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This issue on qualitative analysis on differential, fractional
differential, and dynamic equations and related topics aims
at an all-around research and the state-of-the-art theoretical,
numerical, and practical achievements that contribute to this
field. This issue contains the following features.

Oscillation and Asymptotic Behavior. S. R. Grace and E. Akin
investigate the asymptotic behavior of nonoscillatory solu-
tions of certain forced integrodifferential equations. From
the obtained results, they drive a technique which can be
applied to some related integrodifferential as well as integral
equations.

T. S. Hassan and S. R. Grace consider the higher-order
functional dynamic equations with mixed nonlinearities
and study their oscillatory behavior via comparison with
some equations whose oscillatory characters are known and
studied extensively in the literature.

Stochastic Delay Differential Equations, Dynamics of Stochas-
tic Coral Reefs Model, Stochastic Predator-Prey System Subject
to Lévy Jumps, and Stochastic Resonance in a Multistable
System Driven by Gaussian Noise. H. Yuan et al. introduced
and analyzed split-step theta (SST) method for nonlinear
neutral stochastic differential delay equations (NSDDEs).
The asymptotic mean square stability of the split-step theta
(SST) method is considered for nonlinear neutral stochastic
differential equations. It is proved that, under the one-sided

Lipschitz condition and the linear growth condition, for all
positive step sizes, the split-step theta method with 𝜃 ∈
(1/2, 1] is asymptotically mean square stable.The stability for
themethodwith 𝜃 ∈ [0, 1/2] is also obtained under a stronger
assumption. It further studies the mean square dissipativity
of the split-step theta method with 𝜃 ∈ (1/2, 1] and proves
that the method possesses a bounded absorbing set in mean
square independent of initial data.

Z. Huang work is devoted to discerning asymptotic
behavior dynamics through the stochastic coral reefs model
with multiplicative nonlinear noise. By support theorem and
Hörmander theorem, the Markov semigroup corresponding
to the solutions is to prove the Foguel alternative. Based
on boundary distributions theory, the required conservative
operators related to the solutions are further established to
ensure the existence of a stationary distribution. Meanwhile,
the density of the distribution of the solutions either con-
verges to a stationary density or weakly converges to some
probability measure.

X. Wang and X. Meng investigate a new nonautonomous
impulsive stochastic predator-prey system with the omnivo-
rous predator. First, they show that the system has a unique
global positive solution for any given initial positive value.
Second, the extinction of the system under some appropriate
conditions is explored. In addition, they obtain the sufficient
conditions for the almost sure permanence in mean and
stochastic permanence of the system by using the theory
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of impulsive stochastic differential equations. Finally, they
discuss the biological implications of the main results and
show that the large noise can make the system go extinct.
Simulations are also carried out to illustrate our theoretical
analysis conclusions.

P. Shi et al. investigated stochastic resonance (SR) in a
multistable systemdriven byGaussianwhite noise. Using adi-
abatic elimination theory and three-state theory, the signal-
to-noise ratio (SNR) is derived. They find the effects of the
noise intensity and the resonance system parameters b, c, and
d on the SNR; the results show that SNR is a nonmonotonic
function of the noise intensity; therefore, a multistable SR is
found in this system, and the value of the peak changes with
changing the system parameters.

Hamiltonian Systems and Dynamic Optimization. F. Pierret
and D. F. M. Torres derive the Helmholtz theorem for
nondifferentiable Hamiltonian systems in the framework
of Cresson’s quantum calculus. Precisely, they give a theo-
rem characterizing nondifferentiable equations, admitting a
Hamiltonian formulation. Moreover, in the affirmative case,
they give the associated Hamiltonian.

D.-S. Wang et al. investigate the effects of terms-of-
trade shocks on the spending and current account where
households withmodified Becker-Mulligan endogenous time
preference maximize their utility over an infinite planning
period. The results reveal the view that with an endogenous
rate of time preference the stability requirements preclude
the Harberger-Laursen-Metzler effect in an infinite horizon
model. Different from Obstfeld (1982), where households
with Uzawa endogenous time preference are considered,
deterioration in terms of trade leads to a current increase
in expenditure in order to catch the new optimum. These
theoretical results are consistent with the empirical evidence
by numerical simulations.

Singularly Perturbed Systems and Exponential Attractor for
the Boussinesq Equation. H. Xu and Y. Jin investigate a class
of semilinear singularly perturbed systems with contrast
structures discussed. Firstly, they verify the existence of
heteroclinic orbits connecting two equilibrium points about
the associated systems for contrast structures in the corre-
sponding phase space. Secondly, the asymptotic solutions of
the contrast structures by themethod of boundary layer func-
tions and smooth connection are constructed. Finally, the
uniform validity of the asymptotic expansion is defined and
the existence of the smooth solutions is proved. Singularly
perturbed problems are often used as the models of ecology
and epidemiology.

F. Geng et al. studied the existence of exponential attrac-
tor for the Boussinesq equation with strong damping and
clamped boundary condition. The main result is concerned
with nonlinearities with supercritical growth. In that case,
they construct a bounded absorbing set with further regular-
ity and obtain quasi-stability estimates.Then, the exponential
attractor is established in natural energy space.

Bifurcation. N. Wang et al. study a predator-prey model
mathematically and numerically. The aim is to explore how

some key factors influence dynamic evolutionarymechanism
of steady conversion and bifurcation behavior in predator-
prey model. The theoretical works have been pursuing the
investigation of the existence and stability of the equilibria, as
well as the occurrence of bifurcation behaviors (transcritical
bifurcation, saddle-node bifurcation, and Hopf bifurcation),
which can deduce a standard parameter controlled rela-
tionship and in turn provide a theoretical basis for the
numerical simulation. Numerical analysis ensures reliability
of the theoretical results and illustrates that three stable
equilibria will arise simultaneously in the model. It testifies
the existence of Bogdanov-Takens bifurcation, too. It should
also be stressed that the dynamic evolutionary mechanism of
steady conversion and bifurcation behavior mainly depend
on a specific key parameter. In a word, all these results are
expected to be of use in the study of the dynamic complexity
of ecosystems.

Said R. Grace
Taher S. Hassan

Shurong Sun
Elvan Akin



Research Article
Asymptotic Behavior of Certain Integrodifferential Equations

Said Grace1 and Elvan Akin2

1Department of Engineering Mathematics, Cairo University, Orman, Giza 12221, Egypt
2Missouri University of Science Technology, 310 Rolla Building, Rolla, MO 65409-0020, USA

Correspondence should be addressed to Elvan Akin; akine@mst.edu

Received 11 February 2016; Revised 13 May 2016; Accepted 5 June 2016

Academic Editor: Zhan Zhou

Copyright © 2016 S. Grace and E. Akin.This is an open access article distributed under theCreative CommonsAttribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper deals with asymptotic behavior of nonoscillatory solutions of certain forced integrodifferential equations of the form:
(𝑎(𝑡)𝑥󸀠(𝑡))󸀠 = 𝑒(𝑡) + ∫

𝑡

𝑐
(𝑡 − 𝑠)

𝛼−1

𝑘(𝑡, 𝑠)𝑓(𝑠, 𝑥(𝑠))𝑑𝑠, 𝑐 > 1, 0 < 𝛼 < 1. From the obtained results, we derive a technique which can
be applied to some related integrodifferential as well as integral equations.

1. Introduction

In this paper, we consider the integrodifferential equation

(𝑎 (𝑡) 𝑥
󸀠

(𝑡))
󸀠

= 𝑒 (𝑡)

+ ∫
𝑡

𝑐

(𝑡 − 𝑠)
𝛼−1

𝑘 (𝑡, 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠,

𝑐 > 1, 0 < 𝛼 < 1.

(1)

In the sequel, we assume that

(i) 𝑎, 𝑒 ∈ 𝐶([𝑐,∞),R+);
(ii) 𝑘 ∈ 𝐶([𝑐,∞) × [𝑐,∞),R) and also there exists 𝑏 ∈

𝐶([𝑐,∞),R+) such that |𝑘(𝑡, 𝑠)| ≤ 𝑏(𝑡) for all 𝑡 ≥ 𝑠 ≥ 𝑐;
(iii) 𝑓 ∈ 𝐶([𝑐,∞) × R,R) and also there exist ℎ ∈

𝐶([𝑐,∞),R+) and real numbers 𝜆, 0 < 𝜆 ≤ 1, and
𝛾 such that

0 ≤ 𝑥𝑓 (𝑡, 𝑥) ≤ 𝑡
𝛾−1

ℎ (𝑡) |𝑥|
𝜆+1 (2)

for 𝑥 ̸= 0 and 𝑡 ≥ 𝑐.

We only consider solutions of (1) which are continuable
and nontrivial in any neighborhood of∞. Such a solution is
said to be oscillatory if there exists a sequence {𝑡

𝑛
} ⊂ [𝑐,∞),

𝑡
𝑛

→ ∞, such that 𝑥(𝑡
𝑛
) = 0, and it is nonoscillatory

otherwise.

In the last few decades, integral, integrodifferential,
and fractional differential equations have gained consid-
erable attention due to their applications in many engi-
neering and scientific disciplines as the mathematical mod-
els for systems and processes in fields such as physics,
mechanics, chemistry, aerodynamics, and the electrodynam-
ics of complex media. For more details one can refer to
[1–8].

Oscillation and asymptotic results for integral and inte-
grodifferential equations are scarce; some results can be
found in [5, 9–13]. It seems that there are no such results for
integral equations of type (1).Themain objective of this paper
is to establish some new criteria on the oscillatory and the
asymptotic behavior of all solutions of (1). From the obtained
results, we derive a technique which can be applied to some
related integrodifferential as well as integral equations.

2. Main Results

Toobtain ourmain results of this paper, we need the following
two lemmas.

Lemma 1 (see [5, 7]). Let 𝛽, 𝛾, and𝑝 be positive constants such
that 𝑝(𝛽 − 1) + 1 > 0 and 𝑝(𝛾 − 1) + 1 > 0. Then

∫
𝑡

0

(𝑡 − 𝑠)
𝑝(𝛽−1)

𝑠
𝑝(𝛾−1)

𝑑𝑠 = 𝑡
𝜃
𝐵, 𝑡 ≥ 0, (3)

where 𝐵 fl 𝐵[𝑝(𝛾 − 1) + 1, 𝑝(𝛽 − 1) + 1], 𝐵[𝜁, 𝜂] = ∫
1

0
𝑠𝜁−1(1 −

𝑠)
𝜂−1

𝑑𝑠, 𝜁, 𝜂 > 0, and 𝜃 = 𝑝(𝛽 + 𝛾 − 2) + 1.
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Lemma 2 (see [14]). If𝑋 and 𝑌 are nonnegative, then

𝑋
𝜆
− (1 − 𝜆) 𝑌

𝜆
− 𝜆𝑋𝑌

𝜆−1
≤ 0, 0 < 𝜆 < 1, (4)

where equality holds if and only if𝑋 = 𝑌.

In what follows, we let

𝑔
±
(𝑡) = 𝑒 (𝑡) ± (1 − 𝜆) 𝜆

𝜆/(1−𝜆)
𝑏 (𝑡)

⋅ ∫
𝑡

𝑡
1

(𝑡 − 𝑠)
𝛼−1

𝑠
𝛾−1

𝑚
𝜆/(𝜆−1)

(𝑠) ℎ
1/(1−𝜆)

(𝑠) 𝑑𝑠
(5)

and 0 < 𝜆 < 1, 𝑡 ≥ 𝑡
1
for some 𝑡

1
≥ 𝑐, where 𝑚 ∈

𝐶([𝑐,∞),R+).
Now we give sufficient conditions under which any

solution 𝑥 of (1) satisfies |𝑥(𝑡)| = 𝑂(𝑡2) as 𝑡 → ∞.

Theorem 3. Let 0 < 𝜆 < 1 and conditions (i)–(iii) hold and
suppose that 𝑝 > 1, 𝑞 = 𝑝/(𝑝 − 1), 𝛼 > 0, 𝛾 = 2 − 𝛼 − 1/𝑝,
𝑝(𝛼 − 1) + 1 > 0, 𝑝(𝛾 − 1) + 1 > 0, and

𝑡

𝑎 (𝑡)
and 𝑏 (𝑡) are bounded on [𝑐,∞) , (6)

∫
∞

𝑡
1

𝑠

𝑎 (𝑠)
𝑑𝑠 < ∞, (7)

∫
∞

𝑡
1

(𝑠
2
𝑚(𝑠))

𝑞

𝑑𝑠 < ∞. (8)

If

lim sup
𝑡→∞

1

𝑡2
∫
𝑡

𝑡
1

1

𝑎 (𝑢)
∫
𝑢

𝑡
0

𝑔
−
(𝑠) 𝑑𝑠 𝑑𝑢 < ∞,

lim inf
𝑡→∞

1

𝑡2
∫
𝑡

𝑡
1

1

𝑎 (𝑢)
∫
𝑢

𝑡
0

𝑔
+
(𝑠) 𝑑𝑠 𝑑𝑢 > −∞

(9)

for any 𝑡
1
≥ 𝑐, then every nonoscillatory solution 𝑥(𝑡) of (1)

satisfies

lim sup
𝑡→∞

|𝑥 (𝑡)|

𝑡2
< ∞. (10)

Proof. Let 𝑥 be a nonoscillatory solution of (1). We may
assume that 𝑥(𝑡) > 0 for 𝑡 ≥ 𝑡

1
for some 𝑡

1
≥ 𝑐. We let

𝐹(𝑡) = 𝑓(𝑡, 𝑥(𝑡)). In view of (i)–(iii) we may then write

(𝑎 (𝑡) 𝑥
󸀠

(𝑡))
󸀠

≤ 𝑒 (𝑡) + 𝑏 (𝑡) ∫
𝑡

𝑐

(𝑡 − 𝑠)
𝛼−1

𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠 (11)

and so

(𝑎 (𝑡) 𝑥
󸀠

(𝑡))
󸀠

≤ 𝑒 (𝑡) + 𝑏 (𝑡) ∫
𝑡
1

𝑐

(𝑡 − 𝑠)
𝛼−1

|𝐹 (𝑠)| 𝑑𝑠

+ 𝑏 (𝑡)

⋅ ∫
𝑡

𝑡
1

(𝑡 − 𝑠)
𝛼−1

𝑠
𝛾−1

[ℎ (𝑠) 𝑥
𝜆

(𝑠) − 𝑚 (𝑠) 𝑥 (𝑠)] 𝑑𝑠

+ 𝑏 (𝑡) ∫
𝑡

𝑡
1

(𝑡 − 𝑠)
𝛼−1

𝑠
𝛾−1

𝑚(𝑠) 𝑥 (𝑠) 𝑑𝑠.

(12)

Applying (4) of Lemma 2 to ℎ(𝑠)𝑥
𝜆(𝑠) − 𝑚(𝑠)𝑥(𝑠) with 𝑋 =

ℎ1/𝜆𝑥 and 𝑌 = ((1/𝜆)𝑚ℎ−1/𝜆)1/(𝜆−1) we have

ℎ (𝑠) 𝑥
𝜆

(𝑠) − 𝑚 (𝑠) 𝑥 (𝑠)

≤ (1 − 𝜆) 𝜆
𝜆/(1−𝜆)

𝑚
𝜆/(𝜆−1)

(𝑠) ℎ
1/(1−𝜆)

(𝑠) ,

(13)

and hence we obtain

(𝑎 (𝑡) 𝑥
󸀠

(𝑡))
󸀠

≤ 𝑒 (𝑡) + 𝑏 (𝑡) ∫
𝑡
1

𝑐

(𝑡 − 𝑠)
𝛼−1

|𝐹 (𝑠)| 𝑑𝑠

+ (1 − 𝜆) 𝜆
𝜆/(1−𝜆)

𝑏 (𝑡)

⋅ ∫
𝑡

𝑡
1

(𝑡 − 𝑠)
𝛼−1

𝑠
𝛾−1

𝑚
𝜆/(𝜆−1)

(𝑠) ℎ
1/(1−𝜆)

(𝑠) 𝑑𝑠 + 𝑏 (𝑡)

⋅ ∫
𝑡

𝑡
1

(𝑡 − 𝑠)
𝛼−1

𝑠
𝛾−1

𝑚(𝑠) 𝑥 (𝑠) 𝑑𝑠

(14)

or

(𝑎 (𝑡) 𝑥
󸀠

(𝑡))
󸀠

≤ 𝑏 (𝑡) ∫
𝑡
1

𝑐

(𝑡
1
− 𝑠)
𝛼−1

|𝐹 (𝑠)| 𝑑𝑠 + 𝑔
+
(𝑡)

+ 𝑏 (𝑡) ∫
𝑡

𝑡
1

(𝑡 − 𝑠)
𝛼−1

𝑠
𝛾−1

𝑚(𝑠) 𝑥 (𝑠) 𝑑𝑠

≤ 𝐶
1
+ 𝑔
+
(𝑡)

+ 𝑘
1
∫
𝑡

𝑡
1

(𝑡 − 𝑠)
𝛼−1

𝑠
𝛾−1

𝑚(𝑠) 𝑥 (𝑠) 𝑑𝑠,

(15)

where 𝐶
1
and 𝑘

1
are the upper bounds of the functions

𝑏(𝑡) ∫
𝑡
1

𝑎
(𝑡
1
− 𝑠)
𝛼−1

|𝐹(𝑠)|𝑑𝑠 and 𝑏(𝑡), respectively. Integrating
inequality (15) from 𝑡

1
to 𝑡 we have

𝑥
󸀠

(𝑡) ≤
𝑎 (𝑡
1
) 𝑥󸀠 (𝑡

1
)

𝑎 (𝑡)
+
𝐶
1
(𝑡 − 𝑡
1
)

𝑎 (𝑡)

+
1

𝑎 (𝑡)
∫
𝑡

𝑡
1

𝑔
+
(𝑠) 𝑑𝑠

+
𝑘
1

𝑎 (𝑡)
∫
𝑡

𝑡
1

∫
𝑢

𝑡
1

(𝑢 − 𝑠)
𝛼−1

𝑠
𝛾−1

𝑚(𝑠) 𝑥 (𝑠) 𝑑𝑠 𝑑𝑢.

(16)

Interchanging the order of integration in the last integral, we
have

𝑥
󸀠

(𝑡) ≤
𝑎 (𝑡
1
) 𝑥󸀠 (𝑡

1
)

𝑎 (𝑡)
+
𝐶
1
(𝑡 − 𝑡
1
)

𝑎 (𝑡)

+
1

𝑎 (𝑡)
∫
𝑡

𝑡
1

𝑔
+
(𝑠) 𝑑𝑠

+ 𝑘
2
∫
𝑡

𝑡
1

(𝑡 − 𝑠)
𝛼
𝑠
𝛾−1

𝑚(𝑠) 𝑥 (𝑠) 𝑑𝑠,

(17)
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where 𝑘
2
is the upper bound of the function 𝑘

1
/𝛼𝑎(𝑡).

Integrating (17) from 𝑡
1
to 𝑡 and interchanging the order of

integration in the last integral we find

𝑥 (𝑡) ≤ 𝑥 (𝑡
1
) + 𝑎 (𝑡

1
) 𝑥
󸀠
(𝑡
1
) ∫
𝑡

𝑡
1

1

𝑎 (𝑠)
𝑑𝑠

+ ∫
𝑡

𝑡
1

𝐶
1
(𝑠 − 𝑡
1
)

𝑎 (𝑠)
𝑑𝑠 + ∫

𝑡

𝑡
1

1

𝑎 (𝑢)
∫
𝑢

𝑡
1

𝑔
+
(𝑠) 𝑑𝑠 𝑑𝑢

+
𝑘
2

𝛼 + 1
∫
𝑡

𝑡
1

(𝑡 − 𝑠)
𝛼+1

𝑚(𝑠) 𝑥 (𝑠) 𝑑𝑠.

(18)

Now, one can easily see that

𝑥 (𝑡) ≤ 𝑥 (𝑡
1
) + 𝑎 (𝑡

1
) 𝑥
󸀠
(𝑡
1
) ∫
𝑡

𝑡
1

1

𝑎 (𝑠)
𝑑𝑠

+ ∫
𝑡

𝑡
1

𝐶
1
(𝑠 − 𝑡
1
)

𝑎 (𝑠)
𝑑𝑠 + ∫

𝑡

𝑡
1

1

𝑎 (𝑢)
∫
𝑢

𝑡
1

𝑔
+
(𝑠) 𝑑𝑠 𝑑𝑢

+
𝑘
2

𝛼 + 1
𝑡
2
∫
𝑡

𝑡
1

(𝑡 − 𝑠)
𝛼−1

𝑚(𝑠) 𝑥 (𝑠) 𝑑𝑠

(19)

or

𝑧 (𝑡) fl
𝑥 (𝑡)

𝑡2
≤ 1 + 𝐶 + 𝑘∫

𝑡

𝑡
1

(𝑡 − 𝑠)
𝛼−1

𝑚(𝑠) 𝑥 (𝑠) 𝑑𝑠, (20)

where 𝐶 is the upper bound of the function

1

𝑡2
[𝑥 (𝑡
1
) + 𝑎 (𝑡

1
) 𝑥
󸀠
(𝑡
1
) ∫
𝑡

𝑡
1

1

𝑎 (𝑠)
𝑑𝑠

+ ∫
𝑡

𝑡
1

𝐶
1
(𝑠 − 𝑡
1
)

𝑎 (𝑠)
𝑑𝑠 + ∫

𝑡

𝑡
1

1

𝑎 (𝑢)
∫
𝑢

𝑡
1

𝑔
+
(𝑠) 𝑑𝑠 𝑑𝑢]

(21)

and 𝑘 = 𝑘
2
/(𝛼+1). ApplyingHolder’s inequality and Lemma 1

we obtain

∫
𝑡

𝑡
1

(𝑡 − 𝑠)
𝛼−1

𝑠
𝛾−1

𝑚(𝑠) 𝑥 (𝑠) 𝑑𝑠

≤ (∫
𝑡

𝑡
1

(𝑡 − 𝑠)
𝑝(𝛼−1)

𝑠
𝑝(𝛾−1)

𝑑𝑠)

1/𝑝

⋅ (∫
𝑡

𝑡
1

𝑚
𝑞

(𝑠) 𝑥
𝑞

(𝑠) 𝑑𝑠)

1/𝑞

≤ (∫
𝑡

0

(𝑡 − 𝑠)
𝑝(𝛼−1)

𝑠
𝑝(𝛾−1)

𝑑𝑠)

1/𝑝

⋅ (∫
𝑡

𝑡
1

𝑚
𝑞

(𝑠) 𝑥
𝑞

(𝑠) 𝑑𝑠)

1/𝑞

≤ (𝐵𝑡
𝜃
)
1/𝑝

⋅ (∫
𝑡

𝑡
1

𝑚
𝑞

(𝑠) 𝑥
𝑞

(𝑠) 𝑑𝑠)

1/𝑞

,

(22)

where𝐵 = 𝐵[𝑝(𝛾−1)+1, 𝑝(𝛼−1)+1], and 𝜃 = 𝑝(𝛼+𝛾−2)+1 =

0 and so

∫
𝑡

𝑡
1

(𝑡 − 𝑠)
𝛼−1

𝑠
𝛾−1

𝑚(𝑠) 𝑥 (𝑠) 𝑑𝑠

≤ 𝐵
1/𝑝

(∫
𝑡

𝑡
1

𝑚
𝑞

(𝑠) 𝑥
𝑞

(𝑠) 𝑑𝑠)

1/𝑞

.

(23)

Thus, inequality (20) becomes

𝑧 (𝑡) fl
𝑥 (𝑡)

𝑡2
≤ 𝐶 + 𝑘𝐵

1/𝑝
(∫
𝑡

𝑡
1

𝑚
𝑞

(𝑠) 𝑥
𝑞

(𝑠) 𝑑𝑠)

1/𝑞

. (24)

Using (24) and the elementary inequality

(𝑥 + 𝑦)
𝑞

≤ 2
𝑞−1

(𝑥
𝑞
+ 𝑦
𝑞
) , 𝑥, 𝑦 ≥ 0, 𝑞 > 1, (25)

we obtain from (24)

𝑧
𝑞

(𝑡)

≤ 2
𝑞−1

((1 + 𝐶)
𝑞
+ 𝑘
𝑞
𝐵
𝑞/𝑝

∫
𝑡

𝑡
1

𝑠
2𝑞
𝑚
𝑞

(𝑠) 𝑧
𝑞

(𝑠) 𝑑𝑠) .
(26)

If we denote 𝑢(𝑡) = 𝑧𝑞(𝑡), that is, 𝑧(𝑡) = 𝑢1/𝑞(𝑡), 𝑃 = 2𝑞−1(1 +

𝐶)
𝑞, and 𝑄 = 2

𝑞−1
𝑘
𝑞
𝐵
𝑞/𝑝, then

𝑢 (𝑡) ≤ 𝑃 + 𝑄∫
𝑡

𝑡
1

𝑠
2𝑞
𝑚
𝑞

(𝑠) 𝑢 (𝑠) 𝑑𝑠, 𝑡 ≥ 𝑡
1
≥ 𝑐. (27)

The conclusion follows from Gronwall’s inequality and we
conclude that

lim sup
𝑡→∞

𝑥 (𝑡)

𝑡2
< ∞. (28)

If 𝑥 is eventually negative, we can set 𝑦 = −𝑥 to see that 𝑦
satisfies (1) with 𝑒(𝑡) being replaced by −𝑒(𝑡) and 𝑓(𝑡, 𝑥) by
−𝑓(𝑡, −𝑦). It follows in a similar manner that

lim sup
𝑡→∞

−𝑥 (𝑡)

𝑡2
< ∞. (29)

From (28) and (29) we get (10).This completes the proof.

Next, by employing Theorem 3 we present the following
oscillation result for (1).

Theorem 4. Let 0 < 𝜆 < 1 and conditions (i)–(iii), (6)–(9)
hold and suppose that 𝑝 > 1, 𝑞 = 𝑝/(𝑝 − 1), 𝛼 > 0, 𝛾 =

2 − 𝛼− 1/𝑝, 𝑝(𝛼 − 1) + 1 > 0, and 𝑝(𝛾 − 1) + 1 > 0. If for every
𝑀, 0 < 𝑀 < 1,

lim sup
𝑡→∞

[𝑀𝑡
2
+ ∫
𝑡

𝑡
1

1

𝑎 (𝑢)
∫
𝑢

𝑡
1

𝑔
−
(𝑠) 𝑑𝑠 𝑑𝑢] = ∞,

lim inf
𝑡→∞

[𝑀𝑡
2
+ ∫
𝑡

𝑡
1

1

𝑎 (𝑢)
∫
𝑢

𝑡
1

𝑔
+
(𝑠) 𝑑𝑠 𝑑𝑢] = −∞

(30)

for all 𝑡
1
≥ 𝑐, then (1) is oscillatory.
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Proof. Let 𝑥 be a nonoscillatory solution of (1), say 𝑥(𝑡) > 0,
for 𝑡 ≥ 𝑡

1
for some 𝑡

1
≥ 0. The proof when 𝑥 is eventually

negative is similar. Proceeding as in the proof of Theorem 3
we arrive at (19). Therefore,

𝑥 (𝑡) ≤ 𝑥 (𝑡
1
) + 𝑎 (𝑡

1
) 𝑥
󸀠
(𝑡
1
) ∫
∞

𝑡
1

1

𝑎 (𝑠)
𝑑𝑠

+ ∫
∞

𝑡
1

𝐶
1
(𝑠 − 𝑡
1
)

𝑎 (𝑠)
𝑑𝑠

+ ∫
𝑡

𝑡
1

1

𝑎 (𝑢)
∫
𝑢

𝑡
1

𝑔
+
(𝑠) 𝑑𝑠 𝑑𝑢

+ 𝑘𝑡
2
(∫
∞

𝑡
1

𝑠
2𝑞
𝑚
𝑞

(𝑠) (
𝑥 (𝑠)

𝑠2
)
𝑞

𝑑𝑠)

1/𝑞

.

(31)

Clearly, the conclusion ofTheorem3holds.This togetherwith
(7) and (8) implies that the first, second, and fourth integrals
on the above inequality are bounded and hence one can easily
see that

𝑥 (𝑡) ≤ 𝑀
1
+𝑀𝑡
2
+ ∫
𝑡

𝑡
1

1

𝑎 (𝑢)
∫
𝑢

𝑡
1

𝑔
+
(𝑠) 𝑑𝑢, (32)

where 𝑀
1
and 𝑀 are positive constants. Note that we make

𝑀 < 1 possible by increasing the size of 𝑡
1
. Finally, taking

lim inf in (32) as 𝑡 → ∞ as well as using (30) result is a
contradiction with the fact that 𝑥 is eventually positive.

The following corollary is immediate.

Corollary 5. Let 0 < 𝜆 < 1 and conditions (i)–(iii), (6)–(9)
hold for some 𝑡

1
≥ 𝑐. In addition, assume that

lim sup
𝑡→∞

1

𝑡2
∫
𝑡

𝑡
1

1

𝑎 (𝑢)
∫
𝑢

𝑡
1

𝑒 (𝑠) 𝑑𝑠 𝑑𝑢 > ∞,

lim inf
𝑡→∞

1

𝑡2
∫
𝑡

𝑡
1

1

𝑎 (𝑢)
∫
𝑢

𝑡
1

𝑒 (𝑠) 𝑑𝑠 𝑑𝑢 > −∞,

lim
𝑡→∞

1

𝑡2
∫
𝑡

𝑡
1

1

𝑎 (𝑢)
∫
𝑢

𝑡
1

(𝑡 − 𝑠)
𝛼−1

𝑠
𝛾−1

𝑚
𝜆/(𝜆−1)

(𝑠)

⋅ ℎ
1/(1−𝜆)

(𝑠) 𝑑𝑠 𝑑𝑢 < ∞.

(33)

If for every𝑀, 0 < 𝑀 < 1,

lim sup
𝑡→∞

[𝑀𝑡
2
+ ∫
𝑡

𝑡
1

1

𝑎 (𝑢)
∫
𝑢

𝑡
1

𝑒 (𝑠) 𝑑𝑠 𝑑𝑢] = ∞,

lim inf
𝑡→∞

[𝑀𝑡
2
+ ∫
𝑡

𝑡
1

1

𝑎 (𝑢)
∫
𝑢

𝑡
1

𝑒 (𝑠) 𝑑𝑠 𝑑𝑢] = −∞,

(34)

for all 𝑡
1
> 𝑐, then (1) is oscillatory.

The following example is illustrative.

Example 6. Let 𝑝 > 1, 0 < 𝛼 = 1 − 1/2𝑝 < 1, 𝛼 = 𝛾, and
𝑞 = 𝑝/(𝑝 − 1). Clearly,

𝑝 (𝛼 − 1) + 1 = 𝑝 (𝛾 − 1) + 1 = 𝑝(1 −
1

2𝑝
− 1) + 1

=
1

2
> 0,

𝜃 = 𝑝 (𝛼 + 𝛾 − 2) + 1 = 0.

(35)

Let the functions 𝑎(𝑡) and 𝑏(𝑡) be as in (i) and (ii) with 𝑏(𝑡)

being a bounded function and let 𝑎(𝑡) = 𝑒𝑡, 𝑒(𝑡) = 𝑡𝑒𝑡sin𝑡, and
𝑓(𝑡, 𝑥) = 𝑡𝛾−1ℎ(𝑡)𝑥𝜆, where 0 < 𝜆 < 1, ℎ ∈ 𝐶(R+,R+) with
ℎ(𝑡) = 𝑚(𝑡), ∫∞ 𝑠2𝑞ℎ𝑞(𝑠)𝑑𝑠 < ∞, and

lim sup
𝑡→∞

1

𝑡2
∫
𝑡

𝑡
1

𝑒
−𝑢

∫
𝑢

𝑡
1

(𝑢 − 𝑠)
𝛼−1

𝑠
𝛾−1

ℎ (𝑠) 𝑑𝑠 𝑑𝑢 < ∞. (36)

Condition (34) is also fulfilled. Thus, all conditions of Theo-
rem 3 are satisfied and hence every nonoscillatory solution 𝑥

of (1) satisfies lim sup
𝑡→∞

(|𝑥(𝑡)|/𝑡2) < ∞.

Now if 𝑒(𝑡) = 𝑡𝛿𝑒𝑡 sin 𝑡, 𝛿 ≥ 2, we see that all the
hypotheses of Corollary 5 are satisfied and hence (1) is
oscillatory.

Similar reasoning to that in the sublinear case guarantees
the following theorems for the integrodifferential equation (1)
when 𝜆 = 1.

Theorem 7. Let 𝜆 = 1 and the hypotheses of Theorems 3 and
4 hold with 𝑚(𝑡) = ℎ(𝑡) and 𝑔

±
= 𝑒(𝑡). Then the conclusion of

Theorems 3 and 4 holds, respectively.

From the obtained results, we apply the employed tech-
nique to some related integrodifferential equations.

Now, we consider the integrodifferential equation

𝑥
󸀠

(𝑡) = 𝑒 (𝑡) + ∫
𝑡

𝑐

(𝑡 − 𝑠)
𝛼−1

𝑘 (𝑡, 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠,

𝑐 > 1, 𝛼 ∈ (0, 1) .

(37)

We will give sufficient conditions under which any nonoscil-
latory solution 𝑥 of (37) satisfies |𝑥(𝑡)| = 𝑂(𝑡) as 𝑡 → ∞.

Theorem 8. Let 0 < 𝜆 < 1 and let condition (ii) hold and
suppose that 𝑝 > 1, 𝑞 = 𝑝/(𝑝 − 1), 0 < 𝛼 < 1, and 𝛾 =

2 − 𝛼 − 1/𝑝, 𝑝(𝛼 − 1) + 1 > 0, and 𝑝(𝛾 − 1) + 1 > 0,

∫
∞

𝑡
1

𝑠
𝑞
𝑚
𝑞

(𝑠) 𝑑𝑠 < ∞, (38)

lim sup
𝑡→∞

1

𝑡
∫
𝑡

𝑐

𝑔
−
(𝑠) 𝑑𝑠 < ∞,

lim inf
𝑡→∞

1

𝑡
∫
𝑡

𝑐

𝑔
+
(𝑠) 𝑑𝑠 > −∞

(39)

for any 𝑡
1
≥ 𝑐. If 𝑥 is a nonoscillatory solution of (37), then

lim sup
𝑡→∞

|𝑥 (𝑡)|

𝑡
< ∞. (40)
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Proof. Let 𝑥 be a nonoscillatory solution of (37). We may
assume that 𝑥(𝑡) > 0 for 𝑡 ≥ 𝑡

1
for some 𝑡

1
≥ 𝑐. We let

𝐹(𝑡) = 𝑓(𝑡, 𝑥(𝑡)). In view of (ii) we may then write

𝑥
󸀠

(𝑡)

≤ 𝑒 (𝑡) + ∫
𝑡
1

𝑐

(𝑡 − 𝑠)
𝛼−1

|𝐹 (𝑠)| 𝑑𝑠

+ ∫
𝑡

𝑡
1

(𝑡 − 𝑠)
𝛼−1

𝑠
𝛾−1

[ℎ (𝑠) 𝑥
𝜆

(𝑠) − 𝑚 (𝑠) 𝑥 (𝑠)] 𝑑𝑠

+ ∫
𝑡

𝑡
1

(𝑡 − 𝑠)
𝛼−1

𝑠
𝛾−1

𝑚(𝑠) 𝑥 (𝑠) 𝑑𝑠.

(41)

Proceeding as in the proof of Theorem 3, we obtain

𝑥
󸀠

(𝑡) ≤ ∫
𝑡
1

𝑐

(𝑡 − 𝑠)
𝛼−1

|𝐹 (𝑠)| 𝑑𝑠 + 𝑒 (𝑡) + (1 − 𝜆)

⋅ 𝜆
𝜆/(1−𝜆)

∫
𝑡

𝑡
1

(𝑡 − 𝑠)
𝛼−1

𝑠
𝛾−1

𝑚
𝜆/(𝜆−1)

(𝑠)

⋅ ℎ
1/(1−𝜆)

(𝑠) 𝑑𝑠 + ∫
𝑡

𝑡
1

(𝑡 − 𝑠)
𝛼−1

𝑠
𝛾−1

𝑚(𝑠) 𝑥 (𝑠) 𝑑𝑠.

(42)

Integrating inequality (42) from 𝑡
1
to 𝑡 and interchanging the

order of integration one can easily obtain

𝑥 (𝑡) ≤ 𝑥 (𝑡
1
) + ∫
𝑡

𝑡
1

𝑔
+
(𝑠) 𝑑𝑠

+ ∫
𝑡

𝑡
1

∫
𝑢

𝑡
1

(𝑢 − 𝑠)
𝛼−1

𝑠
𝛾−1

𝑚(𝑠) 𝑥 (𝑠) 𝑑𝑠 𝑑𝑢

+ ∫
𝑡

𝑡
1

∫
𝑡
1

𝑐

(𝑡
1
− 𝑠)
𝛼−1

|𝐹 (𝑠)| 𝑑𝑠 𝑑𝑢.

(43)

Interchanging the order of integration in second integral we
have

𝑥 (𝑡) ≤ 𝑥 (𝑡
1
) + ∫
𝑡

𝑡
1

𝑔
+
(𝑠) 𝑑𝑠

+
𝑡

𝛼
∫
𝑡

𝑡
1

(𝑡 − 𝑠)
𝛼−1

𝑠
𝛾−1

𝑚(𝑠) 𝑥 (𝑠) 𝑑𝑠

+ ∫
𝑡

𝑡
1

∫
𝑡
1

𝑐

(𝑡
1
− 𝑠)
𝛼−1

|𝐹 (𝑠)| 𝑑𝑠 𝑑𝑢.

(44)

The rest of the proof is similar to that of Theorem 3 and
hence is omitted.

Example 9. Let 𝑝 > 1, 0 < 𝛼 = 1 − 1/2𝑝 < 1, 𝛼 = 𝛾, and
𝑞 = 𝑝/(𝑝 − 1). Clearly,

𝑝 (𝛼 − 1) + 1 = 𝑝 (𝛾 − 1) + 1 = 𝑝(1 −
1

2𝑝
− 1) + 1

=
1

2
> 0,

𝜃 = 𝑝 (𝛼 + 𝛾 − 2) + 1 = 0.

(45)

Let the functions 𝑒(𝑡) = 𝑡 sin 𝑡 and𝑓(𝑡, 𝑥) = 𝑡
𝛾−1ℎ(𝑡)𝑥𝜆, where

0 < 𝜆 < 1, ℎ ∈ 𝐶(R+,R+) with ℎ(𝑡) = 𝑚(𝑡), ∫∞ 𝑠𝑞ℎ𝑞(𝑠)𝑑𝑠 <

∞, and

lim sup
𝑡→∞

1

𝑡
∫
𝑡

𝑡
1

(𝑡 − 𝑠)
𝛼−1

𝑠
𝛾−1

ℎ (𝑠) 𝑑𝑠 < ∞. (46)

Condition (39) is also fulfilled. Thus, all conditions of Theo-
rem 8 are satisfied and hence every nonoscillatory solution 𝑥

of (37) satisfies lim sup
𝑡→∞

(|𝑥(𝑡)|/𝑡) < ∞.

Finally, we consider the integral equation

𝑥 (𝑡) = 𝑒 (𝑡) + ∫
𝑡

𝑐

(𝑡 − 𝑠)
𝛼−1

𝑘 (𝑡, 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠,

𝑐 > 1, 𝛼 ∈ (0, 1) .

(47)

Nowwe give sufficient conditions for the boundedness of any
nonoscillatory solution of (47).

Theorem 10. Let 0 < 𝜆 < 1 and let condition (ii) hold and
suppose that 𝑝 > 1, 𝑞 = 𝑝/(𝑝 − 1), 0 < 𝛼 < 1, and 𝛾 =

2 − 𝛼 − 1/𝑝, 𝑝(𝛼 − 1) + 1 > 0, and 𝑝(𝛾 − 1) + 1 > 0,

∫
∞

𝑡
1

𝑚
𝑞

(𝑠) 𝑑𝑠 < ∞, (48)

lim sup
𝑡→∞

𝑔
−
(𝑡) < ∞,

lim inf
𝑡→∞

𝑔
+
(𝑡) > −∞,

(49)

where 𝑔(𝑡) is defined as in (5) for any 𝑡
1

≥ 𝑐. If 𝑥 is a
nonoscillatory solution of (47), then 𝑥 is bounded.

Proof. Let 𝑥 be an eventually positive solution of (47). We
may assume that 𝑥(𝑡) > 0 for 𝑡 ≥ 𝑡

1
for some 𝑡

1
≥ 𝑐. We

let 𝐹(𝑡) = 𝑓(𝑡, 𝑥(𝑡)). In view of (ii) we may then write

𝑥 (𝑡)

≤ ∫
𝑡
1

𝑐

(𝑡 − 𝑠)
𝛼−1

|𝐹 (𝑠)| 𝑑𝑠 + 𝑒 (𝑡)

+ ∫
𝑡

𝑡
1

(𝑡 − 𝑠)
𝛼−1

𝑠
𝛾−1

[ℎ (𝑠) 𝑥
𝜆

(𝑠) − 𝑚 (𝑠) 𝑥 (𝑠)] 𝑑𝑠

+ ∫
𝑡

𝑡
1

(𝑡 − 𝑠)
𝛼−1

𝑠
𝛾−1

𝑚(𝑠) 𝑥 (𝑠) 𝑑𝑠

(50)

or

𝑥 (𝑡) ≤ ∫
𝑡

𝑐

(𝑡 − 𝑠)
𝛼−1

|𝐹 (𝑠)| 𝑑𝑠 + 𝑔
+
(𝑡)

+ ∫
𝑡

𝑡
1

(𝑡 − 𝑠)
𝛼−1

𝑠
𝛾−1

𝑚(𝑠) 𝑥 (𝑠) 𝑑𝑠.

(51)

The rest of the proof is similar to that ofTheorem 3 and hence
is omitted.
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Example 11. Let 𝑝 > 1, 0 < 𝛼 = 1 − 1/2𝑝 < 1, 𝛼 = 𝛾, and
𝑞 = 𝑝/(𝑝 − 1). Clearly,

𝑝 (𝛼 − 1) + 1 = 𝑝 (𝛾 − 1) + 1 = 𝑝(1 −
1

2𝑝
− 1) + 1

=
1

2
> 0,

𝜃 = 𝑝 (𝛼 + 𝛾 − 2) + 1 = 0.

(52)

Let the functions 𝑒(𝑡) = sin 𝑡 and 𝑓(𝑡, 𝑥) = 𝑡𝛾−1ℎ(𝑡)𝑥𝜆, where
0 < 𝜆 < 1, ℎ ∈ 𝐶(R+,R+) with ℎ(𝑡) = 𝑚(𝑡), ∫∞ ℎ𝑞(𝑠)𝑑𝑠 < ∞,
and

lim sup
𝑡→∞

∫
𝑡

𝑡
1

(𝑡 − 𝑠)
𝛼−1

𝑠
𝛾−1

ℎ (𝑠) 𝑑𝑠 < ∞. (53)

Condition (49) is also fulfilled. Thus, all conditions of Theo-
rem 10 are satisfied and hence every nonoscillatory solution
𝑥 of (37) is bounded.

Similar reasoning to that in the sublinear case guarantees
the following theorems for the integrodifferential equations
(37) and (47) when 𝜆 = 1.

Theorem 12. Let 𝜆 = 1 and the hypotheses of Theorems 8 and
10 hold with 𝑚(𝑡) = ℎ(𝑡). Then the conclusion of Theorems 8
and 10 holds.

We may note that results similar to Theorem 4 can be
obtained for (37) and (47). The details are left to the reader.

3. General Remarks

(i) The results of this paper are presented in a formwhich
is essentially new and it can also be employed to
investigate the asymptotic and oscillatory behavior of
certain integrodifferential equations of higher order
𝛼 ∈ (𝑛 − 1, 𝑛), 𝑛 ≥ 1. The details are left to the reader.

(ii) It would be of interest to study (1) when 𝑓 satisfies
condition (iii) with 𝜆 > 1.
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A split-step theta (SST) method is introduced and used to solve the nonlinear neutral stochastic delay differential equations
(NSDDEs). The mean square asymptotic stability of the split-step theta (SST) method for nonlinear neutral stochastic delay
differential equations is studied. It is proved that under the one-sided Lipschitz condition and the linear growth condition, the
split-step theta method with 𝜃 ∈ (1/2, 1] is asymptotically mean square stable for all positive step sizes, and the split-step theta
method with 𝜃 ∈ [0, 1/2] is asymptotically mean square stable for some step sizes. It is also proved in this paper that the split-step
theta (SST) method possesses a bounded absorbing set which is independent of initial data, and the mean square dissipativity of
this method is also proved.

1. Introduction

Stochastic functional differential equations (SFDEs) play
important roles in science and engineering applications,
especially for systemswhose evolutions in time are influenced
by random forces as well as their history information. When
the time delays in SFDEs are constants, they turn into
stochastic delay differential equations (SDDEs). Both the
theory and numerical methods for SDDEs have been well
developed in the recent decades; see [1–8]. Recently, many
dynamical systems not only depend on the present and the
past states but also involve derivatives with delays; they are
described as the neutral stochastic delay differential equa-
tions (NSDDEs). Compared to the stochastic differential
equations and the stochastic delay differential equations, the
study of the neutral stochastic delay differential equations
has just started. In 1981, Kolmanovskii and Myshkis [9] took
the environmental disturbances into account, introduced the
neutral stochastic delay differential equations (NSDDEs),
and gave their applications in chemical engineering and
aeroelasticity. The analytical solutions of NSDDEs are hard

to obtain; many authors have to study the numerical methods
forNSDDEs.Wu andMao [10] studied the convergence of the
Euler-Maruyama method for neutral stochastic functional
differential equations under the one-side Lipschitz conditions
and the linear growth conditions. In 2009, Zhou and Wu
[11] studied the convergence of the Euler-Maruyama method
for NSDDEs with Markov switching under the one-side
Lipschitz conditions and the linear growth conditions. The
convergence of 𝜃-method and the mean square asymptotic
stability of the semi-implicit Euler method for NSDDEs were
studied byGan et al. [12], Zhou and Fang [13], andYin andMa
[14], respectively. Later, the almost sure exponential stability
of Euler-Maruyama method for NSDDEs was studied in [15]
with the discrete semimartingale convergence theorem.

To the best of our knowledge, most of these studies have
focused on the convergence of numerical solutions for NSD-
DEs; the stability and dissipativity of numerical solutions for
them are rarely concerned.

The aim of this paper is to study the mean square stability
and dissipativity of the split-step theta method with some
conditions and the step constrained for NSDDEs.
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The paper is organized as follows. In Section 2, some
stability definitions about the analytic solutions for NSDDEs
are introduced; some notations and preliminaries are also
presented in this section. In Section 3, the split-step theta
method is introduced and used to solve the NSDDEs; the
asymptotic stability of the split-step theta method is proved.
In Section 4, the long time behavior of numerical solution
is studied and the mean square dissipativity result of the
method is illustrated. In Section 5, some numerical experi-
ments are given to confirm the theoretical results.

2. Exponential Mean Square Stability of
Analytic Solution

Let | ⋅ | denote both the Euclidean norm in 𝑅
𝑑 and the

trace (or Frobenius) norm in 𝑅
𝑑×𝑙 (denoted by |𝐴| =

√trace(𝐴Τ𝐴)); if 𝐴 is a vector or matrix, its transpose
is denoted by 𝐴

Τ. Let {Ω, 𝐹, {𝐹𝑡}𝑡≥0,P} define a complete
probability space with a filtration {𝐹𝑡}𝑡≥0 which is increas-
ing and right continuous, and 𝐹0 contain all P-null sets.
Let 𝑤(𝑡) = (𝑤1(𝑡), 𝑤2(𝑡), . . . , 𝑤𝑙(𝑡))

Τ denote standard 𝑙-
dimensional Brownian motion on the probability space. In
this paper we talk about the 𝑑-dimensional NSDDEs with the
following form:

𝑑 (𝑦 (𝑡) − 𝑁 (𝑦 (𝑡 − 𝜏)))

= 𝑓 (𝑡, 𝑦 (𝑡) , 𝑦 (𝑡 − 𝜏)) 𝑑𝑡

+ 𝑔 (𝑡, 𝑦 (𝑡) , 𝑦 (𝑡 − 𝜏)) 𝑑𝑤 (𝑡) , 𝑡 ≥ 0,

𝑦 (𝑡) = 𝜑 (𝑡) , 𝑡 ∈ [−𝜏, 0] ,

(1)

where 𝑁 : 𝑅
𝑑

󳨃→ 𝑅
𝑑, 𝑓 : 𝑅+ × 𝑅

𝑑
× 𝑅
𝑑

󳨃→ 𝑅
𝑑, and

𝑔 : 𝑅+ × 𝑅
𝑑

× 𝑅
𝑑

󳨃→ 𝑅
𝑑×𝑙 are the Borel measurable functions.

𝜏 is a positive constant delay, and 𝜑(𝑡) is 𝐹0-measurable,
𝐶([−𝜏, 0]; 𝑅

𝑑
)-valued random variable which satisfies

sup
−𝜏≤𝑡≤0

Ε [𝜑
Τ

(𝑡) 𝜑 (𝑡)] < +∞ (2)

with the notation E denoting the mathematical expectation
with respect to P.

The following conditions (a1) and (a2) are standard for the
existence and uniqueness of the solution for (1).

(a1)The Local Lipschitz Condition.There exist constants 𝐾𝐿 >

0 and 𝐿 > 0 such that

󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑥1, 𝑦1) − 𝑓 (𝑡, 𝑥2, 𝑦2)
󵄨󵄨󵄨󵄨
2

∨
󵄨󵄨󵄨󵄨𝑔 (𝑡, 𝑥1, 𝑦1) − 𝑔 (𝑡, 𝑥2, 𝑦2)

󵄨󵄨󵄨󵄨
2

≤ 𝐾𝐿 (
󵄨󵄨󵄨󵄨𝑥1 − 𝑥2

󵄨󵄨󵄨󵄨
2

+
󵄨󵄨󵄨󵄨𝑦1 − 𝑦2

󵄨󵄨󵄨󵄨
2
) ,

(3)

for all |𝑥1| ∨ |𝑥2| ∨ |𝑦1| ∨ |𝑦2| ≤ 𝐿 and 𝑡 ∈ 𝑅+, where 𝑎 ∨ 𝑏

represents max{𝑎, 𝑏} and 𝑎 ∧ 𝑏 represents min{𝑎, 𝑏}.

(a2) The Linear Growth Condition. There exists a constant
𝐾𝐺 > 0, such that

󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑥, 𝑦)
󵄨󵄨󵄨󵄨
2

∨
󵄨󵄨󵄨󵄨𝑔 (𝑡, 𝑥, 𝑦)

󵄨󵄨󵄨󵄨
2

∨ |𝑁 (𝑥)|
2

≤ 𝐾𝐺 (1 + |𝑥|
2

+
󵄨󵄨󵄨󵄨𝑦

󵄨󵄨󵄨󵄨
2
) ,

(4)

for all (𝑡, 𝑥, 𝑦) ∈ 𝑅+ × 𝑅 × 𝑅.

As an especial case of Theorem 3.1 in Mao’s monograph
(see [6]), we can easily know that under hypothesis (a1) and
(a2), system (1) has a global unique continuous solution on
𝑡 ≥ −𝜏, which is denoted by 𝑦(𝑡).

Now we recall some stability concepts for the solution of
(1).

Definition 1 (see [6]). The trivial solution of (1) is said to
be exponentially mean square stable, if there exists a pair
of constants 𝑟 > 0 and 𝐶 > 0, such that, whenever
sup
−𝜏≤𝑡≤0

Ε[𝜑
Τ
(𝑡)𝜑(𝑡)] < +∞,

Ε [𝑦
Τ

(𝑡) 𝑦 (𝑡)] ≤ 𝐶 sup
−𝜏≤𝑡≤0

Ε [𝜑
Τ

(𝑡) 𝜑 (𝑡)] 𝑒
−𝑟𝑡

, 𝑡 ≥ 0. (5)

Lemma 2. Assume that there exist a symmetric, positive
definite 𝑑 × 𝑑 matrix 𝑄 and positive constants 𝜇1, 𝜇2, and
𝜆 ∈ (0, 1) such that for all (𝑡, 𝑥, 𝑦) ∈ 𝑅+ × 𝑅

𝑑
× 𝑅
𝑑

|𝑁 (𝑥)| ≤ 𝜆 |𝑥| , (6)

(𝑥 − 𝑁 (𝑦))
Τ

𝑄𝑓 (𝑡, 𝑥, 𝑦)

+
1

2
trace [𝑔

Τ
(𝑡, 𝑥, 𝑦) 𝑄𝑔 (𝑡, 𝑥, 𝑦)] ≤ −𝜇1𝑥

Τ
𝑄𝑥

+ 𝜇2𝑦
Τ
𝑄𝑦.

(7)

If conditions

0 < 𝜆 <
1

2
,

𝜇1 >
𝜇2

(1 − 2𝜆)
2

(8)

hold, then the trivial solution of (1) is exponentially mean
square stable.

Remark 3. In general, we require 𝜆 ̸= 0. When 𝜆 = 0,
(1) becomes a stochastic delay differential equation. Many
stability and dissipativity results have been studied in the
literature (see [5, 16]).

By Lemma 2, the following result can easily be obtained.

Theorem 4. Suppose (6) holds. Assume that there are positive
constants 𝜆1, 𝜆2, and 𝐾, such that, for all 𝑥, 𝑦 ∈ 𝑅

𝑑,

(𝑥 − 𝑁 (𝑦))
Τ

𝑄𝑓 (𝑡, 𝑥, 𝑦) ≤ −𝜆1𝑥
Τ
𝑄𝑥 + 𝜆2𝑦

Τ
𝑄𝑦,

󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑥, 𝑦)
󵄨󵄨󵄨󵄨
2

∨
󵄨󵄨󵄨󵄨𝑔 (𝑡, 𝑥, 𝑦)

󵄨󵄨󵄨󵄨
2

≤ 𝐾 (|𝑥|
2

+
󵄨󵄨󵄨󵄨𝑦

󵄨󵄨󵄨󵄨
2
) .

(9)
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If conditions

0 < 𝜆 <
1

2
,

𝜆1 >
1

2
𝐾 +

2𝜆2 + 𝐾

2 (1 − 2𝜆)
2

(10)

hold, then the trivial solution of (1) is exponentially mean
square stable.

Proof. Consider (9) and the inequality; we get the following
inequality:

(𝑥 − 𝑁 (𝑦))
Τ

𝑄𝑓 (𝑡, 𝑥, 𝑦)

+
1

2
trace [𝑔

Τ
(𝑡, 𝑥, 𝑦) 𝑄𝑔 (𝑡, 𝑥, 𝑦)]

≤ −𝜆1𝑥
Τ
𝑄𝑥 + 𝜆2𝑦

Τ
𝑄𝑦 +

1

2
𝐾 (𝑥
Τ
𝑄𝑥 + 𝑦

Τ
𝑄𝑦)

≤ − (𝜆1 −
1

2
𝐾) 𝑥
Τ
𝑄𝑥 + (𝜆2 +

1

2
𝐾) 𝜇2𝑦

Τ
𝑄𝑦.

(11)

Let 𝜇1 = (𝜆1 − (1/2)𝐾), 𝜇2 = (𝜆2 + (1/2)𝐾); when conditions
(10) hold, we get that

𝜇1 >
𝜇2

(1 − 2𝜆)
2
. (12)

Using Lemma 2, we can easily prove that the trivial solution
of (1) is exponentially mean square stable.

3. The Stability of the Split-Step Theta Method

The split-step theta method is proved to be able to keep the
mean square asymptotic stability of the exact solution under
the sufficient conditions of the asymptotic stability of the
exact solution, so in this paper we use the split-step theta
method to solve the NSDDE.

Appling the split-step theta (SST) method into problem
(1) gives the following form:

𝑌𝑛 − 𝑁𝑌𝑛−𝑚 = 𝑦𝑛 − 𝑁𝑦𝑛−𝑚

+ 𝜃Δ𝑡𝑓 (𝑡𝑛 + 𝜃Δ𝑡, 𝑌𝑛, 𝑌𝑛) ,

(13)

𝑌𝑛 = 𝑌𝑛−𝑚, (14)

𝑦𝑛+1 − 𝑁𝑦𝑛+1−𝑚 = 𝑦𝑛 − 𝑁𝑦𝑛−𝑚

+ Δ𝑡𝑓 (𝑡𝑛 + 𝜃Δ𝑡, 𝑌𝑛, 𝑌𝑛)

+ 𝑔 (𝑡𝑛 + 𝜃Δ𝑡, 𝑌𝑛, 𝑌𝑛) Δ𝑤𝑛,

(15)

where the step size Δ𝑡 = 𝜏/𝑚, 𝑚 is an integer, 𝑦𝑖 is an
approximation to 𝑦(𝑡𝑖), 𝑡𝑖 = 𝑖Δ𝑡, 𝑖 = 1, 2, . . ., and 𝑦𝑘 =

𝑌𝑘 = 𝜑(𝑘Δ𝑡) for 𝑘 = −𝑚, −𝑚 + 1, . . . , 0. 𝜃 ∈ [0, 1] is a fixed
parameter, andΔ𝑤𝑘 fl 𝑤((𝑘+1)Δ𝑡)−𝑤(𝑘Δ𝑡) is the Brownian
increment.

When 𝜃 = 0 the split-step theta method is simplified
into the split-step forward Euler method and when 𝜃 = 1

the split-step theta method is simplified into the split-step
backward Euler method. They were discussed for stochastic
differential equations in [17–20]. In order to consider the
stability property of scheme (13)–(15) we should give some
stability concepts for numerical methods firstly.

Definition 5 (see [16]). For a given step size Δ𝑡, a numerical
method is said to be exponentially mean square stable if there
is a pair of positive constants 𝛾 and 𝐶 such that for any initial
data 𝜑(𝑡) the numerical solution 𝑦𝑛 produced by the method
satisfies

Ε [𝑦
Τ

𝑛
𝑦𝑛] ≤ 𝐶𝑒

−𝛾𝑡
𝑛 sup
−𝜏≤𝑡≤0

Ε [𝜑
Τ

(𝑡) 𝜑 (𝑡)] , ∀𝑛 ≥ 0. (16)

Definition 6 (see [16]). For a given step size Δ𝑡, a numerical
method is said to be asymptotically mean square stable if for
any initial data 𝜑(𝑡) the numerical solution 𝑦𝑛 produced by
the method satisfies

lim
𝑛→∞

Ε [𝑦
Τ

𝑛
𝑦𝑛] = 0. (17)

Theorem 7. Assume that system (1) satisfies (7) with −𝜇1 +

𝜇2 < 0; then the SST method (13)–(15) with 𝜃 ∈ (1/2, 1] is
asymptotically mean square stable for all Δ𝑡 > 0. If we further
assume that there exist constants 𝐾1 and 𝐾2 such that

𝑓
Τ

(𝑡, 𝑥, 𝑦) 𝑄𝑓 (𝑡, 𝑥, 𝑦) ≤ 𝐾1𝑥
Τ
𝑄𝑥 + 𝐾2𝑦

Τ
𝑄𝑦,

(𝑡, 𝑥, 𝑦) ∈ 𝑅+ × 𝑅
𝑑

× 𝑅
𝑑
,

(18)

then, for any 𝜃 ∈ [0, 1/2), there exists a constantΔ𝑡0 depending
on 𝜃 such that the method is asymptotically mean square stable
for Δ𝑡 ∈ (0, Δ𝑡0).

Proof. From (15) it follows that

(𝑦𝑛+1 − 𝑁𝑦𝑛+1−𝑚)
Τ

𝑄 (𝑦𝑛+1 − 𝑁𝑦𝑛+1−𝑚)

= (𝑦𝑛 − 𝑁𝑦𝑛−𝑚)
Τ

𝑄 (𝑦𝑛 − 𝑁𝑦𝑛−𝑚)

+ Δ𝑡
2
𝑓
Τ

(𝑡𝑛 + 𝜃Δ𝑡, 𝑌𝑛, 𝑌𝑛) 𝑄𝑓 (𝑡𝑛 + 𝜃Δ𝑡, 𝑌𝑛, 𝑌𝑛)

+ Δ𝑤
Τ

𝑛
𝑔
Τ

(𝑡𝑛 + 𝜃Δ𝑡, 𝑌𝑛, 𝑌𝑛) 𝑄𝑔 (𝑡𝑛 + 𝜃Δ𝑡, 𝑌𝑛, 𝑌𝑛)

⋅ Δ𝑤𝑛 + 2 (𝑦𝑛 − 𝑁𝑦𝑛−𝑚)
Τ

Δ𝑡𝑄𝑓 (𝑡𝑛 + 𝜃Δ𝑡, 𝑌𝑛, 𝑌𝑛)

+ 2 (𝑦𝑛 − 𝑁𝑦𝑛−𝑚)
Τ

𝑄𝑔 (𝑡𝑛 + 𝜃Δ𝑡, 𝑌𝑛, 𝑌𝑛) Δ𝑤𝑛

+ 2Δ𝑡𝑓
Τ

(𝑡𝑛 + 𝜃Δ𝑡, 𝑌𝑛, 𝑌𝑛) 𝑄𝑔 (𝑡𝑛 + 𝜃Δ𝑡, 𝑌𝑛, 𝑌𝑛)

⋅ Δ𝑤𝑛.

(19)
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Since 𝑤(𝑡) = (𝑤1(𝑡), 𝑤2(𝑡), . . . , 𝑤𝑙(𝑡))
Τ is a standard 𝑙-dimen-

sional Brownian motion we have that

Ε (Δ𝑤𝑖) = 0,

Ε [(Δ𝑤𝑖)
2
] = Δ𝑡,

Ε [Δ𝑤
Τ

𝑛
𝑔
Τ

(𝑡𝑛 + 𝜃Δ𝑡, 𝑌𝑛, 𝑌𝑛) 𝑄𝑔 (𝑡𝑛 + 𝜃Δ𝑡, 𝑌𝑛, 𝑌𝑛)

⋅ Δ𝑤𝑛] = Δ𝑡Ε [trace𝑔Τ (𝑡𝑛 + 𝜃Δ𝑡, 𝑌𝑛, 𝑌𝑛)

⋅ 𝑄𝑔 (𝑡𝑛 + 𝜃Δ𝑡, 𝑌𝑛, 𝑌𝑛)] .

(20)

Let 𝑥𝑛 = 𝑦𝑛−𝑁𝑦𝑛−𝑚,𝑋𝑛 = 𝑌𝑛−𝑁𝑌𝑛−𝑚, 𝑛 = 0, 1, . . ., substitute
the designation into (19) and then, taking expectation on both
sides, one receives

Ε [𝑥
Τ

𝑛+1
𝑄𝑥𝑛+1] ≤ Ε [𝑥

Τ

𝑛
𝑄𝑥𝑛] + (1 − 2𝜃) Δ𝑡

2
𝑓
Τ

(𝑡𝑛

+ 𝜃Δ𝑡, 𝑌𝑛, 𝑌𝑛) 𝑄𝑓 (𝑡𝑛 + 𝜃Δ𝑡, 𝑌𝑛, 𝑌𝑛) + 2Δ𝑡Ε (𝑌𝑛

− 𝑁𝑌𝑛−𝑚)
Τ

Δ𝑡𝑄𝑓 (𝑡𝑛 + 𝜃Δ𝑡, 𝑌𝑛, 𝑌𝑛)

+ Δ𝑡Ε [trace𝑔Τ (𝑡𝑛 + 𝜃Δ𝑡, 𝑌𝑛, 𝑌𝑛)

⋅ 𝑄𝑔 (𝑡𝑛 + 𝜃Δ𝑡, 𝑌𝑛, 𝑌𝑛)] ,

(21)

which, combined with (7), gives

Ε [𝑥
Τ

𝑛+1
𝑄𝑥𝑛+1] ≤ Ε [𝑥

Τ

𝑛
𝑄𝑥𝑛]

+ 2Δ𝑡Ε (−𝜇1𝑌
Τ

𝑛
𝑄𝑌𝑛 + 𝜇2𝑌

Τ

𝑛
𝑄𝑌𝑛) + (1 − 2𝜃)

⋅ Δ𝑡
2
𝑓
Τ

(𝑡𝑛 + 𝜃Δ𝑡, 𝑌𝑛, 𝑌𝑛) 𝑄𝑓 (𝑡𝑛 + 𝜃Δ𝑡, 𝑌𝑛, 𝑌𝑛) .

(22)

In the case of 𝜃 > 1/2, using

Δ𝑡𝑓 (𝑡𝑛 + 𝜃Δ𝑡, 𝑌𝑛, 𝑌𝑛) =
1

𝜃
(𝑋𝑛 − 𝑥𝑛) ,

2𝑋
Τ

𝑛
𝑄𝑥𝑛

≤
2𝜃 − 1 − (−𝜇1 + 𝜇2) Δ𝑡𝜃

2

2𝜃 − 1
𝑋
Τ

𝑛
𝑄𝑋𝑛

+
2𝜃 − 1

2𝜃 − 1 − (−𝜇1 + 𝜇2) Δ𝑡𝜃2
𝑥
Τ

𝑛
𝑄𝑥𝑛,

(23)

then we have

Ε [𝑥
Τ

𝑛+1
𝑄𝑥𝑛+1]

≤ (1 +
(−𝜇1 + 𝜇2) Δ𝑡 (2𝜃 − 1)

2𝜃 − 1 − (−𝜇1 + 𝜇2) Δ𝑡𝜃2
) Ε [𝑥

Τ

𝑛
𝑄𝑥𝑛]

− 2Δ𝑡𝜇2Ε [𝑌
Τ

𝑛
𝑄𝑌𝑛]

+ 2Δ𝑡 ((1 − 𝜆
2
) 𝜇2 + 𝜆

2
𝜇1) Ε [𝑌

Τ

𝑛
𝑄𝑌𝑛] .

(24)

Let

𝑘 = max{1 +
(−𝜇1 + 𝜇2) Δ𝑡 (2𝜃 − 1)

2𝜃 − 1 − (−𝜇1 + 𝜇2) Δ𝑡𝜃2
,

(
𝜇2

((1 − 𝜆2) 𝜇2 + 𝜆2𝜇1)
)

1/𝑚

} ;

(25)

we can deduce that 0 < 𝑘 < 1.
By induction, the following results are obtained from (24):

Ε [𝑥
Τ

𝑛+1
𝑄𝑥𝑛+1]

≤ 𝑘
𝑛+1

Ε [𝑥
Τ

0
𝑄𝑥0] − 2Δ𝑡𝜇2

𝑛

∑

𝑗=0

𝑘
𝑛−𝑗

Ε [𝑌
Τ

𝑗
𝑄𝑌𝑗]

+ 2Δ𝑡 ((1 − 𝜆
2
) 𝜇2 + 𝜆

2
𝜇1)

𝑛

∑

𝑗=0

𝑘
𝑛−𝑗

Ε [𝑌
Τ

𝑗
𝑄𝑌𝑗] .

(26)

Using condition (14), we can get the following inequality:
𝑛

∑

𝑗=0

𝑘
𝑛−𝑗

Ε [𝑌
Τ

𝑗
𝑄𝑌𝑗] ≤ 𝑚𝑘

𝑛−𝑚+1 max
−𝑚≤𝑗≤−1

Ε [𝑌
Τ

𝑗
𝑄𝑌𝑗]

+ 𝑘
−𝑚

𝑛−𝑚+1

∑

𝑗=0

𝑘
𝑛−𝑗

Ε [𝑌
Τ

𝑗
𝑄𝑌𝑗] .

(27)

Therefore,

Ε [𝑥
Τ

𝑛+1
𝑄𝑥𝑛+1] ≤ 𝑘

𝑛+1
(Ε [𝑥

Τ

0
𝑄𝑥0]

+ 2𝜏 ((1 − 𝜆
2
) 𝜇2 + 𝜆

2
𝜇1) 𝑘
−𝑚 max
−𝑚≤𝑗≤−1

Ε [𝑌
Τ

𝑗
𝑄𝑌𝑗])

− 2Δ𝑡 (𝜇2 − ((1 − 𝜆
2
) 𝜇2 + 𝜆

2
𝜇1) 𝑘
−𝑚

)

⋅

𝑛−𝑚+1

∑

𝑗=0

𝑘
𝑛−𝑗

Ε [𝑌
Τ

𝑗
𝑄𝑌𝑗] .

(28)

It can be deduced from (28) and (25) that −(𝜇2 − ((1 − 𝜆
2
)𝜇2 +

𝜆
2
𝜇1)𝑘
−𝑚

) ≤ 0, so, we can have the following inequality:

Ε [𝑥
Τ

𝑛+1
𝑄𝑥𝑛+1] ≤ 𝑘

𝑛+1
(Ε [𝑥

Τ

0
𝑄𝑥0]

+ 2𝜏 ((1 − 𝜆
2
) 𝜇2 + 𝜆

2
𝜇1) 𝑘
−𝑚 max
−𝑚≤𝑗≤−1

Ε [𝑌
Τ

𝑗
𝑄𝑌𝑗]) .

(29)

On the other hand, we know that
󵄩󵄩󵄩󵄩𝑦𝑛+1

󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝑁𝑦𝑛+1−𝑚 + 𝑁𝑦𝑛+1−𝑚

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛+1

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑁𝑦𝑛+1−𝑚

󵄩󵄩󵄩󵄩 ,

(30)

then we get

Ε [𝑦
Τ

𝑛+1
𝑄𝑦𝑛+1] ≤ 2Ε [𝑥

Τ

𝑛+1
𝑄𝑥𝑛+1]

+ 2𝜆
2
Ε [𝑦
Τ

𝑛+1−𝑚
𝑄𝑦𝑛+1−𝑚] ;

(31)



Discrete Dynamics in Nature and Society 5

define

𝜀0 = 𝑘
𝑛+1

(Ε [𝑥
Τ

0
𝑄𝑥0] + 2𝜏 ((1 − 𝜆

2
) 𝜇2 + 𝜆

2
𝜇1) 𝑘
−𝑚

⋅ max
−𝑚≤𝑗≤−1

Ε [𝑌
Τ

𝑗
𝑄𝑌𝑗]) ;

(32)

the following inequality could be deduced from (31):

Ε [𝑦
Τ

𝑛+1
𝑄𝑦𝑛+1] ≤

2

1 − 2𝜆2
𝜀0

+ (2𝜆
2
)
⌊𝑛/𝑚⌋+1

max
−𝑚≤𝑗≤−1

Ε [𝑦
Τ

𝑗
𝑄𝑦𝑗] ,

(33)

which implies that the method is asymptotically mean square
stable.

For the case that 𝜃 ∈ [0, 1/2), with the hypothesis (18) and
(22) we can obtain the following inequality:

Ε [𝑥
Τ

𝑛+1
𝑄𝑥𝑛+1]

≤ Ε [𝑥
Τ

𝑛
𝑄𝑥𝑛]

+ Δ𝑡 ((1 − 2𝜃) Δ𝑡𝐾1 − 2𝜇1) Ε [𝑌
Τ

𝑛
𝑄𝑌𝑛]

+ Δ𝑡 ((1 − 2𝜃) Δ𝑡𝐾2 + 2𝜇2) Ε [𝑌
Τ

𝑛
𝑄𝑌] .

(34)

A combination of (13) and (18) gives

𝑥
Τ

𝑛
𝑄𝑥𝑛 ≤ 𝐿1𝑌

Τ

𝑛
𝑄𝑌𝑛 + 𝐿2𝑌

Τ

𝑛
𝑄𝑌𝑛,

(35)

where 𝐿1 = (1+𝜃Δ𝑡)(2+𝜃Δ𝑡𝐾1), 𝐿2 = (1+𝜃Δ𝑡)(2𝜆
2
+𝜃Δ𝑡𝐾2).

Let

Δ𝑡0 =

{{{

{{{

{

+∞, 𝜃 =
1

2
,

−2 (−𝜇1 + 𝜇2)

(1 − 2𝜃) (𝐾1 + 𝐾2)
, 𝜃 ∈ [0,

1

2
) ;

(36)

then, for any fixed Δ𝑡 ∈ (0, Δ𝑡0), 2(−𝜇1+𝜇2)+Δ𝑡(1−2𝜃)(𝐾1+

𝐾2) < 0, there exists a small positive number 𝜀 such that

2 (−𝜇1 + 𝜇2) + Δ𝑡 (1 − 2𝜃) (𝐾1 + 𝐾2) +
𝐿1 + 𝐿2

Δ𝑡
𝜀

< 0.

(37)

Therefore,

Ε [𝑥
Τ

𝑛+1
𝑄𝑥𝑛+1]

≤ (1 − 𝜀) Ε [𝑥
Τ

𝑛
𝑄𝑥𝑛]

+ Δ𝑡 ((1 − 2𝜃) Δ𝑡𝐾1 − 2𝜇1 +
𝐿1

Δ𝑡
𝜀) Ε [𝑌

Τ

𝑛
𝑄𝑌𝑛]

+ Δ𝑡 ((1 − 2𝜃) Δ𝑡𝐾2 + 2𝜇2 +
𝐿2

Δ𝑡
𝜀) Ε [𝑌

Τ

𝑛
𝑄𝑌𝑛] .

