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Remaining useful life prediction of a milling tool is one of the determinants in making scientifc maintenance decision for the
CNC machine tool. Predicting the RUL accurately can improve machining efciency and the quality of product. Deep learning
methods have strong learning capability in RUL prediction and are extensively used. Multiscale CNN, a typical deep learning
model in RUL prediction, has a large number of parameters because of its parallel convolutional pathways, resulting in high
computing cost. Besides, the MSCNN ignores various infuences of diferent scales of degradation features on RUL prediction
accuracy. To address the issue, a pyramid CNN (PCNN) is proposed for RUL prediction of the milling tool in this paper. Group
convolution is used to replace parallel convolutional pathways to extract multiscale features without additional large number of
parameters. And the channel attention with soft assignment is used to select the key degradation features, considering diferent
sensors and scales. Te milling tool wear experiments show that the score value of the proposed method achieved 51.248± 1.712
and the RMSE achieved 19.051± 0.804, confrming better performance of the proposed method compared with the traditional
MSCNN and other deep learning methods. Besides, the number of parameters of the proposed method is reduced by 62.6% and
54.8% compared with the MSCNN with self-attention and the MSCNN methods, confrming its lower computing cost.

1. Introduction

As a basic tool of industry, computer numerical control
(CNC) machine tool plays an important role in industrial
manufacture. With the increasing demand for product
quality, stability of machining process becomes more and
more important. Tool wear is a common negative efect on
machining quality during the high-speed machining process
[1]. And it not only afects the quality of machined surface
and the machining precision but also results in increasing
machining cost. Moreover, unnecessary tool replacement
that aims at preventing the decrease in surface quality will
increase the downtime and machining cost in high-speed
milling [2]. Te efects for tool degradation mainly include
cutting parameters, work material, and cutting tool. How-
ever, the internal law of these efects on tool degradation is
hard to determine for their various combinations. Since it

could not be directly detected during the process, it is hard to
make scientifc maintenance decisions without interrupting
the machining process. Terefore, a signifcative work is to
accurately predict the remaining useful life (RUL) of the
milling tool.

With the widely usage of industrial internet of thing in
condition monitoring of machinery, a mass of monitoring
data of the CNC machine tool are acquired by various
sensors.Te explosive growth of monitoring data brings new
opportunities to RUL prediction of the milling tool.
Compared with model-driven RUL prediction methods,
data-driven RUL prediction methods are able to learn
degradation characteristics of a tool from massive moni-
toring data. And it could also build the corresponding RUL
prediction models automatically, which means neither deep
understanding of system-failure physics nor complete
knowledge of the dynamics is required. Terefore, data-
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driven RUL prediction methods are gaining more and more
attention in the feld of RUL prediction recently [3].

Traditional data-driven prognostic approaches usually
contain three steps: hand-crafted feature extraction, deg-
radation behavior learning, and RUL prediction [4, 5].
Hand-crafted feature extraction is to use signal process
methods to extract sensitive degradation features from the
monitoring data. Ten, these features are fed into machine
learning models, such as ridge regression, support vector
machine (SVM), and so on, to learn the degradation features
and predict the RUL. For example, Park et al. [6] extract
time, frequency, and time-frequency domain features, and
these features are input into the ridge regression model after
dimension reduction using PCA. Zhao et al. [7] extract high-
dimensional feature using time-frequency representation
(TFR), which are fed into the simple multiple linear re-
gression model to predict the RUL after supervised di-
mensionality reduction using PCA and LDA. Liu et al. [8]
used the integration of empirical mode decomposition
(EMD) and Wigner–Ville distribution (WVD) to extract
degradation feature from gearbox vibration signal, and then
particle flter (PF) with the state space model based on the
Wiener process is used to predict the RUL of gearbox
considering degradation feature. Even though these methods
have a good performance on the RUL prediction, they still
need to take much efort on hand-crafted feature design
[9, 10]. To avoid this situation, it is desirable to fnd a new
method to automatically extract degradation feature from
monitoring data. Terefore, deep learning-based RUL pre-
dictionmethods have gainedmore andmore attention in the
feld of data-driven RUL prediction [11–20].

Deep learning, structured by a stack of multiple layers of
nonlinear processing units [21], can extract high-level feature
without human intervention. Tus, deep learning shows a
more powerful feature extraction ability, and achieves state-of-
the-art accuracy in many tasks, such as image classifcation,
natural language processing (NLP), target detection, and so on.
Deep belief network (DBN), auto-encoder network (AEN),
recurrent neural network (RNN), and convolution neural
network (CNN) are mainstream architectures in deep learning
[22]. Wang et al. [23] proposed a deep separable convolution
network (DSCN) for RUL prediction of bearing, which
extracted the degradation feature from monitoring data using
deep separable convolution and predicted the RUL using fully
connected layers. Hinchi and Tkiouat [24] used CNNS to
extract features from vibration signal, and then employed
LSTM to predict the RUL of rolling element bearings. Zhang
et al. [25] proposed amultiobjective DBN ensemblemethod for
RUL prediction of turbofan engines. Wang et al. [26] use
DCAE and SOM to gain the health index of rolling bear, and
then use this health index as a label to train a CNN-based RUL
prediction model to predict the RUL. Ding et al. [27–29]
proposed threemeta deep learningmethods to predict the RUL
of the machine under diferent conditions and limited and
variable-length data. Zhang et al. [30] proposed a deep rep-
resentation regularization-based transfer learning method for
remaining useful life predictions under diferent machinery
operating conditions and no target-domain run-to-failure
training data.

Because of the remarkable ability of extracting deg-
radation features from monitoring data, CNN-based RUL
prediction methods become a research hotspot, especially
the multiscale CNN (MSCNN) [31–39]. Te architecture
of traditional MSCNN with self-attention is shown in
Figure 1. Parallel convolutional pathways are used to
extract diferent scales of degradation features, which is
developed by diferent size of convolution kernel for
diferent convolutional pathways. And the self-attention
is embedded to avoid the interference caused by the re-
dundant and uncorrelated information of partial sensors,
improving the performance of the networks. Te usage of
parallel learning strategy, however, greatly increases the
parameters of the model, leading to higher cost of com-
puting during model training. Te self-attention, in ad-
dition, can only consider the contribution of diferent
sensors to RUL prediction. In other words, the contri-
bution of diferent scale of degradation features is not
taken into account.

To deal with the mentioned problems, a pyramid CNN
(PCNN) is proposed in this paper. Te architecture of the
proposed PCNN is shown in Figure 2. Te monitoring
data acquired from diferent sensors can be directly fed
into the proposed network without any preprocessing,
which means complex signal processing techniques do not
require. Tis network contains two parts, multiscale
feature learning subnetwork and RUL predicting sub-
network. Te multiscale feature learning subnetwork is
built by stacking one-dimensional (1D) convolution layers
and pyramid convolution layers. Low-level features are
extracted by the one-dimensional (1D) convolution layers
and fed into the pyramid convolution layers. In the
pyramid convolution layers, group convolution is used to
extract multiscale high-level degradation features. Ten,
the channel attention model is used to generate attention
weight for each channel. A soft assignment is used to
recalibrate the attention weight of diferent scales so that
the key degradation features can be selected from not only
diferent sensors but also from diferent scales. Te RUL
predicting subnetwork contains global pooling and fully
connected layers (FCLs). Te mapping relationship be-
tween degradation features and the RUL is established in
these parts. Te tool wear experiment is used to verify the
proposed method. Compared with the traditional
MSCNN, the proposed method has higher accuracy of
RUL prediction and smaller number of parameters.

Te rest of this article is structured as follows. Te basic
theory of the proposed method is expounded in detail in
Section 2. Experiment and comparison analyses are illus-
trated in Section 3. Conclusions are composed in Section 4.

2. Proposed PCNN for RUL Prediction of
Milling Tool

2.1. One-Dimensional (1D) Convolution Layer and Shortcut
Connection. On-dimensional convolution is used to extract
degradation feature from raw data in this paper. Te 1-D
convolutional operation can be described as
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y0 � f 􏽘

n

i�1
k0,i ∗X0 + b0,i

⎛⎝ ⎞⎠, (1)

where X0 is the raw data, y0 is the output of the process,
k0,i is the learnable convolutional kernel, b0,i is the bias tern,
∗ represent the convolutional operation, and f(·) is the
nonlinear activation function. In this paper, the rectifed
linear unit (ReLU) is used as the nonlinear activation
function of the 1-D convolution operation. By repeating this

process twice, low-level degradation features, denoted as F0,
can be obtained.

Gradient vanishing/exploding and weight matrix deg-
radation is a considerable problem of deep learning. To
address this issue, shortcut connection is introduced in this
network.

Te raw data acquired from the sensor is fed into the
shortcut connection pathway, which contains a convolution
layer and a max pooling layer. Te size of the convolutional
kernel in the shortcut connection is 1 × 1, which aims to
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increase the dimension of X0. Te max pooling layer is used
to downsample the output of the convolution layer. Te
output of the shortcut connection model, denoted as Sout, is
given by

Sout � Y + pool kc ∗X0( 􏼁, (2)

where Y is the output of the pyramid convolution layer,
pool(·) is the pooling function, kc is the convolution kernel
with the size of 1 × 1, and ∗ is the convolution operation.

2.2. Pyramid Convolution Layer. In this layer, multiscale
high-level degradation information from diferent sensors is
extracted and fused. First, a group convolution operation is
used to extract diferent scale of high-level degradation
features. After doing this, the channel attention model is
used to generate the attention weights of the multiscale
features. Finally, the soft assignment is used to recalibrate the
attention weight of the corresponding scale.

2.2.1. Group Convolution. Te monitoring data acquired
from the sensors are nonlinear signals containing a lot of
noise. While the degradation features can be extracted by
convolution operation, the receptive feld range of the
convolution kernels have great infuence on the degradation
features. Large-scale degradation features can be extracted
by a larger receptive feld, while detailed degradation fea-
tures can be extracted by a smaller receptive feld. Terefore,
it is necessary to use diferent size of convolution kernels to
extract multiscale degradation features. Te traditional
multiscale convolution uses parallel pathways to extract
multiscale features. Te size of convolution kernel in various
convolution pathways is diferent. Although the perfor-
mance of the network is proved, a large number of pa-
rameters increases the computing cost. Terefore, it is
desirable to fnd an efcient multiscale feature extraction
method.

In this paper, group convolution is used to replace
parallel convolutional pathways so that multiscale features
can be extracted without additional large number of pa-
rameters. Te architecture of this model is shown in
Figure 3.

Te input low-level feature F0 ∈ RL×C is splitted into s

groups along with the channel direction, denoted as
Xi ∈ RL×c/s, with i � 1, 2, ..., s, where c is the number of
channel and L is the length of F0. A set of learnable kernels is
used to convolve Xi. Te output of the convolution, denoted
as Fi, can be obtained by

Fi � 􏽘
c�1

c

s ki,c ∗Xi + bi,c, (3)

whereC/s is the number of learnable kernels and the number
of input channels, ∗ denotes the convolution operator,
ki,c ∈ RF×1×(C/s)×(C/s) is the c − th convolution kernel of the
i − th group, and bi,c is the bias term. Diferent convolution
kernels ki,c have diferent sizes, which can extract diferent

scales of degradation features. Finally, the whole multiscale
feature can be obtained by the concatenation of all the Fi.

2.2.2. Channel Attention Model and Soft Assignment. Te
data from diferent sensors contain diferent degrees of
degradation information. In other words, some important
degradation information only exists in partial sensors.
Furthermore, diferent scales of features also contain dif-
ferent degrees of degradation information. Terefore, it is
important to select key degradation information from the
multiscale feature F. In this paper, a channel attentionmodel
is used to obtain the attention weight from the input feature
F. Ten, the soft assignment is used to recalibrate the at-
tention weight of the corresponding scale. Te structure of
this model is shown in Figure 4.

Attention weights of the features of diferent scales can
be obtained by using parallel processing pathways. Each
processing pathway includes global information encoding
and channel-wise relationship information recalibrating.
Te global information encoding is done by global average
pooling and global max pooling, and the channel-wise re-
lationship information recalibrating is done by fully con-
nected networks with one hidden layer.

Te global average pooling (GAP) and the global max
pooling (GMP) can aggregate the global information of each
channel, generating two vectors: Va and Vm. Both Va and
Vm contain J � C/s channel-wise statistics.Te channel-wise
statistics of the j-th channel Va,j and Vm,j is obtained by

Va,j �
1
P

􏽘

P

p

Va,j,pVm,j � max Vm,j,p􏼐 􏼑. (4)

Ten, Va and Vm are fed into the fully connected net-
work (FCN) with one hidden layer. Te neuron number of
the hidden layer in the FCN is J/r, where r is the ratio of
dimensionality reduction. After that, the attention weight of
Fi, denoted as Zi, can be calculated by

Zi � σ Wa2 Wa1Va( 􏼁⊕Wv2 Wv1Vm( 􏼁( 􏼁, (5)

where Wa1 ∈ RJ/R×J, Wa2 ∈ RJ×J/R, Wv1 ∈ RJ/R×J, and
Wv2 ∈ RJ×J/R are the weight matrices in the FCNs, ⊕ denotes
the element-wise summation, and σ(·) is the sigmoid acti-
vation function.

By doing this, the network can fuse degradation
information from diferent sensors and produce a better
attention for high-level degradation feature. Further-
more, in order to enhance the key degradation features of
some scales and suppress the irrelevant ones without
destroying the original channel attention vector, a soft
assignment is used to adaptively recalibrate the attention
weight of the corresponding scale. After doing this, the
key degradation features are selected not only from
diferent sensors but also from diferent scales. Te soft
assignment is given by

atti �
exp Zi( 􏼁

􏽐
s−1
i�o exp Zi( 􏼁

. (6)
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Ten, the multiscale high-level degradation feature with
multiscale channel-wise attention weight, denoted as Yi, can
be obtained by

Yi � Fi ⊙ atti, (7)

where ⊙ is the channel-wise multiplication.
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Finally, the output of the pyramid convolution layer,
denoted as Y, can be obtained by the concatenation of all
the Yi.

3. Experimental Verification

3.1. Data Description. As shown in Figure 5, the life testing
of the milling tool is conducted in a computer numerical
control (CNC) milling machine.

Te material of the workpiece is 316L stainless steel, and
the milling tool is cemented carbide insert deposited by
TiAlN coating. During the milling process, the table feeds
the workpiece from front to back along the Y-axis. As
tabulated in Table 1, a total of 4 milling tool are tested and all
tests are carried out without the application of a cutting fuid.
As shown in Figure 6, two types of sensors are installed in the
milling machine, including accelerometer (Kistler
Z292A600) and rotary dynamometer (Pro-Micro). For the
accelerometer, the sampling frequency is set as 10 kHz. For
the rotary dynamometer, the sampling frequency is set as
2.5 kHz.

As shown in Figure 6, a metallographic microscope is
used to measure the width of the fank wear. When the width
of the fank wear is greater than 0.2mm, the tested tool wear
achieves the limit [1]. Te acquired monitoring data of the
C1 during the whole operating life is shown in Figure 7.

As shown in Figure 7, some of these monitoring data
have obvious degradation trends with the increasing of
cutting time, while others do not have these trends.

3.2. Experimental Study. In this case, all of the monitoring
data are used as the input of the network to verify the ef-
fectiveness of the proposed method. Te size of an input
sample is 10000 × 1 × 5.

One of the main hyperparameters that may afect the
prediction performance of the proposed model is the
number of groups, which directly afects the dimension of
feature extract in the pyramid convolution layer. For in-
vestigating this infuence, diferent number of groups in the
proposed PCNN are applied to estimate the RUL prediction.
Te number of groups is set to be 2, 4, and 8. Figure 8 shows
the score values and RMSE of C4, and the corresponding
training time and model parameters are given in Table 2.

It can be observed that the score value is the lowest and
the RMSE is the highest when the number of group is set to
be 2, which indicates that the prediction performance is
relatively poor. Te accuracy of the RUL prediction results is
closer for others. As the number of groups increased, the
model becomes more computationally intensive. Terefore,
it can be observed in Table 2 that themodel training time and
the number of parameters increased with the increase in the
number of groups. Tough a bigger number of groups can
extract more features of diferent scales, resulting in better
prediction performance, the calculation burden is aggra-
vated and the performance improvement is limited when the
number of group increases to a certain extent. By the trade-
of between accuracy and efciency, the number of groups is
fnally selected as 4.

Te fnal architecture of the network is shown in Fig-
ure 9. And the hyperparameters of the pyramid convolution
layer of the PCNN are listed in Table 3.

Mean square error is used as the loss function of the
network and Adam optimizer with a mini-batch size of 128
is used to update its weights and biases. Te trained network
is used to predict the RUL values of the testing dataset after
training 150 epochs. If the prediction value was bigger than
the actual value, it may cause low process quality or even a
scrapped products due to a overwear in the tool. Taking this
situation into account, except for root mean square error
(RMSE), a score function is used to evaluate the performance
of the network. Te score value is given by

Score �
1
S

􏽘

S

i�1
Si,

Si �
100∗ exp− ln(0.5)·(y−􏽢y/5),

y≤ 􏽢y,

100∗ expln(0.5)·(y−􏽢y/20),
y> 􏽢y,

⎧⎪⎪⎨

⎪⎪⎩

(8)

where S is the number of samples in the testing dataset, y is
the actual value, and 􏽢y is the predicted value. Te higher the
score values, the more accurate the performance of the RUL
prediction is.

Figure 10 shows the RUL prediction result of C4 using
the proposed method. As shown in Figure 10, the predicted
RUL value fuctuates slightly with the actual RUL, and the
fuctuation becomes smaller and smaller with the increase of
the cutting time. Furthermore, cross validation is used to
prove the stability of the proposed method. Each test is
repeated ten times, and the mean and standard deviation of
these four testing dataset are listed in Table 4.

As shown in Table 4, on the one hand, both score and
RMSE of each testing dataset has small standard deviation,
which proves that the proposed model has good stability for
the same task. On the other hand, the mean value of both
score and RMSE of these four testing dataset has small
fuctuation, which proves that the proposed network has
good stability for diferent tasks. In conclusion, the proposed
network has a good prediction result and good stability in
both the same task and the diferent task, which means the
predicted result of the proposed method is credible.

3.3. Comparison Analysis

3.3.1. Ablation Experiments. In order to illustrate the ad-
vantage of the proposed PCNN, ablation experiments are
done in this part. Te other three prognostic networks are
employed to predict the RUL and they are denoted as
Network-1, Network-2, and Network-3. Te architectures of
these three networks are similar to that of the PCNN, and the
diferences are that (1) Network-1 does not use group
convolution and channel attention with soft assignment, (2)
Network-2 only use group convolution, and (3) Network-3
only use channel attention with soft assignment. In addition,
the hyperparameters settings of these three networks are the
same as those of the PCNN, and the cross validation used in
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Section 3.2 is used in this part too. Te performance esti-
mation results of these four diferent networks are listed in
Table 5 and drawn in Figure 11.

It can be observed that compared with the classic
multiscale convolutional network without attention mech-
anisms (i.e., Network-1 [37]), the use of group convolution
or channel attention with soft assignment efectively im-
proves the prediction performance and stability of the
network, resulting in higher score value and lower RMSE.
For Network-2, the performance improvement is attributed
to the use of group convolution, which reduces the risk of
overftting by reducing the number of learning parameters.
For Network-3, the employment of channel attention with

soft assignment make the network enhance key degradation
features of some sensors and scales. Besides, it is to be noted
that through systematically integrating group convolution
and soft attention with soft assignment, the proposed PCNN
obtains the highest score value and the lowest RMSE value
for each testing dataset among four diferent prognostic
networks, which verifes again the performance of the
proposed method.

