival of vehicles. )e integrated
optimization problem is modeled as a two-level model.
Firstly, the traffic signal and arrival time for CAVs are
optimized by the signal timing model to minimize the av-
erage vehicle’s delay. Secondly, considering average gasoline
consumption, an optimal control method is proposed to
optimize trajectories for all CAVs. Finally, the proposed
method is tested in a simulation experiment, and numerical
studies and sensitivity analysis are carried out based on a
simple two-phase intersection.

3. Methodology

3.1. Assumption. )e following necessary assumptions are
made to facilitate modeling and analysis.

(1) )e interarrival time of all CAVs follows the shifted
negative exponential distribution, which is verified at
an isolated intersection [8, 21, 29]. )is means CAVs
arrive at the border of the control zone following a
Poisson distribution.

(2) All CAVs can share information (such as location,
speed, and arrival time) through V2V; hence, their
arrival time can be predicted more accurately [25].

(3) All CAVs arrive at the boundary of the control zone
and through the downstream intersection with the
desired speed, which can refer to Ghiasi et al. [27].

(4) All CAVs cannot change lanes in the control zone;
that is, only the longitudinal movement is considered
[43–45].

3.2. ProblemStatement. In this study, no left-turn and right-
turn are considered; only through traffic flow it is modeled,
which is shown in Figure 1. )ere are four arms indexed by
i ∈ I � 1, 2, 3, 4{ }, and li and v

f
i are the length of the control

zone and the desired speed of arm i, i ∈ I, respectively. A
simple two-phase signal timing plan and an arm i as an
example are shown in Figure 2; the traffic signal is S �

G1, G2, G3, G4􏼈 􏼉 or S � R1, R2, R3, R4􏼈 􏼉, where Gi and Ri are
the effective green time and red time for arm i, i ∈ I, re-
spectively. In this study, the indexes 1, 2, 3, and 4 are defined
as east, south, west, and north arm, respectively. )erefore,
there have G1 � G3 and G2 � G4. Let L � R1 + R2 − G1 − G2
represent the lost time of a traffic signal cycle. )e traffic

arrival rate and the saturation flow rate of arm i are defined
as λi and μi. )e unsaturated traffic is considered in this
study, which can be expressed as 􏽐i∈I(λi(Ri + Gi)/μiGi)< 1.
For the convenience of the readers, the main variables used
in this paper are shown in Table 1.

As shown in Figure 2, CAVs arrival at the border of the
control zone is defined as j ∈Ni � 1, 2, . . . , Ni􏼈 􏼉, i ∈ I. Let
Xi � xij(tij)􏽮 􏽯 be the set of CAV trajectories at each arm i,
where xij(tij) is the position of the j-th CAV at each arm i at
time tij. _xij(tij) and €xij(tij) are the instantaneous speed and
acceleration of the j-th CAV at each arm i at time tij, re-
spectively. Let ta

ij and t
f
ij be the expected and optimal arrival

times of the j-th CAV at the stop line of each arm i. t0ij is the
time of j-th CAV arriving at the border of the control zone at
each arm i, which can be estimated accurately via advanced
CAV technology [27].

Control zone

li

v if

Figure 1: A simple intersection with four arms.
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Figure 2: )e vehicle trajectories planning of each arm i.i ∈ I.
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3.3. Model Formulation. )e proposed method consists of
two levels, i.e., vehicle’s arrival time and traffic signal timing,
and vehicle trajectories planning. )e former optimizes
traffic signals and vehicles’ arrival time for CAVs to mini-
mize the average vehicle’s delay. )e latter optimizes tra-
jectories for all CAVs considering average gasoline
consumption based on the optimal traffic signal timing plan.
To better understand the proposed model, the vehicle’s
trajectories are optimized by giving the optimal traffic signal
plan of a two-phase intersection: S � G1, G2, G3, G4􏼈 􏼉 or
S � R1, R2, R3, R4􏼈 􏼉. Here, G1 � G3, G2 � G4 and
L � R1 + R2 − G1 − G2.

3.3.1. Optimal Arrival Time. )e time of CAVs (t0ij) arriving
at the control zone border can be accurately estimated via
the CAV technology [27]. )en, the expected arrival time of
the j-th CAV arrival at the stop line of arm i can be estimated
by

t
a
ij � t

0
ij +

li

v
f
i

, ∀i ∈ I, j ∈Ni, (1)

where the red signal is defined as the cycle starts is shown in
Figure 2. )erefore, the number of CAVs arrival at this cycle

(Ni � |Ni|) is determined by the number of ta
ij, which is

determined by the arrival flow rate (λi).
)e analysis indicates that the optimal arrival time at the

stop line is determined by the expected arrival times, traffic
signals, and saturation flow rate. Taking the optimal arrival
time of the j-th CAV at each arm i as an example, it can be
divided into the following four cases.

(a) )e first CAV of a signal cycle at each arm i:

(i) If the expected arrival time of the first CAV is
during the red signal period, to minimize the
vehicle’s delay, the first CAV’s optimal arrival
time is equal to the start time of the green signal
in the next signal cycle.

(ii) If the expected arrival time of the first CAV is
during the green signal duration, to minimize
the vehicle’s delay, the first CAV’s optimal
arrival time is equal to the expected arrival
time.

(b) )e other CAVs of a signal cycle at each arm i: the
estimated arrival time is the sum of the optimal
arrival time of the preceding CAV and saturation
headway.

Table 1: Notation of major symbols used in this paper.

Symbol Description
Gasoline consumption
α )e parameter of gasoline consumption rate
M )e weight of the vehicle
β1 )e parameter relevant to the energy efficiency of the engine
β2 )e parameter associated with positive acceleration
v )e vehicle’s speed
a )e vehicle’s acceleration
P(t) )e power (kW) required to drive the vehicle

Traffic signals
I Set of arms at the intersection
S A signal timing plan
Gi )e effective green time for arm i

Ri )e effective red time for arm i

L )e lost time of a traffic signal cycle
li )e length of the control zone at arm i

v
f
i )e desired speed at each arm i, which is equal to free-flow speed
λi )e vehicle arrival rate at arm i

μi )e saturation flow rate at arm i

Gmin
i )e minimum green time duration for arm i

Gmax
i )e maximum green time duration for arm i

Vehicle trajectory
Ni )e set of CAVs arriving at the border of control zone at arm i

Xi )e set of CAVs trajectories functions at arm i

xij(tij) )e location of the j-th CAV at arm i at time tij

_xij(tij) )e speed of the j-th CAV at arm i at time tij

€xij(tij) )e acceleration of the j-th CAV at arm i at time tij

t0ij )e time of j-th CAV arriving at the border of control zone at arm i

ta
ij )e expected arrival time at the stop line of the j-th CAV at arm i

t
f
ij )e optimal arrival time at the stop line of the j-th CAV at arm i

τ )e delay of control and communication
s0 )e safety spacing between two consecutive CAVs
amin )e minimum acceleration of CAVs
amax )e maximum acceleration of CAVs
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(i) If the estimated arrival time is shorter than the
expected arrival time, the optimal arrival time is
equal to the expected arrival time at the stop line.

(ii) If the estimated arrival time is not shorter than
the expected arrival time, the optimal arrival
time is equal to the estimated arrival time.

t
f

ij �

t
f

i(j−1) +
1
μi

, if t
a
ij ≤ t

f

i(j−1) +
1
μi

t
a
ij, if t

a
ij > t

f

i(j−1) +
1
μi

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

, ∀i ∈ I, j ∈Ni∖ 1{ }.

(3)

3.3.2. Objective Function. (1) Vehicle’s Delay Function. )e
travel delay of each CAV is defined as the difference between
the actual and the free travel time. )e free and actual travel
time can be determined by (1) and (3), respectively. As a
result, the vehicle’s delay function for arm i is formulated as

Di S,Xi( 􏼁 �
1

Ni

􏽘
j∈Ni

t
f
ij − t

a
ij −

li

v
f
i

⎛⎝ ⎞⎠, ∀i ∈ I, (4)

where Di is the average vehicle’s delay for each arm i.
)erefore, the average vehicle’s delay for this intersection

is formulated as

D(S,X) �
1

􏽐i∈INi

􏽘
i∈I

􏽘
j∈Ni

t
f
ij − t

a
ij −

li

v
f
i

⎛⎝ ⎞⎠. (5)

(2) Gasoline Consumption Function. Gasoline consumption
is a function of instantaneous speed and acceleration of
vehicle [46–48], which is formulated as

F(v, a; t) �

α + β1RT(t)v(t) + max 0,
β2Ma

2
(t)v(t)

1000
􏼨 􏼩, if RT(t)> 0,

α, if RT(t)≤ 0,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(6)

where α represents constant idle fuel rate (ml/s), M rep-
resents the weight of the vehicle (kg), β1 and β2 represent the
efficiency parameters, a and v represent instantaneous ac-
celeration and speed of a vehicle, respectively, and RT(t)

represents total “tractive” force required to drive the vehicle,
which is defined as

RT(t) � b1 + b2v(t) + b3v
2
(t) +

Ma(t)

1000
+ 9.81 × 10− 5

MG.

(7)

where b1, b2, and b3 represent rolling, engine, and aerody-
namic drag, respectively; G is percent grade. Referring to
Akcelik [47], the calibrated parameters in (6) and (7) are M

� 1600 kg, G � 0, α � 0.666 ml/kJ, β1 � 0.0717ml/kJ, β2 �

0.0344ml/(kJ · m/s2), b1 � 0.269 kN, b2 � 0.0171 kN (m/ s2),
b3 � 0.000672.

)e average gasoline consumption function for arm i is
defined as

Gi S,Xi( 􏼁 �
1

Ni

􏽘
j∈Ni

􏽚
t
f

ij

t0
ij

F _xij(t), €xij(t); t􏼐 􏼑dt, ∀i ∈ I,

(8)

where Gi is the average gasoline consumption for arm i.
)erefore, the average gasoline consumption for this

intersection is formulated as

G(S,X) �
1

􏽐i∈INi

􏽘
i∈I

􏽘
j∈Ni

􏽚
t
f

ij

t0
ij

F _xij(t), €xij(t); t􏼐 􏼑dt.

(9)

3.3.3. Constrain Conditions

(1) Traffic Signals Constrain. )e green time duration
constraints: the green time duration of each arm i must be
between the minimum and maximum green time duration.

G
min
i ≤ Gi ≤G

max
i , ∀i ∈ I, (10)

where Gmin
i and Gmax

i are the minimum and maximum green
time duration for arm i, respectively.

:e Signal Cycle Constraint.)e sum-up of effective red
time duration for all phases must equal the sum up of
effective green time duration and constant lost time.

R1 + R2 � G1 + G2 + L. (11)

:e Unsaturated Traffic Flow Constraint. )e maxi-
mum number of the departure CAVs must not be
smaller than the number of the arrival CAVs for each
arm i.

λi Ri + Gi( 􏼁≤ μiGi, ∀i ∈ I. (12)

(2) Vehicle Trajectories Constrain. Dynamic state constraint:
at arm i, the position, velocity, and acceleration of the j-th
CAV at any time should satisfy the following dynamic
equations.

_xij(t) �
dxij(t)

dt
, ∀t ∈ t

0
ij, t

f
ij􏽨 􏽩, i ∈ I, j ∈Ni,

€xij

(t) �
d _xij(t)

dt
, ∀t ∈ t

0
ij, t

f
ij􏽨 􏽩, i ∈ I, j ∈Ni. (13)
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Initial Boundary Constraint. At arm i, the position,
velocity, and acceleration of the j-th CAV at start time
are given by the assumptions [27].

xij t
0
ij􏼐 􏼑 � 0, ∀i ∈ I, j ∈Ni,

_xij t
0
ij􏼐 􏼑 � v

f
i , ∀i ∈ I, j ∈Ni,

€xij

t
0
ij􏼐 􏼑 � 0, ∀i ∈ I, j ∈Ni.

(14)

Final Boundary Constraint. At arm i, the position,
velocity, and acceleration of the j-th CAV at end time
are given by the assumptions [27].

xij t
f
ij􏼐 􏼑 � li, ∀i ∈ I, j ∈Ni,

_xij t
f
ij􏼐 􏼑 � v

f
i , ∀i ∈ I, j ∈Ni,

€xij

t
f
ij􏼐 􏼑 � 0, ∀i ∈ I, j ∈Ni.

(15)

Consecutive Vehicle Position Constraint. )e adjacent
CAVs must meet the specific safety headway because of
control and communication delay. )e headway be-
tween vehicle (j − 1)’s location with a control and
communication delay τ ago xi(j−1)(t − τ) and vehicle
j’s location, xij(t) is no less than s0 in time interval
[t0i(j−1), t

f

ij].

xi(j−1)(t − τ) − xij(t)≥ L + s0, ∀i ∈ I, n ∈Ni∖ 1{ }, tij ∈ t
0
i(j−1), t

f
ij􏽨 􏽩,

(16)

where τ is control and communication delay, s0 is the
safety spacing between two adjacent CAVs, andL is the
length of CAVs.
Speed Constraint. )e speed of all CAVs cannot go
beyond the free speed limit.

0≤ _xij(t)≤ v
f
i , ∀t ∈ t

0
ij, t

f
ij􏽨 􏽩, i ∈ I, j ∈Ni. (17)

Acceleration Constraint. )e acceleration of all CAVs
must be between the minimum and maximum
acceleration.

amin ≤ €xij (t)≤ amax, ∀t ∈ t
0
ij, t

f
ij􏽨 􏽩, i ∈ I, j ∈Ni, (18)

where amin and amax are the minimum and maximum ac-
celeration, respectively.

3.4. SolutionMethod. In this study, a dynamic programming
(DP) algorithm and the GPOPS are adopted to solve the
traffic signal timing problem and multiple vehicle trajec-
tories planning problem, respectively.

3.4.1. Dynamic Programming. Many DP-based traffic signal
timing methods have been developed [8, 9, 49]. In the DP
algorithm, state variables and decision variables are the key
parameters. Equations (19)–(20) illustrate the relationship
between the two parameters; see more details in [49].

sp � sp−1 + h xp􏼐 􏼑, (19)

h xp􏼐 􏼑 �
0, if xp � 0,

xp + rp, otherwise,
􏼨 (20)

where sp is the total number of time intervals from the
beginning stage to the end of stage p and xp and rp are the
green and the clearance time intervals of the stage p.

When the state variable sp is given, the feasible set of
decision variables can be calculated by

Xp sp􏼐 􏼑 �

0, if sp − rp <xmin,

xmin, xmin + 1, . . . , xmax􏼈 􏼉, if sp − rp ≥xmin andT − sp−1 − rp > xmax,

xmin, xmin + 1, . . . , T − sp−1 − rp􏽮 􏽯 if T − sp−1 − rp ≤ xmax.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(21)

After determining Xp(sp), DP is adopted to search for
the optimal decision variables xp. )e DP algorithm consists
of two recursions; the first recursion obtains the optimal
objective function in every time interval; the second re-
cursion searches the decision variables corresponding to the
optimal objective.

3.5. Forward Recursion

(i) Step 1: Set initial stage p � 1, state variable sp−1 � 0,
and value function vp(sp−1) � 0.

(ii) Step 2: For sp � 1, 2, . . . , T{

vp(sp) � min fp(sp, xp) + vp−1(sp−1)|xp ∈ Xp(sp)􏽮 􏽯

x∗p(sp) �

argminxp
fp(sp, xp) + vp−1(sp−1)|xp ∈ Xp(sp)􏽮 􏽯

Record x∗p(sp) and vp(sp) as the optimal solution
and value function}.

(iii) Step 3: If (p< |P|), letp � p + 1, and go to Step 2.
Else if (vp−k(T) � vp(T)) for all k≤ |P| − 1, STOP.
Else p � p + 1, go to Step 2.

)e first recursion starts with stage 1 and the cumulative
value function as 0. For each stage, the DP searches the
optimal solution x∗p(sp) with a given state variable sp. )e
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objective function fp(sp, xp) is determined by the expected
arrival time (1) of all CAVs. )e stop criteria for the first
recursion are derived from Sen and Head [49]. Besides, the
number of phases |P| is 2 in this study, which contains the
east-west phase and the north-south phase.

3.6. Backward Recursion. After optimal value function is
determined, the optimal decision x∗p(sp) of each stage can be
retrieved in the second recursion as follows.

(i) Step 1: Set the optimal stages as J, and the optimal
state variable s∗J−1 � T.

(ii) Step 2: For p � J − 1, J − 2, . . . , 1{
Finding x∗p(s∗p) from the records of Forward
recursion.
If (j> 1), s∗p−1 � s∗p − hp(x∗p(s∗p))}.

3.6.1. General Pseudospectral Optimal Control Method.
As an optimal control problem, the vehicle trajectories
planning can be handled numerically by GPOPS [30], which
is widely used in vehicle trajectory optimization [25, 32, 33].
)erefore, the GPOPS is used to solve the optimal control
problem for multiple CAVs trajectory planning.

3.6.2. Solution Algorithm. In summary, the two-level opti-
mization algorithm is as follows. (i.e., Algorithm 1).

4. Numerical Studies

4.1. Simulation Settings. )e simulation duration of every
scenario with a different traffic volume is 900 seconds. Every
scenario is repeated five times with different random seeds.
Besides, vehicle arrival conforms to the Poisson distribution
[8, 21, 29].

In signal optimization, a four-arm and two phases of a
cycle are selected. )e time planning horizon is Tp � 50 s.
)eminimum andmaximum green time are Gmin

i � 15 s and
Gmax

i � 30 s, respectively. )e lost time of each phase
(L/2) � 1 s. )e length of the control zone at each arm
li � 300m, and the free flow and the desired speed at each
arm v

f
i � 15m/s. )e saturation flow rate of each arm

μi � 1 veh/s, which must be less than 1/(s0/v
f
i ) � 3 veh/s in

this study.
In the vehicle trajectories planning, the delay of control

and communication τ � 0.1 s. )e safety spacing between
two consecutive CAVs s0 � 5m. )e length of CAVs
L � 5 m. )e minimum and maximum acceleration are
amin � −6m/s2 and amax � 3m/s2, respectively.