(38)

Let 𝑘̃ = max{1 − 𝜀, (((1 − 2𝜃)Δ𝑡𝐾2 + 2𝜇2 + (𝐿2/Δ𝑡)𝜀)/ − ((1 −

2𝜃)Δ𝑡𝐾1 − 2𝜇1 + (𝐿1/Δ𝑡)𝜀))
1/𝑚

}; then 0 < 𝑘̃ < 1. Similar to

the derivation of the first part, the following inequality can be
proved from (38):

Ε [𝑥
Τ

𝑛+1
𝑄𝑥𝑛+1]

≤ 𝑘
𝑛+1

(Ε [𝑥
Τ

0
𝑄𝑥0] + 𝐿̃𝑘̃

−𝑚

max
−𝑚≤𝑗≤−1

Ε [𝑌
Τ

𝑗
𝑄𝑌𝑗]) ,

(39)

where 𝐿̃ = 𝜏((1 − 2𝜃)Δ𝑡𝐾2 + 2𝜇2 + (𝐿2/Δ𝑡)𝜀).
Similar to the proof of (31), we can prove that when Δ𝑡 ∈

(0, Δ𝑡0) the method is asymptotically mean square stable; the
proof of theorem is completed.

Remark 8. For system (1) with 𝑁 = 0, it becomes a stochastic
delay differential equation; the mean square stability of the
theta method has been studied in [16]; Theorem 7 can be
regarded as an extension of Theorem 3.4 presented in [16].

Remark 9. For the NSDDEs, the mean square asymptotic
stability of the BEM method has been studied by Wang and
Chen in [15]; it has shown that BEM method can reproduce
the mean square stability of the exact solutions; Theorem 7
improves the result in [15].

4. Mean Square Dissipativity

The numerical solutions’ long time dynamic behavior will
be studied in this section. Before it, we make the following
hypothesis: assume that there exist a symmetric, positive
definite 𝑑 × 𝑑 matrix 𝑄 and positive constants 𝜇1, 𝜇2, and
𝛾 such that, for all (𝑡, 𝑥, 𝑦) ∈ 𝑅+ × 𝑅

𝑑
× 𝑅
𝑑, the following

inequality exists:

[𝑥 − 𝑁 (𝑦)]
Τ

𝑄𝑓 (𝑡, 𝑥, 𝑦)

+
1

2
trace [𝑔

Τ
(𝑡, 𝑥, 𝑦) 𝑄𝑔 (𝑡, 𝑥, 𝑦)]

≤ 𝛾 − 𝜇1𝑥
Τ
𝑄𝑥 + 𝜇2𝑦

Τ
𝑄𝑦.

(40)

Now we state and prove some conclusions.

Definition 10 (see [16]). Assume that system (1) satisfies (40).
The numerical method is said to be dissipative if when the
method is applied to problem (1) with constraint 𝜏 = 𝑚ℎ,
there exists a constant𝐶 such that, for any initial values, there
exists 𝑛0, depending only on initial values 𝜑(𝑡), such that

Ε [𝑦
Τ

𝑛
𝑄𝑦𝑛] ≤ 𝐶, 𝑛 ≥ 𝑛0. (41)

Theorem 11. Assume that system (1) satisfies (40); there exists
a constant 𝐶 such that, for any initial values, there exists 𝑛0
depending only on the initial values 𝜑(𝑡), when 𝑛 ≥ 𝑛0, the
numerical solution 𝑦𝑛 generated by the SST method (13)–(15)
with 𝜃 ∈ (1/2, 1], such that

Ε [𝑦
Τ

𝑛
𝑄𝑦𝑛] ≤ 𝐶. (42)



6 Discrete Dynamics in Nature and Society

Proof. Consider (21) and (40); the following inequality can be
obtained:

Ε [𝑥
Τ

𝑛+1
𝑄𝑥𝑛+1] ≤ Ε [𝑥

Τ

𝑛
𝑄𝑥𝑛] + 2Δ𝑡𝛾

+ 2Δ𝑡Ε (−𝜇1𝑌
Τ

𝑛
𝑄𝑌𝑛 + 𝜇2𝑌

Τ

𝑛
𝑄𝑌𝑛) + (1 − 2𝜃)

⋅ Δ𝑡
2
𝑓
Τ

(𝑡𝑛 + 𝜃Δ𝑡, 𝑌𝑛, 𝑌𝑛) 𝑄𝑓 (𝑡𝑛 + 𝜃Δ𝑡, 𝑌𝑛, 𝑌𝑛) .

(43)

We can get the following inequality the same as the derivation
of (28):

Ε [𝑥
Τ

𝑛+1
𝑄𝑥𝑛+1] ≤ 𝑘

𝑛+1
(Ε [𝑥

Τ

0
𝑄𝑥0]

+ 2𝜏 ((1 − 𝜆
2
) 𝜇2 + 𝜆

2
𝜇1) 𝑘
−𝑚 max
−𝑚≤𝑗≤−1

Ε [𝑌
Τ

𝑗
𝑄𝑌𝑗])

− 2Δ𝑡 (𝜇2 − ((1 − 𝜆
2
) 𝜇2 + 𝜆

2
𝜇1) 𝑘
−𝑚

)

⋅

𝑛−𝑚+1

∑

𝑗=0

𝑘
𝑛−𝑗

Ε [𝑌
Τ

𝑗
𝑄𝑌𝑗] + 2Δ𝑡𝛾

𝑛

∑

𝑗=0

𝑘
𝑗
,

(44)

where 0 < 𝑘 < 1 is the same as defined in (25).
Because −(𝜇2 − ((1 − 𝜆

2
)𝜇2 + 𝜆

2
𝜇1)𝑘
−𝑚

) ≤ 0, we have the
following inequality:

Ε [𝑥
Τ

𝑛+1
𝑄𝑥𝑛+1] ≤ 𝑘

𝑛+1
(Ε [𝑥

Τ

0
𝑄𝑥0]

+ 2𝜏 ((1 − 𝜆
2
) 𝜇2 + 𝜆

2
𝜇1) 𝑘
−𝑚 max
−𝑚≤𝑗≤−1

Ε [𝑌
Τ

𝑗
𝑄𝑌𝑗])

+
2𝛾Δ𝑡

1 − 𝑘
.

(45)

Let

𝜀1 = 𝑘
𝑛+1

(Ε [𝑥
Τ

0
𝑄𝑥0] + 2𝜏 ((1 − 𝜆

2
) 𝜇2 + 𝜆

2
𝜇1) 𝑘
−𝑚

⋅ max
−𝑚≤𝑗≤−1

Ε [𝑌
Τ

𝑗
𝑄𝑌𝑗]) +

2𝛾Δ𝑡

1 − 𝑘
;

(46)

the following inequality could be deduced from (31):

Ε [𝑦
Τ

𝑛+1
𝑄𝑦𝑛+1] ≤ 2Ε [𝑥

Τ

𝑛+1
𝑄𝑥𝑛+1]

+ 2𝜆
2
Ε [𝑦
Τ

𝑛+1−𝑚
𝑄𝑦𝑛+1−𝑚]

≤ 2𝜀1 + 2𝜆
2
Ε [𝑦
Τ

𝑛+1−𝑚
𝑄𝑦𝑛+1−𝑚] ≤ 𝐶,

(47)

where 𝐶 = 2𝜀1/(1 − 2𝜆
2
) + 𝜀. The theorem is completed.

Theorem 11 means that the discrete system possesses a
bounded absorbing set in the sense of mean square. The
numerical solution trajectory from any initial date will enter
the set in a finite time and thereafter remain inside. It is called
mean square dissipativity.

Remark 12. For the study of the dissipativity of numerical
methods for deterministic delay differential equations with
constant delays, Huang andChang studied the dissipativity of
Runge-Kutta methods and multistep Runge-Kutta methods
in [21, 22].

5. The Numerical Experiment

In this section, we will give a numerical experiment to illus-
trate the stability and dissipativity result obtained in Sections
3 and 4. Consider the following nonlinear scalar neutral
stochastic delay differential equation:

𝑑 [𝑦 (𝑡) − 0.25 sin (𝑦 (𝑡 − 1))]

= [−8𝑦 (𝑡) + sin (𝑦 (𝑡 − 1))] 𝑑𝑡 + 𝑦 (𝑡 − 1) 𝑑𝑊 (𝑡) ,

𝑡 ≥ 0,

𝑦 (𝑡) = 𝑡 + 1, − 1 ≤ 𝑡 ≤ 0.

(48)

It is easy to verify that nonlinear neutral stochastic
delay differential equation (48) satisfies the conditions of
Theorem 7; the corresponding parameters are given as fol-
lows:

𝜆 =
1

4
,

𝜇1 = 8,

𝜇2 =
1

2
,

𝐾1 = 64,

𝐾2 = 1,

Δ𝑡0 =

{{{

{{{

{

+∞, 𝜃 =
1

2

0.2884, 𝜃 ∈ (0,
1

2
) .

(49)

The initial condition is given by 𝑦(𝑡) = 𝑡 + 1, 𝑡 ∈

[−1, 0], where we take 𝜏 = 1. In the following tests, we
show the influence of step size Δ𝑡 and the parameter 𝜃 on
M-S stability of the SST method; the data used in all figures
are obtained by the mean square of data by 200 trajectories;
that is, Ε𝑦

2

𝑛
≈ (1/200) ∑

200

𝑖=1
[𝑦
(𝑖)

𝑛
]
2, Ε𝑦𝑛 ≈ (1/200) ∑

200

𝑖=1
𝑦
(𝑖)

𝑛
,

where 𝑦
(𝑖)

𝑛
denotes the numerical solution of 𝑦(𝑡𝑛) in the 𝑖th

trajectory.
Taking step sizes Δ𝑡 = 0.1, Δ𝑡 = 0.2, Δ𝑡 = 0.3,

and Δ𝑡 = 0.6, we obtain the numerical solutions of (48),
and the numerical solutions are displayed in Figures 1–6,
respectively. We can see that when 𝜃 = 0.6, the SST method
is asymptotically mean square stable for all the step sizes
selected, but when 𝜃 = 0.1, the SST method is asymptotically
mean square stable only for the step sizes Δ𝑡 ≤ 0.2884; it is
not mean square stable for the step sizes Δ𝑡 > 0.2884.
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Figure 1: Mean square stability of SST method with 𝜃 = 0.6 and
Δ𝑡 = 0.1.
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Figure 2: Mean square stability of SST method with 𝜃 = 0.6 and
Δ𝑡 = 0.6.
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Figure 3: Mean square stability of SST method with 𝜃 = 0.1 and
Δ𝑡 = 0.1.
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Figure 4: Mean square stability of SST method with 𝜃 = 0.1 and
Δ𝑡 = 0.2.
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Figure 5: Unstable test for SST method with 𝜃 = 0.1 and Δ𝑡 = 0.3.
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Figure 6: Unstable test for SST method with 𝜃 = 0.1 and Δ𝑡 = 0.6.
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Little seems to be known about the ergodicity of random dynamical systems with multiplicative nonlinear noise. This paper is
devoted to discern asymptotic behavior dynamics through the stochastic coral reefs model with multiplicative nonlinear noise. By
support theorem andHörmander theorem, theMarkov semigroup corresponding to the solutions is to prove the Foguel alternative.
Based onboundary distributions theory, the required conservative operators related to the solutions are further established to ensure
the existence a stationary distribution. Meanwhile, the density of the distribution of the solutions either converges to a stationary
density or weakly converges to some probability measure.

1. Introduction

The coral reefs equation is one of the most famous ecosystem
models [1]:

̇

𝑋 (𝑡) = 𝑋(𝛾 − 𝛾𝑋 + (𝜎 − 𝛾)𝑌 −

𝑔

1 − 𝑌

) ,

̇

𝑌 (𝑡) = 𝑌 (𝑟 − 𝑑 − (𝜎 + 𝑟)𝑋 − 𝑟𝑌) ,

(1)

where ̇

𝑋(𝑡) represents the cover of macroalgae; ̇

𝑌(𝑡) repre-
sents the cover of corals.

(i) 𝑟 is the rate that corals recruit to and overgrow algal
turfs;

(ii) 𝑑 is the natural mortality rate of corals;
(iii) 𝜎 is the rate that corals are overgrown by macroalgae;
(iv) 𝛾 is the rate that macroalgae spread vegetatively over

algal turfs;
(v) 𝑔 is the grazing rate that parrotfish graze macroalgae

without distinction from algal turfs.

By the results in Li et al. [2], they discuss all kinds
of dynamical behaviors. Recently, system (1) was studied
extensively that it exhibits complex dynamical phenomena,
including chaos, bifurcation, stability, and attractiveness [1–
10].

However, ecosystem in the real world is very often subject
to environmental noise due to uncertainty and unknown fac-
tors [11–16]. From a biological point of view and the generality
of the models considered [17–21], these systems can appear
very formal. This paper studies a stochastic coral reefs model
where the intrinsic growth rate of the cover of macroalgae, 𝛾,
and the one of the cover of corals, 𝑟, are perturbed stochasti-
cally 𝛾 → 𝛾 + 𝛼

̇

𝑊

𝑡
and 𝑟 → 𝑟 + 𝛼

̇

𝑊

𝑡
. In the paper, we only

consider that stochastic coral reefsmodel can be described by

𝑑𝑋 = 𝑋(𝛾 − 𝛾𝑋 + (𝜎 − 𝛾) 𝑌 −

𝑔

1 − 𝑌

)𝑑𝑡

+ 𝛼𝑋

2
𝑑𝑊 (𝑡) ,

𝑑𝑌 = 𝑌 (𝑟 − 𝑑 − (𝜎 + 𝑟)𝑋 − 𝑟𝑌) 𝑑𝑡 + 𝛽𝑌

2
𝑑𝑊 (𝑡) ,

(2)
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where𝑊(𝑡) is a two-sided canonical Brownianmotion. 𝛼 and
𝛽 represent the intensity of random noise and the differential
𝑋

2
𝑑𝑊(𝑡) and 𝑌

2
𝑑𝑊(𝑡) are to be understood in the sense of

multiplicative nonlinear noise. Since the drift and diffusion
coefficients of (2) satisfy locally Lipschitz continuous con-
dition, we can apply standard theorems that provide both
existence and uniqueness of the positive solution of (2) (see
[20]), for any given initial value. However, since the diffusion
term of (2) is not linear but nonlinear, the existing powerful
classical results [11–21] fail to work here. Nevertheless, this
paper discusses the asymptotic behavior of the stochastic
coral reefs model with multiplicative nonlinear noise using
Fokker-Planck equations. To overcome the difficulty from
the diffusion term, based on boundary distributions theory
and conservative operators, we show that the density of the
distribution of the solutions either converges to a stationary
density or weakly converges to some probability measure.

This paper is organized as follows. In Section 2, we study
the global attractiveness of the solution for stochastic coral
reefs model with multiplicative nonlinear noise. In Section 3,
we discuss the ergodicity of the solution for stochastic coral
reefs model with multiplicative nonlinear noise.

2. Global Attractiveness

In the section, we study the global attractiveness of the solu-
tion for stochastic coral reefs model with multiplicative non-
linear noise.

Proposition 1. Suppose that 𝜎 < 𝑑 < 𝛾 < 𝑟 < 2𝛾, 0 < 𝑔 < 𝛾

hold.
(I) If the cover of macroalgae is absent, then the cover of

corals dies with probability one.
(II) If the cover of corals is absent, the quantity of the preys

oscillates between 0 and ∞, and there exists a unique
stationary distribution with the density 𝑓

∗
(𝑥)

𝑓

∗
(𝑥) = 𝑐 exp {−3𝑥 +

2𝛾

𝛼

2
𝑒

−𝑥
−

𝛾

𝛼

2
𝑒

−2𝑥
} , (3)

where 𝑐 is a constant.

Proof. Denoting𝑋 = 𝑒

𝜉
𝑡 , 𝑌 = 𝑒

𝜂
𝑡 , we replace system (2) by

𝑑𝜉 = (𝛾 −

𝛼

2

2

𝑒

2𝜉
𝑡
− 𝛾𝑒

𝜉
𝑡
− (𝛾 − 𝜎) 𝑒

𝜂
𝑡
−

𝑔

1 − 𝑒

𝜂
𝑡

)𝑑𝑡

+ 𝛼𝑒

𝜉
𝑡
𝑑𝑊,

𝑑𝜂 = (𝑟 − 𝑑 −

𝛽

2

2

𝑒

2𝜂
𝑡
− (𝜎 + 𝑟) 𝑒

𝜉
𝑡
− 𝑟𝑒

𝜂
𝑡
)𝑑𝑡

+ 𝛽𝑒

𝜂
𝑡
𝑑𝑊.

(4)

Let

𝑓

1
(𝑥, 𝑦) = 𝛾 −

𝛼

2

2

𝑒

2𝑥
𝑡
− 𝛾𝑒

𝑥
𝑡
− (𝛾 − 𝜎) 𝑒

𝑦
𝑡
−

𝑔

1 − 𝑒

𝑦
𝑡

,

𝑓

2
= 𝑟 − 𝑑 −

𝛽

2

2

𝑒

2𝑦
𝑡
− (𝜎 + 𝑟) 𝑒

𝑥
𝑡
− 𝑟𝑒

𝑦
𝑡
.

(5)

Then, system (4) becomes

𝑑𝜉 = 𝑓

1
(𝜉

𝑡
, 𝜂

𝑡
) 𝑑𝑡 + 𝛼𝑒

𝜉
𝑡
𝑑𝑊,

𝑑𝜂 = 𝑓

2
(𝜉

𝑡
, 𝜂

𝑡
) 𝑑𝑡 + 𝛽𝑒

𝜂
𝑡
𝑑𝑊,

(6)

or Stratonovich stochastic differential equation

𝑑𝜉 = (𝛾 − 𝛼

2
𝑒

2𝜉
𝑡
− 𝛾𝑒

𝜉
𝑡
− (𝛾 − 𝜎) 𝑒

𝜂
𝑡
−

𝑔

1 − 𝑒

𝜂
𝑡

)𝑑𝑡

+ 𝛼𝑒

𝜉
𝑡
∘ 𝑑𝑊

𝑡
,

𝑑𝜂 = (𝑟 − 𝑑 − 𝛽

2
𝑒

2𝜂
𝑡
− (𝜎 + 𝑟) 𝑒

𝜉
𝑡
− 𝑟𝑒

𝜂
𝑡
) 𝑑𝑡 + 𝛽𝑒

𝜂
𝑡

∘ 𝑑𝑊

𝑡
.

(7)

LetL denote the generator of diffusion (4); that is,

LV =

1

2

𝛼

2
𝑒

2𝑥 𝜕
2V

𝜕𝑥

2
+ 𝛼𝛽𝑒

𝑥+𝑦 𝜕

2V
𝜕𝑥𝜕𝑦

+

1

2

𝛽

2
𝑒

2𝑦 𝜕
2V

𝜕𝑦

2

+ 𝑓

1

𝜕V
𝜕𝑥

+ 𝑓

2

𝜕V
𝜕𝑦

.

(8)

Then Fokker-Planck equation (FPE) of (4) can be described
by

𝜕𝑢

𝜕𝑡

=

1

2

𝛼

2
𝜕

2
(𝑒

2𝑥
𝑢)

𝜕𝑥

2
+ 𝛼𝛽

𝜕

2
(𝑒

𝑥+𝑦
𝑢)

𝜕𝑥𝜕𝑦

+

1

2

𝛽

2
𝜕

2
(𝑒

2𝑦
𝑢)

𝜕𝑦

2

−

𝜕 (𝑓

1
𝑢)

𝜕𝑥

−

𝜕 (𝑓

2
𝑢)

𝜕𝑦

.

(9)

(I) If the cover of macroalgae is absent, the quantity 𝑌 =

𝑒

𝜂
𝑡 of the cover of corals satisfies

𝑑𝜂 = (𝑟 − 𝑑 −

𝛽

2

2

𝑒

2𝜂
𝑡
− 𝑟𝑒

𝜂
𝑡
)𝑑𝑡 + 𝛽𝑒

𝜂
𝑡
𝑑𝑊. (10)

Fix

𝑠

1
(𝑥)

= ∫

𝑥

0

exp{−∫

𝑦

0

2 (𝑟 − 𝑑 − (𝛽

2
/2) 𝑒

2𝑢
𝑡
− 𝑟𝑒

𝑢
𝑡
)

𝛽

2
𝑒

2𝑢
𝑡

𝑑𝑢}𝑑𝑦

= ∫

𝑥

0

exp{

𝑟 + 𝑑

𝛽

2
−

2𝑟

𝛽

2
𝑒

𝑦
𝑡

+

𝑟 − 𝑑

𝛽

2
𝑒

2𝑦
𝑡

+ 𝑦}𝑑𝑦.

(11)

It is easy to see that lim
𝑥→+∞

𝑠

1
(𝑥) = +∞ and lim

𝑥→−∞
𝑠

1
(𝑥) >

−∞. Then, we can obtain

lim
𝑡→+∞

𝜂

𝑡
= −∞

or equivalently lim
𝑡→+∞

𝑌

𝑡
= 0 a.s.

(12)

It implies that without the cover of macroalgae, the cover of
corals dies with probability one.
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(II) If the cover of corals is absent, the quantity𝑋 = 𝑒

𝜉
𝑡 of

the cover of macroalgae satisfies

𝑑𝜉 = (𝛾 −

𝛼

2

2

𝑒

2𝜉
𝑡
− 𝛾𝑒

𝜉
𝑡
)𝑑𝑡 + 𝛼𝑒

𝜉
𝑡
𝑑𝑊. (13)

Let

𝑠

2
(𝑥)

= ∫

𝑥

0

exp{−∫

𝑦

0

2 (𝛾 − (𝛼

2
/2) 𝑒

2𝑢
𝑡
− 𝛾𝑒

𝑢
𝑡
)

𝛼

2
𝑒

2𝑢
𝑡

𝑑𝑢}𝑑𝑦

= ∫

𝑥

0

exp {

𝛾

𝛼

2
+

𝛾

𝛼

2
𝑒

2𝑦
𝑡

−

2𝛾

𝛼

2
𝑒

𝑦
𝑡

+ 𝑦}𝑑𝑦.

(14)

It easily shows that lim
𝑥→+∞

𝑠

2
(𝑥) = +∞ and lim

𝑥→−∞
𝑠

2
(𝑥) >

−∞. We have

lim sup
𝑡→+∞

𝜉

𝑡
= ∞;

lim inf
𝑡→+∞

𝜉

𝑡
= −∞

or equivalently lim sup
𝑡→+∞

𝑋

𝑡
= ∞;

lim inf
𝑡→+∞

𝑋

𝑡
= 0 a.s.

(15)

It implies that, without the predators, the quantity of the
preys oscillates between 0 and∞. Furthermore, there exists a
stationary distribution of system (13) with the density 𝑓

∗
(𝑥)

satisfying the FPE

1

2

𝑑

2

𝑑𝑥

2
[𝛼

2
𝑒

2𝑥
𝑓

∗
(𝑥)]

−

𝑑

𝑑𝑥

[(𝛾 −

𝛼

2

2

𝑒

2𝑥
𝑡
− 𝛾𝑒

𝑥
𝑡
)𝑓

∗
(𝑥)] = 0.

(16)

Solving (16), then we get

𝑦 (𝑥) = exp {−3𝑥 +

2𝛾

𝛼

2
𝑒

−𝑥
−

𝛾

𝛼

2
𝑒

−2𝑥
}

⋅ [𝑐 + 𝑘∫ exp {𝑥 −

2𝛾

𝛼

2
𝑒

−𝑥
+

𝛾

𝛼

2
𝑒

−2𝑥
} 𝑑𝑥] ,

(17)

where 𝑐 and 𝑘 are real numbers.With the conditions 𝑦(𝑥) ≥ 0

and

∫

+∞

−∞

𝑦 (𝑥) 𝑑𝑥 = 1, (18)

it means that

𝐾 = 0,

1

𝑐

= ∫

+∞

−∞

exp {−3𝑥 +

2𝛾

𝛼

2
𝑒

−𝑥
−

𝛾

𝛼

2
𝑒

−2𝑥
} 𝑑𝑥

= ∫

+∞

0

𝑦

2 exp {

2𝛾

𝛼

2
𝑦 −

𝛾

𝛼

2
𝑦

2
} 𝑑𝑦.

(19)

It easily shows that

1

𝑐

= exp {

𝛾

𝛼

}

𝛼

2𝛾√2𝛾

⋅ ∫

∞

−√2𝛾/𝛼

(𝛼𝑢 + √2𝛾)

2

exp{−

𝑢

2

2

}𝑑𝑢 =

𝛼

2

2𝛾

+

√𝜋𝛼 (2𝛾 + 𝛼

2
)

2𝛾
√
𝛾

[1 − Φ(−

√2𝛾

𝛼

)] exp {

𝛾

𝛼

2
} ,

(20)

where Φ(𝑥) is standard normal distribution function. Thus,
we get

𝑓

∗
(𝑥) = 𝑐 exp {−3𝑥 +

2𝛾

𝛼

2
𝑒

−𝑥
−

𝛾

𝛼

2
𝑒

−2𝑥
} . (21)

By ergodic theorem, if 𝜉
𝑡
is a solution of system (13), then

we have

lim
𝑡→+∞

1

𝑡

∫

𝑡

0

ℎ (𝜉

𝑠
) 𝑑𝑠 = ∫

∞

∞

ℎ (𝑥) 𝑓

∗
(𝑥) 𝑑𝑥 a.s. (22)

Furthermore, 𝜉
𝑡
converges in probability to 𝑓

∗
(𝑥) when 𝑡 →

+∞. Define

𝑚 = ∫

∞

∞

𝑒

𝑥
𝑓

∗
(𝑥) 𝑑𝑥

= 𝑥∫

+∞

0

𝑦 exp {

2𝛾

𝛼

2
𝑦 −

𝛾

𝛼

2
𝑦

2
} 𝑑𝑦.

(23)

It is easy to see that

𝑚 =

𝑐𝛼

2

2𝛾

+

√𝜋𝑐𝛼

√
𝛾

[1 − Φ(−

√2𝛾

𝛼

)] exp {

𝛾

𝛼

2
}

=

𝛾
√
𝛾𝛼

2
+ 2√𝜋𝛾

2
𝛼 [1 − Φ (−√2𝛾/𝛼)] exp {𝛾/𝛼

2
}

𝛾
√
𝛾𝛼

2
+ √𝜋𝛼 (2𝛾

2
+ 𝛾𝛼

2
) [1 − Φ (−√2𝛾/𝛼)] exp {𝛾/𝛼

2
}

.

(24)

Theorem 2. Suppose that 𝛼 > 0 and 𝛽 > 0 hold. Then there
exists a constant 𝜆 such that

lim sup
𝑡→∞

1

𝑡

[

4

𝜆

2
ln (𝑥 + 𝑦) + ∫

𝑡

0

(𝑥 + 𝑦)

2

𝑑𝑡]

≤

4max {𝛾, 𝑟 − 𝑑}

𝜆

2

(25)

holds with probability 1, where 𝑥 and 𝑦 are the solution of (2)
with the initial condition (𝑥

0
, 𝑦

0
) ∈ R2.

Proof. Define the Lyapunov function onR2

𝑉 (𝑥, 𝑦) = ln (𝑥 + 𝑦) . (26)
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Applying Itô’s formula to function (26), we get

𝑑𝑉 (𝑥, 𝑦) = [

𝑥

𝑥 + 𝑦

(𝛾 − 𝛾𝑥 + (𝜎 − 𝛾) 𝑦 −

𝑔

1 − 𝑦

)

−

1

2

𝛼

2 𝑥

4

(𝑥 + 𝑦)

2
− 𝛼𝛽

𝑥

2
𝑦

2

(𝑥 + 𝑦)

2
]𝑑𝑡

+ [

𝑦

𝑥 + 𝑦

(𝑟 − 𝑑 − (𝜎 + 𝑟) 𝑥 − 𝑟𝑦)

−

1

2

𝛽

2 𝑦

4

(𝑥 + 𝑦)

2
]𝑑𝑡 +

𝛼𝑥

2
+ 𝛽𝑦

2

𝑥 + 𝑦

𝑑𝑊.

(27)

That is,

𝑉 (𝑥, 𝑦) = 𝑉 (0)

+ ∫

𝑡

0

[

𝑥

𝑥 + 𝑦

(𝛾 − 𝛾𝑥 + (𝜎 − 𝛾) 𝑦 −

𝑔

1 − 𝑦

)

−

1

2

𝛼

2 𝑥

4

(𝑥 + 𝑦)

2
−

𝛼𝛽𝑥

2
𝑦

2

(𝑥 + 𝑦)

2
]𝑑𝑠

+ ∫

𝑡

0

[

𝑦

𝑥 + 𝑦

(𝑟 − 𝑑 − (𝜎 + 𝑟) 𝑥 − 𝑟𝑦)

−

1

2

𝛽

2 𝑦

4

(𝑥 + 𝑦)

2
]𝑑𝑠 + 𝑀 (𝑡) ,

(28)

where

𝑀(𝑡) = ∫

𝑡

0

𝛼𝑥

2
+ 𝛽𝑦

2

𝑥 + 𝑦

𝑑𝑊 (29)

is a local martingale with quadratic form:

⟨𝑀 (𝑡)⟩ = ∫

𝑡

0

(

𝛼𝑥

2
+ 𝛽𝑦

2

𝑥 + 𝑦

)

2

𝑑𝑡.
(30)

Fix 0 < 𝜀 < 1. For any 𝜅 ≥ 1, by martingale inequality, we
have

𝑃{ sup
0≤𝑡≤𝜅

[𝑀 (𝑡) −

𝜀

4

⟨𝑀 (𝑡)⟩] >

4 ln 𝜅

𝜀

} ≤

1

𝜅

2
. (31)

By using Borel-Cantelli theorem, we can choose a setΩ󸀠 ⊂ Ω

with 𝑃(Ω

󸀠
) = 1 and for any 𝜔 ∈ Ω there is a 𝜅

0
(𝜔) such that

∀𝜅 ≥ 𝜅

0
(𝜔)

sup
0≤𝑡≤𝜅

[𝑀 (𝑡) −

𝜀

4

⟨𝑀 (𝑡)⟩] ≤

4 ln 𝜅

𝜀

. (32)

It implies that

𝑀(𝑡) ≤

𝜀

4

⟨𝑀 (𝑡)⟩ +

4 ln 𝜅

𝜀

∀0 ≤ 𝑡 ≤ 𝜅,
(33)

for 𝜔 ∈ Ω

󸀠 and 𝜅 ≥ 𝜅

0
(𝜔). Substituting (33) into (28), we get

𝑉 (𝑥, 𝑦) +

1

4

∫

𝑡

0

(𝛼𝑥 + 𝛽𝑦)

2

(𝑥 + 𝑦)

2
𝑑𝑡

≤ 𝑉 (0)

+ ∫

𝑡

0

[

𝑥

𝑥 + 𝑦

(𝛾 − 𝛾𝑥 + (𝜎 − 𝛾) 𝑦 −

𝑔

1 − 𝑦

)]𝑑𝑠

+ ∫

𝑡

0

[

𝑦

𝑥 + 𝑦

(𝑟 − 𝑑 − (𝜎 + 𝑟) 𝑥 − 𝑟𝑦)] 𝑑𝑠

− ∫

𝑡

0

(1 − 𝜀) (𝛼𝑥

2
+ 𝛽𝑦

2
)

2

4 (𝑥 + 𝑦)

2
𝑑𝑠 +

4 ln 𝜅

𝜀

,

(34)

for 0 ≤ 𝑡 ≤ 𝜅 and for almost𝜔 and 𝜅 ≥ 𝜅

0
(𝜔). Moreover, there

exists a constant 𝜆 satisfying

𝛼𝑥

2
+ 𝛽𝑦

2
≥ 𝜆 (𝑥 + 𝑦)

2

.
(35)

By inequality (35), we get

(𝛼𝑥

2
+ 𝛽𝑦

2
)

2

4 (𝑥 + 𝑦)

2
𝑑𝑡 ≥ 𝜆

2
(𝑥 + 𝑦)

2

4

𝑑𝑡,

(36)

it means that

𝑉 (𝑥, 𝑦) +

1

4

∫

𝑡

0

(𝛼𝑥 + 𝛽𝑦)

2

(𝑥 + 𝑦)

2
𝑑𝑡

≥ 𝑉 (𝑥, 𝑦) +

𝜆

2

4

∫

𝑡

0

(𝑥 + 𝑦)

2

𝑑𝑡.

(37)

Moreover, there exists a positive constant 𝜇 = max{𝛾, 𝑟 − 𝑑}

satisfying

𝛾𝑥 + (𝑟 − 𝑑) 𝑦 ≤ 𝜇 (𝑥 + 𝑦) ,

−𝛾𝑥

2
− (𝑟 + 𝛾) 𝑥𝑦 − 𝑟𝑦

2
≤ 0.

(38)

Therefore, we get

1

𝑥 + 𝑦

(𝛾𝑥 − 𝛾𝑥

2
+ (𝜎 − 𝛾) 𝑥𝑦 −

𝑔𝑥

1 − 𝑦

+ (𝑟 − 𝑑) 𝑦

− (𝜎 + 𝑟) 𝑥𝑦 − 𝑟𝑦

2
) ≤ 𝜇.

(39)

Then, we have

𝑉 (𝑥, 𝑦) +

1

4

∫

𝑡

0

(𝛼𝑥 + 𝛽𝑦)

2

(𝑥 + 𝑦)

2
𝑑𝑡

≤ 𝑉 (0) + ∫

𝑡

0

𝜇𝑑𝑠 +

4 ln 𝜅

𝜀

≤ 𝑉 (0) + 𝜇𝑡 +

4 ln 𝜅

𝜀

,

(40)

for any 𝜔 ∈ Ω

󸀠, 𝜅 ≥ 𝜅

0
(𝜔), and 0 ≤ 𝑡 ≤ 𝜅.
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If 𝜅 − 1 ≤ 𝑡 ≤ 𝜅 with 𝜅 ≥ 𝜅

0
(𝜔), then we get

1

𝑡

[𝑉 (𝑥, 𝑦) +

𝜆

2

4

∫

𝑡

0

(𝑥 + 𝑦)

2

𝑑𝑡]

≤ 𝜇 +

1

𝑡

[𝑉 (0) +

4 ln 𝜅

𝜀

] .

(41)

It means that

lim sup
𝑡→∞

1

𝑡

[𝑉 (𝑥, 𝑦) +

𝜆

2

4

∫

𝑡

0

(𝑥 + 𝑦)

2

𝑑𝑡] ≤ 𝜇, (42)

or

lim sup
𝑡→∞

1

𝑡

[

4

𝜆

2
𝑉 (𝑥, 𝑦) + ∫

𝑡

0

(𝑥 + 𝑦)

2

𝑑𝑡]

≤

4max {𝛾, 𝑟 − 𝑑}

𝜆

2
.

(43)

The proof is completed.

Theorem 3. Suppose that 𝛼 > 0 and 𝛽 > 0 hold. Then, with
probability 1, we have

lim sup
𝑡→+∞

ln (𝑥 + 𝑦)

ln 𝑡

≤ 1. (44)

Proof. Define 𝐶2-function:

𝑉 (𝑥, 𝑦) = 𝑒

𝑡 ln (𝑥 + 𝑦) . (45)

Applying Itô’s formula to function (44), we have

𝑑𝑉 (𝑥, 𝑦) = [𝑒

𝑡 ln (𝑥 + 𝑦)

+

𝑥𝑒

𝑡

𝑥 + 𝑦

(𝛾 − 𝛾𝑥 + (𝜎 − 𝛾) 𝑦 −

𝑔

1 − 𝑦

)]𝑑𝑡

−

𝑒

𝑡
(𝛼𝑥

2
+ 𝛽𝑦

2
)

2

2 (𝑥 + 𝑦)

2
𝑑𝑡

+ [

𝑦𝑒

𝑡

𝑥 + 𝑦

(𝑟 − 𝑑 − (𝜎 + 𝑟) 𝑥 − 𝑟𝑦)] 𝑑𝑡 + 𝑒

𝑡

⋅

𝛼𝑥

2
+ 𝛽𝑦

2

𝑥 + 𝑦

𝑑𝑊.

(46)

That is,

𝑉 (𝑥, 𝑦) = 𝑉 (0) + ∫

𝑡

0

[𝑒

𝑠 ln (𝑥 + 𝑦)

+

𝑥𝑒

𝑠

𝑥 + 𝑦

(𝛾 − 𝛾𝑥 + (𝜎 − 𝛾) 𝑦 −

𝑔

1 − 𝑦

)]𝑑𝑠

+ ∫

𝑡

0

[

𝑦𝑒

𝑠

𝑥 + 𝑦

(𝑟 − 𝑑 − (𝜎 + 𝑟) 𝑥 − 𝑟𝑦)] 𝑑𝑠

− ∫

𝑡

0

𝑒

𝑡
(𝛼𝑥

2
+ 𝛽𝑦

2
)

2

2 (𝑥 + 𝑦)

2
𝑑𝑠 + 𝑀 (𝑡) ,

(47)

where

𝑀(𝑡) = ∫

𝑡

0

𝑒

𝑠 𝛼𝑥
2
+ 𝛽𝑦

2

𝑥 + 𝑦

𝑑𝑊 (48)

is a local martingale with quadratic form:

⟨𝑀 (𝑡)⟩ = ∫

𝑡

0

𝑒

2𝑠
(

𝛼𝑥

2
+ 𝛽𝑦

2

𝑥 + 𝑦

)

2

𝑑𝑠.
(49)

By using Borel-Cantelli theorem and martingale inequality,
for 𝜀 < 1, 𝜃 > 1, and 𝜌 > 0, for almost 𝜔 ∈ Ω, there is a 𝜅

0
(𝜔)

such that ∀𝜅 ≥ 𝜅

0
(𝜔), and we have

𝑀(𝑡) ≤

𝜀𝑒

−𝜅𝜌

2

⟨𝑀 (𝑡)⟩ +

𝜃𝑒

𝜅𝜌 ln 𝜅

𝜀

, 0 ≤ 𝑡 ≤ 𝜅𝜌.
(50)

By (47) and (50), we get

𝑉 (𝑥, 𝑦) ≤ 𝑉 (0) + ∫

𝑡

0

[𝑒

𝑠 ln (𝑥 + 𝑦)

+

𝑥𝑒

𝑠

𝑥 + 𝑦

(𝛾 − 𝛾𝑥 + (𝜎 − 𝛾) 𝑦 −

𝑔

1 − 𝑦

)]𝑑𝑠

+ ∫

𝑡

0

[

[

𝑦𝑒

𝑠

𝑥 + 𝑦

(𝑟 − 𝑑 − (𝜎 + 𝑟) 𝑥 − 𝑟𝑦)

−

𝑒

𝑠
(𝛼𝑥

2
+ 𝛽𝑦

2
)

2

2 (𝑥 + 𝑦)

2
𝑑𝑠

]

]

𝑑𝑠

+ ∫

𝑡

0

𝜀𝑒

−𝜅𝜌

2

𝑒

2𝑠
(

𝛼𝑥

2
+ 𝛽𝑦

2

𝑥 + 𝑦

)

2

𝑑𝑠 +

4𝜃𝑒

𝜅𝜌 ln 𝜅

𝜀

.

(51)

Moreover, there exists a constant 𝜆 satisfying

𝛼𝑥

2
+ 𝛽𝑦

2
≥ 𝜆 (𝑥 + 𝑦)

2

.
(52)

By inequality (52), it easily shows that

(𝛼𝑥

2
+ 𝛽𝑦

2
)

2

(𝑥 + 𝑦)

2
𝑑𝑡 ≥ 𝜆

2
(𝑥 + 𝑦)

2

𝑑𝑡.

(53)

Moreover, there exists a positive constant 𝜇 satisfying

𝛾𝑥 + (𝑟 − 𝑑) 𝑦 ≤ 𝜇 (𝑥 + 𝑦) ,

−𝛾𝑥

2
− (𝑟 + 𝛾) 𝑥𝑦 − 𝑟𝑦

2
−

𝑔𝑥

1 − 𝑦

≤ 0.

(54)

Combining (51), (52), and (53), we get

𝑉 (𝑥, 𝑦) ≤ 𝑉 (0) + ∫

𝑡

0

[𝑒

𝑠 ln (𝑥 + 𝑦) + 𝑒

𝑠
𝜇 (𝑥 + 𝑦)] 𝑑𝑠

− ∫

𝑡

0

𝑒

𝑠
𝜆

2
(𝑥 + 𝑦)

2 1 − 𝜀𝑒

−𝜅𝜌+𝑠

2

𝑑𝑠

+

𝜃𝑒

𝜅𝜌 ln 𝜅

𝜀

(55)

for any 0 ≤ 𝑠 ≤ 𝜅𝜌.
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It is easy to see that there exists a real number𝐾 indepen-
dent of 𝜅 satisfying

ln (𝑥 + 𝑦) + 𝜇 (𝑥 + 𝑦) − 𝜆

2
(𝑥 + 𝑦)

2 1 − 𝜀𝑒

−𝜅𝜌+𝑠

2

≤ 𝐾.
(56)

From (55) and (56), we get

𝑉 (𝑥, 𝑦) ≤ 𝑉 (0) + ∫

𝑡

0

𝑒

𝑠
𝐾𝑑𝑠 +

𝜃𝑒

𝜅𝜌 ln 𝜅

𝜀

= 𝑉 (0) + 𝐾 (𝑒

𝑡
− 1) +

𝜃𝑒

𝜅𝜌 ln 𝜅

𝜀

(57)

for any 0 ≤ 𝑠 ≤ 𝜅𝜌.Then, we have

ln (𝑥 + 𝑦) ≤ 𝑒

−𝑡
𝑉 (0) + 𝐾 (1 − 𝑒

−𝑡
) + 𝑒

−𝑡 𝜃𝑒
𝜅𝜌 ln 𝜅

𝜀

.
(58)

If (𝜅 − 1)𝜌 ≤ 𝑡 ≤ 𝜅𝜌 and 𝜅 ≥ 𝜅

0
(𝜔), we obtain

ln (𝑥 + 𝑦)

ln 𝑡

≤

𝑒

−(𝜅−1)𝜌

ln (𝜅 − 1) 𝜌

(𝑉 (0) − 𝐾) +

𝐾

ln (𝜅 − 1) 𝜌

+

𝜃𝑒

𝜌 ln 𝜅

𝜀 ln (𝜅 − 1) 𝜌

.

(59)

Letting 𝑘 → ∞, we get

lim sup
𝑡→∞

ln (𝑥 + 𝑦)

ln 𝑡

≤

𝜃𝑒

𝜌

𝜀

. (60)

By (60), for every 𝜌 > 0, 𝜀 < 1, and 𝜃 > 1, then by letting
𝜌 → 0, 𝜃 → 1, and 𝜀 → 1, we obtain

lim sup
𝑡→∞

ln (𝑥 + 𝑦)

ln 𝑡

≤ 1. (61)

The proof is completed.

Theorem 4. Suppose that 𝜎 < 𝑑 < 𝛾 < 𝑟 < 2𝛾, 0 < 𝑔 < 𝛾

hold. Let 𝜉
𝑡
denote the solution of the following the equation:

𝑑𝜉

𝑡
= (𝛾 −

𝛼

2

2

𝑒

2𝜉
𝑡
− 𝛾𝑒

𝜉
𝑡
)𝑑𝑡 + 𝛼𝑒

𝜉
𝑡
𝑑𝑊 (62)

with the initial value 𝜉
0
= 𝜉

0
. Let 𝜂

𝑡
denote the solution of the

following the equation:

𝑑𝜂

𝑡
= (𝑟 − 𝑑 −

𝛽

2

2

𝑒

2𝜂
𝑡
− 𝑟𝑒

𝜂
𝑡
)𝑑𝑡 + 𝛽𝑒

𝜂
𝑡
𝑑𝑊. (63)

with the initial value 𝜂
0
= 𝜂

0
.

Then, with probability 1, there exist 𝜉
𝑡
≥ 𝜉

𝑡
and 𝜂

𝑡
≥ 𝜂

𝑡
.

Proof. Let 𝑍 = 𝑒

−𝜉
𝑡 , 𝑍 = 𝑒

−𝜉
𝑡 . By Itô’s formula, we have

𝑑𝑍

𝑡

= (𝛾 − 𝛾𝑍

𝑡
+ 𝛼

2
𝑍

−1

𝑡
+ (𝛾 − 𝜎)𝑍

𝑡
𝑒

𝜂
𝑡
+

𝑔𝑍

𝑡

1 − 𝑒

𝜂
𝑡

)𝑑𝑡

− 𝛼𝑑𝑊.

𝑑𝑍

𝑡
= (𝛾 − 𝛾𝑍

𝑡
+ 𝛼

2
𝑍

−1

𝑡
) 𝑑𝑡 − 𝛼𝑑𝑊.

(64)

By using comparison theorem, we have 𝑍
𝑡
≥ 𝑍

𝑡
for all 𝑡 ≥ 0

a.s. It implies that P{𝜉
𝑡
≥ 𝜉

𝑡
} = 1 for all 𝑡 ≥ 0. It is easy to see

that we show the second assertion 𝜂

𝑡
≥ 𝜂

𝑡
by a similar way for

all 𝑡 ≥ 0. The proof is completed.

Theorem 5. Suppose that 𝜎 < 𝑑 < 𝛾 < 𝑟 < 2𝛾, 0 < 𝑔 < 𝛾

hold. Then the following assertions are true:

(I) lim inf
𝑡→+∞

1

𝑡

∫

𝑡

0

(

𝛽

2

2

𝑒

2𝜂
𝑡
+ (𝜎 + 𝑟) 𝑒

𝜉
𝑡
+ 𝑟𝑒

𝜂
𝑡
) ≥ 𝑟 − 𝑑

a.s.

(II) lim inf
𝑡→+∞

1

𝑡

∫

𝑡

0

(

𝛼

2

2

𝑒

2𝜉
𝑡
+ 𝛾𝑒

𝜉
𝑡
+ (𝛾 − 𝜎) 𝑒

𝜂
𝑡
+

𝑔

1 − 𝑒

𝜂
𝑡

)

≥ 𝛾 a.s.

(65)

Proof. FromTheorem 3, we get

lim sup
𝑡→∞

𝜂

𝑡

ln 𝑡

≤ 1 a.s. (66)

Therefore,
𝑟 − 𝑑 − lim sup

𝑡→∞

⋅

1

𝑡

[∫

𝑡

0

(

𝛽

2

2

𝑒

2𝜂
𝑠
+ (𝜎 + 𝑟) 𝑒

𝜉
𝑡
+ 𝑟𝑒

𝜂
𝑠
)𝑑𝑠

− ∫

𝑡

0

𝛽𝑒

𝜂
𝑠
𝑑𝑊

𝑠
] ,

𝑦 = lim sup
𝑡→∞

𝜂

𝑡

𝑡

≤ 0.

(67)

For any 𝜀 > 0, by martingale inequality, we have

P{ sup
0≤𝑡≤𝑘

{∫

𝑡

0

−𝛽𝑒

𝜂
𝑠
𝑑𝑊

𝑠
−

𝜀

2

∫

𝑡

0

𝛽

2
𝑒

2𝜂
𝑠
𝑑𝑠} ≥

2 ln 𝑘

𝜀

}

≤

1

𝑘

2
.

(68)

By using Borel-Cantelli theorem, for almost all 𝜔, there is a
real constant 𝑘 = 𝑘(𝜔) satisfying, for all 𝑛 > 𝑘 and 0 ≤ 𝑡 ≤ 𝑛,

∫

𝑡

0

−𝛽𝑒

𝜂
𝑠
𝑑𝑊

𝑠
−

𝜀

2

∫

𝑡

0

𝛽

2
𝑒

2𝜂
𝑠
𝑑𝑠 ≤

2 ln 𝑘

𝜀

.
(69)

It means that for 𝑘 − 1 ≤ 𝑡 ≤ 𝑘

1

𝑡

(∫

𝑡

0

−𝛽𝑒

𝜂
𝑠
𝑑𝑊

𝑠
−

𝜀

2

∫

𝑡

0

𝛽

2
𝑒

2𝜂
𝑠
𝑑𝑠) ≤

2 ln 𝑘

(𝑘 − 1) 𝜀

. (70)

Then, we get

lim inf
𝑡→∞

1

𝑡

(∫

𝑡

0

𝛽𝑒

𝜂
𝑠
𝑑𝑊

𝑠
+

𝜀

2

∫

𝑡

0

𝛽

2
𝑒

2𝜂
𝑠
𝑑𝑠) ≥ 0. (71)

Combining (67) and (71), it yields

lim sup
𝑡→∞

1

𝑡

∫

𝑡

0

(−

𝛽

2
(1 + 𝜀)

2

𝑒

2𝜂
𝑠
− (𝜎 + 𝑟) 𝑒

𝜉
𝑡
− 𝑟𝑒

𝜂
𝑠
)𝑑𝑠

≤ 𝑑 − 𝑟.

(72)
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Moreover, by Theorem 4, we get

0 < lim sup
𝑡→∞

1

𝑡

∫

𝑡

0

(𝜎 + 𝑟) 𝑒

𝜉
𝑡
𝑑𝑠 ≤ (𝜎 + 𝑟)𝑚 < ∞ a.s. (73)

Therefore,

lim sup
𝑡→∞

1

𝑡

∫

𝑡

0

(−

𝛽

2

2

𝑒

2𝜂
𝑠
− (𝜎 + 𝑟) 𝑒

𝜉
𝑡
− 𝑟𝑒

𝜂
𝑠
)𝑑𝑠

≤

1

1 + 𝜀

lim sup
𝑡→∞

1

𝑡

⋅ ∫

𝑡

0

(−

𝛽

2
(1 + 𝜀)

2

𝑒

2𝜂
𝑠
− (𝜎 + 𝑟) 𝑒

𝜉
𝑡
− 𝑟𝑒

𝜂
𝑠
)𝑑𝑠

+

𝜀

1 + 𝜀

lim sup
𝑡→∞

1

𝑡

∫

𝑡

0

(− (𝜎 + 𝑟) 𝑒

𝜉
𝑡
− 𝑟𝑒

𝜂
𝑠
) 𝑑𝑠

≤

1

1 + 𝜀

(𝑑 − 𝑟) .

(74)

Letting 𝜀 → 0, we have

lim sup
𝑡→∞

1

𝑡

∫

𝑡

0

(−

𝛽

2

2

𝑒

2𝜂
𝑠
− (𝜎 + 𝑟) 𝑒

𝜉
𝑡
− 𝑟𝑒

𝜂
𝑠
)𝑑𝑠

≤ (𝑑 − 𝑟) .

(75)

The first assertion is proven. Using similar way, the second
assertion is also proven. The proof is completed.

3. Ergodicity

In the section, we discuss the ergodicity of the solution for
stochastic coral reefs model with multiplicative nonlinear
noise.

Theorem 6. Suppose that 𝜎 < 𝑑 < 𝛾 < 𝑟 < 2𝛾, 0 < 𝑔 < 𝛾

hold.

(I) Then, the transition probability functionP(𝑡, 𝑥

0
, 𝑦

0
, ⋅)

of system (4), that is,P(𝑡, 𝑥

0
, 𝑦

0
, 𝐴) = P{(𝜉

𝑡
, 𝜂

𝑡
) ∈ 𝐴}

for an𝐴 ∈ B(R2
), results in a density 𝑘(𝑡, 𝑥, 𝑦, 𝑥

0
, 𝑦

0
)

for all 𝑡 > 0.

(II) Then, system (4) results in integral Markov semigroup.

Proof. Let 𝑎(𝑥) and 𝑏(𝑥) denote vector fields onR𝑑; then the
Lie bracket [𝑎, 𝑏] denotes a vector field:

[𝑎, 𝑏]

𝑗
(𝑥) =

𝑑

∑

𝑘=1

(𝑎

𝑘

𝜕𝑏

𝑗

𝜕𝑥

𝑘

(𝑥) − 𝑏

𝑘

𝜕𝑎

𝑗

𝜕𝑥

𝑘

(𝑥)) . (76)

Denote

𝑎

0
(𝑥, 𝑦)

= (

𝛾 − 𝛼

2
𝑒

2𝑥
− 𝛾𝑒

𝑥
𝑡
+ (𝜎 − 𝛾) 𝑒

𝑦
𝑡
−

𝑔

1 − 𝑒

𝑦
𝑡

(𝑟 − 𝑑) − 𝛽

2
𝑒

2𝑦
− (𝜎 + 𝑟) 𝑒

𝑥
𝑡
− 𝑟𝑒

𝑦
𝑡

),

𝑎

1
(𝑥, 𝑦) = (

𝛼𝑒

𝑥

𝛽𝑒

𝑦
) .

(77)

Then it is easy to see that

𝑎

2
= [𝑎

0
, 𝑎

1
] = (

𝛼𝑒

𝑥
(𝛾 + 𝛼

2
𝑒

2𝑥
− (𝛾 − 𝜎) 𝑒

𝑦
𝑡
+

𝑔

1 − 𝑒

𝑦
𝑡

) + 𝛽 (𝛾 − 𝜎) 𝑒

2𝑦
+

𝛽𝑔𝑒

2𝑦

(1 − 𝑒

𝑦
)

2

𝛽𝑒

𝑦
((𝑟 − 𝑑) + 𝛽

2
𝑒

2𝑦
− (𝜎 + 𝑟) 𝑒

𝑥
𝑡
) + 𝛽 (𝜎 + 𝑟) 𝑒

2𝑥

),

𝑎

3
= [𝑎

1
, [𝑎

0
, 𝑎

1
]] = (

2𝛼

4
𝑒

4𝑦
+ 2𝛽 (𝑟 − 𝜎) 𝑒

3𝑦
+ 𝛼𝛽𝑒

𝑥+𝑦
[(𝜎 − 𝑟) +

𝑔

(1 − 𝑒

𝑦
)

2
] +

2𝛽𝑔𝑒

2𝑦
(2 − 𝑒

𝑦
)

(1 − 𝑒

𝑦
)

3

2𝛽

4
𝑒

4𝑦
+ 2𝛼𝛽 (𝜎 + 𝑟) 𝑒

3𝑥
− 𝛽 (𝛼 + 𝛽) (𝜎 + 𝑟) 𝑒

2𝑥+𝑦

),

𝑎

4
= [𝑎

1
, [𝑎

1
, [𝑎

0
, 𝑎

1
]]] = (

Λ

1

Λ

2

) ,

(78)

where

Λ

1
= −𝛼𝑒

𝑥
(2𝛼

4
𝑒

4𝑦
+ 2𝛽 (𝑟 − 𝜎) 𝑒

3𝑦

+

2𝛽𝑔𝑒

2𝑦
(2 − 𝑒

𝑦
)

(1 − 𝑒

𝑡
)

3
) + 𝛽𝑒

𝑦
(8𝛼

4
𝑒

4𝑦

+ 6𝛽 (𝑟 − 𝜎) 𝑒

3𝑦
+ 𝛼𝛽𝑒

𝑥+𝑦
[(𝜎 − 𝑟) +

𝑔 (3 − 𝑒

𝑦
)

(1 − 𝑒

𝑦
)

3
]

+

2𝛽𝑔𝑒

2𝑦
[3 (1 − 𝑒

𝑦
)

2

− 1]

(1 − 𝑒

𝑦
)

4
) ,

Λ

2
= 𝛼𝑒

𝑥
[6𝛼𝛽 (𝜎 + 𝑟) 𝑒

3𝑥
− 2𝛽 (𝛼 + 𝛽) (𝜎 + 𝑟) 𝑒

2𝑥+𝑦
]

+ 𝛽𝑒

𝑦
[6𝛽

4
𝑒

4𝑦
− 2𝛼𝛽 (𝜎 + 𝑟) 𝑒

3𝑥
] .

(79)



8 Discrete Dynamics in Nature and Society

Assume that there is a point (𝑥, 𝑦) and so the vectors 𝑎
1
(𝑥, 𝑦),

𝑎

3
(𝑥, 𝑦), and 𝑎

4
(𝑥, 𝑦) can not span the space R2. Then, the

vectors 𝑎
1
(𝑥, 𝑦) and 𝑎

3
(𝑥, 𝑦) are parallel; the vectors 𝑎

1
(𝑥, 𝑦)

and 𝑎

4
(𝑥, 𝑦) are also parallel. Therefore, we get

𝛼𝑒

𝑥
(2𝛽

4
𝑒

4𝑦
+ 2𝛼𝛽 (𝜎 + 𝑟) 𝑒

3𝑥

− 𝛽 (𝛼 + 𝛽) (𝜎 + 𝑟) 𝑒

2𝑥+𝑦
) = 𝛽𝑒

𝑦
(2𝛼

4
𝑒

4𝑦

+ 2𝛽 (𝑟 − 𝜎) 𝑒

3𝑦
+ 𝛼𝛽𝑒

𝑥+𝑦
[(𝜎 − 𝑟) +

𝑔

(1 − 𝑒

𝑦
)

2
]

+

2𝛽𝑔𝑒

2𝑦
(2 − 𝑒

𝑦
)

(1 − 𝑒

𝑦
)

3
)

𝛼𝑒

𝑥
Λ

2
= 𝛽𝑒

𝑦
Λ

1
.

(80)

It is easy to check that equality (80) is impossible.
It implies that the vectors 𝑎

1
, 𝑎
3
, 𝑎
4
span R2 at any point

(𝑥, 𝑦). Therefore, we obtain the Hörmander condition.

(H) For every (𝑥, 𝑦) ∈ R2, the vectors

𝑎

1
(𝑥, 𝑦) ,

[𝑎

𝑖
, 𝑎

𝑗
] (𝑥, 𝑦)

0≤𝑖,𝑗≤1
,

[𝑎

𝑖
, [𝑎

𝑗
, 𝑎

𝑘
]] (𝑥, 𝑦)

0≤𝑖,𝑗,𝑘≤1
, . . .

(81)

span the spaceR2.

By Hypothesis (H) and Hörmander theorem [22–29],
then the transition probability functionP(𝑡, 𝑥

0
, 𝑦

0
, ⋅) results

in a density 𝑘(𝑡, 𝑥, 𝑦, 𝑥

0
, 𝑦

0
) and 𝑘 ∈ 𝐶

∞
((0,∞) ×R2

×R2
).

Thus, the first assertion has been proved.
From the first assertion, it easily shows that for any 𝑡 > 0,

(𝜉

𝑡
, 𝜂

𝑡
) of system (4) results in the density 𝑢(𝑡, 𝑥, 𝑦) satisfying

the FPE (9). Furthermore, we get

𝑢 (𝑡, 𝑥, 𝑦) = ∬

∞

−∞

𝑘 (𝑡, 𝑥, 𝑦, 𝑥

1
, 𝑦

1
) ] (𝑥

1
, 𝑦

1
) 𝑑𝑥

1
𝑑𝑦

1
. (82)

Defining the operator {𝑃(𝑡)}
𝑡≥0

is

𝑃 (𝑡) ] (𝑥, 𝑦) = 𝑢 (𝑡, 𝑥, 𝑦)

= ∬

∞

−∞

𝑘 (𝑡, 𝑥, 𝑦, 𝑥

1
, 𝑦

1
) ] (𝑥

1
, 𝑦

1
) 𝑑𝑥

1
𝑑𝑦

1

(83)

for any 𝑡 > 0, ] ∈ 𝐷. By using continuation theorem of
operator and assertion (I), it easily shows that the operator
{𝑃(𝑡)}

𝑡≥0
is an integral Markov semigroup. The proof is

completed.

Theorem 7. Suppose that 𝜎 < 𝑑 < 𝛾 < 𝑟 < 2𝛾, 0 < 𝑔 < 𝛾

hold.Then there is nomore than three solution curves such that
𝑥 = 𝑔(𝑦) satisfying rank 𝐷

𝑥
0
,𝑦
0
,𝜙

= 2 if 𝑥
𝜙
(𝑇) ̸= 𝑔(𝑦

𝜙
(𝑇)).

Proof. Let (𝑥
0
, 𝑦

0
) ∈ R2 and 𝜙 ∈ 𝐿

2
([0, 𝑇];R). We consider

the following system:

𝑥

󸀠

𝜙
= 𝛾 − 𝛼

2
𝑒

2𝑥
𝑡
+ (𝛼𝜙 (𝑡) − 𝛾) 𝑒

𝑥
𝑡
− (𝛾 − 𝜎) 𝑒

𝑦
𝑡

−

𝑔

1 − 𝑒

𝑦
𝑡

,

𝑦

󸀠

𝜙
= 𝑟 − 𝑑 − 𝛽

2
𝑒

2𝑦
𝑡
− (𝜎 + 𝑟) 𝑒

𝑥
𝑡
+ (𝛽𝜙 (𝑡) − 𝑟) 𝑒

𝑦
𝑡
.

(84)

Denote

𝑓

1
= 𝛾 − 𝛼

2
𝑒

2𝑥
𝑡
+ (𝛼𝜙 (𝑡) − 𝛾) 𝑒

𝑥
𝑡
− (𝛾 − 𝜎) 𝑒

𝑦
𝑡

−

𝑔

1 − 𝑒

𝑦
𝑡

,

𝑓

2
= 𝑟 − 𝑑 − 𝛽

2
𝑒

2𝑦
𝑡
− (𝜎 + 𝑟) 𝑒

𝑥
𝑡
+ (𝛽𝜙 (𝑡) − 𝑟) 𝑒

𝑦
𝑡
.

(85)

System (84) becomes

𝑥

󸀠

𝜙
= 𝑓

1
(𝑥

𝜙
, 𝑦

𝜙
) ,

𝑦

󸀠

𝜙
= 𝑓

2
(𝑥

𝜙
, 𝑦

𝜙
) .

(86)

We show that (𝑥
𝜙
, 𝑦

𝜙
) denote the solution of system (84)

with the initial value 𝑥

𝜙
(0) = 𝑥

0
, 𝑦

𝜙
(0) = 𝑦

0
and 𝐹 :

𝐶([0, 𝑇],R) → R2 defined as𝐹(ℎ) = (𝑥

𝜙+𝐻
(𝑇), 𝑦

𝜙+𝐻
(𝑇)). By

using the perturbation method, we get the Frechet derivative
𝐷

𝑥
0
,𝑦
0
,𝜙
of 𝐹. Let 𝑓 = (𝑓

1
, 𝑓

2
) and Λ(𝑡) = 𝑓

󸀠
(𝑓

1
, 𝑓

2
). 𝑄(𝑡, 𝑠)

denote the fundamental matrix of the following differential
equation:

̇

𝑌 = Λ (𝑡) 𝑌. (87)

That is, 𝜕𝑄(𝑡, 𝑠)/𝜕𝑡 = Λ(𝑡)𝑄(𝑡, 𝑠) and 𝑄(𝑡𝑠, 𝑠) = 𝐼 for 𝑠 ≤ 𝑡 ≤

𝑇. Then, we have

𝐷

𝑥
0
,𝑦
0
;𝜙
ℎ = ∫

𝑇

0

𝑄 (𝑇, 𝑠) 𝑞 (𝑥

𝜙
, 𝑦

𝜙
) ℎ (𝑠) 𝑑𝑠,

(88)

where 𝑞(𝑥

𝜙
, 𝑦

𝜙
) = (𝛼𝑒

𝑦
, 𝛽𝑒

𝛽
)

⊤. Let 𝜀 ∈ (0, 𝑇) and ℎ(𝑡) = 0 if
0 ≤ 𝑡 ≤ 𝑇 − 𝜀 and ℎ(𝑡) = (1/𝜖)(𝑡 − 𝑇 + 𝜀) if 𝑇 − 𝜀 ≤ 𝑡 ≤ 𝑇. By
using Taylor formula, we get𝑄(𝑇, 𝑠) = 𝐼−Λ(𝑇)(𝑇−𝑠)+𝑜(𝑇−𝑠)

as 𝑠 → 𝑇. Then, we have

𝐷

𝑥
0
,𝑦
0
;𝜙
ℎ = ∫

𝑇

𝑇−𝜀

𝑠 − 𝑇 + 𝜀

𝜀

𝑞 (𝑥

𝜙
, 𝑦

𝜙
) 𝑑𝑠 + Λ (𝑇)

⋅ ∫

𝑇

𝑇−𝜀

𝑠 − 𝑇 + 𝜀

𝜀

(𝑠 − 𝑇) 𝑞 (𝑥

𝜙
, 𝑦

𝜙
) 𝑑𝑠 + 𝑜 (𝜀

2
) .

(89)

Let 𝑥 = 𝑥

𝜙
(𝑇), 𝑦 = 𝑦

𝜙
(𝑇), and 𝑐 = 𝜙(𝑇). By using mean value

theorem of integration, we get

lim
𝜀→0

1

𝜀

∫

𝑇

𝑇−𝜀

𝑠 − 𝑇 + 𝜀

𝜀

𝑞 (𝑥

𝜙
(𝑠) , 𝑦

𝜙
(𝑠)) 𝑑𝑠 =

1

2

𝑞 (𝑥, 𝑦) ,

lim
𝜀→0

1

𝜀

2
Λ (𝑇)∫

𝑇

𝑇−𝜀

𝑠 − 𝑇 + 𝜀

𝜀

(𝑠 − 𝑇) 𝑞 (𝑥

𝜙
(𝑠) , 𝑦

𝜙
(𝑠)) 𝑑𝑠

= −

1

6

Λ (𝑇) 𝑞 (𝑥, 𝑦) .

(90)
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It is easy to calculate that we show

Λ (𝑇)

= (

−2𝛼

2
𝑒

2𝑥
𝑡
+ (𝛼𝑐 − 𝛾) 𝑒

𝑥
𝑡
− (𝛾 − 𝜎) 𝑒

𝑦
𝑡
−

𝑔𝑒

𝑦
𝑡

(1 − 𝑒

𝑦
𝑡
)

2

− (𝜎 + 𝑟) 𝑒

𝑥
𝑡

−2𝛽

2
𝑒

2𝑦
𝑡
+ (𝛽𝑐 − 𝑟) 𝑒

𝑦
𝑡

).

(91)

Therefore, we obtain

Λ (𝑇) 𝑞 (𝑥, 𝑦)

= (

−2𝛼

3
𝑒

3𝑥
𝑡
+ 𝛼 (𝛼𝑐 − 𝛾) 𝑒

2𝑥
𝑡
− 𝛽 (𝛾 − 𝜎) 𝑒

2𝑦
𝑡
−

𝛽𝑔𝑒

2𝑦
𝑡

(1 − 𝑒

𝑦
𝑡
)

2

−𝛼 (𝜎 + 𝑟) 𝑒

2𝑥
𝑡
− 2𝛽

3
𝑒

3𝑦
𝑡
+ 𝛽 (𝛽𝑐 − 𝑟) 𝑒

2𝑦
𝑡

).

(92)

If the two vectors 𝑞(𝑥, 𝑦) andΛ(𝑇) are not linearly dependent,
then we get the rank 𝐷

𝑥
0
,𝑦
0
,𝜙

= 2. Since the between 𝑞(𝑥, 𝑦)

and Λ(𝑇)𝑞(𝑥, 𝑦) is linear dependence, thus, it is easy to see
that 𝑥 and 𝑦 denote the solution of the following differential
equation:

det(
𝛼𝑒

𝑥
−2𝛼

3
𝑒

3𝑥
𝑡
+ 𝛼 (𝛼𝑐 − 𝛾) 𝑒

2𝑥
𝑡
− 𝛽 (𝛾 − 𝜎) 𝑒

2𝑦
𝑡
−

𝛽𝑔𝑒

2𝑦
𝑡

(1 − 𝑒

𝑦
𝑡
)

2

𝛽𝑒

𝑦
−𝛼 (𝜎 + 𝑟) 𝑒

2𝑥
𝑡
− 2𝛽

3
𝑒

3𝑦
𝑡
+ 𝛽 (𝛽𝑐 − 𝑟) 𝑒

2𝑦
𝑡

) = 0. (93)

That is,

𝛼

2
(2𝛼𝛽𝑒

𝑦
− (𝜎 + 𝑟)) 𝑒

3𝑥
𝑡
− (𝛼𝛽 (𝛼𝑐 − 𝛾) 𝑒

𝑦
) 𝑒

2𝑥
𝑡

+ (𝛼𝛽 (𝛽𝑐 − 𝑟) 𝑒

2𝑦
𝑡
− 2𝛼𝛽

3
𝑒

3𝑦
𝑡
) 𝑒

𝑥

+ (𝛽

2
(𝛾 − 𝜎) +

𝛽

2
𝑔

(1 − 𝑒

𝑦
𝑡
)

2
)𝑒

3𝑦
= 0.

(94)

It easily knows that there is no more than three solution
curves satisfying (94), and the graph of a function 𝑥 = 𝑔(𝑦)

represents each solution curve. The proof is completed.

Theorem 8. Suppose that 𝜎 < 𝑑 < 𝛾 < 𝑟 < 2𝛾, 0 < 𝑔 < 𝛾,
𝑟 + 𝑔 < 𝑑 + 𝛾 hold. Hypothesis condition H

1
: there is a point

𝑧

∗ satisfying 𝑔
2
(𝑦, 𝑧

∗
) ≤ 0 for all 𝑦 ∈ R and (𝑦

𝜙
, 𝑧

𝜙
) ∈ 𝐸. The

following assertions are true.

(I) If Hypothesis conditionH
1
does not hold, then system

(84) is controllable in 𝐸.

(II) If Hypothesis condition H
1
holds, then system (84) is

controllable in 𝐸

𝑖
(𝑖 = 1, 2), where

𝑔

2
(𝑦

𝜙
, 𝑧

𝜙
)

= −𝛾𝑧 + 𝛼𝛽

−1
(𝑟 − 𝑑 − 𝛾) 𝑒

−𝑦
+

𝛼

2
− 𝛼𝛽

−1
𝑒

−𝑦

𝑧 + 𝛽

−1
𝛼𝑒

−𝑦(𝑡)

+

𝑔 (𝑧 + 𝛽

−1
𝛼𝑒

−𝑦(𝑡)
)

1 − 𝑒

𝑦
+ (𝑧 (𝛾 − 𝜎) − 𝛼𝛽) 𝑒

𝑦

+

𝛼 (𝛾 − 𝜎) + 𝛼𝛽 + 𝛽𝑟

𝛽

,

𝐸 = {(𝑦, 𝑧) | 𝑧 > −𝛼𝛽𝑒

−𝑦
} ,

𝐸

1
= {(𝑥, 𝑦) | 𝑒

−𝑥
− 𝛽𝛼

−1
𝑒

−𝑦
< 𝑎

∗
}

= {(𝑦, 𝑧) ∈ 𝐸 | 𝑧 ≤ 𝑎

∗
} ,

𝐸

2
= {(𝑥, 𝑦) | 𝑒

−𝑥
− 𝛽𝛼

−1
𝑒

−𝑦
> (𝛾 − 𝜎)

−1

𝛼𝛽}

= {(𝑦, 𝑧) | 𝑧 > (𝛾 − 𝜎)

−1

𝛼𝛽} .

(95)

Proof. Let

𝑧

𝜙
(𝑡) = 𝑒

−𝑥
𝜙
(𝑡)

− 𝛽

−1
𝛼𝑒

−𝑦
𝜙
(𝑡)
. (96)

Then, system (84) can be replaced by the following differential
equations:

𝑦

󸀠

𝜙
= 𝛽𝑒

𝑦
𝜙
𝜙 + 𝑔

1
(𝑦

𝜙
, 𝑧

𝜙
) ,

𝑧

󸀠

𝜙
= 𝑔

2
(𝑦

𝜙
, 𝑧

𝜙
) ,

(97)

where

𝑔

1
(𝑦

𝜙
, 𝑧

𝜙
) = 𝑟 − 𝑑 −

𝜎 + 𝑟

𝑧 + 𝛼𝛽

−1
𝑒

−𝑦
− 𝑟𝑒

𝑦
− 𝛽

2
𝑒

2𝑦
,

𝑔

2
(𝑦

𝜙
, 𝑧

𝜙
) = −𝛾𝑧 + 𝛼𝛽

−1
(𝑟 − 𝑑 − 𝛾) 𝑒

−𝑦

+

𝛼

2
− 𝛼𝛽

−1
𝑒

−𝑦

𝑧 + 𝛽

−1
𝛼𝑒

−𝑦(𝑡)

+

𝑔 (𝑧 + 𝛽

−1
𝛼𝑒

−𝑦(𝑡)
)

1 − 𝑒

𝑦

+ (𝑧 (𝛾 − 𝜎) − 𝛼𝛽) 𝑒

𝑦

+

𝛼 (𝛾 − 𝜎) + 𝛼𝛽 + 𝛽𝑟

𝛽

.

(98)

Denote

𝐸 = {(𝑦, 𝑧) | 𝑧 > −𝛼𝛽𝑒

−𝑦
} . (99)

By (96), it is easy to see that (𝑦
𝜙
, 𝑧

𝜙
) ∈ 𝐸 for any 𝜙 ∈

𝐶([0, 𝑇],R). There is a point 𝑧∗ satisfying 𝑔

2
(𝑦, 𝑧

∗
) ≤ 0 for
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all 𝑦 ∈ R and (𝑦

𝜙
, 𝑧

𝜙
) ∈ 𝐸. It is easily know that there exists

𝑧

∗
∈ [0, (𝛾 − 𝜎)

−1
𝛼𝛽]; let

𝑎

∗
= inf {𝑧∗ | 𝑔

2
(𝑦, 𝑧

∗
) ≤ 0 ∀𝑦 ∈ R, (𝑦, 𝑧

∗
) ∈ 𝐸} , (100)

𝐸

1
= {(𝑥, 𝑦) | 𝑒

−𝑥
− 𝛽𝛼

−1
𝑒

−𝑦
< 𝑎

∗
}

= {(𝑦, 𝑧) ∈ 𝐸 | 𝑧 ≤ 𝑎

∗
} ,

𝐸

2
= {(𝑥, 𝑦) | 𝑒

−𝑥
− 𝛽𝛼

−1
𝑒

−𝑦
> (𝛾 − 𝜎)

−1

𝛼𝛽}

= {(𝑦, 𝑧) | 𝑧 > (𝛾 − 𝜎)

−1

𝛼𝛽} .

