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Despite the efforts of information security experts, cybercrimes are still emerging at an alarming rate. Among the tools used by
cybercriminals, malicious domains are indispensable and harm from the Internet has become a global problem. Malicious
domains play an important role from SPAM and Cross-Site Scripting (XSS) threats to Botnet and Advanced Persistent Threat
(APT) attacks at large scales. To ensure there is not a single point of failure or to prevent their detection and blocking, malware
authors have employed domain generation algorithms (DGAs) and domain-flux techniques to generate a large number of domain
names for malicious servers. As a result, malicious servers are difficult to detect and remove. Furthermore, the clues of cybercrime
are stored in network traffic logs, but analyzing long-term big network traffic data is a challenge. To adapt the technology of
cybercrimes and automatically detect unknown malicious threats, we previously proposed a system called MD-Miner. To improve
its efficiency and accuracy, we propose the MD-Miner” here, which generates more features with identification capabilities in the
feature extraction stage. Moreover, MD-Miner" adapts interaction profiling bipartite graphs instead of annotated bipartite graphs.
The experimental results show that MD-Miner” has better area under curve (AUC) results and found new malicious domains that
could not be recognized by other threat intelligence systems. The MD-Miner” exhibits both scalability and applicability, which has
been experimentally validated on actual enterprise network traffic.

1. Introduction

Cybercrimes are becoming increasingly serious with the
proliferation of Internet devices and applications. One of the
most frequently used tools for cybercrimes is malicious
domains to perform phishing, XSS, and other attacks. In-
ternet attack organizations generally use code obfuscation
techniques to generate a large number of polymorphic
variants with the same malware [1] before establishing more
than one command and control (C&C) server. Cybercri-
minals and malware authors leverage not only hidden and
slow APT attacks but also various techniques, such as DGAs
and domain-flux, to make them successful. By adopting
technologies such as DGAs, these servers change their do-
main names and corresponding IP addresses over time to
prevent being blocked by antivirus software or intrusion
prevention systems [2]. The detection of malicious domains

is difficult because of the defense dilemma caused by the
long-term attack and the volatility of their domain names.
However, malware generally exhibit footprints that show
where they have been. The clue to tracking cybercrimes is in
the network traffic; the challenge is how to analyze the huge
amount of network traffic. Of the applications in malicious
domains, botnets are considered the most damaging by
enterprises.

A set of infected and controlled entities can be viewed as
a botnet [3]. The botnet structure is composed of three main
components: (1) the bots, (2) the command and control
servers (C&C), and (3) the threat actor, or bot herder itself;
bot, which refers to a remote victim computer, usually
without the victim’s knowledge; and C&C server, respon-
sible for managing the trunk host that controls the entire
botnet and passes along the bot herder’s instructions. Once
the botnet deployment is complete and launches a cyber-
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attack, the distributed denial-of-service (DDoS) shuts down
the victim organization’s Internet service, and the APT leads
to additional damage. Compromised hosts need the Internet
as a communication bridge to perform cybercrimes, such as
receiving instructions or stealing sensitive data and
returning it to the C&C servers [4, 5]. The impact of botnets
is great enough that several studies have focused their at-
tention on the discovery of botnets, which has continued to
be a hot topic [6-10].

To defend against cyber-attacks, many organizations
have established systems such as intrusion detection systems
(IDS) to detect and log suspicious traffic, but these produce
many false alarms that dull their vigilance [11]. Unlike
advanced traffic analysis techniques that require large
amounts of computational resources and time, the domain
blacklist matching method can instantly detect malicious
domains and further disrupt their communications. How-
ever, the methods to perform string changes to domain
names are simple, cheap, and fast, indicating that using
domain blacklists to prevent attacks is effective but difficult
to update in real time. Therefore, automating the mainte-
nance of the domain blacklist is indispensable to improve the
information security of organizations.

As described in our previous research [12], discovering
botnets is important, and detecting C&C servers is vital to
analyze APT events. Malicious domain names commonly
require an Internet connection to communicate with
compromised hosts, but tracking or mining them from the
global public Internet has been a difficult problem. Fortu-
nately, such processes leave footprints, and most enterprises
leverage proxy servers as intermediate HTTP communica-
tions between internal computers and the Internet that result
in logging footprints. Thus, systems can take advantage of
packet capturing systems to obtain the HTTP communi-
cation records. However, one of the bottlenecks in analyzing
network traffic is a single workstation can easily have mil-
lions of packets each day, which inhibits manually analyzing
such traffic without automated intelligence systems.
Therefore, we proposed the MD-Miner (MD stands for
malicious domain) that adapts big data analysis with a
scalability framework. The process utilizes network traffic to
build a Process-domain annotated graph that discovers who
is connecting with what. The MD-Miner uses user-agent plus
client-IP as a feature to distinguish the distinct processes and
incorporates this into the annotated bipartite graph to be-
come the Process-domain annotated graph. The evaluation
in [12] shows that the MD-Miner can determine a part of
unknown domains that has a high probability of being
malicious and demonstrates great identifiability, but there is
still room for further improvement.

Inheriting from our previous research [12], we built a
new scalable network-level behavior system called MD-
Miner” (¥ represents Plus) that is based on the Hadoop and
Spark cluster architecture. The design effectively uses an
incremental clustering algorithm to handle large amounts
of data. The MD-Miner® has evolved unique analytic ca-
pabilities that constantly examine the subtle clues left in
proxy or network traffic logs to discriminate malicious
domains.

Security and Communication Networks

This article demonstrates the steps to convert the MD-
Miner to the MD-Miner” through two key points. First, the
MD-Miner” replaces the annotated bipartite graph with an
interaction profiling bipartite graph that better represents
the association of Internet interactions. Second, the MD-
Miner” exploits more connection factors to construct fea-
tures with classification capabilities. In addition to the user-
agent plus client-IP (Process), the MD-Miner” uses HTTP
requests, domain IP addresses, and domain name lexical
characteristics. The MD-Miner” leverages the user-agent
plus client-IP building Process-domain interaction profiling
graph to acquaint process queries that leverage HT'TP re-
quests to build the Trace-domain interaction profiling graph
and determine the interactions between the client-server.
The system also leverages the IP address of the destination
domain to build the IP-domain interaction profiling graph
to identify corresponding relations of the IP used by the
domain name. The lexical algorithm is also used to extract
variations in the domain string. Finally, these features are
aggregated to frame the malicious domain detector. Related
works and observations related to improvements of the MD-
Miner” are detailed in Section 2.

The evaluation stage in Section 4 uses the CyberGraph
[13] to verify new malicious domains found by the MD-
Miner” in addition to the previously used K-fold cross-
validation. The CyberGraph is a novel potential malicious
domain verification analysis platform that retrieves different
types of observable intelligence from different sources to
produce a series of observations over time. This allows users
to judge threats on the Internet. The CyberGraph is com-
mitted to integrating standardized and structured infor-
mation through a vast and complex network intelligence.

The remainder of this paper is organized as follows.
Section 2 describes the background and the assumptions and
observations of our approach. Section 3 provides imple-
mentation detail of MD-Miner” and formulates the research
contribution. Moreover, our design goals and core concepts
are introduced and a simple example is used to illustrate the
data flow of the framework. Section 4 shows the results from
our evaluation using ISP-confirmed real-world network
traffic to determine the effectiveness of the proposed system.
Finally, a summary of the contributions and future research
developments are presented in Section 5.

2. Background and Related Work

The principles of related techniques used by the MD-Miner"
to generate the domain features are described in this section.
The MD-Miner” has two major evolutions: improvements to
the annotated bipartite graph and additional significant
features. There are different annotated bipartite graphs
imported for feature extraction. In [14, 15], two systems
called Segugio and Doctrina are built from different anno-
tated bipartite graphs with the DNS logs. These systems
extract DNS answer-based features, time-based features,
domain name-based features, and TTL value-based features
of the DNS traffic to detect malicious domain activities. We
used annotated bipartite graphs to develop a system, called
MD-Miner, that monitors the network traffic to build a
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Process-domain annotated graph, as shown in Figure 1, to
represent who is connecting to what [12]. The MD-Miner has
abundant DNS logs available and is a scalable architecture.
As shown in Figure 1, there are only malicious, benign, and
unknown labels in the annotated bipartite graph, but the
content of the network traffic log is not as simple as the DNS
log. Therefore, the MD-Miner"” replaces the annotated bi-
partite graph with an interaction profiling bipartite graph,
which is detailed in Section 3 and has experimental results
that show promise for its application.

2.1. User-Agent. The first factor in the network traffic log is
the user-agent in the HTTP header sent along with a request
for an Internet server, which is often but not always sent
from a web browser. The intent is to inform the server of the
capabilities of the software used by the client. The imple-
mentation of a classifier for user-agent strings with support
vector machines is described in [16]. On the other hand, as
mentioned in [12], the text area of a binary-analyzed result
for malware suggests that when the user-agent string is hard-
coded in the malware’s text area, the user-agent and mali-
cious activities have a considerable degree of correlation.
Anomalous user-agent strings were considered in [17] to
determine the association with malware activities. However,
dedicated user-agent strings that define attackers can easily
evade detection by changing their form. Therefore, the MD-
Miner [12] proposed a Process-domain annotated graph that
uses user-agent strings and the client-IP in the network
traffic as a feature to differentiate the network activity that
was emitted from the same process and stores the infor-
mation about who is connecting to what. In this annotated
bipartite graph, the nodes represent either the Process nodes
(p1~p4) or domain nodes (d;~ds), and an edge connects a
Process to a domain if the connection occurred during the
considered traffic observation time window. The classifica-
tion results are used here to construct more effective bi-
partite graphs based on its composition using the factors
described below.

2.2. HTTP Request. The HTTP network traffic contains
significant important information to detect malicious in-
teractions between malware-controlled domains and mal-
ware-compromised machines. HTTP is an application layer
protocol that uses headers to transfer metadata over a client-
server model where the client sends a request to a server,
which responds with the available appropriate resource. The
HTTP requests are important in Internet interactions,
making this the second factor used to extract domain fea-
tures. Many works have confirmed that the vast majority of
malware leverages HI'TP as a communication bridge with a
cybercriminal’s C&C server to perpetrate malicious activities
[18, 19]. Such tricks are not only used in the majority of
SPAM botnets but also operated on the APT [20-25]. In
addition, the malware sample network activity experiments
in [26] indicate that approximately 75% of malware samples
trigger network activities and generate HTTP traffic. A
malware clustering system was introduced in [26] to analyze
the structural similarities between malicious HTTP requests

in network traffic and used the application path and query
string to calculate the distance between malware to clus-
tering malware to obtain its signature. In addition, the HTTP
request contained in the headers includes the path (e.g.,
/path/data) and query (e.g., ¢key = value&key2 = value2) as
ensconced interactive information between the client and
server. References [27, 28] tried to detect malicious phishing
web sites using path and query keywords by comparing the
relevancy of terms within their URLs. One risk level is the
similarity between the path and query terms based on
Google Trend and Yahoo Clue. In studies that use HTTP
protocols to detect suspicious packets [29, 30], the similarity
from the URL path, parameter, and value could identify the
packet as malicious or benign.

The MD-Miner” refers to the Trace-Channel interaction
profiling graph proposed by our previous research on the
CC-Tracker [19], which extends similar observations to [26].
The observation is that different malware samples that rely
on the same web server application have similarly structured
queries and related URL sequences. To reduce the com-
plexity of the computing similarity between HTTP requests,
we simplified the HTTP request as Trace, as shown in
Figure 2. The upper part of Figure 2 shows that the Trace
takes a raw HTTP request of “GET /web page.php?
keyl = valuel &key2 = value2&k3 =v3” as an example, where
m indicates the method to query the URL and p denotes the
queried page. The remaining terms used to query the URL
are n and v, which are after the question mark and are in the
form of a key =value pair, where » indicates the parameter
name of the queried URL and v denotes the parameter. As
the parameter values are relatively easy to change, all pa-
rameter values are replaced with the same symbol, which
ignores the parameter values [19]. Therefore, the original
HTTP request can be simplified to “GET_/web page.php?|
keyl|key2|k3|,” as shown in the lower part of Figure 2.

2.3. IP Address. The Internet protocol (IP) address is a
unique logical digital address assigned to each hardware-
equipped network and is recognized by the other devices
through the IP address. Benign and malicious domains also
have their own IP address and the correspondences are
recorded in the network traffic files. The IP addresses are
more stable than other metrics, such as the URL and DNS.
That is, the domain string can easily change while the IP
address is generally fixed. Cybercrimes create a specific
technique called obfuscation to change the domain name
string, which has been identified and summarized as having
four basic types [31]. In contrast, the IP address holds two
inborn traits that make it more difficult to change: stability
with time and address space skewness [32-34]. If it can be
proven that the IP address used by a domain name d is
positively related to a known malicious activity, then the
domain name may be considered as malicious. Considering
these two characteristics, the Segugio [14] and Doctrina [15]
approaches successfully transformed the correspondence
between the IP and domain names into features to mine for
malicious domain names from the DNS logs. Moreover,
some research used domain IP mapping as a trait to find



FIGURE 1: Process-domain annotated graph.

network threats [35, 36]. While these detection methods can
still be improved, they prove that IP addresses could be an
effective identification factor. The MD-Miner” takes ad-
vantage of the mapping between the domain and IP address
to become the third factor. This approach employs the in-
teraction profiling bipartite graph concept to construct the
IP-domain interaction profiling graph from network traffic
logs to produce effective detection features.

2.4. Lexical Analysis. Manipulating the domain name is
another common practice for cybercrimes. Previous re-
search [37] has shown that nearly one-third of all websites in
the world are potentially malicious. Many malicious URLs
follow obfuscation methods that make the URL strings
similar to benign URLs to avoid detection. However,
studying various detection methods by analyzing the di-
versity of domain strings allows designing effective mali-
cious URL detection solutions [38]. These develop lexical
features that excavate the divergence of URLs by analyzing
the statistical properties of URL strings. The adjective lexical
describes the relation to a vocabulary of words and the
associated lexical analysis is based on the characteristics of
the URL string to determine the lexical features that rep-
resent the features of a URL name. Lexical features refer to
the actual text without other external information of the
URL string. The intention is to make malicious URLs “look”
different to experts when compared with benign ones [27].

Most lexical features commonly used for such classifi-
cations include the statistical properties of the URL string,
like the numerical information regarding the feature lengths
(URL length, top-level domain length, primary domain
length, etc.) and the number of special characters [39]. The
extracted information is obfuscation-resistant and useful.
One lexical analysis approach is called the bag-of-words
(BoW), which builds a dictionary as a feature set by referring
to all the different types of words in all URLs. When a URL
includes a word in the dictionary, the value of the feature is 1;
otherwise, it is 0. The MD-Miner” developed a kind of BoW
approach to adapt to big data and accelerate the computing,
which is described in detail in Section 3.

Due to the lack of scalability of previous research
[26-30], this was restricted to a small amount of material.
Therefore, this paper proposes a MD-Miner” system which is
mainly used to extract hidden malicious threats from long
period and large amount of network traffic logs. Our ap-
proach takes full advantage of the concept that Internet
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FIGURE 2: Common indication to simplify the HTTP request to
Trace.

communications for a specific purpose will invoke similar
interactions. The MD-Miner” uses attributes in the network
traffic log to create representative characteristics for each
domain, which answers four important questions. (1) Who is
connecting what (Process-domain interaction profiling
graph)? (2) How to interact with what (Trace-domain in-
teraction profiling graph)? (3) What domain name used
what IP (IP-domain interaction profiling graph)? (4) What
does it “look” like (lexical analysis)? An exhaustive de-
scription of how to use the unique methodologies proposed
in this paper to establish effective classification features for
each domain is given in the following section.

3. MD-Miner” Implementation

The concept of the MD-Miner” is to track known and
discover unknown malicious network domains, which are
designated as a channel for attackers to perform malicious
acts. Looking at network communications from this per-
spective allows finding similar traces of connections, and the
victim machine generally attempts to connect to malicious
or newly created domains. Therefore, the MD-Miner® is
based on the following main intuitions:

(1) Victim clients tend to connect malicious domain
families.

(2) Malware belonging to the same family tend to
connect to partially overlapping malware-controlled
domains.

(3) Benign applications rarely connect to domains that
exist only to provide malicious functionality.

(4) Cybercriminals prepare multiple malicious domains
to prevent single-point failure.

(5) Malicious domains reuse the same IP addresses.

(6) Domain names with the same purpose often “look
the same.”

To take advantage of these points, we proposed a new
malicious domain detection system called MD-Miner”. The
first part of this section gives a detailed explanation for the
capture of network domain features. The second part
elaborates on the implementation details of the MD-Miner”
based on the MapReduce framework.

3.1. Domain Features. For each domain in the network
traffic, the MD-Miner” creates four feature vectors. Three
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feature vectors are generated based on the interaction pro-
filing bipartite graph, and the other feature vector is generated
based on the lexical analysis. The intuitions described in
Section 2 are used to generate relevant features through the
interaction profiling bipartite graph, as shown in Figure 3.

In the interaction profiling bipartite graph, the domain
represents the node on one side of the binary graph, and the
CF stands for “connection factor,” which is the node on the
other side. The connection factors include the Process, Trace,
and Address used by the domain. The Process indicates the
user-agent plus client-IP, Trace indicates the simplified
HTTP request, and Address indicates the domain IP address.
The MD-Miner” defines three interaction profiling bipartite
graphs using these connection factors, where Gp =(P, D,
Epp) represents the interaction profiling bipartite graph for
Process, Gy = (T, D, Erp) is for Trace, and G4 = (A, D, E,p) is
for Address. Node set D represents the domain nodes with
d; e D, node set P represents the Process nodes with p; € P,
node set T represents the Trace nodes with t; € T, and node
set A represents the Address nodes with a; € A. The edge sets
are called Epp in Gp, Erp in G, and E4p in G,4. The Process p;
connects a domain d; with an edge e;; € Epp, the Trace t;
connects a domain d; with an edge e;; € Erp, and the Address
a; connects a domain d; with an edge e;; € Ep. The features of
different aspects of the network domain can be described
from the interaction profiling bipartite graphs for different
CFs. Communications with the same purposes interact
through similar CFs. For example, the d; and d, conduct
similar communications as shown in Figure 3. Once the
interaction profiling bipartite graph is constructed, the next
step is to extract the domain feature vectors from each graph,
as detailed below.

Each domain name needs to go through three phases to
extract the feature vector by analyzing the interaction
profiling bipartite graph. The first phase is to mark the
domain node, which obtains benign and malicious domain
intelligence (whitelist/blacklist) from a public or private
reputation database. If the domain exists in the whitelist, it is
marked as DomainWhite; if it exists in the blacklist, it is a
known malicious domain and marked as DomainBlack. All
remaining domains are marked as DomainUnknown, which
are the primary targets for further classification to mine
malicious domains that are not recorded in the threat in-
telligence but are actually hidden.

The second phase is to label each CF node as White,
Black, Mix, Unknown, or Leaf. The labeling method is based
on the labeled domain nodes where each CF node is linked.
Three numbers are counted for each CF node, namely,
White,,,,,,, Black,,,, and Unknowng,,,, These are the number
of edges of a CF node connected to different Domain White,
the number of edges for different DomainBlack, and the
number of edges for different DomainUnknown. Each CF
node in the interaction profiling bipartite graph is then
labeled with its own White,,,, Black,,,, and Unknowns,,,.
The labeling method is as follows, where the CF nodes in the
lower part of Figure 4 illustrate the labeling method.

(1) White: White,,, > 0 & Black,,,, =0 (circle)
(2) Black: Blackg,y, > 0 & Blackg,, > Whiteg,,, (cross)

(3) Mix: Blacksum > 0 & Whitey,,, > Black,,, (circle sign
combined with cross)

(4) Unknown: Blacky,,,=0 & Whiteg,,,=0 (question
mark)

(5) Leaf: Connect to a single domain only (triangle)

The third phase is to compute the feature values for each
domain node. Figure 4 shows the interaction profiling bi-
partite graph Gp, where the Process feature values of the
domain node d; are calculated using the Gp as an example.
Five values are counted from the attributes of the labeled
Process nodes to which djs is linked: Sp, Wp, Bp, Mp, and Up,
where Sp is the total number of Process nodes linked to ds;
W is the number of Process nodes linked to d; and labeled as
White; Bp is the number of Process nodes linked to d; and
labeled as Black; Mp is the number of Process nodes linked to
ds and labeled as Mix; and Up is the number of Process nodes
linked to d; and labeled as Unknown. The six following
Process feature values of d; are calculated using the following
formulas.

(1) Fraction of White Process nodes, wp =|Wp|/|Sp|
(2) Fraction of Black Process nodes, bp = |Bp|/|Sp|

(3) Fraction of Mix Process nodes, mp = |Mp|/|Sp|

(4) Fraction of Unknown Process nodes, up = |Up|/|Sp|
(5) Fraction of Leaf Process nodes, Ip = |Lp|/|Sp]|

(6) Fraction of fotal Process nodes, sp = |Sp|

The feature values for d; obtained from the above six
formulas are /6, 2/6, 1/6, 1/6, /6, and 6. Following the same
pattern applied to the interaction profiling bipartite graph Gr
allows using d; to obtain wy, by, my, ur, I, and sy Applying
this to the interaction profiling bipartite graph G, allows using
ds to obtain w, ba, My, ua, la, and s4. All the domain nodes
are assigned their own 18 feature values in the same way.

The lexical features are those acquired based on the
properties of a domain name or string. The motivation is that
the domain-based “appearance” should be able to identify
the malicious nature of a domain. The MD-Miner” directly
uses the BoW model, which loses information on the order
of tokens that belong to the top-level and primary domains.
This is done by creating a separate dictionary for each
fragment. The lexical features also include the statistical
properties of the domain, such as the length of its name and
the number of “.” characters.

3.2. MapReduce Algorithm. The MD-Miner” is based on two
important phases to detect potentially malicious domains, as
shown in Figure 5: domain feature extraction and random
forest classifier. First, the MD-Miner” constructs the domain
node feature vector by taking the network traffic log and
benign\malicious domain intelligence stored in the domain
threat intelligence database as inputs. The domain feature
extraction phase consists of four parts that extract 22 fea-
tures of each domain node: (1) Process, (2) Trace, (3) Address,
and (4) lexical feature extractions. Second, the MD-Miner”
adopts Spark parallel processing to build a random forest
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classifier based on the decision tree model, which is
employed to detect malicious domains.

Parts (1)-(3) of the domain feature extraction are based on
a similar concept of using the interaction profiling bipartite
graph to obtain adjacent information as features. The MD-
Miner” designs four MapReduce jobs to realize feature ex-
traction of the interaction profiling bipartite graph: (1) domain
node labeling, (2) CF node labeling, (3) interaction profiling
bipartite graph building, and (4) behavior feature calculating.
Taking part (1) as an example, the following is a detailed
description of the MapReduce jobs for the Process feature
extraction when the Process nodes are used as CF nodes.

The domain node labeling job first utilizes multiple input
mechanisms of the map phases with the network traffic and
whitelist/blacklist as the input and domain as the key.
Parallel label domain nodes are either DB (DomainBlack),
DW (DomainWhite), or DU (DomainUnknown) in the re-
duce phase based on shuffle and sorting mechanisms. An
example of the data flow for domain node labeling is shown
in Figure 6.

The next job after labeling the domain nodes is to label
the CF nodes. As described in Section 3.1, the label of a CF
node is determined from the connected domain nodes. The
five label types are White, Black, Mix, Unknown, and Leaf.
The input to the CF node labeling job is the output of the
domain node label from the previous step. Therefore, the
MapReduce job at this step takes the CF (e.g., Process) node
as the key and the domain node as the value in the map
phase. In the reduce phase, the number of occurrences for
DB, DW, and DU for each CF node are counted and the
corresponding labels are calculated. The Process nodes are
taken as the CF nodes as an example, and Figure 7 shows the
data flow of the labeled CF nodes.

The next job is to build the interaction profiling bipartite
graph to aggregate the labeled domain nodes and labeled CF
nodes into a dataset. In the map phase, the output of the
domain and CF node labeling jobs are taken as the inputs to
use the advantages of multiple input mechanisms with the
identity of the CF (e.g., Process) node as the key. The CF node
labels are annotated for each record to obtain the interaction
profiling bipartite graph in the reduce phase. Figure 8 shows
an example of the data flow to build an interaction profiling
bipartite graph during this job.

The interaction profiling bipartite graph constructed in
the above jobs allows calculating the behavior features for
each domain node. In the map phase, the constructed in-
teraction profiling bipartite graph output from the previous
job is taken as the input, where the domain node is the key.
In the reduce phase, each domain node obtains its neighbor’s
information (labels of CF nodes) through the shuffle and
sorting mechanism. Therefore, the MD-Miner” can compute
the behavior features of each domain node in parallel.
Figure 9 shows an example of the parallel computing be-
havior features in the job.

Parts (2) and (3) can be implemented as similar Map-
Reduce jobs for Grand G,4. The only difference is that Part
(1) uses the Process (user-agent+ client-IP) and domain
nodes to construct the interaction profiling bipartite graph
Gp, Part (2) uses the Trace nodes instead of the Process nodes

to build the interaction profiling bipartite graph Gr, and Part
(3) uses the Address (destination IP address) nodes to replace
the Process nodes and construct the interaction profiling
bipartite graph Ga.

The lexical feature extraction in Part (4) uses distributed
caching mechanisms to store dictionaries for both the
primary and top-level domains and gives each term an index
number. The distributed caching mechanism allows calcu-
lating the lexical features in a single map phase, including the
length of the domain, the number of “.” characters, and the
index numbers of the top-level and main domains.

Once each domain in the dataset has its own 22 feature
values based on the above steps, the MD-Miner” performs
two steps to employ the random forest classifier based on
Spark, which is a unified analytics engine for large-scale data
processing. The first step constructs a classifier RF¢ by taking
all the DB, DW, and their feature values in the dataset as the
training set and inputs them into the random forest algo-
rithm. The second step is to use the classifier RF to identify
all unknown domains labeled as DU in the dataset.

4. Evaluation

The MD-Miner” mines stealthy malicious domains for en-
terprise-scale big network traffic data. Therefore, the MD-
Miner” is deployed for enterprise network environments.
The deployed network environments are called ENTy; and
ENTy,, which are both real-world companies based in
Taiwan with thousands of networked clients that install and
run antivirus software. The ENTy; is a medium-scale
company and its compliance with security management
rules is relatively relaxed. The organization’s network traffic
was collected for 8 months (Jan 1, 2018, to Aug 31, 2018). The
ENT\y; is a large-scale company that follows strict security
and information management regulations with a collected
network traffic period of 2 weeks (Aug 1, 2018, to Aug 15,
2018). Table 1 gives further details for both datasets.

The experiment presented in this paper is based on the
two large network traffic datasets ENTy; and ENTy, and
evaluates the overall performance of the MD-Miner” from
three perspectives. First, k-fold cross-validation was
employed to evaluate the classification capabilities of MD-
Miner”. Second, the actual instances demonstrate the ability
of MD-Miner” to mine hidden malicious domains. Finally,
the ability of MD-Miner” to handle big data is demonstrated
by adjusting the number of nodes in the parallel computing
cluster and observing its operational performance.

To perform the k-fold cross-validation, we begin by
marking all the known samples in the dataset as n (negative)
or p (positive), where n is interpreted as benign and p is
interpreted as malicious. A prediction result produced from
classifying a sample with the model is divided into four
types. First, true positive (TP) indicates the result of the
classifier to predict the sample is p when it is; second, false
positive (FP) indicates the result of the classifier predicts the
sample is p when it is #; third, true negative (TN) indicates
the result when the classifier predicts the sample is # when it
is; and fourth, false negative (FN) indicates the result when
the classifier predicts the sample is # when it is p.
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Figure 7: Illustration of the Process node labeling for the Map-
Reduce job.

The above description indicates that the first step to
prepare the benchmark is to label the ENTy; and ENTyp
datasets. Labeling DW required employing commercial and
public intelligence as whitelists, such as Bluecoat, and the
collection of the top 1 million most famous domain names
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from alexa.com. Labeling the DB data required checking if
the entire domain name string matches an existing domain
from a commercial domain blacklist. When the tagged
datasets (ENTy; and ENTy,) are ready, we can generate
evaluation criteria for different feature vectors. To conduct a
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TaBLE 1: Attributes of the experimental datasets.

Size (GB) No of Client-IPs No of destination domains No of HTTP requests
ENTyn; 34.2 2,336 4,912,810 230,350,760
ENTy» 172.7 13,829 11,946,898 442,036,055

comprehensive evaluation, different metrics are needed:
precision, recall, F-measure, accuracy, and AUC. Further-
more, each metric is calculated through a cross-validation
process.

The k-fold cross-validation is a resampling procedure
used to evaluate machine learning models for limited data
samples. The original samples are randomly divided into k
equally sized subsamples, where a single subsample is
retained as the data for the validation model, while the other
k-1 subsamples are used to train the model. The cross-
validation process is then repeated k times (called folds),
with each k subsample being used only once as the verifi-
cation data. The results of the k-folds can then be averaged to
produce a single estimate. The advantage of the k-fold cross-
validation process is that each data sample only needs to be
tested once and used to train k-1 times [40]. This paper
adopts the 10-fold cross-validation procedure.

4.1. 10-Fold Cross-Validation for MD-Miner”. The first ex-
periment deployed MD-Miner” to the real-world ENTy; and
ENTy, datasets and determined their 10-fold cross-valida-
tion results. The MD-Miner” constructed three interaction
profiling bipartite graphs (Gp, G1, and G4) by applying the
feature extraction method described in Section 3. The three
feature vectors were then generated using Gp, G, and Gy;
each feature vector contained six feature values. Moreover,
we used the proposed lexical analysis method to generate the
fourth feature vector that contains four feature values. In
addition, a feature vector containing 22 feature values was
generated by merging the above four feature vectors. The
performance of each feature vector was confirmed by ob-
serving the classification results calculated by different
metrics as shown in Table 2. In addition, we used the ROC
curve to show the ability of the classification model to all
classification thresholds as shown in 10 and 11

The above experimental results show that when the MD-
Miner® was deployed to the ENTy; dataset, the Address
feature vector performed the best, which the AUC and
F-measure were as high as 0.99. Although the AUC of the
other three feature vectors is greater than 0.8, the recall
metric is low, indicating that these features are only ap-
plicable to partial data. However, combining feature vectors
can improve the overall ability of classification. When MD-
Miner* was deployed in ENTy, dataset, the characteristic of
combining features resulted in a more significant increase in
overall classification capacity. Since ENTy, belongs to a
relatively diversified dataset, the recall value of general
feature vectors is low. However, by combining the feature
vectors, the recall can be significantly improved. Further-
more, in both the ENTy; or ENTy, datasets, the AUCs of the
feature vectors that combined the other four were above
0.98, which indicates outstanding discrimination.

4.2. Interaction Profiling Bipartite Graph versus Annotated
Bipartite Graph. The second experiment was to prove that the
interaction profiling bipartite graph leveraged here is better
than the annotated bipartite graph adopted in previous studies
[12, 14, 15], which are compared in Figure 12. The annotated
bipartite graph only considers the benign and malicious at-
tributes of the connected domain when extracting features, as
described in Section 3. The interaction profiling bipartite graph
further considers additional aspects, such as outlier domains.
Therefore, for the same CF, the annotated bipartite graph
exports three feature values, while the interaction profiling
bipartite graph brings out six feature values.

The experiment also utilized the ENTy; and ENTy;
datasets. The annotated and interaction profiling bipartite
graphs were formed using the same datasets and the same CF
(selected from Process, Trace, and Address) to generate three
feature vectors, which were combined into a fourth feature
vector. Comparing the 10-fold cross-validation AUCs of the
four feature vectors generated from the annotated bipartite
graph and interaction profiling bipartite graph shows which
bipartite graph had a better recognition effect. It is noted that
the lexical feature vector is not included in the experiment
because it only compares two bipartite graphs. The imple-
mentation of the annotated bipartite graph is based on
previous studies [12, 14, 15], and the interaction profiling
bipartite graph is defined in Section 3.

Figures 13-16 are the results of experiments based on the
ENTYy; dataset. Figure 13 shows that, for the Process CF, the
annotated bipartite graph had an AUC of 0.85 and the
interaction profiling bipartite graph had an AUC of 0.85.
Figure 14 shows that, for the Trace CF, the annotated bi-
partite graph had an AUC of 0.74 and the interaction
profiling bipartite graph had an AUC of 0.80. Figure 15
shows that, for the Address CF, the annotated bipartite graph
had an AUC of 0.62 and the interaction profiling bipartite
graph had an AUC of 1.00. Figure 16 shows the experiment
that combined the feature values generated by the Process,
Trace, and Address CFs gave AUCs for the annotated bi-
partite graph and interaction profiling bipartite graph of 0.94
and 1.00, respectively.

Figures 17-20 are the results of experiments based on
the ENTy, dataset. Figure 17 shows that, for the Process
CF, the annotated bipartite graph had an AUC of 0.79 and
the interaction profiling bipartite graph had an AUC of
0.97. Figure 18 shows that, for the Trace CF, the annotated
bipartite graph had an AUC of 0.54 and the interaction
profiling bipartite graph had an AUC of 0.75. Figure 19
shows that, for the Address CF, the annotated bipartite graph
had an AUC of 0.68 and the interaction profiling bipartite
graph had an AUC of 0.96. Figure 20 shows the experiment
that combined the feature values generated from the Process,
Trace, and Address CFs. The annotated and interaction
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TaBLE 2: Cross-validation results of MD-Miner® for different feature vectors of ENTy; and ENTyp.

Dataset Feature vectors Precision (%) Recall (%) F-measure (%) Accuracy (%) AUC (%)
Process feature 97.42 28.41 43.96 95.42 83.93
Address feature 100.00 99.72 99.86 99.98 99.97

ENTy; Trace feature 97.35 21.27 34.88 94.98 79.61
Lexical feature 64.57 20.20 30.54 94.23 85.89
Merged feature 100.00 99.85 99.92 99.99 99.97
Process feature 63.19 10.85 17.74 99.82 96.88
Address feature 100.00 48.05 63.60 99.90 95.86

ENTy» Trace feature 84.44 28.90 42.70 99.86 75.29
Lexical feature 85.83 12.67 21.45 99.83 71.29
Merged feature 94.04 64.38 75.28 99.93 97.34
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FiGure 10: lustration of the ROC curves for the five feature vectors generated from the ENTy; dataset.

profiling bipartite graphs had AUCs of 0.83 and 0.95, re-
spectively. Table 3 summarizes the AUC value of the feature
vector generated by the annotated bipartite graph and in-
teraction profiling bipartite graph in respect of classification
assessment, which is used to evaluate the ability of
classification.

The experiments in this section show that the data for the
proposed interaction profiling bipartite graph are superior to
the annotated bipartite graph in either deployed network
environments of ENTy; or ENTyp.

4.3. Identified Malicious Domain Analysis. This section
demonstrates the effectiveness of the MD-Miner” at mining
potentially malicious domains. With unknown domains in
the ENT, dataset as the objects for detection, Table 4 shows
the top 10 domains with the highest malicious probability as
detected with the MD-Miner”. These 10 domains were an-
alyzed using the VirusTotal, and four were identified as
malicious while the remaining six were classified as clean.
Due to the limited space for digital forensics content of the
domain name “folder[.]maroon9l[.]Jcom,” this section
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describes the digital forensics as an example. The evidence to
classify the domain as malicious is collected from external
threat intelligence, including the file communication records
and passive DNS records, and the relationship graph regarding
the domain based on the collected information is created.

