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Nonlinear oscillations have been observed in numerous
areas of science as well as engineering [1–4]. Some typical
oscillations relate to nonlinear pendulums, population
models, business cycles, and jerk systems [5]. Since the
discovery of chaotic oscillations in a nonlinear weather
model by Lorenz in 1963, chaotic oscillators, their model-
ling, and control have received much attention in the lit-
erature [1]. Chaotic systems and chaotic maps are widely
applied in engineering domains such as mechanical oscil-
lations [6, 7], robotics [8–10], nanosystem [11], lasers
[12–14], nuclear reactor [15], neural networks [16], en-
cryption [17, 18], cryptosystems [19], and communication
devices [20].

Tis special issue focused on the modelling, control
methods and various applications of chaotic oscillators in
nature and society. Tis special issue contains ten articles,
the contents of which are summarized as follows.

Vaidyanathan et al. [21] proposed a new four-
dimensionaltwo-scroll hyperchaotic system having only
two quadratic nonlinearities in their research article and
elucidated a detailed bifurcation study of the proposed two-
scroll hyperchaotic system. Te swift advancement of var-
ious areas of chaos theory has paved way into the modelling
and engineering applications of chaotic and hyperchaotic
systems in various felds. Te authors also present the
construction of an electronic circuit for the new system
using MultiSim (Version 14). With the application of the

Forward Euler Method and Trapezoidal method, the authors
have dealt with the implementation of the new two-scroll
hyperchaotic system using the model of a feld-
programmable gate array (FPGA). Details have been pro-
vided of the hardware resources used for an FPGA Basys 3
Xilinx Artix-7 XC7A35T-ICPG236C.

Kammogne et al. [22] discussed the complex dynamics
and properties of memristive load using current-mode-
controlled in buck converter in their research article. It is
well-known that electronic power converters exhibit some
complex features that can be infuenced by the structure
parameters, load, and pulse period of the converter. In this
article, the authors investigate the complex dynamic phe-
nomena occurring in the dc/dc buck converter, where the
main part of this study is consecrated to the nonlinear
dynamics when the converter load is memristive. Te dy-
namics analysis of the buck converter with memristive load
is carried out with signal plots, bifurcation tools, and Lya-
punov diagrams which demonstrate the rich and striking
behaviors of the nonlinear dynamical system such as peri-
odic orbits, period-doubling bifurcation, quasiperiodicity,
chaos, and pinched hysteresis loops of the memristive load.
Finally, the MATLAB simulation results of the buck con-
verter with memristive load are shown to be in good
agreement with the analog results obtained with PSIM.

Hosseinabadi et al. [23] proposed a new adaptive fnite-
time sliding mode backstepping (AFSMBS) control scheme
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in order to control a type of high-orderdouble-integrator
systems with mismatched disturbances and uncertainties.
Te authors incorporate a robust sliding mode control,
adaptive control method, backstepping control method, and
fnite-time stability notion to provide a better tracking
performance over applying the techniques separately and to
employ their advantages together. Finally, the authors de-
scribe simulation results for an example of a remotely op-
erated vehicle (ROV) with three degrees of freedom to
demonstrate the efcacy of the suggested control approach
in their research article.

Erturk et al. [24] investigated the fnding of an analytic
solution for the strongly nonlinear multi-order fractional
version of a Boundary Value Problem (BVP) associated with
a chemical reactor. Using the generalized diferential
transform technique, the authors describe the procedure for
the construction of an approximate analytic solution of the
fractional form of a strongly nonlinear BVP with multi-
fractional Caputo derivatives occurring in chemical reactor
theory. Te proposed method is very powerful and can be
successfully applied to deal with various kinds of fractional
nonlinear boundary value problems.

Yazid et al. [25] studied the asymptotic behavior of weak
solutions of non-isothermal fow of Herschel–Bulkley fuid
in a thin layer in associated with a nonlinear stationary,
nonisothermal, and incompressible model. After formu-
lating the problem statement and variational formulation,
the authors derive the estimates for the velocity feld and the
pressure independently of the parameter. Finally, the au-
thors present a specifc Reynolds equation associated with
variational inequalities.

Jan et al. [26] investigated the dynamics of HIV via
fractional calculus in Atangana–-Baleanu framework to
understand and formulate the intricate phenomena of this
viral infection. Te authors present a novel numerical
technique for the chaotic and dynamic behaviour of the
proposed model. Te authors also demonstrate the efect of
fractional order on the proposed system of HIV infection.
Using numerical simulations, the authors highlight most
critical input parameters and propose control intervention
to the policy makers.Te stability result and the convergence
condition for the proposed numerical scheme are also
discussed by the authors.

Ouyang et al. [27] designed and verifed a fully integrated
Chen chaotic oscillation system using OAs and multipliers.
A unique feature of the proposed model is that the designed
Chen chaotic oscillation system is integrated in a single chip
with the advantages of smaller chip area, lower supply
voltage, and power consumption. Furthermore, the fully
integrated Chen chaotic system is verifed with Cadence IC
Tools.

Sellami et al. [28] investigated the limit cycles of a ffth-
order ordinary diferential equation (ODE) by using the
averaging theory of the frst order and detail sufcient
conditions for the existence of limit cycles of the ODE.

Menaceur et al. [29] investigated the bifurcation of limit
cycles from the period annulus surrounding the origin of
a class of cubic polynomial diferential systems by using the
averaging theory of frst order. In the literature of ordinary

diferential equations, it is well-known that limit cycles can
be yielded by perturbing a system which has a centre in
a suitable manner so that limit cycles bifurcate in the per-
turbed system.

Yang et al. [30] dealt with the multiarea power network
model and specifcally used the adaptive control method to
analyze the cluster synchronization of a multiarea power
network model consisting of a third-order chaotic power
system. With a mixture of analytical considerations and
numerical simulations on a small-scale multiarea power
network model, the authors study on the cluster synchro-
nous performance of the proposed system.
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With the swift advancement of chaos theory, the modeling, chaotic oscillations, and engineering applications of chaotic and
hyperchaotic systems are important topics in research. In this research paper, we elucidate our �ndings of a new four-dimensional
two-scroll hyperchaotic system having only two quadratic nonlinearities and carry out a detailed bifurcation study of the proposed
dynamical model. Also, an electronic circuit has been constructed for the new system using MultiSim (Version 14). �e
implementation of the new 4-D hyperchaotic system in a �eld-programmable gate array (FPGA) is performed herein by applying
two numerical methods, viz. Forward Euler Method and Trapezoidal Method. �e experimental results show a good match with
the simulated hyperchaotic attractors. We also provide details of the hardware resources used for an FPGA Basys 3 Xilinx Artix-
7 XC7A35T-ICPG236C.

1. Introduction

Due to the rapid advancement of chaos theory, chaotic and
hyperchaotic systems are applicable in several engineering
branches such as memristive circuits [1–4], chemical os-
cillators [5–7], information sensing systems [8–10], lasers
[11, 12], and communication systems [13–16]. Xiu et al. [17]
designed a 5-D hyperchaotic system with hardware circuit
design developed from a memristive cellular neural network
(CNN) and applied it to build a secure communication
system. Nazir et al. [18] proposed a secure communication
system for encryption based on a 4-D hyperchaotic system
and genetic codes. Bian and Yu [19] showed the use of a 6-D

hyperchaotic system to enhance the security of a commu-
nication system. Boumaraf and Merazka [20] demonstrated
the use of a new 4-D hyperchaotic cryptosystem for en-
cryption applications.

Modeling of two-scroll hyperchaotic systems has
attracted good research in the literature [21–23]. �is re-
search work reports the �ndings of a new four-dimensional
nonlinear dynamical system having two quadratic nonlinear
terms and depicting a two-scroll hyperchaotic attractor.
Since the maximal Lyapunov exponent (MLE) of the two-
scroll system is τmax � 2.6174, we deduce that the two-scroll
system (1) has high complexity. By a rigorous mathematical
analysis, it is shown that the proposed mathematical model
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has a unique balance point at the origin. (is is followed by
an extensive bifurcation analysis of the new 4-D two-scroll
system reported in this work. We study the changes in the
qualitative behavior of the proposed 4-D two-scroll system
with respect to changes in the values of the system pa-
rameters by means of a bifurcation analysis. Bifurcation
analysis for systems exhibiting chaos or hyperchaos is useful
to get illuminated on the various qualitative properties like
oscillations, quasi-periodicity, chaoticity, and hyper-
chaoticity when the parameters take various values in
specified intervals [24–26]. Our research study also shows
that the new hyperchaotic system exhibits multistability,
which is a special property of coexistence of attractors for a
selected set of values for the parameters but differing sets of
values for the initial data of the trajectories [27, 28].

Circuit implementations of chaotic and hyperchaotic
systems are of great usability in practice due to direct ap-
plications in many engineering disciplines [3, 29, 30]. An
electronic model of the proposed hyperchaotic two-scroll
system has been envisioned using MultiSim. Embedded and
nonembedded implementations of chaotic and hyperchaotic
systems are of paramount importance to increase their
applications in many scientific and engineering fields since
those FPGA designs can be linked directly to the digital
world [31–35]. FPGA implementation of the proposed
hyperchaotic two-scroll system has also been carried out at
the end of this work by applying two numerical methods, viz.
Forward Euler Method and Trapezoidal Method. Experi-
mental implementation using FPGA facilitates practical
applications with the new hyperchaotic model.

2. A New Hyperchaotic System with Two-
Scroll Attractor

A two-scroll attractor of a new hyperchaotic system is the
main contribution of the modelling part of this research
paper. Our new system is the following 4-D dynamics given
by

_z � f(z),wheref(z) �

a z2 − z1( 􏼁 − z3 + z4

cz1 − z2 − z1z3 + z4

−bz3 + z1z2

−dz2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (1)

In the 4-D dynamics (1), z � (z1, z2, z3, z4) and a, b, c, d

are positive system constants. We note that the vector field
f(z) has nine linear terms and two quadratic nonlinear
terms.

When we take the constants as (a, b, c, d) � (25, 8, 90, 6)

and the initial data as z(0) � (0.8, 0.2, 0.4, 0.6), the Lya-
punov characteristic exponents of the model (1) can be
estimated using MATLAB for T � 1E4 seconds as follows:

τ1 � 2.6174,

τ2 � 0.2743,

τ3 � 0,

τ4 � −36.8194.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(2)

We note that the sum of the Lyapunov characteristic
exponents of the model (1) is a negative quantity, viz.

τ1 + τ2 + τ3 + τ4 � −33.9277. (3)

(is calculation demonstrates that the 4-D system stated
in the equation (1) has a dissipative hyperchaotic attractor
with two positive Lyapunov characteristic exponents.

If V(t) denotes a volume element of the flow of the 4-D
hyperchaotic system (1), then the divergence of the flow of V

is calculated as follows:

∇ · V �
zf1

zz1
+

zf2

zz2
+

zf3

zz3
+

zf4

zz4
� −a − b − 1. (4)

(is also shows that 4-D hyperchaotic system (1) is
dissipative for all positive values of the system constants a

and b. Since the maximal Lyapunov exponent (MLE) of the
two-scroll system is τmax � 2.6174, we deduce that the two-
scroll system (1) has high complexity.

Figure 1 shows various MATLAB signal portraits of the
4-D hyperchaotic two-scroll dynamics (1) for the initial data
z(0) � (0.8, 0.2, 0.4, 0.6) and parameter data
(a, b, c, d) � (25, 8, 90, 6).

(e Kaplan–Yorke dimension of the 4-D hyperchaotic
two-scroll dynamics (1) can be found as

DKY � 3 +
τ1 + τ2 + τ3

τ4
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
� 3.0785. (5)

(e balance points (or equilibrium points) of system (1)
are the roots of the system:

f(z) � 0. (6)

(us, we proceed to find the roots of the following
nonlinear system:

a z2 − z1( 􏼁 − z3 + z4 � 0, (7a)

cz1 − z2 − z1z3 + z4 � 0, (7b)

−bz3 + z1z2 � 0, (7c)

−dz2 � 0. (7d)

Let us assume that a> 0, b> 0,c> 0, and d> 0.

From (7d), −dz2 � 0 or z2 � 0.

When we substitute z2 � 0 in (7c), we get −bz3 � 0 or
z3 � 0.

Furthermore, substitution of z2 � z3 � 0 into equations
(7a) and (7b) lead to the following:

−az1 + z4 � 0, (8a)

cz1 + z4 � 0. (8b)

Subtracting (8a) from (8b), we get

(c + a)z1 � 0. (9)

Since c and a are positive constants, c + a> 0.
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From (9), we get z1 � 0.
Substituting z1 � 0 into (8a) or (8b), we get z4 � 0.
As a result of this calculation, we conclude that Z0 � 0 is

the only balance point for the 4-D two-scroll hyperchaotic
system (1). (e stability nature of Z0 � 0 is found by cal-
culating the eigenvalues of the Jacobian matrix A � Df(0).

We take the constants for the hyperchaos case as
(a, b, c, d) � (25, 8, 90, 6).

For these values, we calculate the system Jacobian matrix
as

A � Df(0) �

−25 25 −1 1

90 −1 0 1

0 0 −8 0

0 −6 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (10)

With the use of MATLAB, we estimate the eigenvalues of
the matrix A as

λ1 � 0.3121,

λ2 � 35.6688,

λ3 � −8.0000,

λ4 � −61.9809.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)

(is pinpoints that the unique balance point Z0 � 0 of
the two-scroll system (1) is a saddle-point, which is unstable.
Hence, the model (1) has a self-excited two-scroll hyper-
chaotic attractor.

3. ABifurcation Study of theHyperchaotic Two-
Scroll Attractor

In this section of the paper, the dynamical behavior of the
novel, extremely complex two-scroll hyperchaotic system (1)
is examined with Z(0) � (0.8, 0.2, 0.4, 0.6).
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Figure 1: Various MATLAB signal portraits of the 4-D hyperchaotic two-scroll dynamics (1).
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3.1. Behavior Evolution When a Changes. Here, with the
values of the constants b, c, d set to b � 8, c � 90 and d � 6,
the dynamic responses of the 4-D dynamical system (1) are
displayed when the value of the constant a increases in the
interval of values [5, 25]. (e outcomes of the simulation
show that, depending on the value of parameter a, system (1)
can display a variety of types of behavior such as periodic,
chaotic, or hyperchaotic behavior with varying degrees of
complexity. Figure 2 displays the bifurcation diagram for
system (1). Figure 3 depicts the Lyapunov exponents (LE)
spectrum (τ1, τ2, τ3, τ4) for system (1).

From Figures 2 and 3, it can be seen that there are no
positive LE value for system (1) in the range of 5< a< 9.5.
Figure 4 shows a periodic response for system (1) when
a � 6. (e corresponding LE values of (1) are estimated
using MATLAB as follows:

τ1 � 0, τ2 � −0.959, τ3 � −2.141, τ4 � −11.901. (12)

When 9.5< a< 11.4, τ1 increases from zero to a positive
value while τ2 reaches zero. (ese results indicate that
system (1) has a chaotic attractor for this range of parameter
a, as clearly seen in Figure 5, when a � 11. (e corre-
sponding LE values of the new 4-D system are estimated
using MATLAB as follows:

τ1 � 0.296, τ2 � 0, τ3 � −0.593, τ4 � −19.703. (13)

Also, when a � 11, system (1) has a fractional
Kaplan–York dimension:

DKY � 2 +
τ1 + τ2
τ3

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

� 2.4992. (14)

When 11.4< a< 2.5, system (1) has two positive LE
values, which leads into a hyperchaotic region. Figure 6
presents the hyperchaotic attractor generated by system (1)
when a � 12. (e corresponding LE values of (1) are esti-
mated using MATLAB as follows:
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Figure 2: Bifurcation diagram for the model (1) when a varies in
[5, 25] and (b, c, d) � (8, 90, 6).
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τ1 � 1.065, τ2 � 0.691, τ3 � 0, τ4 � −22.758. (15)

Also, when a � 12, system (1) has a fractional
Kaplan–York dimension:

DKY � 3 +
τ1 + τ2 + τ3

τ4
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
� 3.0772. (16)

From Figure 3, it can be seen that τ1 increases with the
increase of parameter a, until it reaches over 2.6 when a �

25. (is causes more disordering in the attractor, as shown
in Figure 7. Figures 4–7 portray a 2-D plot of the attractor of
the 4-D system (1) in (z1, z2) coordinate plane for different
values of the system constant a, while (b, c, d) � (8, 90, 6).

3.2. Behavior Evolution When b Changes. Here, with the
values of the constants b, c, d set to a � 25, c � 90, and d � 6,
the dynamic responses of the 4-D dynamical system (1) are
displayed when the value of the constant b increases in the
interval of values [8, 20]. (e outcomes of the simulation
show that, depending on the value of parameter b, system (1)
can display a variety of types of behavior such as periodic,
chaotic, or hyperchaotic behavior with varying degrees of
complexity. Figure 8 displays the bifurcation diagram for
system (1). Figure 9 depicts the LE spectrum (τ1, τ2, τ3, τ4)
for system (1).

From Figures 8 and 9, it can be seen that τ1 decreases
with the increase of the constant b. When 8< b< 14, system
(1) possesses two positive LE values. Figure 10 shows the
hyperchaotic attractor of system (1) when b � 10. (e
corresponding LE values of (1) are estimated using MAT-
LAB as follows:

τ1 � 2.666, τ2 � 0.273, τ3 � 0, τ4 � −38.942. (17)

Also, when b � 10, system (1) has a fractional
Kaplan–York dimension:

DKY � 3 +
τ1 + τ2 + τ3

τ4
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
� 3.0755. (18)

When b � 13.8, system (1) exhibits a less disordered
hyperchaotic attractor shown in Figure 11, when compared
with the one in Figure 10. (e hyperchaotic attractor
exhibited in Figure 11 has τ1 � 2.442 and DKY � 3.064.

When 14< b< 15 the second Lyapunov exponent τ2
decreases from a positive value to zero while the first ex-
ponent τ1 stays still positive. (is transition indicates that
system (1) has a chaotic response for this range of parameter
b. Figure 12 shows the chaotic attractor of system (1) when
b � 15. (is strange attractor is characterized by the fol-
lowing Lyapunov exponents:

τ1 � 0.061, τ2 � 0, τ3 � −0.772, τ4 � −40.284. (19)

Also, when b � 10, system (1) has a fractional
Kaplan–York dimension:

DKY � 2 +
τ1 + τ2
τ3

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

� 2.0790. (20)

When 15< b< 20, there are no positive exponents which
mean that system (1) has a periodic response in this region of
parameters. (e periodic orbit is shown in Figure 13 when
b � 20. (e corresponding Lyapunov exponents are calcu-
lated and obtained as follows:

τ1 � 0, τ2 � −1.794, τ3 � −2.083, τ4 � −42.124. (21)

Figures 10–12 and 1 portray a 2-D plot of the attractor of
the 4-D system (1) in (z1, z3) coordinate plane for different
values of the system constant b, while (a, c, d) � (25, 90, 6).

3.3. Behavior Evolution When c Changes. Here, with the
values of the constants a, b, d set to a � 25, b � 8, and d � 6,
the dynamic responses of system (1) are displayed when the
value of the constant c increases in the interval of values
[30, 90]. (e outcomes of the simulation show that,
depending on the value of parameter c, system (1) can
display a variety of types of behavior such as periodic,
chaotic, or hyperchaotic behavior with varying degrees of
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Figure 6: A hyperchaotic attractor of model (1) for a � 12 and
(b, c, d) � (8, 90, 6).
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Figure 7: A hyperchaotic attractor of the model (1) when a � 25
and (b, c, d) � (8, 90, 6).
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complexity. Figure 14 displays the bifurcation diagram for
system (1). Figure 15 depicts the LE spectrum (τ1, τ2, τ3, τ4)
for system (1).

From Figures 14 and 15, it can be seen that the first
Lyapunov exponent τ1 increases with the increase of the
constant c. We define A � [30, 30.9]∪ [31.5, 35.1]∪
[37.5, 39]. When c ∈ A, system (1) does not have any positive
LE value. Hence, system (1) has a periodic attractor for the
values of c in this region. Figure 16 shows the periodic
attractor of system (1) when c � 30.5. (e corresponding LE
values of (1) are estimated using MATLAB as follows:

τ1 � 0, τ2 � −0.222, τ3 � −1.035, τ4 � −32.744. (22)

We define B � [30.9, 31.5]∪ [35.1, 37.5]∪ [39, 44.7].
When c ∈ B,τ1 increases from zero to a positive value while
the second Lyapunov exponent τ2 reaches zero.(ese results
indicate that system (1) has a chaotic behavior for this range
of the constant c ∈ B. Figure 17 shows the chaotic attractor
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Figure 13: A periodic attractor of the model (1) for b � 20 and (a, c, d) � (25, 90, 6).
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of system (1) when c � 40. (e corresponding LE values of
(1) are estimated using MATLAB as follows:

τ1 � 0.218, τ2 � 0, τ3 � −0.601, τ4 � −33.618. (23)

Also, the Kaplan–Yorke dimension of (1) for c � 40 is
obtained as:

DKY � 2 +
τ1 + τ2
τ3

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

� 2.3627. (24)

When 44.7< c< 90, system (1) has two positive LE
values, which leads into a wide hyperchaotic region. Fig-
ure 18 presents the hyperchaotic attractor exhibited by (1)
when c � 50.

(e corresponding LE values of (1) are estimated using
MATLAB as follows:

τ1 � 1.130, τ2 � 0.497, τ3 � 0, τ4 � −35.629. (25)

Also, the Kaplan–Yorke dimension of (1) for c � 50 is
obtained as:

DKY � 3 +
τ1 + τ2 + τ3

τ4
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
� 3.0457. (26)

From Figure 15, it can be seen that τ1 increases with the
increase of the constant c until it reaches over τ1 � 2.6 when
c � 90. (is causes a hyperchaotic attractor in which the
trajectory is highly disordered, as seen in Figure 19.

Figures 16–19 portray a 2-D plot of the attractor of
system (1) in (z2, z3) coordinate plane for different values of
the constant c, while (a, b, d) � (25, 8, 6).

3.4. Behavior Evolution When d Changes. Here, with the
values of the constants a, b, c set to a � 25, b � 8, and c � 90,
the dynamic responses of system (1) are displayed when the
value of the constant d increases in the range of values
[5, 1100]. (e outcomes of the simulation show that,
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Figure 17: A chaotic attractor of the 4-D system (1) when c � 40
and (a, b, d) � (25, 8, 6).
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Figure 18: A hyperchaotic attractor of the model (1) for c � 50 and
(a, b, d) � (25, 8, 6).
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Figure 16: A periodic attractor of the 4-D system (1) when c � 30.5
and (a, b, d) � (25, 8, 6).
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Figure 19: A hyperchaotic attractor of the model (1) for c � 90 and
(a, b, d) � (25, 8, 6).
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depending on the value of parameter d, system (1) can
display a variety of types of behavior such as periodic,
chaotic, or hyperchaotic behavior with varying degrees of
complexity. Figure 20 displays the bifurcation diagram for
system (1). Figure 21 depicts the LE spectrum (τ1, τ2, τ3, τ4)
for system (1).

When 5<d< 140, system (1) possesses two positive LE
values. Figure 22 shows the hyperchaotic attractor of system
(1) when d � 40. (e corresponding LE values of (1) are
estimated using MATLAB as follows:

τ1 � 1.525, τ2 � 1.296, τ3 � 0, τ4 � −36.825. (27)

Also, the Kaplan–Yorke dimension of (1) for d � 40 is
obtained as:

DKY � 3 +
τ1 + τ2 + τ3

τ4
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
� 3.0766. (28)

We define C � [140, 875]∪ [1035, 1065]. When d ∈ C,τ2
decreases from a positive value to zero while τ1 stays still
positive. (is transition indicates that system (1) has a
chaotic response for this very wide region. When d � 180,τ1
reaches its largest value of 3.392.

Figure 23 shows the chaotic attractor of system (1). (e
corresponding LE values of (1) are estimated using MAT-
LAB as follows:

τ1 � 3.392, τ2 � 0, τ3 � −0.316, τ4 � −37.089. (29)

Also, the Kaplan–Yorke dimension of (1) for d � 180 is
obtained as

DKY � 3 +
τ1 + τ2 + τ3

τ4
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
� 3.0829. (30)

When d � 1045, τ1 decreases to 0.544 providing less
strength to the system’s chaotic dynamics. Figure 24 shows
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Figure 20: Bifurcation diagram for the model (1) when d varies in [0, 1100] and (a, b, c) � (25, 8, 90).
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[0, 1100] and (a, b, c) � (25, 8, 90).
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Figure 22: A hyperchaotic attractor of the model (1) for d � 40 and
(a, b, c) � (25, 8, 90).
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the chaotic attractor of system (1). (e corresponding LE
values of (1) are estimated using MATLAB as follows:

τ1 � 0.544, τ2 � 0, τ3 � −2.811, τ4 � −31.735. (31)

Also, the Kaplan–Yorke dimension of (1) for d � 1045 is
obtained as

DKY � 2 +
τ1 + τ2
τ3

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

� 2.1935. (32)

We define D � [875, 1035]∪ [1065, 1100]. When d ∈ D,
there are no positive LE values which means that system (1)
has a periodic response in this region of constants. (e
periodic orbit is shown in Figure 25 when d � 1020.

(e corresponding LE values of (1) are estimated using
MATLAB as follows:

τ1 � 0, τ2 � −0.550, τ3 � −0.555, τ4 � −32.901. (33)

Figures 22–25 portray a 2-D plot of the attractor of the 4-
D system (1) in (z3, z4) coordinate plane for different values
of the constant d while (a, b, c) � (25, 8, 90).

4. Coexisting Attractors and Multistability for
the New System

Multistability, often referred to as coexisting attractors, is a
special nonlinear phenomenon wherein two ormore distinct
attractors evolve simultaneously from various starting
points.

Let Z01 and Z02 represent two distinct starting points for
the new 4-D system (1), where:

Z0 � (0.5, 0.5, 0.5, 0.5) (Blue color).
W0 � (−0.5, −0.5, 0.5, −0.5) (Red color).

First, we fix the system constants as a � 25, b � 8, c � 32,
and d � 6. As shown in Figure 26, system (1) exhibits two
different coexisting attractors. (e blue one is a periodic
attractor that begins from Z0 and characterized by the
following LE spectrum:

τ1 � 0, τ2 � −0.312, τ3 � −0.741, τ4 � −32.950. (34)

(e red one is a chaotic attractor that begins from W0
and characterized by the following LE spectrum:

τ1 � 0.041, τ2 � 0, τ3 � −1.111, τ4 � −32.928. (35)

Next, we fix the system constants as a � 25, b � 14,
c � 90, and d � 6 As shown in Figure 27, system (1) exhibits
two different coexisting chaotic attractors. (e blue chaotic
attractor begins from Z0 and characterized by the following
LE spectrum:

τ1 � 0.322, τ2 � 0, τ3 � −0.393, τ4 � −39.942. (36)

(e red chaotic attractor begins from W0 and charac-
terized by the following LE spectrum:

τ1 � 0.236, τ2 � 0, τ3 � −0.396, τ4 � −39.842. (37)

Finally, we fix the system constants as a � 25, b � 8,
c � 65, and d � 6. As shown in Figure 28, system (1) exhibits
two different coexisting hyperchaotic attractors. (e blue
hyperchaotic attractor begins from Z0 and characterized by
the following LE spectrum:
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Figure 24: A chaotic attractor of the model (1) for d � 1045 and
(a, b, c) � (25, 8, 90).
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Figure 25: A periodic attractor of the model (1) for d � 1020 and
(a, b, c) � (25, 8, 90).
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Figure 23: A chaotic attractor of the model (1) for d � 180 and
(a, b, c) � (25, 8, 90).
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τ1 � 1.970, τ2 � 0.341, τ3 � 0, τ4 � −36.313. (38)

(e red hyperchaotic attractor begins from W0 and
characterized by the following LE spectrum:

τ1 � 1.958, τ2 � 0.339, τ3 � 0, τ4 � −36.300. (39)

5. Electronic Circuit Design for the New
Hyperchaotic Two-Scroll System

We detail the electronic circuit realization of the proposed
two-scroll hyperchaotic model using MultiSim software
(Version 14). Figure 29 depicts an analog electronic circuit
for the implementation of the proposed hyperchaotic circuit,
which includes two analog multipliers (AD63JN), seven

operational amplifiers (TL083CD), seventeen resistors, and
four capacitors.

For the circuit design, we rescale the two-scroll model (1)
using the following transformation of coordinates:

Zi �
1
2

zi, (i � 1, 2, 3, 4). (40)

Replacing the old variables with the new variables on the
new 4-D hyperchaotic system (1), we obtain the following
system:

_Z1 � a Z2 − Z1( 􏼁 − Z3 + Z4,

_Z2 � cZ1 − Z2 − 2Z1Z3 + Z4,

_Z3 � −bZ3 + 2Z1Z2,

_Z4 � −dZ2.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(41)

Using Kirchhoff’s electrical circuit laws, we derive the
circuit model for the rescaled hyperchaotic model (41) as
follows:

C1
_Z1 �

1
R1

Z2 −
1

R2
Z1 −

1
R3

Z3 +
1

R4
Z4,

C2
_Z2 �

1
R5

Z1 −
1

R6
Z2 −

1
10R7

Z1Z3 +
1

R8
Z4,

C3
_Z3 � −

1
R9

Z3 +
1

10R10
Z1Z2,

C4
_Z4 � −

1
R11

Z2.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(42)

Here, Z1, Z2, Z3, Z4 are the voltages across the ca-
pacitors, C1, C2,C3,C4, respectively.We choose the values of
the circuital elements as follows:
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Figure 28:(e coexistence of hyperchaotic attractors for system (1)
projected in the (z1, z3) coordinate plane for the choice of pa-
rameters (a, b, c, d) � (25, 8, 65, 6).
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Figure 26: (e coexistence of one periodic and one chaotic
attractor for system (1) projected in the (z1, z4) coordinate plane
for the choice of parameters (a, b, c, d) � (25, 8, 32, 6).
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Figure 27: (e coexistence of chaotic attractors for system (1)
projected in the (z2, z3) coordinate plane for the choice of pa-
rameters (a, b, c, d) � (25, 14, 90, 6).
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R1 � R2 � 16kΩ, R3 � R4 � R6 � R8 � 400kΩ, R5 �

4.44kΩ,
R7 � R10 � 20kΩ, R9 � 50kΩ, R11 � 66.67kΩ,
R12 � R13 � R14 � R15 � R16 � R17 � 100kΩ,
C1 � C2 � C3 � C4 � 3.2nF.

With MultiSim 14.0, we obtain the experiment obser-
vations of system (42) in Figures 30–33. It can be seen that
the good qualitative agreement between the MATLAB
simulations (Figures 1–4) and the MultiSim results

(Figures 30–33) of the hyperchaotic two-scroll system is
confirmed.

6. FPGA Implementation of theNewTwo-Scroll
Hyperchaotic Model

(e use of field-programmable gate arrays (FPGA) has
shown advantages in the implementation of chaotic and
hyperchaotic systems, as done in [31–34]. One can find
guidelines on applying numerical methods that are directly
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Figure 29: (e electronic circuit design for the 4-D hyperchaotic system (29).
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synthesized into an FPGA [35]. In this work, we show the
experimental results of the FPGA implementation of pro-
posed model (1) by applying two common numerical
methods. (e first one is the forward Euler, whose iterative
algorithm is given in equation (30), and the second one is the

implicit algorithm known as trapezoidal method that is
given in equation (31).

xn+1 � xn + hf xn, tn( 􏼁,

xn+1 � xn +
h

2
f xn, tn( 􏼁 + f xn+1, tn+1( 􏼁􏼂 􏼃.

(43)

It is well-known that a system of ordinary differential
equations, as the one associated for the proposed model
(1), can be solved by discretizing the equations using a
numerical method. In the case of applying the forward
Euler, one gets the discrete equations given by equation
(44), from which one can clearly see the requirement of
arithmetic operations as adders, subtractors, and multi-
pliers. (e control of the iterations is performed by de-
signing a state machine control that includes registers, as
detailed in [35], where one can see the design of the
arithmetic blocks, and a single-constant multiplier block
to reduce hardware resources.

z1[n + 1] � z1[n] + h a z2[n] − z1[n]( 􏼁 − z3[n] + z4[n]( 􏼁,

z2[n + 1] � z2[n] + h cz1[n] − z2[n] − z1[n]z3[n] + z4[n]( 􏼁,

z3[n + 1] � z3[n] + h −bz3[n] + z1[n]z2[n]( 􏼁,

z4[n + 1] � z4[n] + h −dz2[n]( 􏼁.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(44)

(e design of each digital block requires the definition of
the number of bits to be processed. In this case, the computer
arithmetic is performed by applying fixed-point represen-
tation with the format 15.49. (e 64 bits are distributed in
one bit for the sign, 14 for the integer part, and 49 bit for the
fractional part. (e bit distribution considers the maximum
amplitude values that can appear for each state variable
during the processing of the data. For example, from the
simulation results of the new 4-D hyperchaotic system (1),
the four state variables have amplitudes in the range
[−199.02, 342.50], but in the discretization process by ap-
plying the numerical methods, an analysis of all the internal
arithmetic operations, mainly those that result during the

Figure 30: Electronic circuit simulation using MultiSim 14.0 for
the new hyperchaotic two-scroll circuit (42) in the (Z1, Z2)− co-
ordinate plane.

Figure 31: Electronic circuit simulation using MultiSim 14.0 for
the new hyperchaotic two-scroll circuit (42) in the (Z2, Z3)− co-
ordinate plane.

Figure 32: Electronic circuit simulation using MultiSim 14.0 for
the new hyperchaotic two-scroll circuit (42) in the (Z3, Z4)− co-
ordinate plane.

Figure 33: Electronic circuit simulation using MultiSim 14.0 for
the new hyperchaotic two-scroll circuit (42) in the (Z1, Z4)− co-
ordinate plane.
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multiplications among state variables, resulted in an absolute
range of values in the range [−11299.60, 11116.51], thus
leading to use the format 15.49.

Figure 34 depicts a block diagram showing the dis-
cretization of the proposed model (1) using the forward
Euler method given in equation (32). (e registers are
controlled by a state machine to perform the iteration
process. (e FPGA implementation is also done in a similar
way by applying the trapezoidal method so that the hardware
resources for the FPGA design using the FPGA Basys 3
Xilinx Artix-7 XC7A35T-ICPG236C are as summarized in
Table 1. One can see the number of lookup tables (LUTs),
flip-flops (FF), digital signal processors (DSP), multipliers,
adders, and subtractors. We also give the number of clock
cycles required by an iteration, and the latency in nano-
seconds (ns).

(e FPGA experimental setup for the proposed model
(1) is shown in Figure 35. Furthermore, the FPGA experi-
mental outputs of (1) are depicted in Figures 36–39.
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z1n

z4n + hf (z4n, tn) 
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Figure 34: Block diagram of the discretization of the proposed model (1) using the forward Euler method.

Table 1: Hardware resources for the FPGA design of (1) using the FPGA basys 3 xilinx artix-7 XC7A35T-ICPG236C using two numerical
methods with h � 0.001.

Resources Forward Euler Trapezoidal Available
LUTs 4679 10570 20,800
FF 567 1253 41,600
DSP 45 82 90
Multipliers 10 24 –
Adders 5 18 –
Subtractors 6 12 –
Clock cycles by iteration 2 3 –
Latency (ns) 80 120 –

16-bit Digital-Analog converter

FPGA Basys 3 Xilinx Artix-7 XC7A35T-ICPG236

Linear power supply

Teledyn Lecroy Oscilloscope

Figure 35: Experimental setup to measure the attractors of the
proposed model (1) using a FPGA basys 3 xilinx artix-7 XC7A35T-
ICPG236, a 16 bit digital-analog converter, a linear power supply
and a keysight oscilloscope to visualize the hyperchaotic attractor.
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Figure 37: Experimental hyperchaotic attractor of the proposed model (1) in the (z2, z3)− plane.

Figure 38: Experimental hyperchaotic attractor of the proposed model (1) in the (z3, z4)− plane.

Figure 36: Experimental hyperchaotic attractor of the proposed model (1) in the (z1, z2)− plane.
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7. Conclusions

In this research work, we reported our findings of a new
four-dimensional two-scroll hyperchaotic system having
only two quadratic nonlinearities. We conducted a detailed
dynamic study of the proposed model and noted the co-
existence of attractors for fixed parameter values but dif-
ferent initial states. Since the maximal Lyapunov exponent
(MLE) of the two-scroll system is τmax � 2.6174, we deduced
that the two-scroll system (1) has high complexity. Also, a
design for an electronic circuit has been made for the new
hyperchaotic system using MultiSim (Version 14). (e
experimental observation of the hyperchaotic attractors has
been shown from the FPGA implementation by applying
numerical methods, viz. forward Euler method and trape-
zoidal method. It was observed that the FPGA experimental
results using the forward Euler discretization method are in
good agreement with the MATLAB simulation results of the
proposed hyperchaotic two-scroll system.
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Electronic power converters are in a state of exhibiting some complex features which can be in�uenced by the converter’s
structure parameters and load, as well as its pulse period. In this paper, we propose to investigate these phenomena occurring in
the dc/dc buck converter by carrying out the dynamics of the said system when it exhibits the �ngerprints of frequency-
dependent pinched hysteresis loops. �e essential part of this study is consecrated to the nonlinear dynamics when the
converter load is memristive. Under two kinds of switch states, the independent nonlinear models and equations are derived
which provide a complete dynamics description of the system under investigation. �e dynamics analysis is performed by
making use of bifurcation tools, phase portraits, and two parameters Lyapunov diagrams showing that the system depicts very
rich and striking behaviors such as periodic orbits, period-doubling bifurcation, quasiperiodicity, chaos, and pinched hysteresis
loops of the memristive load. Finally, the numerical simulation results are in almost perfect agreement with the analog result
obtained with PSIM. �e results obtained in this work have not yet been reported in the literature to the best of our knowledge
and thus deserve dissemination.

1. Introduction

Dc/dc power converters are considered as the most vital
empowering devices of electrical and electronic engineering
as they act as a bu�er between a power source of electronic
equipment and a load [1]. �ese devices are used to convert
an unregulated dc voltage to a regulated or variable dc
output voltage by stockpiling the input energy momentarily
and debit the energy to the output stage to ensure adequate
current and voltage regulation. �ey are also known to have
a signi�cant variety of complex nonlinear behaviors such as
subharmonic oscillations bifurcation phenomena that can
lead to chaotic phenomena, and period-1 oscillations, due to

switching actions and feedback control. We recall that the
nonlinear dynamics have been experimentally observed in
di�erent types of dc/dc buck converters where there are a
series of modulation strategies, such as current-mode
control [2, 3], voltage-mode control [4, 5], PWM voltage-
current hybrid control [6–10], hysteresis-current or -voltage
control [10, 11], one-cycle control [12, 13], and model
predictive control [14–16]. Unfortunately, the nonlinear
switching of power converters can put their stability at risk
and make them prone to exhibit various nonlinear instable
phenomena. �is can have harmful e�ects on the converter
since stability and e�ciency are two fundamental criteria for
the design of these converters. It is therefore imperative to
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understand and establish the mechanism of formation of
various complex phenomena occurring in the buck con-
verters when the circuit parameters, circuits topologies,
control schemes, and load change.