(101)

Step 1. Fix 𝑧
0
> 𝑧

1
. Due to lim

𝑦→−∞
𝑔(𝑦, 𝑧)

2
= −∞ uniformly

in 𝑧 ∈ [𝑧

1
, 𝑧

0
], it shows that there is 𝑦

0
satisfying 𝑔

2
(𝑦

0
, 𝑧) ≤

−1 for any 𝑧 ∈ [𝑧

1
, 𝑧

0
]. We take

𝜙 = −

𝑔

1
(𝑦

0
, 𝑧

1
)

𝛽𝑒

𝑦
0

, (102)

where 𝑧(𝑡) denotes the solution of

𝑧

󸀠

𝜙
= 𝑔

2
(𝑦

0
, 𝑧

1
) ,

𝑧 (0) = 𝑧

0
.

(103)

It implies that system (97) results in the solution (𝑦

𝜙
, 𝑧

𝜙
) =

(𝑦

0
, 𝑧

1
) and 𝑧

𝜙
(0) = 𝑧

0
. Due to 𝑧󸀠

𝜙
= 𝑔

2
(𝑦

0
, 𝑧

1
) ≤ −1whenever

𝑧

𝜙
, we can choose a 𝑇 > 0 satisfying 𝑧

𝜙
(𝑇) = 𝑧

1
.

Step 2. Fix (𝛾 − 𝜎)

−1
𝛼𝛽 < 𝑧

0
< 𝑧

1
. Due to lim

𝑦→∞
𝑔

2
(𝑦, 𝑧) =

∞ uniformly in 𝑧 ∈ [𝑧

1
, 𝑧

0
], we can choose 𝑦

0
satisfying

𝑔

2
(𝑦

0
, 𝑧) ≥ 1 for any 𝑧 ∈ [𝑧

1
, 𝑧

0
]. By using similar way to

Step 1, it easily shows that there is a function 𝜙(𝑡) and 𝑇 > 0

such that (97) results in a solution 𝑦

𝜙
(0) ≡ 𝑦

0
, 𝑧
𝜙
(0) ≡ 𝑧

0
, and

𝑧

𝜙
(𝑇) = 𝑧

1
.

Step 3. Let 𝑧
0
< 0 and

𝑧 = ln [

−𝛼

𝛽𝑧

0

] . (104)

Since lim
𝑦→𝑧
−1𝑔

2
(𝑦, 𝑧

0
) = ∞, it easily knows that there is real

number 𝑐
1
and 𝑦

0
∈ R satisfying 𝑔(𝑦

0
, 𝑧)

2
≥ 1 for any 𝑧 ∈

[𝑧

0
− 𝑐

1
, 𝑧

0
+ 𝑐

1
] and (𝑦

0
, 𝑧) ∈ 𝐸. In the case, we can choose a

control function𝜙 satisfying𝑦
𝜙
≡ 𝑦

0
, 𝑧
𝜙
(0) = 𝑧

0
, and 𝑧

𝜙
(𝑇) =

𝑧

0
+ 𝑐

1
for some 𝑇 > 0.

Step 4. If Hypothesis conditionH
1
holds. It is easy to see that

𝑧

∗
∈ [0, (𝛾 − 𝜎)

−1
𝛼𝛽]. Based on the definition of 𝑎∗, for any

𝜀 > 0, there are 𝜇
1
> 0 and 𝜇

2
> 0 satisfying the property: if

(𝑧

0
, 𝑧

1
) such that 𝑧

1
− 𝜇

1
< 𝑧

0
< 𝑧

1
< 𝑎

∗
− 𝜀, one can choose

a 𝑦

0
such that 𝑔(𝑦

0
, 𝑧)

2
> 𝜇

2
for 𝑧 ∈ [𝑧

0
, 𝑧

1
] and (𝑦

0
, 𝑧) ∈ 𝐸.

Hence, we can choose a control function 𝜙 satisfying 𝑦
𝜙
≡ 𝑦

0
,

𝑧

𝜙
(0) = 𝑧

0
, and 𝑧

𝜙
(𝑇) = 𝑧

1
for some 𝑇 > 0.

Step 5. If Hypothesis conditionH
1
does not hold.Then there

are 𝜇
1
and 𝜇

2
> 0 satisfying the property: if (𝑧

0
, 𝑧

1
) such that

𝑧

1
−𝜇

1
< 𝑧

0
< 𝑧

1
and 𝑧

0
, 𝑧

1
∈ [0, (𝛾−𝜎)

−1
𝛼𝛽], one can choose

a 𝑦

0
such that 𝑔(𝑦

0
, 𝑧)

2
> 𝜇

2
for 𝑧 ∈ [𝑧

0
, 𝑧

1
] and (𝑦

0
, 𝑧) ∈ 𝐸.

By the same way as before, we can choose a control function
𝜙 satisfying 𝑦

𝜙
(0) = 𝑦

0
, 𝑧
𝜙
(0) = 𝑧

0
, and 𝑧

𝜙
(𝑇) = 𝑧

1
for some

𝑇 > 0.

Step 6. Let 𝑦

0
∈ R, 𝐾 > 0, 𝐿

1
> 𝐿

0
, and 0 < 𝜀 <

min(𝐾/4, (𝐿

1
−𝐿

0
)/4) and [𝑦

0
, 𝑦

0
+𝐾]×[𝐿

0
, 𝐿

1
] ⊂ 𝐸.Denote

𝑚

∗
= max {󵄨󵄨󵄨

󵄨

𝑔

1
(𝑦, 𝑧)

󵄨

󵄨

󵄨

󵄨

+

󵄨

󵄨

󵄨

󵄨

𝑔

2
(𝑦, 𝑧)

󵄨

󵄨

󵄨

󵄨

| (𝑦, 𝑧)

∈ [𝑦

0
, 𝑦

0
+ 𝐾] × [𝐿

0
, 𝐿

1
]} ,

(105)

and 𝑡

0
= 𝜀/𝑚

∗. For every 𝑧

0
∈ [𝐿

0
+ 𝜀, 𝐿

1
− 𝜀] × [𝐿

0
, 𝐿

1
],

it easily knows that system (97) with 𝑦

𝜙
(0) = 𝑦

0
, 𝑧
𝜙
(0) = 𝑧

0

results in the solution such that, for all 𝑡 ∈ [0, 𝑡

0
],

𝑦

𝜙
(𝑡

0
) ∈ (𝑦

0
+

𝐾

2

, 𝑦

0
+ 𝐾) ,

𝑧

𝜙
(𝑡) ∈ [𝑧

0
− 𝜀, 𝑧

0
+ 𝜀] .

(106)

From (97), we get

𝛽𝜙𝑒

𝑦
𝜙
− 𝑚

∗
≤ 𝑦

󸀠

𝜙
≤ 𝛽𝜙𝑒

𝑦
𝜙
− 𝑚

∗
. (107)

It is easy to calculate that the solution of the equation 𝑦

󸀠
=

𝑎𝑦 + 𝑏 is

𝑦 = 𝑦

0
+ 𝑏𝑡 + ln 𝑏

𝑎𝑒

𝑦
0
+ 𝑏 − 𝑎𝑒

𝑦
0
+𝑏𝑡

. (108)

By using comparison theorem, we have, for any 𝑡 ∈ [0, 𝑡

0
],

𝑦

𝜙
≥ 𝑦

0
− 𝑚

∗
𝑡 + ln𝑚

∗

− ln [𝛽𝜙𝑒

𝑦
0
(𝑒

−𝑚
∗
𝑡
− 1) + 𝑚

∗
] ,

𝑦

𝜙
≤ 𝑦

0
+ 𝑚

∗
𝑡 + ln𝑚

∗

− ln [𝛽𝜙𝑒

𝑦
0
(1 − 𝑒

𝑚
∗
𝑡
) + 𝑚

∗
] .

(109)

Thus,

𝑦

𝜙
≥ 𝑦

0
− 𝜀 + ln𝑚

∗
− ln [𝛽𝜙𝑒

𝑦
0
(𝑒

−𝜀
− 1) + 𝑚

∗
] ,

𝑦

𝜙
≤ 𝑦

0
+ 𝜀 + ln𝑚

∗
− ln [𝛽𝜙𝑒

𝑦
0
(1 − 𝑒

𝜀
) + 𝑚

∗
] .

(110)

Therefore, (I) term of (106) can be proven if we find a constant
𝜙 satisfying

𝑦

0
− 𝜀 + ln𝑚

∗
− ln [𝛽𝜙𝑒

𝑦
0
(𝑒

−𝜀
− 1) + 𝑚

∗
]

> 𝑦

0
+

𝐾

2

,

(111)

𝑦

0
+ 𝜀 + ln𝑚

∗
− ln [𝛽𝜙𝑒

𝑦
0
(1 − 𝑒

𝜀
) + 𝑚

∗
] < 𝑦

0
+ 𝐾. (112)

It is obvious that (111) is equivalent to

𝜙 ∈ (

𝑚

∗
(1 − 𝑒

−𝜀−𝐾/2
)

𝛽𝑒

𝑦
0
(1 − 𝑒

−𝜀
)

;

𝑚

∗

𝛽𝑒

𝑦
0
(1 − 𝑒

−𝜀
)

) ,
(113)
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and (112) is equivalent to

𝜙 <

𝑚

∗
(1 − 𝑒

−𝜀−𝐾
)

𝛽𝑒

𝑦
0
(𝑒

𝜀
− 1)

.

(114)

Obviously, for 𝜀 is small enough, we get

𝑚

∗
(1 − 𝑒

−𝜀−𝐾/2
)

𝛽𝑒

𝑦
0
(1 − 𝑒

−𝜀
)

<

𝑚

∗
(1 − 𝑒

−𝜀−𝐾
)

𝛽𝑒

𝑦
0
(𝑒

𝜀
− 1)

.

(115)

In other words, we can find 𝜙 such that (I) term of (106) is
true. For the second assertion, we get, for all 0 ≤ 𝑡 ≤ 𝑡

0
,

󵄨

󵄨

󵄨

󵄨

󵄨

𝑧

𝜙
(𝑡) − 𝑧

𝜙
(0)

󵄨

󵄨

󵄨

󵄨

󵄨

=

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

∫

𝑡

0

𝑔

2
(𝑦

𝜙
(𝑠) , 𝑧

𝜙
(𝑠)) 𝑑𝑠

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

≤ ∫

𝑡
0

0

𝑚

∗
𝑑𝑠 = 𝑚

∗
𝑡

0
= 𝜀.

(116)

From (106), it easily shows that for (𝑦
1
, 𝑧

1
) ∈ (𝑦

0
, 𝑦

0
+𝐾/2] ×

[𝐿

0
+2𝜀, 𝐿

1
−2𝜀] there is a 𝑧

0
∈ [𝑧

1
−𝜀, 𝑧

1
+𝜀] and a𝑇 ∈ (0, 𝑡

0
)

satisfying𝑦
𝜙
(𝑇) = 𝑦

1
and 𝑧

𝜙
(𝑇) = 𝑧

1
. By using similar proofs,

(𝑦

0
− 𝐾/2, 𝑦

0
]. Therefore, for any (𝑦

1
, 𝑧

1
) ∈ (𝑦

0
− 𝐾/2, 𝑦

0
+

𝐾/2] × [𝐿

0
+ 2𝜀, 𝐿

1
− 2𝜀], we obtain that there is a 𝑧

0
∈ [𝑧

1
−

𝜀, 𝑧

1
+ 𝜀] and a 𝑇 ∈ (0, 𝑡

0
) satisfying 𝑦

𝜙
(𝑇) = 𝑦

1
and 𝑧

𝜙
(𝑇) =

𝑧

1
. The proof is completed.

Theorem 9. Suppose that 𝜎 < 𝑑 < 𝛾 < 𝑟 < 2𝛾, 0 < 𝑔 < 𝛾,
𝑟 + 𝑔 < 𝑑 + 𝛾 hold. The following assertions are true.

(I) If Hypothesis conditionH
1
does not hold, then there is

a constant 𝑇 > 0 satisfying 𝑘(𝑇, 𝑥, 𝑦, 𝑥

0
, 𝑦

0
) > 0 for

each (𝑥

0
, 𝑦

0
) ∈ R2 and for almost every (𝑥, 𝑦) ∈ R2.

(II) If Hypothesis condition H
1
holds, then there is a

constant 𝑇 > 0 such that 𝑘(𝑇, 𝑥, 𝑦, 𝑥
0
, 𝑦

0
) > 0 for any

point (𝑥
0
, 𝑦

0
) ∈ R2 and almost every (𝑥, 𝑦) ∈ R2

such that (𝑥
0
, 𝑦

0
) and (𝑥, 𝑦) in 𝐸

𝑖
(𝑖 = 1, 2), where

𝑧 = 𝑒

−𝑥
− 𝛽

−1
𝛼𝑒

−𝑦, 𝑘(𝑇, 𝑥, 𝑦, 𝑥
0
, 𝑦

0
) > 0 is a measura-

ble function.

Proof. By using continuity theory, we can find a continuity
function 𝜙 ∈ 𝐶(0, 𝑇;R). If there exists 𝜙 ∈ 𝐶(0, 𝑇;R)

such that the derivative 𝐷

𝑥
0
,𝑦
0
,𝜙
is the rank 2, then we have

𝑘(𝑇, 𝑥, 𝑦, 𝑥

0
, 𝑦

0
) > 0. Therefore, the proof is completed.

Theorem 10. Suppose that 𝜎 < 𝑑 < 𝛾 < 𝑟 < 2𝛾, 0 < 𝑔 < 𝛾,
𝑟 + 𝑔 < 𝑑 + 𝛾 hold. If Hypothesis condition H

1
holds. Then,

lim sup
𝑡→∞

𝜁

𝑡
≤ 𝑎

∗, where 𝑎∗ is defined in (100).

Proof. System (7) becomes

𝑑𝜂

𝑡
= 𝑔

1
(𝜂

𝑡
, 𝜁

𝑡
) 𝑑𝑡 + 𝛽𝑒

𝑦
𝑡
∘ 𝑑𝑊𝑡,

𝑑𝜁

𝑡
= 𝑔

2
(𝜂

𝑡
, 𝜁

𝑡
) 𝑑𝑡.

(117)

To prove inf
𝑡≥0

𝜁

𝑡
< 𝑎

∗ s.a, we assume that inf
𝑡≥0

𝜁

𝑡
≥ 𝑎

∗ for
all 𝜔 ∈ Ω with P(Ω) > 0. Due to 𝜁

𝑡
≥ 𝑎

∗ for all 𝑡 ≥ 0, we get
𝑔

1
(𝑦

𝑡
, 𝜁

𝑡
) ≤ 𝑔

1
(𝑦

𝑡
, 𝑎

∗
) for 𝜔 ∈ Ω and 𝑦 ∈ R. Generally, with

P(Ω) < 1, the comparison theorem fails to work here since
the diffusion term is nonlinear. By 𝜆(𝑡) = 𝑒

−𝜂
𝑡 , we have

𝑑𝜆 (𝑡) = −𝜆 (𝑡) 𝑔

1
(− ln 𝜆 (𝑡) , 𝜁

𝑡
) 𝑑𝑡 − 𝛽𝑑𝑊

𝑡
, (118)

where 𝜆 denote the solution of

𝑑𝜆 (𝑡) = −𝜆 (𝑡) 𝑔

1
(− ln 𝜆 (𝑡) , 𝜁

𝑡
) 𝑑𝑡 − 𝛽𝑑𝑊

𝑡
, (119)

with 𝜆(0) = 𝜆(0). Since −𝑦𝑔
1
(ln𝑦, 𝜁

𝑡
) ≥ −𝑦𝑔

1
(ln𝑦, 𝑎

∗
) on Ω

for all 𝑡 > 0, it is easy to see that 𝜆(𝑡, 𝜔) ≥ 𝜆(𝑡, 𝜔). Hence, we
get 𝜂

𝑡
≤ 𝜂

∗

𝑡
(𝜔) for 𝜔 ∈ Ω, where 𝜂∗

𝑡
= − ln 𝜆 is the solution of

𝑑𝜂

∗

𝑡
= 𝑔

1
(𝜂

∗

𝑡
, 𝑎

∗
) 𝑑𝑡 + 𝛽𝑒

𝜂
∗

𝑡
∘ 𝑑𝑊

𝑡
,

𝜂

∗

0
= 𝜂

0
.

(120)

Denote

𝑠

3
(𝑥) = ∫

𝑥

0

exp{−∫

𝑦

0

2 (𝑟 − 𝑑 − (𝛽

2
/2) 𝑒

2𝜂
𝑡
− (𝜎 + 𝑟) / (𝑎

∗
+ 𝛼𝛽

−1
𝑒

−𝑢
) − 𝑟𝑒

𝜂
𝑡
)

𝛽

2
𝑒

2𝑢
𝑑𝑢}𝑑𝑦 = ∫

𝑥

0

exp{

𝑟 + 𝑑

𝛽

2
+

𝑟 − 𝑑

𝛽

2
𝑒

2𝑦

−

2𝑟

𝛽

2
𝑒

𝑦
+ 𝑦 + ∫

𝑦

0

2 (𝜎 + 𝑟)

(𝑎

∗
+ 𝛼𝛽

−1
𝑒

−𝑢
) 𝛽

2
𝑒

2𝑢
𝑑𝑢}𝑑𝑦.

(121)

It is obvious that lim
𝑡→∞

𝑠

3
(𝑥) = ∞, lim

𝑡→−∞
𝑠

3
(𝑥) >

−∞. Thus, we get lim
𝑡→∞

𝜂

∗

𝑡
= −∞ a.s. Hence, we have

lim
𝑡→∞

𝜂

𝑡
= −∞ on Ω. Moreover, by the definition of 𝑔

2
,

there exists a𝑀
1
> 0 satisfying 𝑔

2
(𝑦, 𝑧) ≤ −1 for all𝑦 ≤ −𝑀

1
,

𝑧 ≥ 0. Therefore, for any 𝜔 ∈ Ω, there is a 𝑀

2
> 0 such that

𝜂

𝑡
≤ −𝑀

1
for 𝑡 ≥ 𝑀

2
, it means that 𝑔

2
(𝜂

𝑡
(𝜔)𝜁

𝑡
(𝜔)) ≤ −1.

By using the second equation of (117), we get lim
𝑡→∞

𝜁

𝑡
(𝜔) =

−∞, which contradicts our assumption that inf
𝑡≥0

𝜁

𝑡
≥ 𝑎

∗ on
Ω.

Next, we prove that lim sup
𝑡→∞

𝜁

𝑡
≤ 𝑎

∗ a.s. It easily knows
that

𝑔

2
(𝑦, 𝑧) =

𝐺 (𝑦, 𝑧)

𝑒

−𝑦
(𝑧 + 𝛼𝛽

−1
𝑒

−𝑦
)

, (122)

where
𝐺 (𝑦, 𝑧) = 𝑧 (𝑧 (𝛾 − 𝜎) − 𝛼𝛽) + 𝛼

2
𝛽

−2
(𝑟 − 𝑑 − 𝛾)

⋅ 𝑒

−3𝑦
+ [𝛼𝛽

−1
(𝑟 − 𝑑 − 𝛾) 𝑧 − 𝛾𝛼𝛽

−1
𝑧 − 𝛼𝛽

−1
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+ 𝛼𝛽

−2
(𝛼 (𝛾 − 𝜎) + 𝛼𝛽 + 𝛽𝑟)] 𝑒

−2𝑦
+ [𝛼

2
− 𝛾𝑧

2

+ 𝛼𝛽

−1
(𝑧 (𝛾 − 𝜎) − 𝛼𝛽)

+ (𝛼 (𝛾 − 𝜎) + 𝛼𝛽 + 𝛽𝑟) 𝛽

−1
𝑧] 𝑒

−𝑦

(123)

is a polynomial of order 3 of the variable 𝑒

−𝑦. Based on the
definition of 𝑎∗, there is no more than one point 𝑐

0
∈ R

satisfying 𝑔

2
(𝑐

0
, 𝑎

∗
) = 0. Then, we have 𝑔

2
(𝑦, 𝑎

∗
) ≤ 0 for all

𝑦 ∈ R that for every 𝜏 > 0, 𝑔
2
(𝑦, 𝑎

∗
) < 0 for all 𝑦 > 𝑐

0
+ 𝜏

or 𝑦 < 𝑐

0
− 𝜏. By continuity theorem, we can choose an 𝜀 > 0

and a “rectangle” such that

𝐵 = (−∞, 𝑐

0
− 𝜏] × [𝑎

∗
, 𝑎

∗
+ 𝑘] ∪ [𝑐

0
+ 𝜏,∞)

× [𝑎

∗
+ 𝑘]

(124)

with 𝑘 > 0 satisfying 𝑔
2
(𝑦, 𝑧) < −𝜀 for all (𝑦, 𝑧) ∈ 𝐴. By using

theMarkov property, we get lim sup
𝑡→∞

𝜁

𝑡
≤ 𝑎

∗ a.s.The proof
is complete.

Theorem 11. Suppose that 𝜎 < 𝑑 < 𝛾 < 𝑟 < 2𝛾, 0 < 𝑔 < 𝛾,
𝑟 + 𝑔 < 𝑑 + 𝛾 hold. If Hypothesis conditionH

1
holds, then 𝐸

1

is an invariant set; namely, if (𝜂
0
, 𝜁

0
) ∈ 𝐸

1
, then (𝜂

𝑡
, 𝜁

𝑡
) ∈ 𝐸

1

for all 𝑡 > 0.

Proof. System (117) results in a solution (𝜂

𝑡
, 𝜁

𝑡
) satisfying

(𝜂

0
, 𝜁

0
) ∈ 𝐸

1
and (𝜂

𝑡
1

(𝜔), 𝜁

𝑡
1

(𝜔)) ∈ 𝐸

1
with some 𝑡

1
> 0,

𝜔 ∈ Ω. Based on the continuity of the path 𝜁

𝑡
(𝜔), it is easy

to show that there is 0 ≤ 𝑡

0
< 𝑡

0
< 𝑡

1
satisfying

𝜁

𝑡
0

(𝜔) = 𝑎

∗
,

𝜁

𝑠
(𝜔) < 𝜁

𝑡
(𝜔)

∀𝑡

0
< 𝑠 < 𝑡 < 𝑡

0
.

(125)

The Property (P). For any 𝜏 > 0 there are two constants 𝑘 > 0

and 𝜀 > 0 satisfying 𝑔

2
(𝑦, 𝑧) < −𝜀 for all (𝑦, 𝑧) ∈ 𝐵, where

𝐵 = (−∞, 𝑐

0
− 𝜏] × [𝑎

∗
, 𝑎

∗
+ 𝑘] ∪ [𝑐

0
+ 𝜏,∞)

× [𝑎

∗
+ 𝑘] .

(126)

The property (P) has been proven in Theorem 10. Since the
equation 𝑑𝜁

𝑡
= 𝑔

2
(𝜂

𝑡
(𝜔), 𝜁

𝑡
(𝜔))𝑑𝑡, (125) and the property

(P) that 𝜂

𝑡
(𝜔) = 𝑐

0
for any 𝑡 ∈ [𝑡

0
, 𝑡

0
], we get 𝑑𝜁

𝑡
/𝑑𝑡 =

𝑔

2
(𝑐

0
, 𝜁

𝑡
(𝜔)). From (125), it easily shows that there is a

decreasing sequence {𝑠

𝑛
}

∞

𝑛=1
satisfying lim

𝑛→∞
𝑠

𝑛
= 𝑡

0
and

𝑔

2
(𝑐

0
, 𝜁

𝑠
𝑛

(𝜔)) > 0 for any 𝑛 = 1, 2, . . . . It is obvious that
the result contradicts the property (P). Therefore, the proof
is complete.

Theorem 12. Suppose that 𝜎 < 𝑑 < 𝛾 < 𝑟 < 2𝛾, 0 < 𝑔 < 𝛾,
𝑟+𝑔 < 𝑑+𝛾, (𝜎+𝑟)𝑚 > 𝑟−𝑑 hold, where𝑚 is defined by (23).
Then lim

𝑡→+∞
𝜂

𝑡
= −∞; the distribution of the Markov process

𝜉

𝑡
weakly converges to the probability measure with the density

𝑓

∗
when 𝑡 → ∞, where the Markov process (𝜉

𝑡
, 𝜂

𝑡
) denotes a

solution of (4) with (𝜉

0
, 𝜂

0
) ∈ R2.

Proof. ByTheorem 4, it is easy to see that 𝜉
𝑠
≤ 𝜉

𝑠
; then we get

𝜂

𝑡
= 𝜂

0
+ ∫

𝑡

0

(𝑟 − 𝑑 −

𝛽

2

2

𝑒

2𝜂
𝑠
− (𝜎 + 𝑟) 𝑒

𝜉
𝑡
− 𝑟𝑒

𝜂
𝑠
)𝑑𝑠

+ ∫

𝑡

0

𝛽𝑒

𝜂
𝑠
𝑑𝑊

𝑠
.

(127)

Therefore,

𝜂

𝑡

𝑡

≤

𝜂

0

𝑡

+

𝛽 ∫

𝑡

0
𝑒

𝜂
𝑠
𝑑𝑊

𝑠
− (𝛽

2
/2) ∫

𝑡

0
𝑒

2𝜂
𝑠
𝑑𝑠

𝑡

−

(𝜎 + 𝑟)

𝑡

∫

𝑡

0

𝑒

𝜉
𝑡
𝑑𝑠 + 𝑟 − 𝑑.

(128)

Based on the proof of Theorem 5, we have

lim sup
𝑡→∞

𝛽∫

𝑡

0
𝑒

𝜂
𝑠
𝑑𝑊

𝑠
− (𝛽

2
/2) ∫

𝑡

0
𝑒

2𝜂
𝑠
𝑑𝑠

𝑡

≤ 0 a.a. (129)

Moreover, by ergodic theorem, we get

lim
𝑡→∞

1

𝑡

∫

𝑡

0

𝑒

𝜉
𝑡
𝑑𝑠 = ∫

+∞

−∞

𝑒

𝑥
𝑓

∗
(𝑥) 𝑑𝑥 = 𝑚.

(130)

From (23) and (128)–(130), we have

lim sup
𝑡→∞

𝜂

𝑡

𝑡

≤ 𝑟 − 𝑑 − (𝜎 + 𝑟)𝑚 < 0. (131)

Then

lim
𝑡→+∞

𝜂

𝑡
= −∞. (132)

Thus, for sufficiently small 𝜀 > 0, it is easy to see that there
exist 𝑡

0
and a setΩ

𝜀
satisfying Prob(Ω

𝜀
) > 1−𝜀 and (𝛾−𝜎)𝑒

𝑦
𝑡
+

𝑔/(1 − 𝑒

𝑦
𝑡
) ≤ 𝜀 for 𝑡 ≥ 𝑡

0
and 𝜔 ∈ Ω

𝜀
. From the inequalities

𝛼𝑑𝑊 + (𝛾 −

𝛼

2

2

− 𝛾𝑒

𝜉
𝑡
− 𝜀)𝑑𝑡 ≤ 𝑑𝜉

𝑡

≤ 𝛼𝑑𝑊 + (𝛾 −

𝛼

2

2

− 𝛾𝑒

𝜉
𝑡
)𝑑𝑡,

(133)

it easily shows that the distribution of the Markov process 𝜉
𝑡

weakly converges to the probability measure which possesses
the density 𝑓

∗
. The proof is complete.

Theorem 13. Suppose that 𝜎 < 𝑑 < 𝛾 < 𝑟 < 2𝛾, 0 < 𝑔 < 𝛾,
𝑟 + 𝑔 < 𝑑 + 𝛾, (𝜎 + 𝑟)𝑚 < 𝑟 − 𝑑 hold; then there is a stationary
distribution in system (4).

Proof. By using the former random variables 𝑋
𝑡
and 𝑌

𝑡
. It is

easy to see that (𝑋
𝑡
, 𝑌

𝑡
) is a Markov process on R2

+
and 𝛾 =

𝑚𝛾 + 𝑚

󸀠
(𝛼

2
/2), where

𝑚

󸀠
= ∫

R

𝑒

2𝑥
𝑓

∗
(𝑥) 𝑑𝑥. (134)
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Moreover,

lim sup
𝑡→∞

∫

𝑡

0

𝑋

2

𝑠
𝑑𝑠 = lim sup

𝑡→∞

∫

𝑡

0

𝑒

2𝜉
𝑠
𝑑𝑠 ≤ lim

𝑡→∞

𝑒

2𝜉
𝑠
𝑑𝑠

= 𝑚

󸀠
.

(135)

Therefore, by using the second assertion ofTheorem 5, we get

lim inf
𝑡→∞

1

𝑡

∫

𝑡

0

(𝑌

𝑠
+

𝑔 (𝛾 − 𝜎)

−1

1 − 𝑒

𝑌
𝑠

+

𝛾

𝛾 − 𝜎

𝑋

𝑠
)𝑑𝑠

≥

𝛾

𝛾 − 𝜎

𝑚.

(136)

Furthermore, by Theorem 5, we have

𝛾

(𝛾 − 𝜎) (𝜎 + 𝑟)

lim inf
𝑡→∞

1

𝑡

⋅ ∫

𝑡

0

(− (𝜎 + 𝑟)𝑋

𝑠
− 𝑟𝑌

𝑠
−

𝛽

2

2

𝑌

2

𝑠
)𝑑𝑠

≥ −

𝛾 (𝑟 − 𝑑)

(𝛾 − 𝜎) (𝜎 + 𝑟)

.

(137)

From (136) and (137), we get

lim inf
𝑡→∞

1

𝑡

∫

𝑡

0

(−

𝛾 (𝑟 + 𝜎 − 𝛾)

(𝛾 − 𝜎) (𝜎 + 𝑟)

𝑌

𝑡

−

𝛽

2
𝛾

2 (𝛾 − 𝜎) (𝜎 + 𝑟)

𝑌

2

2
)𝑑𝑠

≥

𝛾 ((𝜎 + 𝑟)𝑚 − (𝑟 − 𝑑))

(𝛾 − 𝜎) (𝜎 + 𝑟)

.

(138)

ByTheorem 5 again, we have

lim inf
𝑡→∞

1

𝑡

∫

𝑡

0

(𝑟𝑌

𝑠
+

𝛽

2

2

𝑌

2

𝑡
)𝑑𝑠 ≥ (𝑟 − 𝑑) − 𝑚 (𝜎 + 𝑟)

> 0.

(139)

Moreover, we get that the inequality

∫

𝑡

0

𝑌

𝑠
𝑑𝑠 ≤

√

𝑡∫

𝑡

0

𝑌

2

𝑠
𝑑𝑠.

(140)

Then there are two constants𝑀
1
> 0 and𝑀

2
> 0 such that

2𝑀

1
≤ lim inf

𝑡→∞

1

𝑡

∫

𝑡

0

𝑌

2

𝑠
𝑑𝑠 ≤ lim sup

𝑡→∞

1

𝑡

∫

𝑡

0

𝑌

2

𝑠
𝑑𝑠 ≤ 𝑀

2
. (141)

From the inequality

2𝑀

1
≤ lim inf

𝑡→∞

1

𝑡

∫

𝑡

0

𝑌

2

𝑠
𝑑𝑠,

(142)

it is easy to see that

lim inf
𝑡→∞

1

𝑡

∫

𝑡

0

1

{𝑌
2

𝑠
>𝑀
1
}
𝑌

2

𝑠
𝑑𝑠 > 𝑀

1
> 0.

(143)

By Holder’s inequality, we get

1

𝑡

∫

𝑡

0

E [1

{𝑌
2

𝑠
>𝑀
1
}
𝑌

2

𝑠
] 𝑑𝑠

≤ (

1

𝑡

∫

𝑡

0

E [1

{𝑌
2

𝑠
>𝑀
1
}
]

(𝑝+1)/𝑝

𝑑𝑠)

𝑝/(𝑝+1)

⋅ (

1

𝑡

∫

𝑡

0

E [𝑌

𝑠
]

2+2𝑝

𝑑𝑠)

1/(𝑝+1)

.

(144)

For 0 < 𝑝 < 1/2, there is a constant𝑀
3
satisfying

lim sup
𝑡→∞

1

𝑡

∫

𝑡

0

E [𝑌

𝑠
]

2+2𝑝

𝑑𝑠 < 𝑀

3
. (145)

Thus, we get

𝑀

1
≤ lim inf

𝑡→∞

1

𝑡

∫

𝑡

0

E [1

{𝑌
2

𝑠
>𝑀
1
}
𝑌

2

𝑠
] 𝑑𝑠

≤ (lim inf
𝑡→∞

1

𝑡

∫

𝑡

0

P {𝑌

2

𝑠
> 𝑀

1
} 𝑑𝑠)

𝑝/(𝑝+1)

⋅ (lim sup
𝑡→∞

1

𝑡

∫

𝑡

0

E [𝑌

𝑠
]

2+2𝑝

𝑑𝑠)

1/(𝑝+1)

.

(146)

That is,

lim inf
𝑡→∞

1

𝑡

∫

𝑡

0

P {𝑌

2

𝑠
> 𝑀

1
} 𝑑𝑠 ≥ 𝜀

0
=

𝑀

(𝑝+1)/𝑝

1

𝑀

1/𝑝

3

. (147)

Furthermore, there is a constant𝐻 > 0 such that

lim inf
𝑡→∞

P {𝑋

𝑡
+ 𝑌

𝑡
≤ 𝐻} ≥ 1 −

𝜀

0

2

. (148)

It means that

lim inf
𝑡→∞

1

𝑡

∫

𝑡

0

𝑄

𝑡
(𝐴) 𝑑𝑠 ≥

𝜀

0

2

> 0,
(149)

where 𝑄

𝑡
is the semigroup related to the random variable

(𝑋

𝑡
, 𝑌

𝑡
) and

𝐴 = {𝑦 ≥
√
𝑀

1
, 𝑥 + 𝑦 ≤ 𝐻} . (150)

From (149) andTheorem 1 in [29, pp 36], there is a stationary
distribution 𝜆 inR2

+
for the random variable (𝑋

𝑡
, 𝑌

𝑡
) satisfy-

ing 𝜆(𝐴) > 0. Because the boundary 𝐴

1
= {𝑥 = 0} × R

+
is

invariant under 𝑄
𝑡
and lim

𝑡→∞
𝑌

𝑡
= 0 if 𝑋

0
= 0, then we get

that 𝜆(𝐴
1
) > 0. Thus, there is a stationary distribution 𝜆 on

intR2; that is, there is a stationary distribution related to the
random variable (𝜉

𝑡
, 𝜂

𝑡
). The proof is complete.

Theorem 14. Suppose that 𝜎 < 𝑑 < 𝛾 < 𝑟 < 2𝛾, 0 < 𝑔 < 𝛾,
𝑟+𝑔 < 𝑑+𝛾 hold.Then the distribution of the random variable
(𝜉

𝑡
, 𝜂

𝑡
) exists a density 𝑢(𝑡, 𝑥, 𝑦) satisfying (8). Furthermore,

the following assertions are true
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(I) Assume (𝜎 + 𝑟)𝑚 < 𝑟 − 𝑑; if Hypothesis condition
H
1
does not hold, then theMarkov semigroup {𝑃(𝑡)}

𝑡≥0

is asymptotically stable on R2; that is, there is a
stationary density 𝑢

∗
(𝑡, 𝑥, 𝑦) of (8) satisfying

lim
𝑡→∞

∬

R2

󵄨

󵄨

󵄨

󵄨

𝑢 (𝑡, 𝑥, 𝑦) − 𝑢

∗
(𝑥, 𝑦)

󵄨

󵄨

󵄨

󵄨

𝑑𝑥 𝑑𝑦 = 0. (151)

(II) Assume (𝜎 + 𝑟)𝑚 < 𝑟 − 𝑑; if Hypothesis conditionH
1

holds, then 𝐸

2
is a transient set and 𝐸

1
is an invari-

ant set. Furthermore, the integral Markov semigroup
{𝑃(𝑡)}

𝑡≥0
is asymptotically stable on 𝐸

1
. It implies that

support 𝑢
∗
⊂ 𝐸

1
and

lim
𝑡→∞

∬

𝐸
1

󵄨

󵄨

󵄨

󵄨

𝑢 (𝑡, 𝑥, 𝑦) − 𝑢

∗
(𝑥, 𝑦)

󵄨

󵄨

󵄨

󵄨

𝑑𝑥 𝑑𝑦 = 0. (152)

(III) Assume (𝜎+𝑟)𝑚 > 𝑟−𝑑; then lim
𝑡→∞

𝜂

𝑡
= −∞ a.s. and

the distribution of random variable 𝜉
𝑡
weakly converges

to the probability measure with the density 𝑓
∗
(𝑥)when

𝑡 → ∞.

Proof. FromTheorem 6, then the distribution of the random
variable (𝜉

𝑡
, 𝜂

𝑡
) results in a density 𝑢(𝑡, 𝑥, 𝑦) satisfying (8). By

Theorem 9, for every 𝑓 ∈ 𝐷, we get

∫

∞

0

𝑃 (𝑡) 𝑓𝑑𝑡 > 0 a.e. on R
2 or on 𝐸

1
. (153)

By Corollary 1 in [23, pp 248], it is easy to see that the
integral Markov semigroup {𝑃(𝑡)}

𝑡≥0
is asymptotically stable

or sweeping. Based on Theorems 10, 11, and 13, it is easy to
see that (I) assertion and (II) assertion are directly proven.
ByTheorem 12, (III) assertion is directly proven.The proof is
complete.
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We will consider the higher order functional dynamic equations with mixed nonlinearities of the form 𝑥
[𝑛]

(𝑡) +

∑
𝑁

𝑗=0
𝑝𝑗(𝑡)𝜙𝛾𝑗

(𝑥(𝜑𝑗(𝑡))) = 0, on an above-unbounded time scale T , where 𝑛 ≥ 2, 𝑥
[𝑖]

(𝑡) fl 𝑟𝑖(𝑡)𝜙𝛼𝑖
[(𝑥
[𝑖−1]

)
Δ
(𝑡)], 𝑖 = 1, . . . , 𝑛 −

1, with 𝑥
[0]

= 𝑥, 𝜙𝛽(𝑢) fl |𝑢|
𝛽 sgn 𝑢, and 𝛼[𝑖, 𝑗] fl 𝛼𝑖 ⋅ ⋅ ⋅ 𝛼𝑗. The function 𝜑𝑖 : T → T is a rd-continuous function such that

lim𝑡→∞𝜑𝑖(𝑡) = ∞ for 𝑗 = 0, 1, . . . , 𝑁.The results extend and improve some known results in the literature on higher order nonlinear
dynamic equations.

1. Introduction

In this paper, we consider comparison criteria for higher
order nonlinear dynamic equation with mixed nonlinearities
of the form

𝑥
[𝑛]

(𝑡) +

𝑁

∑

𝑗=0

𝑝𝑗 (𝑡) 𝜙𝛾𝑗
(𝑥 (𝜑𝑗 (𝑡))) = 0, (1)

on an above-unbounded time scale T , where

(i) 𝑛 ≥ 2 is an integer, and 𝑥
[𝑖]

(𝑡) fl 𝑟𝑖(𝑡)𝜙𝛼𝑖
[(𝑥
[𝑖−1]

)
Δ
(𝑡)],

𝑖 = 1, 2, . . . , 𝑛 − 1, 𝑡 ∈ T , with 𝑟𝑛 = 1, 𝛼𝑛 = 1, and
𝑥
[0]

= 𝑥;

(ii) 𝜙𝛽(𝑢) fl |𝑢|
𝛽 sgn 𝑢 for 𝛽 > 0.

Without loss of generality we assume 𝑡0 ∈ T . For 𝐴 ⊂ T

and 𝐵 ⊂ R, we denote by 𝐶rd(𝐴, 𝐵) the space of right-
dense continuous functions from 𝐴 to 𝐵 and by 𝐶

1
rd(𝐴, 𝐵)

the set of functions in 𝐶rd(𝐴, 𝐵) with right-dense continuous

Δ-derivatives. Throughout this paper we make the following
assumptions:

(iii) 𝛼𝑖, 𝛾𝑗 > 0, 𝑖 = 1, 2, . . . , 𝑛 − 1 and 𝑗 = 0, 1, . . . , 𝑁,
are constants and 𝑟𝑖 ∈ 𝐶rd([𝑡0, ∞)T , (0, ∞)) for 𝑖 =

1, 2, . . . , 𝑛 − 1, such that

∫

∞

𝑡0

𝑟
−1/𝛼𝑖
𝑖 (𝑠) Δ𝑠 = ∞, 𝑖 = 1, 2, . . . , 𝑛 − 1; (2)

𝛾𝑗 > 𝛾0, 𝑗 = 1, 2, . . . , 𝑙;

𝛾𝑗 < 𝛾0, 𝑗 = 𝑙 + 1, 𝑙 + 2, . . . , 𝑁.

(3)

(iv) 𝑝𝑗 ∈ 𝐶rd([𝑡0, ∞)T ,R+) such that 𝑝𝑗 ̸≡ 0, 𝑗 = 0, 1, . . . ,

𝑁 on [𝑡0, ∞)T .
(v) 𝜑𝑗 ∈ 𝐶rd(T , T) rd-continuous function such that

lim𝑡→∞𝜑𝑗(𝑡) = ∞, 𝑗 = 0, 1, . . . , 𝑁, and we let
𝜑(𝑡) fl inf{𝜑0(𝑡), 𝜑1(𝑡), . . . , 𝜑𝑁(𝑡)} be a nondecreasing
function on [𝑡0, ∞)T .

Recall that the knowledge and understanding of time
scales and time scale notation are assumed. For an excellent
introduction to the calculus on time scales, see [1–3]. By a
solution of (1) we mean a nontrivial real-valued function
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𝑥 ∈ 𝐶
1
rd[𝑇𝑥, ∞)T for some 𝑇𝑥 ≥ 𝑡0 such that 𝑥

[𝑖]
∈

𝐶
1
rd[𝑇𝑥, ∞)T , 𝑖 = 1, 2, . . . , 𝑛 − 1, and 𝑥(𝑡) satisfies (1) on

[𝑇𝑥, ∞)T , where 𝐶rd is the space of right-dense continuous
functions. An extendable solution 𝑥 of (1) is said to be
oscillatory if it is neither eventually positive nor eventually
negative. Otherwise it is said to be nonoscillatory.

In the last few years, there has been an increasing
interest in obtaining sufficient conditions for the oscil-
lation/nonoscillation of solutions of different classes of
dynamic equations; we refer the reader to [4–13] and the
references cited therein. Special cases of (1) have been studied
by many authors. When 𝛼𝑖 = 𝑟𝑖 = 𝑁 = 1 and 𝜑𝑖(𝑡) = 𝑡 for
𝑖 = 1, 2, . . . , 𝑛, 𝑝(𝑡) = 𝑞0(𝑡) = 0, and 𝑞1(𝑡) ≥ 0, Grace et
al. [14] established some oscillation criteria for higher order
nonlinear dynamic equation of the form

𝑥
Δ
𝑛

(𝑡) + 𝑝 (𝑡) (𝑥
𝜎

(𝑡))
𝛾

= 0, (4)

where 𝛾 is the ratio of positive odd integers. In paper byGrace
[15], some new criteria for the oscillation of the even order
dynamic equation

[𝑟 (𝑡) (𝑥
Δ
𝑛−1

(𝑡))

𝛼

]

Δ

+ 𝑝 (𝑡) (𝑥
𝜎

(𝑡))
𝛾

= 0, (5)

where 𝛼 and 𝛾 are the ratios of positive odd integers, were
given. Recently, Hassan and Kong [16] obtained asymptotics
and oscillation criteria for the 𝑛th-order half-linear dynamic
equation with deviating argument

(𝑥
[𝑛−1]

)

Δ
(𝑡) + 𝑝 (𝑡) 𝜙𝛼[1,𝑛−1] (𝑥 (𝑔 (𝑡))) = 0, (6)

and Grace and Hassan [17] establish oscillation criteria for
more general higher order dynamic equation

𝑥
[𝑛]

(𝑡) + 𝑝 (𝑡) 𝜙𝛾 (𝑥
𝜎

(𝜑 (𝑡))) = 0. (7)

The purpose of this paper is to derive comparison criteria
for higher order nonlinear dynamic equation with mixed
nonlinearities (1).

2. Preliminaries

We will employ the following lemmas. Consider the inequal-
ity

(𝑟 (𝑡) 𝜙𝛼 (𝑥
Δ

(𝑡)))

Δ
+ 𝑄 (𝑡) 𝜙𝛾 (𝑥 (𝜑 (𝑡))) ≤ 0, (8)

where 𝑟 and 𝑄 are positive real-valued, rd-continuous func-
tions on T and 𝑟 satisfies condition (2), 𝜑 : T → T is a rd-
continuous function and 𝜑(𝑡) → ∞ as 𝑡 → ∞, and 𝛼 and 𝛾

are positive real numbers.
Now, we present the following lemma.

Lemma 1. If inequality (8) has an eventually positive solution,
then the equation

(𝑟 (𝑡) 𝜙𝛼 (𝑥
Δ

(𝑡)))

Δ
+ 𝑄 (𝑡) 𝜙𝛾 (𝑥 (𝜑 (𝑡))) = 0 (9)

has also an eventually positive solution.

Proof. Let𝑥(𝑡) be an eventually positive solution of inequality
(8). It is easy to see that𝑥

Δ
> 0 eventually. Let 𝑡0 be sufficiently

large so that 𝑥(𝑡) > 0, 𝑥(𝜑(𝑡)) > 0, and 𝑦(𝑡) fl 𝑟(𝑡)𝜙𝛼(𝑥
Δ
(𝑡))

for 𝑡 ∈ [𝑡0, ∞)T . Then, in view of

𝑥 (𝑡) = 𝑥 (𝑡0) + ∫

𝑡

𝑡0

𝜙
−1

𝛼 (

𝑦 (𝑠)

𝑟 (𝑠)

) Δ𝑠, (10)

there is 𝑡1 ≥ 𝑡0 such that 𝜑(𝑡) ≥ 𝑡0, for 𝑡 ≥ 𝑡1. Inequality (8)
becomes

𝑦
Δ

(𝑡) + 𝑄 (𝑡) 𝜙𝛾 (𝑥 (𝑡0) + ∫

𝜑(𝑡)

𝑡0

𝜙
−1

𝛼 (

𝑦 (𝑠)

𝑟 (𝑠)

) Δ𝑠) ≤ 0. (11)

Integrating (11) from 𝑡 to V ≥ 𝑡 ≥ 𝑡1 and letting V → ∞, we
have

𝑦 (𝑡) ≥ 𝐺 (𝑡, 𝑦 (𝑡)) , for 𝑡 ∈ [𝑡1, ∞)
T

, (12)

where

𝐺 (𝑡, 𝑦 (𝑡))

fl ∫

∞

𝑡

𝑄 (V) 𝜙𝛾 (𝑥 (𝑡0) + ∫

𝜑(V)

𝑡0

𝜙
−1

𝛼 (

𝑦 (𝑠)

𝑟 (𝑠)

) Δ𝑠) ΔV.
(13)

Now, we define a sequence of successive approximations
{𝑤𝑗(𝑡)} as follows:

𝑤0 (𝑡) fl 𝑦 (𝑡) ,

𝑤𝑗+1 (𝑡) fl 𝐺 (𝑡, 𝑤𝑗 (𝑡)) , 𝑗 = 0, 1, 2, . . . .

(14)

It is easy to show that

0 < 𝑤𝑗 (𝑡) ≤ 𝑦 (𝑡) ,

𝑤𝑗+1 (𝑡) ≤ 𝑤𝑗 (𝑡) ,

𝑗 = 0, 1, 2, . . . .

(15)

Then, the sequence {𝑤𝑗(𝑡)} is nonincreasing and bounded
for each 𝑡 ≥ 𝑡1. This means that we may define 𝑤(𝑡) fl
lim𝑗→∞𝑤𝑗(𝑡) ≥ 0. Since

0 ≤ 𝑤 (𝑡) ≤ 𝑤𝑗 (𝑡) ≤ 𝑦 (𝑡) , ∀𝑗 ≥ 0, (16)

we find that

∫

𝑡

𝑡1

𝑤𝑗 (𝑠) Δ𝑠 ≤ ∫

𝑡

𝑡1

𝑦 (𝑠) Δ𝑠. (17)

By Lebesgue’s dominated convergence theorem on time scale,
one can easily find

𝑤 (𝑡) = 𝐺 (𝑡, 𝑤 (𝑡)) . (18)

Therefore

𝑤
Δ

(𝑡) = −𝑄 (𝑡) 𝜙𝛾 (𝑥 (𝑡0) + ∫

𝜑(𝑡)

𝑡0

𝜙
−1

𝛼 (

𝑤 (𝑠)

𝑟 (𝑠)

) Δ𝑠)

= −𝑄 (𝑡) 𝜙𝛾 (𝑚 (𝜑 (𝑡))) ,

(19)



Discrete Dynamics in Nature and Society 3

where

𝑚 (𝑡) fl 𝑥 (𝑡0) + ∫

𝑡

𝑡0

𝜙
−1

𝛼 (

𝑤 (𝑠)

𝑟 (𝑠)

) Δ𝑠. (20)

Then

𝑚 (𝑡) > 0,

𝑟 (𝑡) 𝜙𝛼 (𝑚
Δ

(𝑡)) = 𝑤 (𝑡) ,

for 𝑡 ≥ 𝑡1.

(21)

Equation (19) then gives

(𝑟 (𝑡) 𝜙𝛼 (𝑚
Δ

(𝑡)))

Δ
+ 𝑄 (𝑡) 𝜙𝛾 (𝑚 (𝜑 (𝑡))) = 0. (22)

Hence (9) has a positive solution 𝑚(𝑡). This completes the
proof.

The second one is cited from [18, 19].

Lemma 2. Assume that (3) holds.Then there exists an𝑁-tuple
(𝜂1, 𝜂2, . . . , 𝜂𝑁) with 𝜂𝑗 > 0 satisfying

𝑁

∑

𝑗=1

𝛾𝑗𝜂𝑗 = 𝛾0,

𝑁

∑

𝑗=1

𝜂𝑗 = 1.

(23)

The next lemma is cited from [17] and improves the well-
known lemma of Kiguradze.

Lemma 3. Assume that (2) holds. If (1) has an eventually
positive solution 𝑥, then there exists an integer 𝑚 ∈ [0, 𝑛] with
𝑚 + 𝑛 being odd such that

𝑚 ≥ 1

𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝑥
[𝑘]

> 0 𝑓𝑜𝑟 𝑘 = 0, 1, . . . , 𝑚 − 1,

(24)

eventually, and

𝑚 ≤ 𝑛

𝑖𝑚𝑝𝑙𝑖𝑒𝑠 (−1)
𝑚+𝑘

𝑥
[𝑘]

> 0 𝑓𝑜𝑟 𝑘 = 𝑚, . . . , 𝑛,

(25)

eventually.

3. Main Results

In the following main theorem, we will use the following
notations: 𝛼[ℎ, 𝑘] fl 𝛼ℎ ⋅ ⋅ ⋅ 𝛼𝑘 for 1 ≤ ℎ ≤ 𝑘 ≤ 𝑛 − 1 and
𝛼[ℎ, 𝑘] = 1 for ℎ > 𝑘 and, for any 𝑢, V ∈ T , define 𝑅𝑗(V, 𝑢),

𝑃𝑗(𝑡), and 𝑃𝑗(𝑡), 𝑗 = 0, . . . , 𝑛 − 1, by the following recurrence
formulas:

𝑅𝑗 (V, 𝑢)

fl
{
{

{
{

{

[∫

V

𝑢

𝑅𝑗−1 (𝑠, 𝑢)

𝑟𝑚−𝑗+1 (𝑠)
Δ𝑠]

1/𝛼𝑚−𝑗+1

, 𝑗 = 1, . . . , 𝑚,

1, 𝑗 = 0;

𝑃𝑗 (𝑡)

fl
{
{

{
{

{

[

1

𝑟𝑛−𝑗 (𝑡)
∫

∞

𝑡

𝑃𝑗−1 (𝑠) Δ𝑠]

1/𝛼𝑛−𝑗

, 𝑗 = 1, . . . , 𝑛 − 1,

𝑝 (𝑡) , 𝑗 = 0;

𝑃𝑗 (𝑡)

fl
{
{

{
{

{

[

1

𝑟𝑛−𝑗 (𝑡)
∫

∞

𝑡

𝑃𝑗−1 (𝑠) Δ𝑠]

1/𝛼𝑛−𝑗

, 𝑗 = 1, . . . , 𝑛 − 1,

𝑝 (𝑡) , 𝑗 = 0,

(26)

with 𝑝(𝑡) fl 𝑝0(𝑡) + ∏
𝑁

𝑗=1[𝑝𝑗(𝑡)/𝜂𝑗]
𝜂𝑗 and 𝑝(𝑡) fl ∑

𝑁

𝑗=0 𝑝𝑗(𝑡),
provided the improper integrals involved are convergent.

Theorem 4. Assume that for sufficiently large 𝑇 ∈ [𝑡0, ∞)T

the first-order dynamic equation

𝑧
Δ

(𝑡) + 𝐾𝑚 (𝑡) 𝜙𝛾0/𝛼[1,𝑛]
(𝑧 (𝜑 (𝑡))) = 0,

𝑓𝑜𝑟 𝜑 (𝑡) ∈ [𝑇, ∞)T ,

(27)

is oscillatory, where

𝐾𝑚 (𝑡) fl 𝑃𝑛−𝑚−1 (𝑡) [𝑅𝑚 (𝜑 (𝑡) , 𝑇)]
𝛾0/𝛼[𝑚+1,𝑛]

, (28)

for every number𝑚 ∈ {1, . . . , 𝑛−1}with𝑚+𝑛 being odd.Then
(1) if 𝑛 is even, every solution of (1) is oscillatory,
(2) if 𝑛 is odd and

∫

∞

𝑇

𝑃𝑛−1 (𝑡) Δ𝑡 = ∞, (29)

then every solution of (1) either is oscillatory or tends to
zero eventually.

Proof. Assume that (1) has a nonoscillatory solution 𝑥 on
[𝑡0, ∞)T . Then, without loss of generality, 𝑥(𝑡) > 0 and
𝑥(𝜑𝑗(𝑡)) > 0, for 𝑡 ∈ [𝑡0, ∞)T and 𝑗 = 0, 1, . . . , 𝑁. By
Lemma 3, there exists an integer 𝑚, 0 ≤ 𝑚 < 𝑛, with 𝑛 + 𝑚

being odd such that (24) and (25) hold for 𝑡 ≥ 𝑇1 ∈ [𝑡0, ∞)T .
(I) When 𝑚 ≥ 1, from (1), we get

−𝑥
[𝑛]

(𝑡) =

𝑁

∑

𝑗=0

𝑝𝑗 (𝑡) 𝜙𝛾𝑗
(𝑥 (𝜑𝑗 (𝑡)))

≥

𝑁

∑

𝑗=0

𝑝𝑗 (𝑡) 𝜙𝛾𝑗
(𝑥 (𝜑 (𝑡)))

= 𝜙𝛾0
(𝑥 (𝜑 (𝑡)))

𝑁

∑

𝑗=0

𝑝𝑗 (𝑡) [𝑥 (𝜑 (𝑡))]
𝛾𝑗−𝛾0

.

(30)
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From (23), we have

𝑁

∑

𝑗=1

𝛾𝑗𝜂𝑗 − 𝛾0

𝑁

∑

𝑗=1

𝜂𝑗 = 0. (31)

Using the arithmetic-geometric mean inequality (see [20,
Page 17]), we have

𝑁

∑

𝑗=1

𝜂𝑗V𝑗 ≥

𝑁

∏

𝑗=1

V𝜂𝑗
𝑗

, for any V𝑗 ≥ 0, 𝑗 = 1, . . . , 𝑁. (32)

Then for 𝑡 ≥ 𝑇1,

𝑁

∑

𝑗=0

𝑝𝑗 (𝑡) [𝑥 (𝜑 (𝑡))]
𝛾𝑗−𝛾0

= 𝑝0 (𝑡) +

𝑁

∑

𝑗=1

𝜂𝑗

𝑝𝑗 (𝑡)

𝜂𝑗

[𝑥 (𝜑 (𝑡))]
𝛾𝑗−𝛾0

≥ 𝑝0 (𝑡) +

𝑁

∏

𝑗=1

[

𝑝𝑗 (𝑡)

𝜂𝑗

]

𝜂𝑗

[𝑥 (𝜑 (𝑡))]
𝜂𝑗(𝛾𝑗−𝛾0)

= 𝑝0 (𝑡) +

𝑁

∏

𝑗=1

[

𝑝𝑗 (𝑡)

𝜂𝑗

]

𝜂𝑗

= 𝑝 (𝑡) .

(33)

This together with (30) shows that

−𝑥
[𝑛]

(𝑡) ≥ 𝑝 (𝑡) 𝜙𝛾0
(𝑥 (𝜑 (𝑡))) , for 𝑡 ≥ 𝑇1. (34)

Integrating above inequality from 𝑡 ≥ 𝑇1 to V ∈ [𝑡, ∞)T

and then using the fact that 𝑥 is strictly increasing and 𝜑 is
nondecreasing, we get

− 𝑥
[𝑛−1]

(V) + 𝑥
[𝑛−1]

(𝑡) ≥ ∫

V

𝑡

𝑝 (𝑠) 𝜙𝛾0
(𝑥 (𝜑 (𝑠))) Δ𝑠

≥ 𝜙𝛾0
(𝑥 (𝜑 (𝑡))) ∫

V

𝑡

𝑝 (𝑠) Δ𝑠,

(35)

and by (25) we see that 𝑥
[𝑛−1]

(V) > 0. Hence by taking limits
as V → ∞ we have

𝑥
[𝑛−1]

(𝑡) ≥ 𝜙𝛾0
(𝑥 (𝜑 (𝑡))) ∫

∞

𝑡

𝑝 (𝑠) Δ𝑠, (36)

which implies

[𝑥
[𝑛−2]

(𝑡)]

Δ

≥ 𝜙
−1

𝛼𝑛−1
[𝜙𝛾0

(𝑥 (𝜑 (𝑡)))] [

1

𝑟𝑛−1 (𝑡)
∫

∞

𝑡

𝑝 (𝑠) Δ𝑠]

1/𝛼𝑛−1

= 𝜙
−1

𝛼[𝑛−1,𝑛] [𝜙𝛾0
(𝑥 (𝜑 (𝑡)))] 𝑃1 (𝑡) .

(37)

Integrating above inequality (37) from 𝑡 ≥ 𝑇1 to V ∈ [𝑡, ∞)T

and letting V → ∞, we get

− 𝑥
[𝑛−2]

(𝑡) ≥ 𝜙
−1

𝛼[𝑛−1,𝑛] [𝜙𝛾0
(𝑥 (𝜑 (𝑡)))] ∫

∞

𝑡

𝑃1 (𝑠) Δ𝑠,

− [𝑥
[𝑛−3]

(𝑡)]

Δ
≥ 𝜙
−1

𝛼[𝑛−2,𝑛] [𝜙𝛾0
(𝑥 (𝜑 (𝑡)))]

⋅ [

1

𝑟𝑛−2 (𝑡)
∫

∞

𝑡

𝑃1 (𝑠) Δ𝑠]

1/𝛼𝑛−2

= 𝜙
−1

𝛼[𝑛−2,𝑛] [𝜙𝛾0
(𝑥 (𝜑 (𝑡)))] 𝑃2 (𝑡) .

(38)

Continuing this process (𝑛 − 𝑚 − 3) times, we find

− [𝑥
[𝑚]

(𝑡)]

Δ
≥ 𝜙
−1

𝛼[𝑚+1,𝑛] [𝜙𝛾0
(𝑥 (𝜑 (𝑡)))] 𝑃𝑛−𝑚−1 (𝑡) ,

for 𝑡 ≥ 𝑇1.

(39)

Also, from (24) and (25), we get

𝑥
[𝑚−1]

(𝑡) = 𝑥
[𝑚−1]

(𝑇1)

+ ∫

𝑡

𝑇1

𝜙
−1

𝛼𝑚
(𝑥
[𝑚]

(𝑠)) [

1

𝑟𝑚 (𝑠)

]

1/𝛼𝑚

Δ𝑠

≥ 𝜙
−1

𝛼𝑚
(𝑥
[𝑚]

(𝑡)) ∫

𝑡

𝑇1

[

1

𝑟𝑚 (𝑠)

]

1/𝛼𝑚

Δ𝑠

= 𝜙
−1

𝛼𝑚
(𝑥
[𝑚]

(𝑡)) 𝑅1 (𝑡, 𝑇1) .

(40)

It follows that

(𝑥
[𝑚−2]

(𝑡))

Δ

≥ 𝜙
−1

𝛼[𝑚−1,𝑚] (𝑥
[𝑚]

(𝑡)) [

𝑅1 (𝑡, 𝑇1)

𝑟𝑚−1 (𝑡)
]

1/𝛼𝑚−1

.

(41)

Then for 𝑡 ∈ [𝑇1, ∞)T ,

𝑥
[𝑚−2]

(𝑡) ≥ 𝑥
[𝑚−2]

(𝑡) − 𝑥
[𝑚−2]

(𝑇1)

≥ ∫

𝑡

𝑇1

𝜙
−1

𝛼[𝑚−1,𝑚] (𝑥
[𝑚]

(𝑠)) [

𝑅1 (𝑠, 𝑇1)

𝑟𝑚−1 (𝑠)
]

1/𝛼𝑚−1

Δ𝑠

≥ 𝜙
−1

𝛼[𝑚−1,𝑚] (𝑥
[𝑚]

(𝑡)) ∫

𝑡

𝑇1

[

𝑅1 (𝑠, 𝑇1)

𝑟𝑚−1 (𝑠)
]

1/𝛼𝑚−1

Δ𝑠

= 𝜙
−1

𝛼[𝑚−1,𝑚] (𝑥
[𝑚]

(𝑡)) 𝑅2 (𝑡, 𝑇1) .

(42)

Analogously, we have

𝑥 (𝑡) ≥ 𝜙
−1

𝛼[1,𝑚] (𝑥
[𝑚]

(𝑡)) 𝑅𝑚 (𝑡, 𝑇1) . (43)

Then for 𝜑(𝑡) ∈ [𝑇1, ∞)T

𝑥 (𝜑 (𝑡)) ≥ 𝜙
−1

𝛼[1,𝑚] (𝑥
[𝑚]

(𝜑 (𝑡))) 𝑅𝑚 (𝜑 (𝑡) , 𝑇1) . (44)
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From (39) and (44), we get

− [𝑥
[𝑚]

(𝑡)]

Δ
≥ 𝑃𝑛−𝑚−1 (𝑡) [𝑅𝑚 (𝜑 (𝑡) , 𝑇1)]

𝛾0/𝛼[𝑚+1,𝑛]

⋅ 𝜙𝛾0/𝛼[1,𝑛]
(𝑥
[𝑚]

(𝜑 (𝑡))) = 𝐾𝑚 (𝑡)

⋅ 𝜙𝛾0/𝛼[1,𝑛]
(𝑥
[𝑚]

(𝜑 (𝑡))) .

(45)

Let 𝑧(𝑡) fl 𝑥
[𝑚]

(𝑡) > 0; we get

−𝑧
Δ

(𝑡) ≥ 𝐾𝑚 (𝑡) 𝜙𝛾0/𝛼[1,𝑛]
(𝑧 (𝜑 (𝑡))) , (46)

or

𝑧
Δ

(𝑡) + 𝐾𝑚 (𝑡) 𝜙𝛾0/𝛼[1,𝑛]
(𝑧 (𝜑 (𝑡))) ≤ 0. (47)

In view of Corollary 2.3.5 in [21], there exists a positive
solution of (27) which contradicts the assumption of the
theorem.

(II) When 𝑚 = 0 (in this case 𝑛 is odd), therefore

(−1)
𝑘

𝑥
[𝑘]

> 0 for 𝑘 = 0, . . . , 𝑛. (48)

Since 𝑥
Δ

< 0 eventually, then lim𝑡→∞𝑥(𝑡) = 𝑙 ≥ 0. Assume
that 𝑙 > 0. Then for sufficiently large 𝑇2 ∈ [𝑇1, ∞)T , we have
𝑥(𝜑𝑗(𝑡)) ≥ 𝑙 for 𝑡 ≥ 𝑇2 and 𝑗 = 0, 1, . . . , 𝑁. It follows that

𝜙𝛾𝑗
(𝑥 (𝜑𝑗 (𝑡))) ≥ 𝑙

𝛾𝑗
≥ 𝐿 for 𝑡 ∈ [𝑇2, ∞)

T
, (49)

where 𝐿 fl inf0≤𝑗≤𝑁{𝑙
𝛾𝑗

} > 0. Then from (1), we have

−𝑥
[𝑛]

(𝑡) =

𝑁

∑

𝑗=0

𝑝𝑗 (𝑡) 𝜙𝛾𝑗
(𝑥 (𝜑𝑗 (𝑡))) ≥ 𝐿

𝑁

∑

𝑗=0

𝑝𝑗 (𝑡)

= 𝐿𝑝 (𝑡) .

(50)

Integrating from 𝑡 to V ∈ [𝑡, ∞)T , we get

−𝑥
[𝑛−1]

(V) + 𝑥
[𝑛−1]

(𝑡) = 𝐿 ∫

V

𝑡

𝑝 (𝑠) Δ𝑠. (51)

And by (48) we see that 𝑥
[𝑛−1]

(V) > 0. Hence by taking limits
as V → ∞ we have

𝑥
[𝑛−1]

(𝑡) ≥ 𝐿 ∫

∞

𝑡

𝑝 (𝑠) Δ𝑠, (52)

which implies

(𝑥
[𝑛−2]

(𝑡))

Δ
≥ 𝐿
1/𝛼𝑛−1

[

1

𝑟𝑛−1 (𝑡)
∫

∞

𝑡

𝑝 (𝑠) Δ𝑠]

1/𝛼𝑛−1

= 𝐿
1/𝛼𝑛−1

𝑃1 (𝑡) .

(53)

Again integrating above inequality from 𝑡 to V ∈ [𝑡, ∞)T and
then taking V → ∞, we get

−𝑥
[𝑛−2]

(𝑡) ≥ 𝐿
1/𝛼𝑛−1

∫

∞

𝑡

𝑃1 (𝑠) Δ𝑠, (54)

which implies

− (𝑥
[𝑛−3]

(𝑡))

Δ

≥ 𝐿
1/𝛼[𝑛−2,𝑛−1]

[

1

𝑟𝑛−2 (𝑡)
∫

∞

𝑡

𝑃1 (𝑠) Δ𝑠]

1/𝛼𝑛−2

= 𝐿
1/𝛼[𝑛−2,𝑛−1]

𝑃2 (𝑡) .

(55)

Continuing this process (𝑛 − 3) times, we find

− (𝑥 (𝑡))
Δ

≥ 𝐿
1/𝛼[1,𝑛−1]

𝑃𝑛−1 (𝑡) for 𝑡 ∈ [𝑇2, ∞)
T

. (56)

Integrating above inequality 𝑇2 to 𝑡 ∈ [𝑇2, ∞)T , we get

−𝑥 (𝑡) + 𝑥 (𝑇2) ≥ 𝐿
1/𝛼[1,𝑛−1]

∫

𝑡

𝑇2

𝑃𝑛−1 (𝑠) Δ𝑠. (57)

Hence by (29), we have lim𝑡→∞𝑥(𝑡) = −∞, which contradicts
the fact that 𝑥 > 0 eventually. This shows that lim𝑡→∞𝑥(𝑡) =

0. This completes the proof.

Theorem5. Assume that for sufficiently large𝑇 ∈ [𝑡0, ∞)T the
second-order dynamic equation

[𝑟𝑚 (𝑡) 𝜙𝛼𝑚
(𝑧
Δ

(𝑡))]

Δ
+ 𝑄𝑚 (𝑡) 𝜙𝛼𝑚𝛾0/𝛼[1,𝑛]

(𝑧 (𝜑 (𝑡)))

= 0, 𝑓𝑜𝑟 𝜑 (𝑡) ∈ (𝑇, ∞)T ,

(58)

is oscillatory, where

𝑄𝑚 (𝑡) fl
𝑃𝑛−𝑚−1 (𝑡) [𝑅𝑚 (𝜑 (𝑡) , 𝑇1)]

𝛾0/𝛼[𝑚+1,𝑛]

[𝑅1 (𝜑 (𝑡) , 𝑇1)]
𝛼𝑚𝛾0/𝛼[1,𝑛]

, (59)

for every integer number 𝑚 ∈ {1, . . . , 𝑛 − 1} with 𝑚 + 𝑛 being
odd. Then

(1) if 𝑛 is even, then every solution of (1) is oscillatory,
(2) if 𝑛 is odd and (29) holds, then every solution of (1)

either is oscillatory or tends to zero eventually.

Proof. Assume that (1) has a nonoscillatory solution 𝑥 on
[𝑡0, ∞)T . Then, without loss of generality, 𝑥(𝑡) > 0 and
𝑥(𝜑𝑗(𝑡)) > 0, 𝑗 = 0, 1, 2, . . . , 𝑁 on [𝑡0, ∞)T . By Lemma 3,
there exists an integer 𝑚, 0 ≤ 𝑚 < 𝑛, with 𝑛 + 𝑚 being odd
such that (24) and (25) hold for 𝑡 ≥ 𝑇1 ∈ [𝑡0, ∞)T .

(I) When 𝑚 ≥ 1, as seen in the proof of Theorem 4, we
obtain, for 𝑡 ∈ [𝑇1, ∞)T ,

− [𝑥
[𝑚]

(𝑡)]

Δ
≥ 𝜙
−1

𝛼[𝑚+1,𝑛] [𝜙𝛾0
(𝑥 (𝜑 (𝑡)))] 𝑃𝑛−𝑚−1 (𝑡) , (60)

𝑥
[𝑚−1]

(𝑡) ≥ 𝜙
−1

𝛼𝑚
(𝑥
[𝑚]

(𝑡)) 𝑅1 (𝑡, 𝑇1) . (61)

Hence, we have

[

𝑥
[𝑚−1]

(𝑡)

𝑅1 (𝑡, 𝑇1)
]

Δ

≤ 0, for 𝑡 ∈ (𝑇1, ∞)
T

. (62)
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Since for 𝑡 ∈ (𝑇1, ∞)T ,

𝑥
[𝑚−1]

(𝑡) =

𝑥
[𝑚−1]

(𝑡)

𝑅1 (𝑡, 𝑇1)
𝑅1 (𝑡, 𝑇1) , (63)

we have

(𝑥
[𝑚−2]

(𝑡))

Δ

= 𝜙
−1

𝛼𝑚−1
(

𝑥
[𝑚−1]

(𝑡)

𝑅1 (𝑡, 𝑇1)
) [

𝑅1 (𝑡, 𝑇1)

𝑟𝑚−1 (𝑡)
]

1/𝛼𝑚−1

.

(64)

It follows from (62) that we have, for 𝑡 ∈ (𝑇1, ∞)T ,

𝑥
[𝑚−2]

(𝑡) ≥ 𝑥
[𝑚−2]

(𝑡) − 𝑥
[𝑚−2]

(𝑇1)

= ∫

𝑡

𝑇1

𝜙
−1

𝛼𝑚−1
(

𝑥
[𝑚−1]

(𝑠)

𝑅1 (𝑠, 𝑇1)
) [

𝑅1 (𝑠, 𝑇1)

𝑟𝑚−1 (𝑠)
]

1/𝛼𝑚−1

Δ𝑠

≥ 𝜙
−1

𝛼𝑚−1
(

𝑥
[𝑚−1]

(𝑡)

𝑅1 (𝑡, 𝑇1)
) ∫

𝑡

𝑇1

[

𝑅1 (𝑠, 𝑇1)

𝑟𝑚−1 (𝑠)
]

1/𝛼𝑚−1

Δ𝑠

= 𝜙
−1

𝛼𝑚−1
(

𝑥
[𝑚−1]

(𝑡)

𝑅1 (𝑡, 𝑇1)
) 𝑅2 (𝑡, 𝑇1) .

(65)

Continuing this process, we have

𝑥 (𝑡) ≥ 𝜙
−1

𝛼[1,𝑚−1] (
𝑥
[𝑚−1]

(𝑡)

𝑅1 (𝑡, 𝑇1)
) 𝑅𝑚 (𝑡, 𝑇1) . (66)

Then for 𝜑(𝑡) ∈ (𝑇1, ∞)T

𝑥 (𝜑 (𝑡)) ≥ 𝜙
−1

𝛼[1,𝑚−1] (
𝑥
[𝑚−1]

(𝜑 (𝑡))

𝑅1 (𝜑 (𝑡) , 𝑇1)
) 𝑅𝑚 (𝜑 (𝑡) , 𝑇1) . (67)

From (60) and (67), we get

− [𝑥
[𝑚]

(𝑡)]

Δ
≥ 𝜙𝛼𝑚𝛾0/𝛼[1,𝑛]

(

𝑥
[𝑚−1]

(𝜑 (𝑡))

𝑅1 (𝜑 (𝑡) , 𝑇1)
)

⋅ 𝑃𝑛−𝑚−1 (𝑡) [𝑅𝑚 (𝜑 (𝑡) , 𝑇1)]
𝛾0/𝛼[𝑚+1,𝑛]

= 𝑄𝑚 (𝑡)

⋅ 𝜙𝛼𝑚𝛾0/𝛼[1,𝑛]
(𝑥
[𝑚−1]

(𝜑 (𝑡))) .

(68)

Set 𝑧(𝑡) fl 𝑥
[𝑚−1]

(𝑡) > 0; we have, for 𝑡 ≥ 𝑇1,

− [𝑟𝑚 (𝑡) 𝜙𝛼𝑚
(𝑧
Δ

(𝑡))]

Δ

≥ 𝑄𝑚 (𝑡) 𝜙𝛼𝑚𝛾0/𝛼[1,𝑛]
(𝑧 (𝜑 (𝑡))) ,

(69)

or

[𝑟𝑚 (𝑡) 𝜙𝛼𝑚
(𝑧
Δ

(𝑡))]

Δ
+ 𝑄𝑚 (𝑡) 𝜙𝛼𝑚𝛾0/𝛼[1,𝑛]

(𝑧 (𝜑 (𝑡)))

≤ 0.

