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In this paper, we introduce the concepts of deferred statistical convergence of order « and strongly deferred Cesaro summable
functions (real valued) of order a on time scales and give some relationships between deferred statistical convergence of order
o and strongly deferred Cesaro summable functions (real valued) of order « on time scales.

1. Introduction

In mathematics, the concept of convergence has been of
great importance for many years. This concept has been
studied theoretically by many mathematicians in many dif-
ferent fields. Many types of convergence have been defined
so far, and then, very valuable results and concepts have
been presented to the mathematical community. One of
these ideas is the converging statistics. In 1935, Zygmund
[1] introduced the concept of statistical convergence to
the mathematical community, Steinhaus [2] and Fast [3]
independently introduced the concept of statistical conver-
gence, and Schoenberg [4] reintroduced it in the year
1959. Then, it has been addressed under various titles
including Fourier analysis, Ergodic theory, Number theory,
Turnpike theory, Measure theory, Trigonometric series,
and Banach spaces. The concept was later applied to sum-
mability theory by various authors such as Cinar et al. ([5,
6]), Colak [7], Connor [8], Fridy [9], Altay et al. [10],
Garcia and Kama [11], Isik et al. ([12-15]), Kucukaslan
and Yimazturk ([16, 17]), Saldt [18], Ercan et al.
([19-21]), and Parida et al. [22], and this concept has been
extended to sequence spaces, accordingly, to the notions
such as summability theory.

The natural density of a subset A of IN is defined as

5(A)= lim 1Y (k). )

n—oo 1 i

provided that limit exists, where x, is the characteristic
function of A. If

O(keN:|x, —L|=¢)=0, (2)

for each € > 0, then x = (x;.) is said to be statistically con-
vergent to £ writing S —lim;_ | x; = €. Over the years, that
notion has been presented in a variety of ways, and its rela-
tionship to aggregation has been investigated in several
domains. In recent years, researchers have attempted to
apply the relationship between statistical convergence and
summability theory in applicable disciplines.

Now is the time to recall the key notions of our study
deferred Cesaro mean and deferred statistical convergence.

Deferred Cesaro mean, defined by Agnew [23] in 1932, is
a generalization of Cesaro mean, and its definition can be
given as follows:
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(D), = *o (3)

where p=(p(m)) and g=(q(m)) are the sequences of
nonnegative integers satisfying

p(m) <q(m)and lim g(m)=oo. (4)

m—>00

Kiigiikaslan and Yilmaztirk [16, 17] defined the
concepts of derferred density and deferred statistical conver-
gence by using the deferred Cesaro mean.

The deferred density of a subset A of the natural
numbers N is defined by

0,,(A)= lim !

a b0 q(m) = p(m) |Apq(m)], (5)

provided the limit exists, where A, (m) = {p(m) <k<gq
(m): ke A}

A real valued sequence x = (x;) is said to be deferred
statistical convergent to L, if

im 71 <g(m): |x, —L|=>¢e}|=
(6)

for each ¢ >0 [16, 17].
Throughout the paper, we assume that the sequences
(p(m)) and (g(m)) satisfy the following conditions

p(m) < q(m)and lim_g(m) = co, (7)

and additionally, lim (g(m) - p(m)) = oo.

In 1988, Hilger [24] proposed the time scale hypothesis.
In 2001, Bohner and Peterson [25] published the first
detailed explanation of the time scale theory. In 2003,
Guseinov [26] developed a Measure theory on time scales.
Cabada and Vivero [27] presented the Lebesque integral
on time scales in 2006. These findings provide the foundation
for time scale summability theory research. Many mathema-
ticians in various domains have investigated the time scale
calculus over the years [28]. As a result, it seems natural to
generalize convergence on time scales in light of recent appli-
cations of time scales to real-world situations. Numerous
writers in the literature have used statistical convergence to
apply to time scales for various purposes (see [29-33]).

A nonempty closed subset of real numbers is called a
time scale. Two basic concepts on the time scale are the
forward jump operator and the backward jump operator.
These can be given as follows:

Journal of Function Spaces

(i) 0: T—T,0(s)=inf {teT:t>s}
(ii) p(s)=sup{teT:t<s}forseT

A Lebesque A-measure is defined on the family of inter-
vals [x,y)y ={s€T : x<s<y} on an arbitrary time scale T
with the help of forward and backward jump operators. This
defined measure is denoted by v, and provides the following
properties:

(i) If x € T\ max {T}, then the set {x} is A-measurable
and v, (x) =0o(x) —x

(ii) If x,y €T and x<y, then v ([x,y);)=y—x and
Val(xy)r) =y —o(x)

(iii) If x,y € T\ max {T} and x <y, then v,((x,y]y) =
o(y) —o(x) and v,([x. yly) = a(y) - x

Let Q) be a A-measurable subset of T, and for teT, write
Q(t)={se [ty t]: s€Q}. (8)

Turan and Duman [32, 34] were defined the density and
statistical convergence on time scales as follows:

o va(Qt)
Ov(Q)= lim )

©)

provided that limit exists.
Let f : T— R be a A-measurable function. On T, f is
said to be statistically convergent to L if

Sp(teT: |f(t)-L|=e)=0, (10)

for every & > 0. In this case, we write sty — tlim f()=L.
—00

2. Main Results

The aim of this study is to define the concepts of deferred
Cesaro summability of order « and deferred statistical con-
vergence of order « on the time scale and examine the rela-
tionships between them.

Definition 1. Let f be a A-delta measurable function on the
time scale T and a € (0,1], and we say that f is deferred
statistically convergent of order « on T to the number L if
for every € > 0,

va{ke (p(m),q(m))y : |f (k) - L[>}
va((p(m), q(m)]y)

lim

m—>00

0. (11)

We will show this convergence with D(st§) — limf (t) = L.
We will denote by DS§[p,q] the set of all functions that
deferred statistically convergent of order a on the time
scale T.
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Obviously,

(i) If we get g(s) =s and p(s) =s, and a=1, then we
get the definition of statistical convergence in time
scale [32]

(i) If we take g(m) = k(m), p(m) =k(m—-1),and a =1,
then we get lacunary statistical convergence in time
scale [34]

(i) If we take g(t) =t, p(#) =t — A, + t,, and a =1, then
we get A statistical convergence in time scale [35]

(iv) If we get o = 1, then we get the definition of deferred
statistical convergence in time scale [29]

Example 1. Let f be defined as in [36]. It is seen from the fol-
lowing inequality that the function f is deferred statistical
convergence in T for a > 1/2

vaik e (p(m), q(m)}y « |f (k)| > &}
vz((P( )>4(m)]y)
- val(p(m),op(m) + [\/va]) } (12)

L, and
L,, then the following statements hold

Theorem 2. If f, g T — R with D(st§) — limf (¢) =
D(st%) ~ limg (1) -

(i) D(sty) = lim(f(t) + g())
(ii) D(st§) —lim(cf (¢)) =L,

=L, +L,

Proof. (i) Let D(st$) —limf(t) =L, and D(st§) - limg(t) =

L,. We write
vafke (p(m), q(m)]y : |(f(K) + g(k) = (L + Ly)| > €}
Va((p(m), g(m)ly)
va{ke (p(m), q(m)ly : |f(k) - L| >}
Va((p(m), q(m)]y)

for every e>0. Taking limit as m — co, (i) will be
proved.

(ii) Let D(st%) — limf (¢) = L. Assume that ¢ # 0; then, the

proof of (ii) follows from

va{k e (p(m), q(m)]; : |cf (k) — cL| > e}
Vi ((p(m), q(m));)
:quwm«M]vw |@MH.U®
vi((p(m), a(m)ly)
O

Definition 3. Let f be a A-delta measurable function on the
time scale T. Then, f is strongly deferred Cesaro summable
of order a to L if

lim
m—co v ((p(m), q(m)]y) J (p(m)(m)]¢

—L|Ak=0.
(15)
By D$[p, q], we denote all strongly deferred Cesaro sum-

mable functions of order « on T.
If we take the function f as follows, for a > 1/2,

Lifse (p(m),o(p(m)) +1),¢
Lifs € [o(p(m)) + 1,0(p(m)) +2),

Lifs € [o(p(m)) + /7] -

0, otherwise,

Lo(p(m)) + [VVm))v

(16)
which is Cesaro summable.

Theorem 4. Let f be a A-delta measurable function on the
time scale T. If f € D$[p, q, then f € DS}[p, q].

Proof. Let >0 and D(¢e) = {s € (p(m), q(m)]y : |f(s) —L| >
e}. The proof is obtained from the following inequality:

|m%um4 7

D(e)

~L|As>zeu,{D(e)}.
(17)

O

J@(m)’Q(m)]v

Corollary 5. Let f be a A-delta measurable function on the
time scale T and o, 3 € (0, 1] such that a < . If f € D§[p, q),

then f € DS? [, q]-

To show that the inverse of Theorem 4 and Corollary 5 is
not true, we can consider the example on page 3 of Colak’s
article [7].

The converse of Theorem 4 and Corollary 5 is usually not
satisfied, but provided that f is bounded, by taking a = 1, we
can give the following result.



Theorem 6. Let f be a A-delta measurable function on the
time scale T. If f € DSy[p,q] and f is bounded, then f €

Drlp, q].

Proof. Suppose that f € DSy[p, q] and f is bounded. In this
case, there is K > 0 such that |f(k)| < K and also

i ! : —-L|=e})=0.
m@mm%({ke@(’”)ﬂ(’”)]- [f(k) - L|>¢})=0
(18)
Therefore, we have
1
R J LA
1
= 32D (m), q(m)]) JD(E)'f (k) - Liak
1
k) — k
SV a((pm), a(m)]) J oo ) HA
K
S 3, (p(m), a(m)]) JD@A"
¢ k
va((p(m), q(m)]) J (p(m) q(m)hA
_ Kva(D(e)
va((p(m), q(m)]) " €
(19)

It is obvious that for m — 00, the theorem is proved. [
Theorem 7. Let f be a A-delta measurable function on the
time scale T and v5((p(m), q(m)])/(o(q(m)))* is bounded.
If st§ —limf (t) = L, then D(st§) —limf(¢) = L.

Proof. Since st§ — limf(t) = L, we write

Clearly, for m — o0, the theorem is proved. O

Corollary 8. Let (q(m)) be an arbitrary sequence with q(m)
€ to, t], and v5(t,, t])Iv5((p(m), q(m)]) is bounded. Then, f
is statistical convergence of order o to L on T implies f is
deferred statistical convergence of order o to L on T.

Let the four sequences (p(m)), (q(m)), (p'(m)), and (q'

(m)) are nonnegative real numbers such that

p(m) <p'(m) <q' (m)<q(m), (21)

for all m e N.

Journal of Function Spaces

Theorem 9. Let (p(m)), (q(m)), (p'(m)), and (q' (m)) be
given as in (21). If

lim VZ(@,W)’Z,W)D >0, (22)

m—co vj((p(m)

then f € DS%[p, q] implies f € DS%[p’, q'].

Proof. Let D'(e) = {ke (p'(m),q' (m)]: |f(k) —L| = €}. The
proof is obtained from the following inequality:

1

Vi ((p(m), a2 )
(e m-a'om]) 1 ,
Z T ((p(m), q(m)]) (7 e ] va(D'(e).)-
(23)
|

Corollary 10. Let (p(m)), (q(m)), (p'(m)), and (q'(m)) be
given as in (21) and «, 3 € (0, 1] such that a < . If (22) holds,

then f € DS$[p, q] implies f € DS@[p/,q’].

Theorem 11. Let (p(m)), (q(m)), (p'(m)), and (q' (m)) be
given as in (21). If

lim

vy (o om), R

then f is deferred Cesaro summable to L of order a on |
p(m), q(m)] implies f is deferred Cesaro summable to L of

order o on [p' (m), q' (m)].

Proof. Proof follows from the following inequality:

Corollary 12. Let (p(m)), (q(m)), (p'(m)), and (q' (m)) be
given as (21) and o, B € (0, 1], a < . If (24) holds, then f is
deferred Cesaro summable to L of order a on [p(m), q(m)]
implies f is deferred Cesaro summable to L of order o on

[’ (), q' (m)).
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Theorem 13. Let (p(m)), (q(m)), (p'(m)), and (q'
given as (21). If

(m)) be

Iff e DS%[p', q'] and f is bounded, then f € D¥[p, q|.

Proof. Suppose that f — LDS%[p’, q]. Since f is bounded,
there exists a positive number K such that |f(s)| < K. Then,
we may write

|f (k) - L|Ak

VA ((p(m).q(m)]) [ lp(m)a(m)y

U Rk Lsks [ £ - Liak
[p(m)p' (m)] [P’ (m)q’ ()],

+J | £k —L|As]
[ macm)],

@A) U g,

IN

+ If (k) = L| Ak + KJ Ak]
o' ().’ (m)] (4’ (m).q(m)]
1

S (¢ (m = ote(m)

+ 0 m) ‘7<q W))*W

- L|Ak

N

: k
[ {Ip(m)q(m)]y:1£ () }|f( )

|f (k) - L|Ak

J{Lv<m (m)]:1(k)-L|<e}
pa((00m)#' (m)]) +va (@)’ (m)])
vi (o' 0ma’' om]) |

p

N

’ vi((o'ma' ()] va({p'(m) < <’ (m): £ (K)

(27)

This completes the proof. O

3. Conclusion

Various variations of statistical convergence have been stud-
ied throughout the years, yielding some extremely important
conclusions. Deferred statistical convergence of order « is
one of these versions. This variant of statistical convergence
is investigated on arbitrary time scales in this paper, and a
significant generalization is made. As a result, the current
results constitute a particular case of our findings. Then,
on temporal scales, strongly postponed Cesaro summability
of order « is built. Finally, various inclusion relations for
the newly obtained spaces are investigated. The concepts
and theorems mentioned will vary as the time scale changes.
This will have a significant impact on applications employ-
ing the notion of summability in numerous ways.
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Motivated by the importance of diffusion equations in many physical situations in general and in plasma physics in particular,
therefore, in this study, we try to find some novel solutions to fractional-order diffusion equations to explain many of the
ambiguities about the phenomena in plasma physics and many other fields. In this article, we implement two well-known
analytical methods for the solution of diffusion equations. We suggest the modified form of homotopy perturbation method
and Adomian decomposition methods using Jafari-Yang transform. Furthermore, illustrative examples are introduced to show
the accuracy of the proposed methods. It is observed that the proposed method solution has the desire rate of convergence
toward the exact solution. The suggested method’s main advantage is less number of calculations. The proposed methods give
series form solution which converges quickly towards the exact solution. To show the reliability of the proposed method, we
present some graphical representations of the exact and analytical results, which are in strong agreement with each other. The
results we showed through graphs and tables for different fractional-order confirm that the results converge towards exact
solution as the fractional-order tends towards integer-order. Moreover, it can solve physical problems having fractional order
in different areas of applied sciences. Also, the proposed method helps many plasma physicists in modeling several nonlinear
structures such as solitons, shocks, and rogue waves in different plasma systems.

1. Introduction

The integer-order differentiation operators are used to study
local phenomena, whereas fractional-order operators are
used to studying nonlocal phenomena [1]. The mathemati-
cal groundwork for fractional-order derivatives was laid by
the collective struggles of various mathematicians, such as
Riemann, Liouville, Caputo, Podlubny, Miller, and Ross.

Afterward, numerous mathematicians dedicated their efforts
to this area. Fractional calculus (FC) can be described as very
successful in many phenomena in applied sciences, fluid
mechanics, physics of plasmas [2, 3], and other biology uti-
lising mathematical tools of FC. [4, 5]. Other numerous
applications of FC in the field of science and technology
are related to solid mechanics [6, 7], anomalous transport
[8], continuum and statistical mechanics [9], economics
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[10], relaxation electrochemistry [11], diffusion procedures
[12], complex networks [13, 14], and optimal control prob-
lems [15, 16].

Fractional differential equations (FDEs) have gotten a lot
of attention from researchers in the last decade due to their
ability to improve real-world challenges in different areas of
engineering and physics. Mathematicians used various
methods described based on the above applications to solve
different important fractional-order differential equations
(FDEs), mainly partial differential equations of fractional-
orders (FPDEs). FPDEs are fundamental mathematical
approaches that can be utilized to model different physical
models more accurately than integer-order models. Nonlin-
ear FPDEs define various phenomena in engineering, plasma
physics, and applied sciences. Especially, nonlinear FPDEs
are the preeminent tools to be used in various areas, for
example, electrochemistry [17], mathematical social dynam-
ics [18, 19], signal processing [20], informatics [21], traffic
model [22], theory of solitons in plasma physics [23], biol-
ogy [24], and much more [25-28]. Moreover, many authors
reduced the fluid plasma equations to FDEs for studying the
impact of derivative time-frational on the profile of nonlin-
ear structures in a plasma [2, 3]. For instance, El-Wakil
et al. [2] reduced the basic equations of a collisionaless
unmagnetized nonthermal plasma having cold inertial elec-
trons and inertialess nonthermal electrons as well as station-
ary positive ions to a normal KdV equation. After that, the
authors use a suitable transformation to convert the normal
KdV equation to a time-fractional KdV equation in order to
investigate the time-fractional on the profile of electron-
acoustic (EA) solitons. Furthermore, the basic equations of
an ultrarelativistic plasma were reduced to the normal cylin-
drical Kadomtsev-Petviashvili (CKP) and cylindrical modi-
fied KP (CmKP) equations using a reductive perturbation
techniques [3]. Posteriorly, the mentioned equations were
converted into space-time fractional CKP and CmKP equa-
tions using one of the proper transformations in order to
study the influence of space-time fractional domain of the
characteristics of the ion-acoustic waves (IAWs) in the ultra-
relativistic plasma. The authors made a comparison between
the integer- and fractional-order models and found that the
fractional-order model gives description to the IAWs in the
ultrarelativistic plasmas better than the integer-order model
[3]. In literature, different methods are implemented for
solving FDEs, such as Iterative Laplace Transform method
(ILTM) [29, 30], Approximate-analytical method (AAM)
[31], Homotopy Analysis method (HAM) [32], Variational
Iteration method (VIM) [33], Elzaki Transform Decomposi-
tion method (ETDM) [34], the Differential Transformation
method (DTM) [35], and the homotopy perturbation
method (HPM) [36, 37].

In literature, there is lot of transformations [38-40], but
in this article, we implement the Homotopy Perturbation
Jafari-Yang Transform Method (HPYTM) and Jafari-Yang
transform decomposition method (YI'DM) for the analysis
of fractional-order diffusion equations. Xiao-Jun Jafari-
Yang introduce the Jafari-Yang transformation and applied
for the analysis of different differential problems with con-
stant coefficients, while the Adomian decomposition method
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[41, 42], on the other hand, is a renowned method to solve
linear and nonlinear and nonhomogeneous and homoge-
neous differential, integro, ordinary, and partial differential
equations. It gives analysis in the form of series that con-
verges towards the exact solutions quickly. In 1998, He
introduced the homotopy perturbation technique [43, 44].
Later, the nonlinear nonhomogeneous partial differential
equations are solved using the HPM (homotopy perturba-
tion method), a semianalytical technique [45-48]. The solu-
tion is assumed to be the sum of an infinite sequence that
converges rapidly to the exact results. This approach was
investigated to analyze both linear and nonlinear problems.
In the current work, we proposed a novel approximate ana-
lytical method known as (HPYTM). The newly developed
technique is the combination of Jafari-Yang transform and
HPM. It is investigated that the present methods are very
effective in finding fractional diffusion equations analytical
solution. The fractional problem results using the proposed
methods are also devoted to the fractional view analysis of
the problems. It is confirmed that the current techniques
can be modified to solve other fractional partial differential
equations.

A type of PDE that expresses the phenomenon of atoms
or molecule’s movement from a region of higher concentra-
tion to an area of lower concentration is known as diffusion
equations. Adolf Fick, a physiologist, was the first to present
Fick’s law of diffusion. Fick’s law was then transformed into
the diffusion equation. Scholar modified diffusion equations
such as slow diffusion and the hybrid classical wave equation
by generalizing the classical diffusion law [49]. Several
implementations of diffusion equation are phase transition,
electromagnetism, filtration, biochemistry, geochemistry,
dynamics of biological groups, cosmology, plasma physics,
and acoustics [50]. There are many investigations related
to the Diffusion-type equation and its applications in plasma
physics and fluids [51-53]. Motivated by these investigation,
in this article, we implement YITDM and HPYTM for solv-
ing diffusion equations of the form.

(1) Fractional-order diffusion equation in one dimen-
sion as

v v ov o*v
=——-—+V

55 3y "y a—v/z—v2+v0<6sl,120

(1)

having initial values
vy 0)=g(v) (2)

(2) Fractional-order diffusion equation in two dimen-
sion as

v Py v
= +_—_0<d8<1,t>0 (3)
a_[a 81//2 a(pZ
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having initial values

V(v $,0)=g(y, ) (4)

(3) Fractional-order diffusion equation in three dimen-
sion as

v v v v

a0 " oy a¢20<6s1,120 (5)

having initial values

V(Y 4. 9,0)=g(v, ¢ 9) (6)

2. Preliminaries

We covered several fundamental fractional calculus defini-
tions as well as Laplace transform theory properties in this
section.

Definition 1. In Caputo manner, the fractional derivative is
given as [54].

- _ 1 Y o ooy ®)
D)= =7 |, (9 ) wp)pk

—1<o<kkeN.

Definition 2. Yang and Jafari introduced the Jafari-Yang
Laplace transform in 2018. Y(.) determines the Jafari-Yang
transform for a function &(7) and is given as [55].

Y{v(1)}=T(u) = J:O e "v(1)dr,T>0,u€(-1,,1,). (8)

The inverse transform is given as

YT ()} = (1), (9)

Definition 3. For derivative of order #, the Jafari-Yang trans-
form is determined as [55].

T(u) Z‘ YO vp=1,23,.  (10)

bl
un vk—n—l

Y{vi(r)} =

Definition 4. For fractional-order derivatives, the Jafari-Yang
transform is given as [55].

I'v) ”21 “(0)

Y 0<o< 11
N T <osn.  (11)

T{u®(r)} =

=0

Definition 5. The Mittag-LefHler function, a generalisation of
the exponential function, is as [54].

E ()= F(%:U(GGC,Re (0)>0).  (12)

q=0

Equation (12) further generalization is of the form

% 3(0, B€ C,Re (0) > 0), Re () > 0).
q=0

M8

Ea,ﬁ((P) =
(13)

3. Homotopy Perturbation Jafari-Yang
Transform Method

To explain the basic ideas of this approach the following
equation is considered:

VY1) =Lyv(ys T) + N[ylv(y, 7),0<0 <2, (14)

with some initial sources

Y 0)=EW) sV 0) =Ly (19)

where DJ = 0°/01° Caputo's derivative, and L[y] and N
[y] are the linear and nonlinear operators respectively.
Implement Jafari-Yang transform to (14), we have

[Dev(y, 7)] = Y[LIy]v(y, 7) + N[y]v(y, 7)], (16)

(17)

Equation (17) implies that

T(v) = uv(0) +1v'(0) + u’Y[L[y]v(y> 7) + N[y]v(y; 7)].
(18)

We now have by using the inverse Jafari-Yang transform

V(Yo 1) =v(0) +v'(0) + Y W Y[L[y]v(y, 7) + N[y]v(y, 7)]].
(19)

Now, perturbation technique having parameter ¢ is given
as

vy = Y vy, (20)
k=0

where perturbation parameter is € and ¢ € [0, 1].
The decomposition of nonlinear terms is defined as

N(wr) = Y, &H, (v), o)

where H, are of the form v, v, v,, -+,
mined as

v,,, and can be deter-



Hn(VO’VP .

e (Ee)) e

where D’; = 0/0¢k.
Using (21) and (22) in (19) and making the homotopy,
we get

i vi(w, ) =v(0) +v' (0) + e x (Yl [u"Y{LOZO: v, T)
k=0 k=0
+ i ska(v)}})
k=0

When the coefficient of € on both sides is compared, we
get

(23)

& vy (v, 7) = v(0) +v' (0),
e vi(ye ) = Y WY (Ly]vo (v, 7) + Ho (V)]
& :v(y,1)=Y" WY (L[y]vi (v, 7) + H(v))],

€ v, (v, 1) = Y WY (Ly]vie (v, 7) + Hey (v))-
(24)

As a result, we can quickly determine component v,
(v, 7), which leads us to the convergent series. We get by tak-
inge—1,

vy, 1) = lim vy, 7). (25)
k=1

The result is in the form of a series that rapidly converges
to the exact solution of the problem.

4. Idea of YTDM

Consider the fractional order partial differential equation

Div(y, 1) =8, (v,@)+ N (v,9),0<0<2,  (26)

with some initial sources

Y0 =EW) V0 =0 (27)

where D7 = 0°/017 denotes the derivative having fractional-
order o in Caputo manner, and &, and ./, denote linear
and nonlinear functions.

On taking Jafari-Yang transformation of (26), we get

Y[Dv(y, 1) =Y [G, (v @) + #1 (v )] (28)
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By using Jafari-Yang transform property of differentia-
tion, we have

% {T(u) —uv(0) - uzvl(O)} =Y[Z (v, @)+ 4, (v, 9)].
(29)
Equation (29) implies that
T(v) =uv(0) +u’v'(0) + Y [Z) (v, @) + #, (v, 9)]. (30)

We now have by using the inverse Jafari-Yang transform

VY, T) =v(0) +v' (0) + Y 7Y [€, (v, @) + N, (v, 9)].
(31)

The infinite series of v(y, 7)

V1) = > vy ). (32)

k=0

The nonlinear term decomposition of .4/, by Adomian
polynomials is expressed as

18

./VI(V, (P) = 'Q{k' (33)

=
Il
(=}

All nonlinear terms can be denoted by means of Ado-
mian polynomials as

1 ak «© ©
"ot Jj=0 j=0 =0

putting Equations (32) and (34) into (31), gives

o0

Y vy T) =v(0) +v'(0) + Y7

el s

(35)
The following terms are described as
vo(w, T) = v(0) + v (0), (36)
Vi(ysT) =Y [ Y { G, (vo @) + o }]-

The general for k> 1 is determined as

Ve (W 1) =Y [ G, (vip @) + i }]- (37)



Journal of Function Spaces

5. Applications

The solutions to various fractional order diffusion equations
are obtained by implementing HPYTM and YTDM in this
section.

Example 1. Consider one-dimension fractional-order diffu-

sion equation [54]

a"v_azv 8v+v62v Viv0<o<l,t>0, (38)
7 oy oy o b0

with initial source
v(y,0)=e. (39)

On taking Jafari-Yang transformation of Equation (38),
we get

%y v ov v
(5e) ‘Y(a—w AT

We get by using the Jafari-Yang transform’s differential
property

-V + v) . (40)

1 *v  ov v,
F{T(u)—uv(O)}—Y<a—wz—w+va—wz—v +v |,

(41)

azv_2+
va—v/2 vt .

(42)

o v Ov
T(u)=uv(0) +u Y<a—1//2 - w +

By applying inverse Jafari-Yang transform to Equation

v v e v azv_av+ azv_
Y =YY Y G oy oy

e eyl y Bzv_av+ BV_
v(y,T)=¢€ u W oy V—

Now, applying the abovementioned homotopy perturba-
tion technique as in (23), we obtain

Y Evilyn)
k=0
=V +e| Y |u'Y <Z (v, T))
k=0 v

- (i skvk(t//, T)) + <§ ska(v)>
k=0 ” k=0
+ i v (v, T)] ] )

k=0

(44)

where H,(v) are He’s polynomial that represents the nonlin-
ear terms. He’s polynomials first few components are given

by

HO (V) = VO(VO)WW - vé,

H,(v)= (Vl("o)w + VO(VI)W/) = (2vovy)>

H,(v) = (Vz("o)w +VI(Vi)yy + Vo("z)w) (#5)

— (2vev, + (v,)?).

Comparing the same power coeflicient of ¢, we obtain

& ivy(y, 1) =¢Y,

2
0™v,

% ov,
1 . g — Y*l O‘Y 0 _ 0
e vi(y, 1) <u l—awz —51// +v —61;/2

2 TO'
=¢v ,
vy + v e CED)

o ol Ov
Eiv(y,1)=Y 1<u YlW;_TI;+

v,
Moy

v ov v
3. L T) = Yy u® Z 2 _ 772 )
e vy (v, 1) (u Y l oy "y +v

v 62\/1 v 2v,V. v,)2 +v
181//2 0 awz 0v2 ( 2) 2
30
3. ¥ T
e 1) = R

(46)

By taking e — 1, we obtain the convergence series type
result is given as



VW, T) =V + V] +Vy + Vg + vyt
o 20 30
Y N rer " +
I'(o+1) I'2o+1) I'3o+1)
TU T20 1.30
vy, 1) =€ 1+ + + fon ),
I'(o+1) F(20 +1) T'(Bo+1)
=¥ eVE_(17%).
1//’ Z k0'+1 O(T )
(47)
When o =1, the HPYTM solution is
e
_ewkzo o (48)

The analytical results by YTDM.
On taking Jafari-Yang transformation of Equation (38),
we obtain

p[OV _y| Oy v 0 L (49)
o[ |oyr oy oy? '

Using the Jafari-Yang transform the differential property, we
get

;Hw—wkar” AV }

W oy ey VT
(50)
s |@®v OV *v o,
T(u)=uv(0) +u Y[au/z—aw+vawz—v +v].
(51)

By inverse Jafari-Yang transform of Equation (51)

Yazv_av+ azv_2+
v oy oy Y )

- Yazv_av+ 82\/_2+
U\ Ty e Y )
5

Assuming the unknown v(y, 7) function has the follow-
ing infinite series form solution:

V(Y1) = v(0) + 1!

vy, T)=e" +Y!

[ee]

V) = Y vy 1), (53)

k=0

The Adomian polynomials v(v),,, = Y2, & and v =
Y ro B> as well as the nonlinear term, have been described.
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Applying specific function, Equation (52) may be deter-
mined as

- 82 _ov
vi(v, ) =v(y,0)+Y |u°Y —
+de_z%k+vH,
k=0 k=0
(54)
= ?*v v
vi(w,7)=e"+Y (1Y —
Ewrsaorferl -
+de—zggk+vH.
k=0 k=0

According to Equation (34), the nonlinear function can
be find with the help of Adomian polynomials is given as

Ao =Vo(Vo)yy @1 = V1(Vo)yy + Vo(V1) gy
Ay = V2 (Vo) yy +V1(V1) gy + Vo (V2) gy (55)

B, = vé, B =2vyvy, B, =2vyv, + (vz)z.

Thus, on comparing both sides of Equation (54)

Vo(y,7) =€, 1 (56)
For k=0
o a
vi (¥, ¢, 9, T) = =3 sin ¥ sin ¢ sin (pm. (57)
For k=1
TZU
=¥
v, (v, T)=e Tao+1)’ (58)
For k=2
30
.
vi(y,T)=¢e TGo+1)" (59)

The remaining YITDM solution elements p, for (k>2)
are similarly simple to get. As a result, the solution in series
form is as

Z"k (v, 7

+ Vz(‘//’ )+ V(Y )t V(Y 7)

) =vo(¥, 7) + v (¥, T)

2 60
=eV +e¥ v +e¥ T’ (60
I'(c+1) I'(20+1)
30
L
I'(3o+1)
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(a)

(®)

FIGURE 1: Example 1 solution graph. (a) Exact solution and (b) analytical solution at o = 1.

When o =1, the solution by YIDM is

) k
v(w,r):e“’z % (61)
k=0

In closed form, the exact solution is
v(y, 7) =W+, (62)

The exact solution shown in Figures 1(a) and 1(b) shows
HPYTM and YTDM solution at 0=1 and 0<y>1.
Figure 2(a) shows the solution graph for different values of
0=109,080.7 and O0<y>1 of Example 1 and
Figure 2(b), respectively, at 7€[0,1] and 0 <y >1 while
Figure 2(c) shows the error graph. Also, Table 1 shows the
comparison of the exact solution and our methods solution
with the aid of absolute error at various fractional order.
From the figures and table, it is clear that HPYTM and
YTDM solution shows strong contact with the exact solu-
tions of the problem.

+

Example 2. Consider one-dimension fractional-order gas
dynamic equation [56]

v ov o,
— +Vv—+Vv' —v=00<0<1,7>0, (63)
ot° oy

with initial source
v(y,0)=e". (64)

On taking Jafari-Yang transformation of Equation (63),

we get
v o,
Y<W>—Y<—vw+v —v). (65)

We get by using the Jafari-Yang transform’s differential
property

%{T(u) —uv(0)} = Y(—vg—:; V- v), (66)

T(u) =uv(0) + u"Y(—vS—; +v: - v) . (67)

By applying inverse Jafari-Yang transform to Equation
(67)

v(y,7)=v(0) - Y [u“{Y(v% -V +v> H
sz -y e fy (v v

Now, applying the abovementioned homotopy perturba-
tion technique as in (23), we obtain

i vy, )=V —¢ (Y‘l [u"Y ( (i ska(v)>
k=0 . k=0 (69)
+ Z skvk(w, T)] ] ) .

k=0

where H,(v) are He’s polynomial that represents the nonlin-
ear terms. He’s polynomials first few components are given

by
Hy(v) =vo(vo)y, — Vo

Hy(v) = (vi(vo), + Vo), ) = (2vow),

H,(v)= (vz(vo)w + vl(vl)w + Vo("zh,) = (2vov,y + (v2)2)~

(70)
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FIGURE 2: Example 1. (a) Analytical solution at various fractional orders of o (b) ¢ =0.5 and (c) error.
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TasLE 1: v(y, T) comparison of exact solution, our methods’ solution, and Absolute Error (AE) of Example 1.

7=0.01 Absolute error Absolute error Exact solution Our methods’ solution Absolute error
1 0=0.8 0=0.9 o=1 o=1 o=1

0 5.2118400000E-04 5.0962000000E-05 1.0100501670000 1.0100501670000 0.00000000E+00
0.1 5.7599800000E-04 5.6322000000E-05 1.1162780700000 1.1162780700000 0.00000000E+00
0.2 6.3657500000E-04 6.2245000000E-05 1.2336780600000 1.2336780600000 0.00000000E+00
0.3 7.0352500000E-04 6.8792000000E-05 1.3634251140000 1.3634251140000 0.00000000E+00
0.4 7.7751600000E-04 7.6027000000E-05 1.5068177850000 1.5068177850000 0.00000000E+00
0.5 8.5928700000E-04 8.4022000000E-05 1.6652911950000 1.6652911950000 0.00000000E+00
0.6 9.4965800000E-04 9.2858000000E-05 1.8404313990000 1.8404313980000 1.00000000E-09
0.7 1.0495350000E-03 1.0262400000E-04 2.0339912590000 2.0339912580000 1.00000000E-09
0.8 1.1599150000E-03 1.1341700000E-04 2.2479079870000 2.2479079860000 1.00000000E-09
0.9 1.2819060000E-03 1.2534600000E-04 2.4843225330000 2.4843225330000 0.00000000E+00
1.0 1.4167240000E-03 1.3852800000E-04 2.7456010150000 2.7456010140000 1.00000000E-09
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Comparing the same power coefficient of ¢, we obtain

T
eV
¢ To+1)
a2 5 ov, ov
82:V2(1//,T)=Y1<u Y{vla—l; 08_1//1
TZO'
— eV
2vovy + V1}> T20+1) (71)
a2 ov ov
83:V3(1//,T)=Y1(M Y[Vza—o 18_1//1
ov
+V08_1//2 2vyV, (vz)zvz]),
30
3., T T
€)=t ey

By taking e — 1, we obtain the convergence series type
result is given as

V(W T) =V + V) +Vy + V3 + vt

0 TZO'
=eV+eV? +e?
I'(o+1) I'(2o0+1)
y T30’
+e F(30+1)+ v(y, T)
o 20 30

T

- T T
=e V([ 1+ +
I'(o+1)

+F(3o+1)+'")’

I'(20+1)

00 o\k
A S G AR
v(y,T)=e k:ZO T(ko + 1) e"E (17).
(72)
When o =1, the HPYTM solution is
V(Y. T) = exp O (73)

k=0

The analytical results by YTDM
On taking Jafari-Yang transformation of Equation (63),

we obtain
v o,
Y{ﬁ} —Y[—vw +v —v], (74)

using the Jafari-Yang transform the differential property, we
get

ov

%{T(u) —n(0)) = Y{—vw 2 —v} (75)

9
o ov 2
T(u)=uv(0) +u’Y |-v— +Vv* —v|. (76)
oy
By inverse Jafari-Yang transform of Equation (76)
-1|,0 ov 2
vy, ) =v(0)-Y " |u°Y vw—v +v ,
(77)

vgs1)=e¥ - ¥l HY@_; v +V) H

Assuming the unknown v(y, 7) function has the follow-
ing infinite series form solution:

(09

v(ya 1) = ) (Y 7). (78)

k=0

The Adomian polynomials v(v),,, = ¥}°, &/, and vi=
Y roo B as well as the non-linear term, have been described.
Applying specific function, Equation (77) may be deter-
mined as

i Vi(y, 1) =v(y,0) - Y~ lquli oA - OZO: 99,(+VH,

k=0 k=0 k=0
Z vi(y, 1) =€V - Y |u’Y Z o, - Z Br+v||.
k=0 k=0 k=0
(79)

According to Equation (34), the nonlinear function can
be found with the help of Adomian polynomials is given as

Ao =v5(Vo)y» &1 =V1(Vg)yy +Vo(V1)

v vy v
Ay =v,(Vo)y, +Vi(V1), +Vo(V2)y (80)

By =V, By =2vyvy, B, = 2vyv, + (v;)*.

Thus, on comparing both sides of Equation (79)

volyat) =Y. (51)

For k=0
W= s (32)

For k=1
v,(v,7)=e"? TGo+ 1)’ (83)

For k=2
N = (84)
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FiGURrk 3: Example 2. (a) Analytical solution at various fractional orders of o (b) ¢ =0.5 and (c) error.

The remaining YITDM solution elements p, for (k> 3)
are similarly simple to get. As a result, the solution in series

In closed form, the exact solution is

form is as vy, T) = eV, (87)
© Figure 3(a) shows the solution graph for different values

vy, T) = Z V(W ) = v (¥, T) + v, (¥, 7) of 0=1, 0.9, 0.8, 0.7 and 0<y,$>1 of Example 2 and

k=0 Figure 3(b), respectively, at ¢ =0.57€[0,1] and 0<y>1

+v,(¥, T) + V5 (¥, T) while Figure 3(c) shows the error graph. It is verified from

the figures that HPYTM and YTDM solution is closely

vy, T)=eV +eV L +exp ¥ T (85) related with the exact solution.
I'(o+1) I'(20 +1)
30 Example. 3. Consider two-dimension fractional-order diffu-
+e¥ [Go+1) + sion equation [54]
v o*v azvo 1150 88
When o = 1, the solution by YITDM is W_a—llxz+a—¢2 coshTEh (88)

with initial source

V(Y $,0)= (1- §)e. (89)
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Taking Jafari-Yang transformation to Equation (88), we

get
0°v v v

We get by using the Jafari-Yang transform’s differential
property

LT - wv(0)) = Y(a a—”>,

oy?  9¢?
(91)
Pv P
T(u) = uv(0) + u°Y (81// ag;) .

By applying inverse Jafari-Yang transform to Equation
o1

s v 9%
V(W’¢)T)=V(0)+Y [M {Y<a_V/2+a_¢2> }‘|’
gl e v v
vy, §,7)=(1-¢)e" +Y [u {Y<31//2+8¢2>H

(92)

Now, using the abovementioned homotopy perturbation
technique as in (23), we get

Z skvk(w, ¢, 7)
k=0

=(1-¢)e" +¢ <Y‘1 lu"Y [(i skvk(t//, o, T))
k=0 vy
; (z oy r>) D
k=0 90

Comparing the same power coeflicient of &, we obtain

(93)

vo(y $,7) = (1~ §)e%,

v, v
R 0 0
vi(y, 9, 7)=Y (u Y[awz e ])

T
== ro Ty
Pv, v,
vy (s 7)) =Y (”oyla;z a(;} ])
—(1- 9

11

(94)

By taking e — 1, we obtain convergence series type
result is

VY, T) =V + vV +Vy+ V3 + v+
==+ (=) s
v T20 " T3a
U= ray YU rae
+ (1 - (p)eW 1-‘(40_+ 1) +"'V(‘/” (/)’ T)
° _[20
= _¢)ew<1 "To+1)  T(2o+1)
T3a T4O’
[(Go+1) (4c7+ 1)+"')’
v(y, $,7) e‘”]; - koﬂ = 9)e"E, (t").
(95)
When o =1, the HPYTM solution is
v 00 (t)k
vy 1) =(1-9)e ) (96)

The analytical results by YTDM
Taking Jafari-Yang transformation of Equation (88), we

obtain
v v _y o*v . *v (97)
o)~ o o

We get by using the Jafari-Yang transform’s differential
property

1 v 9
AT O} =Y |55 551, (58)
T(u) = uv(0) + u°Y _g;vz + g;‘z’ (99)
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By inverse Jafari-Yang transform of Equation (99)

Bzv azv
vy, ¢, 7)=v(0) + Y [ {Y<a—1//2+a_¢2>}]’

(100)

Assuming the unknown v(y, ¢, T) function has the fol-
lowing infinite series form solution:

o0

vy $7) = ) vy 67),s
- L (101)
i vi(y, 9, 1) =€V + Y [u°Y v + o .
k=0 oy o¢?
Thus, on comparing both sides of Equation (101)
Vol 9.7) = (1~ 9)e", (102)
For k=0
(:9:7) = (1= 9" s (103)
For k=1
va (v, ¢’T):(1_¢)ewﬁ~ (104)
For k=2
T30
vs(V, qb,‘r):(l—gb)e"’m. (105)
For k=3
va(y, ¢’T):(1—¢)ewm~ (106)

The remaining YITDM solution elements p, for (k> 3)
are similarly simple to get. As a result, the solution in series
form is as

Journal of Function Spaces

o0

Vs 6, 7) = ) V(s 6, 7) =V (s 6, T) + v, (v 6, 7)

k=0

V(¥ 6, T) + V3 (Vs 6, T) + vy (Y5 4, T)F-

V1) = (1= + (1= e
(1-¢)e* r(zi: oy t(-9)e r(;i )
(1=¢)e r(41:i 1)
¥ ¢7)=(1-¢)e (1 ¥ r(oTi n* r(zf: )

T3o T4(7
" TG+ 1) " F(4a+ 1)+"'>’
¢)e Z — ¢)eE, (7).

(107)

vy, ¢ 7)

k0+1

When o =1, the solution by YITDM is

In closed form, the exact solution is:
V(Y ¢ 7) = (1 - ¢)eV*). (109)

The exact solution shown in Figures 4(a) and 4(b) shows
HPYTM and YTDM solutions at =1 and 0<y,¢>1.
Figure 5(a) shows the error graph for different values of o
=1,0.8,0.6,05 and 0<y,¢>1 of Example 3 and
Figure 5(d) respectively, at ¢ =0.5,r€[0,1] and 0<y>1
while Figure 5(e) shows the error graph. From the figures
and Table 2, it is clear that HPYTM and YTDM solution
shows strong agreement with the exact solutions of the
problem.

Example 4. Consider three-dimension fractional-order diffu-
sion equation [54]

v _Ov O OV et rz0 (110)
o  oy? 3¢t O¢? ST
with initial source
v(y, ¢, 9,0) = sin y sin ¢ sin . (111)

Taking Jafari-Yang transformation of Equation (110), we

get
v v _y o*v . o*v . *v (112)
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FiGuRre 4: Example 3solufiguretion graph. (a) Exact solution and (b) analytical solution at o = 1.
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FiGure 5: Example 3. (a) Analytical solution at various fractional orders of o (b) ¢ =0.5 and (c) error.
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TaBLE 2: v(y, ¢, T) comparison of exact solution, our methods’ solution, and Absolute Error (AE) of Example 3.

7=0.01 Exact solution Our methods’ solution AE of our methods AE of our methods AE of our methods
11 o=1 o=1 o=1 =09 0=0.8

0 0.505025083500000 0.505025083500000 0.0000000000E+00 2.5480900000E-05 2.6059160000E-04

0.1 0.558139035000000 0.558139035100000 1.0000000000E-10 2.8160900000E-05 2.8799840000E-04

0.2 0.616839030000000 0.616839029800000 2.0000000000E-10 3.1122300000E-05 3.1828710000E-04

0.3 0.681712557000000 0.681712557200000 2.0000000000E-10 3.4395800000E-05 3.5176210000E-04

0.4 0.753408892500000 0.753408892700000 2.0000000000E-10 3.8013200000E-05 3.8875720000E-04

0.5 0.832645597500000 0.832645597600000 1.0000000000E-10 4.2011000000E-05 4.2964300000E-04

0.6 0.920215699500000 0.920215699100000 4.0000000000E-10 4.6428800000E-05 4.7482850000E-04

0.7 1.016995630000000 1.016995629000000 1.0000000000E-09 5.1311000000E-05 5.2476600000E-04

0.8 1.123953994000000 1.123953993000000 1.0000000000E-09 5.6708000000E-05 5.7995600000E-04

0.9 1.242161266000000 1.242161267000000 1.0000000000E-09 6.2673000000E-05 6.4095200000E-04

1.0 1.372800508000000 1.372800507000000 1.0000000000E-09 6.9263000000E-05 7.0836100000E-04

We get by using the Jafari-Yang transform’s differential
property

(114)

By applying inverse Jafari-Yang transform to Equation
(113)

1| o ?*v *v 9

V(y, ¢, ¢, 7) =sin y sin g sinp+ Y
Awely *v N 0*v . *v
v o o) ||

Now, using the abovementioned homotopy perturbation
technique as in (23), we obtain

(115)

> &y o)

k=0
= sin y sin ¢ sin @

+e (Yl [u”Y [ (i Evi(w, o, o, T)>
k=0 yw  (116)
+(Beniwpnn)
k=0 94

; (f V(1 6. r)) H)
k=0 0P

Comparing the same power coeflicient of ¢, we get

& 1 vy(y, ¢, 9, 7) = sin y sin ¢ sin @,

v, 0™,

1. — -1 a 0 0
e vy, $,9,7)=Y (u Y[—awz + —8¢21>

=-3 sin y sin ¢ sin (pm,

Y R R
2y g T) =Y ( Ylawzl + WD

TZO'

M

= (—3)2 sin yssing sin (pm,

o*v, 0o’
: =y! 2,22
vi(v, 0,0, 7)=Y (u [81//2 3 2])

30

(o]
w
Q

~

o 2\3 . .
=(-3) smt//sm¢s1ng07r(3a+l),

*vy, 0%
. -1 o 3 v 3
v (v, d0,1)=Y (u Ylawz + 3 2])

T40

N

o ad . .
=(-3) sml//sm</>sm(p—F(40+l).

(117)

By taking ¢ — 1, we obtain the convergence series type
result is given as

VY, ¢, 9, T) =Vy +V; +V, + V3 + V,+--- =sin y sin ¢ sin ¢
o

—3siny/sin¢sin(pm

20

22 o . .
+(-3) sml//smgbsm<pF7(20+l)
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30

+(=3)” sin y sin ¢ sin (pm
T4o

Ca\4 . .
+(-3) 51n1//smq551n(p4r(40+1)

+--v(y, ¢, @, T) = sin y sin ¢ sin ¢
L (-37%)°
T Ter) T e
(-379)° (-379)*
[(Go+1)  T(do+1) +>

(118)

When o = 1, then the HPYTM solution in a closed form:

(-37)°

v(y, ¢, ¢, T) =sin y sin ¢ sinqo(l -37+ )

(-37)° (=30
S TR &

The analytical results by YTDM
Taking Jafari-Yang transformation of Equation (110), we

obtain
y [ _y
oo [

We get by using the Jafari-Yang transform’s differential
property

(120)

o o]

o*v +82v v
o

1 Pv Pv P
—AT(w) -~ uv(0)} = Yla_w”z " 8_</:; + %}, (121)

T(u)=uv(0) +u’Y |=— + —

9%y 82v+82v (122)
Y S

by inverse Jafari-Yang transform of Equation (121)

[ v v oM
_ -1 a e - -
vy, $,0,7)=v(0)+ Y |u {Y<aw2 + 55 + 8<p2> H

vy, b9, 1) =exp (y+¢)+ Y

. UYazv+azv+82v
L\ e e [

(123)

Assuming the unknown v(y, ¢, ¢, T) function has the
following infinite series form solution:

[¢9)

Ve . 0.7)= ) Vi, 6.9, 7),

k=0

(124)

15
i Vi(¥, ¢, 9, T) =sin y sin g sinp + Y~
k=0
Bl
o2 o¢*  0¢?
Thus, on comparing both sides of Equation (124)
Vo (W, ¢, 9, T) = sin y sin ¢ sin . (126)
For k=0
v (¥, ¢, 9, T) = =3 sin y sin ¢ sin gol“(aj—l)’ (127)
For k=1
2 7
(Y1) = (-3 sy sin gsin g s (128)
For k=2
30
v3(y, ¢, ¢, 7) = (-3)” sin y sin ¢ sin gom. (129)
For k=3
Lo
vy(¥, ¢, 9,7) = (-3)* sin ¥ sin ¢ sin (pm. (130)

The remaining YTDM solution elements p, for (k> 3)
are similarly simple to get. As a result, the solution in series
form is as

VY, ¢ @, 1) =V (¥, 69, T) + Vi (¥ 6, 9. T) £ v, (¥, 6,9, 7)
+V3(¥ 6, 9 )+ V(Y 6, 9, 7)
= sin y sin ¢ sin @

—3sinu/sin¢sin(pm

20

a2 . .
+(-3) smt//sm(psm(pir(z(H_l)

30

+(=3)’ sin y sin ¢ sin (pm
T4¢7

Ca\4 . .
+(-3) sm1//sm¢sm(p7r(4a+l)

+--v(y, ¢, @, T) = sin y sin ¢ sin ¢
(o, ey
I'(c+1) i I'(2o0+1)
(-37°)° (-379)*
[(3o+1)  TI(do+ 1)+"'>'

(131)
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(a) (b)
FIGURE 7: (a) Error graph and solution graph (b) at o = 0.5 of Example 4.
TaBLE 3: v(y, ¢, ,¢, T) comparison of exact solution, our methods’ solution, and Absolute Error (AE) of Example 4.

7=0.01 Exact solution Our methods’ solution AE of our methods AE of our methods AE of our methods
"4 o=1 o=1 o=1 =09 0=0.8

0 0.00000000000000 0.00000000000000 0.000000000E+00 0.000000000E+00 0.000000000E+00

0.1 0.039084756460000 0.039084756470000 8.4147098480E-12 5.8916348320E-06 6.0179783350E-05

0.2 0.077778990960000 0.077778990980000 1.6829419700E-11 1.1724408770E-05 1.1975827680E-04
0.3 0.115696083500000 0.115696083500000 0.0000000000E+00 1.7440075190E-05 1.7814016480E-04
0.4 0.152457179000000 0.152457179000000 0.0000000000E+00 2.2981414070E-05 2.3474221550E-04
0.5 0.187694972800000 0.187694972800000 8.4147098480E-11 2.8293115510E-05 2.8899866580E-04
0.6 0.221057380400000 0.221057380400000 0.0000000000E+00 3.3322251000E-05 3.4036760840E-04
0.7 0.252211055800000 0.252211055900000 8.4147098480E-11 3.8018332270E-05 3.8833574600E-04
0.8 0.280844721700000 0.280844721700000 8.4147098480E-11 4.2334573540E-05 4.3242369270E-04
0.9 0.306672279900000 0.306672280000000 8.4147098480E-11 4.6227807340E-05 4.7219102240E-04
1.0 0.329435670100000 0.329435670200000 8.4147098480E-11 4.9659157730E-05 5.0724039260E-04
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When o =1, then the closed form solution by YTDM

22
v(¥, ¢, ¢, T) = sin y sin ¢ sin go(l -37+ ( ;[)
. \ (132)
, (30, (531) +> .
3! 4
In closed form, the exact solution is
V(Y. ¢, 9, 7) =exp " sin y sin ¢ sin ¢. (133)

In Figures 6(a) and 6(b), we consider fixed order o =1
for piecewise approximation values of y, ¢ in the domain 0
<y,$>10 and =1 . Figure 7(a) shows error graph and
Figure 7(b) represents HPYTM and YTDM solution at 0 =
0.6 of Example 4. It is verified from the Figures 6(a) and
6(b) and Table 3 that HPYTM and YTDM solution is closely
related with the exact solution.

6. Conclusion

In the present article, different analytical techniques are used
to show the fractional view analysis of diffusion equations.
In Caputo, manner fractional derivative is considered. The
suggested techniques are tested to solve fractional-order dif-
fusion equations. It is observed that the suggested techniques
are the best tool for investigating fractional partial differen-
tial equations. The close relation between the exact and ana-
Iytical results is confirmed by the plotted graphs. The given
methods give series form solution which have higher conver-
gence rate towards the exact results. It is also shown that
both methods give same solution for the proposed problems.
Finally, both proposed methods are very methodical and
efficient and may be used to investigate nonlinear physical
problems related to physics of plasmas such as modeling
nonlinear unmodulated and modulated structures. More-
over, the obtained results/solutions can be useful in investi-
gating the diffusion characteristics of some plasmas and
fluids.
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In this article, we introduce the class of sequence of functions C, (4, ru) of Cesafo summable relative uniform difference sequence
of functions. We have studied the topological properties of C, (A4, ru). We also obtain the necessary and sufficient condition to
characterize the matrix classes (C, (4, ru), &, (ru)), (C, (4, ru), c(ru), P).

1. Introduction The notion was further discussed from various aspects

by Demirci et al. [4], Demirci and Orhan [5], Devi and Tri-
Throughout the study, w(ru), C,(A, ru),and €., (ru) denote  pathy [6], and many others.

the classes of all relative uniform sequence space, Cesaro
summable relative uniform difference sequence space, and Example 1. Let 0<a<1 be a real number. Consider the

bounded relative uniform sequence space, respectively. sequence of functions (f;(x)),f;: [a,1] — R, for all i€ N
Moore in 1910 introduced the notion of uniform conver- defined by

gence of a sequence of functions relative to a scale function.
Chittenden [1-3] gave the detailed definition of the notion

as follows. fi(x) = ,i, forallx € [a,1],i € N. (2)
ix

Definition 1 (see [1]). A sequence (f;(x)) of single-valued,
real-valued functions f;(x) of a variable x ranging over a
compact subset D of real numbers is said to be relatively uni-
formly convergent on D w. r. t. a scale function o(x) in case
there exist a limiting function f(x) and scale function o(x)
defined on D and for every ¢, an integer n,, = 1, (&) such that
for every n > n, and for all x € D,

This sequence of functions does not converge uniformly
to 0 on [a, 1]. However, (f,(x)) converges to 0 uniformly
with respect to the scale function o(x) defined by

o(x)= %, forallx € [a, 1]. (3)

Kizmaz [7] defined the difference sequence spaces £,
[fi(x) = f(x)| < elo(x)]- (1) (A),c(A),and ¢,(A) as follows:


https://orcid.org/0000-0001-6709-8012
https://orcid.org/0000-0002-6777-3943
https://orcid.org/0000-0002-0738-652X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/3809939

Z(4) ={x=(x)): (Ax;) € Z}, (4)

for Z=12_,c, c, where Ax; =x; —x;,,,i € N.
These sequence spaces are Banach space under the norm

[1%:ll 4, = |%1] + sup;en | Ax;]- (5)

The notion was further studied from different aspects by
many others [8-13].

The Cesafo sequence space Ces,,, Ces,(1 < p<oo) were
introduced by Shiue [14], and it has been shown that £, C
Ces,; the inclusion is strict for 1 < p < co. Further, the Cesafo
sequence spaces X, and X, of nonabsolute type were defined
by Ng and Lee [15, 16]. For a detail account of Cesaro differ-
ence sequence space, one may refer to [17-20].

Let A=(a,;) be an infinite matrix of real or complex
numbers. Then, A transforms from the sequence space A
into the sequence space F, if Ax € F for each sequence (x;)
€ A that is Ax = (A,x) € F, where A, x =Y " a,,x;, provided
that the infinite series converges for each n € N.

Matrix transformation between sequence space was
studied from different aspects by many others [21-25].

2. Definitions and Preliminaries

Definition 2. A sequence space A is said to be solid or normal
if (x;) € A implies (a;x;) € A, for all (a;) with |a;| < 1, for all
i€N.

Definition 3. A sequence space A is said to be monotone if it
contains the canonical preimages of all its step spaces.

Remark 4. A sequence space A is solid then, A is monotone.

Definition 5. A sequence space A is said to be symmetric if
(x;) € A= (xy;) €A, for all i € N, where 7 is a permutation
of N, the set of natural numbers.

Definition 6. A sequence space A is said to be convergence
free if (x;) € A and x; =0 = y, = 0 together with (y,) € A, for
allieN.

Definition 7. A sequence space A is said to be a sequence alge-
bra if (x;.y;) € A whenever (x;) and (y;) belongs to A, for all
i€N.

In this article we introduce the sequence space C, (A4, ru)
of Cesaro summable relative uniform difference sequence of
functions and it is defined as follows:

Ci(Aru) ={f = (f;(x)) €ew(ru): (Af;(x)) € C, w.r.t.thescale function o(x)},

(6)
where Af;(x) € C, (ru) and Af;(x) = f;(x) = f1,, (x).
3. Main Results

We state the following result without proof.