3.3.2. Comparison with the State-of-the-Art Models. In this
part, eight state-of-the-art models, including two machine
learning models, random forests (RF), and support vector

Accelerometer

Rotary
dynamometer Tested Tool

Workpiece

Z

Y
X

Figure 5: CNC machine and sensor placement.

Table 1: Cutting condition of milling tool.

Spindle speed Feed rate Depth of cut Width of cut Dataset
3500 rpm 300mm/min 2mm 2mm C1, C2, C3, and C4

Figure 6: Milling tool deterioration photograph.
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regression (SVR) [34] and six deep learning model, deep
convolution neural network (DCNN) [35], residual dense
network (RDN) [36], multiscale convolutional neural net-
work (MSCNN) [37], convolutional long-short-term
memory network (CLSTM) [24], deep belief networks
(DBN) [38], and multiscale convolutional attention network
(MSCAN) [39] are utilized to estimate the RUL for the
comparison analysis. For the RF and SVR, features listed in

[34] are extracted from all the monitoring data. Ten, these
features are fed into the corresponding model to predict the
RUL. Te score value and RMSE of these methods are listed
in Table 6. Both score value and RMSE are calculated form
the half of the life too.

From Table 6, it can be found that the proposed method
has the highest score value and the lowest RMSE, which
confrms the proposed method can predict the RUL
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Figure 7: Monitoring data of the C1 during the whole operating life. (a) Force data in the Z-axis. (b) Bending moment data in the X-axis. (c)
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Table 3: Hyperparameters of the pyramid convolution layer.

Hyperparameters Values
Te ratio of dimensionality reduction r 4
Size of convolution kernel ki with i � 1, 2, ..., s 3 × 1, 5 × 1, 7 × 1, 9 × 1
Number of group s 4

Predicted RUL
Actual RUL
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Figure 10: RUL prediction result of C4 using the proposed method.

Table 4: Performance estimation result of four testing dataset.

Testing datasets Scores RMSE
C1 50.962± 1.813 19.374± 0.923
C2 51.217± 1.872 19.139± 0.853
C3 50.771± 1.617 19.424± 0.721
C4 51.248± 1.712 19.051± 0.804

Table 5: Performance estimation result of four diferent networks.

Testing datasets Network-1 Network-2 Network-3 PCNN

C1 Score 40.152± 7.486 42.934± 5.063 47.013± 4.828 53.962 ± 1.813
RMSE 29.407± 1.712 25.122± 1.592 23.114± 1.581 19.374 ± 0.923

C2 Score 40.274± 7.397 43.771± 4.811 48.167± 4.765 52.217 ± 1.872
RMSE 28.903± 1.664 24.913± 1.428 23.022± 1.412 19.139 ± 0.853

C3 Score 39.914± 8.152 43.912± 4.702 48.369± 4.105 52.771 ± 1.617
RMSE 29.729± 1.677 24.502± 1.437 23.216± 1.241 19.424 ± 0.721

C4 Score 40.889± 7.109 44.068± 4.155 48.154± 3.907 54.248 ± 1.712
RMSE 28.597± 1.402 23.662± 1.339 22.901± 1.209 19.051 ± 0.804

Te bold values express that the PCNN has the best performance.

Table 2: Comparison of model parameters and training time with diferent numbers of groups.

Number of groups 2 4 8
Training time (s) 1100 1230 1353
Total model parameters 613,225 765,993 1,115,425
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accurately. Tis performance enhancement demonstrates
again the advantage of the PCNN.

Besides, in order to illustrate the efciency of the PCNN,
the number of parameters and the training and testing time
of three multiscale learning models are listed in Table 7. All
experiments in this paper are performed on a server con-
fgured with two Intel (R) Xeon (R) Gold 6242R CPU@

3.10GHz processors, eight NVIDIA GeForce RTX 3090
graphics cards, and a total of 512GB memory (RAM).

As shown in Table 7, the total model parameters of the
proposed method are respectively reduced by 62.6% and
54.8% compared to the MSCNN with self-attention and
the MSCNN methods. Both training time and testing time
of the proposed method are greatly reduced, which means
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Figure 11: Performance estimation result of four diferent networks. (a) Score values. (b) RMSE values.
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the computing cost is reduced and the efciency is
improved.

4. Conclusion

Because of the strong learning capability, the CNN is widely
used in degradation feature extraction, especially the mul-
tiscale CNN which has a stronger representing learning
ability. Because of the parallel convolutional pathways, the
traditional MSCNN, however, has a large number of pa-
rameters, whichmeans a higher computing cost. In addition,
a lack of consideration of contribution of diferent scale of
degradation feature makes poor performance of RUL pre-
diction. To address the issue, a pyramid CNN (PCNN) is
proposed for RUL prediction of the milling tool is proposed
in this paper. In this network, group convolution is used to
replace parallel convolutional pathways to extract multiscale
features without additional large number of parameters. Te
channel attention with soft assignment selects the key
degradation features not only from diferent sensors but also
from diferent scales. Te proposed method was experi-
mentally validated by the milling tool wear experiment.
Some related methods and state-of-the-art models, in-
cluding machine learning methods and deep learning
methods, are analyzed for comparison with the proposed
method. Te result of it indicates that the proposed method
is able to predict the RUL accurately.

Although the proposed method achieves a good RUL
prediction result, there are still a few shortcomings in its ap-
plication.Tepremise of the application of the proposedmethod
is that the working condition of the testing data is the same as
training data, which limits the application in practical engi-
neering because the working condition of themachining process
is dynamic. And limited labeled training samples prevents us
from training a model for every working condition. To address
the issue, a promising work is to introduce transfer learning or
meta learning into themodel, which canmake themodel achieve
good performance under small samples. Furthermore, this can
be combined with some adaptive optimization algorithms to
automatically determine the hyperparameters of the model,
which can achieve better performance of it.
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Accordingly, the mass unbalance of the rotors is usually the major cause of excessive vibration. �e information extracted at the
fundamental frequency is often employed to �x the unbalance issue. However, other rotor faults like rotor bending and bearing-
failure e�ect also generate additional components to the characteristics. �us, it is necessary to isolate the corresponding features
and obtain the intrinsic causes of the multiple failures. In this paper, a productive hybrid method is successfully developed to deal
with the root mass unbalance problem with additional force interference by integrating the superiority of di�erent methods,
including Ensemble Empirical Mode Decomposition (EEMD) and Nonnegative Matrix Factorization (NMF), where EEMD is
used to obtain sensitive IMFs andNMF is employed to acquire the inherent source signal, respectively. Meanwhile, a root dynamic
balancing and implemental framework is also developed to accomplish the task of vibration reduction. For veri�cation, a serial of
simulations and experimental investigations have been analysed to demonstrate the preferable potentialities of the proposed
method. In particular, a standard Bently Nevada rotor rig with a speci�cally designed device was employed to simulate appended
faults by adjusting the additional forces during the experimental steps. �e analysis results show that the proposed method can
isolate and extract the unbalance faults from the raw vibration signals and achieve accurate correction balancers, where a nearly
identical correction angle has been achieved, which indicates that the optimal installation position has been successfully
�gured out.

1. Introduction

As one of the most vital apparatuses, rotating machinery of
great signi�cance in defensive and civil �elds is the fun-
damental infrastructure and key to national economic
production equipment. Unfortunately, these oscillatory
systems are easily susceptible to unwanted vibrations, where
some negatives and factors like excessive vibration, struc-
tural noise, and thermal deformation will be generated and
signi�cantly enhanced with the increase of rotational speed
[1–4].

In reality, a rotor system may su�er from di�erent types
of failures during long-term operating. �e most common

causes including unbalance, misalignment, fatigue crack,
thermal deformation, rotor-stator friction, and benting may
further induce sudden breakdowns and make undesired
vibrations arise during operation [3–5]. Among the
abovementioned causes, unbalance failures represent 35% of
the mechanical problems of rotating machines and account
for more than 75% of the rotating machine vibration fault
[1, 6, 7]. �erefore, it is critical and reasonable to investigate
e�ective and reliable techniques to eradicate this issue and
further achieve reliable operation.

In addition, it is cumbersome to �x the mass unbalance
issue under multifault condition, in which another aspect of
the rotor system vibration behaviour can also be traced to
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initial deformations like rotor bending and contact friction.
In particular, the coupling misalignment and the thermal
bowing can also change the unbalance distribution [8]. Once
the preliminary deformation of a rotor shaft couples with the
unbalance issue, the synchronous vibration response, which
only differs from the mass unbalance, can be extracted [9]. In
this case, the characteristics extracted from analysis sources
like vibration and acoustics become ambiguous and unin-
tuitive.'us, to identify and isolate the inherent features that
directly reflect the rotor faults and achieve reliable main-
tenance strategies and practical operations, more effective
and in-depth investigations should be established to address
the above issues.

Nowadays, lots of literature has accumulated and
documented many investigations on rotor systems such as
base motion, vibration resonance, friction, and contact [10].
In particular, in situ rotor balancing has attracted consid-
erable attention from industry and academia [3, 11–13].
Meanwhile, the research and development on the efficient
dynamic balancing method have been treated as a decisive
technology for fault recovery and vibration reduction [10].
Specifically, representative methods used to address the
rotor unbalance issue involve the influence coefficient
method (ICM), modal balancing, Holo-balancing, and
autobalancing [2, 10, 14–17]. As a data-driven method, ICM
that only requires machine runs with trial weights can be
simply implemented without any prior knowledge of the
rotor model. ICM has been widely employed and intensively
applied in the industry and experimental environment, and
the corresponding theory and applications are matured after
years of development and refinement [15]. On the other
hand, if the full-model parameters of the rotor system are
known in advance, the modal balancing method can be
highly competent to account for rotor unbalance using the
modal shapes. In this method, the intrinsic mechanism relies
heavily on adding trial weights to N balance surfaces to
counteract the corresponding N modal unbalance responses
[10, 15]. Generally, to achieve a satisfactory result using
modal balancing, one should rely on an accurate numerical
model and prior knowledge of the entire rotor dynamics or a
highly skilled engineer. As for the Automatic Ball Balancer
(ABB), it can be used to reduce rotor vibrations by com-
pensating for mass unbalance of the rotor. 'is method is
better adapted to applications where the amount of im-
balance varies with the operating conditions. However, due
to its inherent nonlinear properties, on some occasions,
especially during the run-up and shutdown stage, ABB may
enhance the original vibration level rather than eliminating
the vibration response [17]. Owing to the advantages of easy
implementation and high efficiency, ICM has become the
most commonly used balancing method in industries.

In general, the vibration frequencies of the rotor im-
balance are synchronous, i.e., one times the shaft rotational
speed (1X rpm), and the imbalance forces cause the shaft
rotation frequency (1X) dominating its harmonic frequen-
cies [18]. 'e core issue of the dynamic balancing procedure
is to precisely extract the 1X frequency components from the
raw vibration signal. However, it could be a daunting task to
obtain the pure unbalance components of 1X, especially for

multiple faults, since other rotor failures such as cracks,
bends, looseness problems, and misalignments also intro-
duce disturbances to the balancing characteristics of the
rotor system [2, 3, 19]. 'at is, the evidence 1X commonly
calculated from the original signal should be treated as the
superposition of different frequency responses that are
closely associated with the external forces generated by the
rotor failure. In field operations, however, many technicians
indiscriminately use the mixed amplitude and phase in-
formation at 1X to handle the mass unbalance without
considering the superposition of unbalance and other rotor
faults. Sometimes, promised results may be achieved with
the entire vibration level decreasing to the allowable range or
even better. However, vibration symptoms may reappear or
even increase within a short period of time once the fault
coupling force changes, i.e., oil-film force and blade force.
'e reason for the phenomenon is briefly induced by the
root cause misjudgment. 'us, fault coupling and isolation
procedures should be on the agenda and systematically
investigated to reach the root response characteristics and
further improve the maintenance effect.

In this paper, we focus on identifying the inherent
unbalance parameters of the rotor system using blind source
separation (BSS) and Ensemble Empirical Mode Decom-
position under multiple fault conditions. 'e two signal
processing methods are introduced in Section 2. As a rep-
resentative and prevalent BSS technique, Nonnegative
Matrix Factorization (NMF) is delivered to accomplish the
fault isolation task. EEMD is employed to calculate the most
valuable intrinsic mode functions (IMFs). 'ereafter, the
fundamental principle of ICM is described and the main
framework of the proposed method is illustrated. 'e ef-
fectiveness of the new method is verified using different
simulations and experiments, and some relevant discussions
are presented in the next section. Finally, some conclusions
are presented in the last section.

2. Basic Concepts of the Involved Signal
Processing Approaches

To figure out the root response that corresponds to the
inherent fault, in the current section, a new fusion approach
is established by combining Ensemble Empirical Mode
Decomposition (EEMD) with Nonnegative Matrix Factor-
ization (NMF) to accomplish the ultimate target of inherent
unbalance extraction. 'e principles of the two methods are
briefly introduced. 'ereafter, the core framework is given.

2.1. Nonnegative Matrix Factorization. Blind source sepa-
ration (BSS) is widely used to extract underlying information
from a mixture of different behaviours, i.e., multifault re-
sponse and mixed sound signals. 'e main task of BSS for
signal decomposition relies on inferring and estimating the
most probable sources[20], i.e., fault signals and speech
components from the acquired signals. 'e ideal model of
BSS can be formulated as

X(t) � AS(t) + E, (1)
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where X(t) ∈ RP×N is the so-called observed matrix that can
be expressed as [x1(t), x2(t) · · · xP(t)]T;S(t) ∈ Rn×N is the
separated matrix that consists of unknown source signals,
i.e., S(t) � [s1(t), s2(t), · · · sn(t)]T; A ∈ RP×nstands for the
mixing matrix and E ∈ RP×N denotes the additive Gaussian
noise with zero mean.

Unlike most BSS algorithms that learn holistic represen-
tations, e.g., independent component analysis (ICA), principal
component analysis (PCA), and sparse component analysis
(SCA), Nonnegative Matrix Factorization (NMF) only learns
partial features with nonnegative constraints to better de-
compose the objective matrix. 'e output of NMF is to figure
out an approximate factorization into two nonnegative factors.
Since NMF was first proposed by Lee and Seung in nature, it
has attracted widespread interest at the intersection of many
scientific and engineering disciplines, such as face recognition,
blind source separation, speech enhancement, fault diagnosis,
pattern recognition, and data mining [21, 22].

Given a matrix V with nonnegative observationsvij,
NMF is used to factorize matrix V into two main parts: the
basis matrix Wand component matrix.

V ≈WH
s.t. vij ≥ 0, wik ≥ 0, hkj ≥ 0, i � 1, . . . , n; j � 1, . . . m; k � 1, . . . , r

,

(2)

where V ∈ Rn×m is a nonnegative mixed matrix constructed
and formed from vibration vectors, W ∈ Rn×k is the basis
matrix that is considered as a set of basis vectors, and
H ∈ Rk×m is so-called coefficient matrix (or component
matrix) that is treated as the coordinates of each sample with
respect to these basis vectors [22, 23].

To accomplish the factorization ofV ≈WH as accurately
as possible, a robust and effective objective function should
be designed to quantify the approximation quality. Herein,
the commonly used squared error (Euclidean distance)
function and the Kullback–Leibler divergence are intro-
duced as the objective functions for factorization.

'e objective function of NMF is formulated by the
Euclidean distance; namely,

D(V‖W,H) � ‖V − WH‖
2

� 􏽘
i,j

vij − (WH)i,j􏽨 􏽩
2

s.t.Wia ≥ 0,Hbj ≥ 0,∀a, b, i, j

, (3)

where D(V‖W,H) stands for the distance between the data
matrix and the two factorized matrixes.

Correspondingly, the objective function constructed in
terms of Kullback–Leibler divergence is given as follows:

minD(V‖W,H) � 􏽘
i,j

vij log
vij

(WH)ij

􏼠 􏼡 − 1􏼢 􏼣 + (WH)i,j􏼨 􏼩

s.t.Wia ≥ 0,Hbj ≥ 0, ∀a, b, i, j

. (4)

As can be noticed in (4), the core values of NMF can be
recognized as the optimal linear combination using the basis
matrix to approximately recover the original data matrix.

'e objective function of the NMF optimization model
based on Euclidean distance is a bit simpler to implement
and achieve good performance.

'eoretically, it is scarcely possible to find the global
minima of the objective function, since the convexification
of the two terms (W,H) together could be a long-belea-
guered task. To minimize the cost function, Lee and Seung
presented efficient multiplicative elementwise update for-
mulae for these two minimization problems and proved
their convergence [22, 23].

'e alternation and iterative operations are utilized for
matrix updating, i.e., the nth updated resultW(n) is fixed and
employed for the further renewable process on H(n+1).
'ereafter, a new iterative result W(n+1) can be calculated
using the unvaried item H(n+1). 'e regeneration formulae
for the Euclidean distance are written as

wik←wik

VHT
􏼐 􏼑

ik

WHHT
􏼐 􏼑

ik

hkj←hkj

WTV􏼐 􏼑
kj

WTWH􏼐 􏼑
kj

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

For the Kullback–Leibler divergence model, the corre-
sponding updated role is

wik←wik

􏽐jhkjvij/(WH)ij

􏽐uhku

hkj←hkj

􏽐ihikvij/(WH)ij

􏽐vhvk

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

'e steady states of the two matrices W and H can be
achieved and the iteration is terminated when the iteration
number of NMF algorithm reaches its threshold. More
details can be found in [21, 23].

For source separation or dimension reduction, the
number of rows r is supposed to satisfy the inequal-
ityr(m + n)<mn. Note that the key parameter r is related to
the expected number of faults in the rotor system in our
following application.

2.2. Ensemble Empirical Mode Decomposition. Empirical
Mode Decomposition (EMD) method has attracted con-
siderable attention and has been widely investigated in the
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fields of condition monitoring and fault diagnosis. EMD-
based research and application have become an important
branch for handling nonlinear and nonstationary data. 'is
technique can decompose the analysis signal into a serial of
intrinsic mode functions (IMFs) or monocomponent
functions. Meanwhile, each IMF satisfies the following
prerequisites and definitions [24–26].

Firstly, in the whole data set, the number of extrema and
the number of zero-crossings must be equal or differ by at
most one.

Secondly, at any point, the mean value of the envelope
defined by the local maxima and the envelope defined by the
local minima must be equal to zero.

'rough the standard procedure, the final decomposi-
tion result can be gained accordingly.

Y(t) � 􏽘
n

i�1
ci(t) + rn(t). (7)

According to the theory of EMD, the relevant center
frequency for each IMF component gradually reduces,
where the first IMF owns the highest frequency bandwidth
while the last IMF is associated with the low-frequency
components. Conventionally, for the sake of fault diagnosis,
the usual practice relies on the features extraction from the
first few IMFs since localized fault characteristics are usually
displayed in the high-frequency bands. However, as for
further information utilization, different IMF components
have abilities in which the discarded low-frequency IMFs
may contain beneficial effects that can be further utilized to
treat other applications.

EMD also suffers from several inherent drawbacks, i.e.,
the choice of a relevant stopping criterion, mode-mixing
problem. Mode-mixing that can be arbitrarily split into two
groups, including oscillations of dramatically disparate
scales and similarly scaled components residing in different
IMFs, is the major drawback of EMD, sometimes causing
severe aliasing or inducing unpredictable and inexplicable
results.

By means of adding a finite white noise to the raw signal,
EEMD was successfully developed to improve the EMD
algorithm [26, 27]. It can be seen that EEMD is a noise-
assisted data analysis method. Here, the two parameters, the
ensemble number and the noise level, play an important role
in determining the decomposition effect. Some background
theories and applications can be found in [25, 27]. 'e
corresponding flow of EEMD can be briefly listed as follows.