4.2. Results and Discussions. )e two-level integrated opti-
mization model, denoted as “IO”, is compared with Signal-
fixed. )ree volume levels, namely, 600, 800, and 1200 vph,
are created in this study [50]. )e demands in the two
approaches (i.e., arm 1 and 3, arm 2 and 4) are set to be the
same. To consider the difference in traffic between the two
directions, we designed four scenarios, including two

balanced and two unbalanced flows. In the “IO” control,
vehicle trajectories are optimized by GPOPS [30], and the
DP algorithm optimizes the signal timing plan in different
scenarios. In the “Signal-fixed” control, vehicle trajectories
are optimized by GPOPS [30], and the signal timing plan is
optimized by Synchro [51] in different scenarios. Specifi-
cally, the signal parameters setup is the same as “IO” (e.g.,
the lost time of each phase, the saturation flow rate, and the
minimum and maximum green time). )e average vehicle’s
delay and gasoline consumption of 4 scenarios with different
traffic demands are shown in Table 2. Besides, all CAVs
trajectories and traffic signal plans can be obtained. Figure 3
shows vehicle trajectories for 4 scenarios with different
demand.

As shown in Table 2, there are four scenarios, namely,
1200/1200, 1200/800, 800/800, and 800/600 vph. )e sim-
ulation results show a significant decrease in the average
vehicle’s delay and gasoline consumption when IO control is
applied. Compared with the Signal-fixed, the reduced av-
erage vehicle’s delay with four scenarios are 26.91%, 15.57%,
24.17%, and 21.77%, and the reduced gasoline consumption
with four scenarios are 10.38%, 5.30%, 8.50%, and 7.15%. In
other words, the proposed integrated optimization method
can averagely improve the transportation efficiency by
21.77% and decrease gasoline consumption by 7.83%,
compared with Signal-fixed control in these studied sce-
narios, respectively.

Figure 3 shows that all CAVs pass through the inter-
section at free speed without stopping. )erefore, no CAVs
are queuing at the stop line of the intersection. Furthermore,
this method eliminates the loss of green start-up time
compared with no trajectory optimization, and more ve-
hicles can pass through the intersection in the same green
interval. Besides, compared with Signal-fixed control, IO
control has a smaller vehicle delay and gasoline consump-
tion. )is indicates that the integrated optimization method
can better consider traffic signal and vehicle trajectories
optimization, thus further reducing the average vehicle’s
delay and gasoline consumption, compared with Signal-
fixed control. In addition, the minimum green time duration
is considered in this study.)erefore, a part of the green time
duration of the phase is wasted in Figure 3.

4.3. Sensitivity Analysis. In this study, the minimum green
time (Gmin

i ) and free-flow speed (vf
i ) are the most critical

parameters. )erefore, we have carried on the analysis and
the discussion of these two parameters.

4.3.1. Minimum Green Time. Minimum green time is to
ensure the safety of drivers and pedestrians. A minimum
green time that is too long may result in increased delay; one
that is too short may violate pedestrian needs. )erefore,
different geometric shapes of intersections can set different
minimum green time. To avoid the influence of other pa-
rameters, scenario one (1200/1200 vph) is selected as a
sensitivity analysis of the minimum green time. In the
sensitivity analysis, Gmin

i varies from 10 s to 20 s with an
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increment of 1 s. )e sensitivity analysis result is shown in
Figure 4.

As shown in Figure 4, the sensitivity analysis result
shows that a shorter minimum green time results in a
significantly less average vehicle’s delay and gasoline con-
sumption under IO control. In the unsaturated traffic flow, a
shorter minimum green time can ensure that CAVs pass
through intersections faster, resulting in less travel time,
deceleration, and acceleration. )is is because a shorter
minimum green time helps avoid the waste of green time
caused by the random arrival of vehicles, especially in low
traffic flow rates. As a result, there are a smaller average
vehicle’s delay and lower gasoline consumption.

4.3.2. Free-Flow Speed. )e free-flow speeds influence CAVs
arrival time, which is an essential parameter for traffic signal
optimization and trajectories planning of this study. Sce-
nario no.1 (1200/1200 vph) is selected as a sensitivity analysis
of the free-flow speeds. In the sensitivity analysis, v

f
i is from

10m/s to 20m/s in steps of 1m/s. )e sensitivity analysis
result is shown in Figure 5.

)e sensitivity analysis (Figure 5) shows that the average
vehicle’s delay decreases with free-flow speed. )is indicates
that a more significant free speed resulting in shorter travel
times of CAVs would lead to smaller vehicle delays.
However, Figure 5 indicates the average gasoline con-
sumption decreases with free-flow speed (10–13m/s) before
reaching the lowest point when the free speed is 13m/s and
then starts to increase. )is suggests an optimal free-flow

speed to minimize the average gasoline consumption, and
the optimal free-flow speed is 13m/s in this scenario.

5. Conclusions and Future Work

)is study developed a two-level model for traffic signal
timing and trajectories planning of multiple connected
automated vehicles considering the random arrival of ve-
hicles. Based on the numerical experiments, the following
conclusions can be drawn:

(1) Compared with the Signal-fixed, the reduced average
vehicle’s delays with four scenarios are 26.91%,
15.57%, 24.17%, and 21.77%, and the reduced gas-
oline consumption with four scenarios are 10.38%,
5.30%, 8.50%, and 7.15%.

(2) )e proposed two-level model could reduce both
vehicle’s delay and gasoline consumption by 26.91%
and 10.38%, compared with Signal-fixed control in
these studied scenarios, respectively.

(3) Sensitivity analysis suggests that the minimum green
time and free speed have a significant impact on the
two-level model’s performance.

(4) A shorter minimum green time results in a signifi-
cantly less average vehicle’s delay and gasoline
consumption. )e optimal free-flow speed is 13m/s
in the study scenario.

In the current work, this work applied the proposed
model to a single intersection, similar to vehicle merging

Initialize:
(1)Set the total simulation time as T, the time planning horizon as Tp, the current time as Tc � 0, L, λi, μi, Gmin

i , Gmax
i , li, v

f
i in arm

i,∀i ∈ I.
(2)Simulate the arrival times of CAVs at arm i,∀i ∈ I.

Iterate:
(3) While Tc + Tp ≤T do
(4) Get the arrival times (t0ij, ∀i ∈ I, j ∈Ni) of CAVs in time planning horizon [Tc, Tc + Tp].
(5) Calculate ta

ij, ∀i ∈ I, j ∈Ni based on equation (1).
(6) Optimize the traffic signal timing plan by DP algorithm.
(7) For Each signal cycle do
(8) Obtain signal time plan S.
(9) For i � 1⟶ 4 do
(10) Obtain Ni, t0ij, ta

ij, ∀i ∈ I, j ∈Ni.
(11) Calculate t

f
ij, ∀i ∈ I, j ∈Ni.

(12) Optimize the j-th CAV trajectory by GPOPS.
(13) Save the vehicle trajectories Xi for the i arm.
(14) Calculate Gi and Di.
(15) End
(16) Calculate D and G.
(17) End
(18) Save vehicle trajectories, signal timing plan, gasoline consumption, and average delay at the current time planning horizon

[Tc, Tc + Tp].
(19) Tc � Tc + Tp

(20) End
Output:

(21) Output vehicle trajectories, signal timing plan, gasoline consumption, and average delay at the total time planning horizon [0, T].

ALGORITHM 1
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Figure 3: Continued.
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Figure 3: Trajectories of CAVs in arm 1 and 2 as an example. (a) 1200/1200 vph. (b) 1200/800 vph. (c) 800/800 vph. (d) 800/600 vph.

10 Journal of Advanced Transportation



behavior [50, 52, 53]. We will improve the proposed model
and apply it to multiple intersections or a traffic network in
the next step.

Data Availability

)e data used to support the findings of this study are in-
cluded within the article.

Conflicts of Interest

)e authors declare that they have no conflicts of interest.

Acknowledgments

)is work are supported by the National Natural Science
Foundation of China (no. 52002339), the Science and
Technology Program of Sichuan Province (2021YJ0535), and
the Fundamental Research Funds for the Central Univer-
sities (2682021CX058).

References

[1] W. Li and X. Ban, “Connected vehicles based traffic signal
timing optimization,” IEEE Transactions on Intelligent
Transportation Systems, vol. 20, no. 12, pp. 4354–4366, 2019.

[2] Z. Yao, B. Zhao, T. Yuan, H. Jiang, and Y. Jiang, “Reducing
gasoline consumption inmixed connected automated vehicles
environment: a joint optimization framework for traffic
signals and vehicle trajectory,” Journal of Cleaner Production,
vol. 265, Article ID 121836, 2020.

[3] B. Schneider,New Study of Global Traffic Reveals that Traffic is
Bad, City Lab, Los Angeles, CA, USA, 2018.

[4] Z. Li, P. Liu, C. Xu, H. Duan, and W. Wang, “Reinforcement
learning-based variable speed limit control strategy to reduce
traffic congestion at freeway recurrent bottlenecks,” IEEE
Trans. Intell. Transport. Syst.vol. 18, no. 11, pp. 3204–3217,
2017.

[5] Q.Wan, G. Peng, Z. Li, and F. H. T. Inomata, “Spatiotemporal
trajectory characteristic analysis for traffic state transition
prediction near expresswaymerge bottleneck,” Transportation
Research Part C: Emerging Technologies, vol. 117, Article ID
102682, 2020.

[6] A. H. F. Chow, S. Li, and R. Zhong, “Multi-objective optimal
control formulations for bus service reliability with traffic
signals,” Transportation Research Part B: Methodological,
vol. 103, pp. 248–268, 2017.

[7] F. V Webster, Traffic Signal Settings, Department of Scientific
and Industrial Research, London, UK, 1958.

[8] Y. Feng, C. Yu, and H. X. Liu, “Spatiotemporal intersection
control in a connected and automated vehicle environment,”

Transportation Research Part C: Emerging Technologies,
vol. 89, pp. 364–383, 2018.

[9] Y. Feng, K. L. Head, S. Khoshmagham, and M. Zamanipour,
“A real-time adaptive signal control in a connected vehicle
environment,” Transportation Research Part C: Emerging
Technologies, vol. 55, pp. 460–473, 2015.

[10] Y. Feng, M. Zamanipour, K. L. Head, and S. Khoshmagham,
“Connected vehicle-based adaptive signal control and appli-
cations,” Transportation Research Record: Journal of the
Transportation Research Board, vol. 2558, no. 1, pp. 11–19, 2016.

[11] B. Beak, K. L. Head, and Y. Feng, “Adaptive coordination
based on connected vehicle technology,” Transportation Re-
search Record: Journal of the Transportation Research Board,
vol. 2619, no. 1, pp. 1–12, 2017.

[12] J. Lee, B. Park, I. Yun, and I. Yun, “Cumulative travel-time
responsive real-time intersection control algorithm in the
connected vehicle environment,” Journal of Transportation
Engineering, vol. 139, no. 10, pp. 1020–1029, 2013.

[13] C. Priemer and B. Friedrich, “A decentralized adaptive traffic
signal control using v2i communication data,” in Proceedings
of the 2009 12th International IEEE Conference On Intelligent
Transportation Systems, pp. 765–770, St. Louis, MO, USA,
October 2009.

[14] Z. Yao, H. Jiang, Y. Cheng, Y. Jiang, and B. Ran, “Integrated
schedule and trajectory optimization for connected auto-
mated vehicles in a conflict zone,” IEEE Transactions on
Intelligent Transportation Systems, vol. 40, pp. 1–11, 2020.

[15] F. Zhu and S. V. Ukkusuri, “A linear programming formu-
lation for autonomous intersection control within a dynamic
traffic assignment and connected vehicle environment,”
Transportation Research Part C: Emerging Technologies,
vol. 55, pp. 363–378, 2015.

[16] X. Zeng, X. Sun, Y. Zhang, and L. Quadrifoglio, “Person-based
adaptive priority signal control with connected-vehicle in-
formation,” Transportation Research Record: Journal of the
Transportation Research Board, vol. 2487, no. 1, pp. 78–87,
2015.

[17] E. Bagheri, B. Mehran, B. Hellinga, and Bruce, “Real-time
estimation of saturation flow rates for dynamic traffic signal
control using connected-vehicle data,” Transportation Re-
search Record: Journal of the Transportation Research Board,
vol. 2487, no. 1, pp. 69–77, 2015.

[18] K. Tiaprasert, Y. Zhang, X. B. Wang, and X. Zeng, “Queue
length estimation using connected vehicle technology for
adaptive signal control,” IEEE Transactions on Intelligent
Transportation Systems, vol. 16, no. 4, pp. 2129–2140, 2015.

[19] K. Yang, S. I. Guler, and M. Menendez, “A transit signal
priority algorithm under connected vehicle environment,” in
Proceedings of the 2015 IEEE 18th International Conference on
Intelligent Transportation Systems, pp. 66–70, Gran Canaria,
Spain, October 2015.

[20] Y. Wang, W. Ma, W. Yin, and X. Yang, “Implementation and
testing of cooperative bus priority system in connected vehicle

Table 2: )e average vehicle’s delay and gasoline consumption in different scenarios.

λ1 (vph) λ2 (vph)
Delay (s/veh) Gasoline consumption (mL/veh)

IO Signal-fixed Decrease IO Signal-fixed Decrease

1200 1200 5.8598 8.0169 −26.91% 25.0633 27.9663 −10.38%
1200 800 5.4404 6.4440 −15.57% 24.3265 25.6891 −5.30%
800 800 5.0441 6.6516 −24.17% 23.2960 25.4607 −8.50%
800 600 4.9859 6.2673 −20.45% 23.2806 25.0732 −7.15%
Average 5.3326 6.8450 −21.77% 23.9916 26.0473 −7.83%

Journal of Advanced Transportation 11



environment,” Transportation Research Record: Journal of the
Transportation Research Board, vol. 2424, no. 1, pp. 48–57,
2014.

[21] H. Jiang, J. Hu, S. An, M. Wang, and B. B. Park, “Eco
approaching at an isolated signalized intersection under
partially connected and automated vehicles environment,”
Transportation Research Part C: Emerging Technologies,
vol. 79, pp. 290–307, 2017.

[22] N. Wan, A. Vahidi, and A. Luckow, “Optimal speed advisory
for connected vehicles in arterial roads and the impact on
mixed traffic,” Transportation Research Part C: Emerging
Technologies, vol. 69, pp. 548–563, 2016.

[23] Y. Wei, C. Avcı, J. Liu et al., “Dynamic programming-based
multi-vehicle longitudinal trajectory optimization with sim-
plified car following models,” Transportation Research Part B:
Methodological, vol. 106, pp. 102–129, 2017.

[24] A. Omidvar, M. Pourmehrab, P. Emami et al., “Deployment
and testing of optimized autonomous and connected vehicle
trajectories at a closed-course signalized intersection,”
Transportation Research Record: Journal of the Transportation
Research Board, vol. 2672, no. 19, pp. 45–54, Article ID
036119811878279, 2018.

[25] W. Zhao, D. Ngoduy, S. Shepherd, R. Liu, and
M. Papageorgiou, “A platoon based cooperative eco-driving
model for mixed automated and human-driven vehicles at a
signalised intersection,” Transportation Research Part C:
Emerging Technologies, vol. 95, pp. 802–821, 2018.

[26] X. He and X. Wu, “Eco-driving advisory strategies for a
platoon of mixed gasoline and electric vehicles in a connected
vehicle system,” Transportation Research Part D: Transport
and Environment, vol. 63, pp. 907–922, 2018.

[27] A. Ghiasi, X. Li, Z. Huang, and X. Qu, “A joint trajectory and
signal optimization model for connected automated vehicles,”
in Proceedings of the Transportation Research Board 98th
Annual Meeting, pp. 1–10, Washington, DC, USA, January
2019.

[28] B. Xu, X. J. Ban, Y. Bian et al., “Cooperative method of traffic
signal optimization and speed control of connected vehicles at
isolated intersections,” IEEE Transactions on Intelligent
Transportation Systems, vol. 20, no. 4, pp. 1390–1403, 2019.

[29] C. Yu, Y. Feng, H. X. Liu, W. Ma, and X. Yang, “Integrated
optimization of traffic signals and vehicle trajectories at
isolated urban intersections,” Transportation Research Part B:
Methodological, vol. 112, pp. 89–112, 2018.

[30] A. V. Rao, D. A. Benson, C. Darby et al., “Acm transactions on
mathematical software Algorithm 902,” GPOPS , A MATLAB
Software for Solving Multiple-Phase Optimal Control Problems
Using the Gauss Pseudospectral Method, vol. 37, no. 2,
pp. 1–39, 2011.

[31] L. Li and X. Li, “Parsimonious trajectory design of connected
automated traffic,” Transportation Research Part B: Method-
ological, vol. 119, pp. 1–21, 2019.

[32] X. He, H. X. Liu, and X. Liu, “Optimal vehicle speed trajectory
on a signalized arterial with consideration of queue,”
Transportation Research Part C: Emerging Technologies,
vol. 61, pp. 106–120, 2015.

[33] X. Wu, X. He, G. Yu, A. Harmandayan, and Y. Wang,
“Energy-optimal speed control for electric vehicles on sig-
nalized arterials,” IEEE Transactions on Intelligent Trans-
portation Systems, vol. 16, no. 5, pp. 2786–2796, 2015.

[34] X. T. Yang, K. Huang, Z. Zhang, Z. A. Zhang, and F. Lin, “Eco-
driving system for connected automated vehicles: multi-ob-
jective trajectory optimization,” IEEE Transactions on Intel-
ligent Transportation Systems, vol. 1, no. 1–13, 2021.

[35] N. J. Goodall, B. L. Smith, B. Park, and Park, “Traffic signal
control with connected vehicles,” Transportation Research
Record: Journal of the Transportation Research Board,
vol. 2381, no. 1, pp. 65–72, 2013.

[36] X. Li, A. Ghiasi, Z. Xu, and X. Qu, “A piecewise trajectory
optimization model for connected automated vehicles: exact
optimization algorithm and queue propagation analysis,”
Transportation Research Part B: Methodological, vol. 118,
pp. 429–456, 2018.

[37] R. Niroumand, M. Tajalli, L. Hajibabai, and A. Hajbabaie,
“Joint optimization of vehicle-group trajectory and signal
timing: introducing the white phase for mixed-autonomy
traffic stream,” Transportation Research Part C Emerging
Technologies, vol. 116, Article ID 102659, 2020.

[38] X. Chang, J. Rong, H. Li, Y. Wu, and X. Zhao, “Impact of
connected vehicle environment on driving performance: a
case of an extra-long tunnel scenario,” IET Intelligent
Transport Systems, vol. 15, no. 3, pp. 423–431, 2021.

[39] G. Li, S. Fang, J. Ma, and J. Cheng, “Modeling merging ac-
celeration and deceleration behavior based on gradient-
boosting decision tree,” Journal of Transportation Engineering,
Part A: Systems, vol. 146, no. 7, Article ID 05020005, 2020.