The relationship graph of the domain “folder[.Jmaroon91
[.Jcom” is constructed using CyberGraph [13], as shown in
Figure 21. The figure shows the direct and indirect rela-
tionship between the domain and malicious files, malicious
IP, and malicious domains. The domain “folder[.]maroon91
[.Jcom” is not a malicious site in VirusTotal, but the malicious
files are directly connected to the domain. The domain is then
resolved as “221[.]228[.]214[.]69,” “58[.]215[.]186].]83,” “118
[.]193[.]145[.]130,” and “118[.]193[.]187[.]35.” The records of
these IP addresses that communicate with malicious files are
observed from the graph. Moreover, the domains “dscl.]
maroon9l[.Jcom,” “app[.]Jmaroon9l[.Jcom,” “usjzx[.Jma-
roon9l[.Jcom,” “upgrade[.]Jmaroon9l[.Jcom,” and “folderhw
[.]Jmaroon91[.]Jcom” were discovered to communicate with
the malicious files, which have a domain sibling relationship
with each other. A series of outward relationships helped
identify the domain “folder[.Jmaroon9l[.]Jcom” as malicious.
As a consequence, this section demonstrates that the MD-
Miner” can detect malicious domains that are not recognized
by other reputable intelligence systems.

4.4. Performance Evaluation. From a complexity theory
viewpoint, the MapReduce framework is unique in that it
combines bounds on time, space, and communication. Each
of these bounds would be very weak on its own: the total
time available to processors is polynomial; the total space
and communication are slightly less than quadratic. In
particular, even though arranging the communication be-
tween processors is one of the most difficult parts of de-
signing a MapReduce algorithm, classical results from
communication complexity do not apply since the total
communication available is more than linear [41]. Therefore,
we use fixed dataset to measure the execution performance
and scalability of MapReduce through the execution time of
different cluster sizes.

The performance and scalability of the MD-Miner” are
verified by adjusting the number of nodes in the Hadoop
cluster, which were two, four, and six. Each node had 24
CPUs (each is an Intel (R) Xeon (R) CPU E5-2620 2.00 GHz
processor) with 32GB of RAM. The dataset used as a
benchmark to analyze the MD-Miner” runtime is the ENTx;»
dataset described in Table 1, which is sized at 172.7 GB.

The flow of the MD-Miner” can be divided into three
parts: data preprocessing, feature extraction, and domain
classification. The feature extraction stage of the MD-Miner"
can be classified into two parts: interaction profiling bipartite
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B U Total
three features [1/6] [5/6][6]

Annotated bipartite graph

Unknown Black Unknown Unknown Unknown Unknown Unknown

VS.

Interaction profiling bipartite graph B W M U LTotal

six features [2/6][1/6][1/6][1/6][1/6][6]

Black Black Mix Leaf White Unknown Leaf

FIGURre 12: Difference between feature extractions for the annotated and interaction profiling bipartite graphs.
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TasLE 3: Comparison of AUC values generated by annotated bipartite graph and interaction profiling bipartite graph in classification

evaluation.
Dataset Feature vectors Interaction profiling bipartite graph (AUC) (%) Annotated bipartite graph (AUC) (%)
Process feature 84.93 85.17
ENT Address feature 99.97 62.01
N Trace feature 79.61 74.37
Merged feature 99.97 96.31
Process feature 96.88 79.87
ENT Address feature 95.86 68.84
N2 Trace feature 75.29 54.69
Merged feature 95.34 83.55
TaBLE 4: Top 10 detected malicious domains with higher detected probability.
Domain Detection probability Detection rate of VirusTotal

grjxr.snap-affairs.com
Mdaka.fbhookup.club
Adserver-g.juicyads.com
app4.getmacsoft.site
nofreezingmac.click
WWW.por.tw
extcoolff.com
urlspirit.spiritsoft.cn
bakl1.spiritsoft.cn
folder.maroon91.com

0.994728257
0.99454585
0.993425958
0.991589101
0.991547806
0.985447549
0.984869145
0.981827519
0.981827519
0.981491668

0/67
0/67
0/67
0/67
2/67
1/67
0/67
1/67
1/67
0/67
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FIGURE 21: An example of the domain relation graph constructed from external threat intelligence.
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FIGURE 22: Runtime analysis of the MD-Miner”.

graph mining and lexical feature extraction. The MD-Miner”
designed four MapReduce jobs to accomplish the interaction
profiling bipartite graph mining: (1) domain node labeling,
(2) CF node labeling, (3) interaction profiling bipartite graph
building, and (4) behavior feature calculation. The lexical
feature extraction can be divided into three MapReduce jobs:
(1) creation of primary domain dictionary, (2) creation of

top-level domain dictionary, and (3) calculation of lexical
features. On the other hand, both the data preprocess stage
and domain classification stage have only one MapReduce
job. Figure 22 shows the runtime analysis of the MD-Miner”.
We observe that the data preprocess stage and the domain
node labeling of the feature extraction are the primary
bottleneck of the MD-Miner” process. As the above two jobs
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mainly involve I/O operations, the I/O is the primary
performance bottleneck in processing the massive data.
However, with an increased number of nodes, the com-
putation time of the data preprocess stage and domain node
labeling decreases substantially. The experiments show that
the MD-Miner" tends to possess a superior scalability for the
MapReduce.

5. Conclusions

This paper proposes a malicious domain detection system
based on a novel bipartite graph called MD-Miner”. The in-
teraction profiling bipartite graphs and lexical analysis adopted
by the MD-Miner” can handle big data. The mining of un-
known malicious domains is accomplished by analyzing net-
work interaction behaviors between clients and domains in big
network traffic data. The MD-Miner" is designed as a scalable
system to monitor and analyze big network traffic data to find
illegal network activities. Two big network traffic datasets
(ENTy; and ENTyp), three validation aspects, and four ex-
periments were proposed to inspect the performance of MD-
Miner”. The experiments used ROC curves and 10-fold cross-
validation with known domains. The experimental results
confirm that the feature extraction method proposed by MD-
Miner” as applied to ENTy; obtained an AUC of 1.00 and
applied to the ENTy;, obtained an AUC of 0.98. The experi-
mental results of the direct comparison showed that the feature
vectors extracted from the interaction profiling bipartite graph
are superior to the annotated bipartite graph for both the single
and merged feature vectors. In addition, verifying the unknown
domain predicted as malicious by the MD-Miner” allows the
verification method to shape the relationship diagram of the
domain. The relationship diagram shows that the domain is
directly and indirectly associated with the IP and the domain
with malicious behavior. Finally, controlling the number of
nodes in the Hadoop cluster verifies that the MD-Miner" is a
system that fully satisfies the parallel computing conditions,
even if the enterprise’s network traffic data is large. Therefore,
the MD-Miner” is applied to conduct malicious domain data
mining.

This paper has confirmed the contribution of MD-
Miner”, but it has some limitations. As described in
Section 3, interaction profiling bipartite graph requires
domain threat intelligence to label known domain nodes as
black and white. Therefore, the quality and quantity of
ground truth affect the performance of MD-Miner’.
Fortunately, collecting public and commercial domain
intelligence can effectively overcome this problem. In
addition, MD-Miner” may not be suitable for DHCP
network environment. This is because the proposed bi-
partite graph uses client-IP to locate individual hosts, and
DHCP may cause different hosts to be assigned to the same
IP. The solution to this challenge is to correlate DHCP logs
with network traffic data to obtain the network behavior of
each individual host. The final challenge is that MD-Miner”
needs to be retrained periodically to maintain detection
accuracy. As cybercriminals’ technology is constantly
evolving, it is necessary to regularly employ MD-Miner"
and through the latest network traffic data and network

Security and Communication Networks

threat intelligence to obtain updated domain classification
model.

Future work will focus on two areas. First, for detecting
malicious domain from big network traffic data, it will be
considered whether this approach applies to other large log
data, such as firewall and DNS logs. Furthermore, the
proposed bipartite graph algorithm can be used to perform
correlation analysis for multiple types of network traffic logs
to optimize the detection capability. Second, the proposed
algorithm is applied to the analysis of other malicious
threats. For example, treat the smartphone application’s
dynamic analysis data (e.g., system call) and static analysis
data (e.g., opcode) as CF, and match the threat intelligence of
applications to build the interaction profiling bipartite graph
of applications to mine hidden malicious applications. In
addition, the MD-Miner” mechanism can be used as the
basis for a bilateral market service model [42] to collect
malicious traffic. We have provided a website, https://
netflowtotal.firebaseapp.com/, to prove this concept [43].
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The weakness of the security measures implemented on IoT devices, added to the sensitivity of the data that they handle, has
created an attractive environment for cybercriminals to carry out attacks. To do so, they develop malware to compromise devices
and control them. The study of malware samples is a crucial task in order to gain information on how to protect these devices, but
it is impossible to manually do this due to the immense number of existing samples. Moreover, in the 10T, coexist multiple
hardware architectures, such as ARM, PowerPC, MIPS, Intel 8086, or x64-86, which enlarges even more the quantity of malicious
software. In this article, a modular solution to automatically analyze IoT malware samples from these architectures is proposed. In
addition, the proposal is subjected to evaluation, analyzing a testbed of 1500 malware samples, proving that it is an effective

approach to rapidly examining malicious software compiled for any architecture.

1. Introduction

The appearance of the Internet of Things (IoT) has greatly
improved the application of technology in the everyday lives
of people. Years ago, digital interaction between an indi-
vidual and technology was in general only through a
computer. With the development of smartphones, that
communication became a more mobile, personal, and
continuous task. And then, the IoT appeared to change all
the previous concepts and insert technology into almost
every imaginable object. Smart houses, eHealth, or smart
cities are just a few examples of contexts that have their
origin in the application of the IoT. Thus, not only has it
helped to complement existing scenarios but it has also given
rise to the ones in which technology is applied.

As a consequence, the volume of data that is now dig-
itally handled has vastly increased as well. However, al-
though the emergence of the IoT has clearly benefited
people, the same positive verdict cannot be passed when
speaking of the security measures implemented on the
devices. Unfortunately, developers opted to prioritize

usability over security, especially during the IoT’s concep-
tion, when the thought of someone compromising an entire
network by simply attacking a switch was unthinkable.

Therefore, there was a huge underestimation of the
requirements that these devices and the information that
they handle demand. Nowadays, this issue is being ac-
knowledged, and companies are working on improving
the protection, but they are still quite vulnerable, added to
the fact that a great number of old devices is still being
used. This makes the IoT the perfect environment for
cybercriminals to operate in. They can gain access to very
sensitive and valuable information with little effort. Re-
cent studies [1] show the magnitude of the problem. Only
in the first quarter of 2019, a hundred million attacks were
detected on smart devices, a figure seven times greater
than the number found in 2018. Unsurprisingly, the Mirai
malware family was behind 39% of them, taking advantage
of old devices with unpatched vulnerabilities. Another
sample which exploits a trivial attack, namely, the brute-
force, Nyadrop, closely followed Mirai and reached a
percentage of 38.57%.
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These attacks were the result of poorly designed security
measures on the devices and could have been easily miti-
gated by just changing the default user and password of the
device for a more secure one. Instead, they ended up af-
fecting companies such as Twitter, Amazon, Spotify, and
Netflix, costing them millions of dollars and affecting their
customer's trust [2].

As mentioned above, most IoT attacks do not have their
origin in new malware samples, but are based on previous
ones that were successful. New versions of old attacks appear
every day with minor modifications, but the way they work
remains almost identical. Having information about how a
sample interacts with the compromised device, and what
actions it carries out, allows investigators to protect the
device or, at least, limit its expansion over the network. For
this reason, the ability to identify which malware samples are
alike, that is, those that belong to the same family, can have a
huge impact when determining what actions to be taken in
order to reduce the impact of a cyberincident.

In addition, besides the existence of multiple operating
systems, there are also several architectures used by IoT devices,
such as ARM, PowerPC, MIPS, and x86. With the aim of
expanding the range over which cybercriminals can carry out
their attacks, they develop samples for more than one. This
means that numerous pieces of malware have their origin in a
sample, and then it is adapted to work on other architectures.
Consequently, its behaviour remains similar, with only its
structure varying in order to be compatible with them. This
allows the malware analyst to analyze malware families inde-
pendently of the architecture for which the sample was designed.

This analysis is neither a trivial task nor a speedy one. The
number of existing samples, added to the appearance of new
ones almost every minute, makes it impossible for an in-
vestigator to study all of them. Therefore, it is necessary to
develop automatic solutions, such as architectures or
frameworks, which can speed up the process and be able to
examine multiple samples at once. In order to achieve that, a
change of approach is needed: instead of focusing on the
features that differentiate a sample, now it is mandatory to
determine which characteristics allow a piece of malware to
be grouped with another, as well as selecting the ones that
can be collected and interpreted automatically.

Therefore, the contributions of this study are as follows:

We study the current state of malware analysis, fo-
cusing on the development of automatic solutions to
perform examinations

We present a series of static and dynamic character-
istics that are useful to automatically categorize mal-
ware samples

We propose a modular framework for the automatic
analysis and clustering of malware samples from the
most widely used architectures, based on the evaluation
of their static and dynamic features

We evaluate the proposal with a testbed of nearly 1,500
pieces of malware, confirming its usefulness when
analyzing and clustering samples from different IoT
architectures
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The rest of the paper is organized as follows. Section 2
describes the IoT's architecture, its malware threats, and how
to obtain useful characteristics from them. An architecture
to automatically cluster malware samples from different IoT
architectures is presented in Section 3. An evaluation of the
proposal through the analysis of 1500 malware samples is
carried out in Section 4. Finally, our conclusions are pre-
sented in Section 5.

2. Background

As discussed in the previous section, the IoT environment is
the perfect target for cybercriminals to attack. This section
presents the problem related to the large number of devices
with different architectures connected to the Internet, lists
the reasons for the rise of IoT security threats, and defines the
concepts of malware analysis and characterization. Then, the
Service-Oriented Architecture (SOA) software paradigm
used in the design of the framework is introduced. In ad-
dition, we present a review of the proposals from the re-
search community in regard to this paper.

2.1. The IoT Environment. The IoT allows developers to
model use cases that in the past were not feasible due to the
specific limitations of traditional client-server architectures:
resource centralization, expensive devices, and high laten-
cies, among others. The IoT environment creates room for
new contexts such as Industry 4.0 [3] and smart homes [4].
Its structure can be divided into three fundamental building
blocks: the Cloud Layer, the Network Layer, and the Devices
Layer. Figure 1 shows the hierarchy formed by these layers.
Frequently, end devices interact with other IoT devices as
well as with large data centers in the cloud layer to carry out
the tasks (sometimes computationally intensive ones)
assigned to these end devices. Accordingly, more and more
end devices are exposed to the Internet every day, so it is
important to adopt appropriate security measures if we do
not want to expose our end devices to external attackers.

Another main problem of the IoT environment is the
considerable heterogeneity of the devices that comprise it.
Although it is important to define security, analysis, and
clustering mechanisms against malware layer by layer, our
work focuses on the constrained-resource devices of the
device layer. These devices are built with different hardware
specifications and run different operating systems. One of
the most significant specifications is the processor archi-
tecture used by such devices. Each processor and its in-
struction set are designed in a specific way. For example,
ARM is a more energy-usage-concerned architecture than
x86-64. In our case, the proposed framework focuses spe-
cifically on modelling Intel 80386, x86-64, MIPS, ARM, and
PowerPC architectures.

2.2. Threats. By scrutinizing the aforementioned recent
studies focused on evaluating new trends in IoT malware,
adrop in the number of attacks via Telnet can be observed
for the second quarter of 2019. Now, the value almost
reaches 60%, 20% less than in the previous one. This
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statistic can be seen as an encouraging one if we deduce
that the decrease was due to developers no longer using
that service, which is well-known to be deprecated and
unsafe. The most worrisome data are that there are few
changes in the most common malware families with
respect to previous years, meaning that old attacks are
still being successful. In addition, the number of malware
samples is still growing and expanding into more areas
[1]. Some of the main causes of the rapid growth in
cybercrime in the IoT are the following:

Number of connected devices: during the year 2020,
this figure is forecasted to reach 20.4 billion [5], with 5.8
billion of them being used in the enterprise and au-
tomotive market [6]. This means that there are more
IoT devices than conventional ones, e.g., smartphones
or computers. Therefore, it is preferable for cybercri-
minals to perform large-scale attacks in this environ-
ment rather than in the traditional one, as they can
target more victims.

Implemented security measures: as briefly mentioned
above, IoT devices can be easily compromised by
carrying out simple brute-force or dictionary attacks.
This is mainly due to the usage of weak default login
credentials. Although it may seem Iludicrous, the
combination of user and password such as “admin-
admin” or “admin-1234” is not that uncommon.

Data handled: the application of the IoT has led to the
generation of data that previously did not exist or only
did so in a smaller quantity. eHealth is a good example
of this circumstance: metrics such as heart rate, blood
pressure, or oxygen levels were only stored in special
facilities such as hospitals or medical centers and were
only available to restricted personnel. Nowadays, these

data are also measured and stored by smart watches or
smart bracelets that are connected to the cloud and
create personal profiles for each user.

Limited computational capacity of the devices: this
makes them easy to crash, which is quite convenient
when a cybercriminal wants to perform a DoS (Denial
of Service) attack. The number of petitions that can be
handled by these devices is far more limited than in
conventional ones. In addition, it hinders the task of
using antiviruses or cryptography algorithms, since the
current versions are only supported by more powerful
devices.

2.3. Malware Characterization. Characterization can be
explained as a process in which a set of features are
extracted from someone or something. This makes it
possible to describe each item in an unambiguous way.
Thus, malware characterization is the process of identi-
fying and extracting these features from each malicious
sample. In this field, the characteristics are divided into
the following categories:

Static features: here, the focus is on the analysis of the
intrinsic characteristics of a binary file without exe-
cuting its code in the system. Information such as the
strings that appear in it, its sections, architecture,
opcodes, cyclomatic complexity, or entropy belongs to
this category. The main advantage is that static char-
acteristics are quick to extract automatically. On the
other hand, the usefulness of the features may be af-
fected if the sample is packed or obfuscated (i.e., dis-
assembly code and strings).

Dynamic features: here, the target is the analysis of the
behavior of the sample at runtime by monitoring the
different actions that it carries out in the system. The
data are extracted from the communication that the
malware performs through the network and its inter-
action with the system, such as system calls or open
files, among others. One of its disadvantages is that only
characteristics of the executed portions of code are
captured, so the criminals include monitoring detec-
tion techniques that prevent the sample from executing
entirely. In addition, the extraction of dynamic features
is more time consuming than the retrieval of static
features due to the fact that the sample must be exe-
cuted for a short period of time.

2.4. SOA. SOA is a software design paradigm in which
modules work as independent services providing a specific
interface to be called upon. They communicate through an
Enterprise Service Bus (ESB) which is formed of one or
several protocols, allowing the addition of services with little
effort. In order to call each service when it is needed, an
orchestration process is used [7]. Under this scheme, it is
possible to add new components or new protocols. In ad-
dition, this architecture allows the easy integration of
multiple SOA-based applications.



2.5. Related Work. As far as the authors are aware, there are no
approaches available in the literature that jointly tackle the task
of analyzing large numbers of malware samples specifically
designed for the IoT and that of classifying or clustering them.
On the contrary, most of the approaches try to describe specific
malware samples or families, as mentioned in Section 2.5.1. In
terms of automatically analyzing a great number of malware
samples, there are some articles, but they focus only on Linux-
based operating systems for x86 architectures, as is shown in
Section 2.5.2. Finally, Section 2.5.3 covers approaches focused
on classifying IoT malware, but these do not take into account
all IoT architectures or families and neither do they study both
static and dynamic features.

2.5.1. Malware Survey. Pa et al [8] presented a Telnet
honeypot for different IoT architectures. They conducted a
study of the malware that was aimed at this service, showing
the problem that it suffers from when it is accessible from the
Internet. The authors also presented the first sandbox that
supported different architectures and executed the binaries
and commands received through their honeypot.

Cozzi et al. [9] presented a complete malware study
aimed at Linux-based operating systems. They statically and
dynamically analyzed more than 10,000 samples distributed
among the main architectures, namely, ARM, PowerPC, and
MIPS, among others. They presented the main techniques
used by malware and numerically expressed their use in the
samples that made up their dataset. To carry out their
analysis, they introduced the first malware analysis frame-
work aimed at analyzing Linux-based malware.

Costin et al. [10] introduced a study of 60 families of IoT
malware. The authors studied the timeline of events related
to each family as well as the most relevant vulnerabilities
used by them. For the dynamic analysis, the authors pre-
sented a sandbox compatible with the main IoT architectures
based on the open source project Cuckoo Box [11].

2.5.2. Linux-Based Sandbox. Limon [12] is a sandbox for
analyzing Linux-based malware. It collects calls to the op-
erating system as well as capturing network traffic. Its main
problem is that it only supports binary analysis in x86 ar-
chitectures, and the operating system used to perform dy-
namic analysis is based on Ubuntu, which is not a very
common operating system in the IoT. Similar problems are
present in Detux [13], which, although it supports five ar-
chitectures, is based on the Debian operating system. Detux
only performs basic static analysis and network analysis,
ignoring malware behavior within the operating system.

Chang et al. [14] proposed a sandbox for analyzing
malware samples in the IoT. It is able to collect network
packages and malware behavior in the system. To test the
functionality of their sandbox, they experimented with the
Zollard botnet.

2.5.3. Classification. Nghi Phu et al. [15] presented a
framework for analyzing and classifying malware in the IoT.
Their framework supports the MIPS architecture and
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extracts features related to malware interaction with the
system in order to train a machine learning model.

Alhanahnah et al. [16] suggested a new approach to
classifying IoT malware compiled for different architectures.
Its method is based on generating signatures at a high level
since these are more robust and vary less between
architectures.

Su et al. [17] introduced a method for malware classi-
fication in IoT environments. It is based on converting
malware into an image and a convolutional neural network
for classification. It is able to classify a sample into malware
or goodware and recognizes two malware families: Mirai and
Gafgyt.

Kumar et al. [18] proposed a new approach to differ-
entiate between malicious and benign applications based on
a ranking of permissions used in Android IoT devices. Their
methodology included an improvement on the random
forest algorithm, achieving an increase in the accuracy of
malware detection.

Lei et al. [19] presented a system for malware detection
on Android-based IoT devices. They proposed the use of
event groups instead of API calls to capture malware be-
haviour at a higher level than in API level. They trained and
evaluated their system with a dataset of around 15,000 and
29,000 benign and malicious Android apps, respectively.

3. Proposed Architecture

This section describes the proposed SOA-based modular
framework for analyzing and classifying malware samples
from different IoT architectures. It consists of six modules
which are invoked as services by the orchestrator of the
system, which is responsible for using each module and
processing the information extracted in each of the stages.
Due to its modular structure, each of the modules that make
up the system can be used independently (i.e., deploying a
virtual machine to execute commands from a honeypot or
even for adding new components). These services use our
Enterprise Service Bus (ESB), which allows us to integrate
any new component easily. Figure 2 shows a global view of
our architecture.

3.1. System Overview. The system uses an executable file
from any of the architectures supported as input, analyzes it,
and produces a cluster based on the similarity that it has with
other previously examined files as output. Although the
proposal is designed for malware analysis purposes, it is valid
for clustering other types of executables. The following
sections describe in detail the modules of which our system
is composed.

3.2. The Orchestrator. This is the main module of the system
and the one in charge of making the pipeline that inter-
connects the rest of the modules. Once it obtains a sample, it
uses the static analysis module to obtain the information
necessary to continue with the next phase. Then, it uses the
deployment module to check whether the architecture of the
analyzed file is supported, that is, whether there is a virtual
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FIGURE 2: The proposed architecture for the analysis and clustering of IoT malware.

machine that supports that architecture, and if it is, it starts
the virtual machine instance.

Once the virtual machine is on, it connects to it through
the connectivity module and then proceeds with dynamic
analysis, executing the file with the monitoring tool indi-
cated in the configuration files. Then, the file is executed for a
certain time which is indicated through the configuration
commands of the framework. Once that timeout has elapsed,
it obtains the result in the form of execution traces, destroys
the virtual machine, and recovers the previous snapshot of
the machine.

Finally, it calculates the similarity with other analyzed
samples and adds it to the corresponding cluster if the
similarity index is greater than the established threshold. The
sample will be added to the cluster in which the most similar
sample is located. If the threshold is not reached, a new
cluster will be created to include the analyzed file.

Additionally, if the display parameter is active, it will
calculate the similarity between all the samples and generate
a graph connecting all of them.

3.3. Static Analysis. This module is responsible for obtaining
and parsing the Executable Linkable Format (ELF) files. It is
built upon radare2 [20], a reverse engineering suite, and
automates the process of obtaining information contained in
the headers of the ELF files, as well as data regarding their
sections. The static analysis module collects the following
information.

Information file: characteristics of the headers of the
executable file, such as architecture, whether the binary has

been stripped of the symbols or not, and whether it was
compiled with static or dynamic libraries.

Entropy: this measures the lack of predictability of a
data set. In binary analysis, a high entropy value in-
dicates that the sample is obfuscated or packed.

Cyclomatic complexity: this is a metric used in software
engineering to calculate, in a quantitative way, the
complexity at a logical level of a program or function
[21]. Cyclomatic complexity is calculated for each of the
functions found in the disassembled code.

Opcodes: the sequence of operation codes (opcodes) of
all the functions present in the disassembly of the
program are extracted and stored.

Libraries: the name of the shared libraries used by the
program.

Sections: the sections into which the executable is di-
vided are extracted, also determining their permissions
and entropy.

Functions: the name of the functions imported from
the libraries and used by the program.

Strings: all text strings present in the sample.
Hash: the hash to uniquely identify the executable.

3.4. Deployment Module. This module is responsible for
starting the virtual machine, shutting it down, or restarting
it. Its input is the architecture for which the malware was
developed, which is searched for in the library in order to
determine whether it can be emulated or not. It uses libvirt



[22] to manage the virtualization platforms and the QEMU
[23] emulator as hardware virtualizer. To emulate an ar-
chitecture, it has to be supported by QEMU, and a guest
domain in an eXtensible Markup Language (XML) must be
defined. This file contains the configuration of the machine
in libvirt, that is, its storage, CPU architecture, kernel image,
and network properties. Once the machine has been started,
the module returns a handler, which allows you to shut
down or restart the machine as well as to see which machines
are currently active. Finally, when a machine is stopped, a
previous snapshot of the machine is recovered in order to
have a malware-free image for the next analysis. In this way,
this module provides the flexibility to add user-defined
virtual machines and uses them in our framework.

3.5. Connectivity and Dynamic Analysis. This is the module
responsible for establishing connection with the virtual
machine. It allows the upload and download of files through
the Secure Copy Protocol (SCP) and the execution of
commands through the Secure SHell (SSH). It provides the
flexibility to upload any file type and execute commands in
the virtual machine. For example, it can upload an exe-
cutable file or script and use any type of monitoring tool
available in the virtual machine for extracting information
about its behavior, such as strace [24] or systemtap [25].
Finally, download the monitored traces and parses the
collected data. The parsing function is responsible for
extracting the executed syscalls from the execution traces as
well as their parameters and results. Table 1 shows an ex-
ample of a run sequence and the syscall data.

3.6. Clustering of Samples. This is in charge of clustering the
binary files based on some of the previously extracted fea-
tures. Given two executable files, it calculates the index of
similarity between them and, if this is greater than a set
threshold (set through the configuration parameters), these
samples are considered to be related and, therefore, will be
part of the same cluster. To calculate the similarity, the
module uses the following approaches:

Dynamic approach. We use the execution traces ob-
tained in the dynamic analysis to generate sequences of
syscall names of size n (set through the configuration
parameters), which are known as n-grams. An example
for a sequence of size n = 4 is shown in Table 1, resulting
in the following set of n-grams: (brk, socket, fcntl64, and
fentl64), (socket, fentl64, fentl64, and setsockopt), and
(fentlod4, fentl64, setsockopt, and brk). In order to de-
termine the similarity, we use the Jaccard index [26] as
a metric, which, for two sets of n-grams, is calculated as

s nlsy]
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TaBLE 1: Format execution trace.

Syscalls Parameters Results
Brk 0x32000 0x32000
Socket AF_INET, SOCK_RAW, IPPROTO_TCP 0
fentl64 0, F_GETFL 0x2
fentl64 0, F_SETFL, O_RDWR|O_NONBLOCK 0
Setsockopt 0, SOL_IP, IP_HDRINCL, [1], 4 0
Brk 0x33000 0x33000

where the numerator indicates the number of unique
subsets that are present in both sets, and the denom-
inator indicates the total number of unique subsets
between s_1 ands_2. The result is a value between 0 and
1 which indicates the degree of similarity between two
sets of n-grams.

Static approach. We use two metrics to measure the
similarity between two executable files. The first is
based on sequences of opcodes of size n extracted from
the disassembled code. This is calculated in the same
way as in the dynamic approach but using opcodes
instead of syscalls. The second is based on the cyclo-
matic complexity of each of the functions present in the
disassembled binary. A distance function is used for the
calculation of the similarity between two executable
files. This function is formalized as follows:

Fl s (51 fz) 1
min
distance (s;,5,) = ) —— L1 Lx— (2)
0 " L (75 1)

For example, let us consider two executables with five
and seven functions, the first with cyclomatic complexities 3,
5,3, 7,and 4 and the second with complexities, 3, 3, 6, 6, 4, 5,
and 2. The first sample has two functions with cyclomatic
complexity 3, one with 5, one with 7, and another with 4. In
the second sample, we have two functions with cyclomatic
complexity 3, two with 6, one with 4, one with 5, and another
with 2. We normalize the vectors so that they have the same
number of elements, and the vectors (0,2, 1, 1,0, 1) and (1, 2,
1, 1, 2, 0) are obtained. Therefore, the similarity index be-
tween the two vectors is 0.5 and is calculated as follows: ((0/
14+2/2+1/1+1/1+0/2+0/1)/6).

Hybrid approach. The hybrid approach allows clus-
tering using the indexes described above. To do this, it
assigns a weight to each of the indexes to calculate the
final similarity index. The weight of each index can be
configured in the framework configuration files.

3.7. Visualization. Its function is to visually represent the
groupings generated based on the approaches described
above. We denote f as a function that defines whether two
malware samples are similar or not using the following
expression:
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where z being the selected threshold for determining the
similarity between two samples, namely, s; and s,, both
belonging to the dataset of samples, which is defined as D. It
generates a graph file in dot format [27] in which the nodes
represent the executable files, and an edge between two
nodes represents the fact that between them there is a
similarity greater than the established threshold. The gen-
eration of the graphs is computationally expensive since it
calculates the similarity for each different pair of samples.

4. Experiments and Results

In this section, the experiments and results obtained using
our malware analysis and clustering framework are
presented.

4.1. Overview. In order to test the platform described in
Section 3, we built different custom virtual machines using
buildroot [28], which automates the process of building an
embedded Linux system. In total, we built machines for the
five most widely used architectures in the current IoT
market, namely, Intel 80386, x86-64, MIPS, ARM, and
PowerPC, generating a file system and a compilation of a
kernel image for each one. We used strace as a monitoring
tool to obtain the execution traces.

To perform the analysis, we used different samples of
Linux-based malware which targets IoT devices. The samples
are distributed among the five architectures mentioned. The
malware samples are labeled using AVClass [29], which
categorizes them using a ranking of the labels provided by
different antivirus engines. Table 2 summarizes the number
of pieces of malware used for each architecture and how
many of them are packed and labeled.

Finally, we used our framework to analyze all the samples
and visualize the relationships between them according to the
metrics described in Section 3.4. The following sections show
the results obtained after analyzing the entire set of samples
described above in terms of static and dynamic points of view.

4.2. Static. In this section we present the results of the analysis
and clustering processes using the static features described in
Section 3. We use a threshold, which can be adjusted by the
user, of 0.8 to determine whether two samples are related for
both metrics. This value selection is based on an empirical
study which is out of the scope of this paper.

4.2.1. n-grams. We use the n-grams of the operation codes
extracted in the static analysis process. The size was empirically
determined to be four by using cross validation. Since the
operation codes are architecture dependent, we generated
clusters for each of the architectures independently. Figure 3
shows the graphic for all architectures in the study, namely,
MIPS, PowerPC, x64, x86, and ARM. The nodes represent
malware samples and the edges indicate whether there is a

1, x>z

iz x €[0,1];s,, s, € D, (3)

0, x<z

similarity greater than 0.8 at the n-gram level. Gray is used to
represent malware samples that do not have a label and the rest
of the colours represent each of the families that have been
labeled (AVClass) in the dataset. As can be seen, there are
different clusters formed mainly of samples from the same
family. In some cases, there are related samples from several
families. This may be because some of the samples are packed
and, if they use the same packer, they may share the same code
routines to unpack the executable at run time. One of the
disadvantages of using static features is that they can be affected
by code obfuscation. This metric can also be affected depending
on whether the executable is compiled with static linking or
with dynamic linking, since those binaries compiled with static
linking could have more unique n-gram sequences because the
functions imported from the libraries are included in the binary
itself. In general terms, the proposed architecture detects well
the families of malware samples for all the architectures.

4.2.2. Cyclomatic Complexity. We use cyclomatic complexity
to cluster the samples. Since the metric is extracted from
disassembled programs and depends on the assumptions of the
compiler and the assembly code that it generates, we cluster the
samples for each of the architectures independently. This is
because, after looking at several executable files available for
different architectures (e.g., busybox), we observe that the
cyclomatic complexity for the same functions varies according
to the architecture. Although it is not very different between
one and the other, it does change even if they have been
compiled with the same compilation options. Figure 4 shows
the graph for all the architectures used in this paper. As we can
see, the clusters generated belong to the same family, and there
are several small clusters for the same family, such as Gafgyt,
Tsunami, or Mirai for the ARM architecture. This is due to the
fact that this metric measure similarity at a structural level
between two samples. Therefore, it can also be affected by
obfuscated code. In addition, if a sample is compiled in a static
way and another in a dynamic way, there will not be a
structural similarity between them (those compiled with static
linking have imported library functions within the executable
instead of being resolved at runtime as in binaries compiled
with dynamic linking).

Observing the graphs generated for both metrics (Fig-
ures 3 and 4), it can be seen that, in general, the clusters
created using n-grams are made up of more samples than
those produced using cyclomatic complexity. In either case,
most of the connected samples are related to others from
their own family without producing many false positives.

4.2.3. Dynamic. In this section, we present the results ob-
tained in the clustering process using the dynamic char-
acteristics extracted in Section 3.5 and the metric described
in the same section. As was done in Section 4.2.2, we use a
threshold of 0.8 to match two malware samples. We use
sequences of n-grams of size four for the syscalls executed for
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TaBLE 2: The number of malware samples distributed for each of the architecture.

Arch Samples Packed Labeled
Intel 80386 279 58 211
X86-64 344 168 134
MIPS 318 63 288
ARM 246 24 200
PowerPC 275 12 258
1462 325 1091
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FiGURE 4: Clusters generated for the MIPS (a), PowerPC (b), x64 (c), x86 (d), and ARM (e) architectures using cyclomatic complexity and

the custom function described in Section 3.

each of the samples. Since the syscalls are petitions to the
operating system to request a service (e.g., create a socket
and kill a process), and these have the same name in any
Linux-based operating system, using them for clustering
allows us to find similarities between the execution traces of
samples from different architectures.

