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The interest in the nanoscale properties of low-dimensional
magnetic systems has grown exponentially during the last
decades and has attracted the attention of both experimen-
talists and theorists. The state of the art of these investiga-
tions has indeed allowed to give valuable insights into the
underlying physics of complex magnetization dynamics
driven by magnetic fields, electric currents and thermal
effects. At the same time, such studies have found, in rela-
tively short times, several applications at industrial level in
the field of spintronics and magnonics as magnetic memo-
ries, microwave oscillators, modulators, sensors, logic gates,
diodes and transistors.

The goal of this special issue is to offer a variety of recent
developments on this topic by gathering contributions aris-
ing from several specialists in the field of nanomagnetism.
The strength of this issue lies indeed on its “variety”: the
properties of these systems are, in fact, investigated from the
viewpoint of physicists, engineers and mathematicians. Also,
the issue encloses studies carried out at both mesoscopic and
atomic scales, as well as results of both theoretical approaches
(analytical, numerical and, in some cases, even “hybrid”) and
experimental observations.

The covered topics range from the micromagnetic mod-
eling of domain wall motion, dynamics of vortex structures,
phase-locking phenomena in spintronic oscillators, exper-
imental techniques for realizing heterostructures based on
magnon-induced spin transfer torque, band structure and
exchange field in the Landau-Lifshitz equation for magnonic
crystals, gap and gapless structures in fractional quantum
Hall effect, semiclassical description of anisotropic magnets
and classical critical behaviour of Heisenberg ferromagnets.
More specifically, within the subject dealing with domain

walls, for example, the structure of complex cross-tie/vortex
wall structures in soft films has been studied in detail by using
micromagnetic simulations whereas the influence of the
Rashba spin-orbit coupling on the current-induced dynam-
ics has been investigated analytically. Regarding the exchange
interaction governing the dynamics in magnonic crystals,
a full analytical calculation of the exchange field acting on
spin-wave dynamics from the microscopic Heisenberg model
has been performed. Attention has been also devoted to
the study of thermodynamics in the case of classical planar
ferromagnets close to the zero-temperature critical point.

Two reviews are also included in this special issue. The
first one deals with two hybrid micromagnetic tools, based
on Hamiltonian and Lagrangian approaches, to model the
spin-dynamics in laterally confined magnetic systems. The
second one is mostly devoted to the micromagnetic analysis
of static and dynamic properties of magnetic domain walls in
materials exhibiting perpendicular anisotropy.
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The nonautonomous dynamics of spin-torque oscillators in presence of both microwave current and field has been numerically
studied in nanostructured devices. When both microwave current and field are applied at the same frequency, integer phase locking
at different locking ratio is found. In the locking region, a study of the intrinsic phase shift between the locking force (current or
field) and the giant magnetoresistive signal as a function of the bias current is also exploited.

1. Introduction

In the last years, the effects due to a direct transfer of the spin
angular momentum [1–4] in nanomagnets (magnetization
reversal [5, 6] or persistent oscillation of the magnetization
[7, 8]) have opened new perspectives in the field of
nanotechnology. In particular, one of the most promising
applications is the possibility to obtain a competitive gen-
eration of nanoscale microwave oscillators, namely, spin-
transfer torque oscillators (STOs) [9, 10]. Nowadays, STO is
promising from a technological point of view being one of
the smallest auto-oscillators observed in nature. It exhibits
properties such as frequency tunability on bias current and
field and narrow linewidth. To find practical application,
STOs have to improve their output power. Some years ago,
some researchers demonstrated that synchronized oscillators
provided increased output power [11, 12]. This effect, which
is receiving a great deal of attention due to its potential
applications in telecommunications, has been studied both
experimentally and theoretically for the purpose of under-
standing and realizing mutual synchronization between two
or more STOs for microwave source applications. Later, other
studies showed the synchronization of serially connected

STOs governed by phase locking to a microwave current
offering a valid approach to fabricate STOs for output power
levels closer to 1 μW [13, 14].

The synchronization phenomenon is based on the well-
known property that when the external frequency fRF of a
“weak” microwave current or field is close to the free running
oscillation frequency f0 of the STO, the self-oscillation
mode moves and locks to the external frequency. Locking
phenomena are also present for the ratio r = fRF/ f0 close
to all integers (r = 1, 2, 3, etc.) and several rational values
[15].

We recently studied the injection locking phenomenon
based on the application of a microwave field on per-
pendicular materials [16]. These systems mainly operate
under “weak” microwave signal regime (the power of
the microwave signal is negligible compared to the self-
oscillation one) [9, 16–18].

In this work, by means of a micromagnetic study, the
nonautonomous dynamical behavior of STO in presence of
microwave signal composed by the simultaneous application
of microwave current density JAC and field hAC (both at the
same frequency) is studied. Also, the influence of a static field
on the frequency behavior is investigated.
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Figure 1: (a) Frequency and (b) power amplitude versus dc current density when an out-of-plane field of 250 mT tilted 10◦ versus x-
directionis applied. No microwave source is applied. Inset of (a): sketch of the structure.

2. Device and Numerical Details

We studied the dynamical behavior of exchange bias
spin-valves composed by IrMn(8 nm)/Py(10 nm) (polar-
izer)/Cu(10 nm)/Py(4 nm) (free layer) with elliptical cross-
sectional area (120 nm × 60 nm) (see inset of Figure 1(a)).
A Cartesian coordinate system has been introduced, where
the x- and the y-axes are, respectively, related to the easy and
hard in-plane axes of the ellipse. Our numerical experiment
is based on the numerical solution of the Landau-Lifshitz-
Gilbert-Slonczweski (LLGS) equation [1–3]. In addition to
the standard effective field (external, exchange, and self-
magnetostatic), the Oersted field and the magnetostatic
coupling with the polarizer are taken into account. The
resulting equation (LLG + S) is expressed as

dm
dτ

= − m× heff +
α

Ms

(
m× dm

dτ

)
− χm× (m× p

)
, (1)

where m = M/MS and heff = Heff /MS are the dimensionless
magnetization vector and the effective field, respectively,
τ = γ0Mst is the dimensionless time, γ0 is the gyromagnetic
ratio, and Ms is the saturation magnetization of the free
layer. The first term on the right-hand side of (1) represents
the precessional torque around the effective field, whereas
the second one is the phenomenological dissipation term, α
being the so-called Gilbert parameter. The third term in (1)
is the dimensionless Slonczewski spin-transfer torque, where
p = P/Ms represents the dimensionless magnetization in the
pinned layer, and the prefactor χ is given by

χ = μB
γ0

Japp

M2
s ed

g
(

m, p
)
, (2)

where e and μB are the electric charge and the Bohr magneton
respectively, Japp is the current per unit area (density current),
and d is the thickness of the free layer, and g(m,p) is the
polarization function depending on the relative orientation
of the magnetizations [1–3].

For a complete model description of the numerical tech-
niques see also [19–22]. Typical parameters for the Py have
been used: saturation magnetization MS = 650 × 103 A/m,
exchange constant A = 1.3× 10−11 J/m, damping parameter
α = 0.02, and polarization factor η = 0.3 [1–3]. The bias field
is applied out-of-plane (z-direction) with a tilted angle of 10◦

along the x-axis. The polarizer is considered fixed along the
x-direction. To study the locking, we consider a microwave
current JRF = JM sin(2π fACt + π/2) (JM ≤ 2 × 107 A/cm2)
and a microwave field linearly polarized at π/4 in the x-y
plane hRF = hM sin(2π fACt + π/4)x̂ + hM sin(2π fACt + π/4) ŷ
(hM ≤ 3 mT). This microwave field can be generated by
using the experimental technique developed in [25]. All the
computations have been performed with no thermal effects.

3. Micromagnetic Results and Discussion

In order to characterize the device behavior, first of all we
analyzed the STO in the free running regime. We observe
dynamical regime in a wide range of current density for bias
field larger than 180 mT. Here we discuss in detail data for a
bias field of 250 mT, but qualitative similar results have been
also observed for 200 and 300 mT.

In order to characterize the oscillator regime of the
device, we swapped the dc current exceeding the critical
current value (to obtain dynamics regime, threshold current
density was J = 3 × 107 A/cm2) up to current values,
where oscillation regime is degraded by noise. Frequency
and power behavior of the nano-oscillator with respect to
the current density is shown in Figures 1(a) and 1(b) (no
microwave signal). The frequency curve f0 as a function of
J presents red shift from the critical current up to J1 =
−3.5 × 107 A/cm2, where the dynamics is characterized by
an in-plane oscillation axis. For |J| > |J1| the magnetization
precesses around an out-of-plane axis and the blue shift
is achieved. The discontinuities observed in the oscillation
frequency are related to jumps of the oscillation axis that
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Figure 2: Response of the STO self-oscillation forHDC = 250 mT and JDC = −5×107 A/cm2 as a function of the microwave source frequency
when (a) JRF = 2× 107 A/cm2, (b) HRF = 1 mT, and (c) RF current JRF = 1× 107 A/cm2 and RF field HRF = 1 mT are applied together at the
same frequency. The locking regions for the frequency ratio of 1 : 1 and 2 : 1 are also visible.

correspond to transitions between strongly nonlinear oscilla-
tion modes. Similar discontinuities have been also observed
in some experimental work [23]. In addition, we performed
micromagnetic simulations increasing the out-of-plane static
field up to 600 mT, and we observed that for out-of-plane
bias field larger than 400 mT the red-shift zone disappears,
jumps are softer, and the synchronization data achieved are
similar to results already published in the literature (see e.g.,
[10] for a review). At larger field (>600 mT), the polarizer
is moved from the x-direction towards the out-of-plane z-
direction that might generate additional noise showing not
coherent precessional states.

Figure 1(b) shows the power versus current behavior.
Nonlinear power strongly increases at low current and for
current values greater than 4× 107 A/cm2 is about constant.

We systematically studied the locking to the first har-
monic (the same of the self-oscillation) in the blue shift
region as a function of the JM and hM . Figure 2 shows the
precession frequency of the GMR signal as a function of
the microwave source frequency in two cases: RF current
only and RF current and field together (for HDC = 250 mT
and JDC = −5 × 107 A/cm2). We found different locking
regions at the locking ratio 1 : 1, 2 : 1, and 3 : 1 (in the last
case only when the microwave field component is applied,
not shown here). Typically, the locking region is much larger
when the microwave force is a field (or a combination
of current and field). In fact, in the case of current we
found a locking region of about 150 MHz (1 : 1) and 50 MHz
(2 : 1), whereas no locking on the third harmonic is found.
Microwave field provides a locking region larger than 1 GHz
and, since driving force breaks the oscillation symmetry, the
1 : 1 synchronization region has a specific asymmetric shape.
Then, whereas for small forcing signal the synchronization
region can be described by an analytical theory (symmetric
tongue where the locking region increases linearly with force

amplitude) [24], it cannot be described analytically when
increasing the forcing signal and their precise determination
requires necessarily specific numerical techniques.

Figure 3(a) summarizes the Arnold tongue (J = −5 ×
107 A/cm2) computed up to JM = 1 × 107 A/cm2 (hM =
0 mT) and then increasing hM up to 3 mT with JM =
1 × 107 A/cm2 held unchanged. The border lines have been
computed considering the lower (in the left part) and
higher (in the right part) microwave frequency where the
phase locking is achieved. In the low regime of microwave
source, the Arnold tongue is related to the only application
of the microwave current, which can be considered as
a “weak” microwave signal. In fact, such a signal gives
rise to symmetric synchronization region (no hysteresis is
observed) with a locking band linearly dependent on the
force locking.

When both microwave current and field are applied
simultaneously at the same frequency, the nonautonomous
response becomes more complicated. The presence of an
additional weak microwave field gives rise to increasing of the
locking region from 150 MHz at hM = 0 mT to 1.3 GHz for
hM = 1 mT. As can be observed the locking region is strongly
asymmetric. This is caused by the strong nonlinearity of
the dependence of the auto-oscillation frequency on the
oscillation power [25].

Figure 3(b) shows the phase difference between the
magnetization oscillation and the microwave source (neg-
ative angle means magnetization in delay with respect
to microwave source, Ψ being the phase of the natural
precession of the magnetization and Ψe the force phase)
when the microwave component is applied at the same
frequency of the free precession one. As shown, typically in
both cases (microwave field or current), the phase increases
with current and decreases after a maximum value. The
phase shift depends on the initial detuning, and it goes to
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Figure 3: (a) Arnold tongue computed for HDC = 250 mT and J = −5×107 A/cm2 varying the magnitude of RF current and field. (b) Phase
difference between external force (current or field) and output magnetization as a function of dc current when an RF source at the same
frequency of the free precessional one is applied. Filled-red circle: RF current, white circle: RF field.

zero only if there is no detuning, that is, in the center of
the synchronization region. It should be remembered that
the phase difference depends on the initial phase of the
force and the way it affects the oscillator. We emphasize
here that the phase locking implies that phase difference will
be kept bounded inside a finite range of detuning, that is,
within the synchronization region. In this case the microwave
current and field give the same qualitative behavior to
the oscillator, but the phase difference is translated by
an angle of about 120◦. As expected, phase difference
between microwave source and the magnetization precession
follows the frequency behavior. It initially decreases with dc
current amplitude (precession frequency decreases) and then
increases with dc current (precession frequency increases)
up to current values of the order of 7 × 107 A/cm2. After
that current value, phase shift jumps about 180◦, typically
this is due to the different oscillation mode from in-plane
to out-of-plane mode. Lastly, the phase difference gradually
increases following the frequency slow rising with dc current
magnitude [26].

In the locking region an intrinsic phase shift Ψi,
computed as the difference between the phase of the self-
oscillation Ψ and the phase of the microwave current Ψe, is
found.

Figure 4 summarizes Ψi as a function of the microwave
frequency, as can be observed a linear relationship between
Ψi and fAC is achieved with a range of Ψi which can cross
0 or π/2 depending on the bias current density. As reported
by Slavin and Tiberkevich [10], analytical formulation of the
phase difference in the locking region is given by

Φ0 = arcsin

(
fAC − f0
Δ f

)
− arctan(υ), (3)

where υ = (N/(G+ − G−)) is the nonlinear frequency
shift. We found N which is characterized from two different
values of nonlinear frequency shift N = 2π(df /dp), p is
the oscillation power, and G+ and G− are the non-linear
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Figure 4: Intrinsic phase shift Ψi between the phase of self-
oscillation and microwave source (current or field) in the locking
region for JDC = 5× 107 A/cm2.

damping coefficients as in [10]. Phase difference is strongly
dependent on the frequency in the locking region [27]. For
all the cases, the phase difference decreases from left to right
in the Arnold tongue. In particular, the slope of the curve is
strong for RF current locking whereas it is more soft for RF
field, a result also in substantial agreement with the analytical
theory. Considering (3) for RF applied field, the locking
bandwidth and nonlinear frequency shift are larger with
respect to ac current. A good agreement between analytical
and numerical data is found.
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4. Conclusions

In summary, we have studied micromagnetically the non-
linear behavior of spin-torque nano-oscillators in locking
regime driven by microwave current and field. We found
a large locking region at different harmonics when RF
field is applied. The effect of the static applied field is
also studied. Finally, we showed and explained the intrinsic
phase shift due to the difference between microwave source
and magnetization precession inside the locking region,
also comparing our numerical data with a recent analytical
theory.
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Two micromagnetic tools to study the spin dynamics are reviewed. Both approaches are based upon the so-called dynamical
matrix method, a hybrid micromagnetic framework used to investigate the spin-wave normal modes of confined magnetic systems.
The approach which was formulated first is the Hamiltonian-based dynamical matrix method. This method, used to investigate
dynamic magnetic properties of conservative systems, was originally developed for studying spin excitations in isolated magnetic
nanoparticles and it has been recently generalized to study the dynamics of periodic magnetic nanoparticles. The other one, the
Lagrangian-based dynamical matrix method, was formulated as an extension of the previous one in order to include also dissipative
effects. Such dissipative phenomena are associated not only to intrinsic but also to extrinsic damping caused by injection of a spin
current in the form of spin-transfer torque. This method is very accurate in identifying spin modes that become unstable under
the action of a spin current. The analytical development of the system of the linearized equations of motion leads to a complex
generalized Hermitian eigenvalue problem in the Hamiltonian dynamical matrix method and to a non-Hermitian one in the
Lagrangian approach. In both cases, such systems have to be solved numerically.

1. Introduction

In these last years, great attention has been given to the study
of magnetization dynamics in laterally confined magnetic
systems. It is well know that spin excitations are quantized
due to the lateral confinement. The oscillations are the so-
called normal modes, which represent a pattern of motion
given by all the parts of the system oscillating sinusoidally
with the same frequency and with the same phase relation.
In this last decade, analytical models have given important
contributions to understand the frequency spectrum of
normal modes for different ground-state magnetizations [1–
11]. However, some limitations due to the assumptions made
for the determination of the equilibrium state, the boundary
conditions, and the calculation of the energy contributions
to normal modes dynamics are still present.

On the other hand, a lot of efforts have been devoted to
develop micromagnetic codes having the aim of calculating

very precisely different ground states of nanometric particles
[12]. Due to their accuracy, the developed micromagnetic
methods have contributed to give additional information
about the spin dynamics. The first micromagnetic calcula-
tions were typically based upon codes developed to calculate
in the first place the ground state of a given magnetic particle.
Then the time evolution of the average magnetization of a
particle could be obtained and, from a subsequent postpro-
cessing of these data (mainly using the Fourier transform of
the magnetization), information could be extracted about
mode frequencies and spatial profiles [13]. In the simplest
application of the method, the limit of these calculations was
the observation of modes with nonzero magnetization only.
More recently, a micromagnetic method was extended to
the detailed calculation of eigenfrequencies and eigenvectors
under the effect of an oscillatory in-plane small magnetic
field [14]. Another recent micromagnetic method was also
developed to study the quantized spin excitations in laterally
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confined systems [15]. This is the so-called Hamiltonian-
based dynamical matrix method (HDMM).

The HDMM was first formulated for isolated magnetic
nanoelements and then it has been generalized to the case of
interacting nanoelements [16]. It is the prototype of finite-
difference methods and represents an eigenvalue/eigenvector
problem. The scope of this method is to find the frequencies
and profiles of the spin modes which are associated to the
eigenvalues and the eigenvectors, respectively, of a dynamical
matrix. It can be considered the analogous of the dynamical
matrix formalism used to find atomic vibrations (phonons)
in crystalline solids. The dynamical matrix contains the
second derivatives of the density energy coming from a
second order expansion of the density energy around the
equilibrium. This method was already used to study the
spin excitations in magnetic multilayers with ferro- or anti-
ferromagnetic coupling [17, 18]. Due to the translational
invariance, the number of independent dynamic variables
was reduced to twice the number of the layers. The calcu-
lated second derivatives are evaluated at equilibrium. The
eigenvalue/eigenvector problem can be set as a complex
generalized Hermitian eigenvalue problem. The method
presents several advantages: a single calculation yields the
frequencies and eigenvectors of all modes of any symmetry, it
is applicable to a particle of any shape (within the nanometric
range), and the computation time is affordable. This means
that by means of this micromagnetic approach, it is possible
to determine, after a single iteration, the frequencies and the
profiles of all spin-modes, independently of the ground-state
magnetization (e.g., vortex state, vortex in the presence of an
external magnetic field, onion state, quasi-saturated state).
The main restriction of the method is its applicability to
confined magnetic systems whose spin dynamics is assumed
purely precessional with no dissipative effects. Of course,
this is true only in a first approximation, since in real
magnetic systems the intrinsic damping process plays an
important rule. In order to select the representative modes
of the spectrum and to compare them with the ones
observed by means of the experimental techniques, the
differential scattering cross-section has to be evaluated both
for noninteracting and interacting magnetic particles.

The first applications of the HDMM were on chains of
dipolarly interacting rectangular dots representing a one-
dimensional array [19] and of two-dimensional (2D) arrays
formed by circular nanometric disks [20]. Very recently, this
method was applied to study the collective mode dynamics
in arrays of holes embedded into a thin ferromagnetic
film. This calculation was done by including in the energy
density computation also the exchange interaction between
micromagnetic cells belonging to two adjacent primitive cells
[21].

In order to overcome the above-mentioned restrictions
of the HDMM, Consolo et al. formulated very recently
the so-called Lagrangian-based dynamical matrix method
(LDMM) [22]. Such a method explicitly takes into account
the intrinsic “positive” Gilbert damping and the current-
induced spin-transfer-torque “negative” dissipation. Since
the magnetic system so obtained is no more conservative,
a Lagrangian formalism is necessary. Unlike the HDMM,

Ω
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ê1

ê2

ê3

ê3



θ
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−→
M

Figure 1: Reference frame used in the theory.

the LDMM cannot be cast as a classical (nongeneralized)
eigenvalue/eigenvector problem, but it has to be formulated
as a complex generalized non-Hermitian eigenvalue prob-
lem. The first application of the method was done on a
magnetic nanopillar stack of circular cross-section subject to
an external magnetic field directed a few degree away from
the normal to the plane [22]. The analysis was then extended
to the case of external magnetic fields of variable intensity
and orientation with respect to the plane of the nanopillar
[23].

It is important to notice that both formalisms have been
developed up to now in the linear approximation, namely,
considering small angular deviations of the magnetization
from equilibrium so that each spin excitation is a normal
mode of the system.

The reference frame used in the micromagnetic calcu-
lations performed both by means of HDMM and LDMM
is illustrated in Figure 1. The z-axis is along the normal to
the particle and the x-y plane lies on the particle plane.
According to this reference frame, the configuration of the

vector �M, representative of the magnetic dipole momentum,
is identified through the polar angles, θ and φ, and the
intrinsic rotation ψ. As it will appear clear in the section
devoted to the Lagrangian approach, this latter angle does
not enter in the equation of motion, being the corresponding
Lagrange equation associated to a first integral of the motion
(the conservation of the angular momentum). So that, as it
is expected, because the modulus of the magnetization vector
is preserved in time, the dynamics can be described through
two degrees of freedom only (typically θ and φ).

If we assume that the magnetization vector �M is placed
along the generic direction given by the unitary vector ê′3, it
can be expressed in Cartesian coordinates by

�M(t) =Ms

(
sin θ(t) cosφ(t), sin θ(t) sinφ(t), cos θ(t)

)
,

(1)
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being Ms the saturation magnetization value (the modulus
of the magnetization vector) and the time dependence of the
angles θ and φ expressed as

θ(t) = Θ + δθ(t),

φ(t) = Φ + δφ(t).
(2)

In (2), we indicate by (Θ, Φ) the static (equilibrium)
orientation of the magnetization obtained by solving the

stationary problem ( �̇M = 0) for whatever effective field
and magnetization distributions. Instead, δθ(t) and δφ(t) are
the small polar and azimuthal deviations from equilibrium,
respectively.

In the micromagnetic calculations, the magnetic system
is subdivided into rectangular cells. Each micromagnetic cell
is identified by a single index k( j) that varies from 1 to
N , where N denotes the number of cells. Hence, Mk is the
magnetization in the kth cell and �ri j = �ri − �r j is the in-plane
distance between the ith cell and the jth cell. The index has
been assigned so that the first line of the rectangular matrix
(X × Y) corresponds to k = 1, . . . ,Y and the second line
to k = Y + 1, . . . , 2Y , and so on and so forth. X(Y) is the
number of cells along x(y), while Z is the number of cells
along z for a sample of thickness equal to d. We define for

each cell the reduced magnetization �mk = �Mk/Ms. Hence, in
a polar reference frame for each cell

�mk(t) = (
sin θk(t) cosφk(t), sin θk(t) sinφk(t), cos θk(t)

)
,
(3)

where φk is the azimuthal angle and θk is the polar angle of
the magnetization. The total energy density of the system,
obtained by dividing the total energy by the volume of the
cell, is a function of φk and θk :E = E(θk,φk) where k varies
from 1 to N .

In the following sections we describe in detail the
two micromagnetic methods. We do not illustrate the
applications of these methods to magnetic nanoparticles,
because this aspect is not the purpose of this paper. We give a
summary of the paper. In Section 2, we outline the formalism
at the basis of the HDMM. First, we introduce the different
contributions to the energy density and then we derive the
system of linear and homogeneous equations of motion for
the isolated particle from the Hamilton equations. Finally,
we present the generalization of the HDMM to the case of
interacting elements. In Section 3, the formalism at the basis
of the LDMM is presented. First, the Lagrangian equations
for a macrospin system are derived. Then a generalization is
given by considering N interacting momenta in an isolated
magnetic element.

2. HDMM

This section deals with the review of the HDMM formalism.
As stated above, the HDMM is a micromagnetic approach
that can be applied only to fully conservative systems
which are supposed to have, in a first approximation, a
purely (undamped) precessional motion of the magneti-
zation about the effective field. It is a finite-difference

micromagnetic method developed in the linear regime of
spin dynamics by considering small deviations from the
equilibrium magnetization. In the first subsection, the dif-
ferent contributions of the energy density entering into the
dynamical matrix are calculated and the equations of motion
for an isolated magnetic element are cast in the form of
a linear and homogeneous system that can be solved as a
complex generalized Hermitian eigenvalue problem. In the
last subsection, it is shown the generalization of the HDMM
to interacting magnetic nanoparticles by including into the
dynamical matrix the Bloch condition.

2.1. Energy Density. First, we give the explicit expressions
of the different interactions entering into the total micro-
magnetic energy density E of a given confined magnetic
system simulated by using the HDMM: Zeeman energy, ex-
change energy, demagnetizing energy, and anisotropy energy,
respectively [24]. The energy density is defined as E = Ẽ/V

where Ẽ is the energy of the system and V its volume. In the

presence of an external magnetic field �H , the Zeeman energy
density can be written in the form

Eext = −μ0Ms
�H ·

N∑
k=1

�mi, (4)

being μ0 the vacuum permeability. In micromagnetic theory,
the exchange energy can be expressed as a volume integral of
the form

Ẽexch = A

∫
part

3∑
j=1

(
�∇mj

)2
dV , (5)

where the subscript “part” denotes the volume of a general
magnetic particle, A is the exchange stiffness constant, and
�∇ is the gradient applied to a given component of the
magnetization. In this case the exchange contribution is
independent of z. Using the first-neighbours model, the
exchange energy density can be written as follows:

Eexch = A
N∑
k=1

4∑
n=1

1− �mk · �mn

a2
kn

, (6)

where the variable akn is the distance between the centers
of two adjacent cells of index k and n, respectively, k varies
over all micromagnetic cells, and the sum over n ranges
over the neighbours of the k-th cell. If the micromagnetic
cells k are situated at the edges, one must impose boundary
conditions. The cells on the edges interact with an external
row of cells that have the same fixed magnetization, in this
case the corresponding term in the sum must be weighted
twice.

In order to calculate the demagnetizing energy density,
we have followed the method of the demagnetizing tensor.
In the following, we use also the term dipolar in place
of the term demagnetizing, because the higher-order terms
of the expansion vanish in the practical cases examined.
Generally, within the framework of the demagnetizing tensor
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method, the demagnetizing energy density can be written as
follows:

Edmg = 1
2
μ0

∑
k j

�Mk ·N �Mj

= μ0
M2

s

2

∑
k j

(
mxk,myk,mzk

)
×
⎛⎜⎝Nxx Nxy Nxz

Nyx Nyy Nyz

Nzx Nzy Nzz

⎞⎟⎠
⎛⎜⎝mx j

my j

mz j

⎞⎟⎠.
(7)

This equation includes the self-energy and Nαβ = Nαβ(�rk j)
with α,β = x, y, z are the elements of demagnetizing tensor.
Each component of the demagnetizing tensor is related
to the interaction between two rectangular surfaces S and
S′. Under the assumption made for the calculation of the
demagnetizing field for uniform magnetization, by using a
version of Gauss’s theorem, the demagnetizing tensor can be
written as

N
(
�rk j
)
= 1
V

∫
Sk
d�S
∫
S′j

d�S′∣∣�r −�r′∣∣ , (8)

where V = l2c d is the volume of the micromagnetic cell with
lc the cell size and d is the cell height. Because of the four-
fold C4 symmetry and since �rk j ≡ (x, y, z), all components
can be expressed only as a function of Nxx(x, y, z) and
Nxy(x, y, z) components with suitable permutations of the
variables x, y, z.

The magnetocrystalline uniaxial anisotropy can be
labeled with the symbol Eani. It is an energy density function,
for a given micromagnetic cell, of the angle αk between the
magnetization of the single cell �mk and the easy axis of
generic direction given by the unit vector û. We write

Eani =
N∑
k=1

K (1)sin2αk =
N∑
k=1

K (1)(1− cos2αk
)

=
N∑
k=1

K (1)
[

1− (�mk · û
)2
]

,

(9)

where K (1) is the first-order anisotropy uniaxial coefficient.
As the dynamical matrix components are expressed in

terms of the second derivatives of the energy density, it is
necessary to calculate them from the above expressions. First,
we calculate the second derivatives of the magnetization with
respect to the polar and azimuthal angles of the given micro-
magnetic cell that represent the degrees of freedom of the
system. Indeed, the second derivatives of the magnetization
appear in the final expressions of the second derivatives of
the energy density. In particular

∂2�mk

∂δφ2
k

= (− sin θk cosφk,− sin θk sinφk, 0
)
,

∂2�mk

∂δφk∂δθk
= (− cos θk sinφk, cos θk cosφk, 0

)
,

∂2�mk

∂δθ2
k

= (− sin θk cosφk,− sin θk sinφk,− cos θk
)
.

(10)

The second derivatives of the energy density are calculated
at equilibrium. For the sake of simplicity, in the following,
the derivatives are calculated with respect to δθk and δθl
implying that one or two of the two generic variables could
be also δφ.

The second derivative of Zeeman energy density becomes

∂2Eext

∂δθk∂δθl
=
⎧⎪⎨⎪⎩−μ0Ms

�H · ∂2�mk

∂δθk∂δθl
l = k

0 l /= k.
(11)

As outlined previously, for the calculation of the ex-
change contribution, the nearest-neighbour model is taken
into account. It is useful to give also the expression of the
first derivative due to some important manipulations that
have to be performed. The first derivative with respect to
δθk includes in the sum a term in which i = k and thus
n /= k and also the other terms with n = k and with i
one of the nearest neighbours. Thanks to a proper change
of indices in the second term, the following equation is
obtained:

∂Eexch

∂δθk
= −A

4∑
n=1

1
a2
kn

∂�mk

∂δθk
· �mn − A

4∑
n=1

1
a2
kn

�mn · ∂�mk

∂δθk

= −2A
4∑

n=1

1
a2
kn

∂�mk

∂δθk
· �mn,

(12)

where the sum over n is made up over the nearest-neighbour
micromagnetic cells of the k-th cell. In the special case of
the adopted first neighbours model, the second derivatives
are

∂2Eexch

∂δθk∂δθl

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−2A
4∑

n=1

1
a2
kn

∂2�mk

∂δθk∂δθl
· �mn l = k

−2A
1
a2
kl

∂�mk

∂δθk
· ∂�ml

∂δθl
l, k: nearest-neighbour

0
k /= l and

not nearest-neighbour.
(13)

We now pass to the calculation of the derivatives of the
demagnetizing energy density. Due to their rather compli-
cated form, we give in the following the expression not only
of the second derivatives of the demagnetizing energy density
but also of the first derivatives with respect to the generic
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variable δθi. The first derivative of the demagnetizing energy
density (7) is

∂Edmg

∂δθi
= μ0M

2
s

⎡⎣1
2

∑
k /= i
�mk ·N(k, i)

∂�mi

∂δθi
+

1
2

∑
j /= i

∂�mi

∂δθi

·N(k, i) �mj +
1
2

∂

∂δθi

(
�mi · N̂(i, i) �mi

)⎤⎦

= μ0M
2
s

N∑
k=1
k /= i

�mk ·N(k, i)
∂�mi

∂δθi
+ �mi ·N(i, i)

∂�mi

∂δθi
.

(14)

In the sum, the contribution of the terms with the same index
k = j = i has been separated; moreover, we have taken
into account that the tensor N fulfils N(k, i) = N(i, k) and
is symmetric (Nαβ = Nβα).

Thanks to the previous consideration, it is possible to
write

∂�mk

∂δθk
·N(k, i)�mi = �mi ·N(k, i)

∂�mk

∂δθk
, (15)

and therefore,

∂

∂δθi

(
�mi ·N(i, i)�mi

)
= ∂�mi

∂δθi
·N(i, i)�mi + �mi ·N(i, i)

∂�mi

∂δθi

= 2�mi ·N(i, i)
∂�mi

∂δθi
.

(16)

The second derivative must take into account the two cases:
i /= l, i = l( j = i), namely,

∂2Edmg

∂δθl∂δθi
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M2
s

⎛⎝ N∑
k=1

�mk ·N(k, l)
∂2�ml

∂δθl∂δθi

+
∂�ml

∂δθl
·N(k, l)

∂�mi

∂δθi

) l = i

Ms
2 ∂�ml

∂δθl
·N(k, l)

∂�mi

∂δθi
l /= i.

(17)

The k = i term resulting from the derivative of the second
term (in the expression of the first derivative given above)
has been included in the sum over k.

The last step is the calculation of the term associated with
the anisotropy energy density. The second derivative of the
anisotropy energy density can be written as

∂2Eani

∂δφ j∂δθk

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−2K (1)

[(
∂�mk

∂δφ j
· û
)
·
(
∂�mk

∂δθk
· û
)

+
(
�mk · û

)

·
(

∂2�mk

∂δφ j∂δθk
· û
)]

for δθ, δφ k = j

−2K (1)

⎡⎣( ∂�mk

∂δφk
· û
)2

+
(
�mk · û

) · ( ∂2�mk

∂δφk
2 · û

)⎤⎦
for δφ, δφ or δθ, δθ k = j

0 k /= j.

(18)

2.2. Equations of Motion for an Isolated Magnetic Particle.
The derivatives calculated previously are included into the
dynamic equations. Indeed, the equations of motion can be
cast into a linear and homogeneous system in which the
second derivatives of the energy density calculated at equi-
librium appear explicitly. It is well know that the equation
of motion for a magnetic spin system which undergoes a
purely precessional motion is the Landau-Lifshitz equation
[25], expressed as a torque equation involving the effective
field and the magnetization itself. Since our aim is to find
the energy density in a conservative system, we derive the
equations of motion from the Hamilton equations.

2.2.1. HDMM for a Macrospin System. The equation of
motion for the magnetic systems under investigation will be
derived by following semiclassical approach. Also, the model
will be first derived by considering the so-called macrospin
approximation, where the material is thought as uniformly
magnetized and represented by a single dipole momentum.

As known from classical mechanics, in the presence
of fixed constraints and conservative sources, the system
Hamiltonian H coincides with the total mechanical energy
Ẽ, namely, H ≡ Ẽ = T − U , where T is the kinetic
energy and U is the potential expressed as the opposite of
the potential energy V . By defining the Lagrangian variables
of the problem with qn, where n = 1, 2, . . . is the number of
degrees of freedom corresponding to the dynamic variables,
and the corresponding conjugate momenta with pn, the
Hamilton equations in the 2n canonical variables (qn, pn)
take the form [15]

∂qn
∂t

= ∂H

∂pn
,

∂pn
∂t

= −∂H
∂qn

.

(19)

The direction of the magnetic dipole moment of thekth cell
is given by (3). For the specific case, the dynamic variables
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referred to the k-cell are the small deviations from equilib-
rium of the azimuthal and polar angles given by

q1 = δφ, q2 = δθ, (20)

where 1 (2) labels the first (second) variable.
To determine the conjugate momenta, the expression of

the angular momentum is needed. We recall the relation

between the angular momentum �lΩ and the magnetic mo-
mentum �μ by referring to a a rigid body with a fixed point Ω
(see Figure 1), namely,

�lΩ = 1
γ
�μ = vcMs

γ
�m, (21)

where γ is the gyromagnetic ratio and vc the volume of the
magnetic moment to the case. Indeed, since q1 represents a
rotation about the z-axis of the magnetic dipole, its conjugate
momentum p1 corresponds to the z component of the
variation of the angular momentum, namely,

p1 = δlz = vcMs

γ
δmz = −vcMs

γ
sin θδθ, (22a)

where �m = (sin θ cosφ, sin θ sinφ, cos θ) is the unit magne-
tization vector, normalized to the saturation magnetization
Ms. Following an analogous argument, the other momentum
p2 can be determined. Indeed, q2 is a rotation of the dipole
moment about an axis of unitary vector φ̂′ = − sinφ ê1 +
cosφê2 in the x-y plane at an angle φ̂′ = φ + π/2 from
the x-axis. Therefore, p2 corresponds to the projection of
the variation of the angular momentum along the φ̂′ vector,
namely,

p2 = δ�lΩ · φ̂′ = vcMs

γ

(
δ�m · φ̂′

)

= −vcMs

γ

(
∂�m
∂φ

δφ +
∂�m
∂θ

δθ

)
· φ̂′

= vcMs

γ
sin θδφ.

(22b)

By substituting (20), (22a), and (22b) into the first
Hamilton equation (cf. (19)), the following system of
equations is obtained:

˙δφ = − γ

vcMs sin θ
Hδθ ,

δ̇θ = γ

vcMs sin θ
Hδφ,

(23)

where the dot notation stands for the time derivative and, at
the right-hand side, the first derivatives of the energy with
respect to the mechanical variables appear. By introducing
the energy density E = Ẽ/V (keeping in mind that H = Ẽ)
and expanding it in a power Taylor expansion around the
equilibrium up to the second order, it yields

E = E0 +
1
2

[
Eφφ

(
δφ
)2 + 2Eφθδφδθ + Eθθ(δθ)2

]
, (24)

where E0 is the constant zero-order term that is inessential,
the first-order terms vanish at equilibrium, and Eαβ represent
the second derivatives calculated at equilibrium (Eαβ =
∂2E/∂δα∂δβ with α,β = φ, θ). By using (23) and (24), we
obtain

˙δφ = − γ

Ms sin θ

[
Eθφδφ + Eθθδθ

]
,

δ̇θ = γ

Ms sin θ

[
Eφφδφ + Eφθδθ

]
.

(25)

By inserting the time dependence in the form eiωt, where ω
is the angular frequency of the given collective mode, the
system of equations of motion reads

− Eθφ

sin θ
δφ − Eθθ

sin θ
δθ − λ̃δφ = 0,

Eφφ

sin θ
δφ +

Eφθ

sin θ
δθ − λ̃δθ = 0.

(26)

The linear and homogeneous system of equations expressed
in (26) can be written as an eigenvalue problem

C�v = λ̃ �v, (27)

with λ̃ = i(Ms/γ)ω the complex eigenvalues of the problem,

C =

⎡⎢⎢⎢⎣
− Eθφ

sin θ
− Eθθ

sin θ

Eφφ

sin θ

Eφθ

sin θ

⎤⎥⎥⎥⎦, (28)

being C a real, but not symmetric, matrix and �v = (δφ, δθ)T .
However, the system of motion equations (26) can be

also recast as a complex generalized Hermitian eigenvalue
problem

A�v = λ B�v, (29)

where B is a Hessian matrix expressed by the second deriva-
tives of the energy density at equilibrium. In particular

B =
[
Eφφ Eφθ
Eθφ Eθθ

]
,

A =
[

0 i sin θ
−i sin θ 0

]
.

(30)

It should be noticed that the matrix A is Hermitian, whereas
B is real and symmetric, so that all the corresponding
eigenvalues λ = γ/Msω are real quantities.

2.2.2. HDMM for an Isolated System Composed by N Inter-
acting Magnetic Momenta. Equation (24) can be generalized
to the case of N interacting magnetic momenta (where each
momentum is identified with a micromagnetic cell) taking
the form

E=E0 +
1
2

N∑
n=1

N∑
l=1

[
Eφnφl δφnδφl+2Eφnθl δφnδθl+Eθnθl δθnδθl

]
.

(31)
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In (31), the total energy density is given by E = Eext + Eexch +
Edmg +Eani where the different contributions are expressed in
(4), (6), (7), and (9), respectively. By substituting (31) into
(23), we get

˙δφk = − γ

Ms sin θk

N∑
l=1

[
Eθkφl δφl + Eθkθl δθl

]
,

˙δθk = γ

Ms sin θk

N∑
l=1

[
Eφkφl δφl + Eφkθl δθl

]
.

(32)

By introducing the time dependence in the form eiωt, the
system of equations of motion is composed by the following
2N linear and homogeneous equations for k = 1 · · ·N :

N∑
l=1

(
− Eθkφl

sin θk

)
δφl +

N∑
l=1

(
− Eθkθl

sin θk

)
δθl − λ̃δφk = 0,

N∑
l=1

(
Eφkφl
sin θk

)
δφl +

N∑
l=1

(
Eφkθl
sin θk

)
δθl − λ̃δθk = 0.

(33)

The unknown factors δφl, δθl represent the eigenvectors of
the problem and are expressed by the small angular deviation
from the equilibrium position of the azimuthal (φl) and
polar (θl) angles in the lth micromagnetic cell. The system
above has a solution only if the determinant is zero. By
suitable exchanges of rows (columns), the linear and homo-
geneous system of equations expressed in (33) can be written
as an eigenvalue problem in analogy with the case of a
macrospin system

C�v = λ̃ �v. (34)

In (34), �v is the set of the unknown factors representing the
eigenvectors of the problem that take the form

�v = (
δφ1, δθ1, δφ2, δθ2, . . . , δφN , δθN

)T
. (35)

C is the matrix whose elements are expressed as

C2k−1,2l−1 = −
Eθkφl
sin θk

C2k−1,2l = − Eθkθl
sin θk

C2k,2l−1 =
Eφkφl
sin θk

C2k,2l =
Eφkθl
sin θk

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
k = 1 · · ·N , l = 1 · · ·N. (36)

Analogously to the case of a macrospin system, the matrix
C is real but not symmetric, also in this case the eigenvalues
(and not only the eigenvectors) are complex. This matrix can
be indeed seen as composed by two submatrices 2×2 for each
pair of values (k, l). In the diagonal submatrices (k = l) the
following relation is verified:

C2k−1,2k−1 = −C2k,2k. (37)

For the elements of two different submatrices (k, l) and (l, k),
that are not diagonal (k /= l), the following symmetries hold:

sin θkC2k−1,2l−1 = − sin θlC2l,2k,

sin θkC2k−1,2l = sin θlC2l−1,2k,

sin θkC2k,2l−1 = sin θlC2l,2k−1,

sin θkC2k,2l = − sin θlC2l−1,2k−1.

(38)

As for the macrospin approximation, the equation of motion
can be recast as a complex generalized Hermitian eigenvalue
problem

A �v = λ B �v, (39)

where B is a Hessian matrix expressed by the second deriva-
tives of the energy density at equilibrium. B is given by

B2k−1,2l−1 = Eφkφl
B2k−1,2l = Eφkθl
B2k,2l−1 = Eθkφl
B2k,2l = Eθkθl

⎫⎪⎪⎪⎬⎪⎪⎪⎭k = 1 · · ·N , l = 1 · · ·N , (40)

where the matrix B is, again, real and symmetric. Moreover,
since the static magnetization corresponds to a minimum of
the energy and the matrix B is its Hessian, the matrix B is
also positive defined. Instead, the matrix A has the following
form:

A =

⎡⎢⎢⎢⎢⎢⎣
0 i sin θ1 0 0 · · ·

−i sin θ1 0 0 0 · · ·
0 0 0 i sin θ2 · · ·
0 0 −i sin θ2 0 · · ·
· · · · · ·

⎤⎥⎥⎥⎥⎥⎦. (41)

The matrix A is Hermitian. This allows us to solve the system
as a complex generalized Hermitian eigenvalue problem
which admits only real eigenvalues. To further reduce the
computational time, it is possible to evaluate only some
eigenvalues and eigenvectors that are in a specific range.

Once the eigenvectors �v are obtained, the dynamic
magnetization δ�mk in the kth micromagnetic cell expressed
in Cartesian coordinates and in unit of MS is given by

δ�mk=
(− sin θk sinφkδφk + cos θk cosφkδθk,

sin θk cosφkδφk + cos θk sinφkδθk,− sin θkδθk
)
.

(42)

For each solution of the eigenvalue problem, the collection
of all δ�mk defines the mode profile. It must be remarked that
δ�mk is a complex vector, because δθk, δφk are, in general,
complex.

2.3. Equations of Motion for Interacting Magnetic Particles.
Let us suppose to have a 2D periodic array of interacting
nanodots characterized by the primitive vectors �a1 and �a2;
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for example, for the specific case of a rectangular lattice their
values are

�a1 = λxx̂, �a2 = λy ŷ, (43)

where λx and λy represent the periodicity along x-axis and
y-axis, respectively. The primitive vectors of the reciprocal

lattice are �b1 and �b2

�b1 = 2π

(
�a2 × �a1

)× �a2(
�a1 × �a2

)2 ,

�b2 = 2π

(
�a1 × �a2

)× �a2(
�a1 × �a2

)2 .

(44)

For the special case of a rectangular lattice the vectors become

�b1 = 2π
λx
x̂,

�b2 = 2π
λy

ŷ.

(45)

Due to the analogy with the Bloch wave (analogy, not equal-
ity, because the wave function has not a physical meaning,
contrarily to the magnetization), it is possible to write the
following periodicity rule valid for the dynamic magnetiza-
tion:

δ�m
(
�r + �R

)
= ei

�K·�Rδ�m
(
�r
)
, (46)

where �R is a vector of the particle lattice given by

�R = i1�a1 + i2�a2 i1, i2 ∈ Z, i1, i2 = −Ni

2
· · · Ni

2
− 1,

(47)

and �r can be confined into the first primitive cell centered in
the first dot. The Bloch vector takes the following values:

�K = n1

N1

�b1 +
n2

N2

�b2, ni ∈ Z, ni = −Ni

2
· · · Ni

2
− 1.

(48)

N1,N2 ∈ N indicate the number of primitive cells n in
direction �a1 and �a2, respectively. In this scheme, both N1

and N2 are taken as even numbers. In order to confirm the
hypothesis on the dynamic magnetization N1,N2 must be
very large.

If the magnetizations of different primitive cells and the
different micromagnetic cells were independent, that is no
periodicity rule were present, then one would have a dynamic
system with variables θ

k�R and φ
k�R, where the k index changes

inside the magnetic particle and �R can assume the values
indicated in (47). In this case, the linear and homogeneous
system of 2N equations of motion is

∑
l,�R′

(
−Eθk�Rφl�R′

sin θ
k�R

)
δφ

l�R′ +
∑
l,�R′

⎛⎝− Eθ
k�Rθl�R′

sin θ
jk�R

⎞⎠δθ
l�R′ − λδφk�R = 0,

∑
l,�R′

(
Eφ

k�Rφl�R′

sin θ
k�R

)
δφ

l�R′ +
∑
l,�R′

(
Eφ

k�Rθl�R′

sin θ
k�R

)
δθ

l�R′ − λδθk�R = 0,

(49)

where k = 1 · · ·N and the sums over l and �R′ are on the
same values. Instead, thanks to the Bloch condition expressed

in (46), one can consider the equations only at �R = 0; more-
over, taking into account the same condition, the variables

appearing for �R′ /= 0 can be replaced by using the same

condition. Now, when rewriting the system, the index �R is
omitted when it has value equal to 0 or it is irrelevant.
Owing to these considerations, the system given in (49) can
be rewritten in the form [16]

N∑
l=1

⎛⎝−∑�R′ Eθkφl�R′ e
i�K·�R′

sin θk

⎞⎠δφl +
N∑
l=1

⎛⎝−∑�R′ Eθkθl�R′ e
i�K·�R′

sin θk

⎞⎠δθl
− λ̃δφk = 0,

N∑
l=1

⎛⎝∑�R′ Eφkφl�R′ e
i�K·�R′

sin θk

⎞⎠δφl +
N∑
l=1

⎛⎝∑�R′ Eφkθl�R′ e
i�K·�R′

sin θk

⎞⎠δθl
− λ̃δθk = 0.

(50)

Equation (50) is similar to (33) by making the following re-
placement:

Eαkβl −→
∑
�R′
ei
�K·�R′Eαk0βl�R′ , (51)

and recalling that now the energy is referred to the whole
system of particles. Like for the case of the isolated magnetic
particle, also for the case of interacting magnetic particles the
system of linear and homogeneous equations given in (50)
can be written as an eigenvalue problem which in turn can be
cast as a complex generalized Hermitian eigenvalue problem.

The symmetry for the matrix elements that was valid for

a single primitive cell now is not respected except for �K = 0

or �K = �G/2 with �G a translational reciprocal vector:∑
�R′
ei
�K·�R′Eαk�0βl�R′ =

∑
�R′
ei
�K·�R′Eβ

l�R′αk�0 =
∑
�R′
ei
�K·�R′Eβl �0αk−�R′

=
∑
�R′
e−i�K·�R

′′
Eβl �0αk�R′′

/=
∑
�R′
ei
�K·�R′Eβl �0αk�R′ ,

�K /=�0, �K /=
�G
2

,

(52)

with �R′′ = −�R′. The primitive cell has at the centre a single
dot that occupies only a part of it. The interdot exchange
coupling is zero. Thanks to the last consideration and to the
fact that derivatives of Zeeman, exchange, anisotropy, energy
density are referred only to the cell of the first variable (αk�0)
with α

k�R = θ
k�R,φ

k�R or at most to the nearest neighbour,

all terms of the sum in (51) with �R′ /= 0 are zero. Hence,
for these energy density terms, the equations are the same
as those of the single particle case and the same occurs for
their corresponding derivatives appearing in the equations of
motion. The only energy density term that differs from the
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one obtained for the isolated element is the demagnetizing
energy density. For a system of interacting nanoparticles, the
demagnetizing energy density can be written as

Edmg = 1
2
μ0

∑
�R,�R′,k,k′

�mk

(
�R
)
N
(
�R, �R′, k, k′

)
�mk′

(
�R′
)
. (53)

Due to its rather complex expression, it is useful to give the
derivation also of the first derivative of Edmg like for the case
of the isolated nanoelement.