Step1 Collect the original noise signal Z(t) from the
experiment platform or field industry.
Step2 Set the initial parameters of the noise compo-
nents and the number of ensembleM.
Step3 Construct loops for each IMF extraction and
perform M times of standard EMD steps for the signal
with white noise while the loop is repeated.
Step4 Calculate the ensemble average of M trials to
obtain the related IMFs during this loop.
Step5 Compute the residualRm(t) � Z(t) − IMFi(t).

Step6 Consider the residual signal as the original signal
and repeat the whole process until a constant residual is
achieved.

If necessary, it is suggested for the reader to view [25] for
more details of EEMD algorithm.

2.3. Brief Summary of Rotor Balancing. 'e influence coef-
ficient, which can reflect the linear relationship between the
trial weight and characteristics, is relevant to the sensor/
balancer position and the rotating speed (see Figure 1).

Once the trial weight is installed into the correction
plane, the characteristic response of 1X from the output end
is obtained.'e influence coefficient in Figure 1 briefly relies
on two assumptions: (1) the rotor synchronous response is
proportional to the imbalance; (2) the effects of individual
imbalances can be superimposed to obtain the effect of a set
of imbalances [19, 28].

'e general formulation of the influence coefficient
method is

V � V0 + PD, (8)

where V ∈ Cr×1 is the complex vector representing the rotor
synchronous vibration (1X) measured at r locations,
V0 ∈ Cr×1 denotes the synchronous vibration at the r sensor
position caused by the system inherent imbalance, P ∈ Cr×s

is the influence coefficients matrix, and D ∈ Cs×1 is the
imbalance weight provided by the balancer in the balancer
coordinate system.

'e matrix P can be obtained after a series of trial runs.
Assume that the vibration characteristic is Vi when the
imbalance of the balancer Di is installed into the correction
plane. 'en, the influence coefficient is estimated using (2)

P
ij

�
V

i
1 − V

i
2

D
j
1 − D

j
2

, (9)

where Pij is the ijth element of P, Vi represents the vibration
at the ith measurement location, and Dj is the imbalance
provided by the jth balancer.

'e optimal imbalance weights can be obtained using the
least squares solution:

D � − PTP􏼐 􏼑
− 1
PTV0. (10)

For more detailed information about ICM, the readers
can be referred to [19, 28].

2.4. 9e Proposed Procedure for Dynamic Rotor Balance.
With the assistance of NMF and EEMD, a hybrid method
named BSS-ICM is developed to accomplish the multiple
fault identification and isolation tasks. Meanwhile, a root
dynamic balancing and implemental framework is also
proposed to realize vibration reduction, in which the main
goal is to find the root inherent balancing causes and to
further operate with safety, stability, and long-term
runnings.

'e sketch of the proposed main framework can be seen
in Figure 2.
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As can be viewed in Figure 2, the new method mainly
consists of five portions, i.e., observed signal selection, signal
decomposition, blind source matrix construction, fault
number determination, blind source separation, and ICM-
based rotor balancing.

(1) Signal collection and analysis source selection: the
observed signal is simultaneously collected by the
acquisition system and selected for further analysis
according to the magnitude level. Note that the
comparison must be applied to signals of the same
direction.

(2) Signal decomposition: EEMD is utilized to decom-
pose each selected signal into a serial of IMFs.
Sensitive IMFs are identified according to the

similarity between the extracted IMF and the original
signal. 'e basic idea of IMF selection relies on the
use of representative IMFs to replace the raw signal
for precise balancing calculation.
Herein, the cosine similarity measure metric is in-
volved in enhancing the effectiveness and automa-
tion of IMF selection. 'is metric is originally
defined as the inner product of two vectors
X � [x1, x2, . . . , xN] and Y � [y1, y2, . . . , yN] di-
vided by the product of their lengths [24], which can
be written as

Simcos(X,Y) � cos (α)

�
􏽐

N
k�1 xkyk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

����

􏽐
N
k�1

􏽱

x
2
k × 􏽐

N

k�1
y
2
k

. (11)

Note that the symbol α in (11) represents the in-
cluded angle between the two vectors. Herein, we a
little more focus on the cosine similarities than the
angle itself. It can be observed that the magnitude
range of the similarity starts from [0, 1], where the
more extensive the cosine value is, the higher the
similar degree of two vectors would be and vice
versa.

(3) Blind source matrix construction: the source matrix
is constructed using the sensitive IMFs. 'e popular
Singular Value Decomposition (SVD) is employed to
calculate the fault number in the rotor system.
Number estimation is considered as a crucial step in
most BSS circumstances. 'e main principle behind
this strategy is that the dominant and nondominant
singular values obtained by SVD correspond to the
faulty and normal component, respectively. 'us,
the largest decline ratio of adjacent eigenvalues can
be delivered as a criterion to distinguish the faults
from normal (or noise).

(4) Nonnegative matrix factorization is utilized to de-
compose the source matrix to acquire the inherent
source signal.

(5) Depending on the signal characteristics, fault diag-
nosis and isolation results can be demonstrated from

Influence Coefficient

Trail
Weight

Bearing 1 Bearing 2

Test
Mass 1

Vibration
Response 1

Vibration
Response 2

Balanced
Mass 2

Characteristic
Changes of 1X

Figure 1: 'e influence coefficient calculation model.
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Figure 2: 'e framework of BSS-ICM.
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the inherent source signal. Signals with dominated
amplitudes at 1X and very small amplitudes at other
harmonics will be treated as the vibration responses
related to the mass unbalance failure.

(6) ICM is introduced to accomplish the balancing task
once the original and the trial signals are processed
using the above steps.

3. Case Studies for Performance Verification

To evaluate the performance of the proposed approach, in
this section, different verifications using simulations and
experiments have been concerned and demonstrated by
means of BSS-ICM. Note that all simulations and experi-
ments were performed on a computer with the Intel Core i7-
8565u@1.80GHz 1.99GHz and 16.0GB (15.7GB usable)
memory by 64 bit MATLAB 2010b on Windows 10.

3.1. 9e Main Comparison Flowchart. To make a systematic
comparison, three groups of analyses are involved in this
section. 'e main comparison flowchart is shown in Fig-
ure 3. For illustration purposes, the studies related to these
three groups are named case 1 (conventional ICM without
other faults), case 2 (conventional ICM with additional
force), and case 3 (BSS-ICM with additional force).

According to Figure 3, some important descriptions are
briefly given.

(1) Conventional ICM is employed to address the rotor
balancing issue under different conditions, i.e., with
and without other failures. In this case, the balancing
parameters calculation of the rotor system without
other faults is regarded as the reference.

(2) Without regard to the distinction between the two
methods (conventional ICM and BSS-ICM), the
whole signal comparison process is quite similar,
using the same signals and obtained results with the
same patterns.

(3) Since it is quite difficult to simulate the whole process
of rotor balancing, the final step in Subsection 3.3
using ICM is abruptly neglected in the simulation
case. Analysis results from the first five steps of BSS-
ICM will be used to validate the operating perfor-
mance in this case.

(4) For a common and united comparison, the simu-
lation and experimental parameters are identically
designed (see Table 1).

Note that, due to the space restraint, the rotor system
without fault using BSS-ICM is ignored in the experimental
case in Section 3.3.

3.2. Numerical Simulations and Discussions. In this section,
numerical simulation is introduced to verify the perfor-
mance of the proposed algorithm. 'e effectiveness of BSS-
ICM is validated by comparing the extraction results with
the simulated sinusoidal signal that only contains one fre-
quency component. 'e single frequency signal herein

denotes the vibration response generated by the mass
unbalance.

'e two-fault candidate can be considered as one of the
most prevalent and representative multiple fault patterns in
industrial applications, and multiple faults with more than two
sources rarely occur due to periodicalmaintenance and scientific
management. 'us, the mixed signal containing two sources is
employed to highlight the prominent properties of our method.

Let Q be the observed matrix composed of a white noise
term υi(t) and a superposition of two sources, i.e., S1(t) and
S2(t). 'e source and mixed signals are defined as follows,
respectively:

s1(t) � d1 sin 2πf1t + φ1( 􏼁 + υ1(t)

s2(t) � d2 1 + sin 2πf1t + φ2( 􏼁􏼂 􏼃sin 2πf2t + φ4( 􏼁 + υ2(t)′

⎧⎪⎪⎨

⎪⎪⎩

(12)

Q �
Q1(t)

Q2(t)
􏼢 􏼣 � AS �

a11 a12

a21 a22
􏼢 􏼣

s1(t)

s2(t)
􏼢 􏼣, (13)

where the corresponding parameters are illustrated in
Table 2.

During the simulating process, the mixing matrix A is
artificially designed as

A �
a11 a12

a21 a22
􏼢 􏼣 �

0.8 0.6

− 0.7 0.1
􏼢 􏼣. (14)

'e signal is generated over a time of 0.5 s with a sample
frequency of 1 kHz. Figure 4 gives two time curves of the
observed signals Q1(t) and Q2(t). EEMD results related to
Q1(t) are shown in Figure 5.

Meanwhile, the cosine similarities between each IMF and
the observed signals are obtained by (11) and listed in Tables 3
and 4, respectively.'e IMFwith the most prominent similarity
is selected to achieve the source separation task, while the others
are discarded as irrelevant components. Here, IMF3 and IMF2
are, respectively, selected and utilized for further analysis as they
own the highest similarities compared to the others in each table.

By comparing the observed signal in Figure 4(b) with its
IMFs in Figure 5, significant evidence can be automatically
obtained and visually distinguished.

'ereafter, SVD is delivered to estimate the source
number and the first 20 decline ratios are plotted in Figure 6.

It can be noticed that the highest value of the decline
ratio shows up at the second position, which means that the
source number is equal to two accordingly.

'ereafter, the observed matrix and the selected IMFs
are treated as the new observed matrix and processed using
the NMF method to carry out the inherent sources. Fur-
thermore, to reflect the original sources S, i.e., s1(t) and
s2(t), the extracted sources are estimated by the charac-
teristics of frequency distribution. For better comparison,
the corresponding components for the same pattern are
intensively drawn in the single chart in Figure 7.

At first glance, analogous properties appear in each chart
in Figure 7, especially the phase information, where nearly
identical results have been achieved. On closer inspection, a
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slight difference can be noticed between these two charts. In
Figure 7(a), for the simulated mass unbalance components,
the estimated amplitudes coincide precisely with each
other, and a tiny phase shift phenomenon shows up. In
Figure 7(b), the fluctuation has increased between the
theoretical and the estimated sources. However, the phase
shift seems disappeared compared to the previous case.
Note that the difference between the theoretical and esti-
mated sources in each case is so slight that the spectrum
calculation and analysis are negligible considering the
space limitation.

It can be inferred from the above discussions that the
extracted information corresponding to the “mass unbal-
ance” obtained by the proposed method is perfectly reserved
and can be representatively used for further unbalancing
calculations.

3.3. Experimental Results and Discussions

3.3.1. Experiment Setup. To verify the rotor balancing
performance in practice, a series of experiments are de-
veloped under different external forces. Note that multiple
faults are simulated using a specifically designed Bently
Nevada Rotor Kit (see Figure 8).

Figure 8 illustrates the structure chart of the rotor
balancing test rig together with the specific loading
structure. As can be observed, the whole rig consists of a
speed controller, a DC motor, a serial of standard weights,
and a small range electric balance. A NI-4432 data ac-
quisition card was used for the vibration signal collection.
Moreover, six eddy current displacement probes perpen-
dicular to each other were installed separately and further
used to perform the task of vibration information capture
(see Figure 8(a)). 'e other two probes were employed for
speed measurement and control. More details of the rig can
be found in [19].

It needs to be emphasized that the specific loading device
installed is used to simulate additional failures like pipeline
excitation, which directly affect the distribution of the radial
forces by the four linked springs (see B-direction in
Figure 8(a)). 'e current device is able to generate different
levels of external forces in terms of the four round nuts.
'eoretically, it is capable of loading radial forces in any
direction on the rotating components. Since the force ap-
plied to the spring is proportional to the spring deformation,
the change of the deformation can be quantified and
transformed into the changes of pitch number. 'us, the
pitch number directly substitutes the real force for
convenience.

Balancing calculation

System with other fault

Orignal Trail

Conventional ICM

Weight Phase

System without other fault

Orignal Trail

Conventional ICM

Balancing calculation

Weight Phase

System with other fault

Orignal Trail

BSS-ICM

Balancing calculation

Weight Phase

Weight comparison result Phase comparison result

Figure 3: 'e main comparison flowchart using the proposed method.

Table 1: Same parameters used for simulation and experiment cases.

Parameters Source number Sensitive IMFs number Ensemble number Noise level Max iterative Residual threshold
Values 2 2 100 0.1 10000 1e-5

Table 2: Some parameters of the mixed signal in (12).

Parameters/units d1/μm f1/Hz φ1/ra d d2/μm φ2/ra d f2/Hz φ3/ra d υi(t)

Values 20 20 π/3 15 π/4 40 π/2 10 dB
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Meanwhile, the four directions of top, down, left, and
right were represented by four capital letters T, D, L, and R,
respectively. 'e numbers are attached to the capital letters

to represent the force vectors (magnitude and direction). For
example, L2T3 means two forces of 2 pitches and 3 pitches
simultaneously applied to the left and top directions.
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Figure 4: Time curves corresponding to the two observed signals.
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Figure 5: EEMD results of the observed signal in Figure 4(b).
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Note that, for comparison, all operating conditions,
including the data collection parameters, are identical. 'e
input rotating speed of the DC motor was approximately
equal to 1000 rpm. Vibration signals were collected simul-
taneously using five probes. Each file of the vibration signal
consisted of 2 s of data at a sampling rate of 4096Hz. 'e
order tracking technique was also involved in gaining vi-
bration parameters as precisely as possible when the pro-
cedure was used to process vibration signals. Meanwhile,
because rotor balancing essentially requires the phase
measurement of the synchronous harmonics of the vibration
signal with respect to a reference, the key phasor (one of the
probes fixed near the motor) was adopted to provide the
reference phase angle value associated with the filtered
amplitudes measured by each transducer.

3.3.2. 9e Standard Rotor Balance Process. 'e standard
rotor balance process without additional radial force was
first introduced to obtain the reference parameters, such as
mass unbalance vector and balancing vector corresponding
to the original imbalance.

First, the peak-to-peak values and vibration vectors at 1X
were extracted from the raw data and shown in Table 5.

As can be seen, the vibration information collected from
different sensors is distinct from one another, even from the
same rotor section. 'e probe with the highest amplitude
was chosen for the balancing task according to the main-
tenance experience to achieve a better contrast.

A trial weight of 9.8 g was located at 270° (both quantity
and angle were randomly chosen). Based on conventional
ICM, rotor balancing results were gained under the
unloaded condition, which inferred that only mass unbal-
ance failures were artificially concerned regardless of the
mechanical assembly errors. Note that here the mass un-
balance that can be treated as the inherent failure of the rotor
system persisted through the whole duration.

3.3.3. Rotor Balance Process with External Force Interference.
In practical experiments, a serial of experimental inves-
tigations have been established under different loading
conditions. Considering the limit of the paper, only the
condition with an additional T5R6 force was engaged to
demonstrate the superior performance of the BSS-ICM
algorithm. Moreover, in contrast to the previous analysis
using the probe with the highest amplitude, all vibration
signals were referred to the signal source to be analysed.
Because there are two groups of orthogonally installed
probes, the two raw signals were selected by the magni-
tude level. Herein, raw signals collected from 3# and 4#
sensors were selected according to the magnitude. Cor-
responding waveforms of these two signals are described
in Figure 9.

According to the algorithm flow, EEMD was used to
process the selected raw signals to obtain the IMFs. Par-
ticularly, EEMD results extracted from the 3rd probe are
representatively illustrated in Figure 10.

Table 3: Cosine similarities between each IMF and the mixed signal in Figure 4(a).

IMF 1 2 3 4 5 6 7 8
Simcos 0.012 0.091 0.860 0.646 0.104 0.056 0.019 0.020

Table 4: Cosine similarities between each IMF and the mixed signal in Figure 4(b).

IMF 1 2 3 4 5 6 7 8
Simcos 0.215 0.983 0.183 0.110 0.044 0.015 0.004 0.014
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Figure 6: Changes of decline ratio with source index.
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'ereafter, the similarity between each IMF and the original
vibration is computed using (11) to capture the most repre-
sentative IMF. Together with the original signal, herein, the IMF

with the most significant similarity (IMF4 owns the highest
values in each group) is employed to form themixingmatrix for
fault number determination and blind source separation.
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Figure 7: Source estimations using the proposed method.
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Figure 8: Bently Nevada Rotor Kit with a specific force loading device. (a) 'e structure chart and (b) the physical view.
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Tables 6 and 7 give the corresponding similarities of the
two groups of IMFs, respectively.

'en, the SVD method is used for fault number esti-
mation. Table 8 shows the details of the top 20 nonzero

eigenvalues related to the new observed matrix. 'e decline
ratios are illustrated in Figure 11.

In Figure 11, it is clear that the second ratio owns the
most considerable value compared to the others. In other
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Figure 9: 'e original signal collected from (a) the 3# and (b) 4# sensors.
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Figure 10: First eight IMFs of the 3rd vibration signal (from high- to low-frequency bands).

Table 6: Results of cosine similarities based on the first selected raw data.

IMF 1 2 3 4 5 6 7 8
Simcos 0.019 0.020 0.477 0.991 0.444 0.011 0.040 0.040

Table 5: Vibration vectors of raw signals.

Probes 1st 2nd 3rd 4th
Peak-to-peak value μm 42.1 53.0 112.0 70.0
1X vector μm∠° 36.2∠347 51.2∠79 104∠340 69.9∠76
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words, the rotor system suffers from two main faults that
correspond to the mass unbalance and the simulated fault
generated by the external force.

'ereafter, NMF is adopted to separate the main
sources from the new observed matrix, and the rela-
tionship between the decomposed signals and the two
faults can be determined based on the frequency distri-
bution. 'e corresponding order spectrums are intro-
duced to obtain a much more precise balancer vector,
because the order spectrum is able to eliminate the in-
terference of the speed fluctuation.

'e proposed method is validated during the whole
balancing process without additional operations. 'us, the
above flow involving some key steps (steps 1, 2, 4, and 5 in
Section 2.4) will be repeated to obtain the corresponding
vibration information under the trial condition. Note that
SVD can be omitted in this case since the source number has
been obtained under the original vibration situation.

Finally, once all relevant information has been obtained,
ICM is employed to accomplish the rotor balancing task.
'ree sets of analytical results are calculated using the
conventional ICM.'e corresponding results are intensively
elaborated in Tables 9–11.

3.3.4. Results and Discussions. According to the rotor bal-
ancing results in Tables 9–11, a brief summary can be
reached. (1) Conventional ICM plays an important role in
the process of rigid rotor balancing, in which the axial vi-
brations at 3# in cases 1 and 2 were reduced by more than
75% after field balancing. (2) 'e impact of the additional
force is undeniable, where all amplitudes of vibrations de-
crease to a slighter level under the external radial force. (3)
Significant changes are seen in the final balancer vectors in
two cases, especially, in the correction angle, where a de-
viation angle of 40° is obtained. In reality, the deviation is an
outrageous option. It can be easily inferred that once the
external force disappears (e.g., the run-in period after the
overhaul), the inappropriate installation may result in the
opposite effect or uncontrollable situations like a mal-
function or even fatal damage. (4) Regardless of the am-
plitude difference, the final balancer vector obtained by BSS-
ICM in case 3 is much more effective. Compared to the
referred angle in case 1, a nearly identical correction angle
has been achieved, which indicates that the optimal in-
stallation position has been figured out, even if the balancing
effectiveness may decline. However, the inherent balancing
has been accurately modified accordingly.

Table 8: Nonzero eigenvalues obtained by SVD.