Many researchers investigated the dynamic analysis of
dc/dc converters according to the system parameters and
loads in the literature. Several types of load are reported such
as capacitive voltage load [17–19], the linear load [20–24],
and the constant current load [25, 26]. )e complete dy-
namic of the dc/dc converter is determined by the type of the
load which leads to various complex phenomena with re-
spect to different switching modes. For the sake of brevity,
we mention the chaos issue, quasiperiodicity, and some
stringent behavior such as the coexistence of attractors and
pulse bursting, etc (the reader is referring to References
[17, 19, 27] and the references therein). Other important
characteristics such as chaos transition in buck-boost [28]
and hidden attractors in multilevel dc/dc converters have
been investigated by Zhusubaliyeu and Wang [29], re-
spectively. )e dynamic modeling and analysis of the bi-
directional dc/dc boost-buck converter for renewable energy
applications were presented by Spier et al. [30], while Kamal
and coworkers developed a buck-boost converter small
signal model: dynamic analysis under system uncertainties
[31]. Recently, the study of complex dynamics in dc/dc boost
converter with dspace-based real-time controller is pre-
sented by Ghosh et al. [32]. Another relevant work is
proposed by Mandal et al. in which the modeling and
analysis of complex dynamics for dspace controlled closed-
loop dc/dc boost converter is investigated. Despite extensive
investigations on the complex behavior of the basic dc/dc
topology converters over the past decade [33], such phe-
nomena in the resonant dc/dc converters with memristive
load issues remain largely unexplored in the buck converter
which still remains challenging and thus deserves more
dissemination.

Motivated by the pioneer works of Zhang and Bao
dealing with the dynamical behaviors and circuit experi-
ments of the switching dc/dc boost converter have been
efficiently studied [34]. In addition, the dynamical effects of
memristive load on peak current mode buck-boosts
witching converter have been considered [35] which shows
that the memristors can be applied to create very complex
dynamics (rich texts are provided in References [36, 37]).
Due to various applications of this device, it is very im-
portant to demonstrate that the current-mode-controlled
buck converter with memristance load has a large impact on
the exhibited nonlinear dynamics such as chaotic and
subharmonic oscillations. We then investigate in this paper
the nonlinear dynamical behaviors, i.e., chaotic and sub-
harmonic oscillations, of the dc/dc buck converter with
memristance load by numerical simulations and PSIM
circuit analysis.

)e rest of the paper is organized as follows. In Section 2,
the circuit topology and fundamental operating principle of
the current-mode-controlled dc/dc buck converter are in-
troduced, respectively. Section 3 presents the system
equations and their dimensionless forms based on the

schematic of the buck converter with memristance load. We
discuss the equilibrium points of these dimensionless circuit
systems and their stability in Section 4. Section 5 is devoted
to the forming mechanism of the chaotic and subharmonic
dynamics through numerical simulations. Furthermore, the
PSIM circuit topology is designed and the results are in
perfect agreement with the numerical plots in Section 6.
Finally, some conclusions are drawn in Section 7.

2. Background and System Description

In this section, we present a basic knowledge on the dc/dc
buck converter with a memristive load. Before designing and
analyzing the circuit system, it is necessary to mention that,
so far, various dc/dc power converters with resistance load
have been predominantly studied, with different types of
converters such as boost, buck-boost, and buck converters.
)e single-stage buck converter presents some specific de-
sign details on the dynamics which is highly interesting to
investigate in behavior when the load is memristive, as
presented in Figure 1.

3. dc/dc Single-Stage Buck Converter

A single dc/dc buck power converter under investigation is
presented in Figure 1. )e inductor and capacitor stand as
energy storage elements, two semiconductors such as diode
and the switch ensures two conduction modes of the circuit,
the current-mode-controlled feedback loop consists of a
comparator U and an RS trigger, and the load which can be
regarded as a memristive load. Let us denote the reference
current as Iref and the current through inductor L by I. )e
fundamental operation of a buck converter consists of two
distinct states (i.e., ON-state and OFF-state), which can be
described as in (Table 1).

In summary, the states of the buck converter are con-
trolled by the switch S. As long as the switch S is neither on
nor off, both ON-state and OFF-state occur in a switching
period. From the circuit of Figure 1, it is not obvious to
obtain the link between the switching period Ts and the
pulse period T of the clock; their ratio depends strongly on
the dynamical behaviors of the buck converter. )is mea-
suring element remains fixed or variable when the buck
converter is periodic or quasiperiodic, respectively.

3.1. Modeling of the Memristor. Memristor is commonly
known as the fourth key circuit element, first introduced by
Chua in 1971 [38]. In exact terms, memristor has an elegant
effect to memorize the past quantity of electric charge. )e
current-voltage (i, v) is known as a fingerprint of a mem-
ristor i.e., it displays a pinched hysteresis loop whose shape
varies with frequency. )e fundamental mathematical ex-
pressions describing the memristor are defined as follows:
vM � M(σ)iM or iM � W(φ)vM where M(σ) andW(φ) de-
note the memristor controlled by charge σ and fluxφ, re-
spectively, which satisfies the following relations:
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dq

dt
� h iM, σ, z( 􏼁,

dφ
dt

� k vM,φ, z( 􏼁,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1)

where h(iM, σ, z) and k(vM,φ, z) denote the internal state
functions of a memristor.

Using Kirchhoff laws and some techniques for circuits
analysis, we derive the following equations from Figure 2;

iM �
1

RM

−
R3

R4RM

􏼠 􏼡 +
1

RM

φ􏼢 􏼣vM,

dφ
dt

�
vM

R2C
−

φ
R1C

.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(2)

Letting vM � vc, (1/R2C) � αm, (1/R1C) � αn, p �

(R3/R4RM) − (1/RM), r � (1/RM), equation (2) becomes

iM � (rφ − p)vM,

dφ
dt

� α mvM − nφ( 􏼁,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(3)

where iM is the current passing through the memristive
emulator (emulator refers to the electronic circuit that
imitates the behavior of a complex phenomenon) load where
the simplified electrosymbol is represented in Figure 2. )e
circuit parameters of the memristive load emulator are
recorded in Table 2. Taking the input voltage of the terminal
of the memristor load emulator as vM � 4 sin(5000πt)V and
f chosen as 200Hz. )e loci in the vM − iM phase plane and
the memductance curves are plotted in Figures 3(a)–3(d).

E
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Q S
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R

−

+
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+

Figure 1: A novel circuit system having a dc/dc buck converter and a memristance load.

Table 1: Operation principle of the buck converter.

Switch Initial value of iL Current variation Buck state

ON iL(0) � Imin iL increasing and reaches Iref ON-state
OFF iL(TS/2) � Iref iL pass through the diode D and the capacitor C OFF-state


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Figure 2: Memristive load emulator circuit. Electrosymbol of a memristor.
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From these figures, we observe the zero-crossing property of
the memristor which stipulates that the output iM is always
equal to the input vin at zero. )is important feature shows
the existence of memristive fingerprint. We recall that, in the
past few years, various memristor emulators implemented
by already-existing electronic components have been re-
ported in the literature [4, 39]. Most of the hardware to-
pologies mainly include multiplier-based memristor
equivalent circuits [40] and op-amps. Many researchers used
different memristive loads to capture some special dy-
namical behaviors in memristive systems [41] and the ref-
erences therein. Compared with other memristor emulators
reported previously, the memristor emulator shown in
Figure 2 presents an important feature. )e hysteresis curve
is located in the quadrants (1 and 3); instead, in references
[35, 38], the same curve is located in the quadrants (2 and 4)
which corresponds respectively to the active and passive
zone of the operation of the memristor. As an active device
(as in our case), it provides energy to the system and also
allows for chaotic oscillations. However, as a passive device,
it consumes energy in the system and obtaining oscillations
can only be possible when exploiting a nonlinearity of the
system, not of the memristor.

Remark 1. We note that the hysteresis loop falls into the
second and the fourth quadrants. )e memristor is a passive
component and then efficiently stores information because
the value of its electrical resistance changes permanently
when a current is applied. A memristor can also have a high
resistance value and a low resistance value. For instance, for
a very high resistance value, it is observed that the resulting
characteristic is located in the first and fourth quadrants, and
for a low resistance value, it can be observed in the second
and the third quadrants [42].

Remark 2. In real applications, there is no resistive load in
nature because the linear component does not exist in real
life. Since the load can reveal a plethora of complex be-
haviors, it seems interesting to investigate the case that the
load is characterized by the hysteresis phenomenon such as
memristor. We recall that the intrinsic nature of the
memristor modifies the current-voltage characteristic of the
converter and has a considerable impact on the dynamics of
the buck converter.

3.2. System Description. We recall that the analysis of the
dynamics is strongly determined by the state of the switch.
We then propose to obtain the mathematical model from
Figure 1 based on the electrical circuit analysis.

Case 1. Switch D is ON
When the switch S is ON, there are two independent

loops denoted by red dashed lines in Figure 4. According to
Kirchhoff’s law, we have

L
diL
dt

� E − vc,

C
dvc

dt
� iL − (rφ − p)vc,

(4)

where vc denotes the voltage across the flux contused mem-
ristor. If we consider the expression (dφ/dt) � α(mvc − nφ) as
the memristor’s internal state of function, we derive the fol-
lowing equations:

L
diL

dt
� E − vc,

C
dvc

dt
� iL − (rφ − p)vc,

dφ
dt

� α mvc − nφ( 􏼁.

(5)

Equation (4) is the state of equation when the circuit of
Figure 2 is in the ON-state.)is state will be sustained until i

reaches iref .

Case 1. Switch S is OFF
When the switch S is OFF, the diode D conducts. Also,

another two independent loops denoted by red dashed line
are shown in Figure 4. Combining these two loop equations,
we obtain

L
diL

dt
� − vc,

C
dvc

dt
� iL − (rφ − p)vc,

dφ
dt

� α mvc − nφ( 􏼁.

(6)

)ese two system equations can be summarized into the
following system of equations as follows:

diL

dt
� − a1 E(1 − u) − vc( 􏼁,

dvc

dt
� a2 iL − (rφ − p)vc( 􏼁,

dφ
dt

� α mvc − nφ( 􏼁,

(7)

where u �
1, for turn − off
0, for turn − on􏼨 .

Table 2: Parameter values.

Circuit component Values
CLOCK frequency f 5000Hz
Inductance L 0.6mH
Capacitance C 200 μF
DC source V-I 12V
Resistance R3 30 kΩ
Resistance R 10Ω
Reference current Iref 0.6A
Resistance R1 5 kΩ
Resistance R2 10 kΩ
Resistance RM 1Ω
Resistance R4 10 kΩ

4 Discrete Dynamics in Nature and Society



−5

−4 −3 −2 −1 0 1 2 3 4

I
M

 (A
)

−10

0

5

10

15

V
M

 (V)

(a)

−3

7 7.5 8 8.5 9 9.5 10

W
(

)

−3.5

−2

−2.5

−1

−1.5

−0.5

t (s) ×10
−3

(b)

−5

−4 −2 0 2 4

i M

−10

0

5

10

15

V
M

(c)

−3

7 7.5 8 8.5 9 9.5 10

W
(

)

−3.5

−2

−2.5

−1

−1.5

−0.5

t (s) ×10
−3

(d)

Figure 3: Numerical and analog simulation of the pinched hysteresis loops and memductance curves of the memristive load. (a, c) PSIM
circuit simulations; (b, d) Fortran numerical simulations; (a, b) pinched hysteresis loops in the (vM − iM) plane; (c, d) memductance curves
versus time.
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Figure 5: Electrical circuit of a switch OFF buck chopper.

Table 3: Nature of the roots of the characteristic equation computed for various values of E.

Values of the bifurcation
parameter (E)

Eigenvalues at (λ1, λ2, λ3) nontrivial fixed
O0(((mr/n)E − p)E, E, (m/n)E)

Eigenvalues at (λ1, λ2, λ3) the origin
O1(0, 0, 0)

E � 0 − 2.000 × 104; 0.9082 × 104; 0.0918 × 104 (unstable) − 2.000 × 104 ; 0.9082 × 104,
0.0918 × 104; (unstable)

E � 5 (− 1.0968 ± 1.3254i) × 104; − 1.0563 × 104 (stable) − 2.000 × 104, 0.9082 × 104; 0.0918 × 104
(unstable)

E � 8 (− 1.4861 ± 1.9474i) × 104, − 0.0278 × 104; (stable) − 2.000 × 104; 0.9082 × 104; 0.0918 × 104
(unstable)

E � 12 (− 1.9917 ± 2.4597i) × 104, − 0.0166 × 104; (stable) − 2.000 × 104; 0.9082∗ 104; 0.0918 × 104
(unstable)

Iref

i
L
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
n

Figure 6: Operation waveforms iL operating in CCM.
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)ere are two states for the continuous mode which are
linked. Figure 5 presents the dynamical change of the
current iL in continuous current mode (CCM).

4. Equilibrium Points and their Stability

Generally, there are equilibrium points in most of the
physical systems and it is necessary to investigate the
equilibrium points since they affect the system dynamics to a
great extent. For equations (5) and (6), we can calculate their
equilibrium points by solving the following equation:

diL

dt

dvc

dt

dφ
dt

􏼒 􏼓 � 0 0 0( 􏼁. (8)

By solving (8), the general equilibrium point is given
by

Ou

mr

n
E(1 − u) − p􏼒 􏼓E(1 − u), E(1 − u),

m

n
E(1 − u)􏼒 􏼓.

(9)

)e Jacobian matrices are
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Figure 8: Bifurcation diagram versus E and Ts: (a) E ∈ [10; 16]; (b) Ts ∈ [0; 7 × 104] and the corresponding graph of maximum Lyapunov
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Figure 10: MATLAB numerical simulation: the time-domain waveforms and phase portraits of dc/dc single-stage current-mode-controlled
buck converter. (a) inductor current with chaotic orbit for E � 12V; (b) capacitor voltages with chaotic orbit; (c) phase portrait with period-
1 orbit for E � 9V; (d) phase portrait with period-2 orbit for E � 9.67V; (e) phase portrait with period-4 orbit for E � 10.67V; (f ) phase
portrait with chaotic orbit corresponding to (a) and (b).
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JOu
�

0 − a1 0

a2 a2p − a2r
m

n
E(1 − u) − a2rE(1 − u)

0 αm − αn
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,

with a1 �
1
C

et a2 �
1
L

.

(10)

)e eigenvalues are obtained at equilibrium point by
solving the expression

det JO − λI3( 􏼁 � 0. (11)

)e characteristic equation is given by

λ3 + αn + a2r
m

n
E(1 − u) − a2p􏼒 􏼓λ2

+ a1a2 + 2αma2rE(1 − u) − αna2p( 􏼁λ

+ αna1a2 � 0.

(12)

Obviously, equation (12) represents the characteristic
equation that can be used to analyze the stability of the
system around its equilibrium points. However, the non-
trivial fixed points can be found by exploiting numerical
methods, in particular, by using the Newton Raphson
method. As already pointed out, it can be found that there
exists two equilibrium points on the (x, y, z) plane, that is,
for u � 0, the equilibrium point is, O0(((mr/n)E − p)E,

E, (m/n)E), and O1(0, 0, 0) for u � 1. Table 3 shows the roots
of the characteristic equation computed for various values of
E. It clearly appears from Table 3 that the system is unstable
for some values of E and the graphical representations are

provided in Figure 6. As the system presents instability, it is
necessary to study the dynamic behavior of the system. Note
that for a smooth chaotic circuit system with a memristor,
the local activity, i.e., the negative resistance region of a
memristor is essential for generating chaos, while for a
switched chaotic system with a memristor, it might be
unnecessary for generating chaos. Figure 7 shows the
eigenvalue locus in the complex plan (Re(λ), Im(λ)) with the
following parameter values: n � 2; m � 1; p � 2;

r � 1; α � 10000; L � 0.6mH. )e intersection of the curve
with imaginary axis shows the presence of the Hopf bi-
furcation in the system.

5. Numerical Investigations

5.1. Bifurcation and Lyapunov Exponent Analysis based on
Computer Simulations. )e bifurcation and Lyapunov ex-
ponent diagrams are powerful graphical nonlinear analysis
tools to locate promising parameter windows that provide a
detailed knowledge of the system behavior. )ere exist
several numerical techniques to differentiate these motions,
and the bifurcation diagram is one of the most important
ones. A bifurcation diagram can be used to exhibit the
qualitative changes in features under the variation of one or
more parameters on which the system depends. Generally,
there exist one or more bifurcation parameters in a chaotic
system. To this end, equations (4) and (5) were integrated
systematically over grids of equally spaced parameters using
a standard Runge–Kutta fourth-order algorithm with a fixed
time step h � 10− 6. In order to provide a better performance,
Fortran software is exploited to perform this high-resolution
computation which is quite demanding.)e following initial
conditions are considered for the simulations x � 1, y � 0,

z � 0, t � 0. We recall that for a chaotic system, for special
parameters, the buck converter may have distinct motions

Figure 11: Screenshot of PSIM simulation model of the buck converter with memristive load.
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such as periodic motion, quasiperiodic motion, sub-
harmonic, chaos, and hyper-chaos. Figure 8 presents in two
complementary ways (described below) bifurcation dia-
grams and Lyapunov exponent characterizing the far-

reaching regular organization induced by the set of stable
and unstable oscillations of the circuit. )ese panels’ bi-
furcation and their corresponding Lyapunov exponent are
plotted for the values of parameters set as follows:
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Figure 12: Analog simulation PSIM: the time-domain waveforms and phase portraits of dc/dc single-stage current-mode-controlled buck
converter. (a) inductor current with chaotic orbit for E � 12V; (b) capacitor voltages with chaotic orbit; (c) phase portrait with period-1
orbit for E � 9V; (d) phase portrait with period-2 orbit for E � 9.67V; (e) phase portrait with chaotic orbit corresponding to (a) versus (b).
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TS � 200 μs; m � 1; n � 2; r � 1; p � 2; iref � 0.6mA; L

� 0.6mH; C � 200 μF,

E � 12V; m � 1; n � 2; r � 1; p � 2; iref � 0.6mA; L

� 0.6mH; C � 200 μF.

(13)

Figures 8(a) and 8(b) show the bifurcation diagrams of
the current-mode-controlled buck converter by taking input
voltage E and the Ts parameter as bifurcation parameters,
respectively. From these, we clearly observe that the first
period-doubling bifurcations occur at E� 10V and
Ts � 5.8 × 10− 4, respectively. As the parameter E increases,
forward bifurcation routes with period-doubling and border
collision to chaos suddenly appear in the buck converter and
globally characterize the routes toward chaos. When pa-
rameter Ts increases, reversed bifurcation routes with pe-
riod-doubling and chaos appear in the buck converter
topology under investigation.

With the aim to have a perfect and complete knowledge
of the total dynamics of the system, the standard Lyapunov
stability diagrams are plotted to give the zones of chaotic and
periodic oscillations according to two parameters of the
system. Figures 9(a) and 9(b) represent the bifurcation di-
agrams with the corresponding Lyapunov exponents when
the voltage E and period Ts are monitored. One can see that
the negative exponents correspond to the periodicity zones
of the diagram of bifurcation and the positive exponents
correspond to chaos. Figure 9(a) shows a two parameters
sweep, obtained by plotting the aforementioned fine pa-
rameter grid, the nonzero Lyapunov exponent which stands
as a familiar indicator allowing one to discriminate un-
ambiguous chaos (positive exponents) from periodic os-
cillations (negative exponents). Indeed, the values below
zero are the negative values (indicated on the legend by the
color blue) of Lyapunov exponent and those above are
positive values (on the legend indicated by the color green,
red, and yellow) of Lyapunov exponent. A very distinct and
complementary representation of the same parameter of
bifurcation [E, TS] is presented in Figure 9(b), in the form of
a bifurcation diagram namely, a diagram obtained by
plotting local maxima according to the control parameters.
)is diagram was drawn using 18 colors; the first 17 colors
represent the zones of periodicity (represented by rainbow
color) and the last color (black) represents chaos.

)e results previously obtained can be proven by the
time-domain waveforms and the phase portraits which are
particularly important for observing nonlinear phenomena.
)e current-mode-controlled buck converter can be ob-
tained using Runge–Kutta algorithm via constructing
piecewise smooth switching models obtained from Fortran
simulation (the time-domain waveforms and the phase
portraits of the inductor current versus output voltage).
Taking the variation of input voltage E into consideration,
the time-domain inductor current and output voltage
waveforms are obtained for E� 12V. Figures 10(a) and 10(b)
present the time evolution of the states (iL and Vc) and the
phase portraits are shown in Figures 10(c)–10(f ) which

correspond to period-1 orbit, period-2 orbit, period-4 orbit,
and chaotic orbit, respectively.

6. PSIM Simulation Results

6.1. Schematic Circuit. In this section, the dc/dc converter
circuit with a memristance load in PSIM is built to dem-
onstrate the presence of complex phenomena in the system
under investigation. Based on Figure 1, the schematic circuit
is shown in Figure 11. )e schematic circuit consists of the
buck circuit (on the left) of the memristor emulator (on the
right) and the controlled current source. )e experimental
values considered are recorded in Table 2.)e current sensor
ISEN7, which can transform the current signal into a voltage
signal, is used to collect the current i through the inductor L.
)e collected voltage signal as the input of comparator U can
be used to compare the reference current Iref . Note that the
input signal of the comparator U is in fact a voltage signal;
therefore, V2 � 0.6V can be regarded as Iref ≡ 0.6A.

6.2. Validation by Circuit Simulations. PSIM (Power Sim-
ulation) software is a useful simulation tool, which can be
used to simulate the time sequences and phase portraits of
the memristive buck converter. With PSIM Version 9.0
software, the circuit simulation model is built with a relevant
frequency and duty cycle of the square-wave voltage source
to have these different behaviors. We note that their default
values are 5000Hz and 0.5, respectively. However, we plot
the current iM at the terminal of the inductor and the voltage
vm at the terminal of the memristor. )e results are reported
in Figure 12. Note that the time series, periodic, and chaotic
portraits are captured by the virtual oscilloscope in PSIM.
With reference to the pictures in Figure 12, it can be seen
that the buck converter under consideration experiences the
same bifurcation scenarios as predicted in the previous
section.

7. Conclusion

)e nonlinear behavior of current-mode-controlled buck
converter memristive load is investigated in this paper. )e
study of stability allowed us to observe that the system has
rich dynamic behavior when some system parameters
change. Different tools such as bifurcation diagrams,
Lyapunov exponent, phase portraits, and two parameters
Lyapunov diagram are considered to provide a systematic
total dynamics of the dc/dc buck converter. Peak current-
mode controlled single-stage buck converter system with a
memristance load goes to chaos via period-doubling and
border collision routes. Moreover, it was found that the
analog results in PSIM are similar to the numerical results
in Fortran. Especially, peak current controlled buck con-
verter exhibits inverse nonlinear behaviors compared with
a current-mode-controlled buck converter. More inter-
estingly, one of the key contributions is the finding of
various regions in the parameters’ space in which the buck
converter experiences the unusual phenomenon of com-
peting attractors which is not yet reported in the literature.
It should be noted that we only focused on the investigation
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of dynamical behaviors with respect to the frequency and
the voltage, and it will be necessary to further study the dc/
dc converters with a memristance load by considering the
system parameters and topological structures in future
research studies. It is worth noting here that we have
worked with a continuous memristor model on a discrete
converter topology, and some recent works present in
detail analyzes the discrete memristor model [42, 43]. )is
issue should be considered in our future directions with the
same converter topology with the aim to point out some
technical specifications.
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In this paper, a novel adaptive �nite-time slidingmode backstepping (AFSMBS) control scheme is suggested to control a type of high-
order double-integrator systems with mismatched disturbances and uncertainties. A robust sliding mode backstepping control
method, adaptive control method, and �nite-time stability notion are incorporated to provide a better tracking performance over
applying them individually and to use their bene�ts simultaneously. �e concept of a sliding mode is used to de�ne a new form of a
backstepping controller. �e adaptive control method is utilized to adaptively estimate the upper bounds of the disturbances and
uncertainties and the estimated data are used in the control low. �e notion of the �nite-time stability is incorporated with the
suggested control scheme to ensure the system’s convergence within a �nite time. �e stability proof is obtained for the closed-loop
system in a �nite time utilizing the Lyapunov stability theorem. Simulation results are obtained for an example of a remotely operated
vehicle (ROV) with three degrees of freedom (3-DOF) to demonstrate the e�cacy of the suggested control approach.

1. Introduction

Many practical high-order systems are modeled using
nonlinear di�erential equations due to the stochastic noise,
uncertainties in the parameters, and variations in the ex-
ternal environment which are unknown beforehand and
may occur in the real system [1]. �is makes the control of
these systems a challenge and as a result, di�erent nonlinear
control methods including the nonlinear stability theory [2],
backstepping technique [3], Lyapunov function [4], and
sliding mode control (SMC) [5–8] have come into existence.

A simple and e�cient mathematical framework has been
proposed in [9] to tackle nonlinear problems. A novel
technique has been suggested in [10] to deal with nonlinear
evolutionary issues. A system described as a classical integer-
order di�erential problem has been investigated in [11] to
explore the complexities of the human liver.

An e�ective scheme found in the literature to deal with
uncertainties in single or double-integral system is the
adaptive control [12, 13] and notable adaptive design
methods have been proposed in [14–16] for the control of
high-order systems. An adaptive compensation control

Hindawi
Discrete Dynamics in Nature and Society
Volume 2022, Article ID 3758220, 10 pages
https://doi.org/10.1155/2022/3758220

mailto:p.alinaghi_hosseinabadi@adfa.edu.au
https://orcid.org/0000-0002-9061-086X
https://orcid.org/0000-0001-8901-836X
https://orcid.org/0000-0002-9612-714X
https://orcid.org/0000-0003-4696-908X
https://orcid.org/0000-0001-8544-8995
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/3758220


method has been proposed in [17] to deal with mismatched
disturbances as well as uncertain faults. In addition, the
finite-time stability is known for its fast transient perfor-
mance achievement [18]. Hence, adaptive finite-time control
encompasses the merits of both control techniques. It
guarantees superior disturbance rejection, robustness
properties, and faster convergence rates [19, 20].

(e downside to finite-time adaptive control is the
complications involved in estimating the upper bound of
disturbances and uncertainties [21, 22]. Terminal SMC
(TSMC) has been incorporated in [23] due to its robustness
to obtain adaptive finite-time convergence, fast convergence,
improved transient performance, and higher precision for
high-order systems. However, singularity issues were
present in the controller [24]. Nonsingular TSMC was ap-
plied in [25] to solve the singularity issue; however, finite-
time convergence was not achieved and the convergence rate
to the equilibrium was slow. An integration of adaptive
control with nonsingular TSMC was suggested in [26] to
tackle the issue of unknown upper boundaries in adaptive
control. (e resulting control laws were, however, discon-
tinuous across the terminal sliding mode surface when
external disturbances were involved. In [27], finite-time
SMC has been incorporated with the adaptive control
method to provide the estimated data in the controller.
However, undesirable chattering phenomenon exists in the
control signal of this control method.

Backstepping is a technique introduced in the 1990s [28]
to solve regulation or tracking control problems considering
uncertainties in nonlinear feedback systems [29, 30]. (e
control design process in backstepping begins at the source
of the high-order system and backs out to new controllers
which stabilize each of the outer subsystems a step at a time
till the final control law is obtained [31].(e stability analysis
is established by selecting a suitable Lyapunov function [32].
Backstepping is generally used as an alternative to feedback
linearization [33]. It provides advantages ranging from
transient performance improvement, achieving global sta-
bility to achieving a model-free control scheme [34–36]. It
has the disadvantage of not being applicable to unpar-
ameterized systems or nonlinear systems with structural
uncertainties or [32, 37]. It can, however, be combined with
different control techniques to solve problems relating to
parameter uncertainties, unmodeled dynamics, or external
disturbances.

Motivated by the aforementioned discussions, a new and
enhanced type of sliding mode backstepping control method
is proposed where the concept of sliding mode is utilized to
define the backstepping controller. It is assumed that there is
no information of the upper bounds of disturbances and
uncertainties. So, they are adaptively estimated, and the
estimated data are provided in the controller. (e system’s
convergence is ensured within a finite time utilizing the
Lyapunov stability theorem and the notion of the finite-time
stability.(e suggested control method is designed for a type
of high-order double-integral systems with mismatched
uncertainties and external disturbances. Also, an example of
ROV with 3-DOF is provided to apply the proposed con-
troller and test its performance. Simulation results reveal the

validity of the suggested scheme. (e novelties of the re-
search can be highlighted as follows:

(i) A novel incorporation of the robust sliding mode
backstepping control method, adaptive control
method, and finite-time stability notion is done to
provide a superior tracking performance over ap-
plying them individually and to use their benefits
simultaneously.

(ii) (is proposed controller not only ensures the sys-
tem’s finite-time stability but also does not require
any knowledge of the upper bound of disturbances
and uncertainties for the controller design.

(iii) A new form of the candidate Lyapunov function is
defined to obtain the finite-time stability proof for
the closed-loop system.

(iv) (e proposed control approach is applicable for a
wide range of practical applications described by a
set of independent double integrator subsystems in
the presence of mismatched uncertainties and
disturbances.

(is article is organized as follows. In Section 2, the system
is presented. Mathematical preliminaries and lemmas are
given in Section 3. In Section 4, the stability proof is obtained
within a finite time utilizing Lyapunov stability theorem. In
Section 5, the designed control laws are applied to the ROV
with 3-DOF. Section 6 gives the conclusions.

2. Problem Statement

Consider the high-order double-integrator system that in-
cludes themismatched uncertainties and external disturbances.

_x1 � x2 + d1,

_x2 � f1(t, x) + g1(t, x)u1 + d2,

_x3 � x4 + d3,

_x4 � f2(t, x) + g2(t, x)u2 + d4,

⋮

_x2n−1 � x2n + d2n−1,

_x2n � fn(t, x) + gn(t, x)un + d2n,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where fj(t, x), gj(t, x), j � (1, 2, . . . , n) are smooth non-
linear functions; g−1

j (t, x) is available and nonsingular;
di, i � (1, 2, . . . , 2n) is the model of uncertainties and ex-
ternal disturbance; and uj is the system’s control inputs. (e
system can be rewritten as follows:

_x2j−1 � x2j + d2j−1,

_x2j � fj(t, x) + gj(t, x)uj + d2j.

⎧⎨

⎩ (2)

(e external disturbances and uncertainties are given as
follows:

di ≤ hi where hi ≤ 􏽢hi ≤ h
∗
i . (3)

Here, hi is the uncertainty upper bound (that is assumed
to be unknown); 􏽢hi is the estimation of their upper bounds;
and di is the Euclidean norm of disturbances and
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uncertainties. In the following sections, the finite-time
control law is defined utilizing a sliding mode backstepping
control scheme. (e uncertainty upper bounds are also
adaptively estimated and they are utilized in the controller.

Remark 1. A wide range of practical applications can be
described by a set of independent double integrator sub-
systems (given by (1)) including the three-link robotic
manipulator [38, 39], ship course system [40], two-link
robotic manipulator [41], support structure system for
offshore wind turbines [42], etc.

3. Mathematical Preliminaries and Lemmas

Definition 1. Consider a nonlinear system as shown below:

_x � f(t, x), (4)

where x ∈ Rn is the vector of the system states;
f: Rn⟶ Rn is a nonlinear function; and t is considered on
the interval [t0,∞), where t0 ∈ R+⋃ 0{ }. Also, we have
x(t0) � x0.

(e origin of (4) has global finite-time stability if it has
global asymptotic stability and any solution x(t, x0) of (4)
converges to the origin at some finite timemoment for all x0;
i.e., ∀t≥T(x0): x(t, x0) � 0, where
T: Rn⟶ R≥0,∀x0 ∈ Rn, is named settling time function,
then the origin of (4) has global finite-time stability [43, 44].

Definition 2. (e signum function is defined as follows:

sign(a) �

1; a> 0,

0; a � 0,

−1; a< 0.

⎧⎪⎪⎨

⎪⎪⎩
(5)

We note that |a| � asign(a) is always true.

Definition 3. (e function siga(x) is given as follows:

siga
(x) � |x|

asign(x) (6)

(us, we have xsiga(x) � |x|a+1.

Lemma 1. For each value a1, a2, . . . , an ∈ R and 0< q< 2, we
have, |a1|

q + |a2|
q + . . . + |an|q ≥ (a2

1 + a2
2 + . . . + a2

n)q/2 [45].

Lemma 2. Assume there exist two real numbers as ρ1 > 0 and
0< ρ2 < 1 and a continuously differentiable positive function

V(x): Rn⟶ R≥0 in such a way that we have V(x) � 0 for
x(t) � 0. If any solution x(t) of (4) satisfies
_V(x)≤ − ρ1Vρ2(x), then the origin of (4) has global finite-
time stability and the settling time will be
T≤V1− ρ2(x0)/ρ1(1 − ρ2) [14, 46].

4. AFSMBS Controller

Here, the control goal is to define the finite-time controller
for the system given by (2). (en, the stability proof is
obtained by defining a candidate Lyapunov function. (e
backstepping control law is defined using the sliding control
concept as follows:

uj � g
− 1

−fj(t, x) − 􏽢h2jsig
α2j Zj􏼐 􏼑 + _x

∗
2j􏼐 􏼑,

x
∗
2j � −􏽢h2j−1sig

α2j−1 x2j−1􏼐 􏼑,

⎧⎪⎨

⎪⎩
(7)

where we have Zj � x2j − x∗2j and 0< αi < 1.
_􏽢h2j−1 � r2j−1 x2j− 1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
α2j−1+1

,

_􏽢h2j � r2j Zj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
α2j+1

,

⎧⎪⎪⎨

⎪⎪⎩
(8)

where we have 0< ri < 1.
(e block diagram of the proposed AFSMBS approach is

shown in Figure 1.

Theorem 1. Assume the system given by (2). If the control
law (5) and adaptive law (6) are applied to (2), the system’s
convergence is ensured within a finite time. Also, the un-
certainty upper bounds are adaptively estimated within a
finite time and the online estimated data are provided in the
controller.

Proof. (e stability proof using the backstepping method
consists of two phases as follows. □

Phase 1. To prove the first phase, the candidate Lyapunov
function is defined as V1(x) � 1/2x2

2j−1 + 1/2􏽥h
2
2j−1 where

􏽥h2j−1 � 􏽢h2j−1 − h∗2j−1. Taking its time derivative, we obtain as
follows:

_V1(x) � x2j−1 _x2j−1 + 􏽥h2j−1
_􏽥h2j−1⇒ _V1(x)

� x2j−1 _x2j−1 + 􏽥h2j−1
_􏽢h2j−1.

(9)

(en, we have as follows:

_V1(x) � x2j−1 x
∗
2j + d2j−1􏼐 􏼑 + 􏽥h2j−1

_􏽢h2j−1⇒ _V1(x)≤x2j−1 x
∗
2j + h2j−1􏼐 􏼑 + 􏽥h2j−1

_􏽢h2j−1. (10)

Substituting (5) and (6) into (8) yields as follows:

_V1(x)≤x2j−1 −􏽢h2j−1sig
α2j−1 x2j−1􏼐 􏼑 + h2j−1􏼐 􏼑 + 􏽥h2j−1r2j−1 x2j− 1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
α2j−1+1

. (11)
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We obtain as follows:

_V1(x)≤ x2j−1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌h2j−1 − 􏽢h2j−1 x2j− 1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
α2j−1+1

+ 􏽥h2j−1r2j−1 x2j− 1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
α2j−1+1

. (12)

Adding ±|x2j− 1|
α2j−1+1h∗2j−1 to (10) yields as follows:

_V1(x)≤ x2j−1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌h2j−1 − 􏽢h2j−1 x2j− 1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
α2j−1+1

+ 􏽥h2j−1r2j−1 x2j− 1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
α2j−1+1
± x2j− 1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
α2j−1+1

h
∗
2j−1. (13)

As a result, we have as follows:

_V1(x)≤ − x2j−1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 x2j− 1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
α2j−1

h
∗
2j−1 − h2j−1􏼒 􏼓 − 􏽥h2j−1 x2j− 1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
α2j−1+1

+ 􏽥h2j−1r2j−1 x2j− 1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
α2j−1+1

⇒ _V1(x)≤ − x2j−1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 Δ11􏼐 􏼑 − 􏽥h2j−1 1 − r2j−1􏼐 􏼑 x2j− 1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
α2j−1+1

􏼒 􏼓

⇒ _V1(x)≤ − x2j−1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌Δ11 − 􏽥h2j−1Δ12

⇒ _V1(x)≤ − Δm x2j−1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + 􏽥h2j−1􏼒 􏼓,

(14)

where Δm1
� min(Δ11,Δ12), and according to Lemma 1, we

obtain as follows:

_V1(x)≤ − Δm1
x2j− 1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

+ 􏽥h
2
2j− 1􏼒 􏼓

1/2
⇒ _V1(x)≤ − Δm1

2V1(x)( 􏼁
1/2

.

(15)

Choosing ρ11 �
�
2

√
Δm1

and ρ21 � 1/2, we have,
_V1(x)≤ −ρ11V

ρ21
1 (x), and based on Lemma 2, the stability

proof of the first phase is guaranteed. (us, the settling time
upper bound T1 will be T1 ≤V1− ρ21(x0)/ρ11(1 − ρ21).

Phase 2. To obtain the second phase of the proof, the
candidate Lyapunov function is considered as

V2(x) � 1/2Z2
j + 1/2􏽥h

2
2j. Taking its time derivative, we ob-

tain the following:

_V2(x) � Zj
_Zj + 􏽥h2j

_􏽢h2j⇒ _V2(x)

� Zj _x2j − _x
∗
2j􏼐 􏼑 + 􏽥h2j

_􏽢h2j.

(16)

Applying the control law and simplifying it yields the
following:

_V2(x) � Zj fj(t, x) + gj(t, x)uj + d2j − _x
∗
2j􏼐 􏼑 + 􏽥h2j

_􏽢h2j

⇒ _V2(x)≤ − 􏽢h2j Zj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
α2j+1

+ h2j Zj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + 􏽥h2j
_􏽢h2j.

(17)

Adding ±|Zj|
α2j+1h∗2j to (15), we yield as follows:

Backstepping
control law

High-order double-
integrator system

Adaptive law+ -
xid ei hi uj xiˆ

.

Figure 1: Block diagram of the proposed controller.
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_V2(x)≤ − 􏽢h2j Zj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
α2j+1

+ h2j Zj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + 􏽥h2j
_􏽢h2j ± Zj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
α2j+1

h
∗
2j

⇒ _V2(x)≤ − Zj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 Zj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
α2j

h
∗
2j − h2j􏼒 􏼓 − 􏽥h2j Zj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
α2j+1

+ 􏽥h2jr2j Zj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
α2j+1

⇒ _V2(x)≤ − Zj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌Δ21 − 􏽥h2j 1 − r2j􏼐 􏼑 Zj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
α2j+1

􏼒 􏼓

⇒ _V2(x)≤ − Zj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌Δ21 − 􏽥h2j Δ22􏼐 􏼑

⇒ _V2(x)≤ − Δm2
Zj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + 􏽥h2j􏼒 􏼓,

(18)

where Δm2
� min(Δ21,Δ22) and according to Lemma 1, we

have as follows:

_V2(x)≤ − Δm2
Zj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

+ 􏽥h
2
2j􏼒 􏼓

1/2
⇒ _V2(x)≤ − Δm2

2V2(x)( 􏼁
1/2

.