(70)

In view of Lemma 1, there exists a positive solution of (58)
which contradicts the assumption of the theorem.

(II) When 𝑚 = 0, as shown in the proof ofTheorem 4, we
show that if (29) holds, then lim𝑡→∞𝑥(𝑡) = 0. This completes
the proof.

Remark 6. The conclusion of Theorems 4 and 5 remains
intact if assumption (29) is replaced by one of the following
conditions:

∫

∞

𝑇

𝑃0 (𝑡) Δ𝑡 = ∞,

∫

∞

𝑇

𝑃1 (𝑡) Δ𝑡 = ∞,

.

.

.

or ∫

∞

𝑇

𝑃𝑛−2 (𝑡) Δ𝑡 = ∞.

(71)

Theorem 7. Assume that

∫

∞

𝑡0

𝑃2 (𝑡) Δ𝑡 = ∞. (72)

And for sufficiently large 𝑇 ∈ [𝑡0, ∞)T , the first-order dynamic
equation

𝑧
Δ

(𝑡) + 𝐾𝑛−1 (𝑡) 𝜙𝛾0/𝛼[1,𝑛]
(𝑧 (𝜑 (𝑡))) = 0,

𝑓𝑜𝑟 𝜑 (𝑡) ∈ [𝑇, ∞)T ,

(73)

is oscillatory, where

𝐾𝑛−1 (𝑡) fl 𝑝 (𝑡) [𝑅𝑛−1 (𝜑 (𝑡) , 𝑇)]
𝛾0

. (74)

Then

(1) if 𝑛 is even, every solution of (1) is oscillatory,
(2) if 𝑛 is odd, then every solution of (1) either is oscillatory

or tends to zero eventually.

Theorem 8. Assume that (72) holds and, for sufficiently large
𝑇 ∈ [𝑡0, ∞)T , the second-order dynamic equation

[𝑟𝑛−1 (𝑡) 𝜙𝛼𝑛−1
(𝑧
Δ

(𝑡))]

Δ

+ 𝑄𝑛−1 (𝑡) 𝜙𝛾0/𝛼[1,𝑛−2]
(𝑧 (𝜑 (𝑡))) = 0,

𝑓𝑜𝑟 𝜑 (𝑡) ∈ (𝑇, ∞)T ,

(75)

is oscillatory, where

𝑄𝑛−1 (𝑡) fl
𝑝 (𝑡) [𝑅𝑛−1 (𝜑 (𝑡) , 𝑇1)]

𝛾0

[𝑅1 (𝜑 (𝑡) , 𝑇1)]
𝛾0/𝛼[1,𝑛−2]

. (76)

Then

(i) if 𝑛 is even, every solution of (1) is oscillatory,
(ii) if 𝑛 is odd, every solution of (1) either is oscillatory or

tends to zero eventually.

Proof of Theorems 7 and 8. Assume that (1) has a nonoscilla-
tory solution 𝑥 on [𝑡0, ∞)T . Then, without loss of generality,
it is sufficiently large, such that 𝑥(𝑡) > 0 and 𝑥(𝜑𝑗(𝑡)) > 0, for
𝑡 ∈ [𝑡0, ∞)T and 𝑗 = 0, 1, . . . , 𝑁. By Lemma 3, there exists
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an integer 𝑚, 0 ≤ 𝑚 < 𝑛, with 𝑛 + 𝑚 being odd such that (24)
and (25) hold for 𝑡 ≥ 𝑇1 ∈ [𝑡0, ∞)T .

(I)When𝑚 ≥ 1, we claim that (72) implies that𝑚 = 𝑛−1.
In fact, if 1 ≤ 𝑚 ≤ 𝑛 − 3, then for 𝑡 ≥ 𝑇1

𝑥
[𝑛]

(𝑡) < 0,

𝑥
[𝑛−1]

(𝑡) > 0,

𝑥
[𝑛−2]

(𝑡) < 0,

𝑥
[𝑛−3]

(𝑡) > 0.

(77)

Since 𝑥
Δ
(𝑡) > 0 on [𝑇1, ∞)T , then 𝑥(𝑡) > 𝑥(𝑇1) fl 𝑐1 > 0 for

𝑡 ≥ 𝑇1. Then there exists 𝑇2 ∈ [𝑇1, ∞)T such that 𝑥(𝜑𝑗(𝑡)) ≥ 𝑙

for 𝑡 ≥ 𝑇2 and 𝑗 = 0, 1, . . . , 𝑁. It follows that

𝜙𝛾𝑗
(𝑥 (𝜑𝑗 (𝑡))) ≥ 𝑙

𝛾𝑗
≥ 𝐿, for 𝑡 ∈ [𝑇2, ∞)

T
, (78)

where 𝐿 fl inf0≤𝑗≤𝑁{𝑙
𝛾𝑗

} > 0. Then from (1), we have

−𝑥
[𝑛]

(𝑡) =

𝑁

∑

𝑗=0

𝑝𝑗 (𝑡) 𝜙𝛾𝑗
(𝑥 (𝜑𝑗 (𝑡))) ≥ 𝐿

𝑁

∑

𝑗=0

𝑝𝑗 (𝑡)

= 𝐿𝑝 (𝑡) .

(79)

Integrating from 𝑡 to V ∈ [𝑡, ∞)T , we get

−𝑥
[𝑛−1]

(V) + 𝑥
[𝑛−1]

(𝑡) = 𝐿 ∫

V

𝑡

𝑝 (𝑠) Δ𝑠. (80)

And by (48) we see that 𝑥
[𝑛−1]

(V) > 0. Hence by taking limits
as V → ∞ we have

𝑥
[𝑛−1]

(𝑡) ≥ 𝐿 ∫

∞

𝑡

𝑝 (𝑠) Δ𝑠, (81)

which implies

(𝑥
[𝑛−2]

(𝑡))

Δ
≥ 𝐿
1/𝛼𝑛−1

[

1

𝑟𝑛−1 (𝑡)
∫

∞

𝑡

𝑝 (𝑠) Δ𝑠]

1/𝛼𝑛−1

= 𝐿
1/𝛼𝑛−1

𝑃1 (𝑡) .

(82)

Integrating above inequality from 𝑡 to V ∈ [𝑡, ∞)T and then
taking V → ∞, we get

−𝑥
[𝑛−2]

(𝑡) ≥ 𝐿
1/𝛼𝑛−1

∫

∞

𝑡

𝑃1 (𝑠) Δ𝑠, (83)

which implies

− (𝑥
[𝑛−3]

(𝑡))

Δ

≥ 𝐿
1/𝛼[𝑛−2,𝑛−1]

[

1

𝑟𝑛−2 (𝑡)
∫

∞

𝑡

𝑃1 (𝑠) Δ𝑠]

1/𝛼𝑛−2

= 𝐿
1/𝛼[𝑛−2,𝑛−1]

𝑃2 (𝑡) .

(84)

Again, integrating above inequality from 𝑇2 to 𝑡 ∈ [𝑇2, ∞)T

and noting that 𝑥
[𝑛−3]

> 0 eventually, we get

𝑥
[𝑛−3]

(𝑇2) − 𝑥
[𝑛−3]

(𝑡) ≥ 𝐿
1/𝛼[𝑛−2,𝑛−1]

∫

𝑡

𝑇2

𝑃2 (𝑠) Δ𝑠. (85)

Then by (72), we have lim𝑡→∞𝑥
[𝑛−3]

(𝑡) = −∞, which
contradicts the fact that 𝑥

[𝑛−3]
> 0 on [𝑇2, ∞)T . This shows

that if (72) holds, then 𝑚 = 𝑛 − 1. The rest of proof of (I)
is similar to proof (I) of Theorems 4 and 5, respectively, with
𝑚 = 𝑛 − 1 and hence can be omitted.

(II) When 𝑚 = 0 (in this case 𝑛 is odd), therefore

(−1)
𝑘

𝑥
[𝑘]

> 0 for 𝑘 = 0, . . . , 𝑛. (86)

Since 𝑥
Δ

< 0 eventually, then lim𝑡→∞𝑥(𝑡) = 𝑙 ≥ 0. Assume
that 𝑙 > 0. Then for sufficiently large 𝑇2 ∈ [𝑇1, ∞)T , we have
𝑥(𝜑𝑗(𝑡)) ≥ 𝑙 for 𝑡 ≥ 𝑇2 and 𝑗 = 1, . . . , 𝑁. It follows that

𝜙𝛾𝑗
(𝑥 (𝜑𝑗 (𝑡))) ≥ 𝑙

𝛾𝑗
≥ 𝐿 for 𝑡 ∈ [𝑇2, ∞)

T
, (87)

where 𝐿 fl inf0≤𝑗≤𝑁{𝑙
𝛾𝑗

} > 0. Then from (1), we have

−𝑥
[𝑛]

(𝑡) =

𝑁

∑

𝑗=0

𝑝𝑗 (𝑡) 𝜙𝛾𝑗
(𝑥 (𝜑𝑗 (𝑡))) ≥ 𝐿

𝑁

∑

𝑗=0

𝑝𝑗 (𝑡)

= 𝐿𝑝 (𝑡) .

(88)

Integrating from 𝑡 to V ∈ [𝑡, ∞)T , we get

−𝑥
[𝑛−1]

(V) + 𝑥
[𝑛−1]

(𝑡) = 𝐿 ∫

V

𝑡

𝑝 (𝑠) Δ𝑠. (89)

And using (48) we see that 𝑥
[𝑛−1]

(V) > 0. Hence by taking
limits as V → ∞ we have

𝑥
[𝑛−1]

(𝑡) ≥ 𝐿 ∫

∞

𝑡

𝑝 (𝑠) Δ𝑠, (90)

which implies

(𝑥
[𝑛−2]

(𝑡))

Δ
≥ 𝐿
1/𝛼𝑛−1

[

1

𝑟𝑛−1 (𝑡)
∫

∞

𝑡

𝑝 (𝑠) Δ𝑠]

1/𝛼𝑛−1

= 𝐿
1/𝛼𝑛−1

𝑃1 (𝑡) .

(91)

Integrating above inequality from 𝑡 to V ∈ [𝑡, ∞)T and then
taking V → ∞, we get

−𝑥
[𝑛−2]

(𝑡) ≥ 𝐿
1/𝛼𝑛−1

∫

∞

𝑡

𝑃1 (𝑠) Δ𝑠, (92)

which implies

− (𝑥
[𝑛−3]

(𝑡))

Δ

≥ 𝐿
1/𝛼[𝑛−2,𝑛−1]

[

1

𝑟𝑛−2 (𝑡)
∫

∞

𝑡

𝑃1 (𝑠) Δ𝑠]

1/𝛼𝑛−2

= 𝐿
1/𝛼[𝑛−2,𝑛−1]

𝑃2 (𝑡) .

(93)
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Again, integrating above inequality from 𝑇2 to 𝑡 ∈ [𝑇2, ∞)T

and noting that 𝑥
[𝑛−3]

> 0 eventually, we get

𝑥
[𝑛−3]

(𝑇2) − 𝑥
[𝑛−3]

(𝑡) ≥ 𝐿
1/𝛼[𝑛−2,𝑛−1]

∫

𝑡

𝑇2

𝑃2 (𝑠) Δ𝑠. (94)

Then by (72), we have lim𝑡→∞𝑥
[𝑛−3]

(𝑡) = −∞, which contra-
dicts the fact that 𝑥

[𝑛−3]
> 0 on [𝑇2, ∞)T . This shows that

lim𝑡→∞𝑥(𝑡) = 0. This completes the proof.

Remark 9. The conclusion of Theorems 7 and 8 remains
intact if assumption (72) is replaced by one of the following
conditions:

∫

∞

𝑇

𝑃0 (𝑡) Δ𝑡 = ∞

or ∫

∞

𝑇

𝑃1 (𝑡) Δ𝑡 = ∞.

(95)

Theorem 10. Assume that

∫

∞

𝑇

𝑃0 (𝑡) Δ𝑡 = ∞. (96)

Then

(1) if 𝑛 is even, every solution of (1) is oscillatory,
(2) if 𝑛 is odd, then every solution of (1) either is oscillatory

or tends to zero eventually.

Proof. Assume that (1) has a nonoscillatory solution 𝑥 on
[𝑡0, ∞)T . Then, without loss of generality, it is sufficiently
large, such that 𝑥(𝑡) > 0 and 𝑥(𝜑𝑗(𝑡)) > 0, for 𝑡 ∈ [𝑡0, ∞)T

and 𝑗 = 0, 1, . . . , 𝑁. By Lemma 3, there exists an integer 𝑚,
0 ≤ 𝑚 < 𝑛, with 𝑛 + 𝑚 being odd such that (24) and (25) hold
for 𝑡 ≥ 𝑇1 ∈ [𝑡0, ∞)T .

(I)When𝑚 ≥ 1, this implies that𝑥(𝑡) is strictly increasing
on [𝑡1, ∞)T .Then for sufficiently large𝑇2 ∈ [𝑇1, ∞)T , we have
𝑥(𝜑𝑗(𝑡)) ≥ 𝑙 for 𝑡 ≥ 𝑇2. It follows that

𝜙𝛾𝑗
(𝑥 (𝜑𝑗 (𝑡))) ≥ 𝑙

𝛾𝑗
≥ 𝐿 for 𝑡 ∈ [𝑇2, ∞)

T
, (97)

where 𝐿 fl inf0≤𝑗≤𝑁{𝑙
𝛾𝑗

} > 0. Equation (1) becomes

− (𝑥
[𝑛−1]

(𝑡))

Δ
=

𝑁

∑

𝑗=0

𝑝𝑗 (𝑡) 𝜙𝛾𝑗
(𝑥 (𝜑𝑗 (𝑡))) ≥ 𝐿

𝑁

∑

𝑗=0

𝑝𝑗 (𝑡)

= 𝐿𝑝 (𝑡) for 𝑡 ∈ [𝑡2, ∞)
T

.

(98)

Replacing 𝑡 by 𝑠 in (98), integrating from 𝑡2 to 𝑡 ∈ [𝑡2, ∞)T ,
we obtain

−𝑥
[𝑛−1]

(𝑡) + 𝑥
[𝑛−1]

(𝑡2) ≥ 𝐿 ∫

𝑡

𝑡2

𝑝 (𝑠) Δ𝑠. (99)

Hence by (96), we have lim𝑡→∞𝑥
[𝑛−1]

(𝑡) = −∞, which
contradicts the fact that 𝑥

[𝑛−1]
(𝑡) > 0 eventually.

(II) When 𝑚 = 0 (in this case 𝑛 is odd), therefore

(−1)
𝑘

𝑥
[𝑘]

> 0 for 𝑘 = 0, . . . , 𝑛. (100)

This implies that 𝑥(𝑡) is strictly decreasing on [𝑡1, ∞)T . Then
lim𝑡→∞𝑥(𝑡) = 𝑙 ≥ 0. Assume that 𝑙 > 0. Then for sufficiently
large 𝑡2 ∈ [𝑡1, ∞)T , we have 𝑥(𝜑𝑗(𝑡)) ≥ 𝑙 for 𝑡 ≥ 𝑡2. It follows
that

𝜙𝛾𝑗
(𝑥 (𝜑𝑗 (𝑡))) ≥ 𝑙

𝛾𝑗
≥ 𝐿 for 𝑡 ∈ [𝑡2, ∞)

T
, (101)

where 𝐿 fl inf0≤𝑗≤𝑁{𝑙
𝛾𝑗

} > 0. As is case (I), we get a
contradiction with the fact that 𝑥

[𝑛−1]
(𝑡) > 0 eventually. This

shows that lim𝑡→∞𝑥(𝑡) = 0. This completes the proof.
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tions on Time Scales, Birkhäuser, Boston, Mass, USA, 2003.

[3] S. Hilger, “Analysis on measure chains—a unified approach to
continuous and discrete calculus,” Results in Mathematics, vol.
18, no. 1-2, pp. 18–56, 1990.

[4] R. P. Agarwal, M. Bohner, and S. H. Saker, “Oscillation of
second order delay dynamic equations,” The Canadian Applied
Mathematics Quarterly, vol. 13, no. 1, pp. 1–17, 2005.

[5] E. Akin-Bohner and J. Hoffacker, “Oscillation properties of an
Emden-Fowler type equation on discrete time scales,” Journal of
Difference Equations and Applications, vol. 9, no. 6, pp. 603–612,
2003.

[6] M. Bohner and T. S. Hassan, “Oscillation and boundedness of
solutions to first and second order forced functional dynamic
equations with mixed nonlinearities,” Applicable Analysis and
Discrete Mathematics, vol. 3, no. 2, pp. 242–252, 2009.

[7] L. Erbe, T. S. Hassan, A. Peterson, and S. H. Saker, “Oscillation
criteria for half-linear delay dynamic equations on time scales,”
Nonlinear Dynamics and SystemsTheory, vol. 9, no. 1, pp. 51–68,
2009.

[8] L. Erbe, R. Mert, A. Peterson, and A. Zafer, “Oscillation of
even order nonlinear delay dynamic equations on time scales,”
Czechoslovak Mathematical Journal, vol. 63(138), no. 1, pp. 265–
279, 2013.

[9] S. R. Grace, R. P. Agarwal, M. Bohner, and D. O’Regan,
“Oscillation of second-order strongly superlinear and strongly
sublinear dynamic equations,” Communications in Nonlinear
Science and Numerical Simulation, vol. 14, no. 8, pp. 3463–3471,
2009.

[10] Z. Han, S. Sun, and B. Shi, “Oscillation criteria for a class of
second-order Emden-Fowler delay dynamic equations on time
scales,” Journal of Mathematical Analysis and Applications, vol.
334, no. 2, pp. 847–858, 2007.

[11] T. S. Hassan, “Oscillation criteria for second-order nonlinear
dynamic equations,”Advances in Difference Equations, vol. 2012,
article 171, 2012.

[12] Y. Sun and T. S. Hassan, “Comparison criteria for odd
order forced nonlinear functional neutral dynamic equations,”
Applied Mathematics and Computation, vol. 251, pp. 387–395,
2015.



Discrete Dynamics in Nature and Society 9

[13] T. Sun,W. Yu, and H. Xi, “Oscillatory behavior and comparison
for higher order nonlinear dynamic equations on time scales,”
Journal of Applied Mathematics & Informatics, vol. 30, no. 1-2,
pp. 289–304, 2012.

[14] S. R. Grace, R. P. Agarwal, and A. Zafer, “Oscillation of higher
order nonlinear dynamic equations on time scales,”Advances in
Difference Equations, vol. 2012, article 67, 2012.

[15] S. R. Grace, “On the oscillation of 𝑛 th order dynamic equations
on time-scales,” Mediterranean Journal of Mathematics, vol. 10,
no. 1, pp. 147–156, 2013.

[16] T. S. Hassan and Q. Kong, “Asymptotic and oscillatory behavior
of nth-order half-linear dynamic equations,” Differential Equa-
tions & Applications, vol. 6, no. 4, pp. 527–549, 2014.

[17] S. R. Grace and T. S. Hassan, “Oscillation criteria for
higher order nonlinear dynamic equations,” Mathematische
Nachrichten, vol. 287, no. 14-15, pp. 1659–1673, 2014.

[18] T. S. Hassan, L. Erbe, and A. Peterson, “Forced oscillation of
second order differential equations with mixed nonlinearities,”
Acta Mathematica Scientia, vol. 31, no. 2, pp. 613–626, 2011.

[19] T. S.Hassan andQ.Kong, “Interval criteria for forced oscillation
of differential equations with p-Laplacian, damping, and mixed
nonlinearities,” Dynamic Systems and Applications, vol. 20, no.
2-3, pp. 279–293, 2011.

[20] E. F. Beckenbach and R. Bellman, Inequalities, Springer, Berlin,
Germany, 1961.

[21] R. P. Agarwal, S. R. Grace, and D. O’Regan, Oscillation Theory
for SecondOrderDynamic Equations, Taylor& Francis, London,
UK, 2003.



Research Article
Helmholtz Theorem for Nondifferentiable Hamiltonian Systems
in the Framework of Cresson’s Quantum Calculus

Frédéric Pierret1 and Delfim F. M. Torres2
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We derive the Helmholtz theorem for nondifferentiable Hamiltonian systems in the framework of Cresson’s quantum calculus.
Precisely, we give a theorem characterizing nondifferentiable equations, admitting a Hamiltonian formulation. Moreover, in the
affirmative case, we give the associated Hamiltonian.

1. Introduction

Several types of quantum calculus are available in the lit-
erature, including Jackson’s quantum calculus [1, 2], Hahn’s
quantum calculus [3–5], the time-scale 𝑞-calculus [6, 7], the
power quantum calculus [8], and the symmetric quantum
calculus [9–11]. Cresson introduced in 2005 his quantum cal-
culus on a set of Hölder functions [12].This calculus attracted
attention due to its applications in physics and the calculus
of variations and has been further developed by several dif-
ferent authors (see [13–16] and references therein). Cresson’s
calculus of 2005 [12] presents, however, some difficulties, and
in 2011 Cresson and Greff improved it [17, 18]. Indeed, the
quantum calculus of [12] let a free parameter, which is present
in all the computations. Such parameter is certainly difficult
to interpret.The new calculus of [17, 18] bypasses the problem
by considering a quantity that is free of extra parameters and
reduces to the classical derivative for differentiable functions.
It is this new version of 2011 that we consider here, with a
brief review of it being given in Section 2. Along the text,
by Cresson’s calculus we mean this quantum version of 2011
[17, 18]. For the state of the art on the quantum calculus
of variations we refer the reader to the recent book [19].
With respect to Cresson’s approach, the quantum calculus
of variations is still in its infancy: see [13, 17, 18, 20–22]. In
[17] nondifferentiable Euler-Lagrange equations are used in

the study of PDEs. Euler-Lagrange equations for variational
functionals with Lagrangians containing multiple quantum
derivatives, depending on a parameter or containing higher-
order quantum derivatives, are studied in [20]. Variational
problems with constraints, with one and more than one
independent variable, of first and higher-order type are inves-
tigated in [21]. Recently, problems of the calculus of variations
and optimal control with time delay were considered [22].
In [18], a Noether type theorem is proved but only with
the momentum term. This result is further extended in [23]
by considering invariance transformations that also change
the time variable, thus obtaining not only the generalized
momentum term of [18] but also a new energy term. In [13],
nondifferentiable variational problems with a free terminal
point, with or without constraints, of first and higher-order
are investigated. Here, we continue to develop Cresson’s
quantum calculus in obtaining a result for Hamiltonian
systems and by considering the so-called inverse problem of
the calculus of variations.

A classical problem in analysis is the well-known Helm-
holtz’s inverse problem of the calculus of variations: find a
necessary and sufficient condition under which a (system of)
differential equation(s) can be written as an Euler-Lagrange
or a Hamiltonian equation and, in the affirmative case, find
all possible Lagrangian or Hamiltonian formulations. This
condition is usually called the Helmholtz condition. The
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Lagrangian Helmholtz problem has been studied and solved
by Douglas [24], Mayer [25], and Hirsch [26, 27].TheHamil-
tonian Helmholtz problem has been studied and solved, up
to our knowledge, by Santilli in his book [28]. Generalization
of this problem in the discrete calculus of variations frame-
work has been done in [29, 30], in the discrete Lagrangian
case. In the case of time-scale calculus, that is, a mixing
between continuous and discrete subintervals of time, see [31]
for a necessary condition for a dynamic integrodifferential
equation to be an Euler-Lagrange equation on time scales.
For the Hamiltonian case it has been done for the discrete
calculus of variations in [32] using the framework of [33]
and in [34] using a discrete embedding procedure derived
in [35]. In the case of time-scale calculus it has been done
in [36]; for the Stratonovich stochastic calculus see [37]. Here
we give the Helmholtz theorem for Hamiltonian systems
in the case of nondifferentiable Hamiltonian systems in the
framework of Cresson’s quantum calculus. By definition, the
nondifferentiable calculus extends the differentiable calculus.
Such as in the discrete, time-scale, and stochastic cases, we
recover the same conditions of existence of a Hamiltonian
structure.

The paper is organized as follows. In Section 2, we give
some generalities and notions about the nondifferentiable
calculus introduced in [17], the so-called Cresson’s quantum
calculus. In Section 3, we remind definitions and results
about classical and nondifferentiableHamiltonian systems. In
Section 4, we give a brief survey of the classical Helmholtz
Hamiltonian problem and then we prove the main result
of this paper—the nondifferentiable Hamiltonian Helmholtz
theorem. Finally, we give two applications of our results in
Section 5, and we end in Section 6 with conclusions and
future work.

2. Cresson’s Quantum Calculus

We briefly review the necessary concepts and results of the
quantum calculus [17].

2.1. Definitions. Let X𝑑 denote the set R𝑑 or C𝑑, 𝑑 ∈ N, and
let 𝐼 be an open set in R with [𝑎, 𝑏] ⊂ 𝐼, 𝑎 < 𝑏. We denote by
F(𝐼,X𝑑) the set of functions 𝑓 : 𝐼 → X𝑑 and by C0(𝐼,X𝑑)
the subset of functions ofF(𝐼,X𝑑) which are continuous.

Definition 1 (Hölderian functions [17]). Let 𝑓 ∈ C0(𝐼,R𝑑).
Let 𝑡 ∈ 𝐼. Function 𝑓 is said to be 𝛼-Hölderian, 0 < 𝛼 < 1, at
point 𝑡 if there exist positive constants 𝜖 > 0 and 𝑐 > 0 such
that |𝑡 − 𝑡

󸀠
| ⩽ 𝜖 implies ‖𝑓(𝑡) − 𝑓(𝑡

󸀠
)‖ ⩽ 𝑐|𝑡 − 𝑡

󸀠
|
𝛼 for all 𝑡󸀠 ∈ 𝐼,

where ‖ ⋅ ‖ is a norm on R𝑑.

The set of Hölderian functions of Hölder exponent 𝛼, for
some 𝛼, is denoted by 𝐻

𝛼
(𝐼,R𝑑). The quantum derivative is

defined as follows.

Definition 2 (the 𝜖-left and 𝜖-right quantum derivatives [17]).
Let 𝑓 ∈ C0(𝐼,R𝑑). For all 𝜖 > 0, the 𝜖-left and 𝜖-right

quantum derivatives of 𝑓, denoted, respectively, by 𝑑
−

𝜖
𝑓 and

𝑑
+

𝜖
𝑓, are defined by

𝑑
−

𝜖
𝑓 (𝑡) =

𝑓 (𝑡) − 𝑓 (𝑡 − 𝜖)

𝜖
,

𝑑
+

𝜖
𝑓 (𝑡) =

𝑓 (𝑡 + 𝜖) − 𝑓 (𝑡)

𝜖
.

(1)

Remark 3. The 𝜖-left and 𝜖-right quantum derivatives of a
continuous function 𝑓 correspond to the classical derivative
of the 𝜖-mean function 𝑓

𝜎

𝜖
defined by

𝑓
𝜎

𝜖
(𝑡) =

𝜎

𝜖
∫

𝑡+𝜎𝜖

𝑡

𝑓 (𝑠) 𝑑𝑠, 𝜎 = ±. (2)

The next operator generalizes the classical derivative.

Definition 4 (the 𝜖-scale derivative [17]). Let 𝑓 ∈ C0(𝐼,R𝑑).
For all 𝜖 > 0, the 𝜖-scale derivative of 𝑓, denoted by ◻𝜖𝑓/◻𝑡,
is defined by

◻𝜖𝑓

◻𝑡
=

1

2
[(𝑑
+

𝜖
𝑓 + 𝑑
−

𝜖
𝑓) + 𝑖𝜇 (𝑑

+

𝜖
𝑓 − 𝑑
−

𝜖
𝑓)] , (3)

where 𝑖 is the imaginary unit and 𝜇 ∈ {−1, 1, 0, −𝑖, 𝑖}.

Remark 5. If 𝑓 is differentiable, then one can take the limit of
the scale derivative when 𝜖 goes to zero. We then obtain the
classical derivative 𝑑𝑓/𝑑𝑡 of 𝑓.

We also need to extend the scale derivative to complex
valued functions.

Definition 6 (see [17]). Let 𝑓 ∈ C0(𝐼,C𝑑) be a continuous
complex valued function. For all 𝜖 > 0, the 𝜖-scale derivative
of 𝑓, denoted by ◻𝜖𝑓/◻𝑡, is defined by

◻𝜖𝑓

◻𝑡
=

◻𝜖Re (𝑓)
◻𝑡

+ 𝑖
◻𝜖 Im (𝑓)

◻𝑡
, (4)

where Re(𝑓) and Im(𝑓) denote the real and imaginary part
of 𝑓, respectively.

In Definition 4, the 𝜖-scale derivative depends on 𝜖,
which is a free parameter related to the smoothing order
of the function. This brings many difficulties in applications
to physics, when one is interested in particular equations
that do not depend on an extra parameter. To solve these
problems, the authors of [17] introduced a procedure to
extract information independent of 𝜖 but related with the
mean behavior of the function.

Definition 7 (see [17]). Let C0conv(𝐼 × ]0, 1],R𝑑) ⊆ C0(𝐼 × ]0,

1],R𝑑) be such that for any function𝑓 ∈ C0conv(𝐼 × ]0, 1],R𝑑)

the lim𝜖→0𝑓(𝑡, 𝜖) exists for any 𝑡 ∈ 𝐼. We denote by 𝐸 a com-
plementary space ofC0conv(𝐼 × ]0, 1],R𝑑) inC0(𝐼 × ]0, 1],R𝑑).
We define the projection map 𝜋 by

𝜋 : C
0

conv (𝐼 × ]0, 1] ,R
𝑑
) ⊕ 𝐸 󳨀→ C

0

conv (𝐼 × ]0, 1] ,R
𝑑
)

𝑓conv + 𝑓𝐸 󳨃󳨀→ 𝑓conv

(5)
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and the operator ⟨⋅⟩ by

⟨⋅⟩ : C
0
(𝐼 × ]0, 1] ,R

𝑑
) 󳨀→ C

0
(𝐼,R
𝑑
)

𝑓 󳨃󳨀→ ⟨𝑓⟩ : 𝑡 󳨃󳨀→ lim
𝜖→0

𝜋 (𝑓) (𝑡, 𝜖) .

(6)

The quantum derivative of 𝑓 without the dependence of
𝜖 is introduced in [17].

Definition 8 (see [17]). The quantum derivative of 𝑓 in the
spaceC0(𝐼,R𝑑) is given by

◻𝑓

◻𝑡
= ⟨

◻𝜖𝑓

◻𝑡
⟩ . (7)

The quantum derivative (7) has some nice properties.
Namely, it satisfies a Leibniz rule and a version of the
fundamental theorem of calculus.

Theorem 9 (the quantum Leibniz rule [17]). Let 𝛼 + 𝛽 > 1.
For 𝑓 ∈ 𝐻

𝛼
(𝐼,R𝑑) and 𝑔 ∈ 𝐻

𝛽
(𝐼,R𝑑), one has

◻

◻𝑡
(𝑓 ⋅ 𝑔) (𝑡) =

◻𝑓 (𝑡)

◻𝑡
⋅ 𝑔 (𝑡) + 𝑓 (𝑡) ⋅

◻𝑔 (𝑡)

◻𝑡
. (8)

Remark 10. For 𝑓 ∈ C1(𝐼,R𝑑) and 𝑔 ∈ C1(𝐼,R𝑑), one
obtains from (8) the classical Leibniz rule: (𝑓 ⋅ 𝑔)

󸀠
= 𝑓
󸀠
⋅ 𝑔 +

𝑓 ⋅ 𝑔
󸀠.

Definition 11. We denote by C1
◻
the set of continuous func-

tions 𝑞 ∈ C0([𝑎, 𝑏],R𝑑) such that ◻𝑞/◻𝑡 ∈ C0(𝐼,R𝑑).

Theorem 12 (the quantum version of the fundamental theo-
rem of calculus [17]). Let 𝑓 ∈ C1

◻
([𝑎, 𝑏],R𝑑) be such that

lim
𝜖→0

∫

𝑏

𝑎

(
◻𝜖𝑓

◻𝑡
)

𝐸

(𝑡) 𝑑𝑡 = 0. (9)

Then,

∫

𝑏

𝑎

◻𝑓

◻𝑡
(𝑡) 𝑑𝑡 = 𝑓 (𝑏) − 𝑓 (𝑎) . (10)

2.2. Nondifferentiable Calculus of Variations. In [17] the
calculus of variations with quantum derivatives is introduced
and respective Euler-Lagrange equations derived without the
dependence of 𝜖.

Definition 13. An admissible Lagrangian 𝐿 is a continuous
function 𝐿 : R × R𝑑 × C𝑑 → C such that 𝐿(𝑡, 𝑥, V) is holo-
morphic with respect to V and differentiable with respect to
𝑥. Moreover, 𝐿(𝑡, 𝑥, V) ∈ R when V ∈ R𝑑; 𝐿(𝑡, 𝑥, V) ∈ C when
V ∈ C𝑑.

An admissible Lagrangian function 𝐿 : R×Rd
×C𝑑 → C

defines a functional onC1(𝐼,R𝑑), denoted by

L : C
1
(𝐼,R
𝑑
) 󳨀→ R

𝑞 󳨃󳨀→ ∫

𝑏

𝑎

𝐿 (𝑡, 𝑞 (𝑡) , 𝑞̇ (𝑡)) 𝑑𝑡.

(11)

Extremals of the functional L can be characterized by the
well-known Euler-Lagrange equation (see, e.g., [38]).

Theorem 14. The extremals 𝑞 ∈ C1(𝐼,R𝑑) ofL coincide with
the solutions of the Euler-Lagrange equation

𝑑

𝑑𝑡
[
𝜕𝐿

𝜕V
(𝑡, 𝑞 (𝑡) , 𝑞̇ (𝑡))] =

𝜕𝐿

𝜕𝑥
(𝑡, 𝑞 (𝑡) , 𝑞̇ (𝑡)) . (12)

The nondifferentiable embedding procedure allows us to
define a natural extension of the classical Euler-Lagrange
equation in the nondifferentiable context.

Definition 15 (see [17]). The nondifferentiable Lagrangian
functionalL◻ associated withL is given by

L◻ : C
1

◻
(𝐼,R
𝑑
) 󳨀→ R

𝑞 󳨃󳨀→ ∫

𝑏

𝑎

𝐿(𝑠, 𝑞 (𝑠) ,
◻𝑞 (𝑠)

◻𝑡
) 𝑑𝑠.

(13)

Let 𝐻𝛽
0

fl {ℎ ∈ 𝐻
𝛽
(𝐼,R𝑑), ℎ(𝑎) = ℎ(𝑏) = 0} and 𝑞 ∈

𝐻
𝛼
(𝐼,R𝑑) with 𝛼 + 𝛽 > 1. A 𝐻

𝛽

0
-variation of 𝑞 is a function

of the form 𝑞 + ℎ, where ℎ ∈ 𝐻
𝛽

𝑂
. We denote by 𝐷L◻(𝑞)(ℎ)

the quantity

lim
𝜖→0

L◻ (𝑞 + 𝜖ℎ) −L◻ (𝑞)

𝜖
(14)

if there exists the so-called Fréchet derivative ofL◻ at point
𝑞 in direction ℎ.

Definition 16 (nondifferentiable extremals). A 𝐻
𝛽

0
-extremal

curve of the functionalL◻ is a curve 𝑞 ∈ 𝐻
𝛼
(𝐼,R𝑑) satisfying

𝐷L◻(𝑞)(ℎ) = 0 for any ℎ ∈ 𝐻
𝛽

0
.

Theorem 17 (nondifferentiable Euler-Lagrange equations
[17]). Let 0 < 𝛼, 𝛽 < 1 with 𝛼 + 𝛽 > 1. Let 𝐿 be an admissible
Lagrangian of class C2. We assume that 𝛾 ∈ 𝐻

𝛼
(𝐼,R𝑑), such

that ◻𝛾/◻𝑡 ∈ 𝐻
𝛼
(𝐼,R𝑑). Moreover, we assume that 𝐿(𝑡, 𝛾(𝑡),

◻𝛾(𝑡)/◻𝑡)ℎ(𝑡) satisfies condition (9) for all ℎ ∈ 𝐻
𝛽

0
(𝐼,R𝑑).

A curve 𝛾 satisfying the nondifferentiable Euler-Lagrange
equation

◻

◻𝑡
[
𝜕𝐿

𝜕V
(𝑡, 𝛾 (𝑡) ,

◻𝛾 (𝑡)

◻𝑡
)] =

𝜕𝐿

𝜕𝑥
(𝑡, 𝛾 (𝑡) ,

◻𝛾 (𝑡)

◻𝑡
) (15)

is an extremal curve of functional (13).

3. Reminder about Hamiltonian Systems

We now recall the main concepts and results of both classical
and Cresson’s nondifferentiable Hamiltonian systems.

3.1. Classical Hamiltonian Systems. Let 𝐿 be an admissible
Lagrangian function. If 𝐿 satisfies the so-called Legendre
property, then we can associate to 𝐿 a Hamiltonian function
denoted by𝐻.
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Definition 18. Let 𝐿 be an admissible Lagrangian function.
TheLagrangian𝐿 is said to satisfy the Legendre property if the
mapping V 󳨃→ (𝜕𝐿/𝜕V)(𝑡, 𝑥, V) is invertible for any (𝑡, 𝑞, V) ∈

𝐼 ×R𝑑 × C𝑑.

If we introduce a new variable

𝑝 =
𝜕𝐿

𝜕V
(𝑡, 𝑞, V) (16)

and 𝐿 satisfies the Legendre property, then we can find a
function 𝑓 such that

V = 𝑓 (𝑡, 𝑞, 𝑝) . (17)

Using this notation, we have the following definition.

Definition 19. Let 𝐿 be an admissible Lagrangian function
satisfying the Legendre property. The Hamiltonian function
𝐻 associated with 𝐿 is given by

𝐻 : R ×R
𝑑
× C
𝑑
󳨀→ C

(𝑡, 𝑞, 𝑝) 󳨃󳨀→ 𝐻(𝑡, 𝑞, 𝑝) = 𝑝𝑓 (𝑡, 𝑞, 𝑝) − 𝐿 (𝑡, 𝑞, 𝑓 (𝑡, 𝑞, 𝑝)) .

(18)

We have the following theorem (see, e.g., [38]).

Theorem 20 (Hamilton’s least-action principle). The curve
(𝑞, 𝑝) ∈ C(𝐼,R𝑑)×C(𝐼,C𝑑) is an extremal of the Hamiltonian
functional

H (𝑞, 𝑝) = ∫

𝑏

𝑎

𝑝 (𝑡) 𝑞̇ (𝑡) − 𝐻 (𝑡, 𝑞 (𝑡) , 𝑝 (𝑡)) 𝑑𝑡 (19)

if and only if it satisfies the Hamiltonian system associated with
𝐻 given by

𝑞̇ (𝑡) =
𝜕𝐻 (𝑡, 𝑞 (𝑡) , 𝑝 (𝑡))

𝜕𝑝
,

𝑝̇ (𝑡) = −
𝜕𝐻 (𝑡, 𝑞 (𝑡) , 𝑝 (𝑡))

𝜕𝑞

(20)

called the Hamiltonian equations.

A vectorial notation is obtained for the Hamiltonian
equations in posing 𝑧 = (𝑞, 𝑝)

⊤ and ∇𝐻 = (𝜕𝐻/𝜕𝑞, 𝜕𝐻/𝜕𝑝)
⊤,

where ⊤ denotes the transposition. The Hamiltonian equa-
tions are then written as

𝑑𝑧 (𝑡)

𝑑𝑡
= 𝐽 ⋅ ∇𝐻 (𝑡, 𝑧 (𝑡)) , (21)

where

𝐽 = (
0 𝐼𝑑

−𝐼𝑑 0
) (22)

denotes the symplectic matrix with 𝐼𝑑 being the identity
matrix on R𝑑.

3.2. NondifferentiableHamiltonian Systems. Thenondifferen-
tiable embedding induces a change in the phase space with
respect to the classical case. As a consequence, we have to
work with variables (𝑥, 𝑝) that belong to R𝑑 × C𝑑 and not
only to R𝑑 ×R𝑑, as usual.

Definition 21 (nondifferentiable embedding of Hamiltonian
systems [17]). The nondifferentiable embedded Hamiltonian
system (20) is given by

◻𝑞 (𝑡)

◻𝑡
=

𝜕𝐻 (𝑡, 𝑞 (𝑡) , 𝑝 (𝑡))

𝜕𝑝
,

◻𝑝 (𝑡)

◻𝑡
= −

𝜕𝐻 (𝑡, 𝑞 (𝑡) , 𝑝 (𝑡))

𝜕𝑞

(23)

and the embedded Hamiltonian functionalH◻ is defined on
𝐻
𝛼
(𝐼,R𝑑) × 𝐻

𝛼
(𝐼,C𝑑) by

H◻ (𝑞, 𝑝) = ∫

𝑏

𝑎

(𝑝 (𝑡)
◻𝑞 (𝑡)

◻𝑡
− 𝐻 (𝑡, 𝑞 (𝑡) , 𝑝 (𝑡))) 𝑑𝑡. (24)

The nondifferentiable calculus of variations allows us to
derive the extremals forH◻.

Theorem 22 (nondifferentiable Hamilton’s least-action prin-
ciple [17]). Let 0 < 𝛼, 𝛽 < 1 with 𝛼 + 𝛽 > 1. Let 𝐿 be an
admissible C2-Lagrangian. We assume that 𝛾 ∈ 𝐻

𝛼
(𝐼,R𝑑),

such that ◻𝛾/◻𝑡 ∈ 𝐻
𝛼
(𝐼,R𝑑). Moreover, we assume that

𝐿(𝑡, 𝛾(𝑡), ◻𝛾(𝑡)/◻𝑡)ℎ(𝑡) satisfies condition (9) for all ℎ ∈

𝐻
𝛽

0
(𝐼,R𝑑). Let 𝐻 be the corresponding Hamiltonian defined

by (18). A curve 𝛾 󳨃→ (𝑡, 𝑞(𝑡), 𝑝(𝑡)) ∈ 𝐼 × R𝑑 × C𝑑 solution of
the nondifferentiable Hamiltonian system (23) is an extremal
of functional (24) over the space of variations𝑉 = 𝐻

𝛽

0
(𝐼,R𝑑)×

𝐻
𝛽

0
(𝐼,C𝑑).

4. Nondifferentiable Helmholtz Problem

In this section, we solve the inverse problem of the nondif-
ferentiable calculus of variations in the Hamiltonian case. We
first recall the usual way to derive the Helmholtz conditions
following the presentation made by Santilli [28]. Two main
derivations are available:

(i) The first is related to the characterization of Hamilto-
nian systems via the symplectic two-differential form
and the fact that by duality the associated one-
differential form to a Hamiltonian vector field is
closed—the so-called integrability conditions.

(ii) The second uses the characterization of Hamiltonian
systems via the self-adjointness of the Fréchet deriva-
tive of the differential operator associated with the
equation—the so-called Helmholtz conditions.

Of course, we have coincidence of the two procedures in the
classical case. As there is no analogous of differential form
in the framework of Cresson’s quantum calculus, we follow
the second way to obtain the nondifferentiable analogue of
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the Helmholtz conditions. For simplicity, we consider a time-
independent Hamiltonian. The time-dependent case can be
done in the same way.

4.1. Helmholtz Conditions for Classical Hamiltonian Systems.
In this section we work on R2𝑑, 𝑑 ≥ 1, 𝑑 ∈ N.

4.1.1. Symplectic Scalar Product. The symplectic scalar product
⟨⋅, ⋅⟩𝐽 is defined by

⟨𝑋, 𝑌⟩𝐽 = ⟨𝑋, 𝐽 ⋅ 𝑌⟩ (25)

for all 𝑋,𝑌 ∈ R2𝑑, where ⟨⋅, ⋅⟩ denotes the usual scalar
product and 𝐽 is the symplectic matrix (22). We also consider
the 𝐿2 symplectic scalar product induced by ⟨⋅, ⋅⟩𝐽 defined for
𝑓, 𝑔 ∈ C0([𝑎, 𝑏],R2𝑑) by

⟨𝑓, 𝑔⟩
𝐿2 ,𝐽

= ∫

𝑏

𝑎

⟨𝑓 (𝑡) , 𝑔 (𝑡)⟩
𝐽
𝑑𝑡. (26)

4.1.2. Adjoint of a Differential Operator. In the following, we
consider first-order differential equations of the form

𝑑

𝑑𝑡
(
𝑞

𝑝
) = (

𝑋𝑞 (𝑞, 𝑝)

𝑋𝑝 (𝑞, 𝑝)
) , (27)

where the vector fields 𝑋𝑞 and 𝑋𝑝 are C
1 with respect to 𝑞

and 𝑝. The associated differential operator is written as

𝑂𝑋 (𝑞, 𝑝) = (

𝑞̇ − 𝑋𝑞 (𝑞, 𝑝)

𝑝̇ − 𝑋𝑝 (𝑞, 𝑝)
) . (28)

A natural notion of adjoint for a differential operator is then
defined as follows.

Definition 23. Let 𝐴 : C1([𝑎, 𝑏],R2𝑑) → C1([𝑎, 𝑏],R2𝑑). We
define the adjoint 𝐴∗

𝐽
of 𝐴 with respect to ⟨⋅, ⋅⟩𝐿2 ,𝐽 by

⟨𝐴 ⋅ 𝑓, 𝑔⟩
𝐿2,𝐽

= ⟨𝐴
∗

𝐽
⋅ 𝑔, 𝑓⟩

𝐿2 ,𝐽
. (29)

An operator 𝐴 will be called self-adjoint if 𝐴 = 𝐴
∗

𝐽
with

respect to the 𝐿2 symplectic scalar product.

4.1.3. Hamiltonian Helmholtz Conditions. The Helmholtz
conditions in the Hamiltonian case are given by the following
result (see Theorem 3.12.1, p. 176-177 in [28]).

Theorem 24 (Hamiltonian Helmholtz theorem). Let𝑋(𝑞, 𝑝)

be a vector field defined by 𝑋(𝑞, 𝑝)
⊤

= (𝑋𝑞(𝑞, 𝑝), 𝑋𝑝(𝑞, 𝑝)).
The differential equation (27) is Hamiltonian if and only if the
associated differential operator 𝑂𝑋 given by (28) has a self-
adjoint Fréchet derivative with respect to the 𝐿

2 symplectic
scalar product. In this case the Hamiltonian is given by

𝐻(𝑞, 𝑝) = ∫

1

0

[𝑝 ⋅ 𝑋𝑞 (𝜆𝑞, 𝜆𝑝) − 𝑞 ⋅ 𝑋𝑝 (𝜆𝑞, 𝜆𝑝)] 𝑑𝜆. (30)

The conditions for the self-adjointness of the differential
operator can bemade explicit.They coincide with the integra-
bility conditions characterizing the exactness of the one-form
associated with the vector field by duality (see [28], Theorem
2.7.3, p. 88).

Theorem 25 (integrability conditions). Let 𝑋(𝑞, 𝑝)
⊤

=

(𝑋𝑞(𝑞, 𝑝), 𝑋𝑝(𝑞, 𝑝)) be a vector field. The differential operator
𝑂𝑋 given by (28) has a self-adjoint Fréchet derivative with
respect to the 𝐿2 symplectic scalar product if and only if

𝜕𝑋𝑞

𝜕𝑞
+ (

𝜕𝑋𝑝

𝜕𝑝
)

⊤

= 0,
𝜕𝑋𝑞

𝜕𝑝
,
𝜕𝑋𝑝

𝜕𝑞
𝑎𝑟𝑒 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐. (31)

4.2. Helmholtz Conditions for Nondifferentiable Hamiltonian
Systems. The previous scalar products extend naturally to
complex valued functions. Let 0 < 𝛼 < 1 and let (𝑞, 𝑝) ∈

𝐻
𝛼
(𝐼,R𝑑) × 𝐻

𝛼
(𝐼,C𝑑), such that ◻𝑞/◻𝑡 ∈ 𝐻

𝛼
(𝐼,C𝑑) and

◻𝑝/◻𝑡 ∈ 𝐻
𝛼
(𝐼,C𝑑). We consider first-order nondifferential

equations of the form

◻

◻𝑡
(
𝑞

𝑝
) = (

𝑋𝑞 (𝑞, 𝑝)

𝑋𝑝 (𝑞, 𝑝)
) . (32)

The associated quantum differential operator is written as

𝑂◻,𝑋 (𝑞, 𝑝) = (

◻𝑞

◻𝑡
− 𝑋𝑞 (𝑞, 𝑝)

◻𝑝

◻𝑡
− 𝑋𝑝 (𝑞, 𝑝)

) . (33)

A natural notion of adjoint for a quantum differential opera-
tor is then defined.

Definition 26. Let 𝐴 : C1
◻
([𝑎, 𝑏],C2𝑑) → C1

◻
([𝑎, 𝑏],C2𝑑). We

define the adjoint 𝐴∗
𝐽
of 𝐴 with respect to ⟨⋅, ⋅⟩𝐿2 ,𝐽 by

⟨𝐴 ⋅ 𝑓, 𝑔⟩
𝐿2 ,𝐽

= ⟨𝐴
∗

𝐽
⋅ 𝑔, 𝑓⟩

𝐿2 ,𝐽
. (34)

An operator 𝐴 will be called self-adjoint if 𝐴 = 𝐴
∗

𝐽
with

respect to the 𝐿
2 symplectic scalar product. We can now

obtain the adjoint operator associated with 𝑂◻,𝑋.

Proposition 27. Let 𝛽 be such that 𝛼 + 𝛽 > 1. Let (𝑢, V) ∈

𝐻
𝛽

0
(𝐼,R𝑑) × 𝐻

𝛽

0
(𝐼,C𝑑), such that ◻𝑢/◻𝑡 ∈ 𝐻

𝛼
(𝐼,C𝑑) and

◻V/◻𝑡 ∈ 𝐻
𝛼
(𝐼,C𝑑). The Fréchet derivative 𝐷𝑂◻,𝑋 of (33) at

(𝑞, 𝑝) along (𝑢, V) is then given by

𝐷𝑂◻,𝑋 (𝑞, 𝑝) (𝑢, V) = (

◻𝑢

◻𝑡
−

𝜕𝑋𝑞

𝜕𝑞
⋅ 𝑢 −

𝜕𝑋𝑞

𝜕𝑝
⋅ V

◻V
◻𝑡

−
𝜕𝑋𝑝

𝜕𝑞
⋅ 𝑢 −

𝜕𝑋𝑝

𝜕𝑝
⋅ V

). (35)
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Assume that 𝑢 ⋅ ℎ and V ⋅ ℎ satisfy condition (9) for any ℎ ∈

𝐻
𝛽

0
(𝐼,C𝑑). In consequence, the adjoint 𝐷𝑂

∗

◻,𝑋
of 𝐷𝑂◻,𝑋(𝑞, 𝑝)

with respect to the 𝐿2 symplectic scalar product is given by

𝐷𝑂
∗

◻,𝑋
(𝑞, 𝑝) (𝑢, V)

= (

◻𝑢

◻𝑡
+ (

𝜕𝑋𝑝

𝜕𝑝
)

⊤

⋅ 𝑢 − (
𝜕𝑋𝑞

𝜕𝑝
)

⊤

⋅ V

◻V
◻𝑡

− (
𝜕𝑋𝑝

𝜕𝑞
)

⊤

⋅ 𝑢 + (
𝜕𝑋𝑞

𝜕𝑞
)

⊤

⋅ V

).

(36)

Proof. The expression for the Fréchet derivative of (33) at
(𝑞, 𝑝) along (𝑢, V) is a simple computation. Let (𝑤, 𝑥) ∈

𝐻
𝛽

0
(𝐼,R𝑑) × 𝐻

𝛽

0
(𝐼,C𝑑) be such that ◻𝑤/◻𝑡 ∈ 𝐻

𝛼
(𝐼,C𝑑) and

◻𝑥/◻𝑡 ∈ 𝐻
𝛼
(𝐼,C𝑑). By definition, we have

⟨𝐷𝑂◻,𝑋 (𝑞, 𝑝) (𝑢, V) , (𝑤, 𝑥)⟩
𝐿2 ,𝐽

= ∫

𝑏

𝑎

[
◻𝑢

◻𝑡
⋅ 𝑥

− (
𝜕𝑋𝑞

𝜕𝑞
⋅ 𝑢) ⋅ 𝑥 − (

𝜕𝑋𝑞

𝜕𝑝
⋅ V) ⋅ 𝑥 −

◻V
◻𝑡

⋅ 𝑤

+ (
𝜕𝑋𝑝

𝜕𝑞
⋅ 𝑢) ⋅ 𝑤 + (

𝜕𝑋𝑝

𝜕𝑝
⋅ V) ⋅ 𝑤]𝑑𝑡.

(37)

As 𝑢 ⋅ ℎ and V ⋅ ℎ satisfy condition (9) for any ℎ ∈ 𝐻
𝛽

0
(𝐼,C𝑑),

using the quantum Leibniz rule and the quantum version of
the fundamental theorem of calculus, we obtain

∫

𝑏

𝑎

◻𝑢

◻𝑡
⋅ 𝑏 𝑑𝑡 = ∫

𝑏

𝑎

−𝑢 ⋅
◻𝑏

◻𝑡
𝑑𝑡,

∫

𝑏

𝑎

◻V
◻𝑡

⋅ 𝑎 𝑑𝑡 = ∫

𝑏

𝑎

−𝑢 ⋅
◻𝑏

◻𝑡
𝑑𝑡.

(38)

Then,

⟨𝐷𝑂◻,𝑋 (𝑞, 𝑝) (𝑢, V) , (𝑤, 𝑥)⟩
𝐿2 ,𝐽

= ∫

𝑏

𝑎

[−𝑢

⋅ (
◻𝑥

◻𝑡
− (

𝜕𝑋𝑝

𝜕𝑞
)

⊤

⋅ 𝑤 + (
𝜕𝑋𝑞

𝜕𝑞
)

⊤

⋅ 𝑥) + V

⋅ (
◻𝑤

◻𝑡
+ (

𝜕𝑋𝑝

𝜕𝑝
)

⊤

⋅ 𝑤 − (
𝜕𝑋𝑞

𝜕𝑝
)

⊤

⋅ 𝑥)]𝑑𝑡.

(39)

By definition, we obtain the expression of the adjoint 𝐷𝑂
∗

◻,𝑋

of 𝐷𝑂◻,𝑋(𝑞, 𝑝) with respect to the 𝐿
2 symplectic scalar

product.

In consequence, from a direct identification, we obtain
the nondifferentiable self-adjointess conditions called Helm-
holtz’s conditions. As in the classical case, we call these con-
ditions nondifferentiable integrability conditions.

Theorem 28 (nondifferentiable integrability conditions). Let
𝑋(𝑞, 𝑝)

⊤
= (𝑋𝑞(𝑞, 𝑝), 𝑋𝑝(𝑞, 𝑝)) be a vector field. The differ-

ential operator 𝑂◻,𝑋 given by (33) has a self-adjoint Fréchet

derivative with respect to the symplectic scalar product if and
only if

𝜕𝑋𝑞

𝜕𝑞
+ (

𝜕𝑋𝑝

𝜕𝑝
)

⊤

= 0, (HC1)

𝜕𝑋𝑞

𝜕𝑝
,
𝜕𝑋𝑝

𝜕𝑞
𝑎𝑟𝑒 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐. (HC2)

Remark 29. One can see that the Helmholtz conditions are
the same as in the classical, discrete, time-scale, and stochastic
cases. We expected such a result because Cresson’s quantum
calculus provides a quantum Leibniz rule and a quantum
version of the fundamental theorem of calculus. If such
properties of an underlying calculus exist, then theHelmholtz
conditions will always be the same up to some conditions on
the working space of functions.

We now obtain the main result of this paper, which is the
Helmholtz theorem for nondifferentiable Hamiltonian systems.

Theorem 30 (nondifferentiable Hamiltonian Helmholtz the-
orem). Let 𝑋(𝑞, 𝑝) be a vector field defined by 𝑋(𝑞, 𝑝)

⊤
=

(𝑋𝑞(𝑞, 𝑝), 𝑋𝑝(𝑞, 𝑝)). The nondifferentiable system of (32) is
Hamiltonian if and only if the associated quantum differential
operator𝑂◻,𝑋 given by (33) has a self-adjoint Fréchet derivative
with respect to the 𝐿2 symplectic scalar product. In this case, the
Hamiltonian is given by

𝐻(𝑞, 𝑝) = ∫

1

0

[𝑝 ⋅ 𝑋𝑞 (𝜆𝑞, 𝜆𝑝) − 𝑞 ⋅ 𝑋𝑝 (𝜆𝑞, 𝜆𝑝)] 𝑑𝜆. (40)

Proof. If 𝑋 is Hamiltonian, then there exists a function 𝐻 :

R𝑑 × C𝑑 → C such that𝐻(𝑞, 𝑝) is holomorphic with respect
to V and differentiable with respect to 𝑞 and𝑋𝑞 = 𝜕𝐻/𝜕𝑝 and
𝑋𝑝 = −𝜕𝐻/𝜕𝑞.The nondifferentiable integrability conditions
are clearly verified using Schwarz’s lemma. Reciprocally, we
assume that 𝑋 satisfies the nondifferentiable integrability
conditions. We will show that 𝑋 is Hamiltonian with respect
to the Hamiltonian

𝐻(𝑞, 𝑝) = ∫

1

0

[𝑝 ⋅ 𝑋𝑞 (𝜆𝑞, 𝜆𝑝) − 𝑞 ⋅ 𝑋𝑝 (𝜆𝑞, 𝜆𝑝)] 𝑑𝜆; (41)

that is, we must show that

𝑋𝑞 (𝑞, 𝑝) =
𝜕𝐻 (𝑞, 𝑝)

𝜕𝑝
,

𝑋𝑝 (𝑞, 𝑝) = −
𝜕𝐻 (𝑞, 𝑝)

𝜕𝑞
.

(42)

We have

𝜕𝐻 (𝑞, 𝑝)

𝜕𝑞
= ∫

1

0

[𝑝 ⋅ 𝜆
𝜕𝑋𝑞 (𝜆𝑞, 𝜆𝑝)

𝜕𝑞
− 𝑋𝑝 (𝜆𝑞, 𝜆𝑝)

− 𝑞 ⋅ 𝜆
𝜕𝑋𝑝 (𝜆𝑞, 𝜆𝑝)

𝜕𝑞
] 𝑑𝜆,
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𝜕𝐻 (𝑞, 𝑝)

𝜕𝑝
= ∫

1

0

[𝑋𝑝 (𝜆𝑞, 𝜆𝑝) + 𝑝 ⋅ 𝜆
𝜕𝑋𝑞 (𝜆𝑞, 𝜆𝑝)

𝜕𝑝

− 𝑞 ⋅ 𝜆
𝜕𝑋𝑝 (𝜆𝑞, 𝜆𝑝)

𝜕𝑝
] 𝑑𝜆.

(43)

Using the nondifferentiable integrability conditions, we
obtain

𝜕𝐻 (𝑞, 𝑝)

𝜕𝑞
= ∫

1

0

−
𝜕 (𝜆𝑋𝑝 (𝜆𝑞, 𝜆𝑝))

𝜕𝜆
𝑑𝜆 = −𝑋𝑝 (𝑞, 𝑝) ,

𝜕𝐻 (𝑞, 𝑝)

𝜕𝑞
= ∫

1

0

𝜕 (𝜆𝑋𝑞 (𝜆𝑞, 𝜆𝑝))

𝜕𝜆
𝑑𝜆 = 𝑋𝑞 (𝑞, 𝑝) ,

(44)

which concludes the proof.

5. Applications

We now provide two illustrative examples of our results: one
with the formulation of dynamical systems with linear parts
and another with Newton’s equation, which is particularly
useful to study partial differentiable equations such as the
Navier-Stokes equation. Indeed, the Navier-Stokes equation
can be recovered from a Lagrangian structure with Cresson’s
quantum calculus [17]. For more applications see [34].

Let 0 < 𝛼 < 1 and let (𝑞, 𝑝) ∈ 𝐻
𝛼
(𝐼,R𝑑) × 𝐻

𝛼
(𝐼,C𝑑) be

such that ◻𝑞/◻𝑡 ∈ 𝐻
𝛼
(𝐼,C𝑑) and ◻𝑞/◻𝑡 ∈ 𝐻

𝛼
(𝐼,C𝑑).

5.1. The Linear Case. Let us consider the discrete nondiffer-
entiable system

◻𝑞

◻𝑡
= 𝛼𝑞 + 𝛽𝑝,

◻𝑝

◻𝑡
= 𝛾𝑞 + 𝛿𝑝,

(45)

where 𝛼, 𝛽, 𝛾, and 𝛿 are constants. The Helmholtz condition
(HC2) is clearly satisfied. However, system (45) satisfies the
condition (HC1) if and only if 𝛼 + 𝛿 = 0. As a consequence,
linear Hamiltonian nondifferentiable equations are of the
form

◻𝑞

◻𝑡
= 𝛼𝑞 + 𝛽𝑝,

◻𝑝

◻𝑡
= 𝛾𝑞 − 𝛼𝑝.

(46)

Using formula (40), we compute explicitly the Hamiltonian,
which is given by

𝐻(𝑞, 𝑝) =
1

2
(𝛽𝑝
2
− 𝛾𝑞
2
) + 𝛼𝑞 ⋅ 𝑝. (47)

5.2. Newton’s Equation. Newton’s equation (see [38]) is given
by

𝑞̇ =
𝑝

𝑚
,

𝑝̇ = −𝑈
󸀠
(𝑞) ,

(48)

with𝑚 ∈ R+ and 𝑞, 𝑝 ∈ R𝑑.This equation possesses a natural
Hamiltonian structure with the Hamiltonian given by

𝐻(𝑞, 𝑝) =
1

2𝑚
𝑝
2
+ 𝑈 (𝑞) . (49)

Using Cresson’s quantum calculus, we obtain a natural non-
differentiable system given by

◻𝑞

◻𝑡
=

𝑝

𝑚
,

◻𝑝

◻𝑡
= −𝑈
󸀠
(𝑞) .

(50)

The Hamiltonian Helmholtz conditions are clearly satisfied.

Remark 31. Itmust be noted thatHamiltonian (49) associated
with (50) is recovered by formula (40).

6. Conclusion

We proved a Helmholtz theorem for nondifferentiable equa-
tions, which gives necessary and sufficient conditions for the
existence of a Hamiltonian structure. In the affirmative case,
the Hamiltonian is given. Our result extends the results of
the classical case when restricting attention to differentiable
functions. An important complementary result for the non-
differentiable case is to obtain the Helmholtz theorem in the
Lagrangian case. This is nontrivial and will be subject of
future research.

Competing Interests

The authors declare that they have no competing interests.

Acknowledgments

This work was supported by FCT and CIDMA through
project UID/MAT/04106/2013. The first author is grateful to
CIDMA and DMat-UA for the hospitality and good working
conditions during his visit at University of Aveiro. The
authors would like to thank an anonymous referee for careful
reading of the submitted paper and for useful suggestions.

References

[1] V. Kac and P. Cheung, Quantum Calculus, Universitext, Sprin-
ger, New York, NY, USA, 2002.

[2] N. Martins and D. F. M. Torres, “Higher-order infinite horizon
variational problems in discrete quantum calculus,” Computers
& Mathematics with Applications, vol. 64, no. 7, pp. 2166–2175,
2012.

[3] A.M.C. Brito daCruz,N.Martins, andD. F.M.Torres, “Higher-
order Hahn’s quantum variational calculus,”Nonlinear Analysis:
Theory, Methods & Applications, vol. 75, no. 3, pp. 1147–1157,
2012.

[4] A. B. Malinowska and N. Martins, “Generalized transversality
conditions for the Hahn quantum variational calculus,” Opti-
mization, vol. 62, no. 3, pp. 323–344, 2013.



8 Discrete Dynamics in Nature and Society

[5] A. B. Malinowska and D. F. M. Torres, “The Hahn quantum
variational calculus,” Journal of OptimizationTheory and Appli-
cations, vol. 147, no. 3, pp. 419–442, 2010.

[6] M. Bohner and A. Peterson,Dynamic Equations on Time Scales.
An Introduction with Applications, Birkhäauser, Boston, Mass,
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We investigate the effects of terms-of-trade shocks on the spending and current account where households with the modified
Becker-Mulligan endogenous time preference maximize their utility over an infinite planning period. Our results show that, with
themodifiedBecker-Mulligan preference, the effect of the deterioration in terms of trade on the current account depends on people’s
characters. However, with the second preference we have considered, the deterioration in terms of trade will result in a current
account deficit, which is the same as Obstfeld (1982), where households with Uzawa endogenous time preference are considered;
deterioration in terms of trade leads to a decline in the current account. These theoretical results are consistent with the empirical
evidence by numerical simulations.

1. Introduction

There are many fluctuations in small open economies, since
they tend to be easily disturbed by external shocks through
international trade. The effects of deterioration in terms of
trade faced by small open economies have caused much
attention. Harberger [1] and Laursen and Metzler [2] put
forward that a decrease in current income arising from an
adverse terms-of-trade shock would lower both private sav-
ings and the current account balance. Meeting the conditions
of Harberger-Laursen-Metzler effect (H-L-M effect), income
effect caused by the terms-of-trade degradation will bring
decreases of current income and total savings and then finally
lead to the deterioration of the current account.

So far, the H-L-M effect has caused lots of academic
discussions, and many researchers have gotten support for
this effect or the contrary results, by establishing different
models or modifying the parameters in the model, especially
the time preference. Obstfeld [3] proposes a model to inves-
tigate the H-L-M effect, assuming that households maximize
their utility over an infinite planning period. It is found that

an economy specialized in production (means that the coun-
try is small and open) must experience a fall in aggregate
spending and a current surplus as a result of an unanticipated,
permanent worsening in its terms of trade. He provides a
setting in which the current account deficit predicted by
Harberger [1] and Laursen andMetzler [2] fails tomaterialize,
where an endogenous Uzawa time preference is used. Follow-
ing Uzawa [4], it is supposed that time preferences factor is
a function of the utility of consumption level, and the con-
sumer utility and the future patient degree changed inversely.
Svensson and Razin [5] reexamine the issues on the basis of
Obstfeld’s propositions. They set up a two-period, two-good
framework. A new discovery is that there are deteriorations
in the current account and savings as a result of temporary
deterioration in terms of trade, but this might go either way
as a result of any permanent deterioration. After more than
20 years, Huang and Meng [6] investigate the effects of a
permanent terms-of-trade change on a dynamic small open
economy facing an imperfect world capital market as studied
inObstfeld [3] under the assumption that households’ subjec-
tive discount rate is a decreasing function of instantaneous
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utility. They show that an unanticipated permanent terms-
of-trade deterioration leads to an increase in aggregate
expenditure and a current account deficit, which is in stark
contrast to those obtained in Obstfeld [3].

Sen and Turnovsky [7] use fixed time preferences in the
indefinite model to discuss the H-L-M effect. They consider
the choice between leisure (labor) and capital accumulation.
In their model, worsening terms of trade would lead to the
current account deficit or do not depend on people’s invest-
ment behavior. Based on the habit fixed model, Mansoorian
[8] also considers the demonstration in the discussions of the
indefinite model. In the model, the changes of people habits
depend on the past consumption. If time preferences change
as people’s consumption slowly changes, the deteriorating
terms of trade will gradually reduce savings and eventually
lead to the current account deficit. More recently, Angyridis
and Mansoorian [9] investigate the influences of terms-
of-trade deterioration on the current account when the
representative agent has Marshallian preference. With this
preference, the rate of timepreference is a decreasing function
of savings and the permanent income of the representative
agent is reduced by the terms-of-trade deterioration. As
savings fall, the country experiences a current account deficit.
Various evaluations of the model imply that the H-L-M effect
is applied in an infinite horizon model with an endogenous
rate of time preference, with standard functional forms and
reasonable parameter values.

Becker and Mulligan [10] propose a time preference that
is not a by-product of other choices. The presupposition is
that consumers often make efforts and carry out activities in
order to influence the discount on future utilities. According
to the viewpoint, the resources are spent on imagining
future pleasures, which is termed as “future oriented capital,”
determining the rate of a time preference. Thus, Becker and
Mulligan determine the time preference rate by relating it
to resources spent on imagining future pleasures, where the
larger the resources are spent the more patient the individual
is. Such resources may be spent on schooling, newspapers,
membership in a Christmas Club, and so on. In what follows,
for simplicity we call this Becker-Mulligan endogenous time
preference to be B-M preference.

Recently, there are a vast and ever-growing number of
studies on the B-M preference. For example, Gong and Zou
[11] discuss the effects of government expenditure, income
tax rate, and consumption tax rate on the steady-state capital
stock, consumption level, in the Ramsey model with B-M
preference, and find that, with the increasing of the gov-
ernment expenditure, the steady-state capital stock and the
spending on imaging the futurewill be decrease, but the effect
on the consumption level is ambiguous. Recently, Gong [12]
investigates the effects of monetary growth in an infinitely
lived, representative agent model with B-M preference. He
finds that an increase in the inflation rate reduces the
resources spent on imagining the future, which increases the
rate of time preference and decreases the steady-state value of
capital stock.

This paper studies the H-L-M effect with modified B-M
preference which has been the academic focus for more than
a half century. We present the model based on the modified

B-M preference in Section 2. In the model, the representative
consumer strengthens his expectation of future consumption
with certain endowment, and the model has the utility max-
imization function and restrictive conditions about capital
increase. Using the Pontryagin Maximum Principle [13], we
get the optimality conditions when the objective function
model is maximized and the conditions which guarantee that
the economy becomes stable. Section 3 studies the saddle
point stability of the economy system and points out the
existence and inexistence of the H-L-M effect which depend
on people’s characters. The empirical evidence is explored by
numerical simulations in Section 4. We conclude this paper
in the final section.

2. The Model

Consider an open and small economy consisting of identical
households, each maximizing its utility over an infinite
lifetime. Assume that the instantaneous utility function 𝑈 is
composed of two goods: one is imported from abroad, 𝑐𝑓, and
the other is available at home, 𝑐ℎ, in fixed supply. Households
may save by accumulating an internationally traded bond, 𝑏,
which is assumed, without loss of generality, to be indexed to
the foreign good.

2.1. Assumptions. The instantaneous utility function𝑈 of the
representative household is taken to be nonnegative, strictly
increasing in both its arguments, strictly concave, and twice
continuously differentiable. To avoid noninterior solutions to
the household’s lifetime consumption problem, we assume
that

lim
𝑐
𝑓
𝑡 →0

𝜕𝑈

𝜕𝑐
𝑓
𝑡

= lim
𝑐ℎ𝑡→0

𝜕𝑈

𝜕𝑐
ℎ
𝑡

= ∞. (1)

The household’s objective is to maximize the discounted
sum of future instantaneous utility:

∫

∞

0
𝑈(𝑐
𝑓
, 𝑐
ℎ
) 𝑒
−Δ 𝑡𝑑𝑡, (2)

where

Δ 𝑡 = ∫

𝑡

0
𝜌 (𝑠 (V)) 𝑑V. (3)

Following Becker and Mulligan [10], assume that people
have the option to increase their appreciation of the future.
This effort can be modeled by allowing the consumer to
make future pleasures less remote by spending resources on
imagination, which is denoted as 𝑠. Suppose that the time
preference is a function of the spending resources 𝑠, math-
ematically 𝜌(𝑠), and we make two assumptions as follows:

Case 1:

𝜌 (𝑠) > 0,

𝜌
󸀠
(𝑠) < 0,

𝜌
󸀠󸀠
(𝑠) < 0.

(4a)
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Case 2:

𝜌 (𝑠) > 0,

𝜌
󸀠
(𝑠) > 0,

𝜌
󸀠󸀠
(𝑠) > 0,

(4b)

for all 𝑠 ≥ 0.1 With the assumption in (4a), the time preference
in maximization problem (3) is called the modified B-M
preference. The assumption in (4b) is another case we have
considered.

From (4a), we know that, with the increasing of the
resources spent on imagination, the propinquity of future
pleasures will increase, and thus 𝜌(𝑠) is decreasing. The con-
cavity assumption 𝜌󸀠󸀠(𝑠) < 0 requires that the resources spent
on imagining future utilities become increasingly more effec-
tive in decreasing their remoteness.

At each instant, the representative family is bound by a
flow constraint linking any divergence between its income
and its expenditure to its accumulation of claims on future
units of the foreign good. Letting 𝑏 = 𝑏(𝑡) denote bond
holdings at time 𝑡, letting 𝑝 be the price of foreign goods
in terms of domestic goods, letting 𝑦 be the family’s (fixed)
endowment of the home good, and letting 𝑟 be the interna-
tional rate of interest, we can write this budget constraint as

𝑏̇ =
𝑦

𝑝
− 𝑐
𝑓
−
𝑐
ℎ

𝑝
+ 𝑟𝑏 −

𝑠

𝑝
, (5)

which implies that, for the economy as a whole, the capital
account deficit must be equal to the excess of income over
expenditure and resources spent on imagination.