In order to calculate the first derivative, the properties of
the demagnetizing tensor must be considered

〈v|N|ω〉 = 〈
ω
∣∣N+

∣∣v〉∗ = 〈
ω
∣∣N+

∣∣v〉
= 〈

ω
∣∣Nt

∣∣v〉 = 〈ω|N|v〉, (54a)

since N is real and symmetric and

N
(
�R, �R′, k, k′

)
= N

(
�R′ − �R +�rk′ −�rk

)
= N

(
−�R′ + �R−�rk′ +�rk

)
= N

(
�R′, �R, k′, k

)
,

(54b)

thanks to the inversion symmetry. Hence, the first derivative
of the energy is

∂Edmg

∂δαk
(
�0
)

= μ0
M2

s

2

⎡⎢⎢⎢⎢⎣
∑
�R′k′

(�R′,k′) /= (�0,k)

�mk′
(
�R′
)
·N

(
�R′,�0, k′, k

) ∂�mk

(
�0
)

∂δαk
(
�0
)

+
∑
�R′k′

(�R′,k′) /= (�0,k)

∂�mk

(
�0
)

∂δαk
(
�0
) ·N(�0, �R′, k′, k

)
�mk′

(
�R′
)

+
∂

∂δαk
(
�0
)(�mk

(
�0
)
·N

(
�0,�0, k, k

)
�mk

(
�0
))
⎤⎥⎥⎥⎥⎥⎦

= μ0M
2
s

⎡⎢⎢⎢⎢⎣
∑
�R′k′

(�R′,k′) /= (�0,k)

�mk′
(
�R′
)
·N

(
�R′,�0, k′, k

) ∂�mk

(
�0
)

∂δαk
(
�0
)

+ �mk

(
�0
)
·N

(
�0,�0, k, k

) ∂�mk

(
�0
)

∂δαk
(
�0
)
⎤⎥⎥⎥⎥⎥⎦.

(55)

The second derivative takes the form

∂2Edmg

∂δαk
(
�0
)
∂δβk

(
�R
)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ0M
2
S

⎡⎢⎣∑
�R′k′
�mk′

(
�R′
)
·N

(
�R′,�0, k′, k

)

×
∂2�mk

(
�0
)

∂δαk
(
�0
)
∂δβk

(
�0
)

+
∂�mk

(
�0
)

∂δβk
(
�0
)

·N
(
�0,�0, k, k

) ∂�mk

(
�0
)

∂δαk
(
�0
)
⎤⎦

�R=�0, l=k

μ0M2
s

∂�ml

(
�0
)

∂δβl
(
�0
) ·N(�R,�0, l, k

) ∂�mk

(
�0
)

∂δαk
(
�0
) (

�R, l
)
/=
(
�0, k

)
.

(56)

In the sum it is included the case in which (�R′, k′) = (�0, k)
that is generated from the derivative of the second term in
the expression of the first derivative given above. Now it is
possible to calculate the terms that enter into the system of
(50), starting with the one corresponding to l = k

∑
�R

ei
�K·�REαk�0βl�R =

∑
�R

ei
�K·�REαk�0βk�R

= μ0M
2
s

⎡⎢⎣∑
�R′k′
�mk′

(
�0
)
·N

(
�R′,�0, k′, k

)

×
∂2�mk

(
�0
)

∂δαk
(
�0
)
∂δβk

(
�0
) +

∂�mk

(
�0
)

∂δβk
(
�0
)

·N
(
�0,�0, k, k

) ∂�mk

(
�0
)

∂δαk
(
�0
)
⎤⎦

+ μ0M
2
s

∑
�R /=�0

ei
�K·�R ∂�mk

(
�0
)

∂δβk
(
�0
)

·N
(
�R,�0, k, k

) ∂�mk

(
�0
)

∂δαk
(
�0
)

= μ0M
2
s

∑
�R

⎡⎣∑
k′
�mk′

(
�0
)
·N

(
�R,�0, k′, k

)

×
∂2�mk

(
�0
)

∂δαk
(
�0
)
∂δβk

(
�0
)
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+ ei
�K·�R ∂�mk

(
�0
)

∂δβk
(
�0
)

·N
(
�R,�0, k, k

) ∂�mk

(
�0
)

∂δαk
(
�0
)
⎤⎦.

(57a)

Equation (57a) is obtained by taking into account (46), by

including the term corresponding to �R = 0 into the sum

performed over �R /= 0 and by considering that both the
static magnetization and the dynamic magnetization do not

depend on �R. Indeed, second derivatives are calculated at

equilibrium and the exponential ei�K·�R appears on both the
numerator and the denominator of the derivative.

When l /= k, the term turns out to be∑
�R

ei
�K·�REαk�0βl�R

= μ0M
2
s

⎡⎢⎣∑
�R

ei
�K·�R ∂�ml

(
�0
)

∂δβl
(
�0
) ·N(�R,�0, l, k

) ∂�mk

(
�0
)

∂δαk
(
�0
)
⎤⎥⎦.
(57b)

Due to the properties of the demagnetizing tensor, the
symmetry ∑

�R′
ei
�K·�R′Eαk�0βl�R′ =

∑
�R′
ei
�K·�R′Eαl�0βk�R′ , (58)

is fulfilled when l = k, but it is not fulfilled when l /= k.
The formalism previously developed for interacting

particles can be extended to a system of 2D antidots (ADs).
In this case, it is necessary to add the exchange interaction
between primitive cells [21]. In extended magnetic system
like AD arrays, in addition to the usual nearest-neighbours
exchange interaction between micromagnetic cells, the
exchange contribution across the nearest-neighbours micro-
magnetic cells belonging to adjacent surface primitive cells
must be taken into account. Hence, we recall the exchange
energy density of (6)

Eexch = A
∑
k

∑
n

(
1− �mk · �mn

)
a2
kn

. (59)

Here, the first sum runs over all the micromagnetic cells
of the primitive cell and the second sum runs over the
nearest neighbours of the kth micromagnetic cell. When
the kth micromagnetic cell is on one of the edges (vertices)
of the given primitive cell, the interaction with one (two)
micromagnetic cell(s) belonging to the correct nearest
primitive cell must be added.

3. LDMM

This section is devoted to the review of the LDMM approach
through which we derive the generalized Lagrange equation

−

+

I

Free layer

Spacer

Pinned layer

Metal

Metal

Figure 2: A schematic of a spin-valve nanopillar device.

in the presence of two dissipative effects arising from the
“positive” intrinsic damping and the “negative” one induced
by the current-driven spin-transfer torque [22]. As for the
Hamiltonian approach, we limit our study to the dynamics
taking place in the linear and autonomous regime.

3.1. Description of the Magnetic System and Equation of
Motion. The magnetic systems in which such competing
phenomena take place are generally referred to as spin-valve
nanopillars. These are heterostructures composed by two
ferromagnetic layers, having generally different thicknesses,
separated by a nonmagnetic (metallic or insulating) spacer,
which is used to decouple the exchange interactions between
them. The thinner magnetic layer is generally referred to as
“Free Layer” (FL), whereas the thicker one is called “Fixed
Layer” or “Pinned Layer” (PL). By means of an external
voltage source and metallic contacts applied at the top and
bottom of the structure, a current flow traverses the structure
along the normal-to-plane direction (see Figure 2).

In this kind of device, conservative effects arise from the
previously mentioned classical micromagnetic contributions
(exchange, demagnetizing, magnetocrystalline anisotropy,
and Zeeman fields) together with the Ampere (or Oersted)
field due to the current flow. This latter contribution,
however, will be neglected for simplicity. In fact, the main
goal of this section is to describe why and how a Lagrangian
approach needs to be take into account when noncon-
servative forces act in the system. The inclusion of more
sophisticated effects, such as the Ampere field, will become
relevant when this approach will be further generalized to
describe the dynamics occurring in the nonlinear regime of
spin-wave generation.

Let us now briefly recall the governing equation of
motion. When no dissipative contributions are taken into
account, a persistent precessional motion of the magnetiza-

tion vector �M takes place. It is described by classical Landau-

Lifshitz equation �̇M = γ(�Heff × �M), where �Heff is the
effective field which accounts for all the above-mentioned
contributions.
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On the other hand, nonconservative contributions arise
from the material intrinsic dissipation and the spin-transfer
torque induced by the current flow [26]. The former ac-
counts for the phenomenologically introduced intrinsic
Gilbert dissipation [27], the phenomenon by which the pre-

cessional motion of �M, excited by a given stimulus, relaxes
towards its equilibrium state. The relaxation rate is propor-
tional to a scalar quantity, called Gilbert constant α. The
torque exerted on the magnetization is generally represented

by �TID = (α/MS)( �M × �̇M).
Concerning the dissipative effects induced by the current

flow, it has been extensively shown that this bias current can
become spin-polarized in the direction of the magnetization
vector of the thicker magnetic layer and can then transfer
this induced spin angular momentum to the magnetization
of the thinner magnetic layer. For a proper direction of the
bias current I, this spin-transfer mechanism creates a torque
which opposes to that induced by the Gilbert damping,
creating an effective negative damping. The corresponding
spin-transfer torque, derived by Slonczewski [28], can be

expressed as �TST = (σI/MS)[ �M × ( �M × �p)], where the unit
vector �p defines the direction of the spin polarization (in
turn defined by the magnetization vector of the PL) and
the constant σ modulates the strength of the spin-torque
effect. It is equal to σ = εg0μB/2eMSSd, where ε is the spin-
torque efficiency (defined in [29]), g0 is the Landè factor, μB
is the Bohr magneton, e is the absolute value of the electronic
charge, d is the thickness of the magnetic layer, and S is the
current-carrying area [30].

It should be mentioned that, because of the larger value
of both saturation magnetization and thickness, the PL is not
substantially affected by any current-driven magnetization
dynamics, so that it is generally treated as it were fixed (or
pinned) along its equilibrium direction. On the contrary, the
FL’s properties allow it to describe more easily several kinds
of dynamics (e.g., switching [31], precession [32], domain-
wall motion [33], gyrotropic motion of vortex state [34]), as
it were “free” to move.

Under these circumstances, the magnetization dynamics
of the FL is governed by the Landau-Lifshitz-Gilbert-Slonc-
zewski (LLGS) equation

�̇M = γ
(
�Heff × �M

)
+

α

MS

(
�M × �̇M

)
+
σI

MS

[
�M ×

(
�M × �p

)]
.

(60)

It has to be remarked that the equality (with opposite sign)

of the two torques (�TID = −�TST), achievable by means of
a proper intensity and sign of current (the positive one, I
> 0, which corresponds to a current flow moving from the
PL to the FL), which in turn implies the fully compensation
of the two dissipation mechanisms, yields the system in an
out-of-equilibrium zero-dissipation stationary state (a limit
cycle, using the notation of dynamic systems) (see Figure 3).
In such a regime, the excitation of microwave spin waves
becomes physically conceivable.

To derive the mathematical formulation of the LDMM,
for the sake of simplicity, we write, first, the generalized
Lagrange equation for the case of an isolated magnetic

× × p

�H

�H

�H

�H

eff

effeff

×Meff × M × ˙
M

Undamped
precessionprecession

Out-of-equilibrium

→
M

→
M

→
M

→

→
M
→ → →

→
M

Figure 3: Schematic representation of undamped (in the absence
of both Gilbert and current-induced damping) and out-of-
equilibrium (in the presence of both Gilbert and current-induced
damping) precessions. In this latter case, a limit cycle is described as
well since the torques due to the intrinsic dissipation and the spin-
transfer-induced one (for a proper intensity and direction of the
current) balance each other.

particle within the macrospin approximation. After that,
we will generalize this approach for the case of an isolated
particle composed by N interacting momenta.

3.1.1. LDMM for a Macrospin System. We will preliminarily
assume that the dynamics of the magnetization vector could
be described through three degress of freedom (θ,φ,ψ), as
shown in Figure 1. In such a framework the generalized
Lagrange equations read

d

dt

(
∂L

∂φ̇

)
− ∂L

∂φ
+
∂�ST

∂φ̇
+
∂�ID

∂φ̇
= 0,

d

dt

(
∂L

∂θ̇

)
− ∂L

∂θ
+
∂�ST

∂θ̇
+
∂�ID

∂θ̇
= 0,

d

dt

(
∂L

∂ψ̇

)
− ∂L

∂ψ
+
∂�ST

∂ψ̇
+
∂�ID

∂ψ̇
= 0,

(61)

where L = T + U represents the Lagrangian of the system
given by the sum of the kinetic energy T and the potential U,
whereas �ST and �ID are the dissipation functions related to
the spin torque and the intrinsic damping, respectively.

Taking advantage of the explicit formulations of the
energy contributions given in Section 2.1, we can rewrite the
previous system by accounting for the relationship among
the potential, the kinetic energy, and the conservative part
Ẽ = T − U of the total mechanical energy (which in the
conservative limit coincides with the Hamiltonian of the
system H in the presence of fixed constraints). By sub-
stituting L with 2T − Ẽ, we thus obtain

2
d

dt

(
∂T

∂φ̇

)
− d

dt

(
∂Ẽ

∂φ̇

)
− 2

∂T

∂φ
+
∂Ẽ

∂φ
+
∂�ST

∂φ̇
+
∂�ID

∂φ̇
= 0,

2
d

dt

(
∂T

∂θ̇

)
− d

dt

(
∂Ẽ

∂θ̇

)
− 2

∂T

∂θ
+
∂Ẽ

∂θ
+
∂�ST

∂θ̇
+
∂�ID

∂θ̇
= 0,

2
d

dt

(
∂T

∂ψ̇

)
− d

dt

(
∂Ẽ

∂ψ̇

)
− 2

∂T

∂ψ
+
∂Ẽ

∂ψ
+
∂�ST

∂ψ̇
+
∂�ID

∂ψ̇
= 0.

(62)
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To solve the proposed problem, we need thus to explicitly
find the expressions of the variables T, Ẽ, �ID and �ST, shown
in (62), in Lagrangian coordinates.

The kinetic energy T associated to the precessional
motion of the magnetization vector can be computed by
referring to the case of a rigid body with a fixed point Ω (see
Figure 1). In this case, the rotational kinetic energy density is
expressed as

T = 1
2
�lΩ · �ω, (63)

where �lΩ is the angular momentum and �ω is the angular
velocity vector. Notice that in the following the kinetic
energy T, the dissipation functions �ID and �ST, the work
dw, and the energy losses dw/dt are referred to their
corresponding quantities per unit volume. In addition, we
recall the definition of the energy density E = Ẽ/V given
in Section 2.1. By virtue of the relationship between angular

momentum �lΩ and magnetic dipole momentum �μ (�lΩ =
(1/γ)�μ), and considering that this latter is directed along ê′3
(see Figure 1), the previous scalar product involves, in turn,

the only component of�lΩ along ê′3. It leads to

T = 1
2
MS

γ

(
φ̇ cos θ + ψ̇

)
. (64)

Equation (64) therefore represents the rotational kinetic
energy T = T(θ,φ,ψ) expressed in Lagrangian coordinates
withMS = μ/V . The conservative part E of the energy density
accounts for all the standard micromagnetic contributions
discussed previously. As shown in Section 2.1, all the con-
tributions appearing in E only depend on the Lagrangian
variables θ,φ, but not on their derivatives, namely, E =
E(θ,φ).

To derive the Lagrangian formulation of the dissipative
contributions, let us start from the classical definition of
the work dw carried out by a magnetic system subject to a
nonconservative force. As it is known, such a force has to be
derived from the gradient of a dissipation function � and the
rate of energy losses associated to a dissipative torque can be
thus expressed as

dw

dt
= ± �̇M · ∂�

∂ �̇M
, (65)

where the plus (minus) sign accounts for torques which act
as “drain” (“source”) of energy and refers to the case � = �ID

(� = �ST).
So, by multiplying the LLGS equation (60) by �Heff and

assuming that the energy losses rates are small compared to

the conservative (precessional) part, namely, �̇M � −γμ0( �M×
�Heff), we deduce the following expressions for the dissipative
function densities

�ID = α

2γM0

�̇M
2

, (66)

�ST = σJ

γM0
�p ·

(
�M × �̇M

)
. (67)

It should be noticed that (66), which appears in the usual
form of a Rayleigh-like dissipation function, is a positive-
definite form, as expected for a power dissipated through
a viscous friction mechanism, whatever the magnetization
configuration (α, γ, and Ms are positive constants). On the
other hand, the spin-torque dissipation function of (67) is
a non-Rayleigh one and strongly depends, apart from the
direction of the current flow J, on the relative magnetization

configuration of the ferromagnetic layers ( �M and �p).
Finally, taking into account the expression of the time-

independent unit vector �p = (sinΘPL cosΦPL, sinΘPL

sinΦPL, cosΘPL), the explicit expressions of the dissipative
functions densities are

�ID = αMs

2γ

(
θ̇2 + φ̇2sin2θ

)
= �ID

(
θ,φ

)
,

�ST = σJMs

γ

[
f1
(
φ
)
θ̇ + f2

(
θ,φ

)
φ̇
]
= �ST

(
θ,φ

)
,

(68)

where

f1
(
φ
) = sinΘPL sin

(
ΦPL − φ

)
, (69)

f2
(
θ,φ

) = sin2θ cosΘPL − cos θ sin θ sinΘPL cos
(
ΦPL − φ

)
.

(70)

We proceed by evaluating first the third Lagrange equation

2
d

dt

(
∂T

∂ψ̇

)
− d

dt

(
∂E

∂ψ̇

)
− 2

∂T

∂ψ
+
∂E

∂ψ
+
∂�ST

∂ψ̇
+
∂�ID

∂ψ̇
= 0.

(71)

In (71), we notice that the kinetic energy is the only term
dependent on the intrinsic rotation, and, in particular, on its

velocity
·
ψ, so that the previous equation reduces to

2
d

dt

(
∂T

∂ψ̇

)
= 0, (72)

which stands for a first integral of motion representing
the conservation of the (only component of the) angular
momentum

2
∂T

∂ψ̇
= MS

γ
= constant ≡�lΩ ·�e′3. (73)

Such a first integral also points out that our system can be
described through only two degrees of freedom, as expected
for the characterization of the dynamics of a vector having
constant modulus which undergoes a precession (with a fixed
point) onto a sphere. Taking into account this result, in the
following we will use the parameters θ,φ.

The first two Lagrange equations read

2
d

dt

(
∂T

∂φ̇

)
− d

dt

(
∂E

∂φ̇

)
− 2

∂T

∂φ
+
∂E

∂φ
+
∂�ST

∂φ̇
+
∂�ID

∂φ̇
= 0,

2
d

dt

(
∂T

∂θ̇

)
− d

dt

(
∂E

∂θ̇

)
− 2

∂T

∂θ
+
∂E

∂θ
+
∂�ST

∂θ̇
+
∂�ID

∂θ̇
= 0,

(74)
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which, substituting the corresponding expressions (the con-
servative part E of the total energy density will be discussed
later on in the text), become

−Ms

γ
sin θθ̇ +

∂E

∂φ
+
σJMs

γ
f2 +

αMs

γ
φ̇sin2θ = 0,

Ms

γ
φ̇ sin θ +

∂E

∂θ
+
σJMs

γ
f1 +

αMs

γ
θ̇ = 0.

(75)

Since in the present LDMM approach we are interested in
the characterization of the linear dynamics of these magnetic
current-driven auto-oscillatory systems, we adopt the clas-
sical formalism of small oscillations. By following this pro-
cedure, we linearize the system of (75) by considering small
perturbations (δθ, δφ) around the equilibrium configuration
of the FL (Θ,Φ), as done in (2), and expand the energy terms
in Taylor series up to the second perturbative order.

By means of such a formalism, the system given in (75)
leads to the set of generalized Lagrange equations

− Ms

γ
sinΘδ̇θ +

∂E

∂δφ
+
σJMs

γ

×
[
χ(Θ,Φ)δθ + η(Θ,Φ)δφ + ν(Θ,Φ)

]
+
αMs

γ
˙δφsin2Θ = 0,

Ms

γ
˙δφ sinΘ +

∂E

∂δθ
+
σJMs

γ

[
ζ(Θ,Φ)δφ + β(Θ,Φ)

]

+
αMs

γ
δ̇θ = 0,

(76)

where

χ(Θ,Φ) = sin 2Θ cosΘPL − cos 2Θ sinΘPL cos(ΦPL −Φ),

η(Θ,Φ) = cosΘ sinΘ sinΘPL sin(Φ−ΦPL),

ν(Θ,Φ) = sinΘ(sinΘ cosΘPL−cosΘ sinΘPL cos(ΦPL−Φ)),

ζ(Θ,Φ) = − sinΘPL cos(ΦPL −Φ),

β(Θ,Φ) = sinΘPL sin(ΦPL −Φ).
(77)

Furthermore, by developing also the energy density E
in Taylor series around the equilibrium state in analogy
with what was done in (24) for HDMM, we notice that
only the second derivatives appear in the equation. Indeed,
the inessential constant term can be neglected and the first
derivatives vanish at equilibrium. Moreover, considering
that the new Lagrangian variables (δθ,δφ) have to exhibit
a time dependence proportional to exp(iωt) (being ω/2π

the frequency of the spin-wave eigenmode), we end up
with

δφ

[
Eφφ +

σJMs

γ
η

]
+ δθ

[
Eφθ +

σJMs

γ
χ

]

= δφ

[
−iωαMs

γ
sin2Θ

]
+ δθ

[
iω
Ms

γ
sinΘ

]
,

δφ

[
Eθφ +

σJMs

γ
ζ

]
+ δθ[Eθθ]

= δφ

[
−iωMs

γ
sinΘ

]
+ δθ

[
−iωαMs

γ

]
,

(78)

where the subscripts stand for partial derivative with respect
to the indicated variables, whose explicit expressions can be
found in the Section 2.1. The terms involving β(Θ,Φ) and
ν(Θ,Φ) have been disregarded since they do not exhibit an
explicit time dependence.

By setting λ = γ/Msω and σ̃ = σMs/γ, (78) can be
recast in the form of a complex generalized non-Hermitian
eigenvalue problem

A�v = λB�v, (79)

with

A =
[
−iα sin2Θ i sinΘ
−i sinΘ −iα

]
,

B =
[
Eφφ + σ̃Jη Eφθ + σ̃Jχ
Eθφ + σ̃Jζ Eθθ

]
,

�v =
[
δφ, δθ

]T
.

(80)

As expected, if no damping and current are taken into
account (α = 0, J = 0 A/m2), the system in (79) so obtained
recovers exactly the fully conservative HDMM one, where
the matrix A is Hermitian, whereas the matrix B is real and
symmetric (see (40)), and all the corresponding eigenvalues
are real.

In the presence of dissipative effects due to damping and
spin torque, the symmetry of the problem is strongly reduced
and the corresponding eigenvalues will be, in general, com-
plex quantities: the real part represents the mode frequency,
whereas the imaginary part defines the mode decay rate.
With this information in hands, it will be possible to
establish, after a single iteration, the subset of the spin-wave
normal modes which becomes unstable after the application
of a spin-polarized current. In detail, for any applied current
below the excitation threshold, the imaginary parts of all
eigenvalues have to be positive, recalling the behavior of
a damped oscillator. On the contrary, for current values
above the excitation threshold, the imaginary parts of the
activated normal modes switch to a negative value, giving
rise to the instability mechanism which determines, in the
time domain, the growth of the precession cone and, in turn,
the change of the generated frequency.
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Finally, it should be mentioned that, unlike HDMM,
LDMM cannot be recast in a nongeneralized eigenvalue
problem form.

3.1.2. LDMM for an Isolated System Composed by N Interact-
ing Magnetic Momenta. Let us consider now the magnetic
system of our micromagnetic calculations composed by a
finite number N of interacting magnetic momenta. Within
our nanoscale numerical approach, each magnetic momen-
tum is identified by means of a micromagnetic cell. The
generalization of (78) to N cells (k = 1, . . . ,N) leads to a
system of 2N scalar and linear equations as follows:

λ

⎧⎨⎩
N∑
l=1

[
Eφkφl δφl + Eφkθl δθl

]
+ δθk

[
σ̃Jχk

]
+ δφk

[
σ̃Jηk

]⎫⎬⎭
= δφk

[−iα sin2Θk

]
+ δθk[i sinΘk],

λ

⎧⎨⎩
N∑
l=1

[
Eθkφl δφl + Eθkθl δθl

]
+ δφk[σ̃Jζk]

⎫⎬⎭
= δφk[−i sinΘk] + δθk[−iα].

(81)

The system in (81) can be analogously formulated as a
complex generalized non-Hermitian eigenvalue problem (in
the same form as (79)), where

A =

⎡⎢⎢⎢⎢⎢⎣
−iα sin2Θ1 i sinΘ1 0 0 · · ·
−i sinΘ1 −iα 0 0 · · ·

0 0 −iα sin2Θ2 i sinΘ1 · · ·
0 0 −i sinΘ2 −iα · · ·
· · · · · · · · · · · · · · ·

⎤⎥⎥⎥⎥⎥⎦,

B=

⎡⎢⎢⎢⎢⎢⎣
Eφ1φ1+σ̃Jη1 Eφ1θ1+σ̃Jχ1 Eφ1φ2 Eφ1θ2 · · ·
Eθ1φ1+σ̃Jζ1 Eθ1θ1 Eθ1φ2 Eθ1θ2 · · ·
Eφ2φ1 Eφ2θ1 Eφ2φ2+σ̃Jη2 Eφ2θ2+σ̃Jχ2 · · ·
Eθ2φ1 Eθ2θ1 Eθ1φ1+σ̃Jζ1 Eθ2θ2 · · ·
· · · · · · · · · · · · · · ·

⎤⎥⎥⎥⎥⎥⎦,

�v = [
δφ1, δθ1, δφ2, δθ2, . . . . . . δφN , δθN

]T
.

(82)

It is also interesting to notice that both matrices A and
B appearing in (80) and (82) admit a decomposition
which allows to separate the conservative part from the
nonconservative one

A = Ac + Anc

B = Bc + Bnc,
(83)

where

Ac =

⎡⎢⎢⎢⎢⎢⎣
0 i sinΘ1 0 0 · · ·

−i sinΘ1 0 0 0 · · ·
0 0 0 i sinΘ1 · · ·
0 0 −i sinΘ2 0 · · ·
· · · · · · · · · · · · · · ·

⎤⎥⎥⎥⎥⎥⎦,

Anc =

⎡⎢⎢⎢⎢⎢⎣
−iα sin2Θ1 0 0 0 · · ·

0 −iα 0 0 · · ·
0 0 −iα sin2Θ2 0 · · ·
0 0 0 −iα · · ·
· · · · · · · · · · · · · · ·

⎤⎥⎥⎥⎥⎥⎦,

Bc =

⎡⎢⎢⎢⎢⎢⎣
Eφ1φ1 Eφ1θ1 Eφ1φ2 Eφ1θ2 · · ·
Eθ1φ1 Eθ1θ1 Eθ1φ2 Eθ1θ2 · · ·
Eφ2φ1 Eφ2θ1 Eφ2φ2 Eφ2θ2 · · ·
Eθ2φ1 Eθ2θ1 Eθ1φ1 Eθ2θ2 · · ·
· · · · · · · · · · · · · · ·

⎤⎥⎥⎥⎥⎥⎦,

Bnc =

⎡⎢⎢⎢⎢⎢⎣
σ̃Jη1 σ̃Jχ1 0 0 · · ·
σ̃Jζ1 0 0 0 · · ·

0 0 σ̃Jη2 σ̃Jχ2 · · ·
0 0 σ̃Jζ1 0 · · ·
· · · · · · · · · · · · · · ·

⎤⎥⎥⎥⎥⎥⎦.

(84)

The results of this approach have been successfully compared
with those coming from another micromagnetic framework
which integrates the LLGS equation in the time domain
by using a finite-difference scheme [22, 23, 35]. In these
works, we evaluated the accuracy of the LDMM approach in
determining the excitation threshold and studied in detail the
reorientational phase transition which takes place when the
direction of the external magnetic field is varied.

Finally, we would like to mention that the extension of
the LDMM approach to model the more realistic (and at-
tractive) nonlinear and nonautonomous dynamics [30, 36–
41] is currently under study.
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The calculation of the magnonic spectra using the plane-wave method has limitations, the origin of which lies in the formulation
of the effective magnetic field term in the equation of motion (the Landau-Lifshitz equation) for composite media. According to
ideas of the plane-wave method the system dynamics is described in terms of plane waves (a superposition of a number of plane
waves), which are continuous functions and propagate throughout the medium. Since in magnonic crystals the sought-for super-
position of plane waves represents the dynamic magnetization, the magnetic boundary conditions on the interfaces between con-
stituent materials should be inherent in the Landau-Lifshitz equations. In this paper we present the derivation of the two expres-
sions for the exchange field known from the literature. We start from the Heisenberg model and use a linear approximation and
take into account the spacial dependence of saturation magnetization and exchange constant present in magnetic composites. We
discuss the magnetic boundary conditions included in the presented formulations of the exchange field and elucidate their effect
on spin-wave modes and their spectra in one- and two-dimensional planar magnonic crystals from plane-wave calculations.

1. Introduction

For the first time the exchange effects were discovered
independently by W. Heisenberg and P.A.M. Dirac in 1926.
They proposed the energy operator (Hamiltonian) for the
exchange interaction between two particles with spins S1 and
S2 in the following form:

Hex = −2J12S1 · S2, (1)

where J12 is the exchange integral. Because the exchange
interaction is the fundamental one for magnetic materials
than it is crucial for the calculations of the spin dynamics.
An equation commonly used to describe the magnetization
dynamics is the following Landau-Lifshitz (LL) equation:

∂M(r, t)
∂t

= −γμ0[M(r, t)× (Hex(r, t) + · · · )] + · · ·, (2)

where Hex is the exchange field acting on the magnetization
vector M. This equation is a macroscopic where all terms are
in a form of continuous functions of a position vector r.

The derivation of an exchange field in a uniform
ferromagnetic material from the microscopic Heisenberg

Hamiltonian (1) can be found in many textbooks, for exam-
ple, [1–5]. We will follow ideas presented in these books but
for composite materials, that is, when the structure consists
of two or more constituent ferromagnetics being in direct
contact.

On the interface between two ferromagnetic materials,
the boundary conditions (BCs) on dynamical component of
the magnetization vector should be imposed. Such boundary
conditions were proposed by Hoffman, then developed, and
investigated by other authors [6–14]. From the LL equation
together with the set of BCs, the spin-wave (SW) dispersion
and profiles can be calculated. In many papers the calculation
of the SW spectra in composite magnetic materials is based
on the solution of the LL equation defined for a uniform
material and then matched at the boundaries [7, 12, 13, 15–
19]. In this paper we are interested in other method used to
calculate the dispersion relation of the spin waves in mag-
netic composites with periodic distribution of constituent
materials, and it is the plane-wave method (PWM). This
method is widely used in calculations of the frequency spec-
tra of an electromagnetic, elastic or electron waves propagat-
ing in a photonic crystal, phononic crystal or semiconductor
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periodic heterostructures, respectively. In this method,
described in details in Section 3, boundary conditions at
interfaces between constituent materials should be inherently
included into the equation of motion, that is, by properly
defined exchange field.

Composites with a periodic arrangement of two (or
more) different materials are extensively studied from many
years. In the past, structures with periodicity in one dimen-
sion were investigated, these are multilayered structures
which found many applications, for example, as a Bragg
mirror or in GMR devices [20, 21]. Starting from 1987 and
the discovery of photonic band gaps in photonic crystals [22,
23], the research was rapidly extended to other composites
with periodicity in two and three dimensions. Among them
there are phononic crystals, plasmonic crystals and also
magnonic crystals (MCs) [24–30]. MCs can be regarded
as magnetic analog of the photonic crystal, which uses the
spin waves, instead of electromagnetic waves, to carry the
information. MCs constitute one of the main building blocks
of magnonic—promising direction of research focused on
practical applications of spin waves [29–36]. For the develop-
ment of magnonics, the computational methods have to be
developed as well. The calculation of SW’s dispersion in MCs
can be performed with different methods, for example, with
micromagnetic simulations or dynamical matrix method
but because of their complexity the computations are very
time consuming [37–42]. It is important to develop other
analytical and semianalytical methods, like a PWM which
even though approximate will allow for efficient calculation
of the dispersion of SWs in MCs with big insight into physical
processes.

Semiconductor periodic heterostructures (SHs) allow to
tailor the electron and heat transport in nanoscale [43–45].
SHs are often described in effective mass approximation with
the use of the envelope function instead of single electron
functions. Effective mass equations derived from the Schrö-
dinger equations are not unique, and many possible defi-
nitions of the kinetic energy operator were proposed. An
extensive discussion about proper definition of the kinetic
energy operator for the electron envelop function in SHs
with position-dependent effective mass can be found in
literature [46–58]. The calculation of the SW spectra in con-
tinuous model, that is, from the LL equation (2), undergoes
similar difficulties, as we will show in this paper. However,
this topic related to the calculations of the spin-wave dynam-
ics in MCs is weakly presented in literature. In this paper we
would like to fill this gap with a detailed consideration of
different forms of the exchange field and then look at their
consequences in the SW spectra of a MC calculated using the
PWM.

In this study we will show in details the derivation from
the microscopic model different forms of the exchange field
used for SW calculations in MCs. Then we will analyze
differences in SW spectra in one- (1D) and two-dimensional
(2D) thin films of MCs calculated with PWM for three
different expressions of the exchange field. We will discuss
the boundary condition implemented in each formulation.
The paper consists of five sections. In Section 2 we show
the derivation of two forms of the exchange field from the

Heisenberg Hamiltonian in linear approximation for mag-
netic composites with pointing at surface terms neglected.
Then in Section 3 we introduce the PWM method and derive
a final algebraic eigenvalue equations for different definitions
of the exchange field. In Section 4 we present the results of
the PWM calculations of SW spectra for these different forms
of the exchange field for MCs. We will consider 1D and 2D
MC. The paper finished with Section 5 where conclusions of
our investigation are drawn.

2. Expression of the Exchange Field in
Inhomogeneous Media

We split the derivation of the expression of the exchange
field in inhomogeneous materials into two steps. First, in
Section 2.1 we obtain the formula for the exchange energy
density from the microscopic Heisenberg Hamiltonian. Here
the crucial step is a transformation from the discrete model
to the continuous one. In the second step, Section 2.2 the
formula for the exchange field will be derived from the
exchange energy density. In this step a linear approximation
will be introduced, and the space dependence of magnetic
material parameters will be considered.

2.1. Exchange Energy Functional. We start our calcula-
tions from the Heisenberg Hamiltonian Hl which defines
exchange energy of the spin Sl on the lattice point l as follows:

Hl = −2
∑

m∈(n.n.)

JlmSl · Sm, (3)

where Sm is the total spin vector on lattice point m, and the
summation is performed over all nearest neighbors (n.n.)
of a lth spin. Jlm is an exchange integral between the spins
located at l and m. When we introduce normalized unit
vector αl for the spin vector Sl

αl = Sl
|Sl| , (4)

then (3) will read

Hl = −2|Sl|
∑

m∈(n.n.)

Jlm|Sm|αl · αm. (5)

According to the definition in (4), αl · αm = cosϕ, where ϕ is
an angle between spin vectors on lattice points l and m (see
Figure 1).

Let us assume that the angle ϕ between the nearest
spin vectors is small and moreover that the spin vectors are
continuous and smooth functions of a position vector r, that
is, α = α(r) [2]. Formally we can do it through averaging S
over the unit cell; that is, we introduce magnetization vector
M(r) as follows:

M(rl) = NμBgSl, where N = N

V
(6)

defines a number of spins (N) in the unit cell volume (V).
μB is Bohr magneton, and g is a g factor (for free electrons
g ≈ 2). According to these definitions

αl = Sl
|Sl| ≡

M(rl)
M(rl)

(7)
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Figure 1: The discrete lattice of spins. The angle between neighbor-
ing spins: Sl and Sm is ϕ. We assume that ϕ and the spin deviation
from the z axis are small.

and we can write α(r) as a continuous function of the posi-
tion vector as follows:

α(r) = M(r)
M(r)

. (8)

Having the continuous function of a position vector in
hand, we can expand a unit vector α in a lattice point m
(α(rm) ≡ αm ≡ α′) in the Taylor series:

α′ = αl +
∑
i

(
∂xiαl

)
dxi +

1
2

∑
i, j

(
∂xi ∂x jαl

)
dxidx j + · · ·,

(9)

where xi = x, y or z, and dxi is the distance between nearest
spins along xi axis. ∂xi is an abbreviation of the partial
derivative with respect to the Cartesian xi component. After
limiting expansion up to the quadratic terms (it means that
we assumed a small variation of α(r) in space) we can
substitute this into (5) as follows:

Hl =− 2|Sl|
∑

m∈(n.n.)

Jlm|Sm|

− 2|Sl|
∑

m∈(n.n.)

Jlm|Sm|
∑
i

αl ·
(
∂xiαl

)
dxi

− |Sl|
∑

m∈(n.n.)

Jlm|Sm|
∑
i, j

αl ·
(
∂xi ∂x jαl

)
dxidx j .

(10)

The second term on the right side is equal to zero because
α is a unit vector, and the only possibility to change it is a
rota-tion: unit vectors αl fulfill obvious relation: αl · αl = 1.
Differentiate this equation with respect to xi results in the
following: (

∂xiαl
) · αl = 0. (11)

It means that ∂xiα is zero or is orthogonal to the vector α
(i.e., αl · (∂xiαl) ≡ 0, see (11)). The Hamiltonian can be now
rewritten as follows:

Hl = − 2|Sl|
∑

m∈(n.n.)

Jlm|Sm|

− |Sl|
∑

m∈(n.n.)

Jlm|Sm|
∑
i, j

αl ·
(
∂xi ∂x jαl

)
dxidx j .

(12)

For a homogeneous material the length of the spins is
preserved, |Sl| = |Sm| in each lattice point, and the exchange
integral is constant, that is, Jlm = J for each n.n. l and
m (l /=m), (this assumption is valid for inhomogeneous
material when two atomic planes (for n.n. exchange inter-
actions) at the interfaces are removed from consideration.)
With this homogenization, we obtain from (12) the following
expression:

Hl = −2Z|S|2J − |S|2J
∑

m∈(n.n.)

∑
i, j

αl ·
(
∂xi ∂x jαl

)
dxidx j ,

(13)

where Z is a number of the nearest neighbors. For crystals
with cubic crystallographic structures (i.e., for simple cubic
(sc), body-centered cubic (bcc), and face-centered cubic (fcc)
lattice types) the distance between n.n. is equal along all
directions, |dxi| = a. Using this property, the summation
over nearest neighbors

∑
m∈(n.n.)(· · · )dxidx j for i /= j is equal

to 0 for each lattice type. So, we can obtain the following
Hamiltonian:

Hl = −2Z|S|2J − 2|S|2Ja2
∑
i

αl ·
(
∂xi ∂xiαl

)
. (14)

Equation (11) can be again differentiate with respect to
x j , and the result is

αl ·
(
∂xi ∂x jαl

)
= −(∂xiαl) · (∂x jαl). (15)

With this equality we can rewrite (14) for the exchange
energy into the following form:

Hl = −2Z|S|2J + 2|S|2Ja2
∑
i

(
∂xiαl

)2
. (16)

To define energy density, Eex as a continuous function of
the position vector, we have to sum over all spins in the unit
cell and divide it by the volume of this unit cell. In that way
we obtain density of the following exchange energy:

Eex = λM2 + A
∑
i

(
∂xiα(r)

)2, (17)

where

A = 2nJS2

a
(18)

and n = 1, 2, or 4 for sc, bcc, or fcc lattice, respectively; [2],
α(r) is defined in (8) and

λ = −2ZJ
Nμ2

Bg
2
. (19)

To calculate the total exchange energy, Eex, stored in a
magnetic material, we have to integrate density of the energy
(17) over the volume of the material [3] as follows:

Eex =
∫
V

Eexd
3r =

∫
V
λM2d3r +

∫
V
A
∑
i

(
∂xiα(r)

)2
d3r

=
∫
V
λM2d3r

+
∫
V
A

[(
∂x

M
M

)2

+
(
∂y

M
M

)2

+
(
∂z

M
M

)2
]
d3r.

(20)
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The SW can be regarded as coherent precession of the
magnetization vector around its equilibrium direction. Based
on this observation most SW calculation are performed in
linear approximation. This approximation was already used
once in our paper, it is in (10). Now we will use it again to
simplify the expression (20) for the total exchange energy.

2.1.1. Exchange Energy in Form I. In linear approximation
the magnetization vector

M(r) =Mx(r)x̂ +My(r) ŷ +Mz(r)ẑ (21)

can be separated into two parts: a static and dynamic com-
ponents. We assume that the magnetization component
along the direction of the applied magnetic field, in our case
it is the z-axis, is constant in time (but can be still position
dependent), and its value is close to the length of the total
magnetization vector as follows:

M0 =M0(r) ≡Mz ≈ |M| ≈ const(t). (22)

The time-depending components of the magnetization vec-
tor; Mx and My will be denoted by mx and my , respectively.
We will define the dynamic magnetization vector as m =
(mx,my) being a two-dimensional vector in the plane per-
pendicular to the direction of the saturation magnetization.

The exchange energy, (20), with the help of approxima-
tion (22) can be rewritten in the following form:

Eex =
∫
V
λM2

0d
3r +

∫
V
A

(
∇ m
M0

)2

d3r. (23)

This consists of the formula for the exchange energy, which
we will call as Form I.

2.1.2. Exchange Energy in Form II. In the following we will
make further assumptions to obtain another expression for
the exchange field. We can write that

(
∂x

m
M0

)2

=
(

(∂xm)M0 − (∂xM0)m
M2

0

)2

= (∂xm)2M2
0 + (∂xM0)2m2 −M0(∂xM0)

(
∂xm2

)
M4

0
(24)

were in the last component of the nominator we have used
2m · ∂xm = ∂x(m2). The same calculations can be applied to
other components of the ∇ operator in the exchange energy
functional (23). The following expression for the exchange
energy can be obtained:

Eex =
∫
V
λM2

0d
3r +

∫
V

A

M2
0

(∇m)2d3r

+
∫
V

A

M4
0

(∇M0)2m2d3r −
∫
V

A

M3
0

(∇M0) · (∇m2)d3r.

(25)

In MCs the saturation magnetization is a function of
the position vector with a step increase at interfaces. For

bicomponent MCs (i.e., consisting of two ferromagnetic
materials: A and B), M0(r) can be defined with the help of
the characteristic function S(r):

M0(r) = (
M0,A −M0,B

)
S(r) +M0,B, (26)

were

S(r) =
{

1 for r in material A,

0 for r in material B,
(27)

and M0,A and M0,B are saturation magnetizations in mate-
rials A and B, respectively. We can see that in last two
terms in (25) there are derivatives of M0 with respect to the
position which according to (26) are derivatives from the step
function, that is,∇M0 = (M0,A −M0,B)δ(r− rinterface), where
δ is the Dirac delta function, and rinterface is a position vector
which define the interface. It means that these two terms
are connected with the exchange energy contributed only at
interfaces and which are related to the jump of the saturation
magnetization value (in PWM calculations we will assume
parallel magnetizations in both materials). It can be shown
that these two terms result in internal magnetic field com-
ponents localized on interfaces and that these components
introduce singularities in the equation of motion. To avoid
these singularities we neglect these two terms. (It can be
shown by direct calculation of functional derivatives accord-
ing to (29), that these terms introduce non-Hermitian (or
non-anti-Hermitian) elements into equation of motion, that
is, (m/M0)∇((2A/μ0M

2
0 )∇M0), and again its physical inter-

pretation is questionable.)
To summarize, we have derived two different formulas

for the exchange energy in linear approximation, which are
equivalent in the case of homogeneous material. These are

Form I: Eex =
∫
V
λM2

0d
3r +

∫
V
A

(
∇ m
M0

)2

d3r,

Form II: Eex =
∫
V
λM2

0d
3r +

∫
V

A

M2
0

(∇m)2d3r.

(28)

In this derivation we have neglected the interface anisotropy
terms [9, 11]. These effects, which can be present in real
materials, have a microscopic origin and are limited to the
very thin area around interfaces (one or two atomic planes).
In continuous effective models such effects can be included
by proper effective boundary conditions imposed on dynam-
ical component of the magnetization vector.

2.2. Exchange Field. Exchange field can be derived from the
exchange energy functionals (28) as a first variational deri-
vative with respect to the magnetization vector [4, 59] as
follows:

Hex(r) = − 1
μ0

δEex

δM
= − 1

μ0

[
δEex

δmx
,
δEex

δmy
,
δEex

δM0

]
. (29)
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This equation is written in SI units. Those variational deriva-
tives can be calculated from Euler formula [4] as follows:

δEex

δmx
= ∂η

∂mx
−∇

(
∂η

∂(∇mx)

)
= ∂η

∂mx
−
∑
i

∂

∂xi

(
∂η

∂
(
∂ximx

)),

(30)

where Eex =
∫
V ηd

3r and η = λM2
0 (r) + A(r)(∇m(r)/M0(r))2

or η = λM2
0 (r) +

(
A(r)
M2

0 (r)

)
(∇m(r))2 for Form I and Form

II of the exchange energy, respectively (see (28)). We will
perform those calculations independently for each form of
the exchange energy defined in (28). During calculations we
will take into account the inhomogeneity in the material,
that is, spacial dependence of material parameters: A(r) and
M0(r).

2.2.1. Form I of the Exchange Field. For Form I of
the exchange energy functional η = λM2

0 (r) + A(r)
(∇(m(r)/M0(r)))2 and we will calculate functional derivative
directly from (30). First we calculate the derivative with
respect of m as follows:

∂η

∂mx
= (∂A(r)∇(m(r)/M0(r)))2

∂mx

= A(r)

M0(r)2∇
(

m(r)
M0(r)

)
· ∇(M0(r)).

(31)

This term includes the derivative of saturation magnetiza-
tion, which is a step function on the interface between two
magnetic materials—(26). This part of the magnetic field is
localized purely at interfaces similarly as was found already
in (25). This term will introduce singularity into equation of
motions, and it will be neglected.

After this assumption the exchange magnetic field in the
Form I will be obtained solely from the second term in (30),
that is,

μ0Hex = ∇ ∂η

∂∇m(r)
= ∇∂A(r)(∇(m(r)/M0(r)))2

∂∇m(r)

= ∇
[
A(r)2

(
∇ m(r)
M0(r)

)
·
(
∂∇(m(r)/M0(r))

∂∇m(r)

)]

= ∇
[

2A(r)
M0(r)

]
∇ m(r)
M0(r)

.

(32)

2.2.2. Form II of the Exchange Field. For exchange energy
written in the Form II as defined in (28), η = λM2

0 (r) +
(A(r)/M2

0(r))(∇m(r))2. We can calculate functional deriva-
tives according to (30) and write Hex in a compact form
without any further approximations. In this case ∂η/∂mx =
0 because the first term in η is independent on ∂ximx. So

the functional derivative of Eex with respect to mx take the
following form:

δEex

δmx
=−

∑
i

∂

∂xi

(
∂
(
A/M2

0

)
(∇m)2

∂
(
∂ximx

) )

=−
∑
i

∂

∂xi

[
A

M2
0

∂A

∂
(
∂ximx

)]

=− ∂

∂x

[
2A
M2

0
(∂xmx)

]
− ∂

∂y

[
2A
M2

0

(
∂ymx

)]

− ∂

∂z

[
2A
M2

0
(∂zmx)

]
,

(33)

where A denotes [(∂xmx)2 + (∂xmy)
2 + (∂ymx)2 + (∂ymy)

2 +
(∂zmx)2 + (∂zmy)

2]. The same procedure can be repeated for
the y component of the magnetization. Finally the exchange
field can be written in the following form, that is, Form II:

μ0Hex(r) = ∇
[

2A(r)
M2

0 (r)

]
∇m(r). (34)

2.2.3. Summary of the Exchange Field Forms. We have shown
the derivation of two different expressions for the exchange
field in nonuniform ferromagnetic materials in linear
approximation. These are

Form I: Hex(r) = ∇lex,I(r)∇m̃(r),

where m̃(r) ≡ m(r)
M0(r)

, lex,I = 2A(r)
μ0M0(r)

;

Form II: Hex(r) = ∇lex,II(r)∇m(r),

where lex,II = 2A(r)
μ0M

2
0 (r)

.