[40] G. Li, Z. Yang, Q. Yu, J. Ma, and S. Fang, “Characterizing
heterogeneity among merging positions: comparison study
between random parameter and latent class Accelerated
hazard model,” Journal of Transportation Engineering, Part A:
Systems, vol. 147, no. 6, 2021.

[41] Z. Yao, L. Shen, R. Liu, Y. Jiang, and X. Yang, “A dynamic
predictive traffic signal control framework in a cross-sectional
vehicle infrastructure integration environment,” IEEE
Transactions on Intelligent Transportation Systems, vol. 21,
no. 4, pp. 1455–1466, 2020.

[42] Z. Yao, Y. Jiang, B. Zhao, X. Luo, and B. Peng, “A dynamic
optimization method for adaptive signal control in a con-
nected vehicle environment,” Journal of Intelligent Trans-
portation Systems, vol. 24, no. 2, pp. 184–200, 2020.

[43] Z. Yao, R. Hu, Y. Jiang, and T. Xu, “Stability and safety
evaluation of mixed traffic flow with connected automated
vehicles on expressways,” Journal of Safety Research, vol. 75,
pp. 262–274, 2020.

[44] Z. Yao, R. Hu, Y. Wang, Y. Jiang, B. Ran, and Y. Chen,
“Stability analysis and the fundamental diagram for mixed
connected automated and human-driven vehicles,” Physica A:
Statistical Mechanics and Its Applications, vol. 533, Article ID
121931, 2019.

[45] Z. Yao, T. Xu, Y. Jiang, and R. Hu, “Linear stability analysis of
heterogeneous traffic flow considering degradations of con-
nected automated vehicles and reaction time,” Physica A:
Statistical Mechanics and Its Applications, vol. 561, Article ID
125218, 2021.

[46] J. N. Hooker, “Optimal driving for single-vehicle fuel econ-
omy,” Transportation Research Part A: General, vol. 22, no. 3,
pp. 183–201, 1988.

[47] R. Akcelik, “Efficiency and drag in the power-based model of
fuel consumption,” Transportation Research Part B: Meth-
odological, vol. 23, no. 5, pp. 376–385, 1989.

[48] K. Ahn, Microscopic Fuel Consumption and Emission
Modeling, ” Virginia Polytechnic Institute and State Uni-
versity, Blacksburg, VA, USA, 1998.

[49] S. Sen and K. L. Head, “Controlled optimization of phases at
an intersection,” Transportation Science, vol. 31, no. 1,
pp. 5–17, 1997.

[50] G. Li and J. Cheng, “Exploring the effects of traffic density on
merging behavior,” IEEE Access, vol. 7, pp. 51608–51619, 2019.

12 Journal of Advanced Transportation



[51] D. Husch and A. John, Synchro 6: Traffic Signal Software, User
Guide, Trafficware, Albany, CA, USA, 2003.

[52] G. Li, J. Ma, and Q. Shen, “Modeling of merging decision
during execution period based on random forest,” Journal of
Advanced Transportation, vol. 2021, Article ID 6654096,
11 pages, 2021.

[53] G. Li, Y. Pan, Z. Yang, and J. Ma, “Modeling vehicle merging
position selection behaviors based on a finite mixture of linear
regression models,” IEEE Access, vol. 7, pp. 158445–158458,
2019.

Journal of Advanced Transportation 13



Research Article
Map Matching for Fixed Sensor Data Based on Utility Theory

Kangkang He,1 Qi Cao,1 Gang Ren ,1 Dawei Li,1 and Shuichao Zhang2

1School of Transportation, Southeast University, Nanjing 211189, China
2School of Civil and Transportation Engineering, Ningbo University of Technology, Ningbo 315211, China

Correspondence should be addressed to Gang Ren; rengang@seu.edu.cn

Received 14 January 2021; Revised 20 February 2021; Accepted 5 March 2021; Published 27 March 2021

Academic Editor: Hai Ying Li

Copyright © 2021 Kangkang He et al.+is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Map matching can provide useful traffic information by aligning the observed trajectories of vehicles with the road network on a
digital map. It has an essential role in many advanced intelligent traffic systems (ITSs). Unfortunately, almost all current map-
matching approaches were developed for GPS trajectories generated by probe sensors mounted in a few vehicles and cannot deal
with the trajectories of massive vehicle samples recorded by fixed sensors, such as camera detectors. In this paper, we propose a
novel map-matching model termed Fixed-MM, which is designed specifically for fixed sensor data. Based on two key observations
from real-world data, Fixed-MM considers (1) the utility of each path and (2) the travel time constraint to match the trajectories of
fixed sensor data to a specific path. Meanwhile, with the laws derived from the distribution of GPS trajectories, a path generation
algorithm was developed to search for candidates. +e proposed Fixed-MM was examined with field-test data. +e experimental
results show that Fixed-MM outperforms two types of classical map-matching algorithms regarding accuracy and efficiency when
fixed sensor data are used. +e proposed Fixed-MM can identify 68.38% of the links correctly, even when the spatial gap between
the sensor pair is increased to five kilometers. +e average computation time spent by Fixed-MM on one point is only 0.067 s, and
we argue that the proposed method can be used online for many real-time ITS applications.

1. Introduction

Mapmatching is the process of correctly identifying the path
on which a vehicle is travelling [1]. It provides a promising
opportunity to upgrade the service level of various intelligent
traffic system (ITS) applications [2–4]. However, the current
map-matching algorithms are generally designed for satel-
lite-based GPS points that are provided by probe sensors
mounted on probe vehicles. +ese probe vehicles provide
spatial traffic information and direct measurements of travel
time to monitor the traffic conditions in a citywide road
network.

However, probe sensor data have limitations. +e cost of
purchasing GPS units and transferring data can severely
limit the scale of probe samples. Only a biased estimation of
the traffic information can be obtained because the probe
data are usually collected from one type of vehicle, such as
taxis. Additionally, a probe sensor system imposes an
enormous computational burden on the system

administration owing to high polling frequency and posi-
tional noise [5].

Fixed sensor data show the potential to overcome the
issues existing in the probe sensor data. Fixed sensors, such
as cameras, loops, and microwaves, are widely used in urban
traffic monitoring and management (with the development
of ITS technology, camera sensors have been improved in
terms of accuracy, cost, and ease of use. +erefore, the fixed
sensor data considered in this paper refer specifically to the
observations collected through camera-based sensors). +e
transit information of every vehicle approaching the fixed
sensor station is captured. Consequently, the movement
patterns of almost all vehicles running on a road network
with fixed sensors can be recorded. +is provides oppor-
tunities to reduce the estimation bias in traffic information.
+e fixed sensor system may also improve the efficiency of
the map-matching process with a reduced polling frequency
and more accurate location record, even for a large-scale
urban traffic system.
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Many map-matching methods have been developed, and
their reviews can be found in [1, 6]. Quddus et al. classified
the methods into four categories: geometric, topological,
probabilistic, and advanced. However, such approaches can
only perform well with high-frequency GPS data and may
become less effective for low-frequency trajectory data [6].
In recent years, two groups of methods, namely, HMM-
based algorithms and ST-Matching algorithms, have been
developed to deal with the sparsity issue of low-polling
frequency trajectory data.

(i) HMM-based algorithms: Newson and Krumm [7]
introduced a two-step map-matching algorithm
based on a hidden Markov chain for a sparse GPS
trajectory, called the HMM algorithm. First, this
method finds a set of candidate links for each GPS
point and defines a measurement probability to
describe how the GPS point is aligned with each
candidate link. +en, it connects each pair of con-
secutive candidate links with the shortest path to
generate the candidate graph. Next, a transition
probability defines the likelihood of the tracking
vehicle moving along each candidate path. Finally,
the best matching path sequence is identified using
the Viterbi algorithm.+e experimental results show
that even with sampling intervals of 30 s, the accu-
racy of this algorithm is barely degraded. However, it
has high computational complexity and becomes
slow when working with long trajectories and ex-
tended search radii. Mohamed et al. [8] employed
three filters (i.e., speed, direction, and α-trimmed
mean filters) to reduce the candidate sets for im-
proving the efficiency of the map-matching process.
Koller et al. [9] proposed a fast-HMM algorithm that
replaces the Viterbi algorithm with the bidirectional
Dijkstra to determine the optimal map-matching
solution. +is algorithm can avoid up to 45% of the
costly routing operations without negatively affect-
ing the map-matching result. Han et al. [10] parti-
tioned road networks into approximate segments
and then indexed the approximate segments into an
optimised packed R tree to improve the road-net-
work search duration. It has also been argued that
mobility in a road network is non-Markovian.
Jagadeesh and Srikanthan [11] complemented the
HMM algorithms with the concept of drivers’ route
choice.+e results show that this improves matching
accuracy further, especially at high levels of noise.

(ii) ST-Matching algorithms: Lou et al. [12] introduced a
map-matching algorithm for low-polling frequency
GPS trajectories based on both spatial and temporal
analysis, called ST-Matching. It modelled temporal
analysis using speed and travel time data to improve
its accuracy. +e experimental results show that ST-
Matching is more robust to the decrease in sampling
rate than the map-matching algorithm using only
spatial information, indicating that temporal con-
straints are indeed useful in map matching with
sparse trajectory data. Considering that this method

cannot handle the matching error well at junctions,
Hsueh and Chen [13] introduced directional analysis
to ST-Matching, called STD-Matching. It employs
real-time directional motion with the directional
analysis function to reflect the influence of a user’s
true movement over the GPS trajectories. +e ex-
perimental results demonstrate that the STD-
Matching algorithm significantly improves the
matching accuracy. Liu et al. [14] proposed a spatial
and temporal conditional random field map-
matching method called the ST-CRF algorithm. +e
ST-CRF model considers both spatial and temporal
accessibility between two GPS points, in addition to
consistency in the direction of travel. A series of
experiments showed that the ST-CRF method has
better performance and robustness and solves the
“label-bias” problem in the HMM algorithm.

+e above-mentioned map-matching algorithms are
mainly designed for low-frequency probe sensor data, such
as GPS trajectories. +ey may become less effective for fixed
sensor data because the fixed sensor data differ from probe
sensor data in at least two aspects:

(a) +e fixed sensor data are much sparser than the
probe sensor data. As shown in Figure 1(a), the
distance between consecutive points recorded by
fixed sensors is usually dozens of times that recorded
by the probe sensor. Hence, there are too many
possible paths to be matched between neighbouring
fixed sensors. If only the shortest path length is
considered (as in the current map-matching algo-
rithms developed for probe sensors), the realistic
paths may not be adequately evaluated.

(b) +e positions provided by the fixed sensors are fixed
and accurate, while the probe sensors move along
with the probe vehicle and generate GPS points with
random errors [15]. Figure 1(b) presents a micro-
scopic view of the trajectories between the fixed
sensors 20200906 and 10203801. One easily finds
that the fixed sensor data (green points) are located
accurately on the road links, and the probe sensor
data (red points) are always positioned several
meters away from the true path.

In this study, we developed a map-matching algorithm
designed specifically for fixed sensor data, called Fixed-MM.
For this purpose, the conventional map-matching models
for probe sensor data are abbreviated as Probe-MM. +e
contributions of Fixed-MM can be summarised as follows:

(a) It combines both route choice preferences and
temporal constraints to identify the true path of the
fixed sensor data. +e experimental results show that
the proposed method significantly improves the
matching accuracy.

(b) Fixed-MM developed a candidate-path generation
algorithm to search for a realistic path by relaxing the
assumption that the location of each point is noisy.
In this manner, the time-consuming candidate-path
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generation process can be conducted separately and
in parallel, and average computation time of the
matching process for a point is reduced to 0.067 s.

+e remainder of this paper is organised as follows. +e
problem definition and overview of the framework are
presented in the Preliminaries section. +en, the Fixed-MM
algorithm and candidate-path set generation algorithm are
proposed in the Methodology section. +e Experiment
section details the process and presents the experimental
results. Finally, we conclude the paper in the last section.

2. Preliminaries

2.1. Formulation of the Map-Matching Problem. To better
illustrate Fixed-MM, the definitions of variables and the
problem are introduced in this section.

Definition 1. Road network: a road network (RN) consists of
a set of road links l{ } connected in a graph format. Each road
link, l, is a directed edge with two terminal points, a length
(l.len), a level (l.lev) (e.g., an expressway, a primary road, or a

secondary road), a direction (l.di) (e.g., one-way or bidi-
rectional), and the number of lanes (l.lan).

Definition 2. Path: path P is represented by a sequence of
connected road links, P: l1, l2,. . ., lx,. . ., lX, in an RN.

Definition 3. Fixed sensor trajectory: a fixed sensor trajec-
tory, Tr, is a sequence of time-ordered points, Tr: Fid(1) , Fid(2) ,
. . ., Fid(j) , . . ., Fid(J) , where each point Fid(j) has a unique
identification number, id, geospatial coordinate, (Fid(j) · lon,
Fid(j) · lat), and timestamp, Fid(j) · t.

Definition 4. Sensor pair: a sensor pair is two neighbouring
points in a Tr, namely, (Fid(j) , Fid(j+1)), j� 1, 2, . . ., J−1, where
Fid(j) is the original fixed sensor point and Fid(j+1) is the
destination fixed sensor point.

Definition 5. Candidate path set: the candidate path set, Φj,
consists of all paths with a nonzero probability of matching
between a given sensor pair (Fid(j) , Fid(j+1)), while all unre-
alistic paths have a probability of zero.

Fixed sensor: 10100403
Timestamp: 2016-09-07 00:48:14

Fixed sensor: 10100405
Timestamp: 2016-09-07 00:44:30

Fixed sensor: 10203801
Timestamp: 2016-09-07 00:37:43

Fixed sensor: 20200906
Timestamp: 2016-09-07 00:33:48

0.9 0 0.9 1.8 2.7 3.6 km

Fixed sensor station

GPS points
Trajectory recorded by fixed sensor

True route

(a)

Fixed sensor: 20200906
Timestamp: 2016-09-07 00:33:48

Fixed sensor: 10203801
Timestamp: 2016-09-07 00:37:43

300 0 300 600 900 1200 m

(b)

Figure 1: Comparison of fixed sensor and probe sensor data. (a) Macroscopic and (b) microscopic views of one vehicle’s trajectories
recorded by the probe and fixed sensors.
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Now the problem of Fixed-MM is defined as follows.

Problem 1. Given a fixed sensor trajectory Tr and a road
network RN, for each sensor pair (Fid(j) , Fid(j+1)) in Tr, find a
path Pi from Φj with the highest probability of being a
matched path.

2.2. Framework. +e framework of Fixed-MM is illustrated
in Figure 2. +ree types of datasets, including fixed sensor
data, probe sensor data, and road network data, are used as
inputs. +e trajectory of the fixed sensor data is first
decomposed into separate sensor pairs. +e probe sensor
data are also matched with a specific path based on the
Probe-MM algorithm. Meanwhile, a candidate path gen-
eration algorithm is used to search for possible paths for each
sensor pair. +en, the matching probability for each can-
didate path is calculated, and the matching results can be
attained by finding the candidate path with the highest
matching probability.

3. Methodology

3.1. Characteristics of the Data. +e key to Fixed-MM is
finding the most likely path to connect the sensor pair. In
this section, we provide two key observations of the true
trajectories that lead to the proposed approach. Figure 3(a)
illustrates the GPS trajectory of 1365 sample vehicles trav-
elling between the sensor pair (F20507303, F20501803), and they
are taken as examples to illustrate the observed laws.

Observation 1. +e drivers prefer to travel along the path
with high utility.

Example 1. Consider path A, path B, and path C visualised
in Figure 3(a) with their attributes summarised in Table 1.
Sixty-eight percent of the samples travel path A, while only
32% of the samples travel along the other two. +us, it is
reasonable to infer that drivers prefer to choose paths with
less travel time, fewer intersections, and more high-level
road links, which indicates that the higher the utility of the
path, the more attractive the path is to the driver.

Observation 2. +e observed travel time tends to be close to
the expected travel time of the true path.

Example 2. Based on the Prob-MM algorithm, the GPS
trajectories can be matched to three paths. +e histograms of
the observed travel times for the three paths are calculated in
Figure 3(b). It is easily found that the histograms fit well to the
normal distribution, whichmeans that a path’s observed travel
time tends to be close to its expected travel time (average travel
time). If the observed travel time of a sample is 18min, wemay
infer that this trip is very likely to be matched with path C.

Based on the above observations, we propose a novel
map-matching algorithm for fixed sensor data, namely,
Fixed-MM that incorporates both (1) the utility of each route
and (2) the travel time constraint to identify the path with
the highest probabilities from the candidate path set as the

matched path. Details of the utility model, travel time
constraint, and candidate path set generation algorithm are
described in the following subsections.

3.2. Utility Model. Similar to the route choice model, the
travel behaviour preference reflected in Observation 1 is
modelled with utility theory. It assumes that the driver’s
preference for a path is captured by a value called utility, and
the driver selects the path in the candidate set with the
highest utility [16].

Let Ui,j be the utility of the ith path Pi,j belonging to the
candidate setΦj of the sensor pair: (Fid(j) , Fid(j+1)). It consists
of a deterministic term Vi,j and a random term εi,j such that

Ui,j � Vi,j + εi,j. (1)

+e random term εi,j is assumed to be independent and
identically distributed (i.i.d.) as a Gumbel distribution. +e
deterministic term is assumed to have a linear relationship
with path attributes, such that

Vi,j � βFTTx
FTT
i,j + βNSLx

NSL
i,j + βPEx

PE
i,j , (2)

where xFTT
i,j , xNSL

i,j , and xPE
i,j are vectors of the observed path

attributes and βFTT, βNSL, and βPE are vectors of coefficients
that represent drivers’ preferences on path attributes. +e
descriptions of the path attributes are presented in Table 2.

Based on the above definitions of path utility, the
matching probability of a candidate path Pi,j is given by [16]

Pr Pi,j􏼐 􏼑 �
e

Vi,j

􏽐P
i′ ,j∈Φj

e
V

i′ ,j
. (3)

Equation (3) can also be transformed as

Fixed sensor
data

Probe sensor
data

Road
networks

Fixed sensor
trajectories

Decomposed as
sensor pair

Probe sensor
trajectories

Candidate-
path

generation

Calculated the
matching probability

for each candidate path

Candidate-path
set for each
sensor pair

Find the path with the highest
matching probability as the

matching result

Probe-MM

Figure 2: Framework of the proposed Fixed-MM Algorithm.
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Pr Pi,j􏼐 􏼑 �
e

Vi,j

􏽐P
i′ ,j∈Φj

e
V

i′ ,j
�

1
􏽐P

i′ ,j∈Φj
e

V
i′ ,j− Vi,j

. (4)

It is easy to find that the larger the difference between the
utility Vi,j and the other Vi′,js, the higher the matching
possibility, Pr(Pi,j). +is means that the candidate path with
higher utility is more likely to be matched, which corre-
sponds to the rule reflected in Observation 1.