(19)

Choosing ρ12 �
�
2

√
Δm2

, ρ22 � 1/2, we have _V2(x)≤
−ρ12V

ρ22
2 (x) and based on Lemma 2, the stability proof of the

second phase is guaranteed. Consequently, the settling time
upper bound T2 is as T2 ≤V1− ρ22(x0)/ρ12(1 − ρ22) .

As a result, the stability proof of the system (2) is
completed and the settling time upper bound will be as
T � T1 + T2. n

Remark 2. (e proof shows that in a finite time, we have
Zj⟶ 0. Consequently, in a finite time, we have
x2j⟶ x∗2j as well as all the system states reach zero in a
finite time and remains zero. Also, the uncertainty upper
bounds are estimated in a finite time.

5. Application Example

In [47–50], the ROV model with 3-DOF has been presented
as follows:

p1€x + Vx|V| p2|cos(ϕ)| + p3|sin(ϕ)|( 􏼁 + p4x − p5Vcx Vc

����
���� � Tx,

p1€x + Vy|V| p2|sin(ϕ)| + p3|cos(ϕ)|( 􏼁p4y − p5Vcy Vc

����
���� � Ty,

p6
€ϕ + p7

_ϕ| _ϕ| + p8 Vc

����
����
2sin

ϕ − ϕc

2
􏼠 􏼡 + p9 � Mz,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(20)

where V � [Vx, Vy]T � [( _x − Vcx), ( _y − Vcy)]T and
Vc � [Vcx, Vcy]T are the vectors of speed in directions x, y

that are constants; pi, i � (1, 2, . . . , 9) are constants which
are provided in Table 1 with their uncertainties;
(Tx, Ty, Mz) � (u1, u2, u3) are control inputs that need to be

designed; ϕc is the current angle between the x axis and the
speed direction.

To obtain the system state equations, state variables are
defined as follows, X � [x1, x2, x3, x4, x5, x6]

T � [x, _x, y,

_y, ϕ, _ϕ]. (en, the state equations are rewritten as follows:

_x1 � x2 + d1,

_x2 � −p
−1
1 Vx‖V‖ p2 cos x5( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + p3 sin x5( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑p4x1,􏼐

_x3 � x4 + d3,

_x4 � −p
−1
1 Vy‖V‖ p2 sin x5( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + p3 cos x5( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑 + p4x3 − p5Vcy Vc

����
����􏼐 􏼑 + d4 + p

−1
1 u2,

_x5 � x6 + d5,

_x6 � −p
−1
6 p7x6 x6

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + p8 Vc

����
����
2 sin

x5 −∅c

2
􏼒 􏼓 + d6 + p

−1
6 u3􏼒 􏼓,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(21)
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where ‖Vc‖ �
��������
V2

cx + V2
cy

􏽱
, ‖V‖ �

�������
V2

x + V2
y

􏽱
, and

dj, j � (1, 2, . . . , 6) is the system uncertainty model.
(e control goal is to fulfill a trajectory tracking problem

for the ROV; hence, the dynamic error is defined as
ej � xj − xjd

. Accordingly, the dynamic error is given as
follows:

_e1 � e2 + d1,

_e2 � f1 + d2 − _x2d
+ p

−1
1 u1,

_e3 � e4 + d3,

_e4 � f2 + d4 − _x4d
+ p

−1
1 u2,

_e5 � e6 + d5,

_e6 � f3 + d6 − _x6d
+ p

−1
6 u3,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(22)

where

f1 � −P
−1
1 Vx‖V‖ p2 cos x5( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + p3 sin x5( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑 + p4x1 − p5Vcx Vc

����
����􏼐 􏼑,

f2 � −P
−1
1 Vy‖V‖ p2 sin x5( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + p3 cos x5( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑 + p4x3 − p5Vcy Vc

����
����􏼐 􏼑,

f3 � −P
−1
6 p7x6 x6

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + p8V

2
c sin

x5 − ϕc

2
􏼠 􏼡 + p9􏼠 􏼡.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(23)

(e desired trajectory tracking is considered as follows:

xid
� cos(20t) + sin(10t). (24)

In this section, the designed controller in previous
section is applied to the ROV with 3-DOF given by (18). It is
to be noted that _x2jd

given in the control law (5) should track
the desired trajectory. To obtain simulation results, the

Table 1: System parameters with their uncertainties.

p1 12670 Kg ± 10% p2 2667 Kg · m−1 ± 10% p3 4934 Kg · m−1 ± 10%
p4 417 N · m−1 ± 5% p5 46912 Kg · m−1 ± 10% p6 18678 Kg · m2 ± 10%
p7 9200 Kg · m2 ± 10% p8 −308.4 Kg ± 5% p9 1492 N · m ± 5%
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Figure 2: Time responses of x1, x2, x3 and x1d
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, x3d
using AFSMBS.
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Simulink/MATLAB is utilized with the numerical method of
ode4 and the step-size of 0.001. Also, the control input is
applied after 3 seconds of start up of the system. In (23), the
value of the selected design parameters is given.

α2j−1 � α2j �
5
11

,

ri � 0.1.

(25)

Figures 2 to 4 show the simulation results of the AFSMBS
method for ROV with 3-DOF. Figures 2 and 3 show the
tracking performance before and after applying the con-
troller, where the controller is applied to the system at
t � 3(s). It can be seen that the system states reach the
desired trajectories after applying the controller to the
system.(e efficacy of the controller can be demonstrated by
comparing the behavior of the system states before and after
applying the controller to the system. (e controller effec-
tively drives the system states to their references.

It can be observed from Figure 2 that the states converge
to their references after applying the controller as follows. It
is to be noted that the controller is applied to the system at
t � 3(s).

(i) x1⟶ x1d
within t ≈ 2.2(s) using AFSMBS

(ii) x2⟶ x2d
within t ≈ 0.2(s) using AFSMBS

(iii) x3⟶ x3d
within t ≈ 1.7(s) using AFSMBS

Figure 3 shows that the states reach their references after
applying the controller as follows. Note that the controller is
applied to the system at t � 3(s).

(i) x4⟶ x4d
within t ≈ 0.3(s) using AFSMBS

(ii) x5⟶ x5d
within t ≈ 0.5(s) using AFSMBS

(iii) x6⟶ x6d
within t ≈ 0.6(s) using AFSMBS

Figure 4 shows the control signals u1, u2, and u3 using
the AFSMBS controller. It can be seen that the AFSMBS
controller is applied to the system at t � 3(s).
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6. Conclusion

In this paper, a novel AFSMBS controller is proposed by
incorporating the robust sliding mode backstepping control
scheme, adaptive control method, and finite-time stability
notion for a type of high-order double-integrator systems
considering mismatched uncertainties. (e backstepping
control law is defined utilizing the concept of sliding mode.
(e upper bound of the uncertainties and external distur-
bances is adaptively estimated within a finite time and the
online estimated data are provided in the controller. (e
finite-time stability notion is used to guarantee the system’s
convergence in a finite time. (e stability proof is obtained
for the closed-loop system in the two phases utilizing a
backstepping method and by defining proper candidate
Lyapunov functions. (e proposed method is applied and
simulated for an example of ROV with 3-DOF. (e efficacy
of the suggested method is demonstrated in the simulation
results. For future works, the optimization of the design
parameters is recommended.
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�is study is devoted to constructing an approximate analytic solution of the fractional form of a strongly nonlinear boundary
value problem with multi-fractional derivatives that comes in chemical reactor theory. We construct the solution algorithm based
on the generalized di�erential transform technique in four simple steps.�e fractional derivative is de�ned in the sense of Caputo.
We also mathematically prove the convergence of the algorithm. �e applicability and e�ectiveness of the given scheme are
justi�ed by simulating the equation for given parameter values presented in the system and compared with existing published
results in the case of standard derivatives. In addition, residual error computation is used to check the algorithm’s correctness.�e
results are presented in several tables and �gures. �e goal of this study is to justify the e�ects and importance of the proposed
fractional derivative on the given nonlinear problem. �e generalization of the adopted integer-order problem into a fractional-
order sense which includes the memory in the system is the main novelty of this research.

1. Introduction

Chemical reactors are containers used in chemical engineering
to contain chemical processes. Because of their numerous in-
dustrial uses, these reactors are crucial. Biological treatment,
algae production, and gasoline production are some of the
applications for tubular reactors. �e mathematical model for
an adiabatic tubular chemical reactor that performs an irre-
versible exothermic chemical reaction is examined in this work.
�e model may be simpli�ed into the following nonlinear
ordinary di�erential equation for steady-state solutions [1]:

d2u

dx2
− λ

du

dx
+ λμ(β − u)exp(u) � 0, (1)

where λ, μ, and β are the Péclet number, Damköhler number,
and adiabatic temperature rise, respectively. �e relative
boundary conditions are given by

u′(0) � λu(0), u′(1) � 0. (2)

In references [2, 3], the authors investigated the existence of
a solution to equations (1) and (2). In [1], the researchers
established the existence of numerous solutions. To solve the
problem under speci�c evaluations, certain numerical ap-
proaches were used. Green’s function, for example, is used to
turn the issue into aHammerstein integral equation in [4]. After
that, Adomian’s decomposition approach was used to solve the
resultant equation. �e problem was solved using the Cheby-
shev �nite di�erence approach in [5]. �e authors in [6] used a
solution aligned on embedding Green’s function inside Kras-
noselskii–Mann �xed point iteration method to solve the
problem.

In this article, we incorporate fractional order into (1).
�e following noninteger-order di�erential equation de-
scribes the new equation:
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d
q
u

dxq − λ
d

c
u

dx
c + λμ(β − u)exp(u) � 0, (3)

where dq/dxq and dc/dxc are the Caputo derivative oper-
ators along with fractional orders q ∈ (1, 2], c ∈ (0, 1]

subject to the boundary conditions. (1) can be considered as
a particular form of (3) by fixing the orders q � 2 and c � 1.
*is means the final solution of the fractional-order system
must converge to the solution of the integer-order coun-
terpart of the equation. Some recent results on boundary
value problems in fractional-order sense can be seen in
references [7, 8]. Mostly, the nature of complex dynamics
cannot be better stated by integer-order differential equa-
tions. In the present case, the fractional-order model may
strongly define the nature of the given system. In some
circumstances, fractional models yield superior approxi-
mation results, according to Abbas et al. [9]. Iyiolaa et al. [10]
have also demonstrated that for cancer tumours, the frac-
tional model delivers a better approximation outcome than
the integer-order one. Some recent studies related to the
modeling in terms of fractional-order boundary value
problems can be learned from references [11, 12]. Recently, a
number of nonlinear fractional-order models have been
proposed by the researchers to describe the dynamics of
various real-life problems like AH1N1/09 influenza [13],
childhood diseases [14], human liver dynamics [15],
greenhouse gas effects on the population of aquatic animals
[16], mosaic diseases in plants [17], maize streak virus [18],
and so on.

Fractional calculus has more than three century history
and has progressed steadily to the present day. Rieman and
Liouville were the first ones who defined the fractional-order
differentiation notion in the nineteenth century. Fractional
differential equations (FDEs) have been shown to be a
valuable tool for representing a wide range of scientific and
engineering phenomena. Many FDEs that describe any
phenomenon have lack of analytic solutions. As a result of
the absence of analytic solutions, a significant variety of
techniques for solving FDEs have been devised [19]. FDEs
have attracted much more attention as a part of fractional
calculus. It is worth noting that a general solution strategy
for fractional differential equations is yet to be developed.
*e majority of problem-solving strategies in this field have
been created for certain categories of challenges. For this
reason, a single standard technique for solving problems
related to fractional calculus has not been found. As a result,
identifying compelling and beneficial solution strategies in
combination with quick application techniques is valuable
and worthy of further investigation [20] (see [21–27] for
further information).

Under the best of our investigations, our study intro-
duces the firstly produced numerical solution of (3). For this
target, we are directed to find the approximate solution of (3)
via generalized differential transform method (GDTM)
[28–31].

*is paper is organized as follows. In Section 2, a review
of the GDTM [28] is given and some important prelimi-
naries are given. In Section 3, the solution procedure is

presented. Convergence theorem of the present solution is
proved in Section 4. *e solution approximations for
equations (2) AND (3) are established in Section 5. Some
conclusions are mentioned at the end.

2. The Generalized Differential
Transform Method

For reader’s facility, this part covers a review of the gen-
eralized differential transform [28] as well as some funda-
mental fractional calculus ideas and terminology.

*e generalized differential transform of the kth de-
rivative of the analytic function f(x) is given by

Fα(k) �
1

Γ(αk + 1)
D

α
x0

􏼐 􏼑
k
f(x)􏼔 􏼕

x�x0

, (4)

where 0< α≤ 1, (Dα
x0

)k � Dα
x0

.Dα
x0

. . . Dα
x0

, k-times, and Dα
x0

denotes the Caputo fractional differential operator of order α
given by

D
α
af(x) � J

m− α
a D

m
f(x). (5)

Here Dm is the integer-order differential operator of
order m and Jm is the Riemann–Liouville integral operator
of order μ with μ> 0, which is given by

J
μ
af(x) �

1
Γ(μ)

􏽚
x

a
(x − t)

μ− 1
f(t) dt, x> 0. (6)

*e generalized differential inverse transform of Fα(k) is
defined as

f(x) � 􏽘
∞

k�0
Fα(k) x − x0( 􏼁

αk
, (7)

which practically can be approximated by the following
finite series:

f(x) � 􏽘

M

k�0
Fα(k) x − x0( 􏼁

αk
. (8)

Because the initial conditions are represented as integer-
order derivatives, the GDTM defines the transformation of
the initial conditions as follows:

Fα(k) �

1
(αk)!

d(αk)f(x)

dx(αk)
|x�x0

, ifαk ∈ Z+
,

0, ifαk ∉ Z,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

for k � 0, 1, . . . ,
q

α
− 1,

(9)

where q is the order of considered FDEs.
Putting (4) in (7) yields

f(x) � 􏽘
∞

k�0
Fα(k) x − x0( 􏼁

αk
. (10)
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*e idea of a generalized differential transform is ob-
tained from generalized Taylor’s formula [28]. It is worth
noting that the extended differential transform technique
simplifies to the conventional differential transform method
when α � 1 [32]. Table 1 lists some of the essential features of
GDTM derived from equations (4) and (5).

3. Solution Procedure

For solving (2) and (3), we proceed with the following al-
gorithm steps.

(1) Choose proper value of α that satisfies q/α, α/α ∈ Z+.
(2) Using the generalized differential transform on both

sides of equation (3) and the characteristics men-
tioned in Table 1, we obtain the following recurrence
relation:

Uα k +
q

α
􏼒 􏼓 � β λ

Γ(αk + c + 1)

Γ(αk + 1)
Uα k +

c

α
􏼒 􏼓 − λμ 􏽘

k

m�0
Wα(m) βδ(k − m) − Uα(k − m)􏼂 􏼃⎡⎣ ⎤⎦, (11)

where k � 0, 1, 2, . . . , β � Γ(αk + 1)/Γ(αk + q + 1),
and Wα(k) is the generalized differential transform
of eu(x) which is given by

Wα(j) �
1
j

􏽘

j− 1

m�0
(m + 1)Uα(m + 1)Wα(j − m − 1),

j �
q

α
,
q

α
+ 1, . . .

(12)

(3) *e boundary conditions given in (2) for x � 0 are
transformed by employing (9) as follows:

Uα(0) � A,

Uα
1
α

􏼒 􏼓 � λA,

Uα(i) � 0,

for
i

α
∉ Z+

,

i � 1, . . . ,
q

α
− 1,

(13)

where A � u(0) is the initial condition. We can
define

Wα(0) � e
A

,

Wα
1
α

􏼒 􏼓 � λAe
A

,

Wα(i) � 0,

i � 1, 2 . . . ,
1
α

− 1,
1
α

− 1, . . . ,
q

α
− 1.

(14)

*e conditions in (2) for x � 1 are transformed by
employing (7) as follows:

􏽘

N

k�0
(αk)Uα(k) � 0. (15)

(4) Equations (11) and (13) are utilized to find Uα(k) up
to any N-terms. *en, by using (15), the value of A is
evaluated. Also, the Nth order of approximation is

uN(x) � 􏽘
N

k�0
Uα(k)x

αk
. (16)

For simplicity, we can generate the solution for
q � 1.9, c � 0.9 by assuming α � 0.1. *en, applying (11) for
k � 0, 1, 2, . . . , 15, we have

u34 � 􏽘
34

i�0
U0.1(i)x

i/10

� A +
1
6

Axλ(6 + xλ(3 + xλ)) +
e

A
x
19/10λ(29(A − β) + 10x(A(2 + A) − (1 + A)β)λ)μ

29Γ(29/10)
.

(17)
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*e condition in (15) gives

Aλ + Aλ2 +
Aλ3

2
+
19 Ae

Aλμ − e
Aβλμ􏼐 􏼑

10Γ(29/10)
+
29 2Ae

Aλ2μ + A
2
e

Aλ2μ − e
Aβλ2μ − Ae

Aβλ2μ􏼐 􏼑

10Γ(39/10)
� 0. (18)

By fixing the values of λ, μ, and β, it is easy to solve the
equation via the Newton–Raphson method.

4. Convergence Analysis

Lemma 1 (see [33]). The standard power series 􏽐
∞
i�0 Uir

i,
r ∈ R, has a radius of convergence R if and only if the
fractional one 􏽐

∞
i�0 Uα(i)rαi, r≥ 0, has a radius of R1/μ.

Theorem 1. :e fractional power series:

􏽘

∞

i�0
Uα(i)r

αi
, (19)

where the coefficients are mentioned in (11), has a positive
radius of convergence.

Proof. From equation (8), we have

Uα(k)≤ θ1λμ 􏽘

n− q/α

m�0
W(m) Uα n − m −

q

α
􏼒 􏼓 − βδ n − m −

q

α
􏼒 􏼓􏼒 􏼓 + θ2λ

Γ(nα + c + 1)

Γ(nα + 1)
Uα

c

α
+ n −

q

α
􏼒 􏼓, (20)

where

θ1 �
Γ((n − q/α)α + 1)

Γ(q +(n − q/α)α + 1)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, (21)

θ2 �
Γ((n − q/α)α + c + 1)

Γ(q +(n − q/α)α + 1)

Γ(nα + 1)

Γ(nα + c + 1)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
. (22)

Now, consider the series

z(r) � 􏽘
∞

n�0
anr

n
, (23)

for which a0 � |Uα(0)|, a1 � |Uα(1/α)|, and

an � θ1λμ 􏽘

n− q/α

m�0
W(m) Uα n − m −

q

α
􏼒 􏼓 − βδ n − m −

q

α
􏼒 􏼓􏼒 􏼓 + θ2λ

Γ(nα + c + 1)

Γ(nα + 1)
Uα

c

α
+ n −

q

α
􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, (24)

Table 1: Basic properties of GDTM [28].

Original function Transformed function
f(x) � g(x) ± h(x) Fα(k) � Gα(k) ± Hα(k)

f(x) � ag(x) Fα(k) � aGα(k)

f(x) � g(x)h(x) Fα(k) � 􏽐
k
l�0 Gα(l)Hα(k − l)

f(x) � Dα
x0

g(x), 0< α≤ 1 Fα(k) � Γ(α(k + 1) + 1)/Γ(αk + 1)Gα(k + 1)

f(x) � (x − x0)
c

Fα(k) � δ(k − c/α), δ(k) �
1, ifk � 0
0, ifk≠ 0􏼨

f(x) � D
β
x0g(x), m − 1< β≤m, m ∈ Z+

Fα(k) � Γ(αk + β + 1)/Γ(αk + 1)Gα(k + β/α)

f(x) � exp(g(x)) Fα(k) � 􏽐
k− 1
i�0 i + 1/kGα(i + 1)Fα(k − i − 1), where Fα(0) � exp(Gα(0))
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for n � q/α, q/α + 1, . . . and an � 0 for 1< n< q/α. *en, define

Ψ � z(r) � a0 + a1r + 􏽘

∞

n�0
an+2r

n⎛⎝ ⎞⎠r
2

� a0 + a1r + r
2

􏽘

∞

n�0
θ1λμ 􏽘

n− q/α

m�0
W(m) Y n − m −

q

α
􏼒 􏼓 − βδ n − m −

q

α
􏼒 􏼓􏼒 􏼓 + θ2λ

Γ(nα + c + 1)

Γ(nα + 1)
Y

c

α
+ n −

q

α
􏼒 􏼓

⎧⎨

⎩

⎫⎬

⎭r
n
.

(25)

Now, we have the function of two variables:

Θ(r,Ψ) � Ψ − a0 − a1r − r
2 θ1λμe

Ψ
(Ψ − β)r

q
+ λθ2 D

cΨ( 􏼁r
q

􏼐 􏼑, (26)

which is analytic in the plane (r,Ψ) with the characteristics
Θ(0, a0) � 0 and ΘΨ(0, a0) � 1≠ 0. Since z(r) is an analytic
function in a neighborhood of the point (0, a0) of the
(r,Ψ)-plane with a positive radius of convergence, then by
implicit function theorem, the series in (10) is convergent by
Lemma 1. □

5. Numerical Experiments

*is section derives the numerical experiments of the given
procedure of Section 3 for solving equations (2) and (3).
Because the exact solution to the given problem is not
known, we instead find the absolute residual error function,
which justifies how accurately the numerical solution agrees
to the solution of main problems (2) and (3). So, the absolute
residual error function is

ERN(x)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 �
d

q
uN(x)

dx
q − λ

d
c
uN(x)

dx
c + λμ β − uN(x)( 􏼁exp uN(x)( 􏼁

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, 0≤ x≤ 1. (27)

Table 2: Numerical solutions for μ � 0.7, λ � 5, β � 0.8.

x GDTM Method in [4]
0.0 0.10164623151473825557 0.10164623106412275851
0.1 0.15160800347538405664 0.15160800244418513970
0.2 0.19969082693869014133 0.19969082598774598630
0.3 0.24564764071345721042 0.24564763919882120986
0.4 0.28919552846307056138 0.28919552652683175159
0.5 0.32997387678814665835 0.32997387500728383184
0.6 0.36746668503341112233 0.36746668342588013969
0.7 0.40086147483935807845 0.40086147462729197629
0.8 0.42879563627198713505 0.42879563852127257524
0.9 0.44890276956983110601 0.44890277089707031201
1.0 0.45700543796118281437 0.45700543763742257810

Table 3: GDTM solution and numerical solution with its absolute and residual errors for λ � 5, μ � 0.7, β � 0.8.

x GDTM Numerical solution Absolute error Residual error
0.0 0.1016462307 0.1016462315 8.085193209 × 10− 10 1.665334537 × 10− 16

0.1 0.1516080019 0.1516080035 1.624451518 × 10− 9 6.106226635 × 10− 16

0.2 0.199690825 0.1996908269 1.943355393 × 10− 9 4.996003611 × 10− 16

0.3 0.2456476375 0.2456476407 3.187346082 × 10− 9 5.828670879 × 10− 16

0.4 0.2891955237 0.2891955285 4.774220019 × 10− 9 1.276756478 × 10− 15

0.5 0.3299738702 0.3299738768 6.62490951 × 10− 9 8.398837181 × 10− 14

0.6 0.3674666751 0.367466685 9.92236443 × 10− 9 1.042421705 × 10− 11

0.7 0.4008614603 0.4008614748 1.456031457 × 10− 8 6.394951235 × 10− 10

0.8 0.4287956137 0.4287956363 2.26142593 × 10− 8 2.315349923 × 10− 8

0.9 0.4489027282 0.4489027696 4.136782861 × 10− 8 5.61353519 × 10− 7

1.0 0.4570053763 0.457005438 6.16973152 × 10− 8 9.929563344 × 10− 6
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Firstly, we start to generate the results for standard
fractional derivative q � 2, c � 1. By fixing α � 1, N � 21,
Table 2 displays our numerical results and matches them with
those of the mentioned outputs in [4] for the same iteration
number. Numerical solution using default Mathematica
package and the GDTM solution and its absolute error and
residual error are given in Table 3. Moreover, Figure 1 shows
the approximate solutions for μ � 0.7, λ � 5, and β � 0.8.
Figure 1 is in good agreement with Figure 2 given in [5].

Now, we explore the impact of the fractional derivative
on the solution of the model. In Figure 3, we show the
convergence of obtained missing condition A with in-
creasing N when q � 1.9 and c � 0.9. It is clear that the value
of A starts to be fixed when N> 80.

Tables 4 and 5 introduce the approximate solutions and
the residual errors of problems (2) and (3) for different values
of q, c, λ, μ, and β. *e residual error indicator demonstrates
that the results are accurate for at least 6 × 10− 5.

λ=5, μ=0.7, β=0.8

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

u 
(x

)

0.2 0.4 0.6 0.8 1.00.0
x

Figure 1: Graph of numerical outputs for λ � 5, μ � 0.7, and β � 0.8.

λ=5, μ=0.05, β=0.53
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0.2 0.4 0.6 0.8 1.00.0
x

Figure 2: GDTM solution: q � 1.9 and c � 1 (line); q � 1.9 and c � 0.9 (dashed).
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0.010

0.015

10060 804020

Figure 3: Variation of A with N for the case λ � 5, μ � 0.05, β � 0.53.
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To study the solution behavior, we plot the present
solution for the case of λ � 5, μ � 0.05, β � 0.53 when
q � 1.9, c � 0.9 and q � 1.9, c � 1 in Figure 2. *e solution

for the case of λ � 0.05, μ � 0.5, β � 0.6 when q � 1.9, c � 0.9
and q � 1.9, c � 1 is presented in Figure 4. It is clear that the
fractional derivatives can change the solution behavior.

Table 5: Numerical solutions for λ � 0.05, μ � 0.5, β � 0.6.

x
q � 1.9, c � 0.9 q � 1.9, c � 1.0

GDTM Residual error GDTM Residual error
0.0 0.233482 3.46945 × 10− 18 0.233528 0.
0.1 0.234572 3.46945 × 10− 18 0.23462 3.46945 × 10− 18

0.2 0.23553 3.46945 × 10− 18 0.23558 0.
0.3 0.236365 5.20417 × 10− 18 0.236418 1.73472 × 10− 18

0.4 0.237083 5.20417 × 10− 18 0.237138 1.73472 × 10− 18

0.5 0.237686 1.73472 × 10− 18 0.237744 0.
0.6 0.238176 0. 0.238236 0.
0.7 0.238556 5.20417 × 10− 18 0.238618 0.
0.8 0.238826 3.46945 × 10− 18 0.238889 1.73472 × 10− 18

0.9 0.238987 1.73472 × 10− 18 0.239051 1.73472 × 10− 18

1.0 0.239041 5.20417 × 10− 18 0.239105 0.

λ=0.05, μ=0.5, β=0.6

0.2 0.4 0.6 0.8 1.00.0
x
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Figure 4: GDTM solution: q � 1.9 and c � 1 (line); q � 1.9 and c � 0.9 (dashed).

Table 4: Numerical outputs for λ � 5, μ � 0.05, β � 0.53.

x
q � 1.9, c � 1.0 q � 1.9, c � 0.9

GDTM Residual error GDTM Residual error
0.0 0.00524258 5.55112 × 10− 17 0.00612891 1.69136 × 10− 17

0.1 0.00785749 2.77556 × 10− 17 0.00905165 9.54098 × 10− 18

0.2 0.0104581 1.5786 × 10− 16 0.0119341 4.55365 × 10− 17

0.3 0.013039 2.43347 × 10− 14 0.0148969 1.82536 × 10− 15

0.4 0.0155894 4.46358 × 10− 12 0.0179996 2.99132 × 10− 13

0.5 0.0180901 2.4929 × 10− 10 0.0212823 1.55918 × 10− 11

0.6 0.0205054 6.57931 × 10− 9 0.0247751 3.86786 × 10− 10

0.7 0.0227707 1.03475 × 10− 7 0.0285021 5.73491 × 10− 9

0.8 0.024768 1.11374 × 10− 6 0.0324832 5.82065 × 10− 8

0.9 0.0262822 8.96982 × 10− 6 0.0367354 4.41167 × 10− 7

1.0 0.0269209 5.7448 × 10− 5 0.0412736 2.64861 × 10− 6
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6. Conclusions

Strongly nonlinear boundary value problem with multi-order
fractional derivative that occurred in the chemical reaction
theory has been successfully solved via the new algorithm based
onGDTM.*e constructed solution has been given in terms of
convergent infinite series as seen in the provided theorem.*e
method was easy to apply, and the results have enough good
accuracy as shown in the experimental results. *e obtained
solution was directly generated without any linearization or
discretization of the domain. *e given method is very pow-
erful and can be easily applied for several kinds of fractional
nonlinear boundary value problems in future.
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In this manuscript, the behavior of a Herschel–Bulkley �uid has been discussed in a thin layer in R3 associated with a
nonlinear stationary, nonisothermal, and incompressible model. Furthermore, the limit problem has been considered, and
the studied problem in Ωε is transformed into another problem de�ned in Ωε without the parameter Ωε (ε is the parameter
representing the thickness of the layer tend to zero is studied). We also investigated the convergence of the unknowns which
are the velocity, pressure, and the temperature of the �uid. In addition, we established the limit problem and the speci�c
Reynolds equation.

1. Introduction

In a recent study of problems for the asymptotic behavior for
a problem of continuummechanics in a thin domainΩε, the
problem is transformed into an equivalent problem on a
domain Ω independent of the parameter ε. �is phenom-
enon has been presented by many researchers, see, e.g.,
[1–5]. Speci�cally, the case of Herschel–Bulkley �uid has
been archived in several articles, for instance, [6, 7]. A
particularity of Herschel–Bulkley �uid lies in the presence of
rigid zones located in the interior of the �ow, and as the yield
limit increases, the rigid zones become larger and may
completely block the �ow (see, e.g., [8–10]).

�is work is to study the asymptotic behavior for weak
solutions of a linked system, including of an incompressible
Herschel–Bulkley �uid and the equation of the heat energy,
in a three-dimensional bounded domain satisfying Tresca-

type �uid solid boundary conditions. �e boundary of this
thin domain consists of three parts: the bottom, the lateral
part, and the top surface.

�e article is organized as follows: in Section 2, we
present the mechanical problem of the steady-state �ow of
Herschel–Bulkley �uid in a three-dimensional thin domain.
We also introduce some notations, preliminaries, and some
function spaces of our coupled problem.

In Section 3, we use the asymptotic analysis, in which the
small parameter ε is the height of the domain. We also
discuss some estimates, independent on the parameter ε, for
the velocity, the pressure, and the temperature. Moreover,
we give some convergence results. �e main results con-
cerning the limit problem with a speci�c weak form of the
Reynolds equation are established in Section 4. Finally, in
Section 5, we include some remarks and conclusions on the
work.
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2. Statement of the Problem and
Variational Formulation

Here, let ϖ be fixed region in plan s � (s1, s2) ∈ R2. We
assume that ϖ has a Lipschitz boundary and is the bottom of
the fluid domain. )e upper surface Γε1 is defined by s3 �

εh(s) where (0< ε< 1) is a small parameter that will tend to
zero and h a smooth bounded function such that

0< h∗ ≤ h(s)≤ h∗ for all (s, 0) ∈ ϖ and ΓεL the lateral surface.
We denote by Ωε the domain of the following:

Ωε � s, s3( 􏼁 ∈ R3
: (s, 0) ∈ ϖ, 0< s3 < εh(s)􏽮 􏽯. (1)

)e boundary of Ωε is Γε where Γε � Γε1 ∪ Γ
ε
L ∪ϖ with Γ

ε
L

is the lateral boundary. We denote by Σε the deviatoric part
and ρε the pressure. )e fluid is supposed to be viscoplastic,
and the relation between Σε and D(wε) is given by

Σεij � 􏽥Σεij − ρεδij,

􏽥Σε � g
ε

T
ε

( 􏼁
D w
ε

( 􏼁

DII w
ε

( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
+ Λε T

ε
( 􏼁 D w

ε
( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
]− 2

D w
ε

( 􏼁, if D w
ε

( 􏼁≠ 0,

􏽥Σε
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤g
ε

T
ε

( 􏼁, if D w
ε

( 􏼁 � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

For any tensor D � (dij), the notation |D| represents the
matrix norm: |DII| � 1/

�
2

√
(􏽐

3
i,j�1 dijdij)

1/2. Let
n � (n1, n2, n3) the unit outward normal vector on the
boundary Γε. )e normal and the tangential velocity on the
boundary Ωε are wε

n � wε.n, wε
τ � wε − wε

n.n. Also, Σε is a
regular stress tensor field, further let Σεn and Σετ are the
normal and tangential components of Σε on the boundary ϖ
by Σεn � (Σε.n).n, Σετ � Σε.n − Σεn.n.

Problem 1. Find a velocity field wε: Ωε⟶ R3, the pressure
ρε and a temperature: Ωε⟶ R such that

div Σε( 􏼁 + f
ε

� 0 inΩε, (3)

􏽥Σε � g
ε

T
ε

( 􏼁
D w
ε

( 􏼁

DII w
ε

( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
+ Λε T

ε
( 􏼁 D w

ε
( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
]− 2

D w
ε

( 􏼁 if D w
ε

( 􏼁≠ 0,

􏽥Σε
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤g
ε

T
ε

( 􏼁 if D w
ε

( 􏼁 � 0,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(4)

div w
ε

( 􏼁 � 0 inΩε,

− ∇. K
ε∇Tε( 􏼁 � Λε T

ε
( 􏼁 D w

ε
( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
r

+
�
2

√
g
ε

T
ε

( 􏼁 D w
ε

( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

− αεTε inΩ,

w
ε

� 0 on Γ1 ∪ΓL,

(5)

w
ε

× n � 0 onϖ, (6)

Σετ
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌< k
ε⇒w
ε
τ � 0

Σετ
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � k
ε⇒∃λ≥ 0, w

ε
τ � − λΣετ

􏼨 onϖ,

T
ε

� 0 onΓ1 ∪ ΓL,

(7)

zT
ε

zn
� 0 onϖ. (8)

where divΣ � (Σij,j) and divw � wi,i. )e flow is given by the
(3) where the density is assumed equal to one. (4) represents
the constitutive law of a Herschel–Bulkley fluid whose the
consistency Λε and the yield limit gε depend on the tem-
perature, 1< ]< 2 is the power law exponent of the material.
(5) represents the incompressibility condition. Equation (5)
represents the energy conservation where the specific heat is
assumed equal to one, Kε > 0 is the thermal conductivity and
the term − αεTε represents the external heat source with
αε > 0. (5) gives the velocity on Γε1 ∪ Γ

ε
L. As there is no-flux

condition acrossϖ, then we have equation (6). Condition (7)
represents a Tresca thermal friction law on ϖ, where kε is the
friction yields coefficient (8) gives the temperature on
Γε1 ∪ Γ

ε
L. (8) is a homogeneous Neumann boundary condition

on ϖ:

W
1,] Ωε( 􏼁 � ϑ ∈ L

] Ωε( 􏼁
3
:

zϑi

zsj

∈ L
] Ωε( 􏼁for i, j � 1, . . . , 3􏼨 􏼩,

V
ε Ωε( 􏼁 � ϑ ∈W

1,] Ωε( 􏼁
3
: ϑ � 0 on Γε1 ∪ Γ

ε
L, ϑ.n � 0 onϖ􏽮 􏽯,

V
ε
di v Ω

ε
( 􏼁 � ϑ ∈ K

ε
: div(ϑ) � 0􏼈 􏼉,

L
]′
0 Ω
ε

( 􏼁 � ϑ ∈ L
]′ Ωε( 􏼁: 􏽚

Ωε
ϑdsds3 � 0􏼚 􏼛,

(9)

and

W
1,q

Γε1 ∪ Γ
ε
L
Ωε( 􏼁 � Φ ∈W

1,q Ωε( 􏼁
3
: Φ � 0 on Γε1 ∪ Γ

ε
L􏽮 􏽯. (10)

A formal application of Green’s formula, using (3)–(8)
leads to the weak formulation: Find a velocity field
wε ∈ Vε

div, ρ
ε ∈ L]′

0 (Ωε) and Tε ∈W
1,q

Γε1 ∪Γ
ε
L
(Ωε), (1< q< 3/2)

such that
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a w
ε
, ϑ − w

ε
( 􏼁 − ρε, divϑ( 􏼁 + j T

ε
, ϑ( 􏼁 − j T

ε
, w
ε
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ε
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ε
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ε
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ε
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(11)

where
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ε
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ε
( 􏼁 � 􏽚

Ωε

Λε T
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�
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√
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f
ε
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ε
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3
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􏽚
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ε
i vidsds3,
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ε
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ε∇Tε∇Φdsds3,

C w
ε
, T
ε
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Λε T
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ε
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􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
]Φdsds3

+
�
2

√
􏽚
Ωε

g
ε

T
ε

( 􏼁 D w
ε

( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌Φdsds3 + 􏽚
Ωε
αεTεΦdsds3.

(12)

It is known that this variational problem has a unique
solution, see for more details [10–12].

We assume that there exist Λ∗,Λ∗, g∗, Kε
∗, K∗ε , αε∗, α

∗
ε in

R such that

0≤Λ∗ ≤Λ
ε ≤Λ∗, 0≤g

ε ≤g
∗
, f
ε ∈W

1,]′ Ωε( 􏼁
3
, (13)

and

0≤K
ε
∗ ≤K
ε ≤K
∗
ε , 0≤ αε∗ ≤ α

ε ≤ α∗ε . (14)

Following some previous results that are useful in the
next sections (cf. [13])

∇wε
����

����L] Ωε( )
≤C D w

ε
( 􏼁

����
����L] Ωε( )

, C is a positive constant independent of ε, 1< ]< 2(Korn inequality), (15)

w
ε
i

����
����L] Ωε( )
≤ εh∗

zwεi
zκ

�������

�������L] Ωε( )

for i � 1, 2; h
∗

� max(h(s)),

1< ]< 2(Poincaré inequality),

(16)

ab≤
a
]

]
+

b
]′

]′
, ∀(a, b) ∈ R2

, 1< ]< 2,
1
]

+
1
]′

� 1(Young inequality), (17)

(a + b)
ρ ≤ (2)

ρ− 1
a
ρ

+ b
ρ

( 􏼁,∀(a, b) ∈ R∗ 2+ , ∀ρ> 1,

(a + b)
ρ ≤ a

ρ
+ b

ρ
( 􏼁,∀(a, b) ∈ R∗ 2+ , 0< ρ< 1.

(18)

3. Change of the Domain and
Study of Convergence

In this section, we will use the technique of scaling in Ωε on
the coordinate s3, by introducing the change of the variables
κ � s3/ε. We obtain a fixed domain Ω which is independent
of ε: Ω � (s, κ) ∈ R3: (s, 0) ∈ ϖ, 0< κ< hs􏼈 􏼉.