Journal of Function Spaces

Theorem 8. The sequence space C,(A, ru) is a normed linear
space.

Theorem 9. The sequence space C,;(A, ru) is a Banach space
normed by

£ [[lo ()]

”f”(A,a) = SUP | x||<1 I

ISLlar@llo@]

+ —
Supp21 Sup”x”sl P HxH

Proof. Let (f"(x)) be a Cauchy sequence in C, (4, ru) where

(f"(x)) = (fi (%)) = (f1 (%), f5(x), ) € €y (A ru), foreachi € N.
(8)

O

Then,

I£1 () =@ Hlo ()]

%l

/" (x) = f"(x) H(A,a) = SUP|x<1

1
+SUpP,sy SuPHngl};

il AfE ) = A @llle el
]

©)

For all n, m > n,,

If () = fT o)l

[l

1£" () = f" (%) H(A,a) = SUP)jx<1

1
+SUp,s, SuPHngl};

ml|Af () = AF () llo)l| _ e
[l 2

(10)

(f1(x)) is a Cauchy sequence in D w.r.t. o(x) for all x
€D.
=(f7(x)) is convergent in D w.r.t. ¢(x) for all x € D.
Let lim,_, f7(x) =f,(x),x € D.
Similarly, lim, o, (1p) 21, A1 (x) = (1p) S, Af (3).
€D.
From the above equations we get,

lim,, . oof7 (%) = (%), (11)

for all x e D, for all i € N.
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From (10) we have

b MA@ =)o@ _ 10 Ao _ e
e ] ] 2

(12)

for all x € D.
Similarly,
L ISR - AR o)
g E )
LY I(Af] (%) = Afi(x))o ()| <&
p x| 2’

for all xe D and i € N.
Since /2 is not dependent on i, we have

SUP x| <1 [LGHC |J;1”( Gl < ;
114 Af (x))o(x £
SUPp>1 supHx”<1p | (Af7 (x )||x|| f(x))o(x)]] <2

(14)
Evidently,

1f1(x) = A G [[lo ()]l

£ () =f )l a0

= SUP|jxj<1

T SUpPy>y sup”x”glﬁ

ZLAf] () - Af i) lle ()] _

[ -

(15)
=|f"(x) = f(x)[|(40) < & for all n>ny, for all x € D.
Therefore, (f"(x) - f(x)) € C, (A, ru), for all n>n,, for

all xeD.
Then, f(x) =f"(x) - (f"(x) — f(x)) € C,(A, ru) since C,

(A, ru) is a linear space.
Theorem 10. The inclusion C,(ru) c C,(A4, ru) strictly holds.

Proof. The proof of the theorem is obvious and the strictness
of the inclusion is shown in the following example. O

Example 1. Let 0<a<1 be a real number and D=q, 1].
Consider the sequence of real valued functions (f;(x)), f;
:[a, 1] — R, for all i € N, defined by

filx) =
Af (%) = fi(x) = fra1 (%)

(f;(x)) € Cy(A, ru) w.r.t. the scale function o(x) =1, for
all xin D, but (f,(x)) ¢ &, (ru).

Hence, the inclusion is strict.

ix, forallx € [a, 1],

(16)

=x,forallx €a, 1].

Theorem 11. The inclusion c(A, ru) C C,(A, ru) strictly holds.

Proof. The proof is obvious and the strictness of the inclu-
sion is shown in the following example. O

Example 2. Let 0<a<1 be a real number and D=[a
Consider the sequence of real valued functions (f;(x)),
: [, 1] — R, for all i € N, defined by

1.
fi

filx)=

0, otherwise,

{ x, foriisodd,

(17)

x, foriisodd,
Af i(x) =

—x, otherwise.

We have (f;(x)) € C,(4, ru) w.r.t. the scale function o(x)
defined by

o(x)= {%,forallx €la, 1], (18)

but (f;(x)) ¢ c(A, ru). Hence, the inclusion is strict.

Theorem 12. The sequence space C,(A, ru) is not monotone.
Proof. The proof is shown in the following example. O
Example 3. Let 0<a<1 be a real number and D =g, 1].

Consider the sequence of real valued functions (f;(x)), f;
: [a,1] — R, for all i € N, defined by

filx) =
Afi(x) = fi(x) = f41 (%)

(fi(x)) €

ix, forallx € [a, 1],

(19)

=x, forallx € [a, 1].

C, (A, ru) w.r.t. the scale function defined on D

by o(x) =1.
Let (g,(x)) be the preimage of (f;(x)) defined by
i*x, fori=k>keN,
gi(x) = (20)
0,  otherwise.

One cannot get a scale function that makes (g,(x)) €
Cy (A, ru).
Hence C, (A, ru) is not monotone.

Remark 13. The sequence space C, (A, ru) is not solid since
C, (A4, ru) is not monotone.

Theorem 14. The sequence space C,(A, ru) is not symmetric.

Proof. The proof of the theorem is shown with the help of
the following example. O

Example 4. Let us consider the sequence of functions (f;(x))
considered in Example 3. Let (g,(x)) be the rearrangement
sequence of functions of (f;(x)) defined by



(i+1)x, fori=2j-1,j€N,

9i%) = { (i-1)x, fori=2j,jeN. 1)

One cannot get a scale function that makes (g,(x)) €
Cy (A, ru).

Hence, C, (4, ru) is not symmetric.

Theorem 15. The sequence space C,(A, ru) is not sequence
algebra.

Proof. The proof of the theorem is shown in the following
example. |

Example 5. Let 0<a<1 be a real number and D= g, 1].
Consider the sequences of real valued functions (f;(x)), f;
:[a,1] — R, and (g,(x)),g;:[a, 1] — R, for all ieN,
defined by

fi(x) = g,(x) = ix, foralli e N.

(22)
fi(x).gi(x) = .
We get that (f,(x)), (g,(x)) € C,(A, ru) but one cannot
get a scale function that makes (f;(x).g,(x)) € C, (A, ru).
Hence, C, (A, ru) is not sequence algebra.

Theorem 16. The sequence space C,(A,ru) is not conver-
gence free.

Proof. The proof of the theorem follows from example
below. O

Example 6. Let 0<a <1 be a real number and D=q, 1].
Consider the sequence of real valued functions (f;(x)), f;
: [a,1] — R, for all i € N, defined by

(fi(x))

=x,forallx € [a, 1],

23
Af (x) = =

Therefore, (f;(x)) € C,(A, ru) wur.t. the constant scale
function defined on D by o(x) = 1.

Let us consider another sequence of functions (g,), g;:
[a,1] — R defined by

g.(x) = { g1(x) =x
1 Gir1 (%) = Gy (¥) + (n+ 1),

Ci (A ru)=-nx,n>2,neN.

form>2,m,n,i €N,

(24)

One cannot find a scale function that makes (g,(x))
€ C, (A, ru).

Hence, the sequence space C, (4, ru) is not convergence
free.

Journal of Function Spaces

3.1. Matrix Transformation between Sequence of Functions.
In this section, we give certain matrix classes between the
sequence of functions.

Theorem 17. A € (C,(A, ru), 8, (ru)) if and only if sup,,
Z?OZ( )|am| <0o.

Proof. Let (f,(x)) € C,(A, ru) and sup,_, Y22 (i —

Z a,f (x

1)|ani| <00.

From the relation between dual and matrix map, we
know that ¢* = ¢,. Hence,

-1

x) converges absolutely w.r.t.o(x). (26)

I
[N}
~

=1

For p €N, we have, Y7 a,.f,(x)o(x) ==Y} a,.(¥i A

fix)o(x)) + fi(x)o(x) XL,
By the argument (10), we know that Y% a,.f,(x)o(x) is
absolutely convergent w.r.t. scale function o(x).

Then,
;lﬂmfi(x)ff(x)l < <Supn ;(i— 1)|ﬂml>

(p sy 1) ) @)

o0
We have, Y ° a,,f;(x)o(x) < co since sup,,., > (i — 1)]

+[fi(x)o(x)] sup, Y (i~
a,;| < oo.

i=2
Conversely, we know that A is a bounded linear function
from C, (4, ru) to £, (ru), so we can write,

Zlﬂmf

1)|ani|'

= [(Auf)o(x)] < sup,|(A,f)o(x)]

(28)
=[(Af)o ()l < 1A 1] (a0,
We choose a sequence of functions (f;),f;:[0,1] — R
defined by
(i-1)xsgna,;, forl<i<r,
filx) = , (29)
0, otherwise.
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We get (f,(x)) € C,(A, ru) w.r.t. scale function o(x) =1
/x with the norm ||f|| 44 =1.

Putting the value of ( f.(x)) in equation (26) and letting
the limit r — oo, we get

(i=1)ay| < [|A]l- (30)

Mz

I
[N

Theorem 18. A € (C, (A, ru), c(ru),

(i) sup, Y5 (i =
(if) lim, Y, (i -
(iii) lim,a,; = 0 for each i

(iv) lim,) ;a,, = 0.

i%ni

P) if and only if
1)a,;| <oco

Da,; =-1

Proof. Let us assume that the conditions (i)-(iv) hold true
and let (f,(x)) € C,(A, ru), ie, lim;(1/i)¥_ Af,(x)o(x) = f
(x) (say).

We know from (i) that for each x€ D and neN, ) (i
—1)]a,,| converges. It follows that Y > (i — 1)a,,;((1/(i—1)i

-1)Y 2 Af ,(x)o(x)) converges.
-f (x)>

( ZAft(x
)am +f1 O'(.X)Zam-.

o0

Zamf (x)o(x)== (i~

i=2

—f<x>Z<

For any n, € N, we have

Y-, (i_IIZlAfz(x)G(x) —f(x)> ‘

1 i—1 ny )
< s p( 8, <x>> 3 (i-1la,

t 1

o0

+ sup,, Z(z -1)a

1 1
(EE

;1—1 (1—12 Af (x )>'
(= 1)a, S0p,., S0Py, (,._le A ()0 —f(x)> .

(32)

ni Supxsl Supi>n0

8

lim,, sup

Mg

<sup,
i=2

Let n, =0, we get Y, (i—1)a
(x)a(x) - f(x)) — 0.

Substituting this value in equation (31) and using condi-
tions (ii) and (iv), we get

(1= 1)i- 1) X Af,

Y.ia,:f (x)o(x) converges to f(x) w.r.t. the scale function

o(x). Conversely, let A € (C, (4, ru), c(ru), P). Then, (3 ,;a
fi(x)o(x)) € c(ru), for all
(fi(x)) € C1(A ru). (33)

Condition (i) can be proceed as same as shown in Theo-
rem 17.
(ii) Let (f,),f;: [0, 1] — R defined by

fi(x)=ix,forallie N. (34)
Then, f,(x) € C,(A, ru) w.r.t.o(x) = 1/x.
Since Af;(x) — —1, we have lim, ) ;(i -

(iii) Let (f;), f; [0, 1] — R defined by

)ani =-1

fi(x)=ex, forallie N. (35)

Then, f,(x) € C,(A, ru) w.r.t.o(x) = 1/x.
Since Af;(x) — 0, we have lim,a,; = 0.

n“ni

(iv) Let (f,), f;: [0, 1] — R defined by
fi(x)

Then, f;(x) € C, (A, ru) w.r.t.o(x) = 1/x.

Since Af;(x) — 0, we have lim,) ;(i—1)a,; = 0.

The following theorem is stated without proof and can
be proceeded the same as in Theorem 18. O

=x, forallieN. (36)

Theorem 19. A € (C,(A, ru), ¢ (ru)) if and only if

(i) sup, Y55 (i = Ilay| <00
(ii) lim, Y 2,(i— 1)a,; = 0
(iii) lim,a,; = 0 for each i
(iv) lim, ) ;a,; = 0.

i%ni

4. Conclusions

In this article, we studied the concept of Cesato summability
from the aspects of relative uniform convergence of differ-
ence sequence of positive linear functions w.r.t. a scale func-
tion o(x) on a compact domain D. The class of difference
sequence of functions C, (A, ru) is introduced, and its prop-
erties like solid, monotone, symmetric, sequence algebra,
and convergence free are discussed. We have also further
introduced characterization of matrix classes of (C, (4, ru),
e (ru)), (C, (A, ru), c(ru), P) and (C, (A, ru), ¢y (ru)).
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In the present study, we have constructed new Banach sequence spaces £,(2),c)(2),c(8), and €, (), where = (L, ;) is a regular
(Ll = (v+2)), 0<k<w,

0, k>,
We study their topological and inclusion relations and construct Schauder bases of the sequence spaces €,(2),c,(2), and ¢(2).

matrix defined by [ = { forall v,k=0,1,2, -, where [ = (I,) is a sequence of Leonardo numbers.

Besides, a-, 3- and y-duals of the aforementioned spaces are computed. We state and prove results of the characterization of
the matrix classes between the sequence spaces €,(8),co(2),c(2), and £.,(8) to any one of the spaces ¢,,¢,,c, and €. Finally,

under a definite functional p and a weighted sequence of positive reals r, we introduce new sequence spaces (c,(%,7)), and
(€,(8, r))P. We present some geometric and topological properties of these spaces, as well as the eigenvalue distribution of

ideal mappings generated by these spaces and s-numbers.

1. Introduction and Preliminaries

Let w denote the set of all real- or complex-valued
sequences. A linear subspace of w is called a sequence
space. Some of the well-known examples of sequence
spaces are the space of absolutely p-summable sequences,
the space of null sequences, the space of convergent
sequences, and the space of bounded sequences, denoted
by €,.¢cp,¢; and £, respectively. Here and afterwards, 1<
p <00, unless stated otherwise. Let bs and cs denote the
spaces of all bounded and convergent series, respectively.
A Banach sequence space with continuous coordinates is

called a BK-space. The spaces 3 and €, are BK-spaces

equipped with the supremum norm ||3||, =sup|3;| and
« keN,

v :
the ¢, norm |3, = (32 [3:1P) "7, respectively, where N,

is the set of nonnegative integers and 3 is any one of
the spaces c,¢, or €.

Let A =(a,;) be an infinite matrix over the complex
field C. The A-transform of a sequence 3=(3;) is a
sequence Az ={(A3),} ={>;20a,43r}> provided that the
series ) 00,3 exists, for each v € Nj. In addition, if 3
and U are two sequence spaces and e, for every


https://orcid.org/0000-0003-3435-8417
https://orcid.org/0000-0002-0644-0600
https://orcid.org/0000-0002-6777-3943
https://orcid.org/0000-0001-6709-8012
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/8269000

sequence 3 € 3, then the matrix 2 is said to define a matrix
mapping from 3 to U. The notation (3, L) represents the
family of all matrices that map from 3 to U. Furthermore,
the matrix 2 =(a,;) is called a triangle if a,,#0 and
a,, =0, for v<k. For any 3 Cw, define 3o ={3cw: Az ¢
w}. Then, 3y is a sequence space and is called the matrix
domain of U in the space 3. It is well known that if 3 is a
BK-space and ¥ is a triangle, then, the matrix domain Zy
is also a BK-space under the norm |[|3[|3, = [[3]| 3. We refer
to [1-13] for papers related to theory of sequence spaces and
summability.

1.1. Some Special Integer Sequences and the Associated
Sequence Spaces. We shall briefly highlight the literature
concerning special integer sequences and the construction
of the associated sequence spaces.

Let (fi)soo be the sequence of Fibonacci numbers defined
by the recurrence relation f, =f,_; +{,,,v>2, with f, =1
and f, =1. Several authors constructed different types of
sequence spaces involving Fibonacci numbers. For instance,
Kara [3] studied the Fibonacci sequence spaces £,(%) =

(€,) &and €, (B = (£s,)g and examined certain topological

and geometrical structures of these Banach sequence spaces,
where = (f,,) is a double band matrix of Fibonacci
numbers defined by

0, otherwise.

v, k € N,. Besides, Basarir et al. [7] studied the sequence
spaces €,(%) = ({ZP)%\,CO(%) = (cp)g and ¢(F) = (c)g where
0<p<1. The studies on Fibonacci sequence spaces are
further strengthened by Kara and Basarir [4] by introducing
the matrix domain 3(§) = (3)g where 3 represents any

one of the sequence spaces £,,co,c, or £, and = (1) is a
regular matrix of Fibonacci numbers defined by

i
- , <k<vw,
fv,k = fva-f—l Osksy (2)

0, k>v,

for all v, k € N,. Furthermore, another regular matrix & =

(f,x) of Fibonacci numbers is defined by Debnath and Saha
[1] as follows:
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for all v,k e N,. By using this matrix, Debnath and Saha
[1] and Ercan and B_ektas [2] defined and studied the

matrix domains EP(%) = (Ep)g,co(%) = (Co)g:c(%) = (C)g>

and €,(%) = (£, )g- More studies concerning construction
of Banach sequence spaces involving Fibonacci numbers
can be tracked in the literature that are generalization
or extension of any one of the above discussed Fibo-
nacci sequence spaces. We refer to [5, 6, 8, 9], for such
studies.

The number sequence (t,);2,=(1,1,2,4,7,13,24,---)
defined by the recurrence relation t,=t,_, +t,,+1t,
v>3, with t;=t,=1 and t,=2, is called tribonacci
sequence. Recently, Yaying and Hazarika [10] introduced
tribonacci sequence spaces €,(T):=(¢,), and £,(T)=
(€o)q> Where T = (t,;) is an infinite matrix of tribonacci
numbers defined by

2t
_ Tk 0<k<w,
= t,,,+t, -1 (4)
0, k>vw,

for all v, k € N,. Quite recently, Yaying and Kara [11] stud-
ied the matrix domains ¢,(T)=(c))e and ¢(ZT):=(c)q.
Moreover, Yaying et al. [12] studied Banach sequence spaces
defined by the sequence of Padovan numbers (p,);2, =
(1,1,1,2,2,3,4,5,7,---). Besides, A. M. Karakas and M.
Karakas [13] also constructed BK-sequence spaces defined by
using Lucas numbers (I'));°) = (2, 1,3,4,7,11,18,29,47, ---).

1.2. Leonardo Numbers. The number sequence 1,1,3,5,
9,15,25,41,67, --- is termed as Leonardo sequence. Let [,,
v=0,1,2, -, denote the v Leonardo number. Then, the
Leonardo numbers are defined by the following recurrence
relation:

[,=0_,+[,,+Lv>2,

withly=[,=1.  (5)

It is believed that Leonardo sequence is invented by
Leonardo de Pisa, also known as Leonardo Fibonacci. But
not much studies related to Leonardo numbers can be
traced in the literature due to scarcity of research related
to this integer sequence. Leonardo sequence has a very
close relationship with the well-known Fibonacci sequence

(,)%, and the Lucus sequence (I',):
2 ! !
[,=2f, -11 = g(r S+l M) ~1, v20. (6)

Quite recently, Catarino and Borges [14] studied
basic properties of Leonardo numbers and established
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several interesting identities, some of which are listed
below:

v e Ny,

-1

v v—rI [

vir T Yv-r

v

v+l _ v+l
[V:2<M> -1,v>0,
¥-y

Besides, Alp and Koger [15] also established interesting
relationships between Fibonacci, Lucus, and Leonardo
numbers. Vieira et al. [16] worked in the matrix form of
the Leonardo numbers and established several interesting
relations. Moreover, Shannon [17] also worked on the exten-
sion and generalization of the Leonardo numbers.

Inspired by the above studies, we define an infinite
matrix & = (I, ) involving Leonardo numbers and construct
sequence spaces £,(8),c,(2),c(2), and £,,(2). We study
their topological and inclusion properties and obtain
Schauder bases of the sequence spaces ¢,(),c)(8), and
¢(R). In Section 3, a-, -, and y-duals of these new spaces
are determined. In Section 4, matrix classes from the space
Be{,(R),co(R), c(R), £, ()} to any one of the spaces ¢;,
o6 and £ are characterized. In Sections 5 and 6, we intro-
duce new sequence spaces (co(£, 7)), and (€,(%, r))p under a

definite functional p and weighted sequence of positive reals
r and discuss certain geometric and topological properties of
(e,(8, r))P and the eigenvalue distribution of mappings ide-

ally generated by these spaces and s-numbers are presented.

2. Leonardo Sequence Spaces

Define an infinite matrix & = (I,;) by

Ly , 0<k<wv,
Iv,k = Iv+2 - (V + 2) (8)
0, k>v,
for all v, k € N,. Equivalently,
M1 0 0 0o - b
1 1
- - 0 0
2 2
1 1 3
L=]1- - = 0 (9)
5 5 5
1 1 3 5
10 10 10 10

+0,, -2, - (-1)""(L,_, + 1)2, v>rr>1 (Catalan/sidentity),

G0, 0, =0+, +4(-1)", v=>2 (Cassini's identity) ,

where ¢ = 1+\/§,n: 1_\/5.

2 2

The inverse of the matrix = (I, ) is given by the matrix
1= (1) defined by

V_kw VSkSV+1,

(=1) I, ’ (10)

0, k>v,

(L=

Vs

for all v, k € N;.
Now, we define the following sequence spaces:

oo | v p
£, (8)= {3: (3k) €w: Z,) ,;)IWZ—I%& < 00}>

v [
clim Y —% =0},
/;Iv-ﬂ_(v-’-z) ¢ }

V—>00

: sup i L

ey |5 L2 = (V+2)

v [
c(R) = = €w: lim k5 exists b,
= {ioeer i St
{ dk

<oo},

(11)

where the sequence 1 = (10, ) defined by

v Ik
o= ()= Y
()= L ey

(12)
for each v € N, which is known as the R-transform of the
sequence 3 =(3;). In what follows, the sequences 3 and
are related by (12). It is trivial that the above defined
sequence spaces can be expressed in the form 3(8) = (3)g>
where 3 represents any one of the spaces €,,co,c, and £,.
That is, 3(R) is the domain of the matrix 8 in the sequence
space 3.

We observe by the definition of the matrix & = ([, ;) that

Yrool,x=1.Thatis, supY, I, <ocoand lim Y2, =1
’ veN, ’ v—00 ’



Additionally, lim, [, =0, for each k€ N;. Thus, we
conclude that the matrix R is regular.

Theorem 1. The following inclusion relations hold:

(i) 3 < 3(R), where 3 is any one of the spaces €,,c,.c or
eOO

(i) £,(2)
(iii) £,(2)

¢ (8) ce(R) ct (R)
€,(8) for1<p<gq

Proof.

(i) The inclusion part is trivial. Assume that 3:=c and
consider the sequence g=(1,0, 1,0, ---). We observe
that g ¢ c. However

v Ik
-(v+2)

Lo+ L+ 4L,
Lo,-(v+2)

(veNy),

(13)

G =

v+2

which converges. Thus, g € ¢({) \ ¢. In the similar manner
strictness can be established for the other inclusions.

(ii) It is known that the matrix R is regular and the
inclusion ¢, C ¢y CcC ey, holds. These imply that

the inclusion part holds. Now, consider the sequence
§=(1,1,1,1,~). Then, (28), =Y} (L, -
(v+2))h, =1, for all ve N,. Thus, 8f € ¢\ ¢,. That
is, h € c(R) \ ¢;(R). This verifies the strictness of the
inclusion ¢,(8) ¢ ¢(R). In the similar fashion, strict-
ness of other inclusions can be established.

(iii) Assume that 1<p<gq. Since & is regular and the
inclusion {’,p C {’,q holds, therefore the desired inclu-

sion holds. To prove the strictness part, we consider
a sequence g=(g;)€¢,\¢, Define a sequence

h=(b) by bp=((gx(lery— (k+2)) =gy (L -
(k+1)))/1;),k € Ny. Then, we get

722{% (o~ (k+2))

- (k+1))}

2) gv<Iv+2 - (V + 2))

(14)

for each v € N, where the terms with negative subscripts are
considered to be zero. Thus, we deduce that 8h=g €€, \¢,

which implies h € €,(2)\¢,(8). Thus there exists at least
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one sequence that is contained in ¢,(8) but not in ¢,(2).

Hence, the desired inclusion is strict. This completes the
proof. O

Theorem 2. We have the following results:

(i) The sequence spaces £.,(R),c,(R), and ¢(R) are BK
-spaces equipped w1th the bounded norm ||3|l, =

:up [(R3)l

(ii) The sequence space £,(R) is a BK-space equipped

. 1/
with the norm |3, = (X32](26),")™

Proof. The proof is a routine exercise and so omitted. [

Theorem 3. 3() =
¢ ort,

3, where 3 is any one of the spaces £,,c,,

Proof. We present the proof for the space ¢,. Define the
mapping ¢ : £,(8) — ¢, by w =gz =23, for all 3 €¢,().
We observe that the mapping ¢ is linear and injective.

In view of the relation (12), we write

for each k € N; and w = () € ¢,. Then,

o | k P
VZ = [k+2 k+2
o | k
_ Z#
770 | 5 bers = (K +2) (16)
j _ P
3 < Z (_l)jfu Iu+2 (u+2) mﬂ)
Z [
u=j-1 ]

[ee]
_ _ 14
= > o]’ = [w]f .
=0

Thus, ||5\|ep<g):||m||ep <oco. Thus, 3€¢,(8), and this

implies that ¢ is surjective and norm preserving. Thus,
BP(S) =¢,. In the similar manner, we can prove the exis-

tence of isomorphism between other given spaces. This
completes the proof. O

Let us consider the following sequences:

2 2
g=(1)1)_57())0)"'))[):(1)_3$ 5)0)0)"')- (17)

Observe that 2¢=1(1,1,0,0,0,:--) and f=
0,---). Since R is linear, so (g+5)=(2,0,0,0,--

(1,-1,0,0,
-) and
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R(g-15)=(0,2,0,0, ---). With some elementary calculation,
we deduce that

2 _plz = 2(1+(1/p))
la+ Bl i)+ = I o) =8 #2

(18)
=2(llallg o) * 18113 o) )-

Thus, we realize that the norm |-, g violates the paral-
P

lelogram identity for p #2. This immediately allows us to
write the following result.

Theorem 4. The sequence space £,(R) is not a Hilbert space
for p# 2.

Proof. The proof is immediate from the above discussion. [

We are well awarded that a matrix domain 3, where 2
is a triangle, has a basis, if and only if, 3 has a basis (cf. [18]).
Thus, in the light of Theorem 3, we have the following result:

Theorem 5. Define the sequence 6®) = (6%) by

v

. (—I)V_kw, v—1<k<v+1,
pH) = [ (19)

v v

0, k>v

for each fixed k € N,. Then,

(i) The sequence (b<k))k€]No is the Schauder basis of the
sequence spaces £,(8) and c,(R), and every 3 in
€,(8) or ¢,(R) is expressed uniquely in the form
3= 22,000, where o = (v,) is the R-transform
of the sequence 3 = ()

(ii) The sequence (e,6, 61, 6@ ...} is the Schauder
basis of the sequence space c(R), and every 3 in
c(R) is expressed uniquely in the form 3=7e+
¥, (o, = 7)6®), where 7 =1lim w, and e is
the unit sequence

V—>00

(iii) The sequence space £.,(R) has no Schauder basis

Corollary 6. The sequence spaces £,(8).,c,(R), and c(8) are
separable spaces.

3. a-, 3-, and y-Duals

In this section, we obtain the a-, -, and y-duals of the
sequence spaces £,(),c)(8),c(8), and €., (). Before pro-
ceeding, we recall the definitions of a-, -, and y-duals.
Define the multiplier sequence space . (3, ) by

M(3,U) = {b=(b) €w: bz =(De3y) € UV = (3,) € U}.
(20)

In particular, if U is €,,cs or bs, then, the sets

3= l(3,0,), 3 = (3,5, 3 = M(3,bs)  (21)

are, respectively, termed as a-, -, and y-dual of the sequence
space 3.

We present Lemma 7 which is essential to compute the
dual spaces. In what follows, we denote the collection of all
finite subsets of N, by /" and g=p/p — 1.

Lemma 7 (see [19]). The following statements hold:

(i) A= (a,;) € (€,¢,), ifand only if, sup Y2 la, | < 00
keN,

(i) A = (a,;) € (,,¢,), if and only if

0o q
sup Z <00 (22)

Ke/V y=0

Z av,k

keK

(i) 2 = (a,5) € (cr€,) = (6 €,) = (b &,)s if and oy i,
(22) holds with q=1

(iv) A= (a,;) € (£;,L,) if and only if, sup |a, ;| < oo

v,keN,

(v) A= (a,;) € (L, L), if and only if,

sup Z |av,k|q <00 (23)

(vi) A= (a,;) € (cpLyy) = (6:Ly) = (Loos Loy ) if and only
if (23) holds with q = 1

Theorem 8. Consider the following sets:

Ik+2_ (k+2) 1

b
I k

<00 o,

<oo}.

(24)

D = {b:(bk)Ew:i

k=0

Ik-*-2 B (k+2) b
[ k
k

keN,

D, = {b:(bk) €w: sup

Then,  [6,(2)]" =D, [¢,(2)] =D, and [c,(2)]* =

[c(R)]% = [6,,(8)]* =D\, where 1< p < co.

Proof. We observe that

i (—1)V-'<Ik+2_7(k+2)bvmk= (Bw),  (25)

b,3,=
k=v-1 IV
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for each v € N and b = (b)) € w, where the matrix 8 = (b, ;)
is defined by
(—1)V’kwbv, v—1<k<v,
bv,k = IV (26)
0, k>v,
for all v, k € N,. We notice that the sequence b3 = (b,3,) € ¢,

whenever 3=1(3,) €¢,(®), if and only if, the sequence
B € ¢; whenever the sequence w = () € ¢,. We realize
that the sequence d=(D,) € [¢c,(R)]", if and only if, B e
(¢o» £1)- Thus, by employing Part (iii) of Lemma 7, we get that

sup Z vak

BeN =0 |veB

< 00. (27)

Moreover, for any 2 € //, (27) holds, if and only if,
S Ik+2 B (k + 2)

2

k=0

bk‘ < 00. (28)

Consequently, [¢,(2)]" = @ﬁ”.

In the similar manner, a-dual of the other sequence
spaces can be obtained by employing Part (i), Part (ii), and
Part (iii) of Lemma 7. U

q
<00 p,

Theorem 9. Consider the following sets:

( ) (Lo - (k+2))

(o)

D = {b =(b)ew: Y

k=0

D,:=<d=(d,) €w: sup A<%>(Ik+2—(k+2)) <00 g,
keN, Ik
Lo — (k+2
D, = {bz(bk)ew: lim k”(”h,;o},
k—00 Ik
- 2
D, = {b =(b)€w: klim Mbk exists},

(29)

where A(d/L) = (/1) — (Dy0,/Ly.,)- Then, [€,(R)]F =D,
ND,[6,(2))F =D, N DY [o(R))F =D, n DL [e(R))f =
DN, and [t (2)) =D N D,, where I < p < co.

Proof. Let b = (9;) € w. Then, we have
_ j+2
zbksk_ Z Z ]Mi()mjbk
k=0 j=k-1 L
v=1 —
- 3 (3 1) o= ke 2 s 2 D,
o\l e L,

Z < >[k+2 k+2))mk+wbvmw
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for each v € N,,. By employing Theorem 2 and Corollary 1 of
Malkowsky and Savas [20], we get

(@ = {o= 00w (a(F) ha - (k+2))
ctoma(BC ) ¢ )

)" = {o= o cw: (a(F) - ks2)
Eeq’(rv v+2> OO}’

This completes the proof. ]

Theorem 10. We have the following results:

(i) [,(R)]" =
(i) [¢,(2)]" =D, n @éq), where 1 < p <00

D,ND,.

(iii) [co(2)]" = [(2)]" = [0 ()] = D, N DY

Proof. It can be obtained by using relation (30) and Parts
(iv), (v), and (vi) of Lemma 7, respectively. O
4. Characterization of Matrix Classes

Let 2 = (a, ;) be an infinite matrix over the field of complex
numbers. Denote

§[v — Iv+2 _I(V + 2) 2[\/
’ o (32)
= (M av)k) , foreachvelN,,
L, k=0
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m, = (L, — (k+2))A (af'];k), forallv,keN,.  (33)

Now, we state the following result:

Lemma 11. Let 3 denote either of the spaces €, or c,
1<p<oo. Then, A e (Ze, ), if and only if, W e M(J3, c,)
for each v e Ny, and M € (3, U), where A and M = (m,,;)
are defined in (32) and (33), respectively.

Proof. It follows straightly from ([20], Theorem 3]). O

Lemma 12. 2 € (¢(R), ), if and only if,

- - 2
A, €, thatis klim %I& a=a,(ved,), (34)
M € (cp U) = (£, 20), (35)
()72 € U. (36)

Proof. Assume that 2 € (c(8), 21). Then, 2, € [¢(2)]¥ which
immediately shows the necessity of condition (35). Also, it is
known that ((c)g, ) C ((cy)g> U). Hence, by employing
Lemma 11, we get that 9 € (¢, ). Thus, in the light of
(30), we get that

0 0
Z av,ksk = Z mv,kmk + 3%, - (37)
k=0 k=0

It is clear from the assumptions that 2z el and
M € U. These together yield (a,);2, € 2.

Conversely, we assume that conditions (34), (35), and
(36) hold. We realize that conditions (34) and (35) together
imply that 2, € [¢(2)]®. Again condition (34) implies (37).
By condition (35), :Mw € 2, for all w € c. This together with
condition (36) implies that Az € U, for all 3 € c(R). This
proves that 2 € (¢(g), U). O

Now, using Lemmas 11 and 12 together with the proper-
ties (L, cy) = M (cy, ¢) = Loy (1 < p<00),4(c, c) = ¢, and

M (L, ¢y) = ¢y, we deduce the following results:

Corollary 13. The following statements hold:

(i) Ae (€,(R),L,), if and only if

[L,—-(v+2
Sup %V)av’k < 0, (38)
keN, v
sup m <00
vMNO| il (39)

(ii) Let 1 <p<oo. Then A € (£,(8), L), if and only if,
(38) holds, and

sup Y |m, | <00 (40)
veNy k=0

(iii) A € (cy(R), L), if and only if, (38) holds, and (40)
holds with q =1

(iv) A e (c(R), L), if and only if, (34) and (40) hold
with q =1, and

sup |a,| < 00, (41)
veN,

also holds

(v) A e (L, (R), L) if and only if,

lim IV+2 B (V + 2)

k—00 L

a,,=0, forallveN,, (42)

14

and (40) holds with q =1

Corollary 14. The following statements hold:

(i) Ae (€,(R),cy), if and only if, (38) and (39) hold,

and

lim m,; =0, forallkeN,, (43)

V—>00

also holds

(ii) Let 1 <p<oo. Then, A € (¢,(R),c,), if and only if,
(38), (40), and (43) hold

(iii) A € (cy(R), ¢y), if and only if, (38) and (40) hold
with q =1, and (43) also holds

(iv) A € (c(R),c,), if and only if, (34), (40) with q=1
and (43) hold, and

lim «,=0, (44)

V—>00

also holds
(v) A e (s (R),cy), if and only if, (42) holds, and

(o)
Jim I;) Mkl =0, (45)
also holds

Corollary 15. The following statements hold:
(i) Ae (€,(R),c), if and only if, (38), (39), and

lim m,; exists, forallk € N, (46)
—00

14

also holds

(ii) Let 1<p<oco. Then A€ (L,(8),c), if and only if,
(38), (40) and (46) holds



(iii) A € (cy(R), ¢), if and only if, (38) holds, (40) with
q=1 and (46) hold

(iv) A € (c(R), ¢), if and only if, (34), (40) with q=1 and
(46) hold, and

lim w, exists (47)
also holds
(v) A€ (8, (R),¢), if and only if, (42) and (46) hold,
and
Z‘mv,k| converges uniformly in v (48)
k=0
also holds

Corollary 16. The following statements hold:
(i) Ae (€,(R),¢,), if and only if, (38) holds and

(e8]
sup Z|mv,k| < 00, (49)
veN, y=0

also holds

(ii) Let 1<p<oo. Then A€ (¢,(R),¢,), if and only if,
(38) holds, and

q

(&)

sup Z Z m,

BeN k=0 |veB

< 00, (50)

also holds

(iii) A € (cy(R), L), if and only if, (38) holds, and (50)
holds with q =1

(iv) A € (c(R),L,), if and only if, (34) and (50) hold with

q=1, and
Y e < 0o, (51)
v=0
also holds
(v) A e (L, (R),2,), if and only if, (42) and (50) hold
with q=1

5. Mapping Ideal

In this section, we construct s-type mapping ideals on
Leonardo sequence spaces (c,(8,r)), and (£,(8, r))P. By

P, we denote the class of all bounded linear mappings
between any two Banach spaces. In particular, B(%X,9)
denote the class of all bounded linear mappings acting from
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Banach space X to Banach space ). We note down certain
notations and definitions before moving to our results:

Definition 17 (see [21, 22]). Let w* represent the set of non-
negative real sequences. Then, s-number is a mapping s :
RB(%,9) — w' that satisfies the following settings:

(@) (|9l = 50(¢) > 5,(¢) 25,(¢) 2 ---20, for each ¢e
B(%,9)

() 5,051 (6 +¥) <5,(9) + 55y, for each ¢,y € B(E,
9) and a,b e N,

(i) s,(¢0w) < [|glls,(O)[ly, for all ¢eB(X,,X),
0cB(%X,9), and v € B(2,9,), where X, and 9,
are any two Banach sequence spaces

(iv) Let ¢ € B(%,9) and v € C. Then, s,(vd) = |v|s,(¢)
(v) If rank (¢) < a, then s,(¢) =0 for all ¢ € B(%X, )

(vi) 5,(3,) =0 for v=a or 5,(J,) =1 for v<a, where
S, denotes the identity mapping on the a-dimen-
sional Hilbert space €5

In an assorted illustration of s-numbers, we intimate the
next settings:

(1) The a-th Kolmogorov number, denoted by d,(X), is
defined as

da(X) = il‘lfdim J<a SuprHgl infge]HXf - g” (52)

(2) The a-th approximation number, denoted by «,(X),
is defined as

a,(X)=inf {||X-Y|: Y e B(%,9),rank (V) <a}
(53)

Definition 18 (see [23]). Let #" ¢ & and denote 7#'(X,9)) =
W NB(X,9). Then, # is known as a mapping ideal if it
satisfies the following settings:

(i) Sp € W', where D is a Banach sequence space of
one dimension

(i) 7°(%,9) is a linear space over C

(ili) If ye RB(X),%).0ecB(X,Y) and ¢ € B(D,.Y).
then ¢y € B(%X,,9,), where X, and 9, are any
two normed spaces

Definition 19 (see [24]). A prequasi norm on the ideal 7" is a
mapping y : # — w* satisfying the following settings:

(i) u(¢) =0 and p(¢) =0 if and only if ¢ =0, for all
¢cW(X,9)
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(ii) There exists m, > 1 such that u(¢¢p) < my||u(¢), for
al g e 7'(%,9)

(ili) There exists 1, > 1 such that pu(¢ + ) < ny(u(¢p) +
wly)), for all ¢,y € 7'(X,9)

(iv) There exists p, > 1 such that u(¢6y) < p,||ollp(0)]|
y|| whenever v € B(%,,%),0 € B(%,%) and ¢ ¢
%B(20-9)

Definition 20 (see [24]). The subspace 3 C w is said to be a
private sequence space (or in short pss) if it satisfies the
following settings:

(i) e, €3, for each veIN,, where e, denotes the
sequence with 1 in the v position and 0 elsewhere

(ii) If g=(g,) €w,|h|=(|h,[)€3 and [g,[<[h,], for
veN,, then |g| €3

(iii) (|gpyl) € 3 whenever (|g,[) €3, where [v/2]
denotes the integral part of v/2

Definition 21 (see [24]). A subspace of the pss is said to be a
premodular pss, if there is a function v : 3 — [0,00) satis-
fying the following conditions:

(i) Foreveryje 3,j=0s v(|j|) =0, and v(j) > 0, with
0 is the zero vector of 3
(i) If je3 and peC, then there are E;>1 with
v(pj) <lplEgv(j)
(iii) v(h+j) < Gy(v(h) +v(j)) holds for some G,=>1,
with f,ge 3
(iv) Assume x €N, |h|<]j.|, we have v((|h,]))<

v((l7l))

(v) The inequality, v((|j,])) <v((|jiyyl)) < Dov((ljil))
verifies, for D > 1

(vi) € = 3,, where € denotes the closure of the space of
all sequences with infinite zero coordinates

(vii) We have >0 such that v(p,0,0,0,---) >x|p|v(1,
0,0,0, +-), with p € C

Definition 22 (see [24]). The pss3, is said to be a prequasi
normed pss, if v confirms the setups (i)-(iii) of Definition
21. It 3 is complete equipped with v, then 3, is called a
prequasi Banach pss.

Lemma 23 (see [24]). Every premodular pss is a prequasi
normed pss.
In what follows, we will use the following inequality:

g+ b <2 (g + [B]"), (54)

where 1 < p < 0o and g, Y) € C. For detailed studies concerning
s-numbers and mapping ideals, we refer to [23-28].

Definition 24. We define the following sequence spaces:

P
<oo},

(¢, (2 r))p1

= {5=(5k)ew:m(s)=§

v=0

14

ne
Y g
k=0 I1/+2 - (V + 2)

(@(2.7),,

: N rily
={3=(3) €w: lim ——23.=0>3,
e

(55)

where 7= (r) €w” and p,(3) = sup,en, | Zico (il (Lsz -
(v+2)))gil-

By S, and 3., we will denote the space of all mono-
tonic increasing and decreasing sequences of positive reals,
respectively.

Theorem 25. ¢,(8,7) is a pss, whenever (rl;)co, € S, or
(rl oy € S Ne, and there exists C>1 such that 7y,
Lps < Crilye

Proof.
(i) Let g, 5 €¢)(R,7), we obtain

ne

i Iv-¢—2 - (V+2)

veN,

(8 + by)

k=0

< su rielk
o Iv+2 - (V + 2) %

veN,

k=0
ne

Iv+2_(V+2) =

v
+ sup Z
veNo | k=0

by

Thus, g+ e ¢, (L, 7).
Assume that ¢ € C and g € ¢,(®, r). Then, we have

ZV: riely
k=0 I1/+2 - (V + 2)

= [g| sup < 00.

velN,

sup z S

veNy | k=0

rily
I1/+2 - (V + 2) (Cgk)

(57)
Thus ¢, (R, r) is a linear space. Moreover

ril
sup Kk
veN,

1
=rl sup| —— | <o0.
”mﬁQm—w+a>

(58)

k=0 I1/+2 - (V + 2) ( )k

This implies e, € ¢,(&, ), for each a € N,
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(i) Assume that |g,|<|h|, for all ke N, and |§|e
¢o(8,r). Then, we have

rka

v
i Z Iv+2 - (V + 2)

veNy | k=0

|9k |

(59)

< sup
veN,

<00

N ne
EE f“‘jfz;7;755|ﬁk‘

k=0 "v+2

This concludes that |g] € ¢, (&, ).

(iii) Let (|gx|) € co(,7), (reli)ico € Sz Ny, and there
exists C>1 such that r, 1, < Crl. Then, we

have
N e
su —
ve]NP: (1;0 Iv+2 - (V + 2) ‘g[%{] )
2v
el
<su _
3 (,;) D= (2v+2) 9 )

.\ Zil rka ’
su e [ {13
e \ & L= (2v+3) 190
<sup |——

VGH\II)() |:IZ1/+2 - (ZV + 2)

: {r2v12v|gv| + Z(r2k12k|gk| + r2k+112k+1|9k|)}:|

k=0

1

1
+sup |[—m———
VGH\E) |:12v+3 - (21/ + 3)

: Z(rzklzk‘gﬂ + r2k+112k+1|gk|)]

k=0

C v
<sup| ——— Y L
VE]I\I; (I -2 & k k9k>
2C u
+sup | ———— Y .l
VeH\P{) (Iv (V+2)k§ k k|gk|)

2C
[_mz)zrka|9k|)
1

+ sup

veN, 2 k=

0
<5Csup| ———— > | <00
ve]NE?(I 2_(""‘2)1{2:(:) k|9k|>

v+

/\

(60)

Thus, (Q[k/z]) €c(8, 7).
This completes the proof. O
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Theorem 26. ¢,(%,r) is a pss, whenever 1<p<oo,

(rili)jop €S 5 or (1)) iy € S N Ly, and there exists C> 1
such that 1y, Ly, < Crily.

Proof.

(i) Let g, h € ¢,(8, 7). By using (54), we obtain

P

[e9)

2|12

v=0

relk

— (gt

k=0 Iv+2 - (V + 2) (gk f)k)
N ne
me

(0]
<2p!
{Z k=0 "Vv+2
p
} <oo
Thus, g +hee,(2,7).

v=0
Assume that ¢ € C and g € £,(8, 7). Then, we have

P

rily

k=0 v+2 (V+2)

Yy

v=0

by

P

v

rka
Z (v+2) (58)

N e
2 )%

k=0 "v+2

>

=i

(=]

(o)

=l Y

v=0

< 00.

Thus, ¢,(2,r) is a linear space. Moreover,

o0 v p o0
rka p < 1 >P
———(e,),| =18 <00
\;) k;)[wz_(‘”'z)( e S\~ (v+2)

This implies e, € ¢,(R,r) for each a € N;.

(i) Assume that |g;| < [by|, for all k € N, and [h| € €,(8,
7). Then, we have

p

14

ne
ZI (v+2) 9

k=0 "v+2

il
e

k=0 v+2

>

v=0

, (64)

(o8]

<2

v=0

This concludes that [g] € €,(2, 7).
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(iii) Let (|gl) € €,(2,7), (reli)ig € Sz N Ly, and there
exists C>1 such that r,,,1,,; < Cr . Then, we
have

SRS iy P
vZO <I;m ’g["’ZJD
o 2y »
= il
"2 (er—(mrz)‘g[kfz]>

v=0 \ k=0
o [2v+1 P
N ‘ ‘
+ kg
Z(:) (1;) Lz — (2v+3) 2]
< 1
<y {—
v=0 Loy = (2v + 2)
v p
: {r2v12v|gv| + Z(rzk[2k|9k| + r2k+112k+1|9k|)}}
k=0
0 1 v P
+ 1;) [W;("zklzﬂ% + "zk+112k+19k)]
(o) C v P
<2t ——— ) g
LZO (rm—(wzu;) el

M8

+

P
2C d
—— > nlylg
(Iv+2_(v+2)kzo k k| k|> :|
P
2C d
(mzrk[k|gk|>

N
I
o

+
M3

<
JIi
o

k=0
+2P 2P

0 v P
1
. — > 1 <00
VZ::,) <IV+2— (V+2)k§3 k|gk>

-]
—

< (22

(65)

Thus, (gjy) €€,(2,7).
This completes the proof. O

Define the sets B%5(%, %)), B3(¥%, 9), and %’%(X, 9) by

B5(%,9) = {$ € BX,Y): (s.(9)) € 3}
BE(%,9) = {p € BX.Y): (a,(¢)) € 3}, (66)
BE(X,9) = {¢ € B(X,D): (d,(9)) €3},

where X and %) are any two Banach sequence spaces.
We denote B3 :={RB5(¥,9)}., B5={B5(%X,9)}, and

ggdg = {gg%(%, 9)}, respectively.

Lemma 27 (see [24]). Let the linear sequence space 3 be a
pss. Then, %5 is a mapping ideal.

Theorem 28. Let (r,[,)72, € S\, or (rdi)icy € S - N Ly, and
there exists C> 1 such that 1y, Uy, < Crily. Then, B (g,

is a mapping ideal.

Proof. It follows straightly from Lemma 27. O
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Theorem 29. Let 1< p<00,(ri)icy €S or (rli)iy €
S, N, and there exists C> 1 such that 1y, Ly, < Crl,.
Then, g%’;p@’r) is a mapping ideal.

Proof. It follows straightly from Lemma 27. O
Theorem 30. Let (r[,)72, €S, or (rldy)r, €S, Ney,

and there exists C>1 such that ry 1y, <Crl,. Then,
(co(R,7)), is a premodular pss.

Proof.

(i) Clearly, for all ge(cy(8,7)),
p(lg]) =0, if and only if, g=0

that p(g)>0 and

(ii) For any €>1. Then p(ag) <eé|alp(g), for all g€
(8, r) and a e C

(iii) Observe that p(g+§) < p(g) +p(h), for all g,he
(8, 7)

(iv) We have p((lai|)) < p((|by|)), whenever |g;] < b
(see Proof Part (ii), Theorem 25).

(v) It is immediate from Proof Part (iii) of Theorem 25
that p((la,))) < p((8z])) < 6p((1g])) with 6 = 5C.

C=c(&7) (67)

(vi) We have, when a#0 then 0<y<1, for p(a,0,
0,---) > ylalp(1,0,0,---) and when a =0 then y >0

This completes the proof. O
Theorem 31. Let 1<p<oo,(rl)i, €S or (rdo)iy €

S N2, and there exists C> 1 such that 1y, Ly, < Cril,.
Then, (£,(%, r))P is a premodular pss.

Proof.

(i) Clearly, for all ge(€,(%, r))p that p(g) >0 and
p(lg]) =0, if and only if, g=0

(i) Let e=max {1, |af’ "'} > 1. Then, p(ag) < ¢|alp(g),
forallgee,(8,7) andaeC

(iii) Observe that p(g+§) <277'(p(g) + p(H)), for all
g.he ep(ﬁ, r)

(iv) We have p((|gx|)) < p(([bi[)), whenever |g;| < [b;|
(see Proof Part (ii), Theorem 26).

(v) It is immediate from Proof Part (iii) of Theorem 26

that p(([acl)) < p((la2 1) <Sp((lacl)) with &=
(2271 4 20 4 2071 CP

C=0,(27) (68)
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(vi) We have, when a# 0 then 0 <y < |oc|p71, for p(a, 0,
0,---) > ylalp(1,0,0, ), and when « =0 theny >0

This completes the proof. O

Theorem 32. Assume that (ri )0, €S, or (rdo)i, €
S N2y, and there exists C>1 such that 1y, Ly, < Crl,.
Then, (cy(R,1)),, is a prequasi Banach pss.

Proof. In view of Theorem 30 and Lemma 23, it is enough to
prove that every Cauchy sequence in (¢,(8,7)),, is conver-

gentin (¢y(8,r)),. We assume that g = (g,im))

sequence in (co(%,7)),. Then, for all €€ (0,1) there exists
ny € N, such that

is a Cauchy

1 1 (o) _ o)
[V+2—(V+2)Zlk(gk -9 >k<8’

k=0

(69)

for all m,n > n,. This implies that (g™ —¢") <, for all
m,n>n,. Thus, (¢") is a Cauchy sequence in C. Since

C is complete, lim g}(cm) =g;, for a fixed k€ N,. This

yields, by using (69), that p(g™ —g) <e, for all m>n,.
Besides, we have p(g) < p(g'™ - g) + p(g'™) < co. This con-
cludes that g€ (cy(8,7)),. Thus, (cy(8,7)), is a prequasi
Banach pss. O

Theorem 33. Assume that 1<p<oo,(r )iy €S, or
(rl oy € S, N Ly, and there exists C>1 such that 1y,
L1 < Crily. Then, (£,(%, r))P is a prequasi Banach pss.

Proof. In view of Theorem 31 and Lemma 23, it is enough to
prove that every Cauchy sequence in (£,(%, r))P is conver-

gentin (£,(%, r))P- We assume that ") = (g<m))

is a Cauchy
sequence in (£,(%, r))p. Then, for all e € (0, 1) there exists

ny € N, such that

|4

S ') (1" - o) )

S <é,
Iv+2 - (V + 2) k=0

(70)

for all m,n > n,. This implies that (g —¢") <, for all
m,n>n,. Thus, (g") is a Cauchy sequence in C. Since C
is complete, lim g}(m ) = g for a fixed k € N,,. This yields,
by using (70), that p(g"™ — g) < &, for all m > n,. Besides,
we have p(g) <2/ (p(g"™ —g) + p(¢"™)) < c0. This con-
cludes that g€ (£,(%, r))p. Thus (¢,(%, r))p is a prequasi
Banach pss. O
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Theorem 34 (see [27]). Suppose s —type &,:={h=(s,(H))
cw': He B(X,Y)and p(h)<oco}. If Bsgp is a mapping
ideal, then the following conditions are verified:

(1) €cs—type &,
(2) Suppose (s (H;))y2p €s—type &, and (s.(H,)); €

x=0
s—type & ,; then (s,(H, + H,)) 2, €s—type &,
(3) Assume AeC and (s.(H))}2,€s—type&,; then
|A|(SX(H))x:0 €s—type %p

(4) The sequence space &, is solid; i.e., if (s,(J));2, €5~
type &, and s,(H) <s,(J), for all x € Ny and H, ] €
B(X,9); then (s.(H)) 2y €s—type &,

In view of Theorem 34, we construct the next properties of
the s —type (co(R, 1)), and the s — type (£,(L, r))P.

Theorem 35. Let  s—type(co(R,7)),={f=(s,(X)) €
w': X e B(X,9Y)and p(f)<co}. The next conditions are
established:

(1) One has s — type (cy(%,71)),> €

(2) Suppose (X)), €5 ype (co(%.7)), and (s,
(X2));20 € s —type (co (2, 1), then (s.(X, +X3))%
€s—type(cy(&,1)),

(3) Assume AeC and (s.(X));2, €s—type (co(R, 7))y
hence [A](s, (X)), € s type (¢,(2.7)),

(4) The s - type (cy(8,r)), is solid

Theorem 36. Let s—type(£,(%, r))P ={f=(s,(X)) ew*

1 XeRB(X,9)andp(f)<co}. The next conditions are
established:

(1) One has s — type (€,(%, r))p >C¢

(2) Suppose  (s,(X;)),2, € s — type (£,(8, r))’J and (s,
(X5));2) € 5= type (€,(, ”))p? then (s,(X;+X,));2
€s—type(£,(%, r))P

(3) Assume AeC and (s,(X));2, €s—type(£,(8, r))P;
hence A[(5,(X))%% €~ ype (& (%)

(4) The s —type (£,(%, r))p is solid

6. Characteristics of the Prequasi Ideal

The conventions listed below will be followed throughout
the article; if the species is preowned, we will give it to
you.
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Conventions 1. Please see the following conventions:

[ : the ideal of finite rank mappings between any arbi-
trary Banach spaces

o : the ideal of approximable mappings between any
arbitrary Banach spaces

J : the ideal of compact mappings between any arbi-
trary Banach spaces

F(%X,9): the space of finite rank mappings from a
Banach space ¥ into a Banach space %)

F(X): the space of finite rank mappings from a Banach
space X into itself

A (%X,9): the space of approximable mappings from a
Banach space ¥ into a Banach space %)

o (X): the space of approximable mappings from a
Banach space X into itself

H(X,9): the space of compact mappings from a
Banach space ¥ into a Banach space %)

F (X): the space of compact mappings from a Banach
space X into itself

Lemma 37 (see [28]). If M e B(X,9) and M ¢ (%X, %),
then there are operators Q € B(X) and L€ B(Y) so that
LMQe, =e,, for all x € N,.

Definition 38 (see [28]). A Banach space & is called simple if
the algebra (&) includes one and only one nontrivial
closed ideal.

Theorem 39 (see [28]). Suppose & is a Banach space with
dim (&) = oo; then

F(&) c (%) c H(%) < B(E). (71)

In this section, firstly, we introduce the enough setups
(not necessary) on (cy(8,7)), and (€,(%, r)) such that F=

Bleen), nd F= By )

answer of Rhoades [29] open problem about the linearity
of s—type (cy(2,7)), and (£,(%, r))p spaces. Secondly, for

and (£,(%, r))p, are
B al(2), and ‘%E%(ﬂ,r))P closed and complete? Thirdly, we
and (€,(8, r))P

are strictly contained for

. This 1nvest1gates a negative

which conditions on (¢ (8,7)),

explain the enough setups on (¢ (8,7)),
such that % (2), and 93

different welghts and powers. We offer the setups so that
‘%j?eP(ﬁ,r)) is minimum. Fourthly, we introduce the condi-
P

T

tions so that the Banach prequasi ideal % (g, and
> p

‘%jiep(ﬁ,r))p are simple Banach spaces. Fifthly, we investigate

the enough conditions on (¢y(8,7)), and (£,(%, r))P such

that the space of all bounded linear operators which
sequence of eigenvalues in (cy(8,7)), and (€,(8, r))p equal

B, (as N, and %’?ep(ﬂm; respectively.
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6.1. Finite Rank Prequasi Ideal

Theorem 40. %7 ( (% 9) =

(rili) ey €S, or (rka)k:() €S, Ne,, and there exists C > 1
such that ry, Uy, < Cril, are satisfied. But the converse is
not necessarily true.