The household is also bound by a second constraint on
its program of saving and spending. The discounted integral
of lifetime expenditure (measured in domestic goods) and
resources spent on imagination must be not greater than the
capitalized value of lifetime output plus initial bond holdings;
that is,

𝑦

𝑟
+ 𝑝𝑏0 ≥ ∫

∞

0
𝑒
−𝑟
[𝑝𝑐
𝑓
+ 𝑐
ℎ
+ 𝑠] 𝑑𝑡. (6)

The importance of this constraint can be appreciated by
contrasting the present infinite horizon planning problem
with a finite-horizon problem whose planning period ends
at time 𝑇. In the latter setting, the family’s budget constraint
clearly implies that 𝑏(𝑇) is nonnegative, and for any lifetime,
borrowing must be repaid before death. But an infinitely
lived family facing a perfect capital market may borrow and
consume arbitrarily large amounts while it is always meeting
its interest payments through further borrowing. Its lifetime
utility is unbounded; that is, no optimal program exists unless
such a condition is imposed.

To rule out this “paradox of borrowing,” we impose
the feasibility constraint that, at each moment, the family’s
capitalized future output must exceed its indebtedness:

𝑦

𝑟
+ 𝑝𝑏 ≥ 0. (7)

The household’s problem is to choose paths for consump-
tions on 𝑐𝑓, 𝑐ℎ, and 𝑠 to

maximize ∫

∞

0
𝑈(𝑐
𝑓
, 𝑐
ℎ
) 𝑒
−Δ 𝑡𝑑𝑡 (8)

subject to (i) Δ 𝑡 = ∫
𝑡

0
𝜌 (𝑠 (V)) 𝑑V,

(ii) 𝑏̇ =
𝑦

𝑝
− 𝑐
𝑓
−
𝑐
ℎ

𝑝
+ 𝑟𝑏 −

𝑠

𝑝
,

(iii) 𝑐𝑓, 𝑐ℎ ≥ 0,

(iv)
𝑦

𝑟
+ 𝑝𝑏 ≥ 0,

(9)

given an initial stock 𝑏0 of net claims on foreigners.The num-
ber of households is for convenience taken to be 1, so that the
consumption and saving paths chosen by the representative
household may be identified with those of the economy as
a whole.

2.2. Two Simplifications. Two simplifications will facilitate
our derivation of the necessary conditions for a solution to
problem (8), just as what Obstfeld [3] has used. In order to
maximize the lifetimewelfare, at eachmoment the household
must maximize its instantaneous utility, given relative prices
and its chosen level of expenditure on consumption goods
in general. The first simplification is to replace the utility
function with the indirect utility function as

𝑉 (𝑝, 𝑧) ≡ sup {𝑈 (𝑐𝑓, 𝑐ℎ) | 𝑝𝑐𝑓 + 𝑐ℎ = 𝑧} , (10)

which both reduces the dimensionality of our problem and
allows us to focus on a variable of primary interest, expendi-
ture measured in terms of the domestic good 𝑧.2

The second simplification is achieved by changing vari-
ables in the maximization problem from 𝑡 to Δ 𝑡, using the
fact that

𝑑Δ 𝑡 = 𝜌 (𝑠) 𝑑𝑡, (11)

which reduces the household’s problem to that of choosing a
path for 𝑧 and 𝑠 to

maximize ∫

∞

0

𝑉 (𝑝, 𝑧)

𝜌 (𝑠)
𝑒
−Δ 𝑡𝑑Δ 𝑡,

subject to 𝑑𝑏

𝑑Δ 𝑡

=
(𝑦 − 𝑧 − 𝑠) /𝑝 + 𝑟𝑏

𝜌 (𝑠)
,

(12)

and the given initial bond holdings 𝑏0.

2.3. Solutions of the Model. Necessary conditions for a solu-
tion to such a maximization problem are readily derived
using the Pontryagin Maximum Principle.3 To apply this
principle, we introduce the costate variable 𝜆 = 𝜆Δ, which
may be interpreted as the imputed value or shadow price of
saving,measured in utility terms. According to theMaximum
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Principle, an optimal program must maximize the following
Hamiltonian for each 𝜆:

𝐻(𝑏, 𝑧, 𝑠, 𝜆) =
𝑉 (𝑝, 𝑧) + 𝜆 [(𝑦 − 𝑧 − 𝑠) /𝑝 + 𝑟𝑏]

𝜌 (𝑠)
, (13)

with respect to 𝑏, 𝑧, and 𝑠.
The solutions to the first-order conditions 𝜕𝐻/𝜕𝑧 = 0 and

𝜕𝐻/𝜕𝑠 = 0 are

𝜆 = 𝑝𝑉𝑧, (14)

𝜆 =
−𝑝𝑉

𝑦 − 𝑧 − 𝑠 + 𝜌/𝜌󸀠 (𝑠) + 𝑟𝑝𝑏
. (15)

The Euler equation reversing initial change of variables
(𝑑Δ 𝑡 = 𝜌(𝑠)𝑑𝑡) is

𝜆̇ = 𝜆 (𝜌 (𝑠) − 𝑟) , (16)

which denotes that the marginal rate of time preference must
at each instant equal the rate of return on bonds plus “capital
gains,” that is, 𝜆̇/𝜆. Moreover, from the previous simplifica-
tion, the feasibility budget condition is

𝑏̇ =
(𝑦 − 𝑧 − 𝑠)

𝑝
+ 𝑟𝑏. (17)

While the four equations (14)–(17) are necessarily sat-
isfied by an optimal program, they are not in themselves
sufficient to guarantee optimality. The stock of bonds inher-
ited from the past is predetermined at time 𝑡 = 0 and this
fact provides an initial condition for the differential equation
system defined by the four equations (14)–(17). But an initial
value of shadow price 𝜆 is also required, and unless this
shadow price is chosen correctly, the path will be suboptimal.
The problem is again due to our assumption that the planning
unit has an infinite lifetime. If this lifetime instead ends at
time 𝑇, the terminal condition 𝑏(𝑇) = 0 would enable us to
solve backward for 𝜆0. But in the present context, no such
restriction is available.

2.4. Stationary Conditions. It is natural to consider the steady
state (𝑧, 𝑏, 𝑠) of the economy. Firstly, the condition

𝜆̇ = 𝜆 (𝜌 (𝑠) − 𝑟) = 0 (18)

guarantees that the marginal rate of time preference equals
the rate of interest, and the condition

𝑏̇ =
(𝑦 − 𝑧 − 𝑠)

𝑝
+ 𝑟𝑏 = 0 (19)

gives the external balance. The reason for doing so is that the
paths which converge to the steady state satisfy the sufficiency
condition for optimal problem

lim
Δ→∞

[
𝑦

𝑟𝑝
+ 𝑏Δ] 𝑒

−Δ
𝜆Δ = 0 (20)

and so are optimal. In the next section, we show that there
exists a unique convergent path, which will guarantee that the
economy’s response to a permanent change in the parameters
that it faces is uniquely determined.

3. The H-L-M Effect with Modified
B-M Preference

We are interested in the situation that there is a steady state
and an optimal path moving towards to it. Just as shown
above, the optimal pathmust be in accordance with (14)–(17),
and the steady state will be determined by (18) and (19).

3.1. The Steady State. Firstly, transform the differential equa-
tion (16), an equation of shadow price 𝜆, into the equation of
expenditure 𝑧. From (14), we know

𝜆̇ = 𝑝𝑉𝑧𝑧𝑧̇. (21)

Putting (14) and (21) into (16), we have

𝑧̇ =
𝑉𝑧

𝑉𝑧𝑧

(𝜌 (𝑠) − 𝑟) . (22)

From (14) and (15), we get

𝑠 −
𝜌 (𝑠)

𝜌󸀠 (𝑠)
= 𝑦 − 𝑧 +

𝑉

𝑉𝑧

+ 𝑟𝑝𝑏, (23)

from which and the implicit function theorem we can repre-
sent 𝑠 as functions of 𝑏 and 𝑧; that is,

𝑠 = 𝑠 (𝑧, 𝑏) . (24)

Thus the steady state (𝑧, 𝑏, 𝑠) of the economy with 𝑠 =
𝑠(𝑧, 𝑏) reached when 𝑧̇ = 𝑏̇ = 0 is characterized by

𝑉𝑧

𝑉𝑧𝑧

(𝜌 (𝑠) − 𝑟) = 0,

(𝑦 − 𝑧 − 𝑠 (𝑧, 𝑏))

𝑝
+ 𝑟𝑏 = 0.

(25)

The linearized system associatedwith the dynamic system
(19) and (22) around the steady state is

(

𝑧̇

𝑏̇

) =(

𝑉𝑧

𝑉𝑧𝑧

𝜌
󸀠
(𝑠) 𝑠𝑧

𝑉𝑧

𝑉𝑧𝑧

𝜌
󸀠
(𝑠) 𝑠𝑏

(−1 − 𝑠𝑧)

𝑝

−𝑠𝑏

𝑝
+ 𝑟

)(

𝑧 − 𝑧

𝑏 − 𝑏

) . (26)

The determinate of the coefficient matrix of the above lin-
ear system is given by

det(

𝑉𝑧

𝑉𝑧𝑧

𝜌
󸀠
(𝑠) 𝑠𝑧

𝑉𝑧

𝑉𝑧𝑧

𝜌
󸀠
(𝑠) 𝑠𝑏

(−1 − 𝑠𝑧)

𝑝

−𝑠𝑏

𝑝
+ 𝑟

)

=
𝑉𝑧

𝑉𝑧𝑧

𝜌
󸀠
(𝑠) (𝑟𝑠𝑧 +

𝑠𝑏

𝑝
) .

(27)
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From (23), we have

𝑠𝑧 = −
𝑉𝑉𝑧𝑧

𝑉2𝑧

⋅
𝜌
󸀠2
(𝑠)

𝜌𝜌󸀠󸀠 (𝑠)
,

𝑠𝑏 = 𝑟𝑝 ⋅
𝜌
󸀠2
(𝑠)

𝜌𝜌󸀠󸀠 (𝑠)
.

(28)

In the next two subsections, we analyze the dynamic sys-
tem (19) and (22) above near the steady state and investigate
the existence of the H-L-M effect.

3.2. The H-L-M Effect in Case 1. Under the assumption in
Case 1, we have

𝑠𝑧 = −
𝑉𝑉𝑧𝑧

𝑉2𝑧

⋅
𝜌
󸀠2
(𝑠)

𝜌𝜌󸀠󸀠 (𝑠)
< 0,

𝑠𝑏 = 𝑟𝑝 ⋅
𝜌
󸀠2
(𝑠)

𝜌𝜌󸀠󸀠 (𝑠)
< 0;

(29)

thus the determinant of the coefficient matrix of (26), that
is, (27), is negative. So the dynamic system has one negative
and one positive characteristic root, which is crucial for sta-
bility.The dynamic systemhas a perfect foresight saddle point
path near the steady state. The phase diagram analysis is
done to show the changes of current account and expen-
diture in response to terms-of-trade shocks. Firstly, con-
sider the 𝑧̇ = 0 locus. Any point on this locus must satisfy
𝜌(𝑠(𝑧, 𝑏)) = 𝑟, so differentiating both sides with respect to 𝑧,
we have

𝜌
󸀠
(𝑠) (𝑠𝑧 + 𝑠𝑏 ⋅

𝑑𝑏

𝑑𝑧
) = 0. (30)

Hence we have

𝑑𝑏

𝑑𝑧
= −
𝑠𝑧

𝑠𝑏

< 0, (31)

which shows that 𝑧̇ = 0 locus is downward in the diagram.
For the 𝑏̇ = 0 locus, in the same way, we have

𝑑𝑏

𝑑𝑧
=
𝑠𝑧 + 1

𝑝𝑟 − 𝑠𝑏

, (32)

whose slope depends on the sign of the numerator. In what
follows, the sign of 𝑑𝑏/𝑑𝑧 is considered in two cases.

Case 1. (a) If 𝑠𝑧+1 > 0, we have 𝑑𝑏/𝑑𝑧 > 0 and the 𝑏̇ = 0 curve
is upward. When doing the long-run equilibrium analysis,
𝑏̇ = 0 shows the 𝑝𝑟𝑏 + 𝑦 = 𝑧 + 𝑠(𝑧, 𝑏). Thus when the
price 𝑝 increases, this curve must move downward. Figure 1
displays the dynamic behaviors of the system described by
(19) and (22) in response to the increase of price𝑝. It is shown
that when facing with the deterioration in terms of trade (i.e.,
the price 𝑝 increases), the current account of the small open
economy will decrease and the expenditure will increase to
get to a new saddle point path. This supports the H-L-M
presumption of a current account deficit when deterioration
of terms-of-trade occurs.

b
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Figure 1: The phase diagram and the effect of a permanent terms-
of-trade deterioration for Case 1(a).
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Figure 2: The phase diagram and the effect of a permanent terms-
of-trade deterioration for Case 1(b).

(b) If 𝑠𝑧 + 1 < 0, we have 𝑑𝑏/𝑑𝑧 < 0. In this case, one
should firstly compare the slope of the curves 𝑏̇ = 0 and 𝑧̇ = 0,
since

𝑠𝑧 + 1

𝑝𝑟 − 𝑠𝑏

− (−
𝑠𝑧

𝑠𝑏

) =
𝑠𝑏 + 𝑝𝑟𝑠𝑧

(𝑝𝑟 − 𝑠𝑏) 𝑠𝑏

> 0. (33)

The 𝑏̇ = 0 curve is flatter than the 𝑧̇ = 0 curve. Figure 2
displays the dynamic behaviors of the system described by
(19) and (22) in response to the increase of price 𝑝. It is
observed that the deterioration in terms of trade leads to the
increase of the current account and decrease of the expendi-
ture, which is a result contrary to the H-L-M presumption of
a current account deficit when worsening of terms-of-trade
occurs.

3.3. The H-L-M Effect in Case 2. Under the assumption in
Case 2, we have

𝑠𝑧 = −
𝑉𝑉𝑧𝑧

𝑉2𝑧

⋅
𝜌
󸀠2
(𝑠)

𝜌𝜌󸀠󸀠 (𝑠)
> 0,

𝑠𝑏 = 𝑟𝑝 ⋅
𝜌
󸀠2
(𝑠)

𝜌𝜌󸀠󸀠 (𝑠)
> 0,

(34)
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Figure 3: The phase diagram and the effect of a permanent terms-
of-trade deterioration for Case 2(a).

so the determinant of the coefficient matrix of (26), that
is, (27), is also negative. So the dynamic system has one
negative and one positive characteristic root, which has a
perfect foresight saddle point path near the steady state. In
the following, the phase diagram analysis is done to show the
changes of current account and expenditure in response to
terms-of-trade shocks. The 𝑧̇ = 0 locus can be easily drawn
as what we have done in Section 3.2. Since

𝑑𝑏

𝑑𝑧
=
𝑠𝑧 + 1

𝑝𝑟 − 𝑠𝑏

, (35)

the sign of 𝑝𝑟 − 𝑠𝑏 is key to know the direction of the curve
𝑏̇ = 0. We should also consider two cases to determine the
sign of 𝑑𝑏/𝑑𝑧.

Case 2. (a) When 𝑝𝑟 > 𝑠𝑏, that is, 𝜌
󸀠
(𝑠)
2
/(𝜌(𝑠) ⋅ 𝜌(𝑠)

󸀠󸀠
) < 1, we

have
𝑑𝑏

𝑑𝑧
=
𝑠𝑧 + 1

𝑝𝑟 − 𝑠𝑏

> 0. (36)

So the 𝑏̇ = 0 curve is upward. As done in Section 3.2, when the
price 𝑝 increases, the 𝑏̇ = 0 curve moves downward. Figure 3
displays the phase diagram and effect of a permanent terms-
of-trade deterioration. It is shown that when facing with the
deterioration in terms of trade, the current account decreases
and the expenditure increases to get to a new saddle point
path, which supports the H-L-M presumption of a current
account deficit when deterioration of terms-of-trade occurs.

(b) When 𝑝𝑟 < 𝑠𝑏, that is, 𝜌
󸀠
(𝑠)
2
/(𝜌(𝑠) ⋅ 𝜌(𝑠)

󸀠󸀠
) > 1, we

have
𝑑𝑏

𝑑𝑧
=
𝑠𝑧 + 1

𝑝𝑟 − 𝑠𝑏

< 0. (37)

So the 𝑏̇ = 0 curve is downward.We should compare the slope
of this two curves to determine their location in the diagram.
Since

𝑠𝑧 + 1

𝑝𝑟 − 𝑠𝑏

− (−
𝑠𝑧

𝑠𝑏

) =
𝑠𝑏 + 𝑝𝑟𝑠𝑧

(𝑝𝑟 − 𝑠𝑏) 𝑠𝑏

< 0, (38)
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Figure 4: The phase diagram and the effect of a permanent terms-
of-trade deterioration for Case 2(b).

the 𝑏̇ = 0 curve must be steeper than 𝑧̇ = 0. Figure 4 also
displays the phase diagram and effect of a permanent terms-
of-trade deterioration. We see that when facing with the
deterioration in terms of trade, the current account decreases
and the expenditure increases to get to a new saddle point
path, which supports the H-L-M presumption.

4. Empirical Evidence by
Numerical Simulations

To illustrate the results above, the analytical model is sim-
ulated numerically. As is known, this model poses a two-
point boundary value problem in a continuous setting and
the deterioration in terms of trade is permanent; we refer to
the simulation method used by Trimborn et al. [14].

For the numerical implication, the instantaneous utility
function is taken to be Cobb-Douglas, so that the import
content of consumption is independent of relative price,
which is the same as Serven [15] and the form is

𝑈(𝑐
𝑓
, 𝑐
ℎ
) =

((𝑐
𝑓
)
𝜃
+ (𝑐
ℎ
)
1−𝜃
)

1−𝛿

1 − 𝛿
,

(39)

where the parameter 𝜃 satisfies 0 < 𝜃 < 1.
Our choice of preference parameters is standard, the same

as Eicher et al. [16]. The time preference function is set as
quadratic with a parameter 𝜌0; that is,

𝜌 (𝑠) = 𝜌0𝑠
2
. (40)

The world real interest rate is 𝑟 = 0.06 and the constant
income is 𝑦 = 0.5.The terms of trade is 0.95 initially and rises
to 1, as shown in Table 1. Thus the transitional paths begin at
the initial steady state and then come to the new steady state
after the terms of trade deteriorates.

With the parameterization in Table 1, Figure 5 presents
the simulated trajectories of bond holdings, consumptions,
and resources on the imagination following a permanent
unanticipated increase in the price.
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Table 1: The data in empirical analysis.

Preference parameters 𝜃 = 0.5, 𝛿 = 2.5, 𝜌0 = 0.01
Constant income 𝑦 = 0.5

World interest rate 𝑟 = 0.06

Terms of trade 𝑝0 = 0.95, 𝑝1 = 1
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Figure 5: Time evolutions of bond holdings, consumptions, and
resources.

It is shown in Figure 5 that starting from the steady-state
equilibrium at time 𝑡 = 0, both consumption and resources
spent on imagination jump to a higher level, from the red
point to the blue point, in the short run. Bond holdings
decrease in the short run and in the long run, which means
that the current account is deficit and the result is the same
as the outcome predicted by Laursen and Metzler [2] and
Obstfeld [3], which is consistent with theoretical results in
Section 3, where the H-L-M effect exists.

5. Conclusion

Obstfeld [3] finds that, in a context of explicit, intertemporal
optimization, the well-known H-L-M relationship predicts
a decline in saving and thus a current deficit is invalid.
Deterioration in the terms of trade, in his paper, leads to a
current surplus as households acquire interest-bearing claims
on foreigners in order to restore their steady-state utility
to its original level. He assumes that people have Uzawa
preference, which holds the point that time preferences factor
is a function of the utility of consumption level. However,
according to Marshall [17], agents derive direct utility from

the act of savings. It is demonstrated by Angyridis and
Mansoorian [9] that, with this preference, a terms-of-trade
deterioration, by lowering the permanent income of the
representative agent, reduces savings and leads to a current
account deficit. This supports the H-L-M effect.

Becker and Mulligan [10] believe that consumers often
make efforts and carry out activities to influence the discount
on future utilities. According to their viewpoint, the resource
spent on imagining future pleasures, which is called 𝑠, is to
increase their appreciation of the future. By modifying this
time preference, we study in this paper the H-L-M effect
which has been the academic discussion for a half century.

We have studied the H-L-M effect on an open economy
peopled by infinitely lived, utility-maximizing families, and
it is found that whether the H-L-M effect exists depends on
people’s characters, such as sagacity and far-sight.The validity
of theH-L-Mprediction depends in general on the economy’s
intertemporal utility forms and its time preferences. We have
analyzed some possible cases and have focused on resources
on imagination that are freely chosen, but it is clearly
desirable to extend our analysis to more general resources
changing paths, for example, to the expenditure. In the future
work, we will develop a two-country world economy with
modified Becker-Mulligan endogenous time preference to
investigate the macroeconomic dynamics and H-L-M effect
[18]. Moreover, in order to associate with the recent empirical
evidence, we will incorporate investment behavior explicitly
in the model. The inclusion of investment is important
because the current account should be the difference between
saving and investment, and hence investment should play an
important role in explaining the current account adjustment.
There are numerous studies that argue that the current
account fluctuations are largely driven by investment rather
than by saving [19, 20]. The recent empirical evidence also
indicates that capital goods in trade flows actually represent
the leading import item for many countries [21, 22]. Thus the
empirical studies [23–25] provide a way for us to improve the
theoretical model [26].
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Endnotes

1. This may be different to common sense of economy but
ensure our calculation in further discussion, with the
affirmation that 𝜌󸀠󸀠󸀠(𝑠) > 0.
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2. We can easily affirm that 𝜕𝑉/𝜕𝑧 > 0 and 𝜕2𝑉/𝜕𝑧2 < 0,
which means that the household’s utility will increase
if the expenditure grows up, but its effect will decrease.
And 𝜕2𝑉/𝜕𝑧𝜕𝑝 > 0 can be deduced by the concavity of
𝑉 and will help us calculate the model in Section 2.3.

3. See Arrow and Kurz [27] or Kamien and Schwartz [13],
in their bookDynamic Optimization, where the Pontrya-
gin Maximum Principle is referred to. Suppose that the
problem is to maximize ∫𝑡1

𝑡0
𝑓(𝑡, 𝑥(𝑡), 𝑢(𝑡))𝑑𝑡, subject to

𝑥̇(𝑡) = 𝑔(𝑡, 𝑥(𝑡), 𝑢(𝑡)), given 𝑥(𝑡0).Then define Hamilton
function:

𝐻(𝑡, 𝑥, 𝑢, 𝜆) = 𝑓 (𝑡, 𝑥, 𝑢) + 𝜆𝑔 (𝑡, 𝑥, 𝑢) , (∗)

where 𝜆 is a Hamilton multiplier. The solutions to the
problem must satisfy the necessary conditions as

𝜕𝐻

𝜕𝑢
=
𝜕𝑓

𝜕𝑢
+ 𝜆
𝜕𝑔

𝜕𝑢
= 0,

𝑑𝜆

𝑑𝑡
= −
𝜕𝐻

𝜕𝑥
= −
𝜕𝑓

𝜕𝑥
− 𝜆
𝜕𝑔

𝜕𝑥
.

(∗∗)

The second function is just the Euler equation and the
traversal condition is 𝜆(𝑡1) = 0.
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This paper investigates a new nonautonomous impulsive stochastic predator-prey system with the omnivorous predator. First, we
show that the system has a unique global positive solution for any given initial positive value. Second, the extinction of the system
under some appropriate conditions is explored. In addition, we obtain the sufficient conditions for almost sure permanence inmean
and stochastic permanence of the system by using the theory of impulsive stochastic differential equations. Finally, we discuss the
biological implications of themain results and show that the large noise canmake the system go extinct. Simulations are also carried
out to illustrate our theoretical analysis conclusions.

1. Introduction

Omnivory is considered as a common ecological phe-
nomenon in the natural world. Omnivorous predator feeds
on both animal prey and plant, so the intrinsic growth rate
for predator should be positive. For example, the giant panda
is omnivorous animal, since it can eat both meat and plant
such as bamboo. With the development of the economy,
pollution is becomingmore andmore serious.Thus pollution
models have widely attracted the focus of the people [1–
5]. A deterministic predator-prey system with omnivorous
predator in an impulsive polluted environment takes the
following form:

𝑑𝑥 (𝑡)

= 𝑥 (𝑡) (𝑟
1
(𝑡) − 𝑑

1
𝑐
0
(𝑡) − 𝑎

1
(𝑡) 𝑥 (𝑡) − 𝛽 (𝑡) 𝑦 (𝑡)) 𝑑𝑡,

𝑑𝑦 (𝑡)

= 𝑦 (𝑡) (𝑟
2
(𝑡) − 𝑑

2
𝑐
0
(𝑡) − 𝑎

2
(𝑡) 𝑦 (𝑡) + 𝛽 (𝑡) 𝑥 (𝑡)) 𝑑𝑡,

̇𝑐
0
(𝑡) = 𝑘𝑐

𝑒
(𝑡) − 𝑔𝑐

0
(𝑡) − 𝑚𝑐

0
(𝑡) ,

̇𝑐
𝑒
(𝑡) = −ℎ𝑐

𝑒
(𝑡) ,

𝑡 ̸= 𝜏
𝑘
,

Δ𝑥 (𝜏
𝑘
) = Δ𝑦 (𝜏

𝑘
) = Δ𝑐

0
(𝜏
𝑘
) = 0,

Δ𝑐
𝑒
(𝜏
𝑘
) = 𝑢,

𝜏
𝑘
= 𝑘𝜏, 𝑘 = 0, 1, . . . ,

(1)

where Δ𝑥(𝜏
𝑘
) = 𝑥(𝜏

+

𝑘
) − 𝑥(𝜏

𝑘
), Δ𝑦(𝜏

𝑘
) = 𝑦(𝜏

+

𝑘
) − 𝑦(𝜏

𝑘
),

Δ𝑐
0
(𝜏
𝑘
) = 𝑐

0
(𝜏
+

𝑘
) − 𝑐
0
(𝜏
𝑘
), 𝑐
𝑒
(𝜏
𝑘
) = 𝑐

𝑒
(𝜏
+

𝑘
) − 𝑐
𝑒
(𝜏
𝑘
), 𝛿
𝑖
(𝑖 =

1, 2), 𝑘, 𝑔, 𝑚, ℎ, and 𝑢 are positive constants, 𝑥(𝑡) and 𝑦(𝑡)
denote prey and omnivorous predator densities, and 𝑐

0
(𝑡) and

𝑐
𝑒
(𝑡)denote the concentrations of the toxicant in the organism

and in the environment, respectively. 𝑟
𝑖
(𝑡), 𝑎
𝑖
(𝑡) (𝑖 = 1, 2),

and 𝛽(𝑡) are all positive bounded continuous functions on
𝑅
+

fl [0, +∞). 𝑟
1
(𝑡) and 𝑟

2
(𝑡) represent the prey intrinsic

growth rate and the predator intrinsic growth rate, respec-
tively, 𝑎

𝑖
(𝑡) (𝑖 = 1, 2) are the density-dependent coefficients

of the prey and the predator, 𝛽(𝑡) is the capturing rate of the
predator, 𝑑

1
and 𝑑

2
are damage rates of the prey and predator

by the toxicant, respectively, 𝑘 represents environmental
toxicant uptake rate per unit mass organism, 𝑔 and 𝑚 are
organismal net ingestion and depuration rates of toxicant,
respectively, ℎ denotes the loss rate of toxicant from the
environment itself by volatilization, and 𝑢 is the amount of
pulsed input concentration of the toxicant at each 𝜏.

Hindawi Publishing Corporation
Discrete Dynamics in Nature and Society
Volume 2016, Article ID 5749892, 13 pages
http://dx.doi.org/10.1155/2016/5749892

http://dx.doi.org/10.1155/2016/5749892


2 Discrete Dynamics in Nature and Society

System (1) is a deterministic model, where all param-
eters in the model are deterministic. However, there are
some limitations in mathematical model from a biological
viewpoint. Therefore, it is significant to study the effects of
noises on population systems [6–9]. There are many kinds
of environmental noises. First, we assume that the toxicant
uptake rates are disturbed by white noise. If we still let
𝑑
𝑖
𝑐
0
(𝑡) (𝑖 = 1, 2) represent the toxicant uptake rates, then

𝑑
1
𝑐
0
(𝑡) and 𝑑

2
𝑐
0
(𝑡) can be replaced by

𝑑
1
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0
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1
𝑐
0
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1
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1
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2
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0
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2
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0
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2
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2
(𝑡) ,

(2)

where 𝐵̇
𝑖
(𝑡) (𝑖 = 1, 2) are white noises and 𝜎

𝑖
(𝑡) (𝑖 = 1, 2) are

the intensities of the white noises, which are bounded con-
tinuous functions on [0, +∞). Then we obtain the following
stochastic system with impulsive toxicant input in a polluted
environment:
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(3)

where 𝐵
𝑖
(𝑡) are mutually independent standard Brow-

nian motions defined on a complete probability space
(Ω,F, {F}

𝑡≥0
,P).

On the other hand, populations may be affected by
sudden environmental fluctuations, such as severe weather,
earthquakes, floods, and epidemics. Brownianmotion cannot
describe these phenomena better, so it is very important to
introduce Lévy noise into the population system [10]. There
are many researches about autonomous stochastic predator-
prey system with Lévy jumps [11, 12].

Inspired by these, we focus on nonautonomous impulsive
stochastic predator-prey system with white noises and Lévy
jumps
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(𝑡, 𝑢) 𝑁̃ (𝑑𝑡, 𝑑𝑢) ,

̇𝑐
0
(𝑡) = 𝑘𝑐

𝑒
(𝑡) − 𝑔𝑐

0
(𝑡) − 𝑚𝑐

0
(𝑡) ,

̇𝑐
𝑒
(𝑡) = −ℎ𝑐

𝑒
(𝑡) ,

𝑡 ̸= 𝜏
𝑘
,

Δ𝑥 (𝜏
𝑘
) = Δ𝑦 (𝜏

𝑘
) = Δ𝑐

0
(𝜏
𝑘
) = 0,

Δ𝑐
𝑒
(𝜏
𝑘
) = 𝑢,

𝜏
𝑘
= 𝑘𝜏, 𝑘 = 0, 1, . . . ,

(4)

where 𝑥(𝑡−) and 𝑦(𝑡−) represent the left limit of 𝑥(𝑡) and
𝑦(𝑡), respectively, 𝑁(𝑑𝑡, 𝑑𝑢) is a Poisson counting measure
with characteristic measure ] on a measurable bounded
subset Y of (0,∞) with ](Y ) < ∞, and 𝐵

𝑖
(𝑖 = 1, 2)

are independent of 𝑁. The Poisson counting measure is
represented by 𝑁̃(𝑑𝑡, 𝑑𝑢) fl 𝑁(𝑑𝑡, 𝑑𝑢) − ](𝑑𝑢)𝑑𝑡; 𝛾

𝑖
>

−1, 𝛾
𝑖
: R
+
× Y → R (𝑖 = 1, 2) are continuous functions on

[0, +∞), which are assumed to be periodic with period 𝜏 > 0.
Other parameters are defined as in system (1).

The paper is arranged as follows. In Section 2, we prove
that system (4) has a global positive solution. Section 3
shows the main result; in Section 3.1 we prove the extinction
of system (4). We also examine almost sure permanence
in mean and the stochastic permanence of the system in
Sections 3.2 and 3.3. Finally we present some simulations and
conclusions to close the paper in Section 4.

2. Notations and Global Positive Solution

For the purpose of convenience, we introduce some notions
and some lemmas which will be used for our main results.
We throughout this paper assume that 𝑥(𝑡), 𝑦(𝑡), and 𝑐

0
(𝑡)

are continuous at 𝑡 = 𝑘𝜏, and 𝑐
𝑒
(𝑡) is left continuous at 𝑡 = 𝑘𝜏

and 𝑐
𝑒
(𝑘𝜏
+
) = lim

𝑡→𝑘𝜏
+𝑐
𝑒
(𝑡) and let (Ω,F, {F}

𝑡≥0
,P) be a

complete probability space with a filtration {F
𝑡
}
𝑡≥0

satisfying
the usual conditions (i.e., it is increasing and right continuous
while F

0
contains all P-null sets). Further assume that

𝐵(𝑡) is a scalar Brownian motion defined on the complete
probability space Ω.

We denote R2
+
as the positive cone in R2; that is, R2

+
=

{𝑧 = (𝑧
1
, 𝑧
2
) ∈ R2 | 𝑧

𝑖
> 0, 𝑖 = 1, 2}. If 𝑓(𝑡) is a bounded

continuous function on [0, +∞), we define

⟨𝑓 (𝑡)⟩ =
1

𝑡
∫

𝑡

0

𝑓 (𝑡) 𝑑𝑡,

𝑓
𝑀
= max
𝑡∈[0,+∞)

𝑓 (𝑡) ,
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𝑓
𝐿
= min
𝑡∈[0,+∞)

𝑓 (𝑡) ,

𝑓
∗
= lim sup
𝑡→+∞

𝑓 (𝑡) ,

𝑓
∗
= lim inf
𝑡→+∞

𝑓 (𝑡) .

(5)

Now we give some basic properties of the following subsys-
tem of systems (1) and (4):

𝑑𝑐
0
(𝑡) = (𝑘𝑐

𝑒
(𝑡) − 𝑔𝑐

0
(𝑡) − 𝑚𝑐

0
(𝑡)) 𝑑𝑡,

𝑑𝑐
𝑒
(𝑡) = −ℎ𝑐

𝑒
(𝑡) 𝑑𝑡,

𝑡 ̸= 𝑘𝜏, 𝑘 ∈ 𝑍
+
,

Δ𝑐
0
(𝑡) = 0,

Δ𝑐
𝑒
(𝑡) = 𝑢,

𝑡 = 𝑘𝜏, 𝑘 ∈ 𝑍
+
.

(6)

Lemma 1 (see [3]). System (6) has a unique positive 𝜏-periodic
solution (𝑐∗

0
(𝑡), 𝑐
∗

𝑒
(𝑡))
𝑇 which is globally asymptotically stable.

Moreover, 𝑐
0
(𝑡) > 𝑐

∗

0
(𝑡), 𝑐
𝑒
(𝑡) > 𝑐

∗

𝑒
(𝑡) for all 𝑡 ≥ 0 if 𝑐

0
(0) >

𝑐
∗

0
(0), 𝑐
𝑒
(0) > 𝑐

∗

𝑒
(0), where

𝑐
∗

0
(𝑡) = 𝑐

∗

0
(0) 𝑒
−(𝑔+𝑚)(𝑡−𝑛𝜏)

+
𝑘𝑢 (𝑒
−(𝑔+𝑚)(𝑡−𝑛𝜏)

− 𝑒
−ℎ(𝑡−𝑛𝜏)

)

(ℎ − 𝑔 − 𝑚) (1 − 𝑒−ℎ𝜏)
,

𝑐
∗

𝑒
(𝑡) =

𝑢𝑒
−ℎ(𝑡−𝑛𝜏)

1 − 𝑒−ℎ𝜏
,

𝑐
∗

0
(0) =

𝑘𝑢 (𝑒
−(𝑔+𝑚)𝜏

− 𝑒
−ℎ𝜏
)

(ℎ − 𝑔 − 𝑚) (1 − 𝑒−(𝑔+𝑚)𝜏) (1 − 𝑒−ℎ𝜏)
,

𝑐
∗

𝑒
(0) =

𝑢

1 − 𝑒−ℎ𝜏
,

(7)

for 𝑡 ∈ (𝑘𝜏, (𝑘 + 1)𝜏] and 𝑘 ∈ 𝑍+.

Lemma 2. For any positive solution (𝑐
0
(𝑡), 𝑐
𝑒
(𝑡)) of system (1)

or (4) with initial value (𝑐
0
(0), 𝑐
𝑒
(0
+
)) ∈ R2

+
, one has

lim
𝑡→+∞

⟨𝑐
0
(𝑡)⟩ =

𝑘𝑢

ℎ (𝑔 + 𝑚) 𝜏
≜ 𝑐
0
. (8)

Proof. Through a simple calculation, we can get

∫

(𝑛+1)𝜏

𝑛𝜏

𝑐
∗

0
(𝑡) 𝑑𝑡 =

𝑘𝑢

ℎ (𝑔 + 𝑚)
. (9)

Moreover, since 𝑐∗
0
(𝑡) is a periodic function, we have

lim
𝑡→+∞

⟨𝑐
0
(𝑡)⟩
∗

≤ lim
𝑛→+∞

1

𝑛𝜏
∫

(𝑛+1)𝜏

0

𝑐
∗

0
(𝑡) 𝑑𝑡

= lim
𝑛→+∞

𝑛 + 1

𝑛𝜏
∫

(𝑛+1)𝜏

𝑛𝜏

𝑐
∗

0
(𝑡) 𝑑𝑡

=
𝑘𝑢

ℎ (𝑔 + 𝑚) 𝜏
,

lim
𝑡→+∞

⟨𝑐
0
(𝑡)⟩
∗
≥ lim
𝑛→+∞

1

(𝑛 + 1) 𝜏
∫

𝑛𝜏

0

𝑐
∗

0
(𝑡) 𝑑𝑡

= lim
𝑛→+∞

𝑛

(𝑛 + 1) 𝜏
∫

𝑛𝜏

(𝑛−1)𝜏

𝑐
∗

0
(𝑡) 𝑑𝑡

=
𝑘𝑢

ℎ (𝑔 + 𝑚) 𝜏
.

(10)

Hence one can observe that

lim
𝑡→+∞

⟨𝑐
0
(𝑡)⟩ =

𝑘𝑢

ℎ (𝑔 + 𝑚) 𝜏
≜ 𝑐
0
. (11)

Then we show an assumption which will be used in the
following proof.

Assumption 3. There exists a bounded continuous function
𝑐
𝑖
(𝑡) such that

∫
Y

[𝛾
𝑖
− ln (1 + 𝛾

𝑖
)] ] (𝑑𝑢) ≤ 𝑐

𝑖
(𝑡) , (𝑖 = 1, 2) . (12)

Theorem 4. For any given initial value (𝑥(0), 𝑦(0)) ∈ R2
+
,

there is a unique solution 𝑋(𝑡) = (𝑥(𝑡), 𝑦(𝑡)) of (4) and the
solutionwill remain inR2

+
with probability 1; that is,𝑋(𝑡) ∈ R2

+

for all 𝑡 ≥ 0 almost surely.

Proof. The coefficient of (4) is locally Lipschitz continuous,
and so, for any given initial value (𝑥(0), 𝑦(0)) ∈ R2

+
, there is a

unique local solution (𝑥(𝑡), 𝑦(𝑡)) for 𝑡 ∈ [0, 𝜏
𝑒
], where 𝜏

𝑒
is the

explosion time. To demonstrate that this solution is global,
we need to show that 𝜏

𝑒
= ∞ a.s. Let 𝑘

0
> 0 be sufficiently

large for 𝑥
0
∈ [1/𝑘

0
, 𝑘
0
] and 𝑦

0
∈ [1/𝑘

0
, 𝑘
0
]. For each integer

𝑘 ≥ 𝑘
0
, define the stopping time

𝜏
𝑘

= inf {𝑡 ∈ [0, 𝜏
𝑒
] : 𝑥 (𝑡) ™(

1

𝑘
, 𝑘) or 𝑦 (𝑡) ™(1

𝑘
, 𝑘)} ,

(13)

where we set inf 0 = ∞ (0 denotes the empty set). Obviously,
𝜏
𝑘
is increasing as 𝑘 → +∞. Set 𝜏

∞
= lim
𝑘→+∞

𝜏
𝑘
; thus 𝜏

∞
≤

𝜏
𝑒
a.s., so we just need to demonstrate that 𝜏

∞
= ∞. If 𝜏

∞
=

∞ is not true, then there exist two constants 𝑇 > 0 and 𝜀 ∈
(0, 1) such that 𝑃{𝜏

∞
≤ 𝑇} > 𝜀. Thus there is an integer 𝑘

1
≥

𝑘
0
such that 𝑃{𝜏

𝑘
≤ 𝑇} ≥ 𝜀 for all 𝑘 ≥ 𝑘

1
.

Define a function 𝑉 : R2
+
→ R
+
as follows:

𝑉 (𝑥, 𝑦) = 𝑥 − 1 − ln𝑥 + 𝑦 − 1 − ln𝑦. (14)
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Let 𝑇 > 0 be arbitrary. Applying Itô’s formula and Assump-
tion 3 leads to

𝑑𝑉 (𝑥, 𝑦) = 𝐿𝑉𝑑𝑡 − (𝑥 − 1) 𝜎
1
(𝑡) 𝑑𝐵

1
(𝑡) − (𝑦 − 1)

⋅ 𝜎
2
(𝑡) 𝑑𝐵

2
(𝑡)

+ ∫
Y

[𝑥 (𝑡
−
) 𝛾
1
(𝑡, 𝑢) − ln (1 + 𝛾

1
(𝑡, 𝑢))] 𝑁̃ (𝑑𝑡, 𝑑𝑢)

+ ∫
Y

[𝑦 (𝑡
−
) 𝛾
2
(𝑡, 𝑢) − ln (1 + 𝛾

2
(𝑡, 𝑢))] 𝑁̃ (𝑑𝑡, 𝑑𝑢) ,

(15)

where

𝐿𝑉 = (𝑥 − 1) (𝑟
1
(𝑡) − 𝑑

1
𝑐
0
(𝑡) − 𝑎

1
(𝑡) 𝑥 − 𝛽 (𝑡) 𝑦)

+
1

2
𝜎
2

1
(𝑡) + (𝑦 − 1) (𝑟

2
(𝑡) − 𝑑

2
𝑐
0
(𝑡) − 𝑎

1
(𝑡) 𝑦

+ 𝛽 (𝑡) 𝑥) +
1

2
𝜎
2

2
(𝑡)

+ ∫
Y

[𝛾
1
(𝑡, 𝑢) − ln (1 + 𝛾

1
(𝑡, 𝑢))] ] (𝑑𝑢)

+ ∫
Y

[𝛾
2
(𝑡, 𝑢) − ln (1 + 𝛾

2
(𝑡, 𝑢))] ] (𝑑𝑢) ≤ −𝑎

1
(𝑡)

⋅ 𝑥
2
+ (𝑎
1
(𝑡) + 𝑟

1
(𝑡) − 𝑑

1
𝑐
0
(𝑡) − 𝛽 (𝑡)) 𝑥 − 𝑟

1
(𝑡)

+ 𝑑
1
𝑐
0
(𝑡) +

1

2
𝜎
2

1
(𝑡) + 𝑐

1
(𝑡) + [−𝑎

2
(𝑡) 𝑦
2

+ (𝑎
2
(𝑡) + 𝑟

2
(𝑡) − 𝑑

2
𝑐
0
(𝑡) + 𝛽 (𝑡)) 𝑦 − 𝑟

2
(𝑡)

+ 𝑑
2
𝑐
0
(𝑡) +

1

2
𝜎
2

2
(𝑡) + 𝑐

2
(𝑡)] ≤ 𝐾

1
,

(16)

where

𝐾
1
= max
0≤𝑡<+∞

2

∑

𝑖=1

4𝑎
𝑖
(𝑡) [−𝑟

𝑖
(𝑡) + 𝑑

𝑖
𝑐
0
(𝑡) + (1/2) 𝜎

2

𝑖
(𝑡) + 𝑐

𝑖
(𝑡)] + [𝑎

𝑖
(𝑡) + 𝑟

𝑖
(𝑡) − 𝑑

𝑖
𝑐
0
(𝑡) + 𝛽 (𝑡)]

2

4𝑎
𝑖
(𝑡)

. (17)

So

𝑑𝑉 (𝑥, 𝑦) ≤ 𝐾
1
𝑑𝑡 − (𝑥 − 1) 𝜎

1
(𝑡) 𝑑𝐵

1
(𝑡) − (𝑦 − 1)

⋅ 𝜎
2
(𝑡) 𝑑𝐵

2
(𝑡)

+ ∫
Y

[𝑥 (𝑡
−
) 𝛾
1
(𝑡, 𝑢) − ln (1 + 𝛾

1
(𝑡, 𝑢))] 𝑁̃ (𝑑𝑡, 𝑑𝑢)

+ ∫
Y

[𝑦 (𝑡
−
) 𝛾
2
(𝑡, 𝑢) − ln (1 + 𝛾

2
(𝑡, 𝑢))] 𝑁̃ (𝑑𝑡, 𝑑𝑢) .

(18)

Integrating (18) from 0 to 𝜏
𝑘
∧ 𝑇 and taking the expectations

for both sides result in

E [𝑉 (𝑥 (𝜏
𝑘
∧ 𝑇) , 𝑦 (𝜏

𝑘
∧ 𝑇))] ≤ 𝑉 (𝑥

0
, 𝑦
0
) + 𝐾
1
𝑇. (19)

LetΩ
𝑘
= {𝜏
𝑘
≤ 𝑇} for 𝑘 ≥ 𝑘

1
; we have 𝑃(Ω

𝑘
) ≥ 𝜀. Then

𝑉 (𝑥 (𝜏
𝑘
∧ 𝑇, 𝜔) , 𝑦 (𝜏

𝑘
∧ 𝑇, 𝜔))

≥ [𝑘 − 1 − ln 𝑘] ∧ [1
𝑘
− 1 + ln 𝑘] .

(20)

It is inferred from (19) and (20) that

𝑉 (𝑥
0
, 𝑦
0
) + 𝐾
1
𝑇 ≥ E [1

Ω
𝑉 (𝑥 (𝜏

𝑘
∧ 𝑇) , 𝑦 (𝜏

𝑘
∧ 𝑇))]

≥ 𝜀 [𝑘 − 1 − ln 𝑘] ∧ [1
𝑘
− 1 + ln 𝑘] ,

(21)

where 1
Ω
is the indicator function of Ω

𝑘
. Let 𝑘 → +∞; we

have that

+∞ > 𝑉 (𝑥
0
, 𝑦
0
) + 𝐾
1
𝑇 ≥ +∞ (22)

is a contradiction; then we have 𝜏
∞
= ∞.

This completes the proof of Theorem 4.

3. Main Results

3.1. Extinction. For convenience, we prepare the following
lemma.

Lemma 5. Suppose that 𝜂(𝑡) ∈ 𝐶(Ω × [0,∞),R
+
) and let

Assumption 3 hold.
(I) If there exist two positive constants 𝑇 and 𝛿

0
such that

ln 𝜂 (𝑡) ≤ ∫
𝑡

0

𝛿 (𝑠) 𝑑𝑠 − 𝛿
0
∫

𝑡

0

𝜂 (𝑠) 𝑑𝑠 + 𝛼𝐵 (𝑡)

+

2

∑

𝑖=1

𝛿
𝑖
∫

𝑡

0

∫
Y

ln (1 + 𝛾
𝑖
(𝑢)) 𝑁̃ (𝑑𝑠, 𝑑𝑢)

𝑎.𝑠.

(23)

for all 𝑡 ≥ 𝑇, where 𝛼, 𝛿
1
, and 𝛿

2
are constants, then

⟨𝜂⟩
∗

≤
⟨𝛿⟩
∗

𝛿
0

𝑎.𝑠., 𝑖𝑓 ⟨𝛿⟩
∗
≥ 0;

lim
𝑡→∞

𝜂 (𝑡) = 0 𝑎.𝑠., 𝑖𝑓 ⟨𝛿⟩
∗
< 0.

(24)

(II) If there exist two positive constants 𝑇 and 𝛿
0
such that

ln 𝜂 (𝑡) ≥ ∫
𝑡

0

𝛿 (𝑠) 𝑑𝑠 − 𝛿
0
∫

𝑡

0

𝜂 (𝑠) 𝑑𝑠 + 𝛼𝐵 (𝑡)

+

2

∑

𝑖=1

𝛿
𝑖
∫

𝑡

0

∫
Y

ln (1 + 𝛾
𝑖
(𝑢)) 𝑁̃ (𝑑𝑠, 𝑑𝑢) a.s.

(25)

for all 𝑡 ≥ 𝑇, then ⟨𝜂⟩
∗
≥ ⟨𝛿⟩
∗
/𝛿
0
a.s. provided that ⟨𝛿⟩

∗
≥ 0.
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Lemma 5 is proved in Appendix by using a similar
method in [13].

Now, we will prove the extinction of system (4).
Define

𝑏
1
(𝑡) = 𝑟

1
(𝑡) −

1

2
𝜎
2

1
(𝑡)

+ ∫
Y

(ln (1 + 𝛾
1
(𝑡, 𝑢)) − 𝛾

1
(𝑡, 𝑢)) ] (𝑑𝑢) ,

𝑏
2
(𝑡) = 𝑟

2
(𝑡) −

1

2
𝜎
2

2
(𝑡)

+ ∫
Y

(ln (1 + 𝛾
2
(𝑡, 𝑢)) − 𝛾

2
(𝑡, 𝑢)) ] (𝑑𝑢) ,

𝑐
0
=

𝑘𝑢

ℎ (𝑔 + 𝑚) 𝜏
.

(26)

Theorem 6. If

⟨𝑏
1
⟩
∗
< 𝑑
1
𝑐
0
, (27)

⟨𝑏
2
⟩
∗
< 𝑑
2
𝑐
0
, (28)

then

lim
𝑡→∞

𝑥 (𝑡) = 0,

lim
𝑡→∞

𝑦 (𝑡) = 0

a.s.

(29)

Proof. By Assumption 3 and the strong law of large numbers
for local martingales, one has

lim
𝑡→+∞

1

𝑡
∫

𝑡

0

∫
Y

ln (1 + 𝛾
𝑖
(𝑠, 𝑢)) 𝑁̃ (𝑑𝑠, 𝑑𝑢) = 0,

lim
𝑡→+∞

∫
𝑡

0
𝜎
𝑖
(𝑠) 𝑑𝐵

𝑖
(𝑠)

𝑡
= 0

a.s., 𝑖 = 1, 2.

(30)

Define

𝑉
1
(𝑥) = ln𝑥 (𝑡) ,

𝑉
2
(𝑥) = ln𝑦 (𝑡) .

(31)

Applying Itô’s formula yields

𝑑 ln𝑥 (𝑡)

= (𝑏
1
(𝑡) − 𝑑

1
𝑐
0
(𝑡) − 𝑎

1
(𝑡) 𝑥 (𝑡) − 𝛽 (𝑡) 𝑦 (𝑡)) 𝑑𝑡

− 𝜎
1
(𝑡) 𝑑𝐵

1
(𝑡)

+ ∫
Y

ln (1 + 𝛾
1
(𝑡, 𝑢)) 𝑁̃ (𝑑𝑡, 𝑑𝑢) ,

(32)

𝑑 ln𝑦 (𝑡)

= (𝑏
2
(𝑡) − 𝑑

2
𝑐
0
(𝑡) − 𝑎

2
(𝑡) 𝑦 (𝑡) + 𝛽 (𝑡) 𝑥 (𝑡)) 𝑑𝑡

− 𝜎
2
(𝑡) 𝑑𝐵

2
(𝑡)

+ ∫
Y

ln (1 + 𝛾
2
(𝑡, 𝑢)) 𝑁̃ (𝑑𝑡, 𝑑𝑢) .

(33)

Integrating both sides of (32) and (33) from0 to 𝑡, respectively,
we have

ln𝑥 (𝑡) − ln𝑥 (0)

= ∫

𝑡

0

(𝑏
1
(𝑠) − 𝑑

1
𝑐
0
(𝑠) − 𝑎

1
(𝑠) 𝑥 (𝑠) − 𝛽 (𝑠) 𝑦 (𝑠)) 𝑑𝑡

− ∫

𝑡

0

𝜎
1
(𝑠) 𝑑𝐵

1
(𝑠)

+ ∫

𝑡

0

∫
Y

ln (1 + 𝛾
1
(𝑡, 𝑢)) 𝑁̃ (𝑑𝑡, 𝑑𝑢) ,

(34)

ln𝑦 (𝑡) − ln𝑦 (0)

= ∫

𝑡

0

(𝑏
2
(𝑠) − 𝑑

2
𝑐
0
(𝑠) − 𝑎

2
(𝑠) 𝑦 (𝑠) + 𝛽 (𝑠) 𝑥 (𝑠)) 𝑑𝑠

− ∫

𝑡

0

𝜎
2
(𝑠) 𝑑𝐵

2
(𝑠)

+ ∫

𝑡

0

∫
Y

ln (1 + 𝛾
2
(𝑡, 𝑢)) 𝑁̃ (𝑑𝑡, 𝑑𝑢) .

(35)

From (34), we can obtain that

ln𝑥 (𝑡) − ln𝑥 (0)
𝑡

≤
∫
𝑡

0
𝑏
1
(𝑠) 𝑑𝑠

𝑡
− 𝑑
1

∫
𝑡

0
𝑐
0
(𝑠) 𝑑𝑠

𝑡
−
∫
𝑡

0
𝜎
1
(𝑠) 𝑑𝐵

1
(𝑠)

𝑡

+
∫
𝑡

0
∫
Y
ln (1 + 𝛾

1
(𝑡, 𝑢)) 𝑁̃ (𝑑𝑡, 𝑑𝑢)

𝑡
.

(36)

Taking the limit superior results in

[
ln𝑥 (𝑡)
𝑡

]

∗

≤ lim sup
𝑡→∞

[

[

∫
𝑡

0
𝑏
1
(𝑠) 𝑑𝑠

𝑡
− 𝑑
1

∫
𝑡

0
𝑐
0
(𝑠) 𝑑𝑠

𝑡

]

]

a.s.

(37)

From (27) we can know that [ln𝑥(𝑡)/𝑡]∗ < 0.Thus we have

lim
𝑡→∞

𝑥 (𝑡) = 0 a.s. (38)
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Applying (35) leads to

ln𝑦 (𝑡) − ln𝑦 (0)
𝑡

≤
∫
𝑡

0
𝑏
2
(𝑠) 𝑑𝑠

𝑡
+
∫
𝑡

0
𝛽 (𝑠) 𝑥 (𝑠) 𝑑𝑠

𝑡
− 𝑑
2

∫
𝑡

0
𝑐
0
(𝑠) 𝑑𝑠

𝑡

−
∫
𝑡

0
𝜎
2
(𝑠) 𝑑𝐵

2
(𝑠)

𝑡

+
∫
𝑡

0
∫
Y
ln (1 + 𝛾

2
(𝑡, 𝑢)) 𝑁̃ (𝑑𝑡, 𝑑𝑢)

𝑡
.

(39)

Taking the limit superior, together with (28) and (38), we can
see that

[
ln𝑦 (𝑡)
𝑡

]

∗

< 0 a.s. (40)

Therefore,

lim
𝑡→∞

𝑦 (𝑡) = 0 a.s. (41)

This completes the proof of Theorem 6.

For simplicity, we define

𝑅
∗
=
⟨𝑏
2
⟩
∗

+ 𝛽
𝑀
/𝑎
𝐿

1
⋅ ⟨𝑏
1
⟩
∗

(𝑑
2
+ 𝑑
1
(𝛽𝑀/𝑎𝐿

1
)) 𝑐
0

. (42)

Theorem 7. If ⟨𝑏
1
⟩
∗
> 𝑑
1
𝑐
0
and 𝑅∗ < 1, then

⟨𝑏
1
⟩
∗
− 𝑑
1
𝑐
0

𝑎𝑀
1

≤ ⟨𝑥 (𝑡)⟩∗ ≤ ⟨𝑥 (𝑡)⟩
∗
≤
⟨𝑏
1
⟩
∗

− 𝑑
1
𝑐
0

𝑎𝐿
1

,

lim
𝑡→∞

𝑦 (𝑡) = 0

a.s.

(43)

Proof. According to (34), we can obtain that

ln𝑥 (𝑡) − ln𝑥 (0)

≤ ∫

𝑡

0

𝑏
1
(𝑠) 𝑑𝑠 − 𝑑

1
∫

𝑡

0

𝑐
0
(𝑠) 𝑑𝑠 − ∫

𝑡

0

𝑎
1
(𝑠) 𝑥 (𝑠) 𝑑𝑠

− ∫

𝑡

0

𝜎
1
(𝑠) 𝑑𝐵

1
(𝑠)

+ ∫

𝑡

0

∫
Y

ln (1 + 𝛾
1
(𝑡, 𝑢)) 𝑁̃ (𝑑𝑡, 𝑑𝑢)

≤ ∫

𝑡

0

𝑏
1
(𝑠) 𝑑𝑠 − 𝑑

1
∫

𝑡

0

𝑐
0
(𝑠) 𝑑𝑠 − 𝑎

𝐿

1
∫

𝑡

0

𝑥 (𝑠) 𝑑𝑠

− ∫

𝑡

0

𝜎
1
(𝑠) 𝑑𝐵

1
(𝑠)

+ ∫

𝑡

0

∫
Y

ln (1 + 𝛾
1
(𝑡, 𝑢)) 𝑁̃ (𝑑𝑡, 𝑑𝑢) .

(44)

It follows from Lemma 5 that

⟨𝑥 (𝑡)⟩
∗
≤
⟨𝑏
1
⟩
∗

− 𝑑
1
𝑐
0

𝑎𝐿
1

a.s. (45)

By (35), we have

ln𝑦 (𝑡) − ln𝑦 (0) ≤ ∫
𝑡

0

𝑏
2
(𝑠) 𝑑𝑠 + ∫

𝑡

0

𝛽 (𝑠) 𝑥 (𝑠) 𝑑𝑠

− 𝑑
2
∫

𝑡

0

𝑐
0
(𝑠) 𝑑𝑠 − ∫

𝑡

0

𝑎
2
(𝑠) 𝑦 (𝑠) 𝑑𝑠

− ∫

𝑡

0

𝜎
2
(𝑠) 𝑑𝐵

2
(𝑠)

+ ∫

𝑡

0

∫
Y

ln (1 + 𝛾
2
(𝑡, 𝑢)) 𝑁̃ (𝑑𝑡, 𝑑𝑢)

≤ (
∫
𝑡

0
𝑏
2
(𝑠) 𝑑𝑠

𝑡
+ 𝛽
𝑀
⟨𝑏
1
⟩
∗

− 𝑑
1
𝑐
0

𝑎𝐿
1

− 𝑑
2

∫
𝑡

0
𝑐
0
(𝑠) 𝑑𝑠

𝑡
) 𝑡 − ∫

𝑡

0

𝜎
2
(𝑠) 𝑑𝐵

2
(𝑠)

+ ∫

𝑡

0

∫
Y

ln (1 + 𝛾
2
(𝑡, 𝑢)) 𝑁̃ (𝑑𝑡, 𝑑𝑢) ,

(46)

and then

𝑦 (𝑡) ≤ 𝑦 (0) exp
{

{

{

(
∫
𝑡

0
𝑏
2
(𝑡) 𝑑𝑡

𝑡
+ 𝛽
𝑀
⟨𝑏
1
⟩
∗

− 𝑑
1
𝑐
0

𝑎𝐿
1

− 𝑑
2

∫
𝑡

0
𝑐
0
(𝑠) 𝑑𝑠

𝑡
) 𝑡 − ∫

𝑡

0

𝜎
2
(𝑡) 𝑑𝐵

2
(𝑡)

+ ∫

𝑡

0

∫
Y

ln (1 + 𝛾
2
(𝑡, 𝑢)) 𝑁̃ (𝑑𝑡, 𝑑𝑢)

}

}

}

.

(47)

Since 𝑅∗ < 1, then we know that
lim
𝑡→∞

𝑦 (𝑡) = 0 a.s., (48)

which combined with (34) and the property of the limit
superior shows that, for any 𝜀 > 0, there exists a random
number 𝑇 > 0 for 𝑡 > 𝑇 such that

ln 𝑥 (𝑡)
𝑥 (0)

≥ ∫

𝑡

0

(𝑏
1
(𝑠) − 𝑑

1
𝑐
0
(𝑠)) 𝑑𝑠 − 𝛽

𝑀
𝜀

− 𝑎
𝑀

1
∫

𝑡

0

𝑥 (𝑡) 𝑑𝑡 − ∫

𝑡

0

𝜎
1
(𝑡) 𝑑𝐵

1
(𝑡)

+ ∫

𝑡

0

∫
Y

ln (1 + 𝛾
1
(𝑡, 𝑢)) 𝑁̃ (𝑑𝑡, 𝑑𝑢) .

(49)

By Lemma 5, we have that

⟨𝑥 (𝑡)⟩
∗
≥
⟨𝑏
1
⟩
∗
− 𝑑
1
𝑐
0

𝑎𝑀
1

a.s. (50)

This completes the proof of Theorem 7.
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3.2. Permanence in Mean. In this section, we need to show
the permanence in mean. Note that ⟨𝑏

1
⟩
∗
< 𝑑
1
𝑐
0
implies that

productiveness of the prey is less than its death loss rate; then
the prey can go extinct. Naturally, we assume ⟨𝑏

1
⟩
∗
> 𝑑
1
𝑐
0
in

the rest of this paper.
Define

Δ
1
= 𝛽
𝐿
⟨𝑏
1
⟩
∗
+ 𝑎
𝑀

1
⟨𝑏
2
⟩
∗
− (𝛽
𝐿
𝑑
1
+ 𝑎
𝑀

1
𝑑
2
) 𝑐
0
,

Δ
2
= 𝛽
𝐿
𝛽
𝑀
+ 𝑎
𝑀

1
𝑎
𝑀

2
,

Δ
3
= ⟨𝑏
1
⟩
∗
− 𝑑
1
𝑐
0
− 𝛽
𝐿Δ 1

Δ
2

,

Δ
4
= ⟨𝑏
1
⟩
∗
− 𝑑
1
𝑐
0
− 𝛽
𝑀Δ 5

𝑎𝐿
2

,

Δ
5
= ⟨𝑏
2
⟩
∗

− 𝑑
2
𝑐
0
+ 𝛽
𝑀Δ 3

𝑎𝐿
1

,

𝑅
∗
=
⟨𝑏
2
⟩
∗
+ 𝛽
𝐿
/𝑎
𝑀

1
⋅ ⟨𝑏
1
⟩
∗

(𝑑
2
+ 𝑑
1
(𝛽𝐿/𝑎𝑀

1
)) 𝑐
0

.

(51)

Theorem 8. If

⟨𝑏
2
⟩
∗

> 𝑑
2
𝑐
0
,

𝑅
∗
> 1,

Δ
3
> 0,

Δ
4
> 0,

(52)

then

Δ
4

𝑎𝑀
1

≤ ⟨𝑥 (𝑡)⟩∗ ≤ ⟨𝑥 (𝑡)⟩
∗
≤
Δ
3

𝑎𝐿
1

,

Δ
1

Δ
2

≤ ⟨𝑦 (𝑡)⟩
∗
≤ ⟨𝑦 (𝑡)⟩

∗

≤
Δ
5

𝑎𝐿
2

.

(53)

Proof. Define 𝑢(𝑡) such that 𝑥(𝑡) ≤ 𝑢(𝑡), where 𝑢(𝑡) satisfies

𝑑𝑢 (𝑡) = 𝑢 (𝑡) (𝑟
1
(𝑡) − 𝑎

1
(𝑡) 𝑢 (𝑡)) 𝑑𝑡

− 𝜎
1
(𝑡) 𝑢 (𝑡) 𝑑𝐵

1
(𝑡)

+ ∫
Y

𝑢 (𝑡
−
) 𝛾
1
(𝑡, 𝑢) 𝑁̃ (𝑑𝑡, 𝑑𝑢) .

(54)

In [9], we know that

lim
𝑡→∞

ln 𝑢 (𝑡)
𝑡

= 0, a.s. (55)

It can be inferred from comparison theorem that

(
ln𝑥 (𝑡)
𝑡

)

∗

≤ lim
𝑡→∞

ln 𝑢 (𝑡)
𝑡

= 0. (56)

From (34) and (35), we know that
ln𝑥 (𝑡) − ln𝑥 (0)

𝑡

=
∫
𝑡

0
𝑏
1
(𝑠) 𝑑𝑠

𝑡
−
∫
𝑡

0
𝑑
1
𝑐
0
(𝑠) 𝑑𝑠

𝑡
−
∫
𝑡

0
𝑎
1
(𝑠) 𝑥 (𝑠) 𝑑𝑠

𝑡

−
∫
𝑡

0
𝛽 (𝑠) 𝑦 (𝑠) 𝑑𝑠

𝑡
−
∫
𝑡

0
𝜎
1
(𝑠) 𝑑𝐵

1
(𝑠)

𝑡

+
∫
𝑡

0
∫
Y
ln (1 + 𝛾

1
(𝑡, 𝑢)) 𝑁̃ (𝑑𝑡, 𝑑𝑢)

𝑡
,

(57)

ln𝑦 (𝑡) − ln𝑦 (0)
𝑡

=
∫
𝑡

0
𝑏
2
(𝑠) 𝑑𝑠

𝑡
−
∫
𝑡

0
𝑑
2
𝑐
0
(𝑠) 𝑑𝑠

𝑡
−
∫
𝑡

0
𝑎
2
(𝑠) 𝑦 (𝑠) 𝑑𝑠

𝑡

+
∫
𝑡

0
𝛽 (𝑠) 𝑥 (𝑠) 𝑑𝑠

𝑡
−
∫
𝑡

0
𝜎
2
(𝑠) 𝑑𝐵

2
(𝑠)

𝑡

+
∫
𝑡

0
∫
Y
ln (1 + 𝛾

2
(𝑡, 𝑢)) 𝑁̃ (𝑑𝑡, 𝑑𝑢)

𝑡
.

(58)

By 𝛽
𝐿
× (57) + 𝑎𝑀

1
× (58), we obtain that

𝛽
𝐿
×
ln𝑥 (𝑡) − ln𝑥 (0)

𝑡
+ 𝑎
𝑀

1
×
ln𝑦 (𝑡) − ln𝑦 (0)

𝑡

≥ Δ
1
− Δ
2
⟨𝑦 (𝑡)⟩ − 𝛽

𝐿

∫
𝑡

0
𝜎
1
(𝑠) 𝑑𝐵

1
(𝑠)

𝑡

+ 𝛽
𝐿

∫
𝑡

0
∫
Y
ln (1 + 𝛾

1
(𝑡, 𝑢)) 𝑁̃ (𝑑𝑡, 𝑑𝑢)

𝑡

− 𝑎
𝑀

1

∫
𝑡

0
𝜎
2
(𝑠) 𝑑𝐵

2
(𝑠)

𝑡

+ 𝑎
𝑀

1

∫
𝑡

0
∫
Y
ln (1 + 𝛾

2
(𝑡, 𝑢)) 𝑁̃ (𝑑𝑡, 𝑑𝑢)

𝑡
.

(59)

When 𝑅
∗
> 1 is used in (59), applying Lemma 5 and (56)

leads to

⟨𝑦 (𝑡)⟩
∗
≥
Δ
1

Δ
2

. (60)

According to (57) and (60), we can have

ln𝑥 (𝑡) − ln𝑥 (0)
𝑡

≤ ⟨𝑏
1
⟩
∗

− 𝑑
1
𝑐
0
− 𝛽
𝐿Δ 1

Δ
2

− 𝑎
𝐿

1
⟨𝑥 (𝑡)⟩

−
∫
𝑡

0
𝜎
1
(𝑠) 𝑑𝐵

1
(𝑠)

𝑡

+
∫
𝑡

0
∫
Y
ln (1 + 𝛾

1
(𝑡, 𝑢)) 𝑁̃ (𝑑𝑡, 𝑑𝑢)

𝑡
.

(61)
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From the conditions ofTheorem 8, we know that Δ
3
> 0 and

applying Lemma 5 results in

⟨𝑥 (𝑡)⟩
∗
≤
Δ
3

𝑎𝐿
1

. (62)

By (58) and (62), we obtain that

ln𝑦 (𝑡) − ln𝑦 (0)
𝑡

≤ ⟨𝑏
2
⟩
∗

− 𝑑
2
𝑐
0
+ 𝛽
𝑀Δ 3

𝑎𝐿
1

− 𝑎
𝐿

2
⟨𝑦 (𝑡)⟩

−
∫
𝑡

0
𝜎
1
(𝑠) 𝑑𝐵

1
(𝑠)

𝑡

+
∫
𝑡

0
∫
Y
ln (1 + 𝛾

1
(𝑡, 𝑢)) 𝑁̃ (𝑑𝑡, 𝑑𝑢)

𝑡
.

(63)

From the conditions of Theorem 8, we see that Δ
5
> 0 and

applying Lemma 5 leads to

⟨𝑦 (𝑡)⟩
∗

≤
Δ
5

𝑎𝐿
2

. (64)

By (58) and (64), we can have

ln𝑥 (𝑡) − ln𝑥 (0)
𝑡

≥ ⟨𝑏
1
⟩
∗
− 𝑑
1
𝑐
0
− 𝛽
𝑀Δ 5

𝑎𝐿
2

− 𝑎
𝑀

1
⟨𝑥 (𝑡)⟩

−
∫
𝑡

0
𝜎
1
(𝑠) 𝑑𝐵

1
(𝑠)

𝑡

+
∫
𝑡

0
∫
Y
ln (1 + 𝛾

1
(𝑡, 𝑢)) 𝑁̃ (𝑑𝑡, 𝑑𝑢)

𝑡
.

(65)

According to the conditions ofTheorem 8, we see thatΔ
4
> 0

and applying Lemma 5 yields

⟨𝑥 (𝑡)⟩∗ ≥
Δ
4

𝑎𝑀
1

. (66)

This completes the proof of Theorem 8.

3.3. Stochastic Permanence. For the sake of proving stochastic
permanence, we should examine the 𝑝th moment bounded-
ness firstly.

Define

𝜆
1
= max
𝑡∈[0,+∞)

{𝑝𝑟
1
(𝑡) − 𝑝𝑑

1
𝑐
0
(𝑡) +

𝑝 (𝑝 − 1)

2
𝜎
2

1
(𝑡)

+ 𝑐
1
(𝑡)} ,

𝜆
󸀠

1
= max
𝑡∈[0,+∞)

{𝑝𝑟
2
(𝑡) − 𝑝𝑑

2
𝑐
0
(𝑡) +

𝑝 (𝑝 − 1)

2
𝜎
2

2
(𝑡)

+ 𝑐
2
(𝑡)} ,

𝜆
󸀠󸀠

1
= max {𝜆

1
, 𝜆
󸀠

1
} ,

𝜆
2
= min
𝑡∈[0,+∞)

{𝑎
1
(𝑡) 𝑝 −

𝑝𝛽 (𝑡)

𝑝 + 1
} ,

𝜆
󸀠

2
= min
𝑡∈[0,+∞)

{𝑎
2
(𝑡) 𝑝 −

𝑝
2
𝛽 (𝑡)

𝑝 + 1
} ,

𝜆
󸀠󸀠

2
= min {𝜆

2
, 𝜆
󸀠

2
} .

(67)

Theorem 9. If there exists a constant 𝑝 such that

∫
Y

((1 + 𝛾
𝑖
(𝑡, 𝑢))

𝑝

− 1 − 𝑝𝛾
𝑖
(𝑡, 𝑢)) ] (𝑑𝑢) < ∞, (68)

𝜆
󸀠󸀠

1
> 0,

𝜆
󸀠󸀠

2
> 0,

(69)

then

lim sup
𝑡→∞

E [(𝑥
2
(𝑡) + 𝑦

2
(𝑡))
𝑝/2

] ≤ 𝐾 (𝑝) a.s. (70)

Proof. Define

𝑉 (𝑥, 𝑦) = 𝑥
𝑝
(𝑡) + 𝑦

𝑝
(𝑡) . (71)

Applying Itô’s formula and (68) yields

𝑑𝑉 (𝑥, 𝑦)

= 𝐿𝑉𝑑𝑡 − 𝑝𝜎
1
(𝑡) 𝑥
𝑝
(𝑡) 𝑑𝐵

1
(𝑡)

− 𝑝𝜎
2
(𝑡) 𝑦
𝑝
(𝑡) 𝑑𝐵

2
(𝑡)

+ ∫
Y

𝑥
𝑝
(𝑡
−
) ((1 + 𝛾

1
(𝑡, 𝑢))

𝑝

− 1) 𝑁̃ (𝑑𝑡, 𝑑𝑢)

+ ∫
Y

𝑦
𝑝
(𝑡
−
) ((1 + 𝛾

2
(𝑡, 𝑢))

𝑝

− 1) 𝑁̃ (𝑑𝑡, 𝑑𝑢) ,

(72)

where

𝐿𝑉 = 𝑝𝑥
𝑝
(𝑡) (𝑟
1
(𝑡) − 𝑑

1
𝑐
0
(𝑡) − 𝑎

1
(𝑡) 𝑥 (𝑡) − 𝛽 (𝑡)

⋅ 𝑦 (𝑡)) + 𝑝𝑦
𝑝
(𝑡) (𝑟
2
(𝑡) − 𝑑

2
𝑐
0
(𝑡) − 𝑎

2
(𝑡) 𝑥 (𝑡)

+ 𝛽 (𝑡) 𝑥 (𝑡)) +
𝑝 (𝑝 − 1)

2
(𝜎
2

1
(𝑡) 𝑥
𝑝
(𝑡) + 𝜎

2

2
(𝑡)

⋅ 𝑦
𝑝
(𝑡)) + ∫

Y

𝑥
𝑝
(𝑡
−
)

⋅ ((1 + 𝛾
1
(𝑡, 𝑢))

𝑝

− 1 − 𝑝𝛾
1
(𝑡, 𝑢)) ] (𝑑𝑢)
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+ ∫
Y

𝑦
𝑝
(𝑡
−
) ((1 + 𝛾

1
(𝑡, 𝑢))

𝑝

− 1 − 𝑝𝛾
1
(𝑡, 𝑢))

⋅ ] (𝑑𝑢) ≤ (𝑝𝑟
1
(𝑡) − 𝑝𝑑

1
𝑐
0
(𝑡) +

𝑝 (𝑝 − 1)

2
𝜎
2

1
(𝑡)

+ 𝑐
1
(𝑡)) 𝑥

𝑝
(𝑡) + (𝑝𝑟

2
(𝑡) − 𝑝𝑑

2
𝑐
0
(𝑡) +

𝑝 (𝑝 − 1)

2

⋅ 𝜎
2

2
(𝑡) + 𝑐

2
(𝑡)) 𝑦

𝑝
(𝑡) − 𝑎

1
(𝑡) 𝑝𝑥

𝑝+1
(𝑡) − 𝛽 (𝑡)

⋅ 𝑝𝑥
𝑝
(𝑡) 𝑦 (𝑡) − 𝑎

2
(𝑡) 𝑝𝑦

𝑝+1
(𝑡) + 𝑝𝛽 (𝑡) 𝑥 (𝑡) 𝑦

𝑝
(𝑡)

≤ (𝑝𝑟
1
(𝑡) − 𝑝𝑑

1
𝑐
0
(𝑡) +

𝑝 (𝑝 − 1)

2
𝜎
2

1
(𝑡) + 𝑐

1
(𝑡))

⋅ 𝑥
𝑝
(𝑡) − (𝑎

1
(𝑡) 𝑝 −

𝑝𝛽 (𝑡)

𝑝 + 1
)𝑥
𝑝+1

(𝑡) + (𝑝𝑟
2
(𝑡)

− 𝑝𝑑
2
𝑐
0
(𝑡) +

𝑝 (𝑝 − 1)

2
𝜎
2

2
(𝑡) + 𝑐

2
(𝑡)) 𝑦

𝑝
(𝑡)

− (𝑎
2
(𝑡) 𝑝 −

𝑝
2
𝛽 (𝑡)

𝑝 + 1
)𝑦
𝑝+1

(𝑡) ,

(73)

where 𝑐
𝑖
(𝑡) (𝑖 = 1, 2) is a bounded continuous function.