Figure 5 shows the clusters generated using the syscalls
traces as features. On the left, each sample is colored
depending on the architecture to which it belongs. On the
right, each sample is colored depending on the family to

which they belong, with gray indicating the unlabelled
ones. It can be observed that there are clusters that are
formed of samples from different architectures, such as
MIPS, PowerPC, and Intel 80386. If we observe these same
clusters in the family-categorized image, it can be seen
that the samples belong to a particular malware family. In
addition, it can be noticed that the clusters are made up of
samples from the same family, and that, based on their
behavior, pieces of malware from different architectures
have been categorized into the same cluster.
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F1GURre 5: Clusters generated for all architectures using the execution traces obtained in the dynamic analysis. The n-gram size used for the
syscalls sequence is four. The edges connect those samples with a similarity index greater than 0.8.

Finally, we observe that there are different clusters for the
same family. Unlike the previous case, in which the samples
may appear different depending on the architecture for which
they were compiled or the different compilation options, now it
may indicate that they belong to different campaigns of the
same family. Malware is constantly evolving, and its creators
add new functionalities or use existing ones from other pieces
of malware that have proven effective and beneficial. Also, it
should be noted that the original source code of some of the
most widely used malware families is available on the Internet,
such as Gafgyt or Mirai [18], and there may be variants created
by different authors.

5. Conclusions

In this proposal, we have addressed IoT malware analysis,
focusing on the automatization of the examining process.
Our motivation for this is the huge increase in cyberattacks
that have been carried out in this environment over recent
years, which has led to the impossibility of manually
studying the samples as the number is too immense. After
evaluating the proposals from the community, it has been
observed that there were none that focused on both ana-
lyzing (statically and dynamically) a large number of IoT
malware samples at once and providing compatibility with
several architectures.

Consequently, a multiarchitecture framework for au-
tomatic malware analysis and clustering has been presented.
The proposal, which is based on a modular approach and
supports samples from five different IoT architectures,
namely, ARM, PowerPC, MIPS, Intel 8086, and x64-86, is
able to extract static and dynamic features from a sample and
compare it with previous analyzed ones, categorizing it into

families depending on the similarity. In addition, besides
saving a considerable amount of time when examining
pieces of malware, it offers flexibility to the user, allowing
them to define their own emulated architectures and to
adapt the threshold used to determine whether a sample is
categorized into a family or not.

The proposal has been evaluated through the exami-
nation of nearly 1,500 malware samples from the five ar-
chitectures that are supported by the framework, offering
promising results and proving its effectiveness when clus-
tering malware samples. Especially relevant is the outcome
of the dynamic analysis, in which the proposal has been able
to cluster samples from multiple malware campaigns, even if
they were designed for different architectures. In addition, it
has been detected that, when clustering using the static
features, samples may appear different depending on the
architecture for which they were compiled or the different
compilation options. Other factors, such as code obfusca-
tion, also hinder the task, although the results generated by
the static analysis are also satisfactory.

Given the good results offered by the framework when
tested and knowing the importance of improving the
analysis of malware samples, there are several lines of re-
search that could be followed to complement this proposal.
Some such projects could be to

Study the network communications made by the
malware samples when they are executed and use them
as a feature to cluster them

Expand the visualization features, offering the user an
interactive representation of the results, allowing them
to directly browse through the different samples or
filter them by selecting certain characteristics.
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Add other IoT architectures so that samples designed
for them could also be examined.

Employ other metrics to determine sample similarity,
and even to use advanced machine learning techniques
to add a layer of intelligence to the framework.
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Since the number of malware is increasing rapidly, it continuously poses a risk to the field of network security. Attention
mechanism has made great progress in the field of natural language processing. At the same time, there are many research studies
based on malicious code API, which is also like semantic information. It is a worthy study to apply attention mechanism to API
semantics. In this paper, we firstly study the characters of the API execution sequence and classify them into 17 categories.
Secondly, we propose a novel feature extraction method based on API execution sequence according to its semantics and structure
information. Thirdly, based on the API data characteristics and attention mechanism features, we construct a detection framework
SLAM based on local attention mechanism and sliding window method. Experiments show that our model achieves a better

performance, which is a higher accuracy of 0.9723.

1. Introduction

The rapid development in computers and Internet tech-
nology is also coupled with rapid growth in malicious
software (malware). Malware such as viruses, Trojans, and
worms also changed expeditiously and became the most
severe threat to the cyberspace. Malware is usually installed
and operated on a user’s computer or other terminal without
user’s permission, which infringes on the legitimate rights
and interests of users. It gains control over computer systems
through changing or malfunctioning normal process exe-
cution flow.

According to the latest China Internet Security Report
2018 (Personal Security Chapter) released by 360 Security in
April 2019, 360 Internet Security Center intercepted 270
million new malicious program samples on PC in 2018, with
an average of 752,000 new malicious program samples on PC
everyday [1]. In addition, malware often uses confusion,
encryption, deformation, and other technologies to disguise
itself in order to avoid being detected by antivirus software.
Such a large number of malware and complex

countermeasure technologies have brought serious chal-
lenges to network security.

To face these challenges, researchers conduct a series
of studies. They use static analysis, dynamic analysis, and
hybrid analysis for executable files, and extract a series of
features, which includes Opcodes, API calls, and binaries.
After that, they take machine learning to construct the
detection model and achieve good results. However, in
reality, deep learning in machine learning area is espe-
cially worth focusing on, due to its powerful expression
ability.

Up to now, malware detection methods based on deep
learning mainly focus on image [2], signal [3], and Appli-
cation Programming Interface (API) sequence [4]. It may
not stimulate the potential ability of deep learning model if
we just simply transform malware into an input vector. How
to effectively use expert knowledge to process data, trans-
form it into the input needed by deep learning model, and
design a specific deep learning model are the key to improve
the effectiveness of deep learning model in detecting mal-
ware area.
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We have noticed that, in the field of machine learning,
the attention mechanism has been used very successfully,
especially in the fields of Natural Language Processing
(NLP), image, and machine Q and A. Attention mechanism
has significantly improved performance, which demon-
strates the powerful ability of deep learning in solving
practical problems. For example, the latest XLNet model [5]
builds a content-based and context-based attention mech-
anism by using a two-stream attention mechanism. How-
ever, the seq2seq problem and the malware classification are
still different. How to effectively transfer the attention
mechanism originated from translation problems to the field
of malware classification according to practical problems is a
subject worth exploring.

In this paper, we firstly analyze the attributes of the APIs
and further divide them into 17 categories. Based on the
category, we construct semantic and structure-based feature
sequences for API execution sequences. Then, according to
this feature sequence, we design a sliding local attention
mechanism model SLAM for detecting malware. The ex-
perimental results show that our feature extraction method
is very effective. Our contributions are as follows:

(1) Analyze the characters of the API execution se-
quence and classify the APIs into 17 categories,
which provides a fine-grained standard to identify
API types

(2) Implement a 2-dimensional extraction method
based on both API semantics and structural infor-
mation, which enhances a strong correlation of the
input vector

(3) Propose a detection framework based on sliding local
attention mechanism, which achieves a better per-
formance in malware detection

The remaining of the paper is organized as follows.
Section 2 is a brief background on malware classification.
The detailed API execution sequence portrait is explained in
Section 3.1. Also, the detailed attention mechanism is
explained in Section 3.2. Data source and experimental
results are discussed in Section 4. Section 5 summarizes the
paper and outlines future work.

2. Related Work

The field of malicious code classification and detection is
currently divided into traditional methods and machine
learning methods. The traditional methods rely on a large
amount of expert knowledge to extract the malicious fea-
tures by reverse analyzing the binary code to achieve the
purpose of classification and detection [6, 7]. Features
extracted by manual analysis are highly accurate. However,
this requires a considerable amount of manpower [8, 9].
As the malicious virus grows exponentially, the way of
extracting features by manual analysis is becoming more
and more expensive for this situation. Machine learning
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methods are highly generalized and do not require much
manual work. Machine learning, because of its powerful
learning ability, can learn some feature information that
cannot be extracted manually. However, these methods
based on machine learning are very susceptible to inter-
ference. Some existing methods, such as converting
malicious code into pictures and signal frequency [2, 3],
which ignore the original semantics of the code, are easily
interfered. As long as the malicious code author adds some
byte information or modifies the distribution of the file, the
classifier can be confused. Venkatraman and Alazab [10]
use the visualization of the similarity matrix to classify and
detect zero-day malware. Visualization technology helps
people to better understand the characteristics of malicious
code, but they have not explored the application of deep
learning.

In the work of [6, 11, 12], they use the ASM file generated
by disassembly to convert the assembly bytecode into pixel
features and then use CNN to learn. Although this method
takes advantage of some program information, malware
authors can still make confusion by inserting external as-
sembly instructions. Zhang et al. [13] use SVM to build a
malicious code detection framework based on semi-
supervised learning, which effectively solves the problem
that malicious code is difficult to be marked on a large scale
and has achieved good results. There are also some methods
that are based on API calls in [14]. They treat the file as a list
containing only 0 or 1, with 0 and 1 representing whether or
not the associated API appears. Their experiments show that
the Random Forest classifier achieves the best result. This
method mainly relies on the malicious API which could be
emerged on a series of call sequence, and only the exact
execution sequence can make damage on the computer
system.

In the work of [15], they construct behavior graphs to
provide efficient information of malware behaviors using
extracted API calls. The high-level features of the behavior
graphs are then extracted using neural network-stacked
autoencoders. On the one hand, their method of extracting
behavioral graphs is very precise and helps to express the
true meaning of the program fragments. On the other hand,
their input vectors are constructed based on the whole
sample, and the output of the model is the classification
result of the whole sample. In fact, malicious fragments are
only partial, which makes the malicious behavior graph easy
to be overwhelmed.

Liu et al. [4] use image texture, opcode features, and API
features to describe the sample files. By using the Shared
Nearest Neighbor (SNN) clustering algorithm, they obtain a
good result in their dataset. Qian and Tang [16] analyze the
API attributes and divide them into 16 categories. They
propose a map color method based on categories and oc-
currence times for a unit time the API executed according to
its categories. Then, they use the CNN model to build a
classifier. Xiaofeng et al. [17] propose a new method based
on information gain and removal of redundant API
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fragments, which effectively reduce the length of the API call
sequence. The handled API call sequence is then entered into
the LSTM model for training. Uppal et al. [18] use call grams
and odds ratio to select the top-ranked feature segments,
which are used to form feature vectors and are used to train
the SVM model.

On the one hand, the above methods based on the API
execution sequence are accurate, which reflect the dynamic
execution information of the program. However, on the
other hand, due to program execution control, in a long
execution sequence, the actual malicious execution code is
very small or overwhelmed by a large amount of normal
execution code. If the model does not learn the key malicious
information, it will easily be bypassed by malicious code
specifically disguised. There are also other machine learning
methods to learn the features. Ma et al. [19] analyze the local
maliciousness about malware and implements an anti-in-
terference detection framework based on API fragments,
which can effectively detect malware. Anderson and Roth
[20] offer a public labeled benchmark dataset for training
machine learning models to statically detect malicious PE
files. While they complete baseline models based on gradient
boosted decision tree model without any hyperparameter
optimization, it will still help researchers study further in
this field.

In the work of [21], they extract features based on the
frequency of the API and compare neural networks with
other traditional machine learning methods. In the work of
[22], the implemented Markov chain-based detector is
compared with the sequence alignment algorithm, which
outperforms detector based on sequence alignment. In the
work of [23], they represent the sequences of API calls
invoked by Android apps during their execution as sparse
matrices and use autoencoders to autonomously extract the
most representative and discriminating features from these
matrices, which outperform more complex and sophisti-
cated machine learning approaches in malware
classification.

These methods expand the space for extracting malicious
features and improve the applicable scale of the machine
learning method, which achieve good results. However, they
also have some limitations, mainly reflecting in the following
aspects. Firstly, manual methods have high accuracy but
require a lot of manpower, which make them unsuitable for
analyzing a large amount of malicious code. Secondly,
machine learning is greatly influenced by the training set and
its practicality is weak. For example, we have performed an
experiment, in which an image-based malware classifier can
achieve 0.99 accuracy rate. However, after changing dataset,
its performance drops sharply to about 0.73. Thirdly, when
the sample is confused, the training model is difficult to
achieve good results.

In fact, no matter if it is converted to images [24], signals,
frequency, and other characteristics, it cannot truly express
malicious code. The method of extracting more efficient
sequences by n-gram slicing [25, 26] only retains the

sequential features of malicious code execution. The models
trained with the features extracted by the common methods
will have a poor effect.

Therefore, it is worth in-depth and long-term research to
explore how to design a detection framework with the help
of prior knowledge of malware so that we can apply deep
learning to malware detection better. Recently, the XLNet
model [5], which employs attention mechanisms, has
achieved remarkable success in NLP, translation problems,
and machine question and answer. It indicates that there is a
new stride on deep learning. In response to this situation, for
exploring, we further study how to apply attention mech-
anism in the field of malware classification.

3. Our Method

We first analyze the attributes of the API and divide APIs
into 17 categories based on its functionality and official
definition. After that, we analyze the characteristics of the
attention mechanism and construct a sliding local attention
mechanism model (SLAM) according to our data
characteristics.

3.1. API Analysis. 'The API we studied here mainly refers to
the system call function under Windows system. According
to the Windows official document, the total number of
Windows API is more than 10,000, but most API functions
are not frequently used.

We firstly extract the 310 most commonly used API from
our dataset and then classify them according to their
functional characteristics and their harm to the system,
which is different from the work of [16]. By studying its
harm to the system, we could be better at representing the
structural information for the API execution sequence. Fi-
nally, we divide these API into 17 categories and colored
them, as shown in Table 1, which make the structural in-
formation more intuitive.

Based on our classification of API categories, we can
represent an API execution sequence as an API category call
sequence, which helps us to look at the API execution se-
quence from a higher API category perspective. Thus, it can
be used to represent the structure information of the API
execution sequence, which will help us get the information
of the API execution sequence from a higher perspective.
Here, we can think that it has obtained structural infor-
mation for the API call sequence.

3.2. Attention Mechanism Analysis. The attention mecha-
nism is a deep learning model which is mainly used in
computer vision and NLP. Especially, employed into the
complex NLP field, such as machine translation, reading
comprehension, machine dialogue, and other tasks, the
attention mechanism model can fully demonstrate its
learning ability. In essence, the attention mechanism imi-
tates on the processing of the human brain, that is, mainly
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TaBLE 1: API category classification description.

Category Index Colored Description

Undefine 0 Undefined API in category dictionary

Net 1 API related to network operations includes socket, wsa, etc.

File 2 API related to file operations includes read, write, copy, etc.

Process 3 API related to process operations includes thread, process, etc.

Reg 4 API related to registry operations.

Device 5 API related to device operations includes mouse, keystone, etc.

Cert 6 API related to cert operations includes encrypt, decrypt, etc.

System 7 API related to system operations includes dll, error, etc.

Service 8 ] API related to services operations

Window 9 ] API related to window operations includes findwindow, drawwindow, etc.

Memory 10 ] API related to memory operations includes readmemory, writememory, etc.

Privilege 11 ] API related to privilege operations

Com 12 ] API related to com operations includes createinstance, etc.

Message 13 ] API related to message operations includes sendmessage, recieve, etc.

Debug 14 ] API related to debugger operations

Shell 15 ] API related to shell operations

Data 16 ] API related to data operations includes buffer, etc.

Session 17 ] API related to session operations includes encrypt, decrypt, etc.

focuses on some key part from the massive input infor-
mation. The attention mechanism can be described by the
following formula:
Attention (Q,K,V) = F(Q,K)V. (1)
In this formula, Q represents a query vector and K and
V represent a set of key-value pairs. Through this formula,
we can query the weight value of Q in the global context.
Since different g value correspond to different weight
values, it achieves the purpose of paying attention to the
key parts. Recent popular deep learning models, such as
BERT [27] and XLNet [5], are based on attention mech-
anisms and are successfully applied on the NLP field,
which demonstrate their powerful machine learning ca-
pabilities. Because of the existence of context in NLP and
the problem of out-of-order in sentence, it will greatly
restrict the effectiveness of some deep learning model. In
response to this problem, XLNet uses a two-stream at-
tention mechanism to extract key values from both a
content and context perspective, thereby it significantly
improves performance. This is instructive for us to apply
attention mechanism on the field of malware classification.
We will explore the application of attention mechanisms
according to the characteristics of malware.

3.3. Detection Framework. Based on both the API and at-
tention mechanism analysis in the previous section, we will
build our own feature extraction methods and build targeted
detection framework. The whole process is divided into 4
parts: data processing, feature extraction, model construc-
tion, and result output.

3.3.1. Data Processing. We use the Cuckoo software [28] to
build a virtual sandbox that captures the sequence of API
calls for executable programs. We then collect all the APIs
that appeared in the sample and build an API dictionary to
map the API to a unique number by using word2vec [29].
Through this conversion, an API call sequence can be
converted into a number sequence. The process can be
defined as follows. Define transferAPI function, which can
be used to obtain the API’s number according to the API
dictionary:

API_num = transfer API (API). (2)

3.3.2. Feature Extracting. We select 310 API which are
frequently used by the samples and divide them into 17
categories. Then, based on the frequency of the category
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TAaBLE 2: API execution sequence transfer description.

7 GetSystemTimeAsFileTime 1
10 NtAllocateVirtualMemory 11
10 NtFreeVirtualMemory 8
10 NtAllocateVirtualMemory 11
10 NtAllocateVirtualMemory 11
10 NtAllocateVirtualMemory 11
10 NtAllocateVirtualMemory 11

7 SetUnhandledExceptionFilter 13
7 LdrLoadDIl 4
7 LdrLoadDIl 4
7 LdrGetProcedureAddress 23
7 LdrUnloadDIl 5
13 NtCreateMutant 25
10 NtCreateSection 41
10 NtMapViewOfSection 78
7 LdrLoadDIl 4
7 LdrGetProcedureAddress 29
7 LdrUnloadDIl 5
13 NtCreateMutant 6
10 NtCreateSection 9
10 NtMapViewOfSection 24

tags appeared, a category dictionary is built so that the
category can be uniquely represented as a number.
Through the category dictionary, we can convert an API

execution sequence into a number sequence. Because this
number sequence contains the category information of
the API execution sequence, it can be used to represent the
structural information of the API execution sequence. For
example, we obtain an API execution sequence by Cuckoo
sandbox (Virus Share 0a83777e95be86c5701aa-
ba0d9531015 from virus share website [30]). Then,
through the category mapping, we can get its category call
sequences, as shown in Table 2. The process can be de-
scribed as follows.

Firstly, we define transferToAPICategory function,
which can be used to obtain the APT’s category by category
dictionary.

Secondly, we define indexAPICategory function, which
can be used to obtain the index of the API category.

Then, we can get that

¢; = transfer To API Category (API), where API € API_Set,

i = index API Category, where (c;) € API Category.

(3)

Furthermore, we can construct a two-dimensional input
vector as shown below. Define findIndex function, which is
used to obtain the index of the APT according to the category
dictionary. Then, we can get that

Input_Vector = (API-Sequence, Category-Sequence),

Category_num = find Index (API) = index API Category (c;),

(4)

API_Sequence = (transfer API(APL,), ..., transfer API(APL,)),

Category_Sequence = (find Index (API,), ..., find Index (APL,y,)).

If the length of the sequence is not enough 2000, then 0 is
added; otherwise, it is truncated. Through these operations,
we can extract two-dimensional input vectors.

3.3.3. Model Construction. According to the characteristics
of the API execution sequence with length of 2000, several
adjacent API calls actually have practical meaning, that is,
the entire API execution sequence has certain local sig-
nificance. Therefore, we design a local attention mecha-
nism to acquire the features of these adjacent APIs with
local significance. Furthermore, drawing on the idea of
CNN, a sliding window method in a certain step size is
used to scan the entire API execution sequence. After that,
we use CNN to gain the weight value of sliding local
attention. The Softmax function is finally used to output

result. The entire structure is shown below in Figure 1 and
the entire process can be described by the following
Algorithms 1-3.

In Algorithm 1, we define a function SPLIT_TENSOR,
which is used to handle tensor for the Local Attention
Structure. In Algorithm 2, we define a function LOCA-
T_ATTENTION, which is used to output local tensor. In
Algorithm 3, we construct the SLAM Framework by the
function MAKE_SLAM.

3.3.4. Result Output. The whole process is divided into the
training phase and detecting phase. The training phase is
mainly used to train the model. In the detection phase,
samples are entered into the trained model to produce an
output.
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FiGure 1: Sliding local attention model.

4. Experiment Result and Evaluation

4.1. Dataset and Environment. In order to make our model
more convincing, here we use the public dataset (the data
set of Alibaba 3" Security Algorithm Challenge [31]). The
dataset consists of API call sequences which are generated
by the windows executable program in the sandbox
simulation. It is mainly composed of normal program,
infected virus, Trojan Horse program, mining program,
DDoS Trojan, and extortion virus. We treat these five
malicious types as a same malicious type. Then, the dataset
is classified into two categories, that is, normal samples
and malicious samples. The sample size of the dataset is
shown in Table 3.

As shown in Table 3, the normal data is 110000 and the
malware data is 27770. Since the number of normal samples
and the number of malicious samples are very different, we
adopt a random sampling method to construct the dataset,
and a total of 9192 samples are selected.

The runtime environment of the experiment
includes Ubuntu 14.06 (64bit), 16 GB memory, 10G
Titank GPU.

4.2. Experiment Result and Analysis. In order to evaluate our
model, we choose Accuracy, Precision, Recall, and F1-Score
as evaluation criteria. Define TP for True Positive, which is
the number of samples classified as normal category cor-
rectly. Define FN for False Negative, which is the number of
samples classified as malicious category correctly. Define TN
for True Negative, which is the number of samples classified
as malicious category wrongly. Define FP for False Positive,
which is the number of samples classified as normal category
wrongly. Then, these evaluation criteria could be defined as
follows:

CNN Softmax Output
A TP + TN
ccuracy = >
YT TP+ EN+FP+ TN
Precisi TP
recision = ———,
CASION = p PP -
TP
Recall = ———,
TP + FN
2
F1 — Score =

Precision™ + Recall™*

We adopt the 10-fold crossvalidation method to validate
our model SLAM and obtain their average value for evaluation.

The confusion matrix for our model SLAM is as shown
in Table 4. The accuracy of our model SLAM is shown in
Figure 2. As can be seen from Figure 2, the accuracy of our
model SLAM is at least 0.9586, the highest is 0.9869, and the
average is 0.9723, which achieves a good classification effect.

We select the best 7-fold model to further evaluate its
other indicators. The ROC curve for our model SLAM is
shown in Figure 3. From Figure 3, we can see that the ROC
curve area is about 0.9870.

The classify report for our model SLAM is as shown in
Table 5. From Table 5, we can see that the Precision, Recall,
and F1-score indication are about 0.9869. From the results of
these experiments, we can see that our model SLAM achieves
a good classification result.

By further analyzing our model, we can know that it can
obtain the local information contained in the API execution
sequence through the local attention mechanism, which will be
beneficial to the classifier. Also, it successfully scans the entire
API execution sequence by sliding the window, which obtains
a broad view. Meanwhile, the two-dimensional input vector
we construct contains both API semantics and structure in-
formation, which will greatly enhance the relevance of the
input information. In general, effectively extracting data
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Input: tensor, index, step_size
Output: temp_tensor
Initialize temp_tensor

return temp_tensor
end function

function SPLIT_TENSOR (tensor, index, step_size)
construct a Lambda expression according to keras

temp_tensor = cut tensor according to its index from index to index + step_size

ArGoriTHM 1: Split tensor vector.

Input: query, key, value
Output: local_tensor

end function

function LOCAL_ATTENTION (query, key, value)
Initialize local tensor
Initialize F function (from Attention mechanism)
local_tensor=F (q, k) v
return local_tensor

ArLcoriTHM 2: Construct local attention structure.

Input: input_vector, step_size
Output: output

Initialize length

end for
tensor = CNN (concatenate)
output = Softmax (tensor)
return output

end function

function MAKE_SLAM (input_vector)

Initialize CNN function from CNN layer

Initialize Softmax function from Dense layer

Initialize concatenate as a middle layer

length = get the length of input_vector

for (index =0, index < length, index += step_size) do
temp_tensor = SPLIT_TENSOR (input_vector, index, step_size)
local_tensor =LOCAL_ATTENTION (temp_tensor, temp_tensor, temp_tensor)
append local_tensor into concatenate

ALGoriTHM 3: Construct SLAM framework.

features and designing a targeted model framework based on
data characteristics is the reason why our model SLAM
achieves good results.

4.3. Comparison with Other Input. To verify the validity of
our 2-dimensional feature extraction method, we compare
them with different feature extraction method by our model
SLAM. We use the 1-dimensional API index sequence with
no structural information as a comparison and use the
accuracy rate as an indicator. We still use 10-fold cross-
validation and the results are shown in Figure 4.

The comparison results of the average accuracy are
shown in Table 6. From Table 6, we can see that the 1-d input

TaBLE 3: The sample size of the dataset.

Normal Malware

110000 27770

TaBLE 4: The confusion matrix of our model.

Normal Malware

Normal 475 6
Malware 6 432

accuracy is 0.9484 and the 2-d input accuracy is 0.9723. It
can be seen that the 2-dimensional feature extraction
method is higher than the 1-dimensional feature extraction
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TasLE 5: The classify report for our model.
Precision Recall F1-score Support
Normal 0.9875 0.9875 0.9875 481
Malware 0.9863 0.9863 0.9863 438
Macro avg 0.9869 0.9869 0.9869 919

method by an average of nearly 3 percentage points. This
proves the effectiveness of our 2-dimensional feature ex-
traction method based on semantics and structure.

4.4. Comparison with Other Models. For comparison, we
choose three baseline models.

4.4.1. Baseline Model 1. Random Forest is an emerging,
highly flexible machine learning algorithm with broad ap-
plication prospects, which is often used in many competi-
tions. In the work of [32], they also use random forest as one

of models, and the result of the random forest model were
the best. Therefore, we choose random forest as our baseline
model, and its parameters are set as follows:
n_estimators =500 and n_jobs=—1.

4.4.2. Baseline Model 2. In the work of [33], they use an
Attention_ CNN_LSTM model to detect malware, which we
call it ACLM and treat it as our baseline model.

4.4.3. Baseline Model 3. In the work of [5], they use a two-
stream attention mechanism model based on content and
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TaBLE 6: Comparison with different inputs.

Input Accuracy
1-dimensional API 0.9484
2-dimensional API 0.9723
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F1cure 5: Comparison accuracy with 10-fold crossvalidation.

context information to resolve the NLP problem. By drawing
on their ideas, we construct a two-stream CNN-Attention
model as a baseline model called TCAM.

4.4.4. Comparison Result. We use 10-fold crossvalidation to
verify these models. The results of the comparison are
shownin Figure 5.

We count the average accuracy of these models based on
10-fold crossvalidation. The comparison results are shown

0.95
0.9
0.85
0.8
0.75
0.7
0.65
0.6
0.55
0.5

SLAM

RF [32]

ACLM [33]

TCAM [5]

0.9171

0.8106

0.9245

= 0.9723

FIGURE 6: Comparison average accuracy for models.

TaBLE 7: The classify report for our model.

Accuracy Precision Recall Fl-score Support
SLAM 0.99 0.99 0.99 0.99 919
RF [32] 0.9270 0.93 0.93 0.93 919
ACLM [33] 0.81 0.82 0.82 0.82 919
TCAM [5] 0.9325 0.93 0.93 0.93 919

below in Figure 6. In Figure 6, our SLAM model accuracy is
0.9723, the RF model accuracy is 0.9171, the ACLM model
accuracy is 0.8106, and the TCAM model accuracy is 0.9245.

Also, we select the best ones from the 10-fold cross-
validation of these models and compare them by Accuracy,
Precision, Recall, and Fl-score. The results of the com-
parison are shown in Table 7.

From these comparison results in Figures 5 and 6 and
Table 7, we can see that our model has a better classification
effect. The Accuracy, Precision, Recall, and F1-score for our
model SLAM are all about 0.99. According to these results,
we conduct an in-depth analysis.

For the RF [32] model, it is a classic traditional machine
learning method, which basically represents the limit of the
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traditional machine learning method, but it is difficult to go
beyond deep learning.

For the ACLM [33] model, due to the API execution
sequence of up to 2000, the extraction based on the attention
mechanism will be diluted. Because it is in such a long
sequence, it will be difficult to really notice the key parts.

For the two-stream TCAM [5] model migrated
according to the content and context idea, some of its ideas
are worth learning, but the malware is different from the
NLP. Thus, it still needs to be improved according to the
target.

Our model SLAM is based on the sliding local attention
mechanism, which can well match the data characteristics of
the API execution sequence, so that it achieves the best
classification eftect.

5. Conclusion

We analyze the characteristics of the API execution sequence
and present a 2-dimensional extraction method based on
semantics and structure information. Furthermore,
according to the API data characteristics and attention
mechanism, we design and implement a sliding local at-
tention detection framework. The experimental results show
that our feature extraction method and detection framework
have good classification results and high accuracy. In the
future work, we will further explore the application of at-
tention mechanisms in the malware detection area.
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Online mobile advertising plays a vital role in the mobile app ecosystem. The mobile advertising frauds caused by fraudulent clicks
or other actions on advertisements are considered one of the most critical issues in mobile advertising systems. To combat the
evolving mobile advertising frauds, machine learning methods have been successfully applied to identify advertising frauds in
tabular data, distinguishing suspicious advertising fraud operation from normal one. However, such approaches may suffer from
labor-intensive feature engineering and robustness of the detection algorithms, since the online advertising big data and complex
fraudulent advertising actions generated by malicious codes, botnets, and click-firms are constantly changing. In this paper, we
propose a novel weighted heterogeneous graph embedding and deep learning-based fraud detection approach, namely, GFD, to
identify fraudulent apps for mobile advertising. In the proposed GFD approach, (i) we construct a weighted heterogeneous graph
to represent behavior patterns between users, mobile apps, and mobile ads and design a weighted metapath to vector algorithm to
learn node representations (graph-based features) from the graph; (ii) we use a time window based statistical analysis method to
extract intrinsic features (attribute-based features) from the tabular sample data; (iii) we propose a hybrid neural network to fuse
graph-based features and attribute-based features for classifying the fraudulent apps from normal apps. The GFD approach was
applied on a large real-world mobile advertising dataset, and experiment results demonstrate that the approach significantly

outperforms well-known learning methods.

1. Introduction

Online mobile advertising plays a vital role in the mobile app
ecosystem. One of the popular models in mobile app ad-
vertising is known as cost per action (CAP), where payment
is based on user action, such as downloading and installing
an app on the user’s mobile device. This CAP model may
incentivize malicious mobile content publishers (typically
app owners) to generate fraudulent actions on advertise-
ments to get more financial returns [1-3]. Some traditional
methods and techniques have been used for detecting and
stopping click fraud, such as threshold-based method [4],
CAPTCHA [5], splay tree [6], TrustZone [7], power spectral
density analysis [8], and social network analysis [9].

To automatically detect mobile advertising fraud be-
haviors, machine learning methods have been successfully

applied to find fraud patterns in data, distinguishing sus-
picious advertising fraud operation from normal one
[10-14]. As for learning model with attribute features, re-
searchers usually use several attributes from each sample to
train a learning model to identify the fraud behaviors.
Unfortunately, such approaches may suffer from labor-in-
tensive feature engineering and robustness of the detection
algorithms, since the online advertising big data and com-
plex fraudulent advertising actions generated by malicious
codes, botnets, and click-firms are constantly changing.
What is more, fraudsters could easily adjust their fraud
patterns based on existing fraud detection attributes and
rules to avoid being detected. Recently, some researchers try
to use the relationship between information entities to
construct a graph model and then use the graph mining or
learning methods to identify the changing fraud behaviors
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[15-17]. All these methods obtain useful insights into the
learning mechanism to classify fraud behaviors from normal
activities. Intuitively, if we could combine the comple-
mentary information from attributes of sample data and
relationship between entities (e.g., users, apps, and ads), we
will be able to improve the accuracy and robustness of fraud
detection.

However, to unleash the power of attribute-based in-
formation and graph-based information, we have to address
a series of challenges. First, to take advantage of the char-
acteristic of graph, we should construct a suitable graph,
which could potentially represent the interaction behaviors
between information entities such as users, apps, and ads.
Second, an efficient graph learning method should be de-
veloped to learn the useful structural and semantic repre-
sentation information from constructed graph [18, 19],
particularly learning from heterogeneous graph [20]. Third,
fusing different kinds of information from sample attributes
and node representation is difficult for their inherent het-
erogeneity and high-order characteristics.

To address the above challenges, in this paper, we
propose a weighted heterogeneous graph embedding and
deep learning-based fraud detection approach, namely,
GFD, to identify fraudulent apps for mobile advertising. In
the proposed GFD approach, (i) considering behavior
patterns between users, mobile apps, and mobile ads, we
construct a weighted heterogeneous graph to represent
mobile app advertising behavior and propose a new
weighted metapath to vector algorithm, namely, WMP2vec,
to learn low-dimensional latent representation (graph-based
features) for apps’ nodes in the weighted heterogeneous
graph; (ii) we use a time window based statistical analysis
method to extract intrinsic features (attribute-based fea-
tures) from the tabular sample data; (iii) we present a hybrid
convolutional neural network model to fuse graph-based
features and attribute-based features for classifying the
fraudulent apps from normal apps.

We evaluate GFD approach and WMP2vec algorithm on
a real-world dataset from one of the mobile advertising
platforms in China. Results show that WMP2vec reaches
higher performance than three well-known graph embed-
ding algorithms in the constructed weighted heterogeneous
graph, and GFD approach achieves highest classification
performance compared with Support Vector Machine
(SVM), Random Forest (RF), and Fully Connected Neural
Networks (FCNN).

The rest of the paper is organized as follows. We in-
troduce GFD approach to detect fraudulent apps with deep
neural networks and heterogeneous graph embedding al-
gorithm WMP2vec in Section 2. We present the experi-
mental results and discussion in Section 3. In Section 4, we
introduce the related work. We conclude this paper in
Section 5.

2. Proposed Approach

The flow chart of the proposed GFD approach is shown in
Figure 1. First, we propose a weighted heterogeneous graph
embedding method to learn the node representation,
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including constructing the weighted heterogeneous graph
and the WMP2vec algorithm. Second, we use statistical
analysis method to extract attribute-based features from the
tabular sample data. Third, we introduce the deep neural
networks to fuse the attribute-based features and graph-
based features for identifying fraudulent apps from normal
ones.

2.1. Data Description. We collect advertising log data of
mobile apps from a mobile advertising platform. Our mobile
advertisement dataset contains the following attributes: user
ID, a code to identify a unique mobile user; app ID, a code to
identify a unique mobile app; ad ID, a code to identify a
unique mobile advertisement; geographical attributes, a
series of user geographical attributes used to detect anom-
alies, including encrypted IP and city; action type, user
behavior related to the ads, such as viewing, clicking, app
downloading start, app downloading completion, and app
installation completion; action time, the time-stamp when
the action happened; and device attribute, user device related
attributes, such as device ID, device system models, and
screen size.