Index 1 2 3 4 5 6 7 8 9 10
Simcos 28273 28107 4004 3459 2188 2183 1168 735 321 207
Index 11 12 13 14 15 16 17 18 19 20
Simcos 107 95 89 61 49 49 40 25 23 21
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Figure 11: Changes of decline ratio with source index under experiment condition.

Table 7: Results of cosine similarities based on the second selected raw data.

IMF 1 2 3 4 5 6 7 8
Simcos 0.035 0.014 0.061 0.959 0.830 0.025 0.024 0.023

Table 9: Rotor balancing results using convention ICM without external force.

Run state At condition weight (g)/angle (°) Vibration amplitude (μm) Phase angle (°) External force
Original — 104 340 —
Trial 9.8/270 51 345 —
Balanced 19/275 24.4 59 —
Final vibration amplitude reduction %: (104–24.4)/104� 76.54%.
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4. Conclusions

In this paper, a hybrid method named BSS-ICM is suc-
cessfully developed. In conjunction with the superiority of
EEMD, SVD, and NMF, extraction and division of multiple
features have been accomplished. 'e corresponding anal-
ysis results and conclusions are given as follows:

(1) 'e hybrid method is capable of maximizing the use
of the vibration information, where signals collected
from different sensors are involved for further
analysis.

(2) A root dynamic balancing and implemental frame-
work is successfully developed to accomplish the task
of vibration reduction.

(3) 'e effectiveness of the proposed method is verified
using both numerical simulations and practical ap-
plications, in which the signal characteristics of the
common rotor failure are successfully obtained and
utilized for further analysis, i.e., rotor balancing.

(4) Results of simulations and experiments indicate that
the novel method has the potential ability of
extracting the inherent faults from the mixed vi-
bration signals.

Nevertheless the investigation on rotor balancing by
means of BSS is still in its infancy, and modern signal
processing techniques have not been sufficiently applied to
this field yet, there is a slight amplitude deviation between
the two balancers obtained by BSS-ICM and conventional
ICM. Moreover, the final balancer vector cannot be verified
because of the permission restrictions and algorithm de-
velopment period, even though, based on the angle infor-
mation, it still can be deduced that the calculation result
meets the requirements of inherent rotor balancing.
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�e modular multilevel converter of the battery energy storage system (MMC-BESS) not only is suitable for the large-scale energy
storage and dispatching of AC and DC grids, but also has a strong ability to suppress power �uctuations caused by the new energy
output or grid failures. When an asymmetric voltage or a sudden change in DC load occurs in the AC grid, in order to compensate
for the power di�erence between AC and DC sides, the energy storage submodule of the MMC-BESS will have a large unbalanced
charging and discharging current, destroying the equalization state of SOC and seriously a�ecting energy storage capacity
utilization and battery service life. In order to deal with the above problems, in this paper, the characteristics of the power
di�erence between the MMC-BESS phase unit and the upper and lower bridge arms are analyzed. It is found that when
considering the �uctuation of the submodule capacitor voltage, the phase unit power has the fundamental frequency AC
circulating current component, and the power di�erence between the upper and lower bridge arms has the DC circulating current
component. �erefore, the three-level SOC equalization correction control strategy is proposed based on interphase, upper and
lower bridge arms, and submodules, and the feedforward sliding window integral method is introduced into the SOC equalization
correction control layer of upper and lower bridge arms, so as to achieve the purpose of more balanced and accurate power
distribution among phases and among upper and lower bridge arms of each phase. �e simulation results show that the MMC-
BESS has e�ective compensation ability when there is a large power di�erence in the AC and DC power grid. Under the
unbalanced working conditions of the three-phase power grid, the three-phase AC current can quickly reach equalization, and the
total harmonic content is 1.38%, and the unbalance degree is 2.4%. Under the same operating conditions, compared with the
traditional optimal one-third average method, the SOC equalization correction control strategy proposed in this paper has smaller
submodule capacitor voltage �uctuation rate, harmonic distortion rate, and three-phase system circulating current. And the SOC
of each phase has a faster equalization convergence speed.

1. Introduction

In recent years, with the large-scale access of new energy
resources, the randomness of its power �ow has brought
severe challenges to the safe and stable operation of the
power grid [1]. In the case of power quality problems mainly
due to voltage sag [2] caused by uneven output of new
energy sources or sudden load changes in the AC and DC
grids, the energy storage system, as a balance medium be-
tween power and time scale, can not only bu�er the power
�uctuation caused by new energy power generation, but also

e�ectively improve the power quality of the power grid
[3–5].

Modular multilevel converters are currently widely used
in high-voltage DC transmission, new energy power gen-
eration, and other medium-high-voltage and large-capacity
occasions due to their highly modular structure, low har-
monic content of AC output, and strong redundancy [6, 7].
Combining the MMC with the lithium battery, which has
high energy density, high power density, and high energy
conversion e¡ciency [8], can give full play to the ability of
the MMC-BESS to adjust power quality and smooth power
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fluctuation output in medium and high power occasions
[9–11].

In AC and DC power grids, the unbalanced grid-side
voltage of the three-phase or the large sudden change of
AC and DC load makes the system bus voltage unstable
and increases the system circulating current, which causes
damage to electrical products, misoperation of power grid
protection, and reduces the service life of distribution grid
operation equipment, etc. [12, 13]. *e use of the large-
capacity MMC-BESS can supplement the power difference
between the AC and DC sides, smooth power fluctuations,
and improve the system power quality [14, 15]. However,
when the battery in the MMC-BESS is in use, long-term
unbalanced high current charging and discharging will
affect its SOC equalization state and energy storage ca-
pacity utilization, resulting in a decrease in battery life
[16].

*erefore, it is essential to carry out the research on the
SOC equalization control of the MMC-BESS. Literature [17]
used zero-sequence voltage and fundamental frequency
circulating current injection to achieve the SOC balance
among phases and among upper and lower bridge arms, but
the calculation principle is complicated. Literature [18]
introduced the energy storage MMC system in which the
energy storage battery was directly connected to the sub-
modules. *e DC circulating current and the fundamental
frequency circulating current were extracted and corrected
to balance the power among the phases and the upper and
lower bridge arms. *is method is more complicated in the
extraction process and requires an additional DC circulating
current suppressor. Literature [19] introduced an MMC
energy management system based on the EV battery, which
adopted a two-level SOC equalization correction control
strategy of phase unit and upper and lower bridge arms to
achieve the SOC equalization of each energy storage sub-
module, but the upper and lower bridge arm equalization
correction control of PR control was not considered. Due to
the bandwidth limitation, the equalization correction con-
trol can only complete the zero-static-error tracking of
signals with fixed frequency and cannot guarantee the ac-
curacy of the energy equalization of the upper and lower
bridge arms. In literature [20], under the condition of the
unbalanced grid-side voltage, DC circulation injection is
used to achieve the SOC equalization, but the SOC equal-
ization of upper and lower bridge arms was not considered.
Literature [21] used the three-level SOC equalization cor-
rection control to achieve the SOC equalization of each
energy storage submodule under the unbalanced three-
phase power grid, but the SOC equalization correction
control layer of the upper and lower arms did not perform
signal processing on the output correction. Harmonic sig-
nals of different frequencies caused fluctuations in the power
difference between the upper and lower bridge arms. Lit-
erature [22] introduced that the energy storage battery was
connected to the MMC submodule system through a Bi-
directional DC-DC, and the SOC control was realized. In the
upper and lower bridge arm balance control layer, only the
three-phase SOC correction was averaged, and the accuracy
of the correction was slightly deficient.

Based on the above, this paper proposes an improved
three-level SOC equalization correction control strategy for
the MMC-BESS based on analyzing the characteristics of the
difference between the phase unit power and the bridge arm
power. Feedforward is used in the SOC equalization cor-
rection control layer of upper and lower bridge arms. *e
sliding window integral method is used to process the
harmonic signals of the correction value, so as to realize the
accurate equalization of the power of the upper and lower
arms of each phase unit, which can make the SOC of each
energy storage submodule more quickly balanced and
converged.

In Section 1, the operating state of the MMC-BESS, the
main circuit topology, and the principle of the energy
storage submodule are analyzed, and the voltage/current
switching function model of phase unit bridge arm is
established. Based on this, the internal characteristics of
phase unit and bridge arm unit are analyzed. When not
considering the capacitor voltage fluctuation of the sub-
module, the phase unit power is composed of the DC
component, the double frequency AC component, and the
AC output. *e power difference between the upper and
lower bridge arms is composed of the fundamental fre-
quency component and the fundamental frequency AC
output. If the capacitor voltage fluctuation of the submodule
is considered, the phase unit power will increase the fun-
damental frequency circulating current component, and the
power difference between the upper and lower bridge arms
will increase the DC circulating current component. *e
results show that the AC fundamental frequency/double
frequency circulation and DC circulation have an important
influence on the average power distribution of the phase unit
and the accurate power distribution of upper and lower
bridge arms.

Section 2 constructs its double closed-loop control
system based on the mathematical model of the MMC-BESS
single-phase equivalent circuit and introduces the principle
and stability analysis of the double closed-loop control
system of the Bidirectional DC-DC converter applied to the
energy storage submodule. A three-level SOC control system
model is constructed based on interphase, upper and lower
bridge arms, and each submodule. In the upper and lower
bridge arm equalization control [23], the correction factor
and the feedforward sliding window integral method are
introduced [24, 25]. Compared with the traditional optimal
one-third average method, which only distributes the DC
circulation bias to three phases evenly, the feedforward
sliding window integral method completely suppresses the
DC circulation bias.

In Section 3, the lithium battery of energy storage
submodule is continuously discharged, and the three-level
SOC equalization correction controller is started under the
conditions of sudden change of DC load/50% drop of two-
phase voltage of the three-phase AC power grid. *e results
show that the DC bus voltage is stable at 20 kV under both
working conditions. When the two-phase voltage drops, the
three-phase AC current can be effectively compensated and
balanced. Compared with the one-third average method, the
three-level SOC equalization correction control strategy
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proposed in this paper makes the capacitor voltage of the
submodule stable at 5000V under the condition of high
current discharge, and the fluctuation rate and total har-
monic distortion rate are smaller. *e three-phase circu-
lating current suppression effect of the system is better, so
the phase unit power distribution is more balanced, and the
upper and lower bridge arm power distribution is more
accurate. *rough comparative analysis, the SOC equal-
ization correction control proposed in this paper makes the
SOC of three-phase lithium battery have faster equalization
convergence speed and better consistency.

2. Basic Principle of Energy Storage MMC

2.1. MMC-BESS Operating Status Analysis. *e AC/DC grid
system structure is shown in Figure 1. On the AC bus side,
the MMC-BESS can be used as a power conversion and
energy storage system for wind power generation units, and
it can also be connected to a higher voltage grid. On the DC
bus side, the MMC-BESS can complete DC energy inter-
action with photovoltaic power generation units, electric
vehicles, energy feedback systems, etc. On the energy storage
unit side, if the input/output power of the AC bus side and
the DC bus side are equal, the MMC-BESS can be used as an
AC/DC power converter. *erefore, the MMC-BESS can be
equivalent to a three-port grid for power transmission
among the AC bus side, the DC bus side, and the lithium
battery energy storage system. *ere are 12 operating
conditions in total.*e working conditions simulated in this
paper are DC load sudden change and two-phase voltage
drop of three-phase network side voltage by 50%. *e Bi-
directional DC-DC converter of MMC-BESS energy storage
system works in boost mode, and the lithium battery is
continuously discharged.

2.2.MMC-BESS Topology. As shown in Figure 2, the MMC-
BESS has the same three-phase structure and is connected in
parallel to the DC bus side. Each phase can be divided into
upper and lower bridge arms. Each bridge arm is composed
of N energy storage submodules containing lithium batteries
in series with the bridge arm inductor Lem and the bridge
arm equivalent resistor Rem.

where upx and unx represent the output voltage of the
upper and lower bridge arm of energy storage submodules of
phase X, respectively; ipx and inx represent the currents
flowing through upper and lower bridge arms of phase X,
respectively; ex and ix represent the x-phase voltage and
current of the AC bus side, respectively. *e number of
phases x� a, b, c. Ls is the balanced filter inductor between
the AC bus and the AC output port of the MMC-BESS. Udc
represents the DC bus voltage.

2.2.1. Energy Storage Submodule. As shown in Figures 3 and
4, the energy storage submodule is composed of a half-
bridge submodule and an energy storage system. By

controlling the switching states of the half-bridge sub-
modules VT1 and VT2, the charging and discharging of the
capacitor Cm are changed to maintain the stability of the DC
voltage of each phase.*e energy storage system includes the
Bidirectional DC-DC, energy storage filter inductor Lbat and
the lithium battery. When the Bidirectional DC-DC con-
verter operated in the Buck mode, the half-bridge sub-
module capacitor charged the lithium battery. *e capacitor
voltage of the half-bridge submodule was greater than its
ideal value, VT3 was turned on, and the half-bridge sub-
module discharged to the lithium battery. *e capacitor
voltage of half-bridge submodule was equal to or less than its
ideal value, VD4 was turned on, and there was no energy
interaction between them. When the Bidirectional DC-DC
operated in the Boost mode, the lithium battery charged the
capacitor of the half-bridge submodule. *e capacitor
voltage of the half-bridge submodule was less than its ideal
value, VD3 was turned on, and the lithium battery charged
the capacitor of the half-bridge submodule. *e capacitor
voltage of the half-bridge submodule was equal to or greater
than its ideal value, VT4 was turned on, and there was no
energy interaction between them. From the above Bidi-
rectional DC-DC working mode analysis, it can be seen that
the lithium battery of the energy storage system operated in a
low-voltage condition, and the charging and discharging
current had a high degree of controllability (Table 1).

2.2.2. Bridge Arm Voltage/Current Switching Function
Model. During the stable operation of the MMC-BESS, the
capacitor of the energy storage submodule not only flows
through the bridge arm current for energy interaction with
AC and DC sides, but also flows the charging and dis-
charging current of the lithium battery in the energy storage
system. Taking one phase as an example, the switching
function s of its energy storage submodule is defined as

s �
1, VT1(on),VT2(off),

0, VT1(off),VT2(on).
􏼨 (1)

*us, the output voltage of the energy storage sub-
module port of phase unit bridge arm is expressed as

uixk � sixkUsmk,

Cm

dUsmk

dt
� sixkiix + iLbk,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(2)

where uixk is the output voltage value of the k-th submodule
in the upper or lower bridge arm of one phase, Usmk is the
capacitor voltage of the submodule, and sixk is the switching
function; iix is the current of the upper or lower bridge arm
of one phase, and iLbk is charging and discharging current of
the lithium battery of the energy storage system. In equation
(2), i= p (upper bridge arm) or n (lower bridge arm), the
number of phases x= a, b, c; k= 1∼N representing the
number of submodules of the same bridge arm.
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*erefore, the bridge arm output voltage uix and output
current iix can be expressed as

uix � 􏽘

N

k�1
sixkUsmk, Cm

d􏽐
N
k�1sixkUsmk

dt
� iix + 􏽘

N

k�1
siskiLbk.

⎧⎨

⎩ (3)

Ignoring the equivalent impedance of the bridge arm, the
KVL equation for the upper and lower bridge arms is
expressed as follows:

upx �
1
2
Udc − Ea sin(ωt),

unx �
1
2
Udc + Ea sin(ωt),

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(4)

where upx and unx are the upper and lower arm voltages of
the x-th phase, respectively; Ea is the peak value of the AC
voltage; Udc is DC-side voltage.
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2.2.3. Analysis of Internal Characteristics of Phase Unit and
Bridge Arm Unit. In order to achieve a better control effect
and master the control law of the MMC-BESS, the internal
characteristics of the phase unit and the bridge arm unit are
analyzed. According to equations (4), the following equa-
tions are obtained:

upx �
􏽐

N
k�1Usmk

2
−

􏽐
N
k�1mUsmk sin(ωt)

2
,

unx �
􏽐

N
k�1Usmk

2
+

􏽐
N
k�1mUsmk sin(ωt)

2
,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(5)

where m is the modulation ratio, and Usmk is the capacitor
voltage of the energy storage submodule, which is put into
operation in the x-th phase. Based on the single-phase

equivalent circuit, the KAL equation of the upper and lower
bridge arms is obtained as follows:

ipx �
1
3
Idc +

Ix sin(ωt − φ)

2
,

inx �
1
3
Idc −

Ix sin(ωt − φ)

2
,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(6)

where ipx and inx are the currents flowing through the upper
and lower bridge arms, Idc is the DC output current, Ix is the
peak value of the phase AC current, and φ is the impedance
angle. From (5) and (6), the power of phase unit and upper
and lower bridge arms can be obtained expressed as (7) and
(8) (without considering the capacitor voltage of the
submodule):

half-bridge submodule energy storage system
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VT2

VT3

VT4VD2

VD1

VD4

VD3

Cm Lbat

ibat

Lb

Figure 3: Energy storage submodule.
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Figure 4: Energy interaction status of the lithium battery in the buck and boost working modes. (a) In the buck mode, with energy
interaction. (b) In the buck mode, without energy interaction. (c) In the boost mode, without energy interaction. (d) In the boost mode, with
energy interaction.
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px �
Idc􏽐

N
k�1Usmk

3􏽼√√√√√􏽻􏽺√√√√√􏽽
DCcomponent

+
Ix􏽐

N
k�1mUsmk cos 2ωt

4􏽼√√√√√√√√√􏽻􏽺√√√√√√√√√􏽽
double frequency AC component

−
Ix􏽐

N
k�1mUsmk cosφ

4􏽼√√√√√√√√􏽻􏽺√√√√√√√√􏽽
ACoutput

,
(7)

Δpx �
Idc􏽐

N
k�1mUsmk sinωt

3
+

Ix􏽐
N
k�1Usmk cosωt sinφ

2􏽼√√√√√√√√√√√√√√√√√√√√􏽻􏽺√√√√√√√√√√√√√√√√√√√√􏽽
fundamental frequency AC component

−
Ix􏽐

N
k�1Usmk sinωt cosφ

2􏽼√√√√√√√√√√􏽻􏽺√√√√√√√√√√􏽽
ACoutput

,
(8)

where px represents the power of the phase unit, and Δpx
represents the power difference of upper and lower bridge
arms.

When considering capacitor voltage fluctuation of the
submodule, px and Δpx are, respectively, expressed as (9) and
(10):

px �
Idc􏽐

N
k�1Usmk

3􏽼√√√√√􏽻􏽺√√√√√􏽽
DC component

+
Ix􏽐

N
k�1mUsmk cos 2ωt

4􏽼√√√√√√√√√􏽻􏽺√√√√√√√√√􏽽
double frequency AC component

−
Ix􏽐

N
k�1mUsmk cosφ

4􏽼√√√√√√√√􏽻􏽺√√√√√√√√􏽽
ACoutput

+
Idc􏽐

N
k�1mΔUsmk sinωt

6

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏽼√√√√√√√√√√􏽻􏽺√√√√√√√√√√􏽽
Fundamental frequency AC

circulating current component

,

(9)

Δpx �
Idc􏽐

N
k�1mUsmk sinωt

3
+

Ix􏽐
N
k�1Usmk cosωt sinφ

2􏽼√√√√√√√√√√√√√√√√√√√√􏽻􏽺√√√√√√√√√√√√√√√√√√√√􏽽
fundamental frequency AC component

−
Ix􏽐

N
k�1Usmk sinωt cosφ

2􏽼√√√√√√√√√√􏽻􏽺√√√√√√√√√√􏽽
ACoutput

+
Idc􏽐

N
k�1ΔUsmk

6

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏽼√√√√√√􏽻􏽺√√√√√√􏽽
DCcirculating
current component

.