Integrating (72) from 0 to 𝑡 and taking the expectations
for both sides yield

E [𝑉 (𝑥, 𝑦)] = 𝑉 (𝑥 (0) , 𝑦 (0)) + E [∫
𝑡

0

𝐿𝑉𝑑𝑡] , (74)

and then

𝑑E [𝑉 (𝑥, 𝑦)]

𝑑𝑡

≤ 𝜆
1
E [𝑥
𝑝
] − 𝜆
2
E [𝑥
𝑝+1
] + 𝜆
󸀠

1
E [𝑦
𝑝
]

− 𝜆
󸀠

2
E [𝑦
𝑝+1
]

≤ 𝜆
󸀠󸀠

1
E [𝑥
𝑝
+ 𝑦
𝑝
] − 𝜆
󸀠󸀠

2
E [𝑥
𝑝+1

+ 𝑦
𝑝+1
]

≤ 𝜆
󸀠󸀠

1
E [𝑥
𝑝
+ 𝑦
𝑝
] − 𝜆
󸀠󸀠

2
⋅ 2
−1/𝑝

(E [𝑥
𝑝
+ 𝑦
𝑝
])
(𝑝+1)/𝑝

= E [𝑥
𝑝
+ 𝑦
𝑝
] (𝜆
󸀠󸀠

1
− 𝜆
󸀠󸀠

2
⋅ 2
−1/𝑝

(E [𝑥
𝑝
+ 𝑦
𝑝
])
1/𝑝

) .

(75)

We know that the auxiliary equation

𝑧̇ (𝑡) = 𝑧 (𝑡) [𝜆
1
− 𝜆
2
(𝑧 (𝑡))

1/𝑝
] (76)

has a globally asymptotically stable positive equilibrium 𝑧 =

(𝜆
1
/𝜆
2
)
𝑝. Let 𝑧(𝑡) be the solution of (76) with 𝑧(0) =

E[(𝑥(0))
𝑝
+ (𝑦(0))

𝑝
], and according to the comparison

theorem we have E[𝑥𝑝 + 𝑦𝑝] ≤ 𝑧(𝑡), 𝑡 ≥ 0.Hence, we obtain

lim sup
𝑡→+∞

E [𝑉 (𝑥, 𝑦)] ≤ 2
1/𝑝

⋅
𝜆
󸀠󸀠

1

𝜆󸀠󸀠
2

fl 𝐾
1
(𝑝) a.s. (77)

We find that

(𝑥
2
+ 𝑦
2
)
𝑝/2

≤ 2
𝑝/2

⋅max {𝑥𝑝, 𝑦𝑝} ≤ 2𝑝/2 ⋅ 𝑉 (𝑥, 𝑦) , (78)

so we have

lim sup
𝑡→+∞

E [(𝑥
2
+ 𝑦
2
)
𝑝/2

] ≤ √2 ⋅
𝜆
󸀠󸀠

1

𝜆󸀠󸀠
2

fl 𝐾(𝑝) a.s. (79)

This completes the proof of Theorem 9.

Define
𝑟 (𝑡) = min {𝑟

1
(𝑡) − 𝑑

1
𝑐
0
(𝑡) , 𝑟
2
(𝑡) − 𝑑

2
𝑐
0
(𝑡)} ,

𝜎 (𝑡) = max {𝜎
1
(𝑡) , 𝜎
2
(𝑡)} ,

𝐻 (𝑡) = 𝑟 (𝑡) − 𝜎
2
(𝑡) −

2

∑

𝑖=1

∫
Y

𝛾
2

𝑖

1 + 𝛾
𝑖

] (𝑑𝑢) .

(80)

Theorem 10. If
⟨𝐻 (𝑡)⟩

∗
> 0, (81)

then system (4) is stochastically permanent.

Proof. Define

𝑉 (𝑥, 𝑦) =
1

𝑥 (𝑡) + 𝑦 (𝑡)
. (82)

By applying Itô’s formula, we have

𝑑 (𝑉 (𝑥, 𝑦)) = 𝐿𝑉𝑑𝑡 +
1

(𝑥 + 𝑦)
2
(𝜎
1
(𝑡) 𝑥 (𝑡) 𝑑𝐵

1
(𝑡)

+ 𝜎
2
(𝑡) 𝑦 (𝑡) 𝑑𝐵

2
(𝑡))

+ ∫
Y

(
1

𝑥 (𝑡−) + 𝑦 (𝑡−) + 𝑥 (𝑡−) 𝛾
1
(𝑡, 𝑢) + 𝑦 (𝑡−) 𝛾

2
(𝑡, 𝑢)

−
1

𝑥 (𝑡−) + 𝑦 (𝑡−)
) 𝑁̃ (𝑑𝑡, 𝑑𝑢) ,

(83)

where

𝐿𝑉 = −
1

(𝑥 + 𝑦)
2
(𝑥 (𝑡) (𝑟

1
(𝑡) − 𝑑

1
𝑐
0
(𝑡)) − 𝑎

1
(𝑡) 𝑥
2
(𝑡)

+ (𝑟
2
(𝑡) − 𝑑

2
𝑐
0
(𝑡)) 𝑦 (𝑡) − 𝑎

2
(𝑡) 𝑦
2
(𝑡))

+
𝜎
2

1
(𝑡) 𝑥
2
(𝑡) + 𝜎

2

2
(𝑡) 𝑦
2
(𝑡) + 2𝜎

1
(𝑡) 𝜎
2
(𝑡) 𝑥 (𝑡) 𝑦 (𝑡)

(𝑥 (𝑡) + 𝑦 (𝑡))
3

+ ∫
Y

(
1

𝑥 + 𝑦 + 𝑥𝛾
1
(𝑡, 𝑢) + 𝑦𝛾

2
(𝑡, 𝑢)

−
1

𝑥 + 𝑦

+
1

(𝑥 + 𝑦)
2
(𝑥𝛾
1
(𝑡, 𝑢) + 𝑦𝛾

2
(𝑡, 𝑢))) ] (𝑑𝑢)

≤ −
1

𝑥 (𝑡) + 𝑦 (𝑡)
(𝑟 (𝑡) − 𝜎

2
(𝑡)

−

2

∑

𝑖=1

∫
Y

𝛾
2

𝑖
(𝑡, 𝑢)

1 + 𝛾
𝑖
(𝑡, 𝑢)

] (𝑑𝑢)) + 𝑎 (𝑡) = −𝑉 ⋅ 𝐻 (𝑡)

+ 𝑎 (𝑡) ,

(84)

where 𝑎(𝑡) = max{𝑎
1
(𝑡), 𝑎
2
(𝑡)}.
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Integrating (83) from 0 to 𝑡 and taking the expectation on
both sides yield

E [𝑉 (𝑡)] = 𝑉 (0) + E [∫
𝑡

0

𝐿𝑉 (𝑠) 𝑑𝑠] . (85)

Therefore,

𝑑E [𝑉 (𝑡)] = E [𝐿𝑉 (𝑡)] 𝑑𝑡

≤ (−𝐻 (𝑡)E [𝑉 (𝑡)] + 𝑎 (𝑡)) 𝑑𝑡.
(86)

By the variation of constants method, we can derive that

E [𝑉 (𝑡)] ≤ ∫
𝑡

0

𝑎 (𝑠) exp(−∫
𝑡

𝑠

𝐻(𝜏) 𝑑𝜏) 𝑑𝑠

+ 𝑉 (0) exp(−∫
𝑡

0

𝐻(𝑠) 𝑑𝑠) ,

(87)

which together with (81) results in

E [𝑉 (𝑥, 𝑦)] ≤ 𝐾, (88)

where 𝐾 is a positive constant. Then, for any given 𝜀 > 0 and
constant 𝛿(𝜀) = 𝜀/𝐾, according to the Chebyshev inequality,
we can know that

𝑃{
1

𝑉 (𝑥, 𝑦)
< 𝛿} = 𝑃{𝑉 (𝑥, 𝑦) >

1

𝛿
}

≤
E [𝑉 (𝑥, 𝑦)]

1/𝛿
= 𝛿E [𝑉 (𝑥, 𝑦)]

≤ 𝜀,

(89)

and then

𝑃{
1

𝑉 (𝑥, 𝑦)
≥ 𝛿} ≥ 1 − 𝜀. (90)

Therefore,

lim inf
𝑡→∞

𝑃 {(𝑥 (𝑡) + 𝑦 (𝑡)) ≥ 𝛿} ≥ 1 − 𝜀 a.s. (91)

Then, we have

lim inf
𝑡→∞

𝑃{(√𝑥2 (𝑡) + 𝑦2 (𝑡)) ≥
√2

2
𝛿} ≥ 1 − 𝜀 a.s. (92)

Using Chebyshev inequality andTheorem 9, we can obtain

lim sup
𝑡→∞

𝑃{(√𝑥2 (𝑡) + 𝑦2 (𝑡)) ≤ 𝜒} ≥ 1 − 𝜀 a.s., (93)

where𝜒 is a constant.This completes the proof ofTheorem 10.

4. Simulations and Conclusions

In this section, we show some numerical examples, whichwill
demonstrate our results.

Choose the parameters in (4) as follows:

𝑟
1
(𝑡) = 1.8,

𝑟
2
(𝑡) = 1.3,

𝑑
1
= 0.35,

𝑑
2
= 0.4,

𝑎
1
(𝑡) = 0.3,

𝑎
2
(𝑡) = 0.4,

𝛽 (𝑡) = 0.1,

𝑘 = 0.5,

𝑔 = 0.2,

ℎ = 0.2,

𝑚 = 0.3,

𝑢 = 1,

𝜏 = 1.

(94)

In Figure 1, we choose 𝜎
1
(𝑡) = 0.3, 𝜎

2
(𝑡) = 0.4 and the

values of 𝛾
1
(𝑡, 𝑢) and 𝛾

2
(𝑡, 𝑢) are different between (a) and (b).

In Figure 1(a), we choose 𝛾
1
(𝑡, 𝑢) = 0.1, 𝛾

2
(𝑡, 𝑢) = 0.3;

then the conditions in Theorem 7 are satisfied. According
to Theorem 7, we know that 𝑥(𝑡) is permanent and 𝑦(𝑡) is
extinct.

In Figure 1(b), we choose 𝛾
1
(𝑡, 𝑢) = 0.3, 𝛾

2
(𝑡, 𝑢) = 0.3;

by Theorem 6, we can obtain that both of 𝑥(𝑡) and 𝑦(𝑡) are
extinct.

Then, we choose 𝛾
1
(𝑡, 𝑢) = 0.1, 𝛾

2
(𝑡, 𝑢) = 0.1, the values

of 𝜎
1
(𝑡) and 𝜎

2
(𝑡) are different between Figures 1(c) and 1(d).

In Figure 1(c), we choose 𝜎
1
(𝑡) = 0.3, 𝜎

2
(𝑡) = 0.9;

then the conditions in Theorem 7 are satisfied. According
to Theorem 7, we know that 𝑥(𝑡) is permanent and 𝑦(𝑡) is
extinct.

In Figure 1(d), we choose 𝜎
1
(𝑡) = 0.8, 𝜎

2
(𝑡) = 0.9; by

Theorem 6, we get that both of 𝑥(𝑡) and 𝑦(𝑡) are extinct.
In Figure 2, we choose 𝛾

1
= 2.8, 𝛾

2
= 2.3, 𝜎

1
(𝑡) =

0.3, 𝜎
2
(𝑡) = 0.4, 𝛾

1
(𝑡, 𝑢) = 0.1, and 𝛾

2
(𝑡, 𝑢) = 0.1; other

parameters are the same as in Figure 1; according toTheorems
8 and 10, we obtain that system (4) is permanent in mean and
stochastically permanent.

In conclusion, permanence and extinction of the predator
and the prey for the intensity of white noise and Lévy noise
are given in Table 1.

In this paper, we consider a nonautonomous impulsive
stochastic predator-prey system with Lévy jumps, which
considers the predator is omnivorous. We prove that the
systemhas a unique global positive solution. FromTheorem6
and Figure 1, we can know that if the intensities of white
noise and Lévy noise are sufficiently large, then the species
will be extinct (see Figures 1(b) and 1(d)). According to
Theorems 8 and 10, we know that system (4) is permanent in
mean and stochastically permanent under some conditions
in Figure 2. The change of permanent conditions shows an
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Table 1: Permanence and extinction for different noise parameters.

White noise 𝜎
1

White noise 𝜎
2

Lévy noise 𝛾
1

Lévy noise 𝛾
2

Permanence and extinction
0.3 0.4 0.1 0.3 Permanence for 𝑥 and extinction for 𝑦
0.3 0.4 0.3 0.3 Extinction for 𝑥 and 𝑦
0.3 0.9 0.1 0.1 Permanence for 𝑥 and extinction for 𝑦
0.8 0.9 0.1 0.1 Extinction for 𝑥 and 𝑦
0.3 0.4 0.1 0.1 Permanence for 𝑥 and 𝑦
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(a) 𝜎1(𝑡) = 0.3, 𝜎2(𝑡) = 0.4; 𝛾1(𝑡, 𝑢) = 0.1, 𝛾2(𝑡, 𝑢) = 0.3
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(b) 𝜎1(𝑡) = 0.3, 𝜎2(𝑡) = 0.4; 𝛾1(𝑡, 𝑢) = 0.3, 𝛾2(𝑡, 𝑢) = 0.3
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(c) 𝜎1(𝑡) = 0.3, 𝜎2(𝑡) = 0.9; 𝛾1(𝑡, 𝑢) = 0.1, 𝛾2(𝑡, 𝑢) = 0.1
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(d) 𝜎1(𝑡) = 0.8, 𝜎2(𝑡) = 0.9; 𝛾1(𝑡, 𝑢) = 0.1, 𝛾2(𝑡, 𝑢) = 0.1

Figure 1:The red line and the black line represent𝑥(𝑡) and𝑦(𝑡), respectively.The initial value is𝑥(0) = 5, 𝑦(0) = 10, 𝑐
0
(0) = 0.5, and 𝑐

𝑒
(0) = 1.

In (a), 𝑥(𝑡) is permanent and 𝑦(𝑡) is extinct; in (b), both of 𝑥(𝑡) and 𝑦(𝑡) are extinct. In (c), 𝑥(𝑡) is permanent and 𝑦(𝑡) is extinct; in (d), both
of 𝑥(𝑡) and 𝑦(𝑡) are extinct.
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Figure 2: The red line and the black line represent 𝑥(𝑡) and 𝑦(𝑡),
respectively. The initial value is 𝑥(0) = 5, 𝑦(0) = 10, 𝑐

0
(0) = 0.5,

and 𝑐
𝑒
(0) = 1. Both 𝑥(𝑡) and 𝑦(𝑡) are stochastically permanent when

𝜎
1
(𝑡) = 0.3, 𝜎

2
(𝑡) = 0.4, 𝛾

1
(𝑡, 𝑢) = 0.1, and 𝛾

2
(𝑡, 𝑢) = 0.1.

important property; that is, the permanence of species has a
close relationship with the intensity of white noise and Lévy
noise. Obviously, white noises and Lévy noises are harmful to
the permanence of populations.

There are some investigations for stochastic epidemic
models [14, 15]. It is very significant for the natural world.
Some interesting questions deserve further investigation.
One could study more realistic but more complex models.
Also it is interesting to investigate evolutionary dynamics of
stochastic evolutionary model, and we leave these for future
work.

Appendix

Proof of Lemma 5. (I) If ⟨𝛿⟩∗ ≥ 0, ∫𝑡
0
𝛿(𝑠)𝑑𝑠 > 0 for 𝑡 large

enough. ByAssumption 3 and the strong lawof large numbers
for local martingales, one has

lim
𝑡→+∞

1

𝑡

2

∑

𝑖=1

𝛿
𝑖
∫

𝑡

0

∫
Y

ln (1 + 𝛾
𝑖
(𝑢)) 𝑁̃ (𝑑𝑠, 𝑑𝑢) = 0,

lim
𝑡→+∞

𝐵 (𝑡)

𝑡
= 0

a.s.

(A.1)

Then, for arbitrary 𝜀 > 0, there exists a 𝑇
1
> 0 such that for

𝑡 > 𝑇
1

1

𝑡
[𝛼𝐵 (𝑡) +

2

∑

𝑖=1

𝛿
𝑖
∫

𝑡

0

∫
Y

ln (1 + 𝛾
𝑖
(𝑢)) 𝑁̃ (𝑑𝑠, 𝑑𝑢)]

< 𝜀.

(A.2)

Define

𝜑 (𝑡) = ∫

𝑡

0

𝜂 (𝑠) 𝑑𝑠, (A.3)

for 𝑡 ≥ 𝑇
1
; then

𝑑𝜑 (𝑡)

𝑑𝑡
= 𝜂 (𝑡) ,

ln
𝑑𝜑 (𝑡)

𝑑𝑡
≤ ∫

𝑡

0

(𝛿 (𝑠) + 𝜀) 𝑑𝑠 − 𝛿
0
𝜑 (𝑡) ,

(A.4)

for 𝑡 ≥ max{𝑇, 𝑇
1
} = 𝑇
2
.

Integrating the above inequality from 𝑇
2
to 𝑡 yields

𝜑 (𝑡) ≤
1

𝛿
0

ln(𝑒𝛿0𝜑(𝑇2) + 𝛿
0
∫

𝑡

𝑇
2

𝑒
∫
𝜃

0
(𝛿(𝑠)+𝜀)𝑑𝑠

𝑑𝜃)

≤
1

𝛿
0

ln(𝑒𝛿0𝜑(𝑇2) + 𝛿
0
𝑒
∫
𝑡

0
(𝛿(𝑠)+𝜀)𝑑𝑠

(𝑡 − 𝑇
2
))

≤
1

𝛿
0

∫

𝑡

0

(𝛿 (𝑠) + 𝜀) 𝑑𝑠

+
1

𝛿
0

ln (𝛿
0
(𝑡 − 𝑇

2
) + 𝑒
𝛿
0
𝜑(𝑇
2
)
) .

(A.5)

Dividing by 𝑡 and taking the superior limit of both sides of
(A.5) lead to

⟨𝜂⟩
∗

≤
⟨𝛿⟩
∗
+ 𝜀

𝛿
0

a.s. (A.6)

By the arbitrariness of 𝜀, one has ⟨𝜂⟩∗ ≤ ⟨𝛿⟩∗/𝛿
0
, if ⟨𝛿⟩∗ ≥ 0.

Moreover, if ⟨𝛿⟩∗ < 0, we get

lim sup
𝑡→+∞

1

𝑡
ln 𝜂 (𝑡) ≤ ⟨𝛿⟩∗ + 𝜀 < 0, (A.7)

for 𝜀 sufficiently small. Thus

lim
𝑡→∞

𝜂 (𝑡) = 0 a.s., if ⟨𝛿⟩∗ < 0. (A.8)

(II)The proof of (II) is similar to (I). Here we omits the proof.
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The paper studies the existence of exponential attractor for the Boussinesq equation with strong damping and clamped boundary
condition 𝑢

𝑡𝑡
−Δ𝑢+Δ

2
𝑢−Δ𝑢

𝑡
−Δ𝑔(𝑢) = 𝑓(𝑥). The main result is concerned with nonlinearities 𝑔(𝑢)with supercritical growth. In

that case, we construct a bounded absorbing set with further regularity and obtain quasi-stability estimates. Then the exponential
attractor is established in natural energy space 𝑉

2
× 𝐻.

1. Introduction

In this paper, we are concerned with the existence of expo-
nential attractor for the Boussinesq equation with strong
damping and clamped boundary condition

𝑢
𝑡𝑡
− Δ𝑢 + Δ

2
𝑢 − Δ𝑢

𝑡
− Δ𝑔 (𝑢) = 𝑓 (𝑥) in Ω ×R

+
, (1)

where Ω is a bounded domain in R𝑁 with the smooth
boundary 𝜕Ω, on which we consider the clamped boundary
condition

𝑢|
𝜕Ω

= 0,

𝜕𝑢

𝜕]

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝜕Ω

= 0,

(2)

where ] is the unit outward normal on 𝜕Ω, and the initial
condition

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) ,

𝑢
𝑡
(𝑥, 0) = 𝑢

1
(𝑥) ,

𝑥 ∈ Ω,

(3)

and the assumptions on 𝑔(𝑢) and 𝑓 will be specified later.
In 1872, Boussinesq [1] established the equation

𝑢
𝑡𝑡
− 𝑢

𝑥𝑥
− 𝛼𝑢

𝑥𝑥𝑥𝑥
= 𝛽 (𝑢

2
)
𝑥𝑥

(4)

to describe the longitudinal displacement of the shallowwater
wave. Here 𝑢 and 𝛼, 𝛽 are some constants depending on the
depth of the fluid and characteristic velocity of the water
wave. When 𝛼 < 0, (4) is called “good” Boussinesq equation,
when 𝛼 > 0, (4) is called “bad” Boussinesq equation. There
have been lots of research on the well-posedness, blowup,
and other properties of solutions for both the “good” and the
“bad” Boussinesq equation of type (1) (see [2–14] and refer-
ences therein). While for the investigation on the global
attractor to (1), one can see [15–19] and references therein.

Chueshov and Lasiecka [20, 21] studied the longtime
behavior of solutions to the Kirchhoff-Boussinesq plate equa-
tion

𝑢
𝑡𝑡
+ 𝑘𝑢

𝑡
+ Δ

2
𝑢 = div [𝑓

0
(∇𝑢)] + Δ [𝑓

1
(𝑢)] − 𝑓

2
(𝑢) (5)

with Ω ⊂ R2 and the clamped boundary condition (2). Here
𝑘 > 0 is the damping parameter and the mapping 𝑓

0
: R2

→

R2 and the smooth functions𝑓
1
and 𝑓

2
represent (nonlinear)

feedback forces acting upon the plate, in particular,

𝑓
0
(∇𝑢) = |∇𝑢|

2
∇𝑢,

𝑓
1
(𝑢) = 𝑢

2
+ 𝑢.

(6)

Ignoring both restoring force𝑓
0
(∇𝑢) and feedback force𝑓

2
(𝑢)

and replacing the inertial term 𝑢
𝑡𝑡
by 𝜖𝑢

𝑡𝑡
, with 𝜖 > 0 (the
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relaxation time) sufficiently small, (5) becomes the modified
Cohn-Hilliard equation

𝜖𝑢
𝑡𝑡
+ 𝑢

𝑡
− Δ (−Δ𝑢 + 𝑓 (𝑢)) = 𝑔, (7)

which is proposed by Galenko et al. [22–24] to model rapid
spinodal decomposition in nonequilibrium phase separation
processes. Grasselli et al. [25–27] studied the well-posedness
and the longtime dynamics of (7) in both 2𝐷 and 3𝐷

cases, with hinged boundary condition. They established the
existence of the global and exponential attractor for 𝜖 = 1 in
2𝐷 case, and for 𝜖 > 0 sufficiently small in 3𝐷 case. Taking
𝜖 = 1 in (7) or taking 𝑓

0
(∇𝑢) = ∇𝑢, 𝑓

2
= 0 in (5), and taking

into account the inertial force represented by−Δ𝑢 and replac-
ing the weak damping 𝑢

𝑡
by a strong one −Δ𝑢

𝑡
, (1) arises.

In 1𝐷 case, Dai and Guo [15, 16] studied the “bad”
Boussinesq equation with strong damping

𝑢
𝑡𝑡
− 𝑢

𝑥𝑥
+ 2𝑘𝑢

𝑥𝑥𝑡
− 𝛼𝑢

𝑥𝑥𝑥𝑥
= 𝛽 (𝑢

𝑛
)
𝑥𝑥

in R × (0, +∞) ,

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) ,

𝑢
𝑡
(𝑥, 0) = 𝑢

1
(𝑥) ,

𝑥 ∈ R.

(8)

They got global solution 𝑢 ∈ 𝐶
∞
((0, 𝑇];𝐻

∞
(𝑅)) ∩ 𝐶([0, 𝑇];

𝐻
1
(𝑅))∩𝐶([0, 𝑇];𝐻

−1
(𝑅)) ∀𝑇 > 0, where 𝑘, 𝛼 ∈ R+, 𝛽 ∈ R+,

𝑛 > 2.
For the multidimensional case, Yang [17] proved the IVP

of the Boussinesq equation

𝑢
𝑡𝑡
− Δ𝑢 + 𝜇Δ

2
𝑢 = Δ𝜎 (𝑢) in R

𝑁
× (0, +∞) ,

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) ,

𝑢
𝑡
(𝑥, 0) = 𝑢

1
(𝑥) ,

𝑥 ∈ 𝑅
𝑁
.

(9)

There existed the global weak solution, where 𝜇 > 0, 𝜎(𝑢) ∈
𝐶(𝑅), |𝜎(𝑠)| ≤ 𝑏|𝑠|

𝑝, 𝑠 ∈ 𝑅, 1 < 𝑝 ≤ (𝑁 + 2)/(𝑁 − 2)
+,

and 0 ≤ 𝜎(𝑠)𝑠 ≤ 𝛽 ∫

𝑠

0
𝜎(𝜏)𝑑𝜏, 𝑠 ∈ R, 𝛽 > 0. Here the growth

exponent 𝑝̃ = 𝑁/(𝑁−2) (𝑁 ≥ 3) is called critical.The growth
exponent 𝑝∗

≡ (𝑁 + 2)/(𝑁 − 2)
+ (≥𝑝̃) is called supercri-

tical. However, there is little research on the the higher global
regularity of a bounded absorbing set, the global attractor
and an exponential attractor in natural energy space for the
dynamical system. We try to solve those problems in this
paper.

Global attractor is a basic concept in the research studies
of the asymptotic behavior of the dissipative system. From the
physical point of view, the global attractor of the dissipative
equation (1) represents the permanent regime that can be
observed when the excitation starts from any point in natural
energy space, and its dimension represents the number of
degrees of freedom of the related turbulent phenomenon
and thus the level of complexity concerning the flow. All
the information concerning the attractor and its dimension

from the qualitative nature to the quantitative nature then
yields valuable information concerning the flows that this
physical system can generate. On the physical and numerical
sides, this dimension gives one an idea of the number of
parameters and the size of the computations needed in
numerical simulations. However, the global attractor may
possess an essential drawback; namely, the rate of attraction
may be arbitrarily slow and it can not be estimated in terms of
physical parameters of the systemunder consideration.While
the exponential attractor overcomes the drawback because
not only it has finite fractal dimension but also its contractive
rate is exponential and measurable in terms of the physical
parameters, the purpose of the present paper is to establish
the existence of an exponential attractor in supercritical case.
Our result (see Theorem 8 below) in this paper extends the
corresponding result in [28].

In comparisonwith the results in [17, 18], the contribution
of the paper lies in that

(1) the exponential attractor is established in natural
energy space 𝐸 in supercritical case. See Theorem 8;

(2) the critical case 𝑝 = 𝑝̃ is solved in 𝐸
1
. In the concrete,

when 1 ≤ 𝑝 ≤ 𝑝̃, the global and exponential attractor
in 𝐸

1
is established, and the higher regularity of the

global attractor is obtained. See Theorem 15;
(3) the restriction 𝑁 ≤ 5 is removed in subcritical case.

See Theorem 15.
The plan of the paper is as follows. In Section 2, the global

existence of the weak solutions is discussed by the energy
method and the existence of global attractor is established. In
Section 3, the exponential attractor is established for super-
critical case. In Section 4, global attractor and the exponential
attractor are established for nonsupercritical case.

2. Global Existence of Weak Solutions

For brevity, we use the following abbreviations:

𝐿
𝑝
= 𝐿

𝑝
(Ω) ,

𝐻
𝑘
= 𝐻

𝑘
(Ω) ,

𝐻 = 𝐿
2
,

𝑉
2
= 𝐻

2

0
,

‖⋅‖ = ‖⋅‖
𝐿
2 ,

‖⋅‖
𝑝
= ‖⋅‖

𝐿
𝑝 ,

(10)

with𝑝 ≥ 1, where𝐻𝑘 are the 𝐿2-based Sobolev spaces and𝐻𝑘

0

are the completion of 𝐶∞

0
(Ω) in 𝐻𝑘 for 𝑘 > 0. The notation

(⋅, ⋅) for the𝐻-inner product will also be used for the notation
of duality pairing between dual spaces and 𝐶(⋅ ⋅ ⋅ ) denotes
positive constants depending on the quantities appearing in
the parenthesis.

We define the operator 𝐴 : 𝑉
2
→ 𝑉

󸀠

2
(the dual space of

𝑉
2
),

(𝐴𝑢, V) = (Δ𝑢, ΔV) for any 𝑢, V ∈ 𝑉
2
. (11)
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Then, the operators 𝐴𝑠 (𝑠 ∈ R) are strictly positive and
the spaces 𝑉

𝑠
= 𝐷(𝐴

𝑠/4
) are Hilbert spaces with the scalar

products and the norms

(𝑢, V)
𝑠
= (𝐴

𝑠/4
𝑢, 𝐴

𝑠/4V) ,

‖𝑢‖
𝑉
𝑠

=

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

𝑠/4
𝑢

󵄩
󵄩
󵄩
󵄩
󵄩
,

(12)

respectively. Obviously,

‖𝑢‖
𝑉
2

=

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

1/2
𝑢

󵄩
󵄩
󵄩
󵄩
󵄩
= ‖Δ𝑢‖ ,

‖𝑢‖
𝑉
1

=

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

1/4
𝑢

󵄩
󵄩
󵄩
󵄩
󵄩
= ‖∇𝑢‖ .

(13)

Rewriting (1) in the operator equation and applying 𝐴
−1/2

to the resulting expression, we get the Cauchy problem
equivalent to problem (1), (2), and (3):

𝐴
−1/2

𝑢
𝑡𝑡
+ (𝐼 + 𝐴

1/2
) 𝑢 + 𝑢

𝑡
+ 𝑔 (𝑢) = 𝐴

−1/2
𝑓, (14)

𝑢 (0) = 𝑢
0
,

𝑢
𝑡
(0) = 𝑢

1
.

(15)

For each 𝑠 ∈ R, 𝑉
𝑠
= 𝐷(𝐴

𝑠/4
), we denote the Banach space

𝐸 = 𝑉
2
× 𝐻,

𝐸
1
= 𝑉

1
× 𝐻,

(16)

which is equipped with the usual graph norm,

‖(𝑢, V)‖2
𝐸
= ‖𝑢‖

2

𝑉
2

+ ‖V‖2 . (17)

Theorem 1. Assume that (𝐻
1
) 𝑔 ∈ 𝐶

1
(R),

󵄨
󵄨
󵄨
󵄨
𝑔 (𝑠)

󵄨
󵄨
󵄨
󵄨
≤ 𝐾

1
(|𝑠|

𝑝
+ 1) ,

󵄨
󵄨
󵄨
󵄨
󵄨
𝑔
󸀠
(𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝐾

2
(|𝑠|

𝑝−1
+ 1) ,

󵄨
󵄨
󵄨
󵄨
󵄨
𝑔
󸀠
(𝑠

1
) − 𝑔

󸀠
(𝑠

2
)

󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝐾
3
(
󵄨
󵄨
󵄨
󵄨
𝑠
1

󵄨
󵄨
󵄨
󵄨

𝑝−1−𝛾

+
󵄨
󵄨
󵄨
󵄨
𝑠
2

󵄨
󵄨
󵄨
󵄨

𝑝−1−𝛾

+ 1)
󵄨
󵄨
󵄨
󵄨
𝑠
1
− 𝑠

2

󵄨
󵄨
󵄨
󵄨

𝛾

,

(18)

where
0 < 𝛾 < 𝑝 − 1, 1 < 𝑝 < 2,

𝛾 = 1, 𝑝 ≥ 2,

(19)

where (𝑎)+ = max{0, 𝑎}, 𝐾
𝑖
> 0, 𝑖 = 1, 2, 3, 1 ≤ 𝑝 ≤ 𝑝

∗
≡

(𝑁 + 2)/(𝑁 − 2), and𝑁 ≥ 3.
(𝐻

2
) Consider

lim inf
|𝑠|→+∞

𝐺 (𝑠)

|𝑠|
2
≥ 0,

lim inf
|𝑠|→+∞

𝑠𝑔 (𝑠) − 𝜌𝐺 (𝑠)

|𝑠|
2

≥ 0,

(20)

where 𝐺(𝑠) = ∫

𝑠

0
𝑔(𝜏)𝑑𝜏, 0 < 𝜌 < 2.

(𝐻
3
) (𝑢

0
, 𝑢

1
) ∈ 𝐸, 𝑓 ∈ 𝑉

−1
.

Then problem (14) and (15) admits a unique weak solution
𝑢, with (𝑢, 𝑢

𝑡
) ∈ 𝐶

𝑏
(𝑅

+
, 𝑉

2
×𝐻). More precisely, the solution 𝑢

possesses the following properties:

(i) There exists a small positive constant 𝛿 such that

󵄩
󵄩
󵄩
󵄩
(𝑢, 𝑢

𝑡
)
󵄩
󵄩
󵄩
󵄩

2

𝐸
+ ∫

𝑡+1

𝑡

󵄩
󵄩
󵄩
󵄩
𝑢
𝑡
(𝜏)

󵄩
󵄩
󵄩
󵄩

2

𝑑𝜏

≤ 𝐶 (
󵄩
󵄩
󵄩
󵄩
(𝑢

0
, 𝑢

1
)
󵄩
󵄩
󵄩
󵄩𝐸
) 𝑒

−𝛿𝑡
+ 𝐶 (

󵄩
󵄩
󵄩
󵄩
𝑓
󵄩
󵄩
󵄩
󵄩𝑉
−1

) , 𝑡 ≥ 0.

(21)

(ii) When 1 ≤ 𝑝 < 𝑝
∗, the solution is Lipschitz continuous

in the weaker space 𝐸 as𝑁 ≤ 5; that is,

󵄩
󵄩
󵄩
󵄩
(𝑧 (𝑡) , 𝑧

𝑡
(𝑡))

󵄩
󵄩
󵄩
󵄩

2

𝐸
≤ 𝐶 (𝑅) 𝑒

𝑘𝑡 󵄩
󵄩
󵄩
󵄩
(𝑧 (0) , 𝑧

𝑡
(0))

󵄩
󵄩
󵄩
󵄩

2

𝐸
,

𝑡 ≥ 0,

(22)

for some 𝑘 > 0, where 𝑧 = 𝑢 − V, 𝑢 and V are, respectively, the
weak solutions of (14) corresponding to initial data (𝑢

0
, 𝑢

1
) and

(V
0
, V

1
).

Remark 2. The formula (20) implies that every 𝜂 > 0; there
exists 𝐶

𝜂
> 0, 𝐶̃

𝜂
> 0 such that

𝐺 (𝑠) + 𝜂 |𝑠|
2
≥ −𝐶

𝜂
,

𝑠𝑔 (𝑠) − 𝜌𝐺 (𝑠) + 𝜂 |𝑠|
2
≥ −𝐶̃

𝜂
,

(23)

where 𝐺(𝑠) = ∫

𝑠

0
𝑔(𝜏)𝑑𝜏.

Lemma 3 (see [29]). Let 𝑋, 𝐵, and 𝑌 be the Banach spaces,
𝑋 󳨅→󳨅→ 𝐵 󳨅→ 𝑌,

𝑊 = {𝑢 ∈ 𝐿
𝑝
(0, 𝑇;𝑋) | 𝑢

𝑡
∈ 𝐿

1
(0, 𝑇; 𝑌)} ,

𝑤𝑖𝑡ℎ 1 ≤ 𝑝 < ∞,

𝑊
1
= {𝑢 ∈ 𝐿

∞
(0, 𝑇;𝑋) | 𝑢

𝑡
∈ 𝐿

𝑟
(0, 𝑇; 𝑌)} ,

𝑤𝑖𝑡ℎ 𝑟 > 1.

(24)

Then,

𝑊 󳨅→󳨅→ 𝐿
𝑝
(0, 𝑇; 𝐵) ,

𝑊
1
󳨅→󳨅→ 𝐶 ([0, 𝑇] ; 𝐵) .

(25)

Proof of Theorem 1. We first obtain a priori estimate to the
solutions of problem (14) and (15).

Let V = 𝑢
𝑡
+ 𝜖𝑢 and rewrite (1); we have

𝐴
−1/2

(V
𝑡
− 𝜖V + 𝜖2𝑢) + (𝐼 + 𝐴1/2

) 𝑢 + V − 𝜖𝑢 + 𝑔 (𝑢)

= 𝐴
−1/2

𝑓,

V (0) = 𝑢
1
+ 𝜖𝑢

0
= V

0
.

(26)

Using the multiplier 𝑢
𝑡
in (26), we get

𝑑

𝑑𝑡

𝐻
1
(𝑢, V) + 𝐾

1
(𝑢, V) = 0, 𝑡 > 0, (27)
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where

𝐻
1
(𝑢, 𝑢

𝑡
) =

1

2

(

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

−1/4V
󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 𝜖
2 󵄩󵄩
󵄩
󵄩
󵄩
𝐴

−1/4
𝑢

󵄩
󵄩
󵄩
󵄩
󵄩

2

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

1/4
𝑢

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ (1 − 𝜖) ‖𝑢‖
2
+ 2∫

Ω

𝐺 (𝑢) 𝑑𝑥 − 2 (𝐴
−1/2

𝑓, 𝑢))

≥ 𝐶
1
(

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

−1/4
𝑢
𝑡

󵄩
󵄩
󵄩
󵄩
󵄩

2

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

−1/4
𝑢

󵄩
󵄩
󵄩
󵄩
󵄩

2

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

1/4
𝑢

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ ‖𝑢‖
2
)

− 𝐶
0
,

𝐾
1
(𝑢, V) − 𝜖𝐻

1
(𝑢, V) ≥ 𝐶 (‖V‖2 +

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

−1/4V
󵄩
󵄩
󵄩
󵄩
󵄩

2

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

1/4
𝑢

󵄩
󵄩
󵄩
󵄩
󵄩

2

) − 𝐶
0
.

(28)

Hence,

𝑑

𝑑𝑡

𝐻
1
(𝑢, V) + 𝜖𝐻

1
(𝑢, V) ≤ −𝐶

0
, 𝑡 ≥ 0. (29)

Applying the Gronwall lemma to (29),

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

1/4
𝑢

󵄩
󵄩
󵄩
󵄩
󵄩

2

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

−1/4
𝑢
𝑡

󵄩
󵄩
󵄩
󵄩
󵄩

2

≤ 𝐶
1
𝑒
−𝛿𝑡

+ 𝐶
0
, (30)

where 𝐶
0
= (‖𝑓‖

𝑉
−1

), 𝐶
1
= (‖(𝑢

0
, 𝑢

1
)‖

𝐸
1

), 𝛿 = 𝜖 ∈ (0, 1).
Using the multiplier 𝐴1/2

𝑢
𝑡
, 𝐴1/2

𝑢 in (26),

1

2

𝑑

𝑑𝑡

(
󵄩
󵄩
󵄩
󵄩
𝑢
𝑡

󵄩
󵄩
󵄩
󵄩

2

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

1/4
𝑢

󵄩
󵄩
󵄩
󵄩
󵄩

2

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

1/2
𝑢

󵄩
󵄩
󵄩
󵄩
󵄩

2

− 2 (𝑢, 𝑓))

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

1/4
𝑢
𝑡

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ (𝐴
1/2
𝑢
𝑡
, 𝑔 (𝑢)) = 0, 𝑡 > 0,

(31)

𝑑

𝑑𝑡

(

1

2

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

1/4
𝑢

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ (𝑢
𝑡
, 𝑢)) +

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

1/4
𝑢

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ (𝐴
1/2
𝑢, 𝑔 (𝑢)) =

󵄩
󵄩
󵄩
󵄩
𝑢
𝑡

󵄩
󵄩
󵄩
󵄩

2

+ (𝑢, 𝑓) , 𝑡 > 0,

(32)

(31) + 𝜖(32); we have

𝑑

𝑑𝑡

𝐻
2
(𝑢) + 𝐾

2
(𝑢) = 0, 𝑡 > 0. (33)

Obviously,

𝐻
2
(𝑢) =

1

2

[
󵄩
󵄩
󵄩
󵄩
𝑢
𝑡

󵄩
󵄩
󵄩
󵄩

2

+ (1 + 𝜖)

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

1/4
𝑢

󵄩
󵄩
󵄩
󵄩
󵄩

2

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

1/2
𝑢

󵄩
󵄩
󵄩
󵄩
󵄩

2

]

+ 𝜖 (𝑢, 𝑢
𝑡
) − (𝑢, 𝑓)

∽

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

1/4
𝑢

󵄩
󵄩
󵄩
󵄩
󵄩

2

+
󵄩
󵄩
󵄩
󵄩
𝑢
𝑡

󵄩
󵄩
󵄩
󵄩

2

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

1/2
𝑢

󵄩
󵄩
󵄩
󵄩
󵄩

2

,

𝐾
2
(𝑢) =

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

1/4
𝑢
𝑡

󵄩
󵄩
󵄩
󵄩
󵄩

2

− 𝜖
󵄩
󵄩
󵄩
󵄩
𝑢
𝑡

󵄩
󵄩
󵄩
󵄩

2

+ (𝐴
1/4
𝑔 (𝑢) , 𝐴

1/4
𝑢
𝑡
)

+ 𝜖 (

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

1/2
𝑢

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ (𝐴
1/2
𝑢, 𝑔 (𝑢)) − (𝑢, 𝑓))

≥ 𝐶 (

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

1/4
𝑢
𝑡

󵄩
󵄩
󵄩
󵄩
󵄩

2

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

1/2
𝑢

󵄩
󵄩
󵄩
󵄩
󵄩

2

) − 𝐶
1
𝑒
−𝛿𝑡

− 𝐶
0
.

(34)

Indeed,

󵄨
󵄨
󵄨
󵄨
󵄨
(𝐴

1/4
𝑔 (𝑢) , 𝐴

1/4
𝑢
𝑡
)

󵄨
󵄨
󵄨
󵄨
󵄨
≤

1

4

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

1/4
𝑢
𝑡

󵄩
󵄩
󵄩
󵄩
󵄩

2

+

𝜀

4

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

1/2
𝑢

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 𝐶,

󵄨
󵄨
󵄨
󵄨
󵄨
(𝐴

1/2
𝑢, 𝑔 (𝑢))

󵄨
󵄨
󵄨
󵄨
󵄨
≤

1

4

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

1/2
𝑢

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 𝐶,

(35)

where 1 ≤ 𝑝 < 𝑁/(𝑁 − 2)
+, 𝐻𝑠

󳨅→ 𝐿
2𝑝; 𝑁/(𝑁 − 2)

+
≤ 𝑝 <

(𝑁 + 2)/(𝑁 − 2)
+, 𝑉

2−𝛿
󳨅→ 𝐿

2(𝑝+1), and𝐻1
󳨅→ 𝐿

𝑝+1

𝑑

𝑑𝑡

𝐻
2
(𝑢) + 𝛿𝐻

2
(𝑢) + 𝛿

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

1/4
𝑢
𝑡
(𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩

2

≤ 𝐶
1
𝑒
−𝛿𝑡

+ 𝐶
0
. (36)

Thus
󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

1/2
𝑢

󵄩
󵄩
󵄩
󵄩
󵄩

2

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

1/4
𝑢

󵄩
󵄩
󵄩
󵄩
󵄩

2

+
󵄩
󵄩
󵄩
󵄩
𝑢
𝑡

󵄩
󵄩
󵄩
󵄩

2

≤ 𝐶
2
𝑒
−𝛿𝑡

+ 𝐶
0
, 𝑡 > 0. (37)

That is,

󵄩
󵄩
󵄩
󵄩
(𝑢, 𝑢

𝑡
)
󵄩
󵄩
󵄩
󵄩𝐸
+ ∫

𝑡+1

𝑡

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

1/4
𝑢
𝑡
(𝜏)

󵄩
󵄩
󵄩
󵄩
󵄩

2

𝑑𝜏 ≤ 𝐶
2
𝑒
−𝛿𝑡

+ 𝐶
0
,

𝑡 > 0.

(38)

It follows from (14) and (38) that

𝑢
𝑡𝑡
= 𝑓 − 𝐴

1/2
𝑢 − 𝐴

1/2
𝑢
𝑡
− 𝐴𝑢 − 𝐴

1/2
𝑔 (𝑢)

∈ 𝐿
∞
(𝑅

+
, 𝑉

−2
) .

(39)

Now, we look for the approximate solutions 𝑢𝑛 of problem
(14) and (15) of the form

𝑢
𝑛
(𝑡) =

𝑛

∑

𝑗=1

𝑇
𝑗𝑛
(𝑡) 𝑤

𝑗
, (40)

where 𝐴𝑤
𝑗
= 𝜆

𝑗
𝑤

𝑗
, 𝑗 = 1, 2, . . . , {𝑤

𝑗
} is an orthonormal

basis in 𝐻, and at the same time an orthogonal one in 𝑉
2
,

and 𝑇
𝑗𝑛
(𝑡) = (𝑢

𝑛
, 𝑤

𝑗
) with

(𝐴
−1/2

𝑢
𝑛

𝑡𝑡
, 𝑤

𝑗
) + ((𝐼 + 𝐴

1/2
) 𝑢

𝑛
, 𝑤

𝑗
)

+ 2𝜂 (𝐴
1/4
𝑢
𝑛

𝑡
, 𝑤

𝑗
) + (𝑢

𝑛

𝑡
, 𝑤

𝑗
) + (𝑔 (𝑢

𝑛
) , 𝑤

𝑗
)

= (𝐴
−1/2

𝑓,𝑤
𝑗
) , 𝑡 > 0, 𝑗 = 1, . . . , 𝑛,

(𝑢
𝑛
(0) , 𝑢

𝑛

𝑡
(0)) = (𝑢

0𝑛
, 𝑢

1𝑛
) 󳨀→ (𝑢

0
, 𝑢

1
) in 𝐸.

(41)

Obviously, the estimate (38) is valid for 𝑢𝑛. So we can
extract a subsequence, still denoted by {𝑢𝑛

}, such that

(𝑢
𝑛
, 𝑢

𝑛

𝑡
) 󳨀→ (𝑢, 𝑢

𝑡
)

weakly∗ in 𝐿
∞

loc (R
+
; 𝐸) ;

𝑢
𝑛

𝑡𝑡
󳨀→ 𝑢

𝑡𝑡
weakly∗ in 𝐿

∞

loc (R
+
; 𝑉

−2
) ;

(𝑢
𝑛
(𝑡) , 𝑢

𝑛

𝑡
(𝑡)) ⇀ (𝑢 (𝑡) , 𝑢

𝑡
(𝑡)) for 𝑡 ≥ 0.

(42)
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Applying Lemma 3 to (33), we have
(𝑢

𝑛
, 𝑢

𝑛

𝑡
) 󳨀→ (𝑢, 𝑢

𝑡
) in 𝐶

𝑤
([0, 𝑇] ; 𝐸) . (43)

Indeed, when 1 ≤ 𝑝 ≤ 𝑁/(𝑁−2)
+, we have𝐻1

0
󳨅→ 𝐿

2𝑝; hence

∫

𝑡

0

󵄨
󵄨
󵄨
󵄨
󵄨
(𝑔 (𝑢

𝑛
) − 𝑔 (𝑢) , 𝑤

𝑗
)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝜏

≤ 𝐶∫

𝑡

0

(
󵄩
󵄩
󵄩
󵄩
𝑢
𝑛
− 𝑢

󵄩
󵄩
󵄩
󵄩
+

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

1/4
𝑢
𝑛
− 𝐴

1/4
𝑢

󵄩
󵄩
󵄩
󵄩
󵄩
) 𝑑𝜏 󳨀→ 0,

(44)

when𝑁/(𝑁 − 2)
+
< 𝑝 < (𝑁 + 2)/(𝑁 − 2)

+, 𝑉
2−𝛿

󳨅→ 𝐿
2(𝑝+1)

and by virtue of the interpolation theorem,

∫

𝑡

0

󵄨
󵄨
󵄨
󵄨
󵄨
(𝑔 (𝑢

𝑛
) − 𝑔 (𝑢) , 𝑤

𝑗
)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝜏 ≤ 𝐶∫

𝑡

0

(
󵄩
󵄩
󵄩
󵄩
𝑢
𝑛
− 𝑢

󵄩
󵄩
󵄩
󵄩

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

1/4
(𝑢

𝑛
− 𝑢)

󵄩
󵄩
󵄩
󵄩
󵄩

𝜃 󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

1/2
(𝑢

𝑛
− 𝑢)

󵄩
󵄩
󵄩
󵄩
󵄩

1−𝜃

)𝑑𝜏

󳨀→ 0.

(45)

Letting 𝑛 → ∞ in (41) we see that 𝑢 is a weak solution of
problem (14) and (15), with (𝑢, 𝑢

𝑡
) ∈ 𝐶

𝑤
(R+

; 𝐸).
Integrating (31) over (𝑡

0
, 𝑡),

(
󵄩
󵄩
󵄩
󵄩
𝑢
𝑡
(𝑡)
󵄩
󵄩
󵄩
󵄩

2

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

1/4
𝑢 (𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩

2

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

1/2
𝑢 (𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩

2

)

− (
󵄩
󵄩
󵄩
󵄩
𝑢
𝑡
(𝑡

0
)
󵄩
󵄩
󵄩
󵄩

2

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

1/4
𝑢 (𝑡

0
)

󵄩
󵄩
󵄩
󵄩
󵄩

2

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

1/2
𝑢 (𝑡

0
)

󵄩
󵄩
󵄩
󵄩
󵄩

2

)

= 2∫

𝑡

𝑡
0

(𝑢, 𝑓) 𝑑𝑡 + 2∫

𝑡

𝑡
0

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

1/4
𝑢
𝑡

󵄩
󵄩
󵄩
󵄩
󵄩

2

𝑑𝑡

+ 2∫

𝑡

𝑡
0

(𝐴
1/4
𝑔 (𝑢) , 𝐴

1/4
𝑢
𝑡
) 𝑑𝑡 󳨀→ 0, as 𝑡 󳨀→ 𝑡

0
.

(46)

Obviously,
󵄩
󵄩
󵄩
󵄩
(𝑢, 𝑢

𝑡
) (𝑡)

󵄩
󵄩
󵄩
󵄩𝑉
2
×𝐻

−
󵄩
󵄩
󵄩
󵄩
(𝑢, 𝑢

𝑡
) (𝑡

0
)
󵄩
󵄩
󵄩
󵄩𝑉
2
×𝐻

󳨀→ 0,

𝑡 󳨀→ 𝑡
0
;

(47)

we prove that (𝑢, 𝑢
𝑡
) ∈ 𝐶([0, 𝑇], 𝑉

2
× 𝐻), 𝑢

𝑡𝑡
∈ 𝐶([0, 𝑇], 𝑉

−1
)

and (22).
(ii) Now, we show that (𝑢, 𝑢

𝑡
) is Lipschitz continuous in

the weak space 𝐸.
In fact, let 𝑢, V be two solutions of problem (14) and (15)

as shown above corresponding to initial data 𝑢
0
, 𝑢

1
and V

0
, V

1
,

respectively. Then 𝑧 = 𝑢 − V solves

𝐴
−1/2

𝑧
𝑡𝑡
+ (𝐼 + 𝐴

1/2
) 𝑧 + 𝑧

𝑡
+ 𝑔 (𝑢) − 𝑔 (V) = 0,

𝑧 (0) = 𝑢
0
− V

0
≡ 𝑧

0
,

𝑧
𝑡
(0) = 𝑢

1
− V

1
≡ 𝑧

1
.

(48)

Using the multiplier 𝐴1/2
𝑧
𝑡
in (48),

𝐻
3
(𝑧, 𝑧

𝑡
) =

1

2

(
󵄩
󵄩
󵄩
󵄩
𝑧
𝑡

󵄩
󵄩
󵄩
󵄩

2

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

1/4
𝑧

󵄩
󵄩
󵄩
󵄩
󵄩

2

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

1/2
𝑧

󵄩
󵄩
󵄩
󵄩
󵄩

2

)

− (𝐴
1/2
𝑧
𝑡
, 𝑔 (𝑢) − 𝑔 (V))

≤

1

2

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

1/4
𝑧
𝑡

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 𝐶 (𝑅)

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

1/2
𝑧

󵄩
󵄩
󵄩
󵄩
󵄩

2

.

(49)

We get

𝑑

𝑑𝑡

𝐻
3
(𝑧, 𝑧

𝑡
) + 𝜅𝐻

3
(𝑧, 𝑧

𝑡
) ≤ 𝐶 (𝑅) ‖𝑧‖

2
,

󵄩
󵄩
󵄩
󵄩
(𝑧, 𝑧

𝑡
) (𝑡)

󵄩
󵄩
󵄩
󵄩

2

𝐸
≤ 𝐶 (𝑅, 𝑇)

󵄩
󵄩
󵄩
󵄩
(𝑧, 𝑧

𝑡
) (0)

󵄩
󵄩
󵄩
󵄩

2

𝐸
,

0 ≤ 𝑡 ≤ 𝑇, (22)

󵄩
󵄩
󵄩
󵄩
(𝑧, 𝑧

𝑡
) (𝑡)

󵄩
󵄩
󵄩
󵄩

2

𝐸

≤ 𝐶 (𝑅) 𝑒
−𝜅𝑡 󵄩

󵄩
󵄩
󵄩
(𝑧, 𝑧

𝑡
) (0)

󵄩
󵄩
󵄩
󵄩

2

𝐸
+ ∫

𝑡

0

𝑒
−𝜅(𝑡−𝜏)

‖𝑧 (𝜏)‖
2
𝑑𝜏,

𝑡 > 0.

(50)

Theorem 1 is proved. Under the assumptions of Theorem 1,
with 1 ≤ 𝑝 < 𝑝

∗,𝑁 ≤ 5, we can define the solution operator
𝑆(𝑡) : 𝐸 → 𝐸,

𝑆 (𝑡) (𝑢
0
, 𝑢

1
) = (𝑢 (𝑡) , 𝑢

𝑡
(𝑡))

for every (𝑢
0
, 𝑢

1
) ∈ 𝐸, 𝑡 ≥ 0,

(51)

where 𝑢 is the weak solution of problem (14) and (15).
Theorem 1 shows that {𝑇(𝑡)} constitutes a semigroup on 𝐸,
which is Lipschitz continuous in 𝐸.

Theorem4 (existence of the global attractor). Under the same
assumptions ofTheorem 1, with 1 ≤ 𝑝 < 𝑝

∗, {𝑇(𝑡)} has a global
attractorA in 𝐸 andA ⊂ 𝐾, where 𝐾 is bounded set in 𝐸

𝜎
=

𝑉
𝜎+2

× 𝑉
𝜎
, 0 < 𝜎 < 1.

Proof of Theorem 4. Estimate (38) implies that the ball

𝐵
0
= {(𝑢, V) ∈ 𝐸 | ‖(𝑢, V)‖2

𝐸
≤ 𝐶

0
} (52)

is an absorbing set of the semigroup 𝑆(𝑡) in 𝐸. For every
bound 𝐵 in 𝐸,

dist (𝑆 (𝑡) 𝐵, 𝐵
0
) ≤ 𝐶 (𝐵) 𝑒

−𝛿𝑡
, ∀𝐵 ⊂ 𝐸. (53)

Let : 𝑆(𝑡) = 𝑆
1
(𝑡) + 𝑆

2
(𝑡), where 𝑆

2
(𝑡) : 𝑉

2
× 𝐻 → 𝑉

2
× 𝐻,

𝑆
2
(𝑡)(𝑢

0
, 𝑢

1
) = (𝑢, 𝑢

𝑡
) and

𝐴
−1/2

𝑢
𝑡𝑡
+ (𝐼 + 𝐴

1/2
) 𝑢 + 𝑢

𝑡
= 0,

𝑡 > 0, 𝑢 (0) = 𝑢
0
, 𝑢

𝑡
(0) = 𝑢

1
.

(54)

It is easy to get

󵄩
󵄩
󵄩
󵄩
𝑆
2
(𝑡)
󵄩
󵄩
󵄩
󵄩L(𝐸)

≤ 𝐶𝑒
−𝛿𝑡
. (55)

𝑆
1
(𝑡) = 𝑆(𝑡) − 𝑆

2
(𝑡), 𝑆

1
(𝑡) : 𝐸 → 𝐸, 𝑆

1
(𝑡)(𝑢

0
, 𝑢

1
) = (𝑢̂, 𝑢̂

𝑡
)

solves

𝐴
−1/2

𝑢̂
𝑡𝑡
+ (𝐼 + 𝐴

1/2
) 𝑢̂ + 𝑢̂

𝑡
= 𝐴

−1/2
𝑓 − 𝑔 (𝑢) ,

𝑡 > 0, 𝑢̂ (0) = 0, 𝑢̂
𝑡
(0) = 0,

(56)

where 𝑢 ∈ 𝐶
𝑏
(𝑅

+
, 𝑉

2
).
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Let 𝑤 = 𝑢̂
𝑡
,

𝐴
−1/2

𝑤
𝑡𝑡
+ (𝐼 + 𝐴

1/2
)𝑤 + 𝑤

𝑡
= −𝑔

󸀠
(𝑢) 𝑢

𝑡
,

𝑤 (0) = 0 = 𝑤
0
,

𝑤
𝑡
(0) = 𝑓 − 𝐴

1/2
𝑔 (𝑢

0
) = 𝑤

1
,

(57)

because 𝑓 ∈ 𝑉
𝜎−2

, 𝐴1/2
𝑔(𝑢

0
) ∈ 𝑉

𝜎−2
, 𝑤

1
∈ 𝑉

𝜎−2
, 𝑔󸀠

(𝑢)𝑢
𝑡
∈

𝐶
𝑏
(𝑅

+
, 𝑉

𝜎−2
).

Therefore

(𝑢̂
𝑡
, 𝑢̂

𝑡𝑡
) ∈ 𝐶

𝑏
(𝑅

+
, 𝑉

𝜎
× 𝑉

𝜎−2
) . (58)

We know (𝐼 + 𝐴
1/2
)𝑢̂ = 𝐴

−1/2
𝑓 − 𝑔(𝑢) − 𝐴

−1/2
𝑢̂
𝑡𝑡
− 𝑢̂

𝑡
∈

𝐶
𝑏
(𝑅

+
, 𝑉

𝜎
), 𝑢̂ ∈ 𝐶

𝑏
(𝑅

+
, 𝑉

𝜎+2
) so

(𝑢̂, 𝑢̂
𝑡
) ∈ 𝐶

𝑏
(𝑅

+
, 𝑉

𝜎+2
× 𝑉

𝜎
) . (59)

Thus ⋃
𝑡≥0,‖(𝑢̂,𝑢̂

𝑡
)‖
𝐸𝜎

≤𝑅
(𝑢̂, 𝑢̂

𝑡
) is bounded in 𝑉

𝜎+2
× 𝑉

𝜎
. 𝑉

𝜎+2
×

𝑉
𝜎
󳨅→󳨅→ 𝑉

2
× 𝐻,

𝐾 = ⋃

𝑡≥0,‖(𝑢̂,𝑢̂
𝑡
)‖
𝐸𝜎

≤𝑅

(𝑢̂, 𝑢̂
𝑡
)
𝐸

(60)

is compact in 𝐸 = 𝑉
2
× 𝐻. For every bounded set 𝐵 ⊂ 𝐸,

dist {𝑆 (𝑡) 𝐵, 𝐾}

= sup
(𝑢
0
,𝑢
1
)∈𝐵

inf
(𝑢̂,𝑢̂
𝑡
)∈𝐾

dist {𝑆 (𝑡) (𝑢
0
, 𝑢

1
) , (𝑢̂, 𝑢̂

𝑡
)}

≤ sup
(𝑢
0
,𝑢
1
)∈𝐵

󵄩
󵄩
󵄩
󵄩
(𝑢, 𝑢

𝑡
)
󵄩
󵄩
󵄩
󵄩𝐸

󳨀→ 0.

(61)

Therefore 𝑆(𝑡) has the global attractorA = 𝜔(𝐵
0
) and

dist {A, 𝐾} = dist {𝑆 (𝑡)A, 𝐾} 󳨀→ 0 𝑡 󳨀→ ∞; (62)

that isA ⊂ 𝐾. This completes the proof.

3. Exponential Attractor

Definition 5. The set Aexp ⊂ 𝐸 is called an exponential
attractor for the solution semigroup 𝑆(𝑡) of acting on the
energy space 𝐸 if

(i) the set Aexp is a compact set in 𝐸;
(ii) Aexp is forward invariant set; that is, 𝑆(𝑡)A ⊂ A, 𝑡 ≥ 0;
(iii) Aexp attracts exponentially the images of all bounded

set in 𝐸; that is,

dist
𝐸
{𝑆 (𝑡) 𝐵,Aexp} ≤ 𝑄 (‖𝐵‖

𝐸
) 𝑒

−𝛾𝑡
; (63)

for all bounded set 𝐵 ⊂ 𝐸;
(iv) it has finite fractal dimension in 𝐸; that is,

dim
𝑓
{Aexp, 𝐸} < +∞.

FromTheorem 1, estimate (38) implies that the ball

𝐵
𝑅
= {𝜁 ∈ 𝐸 |

󵄩
󵄩
󵄩
󵄩
𝜁
󵄩
󵄩
󵄩
󵄩𝐸

≤ 𝑅} (64)

is an absorbing set of the semigroup 𝑇(𝑡) in 𝐸 for 𝑅 > 𝐶
0
.

Without loss of generality we assume that 𝐵
𝑅
is a forward

invariant set. Let

B
𝑅
= [ ⋃

𝑡≥𝑡
0
+1

𝑇 (𝑡) 𝐵
𝑅
]

𝐸

, (65)

where 𝑡
0
> 0 is chosen such that 𝑇(𝑡)𝐵

𝑅
⊂ 𝐵

𝑅
for 𝑡 ≥ 𝑡

0

and [ ]
𝑋
stands for the closure in space 𝑋. Obviously, the set

B
𝑅
is bounded closed set in 𝐸, 𝑇(𝑡)B

𝑅
⊂ B

𝑅
, 𝑡 ≥ 0, and

it is also an absorbing set of 𝑇(𝑡). B
𝑅
constitutes a complete

metric space (with the 𝐸 norm) and one sees from (22) that
the solution semigroup 𝑇(𝑡) is continuous on B

𝑅
, and the

system (𝑇(𝑡),B
𝑅
) constitutes a dissipative dynamical system.

Lemma 6 (see [19]). Let 𝑋 be a Banach space and 𝑀 a
bounded closed set in𝑋. Assume that themapping𝑉 : 𝑀 → 𝑀

possesses the following properties:

(i) 𝑉 is Lipschitz on𝑀; that is, there exists 𝐿 > 0 such that
󵄩
󵄩
󵄩
󵄩
𝑉V

1
− 𝑉V

2

󵄩
󵄩
󵄩
󵄩
≤ 𝐿

󵄩
󵄩
󵄩
󵄩
V
1
− V

2

󵄩
󵄩
󵄩
󵄩
, V

1
, V

2
∈ 𝑀; (66)

(ii) there exist compact seminorms 𝑛
1
(𝑥) and 𝑛

2
(𝑥) on 𝑋

such that
󵄩
󵄩
󵄩
󵄩
𝑉V

1
− 𝑉V

2

󵄩
󵄩
󵄩
󵄩
≤ 𝜂

󵄩
󵄩
󵄩
󵄩
V
1
− V

2

󵄩
󵄩
󵄩
󵄩

+ 𝐾 [𝑛
1
(V

1
− V

2
) + 𝑛

2
(𝑉V

1
− 𝑉V

2
)] ,

(67)

for any V
1
, V

2
∈ 𝑀, where 0 < 𝜂 < 1 and 𝐾 > 0 are constants.

Then for any 𝜅 > 0 and 𝛿 ∈ (0, 1 − 𝜂), there exists a positively
invariant compact set𝐴

𝜅,𝛿
⊂ 𝑀 of finite fractal dimension such

that

dist (𝑉𝑘
𝑀,𝐴

𝜅,𝛿
) ≤ 𝑞

𝑘
, 𝑘 = 1, 2, . . . , (68)

where 𝑞 = 𝜂 + 𝛿 < 1, and

dim
𝑓
𝐴

𝜅,𝛿
≤ (ln 1

𝛿 + 𝜂

)

−1

⋅ (ln𝑚
0
(

2𝐾(1 + 𝐿
2
)

1/2

𝛿

) + 𝜅) ,

(69)

where𝑚
0
(𝑅) is the maximal number of pairs (𝑥

𝑖
, 𝑦

𝑖
) in𝑋 ×𝑋

possessing the properties

󵄩
󵄩
󵄩
󵄩
𝑥
𝑖

󵄩
󵄩
󵄩
󵄩

2

+
󵄩
󵄩
󵄩
󵄩
𝑦
𝑖

󵄩
󵄩
󵄩
󵄩

2

≤ 𝑅
2
,

𝑛
1
(𝑥

𝑖
− 𝑥

𝑗
) + 𝑛

2
(𝑦

𝑖
− 𝑦

𝑗
) > 1,

𝑖 ̸= 𝑗.

(70)

Lemma 7. Let 𝑋,𝑌 be the metric spaces and let the mapping
ℎ : 𝑋 → 𝑌 be 𝜃-Hölder continuous on the set 𝐵 ⊂ 𝑋. Then

dim
𝑓
{ℎ (𝐵) , 𝑌} ≤

1

𝜃

dim
𝑓
{𝐵, 𝑋} . (71)
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Theorem 8. Let the assumptions of Theorem 1 be in force,
with 1 ≤ 𝑝 < 𝑝

∗. Then the solution semigroup 𝑇(𝑡) has an
exponential attractorA

𝑒𝑥𝑝
in 𝐸.

Proof. Define the operator

𝑉
𝑘
= 𝑆 (𝑘𝑇) : B

𝑅
󳨀→ B

𝑅
, 𝑘 ∈ Z

+
. (72)

We show that the discrete system (𝑉
𝑘
,B

𝑅
)has an exponential

attractor.

Definition 9. We introduce the functional space

𝑊(0, 𝑇) = {𝑧 ∈ 𝐿
2
(0, 𝑇; 𝑉

2
) | 𝑧

𝑡

∈ 𝐿
2
(0, 𝑇;𝐻) ,

󵄩
󵄩
󵄩
󵄩
𝜉
𝑧

󵄩
󵄩
󵄩
󵄩

2

𝑊
< ∞} ,

(73)

equipped with the norm

󵄩
󵄩
󵄩
󵄩
𝜉
𝑧

󵄩
󵄩
󵄩
󵄩

2

𝑊
= ∫

𝑇

0

󵄩
󵄩
󵄩
󵄩
(𝑧 (𝑡) , 𝑧

𝑡
(𝑡))

󵄩
󵄩
󵄩
󵄩

2

𝐸
𝑑𝑡 (74)

and the functional space

𝐻
𝑇
= 𝐸 ×𝑊(0, 𝑇) , (75)

equipped with the usual graph norm; that is

‖𝑈‖
2

𝐻
𝑇

=
󵄩
󵄩
󵄩
󵄩
𝜂
󵄩
󵄩
󵄩
󵄩

2

𝐸
+
󵄩
󵄩
󵄩
󵄩
𝜉
𝑧

󵄩
󵄩
󵄩
󵄩

2

𝑊
, ∀𝑈 = (𝜂, 𝜉

𝑧
) ∈ 𝐻

𝑇
. (76)

Obviously, the spaces𝑊(0, 𝑇) and𝐻
𝑇
are Banach spaces. Let

the set
𝐵

𝑇
= {(𝜉

𝑢
(0) , 𝜉

𝑢
(𝑡) , 𝑡 ∈ [0, 𝑇]) | 𝜉

𝑢
(0) ∈ B

𝑟
, 𝜉

𝑢
(𝑡)

= 𝑆 (𝑡) 𝜉
𝑢
(0)} .

(77)

Define the operator

V : 𝐵
𝑇
󳨀→ 𝐻

𝑇
,

V𝑈 = (𝑆 (𝑇) 𝜉
𝑢
(0) , 𝜉

𝑢
(𝑇 + ⋅))

= (𝑆 (𝑇) 𝜉
𝑢
(0) , 𝑆 (𝑡 + 𝑇) 𝜉

𝑢
(0) , 𝑡 ∈ [0, 𝑇]) ,

(78)

where 𝑈 = (𝜉
𝑢
(0), 𝜉

𝑢
(⋅)) ∈ 𝐵

𝑇
and in the following 𝜉

𝑢
(⋅)

means 𝜉
𝑢
(𝑡), 𝑡 ∈ [0, 𝑇].

Lemma 10. The set 𝐵
𝑇
is a bounded closed set in𝐻

𝑇
.

Proof. Obviously, 𝐵
𝑇
is bounded in 𝐻

𝑇
. For any sequence

{𝑈
𝑛
} ⊂ 𝐵

𝑇
,

𝑈
𝑛
= (𝜉

𝑢
𝑛 (0) , 𝜉

𝑢
𝑛 (⋅)) 󳨀→ 𝑈 = (𝜉

𝑢
(0) , 𝜉V (⋅)) in 𝐵

𝑇
. (79)

Since 𝜉
𝑢
𝑛(0) ∈ B

𝑅
andB

𝑅
is closed in 𝐸, 𝜉

𝑢
(0) ∈ B

0
. By the

Lipschitz continuity of 𝑆(𝑡) in 𝐸,
󵄩
󵄩
󵄩
󵄩
𝜉
𝑢
𝑛 (𝑡) − 𝜉

𝑢
(𝑡)
󵄩
󵄩
󵄩
󵄩

2

𝐸
=
󵄩
󵄩
󵄩
󵄩
𝑆 (𝑡) 𝜉

𝑢
𝑛 (0) − 𝑆 (𝑡) 𝜉

𝑢
(0)

󵄩
󵄩
󵄩
󵄩

2

𝐸

≤ 𝐶 (𝑅, 𝑇)
󵄩
󵄩
󵄩
󵄩
𝜉
𝑢
𝑛 (0) − 𝜉

𝑢
(0)

󵄩
󵄩
󵄩
󵄩

2

𝐸

󳨀→ 0,

(80)

so by the uniqueness of the limit; 𝜉V(⋅) = 𝜉
𝑢
(𝑡), that is, 𝑈 =

(𝜉
𝑢
(0), 𝜉V(⋅)) ∈ 𝐵𝑇

, where 𝐵
𝑇
is closed in𝐻

𝑇
.

Lemma 10 implies that 𝐵
𝑇
is complete with respect to

the topology of 𝐻
𝑇
, and the dynamical system (V𝑘

, 𝐵
𝑇
)

constitutes a discrete dissipative dynamical system.

Lemma 11. Under the same assumptions of Theorem 1, then
discrete dissipative dynamical system (V𝑘

, 𝐵
𝑇
) has an exponen-

tial attractor A.

Proof. Obviously, V𝐵
𝑇
⊂ 𝐵

𝑇

∀𝑈
1
= (𝜉

𝑢
1
(0) , 𝜉

𝑢
1
(⋅)) ,

𝑈
2
= (𝜉

𝑢
2
(0) , 𝜉

𝑢
2
(⋅)) ,

𝑧 = 𝑢
1
− 𝑢

2
;

(81)

the inequality (93) holds; then integrating (93) over (𝑇, 2𝑇)
we get

∫

2𝑇

𝑇

(‖𝑧 (𝑡)‖
2

𝑉
2

+
󵄩
󵄩
󵄩
󵄩
𝑧
𝑡
(𝑡)
󵄩
󵄩
󵄩
󵄩

2

𝐻
) 𝑑𝑡

≤ 𝐶∫

2𝑇

𝑇

𝑒
−𝜅𝑡
𝑑𝑡 (

󵄩
󵄩
󵄩
󵄩
𝑧
0

󵄩
󵄩
󵄩
󵄩

2

𝑉
2

+
󵄩
󵄩
󵄩
󵄩
𝑧
1

󵄩
󵄩
󵄩
󵄩

2

𝐻
)

+ 𝐶𝑇∫

2𝑇

0

‖𝑧 (𝜏)‖
2
𝑑𝜏.