(35)

We can also add to this list the exchange field in Form III,
which is derived directly from the exchange energy func-
tional (28) (independent of the form which will be used)
under assumption of the homogeneous material, that is,
when the space dependence of A and M0 is not taken into
account during calculations of a functional derivative (30)

Form III: Hex(r) = lex,I(r)
M0(r)

∇2m(r). (36)

From the parameters introduced just above: lex,I and lex,II,
only the second one (i.e., from Form II) has an additional
physical meaning; that is, its square root defines the exchange
length [3]. (In Form III the coefficient in the exchange field is
the same as in Form II, but M0 was excluded from new para-
meter due to simplification in the latter calculus, see (42).)

It is worth to note at this moment that differential
operators in the definition of the exchange field, (35)-(36),
work on dynamical components of the magnetization vector,
m(r) in Forms II and III, while on its normalized function in
Form I, m̃(r). This will make different equations and should
be kept in mind during the interpretation of the eigenvectors
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Figure 2: Structure of a 1D MC (a) and 2D MC (b) considered in this manuscript. 2D MC is formed by cylindrical dots A arranged in a
square lattice immersed into a ferromagnetic matrix B. The external magnetic field H0 is applied in the direction of the z-axis. Spin waves
are assumed to form standing waves in the infinite (y, z) plane or along y axis in (b) and (a), respectively. The thickness of MCs, d, is much
smaller than the lattice constant a and the diameter of dots, 2R or width of stripes aA.

found in PWM and boundary conditions implemented in
the exchange field definitions.

Those three different formulas for the exchange field will
be investigated for the calculation of the magnonic band
structure in thin plates of 1D and 2D Mcs with PWM.

3. Plane Wave Method

The PWM is a useful tool used for study systems with dis-
crete translational symmetry, including electronic, photonic,
phononic and magnonic crystals [24, 27, 28, 60–66]. This
method can be applied to any type of lattice and various
shapes of scattering centers. The method is being constantly
improved, with its field of application extending to new
problems also in magnonic field [67]. Recently, the PWM
has been used for the calculation of the SW spectra of 1D
and 2D MCs of finite thickness [68, 69], and the magnonic
spectra of thin films of 2D antidot lattices (ADLs) based on
a square lattice [70, 71]. The PWM gives also a possibility
for calculations of the surface effects and defect states but
this requires so-called supercell formulation. The PWM in
the supercell formulations was recently used to study the
surface and defect influence on magnonic spectra in 2D MCs
[69, 72]. For completeness we will briefly outline the PWM
and explain the approximations used in this method.

We will consider slabs of 1D or 2D MCs (Figure 2) where
the dynamics of the magnetization vector M(r, t) can be
described by the LL equation as follows:

∂M(r, t)
∂t

= −γμ0[M(r, t)×Heff(r, t)] +
ξ

MS

[
M× ∂M

∂t

]
,

(37)

where γ is the gyromagnetic ratio, μ0 is permeability of
vacuum; as in the case of free electrons, we will assume
γμ0 = 2.21 × 105 m(A s)−1. t is a time, the last term on the
right describes relaxation with dimensionless damping factor
ξ. The damping will be neglected in this study, while an
application of the PWM for calculation of the time life of
SWs in 2D MCs can be found in [67]. Heff is an effective

magnetic field, which in our study will consist of three com-
ponents:

Heff(r, t) = H0 + Hms(r, t) + Hex(r, t). (38)

H0 is a homogeneous in space and directed along the z-axis
bias magnetic field, Hex(r, t) is an exchange field; its proper
definitions were derived in preceding section in (35).
Hms(r, t) is the demagnetizing field. In the magnetostatic
approximation (with retardation effects neglected), the de-
magnetizing field must fulfill the magnetostatic Maxwell’s
equations [59] as follows:

∇×Hms(r, t) = 0;

∇ · (Hms(r, t) + M(r, t)) = 0.
(39)

We will calculate the demagnetizing field by decomposing
this field into the static and dynamic components, Hms(r)
and hms(r, t), respectively. We will assume that the static part
will have values different from zero only in the direction of
the external magnetic field: Hms(r) = Hms(r)ẑ. The time
dependence of the dynamic component of the demagnetizing
field has the same form as that of the dynamic component of
the magnetization vector: hms(r, t) = hms(r)eiωt, ω being an
angular frequency of the SW.

In PWM calculations we shall consider a saturated mag-
netization in the whole magnonic crystal. This allows us to
use linear approximation and a global coordinate system in
which the y- and z-axes define the plane of periodicity, and
the x-axis is normal to the surface of a thin plate of the MC.
In the case of linear spin waves the component of the mag-
netization vector parallel to the static magnetic field (in
this study the static magnetic field is always assumed to be
oriented along the z-axis) is constant in time, and its mag-
nitude is much greater than that of the perpendicular com-
ponents: |m(r, t)| � Mz(r) (M(r, t) = Mz(r)ẑ + m(r, t)).
Thus, the linear approximation, introduced in the derivation
of the exchange field in the previous section, can be used
again, by neglecting all terms with squared m(r, t) and
hms(r, t) and assuming Mz ≈ M0. We will only search for
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solutions of the LL equation corresponding to monochro-
matic spin waves: m(r, t) = m(r) exp(iωt).

Using the linear approximation, we derive the following
system of equations for mx and my (and m̃x and m̃y) from
(37) for exchange field in various formulations defined in
(35). For Form I of the exchange field we get

i
ω

γμ0
m̃x(y)(r) = −(+)

[∇ · lex,I∇
]
m̃y(x)(r)

+(−)m̃y(x)(r)
(
H0 +Hms,z

)−(+)M0h̃ms,y(x)(r),
(40)

for Form II:

i
ω

γμ0
mx(y)(r) = −(+)M0

[∇ · lex,II∇
]
my(x)(r)

+(−)my(x)(r)
(
H0 +Hms,z

)−(+)M0hms,y(x)(r)
(41)

and for Form III:

i
ω

γμ0
mx(y)(r) = −(+)lex,I∇2my(x)(r)

+(−)my(x)(r)
(
H0 +Hms,z

)−(+)M0hms,y(x)(r).
(42)

In (40) we introduce h̃ms,y(x)(r), which is a value of the
demagnetizing field normalized to the saturation magneti-
zation, M0. The formula for normalized demagnetizing field
is obtained under the same approximations as used in the
derivation of the exchange field and will have the same
expression as hms,y(r).

In MCs the material parameters, namely, A and M0, are
periodic functions of the in-plane position vector r = (y, z)
for 2D MC (r = (y, 0) for 1D MC), with a period equal to
the lattice vector a (a) as follows:

M0(r + a) =M0(r), A(r + a) = A(r). (43)

Also parameters used in formulas for the exchange field,
lex,I(r) and lex,II(r), fulfill the same relation. In MCs com-
posed of two materials each of these material parameters can
be expressed by two terms: M0,A, M0,B and AA, AB, repre-
senting its respective values in each constituent material. The
lattice vector a in a square lattice is any superposition of two
primitive vectors: a1 = aẑ, a2 = a ŷ with integer coefficients,
where a is the lattice constant (see Figure 2(b)).

To solve the LL equation we will use Bloch’s theorem,
which asserts that a solution of a differential equation with
periodic coefficients can be represented as a product of a
plane-wave envelope function and a periodic function. For
dynamical components of the magnetization vector and its
normalized values, those are

m(r) =
∑
G

mq(G)ei(q+G)·r,

m̃(r) =
∑
G

m̃q(G)ei(q+G)·r,
(44)

respectively. For 2D MCs G = (Gy ,Gz) denotes a reciprocal
lattice vector of the structure considered; in the case of square
lattice G = (2π/a)(ny ,nz), ny and nz are integers. The
Bloch wave vector q = (qy , qz) refers to those spin waves
which according to Bloch’s theorem can be limited to the
first Brillouin zone (1BZ). For 1D MCs, G = (Gy , 0) =
((2π/a)ny , 0) and q = (qy , 0).

In the next step we perform the Fourier transformation
to map the periodic functions MS, lex,I, and lex,II in (40)-(41)
onto the reciprocal space. The transformation formulas are
as follow:

M0(r) =
∑
G

M0(G)eiG·r,

lex,I(r) =
∑
G

lex,I(G)eiG·r,

lex,II(r) =
∑
G

lex,II(G)eiG·r.

(45)

In the case of cylindrical dots in 2D MC and stripes in 1D
MC, the Fourier components of the saturation magnetiza-
tion MS(G) and the exchange parameters, lex,I(G), lex,II(G),
can be calculated analytically. The formula for the saturation
magnetization in 2D MC reads as follows:

M0(G) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(
M0,A −M0,B

)πR2

a2
+M0,B, for G = 0,

(
M0,A −M0,B

)
2
πR2

a2

J1(GR)
GR

, for G /= 0,

(46)

where J1 is a Bessel function of the first kind, R is a radius of a
dot. G is the length of a reciprocal wave vector G. For stripes
in 1D MC with lattice constant a, M0(G) has the following
form:

M0(G) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(
M0,A −M0,B

)aA
a

+MS,B, for G = 0,

(
M0,A −M0,B

)
2
aA
a

sinGaA/2
GaA/2

, for G /= 0,

(47)

where aA is the width of the stripe of material A. The for-
mulas for other periodic functions of the position vector, that
is, lex,I(G) and lex,II(G) have the same form.

We need formulas for the static and dynamic demagne-
tizing fields, Hms,z(r, x), hms,x(r, x), and hms,y(r, x), to finalize
the procedure, in which an eigenvalue problem in the recip-
rocal space is derived from LL equation. According to the
ideas presented in [73], for a slab of a 2D magnonic crystal
with a uniform magnetization Maxwell’s equations can be
solved in the magnetostatic approximation with appropriate
electromagnetic BCs at both surfaces of the slab, that is,
at x = −d/2 and x = d/2. Those BCs are a continuity of
the tangential components of the magnetic field vector and a
normal component of the magnetic induction vector. For the
considered structure, infinite in the (y, z) plane, analytical
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solutions in the form of Fourier series can be obtained for
both the static and dynamic demagnetizing fields [68, 70] as
follows:

Hms,z(r, x) = −
∑
G

Ms(G)
G2

G2
z

(
1− cosh(|G|x)e−|G|d/2

)
eiG·r;

(48)

hms,y(r, x) =−
∑
G

my(G)∣∣q + G
∣∣2

(
qy +Gy

)2

×
(

1− cosh
(∣∣q + G

∣∣x)e−|q+G|d/2
)

ei(q+G)·r;

(49)

hms,x(r, x) = −
∑
G

mx(G) cosh
(∣∣q + G

∣∣x)e−|q+G|d/2ei(q+G)·r.

(50)

Similarly to the static component of the demagnetizing
field, we take into account dynamical magnetostatic field
components which depend on the same component of the
magnetization vector, only. Represented in the reciprocal
space for the in-plane components, these formulas for the
demagnetizing fields are x dependent, that is, vary with posi-
tion across the thickness of the slab. However, when the slab
is thin enough (which is the case of the discussed MC, with
d = 30 nm), the nonuniformity of the demagnetizing fields
across its thickness can be neglected, and the respective field
values calculated from (48)–(50) for x = 0 can be used in the
PWM calculations.

The substitution of the (44)–(50) into (41)-(42) leads to
an algebraic eigenvalue problem with eigenvalues iω/γμ0H0

as follows:

M̂Λmq,Λ = i
ω

γμ0H0
mq,Λ, (51)

where Λ takes the values I, II, or III in dependence on which
form of the exchange field is derived for. The eigenvector
mT

q,Λ = [mx,q(G1), . . . ,mx,q(GN ),my,q(G1), . . . ,my,q(GN )]

for Λ equal II or III, and mT
q,I = [m̃x,q(G1), . . . , m̃x,q(GN ),

m̃y,q(G1), . . . , m̃y,q(GN )] when a finite number N of recip-
rocal lattice vectors is used in the Fourier series (44) and
(45). For each form of the exchange field, the elements of the
matrix M̂Λ of the eigenvalue problem (51) can be written in
a block-matrix form as follows:

M̂Λ =
⎛⎝M̂xx

Λ M̂
xy
Λ

M̂
yx
Λ M̂

yy
Λ

⎞⎠. (52)

The submatrices in (52) for the exchange field in different
forms are defined as follows:

M̂xx
i j = M̂

yy
i j = 0,

M̂
xy
i j = δi j +Mex,Λ

i, j +

(
qy +Gy, j

)2

H0

∣∣∣q + G j

∣∣∣2

×
(

1− C
(

q + G j , x
))
MS

(
Gi −G j

)

−
(
Gz,i −Gz, j

)2

H0

∣∣∣Gi −G j

∣∣∣2MS

(
Gi −G j

)(
1− C

(
Gi −G j , x

))
,

M̂
xy
i j =− δi j −Mex,Λ

i, j − 1
H0

C
(

q + G j , x
)
MS

(
Gi −G j

)

+

(
Gz,i −Gz, j

)2

H0

∣∣∣Gi −G j

∣∣∣2MS

(
Gi −G j

)(
1− C

(
Gi −G j , x

))
,

(53)

where indexes of reciprocal lattice vectors i, j, l are integers
which number reciprocal lattice vectors. The additional
function used in above equations is defined as follows:

C
(

q, x
) = cosh

(∣∣q
∣∣x)e−|q|d/2. (54)

Matrix elements connected with the exchange field, Mex,Λ
i, j ,

depend on definition used. These elements are as follow:

Mex,I
i, j =

(
q + G j

)
· (q + Gi

)
H0

l2ex,I

(
Gi −G j

)
,

Mex,II
i, j =

∑
l

(
q + G j

)
· (q + Gl

)
H0

l2ex,II

(
Gl −G j

)
MS(Gi −Gl),

Mex,III
i, j =

(
q + G j

)2

H0
l2ex,I

(
Gi −G j

)
,

(55)

for Forms I, II, and III, respectively.
We solve the system of (51) by standard numerical

procedures designed for solving complex matrix eigenvalue
problems. All the eigenvalues found by these procedures
must be tested for convergence though. A satisfactory con-
vergence of numerical solutions of (51) for all the structures
considered proves to be assured by the use of 625 and 161
reciprocal lattice vectors for 2D and 1D MC, respectively.

All three forms of the exchange field were used in
literature in calculations of the magnonic band structure in
MCs, but to our best knowledge there is missed their detailed
derivations, and in this paper we would like to fill this gap.
In the first paper devoted to MCs by Vasseur et al. [27], the
exchange field in the form similar to Form I was postulated.
The only difference is that the eigenvector is related to the
dynamical component of the magnetization vector m instead
its normalized value m̃. The same form of the Hex was used
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also in other papers, for example, [67, 72, 74–76] without the
derivation of its form and with the dynamical components of
the magnetization vector used instead its normalized value.
Of course this different definition of the eigenvectors does
not influence the dispersion of spin waves found in calcu-
lations (i.e., eigenvalues) but change only the interpretation
of eigenvectors. In papers [62, 63] another definition of the
exchange field, that is, Form II with additional surface term,
was used, and a detailed analysis of the results obtained
with both formulations was presented for infinite 2D and
3D MCs. The additional component introduced in the LL
equation is related to the interface anisotropy as was pointed
out in the appendix of [28]. In fact this interface term can
be obtained from last two terms in the exchange field defined
in (25) and neglected in this study. The strict Form II of the
exchange field, for the first time probably, was used by Mills
in [9] where he derived the corrected Hoffman boundary
conditions. In our recent papers [28, 68, 69], we used Form
II for the calculations of the SW spectra in thin films of
1D and 2D MCs. The Form III of the exchange field, that
is, characteristic for uniform materials, was also used for
calculations of the magnonic band structure in magnetic
stripes coupled by dynamic dipole interactions, [77]. Below
the influence of different definitions of the exchange field
on the magnonic band structure in planar MCs will be
investigated.

4. Magnonic Spectra versus Formulation of Hex

In this section we will present results of our calculations
performed with PWM for three different forms of the
exchange field as defined in (35)-(36). We will present the
results for a 1D MC and a 2D MC separately.

4.1. 1D Magnonic Crystals. We chose for our study a 1D MC
consisting of Co and permalloy (Py) stripes of equal width
250 nm. The thickness of the film is 20 nm and the length
is assumed infinite. Our choice is motivated by recently
published papers presenting experimental and theoretical
results [68, 75, 76, 78, 79]. The dispersion relation of SWs
in such crystal was measured by Brillouin Light Scattering
spectroscopy and was calculated from the LL equation
using the finite-element method and the PWM. Very weak
magnetic field, μH0 = 0.001 T, is applied along the stripes.

We assume values of material parameters (spontaneous
magnetization and exchange constant for cobalt and permal-
loy) equal to those presented in the experimental paper [75].
It is for cobalt:M0,Co = 1.15·106 A/m,ACo = 2.88·10−11 J/m
and for permalloy: M0,Py = 0.658 · 106 A/m, APy = 1.1 ·
10−11 J/m. For the gyromagnetic ratio, we assume average
value proposed in [75], γ = 194.6 GHz/T, that is, the same
for cobalt and permalloy. Three types of lines in Figure 3
represent the results of our calculations with the PWM for
three different formulations of the exchange field taken from
(35)-(36).

The dispersion relations calculated with the three dif-
ferent forms of the exchange field are overlapping almost
perfectly (see Figure 3). It means that the effect of exchange
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Figure 3: Magnonic band structures calculated for three different
definitions of the exchange field (as defined in (35)-(36)) for a thin
slab of the considered 1D MC. The structure of the MC is schem-
atically shown in the inset; stripes of Co and Py with the same width
are arranged periodically with the lattice constant 500 nm. Very
weak external magnetic field, μ0H0 = 0.001 T, is directed along
stripes. The magnetostatic interaction determine, the magnonic
band structure—the definition of the Hex is unimportant.

interactions between Co and Py is minor or even negligible
for this structure. It is because the magnetostatic interactions
dominate over the exchange interactions for large lattice
constant.

To observe effects connected with various definitions of
the exchange field in nonuniform materials, the decrease of
the role of magnetostatic interaction is necessary. This can be
done by decreasing a lattice constant. In Figure 4 we show the
magnonic band structure for the 1D MC with 30 nm lattice
constant and 15 nm width of Co and Py stripes. We change
also the film thickness to 4 nm. The rest of parameters are the
same as in previous calculation.

The differences connected with various definition of the
exchange field start to be visible already near the BZ border
and for higher modes also at the BZ center. The most
essential difference can be observed between SW dispersions
calculated according to Form I and Forms II and III. For the
Form I (dashed line), the magnonic gap is absent between 1st
and 2nd band, while for the other two formulations of Hex

the gap exists.
In Figures 4(b) and 4(c) the profiles of dynamical magne-

tization and its first derivatives with respect to y are shown
for three lowest modes. The profiles are very similar for all
three forms of the exchange field. The shift of the 3rd profile
along y-axis for Form I of the exchange field with respect to
other two can be observed. In the inset in Figure 4(c), we can
see also a discontinuity of the ∂m/∂y for the form I and II.
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Figure 4: Magnonic band structure and profiles of SWs calculated for three different definitions of the exchange field for the 1D MC with
the lattice constant of 30 nm and thickness 4 nm (schematically shown in the inset)—for the case of dominating exchange interaction. (a)
Magnonic band structure with the Brillouin zone border marked by dashed gray line. In (b) an amplitude of the dynamical component of
the magnetization vector, mx at the border of the 1st Brillouin zone is shown. Its first derivative with respect to the y is shown in (c).

The biggest one is observed for SWs calculated with Form I
of the exchange field.

4.2. 2D Magnonic Crystals. Let us consider a thin film of
a 2D MC composed of ferromagnetic circular dots in the
square lattice and immersed in other ferromagnetic material.
First, we will calculate the SW spectrum for Co dots in Py
matrix in the exchange interaction dominating regime. This
is obtained by assuming small lattice constant a = 30 nm and
thickness d = 4 nm. We chose the dot diameter of 14 nm. The
magnonic band structure along y-axis (i.e., perpendicular to
the direction of bias magnetic field), and profiles of spin-
waves are shown in Figures 5(a) and 5(b), respectively. The
bias magnetic field is directed along the z-axis, and it is strong
enough to saturate the sample μ0H0 = 0.2 T.

We observed similar dependences as for the case of 1D
MC in Figure 4. For the Forms II and III of the exchange field
magnonic gaps (at least partial) exist, while for the Form I the
bands overlap. We found also differences in the SW profiles,
especially for modes with higher frequencies.

4.3. Boundary Conditions. We discussed so far PWM results
for various definitions of the exchange field performed for
MC consisting of two materials: Co and Py only. We showed
also that the different expressions for the exchange field are
important only for small lattice constant. In Figures 6(a) and
6(b) we show the magnonic band structure for a 1D and

2D MC, respectively, formed by Fe and yttrium iron garnet
(YIG). We chose Fe and YIG because those materials have
very different magnetization and exchange constants, which
are MS,Fe = 1.752 · 106 A/m, AFe = 2.1 · 10−11 J/m, MS,YIG =
0.194 · 106 A/m, and AYIG = 0.4 · 10−11 J/m. The struc-
ture of the MCs is the same as in previous studies: the lattice
constant 30 nm and the film thickness 4 nm for 1D MC and
a = 30 nm, R = 7 nm, thickness 4 nm for 2D MC. We found
that the magnonic gap (between 1st and 2nd band) exist in
all band structures, also this calculated with Form I. For the
1D MC there is a big difference between the magnonic bands
and the gap width calculated with Form II of the exchange
field and other two forms. It is interesting to note that at Γ
point there is good agreement between various formulations
of Hex. In 2D MC the magnonic band structure is more
complicated, gaps are smaller than for 1D but exist for all
expressions of the exchange field.

Now we can try to answer the question for the physical
reasons of different solutions found with From I, II and III of
the exchange field. We have seen significantly different results
obtained from Form II, and Form I for Co/Py MC, while the
solutions obtained from Forms II and III are close to each
other. It is different to Fe/YIG MC where the solution for
Form III is much closer to the solution of Form I. Those
effects shall be related to BCs for dynamic components of the
magnetization vector implemented in various formulations.
We can obtain the BC implemented in the differential
equation, in our case LL equation, by integrating them over
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14 nm. (b) Modulus of the dynamical component of the magnetization vector calculated for the wave vector from the center of the BZ. The
profiles shown are calculated for Form II and Form I of the exchange field.

the interface [9, 14, 27]. Because we are focusing on the
exchange BCs, it is enough for the purpose of this study to
take only terms connected with the exchange field in (41)-
(42). By performing those integrations and taking a limit of
a zero thickness, one can obtain the conditions of continuity
of m for Forms II and III, and continuity of the m̃ for Form I.
At this point the difference between calculations performed
in [27] and with Form I appears. In [27] the continuity of m
was cast on while here is continuity of its normalized value m̃.
Also the second BC is obtained, that is, continuity of terms
proportional to the first derivative of the dynamical compo-
nent of the magnetization vector with respect to the normal
to the interface. One can find that this BC requires the conti-
nuity of l2ex,2∂nm̃, l2ex,II∂nm, and ∂nm for the exchange field in
Forms I, II, and III, respectively. ∂n means the derivative
along the direction normal to the interface. Those boundary
conditions agree with the profiles and its first derivatives
found for 1D MC and shown in Figures 4(b) and 4(c),

respectively (see also the inset in Figure 4(c) for the 2nd
mode). The continuity of the first derivative at the interface is
observed only for Form III, as expected. However, to validate
which form of the exchange field is proper one and which
describe properly the real physical system is out of scope
of this paper. In the literature various boundary conditions
were used, for example, [6–14], but the discussion under
possibility for implementing them in effective continuous
models is only at the beginning stage, and further investiga-
tion is required.

5. Conclusions

We presented derivations of the two different expressions
for the exchange field used in literature for SW calculations
in magnonic crystals with pointing at the surface terms
neglected in each case. We compared these formulas with the
definition of the exchange field used for SW calculations in
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a uniform ferromagnetic material. Numerical calculations
with PWM were performed to study the influence of these
different expressions on the magnonic band structure and
profiles of SWs in 1D and 2D planar magnonic crystals. We
found that for a large lattice constant the magnonic band
structure is independent of the formulation used. It is
because the magnetostatic interaction dominates over the
exchange one. The situation changed for small lattice con-
stants where in dependence on the form of the exchange field
used in calculations the magnonic gap can be present or
absent in magnonic band structure. By numerical calcula-
tions we showed that various formulations of the exchange
field have strong relation to the boundary conditions at the
interfaces between two ferromagnetic materials. Further
investigation is necessary to elucidate the proper form of the
exchange field which fulfill the physical boundary conditions
on interfaces imposed on dynamic components of the mag-
netization vector in magnonic crystals.
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Spin-orbit Rashba effect applies a torque on the magnetization of a ferromagnetic nanostrip in the case of structural inversion
asymmetry, also affecting the steady domain wall motion induced by a spin-polarized current. This influence is here analytically
studied in the framework of the extended Landau-Lifshitz-Gilbert equation, including the Rashba effect as an additive term of the
effective field. Results of previous micromagnetic simulations and experiments have shown that this field yields an increased value
of the Walker breakdown current together with an enlargement of the domain wall width. In order to analytically describe these
results, the standard travelling wave ansatz for the steady domain wall motion is here adopted. Results of our investigations reveal
the impossibility to reproduce, at the same time, the previous features and suggest the need of a more sophisticated model whose
development requires, in turn, additional information to be extracted from ad hoc micromagnetic simulations.

1. Introduction

Magnetization dynamics in nanodevices has been intensely
investigated in the last decades as it provides a wide variety
of technological applications in the area of storage and
logic devices. Formerly, the manipulation of the magnetic
configuration was typically achieved by means of external
magnetic fields but the contemporary demand of minia-
turizing storage devices and of increasing their capacity
would have required higher and higher fields. An alternative
method, realized by using spin-polarized currents, was
outlined by the discovery of spin-transfer torque effect [1, 2].
Theoretical and experimental studies, therefore, examined
magnetization dynamics due to the simultaneous action of
external magnetic fields and electric currents [3–5] as well as
current-driven dynamics at zero field [6, 7].

Among the different geometries used for spintronic
devices, a more recent attention is directed to magnetic

nanowires and strips [8–22]. Such thin ferromagnetic struc-
tures turn out to be relevant for the realization of oscillators
and high-density memories with low energy consumption
[9]. In particular, their behavior and applications are strictly
connected to the motion of magnetic domain walls (DWs),
namely, the continuous transition regions that separate two
uniformly and oppositely magnetized domains [9, 10]. Also,
in this case, DW dynamics can be activated by means of an
external field or an electric current. Independently of the
nature of the source term, it has been widely demonstrated
that, by varying the strength of such a driving source, the DW
motion experiences two different dynamical regimes. At low
fields (or currents), the equilibrium wall structure is rigidly
shifted along the nanostrip (or nanowire) axis, leading to a
“steady” regime of high DW mobility. Above a critical field
(or current) value, named Walker breakdown, a regime of
lower DW mobility takes place and the internal deformation
is so strong that the wall structure is altered giving rise to a
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periodical alternation of Bloch and Néel DW structures. Such
a dynamics is generally referred to as “precessional” regime
[11].

DW motion can be also strongly modified by spin-orbit
interaction [12] that takes place in the case of structural
inversion asymmetry of the nanodevice. Some previous
works [13–18], in particular, pointed out that this effect,
induced by the flow of an electric current through the
material, acts as an effective field. This contribution, which
was named Rashba field, produces two main consequences:
(1) a (Bloch-like) DW structure is stabilized as the steady
regime turns broadened up to higher current densities so
allowing higher DW velocities; (2) the DW width enlarges
with the increase of the current-induced Rashba field.

From the theoretical viewpoint, DW motion in fer-
romagnetic thin layers is ruled by the extended Landau-
Lifshitz-Gilbert (ELLG) equation including the current-
driven spin-torque effects [20–24]. Travelling wave solutions
for the ELLG equation have been recently obtained, provid-
ing a strong theoretical support for both experimental and
numerical results [20, 22]. It has been also demonstrated
that the inclusion of a different dissipation function into
the ELLG equation, usually referred to as “dry-friction,”
gives a good description of DW dynamics in the presence of
crystallographic defects and structural disorder [20, 22].

In this work, we propose to analytically study, by using
a one-dimensional mathematical model, the steady DW
motion in ferromagnetic nanostrips subject to the action
of spin-polarized currents and Rashba fields. In particular,
we investigate on the appropriateness of using a standard
travelling wave ansatz describing a Bloch DW structure
which rigidly shifts under the action of the external source. In
order to validate the developed model, these analytical results
are then compared, at qualitative level, with those arising
from recent numerical and experimental investigations. The
model also accounts for the nonlinear dry-friction dissipa-
tion function in order to evaluate how such a contribution
affects the current-driven steady DW motion in the presence
of a Rashba field.

2. The Analytical One-Dimensional Model:
Results and Discussion

As depicted in Figure 1, a ferromagnetic nanostrip can be
represented by a rectangular prism of length l, width w,
and thickness t along cx, cy , cz axes, respectively, with l �
w > t. Let us assume that an electric current density J =
Jcx, constant in time and uniform in space, is applied to
the device along the cx axis. Under the hypothesis that the
Rashba field does not modify the equilibrium configuration
obtained in its absence, we assume that a 180◦ DW of
width δ is nucleated at the center of the structure with the
magnetization vector that rotates between the state (0,0,1)
at x → −∞ and the opposite one (0,0,−1) at x → ∞.
These uniformly magnetized states, far away from the wall
location, are hence supposed to be directed towards the easy
axis cz = e, namely, the energetically preferred direction of
spontaneous magnetization.

hR
J

cz = e
cy

cx

m

δ

w

l

t

Figure 1: Schematics of a ferromagnetic nanostrip exhibiting a
Bloch DW.

Current-driven DW dynamics in such a thin layer is
described by the ELLG equation [20–24]:

ṁ = γ(heff ∧m) + td + tst, (1)

where the over-dot denotes time derivation, m = M/MS

is the unit vector along the local magnetization and all the
field vectors are normalized with respect to the saturation
magnetization MS. The constant γ = MSμ0γe is expressed
in terms of the vacuum magnetic permeability μ0 and the
gyromagnetic ratio γe = ge/me, being g the Landé factor,
e the electron charge, and me the electron mass. The first
term in the right-hand side of (1) describes the precession
of magnetization m around the direction of the effective
magnetic field heff, the second term td is the dissipative
torque representing energy dissipation, and tst corresponds
to the current-induced spin torque.

The effective magnetic field heff = −∂W/∂m, calculated
as the variational derivative of the free energy density W ,
accounts for external hext, exchange hexc, demagnetizing
hdmg, anisotropy han, and Rashba hR fields:

heff = hext + hexc + hdmg + han + hR, (2)

As our attention focuses on the influence of the current-
induced Rashba field, we will limit our analysis to the zero-
field configuration:

hext = 0. (3)

The exchange field can be written as

hexc = A
∂2m
∂x2

(4)

being A related to the exchange constant Aex of the material
through

A = 2Aex

μ0M
2
S

. (5)

The demagnetizing field can be approximated by considering
the only diagonal terms of the corresponding tensor which
relates the field to the magnetization [11]:

hdmg = −Nx(m · cx)cx −Ny

(
m · cy

)
cy −Nz(m · e)e, (6)

whereNx,Ny , andNz are the demagnetizing factors satisfying
the normalization condition Nx + Ny + Nz = 1. These
coefficients depend both on the shape (assumed to be
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a rectangular prism) and on the dimensions (w × t × δ) of
the DW.

We also assume that the strip is made by a material
exhibiting a high perpendicular magnetic anisotropy, so that
we can express

han = β(m · e)e, (7)

where β� 1 is proportional to the anisotropy constant K of
the material through

β = 2K
μ0M

2
S

. (8)

Finally, the Rashba field is given by [13–18]:

hR = αRP

μ0μBM
2
S

(e∧ J) (9)

being αR the Rashba parameter, P the polarization factor of
the current, and μB the Bohr magneton. The expression (9)
can be also written in compact form as

hR = χu cy , (10)

where χ accounts for the Rashba effect, χ = (2e/gμ0μ
2
BMS)αR,

and the spin-torque velocity u accounts for the applied
current, u = (gμBP/2eMS)J .

The dissipative torque td is here described by the
phenomenological Gilbert-like expression that also includes
a dry-friction damping function [19–22]:

td = m∧
[
αG +

ζ

|ṁ|
]

ṁ, (11)

Being αG the classical linear damping coefficient and ζ the
phenomenological dry-friction parameter (for more details
on the dry-friction formulation, together with its practical
justification within the equation of motion, see [20–22]).

The spin transfer torque tst is given by

tst = u
(−1 + ηm∧)∂m

∂x
, (12)

where η is the phenomenological nonadiabatic spin-torque
parameter [10].

Taking into account (3)–(12), (1) becomes

ṁ−
[
αG +

ζ

|ṁ|
]

(m∧ ṁ)

=
(
γheff − um∧ ∂m

∂x
− ηu∂m

∂x

)
∧m

(13)

with

heff = A
∂2m
∂x2

+
(
β −Nz

)
(m · e)e

−Nx(m · cx)cx −Ny

(
m · cy

)
cy + χucy .

(14)

Let us now make a transformation from the Cartesian to
the spherical frame, so that it is possible to express the local
magnetization as:

m = cosϕ sin ϑ cx + sinϕ sin ϑ cy + cos ϑ e. (15)

From (13)–(15), we therefore obtain a system of two second-
order partial differential equations:

ϑ̇ +
[
αG +

(
ϑ̇2 + sin2ϑ ϕ̇2

)−1/2
ζ

]
sin ϑϕ̇

= Aγ sin ϑ
∂2ϕ

∂x2
+ 2Aγ cos ϑ

∂ϕ

∂x

∂ϑ

∂x

+ γ
(
Nx −Ny

)
sinϕ cosϕ sin ϑ

−ηu sin ϑ
∂ϕ

∂x
− u∂ϑ

∂x
+ γχu cosϕ

sin ϑ ϕ̇−
{[
αG +

(
ϑ̇2 + sin2ϑ ϕ̇2

)−1/2
ζ

]
ϑ̇

}

= −Aγ∂
2ϑ

∂x2
+ Aγ sin ϑ cos ϑ

(
∂ϕ

∂x

)2

+ γ sin ϑ cos ϑ
(
β −Nz +Nxcos2ϕ +Nysin2ϕ

)
−u sin ϑ

∂ϕ

∂x
+ ηu

∂ϑ

∂x
− γχu sinϕ cos ϑ.

(16)

Since it was demonstrated that the previous system admits
analytical solutions in the form of travelling waves [19–22],
we search for such solutions apt to describe the DW motion
within the steady regime. In particular, in order to reduce the
system (16) to a couple of ordinary differential equations, we
study the appropriateness of adopting the commonly used
travelling wave ansatz ϑ = ϑ(x−vt), where the DW velocity v
is assumed to be a positive constant, and ϕ = ϕ0 = constant.
By using this strategy, we get

(u− v)ϑ′ = γ cosϕ0

[(
Nx −Ny

)
sinϕ0 sin ϑ + χu

]
(
αGv − ηu

)
ϑ′ + ζ̂ = −γAϑ′′

+γ sin ϑ cos ϑ
(
β −Nz +Nxcos2ϕ0 +Nysin2ϕ0

)
−γχu sinϕ0 cos ϑ,

(17)

where ζ̂ = ζ sign(vϑ′), while the prime denotes the derivative
with respect to the travelling wave variable x − vt and the
boundary conditions take the Dirichlet form ϑ(−∞) = 0,
ϑ(+∞) = π. We can recast (17)1 in the following form:

ϑ′ = Γ0
(
sin ϑ + ρ

)
, (18)

where

ρ = γχu cosϕ0

(u− v)Γ0

Γ0 =
γ
(
Nx −Ny

)
cosϕ0 sinϕ0

u− v .

(19)
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In (19)1 the parameter ρ accounts for the presence of the
Rashba field. For what concerns (19)2, let us remind that, in
the absence of the Rashba field and nonlinear dissipations,
we recover the classical definition of DW width Γ−1

0 = δ
[10, 11, 20] with

δ =
√√√√ A

β −Nz +Ny +
(
Nx −Ny

)
cos2ϕ0

. (20)

Let us also notice that the knowledge of the DW width
requires, as shown in (20), the value of the demagnetizing
factors (Nx,Ny ,Nz). On the other hand, as discussed after
(6), the demagnetizing factors can be computed once the
DW width is known. This apparent conflict is generally
solved by determining the DW width by means of alternative
methods (e.g., by extracting it either from the profile of the
travelling wave computed numerically and/or analytically, or
from experiments).
Substituting (18) in (17)2, after some algebraic steps, leads to

M̂ sin ϑ + Q̂ sin ϑ cos ϑ + Ŝ cos ϑ + P̂ = 0, (21)

where

M̂ = Γ0
(
αGv − ηu

)
Q̂ = γ

[
AΓ2

0 −
(
β −Nz +Nxcos2ϕ0 +Nysin2ϕ0

)]
Ŝ = γχu

(
sinϕ0 +

γAΓ0 cosϕ0

u− v
)

P̂ = (
αGv − ηu

)γχu cosϕ0

u− v + ζ̂ ,

(22)

By performing the average of (21) over the DW width (i.e.,
for 0 ≤ ϑ ≤ π) and taking into account that the terms
defined in (22) do not depend on ϑ, it is possible to derive
the following expression for the DW velocity v as a function
of the current-dependent spin-torque velocity u:

v =
(
ηχΓ0/

(
Nx −Ny

))
u2 +

(
2ηΓ0/π

)
u− ζ̂(

αGχΓ0/
(
Nx −Ny

))
u + (2αG Γ0/π)

, (23)

where it is supposed to deal with a DW of Bloch type (ϕ0 =
π/2) [19, 20].

As pointed out in some previous works [20–22], the
inclusion of a dry-friction dissipation generally yields the
steady DW motion to take place for values of the input
stimulus which overcome a well-defined threshold. Equation
(23) gives also the possibility to determine such a threshold
current, defined as the minimum current value which
satisfies the condition v ≥ 0. In order to properly investigate
on this aspect (and to emphasize the sole effect of the Rashba
field), let us consider the two separate cases corresponding to
the presence and the absence of the dry-friction dissipation
function.

2.1. DW Dynamics in the Absence of Dry-Friction (ζ = 0). If
we exclude the additive dry friction term in the dissipation
function, (23) simply reduces to

v = η

αG
u (24)

that, interestingly, matches exactly the current-driven steady
DW velocity derived in the absence of the Rashba field [20,
22]. It is also straightforward to notice that, in the perfect
adiabatic case (η = 0), no DW motion occurs. Equation (24)
also implies that the threshold current is null:

uth = 0, (25)

so that the DW motion takes place for any nonnull value
of the applied current. Results coming from (24) and (25),
which clearly claim that the Rashba field does not modify
the DW velocity (and, in turn, the DW mobility, defined as
the ratio between the velocity and the input current) and
the threshold current, satisfactorily agree with the recent
experimental [14, 15] and numerical [17, 18] investigations.
However, since these studies pointed out an increase of the
Walker breakdown value and an enlargement of the DW
width, we perform further investigations in this direction to
validate the appropriateness of our initial conjectures.

In order to determine the Walker breakdown, from the
definition (19)1, we can write

sin 2ϕ0 = 2Γ0(u− v)

γ
(
Nx −Ny

) (26)

that implies

u− γ

2Γ0

∣∣∣Nx −Ny

∣∣∣ ≤ v ≤ u +
γ

2Γ0

∣∣∣Nx −Ny

∣∣∣. (27)

Let us remember that the left and the right implications
of (27) are representative of the so-called lower and upper
Walker breakdown conditions, respectively [20–22]. They
define the range of the input source in which the steady DW
motion takes place.

By comparing the expression of the DW velocity (24)
and the breakdown condition (27) with those derived in the
absence of the Rashba field [20, 22], we report no differences
which, at first, would lead to conclude that the inclusion of
this field contribution has no influence on the DW dynamics
at all. Nonetheless, as mentioned previously, the works
carried out in [15, 17] have shown that, in a framework with
Rashba field and no internal disorder, in spite of the DW
mobility that is unchanged, the upper Walker breakdown
is increased (the lower breakdown brings a nonnegligible
contribution only in the presence of nonlinear dissipations
[22]). Since our results do not allow to apparently satisfy
this latter property, we therefore ask on the reasons of this
discrepancy. We believe that the answer has to be searched
in the numerical values of the parameters appearing in
the expression of the Walker breakdown. In detail, we can
hypothesize that the Rashba field has changed the modulus
of the quantity γ|Nx − Ny|/2Γ0, making it somehow larger.
In particular, considering that the expression of Γ0 (19) is
not formally affected, the only way to obtain such an increase
is that the demagnetizing factors, strictly related to the DW
width, are varied. In order to find out if our conjecture is
correct, we search for the expression of the DW profile by
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integrating (18). The resolving procedure strictly depends on
the parameter ρ that can be recast in the form:

ρ = χu(
Nx −Ny

) . (28)

For completeness, let us remember first that, in the case ρ =
0, corresponding to the absence of Rashba field, the solution
is in the classical form [19, 20]:

ϑ = 2 arctan
[
eΓ0(x−vt)

]
, (29)

where Γ0 indeed equals the inverse of the DW width.
Let us discuss, now, the solutions obtained as a function

of the strength of the quantity |ρ|.
For |ρ| < 1, the solution can be expressed as

ϑ = arccos
1− f 2(x − vt)
1 + f 2(x − vt) , (30)

where the expression of the function f can be found in (99)–
(102) of [19] and in (35) of [20]. In this case, the DW profile
(30) is distorted with respect to the classical case, as shown in
Figure 4 of [19], and, in particular, the DW width increases
with increasing ρ. Under this circumstance, therefore, the
analytical model confirms the enlargement of the DW width
which was highlighted in a previous work [18]. Nevertheless,
this increase of the DW width changes, in turn, the values of
the demagnetizing factors, in such a way that Nx approaches
Ny leading to an overall decrease of the quantity |Nx−Ny|, so
lowering the Walker breakdown value. This latter evidence is
thus in contradiction with the other expected feature of the
dynamics under investigation.

For this reason, we can hypothesize that the correct
solution has to be searched for |ρ| > 1. The solution in this
case is

ϑ = 2 arctan

⎧⎪⎨⎪⎩
√
ρ2 − 1 tan

[
Γ0

√
ρ2 − 1(x − vt) + κ

]
− 1

ρ

⎫⎪⎬⎪⎭
(31)

being κ the integration constant

κ = 1√
ρ2 − 1

arctan

⎛⎝ ρ + 1√
ρ2 − 1

⎞⎠ (32)

that has to be chosen in such a way the variable ϑ, evaluated at
the center of the DW, is null. It should be indeed mentioned
that, in this case, the travelling wave solution does not allow
to satisfy the Dirichlet boundary conditions, so that the
solution is only locally valid, namely, in the proximity of the
center of the DW.

In order to estimate the orders of magnitude of the
quantities involved in the model and to validate our
assumption, we carry out a numerical evaluation of the
travelling wave profile. For this reason, we take into account
the parameter setup proposed in [17]. In detail, we consider
a magnetic nanostrip of thickness t = 3 nm and w = 120 nm,
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Figure 2: Comparison among the travelling wave profiles with
and without Rashba field (|ρ| > 1 and ρ = 0, resp.) computed
analytically by using (31)-(32).

saturation magnetization MS = 3 × 105 A/m, Landé factor
g = 2, exchange constantA = 10−11 J/m, anisotropy constant
K = 2 × 105 J/m3, Gilbert damping constant αG = 0.2,
polarization factor P = 0.5, nonadiabatic parameter η = 0.4.

Figure 2 shows the profile of the Bloch DW (character-
ized by ϕ0 = π/2), as its components mz = cos ϑ and
my = sin ϑ (mx is null everywhere), for ρ = 0 (namely, with
no Rashba field) and |ρ| > 1 (with Rashba field), as deduced
from (31)-(32). It is clear that, in this case, the presence of
the Rashba field would strongly modify the DW profile and
width, making this latter about ten times narrower. It can be
also appreciated that the DW width is only slightly affected
by variations of ρ, higher than unity.

Starting from these results, we evaluate the new demag-
netizing factors corresponding to the modified situation.
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Figure 3: Current-driven DW velocity in the steady dynamic
regime with and without Rashba field (χ /= 0 and χ = 0, resp.)
computed analytically by using (24) together with the upper
breakdown condition (27).
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Figure 4: Current-driven DW velocities in the steady dynamic
regime with and without the inclusion of the dry-friction dissipa-
tion function in the mathematical model (ζ /= 0 and ζ = 0, resp.).
The limit of Walker has not been considered in this figure in order
to better emphasize the nonlinear behavior of the DW velocity
influenced by internal disorder, ζ /= 0, with respect to the case ζ = 0.
Walker breakdown conditions, indeed, are not influenced by ζ .

Because of the DW width is reduced, the difference |Nx−Ny|
increases, leading to an increase of the Walker breakdown.
For instance, such a difference is equal to 0.046 for ρ = 0
and 0.445 for |ρ| > 1. The resulting increase of the Walker
breakdown value and the enlargement of the range of steady
DW motion are depicted in Figure 3 (obtained by using (24)
together with (27)). When no Rashba field is considered,

namely, χ = 0 (i.e., ρ = 0), the Walker breakdown current
is JW = 0.11 A/μm2. Under the influence of the Rashba
effect, instead, the upper Walker limit increases, making the
steady regime possible up to a higher current JW (χ /= 0) =
1.04 A/μm2. From a direct inspection of Figure 3, it should be
also noticed that, in both cases, there is no threshold current
and the DW mobility is not affected by the Rashba field.

Summarizing, the case |ρ| > 1 leads to the expected raise
of the Walker breakdown value but negates the enlargement
of the DW width.

We can state, therefore, that the classical travelling wave
ansatz for the ELLG equation (ϑ = ϑ(x − vt) with v =
constant and ϕ = constant) cannot be satisfactorily used to
reproduce the overall effects of the Rashba field on the steady
DW motion in ferromagnetic nanostrip.

2.2. DW Dynamics in the Presence of Dry Friction (ζ /= 0). The
usage of a dry-friction dissipation function already turned
to be useful to model the effects of crystallographic defects,
structural disorder, including surface roughness, on the DW
motion [20, 21]. In particular, it was demonstrated that
the inclusion of such a friction mechanism leads to the
appearance of a threshold below which no DW motion can
take place, whereas the DW mobility is not affected in the
above-threshold regime. In the present work, we would like
to test these two properties when the dry-friction dissipation
acts simultaneously to the Rashba field. To this aim, (23)
is plotted in Figure 4. As it is expected, also in this case,
the dry friction causes the motion to occur for current
values larger than a given threshold current Jth (in the figure,
Jth = 0.25 A/μm2 for ζ = 2 × 10−2 γ). On the other
hand, the DW velocity, which followed a linear trend in the
absence of Rashba field (independently of the presence of
dry friction), now exhibits a nonlinear dependence on the
input current which approximate, for large current values,
the velocity obtained in the case ζ = 0. It is interesting
to notice that the same result was qualitatively obtained in
experiments [16] as well as in numerical simulations [17]
that accounted for thermal effects and roughness. However,
the corresponding travelling wave solutions would suffer
from the same incompatibility with respect to numerical and
experimental observations.

3. Conclusions

In this work, we have analyzed the bias-field-free current-
driven DW motion in a ferromagnetic nanostrip subject to
the Rashba field and dry-friction dissipation. The study has
been mathematically carried out by modifying the extended
Landau-Lifshitz-Gilbert equation with the inclusion of the
Rashba contribution into the effective field. The standard
travelling wave ansatz generally used for the equation of
motion, within the steady regime, does not succeed in
confirming simultaneously both the key features revealed in
recent numerical and experimental observations : increase of
the Walker breakdown value and enlargement of the DW
width.
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This result suggests that the system (16) has to be solved
by using a different approach. We believe that, due to the
transversal component of the effective field induced by the
Rashba field, the hypothesis ϕ = constant, together with
the Dirichlet boundary conditions ϑ(−∞) = 0 and ϑ(∞) =
π, does not apply in this case. For this reason, one could
consider that the angle ϕ exhibits an analogous travelling
wave dependence ϕ = ϕ(x − vt) and that, due to the
symmetry of the problem, Neumann boundary conditions
ϑ′(±∞) = 0 and ϕ′(±∞) = 0 should be satisfied instead.
By imposing such constraints, we get the following nonlinear
system of coupled ordinary differential equations:

(u− v)ϑ′ −
(
ϑ′2 + sin2ϑϕ′2

)−1/2
ζv2 sin ϑ ϕ′

−2Aγ cos ϑ ϑ′ϕ′ − Aγ sin ϑ ϕ′′

+
(
ηu sin ϑ− αGv sin ϑ

)
ϕ′

−γ
(
Nx −Ny

)
sinϕ cosϕ sin ϑ

−γχu cosϕ = 0

γϑ′′ +
(
αGv − ηu

)
ϑ′ +

(
ϑ′2 + sin2ϑϕ′2

)−1/2
ζv2ϑ′

−Aγ sin ϑ cos ϑϕ′2 + (u− v) sin ϑ ϕ′

−γ sin ϑ cos ϑ
(
β −Nz +Nxcos2ϕ +Nysin2ϕ

)
+ γχu sinϕ cos ϑ = 0.