3.3. Temporal Constraint. To consider Observation 2, the
temporal constraint between the observed travel time and
expected travel time of a candidate path must be modelled.
+eir definitions are as follows.

+e observed travel time tj,n is the time spent by the nth
sample when travelling between sensor pairs (Fid(j) , Fid(j+1))
and can be obtained by calculating the difference between
the transit timestamps recorded by Fid(j) and Fid(j+1) :

tj,n � Fid(j+1) · t − Fid(j) · t. (5)

+e expected travel time 􏽣ti,j is the average travel time of
the candidate path, Pi,j, where Pi,j ∈ Φj. +is can be cal-
culated based on probe sensor data:

􏽣ti,j � 􏽘
lx∈Pi,j

􏽐
N
n�1 tx,n

Nx

, (6)

where tx,n is the travel time spent by the nth sample on road
link lx, and Nx is the total number of probe vehicles tra-
versing road link lx.

+e temporal constraint can be calculated based on the
deviation tj,n − 􏽣ti,j between the observed tj,n and the expected
travel times, 􏽣ti,j. +is is attributed to a combination of the
natural variation in travel times and the error in the travel time
estimate.+e deviations of the three sample paths are shown in
Figures 4–6 in Appendix A, respectively.+e travel time varies
significantly on different paths depending on the time of day,
and all the histograms of tj,n − 􏽣ti,j during the morning peak fit
well to the normal distribution.+erefore, we can assume that
the deviations have a Gaussian distribution
tj,n − 􏽣ti,j ∼ N(μs, σs). μs and σs are the mean and variance of
tj,n − 􏽣ti,j for the candidate path Pi,j, during period s. +en, the
temporal constraint q(tj,n − 􏽣ti,j) can be defined as

q tj,n − 􏽣ti,j􏼐 􏼑 �
e

− 0.5 tj,n− 􏽢ti,j− μs/σs( 􏼁
2

􏽐P
i′ ,j∈Φj

e
−0.5 tj,n− 􏽢t

i′ ,j−μs/σs􏼐 􏼑
2 . (7)

+e denominator aims at normalizing the temporal
constraint to one.

We added the temporal constraint as a correction term
for the utility function. +en, the matching probability can
be rewritten as

Pr Pi,j􏼐 􏼑 �
e

Vi,j+α ln q tj,n− 􏽢ti,j( 􏼁

􏽐P
i′ ,j∈Φj

e
V

i′ ,j+α ln q tj,n− 􏽢t
i′ ,j􏼐 􏼑

, (8)

where α is a scale parameter. +e correct term α ln q(tj,n −
􏽣ti,j) in equation (8) describes the likelihood of compliance
between the observed tj,n and expected travel time 􏽣ti,j. When
tj,n − 􏽣ti,j is smaller (the observed travel time is closer to the
expected travel time), q(tj,n − 􏽣ti,j) becomes larger.

Table 1: Attributes of path A and path B.

Attributes Path A Path B Path C
Length of route (m) 8239.25 9022.70 8971.15
Number of signal lights 0 0 7
Average travel time (min) 7.11 12.49 16.83
Proportion of expressway 1 1 0.37
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Figure 3: +e sensor pair example. (a) +e location of the sensor pair example and the GPS trajectories. (b)+e distribution of travel times.
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According to equation (4), the matching probability in-
creases Pi,j. +is is also in line with Observation 2 in the
previous section.

3.4. Generating Candidate Path Set. Finding all possible
paths that connect each sensor pair as candidates is another
key step for Fixed-MM. +e candidate path set is usually
large, with a long distance between the paired sensors, and a
dense urban road network. In addition, preferential and
realistic paths should be included because comparing a path
to a set of highly unattractive and unrealistic candidates
would not provide much useful information [17]. In this
study, we develop a protocol for generating a realistic
candidate path set based on the following observations:

Observation 3. +ere may be certain detours on the can-
didate paths.

Example 3. Figure 7(a) illustrates the GPS trajectories of 620
samples that travel between sensors F20507301 and F20507302
near the Bao’an International Airport in Shenzhen, China.

Based on the map-matching algorithm designed for the
probe data, each GPS point was projected onto a specific
link. +e observed number of samples on each link is
represented by different colours in Figure 7(b). Most (92%)
of the samples have a large offset against the shortest path,
and the departure platform of the airport was chosen as a
destination on the way. +is indicates that there may be
certain detours on these popular paths. +ese circuitous
paths may be considered as unattractive alternatives for
route choice models. However, they are popular candidates
in the context of map-matching algorithms.

Observation 4. Trajectories captured by a sensor pair will
not pass the links monitored by other fixed sensors.

Example 4. As shown in Figure 7(a), the road link moni-
tored by the fixed sensor F20507403 has never been travelled by
any vehicle captured by the sensor pair (F20507301, F20507302).
+e reason for this phenomenon is that if a vehicle has
travelled on the link where F20507403 located, the pass in-
formation will be recorded, and then the sensor pair

Table 2: Attributes used for path utility.

Attributes Parameters Descriptions

xNSL
i,j βNSL Number of signal lights (NSL): the number of signal lights along the path

x FTT
i,j βFTT Free travel time (FTT): free flow travel time along the path (unit: s)

xPE
i,j βPE +e proportion of expressway (PE): the proportion of expressway links
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Figure 4: (a) GPS trajectories of samples. (b) Temporal distribution of the samples. (c) Histogram of the temporal constraint between 6:00
and 7:00 (fitting result: μ � 0.20 and σ � 1.02, goodness of fit: 0.99).
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(F20507301, F20507302) will be decomposed into two sensor
pairs, namely, (F20507301, F20507403) and (F20507403, F20507302).

In this paper, we believe that historical GPS trajectories
contain useful information about the composition of popular

candidates. +us, the candidate path does not necessarily
conform to behavioural assumptions but must be realistic; we
use a biased randomwalk algorithm, which was first proposed
by [17] to generate the candidate set. It draws a candidate path
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Figure 5: (a) GPS trajectories of samples. (b) Temporal distribution of the samples. (c) Histogram of the temporal constraint between 6:00
and 7:00 (fitting result: μ � 0.18 and σ � 2.13, goodness of fit: 0.98).
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through a succession of random turns. +e pseudocode of the
candidate set generation algorithm is presented in Algo-
rithm 1. +e key to this algorithm is how the probability of
turning is defined. In contrast to the original random walk
algorithm, we set the turning probability of the links where
other fixed sensors are located at 0 to satisfy the rule contained
inObservation 4. In other situations, the turning probability is
calculated based on field-test probe sensor data rather than
the shortest path assumption. In this manner, the candidate
path with the destination described in Observation 3 can be
generated.

Based on the above analysis, the turning probability is
defined as

Pr lx, ly􏼐 􏼑 �

0, ly ∈ ΦFS and ly ≠ ls, le,

Nxy

􏽐l
y′ ∈Φx

Nxy′
, otherwise,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(9)

whereΦFS is the set of links monitored by the fixed sensors, ls
is the start link where the origin fixed sensor is located, le is
the end link where the destination fixed sensor is located,
Nxy is the number of GPS trajectories traversing from link lx
to ly, andΦx is the set of outgoing links that connect the sink
link lx.

4. Experiment

4.1. Experimental Dataset. To examine the proposed Fixed-
MM algorithm, both fixed and probe sensor data were used
with the basic digital road network.

Road Network: the shapefile of the road network in
Shenzhen, China, was used [18]. +e network graph
contained 237,440 vertices and 215,771 road links. As
shown in Figure 8, the road network covers a
40× 50 km spatial area, with a total length of 21,985 km.
Fixed sensor dataset: A fixed sensor dataset generated
by 715 cameras in Shenzhen from September 1 to
October 31, 2016, was used. +e transit information of
vehicles was recorded, including license plate, time-
stamp, and detector ID.
Probe sensor dataset: we used a GPS trajectory dataset
generated by 14,230 taxicabs during the same time
range (from September 1 to October 31, 2016) as a
probe sensor dataset. +e GPS records include license
plates, timestamps, and coordinates. +e average
sampling rate was set at 15 seconds per point.

With identical license plate information, we can extract
the probe and fixed sensor data of the same taxicab as
observed samples to train and test our model.

In the implementation, we removed noncontinuous
driving trips. +e main reason is that this noncontinuous
driving part of the sample trips contains great uncertainty
and will increase the estimation error of the Fixed-MM.
Finally, 1,485,476 samples were extracted as a training
dataset for estimation, while 156,192 samples were used as
the testing dataset for evaluation. +e estimation and
evaluation of the Fixed-MM are introduced in the following
sections.

4.2. Model Estimation. +e coefficients of the Fixed-MM
reflect the matching results’ sensitivity to the variables. +e

20507301

20507302

20507403

GPS trajectories
Fixed sensor

(a)

20507403

20507301

20507302

0 - 92
Volumes of each link

92 - 183
275 - 366
366 - 458

183 - 275

(b)

Figure 7: Example of realistic path generation. (a) GPS trajectories. (b) Volumes of each link.
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values of the unknown parameters based on the training
dataset must be identified. In this study, we consider the
most widely used estimation procedure: the maximum
likelihood technique [19].

Given the high number of sensor pairs, it is impossible to
present detailed estimation results for each pair. +erefore,
we only provide the detailed estimation results of the ex-
ample sensor pair: (F2010002, F1010403).+e GPS trajectories of
the samples between this sensor pair are shown in Figure 9 in

Appendix B. +e candidate path set generated by the al-
gorithm proposed in this paper is illustrated in Figure 10.

Both the Fixed-MMmodel without temporal constraints
(defined by equation (3)) and the Fixed-MM with temporal
constraints (defined by equation (8)) are estimated. +e
estimation results of the twomodels are presented in Table 3,
and several findings can be obtained.

Finding 1: as expected, the estimated parameter of “free
travel time” and “number of signal lights” has a

Input: +e road network RN and the link pair (ls, le), where ls and le are the links where the origin fixed sensor Fid(j) and destination
fixed sensor Fid(j+1) are located.
Output: +e candidate set Φj for sensor pair (Fid(j) , Fid(j+1) ).
Initialization
Set the candidate set: Φj � ∅
Set the size of the candidate set: DN

Turning Probability
For lx in road network RN:

Calculate the turning probability Pr(lx, ly) based on equation (9).
Random Walk
While n<DN do

lx � ls
P� [ls]
While ly ≠ le do
Randomly select a next link ly based on the turning probability Pr(lx, ly)

Update the generated path: P.append(ly)
Update the current link: lx � ly

End while
n+� 1
Update the candidate set: Φj � Φj ∩P

End while

ALGORITHM 1: Candidate set generation algorithm.
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Figure 9: GPS trajectories between the example sensor pair: (F2010002, F10100403).
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Figure 10: (a–p) Generated candidate paths between the example sensor pair: (F2010002, F10100403).
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negative sign and the “proportion of expressway” has a
positive sign in each case. +e negative sign and
t-statistic of βNSL and βFTT suggest that the freer travel
time and signal lights the path has, the less likely it is to
be matched. +e positive sign and t-statistic of βPE
imply that a path with a higher proportion of ex-
pressways will be more attractive to travellers.
Finding 2: the temporal constraint parameter, α, is very
large, which means that the correct term has a sig-
nificant effect on the matching results.
Finding 3: when the temporal constraint term,
α ln q(tj,n − 􏽣ti,j), was considered, the Fixed-MM model
with temporal constraints had a much lower log-
likelihood. +us, we can infer that it has a better model
fit and is closer to the true model.

4.3. Model Evaluation. In this section, we describe our al-
gorithm on the testing dataset. Two classical Probe-MM
algorithms are used as benchmarks, details of which are
introduced as follows:

HMM algorithm [7]: given that the positions of the
fixed sensors are located without noise, the measure-
ment probability is set to 1 and only the transmission
probability is considered
ST-Matching algorithm [12]: similar to the HMM-
based algorithm, the observation probability in the
spatial analysis of this method was set to 1 because of
the accurate positions of the fixed sensors

In this study, two indexes for expressing matching ac-
curacy were used. One is the accuracy length ratio of paths
(ALRP) index, defined as follows:

ALRP �
􏽐lx∈Pi,j

δxlx · len

Ptrue · len
× 100, (10)

where lx · len is the length of link lx in the matched path, Pi,j

Ptrue · len is the total length of the true path, and δx � 1 if lx is
also in the true path, and otherwise is 0.

+e other index is the accuracy number ratio of paths
(ANRP) index, which is defined as

ANRP �
􏽐

Nx

n�1 δx

Nx

× 100, (11)

where Nx is the total number of links in the true path Ptrue.
Figures 11(a) and 11(b) show the ALRR and ANRR of

the proposed Fixed-MM algorithm and two classical Probe-
MM algorithms with regard to the spatial gap between fixed
sensors. It can be seen clearly that our Fixed-MM outper-
forms both HMM and ST-Matching significantly. Mean-
while, the performance of two Probe-MM algorithms
degrades sharply when the spatial gap decreases while Fixed-
MM is more robust to the change of spatial gap. +e pro-
posed Fixed-MM can correctly identify 68.38% of the links,
even when the spatial gap between the sensor pair increases
to 5 km.

Because the candidate generation process and model
training process can be conducted separately and in parallel,
a comparison of the latency of the matching process may be
more meaningful for online applications. In this study, the
computation time for one point (ACTOP) was used to
measure the computational latency of the map-matching
algorithm.

As shown in Figure 12, the ACTOP of the two Probe-
MM approaches increases dramatically as the spatial gap
between the fixed sensors increases. Conversely, the
ACTOP of Fixed-MM increases slowly. +e main reason,
therefore, can be deduced from two factors. +e HMM and
ST-MM algorithms assume that the position of the sensor
is stochastic and noisy, and the candidate set must be
regenerated for every sensor pair. It involves several
shortest path computations between states at the previous
and current time steps, which consumes most of the
computation time. Conversely, the candidate set genera-
tion of the proposed method can be run in parallel and
does not increase the computation time because the
projection of the fixed sensor data is known and fixed. In

Table 3: Estimation results of Fixed-MM.

Parameters Fixed-MM (without temporal constraint) Fixed-MM (with temporal constraint)
Number of signal lights βNSL −0.185 −0.188
t-test −21.442 −11.579
Free travel time βFTT −0.273 −0.101
t-test −9.574 −1.839
Proportion of expressway βPE 0.074 4.140
t-test 49.532 10.925
Temporal constraint α — 67.395
t-test — 12.417
Log-likelihood −17851.898 −1049.901
Adjusted likelihood ratio 0.511 0.971
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fact, the average ACTOP of Fixed-MM is only 0.067 s, and
we argue that Fixed-MM can be performed online for
many real-time ITS applications.

5. Conclusions

In this paper, we proposed a new map-matching algorithm
called Fixed-MM to match vehicle trajectories recorded by
fixed sensors onto a digital map. First, utility theory was
employed to model the traveller’s behaviour preference.
Second, Fixed-MM was modified by adding a travel-time
constraint term based on the observed and expected travel
times. Moreover, a candidate path generation algorithm was
designed for Fixed-MM.

Fixed sensor data and probe sensor data were collected as
the experimental dataset. Both the Fixed-MM without a
temporal constraint and Fixed-MM with a temporal

constraint were estimated. +e statistical results of the es-
timated parameters prove that the path attributes correlate
significantly to the true path, and the Fixed-MM with the
temporal constraint having a better model fit. +e Fixed-
MM algorithm was also compared with two classical Probe-
MM algorithms in terms of matching accuracy and com-
putational efficiency. Fixed-MM outperforms the two
Probe-MM algorithms in both number (ANRR) and length
(ALRR) accuracy indexes. Meanwhile, the Fixed-MM is
more robust to changes in the spatial gap between fixed
sensors. Fixed-MM also has a huge improvement in com-
puting efficiency and exhibits potential for online applica-
tions. +e experimental results demonstrate that the
proposed Fixed-MM algorithm is both effective and efficient.

More research is needed in the future to determine the
potential application value of Fixed-MM. Although the
travel time and speed can also be estimated by the Probe-
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MM algorithm with probe sensor data, the Fixed-MM
provides a more diverse and credible estimation of travel
time and speed. +is is because the fixed sensor data covers
almost all types of vehicles using the road network, while the
probe sensor data can only be collected from one type of
vehicle, for example, taxicabs. Meanwhile, with the appli-
cation of Fixed-MM, more traffic information can be mined
from the fixed sensor data. If all the observed trips of every
fixed sensor can be matched to the road network, the traffic
volumes of each path or link can be estimated, which is the
key input value for traffic planning and management. +us,
our next research focus is to utilise the Fixed-MM to mine
more reliable and accurate traffic state information from
fixed sensor data. Moreover, since the fare gate in the AFC
system is fixed, applying the proposed map-matching al-
gorithm to learn the route choice behavior of subway
passengers [20, 21] also presents great practical application
values and is worthy of further study.

Appendix

A. Estimated Results of Temporal Constraint

GPS trajectories of samples are presented in Figures 4, 5, and 6.

B. Generated Candidate Path Set

GPS trajectories between the example sensor pair and
generated candidate paths between the example sensor pair
are presented in Figures 9 and 10, respectively.
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It is an important content of smart city research to study the activity track of urban residents, dig out the hot spot areas and spatial
interaction patterns of different residents’ activities, and clearly understand the travel rules of urban residents’ activities.'is study
used community detection to analyze taxi passengers’ travel hot spots based on taxi pick-up and drop-off data, combined with
multisource information such as land use, in the main urban area of Nanjing.'e study revealed that, for the purpose of travel, the
modularity and anisotropy rate of the community where the passengers were picked up and dropped off were positively correlated
during the morning and evening peak hours and negatively correlated at other times. Depending on the community structure,
pick-up and drop-off points reached significant aggregation within the community, and interactions among the communities
were also revealed. Based on the type of land use, as passengers’ travel activity increased, travel hot spots formed clusters in urban
spaces. After comparative verification, the results of this study were found to be accurate and reliable and can provide a reference
for urban planning and traffic management.