(82)

Hence,
󵄩
󵄩
󵄩
󵄩
V𝑈

1
− V𝑈

2

󵄩
󵄩
󵄩
󵄩

2

𝐻
𝑇

=

󵄩
󵄩
󵄩
󵄩
󵄩
𝑆 (𝑇) 𝜉

𝑢
1
(0) − 𝑆 (𝑇) 𝜉

𝑢
2
(0)

󵄩
󵄩
󵄩
󵄩
󵄩

2

𝐸
+
󵄩
󵄩
󵄩
󵄩
𝜉
𝑧
(𝑡 + 𝑇)

󵄩
󵄩
󵄩
󵄩

2

𝑊

≤ 𝐶𝑒
−𝜅𝑇 󵄩󵄩

󵄩
󵄩
󵄩
𝜉
𝑢
1
(0) − 𝜉

𝑢
2
(0)

󵄩
󵄩
󵄩
󵄩
󵄩

2

𝐸

+ 𝐶∫

𝑇

0

𝑒
−𝜅(𝑇−𝜏)

‖𝑧 (𝜏)‖
2
𝑑𝜏 + ∫

2𝑇

𝑇

󵄩
󵄩
󵄩
󵄩
𝜉
𝑧
(𝑡)
󵄩
󵄩
󵄩
󵄩

2

𝐸
𝑑𝑡

≤ 𝜂
𝑇

󵄩
󵄩
󵄩
󵄩
󵄩
𝜉
𝑢
1
(0) − 𝜉

𝑢
2
(0)

󵄩
󵄩
󵄩
󵄩
󵄩

2

𝐸
+ 𝐾

𝑇
∫

2𝑇

0

‖𝑧 (𝜏)‖
2
𝑑𝜏

≤ 𝜂
𝑇

󵄩
󵄩
󵄩
󵄩
𝑈

1
− 𝑈

2

󵄩
󵄩
󵄩
󵄩

2

𝐻
𝑇

+ 𝐾
𝑇
(𝑛

1
(𝑈

1
− 𝑈

2
) + 𝑛

1
(V𝑈

1
− V𝑈

2
)) ,

(83)

where 𝜉
𝑧
(𝑡) = 𝜉

𝑢
1

(𝑡) − 𝜉
𝑢
2

(𝑡),

𝜂
𝑇
= 2𝐶𝑒

−𝜅𝑇
+ 𝐶∫

2𝑇

𝑇

𝑒
−𝜅𝑡
𝑑𝑡, 𝐾

𝑇
= 𝐶 (𝑇 + 2) ,

𝑛
1
(𝑈) = ∫

𝑇

0

‖𝑢 (𝑡)‖
2
𝑑𝑡, 𝑈 = (𝜉

𝑢
(0) , 𝜉

𝑢
(⋅)) ∈ 𝐵

𝑇
.

(84)

It follows from (83) that

󵄩
󵄩
󵄩
󵄩
V𝑈

1
− V𝑈

2

󵄩
󵄩
󵄩
󵄩

2

𝐻
𝑇

≤ 𝑎
𝑇

󵄩
󵄩
󵄩
󵄩
𝑈

1
− 𝑈

2

󵄩
󵄩
󵄩
󵄩

2

𝐻
𝑇

, (85)

where 𝑎
𝑇

= 𝜂
𝑇
+ 𝐶𝐾

𝑇
∫

2𝑇

0
𝑒
𝜅𝑡
𝑑𝑡. Since 𝑊(0, 𝑇) 󳨅→󳨅→

𝐿
2
(0, 𝑇;𝐻), the seminorm 𝑛

1
(𝑈) is compact in 𝐻

𝑇
. Taking
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𝑇 : 0 < 𝜂
𝑇
< 1 and making use of Lemma 6, we get the

conclusion of Lemma 11. That is, the discrete dynamical sys-
tem (𝑉

𝑘
,𝑀) possesses an exponential attractor 𝐴

𝜅,𝛿
. Define

the project operator

Π : 𝐵
𝑇
󳨀→ B

𝑅
,

Π𝑈 = 𝜉
𝑢
(0) ,

𝑈 = (𝜉
𝑢
(0) , 𝜉

𝑢
(⋅)) ∈ 𝐵

𝑇
.

(86)

Lemma 12. 𝐴 = ΠA is an exponential attractor of the discrete
dynamical system (𝑉

𝑘
,B

𝑅
).

Proof. (1)𝐴 is compact because𝐴 is the image of the compact
set A under the continuous mapping Π.

(2) V𝑘
𝐴 ⊂ 𝐴; we have V𝑘A ⊂ A; thus 𝑉𝑘

𝐴 = ΠV𝑘A ⊂

ΠA = 𝐴.
(3) Obviously,

dist
𝐸
{𝑉

𝑘
B

𝑅
, 𝐴} ≤ dist

𝐻
𝑇

{V
𝑘
𝐵

𝑇
,A} ≤ 𝐶𝑞

𝑘
,

0 < 𝑞 < 1;

(87)

for some 0 < 𝑞 < 1 (see Lemma 11).
(4) dim

𝑓
{𝐴, 𝐸} ≤ dim

𝑓
{A, 𝐻

𝑇
} < ∞.

Hence, 𝐴 is a desired exponential attractor. Lemma 12 is
proved.

Let

Aexp = ⋃

0≤𝑡≤𝑆

𝑆 (𝑡) 𝐴. (88)

By the method used in [11], one easily knows that Aexp
is an exponential attractor of (𝑆(𝑡),B

𝑅
), with 𝐸 topology. So

by the definition of the exponential attractor, there exists a
constant 𝜅 > 0, such that

dist
𝐸
{𝑆 (𝑡)B

𝑅
,Aexp} ≤ 𝐶𝑒

−𝜅𝑡
, 𝑡 > 0. (89)

Since the set Aexp ⊂ B
0
is bounded in 𝐸, we claim that Aexp

is an exponential attractor of the system (𝑆(𝑡), 𝐸). Indeed, (i)
obviously, Aexp is forward invariant; (ii) define the project
operator

𝐹 : [0, 𝑇] × 𝐴 󳨀→ B
𝑅
,

𝐹 (𝑡, 𝜉
𝑢
) = 𝜉

𝑢
(𝑡) , 𝜉

𝑢
(𝑡) ∈ B

𝑅
, 𝑡 ∈ [0, 𝑇] ,

󵄩
󵄩
󵄩
󵄩
𝐹 (𝑡

1
, 𝜉

𝑢
) − 𝐹 (𝑡

2
, 𝜉

𝑢
)
󵄩
󵄩
󵄩
󵄩𝐸

≤ 𝐶(∫

𝑡
2

𝑡
1

󵄩
󵄩
󵄩
󵄩
󵄩
𝜉
󸀠

𝑢
(𝜏)

󵄩
󵄩
󵄩
󵄩
󵄩

2

𝐸
𝑑𝜏)

1/2

󵄨
󵄨
󵄨
󵄨
𝑡
1
− 𝑡

2

󵄨
󵄨
󵄨
󵄨

1/2

≤ 𝐶
󵄨
󵄨
󵄨
󵄨
𝑡
2
− 𝑡

1

󵄨
󵄨
󵄨
󵄨

1/2

,

󵄩
󵄩
󵄩
󵄩
󵄩
𝐹 (𝑡, 𝜉

𝑢
1

) − 𝐹 (𝑡, 𝜉
𝑢
2

)

󵄩
󵄩
󵄩
󵄩
󵄩𝐸
1

≤ 𝐶 (𝑅) 𝑒
𝜅𝑇 󵄩󵄩
󵄩
󵄩
󵄩
𝜉
𝑢
1

− 𝜉
𝑢
2

󵄩
󵄩
󵄩
󵄩
󵄩𝐸

(90)

for any 𝜉
𝑢
, 𝜉

𝑢
1

, 𝜉
𝑢
2

∈ B
𝑅
, 𝑡, 𝑡

1
, 𝑡

2
∈ [0, 𝑇], which imply that

the mapping 𝐹 is 1/2-Hölder continuous. Therefore, Aexp =

𝐹{[0, 𝑇] × 𝐴} (the image of [0, 𝑇] × 𝐴) is compact in 𝐸.

(iii) Consider the following:

dim
𝑓
{Aexp, 𝐸} ≤ 2dim

𝑓
{[0, 𝑆] × 𝐴,R

+
× 𝐸}

≤ 2 (1 + dim
𝑓
{𝐴, 𝐸}) < ∞.

(91)

(iv) For any 𝑡 ∈ R+, there exists a 𝑘 ∈ N+, such that 𝑆(𝑡)B
𝑅
⊂

𝑇(𝑘𝑇)B
𝑅
as 𝑡 ∈ (𝑘𝑇, (𝑘 + 1)𝑇]. On account of 𝐴 = 𝑆(0)𝐴 ⊂

Aexp,

dist
𝐸
{𝑆 (𝑡)B

𝑅
,Aexp} ≤ dist

𝐸
{𝑆 (𝑘𝑇)B

𝑅
, 𝐴}

≤ sup
𝜉
𝑢
∈B
𝑅

inf
𝜉V∈𝐴

󵄩
󵄩
󵄩
󵄩
𝑆 (𝑡) 𝜉

𝑢
− 𝜉V

󵄩
󵄩
󵄩
󵄩

1/2

𝐸
≤ 𝐶𝑞

𝑘/2
≤ 𝐶𝑒

−𝜅𝑡/2
.

(92)

Therefore, Theorem 8 is proved.

4. Global and Exponential Attractor in
Nonsupercritical Case

Theorem 13. Let the assumptions of Theorem 1 be in force,
with 1 ≤ 𝑝 ≤ 𝑝̃ = 𝑁/(𝑁 − 2)

+. Then problem (14)-
(15) admits a unique weak solution 𝑢, with (𝑢, 𝑢

𝑡
) ∈ 𝐶

𝑏
(R+

,

𝐸
1
) ≡ 𝐿

∞
(R+

, 𝐸
1
) ∩ 𝐶(R+

, 𝐸
1
), and the solution is Lipschitz

continuous in 𝐸
1
= 𝑉

1
× 𝐻; that is,

󵄩
󵄩
󵄩
󵄩
(𝑧 (𝑡) , 𝑧

𝑡
(𝑡))

󵄩
󵄩
󵄩
󵄩

2

𝐸
1

≤ 𝐶𝑒
𝑘𝑡 󵄩
󵄩
󵄩
󵄩
(𝑧 (0) , 𝑧

𝑡
(0))

󵄩
󵄩
󵄩
󵄩

2

𝐸
1

, 𝑡 ≥ 0, (93)

for some 𝐶, 𝑘 > 0, where 𝑧 = 𝑢 − V, 𝑢 and V are, respectively,
the weak solutions of (14) corresponding to initial data (𝑢

0
, 𝑢

1
)

and (V
0
, V

1
).

Proof. The existence of the weak solutions can be easily
proved by the same way of Theorem 1. So we only prove (93)
here. Taking𝐻-inner product by 𝑧

𝑡
in (36), we have

1

2

𝑑

𝑑𝑡

(

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

−1/4
𝑧
𝑡

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ ‖𝑧‖
2
+

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

1/4
𝑧

󵄩
󵄩
󵄩
󵄩
󵄩

2

) +
󵄩
󵄩
󵄩
󵄩
𝑧
𝑡

󵄩
󵄩
󵄩
󵄩

2

= − (𝑔 (𝑢) − 𝑔 (V) , 𝑧
𝑡
)

≤ 𝐶 (1 + ‖𝑢‖
𝑝−1

2𝑝
+ ‖V‖𝑝−1

2𝑝
) ‖𝑧‖

2𝑝

󵄩
󵄩
󵄩
󵄩
𝑧
𝑡

󵄩
󵄩
󵄩
󵄩

≤

1

2

󵄩
󵄩
󵄩
󵄩
𝑧
𝑡

󵄩
󵄩
󵄩
󵄩

2

+ 𝐶

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

1/4
𝑧

󵄩
󵄩
󵄩
󵄩
󵄩

2

.

(94)

Applying the Gronwall inequality to (94) we obtain (93).

Remark 14. (i) When 1 ≤ 𝑝 ≤ 𝑝̃, by (93), define the con-
tinuous semigroup

𝑆 (𝑡) : 𝐸
1
󳨀→ 𝐸

1
,

𝑆 (𝑡) 𝜑
0
= 𝜑

𝑢
(𝑡) = (𝑢 (𝑡) , 𝑢

𝑡
(𝑡)) ,

(95)

where 𝜑
𝑢
= (𝑢, 𝑢

𝑡
) ∈ 𝐶

𝑏
(R+

, 𝐸
1
) as shown inTheorem 13.

(ii) It follows from Theorem 8 and Remark 14 that the
dynamical system (𝑆(𝑡), 𝐸

1
) is dissipative; that is, it has a

bounded absorbing set B
𝑅
. Without loss of generality we

assume that B
𝑅
is positive invariant; that is, 𝑆(𝑡)B

𝑅
⊂ B

𝑅

for 𝑡 ≥ 0.
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Theorem 15. Let the assumptions of Theorem 13 be in force,
especially when 𝑝 = 𝑝̃, 𝑔 ∈ 𝐶2

(R),

󵄨
󵄨
󵄨
󵄨
󵄨
𝑔
󸀠󸀠
(𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝐶 (1 + |𝑠|

𝑝−2
) , 𝑠 ∈ R 𝑤𝑖𝑡ℎ 𝑝 ≥ 2. (96)

Then the following conclusions are valid.
(i) The solution semigroup 𝑆(𝑡) possesses in 𝐸

1
a compact

global attractorA, which has finite fractal dimension.
(ii) Any full trajectory ] = {𝜑

𝑢
(𝑡) = (𝑢(𝑡), 𝑢

𝑡
(𝑡)) | 𝑡 ∈ R} ⊂

A possesses the property

(𝑢, 𝑢
𝑡
, 𝑢

𝑡𝑡
) ∈ 𝐿

∞
(R; 𝑉

2
× 𝑉

1
× 𝐻) , (97)

and there exists constant 𝑅 > 0 such that

sup
]⊂A

sup
𝑡∈R

(‖𝑢 (𝑡)‖
2

𝑉
2

+
󵄩
󵄩
󵄩
󵄩
𝑢
𝑡
(𝑡)
󵄩
󵄩
󵄩
󵄩

2

𝑉
1

+
󵄩
󵄩
󵄩
󵄩
𝑢
𝑡𝑡
(𝑡)
󵄩
󵄩
󵄩
󵄩

2

) ≤ 𝑅
2
. (98)

(iii)The global attractorA consists of full trajectory ] = {𝜑
𝑢
(𝑡) |

𝑡 ∈ R} such that

lim
𝑡→−∞

dist
𝐸
1

{𝜑
𝑢
(𝑡) ,N} = 0,

lim
𝑡→+∞

dist
𝐸
1

{𝜑
𝑢
(𝑡) ,N} = 0,

(99)

whereN is the set of all fixed points of 𝑇(𝑡); that is,

N = {(𝑢, 0) ∈ 𝐸
1
| (𝐼 + 𝐴

1/2
) 𝑢 + 𝑔 (𝑢) = 𝐴

−1/2
𝑓} . (100)

Furthermore, for any 𝜁 ∈ 𝐸
1
,

lim
𝑡→+∞

dist
𝐸
1
{𝑆 (𝑡) 𝜁,N} = 0. (101)

(iv) The semigroup 𝑆(𝑡) has in 𝐸
1
an exponential attractor.

Lemma 16. Let 𝑦 : R+
→ R+ be an absolutely continuous

function satisfying

𝑑

𝑑𝑡

𝑦 (𝑡) + 2𝜖𝑦 (𝑡) ≤ ℎ (𝑡) 𝑦 (𝑡) + 𝑧 (𝑡) , 𝑡 > 0, (102)

where 𝜖 > 0, 𝑧 ∈ 𝐿1

𝑙𝑜𝑐
(R+

),∫𝑡

𝑠
ℎ(𝜏)𝑑𝜏 ≤ 𝜖(𝑡−𝑠)+𝑚 for 𝑡 ≥ 𝑠 ≥ 0

and some𝑚 > 0. Then

𝑦 (𝑡) ≤ 𝑒
𝑚
(𝑦 (0) 𝑒

−𝜖𝑡
+ ∫

𝑡

0

|𝑧 (𝜏)| 𝑒
−𝜖(𝑡−𝜏)

𝑑𝜏) ,

𝑡 > 0.

(103)

Lemma 17 (quasi-stability). Let the assumptions of Theorem
13 be valid and let 𝑢, V be the solutions of problem (14)-(15) with
initial data inB

𝑅
. Then 𝑧 = 𝑢 − V satisfies the relation

󵄩
󵄩
󵄩
󵄩
(𝑧 (𝑡) , 𝑧

𝑡
(𝑡))

󵄩
󵄩
󵄩
󵄩

2

𝐸
1

≤ 𝐶
󵄩
󵄩
󵄩
󵄩
(𝑧 (0) , 𝑧

𝑡
(0))

󵄩
󵄩
󵄩
󵄩

2

𝐸
1

𝑒
−𝜅𝑡

+ 𝐾 sup
0≤𝑠≤𝑡

‖𝑧 (𝑠)‖
2

(104)

for some constants 𝐶,𝐾 > 0.

Proof. (i)When 1 ≤ 𝑝 < 𝑝̃, taking𝐻-inner product by 𝑧
𝑡
+𝜖𝑧

in (48), with 𝜂 = 0, we get

𝑑

𝑑𝑡

𝐻
4
(𝑧, 𝑧

𝑡
) +

󵄩
󵄩
󵄩
󵄩
𝑧
𝑡

󵄩
󵄩
󵄩
󵄩

2

− 𝜖

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

−1/4
𝑧
𝑡

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 𝜖 (‖𝑧‖
2
+

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

1/4
𝑧

󵄩
󵄩
󵄩
󵄩
󵄩

2

)

= − (𝑔 (𝑢) − 𝑔 (V) , 𝑧
𝑡
+ 𝜖𝑧) ,

(105)

where

𝐻
4
(𝑧, 𝑧

𝑡
) =

1

2

(

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

−1/4
𝑧
𝑡

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ (1 + 𝜖) ‖𝑧‖
2
+

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

1/4
𝑧

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 2𝜖 (𝐴
−1/2

𝑧
𝑡
, 𝑧)) ∼

󵄩
󵄩
󵄩
󵄩
(𝑧, 𝑧

𝑡
)
󵄩
󵄩
󵄩
󵄩

2

𝐸
1

(106)

for 𝜖 > 0 suitably small. On account of 𝑝 < 𝑝̃, 𝑉
1−𝛿

󳨅→ 𝐿
2𝑝

for 𝛿 : 0 < 𝛿 ≪ 1 and the interpolation theorem we have the
control

󵄨
󵄨
󵄨
󵄨
(𝑔 (𝑢) − 𝑔 (V) , 𝑧

𝑡
+ 𝜖𝑧)

󵄨
󵄨
󵄨
󵄨
≤ 𝐶 (1 + ‖𝑢‖

𝑝−1

2𝑝
+ ‖V‖𝑝−1

2𝑝
)

⋅ (‖𝑧‖
2𝑝

󵄩
󵄩
󵄩
󵄩
𝑧
𝑡

󵄩
󵄩
󵄩
󵄩
+ 𝜖 ‖𝑧‖

2𝑝
‖𝑧‖) ≤ 𝐶 ‖𝑧‖

𝑉
1−𝛿

⋅ (
󵄩
󵄩
󵄩
󵄩
𝑧
𝑡

󵄩
󵄩
󵄩
󵄩
+ 𝜖 ‖𝑧‖) ≤

1

2

󵄩
󵄩
󵄩
󵄩
𝑧
𝑡

󵄩
󵄩
󵄩
󵄩

2

+

𝜖

2

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

1/4
𝑧

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 𝐶 ‖𝑧‖
2
.

(107)

Therefore, there exists constant 𝜅 > 0 such that

𝑑

𝑑𝑡

𝐻
4
(𝑧, 𝑧

𝑡
) + 𝜅𝐻

4
(𝑧, 𝑧

𝑡
) ≤ 𝐶 ‖𝑧‖

2
,

󵄩
󵄩
󵄩
󵄩
(𝑧 (𝑡) , 𝑧

𝑡
(𝑡))

󵄩
󵄩
󵄩
󵄩

2

𝐸
1

≤ 𝐶
󵄩
󵄩
󵄩
󵄩
(𝑧 (0) , 𝑧

𝑡
(0))

󵄩
󵄩
󵄩
󵄩

2

𝐸
1

𝑒
−𝜅𝑡

+ 𝐶∫

𝑡

0

𝑒
−𝜅(𝑡−𝜏)

‖𝑧 (𝜏)‖
2
𝑑𝜏

≤ 𝐶
󵄩
󵄩
󵄩
󵄩
(𝑧 (0) , 𝑧

𝑡
(0))

󵄩
󵄩
󵄩
󵄩

2

𝐸
1

𝑒
−𝜅𝑡

+ 𝐾 sup
0≤𝜏≤𝑡

‖𝑧 (𝜏)‖
2
,

(108)

where𝐾 = 𝐶/𝜅.
(ii) When 𝑝 = 𝑝̃, rewrite (105) in the form

𝑑

𝑑𝑡

(𝐻
4
(𝑧, 𝑧

𝑡
) +

1

2

(𝑔 (𝑢) − 𝑔 (V) , 𝑧)) + 󵄩󵄩󵄩
󵄩
𝑧
𝑡

󵄩
󵄩
󵄩
󵄩

2

− 𝜖

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

−1/4
𝑧
𝑡

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 𝜖 (‖𝑧‖
2
+

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

1/4
𝑧

󵄩
󵄩
󵄩
󵄩
󵄩

2

)

+ 𝜖 (𝑔 (𝑢) − 𝑔 (V) , 𝑧) =
1

2

(𝑔̃ (𝑢, V) , 𝑧2) ,

(109)

where

𝑔̃ (𝑢, V)

= ∫

1

0

𝑔
󸀠󸀠
(𝜆𝑢 + (1 − 𝜆) V) (𝜆𝑢

𝑡
+ (1 − 𝜆) V

𝑡
) 𝑑𝜆.

(110)
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Since 𝑉
1
󳨅→ 𝐿

2𝑝, there exists constant 𝑙 > 0 such that
󵄨
󵄨
󵄨
󵄨
(𝑔 (𝑢) − 𝑔 (V) , 𝑧)󵄨󵄨󵄨

󵄨

≤ 𝐶 (1 + ‖𝑢‖
𝑝−1

2𝑝
+ ‖V‖𝑝−1

2𝑝
) ‖𝑧‖

2𝑝
‖𝑧‖ ≤ 𝐶 ‖𝑧‖

𝑉
1
‖𝑧‖

≤

1

2

‖𝑧‖
2

𝑉
1

+ 𝑙 ‖𝑧‖
2
,

(111)

which means

(𝑔 (𝑢) − 𝑔 (V) , 𝑧) + 𝑙 ‖𝑧‖2 ≥ −

1

2

‖𝑧‖
2

𝑉
1

,

󵄨
󵄨
󵄨
󵄨
󵄨
(𝑔̃ (𝑢, V) , 𝑧2)

󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝐶 (1 + ‖𝑢‖
𝑝−2

2𝑝
+ ‖V‖𝑝−2

2𝑝
) (
󵄩
󵄩
󵄩
󵄩
𝑢
𝑡

󵄩
󵄩
󵄩
󵄩
+
󵄩
󵄩
󵄩
󵄩
V
𝑡

󵄩
󵄩
󵄩
󵄩
) ‖𝑧‖

2

2𝑝

≤ 𝐶 (
󵄩
󵄩
󵄩
󵄩
𝑢
𝑡

󵄩
󵄩
󵄩
󵄩
+
󵄩
󵄩
󵄩
󵄩
V
𝑡

󵄩
󵄩
󵄩
󵄩
) ‖𝑧‖

2

𝑉
1

.

(112)

We infer from (109) that

𝑑

𝑑𝑡

𝐻
5
(𝑧, 𝑧

𝑡
) +

1

2

󵄩
󵄩
󵄩
󵄩
𝑧
𝑡

󵄩
󵄩
󵄩
󵄩

2

+ 𝐾
5
(𝑧, 𝑧

𝑡
)

≤ 𝐶 (
󵄩
󵄩
󵄩
󵄩
𝑢
𝑡

󵄩
󵄩
󵄩
󵄩
+
󵄩
󵄩
󵄩
󵄩
V
𝑡

󵄩
󵄩
󵄩
󵄩
) ‖𝑧‖

2

𝑉
1

+ 𝑙 (𝑧, 𝑧
𝑡
)

≤ 𝐶 (
󵄩
󵄩
󵄩
󵄩
𝑢
𝑡

󵄩
󵄩
󵄩
󵄩
+
󵄩
󵄩
󵄩
󵄩
V
𝑡

󵄩
󵄩
󵄩
󵄩
)𝐻

5
(𝑧, 𝑧

𝑡
) +

1

2

󵄩
󵄩
󵄩
󵄩
𝑧
𝑡

󵄩
󵄩
󵄩
󵄩

2

+ 𝑙
2
‖𝑧‖

2
,

(113)

where

𝐻
5
(𝑧, 𝑧

𝑡
)

= 𝐻
4
(𝑧, 𝑧

𝑡
) +

1

2

((𝑔 (𝑢) − 𝑔 (V) , 𝑧) + 𝑙 ‖𝑧‖2)

∼
󵄩
󵄩
󵄩
󵄩
𝑧
𝑡

󵄩
󵄩
󵄩
󵄩

2

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

1/4
𝑧

󵄩
󵄩
󵄩
󵄩
󵄩

2

,

𝐾
5
(𝑧, 𝑧

𝑡
)

= (

1

2

− 𝜖 −

𝜖

√𝜆
1

)
󵄩
󵄩
󵄩
󵄩
𝑧
𝑡

󵄩
󵄩
󵄩
󵄩

2

+ 𝜖 (‖𝑧‖
2
+

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

1/4
𝑧

󵄩
󵄩
󵄩
󵄩
󵄩

2

+ (𝑔 (𝑢) − 𝑔 (V) , 𝑧))

≥ 2𝜅𝐻
5
(𝑧, 𝑧

𝑡
) − 𝑙𝜖 ‖𝑧‖

2

(114)

for 𝜖 > 0 suitably small. Inserting (114) into (113), we get

𝑑

𝑑𝑡

𝐻
5
(𝑧, 𝑧

𝑡
) + 2𝜅𝐻

5
(𝑧, 𝑧

𝑡
)

≤ 𝐶 (
󵄩
󵄩
󵄩
󵄩
𝑢
𝑡

󵄩
󵄩
󵄩
󵄩
+
󵄩
󵄩
󵄩
󵄩
V
𝑡

󵄩
󵄩
󵄩
󵄩
)𝐻

5
(𝑧, 𝑧

𝑡
) + 𝑙

2
‖𝑧‖

2
.

(115)

There exists𝑚 > 0 such that

𝐶∫

𝑡

𝑠

(
󵄩
󵄩
󵄩
󵄩
𝑢
𝑡
(𝜏)

󵄩
󵄩
󵄩
󵄩
+
󵄩
󵄩
󵄩
󵄩
V
𝑡
(𝜏)

󵄩
󵄩
󵄩
󵄩
) 𝑑𝜏

≤ 𝐶(∫

𝑡

𝑠

(
󵄩
󵄩
󵄩
󵄩
𝑢
𝑡
(𝜏)

󵄩
󵄩
󵄩
󵄩

2

+
󵄩
󵄩
󵄩
󵄩
V
𝑡
(𝜏)

󵄩
󵄩
󵄩
󵄩

2

) 𝑑𝜏)

1/2

(𝑡 − 𝑠)
1/2

≤ 𝜅 (𝑡 − 𝑠) + 𝑚, for 𝑡 ≥ 𝑠 ≥ 0.

(116)

Applying Lemma 16 to (115), we get

󵄩
󵄩
󵄩
󵄩
(𝑧 (𝑡) , 𝑧

𝑡
(𝑡))

󵄩
󵄩
󵄩
󵄩

2

𝐸
1

≤ 𝐶𝑒
𝑚
(
󵄩
󵄩
󵄩
󵄩
(𝑧 (0) , 𝑧

𝑡
(0))

󵄩
󵄩
󵄩
󵄩

2

𝐸
1

𝑒
−𝜅𝑡

+ 𝑙
2
∫

𝑡

0

𝑒
−𝜅(𝑡−𝜏)

‖𝑧 (𝜏)‖
2
𝑑𝜏)

≤ 𝐶𝑒
𝑚 󵄩
󵄩
󵄩
󵄩
(𝑧 (0) , 𝑧

𝑡
(0))

󵄩
󵄩
󵄩
󵄩

2

𝐸
1

𝑒
−𝜅𝑡

+ 𝐾 sup
0≤𝜏≤𝑡

‖𝑧 (𝜏)‖
2
,

(117)

where𝐾 = 𝐶𝑒
𝑚
𝑙
2
/𝜅. Lemma 17 is proved.

Proof of Theorem 15. The estimates (93) and (104) show
that the dissipative system (𝑇(𝑡), 𝐸

1
) is quasi-stable on the

absorbing set B
𝑅
, so the conclusions (i) and (ii) follow

directly from the standard theory on global attractor (cf.
Theorems 7.9.4–7.9.6 and 7.9.8 in [30]).

The energy equality holds and shows that 𝐻(𝑢, 𝑢
𝑡
) is a

strictly Lyapunov function on 𝐸
1
, so the dynamical system

(𝑇(𝑡), 𝐸
1
) is gradient, and by conclusion (ii), it has a compact

global attractor. Therefore, the conclusion (iii) of Theorem 4
holds (cf. Theorems 2.28 and 2.31 in [20]).

We see from the conclusion (ii) that the global attractor
A is included and bounded in 𝐸

2
= 𝑉

2
× 𝑉

1
. Let D be the

closure of the 1-neighborhood ofA in 𝐸
2
; that is,

D = [{𝜁 ∈ 𝐸
2
| dist

𝐸
2
{𝜁,A} ≤ 1}]

𝐸
1

. (118)

Then D is bounded in 𝐸
2
and closed in 𝐸

1
, and it is an

absorbing set of 𝑇(𝑡); without loss of generality we assume
that 𝑇(𝑡)D ⊂ D, 𝑡 ≥ 0. By Lemma 17, 𝑇(𝑡) is quasi-stable on
D. For every 𝜑

0
∈ D, 𝜑(𝑡) = 𝑆(𝑡)𝜑

0
= (𝑢(𝑡), 𝑢

𝑡
(𝑡)) ∈ D and

by (14), ‖𝑢
𝑡𝑡
‖ ≤ 𝐶(D),

󵄩
󵄩
󵄩
󵄩
𝑇 (𝑡

2
) 𝜑

0
− 𝑇 (𝑡

1
) 𝜑

0

󵄩
󵄩
󵄩
󵄩𝐸
1

≤ ∫

𝑡
2

𝑡
1

󵄩
󵄩
󵄩
󵄩
󵄩
𝜑
󸀠
(𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩𝐸
1

𝑑𝑡

≤ 𝐶 (D)
󵄨
󵄨
󵄨
󵄨
𝑡
2
− 𝑡

1

󵄨
󵄨
󵄨
󵄨
.

(119)

So 𝑇(𝑡) has in 𝐸
1
an exponential attractor (cf. Theorem 7.9.9

in [30]). Theorem 15 is proved.

Remark 18. Comparing Theorem 8 with Theorem 2.2 in [17]
one finds that the critical case 𝑝 = 𝑝̃ is solved in natural
energy space 𝐸, the restriction 𝑁 ≤ 5 is removed in
the subcritical case 𝑝 < 𝑝̃, the higher regularity of the
global attractor is obtained, and the exponential attractor is
established in 𝐸

1
.
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A predator-prey model is studied mathematically and numerically. The aim is to explore how some key factors influence dynamic
evolutionary mechanism of steady conversion and bifurcation behavior in predator-prey model. The theoretical works have been
pursuing the investigation of the existence and stability of the equilibria, as well as the occurrence of bifurcation behaviors
(transcritical bifurcation, saddle-node bifurcation, and Hopf bifurcation), which can deduce a standard parameter controlled
relationship and in turn provide a theoretical basis for the numerical simulation. Numerical analysis ensures reliability of the
theoretical results and illustrates that three stable equilibria will arise simultaneously in the model. It testifies the existence of
Bogdanov-Takens bifurcation, too. It should also be stressed that the dynamic evolutionary mechanism of steady conversion and
bifurcation behavior mainly depend on a specific key parameter. In a word, all these results are expected to be of use in the study
of the dynamic complexity of ecosystems.

1. Introduction

The dynamical behaviors between different populations and
their complex properties have been given close attention by
biologists and ecologists. Since the pioneering work of Lotka
and Volterra, the research interest in predator-prey dynamics
has achieved constant attention. It is well known that these
models can directly reflect changes in the size of populations.
Considerable improvements are that the relevant theories
become more and more complete in this category in recent
years [1–5].

The predator-prey models have extensive applicability in
the field of biological problems.The biologist can use them to
study the relationship between species in different domains
[6–10]. Yang and Zhao [11] have established a fish-algae
consumption model to explore how to apply the complex
dynamics between fish-algae populations to expound the
mechanism of algae blooms; these results will be helpful in
controlling algae bloom. González-Olivares and Rojas-Palma
[12] have established a Gause type predator-prey model

with Allee effects and considered three standard functional
responses, respectively. They found that different types of
functional responses will lead to a model’s dynamic behavior
change. Their results perfectly explore that the expression of
one interaction term has a significant effect on the stability
and persistence of the populationmodel, which ismeaningful
in establishing biologicalmathematicalmodel. Dhar et al. [13]
have proposed a mathematical model to study how instan-
taneous nutrient recycling affects the dynamic characteristic
of aquatic ecosystem. The nutrient supply rate was found
to affect the local stability of equilibrium; this work was
significant for models involving flowing waters. Luo [14] has
considered a mathematical model to study how the periodic
environment influences the internal operating characteristics
of the aquatic ecosystem.He pointed out that the temperature
has a certain time periodicity, the fluctuation of temperature
can lead to changes in intrinsic carrying capacity, and the
growth rate of prey populations can also be influenced by time
periodicity; these results in [14] are more accordant with the
actual situation.
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It is a common phenomenon in nature that one predator
lives on multiple prey species. To address this issue, some
researchers have begun to consider alternative prey to depict
the dynamic predator mechanism [15–18]. It is easy to find
out that alternative prey can variously affect the dynamic
capture feature. On one hand, alternative prey can increase
the predation quantity for the focal prey, because more prey
biomass may result in higher predation rates for both prey
items. On the other hand, the alternative prey population
can also lower predation on the focal prey because of
predator preference for the alternative prey resources [19].
At the same time, many studies show that the alternative
population can intensively influence the dynamic behavior
of the aquatic ecosystem [20, 21]. Based on this mechanism,
Kar and Chattopadhyay [22] have developed a two-species
predator-prey model which includes the effect of alternative
prey. The model can be depicted as

𝑑𝑁

𝑑𝑇
= 𝑟
1
𝑁(1 −

𝑁

𝑘
1

) −
𝑎
1
𝑁

𝑏
1
+ 𝑁
𝑃,

𝑑𝑃

𝑑𝑇
=
𝑎
1
𝑒
1
𝑁

𝑏
1
+ 𝑁
𝑃 + 𝑠
1
𝑃(1 −

𝑁

𝑘
1

) − 𝑑
1
𝑃,

(1)

where 𝑁 and 𝑃 represent prey and predator population
densities or biomass at time𝑇, respectively.Here, 𝑟

1
stands for

the intrinsic growth rate of the prey without any environment
limitations, 𝑘

1
is the environmental carrying capacity of the

prey in the absence of the predator, 𝑎
1
𝑁/(𝑏
1
+𝑁) is theHolling

type-II functional response [23], which is used to depict
the average feeding rate of the predator when the predator
spends time seeking prey, where 𝑏

1
is the half saturation

constant for the Holling type-II, 𝑎
1
is the grazing rate of the

predator population, 𝑒
1
and 𝑑

1
are the conversional rate and

mortality rate of predator, respectively, and 𝑠
1
𝑃(1 − 𝑁/𝑘

1
)

indicates the portion of biomass of predator increments from
the alternative prey, where 𝑠

1
represents the growth rate of

the predator on account of the alternative prey. From the
formula, we can see that when the quantity of focal prey
𝑁 approaches the environmental carrying capacity 𝑘

1
, the

amount of alternative prey consumed by the predator will
tend to be zero [24].

The concept of Allee effect was firstly derived from the
research of Allee and Bowen [25]. Since then, the Allee effect
received the attention of many researchers [26–29]. Allee
effects can be roughly classified into two types: strong and
weak [30]. For these two forms, there is a critical value that is
referred to as the Allee threshold, respectively. The fist form
means that if the population size is below the threshold, the
species will become extinct. When the growth rate gradually
decreases but remains positive with a low population size, the
Allee effect is described as weak. Aulisa and Jang [31] have
established a continuous-time predator-prey model to study
influences in dynamical behaviors when the prey population
possesses Allee effect. They pointed out that both species will
become extinct if the prey population size falls below a certain
threshold. Pan et al. [32] have considered a reaction-diffusion
phytoplankton-zooplankton model with double Allee effects
on prey population. They pointed out that the Allee effects

can make the dynamical behaviors of a system increasingly
complex.

The strong Allee effect can be depicted by the following
form:

𝑑𝑁

𝑑𝑇
= 𝑟
1
𝑁(1 −

𝑁

𝑘
1

)(
𝑁

𝑚
1

− 1) , (2)

where 𝑚
1
is Allee effect threshold. If population density or

size is below the threshold, this population is doomed to
extinction. Here 0 < 𝑚

1
< 𝑘
1
, the other parameters’

significance is the same as model (1).
Now we will establish a predator-prey model with strong

Allee effects:
𝑑𝑁

𝑑𝑇
= 𝑟
1
𝑁(1 −

𝑁

𝑘
1

)(
𝑁

𝑚
1

− 1) −
𝑎
1
𝑁

𝑏
1
+ 𝑁
𝑃,

𝑑𝑃

𝑑𝑇
=
𝑎
1
𝑒
1
𝑁

𝑏
1
+ 𝑁
𝑃 + 𝑠
1
𝑃(1 −

𝑁

𝑘
1

) − 𝑑
1
𝑃.

(3)

The parameters are all greater than zero and have the
same significance as above. For simplicity, we write the above
model in dimensionless form as follows: we take the scaling
𝑁 = 𝑘

1
𝑛, 𝑃 = 𝑟

1
𝑝/𝑎
1
, and 𝑇 = 𝑡/𝑟

1
; then, model (3) can be

simplified as

𝑑𝑛

𝑑𝑡
= 𝑛 (1 − 𝑛) (𝑚𝑛 − 1) −

𝑛

𝑏 + 𝑛
𝑝 = 𝐹

1
, (4a)

𝑑𝑝

𝑑𝑡
=
𝑒𝑛

𝑏 + 𝑛
𝑝 + 𝑠𝑝 (1 − 𝑛) − 𝑑𝑝 = 𝐹

2
, (4b)

where 𝑒 = 𝑎
1
𝑒
1
/𝑟
1
, 𝑏 = 𝑏

1
/𝑘
1
, 𝑠 = 𝑠

1
/𝑟
1
, 𝑑 = 𝑑

1
/𝑟
1
, 𝑚 =

𝑘
1
/𝑚
1
, and apparently𝑚 > 1.

In the succedent subsections of this paper, we introduce
the problem of determining the number of equilibria. Sta-
bility analysis of equilibrium point is also presented. Then,
we provide a demonstration of several types of bifurcation
and give a set of parameter values to prove the existence of
Bogdanov-Takens (BT) bifurcation. In Section 3, numerical
simulations are given to illustrate the theoretical analysis
results, followed by conclusions in Section 4.

2. Qualitative Analysis

2.1. Equilibria. In this subsection, we mainly concentrate on
the existence of positive equilibrium of model (4a) and (4b).
Model (4a) and (4b) has three boundary equilibria: 𝐸

0
(0, 0),

𝐸
1
(1, 0), and 𝐸

2
(1/𝑚, 0) and they are always existent. The

interior equilibria are the intersection points of the vertical
isocline and horizontal isocline in the interior of the first
quadrant.The expressions of vertical and horizontal isoclines
are as follows:

(1 − 𝑛) (𝑚𝑛 − 1) −
𝑝

𝑏 + 𝑛
= 0, (5a)

𝑒𝑛

𝑏 + 𝑛
+ 𝑠 (1 − 𝑛) − 𝑑 = 0. (5b)

The horizontal isocline is vertical line and the number of
perpendiculars is decided by (5b). We denote (5b) by𝐻(𝑛) =
𝐺(𝑛)/(𝑏+𝑛) = 0, where𝐺(𝑛) = −𝑠𝑛2+(𝑒+𝑠−𝑠𝑏−𝑑)𝑛+𝑏(𝑠−𝑑).
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𝐺(𝑛) = 0 have the same solutions as (5b), and two solutions
exist in the equation at most. We denoted them by 𝑛

3
and 𝑛
4
,

where 𝑛
4
< 𝑛
3
. From the geometric properties of isoclines we

can know that model (4a) and (4b) has interior equilibrium
points if and only if 1/𝑚 < 𝑛

3
< 1 or 1/𝑚 < 𝑛

4
< 1. Then,

the maximum number of equilibria for model (4a) and (4b)
is five. We use 𝐸

3
(𝑛
3
, 𝑝
3
) and 𝐸

4
(𝑛
4
, 𝑝
4
) to signify the interior

equilibria, the existence and stability of which are shown as
follows.

The Jacobian matrix of model (4a) and (4b) at the
equilibrium point 𝐸

𝑖
is

𝐽
(𝑛𝑖 ,𝑝𝑖)

= (
𝐴 (𝑛
𝑖
, 𝑝
𝑖
) 𝐵 (𝑛

𝑖
, 𝑝
𝑖
)

𝐶 (𝑛
𝑖
, 𝑝
𝑖
) 𝐷 (𝑛

𝑖
, 𝑝
𝑖
)
) , (6)

𝐴 (𝑛
𝑖
, 𝑝
𝑖
) = −3𝑚𝑛

𝑖

2
+ (2𝑚 + 2) 𝑛

𝑖
− 1 −

𝑏𝑝
𝑖

(𝑏 + 𝑛
𝑖
)
2
,

𝐵 (𝑛
𝑖
, 𝑝
𝑖
) = −

𝑛
𝑖

𝑏 + 𝑛
𝑖

,

𝐶 (𝑛
𝑖
, 𝑝
𝑖
) =

𝑏𝑒𝑝
𝑖

(𝑏 + 𝑛
𝑖
)
2
− 𝑠𝑝
𝑖
,

𝐷 (𝑛
𝑖
, 𝑝
𝑖
) =

𝑒𝑛
𝑖

𝑏 + 𝑛
𝑖

+ 𝑠 − 𝑑 − 𝑠𝑛
𝑖
.

(7)

Theorem 1. (1) 𝐸
0
(0, 0) is an asymptotically stable node point

if 𝑠 < 𝑑 and a saddle point for 𝑠 > 𝑑; if 𝑠 = 𝑑, it is a high order
singularity. The Jacobian matrix around 𝐸

0
shows that

𝐽
(0,0)
= (
−1 0

0 𝑠 − 𝑑
) . (8)

(2) 𝐸
1
(1, 0) is a asymptotically stable node point when 𝑒/(𝑏 +

1) < 𝑑 while it is a saddle point when 𝑒/(𝑏 + 1) > 𝑑. The
Jacobian matrix around 𝐸

1
is

𝐽
(1,0)
= (

1 − 𝑚 −
1

𝑏 + 1

0
𝑒

𝑏 + 1
− 𝑑

) . (9)

(3) 𝐸
2
(1/𝑚, 0) is always unstable. The Jacobian matrix around

𝐸
2
is

𝐽
(1/𝑚,0)

= (

1 −
1

𝑚
−
1

𝑏𝑚 + 1

0
𝑒

𝑏𝑚 + 1
+ 𝑠 − 𝑑 −

𝑠

𝑚

) . (10)

One of the eigenvalues is 1 − 1/𝑚 > 0, so 𝐸
2
is unstable.

Theorem 2. If 𝑒 − 𝑑 − 𝑏𝑑 > 0 and −𝑠/𝑚2 + (𝑒 + 𝑠 − 𝑠𝑏 −
𝑑)/𝑚 + 𝑏(𝑠 − 𝑑) < 0 hold, model (4a) and (4b) has only
one interior equilibrium 𝐸

3
(𝑛
3
, 𝑝
3
). Furthermore, 𝐸

3
(𝑛
3
, 𝑝
3
) is

always unstable, especially when 𝑑 = 𝑠 + 𝑒 + 𝑠𝑏 − 2√𝑏𝑠𝑒; it is a
high-order singularity, where

𝑛
3

=
𝑠 + 𝑒 − 𝑠𝑏 − 𝑑 + √(𝑠𝑏 − 𝑠 + 𝑑 − 𝑒)

2
+ 4𝑏𝑠 (𝑠 − 𝑑)

2𝑠
,

(11a)

𝑝
3
= (1 − 𝑛

3
) (𝑚𝑛
3
− 1) (𝑏 + 𝑛

3
) . (11b)

Proof. According to (6),

det (𝐽
(𝑛3 ,𝑝3)

) = −𝐶 (𝑛
3
, 𝑝
3
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3
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3
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3

(
𝑏𝑒
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3
)
2
− 𝑠) .

(12)

Let 𝜙 = 𝑛
3
− √𝑏𝑒/𝑠 + 𝑏; substituting (11a) into 𝜙, we get

𝜙

=
𝑠 + 𝑒 − 𝑑 + 𝑠𝑏 − 2√𝑏𝑒𝑠 + √(𝑠 + 𝑒 − 𝑑 − 𝑠𝑏)

2
+ 4𝑏𝑠 (𝑠 − 𝑑)

2𝑠
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2
− 4𝑏𝑠𝑒

2𝑠
≥ 0.

(13)

Then, we know when 𝑛
3
≥ √𝑏𝑒/𝑠 − 𝑏 and det 𝐽

(𝑛3 ,𝑝3)
≤ 0,

𝐸
3
is a saddle point or a high-order singularity.

Theorem3. If 𝑒−𝑑−𝑏𝑑 < 0 and−𝑠/𝑚2+(𝑒+𝑠−𝑠𝑏−𝑑)/𝑚+𝑏(𝑠−
𝑑) > 0, model (4a) and (4b) has only one interior equilibrium
𝐸
4
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4
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4
). Furthermore, 𝐸

4
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4
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4
) is locally asymptotically

stable when 𝑛
4
∈ 𝐿, where 𝐿 = {𝑛 | 𝐴(𝑛) < 0, 𝑛 ∈ (1/𝑚, 1)}
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4
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Proof. According to (6),
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) = 𝐴 (𝑛
4
)

= −3𝑚𝑛
4

2
+ (2𝑚 + 2) 𝑛

4
− 1

−
𝑏 (1 − 𝑛

4
) (𝑚𝑛
4
− 1)

𝑏 + 𝑛
4

,

det (𝐽
(𝑛4 ,𝑝4)

) = −𝐶 (𝑛
4
) 𝐵 (𝑛
4
)

=
𝑛
4

𝑏 + 𝑛
4

(
𝑏𝑒𝑝
4

(𝑏 + 𝑛
4
)
2
− 𝑠𝑝
4
) .

(15)

Imitating the proof of Theorem 2, we can know

𝑛
4
< √
𝑏𝑒

𝑠
− 𝑏; (16)
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then, det (𝐽
(𝑛4 ,𝑝4)

) = −𝐵(𝑛
4
)𝐶(𝑛
4
) > 0, which means two

eigenvalues have the same sign.
Since

𝐴(
1

𝑚
) = 1 −

1

𝑚
> 0,

𝐴 (1) = 1 − 𝑚 < 0.

(17)

Solving 𝐴(𝑛) = 0, we can get that there exists a set 𝐿 ⊂
(1/𝑚, 1), such that 𝐴(𝑛) < 0 for all 𝑛 ∈ 𝐿, where 𝐿 =
((1 +𝑚−𝑚𝑏+√1 − 𝑚 + 𝑚𝑏 + 𝑚2(1 + 𝑏 + 𝑏2))/3𝑚, 1). Then,
we know that if 𝑛

4
∈ 𝐿, trace (𝐽

(𝑛4 ,𝑝4)
) = 𝐴(𝑛

4
) < 0 and both

eigenvalues of 𝐽
(𝑛4 ,𝑝4)

have negative real parts, and 𝐸
4
(𝑛
4
, 𝑝
4
)

is locally asymptotically stable.
From the above discussion, we find that model (4a)

and (4b) may possess two interior equilibria 𝐸
3
and 𝐸

4

simultaneously if 𝑒 − 𝑑 − 𝑏𝑑 < 0, −𝑠/𝑚2 + (𝑒 + 𝑠 − 𝑠𝑏 −
𝑠)/𝑚 + 𝑏(𝑠 − 𝑑) < 0, (𝑠𝑏 − 𝑠 + 𝑑 − 𝑒)2 + 4𝑏𝑠(𝑠 − 𝑑) > 0,
and 2𝑠/𝑚 < 𝑒 + 𝑠 − 𝑠𝑏 − 𝑑 < 2𝑠. The stability condition of 𝐸

4

is still 𝑛
4
∈ 𝐿.

Considering the existence and stability conditions inte-
grated, we know that there will appear three stable equilibria
synchronously if the scope of those parameters satisfies the
above conditions. Based on the above demonstration, some
cases where the stability of equilibria may occur are cited
in Table 1, where the existence of equilibria is classified
according to the magnitude of 𝑠 and 𝑑.

2.2. Local Bifurcation. From Table 1 we know that the vari-
ation of parameter value will lead to the number change of
interior equilibria. We take 𝑑 as variable parameter and find
that changing the value of 𝑑 will vary equilibrium’s number;
when the value of 𝑑 increases across the threshold 𝑑TC1 =
𝑒/(𝑏 + 1), the interior equilibrium 𝐸

4
bifurcates from 𝐸

1
, and

when the value of 𝑑 is across 𝑑TC2 = 𝑒/(𝑏𝑚 + 1) + 𝑠(1 − 1/𝑚),
another interior equilibrium 𝐸

3
can bifurcate from 𝐸

2
. Then,

there exist two transcritical bifurcations, which are denoted
by TC1 and TC2, respectively.

Theorem 4. (1) Model (4a) and (4b) undergoes transcritical
bifurcation at 𝐸

1
(1, 0) when the value of parameter 𝑑 equals

the transcritical bifurcation threshold 𝑑
𝑇𝐶1
= 𝑒/(𝑏 + 1).

(2) Model (4a) and (4b) undergoes another transcritical
bifurcation at𝐸

2
(1/𝑚, 0)when the value of parameter 𝑑 equals

the transcritical bifurcation threshold 𝑑
𝑇𝐶2
= 𝑒/(𝑏𝑚+1)+𝑠(1−

1/𝑚).

Proof. It can be easily seen that 𝐸
1
(1, 0) coincides with

𝐸
4
(𝑛
4
, 𝑝
4
) when 𝑑 = 𝑒/(𝑏 + 1). According to the theorems in

[33, 34], it can be found that one interior equilibrium point
branches off from 𝐸

1
when 𝑑 passes the threshold 𝑑TC1 =

𝑒/(𝑏 + 1) and also conforms with the transversality condition
for transcritical bifurcation. The same notation we followed
in this paper is mentioned in [33].

We can calculate the value of Jacobian matrix of model
(4a) and (4b) as Det (𝐽

(1,0)
)|
𝑑TC1

, and then (1, 0) is a nonhyper-
bolic equilibrium point when 𝑑 = 𝑑TC1. Let the eigenvectors
V = [1, (𝑏 + 1)(1 − 𝑚)]𝑇 and 𝑤 = [0, 1]𝑇 indicate the eigen-
vectors corresponding to zero eigenvalues of 𝐽

((1,0),𝑑TC1)
and

[𝐽
((1,0),𝑑TC1)

]
𝑇, respectively. Next the transversality conditions

for the transcritical bifurcation are satisfied be verified, where
𝐹 = (𝐹

1
, 𝐹
2
)
𝑇:

𝑤
𝑇
𝐹
𝑑
((1, 0) ; 𝑑TC1) = (0, 1) (0, 0)

𝑇
= 0,

𝑤
𝑇
𝐷𝐹
𝑑
((1, 0) ; 𝑑TC1) V = (𝑏 + 1) (𝑚 − 1) ̸= 0,

𝑤
𝑇
𝐷
2
𝐹 ((1, 0) ; 𝑑TC1) (V, V)

= (
𝑒𝑏

(1 + 𝑏)
2
− 𝑠) (𝑏 + 1) (1 − 𝑚) .

(18)

We notice that 𝑚 > 1 and 𝑤𝑇𝐷2𝐹((1, 0); 𝑑TC1)(V, V) <
0 if 𝑒 > 𝑠(𝑏 + 1)2/𝑏 and then the transcritical bifurcation is
supercritical, which means that an interior equilibrium point
arises through𝐸

1
under this condition. Another aspect is that

if 𝑒 < 𝑠(𝑏+1)2/𝑏, the transcritical bifurcation is subcritical and
an interior equilibrium vanishes across 𝐸

1
.

In the following, we demonstrate that another interior
equilibrium point bifurcates from 𝐸

2
(1/𝑚, 0) through tran-

scritical bifurcation at the threshold 𝑑TC2 = 𝑒/(𝑏𝑚 + 1) +
𝑠(1 − 1/𝑚). Similarly, we can get Det (𝐽

(1/𝑚,0)
)|
𝑑TC2
= 0, V =

[1, (𝑏+1/𝑚)(𝑚−1)]
𝑇, and𝑤 = [0, 1]𝑇are the eigenvectors cor-

responding to 𝐽
((1/𝑚,0),𝑑TC2)

and [𝐽
((1/𝑚,0),𝑑TC2)

]
𝑇, respectively.

We have

𝑤
𝑇
𝐹
𝑑
((
1

𝑚
, 0) ; 𝑑TC2) = (0, 1) (0, 0)

𝑇
= 0,

𝑤
𝑇
𝐷𝐹
𝑑
((
1

𝑚
, 0) ; 𝑑TC2) V = (1 − 𝑚) (𝑏 +

1

𝑚
) ̸= 0,

𝑤
𝑇
𝐷
2
𝐹((

1

𝑚
, 0) ; 𝑑TC2) (V, V)

= (
𝑏𝑒

(𝑏 + 1/𝑚)
2
− 𝑠)(𝑏 +

1

𝑚
) (𝑚 − 1) .

(19)

If 𝑒 < 𝑠(𝑏+1/𝑚)2/𝑏 and𝑤𝑇𝐷2𝐹((1/𝑚, 0); 𝑑TC2)(V, V) < 0,
the transcritical bifurcation is supercritical and an interior
equilibrium point appears across 𝐸

2
under this condition.

Another aspect is that if 𝑒 > 𝑠(𝑏 + 1/𝑚)2/𝑏, the transcritical
bifurcation is subcritical and an interior equilibrium vanishes
across 𝐸

2
.

Theorem 5. Model (4a) and (4b) undergoes saddle-node
bifurcation when 𝑑 = 𝑑

𝑆𝑁
, where 𝑑

𝑆𝑁
= 𝑠 + 𝑒 + 𝑏𝑠 − 2√𝑏𝑠𝑒.

Proof. It is easy to calculate that the discriminant of 𝐺(𝑛) = 0
is equal to zero when 𝑑 = 𝑠 + 𝑒 + 𝑏𝑠 − 2√𝑏𝑠𝑒, which means
𝐺(𝑛) = 0 has a twofold root. We denote this root by 𝑛∗.
Model (4a) and (4b) has only one interior equilibrium point
𝐸
∗
(𝑛
∗
, 𝑝
∗
) correspondingly and the constituents are given by

𝑛
∗
= √
𝑒𝑏

𝑠
− 𝑏,

𝑝
∗
= (1 − 𝑛

∗
) (𝑚𝑛
∗
− 1) (𝑏 + 𝑛

∗
) .

(20)
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Table 1

𝐸
0
(0, 0) 𝐸

1
(1, 0) 𝐸

2
(1/𝑚, 0) 𝐸

3
(𝑛
3
, 𝑝
3
) 𝐸

4
(𝑛
4
, 𝑝
4
)

𝑠 > 𝑑 Saddle point Stable node point Unstable node point Saddle point Nonexistent

𝑠 = 𝑑

Unstable
(high-order
singularity)

Stable node point Unstable node point Saddle point Nonexistent

𝑠 < 𝑑

Δ = 0 Stable node point Stable node point Saddle point 𝐸
3
and 𝐸

4
coincide and are a saddle-node point

Δ > 0

Stable node point Stable node point Unstable node point Saddle point Nonexistent
Stable node point Saddle point Saddle point Nonexistent Stable node point
Stable node point Stable node point Saddle point Saddle point Stable node point

The Jacobian matrix evaluate at 𝐸∗ is given by

𝐽
((𝑛
∗
,𝑝
∗
),𝑑SN)

= (
𝐴 (𝑛
∗
, 𝑝
∗
, 𝑑SN) 𝐵 (𝑛

∗
, 𝑝
∗
, 𝑑SN)

𝐶 (𝑛
∗
, 𝑝
∗
, 𝑑SN) 𝐷 (𝑛

∗
, 𝑝
∗
, 𝑑SN)

)

= (
𝑀 √

𝑏𝑠

𝑒
− 1

0 0

) ,

(21)

where 𝑀 = 𝐴(𝑛
∗
, 𝑝
∗
, 𝑑SN). Obviously, matrix 𝐽

((𝑛
∗
,𝑝
∗
),𝑑SN)

has a double zero eigenvalues when Det (𝐽
((𝑛
∗
,𝑝
∗
),𝑑SN)
) = 0.

We can count out the eigenvectors corresponding to the zero
eigenvalue, which are V = [1,𝑀/(1 − √𝑏𝑠/𝑒)]𝑇 and 𝑤 =
[0, 1]
𝑇. Utilizing the expressions of vectors V and 𝑤, as well

as 𝑛∗ ∈ (1/𝑚, 1), we can get

𝑤
𝑇
𝐹
𝑑
((𝑛
∗
, 𝑝
∗
) ; 𝑑SN)

= − (1 − 𝑛
∗
) (𝑚𝑛
∗
− 1) (𝑏 + 𝑛

∗
) < 0,

𝑤
𝑇
[𝐷
2
𝐹 ((𝑛
∗
, 𝑝
∗
) ; 𝑑SN)] (V, V)

=
−𝑒𝑏 (1 − 𝑛

∗
) (𝑚𝑛
∗
− 1)

(𝑏 + 𝑛∗)
2

.

(22)

Given the value range of 𝑛∗, we know that
𝑤
𝑇
[𝐷
2
𝐹((𝑛
∗
, 𝑝
∗
); 𝑑SN)](V, V) cannot be equal to zero.

Then, by Sotomayor’s theorem we can prove that the model
undergoes a saddle-node bifurcation when the parameter 𝑑
goes via the critical threshold 𝑑 = 𝑑SN.

Theorem 6. In the case of 𝑠 < 𝑑, the interior equilibrium
point 𝐸

4
changes its stability through the Hopf-bifurcation at

the threshold 𝑏 = 𝑏
𝐻
, where 𝑏

𝐻
= −(3𝑚𝑛

4

2
− 2(𝑚 + 1)𝑛

4
+

1)/(2𝑚𝑛
4
− 𝑚 − 1).

Proof. Because the interior equilibrium point 𝐸
3
is always

a saddle, then Hopf bifurcation can only take place at 𝐸
4
.

Parameter 𝑏 can drive equilibrium 𝐸
4
into an unstable state

when 𝑏 > 𝑏
𝐻
, so 𝑏 = 𝑏

𝐻
is the critical value where the stability

of 𝐸
4
changes. Next we will prove the necessary condition

for Hopf bifurcation to occur. To testify the transversality
condition of the Hopf bifurcation of the model’s solution, we
take 𝜆 = 𝛼(𝑏)+𝛽(𝑏)𝑖, where 𝜆 is an eigenvalue of the Jacobian
matrix 𝐽

((𝑛4 ,𝑝4),𝑏𝐻)
. If the Hopf bifurcation occurs at 𝑏 = 𝑏

𝐻
, 𝜆

is a purely imaginary number, such that Tr (𝐽
((𝑛4 ,𝑝4),𝑏𝐻)

) = 0,
Det (𝐽

((𝑛4 ,𝑝4),𝑏𝐻)
) ̸= 0, and 𝑑Tr (𝐽

((𝑛4 ,𝑝4),𝑏𝐻)
)/𝑑𝑏 ̸= 0. Substitut-

ing 𝑏 by 𝑏
𝐻
= −(3𝑚𝑛

4

2
− 2(𝑚 + 1)𝑛

4
+ 1)/(2𝑚𝑛

4
−𝑚 − 1), we

can get

Tr (𝐽
(𝑛4 ,𝑝4,𝑏𝐻)

) = 0,

Det (𝐽
(𝑛4 ,𝑝4,𝑏𝐻)

)

= 𝑛
4
(1 − 𝑛

4
) (𝑚𝑛
4
− 1)(

𝑏
𝐻
𝑒

(𝑏
𝐻
+ 𝑛
4
)
2
− 𝑠) ,

𝑑

𝑑𝑏
Tr (𝐽
(𝑛4 ,𝑝4,𝑏𝐻)

) = −
𝑛
4
(1 − 𝑛

4
) (𝑚𝑛
4
− 1)

(𝑏 + 𝑛
4
)
2

.

(23)

Using (16), we know Det (𝐽
(𝑛4 ,𝑝4,𝑏𝐻)

) > 0 and
𝑑Tr (𝐽

(𝑛4 ,𝑝4,𝑏𝐻)
)/𝑑𝑏 ̸= 0. Then, the transversality condition of

a Hopf bifurcation is satisfied [35].

Theorem 7. Model (4a) and (4b) undergoes a Bogdanov-
Takens (BT) bifurcation of codimension two.

As we know, Tr (𝐽) = 0 and Det (𝐽) = 0 are the necessary
conditions of the occurrence of Hopf and saddle-node,
respectively. If both Hopf and saddle-node conditions hold,
there will be a new bifurcation called Bogdanov-Takens
bifurcation. In this situation, the Jacobian matrix has a double
zero eigenvalue [36]. Since the explicitly analytical expressions
for thresholds of BT bifurcation are quite difficult to determine,
we give a numerical example to confirm the system exhibit
BTs bifurcation. We fix 𝑚 = 1.5, 𝑠 = 0.1, and 𝑑 = 0.4. We
find that, at (𝑒

𝐵𝑇
, 𝑏
𝐵𝑇
) = (0.4930734388, 0.2386077213),

Tr (𝐽
𝐸
∗)|
(𝑒𝐵𝑇,𝑏𝐵𝑇)

= 0 and Det (𝐽
𝐸
∗)|
(𝑒𝐵𝑇,𝑏𝐵𝑇)

= 0.
Moreover, (𝜕2𝐹/𝜕𝑛2 − (𝜕𝐹/𝜕𝑛)(𝜕2𝐹/𝜕𝑛𝜕𝑝))/(𝜕2𝐹/𝜕𝑛𝜕𝑝 +
𝜕
2
𝐹/𝜕𝑛𝜕𝑝) = −2.800482957 and ((1/2)(𝜕𝐹/𝜕𝑛)(𝜕2𝐹/𝜕𝑛2) −
(𝜕𝐹/𝜕𝑛)

2
(𝜕
2
𝐹/𝜕𝑛𝜕𝑝))/(𝜕𝐹/𝜕𝑝 + (1/2)(𝜕𝐹/𝜕𝑝)(𝜕

2
𝐹/𝜕𝑛
2
) −

(𝜕𝐹/𝜕𝑛)(𝜕
2
𝐹/𝜕𝑛𝜕𝑝)) = −0.0000734288 78; these expressions

prove the transversality conditions for a BT bifurcation [37].

3. Numerical Results

In order to verify the correctness and feasibility of the
theoretical results, a series of numerical simulations will
be depicted in detail. Many phase diagrams are given to
display the dynamics properties of model (4a) and (4b),
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Figure 1: Bifurcation diagram of model (4a) and (4b) in 𝑛 − 𝑑 plane constructed for 𝑚 = 1.5, 𝑏 = 2.0, 𝑠 = 0.1, 𝑒 = 0.395 (a), and 𝑒 =
0.405 (b, c). Red perpendicular dashed lines represent the critical value for different bifurcation occurrence. Three horizontal lines stand for
three boundary equilibria: 𝐸

0
(golden), 𝐸

1
(gray), and 𝐸

2
(black). Two interior equilibria 𝐸

3
and 𝐸

4
are presented by blue and green curves,

respectively. The solid lines indicate equilibrium in stable state and dotted line indicates unstable state, where, according to the stability
theorem, these results are calculated and drawn based on Maple 14 platform.

which are based on pplane8 routines [38] in Matlab 7.1. In
fact, according to [39], we can know pplane8 is a powerful
tool for studying planar autonomous systems of differential
equations, which can rapidly and accurately draw trajectories
of each phase plane, count each critical point, and correctly
characterize each equilibrium point of the studied systems. It
is easy to find from Table 1 that model (4a) and (4b) only has
an interior equilibrium point 𝐸

3
if 𝑠 ≥ 𝑑; then, the premise

of parametric ranges in Figure 1 is 𝑠 > 𝑑. It should be pointed
out from Figure 1(a) that two vertical lines passing through
points (𝑒/(𝑏 + 1), 0) and (𝑒/(𝑏𝑚 + 1) + 𝑠(1 − 𝑠/𝑚), 0) are the
transcritical bifurcation curves, which have been named TC1
andTC2, respectively. Furthermore, if 𝑑 < 𝑒/(𝑏+1) is feasible,
that is to say, model (4a) and (4b) does not have any interior
equilibrium point when the value of 𝑑 is positioned within
region I of Figure 1(a), three boundary equilibria 𝐸

0
(0, 0),
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𝐸
1
(1, 0), and𝐸

2
(2/3, 0) exist. 𝐸

0
(0, 0) is asymptotically stable,

while 𝐸
1
(1, 0) and 𝐸

2
(2/3, 0) are unstable, the results of

which have been shown in Figure 2(a) (𝑑 = 0.131). We
know those three boundary equilibria 𝐸

0
(0, 0), 𝐸

1
(1, 0), and

𝐸
2
(2/3, 0) always exist no matter what the value of 𝑑 is. Thus,

in the following cases we do not introduce the existence of
boundary equilibria separately. However, if the value of 𝑑 is
gradually increasing across the transcritical bifurcation TC1
and finally enters into region II, model (4a) and (4b) has
an interior equilibrium point 𝐸

3
. It is worth emphasizing

that the critical value of transcritical bifurcation is 𝑑TC1 =
𝑒/(𝑏 + 1) = 0.13167 and the interior equilibrium point
𝐸
3
(0.97064, 0.039763) is a saddle point, boundary equilibria

𝐸
0
and 𝐸

1
are stable, and 𝐸

2
is an unstable node point, which

has been shown in Figure 2(b) (𝑑 = 0.132). As the value of
𝑑 gradually increases to 𝑑TC2 = 𝑒/(𝑏𝑚 + 1) + 𝑠(1 − 1/𝑚) =
0.132083, which is a critical value of another transcritical
bifurcation and finally enters into region III, model (4a) and
(4b) has two interior equilibria 𝐸

3
(0.91328, 0.093458) and

𝐸
4
(0.71172, 0.052831), which are unstable; 𝐸

0
and 𝐸

1
are

stable, and 𝐸
2
is a saddle point (see Figure 2(c), 𝑑 = 0.1325).

To further fully explore the existence of the equilibria and
the occurrence of the bifurcation behavior in model (4a) and
(4b), we take another set of parameter values in Figure 1(b)
and repeat the steps in Figure 1(a).The bifurcation diagram in
Figure 1(b) has been depicted in detail as follows. It is obvious
to find that model (4a) and (4b) has an interior equilibrium
point 𝐸

4
if the value of 𝑑 exceeds the threshold value 𝑑TC3 =

𝑒/(𝑏𝑚 + 1) + 𝑠(1 − 1/𝑚) = 0.134583, which is transcritical
bifurcation threshold TC3. It is worthwhile to point out
that the interior equilibrium point 𝐸

4
(0.69128, 0.030678) is

unstable on the account of 𝑛
4
= 0.69128 ∉ 𝐿(0.83822, 1).

The boundary equilibrium 𝐸
0
(0, 0) is stable, and 𝐸

1
(1, 0) and

𝐸
2
(2/3, 0) are saddle points (see Figure 2(d), 𝑑 = 0.1349). We

take another set of parameters values as the supplement to
display the case that there exists only one interior equilibrium
point and it is locally asymptotically stable (see Figure 3(a)),
where 𝐸

1
(1, 0) and 𝐸

2
(2/3, 0) are saddle points, 𝐸

0
(0, 0) and

𝐸
4
(0.886762, 0.040628) are stable, and 𝐿 = (0.84652, 1).

Furthermore, if the value of 𝑑 increases beyond the threshold
value of transcritical bifurcation threshold 𝑑TC4 = 𝑒/(𝑏 +
1) = 0.135 and finally enters into region V, te model (4a)
and (4b) has three boundary equilibria 𝐸

0
(0, 0), 𝐸

1
(1, 0), and

𝐸
2
(2/3, 0) and two interior equilibria 𝐸

3
(0.97862, 0.029801)

and 𝐸
4
(0.71938, 0.060341) (see Figure 2(e), 𝑑 = 0.1352). It

is necessary to underline that 𝐸
0
(0, 0) and 𝐸

1
(1, 0) are stable

and 𝑛
4
= 0.71938 ∉ 𝐿(0.83822, 1), so the interior equilibria

𝐸
4
and 𝐸

3
are all unstable.

In order to clearly explore the steady characteristic of
the interior equilibrium point 𝐸

4
, Figure 1(c) will be given,

which is the partially enlarged view of Figure 1(b). It should
be stressed that the interior equilibrium 𝐸

4
will change the

stable state if the value of 𝑑 increased beyond the line L1
and finally enters into region VI, which suggests that a Hopf
bifurcation can lead to the appearance of a limit cycle in
the vicinity of the interior equilibrium 𝐸

4
(0.83816, 0.11816)

if 𝑑 = 0.1357878256 59 (see Figure 2(f)). From Figure 2(f),
we can observe that this limit cycle around 𝐸

4
is stable as

it attracts two neighboring trajectories: the trajectory (bottle

green curve) lying inside the limit cycle and the trajectory
(blue curve) lying outside; these two trajectories move ectad
and entad, respectively, and converge on the limit cycle. But at
this time the interior equilibrium point 𝐸

3
(0.85397, 0.11709)

and boundary equilibrium point 𝐸
2
(2/3, 0) are unstable,

and 𝐸
0
(0, 0) and 𝐸

1
(1, 0) are stable. When the value of 𝑑

enters into domainVI,𝐸
4
(0.86298, 0.042889) becomes stable,

𝐸
3
(0.92702, 0.032122) remains unstable, and 𝐸

0
and 𝐸

1
are

all stable in this domain. Thus, it is interesting to know that
model (4a) and (4b) will show three stationary phenomenon
(see Figure 2(g), 𝑑 = 0.13579). Due to the parameter values,
the nature of 𝐸

3
and 𝐸

4
only can be seen clearly on the

enlarged view (see Figure 2(g)). Therefore, we take another
group of values to exhibit the three stable states in overall
view in Figure 3(b). If the value of 𝑑 gradually increases and
reaches 𝑑SN = 𝑏𝑠 + 𝑒 + 2√𝑏𝑠𝑒 + 𝑠 = 0.1357900212, it is easy
to find that 𝐸

3
(0.84605, 0.11789) and 𝐸

4
(0.84605, 0.11789)

coincide at line L2 and the coincident point is called saddle-
node point, which has features of both saddle and node points
(see Figure 2(h)). However, it will disappear if the value of 𝑑
is increased higher than 𝑑SN, which signifies that model (4a)
and (4b)will undergo a saddle-node bifurcation if the value of
𝑑 increases across the threshold value 𝑑SN = 𝑏𝑠+𝑒+2√𝑏𝑠𝑒+𝑠.
In a word, it is worthy of our summary that model (4a) and
(4b) can show a complex dynamic evolutionary process of
steady conversion and bifurcation behavior with increase of
key parameter 𝑑.

In addition, model (4a) and (4b) has three boundary
equilibria 𝐸

0
(0, 0), 𝐸

1
(1, 0), and 𝐸

2
(2/3, 0) and an interior

equilibrium point 𝐸
3
, which is unstable if 𝑠 > 𝑑 or 𝑠 = 𝑑.

However, it is worth stressing that the boundary equilibrium
point 𝐸

0
(0, 0) is a saddle point if 𝑠 > 𝑑 and is an unstable

high-order singularity if 𝑠 = 𝑑 (see Figures 4(a) and 4(b)). At
the same time, it can be known from Theorem 7 that model
(4a) and (4b) can undergo a Bogdanov-Takens bifurcation if
Tr (𝐽
𝐸
∗)|
(𝑒BT ,𝑏BT)

= 0 and Det (𝐽
𝐸
∗)|
(𝑒BT ,𝑏BT)

= 0, which is shown
in Figure 4(c).

Based on the above analysis, the key parameter 𝑑 can
impose influence on dynamic evolutionary mechanism of
steady conversion and bifurcation behavior and lead to
model (4a) and (4b) having three stationary phenomena
and multiple bifurcation behaviors, which can in turn prove
that the theoretical results are correct and the complex
dynamics of model (4a) and (4b)mainly depend on some key
parameters. Moreover, these results show that the method of
using mathematical model to study the ecological problems
is feasible.