(33)

However, solving this system without simplifying
assumptions is not trivial at all. For example, the missing
information could be argued from ad hoc micromagnetic
simulations which should provide the accurate profile
of the travelling wave variable and their dependence on
the strength of the Rashba field. Therefore, we strongly
encourage numerical investigations in this direction to
overcome this issue.
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A systematic series of micromagnetic simulations on periodic cross-tie/vortex wall structures in an ideal soft film at various widths,
thicknesses, and period lengths is performed. For each width and thickness a natural period length is found which has minimal
energy density for walls of this type. For each width, a critical thickness is determined below which the natural period length is
infinite; for films thinner than this, the pure Néel wall has lower energy than any cross-tie/vortex wall. Details of the origin of the
energy reduction in cross-tie/vortex walls as compared to Néel walls are also examined, and canting inside cross-tie and vortex
structures in films thicker than 1 �ex is explained.

1. Introduction

The predominant types of 180◦ domain walls in soft films are
Néel walls occurring in very thin films, Bloch walls in thicker
samples, and numerous transitional structures [1–3]. One
of the more interesting transitional structures is the cross-
tie/vortex (or simply cross-tie) wall which alternates cross-
ties and vortices between counterrotating segments of Néel
walls. Cross-tie/vortex walls are observed experimentally
[4–6], in micromagnetic simulations [6–9], and in theory
[10, 11]. In finite samples, this wall type appears in low
remanence closed-flux Landau patterns, as seen in Figure 1.
If the structure is long enough, then multiple cross-ti/evortex
pairs can appear, as in Figure 2.

To gain insight into the formation and structure of cross-
tie/vortex walls, this work presents a systematic collection of
micromagnetic simulations performed using the OOMMF
micromagnetic package from NIST [12]. An ideally soft
material was modeled (anisotropy constant K = 0 J/m3)
with saturation magnetization Ms = 860 kA/m and exchange
coefficient A = 13 pJ/m, to approximate an NiFe alloy.
All of the simulations were performed with no applied
field.

The component energies in this system are the stray field
energy and the exchange energy, with the component fields
defined by:

Hstray field(r) = − 1
4π

∫
V
∇ ·M(r′)

r− r′

|r− r′|3 d
3r′

+
1

4π

∫
S

n̂ ·M(r′)
r− r′

|r− r′|3 d
2r′,

(1)

Hexchange(r) = 2A
μ0Ms

∇2m(r), (2)

where m = M/Ms is the normalized (unit) magnetization. In
both cases, energy density E = −(1/2)μ0M ·H, where the 1/2
factor arises from the dependence of H on M. Thus the total
energy density in the system is

Etotal = −μ0

2
M ·

(
Hstray field + Hexchange

)
. (3)

In soft films, the relevant length scale is the
magnetostatic-exchange length, defined by

�ex =
√

A

Kd
, (4)
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Figure 1: Zero-field equilibrium state from a micromagnetic sim-
ulation of a magnetically soft thin film rectangle with dimensions
500 �ex × 100 �ex × 6 �ex. The shading indicates the magnetic charge
−div M, with black indicating negative charge and white positive
charge.

Figure 2: Simulation of the same system as in Figure 1, but in
an equilibrium configuration featuring three cross-ties alternating
with vortices; for this sample this is a lower energy state than the
single cross-tie state in Figure 1.

where Kd is the magnetostatic energy density

Kd = 1
2
μ0M

2
s . (5)

All lengths reported herein are in units of �ex, and energy
densities are reported in units of Kd. However, for the given
values of A and Ms, �ex

.= 5.289 nm and Kd
.= 464.7 kJ/m3, so

the results may be easily converted to nm and J/m3 if desired.

2. Simulation Details

Aside from Figures 1 and 2, the simulations in this paper
are periodic along the long axis of the wall, as indicated in
Figure 3. This allows the structure of the cross-tie/vortex wall
to be studied separately from the effects of edge domains.
The period length is denoted by X , with Y and Z denoting
the sample width and thickness, respectively. Coordinates are
introduced such that positions (x, y, z) inside the simulation
volume run from 0 ≤ x ≤ X , 0 ≤ y ≤ Y , and 0 ≤ z ≤ Z.

The computational cells are approximately cubic in
shape, with each edge dimension not larger than 1/2 �ex.
This size is small enough that the maximum change in
magnetization angle from one cell site to the next is kept
below about 30◦; this suffices to provide a good rendering
of the magnetization on the discretized grid. The y and z cell
sizes are adjusted downward if necessary to make the count of
cells across each of the y and z dimensions odd, so that there
is a unique center cell along each of those dimensions. The x
cell size is adjusted downward as necessary so that the count
of cells along the x dimension is ≡2 (mod4) (so allowed cell
counts are 2, 6, 10, . . .). Taken together, these adjustments
allow a unique cell in the center of each of the vortex and
cross-tie cores to be identified.

The initial magnetization configuration for each simu-
lation is either taken from the end state of a previous run
(if one is available that is close to the dimensions of the

Periodic Periodic

Period length X

W
id

th
Y

Thickness Zz y

x

Figure 3: Simulations are computed on a rectangular volume
representing a thin film strip with thickness Z, width Y , and an
infinite length modeled by a periodic length of dimension X .

current run) or else set to a cartoon version of the cross-
tie/vortex configuration as illustrated in Figure 3. Either way,
the magnetization in the central cell in the vortex core is
set to +z (along the film normal) and the central cell in the
cross-tie core is set to−z. Except as noted, the magnetization
in these center cells is held fixed. As discussed in Rave [8],
this pinning tends to accelerate convergence of simulations to
equilibrium and improves accuracy. Simulations run without
this constraint show no discernible difference in the end
equilibrium state. Some simulations were also run with the
vortex and cross-tie cores both aligned in the +z direction.
This raises the energy somewhat, but for most geometries the
energy difference is negligible, typically less than one part in
105. For simulations with a period length to film thickness
ratio of less that 10 : 1, however, the difference is larger. For
example, in the X = 25 �ex, Y = 200 �ex, Z = 8 �ex case the
energy in the aligned core setting was 3% larger than for the
antialigned setting.

Once the initial magnetization is set, the simulation
proceeds by energy minimization via a conjugate-gradient
procedure, stopping when the reduced torque |m×H|/Ms <
1.2× 10−8.

3. Results and Discussion

Each point in Figure 4 marks the average total energy density
at equilibrium resulting from a simulation with width Y =
200 �ex at the indicated thickness Z and period length X .
There is one cross-tie/vortex pair in each period, so as the
period length X grows large the wall becomes primarily
two Néel segments interrupted by a cross-tie and vortex at
either end. This is evident in the behavior of the curves for
large X , as for each thickness Z the curve asymptotically
converges to the energy density of the associated Néel wall.
For small period lengths (X < 100 �ex) the energy density
grows sharply as the exchange energy resists compression
of the complex cross-tie/vortex structure. For thinner films
(Z under about 1 �ex for Y = 200 �ex), the energy density
curves are monotonically decreasing. This means that in a
thin infinite strip if the cross-tie and vortex are not pinned by
some means, they will spread out indefinitely leaving behind
a plain Néel wall. This is consistent with the experimental
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Figure 4: Average total energy density as a function of period length
X for simulations with width Y = 200 �ex for various thicknesses
Z (measured in �ex). Symbols represent simulation results, lines
are a guide to the eye. Each of the curves with Z ≥ 2 �ex exhibits
a minimum value between 125 �ex and 320 �ex. In this range, the
curves for Z ≤ 1 �ex are monotonically decreasing with X .
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Figure 5: Average stray field (open symbols) and exchange energy
(filled symbols) densities as a function of period length X for width
Y = 200 �ex at thicknesses Z = 6 �ex and 1 �ex. These curves are
a decomposition of the corresponding total energy density curves
from Figure 4 into constitutive parts.

result that cross-tie/vortex walls are not observed in ultrathin
films. The transition thickness is a function of the strip width
Y ; this dependence is explored in Figure 9 below.

For thicker films there is a unique minimum on each
curve, which corresponds to a “natural” period length X—
this is the period length that minimizes the energy for a cross-
tie/vortex wall at the given film thickness and strip width.
Note though that each point in Figure 4 is a stable equilib-
rium configuration under the fixed period assumption. So if
the period length is constrained by geometry or other means

such as pinning defects, then period lengths other than the
natural length are possible, as seen in Figures 1 and 2.

The energy wells are asymmetric, especially for the
midlevel thicknesses, say Z between 2 �ex and 4 �ex. In this
regime the penalty for a period longer than the natural
period is small, but in all cases periods significantly shorter
than the natural period are energetically prohibitive.

Another feature of the curves in Figure 4 is that as the
films grow thicker, the energy density increases, the natural
period length grows shorter, and the energy well is deeper.
These effects can be explained by examining the stray field
and exchange component energies of the total energy.

In this regard, note two attributes of the magnetization
in these simulations. The first is that the shape anisotropy of
thin films constrains the magnetization to lie mostly in-plane
(the notable exception being of course the cores of vortex and
cross-tie structures). The second is that the magnetization
does not vary much along the film normal (z) direction. This
is due in part to the dominance of exchange coupling over
the relatively short distance between the top and bottom of
each film and also due to the relative uniformity of stray field
in z. (The latter condition does not hold near the vicinity
of the vortex and cross-tie cores, and this leads to nearby z-
variation in m, as will be seen below.)

The second attribute means we can meaningfully con-
sider a situation where the magnetization is held fixed and
the thickness of the part is varied. In this setting the first
integral in the formula for the stray field (1), which handles
the effects of the bulk charge, is seen to vary linearly with
thickness Z via the change in the part volume. Ignoring
magnetic charges on the top and bottom surfaces in the
second integral, we see that it too varies linearly with Z
(although in the Landau flux-closure structures considered
here this contribution is minor regardless). The net result
is that if the magnetization were held fixed, then reducing
the film thickness would be expected to reduce the stray
field by a similar amount. The exchange field (2), however,
does not vary with thickness Z. This means that one can
expect exchange to take on a more dominant role as the film
thickness is decreased.

These effects are on display in Figure 5, which breaks
down the total energy density curves from Figure 4 for two
thicknesses into the stray field and exchange components.
For both thicknesses we see the dominance of the exchange
energy in short-period lengths, giving way to the stray
field energy for longer period lengths. Moreover, for each
component the energy density is greatly reduced in the
thinner strip. If the magnetization configurations were the
same for the two thicknesses, then by the above analysis
the exchange energy density would stay constant and the
stray field energy density would drop by a factor of six. In
practice, of course, what happens is that the weak stray field
in the thinner film allows the magnetic structures to expand,
reducing the exchange energy at the expense of a modest
increase in the stray field.

To understand how cross-tie/vortex structures lower the
energy density of a Néel wall, return to Figure 1, and focus
first on a section of the Néel portion of the wall between the
left hand vortex and the cross-tie. Moving from bottom to
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(a) (b)

(c) (d)

Figure 6: Equilibrium configuration for width Y = 200 �ex, thickness Z = 4 �ex, and X-period length 185 �ex (which is the natural period
length for this Y and Z). (a) Magnetization pattern, (b) stray-field energy density, (c) exchange energy density, and (d) total energy density.
In (b)–(d), the shading scale runs from white (low energy density) to black (high energy density).

top across the wall, the magnetization rotates counterclock-
wise. This configuration produces negative magnetic charge
on the lower half of the strip (dark region) and positive
charges on the upper half (light region). (Here “lower”
and “upper” refer to the view on the page.) This sets
up a stray field running from the positive charges to the
negative charges, counter to the magnetization in the center
of the wall, making the wall center a high stray field energy
density region. On the right hand side of the cross-tie the
magnetization rotation direction across the wall is reversed,
so that the positive charge region is below the wall and
the negative charge region is above. The wall is still a high
stray field energy density region, but the checkerboarding
of the charge regions reduces the total stray field energy in
two ways. The first factor is that by effectively arranging the
charge regions into a quadrupole configuration, the extent of
their stray field is reduced. The second, larger contribution
is seen more clearly in Figure 2. In the checkerboard pattern,
stray field between the charge blocks runs not only up and
down across the Néel sections of the wall, but also left and
right horizontally parallel to the wall. The orientation of the
magnetization about each vortex core is such that it aligns
with the stray field from the nearby charge blocks, so that the

regions above and below each vortex are regions of low stray
field energy density.

This latter effect is shown directly in Figure 6, which
is from the (periodic) simulation corresponding to the
minimum point on the Z = 4 �ex curve in Figure 4. Parts
(b)–(d) of this figure are shaded to indicate the component
and total energy densities as a function of position. In part
(b), the light-colored low energy density regions above and
below the vortex core are clearly visible. Part (c) shows
the regions of high exchange energy density. These include
the vortex core and center of the wall, as expected. It is
interesting that there is also a region of high exchange
energy running perpendicular to the wall through the
cross-tie core. In an idealized cross-tie, the magnetization
rotates around the cross-tie core in the same manner as
the magnetization rotates about a vortex core, only with
the opposite winding number. In such a configuration the
exchange energy is exactly the same as for a vortex (the stray
field energy is a different matter, of course), so the high
exchange energy spike perpendicular to the wall must arise
due to deformation of the cross-tie structure. Most likely
the observed buckling in the magnetization along this line is
caused by the horizontal stray field from the checkerboard
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Figure 7: Cross-sectional (yz) averages for total, stray field, and
exchange energy densities as a function of the x location along the
wall for the simulation in Figure 6, and the energy density for a Néel
wall in the same geometry. The center of the vortex core is in the
cross-section at offset x = 46 �ex, and the center of the cross-tie
core is at x = 139 �ex. The two half-width dashed red lines indicate
the average energy density of the cross-tie/vortex wall across each
corresponding half-period.

charge regions which flows counter to the magnetization
here.

Additional details may be gleaned from Figure 7, which
shows cross-sectional averages for Figure 6 and includes
a black-dashed line showing the energy density for a pure
Néel wall in this geometry. The energy savings in stray field
energy around the vortex core, and expense around the cross-
tie core, are shown by the green line. On either side of
the cross-tie and vortex cores, the magnetization spreads
out slightly as compared to a Néel wall, and as a result
the exchange energy density (blue line) in those regions is
slightly less than the exchange energy density for a Néel
wall (not shown). This savings is more than offset by the
increase in exchange energy inside the vortex and cross-tie
core structures, so that in total the exchange energy for the
cross-tie/vortex wall is higher than the exchange energy for
the Néel wall. (Another view of this is that the wall structure
outside the cores is essentially that of a stretched Néel wall;
the stretching reduces the exchange energy, but the stray
field energy across the wall is increased by more than the
exchange energy reduction.) The dashed red line shows the
combined (stray field plus exchange) energy density averaged
across each half of the simulation volume. This shows a clear
reduction in energy density as compared to the Néel wall for
the portion of the simulation about the vortex, and a clear
increase about the cross-tie. The average of these two half-
lines is the average energy density for the cross-tie/vortex
wall as a whole, which is slightly below the energy density
for the pure Néel wall. An important point here is that the
cross-tie structure by itself costs energy as compared to the
Néel wall; the cross-tie/vortex wall formation as a whole is
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Figure 8: Cross-tie/vortex pair period length (X) having the
lowest energy density as a function of film thickness (Z) for five
strip widths (Y , in �ex), as labeled (log-log scale). Symbols show
data from micromagnetic simulations; curves are least-square fits
through data to the functional form X = A/((Z/B) − 1) + C; the
corresponding values for A, B, and C for each curve are given in
Table 1.
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Figure 9: Critical thickness at which the Néel wall has lower energy
density than a cross-tie/vortex wall of period X , for all X , as a
function of strip width Y . Data points are from Table 1, the line
is the fit curve 30/Y 2/3.

energetically favorable only because of the stray field energy
savings associated with the vortex structure.

The two graphs, Figures 8 and 9, collect information
on the natural period lengths from Figure 4 and similar
simulation series for several other strip widths. For each strip
width Y and thickness Z, a sequence of simulations was
performed using a golden section search to locate the precise
X-period that minimized the total energy density. In Figure 8
we observe that for each strip width Y , the minimalX-period
length data can be fitted fairly well by a curve of the form
X = A/((Z/B) − 1) + C, where Z is the film thickness and
A, B, and C are fit parameters. In this fit only the data for
Z < 8 �ex are used; in the thicker films the cross-tie and vortex
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Figure 10: Enlarged view of a 15 �ex × 6 �ex subsection about a vortex in a simulation having X-period length of 147 �ex, width Y = 200 �ex,
and thickness Z = 6 �ex. Parts (a), (b), and (c) show the top, middle, and bottom planes, respectively, while (d) is a cross-section through
the full thickness of the sample at the location marked in (b), roughly 3.5 �ex to the left of the vortex core. The shading indicates the absolute
value of the x-component of the magnetization, with black at mx = 0.
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Figure 11: Companion image to Figure 10, this enlarged view of a 15 �ex× 6 �ex subsection is about the cross-tie in the same simulation with
X-period length of 147 �ex, width Y = 200 �ex, and thickness Z = 6 �ex. Parts (a), (b), and (c) show the top, middle, and bottom planes,
respectively, while (d) is a cross-section through the full thickness of the sample at the location marked in (b), roughly 3.5 �ex to the left of
the cross-tie core. The shading indicates the absolute value of the x-component of the magnetization, with black at mx = 0.
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Table 1: Coefficients to functional form X = A/((Z/B)− 1) +C for
various strip widths Y to fit simulation results for minimal energy
X-period (see Figure 8).

Strip width A B C

(�ex) (�ex) (�ex) (�ex)

50 58 1.988 32

100 117 1.386 60

150 177 1.091 87

200 243 0.906 113

250 320 0.774 136

500 832 0.431 245

structures develop significant asymmetry which alters the
character of the structure. If this asymmetry did not develop,
then the parameter C would describe the asymptotic period
length that would be obtained in thick films.

At the other end of the scale, we see that each of the
curves in Figure 8 has a pole on the left, which corresponds
to parameter B. As discussed above with respect to the
Z = 0.1 �ex curve in Figure 4, if a film is thin enough then
there is no minimal period length. For each strip width Y ,
the critical thickness dividing the two regimes corresponds
to the location of the pole in Figure 8 (or, equivalently,
parameter B). The critical thickness as a function of strip
width Y is plotted on a log-log scale in Figure 9. We see from
the fitted curve, Zcrit ≈ 30/Y 2/3, that the critical thickness
decreases with increasing strip width. From a practical
standpoint the natural period length can be quite large. For
example, although the Z = 1 �ex curve in Figure 4 appears
to be monotonically decreasing, the fit in Table 1 predicts a
minimum at X = 2455 �ex, or roughly 13μm in NiFe.

As an example of the use of Figure 8, refer again to the
finite system of Figures 1 and 2. If we allow for a 50 �ex

border at each of the left and right sides of the sample
to accommodate edge closure domains, then that leaves
a 400 �ex run in the middle for the cross-tie/vortex wall.
From Figure 8, we see that the natural period length for
a strip of width 100 �ex and thickness 6 �ex is just under
100 �ex. This predicts that a configuration with four cross-
tie/vortex periods would have lower energy than either the
three period configuration shown in Figure 2 or a five period
configuration. Direct simulations on the finite system bear
out this result.

In regions where the magnetization lies in-plane, the
stray field is nearly uniform through the thickness of the
film, and so the magnetization also shows little variation
in z. The vortex and cross-tie core regions, however, are
delineated by out-of-plane magnetization, and this does
produce a z-dependence on the magnetization near the
cores. This effect is shown in Figures 10 and 11. (For this
simulation, the magnetization in the central cells of the
cores was not pinned.) Looking first at the magnetization
at the top surface around the vortex core (Figure 10(a)), the
magnetization in the vortex core points out of the plane,
and the resulting positive magnetic charge interacts with
the checkerboard magnetic charge pattern on either side by

pushing the positive charge blocks away (towards −y on the
left and +y on the right) and extending the negative charge
regions. This causes a “micro-deformation” of the wall [7];
the spacing between the arrows in the diagram is roughly
1/2 �ex, so the total deformation is about 1 �ex. Outside the
viewed region, at about 12 �ex on either side of the core, the
wall shifts back to the center line.

On the bottom surface of the film (Figure 10(c)), the
surface charge from the core has the opposite charge, and
the wall shifts in the opposite direction, while the midplane
shows no shift at all (Figure 10(b)). A cross-section through
the thickness of the film (Figure 10(d)) shows that the wall
is actually canted by about 10◦ from the vertical. Outside of
this view area, the Néel portions of the wall are not canted,
but run through the thickness of the film independent of z.
Figure 11 shows that the magnetization around the cross-tie
core behaves similarly.

This effect relies on the opposite charges on the top
and bottom surfaces being sufficiently far apart that they
can independently influence the nearby magnetization. For
thinner films, the extent of the dipole field from the core
diminishes relative to the exchange length and the wall
canting is reduced; for films thinner than about 1 �ex the
effect is not evident.

4. Conclusion

In an ideally soft magnetic thin film, the 180◦ cross-tie/vortex
wall is a periodic structure consisting of alternating cross-
ties and vortices sandwiched between Néel wall segments
having alternating chiralities. This structure is primarily two
dimensional (i.e., independent of z), with the exception of
minor canting on either side of both cross-tie and vortex
cores in films thicker than 1 �ex.

In an infinite strip, the cross-tie/vortex wall structure has
a natural period length that minimizes the energy density for
this class of walls, and this length is a function of both the
strip thickness and width. For a given strip width Y , there
is a critical thickness Zcrit below which the natural period
length is infinite. That relation is Zcrit ≈ 30/Y 2/3, with Zcrit

and Y measured in �ex. In films thicker than Zcrit, the energy
reduction obtained by a cross-tie/vortex wall as compared to
a plain Néel wall is the result of decreased stray field energy
across the outboard sides of the vortex cores arising from the
checkerboarding of the magnetic charge associated with the
Néel wall segments.

Related periodic wall structures are topologically per-
missible, for example one could replace each vortex in the
cross-tie/vortex structure with a counterrotating cross-tie,
or replace each cross-tie with a counterrotating vortex. The
former is probably energetically ill-favored, but the latter
produces the well-known diamond state that frequently
sports lower energy than the cross-tie/vortex wall [8].
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energies for planar micromagnetic configurations,” ESAIM,
vol. 8, pp. 31–68, 2002.

[11] A. DeSimone, H. Knüpfer, and F. Otto, “2-d stability of
the Néel wall,” Calculus of Variations and Partial Differential
Equations, vol. 27, no. 2, pp. 233–253, 2006.

[12] M. J. Donahue and D. G. Porter, “OOMMF user’s guide,
version 1.0,” NISTIR 6376, National Institute of Standards and
Technology, Gaithersburg, Md, USA, 1999.



Hindawi Publishing Corporation
Advances in Condensed Matter Physics
Volume 2012, Article ID 954196, 21 pages
doi:10.1155/2012/954196

Review Article

Static Properties and Current-Driven Dynamics of
Domain Walls in Perpendicular Magnetocrystalline Anisotropy
Nanostrips with Rectangular Cross-Section

Eduardo Martinez

Universidad de Salamanca, Plaza de los Caidos s/n, 38008 Salamanca, Spain

Correspondence should be addressed to Eduardo Martinez, edumartinez@usal.es

Received 26 March 2012; Accepted 28 May 2012

Academic Editor: Giancarlo Consolo

Copyright © 2012 Eduardo Martinez. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The current-induced domain wall motion along thin ferromagnetic strips with high perpendicular magnetocrystalline anisotropy
is studied by means of full micromagnetic simulations and the extended one-dimensional model, taking into account thermal
effects and edge roughness. A slow creep regime, where the motion is controlled by wall pinning and thermal activation, and a flow
regime with linear variation of the DW velocity, are observed. In asymmetric stacks, where the Rashba spin-orbit field stabilizes
the domain wall against turbulent transformations, the steady linear regime is extended to higher currents, leading to higher
velocities than in single-layer or symmetric stacks. The pinning and depinning at and from a local constriction were also studied.
The results indicate that engineering pinning sites in these strips provide an efficient pathway to achieve both high stability against
thermal fluctuations and low-current depinning avoiding Joule heating. Finally, the current-driven dynamics of a pinned domain
wall is examined, and both the direct and the alternating contributions to the induced voltage signal induced are characterized.
It was confirmed that the direct contribution to the voltage signal can be linearly enhanced with the number of pinned walls, an
observation which could be useful to develop domain-wall-based nano-oscillators.

1. Introduction

A typical pattern of a ferromagnetic sample consist on a set
of domains and domain walls (DWs). The domains are uni-
formly magnetized regions, and DWs constitute the bound-
ary between them. DWs have been intensively researched
in the past, both in bulk or continuous films [1]. However,
as many other areas of physics, the study of DWs has
been revitalized by the advent of nanotechnology, and at
the present, modern nanolithograpy techniques allow the
fabrication of suitable ultra-thin ferromagnetic strips where
DWs can be easily nucleated. The development of advance
microscopy methods has also permitted them to be imaged
and their dynamics to be explored. The traditional way to
promote the DW dynamics is done by applying magnetic
fields. Recently, a more promising alternative to drive DWs
has been proposed. It consists on flowing electrical currents
though ferromagnetic strip by using the novel physics of
spin-transfer torque. Electrical current passing through a
ferromagnetic strip becomes spin polarized along the local

magnetization direction. When the current crosses a DW,
spin angular momentum is transferred from the current to
the magnetization, thereby inducing a torque which leads to
DW motion. This spin-transfer torque phenomenon, which
was firstly predicted by Berger [2, 3], has adiabatic and
nonadiabatic contributions. The first one, which is expected
to be dominant in wide walls, acts as a hard-axis field per-
pendicular to the magnetization inside the DW and controls
the initial DW velocity. The nonadiabatic torque, which is
expected to be dominant in thin wall, mimics an easy axis
magnetic field and it is the responsible of the terminal DW
velocity [4–8]. Although several experimental [9–23] and
theoretical [24–29] studies have provided advances in the
understanding of current-driven DW dynamics, there are
many aspects of the underlying physical mechanism, such
as the origin (large gradient of the local magnetization [3],
spin-flip scattering [5, 8], or linear momentum transfer [6])
and the strength of the nonadiabatic contribution, which
remain still unclear [30].
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Apart from its intrinsic fundamental interest, the efficient
control of the current-induced DW dynamics along thin
strips is nowadays a promising but a technological challenge.
Logic [31–33] and storage [34–36] devices based on DW
displacement along thin ferromagnetic strips have been
proposed during the last decade, where the DW position can
be manipulated by means of constrictions which act as local
pinning sites for the wall. These DW-based devices require
a high efficient current-driven DW propagation, with high
velocity under low current. The high stability of a trapped
DW at a pinning site against thermal fluctuations, along
with a low current DW depinning are also mandatory for
recording applications. On the other hand, there exist other
potential applications exploiting the current-induced DW
dynamics, such as nano-oscillators [37–41] or nanosensors
and amplifiers [42].

Most of the experimental and theoretical studies have
been focused on soft Permalloy strips, which present several
drawbacks for applications. For instance, critical depinning
density currents around 1 A/μm2 are required to promote the
DW depinning from thermally stable pining notches [13, 14,
26], but these currents remain too high for applications due
to unwanted Joule heating effects. On the other hand, DWs
in typical soft strips usually adopt wide (50–100 nm) and
complex out-of-plane vortex configurations with low mobil-
ity [14, 15]. The classical one-dimensional model (1 DM)
of DW propagation provides a approach to understand
experiments on soft strips, but its validity is rather limited
because it cannot capture the full complexity of the vortex
configuration nor its translational deformation, and time-
consuming micromagnetic simulations (μM) are needed to
interpret experimental measurements in the framework of
available theories.

Due to these limitations, the attention is recently shifting
to materials with high perpendicular magnetocrystalline
anisotropy (PMA) resulting in an out-of-plane easy axis [43–
72]. Thin strips made of high PMA ferromagnetic materials
are characterized by narrow DWs and combine several key
advantages over soft magnetic materials, such as high nona-
diabatic effects leading to lower critical current densities and
high DW velocities. A pinned DW at constrictions in these
high PMA strips also depicts high stability against thermal
fluctuations and low current-induced DW depinning against
Joule heating. All these observations make high PMA strips
very attractive, not only for technological applications, but
also as valuable systems to test the microscopic theories of the
spin-transfer torque by means of the simple one-dimensional
models. This work reviews recent theoretical and numerical
results in this class of high PMA materials, and it discusses
the relevant implications they entail for the nature of the
current-driven DW dynamics and its potential technological
applications. The paper is organized as follows. The typology
of the DWs in strips with high PMA of rectangular cross-
section, along with a brief description of the micromagnetic
and the one dimensional models are described in Section 2.
The current-driven domain wall dynamics along both a free-
defect strip and other with edge roughness is studied in
Section 3. Section 4 is dedicated to the analysis of pinning
of a DW in a geometrical constriction of the strip, and

its depinning under both static fields and currents. The
pinned DW oscillations driven by static currents and the
possibility of developing DW-based oscillators are evaluated
in Section 5. Finally, the main conclusions of the study, along
with the theoretical open questions and future numerical
tasks are summarized in Section 6.

2. Geometry, Materials and Models

We focus our attention on thin strips of rectangular cross-
section Ly × Lz with the easy axis along the z-axis (�uK =
�uz, see Figure 1(a)). In order to mimic a material with
high perpendicular anisotropy, the following parameters
have been considered: saturation magnetization Ms = 3 ×
105 A/m, exchange constant A = 10−11 J/m, and anisotropy
constant K = 2 × 105 J/m3. According to Weller et al. [73],
these parameters correspond to a typical CoPtCr alloy. The
dimensionless damping parameter was taken to be α = 0.2,
which is in the same order of magnitude as the materials
with high PMA analysed by Metaxas et al. [74]. A standard
finite-difference scheme with cubic computational cells of
Δx = 3 nm in side was considered.

Two equilibrium states can be found depending on the
width (Ly) and thickness (Lz) of the strip: Bloch DW and
Neel DW, which are plotted in Figures 1(b) and 1(c), respec-
tively. In both cases, the magnetization inside the DW rests
in the xy-plane, and it points along the y-axis and x-axis for
Bloch (�mDW∝±�uy) and Neel (�mDW ∝ ±�ux) configurations,
respectively. These magnetic configurations were the initial
state of a minimization energy process in order to evaluate
which is the equilibrium state with minimum energy for
different values of Ly and Lz. Figure 1(d) shows the critical
value of Ly as a function of Lz above which the Bloch
configuration has smaller energy than the Neel one. The
transition between Bloch and Neel configurations moves
toward smaller values of Ly as the strip thickness Lz increases.

In order to analyse the DW dynamics from a full-mic-
romagnetic model (μM) point of view, the strip is assumed
to be infinite along the x-axis, and a moving computational
region centered on the DW with Lx = 1.2μm in length was
performed [26]. Starting from the corresponding equilib-
rium state at rest, either Bloch or Neel, the response to the

action of magnetic fields along the easy axis (�Be = Be�uz)
and/or electrical density currents along the x-axis �ja =
ja�ux, both of them spatially uniform and instantaneously
applied at t = 0, is micromagnetically (μM) evaluated by
numerically solving the Langevin-Landau-Lifshitz-Gilbert
equation augmented by the adiabatic and nonadiabatic spin-
polarized torques [5, 8, 26]:

d�m
dt

= − γ0�m×
(
�Heff + �Hth

)
+ α

(
�m× d�m

dt

)

+
μBP

eMs

[(
�ja · ∇

)
�m− ξ �m×

(
�ja · ∇

)
�m
]

,

(1)

where �m(�r, t) = �M/Ms is the normalized local magnetization,

γ0 is the gyromagnetic ratio, and �Heff is the effective
field, which includes exchange, self-magnetostatic, uniaxial
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Figure 1: (a) Scheme of the rectangular cross-section strip geometry. Equilibrium states for a DW in thin CoPtCr strips: (b) Bloch, (c) Neel.
(d) Phase diagram of the equilibrium state as a function of the width Ly and the thickness Lz of the strip (from [41]).

anisotropy (�uK = �uz is easy axis), and external field con-

tributions [26]. �Hth is the thermal field [26], which is a Gaus-
sian random process with the following statistical properties
[75, 76]: 〈

Hth,i
(
�r, t
)〉 = 0, (2)〈

Hth,i
(
�r, t
)
Hth, j

(
�r′, t′

)〉 = 2DμMδi jδ
(
�r − �r′

)
δ(t − t′). (3)

Equation (2) indicates that the average of the thermal
field taken over different stochastic realizations vanishes in
each direction i : x, y, z. The thermal field �Hth is assumed
to be uncorrelated in time (δ(t − t′)) and uncorrelated at
different points δ(�r − �r′) of the finite difference mesh, as
stated by (3). The strength of the thermal field, which follows
from the fluctuation-dissipation theorem [75, 76], is given by

DμM = αKBT

γ0μ0Ms
, (4)

where KB is the Boltzmann constant, and T represents the
temperature.

The last two terms on the right side of (1) represent
the adiabatic and the nonadiabatic spin-transfer torques,
respectively [5], where μB is the Bohr magneton, e < 0
the electron’s electric charge, and P is the spin polarization

factor of the current, which here is assumed to be P = 0.5.
The coefficient ξ is a dimensionless constant describing the
degree of nonadiabaticity between the spin of conduction
electrons and the local magnetization [5]. Equation (1) is
numerically solved by means of a fourth-order Runge-Kutta
scheme. The micromagnetic results described hereafter were
obtained by using a time step of 0.15 ps, and it was verified in
several tested cases that a time step of 0.1 ps does not modify
the presented results. Although the following micromagnetic
results were computed with a cell size of Δx = 3 nm, it was
also checked that the results do not significantly change when
the cell size is reduced to half for several tested cases.

On the other hand, the DW dynamics has been also
analyzed from the one-dimensional model (1 DM) point of
view, which is described by the following equations [15, 29,
63]:

(
1 + α2) Ẋ

Δ
= αγ0

(
He +Hp(X) +Hth(t)

)
+

1
2
γ0HK sin(2Φ)− (1 + αξ)

1
Δ

μBP

eMs
ja,

(5)

(
1 + α2)Φ̇ = γ0

(
He +Hp(X) +Hth(t)

)
− α1

2
γ0HK sin(2Φ)− (ξ − α)

1
Δ

μBP

eMs
ja,

(6)
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Figure 2: Current driven DW dynamics along a perfect strip with Ly × Lz = 120 × 3 nm2. (a), (b), and (c) depict the micromagnetically
(μM) computed temporal evolution of the DW width Δ, the DW velocity v, and the DW position x under three different density currents:
ja = 0.1 A/μm2, ja = 0.2 A/μm2, and ja = 0.5 A/μm2 for a nonadiabatic parameter of ξ = 0.4. (d)–(g) show typical micromagnetic states of
the propagating DW for currents larger than the Walker breakdown ( ja > jW (ξ)). (h) Time-averaged DW velocity as function of ja for three
different values of the nonadiabatic parameter: ξ = 0, ξ = 0.2 and ξ = 0.4. Dots correspond to μM results, whereas lines are predictions from
the 1 DM with Δ = 8.325 nm and HK = 12533.5 A/m. (Reprinted with permission From [70, 72]. Copyright (2012), American Institute of
Physics).

where X = X(t) is the position of the DW centre, Φ = Φ(t)
is the tilt angle of the DW magnetization, Δ is the DW width,
and HK is the hard-axis anisotropy field of magnetostatic
origin. He = Be/μ0 is the applied field along the easy z-axis,
and Hp(X) is the spatial dependent pinning field, which can
be expressed as Hp(X) = −(1/2μ0MsLyLz)(∂Vpin(X)/∂X),
where Vpin(X) is the local pinning potential. Hth(t) is a
stochastic random thermal field which describes the effect
of thermal fluctuation in the 1 DM [24, 26, 27, 29]. The
thermal field is assumed to be a Gaussian-distributed
stochastic process with zero mean value (〈Hth(t)〉 = 0) and
uncorrelated in time (〈Hth(t)Hth(t′)〉 = 2D1Dδ(t − t′)). The
factor D1D represents the strength of the thermal field, which
can be obtained from the fluctuation-dissipation theorem
(D = (αKBT/μ0VDWMsγ0)1/2, whereVDW = ΔLyLz is the DW
volume).

3. Current-Driven DW Dynamics

The essential goal for designing recording and logic DW-
based devices which can be competitive with nowadays

available technologies is to efficiently improve the velocity
of the propagating DW with low currents against unwanted
Joule heating effects. This section is dedicated to describe
the DW dynamics along high PMA strips driven by spin-
polarized current, from the ideal or perfect strips to the
realistic ones, where disorder and thermal effects play a sig-
nificant role.

3.1. Perfect Strips at Zero Temperature. The case of a perfect
strip with Ly × Lz = 120 × 3 nm2 is firstly considered.
Figures 2(a), 2(b), and 2(c) depicts the micromagnetically
(μM) computed temporal evolution of the DW width Δ,
the DW velocity v and the DW position x under three
different density currents: ja = 0.1 A/μm2, ja = 0.2 A/μm2

and ja = 0.5 A/μm2 for a nonadiabatic parameter of ξ =
0.4. The instantaneous DW width was numerically evaluated
considering the Thiele’s definition [77], which is given by

1/Δ(t) = (1/2LyLz)
∫

(∂�m(�r, t)/∂x)
2
dV . For ja = 0.1 A/μm2,

which is below than the Walker breakdown ( jW (ξ = 0.4) =
0.12 A/μm2), the DW moves by preserving its initial Bloch
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configuration and reaching a stationary linear behavior with
a steady DW velocity. In contrast, for ja = 0.2 A/μm2 >
jW (0.4), the DW does not reach a steady regime and its
internal magnetization precesses periodically around the
easy z-axis. Figures 2(d)–2(g) depict typical Bloch and Neel
configurations adopted by the DW during the turbulent
precessional regime.

The time-averaged DW velocity 〈v〉 as a function of
ja is shown in Figure 2(h) for three different values of the
nonadiabatic parameter: ξ = 0 (perfect adiabatic case),
ξ = 0.2, and ξ = 0.4. Dots correspond to μM results and
lines to 1 DM predictions, where the value of DW width
Δ = 8.325 nm was obtained from the micromagnetic con-
figuration of the DW at rest, and the hard axis anisotropy
field of magnetostatic originHK = 12533.5 A/m was deduced
from the micromagnetically computed Walker field BW =
μ0HW ≈ 1.575 mT (HK = 2HW/α). In the perfect adiabatic
case (ξ = 0), there is a threshold density current ( jW (ξ =
0)) below which the DW motion is not achieved. Above
jW (0), the motion takes place by means of DW precession
similarly to the field-driven case above the Walker breakdown
[66, 70]. In the 1 DM, the Walker field HW and the Walker
threshold current ( jW ) are related by jW (ξ) = (1/|ξ − α|)
(|e|Ms/PμB)γ0ΔHW , which yields jW (0) = 0.12 A/μm2, in
good agreement with full micromagnetic results (μM). In
the nonadiabatic case (ξ > 0), the DW moves for any
positive current along the perfect strip, and it does it without
changing its initial structure if the nonadiabatic parameter
matches the damping parameter (ξ = α = 0.2). Note that
jW (ξ = α) = ∞. For any other case (0 < ξ /=α), there is
a Walker threshold density current jW (ξ) above which the
DW rotates around the z-axis similarly to the field-driven
case. The current DW mobility is defined as μ = dv/dja,
and it is given by μst, j = (ξ/α)(μBP/|e|Ms) and μhf, j = ((1 +
ξα)/(1 + α2))(μBP/|e|Ms) for the steady ( ja < jW ) and the
high-current ( ja � jW ) linear regimes [25], respectively.

3.2. Rough Strips at Room Temperature. Former simulations
were conducted on a perfect strip, without any defect which
could prevent the free DW motion. However, due to the
nanolithography fabrication process, realistic strips have
defects and imperfections such as edge roughness [78] which
oppose to the free DW motion. Due to the electron beam,
the edge roughness in real samples can be characterized by an
average depth (along the y-axis) and an average length (along
the x-axis). In order to mimic the irregularities in the sample
geometry originating from electron beam lithography, natu-
ral edge roughness is modelled by independently deforming
the perfect finite difference mesh at both edges of the strip
[26]. Here, a random roughness pattern, where both the
depth and the length are assumed to be equal to the typical
grain size Dg = 3 nm, is considered, so each computational
cell at the edges of the strip is or not magnetic with 50%
of probability. A 6μm-long strip pattern is generated at the
beginning of the simulation to be used by the moving 1.2μm-
long computational region.

Typical examples of the micromagnetic results for the
temporal evolution of the DW position along a rough strip
are depicted in Figure 3 for three different currents: (a) ja =

0.04 A/μm2, (b) ja = 0.1 A/μm2, and (c) ja = 0.2 A/μm2,
considering a nonadiabatic parameter of ξ = 0.4 and
temporal window of tw = 50 ns. The deterministic trajectory
(T = 0, dashed lines) and ten different stochastic realizations
at room temperature (T = 300 K, solid lines) are shown
for each current Computing ten stochastic realizations each
one of 50ns requires a enormous computational effort in
the framework of the full micromagnetic model (μM), and
in every specific case we must wonder if this number is
sufficient to obtain statistically meaning results. In order to
justify this choice, the same problem was also analyzed in
the 1DM (see Figure 3(h)), where the number of stochastic
realizations and the temporal window can be increased by
one or two orders of magnitude with reduced computational
effort. It was confirmed that results of extended 1 DM
simulations with tw = 500 ns and N = 100 are quite similar
to the ones obtained for tw = 50 ns and N = 10, and they are
also in quantitative agreement with the full micromagnetic
results. This observation allows us to justify that N = 10
is sufficient to obtain meaningful statistically results. The
deterministic threshold current jd, defined as the minimum
current required to promote the sustained DW propagation
at zero temperature, is around 0.1 A/μm2 for a Ly × Lz =
120×3 nm2 strip with a typical roughness size of Dg = 3 nm.

For very low currents, the DW does not depart from
its initial position (see Figure 3(a)) because the force on
the DW due to the applied current ( ja = 0.04 A/μm2) is
still too low to overcome the energy barrier induced by the
roughness, even at room temperature. For larger currents
but smaller than the deterministic depinning threshold
(0.05 A/μm2 ≤ ja ≤ jd(ξ)), the DW also gets pinned due to
the roughness, but due to thermal fluctuations, it eventually
depins and propagates along the strip (see Figure 3(b)).
In this thermally activated field regime (0.05 A/μm2 ≤
ja ≤ jd(ξ)), the DW displaces several nanometers from its
initial position for some time before reaching a region of
higher surface roughness where it becomes pinned again
for some time up to thermal fluctuations assist again the
DW depinning and propagation. Similar to the field-driven
case, the DW follows a creep regime, where it can be seen
as a thermally activated interface that is creeping over local
pinning sites. For very high currents ( ja ≥ 0.2 A/μm2), the
DW position increases almost linearly as the time elapses
for all the stochastic realizations, and it reaches a quite
similar final position at the end of the evaluated temporal
window (tw = 50 ns, see Figure 3(c)). Therefore, in such a
high regime, the DW dynamics is governed by the current,
which is high enough to overcome the energy barrier of
the roughness independently on the thermal effects. It is
worthy to note that, independently of the nonadiabatic
parameter, the thermally activated DW motion along the
rough strip takes place by precessing between Bloch and
Neel configurations. These characteristic configurations are
shown in Figures 3(d)–3(g). This observation is in contrast
to the DW propagation along a perfect strip, where DW
propagates rigidly for any finite current if the nonadiabatic
parameter is equal to the damping (ξ = α).

The statistically averaged DW velocity [〈v〉] as a function
of ja along a rough strip at room temperature (T = 300 K) is
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Figure 3: Current driven DW dynamics along a rough (Dg = 3 nm) strip with Ly × Lz = 120× 3 nm2. Micromagnetically (μM) computed
temporal evolution of the DW position x under three different density currents: (a) ja = 0.04 A/μm2, (b) ja = 0.1 A/μm2 and (c) ja =
0.2 A/μm2 for a nonadiabatic parameter of ξ = 0.4. Blue-dashed lines correspond to the deterministic case (T = 0), whereas red-solid lines
correspond to ten stochastic realizations at room temperature (T = 300 K). (d)–(g) show typical micromagnetic states of the propagating
DW along a rough strip at room temperature. (h) Time-averaged DW velocity as function of ja for three different values of the nonadiabatic
parameter: ξ = 0, ξ = 0.2, and ξ = 0.4. Open-dots correspond to μM results (with indication of the standard deviation), whereas solid
symbols are the predictions from the 1 DM with Δ = 8.325 nm, HK = 12533.5 A/m, and a periodic pinning potential given by Vpin(X) =
V0 sin2(πX/p) with V0 = 1.65 × 10−20 J and p = 30 nm. The inset shows the results around between ja = 0.05 A/μm2 and ja = 0.2 A/μm2

(Reprinted with permission From [70]. Copyright (2012), American Institute of Physics).

shown in Figure 3(h) for three different values of the non-
adiabatic parameter: ξ = 0, ξ = 0.2, and ξ = 0.4. This
statistically averaged DW velocity [〈v〉] was calculated by
firstly averaging over a temporal window of tw = 50 ns as
〈v〉i = (1/tw)

∫ tw
0 v(t)dt, and then, averaging over ten (N =

10) stochastic realizations as [〈v〉] = (1/N)
∑N

i=1 〈v〉i. Open
symbols correspond to μM simulations of a rough strip
with Dg = 3 nm, and full symbols were obtained in the
framework of the 1DM, where the local pinning landscape is
modeled by a periodic pinning potential given by Vpin(X) =
V0 sin2(πX/p). The values of the energy barrier V0 and the
spatial periodicity p were chosen to match a deterministic
depinning field similar to the micromagnetic value for Dg =
3 nm: V0 = 1.65 × 10−20 J, and p = 30 nm. Figure 3(h)
confirms that the velocity-current characteristic predicted by
the 1 DM is in good qualitative and quantitative agreement
with full μM results.

Analogously to the creep and flow regimes seen in
former numerical studies and other experimental studies of

field-driven motion, the DW mobility increases at low cur-
rents and saturates at higher values (see Figure 3(h)).
Therefore, the inclusion of surface roughness along with
thermal fluctuations in both μM and 1 DM simulations pro-
vides a proper explanation to understand experimental
observations. Apart from the qualitative agreement with
experiments [47, 55], micromagnetic simulations also pro-
vide information on the internal DW structure during
its motion. In the single layer rough strip, the thermally
activated DW translation occurs by DW precession around
the z-axis, even for the case of ξ = α = 0.2. In the
creep regime (0.05 A/μm2 < ja < 0.1 A/μm2), [〈v〉]
increases exponentially with ja, but it does not depend
significantly on nonadiabatic parameter (see Figure 3(h)), so
it is dominated by roughness and thermal fluctuations, and
ξ does not play a remarkable role. In the high-current flow
regime ( ja � 0.1 A/μm2), the DW mobility recovers the
deterministic value for the perfect strip (μh f , j = ((1+ξα)/(1+
α2))(μBP/|e|Ms)), both for ξ = 0 and ξ = 0.4 cases. However,
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as it is clear in Figure 3(h), the DW mobility in the high-
current flow regime for ξ = α = 0.2 approaches to the one of
the perfect adiabatic case (μh f , j = (1/(1 + α2))(μBP/|e|Ms)).
These numerical predictions point out that, in a single layer
strip, the surface roughness favors the turbulent motion with
DW precession between Bloch and Neel configurations. It
is also clear in Figure 3(h) that the standard deviation of
[〈v〉] versus ja is enlarged in the creep regime, whereas it
decreases significantly as ja increases in the high-current flow
regime. This fact indicates that at high currents, the DW
dynamics becomes insensitive to the roughness, being mainly
dominated by the current force.

3.3. Strips Sandwiched in Asymmetric Stacks: The Role of the
Spin-Orbit Interaction. Experimental measurements along
high PMA strips have been performed in several architec-
tures, ranging from single layer [50, 53] to multilayer stacks
[47, 49, 51, 52, 54, 55]. Former section was dedicated to the
study of the current-driven DW dynamics along a single layer
PMA strip. However, the experiments on DW propagation
along a high PMA Cobalt strip sandwiched between two
dissimilar nonmagnetic layers (Pt/Co/AlO) are particularly
interesting because they have pointed out a high spin-torque
efficiency leading to very high DW velocities at reduced
currents [51, 55]. The suggested reason for this behavior is
the spin-orbit interaction (SOI) on the conduction electrons,
which originates from the structural inversion asymmetry
(SIA) of the multilayer stack. The SOI allows for the transfer
of orbital angular momentum from the crystal lattice to the
local magnetization [79], and it is mediated by an effective

Rashba magnetic field (�HR) which is given by [55, 80, 81]

�HR = αRP

μ0μBMs

(
�uz × �ja

)
, (7)

where �uz is the unit vector along the perpendicular axis (the
z direction) and αR is the Rashba parameter which describes
the strength of the SOI [81]. The aim of the present section
consists on analysing the current-driven DW propagation in
the presence of the Rashba field. This field is added as a new
contribution to the effective field in (1) considering a Rashba
parameter of αR = 10−11 eVm, which is a typical value of a
two-dimensional electron gas with SIA [55, 80, 81]. The μM
results along a perfect strip are collected in Figure 4, which
depicts the temporal evolution of the DW width [77] Δ(t),
the DW velocity v(t), and the DW position x(t), respectively,
under three different values of ja for the case of finite Rashba
field (αR = 10−11 eVm) with ξ = 0.4. Contrary to what hap-
pens in the absence of Rashba field for currents larger
than the Walker breakdown (see Figures 2(a)–2(c)), the DW
reaches a stationary behavior for all the studied currents
[0, 1 A/μm2], and it propagates rigidly with steady velocity.
Typical steady Bloch DW configurations reached under two
values of ja are depicted in Figures 4(d) and 4(e).