1. Introduction

With the rapid development of information technology,
spatial analysis driven by data forces geographic information
science to face new challenges. Furthermore, visual analysis
combined with geographic computing has greatly improved
people’s ability to mine new knowledge [1]. On the one
hand, mobile information collection technology based on
the global positioning system has become more mature; on
the other hand, the flow space with urban residents’ activities
as the main carrier has becomemore extensive [2]. Although
the intension of geographic information science has not
changed, its content and form have become richer. 'ere-
fore, breaking through the traditional urban spatial research
model is the key to discovering the law of urban residents’
activities.

Time-space analysis based on residents’ activities can
explain the homogeneity of the influence of individual resi-
dents’ behaviors on urban space, and the behaviors between
different individuals can reflect that they are restricted by
urban space and show their differences [3]. 'erefore, as
Harvey and Han [4] proposed the concept of geographic data
mining and knowledge discovery, scholars have continued to
explore knowledge in recent decades, and geography has
experienced transition from an empirical paradigm to a
system simulation paradigm and then to a data-driven par-
adigm [5]. Early research on the behavioral patterns of urban
residents’ activities mainly focused on extracting residents’
activity points and on the correlation analysis of those points.
For example, Veloso et al. [6] studied the strong association
pattern of residents’ activity locations, and Ahas et al. [7]
studied the time difference and spatial distribution of

Hindawi
Journal of Advanced Transportation
Volume 2021, Article ID 6646768, 14 pages
https://doi.org/10.1155/2021/6646768

mailto:bishuoben@163.com
https://orcid.org/0000-0002-7295-1716
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/6646768


residents’ activities. Recent research has mainly focused on
the identification of urban hot spot functional areas, urban
accessibility analysis, urban boundary division, polycentric
evaluation, etc. For example, Scholz et al. [8] studied urban
residents’ behavioral patterns and the temporal and spatial
development of urban hot spots, and Cui et al. [9] studied the
accessibility of urban residential areas and the distribution of
low-access residential areas. Zhong et al. [10] studied the
overall spatial structure of changes in the center of the city
boundary, and Huang et al. [11] studied the effects of urban
traffic and pedestrian activities. For two-layer fine-grained
networks, Guo et al. [12] studied the structure of different
urban road networks and developed corresponding datasets.
Hamedmoghadam et al. [13] studied the displacement index
of individual travel granularity to simplify collective behav-
ioral patterns. In addition, there are related studies on urban
planning and environmental safety assessment. For example,
Zheng et al. [14] studied the characteristics of cross con-
nectivity between urban planning and taxi driving, and Wu
et al. [15] studied the temporal and spatial patterns of urban
road traffic accidents.

In summary, the early research model was relatively
narrow in its scope, only considering residents’ activities but
ignoring the characteristics of urban space. In recent years,
research has become relatively rich, mainly based on urban
planning, which was based on the analysis of residents’
historical activities, such as behavioral patterns. 'e land-
mark research achievements are the GN algorithm [16] and
the Newman fast algorithm [17], both of which are classic
community detection algorithms. 'ese can fully reveal the
different resident activities, the spatial pattern, and the
impact of potential factors on decision-making. In addition,
Qin et al. [18] studied the traffic intensity and edge weight of
network nodes based on the network interaction charac-
teristics of urban hot spots.

'e movement trajectory as a type of multisource sensor
data has been widely adopted by researchers. 'rough the
movement trajectory, the travel mode of residents’ activities
can be understood more clearly, the hot spots of activities
can be extracted more accurately, and the reasons for the
resident movement can be analyzed. Research on moving
trajectories in Nanjing mainly includes Xu et al. [19], who
found that traffic hot spots in Nanjing have the spatial
distribution characteristics of agglomeration from the sur-
roundings to the center; Yang et al. [20], who found that the
Nanjing public transport system has the characteristics of
cascading failure congestion; and Jin and Xu [21], who
showed that the traffic flow on the key nodes of different
grades of road network in Nanjing has obvious hierarchical
structure characteristics. 'erefore, this study aims to use
the passenger pick-up and drop-off points extracted from
taxi movement trajectories to explore the travel rules of taxi
passengers, analyze the time and space patterns of taxi pick-
up and drop-off communities, establish passenger travel
activity indicators based on community detection [16],
combine the data of graded roads and points of interest,
explore the temporal and spatial characteristics of taxi
passenger travel hot spots, and examine the causes of the
formation of spatiotemporal characteristics.

2. Data Description

Nanjing is located in the southwest of Jiangsu Province,
China. 'e study area selected in this paper covers the main
urban area of Nanjing, including Gulou, Xuanwu, Jianye,
Qinhuai, and Yuhuatai, as shown in Figure 1.

'e data used in this study includes two parts of the
Nanjing taxi trajectory and feature dataset. 'e source of
Nanjing taxi trajectory data was Datatang (https://www.
datatang.com), which contains data from approximately
7,800 taxis with a sampling interval of 30 seconds. Data for
the same period for three consecutive years were selected:
January 25–31, 2015; February 13–19, 2016; and February
2–8, 2017. 'e source of road network data was Tianditu
(https://www.tianditu.gov.cn), a national geographic infor-
mation public service platform, which contains eight types of
graded roads. Considering the nature of taxi services, rail-
ways, subways, light rails, and high-speed rails were ex-
cluded. Approximately 2,400 road sections classified as
national roads, provincial roads, county roads, township and
village roads, and other roads were used in the analysis. 'e
data source of points of interest was Baidu POI (http://www.
data-shop.net/tag/), which includes four types of land use:
land for commercial use, residential land, land for public
management and public service, and land for transportation.
A total of approximately 26,000 points of interest were
selected.

3. Methodology

'is study used ArcGIS to perform map matching and
geocoding preprocessing on taxi movement trajectories and
the feature data of Nanjing City. A road network geographic
database and a road network topology map were created
using the complex network-modeling tool NetworkX tomap
the road intersections. 'e abstraction of the road inter-
sections is a complex network node, the corresponding road
section is abstracted as an edge, and community detection is
performed on the taxi pick-up and drop-off points. Based on
community detection, the passenger travel activity index is
constructed, and hot spot mining is realized through spatial
statistics. 'e technical process is shown in Figure 2.

3.1. Community Detecting. First, based on the concept of a
dual graph [22], the road is defined as a generalized network
composed of nodes and edges.

G � Ng, Eg􏼐 􏼑|1≤g≤ nGraph􏽮 􏽯,

Ng

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � nnode,

Eg

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � nedge,

(1)

where (Ng, Eg) represents any road segment, nGraph rep-
resents the total number of road segments, nnode represents
the number of nodes included in a road segment, and nedge
represents the number of edges included in a road segment.

'e road is abstracted into a complex network, as shown
in Figure 3: (a) is the original road graph, which contains 9
road sections and 14 nodes; (b) is the corresponding original
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graph, where the nodes represent road intersections and the
edges represent road sections between nodes; (c) is the
corresponding dual graph, in which nodes represent road
sections and edges represent the intersecting relationship of
road sections.

Figure 3(c) is used to abstract the road network and
express intersections and road sections as nodes and edges,
respectively. Before community detection, the stay points are
mapped to the road network, which characterizes the geo-
graphic location using map matching technology. After
abstraction, the road network not only retains the geo-
graphic location information but also characterizes the
network connectivity. 'e connectivity of the road network
changes with the degree centrality of each node in the ab-
stract network. 'e more the pick-up points, the higher the
exit degree of the node, and the more the drop-off points, the
higher the entry degree of the node.'erefore, when the stay
points change dynamically in the road network, they are
aggregated into clusters according to Bayes’ rule, and
communities are established to represent the activities of the
community’s residents as hot spots.

Second, we define the stay point, corresponding to the
stay point to the network, and use it as a separate atomic
cluster [23].

S � S
O
i , S

D
i􏼐 􏼑| 1≤ i≤NS􏽮 􏽯, (2)

where (SO
i , SD

i ) represents any pair of stay points, NS rep-
resents the number of stay points included in the candidate
dataset, SO represents the pick-up point in a pair of stay
points, and SD represents the drop-off point in a pair of stay
points.

Subsequently, the distance between the stay points is
calculated according to the Euclidean metric. Taking the
above stay points as an example (the same is true for the
drop-off point), the two closest points are continuously
merged into the same cluster, and the distance between the
clusters is calculated according to the average distance
measurement:

davg Ci, Cj􏼐 􏼑 �
1

ninj

􏽘
Qi∈Ci

􏽘
Qj∈Cj

Qi − Qj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, (3)

where Ci and Cj are the clusters where the pick-up points SO
i

and SO
j are located; ni and nj are the number of pick-up

points contained in clusters Ci and Cj, respectively; and
|Qi − Qj| is the distance between clusters Ci and Cj. Q is the
incremental matrix, which is the adjacencymatrix that stores
the nodes and edges within the cluster. Q is calculated as
follows [24]:

Q �
1

Eg

−
kikj

2E
2
g

, (4)

where Eg is the total number of connected edges, ki is the
degree of node i, and kj is the degree of node j.

For a network with N nodes, the execution process of the
algorithm used in this study includes the following steps:

(1) Initializing. Treat each node as a cluster and set the
increment matrix to Q � 0.

(2) Merging and Updating. Combine the two clusters Ci

and Cj that have edges connected in such a way that
maximizes davg, maximize davg using Bayes’ rule, and
update the combined cluster.

(3) Terminating. Continue the merging and updating
process until there are no clusters that can be
merged.

We then count the number of pick-up points in each
cluster as the amount of information I and set the amount of
information as the weight according to Bayes’ rule, thereby
establishing a community as

I �
1
n

􏽘

n

i�1
C

i
ni

,

P
ni

I
􏼒 􏼓 �

P I/ni( 􏼁 × P ni( 􏼁

P ni( 􏼁 × P I/ni( 􏼁 + P ni( 􏼁 × P I/ni( 􏼁
,

Bi �
􏽐

n
i�1 xi, yi( 􏼁 × P ni/I( 􏼁

􏽐
n
i�1 P ni/I( 􏼁

,

(5)

where Ci
ni

means that the cluster Ci in the community
contains ni pick-up points, and n is the total number of pick-
up points in the community. P(ni/I) means that the pick-up
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Figure 3: Diagram of a complex network of roads: (a) road network graph; (b) road network initialization graph; (c) road network dual
graph.
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points are aggregated into the pick-up point community,
and (xi, yi) denotes the coordinates of the pick-up points. Bi

is the center of the mass coordinates of community (xB, yB).
Finally, the community is evaluated according to the

degree of modularity M:

M �
1
2E

􏽘
ij

Cij −
kikj

2E
􏼠 􏼡z Bi, Bj􏼐 􏼑, (6)

where E is the number of edges in the network. Cij takes the
value 0 or 1; if Cij � 1, there is an edge between the pick-up
points SO

i and SO
j ; otherwise, there is no edge; ki and kj are

the degrees of the pick-up points SO
i and SO

j ; Bi and Bj are the
centroids of the communities where the pick-up points SO

i

and SO
j are located. Only when Bi � Bj, z(Bi, Bj) � 1. 'e

value range of M is [0, 1]; the larger the value, the more
obvious the community structure.

3.2. Constructing an Indicator of Passenger Travel Activity.
Based on the community detection results, the passenger
travel activity point is set as Si � [SO

i , SD
i , BO

i , BD
i ], where SO

i is
the coordinate of the taxi passenger pick-up point, SD

i is the
coordinate of the drop-off point, BO

i is the centroid coor-
dinate of the community to which the pick-up point belongs,
and BD

i is the centroid coordinate of the community to
which the drop-off point belongs. 'erefore, there are three
situations of inclusion, intersection, and separation of the
communities, in which the passenger board and drop-off
points belong, as shown in Figure 4.

As shown in Figure 4, the center of the pick-up point
community is O and the radius is rO; the center of the drop-
off point community is D and the radius is rD; and the
smallest circle center that contains the pick-up point
community is C and the radius is R. No interaction between
the pick-up point community and the drop-off point
community is shown by the white area in the figure, while an
interaction between the pick-up point community and the
drop-off point community is shown by the shaded area in
the figure.

'e passenger travel activity index is a combination of
outbound visit heat and arrival visit heat [25], with 1 h as the
unit time for sampling and 1 km as the unit distance for
calculation, defined as Ai � [departi, arrivei]; the calcula-
tion is as follows:

scopei � 1 −
di

2Ri

,

p Si ∈ Bi( 􏼁 �
1, S

O
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D
i 且S

D
i ∉ ⊙B

O
i ,

0,
O
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D
i 或S

D
i ∈⊙B

O
i ,

⎧⎪⎨

⎪⎩

departi � 􏽘

nO

SO
i
∈ BO

i

p S
O
i ∈⊙B

O
i􏼐 􏼑 × scopeO

i ,

arrivei � 􏽘

nD

SD
i
∈ BD

i

p S
D
i ∈⊙B

D
i􏼐 􏼑 × scopeD

i ,

(7)

where di is the distance between taxi passengers’ pick-up and
drop-off points, Ri is the smallest radius of the circle that
contains the community of the pick-up point, nO denotes all
pick-up points included in the pick-up point community,
and nD denotes all drop-off points included in the drop-off
point community. scopei is a probability density function
that describes the distance between the pick-up point and
the centroid of the community it belongs to; departi rep-
resents the probability density estimation from the pick-up
point to the pick-up point community, namely, the popu-
larity of passenger outbound travel activities; arrivei rep-
resents the probability density estimation from the drop-off
point to the drop-off point community, that is, the popu-
larity of passenger arrival travel activities.

Given N nodes, there can be at most N(N − 1)/2 edges,
and a random network can be obtained by randomly
selecting M edges from these edges. Obviously, a total of
CM

N(N−1)/2 random graphs are possible, each with the same
probability. When the node’s connection probability p ex-
ceeds the critical probability pc(N) � lnN/N, every random
graph is connected. 'erefore, a random graph Q with N

nodes and connection probability p � p(N) satisfies

lim
N⟶∞

PN,p(Q) �
1, p(N)/pc(N)⟶∞,

0, p(N)/pc(N)⟶ 0.
􏼨 (8)

For the community of pick-up and drop-off points
formed by the corresponding pick-up and drop-off points,
when p(N)/pc(N)⟶∞, the random network is com-
pletely connected, forming a closed network with no isolated
nodes. In other words, the pick-up point will not belong to
the community of the drop-off points, and the drop-off point
will not belong to the community of the pick-up points,
namely, SO

i ∉ ⊙BD
i and SD

i ∉ ⊙BO
i . When

p(N)/pc(N)⟶ 0, the random network has a tree struc-
ture, and there are branch nodes belonging to other con-
nected subgraphs, namely, SO

i ∈⊙BD
i or SD

i ∈⊙BO
i .

Because passengers are not necessarily restricted to
moving in certain pairs of communities, the standard de-
viation ellipse method [26] is used to measure the spatial
distribution characteristics of passenger activities and the
interaction of the community where the passengers travel
activity points are evaluated according to the anisotropy rate,
that is, an equal ellipse. 'e higher the anisotropy rate under
the area, the more directional and purposeful the passenger
activities in the community. 'e anisotropy rate α is cal-
culated as follows:

α �
σx′ − σy′

σx′
× 100%, (9)

where σx′ is the length of the major axis of the ellipse and σy′
is the length of the minor axis of the ellipse.

4. Results and Analysis

4.1. Spatial and Temporal Characteristics of Passenger Travel
Activity. One hour was adopted as the unit time interval to
summarize the passenger pick-up and drop-off points

Journal of Advanced Transportation 5



recorded in the taxi trajectory data for the weeks included in
the data analysis (Section 2), as shown in Figure 5.

It can be seen from Figure 5 that the number of taxi
passengers getting on and off is consistent across days of the
week, and there are fluctuations at different times of the day.
'e daytime is higher than the nighttime, and there is a
significant increase during the morning rush hour. More-
over, there is also a certain increase during the evening rush
hour. 'us, taxi passenger travel show more daytime ac-
tivity, less nighttime activity, and frequent activity during
the morning and evening peak hours.

Taking one hour as the unit time interval, the average
modularity and anisotropy rate of the communities where
taxi passengers were picked up and dropped off in 2015,
2016, and 2017 are shown in Figure 6.

It can be seen from Figure 6 that, during the morning
and evening peak hours, the modularity is relatively high,
and the anisotropy rate curve is relatively steep. When the
modularity increases, the anisotropy rate also increases. In
other periods, the modularity is relatively low, and the
anisotropy rate curve is relatively flat. When the modularity
decreases, the anisotropy rate increases. 'is shows that the
community structure of taxi passengers’ pick-up and drop-
off points becomes closer as the purpose of passengers’ travel
increases. For example, during morning peak hours, pas-
sengers travel mainly from home to office; during evening
peak hours, passengers travel mainly from office to home;
and in other periods, residents’ activities are affected by
differences in travel motivation, thus showing randomness.

To clearly reflect the differences in residents’ travel ac-
tivities at different times, the morning peak hours were 8 :
00–9:00, working hours 13 : 00–14 : 00, evening peak hours
18 : 00–19 : 00, and rest period 22 : 00–23 : 00. We can con-
duct community detection at the points where taxi pas-
sengers board and alight, as shown in Figure 7.

It can be observed from Figure 7 that during the period
of 8 : 00–9:00, the corresponding communities of the pick-
up and drop-off points are separate, and during the period of
13 : 00–14 : 00, the corresponding communities of the pick-

up and drop-off points are mainly intersecting. 'e pick-
and-drop points, as shown in Community No. 1
(Figure 7(b)), are mainly gathered in the southeast of Gulou,
southwest of Xuanwu, west of Qinhuai, and northeast of
Jianye area. During the period of 18 : 00–19 : 00, the corre-
sponding communities of the pick-up and drop-off points
are mainly separate. During 22 : 00–23 : 00 (Figure 7(d)), the
corresponding communities of the pick-up and drop-off
points are mainly inclusive. 'e pick-up and drop-off points
shown in Community No. 1 are mainly concentrated in the
northwest of Xuanwu, and the pick-up and drop-off points
shown in Community No. 2 are mainly concentrated in
Jianye. In the northeast, the pick-up and drop-off points
shown in Community No. 5 are mainly concentrated in the
northeast of Yuhuatai, and the pick-up and drop-off points
shown in Community No. 6 are mainly concentrated in the
middle of Gulou.