We denote its boundary by Γ � Γ1 ∪ ΓL ∪ϖ, also we
have

􏽢w
ε
i (s, κ) � w

ε
i s, s3( 􏼁, i � 1, 2,

􏽢w
ε
3(s, κ) � ε− 1

w
ε
3 s, s3( 􏼁,

􏽢ρε(s, κ) � ε]ρε s, s3( 􏼁.

(19)
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Assume that

􏽢K(s, κ) � εβ+]− 2
K
ε

s, s3( 􏼁, 􏽢α(s, κ) � εβ+]αε s, s3( 􏼁,

􏽢Λ � Λε, 􏽢f(s, κ) � ε]fε s, s3( 􏼁, 􏽢g � ε]− 1
g
ε
, 􏽢k � ε]− 1

k
ε
,

⎫⎬

⎭,

(20)

with

β �
3(2 − ])

3 − ]
. (21)

Let

V(Ω) � 􏽢ϑ ∈ W
1,]

(Ω)􏼐 􏼑
3
: 􏽢ϑ � 0 on Γ1 ∪ ΓL; 􏽢ϑ.n � 0 oϖ􏼚 􏼛,

Vdiv(Ω) � 􏽢ϑ ∈ K(Ω): div􏽢ϑ � 0􏽮 􏽯,

Vκ � 􏽢ϑ ∈ L
r
(Ω)( 􏼁

2
;
z􏽢ϑi

zκ
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]
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􏽥Vκ � 􏽢ϑ ∈ Vκ:
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q
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2
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q
(Ω)􏼨 􏼩,

(22)

where the condition (D′) is given by

􏽚

ϖ

􏽢ϑ1
zϑ
zs1

+ 􏽢ϑ2
zϑ
zs2

􏼠 􏼡dsdκ � 0,

for all 􏽢ϑ ∈ L](Ω)( 􏼁
2
, ϑ ∈ C∞0 (Ω).(D).

(23)

By injecting the new data and unknown factors in (19)
and (20), we prove that (􏽢wε, 􏽢ρε, 􏽢T

ε
) is a solution of the

following problem:
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z􏽢T
ε

zsi

z 􏽢Φ
zsi

dsdκ + 􏽚
Ω

􏽢K
z􏽢T
ε

zκ
z 􏽢Φ
zκ

dsdκ,

C0 􏽢w
ε
, 􏽢T
ε
, 􏽢Φ􏼐 􏼑 � 􏽚

Ω
εβ 􏽢Λ 􏽢T

ε
􏼐 􏼑 􏽥D 􏽢w

ε
( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
] 􏽢Φdsdκ +

�
2

√
􏽚
Ω
εβ􏽢g 􏽢T

ε
􏼐 􏼑 􏽥D 􏽢w

ε
( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽢Φdsdκ − 􏽚

Ω
􏽢α􏽢T
ε 􏽢Φdsdκ,

􏽥D 􏽢w
ε

( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 �
1
4

􏽘

2

i,j�1
ε2

z 􏽢wεi
zsj

+
z 􏽢wεj

zsi

􏼠 􏼡

2

+
1
2

􏽘

2

i�1

z􏽢wεi
zκ

+ ε2
z􏽢wε3
zsi

􏼠 􏼡

2

+ ε2
z􏽢wε3
zκ

􏼠 􏼡

2
⎛⎝ ⎞⎠

1/2

.

(25)

3.1. A Priori Estimates on the Velocity and the Pressure Theorem 1. For all 1< ]< 2 and under assumptions (13) and
(14) and (20), there exists a constant C> 0 independent of ε
such that

􏽘

2

i,j�1
ε

z 􏽢wεi
zsj

���������

���������

]

L](Ω)

+ 􏽘
2

i�1

z 􏽢wεi
zκ

�������

�������

]

L](Ω)

+ ε2
z 􏽢wε3
zsi

��������

��������

]

L](Ω)

􏼠 􏼡 + ε
z􏽢wε3
zκ

�������

�������

]

L](Ω)

≤C,

z􏽢ρε

zsi

��������

��������W− 1,]′(Ω)

≤C for i � 1, 2,

z􏽢ρε

zκ

�������

�������W− 1,]′(Ω)

≤ εC.

(26)

Proof. Choosing ϑ � 0 as test function in inequality (11), we
get

a w
ε
, w
ε

( 􏼁 +
�
2

√
􏽚
Ωε

g
ε

T
ε

( 􏼁 D w
ε

( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌dsds3 + 􏽚
ϖ

k
ε

w
ε􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌ds≤ f

ε
, w
ε

( 􏼁,

(27)

from (16) and (17) we have

f
ε
, w
ε

( 􏼁≤ εh∗ ∇wε
����

����L](Ω)
f
ε����
����

L]′ Ωε( )

≤
1
2
Λ∗Ck ∇w

ε����
����
]
L] Ωε( )

+
εh∗( 􏼁

]′

]′ 1/2Λ∗]Ck( 􏼁
]′/]

f
ε����
����
]′
L]′ Ωε( )

.

(28)

From (27) and (28), we deduce

a w
ε
, w
ε

( 􏼁 +
�
2

√
􏽚
Ωε

g
ε

T
ε

( 􏼁 D w
ε

( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌dsds3 + 􏽚
ϖ

k
ε

w
ε􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌ds

≤
1
2
Λ∗Ck ∇w

ε����
����
]
L] Ωε( )

+
εh∗( 􏼁

]′

]′ 1/2Λ∗]Ck( 􏼁
]′/]

f
ε����
����
]′
L]′ Ωε( )

.

(29)

We multiply (29) by ε]− 1, we get

ε]− 1
a w
ε
, w
ε

( 􏼁 +
�
2

√
􏽚
Ωε

􏽢g(􏽢T) 􏽥D 􏽢w
ε

( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌dsdκ + 􏽚
ϖ

􏽢k 􏽢w
ε􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌ds

≤
1
2
Λ∗Ckε

]− 1 ∇wε
����

����
]
L] Ωε( )

+ ε]− 1 εh∗( 􏼁
]′

]′ 1/2Λ∗]Ck( 􏼁
]′/]

f
ε����
����
]′
L]′ Ωε( )

.

(30)

As ε]′‖fε‖]
′

L]′(Ωε)
� ε1− ]‖􏽢f‖

]′
L]′(Ω), we have
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ε]− 1
a w
ε
, w
ε

( 􏼁 +
�
2

√
􏽚
Ω

􏽢g 􏽢T
ε

􏼐 􏼑 􏽥D 􏽢w
ε

( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌dsdκ + 􏽚
ϖ

􏽢k 􏽢w
ε􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌ds

≤
1
2
Λ∗Ckε

]− 1 ∇wε
����

����
]
L] Ωε( )

+
h
∗

( 􏼁
]′

]′ 1/2Λ∗]Ck( 􏼁
]′/]

‖􏽢f‖
]′
L]′(Ω).

(31)

From Korn’s inequality and (15), there exists a constant
Ck independent of ε, such that

1
2
Λ∗Ckε

]− 1 ∇wε
����

����
]
L] Ωε( )

+
�
2

√
􏽚
Ω

􏽢g(􏽢T) 􏽥D 􏽢w
ε

( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌dsdκ + 􏽚
ϖ

􏽢k 􏽢w
ε􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌ds≤

h
∗

( 􏼁
]′

]′ 1/2Λ∗]Ck( 􏼁
]′/]

‖􏽢f‖
]′
L]′(Ω) (32)

From (32), we deduce (26), with
C � (1/2Λ∗CK)− 1(h∗)]

′/]′(1/2Λ∗]Ck)]
′/]‖􏽢f‖

]′
L]′(Ω), and

ε]− 1 ∇wε
����

����
]
L] Ωε( )

� ∇􏽢w
ε����
����
]
L](Ω)

� 􏽘
2

i,j�1
ε

z􏽢wεi
zsj

���������

���������

]

L](Ω)

+ ε
z􏽢wε3
zκ

�������

�������

]

L](Ω)

+ 􏽘
2

i�1

z􏽢wεi
zκ

�������

�������

]

L](Ω)

+ ε2
z􏽢wε3
zsi

��������

��������

]

L](Ω)

􏼠 􏼡.

(33)

We prove (26) and (26) as in [14]. □

3.2. A Priori Estimates on the Temperature. In this subsec-
tion, we look for a priori estimates on the temperature 􏽢T

ε, for
this we need to establish the following result:

Theorem 2. Assume that the assumptions of ?eorem 1 are
satisfied. Moreover, assume that there exist K∗, K∗, such that

0<K∗ ≤ 􏽢K≤K
∗
. (34)

)en, there exists a positive constant C1 independent of
ε, such that

z􏽢T
ε

zκ

���������

���������W1,q(Ω)

≤C1,

􏽘

2

i�1
ε

z􏽢T
ε

zsi

���������

���������W1,q(Ω)

≤C1.

(35)

Proof. Choosing Φ � ϑ(Tε) in (24), where ϑ is defined by

ϑ(t) � ζsign(t) 􏽚
|t|

0

dτ
(1 +|t|)

ζ+1 � sign(t) 1 −
1

(1 +|t|)
ζ􏼢 􏼣,

(36)

We obtain

ζK∗􏽚
Ω

∇􏽢T
ε􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

1 + 􏽢T
ε􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓
ζ+1 ≤Λ

∗εβ− 2
􏽚
Ω

􏽥D 􏽢w
ε

( 􏼁
]􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dsdκ + εβ− 2 �

2
√

g
∗
􏽚
Ω

􏽥D 􏽢w
ε

( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌dsdκ. (37)

On the other hand,

􏽚
Ω

􏽥D 􏽢w
ε

( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
]dsdκ≤C(]) 􏽘

2

i,j�1
ε

z􏽢wεi
zsj

���������

���������

]

L](Ω)

+ 􏽘
2

i�1

z 􏽢wεi
zκ

�������

�������

]

L](Ω)

+ ε2
z 􏽢wε3
zsi

��������

��������

]

L](Ω)

􏼠 􏼡

2

+ ε
z 􏽢wε3
zκ

�������

�������

]

L](Ω)

⎡⎢⎢⎣ ⎤⎥⎥⎦, (38)

where C(])> 0 depends only on ].
As ]> 1 and 0< ε< 1 then ε]− 1 ≤ 1, so using this in-

equality and (26), we deduce

􏽚
Ω

∇ε􏽢T
ε􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

1 + 􏽢T
ε􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓
ζ+1 ≤

1
ζK∗
Λ∗C(])C +

�
2

√
g
∗
C( 􏼁εβ− 2

. (39)
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Using Holder’s inequality with the exponents 2/q and
2/2 − q, for q< 3/2, we obtain

􏽚
Ω
∇ε􏽢T
ε􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
q
dsdκ≤ 􏽚

Ω

∇ε􏽢T
ε􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

1 + 􏽢T
ε􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓
ζ+1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

q/2

􏽚
Ω

1 + 􏽢T
ε􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓
(ζ+1)q/2− q

􏼠 􏼡

2− q/2

, (40)

using (39), we get

􏽚
Ω
∇ε􏽢T
ε􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
q
dsdκ≤

1
ζK∗
Λ∗C(])C +

�
2

√
g
∗
C( 􏼁εβ− 2

􏼠 􏼡

q/2

􏽚
Ω

1 + 􏽢T
ε􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓
q∗

􏼒 􏼓
2− q/2

, (41)

where q∗ � 3q/3 − q≥ (ζ + 1)q/2 − q. By (18) and (18), we find

􏽚
Ω
∇ε􏽢T
ε􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
q
dsdκ≤

1
ζK∗
Λ∗C(])C +

�
2

√
g
∗
C( 􏼁εβ− 2

􏼠 􏼡

q/2

2 q∗− 1( )2− q/2
|Ω|

2− q/2
+ 􏽚
Ω

􏽢T
ε􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
q∗

􏼒 􏼓
2− q/2

􏼠 􏼡. (42)

Now using the Poincaré-Sobolev inequality, we have

􏽚
Ω

􏽢T
ε􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
q∗

dsdκ􏼒 􏼓
1/q∗

≤C′ ∇ε􏽢T
ε����
����Lq(Ω)

≤
1

ζK∗
Λ∗C(])C +

�
2

√
g
∗
C( 􏼁􏼠 􏼡

1/2

εβ/2− 12 q∗− 1( )2− q/2q
× C′ |Ω|

2− q/2q
+ 􏽚
Ω

􏽢T
ε􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
q∗

􏼒 􏼓
2− q/2q

􏼠 􏼡.

(43)

On the other hand, for all a> 0, b> 0, c> 0 and 0< s< t,
we have the implication:

If a
t ≤ b + ca

s then a≤max 1, (b + c)

1
t − s

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
. (44)

Hence from (43) and (44) and the fact that 2 − q/2< 1,
we deduce

􏽚
Ω

􏽢T
ε􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
q∗

dsdκ≤ ξε, (45)

where

ξ � max 1, cε(β/2− 1) 1/q∗ − 2− q/2q( )
− 12− q/2

􏼔 􏼕 � max 1, cε3(β/2− 1)(2− q)
􏽨 􏽩,

(46)

and

c �
1

ζK∗
Λ∗C(])C +

�
2

√
g
∗
C( 􏼁􏼠 􏼡

1/2

2 q∗− 1( )2− q/2q
C′ |Ω|

2− q/2q
+ 1􏼐 􏼑⎡⎣ ⎤⎦

1/q∗− 2− q/2q( )
− 1

�
1

ζK∗
Λ∗C(])C +

�
2

√
g
∗
C( 􏼁􏼠 􏼡

1/22− q/2q

2 q∗ − 1( )2− q/2q
C′ |Ω|

2− q/2q
+ 1􏼐 􏼑⎡⎣ ⎤⎦

6

.

(47)
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As β � 3(2 − q/3 − q), then 3(2 − q)(β/2 − 1)< 0. So for
ε≤ β[− 3(2− q)(β/2− 1)]− 1

, we obtain

ξ � cε3(β/2− 1)(2− q) ≥ 1. (48)

From (42) and (45), we get

εq􏽚
Ω
∇ε􏽢T
ε􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
q
dsdκ≤

1
ζK∗
Λ∗C(])C +

�
2

√
g
∗
C( 􏼁􏼠 􏼡

q/2

2 q∗ − 1( )2− q/2
|Ω|

2− q/2εβ/2q
+ cε3(β/2− 1)(2− q)+β/2q

􏼐 􏼑, (49)

as 3(β/2 − 1)(2 − q) + (β/2)q � 0 and (β/2)q> 0, we obtain

εq􏽚
Ω
∇ε􏽢T
ε􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
q
dsdκ≤C1, (50)

where

C1 �
1

ζK∗
Λ∗C(])C +

�
2

√
g
∗
C( 􏼁􏼠 􏼡

q/2

2 q∗ − 1( )2− q/2
|Ω|

2− q/2
+ c􏼐 􏼑.

(51)

where C1 is a constant independent of ε.)us, we obtain (35)
and (35) □

)e following theorem states some immediate estimates
of the limit of our initial problem.

Theorem 3. Under the same assumptions as in ?eorem 1
and ?eorem 2, there exist w⋆ � (w⋆1 , w⋆2 ) ∈ 􏽥Vκ, ρ⋆ ∈ Lr′

0 (Ω)

and T∗ ∈ Πκ such that

􏽢w
ε
i⇀w
⋆
i , i � 1, 2 weakly in􏽥Vκ, (52)

ε
z􏽢w
ε
i

zsj

⇀0, i, j � 1, 2weakly in L](Ω),

ε
z􏽢w
ε
3

zκ
⇀0,weakly in L](Ω),

(53)

ε2
z􏽢w
ε
3

zsi

⇀0, i � 1, 2weakly in L](Ω), (54)

ε􏽢wε3⇀0, weaklyin L](Ω), (55)

􏽢ρε⇀ρ⋆,weakly in L]′(Ω), ρ⋆depend only ofs, (56)

􏽢T
ε⇀T
∗ weakly inΠκ, (57)

z􏽢T
ε

zsi

⇀0, i � 1, 2weakly inLq(Ω). (58)

Proof. )e convergence of (52) to (53) is a direct result of
inequality (26). Using (26) and (26), we get (56), while (57)
and (58) follow from (35). □

4. Study of the Limit Problem

In this section, we give both the equations satisfied by ρ∗ and
w∗ in Ω and the inequalities for the trace of the velocity
w∗(s, 0) and the stress zw∗/zκ(s, 0) on ϖ.

Theorem 4. With the same assumptions of ?eorem 3, the
solution (w∗, ρ∗, T∗) satisfies the following relations:

􏽘

2

i�1
􏽚
Ω

􏽢Λ T
∗

( 􏼁
1
2

􏼒 􏼓

]
2 􏽘

2

i�1

zw∗i
zκ

􏼠 􏼡

2
⎛⎝ ⎞⎠

v− 2/2
z w
∗
i( 􏼁

zκ
z 􏽢ϑi − w

∗
i􏼐 􏼑

zκ
dsdκ

− 􏽚
Ω
ρ∗(s)

z􏽢ϑ1
zs1

+
z􏽢ϑ2
zs2

􏼠 􏼡dsdκ + 􏽚
Ω

􏽢g T
∗

( 􏼁
z􏽢ϑ
zκ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
−

zw
∗

zκ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼠 􏼡dsdκ

+ 􏽚
ϖ

􏽢k |􏽢ϑ| − w
∗􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑ds≥ 􏽘

2

i�1
􏽚
Ω

􏽢fi
􏽢ϑi − w

∗
i􏼐 􏼑dsdκ, ∀􏽢ϑ ∈WΓ1∪ΓL,

(59)

􏽚
Ω

􏽢Λ T
∗

( 􏼁
1
2

􏼒 􏼓
v/2 zw∗

zκ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

]
dsdκ + 􏽚

Ω
􏽢g T
∗

( 􏼁
zw
∗

zκ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
dsdκ + 􏽚

ϖ
􏽢k w
∗􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌ds � 􏽚

Ω
􏽢fw
∗dsdκ, (60)

􏽚
Ω

􏽢Λ T
∗

( 􏼁
1
2

􏼒 􏼓

]
2 zw∗

zκ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

]− 2zw
∗

zκ
z 􏽢Φ
zκ

dsdκ + 􏽚
Ω

􏽢g T
∗

( 􏼁
z 􏽢Φ
zκ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
dsdκ + 􏽚

ϖ
􏽢k| 􏽢Φ|ds≥􏽚

Ω
􏽢f 􏽢Φdsdκ, ∀ 􏽢Φ ∈ Σ(K), (61)

8 Discrete Dynamics in Nature and Society



and

−
z

zκ
K

zT
∗

zκ
􏼠 􏼡 � − 􏽢αT

∗ inLq(Ω), (62)

T
∗

� 0 in Γ1 ∪ΓL,

zT
∗

zn
� 0 inϖ,

(63)

where

WΓ1∪ΓL � 􏽢ϑ � 􏽢ϑ1, 􏽢ϑ2􏼐 􏼑 ∈W
1,]

(Ω)
2
, 􏽢ϑ � 0 on Γ1 ∪ ΓL􏽮 􏽯, (64)

and

􏽥Σ(K) � 􏽢Φ � 􏽢Φ1, 􏽢Φ2􏼐 􏼑 ∈W
1,]

(Ω)
2
: 􏽢Φ satisfy D′( 􏼁􏽮 􏽯. (65)

)e proof of this theorem is based on the following
lemma.

Lemma 1 (Minty). Let E be a Banach spaces, T: E⟶ E′ a
monotone and hemicontinuous operator,
J: E⟶ ]− ∞, +∞] a proper and convex functional. Let
u ∈ E and f ∈ E′. ?en the following assertions are
equivalent:

〈Tw; v − w〉E′×E + J(v) − J(w)≥ 〈f; v − w〉E′×E′ , ∀v ∈ E,

〈Tv; v − w〉E′×E + J(v) − J(w)≥ 〈f; v − w〉E′×E, ∀v ∈ E.

(66)

Proof. By using Minty’s Lemma 1 and the fact that
div(􏽢wε) � 0 in Ω, then (24) is equivalent to

a0
􏽢T
ε
, 􏽢ϑ, 􏽢ϑ − 􏽢w

ε
􏼐 􏼑 − 􏽘

2

i�1
􏽢ρε,

z􏽢ϑi

zsi

􏼠 􏼡 − 􏽢ρε,
z􏽢ϑ3
zκ

􏼠 􏼡 + j0
􏽢T
ε
, 􏽢ϑ􏼐 􏼑 − j0

􏽢T
ε
, 􏽢w
ε

􏼐 􏼑

≥ 􏽘
2

i�1
􏽚
Ω

􏽢fi
􏽢ϑi − 􏽢w

ε
i􏼐 􏼑dsdκ + 􏽚

Ω
ε􏽢f3

􏽢ϑ3 − 􏽢w
ε
3􏼐 􏼑dsdκ.

(67)

From (57), we have 􏽢T
ε ⟶ T∗ almost everywhere. As 􏽢Λ

is continuous function on R, then

􏽢Λ 􏽢T
ε

􏼐 􏼑⟶ 􏽢Λ T
∗

( 􏼁. (68)

Using )eorem 4 and the fact j0 is convex and lower
semicontinuous, (liminfj0(􏽢T

ε
, 􏽢wε)≥ j0(T∗, w∗)), we find

􏽘

2

i�1
􏽚
Ω

1
2

􏽢Λ T
∗

( 􏼁
1
2

􏽘

2

i�1

z􏽢ϑi

zκ
􏼠 􏼡

2

⎛⎝ ⎞⎠

v− 2/2
z 􏽢ϑi􏼐 􏼑

zκ
z 􏽢ϑi − w

∗
i􏼐 􏼑

zκ
dsdκ

− 􏽚
Ω
ρ∗

z􏽢ϑ1
zs1

+
z􏽢ϑ2
zs2

􏼠 􏼡dsdκ − 􏽚
Ω
ρ∗

z􏽢ϑ3
zκ

dsdκ + j0 T
∗
, 􏽢ϑ􏼐 􏼑 − j0 T

∗
, w
∗

( 􏼁

≥ 􏽘
2

j�1
􏽚
Ω

􏽢fi
􏽢ϑi − w

∗
i􏼐 􏼑dsdκ,

(69)

and as 􏽒Ωρ
∗(z􏽢ϑ3/zκ)dsdκ � 0, because ρ∗ independent of κ,

we get

􏽘

2

i�1
􏽚
Ω

1
2

􏽢Λ T
∗

( 􏼁
1
2

􏽘

2

i�1

z􏽢ϑi

zκ
􏼠 􏼡

2

⎛⎝ ⎞⎠

v− 2/2
z 􏽢ϑi􏼐 􏼑

zκ
z 􏽢ϑi − w

∗
i􏼐 􏼑

zκ
dsdκ

− 􏽚
Ω
ρ∗

z􏽢ϑ1
zs1

+
z􏽢ϑ2
zs2

􏼠 􏼡dsdκ + j0 T
∗
, 􏽢ϑ􏼐 􏼑 − j0 T

∗
, w
∗

( 􏼁≥ 􏽘
2

j�1
􏽚
Ω

􏽢fi
􏽢ϑi − w

∗
i􏼐 􏼑dsdκ.

(70)

Discrete Dynamics in Nature and Society 9



Using again Minty’s lemma for the second time, thus
(61) is equivalent to (59). Now, we can choose 􏽢ϑ � 2w∗ and
􏽢ϑ � 0 respectively in (59), we find (60). For (61), we choose
􏽢Φ � 􏽢ϑ − w∗ for all 􏽢Φ ∈ Σ(K). Passing to the limit on ε tend to
0 in (24) and using (52)–(54),(57)–(58) we get

􏽚
Ω

􏽢K
zT
∗

zκ
z 􏽢Φ
zκ

dsdκ � − 􏽚
Ω

􏽢αT
∗ 􏽢Φdsdκ, ∀ 􏽢Φ ∈W1,q

Γ1 ∪ ΓL(Ω),

(71)

by Green’s formula, we obtain

−
z

zκ
􏽢K

zT
∗

zκ
􏼠 􏼡 � 􏽢αT

∗ inW− 1,q′
(Ω). (72)

□

Theorem 5. Let us set

􏽘

∗
�

􏽦
􏽘
∗

− ∇ρ∗,

􏽦
􏽘
∗

�
1
2

􏼒 􏼓

]
2 􏽢Λ T∗( 􏼁

zw∗

zκ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

]− 2zw∗

zκ
+ 􏽢g T∗( 􏼁π,

(73)

then

−
z

zκ
1
2

􏽢Λ T
∗

( 􏼁
1
2

􏽘

2

i�1

zw∗i
zκ

􏼠 􏼡

2
⎛⎝ ⎞⎠

v− 2/2
zw
∗

zκ
+ 􏽢g T

∗
( 􏼁

zw
∗/zκ

zw
∗/zκ

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦ � 􏽢f − ∇ρ∗, inW− 1,]′
(Ω)

2
. (74)

where π ∈ L∞(Ω)2 and ‖π‖Ω,∞ ≤ 1.

Proof. If zw∗/zκ � 0, from (73)we get |􏽥Σ∗|< 􏽢g(T∗). For all
􏽢Φ ∈ 􏽐 (K), choosing 􏽢Φ � 􏽢Φ, then 􏽢Φ � − 􏽢Φ in (61), we obtain

F 􏽢k 􏽢Φ,
z 􏽢Φ
zκ

􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤􏽚
ϖ

􏽢k| 􏽢Φ|ds + 􏽚
Ω

􏽢g T
∗

( 􏼁
z 􏽢Φ
zκ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
dsdκ, (75)

where

F 􏽢k 􏽢Φ,
z 􏽢Φ
zκ

􏼠 􏼡 � 􏽚
Ω

􏽢Λ T
∗

( 􏼁
1
2

􏼒 􏼓
v/2 zw∗

zκ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

]− 2zw
∗

zκ
z 􏽢Φ
zκ

dsdκ − 􏽚
Ω

􏽢f 􏽢Φdsdκ, (76)

Now, utilising the Hanh-Banach theorem, then,
∃(χ, π) ∈ L∞(ϖ)2 × L∞(Ω)2, with ‖χ‖ϖ,∞ ≤ 1‖π‖Ω,∞ ≤ 1,
such that

F 􏽢k 􏽢Φ,
z 􏽢Φ
zκ

􏼠 􏼡 � − 􏽚
ϖ
χ􏽢k 􏽢Φds − 􏽚

Ω
π􏽢g T

∗
( 􏼁

z 􏽢Φ
zκ

dsdκ. (77)

In particular, from (60) and (76), we get

􏽚
ϖ

􏽢k w
∗􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌ds + 􏽚

Ω
􏽢g T
∗

( 􏼁
zw
∗

zκ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
dsdκ � 􏽚

ϖ
χ􏽢kw
∗ds + 􏽚

Ω
π􏽢g T

∗
( 􏼁

zw
∗

zκ
dsdκ. (78)

Also, from (76) and (77), we have

􏽚
Ω

􏽢Λ T
∗

( 􏼁
1
2

􏼒 􏼓
v/2 zw∗

zκ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

]− 2zw
∗

zκ
z 􏽢Φ
zκ

dsdκ + 􏽚
ϖ
χ􏽢k 􏽢Φds + 􏽚

Ω
π􏽢g T

∗
( 􏼁

z 􏽢Φ
zκ

dsdκ − 􏽚
Ω

􏽢f 􏽢Φdsdκ � 0. (79)

Next using (78), we have

􏽚
ϖ

􏽢k w
∗􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 − χw

∗
􏼐 􏼑ds + 􏽚zw∗

zκ
≠ 0

􏽢g T
∗

( 􏼁
zw
∗

zκ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
− π

zw
∗

zκ
􏼠 􏼡dsdκ � 0. (80)

As ‖χ‖ϖ,∞ ≤ 1, ‖π‖Ω,∞ ≤ 1, we deduce

10 Discrete Dynamics in Nature and Society



zw
∗

zκ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
� π

zw
∗

zκ
,

w
∗􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 − χw

∗
.

(81)

Hence, if |zw∗/zκ|≠ 0, by (73), we obtain

􏽥Σ∗ �
1
2

􏼒 􏼓

]
2 􏽢Λ T

∗
( 􏼁

zw∗

zκ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

]− 2zw
∗

zκ
+ 􏽢g T

∗
( 􏼁

zw
∗/zκ

zw
∗/zκ

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
. (82)

In this case,
|􏽥Σ∗| � (1/2)]/2 􏽢Λ(T∗)|zw∗/zκ|]− 1 + 􏽢g(T∗)> 􏽢g(T∗); there-
fore, we can write

1
2

􏼒 􏼓
v/2

􏽢Λ T
∗

( 􏼁
zw∗

zκ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

]− 2zw
∗

zκ
�

0, if 􏽥Σ∗
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ 􏽢α,

􏽥Σ∗ − 􏽢g T
∗

( 􏼁
zw
∗/zκ

zw
∗/zκ

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
, if 􏽥Σ∗

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌> 􏽢α,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(83)

for every 􏽢Φ ∈ Σ(K) and from (79), there exist p∗ ∈ Lr′(Ω)2

such that

􏽚
Ω

􏽢Λ T
∗

( 􏼁
1
2

􏼒 􏼓
v/2 zw∗

zκ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

]− 2zw
∗

zκ
z 􏽢Φ
zκ

dsdκ + 􏽚
ϖ
χ􏽢k 􏽢Φds + 􏽢α􏽚

Ω
π􏽢g T

∗
( 􏼁

z 􏽢Φ
zκ

dsdκ − 􏽚
Ω

􏽢f 􏽢Φdsdκ � − 􏽚
Ω
∇ρ∗ 􏽢Φdsdκ. (84)

Using (83) and (84) becomes

􏽚
Ω

􏽥Σ∗
z 􏽢Φ
zκ

dsdκ + 􏽚
ϖ
χ􏽢k 􏽢Φds � 􏽚

Ω
􏽢f 􏽢Φdsdκ − 􏽚

Ω
∇ρ∗ 􏽢Φdsdκ,

(85)

and choosing 􏽢Φ ∈W1,]
0 (Ω)2 in (85), we find (74). □

)e convergence of our problem towards the Reynolds
equation given by the following result: )eorem 5.

􏽚
ϖ

h
3

12
∇ρ∗ + 􏽥F + 􏽚

h

0
􏽚

y

0
􏽢Λ T
∗
(s, ζ)( 􏼁A

∗
(s, ζ)

zw
∗
(s, ξ)

zξ
dξdy −

h

2
􏽚

h

0
􏽢g T
∗
(s, ζ)( 􏼁

zu
∗

zκ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
(s, ξ)dξ􏼢 􏼣.∇ϑ(s)ds � 0, (86)

for all ϑ ∈W1,](ϖ) where

􏽥F(s) � 􏽚
h

0
F(s, y)dy −

h

2
F(s, h),

F(s, y) � 􏽚
h

0
􏽚
ξ

0
􏽢f(s, t)dtdξ,

A
∗
(s, ξ) �

1
2

1
2

2 􏽘
i�1

zw∗

zκ
(s, ξ)􏼠 􏼡

2
⎛⎝ ⎞⎠

]− 2/2

.

(87)

Proof. To prove (86), we integrate twice (74) from 0 to κ,
then taking κ � h, we obtain the requested result. □

)e uniqueness of the limit velocity and pression are
given in the following theorem:

Theorem 6. ?e solution (w∗, T∗, ρ∗) in Vκ × W− 1,q(Ω) ×

L]′
0 (ϖ) of equality (86) is unique.

Proof. Let (w∗,1, T∗,1, ρ∗,1) and (w∗,2, T∗,2, ρ∗,2) be two so-
lutions of (59)–(63) and (86); then T∗,1 and T∗,2 solve
(62)–(63), so T � T∗,1 − T∗,2 satisfies the problem

−
z

zκ
K

zT

zκ
􏼠 􏼡 � − 􏽢αT,

T � 0 in Γ1 ∪ΓL,

zT

zκ
� 0 onϖ.

(88)

so T � 0, thus T∗,1 � T∗,2. Taking ϑ � u∗,2 and ϑ � w∗,1

respectively, as test function in (59) we get
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􏽘

2

i�1
􏽚
Ω

􏽢Λ T
∗

( 􏼁
1
2

􏼒 􏼓
v/2

􏽘

2

i�1

zw∗,1i

zκ
􏼠 􏼡

2
⎛⎝ ⎞⎠

v− 2/2
zw
∗,1
i

zκ
z

zκ
w
∗,1
i − w

∗,2
i􏼐 􏼑dsdκ

≤ 2 􏽘
i�1

􏽚
Ω

􏽢Λ T
∗

( 􏼁
1
2

􏼒 􏼓
v/2

2 􏽘
i�1

zw∗,2i

zκ
􏼠 􏼡

2
⎛⎝ ⎞⎠

v− 2/2
zw
∗,2
i

zκ
z

zκ
w
∗,1
i − w

∗,2
i􏼐 􏼑dsdκ.

(89)

Observe that for every s, y ∈ Rn

|s|
]− 2

s − |y|
]− 2

y, s − y􏼐 􏼑≥ (] − 1)(|s| +|y|)
]− 2

|s − y|
2
, ∀1< ]≤ 2,

(90)

we obtain

􏽚

Ω

zw∗,1

zκ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+

zw∗,2

zκ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼢 􏼣

]− 2
zw∗,1

zκ
−

zw∗,2

zκ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

dsdκ � 0, (91)

where |zw∗,j/zκ| � (􏽐
2
i�1 (zw

∗ ,j
i /zκ)2)1/2, j � 1, 2 Using

Hölder’s inequality, we deduce

􏽚

Ω

z

zκ
w
∗,1

− w
∗,2

􏼐 􏼑􏼢 􏼣

]

dsdκ≤C 􏽚
Ω

zw∗,1

zκ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+

zw∗,2

zκ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼢 􏼣

]− 2
zw∗,1

zκ
−

zw∗,2

zκ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

dsdκ􏼠 􏼡

v/2

× 􏽚
Ω

zw∗,1

zκ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+

zw∗,2

zκ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼢 􏼣

]

dsdκ􏼠 􏼡

2− v/2

.

(92)

From (91) and (92), we obtain

z

zκ
w
∗,1

− w
∗,2

􏼐 􏼑

�������

�������L](Ω)

� 0, (93)

using Poincare’s inequality, we deduce

w
∗,1

− w
∗,2����

����Vκ
� 0. (94)

Finally, to prove the uniqueness of the pressure, we use
(86) with the two pressures ρ∗,1 and ρ∗,2, we find

􏽚
ϖ

h
3/12∇ ρ∗,1 − ρ∗,2􏼐 􏼑∇ϑds � 0. (95)

Taking ϑ � ρ∗,1 − ρ∗,2, and by Poincare’s inequality, we
deduce ‖ρ∗,1 − ρ∗,2‖

L]′(ϖ) � 0. So ρ∗,1 � ρ∗,2. □

5. Conclusions

)is work studies the asymptotic analysis of an incom-
pressible Herschel–Bulkley fluid in a thin domain with
Tresca boundary conditions. )e yield stress and the con-
stant viscosity are assumed to vary with respect to the thin
layer parameter. Firstly, the problem statement and varia-
tional formulation are formulated. We then obtained the
estimates for the velocity field and the pressure indepen-
dently of the parameter. Finally, we gave a specific Reynolds
equation associated with variational inequalities and proved
the uniqueness [15–23].
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�e infection of human immunode�ciency virus (HIV) is a serious and potentially incurable infection. �ere is no cure for HIV
and is a public health issue around the world. �at is why, it is valuable to investigate the intricate phenomena of HIV infection
and provide some control interventions to lessen its economic burden. In this research work, the dynamics of HIV via fractional
calculus to conceptualize the intricate phenomena of this viral infection has been formulated and conceptualized. We have shown
the rudimentary concept of fractional calculus in Atangana–Baleanu framework. A novel numerical technique is presented for the
chaotic and dynamic behaviour of the proposed model. �e oscillatory and chaotic phenomena of the system have been shown
with the �uctuation of di�erent input factors of the system. Furthermore, we have shown the a�ect of fractional order on the
proposed system of HIV infection. Most critical input parameters are highlighted through numerical simulations and suggested
control intervention to the policy makers. Finally, we have shown the stability result and the convergence condition for the
proposed numerical scheme.

1. Introduction

Mathematics and Biology are extricable linked in di�erent
research areas. Genetics, environmental science, population
dynamics, medical science, and other �elds all bene�t from
mathematical biology. Mathematics is used to conceptualize,
understand, and visualize intricate biological phenomena
[1, 2]. It is well known that the development of theoretical
principles for biology is referred to theoretical biology while
investigation of biological phenomena or processes through
mathematical tools is known to be mathematical biology.
�is implies that mathematics plays an important role to
interrogate a biological system. When traditional lab tests
are either unfeasible or too di�cult to answer a research
topic, biologists turn to mathematics to create models that
highlight the key factors of transmission process of an in-
fection. Scientists can use these approaches to forecast the
likelihood of certain outcomes while simultaneously �ne-
tuning their research subjects. Di�erent biological events

and processes can be described mathematically in terms of
delay, impulsive, stochastic [3], fractional and ordinary
di�erential equations, and so on [4]. In formulating these
mathematical models, various assumptions, laws, and ax-
ioms that govern these processes are used to demonstrate the
complex dynamics of biological events. HIV infection is a
serious public health concern worldwide, having claimed
about 33 million lives to date, and a slew of mathematical
models for the human immune system has been created to
depict the complete spectrum of infection.�e interaction of
human immunode�ciency (HIV) and immune system has
been described. HIV has been reported to be an e�ective
agent in achieving immunode�ciency syndrome (AIDS)
which impairs the capability of the body to fend against
various illnesses. HIV infection is an incurable fatal disease
that has killed the lives of about 44, 200, 000 people. It is
reported in 2020 that 37.6million people are infected byHIV
around the world and 1.5 million people are newly infected.
However, therapy that works, caring, assessment, as well as
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protection of HIV has led to people living longer and
healthier lives with HIV. When the HIV virus penetrates a
healthy individual’s body, it propagates rapidly and causes
CD4+ T-cells destruction that act on the immune system.

'e symptoms and signs of HIV infection in its initial
phases include the flu, nighttime cravings, coughing, losing
weight, a headache, diarrhoea, sunburn, body aches and
joint pain, tonsillitis, as well as a dry mouth. 'e process is
still in its initial phases, the virus carries more weight into
the bloodstream, and the HIV infection spreads more easily
through the body than at other stages. In addition, HIV-
infected viruses are spread through body fluids (blood,
tears, urine, saliva, and so on) and infect the uninfected
person. It is really obvious that CD4+ T-cells have the
fighting ability against infections; additionally, those same
CD4+ T-cells play a significant role as in immune system’s
modification, so their precession would have a wide range
of consequences which can entirely disrupt its immune
system’s functioning. Because the retention time of such
lymphocytes is utilized. 'erefore, we define the phase of
HIV infection, determining their importance using a
mathematical formulation becomes essential. For effective
illustration of the interaction of CD4+ T-cells and HIV-
infected viruses, a number of mathematical models were
developed.