(10)

By comparing (7) with (9), it can be seen that when
considering the fluctuation of the capacitor voltage of the
submodule, the phase unit power will increase the funda-
mental frequency AC circulating current component. By
comparing (8) with (10), it can be seen that when consid-
ering the fluctuation of the capacitor voltage of the sub-
module, the power difference between upper and lower
bridge arms will increase the DC circulating current com-
ponent. Figures 5 and 6 are the power difference curves
between the phase unit and the upper and lower bridge arms,
which are drawn according to the actual parameters of the
system. In Figure 5, the green curve includes the DC
component and AC output. *e blue curve includes the DC
component, the double frequency AC component, and AC
output. *e red curve includes DC component, the double
frequency AC component, the fundamental frequency cir-
culation component, and AC output. It shows that the
fundamental frequency circulating current component
formed by the capacitor voltage fluctuation of the sub-
module caused uneven power distribution of the phase unit.

In Figure 6, the blue curve includes the AC component,
the fundamental frequency, and AC output. *e red curve
includes the fundamental frequency AC component, AC
output, and the DC circulation component. It shows that the
DC circulating current caused by the capacitor voltage
fluctuation of the submodule caused the inaccurate power
distribution of the upper and lower bridge arms.

*erefore, the essential reason for constructing the
three-level SOC equalization correction control is to sup-
press the fundamental frequency circulation of phase unit
and the DC circulation of upper and lower bridge arms
caused by the fluctuation of capacitor voltage of submodule.

3. MMC-BESS Hierarchical Control System

*e MMC-BESS hierarchical control is shown in Figure 7,
which is mainly composed of the main control system, the
three-level SOC equalization correction control, and the
Bidirectional DC-DC converter control system based on PI
control. *e main control system collected the active and

Table 1: MMC-BESS interaction status and energy storage system working mode.

MMC-BESS interaction
status

DC-DC working
mode

Lithium battery charge/
discharge status VT3 VT4

Submodule capacitor voltage
status Circuit

pbat � 1 (absorbed
power) Buck mode Charge PWM 0 Usm>Usmref Figure 4(a)

Usm<Usmref Figure 4(b)

pbat � 1 (output power) Boost mode Discharge 0 PWM Usm>Usmref Figure 4(c)
Usm<Usmref Figure 4(d)

Note. Usm represents the actual value of the submodule capacitor voltage; Usmref represents the ideal value of the submodule capacitor voltage.
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reactive power of themain circuit of theMMC, adjusted it by
the PI controller, and generated the three-phase sinusoidal
modulation wave after feedforward decoupling. *e gen-
erated three-phase sinusoidal modulation wave was sent to
the carrier phase-shifting modulation through the correc-
tion of the three-level SOC equalization control and worked
with the submodule capacitor voltage quicksort algorithm to
generate the triggering pulse of the power switch of each
half-bridge submodule of the MMC-BESS main circuit. *e
Bidirectional DC-DC converter adopted the double closed-
loop control system structure of the outer loop voltage and
inner loop current based on the PI controller to realize the

energy interaction between the MMC and the lithium
battery of the energy storage submodule.

3.1. MMC-BESS Main Control System

3.1.1. MMC-BESS Mathematical Model of Single-Phase
Equivalent Circuit. Based on the analysis of the internal
characteristics of the phase unit and the bridge arm unit, in
order to achieve effective control and interaction of the AC
and DC-side energy, the MMC-BESS phase unit was used as
a “bridge” to establish the AC and DC-side voltage/current
relationship. *e single-phase equivalent circuit is shown in
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Figure 5: Phase unit power.
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Figure 8, taking phase A as an example for description. *e
expressions are as follows:

LEm

dipa

dt
+ REmipa + Ls

dia

dt
�

Udc

2
− ea − upa,

LEm

dina

dt
+ REmina − Ls

dia

dt
�

Udc

2
+ ea − una,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(11)

ipa �
Idc

3
+

ia
2

,

ina �
Idc

3
−

ia

2
.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(12)
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From equations (11), the following equation can be
obtained:

Ls +
LEm

2
􏼒 􏼓

dia
dt

+
REm

2
ia �

una − upa

2
− ea. (13)

According to (13), the AC-side current can be changed
by controlling the bridge arm voltage difference.

In order to facilitate the design of the control system, (13)
can be extended to the three-phase expression, which can be
transformed by abc/dq transformation matrix M (θ)abc-dq
from the three-phase static coordinate system to the two-
phase rotating coordinate system. *us, the following
equations can be obtained:

P
∗
s �

3
2

Ei
∗
d,

Q
∗
s � −

3
2

Ei
∗
q .

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(14)

3.1.2. Structure and Principle of Main Control System.
*e main control system of the MMC-BESS is shown in
Figure 9. Firstly, according to the instantaneous active/re-
active power theory, the active/reactive power reference
values P∗S and Q∗S are transformed to obtain the current
reference values of axes d and q, namely, i∗d and i∗q .

Secondly, the three-phase AC currents ia, ib and ic are
transformed by abc/dq coordinates to realize the separation
of active and reactive power, and then, isd and isq are ob-
tained.*e reference value voltages u∗r d and u∗rq of axes d and
q are obtained after making the difference with the actual
value based on the PI control. According to (14), in order to
accelerate the operation of the system and remove the
voltage/current coupling on AC side of axes d and q, a
feedforward decoupling is added. *e three-phase AC
voltages ua, ub and uc were transformed by abc/dq coor-
dinates to obtain usd and usq, which were combined with
coupling currents of u∗rd and u∗rq of axes d and q to complete
the feedforward decoupling to obtain the ideal voltage value
of u∗d and u∗q of axes d and q. Finally, the three-phase AC
voltage modulation waveform was obtained through dq/abc
inverse coordinate transformation.

3.2. :e Bidirectional DC-DC Converter and Its Control.
*e energy storage system consists of the energy storage
battery and the Bidirectional DC-DC converter. *e Bidi-
rectional DC-DC converter adopted PI-based double closed-
loop control of outer loop voltage/inner loop current. *e
actual value of the inner loop current was the inductor
current of the Bidirectional DC-DC converter, which was
controlled to stabilize the power balance of each energy
storage submodule. *e actual value of the outer loop
voltage was the capacitor voltage of the energy storage
submodule, which was controlled to stabilize the capacitor
voltage of the submodule.

*e structure of the Bidirectional DC-DC converter
control system is shown in Figure 10. *e difference between
the reference value Usmref and the actual value Usm of each
phase of the energy storage submodule capacitor voltage is
obtained after PI tracking control, thus obtaining the reference
value of the inductor current of the energy storage system.
*en, the difference is made with the actual value ibat.*e loop
PI is adjusted and compared with the carrier to generate the
PWM pulse signals. *e switching between the Buck and the
Boost mode needs to set conditions. In the control system,
when the reference value of inductor current is multiplied by
−1, the Bidirectional DC-DC works in the Boost mode.

Taking Boost as an example, the stability analysis of the
control system is carried out, and the constructed double
closed-loop transfer function is

G(s) �
GPI1

(s).GPI2
(s)

1 + GPI1
(s) · GPI2

(s) + GPI2
(s) · Cms + LbatCms

2.

(15)

*e transfer function structure and the system Bode
diagram of the double closed-loop control system of the
outer loop voltage and inner loop current based on PI
control are shown in Figures 11 and 12, respectively.

In the transfer function, P1, P2 and P3 are the forward
channel loop composed of the half-bridge submodule capacitor
voltage Usm, the filter inductor current of energy storage system
ibat and the difference between the lithium battery voltage Ubat
and Usm. *e specific expressions are as follows:

P1 � −GPI1
(s) · GPI2

(s) ·
1

LbatCms
2,

P2 � −GPI2
(s) ·

1
Lbats

,

P3 � −
1

LbatCms
2.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(16)

In (15) and (16) and Figure 11, the expressions of GPI1
(s)

and GPI2
(s) in frequency domain are kp1 + ki1/s and

kp2 + ki2/s. In this paper, kp1 � 10, ki1 � 0.5, kp2 � 5 and
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Figure 9: MMC-BESS main control system.
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ki2 � 0.2 are taken as basic variables. One variable is changed
and expanded by 10 times each time, and the other three
variables remain unchanged. A group of system Bode dia-
gram curves are drawn, as shown in Figure 12. After analysis
and comparison, kp1 � 100, ki1 � 0.5, kp2 � 5 and ki2 � 0.2 are
finally selected. *e resonant peak frequency of the double
closed-loop control system constructed by this group of
variables is about 3184Hz, and the switching frequency of
the Bidirectional DC-DC converter in this paper is 10 kHz. It
shows that the switching frequency signal greater than the
resonant peak frequency is well suppressed under the high
current and rapid charge and discharge condition of the
lithium battery in the energy storage system, and the ca-
pacitor voltage signal of the submodule less than the res-
onant peak frequency will complete the zero static error
tracking of its ideal input value after passing through the
control system.

3.3. SOCEqualizationCorrectionControl. *e essence of the
SOC equalization correction control of the MMC-BESS is to
perform power correction on the three phases, upper and
lower bridge arms, and their submodules, respectively.
Firstly, through the analysis of the three-level SOC equal-
ization control process, the feedforward sliding window
integral method was introduced into the upper and lower
bridge arm control layer to form a more accurate equal-
ization correction, so as to make full use of the lithium
battery capacity of the energy storage submodule.

3.3.1. Phase-To-Phase SOC Equalization Correction Control.
In order to effectively correct the DC current components in
the three-phase MMC-BESS, during the SOC balance cor-
rection control of the phase unit, the PI adjustment method
is used to realize the zero-static-error tracking of the average
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Figure 10: Bidirectional DC-DC control system.
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SOC of each-phase submodule to the average SOC of the
three-phase submodule.

*e specific phase equalization control structure is
shown in Figure 13. *e average SOC of lithium battery of
each energy storage submodule in phase X is SOCx, ph_ave,
and the average SOC of lithium battery of the three-phase
energy storage submodule is SOCph_ave. *e mathematical
expression is as follows:

SOCx,ph ave �
􏽐

2N
k�1SOCx,k

2N
,

SOCph ave �

SOCa,ph ave + SOCb,ph ave + SOCc,ph ave

3
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(17)

3.3.2. SOC Equalization Correction Control of Upper and
Lower Bridge Arms Based on Feedforward Sliding Window
Integral

SOCpx arm ave �
􏽐

N
k�1 SOCpxk

N
,

SOCnx arm ave �
􏽐

N
k�1 SOCnxk

N
.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(18)

It can be seen from formula (18) that the DC circulating
current has the same effect on the power of the upper and
lower bridge arms, and the power flow can be adjusted
among the three phases. In order to obtain more accurate
power distribution of the power of the upper and lower
bridge arms, the upper and lower bridge arm correction
factor hcps_x and the feedforward sliding window integral are
introduced. As shown in Figure 14, the correction factor
hcps_x contains the DC component, the fundamental fre-
quency AC component, and other frequency AC compo-
nents, which are multiplied by earef and go through the
sliding window integral to obtain the equalization correction
of the upper and lower bridge arms U∗arm cps containing only
the fundamental frequency and a small amount of AC
component of other frequencies. *e filtering integral
process is as follows:

􏽚
t+T

t
sin(ωt) · Asin(ωt) + 􏽘

∞

k′�2

Bk′ · sin k′ωt + φk′( 􏼁⎡⎢⎢⎣ ⎤⎥⎥⎦dt.

(19)

Both T in (19) and Z-N in Figure 14 represent the delay,
with the delay time being 0.2 s, and the minimum filtering
frequency is 5Hz.

3.3.3. SOC Equalization Correction Control in Bridge Arms.
*e SOC equalization correction control of the lithium
battery of each submodule in the bridge arms is the same as
the interphase SOC equalization correction control. Making
the difference between the average value of the SOC of the

lithium battery of the upper and lower bridge arm energy
storage submodule and the actual value of the lithium
battery of each submodule, the zero-static-error tracking of
both through the PI controller was realized. When the
MMC-BESS is in discharging condition, the Bidirectional
DC-DC worked in the Boost mode. If the SOC value of the
lithium battery was large, the discharging current would
increase; if the SOC value was small, the discharging current
would decrease. Under charging conditions, the Bidirec-
tional DC-DC is switched to the Buck mode, and if the SOC
value of the lithium battery was small, the charging current
would increase; if the SOC was large, the charging current
would be reduced.

Eventually, the working state modulation commands of
each submodule of the MMC-SCESS were modified and
acted on each of the three-phase bridge arms and their
submodules, respectively, so that the phase-to-phase power
and the power of upper and lower bridge arms was cor-
rected, and then it was combined with the quicksort algo-
rithm of the submodule capacitor voltage, thus quickly
balancing the capacitor voltage of each phase submodule.
Based on this, the double frequency circulating current
among phases was suppressed, and the system loss was
reduced, as shown in Figure 15.

4. Simulation

In order to verify the effectiveness of the proposed three-
level SOC equalization correction control strategy based on
the feedforward sliding window integral method, a three-
phase five-level MMC-BESS model was constructed in the
Matlab/Simulink environment.*e parameters are shown in
Table 2. Due to the limitation of the computer system
performance, the number of submodules of the upper and
lower bridge arms was set to 4 in the simulation verification.
In practical applications, due to the scalability of the MMC-
BESS, more input submodules could jointly withstand the
DC voltage of 20 kV on the DC side of each phase unit. *is
paper focuses on the following three aspects under the
discharging state of lithium battery energy storage system:
(1) the sudden change of DC-side load, aiming at stabilizing
the DC bus voltage; (2) the two-phase drop of the three-
phase grid-side voltage and the three-phase current balance
compensation capability; (3) a faster equalization conver-
gence speed of the SOC of each phase of the proposed three-
level SOC equalization correction control strategy under the
above two working conditions.

As shown in Figures 16–18, in the first working con-
dition, the DC load increased suddenly at 0.5 s after the
system was started. In order to quickly stabilize the DC bus
voltage and maintain power balance, the MMC-BESS input
the lithium battery and the three-level SOC balance cor-
rection controller. *e Bidirectional DC-DC of the MMC-
BESS energy storage system worked in the Boost mode, and
the lithium battery continued to discharge. When the load
changed suddenly, the DC voltage was 19800V and finally
stabilized at 20 kV. In the second working condition, after
the first working condition lasted for 0.5 s, at 1 s, the DC load
recovered, the three-phase grid-side voltages B and C

Shock and Vibration 11



dropped by 50%, and the peak phase voltage changed from
8000V to 4000V. *e Bidirectional DC-DC of the MMC-
BESS energy storage system still worked in the Boost mode,
and the lithium battery continued to discharge to com-
pensate for the difference of the three-phase power, so that
the three-phase grid-side current increased and balanced.
*e DC bus voltage was stable at about 20 kV, the maximum
variable was 1500V, and the steady-state error was 7.5%.*e
maximum peak value of the three-phase current was 231.9 A,
the effective value of the three-phase average current was
160.96A, and the unbalance degree was 0.024. *e pa-
rameters are shown in Table 3.*e total harmonic distortion
rate of the three-phase current is shown in Figure 19. Five
power frequency cycles after 5.66 s were selected for mea-
surement, and the total harmonic distortion rate was 1.38%.

*e MMC-BESS acted as a bridge for energy conversion
between theAC side, theDC side, and the energy storage battery.
*e stability of the capacitor voltage of submodule of each phase
could prove the stability of the power input and output during
the energy conversion period. *e stability of the submodule
capacitor voltage could not only reduce the double frequency

circulation formed by the pressure difference between the phases
of theMMC-BESS, but also reduce the circulating current in the
upper and lower bridge arms formed by the fluctuation of the
submodule capacitor voltage in the bridge arms of each phase.

Under the same operating condition, when the three-
phase grid-side voltage dropped by 50%, the maximum
capacitor voltage of the submodule of the c-phase upper
and lower bridge arm before the improvement by using the
one-third average method was 5009 V, and the minimum
was 4991 V. *e maximum capacitor voltage of the sub-
module of the improved c-phase upper bridge arm was
5008 V, and the minimum was 4992V. In the range of 0.5 s
to 9 s, the SOC equalization correction control strategy
proposed in this paper and the three-stage SOC equal-
ization correction control strategy using one-third average
method were compared and analyzed with the total har-
monic distortion rate of capacitor voltage of each sub-
module of phase C with 50Hz as the fundamental
frequency. It could be seen from the comparative analysis
of Figure 20 and Table 4 that the total harmonic distortion
rate of capacitor voltage of the submodule of c-phase lower
bridge arm with the two methods is less than that of the
upper bridge arm. For the same submodule, the total
harmonic distortion rate of the capacitor voltage of the
submodule using the method proposed in this paper is less
than that of the same submodule using the one-third av-
erage method. It indirectly proved that the MMC-BESS
using the SOC equalization correction control strategy
proposed in this paper has more average phase-to-phase
power distribution and more accurate power distribution
of upper and lower bridge arms.

It can be seen from (10) and (11) that when the capacitor
voltage fluctuation and total harmonic distortion rate of the
submodule were smaller, the difference between the phase-
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Figure 13: Phase-to-phase SOC equalization correction control.

SOCpx_arm_ave

SOCnx_arm_ave PI ×
ʃ ×

Z−N

K
−

earef

+ hcps_x

uarm_cps
*

Figure 14: Equalization correction control of upper and lower bridge arms.
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Figure 15: SOC equalization correction control of submodules in bridge arms.

Table 2: System simulation parameters.

Parameters Value
*e number of bridge arm submodules of each phase n 4
Rated capacity S/MVA 5
Grid phase voltage Ej/kV 5.7
DC-side voltage Udc/kV 20
Bridge arm filter inductor LEm/mH 2
Submodule capacitor Cm/mF 4.7
Grid-side filter inductor LS/mH 4
DC/DC inductor Lbat/mH 3
Switching frequency f/Hz 1000
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to-phase power of the system and the power of the upper and
lower bridge arms of each phase should be smaller, so the
three-phase circulating current should also be smaller. *e
reduction of the three-phase circulating current of the
system was helpful in improving the efficiency of the MMC-
BESS. Figure 21 shows the three-phase circulating current of
the system using the two methods. *e results showed that

after the system was stable, under the working conditions
with the load sudden change and two-phase voltage drop,
the two methods could effectively suppress the three-phase
circulating current, but the effect of using feedforward
sliding window integral method on circulating current
suppression was more obvious, and the peak value of cir-
culating current was smaller. *e maximum peak values of

DC load surge Two-phase voltage
drop by 50%

−1

1

−400

400

0

1
2

0

0.5

−0.5

200
0

−200

Th
re

e-
ph

as
e

AC
 cu

rr
en

t (
A

)
D

C 
vo

lta
ge

 (V
)

Th
re

e-
ph

as
e

AC
 v

ol
ta

ge
 (V

)

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

t (s)

×104

×104

X 0.5
Y 1.98e + 04

X 1
Y 2.142e + 04

Figure 16: System three-phase voltage/current and DC voltage at 0.4∼ 2.2 s.

−1

1

−400

400

0
0.5

−0.5

200
0

−200

Th
re

e-
ph

as
e

AC
 cu

rr
en

t (
A

)
Th

re
e-

ph
as

e
AC

 v
ol

ta
ge

 (V
)

5.66 5.67 5.68 5.69 5.7 5.71 5.72 5.73 5.74
t (s)

×104

X 5.675
Y 8164 X 5.702

Y 4083
X 5.728
Y 4083

X 5.73
Y 231.9

X 5.702
Y 222.1

X 5.676
Y 228.8

X 5.686
Y −215.6

X 5.712
Y −215.5

X 5.739
Y −231.1

Figure 17: *ree-phase AC voltage and current at 5.66 s∼ 5.76 s.