The time-averaged DW velocity 〈v〉 over a temporal win-
dow of tw = 50 ns is depicted as a function of ja in Figure
4(f) for several values of ξ in the case of a perfect strip
(Dg = 0) at zero temperature (T = 0). Open symbols

correspond to the case of finite Rashba field with αR =
10−11 eVm. The results corresponding to zero-Rashba field
(αR = 0, filled symbols) of former Figure 2(h) are also
included for comparison. In the perfect adiabatic case (ξ =
0), a minimum density current of jW (ξ = 0) ≈ 0.12 A/μm2

is required to promote self-sustained DW motion in absence
of Rashba field (αR = 0). Above this intrinsic critical current,
the DW moves turbulently by precessing clockwise around
the z-axis between Bloch and Néel configurations, and for
very high currents ( ja � jW (ξ = 0)) the DW mobility,
which is defined as μ = dv/dja, is μt(ξ = 0) = (1/(1 +
α2))(μBP/|e|Ms) [25], which tends to μt(ξ = 0) = μBP/|e|Ms

for α � 1. However, when a finite Rashba field with αR =
10−11 eVm is taken into account, no DW motion is achieved
in the perfect adiabatic case (ξ = 0) even for high currents

such as ja = 1 A/μm2. Therefore, �HR increases the critical
intrinsic current in the perfect adiabatic case (ξ = 0). For ξ =
α = 0.2, the DW velocity increases linearly with ja for any
finite value, and the DW mobility is μs(ξ = α) = μBP/|e|Ms

independently of the Rashba field. Note that this mobility
is similar to the one achieved in the high current turbulent
regime ( ja � jW (ξ)) for zero-Rashba field independently
on ξ. Finally, for ξ = 0.4, the DW precesses turbulently and
counter-clockwise between Bloch and Néel configurations
above the Walker threshold at zero Rashba field (αR = 0),
and under currents well above than this threshold the DW
mobility approaches again to one observed for both ξ = 0
and ξ = 0.2 cases (μt(ξ) ≈ μBP/|e|Ms, for α ∼= ξ � 1).
However, there is no Walker breakdown in the presence of
the Rashba field (αR = 10−11 eVm) for ξ /= 0, and the DW
mobility maintains the value of the linear low-current steady
regime (μs(ξ > 0) = (ξ/α)(μBP/|e|Ms)) in the whole analyzed
range of density currents.

The effect of the Rashba field under positive current ( ja >
0) is equivalent to a homogeneous transverse field along
y > 0-axis, and both of them promote the stabilization of
the Bloch up DW configuration by raising the energy barrier
against transformations to Néel DW. If the current is reversed
( ja < 0), the Rashba field points along the negative transverse
direction (y < 0), and similarly to a negative transverse
magnetic field, it firstly promotes the transition from Bloch
up to Bloch down. Once this transition is completed,
the Bloch down DW moves rigidly in the opposite sense
(x < 0) [55]. These results indicate that due to the SOI
in a asymmetric trilayer stack with SIA (�HR /= 0), the linear
steady high mobility regime is extended to high currents,
and therefore, it allows to achieve rigid DW propagation with
higher DW velocities than the ones achieved in a single layer
or a symmetric multilayer stack, where the Rashba field due

to the SOI is negligible (�HR = 0) and the maximum velocity
is limited by the nonadiabatic parameter.

In order to get a more realistic description, and as it was

done for a single layer strip (�HR = 0), the next step in
the study is focused on describing the influence of the
edge roughness and thermal fluctuations when the finite

Rashba field is taken into account. The effect of �HR with
αR = 10−11 eVm on the temporal evolution of x(t) along the
rough strip (Dg = 3 nm) under different ja is depicted in
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Figure 4: μM results of the current driven DW dynamics along a perfect strip with Ly × Lz = 120 × 3 nm2 in the presence of SOI (αR =
10−11 eVm). (a), (b), and (c) depict the micromagnetically (μM) computed temporal evolution of the DW width Δ, the DW velocity v and
the DW position x under three different density currents: ja = 0.1 A/μm2, ja = 0.2 A/μm2, and ja = 0.5 A/μm2 for a nonadiabatic parameter
of ξ = 0.4. (d)-(e) show typical micromagnetic states of the propagating DW in the presence of SOI. (f) Time-averaged DW velocity as
function of ja for three different values of the nonadiabatic parameter: ξ = 0, ξ = 0.2, and ξ = 0.4. Filled and open symbols correspond to
the cases with αR = 0 and αR = 10−11 eVm, respectivelly (Reprinted with permission From [72]. Copyright (2012), American Institute of
Physics).

Figures 5(a)–5(c). A first quantitative difference with respect
to the zero-Rashba field case (αR = 0) studied in
Figure 3(h) is that the deterministic depinning threshold
current increases to jd = 0.6 A/μm2 in the presence of finite
Rashba field with αR = 10−11 eVm. At zero temperature
(T = 0, blue-dashed lines) two different behaviors are
clearly observed. If ja is smaller than the deterministic
threshold current ( jd = 0.6 A/μm2), the DW eventually
departs from its initial position but after a few nanoseconds,
it becomes totally pinned after reaching a region with high
surface roughness (see Figures 5(a) and 5(b) for ja = 0.2 −
0.4 A/μm2). On the other hand, for ja ≥ jd, the DW position
increases linearly as the time elapses in the whole evaluate
temporal window (tw = 50 ns).

The DW dynamics is substantial different at T = 300 K.
Ten stochastic realizations have been evaluated for each
ja. Even for very small currents (see red-solid lines in
Figure 5(a)) there is a no-null probability of DW propaga-
tion. If ja increases below the critical deterministic threshold
( ja < jd), the DW propagates depicting a jerky motion as due
to thermal activation over the local energy barrier induced by

the roughness (see red-solid Figure 5(b)). The DW displaces
several nanometers from its initial position during some time
before reaching a region of high surface roughness, where it is
temporally pinned up to thermal fluctuations assist again the
DW depinning and its subsequent propagation. Similarly to
the deterministic case, if ja ≥ jd, the DW position increases
almost linearly as the time elapses for all the realizations
(see Figure 5(c)). Therefore, ja is high enough to overcome
the energy barrier of the roughness independently on the
thermal effects in such a high current regime. As it is
depicted in Figures 5(d)–5(g), the DW Bloch structure is also
preserved for all ja in the presence of the Rashba field at
T = 300 K.

The DW velocity as a function of ja is shown in
Figure 5(h) for αR = 10−11 eVm. The time-averaged DW
velocity (〈v〉) along a rough strip (Dg = 3 nm) at zero
temperature (T = 0, blue-squares) are compared to the
statistically-averaged DW velocity ([〈v〉]) at room temper-
ature (T = 300 K, red-circles), which was computed by
averaging the time-averaged velocity over ten stochastic
realizations for each ja. Error bars indicate the standard
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Figure 5: (a)–(c) x(t) versus t along a rough strip (Dg = 3 nm) for different ja with αR = 10−11 eVm at zero (blue-dashed lines) and at room
temperature (red-solid lines). (d)–(g) Typical DW configurations under different ja. (h) DW velocity as a function of ja. (Reprinted with
permission From [71]. Copyright (2012), American Institute of Physics).

deviation. The results for ξ = 0.4 of former Figure 4(f)
are also included for comparison. At T = 0, no sustained
DW motion is achieved up to ja overcomes the deterministic
depinning threshold jd = 0.6A/μm2, and above it ( ja ≥ jd),
the DW velocity increases linearly with ja. The curve of [〈v〉]
as a function of ja at T = 300 K is in good qualitative
agreement with recent experiments (see Figure 3 in [47]
and in [55]). One observes (i) a slow regime ( ja < jd)
controlled by thermal activation and local pinning, where
[〈v〉] increases exponentially, and (ii) a high-current flow
regime ( ja > jd) with a linear variation of [〈v〉]. Note that the
DW mobility at the high-current regime ( ja > jd) is larger

than the one achieved for �HR = 0 because the transverse
Rashba field SOI avoids the turbulent DW precession.

Due to the high computational effort, these types of full
micromagnetic studies of realistic strips with edge roughness
at room temperature are very time-consuming, and in order
to describe experimental results, it is desirable to develop

the 1 DM given by (5) and (6) by including the effect of
the Rashba field given by (7). The resulting 1 DM equations
are

(
1 + α2) Ẋ

Δ
= αγ0

(
He +Hp(X) +Hth(t)

)
+

1
2
γ0(HK sin(2Φ)− πHR sin(Φ))

− (1 + αξ)
1
Δ

μBP

eMs
ja

(
1 + α2)Φ̇ = γ0

(
He +Hp(X) +Hth(t)

)
− α1

2
γ0(HK sin(2Φ)− πHR sin(Φ))

− (ξ − α)
1
Δ

μBP

eMs
ja,

(8)
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Figure 6: Comparison of the experimental results (see Figure 3 in
[55]) and 1DM predictions for the current-induced DW dynamics
along a Cobalt strip with high PMA sandwiched between two
dissimilar nonmagnetic strips (Pt/Co/AlO) at room temperature
(T = 300 K). All the 1 DM parameters are enumerated in the text.

where �HR = HR�uy with HR = αRP ja/μ0μBMs. Although it
is not shown here for reasons of briefness, it was confirmed
that the μM results depicted in Figures 4(b), 4(c) and 4(f) are
very accurately reproduced by these 1 DM (8). Much more
interesting is to show how this simple 1 DM is able to repro-
duce the recent experimental results by Miron and coworkers
[55]. In their experimental study, a cobalt strip with a cross-
section of Ly ×Lz = 500 nm× 0.6 nm is sandwiched between
two dissimilar nonmagnetic layers (Pt/Co/AlO). In order to
reproduce these experimental results by using the 1 DM (8),
the following material parameters for the sandwiched Cobalt
layer are considered: Ms = 1.09 × 106 A/m, A = 10−11 J/m,
K = 1.19 × 106 J/m3, α = 0.2, P = 0.5, ξ = 1, and αR =
10−10 eVm. Note that these parameters are consistent with
the ones which were used in [55, 79]. The DW width is
Δ = √

A/K = 3 nm, HK = 27852 A/m, and the effect of
disorder is modeled by assuming a periodic pinning potential
Vpin(X) = V0 sin2(πX/p) with a characteristic energy barrier
of V0 = 1.8× 10−19 J, and a periodicity of p = 30 nm.

The 1 DM results for the average DW velocity at room
temperature are compared to the experimental results (see
Figure 3 in [55]) in Figure 6. In the low current regime,
the DW exhibits a stochastic creep motion, and the DW
velocity can be described by v = v0 exp[−( jd/ ja)μ(V0/KBT)]
where v0 is a prefactor, ja is the applied current, and jd
is the critical depinning threshold. V0 is the characteristic
height of the pinning energy barrier induced by the surface
roughness, and μ is a universal dynamics exponent. As in
the field-driven case, the creep regime under current is
consistent with an exponent of μ = 1/4. When the driving
density current ja is well above the deterministic depinning
threshold, thermal perturbations and surface roughness have
a negligible effect on the DW velocity, which is found to

increase linearly on ja similarly to the perfect strip case
at zero temperature. As it clearly shown in Figure 6, the
1 DM predictions are in very good agreement with the
experimental measurements. This is a noticeable result,
because a systematic experimental study of the DW velocity
as function of the applied current along different strips
with different materials, sizes, and configurations (single
layer or asymmetric multilayer stacks) could be accurately
reproduced by the 1 DM simulations including both disorder
and thermal effects, with low computational effort. By means
of direct comparison with experimental measurements, it
could be useful to gain information on the nonadiabatic
parameter, for instance, by simply comparing with the high
flow DW mobility. These type of comparative studies could
be also used to extract the value of the Rashba parameter
or the temperature dependence of the polarization factor.
From a technological point of view, the SOI mediated by
the Rashba field is a remarkable phenomenon because it
promotes the high velocity and rigid DW propagation at
relatively low current avoiding unwanted Joule heating.

4. DW Depinning from a Notch

The realization of DW-based devices for developing record-
ing and logic technologies does not only require high velocity
propagation with low current, but also an efficient control of
the DW position. This can be done by means of constrictions
or artificial notches which act as local pinning sites for the
DW. The success of the applications require high stability
against thermal fluctuations, and at the same time, low-
current DW depinning. This section is dedicated to the
analysis of the pinning potential due to artificial notches
intentionally designed to control the DW position in a strip
with high PMA, and to the study of the DW depinnnig
processes driven by both magnetic field and/or currents.

4.1. Describing the Pinning Potential. Figure 7(a) shows the
geometry of strip containing an artificial pinning site, which
consists on two rectangular notches, each one of dimensions
nx × ny and placed at both sides of the strip. In the rest of
this review, the parameters for a typical CoPtCr alloy are
considered: Ms = 3 × 105 A/m, A = 10−11 J/m, K = 2×
105 J/m3, P = 0.5, α = 0.2, and αR = 0, and the cross-
section of the strip is fixed to Ly×Lz = 60 nm×3 nm. Figure
7(b) depicts the pinned equilibrium state of a Bloch DW at
rest for a pinning site with nx = 15 nm and ny = 6 nm.
In order to describe the pinning potential Vpin induced by
the constriction, the temporal evolution of the DW position

was micromagnetically computed under static fields �Be =
Be�uz along the easy z-axis for three different widths (ny :
3 nm, 6 nm, 9 nm) and fixed length (nx = 15 nm). After a
few damped oscillations (not shown), the DW reaches final
equilibrium position Xeq if the applied field is smaller than
the depinning threshold (Be < Bd), which depends on the
length (nx) and the width (ny) of the notch. Figure 7(c) indi-
cates that, except for fields close to the de-pin-ning threshold,
the equilibrium DW position increases from the center of the
constriction almost linearly with the applied field. The slope
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Figure 7: (a) Scheme of a pinning site consisting on two rectangular notches at both edges of the strip. (b) Equilibrium state of a pinned
DW in a CoPtCr strip of Ly × Lz = 60 nm× 3 nm with a constriction described by nx = 15 nm and ny = 6 nm. (c) Equilibrium DW position
as a function of the applied field Be in the pinned regime. (d) Pinning potential Vpin as a function of the DW position. Dots correspond
to micromagnetic results and the solid lines are the fittings to Vpin(X) = (1/2)KNX2. In these last graphs the length of the notch is fixed to
nx = 15 nm, and three different widths are evaluated: ny : 3 nm, 6 nm, 9 nm.

of this increasing decreases with ny . The pinning potential
depicted in Figure 7(d) was computed from the total energy
by subtracting the Zeemann contribution for each state [29].
In this pinned regime, the pinning potential can be fitted
to a parabolic profile given by Vpin(X) = (1/2)KNX2 for
|X| ≤ LN . KN is the elastic constant of the constriction,
and LN is the half length of the pinning potential. From μM
results of Figure 7(d), the following values are deduced for
a constriction with nx = 15 nm and ny = 6 nm: KN =
1.7× 10−3 N/m and LN = 9.5 nm.

4.2. Field and Current-Driven DW Depinning. Once de-
scribed the pinning potential, let us analyze the field and
current DW depinning, in particular for a strip with Ly ×
Lz = 60 nm × 3 nm with a constriction characterized by

nx = 15 nm and ny = 6 nm. The goal is to evaluate how
the depinning field Bd depends on the applied current ja
for several values of the nonadiabatic parameter ξ, firstly
at zero temperature. The problem has been studied from
both micromagnetic simulations (μM) and one-dimensional
model (1 DM). In the case of the 1 DM, the DW width
was obtained from equilibrium state of the pinned DW
(Δ = 8.25 nm), and the hard-axis anisotropy field (HK ) of
magnetostatic origin was deduced from the micromagnet-
ically computed Walker breakdown field (BW = μ0HW ≈
0.33 mT), which results inHK = 2HW/α = 2626.06 A/m. The
pinning potential is given byVpin(X) = (1/2)KNX2 for |X| ≤
LN with KN = 1.7× 10−3 N/m and LN = 9.5 nm (Vpin(X) =
0 for |X| ≥ LN ). The results are depicted in Figure 8(a)
for several values of the nonadiabatic parameter ξ. A good
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Figure 8: (a) Depinnig field Bd as a function of ja for several values of ξ for a CoPtCr strip with Ly×Lz = 60 nm×3 nm and nx = 15 nm and
ny = 6 nm. Dots correspond to μM results and lines correspond to the ones obtained from the 1 DM with Δ = 8.25 nm, HK = 2626.06 A/m,
and a pinning potential given byVpin(X) = (1/2)KNX2 for |X| ≤ LN withKN = 1.7×10−3 N/m and LN = 9.5 nm (Vpin(X) = 0 for |X| ≥ LN ).
(b) Probability of DW depinning (PD) as a function of both (Be, ja) obtained from 1 DM with ξ = 0 at T = 300 K. A temporal window of
tw = 500 ns was considered, and 100 stochastic realizations were evaluated. Open dots represent the deterministic (T = 0) depinning field
Bd( ja). (c) Examples of PD as a function of Be under three different density currents: ja = 0 (squares), ja = 0.15 A/μm2 (circles) and
ja = 0.3 A/μm2 (triangles). Filled and open symbols correspond to 1 DM and μM results respectively (Reprinted with permission From [65].
Copyright (2012), American Institute of Physics).

quantitative agreement is observed between micromagnetic
results (dots) and 1 DM predictions (lines). The depinning
field Bd( ja, ξ) decreases linearly with the applied current ja,
and the diminution of Bd as a function of ja becomes slightly
stronger as the nonadiabatic parameter increases, but the
linear behavior is preserved for all analysed values.

The results of Figure 8(a) were obtained at zero tem-
perature (T = 0). In order to determine whether thermal
fluctuations are likely to play an important role in the DW
depinning process, the probability of DW depinning (PD)

has been studied at T = 300 K by numerically solving the
1 DM (5) and (6). A temporal window of tw = 500 ns was
considered, and in order to present statistically meaningful
results, 100 stochastic realizations were evaluated for each
pair of (Be, ja). The results for ξ = 0 are depicted in
Figure 8(b), where open dots correspond to the deterministic
(T = 0) depinning threshold. At T = 0, the DW
depinning only occurs if the current and the field are suf-
ficiently large. On the contrary, at T = 300 K, the problem is
no longer deterministic, and there is a non-null probability
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of DW depinning for fields and currents smaller than the
deterministic threshold. As it is observed, thermal fluctua-
tions significantly reduces the depinning field Bd under a
given current with respect to deterministic case. For instance,
under zero current ( ja = 0), the depinning field at T =
0 is ≈ 123 mT, whereas the probability of DW depinning
becomes 100% with a minimum field of 114 mT at room
temperature. As it is shown in both Figures 8(b) and 8(c), the
probability of DW depinning changes from 0% to 100% in a
reduced range of fields, for example, from 60 mT to 65 mT
under a current of ja = 0.15 A/μm2 (see filled red circles in
Figure 8(c)).

A similar analysis of thermal effects at T = 300 K was
also carried by means of full micromagnetic modeling (μM,
(1)) in the perfect adiabatic case. The probability of DW
depinning (PD) micromagnetically computed as a function
of Be is shown in Figure 8(c) by means of open symbols.
Similarly to one-dimensional results, the transition from
PD = 0 to PD = 1 is gradual and takes place in a narrow
range of fields, but it is slightly anticipated toward smaller
fields because the nonuniformities in the local magnetization
assist the thermal depinning.

In summary, as it is desirable for memory applications,
the field required to promote the DW depinning in absence
of current is very high because the energy barrier required
to overcome the pinning potential is around 19 times larger
than the thermal energy at room temperature for a typical
strip as the one studied here. The depinning field decreases
linearly as the current is raised, and the slope of this
declension slightly increases with the nonadiabaticity. Under
zero field in the perfect adiabatic limit, the critical depinning
density current is around 0.4 A/μm2 at zero temperature.
This corresponds to a threshold current of 72μA, which is
small enough to minimize unwanted Joule heating effects.
It was found that thermal fluctuations at room temperature
play a significant role on the DW depinning by reducing the
depinning field for a given current with respect to the deter-
ministic case. These results are in good qualitative agreement
with the experimental measurements by Ravelosona el al.
[44] exploring the high pinning regime (Bd � μ0HK/α),
and they explain the linear decreasing of the depinning
current with increasing field. In that experiment [44], the
depinning current at zero field was found around 0.1 A/μm2,
which, in spite of the different materials and geometry,
is in the same order of magnitude than our results. The
Joule heating effect was estimated less than 20 K at the
highest current densities applied, which is small enough to
justify a Lagenvin description with constant temperature.
By simulating the same geometry and materials than these
experiments, the stochastic one-dimensional model can be
directly adopted in order to gain a better description of the
experimental observations by taking into account the effect
of the constant temperature of the sample, and, therefore, a
more accurate estimate of both the polarization factor and
the nonadiabatic parameter, along with their dependence on
the temperature could be addressed. On the other hand,
the presented analysis also shows that the probability of
the DW depinning under a given current changes abruptly
from 0% to 100% in a narrow range of fields. This result

points out that the DW depinning is highly selective, which is
also relevant for further technological applications. All these
theoretical predictions indicate that engineering of pinning
sites in thin strips of high perpendicular anisotropy provides
an efficient pathway to achieve both high stability against
thermal fluctuations, and at the same time, low-current-
induced domain wall depinning.

5. DW-Based Nano-Oscillators

The theoretical studies of the current-driven DW dynamics
along a strip with high PMA, and its pinning and depinning
driven by fields and/or current, are relevant for further
designing recording and logic devices based on DWs. How-
ever, these are not the only potential applications of DWs,
which could be also useful in other branches of the nan-
otechnology. This last section is dedicated to the numerical
study of the pinned DW oscillations driven by static currents,
which could find application to develop novel DW-based
nanoscillators.

5.1. Pinned DW Oscillations. Let us focus our attention on
a CoPtCr strip (Ms = 3 × 105 A/m, A = 10−11 J/m, K =
2 × 105 J/m3, α = 0.2, and P = 0.4) with Ly × Lz =
60 × 3 nm2 containing a single pinning site which consists
on two rectangular notches (nx = 15 nm long, ny = 6 nm
wide) symmetrically placed at both edges of the strip. The
micromagnetically computed temporal evolution of the DW
position X(t) in the pinned regime ( ja < jd(ξ = 0,Be = 0) =
0.4 A/μm2) is depicted in Figure 9(a) for three values of the
applied current ja in the perfect adiabatic case (ξ = 0). For
current smaller than Walker threshold ( ja < jW (0)), the DW
moves during the first nanoseconds, but after that it returns
to its initial state where it finally rests. If the applied current
surpasses the Walker value ( ja ≥ jW (0) = 0.025 A/μm2),
and at the same time, it remains smaller than the critical
depinning threshold ( ja < jd(ξ = 0,Be = 0) = 0.4 A/μm2),
the DW develops pinned oscillations periodically rotating
between Bloch and Neel configurations. Examples of these
DW configurations are depicted in Figures 9(b)–9(e) in
the adiabatic case for ja = 0.05 A/μm2. Under such low-
density currents in the pinned regime (see Figures 9(b)–
9(e)), the DW magnetization oscillates around the z-axis
symmetrically with respect to the center of the notch,
whereas under high density currents in the pinned regime
(not shown) the central position of DW oscillations is pushed
to the right-hand side due to the spin torque [40, 41]. The
DW position XμM has two contributions: a static one Xdc,
which represents the central position around which the DW
oscillates, and a periodically oscillating contribution at a
frequency f with an amplitude Xac. The dependence of these
three variables on the applied density current ja is shown
Figures 9(f), 9(g), and 9(h), respectively, for several values
of the nonadiabatic parameter (0 ≤ ξ ≤ 2α). Both Xdc and f
increase almost linearly with ja, but the amplitude of the DW
oscillations Xac decreases from the maximum value reached
just above the Walker current. Except for a slight reduction of
the critical depinning current jdep(ξ,Be = 0), it is clear that
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Figure 9: μM results for the DW dynamics under dcs in the pinned regime. The cross-section is Ly×Lz = 60 nm×3 nm, and the dimensions
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the results do not depend significantly on the nonadiabaticity
ξ. Although they are not shown here, it was also verified in
[41] that the 1 DM results for the pinned DW oscillations are
similar to the μM ones collected in Figures 9(a), 9(f)– 9(h).

It is worthy to note that the complete analysis of the
frequency of the localized DW oscillation requires either
perform full micromagnetic simulations (as in Figure 9) or
numerical solving the complete 1 DM (5) and (6) (as it was
done in [41]). For instance, note from Figures 9(f) and 9(g)
that although the time average of the DW velocity is zero,
its instantaneous value is not exactly null. However, it is also
possible to obtain some information from these 1 DM (5)
and (6), which can be simplified by assuming some justified
approximations. In particular, as the DW oscillations take
place in the absence of driving field (He = 0) when the shape
anisotropy is avoided (HK = 0), and as the DW velocity is
zero averaged over a period of the pinned oscillations (Ẋ ≈
〈Ẋ〉 = 0), it is possible to extract from (5) an expression
for the pinning field γ0Hp(X) = ((1 + ξα)/Δ)(μBP/eMs) ja.
Introducing this result in (6), we reach to

Φ̇ = − 1
αΔ

μBP

eMs
ja, (9)

so the frequency of the pinned DW oscillations is f = Φ̇/π
which is independent of the nonadiabatic parameter and
increases linearly with ja. This result is good quantitative
agreement with the full micromagnetic results of Figure 9(f).
Other 1 DM results and further micromagnetic details, such
as the dependence of the pinned regime with the dimensions
of the notches, can be seen in our former work [41].

5.2. Spin Pumping and Induced Voltage Signal. Results of
former Figure 9 indicate that it is possible to achieve pinned
DW oscillations just driven by dc via spin transfer torque.
As electrons flow through the ferromagnetic strip, their
spins tend to align with the magnetization. When they
pass into the nonuniform magnetization region occupied
by the DW, the electron spins rotate to stay aligned with
the local magnetization. A reaction torque on the changing
magnetization in the DW cause the pattern of magnetization
at the DW to move in the direction of the electron flow.
Considering perfect adiabatic conditions, the DW will move
along a perfect strip if the applied density current is larger
than the Walker breakdown ( ja > jW (0)), and in its
displacement, the DW experiences periodic transformations
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between Bloch and Neel configurations. If the DW is trapped
at a constriction, the spin transfer torque can promote
pinned DW oscillations provided that the applied density
current is above the Walker breakdown and below the critical
depinning current ( jW (0) < ja < jd). The complementary
effect, spin pumping [82], occurs when the pinned DW
oscillation drives a spin current along the strip, which results
in an induced voltage difference between the ends of the strip.

The rest of this section is dedicated to the analysis of
the voltage signal produced by these pinned DW oscilla-
tions. It has been theoretically predicted that magnetization
dynamics induces an electromotive and spin-motive force
(emf/smf), which acts on the conduction electrons through
the spin Berry phase [39, 83–87], and, therefore, magnetiza-
tion dynamics can be a source of voltage signal for external
circuits. Berger [39] provided the first theoretical prediction
of this effect in terms of an analog of the Josephson effect:
a static electric current larger than the Walker breakdown
threshold can promote the DW rotation at a given frequency
f = (1/π)Φ̇. He also predicted that the DW oscillation
gives rise to a voltage signal given by Vsmf = −(�P/2e)Φ̇.
Barnes and Maekawa [85] analyzed the generation of spin
and charge current by a moving DW via electromotive forces
considering the case that the spin is fully conserved. More
recently, Duine [82, 88] pointed out that the voltage signal
will be augmented by a nonadiabatic contribution, so it
will be given by Vsmf = −(�P/2e)(Φ̇ − ξ(Ẋ/Δ)) in the
1 DM approach. The first experimental observation of the
electromotive force induced by a moving DW was carried out
recently by Yang and coworkers [89], where external fields
larger than the Walker breakdown were used to drive a DW
along a soft Permalloy strip, and the averaged induced voltage
produced by its DW transformation between transverse and
vortex configurations was Vsmf = −(�P/e)(γ0He), where
He > HW .

Early theoretical predictions [39, 82, 85, 86, 88] for the
voltage induced by DW oscillations considered an idealized
rigid DW, where the DW width Δ remains fixed. However, as
it was confirmed in Figure 2(a), the DW width changes above
the Walker breakdown (Δ = Δ(t)), and these changes could
play significant role in the induced voltage signal. Here, we
will focus on describing the induced voltage signal due to the
pinned DW oscillations driven by dc in a hard PMA strip
from a full micromagnetic point of view, which straightfor-
wardly accounts for the internal complexities of the dynamics
changes of DW width. The effective electric field induced by a
time-dependent magnetic texture is computed according to
the formalism developed by Tserkovnyak and Mecklenburg
[87]. The component of this field along the length of the strip
(x-axis) is given by [87]

Esmf,x = −�P

2e

[
�m ·

(
∂�m
∂t
× ∂�m
∂x

)
+ ξ

(
∂�m
∂t
· ∂�m
∂x

)]
. (10)

The first term at the right hand side of (10) is the perfect
adiabatic contribution to the electric field induced by a
time-dependent magnetization texture, which was derived by
considering that the exchange field provided by the localized
magnetic d orbitals (local �m) is larger than the spin-diffusion
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Figure 10: Voltage signal as due to the pinned DW oscillations
driven dcs as computed from μM simulations. Static (Vdc) and
oscillating (Vac) contributions of the voltage signal Vsmf(t) are
depicted in (top) and (bottom), respectively. (from [41]).

length, and, therefore, assumes that the spin of conductions
electrons perfectly align with local magnetization [39, 86].
It is equally direct to interpret the first contribution to
(10) in terms of the rate of the Berry-phase accumulation
by spins adiabatically following the steady exchange field
[85, 89]. The second term at the right hand side of
(10) is proportional to the nonadiabatic parameter ξ. This
correction is related to slight spin misalignment of electron
propagating through an inhomogeneous magnetic texture
with the local magnetization [87]. In the limit of infinite
exchange field this misalignment vanished (and so should
ξ), and only the adiabatic contributions would remain. The
nonadiabatic corrections to the induced electric field by a
time-dependent magnetic texture was firstly proposed by
Duine [82] for a rigid DW. This nonadiabatic contribution
can be viewed as a correction to the topological structure
of the electron transport rigidly projected on the local
magnetization texture. A more detailed description of the
microscopic origin of (10) is far from the scope of this work,
and they can be consulted in [39, 82, 85–88]. Once evaluated
(10), the induced voltage between the ends of the strip is
obtained by integrating over the strip length (Lx = 1.2μm)

as Vsmf = −
∫ Lx

0 Esmf,xdx.
The μM results of the induced voltage signal Vsmf corre-

sponding to the pinned DW oscillations described in former
Figure 9 are depicted in Figure 10. They show that the
induced voltage Vsmf(t) has also two contributions: a static
oneVdc which increases linearly with ja independently on the
nonadiabatic parameter ξ (Figure 9(a)), and a periodic con-
tribution with amplitude Vac (see Figure 10(b)) oscillating
at the same frequency f as the DW position oscillations of
Figure 9(h). An interesting point from a fundamental point
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of view is that, contrary to the Vdc case, the amplitude of
the oscillating contribution Vac shows a dependence on the
nonadiabatic parameter ξ, and therefore, if this signal can
be experimentally detected, it could give information on the
nonadiabaticity of system.

5.3. Enhancing the Induced Voltage Signal. From a technolog-
ical point of view, the voltage signals induced by the pinned
DW oscillations might prove useful to design nanoscale
microwave oscillators and generators, which could find
application in several fields such as sensors, telecommuni-
cations, or rf assisted writing for memory devices. However,
for a given strip with a given constriction the amplitude of
the dc voltage signal Vdc is restricted to the values of the
dc applied current densities of the oscillating pinned regime
( jW < ja < jdep). Moreover, the amplitude of the oscillating
contribution Vac decreases with ja from jW to jdep, and it
will be desirable to enhance and extend the operation regime
towards higher values of both Vdc and Vac with the aim of
fulfilling further technological requirements. In order to do
it, we proposed to introduce several pinned DWs along the
strip [41].

Figure 11 shows the equilibrium state of a CoPtCr strip
containing (a) one, (b) three, (c) five, and (d) seven Bloch
DWs separated each other from S = 138 nm. The length
and the cross-section of the strip, along with the shape
and dimensions of each constriction are the same than in
previous subsections: Lx = 1.2μm, Ly = 60 nm, Lz = 3 nm,
nx = 15 nm, and ny = 6 nm. Due to the magnetostatic
interaction, the alternative pinned DWs adopt Bloch up
(�mDW ∝ + �uy) and Bloch down (�mDW ∝ − �uy) magnetic
configurations. A current source could be used to provide
a fixed current along the strip. Under it, the central pinned
DW rotates coherently counterclockwise. In the strip with
three pinned DWs (Figure 11(b)), the ones at the left and at
the right sides rotate clockwise. The same occurs for the strip
containing five pinned DW (Figure 11(c)), where the ones at
the left and the right extrema rotate similarly to the central
one. Figure 11(e) depicts the temporal evolution of the
induced voltage signal Vsmf(t) (in units of the polarization
factor P) under a current density of ja = 0.05 A/μm2 for
strips with several pinned DWs in the perfect adiabatic
case. For this system, where all constrictions are equal, both
Vdc and Vac increase linearly with the number of pinned
DWs (see Figure 11(f)), and, therefore, if the voltage signal
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can be experimentally detected, this proposed system could
be useful to develop oscillators and/or amplifiers at the
nanoscale.

However, there are a few aspects which have to taken into
account and controlled before going to the real device. The
first one is the separation S between pinned DWs. When
the constriction are placed close to each other, the Bloch
configurations are not stable, and the DWs adopt Neel
configurations magnetized along the strip axis. This is what
happens for three DWs pinned at similar constrictions
separated S ≤ 45 nm, and due to the magnetostatic coupling,
a small current of ja = 0.05 A/μm2 is not high enough to
promote pinned DW oscillations. It was also verified that for
separations S ≥ 130 nm the induced voltage signal does not
change. Other important challenge is the limitation of the
available nanolithography techniques. Nowadays, fabricating
identical notches in a strip at the nanoscale is a very difficult
art. Therefore, the influence of different constrictions, with
different shape and sizes, on the induced voltage signal has to
be analyzed. It was verified that the linear increasing of the
oscillating contribution to the induced voltage signal (Vac) is
not preserved with the number of pinned DWs at irregular
constrictions, but the direct contribution (Vdc) increases
almost linearly with the number of pinned DWs even in
the case of different constrictions [41]. Thermal effects are
also relevant. For instance, the coherent oscillation of the
internal DW magnetization can be only achieved at very low
temperatures (T ≈ 10 K) for the constrictions analysed here.
It was also confirmed, by means of preliminary simulations,
that the internal DW structure is also coherently oscillating
under injected static currents at room temperature if the
constriction is made deeper. The challenging point consists
on filtering the noise due to thermal fluctuations from the
induced voltage signal. All these numerical predictions claim
for a future experimental verification. Conceptually, it is
straightforward to detect the induced voltage due to these
pinned DW oscillations by simply measuring the voltage
difference between the ends of the strip. In practice, however,
this is not a trivial task, and nowadays only Yang et al. [89]
have reported experimental measures of this signal. Indeed,
the contribution of the spin-motive force to the voltage
signal due to the pinned DW oscillations is only one of
several voltages arising from different effects. For instance,
an experimental challenge is to sort out the Vsmf from
other signals such as the voltage induced by the changing
magnetic fluxes in the detection circuit as due to the classical
Faraday’s law. I hope that these theoretical predictions
motivate experimental progress in this direction.

6. Conclusions and Final Remarks

The static and dynamics of DWs along thin rectangular
cross-section strips with high PMA driven by spin-polarized
currents has been theoretically studied from both micro-
magnetic (μM) and one-dimensional (1 DM) models points
of view. These materials are especially relevant for further
technological applications because the intrinsic threshold
current for current-induced DW motion can be drastically
reduced with respect to soft materials such as Permalloy.

Thermal fluctuations and disorder (in particular, edge
roughness) were both included in both models with the aim
of providing a much more realistic description of experimen-
tal measurements. The current-induced DW propagation
along a rough strip at room temperature was studied for
both single layer strips and asymmetric multilayers stacks.
In the former case, where the spin-orbit interaction (SOI)
is negligible, the DW velocity increases firstly exponentially
with current, following a creep regime which is governed
by the pinning and thermal fluctuations. For very high
currents, the DW mobility saturates reaching a value which
approaches to the case of a perfect strip. It is interesting
to note that, even when the nonadiabatic parameter is
equal to the damping (ξ = α), the DW propagates by
transforming its internal structure between Bloch and Neel
configurations in both the creep and high-current regimes.
When a ferromagnetic strip with high PMA is sandwiched
between two asymmetric nonmagnetic in a multilayer stack,
the SOI on the conductions electrons allows for the transfer
of orbital angular momentum from the crystal lattice to the
local magnetization, and it is mediated by a Rashba field. This
field is equivalent to a homogeneous transverse field, and for
positive and negative currents, promotes the stabilization of
one of the Bloch configurations, either up or down, by raising
the energy barrier against Neel transformation. Therefore,
in asymmetric stacks, the linear high mobility regime is
extended to higher currents, and consequently, it allows to
achieve rigid DW propagation with higher velocities than the
ones achieved in single layer strips. Moreover, the extended
1 DM including the Rashba field along with thermal effects
and disorder allows us to describe very recent experimental
observations, not only qualitative but also quantitatively,
with reduced computational effort. These architectures are
promising for DW-based applications.

The pinning and depinning of a initially trapped DW in
an artificial constrictions was also evaluated. Also in these
processes the PMA strips present technological advantages
over similar strips made of soft ferromagnetic materials.
For the analysed geometry, the field required to promote
the DW depinning in the absence of current is very high
because the energy barrier required to overcome the pinning
potential is around 19 times larger than the thermal energy at
room temperature. Therefore, in the absence of driving force,
the pinned DW remains stable against thermal fluctuations.
The depinning field decreases linearly as the current is
raised, and the slope of this declension slightly increases
with the nonadiabaticity. On the other hand, under zero
field in the perfect adiabatic limit, the critical depinning
density current is around 0.4 A/μm2 at zero temperature.
This corresponds to a threshold current of 72μA, which is
small enough to minimize unwanted Joule heating effects.
The study also indicates that the probability of the DW
depinning under a given current changes abruptly from 0%
to 100% in a narrow range of fields. This result points out
that the DW depinning is highly selective, which is also
relevant for further technological applications. These results
indicate that engineering of pinning sites in thin strips
of high PMA provides an efficient pathway to achieve
both high stability against thermal fluctuations and low
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current-induced DW depinning and, therefore, it can find
application on designing memory devices driven by static
currents. Moreover, the theoretical formalism is also useful
to elucidate the magnitude of the nonadiabatic parameter.
In particular, our results are in good qualitative agreement
with the experimental measurements by Ravelosona et al.
[44] exploring the high pinning regime Bd � μ0HK/α: the
experimentally observed linear decreasing of the depinning
current with increasing field is in good agreement with
our simulations. In that experiment, the depinning current
at zero field was found around 0.1 A/μm2, which, in spite
of the different materials and geometry, is in the same
order of magnitude than our results. By simulating the
same geometry and materials as these experiments, the
stochastic 1 DM can be directly adopted in order to gain
a better description of the experimental observations by
taking into account the effect of the constant temperature
of the sample and, therefore, a more accurate estimate of
both the polarization factor and the nonadiabatic parameter,
along with their dependence on the temperature could be
addressed. Much more experimental and numerical studies
have to done to address this issue.

Finally, the possibility of engineering nano-oscillator
based on pinned DWs was explored from a theoretical point
of view. The pinned DW oscillations driven by direct current
were described. Both frequency and averaged DW position
increase with the applied current in the pinned oscillat-
ing regime. However, the DW position has also another
alternating contribution with an amplitude which decreases
with the applied current. The contribution due to the spin-
motive force to the voltage signal induced by these pinned
DW oscillations has been also characterized. It consists of
both static and oscillating contributions. The first one
increases linearly with the applied current and it does not
depend on the nonadiabaticity. However, the oscillating
contribution depends on the nonadiabatic parameter, and,
therefore, information on the strength of the nonadiabaticity
could be obtained by means of experimental measurements
which could detect such an oscillating voltage signal. The
induced voltage signal due to the DW oscillations in a strip
with several pinned domain walls was also analysed. The
theoretical prediction that spin-motive force voltage signal
can be linearly enhanced with the number of walls could be
useful to develop DW-based nano-oscillators. Some of the
possible experimental challenges, such as the limitation in
the nanolithography and detection of the voltage signal, were
also discussed.

Before ending this review, it is worthy to enumerate the
limitations of the adopted theoretical formalism and numer-
ical models, along with the future tasks to be performed in
the framework of the current-induced DW dynamics.

(i) The injected density current was assumed to be uni-
form along the strips. However, there must be an eff-
ect due to the spatial dependence of the injected cur-
rent, specially in the analysis of the current-induced
DW depinning from a constriction, where the current
has to flow more densely than in the unconstricted
zones. Taking into account the spatial dependence of

the injected current requires to numerically solve the
Laplace equation for the electrostatic potential with
the corresponding boundary conditions. This can be
done in a preliminary simulation, which them has to
be included in the full micromagnetic modeling in
order to elucidate its effect for each specific case.

(ii) The Oersted field due to the injected current has
neither been taken into account. In the full micro-
magnetic model, this classical contribution can be
straightforwardly introduced by numerically solving
Biot-Savart’s Law. When a uniform current density

is injected along the axis (�ja = ja�ux) of an infinitely
long and perfect strip with thin rectangular cross-
section (Lz � Ly), the Oersted field can be analyti-
cally evaluated. In this specific case, the Oersted field
has a perpendicular z-component that is maximum
at the strip edges and almost proportional to the strip
thickness (Lz). The y-component of this Oersted
field is slightly smaller, and changes sign across the
strip thickness so that for thin nanostrips this field
should have virtually no effect. The x-component
field component is zero, so that it has no direct effect
on the DW position. The influence of the Oersted
field for imperfect samples, for example, with an
edge roughness or even a notch that reduces locally
the nanostrip width, should be investigated in each
particular case. For this purpose, the current density
cannot be assumed as uniform, and it requires a
separate evaluation as it was already pointed out.

(iii) It is also well known that the passage of an electric
current through a conductor releases heat resulting in
a rise of the temperature of the conductor. However,
up to now this Joule heating as due to the injected
current has not included in the simulations because
it involves theoretical problems. From a numerical
point of view, it is needed to solve the heat diffusion
equation in order to deduce the local value of the
temperature as function of the space and the elapsed
time. This could be done straight forwardly, but
after that we will face a theoretical problem. On the
one hand, all micromagnetic parameters are tem-
perature dependent (Ms(T), A(T), or P(T)). How-
ever, the micromagnetic approach assumes that
temperature is far from the Curie temperature, and
it considers constant material parameters. On the
other hand, thermal effects are commonly included
in the micromagnetic formalism by adding a random
thermal field [75, 76], which is assumed to be a
Gaussian distributed and both spacial and temporal
uncorrelated white noise (see (2) and (3)). This
Langevin formalism assumes that the temperature of
the system is the same for all points in the sample.
Therefore, if the temperature depends on the position
along the strip, an alternative theoretical formalism
should be developed.

All these three phenomena (nonuniform current, the
Oersted field and the Joule heating) cannot be taken into
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account in the framework of the 1 DM, and, therefore, the
study of their role on the current-induced DW dynam-
ics will require sophisticated and time-consuming micro-
magnetic simulations. Developing efficient micromagnetic
tools including these fundamental effects would provide
important steps towards the fully understanding of the DW
dynamics driven by spin-polarized currents.
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This work reports efforts fabricating heterostructures of different materials relevant for the realization of magnon-induced spin
transfer torques. We find the growth of high-quality magnetite on MgO substrates to be straightforward, while using transition
metal buffer layers of Fe, Cr, Mo, and Nb can alter the structural and magnetic properties of the magnetite. Additionally, we
successfully fabricated and characterized Py/Cr/Fe3O4 and Fe3O4/Cr/Fe3O4 spin valve structures. For both, we observe a relatively
small giant magnetoresistance and confirm an inverse dependence on spacer layer thickness. Thus, we have shown certain materials
combinations that may form the heterostructures that are the building blocks necessary to achieve magnon-induced spin transfer
torque devices.

1. Introduction

The prediction [1, 2] and observation of “spin transfer” or
“spin-transfer torque” in mechanical point contacts [3], and
subsequently in lithographically defined point contacts [4],
and nanopillars [5], revealed that spin-polarized currents can
manipulate magnetization dynamics. The interest in this area
is dominated by the potential for spin-torque-based mag-
netic random access memory to become a universal memory
[6], as well as interesting high-frequency devices based on
spin torque oscillators (STOs) [7, 8]. Spin torque research is
one of the key areas of spintronics and nanomagnetism today
[9], being relevant to both science and technology.

Theoreticians have recently promoted the idea of initiat-
ing spin transfer torque by thermal transport from magnons,
initially in all-metal systems [11, 12] and recently with
insulators [10]. Slonczewski’s concept in [10] is based on
the ability to convert the spin momentum of magnons in
a magnetic insulator into a polarized current in a normal
metal, which is then driven by a thermal gradient into a
metallic ferromagnet. He showed that the quantum yield
of heat-driven in-plane spin-transfer torque can exceed that
from electric current in state-of-the-art spin-transfer devices

utilizing magnetic tunnel junctions by nearly two orders of
magnitude. STOs would benefit greatly from the increased
quantum yield deliverable from this magnon-induced spin
transfer torque (MISTT) because increasing the usable
torque would increase their output power, which is not yet
compatible with applications [13–15]. Spin torque-based
devices in general would benefit from replacing the high-
current densities now necessary for operation, as this causes
appreciable heating, as well as vortex nucleation in the free
layer via the unavoidable Oersted field. MISTT could address
both of these issues, allowing significant improvements in
device performance, fabrication requirements, and relia-
bility. The experimental realization of this magnonic spin
torque may thus have transformative impact by essentially
creating a new class of spin torque devices.

The significant difference between existing spin-transfer
devices and Slonczewski’s proposal is the origin of the torque
on the free layer. Traditionally, the spin-transfer torque
comes from direct electrical injection of electrons from a
fixed metallic ferromagnet through a normal metal into
the free layer [9]. The spin polarization of these electrons
mimics that of the fixed ferromagnet, which results in an
imposed torque on the free layer magnetization when the
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Figure 1: Magnon-induced spin transfer torque (MISTT) ala Slonczewski [10]. Magnons are created thermally in the magnetic insulator.
Though these magnons are annihilated at the ferrite-normal metal (NM) interface (which contains a monolayer of ferromagnet metal
atoms), their spin momentum is transferred to the electrons in the NM spacer. This creates spin accumulation in the NM, which then
diffuses toward the NM thermal bath. The spin accumulation current density (more precisely, its time derivative) at the Py interface imposes
a torque on the Py magnetization if its magnetization MFM is at some angle relative to the ferrite’s magnetization, MFI.

spin polarization axes of the two ferromagnets are not co-
linear. In the MISTT device concept (shown schematically
in Figure 1), spin polarized electrons still impose a torque
on the free layer via a normal metal spacer, but there are
several critical differences. First, the electrons are driven
by a thermal—not electrical—gradient. Second, because the
fixed layer in MISTT is a resistive ferri or ferromagnet (such
as spinel ferrites), electrons cannot be simply injected, so
a more exotic mechanism for polarizing the electrons in
the normal metal is required: magnon annihilation. The
magnons within the ferrite carry spin momentum, and,
being bosons, the magnon population can be increased
dramatically through heating. Conversely, these magnons
can also be annihilated when they reach the ferrite-normal
metal interface. The spin momentum originally carried by
the annihilated magnons can be transferred to electrons in
the normal metal, causing them to become spin polarized.
These spin-polarized electrons then diffuse into the free
magnet, leading to a spin-transfer torque.

Given their great potential, we have been exploring
the materials combinations that may lead to the successful
fabrication of these devices. This article outlines our progress
toward the production of structures that may be useful for
realizing magnonic spin transfer torque devices.