F(X,9); suppose the setups

Proof. To investigate that F(%,%) < Bl 2r) (x 9), a

e € (cg(R, 7)), for every I € Ny,(c(R,7)),, is a hnear space.
Let ZeF(X,9), one gets (s(Z)).5, E(S To explain that
‘%j(co(ﬁr (X,9) CF(%,9), assume Ze3R,, (x ),
we obtam (s1(2))7% € (co(&, r)),. Since p(sl( ))l:0<oo, let
p € (0,1); hence, there is I, € Ny — {0} with p((s,(2));5,) <
p/16d, for some d > 1. Since s;(Z) € T, we get

thi) Z] Or]I]SZI( )< s
(I+2) = e o —
0 Z; oflsi(2) _ p

Ssup ——F——— < —.
b G- (1+2) " 16d

21, Z] Or]IJs]( )

=1 Lo — (1+2)

(72)
Hence, there is Y € [, (¥, 9) so that rank(Y) <2/, and

3l Z] 0 ] ]HZ Y” < 2l Z] 0 ] ]”Z Y”

<
a1 Ll — (1+2) o Ll —(1+2) 16d
(73)
we have
lO
P
Yrllz-Y| < 2 (74)
=0
Therefore, one has
I
Slli)p Z]:Or]I]”Z_YH < (75)
o Lo = (142) 16d

In view of inequalities (72)-(75), and (r L, )12, € ), one
gets

d(Z,Y)=p(s;(Z-Y))55
3 310 121 ofilisi(Z-Y) L Z] orilisi(Z-Y)
l=0 L= (1+2) =3, Lo —(1+2)
1421,
§ S ZJ ofilisi(Z-Y) L i 1l (Z-Y)
l=0 L, - (+2) 1=ty Leagen = (1420 +2)
1+2,
§ 31 ZJ ofilisi(Z-Y) s(flop ZJ L1l (Z2-Y)
zzo L= (1+2) =, Ln—(1+2)
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I
ly ijorjIjHZ il

<3
W Lo (+2)
21 12l
s S (Z - V) + T s (Z - Y)
1=, L= (142)
20—
<3SGPZJOJ;||Z Y| supz o rJIJS](Z Y)
"m0 L —(1+2) =, lua—(142)

1+2]
n S&Op Z] 210 r]I] ](Z Y)
=, lea—(1+2)

b TiorLllZ - Y|

. 221" r]I]s](Z Y)

<3 sup sup
=0 Lo —(1+2) =, L= (1+2)
N Sacp Z] ot j+2l, ]+2105]‘+210 (Z-Y)
1=l L= (1+2)
Iy Z-Y
S3supw +22I] rl|lZ-Y|
=0l —(1+2)

N Sf’fp ZJ of18i(2) <
=, Lo = (1+2)

(76)

On the opposite side, one has a negative example as I,
€ Q%ECO@J))P(% 9)), where r=(0,0,0,1,0,1,0,). This shows
the proof. O

Theorem 41. ‘%jiep(ﬁ r))p(x, 9) = F(X,9); suppose the setups
1<p<oo,(ri)iy €S, or (rdy), €S, N e, and there
exists C>1 such that 1y, 1y, < Crl, are confirmed. But

the converse is not necessarily true.

Proof. To investigate that [F(Z%, 2})9.%’&}’(9),)) (%,9), as
P

€ (e, (8 r))P,
Let Z€F(%,9); one gets (5;(2)); €C. To explain that
@;ep(wp(ae, 9)cHZX,9), assume Ze€ 95’?%(2 r))ﬂ(x, 9);
we obtain (s5,(Z)))5, € (€,(%, r))P. Since p(s;(Z))5,<00, let
p€(0,1), hence, there is [, € N, — {0} with p((s,(2)),5,)
<(p/2"*nd), for some d=>1, where n=max{l,};5
(1/(X},, — (I1+2)))"}. Since 5,(Z) € T, we get

P
ZZZO: Z, Or]I]S2I ( ) < ZZIO: Lj=0"jj2\ ) Or]I]S] Z
K\ T2 — (I+2) i \ L2 — T,-(1+2)
P

S (Shrls(2)
S%(d;ﬁbﬂ

2P%nd

for every I € Ny, (£,(%, r))P is a linear space.

Journal of Function Spaces

Hence, there is Y €, (¥,9) so that rank(Y) <2,
and

% T2 Y| sﬁ ol 2= Y1\
1=21,+1 L= (1+2) =Lt L= (1+2)

p
< Tl
n
(78)
Since 1 < p < 00, we have
Iy p
P
rlZ=-Y]] <5 (79)
(]ZO ) 22p+2;,l
Therefore, one has
) Z-Y
Z Z] 0 j ]|| H < +’; ) (80)
= l,—(+2) 20%yd

In view of inequalities (54), (77)-(80), and (r[;);c, €
3, one gets

d(Z,Y)=p(s(Z = Y))iZ
_ 3t <Z] ofils;(Z - Y))

1=0 Il+2 (l + 2)

Il+2 (l + 2)

. & (Z] Or]I]s](Z Y)>

1=31,

A (S rls(Z-Y)
Z( JIl+21]Zl+2) >
)

l+21
i 1ils;(Z-Y)
I=l, Il+21 +2 (l+21 +2)
3l ] Or]I]s] (Z- Y)
l L= (1+2)
00 l+zl
. Z Yico Tilis;(Z - Y)
& l,—(+2)
Zo ; 0 ] ]”Z YH
L= (+2)

20y-1 1+21,
N i <zj_o r]IJSJ(Z Y)+Z]+21 rilisi(Z - Y))
1=,

= (1+2)
)}
s (S lZ- Y
3%( Mz(“2)>

=0

IA
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o /-1
42P1 [z (ZFO r]I]Z(-FZZ) Y)>

I=l, Il+2
0 I+21,
+ Z ZJ 2l JIJ J(Z Y)
Il+2 (l + 2)
Iy 1 p
o33 (B2
Il+2 - (Z + 2)
o0 2lO
4ol Z Z . r]I]s](Z Y)
I=l, Il+2 (Z+ 2)

. P
Zj‘:o Tisal, [ 421, Sj2l, (Z-Y)
Lo = (I 2)

+

=1,

I 1 .
Y ZJ ofj JHZ Y|| 0
| +2 rllZ-Y
S3§ < L= (1+2) ZI]r]H |
- Jj=0

1 p & [ 2jsorilsi(2) !
(Iz+z <l+2>) " %(r,iz ]<]l-]+2>> P

(81)

\E

1=,

s

On the opposite side, one has a negative example as
I, € By, (2, (%,9), where r=(0,0,0,0,1, 1,). This shows
0.5 > P

the proof. |

6.2. Banach and Closed Prequasi Ideal

Theorem 42 (see [24]). The function ¥ is a prequasi norm on
ﬁzg)P, where W(Y) = p(s,(Y)) o for every Y € 99%»(&”, 9),

if (&), is a premodular pss.

Theorem 43. If the setups (r;l;)i0y € S, or (rily) iy €S2

N ¢, and there exists C > 1 such that ry, 1., < Cri L, with

ro > 0 are satisfied, then (B, g, »'¥) is a prequasi Banach
> p

P((s1(X))iZy)-

Proof. As (cy(%,7)),
Theorem 42, ¥ is a prequasi norm on %’ECU(Q,”%.

ideal, where w(X) =

is a premodular pss, hence from

Suppose

(Xp)pen, is a Cauchy sequence in {%ECO(QJ))F(X, 9). As
B(X,9) 2B (2 (3€ 9)), one obtains

rls (X -X
‘P(Xa—Xb)=supZ]01”( a b)
leN, lua—(1+2)

270 [ Xa = Xp]|-

(82)

Hence, (X,);ey, is a Cauchy sequence in (X, 9).
Since AB(X,%) is a Banach space, then there is X ¢
B(%,9) with lim,_, [|X, - X||=0. Since (s5;(X,)) €
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(co(8,7)),» every b € Ny. According to Definition 21 setups
(ii), (iii), and (v), one gets

Z] ofjL8;(X)

Y(X)=
o P L+
< sup Z] Or]I;S[]/Z (X Xb) Z] Or]IJS[]/Z](Xb)
" leN, L, = (1+2) leN, Lo —(1+2)
< sup Z] 0 ] ]”X Xb” +D0 sup Z] Or]IJs](Xb)
leN, Yo = (1+2) leN, Lo —(1+2)
(83)

Therefore, (s,(X)))5) € (¢o(R,7)),; then X € B, (g,
0= p
(x; 2))- D

Theorem 44. If the setups 1<p<oo,(r ), €S or
(rl)ic, € S, N Ly, and there exists C>1 such that ry,,
Lypes < Cril with 1y > 0 are confirmed; then (‘%jiﬂp(ﬁ»r))p’ )

P((s:(X))iZy)-

Proof. As (£,(8, r))p is a premodular pss, hence from

is a prequasi Banach ideal, where w(X) =

Theorem 42, ¥ is a prequasi norm on ‘%Eep(ﬂ,r)) . Sup-
P

7)) (x’g))
P

pose (Xj)yey, is @ Cauchy sequence in ‘%E%(
As B(%,9)2%, (%) (x 9)), one obtains

f

W(X, - X,) =

=0

P
& rilisi(X, - Xy)
Z( ”E”]m ) > (1ol Xa = X, )"
1+2 )

(84)

Hence, (X,),ey, is a Cauchy sequence in (%, 9).
Since AB(X,%) is a Banach space, then there is X ¢
B(%X,9) with lim,_ [|X, - X||=0.Since (5;(X,)) €
((’,P(S!,r))p, every beNN,.
setups (ii), (iii), and (v), one gets

- »
Z 1 OrJIJSJ X)
Il+2 l+ 2)

=0

< b 12 J oSy (X = Xb)
Il+2 (l+2>

ol °Z°: (Z, of LSy (Xb)> (85)
pan

According to Definition 21

(- (+2)

<2P_1§ Z] =0 ] ]HX Xb”
- L= (1+2)

1=0

S r.ls g
+2P‘1DOZ<ZJL&’JEZ;)> < 00.

1=0 Il+2
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Therefore, (5,(X));5, € (€ (2, r))p; then X e ‘%j;e,,(ﬁr
P
(%,9). O

Theorem 45. Assume X, %) are normed spaces; the setups
(ril)pep € S, or (1) oy € S, Ny and there exists C> 1
such that 1y, Ly, <Crl, with ry>0 are satisfied; then
(t%’f%(g’,))p,‘{’) is a prequasi closed ideal, where ¥ (X)=

P((s1 (X))

Proof. As (co(%,7)),, is a premodular pss, by using Theorem
42, ¥ is a prequasi norm on ‘%ECO(SJ))P‘ Assume X, €
Ble,(2.) (x ), every beN, and lim, ¥ (X,-X)=0.

As 93(% 9) 2 B, 2. (X, 2), we have
C(%1))p

Z] Or]I]S]( Xb)
(I+2)

Y(X - X,)=sup

: =y X-X, . (86)
[eN, +2

Hence, (X;),ey, is a convergent sequence in %B(%,9).
Since (5(X))1% € (6o(2, ”))p’
Definition 21 setups (ii), (iii), and (v), one has

for every b e N,. In view of

Z] of i18;(X)

Y (X) =su
P - 1+2)
< sup Z] o7 LSz (X = Xp) + sup Z, o7 LS gz (Xp)

leN, L= (1+2) leN, L2 = (1+2)

< sup ] 0 ] ]HX XbH +D0 sup Z; Or]I]S](Xb)

leN, Il+2 (l+2) leN, Il+2 (l+2)
(87)
We get (5(X)% € (6(2,1),, 50 X € B, 1q,)) (£,2)

O

Theorem 46. Assume X, %) are normed spaces; the setups 1
<p<ooy(rli) ey €S or (rly) iy €S, N ey and there
exists C > 1 such that ry, Ly ; < Cr 1, with r,> 0 are satis-
fied; hence, (‘%zfp(ﬁ,r)) ,V) is a prequasi closed ideal, where
P
P(X) = p((s1(X))2)-

Proof. As (£,(%, r))p is a premodular pss, by using Theorem
42, ¥ is a prequasi norm on 95’;81)(2,7))’). Assume X, €
le.(2 r)>P(I, 9), for every be N, and lim, ¥ (X, -X)

=0. As B(%X,9) 2 95’?@?(8”),)(%, 92)), we have

P
°° ol ilisi (X = Xy)
(X -X,)= Z( ) 2l -y

Il+2

(88)
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Hence, (X}),cy, is a convergent sequence in %(%,9).
Since (5,(X;)) 5 € (€,(2, r))p,

nition 21 setups (ii), (iii), and (v), one has

X ofilis b
-5 (525

=0

< 2P_1 i Z] Or]I]S[]/Z (X Xh)
B 1=0 Il+2 (l + 2)

2 Yo orilisim (X
witE)

e § (e IX -l
- Il+2 (l+2)

=0

00 p
+2/7'D, Y 721 o5 (Xe) < 0o0.
1=0 Il+2 (l+ 2)

every b € N. In view of Defi-

We get (5(X)).5 € (¢,(2, r))P, so X € ‘%jie,,(ﬁ

), (%),
O

6.3. Minimum Prequasi Ideal

Theorem 47. Suppose X and %) are Banach spaces with
dim (%) =dim (9) =co, and the setups (r )2, € or
(rili) ey € Sz N8, and there exists C>1 such that 1y,

Ly, < Crl, are confirmed with 0 < rl( ) < rl ,for all 1 e Ny,
hence

Pt ), P F ooy, B Y <HED

P

(90)
Proof. Let Ze %Z @e)) (%X,9); then (s/(2))¢€
I 1),
(co(8, (rl(l))))P. One obtains
I I
sup Z] o” 5i(Z) < Z] o” $i(Z) <o (91)
leN, Il+2 (l+2) leN, Il+2 (l+2)

Then, Ze€ 95’5 (@ ( o) (x,@) Next, if we choose

( ( )) with Z] Or ( ):Il+2 (l+2) and Z] =0 ]

5,(2) ( (l+2)) (l+1)([1+2—
c B(X, ) such that Z¢%(co<2>(r§1)))>

S
B 20, (%.9).

Clearly, ,%’5

(1+2)/1+1), one gets
(X,9) and Ze€

P

(I, 9) c B(%X,9). Next, if we put

(s((2))15 such that ZJ of ] i$i(Z) =1, = (1+2). We have
Ze%B(X,9)suchthat Z ¢ 93?6 (¢ ) (%,9). This explains

the proof. O
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Theorem 48. Suppose X and %) are Banach spaces with
dim (X) =dim () =co, and the setups (r L), €., or
(ril) ey € Sz N ey, and there exists C>1 such that ry,,

(2

Ly <Cr L, are confirmed with 1< W < 1@ and 0< 1

< rl(l) for all I € N; hence,

Pl (o), BV P w2, Yy

CB(X,9).
then

Proof. Let Ze3%B a

(€, (&)
(€0 (8, (rf))))P. One obtains

1@ (1)
© (Y02 @ (s @)
§<111+2](l+2)> <§<I]l+2] l+2)> =0

(93)

(%,9);

P

(51(2)) €

Then Z¢ 95”

(5(2))5 with Z] oy Gs(Z) = (g = (14 2) VT (L,
—(I+2)/V1+1), one gets Z € B(X,9) such that

(2(#”))) (%X,9). Next, if we choose

1)

0”15( ) e
J J = [
(Im l+2)> Zl+1 oo

L8

1=0 1=0
o ) W
§ (@) _§ (P52 o9
=\ - l+2) =\ L, —(1+2)
12
= 1\
=Y (] <o
=0 ( + 1>
Therefore, Z¢ 93(%(1)(2( o), (%,9) and Ze
93(3 o (&) (1" ).
Clearly, ( (800 (X, 2}) C %’(X, 9). Next, if we
n(2) %
put (s,(2))5 such that Z] of ] i$i(Z) = (L, = (14+2))/
Y/I1+1. We have Z € (%, 9) such that Z¢RB ®
(€, (B:(r) )))p
(%,9). This explains the proof. O

Theorem 49. Let X and %) be Banach spaces with dim (%)
=dim (%)) = 0o, and the setups 1<p < 00,(r, L)1, € S, or
(ril) ey € Sz N8, and there exists C>1 such that ry,,
[y, <Crl, are established with ((Z] o i) (L = (14
2)))ien, ¢ & then, ‘%?ep(&mp is minimum.

Proof. Suppose the enough setups are confirmed; then

(Bl (21 > ¥)> where ¥(Z) = 2 (jorla(2)/ (L, =

(I+2)))?, is a prequasi Banach ideal. Suppose %‘("Ep(g,r)) (%,
P
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9) = B(%,9); hence, there is >0 with ¥(Z) <5||Z||, for
every Ze %B(X,%). According to Dvoretzky’s Theorem
[23], for every be N, one obtains quotient spaces X/Y,
and subspaces M, of %) which can be mapped onto ¢} by
isomorphisms V,, and X, with ||V, ||||V;']| <2 and ||X,||
|X;!|| <2. Let I, be the identity operator on ¢ and T,
be the quotient operator from X onto X/Y,, and J, is
the natural embedding operator from M, into %). Suppose
m, is the Bernstein numbers [26]; then

=m,(I,) = m, (X, X,'I,V,V; ')
< ||X||m, (X1, V) HVZIH

= [1X, |1, (J,X5, 1, V) || V3|
< 1X,)1d, (12X 1,V) || V3|

= X, lld, (JuX3, 1,V T) || V3|
< ||Xplle, (X3, 1,V 1) ||V,

for 0<I<b. We have

Z] Or]I] < zz:oHXb”erz
Il+2 (l + 2) - Il+2 -

Lico"iY !
:><rl+2 (1+2)
) Y oL, (1,5 1,V,T,)
S(benHVb‘H)"( ° (fg,ﬁzf )

o, (1, X, 1L,V T,) | V3|
(1+2)

(96)

Hence, for some p >1, one gets

b P
y ( A ) <AVl

1=0
i 2= Oerzaz (JoXp 1,V Ty) g
(1+2)

1=0 [l+2

1=0 Il+2 (l+2>

< P||Xb||||VZIH'P(]hXEIIthTb)

1=0 Il+2 (l+2)

< el Xl |V [ 1T6X5 1o Vi T |

N Zb: ZJ ofil !
1=0 Il+2 (l+2)

< Pl X[V 176X (T Ve Tl

= Pl Xoll[[ V3 [HIX 1T V| < 4o
(97)
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Therefore, we have a contradiction, if b — 0o. Then,
X and % both cannot be infinite dimensional if
) (£,9) =%(%,9). This shows the proof. O

By the same manner, we can easily conclude the next
theorem.

Theorem 50. Let X and ) be Banach spaces with dim (X)) =
dim () =00, and the setups 1<p < 00,(r L), €., or
(ril) oo € S, N8y, and there exists C>1 such that 1y,

Uy, SCrily are established with ((Xir;L)/(L,,— (1+
2)))ie, ¢ & then 95’ (t,(2), is minimum.

6.4. Simple Banach Prequasi Ideal

Theorem 51. Suppose X and %) are Banach spaces with
dim (X) =dim () =co, and the setups (r L), €., or
(ril) ey € 82 N8y, and there exists C>1 such that ry,,

Ly, < Cr L, are confirmed with 0 < rl(z) < rgl),for all 1 e Ny;
then

@< (ale())), B P P (o)), ® 2”)

Proof. Let X ¢ %(%(co(ﬁ,(rfz>)))P (%X,9), %(co(ﬂ,(rflJ)))p(x’ 2))
and XA (B g0y, DBy D) In
view of Lemma 37, there are YG‘%(‘%EC (¢ (%,9))
0 P
and Z € B(%° (%X,9)) with ZX YT, = I,. Therefore,
P

(a(2(1"))
for every b € N, we get

(- zsupM
Tale()), ™ e, L=+
< ZXY[[[[ 1| e

(l+ 2) '
(99)

This contradicts Theorem 47. Then X € &/(%°

(co(® (")),
(%,9), 93’3 () (X, 9)), which finishes the proof. 0
p

Corollary 52. Assume X and %) are Banach spaces with
dim (%X) = dim () = co, and the setups (rl;)r, € I\, or
(ril) oo € Sz N8, and there exists C>1 such that ry,,
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Uy, < Crily are established with 0< r;z)

IN; then

Srl(l), for all le

(o), Do fa(), )
:zf<93s(%(&(r5a))%(ae,2)), 5(60(2,(6,)))%(35,2;)),

Proof. Clearly,/ ¢ % O

Theorem 53. Suppose X and %) are Banach spaces with
dim (%X) = dim () = oo, and the setups (rl)r, € I\, or
(rl)icp € S, N Ly, and there exists C>1 such that ry,,

()

L1 S Crily are confirmed with 1< WY < h@ and 0< )

< r§1>,for all l € Ny; then

2l 00, E D 007, )
(e ), B9 P a), B D)

(101)
Proof. Let X< B, oy, D By iy, ®
X y 2 '9), B,
@)) and ¢ ‘Q{(‘%j(eh(z)(&(r} )>))P(x 2)) %(2}1(1)(g’ (x g)))
In view of Lemma 37, there are Y € @(@Ze (2. (f 2))
h (2)
andZ € B(%*

(o0 20), (%X,9)) with ZXYI, = Ib Therefore,

for every b € N, we get

S

S (Liaory (1)
Myl _ <17
b @(eh(l) (E,(rfl))))’)(x’()g» ; Il+2 (l+2)
< [|ZXY 1Ty

(e (2())),
o DL (1,) He)
;( IJI+2 l+2) )

(102)

This contradicts Theorem 48. Then X € of (%°

@ @0
(%, @),%ZE @6 (X 9))), which finishes the proof.
(1)

P

Corollary 54. Assume X and %) are Banach spaces with
dim (%X) = dim () = oo, and the setups (rl)i, € S\, or
(rili) ey € Sz N8, and there exists C>1 such that ry,,
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)

[, ; < Cr L, are established with 1< WD <h? and 0< 1

< rl(l), for all 1 € N; then

%(bM@WWﬂiw’bw@W»ﬁ£%>
= (Fl o), B DS a))), B D)

(103)
Proof. Clearly,o ¢ % O

Theorem 55. Suppose X and %) are Banach spaces with
dim (¥X) =dim (9) =co, and the setups (r L), €., or
(rl oy € S, MLy, and there exists C>1 such that ry,,
L1 SCrly are confirmed with 1<h<oo and 0< r§2) <

rl(l),for all 1 e N, then

s < S(CO (Q’(rf))))p(x’ ), %S(eh (g,(,;l))))p(x’ 2’))
:d(%s(%(ﬁ’('fz))))p(x’%’ S(Eh(g’(ry))))?(x,g))).

(104)
Proof. Let X € BB g o)) (D By g0, (%:9))
and - X ¢ A(B ooy (D) By g0 (5:9). In
view of Lemma 37, there are Yee%’(e%’z @) (%,9))

Co 0

and Z € B(%° . (%,9)) with ZX YT, = I,. Therefore,
(26,
for every b € N, we get

h
(T s ()
ﬁwwwﬁ”“§<i5ww>

%&wmf”

< sup
leN, Il+2

(105)

This contradicts €;,(2, (rl(1>)) Cc(8, (rgz))). Then X € o

S S . .
(B a2y, (B D) By 0 ) (BD)), which finishes

the proof. O

Theorem 56. Let X and %) be Banach spaces with dim (X)

=dim (9) = 0o, and the setups (rly)io, € S or (rdy)iey

€3, NL, and there exists C>1 such that vy, Ly, <
o s o

Cri . are satisfied; hence, %(Co(ﬁf))p is simple.

Proof. Assume the closed ideal (9B, (q,) (x 9))) includes
an operator X ¢ &/ (B, q,) (x 2)). In Vlew of Lemma 37,
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we have Y,Ze RB(%; (3c'~ 2))) with ZXYI, =1I,.
This gives that Iv@fc e, (%) ¢ F (Bl (2. (x 9)). Then,
‘%’(%ico(ﬂ,r))P(x) 9)) = (9555 (1) P(x 2)). Hence, %jfco(s,r))p
is simple Banach space. O

Theorem 57. Let X and %) be Banach spaces with dim (%)
=dim (%) = co, and the setups 1<p < 00,(ri L)y € S, or
(rl)ic, € S, NLy, and there exists C>1 such that ry,,
Ly 1 < Crily are satisfied; hence, ggfep(s,r))p is simple.

Proof. Assume the closed ideal J( (p (X 9))
includes an operator X ¢ of (‘%Eﬁp(ﬁ,r)) (%,9)). In view of
)

Lemma 37, we have Y, Z € %’(9?5 ( 9))) with ZXYI,
= I,. This gives that I@s (xg)) € %( (X 2)).
Then, %B(% (X 2))) H (B (% 2))) Hence,
‘%fq,(smp is s1mp1e Banach space. 0

6.5. Eigenvalues of S-Type Operators

Conventions 2. Please see the following conventions:

(B = (B
(B5)"(2,9) = {X € B(X.D): (X))
€ &and || X - p,(X)I| is not invertible, forall / € N, }
(106)

%)”(%X,9) ; X and Y are Banach Spaces}, where

Theorem 58. Let X and %) be Banach spaces with dim (%)
=dim (%) = co, and the setups (r L), € S, or (rly)ie,
€S, NL., and there exists C>1 such that ry, Ly, <
Crl, are verified with infldNo((Z;zoﬁrjlj)/([,ﬂ -(1+2)))
> 0; then (B (a.) ) (%) =B, 2 (D).

0 P P

Proof. Let X € (%, (g ) (%,9);
(¢(%,7)), and [[X - Pz( )IH
=pl(X)I, for all I € Ny; hence, s,(X) =s,(p,(X)I) =
for every l€IN,. Therefore, (5(X)).5 € (c(8,7))
XE‘% (co(R1)) (x’g))

Secondly, suppose X € B, (

e (e(27)),

hence, (p;(X));, €
0, for all I € N,. We have X
(X)),
o> then
oy, (B9). Then (5(0)5%,

. Hence, we have

I
Z] o181 (X) S inf 2ot il

lim | X 107

dm i) N T ey i) (107)

Therefore, llim 5,(X) =0. Assume ||X — 5;(X)I| " exists,
oo

for every I € N,. Hence, ||X —s5;(X)I||”" exists and bounded,

for every 1€ IN,. Then, llim X = s;(OI)| ™" = || X]| 7" exists
—>00
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and bounded. As (% a(20),’ V) is a prequasi operator ideal,
we get
I=XX"e . (% )

o M), = lim sn=0.

= (D) €

So we have a contradiction, since llim s;(I) = 1. Hence,
IX = s(X)I||=0, for every leN,. This
(Bi,a ) (%X,9). This shows the proof. 0

gives Xe€

Theorem 59. Let X and ) be Banach spaces with dim (%)
=dim (9) = 0o, and the setups 1< p < 00,(r L), € S, or
(rl ey € S, N Ly, and there exists C>1 such that ry,,
Ly <Cr L, are satisfied with infl((zj o i) (L = (14
2) > 0; then (Biy, 0, ) (%.9D) = B, (%:9)-

Proof. Assume X € (93? (2) ) (%,9); hence, (p,(X));5, €
(e,(8, r))P and [|X - p,(X )I|| 0, for all I € N,. We have X

= p,/(X)I, for all € Ny; hence, 5;(X) = s;(p,(X)I) = |p,(X)|,
for every l€N,. Therefore, (s,(X))5, € (€,(L, r))p; then

X € B0 (£9).
Secondly, suppose X € ‘%jiﬂp(&r))p (%,9). Then (s;(X))5,

€ (¢(27),

Q [ Xiorilis r ) ZIOTI P
§<I;z](]lj+(2))> 21?f<[l+2](/+]2>> > (X))

=0
(109)

. Hence, we have

Therefore, llim 5;(X) = 0. Assume || X — s,(X)I||”" exists,
—00

for every I € N,. Hence, || X — 5;(X)I| " exists and bounded,
for every 1€ IN,. Then, llim X —s,O1) " = || x| ™"

and bounded. As (‘%E%(i‘,r))p’ V) is a prequasi operator ideal,

exists

we get

I=XX" e %), o o), (%9)

= (s(I))i% € (&,(%, r)) = lim 5,(I) =0.

I—00

(110)

So we have a contradiction, since llim s;(I) = 1. Hence,
|X —5;(X)I||=0, for every leNN, This
(@;ep(g,,)>p)P(x, 9)). This shows the proof.

gives Xe€
O
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In this work, the novel iterative transformation technique and homotopy perturbation transformation technique are used to
calculate the fractional-order gas dynamics equation. In this technique, the novel iteration method and homotopy perturbation
method are combined with the Elzaki transformation. The current methods are implemented with four examples to show the
efficacy and validation of the techniques. The approximate solutions obtained by the given techniques show that the methods are
accurate and easy to apply to other linear and nonlinear problems.

1. Introduction

Fractional calculus (FC) has been there since classical cal-
culus, but it has recently gained much attention due to its
reaction to the requirements as mentioned above. The
framework of Liouville and Riemann is used to analyze FC
using differential and integral operators. Following that, it
was widely used to investigate a variety of phenomena. Many
academics, however, pointed out some limitations in en-
gaging this operator, in particular, the physical meaning of
the initial condition and the nonzero derivative of a con-
stant. Caputo then presented a unique and new fractional
operator that incorporated all of the abovementioned
constraints. The Caputo operator is used to study most of the
models studied and analyzed under the FC framework. For
many ideas of FC, senior academics propose many pio-
neering directions, and they are the ones who provide the
groundwork for the concept [1-5]. The theory and core ideas
of FC have been applied to a variety of real-world problems,
including biomathematics, financial models, chaos theory,
optics, and other fields [6-12].

Gas dynamic equations are mathematical representations
defined as the physical laws of energy conservation, mass
conservation, momentum conservation, etc. Nonlinear frac-
tional-order gas dynamics equations are applied in shock
fronts, unusual factions, and connection discontinuities. Gas
dynamics is a study in the field of fluid dynamics that studies
gas motion and its effect on physical constructions based on the
concept of fluid mechanics and fluid dynamics. The science
emerges from research of gas flows, mostly around or within
human minds, several instances for these research involve, and
not restricted to, choked flows in nozzles and pipes, gas fuel
streams in a rocket engine, aerodynamic heating on atmo-
spheric reentry cars, and shock waves around aircraft [13, 14].

Consider the nonlinear fractional-order gas dynamics
equation:

¢
gﬂz+vg;—v(l—v)=0, neR 0<6<1. (1)
The initial condition is ®(SJ,0) = g(J), where § is a

parameter that describes the fractional-order derivatives.
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When ¢ =1, (1) improves the equation of classical gas
dynamics.

Since certain physical processes, both in engineering and
applied sciences, can be successfully explained by the cre-
ation of models with the aid of fractional calculus theory.
The response of the fractional-order equations eventually
converges to the equations of the integer order, attracting
particular interest nowadays. Due to a broad variety of
applications for mathematical modeling of real-world
problems, fractional differentiations are very efficient, e.g.,
traffic flow models, earthquake modeling, regulation, dif-
fusion model, and relaxation processes [15-17]. In the past
decade, the gas dynamic equations are obtained by using
different numerical analytical techniques [13, 14]. The ho-
mogeneous and nonhomogeneous nonlinear gas dynamics
equations have been used the differential transformation
technique [18]. Many techniques have been applied to the
gas dynamics model such as fractional reduced differential
transform technique [19], Elzaki transform homotopy
perturbation technique [20], q-homotopy analysis technique
[21], Adomian decomposition technique [22], variational
iteration technique [23, 24], fractional homotopy analysis
transform technique [25], homotopy perturbation algorithm
using Laplace transform [26], and natural decomposition
technique [27].

The goal of this study is to show how, applying the novel
iterative technique and the homotopy perturbation

4’
dfcﬂ’((),

D%»({) =

;ir_
A(L=9) d Jo -y

where £ € Z*, ¢ € R*, and

¢
D“"v(()=%¢)jo((—v/)"’“v(w)dw, 0<ps<l.  (3)

2.2. Definition. The Riemann fractional-order integral op-
erator J¥ is presented by [29]

¢
]‘Pv(5)=%¢)jo(C—w)‘”‘lv(()d(, (>0, 950 (4)

The basic properties of the operator are presented as

T(+1)

t _ C+y

]¢C_F(€+go+1)( ’
F(¢+1) ®

e _ + -y

D' _F(€—¢+1)C '
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technique, the Elzaki transform can be used to obtain ap-
proximate solutions for linear and nonlinear fractional-
order differential equations. The homotopy perturbation
technique was developed by Chinese mathematician J.H. In
1998, he played an important role [28]. This approach is
equitable, efficient, and effective, as it eliminates an un-
conditioned matrix, infinite series, and complicated inte-
grals. This technique does not necessitate the use of any
unique problem parameter. Tarig Elzaki, in 2010, develops a
new transformation known as the Elzaki transform (E.T).
E.T. is a new transform of Laplace and Sumudu transfor-
mations [29-32]. Many other researchers use HPTM to solve
various equations, such as heat-like models [33], Navier—
Stokes models [34], hyperbolic and Fisher’s equations [35],
and gas dynamic problem [36].

Jafari and Daftardar-Gejji presented a new iterative
approach for solving nonlinear equations in 2006 [37]. Jafari
et al. first apply the iterative technique and Laplace trans-
formation and combine it. They developed an iterative
Laplace transformation method, which is a modified
straightforward method [38] to solve the FPDE system
(39, 40].

2. Basic Definitions

2.1. Definition. The fractional-order Riemann operator D?
of order ¢ is defined as [29]

(2)

v(©) dy, €-1l<¢<{¢,

2.3. Definition. The Caputo fractional operator D? of ¢ is
defined as [29]

1 W
r(f_(P) J.O((_w)(p—fﬂdl/’a -1<gp<¥,
CD%v({) =
d(.’
dié‘e’l/(()) ez(P
(6)

2.4. Definition. The Elzaki transformation Caputo frac-
tional-order operator is defined as

-1
E[Dfg(0)] =5 ?[DEg (0] - Y. s ** g% (0),
k=0 (7)

where - 1<gp<?.
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3. New Iterative Transformation Technique V8 (S,0) = g,(). 9)
We consider Using the Elzaki transformation of (8), we obtain
Dﬁv(& 7+ Mv(S, 1) + No(S, ) = h(S, 1), ) E[D‘,‘;v(f’s, 11)] +E[Mv (S, %) + Nv(S,n)] = E[h(S, n)].
LeN,{-1<p<d, (10)
where M and N are linear and nonlinear terms. We consider Implement the Elzaki differentiation property:
the initial condition as
m
E[(S,n)] =) s "9 (F,0) + SE[h(S, )] - S"E[Mv (S, 1) + Nv (S, 1)]. (11)
=0
Using the inverse Elzaki transformation (11),
V(S ) =E" H Y (S, 0) + sPE[R (S, )] H —E'[s*E[Mv(S, 1) + No(S, n)]]. (12)
=0
Then, we reach We consider the nonlinear term N by
v(Sn) = ) v (S, (13)
=0
N(Zue(s,q)>:ZN[ue(s,q)]. (14)
=0 =0

N(Z Ue(«°£’7)> =1, (3, 1) +N<Z Ue(3>’7)> —M<Z ve(«“f,n)) (15)
£=0 £=0

=0
Replacing equations (12), (13), and (15) in (12) yields
Y (S p=E" |:s¢<i525+€v€(5,71) +E[h(S, n)]>] -E! |:S¢E|:M<i 0, (S, ;1)> - N<i Ms,m)”. (16)
£=0 £=0 =0 £=0

We describe the iterative method:

14
vy (S,m) =E [s“"(Z #5(S,0) + PE(g (S, n)))],
£=0

v, (S, 1) = —E"'SPE[M[vy (S, )] + N [v, (S, )]], (17)

14 14
Uy, (8o 1) = —E! [s“’E[—M(Z 0, (S, n)> - N(Z 0, (S, ;7)>H, £>1.
£=0 €=0



Finally, we can write as
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V(S =0y (S +0, (S + 0, (S +---+0,(S,7), m=1,2,.... (18)

4. Homotopy Perturbation Transform Method

In this section, we give the general solution of FPDEs via the

homotopy perturbation method:
vDﬁv(S,q) + Mo (S, 1)+ Nuv(S,n) =h(S,n), 1>0,0<9<1, (19)
v(S3,0)=9(S), veR
Applying Elzaki transformation of (16),

E[D{v(S, 1) + Mu(S,7) + Nv(S,1)] = E[R(S, ], 7>0,0<9<1, (0

v(S,n) = szg(S) +s?E[h(S,n)] = s"E[Mv (S, ) + Nv(S,1)].

Now, we use Elzaki inverse transformation, and we where
obtain
v(S, 1) = F(x, ) — E ' [s"E{Mv(S, 1) + Nu(S, )},
(21)
F(S,n) = E'[*g(S) +s"E[h(S, n)]] = g(») + E"' [S’E[h(S, n)]]. (22)
Now, the parameter p shows the producer of where H, are He’s polynomial in terms of vy, v;,0,,...,0,

perturbation:
0(S.n) = ) vy (S, 7). (23)
=0

The nonlinear term can be defined as

and can be calculated as

H, (v, vy, 0,) = m p[ (ZPW)} - (25
p=0

Substituting (24) and (25) in (21), we achieve as

No(S,n) =Y p'H,(v,), (24)
=0
> P, (Son) = F(S.m) - px |:E1 {s"’E{M Y P, (Som) + ) pTH,(v,) } H (26)
=0 =0 =0

Comparison of coefficients p on both sides, we obtain



Journal of Function Spaces 5
P’ 0, (S, 1) = F(S, ),
plz v, (S, 7) = E! [s"E(Muvy (S, n) + Hy(v))],
P70y (S,n) = E[PE(Mu, (S, ) + H, (v))], (27)
P50 (Son) = E ' [SPE(Mu,_, () + Hp_, ()], €>0, £€N.
The v, (3, 1) components can be calculated easily which The approximate solution is achieved as
is a fast convergence series. We can obtain p — 1: i e_an, e_snzq’ 6_8113¢
S VS = D T T2e+ D) T TG 1 1
U(S,n):limMéwng(S,n). (28) (p+1) 2¢+1) Ge+1) (35)
=1 -3 te
e i
fo b
T(lp+1)
4.1. E.xample. Consider the fractional-order gas dynamics Now, we apply the HPTM, and we obtain
equation:
v ov ol e -3 f eplN e
—tv——0v(1-0v)=0, 0<¢<l, (29) ZPUe(J’W):(e )+ p{E ' SE| Y p H, ()| |
on* oy =0 =0
with initial condition, (36)
0(S,0) = e S, (30) Then, we have
0, fard _ -3
First on both sides apply Elzaki transformation in (29), privn(Sm=e
we have “S 4
; a0 P oy (S =[BT E(Hy )] = £
E[v(S, )] :sz(e_‘s)—s‘”E[U%—v(l—v)]. (31) Tlo+1)
-3, 2¢
Using inverse Elzaki transform on the above equation, P, (o) = [E71{5¢E (H, (v))}] = 11(27111)
4
-3 - 0 37
v(S,n)=e °-E 1[5¢E{va—:—v(l—v)H. (32) e’s,f‘/’ (37)
P03 (S, ) = [E{s*E(H, (v)}] = TGo+ 1)
We use the NITM: ¢
v, (S, ) = eis,
[ ov 1 &Sy _ e Sy
S )= Ely, Y0 _ = n n. S.n) =EYs?E(H & n
v (3,m) =-E _5 E an’7 vy (1 Uo)}_ T(p+1) P, (Ssm) [ {s*E( n—l(v))}] T(np+1)
I ov 1 ey Then, the series form solution of HPTM is presented:
0, (S,n) =-E | PE{o,—L -0, (1-v))} | = ———,
I on | TQRe+1) - >
v(Sn) =) P, (). (38)
03 (3 )——E_l’s"’E v%—v (1-2v,) - —767\;;73(1) "
3= | o ? Y] rEe+1y The approximate solution of Example 1 is given by
-3 ¢ -3 2¢ -3 3¢
&« .5, ¢ 1 e n e 1
V= D) T 2e+ 1) T+ 1)
0,1 (S, 1) = -E | s°E v%—v(l—v) = 6—5,7?4’ -3
£+1 N = Zal’] € 1 _I‘(l(p+1)' . “+e\s—’7m<p) (39)
The series solution form is given as oS = 5 i (n?)" _ e‘SE(P o).
V(S 1) = 0o (S ) + 0, (S ) + 0, (S ) +05(S 1) = T (g +1)

(34)
+ 0, (S, ).

The exact result of (29):



V(S =e S (40)

In Figure 1, the actual and analytical solutions are proved
at ¢ = 1 of Example 4.1. In Figure 2, the three-dimensional
figure for numerous fractional orders are described which
demonstrates that the modified decomposition technique
and new iterative transform technique approximated ob-
tained results are in close contact with the analytical and the
exact results. In Figure 3, the analytical solution graph of
fractional order ¢ = 0.4 of problem 3.1. This comparative
shows a strong connection among the homotopy pertur-
bation transform method and actual solutions. Conse-
quently, the homotopy perturbation transform method and
new iterative transformation technique are accurate inno-
vative techniques which need less calculation time and is
very simple and more flexible as compared to other methods.

4.2. Example. We take into consideration

0 (S =b"%,

v (S =-E" s(pE{vO% —vy(1 - vo)logb} =b
i n ]

0, (S, 1) =—E" s‘pE{vlaaUl— v (1- vl)logb}
L n

Journal of Function Spaces

@
%+v§—2—v(l—v)logb=0, b>0,0<9<1, (41)
with initial condition,

v(5,0)=b"3. (42)

Applying the Elzaki transformation in (40) gives
5 0
E[v(3,n)] =52(b")—sq’E[vaZ—v(1 —v)logb]. (43)
Using inverse Elzaki transform on the above equation,
-3 -1 aU
v(S,n)=b " -E "|s’E va—”—v(l—v)logb . (44)

We use the NITM:

_ - logby”
T(p+1)

_ - (ogh)’n”?

F2p+1)
(45)
f v 1 _g(logb)’n*
v3(S, ) =-E! _s‘pE{vza};— v, (1- vz)logb}_ =b ‘s%,
_ ov _g (logb)* ™
S, 1) = -E ' s*E{v, =2 - v, (1 -v,)l =p S0
‘Un+1(‘S ’7) [S {v(?ar] vn( Un) Ogb}:| b F(n(p+1)
The series solution form is presented by The approximate solution is achieved as
v(3,m) = 0o (s 1) + v, (I ) + 0, (s 7) (46)
+03 (S +--- 0, (S, ).
~ ~ ¢ - 2 2¢ - 3 3¢ - p\m
o(S) = b5 4 b7 loghy” -5 (ogh)'n™ ,_g(ogh)'n™ s ((loghy")")
I'(p+1) I'2p+1) I'3e+1) I'(me+1)
(47)

<3 & 1 b " <3
v(Sn)=b" Z (logbn")” _ b "E, (logby®).

I'(me +1) -

m=0
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FIGURE 2: The fractional order of ¢ = 0.8 and 0.6 of problem 3.1.

Now, we apply the HPTM; we obtain

Y P (S =(b7%)+ p{E”(s“’E[f prAv)D }
=0 £=0

(48)

where the polynomial signifying the nonlinear expressions is
H,(v). For instance, the components of He’s polynomials
are obtained through the recursive correlation
H,(v) = v, (0v,/0%) — v, (1 — v,)logh, V¢ € N. Now, both
sides as the equivalent power coeflicient of p are compared;
the following calculation is obtain by
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1

FIGURE 3: The fractional order of ¢ = 0.4 of problem 3.1.

%0 (S =b7 5,

= 1 i
Lo (S, = [E_I{S(PE(HO(U))}] = b-d%,
e iy g (logb)*r”?
0, (S,n) = [ETSPE(H, (0)}] = b TQpr 1)
5 (logb)’n*?
3 vy (S, 1) = [E_I{S¢E(H2(U))}] = b_di“(()g,g(bp%rll)’
) (1 bl ne
0y (S) = [E S, )] = b O
(49)
Thus, we obtain
(S, ) = Zpeve(ﬁ, 7). (50)
=0

The approximate solution of Example 2 is given as

logbn” il 5 (logb)*n**
I'(p+1) F'2p+1)

(S =b S+b S

~s(logh)’n* 5 ((loghn®)")

X 51
r(3<p+1)+ I'(mg +1) 5y
~ _1-S \ (logbrfp)m _ —SE 1 P
v(S.n)=b mz:oif(m(p+1)_b o (logbr®).
The exact result of (40) is
v(S,n) = b5, (52)

In Figure 4, the actual and analytical solutions are proved
at ¢ = 1 of Example 4.2. In Figure 5, the three-dimensional
figure for numerous fractional order is described which
demonstrates that the modified decomposition technique
and new iterative transform technique approximated ob-
tained results are in close contact with the analytical and the
exact results. In Figure 6, the analytical solution graph of
fractional order ¢ = 0.4 of problem 3.2. This comparative
result shows a strong connection between the homotopy
perturbation transform method and actual solutions.
Consequently, the homotopy perturbation transform
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FIGURE 4: Simulations of the solutions of problem 3.2.

FiGURE 5: The fractional order of ¢ = 0.8 and 0.6 of problem 3.2.

method and new iterative transformation technique are
accurate innovative techniques which needs less calculation
time and is very simple and more flexible as compare to
other methods.

4.3. Example. We take into consideration the fractional-
order nonlinear homogeneous gas dynamics equation:
v ov

o + Ua_n_ v(1-v)+e ST =0,

0<g<l, (53)

with initial condition,

v(3,0)=1-¢ . (54)

Applying the Elzaki transformation in (52) yields

(55)

Using inverse Elzaki transform on the above equation,

v(Sm=1-¢" —E_l[s“’E{vg—:;— v(1-v) +e‘s+'7H.
(56)
We use the NITM:
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FIGURE 6: The fractional order of ¢ = 0.4 of problem 3.2.

0 (S =1-¢%,

v, (3 )=—E_1P5‘PE v%—v(l—v)+e_"+'7 3 1’ 3 ,12‘/’
e Py N T T(p+1) ° TQp+1)
r ’13¢
S, :_E—l ¢ g Y91 1- - S+ -3 ,
v,(S, 1) s {vla v(1-vy) +e } NETERY
(57)
[ ov s 1Y
S )= _EFE 1 it _ - S+ - N
v5(3,n) =-E _S E{v2 o v,(1-v,) +e ]» T 1)
o3 -1] ¢ a“e -3+
U, (S,) =-E | s’E vea—ve(l —v,) +e .
The series solution form is given as The approximate solution is achieved as
U(S) ’1) = UO(S) 11)+Ul (s) 1’])+'U2(5, 71) (58)
+03(S, 1) +---0, (S, n).
? 29 3¢ me
S, =1-e35-¢9 n _ s _ s L 75'14’
v@m=lme e T T T Taer D) ¢ TGer D) T(mg+ 1)
(59)
V(S =€ iﬂze-ﬁlg (")
i = T(me +1) 1)
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Now, we apply the HPTM, and we obtain

£=0

ip%(s, m=1-e% +p{E‘1 <s"’E[§pre<v> +e‘5+”> } (60)
£=0

H,(v) = v, (0v,/0%) — v, (1 — v,)logh, V¢ € N. Now, both

sides of the equivalent power coeflicient of p is compared;
the following calculation is obtain by

where the polynomial signifying the nonlinear expressions is
H, (v). For instance, the components of He’s polynomials
are obtained through the recursive correlation
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FIGURE 9: The fractional order of ¢ = 0.4 of problem 3.4.

p v (S,n) = 1—e_s,

pliu (S = [E_l{s‘pE(Ho(v)) + e_5+’7}] S|
P70y (o) = [E‘l{s"’E(H1 (v)) +e‘s+”}] =S 1

Py (Sn) = [Eil{sq’E(H2 () + eism}] =S

Then, the series-form solution of HPTM is given as

[ee]

v(S,7) = plog (S, (62)

£=0

P, (S,n) = [E_l{s“’E(Hn_1 (v) + e—«‘?w}] =S 1

9
[(p+1)

2¢

TG+ 1) (61)
3¢

T3¢ +1)

ne

T(np+1)

The approximate solution of example in this section is
given as

s s 1 s 1 s 1’ s_ 1"
~ —1- — - o —p ——ee—e y
v (3, 1) e e T(p+1) e T(2¢+1) [ (3¢ +1) ¢ I'(me+1)
e (63)
& ) = sxv (") _,S ¢
(S, =e 2 T(tg+ 1) e “E,(1°).

The exact result of (52) is
u(S,n) =1-e . (64)

In Figure 7, the actual and analytical solutions are proved
at ¢ = 1 of Example 4.3. In Figure 8, the three-dimensional
figure for numerous fractional order is described, which

demonstrates that the modified decomposition technique
and new iterative transform technique approximated ob-
tained results are in close contact with the analytical and the
exact results. In Figure 9, the analytical solution graph of
fractional order ¢ = 0.4 of problem 3.3. This comparative
shows a strong connection among the homotopy
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perturbation transform method and actual solutions.
Consequently, the homotopy perturbation transform
method and new iterative transformation technique are
accurate innovative techniques which need less calculation
time and is very simple and more flexible as compared to
other methods.

5. Conclusion

In this paper, we analyzed the time factional of gas dynamics
equation by applying two analytical techniques. It is also
used that the suggested methods™ rate of convergence is
sufficient for the solution of fractional-order partial differ-
ential equations. The computations of these methods are
very straightforward and simple. Therefore, these methods
can be applied to fractional partial differential equations.
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In the present paper, we defined lacunary sequence spaces of fractional difference operator of order (a, ) over n-normed
spaces via Musielak-Orlicz function = (). Our aim in this paper is to study some topological properties and

inclusion relation between the spaces J—Ng(A,/%,u,O,A(V),H~,---,-H)O, J—Ng(A,/%,u,G,A(V),||-,~~-,~||), and J—N‘f

(A, My 1,0, AD), ey || o

1. Introduction and Preliminaries

The concept of statistical convergence was introduced by
Fast [1] and Schoenberg [2] independently. Many authors
studied the concept of statistical convergence from the past
few years we may refer to ([3-19]) and references therein.
The sequence & = (&) is statistically convergent of order
a to £ (see Colak) if there is a complex number € such that

lim L (k<n: (g -¢/>e}|=0. (1)

n—oo 1

Let 0 <a<f<1. We define the (a, f3)-density of the
subset E of N by

1
OR(E)=lim — |{k<n : keE}F, (2)
n n

provided the limit exists, where |[{k<n: k € E}|¥ denotes
the Bth power of number of elements of E not exceeding
n ([20-22]).

By a lacunary sequence 0 =(0,), we mean a sequence
of positive integers such that 6, =0, 0<6,<0,,,, and ¢, =
0,-0,_, — 0o as r — 00. The intervals determined by 0
will be denoted by J, =(6,_,,6,] and ¢, =6,/0,_,. Freedman
et al. [23] defined the space of lacunary strongly convergent
sequences by

Ne={EEWI lim %Z|Ek—l|=0,forsomel}. (3)

T ke],

Definition 1. Let 0=(6,) be a lacunary sequence. The
sequence & = (£,) is SP(6)-statistically convergent (or lacun-
ary statistically convergent of order (a, 8)) (see [20]) if there
is a real number L such that

1
Jim e l{ke ), : G- L ze} =0, (4)

where ], = (6,_;,6,] and ¢ denotes the ath power (¢,)* of
¢,, that is, ¢%=(¢%) = (¢, ¢5,--,¢%,---). In this case, we
write SP(0) —limE, = L. The set of all SP(6)-statistically
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convergent sequences is denoted by SP(6). If «= =1 and
6= (2"), then, we will write S instead of SF(6).

A family .7 € 2% of subsets of a nonempty set X is said to
be an ideal in X if

(1) pes
(2) A,Be J imply AUBe .J
(3) Ae 7, BCcAimply Be s

while an admissible ideal .7 of X further satisfies {{} € .7 for
each & € X (see [24]).

A sequence (£,), in X is said to be #-convergent to
EeX (see [24]), if A(e)={neN: |, -¢&||=¢} e, for
each £ > 0.

The concept of difference sequences, Orlicz function,
Musielak-Orlicz function, and n-normed spaces was used
by many authors and proves some topological properties
(see [41-50]) and references therein. For details about n-
normed spaces, we refer to ([51-55]), difference sequence
spaces ([38, 39]), Orlicz function ([56-58]). Ideal conver-
gence and fractional difference operator A* has been studied

1)

Y+ +2) - (y+i-1),

(=7);

otherwise.
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A sequence (£,), in X is said to be .7-bounded to
& € X if there exists an K >0 such that {neIN: |, | >K} €
#. Many authors studied the topological properties and appli-
cations of ideal, we refer to ([25-37]) and references therein.

The concept of difference sequence spaces was intro-
duced in [38] and further generalized in [39].

In [40], Baliarsingh defined the fractional difference
operator as follows:

Let £ = (&) ew and y be a real number, then, the frac-

tional difference operator A is defined by

(5)

where (—y); denotes the Pochhammer symbol defined as

ify=00ri=0,y(y+1)(y+2) - (y+i-1),otherwise,

in [59, 60]. We continue in this connection and construct
new sequence spaces as follows.

Let M = () be a Musielak-Orlicz function, u = (1) be
a bounded sequence of positive real numbers, and 0 < a <
B<1. We define the following sequence spaces in the
present paper

r A, (47%) 747"
1 k
J—Nﬁ(A,ﬂ,u,G,A(W, ”H) =¢few: I -lim— Z S S Xt Xy =0, forsomep>0 3,
0 r ¢r kE], p
(7)
) i A, (A(V)E L 141"
_ NP ) — - 7 < _
7 le(A"%’ u, 0, AV ||, - H) ={tecw: 5 hmE Z S, S Xps X =0, forsomeLandp>0 3,
TP keJ, P
(8)
1 (e '
J—Nf(A, M, u,@,A(V),||-,~-,- ||)OO: Ecw e Z Sy T is bounded, for some p > 0

If we take (&) =&, the above spaces reduces to % —
fo(A,u,e,A(V),||-,~--,~H)0, j_Ng(A,u,Q’A(V))H.,...’.”),
and 7 — NK(A, 1,6, AV, ||, ||) .

©)

If we take u=(u;)=1, the above spaces reduces to
T = NE(A M0, AV, ||y )y T = NR(A, 0,6, A),
oo |)s and o7 = NE(A, 4,0, AD), |-+ ) oo,



Journal of Function Spaces

The following inequality will be used in the proceeding
results. If 0 < u; < sup u, = H, D =max (1,2"7"), then

[y + s < D{[ri " + [se[*}, (10

~

for all k and r,, 5, € C. Also |r|“ < max (1, |r"") for all r € C.

2. Main Results

In this section, we study topological properties and prove
some inclusion relations. In what follows, we will take M =
(S)) a Musielak-Orlicz function and u = (1) a bounded
sequence of positive real numbers.

Theorem 2. The spaces J—Ng(A, M1, 0, A |- -,
I = NE(A, ll, 1,0, AV, ||+, ||), and .7 — NE(A, M, u,6,
AW, I+ ) o are linear spaces.

Proof. Let £,,&, € .7 — Nh(A, M, u,0, AV, ||----, - ||), and let
¢, v be scalars. Then, there exist two positive numbers p,
and p, for e >0

e B
. N Ak(A(y)gl) .
D1={f€]N.¢—? L;r |“ﬂ<< ) S XX EE

€,
(11)

w4 B
1 - Ak(A(V)Ez €
Dzz{re]N.(p—‘: k; {\sk< S XX ZE

(12)

Let p, =max {2|u|p,,2|v|p,} and by inequality (1), we
have

1 [ Ak(A(V)(‘ugl+vEZ)) “ P
P kezl: Sy . S XXy
1 [ ~ A”Ak(AOI)El) ik
1 - VAk(A(Y)fz> "7
1 - Ak(m)fl 17"
] N Ak(A(wgz) i B

Now by (11) and (12), we get

Ay (A(y)(ﬂfl + sz))
Ps

S X155 X

g

(14)

Therefore, p&, +v&, € J—Ng(A, M1, 0, AV, |-y ]
Hence, J—Ng(A, Moy, 0, AV ||, - ||), is a linear space.
On a similar way, we can prove that % —Ng(A, M, u, 0,
AV, ||, ||) and 7 = NE(A, M, 1,0, AD), ||-y--, - ||), are
linear spaces. O

Theorem 3. The inclusions .% —NQ(A, M1, 0, A, |-, 1),
C.F = NE(A, M, 1,0, A0), ||y - ||) € F = NE(A, s, 1, 6, AV,
[l ) hold.

Proof. The inclusion J—Ng(A, M1, 0, AV |, €
J—NS(A, My 1,0, AV, ||.,---,-||) is obvious. We prove .¥
— NE(A, M, 14,6, A), ||, ||) € F = NE(A, M, 0,6, A7),
-+ [|)og- For this, let & €.7 — NA(A, M, u, 0, AV, |-,
-|)- Then, there exists p, >0 such that for every £>0

o) T

(15)
We put p=2p, and # =(S,) is a Musielak-Orlicz
function, we have

A (A(V)E) L
P1

> X5t Xy

Ak(A(V)E)
Sk f’xl’""xn—l
A, (A(Y)g) - L (16)
<SBi| || X X
P1
L
+Sk<‘ p—l,xl,---,xn_1 )

Suppose that r ¢ B,. Hence by above inequality and (1),
we have



L
7’x1,...’x

1 (o3
’ qTﬁ‘ LEZ] {‘Sk( P1

<D{s+ % L; [$k< %,xl,--',xn,l Drkr}- (17)

By using [Sy([|(L/p,)x1-rx, )] < max {1, [y (1| (Lip,).