4. Conclusions

On the basis of the theories and methods of ecology, a
predator-prey model is studied numerically and analytically
in this paper. The aim is to probe how some key factors
influence dynamic evolutionary mechanism of steady con-
version and bifurcation behavior in predator-prey model.
The theoretical works have been promoting the investigation
of the existence and stability of the equilibria, as well as
some conditions of some bifurcations behaviors, such as
transcritical bifurcation, saddle-node bifurcation, and Hopf
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Figure 2: Phase portraits for different concomitant case of the model’s equilibria. The horizontal axis is prey population 𝑛 and the vertical
axis is predator population 𝑝. The green curves are stable or unstable orbits; the red point is the equilibrium point. We take𝑚 = 1.5, 𝑏 = 2.0,
𝑠 = 0.1, 𝑒 = 0.395 in (a–c), and 𝑒 = 0.405 in (d–h).
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Figure 3: Phase portraits for𝑚 = 1.5, 𝑠 = 0.1, and 𝑏 = 0.2; (a) 𝑒 = 0.844, 𝑑 = 0.7; (b) 𝑒 = 0.599, 𝑑 = 0.5.
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Figure 4: Phase portraits for 𝑚 = 1.5, 𝑠 = 0.1, 𝑒 = 0.28, 𝑏 = 2.0, (a) 𝑑 = 0.1, and (b) 𝑑 = 0.095. The parameter values in image (c) are
introduced inTheorem 7.

bifurcation, which can deduce a standard parameter con-
trolled relationship and in turn provide a theoretical basis for
the numerical simulation.

Numerical analysis indicates that the dynamic evolu-
tionary mechanism of steady conversion and bifurcation
behavior mainly depend on a specific key parameter 𝑑.
Within this framework, the direct and indirect effects caused
by the specific key parameter 𝑑 are investigated by means

of bifurcation analysis and phase diagram. It is obvious to
find that the existence and stability of interior equilibria 𝐸

3

and 𝐸
4
mainly depend on a key parameter 𝑑. These results

suggest that the key parameter 𝑑 plays an important role
in the prey-predator model. In addition, when the value of
the key parameter 𝑑 is larger than some critical value, the
model can possess multiple bifurcation behaviors, such as
transcritical bifurcation, saddle-node bifurcation, and Hopf
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bifurcation. Thus, it is worthwhile to remark that the key
parameter 𝑑 has a profound effect on the population bifur-
cation dynamical behaviors. In a word, some key parameters
can alter population dynamics and features in prey-predator
model. In addition, it is our hope that all these results can be
applied in the study of the dynamic complexity of ecosystems.
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Stochastic resonance (SR) is investigated in amultistable system driven byGaussian white noise. Using adiabatic elimination theory
and three-state theory, the signal-to-noise ratio (SNR) is derived.We find the effects of the noise intensity and the resonance system
parameters 𝑏, 𝑐, and 𝑑 on the SNR; the results show that SNR is a nonmonotonic function of the noise intensity; therefore, a
multistable SR is found in this system, and the value of the peak changes with changing the system parameters.

1. Introduction

Stochastic resonance (SR) is first introduced by Benzi et al.
[1] in 1981. In the past decades, SR has received considerable
attention in the field of meteorology, and the topic has
flourished in physics and neuroscience and weak signal
detection [2–6].

There have been many theoretical developments of SR
in conventional bistable systems [7–12]. Recently, there have
appeared some extensions of SR, such as stochastic resonance
in a harmonic oscillator [13], ghost stochastic resonance in
the FitzHugh-Nagumo neuron model [14, 15], Transition in a
BistableDuffing System [16], timedelay SR [17], trichotomous
noise induced SR in a linear system [18], and superthreshold
SR [19]. Literature [20–22] proposes a new model of mul-
tistable system. However, [7–22] did not study the SNR. In
this paper, we use the model of multistable system driven
by periodic signal and white noise which can realize the
maximum utilization of noise and obtain better detection
effects. So it is necessary to discuss the SNR of themultistable
system.

In order to describe SR, McNamara and Wiesenfeld [7]
introduced the signal-to-noise ratio, which is often used as
an indicator of signal processing performance. Numerous
studies have been developed to explain SR in continuous time
using tools of statistical physics.

Literature [25] studied a solution of Kramers turnover
problem for the case of two symmetric deep wells connected
through a single shallow well; literature [26] analysed the
occurrence of vibrational resonance in a damped quantic
oscillator with double-well and triple-well potentials driven
by both low-frequency force and high-frequency force; the
splitting of the Kramers escape rate in an overdamped system
with a triple-well potential was studied in [27].

The paper is organized as follows. In Section 2, we present
the model for the multistable system.Then, the expression of
the signal-to-noise ratio is derived. In Section 3, the effects of
noise intensity and the resonance system parameters 𝑏, 𝑐, and
𝑑 on SNR are discussed. A discussion of the effects concludes
the paper in Section 4.

2. SNR of Multistable SR

Themodel of multistable SR is amultistable nonlinear system
driven by periodic signal and white noise. The equation can
be written as follows:

𝑑𝑥

𝑑𝑡
= −

𝑑𝑈 (𝑥)

𝑑𝑥
+ 𝑠 (𝑡) + 𝜂 (𝑡) , (1)

where 𝑠(𝑡) = 𝐴 cos(2𝜋𝑓𝑡) is the input signal, 𝐴 is the
periodic signal amplitude, 𝑓 is the driving frequency, 𝜂(𝑡) =

√2𝐷𝜀(𝑡) in which𝐷 is the noise intensity, and 𝜀(𝑡) represents
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Figure 1: The multistable potential function 𝑈(𝑥).

a Gaussianwhite noise with zeromean and unit variance.𝑥(𝑡)

is the multistable SR output signal.The potential function for
the above multistable system can be denoted as [21, 22]

𝑈 (𝑥) =
𝑏

2
𝑥
2
+

𝑐

4
𝑥
4
+

𝑑

6
𝑥
6
, (2)

where 𝑏, 𝑐, and 𝑑 are system parameters. As shown in
Figure 1, the potential function 𝑈(𝑥) is symmetrical and has
three stable points (−𝑥

2
, 𝑥
0
and 𝑥

2
) and two unstable points

(−𝑥
1
, 𝑥
1
):

𝑥
0
= 0,

𝑥
1
= √

−1

2𝑑
(𝑐 + √𝑐2 − 4𝑏𝑑),

𝑥
2
= √

−1

2𝑑
(𝑐 − √𝑐2 − 4𝑏𝑑).

(3)

From (1) and (2), the Fokker-Planck equation [26] is given
by

𝜕𝜌 (𝑥, 𝑡)

𝜕𝑡

= −
𝜕

𝜕𝑥
[−𝑏𝑥 − 𝑐𝑥

3
− 𝑑𝑥
5
+ 𝐴 cos (2𝜋𝑓𝑡) 𝜌 (𝑥, 𝑡)]

+ 𝐷
𝜕
2

𝜕𝑥2
𝜌 (𝑥, 𝑡) .

(4)

Formula (4) contains nonlinear components, so it cannot
obtain the steady state solution.

When the input signal and noise intensity are very small,

𝐴 ≪ 1,

𝐷 ≪ 1.

(5)

The whole 𝑥 area can be divided into three attraction
domains; the first is the attraction domain of the steady-state

solution 𝑥 = −√(−1/2𝑑)(𝑐 − √𝑐2 − 4𝑏𝑑), the second is the
attraction domain of the steady-state solution 𝑥 = 0, and the
last is the attraction domain of the steady-state solution 𝑥 =

√(−1/2𝑑)(𝑐 − √𝑐2 − 4𝑏𝑑). In the three attraction domains,
the total probability of them contains, respectively [20],

𝑃
1
(𝑡) = ∫

−𝑥
1

−∞

𝜌 (𝑥, 𝑡) 𝑑𝑥,

𝑃
2
(𝑡) = ∫

𝑥
1

−𝑥
1

𝜌 (𝑥, 𝑡) 𝑑𝑥,

𝑃
3
(𝑡) = ∫

+∞

𝑥
1

𝜌 (𝑥, 𝑡) 𝑑𝑥.

(6)

Obviously, 𝑃
1
(𝑡) + 𝑃

2
(𝑡) + 𝑃

3
(𝑡) = 1, when the frequency

of input signal is very low

𝑓 ≪ 1. (7)

In the condition of adiabatic approximation, we can get
the master equation for the probability of exchange among
the three quantities by simplifying (3):

𝑃
󸀠

1
(𝑡) = −𝑅

1
(𝑡) 𝑃
1
(𝑡) +

1

2
𝑅
2
(𝑡) 𝑃
2
(𝑡)

=
1

2
𝑅
2
(𝑡) − [𝑅

1
(𝑡) + 𝑅

2
(𝑡)] 𝑃
1
(𝑡) ,

𝑃
󸀠

2
(𝑡) = −𝑅

2
(𝑡) 𝑃
2
(𝑡) + 𝑅

1
(𝑡) 𝑃
1
(𝑡) + 𝑅

3
(𝑡) 𝑃
3
(𝑡) ,

𝑃
󸀠

3
(𝑡) = −𝑅

3
(𝑡) 𝑃
3
(𝑡) +

1

2
𝑅
2
(𝑡) 𝑃
2
(𝑡) ,

(8)

where 𝑅
1,2,3

(𝑡) are the escape rate [7]. They are considered as
function of a weak periodic signal 𝐴 cos(2𝜋𝑓𝑡), when 𝐴 ≪ 1,
under the adiabatic approximation, the escape rate of𝑅

1,2,3
(𝑡)

series expansion, ignoring the higher order terms, you can get
the following expression:

𝑅
1
= 𝑅
3

=
1

2
(𝑅
0
+ 𝑅
1
𝛽 cos (2𝜋𝑓𝑡) + 𝑅

2
𝛽
2cos2 (2𝜋𝑓𝑡) + ⋅ ⋅ ⋅) ,

𝑅
2

=
1

2
(𝑅
0
− 𝑅
1
𝛽 cos (2𝜋𝑓𝑡) + 𝑅

2
𝛽
2cos2 (2𝜋𝑓𝑡) − ⋅ ⋅ ⋅) ;

(9)

then,

𝑅
1
+ 𝑅
2
= 𝑅
0
+ 𝑅
2
𝛽
2cos2 (2𝜋𝑓𝑡) . (10)

Equations (8) can be solved as

𝑃
1
(𝑡) =

1

4
{𝑒
−𝑅
0
(𝑡−𝑡
0
)
[2𝑃
1
(𝑡
0
) − 1 + 𝑚] + 1 − 𝑛} ,

𝑃
2
(𝑡) =

1

2
{𝑒
−𝑅
0
(𝑡−𝑡
0
)
[2𝑃
2
(𝑡
0
) − 1 − 𝑚] + 1 + 𝑛} ,

𝑃
3
(𝑡) =

1

4
{𝑒
−𝑅
0
(𝑡−𝑡
0
)
[2𝑃
3
(𝑡
0
) − 1 + 𝑚] + 1 − 𝑛} ,

(11)
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where

𝑚 =
𝑅
1
𝛽 cos (2𝜋𝑓𝑡

0
− 𝜃)

(𝑅
0

2
+ (2𝜋𝑓)

2

)
1/2

,

𝑛 =
𝑅
1
𝛽 cos (2𝜋𝑓𝑡 − 𝜃)

(𝑅
0

2
+ (2𝜋𝑓)

2

)
1/2

,

sin 𝜃 =
2𝜋𝑓

(𝑅
0

2
+ (2𝜋𝑓)

2

)
1/2

,

cos 𝜃 =
𝑅
0

(𝑅
0

2
+ (2𝜋𝑓)

2

)
1/2

.

(12)

When 𝑡
0
→ −∞, 𝑃

1,2,3
(𝑡) approaches 𝑃

𝑠

1,2,3
(𝑡):

𝑃
𝑠

1
(𝑡) = 𝑃

𝑠

3
(𝑡) =

1

4
(1 − 𝑛) ,

𝑃
𝑠

2
(𝑡) =

1

2
(1 + 𝑛) .

(13)

Let 𝑃
𝑖
(𝑡 + 𝜏 | 𝑗, 𝑡) donate the probability to the system

which is in 𝑗 area at 𝑡 moment when it is in 𝑖 area at 𝑡 + 𝜏

moment (𝑖, 𝑗 = 1, 2, 3):

𝑃
1
(𝑡 + 𝜏 | 1, 𝑡) =

1

4
[𝑒
−𝑅
0
𝜏
(−1 + 𝑛) + 1 − 𝑞] ,

𝑃
1
(𝑡 + 𝜏 | 2, 𝑡) =

1

4
[𝑒
−𝑅
0
𝜏
(1 + 𝑛) + 1 − 𝑞] ,

𝑃
2
(𝑡 + 𝜏 | 2, 𝑡) =

1

2
[𝑒
−𝑅
0
𝜏
(1 − 𝑛) + 1 + 𝑞] ,

𝑃
2
(𝑡 + 𝜏 | 1, 𝑡) =

1

4
[𝑒
−𝑅
0
𝜏
(−1 − 𝑛) + 1 + 𝑞] ,

𝑃
2
(𝑡 + 𝜏 | 3, 𝑡) =

1

4
[𝑒
−𝑅
0
𝜏
(−1 − 𝑛) + 1 + 𝑞] ,

𝑃
3
(𝑡 + 𝜏 | 2, 𝑡) =

1

4
[𝑒
−𝑅
0
𝜏
(1 + 𝑛) + 1 − 𝑞] ,

𝑃
3
(𝑡 + 𝜏 | 3, 𝑡) =

1

4
[𝑒
−𝑅
0
𝜏
(−1 + 𝑛) + 1 − 𝑞] .

(14)

In the progressive state, the correlation function of random
variable is given by

⟨𝑥 (𝑡) 𝑥 (𝑡 + 𝜏)⟩ = lim
𝑡
0
→−∞

∬𝑥𝑦𝑃
𝑦
(𝑡 + 𝜏 | 𝑥, 𝑡) 𝜌 (𝑥, 𝑡)

= (−𝑥
2
) (−𝑥
2
) 𝑃
1
(𝑡 + 𝜏 | 1, 𝑡) 𝑃

𝑠

1
(𝑡)

+ (−𝑥
2
) 𝑥
0
𝑃
2
(𝑡 + 𝜏 | 1, 𝑡) 𝑃

𝑠

1
(𝑡)

+ 𝑥
0
𝑥
0
𝑃
2
(𝑡 + 𝜏 | 2, 𝑡) 𝑃

𝑠

2
(𝑡)

+ 𝑥
0
(−𝑥
2
) 𝑃
1
(𝑡 + 𝜏 | 2, 𝑡) 𝑃

𝑠

2
(𝑡)

+ 𝑥
0
𝑥
2
𝑃
3
(𝑡 + 𝜏 | 2, 𝑡) 𝑃

𝑠

2
(𝑡)

+ 𝑥
2
𝑥
2
𝑃
3
(𝑡 + 𝜏 | 3, 𝑡) 𝑃

𝑠

3
(𝑡)

+ 𝑥
2
𝑥
0
𝑃
2
(𝑡 + 𝜏 | 3, 𝑡) 𝑃

𝑠

3
(𝑡)

=
1

8
𝑥
2

2
[𝑒
−𝑅
0
|𝜏|

(−1 + 2𝑛 − 𝑛
2
) + 1 − 𝑞 − 𝑛 + 𝑛𝑞]

+
1

4
𝑥
2

0
[𝑒
−𝑅
0
|𝜏|

(1 − 𝑛
2
) + 1 + 𝑞 + 𝑛 + 𝑛𝑞] .

(15)

The correlation function is not only related with the time
interval but also related with the start value of the time. So we
take the average value of the correlation function

⟨𝑥 (𝑡) 𝑥 (𝑡 + 𝜏)⟩Average = 𝑓∫

1/𝑓

0

⟨𝑥 (𝑡) 𝑥 (𝑡 + 𝜏)⟩ 𝑑𝑡

= (
−𝑐

8𝑑
−

1

4
√

𝑏

𝑑
)

⋅
{

{

{

𝑒
−𝑅
0
|𝜏| [

[

−1 −
𝑅
2

1
𝛽
2

2 (𝑅
0

2
+ (2𝜋𝑓)

2

)

]

]

+ 1

+
𝑅
2

1
𝛽
2 cos (2𝜋𝑓𝜏)

2 (𝑅
0

2
+ (2𝜋𝑓)

2

)

}

}

}

+ [
−1

8𝑑
(𝑐 + √𝑐2 − 4𝑏𝑑)]

⋅
{

{

{

𝑒
−𝑅
0
|𝜏| [

[

1 −
𝑅
2

1
𝛽
2

2 (𝑅
0

2
+ (2𝜋𝑓)

2

)

]

]

+ 1

+
𝑅
2

1
𝛽
2 cos (2𝜋𝑓𝜏)

2 (𝑅
0

2
+ (2𝜋𝑓)

2

)

}

}

}

.

(16)

Within the deduction made above, the output power
spectral density of a multistable SR system can be obtained:

𝑆 (𝑤) = ∫

+∞

−∞

⟨𝑥 (𝑡) 𝑥 (𝑡 + 𝜏)⟩Average 𝑒
−𝑖𝑤𝜏

𝑑𝜏

= 𝑆
1
(𝑤) + 𝑆

2
(𝑤) ,

(17)

where 𝑆
1
(𝑤) and 𝑆

2
(𝑤) are the power spectral densities of

the output signal and the output noise, which are derived
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from the periodic input signal and the noise, respectively, as
follows:

𝑆
1
(𝑤) = (

−𝑐

8𝑑
−

1

4
√

𝑏

𝑑
−

𝑐 + √𝑐2 − 4𝑏𝑑

8𝑑
)

⋅
𝜋𝑅
2

1
𝛽
2

2 (𝑅
0

2
+ (2𝜋𝑓)

2

)

𝛿 (𝑤 − 2𝜋𝑓) ,

𝑆
2
(𝑤) = (

𝑐

8𝑑
+

1

4
√

𝑏

𝑑
−

𝑐 + √𝑐2 − 4𝑏𝑑

8𝑑
)

⋅
2𝑅
0

𝑅
0

2
+ (𝑤)
2
.

(18)

Put 𝐴 cos(2𝜋𝑓𝑡) as constant processing; we can get the
steady state solution of the available equation (4), the poten-
tial function of Φ(𝑥):

Φ (𝑥) =
𝑏

2
𝑥
2
+

𝑐

4
𝑥
4
+

𝑑

6
𝑥
6
− 𝐴𝑥 cos (2𝜋𝑓𝑡) . (19)

The probability transition rate of type 1 can be obtained:

𝑅
1
(𝑡) =

󵄨󵄨󵄨󵄨󵄨
𝑈
󸀠󸀠
(−𝑥
1
) 𝑈
󸀠󸀠
(−𝑥
2
)
󵄨󵄨󵄨󵄨󵄨

1/2

2𝜋

⋅ exp{−
Φ (−𝑥

1
) − Φ (−𝑥

2
)

𝐷
} .

(20)

Make 𝑥
1
= 0,

𝑥
0
= −√

−1

2𝑑
(𝑐 + √𝑐2 − 4𝑏𝑑),

𝑥
2
= √

−1

2𝑑
(𝑐 − √𝑐2 − 4𝑏𝑑) − √

−1

2𝑑
(𝑐 + √𝑐2 − 4𝑏𝑑),

𝑅
0
= 2 ⋅ 𝑅

1
(𝑡)

󵄨󵄨󵄨󵄨𝐴 cos(2𝜋𝑓𝑡)=0

=
√−9𝑏2 − 4𝑏𝑐2/𝑑 + 25𝑏2/𝑑2

𝜋

⋅ 𝑒
−(−𝑏√𝑐

2
−4𝑏𝑑/2𝑑+𝑐

2√𝑐
2
−4𝑏𝑑/4𝑑

2
+(−𝑐
2√𝑐
2
−4𝑏𝑑−𝑐

3
+4𝑏𝑐𝑑)/3)/𝐷

,

1

2
𝑅
1
= −

𝑑𝑅
1
(𝑡)

𝑑 (𝐴 cos (2𝜋𝑓𝑡))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝐴 cos(2𝜋𝑓𝑡)=0
,

𝑅
1
𝛽 =

𝑅
0
𝐴 (𝑥
2
− 𝑥
1
)

𝐷
.

(21)
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Figure 2: SNR versus noise intensity 𝐷 with 𝑏 = 0.52, 𝑐 = −0.31,
and 𝑑 = 0.04.

To clearly describe the energy distribution of the system
output, the SNR of the system output can be calculated as
follows:

SNR =
∫
∞

0
𝑆
1
(𝑤) 𝑑𝑤

𝑆
2
(𝑤 = 2𝜋𝑓)

=
−𝑐/8𝑑 − (1/4)√𝑏/𝑑 − (𝑐 + √𝑐2 − 4𝑏𝑑) /8𝑑

𝑐/8𝑑 + (1/4)√𝑏/𝑑 − (𝑐 + √𝑐2 − 4𝑏𝑑) /8𝑑

⋅
𝜋𝑅
0
𝐴
2
(−𝑐/𝑑 − 2√𝑏/𝑑)

4𝐷2
.

(22)

3. The Effects of the Noise Intensity
and System Parameters

In this section, we discuss the effect of each parameter on the
system SNR.

Figure 2 shows the change trends of the SNR of a
multistable SRmethodwith 𝑏 = 0.52, 𝑐 = −0.31, and 𝑑 = 0.04

versus noise intensity 𝐷.
It can be seen from Figure 2 that the change curve of the

SNR is first increased and then decreasedwith the variation in
noise intensity 𝐷; therefore, there exists an optimal noise for
the maximum SNR. This typical phenomenon is a signature
ofmultistable SR. Noise plays a role in the SNRwithin certain
range of scale.

The SNR as a function of noise intensity 𝐷 with different
system parameters 𝑏 is shown in Figure 3. It is seen that the
positions of the higher peaks and the lower peaks are both
shifting to the left with the increase of 𝑏 and the SNR is
decreasing with the increase of 𝑏.

Figure 4 shows the curves of SNR versus noise intensity
𝐷 with different system parameters 𝑐. With the increase of 𝑐,
the whole curves are shifting to left and SNR is increasing.

Figure 5 shows the curves of SNR versus noise intensity𝐷

with different systemparameters𝑑.With the increase of𝑑, the
whole curves are shifting to the left and the SNR is increasing.



Discrete Dynamics in Nature and Society 5

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

SN
R

Noise intensity D

b = 0.5

b = 0.45

b = 0.4

Figure 3: SNR versus noise intensity 𝐷 for different system
parameters 𝑏: 0.4, 0.45, and 0.5. Other parameters are 𝑐 = −0.31

and 𝑑 = 0.04.
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Figure 4: SNR versus noise intensity 𝐷 for different system
parameters 𝑐: −0.31, −0.3, and −0.29. Other parameters are 𝑏 = 0.52

and 𝑑 = 0.04.

4. The Simulation

Take the same parameters as in Figure 2 to detect the
weak signal with the multistable stochastic resonance and
then let 𝐷 take different values; and the amplitude of the
corresponding characteristic frequency is recorded; finally,
the curve of amplitude versus the noise ismade. It can be seen
that the simulation result in Figure 6 is consistent with the
analysis in Figure 2.

Take the same parameters as in Figure 3 to detect the
weak signal with the multistable stochastic resonance. First,
take 𝑏 equal to 0.4 and let 𝐷 take 𝑁 different values; then,
the amplitude of the corresponding characteristic frequency
is recorded and the curve of amplitude versus the noise is
finally made. Second, take 𝑏 equal to 0.45 and 0.5 and repeat
the above operation, respectively. It can be seen that the
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Figure 5: SNR versus noise intensity 𝐷 for different system
parameters 𝑑: 0.03, 0.036, and 0.042. Other parameters are 𝑏 = 0.52

and 𝑐 = −0.31.
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Figure 6: The variation curve of the output signal amplitude with
the addition of noise 𝐷.

simulation result in Figure 7 is consistent with the analysis
in Figure 3.

Take the same parameters as in Figure 4 to detect the
weak signal with the multistable stochastic resonance. First,
take 𝑐 equal to −0.31 and let 𝐷 take 𝑁 different values; then,
the amplitude of the corresponding characteristic frequency
is recorded and the curve of amplitude versus the noise is
finally made. Second, take 𝑐 equal to −0.3 and −0.29 and
repeat the above operation, respectively. It can be seen that
the simulation result in Figure 8 is consistent with the analysis
in Figure 4.

Take the same parameters as in Figure 5 to detect the
weak signal with the multistable stochastic resonance. First,
take 𝑑 equal to 0.03 and let 𝐷 take 𝑁 different values; then,
the amplitude of the corresponding characteristic frequency
is recorded and the curve of amplitude versus the noise is
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Figure 7: The variation curve of the output signal amplitude with
the addition of noise 𝐷 under different 𝑏 value.
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Figure 8: The variation curve of the output signal amplitude with
the addition of noise 𝐷 under different 𝑐 value.

finally made. Second, take 𝑑 equal to 0.036 and 0.042 and
repeat the above operation, respectively. It can be seen that
the simulation result in Figure 9 is consistent with the analysis
in Figure 5.

5. Conclusion

In the paper, we first derive the expression of the multistable
system SNR.Through the research about the effects of Gauss
noise and system parameters on the multistable system
SNR, we can draw the following conclusions: (1) the SNR
expression is applicable to arbitrary signal amplitude; (2) the
curve of the SNR versus noise intensity is nonmonotonic,
which is a typical phenomenon of multistable SR; (3) the
SNR peak is increasing gradually with the increase of system
parameters 𝑐 and 𝑑, but it is decreasing with the increase
of system parameters 𝑏. The SNR as a function of system
parameters 𝑏, 𝑐, and 𝑑 will not be described in this paper.
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Figure 9: The variation curve of the output signal amplitude with
the addition of noise 𝐷 under different 𝑑 value.
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Singularly perturbed problems are often used as the models of ecology and epidemiology. In this paper, a class of semilinear
singularly perturbed systems with contrast structures are discussed. Firstly, we verify the existence of heteroclinic orbits connecting
two equilibrium points about the associated systems for contrast structures in the corresponding phase space. Secondly, the
asymptotic solutions of the contrast structures by the method of boundary layer functions and smooth connection are constructed.
Finally, the uniform validity of the asymptotic expansion is defined and the existence of the smooth solutions is proved.

1. Introduction

Contrast structures in singularly perturbed problems can be
classified as step-type contrast structures or spike-type con-
trast structures [1–3]. The existence of contrast structures is
relevant to the existence of homoclinic orbits and heteroclinic
orbits of their associated systems in [4–6]. Recently, contrast
structures in singularly perturbed problems are attached
great importance. Ni and Wang study four-dimensional
contrast structures in singularly perturbed problemswith fast
variables in [7]. In [8], Wang considers a kind of step-type
contrast structure for singularly perturbed problems with
slow and fast variables and proves the existence of a hete-
roclinic orbit of its associated system in the corresponding
phase space.

Since contrast structures can express the instantaneous
transformation more accurately, we often use them in singu-
larly perturbed problems as themodels of the collision of cars
and the transfer law of neurons. In [9], a kind of epidemical
model with spike-type contrast structures is proposed. Chat-
toadhyay and Bairagi build an ecoepidemiological model in
[10]:

𝑑𝑢

𝑑𝑡
= 𝑑Δ𝑢 + 𝑓

1
(𝑢, V) , (𝑡, 𝑥) ∈ (0, +∞) × Ω,

𝑑V
𝑑𝑡

= 𝑑ΔV + 𝑓
2
(𝑢, V) , (𝑡, 𝑥) ∈ (0, +∞) × Ω,

𝑑𝑤

𝑑𝑡
= 𝑑Δ𝑤 + 𝑓

3
(𝑢, V) , (𝑡, 𝑥) ∈ (0, +∞) × Ω,

𝜕𝑢

𝜕𝑛
=
𝜕V
𝜕𝑛

=
𝜕𝑤

𝜕𝑛
= 0, (𝑡, 𝑥) ∈ (0, +∞) × 𝜕Ω,

𝑢 (𝑥, 0) ≥ 0, V (𝑥, 0) ≥ 0, 𝑤 (𝑥, 0) ≥ 0, 𝑥 ∈ Ω,
(1)

where 𝑑 is a diffusion coefficient,Ω is a population habitat, 𝑢
is susceptible prey, V is infected prey,𝑤 is density of predators,
and 𝑛 is a unit outer normal vector. By geometric methods
and functional skills, Chattoadhyay and Bairagi study the
existence of 𝑢(𝑥), which is a stable solution.

Considering the complexity of the ecoepidemiological
model and the small parameter 𝑑, we propose the following
semilinear singularly perturbed system with contrast struc-
tures:

𝑑𝑧

𝑑𝑡
= 𝑔 (𝑢, V, 𝑤, 𝑧, 𝑡) ,

𝜇
𝑑𝑢

𝑑𝑡
= 𝑓
1
(𝑢, V, 𝑤, 𝑧, 𝑡) ,

𝜇
𝑑V
𝑑𝑡

= 𝑓
2
(𝑢, V, 𝑤, 𝑧, 𝑡) ,

𝜇
𝑑𝑤

𝑑𝑡
= 𝑓
3
(𝑢, V, 𝑤, 𝑧, 𝑡) ,
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𝑢 (0, 𝜇) = 𝑢
0
,

V (0, 𝜇) = V0,

𝑤 (1, 𝜇) = 𝑤
1
,

𝑧 (0, 𝜇) = 𝑧
0
,

(2)

where 0 < 𝜇 ≪ 1, 0 ≤ 𝑡 ≤ 1, the functions𝑓
1
,𝑓
2
,𝑓
3
, and 𝑔 are

sufficiently smooth on the domain G = {(𝑢, V, 𝑤, 𝑧, 𝑡) | ‖𝑢‖ ≤
𝑙
1
, ‖V‖ ≤ 𝑙

2
, ‖𝑤‖ ≤ 𝑙

3
, ‖𝑧‖ ≤ 𝑙

4
, 0 ≤ 𝑡 ≤ 1}, and 𝑙

𝑖
(𝑖 = 1, 2, 3, 4)

are given positive real numbers. Assuming that y = (𝑢, V, 𝑤)𝑇
and f = (𝑓

1
, 𝑓
2
, 𝑓
3
)
𝑇, system (2) is equivalent to the following

system:

𝑑𝑧

𝑑𝑡
= 𝑔 (y, 𝑧, 𝑡) ,

𝜇
𝑑y
𝑑𝑡

= f (y, 𝑧, 𝑡) ,

𝑢 (0, 𝜇) = 𝑢
0
,

V (0, 𝜇) = V0,

𝑤 (1, 𝜇) = 𝑤
1
,

𝑧 (0, 𝜇) = 𝑧
0
.

(3)

The degenerate equations of (3) are

f (y, 𝑧, 𝑡) = 0,

𝑑𝑧

𝑑𝑡
= 𝑔 (y, 𝑧, 𝑡) .

(4)

In the following, we let

(A1) the degenerate equation f(y, 𝑧, 𝑡) = 0 have two
isolated smooth solutions y = 𝛼(𝑧, 𝑡) and y = 𝛽(𝑧, 𝑡)
on 𝐷 = {(𝑧, 𝑡) | |𝑧| ≤ 𝑙

5
, 0 ≤ 𝑡 ≤ 1}, where

𝛼 = (𝛼
1
, 𝛼
2
, 𝛼
3
)
𝑇, 𝛽 = (𝛽

1
, 𝛽
2
, 𝛽
3
)
𝑇, and 𝑙

5
is a given

positive real number.

According to (A1), the initial value problem

𝑑𝑧
(−)

𝑑𝑡
= 𝑔 (𝛼 (𝑧

(−)
, 𝑡) , 𝑧
(−)
, 𝑡) , 𝑧

(−)
(0) = 𝑧

0
, (5)

has the unique solution 𝑧(−)(𝑡) in [0, 1], 0 < 𝑡
0
< 1, and

𝑑𝑧
(+)

𝑑𝑡
= 𝑔 (𝛽 (𝑧

(+)
, 𝑡) , 𝑧
(+)
, 𝑡) , 𝑧

(+)
(𝑡
0
) = 𝑧
(−)
(𝑡
0
) , (6)

has the unique solution 𝑧(+)(𝑡) in [0,1].The associated system
of (3) is

𝑑ỹ
𝑑𝜏

= f (ỹ, 𝑧, 𝑡) , 𝜏 =
𝜇

𝑡
≥ 0, (7)

where ỹ(𝜏) = (𝑢̃(𝜏), Ṽ(𝜏), 𝑤̃(𝜏))𝑇 and 𝑡 and 𝑡 are parame-
ters. Obviously, system (7) exhibits two families of equilib-
rium points 𝑀

1
(𝛼(𝑧
(−)
, 𝑡), 𝑧
(−)
, 𝑡) and 𝑀

2
(𝛽(𝑧
(+)
, 𝑡), 𝑧
(+)
, 𝑡).

Assuming that 𝐵
𝑙
(𝑡) = 𝐷ỹf(ỹ, 𝑧, 𝑡)|𝑀𝑙 , 𝑙 = 1, 2, we can classify

sixteen cases (can be seen in [11, 12]) on relations between
𝑀
1
and𝑀

2
by the symbols of eigenvalues. There might exist

interior layers satisfying one of the following cases:
(1)𝑀
1
[−, −, +],𝑀

2
[−, −, +]; (2)𝑀

1
[−, +, +],𝑀

2
[−, +, +].

We will discuss case (1); case (2) can be debated similarly.

(A2) Assume that 𝐵
𝑙
(𝑡) has three real-valued eigenvalues

and satisfies the inequality 𝜆
𝑙1
< 𝜆
𝑙2
< 0 < 𝜆

𝑙3
.

By (A2), system (7) may exhibit a heteroclinic orbit connect-
ing 𝑀

1
to 𝑀
2
. To give the necessary conditions about the

existence of a heteroclinic orbit, we introduce the following
hypothesis:

(A3) The associated system (7) has two manifolds ex-
pressed by 𝛽

𝑙
(ỹ, 𝑧̃, 𝑡) = 𝐶

𝑙
, 𝑙 = 1, 2.

Themanifold crossing through𝑀
1
is

Φ
𝑙
(ỹ, 𝑧̃, 𝑡) = Φ(−)

𝑙
(𝛼 (𝑧
(−)
, 𝑡) , 𝑧
(−)
, 𝑡) . (8)

The manifold crossing through𝑀
2
is

Φ
𝑙
(ỹ, 𝑧̃, 𝑡) = Φ(+)

𝑙
(𝛽 (𝑧
(+)
, 𝑡) , 𝑧
(+)
, 𝑡) . (9)

According to (8) and (9), the necessary conditions about the
existence of heteroclinic orbits can be obtained by

Φ
(−)

𝑙
(𝛼 (𝑧
(−)
, 𝑡) , 𝑧
(−)
, 𝑡) = Φ

(+)

𝑙
(𝛽 (𝑧
(+)
, 𝑡) , 𝑧
(+)
, 𝑡) . (10)

By (A3), (8) and (9) can be expressed by

Ṽ(−) (𝜏) = Ψ(−)
2
(𝑢̃
(−)
, 𝑧
(−)
, 𝑡) ,

𝑤̃
(−)
(𝜏) = Ψ

(−)

3
(𝑢̃
(−)
, 𝑧
(−)
, 𝑡) ,

Ṽ(+) (𝜏) = Ψ(+)
2
(𝑢̃
(+)
, 𝑧
(+)
, 𝑡) ,

𝑤̃
(+)
(𝜏) = Ψ

(+)

3
(𝑢̃
(+)
, 𝑧
(+)
, 𝑡) .

(11)

Supposing that

𝐻
ℎ
(𝑡) = Ψ

(−)

ℎ
(𝑢̃
(−)
, 𝑧
(−)
, 𝑡) − Ψ

(+)

ℎ
(𝑢̃
(+)
, 𝑧
(+)
, 𝑡) ,

ℎ = 2, 3;

(12)

we can give the following hypothesis:

(A4) Assume that (12) has a solution of 𝑡 = 𝑡
0
, and

(𝜕𝐻
2
/𝜕𝑡)|
𝑡=𝑡0

, (𝜕𝐻
3
/𝜕𝑡)|
𝑡=𝑡0

are not simultaneously
equal to zero.

In accordance with (A4), we can realize that 𝐻
ℎ
(𝑡
0
) = 0,

namely, there exists a heteroclinic orbit connecting 𝑀
1
and

𝑀
2
.

Lemma 1. Under conditions (A1)–(A4), the associated system
(7) has a heteroclinic orbit connecting 𝑀

1
and 𝑀

2
, which is

expressed by (10) and (12); therefore, system (3) has the solution
with interior layer.
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2. The Construction of Asymptotic Expansion

In accordance with (A1)–(A4), system (3) has a step-like
solution from 𝛼(𝑡) to 𝛽(𝑡).Hence, we can suppose that

𝑡
∗
= 𝑡
0
+ 𝜇𝑡
1
+ ⋅ ⋅ ⋅ + 𝜇

𝑘
𝑡
𝑘
+ ⋅ ⋅ ⋅ ,

x (𝑡∗, 𝜇) = x∗
0
+ 𝜇x∗
1
+ ⋅ ⋅ ⋅ + 𝜇

𝑘x∗
𝑘
+ ⋅ ⋅ ⋅ ,

(13)

where 𝑡∗ is the transit point from 𝛼(𝑡) to 𝛽(𝑡) and 𝑡
𝑖
and x∗

𝑖
,

𝑖 = 1, 2, . . ., are undetermined coefficients. The interior-layer
solution of system (3) can be divided into two parts. The left
problem is (0 ≤ 𝑡 ≤ 𝑡∗)

𝑑𝑧
(−)

𝑑𝑡
= 𝑔 (y(−), 𝑧(−), 𝑡) ,

𝜇
𝑑y(−)

𝑑𝑡
= f (y(−), 𝑧(−), 𝑡) ,

𝑢
(−)
(0, 𝜇) = 𝑢

0
,

V(−) (0, 𝜇) = V0,

𝑤
(−)
(𝑡
∗
, 𝜇) = 𝑤

∗
,

𝑧
(−)
(0, 𝜇) = 𝑧

0
.

(14)

The right problem is (𝑡∗ ≤ 𝑡 ≤ 1)

𝑑𝑧
(+)

𝑑𝑡
= 𝑔 (y(+), 𝑧(+), 𝑡) ,

𝜇
𝑑y(+)

𝑑𝑡
= f (y(+), 𝑧(+), 𝑡) ,

𝑢
(+)
(𝑡
∗
, 𝜇) = 𝑢

∗
,

V(+) (𝑡∗, 𝜇) = V∗,

𝑤
(+)
(1, 𝜇) = 𝑤

1
,

𝑧
(+)
(𝑡
∗
, 𝜇) = 𝑧

(−)
(𝑡
∗
, 𝜇) .

(15)

The step-like contrast structure of (3) can be regarded as the
smooth connection at the point of 𝑡∗ by two solutions of (14)
and (15). Let x = (𝑢, V, 𝑤, 𝑧)𝑇, and by themethod of boundary
layer functions [8–10], the asymptotic expansion of (14) can
be constructed as follows:

x(−) (𝑡, 𝜇) =
∞

∑

𝑘=0

𝜇
𝑘
[x(−)
𝑘
(𝑡) + 𝐿

𝑘
x (𝜏
0
) + 𝑄
(−)

𝑘
x (𝜏)] ,

𝜏
0
=
𝑡

𝜇
, 𝜏 =

𝑡 − 𝑡
∗

𝜇
.

(16)

Also, the asymptotic expansion of (15) can be constructed as
follows:

x(+) (𝑡, 𝜇) =
∞

∑

𝑘=0

𝜇
𝑘
[x(+)
𝑘
(𝑡) + 𝑄

(+)

𝑘
x (𝜏) + 𝑅

𝑘
x (𝜏
1
)] ,

𝜏
1
=
𝑡 − 1

𝜇
,

(17)

where x(±)
𝑘
(𝑡) are the coefficients of regular series, 𝐿

𝑘
x(𝜏
0
) are

the coefficients of left boundary layer series, 𝑅
𝑘
x(𝜏
1
) are the

coefficients of right boundary layer series, and 𝑄(±)
𝑘
x(𝜏) are

the coefficients of interior-layer series.
Putting (16) and (17) into (14) and (15), and separating

equations by scales 𝑡, 𝜏
0
, 𝜏, and 𝜏

1
, then x(±)

0
(𝑡) satisfies

f (y(−)
0
, 𝑧
(−)

0
, 𝑡) = 0,

(𝑧
(−)

0
)
󸀠

= 𝑔 (y(−)
0
, 𝑧
(−)

0
, 𝑡) ,

𝑧
(−)

0
(0) = 𝑧

0
,

(18)

f (y(+)
0
, 𝑧
(+)

0
, 𝑡) = 0,

(𝑧
(+)

0
)
󸀠

= 𝑔 (y(+)
0
, 𝑧
(+)

0
, 𝑡) ,

𝑧
(+)

0
(𝑡
0
) = 𝑧
(−)

0
(𝑡
0
) .

(19)

By (A2), we can obtain that 𝑧(−)
0

= 𝑧
(−)
(𝑡), y(−)

0
=

𝛼(𝑧
(−)
(𝑡), 𝑡) = 𝛼(𝑡, 𝑡

0
), 𝑧(+)
0
= 𝑧
(+)
(𝑡), and y(+)

0
= 𝛽(𝑧

(+)
(𝑡), 𝑡) =

𝛽(𝑡, 𝑡
0
), where 𝑧(±)(𝑡) are functions about 𝑡 and 𝑡

0
and 𝑡
0
is an

undetermined constant.
For 𝑄(−)

0
(𝜏), we have

𝑑𝑄
(−)

0
𝑧 (𝜏)

𝑑𝜏
= 0,

𝑑𝑄
(−)

0
y (𝜏)

𝑑𝜏

= f (𝛼 (𝑡
0
) + 𝑄
(−)

0
y (𝜏) , 𝑧(−)

0
+ 𝑄
(−)

0
𝑧 (𝜏) , 𝑡

0
) ,

𝛼
1
(𝑡
0
) + 𝑄
(−)

0
𝑢 (0) = 𝑢

∗
,

𝑄
(−)

0
x (−∞) = 0.

(20)

By (20), we can solve𝑄(−)
0
𝑧(𝜏) ≡ 0.Assuming that ỹ𝑙 = 𝛼(𝑡

0
)+

𝑄
(−)

0
y(𝜏), (20) can be rewritten as

𝑑ỹ𝑙

𝑑𝜏
= f (ỹ𝑙, 𝑧(−)

0
(𝑡
0
) , 𝑡
0
) ,

𝑢̃
𝑙
(0) = 𝑢

∗
,

ỹ𝑙 (−∞) = 𝛼 (𝑡
0
) .

(21)

For 𝑄(+)
0
(𝜏), we have

𝑑𝑄
(+)

0
𝑧 (𝜏)

𝑑𝜏
= 0,

𝑑𝑄
(+)

0
y (𝜏)

𝑑𝜏

= f (𝛽 (𝑡
0
) + 𝑄
(+)

0
y (𝜏) , 𝑧(+)

0
+ 𝑄
(+)

0
𝑧 (𝜏) , 𝑡

0
) ,

𝛽
1
(𝑡
0
) + 𝑄
(+)

0
𝑢 (0) = 𝑢

∗
,

𝑄
(+)

0
x (+∞) = 0.

(22)
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By (22), we can solve 𝑄(+)
0
𝑧(𝜏) ≡ 0. Supposing that ỹ𝑟 =

𝛽(𝑡
0
) + 𝑄
(+)

0
y(𝜏), (22) can be rewritten as

𝑑ỹ𝑟

𝑑𝜏
= f (ỹ𝑟, 𝑧(+)

0
(𝑡
0
) , 𝑡
0
) ,

𝑢̃
𝑟
(0) = 𝑢

∗
,

ỹ𝑟 (+∞) = 𝛽 (𝑡
0
) .

(23)

Obviously, systems (21) and (23) coincide with the associated
system (7), so we can consider their combined system

𝑑ỹ
𝑑𝜏

= f (ỹ, 𝑧
0
(𝑡
0
) , 𝑡
0
) ,

𝑢̃ (0) = 𝑢
∗
,

ỹ (+∞) = 𝛽 (𝑡
0
) ,

ỹ (−∞) = 𝛼 (𝑡
0
) .

(24)

By (A1), (A2), and (A3), system (24) has a solution, which
is a heteroclinic orbit connecting𝑀

1
(𝛼(𝑡
0
), 𝑧
(−)

0
(𝑡
0
), 𝑡
0
) with

𝑀
2
(𝛽(𝑡
0
), 𝑧
(+)

0
(𝑡
0
), 𝑡
0
).On the basis of (A4) and (10), the value

of 𝑡
0
can be confirmed, so𝑄(±)

0
y(𝜏) is determined completely.

For 𝐿
0
x(𝜏
0
), we have

𝑑𝐿
0
𝑧 (𝜏
0
)

𝑑𝜏
0

= 0,

𝑑𝐿
0
y (𝜏
0
)

𝑑𝜏
0

= f (𝛼 (0) + 𝐿
0
y (𝜏
0
) , 𝑧
(−)

0
(0) + 𝐿

0
𝑧 (𝜏
0
) , 0) ,

𝐿
0
𝑢 (0) = 𝑢

∗
− 𝛼
1
(0) ,

𝐿
0
V (0) = V0 − 𝛼

2
(0) ,

𝐿
0
x (+∞) = 0.

(25)

By (25), we can solve 𝐿
0
𝑧(𝜏
0
) ≡ 0. Assuming that ̃̃y𝑙 = 𝛼(0) +

𝐿
0
y(𝜏
0
), (25) can be rewritten as

𝑑̃̃y𝑙

𝑑𝜏
0

= f (̃̃y𝑙, 𝑧(−)
0
(0) , 0) ,

̃̃𝑢
𝑙

(0) = 𝑢
0
,

̃̃V
𝑙

(0) = V0,

̃̃y𝑙 (+∞) = 𝛼 (0) .

(26)

For 𝑅
0
x(𝜏
1
), we have

𝑑𝑅
0
𝑧 (𝜏
1
)

𝑑𝜏
1

= 0,

𝑑𝑅
0
y (𝜏
1
)

𝑑𝜏
1

= f (𝛽 (1) + 𝑅
0
y (𝜏
1
) , 𝑧
(+)

0
(1) + 𝑅

0
𝑧 (𝜏
1
) , 1) ,

𝑅
0
𝑤 (0) = 𝑤

1
− 𝛽
3
(1) ,

𝑅
0
x (−∞) = 0.

(27)

According to (27), we can solve 𝑅
0
𝑧(𝜏
1
) ≡ 0. Supposing that

̃̃y𝑟 = 𝛽(1) + 𝑅
0
y(𝜏
1
), (27) can be rewritten as

𝑑̃̃y𝑟

𝑑𝜏
1

= f (̃̃y𝑟, 𝑧(+)
0
(1) , 1) ,

̃̃𝑤
𝑟

(0) = 𝑤
1
,

̃̃y𝑟 (−∞) = 𝛽 (1) .

(28)

Equations (26) and (28) coincide with the associated system
(7). By (A1), systems (26) and (28) have the equilibriumpoints
𝑀̃
1
(𝜑(0), 𝑧

(−)

0
(0), 0) and 𝑀̃

2
(𝜓(1), 𝑧

(+)

0
(1),1), respectively. We

will give the following hypothesis to obtain the solution of
systems (26) and (28):

(A5) The initial values ̃̃𝑢
𝑙

(0) = 𝑢
0 and ̃̃V

𝑙

(0) = V0 are
intersected with the one-dimensional stable manifold
𝑊
𝑠
(𝑀̃
1
(0)) near the equilibrium point 𝑀̃

1
, and the

initial value ̃̃𝑤
𝑟

(0) = 𝑤
1 is intersected with the one-

dimensional unstable manifold𝑊𝑢(𝑀̃
2
(1)).

By (A1)–(A4) and (20)–(24), 𝑄(±)
0
x(𝜏) is solved, which

decays exponentially as 𝜏 → ±∞.Then, by (A5) and (25)–
(28), we can solve 𝐿

0
x(𝜏
0
), which decays exponentially as

𝜏 → +∞, and 𝑅
0
𝑧(𝜏
1
), which decays exponentially as 𝜏 →

−∞. So, the following conclusion is obtained.

Lemma 2. Under conditions (A1)–(A5) and (20)–(28), there
exist the interior-layer functions 𝑄(±)

0
x(𝜏) and the boundary

layer functions 𝐿
0
x(𝜏
0
), 𝑅
0
x(𝜏
1
), which satisfy the following

inequality:
󵄩󵄩󵄩󵄩󵄩
𝑄
(−)

0
x (𝜏)󵄩󵄩󵄩󵄩󵄩 ≤ 𝐶0𝑒

𝑘0𝜏,

󵄩󵄩󵄩󵄩󵄩
𝑄
(+)

0
x (𝜏)󵄩󵄩󵄩󵄩󵄩 ≤ 𝐶1𝑒

−𝑘1𝜏,

󵄩󵄩󵄩󵄩𝐿0x (𝜏0)
󵄩󵄩󵄩󵄩 ≤ 𝐶2𝑒

−𝑘2𝜏0 ,

󵄩󵄩󵄩󵄩𝑅0x (𝜏1)
󵄩󵄩󵄩󵄩 ≤ 𝐶3𝑒

𝑘3𝜏1 ,

(29)

where 𝐶
𝑙
and 𝑘
𝑙
(𝑙 = 0, 1, 2, 3) are all positive constants.

Now, the coefficients of zero-order terms for (16) and (17)
are completely determined. To determine functions y(±)

𝑖
(𝑡)

and 𝑧(±)
𝑖
(𝑡), we need the following hypothesis:



Discrete Dynamics in Nature and Society 5

(A6) The determinant of fy(y
(±)

0
(𝑡), 𝑧
(±)

0
, 𝑡) is not equal to

zero all the time.

For x(±)
𝑖
(𝑡), we can obtain

(y(±)
𝑖−1
(𝑡))
󸀠

= f
𝑦
y(±)
𝑖
(𝑡) + f

𝑧
𝑧
(±)

𝑖
(𝑡) + ℎ

𝑖
(𝑡) ,

(𝑧
(±)

𝑖
(𝑡))
󸀠

= 𝑔
𝑦
y(±)
𝑖
(𝑡) + 𝑔

𝑧
𝑧
(±)

𝑖
(𝑡) + 𝑔

𝑖
(𝑡) ,

𝑧
(−)

𝑖
(0) = −Π

𝑖
𝑧 (0) ,

𝑧
(−)

𝑖
(𝑡
0
) + 𝑄
(−)

𝑖
𝑧 (0) +

𝑖

∑

𝑘=1

[𝑧
(−)

𝑖−𝑘
(𝑡
0
)]
(𝑘)

𝑡
𝑘

= 𝑧
(+)

𝑖
(𝑡
0
) + 𝑄
(+)

𝑖
𝑧 (0) +

𝑖

∑

𝑘=1

[𝑧
(+)

𝑖−𝑘
(𝑡
0
)]
(𝑘)

𝑡
𝑘
,

(30)

where functions f
𝑦
, f
𝑧
,𝑔
𝑦
, and𝑔

𝑧
take value at (y(±)

0
(𝑡), 𝑧
(±)

0
, 𝑡),

while ℎ
𝑖
(𝑡) and 𝑔

𝑖
(𝑡) are known functions about y

𝑚
(𝑡),

𝑧
𝑚
(𝑡) (𝑚 = 0, 1, 2, . . . , 𝑖 − 1). On the basis of (A6) and the

first equation of (30), we can ascertain

y(±)
𝑖
(𝑡) = f−1

𝑦
[(y(±)
𝑖−1
(𝑡))
󸀠

− f
𝑧
𝑧
(±)

𝑖
(𝑡) − ℎ

𝑖
(𝑡)] . (31)

Inserting y(±)
𝑖
(𝑡) into the second equations of (30), 𝑧(±)

𝑖
(𝑡, 𝑐) is

solved, where 𝑐 is an undetermined coefficient.
For 𝐿

𝑖
x(𝜏
0
) (𝑖 = 1, 2, . . .), we can obtain

𝑑𝐿
𝑖
y

𝑑𝜏
0

= f̃
𝑦
𝐿
𝑖
y + f̃
𝑧
𝐿
𝑖
𝑧 + 𝐺
𝑖
(𝜏
0
) ,

𝑑𝐿
𝑖
𝑧

𝑑𝜏
0

= 𝑔̃
𝑦
𝐿
𝑖−1

y + 𝑔̃
𝑧
𝐿
𝑖−1
𝑧 +𝑀

𝑖−1
(𝜏
0
) .

𝐿
𝑖
𝑢 (0) = −𝑢

𝑖
(0) ,

𝐿
𝑖
x (+∞) = 0,

(32)

where f̃
𝑦
, f̃
𝑧
, 𝑔̃
𝑦
, and 𝑔̃

𝑧
take value at (𝛼(0) + 𝐿

0
y(𝜏
0
), 𝑧
0
(0) +

𝐿
0
𝑧(𝜏
0
), 0), 𝐺

𝑖
(𝜏) is a known vector function about x

𝑖−1
(𝑡)

and 𝐿
𝑖−1

x(𝜏
0
), and𝑀

𝑖−1
(𝜏
0
) is a known vector function about

x
𝑖−2
(𝑡) and 𝐿

𝑖−2
x(𝜏
0
). By the second equation of (32), we can

solve 𝐿
𝑖
𝑧(𝜏
0
) = ∫
𝜏0

+∞
𝐿
𝑖−1
𝑔(𝑠)𝑑𝑠, where 𝐿

𝑖−1
𝑔(𝜏
0
) = 𝑔̃
𝑦
𝐿
𝑖−1

y +
𝑔̃
𝑧
𝐿
𝑖−1
𝑧 + 𝑀

𝑖−1
(𝜏
0
), so 𝐿

𝑖
𝑧(0) = ∫

0

+∞
𝐿
𝑖−1
𝑔(𝑠)𝑑𝑠. By (30), we

can know

𝑧
(−)

𝑖
(𝑡) = −𝐿

𝑖
𝑧 (0) = ∫

+∞

0

𝐿
𝑖−1
𝑔 (𝑠) 𝑑𝑠. (33)

By the above condition and (28), x(±)
𝑖
(𝑡) is confirmed; simi-

larly, we can solve (32).

For 𝑄(±)
𝑖
x(𝜏) (𝑖 = 1, 2, . . .), we can obtain

𝑑𝑄
(±)

𝑖
y

𝑑𝜏
= f̃
(±)

𝑦
𝑄
(±)

𝑖
y + f̃
(±)

𝑧
𝑄
(±)

𝑖
𝑧 + 𝐻

(±)

𝑖
(𝜏) ,

𝑑𝑄
(±)

𝑖
𝑧

𝑑𝜏
= 𝑔̃
(±)

𝑦
𝑄
𝑖−1

y + 𝑔̃(±)
𝑧
𝑄
𝑖−1
𝑧 + 𝑁

(±)

𝑖−1
(𝜏) ,

𝑄
(±)

𝑖
𝑢 (0) = 𝑢

∗

𝑖
−

𝑖

∑

𝑘=0

[𝑢
(±)

𝑖−𝑘
(𝑡
0
)]
(𝑘)

𝑡
𝑘
,

𝑄
(−)

𝑖
x (−∞) = 𝑄

(+)

𝑖
x (+∞) = 0,

(34)

where f̃
(−)

𝑦
, f̃
(−)

𝑧
, and 𝑔̃

(±)

𝑦
take value at (𝛼(𝑡

0
) + 𝑄

(−)

0
y(𝜏),

𝑧
(−)

0
(𝑡
0
) + 𝑄

(−)

0
𝑧(𝜏), 𝑡

0
) and f̃

(+)

𝑦
, f̃
(+)

𝑧
, and 𝑔̃

𝑧
take value at

(𝛽(𝑡
0
) + 𝑄
(+)

0
y(𝜏), 𝑧(+)

0
(𝑡
0
) + 𝑄
(+)

0
𝑧(𝜏), 𝑡

0
). 𝐻(±)
𝑖
(𝜏) is a known

vector function about x(±)
𝑖−𝑛
(𝑡), 𝑄(±)

𝑖−𝑛
x(𝜏), and 𝑡

𝑖−𝑛
(0 ≤ 𝑛 ≤

𝑖 − 1). By the condition 𝑄(−)
𝑖
𝑧(−∞) = 0 and the second

equation of (34), we can solve 𝑄(−)
𝑖
𝑧(𝜏) = ∫

𝜏

−∞
𝑄
(−)

𝑖−1
𝑔(𝑠)𝑑𝑠,

where 𝑄(±)
𝑖−1
𝑔(𝜏) = 𝑔̃

(±)

𝑦
𝑄
𝑖−1

y + 𝑔̃(±)
𝑧
𝑄
𝑖−1
𝑧 + 𝑁

(±)

𝑖−1
(𝜏). We can

know that

𝑄
(−)

𝑖
𝑧 (0) = ∫

0

−∞

𝑄
(−)

𝑖−1
𝑔 (𝑠) 𝑑𝑠. (35)

By (35) and the first equation of (34), 𝑄(−)
𝑖
x(𝜏) is solved,

which decays exponentially as 𝜏 → −∞. Then, we can solve
𝑄
(+)

𝑖
x(𝜏) which decays exponentially as 𝜏 → +∞. Inserting

(35) into the second condition of (30), 𝑡
𝑖
is solved.

The boundary value function 𝑅
𝑖
x(𝜏
1
) satisfies the follow-

ing equations:
𝑑𝑅
𝑖
y

𝑑𝜏
1

= f̃
𝑦
𝑅
𝑖
y + f̃
𝑧
𝑅
𝑖
𝑧 + 𝐺
𝑖
(𝜏
1
) ,

𝑑𝑅
𝑖
𝑧

𝑑𝜏
1

= 𝑔̃
𝑦
𝑅
𝑖−1

y + 𝑔̃
𝑧
𝑅
𝑖−1
𝑧 +𝑀

𝑖−1
(𝜏
1
) .

𝑅
𝑖
𝑤 (0) = 𝑤

1
− 𝑤
𝑖
(1) ,

𝑅
𝑖
x (−∞) = 0.

(36)

The solution of (36) is similar to the solution of (32). From
(36), we can verify that there exists the right boundary value
function 𝑅

𝑖
x(𝜏
1
), which decays exponentially as 𝜏 → −∞,

and the following conclusion is obtained.

Lemma 3. Systems (32)–(36) have the solutions 𝐿
𝑖
x(𝜏
0
),

𝑄
(±)

𝑖
x(𝜏), and 𝑅

𝑖
x(𝜏
1
), respectively, satisfying the following

inequality:
󵄩󵄩󵄩󵄩𝐿 𝑖x (𝜏0)

󵄩󵄩󵄩󵄩 ≤ 𝐶0𝑒
−𝑘0𝜏0 ,

󵄩󵄩󵄩󵄩󵄩
𝑄
(−)

𝑖
x (𝜏)󵄩󵄩󵄩󵄩󵄩 ≤ 𝐶1𝑒

𝑘1𝜏,

󵄩󵄩󵄩󵄩󵄩
𝑄
(+)

𝑖
x (𝜏)󵄩󵄩󵄩󵄩󵄩 ≤ 𝐶2𝑒

−𝑘2𝜏,

󵄩󵄩󵄩󵄩𝑅𝑖x (𝜏1)
󵄩󵄩󵄩󵄩 ≤ 𝐶3𝑒

𝑘3𝜏1 ,

(37)

where 𝐶
𝑙
and 𝑘
𝑙
(𝑙 = 0, 1, 2, 3) are all positive constants.
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3. The Existence of Asymptotic Expansion

There are many methods to prove the existence of the step-
like contrast structure for system (3) and we will prove the
existence with implicit functions theorems [11].The solutions
of left and right problems can be expressed by (15) and (16)
and we will prove that (15) and (16) are connected smoothly
at the point of 𝑡∗, which is on the neighborhood of 𝑡

0
. At the

point of 𝑡∗, (15) and (16) can be expressed by

x(−) (𝑡∗, 𝜇) = x(−)
0
(𝑡
∗
) + 𝑄
(−)

0
x (0) + 𝑂 (𝜇) ,

x(+) (𝑡∗, 𝜇) = x(+)
0
(𝑡
∗
) + 𝑄
(+)

0
x (0) + 𝑂 (𝜇) .

(38)

As 𝐿
0
x(𝜏
0
) and 𝑅

0
x(𝜏
1
) decay exponentially as 𝑡 = 𝑡

∗,
they can be neglected. Because the first two components
of the solution for the left and right problems are equal
correspondingly at the point of 𝑡∗, we can solve 𝑡∗ by the
third component𝑤(±). Supposing that𝑈(𝑡∗, 𝜇) = 𝑢(−)(𝑡∗, 𝜇)−
𝑢
(+)
(𝑡
∗
, 𝜇), we have

𝑈 (𝑡
∗
, 𝜇) = [𝛼

3
(𝑡
∗
) + 𝑄
(−)

0
𝑤 (0)]

− [𝛽
3
(𝑡
∗
) + 𝑄
(+)

0
𝑤 (0)] + 𝑂 (𝜇)

= 𝐻
3
(𝑡
∗
) + 𝑂 (𝜇) .

(39)

According to (A4), (𝜕𝐻
2
/𝜕𝑡)|
𝑡=𝑡0

and (𝜕𝐻
3
/𝜕𝑡)|
𝑡=𝑡0

are not
simultaneously equal to zero. If (𝜕𝐻

2
/𝜕𝑡)|
𝑡=𝑡0

= 0, we can
ascertain that (𝜕𝐻

3
/𝜕𝑡)|
𝑡=𝑡0

̸= 0. On the basis of the implicit
functions theorem, there exists 𝑡∗(𝜇) = 𝑡

0
+ 𝑂(𝜇) causing

𝑈(𝑡
∗
, 𝜇) = 0. So there exists a step-like contrast structure at

the point of 𝑡∗. If (𝜕𝐻
2
/𝜕𝑡)|
𝑡=𝑡0

̸= 0, (𝜕𝐻
3
/𝜕𝑡)|
𝑡=𝑡0

= 0 and 𝑡∗
can be confirmed by the second component V. By the above
discussion, the following theorem is obtained.

Theorem 4. By (A1)–(A6) and Lemmas 1–3, there exists the
step-like solution of (3) as follows:

x (𝑡, 𝜇)

=
{

{

{

x(−)
0
(𝑡) + 𝐿

0
x (𝜏
0
) + 𝑄
(−)

0
x (𝜏) + 𝑂 (𝜇) , 0 ≤ 𝑡 ≤ 𝑡

∗
,

x(+)
0
(𝑡) + 𝑄

(+)

0
x (𝜏) + 𝑅

0
x (𝜏
1
) + 𝑂 (𝜇) , 𝑡

∗
≤ 𝑡 ≤ 1.

(40)

4. Example

The equations are given by

𝜇
𝑑𝑢

𝑑𝑡
= V,

𝜇
𝑑V
𝑑𝑡

= (𝑢 − 𝑡 +
1

2
) (𝑢
2
−
9

4
) ,

𝜇
𝑑𝑤

𝑑𝑡
=

3

√2
(𝑢 − 𝑤) ,

𝑑𝑧

𝑑𝑡
= 𝑢 + 𝑧,

(41)

satisfying the boundary value conditions as follows:

𝑢 (0, 𝜇) = 𝑢
0
,

V (0, 𝜇) = V0,

𝑤 (1, 𝜇) = 𝑤
1
,

𝑧 (0, 𝜇) = 𝑧
0
.

(42)

Assuming that 𝜇 = 0, we can solve three groups of isolated
solutions:

y = 𝛼 (𝑡) = (−3
2
, 0, −

3

2
)

𝑇

,

y = 𝜒 (𝑡) = (𝑡 − 1
2
, 0, 𝑡 −

1

2
)

𝑇

,

y = 𝛽 (𝑡) = (3
2
, 0,

3

2
)

𝑇

.

(43)

According to (43), the solution of 𝑑𝑧/𝑑𝑡 = 𝑢 + 𝑧 exists.
Considering the associated system,

𝑑𝑢̃

𝑑𝜏
= Ṽ,

𝑑Ṽ
𝑑𝜏

= (𝑢̃ − 𝑡 +
1

2
) (𝑢̃
2
−
9

4
) ,

𝑑𝑤̃

𝑑𝜏
=

3

√2
(𝑢̃ − 𝑤̃) .

(44)

The corresponding characteristic equation is given by

(𝜆 + 1) [𝜆
2
− 𝐹
𝑦1
(𝑀
1,2
)] = 0. (45)

By (45), we can solve the following characteristic roots:

𝜆
1,2
= ±√𝐹𝑦1(𝑀1,2)

,

𝜆
3
= −1,

(46)

where 𝐹
𝑦1
(𝑀
1
) = 3𝑡 + 3 > 0 and 𝐹

𝑦1
(𝑀
2
) = 3(2 −

𝑡) > 0. So the two equilibrium points 𝑀
1
(−3/2, 0, −3/2)

and 𝑀
2
(3/2, 0, 3/2) are all hyperbolic saddle points of (43).

To determine 𝑡
0
, we can discuss the equations 𝑄(±)

0
y(𝜏) as

follows:

𝑑𝑄
(−)

0
𝑢

𝑑𝜏
= 𝑄
(−)

0
V,

𝑑𝑄
(−)

0
V

𝑑𝜏

= (−
3

2
+ 𝑄
(−)

0
𝑢 − 𝑡
0
+
1

2
) [(−

3

2
+ 𝑄
(−)

0
𝑢)

2

−
9

4
] ,

𝑑𝑄
(−)

0
𝑤

𝑑𝜏
=

3

√2
(𝑄
(−)

0
𝑢 − 𝑄

(−)

0
𝑤) ,
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−
3

2
+ 𝑄
(−)

0
𝑢 = 𝑡
0
−
1

2
,

𝑄
(−)

0
y (−∞) = 0,

(47)

𝑑𝑄
(+)

0
𝑢

𝑑𝜏
= 𝑄
(+)

0
V,

𝑑𝑄
(+)

0
V

𝑑𝜏

= (
3

2
+ 𝑄
(+)

0
𝑢 − 𝑡
0
+
1

2
) [(

3

2
+ 𝑄
(+)

0
𝑢)

2

−
9

4
] ,

𝑑𝑄
(+)

0
𝑤

𝑑𝜏
=

3

√2
(𝑄
(+)

0
𝑢 − 𝑄

(+)

0
𝑤) ,

3

2
+ 𝑄
(+)

0
𝑢 = 𝑡
0
−
1

2
,

𝑄
(+)

0
y (+∞) = 0.

(48)

Assuming that 𝑢̃(±) = ±3/2 + 𝑄(±)
0
𝑢, Ṽ(±) = 𝑄(±)

0
V, and 𝑤̃(±) =

±3/2 + 𝑄
(±)

0
𝑤, (47) and (48) can be expressed by

𝑑𝑢̃
(±)

𝑑𝜏
= Ṽ(±),

𝑑Ṽ(±)

𝑑𝜏
= (𝑢̃
(±)
− 𝑡
0
+
1

2
) [(𝑢̃
(±)
)
2

−
9

4
] ,

𝑑𝑤̃
(±)

𝑑𝜏
=

3

√2
(𝑢̃
(±)
− 𝑤̃
(±)
) ,

𝑢̃
(±)
(0) = 𝑡

0
−
1

2
.

(49)

The first integral of (49) passing through𝑀
1
and𝑀

2
is

[Ṽ(±) (𝜏)]
2

= 2∫

𝑢̃
(∓)

−(3/2)(3/2)

(𝑠 − 𝑡
0
+
1

2
) (𝑠
2
−
9

4
) 𝑑𝑠

= 0.

(50)

Since the solutions of (41) are connected smoothly at the point
of 𝑡
0
, we have 𝑢̃(−)(0) = 𝑢̃(+)(0). Assuming that

𝐻(𝑡
0
) = 𝑢̃
(−)
(0) − 𝑢̃

(+)
(0) = 0, (51)

substituting (50) into (51), we can obtain

∫

3/2

−3/2

(𝑠 − 𝑡
0
+
1

2
) (𝑠
2
−
9

4
) 𝑑𝑠 = 0. (52)

On the basis of (52), we can solve 𝑡
0
= 1/2 and 𝜕𝐻(𝑡

0
)/𝜕𝑡
0
=

21/4 ̸= 0. So the solutions of (41) transfer at the point of 𝑡
0
=

1/2.

Substituting 𝑡
0
= 1/2 into (49), as 𝜏 ≤ 0, we have

𝑢̃
(−)
(𝜏) =

3𝐶𝑒
(3/√2)𝜏

+ 3

2𝐶𝑒(3/
√2)𝜏 − 2

,

Ṽ(−) (𝜏) =
9√2𝐶𝑒

−3/√2
𝜏

4 (1 − 𝐶𝑒(3/
√2)𝜏)
2
,

𝑤̃
(−)
(𝜏) =

3

2
+

2 ln
󵄨󵄨󵄨󵄨󵄨󵄨
𝐶𝑒
(3/√2)𝜏

− 1
󵄨󵄨󵄨󵄨󵄨󵄨

𝐶𝑒(3/
√2)𝜏

.

(53)

As 𝜏 ≥ 0, we can solve

𝑢̃
(+)
(𝜏) =

3𝐶 + 3𝑒
−(3/√2)𝜏

2𝐶 − 2𝑒−(3/
√2)𝜏

,

Ṽ(+) (𝜏) =
9√2𝐶𝑒

−3/√2
𝜏

4 (1 − 𝐶𝑒−(3/
√2)𝜏)
2
,

𝑤̃
(+)
(𝜏) =

3

2
+

2 ln
󵄨󵄨󵄨󵄨󵄨󵄨
𝐶𝑒
−(3/√2)𝜏

− 1
󵄨󵄨󵄨󵄨󵄨󵄨

𝐶𝑒−(3/
√2)𝜏

.

(54)

So we can solve the interior-layer functions as follows:

𝑄
(−)

0
𝑢 (𝜏) =

3𝐶𝑒
(3/√2)𝜏

𝐶𝑒(3/
√2)𝜏 − 1

,

𝑄
(−)

0
V (𝜏) =

9√2𝐶𝑒
−3/√2

𝜏

4 (1 − 𝐶𝑒(3/
√2)𝜏)
2
,

𝑄
(−)

0
𝑤 (𝜏) = 3 +

2 ln
󵄨󵄨󵄨󵄨󵄨󵄨
𝐶𝑒
(3/√2)𝜏

− 1
󵄨󵄨󵄨󵄨󵄨󵄨

𝐶𝑒(3/
√2)𝜏

,

𝑄
(+)

0
𝑢 (𝜏) =

3𝑒
−(3/√2)𝜏

𝐶 − 𝑒−(3/
√2)𝜏

,

𝑄
(+)

0
V (𝜏) =

9√2𝐶𝑒
−(3/√2)

𝜏

4 (1 − 𝐶𝑒−(3/
√2)𝜏)
2
,

𝑄
(+)

0
𝑤 (𝜏) =

2 ln
󵄨󵄨󵄨󵄨󵄨󵄨
𝐶𝑒
−(3/√2)𝜏

− 1
󵄨󵄨󵄨󵄨󵄨󵄨

𝐶𝑒−(3/
√2)𝜏

.

(55)

Similarly, the boundary layer function 𝐿
0
y(𝜏
0
) can be

expressed by

𝐿
0
𝑢 (𝜏
0
) =

3𝑒
−(3/√2)𝜏0

𝑒−(3/
√2)𝜏0 − 𝐴

,

𝐿
0
V (𝜏
0
) =

9√2𝐶𝑒
−(3/√2)

𝜏
0

4 (1 − 𝐴𝑒−(3/
√2)𝜏0)
2
,

𝐿
0
𝑤 (𝜏
0
) =

2 ln
󵄨󵄨󵄨󵄨󵄨󵄨
𝐴𝑒
−(3/√2)𝜏0 − 1

󵄨󵄨󵄨󵄨󵄨󵄨

𝐴𝑒−(3/
√2)𝜏0

.

(56)
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The boundary layer function 𝑅
0
y(𝜏
1
) can be expressed by

𝑅
0
𝑢 (𝜏
1
) =

3𝑒
(3/√2)𝜏1

𝐵 − 𝑒(3/
√2)𝜏1

,

𝑅
0
V (𝜏
1
) =

9√2𝐶𝑒
3/√2

𝜏
1

4 (1 − 𝐵𝑒
(3/√2)𝜏

1
)
2
,

𝑅
0
𝑤 (𝜏
1
) = −3 +

2 ln
󵄨󵄨󵄨󵄨󵄨󵄨
𝐴𝑒
(3/√2)𝜏1 − 1

󵄨󵄨󵄨󵄨󵄨󵄨

𝐴𝑒(3/
√2)𝜏1

,

(57)

so we can construct a zero-order asymptotic solution of (41)
and (42) as follows:

x (𝑡, 𝜇)

=
{

{

{

x(−)
0
(𝑡) + 𝐿

0
x (𝜏) + 𝑄(−)

0
x (𝜏) + 𝑂 (𝜇) , 0 ≤ 𝑡 ≤ 𝑡

∗
,

x(+)
0
(𝑡) + 𝑄

(+)

0
x (𝜏) + 𝑅

0
x (𝜏
1
) + 𝑂 (𝜇) , 𝑡

∗
≤ 𝑡 ≤ 1,

(58)

where 𝑡∗ = 1/2 + 𝑂(𝜇), x(−)
0
(𝑡) = (−3/2, 0, −3/2)

𝑇, and
x(+)
0
(𝑡) = (3/2, 0, 3/2)

𝑇.

5. Conclusive Remarks

By the boundary layer function method and smooth connec-
tion, we study the contrast structure for a class of semilinear
singularly perturbed systems. Under some assumptions, the
existence of a step-like contrast structure of system (3) and a
heteroclinic orbit connecting two equilibrium points of the
corresponding associated systems is determined. Then, we
obtain the asymptotic solution of system (3). In comparison
with [8, 9], the system we study is more general.
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