'is shows that, during the same period, passenger travel
activities are affected by the purpose of travel, showing the
same behavioral pattern in the same community, obvious

C C C C CD D

D D D

O O O O O

0 ≤ |OD| < |rO – rD|

C = IF(rO > rD, O, D)
R = IF(rO > rD, CO + rO, CD + rD)R = IF(rO > rD, CO + rO, CD + rD)R = MAX (rO, rD)

C = AVERAGE(O, D) C = AVERAGE(O, D)

|OD| = |rO – rD| |rO – rD| < |OD| < |rO + rD| |OD| = |rO + rD| |OD| > |rO + rD|
Inside

Community inclusion  Community intersecting Community separation

Inscribed Intersecting Circumscribed Outside

Figure 4: Schematic diagram of three community situations. Note. 'e blue circle represents the taxi pick-up community, its center is O,
and its radius is rO. 'e green circle represents the taxi drop-off community, its center is D, and its radius is rD. 'e red circle represents the
smallest circumscribed circle that contains two communities, its center is C, and its radius is R. In the case of community inclusion, if rO> rD,
then C is O; otherwise, C is D.'e value of R is maximum in rO and rD. In the case of community intersection or community separation, the
value of C is average of O and D coordinates. If rO> rD, then the value of R is the sum of the values of CO (distance value between C and O)
and rO; otherwise, the value of R is the sum of the values of CD (distance value between C and D) and rO.
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spatial clustering, and differences between different
communities.

In summary, the characteristics of the passenger travel
activity time distribution show more daytime and fewer
nighttime activities and frequent peak hours in the morning
and evening. 'e characteristics of the passenger travel
activity spatial distribution show concentrated urban centers
and scattered peripheral areas. Affected by the purpose of
travel and structure of the community, passenger travel
activities behave in the same way in the same community at
the same time, and there is an interaction between different
communities at the same time.

4.2. Passenger Travel Hot Spot Analysis. Taking the 8 : 00–9:
00 time period as an example, we considered the minimum
circle radius of the community, including the pick-up and
drop-off points, as the aggregation distance, and the out-
bound visit heat and arrival visit heat of the passenger’s
travel activity as the indicators. 'e corresponding com-
munities were divided according to the first decile, and the
pick-up and drop-off points were aggregated to extract hot
spots. Furthermore, the pick-up and drop-off points in the
corresponding community were aggregated according to the
last decile to extract cold spots, as shown in Figure 8.

It can be clearly observed from Figure 8 that the pick-up
points of the decile before the visit were distributed in

Community No. 4, and the drop-off points of the decile
before the visit were mostly distributed in Community No. 1:
in the southeast of Gulou, southwest of Xuanwu, west of
Qinhuai, northeast of Jianye, and north of Yuhuatai. 'ese
are adjacent areas of the main urban centers, and the pick-up
or drop-off points in the decile after the visit heat and the
visit heat were randomly distributed. 'erefore, it can be
concluded that passenger travel hot spots were clustered or
dispersed as passenger travel activity increased or decreased.

Xu et al. [19] showed that the hot spots in Nanjing have a
spatial distribution characteristic of clustering from the
surroundings to the center and that Moran’s I value around
the clustering center is negative. 'e hot spots of passenger
travel extracted in this study are consistent with the results of
the previous study, and a more obvious spatial local ag-
glomeration can be found based on community detection of
pick-up and drop-off points.

Taking the period from 8 : 00 to 9 : 00 as an example, the
average visit heat and average visit heat statistics were
calculated on five graded road sections: national highway,
provincial highway, county highway, township and village
highway, and other roads, as shown in Table 1.

It can be seen from Table 1 that the average visit pop-
ularity ordered from high to low was township and village
roads, provincial roads, other roads, county roads, and
national roads. 'e average visit popularity ordered from
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Figure 7: (a) Community detection results of origin and destination from 8 : 00 to 9 : 00. (b) Community detection results of origin and
destination from 13 : 00 to 14 : 00. (c) Community detection results of origin and destination from 18 : 00 to 19 : 00. (d) Community detection
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Figure 8: (a) Hot and cold spots of origins in pick-up communities from 8 : 00 to 9 : 00. (b) Hot and cold spots of destinations in drop-off
communities from 8 : 00 to 9 : 00.
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high to low was national roads, other roads, town and village
roads, county roads, and provincial roads.

By searching the database, we found that the represen-
tative road sections with higher outbound visits on the graded
roads were Yurun Street, Fengqi Road, Jiajiang Bridge, Jin-
su’an Road, and Caodu Lane; representative sections with
lower outbound visits were Fengwu Road, Binjiang Road,
Jiangshan Street, Chuanjiang Street, and Houde Road. Rep-
resentative road sections with higher arrival visits were
Zhenxing Road, Shuangtang Road, Jiangshan Street, Xiao-
fenqiao, and Fanjiatang. Representative sections with lower
arrival visits were Fengwu Road, Moxiang Road Overpass,
Nanjing Yangtze River Tunnel, Lingyin Road, and Kuitou
Alley. 'is shows that passenger travel activities are closely
related to the traffic functions carried by the graded roads.'e
main function of expressways is to enable continuous traffic,
of trunk roads is to enable transportation, of secondary trunk
roads is to enable distribution traffic, and of branch roads is to
enable service in local areas.

A study by Yang [20] showed that there is cascading
failure and congestion in the traffic system of Nanjing. Travel
conditions of people in an unbalanced road network load are
affected by the coupling of sub-road networks. 'e results of
passenger travel activity on graded roads in this study are
consistent with the conclusions of that research.

Taking the 8 : 00–9:00 period as an example, based on the
residents’ walking considerations, the pick-up and drop-off
points are the center of the circle with a radius of 300m for
coverage, covering commercial land, residential land, public
management and public service land, and transportation
land. 'e average outbound visit heat and average arrival
visit heat were calculated for approximately 30 types of land
use involving a total of 26,000 points of interest, as shown in
Table 2.

It can be seen from Table 2 that the land use type with the
highest average outbound visit heat was urban residential
land, and the land use type with the lowest average outbound
visit heat was commercial and financial land. 'e land use
type with the highest average arrival visit heat was com-
mercial and financial land. 'e lowest average arrival visited
land use type was urban residential land.

By searching the database, the representative point of
interest with higher average outbound visits was Yangz-
huang Village, corresponding to Shiyang Road. 'e repre-
sentative point of interest with lower average outbound visits
was Flower Building, corresponding to Software Avenue.
'e representative point of interest with higher average
arrival visits was Commercial Century Plaza, corresponding
to the Xinjiekou commercial pedestrian area. 'e repre-
sentative point of interest with lower average arrival visits

was Sun Ye Village, corresponding to Longzang Avenue.
'is shows that passenger travel activities were closely re-
lated to the zoning functions carried by land use types.

A study by Jin and Xu [21] showed that the inflow and
outflow on the key nodes of Nanjing’s road network of
different levels have an obvious hierarchical structure, and
different points of interest play a certain role in the flow of
tourists. 'e results of passenger travel activity at different
points of interest in our study were consistent with the
conclusions of the previous research.

In summary, urban roads contain information about the
classification functions of expressways, arterial roads, sec-
ondary arterial roads, and branch roads and are affected by
land use types. 'e pick-up and drop-off points with high
passenger travel activity were concentrated near points of
interest, forming hot spots. On the contrary, the pick-up and
drop-off points with low passenger travel activity were
concentrated near points of interest, and cold spots were
formed. 'e hot spots of outbound visits were scattered on
urban residential land, and the hot spots of arrival visits were
concentrated on commercial and financial land.

5. Comparison and Discussion

5.1. Comparison. 'e GN algorithm [16] includes a splitting
algorithm that uses the number of shortest paths passing
through each edge in the network as a measurement index,
and gradually deletes edges that do not belong to any
community. Newman’s fast algorithm [17] uses a cohesive
algorithm, starting with each node occupying a community
and continuously merging in the direction that maximizes
the increase in modularity. Compared with the GN algo-
rithm and the Newman fast algorithm, we use Bayes’ rule to
set the weight of the edge betweenness of the network, and
the heap data structure to calculate the modularity; we also
reduce the complexity of the algorithm and use the standard
deviation ellipse to make the detected community structure
clearer. For a complex network with n nodes and m con-
necting edges, the comparison results of the GN algorithm,
Newman fast algorithm, and the algorithm in this paper are
listed in Table 3.

'eoretically, if there are n communities, an n × n

symmetric matrix F can be defined. 'e trace of the matrix
(the sum of the diagonal elements of the matrix) is
Tr(F) � 􏽐

i

fii, which means the ratio of all edges connecting
the nodes within the community to the total number of
edges in the network. Tr(F) value is in the range of [0, 1]. It
is used to calculate modularity, and to a certain extent also
characterizes the complexity of the network structure.

Table 1: Average activity of graded roads.

Graded road Number of roads Average value of departure Average value of arrival
National roads 66 0.530 0.598
Provincial roads 84 0.648 0.474
County roads 181 0.594 0.546
Township and village roads 1191 0.694 0.582
Other roads 178 0.626 0.592
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When the network structure is abnormally chaotic, there
are fewer edges connecting nodes within the community, and
the value of Tr(F) is minute. When the network structure is
abnormally single, there are excessive number of edges
connecting the nodes within the community, and the value of
Tr(F) is extremely large. When Tr(F) value is in the range of
[0.4, 0.6], it can be assumed that the network structure is
normal and that the value is not an abnormal value.

'erefore, another way of expressing modularity is
M � Tr(F) − F2, and F2 is the modulus of matrix F2. We
compare the accuracy of community detection models using
the GN algorithm, Newman fast algorithm, and the algo-
rithm in this paper, as shown in Figure 9.

'e community detection algorithm centered on the
hierarchical structure is divided into split and aggregation
types. 'e GN algorithm belongs to the split type, and the
Newman fast algorithm and the algorithm proposed in this
article belong to the aggregation type.

'e GN algorithm gradually deletes edges that do not
belong to any community (i.e., the edges connected between
communities) according to the degree to which the edges do
not belong to the community, until all edges are deleted.
Because the edge betweenness of each connected edge needs
to be recalculated every time an edge is removed, for complex
network structures, the algorithm can be easily implemented
by splitting it across more independent communities.

Newman’s fast algorithm starts with each node occu-
pying a community and continues to merge communities in
the direction that maximizes the increase in modularity until
the entire network merges into one community. Because the
modularity needs to be increased every time the commu-
nities connected by edges are merged, when the network
structure is simple, the execution of this algorithm will easily
lead to the incorrect division of nodes.

'e algorithm proposed in this paper introduces Bayes’
rule and takes the amount of information as the increment of
modularity, without calculating the adjacency matrix to
ensure the increment of modularity. 'erefore, when

unconnected communities are merged, the degree of
modularity remains unchanged; thus, the communities that
are connected by edges and the corresponding internal
nodes can be divided more accurately.

As shown in Figure 9, the abscissa is Tr(F) and the
ordinate represents the accuracy of community detection.
'e circle is the GN algorithm, the triangle is the Newman
fast algorithm, and the square is the algorithm used in this
study. It can be clearly observed from the figure that the
accuracy of the algorithm in this study is significantly higher
than that of the GN algorithm. Compared with the Newman
fast algorithm, when Tr(F) is [0, 0.2], [0.4, 0.6], and [0.8, 1],
the algorithm used in this study has higher accuracy.
'erefore, according to Figure 9 and Table 3, the accuracy of
the algorithm in this study is equivalent to that of the
Newman fast algorithm, but the running time is faster, and
thus the performance is better.

'is demonstrates that when the network structure is
abnormally single or chaotic, the community detection
model using the algorithm proposed in this study can
discover more complex community structures and has better
interpretability for community detection results.

Table 2: Activities at different points of interests.

Land use types Interests Total Value of departure Value of arrival

Commercial

Retail land Shopping malls, supermarkets, etc. 4381 0.722 0.578
Dining land Hotels, restaurants, etc. 5210 0.700 0.568
Financial land Office buildings, financial centers, etc. 462 0.276 0.648
Other land Banks, business halls, etc. 2284 0.738 0.590

Residential Residential land Apartments, villas, etc. 2161 0.790 0.288

Public

Agency land Government agencies, etc. 810 0.674 0.574
Education land Schools, institutes, etc. 1376 0.614 0.508
Medical land Hospitals, pharmacies, etc. 1881 0.660 0.540
Green land Parks, gardens, etc. 74 0.554 0.450

Traffic Street land Parking lot, transportation station, etc. 324 0.700 0.576
Highway land Toll station, bus station, etc. 7206 0.308 0.444

Table 3: Method comparison.

Characteristic GN algorithm Newman fast algorithm Algorithm of this paper
Algorithm complexity O(nm2) O(n2) O(mlog2n)

Number of communities Unknowable Knowable Knowable
Community structure No overlap Overlap Overlap

GN algorithm
Newman fast algorithm
Algorithm of this paper
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Figure 9: Algorithm performance comparison chart.
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5.2.Discussion. In order to explore the parameter sensitivity
of the community detection model in this study, taking the
period of 8 : 00–9:00 as an example, the degree distribution
of the random network was calculated, as shown in Fig-
ure 10, and 21 simulation experiments were performed to
compare the accuracy, as shown in Figure 11.

As shown in Figure 10, the abscissa represents the degree
of the node, the ordinate represents the degree distribution
probability, N represents the number of nodes, and p

represents the connection probability of the nodes. It can be
clearly observed from Figure 10 that the average degree of
the node is eight, and the degree distribution follows the
Poisson distribution.

As shown in Figure 11, the abscissa represents the
number of communities, and the ordinate represents the
accuracy of community detection. It can be clearly observed
from Figure 11 that when the number of communities
detected is four, the accuracy reaches its peak.

In summary, in a random network composed of 4870 key
road network nodes, different communities are delineated
based on taxi passengers’ pick-up and drop-off points within
a representative period, and the detected travel hot spots
have reasonable spatial distribution characteristics.

Qin et al. [18] analyzed the intensity of node access degrees
and edge weights based on the network interaction of urban
hot spots, without considering the potential impact of land use
on urban residents’ travel decisions. 'is study combined the
hierarchical road network and point of interest data to explore
hot spots from the perspective of individual taxi passengers
interacting with the community, which helped to explore the
formation process of urban hot spots.

6. Conclusions

'is study extracted the passenger pick-up and drop-off
points from taxi movement trajectory data, constructed a
taxi passenger travel activity index based on community
detection, and extracted the hot spots of taxi passenger travel
in the main urban area of Nanjing. 'e following three
conclusions were drawn:

(1) 'e travel activities of taxi passengers showed a time
distribution pattern of more daytime, less nighttime,
and frequent morning and evening peak hours.
Affected by the purpose of travel, the degree of
community modularity and anisotropy rate of taxi
passengers’ pick-up and drop-off points were posi-
tively correlated during morning and evening peak
hours and negatively correlated during other
periods.

(2) 'e travel activities of taxi passengers presented a
spatial distribution pattern, in which the central area
of the city was concentrated and the outer areas were
scattered. Affected by the structure of the commu-
nity, passenger travel activities showed a consistent
behavioral pattern within the community and had
obvious spatial gathering characteristics. Further-
more, there was a significant interaction between
different communities.

(3) 'e hot spots for taxi passengers’ travel were scattered
on urban residential land and concentrated on com-
mercial and financial land. Affected by land use,
passenger travel activity indicators were closely related
to road grades and types of points of interest. Pas-
senger travel hot spots were clustered as activity levels
increased and dispersed as activity levels decreased.

Subsequent research needs to consider more sources of
data, such as combining rental car trajectory data with bus
trajectory data, analyzing the travel preferences of different
groups of people, and further exploring the temporal and
spatial patterns of urban traffic congestion by urban resi-
dents using the impact of different travel modes.

Data Availability

All data, models, and code that support the findings of this
study are available from the corresponding author upon
reasonable request.
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Due to the complexity of the operation control of urban rail transit and diversity requirements for section running time standards,
based on actual train operation data, this paper proposes a curve fittingmethod to find the interrelation between running time and
energy consumption. According to features of the energy consumption-running time curve, the discriminant criterion of outliers
is constructed to select the candidate fitting data set from the original data set. To fit the energy consumption-running time curve
from two-dimensional scatter points, we propose a B-spline curve fitting method based on a genetic algorithm and the fitting
method is proven to have high fitting accuracy and convergence speed. Furthermore, we propose an optimization method for the
fitting curve based on dynamic adjustment of the fitting data set which is selected from the candidate fitting data set to obtain the
optimal energy-running time curve. &e validation of Guangzhou Metro’s actual operation data shows that the energy-running
time curve fitted and optimized by our method has lower energy and better continuity and smoothness and could be used for
evaluation of train drivers’ performance and energy consumption of train operation diagram.

1. Introduction

Under the background of developing green traffic and
building energy-saving cities, urban rail transit has become
one of the main means of solving the problem of urban
traffic congestion due to its low energy consumption and low
pollution. In most Chinese cities, urban rail transit has
developed rapidly in the last few years. By the end of 2019,
about 40 cities inMainland China had opened 208 urban rail
transit lines, with a total length of 6,736.2 km of which
5,180.6 km was subway lines, accounting for 76.9%. China’s
urban rail transit has developed by leaps and bounds, but it
also faces many problems such as high energy costs and low
management level. &erefore, reducing the energy con-
sumption level of urban rail transit will help to give play to
the advantages of urban rail transit and maintain its
competitiveness.

Energy consumption directly related to urban rail transit
is mainly generated by stations and trains. Train energy
consumption includes operation energy consumption and
auxiliary energy consumption such as lighting, ventilation,

and air conditioning. Operation energy consumption is the
main source of energy consumption of urban rail trains,
which generally accounts for more than 50% of the train
energy consumption and takes a large proportion of the
operating expenditure. &e effective reduction of operation
energy consumption not only meets the requirements of
developing green traffic but is also an effective way for urban
rail transit enterprises to reduce costs and improve benefits.
&erefore, it is of great significance to study the traction
energy consumption of urban rail transit.