Several scholars investigated the kinetics of HIV in-
fection using various assumptions. 'e authors in [5]
studied the interaction of CD4+ T-cells and HIV virus
through a mathematical model. Perelson and Nelson [6]
also developed a novel model of HIV incorporating the
following classes: late infection, constantly infected and
non-infected, and the HIV viral particle community.
Several recognized characteristics of AIDS were proven
their research clinically [6]. Following that, Culshaw and
Raun [7] formulated the dynamics of HIV infection and
studied HIV dynamics. Bushnaq et al. [8] performed re-
search in which they explored the stability and persistence
of HIV/AIDS model, as well as the role of recall throughout
the biomechanics with HIV infection, using formalized
paraphrasing and fractional differentiation. To highlight
the dynamic monitoring behaviours of HIV infection, the
authors used a range of methodologies to investigate HIV
dynamics [9, 10] while the researchers in [11, 12] com-
putationally interrogated the dynamics of HIV. 'e main
objective of this research work is to formulate the dynamics
of HIV infection using a variable term from source rather
than a fixed quantity for fresh CD4+ T-cells. In addition to
this, our objective is to visualize the role of input pa-
rameters on the output of the system and to investigate the
most critical factors of the system for the control of this
viral infection.

Non-integer models are famous due to their more
valuable, reliable, deeper, and precise knowledge in dif-
ferent areas of science and technology [13, 14]. Due to its
inherited characteristics and memory definition, fractional
systems [15] perform more accurately. It is also well known
that nonlocal behaviour of the system can easily be rep-
resented through fractional-calculus [16]. 'e fraction
calculus offered very precise information for such

phenomena, especially for the dynamics of infectious
diseases and engineering systems. In fraction calculus,
Caputo, Riemann–Liouville, Hilfer, and a few more op-
erations have core laws and have limitations in modeling
natural phenomena. Atangana and Baleanu developed a
new derivative in 2016 that extended the Mittag–Leffler
function to nonlocal and nonsingular cases [16]. 'is newly
developed has been successfully used in different areas of
science and engineering [17, 18]. 'erefore, the mathe-
matical biologists are interested to investigate the trans-
mission process of different infections through this novel
operator to provide accurate results and to conceptualize
the contribution of memory in the dynamical behaviour of
different diseases. 'e authors in [19] represented the
transmission phenomena of rubella disease through
Atangana–Baleanu operators. 'e transmission phenom-
ena of COVID-19 have been investigated through AB
operator in some African countries [20]. 'is novel op-
erator more accurately represents natural phenomena
rather than the previous operators. 'us, we opt to in-
vestigate the dynamics of healthy CD4+ T-cells, infected
CD4+ T-cells, and free viruses of HIV infection through
fractional-calculus via Atangana–Baleanu operator.

'e research work is structured as follows. 'e frac-
tional formulation of the HIV infection of CD4+ T-cells is
presented in Section 2 of this article. We introduced a new
numerical technique for the analysis of the proposed
fractional model in Section 3. In section four, we high-
lighted the chaotic and oscillatory concepts of the model
with fluctuation of different input parameters. Further-
more, the most critical scenario is visualized through these
numerical analyses. 'e proposed numerical scheme’s
convergence and stability findings have been demon-
strated. 'e last portion of the article contains the entire
work’s concluding remarks.

2. Structure of HIV Dynamics

'e most critical necessity for understanding HIV/AIDS
infections is to understand the interaction of HIV and CD4+

T-cells. It is reported that these cells are created throughout
the bone marrow and moved to the medulla and then went
through special differentiation for maturation into unin-
fected CD4+ T-cells. In the human body, the maximal weight
is achieved by thymus. 'e thymus in humans achieves its
maximal weight at maturation stage and then gradually
grows more complicated. 'e effect of thymic drainage from
adults is small even though the adult thymus is active and its
few lymphocytes function as recruits for T-cells and unin-
fected T-cells. 'e provided model focuses on CD4+ T-cells.
'e number of CD4+ T-cells that tell us more about the early
symptoms can be used to assess the persistence of HIV
infection.

'e current work is interested to interrogate the oscil-
latory and path tracking behaviour of the HIV dynamics.
'ese analyses detect the most critical factor and also help
the policy makers to identify input factor for the prevention
of infection. 'e assumptions in [11] give the following
mathematical descriptions:
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dT
dt

� s − μTT − kVT + rT 1 −
T + I

Tmax
􏼠 􏼡,

dI
dt

� kVT − μII,

dV
dt

� NμII − μVV.

(1)

Here, the state variables T(t) and I(t) indicate the
concentration of healthy and infected while V(t) indicates
HIV virus freely available in the blood, respectively. In
Table 1, we have shown the initial conditions and all the
parameters with description. In the next section, we will
extend the model with a fractional framework.

2.1. HIV Infection’s Fractional Dynamics. Here, a constant
source term s introduced in [11] is replaced by the variable
s(V) � s exp(−κV) in the proposed model. 'e new source
term included the model indicating the amount of healthy
T-cells generated by thymus as a function of viral load
concentration. Because the greater viral load lowers the
generation of healthy T lymphocytes, the source term is seen
as a variable rather than a constant. Further explanation and
detail are given in the research [21–23]. 'en, the above
system of differential equation (1) in fractional framework
with our new assumptions is given by

ABC
0 D

ℓ
tT � s exp(−κV) − μTT + rT 1 −

T + I

Tmax
􏼠 􏼡 − kVT,

ABC
0 D

ℓ
t I � kVT − μII,

ABC
0 D

ℓ
tV � NμII − μVV − kVT,

(2)

where ABC
0 Dℓ

t indicates the derivative of Atangana–Baleanu
in the Caputo sense of order ℓ. 'e following portion of the
study will go through the rudimentary knowledge of ABC
derivative, which will be used to analyze our HIV infection
model. 'is fractional derivative has been recently intro-
duced which is successfully utilized in different research
fields.

3. Results of Fractional Calculus

Fractional calculus theory is rich in applications and has
been applied to many problems in engineering, physics,
economics, biology, and many other areas of technology and
science. Recent research has shown that they provide more
accurate, precise, and reliable results [24, 25]. Here, we
introduce the basic idea of fractions for analyzing our system
of HIV. In the following, some basic results and concepts of
ABC fractional derivative are presented for analysis.

Definition 1. Let us take f such that g ∈ H1(p, q), p< q,
then ABC derivative with order ζ is given as follows:

ABC
p D

ζ
t g(t) �

B(ζ)

1 − ζ
􏽚

t

p
g′(ζ)Eζ −ζ

(t − ξ)
ζ

1 − ζ
⎡⎣ ⎤⎦dξ, (3)

where ζ belongs to the closed interval [0, 1].

Definition 2. Assume f(t) be any given function, then the
integral of the abovementioned operator is indicated by
ABC
p I

ζ
t g(t) and is given by

ABC
p I

ζ
t g(t) �

1 − ζ
B(ζ)

g(t) +
ζ

B(ζ)Γ(ζ)
􏽚

t

p
g(ζ)(t − ξ)

ζ− 1
dξ.

(4)

Here, as the fractional-order ζ approaches to 0, we
obtained the initial function.

Theorem 1 (see [16]). Let us take f such that f ∈ C[p, q]

where f is continuous, then the following holds true:

ABC
p D

ζ
t (g(t))

�����

�����<
B(ζ)

1 − ζ
‖f(t)‖, with ‖f(t)‖ � max

p≤t≤q
|g(t)|. (5)

Furthermore, it fulfills the following:

‖
ABC
p D

ζ
t g1(t)−

ABC
p D

ζ
t g2(t) < ϱ1

����
����g1(t) − g2(t)‖ , (6)

which is called Lipschitz condition.

Theorem 2 (see [16]). Let us take a fractional system of the
form as follows:

ABC
p D

ζ
t g(t) � u(t), (7)

the above system has the following unique solution:

g(t) �
1 − ζ
B(ζ)

u(t) +
ζ

B(ζ)Γ(ζ)
􏽚

t

p
u(ζ)(t − ξ)

ζ− 1
dξ. (8)

ABC
0 D

ℓ
ty(t) � K(t, y(t)). (9)

4. Numerical Approach for
Fractional Derivative

Here is a numerical method that emphasises the fractional
model of HIV infection’s oscillatory behaviour and chaos.
Numerous numerical techniques have been developed and
described to visualize fractional order models. For the
fractional dynamics of HIV, we will use a new scheme
presented in [26] to describe the solution pathway in (2). To
derive the numerical schemes needed for our system (2), we
first adopt the following fractional system.

'en, by the theory of fractional calculus, we get

y(t) − y(0) �
1 − ℓ

ABC(ℓ)
K(t, y(t)) +

ℓ
ABC(ℓ)Γ(ℓ)

􏽚
t

0
(t − τ)

ℓ− 1
K(τ, y(τ))dτ. (10)
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Here, we take the time t � tn, then the above implies that

y tn( 􏼁 − y(0) �
1 − ℓ

ABC(ℓ)
K tn−1, y tn−1( 􏼁( 􏼁 +

ℓ
ABC(ℓ)Γ(ℓ)

􏽚
tn

0
tn − τ( 􏼁

ℓ− 1
K(τ, y(τ))dτ, (11)

and for tn+1, we get

y tn+1( 􏼁 − y(0) �
1 − ℓ

ABC(ℓ)
K tn+1, y tn+1( 􏼁( 􏼁 +

ℓ
ABC(ℓ)Γ(ℓ)

􏽚
tn+1

0
tn+1 − τ( 􏼁

ℓ− 1
K(τ, y(τ))dτ. (12)

From the above, we can find the difference as follows:

y tn+1( 􏼁 − y tn( 􏼁 �
1 − ℓ

ABC(ℓ)
K tn, y tn( 􏼁( 􏼁 − K tn−1, y tn−1( 􏼁( 􏼁􏼂 􏼃 +

ℓ
ABC(ℓ)Γ(ℓ)

,

􏽚
tn+1

0
tn+1 − τ( 􏼁

ℓ− 1
K(τ, y(τ))dτ − 􏽚

tn

0
tn − τ( 􏼁

ℓ− 1
K(τ, y(τ))dτ.

(13)

'is further implies that

y tn+1( 􏼁 − y tn( 􏼁 �
1 − ℓ

ABC(ℓ)
K tn, y tn( 􏼁( 􏼁 − K tn−1, y tn−1( 􏼁( 􏼁􏼂 􏼃 + Bℓ,1 − Bℓ,2, (14)

in which

Bℓ,1 �
ℓ

ABC(ℓ)Γ(ℓ)
􏽚

tn+1

0
tn+1 − τ( 􏼁

ℓ− 1
K(τ, y(τ))dτ. (15)

'e next step is to get it using an approximation as
follows:

P(t) �
K tn, yn( 􏼁

h
t − tn−1( 􏼁 −

K tn−1, yn−1( 􏼁

h
t − tn( 􏼁. (16)

We take h � tm − tm−1 and obtain the following:

Table 1: Description of state-variables and input parameters with corresponding values.

Symbols Parameter and state-variable interpretation Values
V0 HIV virus concentration Assumed
Tmax Maximum number of healthy T-cells 1500mm− 3

N 'e quantity of virus generated by infected T-cells Assumed
μV Death rate of HIV virus 2.4 day− 1

μI Death rate of infected T-cells 0.3 day− 1

μT Death rate of healthy T-cells 0.02 day− 1

r Growth rate of healthy T-cells 3 day− 1

s Healthy T-cells supply rate from precursors 0.1mm− 3

I0 T-cells population with infection Assumed
T0 T-cells population in healthy form Assumed
k Infection rate of T-cells by free virus 2.4 × 10− 5 days− 1
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Bℓ,1 �
ℓ

ABC(ℓ)Γ(ℓ)
􏽚

tn+1

0
tn+1 − τ( 􏼁

ℓ− 1 K tn, yn( 􏼁

h
t − tn−1( 􏼁 −

K tn−1, yn−1( 􏼁

h
t − tn( 􏼁􏼢 􏼣dτ

�
ℓ

ABC(ℓ)Γ(ℓ)
􏽚

tn+1

0
tn+1 − τ( 􏼁

ℓ− 1 K tn, yn( 􏼁

h
t − tn−1( 􏼁 −

K tn−1, yn−1( 􏼁

h
t − tn( 􏼁􏼢 􏼣dτ,

(17)

which implies that

Bℓ,1 �
ℓK tn, yn( 􏼁

ABC(ℓ)Γ(ℓ)h
2ht

ℓ
n+1
ℓ

−
t
ℓ+1
n+1

ℓ + 1
􏼢 􏼣 −

ℓK tn−1, yn−1( 􏼁

ABC(ℓ)Γ(ℓ)h
ht

ℓ
n+1
ℓ

−
t
ℓ+1
n+1

ℓ + 1
􏼢 􏼣. (18)

In the same way, we can find

Bℓ,2 �
ℓK tn, yn( 􏼁

ABC(ℓ)Γ(ℓ)h
ht

ℓ
n

ℓ
−

t
ℓ+1
n

ℓ + 1
􏼢 􏼣 −

K tn−1, yn−1( 􏼁

ABC(ℓ)Γ(ℓ)h
. (19)

Next, we have the following:

y tn+1( 􏼁 − y tn( 􏼁 �
1 − ℓ

ABC(ℓ)
K tn, y tn( 􏼁( 􏼁 − K tn−1, y tn−1( 􏼁( 􏼁􏼂 􏼃 +

ℓK tn, yn( 􏼁

ABC(ℓ)Γ(ℓ)h
2ht

ℓ
n+1
ℓ

−
t
ℓ+1
n+1

ℓ + 1
􏼢 􏼣

−
ℓK tn−1, yn−1( 􏼁

ABC(ℓ)Γ(ℓ)h
ht

ℓ
n+1
ℓ

−
t
ℓ+1
n+1

ℓ + 1
􏼢 􏼣 −

ℓK tn, yn( 􏼁

ABC(ℓ)Γ(ℓ)h
ht

ℓ
n

ℓ
−

t
ℓ+1
n

ℓ + 1
􏼢 􏼣

+
K tn−1, yn−1( 􏼁

ABC(ℓ)Γ(ℓ)h
.

(20)

'e above gives us

y tn+1( 􏼁 � y tn( 􏼁 + K tn, yn( 􏼁
1 − ℓ

ABC(ℓ)
+

ℓ
ABC(ℓ)h

2ht
ℓ
n+1
ℓ

−
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n+1

ℓ + 1
􏼨 􏼩􏼢

−
ℓ
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􏼨 􏼩􏼣 + K tn−1, yn−1( 􏼁×,

ℓ − 1
ABC(ℓ)

−
ℓ

ABC(ℓ)Γ(ℓ)h
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hABC(ℓ)Γ(ℓ)
􏼨 􏼩􏼢 􏼣.

(21)

'e above approach is a two-step Adams–Bashforth
method for the ABC fractional derivative; this takes into
consideration the kernels nonlinearity, as well as the
Atangana–Baleanu operator’s exponential decay law. Fur-
thermore, we will discuss the convergence and stability of
the suggested numerical approach in the upcoming part. We

conducted numerous simulations for the better conceptu-
alization of the complicated phenomena of HIV infection.
For numerical simulation, the model parameter values and
state-variable initial values are shown in Table 1 which is
utilized for numerical calculations. Figures 1–4 depict the
time series analysis of all the three compartment of the
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proposed system with the variation of the index of memory
ℓ, i.e., ℓ � 0.4, 0.6, 0.8, 1.0 to show the dynamical behaviour
of HIV infection. It has been observed through numerical
outcomes that the parameter ℓ can be used as preventive
parameter. Figures 5–8 depict the chaotic behaviour of our
system (2) with various values of index of memory ℓ. We
noticed that the index of memory ℓ can be also be utilized as
chaotic control parameter. Many scientific and engineering
applications rely heavily on the chaotic behaviour of the

system. It is well known that there is indeed a strong in-
clination to conceive and depict chaotic system behaviour.
'e chaotic modeling validates the feasibility and scalability
of the suggested mathematical model, which can then be
applied towards the novel chaos systems. We showed that
perhaps ℓ had a considerable contribution and may be
utilized as an effective parameter for preventative actions.
Furthermore, we have shown the impact of several input
factors on the dynamics of the system in Figures 9–11.
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Figure 1: Graphical view analysis of the fractional model (2) of HIV by taking the index of memory ϑ � 0.4.
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Figure 2: Graphical view analysis of the fractional model (2) of HIV by taking the index of memory ϑ � 0.6.
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Simulations reveal that the suggested numerical scheme is
simple to implement and quick to execute. However, more
study will be required to investigate the effectiveness of this
technique in terms of consistency, accuracy, and computing
cost. In the next step, we will discuss convergence and stability
result of the above numerical method.'e convergence result
of the above method has been given as follows.

Theorem 3. Assume that g be a continuous and bounded
function and x(τ) be the solution of the fractional system as
follows:

ABC
0 D

ϑ
τx(τ) � g(τ, x(τ)), (22)

then the solution of x(τ) is as follows:
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Figure 3: Graphical view analysis of the fractional model (2) of HIV by taking the index of memory ϑ � 0.8.
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Figure 4: Graphical view analysis of the fractional model (2) of HIV by taking the index of memory ϑ � 1.0.
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Figure 5: Graphical view analysis of the dynamical behaviour of the fractional model (2) to represent its chaotic plot with the index of
memory ϑ � 0.35.
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Figure 6: Graphical view analysis of the chaotic phenomena of the suggested fractional model (2) of HIVwith the index ofmemory ϑ � 0.55.
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Figure 7: Graphical view analysis of the suggested fractional model (2) of HIV to represent its chaotic plot with the index of memory
ϑ � 0.75.
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Figure 8: Graphical view analysis of the time series of the suggested fractional model (2) of HIV to represent its chaotic plot with the index of
memory ϑ � 0.95.
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Figure 9: Graphical view analysis of the suggested fractional model (2) of HIV with the variation of r, i.e., r� 3.0, 3.5, 4.0.
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Figure 10: Graphical view analysis of the time series of the suggested fractional model (2) of HIV with the variation of s, i.e., s� 1.0, 4.0, 7.0.
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􏼢 􏼣􏼢 􏼣 + Hϑ,

(23)

in which ‖Hϑ‖∞ <N. Proof. To prove the required result, we proceed in the
following manner:

xn+1 − xn �
1 − ϑ

ABC(ϑ)
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Figure 11: Illustration of the time series of the suggested fractional model (2) of HIV with the variation of μI, i.e., μI � 0.2, 0.25, 0.30.
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'is further gives

xn+1 − xn � J(τ, ϑ, n) + Hϑ(τ), (25)

in which we have
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Next, we need to prove the following:
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which is the required result. □

Theorem 4. Assume that g fulfills Lipschitz condition, then
the stability condition for the above numerical scheme in

Atangana–Baleanu fraction framework in Caputo sense is
given by

g τn, xn( 􏼁 − g τn−1, xn−1( 􏼁
����

����∞⟶ 0, (29)
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as n⟶∞. Proof. To prove the required result, we first take
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􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌∞
+

ϑ
Γ(ϑ)ABC(ϑ)

,

× 􏽚
τn+1

0
τn+1 − τ( 􏼁

ϑ− 1
g(τ, x(τ))dτ − 􏽚

τn

0
τn − τ( 􏼁

ϑ− 1
g(τ, x(τ))dτ􏼔 􏼕

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌∞

<
1 − ϑ

ABC(ϑ)
g τn, xn( 􏼁 − g τn−1, xn−1( 􏼁

����
����∞

+
ϑ

ABC(ϑ)Γ(ϑ)
􏽚
τn+1

0
g(τ, x(τ)) τn+1 − τ( 􏼁

ϑ− 1
dτ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌∞

+
ϑ

ABC(ϑ)Γ(ϑ)
􏽚
τn

0
g(τ, x(τ)) τn − τ( 􏼁

ϑ− 1
dτ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌∞
.

(31)

'is implies that

xn+1 − xn

����
����∞<

1 − ϑ
ABC(ϑ)

g τn, xn( 􏼁 − g τn−1, xn−1( 􏼁
����

����∞

+
ϑ

ABC(ϑ)Γ(ϑ)
􏽚
τn+1

0
τn+1 − τ( 􏼁

ϑ− 1
􏽘

n

i�0
􏽙

0≤ i≤ n

τ − τi( 􏼁

(−1)ih
g τi, xi( 􏼁dτ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌∞
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ϑ

ABC(ϑ)Γ(ϑ)
􏽚
τn

0
τn − τ( 􏼁

ϑ− 1
􏽘

n−1

i�0
􏽙
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g τi, xi( 􏼁dτ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌∞

<
1 − ϑ

ABC(ϑ)
g τn, xn( 􏼁 − g τn−1, xn−1( 􏼁

����
����∞ + P

ϑ
n(τ)

�����

�����∞
+ H

ϑ
n(τ)

�����

�����∞
,

(32)

in which
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�����

�����∞
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􏽘

n

i�0
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����∞
h
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ϑ

􏽙

n
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����∞
h
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ϑ

n!h
n
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,

(33)

H
ϑ
n(τ)

�����

�����∞
≤ 􏽘

n

i�0

g τi, xi( 􏼁
����

����∞
h

τϑn
ϑ

(n − 1)!
h

n− 1

4
. (34)

As a result, we obtain

xn−1 − xn

����
����∞<

1 − ϑ
ABC(ϑ)

g τn, xn( 􏼁 − g τn−1, xn−1( 􏼁
����

����∞

+ 􏽘
n

i�0

g τi, xi( 􏼁
����

����∞
4ϑ

τϑn+1h
n− 1

n! + 􏽘
n−1

i�0

g τi−1, xi−1( 􏼁
����

����∞
4ϑ

t
ϑ
nh

n− 3
(n − 1)!

<
Mn!h

n

4ϑ
τϑn+1(n + 1)

h
+
τϑn
h
2􏼨 􏼩 +

1 − ϑ
ABC(ϑ)

g τn, xn( 􏼁 − g τn−1, xn−1( 􏼁
����

����∞,

(35)

which implies that |g(τn, xn) − g(τn−1, xn−1)| goes to zero as
n goes to∞ and as h tends to zero, then Mn!hn/4ϑ tends to
zero, where M � maxτ∈[0,τn+1]|g(τ, x(τ))|. □

5. Concluding Remarks

HIV/AIDS has a significant impact on economic growth by
limiting the availability of human capital. AIDS is killing a
high number of people in underdeveloped nations due to a
lack of effective prevention, treatment, health care, and
nutrition. 'erefore, it is significant to interrogate the
transmission pathway of HIV to identify the role of different
input factors on the output of infection. In this work, we
structured the dynamics of CD4+ T-cells in HIV infection
through fractional calculus. We presented the proposed
model through Atangana–Baleanu derivative in the Caputo
sense.'e rudimentary properties of fractional calculus have
been introduced for the examination of the system. We
provided a new numerical scheme for addressing the
Atangana–Baleanu fractional derivative to conceptualize the
dynamics of HIV. 'e oscillatory and chaotic plots have
been presented with the variation of different input pa-
rameters. It has been shown that fractional order has an
influence on the chaotic behaviour of the suggested model.
'e memory index ℓ is expected to improve the system and
may have been used as a control parameter. We illustrated
the impact of input parameters r, s, and μI on the con-
centration level of healthy and infected CD4+ T-cells. On the
basis of our results, the most critical factors of the system are
highlighted. We highlighted the influence of different input

parameter on the dynamics of HIV infection. Furthermore,
the convergence and stability result of the system have been
shown. In future research work, we opt to highlight the
influence of time delay on the infection of HIV infection to
highlight the importance of time delay for the control and to
validate our results through experimental data.
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A fully integrated Chen chaotic oscillation system using operational amplifiers (OAs) and multipliers is designed and verified in
this paper. Unlike the conventional breadboard-based Chen chaotic system using off-the-shelf discrete components, the fully
integrated Chen chaotic oscillation circuit presented in this paper is realized using GlobalFoundries’ 0.18 μm CMOS 1P6M
process, and all the circuit components are integrated in a chip. *e fully integrated Chen chaotic oscillation system is verified
using Cadence IC Design Tools, and the post-layout simulation results indicate that the presented integrated Chen chaotic
oscillation system only consumes 148 mW from ± 2.5 V supply voltage, and its chip area is 6.15 mm2

.

1. Introduction

With the development of nonlinear systems, the research on
chaos and chaotic neural networks has grown rapidly in
recent years [1–10]. However, the development of chaos and
chaotic neural networks mainly focuses on their software
algorithm improvement [11–18], the hardware imple-
mentation of chaos and chaotic neural networks has fallen
far behind their software algorithm. Facing with this issue,
the research on hardware circuits implementation of chaos
and chaotic neural networks becomes increasing important.
Chaos has been investigated widely in the last decades and
they become increasing interest subjects because of their
great potential applications in many fields such as chaotic
signal radar [19], secure communications [20–24], chaos-
based analog-to-information conversion and image en-
cryption applications [25]. *e double-scroll Chua system is
the first physical circuit realization of chaos. Since then,
other chaotic and hyperchaotic systems with complex
chaotic attractors and nonlinear dynamical characteristics
have been realized [26–31], and most of them are validated
with commercial available discrete electronic components or

digital signal processing (DSP) and field programmable gate
array (FPGA) [32–42].

Most of the reported and physical implemented chaotic
systems are realized using off-the-shelf electronic com-
ponents with breadboards. *e breadboard-based chaotic
circuits are suitable for theoretically proving the existence
and realizability of chaos, they are non-portable and un-
stable, and far from the practical application of chaos.
Unlike the conventional breadboard-based chaotic circuits,
the fully integrated chaotic systems are more stable and
convenient than their breadboard-based counterparts.
Chaotic systems fully integrated on a single chip should be
the development direction of chaotic circuits, and the fully
integrated chaotic circuits will greatly enhance the prac-
ticality of chaos. For example, two CMOS Chua’s chaotic
circuits were reported in Ref. [43], another 2 μm CMOS
process integrated chaotic system with high speed opera-
tion was introduced Ref. [44], and an integrated multi-
scroll chaotic oscillator generating 3- and 5-scroll attractors
was reported in Ref. [45].

Because of its simple circuit structure and easy to be
theoretically proven, the famous Chen chaotic system
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[46–50] and its deformation circuits are deeply studied in the
past decades. Several realization and implementation of
Chen chaotic circuits are presented in Ref. [50], however,
these circuits are also realized using commercial available
discrete electronic components with breadboards. Based on
the existing Chen chaotic circuits and systems, a low voltage
low power fully integrated classic Chen chaotic oscillation
system is realized in this paper. *e post-layout simulation
results verified that the fully integrated Chen chaotic os-
cillation system is feasible and achievable. In addition, the
main contributions of this work can be summarized below.

1) An operational amplifiers (OA) and an analog mul-
tiplier with GlobalFoundries’ 0.18 μm CMOS 1P6M
process are designed in this work.

2) Unlike the conventional breadboard-based chaotic
circuits, a fully integrated Chen chaotic oscillation
system using the designed OA and multiplier is
presented.

3) *e fully integrated Chen chaotic system is verified
with Cadence IC Tools. *e post-layout simulation
results demonstrate that the whole power con-
sumption of the fully integrated Chen chaotic system
is about 148 mW, its chip area is only 6.15 mm2, and
the fully integrated Chen chaotic circuit is a more
suitable candidate for practical applications.

2. Fully Integrated Chen Chaotic Circuit

*e design of fully integrated Chen chaotic circuit is pre-
sented in this section. *e original Chen chaotic system and
its fully integrated circuit is introduced in subsection 2.1, and
the implementations of operational amplifier and analog
multiplier are introduced in subsection 2.2 and 2.3,
respectively.

2.1. Chen Chaotic System. *e classic dimensionless state
equations of the Chen system can be depicted as follow:

dx

dt
� a(y − x)

dy

dt
� (c − a)x − xz + cy,

dz

dt
� xy − bz

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where a, b and c are all constants, and a � 35, b � 3, c � 28.
When the initial condition is (0, 0, 0), the Matlab nu-
merical simulation results of Chen system are presented in
Fig 1, and the chaotic attractors are observed as shown in
Fig. 1(a)-(c).

Because the supply voltage of the fully integrated Chen
chaotic oscillation system are ±2.5 V, and the output ranges
of state variables x, y and z in Fig 1 all exceed ±2.5 V, state
variables compression are necessary. After evenly com-
pressed 40 times of the state variables, the state equations of
the Chen system could be expressed as:

dx

dt
� 35(y − x),

dy

dt
� −7x − 40xz + 28y,

dz

dt
� 40xy − 3z.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

Let τ � τo × t, and τo � 10000, and the state equations of
the Chen system could be rewritten as:

dx

dt
� 100000(3.5y − 3.5x),

dy

dt
� 100000(−0.7x − 4xz + 2.8y),

dz

dt
� 100000(4xy − 0.3z).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

Based on the existing circuit realizations of Chen chaotic
systems, a simplified Chen chaotic oscillation circuit suitable
for integration is presented in Fig. 2.

Assuming the gains of the multipliers are all k, and the
circuit equation of Fig. 2 could be expressed as:

dx

dt
�

1
R4C1

−
R3R6

R1R5
x +

R3

R2
y􏼠 􏼡,

dy

dt
�

1
R11C2

−
R6R10

R5R7
x −

kR6R10

R5R8
xz +

R10

R9
y􏼠 􏼡,

dz

dt
�

1
R15C3

kR14

R12
xy −

R14R17

R13R16
z􏼠 􏼡.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

2.2. Implementation of Operational Amplifier. *e designed
OA for the integrated Chen chaotic oscillation circuit is
shown in Fig. 3. *e designed operational amplifier is
very simple, and its supply voltages are VCC � −VSS � 2.5
V, and it includes two amplification stages and one bias
stage.

*e transistors M7-M11 consist of the differential am-
plification input stage; M13 is the second common source
amplification stage, and M12 is the active load of M13; the
transistorsM1-M6 consist of the bias stage of the OA, and the
transistor M14 and capacitor C are used for frequency
compensation.

*e simulated voltage gain and phase frequency
characteristics of the OA are shown in Fig. 4. From the
mark M0, we can know that the voltage gain of the OA is
about 30dB; From the marks M0 and M1, we can calculate
that the 3dB bandwidth of the OA is 218.5 kHz; From the
marks M2 and M3, we can know that the phase margin of
the OA is about 86.22°. *e power consumption of the OA
is about 5.85 mW.
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Figure 1: Numerically simulated phase portrait of Chen’s attractors: (a) x-z plane, (b) z-y plane, and (c) y-x plane.
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2.3. Implementation of Analog Multiplier. *e analog mul-
tiplier used in the integrated Chen chaotic oscillation circuit
is shown in Fig. 5. *e classic Gilbert structure is adopted,
M1 and M2 consist of the current mirror, and they are the
bias stage of themultiplier; M3 works on its saturation region
(also known as amplification region), which can be ap-
proximated as a current source to provide bias current for
the transconductance stage (M4 and M5); M4 and M5 consist
of the transconductance stage, M6-M9 consist of the Gilbert
switch stage [51–53], and M10-M13 consist of the load stage
of the analogmultiplier.*e supply voltages of themultiplier
are VCC � −VSS� 2.5 V, and its power consumption is about
47.7 mW.

*e transient response of the designed analog multiplier
is presented in Fig. 6. Vi1 and Vi2 are the two input voltages,
their input powers are all -10 dBm, and their frequencies are
100 MHz and 10 MHz, respectively. Vout is the output
voltage of the analog multiplier. From the above simulation
results, it is clear that Vi1 is the high frequency carrier, Vi2 is
the low frequency input signal, and the multiplication is
realized in the output voltage Vout. From the marks M0-M3
in Fig. 6, peak voltages of Vi1 and Vi2 are all about 200 mV,
and the peak voltage of Vout is about 4mV. According to Vout
� k × Vi1 × Vi2, it is clear that the parameter k in equation (4)
is about 0.1.

3. Post-Layout Simulation Results of the
Integrated Chen Chaotic Oscillation Circuit

*e presented fully integrated Chen chaotic oscillation
circuit in Fig. 2 is simulated and verified using Cadence IC
Tools with GlobalFoundries’ 0.18 μmCMOS technology.*e
supply voltages of the fully integrated Chen chaotic circuit
are ±2.5 V, and its whole static power consumption is about
148mW. Considering equations (3) and (4), the values of
circuit elements are selected as R1 � R2 � 2.85 kΩ, R3 � R5 �

R6 � R10 � R14 � R16 � R17 � R18 � R19 �10 kΩ, R4 � R11 � R15
� 200 kΩ, R8 � R12 � 0.25 kΩ, R7 � 14.28 kΩ, R9 � 3.57 kΩ,
R13 � 33.33 kΩ, C1 � C2 � C3 � 50 pF.

*e chip layout diagram of the Chen Chaotic oscillation
system is shown in Fig. 7, and its chip area is 6.15 mm2

including all the testing pads.
*e Mentor Calibre software is used for circuit verifi-

cation and parasitic extraction. Based on the layout of the
Chen chaotic oscillation circuit in Fig. 7, and connecting the
extracted parasitics to the original circuit in Fig. 2, the post-
layout simulation results of the integrated Chen chaotic
oscillation circuit are presented in Figs. 8 and 9.

Fig. 8 is the transient response of the fully integrated Chen
chaotic circuit, and various dynamical oscillations can be
observed. From Fig.8, it is clear that the peak amplitudes of
output voltages x, y and z are all less than 2V. Fig. 9 is the phase
portraits in x-z, z-y and y-x planes. By comparing Figs. 1 and
Fig. 9, a good qualitative agreement between the post-layout
chip circuit simulation and numerical simulation is observed.

*ere are nine operational amplifiers and twomultipliers
used in the Chen chaotic oscillation circuit. According to the
data sheets of operational amplifier LF347 and multiplier
AD633JN in Refs. [51–55], the supply voltage of LF347 is
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Figure 5: *e designed analog multiplier.
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±18 V, and its power consumption is about 500 mW; the the
supply voltage of AD633JN is also ±18 V, and its power
consumption is also about 500 mW. If the Chen chaotic
circuit is realized using commercial available chips LF347

and AD633JN, the whole power consumption is about
5500 mW.

*e supply voltage of the fully integrated Chen chaotic
oscillation circuit is ±2.5 V, the whole power consumption is

Figure 7: Chip layout diagram of the Chen chaotic oscillation circuit.
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about 148mW, and its chip area is only 6.15mm2. Com-
pared with the conventional realizations using commercial
available discrete electronic components with breadboards,
the fully integrated Chen chaotic oscillation circuit is a more
suitable candidate for practical applications.

4. Conclusion

In this paper, a fully integrated Chen chaotic oscillation
system using OAs and multipliers is designed and verified.
Unlike the conventional realization using commercial
available discrete electronic components with breadboards,
the designed Chen chaotic oscillation system is integrated in
a single chip. It has the advantages of smaller chip area, lower
supply voltage and power consumption. Moreover, it has
practical application prospects in demanding portable chaos
systems. Besides, it should be further developed from the
following objectives to improve the practicability of the fully
integrated chaotic circuit. Firstly, other OA and trans-
conductance operational amplifier (OTA) with simpler
circuit structures and lower power consumption should be
designed to further improve the performance of the fully
integrated chaotic circuit. In addition, the realization of
integrated chaotic circuits with complex chaotic attractors
and nonlinear dynamical characteristics is also considered in
our future works.
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We study the limit cycles of the fifth-order differential equation x
·····

− ex
⃜

− dx
ṫ

− c €x − b _x − ax � εF(x, _x, €x, x
···

, x
⃜
) with a � λμδ, b �

− (λμ + λδ + μδ), c � λ + μ + δ + λμδ, d � − (1 + λμ + λδ + μδ), e � λ + μ + δ, where ε is a small enough real parameter, λ, μ, and δ
are real parameters, and F ∈ C2 is a nonlinear function. Using the averaging theory of first order, we provide sufficient conditions
for the existence of limit cycles of this equation.

1. Introduction and Statement of the
Main Results

(e study of the limit cycles is one of the main topics of the
qualitative theory of differential equations and dynamical
systems. A limit cycle of a differential equation is an isolated
periodic orbit of this equation; it means that there is no
periodic orbits in the vicinity of this limit cycle. (ere are
several theories and methods for the study of the existence,
uniqueness, or number and stability of limit cycles of dif-
ferential equations which have been developed in trying to
answer Hilbert’s sixteenth problem posed in 1900 [1] about
the maximum number of limit cycles that a planar poly-
nomial differential system can have.

(e averaging theory is one of the most important
tools used actually to the study of limit cycles for second
and higher order differential equations, you can see in
[2–8]. More details on the averaging theory can be found
in the books of Sanders and Verhulst [9] and of Verhulst
[9].

In [7], the authors studied the limit cycles of the fol-
lowing third-order differential equation

x
ṫ

− μx + _x − μx � εF(x, _x, x, t), (1)

with μ≠ 0; ε is a small real parameter; F ∈ C2 is 2π− periodic
in t.

In [5], the authors studied equation (1) with
F � F(x, _x, €x) which is autonomous. (ey studied the two
cases μ≠ 0 and μ � 0.

In [6], the authors studied the following fourth-order
differential equation:

x
⃜

− (λ + μ)x
ṫ

+(1 + λμ)x − (λ + μ) _x + λμx � εF(x, _x, x, x
ṫ
, t),

(2)

where λ and μ are real, ε is a small real parameter, and F ∈ C2

is 2π− periodic in t.
In [4], the authors studied equation (2) with

F � F(x, _x, €x, x
ṫ
) which is autonomous.

In this paper, we shall use a result of the averaging theory
to study the limit cycles of the following class of fifth-order
autonomous ordinary differential equations:

x
·····

− ex
⃜

− dx
ṫ

− cx − b _x − ax � εF(x, _x, €x, x
···

, x
⃜

), (3)
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where

a � λμδ, b � − (λμ + λδ + μδ), c � λ + μ + δ + λμδ,

d � − (1 + λμ + λδ + μδ), e � λ + μ + δ,
(4)

where the dot means derivative with respect to an inde-
pendent variable t, ε is a small enough parameter, and F ∈ C2

is a nonlinear function. Here, the variable x and the pa-
rameters λ, μ, δ and ε are real.

In [8], the authors studied equation (3) with
F � F(x, _x, €x, x

ṫ
, x
⃜
, t) which depends explicitly on the in-

dependent variable t. Here, we study the autonomous case
using a different approach. Note that our results are distinct
and new.

Now, we state our main results for the limit cycles of
equation (3).

For the different values of the parameters λ, μ, and δ, we
distinguish the five following cases.

Case 1. λμδ ≠ 0 and λ≠ μ≠ δ.

Case 2. λ � 0, μδ ≠ 0, and μ≠ δ.

Case 3. λ � 0 and μ � δ ≠ 0.

Case 4. λ≠ 0 and μ � δ ≠ 0.

Case 5. λ � μ � δ ≠ 0.
For each one of these cases, we will give a theorem which

provides sufficient conditions for the existence of limit cycles
of equation (3) and we provide also an application.

(ere are two other cases (λ � μ � 0 and δ ≠ 0) and (λ �

μ � δ � 0) that we cannot study because they are too much
degenerated for (eorem 6.