XX, )]}, we have
)|

Put K =Dfe+1/¢%[Y4e; [S(ll(Lip), x1 o, 1 D)) ).
It follows that

n-1

B
< 00. (18)

w4 B
NN b P (47) 1.«
reN:— 3 X150t 5X, >
o5 1" p ' '
€J.
(19)
This shows that e J—Ng(A, M1, 0, AY), (|- []) oo
which completes the proof. O

Theorem 4. The space ¥ — NQ(A, My, 0, AV || )
is a paranormed space with paranorm defined by

g(x):inf{p>0:§;:|:k€zb[5k< >:| k:| SI}.

(20)
Proof. Since g(&) = g(—&) and 5;(0) =0, we have g(0) = 0.
Let &,,&, € .7 — Nh(A, M, 1,0, AV, |-+, - || )., Let

Ak(A(Y)g)

S XX
P

n—1

we B
A (AW .
B(El)—{p>0:iu [Z lsk< M,xl,...,xn_l )] ] 51},
r ke]r P
(21)
e B
A (AW 5
3(52):{p>o:ialz {Sk( k( 5) S )] ] <1}.
r | kej, P
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Let p, € B(§,) and p, € B(§,) and p=p, + p,, we have

i

,xl)...’x

Ay (Am (& + fz))

N 'xl’”."x?lfl

A, (A(ﬁgl)

(23)

Thus, 1/¢}[Yie, [kl (A(AY (& +&))Ip, +p,)s 21
%, [)]*]F <1 and

9(&, + &) <inf {(p; +p,)>0: p; €B(&,), p, € B(§,)}
<inf {p,>0:p, €B(&))}
+inf {p,>0: p, € B(&,)}
=9(&) +9(&,)-
(24)

Let 0° — o where 0,0°€¢C and let g(&’-&)—0
as s— 00. We have to show that g(o°¢' —0&) — 0 as
s—0o. Let

g up F
r | keJ, Ps
(25)
| A (a0 (E-8)) "’
B(&-¢&)= p£>0:a{z {Sk<,)x1r",xn1 )} } <1\
T ke,
(26)

A, (Am (0°8 - aES))

pilos =l +p(lo]

1
~
< E Jk(
r | ke,

’Ak (AW) (08 - GE)> ’

pilo* = ol +plo]

’xl,...)xn_l

i
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jo°—olp, 1
" plot—a|+pllo| #F
(4(47(&))) g
YS! |t xpx,
ke, Ps
olp;, 1
plo* ol + pllo] #F

A, AW (& -
Z Sk ( (’ ))

ke, Ps

"xl"”’xn—l

From the above inequality, it follows that

Al

and consequently,

A (M) (08 - af))

!
plo —altpllo]

’xl’...’xn_l

1
¢

9(c°€ ~ot) <inf { (o’ ~0| +pllo]) >0: p, € B(E), pl e B(E - &) }
<(jo*=a)>0inf {p>0:p eB(&)} +(|o])
>0 inf {(pé)u"m : ps'eB(fs—f)} — 0ass— 0o,

(29)
which completes the proof. O

Theorem 5. Let M =(S,) and M'=(S,) be Musielak-
Orlicz functions that satisfy the A,-condition. Then

j_Ng(A, My 1,0, A, ||+, H)
0
gj_Ng(A,/%’ o Ml 11, 0, AV, [|-yov, - ||) i
0
T = NE (A tl,10,6,40), o, )
gJ—Nﬁ(A,/%’ ol u, 0, AV, |-, - H),
T = N (A, 14,6, 40), |- )

c.7-NF (A,/%’ o My 1, 0, AV, ||+, ||)
[e¢]

Proof. (i) Let &€ J—Ng(A, M, 1,0, A7) ||+, - ||)o- Then,

5
there exists K; > 0 such that
u B
) A, (AW)g .
Bi=qreN:— Z Sl [l——F> x5, 2K,
¢ liq.
€J,
(33)

for p>0. Since ' is a Musielak-Orlicz function which
satisfies A,-condition, we have

18
A (AE u*
fdor D)
A (AWE
Sk( k(p )xl Xy >>8
H
<max{l,<K%5;{(2)> };
18
A, (A K
S k( E) X1t Xy
keJ, P
A (AWE
5k< k( )9‘1»' n-1 )>‘3
P
(34)
for K > 1. By continuity of .#', we have
18
. , A (A0 “‘
‘Pi k; |:Sk (5k< k<p ) XXy
A (AD
Sk( k(p E) KX ><6
18
1 "
SW k; €
A (AD
5k< k(p E) XXy )Sﬁ
) _ 18
qui‘,’ kng max {s",sH}
A (AD
Sk< k( E) XXy >56
p
(35)



Suppose r ¢ B;. Then, by using (34) and (35), we have

- w1 B
A A(V)E
(2 )]
1 (Y
_(sz: g’ (‘%( p XXy
A (AW
8( ) )>5
p
- 18
A (AWE E
dor )
A (AW
Sk( k< E) T >s6
P
Lo f h H\ _ (36)
<max < 1, <K§‘5k(2)) K, + max {e € }—Kz.

r¢ B, ={reN: Ug[T; [SuSk(|A(AVE)/p,
xpo%, 1 |))]“)F > K,} and so B, ¢ B, which implies B, €
7. This shows that .7 — N&(A, " o M, 1,0, AV, [|----, - |)),.

Hence,

Hence, .J — Nh(A, M, 1,0, AV), |-, ||}y € I — Nh(A, "
My, 0, AV, I+ ||)o- Similarly, we can prove (ii) and
(iii) part. U

Corollary 6. Let M = (3}) satisfy A,-condition. Then,

J—N{f (A, u, 6, AV [y, - ||)
0

(37)

QJ_NS(A’ M, u, 0, AV, [l ey - H) ,

0

j_Ng(A’ 10, 0, AV, |-+, - ||)
(38)
gj_Ng(A,ﬂ’ 1,0, A0, [+, - ||),
j_Ng(A, 10, 0, AV, |-+, - ||)

* (39)

gj_Ng(A, My, 0, AV, ||+, - ||)
0o

Proof. If we put F(x) = x and F(x) = S, (x)Vx € [0,00) in
Theorem 5, the result follows. |

Theorem 7. Let M =(S;) and M'=(F,) be Musielak-
Orlicz functions that satisfy the A,-condition. Then,

J—Nf(A, M 11,0, AD) [y, ||>
0
n.s - NP (A,/%', 1,0, AV, [, - ||) (40)
0

gJ—Nf(A,%' + Myu, 0, A0, ||-yee, - ||) ,
0
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7~ NF (A, My 1,0, AV, ||, ||)
NS = NE (Al 1,0,40), |-, ) (41)

gf—N{j(A,/%’ M1, 0, AV, ||, - H),

T = Nb (40 l,14,6, 40, ||
ﬂf—Ng(A,ﬂ,u,QA(y),||':"';‘||> (42)
(o)
gJ—Nf(A,./%' + M, 0, AV, |-y, - H)

Proof. (i) Let &€ J—Ng(A, M1, 0, AV ||y )y N T —

NE(A,/[’, ,0, AV, ||+, ||)y- Then, there exists K, >0
and K, > 0 such that

e B
5 N 1 Z Ak(AW)g e .
=qreN:— R} > X5 X >
1 ¢? & k p 1 1 1
€,
(43)
u B
A (ANE g
B, = relN:ia Z SL M,x],m,xn_1 >K,
¢r kg]' p
€,
(44)
for some p > 0. Let r ¢ B, U B,. Then, we have
A (A(Y)g> 141"
1 a3 <! k
~a Z \Sk+«5k > X5 X,
r | ke, P
A (A(V)f) “ P
1 k
ol LIy (s,
()bl’ ke]r
A A(‘")E u B
1 / k
+ — Z S XXy
¢V ke]r
<{K,+K,}
(45)

ré¢B={reN: 1/¢‘:[qu,[(51’<+5k)(Ak(A<")f)/P’ Xppts
x, 1)]“)F >K}. We have B, UB,€.7 and so BCB, UB,
which implies Be.#. This shows that xe .7 —NS(A,
M+ M u, 0, AV ||, - ||)y. Hence, J—Ng(A, M, u, 0,
AV oy (g N T = NA(A, Ml 1,0, AV, ||y, - )y € F —
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Ng(A, M+ M, u, 0, AV, I+~ |)o- Similarly, we can prove
(ii) and (iii) part of the theorem. O

Theorem 8. Let 0< uy <v; and (v,/u;) be bounded. Then,
the following inclusions hold

J - NE (A, M, 0, AV, ||y, - H)
’ (46)

gj_Ng(A,ﬂ) 1,6, AV, ||, - H) ,
0

j_N5<A’ M, v, 0, AV, [ESERe H)
(47)
gJ—Nf(A,%, 1,6, AV, ||, - H)~

Proof. (i) Let EGJ—Ng(A, M, 0, AV || )g- Write

5= [S([A(AYE)p, xp,--x, ., |)]™ and Ay = u/vy, s0 that
0 <A <A < 1. By using Holder inequality, we have

r B B
1 g 1 1
e [Z (Sk)kk} s (s o+ & D (s
ro|keJ, T keJ, Tl kej,
SkZI 5k<1
r T8 B
A DECY I3 DO
T kej, | ke
_SkZI Sk<1
- 18T B

Il
S
i
s
X
£
+
i
N
=) -
o
N————
>
N
ik} =
N——
L

_Sk21 Sk<1
r 1B T A B
r 1/A
1 1\
S E Z (s0)| + Z o7 Sk
| kej, keJ, L NTT
_Skzl L Sk<1
1-A B
N 1/A-1
> ()
keJ, r i
5<1
B B
1 A
S e Z ()| + 4 Z (k)
| kej, T kej,
Skzl Sk<1

(48)

7
Hence, for every € > 0, we have
- we- B
. A, (A(y)g) "
reN:— Z S X5ty e
i p
— 16
r A (Amg) 7%
1 k €
CQreN:— Z S X1t X,y >~
¢ | i p 2
|51 -
- 16
i A (AWE 1™
1 k 1/A
UqreN:— Z S ( ),xl,---,xn_1 2(;) .
¢ G P
Lse<1 -]
(49)

This implies that {reIN: 1/¢f[zkdr[Sk(HAk(A(V)E)/p,
Xyt |]4F > el €7 and so Ee€.7—NE(A, M, u,0,
A, [|-y---, - ||),. Hence, j_Ng(A’ﬂ)V,Q’A(V),||.’...,.||)0
QJ—Ng(A, M, u, 0, AV, I+ |)g- Similarly, we can
prove J—Ng(A, M, 0, AV ey ) gJ—Ng(A, M, u,
0, AW, ||y, - |]). O

Corollary 9. If 0 <inf u, < 1. Then, the following inclusions
hold:

j_Ng(A’ﬂ)Q)A<V))H.’...,.||>0 0

gj—Ng(A> ﬂa u, G)A(Y): ||'>"'7' ||)
0

J—N{i (A, M0, AV, [z H)
(51)

gJ—Ngj(A, My 1,0, AV, -y, H)
Proof. The proof follows from Theorem 8. O
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In this paper, we aim to develop formulas of spectral radius for an operator S in terms of generalized Aluthge transform, numerical
radius, iterated generalized Aluthge transform, and asymptotic behavior of powers of S. These formulas generalize some of the
formulas of spectral radius existing in literature. As an application, these formulas are used to obtain several characterizations

of normaloid operators.

1. Introduction

Generally, in mathematical analysis and particularly in func-
tional analysis, the spectral analysis of operators is an essential
research topic. It is useful to study the properties of operators,
including spectrum and the spectral radius of operators (see
[1]). The spectrum of an operator is connected with an invari-
ant subspace problem on a complex Hilbert space (see [2]),
and the important property of spectrum is the expression of
spectral radius in various formulas (see [3-5]). These formulas
help to obtain several characterizations of operators, including
normaloid and spectraloid operators (see [6]). Since the
advent of various transformations of bounded linear opera-
tors, including Aluthge transform and its generalizations, the
study of spectral properties of operators has become the center
point for many researchers (see [7-9]).

An operator can be decomposed into two Hermitian
operators being its real and imaginary parts, and this decom-
position is known as Cartesian decomposition. Clearly, Her-
mitian operators are self-adjoint and hence symmetric
operators. The symmetric operators involved in Cartesian
decomposition are helpful to develop the spectral radius for-

mulas and numerical radius inequalities involving Aluthge
transform [10-12].

This paper is aimed at studying the generalization of
spectral radius formulas involving generalized Aluthge
transform. Henceforward, we will give the notions to pro-
ceed with the results of this paper.

Let B(F) be the algebra of all bounded linear operators
on complex Hilbert space H. Let S = U|S| be the polar decom-
position of S € B(F'), where S| is the square root of an oper-
ator defined as |S| = v/S*S and U is a partial isometry.

In [13], Aluthge introduced a transform to study the
properties of hyponormal operators that were connected
with the invariant subspace problem in operator theory. This
transform is called Aluthge transform, which is defined as

ApS= |S|1/2U|S‘U2’ (1)

and its nth iterated Aluthge transform is defined as
An(S) = A(A?le (S))’
A1, (S)=A(S)VneN.
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Yamazaki, in [3], gave the formula of spectral radius for
bounded linear operator involving iterated Aluthge trans-
form, ie.,

r(S) =lim[|4;,(S)]- 3)

In [14], a generalization of Aluthge transform was intro-
duced that is called A-Aluthge transform which is defined as

A,8=S'UIS) T A e [0,1]. (4)

Tam [4] gave a formula of spectral radius involving iter-
ated A-Aluthge transform for invertible operators using uni-
tarily invariant norm, i.e.,

r($) =lim [ 43(S)]|, L € (0,1). (5)

Chabbabi and Mbekhta [12] gave various expressions for
spectral radius formulas involving A-Aluthge transform,
iterated A-Aluthge transform, asymptotic behavior of pow-
ers of an operator, and numerical radius. The expression of
spectral radius involving A-Aluthge transform is given by

S)=inf _[|[A(YSY)||= inf [|4(efSe )],
9=yt [0S = e e
invertible selfadjoint

(6)

and the expressions of spectral radius involving iterated
A-Aluthge transform and the asymptotic behavior of powers
of S are given by

S)= inf ||A}(YSYY)||=  inf AL (eSe M|,
= ISOST))=  mtagetse)
invertible self-adjoint
(7)
L X I/k_ . k 1/k
r(s) =lim|| 41 ()| =timl |4y (1) | @

for each n> 0.

The expressions of spectral radius involving iterated A-
Aluthge transform, numerical radius, and the asymptotic
behavior of powers of S are given by

S)= _ inf A (Ysy h))||=  inf Ay (e*se™)) ],
9=y nt ST )= e (s )
invertible self-adjoint

©)

1/k

>

) =t ()| < (s ()
(10)

for each n > 0. With the help of the above formulas, the
author [14] gave a characterization of normaloid operators.

In [15], Shebrawi and Bakherad introduced a new gener-
alization of Aluthge transform, called generalized Aluthge
transform. This transform is defined as
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ArS=£(ISU4(IS)), (11)

where f and g both are continuous functions such that
g(x)f(x) =x,x>0. The iterated generalized Aluthge trans-
form is defined as

AL (S) = A(A;j; (3)),\m eN. (12)

In this paper, we establish the formulas of spectral radius
for operator S by assuming that [|A; ,(S)|| < ||S||. These for-
mulas generalize the spectral radius formulas (6)-(10).

The paper is organized as follows. In Section 2, we give
the properties of the generalized Aluthge transform. In Sec-
tion 3, spectral radius formulas involving generalized
Aluthge transform and asymptotic behavior of powers of
the bounded operator S are given. In Section 4, we develop
spectral radius formulas of bounded linear operators involv-
ing numerical radius of generalized Aluthge transform. Fur-
thermore, some characterizations of normaloid operators
are established.

2. Preliminaries and Some Auxiliary Results

We start this section with some basic definitions and
properties of generalized Aluthge transform which will be
useful in establishing the main results of this paper. An
operator T is similar to S if there exists an invertible oper-
ator Y such that S= Y !'TY (see [16]). If (S) =S|, then
the operator is said to be normaloid. An operator S is said
to be a contraction if ||S|| < 1. The spectral radius of an
operator S is defined as

r(S)=sup {|Al: Leo(S)}, (13)

where o(S) is the spectrum of the operator S.
To prove spectral radius formulas, we recall some prop-
erties of generalized Aluthge transform.

Proposition 1 [7]. Let S € B(H). Then, we have

(i) 0(S) =0 (41 4(5))
(ii) 7(S) = r(A54(S))

Proposition 2. Let T,S € B(F). If T is similar to S, then
(i) o(S) =o(T)
(ii) 0(A74(8)) =0(4s,(T))
(iii) 7(A74(8)) =7(As4(T))

Proof. The proofs of parts (i) and (iii) are trivial. The proof
of part (ii) follows from part (i) and Proposition 1 (i). [
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Proposition 3. Let S € B(#’) and f be any continuous func-
tion on o(S). Then,

fUISIUT) = Uf(IShu-, (14)
for any unitary U € B().
Proof. Since U*U|S| =S|, we have
(Uls|u™)" = ujs|"ur, (15)
for each n € IN, which implies
P(UISIU") = UP(IS|) U, (16)

for any polynomial P(¢). Since f is a continuous, so there
exist a sequence of polynomial {P,(t)} >, such that P,(0)
=0 for each n €N, and {P, ()}, converges uniformly to
f(t) on the interval [0,]||T|||]. Then, from Equation (16),
we have

f(UIS|U") = lim P, (UIS|U*)= lim (UP,(S)U")
= U lim P,(IS)U° = Uf(IS)U",
(17)
as required. O

Proposition 4. Let S,U € B(F) such that U is unitary.
Then, we have

A (USU*) = UA; ((S)U". (18)

Proof. Let S= V| S| be the polar decomposition of S. Then,
we have

|USU*| =U|S|U". (19)

Now by using Proposition 3, we have
F(USU* ) = UF(IS))U". (20)
The polar decomposition of operator USU* is as follows:

USU* = UV|S|U",

(21)
USU* = (UVU*)(U|S|U"),
where UVU™ is partial isometry. Therefore,
41 (USU") = (USU)UVUg(USU)

= Uf((S))Va((S))U" = UA;,(S)U".

The second equality holds by Proposition 3 and by the
fact that U"U =1. O

Proposition 5. Let S€ B(#).
{1147 ,(S)II}72, is nonincreasing.

Then, the sequence

Proof. The proof follows from the repeated application of the
inequality

1476 < IS]- (23)
O

3. Formulas of Spectral Radius Involving
Generalized Aluthge Transform

In this section, we give formulas of the spectral radius by
using Rota’s theorem [16] and the properties of generalized
Aluthge transform.

Theorem 6. Let S € B(H). Then, we have

S)= inf ||A;,(YSYT))|[=  inf As g (e*se™) ||
)= nt s ST= | e ag (s )|
invertible self-adjoint
(24)
Proof. From Propositions 1 and 2, we have
r(8)=r(Ap,(YSY™)). (25)

It follows that

r(S) = r(Af’g(YSY'l)) < HAf,g(YSY'l) H for invertible Y € B(%).

(26)
Hence,
S)<  inf Ay (YSY Y.
r ) Yeé}(%) || f,g( )H (27)
invertible

Let Y=U| Y| be the polar decomposition of Y. Since Y
is an invertible operator, then U is unitary and |Y | invert-
ible. Therefore, there exists 5> 0 such that o(|Y | ) € [5,00)
. Consequently, A=In (|]Y|) exists and self-adjoint; then,
we have

|Y|=e,
(28)
Y[ =
Therefore,
456 (YY) || = [| Ao (UIYS(UIY) )]
=||lu(a, |Y|S|YI"™\U*
H (f>g| H ‘ ) (29)

=[[U(4y4(e"se)U"
= [[47(e"se )]




The second equality holds by Proposition 4. Hence,

S)y< inf  ||A; (YSY )| inf As o (e*Se™)|.
RN S [E I S
invertible self-adjoint

(30)

To prove above inequality in other direction, for an arbi-
trary € > 0, we define an operator

(31)

For operator §,, we have

(S \__rS
(Se) = r(r(S) + s) S r(S)te <t (32)

From [16], Theorem 2, the spectrum of operator S, lies
in the unit disk; thus, the operator S, is similar to contrac-
tion for which there exists an invertible operator Y, € %(
) such that

Y, SY;!
r(S) +e

<1, (33)

and this implies that

[ (e"eSe™)

| <||YSY M| <r(S)+e.  (34)

For £ > 0, we obtain

< inf |4y, (YSY )]s inf As g (e*Se™
5 a5 = s
invertible self-adjoint

< inf A (e%Se)|| < inf
e 1474 (e Se) | v, o

) [y SY | <r(S) +e.
self-adjoint .

invertible

(35)

Since € > 0 is arbitrary, therefore

S)= _inf ||A;,(YSY)||=  inf As (e85
R AN P T I S
invertible self-adjoint
(36)
O

The next Corollary is the direct result of Theorem 6
involving iterated generalized Aluthge transform.

Corollary 7. Let S€ B(). Then, for each n € N, we have

/(S)= inf ‘A” Ysy! H: inf ‘A” eAse H
©) YeRB(#) ol ) ACB() ol )
invertible self-adjoint

(37)
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Proof. From Propositions 1 and 2, we can easily obtain
r(474(¥sY)) =r(S)¥ne. (38)
From above equality and by using Proposition 5, we have

A 4(YSY™) . (39)

r(S) < ]

<A (vsy)

for all invertible Y € (). Therefore,

. n —1 . n —A
r(s) < Yeé}f%)’Aﬁg(YSY )||< Aeé}g%) |47 5e*se) |
invertible self-adjoint
< inf A, (e*Se™) || =7(S).
aelily Iarale'se =0

self-adjoint
(40)

The third inequality holds by Proposition 5, and the last
equality holds by Theorem 6, which completes the proof. [

The next Corollary is the direct result of Corollary 7 that
is the characterization of normaloid operators.

Corollary 8. Let S€ B(H). Then, the following assertions
are equivalent

(i) S is normaloid

(ii) ||S|| < || YSY Y|, for invertible Y € B()

Proof. Assume that S is normaloid. Then,

I811=r(sY™) < g, (YY) < [[ysy, - (a)

for all invertible Y € (). The first equality holds by
Proposition 2. The first inequality holds because the spectral
radius is less than the operator norm, and the second
inequality holds by Proposition 5.

Assume that assertion (ii) holds. Then, we have

r(S) <[] < || YSY | <||YeSYe || <r(S) +e  (42)

for all invertible Y € B(#’). The last inequality holds by
inequality (33) in Theorem 6. Since € > 0 is arbitrary, hence S
is normaloid. O

Corollary 9. Let S € B(H). Then the following assertions are
equivalent.

(i) S is normaloid;
(ii) ||S|| < [|4Af,,(YSY™')]| for invertible Y € B(X) ;

(iii) ||S]| < ||A}"g(YSY_1)H for invertible Y € B(H) and
every n € IN.
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Proof. (1)=(iii)=(ii). Since S is normaloid, therefore

ISl =r(a7,vs7") < ‘

A},g(YSY—l)

| <A (vsy™)

>

(43)

for all invertible Y € B(). The first inequality holds
because the spectral radius is less than the operator norm,
and the second inequality holds by Proposition 5. Hence,

18] < | Af,4 (YSY™") || for invertible Y € B(F),
(44)

NE ’ An(vsy) H for invertible Y € %(%).
(i)=()
Since spectral radius is less than operator norm and by
assertion (ii), we have

r(S) < [IS|| < ||Arg (YSY )| < |44 (YSY) || < [|YeSYL | <7(S) +&
(45)
for all invertible Y € B(#). The third inequality holds

by inequality (34) of Theorem 6. Since € >0 is arbitrary,
therefore S is normaloid. O

Now, we will give a formula of spectral radius involving
iterated generalized Aluthge transform and asymptotic

behavior of powers of S.

Theorem 10. Let S € B(H'). Then, we have

r(s) =1lim| |47, (") H”k,‘v’n eN=lima;,(s") H”k. (46)

Proof.
() =r(474(9)) = |[474(9)]| < [|474(S)]| < S| ¥m e .
(47)
The first equality holds by Proposition 1, second

inequality holds by r(S) <||S||, and third inequality holds
by Proposition 5. Thus, for kth power of an operator, we

have
()" =r(5") =r(45,(5%) <[5 (")
<||azy (81)]| < || ke .
r(s) < ‘ 274(") " HAM () H“k < Hs"Hl/k,\m, keN,

) 0 (R [VE A NYE okl VE
r(S)Sh}{nHAf,g<S)H Sh}{nHAf,g(S>H Sh}{nHS H ¥neN.

(48)

5
Since
LI 17K
r(S) = lillngS H . (49)
Thus,
] NI NIL
r(S) Sh]r(n) Af, (S )H ShllanAf’g (S )
Uk (50)
< li]r(nHSkH =r(S),VneN,
which completes the proof. O

The next Corollary is obtain in the consequence of The-
orem 10.

Corollary 11. Let S€ B(I). Then, the following assertions
are equivalent.

(i) S is normaloid
(ii) [IS]| = [| A7, ($)]], Vk € N

(iii) ||S|* = 1|4} ,(S)|, Vn, k € N

Proof. (1)=(ii).

1/k

>

1/k>k, (51)

’,Vk eNN.

. k
IS/ =1im 47,4 (5)

1514 = (v (5

k k
ISI = [ 4r(5)

The first equality holds by assertion (i) and Theorem 10.
()= (iii)

1/k
I]| = likm’ A;’g(S)kH vneN,

(52)

||S||k=‘ i keN.

A’;)g(S)k

The first equality holds by assertion (i) and Theorem 10.
(i)=(i)

k k
81 = [ 4rq(S)

’,Vk €N,
() oo e,

lim ]| = lim||2, (5]
im|| ]| = lim] |4, ()

r(S)=|SII-

The last equality holds by Theorem 10.
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(ii))=(i)
S|/ = ‘ s)k ’,\m, keN,
S)"H”k,\m €N, (54)
1511 =7(5)-
The last equality holds by Theorem 10. Hence, S is nor-
maloid. O

4. Formulas of Spectral Radius Involving
Generalized Aluthge Transform and
Numerical Radius

This section gives spectral radius formulas for the bounded
linear operator in terms of numerical radius and iterated

generalized Aluthge transform. The numerical radius is
defined as

w(S) = sup {|A: A e W(S)}, (55)

where W(S) is the numerical range.

Theorem 12. Let S € B(H). Then, for all n € N, we have

_ . n —1 _ . n Ag —A
r(S) = Yegg}g%)w<Af’g(YSY )) = Aelgrglf%) w<Af’g(e Se ))
invertible self-adjoint
(56)
Proof. As we know that
r(8) <w(S) < ||S]|- (57)

Thus, for every invertible operator Y € (%), we have

r(8)=r(4,(¥sY)) sw(ag,(vsy™))

<|a,(rsy)]

Let Y be any bounded linear invertible operator with
polar decomposition Y=U|Y|. Since Y is an invertible
operator, then U is unitary and |Y | is also invertible and
positive. Thus, there exists 5> 0 such that o(|Y'|) € [5,00).
So, A=In (|Y|) exists and self-adjoint. Thus, we have

(58)

Y]=

(59)
Y1 =
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Therefore,
W(Af (YS! ) A" (YSY >

(UIYNSUIY ) )nx)

1.9
A%

(4
(%
(4
(4
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(
((

4, (UIYDSIY 17U ) x)
(

= (A, (1Y ISIY 1)U %, U'x >
Ux  U*

= (sety o, >-<UU*x,x>.
\U x| U]

(60)
The second equality holds by Y = U|Y], third equality

holds because U is unitary, and fourth equality holds by
Proposition 4. Thus,

n -1 n —A *
W(a;,(YSY)) cw(ap,('se ) ) w(uu).  (61)
In the above equation, U is unitary. This implies that

n -1 n Ag —A
w(a,(YsY ")) <w(ap,(e'se?)).  (62)
It follows that

r(S) = r(A})gYSY*) <w (A;g (Ysy-1)>, for invertible Y € B(%)
< w(AJ’Z,g (eASe’A)> ,for self-adjoint A € B()

<||A"_(etSe™) ||, for self-adjoint A € B(F).
, (%)

(63)

For every invertible Y € %(
satisfied; thus, we have

), all above inequalities are

r(S) < inf
YeRB(H)

invertible
inf w(A? (erSe
AcB(H) (4.('57)
self-adjoint
inf ‘
AeRB(H)
self-adjoint

w(4y,(vsy™))

IN

(64)

IN

7 (eASe’A) H =r(S).

The last equality holds by Corollary 7, which completes
the proof. O

Let A be any bounded linear operator with cartesian
decomposition

A+A" A-A"

A= + -
2 2i

(65)

In this decomposition 1/2(A + A*) is the real part and
1/2i(A — A*) is the imaginary part.
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In [17], the spectrum of a bounded linear operator is
contained in the closure of the numerical range.

Theorem 13. Let S € B(H). Then, for all n € N and 0 € R,
we have

_ . i0 n —1
r(S) = Yeggﬁ%)w<Re (¢ (47(vs7))))
invertible (66)
= inf
YeRB(H)
invertible

HRe (eie (A;,g(YSY’I)»H.

Proof. Let r(S) € 0(S). Then,

r(S) €Re (0(S)) =Re <0 (A;)gYSY’l > ) , for invertible operator Y € B (7).

(67)

Thus,

r(S) € Re (047, (¥SY™))) cRe (W(4f,(vsY™)))

= (Re (47, (vsY™))),

(68)
which implies
r(8) <w(Re (47,(vsY™))) <|Re (47, (vsy™))|| < ar, (vsy)|.
(69)
for all invertible Y € B(%’). Thus, we have
)= %}?%) w(Re (47,(vsY™)))
invertible
< Yegg}f%) |Re (a7,(¥sy))| )
invertible
< YG%}{%) 475 (s | =7(9).
invertible

The last equality holds by Corollary 7. For r(S) € o(S),
we have proved

)= Ye%}f%)

invertible

YG%}?%) [Re (a74(¥sy)) -

invertible

w(Re (47,(vs77)))
(1)

If S is an arbitrary operator, then there exists z € o(S)
such that |z | = r(S). Put 6 = —arg (z). Then, (S) = ze? € o(
¢?S). Hence, by the first part of the proof, we conclude that

r(8)=r(e"s) < v %}{%) w(Re (47, (e°(vs17))))

invertible

Ye%}{%) HRe (A?’g (ei9 (YSY_I)D H

invertible

< inf ’
YeRB(H)
invertible

IN

A

23 ((vsr))|| = ().

(72)

The last inequality holds by Corollary 7, which com-
pletes the proof. O

The next Corollary is the characterization of normaloid
operators.

Corollary 14. Let S € B(H). Then, for each n € N, the fol-
lowing assertions are equivalent:

(i) S is normaloid

(ii) There exists 0 € R such that for any invertible Y €
B(X)

NE w(Re (A?,g (el@ysrl))) (73)

(iii) There exists 0 € R such that for any invertible Y €
RB(X)

IS < HRe (A;’g (e""YSY-I)) H (74)

Theorem 15. Let S € B(H). Then, we have
s) =timw (a7 ()" wneN 75
r( )—1kmw( f)g( )) VneN. (75)

Proof. Since r(S) <w(S) < ||S]|, therefore

() =r(s) =r(a1, () <w(ag,(s9))

< ‘ 23 (8) | W ke.

" K 1/k
A (s )H v, keN. (76)

s (o(a(s)" <




By Theorem 10, we obtain

r(s) <lim (w(47,(5"))) " tim|[a7, (3" ") wneN,

(77)

which completes the proof. O
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This paper introduces a new dimension of an additive functional equation and obtains its general solution. The main goal of this
study is to examine the Ulam stability of this equation in IFN-spaces (intuitionistic fuzzy normed spaces) with the help of direct
and fixed point approaches and 2-Banach spaces. Also, we use an appropriate counterexample to demonstrate that the stability of

this equation fails in a particular case.

1. Introduction

The study of stability problems for functional equations is
one of the essential research areas in mathematics, which
originated in issues related to applied mathematics. The first
question concerning the stability of homomorphisms was
given by Ulam [1] as follows.

Given a group (G, * ), a metric group (G',-) with the
metric d, and a mapping f from G and G', does & > 0 exist
such that

d(f(x=y), f(x)- f(y)<9, (1)

for all x, y € G. If such a mapping exists, then does a ho-
momorphism h: G — G’ exist such that

d(f(x),h(x))<e, (2)

for all x € G? Ulam defined such a problem in 1940 and
solved it the following year for the Cauchy functional
equation

y(u+v) =y +y), (3)

by the way of Hyers [2]. The consequence of Hyers becomes
stretched out by Aoki [3] with the aid of assuming the
unbounded Cauchy contrasts. Hyers theorem for additive
mapping was investigated by Rassias [4], and then Rassias
results were generalized by Gavruta [5].

As of late, Nakmahachalasint [6] gave the overall answer
and HUR (briefly, Hyers—Ulam-Rassias) stability of finite
variable functional equation; furthermore, Khodaei and
Rassias [7] examined the stability of generalized additive
functions in several variables. The stability result of additive
functional equations was examined by means of Najati and
Moghimi [8], Shin et al. [9], and Gordji [10]. Stability
problems of various functional equations have been inves-
tigated by many researchers, and there are various inter-
esting results about this problem (see [11-14]).

Zadeh [15] established the concept of fuzzy sets, which is
a tool for demonstrating weakness and ambiguity in several
scientific and technological problems. The possibility of IFN-
spaces, from the start, has been presented in [16]. Saadati
[17] have examined the modified intuitionistic fuzzy metric
spaces and proven some fixed point theorems in these
spaces.
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The IFN-spaces and IF2N-spaces (briefly, intuitionistic
fuzzy 2-normed spaces) have been studied by a number of
researchers [18-20]. Furthermore, several researchers have
discussed the generalized Ulam-Hyers stability of various
functional equations in IFN-spaces (see [21-24]).

In this current work, we present a new kind of additive
functional equation:

D ¢<—va—vb—vc+ i vd>

1<a<b<c<s d=1,d+a+b#c

3 2
_(s 9s -;205 12) (4)

S[ptspen)

where s > 4 is a fixed integer, and obtain its general solution.
The main goal of this study is to examine the Ulam-Hyers
stability of this equation in IFN-spaces with the help of direct
and fixed point approaches and 2-Banach spaces by using
the direct approach. Also, we use an appropriate counter-
example to demonstrate that the stability of equation (4) fails
in a particular case.

2. General Solution

Theorem 1. If a mapping ¢ between two real vector spaces W
and F satisfies functional equation (4), then the function ¢ is
additive.

D¢(V1,V2,...,Vs)= Z

for all vi,v,,...,v, € W.

3. Stability Results in IFN-Spaces

We can recall some basic notions and preliminaries from
[25] and using the alternative fixed point theorem which are
important results in fixed point theory [26].

Definition 1 (see [25]). Consider a membership degree p
and non-membership degree v of an intuitionistic fuzzy set
from W x (0, +00) to [0, 1] such that g, (t) + v, (t) <1 for all
veW and t>0. The triple (W,I,,,Y) is called as an
Intuitionistic Fuzzy Normed-space (briefly, IFN-space) if a
vector space W, a continuous t-representable Y and
IW: W x (0,+00) — L* satisfying v,,v, € W and t,s >0,

(IFN1) 1., (v,,0) = 0.

(IFN2) I, (vy,t) = 1;. if and only if v; = 0.

(IEN3) I, (avy,t) = I, (vy, (t/]al)), for all a#0.
(IFN4) I, (vy +vy,t+5)> L*Y(IW (v, 1), I, (v5,9)).

> s* = 95" +20s — 12 d(v,)—d(-v,)
Ol v — v+ v —( ) [ . . ] )
1<a<b<c<s < ! d=1,d§;¢b#c d> 6 ugl 2
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Proof. Setting v, =---=v,=0 in (4), we have ¢(0) =
Replacing (v, vy,...,v5) by (v,0,0,...,0) in (4), we get

(s—1)-times

¢(—v) = —¢(v) for all v € W. Hence, ¢ is an odd function.

Replacing (v, v,,v5,...,v5) by (1,,0,0,...,0) in (4), we
have (s-2)-times
¢ (2v) =2¢(v), (5)
for all v € W. Replacing v by 2v in (5), we have
$(2%v) = 2’9 (v), (6)
for all v € W. Again, replacing v with 2v in (6), we get
$(2°v) =2°¢ (v), (7)

for all v € W. In general, for any non-negative integer a > 0,
we have

$(2%) = 2" (v), (8)

for all veW. Replacing (v;,v,v3...,v,) by
(s,1,0,0,...,0) in (4), we obtain (3) for all s,t e W. O

(s—2)—times

Remark 1. 1f a mapping ¢ between two real vector spaces W
and F satisfies functional equation (3), then the function ¢
satisfies additive functional equation (4), for all
Vi Vys V3se oo Vg €W,

For our notational handiness, we define a mapping
¢: W — F by

In this case, I, is called an intuitionistic fuzzy norm,
where I, (v, 1) = (, (£),, (2)).

Definition 2 (see [25]). A sequence {v,,} in W is called as a
Cauchy sequence if for every € >0 and t > 0, there exists #1,
such that

I”)v(vm+p—vm,t)>1—£, m=my, (10)

for all p>0.

Remark 2. In an intuitionistic fuzzy normed space, every
convergent sequence is a Cauchy sequence.

If every Cauchy sequence is convergent, then the
intuitionistic fuzzy normed space is called as complete.

Definition 3 (see [25]). A mapping ¢ between two IFN-
spaces W and F is continuous at v, if for every {v,} con-
verging to v, in W, the sequence ¢{v,,} converges to ¢{v,}. If
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¢ is continuous at each point v, € W, then the mapping ¢ is
called as a continuous mapping on W.

Example 1. Let (W, | - |) be a normed space. Let T (a,b) =
(a,b, min(a, + b,,1)) for all a = (a,,a,); b= (b,,b,) € L*
and p,v be membership and non-membership degree of an
intuitionistic fuzzy set defined by

t v
t+vll £+ vl

L, (1) = (u, (1), () =( ) teR". (11)

Then, (W,1,,,T) is an IFN-space.

wr’

Theorem 2 (see [26]). Let (W,d) be a generalized complete
metric space and a strictly contractive mapping
M: W — W with Lipschitz constant L<1. Then, for all
v, € W, either

d(M"‘vl,MmHh) =00, mzm,, (12)

or there exists a positive integer m, such that
(i) d(M™v,, M"™*y,) < co, m>m,,.
(ii) The sequence {M™v,},,. converges to a fixed point
vi of M.
(iii) vi is the wunique fixed point
W* = {v, e W|d(M™v,,v,) < co}.

of M in

L, (¢(v) - A, (v),€) 2L*I;m,(<p(v, v,0,...

forall veW and all €>0.

(iv) d(v,5,v]) < (1/1 = L)d (Mv,,v,), for all v, e W*.

3.1. Stability Results: Direct Technique. In this section, we
assume that W, (Z, I,:,w Y), and (F, Iy Y) are linear space,
IFN-space, and complete IFN-space, respectively.

Theorem 3. If a mapping ¢: W* — Z with 0< (¢/2) <1,
L, (9(2v,21,0,...,0),&) 2 1.1, (¢ (v,1,0,...,0),¢), (13)

Jim 1 (p(2" v, 2%, 25 ) 2%) =1, (19

for all v,v;,v,,...,v; €W and all €>0. If a mapping
¢: W — F satisfies

Ly (D (v, vy s vg)s€) 2 Ly (@ (Vi vy, -5 %) €), (15)
for all vi,v,,...,vy € W and all € >0, then the limit
¢(2kv)
I, Ar(v) - 5 ,€ | — 1. ask — o0, (16)

exists and there exists a unique additive mapping
A,;: W — F satisfying functional equation (4) and

3_ 2 _
,0)’(5 9s +6205 12)6(2_@)’ (17)

Proof. Fix v € W and all € > 0. Replacing (v, v,,. ..
(v,1,0,...,0) in (15), we have

,Vs) by

3 2 3_ 92 _
IW<<S % +620S_12></>(2v)—<2(S - ;205 12)>¢(v),e>
(18)

2L, (9(v,%,0,...,0),¢).

Replacing v by 2%y in (18) and using (IFN3), we obtain

¢(2k+lv) f 6e
. <T —#(2) 2(s* - 95" +20s - 12) (19)

,0),(—:).

By the inequality (13) and (IFN3) in (19), we have

> I;’v(<p(2kv, 2"v,0,...

$(2"v) 6e
I"’”( 2 #(2) 2(s® - 95> +20s - 12)

€
> L*Il:),,(go(v, v,0,..., 0),c—k>.

(20)

Clearly, we can show from inequality (20) that



| (#E) a2 o
B\ gkt 28 T\ 2M(s7 - 95 + 205 - 12)

> L*Il:)v<go(v, v0,..., 0),;).
(21)

Replacing € by ¢*e in (21), we get

L [9) e(2') 66‘e
B\ gkt 28 T\ 2M(s7 - 95T + 205 - 12)

k

> 1.1, (9 (v, 1,0,...,0),¢).
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Clearly,
k k-1 a+l a
P2 =S 0@y
2 5 2 2

It follows from (22) and (23) that

(22)
o(25v k1 6¢%e
IW ( k ) -¢), Z atl/ 3 2
2 527 (s7 - 95 +20s - 12)
sy [ (#ETY) g2) 6c'e
I R NPT 2% 72"(s7 - 95% +20s - 12) (24)

k-1

> L*YE:O{I;,,V(q)(V, 1,0,...,0), e)}

2.1, (9(%%,0,...,0),€),

for all v € W and € > 0. Replacing v by 2'v in (24) and with
the help of (13), we have

I, <¢(2k”v) iU

6¢%e
okt 28 52" - 95 + 205 - 12)

€
zL*IIj’y(go(v, v,0,..., O),?),
(25)

2k+t 9t
I[A,'V <% - @, €> ZL*I‘;)V<§0(V, 1,0,... 0)

for all t,k>0. Since 0<¢<2 and ZZ:O (¢/2)* < 00, the
Cauchy criterion for convergence in IFNS shows that
{¢(2kv)/2k} is Cauchy sequence in (F,1,,,Y). Since
(F,1,,,Y)isa complete, this sequence converges to some
point A, (v) € F. Then, we can define the mapping
A: W — Fby

for every t,k>0. Replacing € by ¢'e in (25), we have

k+t t k+t— a
IW((;S(Z v) - (/5(2 v) Zl 6¢%e )

2kt 2875 2" (5T - 95T +20s - 12)

> 1.1, (9 (1,1,0,...,0),€).

(26)
Using (IFN3) in (26), we obtain
€
> > 5 (27)
YA (66" /2%2(s% - 957 +20s - 12)))

2k

k
IH)1,<A1(V)—¢(2 v)> —> 1;. ask — 0. (28)

Setting ¢ = 0 in inequality (29), we obtain
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k
Iy,v<¢<jk1}) - ¢(V)>€> ZL*I;;,V<(P(V> 1,0,...,0

Taking the limit as k — oo in (29), we obtain

L, (¢(v) = A (v),€) 2L*I;,’V(go(v, v,0,...

Next, we want to prove that the function A, satisfies

functional equation (4); replacing (v;,v,,...,v,) by
2Ky, 2kv,, .., 2kv) in (15), we have
1. % Dg(2* 2*
wr| ¢>( Viseoos vs),e
(31)

- I;’v(go(Zkvl, e

5
€
) Ny : (29)
Yhoo(66%722(s* - 957 +20s - 12))
3 o2
s =95 +20s-12
,0),( ‘ >€(2 - c)). (30)
for all v;,v,,...,v, € W and all > 0. Since
klﬂ)noo I;ﬂ,(go(zkvl, v, ..., 2kvs), 2k£) =1, (32)

the function A, satisfies functional equation (4). Thus, the
function A, is additive. Finally, we want to prove that the
function A, is unique; consider another additive mapping
A,: W — F satistying functional equations (4) and (17).
Hence,

2v) AZ(Zkv)’€>

(A
Ly (410D = Ay () €) = Iy | —

k k k k
17 A1(2 v) _(/)(2 v) e I </>(2 v) _A2(2 v) e
wy 2k 2k ’2 >t uy 2k 2k ’2
(33)
3 2 k
, . (s = 95” +20s - 12)2€(2 - ¢)
ZLJW<¢(2 v,2"7,0,...,0), 5
3 2 k
s = 95" +20s - 12)2%(2 - ¢)
>..I (v,v,O,...,O),( ,
L y,v<§0 12Ck
for all v € W and all €>0. As we obtain
3 2 k
S —9s"+20s—-12)2"€(2 - ¢)
lim ( - ) = 00, (34)
§—00 12C
im ' (otvo.... 0 (s —9s* +20s - 12)2%(2 - ¢) 1 )
1m vV, 0,0, > = 5.
k—00 wy (P ]-ch L

Thus, IW,(A1 (v) —A,(v),€) = 1;..
Therefore, A, (v) = A, (v). Thus, the additive function
A, (v) is unique. This ends the proof. O

Theorem 4. If a mapping ¢: W° — Z with 0< (2/¢) <1,

I;)v(go(zflv, 27 W0,.. .,O),e) ZL*I;!’V(%go(v, v,0,.. .,0),6),

lim I[:’v(q)(Z_ kvl, Z_kvz, o

k—00



for all v,v,v,,...,v; €W and all €>0. If a mapping
¢:E—F satisfies (15), then the limit
L,(A () - 2k¢ (v/2%),€) — 1,. as k — oo exists and

Ly (90 = A, (),¢) ZL*I,LV<§0(V, "o...

for all ve W and all €>0.
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there exists a unique additive mapping A;: W — F satis-
fying functional equation (4) and

3_ 2 _
’0)’<s 9s -;205 12)6“_2))’ (38)

Proof. Fix v € W and all € > 0. Replacing (v, v,,...
(v, v,0,...,0) in (15), we have

,v,) by

3 2 3 _9¢? _
IW<<S % 2205_12)95(21/)—(2(5 - ;205 12)>¢(v),e>
(39)

21 L, (9(%,%,0,...,0),€).

From (39), we obtain that

6e
o <¢(2V) e 2(s” - 95> + 205 - 12)> (40)

ZL*I;!),,((p(v, v,0,...,0),€).

Replacing v by v/2 in (40), we get
v 6e
I,, v)—2 (—),
* <¢( )20 2(53—952+205—12)>

’ vV
> L*IW’(QD(E’ 5’ O, ceey 0), e).

Replacing v by v/2K in (41) and using (IFN3), we have

v v 6e
1 — =20l — ),
"”("5(2") ¢(2"“) 2(s* - 95> +20s - 12)>
, v
ZL*I[J,V @ F,F,O,...,O .

With the help of inequality (36) and (IFN3) in (42), we
obtain that

ol o) 255 s oy
wr| ¢ 2k ¢ P ’2(53—9sz+205—12) (43)

> L*I}:,V(q) (v, v,0,...,0),ec""! )

(41)

The remaining part of the proof can be proven in the
same way as Theorem 3. O

Corollary 1. Let 6 € R". If a mapping : W — F such that
L, (Do (v, vy, svg),€) 210, (B,€), (44)

for all vi,v,,...,v, € W and all €>0, then there exists a
unique additive mapping A;: W — F satisfying
Ly (8(1) ~ A, (), €)
! 3 2 (45)
> . 1,,(66,12 - 1e(s’ - 9s* + 205 - 12)),

for all veW and all e>0.

Proof. 'The proof holds from Theorems 3 and 4 by letting
o,y ..., v) =0 and ¢ =2 O

Corollary 2. Let 6,& e R* with &€ (0,1)U (1,+00). If a
mapping ¢: W — F such that

R O O T

for all vi,v,,...,vi € W and all €>0, then there exists a
unique additive mapping A,: W — F satisfying
I,(¢(v) = A;(v),e)

(47)
>, I}:ﬂ,<129||v||f, |2 - 2f|(s3 —9s% +20s — 12)e>,
forallveW and all e>0.

Proof. 'The proof holds from Theorems 3 and 4 by setting
PV Va5 v) = 05 Iv,ll* and ¢ = 2¢, a

Corollary 3. Let 0,8y, 7 e R* with
s& st € (0,1)U (1, +00). If a mapping ¢: W — F such that

L, (D$(vi, vy, .., 7). €)
S S
zvf,:,(ez -y ||Vu||:e>,
a=1 a=1

for all vi,v,,...,vy € W and all €>0, then there exists a
unique additive mapping A;: W — F satisfying

(48)
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Iy,v (¢(V) - A (v), €)

(49)
>, %( 126]v]1%,

2 2%

(s = 95" +20s - 12)e>,
for all veW and all €>0.

Proof. 'The proof holds from Theorems 3 and 4 by setting
@V vy v) = O X0 Il + y T Ivall” and
¢=2% O

Corollary 4. Let y,7 € R" with 0<st+1. If a mapping
¢: W — F such that

I, (D (v, vy . .5 5),€) > L*I}:ﬂ,<y 11 ||va||r, e), (50)

and V is the set such that ¥ = {n,|n;: W — F,n, (0) = 0}.

Theorem 5. Consider a mapping ¢: W — F for which
there is a mapping ¢: W* — Z with

ll;néo I;)V(¢(21v1, 2, Zlvs), 21(—:) =1, (52)
satisfying functional inequality (15). If there is L = L(a) such
that v— 5 (v) = 6/(s> = 95 + 20s — 12)¢ ((v/2),
(v/2),0,...,0) has the property

IQ,V(Lin(ﬁQV), ) 1 (e, (53)

then there exists a unique additive mapping A;: W — F
satisfying functional equation (4) and

forall v, v,,...,v, € W and all € >0, then the mapping ¢ is -
additive. ) I, (p(v) - A, (V)’e)”ZL*I;,v(mW(V)ﬁ)’ (54)
Proof. The proof is valid from Theorems 3 and 4 by setting for all ve W and all €>0.
@i,y ) = [aey Ivall™ &
Proof. Let ¢ be a general metric on V:
3.2. Stability Results: Fixed Point Technique. Before we begin,
let us consider a constant 3, such that
2, ifa=0,
b1, (51)
— ifa=1,
2
(ny,ny) = inf{t € (0,00)1,,, (n, (v) =ny (v),€) 2 . 1, , (1 (v),€),v € W, e> 0}. (55)
Clearly, (¥,¢) is complete. Define a mapping
Y: ¥ — ¥ by Yn, (v) = (1/8,)n, (B,v), for all v € W. For
ny,n, € ¥, we have
¢(npmy) <t,
=1, (n, (v) =y (v),€) > L*I‘Wl,(tﬂ (v), €)
:I[“/(nl (ﬁav) _ n, (ﬁav)) 8) > L*I, V<t;7 (ﬁav), 8)
"\ B P\B
a a (56)

=1, (Yn, (v) = Yn, (v),€) > . I, (tLy(v),e)

=¢(Yn, (v), Yn, (v)) <tL

=¢(Yn,, Yn,) < L¢(ny,n,).

Thus, the function Y is strictly contractive on ¥ with L
(Lipschitz ~ constant). Replacing (v}, v,,...,v,) by
(v, v,0,...,0) in (15), we have



s =95 +20s— 1
Iw G

2.1, (9(1,1,0,...,0),€).

Using (IFN3) in (57), we have
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3 _ 2 _
2>¢(2V) ) (2(5 9s ;—205 12)>¢(V)) e)
(57)

¢ (2v) 6
I, ( - ¢ (), ) w<<2(53_952+205_12))‘/’(""”0’“-’0))6)- (58)

Using equation (53) for the case a = 0, we have

I, (M—gb(v) e) IM(Lq(v) €)
(59)

=¢(Y¢,p)<L=L"=L1L""

Replacing v by (v/2) in (57), we have

,”<</>(v) 2¢< ) )‘LIf”(((s_952f205_12)>¢<g’§’0""’0>’ > (60)

for all v € W and all € > 0; using (53) for the case a = 1, we
have

v
Ilo(v)—2¢( ). € 1 (11(V),€)
(023}
=¢(¢,Yp)<1=L"=L""
We can conclude from equations (59) and (61) that
¢(¢,Yp) <L * < 0. (62)

By the fixed point alternative in both cases, there is a
fixed point A; of Y in ¥ such that

. ¢(Byv
hm00 IW< (ﬁk )—

k—>

Al(v),e> — 1;., veW,e>0.

a

(63)
Replacing (v, vy, ...,v5) by (Bvi>BaVas--->PaVs) In
(15), we obtain
,uv</5 D¢(ﬁavl’ﬂav2> te >ﬁavs)’€)
@ (64)

2 I;:,v ((P (/”)avl’/juvb T >ﬁavs)’ ﬁae)’

for all v;,v,,...,v, € W and all €>0. By same manner of
Theorem 3, we can show that the function A, satisfies
functional equation (4). By Theorem 2, as A, is a unique
fixed point of Y in A = {¢ € ¥|¢(¢, A;) < oo}, the function
A, is unique such that

L, (A, (v)—p(v), )= L*I;m,(tq (v),¢), t>0. (65)

Using fixed point alternative, we reach

(9 4) S (6 Y9)

1-a

L
=>C(¢>A1)Sm

1-a
1L_—L;1(V)> 6)3
(66)

:Iy,v (¢(V) - A ), €) ZL*I;W<

for all v € W and all € > 0. Hence, the proof of the theorem is
now completed. a

Corollary 5. Let 6,{ e R,
¢: W — F such that

with 0>0. If a mapping

L, (Do (visvys. oy v)€) 2 1 1

ACHITSY

s&
Vj >’€>)

(67)

forallvi,v,,...,v, € W and € >0, then there exists a unique
additive mapping A;: W — F satisfying
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I[J)‘V (¢(V) -4 ), €) >

for allveW and all €>0.

Proof.  Set
e 6,

S (€
o5 -
< j=1
S E S
o(TT1I 3
L j=1 j=1

.....

I !

w(o(B,

Thus, (52) holds. But we have that
6 (v % 0
(s 95* +20s - 12) AV

n(v) =

has the property

L, (n(v),

.....

1,,(1616, (5 - 9s* + 205 - 12)e),

I;)V(IZGIIVIIS, (s 95" +20s - 12)|2 - 25|e), E<loré>1, (68)
I,:)v<129||v||s, (s = 95> +20s - 12)|2 2% e), £ <§ orf> %
Then,
(69)
sf)
Vj .
1,6, (B.)'e),
li > & _i\!
oyt BT 60e)
(70)

SE> 1- sE >

o (o(TTI S

([ — lL*asl—>oo,

1 — 1. asl — o0,

| — 1;.as] — 0.

1
I,L(L—n(ﬁw);e)zyl,:,m(v),e), veW,e>0. (72)
a

"0>’ (71) Hence,

e =1, 6 (VVO O)e
" (53—952+205—12)¢ 227

1,,,(66, (5 - 9s* +20s - 12)e),

(73)

126

I, Ivl%, (s* - 9s™ + 20s - 12)e

)
)

I, —9s% +20s — 12)

{%
(ﬁIIVII
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Now,

From inequality (53), we can verify the following cases

Journal of Function Spaces

i 66
IP’,J(—, (s - 95> +20s - 12)e),

a

2B,

126 (74)

1, =B (55— 95 + 205 - 12)e>,

1,i,v<1526||/3av||5, (s —95% +20s - 12)e>,

wr\ D&
{ 2%B,

Ly 60) = 4, 00) 21— e

for conditions of f3,. O
=1,,,(1200v]%, (s* - 95> + 205 - 12)
Case 1. L=2"1ifa=0.
3
21 . (2 - 2)6).
L, (p(v) = Ay (v),€) EL*IL,V(ﬁﬂ(V)’e) (78)
3 02
= I;,V(GG, (5 —9s" +20s - 12)€>' Case 5. L =2%"for < (1/s) if a = 0.
(75)

Case 2. L=21ifa=1.

Lo (80) = A, ,e) 2 1 n)se)

=1,,(-66, (s> - 95” + 20s - 12)e).

Case 3. L=2"1foré<1ifa=0.

2!
I,(¢(v) = A (v),€)= L*I/;),,<mn(v), e>

= 1,,(12601v]°, (s* - 95 + 20s - 12)

(2-2%).

Case 4. L=2"%foré>1ifa=1.

sé-1
Ly (6(0) = A, (), €) 2. Iﬂ(liT 1), >

= 1,,,(126171%, (s* - 95* + 205 - 12)
(=290
(79)
(76)
Case 6. L =2 for £< (1/s) ifa=1.

L ($0) - A (1, )2 . I;W(ﬁnw), )

=1,,,(1200v]%, (s* - 95 + 205 - 12)

(2% - 2)e).

(80)

77) 4, Stability Results in 2-Banach Spaces

In 1960, Gahler [27, 28] developed the concept of linear 2-
normed spaces.
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Definition 4. Consider a linear space W over R with di-
mension W >1 and consider a mapping [-,-[l: W? — R
with the following conditions:

(a) |Ir, sll = 0ifand only if r and s are linearly dependent.

(®) llr, sl = lIs,7ll,

(©) 1Az, sll = [Alllr, slI,

(@A) llr,s +wl <|lr, sl + |l wlfor all r,s,weW and
AeR.

Then, the function ||, -|| is called as a 2-norm on W and
the pair (W, |-,-|) is called as a linear 2-normed space. A
typical example of 2-normed space is R?* with 2-norm de-
fined as |r, s| = the area of the triangle with the vertices 0, r,
and s is a typical example of a 2-normed space.

As a result of (d), it follows that

Ir + s, wl <llr,wl +ls, wl and | [Ir, w|| = ls, wll | < [Ir = s, wl.
(81)

Thus, r — |Ir, s|| are continuous mappings of W into R
for any fixed s € W.