A seven-day mobile advertising log dataset in June 2015
was studied in this paper, and some examples of our raw data
are shown in Table 1.

2.2. Weighted Heterogeneous Graph Embedding. In this
section, we firstly propose the problem definition and
construct the weighted heterogeneous graph, and then we
present WMP2vec algorithm to learn latent representation
of nodes in weighted heterogeneous graph.

2.2.1. Problem Definition

(1) Given. An undirected weight heterogeneous graph G =
(V,E,W) is given, where V is a set of app nodes, ad nodes,
and user nodes; E is a set of undirected weight edges between
any two types of nodes: app nodes and user nodes, user
nodes and ad nodes, and ad nodes and app nodes; W is the
set of weight of edges.

(2) Task. The task is to learn the d-dimensional latent
representations X, € RV (where d<|V|) for nodes,
which could capture the structural and semantic relations
among nodes in the graph G, and the representations could
be used for classifying fraudulent apps.

2.2.2. Weighted Heterogeneous Graph Construction. Let U
be the set of user nodes, let A be the set of app nodes, and let
P be the set of advertisement nodes. If there exists an action
from user u € U to advertisement a € A through app p € P,
we form edges from u to p, from u to g, and from p to g,
respectively, such that E, =U x P, E, =U x A, and E; =
P x A are the edges set of heterogeneous graph G. The set of
weight is W = {wup,wua, wpa}, where the weights w,,, w4
and w,, are defined proportional to the behavioral centrality
of u to p, u to a, and p to a, respectively. The calculation
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FiGure 1: The flow chart of GFD approach. (a) Graph-based feature extraction. (b) Attribute-based feature extraction. (c) Deep Fusion.

TaBLE 1: Example of the mobile advertising log data.

User ID App ID Ad ID Action
B360** *369 *103 Viewing
B360** *369 *103 Clicking
Xjnh** *370 *125 Viewing
Xjnh** *370 *125 Downloading
Lmsv** “412 *130 Downloaded
Lmsv** 412 *130 Installing
Lmsv** *412 *133 Installed

formula of w,,, is shown in equation (1) and so on for w,,,

P
and w,.
P (1)
w ZjeQ(u)Cuj
where C, is the times of user u operating on advertisement

p and Q(u) is the set of operations of user u on all the
advertisements.

2.2.3. Graph Embedding Algorithm. In this section, based on
the sequence generation method from metapath based
random walk in heterogeneous graph [20], we propose
WMP2vec algorithm to generate random walk sequence in
weighted heterogeneous graph and embed sequence to
representation vector with Skip-Gram [21] for nodes.

(1) Weighted Metapath Based Random Walk. We predefined
number of walks per node n, the number of walk sequences [,
and a metapath M. The metapath is defined as a path in the
heterogeneous graph G with its metatemplate T'; = (Z, R),

where Z = {Zu, Z,, Za} and R = {Ru, Ry, Ra}. Each node v
and each edge e are associated with mapping functions
9 (v): V — Z and ¢(e): E — R, respectively.

Supposing that current node is v/, the relationship be-
tween v and next node v'*! is R;; that is, ¢ (v, v'*!) = R,.

For walk sequences generation, we go through the
metapath scheme [ times, and each time generates one
corresponding walk sequence. In the first time, we use two
different selecting methods (first phase and second phase),
because there are no limits to edge weight in the beginning.
After first time, we use the method in the second phase to
select next node.

For the first phase, when the length of walk sequence
is less than 2, the next node in the sequence is randomly
selected from the neighbors set N,,, (+/) of current
nodes, which meet the requirements of metapath M
[20]. The transition probability from v to v'*! is defined
as follows:

0, ¢(vi,vi+1) 4R,

pl<vi+1 V. M) _ )

1

- i, i+1 :Ri-
mamp )

For the second phase, when the length of walk sequence
is between 2 and I*|R|, the transition probability is restricted
by a weight bias . Supposing that the latest weight of edge of
relationship R; is w;, the weight should be in the range of
[w; — B, w; + B]. The transition probability from v to v'*! is
defined as follows:



o, o

P2<vi+1 0, ('b(

Vi) Mw> = <

o X

where C (+/) is the set of neighbors meeting the requirement.

(2) Embedding Sequence to Vector with Skip-Gram. Based on
the weighted metapath random walk sequences, we use Skip-
Gram model [21] and negative sampling [22] to learn low-
dimensional representation of nodes.

A description of our proposed WMP2vec algorithm
method is shown in Algorithm 1.

2.3. Attribute-Based Feature Extracting. From the raw log
data (tabular data) of mobile advertising, we defined a time
window (¢ hours) and divide original data into 24/t data
block for one day (24 hours). Then, a plain statistical analysis
is performed on each field in each data block. The ratio of the
unique value of the field to the total number of records in the
specified time window is computed. The attribute-based
feature corresponding to one mobile app could be repre-
sented as a feature matrix with 24/t rows.

2.4. Hybrid Neural Network for Classification. To take ad-
vantage of the graph-based features and attribute-based
features, we propose a hybrid convolutional neural networks
(HNN) model to fuse and learn both information in GFD
approach. The overview of the hybrid neural networks is
shown in Figure 2.

In HNN model, the first layer (input layer) contains
attribute-based feature matrix X, € R and graph-
based featureX, € RN*?, where N is the number of samples,
t is the number of time windows by one day (24 hours), m is
the dimension of attribute-based feature in a time window,
and d is the dimension of node embedding.

A convolutional part includes two convolutional layers,
and the output of the first convolutional layer is

C, = active(z) = active(Xs*Wc1 + bcl), (4)

where W € R“™ and b € R are the convolution kernel
and bias, respectively, w, is the size of the kernel, * indicates
the convolution operation, and the active function is
relu(x) = max (0, x).

The second convolutional layer is constructed as follows:

C, = acitve(C, * W¢, +b,), (5)

where W € R*>2 and b € R are the convolution kernel
and bias, respectively. w, is the size of the kernel.

C, is flattened to X, € RN*%_ where d,, is the number of
elements in C,.
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Vi, Vi+1) :#Ri)

Vv, V”l) =R wyn i ¢ [w; - Bw; + ],

(3)

Vi, Vi+1) = Ri; Wit i € [w,- - ﬁ, w; + ﬁ],

We concatenate X, and X, into a single metric
X € RN+ to be the input of the first fully connected
layer I,. I, is constructed as follows:

I, = active(XW, +b,), (6)

where W, € R@*D*d and b € R4 are weight and bias,
respectively, and d, is the number of neurons in the first fully
connected layer.

The second fully connected layer!, is constructed as
follows:

I, = active(I,W, + b,), (7)

where W, € R%"*% and b, € R% are weight and bias, re-
spectively, and d, is the number of neurons in the second
fully connected layer.

In the output of HNN, ¥ € (0, 1) is the probability of an
application to be a fraudulent application.

y= U(lzwo + bo)’ (8)

where W, € R™*! and b, € R% are weight and bias, re-
spectively, and o () = sigmoid (-) is the sigmoid function.

The cross-entropy function with 12-regularization is used
to calculate the loss of the hybrid convolutional neural
network model.

A
L(y,y) = —ylog(y)—(1-y)log(l-7y) +5|I9I|2- (9)

3. Experiments

3.1. Data Description and Preprocessing. A real-world dataset
was collected from a mobile advertising platform in China.
The dataset consists of seven days with around 2 M users,
3.5K apps, and 1 K advertisements per day. We partition our
log data into seven subsets with one-day period and conduct
experiments on each subset to evaluate our model. The
proportion of fraudulent apps is about 2-4 percent in the
total 3,500 apps each day. More details of the dataset are
described in Section 2.1.

3.2. Evaluation Metric. In this paper, we define the fraud-
ulent apps by positive samples and the other apps by neg-
ative samples. The Average Precision (AP) and the Area
Under ROC Curve (AUC) are used to evaluate proposed
algorithm and approach.

The AP criterion summarizes the Precision-Recall per-
formances at different threshold levels and corresponds to
area under the Precision-Recall curve. The ROC curve is
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(1) Input: The weighted heterogeneous information graph G = <V, E,W >, a meta-path scheme M, walks per node #, longest walk
length per walk I/, embedding dimension d, neighborhood size k

(2) Output: The latent node embedding X € RIVIxd

(3) Initialize X, random walk sequence S = &

(4) for v eV do

(5) fori=1 — ndo

(6) S, = WeightedMetaPathRandomWalk (G, M, v,1)

(7) S=S+ S,

(8) end

(9) end
(10) X =HeterogeneousSkipGram (X, k,S)
(11) return X

(12) WeightedMetaPathRandomWalk (G, M, v,[)

(13) initialize random walk array S = [v], weight array w; = [1.0], i =1...|M]|/2
(14) relationship array R = [Ry, ..., R0 Ripgyar - - > Ry

(15) for j=1—1do

(16) for k=1 — |[M]/2 do

(17) if j =1 then
(18)  draw u and w according to equation (2) with relationship R[k — 1]
19) S+1]=wW[j+1]=w
(20) else

(21)  draw u and w according to equation (3) with relationship R[k — 1]
(22)  if u does not exist then return S
(23) else S[j+ 1] =u, W, [j+1]=w

(24) end
(25) for k=|M|/2+1 — |[M]| - 1do
(26) draw u and w according to equation (3) with relationship R[k — 1]

(27)  if u does not exist then return S
(28) else S[j+ 1] =u, W 4[j+1]=w
(29) end

(30) end

(31) return S

ArGoriTHM 1: The WMP2vec algorithm.

Convolutional Fully connected Outputi
layer P layer i1 layer

FiGure 2: Hybrid convolutional neural networks for fraud detection.



created by plotting the true positive rate against the false
positive rate at various threshold settings. The AUC is the
total area under the ROC curve.

3.3. Evaluation of WMP2vec Algorithm. In this section, we
use WMP2vec algorithm to learn the embedding vector of
the nodes (apps) from the constructed weighted heteroge-
neous graph and then take their embedding vectors as the
input of Random Forest (RF) model to classify fraudulent
apps.

Based on Section 2.2.2, we construct a weighted het-
erogeneous graph and define a metapath: app-user-ad-user-
app (PUAUP); that is,
M=z, >tz Skz Sk z k7, which
represents the heterogeneous semantic of fraud publishers
(apps) that mimic legitimate users to act on the ads from the

apps.

3.3.1. Comparison Models and Parameters. We compare the
AP and AUC of the WMP2vec model with three well-known
graph embedding models: DeepWalk [23], Node2vec [24],
and Metapath2vec [20]. The compared algorithms and their
parameters are as follows:

(1) DeepWalk: DeepWalk [23] is the first graph em-
bedding model based on Word2vec. We use Skip-
Gram model [21] and hierarchical softmax [25] with
gradient descent to learn the node representation.
Negative sampling technique [22] is used to accel-
erate the Skip-Gram model. The count of random
walk is 30, and the walk length is 40.

(2) Node2vec: Node2vec [24] extends DeepWalk algo-
rithm through introducing backward probability p
and forward probability q. The same random walk
parameters (count=30 and length=40) are used
with DeepWalk, and the negative sampling tech-
nique is also used. In addition, we use p = 0.5 and
q=0.2 for backward probability and forward prob-
ability, respectively.

(3) Metapath2vec: Metapath2vec [20] uses the metapath
based random walk to construct node sequences and
then leverages Skip-Gram to perform node em-
bedding. The metapath in this study is PUAUP. The
count of random walk is 30, and the walk length is 10.

(4) WMP2vec: We use the same parameters (count = 30,
length =10, and metapath=PUAUP) with Meta-
path2vec, and the weighted bias /5 is 0.1 additionally.

In all the compared models, we train Skip-Gram model
with window size of 5, and the negative samples is 5 in
negative-sampling. The graph-based feature of each node is a
32-dimensional vector. The parameters of the RF model are
as follows: the number of weak learners is 150, max. deep is
5, and min. sample leaf is 5.

3.3.2. Experimental Results. Tables 2 and 3 show the ex-
perimental results by comparing the AP and AUC over 10-
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TaBLE 2: Classification results for all embedding models in AP
(mean + std).

Date  DeepWalk  Node2vec Metapath2vec WMP2vec

]13;16 0.168+0.082 0.343+0.057 0.344+0.065 0.384+0.055
%::lle 0.318£0.137 0.384+0.079 0.342+0.067 0.421 +0.084
iﬁie 0.281+0.075 0.439+0.122 0.401+0.110 0.459+0.114
;‘lille 0.313+0.073 0.335+0.085 0.360+0.096 0.409 +0.099
ffr‘le 0.308+0.121 0379+0.102 0.387+0.074 0.411+0.091
it;e 0.199+0.113 0.230+0.089 0.369+0.097 0.404 +0.102
]7121316 0.244+0.054 0.297+0.075 0.371+£0.094 0.353+0.075

TasLE 3: Classification results for all embedding models in AUC
(mean + std).

Date  DeepWalk  Node2vec Metapath2vec WMP2vec

;z;e 0.788+0.027 0.801+0.038 0.837+0.038 0.877+0.030
f:je 0.828+0.032 0.848+0.025 0.864+0.028 0.893+0.027
;ﬁie 0.935+£0.023 0.950+0.024 0.912+0.028 0.921 +0.024
;‘i’le 0.824+0.032 0.824+0.040 0.849+0.045 0.879+0.045
;tl};e 0.799 £0.060 0.835+0.055 0.853+£0.052 0.849+0.038
?Ltl}rlle 0.757+0.076 0.891+0.042 0.844+0.046 0.856 +0.041
;121:16 0.804+0.031 0.820+0.027 0.844+0.038 0.825+0.049

fold cross-validation for seven days. The WMP2vec model
reached highest AP value in six days and highest AUC value
in three days over all seven days. The Metapath2vec model
reached highest AP value in one day and highest AUC value
in two days over seven days. Thus, WMP2vec outperforms
all other models, such that WMP2vec > Metapath
2vec > Node2vec > DeepWalk.

3.3.3. Impacts of Parameters. In this subsection, we evaluate
the impacts of parameters over the classification task: (i)
count of random walk, walk length, and window size of Skip-
Gram in WMP2vec and Metapath2vec model; (ii) weighted
bias § of WMP2vec. We compare the AP and AUC values in
the dataset from one day.

(1) Count of Random Walk. Figure 3 shows the experimental
results by comparing the AP and AUC with different count
of random walk, with fixed walk length of 5. When the count
of random walk is larger than 30, WMP2vec and Meta-
path2vec models have better performance than count =10,
respectively. In addition, the values of AP and AUC have
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FiGUure 3: Comparing impacts of the different count of random walk with AUC and AP.

slight changes when the count of random walk is 30, 50, or
70.

(2) Walk Length. Figure 4 shows the experimental results by
comparing the AP and AUC with different walk length
(length =5, 10, 20, 50, and 80), with fixed count of random
walk of 10. WMP2vec and Metapath2vec models reach
better performance when the walk length >10. In addition,
when the length changes from 10, 20, and 50 to 80, the AP
values change very little and the AUC values have some
fluctuations.

(3) Window Size of Skip-Gram. Figure 5 shows the experi-
mental results by comparing the AP and AUC with different
window size (size =3, 4, 5, 6, and 7) over the classification
task. The best performance of models is reached when the
window size is 5.

(4) Weighted Bias of WMP2vec. Figure 6 shows the exper-
imental results by comparing the AP and AUC with different
weighted bias f of WMP2vec (f=0.1, 0.3, 0.5, 0.7, and 1.0)
over the classification task. As the weighted bias f3 increases,
the performance of WMP2vec gets closer to the performance
when =1.0. The values of AP and AUC change very little
when f3>0.5.

3.4. Evaluation of Hybrid Neural Network. In this section,
we evaluate the classification performance of HNN
model for fusing graph-based features and attribute-
based features in GFD approach. As the flow of GFD
approach in Figure 1, we extract the attribute-based
features and the graph-based features and then use HNN
model to fuse two kinds of features to identify fraudulent

apps.

3.4.1. Features Extraction. Based on Section 2.3, we divide
the log data for each app into 24 parts per day; that is, the
time window is one hour. We calculate the ratio of records
whose attributes take a certain value to all records in each
time window, and we calculate them for each of 22 attributes
in total, such as anonymized user id, advertisement id,
country id, and device operating system. In addition, we
calculate the ratio for browsing behavior and other actions
on ads of users, respectively. Finally, we get 24 features for a
time window (one hour), and the dimension of attribute-
based features of each app is 24 x 24 for one day.

Based on Section 2.2.2 and Section 3.3, for the graph-
based feature extraction, we construct the weighted het-
erogeneous graph of user-app-ad and then extract the graph-
based feature through training by using WMP2vec. The
dimension of graph-based features for each app is 32.

3.4.2. Comparison Models and Experiment Setup. We
compare the proposed HNN with Support Vector Machine
(SVM), Random Forests (RF), and Fully Connected Neural
Networks (FCNN).

(i) SVM:SVM is an effective widely used two-class
classification model. The RBF kernel is used and
penalty parameter C is 0.9.

RF:RF is a well-known ensemble learning method
that operates by constructing a multitude of decision
trees at training time. The number of decision trees is
200 with depth of 5. Minimum samples split and
minimum samples leaf are set to 5, respectively.

FCNN:FCNN is a fully connected neural network.
The number of hidden layers is 4, with 100 neurons in
each layer. The learning rate is 0.001 and the keep
probability of dropout is 0.9.
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HNN:HNN is the fusing model proposed in this  features into a 576-dimensional vector. Furthermore, the
study. The number of convolutional layers is 2, and  vector is concatenated with graph-based features, and the
the kernel size is 3 x 3. The number of fully con-  dimension of total input vector is 576 + 32 = 608.
nected layers is 2 with 100 neurons, using activation We randomly divide the negative samples and posi-
function “ReLU,” and the keep probability of  tive samples of the dataset into three subsets 8:1:1,
dropout is 0.9. The learning rate is 0.0001, the  respectively, and combine the corresponding positive and
weight decay factor of learning rate is 0.98, and the =~ negative example subsets into training (80%), validation
batch size is 100. (10%), and test (10%) sets. In order to handle the im-
balanced category problem between fraudulent and
nonfraudulent apps, we adopt upsampling technique
during training.

In order to make sure that all models could learn the
same knowledge from the dataset, when training the
comparison models, we flatten the attribute-based
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3.4.3. Experimental Results. The experimental results are
shown in Tables 4 and 5. The HNN model proposed in this
study reaches the highest AP value in six days and the
highest AUC value in four days over all seven days. The
FCNN, RF, and SVM models have similar performance to
AUC  measure, and Table 4  shows that
HNN > FCNN > RF > SVM with AP measure. Thus, HNN
outperforms all other models in terms of AP and AUC
measures.

3.44. Comparative Experiments without Graph-Based
Features. To show the contribution of graph-based feature
extraction in proposed GFD approach, we remove the
graph-based features in our dataset. When the proposed
HNN model has only attribute-based features as input and
no graph-based features as input, the HNN model leaves
only the fully connected part to work, since the convolution
part of HNN model has no input. This also means that the
working HNN model would change to a fully connected
neural network, that is, FCNN model, in this setting. So we
use the SVM, RF, and FCNN models in this comparative
experiment. The results are shown in Tables 6 and 7.
Comparing the performances of models with/without
graph-based features in Tables 4 and 5 and Tables 6 and 7, we
could find that the FCNN model with graph-based features
reaches better performance than the model without the
graph-based features in both AP and AUC measures, while
the performance improvement of SVM and RF models is not
obvious with graph-based features.

3.4.5. Impacts of Parameters. (1). Time Windows t. Time
window in attribute-based feature extraction of GFD ap-
proach decides the dimension of attribute-based features.
We designed experiments to show the impact of time
window, and the result is shown in Table 8. The size of time
window is set to be 1, 3, and 6 hours. The continuous in-
crease in size of time window makes HNN perform worse
AP values. The other models seem to be not sensitive to the
size of time window.

(2). Number of Convolutional Layers in HNN Model. We
compare the effect of the number of convolutional layers of
1, 2, and 3 in HNN model and show the results in Table 9.
The AUC and AP values achieve a high level when the
number of convolutional layers is 2.

(3). Number of Fully Connected Layers in HNN Model. We
set the number of fully connected layers to be from 1 to 4,
and the experiment result is shown in Table 10. When the
number of fully connected layers is 2, the HNN model
reaches the highest performance.

(4). Activation Functions in HNN Model. We compare three
well-known activation functions, ReLU, tanh, and Sigmoid,
in HNN model, and the experiment results are shown in
Table 11. The AUC values of the models with different
activation functions are similar, and ReLU is slightly better
than others. In terms of AP, ReLU is obviously better than
the other two activation functions.

4. Related Work

Our work is related to existing studies on attribute-based
fraud detection and graph-based fraud detection with ma-
chine learning. The challenges of fraud detection problem in
mobile advertising system are summarized as accuracy re-
quirement, throughput requirement, and the ability to
combat the latest fraud methods [1].

Attribute-based fraud detection approaches have been
used in fraud detection domain. Crussell et al. [26] built
decision trees based on the features extracted from their
dataset for classification. Liu et al. [27] proposed a binary
SVM classifier to determine whether two Uls are likely to
lead to equivalent states. This classification is used to sim-
ulate user interaction in the context of ad clicking. In order
to classify malicious publishers, Mouawi et al. [11] evaluated
KNN, SVM, and ANN based on features extracted from
dataset, and the experimental results show that all three
classifiers give very promising result. Haider et al. [2]
proposed an ensemble-based method to classify each
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TaBLE 4: The comparison of models with AP.
Model 1st June 2nd June 3rd June 4th June 5th June 6th June 7th June
SVM 0.443 0.552 0.566 0.321 0.394 0.261 0.353
RF 0.547 0.329 0.645 0.505 0.428 0.636 0.489
FCNN 0.584 0.678 0.638 0.541 0.574 0.538 0.541
HNN 0.632 0.689 0.752 0.567 0.586 0.592 0.592
TaBLE 5: The comparison of models with AUC.
Model 1st June 2nd June 3rd June 4th June 5th June 6th June 7th June
SVM 0.941 0.960 0.970 0.942 0.961 0.916 0.937
RF 0.919 0.942 0.949 0.937 0.944 0.938 0.945
FCNN 0.876 0.956 0.936 0.965 0.957 0.940 0.958
HNN 0.919 0.952 0.981 0.962 0.965 0.954 0.963
TaBLE 6: AP of SVM, RF, and FCNN without graph-based features.
Model 1st June 2nd June 3rd June 4th June 5th June 6th June 7th June
SVM 0.389 0.547 0.449 0.393 0.304 0.357 0.366
RF 0.526 0.490 0.639 0.512 0.507 0.628 0.536
FCNN 0.433 0.605 0.636 0.528 0.547 0.526 0.517
TaBLE 7: AUC of SVM, RF, and FCNN without graph-based features.
Model 1st June 2nd June 3rd June 4th June 5th June 6th June 7th June
SVM 0.889 0.944 0.947 0.950 0.951 0.930 0.938
RF 0.908 0.940 0.945 0.932 0.950 0.932 0.948
FCNN 0.907 0.950 0.931 0.940 0.933 0.913 0.951
TasLe 8: AUC and AP of HNN, FCNN, RF, and SVM with different time widows.
AUC AP
Model
1 hour 3 hours 6 hours 1 hour 3 hours 6 hours
HNN 0.95 0.91 0.91 0.63 0.56 0.44
FCNN 0.88 0.89 0.87 0.58 0.56 0.54
RF 0.92 0.92 0.92 0.55 0.48 0.55
SVM 0.94 0.95 0.95 0.44 0.45 0.45
TaBLE 9: AUC and AP of HNN with different number of convolution layers.
AUC AP
Model
1 2 3 1 2 T3
HNN 0.922 0.942 0.950 0.605 0.630 0.405
TaBLE 10: AUC and AP of HNN with different number of fully connected layers.
AUC AP
Model
1 2 3 4 1 2 3 4
HNN 0.926 0.935 0.903 0.863 0.575 0.660 0.649 0.632

individual ad display as fraudulent or nonfraudulent. Ga-
briel et al. [28] evaluated the performance of logistic re-
gression, gradient trees, and deep learning method in credit
card fraud detection and proved that deep learning method
outperforms the other compared methods.

Graph-based fraud detection approaches have been
studied recently. Hu et al. [15] proposed a weighted graph
propagation algorithm to identify the fraudulent apps in the
user-app bipartite graphs. Vasumati et al. [29] applied de-
cision trees to classify spam publishers based on constructed
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TasLE 11: AUC and AP of HNN with different activation functions.
AUC AP
Model . . . .
ReLU tanh Sigmoid ReLU tanh Sigmoid
HNN 0.926 0.923 0.921 0.634 0.625 0.623

feature vector and computed spam score for each of the
spam publishers by constructing a bipartite graph between
users and publishers to find fraud publishers. What is more,
the natural language processing (NLP) models known as
Word2vec [23] have been applied to graph embedding, such
as DeepWalk [10], Node2vec [21], and Metapath2vec [22].
Zheng et al. [30] proposed an unsupervised method to detect
abnormal users and items through deep joint network
embedding. Yu et al. [16] proposed a deep embedding ap-
proach for anomaly detection in dynamic networks by
learning network representations which can be updated
dynamically as the network evolves.

Mobile advertising fraud detection is still challenging;
however, ensemble learning methods were usually the
winner algorithms in fraud detection competition [10], and
deep learning and graph learning are recently the most
promising methods in this area.

There are two key differences between our proposed
approach and existing works. First, we used app id, ad id,
and user id from the real-world dataset to construct a
weighted heterogeneous graph with these three types of
nodes and proposed the graph embedding algorithm for
mobile advertising fraud detection. The popular existing
datasets, such as TalkingData dataset [31], usually have one
or two types of entities (e.g., app id), so there are not enough
entities to construct a heterogeneous graph as we did in this
paper. Second, we proposed a fusing model to combine
attribute-based and graph-based information for mobile
advertising fraud detection by graph embedding and deep
learning methods.

5. Conclusion

In this paper, we focus on the fraud detection problem in
mobile advertising to detect fraudulent publishers. We
propose a novel weighted heterogeneous graph and deep
learning-based fraud detection approach, namely, GFD, to
identify fraudulent apps for mobile advertising. Based on the
relationship of users, publishers, and advertisement in
mobile ad system, we construct a weighted heterogeneous
graph and proposed a weighted metapath based graph
embedding approach, named WMP2vec, to learn structural
features of publishers in the graph. Furthermore, we con-
struct a hybrid convolutional neural network to learn high-
order features from attribute-based features and graph-
based features. The experimental results in a real-world
dataset show that our method is effective in classifying
fraudulent apps for mobile advertising system.

There are two limitations in the work presented here.
First, the dataset is limited to one mobile advertising dataset.
In order to be more generalizable, it would be important to
see whether the proposed GFD approach excels in more
fraud detection datasets. Second, the dataset is limited to

seven days. In the complex and dynamic online advertising
environment, more time is still needed to evaluate the
proposed approach.

Despite being focused on mobile advertising fraud de-
tection in this presentation, the proposed GFD approach
could be generalized to benefit many other online appli-
cations (e.g., e-commerce) that involve relationship between
several types of entities. Future work should focus on the
robustness and accuracy of our proposed model for other
large-scale online datasets.
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Optical burst switching (OBS) networks are frequently compromised by attackers who can flood the networks with burst header
packets (BHPs), causing a denial of service (DoS) attack, also known as a BHP flooding attack. Nowadays, a set of machine
learning (ML) methods have been embedded into OBS core switches to detect these BHP flooding attacks. However, due to the
redundant features of BHP data and the limited capability of OBS core switches, the existing technology still requires major
improvements to work effectively and efficiently. In this paper, an efficient and effective ML-based security approach is proposed
for detecting BHP flooding attacks. The proposed approach consists of a feature selection phase and a classification phase. The
feature selection phase uses the information gain (IG) method to select the most important features, enhancing the efficiency of
detection. For the classification phase, a decision tree (DT) classifier is used to build the model based on the selected features of
BHPs, reducing the overfitting problem and improving the accuracy of detection. A set of experiments are conducted on a public
dataset of OBS networks using 10-fold cross-validation and holdout techniques. Experimental results show that the proposed

approach achieved the highest possible classification accuracy of 100% by using only three features.

1. Introduction

Optical burst switching (OBS) in networks has become an
important dynamic sub-wavelength switching technique
and a solution for developing the new type of Internet
backbone infrastructure [1]. The OBS network mainly
consists of three types of nodes, namely, core nodes, ingress,
and egress. The core nodes represent the intermediate nodes,
which are designed to reduce the processing and buffering of
the optical data burst using a control data packet with
specific information, namely, burst header packets (BHPs)
[2].

In a network with burst traffic, OBS plays an essential
role for packet switching with a higher level of necessary
details than other existing networks’ switching techniques.
However, this type of switching is still suffering from several
challenges such as security and quality of service (QoS) due
to BHP flooding attacks. The function of BHP in OBS is to
reserve the unused channel for the arrival of a data burst

(DB). This function can be exploited by attackers to send
take BHPs without DB acknowledgment. Such fake BHPs
can affect the network and reduce its performance through
decreasing bandwidth utilization and increasing data loss,
leading to a denial of service (DoS) attack [3], which is one of
the most crucial security threats to networks.

Several methods have been proposed to tackle DoS and
BHP flooding attacks on OBS networks in the literature and
have achieved satisfactory results [4-6]. However, due to the
limited capability of OBS core switches, developing a
lightweight method that can attain high accuracy with a
small number of features is still a challenging issue for
developers and researchers.

In this research, an effective and eflicient approach is
proposed for securing the OBS networks. Thus, the main
objective of the work is to develop a lightweight ML model
for detecting BHP flooding attacks based on the information
gain (IG) feature selection method and a decision tree (DT)
classifier. To achieve this objective, two key research
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questions are formulated to answer throughout this study.
The first research question is does the feature selection
method improve the effectiveness of the DT model to detect
the BHP flooding attacks. The second research question is
does the feature selection method improve the efficiency of
the DT model for detecting the BHP flooding attacks. Ac-
tually, the lightweight property of the model comes from the
fact that only a small number of features are used to build the
classifier. The model will be evaluated using a public OBS
dataset based on a set of performance metrics such as ac-
curacy, precision, recall, and F-measure.
The remainder of the research is organized as follows:

(i) In Section 2, related works are introduced to give
details about the proposed approaches and methods
of DoS attack on different networks.

(ii) Section 3 presents the proposed approach archi-
tecture for detecting the BHP flooding attacks on
OBS networks.

(iii) Section 4 explains the experimental setup and re-
sults in more detail.

(iv) Section 5 presents the conclusion of the study.

2. Related Works

Nowadays, machine learning (ML) methods have been used
in many intrusion detection systems (IDSs) to detect several
types of network attacks. However, feature selection
methods are also used to select the significant features of
network traffic without reducing the performance of the
IDSs [7]. Feature selection is the process of selecting the best
set of features that can be most effective for classification
tasks [8, 9]. The high number of features may decrease the
performance and accuracy of many classification problems
[10, 11].

In the field of optimization, feature selection methods
are classified in three main approaches: embedded, wrapper,
and filter methods [12]. For the filter methods, there are two
major types of evaluation: subset feature evaluation and
groups of individual feature evaluation. In the groups of
individual feature evaluation, heuristic or metaheuristic
filter methods or even the hybrid of them is utilized for
ranking the features and then the best of them is selected
based on some thresholds [11, 13]. In contrast, the subset
feature evaluation methods find the subset of candidate
features using a certain measure or a certain strategy. They
compare the previous best subset with the current subset for
finding the candidate subset of features. In the groups of
individual feature evaluation methods, the redundant fea-
tures are kept in the final subset of selected features
according to their relevance but the group of subset feature
evaluation methods removes the features with similar ranks.
In general, the filter methods are considered as classifier-
independent approaches [13]. The wrapper methods are
classifier-dependent approaches that take each time a
subset of features from the total features and calculate the
accuracy of classifiers to find the best subset. Therefore,
they are time consuming compared with filter methods
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[14]. The embedded methods combine wrapper and filter
methods [15]. In this study, a filter-based method is used
for feature selection.

In the literature review of intrusion detection, a set of ML
and deep learning (DL) methods have been widely used to
detect different types of attacks in several works [16-20].
Meanwhile, a set of related works have also been proposed
for detecting BHP flooding attacks using different ML
methods like the decision tree (DT) method in [21]. This
work evaluated the performance of the adopted method
using different metrics and reported a 93% accuracy rate in
classifying the classes of BHP flooding attack. Liao et al. [22]
introduced a classification approach to classify the access
patterns of various users using sparse vector decomposition
(SVD) and rhythm matching methods. This study demon-
strates that the approach is able to distinguish between the
intruders and the legal users in the application layer.

Xiao et al. [23] offered an effective scheme for detecting a
distributed DoS attack (DDoS) using the correlation of the
information generated by the data center and the k-nearest
neighbors (KNNs) method. They analyzed the flows of data
traffic at the center to identify normal and abnormal flows.
In [24], the authors proposed an approach for detecting
DDoS attacks based on seven features and using an artificial
neural network (ANN) method with a radial basis function
(RBF). This NN-RBF approach can classify the data traffic
into attack or normal classes by sending the IP address of the
incoming packets from the source nodes to be filtered in the
alarm modules which then decide if these data packets can be
sent to the destination nodes.

The authors in [25] applied a data mining method for
detecting a DDoS attack using the fuzzy clustering method
(FCM) and a priori association algorithm to categorize the
data traffic patterns and the status of the network. Another
ML approach in [26] used a DT method with a grey rela-
tional analysis for detecting DDoS attacks. They also applied
the pattern matching technique to the data flows for tracing
back the estimated location of the attackers.

Alshboul [27] investigated the use of rule induction
nodes for BHP classification in OBS networks. The author
applied a set of data mining methods to the public OBS
network dataset. He reported that the repeated incremental
pruning to produce error reduction (RIPPER) rule induction
algorithm, Naive Bayes (NB), and Bayes Net were able to
achieve a predictive accuracy of 98%, 69%, and 85%,
respectively.

Chen et al. [28] developed a detection method to identify
a DDoS attack using ANN. A set of different simulated DoS
attacks were used for training the ANN model to recognize
abnormal behaviors. Li et al. [29] offered different types of
ANN models, including learning vector quantization (LVQ)
models, to differentiate traffic associated with DDoS attacks
from normal traffic. The authors converted the values of the
dataset features into a numerical format before feeding them
into the ANN model.

In [30], the authors presented a probabilistic ANN
approach for classifying the different types of DDoS attacks.
They categorized the DDoS attacks and normal traffic by
applying radial basis function neural network (RBF-NN)
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coupled with a Bayes decision rule. Nevertheless, the ap-
proach concentrated on the events of unscrambling flash
crowds generated by DoS attacks.

Li and Liu [31] proposed a technique that integrates the
network intrusion prevention system with SVM to improve
the accuracy of detection and reduce the incidents of false
alarms. In [32], Ibrahim offers a dynamic approach based on
distributed time-delay ANN with soft computing methods.
This approach achieved a fast conversion rate, high speed,
and a high rate of anomaly detection for network intrusions.

Gao et al. [33] introduced a data mining method for
analyzing the piggybacked packets of the network protocol
to detect DDoS attacks. The advantage of this method is to
retain a high rate of detection without manual data con-
struction. Hasan et al. [34] proposed a deep convolutional
neural network (DCNN) model to detect BHP flooding attacks
on OBS networks. They reported that the DCNN model works
better than any other traditional machine learning models
(e.g., SVM, Naive Bayes, and KNN). However, due to the
small number of samples in the dataset and the limited resource
constraints of OBS switches, such deep learning models are not
effective tools to detect BHP flooding attacks and they are
not computationally efficient to run in such network.