1.1. Case 1: λ μ δ ≠ 0 and λ≠ μ≠ δ. In order to state our
results for this case, we define the function

F r0( 􏼁 �
1
2π

2π

0
sin θF A1, A2, A3, A4, A5( 􏼁dθ, (5)

where

A1 �
((λμδ − λ − μ − δ)cos θ +(1 − λμ − λδ − μδ)sin θ)r0

1 + λ2􏼐 􏼑 1 + μ2􏼐 􏼑 1 + δ2􏼐 􏼑
,

A2 �
((1 − λμ − λδ − μδ)cos θ +(λ + μ + δ − λμδ)sin θ)r0

1 + λ2􏼐 􏼑 1 + μ2􏼐 􏼑 1 + δ2􏼐 􏼑
,

A3 �
((λ + μ + δ − λμδ)cos θ +(λμ + λδ + μδ − 1)sin θ)r0

1 + λ2􏼐 􏼑 1 + μ2􏼐 􏼑 1 + δ2􏼐 􏼑
,

A4 �
((λμ + λδ + μδ − 1)cos θ +(λμδ − λ − μ − δ)sin θ)r0

1 + λ2􏼐 􏼑 1 + μ2􏼐 􏼑 1 + δ2􏼐 􏼑
,

A5 �
((λμδ − λ − μ − δ)cos θ +(1 − λμ − λδ − μδ)sin θ)r0

1 + λ2􏼐 􏼑 1 + μ2􏼐 􏼑 1 + δ2􏼐 􏼑
.

(6)

Our main result for this case is the following theorem.

Theorem 1. Assume that λμδ ≠ 0 and λ≠ μ≠ δ. For every
positive simple zero r∗0 of the functionF(r0) given by (5) there
is a limit cycle x(t, ε) of equation (3) tending to the periodic
solution

x
∗
(t) �

((λμδ − λ − μ − δ)cos t +(1 − λμ − λδ − μδ)sin t)r
∗
0

1+λ2􏼐 􏼑 1+μ2􏼐 􏼑 1+δ2􏼐 􏼑
,

(7)

of

x
·····

− (λ + μ + δ)x
⃜

+(1 + λμ + λδ + μδ)x
ṫ

− (λ + μ + δ + λμδ)x +(λμ + λδ + μδ) _x − λμδx � 0, (8)

when ε⟶ 0.
<eorem 1 will be proved in Section 3.1.1.
An application of <eorem 1 is the following.

Corollary 1. Assume that λμδ ≠ 0, λ≠ μ≠ δ,
λμ + λδ + μδ ≠ 1, and

F(x, _x, €x , x
ṫ

, x
⃜
) � x

5
− _x

4
− €x

3 − x
ṫ 2

− x
⃜

− 1. (9)

<en, there is a limit cycle x1(t, ε) of equation (3) tending
to the periodic solution

x
∗
1(t) �

2((λμδ − λ − μ − δ)cos t +(1 − λμ − λδ − μδ)sin t)
���������������������
5 1 + λ2􏼐 􏼑 1 + μ2􏼐 􏼑 1 + δ2􏼐 􏼑

􏽱 ,

(10)

of equation (8) when ε⟶ 0.
Corollary 1 will be proved in Section 3.1.2.
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1.2. Case 2: λ � 0, μ δ ≠ 0, and μ≠ δ. We define the functions

F1 r0, Z0( 􏼁 �
1
2π

2π

0
sin θF B1, B2, B3, B4, B5( 􏼁dθ,

F2 r0, Z0( 􏼁 �
1
2π

2π

0
F B1, B2, B3, B4, B5( 􏼁dθ,

(11)

and

B1 �
((− μ − δ)cos θ +(1 − μδ)sin θ)r0

1 + μ2􏼐 􏼑 1 + δ2􏼐 􏼑
+

Z0

μδ
,

B2 �
((1 − μδ)cos θ +(μ + δ)sin θ)r0

1 + μ2􏼐 􏼑 1 + δ2􏼐 􏼑
,

B3 �
((μ + δ)cos θ +(μδ − 1)sin θ)r0

1 + μ2􏼐 􏼑 1 + δ2􏼐 􏼑
,

B4 �
((μδ − 1)cos θ − (μ + δ)sin θ)r0

1 + μ2􏼐 􏼑 1 + δ2􏼐 􏼑
,

B5 �
(− (μ + δ)cos θ +(1 − μδ)sin θ)r0

1 + μ2􏼐 􏼑 1 + δ2􏼐 􏼑
.

(12)

Our main result for this case is the following theorem.

Theorem 2. Assume that λ � 0, μδ ≠ 0, and μ≠ δ. For every
zero (r∗0 , Z∗0 ) of the system F1(r0, Z0) � F2(r0, Z0) � 0
where F1 and F2 are given by (11) such that

det
z F1,F2( 􏼁

z r0, Z0( 􏼁
􏼠 􏼡| r0 ,Z0( )� r∗0 ,Z∗0( )≠ 0, (13)

there is a limit cycle x(t, ε) of equation (3) tending to the
periodic solution

x
∗
(t) �

((− μ − δ)cos t +(1 − μδ)sin t)r
∗
0

1 + μ2􏼐 􏼑 1 + δ2􏼐 􏼑
+

Z
∗
0

μδ
, (14)

of

x
·····

− (μ + δ)x
⃜

+(1 + μδ)x
ṫ

− (μ + δ)€x + μδ _x � 0, (15)

when ε⟶ 0.
<eorem 2 will be proved in Section 3.2.1.
An application of <eorem 2 is the following.

Corollary 2. Assume that λ � 0, μδ ≠ 0, μ≠ δ, μδ ≠ 1, and
F(x, _x, €x, x

ṫ
, x
⃜
) � x2 − 2x + _x2, then there is a limit cycle

x2(t, ε) of equation (3) tending to the periodic solution

x
∗
2(t) �

((− μ − δ)cos t +(1 − μδ)sin t)
��������������
1 + μ2􏼐 􏼑 1 + δ2􏼐 􏼑

􏽱 + 1, (16)

of equation (15) when ε⟶ 0.
Corollary 2 will be proved in Section 3.

1.3. Case 3: λ � 0 and μ � δ ≠ 0. We define the functions

F1 r0, Z0( 􏼁 �
1
2π

2π

0
− sin θF C1, C2, C3, C4, C5( 􏼁dθ,

F2 r0, Z0( 􏼁 �
1
2π

2π

0

1
2π

2π
0 F C1, C2, C3, C4, C5( 􏼁dθ,

(17)

where

C1 �
2μ cos θ + μ2 − 1􏼐 􏼑sin θ􏼐 􏼑r0

1 + μ2􏼐 􏼑
2 +

Z0

μ2
,

C2 �
μ2 − 1􏼐 􏼑cos θ − 2μ sin θ􏼐 􏼑r0

1 + μ2􏼐 􏼑
2 ,

C3 �
− 2μ cos θ − μ2 − 1􏼐 􏼑sin θ􏼐 􏼑r0

1 + μ2􏼐 􏼑
2 ,

C4 �
− μ2 − 1􏼐 􏼑cos θ + 2μ sin θ􏼐 􏼑r0

1 + μ2􏼐 􏼑
2 ,

C5 �
2μ cos θ + μ2 − 1􏼐 􏼑sin θ􏼐 􏼑r0

1 + μ2􏼐 􏼑
2 .

(18)

Our main result for this case is the following theorem.

Theorem 3. Assume that λ � 0 and μ � δ ≠ 0. For every zero
(r∗0 , Z∗0 ) of the system F1(r0, Z0) � F2(r0, Z0) � 0 where
F1 and F2 are given by (17) such that

det
z F1,F2( 􏼁

z r0, Z0( 􏼁
􏼠 􏼡| r0 ,Z0( )� r∗0 ,Z∗0( )≠ 0, (19)

there is a limit cycle x(t, ε) of equation (3) tending to the
periodic solution

x
∗
(t) �

2μ cos t + μ2 − 1􏼐 􏼑sin t􏼐 􏼑r
∗
0

1 + μ2􏼐 􏼑
2 +

Z
∗
0

μ2
, (20)

of

x
·····

− 2μx
⃜

+ 1 + μ2􏼐 􏼑x
ṫ

− 2μ€x + μ2 _x � 0, (21)

when ε⟶ 0.
<eorem 3 will be proved in Section 3.3.1.
An application of <eorem 3 is the following.

Corollary 3. Assume that λ � 0, δ � μ≠ 0, μ≠ − 1 ±
�
5

√
/2,

and F(x, _x, €x, x
ṫ
, x
⃜
) � x2 − x _x − 1, then there is a limit cycle

x3(t, ε) of equation (3) tending to the periodic solution

x
∗
3(t) �

2μ cos t + μ2 − 1􏼐 􏼑sin t􏼐 􏼑
�
2

√

1 + μ2
, (22)

of equation (21) when ε⟶ 0.
Corollary 3 will be proved in Section 3.3.2.
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1.4. Case 4: λ≠ 0 and μ � δ ≠ 0. We define the function

F r0( 􏼁 �
1
2π

2π

0
− sin θF D1, D2, D3, D4, D5( 􏼁dθ, (23)

where

D1 �
λ + 2μ − λμ2􏼐 􏼑cos θ + μ2 + 2λμ − 1􏼐 􏼑sin θ􏼐 􏼑r0

1 + λ2􏼐 􏼑 1 + μ2􏼐 􏼑
2 ,

D2 �
μ2 + 2λμ − 1􏼐 􏼑cos θ − λ + 2μ − λμ2􏼐 􏼑sin θ􏼐 􏼑r0

1 + λ2􏼐 􏼑 1 + μ2􏼐 􏼑
2 ,

D3 �
− λ + 2μ − λμ2􏼐 􏼑cos θ − μ2 + 2λμ − 1􏼐 􏼑sin θ􏼐 􏼑r0

1 + λ2􏼐 􏼑 1 + μ2􏼐 􏼑
2 ,

D4 �
− μ2 + 2λμ − 1􏼐 􏼑cos θ + λ + 2μ − λμ2􏼐 􏼑sin θ􏼐 􏼑r0

1 + λ2􏼐 􏼑 1 + μ2􏼐 􏼑
2 ,

D5 �
λ + 2μ − λμ2􏼐 􏼑cos θ + μ2 + 2λμ − 1􏼐 􏼑sin θ􏼐 􏼑r0

1 + λ2􏼐 􏼑 1 + μ2􏼐 􏼑
2 .

(24)

Our main result for this case is the following theorem.

Theorem 4. Assume that λ≠ 0 and δ � μ≠ 0. For every
positive simple zero r∗0 of the function F(r0) given by (23),
there is a limit cycle x(t, ε) of equation (3) tending to the
periodic solution

x
∗
(t) �

λ + 2μ − λμ2􏼐 􏼑cos t + μ2 + 2λμ − 1􏼐 􏼑sin t􏼐 􏼑r
∗
0

1 + λ2􏼐 􏼑 1 + μ2􏼐 􏼑
2 ,

(25)

of

x
·····

− (λ + 2μ)x
⃜

+ 1 + 2λμ + μ2􏼐 􏼑x
ṫ

− λ + 2μ + λμ2􏼐 􏼑x

+ 2λμ + μ2􏼐 􏼑 _x − λμ2x � 0,

(26)

when ε⟶ 0.
<eorem 4 will be proved in Section 3.4.1.
An application of <eorem 4 is the following.

Corollary 4. Assume that λ≠ 0, δ � μ≠ 0, μ2 + 2λμ − 1≠ 0,
and F(x, _x, €x, x

ṫ
, x
⃜
) � x3 − x − 1, then there is a limit cycle

x4(t, ε) of equation (3) tending to the periodic solution

x
∗
4(t) �

2
�
3

√
λ + 2μ − λμ2􏼐 􏼑cos t + μ2 + 2λμ − 1􏼐 􏼑sin t􏼐 􏼑

3
�����
1 + λ2

􏽰
1 + μ2􏼐 􏼑

,

(27)

of equation (26) when ε⟶ 0.
Corollary 4 will be proved in Section 3.4.2.

1.5. Case 5: λ � μ � δ ≠ 0. In order to state our result for this
case, we define the function

F r0( 􏼁 �
1
2π

2π

0
sin θF E1, E2, E3, E4, E5( 􏼁dθ, (28)

where

E1 �
λ3 − 3λ􏼐 􏼑cos θ + 1 − 3λ2􏼐 􏼑sin θ􏼐 􏼑r0

1 + λ2􏼐 􏼑
3 ,

E2 �
1 − 3λ2􏼐 􏼑cos θ − λ3 − 3λ􏼐 􏼑sin θ􏼐 􏼑r0

1 + λ2􏼐 􏼑
3 ,

E3 �
− λ3 − 3λ􏼐 􏼑cos θ − 1 − 3λ2􏼐 􏼑sin θ􏼐 􏼑r0

1 + λ2􏼐 􏼑
3 ,

E4 �
− 1 − 3λ2􏼐 􏼑cos θ + λ3 − 3λ􏼐 􏼑sin θ􏼐 􏼑r0

1 + λ2􏼐 􏼑
3 ,

E5 �
λ3 − 3λ􏼐 􏼑cos θ + 1 − 3λ2􏼐 􏼑sin θ􏼐 􏼑r0

1 + λ2􏼐 􏼑
3 .

(29)

Our main result for this case is the following theorem.

Theorem 5. Assume that μ � δ � λ≠ 0. For every positive
simple zero r∗0 of the function F(r0) given by (28), there is a
limit cycle x(t, ε) of equation (3) tending to the periodic
solution

x
∗
(t) �

λ3 − 3λ􏼐 􏼑cos t + 1 − 3λ2􏼐 􏼑sin t􏼐 􏼑r
∗
0

1 + λ2􏼐 􏼑
3 , (30)

of

x
·····

− 3λx
⃜

+ 1 + 3λ2􏼐 􏼑x
ṫ

− 3λ + λ3􏼐 􏼑 €x + 3λ2 _x − λ3x � 0,

(31)

when ε⟶ 0.
<eorem 5 will be proved in Section 3.5.1.
An application of <eorem 5 is the following.

Corollary 5. Assume that μ � δ � λ≠ 0, λ≠ ±
�
3

√
,

λ≠ ±
�
3

√
/3, and F(x, _x, €x, x

ṫ
, x
⃜
) � − €x2x

⃜ 2
+ x3 + x2 − _x

€x + x
ṫ

− 1, then there is a limit cycle x5(t, ε) of equation (3)
tending to the periodic solution
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x
∗
5(t) �

2
�
3

√ ��������������������
3λ2 − 1􏼐 􏼑λ λ4 − 2λ2 − 3􏼐 􏼑

􏽱
λ3 − 3λ􏼐 􏼑cos t + 1 − 3λ2􏼐 􏼑sin t􏼐 􏼑

3 3λ2 − 1􏼐 􏼑 1 + λ2􏼐 􏼑
2 , (32)

of equation (31) when ε⟶ 0.
Corollary 5 will be proved in Section 3.5.2.

2. The Main Tool (First-Order
Averaging Theory)

In this section, we present the basic result from the averaging
theory that we need for proving the main results of this
article.

We consider the problem of the bifurcation of
T− periodic solutions from the differential system

_x(t) � F0(x, t) + εF1(x, t) + ε2F2(x, t, ε), (33)

with ε � 0 to ε≠ 0 sufficiently small. (e functions
F0, F1: Ω × R⟶ Rn and F2: Ω × R × (− ε0, ε0)⟶ Rn are
C2 functions, T− periodic is in the variable t, and Ω is an
open subset of Rn. We suppose that the unperturbed system

_x(t) � F0(x, t), (34)

has a k-dimensional submanifold Z of periodic solutions.
Let x(t, z) be the solution of the unperturbed system (34)

such that x(0, z) � z. (e linearisation of system (34) along
the periodic solution x(t, z) is written as

_y � DxF0(x(t, z), t)y. (35)

We denote by Mz(t) some fundamental matrices of the
linear differential system (35) and by ξ: Rk × Rn− k⟶ Rk

the projection of Rn onto its first k coordinates; i.e.,
ξ(x1, . . . , xn) � (x1, . . . , xk).

Theorem 6. Let V ⊂ Rk be open and bounded and
β0: Cl(V)⟶ Rn− k be a C2 function. We assume that

(i) Z � zα � (α, β0(α)), α ∈ Cl(V)􏼈 􏼉 ⊂ Ω, and that for
each zα ∈ Z, the solution x(t, zα) of (34) is
T− periodic.

(ii) For each zα ∈ Z, there is a fundamental matrix
Mzα(t) of (35) such that the matrix M− 1

zα (0)−

M− 1
zα (T) has in the upper right corner the k × (n − k)

zero matrix, and in the lower right corner a matrix
Δα((n − k) × (n − k)) with detΔα ≠ 0. We consider
the function F: Cl(V)⟶ Rk

F(α) � ξ
1
T

T

0
M

− 1
zα

(t)F1 x t, zα( 􏼁, t( 􏼁dt􏼠 􏼡. (36)

If there exists a ∈ V with F(a) � 0 and
det((dF/dα)(a))≠ 0, then there is a T− periodic solution
φ(t, ε) of the system (33) such that φ(0, ε)⟶ za as ε⟶ 0.

<eorem 1 goes back to [10] and [11]; for a shorter proof,
see [12].

Note that the periodic orbits provided by <eorem 6 are
limit cycles.

3. Proofs of the Results

3.1. Proofs of the Results in Case 1: λ μ δ ≠ 0 and λ≠ μ≠ δ

3.1.1. Proof of <eorem 1. We consider equation (3) and put
y � _x, z � €x, u � x

ṫ
, and v � x

⃜
, then equation (3) can be

written as

_x � y,

_y � z,

_z � u,

_u � v,

_v � ax + by + cz + du + ev + εF(x, y, z, u, v).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(37)

System (37) with ε � 0 has a unique singular point at the
origin and the linear part of this system has the eigenvalues
±i, λ, μ, and δ. Using the change of variables

X

Y

Z

U

V

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

λμδ − λμ − λδ − μδ λ + μ + δ − 1 0

0 − λμδ λμ + λδ + μδ − λ − μ − δ 1

μδ − μ − δ 1 + μδ − μ − δ 1

λδ − λ − δ 1 + λδ − λ − δ 1

λμ − λ − μ 1 + λμ − λ − μ 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

x

y

z

u

v

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (38)
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we transform system (37) into the following system:
_X � − Y,

_Y � X + ε􏽥F(X, Y, Z, U, V),

_Z � λZ + ε􏽥F(X, Y, Z, U, V),

_U � μU + ε􏽥F(X, Y, Z, U, V),

_V � δV + ε􏽥F(X, Y, Z, U, V),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(39)

where

􏽥F � 􏽥F(X, Y, Z, U, V) � F a1, a2, a3, a4, a5( 􏼁,

a1 �
(λμδ − λ − μ − δ)X

λ2 + 1􏼐 􏼑 μ2 + 1􏼐 􏼑 δ2 + 1􏼐 􏼑
+

(1 − λμ − λδ − μδ)Y

λ2 + 1􏼐 􏼑 μ2 + 1􏼐 􏼑 δ2 + 1􏼐 􏼑
+

Z

λ2 + 1􏼐 􏼑(λ − μ)(λ − δ)
−

U

μ2 + 1􏼐 􏼑(λ − μ)(μ − δ)
+

V

δ2 + 1􏼐 􏼑(λ − δ)(μ − δ)
,

a2 �
(1 − λμ − λδ − μδ)X

λ2 + 1􏼐 􏼑 μ2 + 1􏼐 􏼑 δ2 + 1􏼐 􏼑
−

(λμδ − λ − μ − δ)Y

λ2 + 1􏼐 􏼑 μ2 + 1􏼐 􏼑 δ2 + 1􏼐 􏼑
+

λZ

λ2 + 1􏼐 􏼑(λ − μ)(λ − δ)
−

μU

μ2 + 1􏼐 􏼑(λ − μ)(μ − δ)
+

δV

δ2 + 1􏼐 􏼑(λ − δ)(μ − δ)
,

a3 � −
(λμδ − λ − μ − δ)X

λ2 + 1􏼐 􏼑 μ2 + 1􏼐 􏼑 δ2 + 1􏼐 􏼑
−

(1 − λμ − λδ − μδ)Y

λ2 + 1􏼐 􏼑 μ2 + 1􏼐 􏼑 δ2 + 1􏼐 􏼑
+

λ2Z
λ2 + 1􏼐 􏼑(λ − μ)(λ − δ)

−
μ2U

μ2 + 1􏼐 􏼑(λ − μ)(μ − δ)
+

δ2V
δ2 + 1􏼐 􏼑(λ − δ)(μ − δ)

,

a4 � −
(1 − λμ − λδ − μδ)X

λ2 + 1􏼐 􏼑 μ2 + 1􏼐 􏼑 δ2 + 1􏼐 􏼑
+

(λμδ − λ − μ − δ)Y

λ2 + 1􏼐 􏼑 μ2 + 1􏼐 􏼑 δ2 + 1􏼐 􏼑
+

λ3Z
λ2 + 1􏼐 􏼑(λ − μ)(λ − δ)

−
μ3U

μ2 + 1􏼐 􏼑(λ − μ)(μ − δ)
+

δ3V
δ2 + 1􏼐 􏼑(λ − δ)(μ − δ)

,

a5 �
(λμδ − λ − μ − δ)X

λ2 + 1􏼐 􏼑 μ2 + 1􏼐 􏼑 δ2 + 1􏼐 􏼑
+

(1 − λμ − λδ − μδ)Y

λ2 + 1􏼐 􏼑 μ2 + 1􏼐 􏼑 δ2 + 1􏼐 􏼑
+

λ4Z
λ2 + 1􏼐 􏼑(λ − μ)(λ − δ)

−
μ4U

μ2 + 1􏼐 􏼑(λ − μ)(μ − δ)
+

δ4V
δ2 + 1􏼐 􏼑(λ − δ)(μ − δ)

.

(40)

Note that the linear part of system (39) is in the real
normal Jordan form of the linear part of system (37). We
pass now from the Cartesian coordinates (X, Y, Z, U, V) to
the cylindrical ones (r, θ, Z, U, V) with X � r cos θ,
Y � r sin θ, and we obtain

_r � ε sin θG(r, θ, Z, U, V),

_θ � 1 +
ε
r
cos θG(r, θ, Z, U, V),

_Z � λZ + εG(r, θ, Z, U, V),

_U � μU + εG(r, θ, Z, U, V),

_V � δV + εG(r, θ, Z, U, V),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(41)

where G(r, θ, Z, U, V) � 􏽥F(r cos θ, r sin θ, Z, U, V).

After dividing by θ
.

and simplifying, we find

dr

dθ
� ε sin θG(r, θ, Z, U, V) + o ε2􏼐 􏼑,

dZ

dθ
� λZ + ε 1 −

λZ

r
cos θ􏼠 􏼡G(r, θ, Z, U, V) + o ε2􏼐 􏼑,

dU

dθ
� μU + ε 1 −

μU

r
cos θ􏼒 􏼓G(r, θ, Z, U, V) + o ε2􏼐 􏼑,

dV

dθ
� δV + ε 1 −

δV

r
cos θ􏼠 􏼡G(r, θ, Z, U, V) + o ε2􏼐 􏼑.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(42)

System (42) is now of the same form as system (33) with
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x �

r

Z

U

V

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, t � θ,

F0(x, θ) �

0

λZ

μU

δV

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

F1(x, θ) �

sin θG(r, θ, Z, U, V)

1 −
λZ

r
cos θ􏼠 􏼡G(r, θ, Z, U, V)

1 −
μU

r
cos θ􏼒 􏼓G(r, θ, Z, U, V)

1 −
δV

r
cos θ􏼠 􏼡G(r, θ, Z, U, V)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(43)

We shall apply (eorem 6 to system (42). System (42)
with ε � 0 has the 2π− periodic solutions

r(θ)

Z(θ)

U(θ)

V(θ)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�

r0

0

0

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, ∀r0 > 0. (44)

By the notations of (eorem 6, we have that k � 1 and
n � 4. Let r1 > 0 and r2 > 0; we take V �]r1, r2[ ⊂ R,
α � r0 ∈ [r1, r2], and

β0: r1, r2􏼂 􏼃⟶ R
3
,

: r0↦β0 r0( 􏼁 � (0, 0, 0).
(45)

We also take

Z � zα � r0, 0, 0, 0( 􏼁, r0 ∈ r1, r2􏼂 􏼃􏼈 􏼉. (46)

(e fundamental matrix Mzα(θ) of the linear system (42)
with ε � 0 with respect to the periodic solution
zα � (r0, 0, 0, 0) satisfying that Mzα(0) is the identity matrix
is

Mzα(θ) �

1 0 0 0

0 e
λθ 0 0

0 0 e
μθ 0

0 0 0 e
δθ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (47)

We have

M
− 1
zα

(0) − M
− 1
zα

(2π) �

0 0 0 0

0 1 − e
− 2πλ 0 0

0 0 1 − e
− 2πμ 0

0 0 0 1 − e
− 2πδ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(48)

which satisfy the assumption (ii) of (eorem 6. Taking

ξ: R × R
3⟶ R,

: (r, Z, U, V)↦ξ(r, Z, U, V) � r,
(49)

we must compute the function F(α) given by (36), and we
obtain

F(α) � F r0( 􏼁 �
1
2π

2π
0 sin θG r0, θ, 0, 0, 0( 􏼁dθ

�
1
2π

2π

0
sin θF A1, A2, A3, A4, A5( 􏼁dθ,

(50)

and A1, A2, A3, A4, and A5 are given by (6). (en, by (e-
orem 6, for every simple zero r∗0 of the functionF(r0), there
exists a limit cycle (r, Z, U, V)(θ, ε) of system (42) such that

(r, Z, U, V)(0, ε)⟶ r
∗
0 , 0, 0, 0( 􏼁,when ε⟶ 0. (51)

Going back through the change of coordinates, we
obtain a limit cycle (r, θ, Z, U, V)(t, ε) of system (41) such
that

(r, θ, Z, U, V)(0, ε)⟶ r
∗
0 , 0, 0, 0, 0( 􏼁,when ε⟶ 0.

(52)

We have a limit cycle (X, Y, Z, U, V)(t, ε) of system (39)
such that

(X, Y, Z, U, V)(0, ε)⟶ r
∗
0 , 0, 0, 0, 0( 􏼁when ε⟶ 0.

(53)

Finally, we obtain a limit cycle x(t, ε) of equation (3)
tending to the periodic solution (7) of equation (8) when
ε⟶ 0.

(eorem 1 is proved.

3.1.2. Proof of Corollary 1. If
F(x, _x, €x, x

ṫ
, x
⃜
) � x5 − _x4 − €x3 − x

ṫ 2
− x
⃜

− 1, then we have

F r0( 􏼁 �
r0(− 1 + λμ + λδ + μδ)

16 1 + λ2􏼐 􏼑
3
1 + μ2􏼐 􏼑

3
1 + δ2􏼐 􏼑

3

· − 5r
2
0 + 4 1 + λ2􏼐 􏼑 1 + μ2􏼐 􏼑 1 + δ2􏼐 􏼑􏼐 􏼑

· r
2
0 + 2 1 + λ2􏼐 􏼑 1 + μ2􏼐 􏼑 1 + δ2􏼐 􏼑􏼐 􏼑,

(54)

which have the real positive simple zero
r∗0 � 2

�
5

√
/5

��������������������

(1 + λ2)(1 + μ2)(1 + δ2)
􏽱

with

df

dr0
r
∗
0( 􏼁 � −

34
9

− 1 + λμ + λδ + μδ
1 + λ2􏼐 􏼑 1 + μ2􏼐 􏼑 1 + δ2􏼐 􏼑

≠ 0. (55)

Discrete Dynamics in Nature and Society 7



(e proof of Corollary 1 follows directly by applying
(eorem 1 and (10) is obtained by substituting r∗0 in (7).

3.2. Proofs of the Results in Case 2: λ � 0, μ δ ≠ 0, and μ≠ δ

3.2.1. Proof of <eorem 2. If λ � 0, equation (3) can be
written as

_x � y,

_y � z,

_z � u,

_u � v,

_v � − μδy +(μ+δ)z − (1+μδ)u +(μ+δ)v + εF(x,y,z,u,v).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(56)

System (56) has a unique singular point at the origin and
the eigenvalues of the linear part of this system are ±i, 0, μ,
and δ. By the linear transformation

X

Y

Z

U

V

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

0 − μδ μ + δ − 1 0

0 0 μδ − μ − δ 1

μδ − μ − δ 1 + μδ − μ − δ 1

0 − δ 1 − δ 1

0 − μ 1 − μ 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

x

y

z

u

v

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (57)

we transform system (56) into the following system:
_X � − Y,

_Y � X + ε􏽥F(X, Y, Z, U, V),

_Z � ε􏽥F(X, Y, Z, U, V),

_U � μU + ε􏽥F(X, Y, Z, U, V),

_V � δV + ε􏽥F(X, Y, Z, U, V),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(58)

where

􏽥F � 􏽥F(X, Y, Z, U, V) � F b1, b2, b3, b4, b5( 􏼁,

b1 �
(− μ − δ)X

μ2 + 1􏼐 􏼑 δ2 + 1􏼐 􏼑
+

(1 − μδ)Y

μ2 + 1􏼐 􏼑 δ2 + 1􏼐 􏼑
+

Z

μδ
+

U

μ μ2 + 1􏼐 􏼑(μ − δ)
−

V

δ δ2 + 1􏼐 􏼑(μ − δ)
,

b2 �
(1 − μδ)X

μ2 + 1􏼐 􏼑 δ2 + 1􏼐 􏼑
−

(− μ − δ)Y

μ2 + 1􏼐 􏼑 δ2 + 1􏼐 􏼑
+

U

μ2 + 1􏼐 􏼑(μ − δ)
−

V

δ2 + 1􏼐 􏼑(μ − δ)
,

b3 � −
(− μ − δ)X

μ2 + 1􏼐 􏼑 δ2 + 1􏼐 􏼑
−

(1 − μδ)Y

μ2 + 1􏼐 􏼑 δ2 + 1􏼐 􏼑
+

μU

μ2 + 1􏼐 􏼑(μ − δ)
−

δV

δ2 + 1􏼐 􏼑(μ − δ)
,

b4 � −
(1 − μδ)X

μ2 + 1􏼐 􏼑 δ2 + 1􏼐 􏼑
+

(− μ − δ)Y

μ2 + 1􏼐 􏼑 δ2 + 1􏼐 􏼑
+

μ2U
μ2 + 1􏼐 􏼑(μ − δ)

−
δ2V

δ2 + 1􏼐 􏼑(μ − δ)
,

b5 �
(− μ − δ)X

μ2 + 1􏼐 􏼑 δ2 + 1􏼐 􏼑
+

(1 − μδ)Y

μ2 + 1􏼐 􏼑 δ2 + 1􏼐 􏼑
+

μ3U
μ2 + 1􏼐 􏼑(μ − δ)

−
δ3V

δ2 + 1􏼐 􏼑(μ − δ)
.

(59)
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Note that the linear part of system (58) is in the real
Jordan normal form of the linear part of system (56). We
pass now from the Cartesian coordinates (X, Y, Z, U, V) to
the cylindrical ones (r, θ, Z, U, V) with X � r cos θ,
Y � r sin θ, and we obtain

_r � ε sin θG(r, θ, Z, U, V),

_θ � 1 +
ε
r
cos θG(r, θ, Z, U, V),

_Z � εG(r, θ, Z, U, V),

_U � μU + εG(r, θ, Z, U, V),

_V � δV + εG(r, θ, Z, U, V),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(60)

where G(r, θ, Z, U, V) � 􏽥F(r cos θ, r sin θ, Z, U, V).

After dividing by θ
.

and simplifying, we find

dr

dθ
� ε sin θG(r, θ, Z, U, V) + o ε2􏼐 􏼑,

dZ

dθ
� εG(r, θ, Z, U, V) + o ε2􏼐 􏼑,

dU

dθ
� μU + ε 1 −

μU

r
cos θ􏼒 􏼓G(r, θ, Z, U, V) + o ε2􏼐 􏼑,

dV

dθ
� δV + ε 1 −

δV

r
cos θ􏼠 􏼡G(r, θ, Z, U, V) + o ε2􏼐 􏼑.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(61)

System (61) is now of the same form as system (33) with

x �

r

Z

U

V

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, t � θ,

F0(x, θ) �

0

0

μU

δV

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

F1(x, θ) �

sin θG(r, θ, Z, U, V)

G(r, θ, Z, U, V)

1 −
μU

r
cos θ􏼒 􏼓G(r, θ, Z, U, V)

1 −
δV

r
cos θ􏼠 􏼡G(r, θ, Z, U, V)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(62)

We shall apply (eorem 6 to system (61). System (61)
with ε � 0 has the 2π− periodic solutions

r(θ)

Z(θ)

U(θ)

V(θ)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�

r0

Z0

0

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, ∀r0 > 0, ∀Z0 ∈ R. (63)

By the notations of (eorem 6, we have that k � 2 and
n � 4. Let R> 0; we take

V � r0, Z0( 􏼁: 0< r
2
0 + Z

2
0 <R􏽮 􏽯 ⊂ R2

, (64)

α � (r0, Z0) ∈ V , and

β0: Cl(V)⟶ R
2
,

: r0, Z0( 􏼁↦β0 r0, Z0( 􏼁 � (0, 0).
(65)
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We also take

Z � zα � r0, Z0, 0, 0( 􏼁, r0, Z0( 􏼁 ∈ V􏼈 􏼉. (66)

(e fundamental matrix Mzα(θ) of the linear system (61)
with ε � 0 with respect to the periodic solution
zα � (r0, Z0, 0, 0) satisfying that Mzα(0) is the identity
matrix is

Mzα(θ) �

1 0 0 0

0 1 0 0

0 0 e
μθ 0

0 0 0 e
δθ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (67)

We have

M
− 1
zα

(0) − M
− 1
zα

(2π) �

0 0 0 0

0 0 0 0

0 0 1 − e
− 2πμ 0

0 0 0 1 − e
− 2πδ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(68)

which satisfy the assumption (ii) of (eorem 6. Taking

ξ: R
2

× R
2⟶ R

2
,

: (r, Z, U, V)↦ξ(r, Z, U, V) � (r, Z),
(69)

we must compute the function F(α) given by (36), and we
obtain

F(α) � F r0, Z0( 􏼁 �
1
2π

2π

0

sin θG r0, θ, Z0, 0, 0( 􏼁

G r0, θ, Z0, 0, 0( 􏼁

⎛⎝ ⎞⎠,

dθ �

F1 r0, Z0( 􏼁

F2 r0, Z0( 􏼁

⎛⎝ ⎞⎠,

(70)

where

F1 r0, Z0( 􏼁 �
1
2π

2π

0
sin θF B1, B2, B3, B4, B5( 􏼁dθ,

F2 r0, Z0( 􏼁 �
1
2π

2π

0
F B1, B2, B3, B4, B5( 􏼁dθ,

(71)

and B1, B2, B3, B4, and B5 are given by (12). (en, by (e-
orem 6, for every simple zero (r∗0 , Z∗0 ) of the function
F(r0, Z0) there exists a limit cycle (r, Z, U, V)(θ, ε) of
system (61) such that

(r, Z, U, V)(0, ε)⟶ r
∗
0 , Z
∗
0 , 0, 0( 􏼁,when ε⟶ 0. (72)

Going back through the change of coordinates, we
obtain a limit cycle (r, θ, Z, U, V)(t, ε) of system (60) such
that

(r, θ, Z, U, V)(0, ε)⟶ r
∗
0 , Z
∗
0 , 0, 0, 0( 􏼁,when ε⟶ 0.

(73)

We have a limit cycle (X, Y, Z, U, V)(t, ε) of system (58)
such that

(X, Y, Z, U, V)(0, ε)⟶ r
∗
0 , Z
∗
0 , 0, 0, 0( 􏼁,when ε⟶ 0.

(74)

Finally, we obtain a limit cycle x(t, ε) of equation (3)
tending to the periodic solution (14) of equation (15) when
ε⟶ 0.

(eorem 2 is proved.

3.2.2. Proof of Corollary 2. If F(x, _x, €x, x
ṫ
, x
⃜
) � x2 − 2x + _x2,

then we have

F1 r0, Z0( 􏼁 �
r0(μδ − 1) μδ − Z0( 􏼁

μδ 1 + μ2􏼐 􏼑 1 + δ2􏼐 􏼑
,

F2 r0, Z0( 􏼁 �
r
2
0μ

2δ2 − Z0 1 + μ2􏼐 􏼑 1 + δ2􏼐 􏼑 2μδ − Z0( 􏼁

μ2δ2 1 + μ2􏼐 􏼑 1 + δ2􏼐 􏼑
.

(75)

(e system F1(r0, Z0) � F2(r0, Z0) � 0 has the zero
(r∗0 , Z∗0 ) � (

�������������

(1 + μ2)(1 + δ2)
􏽱

, μδ) such that

det
z F1,F2( 􏼁

z r0, Z0( 􏼁
􏼠 􏼡| r0 ,Z0( )� r∗0 ,Z∗0( ) �

2(μδ − 1)

μδ 1 + μ2􏼐 􏼑 1 + δ2􏼐 􏼑
≠ 0.

(76)

(e proof of Corollary 2 follows directly by applying
(eorem 2 and (16) is obtained by substituting (r∗0 , Z∗0 ) in
(14).

3.3. Proofs in Case 3: λ � 0

3.3.1. Proof of <eorem 3. If λ � 0, μ � δ ≠ 0, then equation
(3) can be written as

_x � y,

_y � z,

_z � u,

_u � v,

_v � − μ2y + 2μz − 1 + μ2􏼐 􏼑u + 2μv + εF(x, y, z, u, v).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(77)

System (77) has a unique singular point at the origin and
the eigenvalues of the linear part of this system are ±i, 0, and
μ. By the linear transformation

X

Y

Z

U

V

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

0 μ2 − 2μ 1 0

0 0 − μ2 2μ − 1

μ2 − 2μ 1 + μ2 − 2μ 1

0 1 0 1 0

0 − μ 1 − μ 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

x

y

z

u

v

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (78)

we transform system (77) into the following system:
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_X � − Y,

_Y � X − ε􏽥F(X, Y, Z, U, V),

_Z � ε􏽥F(X, Y, Z, U, V),

_U � μU + V,

_V � μV + ε􏽥F(X, Y, Z, U, V),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(79)

where
􏽥F � 􏽥F(X, Y, Z, U, V) � F c1, c2, c3, c4, c5( 􏼁,

c1 �
2μX

μ2 + 1􏼐 􏼑
2 +

μ2 − 1􏼐 􏼑Y

μ2 + 1􏼐 􏼑
2 +

Z

μ2
+

U

μ μ2 + 1􏼐 􏼑
−

3μ2 + 1􏼐 􏼑V

μ2 μ2 + 1􏼐 􏼑
2,

c2 �
μ2 − 1􏼐 􏼑X

μ2 + 1􏼐 􏼑
2 −

2μY

μ2 + 1􏼐 􏼑
2 +

U

μ2 + 1
−

2μV

μ2 + 1􏼐 􏼑
2,

c3 �
− 2μX

μ2 + 1􏼐 􏼑
2 −

μ2 − 1􏼐 􏼑Y

μ2 + 1􏼐 􏼑
2 +

μU

μ2 + 1
−

μ2 − 1􏼐 􏼑V

μ2 + 1􏼐 􏼑
2 ,

c4 �
− μ2 − 1􏼐 􏼑X

μ2 + 1􏼐 􏼑
2 +

2μY

μ2 + 1􏼐 􏼑
2 +

μ2U
μ2 + 1

+
2μV

μ2 + 1􏼐 􏼑
2,

c5 �
2μX

μ2 + 1􏼐 􏼑
2 +

μ2 − 1􏼐 􏼑Y

μ2 + 1􏼐 􏼑
2 +

μ3U
μ2 + 1

+
μ2 μ2 + 3􏼐 􏼑V

μ2 + 1􏼐 􏼑
2 .