Definition 5. A sequence {rj} in a linear 2-normed space W
is known as a Cauchy sequence if there exist two points
s,w € W such that s and w are linearly independent.

lim;; “fi ~Tp S” =0 (82)
lim,-,jﬁoo”fi T w” =0

Definition 6. A sequence {rj} in a linear 2-normed space W
is called as a convergent sequence if there exists an element
r € W such that
lim |7, —r,s
Jim [y =r.s =0 (83)
foralls e W.If {r]} converges to r, then we denote r; — r
as j — 0o and say that r is the limit point of { } We also
write in this instance
lim r;, =r. (84)

j—o0

Definition 7. A 2-Banach space is a linear 2-normed space in
which every Cauchy sequence is convergent.

Lemma 1 (see [29]). Let (W, ]-,-|l) be a linear 2-normed
space. If r € W and ||r,s|| = 0 for every s € W, then r = 0.

Lemma 2 (see [29]). For a convergent sequence {rj} ina
linear 2-normed space W,

lim r.,s

]*)OO ]’

tim ), w] =

]*)00

(85)

for every s e W.

11

Park studied approximate additive mappings, approxi-
mate Jensen mappings, and approximate quadratic map-
pings in 2-Banach spaces in his paper [29]. In [30], Park
examined the superstability of the Cauchy functional in-
equality and the Cauchy-Jensen functional inequality in 2-
Banach spaces under certain conditions.

In this section, we let W be a normed linear space and F
be a 2-Banach space.

Theorem 6. Let o: W — [0, +00) be a function such that

lim —(p(z v 25 . 20, w) =0, (86)

i—00

for all vi,v,,...,v,w e W. If a mapping ¢: W — F such
that ¢ (0) =0 and
D¢ (visvs - s ve)sw| <@ (v vss - - s v w), (87)
_ X1 . .
(v, w)::;)§<p(2]v, 2v,0,...,0, w)<oo, (88)

for all v,v,,...,v,w e W. Then, there exists a unique

additive mapping A;: W — F satisfying
6

2(s’ - 95> +20s - 12

l¢ () - A (1), w] < )¢(v,w), (89)

for all vyw e W.

Proof. Replacing (v, v,,...,v) by (v,v,0,...,0) in (87),

we get

(s - 95" + 20 - 12) 2(s* - 95” + 205 - 12)

” 6 ¢(2v) - 6 o), w
<p(v,0,...,0,w),

(90)

for all v, w € W. Replacing v by 2"v in (90) and dividing both
sides by 2!, we have

SCCAIEETICRRY

6
—9s% +20s - 12

2(
(91)

< P (53 ) q)(ziv, 2iv, 0,...,0, w),

for all v,w € W and all non-negative integers i. Hence,

znl+1 (Z"HV) - zim ¢ (2"v), w“

i

<25

=m

S (271) - o).

i i<p(2]v, 27v,0,

.., 0,w),
jom2 )

.

: (s —9¢? +2os—12)
(92)
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for all v,w € W and all non-negative integers m and i with
i >m. Therefore, it follows from (15) and (19) that the se-
quence {(1/2")¢ (2'v)} is Cauchy in F for every v € W. Since
F is complete, the sequence {(1/2')¢ (2'v)} converges in F for
all v € W. Thus, we may define a mapping A;: W — F by

A (): lim %qs(z"v), (93)

Journal of Function Spaces

for all v € W. Therefore,

lim ii(p(Ziv) -A V), w” =0, (94)

i—0of[2

for all v,w e W. Letting m =0 and taking the limit as
i — 00 in (94), we have (89). Next, we want to prove that
the function A, is additive. From inequalities (86), (87), and
(94) and Lemma 2,

ID¢ (v1,v5 - - - vg)sw| = lim D(p(2iv1, 2, ., 2ivs), w
1—>00

(95)

R :
< ilir}?)o E(p(21v1,2'v2, . ,ZIVS,LU) =0,

for all v, v,,...,v,w € W. By Lemma 1,

DA, (v, vy, ..., v) =0, (96)

forallv;,v,,...,v, € W.Hence, according to Theorem 1, the
mapping A;: W — F is additive.

To prove that the function A, is unique, we consider
another additive mapping Aj: W — F satisfying (89).
Then,

A, (v) = A (v), w| = Jim %||A1(2iv) - ¢(2iv) + gb(ziv) - Al'(ziy),w"

6

: (53 — 95> +20s — 12) Jm, 2

for all v,w € W. By Lemma 1, A, (v) - A{(v) =0 for all
v € W. Therefore, A, = A]. O

Remark 3. A theorem analogous to (93) can be formulated,
in which the sequence

A ()= lim zl@b(%) (98)
is defined with appropriate assumptions for ¢.

Corollary 6. Let A: [0,00) — [0,00) be a mapping such
that 1(0) = 0 and

(1) A(pq) <A(p)A(s).
(ii)) A(p) < p for all p> 1.

If a mapping ¢: W — F with ¢(0) = 0 and

D¢ (visvss - - ve)sw < ZA(NV,“) +A(llwl), (99)

for all v, v,,...,v,w € W, then there exists a unique ad-
ditive mapping A,: W — F satisfying

6 2A (Il
(s’ - 95" +20s - 12) [2-A(2)

6 (v) - A, (v), w] < +A<||w||>],

(100)

. (97)
m —i(TJ(Ziv, u)) =0,
for all vyw e W.
Proof. Let
91 Vo vew) = D A([w]) + Adwl), (101)
i=1
for all vi,v,,..., v, w € W. It follows from (i) that
A(2') = (A (2)
o(2'v),2'v,,. ., 2V, w) < (A(2)) <Z/1(||vi||)> + A ([lw]).
i=1
(102)
By using Theorem 6, we obtain (96). O

Corollary 7. Let q be a positive real number such that q<1
and let H: [0,00) X [0,00) — [0,00) be a homogeneous
mapping with degree q. If a mapping : W — F with ¢ (0) =
0 and

D¢ (v1, v - - -5 vg)sw| < H(Hv1 s [lva]s - - - “vs") +wll,

(103)

for all vi,v,,...,v,w €W, then there exists a unique ad-
ditive mapping A,: W — F satisfying
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6 () - A, (v), w] < 6
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H (vl Iv1, 0, . ..., 0) +[lwl|

forall vyw e W.

Proof. Let

VW) = H("v1 ||, ||v2| e ||v5||) +lwll, (105)
for all v|,v,,...,v,w € W. By using Theorem 6, we have

(104). O

PV, vy

Corollary 8. Let g € R* such that <1 and let H: [0, 00) x
[0, 00) — [0, 00) be a homogeneous mapping with degree q.
If a mapping ¢: W — F with ¢(0) = 0 and

ID$ (visva s vi)sw <H (v [vals - - [l (106)
for all vi,v,,...,v,w €W, then there exists a unique ad-
ditive mapping A,: W — F satisfying

6
(s = 95> +20s - 12)

¢ () = A, (v), w| <

(107)
CH(vIL VI, 0, .., 0)[lwl]
2-21 ’
for all vyw e W.
Proof. Let
PV, v VW) = H(”v1 |- [|va s - - - ||vs||)||w||, (108)

for all v;,v,,...,v,w € W. By using Theorem 6, we have
(110). O

Corollary 9. Let p € R* such that p<1. If a mapping
¢: W — F with ¢(0) =0 and

D¢ (vy, v v )y w] < D wi]lf + 1wl (109)
i=1

for all vi,v,,...,v,w €W, then there exists a unique ad-
ditive mapping A;: W — F satisfying

6 2[vl” +lwl
(-9 +20s-12) 2-p

>

||¢(v) -A (v), w" <

(110)
for all vyw € W.

We use an appropriate example to demonstrate that the
stability of the functional equation (4) fails in the singular
case. We provide the following counterexample, which
shows the instability in a particular condition p=2 in

(53 —95% +20s — 12)

14 : (104)

Corollary 9 of functional equation (4), inspired by Gajda’s
excellent example in [31].

Remark 4. If a mapping ¢: R — W satisfies (4), then the
following assertions hold:

(1) ¢(mv) =mp(v),ve R,m e Q, and c € Z.
(2) ¢(v) = v (1),v € R if the function ¢ is continuous.

Example 2. Let a mapping ¢: R — R be defined by

[ee] 2‘D
¢(V)=ZW(1,V), (111)
p0 2
where
) {Av, -l<v<l, (112)
V) =
v A, else.
Then, the mapping ¢: R — R satisfies
4 3 2
n —8n +5n" + 34n - 32
|D¢(v1,v2,...,vs)|s( 1 )
(113)

for all v;, v,,..., v, € R, but there does not exist an additive
mapping A;: R — R satisfying

[p(v) — A, (V)| <8IV, veR, (114)

where A and ¢ are constants.

5. Conclusion

In this work, a new dimensional additive functional
(equation (4)) has been introduced. We primarily found its
solution and examined Hyers—Ulam stability in IFN-spaces
using the direct approach in Section 3.1 and the fixed point
approach in Section 3.2. In Section 4, we investigated the
Hyers-Ulam stability in 2-Banach space by using the direct
method. Also, we provided the counterexample, which
shows the instability in a particular condition p=2 in
Corollary 9 of equation (4), by the way of Gajda.
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This work applies a novel analytical technique to the fractional view analysis of coupled Burgers equations. The proposed
problems have been fractionally analyzed in the Caputo-Fabrizio sense. The Yang transformation was initially applied to the
specified problem in the current approach. The series form solution is then obtained using the Adomian decomposition
technique. The desired analytical solution is obtained after performing the inverse transform. Specific examples of fractional
Burgers couple systems are used to validate the proposed technique. The current strategy has been found to be a useful
methodology with a close match to actual solutions. The proposed method offers a lower computing cost and a faster
convergence rate. As a result, the suggested technique can be applied to a variety of fractional order problems.

1. Introduction

The branch of mathematics, which deals with the study of
derivatives and integrals of non-integer orders, is known as
fractional calculus (FC). It was born in 1695 on September
30 due to an important question asked by L’'Hospital in a let-
ter to Leibniz. The answer of Leibniz [1] gives motivation to
a series of interesting results during the last 325 years [2-4].
In the last decades, FC has been used as a powerful tool by
many researchers in various fields of science and engineer-
ing, for example, the fractional control theory [2, 5], anom-
alous diffusion, fractional neutron point kinetic model,
fractional filters, soft matter mechanics, non-Fourier heat
conduction, notably control theory, Levy statistics, nonlocal
phenomena, fractional signal and image processing, porous
media, fractional Brownian motion, relaxation, groundwater
problems, rheology, acoustic dissipation, creep, fractional
phase-locked loops, and fluid dynamics [6-10].

In recent years, fractional partial differential equations
(FPDEs) have gained considerable interest because of their
applications in various fields such as finance, biological pro-
cesses and systems, fluid flow [11, 12], chaotic dynamics,
electrochemistry, diffusion processes, material science, elec-
tromagnetic, turbulent flow [13-18], elastoplastic indenta-
tion problems [19], dynamics of van der Pol equation [20],
and statistical mechanics model [21].

To find the solution of FPDEs is a hard task, however,
many mathematicians devoted their sincere work and devel-
oped numerical and analytical techniques to solve FPDEs.
Some of these techniques include homotopy analysis
method (HAM) [22], operational matrix [23], Adomian
decomposition method (ADM) [24], homotopy perturba-
tion method (HPM) [25], meshless method [26], variational
iteration method (VIM) [27], tau method [28], Bernstein
polynomials [29], the Haar wavelet method [30], the Laplace
transform method [31], the Legendre base method [32],


https://orcid.org/0000-0001-8112-4993
https://orcid.org/0000-0001-7266-1893
https://orcid.org/0000-0002-0862-0648
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/6231921

Laplace variational iteration method [33], G’/G-expansion
method [34], Jacobi spectral collocation method [35],
Yang-Laplace transform [36], new spectral algorithm [37],
fractional complex transform method [38], cylindrical-
coordinate method [39], and spectral Legendre-Gauss-
Lobatto collocation method [40].

The Burgers equation was initially introduced by Harry
Bateman in the year 1915 [41]. They have many applications
in various fields, especially in equations having nonlinear
form. This equation describes many phenomena such as
acoustic waves, heat conduction, dispersive water, shock
waves [42], continuous stochastic processes [43], and model-
ing of dynamics [44-46]. The one-dimensional Burgers
equations have many applications in plasma physics, gas
dynamics, etc. [47]. Various techniques were developed by
mathematicians to find the numerical and analytical solu-
tions of Burgers equations. Some of these methods are a
direct variational iteration method by Ozis and Ozdes [48].
Jaiswal [49] solved the equations numerically by finite differ-
ence method. Group explicit method was used by Evans and
Abdullah [50]. Singhal and Mittal applied the Galerkin
method [51] to solve these equations numerically. A
weighted residue method was applied by Caldwell et al.
[52]. Fractional Riccati expansion method was applied by
Kurt et al. [53], and variational iteration method was applied
by Inc [54] to solve space-time fractional Burgers equation.
Esen et al. [55] used HAM to solve time-fractional Burgers
equation. The cubic B-spline finite elements method was
applied by Esen and Tasbozan to solve these equations [56].

Yang decomposition method (YDM) is one of the
straightforward and effective techniques to solve nonlinear
FPDEs. YDM possesses the combined behavior of Yang
transformation and Adomian decomposition method
(ADM). It is observed that the suggested method require
no predefined declaration size like RK4. Laplace Adomian
decomposition method required less number of parameters,
no discritization, and linerization as compared to other ana-
Iytical technique. Laplace Adomian decomposition method
is also compared with ADM to analyze the solution of
FPDEs given in [57]. The solution of Kundu-Eckhaus equa-
tion is discussed in [58], via Laplace Adomian decomposi-
tion method. Multistep Laplace Adomian decomposition
method is implemented to solve FPDEs in [59]. Laplace
Adomian decomposition method is also used for the solu-
tion of fractional Navier-Stokes and smoke models [60-62].

In the current study, we implemented YDM for the solu-
tion of coupled Burgers equations. The desired degree of
accuracy is achieved. The procedure of the suggested tech-
nique is very simple and straightforward. The accuracy is
calculated in terms of absolute error. The results have shown
the present method has the desired accuracy as compared to
other analytical techniques.

2. Preliminary Concepts

We provide the fundamental definitions that will be used
throughout the article. For the purpose of simplification, we

write the exponential decay kernel as, K (¥, ) = el #(¥~¢/1=¢)],
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Definition 1. If the Caputo-Fabrizio derivative is given as fol-
lows [63]:

n-1l<g<n.

(1)

N(g) is the normalization function with N(0) = N(1) = 1.

C%mM%hN@WQWmM%mm

“oh )= 10 o) - POl (@)

Definition 2. The fractional integral Caputo-Fabrizio is given
as [63]

¥>00¢(0,1].
(3)

Definition 3. For N(p) =1, the following result shows the
Caputo-Fabrizio derivative of Laplace transformation [63]:

TR = o pw) + [ Pode

VL[P(¥) - P(0)]

L[“DhRe] = =0

(4)

Definition 4. The Yang transformation of P(¥) is expressed
as [64].

Y[P(¥)] = x(v) = Jzolp(qf)e-‘idqf. v>0.  (5)

Remarks 5. Yang transformation of few useful functions is
defined as below.

Y[1] = v,
V¥]= v (6)
YW= T+t

Lemma 6 (Laplace-Yang duality). Let the Laplace transfor-
mation of P(¥) is F(v), then x(v)=F(1/v) [65].

Proof. From equation (5), we can achieve another type of the
Yang transformation by putting ¥/v={ as
{oe)

LP(Y)]=x(v)= VJ ]P(v()e(d(. (>0, (7)

Since L[P(¥)] = F(v), this implies that
F(v)=L[P(¥)] = J:O]P('P)e‘”/d'}’. (8)

Put ¥ = (/v in (8), we have

F(v)= EJDOIP (%) Ld. (9)

VJo
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Thus, from equation (7), we achieve

1
F(v)= X(;) (10)
Also from equations. (5) and (8), we achieve
F ! = 11
(5) =1 (1)

The connections (10) and (11) represent the duality link
between the Laplace and Yang transformation. O

Lemma 7. Let P(¥) be a continuous function; then, the
Caputo-Fabrizio derivative Yang transformation of P(¥) is
define by [65].

VIR(¥) - vP(0)]

YIP()] = I+p(v-1)

(12)

Proof. The Caputo-Fabrizio fractional Laplace transforma-
tion is given by

LVP(¥) - P(0)]

L)) = =

(13)

Also, we have that the connection among Laplace and
Yang property, ie., x(v) = F(1/v). To achieve the necessary
result, we substitute v by 1/v in equation (13), and we get

(1) Y[P(¥) - P(0)]

V[P(P)] o
(.
—-v
Y[P(¥)] = Thep-1)
The proof is completed. O

3. Implementation of YDM with Caputo-
Fabrizio

To explain the fundamental concept of this technique, we
consider a particular fractional-order nonlinear partial dif-
ferential equation:

FDOu(E, W) + Lu(E, W) + Nu(§, ¥) =

q(& YY), &¥=0,

(15)

where the fractional derivative in equation (15) is defined in
Caputo-Fabrizio. The operator £ and ./ describe the linear
and nonlinear operators, respectively, and g({,¥) is the
source term.

The initial condition is

u(&,0) =k(8), (16)

Using Yang transformation to equation (15), we get
Y| DPue )| + YILuE, ¥) + Nu(&, V)] = ¥a(&, ¥),
(17)
with the help of fractional derivative Yang property, we have

1

T+0G-1)) Z{u(5,0)} - su(§,0) (18)
=Y ¥)] - Z[Lu(E, ¥) + Nu(S, ¥)),
Y& ¥)] =sk(§) + (1 +6(s = 1))Z[q(& ¥)]
- (1+8(s-1)¥[Lu(&, ¥) + Nu(&, ).
(19)
Using YDM procedure, the solution is expressed as
ul&,¥) = i u;(&¥), (20)
Jj=0
The nonlinear term can be decomposed as
Nu(&,¥)= iAj, (21)
=0
L d | Q7 ,
A= lﬁ [Nj_zo(/vuj)HH, j=0,1,2,  (22)

substitution (20) and (21) in equation (18), we get

v [f u(E W) | = 5K(E) + (1+8(s = 1)) ¥[q(5. )]
j=0
-(1+8(s- 1))?[L§uj(£,‘lf) + iAJ
j=0 j=0
(23)
Yuo(8 V)] =su(80) + (1+8(s=1)Z[q(5, ¥, (24)
Y&V ==-(1+8(s=1)¥[Luy(&, V) + Ag] (25)
m—1<9<m,
Generally, we can write
Y[ (E V)] =-(1+8(s- )Y [Luy(& W) + 4], j=1.
(26)

Taking the inverse Yang transformation of Eq. (26), we
get

uy(§ W) = k(&) + ¥ [(1+0(s— 1) ¥ [q(& )], (27)



~ (1 +8(s = 1)) ¥ [Luy (&) + Aj]].
(28)

”j+1(£’ V) =

4. Example

Consider the following fractional-order coupled Burgers
equations:

o Pu o o),
0¥’ A o¢ o ’ (29)
CEQOy 9%y ov B(Mv)_o 0<8<1

v’ o a¢  a¢
with initial conditions
#(,0) =sin ({),

v({,0) = - sin ({). (30)

Taking Yang transform of (29),

%] [%u ) ou a(wv)
?_ﬁ_ ——?_a—(z_zﬂa—f_ o _) (31)
(0% ] 3 ER ov 8(‘14\1)-
Yow| " ee e
_ e aw o)
m?{#({ 0)} —su(6,0)=-% _aTvz =2y a( aC :|’
(33)
1 O PN\ (730
(1+3(s-1) 7{v(0)} (¢,0) ?_8(2 2 oC oC :|
(34)

Applying inverse Yang transform

HE =7 su(c,0>—<1+6<s—1>>?{375 2t - (52”)} ,
| (35)

VG ) =y ((,0)—(1+6(5_1))?{‘;(‘2’_2vg\c’_ a(g?)} ,
| (36)

(37)

v av

(38)
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Using ADM procedure, we get

-y [(Hé(s 1) {i He), -ZZA (patg) = iBﬂMcH’
=0 =0
(39)

D w6 ) =sin ({)
j=0

0

iv/((,\y):-sin(() e [(1+as 1)) {i ver), -2Y ¢
j=0 j=0

J=0

(vve) - ZD (uv) H

(40)
where A;(up;), B;(uv)y, C;(vvy), and D;(uv), are Adomian
polynomials are given below,

0 O,y 0
Ay (/"/4() =Hy ai(o) B()(."‘V) ;&0 a‘/co
o, o Oy OV, ay v,
Al(."ﬂ“{) Ho =7 ac + ¢ a(o By(uv), = B_CO 3 a(l a
o, 0 0 oy, 0 Oy, 0v, 0u,0
Ao (i) = o 57+ BI:'I Hzaig' By(uv), = aM(O avg ai:'l av( aﬂc al("-
(41)
0 Op, 0
Co (VV() Vo a‘; Dy (pv )( BM(U a‘?
ov, ov, Oy 0V,  Opty OV,
C(vwe) =vo=> a( +v; a; Dy(uv), = a(o o 6—(172),
ov, ov, 9 Quy v, Ou, v, O, d
Cy(vve) =vo =7 8{ +v, 6\2 v, 6\2) Dy(pv), = 8!20 BV(Z a‘bé B_VI + B_Péal(o
(42)
(,¥)=sing,
Ho(G, F) ' (43)
Vol ¥) =~ sin (0),
B (G ) == [(1 +8(s - 1))?{2 (H;: -2 ZA (ug) - BJ(IW)z}]’
=0 j=0
(44)

0

Vin( w:—?*{(Hz&(s—l))?{g(w —ZZC (ve) - ZODJ(MV):H)
J= Jj=0 J=
(45)

8

for j=0,1,2---

_ g1 o’y Oy, Opy OV,
w(CY)=-% {(1+6(s—1))9{¥2‘) _2#06_(0 _ a(0 aco}]

(@) ==y [ ae- 1 x

[(1 +o(s- 1))?{ 2,52 - Z@%H
! {(1 +8(s—1)) x @} =—sin ({){6¥ + (1-96)},
(46)

}:sin (O){o¥ + (1-6)},
vi(¥)=-%

vi(G,¥)=-
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The subsequent terms are

o F) ou, Ougdv, O, d
m«,w:—y‘[<1+6<s—1>>?{%—2/403%—2#1315’—%;8—}—3%31;”,

(¢, W) =sin ((){(1 8+ 28(1-0)¥ + 5232})

Oy Oy

a;(vz‘ ~2v, v, oy vy

op, v,
Vz“"y):_??l|:(1+8(5_1))?{ 4 130 TR o ai(‘%(}}

v,(¢, W) = - sin ((){(1 5y 25(1-0)¥ + 52;112}’

(47)
The YDM solution for example (4) is
u(G¥) =g (GF) + 1 (GF) + 1y (6 ) + s (6 )+,
(48)
V(IGYEP)=v (L) + v (L) +v,(G ) +v3(0 )+
(49)
w(¢, ) =sin (¢) +sin ({){S¥ + (1 -9)}
+sin ((){(1 ~38)* +28(1-8)¥ + 82;‘”2}+...,
(50)
v({,¥) =—sin ({) —sin ({){6¥ + (1-0)}
82?2
— sin ((){(1 -38)+28(1-08)¥ + : }_
(51)
when &8 = 1, then YDM solution is
. . . P2
u(¢, ) =sin ({) +sin ({)¥ +sin ({) >
L e ®
+sin (C)? + sin (()ﬂ+---,
2
v({,¥) = - sin ({) —sin ({)¥ —sin ({) —
s . (53)
b4
—sin ({)— —sin (C)ﬁ_
The exact solutions are
UG, ¥)=¢ sin (2), ”

v({, W) =—€" sin ({).

5. Example

Consider the following fractional-order couple Burgers
equations [17]:
CFp0 2 2
L;/l_'_”aj*—vaj_ai;;_ai[;:o
oV N I G 4
CFy  ov v v v

—+‘ua—(+v— =0,

0<6<1,
oy &  orr  oF

(55)
with initial condition
M(C, 5’ 0) :C+€> V(C> E) 0) ZC—E- (56)

Taking Yang transform of (55),

Pl [ ow  ou u
?_ﬁ_ = ?_Ma—c YR | (57)
2 [ ov ov  *v 9]
?_W- :_?_Ma_c+va_f_a_fz_a_fz_’ (58)
1
m%#(&fﬁ)}—su(af,m -
59
_ o, 00, Ou Ou
= ?[ﬂa—c +va—E 6_(2 852]’
1
m?{"(f’ §0)} =sv(,&,0)
B v v v v (60)
=Y b tVE T30 |

Applying inverse Yang transform
o ou ou Fu du
ule ) =9 [SM((’ §0)~(1+8(s~ 1))?{!43(: VT ang

(61)

V(C,E,‘P)=?’1 {5v((,£,0)—(1+6(s—1))?{ ov ov v BZVH’

U T
(62)

B 4 ou  ou du
M(C,E,‘P)—H&—?1_(1+5(S-1))Z/{Ma—(+Va—5-a—(z—a—£zH’

(63)

M 2 2
YGEY) =0 -E- 7 <1+a<sl>>?{yg;+v3;§ggg}}

(64)
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Figure 1: YDM solutions of y({, ¥) and v({, V) for example 1 at § = 1.
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F1GURE 2: YDM solutions of p((, V) and v({, ¥) for example 1 at different value of 8.
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Figure 3: The YDM solution of example 1 of u({,¥) at § =1, and 0.8.
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FIGURE 4: The YDM solution of example 1 of u({,¥) at § =0.6, and 0.4.
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Figure 5: The YDM solution of example 1 of u({,¥) at § =1, and 0.8.

ing ADM X 0 0
Using procedure, we get Ao ts) = aifo By (vitg) = vo aigo ,
¥ N S & & Al(““{)zﬂoaa—l?*'%%—;?’ Bl("#g)=voaa—l? +vlaa—l?,
z.“j((,f:'f'):(*f—?_l {(“‘8(5_1))?{2[‘](##()*ZBj(Vﬂg)_ ZM{(‘ZM&H’ 5 5 5 5 5 5
j=0 j=0 j=0 =0 =
(65) AZ(MM{)z/'{Oaig+Mlai<}+MzaL;' Bz("."’s):"oaig*"’laig*'vzai;'
(67)
© © © © © _ aVo _ aVO
ZOVJ((,E,‘I’):(—E—?’I [(1+6(s—1))?{zocj(yv()+ZOD]»(VVE)—ZOVH—ZOV{E}}, CO(!’W{)_MOB_C’ DO(VVE)_VOB_E’
= J= J= J= J=
ov oV, ov oV,
(66) Cl(l“’() :ﬂoa_(l +lula_(0’ DI(VVE) :VOB_EI +vla—;,
ov ov v, 0 ov oV,
Cy(uvy) = g =2 + ty == + phy =2, Dy(vvs) =vy—=2 + v, =2 +v, =L,
where A, (), B;(vig ), C;(pvy), and D;(vvy), the Adomian 2(1ve) =t a THhag Tyt () =vo ot " 'oE T o
(68)

polynomials are given below,
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Ficure 6: The YDM solution of example 1 of v({,¥) at § =1, and 0.8.

TasLe 1: YDM-solutions of example 1 p({,¥) and v({, ¥) different fractional-order of &.
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Absolute error (6 =0.4)

Absolute error (6 =0.6)

Absolute error (§ =0.8)

Absolute error (§=1)

0.1

0.2

0.3

0.4

0.5

U R W = U R W N [N

S B T R N RS S  N  SCR )

g W =

1.6795833810 x 1072
1.8149655480 x 1072
2.8167675970 x 1079
1.5105843420 x 1072
1.9140211660 x 1072
2.2895909420 x 10~
24741425310 x 1072
3.8397888720 x 107%
20592131750 x 10~
26091741410 x 10~
2.7579918610 x 1072
2.9802987250 x 10~
46253268490 x 10722
2.4804837720 x 10~
3.1429548890 x 10~
3.1561849440 x 107%
3.4105880060 x 10792
52931218410 x 1079
2.8386108190 x 1072
3.5967281260 x 107%2
3.5108679510 x 10792
3.7938600990 x 10792
5.8879476850 x 10792
3.1576057570 x 10792
4.0009181120 x 1079

54134672620 x 1079
5.8498176890 x 107%3
9.0787271070 x 107%*
48687662520 x 10703
6.1690839760 x 107%3
8.0513685670 x 107%
8.7003460040 x 107%
1.3502654490 x 107%
7.2412429330 x 107
9.1751859580 x 107%
1.0158028710 x 1072
1.0976812670 x 10~
1.7035656840 x 1079
9.1359317340 x 10792
1.1575895650 x 10792
1.1987254260 x 10~
1.2953482240 x 107
2.0103383830 x 107%
1.0781101310 x 1072
1.3660446180 x 10~
1.3639899070 x 10~%2
1.4739337840 x 10~
2.2874973730 x 107%
1.2267457630 x 10~
1.5543768660 x 107

70667992140 x 107
7.6364158210 x 1074
1.1851469400 x 107%
6.3557405730 x 107
8.0531895140 x 10
2.3663474260 x 1074
25570859420 x 1074
39685143520 x 107
2.1282464510 x 107
2.6966443650 x 1074
3.1243332140 x 10
3.3761688790 x 1074
52397044750 x 107%°
2.8099639980 x 10704
3.5604305020 x 1074
3.7995256610 x 1074
4.1057849520 x 1070
6.3720449280 x 107%°
34172188380 x 107%*
43298669290 x 107
4.4195033070 x 107
47757356550 x 1070
7.4117866660 x 107%°
3.9748145700 x 1074
5.0363816220 x 1074

70683562720 x 107
7.6380983850 x 107
1.1854080680 x 10~%°
6.3571409610 x 107
8.0549639070 x 10
2.3207769760 x 107%7
2.5078423030 x 1077
3.8920898230 x 1078
20872612820 x 1077
2.6447131500 x 107%7
1.7930063740 x 1079
1.9375309570 x 107%°
3.0069851330 x 1077
1.6125947570 x 107%¢
20432758450 x 107%
7.6880155060 x 107
8.3077050100 x 107%
1.2893288420 x 107%°
6.9144503180 x 107
8.7611157430 x 107
2.3878506280 x 107%°
2.5803224010 x 107
40045765820 x 107
2.1475860090 x 107%°
2.7211490040 x 1079
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TaBLE 2: YDM-solutions of example 1 at y((, ¥) different fractional-order of 8.

v ¢ Absolute error (6 =0.4) Absolute error (6 =0.6) Absolute error (§ =0.8) Absolute error (6§ =1)
1 5.1388035000 x 107% 8.5868730000 x 107%* 1.2436850000 x 1079 1.4585000000 x 10710
2 1.0422343800 x 1072 1.7352281000 x 10~% 2.2053740000 x 107%° 2.1331000000 x 107%°
0.1 3 1.4825705100 x 1072 2.4804600000 x 107% 3.3501640000 x 107%° 2.6843000000 x 107
4 2.1340157300 x 1079 3.3450207000 x 107% 45130530000 x 107% 3.3374000000 x 107%°
5 2.5732507500 x 10~ 42223515000 x 10~% 5.6568430000 x 107%° 4.1714000000 x 107%°
1 6.5526269000 x 107% 1.2845443000 x 107% 1.9524030000 x 107% 8.9043500000 x 1078
2 1.3585147000 x 10792 2.5823037000 x 1079 3.9081030000 x 1079 12243480000 x 107%
0.2 3 2.0617667100 x 107% 3.8800631000 x 10793 5.8638020000 x 107%° 1.5582620000 x 107%
4 2.7650187200 x 10792 5.1778225000 x 107% 7.8195020000 x 10~% 1.8921750000 x 10798
5 3.4682707200 x 10~ 6.4755819000 x 1079 9.7752020000 x 1079 2.2260880000 x 1078
1 7.5239217000 x 107% 1.6203247000 x 10~% 2.6503270000 x 107%° 9.9570730000 x 107%8
2 1.5715901300 x 107 3.2621458000 x 10793 5.3069340000 x 1079 1.2801951000 x 107%
0.3 3 2.3907880800 x 10792 49039669000 x 10~% 7.9635420000 x 107%° 1.5646829000 x 10798
4 3.2099860300 x 10792 6.5457880000 x 107% 1.0620149000 x 1079 1.8491707000 x 1078
5 40291839800 x 10722 8.1876092000 x 107% 1.3276756000 x 1079 2.1336585000 x 107
1 8.2762123000 x 107% 1.9075950000 x 1079 3.2874570000 x 107%° 5.7825882000 x 10™%
2 1.7398405800 x 1072 3.8455493000 x 107% 6.5848290000 x 107%° 6.7463529000 x 1078
0.4 3 2.6520599300 x 1070 5.7835036000 x 10~% 9.8822010000 x 1079 7.7101176000 x 10798
4 3.5642792800 x 1079 7.7214580000 x 10793 1.3179574000 x 10~% 8.6738823000 x 1078
5 44764986200 x 10~ 9.6594122000 x 107% 1.6476946000 x 1079 9.6376470000 x 1078
1 8.8947364000 x 1079 2.1627817000 x 1079 3.8817930000 x 107 2.3900000000 x 10798
2 1.8806520800 x 1072 43652454000 x 1079 7.7777130000 x 1074 3.5300000000 x 107%
0.5 3 2.8718305200 x 1079 6.5677091000 x 107%3 1.1673633000 x 10~% 4.6600000000 x 1078
4 3.8630089800 x 10792 8.7701729000 x 107% 1.5569554000 x 107 5.8000000000 x 107%
5 4.8541874400 x 107 1.0972636700 x 107% 1.9465475000 x 1070 6.9300000000 x 10798
MO(’ ’lI/)_C—'—E’ 2 2
WGEW) =& ) gew -y <1+6<s—1>)?{uoaa—”; NEIELACE ZTH
=2E{8¥ +(1-9)}.
(G EW) =% (1+8(s- 1))?{2&(%) + JZB]'(W{) - JZM“ - JZP’{{} , (72)
(70)
The subsequent terms are
vﬁl((ﬁ,‘lf):—?" _(1+6(s—1))?{j2 Cj(;w{) + jZD (VVE) - gva— Zv&}_, L ayl ayo
gy AEEN =Y 081 o T e B
o, Iy 62141 azﬂl
for j=0,1,2 - TVoSE TVigE T T
o g . Opy Py 0wy
m (&) ==Y (1+5(5_1))?{#oa—c+voa—£—a—cz— aEZH 2012

—20{8¥ + (1-8)},

(&) = 2((+€){(1 ~0)?+28(1-8)¥ + ST}
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TaBLE 3: YDM-solutions of example 2 at v({, ¥) different fractional-order of 8.

Journal of Function Spaces

Ea

Absolute error (8 =0.4)

Absolute error (8 =0.6)

Absolute error (6 =0.8)

Absolute error (6§ =1)

0.1

0.2

0.3

0.4

0.5

— U R W = U R W= R W = TR W N

gk W

5.6770988000 x 1074
5.3834512000 x 107%
5.0898036000 x 10~%
47961560000 x 10~%
4.5025084000 x 1079
7.5124132000 x 1074
6.9925200000 x 107%
6.4726268000 x 1079
59527336000 x 107%
5.4328404000 x 1079
8.8600372900 x 107%*
8.1319795000 x 107%
7.4039217000 x 107%
6.6758639000 x 107%
59478061000 x 107%
9.9681746700 x 107%*
9.0421934000 x 107%
8.1162122000 x 107%
7.1902310000 x 107%
6.2642497000 x 1079
1.0928832650 x 107%
9.8117844000 x 107%
8.6947361000 x 107%
7.5776879000 x 107%
6.4606397000 x 10~%

8.7119340000 x 1079
8.4544080000 x 10704
8.1968820000 x 10704
7.9393560000 x 1074
7.6818300000 x 107%4
1.3109744000 x 10-%
1.2577593000 x 107%
12045442000 x 107%
1.1513291000 x 107
1.0981140000 x 107%
1.6633175900 x 10-%
1.5818212000 x 107%
1.5003248000 x 1079
1.4188284000 x 107
1.3373320000 x 107%
1.9683136700 x 107%
1.8579543000 x 107%
1.7475950000 x 1070
1.6372357000 x 10~
1.5268763000 x 1070
2.2421458500 x 107
2.1024637000 x 1074
1.9627815000 x 107%
1.8230994000 x 1079
1.6834173000 x 107%

1.1548840000 x 10797
9.5379000000 x 10797
7.5269600000 x 107%7
5.5160200000 x 107
3.5050800000 x 10797
1.9589970000 x 10-%7
1.5557000000 x 10~%7
1.1524030000 x 1077
7.4910600000 x 107
3.4580900000 x 107
2.6628869000 x 107
2.0566070000 x 107
1.4503270000 x 107%
8.4404700000 x 107
2.3776700000 x 107
3.3072887000 x 107
2.4973720000 x 107
1.6874560000 x 107%
8.7754000000 x 107
6.7623000000 x 107
3.9100485000 x 107%°
2.8959200000 x 107
1.8817910000 x 107
8.6766300000 x 107
14646500000 x 1079

1.6326000000 x 10710
2.0407510200 x 107
4,0814857200 x 107
6.1222204100 x 107
8.1629551100 x 107
2.2260880000 x 10798
4.3444869600 x 1078
8.6867478200 x 1078
1.3029008690 x 10798
1.7371269560 x 107%
42673170000 x 1078
7.2886243900 x 107%
1.4534575610 x 10798
2.1780526830 x 1079
29026478050 x 1078
3.8550588000 x 10~
1.1668329410 x 10798
22951152940 x 10798
3.4233976470 x 107%
4.5516800000 x 10798
12600000000 x 107%
1.0050239900 x 10~%8
2.0100478600 x 1078
3.0150717200 x 107%
40200955900 x 1078

va(GEW) =Y [(1 +8(s- 1))?[

avl vy 0*v,

+ V) == 86 v, — 5E

*v,
3

V(&) =2( - z>{< >+26<1—6>a”+8§’2}-

The YDM solution for example (5) is

UG &) =1y (68 F) +y (36 )

+i (68 W) + s (66, )+

V(GEY) = (6.6 ) +vi(6,8 )

+v, (08 P) +vs (08 W)+

v,

la(

(73)

UG8 ¥)

V(6.6 %)=

: {(1—5)2+25(1 - 0¥ +

=C+E-20{6¥Y+(1-8)} +2((+¢)
-{(1—8)2+25(1— ‘I’+—}

(-8-28{0¥Y +(1-96)} +2(¢-¥&)

6251/2} (77)
+. . .’
2

when 6 =1, then YDM solution is

U EY)=C+E-20F +2(0 +&)¥?
— 4P+ 40+ &P+

N

V(&) =C-E- 287 +2(( - &)Y
—4PE+4({ - &P+
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The exact solutions are

- 20V
ue g =
{- 28w - i
A

6. Results and Discussion

In this section, we analyze the solution-figures of problem
which have been investigated by applying Yang decomposi-
tion method in the sense of Caputo-Fabrizio operator.
Figure 1 represents the two-dimensional solution-figures
for variables p({,¥) and v((,¥) of example 1 at fractional
order § =1, respectively, in Figure 2 at different fractional-
order of p. It is observed that Yang method solution-
figures are identical and close contact with each other. In a
similar way in Figures 3 and 4 represent the three-
dimensional solution-figures for variables u({, ¥) of exam-
ple 1 at fractional order § =1, 0.8, 0.6, and 0.4. Figure 5
shows that the three dimensional figure of u((,¥) of frac-
tional order §=1 and 0.8 of example 2 and Figure 6,
approximate solution graphs of example 2 with respect to
v({,¥) at § =1 and 0.8. Tables 1-3 show the absolute error
of different fractional order of § with respect to y({,¥) and
v({,¥) of examples 1 and 2. The same graphs of the sug-
gested methods attained and confirmed the applicability of
the present technique. The convergence phenomenon of
the fractional-solutions towards integer-solution is observed.
The same accuracy is achieved by using the present
techniques.

7. Conclusion

In this paper, Yang Adomian decomposition method is
implemented for the solution of dynamic systems of frac-
tional Burger equations. The derived results have been
graphed and tables. The analytical solutions for some
numerical problems represent the validity of the suggested
technique. It is also analyzed that the fractional-order solu-
tion is convergence to the actual result for the problem as
fractional-order approach integer-order. The higher accu-
racy of the suggested procedure is clearly demonstrated by
this representation of the acquired results. The results for
fractional systems that are closely akin to their actual solu-
tions are obtained. It has been demonstrated that fractional
solutions converge to integer-order solutions. The present
method’s valuable themes include fewer calculations and
improved precision. The researchers modified it to solve
fractional partial differential equations in various systems.
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1. Introduction

In 1989, Backhtin [1] and Czerwik [2] introduced the
concept of b-metric spaces and provided a framework to
extend the results in the classical setting of metric spaces
which are known already. Azam et al. [3]introduced
complex-valued metric spaces in 2011 and proved some
common fixed-point theorems under the contraction
condition. Then, in 2013, Rao et al. [4]introduced the
definition of complex valued b-metric space and pro-
vided a method to extend the results. Later, in 2017, the
concept of complex partial metric space was introduced
by Dhivya and Marudai [5], and they proved common
fixed-point theorems. Recently, Gunaseelan [6]intro-
duced the concept of complex partial b-metric space in
2019. Many authors have discussed significant results
and application on complex metric spaces [7-23]. In this
study, we establish common fixed-point theorems on
complex partial b-metric space wusing continuity

property.

2. Preliminaries

Let C be the set of complex numbers and (;,{,,{; € C.
Define a partial order < on C as follows:

(<4, if and only if R({;) <R({,) and I({y) <I((y).

Then, {,<, if one of the following properties is fulfilled:
(i) R({;) = R({,), 1(G) <I(C,)

(i) R(¢y) <R(Cy), I({y) = 1((,)

(iii) R($;) <R(Gy), I(¢)) <I((y)

(iv) R((l) = R((z)’ I((l) = I((z)

In particular, we write {,x(, if {; # {, and one of (i), (i),

and (i) is fulfilled, and we write (;<(, if only (i) is
fulfilled.

Definition 1 (see [4]). Let H be a nonvoid set and let s> 1 be
a given real number. A function £: H x H — C is called a
complex valued b-metric on H if, for all ¢,u,A € H, the
following conditions are fulfilled:
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(i) 0<€(¢, ) and €(¢,u) =0 if and only if ¢ =y
(ii) (¢, p) = € (1, §)
(iii) €(¢, wss[€(d,A) + €(A, p)]

The pair (H, ¢) is called a complex valued b-metric space.

Definition 2 (see [5]). A complex partial metric on a non-
void set H is a function #,,: H X H — C* such that, for all
(p) ‘uaA € H)

(1) 07,5 (¢, 9)SH,p (¢, ) (small self — distances)

(i1) #ep (@5 ) = 1 (1> ¢) (symmetry)

(iii) #7ep (@5 P) = 1ep (s 1) = 1 (11> 1)
¢ = p(equality)

(iv)

Hep (9 1)SH e (B, A) + 115 (A, 1) — 115 (A, A) (triangularity)

A complex partial metric space is a pair (H,#,) such
that H is a nonvoid set and 7,4 is the complex partial metric
on H.

if and only if

Definition 3 (see [6]). A complex partial b-metric on a
nonvoid set H is a function €.,: H x H — C* such that, for
all ¢, u,A € H,

(i) 0ty (¢, 9)<b,p (¢, ) (small self — distances)
(i) L. (¢, 1) = £,y (14, §) (symmetry)
(iii) £ep (§5 @) = €es (¢ 1) = €e (4, )& ¢ = p (equality)
(iv) Is=1 such that €. (p, W)<s[€y (P 1) + €5 (A, )] —
.5 (A, A) (triangularity)

A complex partial b-metric space (b-CPMS) is a pair
(H, £.) such that H is a nonvoid set and ¢, is the complex
partial b-metric on H. The number s is called the coefficient
of (H,¢).

€y (A9, Qu)

<9 max{fcb ((/’) [4)’ gcb (¢’ A¢)> ecb (/"’ Q#)’% (ecb (¢’ Q/’l) + gcb (y, A¢))}’

for all ¢,u € H, where 0<9<1/s. Then, A and Q have a
unique common fixed point ¢* € H and €. (¢*,¢*) = 0.

Proof. Let ¢, € H. Define
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Definition 4 (see [6]). Let (H,?¢,,) be a complex partial b-
metric space with coefficient s. Let {¢, } be any sequence in H
and ¢ € H. Then,

(i) The sequence {¢,} is said to be convergent with
respect to £, and converges to ¢ if
limtx—»ooecb (¢zx’ ¢) = ecb (¢’ ¢)

(ii) The sequence {¢,} is said to be Cauchy sequence in
(H,ey) if

lim,,,, o (@ ¢,,,) exists and is finite
(iif) (H,?¢.) is said to be a complete complex partial
b-metric space if, for every Cauchy sequence {¢,} in

H, there exists ¢ € H such thatlim, m—o00f, (¢,

$) = im0 leg (80 ®) = £ (6. 9)

In 2019, Gunaseelan [6] proved some fixed-point the-
orems on complex partial b-metric space as follows.

Theorem 1. Let (H,¢,) be any complete complex partial
b-metric space with coefficient s>1 and A: H — H be a

mapping satisfying

ecb (A¢’ AA“)SS max{gcb (¢’ Au)’ erb (¢’ A(p)’ ecb (.“’ A/’l)}’ (1)
forall ¢, u € H, where 9 € [0,1/s). Then, A has a unique fixed
point ¢, € H and €., (¢,,¢,) = 0.

We prove the existence and uniqueness of common fixed
point on complex partial b-metric space, inspired by his
work.

3. Main Results
Theorem 2. Let (H,¢y) be a complete b-CPMS with the

coefficient s>1 and A,Q: H— H be two continuous
mappings such that

(2)

$ras1 = Apyy and @y = Oy, 0=0,1,2,.... (3)

Then, by (1) and (2), we obtain
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Cep (¢20¢+1’ ¢2a+2) =4 (A¢za> Q¢21x+1)’
1
3‘9 max{ecb (¢20¢’ ¢2¢x+1 )’ ecb (¢2a’ A¢20¢)’ ecb (¢2a+1’ Q¢2¢x+l )’ 5 (gcb (¢2a’ Q¢2(x+1 )) + ecb (¢2(x+1’ A¢2a)}’
1
{e (/)Za’ ¢2¢x+1 cb (¢21x’ ¢21x+1)> gcb (¢2a+1’ ¢20¢+2)’ E (ecb ((/)200 ¢2a+2)) + ecb (¢2¢x+1’ ¢2a+1 ) }’
(4)
1
S ecﬁ ¢21x’ ¢20c+1 tb (¢20c+1’ ¢20c+2)’ E (S (ecb (¢2<x’ ¢21x+1 )) + gcb (¢2(x+1’ ¢2(x+2) - etb (¢2a+1’ ¢2(x+1)
+ Loy (Paas1> Paasn)) )
s
= Smax{fcﬁ (‘/’2“) ¢2¢x+1)’ Cep (¢2a+1’ ¢2a+2)’§ (ecb (¢2a> ¢2a+1) + L (¢20¢+1’ ¢2a+2))}~
O
Case 1. If max{etb (Der  Prar1)s Lep (Pagirs Pagsn)> 812 Case 2. 1If max{ed, (D200 Ba0s1)> oo (Paas1> Pras2)>
(Lep (D200 Paar1) + Lep (Br041> Prai))} = e (Pras1> Pras2)s /2 (€ep ($200 Do)+ Cep (Drar1> D2042))} = Lo (P20 Drgs1)>
then we have then we have
ecb (¢2a+1> ¢2¢x+2)59€cb (¢2a+1’ ¢2a+2)' (5) ecb (¢2a+1’ ¢2a+2)s‘9€cb (¢2<x’ ¢21x+1 ) (6)
This implies 9> 1, which is a reductio ad absurdum. From the next step, we have
s
€ep (¢2¢x+2’ ¢2a+3)39 max{fcb (¢2a+1> ¢2a+2)’ Cp (¢2¢x+2’ ¢2a+3)’ B (ecb (¢2¢x+1’ ¢2a+2) + L (¢2(x+2’ ¢2(x+3))}' (7)
et a+2> ¥2n SSec a+1> ¥2a+2)/¢ (9)
We consider three cases. b (¢2 +2 ¢2 +3) b (¢2 +1 ¢2 +2)
From (6) and (9), Va = 0,1,2,..., we obtain
Case 3. o
ch (¢a+1’ ¢a+2)<‘9€cb ((poc’ ¢o¢+1) <’9 1 cb ((/)0’ ¢ ) (10)
Ces (Drar2> Pone3)S9ep (Baqans Bonss)s (8) )
For q,a € N, with q> a, we have
which implies 9> 1, is a reductio ad absurdum.
Case 4.
e(b(¢tx’ ¢q)55 [ecb (¢zx> ¢a+1) + ecb(¢zx+1> ¢q) - Ecb (¢a+1’ ¢a+1)]’
<8 [ecb ((pa’ ¢oc+1) + ecb(¢a+1> (pq)]’
s$ (etb (¢a’ ¢o¢+1)) + Sz(ecb (¢a+1> ¢(x+2) + gcb(¢a+2> ¢q)) - ecb (¢a+2> ¢(x+2)’ (11)
s (ecb (¢o¢) ¢rx+1) + SZ [gcb (¢a+1’ ¢a+2) * ecb((poﬁ—z’ ¢q)]
<s (ecb (¢a’ ¢zx+1)) + 52 (ecb (¢a+1’ ¢oc+2)) + 33 (gcb (¢a+2’ ¢a+3))’
ot Sqiail(etb(‘/)q%’ ¢q71)) + Sqia(efﬁ(‘/)qfl’ ¢q))'
Moreover, by using (9), we obtain
Coo(Bar 0 )59 (L (B0 91)) + 579" (Cep (B2 91)) + 579 (€ (000 1))
q-a (12)

o ST (0 (0 61)) + ST (L (00 41)) = D ST (€ (605 $1)).

i=1



Therefore,

q—a

i=1

(s9)°

= 1_—59 |€tb (‘/’m ¢1)|

Then, we have

(s9)*
1-s9

LB B0)| <75 s (90 $)]| — 0 as @ — 0.
(14)

Hence, {¢,} is a Cauchy sequence in H.

Case 5.
Cep (G220 ¢20¢+3)S‘9§ (Lt (Daas1> Paara) + e (D202 B2as3))-
(15)
This implies that
Cep (D202 Pani3)S iecb (P2as1> Paas)- (16)
(2 -9s)
Since a: =9s/(2-9s)<1, we get

gcb (¢a+17 ¢a+2)sa€cb ((/)oc’ ¢(x+1)' Therefore, {¢a}aeN is a Cau-
chy sequence in H.

Case 6. If max{gcb (¢2a’ ¢2a+ 1)’ gcb (¢2¢x+1> ¢20¢+2)’
/2 (€ep (P00 Prar1)+ Cep (Dans1> Pr002))} = 12 (€eg (5
Prar1) + €ep (D2041> Paas2))> then we have

ecb (¢2¢x+1’ ¢21x+2)s‘95/2 (ecb (¢2a’ ¢2¢x+1) + gcb (¢20¢+1’ ¢2a+2))'
(17)

Hence,

9
ecb (¢2¢x+1’ ¢20¢+2)S Tsss)gcb (¢20¢’ ¢2¢x+1 ) (18)

For the next step, we have

Cep (Drar2> Pras3)SIMAX{ g (Brn1> Prai2)s Cep (Prasrs Prass)s

% (€ep (Daar1> Prusa) + Cep (Prgins ¢2(x+3))}‘
(19)
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. . q71
LB 00)| < D5 ey (40, 6)| = 2.5 e (90:90))

s Z (59)t|€cb (¢o> ¢1)|’ (13)

Then, we consider three cases.

Case 7.

ecb (¢2(X+2’ ¢20¢+3)S‘9€cb (¢2a+2’ ¢20¢+3)’ (20)

which implies 9> 1 and is a reductio ad absurdum.

Case 8.

etb (¢21x+2’ ¢2n+3)$9€c5 (¢2a+1’ ¢2¢x+2)' (21)

Then, by (18) and (21), we get

Ecb (¢a+1’ ¢a+2)sy€cb ((prx’ ¢oc+1)’ where Y=
max{9, 9s/2 — 9s} < 1. Hence, {¢,},n is a Cauchy sequence
in H.

Case 9.
Ces (Daas2r ¢2n+3)5§ (Cet (Paar1> Paar2)) + Les (Bansa Baass)-
(22)
Hence, we obtain
Cep (G202 Bra43)S ifcﬁ (P201> 2as2)- (23)
(2 —9s)

By using (18) and (21) yields
ecb (¢a+1’ ¢a+2)$2€cb (¢a’ ¢zx+1)’ (24)

where 0<:=9s/(2 - 9s) < 1.
Then, Va =0,1,2, ..., we obtain

Cep (Dart> Pasa)Sep (P Pas1)S -+ Sla“ecb (¢o-¢1). (25

For q,a € N, with q > a,
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Ces (Do B4) S5 [€e6 (Pas Bart) + Lo Barrs Bg) = Eet (Parrs B ]

<5[p (Pa> Parr) + Ces (B> 8a) ]

<5 (Lo (B> Pann)) + 5" (Eep (Parr> Bara) + Lo (Baras Bq) = €eb (Bras Pas2))>
<5 (Lo (B> Pan)) + 5 [€e6 (Barts Pasz) + Lo (P B4) s
<5(Leg (P Bar1)) +5° (et (Bae1> Ban2)) + 5 (Lot (Prar Pass))s
toeed Sqiail(etﬁ(‘/’q%’ ‘/’qfl)) + Sqia(etb(‘/’qfl’ ¢q))'

(26)

Using (24), we obtain

Lep(Pa> Bq) < (Les (P05 B1)) + 57 (€ (B> $1)) + 572 (e (05 61))
SEEE N L (etb (‘po’ ‘/51)) + 517! ( b (ﬁbo’ ‘/51)) (27)

- qzsl 0 (g (90 1)

Therefore,
i i+a—1 i+a-1 < tt
Lo @0)] < 2 57T e (900 80)] = X Y[ (90061
i=1 t=a
= Z (52)t|€cb (0> 1) (28)
i=a
_ ("
1 I cb ¢0 ¢ )I
ecb (¢*’ (/)*) = hma%ooetb ((/)*’ (poc) = limtx—»ooecb (¢a’ ¢tx) =0.
Hence, we have (30)
(s)*
cB(¢zx ¢q)' | (00 9)] — 0 as a— co. By the continuity of A, ¢, = Ad,, — AP™ as
o —> 00:
(29)
Hence, {¢,} is a Cauchy sequence in H. In all cases,
{¢2}4en is @ Cauchy sequence. Since H is complete, there
exists ¢* € H such that ¢, — ¢* as « — oo and
i'e‘e(‘ﬁ (A(p*’ A(/)*) = hma%oogcb (A(p*’ A(/)th) = limzxﬁooeds (A(/)Zoc’ A(lex)' (31)

However,

ecb (A(P*’ A¢*) = lima—>oo€cb (A¢2¢x’ A¢2a) = 1ima—>ooecb (¢2a+1’ ¢20¢+1) =0. (32)



Next, we prove that ¢* is a fixed point of A:
gcb (A(/b*, ¢*)S€cb (A(p*’ A(/)Zoc) + ecb (A¢2¢x’ (p*) - ecb (A‘pm: A(psz)'

(33)
As a— 00, we obtain [|f,(Ad*,¢")|<0. Thus,
., (A7, 07) = 0. Hence,

gcb (([5*,(/5*) = ecb ((p*’ A‘P*) = ecb (A(/)*’A(p*) =0 and
A¢* = ¢*. In the same way, we have ¢* € H such that
¢, — ¢* as a — o0 and

ecb ((/5*’ (/5*) = lima—>oo€cﬁ ((/5*’ (poc) = lima—woecb ((/500 ¢a) =0.
(34)

By the continuity of Ad¢,,., = Q¢,,.; — Q¢* as
a — 00,

i'e‘gcb (Q¢*’ Q¢*) = lim(x—>00€cﬁ (Q¢* > Q¢20¢+1)

) (35)
= hmoc—»oofrb (Q¢2¢x+l’ Q¢2a+1)'
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However,

ecb (‘Q(p*’ ‘Q(p)* = limaﬁoogcb (Q¢2a+1’ ‘Q¢2¢x+l)

, (36)
= limy o ep (2020 P2ar2) = 0.
Next, we prove that ¢* is a fixed point of Q:
Zcﬁ (Q¢*’ (/5*) < Zcﬁ (Q¢*’ Q¢2a+1) + gcﬁ (Q¢2a+1’ ¢*) (37)

- gcb (Q¢2a+1’ A¢2a+1)'

As a— 00, we obtain |£,(Q¢",¢*)<0. Thus,
£, (Q",¢") =0. Hence, Lep (0%, 07) =€ (&7,
Q¢*) = £, (Q¢", Q¢p") = 0 and Q¢* = ¢”. Therefore, A and
Q have a common fixed point ¢*.