0

1

2
2.5

1.5

0.5

0 1 2 3 4 5 6 7 8 9

20
40
60
80

100

50
100

1 2 30

1
2

t (s)

D
C 

cu
rr

en
t (

A
)

D
C 

vo
lta

ge
 (V

) ×10
4

×10
4

×10
−5

1 2 30 ×10
−5

Figure 18: DC-side voltage and current at 0∼ 9 s.

Shock and Vibration 13



Table 3: Unbalance degree parameters of three phases.

Phases
x

Current peak
of three

phases (A)

Current
effective value
of three phases

(A)

Average value of
effective value of

three-phase
current (A)

Differential phase current
(effective value of phase current -
average value of effective value of

three-phase current) (A)

*ree-phase current unbalance
degree (max effective value of

differential phase current divided by
average value of effective value of

three-phase current)
A-
phase 228.8 161.81

160.96

0.85

2.4%B-
phase 222.1 157.07 3.89

C-
phase 231.9 164.00 3.04
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Figure 19: *ree-phase grid-side current THD at 5 s.
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Figure 20: Analysis of harmonic distortion rate of capacitor voltage of c-phase submodule. (a) Harmonic distortion rate of each submodule
using one-third average method. (b) Harmonic distortion rate of each submodule of sliding window integral method.
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three-phase circulation of A, B, and C using one-third av-
erage method were 123.3 A, 107.7A, and 81.2A, respectively.
After the improvement, the maximum peak values of the
three-phase circulation of A, B, and C using feedforward
sliding window integral method were 85.83A, 73.91A, and
70.01A, respectively.

Figure 22 shows the output power of three-phase battery:
the DC load increased suddenly at 0.5 s. With the goal of
stabilizing the DC bus voltage, the battery is discharged
rapidly, and the maximum output power of the battery is
7.5×106W. When the three-phase grid-side voltage was
unbalanced, in order to compensate for the power difference
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Figure 21: MMC-BESS three-phase circulation. (a) One-third average method, MMC-BESS three-phase circulation. (b) Sliding window
integral method, MMC-BESS three-phase circulation.

Table 4: Capacitor voltage distortion rate of c-phase submodule using one-third average method and sliding window integral method.

Harmonic distortion rate of capacitor voltage of submodule
One-third average method:

5 s 5.2 s 5.4 s 5.6 s 5.8 s
Upper bridge arm of phase C (sm1∼ sm4) 13.18% 13.95% 13.94% 15.81% 14.34%
Lower bridge arm of phase C (sm5∼ sm8) 12.51% 13.76% 13.35% 14.72% 13.34%
Sliding window integral method:

5 s 5.2 s 5.4 s 5.6 s 5.8 s
Upper bridge arm of phase C (sm1∼ sm4) 13.07% 13.39% 13.49% 13.62% 14.01%
Lower bridge arm of phase C (sm5∼ sm8) 12.26% 12.80% 13.24% 12.81% 13.26%
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Figure 23: MMC-BESS three-phase SOC average. (a) One-third average method, three-phase SOC average. (b) Sliding window integral
method, three-phase SOC average.
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Figure 24: Continued.
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among the three phases, the three-phase current can be
quickly balanced. *e lithium battery of the submodule of
the MMC-BESS three-phase energy storage was continu-
ously discharged, but the three-phase output was uneven. In
order to quickly balance lithium battery of the SOC of each
phase under the condition of uneven three-phase output and
improve the utilization rate and service life of energy storage
capacity, it was necessary to balance the SOC of the lithium
battery of each energy storage submodule in the three phases
of MMC-BESS.

In order to verify the effectiveness of the control strategy
proposed in this paper, the system has been put into the
three-level SOC equalization correction controller after a
sudden change in DC load at 0.5 s. Figures 23 and 24 and
Table 5 compare the equalization correction control pro-
posed in this paper with the equalization correction control
of the one-third average method. Under the same initial
value of SOC, by comparing the results of the final SOC
value of each phase at the samemoment, it could be seen that

the correction control proposed in this paper had a faster
convergence and equalization speed. Using one-third av-
erage method, the initial values of the SOC of phases A, B,
and C are 50.5000, 50.3875, and 50.5375, respectively; the
final values of the SOC of phases A, B, and C are 50.4884,
50.3823, and 50.5183, respectively; the difference of the SOC
of phases A, B, and C is 0.0116, 0.0052, and 0.0192, re-
spectively. Using the sliding window integral method, the
initial values of SOC of the phases A, B, and C are the same,
and the final difference is 0.0127, 0.0054, and 0.0197,
respectively.

5. Conclusion

In this paper, the characteristics of MMC-BESS phase unit
power and the power difference between the upper and
lower bridge arms are analyzed, a three-level SOC equal-
ization correction control strategy is constructed, and a
feedforward sliding window integral link is introduced into
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Figure 24: SOC average value of three phases of the MMC-BESS. (a) Sliding window integral method of phase A, SOC average using one-
third average method. (b) Sliding window integral method of phase B, SOC average using one-third average method. (c) Sliding window
integral method of phase C, SOC average using one-third average method.

Table 5: Comparison of SOC data between one-third average method and sliding window integral method.

Comparison of SOC data
One-third average method:

0.5 s 1 s 3 s 5 s 7 s 9 s
Phase A 50.5000 50.4972 50.4930 50.4898 50.4891 50.4884
Phase B 50.3875 50.3847 50.3834 50.3831 50.3829 50.3823
Phase C 50.5375 50.5347 50.5302 50.5257 50.5223 50.5183

Sliding window integral method:
0.5 s 1 s 3 s 5 s 7 s 9 s

Phase A 50.5000 50.4971 50.4928 50.4890 50.4880 50.4873
Phase B 50.3875 50.3847 50.3835 50.3831 50.3828 50.3821
Phase C 50.5375 50.5347 50.5301 50.5253 50.5218 50.5178
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the equalization correction control layer of the upper and
lower bridge arms, so as to weaken the influence of the
fundamental frequency AC circulating current and DC
circulating current caused by the capacitor voltage fluctu-
ation of the submodule on system. A three-phase 5-level
MMC-BESS simulation model is built in the Matlab/
Simulink environment. *e results show that:

(1) When the DC load changes suddenly, or the three-
phase network side voltage is unbalanced, the DC
bus voltage has good stability, the maximum fluc-
tuation is 1500V, and the steady-state error is 7.5%;

(2) MMC-BESS has good compensation ability for
three-phase network side current when the two-
phase voltage drops by 50%. After compensation, the
THD of three-phase current is 1.38%, and the un-
balance degree is 2.4%. *e system has strong
robustness;

(3) *e effectiveness of the three-stage SOC equalization
correction control strategy with sliding window
integral method proposed in this paper is verified,
and the SOC of each phase lithium battery has a
faster equalization convergence speed.
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-e fault diagnosis is always a key issue in the security field of marine propulsion system. -ere are obvious problems like the
unsteady working of sensors, distortion of original data, and ambivalent feature information from marine shafting’s vibration or
motion. It is therefore critical to develop a more effective method to identify the fault information so that the safety of marine
propulsion system can be pre-estimated. Hence, a composite method which is based on the ensemble empirical mode de-
composition (EEMD) and coupled with the autocorrelation method (AM), the fast Fourier transform (FFT), is mixed and applied
to identify the fault information of marine shafting during its operating by hull vibration. -e contrastive analysis of the three
methods and fault feature study are then conducted to assess the effectiveness of the proposedmethod thoroughly and validated by
the author previously. -e research indicates that the composite method is available to fault diagnosis of marine shafting by hull
vibration which coupled the shafting vibration with fault feature.

1. Introduction

As indispensable “links” of ship propulsion torque and
thrust transmissions, the ship propulsion shafting system is
the key part of a ship. Marine propulsion shafting mainly
consists of propeller, intermediate shaft, intermediate
bearing, thrust shaft, thrust bearing, stern tube, stern tube
bearing and other devices as shown in details in Figure 1.
Ship propulsion shafting are affected by some external loads
or periodic excitations, such as propeller excitation [1], main
engine excitation, wave loads, engine room environmental
vibration loads, and so on. During ship navigating, it per-
haps happens that the bearings serious wear phenomena
derived from the oscillations and whirl of the oil film. -e
shafting vibration coupled fault information can be trans-
ferred constantly to ship hull by the oil film of bearings. -e
effective extracting fault information is the key work that has
drawn much attention of many researchers all around the
world. In 2010, Jayaswal P., Verma S. N. et al. [2] investigated
the fault diagnosis methods for vibration signals by

combining wavelet transform with neural networks and
fuzzy logic. In 2016, Khang H. V. et al. [3] used windowed
Fourier transform to clearly identify fault characteristic
frequencies in time spectrums. Especially, Huang N. E.
Reference [4], Zhaohua W. [5], et al. proposed an Empirical
Mode Decomposition (EMD) method and ensemble em-
pirical mode decomposition (EEMD), which are now widely
used in fault diagnosis. -en the methods were combined
and applied to identify the preset bearing failure modes of
benches [6], to extract fault features from vibration signals
[7], to reduce noise [8] and analyze fault diagnosis of ro-
tating machinery [9] or rolling bearing [10–16]. In 2011,
Zhou T. T. [17] proposed a method of partial ensemble
empirical mode decomposition (PEEMD) for fault diag-
nosing of marine shafting for the first time. -en Chen Y
[18] and He Y [19] used the envelope analysis method with
spectrum kurtosis (SK) to identify marine shafting vibra-
tions. And the above methods certainly are available in fault
diagnosing, but the signal is usually limited to vibration
sources such as the bearings or shaft, not the hull. -erefore
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a Composite method is proposed and applied to identify the
marine shafting’s fault from the hull vibration, and some
simulations and real ship tests are carried out in this paper.

2. Methodology

2.1. Empirical Mode Decomposition. EMD methods can be
applied to decompose the signal adaptively to the series of
intrinsic mode functions (IMF) of the frequency compo-
nents which distributes from high frequency to low fre-
quency. Each IMF component contains different
characteristic in time domain which can represent the real
physical information of the signals. -e two IMF conditions
need to meet during decomposing process [20]: the number
of extreme value is equal to zero value in the original signal,
and the up-envelope curve and down-envelope curve is
symmetrical to time axis in whole time domain. -e
decomposing process is shown as follows:

Step 1. -e cubic spline curve is adopted to draw the up-
envelope curve and down-envelope curve of vibration signal,
then the maximum and minimum of them are extracted to
calculate the mean m1. -e first IMF component is
restructured as follows.

h1 � x(t) − m1. (1)

Here, h1 is the first IMF component, x(t) is the original
vibration signal, m1 is the mean value of s1 and s2 which are
respectively the up-envelope curve and down-envelope
curve of the vibration signal drawn by connecting the local
maximum point and local minimum point with a cubic
spline curve.

Step 2. If h1 does not meet the IMF conditions, smoothing
process will be done and h1 will be used as the original data
as following. h12 is the result of repeating the second
smoothing process.

h12 � h1 − m11. (2)

Here, m11 is the mean of up-envelope curve and down-
envelope curve of h1. -e smoothing step will be done

continually until the result meet the IMF conditions. So the
h1k can be got finally, which becomes the first IMF com-
ponent and is denoted by c1 .

c1 � h1k � h1(k−1) − m1(k−1), (k> 1 and k ∈ N), (3)

where k is the times of repeating smoothing process.

Step 3. When c1 is separated from the original signal, the
first residual function r1 is left as equation (4).

r1 � x(t) − c1. (4)

-en the similar smoothing process will be used to get
the next residual function until the final residual function is a
monotonic function as (4).

rn � rn−1 − cn−1, (n> 1, n ∈ N). (5)

Lastly, the signal can be expressed as following function
by EMD method.

x(t) � 􏽘
n

i�1
ci + rn. (6)

2.2. Ensemble Empirical Mode Decomposition. EMD
methods can decompose original signals into a series of in-
trinsic mode functions (IMF) and a residual component, and
which has the adaptability, orthogonality and completeness.
Otherwise EMD method still has some theoretical problems
like endpoint effecting, mean curve construction, and mode
mixing. Hence, EEMDmethod was composite to curb modal
aliasing phenomena. A flow chart of the EEMD method is
illustrated in Figure 2, and the details are as follows:

(i) Step 1: add the random Gaussian white no ise ni(t)

to the original vibration signal x(t), so the noise-
added signal xi(t) can be obtained as follows:

xi(t) � x(t) + ni(t)i � 1, 2, . . . , M, (7)

where the subscript i is the serial number,M is the
ensemble number.

Stern tube bearing
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bearing �rust bearing
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N N
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Figure 1: Diagram of marine propulsion shafting.
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(ii) Step 2: according to equation (7), the matrix of
noise-added signal can be expressed as
[x1(t), x2(t), . . . , xM(t)] (i � 1, 2, . . . , M),. -en
the EMD is adopted to decompose the noise-added
signal xi(t)(i � 1, 2, . . . , M) and the IMF compo-
nents are obtained which can be described as
x1,i(t), x2,i(t), . . . , xn,i(t)􏽮 􏽯

T
. So thematrixMwith j

time of Gaussian white noise can be expressed as
equation (8).

M �

x1,1(t), x1,2(t), . . . x1,M(t),

x2,1(t), x2,2(t), . . . x2,M(t),

⋮ ⋮ ⋮ ⋮

xn,1(t), xn,2(t), . . . xn,M(t),

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (8)

(iii) Step 3: the ensemble means of the corresponding
IMF components then is calculated by the equation
(9), so the final result of that signal can be obtained
more effectively.

Mj(t) �
1

M
􏽘

M

i�1
Mij(t), i � 1, 2, . . . , n; j � 1, 2, . . . , m. (9)

2.3. Autocorrelation Method. -e autocorrelation functions
describe the dependence of the same sample functions of
random vibrations between different instantaneous ampli-
tudes. -e expressions of the autocorrelation functions of
discrete random vibration signals can be derived as follows:

Rxx(t) �
1
N

􏽘

N−k

i�1
x(i)x(i + k), (k � 0, 1, 2, . . .), (10)

where Rxx(t) represents the autocorrelation function, x(i) is
the sample function, k is the serial number which belong to
the natural number. And the autocorrelation function is
described in (10).

Rxx(kΔt) � Rxx(τ). (11)

Here, τ is value of the time domain, Δt denotes the
interval time of sampling. For the autocorrelation functions,
the maximum value is Rxx(0) when τ � 0 and the minimum
approaches to zero when τ⟶∞. So the value of auto-
correlation function is limited in the range of zero and
Rxx(0).

Autocorrelation functions are one of the important pa-
rameters of stochastic vibration signal analysis. -ey also
reflect the degrees of smoothness and steepness of a wave-
form. -erefore, autocorrelation functions are often used to
detect periodic vibration components from a random vi-
bration signal contains in the practical engineering project.
-e autocorrelation functions of periodic components will
maintain the original periodic without attenuation and it can
be applied to qualitatively analyze the fault features of marine
shafting from hull vibration which is also periodic.

2.4. Method Developing. In fact, the fault signals of marine
shafting system are characterized with periodicity and can
easily be overwhelmed by strong background noise, so it is
difficult to identify fault information accurately in measured
signals. -e composite method combines the ensemble
empirical mode decomposition (EEMD) innovatively, the
autocorrelation method (AM), and the fast Fourier trans-
form (FFT), which is abbreviated as EEAF. -e EEAF has
displayed good adaptability, orthogonality, and complete-
ness in our research. In its analysis process, the measured
signals are first decomposed by the EEMD method and the
original signals with some strong background noise are
decomposed to a series of IMF components. -at also
improves effectively the ratio of signal-to-noise for the
periodic components. -en, autocorrelation analysis is done
for obtaining the autocorrelation function of each IMF
component, which is applied to determine the periodicity of
IMF components. Finally, the frequencies and amplitudes of
the periodic signals can be effectively extracted from the IMF
components with periodic signals by filtering, excluding and
spectrum analysis. -e process of EEAF is shown in Figure 3
and is divided into the following steps.

(i) Step 1: the decomposing of the measured original
signal by EEMD is performed, which is presented in
Chapter 2.2 previously. And the IMF components
are obtained.

Start

Input Signal x(t)

Initializing the average number of times M

Adding white noise ni(t)

EMD decomposition of xi(t)

j < M

N

Y

IMFs

End

Mi(t)= Mij(t)
1
M ∑

M

j=1

Figure 2: Decomposing process of EEMD.
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(ii) Step 2: to construct the autocorrelation function
Ri(τ) of the IMF components as equation (12).

Ri(τ) � lim
T⟶∞

1
T

􏽚

T

0

xi(t)xi(t + τ)dt , (12)

where T is the period time of IMF component. For
discrete signals, (11) can be transformed into the
following:

Ri(nΔt) �
􏽐

N−n
i�0 xi ti( 􏼁x ti + nΔt( 􏼁

N − n
, (13)

where N represents the length of the related data, n
denotes the number of delays, i is the time serial
number; τ indicates the delay timed. -e Ri(nΔt)

can be used to eliminate the random disturbance
noise with aperiodic features, and identify the IMF
components with periodic features.

(iii) Step 3: the IMF components with periodicity are
extracted by FFT analysis. -e periodic component
characteristic quantities in the IMF components
such as frequencies and amplitudes, can be
obtained.

3. Numerical Verification

-e followed case is done to verify the EEAF method. -e
designated signal is composed of the periodic components
and random environmental noise, which can be expressed as
the following equation.

Adding white noise nM(t)Adding white noise n1(t)

EMD decomposition EMD decomposition EMD decomposition

IMFs

Contains periodic
components

FFT

Frequency, Amplitude

Y

N Noise
(Exclude)

x(t)

Adding white noise nm(t)

IMFαi,1 IMFαi,m IMFαi,M

Ri(τ)=
T→∞
lim ∫

T

0
IMFi(t)IMFi(t+τ)dt

••• •••

Mi(t)= Mij(t)
1
M

1
M

∑
M

j=1

Figure 3: Decomposing process of the EEAF.
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s � s1 + s2 + s3 + s4 + s5 + s0,

s1 � 0.6 sin(10πt),

s2 � 0.6 sin(30πt),

s3 � 0.8 sin(60πt),

s4 � sin(100πt),

s5 � 0.6 sin(200πt),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(14)

where s0 is the randomGaussian white noise, s1, s2, s3, s4 and
s5 are five different periodic functions.-e randomGaussian
white noise has an amplitude standard deviation of 0.2, and
the ensemble number is set as M� 100. So the waveform of
the designated signal is shown in Figure 4.

-rough the EEMD method, the modes and residual
components are extracted and shown in Figure 5. -e
designated signal has been decomposed to nine IMF
components and one residual component. -en select the
IMF component with periodic feature to avoid confusion,
the autocorrelation analysis of nine IMF components are
conducted. -e results are shown in Figure 6. In Figure 6,
the autocorrelation functions of IMF1, IMF2, IMF3,
IMF4, and IMF5 are periodic obviously, and they have
retained the original periodicity without attenuation.
Subsequently, they are retained and used for the further
analysis. However, the autocorrelation function wave-
forms of the remaining components have obvious peri-
odicity, but disordered. -e effect of Gaussian white noise
plays a main factor of the result, and it should be
eliminated.

Finally, the five IMF components with periodicity,
IMF1, IMF2, IMF3, IMF4, and IMF5, are transformed by
the fast Fourier transform. -e feature quantities of IMF
component such as frequency and amplitude are
extracted. -e frequency domain of the five IMF com-
ponents is presented in Figure 7, in which the preset
frequencies (100Hz, 50Hz, 30 Hz, 15 Hz and 5Hz) are
successfully recognized. Furthermore, the amplitudes
corresponding to the five frequencies are obtained, those
are 0.62162, 0.986, 0.7856, 0.5932, and 0.5829 respectively.
To compare the data of Table 1, the extracted frequencies

are exactly the same as the preset frequencies, but there are
little changes in amplitude observed with the values for
both within a 3% error range because of the slight con-
fusion. In summary, the EEAF method is available to
extract the periodic component with fault feature through
the case study.