Generally, the operation curve of urban rail trains is
optimized to minimize the operation energy consumption to
obtain the optimal running time and energy consumption
considering the requirements of section running time. In the
trial operation stage of the train, the manufacturer presets
several operation curves for selection during formal oper-
ation according to some parameters such as the vehicle
performance, the horizontal and vertical section of lines, the
section length, and the user requirements of the urban rail
enterprise. Nowadays, there has been much research on the
energy-saving operation strategy of urban rail trains. As
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early as 1980, Milroy [1] began to study the train operation
energy consumption optimization problem. Based on the
maximum principle, he proposed a short-distance energy-
saving operation strategy for urban rail transit which in-
cluded three stages: traction, coasting, and braking and
established the optimal control model to minimize the
energy consumption under a constant slope, laying the
foundation for modern urban rail train optimal control
theory. Khmelnitsky [2], on the basis of an analytical
method, further considered the change in line slope, the
difference of section speed limits, and the relationship be-
tween traction force and braking force with changes in speed
and proposed a numerical algorithm for optimizing the
operation strategy. Chang and Sim [3] established a mul-
tiobjective optimization control model considering comfort,
punctuality, and energy consumption and used an improved
genetic algorithm (GA) to calculate the switching point of
coasting mode so as to achieve the effect of saving energy by
reasonably increasing the coasting time. Ke et al. [4] opti-
mized the section operation strategy of urban rail transit by
using the maximum-minimum ant colony cloning optimi-
zation algorithm and proved that their proposed algorithm
had a higher computational efficiency than other intelligent
algorithms. Liu et al. [5] used the maximum principle to
optimize the energy-saving operation strategy of the train
and then used a numerical algorithm to solve the switching
point of the train operation mode, also achieving good
results. Villalba et al. [6] proposed an optimization model
based on the train speed relationship and set a speed limit for
trains traveling between stations to minimize energy con-
sumption, achieving a 19% reduction in energy consump-
tion compared to current levels. Bocharnikov et al. [7]
designed a fitness function with variable weightings which
was used to identify optimal train trajectories by running a
series of simulations in parallel with a genetic algorithm
search method and optimized traction energy consumption
during a single-train journey by the optimal train
trajectories.

However, the optimization of the operation curve is a
complex optimization problem for which it is difficult to
obtain the optimal solution. Meanwhile, operation curves
preset by the manufacturer are limited and unable to cover
all running time requirements of daily train operation.
&erefore, aiming at the theoretical limitations of optimi-
zation of operation energy consumption at a certain running
time, this paper attempts to study the relationship between
section running time and reasonable energy consumption
from a data-driven perspective by using the abundant train
operation data formed in the operation process of urban rail
enterprises.

In order to establish the relationship between section
running time and optimal energy consumption, the data
fitting method is very suitable. &e fitting curve can visually
show the changing trend of discrete data and has a wide
range of applications in engineering practice. &e selection
of the fitting data set directly affects the accuracy and effect
of the final fitting curve, so it is very important to choose a
suitable fitting data set. M. Rza Mashinchi et al. [8] designed
the granularity box regression method based on border

regression to preprocess the data set containing outliers,
eliminated outliers deviating from the fitting curve, and then
conducted linear regression analysis on the data. Hossein
Hassain et al. [9] demonstrated the importance of elimi-
nating noise from the data set in plant growth curve fitting
and proposed that using singular spectrum analysis to
process data can effectively eliminate noise. Sanpeng Zheng
et al. [10] improved the classical moving least squares
method and could automatically identify outliers from the
discrete data set to reduce the influence of outliers on the
fitting curve through a weight function and to ensure the
fitting effect. Ping Chen et al. [11] proposed a Gibbs sam-
pling algorithm to detect additive outliers and patches of
outliers in bilinear time series models based on the Bayesian
view and demonstrated the efficacy of detection and esti-
mation by Monte Carlo methods. Galvez et al. [12] applied
the firefly algorithm, a powerful metaheuristic nature-in-
spired algorithm, to compute the approximating explicit
B-spline curve for a given set of noisy data points. Trejo-
Caballero et al. [13] proposed a linear combination of radial
basis functions (RBFs) to tackle the curve fitting problem
with a set of data points including noises.

Considering the influence of the passenger loading rates
on the correlation between the running time and the energy
consumption, we construct the data set of train operation
based on a given loading-rate standard. &e train operation
data in this paper refer to the operation information of each
train in the research section and operation direction, in-
cluding the section operation curve, the section running
time, and the corresponding energy consumption. Ignoring
specific details such as the operation speed, acceleration,
operation mode, and other parameters of the operation
curve, we construct energy consumption-running time data
points (E-Tpoints) by taking the section running time as the
abscissa and the energy consumption as the ordinate to
study the change laws between running time and energy
consumption and obtaining the optimal energy consump-
tion-running time curve (the optimal E-T curve).

&e optimal E-T curve shows the lowest operation en-
ergy consumption in different section running times.
Meanwhile, the corresponding train operation curves of E-T
points can provide abundant running curve support for the
operation of the train under different running times. And
due to the optimality of each point of the curve, the rea-
sonableness of the operation strategy adopted by a train in
the section can be evaluated accordingly by the comparison
between the actual operation energy consumption and the
optimal operation energy consumption. What is more, with
the optimal E-T curve of each section in the train operation
diagram, the optimal energy consumption of the entire
operation diagram can also be calculated to evaluate the
energy consumption level of the existing operation diagram
and make up the optimal energy consumption timetable.

To obtain the optimal E-T curve, we first construct the
discriminant criterion of the energy consumption level of
the train operation data to eliminate the obvious unrea-
sonable data with high energy consumption from the
original train operation data set and obtain a candidate set of
fitting data points after the preliminary screening to improve
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the accuracy of curve fitting. Secondly, based on the can-
didate fitting data set, a B-spline fitting method is adopted.
Finally, based on the feedback of the fitting results, we es-
tablish an optimization method to improve the quality of the
fitting curve by the dynamic adjustment of the fitting data
set.

2. Candidate Fitting Data Set

&e section operation curve of urban rail trains generally
includes several parts such as “maximum traction-cruising
(or coasting)-maximum braking.” However, minor changes
in operating strategy and control parameters will cause
changes in the curve, running time, and energy consump-
tion, resulting in a diversity of section operation data of
trains. Even the same running time may correspond to
several different train operation curves, as shown in Figure 1.

As described above, the train operation strategy (the
operation curve) of the train operation data and the running
time under the strategy are defined as E-Tpoints. Because of
the diversity of train operation data in rail sections, E-T
points are relatively unordered and scattered in the coor-
dinate system. In order to study the relationship between
section running time and energy consumption and to obtain
the optimal E-T curve, it is necessary to construct the dis-
criminant criterion of outliers of E-T points, remove un-
reasonable energy consumption data from the original data
set, and filter out a better data set to ensure the fitting effect
of the E-T curve.

Although there may be a one-to-many relationship be-
tween section running time and the train operation curve, each
running time should have the unique optimal energy con-
sumption [14, 15]. Figure 2 shows that optimal energy con-
sumption and running time have a negative correlation and
the uniqueness of the optimal energy consumption in a certain
running time. &us, the outliers of E-Tpoints can be removed
according to the interrelation of the train operation data.

Taking the four data points in Figure 3 as an example,
according to the approximate inverse relation between
optimal energy consumption and running time, the optimal
energy consumption EB at running time TB must be less
than EA because TB>TA, so point B should be removed.
Similarly, compared with point C, point D needs to be
removed.

Setting the original data set of E-Tpoints as P� {pi(Ti, Ei),
i� 1, 2, 3, }, according to the above analysis, the optimal data
set P∗ � p∗i (T∗i , E∗i ), i � 1, 2, 3, . . .􏼈 􏼉 should satisfy the
following law: ∀p∗1(T∗1 , E∗1 ), p∗2(T∗2 , E∗2 ) ∈ P∗, if T∗2 ≥T∗1 ,

thenE∗2 /T
∗
2 ≤E∗1 /T

∗
21, E∗2 ≤E∗1 , and generally, ∀p∗1(T∗1 , E∗1 ),

p∗2(T∗2 , E∗2 ) ∈ P∗, if T∗2 > T∗1 , thenE∗2 /T
∗
2 <E∗1 /T

∗
21, E∗2 <E∗1 .

Based on the features of the optimal data set, the dis-
criminant criterion of outliers of the original data set is
constructed as follows:
∀p1T1, E1, p2T2, E2∈P, if E1 � E2, T1 >T2, then p1 is

worse than p2. ∀p1(T1, E1), p2(T2, E2) ∈ P, if T1 � T2, E1 >
E2, then p1 is worse than p2. ∀p1(T1, E1), p2(T2, E2) ∈ P, if
T1 ≥T2, E1 >E2 or (E1/T1)> (E2/T2), then p1 is worse than
p2.

&e above rules can simply distinguish and eliminate
some obvious bad points, but there may be some points of
poor quality that cannot be eliminated. &erefore, we
define the inferiority to measure the quality of these points,
and the greater the inferiority, the worse the energy con-
sumption of one point. ∀p(T, E) ∈ P, the neighboring
point with less running time of point p is p1(T1, E1), T1 <T,

and p1′
�→

is the direction vector of the tangent at point p1 on
the E-T curve, so the inferiority of point p is defined as
follows:

δ(p) �
δ p1′

�→
, p1p
���→

􏼒 􏼓

δ p1′
�→

, 0􏼒 􏼓

, (1)

where δ( p1′
�→

, p1p
���→

) is the angle between vector p1′
�→

and p1p
���→,

δ( p1′
�→

, 0) is the angle between vector p1′
�→

and the horizontal
axis, and δ(p) ∈ (0, 1].

Based on the discriminant criterion of outliers, we can
preliminarily remove outliers and points with unreasonable
energy consumption from the original data set
P � pi(Ti, Ei), i � 1, 2, 3, . . .􏼈 􏼉 and obtain the candidate fit-
ting data set Ps � ps

i (Ts
i , Es

i ), i � 1, 2, 3, . . .􏼈 􏼉. &e specific
steps of the algorithm are as follows:

Step 1. Order all E-T points in the original data set in
ascending order according to the running time. |P| is
the size of set P, and the initial number of elements in
set P is Num.

Step 2. Remove outliers based on the discriminant
criteria. Set i � 0, and compare the energy consumption
of pi and pi+1, where pi, pi+1 ∈ P. If Ti+1 � Ti, Ei+1 >Ei,
or Ti+1 >Ti, Ei+1 ≥Ei, then P � P − pi+1􏼈 􏼉, |P| � |P| − 1.
Set i � i + 1.
Step 3. If i<Num − 1, return to Step 2; otherwise, set
Ps � P d and take Ps as the candidate fitting data set.

In this algorithm, we obtain the candidate fitting data set
by the discriminant criterion of outliers, and the definition of
inferiority is used in the dynamic adjustment of the fitting
data set later.

Velocity

T0 Time

Vmax

Vmin

Figure 1: Multiple operation curves can correspond to the same
running time.

Journal of Advanced Transportation 3



3. A B-Spline Curve Fitting Method Based on a
Genetic Algorithm for the Optimal E-T Curve

For the selected train operation data set, the running time
and energy consumption of the data constitute scattered
points that could be fitted as an E-T curve. B-spline has the
powerful function of expressing and designing free-form
curves and surfaces and is one of the most popular main-
stream methods for the mathematical description of shapes.
So the B-spline curve can be used to fit a set of two-di-
mensional data points based on the train operation data
[16, 17].

3.1. B-Spline Curve Fitting Method for the Selected Data Set.
An ordered data set Q � qi (Ti, Ei), i � 1, . . . , m􏼈 􏼉 is selected
from the candidate fitting data set Ps (Q⊆Ps), and the
parameter vector of Q is T � ti, i � 1, . . . , m􏼈 􏼉. &e mathe-
matical definition of the B-spline curve over the knot vector
U � u0 � · · · � uk ≤ uk+1 ≤ · · · ≤ un ≤ un+1 � · · · � un+k+1􏼈 􏼉 is
shown as follows:

B(t) � 􏽘
n

j�0
PjNj,k(t), (2)

where k is the degree of curve, Pj(j � 0, 1, . . . , n) are control
points, and Nj,k(t)(j � 0, 1, . . . , n) are the B-spline basis
functions. Basis functions are calculated using the following
equations:

Nj,0(t) �

1, uj ≤ t< uj+1,

0, otherwise,

⎧⎪⎨

⎪⎩
(3)

Nj,k(t) �
t − uj

uj+k − uj

Nj,k−1(u) +
uj+k+1 − u

uj+k+1 − uj+1
Nj+1,k−1(u).

(4)

If necessary, the convention (0/0) � 0 in equation (4) is
applied. When the data set Q falls on the B-spline curve,
∀qi ∈ Q should be satisfied:

qi � B ti( 􏼁 � 􏽘
n

j�0
PjNj,k ti( 􏼁, i � 1, . . . , m, (5)

which is written in matrix form as follows:

Q � NP, (6)

where Q is the data set matrix and N is the B-spline basis
function matrix that could be calculated by the parameter
vector T and the knot vector U.

&e B-spline curve should go through the start point and
end point and then

Q0 � B t0( 􏼁 � P0,

Q1 � B t1( 􏼁 � P1.
(7)

Aiming at the minimum square sum of error (SSE)
between the fitting data points and actual data points, the
objective function can be expressed as

Velocity

E-T curve

TimeTmin T1 T2 T3

Energy

V-T curve

t

Figure 2: &e interrelation between section running time and energy consumption.

E

T

EA
A

B

C

D

TA TB

Figure 3: Removal of points with high energy consumption.
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f � 􏽘
m−1

i�1
Qi − B ti( 􏼁􏼂 􏼃

2
� 􏽘

m−1

i�1
Ri − 􏽘

n− 1

j�1
PjNj,k ti( 􏼁⎡⎢⎢⎣ ⎤⎥⎥⎦

2′

, (8)

where

Ri � Qi − Q0N0,k ti( 􏼁 − QmNm,k ti( 􏼁, i � 1, 2, . . . , m − 1.

(9)

According to the least squares principle, calculate the
partial derivative of control points Pl(l � 1, 2, . . . , n − 1) as
follows:

zf

zDl

� 􏽘
m−1

i�1
−2RiNl,k ti( 􏼁 + 2Nl,k ti( 􏼁 􏽘

n

j�1
PjNj,k ti( 􏼁⎡⎢⎢⎣ ⎤⎥⎥⎦, (10)

and then

− 􏽘
m−1

i�1
RiNl,k ti( 􏼁 + 􏽘

m−1

i�1
􏽘

n−1

j�1
DjNj,k ti( 􏼁Nl,k ti( 􏼁 � 0, (11)

􏽘

m−1

i�1
􏽘

n−1

j�1
Nj,k ti( 􏼁Nl,k ti( 􏼁⎛⎝ ⎞⎠Dj � 􏽘

m−1

i�1
RiNl,k ti( 􏼁. (12)

Transform equation (12) into matrix form and then

NTN􏼐 􏼑D � R, (13)

where

N �

N1,k t1( 􏼁 . . . Nn−1,k t1( 􏼁

⋮ ⋱ ⋮

N1,k tm−1( 􏼁 . . . Nn−1,k tm−1( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

R �

N1,k t1( 􏼁R1+ · · · +N1,k tm−1( 􏼁Rm−1

⋮ ⋱ ⋮

Nn−1,k t1( 􏼁R1+ · · · Nn−1,k tm−1( 􏼁Rm−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

D �

D1

⋮

Dn−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(14)

&e control point matrix P can be calculated approxi-
mately as follows:

P � NTN􏼐 􏼑
− 1
NT

Q. (15)

Furthermore, the mathematical expression of the fitting
curve Qc can be obtained as

Q
c

� N NTN􏼐 􏼑
− 1
NT

Q. (16)

Letting qC
i ∈ Qc be the point on the fitting curve cor-

responding to parameter ti, and the sum of squares of the
least squares error SSE is calculated as

SSE � 􏽘
m

i�1
qi − q

C
i

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
. (17)

According to the above theory, the key of the B-spline
curve fitting method is to find out the parameter vector T

and the knot vector U of the fitting data set. In previous
researches, the knot vector is always fixed, and then, the
parameter vector c be selected by methods such as uniform
parameterization, the Gauss–Newton approach, and cen-
tripetal model parameterization. Alternatively, the param-
eter vector is first determined by the cumulative chord
length parameterization, and then, the knot vector is cal-
culated [18, 19]. However, the accuracy of the fitting curve
obtained by these methods is not satisfying, and it is difficult
to obtain the optimal fitting curve. &erefore, in this paper,
we combine the GA and B-spline curve fitting method to
solve the nonlinear problem by changing the parameter
vector and node vector simultaneously [20]. Meanwhile,
considering the internal relationship between the parameter
vector and the knot vector, when the parameter vector and
the number of control points are determined, the appro-
priate knot vectors can be directly calculated by the average
ordered parameter method [21, 22]. In this way, each ad-
jacent knot interval corresponds to at least one data point
that ensures that the fitting curve has high fidelity.&erefore,
the fitting problem of the B-spline curve is transformed into
the problem of using a GA to find out the optimal parameter
vector and control points without coding the parameter
vector and knot vector at the same time, which reduces the
complexity of the algorithm.

3.2. Genetic Algorithm Design in B-Spline Curve Fitting

3.2.1. Notation. All the relevant notations used in the ge-
netic algorithm are listed in Table 1.

3.2.2. Selection of the Initial Population and Chromosome
Coding. &e initial population of the genetic algorithm is
generally generated randomly. According to the features of
the B-spline curve, we generate the initial population of size
N randomly in this paper. Coding methods usually include
binary coding and real coding. In order to reflect the in-
creasing characteristic of the parameter vector in the
B-spline curve more intuitively, real coding is adopted in this
paper.&e chromosome of each individual in the population
is coded as an (m+ 1)-dimensional increasing real vector in
the following equation:

G1, G2, . . . , Gm, Gm+1􏼈 􏼉, (18)

where G1 � 0, G2 � 1, and Gm+1 ∈ (0, 1].
&e top m genes of the chromosome represent the pa-

rameter vector corresponding to the fitting data, which are
increasing and randomly selected within the interval[0, 1].
While the (m + 1)th gene of the chromosome represents the
number of control points, the number cannot be less than
four because the degree of the B-spline curve is three. So we
select Gm+1 randomly within the interval [4, m].

3.2.3. 4e Fitness Function. &e fitness function is directly
related to the quality of the final result and the optimization
efficiency of the genetic algorithm. In order to obtain a fitting
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curve with the least squares error with as few control points
as possible, we design the fitness function as

fitness �
1

1 + SSE + λ × n
, (19)

where SSE is the least squares error and λ is the weight factor
of control points.

λ affects the number of control points of the fitting curve.
Generally, the more control points there are, the higher the
precision of curve fitting, but it is easy to fall into “over-
fitting” if there are too many control points.

3.2.4. Crossover. Common crossover methods include sin-
gle-point crossover, two-point crossover, uniform crossover,
and linear crossover. In this paper, the top m genes of in-
dividual chromosomes represent the parameter vector, so
the new chromosome obtained after crossover should also
maintain the increasing feature of parameter vectors, and
thus, linear crossover is more suitable.

Two individuals are randomly selected from the set of
parent chromosomes, random number r is generated within
the interval[0, 1], and the linear crossover is operated if
r< ρc as follows:

h1′ � sh1 +(1 − s)h2,

h2′ � (1 − s)h1 + sh2,

⎧⎨

⎩ (20)

where s is a random number in the interval [0, 1] and h1′ and
h2′ are the new chromosomes after crossover. In this way, the
topm genes of the new chromosome keep increasing, and we
also need to round the (m + 1)th gene of the chromosome to
an integer because Gm+1 is the number of control points.