3. Proposed Approach

The proposed approach in this paper consists of two main
phases: feature selection and classification. The input of the
approach is a set of OBS dataset features collected from
network traffic. The output of the approach is a class label of
the BHP flooding attacks. The flowchart of the proposed
approach is illustrated in Figure 1.

In the feature selection phase of the approach, the input
features of OBS network traffic are prepared for processing by
using the information gain (IG) feature selection method. The
purpose of IG is to rank the features and discover the merit of
each of them according to the information gain evaluation of
the entropy function. The output of the feature selection phase is
a scored rank of features in decreasing order according to their
merit, whereby adding any feature decreases the features merit.

This is then followed by the classification phase, in which
the dataset with selected features will be used to train and test
the DT classifier to detect attacks on OBS networks. The
output of the classification phase is a DT trained model that
is able to classify the BHP flooding attacks and return the
class label of that attack. The following sections explain the
methods used in the two phases of the proposed approach.

3.1. Information Gain (IG) Feature Selection Method.
Information gain (IG) is a statistical method used to measure
the essential information for a class label of an instance based
on the absence or presence of the feature in that instance. IG
computes the amount of uncertainty that can be reduced by
including the features. The uncertainty is usually calculated
by using Shannon’s entropy (E) [35] as

E(D) = ) Pjlog, (P)), (1)

i=1

where # represents the number of class labels and P; is the
probability that an instance i in a dataset D can be labeled as
a class label ¢ by computing the proportion of instances that
belong to that class label for the instance i as follows:

D] @

A selected feature f divides the training set into subsets
D,,D,,...,D, according to the values of f, where f has v
distinct values. The information required to get the exact
classification is measured by

v D
Reminder ( f) = Z ?J| x E(D]J), (3)
=i

where ID]-I/D represents the weight of jth subset, |D| is the
number of instances in the dataset D, |D j| is the number of
instances in the subset D, and E(D);) is the entropy of the
subset D;. Therefore, the IG of every feature is calculated as

IG(f) = E(D) — Reminder (f). (4)

After calculating the IG for each feature, the top k
features with the highest IG will be selected as a feature set
because it reduces the information required to classify the
flooding attack.

3.2. Decision Tree Method. Decision tree (DT) is a tree-like
model of decisions with possible consequences that is
commonly used in the fields of data mining, statistics, and
machine learning [36]. In machine learning, the goal of DT'is
to build a model that predicts or classifies the value of a
target class based on a learning process from several input
features. The tree model that has a target class label with
discrete values is called a classification tree model. In this
model, the tree leaves constitute the values of the class label
and the tree branches constitute aggregations of features that
produce this class label.

DT learning is a simple process to represent the features
for predicting or classifying instances. DT models are created
by splitting the input feature set into subsets that establish
the successor nodes of the children, thereby establishing the
tree root node. Based on a set of splitting rules on the values
of the features, the splitting process for each derived subset is
repeated in a recursive manner [36]. This recursive manner
is stopped when the splitting process no longer adds values
to the predictions or when the subset of nodes have all the
same values of the target class label.

The DT can be described also as a mathematical model to
support the categorization, description, and generalization
of a given dataset.

Assume the dataset comes in the form of records as
follows:

(%, ) = (%1, X3, X35« 0> Xp> V) (5)

where the variable y is a dependent target variable that we
need to generalize or classify. The vector x consists of the
features x,,x,, X5, ..., Xy, which are led to the variable y.
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FiGgure 1: Flowchart of the proposed approach.

In principle, the DT is based on the C4.5 algorithm [37],
which is an updated version of the ID3 algorithm [38]. C4.5
can avoid the overfitting problem of ID3 by using the rule-
post pruning technique to convert the building tree into a set
of rules.

DT s used in the proposed approach because it is simple,
very intuitive, and easy to implement. Furthermore, it deals
with missing values, requires less effort in terms of data
preprocessing, and does not need to scale or normalize the
data [36].

4. Experiments and Discussion

The experiments of this research are implemented using a
popular open source tool called the Waikato Environment
for Knowledge Analysis (Weka) software [39], which
offers a rich toolbox of machine learning and data mining
methods for preprocessing, analyzing, clustering, and
classification. It offers Java-based graphical user interfaces
(GUIs). The implementation was performed on a laptop
with an Intel Core i7 CPU processor, 2.0 GHz, 8 GB RAM,
and a Windows 10 64 bit operating system. Due to the
scarcity of OBS historical data, the experiments were
conducted on a public optical burst switching (OBS)
network dataset [1].

4.1. OBS Network Dataset Description. The OBS network
dataset is a public dataset, available from the UCI Machine
Learning Repository [1]. It contains a number of BHP
flooding attacks on OBS networks. There are 1,075 instances
with 21 attributes as well as the target class label. This target
label has four types of classes, which are NB-no block (not
behaving-no block), block, no block, and NB-wait (not
behaving-wait). All dataset features have numeric values
except for the node status feature that takes a categorical
value out of three values: B (behaving), NB (not behaving),
and potentially not behaving (PNB). The description of the
dataset features is given in Table 1.

Table 2 shows the number of instances for each class in
the dataset, while Figure 2 shows the distribution of in-
stances over different types of BHP flooding attacks. This
figure is deduced from the dataset.

4.2. Evaluation Measures. The experimental results will be
evaluated using four evaluation measures. These measures
are precision, recall, F-measure, and accuracy. The following

equations show how these evaluation measures are
computed:
. TP
precision = ———,
TP + FP
TP
11 itivity) = ———,
recall (sensitivity) TP+ EN

(6)
(precision # recall)
F — measure = 2 *

(precision + recall)’

TP + TN
accuracy = 5
Y = TP+ TN+ FP + N

where FP is the number of false positives, FN is the number
of false negatives, TP is the number of true positives, and TN
is the number of true negatives.

4.3. Results and Comparisons. In this section, the experi-
mental results for both the feature selection and classifica-
tion phases of the proposed approach are given in detail. The
average rank score and average merit of features from the IG
feature selection method are shown in Table 3 and are based
on a 10-fold cross-validation with stratified sampling in
order to guarantee that both training and testing sets have
the same ratio of classes.

In Table 3, the dataset features are ranked in decreasing
order according to their significance to target classes. The
reason behind this variation in the feature significance is that
the target class has four categorical labels, and for each label,
different values for each feature are assigned. Therefore, the
rank score from the IG method determines how much each
feature contributes to the target class label.

The rank scores in Table 3 show that the “packet re-
ceived,” “10-run-AVG-drop-rate,” and “flood status” fea-
tures have higher scores than all the other features. Thus, the
hypothesis that those first three features (packet received,
10-run-AVG drop-rate, and flood status) are more influ-
ential and more correlated to the labels of target class will be
checked experimentally in the following paragraphs.
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TaBLE 1: The description of the dataset features.

No. Feature name Feature description
1 Node It is a numeric feature representing the number of node that sends the data traffic.
2 Utilized bandwidth rate It is a numeric feature representing the rate of bandwidth used.
3 Packet drop rate It is a numeric feature representing the rate of packet drop.
4 Reserved bandwidth It is a numeric feature denoting the initial reserved bandwidth assigned to a given node.
5 Average delay time per Itisanumeric feature denoting the average delay time per second for each node. It is also called end-to end
sec delay feature.
Percentage of lost packet . . .
rate It is a numeric feature representing the percentage rate of lost packets for each node.
7 Percentag:a?ef lost byte It is a numeric feature representing the percentage rate of lost bytes for each node.
. It is a numeric feature representing the packet received rate per second for each node based on the reserved
8 Packet received rate :
bandwidth.
9 Used bandwidth It is a numeric feature represents the bandwidth us'ed or what each could reserve from the reserved
bandwidth.
10 Lost bandwidth It is a numeric feature denoting the lost amount of bandwidth by each node from the reserved bandwidth.
It is a numeric feature denoting the packet size in bytes allocated explicitly for each node to transmit. For
1 Packet size bvte instance, if the data size is 1440 bytes and there are 60 bytes for (IP header 40 bytes) + (UDP header
vt 20 bytes), then all headers will be added to the data size to get 1500 byte as follows: packet size = ((data size
1440 bytes) + (IP header 40 bytes) + (UDP header 20 bytes)) = 1500 bytes.
12 Packet transmitted This is a numeric feature representing the total packets trar}smltted per second for each node based on the
reserved bandwidth.
. This is a numeric feature representing the total packets received per second for each node based on the
13 Packet received .
reserved bandwidth.
14 Packet lost This is a numeric feature representing the total packfets lost per second for each node based on the lost
bandwidth.
15 Transmitted byte This is a numeric feature representing the total bytes transmitted per second for each node.
. It is a numeric feature denoting the total bytes received per second for each node based on the reserved
16 Received byte .
bandwidth.
17 10-run-AVG-drop-rate This is a numeric feature representing the rate of average packets that drop for 10 consecutive iterations
and runs.
18 10-run-AVG- It is a numeric feature representing the average bandwidth that is utilized for 10 consecutive iterations and
bandwidth-use runs.
19 10-run-delay This is a numeric feature representing the time of average delay for 10 consecutive (run) iterations.
This is a categorical feature. It is an initial classification of nodes based on the rate of packet drop, used
20 Node status bandwidth, and average delay time per second. The categorical values are B for behaving, NB for not
behaving, and PNB for potentially not behaving.
21 Flood status This is a numeric feature that represents the percentage of flood per node. It is based on the packet drop
rate, medium, and high level of BHP flood attack in case behaving (B).
This feature is a categorical feature that represents the final classification of nodes based on the packet drop
22 Class label rate, reserved bandwidth, number of iterations, used bandwidth, and packet drop rate. The categorical

values of the class label are NB-no block, block, no block, and NB-wait

TaBLE 2: The number of instances for each class in the OBS network
dataset.

Class label NB-no Block No block NB-wait Total
block

No. of 500 120 155 300 1075

instances

To accept or reject this hypothesis, the evaluation results
of the DT method are presented using all features and the
combinations of the three selected features. These evaluation
results are reported based on the holdout and 10-fold cross-
validation techniques. For the holdout technique, the dataset
is divided into 75% for training and 25% for testing. Before
applying the DT method for classifying the types of BHP
flooding attacks and getting the results, an analysis of the DT

® NB-no block
= Block

= No block
NB-wait

FiGure 2: The distribution of instances for each class in the OBS
network dataset.



TaBLE 3: Rank score of IG feature selection method for all features
in the dataset.

Feature Average Average

Feature name .
no. rank merit

Packet received 13 1.8+1.17 1.402+0.079
10-run-AVG-drop-rate 17 41+1.64 1.306 + 0.06
Flood status 21 42+1.78 1.309+0.052
Used bandwidth 9 4.3 +3.66 1.285+0.191
ég:{‘;&g}\fige 18 434162 1.282+0122
Received byte 16 5.3+3.35 1.241 £0.163
Packet lost 14 6.7 £3.32 1.175+0.15
Packet drop rate 3 93+2 1.053+0.083
Packet received rate 8 9.8+1.6 1.018 +0.043
f;r:entage of lostbyte 9.8+1.08 1.018+0.044
Utilized bandwidth rate 2 10+2.32 1.05+0.074
Percentage of lost 6 10.8+1.08  1.0090.017
packet rate
Average delay time 5 12+£2.79 0.9+0.19
Reserved bandwidth 10 12.8 +1.66 0.899 +0.1
Node status 20 14.9+0.3 0.488+0.004
10-run-delay 19 16.2+0.98 0.36 +0.104
Full bandwidth 4 17.2+0.6  0.146 +£0.007
Transmitted byte 15 17.7+£0.46  0.146+0.007
Packet transmitted 12 18.8+0.6  0.146+0.007
Node 1 20.1+0.3 0.017 £ 0.006
Packet size byte 11 20.9+0.3 0+0

parameters is investigated to tune and select the best values
of these parameters.

Practically, the DT classifier (J48) in Weka performs the
pruning process based on a set of parameters, which are the
subtree raising, the confidence factor, and the minimal
number of objects. The default values of these parameters are
true, 0.25, and 2, respectively. The subtree raising is the
parameter that can be used to move the node of the tree
upwards towards the root that can replace other nodes
during the pruning process. Confidence factor is a threshold
of acceptable error in data through pruning the DT and this
value should be smaller. However, in the proposed approach,
the values of subtree raising and confidence factor param-
eters are set to have the default values. The minimal number
of objects is very important parameter to represent the
minimal number of nodes in a single leaf. It is used to obtain
smaller and simpler decision trees based on the nature of the
problem. For tuning the minimal number of objects pa-
rameter, we try a set of different values for selecting the best
value of this parameter. Figure 3 shows the accuracies of
proposed approach at different values of minimal number of
objects in the range from 2 to 5. These accuracies are ob-
tained using the holdout technique with 75% training and
25% testing.

As shown in Figure 3, it is clear that the best values of
minimal number of objects in a single leaf are 1 and 2 that
generate a simple and accurate DT model. The value of this
parameter is set to be 2 to make the DT model moderately
simple.

Once the values of DT parameters are selected, the
evaluation results of the proposed approach are reported in
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FiGure 3: The accuracies of proposed approach at different values
of minimal number of objects.

next tables and figures. Table 4 presents the evaluation re-
sults of the holdout technique for classifying BHP flooding
attacks using all features in the dataset. Figure 4 shows the
confusion matrix of classification for the 25% testing set.

Table 5 illustrates the evaluation results of the holdout
technique for classifying the BHP flooding attacks using the
first three selected features (packet received, 10-run-AVG-
drop-rate, and flood status) of the dataset, and Figure 5
shows the confusion matrix of this evaluation result.

From Tables 4 and 5, as well as from Figures 4 and 5, it is
clear that the selected features improved the values of
evaluation measures for the DT method to classify the BHP
flooding attacks. Moreover, for efficiency, detecting attacks
using only three features is more efficient for the OBS core
switches, which have limited resources.

To validate the evaluation results, other experiments for
the DT classification method based on the 10-fold cross-
validation technique were conducted using all features and
using the first three selected features from the IG feature
selection method. Table 6 shows the evaluation results, and
Figure 6 shows the confusion matrix for classifying the BHP
flooding attacks using all features based on the 10-fold cross-
validation technique.

Similarly, Table 7 and Figure 7 present the evaluation
results and the confusion matrix, respectively, for classifying
the BHP flooding attacks using the first three selected fea-
tures based on the 10-fold cross-validation technique.

The evaluation results in Tables 6 and 7 and Figures 6 and
7 validate the evaluation results of the 10-fold cross-vali-
dation technique that confirm the remarkable performance
of the proposed approach. After further investigation, the
evaluation results of the DT classification methods using one
and two features from the first three selected features are
compared with the previous results of the holdout and the
10-fold cross-validation techniques and are shown in
Figure 8.

Table 8 shows and summarizes a comparison between
the proposed approach and the recent related works on the
OBS network dataset. In this comparison, we can see that the
proposed work achieves the highest accuracy result with a
small number of features compared to all these recent works.

The results presented in Figure 8 and Table 8 prove the
hypothesis of the proposed approach that says that the first
three selected features using the IG method are more
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TaBLE 4: Evaluation results of holdout technique using all features of the dataset.
Evaluation measure
Class label FP rate Precision Recall F-measure Accuracy
NB-no block 0.039 0.950 1.000 0.975
Block 0.000 1.000 1.000 1.000
No block 0.000 1.000 1.000 1.000 97.7695
NB-wait 0.000 1.000 0.925 0.961
Weighted avg. 0.017 0.979 0.978 0.978
NB-no No .
block | Block o poq o NB-wait
‘NB-no block 115 0 o 0
Block 0 31 0 0
No block 0 0 43 0
NB-wait 6 0 0 74
FIGURE 4: The confusion matrix of classification for the 25% testing set using all features of the dataset.
TaBLE 5: Evaluation results of holdout technique using the first three selected features of the dataset.
Evaluation measure
Class label FP rate Precision Recall F-measure Accuracy
NB-no block 0.000 1.000 1.000 1.000
Block 0.000 1.000 1.000 1.000
No block 0.000 1.000 1.000 1.000 100
NB-wait 0.000 1.000 1.000 1.000
Weighted avg. 0.000 1.000 1.000 1.000
NB-no No .
block Block block NB-wait
;NB-no block 115 0 0 0
Block 0 31 0 0
‘No block 0 0 43 0
NB-wait 0 0 0 80
FIGURE 5: The confusion matrix of classification for the 25% testing set using the first three selected features of the dataset.
TaBLE 6: Evaluation results of 10-fold cross-validation technique using all features of the dataset.
Evaluation measure
Class label FP rate Precision Recall F-measure Accuracy
NB-no block 0.007 0.992 1.000 0.996
Block 0.000 1.000 1.000 1.000
No block 0.000 1.000 1.000 1.000 99.6279
NB-wait 0.000 1.000 0.987 0.993
Weighted avg. 0.003 0.996 0.996 0.996

influential and more correlated to the labels of BHP flooding

attacks than any of the other features.

4.4. Result Analysis. For analyzing the results and linking the
results with conclusion, we show how the proposed feature

selection method can improve the model from three dif-
ferent angles: reducing overfitting, improving accuracy, and
reducing training and testing (prediction) time.

From the definition of the overfitting problem, it occurs
when the training errors are low or very low and the vali-
dation errors are high or very high. Therefore, reducing the
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FIGURE 6: The confusion matrix of classification for the 10-fold cross-validation testing sets using all features in the dataset.

TaBLE 7: Evaluation results of 10-fold cross-validation technique using the first three selected features of the dataset.

Evaluation measure

Class label FP rate Precision Recall F-measure Accuracy
NB-no block 0.000 1.000 1.000 1.000

Block 0.000 1.000 1.000 1.000

No block 0.000 1.000 1.000 1.000 100
NB-wait 0.000 1.000 1.000 1.000

Weighted avg. 0.000 1.000 1.000 1.000

Figure 7: The confusion matrix of classification for the 10-fold cross-validation testing sets using the first three selected features of the

dataset.

overfitting problem requires to reduce the gap between the
training and validation error. To show how the proposed
method can reduce the overfitting problem, we depict the
training error against the validation error in Figure 9 with
different sets of features, which are ordered according to
rank score given in Table 3. The training percentage is set to
75%, and the validation percentage is 25%. We notice that
the gap between the training and validation error is de-
creased as the number of features is decreased until the gap
reaches zero approximately when using the three selected
features of the proposed method. We also notice that the
overfitting problem is eliminated with 14 and 7 features. In
our opinion, the overfitting problem is eliminated with 14
and 7 features because of an implicit pruning functionality
implemented by the used decision tree algorithm (J48). In
addition, it is clear that the accuracy is improved by the three
selected features.

To evaluate the efficiency of the proposed feature
selection approach, the average time of building and
testing the DT model is computed. The DT model is
trained on 75% of the dataset which consists of 806 in-
stances and tested on 25% of the dataset which consists of
269 instances. Table 9 shows the computed average time of
training and testing the DT model using all features and
using our three selected features.

As shown in Table 9, we can see that the DT model has a
lower average time for training and testing using our three
selected features than using all features. In terms of time
complexity, represented by O notation, the overall average
time of the DT method is O (m x n), where m is the number
of features and 7 is the number of instances [40]. Because the
number of features in classification problems is limited, the
running time will be O (C x n), where C is a constant time.
Therefore, the time complexity of the DT method is O (n) for
classification problems. The advantage of the proposed
approach is that it reduces the number of features to three
features (reducing C), which leads to faster running time
compared with using all features. This confirms that the
approach is able to detect the attacks more efliciently, es-
pecially in congested network with limited computing
resources.

We can conclude that reducing the features to three and
using the pruning process of the DT classifier helped the
proposed approach to reduce the overfitting problem and
classify the OBS flooding attacks. Consequently, all per-
formance results clarified the effectiveness and efliciency of
the DT model based on selected features to classify BHP
flooding attacks. This reveals that the proposed approach is
more accurate and suitable for real-time detection in the
limited computing capability of OBS core switches.
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TaBLE 8: Accuracy and number of features of the proposed BHP flooding attack detection approaches using OBS network dataset.

# Of Accuracy
Ref. Year Approach features (%)
[34] 2018 Naive Bayes 21 79
[21] 2018 Features selection using chi-square testing (CHI) + decision tree for classification 7 87
[34] 2018 Support vector machine 21 88
[34] 2018 K-nearest neighbor 21 93
[27] 2018 Repeated incremental pruning to produce‘error reduction (RIPPER) rule induction 21 08
algorithm
Features selection using Pearson correlation coeflicient (PCC) + semisupervised machine
(4] 2019 anen 8 95.6
learning with k-mean
[34] 2018 Deep convolutional neural network (DCNN) 21 99
vTv}:rsk 2020 Features selection using information gain (IG) + decision tree for classification 3 100
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1.500

1.000

Error rates (%)

0.500

0.000 * g * > *
All 1to 19 1to 16 1to 14 1to7 1to3

Number of features

—e— Training error
—e— Validation error

FI1GURE 9: Training and validation error rates with different sets of features.
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TABLE 9: Average time of training and testing the DT model using all features and using our three selected features.

Dataset features

Average time taken to build the model (seconds) Average time taken to test the model (seconds)

0.22
0.01

Using all features
Using our three selected features

0.03
0.001

5. Conclusion and Future Work

In this paper, an effective and efficient approach using the
information gain (IG) feature selection method and the
decision tree (DT) classifier is proposed to detect BHP
flooding attacks on OBS networks. The approach starts with
selecting the most important features of OBS network traffic
to improve the accuracy and efficiency of attack detection in
OBS switches that have limited resources. A set of experi-
ments is conducted on an OBS network dataset using 10-fold
cross-validation and holdout techniques to evaluate and
validate the approach. The experimental results demonstrate
that the proposed approach can classify the class labels of
OBS nodes with 100% accuracy by using only three features.
The comparison with recent related works reveals that the
proposed approach is suitable for OBS network security in
terms of effectiveness and efficiency.

One of the limitations of the proposed approach is the
lack of evaluation on more OBS datasets that can be varied in
size and types of attacks due to unavailable OBS datasets
other than the dataset used in the experiments of this study.
Moreover, because the proposed approach is based on the
decision tree method for classification, the training time is
relatively expensive in case of large training datasets.
However, by reducing the number of features of the pro-
posed approach and the emergence of high-speed proces-
sors, this limitation is no longer a major problem. In future
work, a large set of OBS network data will be collected for
further evaluation of the proposed approach and will be
made available for researchers in the field. This is due to lack
of public OBS network datasets other than the dataset used
in this research work.

Data Availability

The OBS-network dataset used in this study is publicly
available at the UCI Machine Learning Repository [1].
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Detecting exploits is crucial since the effect of undetected ones can be devastating. Identifying their presence on the network allows
us to respond and block their malicious payload before they cause damage to the system. Inspecting the payload of network traffic
may offer better performance in detecting exploits as they tend to hide their presence and behave similarly to legitimate traffic.
Previous works on deep packet inspection for detecting malicious traffic regularly read the full length of application layer
messages. As the length varies, longer messages will take more time to analyse, during which time the attack creates a disruptive
impact on the system. Hence, we propose a novel early exploit detection mechanism that scans network traffic, reading only
35.21% of application layer messages to predict malicious traffic while retaining a 97.57% detection rate and a 1.93% false positive
rate. Our recurrent neural network- (RNN-) based model is the first work to our knowledge that provides early prediction of
malicious application layer messages, thus detecting a potential attack earlier than other state-of-the-art approaches and enabling

a form of early warning system.

1. Introduction

Exploits are attacks on systems that take advantage of the
existence of bugs and vulnerabilities. They infiltrate the system
by giving the system an input which triggers malicious be-
haviour. As time passes, the number of bugs and vulnerabilities
increases, along with the number of exploits. In the first quarter
of 2019, there were 400,000 new exploits [1], while more than
16 million exploits have been released in total. Exploits exist in
most operating systems (OSs); hence, detecting exploits early is
crucial to minimise potential damage.

By exploiting a vulnerability, attackers can, for example,
gain access to remote systems, send a remote exploit, or
escalate their privilege on a system. Exploits-DB [2] is a
website that archives exploits, both remote and local ones.
The number of existing remote exploits on the website is
almost double that of the local ones, which suggests remote
exploits are more prevalent. No physical access to the system
is required to execute a remote exploit; thus, the attack can
be launched from anywhere in the world.

Remote exploits normally carry a piece of code as a
payload, which will be executed once a vulnerability has been
successfully exploited. An exploit is analogous to a tool for
breaking into a house, and its payload is something the
burglar would do once they are inside the house. Without
this payload, exploits would be merely a tool to demonstrate
that an application is vulnerable. Exploit payloads may take
many forms; they could be written in machine code, a server-
side scripting language (e.g., PHP, Python, and Ruby), or OS
specific commands (e.g., Bash).

One way to detect exploits is to scan network traffic for their
presence. In doing this, the exploit can be detected before it
arrives at the vulnerable system. If this is achieved, earlier action
can be taken to minimise or nullify the damage. There is also no
need to run the exploit in a clone server or virtual machine (VM)
to be analysed—as it is usually the case in host-based detection
approaches, making this approach more time efficient to block
and provide rapid response to attacks. Therefore, detecting
exploits in network traffic is a promising way to prevent remote
exploits from infecting protected systems.
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Detecting exploits on the wire has challenges: firstly,
processing the vast amount of data without decreasing
network throughput below acceptable levels; quality of
service is still a priority. Secondly, there are various ways to
encode exploit payloads [3], by modifying the exploit
payload to make it appear different, yet still achieve the same
goal. This technique makes it easy to evade any rule-based
detection. Lastly, encrypted traffic is also a challenge; at-
tackers may transmit the exploit with an encrypted protocol,
e.g., HTTPS.

There are many ways to detect exploits in network traffic.
Rule-based detection systems work by matching signatures
of known attacks to the network traffic. Anything that
matches the rule is deemed malicious. The most prevalent
open-source intrusion detection system, Snort [4], has a rule
that marks any traffic which contains byte 0x 90 as shell-
code-related traffic. This rule is based on the knowledge that
most x86-based shellcodes are preceded by a sequence of no
operation (NOP) instructions in which the bytes normally
contain this value. However, this rule can easily be evaded by
employing other NOP instructions, such as the “0x4l
0x49” sequence. Apart from that, rule-based detection
systems are susceptible to zero-day attacks for which no
detection rule exists. Such systems are unable to detect these
attacks until the rule database is updated with the new attack
signature.

Machine learning (ML) algorithms are capable of clas-
sifying objects and artefacts based on features exhibited in
data and handle various modalities of input. ML has been
successfully applied in many domains with a high success
rate, such as image classification, natural language pro-
cessing, speech recognition, and even intrusion detection
system. There has been much research on implementing
machine learning to address network intrusion detection [5].
Researchers typically provide training examples of malicious
and legitimate traffic to the ML algorithm that can then be
used to determine whether new (unseen) traffic is malicious.
However, there are three key limitations with existing re-
search: firstly, most of the research uses old datasets, e.g.,
either KDD99 or DARPA99 [6]. The traffic in those datasets
may not represent recent network traces since network
protocols have evolved during these years, as have the at-
tacks. Secondly, many of the previous works focus solely on
the header information of network packets and process
packets individually [6]. Yet, it is known that exploits may
exhibit similar statistical attributes to legitimate traffic at a
header-level and use evasion techniques such as packet
fragmentation to hide their existence [3]. Therefore, we
argue that network payload features may capture exploits
better, and this area is still actively expanding as shown by
the number of research mentioned in Table 1. This argument
brings us to the third limitation: existing methods that use
payload features, i.e., byte frequencies or n-grams, usually
involve reading the payload of whole application layer
messages (see Section 2). The issue is that these messages can
be lengthy and spread over multiple network packets.
Reading the whole messages before making a decision may
lead to a delay in detecting the attack and gives the exploit
time to execute before an alert is raised.
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We, therefore, propose Blatta, an early exploit detec-
tion system which reads application layer messages and
predicts whether these messages are likely to be malicious
by reading only the first few bytes. This is the first work to
our knowledge that provides early prediction of malicious
application layer messages, thus detecting a potential at-
tack earlier than other state-of-the-art approaches and
enabling a form of early warning system. Blatta utilises a
recurrent neural network- (RNN-) based model and
n-grams to make the prediction. An RNN is a type of
artificial neural networks that takes a sequence-based
vector as input—in this case, a sequence of n-grams from
an application layer message—and considers the temporal
behaviour of the sequence so that they are not treated
independently. There has been a limited amount of re-
search on payload-based intrusion detection which used
an RNN or its further development (i.e., long short-term
memory [24, 25] and gated recurrent unit [20]), but earlier
research did not make predictive decisions early as they
only used 1-grams of full-length application layer mes-
sages as features, which lacks contextual information—a
key benefit of higher-order n-grams. Other work that does
consider higher-order sequences of n-grams (e.g. [12, 29])
is also yet to develop methods that provide early-stage
prediction, preferring methods that require the full pay-
load as input to a classifier.

To evaluate the proposed system, we generated an exploit
traffic dataset by running exploits in Metasploit [30] with
various exploit payloads and encoders. An exploit payload is
a piece of code that will be executed once the exploit has
successfully infiltrated the system. An encoder is used to
change how the exploit payload appears while keeping its
functionality. Our dataset contains traffic from 5,687
working exploits. Apart from that, we also used a more
recent intrusion detection dataset, UNSW-NB15 [31], thus
enabling our method to be compared with previous works.

To summarise, the key contributions of this paper are as
follows:

(i) Proposed an early prediction of exploit traffic, Blatta,
using a novel approach of using an RNN and high-
order n-grams to make predictive decisions while
still considering temporal behaviour of a sequence of
n-grams. Blatta is the first, to the best of our
knowledge, who introduces early exploit detection.
Blatta detects exploit payloads as they enter the
protected network and is able to predict the exploit
by reading 35.21% of application layer messages on
average. Blatta thus enables actions to be taken to
block the attack earlier and therefore reduce the
harm to the system.

(ii) Generated a dataset of exploit traffic with various
exploit payloads and encoders, resulting in 5,687
unique connections. The exploit traffic in the dataset
was ensured to contain actual exploit code, making
the dataset closer to reality.

The rest of this paper is structured as follows: Section 2
gives a summary of previous works in this area. Section 3
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TaBLE 1: Related works in exploit detection. Unlike previous works, Blatta does not have to read until the end of application layer messages

to detect exploit traffic.

Paper Features Detection method Dataset(s) Learning Protocol(s) Ea.ﬂY
type prediction
Relative frequency count of each ~ Based on statistical model HTTP, SMTP,
PAYL [7] 1-gram and Mahalanobis distance D, SG v SSH No
Mahalanobis distance map which
is originated from relative Based on statistical model
RePIDS (8] frequency count of each 1-gram, and Mahalanobis distance D. M v HTTP No
filtered by PCA.
McPAD [9] 2v-grams Multi one-class SVM D, M U HTTP No
classifier
HMMPayl [10] Byte sequences of the L7 payload. Ensemble of HMMs D, M, DI U HTTP No
Oza et al. [11] Relative freqlll_e;lfzmcount of each Based on statistical model D, M, SG 1) HTTP No
Based on the occurrence
OCPAD [12] High-order n-grams (n>1). probability of ann-gramsina M, SG U HTTP No
packet
Bartos et al. Information from HTTP request
[13] headers and the lengths SVM G S HTTP No
Zhang et al. Packet header information and Naive Bayes, Bayesian
[14] HTTP and DNS messages network, SVM D, sG S DNS, HTTP No
Decanter [15] HTTP messages Clustering SG U HTTP No
Golait and Probabilistic counting
. Byte sequence of the L7 payload deterministic timed SG U SIP No
Hubbali [16]
automata
Duessel et al. Contextual n-grams of the L7 One-class SVM G U HTTP, RPC No
[17] payload
Min et al. [18] Words of the L7 payload CNN and random forest I S HTTP No
Jin et al. [19] 2y-grams Mult one-Flass SYM M U HTTP No
classifier
Hao et al. [20] Byte sequence of the L7 payload Variant gated recurrent unit I S HTTP No
Schneider and
Bottinger [21] Byte sequence of the L7 payload Stacked autoencoder (0] U Modbus No
Hamed et al. n-grams of base64-encoded All protocols in
[22] payload SVM I S the datasets No
Pratomo et al. Byte frequency of application layer Outlier detection with deep SW U HTTP, SMTP No
[23] messages autoencoder
Qin et al. [24] Byte sequence of the L7 payload Using a recurrent neural (@) S HTTP No
network
Using a recurrent neural
Liu et al. [25]  Byte sequence of the L7 payload  network with embedded D, O S HTTP No
vectors
Zhao and Ahn Disassembled instructions of bytes Employing Markov chain- .
[26] in network traffic based model and SVM G S Not mentioned No
Shabtai et al.  7-8rams f)f a file and n-grams of Various ML algorl_t}%m, e.g., File
[27] opcodes in a file, then calculated random forest, decision tree, SG S classification No
TF/IDF of those n-grams Naive Bayes, and few others
. . . Analyses of instruction
SigFree [28] Dls.assemb'led.1nstruct10ns of bytes sequences to determine if SG Non-ML HTTP No
in application layer payload
they are code
. o Uses of recurrent neural
Proposed High-order #-grams of application network to early predict SW, SG S HTTP, FTP Yes
approach layer messages

exploit traffic

D =DARPA99; M=MCcPAD attacks dataset [9]; I=ISCX 2012; SG =self-generated; DI=DIEE; SW=UNSW-NB15; O =others; U= unsupervised;

S =supervised; non-ML =non-machine learning approach.

explains the datasets we used to test our proposed method.
How Blatta works is explained in Section 4. Then, Section 5
explains our extensive experimentation with Blatta. We also
discuss possible evasion techniques to our approach in
Section 6. Finally, the paper concludes in Section 7.

2. Related Works

The earliest solution to detecting exploit activities used
pattern matching and regular expression [4]. Rules are
defined by system administrators and are then applied to the



network traffic to identify a match. When a matching pattern
is found, the system raises an alert and possibly shows which
part of the traffic matches the rule. The disadvantage of this
approach is that the rules must be kept up to date. Any
variation to the exploit payload which is done by using
encoders may defeat such detection.

ML approaches are capable of recognising previously
seen instances of objects, and such methods aim to gener-
alise to unseen objects. ML is able to learn patterns or be-
haviour from features present in training data and classify
which class an unseen object belongs to. However, to work,
suitable hand-crafted features must be engineered for the
ML algorithm to make an accurate prediction. Some pre-
vious works defined their feature set by extracting infor-
mation from application layer message. In [14] and [15], the
authors generated their features from HTTP request URI
and HTTP headers, i.e., host, constant header fields, size,
user-agent, and language. The authors then clustered the
legitimate traffic based on those features. Golait and Hub-
balli [16] tracked DNS and HTTP traffic and calculated
pairwise features of two events to see their similarity. These
features were obtained from the transport and application
layer. One of their features is the semantical similarity be-
tween two HTTP requests.

Features derived from a specific protocol may capture
specific behaviour of legitimate traffic. However, this feature
extraction method has a drawback. A different set of features
is needed for every application layer protocol that might be
used in the network. Some research borrows the feature
extraction method from natural language processing
problems to have protocol-agnostic features, using n-grams.