Let u* € H be another common fixed point for the
mappings A and Q. Then,

ecb (¢*’ nu*) = ecb (A¢*’ Qﬂ*)ss max{ecb ((/)*’ ﬂ*)’ ecb (¢*’ A‘/)*)’ ecb (nu*’ Q‘u*),

2 (€ (97.007)) + € 7, 867) ],

59 max{ecb ((p*’ H*)’ gcb (¢*’ ¢*)> ecb (:“*’Au*)

(38)

(67 + (' 9)]

Ssetb (¢*’H*)
This implies that ¢* = p*.

Theorem 3. Let (H,¢.y) be a complete b-CPMS with the
coefficient s>1 and A,Q: H— H be two continuous
mappings such that

£y (A, Qa9 max{E, (9,10, (91 86, g (1, ),
(39)
(€ (6.0 + L (89D

N =

for all ¢,y € H, where 0<9<1/s. Then, A and Q have a
unique common fixed point ¢* € H and €., (¢*,¢*) = 0.

Proof. Following from Theorem 2, we can easily prove {¢,}
is a Cauchy sequence. Since H is complete, there exists
¢* € H such that ¢, — ¢* as « — oo0.

Suppose that €, (¢*, Ap™) =1 >0.

Then, we estimate
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A=1C4(¢", A¢"),
<5{lep (87 Baiva) + oo ($aiv2> AG7) = Les (Piv2> $iea) b
<5{lip (675 baira) + Loy ($2102 A7)},
<58ep (87 Baiva) + ey (i1 AP7),

<5Ces (97, Paira) + 95 max{lep (hri15 87)s Lo (Paiv1> QPain1 ) €ep (875 A7)

1 : , (40)
5 ((ecb (¢2i+1’ A¢ ) * gcb (¢ ’ Q¢2i+l))}’
Ssgcb (¢*’ ¢2i+2) +Js ma‘x{ecb (¢2i+1’ (/5* )’ Ecb (¢2i+1’ ¢2i+2)’ ecb (¢*’ A(,b*)
1 * *
3 (€ (P 97) + 6 (8" 922)) .
Ssecb (¢*’ ¢2i+2) + Ssecb ((/5*’ A(/)*)’
<5lep (975 i) + SON.
This yields and Q have a common fixed point ¢*. Following from
] Ss]fcb (¢*’¢2i+2)l + SO (41) Theorem 2, we can easily prove uniqueness part. O

Hence, 9> 1, which is a reductio ad absurdum. Then,  Lheorem 4. Let (H,€y) be a complete b-CPMS with the

¢* = A¢*. Similarly, we derive that ¢* = Q¢*. Therefore, A Coeﬂic."e”t sz1 and A,Q: H— H be two continuous
mappings such that

e (6, AP)Es (1, Qu) £ (6, AP)E, (AY, Q,u)}
L. (A®, Qu)<9 max{ £, 1), <8 < < < , 42
N e er A e e “
w1 = Ap,, and w2 =Qb5,,0=0,1,2,.... (43)
for all ¢,u € H, where 0<9<1/s. Then, A and Q have a Pamst = E02 e P2
unique common fixed point ¢* € H and €. (¢*,¢*) = 0. Then, by (42) and (43), we obtain
Proof. Let ¢, € H. Define
Cep (Paai1> Paaea) = oo (Ao Qo)
Ces (S0 D201 les (Qrar1> Aia)
<9max{¢ o Poas)s cb \¥2a> Y2a+1/%ch 20+1 2a ,
{ @ (¢2 ¢2 1) 1+ ecb (¢2¢x’ ¢2¢x+1)
ecﬁ (¢2(x’ A¢2(x’)etb (A¢2(x’ Q¢2a+1)}
1+ Leg ($a0 Bre1)
(44)

e(b (¢2a’ ¢2a+1 )ecb (¢2a+1’ ¢2a+2)
1+ € ($r00 P2as1)

ecﬁ (¢2(x’ ¢2a+1 )gcﬁ (¢21x+1’ ¢2a+2)}
1+ €£b (¢2a> ¢2a+1) ’

<O max{lep (Bra> Paar1)> Leb (Baar1> Pras2)}-

>

<9 max{fcn (D200 D201)>




If max{grﬁ (¢2a’ ¢2a+1)) ecb (¢2a+
L $r012)} = Cep (@20415 Paas)> then

ecb (¢2a+1> ¢2¢x+2)5‘9€cb (¢20¢+1’ ¢2a+2)'

This shows that 9> 1, which is a reductio ad absurdum.
Therefore,

(45)

Ecﬁ (¢2¢x+1’ ¢20¢+2)S’9€r5 ((pZa’ ¢2¢x+1)- (46)

ecb(¢a’ ¢q)55 [ecb ((pa’ ¢oc+1
<8 [ecb ((pa’ ¢oc+1

ecb(‘boﬁl’ ¢q)

ec{)(¢a+1’ (pq)]
S (gcb (¢a’ ¢a+1)) +s ( cb ((poﬁ-l’ ¢oc+2) + gcb(¢a+2’ ¢q) -
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Similarly, we obtain

<S$ (ecb (¢o¢’ ¢o¢+1)) + 52 [Ecb (¢o¢+1’ ¢0¢+2) + fcﬁ((poﬁ—Z’ ¢q)]>
<S$ (ecb (¢0¢’ ¢a+1)) + 52 (ecb (¢oc+1’ ¢oc+2)) * 33 (gcb (¢o¢+2’ ¢o¢+3))’
#9420 90-1)) 5 (Cn(€4-10 40))-

By using (48), we obtain

Cep(Pa> B )<59" (€5 (0> 61)) + 59 (£ (B> $1)) + 89 (€5 (60> 1))

oo+ ST (0 (B0, 61) + ST (L (805 61))s
-

= Z 5191+a—1 (ecﬁ ((/50’ ¢1))
in1

Therefore,

Z (s9)'|€c6 (0> 61)]»

(59)

Hence, we have

(s9)"

|cb(¢0)¢1|—’0 as a— oo.

cb(¢a’ ¢q)'
(52)

Hence, {¢,} is a Cauchy sequence in H. Since H is
complete, there exists ¢* € H such that ¢, — ¢* as
a — 00 and

9| cb ((pO’ ¢1)|

q-«
Ceo( 90 8| < Z ST e (40, 1)] = ) "9 Ces (B0 61)]

ecb (¢2(x+2’ ¢2a+3)5‘9€cb (¢20¢+1’ ¢2(x+2)' (47)
From (46) and (47), Va = 0,1,2, ..., we obtain
ecb (¢a+1’ ¢a+2)s9€cb (¢a’ ¢0¢+1)S U SSlﬁlecb (¢0’ ¢1) (48)
For q,a € N, with q> «, we have
cb ¢a+1’ ¢a+1)]
4 >Patr2) )
cb (¢o¢+2 ¢ 2)) (49)
(50)
i=1
(51)
cb (¢ ¢ ) - hmvt—>oo cb (¢ ¢a) - hma—»oo cb (¢a’ ¢a) =0.
(53)

Since Q) is continuous, we obtain

¢* = hma*)OO(pZO&Z = hma%ooﬂgbloﬁ—l = Qlimtx—\oo‘bZoH—l = Q(p*
(54)
Similarly, we derive that ¢* = A¢*. Then, A and Q havea

common fixed point. Let 4* € H be another common fixed
point for the mappings A and Q. Then,
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b (([)*,/1*) =0, (A(/S*,Qy*), This implies that ¢* = p*. O
SSmaX{f 5(</>*,/4)*,€d’ (7,407 )ee (:“*’QP’*)’ Theorem 5. Let (H,¢.y) be a complete b-CPMS with the
¢ 1+, (¢*,,H*) coefficient s>1 and A,Q: H— H be two continuous

mappings such that

bes (¢7, 80" )es (Q#*’Aﬁb*)}
1+€cﬁ(¢*’tu*) ’

Ssgch ((/5*’.“*)
(55)

e(b (A¢, Q‘LI)SS max{g(ﬁ (¢’ [/l), ecb (¢’ A¢)€cﬁ (/J, Q.u) ecb ((/5’ A(p)ecb (A¢’ Q.u)}) (56)

L+eg (o)~ 1+Lp (o)

b (95 0%) =lim,_ L (6%, ¢,) =lim, L ($,8,) = 0.
for all ¢,u € H, where 0<9<1/s. Then, A and Q have a (9797 0(¢790) o (90> 90) -
unique common fixed point ¢* € H and €. (¢*,¢*) = 0. (57)

Suppose that €, (¢*, Ap™) =1 >0.

Proof. Following from Theorem 5, we can easily prove {¢,} Then, we estimate

is a Cauchy sequence. Since H is complete, there exists
¢* € H such that ¢, — ¢ as @ — co and

A=ty (97, 0¢"),
<5{lep (875 Paira) + oo (B2i42 AP™) = Leg (B> Baina)
<s{{les (675 Paina) + € (A7, bisa)}s
<5lep (975 Pina) + 5 (A6, Qi)

* . s (75 A" )l (Drin1> Qb
st (080 + st (), 0 0200 N (B B)

a0 8.y 007083,

T (58)
1+ (675 P2is1)

* . oo (073 AG )l (Drie1> Do
<sbep (¢ a(/>2i+2)+95max{€cb (7 $2i1)> b((/)1 +?b)(¢if($22. 11)¢2 2)]’

ecb ((p*’ A¢* )ecb (A(P* > ¢2i+2)
I+ ecb ((/)*’ ¢2i+1) ,

<step (85 $aiva) + 595 (67, 097),
<sep (97, Bairz) + SN,

This yields Example 3.5. Let H ={1,2,3,4} be endowed with the
. iy < ) Ry
A< 5[ (67 dieo)| + SO (59) E[)‘z]r)iasl (l)r;ilirigl;fy it y<¢. Wedefine €,: Hx H C*in
Hence, 9>1, which is a reductio ad absurdum. Then, It is easy to verify that (H,{y) is a complete b-CPMS
¢* = A¢*. Similarly, we derive that ¢* = Q¢*. Therefore, A with the coefficient s>1 for x € [0,7/2]. Define
and Q have a common fixed point ¢*. Following from AQH-—HbyAp=1
Theorem 5, we can easily prove the uniqueness part. [
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TaBLE 1: Example of unique common fixed point.

(¢,1) e (9, 40)
1,1), (3,3) 0
1,2), (2,1), (1,3), (3,1), (2,3), (3,2), (2,2) el
1,4), (4,1), (2,4), (4,2), (3.4), (4,3), (4,4) 9e?i*
TaBLE 2: Example of no common fixed point.
(¢,1) e (6, 40)
11, (3,3) 0
(1,2), (2,1), (1,3), (3,1), (2,3), (3,2), (2,2) e¥x
1,4), (4,1), (2,4), (4,2), (3,4), (4,3), (4,4) e%ix
1 if¢e{l,2,3},
Q = 60
((¢) {2 -4 (60)

Clearly, A and Q are continuous functions. Now, for
9 = 1/9, we consider the following cases:

(A)If ¢ =1 and py e H-{4}, then A(¢) = Q(p) = 1.
Hence, all the conditions of Theorem 2 are fulfilled.

(B)If ¢=1and y=4, then A¢ =1 and Qu =2:

£ (A, Qu) = e <99e™

, 1 .
= 9max{9elzx, 0,9¢"™*, 3 (e'zx + 9e12x)}

=9 max{ftb (¢’ ‘14), etb (¢’ A¢)> gcb (Au’ Q‘Au)

1
2 (B (6.000) + £ (1. 09) .
(61)

(C)If¢=2and u =4, then A¢p =1 and Qu = 2:
£ (AD, Q) = €7 <996™
=9 max{9ei2x, 2% 9¢"*, 1 (0 + 9ei2x)}
2
= 9max{ly (¢, ), Lep ($, A, £ (4, Q)

1
2 (8 (8.000) + £ (. 09) .
(62)

(D) If ¢ =3 and p =4, then A¢p =1 and Qu = 2:

Journal of Function Spaces

b (AD, Qu) = e**<99e™*

. . . 1 . .
=9 max{9e’2x, esz’ 9612x’E (eth + 9612x)}

= I max{ly; (¢, ), £es (6 AP), € (11, Q)

1
3 (€ (9.0 + € (1. 09) |.
(63)

(E) If ¢ =4 and y = 4, then A¢p =2 and Qu = 2:

b (AD, Qu) = e <996
. . o1 . .
=9 max{9612x) 9612x) 9612x) - (9612x + 9612x)}
2
= I max{ly; (¢, ), £es (6 AP), € (11> Q)

1
E (ecb (¢’ Q/")) + ecb (.u’ A¢)}
(64)

All the conditions of Theorem 1, with 9=1/9<1, are
fulfilled. Therefore, A and Q have a unique common fixed
point 1.

Example 3.6. Let H = PUQ, where P = [1,2] and Q = {3,4}
be endowed with the partial order ¢<p iff yu<¢. Define
Cp: HxH — C* by €4 (¢, u) = (|¢ —y|2 +2)e?*, for all
¢puePorpecPandpyeQor¢pecQuckpP.

It is easy to verify that (H,¢,) is a complete b-CPMS
with the coefficient s>1 for x € [0,7/2]. Define
A,Q: H— H by

’ 1 if¢e [12]
A($) = - (65)
~2 if¢e<§,2]UQ,

2 if¢e[1,§],
Q(4) = (66)
4 if¢e<g,2]UQ.

Clearly, A and Q are not continuous functions. Now, we
consider the following cases:

(A) If ¢, u € [1,3/2], then A(¢) = 1 and Q () = 2:
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b (AD, Q) = e* ¥ <= 3™

W | =

=9 max{ecb (¢’ ‘Ll), ecb (¢’ A¢)’ gcb (.“’ Q““)
(9000 + £ (1 A9)]
(&)

(B) If ¢ € [1,3/2] and y € (3/2,2]UQ, then A¢ =1 and
Qu =4

1
s (89, Opp) = < 33¢™
=9 max{€(b (¢’ ‘“)’ el‘b (¢’ A¢)> gcﬁ (Au’ Q‘Au)

1
3 (6 (9.0 + € (1. A9) |.
(68)

(C) If pe[1,3/2] and ¢ € (3/2]UQ, then A¢ =2 and
Qu=2:

0.4 (A, Q) = 273 %ein
= 9max{le; (¢, 1), e (¢ AP, e, (11, Qpt)

1
2 (6 (6.0 + € (. A9
(69)

(D) If u, ¢ € (3/2,2]UQ, then A¢ =2 and Qu = 4:

£Cb (A(b, Q‘l/l) — €2ixS3 éeﬂx
= 9max{€., (¢, 1), €5 (¢, AP), € (1, Qu)  (70)

1
2 (€ (6,00 + £ (. 8) |

All the conditions of Theorems 2 and 3, with 9< 1, are
tulfilled except continuous mapping. Therefore, A and Q
have no common fixed point.

Remark 1. In view of the fact in Theorems 2 and 3, we
cannot drop the continuous mapping.

4. Application
Consider the following systems of integral equations:
d
v(s) = J T, (s, R, v(R))dR, (71)
d
0(s) =J T, (s, R, 0 (N))dX, (72)

where

11

(i) v(s) and @(s) are unknown variables for each
se€eJ=]cd], d>c>0

(ii) T (s, N) and T,(s,N) are deterministic kernels
defined for s, X € J = [¢,d]

Let H = (C(J), R*) be the set of continuous functions
defined on J. Define £4: Hx H — C* by

o (0,0) =[v(s) — () +2, (73)

Vv,p € H. Then, ¢, is a complete b-CPMS. Define partial
order < given by

v,0 € H,ugpif andonly v (s) > o(s), Vs € J. (74)

Theorem 6. Assume that

(A) T,,T,: ] x ] xR* — R* are continuous functions

satisfying
S(v,0) 2
T (5, R, (X)) = T, (s, R, ()| b-a b-a Yt >0,
(75)
where
S(v,0) = max{l (v, 0), &y (v, AV), £ (0, Qp)
(76)

% (6.5 (0, Q0) + £, (0, Av))}.

Then, systems (71) and (72) have a unique common
solution.

Proof. For v,p € (C(J),R*) and s € ], define the contin-
uous mappings A, Q: H — H by

d
Av(s) = I T, (s, R, v(R))dX, (77)

d
Oo(s) = J T, (5, R, 0 (N))dX. (78)

Then,

£ (Av(s), Qo (s)) =|Av(s) — Qo (s)|* +2

d
- J IT, (5 R, 0(R)) = T (5, R, Y(s)dX +2

= SS(U’ 9)

= 9max{€,; (v, 0), £, (v, Av), £ (0, Q0)

% (€ep (0, Q0) + £ (05 Av))}.
(79)
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Hence, all the conditions of Theorem 2 are fulfilled for
0<9 = 1/e' < 1/swith t > 0. Therefore, integrals (71) and (72)
have a unique common solution. O

5. Conclusion

In this paper, we proved common fixed-point theorems on
complex partial b-metric space. An illustrative example and
application on complex partial b-metric space is given.
Recently, Khalehoghli et al. [24, 25] introduced R-metric
spaces and obtained a generalization of Banach fixed-point
theorem. It is an interesting open problem to study the
relation R instead of complex partial b-metric space and
obtain common fixed-point results on R-complete complex
partial b-metric spaces.
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In this article, the new iterative transform technique and homotopy perturbation transform method are applied to calculate the
fractional-order Cauchy-reaction diffusion equation solution. Yang transformation is mixed with the new iteration method and
homotopy perturbation method in these methods. The fractional derivative is considered in the sense of Caputo-Fabrizio
operator. The convection-diffusion models arise in physical phenomena in which energy, particles, or other physical properties
are transferred within a physical process via two processes: diffusion and convection. Four problems are evaluated to
demonstrate, show, and verify the present methods’ efficiency. The analytically obtained results by the present method suggest

that the method is accurate and simple to implement.

1. Introduction

The convection-diffusion equation is a mixture of convec-
tion and diffusion equations and identifies physical pro-
cesses where energy, particles, or other physical properties
are transmitted inside a physical process due to two process
steps: diffusion and convection. In standard form, the
convection-diffusion model is written as follows:

%:v.(uvu)—v. (vu) +r, (1)

where D is the diffusivity, U is the variable term, such as
thermal diffusivity for heat flow or mass diffusion coeflicient
for particle, and v is the average velocity that the volume is
travelling. For instance, in convection, u might be the den-
sity of river in salt and then the flow velocity of water v.
For example, in a calm lake, v would be the average velocity
of bubbles rising to the surface due to buoyancy, and U
would be the concentration of small bubbles. R defines

“sinks” or “sources” of the quantity U. For a chemical spe-
cies, R> 0 indicates that a chemical reaction is increasing
the number of the species, while R >0 indicates that a
chemical reaction is decreasing the number of the species.
If thermal energy is generated by friction, R > 0 may occur
in heat transport. V denotes gradient, while V- denotes
divergence. Previously, different techniques have been
applied to investigate these models such as Adomian’s
decomposition technique [1], variational iteration tech-
nique [2], Bessel collocation technique [3], and homotopy
perturbation technique [4].

In recent decades, fractional derivatives have been used
to interpret many physical problems mathematically, and
these representations have produced excellent results in
modelling real-world issues. Many basic definitions of frac-
tional operators were given by Riesz, Riemann-Liouville,
Hadamard, Weyl, Grunwald-Letnikov, Liouville-Caputo,
Caputo-Fabrizio, and Atangana-Baleanu, among others
[5-8]. Over the last few years, many nonlinear equations
have been developed and widely used in nonlinear physical
sciences like chemistry, biology, mathematics, and different
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branches of physics like plasma physics, condensed mat-
ter physics, fluid mechanics, field theory, and nonlinear
optics. The exact outcome of nonlinear equations is cru-
cial in determining the characteristics and behaviour of
physical processes. Still, it is impossible to find exact
results when dealing with linear equations. Many useful
methods have been applied to investigate nonlinear frac-
tional partial differential equations, for example, analyti-
cal solutions with the help of natural decomposition
method of fractional-order heat and wave equations
[9], fractional-order partial differential equations with
proportional delay [10], fractional-order hyperbolic tele-
graph equation [11] and fractional-order diffusion equa-
tions [12], the wvariational iterative transform method
[13], the homotopy perturbation transform method [14,
15], the homotopy analysis transform method [16, 17],
reduced differential transform method [18, 19], q-
homotopy analysis transform method [20-24], the finite
element technique [25], the finite difference technique
[26], and so on [27-30].

Daftardar-Gejji and Jafari developed a new iterative
method of analysis for solving nonlinear equations in
2006 [31, 32]. It is the first application of Laplace transfor-
mation in iterative technique by Jafari et al. Iterative
Laplace transformation method [33] was introduced as a
simple method for estimating approximate effects of the
fractional partial differential equation system. Iterative
Laplace transformation method (NITM) is used to solve
linear and nonlinear partial differential equations such
as fractional-order Fornberg Whitham equations [34],
time-fractional Zakharov Kuznetsov equation [35], and
fractional-order Fokker Planck equations [36].

In 1999, He developed the homotopy perturbation
method (HPM) [37], which combines the homotopy tech-
nique, and the standard perturbation method has been
broadly utilized to both linear and nonlinear models
[38-40]. The homotopy perturbation method is important
because it eliminates the need for a small parameter in the
model, eliminating the disadvantages of traditional pertur-
bation techniques. The main goal of this paper is to use
HPM to solve nonlinear fractional-order Cauchy-reaction
diffusion equation using a newly introduced integral trans-
formation known as the “Yang transform” [41]. The sug-
gested technique is applied to analyse two well-known
nonlinear partial differential equations. In the context of a
quickly convergent series, we obtain a power series solution,
and only a few iterations are required to obtain very efficient
solutions. There is no need for a discretization technique or
linearization for the nonlinear equations, and just a few few
can yield a result that can be quickly estimated to utilize
these methods.

2. Basic Definitions

We provide the fundamental definitions that will be used
throughout the article. For the purpose of simplification,
we write the exponential decay kernel as, K(S,q)=
el 0(S—a/l-p)]
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Definition 1. The Caputo-Fabrizio derivative is given as
follows [42]:

“DEP(S)] = Nig) JSPI(Q)K(S, Q)do,n—1l<gp<n.

(2)

N(g) is the normalization function with N(0) = N(1) = 1.

“Dies) - 1 [ (9 - PGS0k ()

Definition 2. The fractional integral Caputo-Fabrizio is given
as [42]

CEI¢ [IP(S)] = 1\1];@113(5) + N@ J P(Q)do, § > 0,0 € (0, 1].
(4)

Definition 3. For N(p) =1, the following result shows the
Caputo-Fabrizio derivative of Laplace transformation [42]:
_ VL[P(S) - P(0)]

LIRS PS)] = = oy

(5)

Definition 4. The Yang transformation of P(J) is expressed
as [42]

Y[P(S)] = x(v) = lep(S)e-%ds.s >0, (6)

Remark 5. Yang transformation of few useful functions is
defined as below.

Y[1]=v,
Y[S] =7, (7)
Y[S] =I(i+1)v"*"

Lemma 6 (Laplace-Yang duality). Let the Laplace transfor-
mation of P() be F(v), and then, x(v)=F(1/v) [43].

Proof. From Equation (5), we can achieve another type of the
Yang transformation by putting S/v = as

LP@) =1 =y POOSRL0 ()

0
Since L[IP(S)] = F(v), this implies that

F(v)=L[P(S)] = L P(F)e*3dS. (9)

Put 3 ={/v in (8), and we have

F(v)= lr)lp (§> Ld. (10)

0 v
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Thus, from Equation (7), we achieve

E(v) :XG)' (11)

v

Also from Equations (5) and (8), we achieve

F(l) = x(v). (12)

The connections (10) and (11) represent the duality link
between the Laplace and Yang transformation. O

Lemma 7. Let () be a continuous function; then, the
Caputo-Fabrizio derivative Yang transformation of P(SJ) is
define by [43]

Y[P(S)] = (13)

Proof. The Caputo-Fabrizio fractional Laplace transforma-
tion is given by

LYP(S) - P(0)]

LP(3)] = v+p(1-v)

(14)

Also, we have that the connection among Laplace and
Yang property, ie., x(v) = F(1/v). To achieve the necessary
result, we substitute v by 1/v in Equation (13), and we get

_ IWV[R(S) - P(0)]

V[P(S)] —
V(- 0) "
N 3)-v
Y[P(3)] = T lp(v-1)
The proof is completed. O

3. Algorithm of the HPTM

The procedure of general nonlinear Caputo-Fabrizio frac-
tional partial differential equations is through HPTM. Let
us take a general nonlinear Caputo-Fabrizio partial differen-
tial equations with nonlinear function N(U(¢, J)) and lin-
ear fractional L(U(g, J)) as [43]

{ CEDEV(p, §) + L(V(9, 3)) + N(V(¢, T)) = 9(9 ),
V(g,0) = h(9),
(16)

where the term g(¢, ) shows the source function. Using
Yang transformation to Equation (16), one can obtain

Y[V(p, 3) — (e, 0)]
I+p(v-1)
==Y[L(V(p 3)) + N(V(p, 3))] + Y[g(9, I)],

Y[V(p, 3)] = vh(g) = (1+p(v - 1))
[YIL(V(9. B)) + N(V(g: 3))] + Y[g(9. T)).

Implementing inverse Yang transformation, we obtain

V(9. 8) =V(9,0) = Y ' [L+gp(v - 1)
[YL(V(p, 3)) + N(V(e, 3))] + Y[g (e, I)]]>
(18)

where the term V(¢, ) shows the source function and with
the initial condition. Now, we apply homoptopy perturba-
tion method.

Ve 8)= Y pVi(e, D). (19)

N(V(p,S))= ) p'H(V), (20)

where H,(V) represents the He’s polynomial and is calcu-
lated through the following formula:

,i=1,2,3.

p=0

1 ai 0 ;
Ve VoY) = 1 1y {N(Z pv")

(21)

Substituting Equations (19) and (20) in Equation (18),
we obtain

5’ P9, %)= V(. 3) - p(\w (1+p(v = 1)V

i=0

: lLZ Pl S)+N Y pH (V)

(22)

We obtain the following terms by coefficients comparing
of p in (22):



As a result, the obtained solution of Equation (16) can be
written as follows:

V(@) =Vo(9: 3) + Vi (@ )+ (24)

4. Error Analysis and Convergence

The following theorems are fundamental on the tech-
niques address the original models [16] error analysis
and convergence.

Theorem 8. Let V(¢, ) be the actual result of (16), and let
Vi(e,S) e H and o€ (0,1), where H denotes the Hilbert
space. Then, the achieved result Y )V, (¢, ) will converge
V(p, S) if Vi(9, ) <V, (9, S)Vi> A, i.e, for any w > 03A
> 0, such that ||\/i+n(<p, S)H <pB,Vi,neN [43].

Proof. We make a sequence of Y5 V,(¢, T).

Col> ) = V(9. T)s

Ci(p: ) = Vo (9, T) + Vi (9, 3),

Cao($: ) = Vo (9, ) + Vi (9 3) + Vo (),

Cs(9. T) = Vo (9, B) +Vi(9: ) + V5 (9, ) + V3(9: ),

Ci(p, T) = Vo (9, ) + V(9 I) + Vo (¢, S)+-+Vi (9, T).
(25)

we have to demonstrate
$) forms a “Cauchy sequence.” Take, for example,

To provide the correct outcome,
that C;(¢,

[Cis1 (9 ) = Ci(@, F) || = [[Vira (9 S)[| < a[| V(9 F) |
S02”\/;‘—1(‘/”‘5)”SG (Vi (9, )]+
<0ia[[Vo(e, S) |-

(26)
For i,n € N, we acquire

1Ci(,3) ~
=ICi(e 3

[Ci-1(#: ) = Cia (9 I
+[|Cia (92 B) = Cis (9 S) [+ +[|Coa (9 F) = Cu9, I)
<a'l|Vo(e, S)| +‘7H||\/0(‘P’ S) [+ +0" Vo (9, F) |

= [|Vo(9. S)|| (0" + 0" +0™)
1_0.1 n "
=[|Vo (s S)HW “

(27)

Since 0 <o <1, and V, (¢, ) is bounded, let us take f3
=1-0/(1-0,,)0"" [Vo(p, S)|l.  Thus, {Vi(p,I)},
forms a “Cauchy sequence” in H. It follows that the
sequence {V;(¢, J)}, is a convergent sequence with the
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limit lim;_,  V;(¢, ) =V(p, J) for IV(¢p, ) € #. Hence,
this ends the proof. O

Theorem 9. Let ZIZ:O\/h((p, ) is finite and V(¢p, ) repre-
sents the obtained series solution. Let o >0 such that ||V,,,,
(@, )| < [|Vu(e, ) I; the following relation gives the
maximum absolute error [43].

k+1

_Vy(@: S). (28)

k
- Z V(9 )
h=0

Proof. Since Y5_,V, (¢,
Vi (¢, ) < 00.
Consider

S) is finite, this implies that Zﬁzo

3 Vie3)

h=k+1

Y Vi, S)

h=k+1

k
- Z Vi (9, 3)
h=0

IN

(o)

Y Vo9 )|

h=k+1
< Ok+1(

IN

1 +a+02+~--)||\/0((p, )|l
k+1

V, (o, )|
~ [Vl B)]

(29)
This ends the theorem’s proof. O

5. The General Procedure of NITM

The general solution of fractional-order partial differential
equation is as follows:

FDEV(p, F) + NV(g, ) + MV(g, ) (30)
=h(p,J),ieN,i-1<p<i,
where N is nonlinear and M linear functions.
With the initial condition
\/k(¢,0):gk(§0>)k=0) 1:27""1._1’ (31)

implementing the Yang transformation of Equation (30), we
get

Y[Dg\/(go J)] + YINV(p, ) + MV(p, S

Applying the Yang differentiation is given to

VV(p, )] = V(9,0) + (Lp(v - 1) Y[h(p, S)]
~ (L+p(v = 1)) Y[NV(p, §) + MV(p, ).

(33)
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Using inverse Yang transformation Equation (32), we get

V(p, B) =Y [{¥W(9,0) + (1+p(v = 1)) Y[(9, S)]}]

=V [(1+p(v - 1) Y[NV(p, ) + MV(9, T)]].
(34)
By iterative method, we get
V(.9)= Y V(p.5), )
N(f e rs')) = Y N 9.9) (30

The nonlinear term N is identified as
N <Z Vi(e, 3)) =Vo(p,3) + N (Z Vi(e, 5))
i=0 i=0 (37)

-M (Z V, (¢, 5)> .

Putting Equations (35)-(37) in Equation (34), we have
obtain the following solution:

<l+[@

+Y[h(ps )]) (I+p(v-1))Y

o(§vin) -(Funo)|

V(9 8) = Y [1V(9,0) + (1+p(v = 1)) Y (g(p, B))];

V(. 8) ==Y [(1+p(v = 1)) Y[N[Vo (o,

3

i=0

00
(ZSZ (p+1 1
-Y"

1

3)] +M[Vo(g, 3)]],

Ees)
et

Lastly, Equations (30) and (31) provide the i-term solu-
tion in series form which is expressed as

Vs (9 8) ==Y | (1o(v = 1))

(38)

V(g B) = Vo (9, S) +Vi(9: F) +V,(9, )

Example 10. Consider fractional-order Cauchy-reaction dif-
fusion equation as [44]

“FDEV(g, F)eQCR,

(40)

) =D5V(9, 8) - V(. 9),0<p<1, (9,

with initial and boundary conditions

V(g 0)=e? +9=g(9), V(0,3) =1 =£,(3),

v(0,8) 4 (41)
%:e -1=£,(3),9, S €R.

The methodology consists of applying Yang transforma-
tion first on both side in (40) and utilizing the differentiation
property of Yang transformation, and we have

Y[V(p, )] =v(e? +9) + (1+p(v—1))Y[DZV-V]. (42)

Using Yang inverse transform, we get

V(p, ) =(e?+9) +Y ' ((1+p(v-1))Y[DgV-V]).
(43)

Now, we apply the new iterative transform method
Vo(p. S)=e +9,

V(g 3) = \ & [(H@(V - 1))V{DZS\/0 - \/0}] =-p{1+pJ-p},

V, (9, 8) =Y [(1+p(v - 1))Y{DgV, - V, }]
=p{0-p2p5+ (g + O

V(9 3) =Y [(H@(V - 1))Y{D§}\/2 - \/2}}

302 l_p 82 9353
-~p{ (1305 + 1)+ O 0

(44)

The series type solution is given as



The approximate solution is achieved as

V(p,J3)=e?+ (p{l - {1+p3-p}

{(1 0)20% + (1-p)* +

o3 1— 3
(1)t —5—

Now applying the HPTM, we get

[ee)

Zp’\/i(%«‘?) =(e?+9)+p
. {Y <(1+p (v-1))

where the polynomials represent the nonlinear functions are
H,(V). For instance, the terms of He’s polynomials are
achieved through the recursive relationship H,(V) = D3V,
—-V,, Vn € N. Now, as the correspond power coefficients of
p is comparison on both sides, the following solution is
obtained as follows:

B

(47)

PP V(@ B) =€+ 9,

phVi(p, D) = [V H{(1+p(v = 1))Y(H(V)}] = —9{1+pS—p},
Pt Va(, ) = [V H{(T+p(v = 1)) Y(H, (V))}]

= (p{(l—p)ZpS +(1-p)* + @2‘5 },
P’ Va(,B) = [V H{(1+p(v = 1))V (Hy(V))}]

- —<p{<1—m23@s + (1)

LS @'
2 3t [

(48)

Then, the homotopy perturbation method series form
solution is defined as

V(e S) = Y pVi(9. 9). (49)
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The analytical result of the above equation is defined as

Vg, 3)=e?+ <P{1 —{1+pS—p}
282
+ {(1—@2@5 + (1) + & }

- {(1—@23@5 + (1)

RECAG IR }+} S
2 3! = I'(igp+1)
V(p,J)=e?+ L, (I"). (50)
The exact result of the above equation is
V(p, §)=e? +gpe . (51)

Figure 1 shows the analytical solution of two methods at
different fractional-order @ =1 and 0.8, and Figure 2 shows
separate fractional-order at ¢ = 0.6 and 0.4 with close con-
tact with each other. In Figure 3, the graph shows the differ-
ent fractional-order g of Example 10.

Example 11. Consider fractional-order Cauchy-reaction dif-
fusion equation as [44]

FDEV(¢, ) = DEV(9, ) - (1+49)V(,F),0<p <1, (¢, 1)

€eQCR,
(52)
with initial condition
V(g,0)= ¢ (53)
and the exact result is given as
V(p, ) =e” . (54)

Now, we apply the new iterative transform method

2

Vo(p, ) =€,

Vi, ) =V [(1+p(v = 1)) Y{ D&V, (9, )

- (1+49*)Vy (9. ) }] = & {1+pS—p},

Vy(9, 8) = Y [(1+p(v = 1) Y{D3V, (¢, ) - (1 +4¢°)V, (¢, ) }]
{(1 0)203 + (1-p)" + f}

V(9. S) =Y [(1+p(v — 1)) Y{DZV,( <‘)—(1+4<p2) 2 (9. 9)}]

- {1-praps + (g DSOS,

(55)
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FIGURE 1: (a) g =1 and (b) the fractional-order g = 0.8 of Example 10.
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FIGure 2: Different fractional-order of g = 0.6 and 0.4 of Example 10.

The series type solution is given as

V(e 3) = Vo (9 3) + Vi (9, ) + Vi (9, F) + V5 (9, S) Vi, ).
(56)

The approximate solution of the above equation is
defined as

2 2 © 32
V(p, J) =e? {1+ {1+pF—p} + < (1-0)20 + (1-p)" + 3

¥ (-0 'S,
2 3! ’

R {(1—@23@8 + (1) +

2

V(p, §) = e E,(S¥).

o
(57)

Now by applying homotopy perturbation transform
method, we get




1.10

1.05

1.00

v(p, &)

0.95

0.90

0.5

0.5

F1GUre 3: The different fractional-order g of Example 10.

Comparing the coeflicients of power p, we get

2

V(e ) =¢”,
V(e F) = {Y

1V (9, 8) = {Y!

V(9. 3) = {Vi1

H(1+p(v - 1)) Y[Hy(w)])} = & {1+pS—p},

((T+p(v—1))V[H, (w)]) }

{(1 )20 + (1-0)° +

_ o {(1—@23@5 (1) +

p2 32
2 >

((+p(v=1))Y[H(w)]) }

¥ (1) | 9353}

>

2 3!
(59)
The HPTM series solution is given as
V(9. 8)= ) pVi(e. ),
i=0
Ui 3) =" {1+ (12p5p)
232
()
+{-pps 1+ £
—0) 52
{o-praes s g s EEOT
3eg3
L E3 +}
3!
V(g 3) =" E,(S¥)

(60)
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Now g = 1; then, the actual result of Equation (52) is V
(¢, ) =e?*S,

Figure 4 shows the analytical solution of two methods at
different fractional-order @ =1 and 0.8, and Figure 5 shows
the separate fractional-order at ¢ =0.6 and 0.4 with close
contact with each other. In Figure 6, the graph shows the dif-
ferent fractional-order g of Example 11.

Example 12. Consider fractional-order Cauchy-reaction dif-
fusion equation [44]

“FDEV(p, ) =D5V(ep, ) +2SV(9, F),0<p <1, (¢, F) € QC R%,

(61)
with initial condition
V(p,0)=e?. (62)
The exact result is
V(p, ) = e# S (63)

By using the Yang transformation, we get

V(9. §) = (¢") + Y [(1+p(v - 1)) Y (DEV(p, §) +28V(p, T))]-
(64)

Now, we apply the new iterative transform method

Vo(, ) =e?,
Vi(9:5) = Y [(1+(v - 1)¥{DRVy(0. 5) + 25V, (9. 5)}]

:e¢<{1+p5—p}+{(1—p)2p5+(1—p)2+ 5 })

252
—6““({ (1-p)2 1-p)* + pz

3% (1-
+{(1—p)23p5+(1—p)3+ 5 55

The series type solution is given as

V(e 3) = Vo (9, 3) + Vi (9, ) + Vi (9, F) + V(9 S)+--Vi(, ).
(66)
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FIGURE 5: The different fractional-order of g = 0.6 and 0.4 of Example 10.

v(p,§)

FiGuRre 6: The different fractional-order g of Example 10.

The approximate solution of the above equation is
defined as

V(g 3) =+ ({1epS-ph + { 10208+ (1 +

+ e"’({(l—w@s + (1)’ + pzzsz}

30°(1-p)F*  °S°
+ {(1—@)23QS+(1—Q)3+ (Gl Zp) + p3! })+

Now, using HPM, we get

Y! {(1+p(v - 1))Y<§piHi(w)> }] .

(68)

(e8]

2PVi(@S)=e+p

i=0
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v(p,8)

37°0.20
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FIGURE 7: (a) g =1 and (b) the fractional-order p = 0.8 of Example 10.

Comparing the coefficients of power p, we get
P Vol S) =,
P V(9 8) = [V H{(L+p(v = 1))V (Ho () }]

=¢? ({1+p5—p} + {(1—p)2ps +(1-p)* + ‘32252})

P Va(e, 9) = [V H{(1+p(v = 1) Y(H, (w))}]
252

3ce3

3p*(1-9)S°  °S
+{(1—p)23ps+(l—p)3+ p(zm) 8 })

(69)

Proceeding in this path, the rest of the Vn(¢p, J) for n > 3
component can be completely recovered and the series solu-
tion can therefore be absolutely determined. Eventually, we
approximate the numerical solution V(¢,J) to the trun-
cated series.

N
Vig.8)= lim D Vi(g. ),
n=1

@S’
V(p, 3)=e’ + ¢ ({1+p5—p} + {(1—@)2@8 + (1—(@)2 + 3 })
232

”q)({(l—@ﬂr@«’ﬁ (-0 + 5 }

201\ %2 33
+ {(1—P)23p3+(1—@)3+ S (IZP)“ + @3‘!’ })+

(70)
Now for g =1, the closed form of the above series is

V(p, J) = ARARE

(71)

Figure 7 shows the analytical solution of two methods at
different fractional-order g =1 and 0.8, and Figure 8 shows
the separate fractional-order at  =0.6 and 0.4 with close
contact with each other. In Figure 9, the graph shows the dif-
ferent fractional-order g of Example 12.

Example 13. Consider fractional-order Cauchy-reaction dif-
fusion equation as [44]

FDEV(, ) =DgV(p, F) - (49" -2 +2)V

(¢, 5),0<p<1, (9, F) eQCR, 72
with initial condition
V(p,0) = e (73)
The exact result is
V(g §) =T (74)

Now, we apply the new iterative transform method
Vo(g, ) =",
Vil 8) =V [(I+p(v = 1) V{D5Vy (9, )
~ (49> =28 +2)V, (9, §) }] = ¢* {1+pS g},

Vi (. B) = Y7 [(1+p(v - 1)) Y{DgV, (¢, I)
- (4(p2 -28+2)V,(9,9)}]

2 2
=eq’z{(1—p)2@5+ (1-p)* + r@; }




Journal of Function Spaces

v (g, &)

370.20

v(p,8)

370.20

FIGURE 8: The different fractional-order of g = 0.6 and 0.4 of Example 10.
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F1GuRre 9: The different fractional-order g of Example 10.

Vs(, B) = Y (14 (v = 1)) Y{ D5V, (9, §)
- (49" -25 +2)V,(9, 9) }]

: 3¢ (1-p)S° | ¢'S’
— 9 _\2 o~ —\3
e {(1 0) 30 + (1-p)” + 3 + 3

(75)

v(p,§)

[ Il o6
0.8 B 04

FIGURE 10: The different fractional-order g of Example 13.

The series type solution is given as

V($:B) =Vo(9: F) +Vi(9, F) +V,(, )
+V3(p: S)+-Vi(g, ).
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The approximate solution of the above example is

V(p, J) = ¢ + e‘*’z{1+p8—p} +e
2032
{005+ 0+ £

2 3p%(1-
+ef {(1—(@)23p5+(1—@)3+ © 5 g

Now, using the HPM, we get

D PVilg.8) =" +p

i=0

Comparing the coefficients of power p, we have

Vo(p, ) = e,
Pl Vi 8) = [V {(1p(v - 1) Y(Hy(w))}] = ¢ {1+pS-p},

P! Vol 8) = [V H{(1+p(v - 1) Y(H, (w))}]

=e"’z{(1 £)20S + (1-p)’ + pz }

P’ Va9, 8) = [V {(1+p(v = 1)) Y(H, (w))}]
:e¢z{(1—p)23p5+(1—p)3+ % (12_@" +E2 }

(79)

Similarly, the remainder of the V,(¢, §) components for
n>4 can be completely achieved, thereby fully evaluating
the series solutions. Finally, we estimate the approximate

result V(¢, ) by truncated sequence
\/( B Nh—n>loo Z \/

V(g §) = + e {1+pF—p}

2 g2
+ e"’z{(l—p)Z[pS + (1—(@)2 + @2«5 }

+e‘f*{<1—p>23@8+ (1-p)°

¥ (1) 'S’ }+

2 3!

W{(lw(v— 1)Y (fp"H,(w)) H -
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Figure 10 shows the analytical solution of two methods
at different fractional-order p =1, 0.8, 0.6, and 0.4 of Exam-
ple 13. The special case for g =1, and the above problem
close form is given as

V(p, ) =e? . (81)

6. Conclusion

The homotopy perturbation transform technique and the
Iterative transform method are used in this article to obtain
numerical solutions for the fractional-order Cauchy-reaction
diffusion equation, which is broadly used in applied sciences
as a problem for spatial effects. In physical models, the tech-
niques produce a series of form results that converge
quickly. The obtained results in this article are expected to
be useful for further analysis of complicated nonlinear phys-
ical problems. The calculations for these techniques are very
simple and straightforward. As a result, we can conclude that
these techniques can be used to solve a variety of nonlinear
fractional-order partial differential equation schemes.
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In this article, we introduce Stancu-type modification of generalized Baskakov-Szdsz operators. We obtain recurrence relations
to calculate moments for these new operators. We study several approximation properties and g-statistical approximation for

these operators.

1. Introduction

In 1912, Bernstein [1] proposed the famous polynomial
known as the Bernstein polynomial to give a simple, short,
and most elegant proof of the Weierstrass approximation the-
orem. Since then, several papers have appeared to study
approximation properties in different settings and spaces.
Many new operators were constructed, e.g., Szasz [2], Mirak-
jan [3], Kantorovic [4], Durrmeyer [5], Stancu [6], and many
more [7-9]. These operators provide the improvement of
approximating functions of different classes and give better
and better estimates. For example, the Baskakov operators
were given in [10]:

For §) € C[0,00), the space of all continuous functions on [0,
00) normed with standard sup-norm |||,

Devore and Lorentz [11] introduced a generalization of
operators (1) dependent on a constant a >0 and indepen-
dent of p as follows:

G.(p, j
we ) =i SO WSy
]‘ (1 + u>P+] j=0

and (p);=p(p+1) -+ (p+i=1),(p)y =1.
Recently, Agrawal et al. [12] studied the following oper-
ators (2):

Z j (OB (@)

Lpa(h;u) =

for € C,[0,00) = {h € C[0,00): [h(t)| < Mye", for some y
>0,My >0}, where s, ;(t) = e ((pt)1i).
Inspired by Stancu’s work [6], we have studied recently

the Stancu-type generalization in [13]. Now, we propose
the Stancu-type generalization of operators (4) as follows:
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s =p 3w s (B ) o

for any bounded and integrable function § defined on [0, co)
, where 0 <A <. For A = =0, the operators (5) reduce to
operators (4).

We establish recurrence relations to find moments and
central moments. We study some approximation properties
and the Voronovskaja-type asymptotic formula. We also
study weighted approximation.

2. Auxiliary Results

Our first result is the recurrence formula for moments.

Theorem 1. The m™ order moment for (5) is defined by

A, M) e ©
T (0) = 2 (s 0) = p 3 Wp,k@)jo S0)8

k=0 (6)
.<pt+)t) gt
p+u
m=0,1,2,--. Then, Sl())t’fo)(b) =1, and
(m+ 1)(1+D)T,00,(v)
(M) !
= (1 +1)’ [~pam(b)] H{(La)(Aepoem (o)
Am
+ 1)+ @b () = (1)

Proof. We use the identity

b(1+0)*(Wiy(v))" =[(k=pb)(1+1) —ap] Wy, (v). (8)

=p i p(1+Dp)’ (Wf,,k(b)) ’J?Sp,k(t)f’ (pt + A) Kl

k=0 pru
< ~ . ©0 pr+A\"
=p Y (tk=pr)(tm) i) [ s (B

=p(l+v) Z(k —pb)W;,k(b)rospyk(t) (‘IZTJF:) mdt

o e ()

o(1+0)* [T ()| =1 - axT (i (o), (10)
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where
B S . 0 pt+A
=p(re0) 3 k- im0 (B e
=p(1+b>§[ k—(pt+2A)+ (pt+A)-pv]
k=0
WL (o )J:osp’k(t) <1; & :) dt
~p(1+) Y [(k—pt) + (pt + A) — (A + pv),
k=0
0 A
W o (55)
S 0 pr+A\"
=p(1+v) Z JO (k- pt)s, (W) dt
p(1+v (p+[4§ bJ (k-pt)s, ()(%)m

o " °°S pt+A
dt p(1+b)(/\+pb)I;)Wp’k(b)J0 ()<p+/4) d,

(11)
I:Z+;+;,say (12)
where

Y=(emp+pT T (0), (13)

Y =—(1+0)(A+po)T(v), (14)

pr+A\"
Z: 1+nz nJ (k- pt)nk()<p+u) dt
(1+v z J pt(s,.(1))’

: ({::3) dt, (usingt(sp,k(t))' = J:O(k _Pt)sp,k(t))’
INGraR

~ (sp,k<t>)’(p t”)mdt= (0 +)(1+v)

=<p+u><1+b>§wk<v

p+u
0 . 00 , pt+A m+1
';;)WP’k(D)L (spyk(t)) <P+M) dt
- o0 ) pt+/\)
-Al+p w dt
(1+0) ), J ) (pw
=7+ 7, say
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where

:(p+‘u)(1+D)W;’k(b)J:O(spk(t)) (Zf:) dt

=—(1+v)(m+ 1)p}§) w;’k(n)J:osp,k(t) (1;::) dt
—(1+v)(m+ 1)(5&{2(”)’

~ S 00 ) (pE+ A"
jz_—A(1+n);)Wp,k(b)J0 (5,4(t)) <p+#) dt

o) S (2)

-mA A,
- () w0

(16)

Therefore,

Y= (S20) 0wzt o) - (1w s T 0)

1 tu
(17)
Substituting (17), (14), and (13) in (12), we get
="y B) T (0) - (1+0)(po+ A
ptu ” (18)

+m+ et (0) + (14 0)(p + )Tt (0).

Further, substituting (18) in (10), we get the result. [
Corollary 2. From the above theorem, we get
(i) Lt (1:0)= 1
(i) Rt (50) = 1/(p+ ) (po + (av/(1 + ) + 1+ A)
(iii) 2;3,;”(1‘2 sv) = 1/(p+u)’[{p? +p+ (@®/(1+v)°) +

(2ap/(1+1v))}o? + {4p + (4a/(1 +v)) + 2Ap + (2aA/
(1+9))}p+{A*+ 21+ 2}]

Theorem 3. The m" order central moment is defined by

A, A m
ML (0) = Lt (£~ 0)" 5)

S (-

m=0,1,2,---. The following recurrence relation holds:

A,
n<1+n>2(m;ﬂf:3m<n>)’
I+ A = pb — b — mpd — mud — mpv’
= W( PP — b — mpv — myo — mp
— mpo?) MOE) (1) -

p.a,m—1

20
(m+mop+1+0 (20)

— 0+ A — ud? + Ab + av) M) (o)
+(140)(p+ )Myl ().

p.a,m+1

Corollary 4. From the above theorem, we get

() 8l (t-1);
+1)
(b) ) (£ -)?50) = 1(p+u)*(p + 42 + (a2(1 +v)?)

— (2ap/(1+0)))0? + (2/(p +w)*) (p— = Au+ (2 +
Na/(1+0))o+ (1/(p+u)’) (A + 21+ 2)

p)=1/(p+p)(—po + (av/(1+p)) + A

Corollary 5. We further get

(a) limp_mpi’,;,’},;”)((t —0);0)=—pu+ (av/I+0)+ A+
1
(b) lim, o pRi (1= 0)?;0) = (b +2)

3. Main Results

Peetre’s K-functional is defined as
K,(5,8) = inf {15 -gll+3lg"l : g€ CGl0.00) |, (21)

for §) € C5[0,00), 8 > 0, where Cy[0,00) :=
bounded on [0,00)} and C3[0,00):=
€ Cg[0,00)}. Note that

{9 € C5[0,00): § is

! n

{g€C5[0,00): g, g

Kz(f);(S)sMw2<I);\/5),M>O, (22)

where w,(§;9) is the second-order modulus of continuity
[11].

w,(h,8) = sup sup [h(v+2]) - §>0.

0<I<dv€0,00)

2h(o + 1) + h(v)|,

(23)

The usual modulus of continuity of ¥ e Cy[0,00) is
defined as

w, (9, 8)=sup sup [h(v+1) -

0<I<8v€0,00)

h(v)]- (24)



Theorem 6. For §j € Cy[0,00),

2 (550) =500 | < 0 (55 /) < (0
~<1+A—yb+7%%>),

p+y

(25)
where M > 0 and
(L) I 2., 2 a’ 2ap 1\
@ = Pty + - b
’ <p+m2{< (1+v)’ <1+v>>
2a(2+ M)
2p—2u -2\ — D
(-2 <1+v>>}
2
b1 DN ens2b,
(p+u)’ I+v
(26)
Proof. Put
GAw) (A o
27 (h;v) =2l n(P
pa (030) =505 ML A
1 )
+
ptul+o
QM) 1y i) oy
Note that £, (1;0)=1and £, (t;0) =b. Let € ¢

C2[0,00). Then, by using Taylor’s theorem, we may write

(1) = G(v) + (t - n>®’<x>j (t-9)6"()dy,  (28)

which gives

24(630) - € (v)
=6 (0) @0 (- b)s0) + 2

([ a=ne"0rsn)
-5 ([e=n€ o))
- g <£<t )€ )y )

1/(p+p) (1+A+po+(av/1+9)) /1 4 )
L (7

po 1 ap B <
+p+pt+p+,ul+b b)C (y)dy.

(29)
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t
<l (|[ 0-ne" 0] )
D
1/(p+p) (1+A+po+(av/(1+))) +)t pb (30)
[ (p
v Ty prp
1 abv "
+mm )’)G »)dy!-
Since | [} (t - )G (y)dy| < (t - -)*|€¢"| and
J-ll(p+;4)(1+A+pb+(ub/(1+b)))<1+A pD
b ptyu ptp
1 ap 1
_ 5 1
rFE y)C (y)dy‘ (31)
2
S<‘17+)L_ po . 1 ab) 16",
tu ptu ptul+o
we have
&bt $:p)— G(p (Au) t_bz.b 1+A_ Mb
12,7 (€0) - 6o < G (e v iw) (- T
1 ap \’
) 1€
ptul+p
(32)
Now, by Corollary 4 (b), we get
~ /\)
9 (@50) -6 )| < IS (33)
By (27), we get
125" (550) = H(v)|
~ (A,
<|& (5-:0)|+19-6)v)
+ ’Q(M) (C;p) —@(b)’ (34)
1+ 1 av
D).
‘ (Pw pru P+M1+b) i )‘
. G o
Since |2, (5;0)| < 3[IBll, we get
125" (53 0) = H(v)]
~ A)
s4||f)—(2||+’2( g @;n)—@(n)’ (35)

1+ 1 ap
’(Pw ptu p+u1+b) f)(b)"
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From (33), we get

1+ A
1204 (55 0) - h(v)| < 415 - Gll+dps () I6” [+, (f) o

ty
_pp N 1 av
p+u prul+p)’

(36)

Now, taking the infimum over all G € C3[0,00), we
obtain

(L) () 1+2A
5 - <4K 5 a D —
27 (550) 500 < 4K (53411 0) w4 (£
_pp . 1 av
p+ty prul+v )’
(37)
Hence, by using (22), we get the result. O

For our next result, we consider the functions belonging

to the Lipschitz class:
|t o]
(t+0)"* [

(38)

lip o (y) = {f) € Cyl0,00): [6(t) ~ H(w)| <.

where # >0and 0<y<1;p,t€0,00).

Theorem 7. For b € lip ,(y), we have

b

(M) y/2
201 (55 0) - h(v)| < 4@) . (39)

where (p},ﬁ;")(b) = 81(,/}‘;”)((61 - D)Z ;D).

Proof. First, we prove for y = 1. For h elip ,(y), we get

dt

| (530) ~b(v)|
<3 Wit s (51) -0
@ et N)(p ) -]
D)J (1) \/((pt+/\)/(p+y))+bdt
(40)

s./%pz w
k=0

Since Vo< \/((pt+A)/(p+p))+b, we get by the
Cauchy-Schwarz inequality:

|22 (%) - ()

M S oo pr+ A ’
< — WO (o) s, (2 —u|dt
HE W) s "
(L4
A 0w, e Ppa_(P)
_7521,)“ (e, =v)*sv) <t —

dt

(5i2) v

< 2 {W;,k(b) (J:Ospk(t) ’f) (I;t: :) ~B(v) ‘dt) W}
{ b(P”A) — B(v) 1/ydt}y.

ptru
(42)

Y

Since § € lip,,(y), we have

125" (55 ) = ()

M| 3 o0 pt+ ) ’
= W{P};) Wp,k(b)L Sp(t) | o =] dt}

M (A Y
=W 9 (le, - vlyp)Y _Ws ) ((e, —1)*; 1)
Y
A
s./%( L"‘H)(b)) .
b
(43)
Therefore, we get (39). O
Next, we obtain a Voronovskaja-type asymptotic
formula.

Theorem 8. If '/ exists at a point b € 0,00) for § € C,[0,00),

then
Jim p (2 (5=v) ~b(v))
v\, b
<1+A yb+m>f) (b)+§(2+b)f) (v).

Proof. From Taylor’s expansion of b, we may write

)*h" (b) + R(t, 0)(t — )2,
(45)

B() = B(v) + (t- )0 (0) + 5 (¢ -



where R(t, ) — 0(t — b). By operating 253‘;” ), we obtain

20 (5 =) ~ h(v) = 20 ((t ) s 0)b (v)
R (GUSDEE I

b)*;v).

By the Cauchy-Schwarz inequality, we get

+ 20 (R(t, ) (1 -

L4 (R(1,v)(1 - v)* 5 v)

1/2
< (2 (R(mw)sv)) (S ((1-0)5v))
Since 2&’”)([) ~1p) — B(b), we get

lim 531,“ (Rz(t, b);

P—)OO

b) =R*(v,0) =0,
(48)
lim p@" (R(t,0)(t - 0)*;b) = 0.

p—00

Now, combining the above equations and using Corol-
lary 5, we get

Jim p (27 (5=10) ~p(v))
O (t—p):0)) 8’
= Jim p (27" ((¢-0)39))b (v)
 tim p(2 (v 5m)) L) (49)
+ lim p (2,%’”) (R(t, ) (t - v)*; b))
<1+A o+ T”p)f;'(n)+;(2+n)f)"(n).
O
Let B,[0,00) = {5 : [0,00) — R|[h(b)| < Ho(v), >0}

, where 7y is a constant which depends only on b, and

191, = sup 12|

o o) (50)

Also, let C,[0,00) =
0,00)}, and

{h € B,[0,00): § be continuous on |

C2[0,00) = {f) € C,[0,00): Dli_r)nm%exists}, (51)

where o(b) =1 + v
The weighted modulus of continuity [14] is defined by

LCE R TO TR

QL &)=sup sup —————
) e e T + (o s 1)

0<I<8v€0,00)

Lemma 9 (see [14]). Let § € C2[0,00). Then,
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(i) Q(1, ) is a monotone increasing function of §
(ii) Q(,6) — 0as d —0
(iii) O(I, k&) < kQ(1, 8) for each k € N
(iv) O, ad) < (I + a)Q(1,5) for each a € R*

Theorem 10. For §j € C%[0,00), we have

125" (B30) = (o) |

su
> (1+92)"?

p€0,00)

sMQ(l, %),M 50, (53)

Proof. By Lemma 9, we have
15(t) = h(0)| < (1 + (0|t —D | )?