2. Experimental Section

All the films were grown in an Ar ion sputtering system
with a base pressure of 20 nTorr. Ultra-high-purity gases
were used for all the deposition. Samples were rotated at a
speed of 40 rotations per minute during the deposition to
obtain uniform film thickness. To grow different thicknesses
of the same material at a single deposition, the rotation of
the sample holder was stopped, so that one sample closer
to the gun sees more material flux and grows thicker and
the samples away from the target get less material flux
and grows thinner. This was used to grow “wedges” for

thickness-dependent studies. In this study, three different
sets of samples were grown. Those are (a) Fe3O4 on MgO
(100) substrates with transition metal buffer layers (Fe,
Cr, Nb, Mo and No buffer), (b) Py/Cr/Fe3O4 spin valve
with different Cr thicknesses on Si (100) substrates, and
(c) Fe3O4/Cr/Fe3O4 substrates with different Cr thicknesses
on MgO (100) substrates. Fe3O4 was grown at 300C by
rf reactive sputtering from an Fe target in an Ar and O2

environment. The amount of Ar and O2 were controlled by
the adjusting the flow rates of those gases in to the deposition
chamber (20 SCCM Ar and 0.75 SCCM O2). The total
deposition pressure was 10 mTorr and the deposition rate
was 0.26 Å/S. Epitaxy was confirmed by X-ray diffraction,
and the quality of the Fe3O4 was indicated by the quality of
the Verwey transition. The Fe3O4 films we grew showed the
Verwey transition in between 119 K to 125 K, which suggests
the stoichiometry was Fe3O4-x, with x bounded above by
0.001 [16].

3. High-Quality Ferrite Films on
MgO Substrates

Since magnetite and MgO have nearly perfect lattice match-
ing (as do most spinel ferrites), it is hard to distinguish them
using the principal reflections in XRD because the intensity
of the substrate (002) peak drowns out the magnetite’s (004)
peak. We have used a combination of wide angle XRD to
observe the (004) and (008) peaks of the substrate and film
[17], along with in-plane XRD (i.e., phi scans) to distinguish
the Fe3O4 from the substrate peaks. We carried out scans
focusing on the (311) and (220) orientations. Figures 2(a)
and 2(d) show the results of these scans, which confirm the
epitaxial growth of the magnetite on the MgO. Using higher
resolution in Figures 2(b), 2(c), 2(e), and 2(f) shows that the
magnetite peaks are broadened slightly relative to those of
the substrate, which may be expected from finite-size effects.
The full width at half maximum (FWHM) for MgO (311),
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Figure 2: XRD Phi scans of Fe3O4 on MgO (100) substrates. (a) Complete scan on (220) plane, (b) complete scan on (311) plane, (c) MgO
(220) peak, FWHM = 0.38◦, (d) Fe3O4 (220) Peak, FWHM = 1.36◦ (e) MgO (311) peak, FWHM = 0.56◦ (f) Fe3O4 (311) peak, FWHM =
1.34◦.

Fe3O4 (311), MgO (220), and Fe3O4 (220) was 0.56◦, 1.34◦,
0.38◦, and 1.36◦ respectively.

4. Impact of Thin Buffer Layers on Magnetite

In a previous study, we showed that, the magnetite can
be grown on 30 Å buffer layers of Fe, Mo, Nb, and Cr
[17]. Fe, Mo, and Nb lend themselves to varying degrees of
(100) texture, with Nb being the lowest quality; Cr leads to
polycrystalline magnetite. The Mo-buffered magnetite has
lattice parameters similar to magnetite grown directly on
MgO, which is somewhat strained relative to bulk magnetite.
The large lattice mismatch between Mo and magnetite
appears to lead to the growth of magnetite nanoparticles,
not a film per se. The Fe-buffered sample shows the least
amount of strain of any sample. This reduced strain appears
to reduce the density of antiphase boundaries, as inferred

from mobile magnetic domains observed with temperature-
dependent MFM. This is in contrast to magnetite grown
directly on MgO [18].

Resistivity measurements were carried out to determine
the effect of the transition metal buffer layers on the
Verwey transition, as shown in Figure 3. In growing, the
magnetite on these buffer layers an in situ mask exchange
system allowed us to grow the transition metals on separate
MgO (100) substrates individually, and then to grow the
magnetite simultaneously on all the samples in one deposi-
tion run (i.e., preparation took place entirely under vacuum).
Since the magnetite is the same on all the samples, any
differences in resistivities should be due to the buffer layer.
In measuring the resistivity, we attached the samples to a
measurement probe and dip the end into a liquid nitrogen
bath, allowing the sample temperature to cool from 300 K
down to about 100 K in about 30 minutes. Because of the
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Figure 4: Temperature dependent magnetization of the Fe3O4

grown on top of different buffer layers. These SQUID magnetome-
try measurements were performed with a measurement field of 100
Oe applied along the (110) direction of the MgO.

high resistivity, we used 2 point resistivity measurements,
making contact to the sample with pressed indium. The
resistivity is measured as the sample cools down; the cooling
rate is sufficiently slow that no thermal lag is noted with
subsequent warming.

The unbuffered magnetite shows the sharpest Verwey
transition, with an increase in resistivity of more than an
order of magnitude in just a few degrees. Cr, Fe, and Nb

buffered samples showed little higher transition tempera-
tures than the unbuffered magnetite, but the transition was
not sharp. This shift in the transition temperature may be
due to the stress created from these buffer layers on the
magnetite layer, or possibly the formation of an interfacial
layer between the buffer and the magnetite (e.g., if the
buffer became oxidized by reducing the magnetite, then the
interfacial magnetite may have its stoichiometry altered). The
Mo-buffered sample showed a transition point closer to the
unbuffered sample, but the resistance saturates, unlike any
other samples we investigated. We hypothesize this being due
to the formation of conduction paths at grain boundaries;
indeed, force microscopy images show that the Mo-buffered
sample’s topography is quite granular due to the formation
of magnetite nanoparticles rather than a film. Additionally,
these grains appear to have magnetic switching events during
magnetic force microscopy that are caused by sample-tip
interactions. This indicates the formation of grains that are
weakly coupled to their neighbors.

The Verwey transition can also be observed through
magnetization measurements. Figure 4 shows the magneti-
zation as a function of temperature with a 100 Oe applied
field along the (110) direction (along the diagonal of the
substrate plane) for each of the samples. We see each
sample has a distinct drop in magnetization at the Verwey
transition, which is the typical behavior. It is notable that
the Fe and Nb-buffered samples’ behavior is distinct from
measurements made with the field along the (100) direction
on the same samples. We previously observed anomalous
magnetization peaks in these samples along (100) direction
at the Verwey transition [17]. Thus, it seems that the
magnetite anisotropy is temperature dependent, leading to
a temperature-dependent rotation of the easy axis above
and below the Verwey transition; this manifests itself as
a peaking magnetization if the moment rotates into the
direction sampled by the SQUID. Similar behavior was
reported in bulk Magnetite [19]. Measurement with a vector
magnetometer should clarify these observations.

Figure 5 shows hysteresis loops of buffered and un-
buffered magnetite samples along the (100) direction at
temperatures above (150 K) and below (10 K) the Verwey
transition. The samples with no buffer, Mo, and Cr buffers
all have similar behavior, showing enhanced coercive and
saturation fields at low temperatures. There is also a shearing
of the low-temperature loops. On the other hand, the Fe-
and Nb-buffered samples show an increasing coercivity at
low fields, but the loop shape is not as dramatically changed.
This could be due to these buffer layers being more prone to
oxidation than the other buffer materials used, which may
cause the interfacial magnetite to be reduced.

5. Magnetite-Based Spin Valves

The magnetite was introduced into spin valve structures.
The Cr spacer layers were grown as a wedge to study the
thickness dependence. Current in-plane (CIP) magnetoresis-
tance measurements were carried out at room temperature
for Py/Cr/Fe3O4 and Fe3O4/Cr/Fe3O4 spin valve structures.
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While CIP measurements are not typically used in spin-
torque devices, this method can indicate that spin-dependent
scattering is present in the structure. Note that MISTT does
not even need current to flow in the device, as the magnons
may be generated thermally (e.g., by optical means). We
used pseudo-four-point resistance measurements, in which
I+ and V+ leads are connected together at a single Indium
contact (similarly for I− and V−) in order to remove effects
related to the leads. In Py/Cr/Fe3O4 spin valves, the Cr
thickness was varied from 41 Å to 107 Å and the Py and
Fe3O4 thicknesses were kept constant at 300 Å (Figure 6).
The GMR was calculated by subtracting the resistance of the
saturated parallel state by the resistance of the shoulder in
the antiparallel state. Then, the percentage was calculated
with respect to the resistance of the saturated parallel state.
The magnetoresistance showed a decrease with increasing
spacer layer thickness in Py/Cr/Fe3O4. A fit of this thickness
dependence reveals a decay constant of about 19 Å. This
is less than the 45 Å reported for the spin diffusion length
of Cr at 4.2 K [20]. Since the thicknesses used for the
Cr spacer layer were relatively large, we did not observe
any oscillatory coupling behavior as a function of spacer
layer thickness. This ensured we were able to switch both
ferromagnets separately, and it indicates the existence of
a GMR signal, even for large thicknesses of normal metal
spacer layers. In addition to the GMR signal there is also
an anisotropic magnetoresistance (AMR) peak of Py due
to the reversal of magnetization by the applied field. This
AMR signal is essentially unavoidable because the metallic
Py and Cr have much lower resistivity than the magnetite,
so the current flows primarily through these layers. The
intensity of this peak and its field range can be reduced by
applying a magnetic field during the growth process, and
likely by lithographic patterning to take advantage of shape
anisotropy [21].

In Fe3O4/Cr/Fe3O4 spin valves (Figure 7), the Cr thick-
ness was varied from 57 Å to 151 Å. To get different coercive

fields from the magnetite, the bottom layer was 500 Å and the
top layer was 1000 Å. Here, there are no well-defined parallel
and antiparallel states due to the butterfly-like AMR signal
intrinsic to the magnetite layers [22]. Thus, we calculated the
GMR by taking the shift of the signal relative to the AMR
signal. In this case, the magnetoresistance signal also decays
exponentially with the spacer layer thickness, but the decay
constant is 33 Å. We did not observe any oscillatory coupling
due to higher spacer layer thickness.

The GMR values are quite small for both spin valve
varieties relative to all-metallic CIP spin valves [23], but fall
in the range of GMR reports for magnetite-normal metal-
ferromagnetic systems [22, 24]. This is most likely related to
a combination of factors, which most likely includes possible
oxidation of the Cr at the magnetite interface acting as
a barrier to spin-dependent reflections necessary for large
GMR, as well as the conductivity mismatch between the
magnetite and the metals shunting much of the current in
the Py-containing devices. The differences in the two decay
constants observed in the two spin valves is probably related
to impurities in the spacer (which may be due to residual
oxygen from the reactive sputtering to form the magnetite),
which are known to impact the spin diffusion length [20],
and possibly uncertainty in the spacer layer thickness.

6. Conclusions

We have studied the growth of magnetite on transition metal
buffer layers and the formation of magnetite-based spin
valves. We found the structural and magnetic properties
of magnetite to be strongly dependent on the buffer layer.
Despite the differences noted for Cr buffer layers, we were
able to grow spin valves that use Cr as a spacer layer and
magnetite as the top layer. While these spin valves do not
appear to have promise for GMR applications, this work
shows we have successfully fabricated heterostructures with
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the potential for growing devices to realize magnon-induced
spin transfer torques.
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We explore the low-temperature thermodynamic properties and crossovers of a d-dimensional classical planar Heisenberg
ferromagnet in a longitudinal magnetic field close to its field-induced zero-temperature critical point by employing the two-time
Green’s function formalism in classical statistical mechanics. By means of a classical Callen-like method for the magnetization and
the Tyablikov-like decoupling procedure, we obtain, for any d, a low-temperature critical scenario which is quite similar to the
one found for the quantum counterpart. Remarkably, for d > 2 the discrimination between the two cases is found to be related
to the different values of the shift exponent which governs the behavior of the critical line in the vicinity of the zero-temperature
critical point. The observation of different values of the shift-exponent and of the related critical exponents along thermodynamic
paths within the typical V-shaped region in the phase diagram may be interpreted as a signature of emerging quantum critical
fluctuations.

1. Introduction

An intriguing aspect of quantum phase transitions (QPTs)
[1] is that quantum critical fluctuations may play a relevant
role also at finite temperature. This feature leads to a drastic
modification of the expected properties of many systems
within a wide region around their quantum critical point
(QCP) [1–6].

Remarkably, the renormalization group framework (RG)
[1, 7, 8] and Moriya’s self-consistent renormalized approach
[9, 10] have provided a well-defined scenario for this so-
called quantum criticality giving qualitative and also quan-
titative agreement with a lot of experimental findings [1–6].

However, recent experiments seem to suggest that these
theories fail in relevant practical situations (see [11–13] and
references therein). Although several alternatives have been
proposed to explain these unexpected behaviors, a com-
pletely convincing picture is still lacking. Hence, it becomes

crucial to provide nonambiguous criteria to determine
accurately the range of temperatures where the QCP fluctu-
ations survive against the thermal ones. On the ground of
a comparison between the exactly solvable one-dimensional
quantum transverse Ising model (QTIM) [1, 14–18] and
its classical version (CTIM) (not to be confused with the
standard Ising model) [19, 20], it was conjectured that [21],
at least in selected cases, at finite temperature, close to the
QCP, quantum critical fluctuations may not be so relevant
as commonly believed. The emerging idea was that, to single
out conventional quantum criticality, it is not sufficient to
observe a power-law behavior of the correlation length or
susceptibility decreasing temperature towards zero in the V-
shaped quantum critical region of the phase diagram [1];
rather, the accurate determination of the critical exponents
becomes the key ingredient to decide if we are in the
influence domain of the QCP or the physics is governed by
thermal fluctuations. Of course, to validate the previous
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conjecture, more realistic many-body systems should be
investigated, especially for dimensionalities where a finite-
temperature critical line ends in a zero-temperature critical
point.

A first step along this direction has been recently per-
formed by exploring the low-temperature properties of the
(d > 1)-dimensional CTIM [22]. On the ground of a suitable
Ginzburg-Landau-Wilson functional and a momentum-
shell RG approach around d = 4, this system is expected to
have the same properties of the QTIM above a certain tem-
perature.

Further insights will be provided in this paper where we
investigate the low-temperature properties of the classical
XXZ ferromagnetic model in presence of a longitudinal mag-
netic field when the longitudinal exchange interaction is
smaller than the transverse one. Its quantum analogue, also
called planar ferromagnet (PFM), has been extensively stud-
ied, in different physical contexts, using several methods. In
particular, the spin-1/2 PFM has attracted great attention
since, in the pioneering papers by Matsubara and Matsuda
[23, 24] on superfluidity in 4He, a quantum lattice gas of
hard-core bosons with long-range attractive interactions has
been proven to be just equivalent to the spin-1/2 PFM in a
longitudinal field (see also [25]). Remarkably, the Wilson RG
[26, 27], applied to a suitable functional representation of
the spin-1/2 PFM, capturing the essential low-temperature
physics, and the two-time Green’s function technique [28],
utilized to investigate the microscopic spin-S model, have
provided a reliable scenario of the global phase diagram and
crossovers in the vicinity of the QCP.

In the present work, we will study the corresponding d-
dimensional classical XXZ spin model (CPFM) with particu-
lar attention to a field-induced quantum-like critical scenario
for a direct comparison with the quantum counterpart. We
will use the two-time Green’s function method in classical
statistical mechanics [29], developed and tested in [30–
33], on microscopic classical spin model. This allows us
to perform in parallel the quantum [28] and the classical
analysis for any d, giving a transparent relation between
the CPFM and the spin-S QPFM, both exhibiting a zero-
temperature critical point. Hence, new insights on quantum
criticality, at least for a class of anisotropic magnetic systems,
will be provided.

The paper is organized as follows. In Section 2 we will
introduce the model and the equation of motion for the
appropriate two-time Green function in the context of the
classical Callen-like method [34] to calculate the magne-
tization within the Tyablikov decoupling procedure. The
equations for the transverse susceptibility and the critical line
will be presented in Section 3. The quantum-like scenario,
with the global phase diagram and crossovers, close to the
(T = 0)-critical point, will be analyzed in Section 4. In
Section 5, concluding remarks will be drawn. At the end, for
utility of reader, Appendix A is devoted to an outline of the
two-time Green’s function framework in classical statistical
mechanics and Appendix B presents a method, alternative to
the one employed in [22], to obtain the magnetization as the
solution of the Callen-like method.

2. Spin Model and Callen-Like Method

The d-dimensional classical XXZ Heisenberg model in a lon-
gitudinal magnetic field h ≥ 0 is described by the Hamilto-
nian:
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Here {S j ≡ (Sxj , S
y
j , S

z
j); j = 1, 2, . . . ,N} are classical spin-S

vectors on anN-sites hypercubic lattice with unitary spacing,
satisfying the identity S2

j = S+
j S
−
j + (Szj)

2 = S2 with S±j = Sxj ±
iS
y
j . Besides, the transverse (J⊥i j ) and longitudinal (J‖i j) ex-

change interactions (with J⊥ii = J‖ii = 0) between the spins at
sites i and j are assumed to be symmetric, positive, and short
ranged. As well known, it is perfectly legal in the classical
context to put S = 1. However, for a more transparent and
direct comparison with the quantum version [28], through
this paper we will consider arbitrary S.

Many magnetic materials can be described by the Hamil-
tonian (1) and different cases may take place depending on
the relative weight of the competing anisotropic exchange
interactions. Indeed, one has a uniaxial ferromagnet (FM)
if J‖i j > J⊥i j with the extreme limit J⊥i j = 0 (Ising model); we

recover the isotropic Heisenberg model when J⊥i j = J‖i j and

the PFM if J‖i j < J⊥i j whose extreme limit J‖i j = 0 is the XY
model in a transverse field (TXYM). In the following, we will
focus on the classical PFM which exhibits a field-driven zero-
temperature critical point as it happens in the quantum case.

The classical model (1) can be described in terms of the
2N canonical variables φ ≡ {φ j} and Sz ≡ {Szj}, where φ j is
the angle between the projection of the spin vector S j in the
xy-plane and the x-axis. The Poisson bracket of two generic
classical dynamical variables A = A(φ, Sz) and B = B(φ, Sz)
is then defined by

{A,B} =
N∑
j=1

(
∂A

∂φ j

∂B

∂Szj
− ∂A

∂Szj

∂B

∂φ j

)
. (2)

It is easy to show that, with this prescription, the Poisson
brackets for the spin components are given by

{
Szi , S

±
j

}
= ∓iS±i δi j ,{

S+
i , S−j

}
= −2iSzi δi j ,{

Sαi , S
β
j

}
= εαβγ Sγi δi j

(
α,β, γ = x, y, z

)
,

(3)

where εαβγ is the Levi-Civita tensor.
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Following the Callen procedure developed for the quan-
tum Heisenberg FM [35], we introduce now the retarded
two-time GF [29, 33] (see Appendix A):

Gij(t − t′) = θ(t − t′)
〈{
S+
i (t − t′), eaS

z
j S−j

}〉
=
〈〈
S+
i (t − t′); eaS

z
j S−j

〉〉
,

(4)

where θ(x) is the usual step function, a denotes the Callen-
like parameter, 〈· · · 〉 = Z−1

∏N
j=1

∫ 2π
0 dφ j

∫ S
−S · · ·dSzj · · ·

exp{−βH(φ, Sz)} stands for the classical ensemble average,
β = 1/T is the inverse temperature, and X(t) = eiLtX , L =
i{H , . . .} is the Liouville operator. Here, eiLt acts as a classical
time-evolution operator which transforms the dynamical
variable X = X(0) ≡ X(φ(0), Sz(0)) at the initial time t = 0
into X(t) ≡ X(φ(t), Sz(t)) at the time t. The physics will be of
course obtained setting a = 0 at the end of the calculations.

The equation of motion (EM) for the GF (4) is given by
(with τ = t − t′)
dGij(τ)

dτ
= δ(τ)

〈{
S+
i , eaS

z
j S−j

}〉
+
〈〈{

S+
i (τ), H

}
; eaS

z
j S−j

〉〉
,

(5)

which, in the frequency-ω Fourier space, becomes

ωGij(ω) = i
〈{
S+
i , eaS

z
j S−j

}〉
+ i
〈〈{

S+
i (τ), H

}
; eaS

z
j S−j

〉〉
ω

,

(6)

with Gij(ω) = 〈〈S+
i (τ); eaS

z
j S−j 〉〉ω and 〈〈A(τ);B〉〉ω =∫ +∞

−∞ dτeiωτ〈〈A(τ);B〉〉. From the basic Poisson brackets (2),
a simple algebra yields

i
〈{
S+
i , eaS

z
j S−j

}〉
= ψ(a)δi j , (7)

where

ψ(a) = −aΩ(a) + 2Ω′(a) + aΩ′′(a), (8)

with

Ω(a) =
〈
eaS

z
i

〉
. (9)

Notice that, for the magnetization per spin m = 〈Szi 〉, the
relevant exact relation is fulfilled:

m = 1
2
ψ(0) = Ω′(0). (10)

On the other hand, in (6), we have also{
S+
i , H

} = i
∑
h

[
J⊥ihS

z
i S

+
h − J‖ihS+

i S
z
h

]
− ihS+

i . (11)

Then, (6) becomes (again without approximations)

(ω − h)Gij(ω) = ψ(a)δi j

−
∑
h

[
J⊥ih
〈〈
Szi (τ)S+

h (τ); eaS
z
j S−j

〉〉
ω

−J‖ih
〈〈
S+
i (τ)Szh(τ); eaS

z
j S−j

〉〉
ω

]
.

(12)

The next step consists in performing an appropriate decou-
pling to close (12). Here we will use the classical version of the
Tyablikov decoupling (TD) which, for the quantum case, has
been proven [28] to give near-exact results close to the QCP.
This decoupling procedure consists in neglecting transverse
correlations in (12) so that one can assume that〈〈

Szh(τ)S+
k (τ); eaS

z
j S−j

〉〉
ω
�
〈
Szh

〉〈〈
S+
k (τ); eaS

z
j S−j

〉〉
ω

� m
〈〈
S+
k (τ); eaS

z
j S−j

〉〉
ω

,
(13)

providing[
ω − h−mJ‖(0)

]
Gij(ω) = ψ(a)δi j −m

∑
h

J⊥ihGhj(ω), (14)

where
∑

h J
‖
ih = J‖(0) is the (k = 0)-component of the k-wave

vector Fourier transform in the first Brillouin zone (1BZ)
J‖i j = (1/N)

∑
k e

ik·(ri−r j )J‖(k). Finally, using the Fourier
transforms in the k-space

Gij(ω) = 1
N

∑
k

eik·(ri−r j )Gk(ω),

Jαi j =
1
N

∑
k

eik·(ri−r j )Jα(k), α =⊥,‖,
(15)

with δi j = (1/N)
∑

k e
ik·(ri−r j ), (14) reduces to an algebraic

equation for Gk(ω) with solution

Gk(ω) = ψ(a)
ω − ωk

, (16)

where

ωk = h +m
[
J‖(0)− J⊥(k)

]
. (17)

This equation represents the dispersion relation, at Tyab-
likov-like decoupling (TD) level, of undamped oscillations
for the PFM, expressed as a function of k in terms of
the Fourier transform J⊥(k) of the transverse exchange
interaction J⊥i j . The key step is to determine the function ψ(a)
or Ω(a) and hence m = (1/2)ψ(0) = Ω′(0). For utility of
the reader, we outline here in after the classical version of
the Callen procedure used to solve this problem for isotropic
quantum [35] and classical [34] Heisenberg FMs and for
QPFM [28].

From the expression (16) forGk(ω) and the exact relation
betweenGk(ω) and the corresponding spectral densityΛk(ω)
(see Appendix A)

Λk(ω) = i[Gk(ω + iε)−Gk(ω − iε)]ε→ 0+ , (18)

one easily finds

Λk(ω) = 2πψ(a)δ(ω − ωk). (19)

Then, the spectral density Λi j(ω) corresponding to Gij(ω)
can be obtained via its Fourier transform:

Λi j(ω) = 1
N

∑
k

eik·(ri−r j )Λk(ω)

= 2πψ(a)
1
N

∑
k

eik·(ri−r j )δ(ω − ωk).
(20)
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Now, with these ingredients, we are in position to obtain the
correlation function 〈BA〉 = 〈eaSzj S−j S+

i 〉 related to the orig-

inal GF Gij(ω) = 〈〈A(τ);B〉〉ω = 〈〈S+
i (τ); eaS

z
j S−j 〉〉ω.

From the classical spectral theorem (see Appendix A,
(A.13) and (A.14)), one immediately gets

〈
eaS

z
j S−j S

+
i

〉
= T

∫ +∞

−∞
dω

2π

Λi j(ω)

ω
� Tψ(a)

1
N

∑
k

eik·(ri−r j )

ωk
,

(21)

and hence also 〈
eaS

z
i S−i S

+
i

〉
= Φψ(a). (22)

Here, the quantity

Φ = T

N

∑
k

1
ωk

N→∞= T

∫
1BZ

ddk

(2π)d
1
ωk

(23)

is independent of the Callen parameter a.
On the other hand, from the relation S+

i S
−
i = S−i S

+
i =

S2 − (Szi )
2, we can also write〈

eaS
z
i S−i S

+
i

〉
= S2Ω(a)−Ω′′(a). (24)

Then, combining (22) and (24), where ψ(a) is given by (8),
we obtain the following differential equation for Ω(a):

Ω′′(a) + 2
(

1
Φ

+ a

)
Ω′(a)− S2Ω(a) = 0, (25)

to be solved with the initial condition Ω(0) = 1 and the
additional one Ω(a) = ∫ S

−S dSz f (Sz)eaS
z
, arising from the

ensemble-average definition of eaS
z
.

With these conditions we have obtained in [34] the
physical solution of (25):

Ω(a) = S/Φ

S/Φ + a

sinh(S/Φ + a)
sinh(S/Φ)

. (26)

This key result (26) represents the classical analogue of the
famous Callen formula for quantum spin-S models [35].
An alternative and very instructive method to obtain the
solution (26) is presented in Appendix B.

Taking into account the exact relation (10), (26) gives the
the remarkable expression:

m = S

[
coth

(
S

Φ

)
− Φ

S

]
= SL

(
S

Φ

)
, (27)

which is valid for any d, T , and h. Here, L(x) = coth x−1/x is
the well-known Langevin function andΦ is expressed by (23)
in terms of the dispersion relation ωk. If we use the TD, ωk is
given by (17) which is in turn a function of m. Hence, (27)
is a self-consistent equation for m and T . The longitudinal
magnetic field h and the anisotropy enter into the problem
via the function Φ.

Of course, in the spirit of the Callen method for
the calculation of m, it is possible to introduce more
elaborate decoupling procedures which preserve its validity.

For instance, we could adopt the Callen decoupling (CD)
[35], with its classical variant [34],

〈〈
Szh(τ)S+

k (τ); eaS
z
j S−j

〉〉
ω
� m

⎡⎣Gk j(ω)−
〈
S−h S

+
k

〉
2S2

Ghj(ω)

⎤⎦,

(28)

which takes into account the transverse correlations to the
leading order and implies the dispersion relation:

ω
(CD)
k = ω

(TD)
k +

m

2S2

1
N

∑
k′

[
J⊥(k′)− J‖(k− k′)

]
C(k′) (29)

with

C(k) =
∑
i

e−ik·(ri−r j )
〈
S+
i S
−
j

〉
. (30)

However, in the present case, the TD and the CD (28) provide
essentially identical results close to the (T = 0)-critical point
where m is near the full polarized-state value S.

Given the magnetization m, the thermodynamics of our
CPFM will be derived using the general formalism of the
classical two-time Green functions (see Appendix A and
[33]).

3. Transverse Susceptibility and Critical Line

We have now all the elements to extract the physics of interest
setting a = 0 in the previous results and solving the set of
self-consistent equations:

σ = coth
(
S

Φ

)
− Φ

S
= L

(
S

Φ

)
,

Φ = T

∫
1BZ

ddk

(2π)d
1

ωk(σ)
,

ωk(σ) = ω0(σ) + σS[J⊥(0)− J⊥(k)] ≥ 0,

(31)

where ω0(σ) = h + Sσ [J‖(0) − J⊥(0)]. Here we have
conveniently introduced the reduced magnetization per spin
σ = m/S, with 0 ≤ σ ≤ 1. Equations (31) will give σ as a
function of T and h and hence the GF (16), also at a = 0.

For our aim, the relevant quantity to be calculated is the
transverse GF:

G⊥(k,ω) =
〈〈
S+
i (τ); S−j

〉〉
k,ω
≡ Gk(ω)|a=0. (32)

This allows to determine the dynamical transverse suscepti-
bility for CPFM:

χ⊥(k,ω) = −G⊥(k,ω) ≡ −Gk(ω)|a=0, (33)

where, at the TD level,

G⊥(k,ω) = 2Sσ
ω − ωk(σ)

. (34)

In particular, the thermodynamic transverse susceptibility is
given by

χ⊥(T ,h)≡χ⊥(k=0,ω=0)= 2Sσ
ω0(σ)

= 2Sσ(T ,h)
h+Sσ[J‖(0)−J⊥(0)]

.

(35)
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Using (35) it is also possible to obtain the transverse cor-
relation length via the following relation [36]:

ξ2
⊥ = −

1
2
χ−1
⊥ (0, 0)

⎡⎣d2
(
χ⊥(k, 0)

)
dk2

⎤⎦
k=0

, (36)

where χ⊥(k, 0) = 2Sσ/ωk . The longitudinal susceptibility
will be simply given by χ‖(T ,h) = S(∂σ(T ,h)/∂h). Of course,
the stability condition χ⊥ ≥ 0 requires that, in (35), the
inequality ω0(σ) = h + Sσ(T ,h)[J‖(0) − J⊥(0)] ≥ 0 must be
fulfilled. The equality is physically possible for h > 0 and σ >
0 only if J‖(0) < J⊥(0), which is the regime characterizing the
CPFM of interest to us.

Here in after we will focus on quantum-like criticality
related to the field-driven easy-plane ordering whose key
quantities are ω0 and χ⊥ and the related ones as functions
of T and h. However, in some relevant cases which may
have physical interest, we will calculate also the longitudinal
quantities σ(T ,h) and χ‖(T ,h). Other expressions can be
obtained by means of known thermodynamic relations [33].

We start exploring the main features of the CPFM phase
diagram in the (h,T)-plane. These results will be used as
a basis for next developments. At zero temperature with
h /= 0, (31) provides the solution σ = 1 for the reduced
magnetization, characterizing a fully polarized state. This
implies that the dispersion relation is given by ωk = ω0 +
S[J⊥(0) − J⊥(k)], where ω0 = h − S[J⊥(0) − J‖(0)] is the
frequency gap. Hence the transverse susceptibility, which has
physical meaning for h ≥ S[J⊥(0)− J‖(0)] > 0, becomes

χ⊥ = 2S
h− S[J⊥(0)− J‖(0)]

. (37)

Remarkably, (37) suggests that, despite the classical nature of
our anisotropic spin model, there exists, as in the quantum
case [26–28], a (T = 0)-critical point at the value hc =
S[J⊥(0) − J‖(0)] of the longitudinal magnetic field. Then,
crossing this point, decreasing h to hc, a field-induced
second-order (T = 0)-phase transition arises from a fully
polarized state with σ = 1 to a transverse-ordered phase.
However, the latter phase is unaccessible by the present
analysis due to the absence in the Hamiltonian (1) of an in-
plane symmetry breaking magnetic field.

From (37), with ω0 = h − hc ≥ 0, we have χ⊥ =
2S(h− hc)−1 as h → h+

c , defining the mean field exponent
γh = 1. (Through the paper we will use the indices h and
T to denote the horizontal (isothermal) and the vertical
trajectories approaching a critical point in the (h,T)-plane,
resp.)

For arbitrary temperature we can writeω0(σ) = h−σhc ≥
0 (so that ωk = (h − σhc) + Sσ[J⊥(0) − J⊥(k)]). Hence the
transverse susceptibility can be conveniently written as

χ⊥(T ,h) = 2Sσ(T ,h)
h− σ(T ,h)hc

, (38)

with h ≥ σ(T ,h)hc or σ(T ,h) ≤ h/hc for stability reasons.
Equation (38) establishes an interesting relation between the
transverse physics and the longitudinal one.

In the (h,T)-plane, where χ⊥ = ∞ (ω0(σ) = 0), the gen-
eral equation which determines the possible critical points is

h− σ(T ,h)hc = 0, (39)

or, in view of the equation for σ ,

h

hc
= L

(
S

Φc

)
. (40)

Here,

Φc = Φ
(
T ,h; σ = h

hc

)
= T

J⊥(0)S
hc
h
Fd(−1), (41)

where ω(c)
k = ωk (σ = h/hc) = S(h/hc)J⊥(0)(1 − γ⊥k ) at the

critical points and

Fd(−1) =
∫

1BZ

ddk

(2π)d
1(

1− γ⊥k
) , (42)

with γ⊥k = J⊥(k)/J⊥(0) ≤ 1. More explicitly, (40) can be also
written as

h+Fd(−1)
T

J⊥(0)S2

h2
c

h
−hc coth

[(
Fd(−1)

T

J⊥(0)S2

hc
h

)−1
]
= 0.

(43)

The quantity Fd(−1) is one of the so-called structure sums

Fd(n) = (1/N)
∑

k (1− γ⊥k )n
N→∞= ∫

1BZ(ddk/(2π)d)(1− γ⊥k )n

depending only on the lattice structure of the spin model.
Accurate numerical values of Fd(n) can be found in the
literature for different d and lattice structures [34, 35, 37].
Previous results suggest that, while a (T = 0)-CP with σ = 1
exists for any d, a critical line with 0 ≤ σ ≤ 1, ending in such
a point, may occur only for dimensionalities for which the
integral (42) converges.

If we consider short-range interactions and an hypercu-
bic lattice Jα(k) = 2Jα

∑d
ν=1 cos kν � Jα(0)−Jαk2 (α =⊥,‖) as

k → 0 with Jα(0) = 2dJα, from (42) it immediately follows
that for d ≤ 2 only the (T = 0)-CP exists, while for d > 2
a finite-temperature critical line, ending in the (T = 0)-CP
(hc,T = 0), occurs consistently with the Mermin-Wagner
theorem [38]. The same result has been obtained in the
quantum case [28].

For d > 2, the critical line equation (42) (or (43)) can
be solved numerically with respect to h or T providing the
representation hc(T) or Tc(h). Notice that, along the critical
line, the reduced magnetization σ(T ,hc(T)) = σ(T) is simply
given by σ(T) = hc(T)/hc when hc(T) is known. The critical
line in the plane (h,T) for d = 3 is plotted in Figure 1.

Starting from (40) or (43) we can easily derive the analyt-
ical expression of the zero-field critical temperature Tc (h =
0) ≡ Tc where σ = 0 irrespective of the specific structure of
γ⊥k in (37) (as in the case of short-range interactions for

which γ⊥k = J⊥(k)/J⊥(0) = (2J⊥/J⊥(0))
∑d

ν=1 cos kν =
(1/d)

∑d
ν=1 cos kν).

From the expansion coth x � 1/x + (1/3)x + O(x3), and
hence L(x) = coth x − 1/x � x/3 +O(x3), for x = S/Φc � 1,
(40) provides, for Φc → ∞ as h → 0 at finite T (see (41)),

Tc
J⊥(0)S2

= 1
3Fd(−1)

. (44)
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Figure 1: Critical line of the classical planar ferromagnet (CPFM)
with short-range interactions on a three-dimensional cubic lattice
(present work). Here Tc denotes the critical temperature at h = 0
and hc the critical magnetic field at T = 0. A comparison is shown
with the corresponding curves for the classical transverse Ising
model (CTIM), obtained by RG calculations, and for the spin-1/2
quantum planar ferromagnet (QPFM). The critical line for the spin-
S QPFM with long-range interactions in the classical limit S → ∞
has been also obtained at the Tyablikov decoupling level, and, as
expected, it coincides with the one calculated for the CPFM.

It is worth noting that for QPFM, within the TD it was
found that [28] TQPFM

c /J⊥(0)S(S + 1) = 1/3Fd(−1), which
reproduces, as expected, (44) in the classical limit for S → ∞.

For short-range interactions and an hypercubic lattice,
estimates for d > 2 can be obtained assuming 1−γ⊥k � k2/2d
as k → 0.

Now we explore the behavior of the critical line in the
low-temperature regime close to the (T = 0)-CP where
Φc � 1. With L(S/Φc) � 1−Φc/S + 2e−2S/Φc , (40) becomes

h

hc
� 1− Fd(−1)

T

J⊥(0)S2

hc
h

+O
(
e−(2/Fd(−1))(J⊥(0)S2/T)

)
.

(45)

Solving the equation with respect to h or T , we find

hc(T) � hc

{
1− Fd(−1)

T

J⊥(0)S2

+O
(
e−(2/Fd(−1))(J⊥(0)S2/T)

)}
, T −→ 0,

(46)

or

Tc(h) � J⊥S2

Fd(−1)hc
(hc − h)

+O
((
e−(2(Fd(−1))2hc)/(hc−h)

))
, h−→h−c .

(47)

Along this branch of the critical line we have also

σ(T) � 1− Fd(−1)
T

J⊥(0)S2
+O

(
e−(2/Fd(−1))(J⊥(0)S2/T)

)
. (48)

From the low-temperature representations (46) and (47) for
the critical line we can extract the shift exponent ψ = 1,
which determines the shape of the phase boundary close to
the (T = 0)-CP. It has to be stressed that the value of ψ
is independent of d, in contrast with the result (ψ = d/2)
known for the QPFM [27, 28].

4. Low-Temperature Critical Properties

In this section we study the low-temperature properties and
crossovers of our CPFM within the easy-plane-disordered
phase, close to the field-induced (T = 0)-CP where σ ≈ 1,
h � hc (nearly polarized state), and ω0(σ) = h − σhc is
very small. Under these conditions, in (31) Φ(σ)/S � 1;
therefore, the equation for σ becomes

σ � 1− Φ(σ)
S

+ 2e−(2S/Φ(σ)) . (49)

The quantity Φ(σ) ≡ Φ(ω0) near criticality can be suitably
estimated assuming, for the oscillation spectrumωk, the low-
k expression ωk � ω0 + SσJ⊥k2. This provides

Φ � d

2

(
T

ω0

)∫ 1

0
dx

xd/2−1

1 + (τ/ω0 )
, (50)

where τ ≈ SJ⊥Λ2
1BZ = (SJ⊥(0)/2d)Λ2

1BZ and Λ1BZ is a natural
wave-vector cut-off related to the first Brillouin zone and
determined by (1/N)

∑
k = 1 or (as N → ∞) Λ1BZ =

(d/Kd)1/d, with Kd = 21−dπ−d/2/Γ(d/2).
As a consequence, to the leading order in Φ, the self-

consistent equation for σ can be written as (except for
exponentially small terms)

σ � 1− 1
S

(
T

ω0(σ)

)
F

(
1,
d

2
;
d

2
+ 1;− τ

ω0(σ)

)
, (51)

where F(α,β; γ; z) is the hypergeometric function.
For our purposes, it is convenient to transform (51) for

the longitudinal physics into a self-consistent equation for
the oscillation gap ω0, strictly related to χ⊥ and hence to the
transverse physics.

Since σ = h/hc − ω0/hc, straightforward calculations
provide the following expression for (51) in terms of the
natural variable ω0/T :

ω0

T
= g

T
+
hc
Sτ

(
τ

ω0

)
F

(
1,
d

2
;
d

2
+ 1;− τ

ω0

)
. (52)

Here g = h − hc and ω0/T = 2Sσ/Tχ⊥ � 2S/Tχ⊥ ∝
(Tχ⊥)−1 ∝ (Tξ2⊥)−1. Notice that since χ⊥(k, 0) � 2Sσ/[ω0 +
σSJ⊥k2], from (37), one gets ξ⊥ � J⊥χ1/2⊥ .

Of course, once ω0 has been determined as a function
of (T ,h), one can directly calculate χ⊥(T ,h) and, using the
relation between ω0 and σ , it is possible to determine σ(T ,h)
and, therefore, the longitudinal physics near the polarized
state in the low-temperature critical regime.
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Adopting the asymptotic expansions of the hypergeomet-
ric function F(1, ν; ν + 1;−(1/z)) for z� 1,

F

(
1, ν; ν + 1;−1

z

)
≈

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

πν

sinπν
zν, ν < 1,

z ln
1
z

, ν = 1,

ν

ν− 1
z − πν

|sinπν|z
ν, 1 < ν < 2,

(53)

now, we can systematically explore the thermodynamics of
the CPFM close to the (T = 0)-CP for different values of the
dimensionality d of the system. Bearing this in mind, in strict
analogy with the quantum case [28, 39], in the following
subsections we will show the asymptotic solutions of (52)
in the classical ω0/T � 1 (⇔ Tξ2⊥ � 1 or Tχ⊥ � 1) and
quantum-like (ω0/T � 1 ⇔ Tξ2⊥ � 1 or Tχ⊥ � 1) regimes,
respectively, and the estimates of the related crossovers for
different values of d.

4.1. d < 2. Replacing the expansions (53) in the self-con-
sistent equation (52) for ω0, we get

ω0

T
� g

T
+

πd/2
sin(πd/2)

hc
Sτ

(
T

τ

)(d−2)/2(ω0

T

)(d−2)/2

, (54)

In the regime ω0/T � 1 (Tξ2⊥ � 1), classical regime in the
quantum critical scenario near the isolated (T = 0)-CP, (54)
admits a solution only for h < hc, which reads

ω0 �
[

πd/2
sin(πd/2)

hc
Sτd/2

]2/(2−d)( T

hc − h
)2/(2−d)

. (55)

Under the consistency condition T � (hc − h)2/d. Then, for
h < hc within the region T � (hc − h)2/d, in the (h,T)-plane,
the transverse and longitudinal susceptibilities are given by

χ⊥ � 2S
[

πd/2
sin(πd/2)

hc
Sτd/2

]−2/(2−d)( T

hc − h
)−2/(2−d)

,

χ‖ � S

hc

{
1−

[
πd/2

sin(πd/2)
hc
Sτd/2

]2/(2−d)( hc
hc − h

)2/(2−d)

×
(

T

hc − h
)2/(2−d)

}
,

(56)

where the reduced magnetization near polarization is imme-
diately given as σ(T ,h) � 1− ω0/hc.

It is worth noting that, for fixed h < hc and T → 0, the
transverse susceptibility diverges with the critical exponent
γT = 2/(2− d), while the longitudinal one remains finite.

In the regime ω0/T � 1 (Tξ2⊥ � 1), named here quan-
tum-like regime again in analogy with the corresponding
quantum scenario, different terms in (54) may enter in
competition and different asymptotic behaviors are expected
to occur close to the isolated (T = 0)-CP. For h < hc in
the region (hc − h)2/d � T � (hc − h)(4−d)/2, where 1 �
ω0/T � g/T , (54) provides, to the leading order, a solution

which is formally identical to (55) but now the condition
ω0/T � 1 should hold. The same occurs for the thermo-
dynamic quantities (56) and the related ones.

For h = hc, decreasing T along a vertical trajectory which
corresponds to the quantum critical one in the phase
diagram of the QPFM [28], (54) yields, with ω0(T ,hc) ≡
ω0c(T),

ω0c(T) � τ

[
πd/2

sin(πd/2)
hc
Sτ

]2/(4−d)(T
τ

)2/(4−d)

. (57)

Then, we get

χ⊥(T ,hc) � 2
(
S

τ

)[
πd/2

sin(πd/2)
hc
Sτ

]−2/(4−d)(T
τ

)−2/(4−d)

,

(58)

which defines the critical exponent γT = 2/(4−d), with 1/2 <
γT < 1. For the nearly polarized state (with σ(T ,h) � 1), a
simple algebra yields

σ(T ,hc) � 1− τ

hc

[
πd/2

sin(πd/2)
hc
τ

]2/(4−d)(T
τ

)2/(4−d)

, (59)

which increases towards unity decreasing T according to the
power-law ∼ TγT .

Now we consider the region which is more relevant from
the experimental point of view, namely, the V-shaped region
T � |h− hc|(4−d)/2, around the vertical trajectory h = hc (for
both h � hc and h � hc). Under this condition, from (54) a
straightforward algebra gives

ω0(T ,h) � ω0c(T)
{

1 +
2

4− d
h− hc
ω0c(T)

}
. (60)

This expression suggests that, within the V-shaped region,
the thermodynamics is essentially identical to the one along
the trajectory h = hc, except for a small correction ∼|h− hc|.

Finally, for h > hc and sufficiently far from the quantum-
like critical trajectory, within the region T � (h− hc)(4−d)/2,
we have

ω0(T ,h) � (h− hc)
{

1 +
πd/2

sin(πd/2)
hc
Sτd/2

T

(h− hc)(4−d)/2

}
.

(61)

This implies that

χ⊥(T ,h)�2S(h−hc)−1

{
1− πd/2

sin(πd/2)
hc
Sτd/2

T

(h−hc)(4−d)/2

}
,

(62)

which differs from the MF result χ⊥ � 2S(h− hc)−1,
found before at T = 0, for a small power-law correction
in temperature, in contrast with the exponentially small
correction which occurs in the quantum counterpart [28].
Besides, for the nearly polarized state, we obtain

σ(T ,h) � 1− πd/2
sin(πd/2)

1
Sτd/2

T

(h− hc)(2−d)/2 ,

χ‖(T ,h) � 2− d
2

πd/2
sin(πd/2)

1
τd/2

T

(h− hc)(4−d)/2 .

(63)
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T

hc h

T1(h)

T2(h) T3(h)

Q1

Q2

Q3

OP

C

h = hc

Figure 2: Qualitative phase diagram of CPFM with short-range
interactions for d < 2, close to the zero-temperature critical point.
The line T1(h) marks the crossover between the regimes Tχ⊥ ∝
Tξ2

⊥ � 1 (regionC) and Tχ⊥ ∝ Tξ2
⊥ � 1 (regionQ ≡ (Q1,Q2,Q3))

increasing h. The lines T2(h) and T3(h), symmetric with respect to
the vertical line h = hc, signal the crossovers among the subregimes
Q1,Q2, and Q3. Finally, the heavy line OP represents the zero-
temperature-ordered phase.

In summary, the previous results suggest, for d < 2, a
very rich phase diagram around the isolated (T = 0)-
CP, qualitatively reported in Figure 2, where different low-T
regimes and crossover lines are presented. It appears divided
in two main regions (named in analogy with the quantum
case [28]): C, where ω0/T � 1 (Tχ⊥ ∝ Tξ2⊥ � 1), and Q ≡
(Q1,Q2,Q3), where ω0/T � 1 (Tξ2⊥ � 1). The line T1 �
(hc − h)2/d for h < hc signals the crossover between the
regimes C and Q; the lines T2(h) ∼ (hc − h)(4−d)/2 and
T3(h) ∼ (h− hc)(4−d)/2, symmetric to the vertical trajectory
h = hc, provide the signature of crossovers among three
distinct subregimes Q1, Q2, and Q3 with different asymptotic
behaviors of the thermodynamic quantities as functions of
T and h. We stress that, within the V-shaped region Q2,
delimited by the crossover lines T2(h) and T3(h), the T-
dependent behaviors are essentially identical to those along
the trajectory h = hc except for different a small power law
corrections ∼ |h− hc|. Besides, in the regime Q3, decreasing
T at fixed h > hc, the transverse susceptibility deviates from
the one at T = 0 except for a small power law correction
as a function of T and h − hc. The latter feature differs
crucially from the QPFM scenario where the correction to
the (T = 0)-behavior of χ⊥ is an exponentially small function
of T and h− hc [28, 39].

In any case, below two dimensions, the global phase dia-
gram and the crossovers of the CPFM and QPFM are quite
similar. This similarity represents a very interesting ingre-
dient for experimental studies in the sense specified in the
introductory section.

4.2. d = 2. For the two-dimensional CPFM, which also ex-
hibits only a (T = 0)-CP, a low-temperature scenario similar

to the one derived for d < 2 takes place. But now, logarithmic
corrections to the leading power-law behavior arise. This
peculiarity has been also found for the analogous quantum
system [28].

With the expansion (53), close to the (T = 0)-CP the
general self-consistent equation (52) reduces to

ω0

T
� g

T
+
hc
Sτ

ln
(
τ

ω0

)
. (64)

First, we consider the regime ω0/T � 1. If h ≥ hc, no
solution exists while, for h < hc, (64) provides

ω0 � τ exp
(
−Sτ
hc

hc − h
T

)
, (65)

which has to be compared with the corresponding result
achieved for the QPFM, ω0 � Te−(Sτ/hc)((hc−h)/T) [28]. Then,
for the transverse susceptibility we have the exponentially
divergent behavior χ⊥ � (2S/τ) exp[(Sτ/hc)((hc − h)/T)] as
T → 0 (corresponding to a critical exponent γT = ∞). For
the nearly polarized state we immediately find σ(T ,h) �
1 − (τ/hc) exp[−(Sτ/hc)((hc − h)/T)] and χ‖ � (S/hc){1 −
(Sτ/hc)(τ/T)e−(Sτ/hc)((hc−h)/T)}.

Let us consider now the regime ω0/T � 1. For h = hc,
(64) gives

ω0(T ,hc) � hcT

Sτ
ln

(
Sτ2

hcT

)
, (66)

and χ⊥(T ,hc) diverges as T−1ln−1(1/T) when T → 0. More-
over, around this vertical line for T � |h−hc|ln−1(1/|h−hc|),
we find

ω0(T ,h) �= hcT

Sτ
ln

(
Sτ2

hcT

){
1 +

Sτ

hcT

h− hc
ln(Sτ2/hcT)

}
, (67)

which signals the same leading behavior of ω0c(T) and
related thermodynamic quantities in the limit T → 0, except
for small corrections in h− hc.