One of the first leading research in payload analysis is
PAYL [7]. It extracts 1-grams from all bytes of the payload as
a representation of the network traffic and is trained over a
set of those 1 grams. PAYL [7] measures the distance be-
tween the new incoming traffic with the model with a
simplified Mahalanobis distance. Similar to PAYL, Oza et al.
[11] extracts n-grams of HTTP traffic with various »n values.
They compared three different statistical models to detect
anomalies/attacks. HMMPayl [10] is another work based on
PAYL which uses Hidden Markov Models to detect
anomalies. OCPAD [12] stores the n-grams of bytes in a
probability tree and uses one-class Naive Bayes classifier to
detect malicious traffic. Hao et al. [20] proposed an
autoencoder model to detect anomalous low-rate attacks on
the network, and Schneider and Bottinger [21] used stacked
autoencoders to detect attacks on industrial control systems.
Hamed et al. [22] developed probabilistic counting deter-
ministic timed automata which inspects byte values of ap-
plication layer messages to identify attacks on VOIP
applications. Pratomo et al. [23] extract words from the
application layer message and detect web-based attacks with
a combination of convolutional neural network (CNN) and
random forest. A common approach that is found on all of
the aforementioned works is they read all bytes in each
packet or application layer message and do not decide until
all bytes have been read, at which point it is possible the
exploit has already infected the system and targeted the
vulnerability.
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Other research studies argue that exploit traffic is most
likely to contain shellcode, a short sequence of machine
code. Therefore, to get a better representation of exploit
traffic, they performed static analysis on the network traffic.
Qin et al. [24] disassemble byte sequences to opcode se-
quences and calculate probabilities of opcode transition to
detect shellcode presence. Liu et al. [25] utilise n-grams that
comprise machine instructions instead of bytes. SigFree [28]
detects buffer overflow attempts on Internet services by
constructing an instruction flow graph for each request and
analysing the graph to determine if the request contains
machine instructions. Any network traffic that contains valid
machine instructions is deemed malicious. However, none
of these consider that an exploit may also contain server-side
scripting language or OS commands instead of shellcode.

In this paper, we proposed Blatta, an exploit attack
detection system that (i) provides early detection of exploits
in network traffic rather than waiting until the whole pay-
load has been delivered, enabling proactive blocking of
attacks, and (ii) is capable of detecting payloads that include
malicious server-side scripting languages, machine in-
structions, and OS commands, enhancing the previous state-
of-the-art approach that only focuses on shellcode. The
summary of the proposed method and previous works is also
shown in Table 1.

Blatta utilises a recurrent neural network- (RNN-) based
model which takes a sequence of n-grams from network
payload as the input. There has been limited research on
developing RNNs to analyse payload data [20, 24, 25]. All of
these works feed individual bytes (1 grams) from the payload
as the features to their RNN model. However, 1 grams do not
carry information about context of the payload string as a
sequence of activities. Therefore, we model the payload as
high-order n-grams where n>1 as to capture more con-
textual information about the network payload. We directly
compare 1-grams to higher-order n-grams in our experi-
ments. Moreover, while related works such as [19], [17], and
OCPAD [12] previously used high-order n-grams, they did
not utilise a model capable of learning sequences of activities
and thus not capable of making early-stage predictions
within a sequence. Our novel RNN-based model will con-
sider the long-term dependency of the sequence of n-grams.

An RNN-based model normally takes a sequence as
input, processes each item sequentially, and outputs the
decision after it has finished processing the last item of the
sequence. The earlier works which used the RNN has this
behaviour [24, 25]. While for Blatta to be able to early predict
the exploit traffic, it takes the intermediate output of the
RNN-based model, not waiting for full-length message to be
processed. Our experiments show that this approach has
little effect to accuracy and enables us to make earlier
network attack predictions while retaining high accuracy
and a low false positive rate.

3. Datasets and Threat Model

Several datasets have been used to evaluate network-based
intrusion detection systems. DARPA released the KDD99
Cup, IDSEVAL 98, and IDSEVAL 99 datasets [32]. They
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have been widely used over time despite some criticism that
it does not model the attacks correctly [33]. The Lawrence
Berkeley National Laboratory released their anonymised
captured traffic [34] (LBNLO5). More recently, Shiravi et al.
released the ISCX12 dataset [35] in which they collected
seven-day worth of traffic and provided the label for each
connection in XML format. Moustafa and Slay published the
UNSW-NBI15 dataset [31] which had been generated by
using the IXTA PerfectStorm tool for generating a hybrid of
real modern normal activities and synthetic contemporary
attack behaviours. This dataset provides PCAP files along
with the preprocessed traffic obtained by Bro-IDS [36] and
Argus [37].

Moustafa and Slay [31] captured the network traffic in
two days, on 22 January and 17 February 2015. For brevity,
we refer to those two parts of UNSW-NB15 as UNSW-JAN
and UNSW-FEB, respectively. Both days contain malicious
and benign traffic. Therefore, there has to be an effort to
separate them if we would like to use the raw information
from the PCAP files, not the preprocessed information
written in the CSV files. The advantage of this dataset over
ISCX12 is that UNSW-NBI15 contains information on the
type of attacks and thus we are able to select which kind of
attacks are needed, i.e., exploits and worms. However, after
analysing this dataset in depth, we observed that the exploit
traffic in the dataset is often barely distinguishable from the
normal traffic as some of them do not contain any exploit
payload. Our explanation for this is that exploit attempts
may not have been successful, thus they did not get to the
point where the actual exploit payload was transmitted and
recorded in PCAP files. Therefore, we opted to generate our
exploit traffic dataset, the BlattaSploit dataset.

3.1. BlattaSploit Dataset. To develop an exploit traffic
dataset, we set up two virtual machines that acted as vul-
nerable servers to be attacked. The first server was installed
with Metasploitable 2 [38], a vulnerable OS designed to be
infiltrated by Metasploit [30]. The second one was installed
with Debian 5, vulnerable services, and WordPress 4.1.18.
Both servers were set up in the victim subnet while the
attacker machine was placed in a different subnet. These
subnets were connected with a router. The router was used to
capture the traffic as depicted in Figure 1. Although the
network topology is less complex than what we would have
in the real-world, this setup still generates representative
data as the payloads are intact regardless of the number of
hops the packets go through.

To launch exploits on the vulnerable servers, we utilised
Metasploit, an exploitation tool which is normally used for
penetration testing [30]. Metasploit has a collection of
working exploits and is updated regularly with new exploits.
There are around 9,000 exploits for Linux- and Unix-based
applications, and to make the dataset more diverse, we also
employed different exploit payloads and encoders. An ex-
ploit payload is a piece of code which is intended to be
executed on the remote machine, and an encoder is a
technique to modify the appearance of particular exploit
code to avoid signature-based detection. Each exploit in

Metasploit has its own set of compatible exploit payloads
and encoders. In this paper, we used all possible combi-
nations of exploit payloads and encoders.

We then ran the exploits against the vulnerable servers
and captured the traffic using tcpdump. Traffic generated by
each exploit was stored in an individual PCAP file. By doing
so, we know which specific type of exploit the packets
belonged to. Timestamps are normally used to mark which
packets belong to a class, but this information would not be
reliable since packets may not come in order, and if there is
more than one source sending traffic at a time, their packet
may get mixed up with other sources.

When analysing the PCAP files, we found out that not all
exploits had run successfully. Some of them failed to send
anything to the targeted servers, and some others did not
send any malicious traffic, e.g., sending login request only
and sending requests for nonexistent files. This supported
our earlier thoughts on why the UNSW-NB15 dataset was
lacking exploit payload traffic. Therefore, we removed
capture files that had no traffic or too little information to be
distinguished from normal traffic. In the end, we produced
5,687 PCAP files which also represent the number of distinct
sets of exploit, exploit payloads, and encoders. Since we are
interested in application layer messages, all PCAP files were
preprocessed with tcpflow [39] to obtain the application
layer message for each TCP connection. The summary of this
dataset is shown in Table 2.

The next step for this exploit traffic dataset was to an-
notate the traffic. All samples can be considered malicious;
however, we decided to make the dataset more detailed by
adding the type of exploit payload contained inside the
traffic and the location of the exploit payload. There are eight
types of exploit payload in this dataset. They are written in
JavaScript, PHP, Perl, Python, Ruby, Shell script (e.g., Bash
and ZSH), SQL, and byte code/opcode for shellcode-based
exploits.

There are some cases where an exploit contains an ex-
ploit payload “wrapped” in another scripting language. For
example, a Python script to do reverse shell connection
which uses the Bash echo command at the beginning. For
these cases, the type of the exploit payload is the one with the
longest byte sequence. In this case, the type of the particular
connection is Python.

It is also important to note that whilst the vulnerable
servers in our setup use a 7-year-old operating system, the
payload carried by the exploit was the identical payload to a
more recent exploit would have used. For example, both
CVE-2019-9670 (disclosed in 2019) and CVE-2012-1495
(disclosed in 2012) can use generic/shell_bind_tcp as a
payload. The traffic generated by both exploits will still be
similar. Therefore, we argue that our dataset still represent
the current attacks. Moreover, only successful exploit attacks
are kept in the dataset, making the recorded traffic more
realistic.

3.2. Threat Model. A threat model is a list of potential things
that may affect protected systems. Having one means we can
identify which part is the focus of our proposed approach;
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FiGure 1: Network topology for generating exploit traffic. Attacker VM running Metasploit and target VMs are placed in different network
connected by a router. This router is used to capture all traffic from these virtual machines.

TaBLE 2: A summary of exploits captured in the BlattaSploit dataset.

Number of TCP connections
Protocols
Payload types

5687
HTTP (3857), FTP (6), SMTP (74), POP3 (93)
JavaScript, shellcode, Perl, PHP, Python, Ruby, Bash, SQL

Note. The numbers next to the protocols are the number of connections in the application layer protocols.

thus, in this case, we can potentially understand better what
to look for in order to detect the malicious traffic and what
the limitations are.

The proposed method focuses on detecting remote ex-
ploits by reading application layer messages from the
unencrypted network traffic, although the detection method
of Blatta can be incorporated with application layer firewalls,
i.e., web application firewalls. Therefore, we can still detect
the exploit attempt before it reaches the protected appli-
cation. In general, the type of attacks we consider here are as
follows:

(1) Remote exploits to servers that send malicious
scripting languages (e.g., PHP, Ruby, Python, or
SQL), shellcode, or Bash scripts to maintain control
to the server or gained access to it remotely. For
example, the apache_continuum_cmd_exec exploit
with reverse shell payload will force the targeted
server to open a connection to the attacking com-
puter and provide shell access to the attacker. By
focusing on the connections directed to servers, we
can safely assume JavaScript code in the application
layer message could also be malicious since normally
JavaScript code is sent from the server to the client,
not the other way around.

(2) Exploit attacks that utilise one of the text-based
protocols over TCP, i.e., HTTP and FTP. Text-based
protocols tend to be more well-structured; therefore,
we can apply natural language processing based
approach. The case would be similar to document
classification.

(3) Other attacks that may utilise remote exploits are
also considered, i.e., worms. Worms in the UNSW-
NB15 dataset contain exploit code used to propagate
themselves.

4. Methodology

Extracting features from application layer messages is the
first step toward an early prediction method. We could use
varjable values in the message (e.g., HT'TP header values,
FTP commands, and SMTP header values), but it would
require us to extract a different set of features from each
application layer protocol. It is preferable to have a generic
feature set which applies to various application layer pro-
tocols. Therefore, we proposed a method by using n-grams to
model the application layer message as they carry more
information than a sequence of bytes. For instance, it would
be difficult for a model to determine what a sequence of bytes
“G,” “E,” “T,” space, “/,” and so on means as those individual
bytes may appear anywhere in a different order. However, if
the model has 3-grams of the sequence (i.e., “GET,” “ET,”
“T,” and so on), the model would learn something more
meaningful such as that the string could be an HTTP
message. The advantage of using high-order n-grams where
n>1 is also shown by Anagram [29], method in [40], and
OCPAD [12]. However, these works did not consider the
temporal behaviour of a sequence of n-grams as their model
was not capable of doing that. Therefore, Blatta utilised a
recurrent neural network (RNN) to analyse the sequence of
n-grams which were obtained from an application layer
message.
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An RNN takes a sequence of inputs and processes them
sequentially in several time steps, enabling the model to
learn the temporal behaviour of those inputs. In this case, the
input to each time step is an n-gram, unlike earlier works
which also utilised an RNN model but took a byte value as
the input to each RNN time step [24, 25]. Moreover, these
works took the output from the last time step to make
decision, while our novel approach produces classification
outputs at intermediate intervals as the RNN model is al-
ready confident about the decision. We argue that this
approach will enable the proposed system to predict whether
a connection is malicious without reading the full length of
application layer messages, therefore providing an early
warning method.

In general, as shown in Figure 2, the training and de-
tection process of Blatta are as follows.

4.1. Training Stage. n-grams are extracted from application
layer messages. | most common n-grams are stored in a
dictionary. This dictionary is used to encode an #n-gram to an
integer. The encoded n-grams are then fed into an RNN
model, training the model to classify whether the traffic is
legitimate or malicious.

4.2. Detection Stage. For each new incoming TCP connec-
tion directed to the server, we reconstruct the application
layer message, obtain a full-length or partial bytes of them,
and determine if the sequence belongs to malicious traffic.

4.3. Data Preprocessing. In well-structured documents such
as text-based application layer protocols, byte sequences can
be a distinguishing feature that makes each message in their
respective class differ from each other. Blatta takes the byte
sequence of application layer messages from network traffic.
The application layer messages need to be reconstructed as
the message may be split into multiple TCP segments and
transmitted in an arbitrary order. We utilise tcpflow [39] to
read PCAP files, reconstruct TCP segments, and obtain the
application layer messages.

We then represent the byte sequence as a collection of
n-grams taken with various stride values. An n-gram is a
consecutive sequence of n items from a given sample; in this
case, an n-gram is a consecutive series of bytes obtained from
the application layer message. Stride is how many steps the
sliding window takes when collecting n-grams. Figure 3
shows examples of various n-grams obtained with a dif-
ferent value of n and stride.

We define the input to the classifier to be a set of integer
encoded n-grams. Let X = {x}, x,, X3, . .., X} be the integer
encoded n-grams collected from an application layer mes-
sage as the input to the RNN model. We denote k as the
number of n-grams taken from each application layer
message. Each n-gram is categorical data. It means a value of
1 is not necessarily smaller than a value of 50. They are
simply different. Encoding n-grams with one-hot encoding
is not a viable solution as the resulting vector would be
sparse and hard to model. Therefore, Blatta transforms the

sequence of n-grams with embedding technique. Embedding
is essentially a lookup table that maps an item to a dense
vector with a fixed size embedded_dim. Using pretrained
embedding vectors, e.g., GloVe [41], is common in natural
language processing problems, but these pretrained em-
bedding vectors were generated from a corpus of words.
While our approach works with byte-level n-grams.
Therefore, it is not possible to use the pretrained embedding
vectors. Instead, we initialise the embedding vectors with
random values which will be updated by backpropagation
during the training so that n-grams which usually appear
together will have vectors that are close to each other.

It is worth noting that the number of n-grams collected
raises exponentially as the n increases. If we considered all
possible #n-gram values, the model would overfit. Therefore,
we limit the number of embedding vectors by building a
dictionary of most common #-grams in the training set. We
define the dictionary size as I in which it contains [ unique
n-grams and a placeholder for other n-grams that do not
exist in the dictionary. Thus, the embedding vectors have
I+ 1 entries. However, we would like the size of each em-
bedded vector to be less than I + 1. Let ¢ be the size of an
embedded vector (embedded_dim). If x, represents an
n-gram, the embedding layer transforms X to X. We denote
X = {X,,..., X} where each X is a vector with the size of ¢.
The embedded vectors X are then passed to the recurrent
layer.

4.4. Training RNN-Based Classifier. Since the input to the
classifier is sequential data, we opted to use a method that
takes into account the sequential relationship of elements in
the input vectors. Such methods capture the behaviour of a
sequence better than processing those elements individually
[42]. A recurrent neural network is an architecture of neural
networks in which each layer takes time series data, pro-
cesses them in several time steps, and utilises the output of
the previous time step in the current step calculation. We
refer to these layers as recurrent layers. Each recurrent layer
consists of recurrent units.

The vanilla RNN has a vanishing gradient problem, a
situation where the recurrent model cannot be further
trained because the value to update the weight is too small;
thus, there would be no point of training the model further.
Therefore, long short-term memory (LSTM) [43] and gated
recurrent unit (GRU) [44] are employed to avoid this sit-
uation. Both LSTM and GRU have cells/units that are
connected recurrently to each other, replacing the usual
recurrent units which existed in earlier RNNs. What makes
their cells different is the existence of gates. These gates
decide whether to pass certain information coming from the
previous cell (i.e., input gate and forget gate in LSTM unit
and update gate in GRU) or going to the next unit (ie.,
output gate in LSTM). Since LSTM has more gates than
GRU, it requires more calculations, thus computationally
more expensive. Yet, it is not conclusive whether one is
better than the other [44]; thus, we use both types and
compare the results. For brevity, we will refer to both types as
recurrent layers and their cells as recurrent units.
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FIGURE 2: Architecture overview of the proposed method. Application layer messages are extracted from captured traffic using tcpflow [39].
n-grams are obtained from those messages. They will then be used to build a dictionary of most common n-grams and train the RNN-based
model (i.e., LSTM and GRU). The trained model outputs a prediction whether the traffic is malicious or benign.

String: | HELLO_WORLD

n-grams, n = 3, stride = 1:| HEL | | ELL | [ 110 || 10_|{O_W]| ...

n-grams, n =3, stride = 2:| HEL | | LLO | |o_w | [WOR] | RLD |

n-grams, n = 3, stride = 3:| HEL | | LO_ | |WOR|

FIGURE 3: An example of n-grams of bytes taken with various stride
values.

The recurrent layer takes a vector X, for each time step .
In each time step, the recurrent unit outputs hidden state h,
with a dimension of |h,|. The hidden state is then passed to
the next recurrent unit. The last hidden state i, becomes the
output of the recurrent layer which will be passed onto the
next layer.

Once we obtain hy, the output of the recurrent layer, the
next step is to map the vector to benign or malicious class.
Mapping h; to those classes requires us to use linear
transformation and softmax activation unit.

A linear transformation transforms /; into a new vector
L using (1), where W is the trained weight and b is the trained
bias. After that, we transform L to obtain Y = {y;|0<i<2},
the log probabilities of the input file belonging to the classes
with LogSoftmax, as described in (2). The output of Log-
Softmax is the index of an element that has the largest
probability in Y. All these forward steps are depicted in
Figure 4:

L:W*hk+bx
(1)
L={;]o<i<2},
eXP(li) )
Y = arg max| log———~—|. (2)
égskz ( ng:oeXP(li)

In the training stage, after feeding a batch of training
data to the model and obtaining the output, the next step is

to evaluate the accuracy of our model. To measure our
model’s performance during the training stage, we need to
calculate a loss value which represents how far our model’s
output is from the ground truth. Since this approach is a
binary classification problem, we use negative log likelihood
[45] as the loss function. Then, the losses are backpropagated
to update weights, biases, and the embedding vectors.

4.5. Detecting Exploits. The process of detecting exploits is
essentially similar to the training process. Application layer
messages are extracted. n-grams are acquired from these
messages and encoded using the dictionary that was built
during the training process. The encoded n-grams are then
fed into the RNN model that will output probabilities of
these messages being malicious. When the probability of an
application layer message being malicious is higher than 0.5,
the message is deemed malicious and an alert is raised.

The main difference in this process to the training stage is
the time when Blatta stops processing inputs and makes the
decision. Blatta takes the intermediate output of the RNN
model, hence requiring fewer inputs and disregarding the
needs to wait for the full-length message to process. We will
show in our experiment that the decision taken by using
intermediate output and reading fewer bytes is close to
reading the full-length message, giving the proposed ap-
proach an ability of early prediction.

5. Experiments and Results

In this section, we evaluate Blatta and present evidence of its
effectiveness in predicting exploit in network traffic. Blatta is
implemented with Python 3.5.2 and PyTorch 0.2.0 library.
All experiments were run on a PC with Core i7 @ 3.40 GHz,
16 GB of RAM, NVIDIA GeForce GT 730, NVIDIA CUDA
9.0, and CUDNN 7.

The best practice for evaluating a machine learning
approach is to have separate training and testing set. As the
name implies, training set is used to train the model and the
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FIGURE 4: A detailed view of the classifier. n-grams are extracted
from the input application layer message, which are then used to
train an RNN model to classify whether the connection is malicious
or benign.

testing set is for evaluating the model’s performance. We
split BlattaSploit dataset in a 60:40 ratio for training and
testing set as malicious samples. The division was carefully
taken to include diverse type of exploit payloads. As samples
of benign traffic to train the model, we obtained the same
number of HTTP and FTP connections as the malicious
samples from UNSW-JAN. Having a balanced set of both
classes is important in a supervised learning.

We measure our model’s performance by using samples
of malicious and benign traffic. Malicious samples are ob-
tained from 40% of BlattaSploit dataset, exploit, and worm
samples in UNSW-FEB set (10,855 samples). As for the
benign samples, we took the same number (10,855) of benign
HTTP and FTP connections in UNSW-FEB. We used the
UNSW dataset to compare our proposed approach per-
formance with previous works.

In summary, the details of training and testing sets used
in the experiments are shown in Table 3.

We evaluated the classifier model by counting the
number of true positive (TP), true negative (TN), false
positive (FP), and false negative (FN). They are then used to
calculate detection rate (DR) and false positive rate (FPR)
which are metrics to measure our proposed system’s
performance.

DR measures the ability of the proposed system to
correctly detect malicious traffic. The value of DR should be
as close as possible to 100%. It would show how well our

system is able to detect exploit traffic. The formula to cal-
culate DR is shown in (3). We denote TP as the number of
detected malicious connections and FN as the number of
undetected malicious connections in the testing set:

TP

DR=———.
TP + FN

(3)

FPR is the percentage of benign samples that are clas-
sified as malicious. We would like to have this metric to be as
low as possible. High FPR means many false alarms are
raised, rendering the system to be less trustworthy and
useless. We calculate this metric using (4). We denote FP as
the number of false positives detected and N as the number
of benign samples:

FP
FPR = —, (4)
N

5.1. Data Analysis. Before discussing about the results, it is
preferable to analyse the data first to make sure that the
results are valid and the conclusion taken is on point. Blatta
aims to detect exploit traffic by reading the first few bytes of
the application layer message. Therefore, it is important to
know how many bytes are there in the application layer
messages in our dataset. Hence, we can be sure that Blatta
reads a number of bytes fewer than the full length of the
application layer message.

Table 4 shows the average length of application layer
messages in our testing set. The benign samples have an
average message length of 593.25, lower than any other sets.
Therefore, deciding after reading fewer bytes than at least
that number implies our proposed method can predict
malicious traffic earlier, thus providing improvement over
previous works.

5.2. Exploring Parameters. Blatta includes parameters that
must be selected in advance. Intuitively, these parameters
affect the model performance, so we analysed the effect on
model’s performance and selected the best model to be
compared later to previous works. The parameters we
analysed are recurrent layer types, n, stride, dictionary size,
the embedding vector dimension, and the recurrent layer
type. When analysing each of these parameters, we use
different values for the parameter and set the others to their
default values (i.e., n = 5, stride = 1, dictionary size =2000,
embe dd ing_dim = 32, recurrent layer = LSTM, and number
of hidden layers=1). These default values were selected
based on the preliminary experiment, which had given the
best result. Apart from the modifiable parameters, we set the
optimiser to stochastic gradient descent with learning rate
0.1 as using other optimisers did not necessarily increase or
decrease the performance in our preliminary experiment.
The number of epochs is fixed to five as the loss value did not
decrease further, adding more training iteration did not give
significant improvement.

As can be seen in Table 5, we experimented with variable
lengths of input to see how much the difference when the
number of bytes read is reduced. It is noted that some
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TaBLE 3: Numbers of benign and malicious samples used in the
experiments.

Set Obtained from  Num. of samples Class

Training set BlattaSploit 3406 Malicious
UNSW-JAN 3406 Benign
BlattaSploit 2276 Malicious

Testing set UNSW-FEB 10855 Benign
UNSW-FEB 10855 Malicious

TaBLE 4: Average message length of application layer messages in
the testing set.

Set Average message length
BlattaSploit 2318.93

UNSW benign samples 593.25

UNSW exploit samples 1437.36

UNSW worm samples 848

messages are shorter than the limit. In this case, all bytes of
the messages are indeed taken.

In general, reading the full length of application layer
messages mostly gives more than 99% detection rate with
2.51% false positive rate. This performance stays still with a
minor variation when the length of input messages is re-
duced down to 500 bytes. When the length is limited to 400,
the false positive rate spikes up for some configurations. Our
hypothesis is that this is due to benign samples have rela-
tively short length. Therefore, we will pay more attention to
the results of reading 500 bytes or fewer and analyse each
parameter individually.

n is the number of bytes (n-grams) taken in each time
step. As shown in Table 5, we experimented with 1, 3, 5, 7,
and 9-gram. For brevity, we omitted n = 2, 4, 6, 8 because the
result difference is not significant. As predicted earlier, 1-
gram was least effective, and the detection rates were around
50%. As for the high-order n-grams, the detection rates are
not much different but the false positive rates are. 5-gram
and 7-gram provide better false positive rates (2.51%) even
when Blatta reads the first 400 bytes. 7-gram gives lower false
positive rate (8.92%) when reading first 300 bytes yet it is still
too high for real-life situation. Having a higher n means
more information is considered in a time step, this may lead
to not only a better performance but also overfitting.

As the default value of # is five, we experimented with
stride of one to five. Thus, it can be observed how the model
would react depending on how much the n-grams over-
lapped. It is apparent that nonoverlapping n-grams provide
lower false positives with around 1-3% decrease in detection
rates. A value of two and three for the stride performs the
worst, and they missed quite a few malicious traffic.

The dictionary size plays an important role in this ex-
periment. Having too many n-grams leads to overfitting as
the model would have to memorise too many of them that
may barely occur. We found that a dictionary size of 2000
has the highest detection rate and lowest false positive rate.
Reducing the size to 1000 has made the detection rate to
drop for about 50%, even when the model read the full-
length messages.
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Without embedding layer, Blatta would have used a one-
hot vector as big as the dictionary size for the input in a time
step. Therefore, the embedding dimension has the same
effect as dictionary size. Having it too big leads to overfitting
and too little could mean too much information is lost due to
the compression. Our experiments with a dimension of 16,
32, or 64 give similar detection rates and differ less than 2%.
An embedding dimension of 64 can have the least false
positive when reading 300 bytes.

Changing recurrent layer does not seem to have much
difference. LSTM has a minor improvement over GRU. We
argue that preferring one after the other would not make a
big improvement other than training speed. Adding more
hidden layers does not improve the performance. On the
other hand, it has a negative impact on the detection speed,
as shown in Table 6.

After analysing this set of experiments, we ran another
experiment with a configuration based on the best per-
forming parameters previously explained. The configu-
ration is n=5, stride=5, dictionary size=2000,
embedding dimension = 64, and a LSTM layer. The model
then has a detection rate of 97.57% with 1.93% false
positives by reading only the first 400 bytes. This result
shows that Blatta maintains high accuracy while only
reading 35.21% the length of application layer messages in
the dataset. This optimal set of parameters is then used in
turther analysis.

5.3. Detection Speed. In the IDS area, detection speed is
another metric worth looked into, apart from accuracy-
related metrics. Time is of the essence in detection, and the
earlier we detect malicious traffic, the faster we could react.
However, detection speed is affected by many factors, such as
the hardware or other applications/services running at the
same time as the experiment. Therefore, in this section, we
analyse the difference of execution time between reading the
tull and partial payload.

We first calculated the execution time of each record in
the testing set, then divided the number of bytes processed
by the execution time to obtain the detection speed in ki-
lobytes/seconds (KBps). Eventually, the detection speed of
all records was averaged. The result is shown in Table 6.

As shown in Table 6, reducing the processed bytes to 700,
about half the size of an IP packet, increased the detection
speed by approximately two times (from an average of
8.366 kbps to 16.486 kbps). Evidently, the trend keeps rising
as the number of bytes reduced. If we take the number of
bytes limit from the previous section, which is 400 bytes,
Blatta can provide about three times increment in detection
speed or 22.17kbps on average. We are aware that this
number seems small compared to the transmission speed of
a link in the network which can reach 1 Gbps/128 MBps.
However, we argued that there are other factors which limit
our proposed method from performing faster, such as the
hardware used in the experiment and the programming
language used to implement the approach. Given the ap-
proach runs in a better environment, the detection speed will
increase as well.
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TaBLE 5: Experiment results of using various parameters combination and various lengths of input to the model

No. of bytes No. of bytes
Parameter
All 700 600 500 400 300 200 All 700 600 500 400 300 200
1 4722 48.69 49.86 50.65 51.77 5499 6532 118 119 121 121 7131 787 89.43
3 99.87 99.51 99.77 991 99.59 9893 91.07 251 251 251 251 7261 1029 20.51
n 5 99.87 99.55 99.78 99.57 99.29 9891 88.75 2.51 2.51 2.51 2,51 251 726 11.08
7 99.86 99.47 99.59 99.37 99.19 9853 97.08 251 251 251 251 251 892 80.92
9 99.81 99.59 99.62 99.57 99.23 98.16 8893 251 251 251 251 726 7416 90.6
1 99.87 99.55 99.78 99.57 99.29 9891 8875 2.51 251 251 251 251 726 11.08
2 73.39 7411 7401 7445 7469 7462 77.82 181 181 181 181 7192 7246 19.86
Stride 3 82.51 8254 83.07 8312 8325 835 8575 15 149 15 151 71.62 7547 89.63
4 99.6 99.19 99.26 99.28 98.61 9855 9837 193 193 193 193 193 74.09 10.5
5 99.73 98.95 98.88 98.65 98 95.77 88.29 1.93 1.92 193 193 193 5416 90.02
1000 47.78 49.5 5036 50.79 51.8 54.83 54.68 121 121 1.22 1.22 7133 79.47 89.42
2000 99.87 99.55 99.78 99.57 99.29 9891 88.75 2.51 251 2,51 251 251 726 11.08
Dictionary size 5000 99.87 9937 99.75 99.79 99.62 99.69 99.66 2.51 2.51 251 251 7261 10.03 90.61
10000 99.86 99.44 99.74 99.55 99.44 98.55 9833 2.51 2.51 251 251 7261 79.06 90.15
20000 99.84 99.81 99.69 99.24 99.21 9943 9891 251 251 251 251 7261 8046 89.64
16 99.89 99.65 99.7 99.67 99.22 99.09 9881 2.51 251 251 251 251 7677 80.94
32 99.87 99.55 99.78 99.57 99.29 9891 88.75 2.51 251 251 251 251 726 11.08
Embedding dimension 64 99.87 99.2 99.41 99.09 98.61 96.76 85.52 2.51 251 251 251 251 451 89.85
128 99.84 9933 99.6 9935 98.99 97.69 86.78 251 251 251 251 726 427 10.88
256 99.88 99.76 99.8 99.22 9938 98.64 90.34 2,51 251 251 251 726 80.79 90.6
Recurrent laver LSTM 99.87 99.55 99.78 99.57 99.29 9891 88.75 2.51 2.51 251 251 251 726 11.08
Y GRU 99.88 99.35 9948 99.35 99.06 9794 86.22 251 251 251 251 251 7895 848
1 99.87 99.55 99.78 99.57 99.29 98.91 88.75 2.51 2.51 2.51 2.51 251 72.6 11.08
No. of layers 2 99.86 99.46 99.46 99.38 99.2 99.72 88.65 2.51 2.51 2,51 251 7259 7878 20.29
3 99.84 99.38 99.68 99.1 99.18 9816 87.35 2.51 251 251 251 251 7494 10.83
Detection rate False positive rate
Bold values show the parameter value for each set of experiment which gives the highest detection rate and lowest false positive rate.
TaBLE 6: The effect of reducing the number of bytes to the detection speed.
No. of LSTM layers
No. of bytes Y
1 2 3
All 8.366 + 0.238327 5.514 +0.004801 3.698 +0.011428
700 16.486 + 0.022857 10.704 + 0.022001 7.35+0.044694
600 18.16 £0.020556 11.97 £0.024792 8.21 £ 0.049584
500 20.432 +£0.02352 13.65 +0.036668 9.376 + 0.061855
400 22.17 £0.032205 14.94 £ 0.037701 10.302 +£0.065417
300 24.076 £0.022857 16.368 + 0.036352 11.318 £ 0.083477
200 26.272+0.030616 18.138 £ 0.020927 12.688 +0.063024

The values are average (mean) detection speed in kbps with 95% confidence interval, calculated from multiple experiments. The detection speed increased
significantly (about three times faster than reading the whole message), allowing early prediction of malicious traffic.

5.4. Comparison with Previous Works. We compare Blatta
results with other related previous works. PAYL [7],
OCPAD [12], Decanter [15], and the autoencoder model
[23] were chosen due to their code availability, and both can
be tested against the UNSW-NBI5 dataset. PAYL and
OCPAD read an IP packet at a time, while Decanter and [23]
reconstruct TCP segments and process the whole applica-
tion layer message. None of them provides early detection,
but to show that Blatta also offers improvements in detecting
malicious traffic, we compare the detection and false positive
rates of those works with Blatta.

We evaluated all methods with exploit and worm data in
UNWS-NBI15 as those match our threat model and the

dataset is already publicly available. Thus, the result would be
comparable. The results are shown in Table 7.

In general, Blatta has the highest detection rate—albeit it
also comes with the cost of increasing false positives. Al-
though the false positives might make this approach un-
acceptable in real life, Blatta is still a significant step towards
a direction of early prediction, a problem that has not been
explored by similar previous works. This early prediction
approach enables system administrators to react faster, thus
reducing the harm to protected systems.

In the previous experiments, as shown in Section 5.2,
Blatta needs to read 400bytes (on average 35.21% of ap-
plication layer message size) to achieve 97.57% detection
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TaBLE 7: Comparison to previous works using the UNSW-NBI15 dataset as the testing set.
Detection rate (%)
Method L . FPR (%)
Exploits in UNSW-NB15 Worms in UNSW-NB15

Blatta 99.04 100 1.93
PAYL 87.12 26.49 0.05
OCPAD 10.53 4.11 0
Decanter 67.93 90.14 0.03
Autoencoder 47.51 81.12 0.99

rate. It reads fewer bytes than PAYL, OCPAD, Decanter, and
[23] while keeping the accuracy high.

5.5. Visualisation. To investigate how Blatta has performed
the detection, we took samples of both benign and
malicious traffic and observed the input and output. We
were particularly interested in the relation of n-grams that
are not stored in the dictionary to the decision (unknown
n-grams). Those n-grams either did not exist in the
training set or were not common enough to be included in
the dictionary.

On Figure 5, we visualise three samples of traffic taken
from different sets, BlattaSploit and UNSW-NB15 datasets.
The first part of each sample shows n-grams that did not
exist in the dictionary. The yellow highlighted parts show
those n-grams. The second part shows the output of the
recurrent layer for each time step. The darker the red
highlight, the closer the probability of the traffic being
malicious to one in that time step.

As shown in Figure 5 (detection samples), malicious
samples tend to have more unknown n-grams. It is evident
that the existence of these unknown n-grams increases the
probability of the traffic being malicious. As an example,
the first five bytes of the five samples have around 0.5
probability of being malicious. And then the probability
went up closer to one when an unknown n-gram is
detected.