(80)

Note that the linear part of system (81) is in the real
Jordan normal form of the linear part of system (77). We
pass now from the Cartesian coordinates (X, Y, Z, U, V) to
the cylindrical ones (r, θ, Z, U, V) with X � r cos θ,
Y � r sin θ, and we obtain

_r � − ε sin θG(r, θ, Z, U, V),

_θ � 1 +
ε
r
cos θG(r, θ, Z, U, V),

_Z � εG(r, θ, Z, U, V),

_U � μU + V,

_V � μV + εG(r, θ, Z, U, V),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(81)

where G(r, θ, Z, U, V) � 􏽥F(r cos θ, r sin θ, Z, U, V).
After dividing by θ

.

and simplifying, we find

dr

dθ
� − ε sin θG(r, θ, Z, U, V) + o ε2􏼐 􏼑,

dZ

dθ
� εG(r, θ, Z, U, V) + o ε2􏼐 􏼑,

dU

dθ
� μU + V + ε

μU + V

r
cos θG(r, θ, Z, U, V) + o ε2􏼐 􏼑,

dV

dθ
� μV + ε 1 +

μV

r
cos θ􏼒 􏼓G(r, θ, Z, U, V) + o ε2􏼐 􏼑.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(82)

System (82) is now of the same form as system (33) with

x �

r

Z

U

V

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, t � θ,

F0(x, θ) �

0

0

μU + V

μV

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

F1(x, θ) �

− sin θG(r, θ, Z, U, V)

G(r, θ, Z, U, V)

μU + V

r
cos θG(r, θ, Z, U, V)

1 +
μV

r
cos θ􏼒 􏼓G(r, θ, Z, U, V)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(83)

We shall apply (eorem 6 to system (82). System (82)
with ε � 0 has the 2π− periodic solutions

r(θ)

Z(θ)

U(θ)

V(θ)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�

r0

Z0

0

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, ∀r0 > 0,∀Z0 ∈ R. (84)
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By the notations of (eorem 6, we have that k � 2 and
n � 4. Let R> 0; we take

V � r0, Z0( 􏼁: 0< r
2
0 + Z

2
0 <R􏽮 􏽯 ⊂ R2

. (85)

α � (r0, Z0) ∈ V and

β0: Cl(V)⟶ R
2
,

: r0, Z0( 􏼁↦β0 r0, Z0( 􏼁 � (0, 0).
(86)

We also take

Z � zα � r0, Z0, 0, 0( 􏼁, r0, Z0( 􏼁 ∈ V􏼈 􏼉. (87)

(e fundamental matrix Mzα(θ) of the linear system (82)
with ε � 0 with respect to the periodic solution
zα � (r0, Z0, 0, 0) satisfying that Mzα(0) is the identity
matrix is

Mzα(θ) �

1 0 0 0

0 1 0 0

0 0 e
μθ θe

μθ

0 0 0 e
μθ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (88)

We have

M
− 1
zα (0) − M

− 1
zα (2π) �

0 0 0 0

0 0 0 0

0 0 1 − e
− 2πμ 2πe

− 2πμ

0 0 0 1 − e
− 2πμ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(89)

which satisfy the assumption (ii) of (eorem 6. Taking

ξ: R
2

× R
2⟶ R

2
,

: (r, Z, U, V)↦ξ(r, Z, U, V) � (r, Z),
(90)

we must compute the function F(α) given by (36), and we
obtain

F(α) � F r0, Z0( 􏼁 �
1
2π

2π

0

− sin θG r0, θ, Z0, 0, 0( 􏼁

G r0, θ, Z0, 0, 0( 􏼁

⎛⎝ ⎞⎠ dθ

�
F1 r0, Z0( 􏼁

F2 r0, Z0( 􏼁

⎛⎝ ⎞⎠,

(91)

where

F1 r0, Z0( 􏼁 �
1
2π

2π

0
− sin θF C1, C2, C3, C4, C5( 􏼁dθ,

F2 r0, Z0( 􏼁 �
1
2π

2π

0
F C1, C2, C3, C4, C5( 􏼁dθ,

(92)

and C1, C2, C3, C4, and C5 are given by (18). (en, by
(eorem 6, for every simple zero (r∗0 , Z∗0 ) of the function
F(r0, Z0), there exists a limit cycle (r, Z, U, V)(θ, ε) of
system (82) such that

(r, Z, U, V)(0, ε)⟶ r
∗
0 , Z
∗
0 , 0, 0( 􏼁,when ε⟶ 0. (93)

Going back through the change of coordinates, we
obtain a limit cycle (r, θ, Z, U, V)(t, ε) of system (81) such
that

(r, θ, Z, U, V)(0, ε)⟶ r
∗
0 , Z
∗
0 , 0, 0, 0( 􏼁,when ε⟶ 0.

(94)

We have a limit cycle (X, Y, Z, U, V)(t, ε) of system (79)
such that

(X, Y, Z, U, V)(0, ε)⟶ r
∗
0 , Z
∗
0 , 0, 0, 0( 􏼁,when ε⟶ 0.

(95)

Finally, we obtain a limit cycle x(t, ε) of equation (3)
tending to the periodic solution (20) of equation (21) when
ε⟶ 0.

(eorem 3 is proved.

3.3.2. Proof of Corollary 3. If F(x, _x, €x, x
ṫ
, x
⃜
) � x2 − x _x − 1,

then we have

F1 r0, Z0( 􏼁 �
1 − μ − μ2􏼐 􏼑r0Z0

μ2 1 + μ2􏼐 􏼑
2 ,

F2 r0, Z0( 􏼁 �
r
2
0

2 1 + μ2􏼐 􏼑
2 +

Z
2
0

μ4
+ 1.

(96)

(e system F1(r0, Z0) � F2(r0, Z0) � 0 has the zero
(r∗0 , Z∗0 ) � (

�
2

√
(1 + μ2), 0) such that

det
z F1,F2( 􏼁

z r0, Z0( 􏼁
􏼠 􏼡| r0 ,Z0( )� r∗0 ,Z∗0( ) �

2 μ2 + μ − 1􏼐 􏼑

μ2 1 + μ2􏼐 􏼑
2 ≠ 0. (97)

(e proof of Corollary 3 follows directly by applying
(eorem 3 and (22) is obtained by substituting (r∗0 , Z∗0 ) in
(20).

3.4. Proofs in Case 4: λ≠ 0 and μ � δ ≠ 0

3.4.1. Proof of <eorem 4. If λ≠ 0 and μ � δ ≠ 0, then
equation (3) can be written as

_x � y,

_y � z,

_z � u,

_u � v,

_v � λμ2x − μ2 + 2λμ􏼐 􏼑y + λ + 2μ + λμ2􏼐 􏼑z

− μ2 + 2λμ + 1􏼐 􏼑u +(λ + 2μ)v + εF(x, y, z, u, v).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(98)

System (98) with ε � 0 has a unique singular point at the
origin and the linear part of this system has the eigenvalues
±i, λ, and μ. Using the change of variables
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X

Y

Z

U

V

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

− λμ2 μ2 + 2λμ − λ − 2μ 1 0

0 λμ2 − μ2 − 2λμ λ + 2μ − 1

μ2 − 2μ μ2 + 1 − 2μ 1

− λ 1 − λ 1 0

λμ − λ − μ 1 + λμ − λ − μ 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

x

y

z

u

v

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(99)

we transform the system (98) into the following system:

_X � − Y,

_Y � X − ε􏽥F(X, Y, Z, U, V),

_Z � λZ + ε􏽥F(X, Y, Z, U, V),

_U � μU + V,

_V � μV + ε􏽥F(X, Y, Z, U, V),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(100)

where

􏽥F � 􏽥F(X, Y, Z, U, V) � F d1, d2, d3, d4, d5( 􏼁,

d1 �
− λμ2 + 2μ + λ􏼐 􏼑X

λ2 + 1􏼐 􏼑 μ2 + 1􏼐 􏼑
2 +

μ2 + 2λμ − 1􏼐 􏼑Y

λ2 + 1􏼐 􏼑 μ2 + 1􏼐 􏼑
2 +

Z

λ2 + 1􏼐 􏼑(λ − μ)
2 −

U

μ2 + 1􏼐 􏼑(λ − μ)
−

3μ2 − 2λμ + 1􏼐 􏼑V

μ2 + 1􏼐 􏼑
2
(λ − μ)

2
,

d2 �
μ2 + 2λμ − 1􏼐 􏼑X

λ2 + 1􏼐 􏼑 μ2 + 1􏼐 􏼑
2 −

− λμ2 + 2μ + λ􏼐 􏼑Y

λ2 + 1􏼐 􏼑 μ2 + 1􏼐 􏼑
2 +

λZ

λ2 + 1􏼐 􏼑(λ − μ)
2 −

μU

μ2 + 1􏼐 􏼑(λ − μ)
−

2μ3 − λμ2 + λ􏼐 􏼑V

μ2 + 1􏼐 􏼑
2
(λ − μ)

2
,

d3 � −
− λμ2 + 2μ + λ􏼐 􏼑X

λ2 + 1􏼐 􏼑 μ2 + 1􏼐 􏼑
2 −

μ2 + 2λμ − 1􏼐 􏼑Y

λ2 + 1􏼐 􏼑 μ2 + 1􏼐 􏼑
2 +

λ2Z
λ2 + 1􏼐 􏼑(λ − μ)

2 −
μ2U

μ2 + 1􏼐 􏼑(λ − μ)
−

μ μ3 − μ + 2λ􏼐 􏼑V

μ2 + 1􏼐 􏼑
2
(λ − μ)

2
,

d4 � −
μ2 + 2λμ − 1􏼐 􏼑X

λ2 + 1􏼐 􏼑 μ2 + 1􏼐 􏼑
2 +

− λμ2 + 2μ + λ􏼐 􏼑Y

λ2 + 1􏼐 􏼑 μ2 + 1􏼐 􏼑
2 +

λ3Z
λ2 + 1􏼐 􏼑(λ − μ)

2 −
μ3U

μ2 + 1􏼐 􏼑(λ − μ)
−
μ2 λμ2 − 2μ + 3λ􏼐 􏼑V

μ2 + 1􏼐 􏼑
2
(λ − μ)

2
,

d5 �
− λμ2 + 2μ + λ􏼐 􏼑X

λ2 + 1􏼐 􏼑 μ2 + 1􏼐 􏼑
2 +

μ2 + 2λμ − 1􏼐 􏼑Y

λ2 + 1􏼐 􏼑 μ2 + 1􏼐 􏼑
2 +

λ4Z
λ2 + 1􏼐 􏼑(λ − μ)

2 −
μ4U

μ2 + 1􏼐 􏼑(λ − μ)
−
μ3 − μ3 + 2λμ2 − 3μ + 4λ􏼐 􏼑V

μ2 + 1􏼐 􏼑
2
(λ − μ)

2
.

(101)

Note that the linear part of system (100) is in the real
normal Jordan form of the linear part of system (98). We
pass now from the Cartesian coordinates (X, Y, Z, U, V) to
the cylindrical ones (r, θ, Z, U, V) with X � r cos θ,
Y � r sin θ, and we obtain

_r � − ε sin θG(r, θ, Z, U, V),

_θ � 1 +
ε
r
cos θG(r, θ, Z, U, V),

_Z � λZ + εG(r, θ, Z, U, V),

_U � μU + V,

_V � μV + εG(r, θ, Z, U, V),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(102)

where G(r, θ, Z, U, V) � 􏽥F(r cos θ, r sin θ, Z, U, V).
After dividing by θ

.

and simplifying, we find

dr

dθ
� − ε sin θG(r, θ, Z, U, V) + o ε2􏼐 􏼑,

dZ

dθ
� λZ + ε 1 +

λZ

r
cos θ􏼠 􏼡G(r, θ, Z, U, V) + o ε2􏼐 􏼑,

dU

dθ
� μU + V + ε

μU + V

r
cos θ􏼒 􏼓G(r, θ, Z, U, V) + o ε2􏼐 􏼑,

dV

dθ
� μV + ε 1 +

μV

r
cos θ􏼒 􏼓G(r, θ, Z, U, V) + o ε2􏼐 􏼑.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(103)

System (103) is now of the same form as system (33) with
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x �

r

Z

U

V

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, t � θ,

F0(x, θ) �

0

λZ

μU + V

μV

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

F1(x, θ) �

− sin θG(r, θ, Z, U, V)

1 +
λZ

r
cos θ􏼠 􏼡G(r, θ, Z, U, V)

μU + V

r
cos θ􏼒 􏼓G(r, θ, Z, U, V)

1 +
μV

r
cos θ􏼒 􏼓G(r, θ, Z, U, V)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(104)

We shall apply (eorem 6 to system (103). System (103)
with ε � 0 has the 2π− periodic solutions

r(θ)

Z(θ)

U(θ)

V(θ)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�

r0

0

0

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, ∀r0 > 0. (105)

By the notations of (eorem 6, we have that k � 1 and
n � 4. Let r1 > 0 and r2 > 0; we take V �]r1, r2[ ⊂ R,
α � r0 ∈ [r1, r2], and

β0: r1, r2􏼂 􏼃⟶ R
3
,

: r0↦β0 r0( 􏼁 � (0, 0, 0).
(106)

We also take

Z � zα � r0, 0, 0, 0( 􏼁, r0 ∈ r1, r2􏼂 􏼃􏼈 􏼉. (107)

(e fundamental matrix Mzα(θ) of the linear system
(103) with ε � 0 with respect to the periodic solution zα �

(r0, 0, 0, 0) satisfying that Mzα(0) is the identity matrix is

Mzα(θ) �

1 0 0 0

0 e
λθ 0 0

0 0 e
μθ θe

μθ

0 0 0 e
μθ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (108)

We have

M
− 1
zα

(0) − M
− 1
zα

(2π) �

0 0 0 0

0 1 − e
− 2πλ 0 0

0 0 1 − e
− 2πμ 2πe

− 2πμ

0 0 0 1 − e
− 2πμ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(109)

which satisfy the assumption (ii) of (eorem 6. Taking

ξ: R × R
3⟶ R,

: (r, Z, U, V)↦ξ(r, Z, U, V) � r,
(110)

we must compute the function F(α) given by (34), and we
obtain

F(α) �
1
2π

2π

0
− sin θG r0, θ, 0, 0, 0( 􏼁 dθ,

F r0( 􏼁 �
1
2π

2π

0
− sin θF D1, D2, D3, D4, D5( 􏼁dθ,

(111)

and D1, D2, D3, D4, and D5 are given by (24). (en, by
(eorem 6, for every simple zero r∗0 of the function F(r0),
there exists a limit cycle (r, Z, U, V)(θ, ε) of system (103)
such that

(r, Z, U, V)(0, ε)⟶ r
∗
0 , 0, 0, 0( 􏼁,when ε⟶ 0. (112)

Going back through the change of coordinates, we
obtain a limit cycle (r, θ, Z, U, V)(t, ε) of system (102) such
that

(r, θ, Z, U, V)(0, ε)⟶ r
∗
0 , 0, 0, 0, 0( 􏼁,when ε⟶ 0.

(113)

We have a limit cycle (X, Y, Z, U, V)(t, ε) of system such
that

(X, Y, Z, U, V)(0, ε)⟶ r
∗
0 , 0, 0, 0, 0( 􏼁,when ε⟶ 0.

(114)

Finally, we obtain a limit cycle x(t, ε) of equation (3)
tending to the periodic solution (25) of equation (26) when
ε⟶ 0.

(eorem 4 is proved.

3.4.2. Proof of Corollary 4. If F(x, _x, €x, x
ṫ
, x
⃜
) � x3 − x − 1,

then we have

F r0( 􏼁 �
r0 − 1 + 2λμ + μ2􏼐 􏼑 4 1 + λ2􏼐 􏼑 1 + μ2􏼐 􏼑

2
− 3r

2
0􏼒 􏼓

8 1 + λ2􏼐 􏼑
2
1 + μ2􏼐 􏼑

4 ,

(115)

which have the real positive simple zero

r∗0 � 2
�
3

√
/3

�������

(1 + λ2)
􏽱

(1 + μ2) with

df

dr0
r
∗
0( 􏼁 �

1 − 2λμ − μ2

1 + λ2􏼐 􏼑 1 + μ2􏼐 􏼑
2 ≠ 0. (116)
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(e proof of Corollary 4 follows directly by applying
(eorem 4 and (27) is obtained by substituting r∗0 in (25).

3.5. Proofs in Case 5: λ � μ � δ ≠ 0

3.5.1. Proof of <eorem 5. If λ � μ � δ ≠ 0, then equation (3)
can be written as

_x � y,

_y � z,

_z � u,

_u � v,

_v � λ3x − 3λ2y + 3λ + λ3􏼐 􏼑z − 3λ2 + 1􏼐 􏼑u + 3λv + εF(x, y, z, u, v).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(117)

System (117) with ε � 0 has a unique singular point at the
origin and the linear part of this system has the eigenvalues
±i and λ. Using the change of variables

X

Y

Z

U

V

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

λ3 − 3λ2 3λ − 1 0

0 − λ3 3λ2 − 3λ 1

1 0 1 0 0

− λ 1 − λ 1 0

λ2 − 2λ λ2 + 1 − 2λ 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

x

y

z

u

v

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (118)

we transform system (117) into the following system:
_X � − Y,

_Y � X + ε􏽥F(X, Y, Z, U, V),

_Z � λZ + U,

_U � λU + V,

_V � λV + ε􏽥F(X, Y, Z, U, V),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(119)

where

􏽥F � 􏽥F(X, Y, Z, U, V) � F e1, e2, e3, e4, e5( 􏼁,

e1 �
λ λ2 − 3􏼐 􏼑X + 1 − 3λ2􏼐 􏼑Y + λ2 + 1􏼐 􏼑

2
Z − 2λ λ2 + 1􏼐 􏼑U + 3λ2 − 1􏼐 􏼑V

λ2 + 1􏼐 􏼑
3 ,

e2 �
1 − 3λ2􏼐 􏼑X − λ λ2 − 3􏼐 􏼑Y + λ λ2 + 1􏼐 􏼑

2
Z + 1 − λ4􏼐 􏼑U + λ λ2 − 3􏼐 􏼑V

λ2 + 1􏼐 􏼑
3 ,

e3 �
− λ λ2 − 3􏼐 􏼑X − 1 − 3λ2􏼐 􏼑Y + λ2 λ2 + 1􏼐 􏼑

2
Z + 2λ λ2 + 1􏼐 􏼑U + 1 − 3λ2􏼐 􏼑V

λ2 + 1􏼐 􏼑
3 ,

e4 �
− 1 − 3λ2􏼐 􏼑X + λ λ2 − 3􏼐 􏼑Y + λ3 λ2 + 1􏼐 􏼑

2
Z + λ2 λ2 + 3􏼐 􏼑 λ2 + 1􏼐 􏼑U − λ λ2 − 3􏼐 􏼑V

λ2 + 1􏼐 􏼑
3 ,

e5 �
λ λ2 − 3􏼐 􏼑X + 1 − 3λ2􏼐 􏼑Y + λ4 λ2 + 1􏼐 􏼑

2
Z + 2λ3 λ2 + 2􏼐 􏼑 λ2 + 1􏼐 􏼑U + λ2 3λ2 + λ4 + 6􏼐 􏼑V

λ2 + 1􏼐 􏼑
3 .

(120)
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Note that the linear part of system (119) is in the real
normal Jordan form of the linear part of system (51). We
pass now from the Cartesian coordinates (X, Y, Z, U, V) to
the cylindrical ones (r, θ, Z, U, V) with X � r cos θ,
Y � r sin θ, and we obtain

_r � ε sin θG(r, θ, Z, U, V),

θ
.

� 1 +
ε
r
cos θG(r, θ, Z, U, V),

_Z � λZ + U,

_U � λU + V,

_V � λV + εG(r, θ, Z, U, V),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(121)

where G(r, θ, Z, U, V) � 􏽥F(r cos θ, r sin θ, Z, U, V).

After dividing by θ
.

and simplifying, we find

dr

dθ
� ε sin θG(r, θ, Z, U, V) + o ε2􏼐 􏼑,

dZ

dθ
� λZ + U − ε

λZ + U

r
cos θ􏼠 􏼡G(r, θ, Z, U, V) + o ε2􏼐 􏼑,

dU

dθ
� λU + V − ε

λU + V

r
cos θ􏼠 􏼡G(r, θ, Z, U, V) + o ε2􏼐 􏼑,

dV

dθ
� λV + ε 1 −

λV

r
cos θ􏼠 􏼡G(r, θ, Z, U, V) + o ε2􏼐 􏼑.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(122)

System (122) is now of the same form as system (33) with

x �

r

Z

U

V

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, t � θ,

F0(x, θ) �

0

λZ + U

λU + V

λV

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

F1(x, θ) �

− sin θG(r, θ, Z, U, V)

−
λZ + U

r
cos θ􏼠 􏼡G(r, θ, Z, U, V)

−
λU + V

r
cos θ􏼠 􏼡G(r, θ, Z, U, V)

1 −
λV

r
cos θ􏼠 􏼡G(r, θ, Z, U, V)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(123)

We shall apply (eorem 6 to system (122). System (122)
with ε � 0 has the 2π− periodic solutions

r(θ)

Z(θ)

U(θ)

V(θ)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�

r0

0

0

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, ∀r0 > 0. (124)

By the notations of (eorem 6, we have that k � 1 and
n � 4. Let r1 > 0 and r2 > 0; we take V �]r1, r2[ ⊂ R,
α � r0 ∈ [r1, r2], and

β0: r1, r2􏼂 􏼃⟶ R
3
,

: r0↦β0 r0( 􏼁 � (0, 0, 0).
(125)

We also take
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Z � zα � r0, 0, 0, 0( 􏼁, r0 ∈ r1, r2􏼂 􏼃􏼈 􏼉. (126)

(e fundamental matrix Mzα(θ) of the linear system
(122) with ε � 0 with respect to the periodic solution zα �

(r0, 0, 0, 0) satisfying that Mzα(0) is the identity matrix is

Mzα(θ) �

1 0 0 0

0 e
λθ θe

λθ θ2

2
e
λθ

0 0 e
λθ θe

λθ

0 0 0 e
λθ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (127)

We have

M
− 1
zα (0) − M

− 1
zα (2π) �

0 0 0 0

0 1 − e
− 2πλ 2πe

− 2πλ
− 2π2e− 2πλ

0 0 1 − e
− 2πλ 2πe

− 2πλ

0 0 0 1 − e
− 2πλ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(128)

which satisfy the assumption (ii) of (eorem 6. Taking

ξ: R × R
3⟶ R,

: (r, Z, U, V)↦ξ(r, Z, U, V) � r,
(129)

we must compute the function F(α) given by (36), and we
obtain

F r0( 􏼁 �
1
2π

2π

0
sin θG r0, θ, 0, 0, 0( 􏼁 dθ,

F(α) �
1
2π

2π

0
sin θF E1, E2, E3, E4, E5( 􏼁dθ,

(130)

and E1, E2, E3, E4, and E5 are given by (29). (en, by
(eorem 6, for every simple zero r∗0 of the function F(r0),
there exists a limit cycle (r, Z, U, V)(θ, ε) of system (122)
such that

(r, Z, U, V)(0, ε)⟶ r
∗
0 , 0, 0, 0( 􏼁,when ε⟶ 0. (131)

Going back through the change of coordinates, we
obtain a limit cycle (r, θ, Z, U, V)(t, ε) of system (121) such
that

(r, θ, Z, U, V)(0, ε)⟶ r
∗
0 , 0, 0, 0, 0( 􏼁,when ε⟶ 0.

(132)

We have a limit cycle (X, Y, Z, U, V)(t, ε) of system
(119) such that

(X, Y, Z, U, V)(0, ε)⟶ r
∗
0 , 0, 0, 0, 0( 􏼁,when ε⟶ 0.

(133)

Finally, we obtain a limit cycle x(t, ε) of equation (3)
tending to the periodic solution (30) of equation (31) when
ε⟶ 0.

(eorem 5 is proved.

3.5.2. Proof of Corollary 5. If F(x, _x, €x, x
ṫ
, x
⃜
)

� − €x2x
⃜ 2

+ x3 + x2 − _x €x + x
ṫ

− 1, then we have

F r0( 􏼁 �
r0 3r

2
0 3λ2 − 1􏼐 􏼑 − 4λ λ2 − 3􏼐 􏼑 1 + λ2􏼐 􏼑

3
􏼒 􏼓

8 1 + λ2􏼐 􏼑
6 , (134)

which have the real positive simple zero

r∗0 � 2
�
3

√
/3(

�����������������������

λ(3λ2 − 1)((λ2 − 3))(1 + λ2)
􏽱

(1 + λ2)/3λ2 − 1)

with

df

dr0
r
∗
0( 􏼁 �

λ λ2 − 3􏼐 􏼑

1 + λ2􏼐 􏼑
3 ≠ 0. (135)

(e proof of Corollary 5 follows directly by applying
(eorem 5 and (32) is obtained by substituting r∗0 in (30).

4. Conclusion

(ere are several theories and methods for the study of the
existence, uniqueness, or number and stability of limit cycles
of differential equations which have been developed in trying
to answer Hilbert’s sixteenth problem posed in 1900 (see
reference [1]) about the maximum number of limit cycles
that a planar polynomial differential system can obtain. In
this work, we study the limit cycles of the fifth-order dif-
ferential equation by using the averaging theory of first order
[6, 7], and we provide sufficient conditions for the existence
of limit cycles of equation (12); in the next work, we will try
to apply the same method on higher order differential
equations.
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In this work, we study the bifurcation of limit cycles from the period annulus surrounding the origin of a class of cubic polynomial
differential systems; when they are perturbed inside the class of all polynomial differential systems of degree six, we obtain at most
fifteenth limit cycles by using the averaging theory of first order.

1. Introduction and Statement of the
Main Result

Hilbert in 1900 was interested in the maximum number of
the limit cycles that a polynomial differential system of
a given degree can have. )is problem is the well-known
16th Hilbert problem, which together with the Riemann
conjecture are the two problems of the famous list of 23
problems of Hilbert which remain open. See for more details
[1, 2].

A classical way to produce limit cycles is by perturbing
a system which has a center, in such a way that limit cycles
bifurcate in the perturbed system from some of the periodic
orbits of the period annulus of the center of the unperturbed
system [3–7].

In [8], the authors improved the result of the maximum
number of limit cycles for a class of polynomial differential
systems which bifurcate from the period annulus sur-
rounding the origin of the system:

_u � v − v(u − y + a)(u + v + a),

_v � − u + u(u − v + a)(u + v + a),
􏼨 (1)

where (u − y + a)(u + v + a) � 1 is a conic, a2 ≠ 1, and
|a|≤

�
2

√
by using the first order of the averaging theory

method.
In [9], the authors improved the result of the maximum

number of limit cycles of sixth polynomial differential
systems which bifurcate from the period annulus sur-
rounding the origin of the system:

_u � − v u − v
2

− a􏼐 􏼑
2
,

_v � u u − v
2

− a􏼐 􏼑
2
,

⎧⎪⎨

⎪⎩
(2)

where u − v2 − a � 0 is a conic and a≠ 0, by using the first
order of the averaging theory method.

In this work, we perturb the cubic systems equation (1).
)us, we consider these classes of all polynomial differential
systems of degree n, i.e.,

_u � v − v(u − y + a)(u + v + a) + εP(u, v),

_v � − u + u(u − v + a)(u + v + a) + εQ(u, v),
􏼨 (3)

where (u − v + a)(u + v + a) � 1 is a conic, |a|>
�
2

√
, P(u, v)

and Q(u, v) are the real polynomials of degree n≥ 3, and ε is
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a small parameter. Main result of this study is the following
)eorem 1.

Theorem 1. For the sufficiently small |ε| and the polynomials
P(u, v) and Q(u, v) having degree 6, suppose that |a|>

�
2

√
,

system equation (3) has at most 15 limit cycles bifurcating
from the period annulus surrounding the origin of cubic
polynomial differential system equation (1) using averaging
theory of first order (Figures 1 and 2).

2. The Averaging Theory of First Order

Theorem 2. Consider the following two initial value
problems:

_x � εR(t, x) + ε2G(t, x, ε), x(0) � x0, (4)

and

_y � εf0
(y), y(0) � x0, (5)

where x, y, and x0 ∈ D is an open domain of R, t ∈ [0,∞),
ε ∈ (0, ε0], R and G are the periodic functions with their
period T with its variable t, and f0(y) is the average function
of R(t, y) with respect to t, i.e.,

f
0
(y) �

1
T

􏽚
T

0
F(t, y)dt. (6)

Assume that

(i) R, zR/zx, z2R/zx2, G, and zG/zx are well defined,
continuous, and bounded by a constant in-
dependent by ε ∈ (0, ε0] in [0,∞) × D

(ii) T is a constant independent of ε
(iii) y(t) belongs to D on the time scale 1/ε. )en, the

following statements hold.

(a) On the time scale 1/ε, we have

x(t) − y(t) � O(ε), as ε⟶ 0. (7)

(b) If p is an equilibrium point of the averaged
system equation (5), such that

zf0

zy

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌y�p

≠ 0. (8)

)en, system equation (4) has a T-periodic
solution ϕ(t, ε)⟶ p as ε⟶ 0.

(c) If equation (8) is a negative, the corresponding
periodic solution ϕ(t, ε) of equation (4)
according to (t, x) is asymptotically stable for all
ε sufficiently small, and if equation (8) is
a positive, then it is unstable.

For more details on the averaging method, see [10, 11].

3. Proof of Theorem 1

For |a|> 2, the cubic system equation (1) has a unique period
annulus:

A � (u, v): 0< u
2

+ v
2 <

a
2

− 2
2

􏼨 􏼩. (9)

According to Figures 1 and 2, this proof is based on the
first order of the averaging theory method, in polar co-
ordinates (r, θ), where u � r cos θ, v � r sin θ, and r> 0. We
take

P(u, v) � 􏽘
n

k�1
􏽘

i+j�k

piju
i
v

j
, Q(u, v) � 􏽘

n

k�1
􏽘

i+j�k

qiju
i
v

j
. (10)

Equation (3) can be written as follows:

_r � ε 􏽘

n

k�1
cos θMk(cos θ, sin θ) + sin θNk(cos θ, sin θ)( 􏼁r

k
,

_θ � S(r, θ) + ε 􏽘
n

k�1
cos θNk(cos θ, sin θ) − sin θMk(cos θ, sin θ)( 􏼁r

k− 1
,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(11)

where

Mk(cos θ, sin θ) � 􏽘
i+j�k

p
i
ijcos

iθ sinjθ,

Nk(cos x, sinx) � 􏽘
i+j�k

qijcos
iθ sinjθ,

(12)

and

S(r, θ) � (r(cos θ − sin θ) + a)(r(cos θ + sin θ) + a) − 1.

(13)

)erefore, we have

dr

dθ
� ε 􏽘

n

k�1
cos θMk(cos θ, sin θ) + sin θNk(cos θ, sin θ)

·
r

k

S(r, θ)
+ ε2R(r, θ, ε).

(14)

)e averaged function of equation (14) is

f
0
(r) �

1
2π

􏽘

n

k�1
r

k

· 􏽚
2π

0

cos θMk(cos θ, sin θ) + sin θNk(cos θ, sin θ)

S(r, θ)
dθ .

(15)
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For n � 6, we get

f
0
(r) � 􏽘

6

k�1
􏽘

6

i+j�k

pijAi+1,j(r) + qijAi,j+1(r)􏼐 􏼑r
k
, (16)

where

Ap,q �
1
2π

􏽚
2π

0

cospθ sinqθ
S(r, θ)

dθ . (17)

According to )eorem 2, every simple zero of the av-
erage function f0(r) provides a limit cycle of system

equation (3). Now, we prove )eorem 1; in the first step, we
compute the integral f0(r), and in the second step, the
number of its simple zeros is studied.

Lemma 1. From the above, we have

A0,0 � −
G1 − G2

2SH1H2
andA1,0 �

a G1 − G2( 􏼁

4rSH1H2
+

G1 + G2

4rH1H2
,

(18)

where

Figure 1: Phase portrait of the cubic system equation (1) with a � 2.

Figure 2: Phase portrait of the cubic system equation (1) with a � 2.
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H1 �

����������

(a − 1)
2

− r
2

􏽱

,

H2 �

����������

(a + 1)
2

− r
2

􏽱

,

G1 �

������������

− 2r
2

− 2aS + 2
􏽱

,

G2 �

������������

− 2r
2

+ 2aS + 2
􏽱

,

(19)

with

S �

����������

2r
2

− a
2

+ 2
􏽱

≠ 0. (20)

Proof. Assume that z � eiθ and C is the circle |z| � 1; we get

2π
0

dθ
S(r, θ)
≡

2
ir2C

z

z − z1( 􏼁 z − z2( 􏼁 z − z3( 􏼁 z − z4( 􏼁
dz,

2π
0

cos θ dθ
S(r, θ)
≡

1
ir2C

z
2

+ 1
z − z1( 􏼁 z − z2( 􏼁 z − z3( 􏼁 z − z4( 􏼁

dz,

(21)

whose poles are

z1,2 �
− a −

����������
2r

2
− a

2
+ 2

􏽰
±

����������������������

− 2r
2

+ 2 + 2a

����������

2r
2

− a
2

+ 2
􏽱􏽲

2r
,

z3,4 �
− a +

����������
2r

2
− a

2
+ 2

􏽰
±

����������������������

− 2r
2

+ 2 − 2a

����������

2r
2

− a
2

+ 2
􏽱􏽲

2r
.

(22)

By applying the residue theorem, for |a|>
�
2

√
, we obtain

|z1|< 1, |z3 < 1, C encloses the two singular points of the
integrand, so

A0,0 �
1
2π

2π
0

dθ
S(r, θ)

,

�
1

πir
2

z

z − z1( 􏼁 z − z2( 􏼁 z − z3( 􏼁 z − z4( 􏼁
dz ,

�
2
r
2

z1

z1 − z2( 􏼁 z1 − z3( 􏼁 z1 − z4( 􏼁
+

z3

z3 − z1( 􏼁 z3 − z2( 􏼁 z3 − z4( 􏼁
􏼠 􏼡.

(23)

)erefore, we have

A0,0 � −

����������������������

− 2r
2

− 2a

����������

2r
2

− a
2

+ 2
􏽱

+ 2

􏽲

−

����������������������

− 2r
2

+ 2a

����������

2r
2

− a
2

+ 2
􏽱

+ 2

􏽲

2
����������
2r

2
− a

2
+ 2

􏽰 �����������

(a − 1)
2

− r
2

􏽱 �����������

(a + 1)
2

− r
2

􏽱 ,

A1,0 �
1
2π

2π
0
cos θ dθ
S(r, θ)

,

�
1

2πir
2

z
2

+ 1
z − z1( 􏼁 z − z2( 􏼁 z − z3( 􏼁 z − z4( 􏼁

dz ,

�
1
r
2

z
2
1 + 1

z1 − z2( 􏼁 z1 − z3( 􏼁 z1 − z4( 􏼁
+

z
2
3 + 1

z3 − z1( 􏼁 z3 − z2( 􏼁 z3 − z4( 􏼁
􏼠 􏼡.

(24)
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)erefore, we get

A1,0 �

a

�����������������������

− 2r
2

− 2a

����������

2r
2

− a
2

+ 2
􏽱

+ 2

􏽲

−

�����������������������

− 2r
2

+ 2a

����������

2r
2

− a
2

+ 2
􏽱

+ 2

􏽲

⎛⎝ ⎞⎠

4r
����������
2r

2
+ 2 − a

2
􏽰 �����������

(a − 1)
2

− r
2

􏽱 �����������

(a + 1)
2

− r
2

􏽱

+

����������������������

− 2r
2

− 2a

����������

2r
2

− a
2

+ 2
􏽱

+ 2

􏽲

+

����������������������

− 2r
2

+ 2a

����������

2r
2

− a
2

+ 2
􏽱

+ 2

􏽲

4r

�����������

(a − 1)
2

− r
2

􏽱 �����������

(a + 1)
2

− r
2

􏽱 .

(25)

)is completes the proof. □

Lemma 2. Under the previous notations, we have

(a) A2k+1,0 � − (a/r)A2k,0 + (r2 + 1 − a2/2r2)A2k− 1,0

(b) A2k,0 � − (a/r)A2k− 1,0 + (r2 + 1−

a2/2r2)A2k− 2,0 + (λk− 1/2k(k − 1)!r2),
Where λk− 1 � 3.5 . . . .(2k − 3)

(c) A0,2k � 􏽐
k
i�0 (− 1)iCi

kA2i,0

(d) An− 2m+1,2m � 􏽐
m
i�0 (− 1)iCi

mAn− 2m+2i+1,0, m � 1, . . . ,[n

+1/2].

Proof. Putting u � r cos θ, v � r sin θ, we get for (a) and (b)

cosnθ
S(r, θ)

�
cosnθ

a
2

− 2r
2

− 2/2􏼐 􏼑 + 2(r cos θ +(a/2))
2,

�
− 2ar cosn− 1 θ + r

2
+ 1 − a

2
􏼐 􏼑cosn− 2 θ + S(r, θ)cosn− 2 θ

2r
2
S(r, θ)

,

� −
a

r

cosn− 1 θ
S(r, θ)

+
r
2

+ 1 − a
2

2r
2

cosn− 2 θ
S(r, θ)

+
1
2r

2cos
n− 2θ.

(26)

)us,

An,0 � −
a

2πr
􏽚
2π

0

cosn− 1 θ
S(r, θ)

dθ +
r
2

+ 1 − a
2

4πr
2 􏽚

2π

0

cosn− 2 θ
S(r, θ)

dθ

+
1

4πr
2 􏽚

2π

0
cosn− 2θ dθ.

(27)

)erefore,

A2k+1,0 � −
a

r
A2k,0 +

r
2

+ 1 − a
2

2r
2 A2k− 1,0,

A2k,0 � −
a

r
A2k− 1,0 +

r
2

+ 1 − a
2

2r
2 A2k− 2,0 +

1
4πr

2 􏽚
2π

0
cos2k− 2θ dθ,

(28)

and

􏽚
2π

0
cos2(k− 1)θ dθ �

πλk− 1

2k− 2
(k − 1)!