<2(1+0%)(1+(t-v)%) (1 + |t;b|)9(l, d).
(54)

Q(L, |t -v|)

Operating Séf\;”), we get

‘g@ﬂ) b) - f)(b)‘

<2(1+v1)Q(, 5){1 P ((E-v)50) (55

+ g (1 + (t—n)z—"’g d ;n) }

Using a second-order central moment, we get

(Lrv) (1)

A,
g (-0 (p+4) p

b) <M, , M, >0.
(56)

Applying the Cauchy-Schwarz inequality, we obtain

sj,a)(u( n)zl";t' ;u>

<= (2“”(( 13)2;13))1/2

S8 0= (5 07 )

09

>

Again, using the central moment of order 4, we get

(1+v?) B

prm b

(1+v%)

(2(”)((t—b) D))UZSMZ , M, >0.

(58)
Combining the estimates (55)-(58) and choosing M =2

(1+M, +/M, + My\/M,), § =1/,/p, we get the required
result. O
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4. g-Statistical Convergence

Defining a g-analog of the Cesaro matrix C; is not unique
(see [15, 16]). Here, we consider the g-Cesaro matrix, C,

(q) = (chi(d)); > defined by

k
q .
T ifk<n,
Cuk (qk) =| [n+1], (59)

0, otherwise,

which is regular for g>1.

Let  C N (the set of natural numbers). Then, §(%) =
lim, (1/r)#{k<r:ke X} is called the asymptotic density
of H#, where # denotes the cardinality of the enclosed set.
A sequence # = (17, is called statistically convergent to the
number 8 if §(#,) =0 for each £>0, where #,={k<r
: |y — 8l>e} (see [17]).

Recently, Aktuglu and Bekar [16] defined g-density and
g-statistical convergence. The g-density is defined by

8q(.%):6Cq(%):lim inf (Clxz),
(60)

=lim 1nfz ,qzl.
=g 1]

A sequence 7 = () is said to be g-statistically conver-
gent to the number Z if §,(K,) =0, where K, ={k<n: |
— Z|z¢} for every € > 0. That is, for each > 0,

1
lim — s gk? - =0, 1
im [n]#{kSn q In, les} 0 (61)

and we write St, —lim#y, = Z.

If () = 0 for an infinite set %, then §,(F) =
statistical convergence implies g-statistical convergence but
not conversely (c.f. [16, Example 15]). Recently in [18],
authors proved Korovkin’s type theorem via q-statistical
convergence. Using the same technique we prove the follow-
ing theorem.

0; hence,

Theorem 11. For all § € C°, we have

=0,ve[0,00). (62)

g

St —11mH2 (5 b) — B(b)

Proof. It is sufficient to show that St, —limpllﬁgf )(ei ;D) —
ell, =0, for i=0,1,2, where e,(b) =v'. It is clear that

St, - 11?"53},?;”)(% ;p) - €

= 0. (63)

By Corollary 2 (ii), we have

1 ( an
po+
p+uy 1+b

|2 5v) -

= sup
0 ue0,00) 1+ Dz

+1+A> -p|< ! |-u+1+A+al
tu
(64)
For € > 0, define the sets:
€, = {p €N : 20 (e, 30) — eyl 28},
_ (65)
‘gzzz{pe]N; M 28}.
(p+ )
Then,
!
8,(%,) —PlgnOO inf (Cl)(g >P =thmOO inf kéz o =0.
(66)
Since &, € &,, we have 6,(&,) <8,(&,). Hence,
. A
St, - ll}r)nHﬁI(,,am(e1 ;b) —e; = 0. (67)

Again, by Corollary 2 (iii), we obtain

Hg}(ﬁ;ﬂ) (t2 : b) _p?

[

1 e a? _ 2ap o2
prw’ 7T T @vwy T (e)

2 (2+A)a
p+p) (p_“_MH (1+n)>°

(M +21+2)| < 2{p+y +a’ —2ap}

< sup ——
v€0,00) 1+p

sup ——
v€0,00) 1+p?

+

2

(P+#

A Aa
P et T ET M G s

(p+u)

5 (/\ +21+2).
(68)

For ¢ > 0, define the sets:

= {p eN: ||8§,?;”> (ey50) —e,ll, = s},

D, = sP+ +a’-2a > —
A L B

b

p-p—Au+(2+A)a)=

}.

W[ M

) 2
(ptu)

(A2+2A+2)2

W[ ™

ey
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Ficure 1: Convergence of the operator towards the function f(x)
2
=x"+1.

Then, §,(D,) =0=35,(D;) =6,(D,). Since D, <D, U
D; UD, which implies that §,(D;) <8,(D,) +8,(D;) +
6q(@4),

Sty ~lim [ €7 (e230) - s | =0. (70)
Hence, the proof is completed. |
Example 12. Let 7= (r,) be defined by
1(2*"times)
1, = n=0,1,2, . (71)
0(2*" 'times)

That is, 1 occurs 2" times and 0 occurs 22! times (n
=0,1,2,--), respectively. Let & ={keN : 5, =1}. Then,
lim, . (Clxs)ym =0 ie, St, —limny, =0, but §(F) does

not exist, so # is not statistically convergent.

Define DQ(;’W) =(1+ np)S;,ﬁ;“ ) where it is defined by (71).
Then, obviously st — limpll.dy’”) (e;30) —ell, =0(i=0,1,2).
Applying the above theorem, we have

sty ~tim |2 (5:) -

- 0
U—Oforal]f)eCp. (72)

On the other hand, since 7= (7,) is g-statistically con-
vergent but neither convergent nor statistically convergent,

the sequence (d}f’” )) can not be convergent, while it is g
-statistically convergent.
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Ficure 2: Convergence of the operator towards the function f(x)
= (x—(1/2))(x - (3/4)).
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FIGURE 3: Comparison of convergence of the operator.

5. Graphical Analysis

In this section, we will give some numerical examples with
illustrative graphics with the help of MATLAB.

Example 13. Let f(x)=x*+1, A=3,u=4,a=0.8, and p €
{10,40,80}. The convergence of the operator towards the
function f(x) is shown in Figure 1.

Example 14. Let f(x) = (x— (1/2))(x - (3/4)), A=2,u=5,a
=3, and p € {15,45,75}. The convergence of the operator
towards the function f(x) is shown in Figure 2.
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From these examples, we observe that the approximation
of function by the operators becomes better when we take
larger values of n.

Notice that for A =pu =0, the operators (5) reduce to
operators (4).

Example 15. Let f(x)=x* —4x+7. For a=3,p=30, com-
parison of convergence of the constructed operator (5)
(green and pink) with the previously defined operator (4)
(blue) is shown in Figure 3. From this figure, it is clear that
the constructed operator gives a better approximation to
f(x) than the previously defined operator.
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In this paper, we establish some upper bounds of the numerical radius of a bounded linear operator S defined on a complex
Hilbert space with polar decomposition S=U | S|, involving generalized Aluthge transform. These bounds generalize some
bounds of the numerical radius existing in the literature. Moreover, we consider particular cases of generalized Aluthge
transform and give some examples where some upper bounds of numerical radius are computed and analyzed for certain

operators.

1. Introduction

In mathematical analysis, inequalities play a vital role in
studying the properties of operators in the form of their
upper and lower bounds. Mathematical inequalities provide
the best way to describe as well as propose solutions to
real-world problems in almost all fields of science and
engineering. The boundedness property of different kinds
of operators studied in the subjects of analysis, precisely
in mathematical and functional analysis, is the key factor
in developing the theory and applications. For example,
upper and lower bounds are utilized to define the operator
norm, which plays significantly in solving related prob-
lems. The study of the numerical radius of an operator
defined on the Hilbert space is in the focus of researchers
in these days in studying perturbation, convergence, itera-
tive solution methods, and integrative methods, etc, see
[1-9]. In this regard, the numerical radius inequality
stated in (3) is studied extensively by various mathemati-
cians, see [10-21]. Actually, it is interesting for the
researchers to get refinements and generalizations of this

inequality [22-27]. The goal of this paper is to study gen-
eralizations of numerical radius bounds under certain
additional conditions. Henceforth, we define the prelimi-
nary notions to proceed with the findings of this work.

The polar decomposition is an important feature in the
theory of operators. It is defined by A = UB, where U is the
unitary matrix, and B is the symmetric positive semidefinite
matrix. It is interesting to see that when A is nonsingular
and symmetric, then B is a good symmetric positive definite
approximation to A and 1/2(A + B) is the best symmetric pos-
itive semidefinite approximation to A, see [6]. Let B(#) be
the C*-algebra of all bounded linear operators on complex
Hilbert space. Let S= U | S| be the unique polar decomposi-
tion of S € B(H'), where U is a partial isometry and |S| is
the square root of an operator which is defined as |S| = v/S*S.
The numerical range of an operator S is defined as

W(S) = {(S%%): [lx]| =L x e 7}, 1)

where W(S) denotes the numerical range. The numeri-
cal radius of an operator is the radius of the smallest
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circle centered at the origin and contains the numerical
range, ie.,

w(S) =sup {|A]: e W(S)}. (2)

The numerical radius defines a norm on %(#’) which is
equivalent to the usual operator norm, satisfying the following
inequality:

SISl <w(s) < S| )

If $* = 0, then the first inequality becomes equality and if S
is normal then the second inequality becomes equality. Many
authors worked on numerical radius inequalities and devel-
oped a number of numerical radius bounds [10, 13-18].

In [17], Kittaneh gave an upper bound of numerical
radius as follows:

w(s)< 5 (Is+ ). @)
and showed that this bound is sharper than the upper bound
given in (3).

In [25], Aluthge introduced a transform of an opera-
tor S€ B(H) which is called Aluthge transform that is
defined as

A(S) =S| Ujs|”. (5)

In [26], Yamazaki developed an upper bound of the
numerical radius involving Aluthge transform as follows:

w($) < 3 (18] + w(AS)), (©

and proved that it is sharper than the bound given in (4).
In [27], Okubo introduced a new generalization of
Aluthge transform, called A-Aluthge transform defined by

7,S=S'UIS) s A€o, 1] (7)

In [23], Abu-Omar and Kittaneh further generalized the
bound given in (6) using A-Aluthge transform as follows:

(ISl +w(A9))- (8)

NI>—‘

w(s) <

In [19], Bhunia et al. found some bounds of the numer-
ical radius for S € B(¥). Later, Bag et al. [24] working along
the same lines succeeded to get the following upper bounds
of the numerical radius:

1 1 . .
wH(S) < 5 S 14:S] + 511578 + 55"l (9)

—_

w(8) < 2 (w((438)°) + [ISIIASI| + 878 + 8S°[1),  (10)

W |
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31 N
w(S)< Y o ([las|aisi+ | (2579)" (457s)

w((4,5)?) + HSHHAASII)Z

(1)
(A7) (417S)°

1
)< 3¢ (w((
% (52P+ PSZ) +— ||P|\

(12)

where P=S*S+SS* and A € [0, 1].
In [22], Shebrawi and Bakherad presented a new form of

Aluthge transform so called generalized Aluthge transform
defined by

ApS=£(IS)Ug(IS)), (13)

where f and g are nonnegative continuous functions such
that f(|S])g(|S]) =S|, (|S| = 0). They proved the following
upper bound of the numerical radius by using generalized
Aluthge transform

w(S) < 3 (18] + w(47,9)). (14)

which is a generalization of the upper bound shown in (6)
and (8).

Our aim is to study the upper bounds of the numerical
radius by applying generalized Aluthge transform defined
in (13) by imposing further certain conditions on continu-
ous functions. The first contribution of this paper is that
we develop upper bounds of the numerical radius using
generalized Aluthge transform, which extends and general-
izes some already existing bounds. Specifically, we extend
the inequalities (9)-(12) for generalized Aluthge transform
under certain conditions on f and g. As a consequence,
the upper bounds of numerical radius involving Aluthge
transform and A-Aluthge transform appear as a special case
of our bounds. Another contribution of the paper is that we
have presented examples of generalized Aluthge transform
in addition to the classical Aluthge transform and A-Aluthge
transform, which are used for computing bounds of numer-
ical radius. More precisely, we have considered five choices
of continuous functions f and g in (13) and used them to
compute upper bounds of numerical radius for certain
operators.

2. Main Results

We start this section by attaining the generalized Aluthge
transform Ay, defined in (13) under the following addi-

tional conditions:
@ g(ISDfASD =18
(ii) £(]S]) and g(|S|) both are positive operators

Now, we give some results that will be used repeatedly to
achieve our goal.
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Lemma 1 [26]. Let S € B(F). Then, we have

w(S) = sup || Hy|| =supHRe (e’GS> , (15)
OeR OeR

where Hy = (Re (€95)) = (e9S +¢75*)/2 for all 6 € R.

Lemma 2 [23]. Let M;, M,,N,,N, € B(I). Then,

r(M;N; + M,N,)

< é(w(Nle) +w(N,M,))

M,) +4||N; M,||||N,M, ||,
(16)

# 3 JwN M) - w(N;

where r denotes the spectral radius.

Next, we give the numerical radius bound by using the
generalized Aluthge transform.

Theorem 3. Let S € B(H). Then, we have

w’($) < g(ISI)HHAf,gSHIIf(ISI)II+2IIS*S+SS*II~ (17)

1
2
Proof. Since

1
Hy= = (e‘eS + e"QS*) forallf € R, (18)
2

therefore,

&F
n

eZtGSZ +e—2168*2 + SS* +S*S)

62‘6U|S|U|S| + 6—219|S| U*‘S| U* +SS* + S*S)
0 Ug(1S)f (IS)Ug (SN (S)

e 2OF(|S)g(SHUF(ISNg(SU" + 85" +5°S)
(e*7Ug(18)) (47,9 (1S))

e (|S])(A74S) " g(IS)U" +85° +5°S).

+ BRI R R

N N N TN

+ =

(19)

The third equality is obtained by putting S= U | S| and
=|S|U" in second equality, the fourth equality holds
because f(|S])g(|S]) =S| and g(IS|)f(IS|)=1S|, and the
fifth equality holds because A S=f(IS|)Ug(IS|) and

3
(A748)" =g(IS1)U(IS|). Since [2z*||=|Z|]* for any
Z € B(H), therefore
1
1Hel> = 5 ([ Ug(ish (4, 9)£(s))
+E2OF(IS]) (Ay45) " g(|S|)U” + 85" + 578 D
1
Z(llg ISDINArgSIIFUSI
+IFUSDI (ArgS) " [[1g(ISDI + 1SS™ + 87S]))
1
= 5 ClgUSHI[AzgSIIIFASDI+ 11SS™ +S7S]])-
(20)

The first inequality holds because [|S;S,|| < [IS;]/IIS, I,
1S, + S,1l < [|S; 1l + (IS, ]| for any S, S, € B(H), U is partial
isometry and [¢*? | =1 and the second equality holds by
using the fact that [|S|| =S|

Now, by taking supremum of the last inequality over
0 €R and then using Lemma 1, we get

1 1
w(S) < S IgUSDIArgSIIFUSDI + 7 1SS* + 7S], (21)

as required. O

The following result is another generalized bound of
numerical radius for bounded linear operators on 7.

Theorem 4. Let S € B(H). Then,

w?(8) < 5 (w((8148)°) + 190151 14,43l 113D
+ ||s*3+ss*|\>.

Proof. Let S be any bounded linear operator with polar
decomposition S = U|S|. Since

1
Hy= 3 (e’es + e”es*) forallf e R, (23)

therefore,

1 2

- (ezes + e—les*) —
4

Using the properties of operator norm ||-|| on B(%), we
have

16l < 5 (| Uas (aggs)(1s)
+e (15 (47,48) () U

= 1 (1(#°Ug(150) (4,59)£(5)

+ e'2'9f<|8|>(Af,gS)*gusoU*) +]lss"+5°S])

(r(M,N, + M,N,) + ||SS* + S*§]|),

1
Hy* = i (62’952 +e 2982 4+ 88" + S*S).

(24)

+]|ss"+5°S])

»-lkl»—'

(25)



where M, =e%Ug(IS|)(4;,S), N, =f(ISI), M,=e%f
(IS1)(Af48)".N,=g(IS|)U*. The first equality above holds
for hermitian operator A € B(¥) satisfying r(A) =||A|.

Now, an application of Lemma 2 together with w(S) = w(S*)
and w(a$) = |a | w(S) yields

N (U’((Afgs)z)

#0812 (ar,9) [l a1 ar,
+lss*+s°s])
1 2
< (u(125)
+ 2 JALISDIP ] (47S)° oSl
+[|SS* + 57|

({9

) +IFASDIgUS 1Ay
+[SS* +$° S||)

(26)

The last equality holds by using the fact ||S|| = |S*||. Now,
we take supremum over 0 € R to get

1
sup||Hy||* < sup (Z (w((Af)gS)z)
0eR 0eR

gDl A S + 155" +5751) ).

(27)
By using Lemma 1 in above inequality, we obtain
1
2(8) < - (w((4,9)” sIIl4, . S|[I1f (1S
w(S) 4(w<( ) )+H9(| DI[AzgSIILFASDI 8)
+|ss* +s*3|\),
as required. 0

The following inequality is another generalized bound of
numerical radius.

Theorem 5. Let S € B(H). Then we have

w'(8) < 1¢ (w((4749)°) + 19081148 171 1))
+ éw(SZP+PSZ) + 1i6 1P|

(29)

where P=8"S + SS*.
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Proof. Since

H, - % (¢"s+ 75" forall o< R, (30)

- ( ¢9S + e 05" )

4

1

7 ( P02 4 20552 | 65" 4 §* s)
((e2‘952 + e—z:es*z) +P)
((62’982 +€7ZZQS*2)2

i (62‘982 n e_z’OS*Z)P+P(eZ’eSZ +e—2!68*2) +P2>

_ 1 (621982 +e—2les*2)2
16

n (e2’982P+e’2’98*2P+Pe2’982 +Pe’2’95*2) +P2>

ol =&l =

1 2
_ ((ezlesz + elees*z) + e2’9(82P+P82)
16

4o (s*zp + PS*Z) + P2)

_ 1 ((62‘982 +672‘GS*2)2
16
+2(Re ((SP+PS))) + P2) :
(31)

where

¢ (S’P + PS?) + ¢ 2 (S*P + PS?)"

Re <e2'9 ($P+ P52)> =
2

(32)

In third equality P = 8*S + SS*. Now, by using the prop-
erties of operator norm ||| on % (%), we have

’2
+ 2HRe (e2‘9(82P+PSZ)> H + |P||2>

!
T 16

+ ZHRe (e2’9(52P+P52)) H + |P||2>

1
HH9H4 < E (HeZIGSZ +672195*2

2
APU|IS|U|S| + e 20 s|u*|s|u”

- s (| vatis a7
+eOf(|S]) (41,45) " g(IS) U 2

+ ZHRe ((sP+Ps)) H +[1PI)
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= (P (e7ug(s)) (a7,8)7(3)
+ e F(180)(4,8) "g(1S) U
+2||Re ((SP+PS) ) | + 1P/
B % <r2<M1N1 +M,N,)

+2HRe (e2‘9(82P+PSZ)> H + HPHZ), (33)

where M, = e?Ug(|S| )(Ar4S), Ny =f(IS1), M, = e 20f(IS )
((A4S)7), and N, =g(IS|)U*. The first equality obtained
by using S=U | S| and $* =|S|U" in first inequality, the
second equality obtained by using f(|S])g(IS|) =S| and
g(IS1)f(IS1)=1S| in third equality, and the fifth equality
holds for hermitian operator satisfying r(A) = [|All. Now,
by using Lemma 2 together with w(S) = w(S*) and w(aS) =
| o |w(S), it yields

Il = g (10((a05))
TSP (a5
+ 2”Re (62‘9(82P + PSZ)) H + ||pu2)
<16 ((w(@9)
N R SRR )

+ ZHRe (ew(szp + PSZ)) H + ||PH2)

1

=g(@ﬁ%ﬁﬁﬂwmwmmM%ﬂW
+2||Re (' (2P +PS) ) | + IIPHZ) .

(34)

The last equality holds by using the fact ||S|| = [|S*||. Now,
we take supremum over 6 € R to get

sup | < sup i ( (w((4,5)°) + WIS a1
+2||Re ((sP+ PS?) ) | + ||p\|2)>.

(35)

meW%ﬂD

5
Applying Lemma 1 on above inequality, we obtain
4 1 2 2
w(8) < 1 (w((8748)°) +ILFUS IS )| ArS]))
1 1
+ -w(S’P+PS*) + —||P|*.
8 16
(36)
as required. O

To give the next bound of numerical radius, first, we
define iterated generalized Aluthge transform. The iterated
generalized Aluthge transform is defined as

k-1
A S = A(Afgs) wkeN, (37)

where f and g both are nonnegative and continuous
functions.

By using Theorem 4 repeatedly, we can obtain numerical
radius bound in terms of iterated generalized Aluthge
transform.

Theorem 6. Let S€ B(H) be such that the sequence
{IIA?@SII}:; is convergent then

w1955 (1) o) 1
\M@@ﬂ@%@)H

38)

Proof. In order to prove the theorem, it is sufficient to prove
the following assertion

w©5 2 () [4llo (s

| (a's) (4559) « (455) (4559)

1
+ —w? (A}’ S)foralln e N.
4 9

)

(39)

We use mathematical induction to prove the above
assertion. An application of Theorem 4 gives

1 *
w?(S) < 2 (ILFUSDINGUSDI|A7 S| + 11”5+ 88]))
+w((4549)°).
The use of the inequality w(S?) < w?(S) gives

w(5) < 5 (FIS) 173 901D + 5" + 55°1)

1
7w (45,8).
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TasLE 1: Bounds (14), (17), (22), and (29) for different choices of f and g in (13).
(f>9) Bound (14) Bound (17) Bound (22) Bound (29)
(e‘s‘, |S|e"5‘) 227288 56.6787 40.1743 40.0320
172 Q2
( ST 8|e7s! ) 3.7695 41934 3.6238 32146
(181", 18]"%) 3.4881 3.7078 3.3353 3.0645
‘S‘m —|S\”3
(e BN ) 3.3468 3.6354 3.2707 3.0389
TaBLE 2: Bounds (14), (17), (22), and (29) for different choices of f and g in (13).
(f>9) Bound (14) Bound (17) Bound (22) Bound (29)
(1S, 1S]7) 2.62245 2.37007943 227893615 2.1589862
(1512, 1]"%) 2.5 2.2912878 2.1794494 2.0963298
(e‘s‘” N *'5‘1”) 25 229120815 2.1794075 2.09630510
1/2 1/2
(e‘g‘ NEas ) 25 2.29120547 2.17940617 2.09630427

Thus the preliminary induction step holds. Now, sup-
pose that

w2 3 g () sl
| (aas) (4505) « (4555) (4559) )

I,
+ 4—mw (Af’g )forsomeme]N

(42)

Then, another application of Theorem 4 yields

wz(S)sli (1 (14551 ) 0afy Shg (|45 45 )
1 () (49 + (45) () )
w3 (I (1ams 1 inagssig (|azs| ) (49
o[ (4725) " (atas) + (4725) (478 )
+ 4}1}“ ((A}“ls) )

Simplifying and using the inequality w(S?) < w?(S) gives

9= K (Do)
(Af,g5>* (Af,g5> + (A}gs) (Ajlj’gs)* ) (44)
+ 4m_1+1w ( m+1s)

Hence, the assertion (39) holds for all n € IN.

Now, using the inequality w(S) < |[IS|| in (39) and then
using the hypothesis, we get the desired inequality (38). [

Remark 7. It is easy to observe from the Theorems 3-6 that
the upper bounds (17)-(38) are generalized bounds. Indeed,
if we take f(]S])=|S* and g(IS|)=|S/"™ for A €[0,1], in
the bounds (17)-(38), then we obtain bounds (9)-(12).

3. Examples

In this section, we shall consider some choices of f and g
in generalized Aluthge transform (13) and use them to
compute upper bounds of numerical radius for some
matrices.

0 5 0
Example 8. Given S=| 0 0 1 |. Then, S=U|S]| is a
0 2 0
0 0 0
polar decomposition of S, where [S| =0 29 0 |,
0 0 1
0 5/v/29 0
and U= | 0 0 1 | is partial isometry. The bounds
0 2/v/29 0

(14), (17), (22), and (29) are computed for some choices of f
and g in (13) for given S in Table 1.
The numerical radius of S is

w(8) =2.9154. (45)
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0 3 0
Example 9. LetS=| 0 0 0 |.Then,S=U|S]| isa polar
0 2 2
0 0 0
decomposition of S, where [S|=| 0 3 0|, and U=
0 0 2
01 0
0 0 0 | is partial isometry.
0 0 1

The bounds (14), (17), (22), and (29) are computed for
some choices of f and g in (13) for given S in Table 2.
The numerical radius of S is

w(S) =2. (46)

4. Conclusion

Summarizing the investigation carried out, we note that gen-
eralized Aluthge transform (13) with additional conditions
(i) and (ii) is useful in achieving the generalized upper
bounds for numerical radius. It is proved in Theorems 3,
Theorem 4, Theorem 5, and Theorem 6 that bounds (17),
(22), (29), and (38) are upper bounds of numerical radius
that generalize the upper bounds (9), (10), (11), and (12)
of numerical radius already existing in the literature. Theo-
retical investigations are supported by examples in which
computations are carried out for finding bounds (14), (17),
(22), and (29) of numerical radius for some choices of the
pair f, g in the generalized Aluthge transform A; ;. Exam-
ples 8 and 9 demonstrate that generalized Aluthge transform
provides a wide range of transforms that may be used as a
tool to compute the upper bounds for numerical radius.
These results might be helpful in studying perturbation, con-
vergence, iterative solution methods, and integrative
methods, which is the subject of future work. In the future,
we also have a plan to investigate the lower bounds of
numerical radius.
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In this manuscript, the aim is to prove a multiple fixed point (FP) result for partially ordered s-distance spaces under (6, ¢, y)-type
weak contractive condition. The result will generalize some well-known results in literature such as coupled FP (Guo and
Lakshmikantham, 1987), triple fixed point (Berinde and Borcut, 2011), and quadruple FP results (Karapinar, 2011). Moreover,
to validate the result, an application for the existence of solution of a system of integral equations is also provided.

1. Introduction

In pure mathematics, the Banach fixed-point theorem [1]
(contractive mapping theorem or also known as the contrac-
tion mapping theorem) is main result in the study of metric
spaces; it assurances the uniqueness and existence of FP of cer-
tain self-maps of metric spaces and requires a constructive
technique to discover those FP. It can be understood as an
abstract formulation of Picard’s method of successive approx-
imations. The theorem is named after Stefan Banach (1892-
1945) who first stated it in 1922. It has numerous applications
in different fields such as computer science, physics, engineer-
ing, and various branches of mathematics itself. FP theory as a
whole got an upward flight after this celebrated result.

Many authors started working in this field, and soon it
became a hot field of research. A number of authors have
extended this fundamental result to nonlinear analysis [2].
Following this streak, Guo and Lakshmikantham [3] estab-
lished the idea of doubled FP. This is considered to be the
first of its nature and was extended to triple FP by Berinde

and Borcut [4]. Continuing in this direction, Karapinar [5]
used four variable to strengthen the idea of quadruple FP
in partially ordered metric spaces. In 2012, Berzig and Samet
[6] discussed the existence of the fixed point of N-order for
m-mixed monotone mappings in complete ordered metric
spaces. In the same year, Roldan et al. [7] extended the
notion of the FP of N-order to the ¢-fixed point and
obtained some ¢-fixed point theorems for a mixed mono-
tone mapping in partially ordered complete metric spaces.
In [8], Karapinar et al. studied the existence and uniqueness
of a FP of the multidimensional operators which satisfy
Meir-Keeler type contraction condition. Soon after, a num-
ber of articles were published to discussed the concept of a
“ multidimensional FP” or “an m-tuples fixed point.” For
applications of such results, we refer the reader to [9] and
the references cited therein.

In 2016, Choban and Berinde [10] generalized metric
spaces to distance spaces. They established multidimen-
sional FP results for ordered spaces with distance under cer-
tain contractive conditions [4, 11]. They pointed out that the
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concept allowed them to reduce the multidimensional case
of FP and coincidence points to the one dimensional case.
Recently, Rashid et al. [12] established some multiple FP
findings for the C-distance spaces in the existence of various
contractive mapping.

The abovementioned ideas serve as motivation of the work
in the present paper. We have extended the results of [10] for
partially ordered s-distance space, in terms of a significant
multiple FP result under (6, ¢, v)-type contractive condition
[13]. In support of this result, an example is also given.

Since, in Section 1, introduction and historical back-
ground of generalized metric spaces is given. In Section 2,
preliminaries and some basic definitions are stated. In Sec-
tion 3, main result is stated, and in Section 2, some conse-
quences and examples of our main result will be described.
In Section 3, an application is stated to support our main
result. In the last section, article is concluded.

2. Preliminaries

Definition 1 [11]. Consider the M, as a nonempty set and a
function o : M xM — R is called s-distance on M if for
all ¢, &, n e M, o satisfies the following axioms:

(1) 0(c, &) 20, Vg, Ee M
(2) 0(c, &) +0(&¢)=0if and only if ¢ =&, V¢, & e M

(3) For a positive real number s >0

o(6.8) < slo(en) +o(n Ve EneM. (1)

An s-distance space (M, o) is said to be a symmetric s
-distance space if 0(g,&)=0(£,¢), Vg,& € M. Now, some
remarks and examples as given below.

Remark 2.

(1) Every b-metric space is an s-distance space but not
conversely

(2) In s-distance space, distance o is not necessarily a
continuous function, ie., if ¢,— ¢ and &, —¢&
then 0(c,&,)+0(c,€)

(3) In an s-distance space, the limit of a convergent
sequence may not be unique
Example 3. Let M = {a, a,, 03}, 0 : M x M — [0,00) and

1 1
ooy, ) = 1>‘7(“2> o) =

E)
o(ay, a3) =0 (ay a3) = 1,0(a;, ;) =0,

—

—
[\

~

o(az, ) =0(a3 &)
o (o, @) 20,

a((xi, ocj) + o'(ocj, ocl-) =0 q=a,
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for all i,j € {1,2,3}.

Hence, (M, 0) is an s-distance space with s = 1. However,
it is not a b-metric space.

Fix re Nand I'= (I, T
mappings such that

.) is said to be a collection of

{::{1,2,3,,r} —{1,2,3,--,r};1<i<r}.  (4)

Let (M, o) be a distance space and also G : M" — M be
a mapping. The mapping I'G : M" — M" which is a com-
position of G and I’ is gvien as

IG(ep, ) = (€ E),

£ = G(Cl"i(l)’ “"CF,-(r))’ (5)

for any point (g, ---,¢,) € M" and i€ {1,2,---,7}. A point
a=(a;,--, a,) €M is considered as a I' -multiple FP of G
if it is a FP of I'G, i.e, a=I'G(a) and

a:= G(afl,(l), e arm) foranyie {1,2,3,--,r}.  (6)

Let (M, o) be a distance space, r € N={1,2,---}. On M,
consider the distance

o (616 (&) =sup {o(cp & d<r ). (7)

Obviously, (M", ¢") is a distance space, too.

The following are some basic concepts from [14]:

Consider a partially ordered distance space (M, 0,), r be
a positive integer and {/, K} be a partition of J, = {1,2, ---, r},
ie, ,K#¢,JUK=],, and JN K = ¢. Define M" =M x M x

. X M(r times) the Cartesian product of the set M. Define a

partial order <, over M" as follows:

For any @ = (61,63, -+, 6,), v= (81, & -, §,) €M’ wxv
if and only if ¢;</&; for all i € J,, where

<¢  if ic R
¢<; Eiff b i l J (8)
¢x& ifiek.
The function 0" : M" x M" — [0,+00) given by
0'(c,§) = sup {0 (5 &)} (9)
I<i<r
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defines a distance on M’, where ¢=1(¢;,¢,, -+ ¢,) and &
=(&,&,,--.&,). Obviously, (M",0",%,) is a partially
ordered distance space, so that it inherits the properties
of (M,0,%) and 0"(s",¢) — 0 if and only if o(c},¢))

—0as 9— oo forall i€J,.

Definition 4. [15]. Let g be a self mapping on M. A mapping
G has the mixed g -monotone property with respect to the
partition {J, K}, if G is g-monotone nondecreasing in argu-
ments of ] and g -monotone nonincreasing in arguments of

K, ie, Y6, Gy 56, £, 7€M, i€ ], and

g(E)<g(’1) = G(Cl’ Gy ¢, Civr 75 cr) (10)
<1G(C1> B} C{_ly }7) C,~’+1, R Cr)

If g is the identity mapping on M, then the mapping G
has the mixed monotone property with respect to the parti-
tion {J, K}. Define a set of mappings by

Q={l;:],— ], : I;}(J) <], Ty(K) <K},

(11)
9},1<= {l;:],—J],:I;(J)sK, I'(K)< ]},

such that I';€ Q) if i€ J and I'; € Q) if i € K.

Definition 5. If a function y : [0,00) — 0,00) is continuous,
nondecreasing, and y(0) = 0, then it is called an altering dis-
tance function.

Definition 6. The metric space (M, 0,) is called regular if it
satisfies the following properties:

(1) If {c,} is a nondecreasing sequence and ¢, — ¢ then
g, X¢foralr>1

(2) If {,} is a nonincreasing sequence and ¢, — ¢ then
G x¢forallr>1

3. Main Result

Berinde and Borcut [4] extended the concept of multidimen-
sional FP to ordered distance spaces by utilizing the proper-
ties of contractive type mappings. Keeping ourselves in
touch with all these concepts, we are extending these results
to symmetric s-distance spaces by using a combination of
altering distance functions. This result will generalize the
main theorems of [14], in which the space considered is a
metric space. It is also valid for b-metric spaces.

Theorem 7. Consider a complete partially ordered symmetric
s-distance space.

(M,0,%) and I'=(I}, I, -+, I,) be collection of map-
pings verifying I'; € Q; ifie] and I GQ]/,K if ie K. If the
mapping G : M" — M satisfies the following conditions:

(a) Foru>0
v(p) —0(p) — o(u) > 0,(%)

where y is an altering distance function and 0 : [0,00)
— 0,00) and ¢ : [0,00) — 0,00) are upper semicontinu-
ous and increasing functions such that 0(0) = ¢(0) = 0 satis-

fying

wio(Gs,68) <070 ) +p(Z00), )

s+1 s+1

for all ¢,& e M" with ¢x,&.

(b) There is " = (9,69, ---,¢?) such that C?<;G(C%
»61(r)) Sor all ie],

"

(c) G has mixed monotone property with respect to {J,
K}
(d) G is continuous, or (M, 0,%) is regular; then, G has T’

-multiple FP

(e) Moreover, if for ¢ and & in M, there is n € M" such
that ¢,y and &<,1; then, G has a unique I'-multi-
ple FP

Proof. Step 1. Let ¢” = (I’ G)’(¢") be the nth Picard iterate of
¢ under I'G, i.e., ¢? = (I'G)°(¢°) = (¢}, ¢J, -+, ¢?), where

9 9- 9- 9-
Cz=G<§F2(11):sz(lz)a"‘sz(lr)>) (13)

9 9- 9- 9-
6= G(Crfl)’crfzr “'ler))-

By condition (b) and definition of I'G, it follows that ¢°
%,6'. Since, G has mixed monotone property so I'G is mono-
tone nondecreasing [15]; therefore

¢M<cvox 1. (14)

Step 2. We need to show that limg__ 0" (¢*,¢% =0.
Set Df=0(¢!",¢!) and D?=supy, (Df)=0"(c"",¢"). If
D=0 for some 9> 1 then ¢*! = I'G(¢") which means G
has I'-multiple FP which completes the proof. Assume D’
>0 for all 9> 1. Since ¢”'<,¢” and I';(J,) € ], it follows that

9-1

(st hity oo &b )< (Shp Shiap b ) (19)

for any i € J, and 9> 1. Now, using condition (12)

9 9- 9- 9-
l//(Di/) = IV(G(G(CFf(Zly Cr,(22>s Tt cpé)))

i

-G (C?{(ll)’ C?’x_(lz)) ES C?“_(lr> )) >



4
S.“P“(C?*,() ST ))
<0|
s+1
S.u]P“(Cls"x >’¢F<>)
J€),
T s+1

Since, 0 and ¢ both are increasing and s > 0 so that
Y <D9> <0 <sup
j€l

+¢|supqo
jel,

for any i € ], since J, is a finite set, there is an index (9) € J,
From above inequality, it fol-

N — nd
such that sup;., {D/} = Di(
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Combining (19) and (20), we have

v(>') <‘”<§E}f{"( Fer %w)}) <y (o). @1

for all 9> 1. Since v is an altering distance function, it fol-
lows that

9-2

{ ? (qf iU

9 92 91
Hence, the sequence D" and sup; L{G(CF;(S (3 STy (j))}

D’ < sup
jel,

(16) o) et @)

are monotone decreasing and bounded below. So, we have
7 >0 such that
(17) . 9 _ 1 9-2 -
Jim 7= Jim sup{o(cF % of ) = 23

We need to show that 7=0. Suppose 7>0, then by
applying limit as 9 — co in (19) and utilizing the proper-
ties of ¥, 0 and ¢, we have y(7) - 0(7) — (1) <0, which

9)’ contradicts (*). Hence
low that
lim D= lim o (q3‘1,<9) = 0. (24)
W(D?(S)) 9—00 9—00
G(c?‘z 292 ), Step 3. Now to prove that the sequence {¢%} o, is Cau-
9 i Tio @) Tio ™) hy. S trary that it is not Cauchy, then th
‘I/(D 9) chy. Suppose on contrary that it is not Cauchy, then there
) G( 9-1 Cr . Cr ) exists & > 0 for which there are subsequences {¢%} and {¢"t}
9 (1" i () 2() of {¢”} with 9, > r, > { such that
-2 -1

i Cr 0y <, <J>) Supa< ( T () CF o >)

j€l, jel, o (qrc C9‘> Se (25)
s+1 s+1 ’ ’ =
9 . Let J,be the smallest integer satisfying above, then
<9 S“]P Fa G0 ST )) +9"<S“,P“(‘F ()’CF;;)(j))>.
je je
a’( "5, 9<*1) <e. 26
as) NS (26)
Since Assume that s < 1, then consider
9.2 9.1 91 o (Crl’c\‘)() SS|:OJ (Cr()csz—l) +o" (CS(—I)CS()}

°<j§,P{ (220058 ) p =D, (19) (27)

for all 9> 1. Therefore, from the inequality (), we get

9-2 9-1
o(sfoleizorctio) ) vo(sr

w(smlo(znetzn)))
oo (sple(en)} )

{o(0sti)})

< [s +0" (csl_l,csf)].

On letting { — oo and using condition (24), we get

e<lim sup " (c'<, q9<> <& (28)
{—00
which leads to a contradiction. Now consider s > 1, then
o (qr() C‘%) <s |:O_r (cr() CSE—I) +o (C\%—l) CS()}
(29)

< s[s +0o" (c‘%_l,c‘%)].
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Again letting { — oo and using condition (24), we get

e<lim sup 0" (crf, csf) < se. (30)

{—00
Now
o (Crl—l’c\‘)(—l) < S[or(cr(—l)cr() +o" (Cr()cé)(—l)} ,

lim sup o’ (crf’l, c95’1> < se.

{—00
From ¢%'<,¢Y, it follows that
Crtircr:“i, <rC95—1<rc9[$rC9(+l. (32)
Since ¢"*'<,¢% ! and I'(J,) € J,, we have
re=1 re—1 re—1 9-1  9-1 9:-1
(< Sriay i ) <o (G Srap & ) (33)
for any i € J, and { > 1. By condition (a), it follows that
re 9, re=1  re-1 re—1
‘/’(" (Cf’cf» < ‘/’("<G(Cfi<1>’ I ---cFi(,)),
re=1  re—1 re—1
. G(Cfﬁ,(ly Cfi,(z)) CF(X(,)>>>)

=1 91
S“p{“ (CF;(J‘)’ CF,:o‘)) }

jel,
s+1 <34)
re-1 9{—1
P {" (Cr,f<j>> CF;<J'>) }
] r
T s+1 ’

for any i € J,. Since J, is finite, there will be an index () in J
$O

re 9, T, 9,
aofo()) el o0
i'e],

From inequality (29)

r(—l r(—l r:—l
G (crfa)(l)’ Ly @ Cfx‘m(r))

Supo re=1 8(—1
PN\ i 1) ST 0)
S 6 ] r

s+1

Since 6 and ¢ are increasing functions and I';'(J,) € J,, so

re=1 Sz—l
sup{o' (Cr{m () Ty (f)) }

y(e)<6|
S
re=1 \9(—1
illlp {0 (Cf«o(f)’ I, U>> }
+¢ . ,
s
Sup{o_(cr(—l Cs)(—1) }
o il G >0 (37)
B s
re-1 \9(—1
S.uP{"(<<f> *S() )}
+¢ ALl ,
s

o (O.r (crl—l’ CS(_I>> o (O.r (crc—l’ C9(—1)> .
N S

Applying limsup,_,, over above inequality and then
using (29), we get

ve)<0(>)+e(5) <) +ole)  (38)

which is a contradiction to the condition (*). Hence, (¢°)g.n
is a Cauchy sequence.

Step 4. Since the space (M, o) is complete so (M, ") is
complete. Therefore, we have v € M" such that (¢%) 4.,y — v,
ie,

: 9 9-1 9-1 9-1
olm G, = G(me Sr.(2p Cr,(r)) =V

Next, we show that v= (v}, v,, -+, v,) € M" is a I-multi-
ple FP of operator G. If condition (c) holds and G is continu-
ous, then

; 91 9- 9-
glﬂ,nooc(cfl(ll)’cﬂ(IZ)’ ’Cfl(lr) =G(vr,0) Vr,2p ""Vrl(r)))
fim G(C? (1 ST >C?Z<lr>) :G(Vr (1) Vo) oV )

lim G(C?Rll)*?f(lzy ""Czsfgw) = G(Vrml)’vriav ""Vr,»m)-
(40)



Above shows that
Vi:G(vFi<l)) VF[(Z)’“ ,VF ) fOI'aHlG] (41)

which means the point v = (v, v,, -+, v,) isa I'-FP of G. Next,

suppose (M, 0<) is regular. The above relation implies ¢° =
(3,63, -, ¢))%,v = (v}, v,, -+, v,). On the other hand

9 9 9
(Cr,-u)’ Srp o Cri<r>)<r (Vri<1>>"r,»<2>’ er))- (42)

Since, I'/(J,) € J, for any i € J,. By using (a)

9 9 9
(o (omrs ) ()

sup{o(vr ) | max{a (v hp) }

<0 il +¢

s+1 s+1

<0 (jgp{ (VF;<J‘>’ C?;m) }> 14 (f?,p{a (VW')’ c%(f)) }> '

Taking into account above and letting 9 — co in the last
inequality, it implies

1//(0 (G (fo(l)’ V)t vff(r)) , V{)) =0. (44)

Hence
G(Vfg(l)’vF;(Z)’ - VF’:(r)> =v,foralli€J,. (45)

This completes the existence of I'-multiple FP.

Step 5. In this step, we will show that the FP of G is
unique.

Suppose w € M" be another FP of G. By condition (e),
there exists # = (1, #,, --+»17,) € M" such that v<,5 and wx,

Put 7° =# and define

(46)
9 9— 9—
.= (’7r (1) ’7r,(12)> B ’lr,(lr))-
By the induction method, we have
v’ wsn, (47)

for all 9>0. By condition (e), v<,7°. Assume that above
condition holds for 9 - 1.
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Using the procedure of Step 1, it can be shown that

...)vrl(r))

9
’ ’nfz(r)) ;>

V= G(VF (1) Vr,(2)
9-1 9-1 (48)
(’71‘1 (1 >Hr, «(2)°

for all i € J ; that is, v<,#°. Similarly, we can prove the sec-
ond inequality. Further, we prove that

sh;nmar (v, 119) =0. (49)

For this, we first show that if 0" (v, #°) = 0 for some 9,
then o” (v, %) =0, for all 9> 9,. Indeed, from above condi-
tion, it follows that

(Vr;a): Vri2» o Vrlf(r)) al (W?;(ly ’1?*{(2)’ B ’7?;@)’ (50)

for all i € J, and 9> 1. From (a), it follows that

) R CC C——

-1

o)

vr

G (10 18 oy ‘-,np,‘,)

[ >)
. igjp ) | (51)

<0 <32]p (U (vf 0 ’713";’1( j)) ) )
te (ﬁ?,p (o (vror i) )) ’
for all i € J, and 9> 1. Recall that I',(J,) € J,. Hence
sup (o (vrg iy ) ) < (wn™). (52)
for all 9 > 1. Taking into account (), it follows
o(sp (o)) o sp (o) )
<y <§2]p (0 (vfi(ﬁ, 11?%) )) < 1//(0’ (v, ,19) ),

(53)
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forall i e J, and 9 > 1. Combining (50) and (52), we get

(apleleot)))ov(e (). o0
for 9> 1. Since, y is an altering distance function

(o) vl e

Now, it is obvious that if 0" (v, ;790) =0, then 0" (v, 119) =0
for all 9> 9.

Next, assume that o”(v,#°) >0 for all 9> 1. Using the
same manner adopted in Step 1, it can be proved that o" (v
1Y) <o"(v,°!). Hence, there exists r>0 such that
limg 0" (v,#°) =r. In similar way, it can be shown

lim o” (v, 11‘9) =0 andsllnooar (w, 119) =0. (56)

9—00

On the other hand,
o' (v,w)<s [a’ (v, 119) +0o (rf), w)} . (57)

Applying lim9 — oo over the above inequality, it fol-
lows

o' (v,w)=0. (58)

This implies v =w. Hence, G has a unique multidimen-
sional FP.OJ |

4. Some Consequences and Example of
Theorem 7

In the following section, some important concept regarding
the consequences of Theorem 7 are discussed which are in
terms of the main results represented in the articles [4, 16].
An illustrative example is also added in this section which
will be helpful for the readers to understand the structure
of multidimensional FP under the weak contractions for
partially ordered s-distance spaces.

Corollary 8. Let (M, 0,x) is known as complete partially
ordered s-distance space and I'= (I'}, T, -+, T,) be a collec-
tion of mappings verifying I'; € Q; ifie]and I';e Q]',K ifi
"€ K. Assume that the mapping G : M — M satisfies the
following conditions:

(1) If there exists y € (0, 1) such that

(G662 56,)s G885+ 8,)) <y07(6:€), (59)

for all ¢=(¢;,65¢,) €M™ and E=(&,,&,, -, &) eM"
with ¢x,& satisfies conditions.

(2) To (e) of the above theorem then G has a unique mul-
tidimensional FP

Proof. We can prove this corollary easily by taking y(c) =g,
0(c) = (s + 1)y, and ¢(¢) =0 in the above theorem.0 O

Remark 9. Theorems 2.1 and 2.2 of [16], in s-distance spaces,
follow from Corollary 8. In [16], contractive condition is

0(F(6156,), F(§1,65)) < 5 [0(61,81) +0(62,6,)],  (60)

[SJe7)

and for ¢, & € M? such that ¢<,¢, it implies

[0(61,&1) +0(65,&,)] £80° (6, §).
(61)

o(F(61,65), F(§1,6,)) <

N S

Applying Corollary 8, we get the desired result in s-dis-
tance space.

Remark 10. Corollary 8 also generalizes the main triple FP
result of [4], in which the space under consideration is a
metric space. We generalize it for b -metric space and for
an s-distance space. In [4], I'={I';,T,,I';}, A; is chosen
as A={1,3}, B={2}, collection of mappings is defined as

r() L nEe)Y\ (123
(1) I2) IE)[=]2 1 3] (62)
r) 5 e/ \s 12

the contractive condition in [4] is

0(F(61>6263), F(§1,62,85)) (63)
<8,0(61, 1) +6,0(63, &) +850(63, &3),

for any ¢=(6;,6,,63), &= (§,,€,,&;) with ¢<,§ and §,,6,,
03 >0and §, +6, + 85 < 1. Obviously

0(F(61>6263), F(§1,82,85)) < (6, + 0, + 53>(73(C’ §). (64)

Applying Corollary 8, we get the desired result in s-dis-
tance space.

Corollary 11. Consider (M, 0,X) as a complete partially
ordered b-metric space and I' = (I';,I,,---,I',) be collection

of mappings verifying I'; € Q ifie] and I;ie Q;)K ifiek.
Assume that the mapping G : M" — M satisfies conditions
(a) to (e), then G has a unique multidimensional FP.

Example 12. Let M=1R, M"=1R". Define ¢'(w, v) = sup;,
{o(cp &)} and 0(c,§) =[c = &|, for all w =(c;,65,%6,), v
=(&,&,, -+, &) eM". Now, define G: M" — M, as G(¢;,
Gys 't Cr) =6,/2.



>

Since “<” is a partial order on M, therefore

w=,vif and only if ¢;%,&;,
¢<& ieJ={1,2,-k} (65)
) ’

¢z Liff {
¢<& ieK={k+1,k+2,-

where ] and K partitions J, ={1,2,---,r} such that JUK

=J,and JNK = ¢.

A function v : [0,00) — 0,00) defined as y(t) = (1/3)t
is increasing and continuous, 6 : [0,00) — [0,00) defined
as 6(t) = (1/9)t, 6 is increasing and upper semicontinuous
function, and ¢ : [0,00) — [0,00) defined as ¢() = (2/9)t,
which is increasing and lower semicontinuous function, for
all t €[0,00).

0(Gw, Gv) = % , ¥ (0(Gw, Gv))
_ C1_€1 9<0r(w’v)> (66)
6 | s+1
0w, V) o' (w,v)\ 20" (w,v)
S o) S
Consider
oL g2t
s+1 s+1
(@) 20@v) _o'(wv)
ToG+1) | 9G+1)  2(s+1)  (67)
sup{l¢; — &}
- o' (w,v) e,
-2 2
Thus, we have
sup {[¢; = &[}
G~ ic],
16 < 5 , (68)
which follows
o (w,v) o’ (w, V)
Y(0(Go, Gv)) <0~ ) +o(— 7] (69)

Now to show G has mixed monotone property, if &<y
=& <y, consider

G(Cl’ G2t Ci_l,f, ey C,) =

(70)
G(S1 6o > Gipp 1 55 G,) =

(ST AN Y

So
G(cl’cz’ "')C{,1>E) "'>Cr)${G(C1’C2> ”"lefl’r]’ '”’CI’)’ (71)

which implies G has mixed monotone property with respect
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to {J, K}. Set of mappings is defined as

ry1) I,(2) I'y(r)
Ih(1) Iy(2) Iy(r)
r,(1) I, Iy(r)
1 2 3 r (72)
2 3 4 1
=13 4 5 2
r 1 2 r—1
Let (61,63, > 67) = (6165 *+»6,) € M" and
o1
S i AR
9 9-1 9-1 o1 o1\ _ S5
CZZG(C[ 263 5 h G L6 ) =50 (73)
9 9-1 91 o1 s\ _ S
cr=G(cr Gy )~~-,cr_z,cr_1)= 5
for =1
clzﬁzc_l
2
qlzﬁzci
22 (74)
Clzﬁzi
2027
for 9=2
@a-9_8
2o
1
%5
P22 (75)
2SS
Cr—E—?-
Continuing this process, we have
i ; S1 S Gr
1 (9) 9 .. 9): 1 St S
e \S1 62 6 ) = IR 597 99 29 (76)

=(0,0,---,0) = (O,, -+, 0,).
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Thus

Oi, = G<Ori(1)) Ori/(z)’ T OF:(r))’ (77)

Hence, O;' is a unique multidimensional FP of G.

5. An Application

To give the broad impact of FP results to the different areas
of study like physics, biological sciences, engineering, game
theory, and economics has always been an interest of various
mathematicians. The applications can be found in various
directions (like [17, 18]). In the following section, we have
also included an application of the main result to find the
solution of a system of integral equations.

Consider the point a, b € R with a<b and let I =|a, b].
Let the space M = C(I) of all continuous real valued func-
tions defined on I, which define a partial order < on M by

A=pif and only if A(t) < u(t),forallt € [a, b], (78)
and the distance

o (A, p) =max|A(t) — u(t)[f forall, ueM,p>1,  (79)

tel

then (M, o) is a complete partially ordered s-distance space
with s =271,
Consider the following system of equations

t

u(6) =+ | K(W)L(6) (), 62(w) 6 (w))dws (30

a

(0 =k | KLY G, s @,

G (w), -+ 6y (w))dw,

fori=1,2,---,r, where L : R" — R be a mapping verifying

(i) L is continuous

(ii) For all (e}, ey, -~ ¢,), (hy, by, -+, h,) €R”

1p
Caj-47)
) | < 1<i<r

(b-a)(s+ 1)~
(82)

\L(ey> €5, -+ €,) = L(hy, by, -+> b

r r

and K : I — R be a continuous mapping such that K(¢) > 0
and [’K(t)dt < (b-a).

Define a mapping G : M" — M for all ¢ = (¢, 65, > ;)
in M" and « € R such that

t

st 6 6)(0) =+ | K(w)L(5y(w),63(00), -, (1))

a

Clearly, G € C(I). To find solution of the system (79), it
is required to show that G has a multiple FP. For this, con-
sider

O(G(CI) CZ’ RS} Cr)) G(vp VZ) R V,))
X |G(61 6 6,)(6) = Gy v v, ) (O
p

(1+ | K06 ) 620, )

a
= max >

tel _<K+JtK(w)L(V1(w)"’2(w)’ ...,vr(w))dw>

a

1/p p
(s lsw)-vr)
< max J K(w) Lsisr 5 dw | ,
el | J, (b—a)(s+1)**
1 « P
(b—a)(s+1)*?
< max >
tel " 1p
sup J K(w) (max|ci(w) - v;(w) |P> dw
1<i<r g tel

1 t ?
s () o ).
sup {0(G;, v;) }

< 1sisr(s+ > ((bia) (ntqéa;xJ;K(w)dw>)P,

“0(G(61562 7 6,), GV, v, -5 )

< 0" (615625 =5 G,)> (V1> Va5 =55 V,))
) (s+1)* :
(34)
Define functions vy, 6, ¢ : [0,00) — [0,00) by
y(t)=(s+1)t,0(t) =t,(t) =0, (85)
such that for t >0
()= 0(1) - 9(1) >0, »

Then, from above inequality, we get

(0 (Ge, Gv)) <0 ("lf’?) +o ("r(c’ V)> . (87)

s+1

which by Theorem 7 implies that G has a unique multiple
FP, which gives the required solution of system (79).
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6. Conclusion

The main idea of this paper was to prove a multiple fixed
point (FP) result for partially ordered s-distance spaces
under (6, ¢, y)-type weak contractive condition which is
the generalization of some well-known results in literature.
Many other related and relevant results can be obtained in
the same manner for partially ordered generalized distance
spaces such as C-distance space, balanced distance space,
and (s, q) distance space.
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In this paper, some existing theories on convergence of fuzzy number sequences are extended to .7,-statistical convergence of
fuzzy number sequence. Also, we broaden the notions of .#-statistical limit points and .7-statistical cluster points of a
sequence of fuzzy numbers to .7,-statistical limit points and .7,-statistical cluster points of a double sequence of fuzzy
numbers. Also, the researchers focus on important fundamental features of the set of all .7,-statistical cluster points and the
set of all .7, -statistical limit points of a double sequence of fuzzy numbers and examine the relationship between them.

1. Introduction

The theory of statistical convergence reverts to the first edi-
tion of monograph of Zygmund [1]. Statistical convergence
of number sequences was given by Fast [2] and then was
reissued by Schoenberg [3] independently for real and com-
plex sequences. This conception was studied for the double
sequences by Mursaleen and Edely [4]. Fridy [5] considered
statistical limit points and statistical cluster points of real
number sequences. When we focus on the statistical conver-
gence in the literature, we meet Fridy [6], Temizsu and
Mikail [7], Braha et al. [8], Nuray and Ruckle [9], Das
et al. [10], and so many other researchers (see [11-13]).
The concept of ideal convergence was given by Kostyrko
et al. [14] which generalizes and combines different concepts
of convergence of sequences containing usual convergence
and statistical convergence. Das et al. [15] presented the con-
cept of .7 -convergence of double sequences in a metric space.
In [16], Savas and Das extended the conception of ideal con-
vergence as studied by Kostyrko et al. [14] to .7-statistical
convergence and examined remarkable basic features of it.
For different studies on these topics, we refer to [17-23].