Meanwhile, based on the theory of inheritance of su-
periority, we set the crossover probability of good chro-
mosomes with a higher fitness to be larger than that of
chromosomes with lower fitness so as to ensure that superior
genes can be passed on to their offspring and improve the
optimization ability of the algorithm.&e dynamic crossover
probability ρc is calculated by the fitness of the population as
follows:

ρc �

ρc1 − ρc1 − ρc2( 􏼁 fmean − f2( 􏼁

fmean − fmin( 􏼁
, f1 ≤fmean,

ρc1 − pc2 fmax − f2( 􏼁

fmax − fmin( 􏼁
, f2 ≤fmean <f1,

ρc1, f2 >fmean,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(21)

where f1 is the larger fitness value of the two chromosomes
to be crossed while f2 is the smaller fitness.

3.2.5. Mutation. According to the coding method and the
characteristics of chromosomal genes, we adapt the single-
point mutation method, which means every gene on the
chromosome of every individual in the population may
mutate.

Let h1 � G1, G2, . . . , Gm, Gm+1􏼈 􏼉 be one chromosome
from the set of parent chromosomes. For each gene Gi of h1,
we generate a random number r within the interval[0, 1] and
operate single-point mutation if r< ρu as

Gi
′ �

0, i � 1,

sGi+1, i � 2,

Gi−1 + s Gi+1 − Gi−1( 􏼁, 2< i<m,

1, i � m,

Round Gi + s( 􏼁, i � m + 1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(22)

where s is a random number in the interval [0, 1], Gi
′ is the

new chromosome after mutation, and Round(Gi + s) when
i � m + 1 means that Gm+1 is rounded to an integer.

Also based on the theory of inheritance of superiority, in
order to preserve the superior genes, we set the good
chromosomes with high fitness to mutate with low proba-
bility, while the chromosomes with low fitness mutate with
high probability to seek new optimization directions. &e
dynamic mutation probability ρu is calculated by the fitness
of the population as

Table 1: Notation in genetic algorithm.

Parameters
N Population size
ρc Crossover probability
ρc1, ρc2 Parameters of the crossover probability
ρu Mutation probability
ρu1, ρu2 Parameters of the mutation probability
fmean Average fitness
fmax Maximum fitness
fmin Minimum fitness
H Set of parent chromosomes H � hi|i � 1, 2, . . . , N􏼈 􏼉

Cc Chromosomes produced by crossover
Cu Chromosomes produced by mutation
C Set of offspring chromosomes C � Cc + Cu

G1, G2, . . . , Gm, Gm+1􏼈 􏼉 Individual chromosome gene
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ρu �

ρu1 fmax − f( 􏼁

fmax − fmean( 􏼁
, f≥fmean,

ρu2, f<fmean,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(23)

where f is the fitness of the chromosomes to be mutated.

3.2.6. Selection. &e study shows that the convergence of the
GA mostly lies in the selection operator, which may be
roulette selection, the expected value selection method, and
the sorting selection method. We adapt the classic roulette
selection in this paper. We first calculate the fitness of the set
of parent chromosomes and the set of offspring chromo-
somes generated by crossover and mutation, respectively,
and then determine the selection probability of the indi-
vidual chromosome based on its corresponding fitness ratio
in all chromosomes, and finally, select the new generation
population according to the selection probability.

3.2.7. Algorithm Flow

Step 1. Input the degree of the B-spline curve, the fitting
data set Q, the size of the population N, the maximum
iteration number tmax, and the fitting precision ε. After
the initial population is randomly generated, we set
iteration number t � 1.
Step 2. Calculate the fitness parameters including
fmean, fmax, andfmin.
Step 3. Select a pair of chromosomes from the set of
parent chromosomes randomly, calculate the crossover
probability ρc, generate new chromosomes by the linear
crossover operation, and add the new chromosomes
into Cc.
Step 4. Select a chromosome from the set of parent
chromosomes in turn, calculate the mutation probability
ρu, operate single-point mutation on every gene of the
chromosome, and add the mutated chromosome into Cu.
Step 5. Calculate the fitness of the set of offspring
chromosomes C and select a new generation of size N

from the set Hand C by the roulette selection method.
Step 6. If t> tmax or SSE≤ ε, the algorithm is termi-
nated. Otherwise, set t � t + 1 and repeat steps 2 to 5.

&e algorithm flowchart is shown in Figure 4.

4. Fitting Curve Optimization Based on
Dynamic Adjustment of the Fitting Data Set

4.1. Optimization Model of the E-T Fitting Curve. We could
preliminarily screen the original data set by the discrimi-
nant criterion of outliers described in Section 2 and obtain
the candidate fitting data set. However, some points with
large inferiority in the candidate fitting data set may make
the curve fitting effect poor and are therefore not suitable
for inclusion in the fitting data set. For example, as shown
in Figure 5, points B and D could be eliminated by the
discriminant criterion of outliers so the candidate fitting

data set includes points A, E, F, C, andG, but points
E and F have relatively large inferiority compared with
other points and are bound to affect the curve trend, which
means the energy consumption of the fitting curve is not
optimal. &erefore, it is important to select the optimal
fitting data set from the candidate fitting data set to obtain
the optimal E-T curve, so we propose an optimization
model for the E-T fitting curve calculated by the fitting
method in Section 3.

Each point on the optimal E-T curve fitted by the
B-spline curve fitting method should satisfy the
following:

B Ti( 􏼁≤Eps
i
, ∀ps

i Ti, Ei( 􏼁 ∈ P
s
, (24)

where B(Ti) is the ordinate value of the point on the fitting
curve when its abscissa value is Ti.

Based on the approximate inverse relation between the
optimal energy consumption and running time, the optimal
E-T fitting curve should satisfy the monotonicity and
continuity of the first and second derivatives, expressed
mathematically in equations (25) and (26), respectively:

B′ Ti( 􏼁≤ 0, B′ Ti( 􏼁<B′ Ti+1( 􏼁, ∀qi Ti, Ei( 􏼁 ∈ Q, (25)

B″ Ti( 􏼁≥ 0B″ Ti( 􏼁>B″ Ti+1( 􏼁, ∀qi Ti, Ei( 􏼁 ∈ Q. (26)

At the same time, considering the feasibility of fitting, the
number of points in the fitting data set should be guaranteed,
shown as follows:

|Q|≥ 3. (27)

On the basis of satisfying the above constraints, as many
points as possible must be included. &erefore, the objective
function of the optimization of the E-T fitting curve is put
forward as follows:

max|Q| − λ1SSE, (28)

where λ1 is the penalty factor of the least squares error SSE.
In summary, the optimization model of the E-T fitting

curve is as follows:

max |Q| − λ1SSE,

s.t.

B Ti( 􏼁≤Eps
i
, ∀ps

i Ti, Ei( 􏼁 ∈ P
s
,

B′ Ti( 􏼁≤ 0, B′ Ti( 􏼁<B″ Ti+1( 􏼁, ∀qi Ti, Ei( 􏼁 ∈ Q,

B″ Ti( 􏼁≥ 0B″ Ti( 􏼁>B″ Ti+1( 􏼁, ∀qi Ti, Ei( 􏼁 ∈ Q,

|Q|≥ 3.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(29)

4.2. Optimization Algorithm Design Based on Dynamic Ad-
justment of the Fitting Data Set. Firstly, the fitting data set Q

is selected from the candidate data set Ps randomly, and
according to the E-Tcurve fitted by the B-spline curve fitting
method based on the GA, we constantly adjust the fitting
data set to improve the fitting results. Due to the fact that the
fitting precision ε is a tiny number and SSE< ε, SSE can be
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regarded as zero in the objective function. &e penalty
factors of the constraints in equations (24), (25), and (26) are
added to the objective function in the following equation:

max|Q| − λ2 􏽘

ps
i

Ti,Ei( )∈Ps−Q

B Ti( )−Eps
i
> 0

B Ti( 􏼁 − Eps
i

􏼒 􏼓
2

− λ3 􏽘

qi Ti,Ei( )∈Q

B′ Ti( )>B′ Ti+1( )
B″ Ti( )< 0

δ Ti( 􏼁( 􏼁
2

− λ4 􏽘

qi Ti,Ei( )∈Q

B″ Ti( )< 0

B″ Ti( 􏼁( 􏼁
2
,

(30)

where λ2, λ3, and λ4 are the penalty factors, and generally,
λ4 < λ3 < λ2 because constraint in equation (24) relates to the
optimization of energy consumption, while the constraints
in equations (25) and (26) relate to the smoothness of the
fitting curve.

We design the optimization algorithm on the basis of the
theory of tabu search. We define bidirectional tabu lists
including the tabu list Q+(Q+ ∈ Ps − Q) for adding points to
the fitting data set and the tabu list Q− (Q− ∈ Q) for re-
moving points from the fitting data set. For q ∈ Q+ or
q ∈ Q− , η(q) is the tabu step size of point q and ηmax is the
maximum tabu step size.

&e steps to add points to the fitting data set Q are as
follows:

Step 1. Calculate the data set Q+
0 � ps

i (Ti, Ei)|􏼈

ps
i ∈ Ps − Q, B(Ti) − Eps

i
> 0} that does not meet the

constraint in equation (24).
Step 2. Select the point to be added. If Q+

0 � ∅, do not
add points to the fitting data set Q. Otherwise, if
Q+

0 ≠∅, Q+
0 − Q+ ≠∅, select point p ∈ Q+

0 − Q+ by the
roulette selection method and add point p into data
set Q. &e selection probability is calculated as
follows:

ρ+
(p) �

B Ti( 􏼁 − Eps
i

􏼔 􏼕
2

􏽐p∈Q+
0 −Q+ B Ti( 􏼁 − Eps

i
􏼔 􏼕

2. (31)

If Q+
0 ≠∅, Q+

0 − Q+ � ∅, select one point randomly
from the data set PTS � p|p ∈ Q+, η(p) � 1􏼈 􏼉 and add
this point into the data set Q.
Step 3. Update the bidirectional tabu lists. As for the
new point p added into data set Q, set Q− � Q− ∪ p􏼈 􏼉

and η(p) � ηmax. For ∀q ∈ Q+, set η(q) � η(q) − 1, and
if η(q) � 0, set Q+ � Q+ − q􏼈 􏼉.
&e steps to remove points from the fitting data set Q

are as follows:
Step 1. Calculate the data set Q−

0 � p(Ti, Ei)􏼈

|p ∈ Q, B′(Ti)>B′(Ti+1), B
’′(Ti)< 0} that does not

meet the constraints in equations (25) and (26).
Step 2. Select the point to be removed. If Q−

0 � ∅, do not
remove points from the fitting data set Q. Otherwise, if
Q−

0 ≠∅, Q−
0 − Q− ≠∅, select point p ∈ Q−

0 − Q− by the

roulette selection method and remove point p from data
set Q. &e selection probability is calculated as

ρ−
(p) �

[δ(p)]
2

􏽐p∈Q−
0−Q− [δ(p)]

2. (32)

If Q−
0 ≠∅, Q−

0 − Q− � ∅, select one point randomly
from data set MTS � p|p ∈ Q− , η(p) � 1􏼈 􏼉 and remove
this point from data s Q.
Step 3. Update the bidirectional tabu lists. As for the
point p removed from data set Q, set Q+ � Q+ ∪ p􏼈 􏼉

and η(p) � ηmax. For ∀q ∈ Q− , set η(q) � η(q) − 1, and
if η(q) � 0, set Q− � Q− − q􏼈 􏼉.

&e adjustment of the fitting data set Q terminates when
Q+

0 � ∅ and Q−
0 � ∅. &e algorithm flowchart is shown in

Figure 6.

5. Experimental Examples

&e train operation data samples in this paper are mainly
composed of actual train operation data and simulated data,
and the section running time range is 80–120 s. Generally,
the data samples are based on the actual operation data;
however, in the actual train operation process, the value
range of section running time is relatively limited (82–85 s).
We simulate some data samples as supplements by the
software named “Urban rail transit train traction calculation
and operation diagram energy consumption evaluation”
which is used by the operation department of Guangzhou
Metro. For each train operation data, we take the unit
distance (such as 0.1m) as the calculation step, and the
energy consumption is calculated by accumulating the
power (the traction force multiplies the distance) at all
distance steps. We extracted a bunch of E-T points to form
the original data set, as shown in Figure 7.

&e energy consumption of most data points shown in
Figure 7 is within a reasonable range; however, there are also
some points whose energy consumption value is obviously too
high. Based on the discriminant criterion of outliers, we pre-
liminarily remove outliers and points with unreasonable energy
consumption from the original data set, and all remaining points
after filtering constitute the candidate fitting data set in Figure 8.

Although the overall trend of the candidate data set
conforms to the characteristics of the E-T curve, it can be
seen from the partially enlarged view that some points are
unordered and have great inferiority that will definitely affect
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the fitting effect of the E-Tcurve and could not ensure optimal
energy consumption of the curve.&erefore, we have to select
the optimal fitting data set from the candidate data set by the
optimization model of the fitting curve proposed in Section 4,
and the model parameter settings are shown in Table 2.

We randomly select 68 points for the fitting data set Q.
From the candidate data set Ps, and as the number of it-
erations increases, data set Q is constantly adjusted and
eventually includes 82 E-Tpoints when Q+

0 � ∅ and Q−
0 � ∅.

&e results are shown in Figures 9 and 10.

In Figure 9, although the value of the objective function
fluctuates, the overall trend is to increase with the number of
iterations, and the data set Q+

0 that does not meet the con-
straint in equation (17) drops significantly and finally drops to
zero, indicating that the energy consumption of the fitting
curve points basically reaches the optimal value. Because we
have already removed some outliers from the original data set,
the number of points in the data set Q−

0 that does not meet the

Adjust the fitting data 
set

Add points

Remove points

Optimized
fitting data set

B-spline curve 
fitting

Select fitting data 
set randomly

Termination check

No

Output the 
optimal E-T curve

Yes

Figure 6: Optimization algorithm flowchart.
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Figure 8: Scatter chart of the candidate data set.
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constraints in equations (18) and (19) stays low all the time
and eventually decreases to zero as well, which ensures that
the fitting curve has good continuity and smoothness.

&e optimal energy consumption curve fitted by the opti-
mized fitting data set using the B-spline curve fitting method
based on the GA is shown in Figure 11. Figure 11(a) shows the
changing trend of the least squares error and the average fitness
of the population, and Figure 11(b) is the optimal E-T fitting
curve.

&e least squares error of the fitting curve decreases
rapidly, and the average fitness of the population increases as
the number of generations increases. In the 166th genera-
tion, the algorithm is terminated when the least squares
error SSE � 0.00943, which meets the requirements of fitting
accuracy, and the average fitness of the population also
stabilizes. &is proves that the B-spline fitting method based
on the GA proposed in this paper has strong optimization
ability, high fitting accuracy, and high convergence speed.

Meanwhile, the comparison between the optimized fit-
ting curve and the original fitting curve fitted by the can-
didate data set is shown in Figure 12.

&e original fitting curve is fitted by the candidate
fitting data set, while the optimized fitting curve is fitted
by the fitting data set optimized and adjusted by the
optimization algorithm in Section 4. Although the overall
trends of the two curves are similar, in a partially enlarged

view, the optimized fitting curve is smoother after
eliminating some points with great inferiority which have
an influence on the curve, and by contrast, the optimized
fitting curve is below the original fitting curve on the
whole, which means that the goal of energy consumption
optimization has been achieved well. Taking 0.1s as the
time interval, we, respectively, select 353 sample points
with the same running time from the original fitting curve
and the optimal fitting curve and all sample points are
from 84.1 s to 119.2 s. By accumulating the difference
ratio of all sample points, the energy consumption of the
optimal fitting curve is 0.69 KW h less than that of the
original fitting curve, and the maximum energy con-
sumption difference among all sample points is 0.16%.
From the calculation, the energy consumption of the
optimized fitting curve is lower than that of the original
fitting curve and the optimal fitting data set has fewer
fitting data points, which proves that the optimization
method of the fitting curve proposed in this paper can
select the optimal fitting data set from a large number of
original data points and obtain the optimal E-T curve.

&e optimal E-T curve can reflect the lowest operation
energy consumption under different section running times,
so each data point on the optimal E-Tcurve corresponds to
the optimal operation curves, such as the velocity-distance
(V-T) curve and time-distance (T-S) curve. In Figure 13, we

Table 2: Parameter values in the model.

Parameter Value
Degree of B-spline curve k 3
Initial population size N 40
Parameters of the crossover probability ρc1, ρc2 ρc1 � 0.9, ρc2 � 0.2
Parameters of the mutation probability ρu1, ρu2 ρu1 � 0.3, ρu2 � 0.8
Fitting precision ε 0.001
Maximum tabu step size ηmax 3
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Figure 9: Change trend of the value of the objective function.
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randomly select three E-T points from the optimal fitting
data set and extract the corresponding V-Tcurves that have
the optimal energy consumption.

&e V-S curves with the optimal energy consumption can
provide abundant running curve support for the operation of
the train under different running time requirements.

6. Conclusions

In this paper, we propose a fitting method of the optimal
energy consumption-running time curve of an urban rail
section based on train operation data. &e main work
completed includes the following:
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(1) Based on the features of the section operation curve
of urban rain trains and correlations between the
running time and corresponding energy consump-
tion, the discriminant criterion of outliers is pro-
posed to select the candidate fitting data set from
many original data points, which reduces the scale of
the train operation data set as well as guaranteeing
the curve fitting quality.

(2) An improved B-spline curve fitting method is
proposed in which the parameter vector and knot
vector are optimized by the genetic algorithm,
which has a higher fitting accuracy and faster
convergence speed.

(3) On the basis of tabu search, we construct an opti-
mization model of the fitting curve by defining bi-
directional tabu lists to adjust and optimize the
fitting data set from the candidate data set dynam-
ically. It is proposed that the optimization method
could obtain the optimal E-T curve and ensure the
continuity and smoothness of the fitting curve at the
same time.

&e research on the optimal E-T curve based on
operation data of urban rain trains has certain practical
significance beyond theoretical limitations, and the op-
timal E-T fitting curve could be used in the selection of
section running time, evaluations of the energy con-
sumption of the train operation diagram, and perfor-
mance appraisal of train drivers. Further research will
focus on the optimization ability of the algorithm of
fitting curve optimization.
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