Similar behaviour also exists in the benign sample. The
probability is quite low because there are many known
n-grams. Despite the existence of unknown n-grams in the
benign sample, the end result shows that the traffic is benign.
Furthermore, most of the time, the probability of the traffic
being malicious is also below 0.5.

6. Evasion Techniques and Adversarial Attacks

Our proposed approach is not a silver bullet to tackle exploit
attacks. There are evasion techniques which could be
employed by adversaries to evade the detection. These
techniques open possibilities for future work. Therefore, this
section talks about such evasion techniques and discuss why
they have not been covered by our current method.

Since our proposed method works by analysing appli-
cation layer messages, it is safe to disregard evasion tech-
niques on transport or network layer level, e.g., IP
fragmentation, TCP delayed sending, and TCP segment
fragmentation. They should be handled by the underlying
tool that reconstructs TCP session. Furthermore, those

evasion techniques
preprocessor.

Two possible evasion techniques are compression and/or
encryption. Both compression and encryption change the
bytes” value from the original and make the malicious code
harder to detect by Blatta or any previous work [7, 12, 23] on
payload-based detection. Metasploit has a collection of
evasion techniques which include compression. The com-
pression evasion technique only works on HTTP and utilises
gzip. This technique only compresses HTTP responses, not
HTTP requests. While all HTTP-based exploits in UNSW-
NB15 and BlattaSploit have their exploit code in the request,
thus no data are available to analyse the performance if the
adversary uses compression. However, gzip compressed data
could still be detected because they always start with the
magic number 1f 8b and the decompression can be done in a
streaming manner in which Blatta can do so. There is also no
need to decompress the whole data since Blatta works well
with partial input.

Encryption is possibly the biggest obstacle in payload-
based NIDS: none of the previous works in our literature (see
Table 1) have addressed this challenge. There are other
studies which deal with payload analysis in encrypted traffic
[46, 47]. However, these studies focus on classifying which
application generates the network traffic instead of detecting
exploit attacks; thus, they are not directly relevant to our
research.

On its own, Blatta is not able to detect exploits hiding in
encrypted traffic. However, Blatta’s model can be exported
and incorporated with application layer firewalls such as
ShadowDaemon [48]. ShadowDaemon is commonly in-
stalled on a web server and intercepts HTTP requests before
being processed by a web server software. It detects attacks
based on its signature database. Since it is extensible and
reads the same data as Blatta (i.e., application layer mes-
sages), it is possible to use Blatta’s RNN-based model to
extend the capability of ShadowDaemon beyond rule-based
detection. More importantly, this approach would enable
Blatta to deal with encrypted traffic, making it applicable in
real-life situations.

Attackers could place the exploit code closer to the end
of the application layer message. Hoping that in doing so, the
attack would not be detected as Blatta reads merely the first
few bytes. However, exploits with this kind of evasion
technique would still be detected since this evasion tech-
nique needs a padding to place the exploit code at the end of
the message. The padding itself will be detected as a sign of
malicious attempts as it is most likely to be a byte sequence
which rarely exist in the benign traffic.

can also be avoided by Snort
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Probabilities:
00 01 02 03 0405 T0EN0TIGEINSINN
An exploit sample in BlattaSploit dataset

Unknown n-grams:
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POST /setFileUpload HTTP/1.1 Host: 192.168.99.6 User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1) Authorization: Basic YWRtaW46 Content-Type:
multipart/form-data; boundary=--—-WebKitFormBoundaryeyfnwlL Content-Length: 797 —---WebKitFormBoundaryeyfnwl Content-Disposition: form-data;
name="ReplySuccessPage" replyuf.htm -—---! WebKitFormBoundaryeyfnwlL Content-Disposition: form-data; name="ReplyErrorPage” replyuf.htm --—---
WebKitFormBoundaryeyfnwl Content-Disposition: form-data; name="Filename" ftmp/.hogG2a —-—--WebKitFormBoundaryeyinwl Content-Disposition: form-data;

name="UploadFile"; filenam

="gMpXYBKzOQ" Content-Type: application/octet-stream “ELF<<1<<, aT@44 <@ @OL- % 4567. 5 pA--j iy . (X !

Eér--T(0§1=0y $'h <y 0= 12 &— e <+8720y# i IHATIE-- 3 428 TIaNZA[D0a-o#Cara [IC@ 0 w04\ a® Ugly[a[] —-—WebKitFormBoundaryeyfnwL Content-
Disposition: form-data; name="ConfigUploadFile” Upload File -—---—-WebKitFormBoundaryeyfn

RNN output:

P

A benign sample

Unknown n-grams:

GET / HTTP/1.1 Host: server-95ab7e08.example.int Connection: Keep-Alive If-None-Match: 9510b9a66bd8feGc41b661eed1706bc2 User-Agent: Client Agent Accept: */*
Accepi-Language: en-us Accept-Encoding: gzip,deflate UA-CPU: x86 GET /notthere.html HTTP/1.1 Host: server-95ab7e08.example.int Connection: close li-None-Match:
89%e4e52c44a9f642acefd7905135d0c8 User-Agent: Client Agent Accept */* Accept-Language: en-us Accept-Encoding: gzip,deflate UA-CPU: x86

RNN output:
GET / HTTP/1.1 Host: server-95ab7e08.example.int Connection: Kegp-Alive If2

one-Match: S5I0bSHBEEEEEEAIboGIEEdT IonOeDSsIRgenE Client Agent Accepfil*

Becept-Language: en-us Accept-Encoding: oZip\deflate UA-CPU: x86 GETMGtthere html HTTP/1.1 Host: server-95ab7e08. examplglill Connection: close 1-None-MEIER

An exploit sample in UNSW-NB15 dataset

Unknown n-grams:
GET http:/f/149.171.126.18:8080/requests/status.xml?

Accept *Flccept-Langliage; en-us Accept-Encoding: gzip, deflate UA-CPU: x86

command=in_play&input=smb:/KyRXAQOg.jgriwlUUnluful/QWbIfhTZXMZKwYBilSCKnTWMIXTNyjxind XHZG TKrKKLdhgfinMYRINgmRUvzFRxOebClslY ZyqgRdSedANwe
Mozilla/5.0 (Android; Tablet; rv:13.0.1) Gecko/13.0.1 Firefox/13.0.1 Accept: */* Connection: keep-alive

RNN output:

FIGURE 5: Visualisation of unknown n-grams in the application layer messages and outputs of the recurrent layer for each time step. It shows
how the proposed system observes and analyses the traffic. Yellow blocks show unknown #n-grams. Red blocks show the probability of the

traffic being malicious when reading an #n-gram at that point.

7. Conclusion and Future Work

This paper presents Blatta, an early prediction system for
exploit attacks which can detect exploit traffic by reading only
400 bytes from the application layer message. First, Blatta
builds a dictionary containing most common #-grams in the
training set. Then, it is trained over benign and malicious
sequences of n-grams to classify exploit traffic. Lastly, it con-
tinuously reads a small chunk of an application layer message
and predicts whether the message will be a malicious one.

Decreasing the number of bytes taken from application
layer messages only has a minor effect on Blatta’s detection
rate. Therefore, it does not need to read the whole appli-
cation layer message like previously related works to detect
exploit traffic, creating a steep change in the ability of system
administrators to detect attacks early and to block them
before the exploit damages the system. Extensive evaluation
of the new exploit traffic dataset has clearly demonstrated the
effectiveness of Blatta.

For future study, we would like to train a model that
can recognise malicious behaviour based on messages
exchanged between clients and a server since in this paper
we only consider messages from clients to a server, but not
the other way around. Detecting attacks on encrypted
traffic while retaining the early prediction capability could
be a future research direction. It also remains a question
whether the approach in mobile traffic classification
[46, 47] would be applicable to the field of exploit
detection.

Data Availability

The compressed file containing the dataset is available on
https://bit.ly/blattasploit.
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Software-Defined Network (SDN) can improve the performance of the power communication network and better meet the
control demand of the Smart Grid for its centralized management. Unfortunately, the SDN controller is vulnerable to many
potential network attacks. The accurate detection of abnormal flow is especially important for the security and reliability of the
Smart Grid. Prior works were designed based on traditional machine learning methods, such as Support Vector Machine and
Naive Bayes. They are simple and shallow feature learning, with low accuracy for large and high-dimensional network flow.
Recently, there have been several related works designed based on Long Short-Term Memory (LSTM), and they show excellent
ability on network flow analysis. However, these methods cannot get the deep features from network flow, resulting in low
accuracy. To address the above problems, we propose a Hybrid Convolutional Neural Network (HYBRID-CNN) method.
Specifically, the HYBRID-CNN utilizes a Deep Neural Network (DNN) to effectively memorize global features by one-di-
mensional (1D) data and utilizes a CNN to generalize local features by two-dimensional (2D) data. Finally, the proposed method is
evaluated by experiments on the datasets of UNSW_NBI15 and KDDCup 99. The experimental results show that the HYBRID-
CNN significantly outperforms existing methods in terms of accuracy and False Positive Rate (FPR), which successfully

demonstrates that it can effectively detect abnormal flow in the SDN-based Smart Grid.

1. Introduction

The Smart Grid is a grid system with automatic control and
self-protection adjustment capabilities [1]. It is supported by
information and communication technology to achieve
reliability, security, and real-time requirements [2, 3]. The
emerging network architecture Software-Defined Network
(SDN) ignores the coaxial hardware structure of the network
which separates the control plane and the data plane, and
directly implements the virtualized configuration of the
switch. It is especially suitable for mobile communication
network, wired interconnection network, and sensor net-
work in the Smart Grid [4]. The SDN improves the data
transmission capability and network compatibility of the
Smart Grid, but it also brings new security issues. The highly
centralized network control capability and the damage
caused by network abnormal flow intrusion have increased
significantly [5]. As the control center of the whole network,

the SDN itself may be the target of various attacks, such as
DDoS, fake flow, breakthroughs in switches, and attacks on
the control layer. The destruction of the SDN will cause all
switches under its control to be paralyzed or disorders can
have devastated effects on the entire network [6]. In the
SDN, collaborative abnormal flow detection across multiple
domains requires detailed flow data for each relevant do-
main, such as the contents of a flow table in the last few
seconds. Network abnormal flow has the characteristics of
potential and unforeseen attacks. Therefore, the detection
technology of network abnormal flow is challenged by the
demand for larger-scale and higher-dimensional flow data
[7].

Recently, most of these studies are based on state
transition [8] and artificial intelligence methods [9]. The
method based on state transition requires manual calcula-
tion and has low recognition accuracy. The method based on
artificial intelligence has more advantages in this respect
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because of network big data. However, most of the re-
searches have not carried out in-depth feature learning of
network flow. For large-scale network abnormal flow de-
tection, there are mainly two types of methods. The first type
of method relies on sampling data, it uses network flow data
to establish a library of attack intrusion behavior patterns,
and the collected data including the host’s system logs or
collected from the network nodes matches the established
pattern library. If the match is successful, it is proved to be an
intrusion; otherwise, it is a normal behavior [10]. This
method can effectively identify existing attacks and maintain
them effectively and improve network security at the time.
However, with the development of computers and the In-
ternet, more and more new types of attacks appear in the
field of vision. The detection accuracy of expert systems has
fallen sharply. It has been unable to meet the requirements,
and the sampling data itself is not accurate, which may cause
the loss of useful information.

Another type of method is to utilize machine learning
methods to perform feature extraction and detection
classification after constructing features. The massive
amount of network data makes machine learning methods
more effective than judgment methods based on expert
systems [11]. The traditional machine learning methods are
just a shallow feature learning classifier. They have certain
limitations when processing complex data. The feature
processing that traditional machine learning must do is
time consuming and requires specialized knowledge. The
performance of most machine learning algorithms depends
on the accuracy of the extracted features. Deep learning
reduces the manual design effort of feature extractors for
each problem by automatically retrieving advanced features
directly from raw data [12]. Previous studies have used deep
learning to classify mobile encrypted traffic and achieved
excellent results [13, 14]. In [15], the authors investigated
several deep learning architectures, including 1D CNN, 2D
CNN, LSTM, Stacked Autoencoder (SAE), and Multilayer
Perceptron (MLP) for mobile encrypted traffic classifica-
tion. Based on this, this paper aims to apply the excellent
feature learning capabilities of deep learning to the SDN-
based Smart Grids to achieve highly accurate network
abnormal flow detection.

To meet the above problems and challenges, we hope to
apply the excellent feature learning capabilities of deep
learning to the SDN-based Smart Grid to achieve highly
accurate network abnormal flow detection. The main con-
tributions of this article can be summarized as follows:

(i) First, we design a framework for improving the
security of the Smart Grid by applying an abnormal
flow detection algorithm in the SDN-based Smart
Grid communication network; it can identify ab-
normal flow and detect the type of attack.

(ii) Second, we propose a deep learning algorithm of
Hybrid Convolutional Neural Networks (HYBRID-
CNN) to detect abnormal flow in the SDN-based
Smart Grid communication network. The HYBRID-
CNN adopts dual-channel data input, which can
extract effective features from 1D and 2D flow data,
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use the self-attention mechanism to fuse key fea-
tures, and finally use the fully connected neural
network for detection.

(iii) Third, we compare the proposed method with the
single model and verify the performance im-
provement of the hybrid model. In addition, we
discuss a parameter study to optimize the HYBRID-
CNN model.

(iv) Fourth, we perform a lot of experimental com-
parisons on the UNSW_NBI5 and KDDCup 99
benchmark dataset. Experimental results show that
the HYBRID-CNN  significantly outperforms
existing approaches in terms of accuracy and False
Positive Rate (FPR).

The rest of this article is organized as follows: we discuss
related work in Section 2 and introduce the system model
and security requirements in Section 3. We then introduce
some preliminary knowledge in Section 4. In Section 5, we
introduce our proposed algorithm, and then in Section 6 we
introduce experimental comparative analysis. Finally, we
discuss and conclude in Sections 7 and 8.

2. Related Work

This section discusses two related types of work, namely,
traditional machine learning and deep learning. In the SDN-
based network controllers, using traditional machine
learning and deep learning to develop flexible and efficient
abnormal flow detection schemes presents some challenges.
One of the main challenges is how to choose an appropriate
feature selection method and another challenge is to ac-
curately grasp the correlation between the selected feature
and the abnormal flow detection task and the redundancy
between these features [16].

2.1. Traditional Machine Learning. Most of the previous
studies were based on traditional machine learning methods,
such as Support Vector Machine (SVM), Decision Tree, and
Naive Bayes. Naive Bayes algorithm is an important algo-
rithm in the field of machine learning and data mining. It is
widely used in the field of machine learning classification,
such as text classification and medical diagnosis. Ashraf et al.
[17] applied Naive Bayes for network intrusion detection;
their basic idea is to select the most likely category based on
the Bayesian algorithm under the assumption that the
classification is based on feature independence. But this
method is only simple shallow feature learning, and it has
poor performance for large-scale network flow data. Rai et al.
[18] used decision tree C4.5 to perform intrusion detection
experiments on the NSL-KDD dataset. In this work, 16
attributes were selected as detection features on the dataset.
The proposed algorithm can be used for feature-based in-
trusion detection, but its accuracy is too low, only 79.52%.
Reddy et al. [19] proposed a filtering algorithm based on the
SVM classifier to perform the classification task on the
KDDCup 99 dataset. This method performed well on the
training field but performed poorly in the test dataset and
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could not effectively detect unknowns’ network abnormal
flow.

2.2. Deep Learning. In recent years, as a branch of machine
learning, deep learning is becoming more and more
popular. It is applied to intrusion detection and research
shows that deep learning has completely surpassed tradi-
tional methods in performance [20]. Kwon et al. [15]
utilized Deep Neural Network-based deep learning
methods for flow-based anomaly detection. Experimental
results evidence that deep learning can be applied to ab-
normal flow detection in the SDN. Long Short-Term
Memory (LSTM) is a special deep learning model of Re-
current Neural Network. It can remember the input and
predicted output of any period and solves the problem of
gradient vanish and explosion in the Recurrent Neural
Network (RNN). LSTM is widely used in the field of
Natural Language Processing [21]. Existing researches have
been done on abnormal flow detection based on LSTM [22],
and they found that the algorithms have a significant
performance improvement for sequence learning com-
pared with traditional machine learning methods, but there
is still room for improvement in detection rate and ac-
curacy. CNN is a multi-layer network structure learning
algorithm. It can learn hierarchical features from a large
amount of data and has broad application prospects in the
field of abnormal flow detection. Wang et al. [23] proposed
an end-to-end classification method for one-dimensional
Convolutional Neural Networks. This method integrates
feature extraction, feature selection, and classifiers into a
unified end-to-end framework and automatically learns
original inputs and expectations. The nonlinear relation-
ship between the outputs has obtained good experimental
results. However, the one-dimensional data used in this
method is not suitable for local feature extraction, resulting
in the detection rate less than the ideal one. In [24], the
authors present a new technique for network traffic clas-
sification based on a combination of RNN and CNN models
that can be used for Internet of Things (IoT) traffic, which
provides the best detection results. Wang et al. [25] pro-
posed using CNN combined with LSTM to analyze and
detect network flow. It utilizes CNN to learn low-level
spatial features of network flow for the first time and then
uses LSTM to learn high-level temporal features. The Deep
Neural Network completes it automatically, and this
method has achieved good results in terms of accuracy and
detection rate.

Based on the above works, traditional machine learning
methods that are typically used in abnormal flow detection
often fail and cannot detect many known and new security
threats, largely because those approaches provide less focus
on accurate feature selection and classification. It is often
inefficient for large-scale network flow. For the current deep
learning methods like LSTM and CNN, they often pay more
attention to the improvement of the model and ignore the
original flow structure features. To address the above
problems, we propose a HYBRID-CNN deep learning
method for more accurate feature learning. The method

utilizes two-channel input structure of 1D data and 2D data:
using a CNN to extract local features and using a DNN to
extract the global features. Specifically, a self-attention
mechanism is added to select the most important features.

3. System Model View

In this section, we formalize the system model and system
security requirements.

3.1. System Model. The Smart Grid uses two-way commu-
nication technology to connect many power components to
ensure mutual communication between the components.
Implementing the SDN on Smart Grid technology separates
network control from data forwarding equipment that in-
cludes network infrastructure, thereby enabling logically
centralized control and enabling the network to be pro-
grammed by a central software unit. The control layer, as the
brain of the network, carries the controller software. The
software-defined routing rules determine where to route
flow. There are programmable network devices in the data
plane to route flow according to the rules defined by the
controller. The top of the module implements the function of
the abnormal flow detection module. As shown in Figure 1,
the SDN-based Smart Grid mainly includes the following
parts [26].

3.1.1. Physical Plane. This layer is responsible for packet
switching and routing. It includes the basic components of
network communication in Smart Grid, such as smart meter,
Power Management Unit (PMU), various sensors, and
various communication equipment. Different from the
traditional network, these basic components cannot make
decisions independently because of no control unit. They are
only responsible for collecting the generated key data and
forwarding the collected data to the control layer through
the programmable SDN switch infrastructure while com-
plying with the rules defined by the controller.

3.1.2. Southbound Interface. The definition of south inter-
face provides the communication protocol between the
physical layer and the control layer. OpenFlow protocol
developed by Stanford is currently the most common and
standard protocol in south interface [27]. It can realize
secure communication in the SDN by determining the
message format from a programmable switch to controller.

3.1.3. Control Plane. As the central brain, the control layer
has a SDN controller or more whose task is to manage the
forwarding behavior of data flow by determining forwarding
rules, which need to be written into the flow table of the
programmable switch in the physical layer through the south
interface.

3.1.4. Northbound Interface. The north interface definition
provides an interface for communication between the
control layer and the application layer and enables
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FIGUre 1: The system model of the SDN-based Smart Grid; it mainly includes physical plane, southbound interface, control plane,
northbound interface, and application plane. Devices in the physical layer initiate access request through the Internet, and the flow
collection module of the SDN controller captures all request flow statistics table information to extract flow features. HYBRID-CNN is used
to detect abnormal traffic and generate abnormal reports. Then, the generated anomaly report is sent to the SDN controller through the
security channel. Finally, the SDN controller discards attack packets and updates the flow table according to the received report.

application programs to program the network. It abstracts
the details of data in the physical layer and allows network
administrators, service providers, and researchers to cus-
tomize the control rules and behaviors of their networks.

3.1.5. Application Plane. The application layer comprises
many Smart Grid applications, including network security
function programs such as abnormal flow detection module
and flow data filtering module. All these application-defined
policies need to be translated into OpenFlow rules that are
transferred to the physical layer programmable switch and
then transferred from the north interface to the control
layer.

3.2. System Security Requirements

3.2.1. The Immovability and Concentricity of Network
Architecture. The function of the Smart Grid communica-
tion network is generated with the design phase, and it is
almost impossible to reconfigure the network based on the
real-time needs of the network. In terms of performance and
resilience, the bottlenecks will be caused by this nondynamic
structure of today’s Smart Grid. At the same time, the
network will be vulnerable to multiple types of attacks. On
the other hand, the highly centralized network control ca-
pability increases the damage caused by network abnormal
flow intrusion considerably [28]. The SDN is the control
center of the entire network. It may itself be the target of
various attacks and these attacks will damage the SDN
resulting in all its control paralysis or misbehavior of a
switch can have a devastating effect on the entire network.
Therefore, it is necessary to design an effective abnormal
flow detection algorithm in the SDN controller.

3.2.2. The Hierarchy of Network Flow. Network flow has a
distinct hierarchy, as shown in Figure 2, where the bottom
row shows a sequence of flow bytes. According to a specific
network protocol format, multiple flow bytes are combined
into a network packet, and then multiple network packets
are combined into a network flow. A network flow is divided
into normal or malicious tasks, and a deep learning algo-
rithm is used to learn hierarchical features, which has
achieved good results. These studies urge us to use deep
learning to learn the hierarchical features of network flow to
complete the task of intrusion anomaly detection.

3.3. Working Methodology. Devices in the physical layer
initiate access request through the Internet, and the flow
collection module of the SDN controller captures all re-
quest flow statistics table information to extract flow fea-
tures. The abnormal flow detection module includes three
stages: data preprocessing, model training, and model
validation, as shown in Figure 3. First, the collected
flowmeter data are preprocessed, including data encoding,
data normalization, data reshaping, and data split. After
data preprocessing, the flow data vectors will be feature-
extracted, feature-fused, and anomaly-detection-classified
by the HYBRID-CNN algorithm.

In addition to the powerful anomaly flow detection
above, the proposed solution performs end-to-end delivery
of detection reports through the SDN as shown in Figure 1.
This is achieved by incorporating the anomaly flow detection
model into the core of the SDN control plane. The execution
process works in the following order: (i) detection stage, (ii)
reporting phase, and (iii) update phase. In the first stage, the
control plane encapsulated with the anomaly flow detection
model classifies the incoming flow as abnormal and normal.
Then in the second stage, the report is communicated to the
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FIGURE 3: Working methodology of the proposed anomaly detection algorithm; it includes data preprocessing, model training, and model

validation.

control plane. If the incoming flow is abnormal, the control
plane discards the packet and immediately gives up com-
munication with the requesting host. This helps protect the
underlying network with malicious content and prevents it
from spreading further on the network. During the update
stage, the control plane updates the flow table entry of the
forwarding device.

4. Preliminaries

In this section, we briefly describe the general notion used in
our proposed algorithm.

4.1. Activation Function. The activation function provides
the nonlinear modeling capability of the network. Rectified
Linear Unit (ReLU) is the most widely used function [29]; it
can keep the gradient from attenuating, thus effectively
alleviating the problem of gradient disappearance; the
function expression is as follows: the ReLU activation
function produces 0 as an output when x < 0 and produces a
linear with slope of 1 when x> 0:

7' = max (0, x). (1)

4.2. Cross-Entropy Loss. Cross-entropy loss measures the
performance of a classification model whose output is a

probability value between 0 and 1. It increases as the pre-
dicted probability diverges from the actual label. In binary
classification, where the number of classes M equals 2, the
cross-entropy loss can be calculated as

loss = —(ylog(p)) — (1 — y)log (1 — p). (2)

If M>2 (ie., multiclass classification), we calculate a
separate loss for each class label per observation and sum the
results:

M
loss' = — Zyo)clog(pa,c)), (3)
c=1

where y is binary indicator (0 or 1) if class label c is the
correct classification for observation o and p is predicted
probability that observation o is of class c.

4.3. Optimizer. We use Adam optimizer to learn the net-
work weight parameters. And independent adaptive
learning rates are designed for different parameters with
calculating the first-order moment estimation and the
second-order moment estimation of the gradient. Empir-
ical results prove that Adam has greater advantages over
other optimizers in practice [30]. Moving averages of
gradient m, = fym,_; + (1 - fB,)g, and squared gradient
v, = Byvi_y + (1= B,)g?, bias corrected estimators for the



first moments 72, and second moments ¥, = v,/ (1 — f8}), the
update rules for Adam are as follows:

i (4)
Wy =Wy ==
t -1~ 1 \/7t+£
where w is model weights, # is the step size, and f, ¢ are
hyperparameters.

5. Proposed HYBRID-CNN Algorithm

In this part, we first introduce the data preprocessing op-
eration. Then, we describe the structure of HYBRID-CNN
algorithm and how to detect abnormal flow.

5.1. Data Preprocessing

5.1.1. Data Encoding. 'The input flow data contains a variety
of features; some of them are no-numeric types, so they need
to be encoded as numeric types to be used as input to the
neural network. Here, we use Label encoder encoding to
convert discrete features to continuous features [31], such as
[protocol: TCP, service: HTTP, state: FIN, ...] — [pro-
tocol: 4, service: 2, state: 2, ...].

5.1.2. Data Normalization. Data normalization can speed up
the solution, improve the accuracy of the model, and prevent
a feature with a particularly large value range from affecting
the distance calculation. For the features that there is a very
large scope in the difference between the minimum and
maximum values, such as “dur,” “sbytes,” and “dbytes,” we
apply the logarithmic scaling method for scaling to obtain
the features which are mapped to a range. We choose the
MIN-MAX scaling method [31] and normalize the data
according to the following equation:

Xi - Xmin

Xi=x —x
max min

(5)
where X; denotes each data point, X ;. denotes the mini-
mum value from all data points, and X, ,, denotes the
maximum value from all data points for each feature.

5.1.3. Data Reshaping. For CNN input, its format should be
three-dimensional data (height, width, channel), and as a
single sample, the channel should be 1, so that we can re-
shape a single flow sample with a length of s = h*w + 1 to
obtain a data structure similar to an image and construct a
matrix M of h*w, namely,

M, ... My,
M= (6)
M, ... M,

w

5.1.4. Data Split. For every model we want to train, each
model has two datasets: one is the training dataset and the
other is the validation dataset. As shown in Figure 4, in order
to separate them, we first apply the shuffle method on the
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F1GURE 4: Data split. Using the shuffle method on the network flow
dataset to generate random data, and then splitting the random
data into a training dataset and a validation dataset.

dataset to generate random data and then slice the entire
dataset to obtain a training dataset and a validation dataset.

5.2. HYBRID-CNN. The structure of CNN is shown in
Figure 5. It is an end-to-end deep learning model with
powerful feature learning and classification capabilities. It is
widely used in image classification, speech recognition,
computer vision, and other fields [32].

The network flow contains both abnormal and normal
flow, and HYBRID-CNN training is performed at this stage
to detect misused attacks, which aims to further categorize
the malicious data from stages into corresponding classifi-
cation strategies, i.e., Scan, R2L, DoS, and Probe. The
structure of our proposed HYBRID-CNN algorithm is
shown in Figure 6. We divide it into three parts. The first part
is feature extraction, the second part is feature fusion, and
the third part is the detection classification.

5.2.1. Feature Extraction. In the feature extraction phase, we
use the form of dual input of flow data, which aims to extract
the features of flow more comprehensively. The role of the
input layer is to receive input data, and the size of the input
layer is consistent with the size of the input data, such as a
vector X = [xl,xz, e ,xn], or a matrix M.

For the first input (the upper part of the blue box), every
user’s access flow essentially is 1D data. We utilize two layers
of DNN to extract the global features of the flow. Our
motivation is to learn the frequent co-occurrence of features
pass by memorizing one-dimensional data. The calculation
method of each neuron in the fully connected layer is

X :f<i wi,jxi+b1>' (7)
P

After the data preprocessing, its input shape is
(h*w, 1). In layer 1, we set a neuron, and the shape of the
output data is (h*w,a). In the fully connected layer 2, we
set b neurons, and the shape of the output data is (h*w,b).
The two-dimensional data is straightened to obtain a one-
dimensional feature vector of /*w*b, 1. In this process, the
activation function used is ReLU to obtain the output
feature O

wide*
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FIGURE 6: The structure of the proposed HYBRID-CNN algorithm; it includes feature extraction, feature merge, and classification. The
feature extraction aims to extract the feature of flow more comprehensively, the self-attention mechanism aims to fuse key feature, and the

classification aims to classify accurately.

For the second input (the lower part of the blue box), we
reshape the one-dimensional data of the first input into a
two-dimensional matrix. We believe that the deeper features
can be better learned in the form of two-dimensional matrix
input. The CNN uses a sliding convolution kernel to extract
local features of flow data. In this part of the network, a
convolution layer, a pooling layer, and a flatten layer are
included.

One of the limitations of conventional neural networks is
poor scalability due to the full connection of neurons; CNN
overcomes this shortcoming by convolving each neuron to
its neighbors instead of all neurons [33]. Set the input of the
i-th layer to x'*, the output to x', and the convolution kernel
to k. The convolution operation is performed by the fol-
lowing equation:

= f(3 ek + 1), ®)

where f(-) is a nonlinear activation function, ® is a con-
volution sign, and b' is a bias term. The pooling layer is

usually placed after the convolutional layer. By performing a
merge operation on a local area of the feature map, the
feature has a certain spatial invariance. The merge operation
reduces feature size and prevents overfitting. x*! is obtained
by the following pooling:

=P down(xl) +b, 9)

where down(-) represents the pooling function, f3 is a
multiplicative bias, and b is additive bias. The reshaped shape
of the input data is (h, w). We use k convolution kernels with
the same shape to extract the convolution features. At first,
the data shapeis (h — k + 1, k); after pooling, the shape of the
datais ((h — k + 1)/2, k). Then, through the flatten layer, the
data shape is ((h—k+ 1)/2*k, 1), and the output feature
Ocny 18 obtained.

For the two extracted features, perform feature fusion to
obtain the feature O; (k):

0, (k) = Oy 40 + Ocnn- (10)

wide



5.2.2. Feature Merge. In the feature fusion part, we use a self-
attention mechanism to fuse key features. The essence of the
self-attention mechanism is to observe a specific part
according to the observation of the need [34].

For self-attention, we get three matrices Q (Query), K
(Key), and V (Value) from the input O; (k). The self-at-
tention mechanism obtains different representations, cal-
culates scaled dot-product attention of each representation,
and finally concatenates the results. Specifically, the current
representations input into the self-attention layer, and the
new representation is calculated. First, we have to calculate
the point product between Q and K, and then in order to
prevent the result from being too large, it will be divided by a
scale +/d}, where d, is the dimension of a query and key
vector, and then the results are normalized to a probability
distribution using a SoftMax operation and then multiplied
by the matrix V to obtain a weighted summation repre-
sentation. This operation can be expressed as

T
Attention (Q, K, V) = softmax(QK )V. (11)

Vi

5.2.3. Classification. After feature fusion, we use a fully
connected layer for detection and classification; all neurons
in the previous layer are connected to each neuron in the
current layer. The fully connected layer is located before the
output layer. After the extracted features are converted into a
one-dimensional feature vector, they are connected to each
neuron in the current layer to map the high-level features in
a targeted manner:

X; :f<iwi,jxi+bl>' (12)

i=1

The fully connected layer will target high-level features
according to the specific tasks of the output layer perform
mapping and use the SoftMax and Sigmoid activation
function after mapping to get the final classification de-
tection result (normal, abnormal, or attack types).

The output layer is a SoftMax function [35]; it normalizes
K real numbers into a K probabilities distribution, after
applying SoftMax, each component will be in the interval
(0,1), and the components will add up to 1, which can be
interpreted to map the nonnormalized output of a network
to a probability distribution over predicted output classes.
Set z = (z,,...,zx) € RK; the standard SoftMax function
o: RK — RX is defined by the formula:

Z.

Zszl e

Hence, the predicted class would be ¥:

0(z); = , forj=1,... K (13)

Yy = argmax[a(z)j]. (14)

6. Experimental Evaluation

To evaluate the proposed abnormal flow detection scheme,
we conduct the simulation on a 64-bit computer with Intel
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(R) i7-9750Hz 2.60 GHz CPU, 8 GB RAM, NVIDIA
GeForce RTX 2060 6G GDDR6 GPU, and 10.2 CUDA,
using Python, Scikit-learn, NumPy, Pandas, TensorFlow,
and Keras. The data we use comes from an online public
dataset. We carried out model comparison experiments to
verify that the mixed model has higher accuracy than the
single model. Compared with traditional machine
learning methods and deep learning methods, the ex-
perimental results show that our method is superior to
these methods.

6.1. Experimental Setup

6.1.1. Experimental Data. The dataset we are using is
UNSW_NBI15 on network intrusion detection [36], which is
a mixture of real normal activity flow and attack flow created
by the Australian Network Security Center in the network
laboratory using IXIA Perfect Storm tool. Table 1 is the list of
features and categories.

These features are categorized into five groups:

(i) Basic features: they involve the attributes that
represent protocols connections

(ii) Flow features: they include the identifier attributes
between hosts (e.g., server-to-client or client-to-
serve)

(iii) Content features: they encapsulate the attributes of
TCP/IP; also, they contain some attributes of http
services

(iv) Time features: they contain the attributes time, for
example, arrival time between packets, start/end
packet time, and round-trip time of TCP protocol

(v) Additional generated features: this category can be
further divided into two groups: general-purpose
features, whereby each of them has its own purpose,
to protect the service of protocols, and connection
features that are built from the flow of 100 record
connections based on the sequential order of the last
time feature

To label this dataset, two attributes were provided:
attack_cat represents the nine categories of the attack and
the normal, and label is 0 for normal and otherwise is 1.

6.1.2. Performance Metrics. The performance metrics for
abnormal flow detection depend on the confusion matrix
constructed for any proven classification problem [37].
Its size depends on the number of classes contained in the
dataset. Its main purpose is to compare the actual tags
with the predicted tags. The intrusion detection problem
can be defined by a 2 x 2 confusion matrix, which includes
normal and attack categories for evaluation. The
detailed description of the confusion matrix is shown in
Table 2.

TP and TN denote the conditions for correct classi-
fication, while FP and FN denote the conditions for the
mistaken classification. TP and TN refer to correctly
classified attack flow and normal flow, respectively, while
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TaBLE 1: Features of the UNSW_NB15 dataset.