The theory of fuzzy sets was firstly given by Zadeh [24].
Matloka [25] identified the convergence of a sequence of
fuzzy numbers. Nanda [26] worked on the sequences of
fuzzy numbers and displayed that the set of all convergent
sequences of fuzzy numbers generates a complete metric
space. Nuray and Savas [27] generalized ordinary conver-
gence and defined statistically Cauchy and statistical conver-
gent sequences of fuzzy number. Later on, it was studied and
advanced by Aytar and Pehlivan [28] and many others.
Aytar [29] worked on the conception of statistical limit
points and cluster points for sequences of fuzzy number.
Kumar et al. [30, 31] worked .#-convergence, .7-limit
points, and .#-cluster point for sequence of fuzzy numbers.
The concepts of 7-statistically convergence for sequences
of fuzzy numbers were established by Debnath and Debnath
[32]. Later on, .#-statistically limit points and .7-statistically
cluster points of sequences of fuzzy numbers were studied by
Tripathy et al. [33].

In this paper, we examine some essential features of .7, -
statistically convergent sequence of fuzzy numbers and
describe .7, -statistical limit point and .7,-statistical cluster
point for fuzzy number sequences.
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2. Preliminaries

First, we emphasize some properties of double sequences
which are not satisfied by a (single) sequence. This provides
a proper motivation for studying double sequences.

The essential deficiency of this kind of convergence is
that a convergent sequence does not require to be bounded.
Hardy [34] defined the concept of regular sense, which does
not have this shortcoming, for double sequence. In regular
convergence, both the row-index and the column-index of
the double sequence need to be convergent besides the con-
vergent in Pringsheim’s sense.

The notion of Cesaro summable double sequences was
described by [35]. Note that if a bounded sequence (x,,,,)
is statistically convergent then it is also Cesaro summable
but not contrariwise.

Let (x,,,) = (-1)",Vn; then, lim, Y* 7 _ x,, =0, but
apparently x is not statistically convergent.

The convergence of double sequences plays a significant
part not only in pure mathematics but also in other subjects
of science including computer science, biological science,
and dynamical systems, as well. Also, the double sequence
can be used in convergence of double trigonometric series
and in the opening series of double functions and in the
making differential solution.

Now, we remember some notions and fundamental def-
initions required in this study.

We signify by 9 the set of all bounded and closed inter-
vals on R, ie,

D={McR:M=|M,M|}. (1)

For M, N € 9, we describe M < N iff M < N and M <N
and d =max {|M - N|, M = N|}. (2, d) forms a complete
metric space.

Definition 1. A fuzzy number is a function X from R to [0, 1],
which satisfies the subsequent conditions:

(i) X is normal
(i) X is fuzzy convex
(iii) X is upper semicontinuous
(iv) The closure of the set {x € R : X(x) > 0} is compact

The features (i)-(iv) give that for each a € [0, 1], the a-
level set,

X*={xeR:X(x)za}=[X*X"], (2)

is a nonempty compact convex subset of R. The 0-level set is
the class of the strong 0-cut, i.e., c/({x € R : X(x) >0}). The
set of all fuzzy numbers is indicated by L(R). Consider a

map d(X,Y) = 5UP,cpo, (X% YY), (L(R),d) also forms a
complete metric space [36].
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Definition 2 (see [25]). A sequence (X}) of fuzzy numbers is
named to be convergent to a fuzzy number X, if for each
> 0 there is m > 0 such that d(X,, X,) < ¢ for every k > m.
We write lim;,_, X, = X,.

Definition 3 (see [25]). A fuzzy number X, is known as a
limit point of a sequence of fuzzy number (X, ) on condition
that there is a subsequence of (X;) that converges to X,,.

Definition 4 (see [27]). A sequence (X, ) of fuzzy numbers is
named to be statistically convergent to a fuzzy number X, if
for each € >0 the set

A(e) = {keN:d(X;, X,) 2 ¢}, (3)

has natural density zero. We write St —lim;_ X, = X,.

Definition 5 (see [30]). Take ¥ as a nontrivial ideal. A
sequence (X;) of fuzzy numbers is known as .#-convergent
to a fuzzy number X, provided that each &£ >0

A(§)={keN:d(X;,X,) 2} e.s. (4)

We write . —lim,_ | X, =X,.

Definition 6 (see [31]). A fuzzy number X, is known as ideal
limit point of a sequence of fuzzy number (X, ) provided that
there is a subset M = {k; <k,<---} C N such that M ¢ .¥ and
limX, =X,.

Definition 7 (see [31]). A fuzzy number X is known as ideal
cluster point of a sequence of fuzzy number (X,) provided
that for each £ > 0 the set {ke N : d(X,, X,) <&} ¢ .7.
The set of all #-limit points and .7-cluster points of the
sequence X is shown by F(Ay) and .#(I'y), respectively.
Natural density of a subset K of IN x N is demonstrated

by
dK)= lim X0m1) (5)

m,n——0o0 m.n

where K(m,n) = |{(j,k) e NxN: j<m,k<n}|

A nontrivial ideal .7, of Nx N is known as strongly
admissible if {i} x N and N x {i} belong to .#, for each
ieN.

It is the proof that a strongly admissible ideal is admissi-
ble also.

Throughout the paper, we consider ., as a strongly
admissible ideal in IN x IN.

3. Main Results

In this study, the researchers focus on remarkable features
of the set of all .#,-statistical cluster points and the set of
all .#,-statistical limit points of fuzzy number sequences.
We examine interrelationship between them.
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Theorem 8. If (X};) be a double sequence of fuzzy numbers
such that .7, — stlimX,, = X, then, X, identified uniquely.

Proof. Presume that .7, — stlimX,; = X, and .7, — stlimX}, =
Y,, where X, # Y,,. For any &, 8 > 0, we get

1 _
K, :{(s,w)elNX]N:EHkSS,lSw : d(Xkl,X0)2£}| <8} e F(F)

(6)

KZ:{(s,w)ele]N:i}{kSS,lgw:a(Xk,, Yo)zs}|<5}e9(J2).
(7)

Therefore, K; N K, # &, since K; NK, € F(.7,). Let (i,

j) €K, NK, and take & :=d(X,, Y,)/3 >0 such that we have

ileksi,lgj:El(Xkl,Xo)st<8, (8)
and it goes along with
ilj}{ksi,lﬁjzgl(Xkl,Yo)zs}}<8, (9)

ie, for maximum k<i, I<j, we have d(X;, X,) < e and
d(Xy, Yy) <€ for a very small §>0. Thus, we have to
acquire

{k<il<j:d(X,X,)<e}n{k<il<j:d(XyY,) <e}+@,

(10)
a contradiction, as the nbd of X, and Y, are disjoint.
Hence, X, is uniquely identified. O

Theorem 9. Let (X,;) be a fuzzy numbers sequence then
stlimXy; = X, implies 7, — stlimX;; = X,

Proof. Let stlimX,; = X,,. Then, for each € > 0, the set

{k<s,l<w kal, >s} (11)
has natural density zero, i.e.,
lim —|{k<s,l<w d(X;, Xo) 2e}|=0 (12)

SW—00 SW

Therefore, for every e >0 and 6 > 0,

T(s,8):{(s,w)EINX]N:%}{kSS,lsw:H(Xk,,XO)Ze}{ 28},

(13)
is a finite set and so T(¢, §) € .7,, where .7, is an admissible
ideal. Hence, we get .7, — stlimX;; = X,. |

Theorem 10. Take (X;) as a sequence of fuzzy numbers.
F,—limX,, = X, implies .7, — stlimX,;; = X,,.

Proof. The proof of this theorem is clear. O

But the reverse is not true. For instance, take for .7, the

class f’; of all finite subsets of IN x N, the fuzzy number
(Xy), where

n+m+p
——, —n-m<p<o,
n+m (14)

n+m-p
— = 0<ps<n+m,

Xu(p) =

n+m

for k=mn?1=m? n,meN, and

1
1+pnm, —-— <p<0,
nm
Xu(p) = (15)
1- 0<p<s —
pnm P o’

for k+n® 1#m? n,meN. Then, (X,,) is .7,-statistically
convergent, but not .#,-convergent.

Theorem 11. Let (Xy;) and (Yy) be two fuzzy numbers
sequence. Then,

(i) F,—stimX,; =X, ceR implies .7, — stlimeX,, =
cX,
(ii) F,—stlimX;; =X, I, —stlimY,; = Y, implies .7, —

Proof. (i) For ¢ =0, there is nothing to prove. So, presume
that ¢ # 0. Now

%HkSs,lSw:El(cXH,cX >}

:—Hk<s,l<w lc|d(Xy» X,) 2 €} | (16)
- £
w {kSs,lSw:d(Xkl,Xo)Zq} <4.

Therefore, we obtain

1 g Z
{(s,w)eINx]N.a]{kss,lgw.d(cX,d,cXO)ZsH<8}e,/«(fz),

(17)
ie, J, — stlimeXy; = cX,.
(ii) We have
KI:{(s,w)eNxN:ﬂ{kSS,lw:Ez(xkl,xo)zg}‘%}egf(Jz),
(18)
Kz—{(s w) eNx N —‘{k<s I<w:d(Yy, Yo)2 %H < g} € F(I,)
(19)



Since, K; N K, # &, therefore, for all (s, w) € K, N K,, we
get

S%‘{kSS,ZSwza(Xkl,Xo)zSH (20)

+ i‘{kgs,lSwza(Yk,,Yo)Z ;H <6,
ie,

1 q Z
{(s,w) ENXN:EHkSS,lgw : d(Xk,+Yk,,X0+YO)2£H <6} € F(SI,).
(21)
Hence, we have .7, — stlim(X,, + Y,;) =X, + Y. d
Definition 12. An element X, € L(IN) is called to be an .7,-

statistical limit point of a fuzzy number sequence X = (X},)
provided that for each € > 0 there is a set

M={(ky, 1) < (kpy L)<<(k,, I )<} CNxN,  (22)

such that M ¢ .7, and st - limX; ; = X,.
J, —8(Ay) indicates the set of all .7,-statistical limit
point of a fuzzy number sequence (Xj;).

Theorem 13. Take (X,;) as a sequence of fuzzy numbers. If
I, = stlimX;, =X, then F,— S(Ay) ={X,}-

Proof. Since .7, — stlimX,; = X, for each &, & > 0, the set

1 —
K:{(s,w)e]Nx]N.EHkSS,ZSw.d(Xk,,X0)2£}| 26} €,

(23)

where .7, is an admissible ideal.

Assume that .7, — S(Ay) involves Y different from X,
ie, Y,e .7, —S(Ay). So, there is a M Cc Nx N such that
M¢ .7, and st - limX,; | =Y.

Let

1 _
P={(s,w)eM.5|{kSs,lSw.d(Xk,,YO)ZsHZ(S}.

(24)

So P is a finite set and therefore P € .7,. So

C 1 -4
p —{(s,w)EM.%’{kSS,lsw.d(Xk,, Yo)ze}‘<6}€9(J2),

(25)
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Again let

1 _
K, = {(s,w) eM: QHkSs,lSw cd(X, Xy) 28}‘ 28}.
(26)
So K, cK e .%,, ie, K € F(.F,). Therefore, K{ N P* #

@, since KS N P° € F(.7,).
Let (4, j) € K§ N P° and take €:=d(X,, Y,)/3 >0, so

ilj}{ksi,lgjzgl(Xkl,Xo)zs}}<8 and,  (27)

ilj|{kgi,lsj:;i(Xk,,Y0)2£}|<5, (28)

i.e., for maximum k<i,1<j will satisfy d(Xy,X,)<e and

d(Xy;, Y,) < € for a very small & > 0. Thus, we have to obtain
{k<il<j:d(X,X,)<e}n{k<il<j:d(X;,Y,) <e}+@,

(29)

a contradiction, as the nbd of X, and Y, are disjoint. Hence,
I = S(Ax) ={X,}- u

Definition 14. An element X, € L(R) is known as .7,-sta-

tistical cluster point of a fuzzy number sequence X = (X},)
if for each € >0 and 8§ > 0, the set

1 _
{(s,w)ele]N:EHkSS,lSw:d(Xk,,X0)2£}|<8} ¢.7,.

(30)

F,—-8(I'y) demonstrates the set of all .7,-statistical
cluster point of a fuzzy number sequence (Xj;).

Theorem 15. For any sequence (X,;) of fuzzy numbers .7, —
S(I'y) is closed.

Proof. Let the fuzzy number Y, be a limit point of the set
F, = S(I'y). Then, for any & > 0,

I, =S(Tx)NB(Yy, &) # D, (31)
where
B(Yy,€)={W eL(R): d(W,Y,)<e}. (32)

Let Zye€ .7, -S(I'y)NB(Y,y,¢) and select & >0 such
that B(Z,,€,) € B(Y, €). Then, we get

{k<s,lsw:d(X, Zy) 26} 2 {k<s,I<w:d(Xy, Y,) 2 e},
(33)
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which implies that

1 - 1 _
5{{kgs,lsw.d(X,d,ZO)zel}}z 5}{kSs,ISw.d(Xkl,YO)Zs}}.

(34)
Now, for any § > 0, we obtain

1 _
{(s,w)e]Nx]N.aHkSs,lSw d(Xgs Zo) 2 €, } <8},

(35)

1 _
) — <s, I<sw:d(Xy, Yy) 2 .
g{(s w) e NxN Sw|{k<sl<w d(Xy 0)>s}|<8}
(36)
Since Z, € .7, — S(I'yx), we have

1 _
{(s,w)e]leN.EHkSS,ISw.d(Xkl,YO)ZS}’<8} ¢.7,,

(37)

ie, Y, €.7,—8(I'y). This concludes the proof. O
Theorem 16. For any fuzzy number sequence (X)),

F )= S(Ax) €, - S(Ty). (38)

Proof. Let X, € F, — S(Ay). In that case, there is a set
M= {(ky, L) < (ky L)< < (kp, L)<} ¢ T, (39)

such that st — limX; ; =X,. So, we have

.1 ~
lim E|{k, <kl <l: d(Xk,l;Xo) > s}| =0. (40)

k,]l—o00

Take 6 > 0, so there is n, € N such that for s, w > n,, we
have

1 -
—Hk <s, [ sw:d(X,,Xy) 2 0. 41
l{k slsw: Ay %) 2e) <8 (41

Let
1 -

K= {(s,w) eNxN : a|{k,SS,l$£w : d(Xk,ljon) 28}} <8}.
(42)

Also, we have
KoM\ {(kp, 1), (Koo L)s oy (Ko 1)) }- (43)
Considering that .7, is an admissible ideal and M ¢ .7,,
therefore, K ¢ .7,. Hence, according to the definition of .%,-

statistical cluster point X, € .7, — S(I'y), this finalizes the
proof. O

Theorem 17. If (X};) and (Y};) are two sequences of fuzzy
numbers such that

{(k1)eNXN: Xy # Yy} €5, (44)

then
T, =S(Ax) = T, - S(Ay). (45)
F,-S(Ty) =7, -S(Ty). (46)

Proof. (i) Let X, € .F, — S(Ay). So, according to the defini-
tion, there is a set

M={(k;, 1)) < (ky, ,)<-<(k,, [)<---} CNxN,  (47)
such that M ¢ .7, and st - limX; ; =X. Since

(D) eM: Xy# Y} S{(b]) e NxN: X # Yy} €.,
(48)

M'={(kl)eM: X=Yy}¢5, and M'cM.
(49)

So, we have st —limY,: = X,,. This denotes that X €
J,-8(Ay) and therefore .7, —-S(Ay) <. #,-S(Ay). By
symmetry, %, —S(Ay) <7, —S(Ay). Hence, we obtain
I, = S(Ax) =T, = S(Ay).

(ii) Let X, € 7, —S(I'y). So, by the definition for each
£> 0, we have

1 _
K—{(s,w)e]Nx]N.%HkSs,lSw.d(Xkl,XO)ze}} <6} ¢,
(50)

Let

L= {(s,w)eNxN:%HkSs,lSw cd(Yy Xo) 2 e} <8}.
(51)
We have to prove that L ¢ .%,. Presume that L € .%,, So
Lf:{(s,w)eNxN:$|{kgs,ISw:&(Ykl,xo)zs}pa} e F(I,).
(52)

By hypothesis,
P={(k,])e NxN: X, =Yy} eF(I,). (53)
Therefore, L° NP € F(.7,). Also, it is clear that L°NP
CK‘ e F(7,), ie, K €.7,, this is a contradiction. There-

fore, L ¢ .7, and thus the desired result was achieved. [
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In this study, we investigate the falling body problem with three different fractional derivatives. We acquire the solutions of the
model by the Sumudu transform. We show the accuracy of the Sumudu transform by some theoretic results and implementations.

1. Introduction

The Sumudu transform is an important integral transforma-
tion. This transformation has been begun with Watugala [1]
who has presented a new integral transform to solve differ-
ential equations and control engineering problems. Weera-
koon [2, 3] has made a big contribution with the
application of the Sumudu transform to partial differential
equations and complex inversion formula for the Sumudu
transform. Then, this transformation has attracted great
attention, and lots of work have been done related to this
transformation by the authors. Some of them are as follows:
Belgacem et al. [4] have searched the analytical investiga-
tions of the Sumudu transform. Fundamental properties of
the Sumudu transform have been studied by Belgacem and
Karaballi [5]. Atangana and Akgiil [6] have obtained the
transfer function and Bode diagram by the Sumudu
transform.

Fractional differential equations have taken much inter-
est recently. Arqub and Maayah [7, 8] have studied a fitted
fractional reproducing kernel algorithm for the numerical
solutions of ABC-fractional Volterra integro-differential
equations and solution of the fractional epidemic model by
the homotopy analysis method. Jangid et al. [9] have inves-
tigated some fractional calculus findings associated with

the incomplete functions. Some new fractional-calculus con-
nections between Mittag-Leffler functions have been studied
by Srivastava et al. [10]. Singh et al. [11] have investigated
the fractional epidemiological model for computer viruses.
Ghanbari and Atangana [12, 13] have presented an efficient
numerical approach for fractional diffusion partial differen-
tial equations and a new application of fractional
Atangana-Baleanu derivatives. Abdeljawad et al. [14, 15]
have investigated an efficient sustainable algorithm for
numerical solutions of systems of fractional-order differen-
tial equations by the Haar wavelet collocation method and
more general fractional integration by part formulae and
applications. For more details, see [16-25].

In this study, we examine the falling body problem
depending on Newton’s second law that represents that the
acceleration of a particle relied on the mass of the particle
and the net force action on the particle. Take into consider-
ation an object of mass m falling through the air from a
height / with velocity v(0) in a gravitational field. If we use
Newton’s second law, we acquire

md—dtv + mkv = —myg, (1)

where k is the positive constant rate and g expresses the
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gravitational constant. The solution of this equation is pre-
sented as [26]

v(t) = —% +exp (—kt) (V(O) + %) 2)

and by integrating for z(0) = h, we get

z(t)=h—%t %(l—exp( kt))(v(0)+%). (3)

Considering all the information presented above, we
organize this study as follows. In Section 2, some fundamen-
tal definitions and lemmas about nonlocal fractional calculus
are given. In Section 3, the fractional falling body problem is
investigated by means of Caputo, Caputo-Fabrizio sense of
Caputo, and ABC. Also, some outstanding consequences
are clarified in Section 4.

2. Preliminaries

After giving some introduction, we want to present some
significant definition and lemma properties of fractional cal-
culus for setting up a mathematically sound theory that will
serve the purpose of the current study.

Definition 1. Over
B= {v(t)EIN, 1151, > 0,]v(t)|<N exp <|t|/’71> ift € (—l)j X [0,00) },
(4)
the Sumudu transform is identified by [17]
Vi) =S ()= | S exp (0, we (o). ()
Definition 2. We define the classical Mittag-Leffler function

E,(z) as [27]

m

E,(z)= (ze C,Re () >0), (6)

ibe

I'(am+1)

and the Mittag-Leffler kernel with two parameters is pre-
sented by [27]

ifomwﬁ (z,Be C,Re (&) >0). (7)

m=0

Definition 3. The generalized Mittag-Leftler function is
defined by [28]

m

thxm+ﬁm' Z,ﬂp,OCE(CRe() ) (8)

0

where (p),, =p(p+1)---(p+m—1) is the Pochhammer
symbol introduced by Prabhakar. As seen clearly, (1), =m
land E, 5(2) = Eq 4(2).
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Definition 4. Let {,y : [0,00) — R; then, the convolution
of {,y is given as [27]

t

()= j {(t - w)y (u)du, (9)

0

and assume that {, v : [0,00) — R; then, we have

S{(€xy) ()} = uS{l(1)}S{y (1)} (10)

Definition 5. Let v : [0,00] — R be a smooth function.
Then, the Caputo fractional derivative is defined as follows
[18]:

S0 = i |- )

where a € C,Re («) >0 and n=[Re ()] + 1.

Lemma 6. The Sumudu transform of the Caputo fractional
derivative is presented by [6]

s[epiv() = L0, (12)

ua
where V[u] =

Sv(1)].

Definition 7. We identify the Caputo-Fabrizio fractional
derivative as [29]

D v(r) =

M(a) Jtv’(z) exp (-Mt-2))dz.  (13)

-«

Lemma 8. The Sumudu transform of the CFC fractional
derivative is acquired by [6]

M(a) Viu
(I=a)(1+ (a/(1-a))u)

oM@ v
(I-a)(1+ (a/(1-a))u)
(14)

S[aDiv(t)] =

Definition 9. We describe the Atangana-Baleanu fractional
derivative by [27]

ABEDy (1) = AIB_(‘;? J;v’(z)Ea(—A(t—z)“)dz. (15)

Lemma 10. The Sumudu transform of the ABC fractional
derivative is acquired by [6]

AB(a) Viu] _ AB(a) v(0) 4
(I-a)(I+(a/(1-a))u*) (I-a)(I+ (a/(1-a))u*)
(16)

S[eDfv(e) =

Definition 11. The generalized fractional integral is given by
(28]

oIy (t) = W J; (tﬁ - zﬁ) ailv(z)zﬁ’ldz. (17)
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1.0 0.0

FiGure 1: Simulations of the solution for « =0.5 and « =0.9.

0.0

1.0

FiGure 2: Simulations of the solution for « =0.8 and « =0.9.

Definition 12. The generalized fractional derivatives in the
Caputo sense are defined, respectively, by [28]

ED*Py(t)= (1" P (tl-ﬁ %) v(t)

t na-1/ o d\" »
:WJO(H;—Z/?) (t ﬁa) v(z)P dz.
(18)

Lemma 13. We have [6]

S[E,(~At%)] = 1+IW (19)

S[1 - Ey(~At%)] = % (20)

3. Main Results

The aim of this section is to obtain the solutions for the frac-
tional falling body problem by means of some nonlocal frac-
tional derivative operators such as Caputo, Caputo-Fabrizio,
and ABC.

3.1. The Falling Body Problem in the Sense of Caputo. The
falling body problem in the sense of Caputo depended on
Newton’s second law which is given as follows:

gD"‘v(t) + kal_“v(t) = —gal’”‘, (21)
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0.0

1.0

FiGure 3: Simulations of the solution for « =0.98 and a =0.99.

where the initial velocity v(0) = v,, g is the gravitational con-
stant, and m and k are the positive constant rate which indi-
cates the mass of the body. We have

S{ED (1)} + ko' “S{v(t)} =${-go'*}.  (22)
Using the relation equation (9), we can write

S{V(t)} ~ V(O) + ko.l—txs{v(t)} — _go.l—a’ (23)

ua

spt =0 g (24)

T 1+koloue 1+ kolaye

If we apply the inverse Sumudu transform, we will
obtain

V(t) = V() By (~ko' ) = T [1- E,(~ka'™t%)].  (25)

Because of a =0k, 0 <o < 1/k, the velocity v(t) can be
put down as follows:

v(t) = v(0)E, (—k"a' %) - % [1-E, (-k"a'~*t*)].  (26)

Note that we put the condition v, = —g/k in order to sat-
isfy the initial condition v(0) =v,. By benefiting from the
velocity (33), vertical distance z(#) can be obtained in the
following way:

1-a
§D2(t) = v(0)0 B, (ko 1) = T2 [1 - B, (~ko'17)].

(27)

Applying the Sumudu transformation to the above equa-

tion, we have

S{ED72(0)} = W00 S {E, (ko 717)} - 97

S{Z(t)} - Z(O) (O) 1-a 1 go.l—a

S[1 - E,(~ko'*t%)],

1-a
o 1
=v(V)o 1 - + g 1 >
u 1+ kol-ou* k k 1+ko!-ou«
o« go.l—zxua gol—a us

_ 1-a u _
§{z(t)} =2(0) +v(0)o T+ koo PR S o
(28)

Using the inverse Sumudu transformation for the last
equation and taking the z(0) = h, we acquire the vertical dis-
tance z(t) as

2ty =h+ "0 [1-E, (ko' )] - gor g [1-E

2 K(a+1) "1 (choe%)].

o

(29)

Because of a =0k, 0 <o < 1/k, the vertical distance z(¢)
can be put down as

g‘xl—atrx
k(ZﬂX)F(lX + 1) (30)

We demonstrate the simulations of the above solution
for different values of « as shown in Figures 1-3. Similar
simulations can be shown easily for other solutions.

3.2. The Falling Body Problem in the Sense of Caputo-
Fabrizio. The falling body problem in the sense of Caputo-
Fabrizio depended on Newton’s second law which is given
as follows:

SFED*w(t) + ko' v (t) = —go' ™. (31)
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where the initial velocity v(0) = v,, g is the gravitational con-
stant, and m and k are the positive constant rate which indi-
cates the mass of the body. We have

S{eFD (1)} + ko' *S{v(t)} = S{-go'*}.  (32)
If we use the relation equation(19), we can write

M@ S{(1)}
(1-a)(1+ (a/1 - a)u)

_ M@ v(0)

(1—a) (L+ (a/(1 - a))u) T koS (1)} = g0,

(33)

B M(a)v(0)/(1—a)(1+ (a/1 — ex)u)
SO} = ey (T = a) (17 (@/(1 = a))a)) + ko'
go.l—tx
(M(a)/(1 = a)(1+ (a/(1 - a))us)) + ko'~
(34)

Applying the inverse Sumudu transform yields

el M(x)v(0)/(1 - a)(1+ (a/1 - x)u)
V() =$ {(M(oc)/(l —a)(1+ (/1 —ayu)) + kal‘“}

. go_l—a
-S {(M((x)/(l —a)(1+ (/1 —a)u)) + kal“}'

B M(a)v(0) —ako! %t
O M@ s koo (1=a) °F (M(oz) Tkol(1- a))
_ g[M(a) +ko'"*(1 - &) - M() exp (~aka't/(M(a) + ko' (1 - a)) )] -
k(M(a) + ko'~*(1 - a))

(35)

Because of a =0k, 0 <o < 1/k, the velocity v(t) can be
put down as follows:

B M(a)v(0) —k® oot
= Ma) + Fare(i=a) =P <M(oc) TR (1 - oc))
_ g[M(0) + K a' (1 - @) — M(a) exp (—K"a’ "t/ (M(a) + K*a' (1 - a)))] ‘
k(M(a) + k*o'=%(1 - a))

(36)

Note that we put the condition v, = —g/k in order to sat-
isfy the initial condition v(0) =v,. By benefiting from the
velocity (33), vertical distance z(t) can be obtained in the
following way:

M(a)o'~*v(0)

CFCya, (1) — —ako'™"t
o D)= g TR —a) P (M(oc)+k0"“(1—“)>

g0 [M(a) + ko' (1 - ) - M(a) exp (-ako' "t/ (M(a) + ko' (1 - a)))] .

k(M(a) + ko'*(1 - a))
(37)

If we implement the Sumudu transformation to the last

equation, we will obtain

o _ M(a)o"v(0) —ako'~t
S{o Dz(f)}—ms{ex" <m>}
go' M («)

gol—xx
_S{ k } " k(M(a) + ko (1-a))

—ako'%t

' {e"p (M(a) kot (1 —vc)) ’
M(a) S{z()} _ M(a) z(0)
(I-a)(1+ (a/(1=a))u) (1-a)(l+(a/(1-a))u)

_ M(a)o'%v(0) 1
M(a) +ko'=%(1 - a) 1 + (ako'~*u/(M(a) + ko'~*(1 - a)))
go'™® go'*M(a) 1

Tk * k(M(a) + ko'%(1 - a)) 1 + (ako'%u/(M(a) + ko' -¢(1 - a)))’

S{z(t)}=2(0) ol_av(())M(cx) Jr(;c;f"‘zlaf)oc + ocu)}

go"(1-a) go'"Yau

S

M(a)k M(a)k
go'® (1-a+au)
TR M((x)+k01‘"‘(1—0c+0cu)}’

(38)

If we utilize the inverse Sumudu transformation for
equation (13) and take the z(0) = h, we acquire the vertical
distance z(t) as

v(0) [M(a) + ko' (1 - a) - M(a) exp (—ako'“t/(M(a) + ko' (1 - a)))]

z(t)=h+

k M(a) + kal=%(1 - a)
go'™t  go'Cat
T Mk M(a)k
L9 [M(a) + ko'"*(1 - &) = M(a) exp (—ako"*t/(M(a) + ka'*(1 - a)))]
K M(a) + ko'-%(1 - a) :

(39)

Because of a =0k, 0 <o < 1/k, the vertical distance z(¢)
can be put down as

L v(0) [M(a) + k%t (1 - &) — M(a) exp (—k"a? 7t/ (M(a) + k"' (1 - a)))]
A=h+ = M(a) + Kol o(1 — )
g ga
()k  M(a)k
[M () + k"' ™(1 - &) - M(w) exp (—k“a®™t/(M(a) + k"' *(1 - a)))]
M(a) +k%al=(1 - a)

Tle =

+
(40)
3.3. The Falling Body Problem in the Sense of ABC. The fall-

ing body problem in the sense of ABC depended on New-
ton’s second law which is given as follows:

ABEDTY(t) + ko' v (t) = —ga' 4, (41)
where the initial velocity v(0) = v,, g is the gravitational con-
stant, and m and k are the positive constant rate which indi-

cates the mass of the body. We have

S{6°“D v(t)} + ko' S{v(t)} = ${-go'*}. (42)
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Using the relation equation (15), we can write
AB(@)  S{v(1)} AB(q) v(0) - o gla
(o) (L @ (- a)a) (- (1% (@(L-apyum) T SO ==go
s(v(t)} = AB@V(O) - g0 (1 - a)(1+ (a/(1 - o))u)

AB(a) + ka'%(1 = a) (1 + (a/ (1 - &) )u®)
(43)

If we apply the inverse Sumudu transform, we will reach

. AB(a)v(0) 1
V)= {AB(oc) +ko'=(1 - a) 1 + (ako'-ous/(AB(«) + ko'=%(1 - oc)))}
—S’l{ go' (1 - a) (1 + (a/(1 - a))u®) }
AB(a) + ko'=*(1—a)(1 + (a/(1 - a))u®) [’

(44)

AB(a)v(0) E (_

ako!ot®
)= AB(a) + ko (1 -a)® )

AB(a) + ko'=*(1 - «)

gla(l_ ) aklattx
~ AB(a) + kol ¥ (1—-a) © (_ AB(a) + ko (1 - a))

- % {1 P <_ AB(oc)a+k chf‘t(l - a))} '

(45)

Because a =0k, 0 < o < 1/k, the velocity v(t) can be put
down as follows:

- AB(a)v(0)
"= RB(@) + ket

(=o' (_ AB(a)on;(ocklt’): (1- a))
e AR
- % [1 _E"‘(_AB((x) +ko;(;t_)a(1 _a))}.

(46)

Note that we put the condition v, = —g/k in order to sat-
isfy the initial condition v(0) = v,. By benefiting from the
velocity (33), vertical distance z(t) can be obtained in the
following way:

2De(r) =

AB(a)o'™v(0) ako' ot
AB(a) +koT¥(1-a) © (_ AB(a) + ko'(1 - a))

g0l - a(l - a) ako!ote
~ AB(a) + ko™ (1 - a) “(_ AB(a) + ko'=(1 —oc))

~ go.l—zx | _E ~ ‘xko.l—zxtoc
“\ AB(a)+ko"¥(1-a)/|

(47)

If we apply the Sumudu transformation to the above
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equation, we have

- AB?Z; 1+_k:1(1;1a—) a) S{E“ <_ AB(a)OZc chrlt(l - rx)> }

B go.lfzx gglftx ~ aka.lfatu
S{ k }+ k S{E“< AB(a) +ko'5(1-a)) |’

S{8%D*2(1)} =

AB(«) S{z(t)} AB(a) z(0)
(I-a)(1+(a/(1-a))u*) N (I—a) (1+ (a/(1-a))u®)
_ AB(a)d'"(0) 1
" AB(a) + ko' (1 - a) 1 + (ako'~*u®/(AB(a) + ko'~ (1 - oc)))}
go*l—a(l - a) 1
" AB(a) + ko' (1 — &) 1 + (ko *u®/(AB(a) + ko' -%(1 - oc)))}
ga.l—a go.lfoc 1
Tk Tk T+ (akomou (AB(a) + koo (1 - a)))}’
(1 - a)v(0 1
SO} =20+ 35 -f—kal )((1 3 ) 1+ (ako™*u*] (AB(a) + ko (1 - oc)))}
o (0)a u®
" ABa )+ka‘ (1= a) 1+ (ako " *u/(AB(a) + ko2 (1 —oc)))}
B go?1=9(1 - a)? 1 }
AB(«) + ko'~ “(1 @) 1+ (ako'=*u®/(AB(a) + ko'=%(1 - @)))
B 90?1 (1 - a) u® }
AB(a)(AB(a) + koT%(1 —a)) 1 + (ako™u/(AB(a) + ko *(1 - a)))
_go'faut  go't(1-a) go'a u® }
AB(a)k AB(a)k AB(a)k 1+ (ako'-u®/(AB(a) + ka'=%(1 - t)))
go' (1 - a) 1
T TAB(@k 1+ (ako s /(AB(«) + ko 5(1 - a)))}'

(48)

Using the inverse Sumudu transformation for the last
equation and taking the z(0) = h, we acquire the vertical dis-
tance z(t) as

“O="t B @ ko)

){E

v(0
— 1
k
gl
AB(a

(1 - a)v(0) ako! ¥
E <_ AB(a) + ko' (1 - a))

(
-a) ako!~%t*
+kot(1 - a))E“ <_ AB(a) + ko' (1 - oc))

+ _
o

(o) (AB(a

go (1 -a

~ AB(w)k

) Tk
)

e ako' e
“\ AB(a) + ko'"#(1 - «)

B i:(l ;k {1 mar T((IX:oc)}

go (1 -a) (_ ako Tt )
AB(a)k “\ AB(a) + ko'"%(1—-«a)
gAB(a) + gko!"9 (1 - a) ako ot
T AB@)R -2~ s heme=a) |
(49)

where v, = go'™*/AB(«). Because of a =ck, 0 <o < 1/k, the
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vertical distance z(t) can be put down as

B =k (1 - a)v(0) o (kt)®
A=1" R r ke (i-a) <_ AB(a) + Kl (1 - “)>

+@[1—Ea<—$ﬂ

g2 (1 - )2
" AB(a)(AB(a) + Ko (1 - a)) (

_ o (kt)* >
AB(a) + k%al=%(1 — a)

g K (1 - ) a?~(kt)*
N AB(a)k “<_ AB(a) + K al(1 —oc))
B gall- ok B at®
AB((x)kz {1 * I +oc)]
go O (1 - a) o (kt)*
AB()k  “ (_ AB(a) + Kal*(1 - a))

gAB(a) + gk®a1=9 (1 - a) ~ ~ o (kt)*
' AB(a)K? {1 E“( AB(a) + k*al~%(1 - a)>] ‘

(50)

4. Conclusions

We searched the falling body problem in detail by the
Sumudu transform in this study. We obtained the exact
solutions of this problem with Caputo, Caputo-Fabrizio,
and Atangana-Baleanu derivatives. We demonstrated the
effect of the Sumudu transform by these results.
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In mathematical physics (such as the one-dimensional time-independent Schrodinger equation), Sturm-Liouville problems occur
very frequently. We construct, with a different perspective, a Sturm-Liouville problem in multiplicative calculus by some algebraic
structures. Then, some asymptotic estimates for eigenfunctions of the multiplicative Sturm-Liouville problem are obtained by

some techniques. Finally, some basic spectral properties of this multiplicative problem are examined in detail.

1. Introduction

In the 1960’s, Grossman and Katz [1, 2] constructed a compre-
hensive family of calculus that includes classical calculus as
well an infinite subbranches of non-Newtonian calculus.
Arithmetics, a complete ordered field on A C R, are of great
importance in the construction of non-Newtonian calculus.
The real number system is a classical arithmetic. Every arith-
metic produces one generator, which is one to one on the
domain and range of A ¢ R. Conversely, every generator pro-
duces one arithmetic. For instance, I, exp and o(x) = (e* - 1)
/(e* + 1) are generators. So, I generates usual arithmetic, exp
produces geometric arithmetic, and the function o(x) gener-
ates sigmoidal arithmetic mathematically describing the
sigmoidal curves that occur in the study of population and
biological growth.

Non-Newtonian calculus is divided into many sub-
branches as geometric, anageometric, biogeometric, quadratic,
and harmonic calculus. Geometric calculus, which is one of
these, is also defined as multiplicative calculus. Changes of
arguments and values of a function are measured by differ-
ences and ratios in multiplicative calculus, respectively, while
they are measured by differences in the classical case. Multipli-

cative calculus is especially useful in situations where products
and ratios provide the natural methods of combining and
comparing magnitudes. There are actually many reasons to
study multiplicative calculus. It improves the work of additive
calculations indirectly. Problems that are difficult to solve in
the usual case can be solved with incredible ease in here.
Many events such as the levels of sound signals, the acidi-
ties of chemicals, and the magnitudes of earthquakes change
exponentially. For this reason, examining these problems in
nature using multiplicative calculus offers great convenience
and benefits. It allows the physical properties of the events
dealt with physically to be examined from different angles.
The problems encountered in the study of these physical prop-
erties can be expressed with multiplicative differential equa-
tions [3-5]. It has applications in many areas required by
mathematical modeling, especially in applied mathematics
[6-11], engineering [3], economics [12, 13], business [14],
and medicine [15] (see also [16-22]). Different alternative
analyses have been developed to solve the problems that arise
while working with these problems and to achieve better
results in solving the problems. For example, the analytical
solution of a differential equation that is very difficult in clas-
sical calculus can be obtained more easily in multiplicative
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calculus. Moreover, one of the importance of this theory is to
find positive solutions of nonlinear differential equations. The
investigation of various properties of positive solutions has an
important place in the spectral theory of differential operators
(see [23, 24]). This theory has few applications to spectral
analysis. For this reason, we think that the results we will
obtain will have very significant reflections in spectral theory
and will open new fields.

The concepts and methods developed during the study
of the Sturm-Liouville (SL) equation led to the development
of many important directions of mathematics and physics.
In kindred areas of analysis and the SL theory that studies
some properties such as asymptotic behavior of eigenvalues
and eigenfunctions, these are a source of new problems and
ideas [25]. It is a very important equation used to explain
many phenomena in nature. The one-dimensional time-
independent Schrodinger equation in quantum mechanics
can be given as an example of SL equation. Significant results
have been obtained by many mathematicians over the years
regarding the SL equation (see [25-36]). This equation has
not yet been addressed in multiplicative calculus. The results
we will obtain will make important contributions to mathe-
matical physics. Therefore, we examine the multiplicative SL
problem other than the Newtonian calculus. Multiplicative
analysis techniques can also be applied to different operators
that have a significant impact on spectral theory.

2. Preliminaries

In this section, we will express the notions and theorems in
multiplicative analysis, which are extremely important in
solving the problem and examining its properties. There
are many other features of this new theory that are available,
other than the ones below. However, expressing the proper-
ties of the multiplicative derivative and integral is especially
important for the rest of our study. This derivative and inte-
gral are structurally quite different from classical derivative
and integral. In fact, it makes a great difference in logic.
These concepts will make a great difference in physics, biol-
ogy, spectral theory, and economics.

Definition 1 (see [37]). Let f : A ¢ R — R*. *Derivative of
f is expressed by

. ' f( X+ h) 1/h
=1 , 1
)= fim [T )
if the above limit exists and is positive. Indeed, *derivative is
also called as the multiplicative (or geometric) derivative.
Moreover, f is usual differentiable at x, and then,

f(x) = elnef)' (x) (2)

Theorem 2 (see [37]). Let f, g be *differentiable and h be
classical differentiable at x.
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The following equalities hold for * derivative.

(F) ) = () O )",
(f o h)* (x) =7 (h(x))" @,
f(x) g(x)

(
(f +9)" (x) = (x)T0T7909 g* (o) 70970,
where c is a positive constant.

Definition 3 (see [37]). Let f € R* be bounded on [a, b]. Con-
sider the partition & = {x,, x,, ---, x,,} of [a, b] and the num-
bers £, &5, .-+, &, associated with the partition Z.f is said to
be *integrable if there exists a number P having the follow-
ing property: for every € > 0, there exists a partition %, of
[a, b] such that |P(f, %) — P| < ¢ for every refinement & of
P, independently on the selection of the numbers associ-
ated with the partition 9 where

P>, )= [ /&) ()

Then, symbol jZf (x)™ is called *integral of f on [a, b)].
Considering this definition, if f € R" is integrable on
[a, 1], it is *integrable on [a, b],

jbf<x>d"=exp {jbanof)(x)dx}- 5)

a a
Conversely, *integrability of f on [a, b] implies

b

be(X)dlen J ()™ (6)

a a

Indeed, *integral is also called as multiplicative integral.

Theorem 4 (see [37]). Let f, g € R* be bounded and *inte-
grable and h € R* be usual differentiable on [a, b]. Then, the
following expression holds
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(oo g { e}

a

where k € R is a constant and c € [a, b]. The expression v is
known as *integration by parts formula.

3. Multiplicative SL Equation

In this section, the multiplicative SL equation will be estab-
lished by using some algebraic structures and the eigenfunc-
tions of the constructed problem will be obtained.

Firstly, let us express some concepts that form the basis
of the SL equation in the multiplicative case. nth-order mul-
tiplicative linear differential expression is in the form of

10)= ] e )

where s, (x),s,_;(x), -+, sy(x) are the continuous exponents
on [a, b]. Let

u) = [y ] el ] bl
©)

be the linear form when y, and y, are the values of y at end
points of [a, b]. If such forms u,,(y) have been specified for v
=1, m and the conditions u,(y) = 1 are imposed into y(x) €
C*", it must satisfy these boundary conditions, where C*(")
shows the set of the functions which are nth-order multiplica-
tive differentiable and continuous. Let us consider a certain
multiplicative differential expression I(y) with u,(y)=1 on
D c C*™ . Assume that u = (y) is a function where y(x) € D.
This relation is denoted by L whose domain is D. The oper-
ator L is called multiplicative differential operator generated
by I(y) = w(x) and u,(y) = 1. The problem of determination
y(x) € C*(" which satisfies the conditions I(y) = 1 and u,,(y)
=1 is called the homogeneous multiplicative boundary value
problem.

Definition 5. Let Ly = y*. y # 1 is called multiplicative eigen-
function (*eigenfunction) of the operator L. Here, A is a
multiplicative eigenvalue (*eigenvalue) of L. That is, the *
eigenvalues of an operator L are the values of A when the
multiplicative boundary value problem

I(y) =y~ (10)

uy(y)=1

has nontrivial solutions.

v=1,n

We will soon construct the multiplicative SL problem.
That way, let us express multiplicative algebraic structures
that we will encounter while establishing and solving the
multiplicative SL equation. Arithmetic operations created
with exponential functions are called multiplicative algebraic
operations. Let us show some properties of these operations
with a multiplicative arithmetic table for f, g e R* [37].

feg=rg
_f
feg—g, (11)

fog=f"9=g"".

These operations create some algebraic structures. If &
: Ax A —> A is an operation where A + @ and A c R", the
algebraic structure (A,®) is called a multiplicative group.
Similarly, (A,®,®) is a multiplicative ring. This situation
gives us the opportunity to use these processes easily and
define different structures.

Consider the following multiplicative SL equation for x
€ [a, b]

Lh]= (" oy () e (" oy)) = oy,  (12)
with the conditions

(ecostXQy(a))e9 (esinthy*(a)) — 1’

(ecos k oy(b)) ® (esm B @y*(b)) =1, 13)

where q is real valued on [a, b] and «, 8 arbitrary real num-
bers. If we expand and simplify this problem by using the
properties of multiplicative calculus, the multiplicative SL
problem

")y =y,
(@) *(y* (@) “ =1, (14)
(b)) Py (b)) ™ F =1

is obtained.

In usual case, (12) is equivalent to the following nonlin-
ear equation

yiy= () (=g ny =0 s)

The solutions of this nonlinear equation coincide with
the solutions of multiplicative equation (12). This shows
how important the multiplicative calculus is.



We assume that a =0, b = 7 throughout this study with-
out the loss of generality. In fact, [a, b] is mapped to [0, 7] by
the substitution f = (x — a)"%8",

By setting cot a = —h and cot 3 = H, the boundary condi-

tions in (13) are converted to

(16)

Let us denote the solutions of (12) by u(x, 1) and v(x, A)
which satisfies

u(0,1) =e,
u,(0,1) =, (17)
v(0,A) =1,
v*((O /\)) =e (18)

In order to avoid any difficulties in expressing the main
parts of the study, the multiplicative inner product will be
defined and the spaces used throughout the study will be
given in the multiplicative case.

Definition 6. Let S# @ and <, >, : SxS— R" be a map-
ping such that the following axioms hold for each x,y,z €
X:

@) <f,f>. =1
(i) <f,f>,=1iff=1
(iii) <f@ g, h>, =<f,h>, &<g, h>,
(iv) <e*of,g>, =e*0<f,g>,,acR
V) <f.9>.=<g.f>.
Here, (S,<,>,) is called the *inner product space and

<, >, is the *inner product on S.

Lemma 7. The space L;[a, b] = {f : fl; [f(x) @ f(x)]* <00} is
an *inner product space with

<>, 1 Lj[a,b]x Li[a, b] — R*, < f, g>, = Jb[f(x) 0 g(x)*,

u (19)

where f, g € L}[a, b] are positive functions.

Proof. Using the properties of the multiplicative inner prod-
uct and the definition of the given space, it can be easily
proved. O
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Theorem 8. Let A = . The asymptotic formulas of *eigen-
function of problems (12) and (13) are

X u

M(X, A) — o8 pc+(hip) sin px |:J u(t, A)q(t) sin [y(xt)]dt:|

0

X 1/p
v(x, A) = 1) sin pex U v(t, 1)1 o W’“t”ﬂ :
0

(20)

Proof. The first estimate will only be proved because the
other can be proved similarly. Since u(x, A) satisfies (12),
we get

2

. dt [
wu(t, A 1) }

(21)

X at X
J w(t, )20 s ) [

0 Jo

X

W (1, ) ol { J

0

If the *integration by parts method is applied to the first
multiplicative integral on the right twice in a row, we get

un** (t, A)sin [y(x—t)]d’ — Auﬂ(x’ A)
0 u* (0) /\)sm yxu(o) /\)y cos pix

. (22
U u(t, ) [y(x—t)]’“:|
0

Then, by considering the conditions in (17) in (21) with
above relation,

un(t, A)’i“) sin [p(x—1)]" _ u“(x, /\)ef(h sin px+ cos px) (23)
0

It completes the proof.(] ]

Remark 9. The more general 2nd-order multiplicative differ-
ential equation

)’* * ()’* )P(x)yr(x)‘f)ﬂl)(x) =1 (24)

can be transformed into the following multiplicative SL
equation

[(Y*)ﬂ(x)} " EuE ) (25)

where u(x) = | (ep(">)dx. If the multiplicative Liouville trans-

X dt
form u= yf L2755 used here, the multiplicative differen-
tial equation above turns to the following multiplicative SL
equation:

u**uq(x)JrAw(x) =1, (26)

where g(x) = r(x) — (1/4)(2p' (x) + p*(x)).



Journal of Function Spaces

Example 10. Consider the nonlinear eigenvalue problem in a
usual case:

2
)’”}’—()"> +A(ny)y*=0, 0<x<S,
y(0)=y(S)=1.

(27)

It is quite difficult to solve this problem in the usual case.
For this reason, we will obtain the eigenvalues and eigen-
functions of the problem by using multiplicative calculus

techniques. By the relation y*(") = ¢(In N n=1,2,(27) turns
into the multiplicative linear eigenvalue problem

(28)

If A <0, the trivial eigenfunction y(x, A) =1 is obtained.
Suppose that A > 0. Then, the solution of (28) is

()
S (29)
a, sin (2%

y() = e o (59,

where n=1,2,3,--+, and «, are constants. This solution is
also the solution to nonlinear eigenvalue problem (27). This
situation shows how effective multiplicative calculus can be
in mathematical physics.

Example 11. Now let us consider the periodic nonlinear
eigenvalue problem in the usual case:

2
y"y—(y'> +A(Iny)> =0, -S<x<S§,

y(=8)=y(5), (30)
Y'(=9)=y'()

This problem is very important in mathematical physics
and its solution is extremely difficult in the usual case. Now,

let us turn this problem into an equation that is more

solvable in multiplicative calculus by relation y*(") = (I ",

n=1,2:

=y(S), (31)

This problem is a multiplicative periodic linear eigenvalue
problem. Here, we get y(x,A) =1 and y(x, 1) =e when A <0
and A =0, respectively. Assume that A>0. If the similar
operations to the above solution are performed and periodic
conditions are taken into account, we get

()

ya@) = {epu{e” B uden I n-01,2,3,-,
(32)

where a,, are constants.

Now, we will establish the above equation with new condi-
tions and examine its solutions with another method. For this
solution, the multiplicative Laplace transform will be expressed
and all the necessary properties will be given. Then, the multi-
plicative SL problem will be solved using this multiplicative
transformation. The flawless operation of this transformation
in multiplicative analysis is important in terms of carrying
many concepts and theorems present in the classical case to
this field. We can guess from this situation that transformations
used for different purposes in mathematical physics can also be
carried. This is important in terms of considering many theo-
ries in mathematical physics from a different perspective and
obtaining different results.

Definition 12 (see [10]). Let f(¢) € R* on [0, co). Multiplica-
tive Laplace transform for f is expressed by

L, {f(t)y =F(s) =7V, (33)

where £ denotes usual Laplace transform.

Lemma 13 (see [10]). The multiplicative Laplace transform is
multiplicatively linear. Namely,

L {fiOfF ()} =LA F1(0} Ll fo(0)} (34)
where c,, ¢, are arbitrary exponents.

Definition 14 (see [10]). Let f, f*, f**, -, f*""Y be continu-
ous and f*" be piece-wise continuous on 0<t<A. Also,
assume that there exists positive real numbers K, «, and t,
such that

f*(”_l)(t)‘ <Ke", t>t, (35)
Furthermore, &, {f*" ()} exists and can be calculated

. _ 1 ).
L0} fr e

(36)

Definition 15 (see [10]). Let F(s) be a multiplicative Laplace
transform of continuous function f, ie., &, {f(¢)} = F(s).
And Z;{F} is called the inverse multiplicative Laplace
transform. Here, we have the following relation



n -1)"
20"} = (F0) (7)
Now, let us solve a nonlinear initial value problem in the

usual case by the multiplicative Laplace transform.

Example 16. Consider the below nonlinear IVP.

Y= () A= ) In =0,
y(0)=¢ G8)
»'(0) = y(0) =0,

where g(x) =c and c is a constant. By substitution y*((x)

=¢lln y)(“)(x)’ n=1,2, (38) turns into the following multipli-
cative [VP.

y(0) =€, (39)

If the multiplicative Laplace transform is applied to both
sides of the obtained equation (8) and necessary adjustments
are made, we get

as+f

Y(s) = eon. (40)

Finally, using the multiplicative inverse Laplace trans-
form, the solution of (39) is

g% o8 (\/Ex)+% sin (VA-cx) A>c
YA =q e, d=q, - (4D
o s h(\/ﬁx)+% sin h(Ve-1x) A=c

4. Some Spectral Properties of the
Multiplicative SL Problem

We examine some properties of the multiplicative SL operator
as self-adjointness, orthogonality, reality, and simplicity in this
section. Especially, the concepts of operator self-adjointness
and simplicity of eigenvalues have a very important place in
physics. The self-adjointness of an operator provides a great
advantage in explaining the problem and event. In addition,
the simplicity of the eigenvalues is useful in resolving complex
physical structures. Orthogonality of eigenfunctions and real-
ism of eigenvalues also have different and important meanings
physically. For all these reasons, these features will be exam-
ined mathematically.

Lemma 17. The multiplicative Sturm-Liouville operator L in
(12) is formally self-adjoint on L}[0, ).
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Proof. Let us use the notion of the multiplicative inner prod-
uct on L3 [0, 71]. It gives

T T dx

(Lu,v), = JO [(Lu)ln V} dx _ JO [((u**)_luq("))ln v:|
= J: [(u**)_ln V} de: [m(x) In v} @

Using *integration by the parts formula two times for
the first factor of the right side,

In v*

J: [(u**)—ln v}dxz(:*)m

where F (x)|f = F(B)/F(«). Setting this result in (42) implies
that

N L [ Y @)

0

(Lu, vy, = Wm{u,v}(x)rg . Jn {uln (“’H)?lvqm)} = (44)
= W, {u, v} ()] O [uln (Lv):|dx

=W, {u,v}(x)[g - (Lw,v),,

whereW, {u, v}(x) = (uov*)e (vou*). It follows by the
conditions in (13) that W, {u,v}(0)=W,{u,v}(m)=1.
Therefore, we get

(Lu,v), = (u, Lv),. (45)
It completes the proof of self-adjointness.(] O

Lemma 18. The *eigenfunctions ¢(x, A) and y(x, ) related
to distinct eigenvalues A and y are orthogonal, i.e.,

Jb (e, ) ¥ " (46)

a

Proof. By the self-adjointness of the SL operator L, we get

_ (Lu,v),
<M, LV>*

A ,A , . us x A=
) <<$<fi3>,) 4 ’;;>> = =[] foeenimree] ]
(47)

where u(x)=¢(x,A), v(x)=w(x,u). Since A#y and the
right-side multiplicative integral is positive, it gives orthogo-
nality of the *eigenfunctions.(J O

Lemma 19. All eigenvalues of multiplicative SL problems (12)
and (13) are real.

Proof. Let A = u+iv be a complex eigenvalue for the given
problem. y=A=u—iv is also an eigenvalue for (12) and
(13) corresponding to y(x, A). By previous the lemma, we
acquire
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b - dx
J [y(x, Ay (“)} -1. (48)
By definition of the multiplicative integral,

Y -
eJ'“ In y(x,)t) In y(x,A)dx -1

b (49)
J IIn y(x, 1)*dx=0= y(x,A) = 1.

This is a contradiction. It is due to our assumption. So,
the chosen eigenvalue is real. Since this eigenvalue is arbi-
trary, all eigenvalues of the problem are real.

Now, let us examine another important spectral property of
this problem. The simplicity of eigenvalues is a very important
feature in mathematical physics, and there are many proof
techniques for simplicity. The algebraic multiplicity of an
eigenvalue is the number of times it repeats as a root of the
characteristic polynomial. If the algebraic multiplicity of an
eigenvalue is 1, that eigenvalue is called a simple eigenvalue.(J

O

Lemma 20. All eigenvalues of multiplicative SL equations
(12) and (13) are simple.

Proof. Let y,(x,A), y,(x,A) be eigenfunctions of (12) and
(13) corresponding to A. Therefore, both of these eigenfunc-
tions satisfy the given equation.

) =),

AW =y

(50)

After some straightforward operations,
)05 ) =1 (51)
By using multiplicative integral from a to x,

v (x)ln ¥5 (%) y (a)ln y2(a)
5 ()2 (y, (@) 5@

Since y, (x, A), y,(x, A) satisfy the given conditions,

=1. (52)

)—cot o

yi(a)=y(a
y5(a)=y,(a

>

(53)

)—COt o .

If we use this result in (52), it yields W, {y, y,}(a) = 1.
It gives that y, and y, are linearly dependent on [a, b]. It
completes the proof.(] O

5. Conclusion

In this study, we have constructed the multiplicative SL
problem and obtained *eigenfunctions of that problem by
using some techniques. Later, this problem was investigated
in terms of spectral theory in the multiplicative case. This

study shows that multiplicative calculus methods can be
applied to problems in spectral analysis and give solutions
more effectively. This situation will make great contributions
to the theory if many important theorems and problems in
spectral theory are dealt with in multiplicative calculus.
The foundations of multiplicative analysis in spectral theory
established with this study can then be applied to different
topics of mathematical physics. For example, inverse problems
in spectral theory can be identified in this analysis and quality
results can be obtained for applications of inverse problems in
engineering and medicine. Problems that are difficult to solve
in medicine and engineering and situations that cause time
loss during application can be reduced by using multiplicative
analysis. The current methods and techniques in medicine and
engineering can be developed by multiplicative analysis. These
developments can be made in many application areas other
than reverse problems. Some numerical computation tech-
niques used in spectral analysis can be reestablished in this
new theory, and different evaluations can be made.
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