4. Test and Discussion

In actual ship, the complexity of the hull vibrations are
much greater than that of the analog signals. -e test is
done in a 64000DWT bulk carrier, whose total length is
199.90m, the length between perpendicular lines is
194.5m, the molded width is 32.26m, and the molded
depth is 18.50m. In addition, its design draft, deadweight
and design speed are 11.30m, 63,800 ton, 15.60 knot re-
spectively. During sea trial of this ship, the temperature of
the stern bearings rises rapidly to 87°C, and a high tem-
perature alarm is raised (Note: the alarm value is set at
60°C). So the abnormal wear of the stern bearings occurs.
For analyzing the reason of the fault, the test is done. In the
test of hull vibration, test datum of eight steady operating
conditions (33.0 r/min, 41.1 r/min, 42.0 r/min, 49.1 r/min,
50.0 r/min, 51.0 r/min, 55.1 r/min, and 56.0 r/min) are
collected in consequence. -e sampling frequency of the
measuring instrument is set at 512Hz, and the sampling
time is 60 seconds. -e eight sensors of vibration are
arranged on the tail seal plate and the stiffening plates on
both sides, as illustrated in Figure 8. No.3 sensor and No.4
sensors are used to gather the longitudinal vibrations of
hull, No.7 sensor and No.10 sensors are applied to collect
the transverse vibrations of hull, other sensors are for hull’s
vertical vibrations.

4.1. Vertical Vibration. In the current study, the vertical
vibration test data of the hull stern structure are collected
by four vibration sensors, namely the No. 5, 6, 8, and 9
observation points, as shown in Figure 9. -e four sensors
of hull vertical vibration are symmetrically arranged on
the stiffening plates of two hull sides. So the vibration data
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Figure 4: -e waveform of the designated signal in time domain.
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of the No. 5 and No. 6 are analyzed through the EEAF
method. -e main quantities coupled in the hull vertical
vibrations with periodicity are obtained, as detailed in
Table 2. -e data show that there are slight differences in
the frequencies of the vibration data collected from the
two measuring points. However, the deviations are less
than 5%. Furthermore the data of Table 2 are used to draw
the curves of frequency and amplitude in Figure 9. In
Figure 9(a), the frequencies of hull vertical vibrations are
distributed mainly in 5th order line and 2nd order trend
line. -e amplitudes of hull vertical vibrations are shown
in Figure 9(b), and the amplitudes of the 5th order

vibration signals present a trend of increasing, decreasing
and then increasing again. -e phenomena happens in
some ships with misalignments of marine propulsion
shafting. -at is to say, the amplitude of hull vertical
vibration in 5th order increases with the increase of the
shaft speed. -erefore, it indicates that the propulsion
shafting of this ship is misaligned.

4.2. Longitudinal Vibration. -e data from the sensors of
No. 3 and No. 4 are the signals of hull longitudinal vibration.
Similar to the aforementioned processes, an EEAFmethod is
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Figure 5: Waveforms of IMF components and residual components.
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used to analyze the test data and the main parameters of the
extracted information from periodic longitudinal vibration
are obtained, as detailed in Table 3.

In Figure 10(a), the frequencies are mainly distributed in
the 5th order trend line. As shown in Figure 10(b), the
amplitudes increase with the increasing of the shaft speed
until the tail bearing failure occurs. -e corresponding peak
speed of the 5th order curve is observed to be extremely close
to the resonance speed of this marine shaft torsional vi-
bration and longitudinal vibration.

4.3. Transverse Vibration. -e transverse vibrations of hull
come from the sensors of No. 7 and No. 8 in Figure 8.
-rough the EEAF method, the transverse vibrations of the
hull are extracted and the main data filled in Table 4.

Figure 11 shows the characteristics of the periodic
components in the hull longitudinal vibration under the
different operating conditions which are presented in Ta-
ble 4. As shown in Figure 11(a), the extracted frequencies are
mainly distributed on the line of the 5th order vibration.
Similar to the aforementioned processes, the amplitudes of
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Table 1: Main datum of EEAF method and designated signal.

Parameters
SN

1 2 3 4 5
Setting frequency 100Hz 50Hz 30Hz 15Hz 5Hz
Extracting frequency 100Hz 50Hz 30Hz 15Hz 5Hz
Error 0 0 0 0 0
Setting amplitude 0.6 1 0.8 0.6 0.6
Extracting amplitude 0.6162 0.986 0.7856 0.5932 0.5829
Error 2.7% 1.4% 1.8% 1.133% 2.85%
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Figure 7: Frequency spectrum of IMF1, IMF2, IMF3, IMF4, and IMF5.
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Figure 8: Arrangement of sensors during hull vibration test.
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Figure 9: Main parameters of hull vertical vibrations. (a) Frequency (b) Amplitude.

Table 2: Main datum of hull vertical vibrations.

Speed
Point

No. 5 No. 6
Frequency (Hz) Amplitude (g•10−4) Frequency (Hz) Amplitude (g•10−4)

33 r/min — — — —
41.1 r/min 3.400 0.9989 3.467 0.9301
42 r/min 3.567 0.8932 3.550 0.756

49.1 r/min 1.670 1.297 1.667 1.355
4.167 5.994 4.167 5.696

50.0 r/min 1.717 1.060 1.767 1.743
4.200 7.055 4.200 6.325

51.0 r/min 1.717 1.168 1.717 1.161
4.300 10.840 4.317 8.326

55.1 r/min 1.917 1.196 1.900 1.399
4.750 10.920 4.767 9.544

56.0 r/min 1.900 2.157 1.900 2.474
4.750 13.460 4.750 10.450

Table 3: Main data of hull longitudinal vibrations.

Speed
Point

No. 3 No. 4
Frequency (Hz) Amplitude (g•10−4) Frequency (Hz) Amplitude (g•10−4)

33 r/min 2.333 1.044 2.333 1.276
41.1 r/min 3.483 2.988 3.483 2.411
42 r/min 3.550 4.136 3.55 3.008
49.1 r/min 4.167 9.697 4.167 9.435
50.0 r/min 4.217 7.567 4.217 7.608
50.0 r/min 4.300 11.550 4.300 11.87
55.1 r/min 4.767 9.442 4.767 11.01
56.0 r/min 4.750 11.340 4.750 12.96
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Figure 10: Main parameters of hull longitudinal vibrations. (a) Frequency (b) Amplitude.

Table 4: Main data of Hull Transverse Vibrations.

Speed
Point

No. 10 measuring point
Frequency (Hz) Amplitude (g•10−4)

33 r/min 2.817 3.904
41.1 r/min 3.517 5.179
42 r/min 3.550 5.407
49.1 r/min 4.167 6.524
50.0 r/min 4.217 8.956
50.0 r/min 4.283 5.721
55.1 r/min 4.767 6.681
56.0 r/min 4.750 6.823
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Figure 11: Main parameters of hull transverse vibrations. (a) frequency (b) amplitude.
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these frequencies in the 5th harmonics increase firstly and
then decrease with the increase of the shaft speed. When the
tail bearings are in fault, the amplitudes are observed to
increase once again.

5. Conclusions

In this study, a novel method of extracting periodic fault
information of marine propulsion shafting by the hull vi-
brations is proposed, which is referred to as the EEAF
method. -rough the numerical verification, test and dis-
cussion, the EEAF method is available to extract the useful
frequencies and amplitudes connected with marine shaft-
ing’s fault. In addition, this method has alleviated the modal
aliasing problems successfully, and can decompose and
extract the periodic feature quantities which characterize the
fault features of marine shafting from the measured signals
more accurately. -e fault features extracted from the hull
vibrations are similar with the phenomena of marine
shafting misalignment. So the fault information obtained by
EEAF method from hull vibrations can be used to pre-es-
timate the operating condition of marine shafting qualita-
tively. However, there should be more experiments and tests
to develop the effectiveness and quantitative of the fault
diagnosis of the EEAF method.
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*e vibration transmission characteristics of the bearing housing system are crucial for the system fault diagnosis based on
vibration signals collected at various measuring points. To study its vibration transmission characteristics, a dynamic model of the
rolling bearing housing system based on the elastic interface is established.*e interference fit between the bearing outer ring and
the bearing housing is modelled by contact pairs. *e proposed model is verified by the experimental results, which demonstrate
that the interference fit can be better simulated by contact pairs. Based on the comparisons between the vibration signals obtained
from the defect point and the measuring points on the bearing surface, the transmission mechanism of the defect excitation and
the generation mechanism of the bearing housing structural vibration are clarified.*e change law of defect excitation through an
interface and the effects of bearing operational conditions (load and speed) on the vibration signals of measuring points are
summarized.*e results show that the optimal measuring point on the bearing housing surface is the location that is closest to the
defect when the bearing housing system is working under light loads or high speeds. However, when under low speeds, the
preferred measuring points are the positions where the rigidity of the bearing housing structure is weak. *e analysis results
provide a theoretical basis for the sensor arrangement and improvement of fault diagnosis accuracy under different
operating conditions.

1. Introduction

Rolling bearings are one of the most eventful components in
machinery and equipment. *e acquisition and analysis of
vibration signals are important to monitor their internal
operating status [1, 2]. To improve the accuracy of bearing
fault diagnosis, it is important to study the vibration
transmission mechanism caused by the bearing defect ex-
citations. *ere has been plentiful research on it in the
literature carried out by different scholars [3–5]. Singh et al.
[6, 7] analyzed the dynamic contact force and vibration
mechanism between the rolling elements and the outer race
with the bearing spalling defect. Ahmadi et al. [8] included
the mass of the rolling element in their model and studied

the relationship between the vibration response and the
internal force of the defect bearing. Patel et al. [9] studied the
nonlinear vibration response of the bearing with a local
defect on the race and investigated the contact relationship
between the rolling element and fault. Liu et al. [10, 11]
proposed a dynamic model of the planet roller bearing
considering the cage crack to detect the initial cage crack
failure in the planet roller bearing.

Although scholars have achieved a lot of progress in the
study of the vibration mechanism of bearing with defects,
the accuracy of fault diagnosis is still limited due to the
shortcomings of signal acquisition methods. Traditional
methods generally install the sensors on the outer surface of
the bearing housing to collect the vibration signals of the
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bearing. However, the collected signals cannot faithfully
reflect the characteristics of bearing internal excitation due
to the inevitable attenuation when the defect excitation
transmits through contact interfaces between the bearing
outer race and the bearing housing. Moreover, when the
transmission route is long, it is difficult to accurately di-
agnose the fault status inside the bearing. Shao et al. [12]
used the experimental methods to study the vibration
transmission characteristics of rolling bearings and pro-
posed the energy retention factor to describe the dissipation
of vibration energy through multiple interfaces. However,
since it is rather challenging to measure the bearing internal
excitation, the transmission mechanism between the bearing
internal excitation and the outer vibration response collected
by the sensors cannot be experimentally investigated. Alian
et al. [13] proposed to use the fiber-optic sensors to measure
the strain of the rolling bearing for defect diagnosis, which
can be mounted inside the bearing. However, most of the
current signal processing algorithms are based on the vi-
bration signal, and there are very few for the strain signal.

*erefore, it is necessary to investigate the vibration
transmission mechanism along the interface between the
outer race and housing for effective fault detection and
diagnosis. White [14] took the flexibility of the housing into
account and proposed a two-degree-of-freedom dynamic
model to study the vibration transmission characteristics of
the rolling element bearing. Lim and Singh [15] considered
the coupling effect between the bearing and the housing and
developed a five-degree-of-freedom dynamic model to in-
vestigate the vibration transmission through rolling element
bearings. Gao et al. [16] assumed a rigid connection between
the outer race and the housing and established a vibration
model of the cylindrical roller bearing system, from which
the influence of bearing housing deformation on the vi-
bration characteristics was studied. Kraus et al. [17] and
Fleming [18] included the flexibility of the bearing housing
in their dynamic model and discussed the vibration trans-
mission characteristics of a rotor-bearing housing system.
Although the above work focused on the vibration trans-
mission characteristics of the bearing-bearing system, a rigid
connection is usually assumed between the outer race and
the housing in their models, and the elasticity of the in-
terfaces between them is ignored. *ese make it impossible
to accurately describe the discrepancies between the vi-
bration of the outer race and vibration of the housing caused
by the bearing internal excitation.

To address this issue, Liu et al. [19–21] proposed a
dynamic model to study the vibration transmission of a
shaft-bearing housing system with a localized fault. In this
model, elastic interfaces were considered, and the vibration
transmission characteristics along multiple interfaces caused
by the rolling bearing internal impact excitation were in-
vestigated. Xiao et al. [22] established an 8-DOF dynamic
model for a gear-shaft-bearing housing system with elastic
interfaces and studied the vibration transmission charac-
teristics and energy dissipation characteristics of pulse ex-
citation generated by gear fault passing through multiple
interfaces. Although the above models considered the elastic
interface relationship between the outer race and the

housing, the elastic deformation of the bearing seat is ig-
nored. In addition, the excessive rigidity of the structure will
increase the amplitude of acceleration, which is usually
neglected. In addition, existing dynamic models cannot
reflect the actual interference fit relationship between in-
terfaces. *e fit clearance between the rolling bearing outer
race and the housing plays a significant role in the vibration
response, as argued by Chen and Qu [23]. *us, the sim-
ulation signals obtained by the abovementioned models do
not faithfully reflect the practical situations.

With the development of computer science, the finite
element method provides an effective way to simulate the
actual mechanical properties of the materials and the in-
terference assembly relationship between the bearing and
the housing with the elastic interfaces. Wang et al. [24]
considered the elastic deformation of the materials and
simulated the interference connection between the bearing
and the housing using the common nodes. A finite element
model for the bearing housing system was established. *e
transmission characteristics of the vibration signal between
the bearing outer race and the housing were investigated to
find the optimal position and direction for the measuring
points on the housing. *e bearing defect excitation was
simulated by a periodic impact load in the model, which is
quite different from the actual defect excitation. Cao et al.
[25] and Xiang et al. [26] regarded the bearing outer race and
the housing as a whole to simulate the interference con-
nection of the interfaces. *e vibration transmission of the
gear-shaft-bearing housing system was investigated, and a
structure optimization strategy was proposed to reduce the
transmission error. However, the vibration transmission
characteristics between the bearing and the housing were not
specifically analyzed.

In summary, there are deficiencies in the existing an-
alytical models as they cannot model the elastic defor-
mation of the housing and the connection relationship of
interfaces. Although the finite element model can consider
the effect of the practical interference connection between
the bearing and the housing on the vibration transmission
characteristics, it generally uses the sharing nodes to
simulate the interference fit of the interfaces, which cannot
reflect the actual contact situation. *erefore, a rolling
bearing housing system dynamic model still lacks that
comprehensively considers the elastic interface, interfer-
ence assembly relationship, and fault morphology. In ad-
dition, the difference between the vibration signals inside
the bearing and outside the housing caused by the defect
excitation and the distribution law of the optimal mea-
suring points under different speed and load conditions are
not sufficiently understood. In this article, a dynamic model
of a rolling bearing housing system based on an interfer-
ence interface and an elastic interface is established. *e
bearing defect is simplified to a rectangular shape. *e
interference assembly relationship between the bearing and
the housing is modelled by sharing nodes and a contact pair
between interfaces. *e proposed model is verified by the
experimental results, which overcomes the shortcomings of
the current models that cannot accurately describe the
difference of vibration characteristics between the outer
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race and the housing. Based on the analysis of the vibration
signals obtained from the defect point and various mea-
suring points on the housing surface, the transmission
mechanism of the defect excitation and the generation
mechanism of the bearing housing structural vibration are
clarified. *e effects of load and speed on the defect ex-
citation transmission and structural vibration are studied,
which can provide a theoretical basis for optimal sensor
placement under different operating conditions and im-
prove the accuracy of bearing fault diagnosis.

2. Dynamic Model

2.1. ProblemDescription. In practice, the health condition of
the rolling bearing during operation is generally monitored
by collecting vibration signals through accelerometers that
are mounted on the bearing housing (which is referred to as
measuring points in the remainder of this article). Once a
defect is generated inside the bearing (either inner race or
outer race, balls, etc.), there will be significant periodic
impacts in the vibration signals. *ese impacts are origi-
nated from collisions between components with defects and
transmit from the interior bearing to the exterior bearing
housing. Due to the variations of the vibration transmission
path from the defect point to the measuring points, the
signals collected at different measuring points caused by the
same defect excitation are different, as shown in Figure 1(a).
*e vibration signal is weakened to varying degrees when it
transmits from the excitation source to the surroundings. In
addition, because the thickness of the bearing housing is
uneven in the circumferential direction, the structural ri-
gidity in each direction is different, and the structural vi-
bration generated at different positions is also different, as
shown in Figure 1(b). *erefore, the vibration signals col-
lected by the sensors at different positions on the surface of
the bearing housing will be greatly different due to the
uncertainty of the defect excitation and the structure
vibration.

To study the relationship of the vibration signals between
the defect point and the measuring points at different po-
sitions on the bearing housing, it is necessary to investigate
how the defect excitation is transmitted to the bearing
housing and how the structural vibration is generated in the
bearing housing. *e optimal sensor installation position to
obtain the most accurate bearing defect signal can thus be
found. It is also noted that both the load and speed affect the
defect excitation significantly. *erefore, the effects of the
load and speed on the transmission of defect excitation and
structural vibration are further studied, which can provide
theoretical guidance for the arrangement of sensors and
improve the bearing fault diagnosis under different oper-
ating conditions.

2.2. Establishment of Model. *is study takes the cylindrical
roller bearing NU306 as the research object. Its main geo-
metric parameters are given in Table 1. *e explicit dy-
namics software package, LS-DYNA, is used for finite
element simulation.

Since the cross-section of the cylindrical roller bearing
along its axis is the same and only the radial load is sup-
ported by the bearing, a two-dimensional model is built for
the bearing to improve the computation efficiency. *e 2D
plane strain element SHELL163 is used as the solid structure
for the bearing and the bearing housing in the model. Due to
the nonlinearity of the internal contact of the bearing, the
triangular mesh should be minimized to ensure the accuracy
of the simulation results. *erefore, the bearing housing, the
rings, the cage, and the rolling elements are all meshed by
quadrangle elements. To obtain accurate dynamic responses,
it is generally recommended that the wavelength of the
transmission signal should be 20 times larger than the grid
size of the structure for wave propagation studies. Con-
sidering the outer race as a thin plate, the speed of bending
waves Cb is given by [6]:

Cb �
��
ω

√ ET2

12 1 − v2( )ρ
􏼢 􏼣

1/4

, (1)

where E, ρ, υ, T, and ω are the modulus of elasticity, density,
Poisson’s ratio, thickness, and angular frequency, respec-
tively. Substituting their values into the above formula, and
assuming the frequency is 40 kHz and the thickness of the
thin plate is 19mm, the bending wave velocity is about
2007.73m/s, and the corresponding wavelength is about
0.0675m. *us, the maximum grid size should be smaller
than 3.375mm. To ensure the continuous contact between
the rolling elements and the outer race and to minimize the
vibration noise caused by the regular polygon effect of the
grid, models with grid sizes of 1mm, 0.5mm, and 0.25mm
were established for trial calculation, respectively. By
comparing the contact force curves between the rolling
elements and the races, it was found that the contact force
curve is discontinuous when the grid size is large, but it
becomes smooth when the grid size is reduced to a certain
value. *erefore, in this article, the mesh size of the com-
ponents with contact behavior (including the races, rolling
elements, and cage) is set to 0.25mm, and the mesh size of
the bearing housing without contact behavior is set to 1mm.
*e defect studied in this article is located on the outer race.
*us, the mesh in the contacting area of the outer race is
refined. *ere are about 77894 nodes and 75140 elements,
which are shown in Figure 2. *is article is concerned with
the vibrations generated due to a local line spall in the outer
raceway, and the defect is simplified into a fully penetrating
rectangular recess. *e defect is located directly at the
bottom of the bearing, whose width and depth are both
1mm.