, (29)

where λk− 1 � 3.5 . . . .(2k − 3), λk � (2k − 1)λk− 1 ([12]).
)us,

A2k,0 � −
a

r
A2k− 1,0 +

r
2

+ 1 − a
2

2r
2 A2k− 2,0 +

λk− 1

2k
(k − 1)!r

2, (30)

(c)
sin2k θ
S(r, θ)

�
1 − cos2 θ􏼐 􏼑

k

S(r, θ)

� 􏽘
k

i�0
(− 1)

i
C

i
k

cos2i θ
S(r, θ)

,

(31)

then

A0,2k � 􏽘
k

i�0
(− 1)

i
C

i
kA2i,0, (32)

(d)
cosn− 2m+1 θ sin2m θ

S(r, θ)
�
cosn− 2m+1 θ 1 − cos2 θ􏼐 􏼑

m

S(r, θ)

� 􏽘
m

i�0
(− 1)

i
C

i
m

cosn− 2m+2i+1 θ
S(r, θ)

,

m � 1, . . . ,
n + 1
2

􏼔 􏼕.

(33)

)us,

An− 2m+1,2m � 􏽘

m

i�0
(− 1)

i
C

i
mAn− 2m+2i+1,0, m � 1, . . . ,

n + 1
2

􏼔 􏼕. (34)

)is completes the proof. □

Remark 1. Ap,2k+1 � 0.
By Lemmas 1 and 2, we have

A2,0 �
1

4πr
2 􏽚

2π

0
dθ −

a

r
A1,0 +

r
2

+ 1 − a
2

2r
2 A0,0

�
1
2r

2 −
a

r

a G1 − G2( 􏼁

4rSH1H2
+

G1 + G2

4rH1H2
􏼠 􏼡

+
r
2

+ 1 − a
2

2r
2 −

G1 − G2

2SH1H2
􏼠 􏼡

� −
1

4SH1H2r
2 − 2SH1H2 + aS G1 + G2( 􏼁(

+ r
2

+ 1􏼐 􏼑 G1 − G2( 􏼁􏼑.

(35)
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)en,

A0,2 � A0,0 − A2,0

� −
G1 − G2

2SH1H2
− −

1
4SH1H2r

2 − 2SH1H2 + aS G1 + G2( 􏼁 + r
2

+ 1􏼐 􏼑 G1 − G2( 􏼁􏼐 􏼑􏼠 􏼡

�
− 2SH1H2 + aS G1 + G2( 􏼁 − r

2
− 1􏼐 􏼑 G1 − G2( 􏼁

4SH1H2r
2 ,

(36)

and we also have

A3,0 �
− 4aS H1H2 + r

2
+ a

2
+ 1􏼐 􏼑S G1 + G2( 􏼁 + a 3r

2
− a

2
+ 3􏼐 􏼑 G1 − G2( 􏼁

8SH1H2r
3 ,

A1,2 � −
− 4aSH1H2 + − r

2
+ a

2
+ 1􏼐 􏼑S G1 + G2( 􏼁 + a r

2
− a

2
+ 3􏼐 􏼑 G1 − G2( 􏼁􏼐 􏼑

8SH1H2r
3 ,

A4,0 � −
1

8SH1H2r
4 − 4r

2
− 2 a

2
+ 1􏼐 􏼑􏼐 􏼑SH1H2 + 2a r

2
+ 1􏼐 􏼑S G1 + G2( 􏼁􏽨

+ r
4

+ 2 a
2

+ 1􏼐 􏼑r
2

+ − a
4

+ 2a
2

+ 1􏼐 􏼑􏼐 􏼑 G1 − G2( 􏼁􏽩,

A2,2 �
1

8SH1H2r
4 2 − a

2
− 1􏼐 􏼑SH1H2 + 2aS G1 + G2( 􏼁􏽨

+ − r
4

+ 2a
2
r
2

+ − a
4

+ 2a
2

+ 1􏼐 􏼑􏼐 􏼑 G1 − G2( 􏼁􏽩,

(37)

and

A0,4 � −
1

8SH1H2r
4 2 2r

2
− a

2
− 1􏼐 􏼑SH1H2 + 2a − r

2
+ 1􏼐 􏼑S G1 + G2( 􏼁􏽨

+ r
4

+ 2 a
2

− 1􏼐 􏼑r
2

+ − a
4

+ 2a
2

+ 1􏼐 􏼑􏼐 􏼑 G1 − G2( 􏼁􏽩,

A5,0 �
1

16SH1H2r
5 4a − 3r

2
− 2􏼐 􏼑SH1H2 + r

4
+ 2 2a

2
+ 1􏼐 􏼑r

2
+ − a

4
+ 4a

2
+ 1􏼐 􏼑􏼐 􏼑S G1 + G2( 􏼁􏽨

+ a 5r
4

+ 10r
2

− a
4

+ 5􏼐 􏼑 G1 − G2( 􏼁􏽩,

A3,2 � −
1

16SH1H2r
5 4a − r

2
− 2􏼐 􏼑SH1H2 + − r

4
+ 2a

2
r
2

+ − a
4

+ 4a
2

+ 1􏼐 􏼑􏼐 􏼑S G1 + G2( 􏼁􏽨

+ − ar
4

+ 2a a
2

+ 2􏼐 􏼑r
2

+ a − a
4

+ 5􏼐 􏼑􏼐 􏼑 G1 − G2( 􏼁􏽩,

A1,4 �
1

16SH1H2r
5 4a r

2
− 2􏼐 􏼑SH1H2 + r

4
− 2r

2
+ − a

4
+ 4a

2
+ 1􏼐 􏼑􏼐 􏼑S G1 + G2( 􏼁􏽨

+ − 3ar
4

+ 2a 2a
2

− 1􏼐 􏼑r
2

+ a 5 − a
4

􏼐 􏼑􏼐 􏼑 G1 − G2( 􏼁􏽩,
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A6,0 � −
1

16SH1H2r
6 − 7r

4
+ 2 − 5a

2
− 3􏼐 􏼑r

2
+ 2 a

4
− 4a

2
− 1􏼐 􏼑􏼐 􏼑SH1H2􏽨

+ a 3r
4

+ 2 a
2

+ 3􏼐 􏼑r
2

+ − a
4

+ 2a
2

+ 3􏼐 􏼑􏼐 􏼑S G1 + G2( 􏼁

+ r
6

+ 3 2a
2

+ 1􏼐 􏼑r
4

+ 3 4a
2

− a
4

+ 1􏼐 􏼑r
2

+ 6a
2

− 3a
4

+ 1􏼐 􏼑􏼐 􏼑 G1 − G2( 􏼁􏽩,

A4,2 �
1

16SH1H2r
6 r

4
+ − 6a

2
− 2􏼐 􏼑r

2
+ 2a

4
− 8a

2
− 2􏼐 􏼑􏼐 􏼑SH1H2􏽨

+ (− a)r
4

+ 2a
3

+ 2a􏼐 􏼑r
2

+ 2a
3

− a
5

+ 3a􏼐 􏼑􏼐 􏼑S G1 + G2( 􏼁

+ − r
6

+ 2a
2

− 1􏼐 􏼑r
4

+ 8a
2

− a
4

+ 1􏼐 􏼑r
2

+ 6a
2

− 3a
4

+ 1􏼐 􏼑􏼐 􏼑 G1 − G2( 􏼁􏽩.

(38)

In addition, we have

A2,4 � −
1

16SH1H2r
6 r

4
+ 2 1 − a

2
􏼐 􏼑r

2
+ 2 a

4
− 4a

2
− 1􏼐 􏼑􏼐 􏼑SH1H2􏽨

+ − ar
4

+ 2a a
2

− 1􏼐 􏼑r
2

+ a − a
4

+ 2a
2

+ 3􏼐 􏼑􏼐 􏼑S G1 + G2( 􏼁

+ r
6

+ − 2a
2

− 1􏼐 􏼑r
4

+ a
4

+ 4a
2

− 1􏼐 􏼑r
2

+ 6a
2

− 3a
4

+ 1􏼐 􏼑􏼐 􏼑 G1 − G2( 􏼁􏽩,

A0,6 �
1

16SH1H2r
6 − 7r

4
+ 2 a

2
+ 3􏼐 􏼑r

2
+ 2 a

4
− 4a

2
− 1􏼐 􏼑􏼐 􏼑SH1H2􏽨

+ 3ar
4

+ 2a a
2

− 3􏼐 􏼑r
2

+ a − a
4

+ 2a
2

+ 3􏼐 􏼑􏼐 􏼑S G1 + G2( 􏼁

+ − r
6

+ 3 − 2a
2

+ 1􏼐 􏼑r
4

+ 3 a
4

− 1􏼐 􏼑r
2

+ − 3a
4

+ 6a
2

+ 1􏼐 􏼑􏼐 􏼑 G1 − G2( 􏼁􏽩,

A7,0 �
1

32SH1H2r
7 4(− 3a − 7)r

4
+ 4 7a − 10a

2
− 8􏼐 􏼑r

2
+ 8 a

4
− 4a

2
+ 3a − 1􏼐 􏼑􏼐 􏼑SH1H2􏽨

+ r
6

+ 4a
2

+ 12a − 1􏼐 􏼑r
4

+ − a
4

+ 8a
3

− 8a
2

+ 24a − 5􏼐 􏼑 r
2

􏼐

+ − 4a
5

+ 3a
4

+ 8a
3

− 12a
2

+ 12a − 3􏼐 􏼑􏼑S G1 + G2( 􏼁

+ (5a + 4)r
6

+ 24a
2

− 5a + 12􏼐 􏼑r
4

+ − a
5

− 12a
4

+ 48a
2

− 25a + 12􏼐 􏼑 r
2

􏼐

+ 3a
5

− 12a
4

+ 24a
2

− 15a + 4􏼐 􏼑􏼑 G1 − G2( 􏼁􏽩,

A5,2 � −
1

32SH1H2r
7 4(3a − 7)r

4
+ 4 11a − 10a

2
− 8􏼐 􏼑r

2
+ 8 a

4
− 4a

2
+ 3a − 1􏼐 􏼑􏼐 􏼑SH1H2􏽨

+ − r
6

+ − 4a
2

+ 12a − 5􏼐 􏼑r
4

+ a
4

+ 8a
3

− 16a
2

+ 24a − 7􏼐 􏼑r
2

􏼐

+ − 4a
5

+ 3a
4

+ 8a
3

− 12a
2

+ 12a − 3􏼐 􏼑􏼑S G1 + G2( 􏼁

+ (− 5a + 4)r
6

+ 24a
2

− 25a + 12􏼐 􏼑r
4

+ a
5

− 12a
4

+ 48a
2

− 35a + 12􏼐 􏼑 r
2

􏼐

+ 3a
5

− 12a
4

+ 24a
2

− 15a + 4􏼐 􏼑􏼑 G1 − G2( 􏼁􏽩,
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A3,4 �
1

32SH1H2r
7 4(5a − 7)r

4
+ 4 15a − 10a

2
− 7􏼐 􏼑r

2
+ 8 a

4
− 4a

2
+ 3a − 1􏼐 􏼑􏼐 􏼑SH1H2􏽨

+ r
6

+ − 8a
2

+ 12a − 5􏼐 􏼑r
4

+ 3a
4

+ 8a
3

− 24a
2

+ 24a − 9􏼐 􏼑r
2

􏼐

+ − 4a
5

+ 3a
4

+ 8a
3

− 12a
2

+ 12a − 3􏼐 􏼑􏼑S G1 + G2( 􏼁

+ (− 3a + 4)r
6

+ − 4a
3

+ 24a
2

− 33a + 12􏼐 􏼑r
4

􏼐

+ 3a
5

− 12a
4

+ 48a
2

− 45a + 12􏼐 􏼑 r
2

+ 3a
5

− 12a
4

+ 24a
2

− 15a + 4􏼐 􏼑􏼑 G1 − G2( 􏼁􏽩,

A1,6 � −
1

32SH1H2r
7 4(3a − 7)r

4
+ 4 19a − 10a

2
− 7􏼐 􏼑r

2
+ 8 a

4
− 4a

2
+ 3a − 1􏼐 􏼑􏼐 􏼑SH1H2􏽨

+ − r
6

+ − 8a
2

+ 12a − 1􏼐 􏼑r
4

+ 5a
4

+ 8a
3

− 32a
2

+ 24a − 11􏼐 􏼑r
2

􏼐

+ − 4a
5

+ 3a
4

+ 8a
3

− 12a
2

+ 12a − 3􏼐 􏼑􏼑S G1 + G2( 􏼁

+ (3a + 4)r
6

+ − 12a
3

+ 24a
2

− 29a + 12􏼐 􏼑r
4

􏼐

+ 5a
5

− 12a
4

+ 48a
2
. − 55a + 12􏼐 􏼑r

2

+ 3a
5

− 12a
4

+ 24a
2

− 15a + 4􏼐 􏼑􏼑 G1 − G2( 􏼁􏽩.

(39)

Using equation (15), we get

f
0
(r) �

1
rSH1H2

XSH1H2 + YS G1 + G2( 􏼁 + Z G1 − G2( 􏼁( 􏼁,

(40)

where

X � x4r
4

+ x2r
2

+ x0􏼐 􏼑, Y � y6r
6

+ y4r
4

+ y2r
2

+ y0􏼐 􏼑,

(41)

and

Z � z6r
6

+ z4r
4

+ z2r
2

+
a
2

− 1􏼐 􏼑x0 + 2ay0

2
⎛⎝ ⎞⎠, (42)

with the coefficients xi, yi, and zi the polynomials in the
coefficients of a, pi,j, and qi,j.

In fact, there are only ten independent parameters be-
tween xi, yi, and zi with respect to pij, qij, and a. In order to
bound the zeros number of numerator of f0(r), it is suf-
ficient to bound the zeros number of

K(r) � X
2
S
2
H

2
1H

2
2 − YS G1 + G2( 􏼁 + Z G1 − G2( 􏼁􏼂 􏼃

2
.

(43)

Since

G1 + G2( 􏼁 G1 − G2( 􏼁 � − 4aS,

G1 + G2( 􏼁
2

� 4 1 − r
2

􏼐 􏼑 + 2G1G2,
(44)

and

G1 − G2( 􏼁
2

� 4 1 − r
2

􏼐 􏼑 − 2G1G2, (45)

we have

K(r) � X
2
S
2
H

2
1H

2
2 − 4Y

2
S
2 1 − r

2
􏼐 􏼑 − 4Z

2 1 − r
2

􏼐 􏼑

+ 8aYZS
2

− 2 Y
2
S
2

− Z
2

􏼐 􏼑G1G2.
(46)

Finally, in order to bound the zeros number of the above
expression, we should bound the zeros of the following
polynomial:

H(r) � X
2
S
2
H

2
1H

2
2 − 4Y

2
S
2 1 − r

2
􏼐 􏼑 − 4Z

2 1 − r
2

􏼐 􏼑 + 8aYZS
2

􏽨 􏽩
2

− 4 Y
2
S
2

− Z
2

􏼐 􏼑
2
G
2
1G

2
2.

(47)

We have
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H(r) � S
2 16Y

4
a
2

􏼐 􏼑S
4

􏽨

+ 4Y
2

r
2

− 1􏼐 􏼑 + 8YZa + X
2

(a − 1)
2

− r
2

􏼐 􏼑 (a + 1)
2

− r
2

􏼐 􏼑􏼐 􏼑
2

􏼒

− 4Y
4 2r

2
− 2􏼐 􏼑

2
− 32Y

2
Z
2
a
2
􏼓S

2

+ 16Z
4
a
2

+ 8Z
2

r
2

− 1􏼐 􏼑 4Y
2

r
2

− 1􏼐 􏼑 + 8YZa + X
2

(a − 1)
2

− r
2

􏼐 􏼑 (a + 1)
2

− r
2

􏼐 􏼑􏼐 􏼑􏼐

+ 8Y
2
Z
2 2r

2
− 2􏼐 􏼑

2
􏼓􏼕.

(48)

)erefore, we get

H(r) � S
2

d30r
30

+ · · · + d2r
2

+ d0􏼐 􏼑, (49)

where di are the polynomials in a, xi, yi, and zi. We conclude
that f0(r) has at most 15 simple zeros. Hence, )eorem 1 is
proved.

4. Conclusion

As we know, the limit cycles and a polynomial differential
system is the well-known 16th Hilbert problem, which to-
gether with the Riemann conjecture are the two problems of
the famous list of 23 problems of Hilbert which remain open.
In addition, a classical way to produce limit cycles is by
perturbing a system which has a center, in such a way that
limit cycles bifurcate in the perturbed system from some of
the periodic orbits of the period annulus of the center of the
unperturbed system; in this work, by using the averaging
theory of first order, we study the bifurcation of limit cycles
from the period annulus surrounding the origin of a class of
cubic polynomial differential systems; when they are per-
turbed inside the class of all polynomial differential systems
of degree six, we have obtained at most 15th limit cycles for
this kind of the problem; in the next study, we will try to
extend the same tools but for higher degrees.
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(e synchronization of states is important to sustain the energy of consumers at any given time for power networks. (is paper
focuses on the multi-area power network model and then analyzes the cluster synchronization of this kind of network comprised
of a third-order chaotic power system. Specifically, we investigate the rich dynamic properties of the single third-order power
system. Furthermore, the multi-area network model with the chaotic power system is proposed and the adaptive controller is
designed to achieve cluster synchronization. Combining analytical considerations with numerical simulations on a small-scale
network, we address the cluster synchronous performance in the multi-area power network. (erefore, our results can provide a
basic physical picture for power system dynamics and enable us to further understand the complex dynamical behavior in the
multi-area power network.

1. Introduction

As we know, modern power networks play a crucial role in
our modern society today. Power networks refer to complex
interconnected systems for routing power via transmission
lines [1–3].

Generally, they consist of a large number of heteroge-
neous elements that operate interlinked, creating a multiplex
network. In this multiplex network, the interlinked nodes
either play the role of an energy generator or an energy
consumer. Furthermore, it operates normally only if the
total demand power matches the total supply from all the
generators [4]. Meanwhile, its dynamical behavior is ex-
tremely important for stable operation of the power net-
work. One of the most common and useful models for
studying power systems is the canonical single machine
infinite bus system, which takes into account its electro-
behavior [5]. Furthermore, the single machine infinite bus
system refers to a power network that corresponds to an
oscillatory power-grid node and a connected system as an
environment. In addition, the Kuramoto-like model is a
standard mathematical model to investigate the dynamics of
the power network [6–9]. However, the Kuramot-like model

does not take into account the physical characteristics of the
power grid. (erefore, most of the existing works have
missed a detailed analysis of the nonlinear dynamic be-
haviors for the third-order power system.

Due to the increasing of renewable energy sources on
power production, questions concerning the limits, quan-
tification, and control of power grid stability face new
challenges. (erefore, the power system represents a dis-
tributed network carrying many small units of energy to the
consumers instead of large units of energy coming from a
few power plants. (is implies that the power system will
undergo a lot of challenges concerning grid topology
[10–12]. As a consequence, the power network will be di-
vided into small areas. As a matter of fact, the real power
network usually has a multi-area structure. However, in
many recent studies on power system dynamics, this special
topology structure is neglected.

Based on the above discussion, in the present paper, we
focus on a more realistic third-order system model to de-
scribe the multi-area power network. (e investigation of
power systems has been recently addressed from a nonlinear
dynamics point of view. Meanwhile, synchronization is vital
for the stable operation and control of the power network,
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and it is necessary to ensure appropriate operation of power
generation [13–16]. From the dynamics viewpoint, syn-
chronization is essential for the proper functioning of the
power network. Its loss can lead to cascading failure [17–19].
In virtue of multi-area structures, new patterns of syn-
chronization are relevant [15]. In particular, cluster syn-
chronization plays a crucial role on keeping the power
balance [20–24]. (is synchronous pattern implies that
nodes in different areas can achieve different synchronous
states to cope with energy imbalance. (us, we are going to
address the cluster synchronization in the multi-area
network.

(is paper is organized as follows. First, we present a
third-order power system model in Section 2. Afterwards,
the characteristics of dynamic behavior for a single power
system are investigated in Section 3. We propose the multi-
area power network model and analyze the cluster syn-
chronization in Section 4. Finally, we present our results,
followed by a summary in Section 5.

2. Analysis of Dynamics of the Third-Order
Power System

2.1. e ird-Order Power SystemModel. (e simple third-
order power model is illustrated in Figure 1, which can be
viewed as a generalized case. In terms of the power system,
Vt denotes generator, xt represents transformer reactance,
xL is the transmission line reactance, and Vs and Vt denote
infinite bus voltage and synchronous generator terminal
voltage, respectively.

In what follows, we will focus on the third-order single
machine infinite bus system with the excitation mechanism
model, which is given by

_δ � ω0ω,

_ω �
1
H

Pm − Dω −
EVs

xdΣ′
sin δ􏼠 􏼡,

_E �
1

Td0′
−

xdΣ

xdΣ′
E +

xd − xd
′

xdΣ′
Vs cos δ + Ef􏼢 􏼡,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where δ denotes the generator rotor angle, ω represents the
deviation of rotor angular velocity from synchronous an-
gular velocity, E is the transient voltage, ω0, D, H denote
synchronous angular velocity, damping coefficient, and
inertia constant, respectively, Ef is the excitation voltage,
and Pm represents the mechanical power of generator.

Without loss of generality, the third-order single ma-
chine infinite bus system can be cast into a simplified model,
namely,

_δ � ω0ω,

H _ω � − cω + Pm − BVsE sin δ,

α _E � − (1 + XB)E + XBVs cos δ + Ef.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(2)

For convenience, we set B � 1/xdΣ′ , X � xd − xd
′, D � c,

Td0′ � α, xdΣ/xdΣ′ � 1 + XB.

Moreover, we select the parameters B � 1, X � 1, α �

2, Ef � 1, Vs � 1. (us, we can obtain the third-order single
machine infinite bus system from equation (2):

_x � dy,

_y � − ay + b − cz sin x,

_z � − z + 0.5 cos x + 0.5,

⎧⎪⎪⎨

⎪⎪⎩
(3)

where x denotes the generator rotor angle, y represents the
transient voltage, and z is the relative speed. In what follows,
we aim to study the rich dynamic behavior of system (3).

2.2. Basic Properties of the System. In this section, the chaotic
dynamics of the third-order power system are analyzed.
According to the Wolff algorithm, the largest Lyapunov
exponents of the system are λ1 � 0.1599, λ2 � − 0.0264, λ3 �

− 0.9935, and the system displays chaotic state. We consider
the vector field divergence of the system, and one can obtain

∇V �
z _x

zx
+

z _y

zy
+

z _z

zz
� 0 − a − 1 � − a − 1. (4)

(us, we can get

􏽘

3

i�1
λi � Tr(J) � divV. (5)

(en,

divV � ∇V �
z _x

zx
+

z _y

zy
+

z _z

zz
� Tr(J)

� − a − 1 � λ1 + λ2 + λ3 � − 0.86.

(6)

In particular, dv/dt � e− (a+1) � e− 0.86. If a + 1> 0, system
(3) will be a dissipative system.

Furthermore, we can calculate the Kaplan–Yorke di-
mension for chaotic system (3):

D � j +
1

λj+1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
􏽘

j

i�1
λj � 2 +

0.1599 − 0.0264
0.9935

� 2.134. (7)

(at is, system (3) displays chaotic behavior.
In order to better understand the dynamic behavior of

the third-order power system, we show the phase diagrams
and the evolution of variables of the system under different
parameters.

Firstly, we take the parameter
(a, b, c, d) � (0.5, − 0.08, 1, 1) and the initial values (x, y, z)

� (1, 0.1, 1), and the system is in periodic state, as shown in
Figures 2(a) and 2(b).

In what follows, we select the parameter (a, b, c, d) �

(0.5, 0.12, 1, 1) and the initial value (x, y, z) � (1, 0.1, 1); as
can be seen from Figures 3(a) and 3(b), one can find that the
system converges to a fixed point. (at is, the values of
parameters play an important role on the dynamics for the
power system.
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2.3. Analysis of Bifurcation Condition for the Power System.
In this section, we focus on investigating the bifurcation
behavior of the third-order chaotic power system. Firstly,
according to equation.(3), the Jacobian matrix can be cal-
culated as follows:

J �

0 ω0 0

−
BVsE0 cos δ0

H

− c

H
−

BVs sin δ0
H

−
XBVs sin δ0

α
0 −

1 + XB

α

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (8)

where (δ0, 0, E0) denotes the equilibrium point of system
(3), and from equation (8), we get

|λE − J| �

λ − ω0 0

− BVsE0 cos δ0
H

λ +
c

H

BVs sin δ0
H

XBVs sin δ0
α

0 λ +
1 + XB

α

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

� 0. (9)

Based on the above algebraic equation, we can obtain
that

λ3 +
H(1 + XB) + cα

Hα
􏼠 􏼡λ2 +

c(1 + XB) + αω0BVsE0 cos δ0
Hα

λ

+
ω0BVs(1 + XB)E0 cos δ0 − XBVssin

2δ0
Hα

� 0.

(10)

In the following, we suppose that

λ3 +
H(1 + XB) + cα

Hα
􏼠 􏼡λ2 +

c(1 + XB) + αω0BVsE0 cos δ0
Hα

λ

+
ω0BVs(1 + XB)E0 cos δ0 − XBVssin

2δ0
Hα

� λ3 + pλ2 + q
2λ + pq

2
,

(11)

where

p �
H(1 + XB) + cα

Hα
,

q
2

�
c(1 + XB) + αω0BVsE0 cos δ0

Hα
,

pq
2

�
ω0BVs(1 + XB) + cα

Hα
·
c(1 + XB) + αω0BVsE0 cos δ0

Hα

�
ω0BVs(1 + XB)E0 cos δ0 − XBVssin

2δ0
Hα

(1 + XB)Hc
2

+ αHω0BVsE0 cos δ0 +
H

2
(1 + XB)

2

α
􏼠 􏼡c

+ ω0XB
2
V

2
s sin

2δ0 � 0.

(12)

(us, the equation of bifurcation curve can be described
by the following equations:

Pm � BVsE0 sin δ0,

(1 + XB)E0 � Ef + XBVs cos δ0,

(1 + XB)Hc
2

+ αHω0BVsE0 cos δ0 +
H

2
(1 + XB)

2

α
􏼠 􏼡c + ω0XB

2
V

2
s sin

2δ0 � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(13)
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By means of bifurcation diagram, dynamic behaviors
with varying system parameter a are investigated. Let the
system parameter a vary from − 0.2 to 1 with the step size of
0.001, and the other parameters are taken as
b � 0.5, c � 1, d � 1; the bifurcation diagram can provide an
overall perspective of the dynamics of the system, which is
depicted in Figure 4.

From the bifurcation diagram, it can be observed that
with the increase of a from − 0.2, system (3) is chaotic over

most of the scope a ∈ [− 0.2, − 0.1], and when a ∈ [0.2, 1], the
system converges to a fixed point. With the value of a in-
creasing from − 0.1, system (3) presents Hopf bifurcation.

3. Analysis ofMulti-AreaNetworkCoupledwith
Chaotic Power System

We are witnessing a time of drastic changes in the operation
of power grids caused by the necessity to reduce global
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G

Figure 1: Schematic diagram of the single machine infinite bus system.
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Figure 2: (a) Phase diagram of system (3). (b) (e evolution of the state variables with time.
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Figure 3: (a) Phase diagram of system (3). (b) (e evolution of the state variables with time.
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warming caused by large emission of carbon dioxide gases.
(us, more and more decentralized renewable energy
sources are replacing centralized power generation. (e
strategy can change the effective grid structure from a fully
connected to a locally connected one. Hence, large-scale real
power networks will be divided intomany areas.(is implies
that the power network usually has multi-area structure.

Generally, the interactions between nodes (generators and
consumers) in the same area are identical and those in
different areas are nonidentical. Hence, there exist diverse
coupling forms in the multi-area power network. For better
describing this kind of phenomenon, the multi-area power
network model is presented. Also, the schematic diagram of
the multi-area power network is shown in Figure 5. Here, we
suppose that the node’s dynamics in different areas are
identical, which is described as system (3).

Furthermore, alternating voltage of the power plants is
required to be synchronized around a certain specific
frequency; otherwise, severe problems like large blackouts
may be occur in a large area. (us, cluster synchronization
is essential for the proper functioning of the multi-area
power network. In the following, we will investigate the
multi-area power network model and its cluster
synchronization.

3.1. eMulti-AreaPowerNetworkModel. In this section, we
consider a complex multi-area power network with M areas
and each node is a third-order power system. Suppose that
the kth area is composed of Nk nodes. (en, the general
multi-area power network can be described as

_xi(t) � Fk _xi(t)( 􏼁 + 􏽘

Nk

j�1,j≠i
aijc

kk
ij xj(t) − xi(t)􏼐 􏼑 + 􏽘

M

l�1,l≠k
􏽘

Nl

j�1
aij(t) c

kl
ijxj(t) − c

l
ijxi(t)􏼐 􏼑

i � 1, 2, . . . , Nk, k � 1, 2, . . . , M,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(14)

where xk
i � (xk

i1, xk
i2, . . . , xk

ink
)T ∈ Rnk denotes the state vec-

tor of the ith node in the kth area. Fk describes the node’s
dynamics of the k th area. (e matrix
Ckk � diag(c1kk, c2kk, . . . , c

nk

kk) is the inner coupling matrix
which denotes the internal connection in k th area, and Ckl �

(crs
kl) ∈ Rnk×nl and Cl

kk � diag(c
l(1)
kk , c

l(2)
kk , . . . , c

l(nk)

kk ) are the
inner coupling matrices between the k th and l th areas; if the
r th element of xi(t) in the k th area is influenced by the l th
element of xj(t) in the l th, then c

l(r)
kk ≠ 0, crs

kl ≠ 0; otherwise,
c

l(r)
kk � 0, crs

kl � 0. Also, matrix A � (aij)N×N denotes the to-
pology structure of the entire multi-area power network,
which is described as follows: if there exists a connection
between node i and j, then aij � aji > 0(i≠ j); otherwise,
aij � aji � 0(i≠ j).

Suppose that the sets of subscripts of these areas are G1 �

1, 2, . . . , N1􏼈 􏼉, G2 � N1 + 1, N1 + 2, . . . , N1 + N2􏼈 􏼉, . . . , GM

� N1 + · · · + NM− 1 + 1, · · · , N􏼈 􏼉, where N1 + N2

+ · · · + NM � N. (e coupling matrix A can be written in the
following form:

A �

A11 A12 · · · A1M

A21 A22 · · · A2M

⋮ ⋱ ⋮

AM1 AMM

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (15)

where App ∈ Rrp×rp (p � 1, 2, . . . , M) show the coupling
pattern in the same area and Apq ∈ Rrp×rq

(p � 1, 2, . . . , M, q � 1, 2, . . . , M, p≠ q) are the coupling
schemes among different areas.

In order to achieve cluster synchronization of the multi-
area power network, the control inputs ui(t) ∈ Rn are added
and the controlled multi-area power network can be char-
acterized by the following equation:

_xt(t) � Fk _xt(t)( 􏼁 + 􏽘

Nk

j�1,j≠i
aij(t)c

kk
ij xj(t) − xi(t)􏼐 􏼑 + 􏽘

M

l�1,l≠k
􏽘

Nl

j�1
aij(t) c

kl
ijxj(t) − c

kl
ijxj(t) − c

l
ijxi(t)􏼐 􏼑 + ui(t)

i � 1, 2, . . . , Nk, k � 1, 2, . . . , M.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(16)
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Figure 4: Dynamic behaviors of the chaotic third-order power
system with a.
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Define the synchronous errors

ei(t) � xi(t) − sk(t) i � 1, 2, . . . , Nk( 􏼁, (17)

where sk(t) is a solution of an isolated node in the kthand
satisfies _sk(t) � Fk(sk(t)). (e network can realize the
cluster synchronization, if limt⟶∞‖ei(t)‖ � 0, i �

1, 2, . . . , N.

3.2. Cluster Synchronization of Multi-Area Power Network.
For simplicity, we suppose that all the inner coupling pat-
terns between different areas are identical, and equation (14)
can be derived as

_xi(t) � Fk xi(t)( 􏼁 + 􏽘

Nk

j�1,i≠j
aij(t)c

kk
ij xj(t) − xi(t)􏼐 􏼑 + ui(t)

i � 1, 2, . . . , Nk, k � 1, 2, . . . , M.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(18)

According to the above definition of the error variables,
we can get the error dynamical system as follows:

ei(t) � Fk xi(t)( 􏼁 − Fk si(t)( 􏼁

+ 􏽘

Nk

j�1
aijc

kk
ij ej(t) + 􏽘

N

j�1
aijc

kk
ij sj(t) + ui(t).

(19)

Since the above coupling condition holds, one can obtain

􏽘

N

j�1
aijc

kk
ij sj(t) � 0, i ∈ Gϕi

− Gϕi
, (20)

where Gϕi
represents all the nodes in the area and Gϕi

represents the nodes in other areas.
Subsequently, the control scheme is given via adaptive

pinning control idea. (e adaptive controller is designed as
follows:

ui(t) � − 􏽘

N

j�1
aijc

kk
ij sj(t) − qi(t)c

kk
ij xi(t) − sk(t)( 􏼁, i ∈ 􏽥ϕk, k � 1, 2. . . . , M

0, otherwise,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(21)

where the coupling strength aij(t) � (a1
ij(t),

a2
ij(t), . . . , an

ij(t))T between the nodes and the feedback gains
adopts the following adaptive strategy:

_aij(t) � β xj(t) − sj(t)􏼐 􏼑 − xi(t) − si(t)( 􏼁
�����

�����, i ∈ 􏽥ϕk, k � 1, 2, . . . , M,

_qi � α ei(t)
����

����
2
2,

⎧⎪⎨

⎪⎩
(22)

where α> 0, β> 0 are the adaptive gains.

Theorem 1. For multi-area power network (18), cluster
synchronization can be achieved under designed controllers
(21) and (22).

Proof. Construct a Lyapunov function as

V(t) �
1
2

􏽘

N

i�1
ei(t)

T
ei(t) +

1
2α

􏽘

N

i�1
qi(t) − q

∗
i( 􏼁

2
+

1
2β

􏽘

N

ε
bij − aij􏼐 􏼑

T
bij − aij􏼐 􏼑. (23)

area 3

area 2area 1

Figure 5: (e multi-area power network topology structure.
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(en, the derivative of V(t) can be calculated as follows:

_V � 􏽘
N

i�1
ei(t)

T
_ei(t) +

1
α

􏽘

N

i�1
qi(t) − q

∗
i( 􏼁 _qi(t) +

1
β

􏽘

N

ε
bij − aij􏼐 􏼑

T
_aij,

� 􏽘
M

k�1
􏽘

Nk

i�1
e

T
i (t) Fk xi(t)( 􏼁 − Fk si(t)( 􏼁 + 􏽘

N

j�1
aijc

kk
ij ej(t) − qic

kk
ij xi − sk(t)( 􏼁⎡⎢⎢⎣ ⎤⎥⎥⎦

+ 􏽘
N

i�1
qi(t) − q

∗
i( 􏼁e

T
i (t)ei(t) − 􏽘

ξ
bij − aij􏼐 􏼑

T
xj(t) − sj(t)􏼐 􏼑 − xi(t) − si(t)( 􏼁

�����

�����

≤ωk 􏽘

M

k�1
􏽘

Nk

i�1
e

T
i (t)ei(t) + 􏽘

M

k�1
􏽘

Nk

i�1
e

T
i (t) 􏽘

N

j�1
aijCkkej(t) − q

∗
i Ckkei(t)⎡⎢⎢⎣ ⎤⎥⎥⎦

− 􏽘
ξ

bij − aij􏼐 􏼑
T

xj(t) − sj(t)􏼐 􏼑 − xi(t) − si(t)( 􏼁
�����

�����

� 􏽘
M

k�1
􏽘

Nk

i�1
wke

T
i (t)ei(t) + 􏽘

n

j�1
cj􏽥e

T
j (t)P􏽥ej(t) − 􏽘

n

j�1
cj􏽥e

T
j (t)Q􏽥ej(t)

− 􏽘
ξ

bij − aij􏼐 􏼑
T

xj(t) − sj(t)􏼐 􏼑 − xi(t) − si(t)( 􏼁
�����

�����

≤ 􏽘
n

i�1
􏽥e

T
j (t) wiIN + cj(P − Q)􏼐 􏼑􏽥ej(t) − 􏽘

ξ
bij − aij􏼐 􏼑

T
xj(t) − sj(t)􏼐 􏼑 − xi(t) − si(t)( 􏼁

�����

�����,

(24)

where P � A⊗Ckk, Q � q∗i Ckk.
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Figure 6: (e evolution of state variables in the first area and the synchronization error.
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(us, there exists a positive constant bij larger than the
corresponding coupling strength aij, i.e.,

􏽘
ξ

bij − aij􏼐 􏼑
T

ej(t) − ei(t)
�����

�����≥ 0. (25)

(erefore, one can take sufficiently large positive con-
stants q∗i , i.e., _V< 0. (at is, cluster synchronization can be
achieved via designed adaptive controllers (21) and (22).

4. Numerical Simulations

In this section, several numerical examples are presented
to verify the theoretical results about cluster synchroni-
zation in the multi-area power network. In the following
simulations, we take the network topology structure
shown in Figure 1 as example. Moreover, we select the

node dynamics of the different area as the third-order
power system:

_xi1 � dxi2,

_xi2 � − axi2 + b − cz sinxi1,

_xi3 � − xi3 + 0.5 cosxi1 + 0.5,

⎧⎪⎪⎨

⎪⎪⎩
(26)

with i � 1, 2, . . . , 18.
Figures 6–8 show the evolution of state variables and the

error time of each area; from these figures, one can observe
that the different areas synchronize to different chaotic
orbits and errors evolve toward zero. An intuitive repre-
sentation of the evolution of the components of the state
variables of the multi-area network can be found in
Figures 6(a)–8(a). In these figures, the top subfigures show
the amplitudes of state variables in different areas and the
bottom subfigures represent the corresponding evolution of

2 4 6 8 10

50

55

60

t

10
20
30
40
50

45

x i3
 (t

)

0 2 4 6 8 10
t

x i3
 (t

)

0

20

40

60

(a)

2 4 6 8 10

4

6

8

10

12

14

16

t

2

18
e i3

 (t
)

-3

-2

-1

0

1

2

3

4

5

6

(b)
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state variables. In addition, Figures 6–8 show the state
trajectories of the nodes in different areas with different
initial conditions. As can be seen from these figures, state
variablies evolve in the same direction and get closer with
time and finally coincide under the designed controller. It
implies that cluster synchronization can be realized for the
multi-area power network.

5. Conclusions

As we know, real power networks have complex structures.
(is paper investigated the multi-area power network to
model the network topology underlying high-voltage
transmission grids, while the single node dynamics are
described by the third-order chaotic power system. We
studied the rich dynamics of the single third-order system
via theoretical analysis and numerical simulations. (e
dynamic behaviors of the system are depicted by means of
the phase portrait andHopf bifurcation analysis. In addition,
it is noted that real power networks usually have multi-area
structure. (erefore, we analyze the cluster synchronization
behavior of the multi-area power network. Furthermore, we
presented an adaptive feedback control scheme for achieving
cluster synchronization.

Even though we investigated these phenomena in a
small-scale multi-area power network, we would like to
emphasize that small-scale power network structure is in-
deed in reality.
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