Finally, for h > hc and T � (h− hc)ln−1(1/(h− hc)), the
frequency gap behaves as

ω0(T ,h) � (h− hc)
{

1− T

Sτ

hc
h− hc ln

(
τ

Shc

hc
h− hc

)}
, (68)

providing a thermodynamics very similar to the one found
for d < 2 except for logarithmic corrections in h − hc with
respect to the T = 0 MF results.

In conclusion, for the two-dimensional CPFM close to
(T = 0)-CP, we have a qualitative phase diagram which is
very similar to the one shown in Figure 2, presenting three
regions C, Q1, and Q2. In this case the sector corresponding
to previousQ1 is absent and the V-shaped region is delimited
by the lines T1,2(h) ∼ |h − hc|ln−1(1/|h − hc|) which, in
contrast to the ones shown in Figure 2, exhibit small loga-
rithmic corrections.

4.3. d > 2. For such dimensionalities the CPFM exhibits a
critical line ending in the (T = 0)-CP. To explore the low-
temperature critical properties it is convenient to rewrite (52)
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in terms of g(T) = h− hc(T) ≥ 0 (for the disordered phase).
We will focus on dimensionalities 2 < d < 4 (the case d ≥
4 is rather trivial although completely consistent with the
general theory of critical phenomena) for which, given the
expansions (53), (52) assumes the form

ω0

T
� g(T)

T
− πd/2
|sin(πd/2)|

(
hc
Sτ

)(
T

τ

)(d−2)/2(ω0

T

)(d−2)/2

,

(69)

where the right-hand side must be positive for stability rea-
sons.

In this paper we will present only explicit results related
to the transverse thermodynamics which plays a direct role
for our purposes. However, the relevant longitudinal quanti-
ties near the polarized state may be simply obtained from the
general relations σ = h/hc − ω0/hc and χ‖ = S(∂σ/∂h).

We start calculating the asymptotic solutions of (69)
where the critical region around the (T = 0)-CP in the
(h,T)-plane is approached in two ways: (i) along horizontal
trajectories, as h → h+

c (T) (with hc(T) � hc − (d/(d − 2))
(hc/S)(T/τ)) at fixed T (isothermal trajectories); and (ii)
along vertical trajectories, as T → T+

c (h) (with Tc(h) �
((d − 2)/d)(Sτ/hc)(hc − h)) at fixed h ≤ hc or T → 0 for
h > hc.

We first consider the regime ω0/T � 1 (Tξ2⊥ � 1). The
right-hand side of (69) suggests that two subregimesω0/T �
θ and ω0/T � θ should be investigated, with

θ = πd/2
|sin(πd/2)|

(
hc
Sτ

)(
T

τ

)(d−2)/2(ω0

T

)(d−2)/2

, (70)

where ω0/T � θ signals the crossover between them. For
isothermal trajectories, in the subregime ω0/T � θ, one
finds for ω0 the asymptotic solution

ω0(T ,h) � τ

[
πd/2

|sin(πd/2)|
hc
S

]−2/(d−2)(T
τ

)−2/(d−2)

× (h− hc(T))(d−2)/2,

(71)

which provides for transverse susceptibility χ⊥ ∼
(h− hc(T))−γh the nontrivial non-MF critical exponent
γh = 2/(d − 2). This spherical-model incorrect result is
typical of the Tyablikov-like decoupling also for the quan-
tum model at finite temperature [28, 39, 40].

When ω0/T � θ, (69) yields simply ω0 � h − hc(T)
which corresponds to the MF exponent γh = 1. The crossover
between the two previous regimes (ω0/T � θ) is indicated by
the Ginzburg-like line for horizontal trajectories:

hGi(T) � hc(T) + hc

[
1
S

πd/2
|sin(πd/2)|

]2/(4−d)

×
(
hc
τ

)(d−2)/(4−d)(T
τ

)2/(4−d)

.

(72)

Notice that hGi(T) → hc as T → 0; that is, the two lines
hc(T) and hGi(T) merge at the (T = 0)-CP.

For vertical trajectories at fixed h < hc (Tc(h) /= 0), setting
g(T) � (d/(d−2))(hc/Sτ)(T−Tc(h)) in (69), we easily obtain
the asymptotic solutions.

ω0�

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

τ

[
d−2

2
|sin(πd/2)|
πd/2

]2/(d−2)(T−Tc(h)
Tc(h)

)2/(d−2)

,
ω0

T
�θ,

d

d−2
hc
S

(
Tc(h)
τ

)(
T−Tc(h)
Tc(h)

)
,

ω0

T
�θ.

(73)

All the macroscopic quantities of interest can be now
determined in the previous regimes for T → T+

c (h). In
particular, for χ⊥, we find the critical exponents γT ≡ γh =
2/(d − 2) for ω0/T � θ and γT = γh = 1 for ω0/T � θ.
The crossover between these two asymptotic sub-regimes for
h < hc occurs crossing the conventional Ginzburg-Landau
line (with ω0/T � θ):

TGi(h) � Tc(h) +
d − 2
d

τ

[
πd/2

|sin(πd/2)|
]2/(4−d)

×
(
hc
Sτ

)(d−2)/(4−d)(Tc(h)
τ

)2/(4−d)

.

(74)

Of course, also for vertical trajectories within the region of
the (h,T)-plane between the critical and Ginzburg lines, with
h < hc, the TD quantitatively fails.

Let us consider now the behavior of ω0, and hence of
χ⊥, along the line h = hc, decreasing T , which is of most
experimental interest in view of the problematics discussed
in Section 1.

Since in this case Tc(hc) = 0, one can immediately see
that, to leading order in T , a self-consistent solution of (69),
under the condition ω0/T = O (1), is given by

ω0c(T) � d

d − 2

(
hc
S

)(
T

τ

)
. (75)

This result is strictly connected with the shift exponent ψ =
1 and in drastic contrast with the corresponding relation
obtained for the QPFM [27, 39], which, due to the presence
of quantum fluctuations, shows that ψ = d/2. Equation (75)
predicts that χ⊥ ∼ T−1 as T → 0 along the vertical line h =
hc, providing the exponent γT = ψ = 1, in contrast with the
quantum result γT = ψ = d/2 for the QPFM [28, 39].

From (69), under condition h − hc � (d/(d −
2))(hc/S)(T/τ), we get

ω0(T ,h) � ω0c(T)
{

1 +
d − 2
d

(
Sτ

hc

)
(h− hc)

T

}
. (76)

This means that, within the V-shaped region delimited
by the critical line for h < hc and the symmetric one TX(h) �
((d − 2)/d)(Sτ/hc)(h − hc) for h > hc, the spectrum gap, the
transverse susceptibility, and other macroscopic quantities
behave essentially as along the line h = hc, except for
negligible corrections in h− hc.

Increasing h − hc > 0 and crossing the line TX(h),
a crossover to the regime ω0/T � 1 (Tξ2⊥ � 1) takes place
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C χ T− 1

Tx (h)
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χ − 1 (h − hc) +O(T)

hc h

Figure 3: Schematic low-temperature phase diagram and cross-
overs in the (h,T)-plane of the CPFM with 2 < d < 4. Here
C stands for classical critical behavior; Tc(h), TGi(h) and TX(h),
denote the critical, Ginzburg, and crossover lines; OP and DP
indicate the ordered and disordered phases, respectively. The critical
line behaves linearly with hc−h and the characteristic quantum-like
V-shaped region, with vertex in the (T = 0)-CP, is clearly evident.

and one easily finds that, for T � TX(h), the appropriate
solution of (69) sounds as

ω0(T ,h) � (h− hc) +
d

d − 2

(
hc
Sτ

)
× T

{
1− πd/2

|sin(πd/2)|
d − 2
d

(
h− hc
τ

)(d−2)/2
}
.

(77)

Therefore, χ−1⊥ (as ω0) behaves essentially as at T = 0 (χ⊥ �
(h− hc)−1), with small corrections in T .

Summarizing, for 2 < d < 4 the low-T global phase dia-
gram has the qualitative structure shown in Figure 3.

A relevant feature of the phase diagram for the CPFM is
that it appears qualitatively similar to the one found for the
QPFM using different approaches: RG [27] and two-time GF
method [34, 39]. However, for sufficiently low temperatures
along the vertical trajectory h = hc, the quantitative differ-
ence between the behaviors of the transverse susceptibility,
χ⊥∼T−1 of the CPFM and χ⊥∼T−d/2, may play a crucial role
to distinguish classical and quantum fluctuations in realistic
PFM-like systems.

In this framework, it is also worth noting that, as a sub-
product of the previous analysis, an identical qualitative
global phase diagram for the classical XY model (J‖ = 0) in a
transverse magnetic field occurs close to its (T = 0)-CP.

The same low-T V-shaped-like scenario has been recent-
ly obtained for the CTIM [22] by means of a Wilsonian RG
approach in d = 4− ε dimensions applied to an appropriate
Ginzburg-Landau functional representation. This scenario
seems to be a common feature of a variety of classical
anisotropic magnetic systems which exhibit a (T = 0)-CP
as in the quantum counterparts.

5. Concluding Remarks

In the present paper we have explored the low-temperature
properties of the d-dimensional classical planar ferromagnet
(CPFM), which exhibits a field-induced zero-temperature
critical point, by adopting the two-time Green’s function
framework in classical statistical mechanics.

It was shown that, close to the (T = 0)-CP, the phase
diagram and the critical scenario are qualitatively similar to
those found for the spin-S QPFM [28] for d > 2 where
a critical line exists. The quantitative differences between
the two systems, taking place within the V-shaped region
of the phase diagram as the (T = 0)-CP is approached
along vertical trajectories, might allow to understand when
classical and quantum fluctuations are active. These discrep-
ancies are related to the value of the shift exponent ψ which
characterizes the way in which the critical line ends at the
(T = 0)-CP as T → 0 for classical (ψ = 1) and quantum
(ψ = d/2) PFM. In view of our results, we argue that the
experimental investigation of the low-temperature criticality
of PFM-like systems along and near the line h = hc (quantum
critical trajectory for the QPFM) in the (h,T)-plane and, in
particular, precise measurements of the critical exponents for
the correlation function or the susceptibility may provide a
signature of the increase of the shift exponent from ψ = 1
to ψ = d/2 at a certain crossover temperature from the
CPFM regime to the quantum one. In particular, when
the quantum fluctuations become active, a dimensionality
dependence of the shift exponent and related ones should
emerge, in contrast with the classical region where ψ = 1
for any d > 2. This may be a useful guide to establish
where the thermal fluctuations dominate over the quantum
ones, and vice versa. Therefore, it should be of experimental
interest to estimate the crossover temperature below which
the quantum critical fluctuations are expected to govern the
physics close to the (T = 0)-CP. Of course, this requires
necessarily an appropriate study of quantum spin models
within their V-shaped region.

Useful insights into this problem may be provided by
a recent RG analysis [27] for spin-1/2 QPFM with short
range interactions, and by two-time GF approaches for spin-
1/2 [39] and spin-S [28] QPFM for short- and long-range
interactions. In these papers, an unexpected regime with
χ⊥ ∼ T−1 was found in the V-shaped region above a certain
temperature T∗ which, for 2 < d < 4, spin-1/2, and
short-range interactions at a TD level, reads [39] (using our
notations)

T∗ � τ

[
1
π
|sin(πd/2)|(Fd/2(0))(4−d)/2

]4/(d−2)2 (
τ

dhc

)2/(d−2)

,

(78)

where Fd/2(0) is the value at y = 0 of the function Fd/2(y) =∫∞
0 dx(x(d/2)−1/(ex+y − 1)). Below T∗, the quantum behavior
χ⊥ ∼ T−d/2 takes place, as expected from the paradigmatic
quantum critical scenario [1].

The present study for the CPFM clarified the physical
meaning of T∗. Our study corroborated the idea that,
decreasing T along the quantum critical trajectory, T∗

provides an estimate of the temperature which signals
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a crossover between the classical thermally activated regime,
with χ⊥ ∼ T−1 (ψ = 1), and the quantum one, with χ⊥ ∼
T−d/2 (ψ = d/2). This feature agrees with the RG predictions
for the same quantum spin model near and below four
dimensions [27].

It is worth mentioning that within our many-body
framework one can also extract the basic quantum-like
dynamics by variation of dimensionality. In particular, rel-
evant information can be easily obtained from the scaling
structure of the transverse dynamic susceptibility χ⊥(k,ω) =
−G⊥(k,ω) for small values of the arguments. Indeed, from
(33)-(34) close to the (T = 0)-CP we find

χ⊥(k,ω) � 2Sξ2
⊥
{[
SJ⊥(kξ⊥)2 + 1

]
− ωξ2

⊥
}−1

, (79)

where ξ⊥ � (SJ⊥)1/2(h− hc)−1/2 ∝ χ1/2⊥ defines the transverse
correlation length at zero temperature for h ≥ hc. Then,
comparing (79) with the general dynamic scaling relation
χ(k,ω) � ξ2−ηW(kξ,ωξz) we immediately get η = 0 and
z = 2 for the Fisher η and dynamic z critical exponents, and
W(x, y) = 2S[SJ⊥(x2 + 1)− y]−1.

In conclusion, our results are in agreement with the
statements made in [21] for the CTIM chain and in [28] for
d > 1. Our analysis suggests that reliable measurements of the
shift exponent (or related ones) close to the QCP of magnetic
systems with PFM symmetry may provide a signature of the
presence of quantum critical fluctuations. We believe also
that this feature is rather general and not limited to TIM-like
and PFM-like systems.

Appendices

A. An Outline of the Two-Time Green’s Function
Framework in Classical Statistical Mechanics

In this section, for utility of the reader, we briefly review
the basic ingredients of the two-time retarded (ν = r) and
advanced (ν = a) GF’s framework in classical statistical
mechanics in a form strictly parallel to the quantum
counterpart [40–44]. For two arbitrary dynamical variables
A and B, they are defined as [29]

G
(ν)
AB(t, t′) = θν(t − t′)〈{A(t),B(t′)

}〉
≡ 〈〈

A(t);B(t′)
〉〉

ν, (ν = r, a),
(A.1)

where θr(t− t′) = θ(t− t′), θa(t− t′) = −θ(t′ − t), θ(x) is the
usual step function, 〈· · · 〉 denotes an equilibrium ensemble
average, and {A,B} is the Poisson bracket of A and B.

In (A.1), the dynamical variables A and B depend on
time via the conjugate canonical coordinates (q(t), p(t)) ≡
(q1(t), . . . , qN (t); p1(t), . . . , pN (t)), (N is the number of
degrees of freedom of the classical system under study),
X(t) = eiLtX(0) with X = A,B, q, p, L = i{H , . . .} is the
Liouville operator, and H is the Hamiltonian of the system
and X(0) ≡ X(q(0), p(0)) at the initial time t = 0. Of course,
the time evolution of the generic dynamical variable X(t) is

governed by the well-known Liouville equation of motion
(EM):

dX(t)
dt

= {X(t), H}. (A.2)

One can easily prove that the two-time GFs (A.1) depends on
times t, t′only through the difference t − t′, that is

G
(ν)
AB(t − t′) = 〈〈

A(t − t′);B
〉〉

ν =
〈〈
A;B(t′ − t)〉〉ν, (A.3)

and the two-time correlation function FAB(t, t′) = FAB(t −
t′) = 〈A(t)B(t′)〉 = 〈A(τ)B〉 = 〈AB(−τ)〉, with τ = t − t′,
is related to the classical GFs (A.3) by the following relation
[29]:

G
(ν)
AB(τ) = βθν(τ)

d

dτ
〈A(τ)B〉 = βθν(τ)〈{A(τ), H}B〉, (A.4)

where β = (KBT)−1, T is the temperature, and KB is the
Boltzmann constant (we assume KB = 1). In particular, we
have also

〈{A(τ),B}〉 = β
d

dτ
〈A(τ)B〉 = β〈{A(τ), H}B〉. (A.5)

For G
(ν)
AB(τ) and FAB(τ) one can introduce the Fourier

transforms:

G
(ν)
AB(τ) =

∫ +∞

−∞
dω

2π
G

(ν)
AB(ω)e−iωτ ,

FAB(τ) =
∫ +∞

−∞
dω

2π
FAB(ω)e−iωτ ,

(A.6)

where G(ν)
AB(ω) = 〈〈A(τ);B〉〉ν,ω and FAB(ω) = 〈A(τ)B〉ω are

called the ν-GF of A and B in the ω-representation and the
classical spectral intensity of the time-dependent correlation
function FAB(τ), respectively, with f (ω) = ∫ +∞

−∞ dτeiωτ f (τ).
Then, using (A.4) and the integral representations

θ(τ) = i

∫ +∞

−∞
dx

2π
e−ixτ

x + iε
, ε −→ 0+;

δ(x) =
∫ +∞

−∞
dτ

2π
eixτ ,

(A.7)

for the step function and the Dirac δ-function, G(ν)
AB(ω) can

be expressed in terms of the corresponding spectral intensity
as

G
(ν)
AB(ω) =

∫ +∞

−∞
dω′

2π
βω′FAB(ω′)

ω − ω′ + (−1)νiε
, ε −→ 0+, (A.8)

where the symbol (−1)ν means +1 if ν = r and −1 if
ν = a. It is interesting to compare (A.8) with the quantum
corresponding expression for two operatorsA and B [40–44]:

G
(ν)
AB(ω) =

∫ +∞

−∞
dω′

2π

(
1 + ηe−β�ω′

)
FAB(ω′)

ω − ω′ + (−1)νiε
, ε −→ 0+,

(A.9)

where η = −1 and η = +1 by definition of quantum two-
time GFs with commutator or anticommutator, respectively,
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and � is the reduced Planck constant. Notice that formally, as
expected for internal consistency, the function C(ω) = βω or
Qη(ω) = (1 + ηe−β�ω)/� characterizes the classical or quan-
tum nature of the problem under study, respectively.

In analogy with the quantum case [45–47], we now intro-
duce the time-dependent classical spectral density (CSD) for
A and B [31, 37, 48, 49]:

ΛAB(τ) = i〈{A(τ),B}〉, (A.10)

with the Fourier transform:

ΛAB(ω) = i〈{A(τ),B}〉ω =
∫ +∞

−∞
dτeiωτΛAB(τ) = βωFAB(ω).

(A.11)

Hence, from (A.8), one immediately obtains the spectral
representation:

G
(ν)
AB(ω) =

∫ +∞

−∞
dω′

2π
ΛAB(ω′)

ω − ω′ + (−1)νiε
, ε −→ 0+, (A.12)

for the two-time GFs (A.1) in terms of the corresponding
CSD ΛAB(ω) in the ω-representation. Also the dynamical
correlation function 〈A(τ)B〉 can be easily expressed in terms
of ΛAB(ω). From (A.5), (A.10), and (A.11), we obtain indeed
(classical spectral theorem)

〈A(τ)B〉 ≡ 〈BA(τ)〉 =
∫ +∞

−∞
dω

2π
ΛAB(ω)
βω

e−iωτ . (A.13)

From (A.10)–(A.13) some formally exact results can be easily
obtained. First, (A.10) and (A.11) yield∫ +∞

−∞
dω

2π
ΛAB(ω) = i〈{A,B}〉. (A.14)

Besides, from (A.13), it follows∫ +∞

−∞
dω

2π
ΛAB(ω)
βω

= 〈AB〉. (A.15)

The relations (A.14) and (A.15) constitute useful examples of
the so-called sum rules of the CSD, ΛAB(ω), which have great
relevance for physical consistency of practical calculations
and approximations. Combining now (A.12) and (A.14),
one can easily obtain another general result which plays an
important role for calculation of the GFs. As ω → ∞we have
indeed [33]

G
(ν)
AB(ω) =

⎧⎨⎩
i〈{A,B}〉

ω
∼ ω−1, if 〈{A,B}〉 /= 0,

∼ ω−α (α ≥ 2), if 〈{A,B}〉 = 0,
(A.16)

which provide a relevant boundary condition for the ν-GFs.
Let us come back now to the relations (A.12) for classical

retarded and advanced GFs in the ω-representation. As
in the quantum counterpart [40–42], one can prove that
G

(r)
AB(ω) andG(a)

AB(ω), analytically continued in theω-complex
plane, are analytical functions in the upper and lower half-
plane, respectively. Then, combining these two analytical

functions, one can construct a single function GAB(ω) =∫ +∞
−∞ dteiωtGAB(t) of complex ω such that

GAB(ω) =
{
G

(r)
AB(ω), Imω > 0,

G
(a)
AB(ω), Imω < 0.

(A.17)

Hence, (A.12) provides for GAB(ω) the spectral represen-
tation:

GAB(ω) =
∫ +∞

−∞
dω′
2π

ΛAB(ω′)
ω−ω′ . (A.18)

This function is analytical in the whole complexω-plane with
a cut along the real axis where singularities for GAB(ω) may
occur. It is worth noting that, in terms of ΛAB(ω), no formal

differences exist for the spectral representations of G(ν)
AB(ω)

and GAB(ω) in the classical and quantum context. Hence, all
the developments already known in the quantum framework
remain formally valid for the classical one. In particular, one
has the important exact relation

ΛAB(ω) = i[GAB(ω + iε)−GAB(ω − iε)], (A.19)

which expresses the CSD in terms of the related two-time
GFs in the ω-representation. This allows us to state also that
the cut for GAB(ω) along the real axis in ω-complex plane is
determined by (A.19) and its singularities are the points of
the real axis where the condition ΛAB(ω) /= 0 is satisfied. For
the spectral intensity of classical systems, (A.11) and (A.19)
yield

FAB(ω) = 〈A(τ)B〉ω = i
GAB(ω + iε)−GAB(ω − iε)

βω
. (A.20)

Of course, other known quantum relations are formally valid
for classical many-body theory. Besides, when ΛAB(ω) is real,
the classical Kramers-Kronig relations (classical dispersion

relations) between the real and imaginary parts of G(ν)
AB(ω)

are true:

Re G(ν)
AB(ω) = (−1)(ν)

π
℘
∫ +∞

−∞
dω′

ImG
(ν)
AB(ω′)

ω′ − ω , (A.21)

where the symbol ℘ denotes the main part of the integral. We
have also

ΛAB(ω) = −2(−i)ν ImG
(ν)
AB(ω), (A.22)

and, in particular,

ΛAB(ω) = −2 ImG
(r)
AB(ω). (A.23)

Differentiating (A.3) with respect to τ = t−t′, with EM (A.2)
for dynamical variables and dθν(τ)/dτ = δ(τ), yields

d

dτ
〈〈A(τ);B〉〉ν = δ(τ)〈{A,B}〉 + 〈〈{A(τ), H};B〉〉ν,

(A.24)

which is the basic EM for the GF 〈〈A(τ);B〉〉ν. This, however,
is not a closed differential equation since in the right-hand
side of (A.24) a new higher-order ν-GF occurs involving
Poisson brackets of a greater number of dynamical variables.
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Then, one needs to consider a new EM for the two-time ν-GF
〈〈{A(τ), H};B〉〉ν. The τ-derivative of this function provides
an additional equation, formally identical to (A.24) with
A(τ) replaced by {A(τ), H}, the right-hand side of which
contains the new ν-GF 〈〈{{A(τ), H}, H};B〉〉ν. By iteration
of this procedure, we obtain the infinite chain of coupled
EMs for GFs of increasing order:
d

dτ

〈〈
Lm

HA(τ);B
〉〉

ν=δ(τ)
〈{

Lm
HA,B

}〉
+
〈〈

Lm+1
H A(τ);B

〉〉
ν

(m=0, 1, 2, . . .).

(A.25)

Here LH = iL = {. . . , H} and Lm
HA means L0

HA = A,
L1

HA = {A, H}, L2
HA = {{A, H}, H}, and so on. Notice

that the chain of EMs (A.25) is formally the same for different
types of GFs and hence one can eliminate the index ν when
the physical context is clear.

In the practical calculations it is more convenient to
work in the ω-Fourier space. With i

∫ +∞
−∞ dτeiωτ(df (τ)/dτ) =

ω f (ω), the chain of equations, in the ω-representation,
assumes the following form:

ω
〈〈

Lm
HA(τ);B

〉〉
ν,ω = i

〈{
Lm

HA,B
}〉

+i
〈〈

Lm+1
H A(τ);B

〉〉
ν,ω

(m=0, 1, 2, . . .),

(A.26)

which has to be solved with appropriate boundary conditions
(A.17). Since an exact solution is, of course, impossible, in
practical calculations one must resort to decoupling pro-
cedures, and hence to approximate methods, to reduce the
infinite chain of coupled equations to a finite closed one.
Unfortunately, systematic and controllable decouplings are
not easy to find and one must check for the reliability of a
given approximation for each specific problem, by compar-
ing the results with experiments, simulations, or other types
of approaches.

B. Callen-Like Approach for Magnetization:
A Classical Moment Problem

In this appendix we present an instructive method to solve
the differential equation (25) for Ω(a) via a classical moment
problem. The differential equation is the following:

Ω′′(a) + 2
(

1
Φ

+ a

)−1

Ω′(a)− S2Ω(a) = 0, (B.1)

for which the initial condition Ω(0) = 1 is valid by definition.
This is, of course, insufficient to find the physical solution
of (25) and one should add a supplementary condition to
be searched properly. Unfortunately, there is not classical
analogue of the operatorial identity ΠS

p=−S(Sz− p) = 0 which
is the key ingredient of the Callen approach for the quantum
HM [35]. In the following, we will show that, at our level of
approximation, the additional condition

Ω(a) =
∫ S
−S
dSz f (Sz)eaS

z

, (B.2)

which follows formally from the definition of the canonical
ensemble average of the dynamical variable eaS

z
, combined

with Ω(0) = 1, allows to determine Ω(a) as a classical
moment problem [50–53]. In view of the structure of the
differential equation (25) for Ω(a), it is convenient to define

f (Sz) = g(Sz)eS
z/Φ, (B.3)

so that, we can write

Ω(a) =
∫ S
−S
dSzg(Sz)e(1/Φ+a)Sz

= S

∫ 1

−1
dxg(Sx)eS(1/Φ+a)x.

(B.4)

Replacing this expression and its derivatives in (25), we have
for g(Sz) the following:

∫ 1

−1
dx
(
yx2 + 2x − y

)
g(Sx)eyx = 0, (B.5)

where y = S(1/Φ+a). Then, with eyx =∑∞
n=0(yn/n!)xn, (B.5)

provides

∞∑
n=0

yn

n!

[
y(In+2 − In) + 2In+1

] = 0, (B.6)

with

Ik =
∫ 1

−1
dxg(Sx)xk. (B.7)

It is now simple to show that the moments (B.7) of g(Sx) ≡
G(x) are determined by the recursion relations:

I1 = 0, . . . , In+1 = n

n + 2
In−1, n = 1, 2, . . . . (B.8)

These provide

Ik =
⎧⎪⎨⎪⎩

I0
k + 1

, k = 2n,

0, k = 2n + 1, n ≥ 0,
(B.9)

where, at this stage, the moment I0 is unknown. From (B.9),
it is immediate to see that the solution of the moment
problem for g(Sx) is given by g(Sx) = I0/2.

However, for the univocal determination of Ω(a) it is not
necessary to have the explicit form of g(Sx) = g(Sz) but
rather its moments (B.9). From the integral representation
(B.4), we have indeed

Ω(a) = S
∞∑
k=0

yk

k!

∫ 1

−1
dxg(Sx)xk

= SI0
y

∞∑
n=0

y2n+1

(2n + 1)!
= SI0

y
sinh y,

(B.10)

or, explicitly,

Ω(a) = SI0
sinh[S(1/Φ + a)]

S(1/Φ + a)
. (B.11)
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Finally, the boundary condition Ω(0) = 1 yields I0 = (1/Φ)
(1/ sinh(S/Φ)) so that we obtain the following solution:

Ω(a) = 1/Φ
1/Φ + a

sinh[S(1/Φ + a)]
sinh(S/Φ)

. (B.12)

This is the central result of this appendix which constitutes
the classical analogue [34] of the quantum Callen formula
[35]. It provides the required expression form, which is valid
for any d, T , and h.
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Spin waves in 2D periodic magnetic nanocomposites are studied by means of the plane wave method. The effect of the ellipticity
and in-plane rotation of the scattering centers on the band structure is investigated, to indicate new possibilities of fine tuning of
spin-wave filter passbands.

1. Introduction

Magnetic composites with a structure modulated periodi-
cally on the nanoscale are the subject of a very intensive
research activity, and the interest in their properties is
increasing [1–7]. By analogy to photonic crystals (PCs),
they are referred to as magnonic crystals (MCs) [8], since
the role of information carriers in these materials is played
by magnons, or spin-wave quanta. Magnonic crystals have
properties that cannot be reduced to those of their con-
stituent materials, as manifested, among others, by the
band structure of their spin-wave spectrum. The periodic
structure given to a magnetic composite strictly determines
the possible occurrence of magnonic gaps, or energy ranges
forbidden to propagating spin waves [9–11]. The anticipated
full control over the spin waves propagating in MCs, similar
to that of the electromagnetic waves in PCs, combined
with a long-term stability of the programmable magnetic
state makes MCs excellent for both research and application
purposes [12, 13]. Moreover, the wavelength of spin waves
is much shorter than that of electromagnetic waves of the
same frequency. This provides additional possibilities in the
miniaturization of MC-based devices [14–16]. For a broad
survey of the current state of both the experimental and
theoretical research in MCs and their potential applications,
please refer to review papers [17, 18].

The most frequently mentioned of the numerous poten-
tial applications of MCs include microwave resonators,

magnonic waveguides, spin-wave emitters, and filters [19].
These potentia applications, along with the possibility of
modeling the energy spectrum of spin-wave excitations
propagating in MCs, are the very reason of the intensi-
fication of the research on new magnonic materials with
so far unknown properties and functionalities [14, 16]. In
particular, two-dimensional (2D) MCs with band gaps in the
spin-wave spectrum have potential applications in diverse
magnonic devices, such as spin-wave filters or switches,
or current-controlled delay lines [20]. For example, the
latest results of micromagnetic simulations [21] indicate
the occurrence of wide magnonic gaps, implying a possible
application in spin-wave filters, in 2D Fe/YIG MCs, two-
component magnetic composites with iron scattering centers
embedded in a matrix of yttrium iron garnet. A particular
role in the modeling of magnonic gaps is played by the
deformation of the scattering centers in the plane of spin-
wave propagation [22].

In this study we examine the possibilities of modeling
the spin-wave spectrum of 2D MCs that could be used
for fine tuning of spin-wave filter passbands [23]. We
present the results of calculations of the magnonic band
structure of a Co/Fe composite with scattering centers in
the shape of elliptic cylinders. We find that for different
filling fraction values there are specific in-plane rotation
angles for which modifying the rod ellipticity can alter the
position of the allowed band without changing its width or
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cause a substantial shrinking of two adjacent bands without
changing the width of the gap between them.

2. The Model

Figure 1(a) depicts schematically a section of the system
under consideration in the plane perpendicular to the
rod axis (the x-y plane), which is the plane of spin-wave
propagation. The system includes cobalt rods (scattering
centers), which are assumed to be parallel to each other and
have an infinite length. The rods are arranged in sites of a 2D
square lattice and embedded in an iron matrix. The system
is infinite in the plane of periodicity. The filling fraction ff,
describing the proportion of the rod material in the whole
volume of the system, in the case of elliptic cylinders is given
as f f = πRaRb/a2, where Ra and Rb are the semiaxes of
the rod cross section, and a is the lattice constant. Let us
define the ellipticity RR of the rods as the semiaxis ratio:
RR = Ra/Rb. The angle α between the major semiaxis Ra
and the x-axis of the crystallographic system is the angle of
rotation of the rods (in the plane of periodicity). Applied
to the system, an external magnetic field perpendicular to
the plane of periodicity is assumed to be strong enough to
enforce a uniform magnetization throughout the system.

We shall consider in-plane propagation of spin waves,
that is, their propagation in the plane of periodicity, in
2D MCs as described above. Thus, the wave vectors to
be considered are limited to the Brillouin zone of the 2D
lattice. Figure 1(b) shows the high-symmetry line in such
a 2D Brillouin zone. In the case of square lattice the line
starts at the zone center (point Γ) to pass through X and M
and return to Γ (segments C, D, and E in Figure 1(b)).
The introduction of rods with elliptical cross section breaks
the symmetry of the square lattice. If the semiaxes of the
ellipse follow the axes of the 2D crystallographic system, the
structure has the symmetry of a rectangular lattice. Points X
and X ′ are not equivalent anymore, and the high-symmetry
line in this case leads from M to X ′, Γ, X , and back to M
(segments A, B, C, and D). For an ellipse rotated by 45◦

points, X and X ′ are equivalent symmetry points, whereas
M and M′ are not. Thus, the high-symmetry line leads from
Γ to X , M, Γ, M′, and X (segments C, D, E, F, G). In the
general case, that is, for any angle of rotation of the ellipse,
the full line shown in Figure 1(b) must be considered.

Our theoretical approach is based on a set of equa-
tions including the linearized Landau-Lifshitz equation and
Maxwell’s magnetostatic equations [24]. When the applied
magnetic field is parallel to the rods, the internal static
magnetic field is uniform, which allows us to only take into
account the exchange and dynamic dipolar interactions. The
ferromagnetic materials of the rods and the matrix are char-
acterized by two quantities: the spontaneous magnetization
Ms and the exchange stiffness constant A. For the materials
considered in this study the specific values of these two
magnetic parameters are for iron Ms = 1.752e6 A/m and
A = 2.1e − 11 J/m, and for cobalt Ms = 1.390e6 A/m and
A = 2.8e − 11 J/m [25]. Crucial for the magnonic nature
of the structure under consideration is the assumption that
these two material parameters are periodic functions of

position, with the same periodicity as the 2D lattice on
which the magnonic crystal is built. With this assumption
our equations can be solved by the plane wave method.
The main point of this method is the Fourier expansion
of the material parameters. Bloch theorem is applied to the
dynamic functions, such as the demagnetizing field potential
and the dynamic component of magnetization. Thus, the
equations are transformed to the reciprocal space, where
their solution is equivalent to the diagonalization of a 2N ×
2N matrix, N being the number of plane waves used in the
Fourier expansion (for more details, see [24] and references
therein).

3. The Role of Magnetostatic Interactions

Figure 2 shows examples of the so-called magnonic spectra,
represented by the spin-wave spectra of 2D Co/Fe magnetic
composites, calculated along the high-symmetry line in the
2D Brillouin zone. The spectra shown in Figures 2(a) and
2(b) have been obtained for lattice constants a = 50 nm
and a = 100 nm, respectively. A circular cross section
of the rods (RR = 1) and a filling fraction f f = 0.5
are assumed in both cases. For small lattice constants the
exchange interactions play a dominant role; however, as the
lattice constant grows, their importance diminishes to the
advantage of the magnetostatic interactions [26, 27]. As a
result, the spin-wave frequency range lowers; for the lattice
constant of 50 nm the frequency of the ten lowest modes is
below 80 GHz (Figure 2(a)), but only ranges from 10 GHz
to 35 GHz for a = 100 nm (Figure 2(b)). The flattening of
successive bands results in the opening of a magnonic gap:
for a = 50 nm all the bands overlap, while for a = 100 nm
a gap occurs between the lowest band and the rest of the
spectrum.

4. The Ellipticity and Rotation of the Rods

Figure 3 presents the effect of the cross-sectional ellipticity
of the scattering centers and their rotation in the plane
of spin-wave propagation on the magnonic spectrum in a
Co/Fe composite with a lattice constant of 300 nm and a
filling fraction of 0.3. For unrotated rods (Figure 3(a)) the
maximum ellipticity (corresponding to touching rods) is
RR = 2.6, which means the major and minor semiaxes
Ra and Rb can range from 92.7 nm up to 149.8 nm and
down to 57.4 nm, respectively. In the whole range of rod
ellipticity the bottom of the lowest band is nearly constant,
remaining between 10.84 GHz and 10.89 GHz. Also the top
of the second band varies very slightly, only ranging from
12.04 GHz to 12.15 GHz. However, the width of both bands
grows rapidly, as the top of the first band and the bottom
of the second one converge. Consequently, the gap between
the bands shrinks to vanish completely for RR = 2.1 (Ra =
134.3 nm, Rb = 64.0 nm). The two bands merge to form a
single wide band, separated from the rest of the spectrum
by a third gap, the width of which varies from 1.26 GHz for
right circular cylinders (RR = 1.0) to 0.79 GHz for RR = 2.1
(the closing of the second gap) to 0.37 GHz for RR = 2.6 (the
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Figure 1: (a) Schematic view of the 2D MC under consideration, section in the plane of periodicity. (b) High-symmetry line over the 2D
Brillouin zone for ellipses arranged in a square lattice.

40

20

0

60

80

Fr
eq

u
en

cy
 (

G
H

z)

2D wave vector

X MΓ Γ

(a)

Fr
eq

u
en

cy
 (

G
H

z)

2D wave vector

X
10

20

30

MΓ Γ

(b)

Figure 2: Ten lowest bands in the spin-wave spectrum of a 2D Co/Fe composite with lattice constant (a) 50 nm and (b) 100 nm, calculated
along the high-symmetry line in the 2D Brillouin zone (cf. Figure 1(b)). Circular cross section of the rods (RR = 1) and filling fraction
f f = 0.5 are assumed in both cases. Shaded areas represent magnonic gaps. Note the plots differ in frequency range: 0 GHz to 80 GHz in
(a), and 10 GHz to 35 GHz in (b).

maximum ellipticity). Figure 3(b) shows the band and gap
widths plotted versus the rod ellipticity.

Also for rods rotated by 45◦ (Figure 3(c)) the second
gap is seen to shrink, though not as rapidly as in the case
of unrotated rods. The gap closes for RR = 3.45, which
corresponds to Ra = 212.0 nm and Rb = 40.5 nm. A significant
difference with respect to the composite with unrotated rods
is seen in the behavior of the second band, which moves
down the frequency scale with nearly constant width as RR
grows from 1.0 to 2.8 (cf. Figure 3(d)).

In a Co/Fe composite with a filling fraction of 0.5
and rods unrotated in the plane of periodicity (the major
semiaxis following the x direction), the rod ellipticity can
range from 1.0 (circular cross section) to 1.57, which for
the assumed lattice constant a = 300 nm corresponds to the
major semiaxis ranging from 119.7 nm up to 150.0 nm, and

the minor semiaxis from 119.7 nm down to 95.5 nm. As the
ellipticity of the cylinders grows, the gaps are seen to shrink
and the bands to widen (Figure 4(a)). Although the bottom
of the lowest band at first moves towards higher frequencies,
the change is to slight to compensate the concurrent rising
of the top. In the second band the top is seen to descend
slightly, while the bottom moves much faster in the same
direction. As a consequence, the second gap, between the first
and second bands, shrinks rapidly with growing ellipticity
to vanish completely for RR = 1.2 (Ra = 131.1 nm, Rb =
109.3 nm). The first and second bands merge to form one
relatively wide band (of width ranging from 1.17 GHz for
RR = 1.2 to 1.32 GHz for RR = 1.57), separated from the
rest of the spectrum by a third gap, which has a maximum
width of 0.65 GHz for RR = 1.2, and a minimum width of
0.25 GHz for RR = 1.57 (cf. Figure 4(b)).
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A completely different behavior of the spin-wave spec-
trum is seen for the same filling fraction ( f f = 0.5),
but with rods rotated by 45◦ in the plane of periodicity
(Figure 4(c)). Two ranges of RR can be distinguished in this
case. In the first range, from 1.0 to 2.0 (the major semiaxis
growing from 119.7 nm to 169.3 nm, and the minor semiaxis
shrinking from 119.7 nm to 84.6 nm), the width of both
lowest bands decreases substantially, the first one shrinking
from 0.52 GHz to 0.28 GHz, and the second from 0.34 GHz
to 0.22 GHz (Figure 4(d)). At the same time, the midlevels of
both bands move, from 11.0 GHz to 11.1 GHz in the case of
the first band, and from 11.7 GHz to 11.6 GHz for the second.
Interestingly, in this range of RR the second gap remains
nearly unchanged, its width only ranging from 0.29 GHz
to 0.30 GHz. In the other part of the RR dependence the
spectrum behaves as in the cases considered previously: the
bands widen and the gaps shrink rapidly. However, in this

case even for the maximum ellipticity of the rods (RR = 3.14)
the second gap will not close completely, though its width
falls as low as 0.02 GHz.

5. Conclusions

In the 2D magnetic composites considered in this paper,
with Co rods embedded in an Fe matrix, the increase in
importance of the magnetostatic interactions results in the
formation of band gaps in the spin-wave spectrum. These
magnonic gaps are destroyed as the exchange interactions
begin to play a dominant role. On the other hand, the
increase in importance of the exchange interactions not only
results in a widening of the bands, but also, consequently,
causes the possible gaps to move towards higher frequencies.
In contrast, when the magnetostatic interactions gain in
importance at the cost of the exchange interactions, the
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frequency range in which magnonic gaps will occur lowers
substantially. This finding is consistent with the results
obtained for 2D composites with an EuO matrix [28].
However, an entirely different behavior is observed in 3D
magnonic crystals, in which absolute magnonic gaps are
destroyed by the magnetostatic interactions [29].

The use of rods in the shape of elliptic cylinders as
scattering centers in 2D magnetic composites implies the
introduction of two addition structural parameters: the
cross-sectional ellipticity of the rods and the angle of their
rotation in the plane perpendicular to the rod axis (the
plane of spin-wave propagation). In contrast to the lattice
constant, a change of which will strongly modify the spin-
wave spectrum, these new parameters allow fine tuning of
the width and position of the bands and gaps. For specific
in-plane rotation angles, changing the rod ellipticity will
modify the position of a band without changing its width
or cause two adjacent bands to shrink substantially without
affecting the width of the gap between them. Thus, an
appropriate use of rods of elliptical cross section offers

additional possibilities in the design of spin-wave filters with
precisely adjusted passband.
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Higher-order composite fermion states are correlated with many quasiparticles. The energy calculations are very complicated. We
develop the theory of Tao and Thouless to explain them. The total Hamiltonian is (HD +HI), where HD includes Landau energies
and classical Coulomb energies. We find the most uniform electron configuration in Landau states which has the minimum energy
of HD . At ν = (2 j − 1)/(2 j), all the nearest electron pairs are forbidden to transfer to any empty states because of momentum
conservation. Therefore, perturbation energies of the nearest electron pairs are zero in all order of perturbation. At ν = j/(2 j− 1),
j/(2 j + 1), all the nearest electron (or hole) pairs can transfer to all hole (or electron) states. At ν = 4/11, 4/13, 5/13, 5/17, 6/17,
only the specific nearest hole pairs can transfer to all electron states. For example, the nearest-hole-pair energy at ν = 4/11 is lower
than the limiting energies from both sides (the left side ν = (4s+ 1)/(11s+ 3) and the right side ν = (4s− 1)/(11s− 3) for infinitely
large s). Thus, the nearest-hole-pair energy at specific ν is different from the limiting values from both sides. The property yields
energy gap for the specific ν. Also gapless structure appears at other filling factors (e.g., at ν = 1/2).

1. Introduction

Precise experiments on ultra-high-mobility samples revealed
many local minima of diagonal resistivity ρxx [1, 2]. Therein
small local minima are detected at the filling factors of ν =
3/8, 3/10, 7/11, 4/11, 4/13, 5/13, 5/17, and 6/17,. . .. These
states cannot be understood by use of the standard composite
fermion (CF) model [3, 4]. Jain has originally considered
multiflavor composite fermion picture with coexistence of
composite fermions carrying different numbers of fluxes.
Wójs et al. [5, 6], Smet [7], and Peterson and Jain [8]
and Pashitskii [9] investigated these states and described
the states in their extended systematics. Smet has explained
these states in terms of the multiflavor composite fermion
picture. Pashitskii presented expanded systematics based on
Halperin’s conjecture of coexistence of free electrons and
bound electron pairs, with predicted new exotic fractions
of ν = 5/14, 5/16, and 3/20. These investigations are
complicated to explain the stability of expanded states with
ν = 3/8, 3/10, 7/11, 4/11, 4/13, 5/13, 5/17, and 6/17,. . .,
because many quasiparticles are correlated with each others.

The results of various theories depend upon what kinds of
quasi-particles are combined with each others. Therefore,
it is preferable that the same logic is applied to any kind
of filling factors (including both standard and nonstandard
filling factors).

We study the other description in order to remove
these ambiguities. Tao and Thouless [10, 11] examined the
case that the lowest Landau levels are partially filled with
electrons. They cannot lead which states are stable in com-
parison with the other states. However, their method is
very important to investigate the FQH states. We have
carefully examined the Coulomb interactions and develop
their theory [12, 13]. Then the Coulomb transitions conserve
the x component of the total momentum where the x
direction indicates the current direction. This property
produces energy gaps for the specific filling factors. Also the
momentum conservation produces no binding energy for
some filling factors. We study these gap structure or gapless
structure for various filling factors, respectively. Quantum
hall devices have an ultra thin layer of electron conducting
channel as in Figure 1.
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Figure 1: Quantum hall device.

That is to say the potential well in the z direction is
deep and extremely narrow. Then the electron state of the
z-direction is the ground state φ(z) at a low temperature
because the probability of excited states is negligibly small
caused by large excitation energy. The remaining freedoms
are the x and y directions. If we neglect the Coulomb
interactions between electrons, the single-electron eigen-
states are the Landau states. Although these states are well
known, we shortly write them for applying them below.
Landau wave function is given as follows:

ψL,J
(
x, y, z

) =√
1
�

exp(ikx)uLHL

(√
mω

�

(
y − αJ

))
× exp

(
−mω

2�

(
y − αJ

)2
)
φ(z).

(1)

Therein, L is the Landau level number, k is the angular wave-
number, and αJ is the central position in the y-direction
which is related as

αJ = 2π�J

(eB�)
k = 2πJ

�
, (2)

where J indicates the integer assigned to each momentum of
the x-direction. The eigen energy is

EL = λ + �ω

(
L +

1
2

)
(L = 0, 1, 2, 3, . . .), (3)

where λ is the ground state energy of the z-direction. We
count the number of states with a fixed value of L by (2)

0 ≤ αJ ≤ d −→ 0 ≤ 2π�J

(eB�)
≤ d −→ 0 ≤ J ≤ eB�d

(2π�)
, (4)

where d is the width of the device in Figure 1. Then the total
number of Landau states with the same value of L is equal to
eB�d/(2π�).

Next we consider the many electron states Ψ(L1, . . . ,LN ;
p1, . . . , pN ) described by the Slater determinant where Lj and
pj indicate the Landau level number and the momentum
of jth electron, respectively. All the states composed of
Ψ(L1, . . . ,LN ; p1, . . . , pN ) make the complete set. The total
Hamiltonian is rewritten by use of this complete set. The
diagonal part is described by HD which is given as

HD =
∑

L1,...,LN

∑
p1,...,pN

∣∣Ψ(L1, . . . ,LN ; p1, . . . , pN
)〉

×W(
L1, . . . ,LN ; p1, . . . , pN

)
× 〈Ψ(L1, . . . ,LN ; p1, . . . , pN

)∣∣,

(5)

where W(L1, . . . ,LN ; p1, . . . , pN ) is the diagonal matrix ele-
ment defined by

W
(
L1, . . . ,LN ; p1, . . . , pN

)
=

N∑
i=1

ELi + C
(
L1, . . . ,LN ; p1, . . . , pN

)
.

(6)

Therein, ELi is the eigen-energy (3) of single electron with
Landau level number Li. Also C is the expectation value of
Coulomb interactions which is defined by

C
(
L1, . . . ,LN ; p1, . . . , pN

)
=
∫
· · ·

∫
Ψ
(
L1, . . . ,LN ; p1, . . . , pN

)∗
×

N−1∑
i=1

N∑
j>i

e2

4πε

√(
xi − x j

)2
+
(
yi − y j

)2
+
(
zi − z j

)2

×Ψ
(
L1, . . . ,LN ; p1, . . . , pN

)
× dx1dy1dz1 · · ·dxNdyNdzN .

(7)

Hereafter, we call C(L1, . . . ,LN ; p1, . . . , pN ) “classical Cou-
lomb energy.” The total Hamiltonian is divided into two
parts HD and HI . The residual part HI is obtained by

HI = HT −HD, (8)

where HI is constructed only by the off-diagonal elements.
The residual Hamiltonian HI is the interaction between
two electrons depending upon only the relative coordinate.
Therefore, the total momentum of the x-direction conserves
in this system. That is to say the sum of the initial momenta
pi and pj is equal to the sum of the final momenta p′i and p′j
via Coulomb transition as follows:

p′i + p′j = pi + pj . (9)

At a filling factor smaller than 1, the ground state ofHD is the
following many-electron state as:

(1) N electrons exist in the lowest Landau levels of L1 =
L2 = · · · = LN = 0.

(2) The electrons should most uniformly occupy the
lowest Landau levels so that the classical Coulomb
energy has the lowest value. The electron momenta
p1, p2, . . . pN are related to each centre positions as in
(2). Therefore, the most uniform electron configura-
tion determines the electron momenta p1, p2, . . . , pN
for each filling factor ν.