*e elastic materials are used for the bearing components
to consider the influence of the elastic interface between the
outer race and the bearing housing. *e rolling elements and
the races are modelled by the steel GCr15, whose material
properties are as follows: density ρ1 � 7830 kgm−3, modulus of
elasticity E1� 206GPa, and Poisson’s ratio v1 � 0.3. *e cage
is modelled by the brass, whose material properties are as
follows: density ρ2 � 8500 kgm−3, modulus of elasticity
E2 �105GPa, and Poisson’s ratio v2 � 0.324. *e boundary
conditions for the FE model are given as follows:
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(1) *ree different radial loads, i.e., 3000N, 2000N, and
1000N, are applied to the inner surface of the inner
race in the negative direction of the Y-axis.

(2) Four different speeds, i.e., 700 rpm, 1400 rpm,
2100 rpm, and 2800 rpm, are applied to the inner race in
the counterclockwise direction.

(3) All degrees of freedom at the bottom of the bearing
housing are constrained, as shown in Figure 2.

*e basic surface-to-surface contact type in 2D contact is
used to simulate the contact situation during bearing operation.
A penalty method is used to formulate the contact between two
contact components. In this contact algorithm, the slave surface
is checked for penetration through themaster surface. As shown
in Figure 3, in order to determine the positional relationship
between two contact points x1(ξ1, t) and x2(ξ2, t), a gap pa-
rameter gn is defined by

gn � min λ x
1 ξ1, t􏼐 􏼑 − x

2 ξ2, t􏼐 􏼑
�����

�����, (2)

where λ is a distance parameter, which is given by

λ �
1 x

2
− x

1
􏼐 􏼑η1 ≤ 0

−1 x
2

− x
1

􏼐 􏼑η1 > 0

⎧⎪⎨

⎪⎩
, (3)

where η1 describes the normal vector for body #1, and t is the
time. In this algorithm, gn describes the position relationship
between the two contact points, with gn > 0,� 0, and <0

representing the two points as in penetration, in contact, and
out of contact, respectively. *e normal contact force Fc is
given by

Fc � −
gnαfEbSb

max(shell_diagonal)
(4)

where αf is a scaling coefficient, whose value is usually
considered as 1; Eb is the bulk modulus, which is a function
of Poisson’s ratio and elastic modulus of the material; Sb is
the area of elements in contact.

*e inner race, the outer race, and the cage are defined as
the master segments, and the rolling elements are defined as
the slave segments. Moreover, 36 contact pairs are estab-
lished for the 12 rolling elements, and each has three contact
pairs with the inner race, the outer race, and the cage,

Sensor

Defect

(a)

Sensor

Defect

(b)

Figure 1: Schematic diagram of defect vibration transmission of the bearing housing system: (a) Defect excitation and (b) structure
vibration.

Table 1: Geometric parameters of the cylindrical roller bearing
NU306 [4].

Geometric parameter Value
Roller diameter (Dr, mm) 11
Bearing pitch circle diameter (Dm, mm) 51.5
Bearing inner diameter (Di, mm) 30
Bearing outer diameter (Do, mm) 72
*ickness of outer race (T, mm) 19
Contact angle (α, °) 0
Roller number (Z) 12
Radial clearance between roller and races (ε1, mm) 0.01
Cage pocket clearance (ε2, mm) 0.08

(a) (b)

Y
X

Q
ni

Figure 2: Two-dimensional finite element model of the bearing
housing system: (a) common node model and (b) contact pair
model.
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respectively. *e static friction factor is set to 0.01 and the
dynamic friction factor is set to 0.005.

In practice, the interference fit is usually used between
the outer race and the bearing housing. *e interaction and
contact deformation between the two interfaces will cer-
tainly affect the vibration transmission mechanism due to
the bearing defect excitation. *us, the influence of the
elastic interfaces between the bearing outer ring and the
housing must be considered. In previous work that uses the
finite element model to simulate the interference connection
between the outer race and the bearing housing, sharing
node model was generally established for the outer race and
the bearing housing [24, 27, 28] (i.e., mode #1), which means
that the outer race and the bearing housing are considered as
a whole body and there is no contact relationship between
them, as shown in Figure 2(a). In this work, we use another
model (i.e., mode #2) to simulate the interference connec-
tion. A contact pair between the outer race and the bearing
housing is established, which sets a contact relationship
between the interfaces and allows a small amount of pen-
etration between them. To prevent the outer race from
rotating, the static friction factor between the outer race and
the bearing seat [7] is set to be 0.1, as shown in Figure 2(b).

3. Results and Discussion

3.1. Experimental Verification. A rolling bearing (NU306)
experimental system was set up, as shown in Figure 4. To
ensure the consistency between the test conditions and the
FE modelling, a defect of size 1mm× 1mm (width× depth)
was implemented on the outer race of the bearing, and an
interference fit was achieved when mounting the bearing
outer race on the bearing housing. A radial load of 3000N
was applied on the bearing housing by screwing a thrust
device JL1086 and the load was instantaneously measured
via a pressure strain gauge. *e bearing inner race was
driven by a servo motor at a speed of 2100 rpm. *e ac-
celerometers were placed on the top surface and side surface
of the bearing housing, respectively. After the experimental
bearing was running stably, the time-domain acceleration
signals collected by the sensors were transmitted to a

computer for preliminary analysis and data storage via a
signal acquisition card NI USB-4431. *e measured accel-
eration signals are directly compared with the simulation
results based on the abovementioned two FE models, as
shown in Figure 5. Figure 6 shows the corresponding en-
velope spectrums of the signals in Figure 5.

From Figure 5, it can be found that the periodic impacts
due to the bearing defect are obvious in the simulated signal
based on mode #2, which shows a good agreement with the
experimental results in terms of the impact shape and
amplitude, no matter on the top surface or the side surface of
the bearing housing. However, they are very trivial in the
simulated signal based on mode #1. From Figure 6, it can be
found that the fault characteristic frequency of the simulated
signal is approximate to that of the experimental signal. *e
slight relative error may be caused by the fluctuation of the
rotation speed of the cage. *is result proves the validity of
the proposed model (model #2). In addition, compared with
the spectrum based on mode #1, the outer race defect fre-
quency and its harmonics can be more clearly identified in
the spectrums based on mode #2 and experimental results.
*ese demonstrate the accuracy of the proposed model in
simulating the vibration transmission between interfaces of
the bearing outer race and bearing house against the pre-
vious model (model #1). In fact, in mode #1, the outer race
and the bearing housing are modelled as a whole, and the
interaction force between the interfaces that will affect the
vibration transmission is ignored. *e proposed model #2
can accurately capture the interactions and thus yield
consistent results with the experiment. *erefore, it is
necessary and reasonable to simulate the interference fit
using contact pairs in the finite element model, which can
more closely simulate the real operation of the bearing. In
the following sections, we will study the vibration trans-
mission characteristics at several measuring points based on
the proposed FE model.

3.2. Vibration Transmission Characteristics of Bearing
Housing System and Selection of Measuring Points. In this
section, the vibration transmission characteristics of the
bearing housing system at various measuring points will be
studied based on the proposed FE model. Since the bearing
housing has a symmetrical structure, we consider eight
evenly distributed measuring points (marked as points #1,
#2, . . ., #8) on half of the bearing housing surface, as shown
in Figure 7. *e acceleration signal of measuring point #0 is
considered as the defect excitation as it is directly located at
the defect point. *e root mean square (RMS) of the ac-
celeration signals collected at the above points is calculated.
*e vibration transmission ratio can be expressed by the
RMS value at each measurement point with respect to the
RMS value of defect excitation. *e transmission ratios in
the X-direction and Y-direction are shown in Table 2.

In the actual signal acquisition process, the sensors at the
measuring points #1, #2, and #4 are generally used to obtain
the acceleration signals in the Y-direction, and the mea-
suring points #3, #5, #6, #7, and #8 are used to obtain the
acceleration signals in the X-direction. According to Table 2,

x1 (ξ1,t)

x2 (ξ2,t)

gn

#2

#1

Figure 3: Contact relationship between the contact points.
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Figure 4: Rolling bearing experimental system (1, radial loading device; 2, servomotor; 3, accelerometer; 4, defect on the bearing outer race;
5, signal acquisition card; 6, computer).
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Figure 5: Time-domain acceleration signals from (a) the top surface of the bearing housing and (b) the side surface of the bearing housing.
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Figure 6: Envelope spectrum of the vibration signals from (a) the top surface of the bearing housing and (b) the side surface of the bearing
housing.
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it can be found that point #1 has the largest transmission
ratio (47.38%) among the measuring points for acquiring the
Y-direction signal, and point #8 has the largest transmission
ratio (31.23%) among the measuring points for acquiring the
X-direction signal. *ese indicate that the vibration energies
at these two points are the largest among them all. *e
reason can be possibly explained by the deformation cloud
diagram inside the bearing housing while a rolling element is
passing through the defect, as shown in Figure 8. It should be
noted that the larger transmission ratio of point #4 and point
#5 in the nonvibration-measurement direction is possibly
due to the special structure of the bearing housing. *e
elastic deformation of the bearing housing is considered and
point #4 and point #5 are located in the place where the
shape of the bearing housing changes sharply. *e sharp
corner is prone to stress concentration, which causes an
abnormal increase in local vibration. Although the trans-
mission ratio of point #4 in theX-direction is larger than that
of point #8, point #4 is mainly used to obtain the vibration in
the Y-direction, and the vibration transmission ratio of point
#8 in the X-direction is still the greatest. Similarly, although
the transmission ratio of point #5 in the Y-direction is larger
than that of point #1, point #5 is mainly used to obtain the
vibration in the X-direction, and the vibration transmission
rate of point #1 is still the largest in the Y-direction.

According to Figure 8, as the rolling element passes
through the defect, the deformation of the bearing housing
gradually decreases from the contact area between the outer
race and the bearing housing to the surroundings. It indi-
cates that the vibration of the outer race caused by the defect

will be transmitted from the contact area to the surface of the
bearing housing. Since point #8 is the closest point to the
bearing surface (except the bottom area of housing which is
fixed), the vibration at this point is relatively large. In ad-
dition, it can be noticed that the deformation cloud near
point #1 is always the largest when the rolling element is
passing through the defect. Figure 9 shows the profile of
bearing housing without and with the deformation (i.e.,
Figure 8(c)) with an enlarged scale of 200.

Due to the uneven thickness of the bearing housing
around the bearing outer race, the structural stiffness around
the outer race is different, and the magnitude of deformation
is also different. Since the thickness of the housing upper
part is the smallest, its structural rigidity is the smallest. In
addition, the inner diameter of the bearing housing in the
vertical direction is elongated due to the influence of load
and defect. *us, the deformation at the housing upper part
near point #1 is the largest.

In conclusion, points #1 and #8 can better reflect the
characteristics of the vibration signal due to the defect ex-
citation. *is is because that point #8 is the closest point to
the defect, and the structural stiffness near point #1 is rel-
atively small. *erefore, the best vibration-measurement
point on the surface of the bearing housing should be at the
location with a small structural stiffness or closest to the
fault.

3.3. Analysis of Vibration Signals at Measurement Points
underDifferentLoads. To further investigate the influence of
load on the vibration attenuation from the interior defect
point to the exterior measuring points, the vibration signals
at the defect point and the measuring points are compared.
*e vibration signals in the Y-direction (i.e., the vertical
direction) at the measuring point #1 and the defect point
(i.e., point #0 as shown in Figure 7) under radial loads of
3000N, 2000N, and 1000N are shown in Figure 10.

It can be seen from Figure 10 that the larger the load, the
greater the amplitude of the impulses in the time-domain
vibration signals for both points #0 and #1. *is demon-
strates that the defect characteristics become clearer as the
load increases. Compared to point #0, the impact compo-
nent in the vibration signals at point #1 is weaker, and the
noise and other components are more obvious.*is is due to
the influence of energy dissipation and structural vibration
when the vibration signal propagates from the defect source
to the measurement point. In the case of a large load, the
defect impact in the vibration signals at point #1 is obvious.
As the load decreases, the impact components are sub-
merged by noise. *e defect characteristics become weaker
as the load decreases, and it is gradually impossible to obtain
the defect information from the vibration signals collected at
point #1.

Figure 11 shows the acceleration signals in the X-di-
rection at point #8 and point #0, respectively. It can be seen
from Figure 11 that the vibration signals at point #8 are also
affected by the load. When the load is large, the defect in-
formation can be clearly identified in the vibration signals of
point #8. With the decrease of the load, the fault

Defect (#0)

#8

#7

#6

#5

#4

#3

#2 #1

Y
X

Figure 7: *e location of the measuring points.

Table 2: *e vibration mission ratio at different measuring points
in the X- and Y-directions.

Measuring point Ratio (X-direction) Ratio (Y-direction)
Point #1 24.89 47.38
Point #2 25.63 35.22
Point #3 24.34 40.87
Point #4 36.92 35.30
Point #5 25.84 49.08
Point #6 27.64 30.08
Point #7 27.03 34.02
Point #8 31.23 36.85
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characteristics are getting weaker. However, by comparing
Figures 10(a) and 11(a), it is noted that the impact com-
ponent in the vibration signal at point #8 under 2000N load
is more obvious than that at point #1.

In summary, as the load decreases, the defect charac-
teristics contained in the vibration signals collected at points
#1 and #8 become weaker. But under the same load con-
dition, the vibration signal at point #8 is clearer than that at
point #1. *is is because the structural vibration of the
bearing housing is greatly affected by the load, and the
attenuation of vibration signal transmission is relatively less.
*erefore, under the condition of light load, the sensor
should be arranged at the position closest to the fault.

3.4. Analysis of Vibration Signals at Test Points under
Different Speeds. *e vibration signals in the Y-direction at
measuring point #1 and the defect point #0 under rotational
speeds of 2800 rpm, 2100 rpm, 1400 rpm, and 700 rpm are
shown in Figure 12.

It can be seen from Figure 12 that the impact impulses
due to the defect excitation are more obvious with the in-
crease of speed. *is is because the shorter the time interval
between two adjacent rolling elements passing through the
fault, the less the time required for the attenuation of impact
vibration. As the speed decreases, the amplitudes of the
vibration signals at points #0 and #1 decrease. *e defect
characteristics in the vibration signal are much more ob-
vious at a speed of 1400 rpm. With the increase of the ro-
tational speed, the vibration energy increases with the
gradual appearance of noise. *e impact components
generated by the defect are gradually masked, and the defect
characteristics in the vibration signals at point #1 become
weaker. As the speed decreases, the vibration energy of the
bearing decreases. *e impact of the fault becomes slight,
and the defect characteristics captured by the vibration
signals at point #1 are limited.

Figure 13 shows the acceleration signals in the X-direction
at point #8 and point #0, respectively. It can be seen from
Figure 13 that when the speed is large, the vibration signals at
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Figure 8: *e deformation cloud diagram of the bearing housing while a rolling element is passing through the defect at different time
instants: (a) 0.0697 s, (b) 0.0712 s, (c) 0.0727 s, (d) 0.0742 s, and (e) 0.0757 s.
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point #8 can clearly reflect the defect information. When the
speed is small, the vibration signals at point #8 are greatly
affected by the speed. When it decreases to a certain degree, it
is almost impossible to obtain the defect information from the

vibration signals at point #8. Comparing Figure 12(a) with
Figure 13(a), it can be seen that when the rotation speed is
large, the impact component in the vibration signal at point #8
is more obvious than that at point #1.When the rotation speed

71.964 mm

(a)

71.985 mm

(b)

Figure 9: Deformation of bearing housing: (a) without deformation and (b) with deformation based on Figure 8(c) (note that the enlarged
scale is 200).
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Figure 10: Acceleration signals under different loads at different points: (a) the measurement point #1 and (b) the defect point # 0.
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Figure 11: Acceleration signals under different loads at different points: (a) the measurement point #8 and (b) the defect point #0.
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is small, the impact component in the vibration signal at point
# 1 is more obvious than that at point #8.

In summary, under the same high-speed working con-
dition, the vibration signal at point #8 is better than that at
point #1. Under the same low-speed working condition, the
vibration signal at point #1 is better than that at point #8.
*is indicates that when the rotation speed is high, the
influence of the rotation speed on the transmission of defect
excitation is smaller than the structural vibration of the
bearing housing. On the contrary, when the rotation speed is
low, the influence of the rotation speed on the structural
vibration of the bearing housing is less than the transmission
of the defect excitation. *erefore, the sensor should be
placed at the position closest to the fault under the condition
of high speed and at the position where the structural
stiffness is weakest under the condition of low speed.

4. Conclusion

In this article, a novel dynamic model of the rolling bearing-
bearing system based on the elastic interface is established.
Compared with previous finite element models, the proposed
model uses sharing nodes and a contact pair between interfaces
to simulate the interferences assembly relationship between the
bearing and the housing. *is allows the proposed model to
faithfully reflect the contact conditions and simulate the at-
tenuation phenomenon when the vibration signal transmits

from the interior defect excitation point to the exterior
measuring point. An experiment was conducted to verify the
proposed model by directly comparing the simulated vibration
responses and measured responses at the top surface and side
surface of the bearing housing. In addition, the vibration
transmission characteristics of the bearing housing system are
studied. *e influences of load and speed on the vibration
signals at various measuring points are analyzed. *e con-
clusions of this study include the following:

(1) *e proposed dynamic model using a contact pair
between interfaces to simulate the contact con-
dition between the outer ring and the housing can
provide a more accurate reflection on the contact
interface stiffness and signal attenuation. *ese
enable the proposed model to yield more con-
sistent vibration results with experimentally
measured results.

(2) *e vibration distribution on the bearing housing
surface is related to the bearing housing structure
and the fault location. By studying the vibration
transmission characteristics of the bearing-bear-
ing housing system, it is found that the optimal
measuring points on the outer surface of the
bearing housing should be located at the position
where the rigidity of the bearing housing structure
is weak or the location is closest to the fault.
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Figure 13: Acceleration signals under different speeds at different points: (a) the measurement point #8 and (b) the defect point #0.
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Figure 12: Acceleration signals under different speeds at different points: (a) the measurement point #1 and (b) the defect point #0.
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(3) Under the light load and high speed, the sensor should
be placed at the location closest to the fault. However,
under the low speed, the sensor should be placed in the
position where the rigidity of the bearing housing
structure is weak. *ese findings provide guidance for
the sensor arrangement and improvement of fault di-
agnosis accuracy under different operating conditions.

Abbreviations

Symbols
Cb: *e speed of bending waves
Dr: *e bearing roller diameter
Dj (j� i, o,
m):

*e bearing innter diameter (j� i), outer
diameter (j� o), and pitch diameter (j�m)

Ei (i� 1, 2): *e modulus of elasticity of bearing rolling
element and races (i� 1) and cage (i� 2)

Eb: *e bulk modulus in Figure 3
Fc: *e normal contact force in Figure 3
gn: *e gap parameter in Figure 3
Sb: *e area of elements in contact in equation (4)
T: *e thickness of the bearing outer race
xk (k� 1,
2):

*e positions of the two contact points in
Figure 3

Z: *e number of bearing rolling elements
α: *e bearing contact angle
αf: *e scaling coefficient in equation (4)
ρi (i� 1, 2): *e density of bearing rolling element and

races (i� 1) and cage (i� 2)
υi (i� 1, 2): Poisson’s ratio of bearing rolling element and

races (i� 1) and cage (i� 2)
ω: *e angular frequency
λ: *e distance parameter in equation (2)
ε1: *e radial clearance between roller and races
ε2: *e cage pocket clearance.
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