In the next section we will schematically draw the most
uniform electron configuration at several filling factors. Then
it is clarified that the most uniform electron configuration
is unique. The most uniformity yields the minimum eigen
energy of HD, and the uniqueness produces a nondegenerate
ground state although the ground states of the single electron
Hamiltonian H0 are degenerate. The electron configurations
are examined in Section 2.
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Figure 2: (a) Electron configuration at ν = 1/3. (b) Configuration at ν = 2/3.

We can estimate the perturbation energy via the Cou-
lomb transitions by using the usual perturbation method of
nondegenerate case. Electron (or hole) pairs in the nearest
Landau orbitals are most affected by the Coulomb interac-
tion. The perturbation energies of the nearest electron (or
hole) pairs are sensitively dependent upon each electron con-
figurations. The sensitivity is caused by Fermi-Dirac statistics
and the momentum conservation of the x-direction. The
most uniform electron configuration produces the following
properties: all the nearest electron (or hole) pairs are allowed
to transfer to all vacant (or filled) states at the filling factors of
ν = j/(2 j ± 1). The property produces energy gap structure.
For example, the perturbation energy of the nearest electron
pair at ν = j/(2 j − 1) is lower than the limiting value from
both sides as s → ν ± ε where ε is an infinitesimally small
value. The energy gap is defined as

Energy gap = ΔEnearest pair =
(
E(ν)− lim

s→ ν+ε
E(s)

)
. (10)

The ratio of the energy gap and the original nearest electron
pair energy is equal to

ΔEnearest pair

E(ν)
= (E(ν)− lims−→ν+ε E(s))

E(ν)

= 1
2
(
j − 1

) for ν = j

2 j − 1
.

(11)

It is noteworthy that both the energy E(ν) and the energy gap
E(ν) − lims→ ν+ε E(s) are negative values. This mechanism is
clarified in Section 3.

All the nearest electron (or hole) pairs are forbidden to
transfer to any vacant (or filled) state at the filling factors
of ν = (2 j − 1)/(2 j) (or ν = 1/(2 j)). This mechanism is
examined in Section 4.

At the filling factors of ν = 7/11, 4/11, 4/13, 5/13, 5/17,
and 6/17, some of the nearest electron (or hole) pairs are
allowed to transfer to all vacant (or filled) states. This case
yields small energy gaps, for example,

ΔEnearest pair

E(ν)
= (E(ν)− lims−→ν+ε E(s))

E(ν)

≈ 0.006493
0.103896

for ν = 7
11

(12)

which is investigated in Section 5. Thus, the present theory
produces a gap structure or a gapless structure for each

fractional filling factor. The theoretical results are in a good
agreement with the experimental data.

We examine another type of gap which indicates the
excitation energy gap from the ground state to excited
states. This new gap is highly correlated with the gap in the
spectrum of energy versus filling factor. The mechanism is
studied in Section 6.

2. Most Uniform Configuration of Electrons

We can find out the many-electron states with the minimum
energy ofHD for any filling factor. As most easy examples, we
show the case of ν = 1/3 and ν = 2/3. Figures 2(a) and 2(b)
indicate the configurations of electrons with the minimum
classical Coulomb energy at ν =1/3 and 2/3, respectively.

Therein the bold line indicates a Landau state filled with
electron, and the dashed line means an empty state. It is
noteworthy that the current direction is described by the
x-direction, and the Hall voltage direction is described by
the y-direction (same as in Figure 1). Figure 2(a) shows the
electron configuration with repeating of the arrangement
(empty, filled, empty). This filling way is the most uniform
configuration at ν = 1/3 and then has the minimum classical
Coulomb energy. The filling way in Figure 2(b) also has the
minimum classical Coulomb energy at ν = 2/3. It is easily
seen that Figures 2(a) and 2(b) indicate the most uniform
filling ways at ν = 1/3 and ν = 2/3, respectively.

We explain the searching method to find the electron
configuration with the minimum Coulomb energy, because
it is nontrivial to find the filling way for any fractional filling
factor ν < 1. In order to clarify the explanation, we consider
one example of ν = 3/5. We compare the classical Coulomb
energies of the following two cases.

Case 1. In the whole region, three electrons exist inside every
5 sequential landau states. Then the filling factor becomes
3/5.

Case 2. Two electrons exist in 5 sequential Landau states for
some parts, and four electrons exist in 5 sequential Landau
states for some other parts. And the average filling factor is
equal to 3/5.

The Coulomb energy of Case 1 is smaller than one of
Case 2 because the filling way of Case 1 is more uniform than
one of Case 2. Therefore, it is sufficient to consider all the
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filling ways inside 5 sequential states. They are 10 filling ways
as shown in Figure 3.

The five filling ways (a-1, a-2, a-3, a-4, and a-5) give
the same electron configuration A by numerous repeating of
themselves except both end parts. The electron configuration
A is shown in Figure 4(a). The both end parts can be
neglected for macroscopic number of electrons in a quantum
Hall device.

Similarly the five filling ways (b-1, b-2, b-3, b-4, and b-5)
in Figure 3 give the same electron configuration B as Figure
4(b). It is clear that the electron configuration A of Figure
4(a) has the classical Coulomb energy smaller than one of
configuration B at ν = 3/5.

It is noteworthy to examine the connections between
different arrangements in Figure 3. We draw the connections
of (a-1 and a-2), (a-1 and a-3), (a-1 and a-4), and (a-1 and a-
5) in Figure 5 where the first filling way is red coloured, and
the second filling way is blue coloured. All the connections
include green areas where 2 electrons or 4 electrons exist
inside five sequential Landau sates as in Figure 5.

Therefore, these connections belong to Case 2 and
then have a classical Coulomb energy larger than one of
configuration A in Figure 4(a).

For any filling factor ν = r/q, r electrons should exist in q
sequential Landau states everywhere. All filling ways have the
number of q!/(r!(q−r)!). We can draw all the filling ways and
then find out the most uniform configuration of electrons.
This procedure is applied to the cases with denominator
q = 2, 3, 4, 5, 6, 7, 8. Then, we get the filling ways with the
minimum classical Coulomb energy as drawn in Figure 6
(We abbreviate equivalent filling ways. For example only the
filling way a-1 is drawn, and other filling ways a-2, a-3, a-4,
a-5 are abbreviated for ν = 3/5). These filling ways are called
unit arrangements for each filling factors.

When we repeat the unit arrangement in Figure 6, we
obtain the electron configuration with the minimum classical
Coulomb energy at each filling factor.

We draw some examples with higher Coulomb energy for
the denominator q = 7, 8 in Figure 7. Comparison of Figure
6 with Figure 7 reveals the fact that the unit arrangements in
Figure 6 have more uniformity than ones in Figure 7.

Thus only one configuration has the minimum classical
Coulomb energy among the enormous many configurations.
The whole-electron configuration is created by repeating
of only one unit arrangement of electron at any fractional
number of ν.

3. Gap Structure in the
Neighbourhood of ν = j/(2 j ± 1)

3.1. Calculation of Binding Energy at ν = j/(2 j − 1). The
shape of Landau wave function with L = 0 is schematically
drawn by a straight line. We draw the most uniform electron
configuration at ν = j/(2 j − 1) in Figure 8 where solid lines
indicate the Landau orbitals filled with electron, and dashed
lines indicate the vacant Landau orbitals. Therein, nearest
electron pairs are red-coloured, and single electrons are blue-
coloured. The Coulomb transitions from the nearest electron

b-1 b-3b-2a-1 a-3a-2 a-4 a-5 b-5b-4

Figure 3: All unit arrangements of electron configurations for ν =
3/5.

pair AB are illustrated by black arrows in Figure 8. The x and
y directions are drawn in the upper left corner.

The electron configurations in Figure 8 have the min-
imum classical Coulomb energy for each filling factors.
In order to explain the calculation of the second-order
perturbation energy, we draw again the most uniform
electron configuration of ν = 2/3 in Figure 9. Therein the
first transition is expressed by black arrows, and the second
transition is expressed by green arrows and so on.

The momenta of the nearest electron pair AB are
described by pA, pB, respectively. When electron A transfers
to the first orbital to the left, the initial momentum pA

decreases by 2π�/� according to (2). After the transition, the
electron A has a new momentum p′A as

p′A = pA − 2π�

�
. (13)

The other electron B transfers to the momentum p′B. Then
the total momentum conservation in the x-direction gives
the following relation:

p′A + p′B = pA + pB. (14)

Substitution of (13) into (14) yields the momentum p′B as

p′B = pB +
2π�

�
. (15)

This momentum increment means that the electron B should
transfer from its original orbital to the first orbital to the right
because of (2) and (15). This transition is allowed because
the right orbital is empty as in Figure 9.

Similarly the nearest electron pair AB can transfer to the
other empty states, and the momenta after the transition are
given by

p′A = pA − Δp,

p′B = pB + Δp,
(16)

where the momentum transfer Δp at ν = 2/3 has the values
as

Δp =
(
3 j + 1

)
2π�

�
for j = 0,±1,±2,±3, . . . (17)

because the electrons are possible to transfer to empty
orbitals only. (In this paper we investigate the case that all the
electron spins have an opposite direction of magnetic field.
Another case is discussed in the other articles [14–16]). The
second-order perturbation energy of the nearest electron pair
AB is given by

σν=2/3 =
∑

Δp=(3 j+1)2π�/� for j=0,±1,±2,...

R

R =
〈
pA, pB|HI |p′A, p′B

〉〈
p′A, p′B|HI |pA, pB

〉
WG −Wexcite

(
pA → p′A, pB → p′B

) .

(18)
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(a) (b)

Figure 4: (a) Configuration A at ν = 3/5. (b) Configuration B at ν = 3/5.

a-1 a-2 a-3a-1 a-4a-1 a-5a-1

Figure 5: Connections between different arrangements.

We introduce the following summation Z as

Z = −
all∑

Δp /= 0,−2π�/�

〈
pA, pB|HI |p′A, p′B

〉〈
p′A, p′B|HI |pA, pB

〉
WG −Wexcite

(
pA → p′A, pB → p′B

) ,

(19)

where the momentum transfer Δp takes all values (2π�/�)×
integer except Δp = 0 and Δp = −2π�/�. The transferred
states with Δp = 0 and Δp = −2π�/� are the same state as
the initial state. This state is eliminated in the summation
of (19) because the diagonal matrix element of HI is zero.
Therefore, the denominator is not zero and has a negative
value. The definition of Z includes (−1) in the right-hand
side, and the denominator is a negative value. Accordingly
the value of Z is positive.

We can systematically describe the perturbation energies
at any filling factors by using the value of Z. We compare
Z with the perturbation energy σν=2/3 of (18). The interval
of the momentum transfer is 3 × 2π�/� in the summation
σν=2/3. On the other hand, the summation Z is performed
by the momentum interval 2π�/�. The interval value is very
small for a quantum Hall device with a macroscopic size and
then we get

σν=2/3 = −1
3
Z. (20)

Thus, we can express the perturbation energy σν=2/3 of the
nearest electron pair by the summation Z. The perturbation
energies depend upon � and B, namely, device size and
magnetic field strength. These dependences are included in
the summation Z.

The number of nearest electron pairs is (1/2)N at ν = 2/3,
where N is the total number of electrons. Accordingly the
total perturbation energy Enearest pair of all nearest electron
pairs is obtained as

Enearest pair = 1
2
N × σν=2/3 = −1

6
ZN , for ν = 2

3
. (21)

Similar calculation leads the second order perturbation ener-
gy of nearest electron pairs at any filling factor of ν = j/(2 j−1)
as follows [16].

Therein, j electrons partially occupy each sequential
(2 j − 1) Landau states, and then ( j − 1) Landau states
are empty for each sequential (2 j − 1) Landau states. Any
nearest electron pair can transfer to all the empty states as
in Figure 8. The number of transitions is equal to ( j − 1)
for each (2 j − 1) Landau states. Therefore, the second-order
perturbation energy per pair is given by

σν= j/(2 j−1) = − j − 1
2 j − 1

Z, for ν = j(
2 j − 1

) . (22)

The number of nearest electron pairs is (1/ j)N at ν =
j/(2 j − 1), where N is the total number of electrons.
Accordingly the total perturbation energy Enearest pair from all
nearest electron pairs is obtained as

Enearest pair = N

j
σν= j/(2 j−1)

= − j − 1
j
(
2 j − 1

)ZN , for ν = j(
2 j − 1

) . (23)

The nearest electron pair energy per electron is given by

χ

(
ν = j

2 j − 1

)
= −

(
j − 1

)
Z(

j
(
2 j − 1

)) , for ν = j(
2 j − 1

) . (24)

3.2. Gap Structure at ν = j/(2 j − 1). It has been clarified in
the previous subsection that all the nearest electron pairs can
transfer to all empty Landau orbitals at the filling factor of
ν = j/(2 j − 1). We next examine the perturbation energies
in the neighbourhood of ν = j/(2 j − 1). The fraction ν =
( j(2s) − 1)/((2 j − 1)(2s) − 2) approaches ν = j/(2 j − 1) in
the limit of infinitely large s. In the case of j = 4, s = 2, the
fraction is equal to

ν =
(
j(2s)− 1

)((
2 j − 1

)
(2s)− 2

) = 15
26
. (25)

The most uniform electron configuration is illustrated in
Figure 10.

It is noteworthy that some nearest electron pairs can-
not transfer to some empty states because of momentum
conservation and Pauli’s exclusion principle. We take this
prohibition of the transitions into consideration and obtain
the perturbation energy of nearest electron pairs as follows:

Enearest pair =
[
−2×

(
8

26

)
Z − 2×

(
10
26

)
Z

]
×
(

1
15

)
N = − 36

26 × 15
ZN , for ν = 15

26
.

(26)
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A = 1/2 A = 1/3 A = 1/4 A = 3/4 A = 1/5 A = 2/5 A = 3/5 A = 4/5 A = 1/6 A = 5/6

A = 1/7 A = 2/7 A = 3/7 A = 4/7 A = 5/7 A = 6/7 A = 3/8 A = 5/8

A = 2/3

Figure 6: Most uniform unit arrangements of electron configuration.

A = 2/7 A = 3/7 A = 4/7 A = 5/7 A = 3/8 A = 5/8

Figure 7: Filling ways with higher classical Coulomb energy.

A = 2/3

A = 3/5

A = 4/7

A = 5/9

A = 6/11

A = 7/13

X

Y
AB

AB

AB

AB

AB

AB

Figure 8: Allowed transitions of nearest electron pair at ν = j/(2 j −
1).

This calculation process can be extended to any integer s as
follows:

Enearest pair =

⎡⎢⎢⎣−2×
(

(4s)
(14s−2)

)
Z−2×

(
(4s+2)

(14s−2)

)
Z · · ·

· · · − 2×
(

(6s− 2)
(14s− 2)

)
Z

⎤⎥⎥⎦
× N

(8s− 1)
.

(27)

The result indicates the perturbation energy of nearest
electron pairs in the neighbourhood of ν = 4/7.

A B

X

Y

Figure 9: Coulomb transitions from nearest electron pair AB at
ν = 2/3. (The electric current flows along the x-direction. The
momentum value is related to its central position of the y direction
as in (2)).

Next we examine the neighbourhood of ν = j/(2 j−1) for
any integer of j. That is to say we consider the filling factor
of ν = ( j(2s)−1)/((2 j−1)(2s)−2). We introduce new three
parameters as follows:

α = ((
2 j − 1

)
(2s)− 2

)
, β = (

j(2s)− 1
)
,

γ = ((
j − 1

)
(2s)− 1

)
.

(28)

The parameter α is the number of orbitals in unit arrange-
ment, β is the number of electrons in unit arrangement,
and γ is the number of empty orbitals in unit arrangement.
Accordingly we replace (8s − 1) into β and also replace
(14s− 2) into α in (27). Then we get

Enearest pair =
[
−2×

(
(4s)
α

)
Z − 2

×
(

(4s + 2)
α

)
Z · · · − 2×

(
(6s− 2)

α

)
Z

]
× N

β
,

(29)

where (6s− 2) indicate γ − 1. Accordingly (4s) is replaced to
γ + 1− 2s, and then we obtain that

Enearest pair =
[
−2×

((
γ + 1− 2s

)
α

)
Z − 2

×
(

(4s+2)
α

)
×Z· · ·−2×

((
γ−1

)
α

)
Z

]
×N
β

,

Enearest pair =
[−2× (γ + 1− 2s

)− 2

×(γ + 3− 2s
) · · · − 2× (γ − 1

)]Z
α
× N

β
,

Enearest pair =
[−(2γ − 2s

)
s
]Z
α
× N

β
at ν = β

α
.

(30)
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Figure 10: Transitions from nearest electron pairs for ν = 15/26.

Substitution of (28) into (30) yields

Enearest pair = −
((

2 j − 3
)
2s− 2

)
s((

2 j − 1
)
(2s)− 2

) ZN(
j(2s)− 1

)
at ν =

(
j(2s)− 1

)((
2 j − 1

)
(2s)− 2

) . (31)

Thus, we have obtained the perturbation energy of the
nearest electron pairs for any integers of j and s. Equation
(31) gives the limiting value from the right for s → ∞
because ν = β/α is larger than j/(2 j − 1). We have

ν = β

α
=

(
j(2s)− 1

)((
2 j − 1

)
(2s)− 2

) −−−→
s→∞

j(
2 j − 1

) , (32a)

Enearest pair

= −
((

2 j − 3
)
2s− 2

)
s((

2 j − 1
)
(2s)− 2

) ZN(
j(2s)− 1

) −−−→
s→∞ −

(
2 j − 3

)
ZN

2 j
(
2 j − 1

)
at ν = j

2 j − 1
+ ε,

(32b)

where ε indicates an infinitesimally small positive value.
Equation (23) indicates the perturbation energy of nearest
electron pairs at ν = j/(2 j − 1) as

Enearest pair = −
(
j − 1

)
ZN

j
(
2 j − 1

) at ν = j

2 j − 1
, (33)

χ

(
j

2 j − 1

)
= Enearest pair

N
= −

(
j − 1

)
Z(

j
(
2 j − 1

)) . (34)

Equation (32b) means the limiting value of nearest pair
perturbation energy from the right at ν = j/(2 j − 1). The
perturbation energy (33) at ν = j/(2 j − 1) is lower than the
limiting value (32b), and, therefore, the energy gap is equal
to

ΔEnearest pair = E(ν)− lim
s→ ν+ε

E(s)

= − ZN

2 j
(
2 j − 1

) for ν = j

2 j − 1
.

(35)

Next we calculate the limiting value from the left. We
consider the fraction ν = ( j(2s) + 1)/((2 j − 1)(2s) + 2)
which is smaller than ν = j/(2 j − 1). New three parameters
α′,β′, and γ′ are defined as

α′ = ((
2 j − 1

)
(2s) + 2

)
, β′ = (

j(2s) + 1
)
,

γ′ = ((
j − 1

)
(2s) + 1

)
.

(36)

The parameter α′ is the number of orbitals in unit arrange-
ment, β′ is the number of electrons in unit arrangement, and
γ′ is the number of empty orbitals in unit arrangement. The
filling factor is given by ν = β′/α′ as

ν = β′

α′
=

(
j(2s) + 1

)((
2 j − 1

)
(2s) + 2

) . (37)

The total transition energy from all the nearest electron pairs
is equal to

Enearest pair =
[−(2γ′ − 2s

)
s
] Z
α′
× N

β′
at ν = β′

α′
. (38)

Limiting values of (37) and (38) are

ν =
(
j(2s) + 1

)((
2 j − 1

)
(2s) + 2

) −−−→
s→∞

j(
2 j − 1

) ,

Enearest pair = −
((

2 j − 3
)
2s + 2

)
s((

2 j − 1
)
(2s) + 2

) ZN(
j(2s) + 1

)
−−−→
s→∞ −

(
2 j − 3

)
ZN

2 j
(
2 j − 1

) at ν = j

2 j − 1
− ε.

(39)

This limiting value from the left is compared with the
original value at ν = j/(2 j − 1), and then the original value
is lower than the limiting value from the left as

ΔEnearest pair = E(ν)− lim
s→ ν−εE(s)

= − ZN

2 j
(
2 j − 1

) for ν = j

2 j − 1
.

(40)

Equations (35) and (40) indicate that the limiting values
from both sides of ν = j/(2 j−1) are higher than the original
value at ν = j/(2 j − 1).

The gap structure is produced from the property that all
the nearest electron pairs are possible to transfer to all empty
states at ν = j/(2 j − 1). When the filling factor ν changes
from j/(2 j − 1) by an infinitesimally small value, some of
the transitions are forbidden. That is to say the number
of allowed transitions decreases drastically. This property is
caused by the most uniform electron configuration, Fermi-
Dirac statistics, and momentum conservation. The drastic
change also appears in higher order of the perturbation
energy. The higher-order perturbations are studied in the
other article.

Table 1 shows the discontinuous structure of the pertur-
bation energies at the filling factors of ν = j/(2 j−1), where ε
expresses an infinitesimally small positive value. Therefore,
+ε indicates the limiting process from the right, and −ε
indicates the limiting process from the left.
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Table 1: Energy gaps of nearest electron pairs per electron at ν = j/(2 j − 1).

ν Enearest pair/N ν lim(Enearest pair/N) Δε+(ν) = Δε−(ν)

2/3 −(1/6)Z (2/3)± ε −(1/12)Z −(1/12)Z

3/5 −(2/15)Z (3/5)± ε −(3/30)Z −(1/30)Z

4/7 −(3/28)Z (4/7)± ε −(5/56)Z −(1/56)Z

5/9 −(4/45)Z (5/9)± ε −(7/90)Z −(1/90)Z

6/11 −(5/66)Z (6/11)± ε −(9/132)Z −(1/132)Z

7/13 −(6/91)Z (7/13)± ε −(11/182)Z −(1/182)Z

8/15 −(7/120)Z (8/15)± ε −(13/240)Z −(1/240)Z

AB

AB

AB

AB

AB

AB

A = 1/3

A = 2/5

A = 3/7

A = 4/9

A = 5/11

A = 6/13

Figure 11: Coulomb transitions from nearest hole pair AB.

3.3. Gap Structure at ν = j/(2 j + 1). We draw the most uni-
form electron configuration at ν = j/(2 j + 1) in Figure 11.

Therein, solid lines indicate the Landau orbitals filled
with electron, and dashed lines indicate the vacant Landau
orbitals. Nearest hole pairs are red coloured, and single
holes are blue coloured. The Coulomb transitions from the
nearest hole pair AB are drawn by black arrows in Figure 11.
Using the same method as in the previous section, we can
estimate the perturbation energies of the nearest hole pairs
Enearest hole pair. The result is as follows:

Enearest hole pair = − j(
j + 1

)(
2 j + 1

)ZHNH at ν = j

2 j + 1
,

(41)

where NH is the total number of holes. We obtain the pair
energy per hole as

Enearest hole pair

NH
= − j(

j + 1
)(

2 j + 1
)ZH at ν = j

2 j + 1
.

(42)

The energy per electron is

Enearest hole pair

N
= − 1(

2 j + 1
)ZH at ν = j

2 j + 1
. (43)

We also calculate the perturbation energies in the neighbour-
hood of ν = j/(2j + 1), and the results are

Enearest hole pair = −
((

2 j − 1
)
2s− 2

)
s((

2 j + 1
)
(2s)− 2

) ZHNH((
j + 1

)
(2s)− 1

)
at ν =

((
j
)
(2s)− 1

)((
2 j + 1

)
(2s)− 2

) ,

Enearest hole pair = −
((

2 j − 1
)
2s + 2

)
s((

2 j + 1
)
(2s) + 2

) ZHNH((
j + 1

)
(2s) + 1

)
at ν =

((
j
)
(2s) + 1

)((
2 j + 1

)
(2s) + 2

) .
(44)

The limiting values are obtained as

Enearest hole pair

N
−−−→
s→∞ − 2 j − 1

2 j
(
2 j + 1

)ZH for ν = j

2 j + 1
± ε.
(45)

We summarize the energy gaps of the nearest hole pairs at
ν = j/(2 j + 1) in Table 2. The rightmost column means the
energy gap per electron (not per hole).

Tables 1 and 2 show the gap structure of the fractional
filling states at ν = j/(2 j±1) because the perturbation energy
is lower than one of each neighbourhood.

3.4. Comparison between Experimental Data and Nearest Pair
Energy at ν = j/(2 j ± 1). Many electrons in the electric
current are scattered by impurities and thermal vibrations.
These scatterings yield the diagonal resistance of the x
direction.

At ν = j/(2 j ± 1), we have theoretically estimated the
energy gaps in the spectrum of energy versus filling factor
in Sections 3.2 and 3.3. The energy gaps in the spectrum
produce the plateaus in Hall resistance curve (confinements
of Hall resistance). The excitation-energy gap from the
ground state is highly correlated with the energy gap in the
spectrum as discussed in Section 6.

The excitation-energy gaps suppress the electron scat-
terings. Then the diagonal resistance becomes small. This
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Table 2: Energy gaps of nearest hole pairs per electron at ν = j/(2 j + 1).

ν Enearest pair/NH Enearest pair/N ν lim(Enearest pair/N) Δε+(ν) = Δε−(ν)

1/3 −(1/6)ZH −(1/3)ZH (1/3)± ε −(1/6)ZH −(1/6)ZH
2/5 −(2/15)ZH −(1/5)ZH (2/5)± ε −(3/20)ZH −(1/20)ZH
3/7 −(3/28)ZH −(1/7)ZH (3/7)± ε −(5/42)ZH −(1/42)ZH
4/9 −(4/45)ZH −(1/9)ZH (4/9)± ε −(7/72)ZH −(1/72)ZH
5/11 −(5/66)ZH −(1/11)ZH (5/11)± ε −(9/110)ZH −(1/110)ZH
6/13 −(6/91)ZH −(1/13)ZH (6/13)± ε −(11/156)ZH −(1/156)ZH
7/15 −(7/120)ZH −(1/15)ZH (7/15)± ε −(13/210)ZH −(1/210)ZH

Magnetic field (T)

6 8 10 12 14

R
X

X
(k
Ω

)

0. 5

1

1/22/3

3/5

2/5
4/7

5/9 6/11 7/13
7/15

5/11

10/19

3/7

10/21

6/13

4/9
3/8

5/13

4/11

7/11

6/17

1/3

4/13

5/17

3/10

Figure 12: Many local minima of the diagonal resistance in the
region of 2/3 ≥ ν ≥ 1/3. This experimental result has been obtained
in [2].

mechanism produces local minima in the diagonal resistance
curve. The theoretical results in Tables 1 and 2 are in a good
accordance with the experimental data of Figure 12.

The local minima appear at the filling factors of ν =2/3,
3/5, 4/7, 5/9, 6/11, 7/13, 8/15,. . . and ν = 7/15, 6/13, 5/11,
4/9, 3/7, 2/5, 1/3 which are indicated by red colour in Figure
12. Furthermore, there are small local minima in the curve
of diagonal resistance versus magnetic field strength. The
fractions are 7/11, 5/13, 3/8, 4/11, 6/17, 4/13, 3/10, and 5/17
which are coloured by green in Figure 12. We will examine
the FQH states with ν = 7/11, 4/11, 4/13, 5/13, 5/17, 6/17
in the later Section 5. The remaining FQH states with ν =
3/8, 5/8, 3/10 have even denominators and have been already
investigated in [17].

4. Gapless Structure of Nearest Pair Energy at
ν = 1/(2 j) and ν = (2 j − 1)/(2 j)

The most uniform electron configurations are illustrated in
Figure 13 at ν = (2 j − 1)/(2 j). The filling factors have even
number of the denominator. As an example, we examine the
case of ν = 3/4. When electron A transfers to the fifth orbital
to the left, electron B should transfer to the fifth orbital
to the right. However, the fifth orbital is already filled with
electron. Therefore, this transition is forbidden. Similarly all

A = 3/4

A = 5/6

ABC

ABC

DE

Figure 13: All Coulomb transitions from nearest electron pairs are
forbidden.

A = 1/4

A = 1/6

ABC

ABC

DE

Figure 14: All Coulomb transitions from nearest hole pairs are
forbidden.

the nearest electron pairs cannot transfer to empty states at
ν = (2 j − 1)/(2 j).

Next we draw the most uniform electron configuration
for ν = 1/(2 j) in Figure 14. The hole pairs AB and BC cannot
transfer to any filled orbitals at ν = 1/4 as in Figure 14. All
the nearest hole pairs cannot transfer to any filled orbitals at
ν = 1/(2 j) for any integer of j. Therefore, the perturbation
energies of the nearest electron (or hole) pairs are zero for all
order perturbations at ν = (2 j − 1)/(2 j) (or ν = 1/(2 j)).

That is to say we obtain the following relations:

Enearest electron pair

N
= 0, for ν =

(
2 j − 1

)(
2 j
) ,

Enearest hole pair

NH
= 0, for ν = 1(

2 j
) . (46)

We show the perturbation energies of nearest electron pairs
and nearest hole pairs in Table 3.

Consequently the states with ν = (2 j − 1)/(2 j) (and ν =
1/(2 j)) are not confined in the Hall resistance curve [18–23].
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Table 3: Nearest pair energies at ν = (2 j − 1)/(2 j) and ν = 1/(2 j).

ν Enearest pair/N ν Enearest pair/NH

1/2 0

3/4 0 1/4 0

5/6 0 1/6 0

7/8 0 1/8 0

A B FEDC

Figure 15: Coulomb transitions of nearest electron pairs at ν =
7/11.

5. Special States with Several Fractional
Filling Factors

In this section we examine the states with the filling factors
ν = 7/11, 4/11, 4/13, 5/13, 5/17, and 6/17. The most uniform
electron configuration with ν = 7/11 is schematically drawn
in Figure 15. There are three pairs of nearest electrons in
every unit arrangement, namely, (filled, empty, filled, filled,
empty, filled, filled, empty, filled, filled, empty). The orbitals
filled with electron are illustrated by solid lines, and the
empty orbitals are illustrated by dashed lines.

The nearest electron pair CD can transfer to all empty
orbitals. Then the perturbation energy of the pair CD is equal
to

σCD = −
(

4
11

)
Z. (47)

The nearest electron pairs AB and EF transfer to two empty
states per unit arrangement and have the perturbation
energies σAB and σEF as

σAB = σEF = −
(

2
11

)
Z, (48)

(
Enearest pair

)
ν=7/11

=
(
− 4

11
Z − 2

11
Z − 2

11
Z

)
1
7
N ,

= − 8
77
ZN , for ν = 7

11
,

(49)

(
Enearest pair

N

)
ν=7/11

=− 8
77
Z≈−0.103896×Z, for ν= 7

11
.

(50)

We examine the neighbourhood of ν = 7/11 which are ν =
(7s − 2)/(11s − 3) and ν = (7s + 2)/(11s + 3). The most
uniform electron configuration at ν = (7s ± 2)/(11s ± 3) is
systematically produced by modulation of the configuration
as Figure 15. Then the perturbation energy of the nearest

A B FEDC

Figure 16: Coulomb transitions of nearest hole pairs at ν = 4/11.

electron pairs is calculated by the use of the computer
program. The calculation results for s = 100 are(

Enearest pair

N

)
ν=698/1097

= − 74601
765706

Z = −0.0974277× Z, for ν− = 698
1097

,(
Enearest pair

N

)
ν=702/1103

= − 75401
774306

Z = −0.0973788× Z, for ν+ = 702
1103

.

(51)

We also calculate the case of s = 1000 the results of which are(
Enearest pair

N

)
= − 7496001

76957006
Z = −0.097405× Z, for ν− = 6998

10997
,(

Enearest pair

N

)
= − 7504001

77043006
Z = −0.0974002× Z, for ν+ = 7002

11003
.

(52)

We compare the case of s = 100 with s = 1000 and find that
the energies (51)–(52) are nearly equal to each other. Then
the limiting values from both sides are approximately equal
to

lim
ν→ (7/11)±ε

(
Enearest pair

N

)
≈−0.097403×Z, for ν±= 7

11
±ε.
(53)

The perturbation energy per electron is (−0.103896 × Z) at
ν = 7/11, and therefore the energy gap appears at ν = 7/11
as in (50) and (53)(
Enearest pair

N

)
ν=7/11

− lim
ν→ (7/11)±ε

(
Enearest pair

N

)
≈−0.006493×Z.

(54)

Next we examine the case of ν = 4/11. We schematically
draw the most uniform electron configuration of ν = 4/11
in Figure 16.

Then the perturbation energy of the nearest hole pairs is
obtained as(

Enearest pair

)
ν=4/11

= − 8
77
ZHNH , for ν = 4

11
,(

Enearest pair

NH

)
ν=4/11

= − 8
77
ZH , for ν = 4

11
,(

Enearest pair

N

)
ν=4/11

=− 8
11 × 4

ZH=− 2
11
ZH , for ν= 4

11
.

(55)
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A B FEDC

Figure 17: Coulomb transitions of nearest hole pair at ν = 4/13.

FA EB DC

Figure 18: Coulomb transitions of nearest hole pair at ν = 5/13.

If the configuration continues infinitely (it is a good approx-
imation for macroscopic size of a device), then Figure 16 has
the left-right symmetry for the centre of the hole pair CD.
These pairs like CD are coloured red. All the red pairs can
transfer to all the electron states. On the other hand, there
is no left-right symmetry for the centre of the pair AB or
EF. The pairs are coloured brown. They cannot transfer to
some electron states because of momentum conservation.
The perturbation energy of the nearest hole pairs has the
energy gap at ν = 4/11 as in the case of ν = 7/11.

Similar configurations are schematically drawn in Figures
17, 18, 19 and 20 for ν = 4/13, 5/13, 5/17, 6/17.

All the red hole pairs can transfer to all electron states as
in Figures 15–20. This property is violated by infinitesimally
small changing of the value ν. When the value of ν varies from
the original values ν = 4/13, 5/13, 5/17, and 6/17, the number
of allowed transitions becomes small. Therefore, these states
with ν = 4/13, 5/13, 5/17, 6/17 are stable. This property is
in accordance with the experimental data as it is shown by
green colour in Figure 12. (The fractions ν = 3/8, 58, 3/10
have been studied in [17].)

6. Excitation Energy of FQHS

We have used the term “energy gap” for the gap in the
spectrum of energy versus filling factor in the previous
sections. This gap produces the plateau in the Hall resistance
curve [18–23]. There is another gap which indicates the
minimum value of all excitation energies from the ground
state to excited states with the same filling factor ν. We call
it “excitation-energy-gap.” We examine the excitation-energy
gap for three filling factors in this section.

We first consider one of excited states at ν = 2/3 which is
illustrated in Figure 21. The electron configuration is created
by the excitation from the ground state as follows: one
electron in the orbital B transfers to the orbital C. This
excitation from the ground state is shown by green color
in Figure 21. The electron configuration expresses one of
eigen states for the Hamiltonian HD. This excited state #1
has new nearest-electron pairs CE and DC which have the
perturbation energies via residual Coulomb transitions. As
in Figure 21, no transition is allowed from the pair CE, and
only two transitions are allowed from the pair DC. Forbidden

BA FEDC

Figure 19: Coulomb transitions of nearest hole pair at ν = 5/17.

IHGBA FEDC J

Figure 20: Coulomb transitions of nearest hole pair at ν = 6/17.

BA CD E F

A = 2/3

Figure 21: Electron configuration in excited state #1 at ν = 2/3.

transitions are drawn by pink color, and allowed transitions
are drawn by black color.

The perturbation energies of the pairs CE and DC are
described by the symbols σ′CE and σ′DC, respectively. The
symbol σ′ (symbol prime) means the perturbation energy for
the excited state #1. The second-order perturbation energy
σ′DC is obtained as

σ′DC

=
∑

Δp=6(2π�/�),−7(2π�/�)

〈
pD, pC

∣∣HI

∣∣p′D, p′C
〉〈
p′D, p′C

∣∣HI

∣∣pD, pC
〉

Wstate#1−Wexcite
(
pD → p′D, pC → p′c

) .
(56)

We introduce the following summation Z′ as:

Z′ =−
all∑

Δp /= 0,−2π�/�

〈
pD, pC

∣∣HI

∣∣p′D, p′C
〉〈
p′D, p′C

∣∣HI

∣∣pD, pC
〉

Wstate#1 −Wexcite
(
pD → p′D, pC → p′C

) .

(57)

This definition is similar to (19). We count the number
of effective transitions which have the overlapping region
between the initial Landau wave function and the final
wave function. If the momentum transfer becomes lager
than some critical value, then the transition matrix element
becomes negligibly small.

The spreading width of Landau state is denoted by Δy,
the value of which is about 10.5 nm for the case of B ≈ 6[T]

� ≈ 1.0546 × 10−34 J s, e ≈ 1.6022 × 10−19 C,

Δy ≈ 10.5 [nm], for B ≈ 6 [T].
(58)

The interval width between nearest Landau orbitals is
estimated as

Δα= 2π�

eB�
≈6.5 × 10−4 [nm], for �=1 [mm]=106 [nm],

(59)
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BA C D E F

A = 1/2

Figure 22: Electron configuration in excited state #2 at ν = 1/2.

where we have applied � = 1 [mm] for the length of quan-
tum Hall device. Then there are enormous many single-
electron states inside the spreading width Δy. The number
is

Δy

Δα
≈ �

2π

√
eB

�
≈ 2 × 104. (60)

Accordingly the effective momentum transfers satisfy the fol-
lowing relation:

∣∣p′C − pC
∣∣ ≤ 2π�

�
× 2 × 104. (61)

Only two transitions are allowed from the pair DC, and
therefore the ratio −σ′DC/Z

′ is about 10−4 as follows:

−σ′DC

Z′
≈ 2

(2 × 104)
= 10−4, for � = 1 [mm]. (62)

Because this value is negligibly small, we can use the fol-
lowing approximation:

σ′DC ≈ −10−4 × Z′ ≈ 0. (63)

All the transitions from the pair CE are forbidden, and then
the perturbation energy of the nearest pair CE is zero

σ′CE = 0. (64)

Furthermore, the nearest pair AB disappears by the excitation
in Figure 21, and therefore the excitation-energyΔEexcitation #1

is given by

ΔEexcitation #1 = σ′DC + σ′CE − σAB, (65)

where σAB indicates the summation (18) the result of which
is equal to (20)

σAB = −
(

1
3

)
Z. (66)

Substitution of (63), (64), and (66) into (65) yields the exci-
tation energy as

ΔEexcitation #1 = σ′DC + σ′CE − σAB ≈
(

1
3

)
Z. (67)

It is noteworthy that the excitation energy is a positive value.
The second example is shown in Figure 22 where the

electron A transfers to the orbital B at ν = 1/2. The excited
state #2 has two nearest electron pairs CB and BD. The
excitation energy ΔEexcitation #2 from ground state to the state
#2 is given by

ΔEexcitation #2 = σ′′CB + σ′′BD ≈ 0. (68)

BA CD E F

A = 1/4

Figure 23: Electron configuration in excited state #3 at ν = 1/4.

The third example is the case of ν = 1/4. The hole B transfers
to the orbital C and, then, the transition yields the excited
state #3 as in Figure 23. Then the nearest hole pairs DC
and CE are produced additionally. However, all the quantum
transitions are forbidden from the hole pairs DC and CE.
Accordingly the excitation energy ΔEexcitation #3 is zero as

ΔEexcitation #3 = σ′′′hole
DC + σ′′′hole

CE − 2× σhole
ν=1/4 = 0, (69)

where σhole
ν=1/4 is the nearest hole pair energy. It is noteworthy

that two nearest-hole pairs disappear by the excitation of
the state #3. The value of σhole

ν=1/4 is zero derived from the
estimation in Section 4.

Thus the excitation-energy gap has a correlation with the
energy gap in the spectrum.

When the device size is very small, the ratio Δy/Δα
becomes small. Therein, the energy gaps also become small
for any fractional (not integer) filling factor. The size effect
appears in a quantum Hall device with ultrasmall size (such
as about 50 nm size for length �).

7. Conclusion

We have developed the theory of Tao and Thouless. Then we
have found the momentum conservation of the x direction
for the Coulomb transitions. The momentum conservation
law, Fermi-Dirac statistics, and the most uniform electron
configuration produce gap structure at the filling factors ν =
j/(2 j ± 1), 1/(2 j + 1), (2 j)/(2 j + 1) and gapless structure
at the filling factors ν = 1/(2 j), (2 j − 1)/(2 j). Furthermore
small energy gaps are estimated for examples of ν = 7/11 and
4/11 by the use of computer program. Thus, we have applied
the same procedure to FQH states with arbitrary fractional
filling factors, and then we have obtained various types of
energy spectra for nearest electron pairs and nearest hole
pairs. It is important to use the same logic for investigation
of all FQH states. This paper has explained FQH states with
various filling factors by using usual quantum mechanics and
usual electrons without any quasiparticle.
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Nonlinear equations describing one-dimensional non-Heisenberg ferromagnetic model are studied by the use of generalized
coherent states in a real parameterization. Also, dissipative spin wave equation for dipole and quadruple branches is obtained
if there is a small linear excitation from the ground state.

1. Introduction

In the past decades, magnets with spin value s 1 2 have
been studied completely. There are dipoles, quadruples and
higher-order branches that affect the behavior of magnet
crystal. However, the only necessary tool for describing the
behavior of this kind of magnets is dipole branch effect, and
the order branches are not necessary. This results in linear
approximation for describing the magnet behavior.

Indeed, only dipole branch effect has been used for de-
scribing magnets with spin value s 1, and the effect of
quadrupole and higher-order branches has been ignored.
Recently, however, due to the new developments in math-
ematics and technology and also due to the great potential
of quadrupole branch in description of nanoparticles, its
important role cannot be ignored [1, 2].

Using the effects of both dipole and quadrupole branches
results in a nonlinear approximation. The use of higher-
order multipole effects yields more accurate approximations
which demand more complicated equations. In this paper,
only the effect of quadruple branch for Hamiltonians de-
scribed by (1) is considered. Study of isotropic and ani-
sotropic spin Hamiltonian with non-Heisenberg terms are
complicated due to quadruple excitation dynamics [3–5].
Antiferromagnetic property of this excitation in states near
the ground proves the existence of it. The effect of this cal-
culation has been studied by Dzyaloshinskii [6]. The results
obtained through the quadrupole excitation in nanoparticles

Fe8 and Mn12 are more in line with numerical calculations
and laboratory results [7, 8].

In classical physics term, the number of parameters re-
quired for a full macroscopic description of the magnet be-
havior is equal to 4s, where s is the spin value. Also real-
parameterized coherent states based on related group is used
to obtain classical equation of motion and to describe multi-
pole dynamics [9, 10]. Here, Heisenberg ferromagnets with
anisotropic term as described by (1) are considered:

H J
i

S i Si 1 δSzi S
z
i . (1)

Here, Sxi , Syi , and Szi are the spin operators acting at a site
i, and δ is the anisotropy coefficient. This Hamiltonian is re-
lated to a one-dimensional ferromagnetic spin chains, and
the coefficient J is positive.

In order to calculate the effect of quadrupole excitation,
first, the classical equivalent of Hamiltonian (1) is obtained
and then, by analyzing such equation for small linear excita-
tion from the ground states, the spin wave solution is found.
This process requires the following steps.

(1) Obtaining coherent states for spin s 1 which are
coherent states of SU(3) group.

(2) Calculating the average values of spin operator.

(3) Obtaining classical spin Hamiltonian equation using
previously calculated values.
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(4) Computing Lagrangian equation by the use of Feyn-
man path integral over coherent states and then com-
puting classical equations of motion.

(5) For finding nonlinear equations of magnet behavior,
it is necessary to substitute resulted Hamiltonian in
classical equations of motion. Solutions of these non-
linear equations result in soliton description of mag-
net that is not needed here.

(6) Calculating ground states of magnet and then lin-
earizing the nonlinear equations around the ground
states for small excitation.

(7) At the end, calculating spin wave equation and dis-
persion equation.

In what follows, the mathematical descriptions of the
above steps are presented.

2. Theory and Calculation

In quantum mechanics, coherent states are special kind of
quantum states that their dynamics are very similar to their
corresponding classical system. These states are obtained by
act of Weil-Heisenberg group operator on vacuum state.
Vacuum state of SU(3) group is 1, 0, 0 T , and coherent state
is introduced as [11]

ψ D1 2 θ,φ e iγSze2igQxy

0

C0 0 C1 1 C2 2 ,
(2)

where D1 2 θ,φ is Wigner function and Qxy is quadruple
moment which is written in the following form:

Qxy i

2

0 0 1

0 0 0

1 0 0

. (3)

Coefficients C0 to C2 are computed from these equations

C0 eiφ e iγsin2 θ

2
cos g eiγcos2 θ

2
sin g ,

C1
sin θ

2
e iγ cos g eiγ sin g ,

C2 e iφ e iγcos2 θ

2
cos g eiγsin2 θ

2
sin g .

(4)

Two angles, θ and φ, determine the direction of classical
spin vector in spherical coordinate system. The angle γ deter-
mines the direction of quadruple moment around the spin
vector, and parameter g shows change of the magnitude of
spin vector.

In order to obtain the classical equivalent of Hamiltonian
(1), the classical equivalent of spin vector and its correspond-
ing products should be computed. So, consider

S ψ S ψ (5)

as classical spin vector, and also consider

Qij ψ SiSj ψ (6)

as components of quadruple moment. Spin operators can be
commute in different lattices; so

ψ SinS
j
n 1 ψ ψ Sin ψ ψ S

j
n 1 ψ , (7)

where ψ ψ n ψ n 1.
The average spin values in SU(3) group are defined as

[12]

S eiφ cos 2g sin θ,

S e iφ cos 2g sin θ,

Sz cos 2g cos θ,

S2 cos2 2g .

(8)

Classical Hamiltonian can be obtained from the average cal-
culation of Hamiltonian (1) over coherent states. The classi-
cal continuous limit of Hamiltonian in SU(3) group is

Hcl

J
dx

a0
cos2 2g

δ

2
cos2θ sin 2g cos 2γ sin2θ

a2
0

2
θ2
x φ2

xsin2θ cos2 2g 4g2
x sin2 2g .

(9)

The above classical Hamiltonian is substituted in equa-
tion of motion that was obtained from the Lagrangian, and
the result is classical equations of motion:

1

ω0
φt δ cosθ sec 2g cos 2γ tan 2g

a2
0 cos 2g θxxcscθ φ2

x cosθ ,

1

ω0
θt

δ

2
sin 2θ sin 2γ tan 2g a2

0φxx cos 2g sin θ,

1

ω0
gt

δ

2
sin 2γ sin2θ,

1

ω0
γt 4 cos 2g

δ cos 2γ cot 4g cos 2θ csc 4g

cos2θ sec 2g

cos 2g 8g2
x 2θ2

x

1

2
φ2
x 3 cos 2θ θxxcotθ

4gxx sin 2g a2
0.

(10)
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These equations describe nonlinear dynamics of non-Hei-
senberg ferromagnetic chain completely. Solutions of these
equations are magnetic solitons that are not studied in this
paper.

In this paper, only the linearized form of (10) for small
excitation from the ground states is considered. To this end,
first, classical ground states must be calculated. therefore in
the above Hamiltonian, only nonderivative part is taken into
account:

H0 J
dx

a0
cos2 2g

δ

2
cos2θ sin 2g cos 2γ sin2θ .

(11)

It is necessary to calculate derivative of (11) with respect to
all variables to find out minimum of H0. As a result, if δ 0,
ground states are at these points

θ
π

2
, γ

π

2
, sin 2g0

δ

4
, δ 4. (12)

In this paper, only dispersion of spin wave in neighbor-
hood of the ground states is studied. For this purpose, small
linear excitations from the ground states, as shown in (13),
are defined:

θ
π

2
θ,

2γ π γ,

2g g0 g.

(13)

In this situation, the linearized classical equations of mo-
tion are

1

ω0
φt δ sec g0 tan g0 θ a2

0 cos g0θxx,

1

ω0
θt a2

0φxx cos g0,

1

ω0
gt

δ

2
γ,

1

ω0
γt 2 2 sin g0

δ

cos g0
g 4a2

0gxx sin g0.

(14)

Consider functions θ, φ, γ, and g as plane waves to obtain
dispersion equation:

φ φ0e
i ωt kx φ0e

i ωt kx ,

θ θ0e
i ωt kx θ0e

i ωt kx ,

g g0e
i ωt kx g0e

i ωt kx ,

γ γ0e
i ωt kx γ0e

i ωt kx .

(15)

Substitute of these equations in (14), then

ω2
1 ω2

0k
2a2

0 δ 1 sin g0 k2a2
0cos2g0 ,

ω2
2 ω2

0 2 sin g0k
2a2

0 δ
4δ

sin2g0

2 sin g0 .
(16)

These equations are dispersion equations of spin wave
near the ground states in SU(3) group.

3. Conclusions

In this paper, describing equations of one-dimensional ani-
sotropic non-Heisenberg Hamiltonians are obtained using
real-parameter coherent states. It was indicated that both
dipole and quadruple excitations have different dispersion if
there is small linear excitation from the ground state.

In addition, it was indicated, that for anisotropic ferro-
magnets, the magnitude of average quadruple moment is
not constant and its dynamics consists of two parts. One
part is rotational dynamics around the classical spin vector
(γt 0) and the other related to the change of the magnitude
of quadruple moment (gt 0).
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