No. Feature name Category
@) dur Numeric
2) Proto Nonnumeric
3) service Nonnumeric
(4) state No-numeric
(5) spkts Numeric
(6) dpkts Numeric
(7) sbytes Numeric
(8) dbytes Numeric
9) rate Numeric
(10) sttl Numeric
@11 dttl Numeric
12) sload Numeric
13) dload Numeric
(14) sloss Numeric
15) dloss Numeric
(16) sinpakt Numeric
17) dinpakt Numeric
(18) sjit Numeric
19) djit Numeric
(20) swin Numeric
(21) dwin Numeric
(22) stcpb Numeric
(23) dtcpb Numeric
(24) teprtt Numeric
(25) synack Numeric
(26) ackdat Numeric
27) smean Numeric
(28) dmean Numeric
(29) trans_depth Numeric
(30) response_body_len Numeric
(31) ct_srv_src Numeric
(32) ct_state_ttl Numeric
(33) ct_dst_ltm Numeric
(34) ct_src_dport_ltm Numeric
(35) ct_dst_sport_ltm Numeric
(36) ct_dst_src_ltm Numeric
(37) is_ftp_login Numeric
(38) ct_ftp_cmd Numeric
(39) ct_flw_http_mthd Numeric
(40) ct_src_ltm Numeric
(41) ct_srv_dst Numeric
(42) is_sm_ips_ports Numeric

TaBLE 2: Confusion matrix for binary classification problem.

) Actual
Predicted . -
Negative Positive
Negative TN (true negative) FP (false positive)
Positive EN (false negative) TP (true positive)

FP and FN refer to misclassified normal and attack rec-
ords, respectively. These four items are used to generate
the following performance evaluation metrics.

The Accuracy (Acc) is a measure used to evaluate the
overall success rate of the model in detecting normal records
and abnormal flow and is calculated as

TN + TP

= : (15)
TP+ FP + TN + TP

Acc

The Detection Rate (DR), also known as the True Positive
Rate (TPR), is the ratio of correctly classified malicious flow
instances to the total number of malicious flow instances.
The calculation formula is

TP

TEN+ TP
The False Positive Rate (FPR) is the proportion of

normal instances that are misclassified as attack flow in the
total number of normal instances. The formula is

_FP
T FP+ TN

DR (16)

FPR (17)

The Precision (Pre) represents the proportion of the
actual normal samples to the samples divided into normal;
the formula is

TP

=— 18
TP + FP (18)

Pre
The F1 score is used to synthesize precision and recall as
an evaluation index. The formula is
2*Pre*DR
Flscore = ———. (19)
Pre + DR

6.2. Performance Comparison

6.2.1. Model Comparison. For comparison, we used a single
CNN model and a simple DNN model. Our proposed hybrid
CNN model includes 2 input layers, 1 convolutional layer, 1
pooling layer, and 4 fully connected layers. A single CNN
model includes a convolutional layer, a pooling layer, and a
fully connected layer. The simple DNN model contains only
3 fully connected layers.

The configuration of the model structure parameters in
this paper is shown in Figure 7. Each column is a model. The
input data shape of the DNN part of our proposed hybrid
CNN model is (42,1), the data shape through Densel is
(42,128), the data shape through Dense_2 is (42,64), and
then the data shape through Flatten_1 is (2688), the shape of
the input data of the CNN is (6,7) through the ConvlD_1
layer, the shape of the data becomes (4,32), followed by
Pooling 1, and the shape of the data becomes (2,32). In the
Merge layer, the two-channel data are merged into one.
After this layer, the shape of the data becomes (2752) and
then passes through the Dense_3 layer. As a result, the same
shape is formed in each model by these layers in turn.

As shown in Table 3, we set the initial weight parameters
to random values, set the batch size to 512, and use our
Adam optimizer and binary_cross-entropy loss function to
compile the model. To evaluate the performance of the
model, we use accuracy as a metric function during training
verification.

After the model is compiled, we use the input data to
perform model training in batch mode and evaluate the
performance index values at the end of each epoch. One
epoch means that all training datasets have undergone a
complete training iteration. The training results are shown in
Figure 8, where the horizontal axis represents the number of
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Hybrid CNN model Single DNN model Single CNN model
Inputl: (42, 1) Input2: (6, 7) Input4: (42, 1) Input3: (6, 7)
(42,1) (6,7) (42,1) (6,7)
Dense_1 ConvlD Dense_1 ConvlD
(42, 128) (4, 32) (42, 128) (4, 32)
(42, 128) (4,32) (42, 128) (4, 32)
Dense_2 Pooling Dense_2 Pooling
(42, 128) (2,32) (42, 128) (2,32)
(42, 64) (2,32) (42, 64) (2,32)
Flatten_1 Flatten_2 Flatten_1 Flatten_2
2688 64 2688 64
Attention merge layer: (2752) = _
Dense_3: (32)
Dense_4: (1)
FIGURE 7: Model configuration parameters.
TasLE 3: Configuration parameters for different models.
Methods Origin weights Batch_size Activation
Single DNN model Random 512 ReLU
Single CNN model Random 512 ReLU
Our proposed model Random 512 RelLU

epochs trained, and the vertical axis represents the loss and
accuracy score values. We observe that the loss of our
proposed hybrid CNN model becomes smaller and smaller
as the training progresses, and after 100 epochs of training, it
obtains higher accuracy scores than the single CNN model
and DNN model.

6.2.2. Method Comparison. To evaluate the performance of
our proposed hybrid CNN model, we performed experi-
ments on UNSW_NBI15 dataset. The comparison methods
selected are as follows:

(i) Naive Bayes [17]: Naive Bayes is a supervised
learning classifier based on Bayes theorem. It
classifies the problem by combining previous cal-
culated likelihood and probabilities to make the
next probability using Bayes rule.

(i) SVM [19]: an SVM is a discriminative classifier
formally defined by separating hyperplanes. SVM-
based kernels classify the data which effectively
works for most of the datasets. Discriminant
function: “Linear SVM.”

(iii) LSTM [22]: the improved model based on RNN for
intrusion detection, using ReLU activation function,
Adam optimizer, 100 epoch, and two-layer LSTM
{128, 64}.

(iv) CNN-LSTM [25]: a CNN combined with LSTM to
analyze and detect network flow. It utilizes CNN
to learn low-level spatial features of network flow
for the first time and then uses LSTM to learn
high-level temporal features, using ReLU activa-
tion function, Adam optimizer, 100 epoch, and
two-layer LSTM {128, 64}; two-layer CNN in-
cludes pooling layer.

Table 4 lists the performance comparison between our
proposed HYBRID-CNN and some other existing methods.
It is worth noting that we select a subset for experiments
based on a certain training dataset ratio. The training dataset
ratio is defined as the proportion of training samples. The
proportion of the dataset is 60%, 70%, and 80%. In each
dataset of experiments, we evaluated five methods including
our proposed method and evaluated three performance
metrics (Acc, DR, FPR). The experimental results in Table 4
show that our proposed HYBRID-CNN compared with
other traditional machine learning methods and deep
learning methods. Compared with other methods, our
proposed HYBRID-CNN can reach Accuracy of 0.9564, DR
of 0.9856, and FPR of 0.0442, which means that our pro-
posed method has higher accuracy in detecting abnormal
flow than other traditional methods. It is because the
combination input using a DNN and CNN has better feature
learning capabilities.

Figure 9 is a comparison of the training and validation
accuracy and loss between our proposed HYBRID-CNN
method and the other two methods. All models have been
trained for 100 epochs, and performance indicators have
been evaluated after each epoch. By comparison, we can
find HYBRID-CNN in the training and validation process
of the method; the loss convergence speed is much faster.
And the best results can be achieved faster for the accuracy
improvement, which is obviously better than other
methods.

6.2.3. ROC Curves Comparison. We further plot the Re-
ceiver Operating Characteristic (ROC) curves of our pro-
posed HYBRID-CNN and state-of-the-art methods on
UNSW_NBI5, as shown in Figure 10. The ROC curve of
HYBRID-CNN is the closest one to the upper left corner,
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FIGURE 8: Comparison of different models. (a) Training loss. (b) Validation loss. (c) Training accuracy. (d) Validation accuracy.
TaBLE 4: Performance comparison of the proposed and state-of-the-art methods.
Proportion = 80% Proportion =70% Proportion = 60%
Reference Method
Acc DR FPR Acc DR FPR Acc DR FPR
Ashraf et al. [17] Naive Bayes 0.7663 0.8514 0.3841 0.7669 0.8611 0.3999 0.7655 0.8512 0.3883
Reddy et al. [19] SVM 0.7594 0.6895 0.1170 0.7257 0.7806 0.3714 0.7346 0.7874 0.3591
Xin et al. [22] LSTM 0.8916 0.9843 0.2724 0.8897 0.9840 0.2775 0.8894 0.9835 0.2778
Wang et al. [25] CNN-LSTM 0.8995 0.9612 0.2095  0.8965  0.9460 0.1910 0.8955 0.9571 0.2138
Proposed method HYBRID-CNN 0.9564 0.9856 0.0442 0.9408 0.9382 0.0544 0.9386 0.9493 0.0803

indicating better generalization ability against the other
methods. All the results reported above demonstrate that
HYBRID-CNN outperforms its competitors. We can con-
clude that HYBRID-CNN effectively handles the abnormal
flow detection problem by the ability to compress the
original data to more discriminative abstract features, and

HYBRID-CNN is capable of efficient abnormal flow
detection.

6.2.4. Computation Comparison. To deepen this investi-
gation, Table 5 reports the number of training parameters
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FiGUure 9: Comparison of different methods. (a) Training loss. (b) Validation loss. (c) Training accuracy. (d) Validation accuracy.

(in millions) and running time required for both the
proposed HYBRID-CNN and state-of-the-art methods. We
use GPU to accelerate the training speed of all models. It
can be noticed that, when training on the UNSW_NBI15
dataset, the proposed HYBRID-CNN has fewer trainable
parameters and lower training time and testing time. This
outcome results from the use of CNN in the proposed
method, which can realize efficient parallel computation,
and we use as small number of parameters as possible in the
structure.

6.3. Parameter Study. There are various configurable
hyperparameters in the model, such as Batch_size «,
number of convolution kernels 3, convolution kernel size
y, and optimizer e. These hyperparameters can only be
configured manually but cannot be optimized

automatically through the training process, which will
greatly affect the performance of the model. Batch_size «
is the number of training samples of the neural network
after one forward-propagation and back-propagation
operation, which means how many samples will be used to
evaluate the loss in each optimization process; § is the
number of different convolution kernels used in convo-
lution operation, how many convolution kernels there
are, and how many feature maps will be generated after
convolution; y is the size of convolution kernels. Each
convolution kernel has three dimensions of length, width,
and depth. In a convolution layer of CNN, the length and
width of convolution kernels need to be manually con-
figured. Optimizer € is the type of optimizer used to
optimize loss and then update weight parameters.
Therefore, we deeply analyzed the influence of these super
parameters on the performance of our proposed hybrid
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Ficure 10: ROC curves of HYBRID-CNN and state-of-the-art methods on UNSW_NB15 dataset.

TaBLE 5: The comparison of the computational complexity of the proposed and state-of-the-art methods.

Method Trainable parameters Training time (s) Testing time (s)
LSTM 0.1391 402.58 1.77
CNN-LSTM 0.1404 526.31 8.99
Proposed 0.0951 271.26 0.75

CNN model. In Figure 7, the parameters of the hybrid
CNN model proposed by us are a=512, =4, y=1x3,
and ¢=Adam. The model training results for these pa-
rameters are as follows.

6.3.1. Effect of Batch_size a. As shown in Figure 11, we set «
to 128, 256, and 512 for experiments. When «a =128, the
training and validation loss converge faster in the same
period and finally reach the set number of iterations. The
best effect is 0.9477. We can know that a smaller
Batch_size can speed up the optimization in the same
period, but it means that more calculation time is needed
to optimize. Increasing the Batch_size properly can im-
prove the running speed and gradient descent direction.
With accuracy increasing, the amplitude of training vi-
bration decreases.

6.3.2. Effect of Number of Convolution Kernels 3. As shown
in Figure 12, we set the number of convolution kernels f§ as
1, 2, and 4 for experiments. When the number of

convolution kernels is 1, we can get an accuracy of 0.9403.
When the number of convolution kernels increases to 2,
the loss convergence rate also increases. At 4, the speed of
loss convergence is significantly accelerated. Generally,
when the network is deeper, more convolution kernels are
often required to fully extract key features.

6.3.3. Effect of Convolution Kernel Size y. As shown in
Figure 13, we set the size y of the convolution kernel to 1 x 2,
1x3, and 1x4 for experiments. When the size of the
convolution kernel is 1x 2, the training loss and accuracy
rate will jitter sharply. It is not conducive to convergence.
When the size of the convolution kernel is increasing, the
loss converges a little faster and the fluctuation range be-
comes smaller, so it should be better to choosea1x3 or1x4
size convolution kernel.

6.3.4. Effect of Optimizer e. As shown in Figure 14, we have
selected several commonly used optimizers SGD, RMSprop,
Adam, and Adagrad for experimental comparison. When
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FIGURE 11: Parameter study of . (a) Training loss. (b) Validation loss. (c) Training accuracy. (d) Validation accuracy.

SGD is used as an optimizer, the effect is not ideal. It can only
achieve an accuracy of 0.9259. There was a large shock at
around 40. We can see that when Adam optimizer is used,
the initial loss convergence is like other optimizers. In the
medium term, the Adam optimizer loss convergence is
significantly faster and finally achieves the best. The accuracy
is 0.9483.

6.4. Ablation Study. For a thorough analysis, we conduct an
ablation study on HYBRID-CNN to analyze the effectiveness
of each module. The details of the ablation study based on
UNSW_NBI5 are listed as follows:

(1) w/o attention: we remove the self-attention module
from HYBRID-CNN but keep the DNN module and
the CNN module

(2) w/o DNN: the DNN module is removed from
HYBRID-CNN

(3) w/o CNN: the CNN module is removed from HY-
BRID-CNN

We further analyzed the detailed performance of HYBRID-
CNN in the ablation study, and the results of the ablation
studies are shown in Table 6. Comparing HYBRID-CNN with
model (1), we can conclude that the self-attention module can
help detect abnormal flow, because attention can capture key
features more comprehensively. The effectiveness of DNN can
also be demonstrated by comparing HYBRID-CNN with
model (2). When we removed the DNN module, accuracy
declined because the model could not extract high-dimensional
global features. However, when the CNN module was re-
moved, it could be found that the accuracy was greatly reduced,
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FIGURE 12: Parameter study of 8. (a) Training loss. (b) Validation loss. (c) Training accuracy. (d) Validation accuracy.

because the model could not extract the local features of the
flow, and CNN has a great impact on the results.

6.5. Attack Detection. In order to detect the attack type of
abnormal flow, the dataset we used to evaluate the model
was KDDCup 99 [38]. The entire dataset has approxi-
mately 5 million flow records, each of which has 41
features (the 1-9 features are the basic attributes of the
packet, the 10-22 features are the packet content, and the
23-31 features are flow function and 32-41 are host-based
features). As shown in Table 7, these attack flow
instances can be further divided into DoS, U2R, R2L,
and Probe. For the KDDCup 99 dataset, the flow
sample has 41 features and a label. We cannot directly

reshape a one-dimensional flow dataset into a two-
dimensional matrix, so a zero feature is used here to add
a dummy feature. It does not affect the result and is
just for data reshaping.

We made comparisons with the current latest tech-
nology, and Figure 15 illustrates the relative comparison
of our proposed abnormal flow detection algorithm with
the current latest technology model. It is obvious from the
obtained results that the proposed model performs better
on the KDDCup 99 dataset than the existing scheme in
terms of Accuracy, Detection Rate, and Fl score.
Figure 15(a) shows the Precision evaluation of the pro-
posed method corresponding to Normal, PROBE, DoS,
U2R, and R2L data examples (99.92%, 98.11%, 99.98%,
93.81%, and 93.16%, respectively). Figure 15(b) shows the
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FIGURE 13: Parameter study of y. (a) Training loss. (b) Validation loss. (c) Training accuracy. (d) Validation accuracy.

Detection Rate evaluation of the proposed method cor-
responding to successful detection of Normal, PROBE,
DoS, U2R, and R2L data examples (98.21%, 93.62%,
98.89%, 92.59%, and 87.76%, respectively). Figure 15(c)
shows the F1 score evaluation of the proposed method
corresponding to Normal, PROBE, DoS, U2R, and R2L
data examples (96.74%, 94.02%, 98.51%, 91.92%, and
89.37%, respectively).

It can be clearly seen from the obtained results that,
for normal flow, DoS attacks and PROBE attacks have
reached the maximum detection level, while detection
effects for U2R and R2L attacks are slightly lower. In the
real network, normal activity flow dominates while U2R
and R2L are very few classes. Dataset imbalance is a quite
common problem in intrusion detection. The detection
model is biased towards most classes and neglects a few

classes. For U2R and R2L, although the detection rate of
the proposed model is lower than that of other classes,
overall, it still achieves better results compared with other
methods.

7. Discussion

Evaluation of the UNSW_NBI15 dataset shows that our
model can provide 95.64% accuracy, which is a major
improvement over other deep learning methods. How-
ever, it should be noted that the results of the “R2L” and
“U2L” attack classes are lower than those of other classes,
because the model needs more data to learn. Unfortu-
nately, due to the severe imbalance in the training data of
such attacks, the results obtained are not stable. Hybrid
detection methods are mainly combined with deep
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TaBLE 6: Detailed performance (%) of HYBRID-CNN in ablation study.
Model Acc DR Pre FPR
HYBRID-CNN 95.64 98.56 96.13 4.42
(1) w/o attention 94.88 98.29 95.77 4.69
(2) w/o DNN 93.57 93.94 93.16 5.89
(3) w/o CNN 91.85 92.47 92.43 7.36

learning models, which can usually achieve higher de-
tection accuracy. Considering the complexity of the deep
learning algorithm, the algorithm can use less running

time. Of course, our proposed model will spend more
time on training, but using GPU acceleration can reduce
training time.
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TaBLE 7: Attacks in the KDDCup 99 dataset.

Category Training dataset Testing dataset
Back, land, , pod, f, , mail ) le, >
DoS Back, land, Neptune, pod, smurf, teardrop ack, land, Neptune, pod, smurf, teardrop, mailbomb, processtable, udpstorm
apache2, worm
U2R Buffer-overflow, loadmodule, perl, rootkit Buffer-overflow, loadmodule, perl, rootkit, sqlattack, xterm, ps
ROL fpt-write, guess-passwd, imap, multihop, phf, fpt-write, guess-passwd, imap, multihop, phf, spy, warezmaster, xlock, xsnoop,
spy, warezclient, warezmaster snmpguess, snmpgetattack, httptunnel, sendmail, named
Probe ipsweep, nmap, portsweep, Satan ipsweep, nmap, portsweep, Satan, mscan, saint
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FiGure 15: Experimental evaluation of the proposed method on the KDDCup 99 dataset. (a) Precision evaluation. (b) Detection Rate

evaluation. (¢) F1 score evaluation.

8. Conclusion

In this paper, we consider the problem of abnormal net-
work flow detection of the Smart Grid integrated with the
SDN. For the pursuit of accurate detection and guaran-
teeing network performance, we formulate a deep learning
detection algorithm based on the HYBRID-CNN. In

particular, our HYBRID-CNN model consists of the double
channel feature extraction, key feature fusion, and classi-
fication. It gains the benefits of global memorization and
local generalization brought by the DNN and the CNN,
respectively. Besides, to measure the performance of the
proposed algorithm, we analyze the hyperparameters of the
HYBRID-CNN. Compared with other existing detection
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algorithms, the experiment results show that the HYBRID-
CNN has a higher detection accuracy and a lower false
alarm rate.

In our future work, a problem to be solved is to improve
the performance of the model through network structure
optimization and automatic hyperparameter tuning. The
swarm intelligent optimization algorithm, such as Particle
Swarm Optimization (PSO) algorithm and Artificial Bee
Colony (ABC) algorithm, can be used to automatically tune
hyperparameters, which is an efficient method to improve
the detection accuracy. Another problem to be solved is the
unbalanced dataset. The detection accuracy of a few types of
attacks needs to be improved. We hope to use data aug-
mentation in future work to reduce the impact of the dataset.

Abbreviations

ABC: Artificial Bee Colony

CNN: Convolutional Neural Network
DNN: Deep Neural Network

FPR:  False Positive Rate
IoT:  Internet of Things

LSTM: Long Short-Term Memory
MLP: Multilayer Perceptron
PMU: Power Management Unit

PSO:  Particle Swarm Optimization
RelU:

Rectified Linear Unit
RNN: Recurrent Neural Network
ROC: Receiver Operating Characteristic

SAE: Stacked Autoencoder

SDN:  Software-Defined Network
SVM: Support Vector Machine.
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With the development of the Internet of Things (IoT), the group recommender system has also been extended to the field of IoT.
The entities in the IoT are linked through social networks, which constitute massive amounts of data. In group activities such as
group purchases and group tours, user groups often exhibit common interests and hobbies, and it is necessary to make rec-
ommendations for certain user groups. This idea constitutes the group recommender system. However, group members’
preferences are not fully considered in group recommendations, and how to use trusted social networks based on their preferences
remains unclear. The focus of this paper is group recommendation based on an average strategy, where group members have
preferential differences and use trusted social networks to correct for their preferences. Thus, the accuracy of the group rec-

ommender system in the IoT and big data environment is improved.

1. Introduction

With the advent of the 5G era [1], which promotes the
development of mobile Internet and big data, users are faced
with massive amounts of data on the Internet. It is difficult
for search engines to accurately obtain information re-
sources that meet their own needs and personalized pref-
erences. Information overload issues are increasingly
prominent [2]. The recommender system [3] is considered to
be effective in dealing with this problem. In recent years,
research on recommender systems has developed very
rapidly. There are several types of recommender systems,
such as mobile recommender systems, context-aware rec-
ommender systems, and social network recommendation
systems. However, these recommender systems can only be
recommended for a single user. In real life, there are many
situations where we interact mostly with groups, such as
while watching a movie, having dinner, and planning a
vacation with friends. As such, the recommender system
must consider the preferences of each user in the group. This
recommender system is called a group recommender system
[4]. However, most of these systems deal with every

individual preference in the same way, ignoring the per-
sonality of each member and the relationships among group
members. People have linked entities in the IoT, which has
developed rapidly through social networks. Personal social
networks, where users imple-ment network interactions, are
mainly divided into strong relationship networks and weak
relationship networks. A strong relationship network mainly
contains applications such as QQ and WeChat. Weak re-
lationship networks include Weibo and various forums.
Network members with strong connections have a high
degree of relationship with each other, and they are more
willing to share their views and experiences without res-
ervation, while weak connections are the opposite. A pre-
vious study found that the higher the degree of the
relationship between users is, the more the trust exists be-
tween users [5]. According to Mui, trust is the subjective
expectation of one subject for its future behavior decisions
based on its historical interaction experience with another
subject [6].

The social network relationship of group members is an
essential factor in a group recommender system. Studies
have shown that users are more willing to accept
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recommendations from trusted users than recommenda-
tions from anonymous users [7]. For example, users are
more likely to accept recommendations from friends rather
than from strangers. Group-recommended social network
factors mainly include personality and trust [8, 9]. The
higher users’ personality leads to less effect by others. Users’
trust in another user influences their preferences. The group
recommendation studies bases on social networks where
users may need to change their preferences to reach group
consensus. In social network-based group recommenda-
tions, users may need to change their preference to reach a
group consensus. At this point, the trust between the
members of the group becomes the main influencing factor.
However, changing your preference can easily lead to
preference differences within the group. Chen e al. [10] uses
the similarity of preferences and the relevance of trust,
calculating the trust and influence of group members
according to the similarity of group members. And finally it
gets the final rating through the weighted mean fusion
strategy. At the same time, not all group members have
significant social networking relationships. Furthermore,
according to the users’ social network, closely connected
users naturally come together to form a user group, and the
connections between different user groups are sparse, thus
forming a community structure [11]. So this community
structure formed by natural social network relationship is a
natural grouping method with good interpretability. How-
ever, this kind of social network relationship can only
achieve a better group recommendation effect when the user
relationship information is dense. In the case of sparse user
data in the big data environment, the group recommen-
dation is easy to generate a cold start and recommend the
group. The improvement associated with this effect is not
obvious. It is a challenge in group recommendation problem
to address member preferences, random groupings, user
relationship sparseness, and cold starts in a social network
group recommendation in a big data environment. This
paper proposes members’ preference for trusted social
networks. The system analyzes the group recommendations
of the average strategy. When the group recommendations
of the average strategy differ greatly in preferences, the
trusted social network of the group members is introduced
to modify the preferences in the group, to obtain better
recommendation results.

The structure of this paper is as follows. Section 2 in-
troduces related work on the social network recommen-
dation and group recommendation methods, and Section 3
elaborates the method based on a preference for trusted
social networks proposed in this paper. Section 4 introduces
the experimental results. Section 5 summarizes the full text
and discusses future work.

2. Related Work

2.1. Group-Recommended User Preferences. The recom-
mended method for groups is usually to obtain the pref-
erences of each user in the group [4]. It is generally believed
that preferences are used to describe the ordering rela-
tionship of decision-makers to two or more items [12]. In the
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group recommendation, the user’s preference acquisition
methods are mainly divided into explicit preference ac-
quisitions [13] and implicit preference acquisitions [14]. In
the display of preference acquisitions, the user is required to
explicitly provide preference information, which is usually
defined by a rating on a given interval. MusicFX [15] re-
quires users to rate different music style gen-res and group
recommendations based on user ratings. Literature [16]
requires users to rate the location, amount of food, and taste
of the restaurant. In the implicit preference acquisition
method, the user does not need to explicitly provide pref-
erence information, but users use historical behavior data to
mine user preferences. Crossen et al. [13] learn users’
musical preferences from users’ music listening behavior
data. Let’s Browse [17] proposes to use the term frequency-
inverse document frequency (TF-IDF) algorithm to learn
users’ preferences for news topics based on the keywords on
users’ homepages. As long as there is enough user behavior
data, the implicit preference acquisition method can accu-
rately extract users’ preference characteristics, which is
beneficial to protect the users’ privacy.

2.2. Group Recommendation Preference Fusion Method.
Preference fusion occurs at different stages of the group
recommendation process, such that the content of the fusion
is different. Literature [18] analyzed 10 preference fusion
strategies in detail. The different manifestations of the four
most commonly used average strategies are listed below.
Assuming that each member’s weight is the same, the av-
erage of the scores of all group members is used as the
recommended score for the group.

Assume that each member’s weight is the same in the
average strategy group recommendation based on item
similarity. The ratings of all group members are averaged as
the recommended rating for the group:

1
ISpre (G, i) = Gl Z ItemsPro (u, i), (1)
ueG

where |G| indicates the size of the group; ItemsPro (u,1)
indicates the rating of item i by user u in the recommen-
dation method based on the user similarity; and ISpre (G, 7)
represents the final forecast score formed by the group
recommendations based on the item similarity average
strategy.

It is assumed that each member has the same weight in
the average strategy group recommendation based on matrix
factorization. The average of the ratings of all group
members is used as the recommended rating for the group:

1
MFpre(G,i) = Gl Z MatrixfPro (u, i), (2)
ueG

where |G| indicates the size of the group; MatrixfPro (u, i)
represents the rating of item i by user u in the recom-
mendation method based on matrix factorization; and
MFpre (G, i) represents the final prediction rating formed by
the group recommendation based on the matrix factoriza-
tion average strategy.
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In the average strategy group recommendation based on
the popularity of the item, it is assumed that each member
has the same weight and the average of the ratings of all
group members is used as the recommended rating of the
group:

1
[Ppre(G,i) = al Z ItempPro (u, i), (3)
ueG

where |G| indicates the size of the group; ItempPro (u,1)
represents the rating of item i by user u in the recom-
mendation method based on the popularity of the item;
IPpre (G, i) represents the final predicted rating formed by
the group recommendation based on the popularity of the
item average strategy.

In the average strategy group recommendation based on
implicit feedback, it is assumed that each member has the
same weight. In addition, the average of the ratings of all
group members is used as the group recommendation
rating:

IFpre (G, i) = ! " ImplicitfPro (u, i)

pre(G,i Gl 2 mplicitfPro (u, i), (4)
where |G| indicates the size of the group; ImplicitfPro (u, i)
represents the rating of item i by user u in the recom-
mendation method based on the implicit feedback dataset;
and IFpre (G, i) represents the final predicted rating based on
group recommendations for implicit feedback dataset av-
erage strategy.

2.3. Degree of Preference Divergence in the Recommendation of
the  Average  Strategy  Group  Recommendation.
Recommendations generated in the group recommen-
dation of the average strategy [19] may cause dissatis-
faction among individual group members, which is known
as pain problems. To measure this “pain,” the preference
divergence is introduced in this paper. Because the chosen
group recommendation algorithms are different, the de-
gree of divergence in the group recommendation is
different:

18dis (G, i) = IGil[Ispro(u, i) — ISmean (G, i)]%, (5)

where ISpro (u,i) indicates the rating of each user in the
group calculated by the recommendation method based on
the item similarity; ISmean (G, i) represents the average of
the user ratings in the group; and ISdis (G, i) represents the
extent to which members of the group disagree with item i in
group G.

MFdis (G, i) = é[MFpro(u, i) — MFmean (G,1)]%.  (6)
where MFpro (u, i) represents the rating for each user in the
group calculated by the recommendation method based
matrix factorization; MFmean (G, i) represents the average
of the user ratings in the group; and MFdis (G, i) represents
the extent to which members of the group disagree with item
i in group G:

IPdis (G, i) = é[IPpro(u, i) - IPmean(G,1)]%,  (7)

where IPpro (u,1) represents the rating of each user on the
item, which can be calculated by the recommendation
method of the item popularity; IPmean (G, i) represents the
average of user ratings in the group; and IPdis (G, i) rep-
resents the extent to which members of the group disagree
with item i in group G:

1

Gl [IFbPro (u,i) — IFmean (G, )], (8)

IFdis (G, i) =
where IFbPro (u, i) represents the rating of each user on the
item, which can be calculated by the recommendation
method of the implicit feedback dataset; [Fmean (G, 1)
represents the average of the user ratings in the group; and
IFdis (G, i) represents the extent to which members of the
group disagree with item i in group G.

3. Group Recommender System-Based
Members’ Preference for Trusted
Social Networks

In group recommender system-based members’ preference
for trusted social networks, in order to alleviate the problems
of data sparsity and cold starts, first, the recommendation
methods based on item similarity [3], matrix factorization
[20, 21], item popularity, and implicit feedback datasets [22]
are adopted to form personalized recommendations for
users. The purpose of personalized recommendations is to
alleviate data sparsity and cold start problems in group
recommendations. Through personalized recommendation,
the preference scoring data of trusted members are sup-
plemented. Then, a group recommendation based on the
average strategy is adopted for the above recommendation
methods. Average strategy is the most commonly used
preference fusion strategy in a group recommendation
system, which takes the average score of the group members
as the score of the group [4]. However, recommendations
generated by the average strategy may cause dissatisfaction
among individual group members, namely, the so-called
preference divergence problem [4]. To avoid this “preference
divergence” problem, the degree of preference divergence is
calculated by preference differences. Taking preference di-
vergence as a criterion, trust-based social networks are in-
troduced when the preference divergence of group members
is greater than that of the group as a whole. In the trusted
social network of group members, each group member has
several trust members. When the preferences of group
members are quite different, the group members can ap-
propriately modify the ratings of group members through
the preference ratings of trust members.

3.1. Calculation of Correction Factors in Group Preference

3.1.1. Calculation of Correction Factors According to the
Divergence Degree. After the group recommendation sys-
tem based on the average strategy [19] presented in this



paper, we take the divergence degree as a measure and obtain
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where|G| represents the number of members of the group
and introduces the function F (x). If the expression of x is
true, it is counted as 1. The expression of x does not hold; it is
recorded as 0. somepro (u, i) indicates the user u on i in the
above four personalized recommendation methods.
somedis (G, i) indicates the divergence degrees obtained in
the group recommendations of different average strategies. y
is a measure of divergence. The larger the value of y is, the
greater the difference between the preference in the group
and the preference recommended by the group of average
strategy, and the more need there is to revise the preference
of the group members based on the trusted members of the
trusted social network. The smaller the value of y is, the
smaller the difference between the preference in the group
and the preference recommended by the group of Average
Strategy. When pis sufficiently small, it shows that there is no
preference divergence in the group recommendation based
on the average strategy. As such, it follows the group rec-
ommendation based on the average strategy.

3.1.2. Calculation of Correction Factors According to the
Standard Value. Through the above analysis of the diver-
gence degree, the divergence degree between the group
members and the group recommendation of the average
strategy is reduced, and the group recommendation is
further optimized. To further study the correction factor y,
finding the rating of the group members for a certain item is
proposed. In this rating, we use the sample standard devi-
ation of the scored item, the median of the evaluation range,
and the median of the scored item. We, respectively, use

standard,,,, standard, ;44> and standard, .4, to express
these three standard values:
higher , . — fewer_,. .
Honean = ( g sdui Sdlll), (10)

wstandard, .,

where standard,,.,, means that the standard deviation of
the sample is taken as the standard value. The standard
deviation of the sample is calculated through the calcu-
lation of the rating. In the item being scored, the score
must have a portion larger than the sample standard and a
portion smaller than the sample standard deviation. The
sample variance is taken as a measure. There are a large
number of parts and a small number of parts that are
greater than or less than the standard deviation of the
sample. The large number of parts is written as higher 4,
and the small number is written as fewery,;. In this ex-
periment, in order to better combine the recommendation
system of the average strategy with trusted social net-
works, the parameter w is taken as 2:

. i=11
iF|:Z (somepro (u,i) — LyeGSOmepro (v, 1)) > Z somedis (G, i) |, (9)

|G

i=3

. — (highermiddleui ~ fe‘Nermiddleui) (11)
middle w standard, 4. ’

where standard,;;4. means that the median of the scoring
range is the standard value. Through the calculation of the
scoring range, the median of the scoring range is calculated.
higher, ;440 indicates a set larger than the median of the
scoring range. fewer, qqieui indicates a set smaller than the
median of the scoring range. To better combine the rec-
ommendation system of average strategy with the trusted
members in trusted social networks, w is herein taken as 2:

Uoredian = (highermedianui — fewermedianui) (1 2)
median wf (wstandard, . 4,,)
where standard, g;,, indicates that the median of the items

to be scored is taken as the standard value. Through the
calculation of the median score, the median of the items to
be scored is calculated. higher,4i.n, indicates the number of
sets greater than the median of the item being scored.
fewer,,.gianui T€Presents the number of sets that are less than
the median of the item being scored. To better combine the
recommendation system of average strategy with the pref-
erences of trusted members in trusted social networks, w is
herein taken as 2.

3.1.3. Calculation of Preference Rating for Trusted Network
Members. By trusting the social network, the group
members are connected with the members who trust the
social network. Each user has one or more trust objects.
There are two points to consider for trusting social networks:
(a) the trust degree and real preference evaluation of
members in trust social networks; and (b) the number of
trusted social network members. The formulae are as
follows:

Y verX,,, - ISrating (v, i)

ISTR(TR,i) = >
ZVERGIStI‘uSt
X,,, - MFrati ,i
METR (TR, ) = 2vek Xy MFrating(v,1)
ZVERGMftrust
(13)
IPTR (TR, i) = et IPrating (1)
ZVGRGIptruSt
X,,, - [Frating (v, i
IFTR(TR, i) = ZvekXuy - Frating (v, 1)
ZVERGIFtrust

where X, indicates the trust degree of user uto v. X, , € [0,
1], 0 means distrust and 1 means trust; ISrating (v, i) in-
dicates the true rating of item i by user v in the
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recommendation method based on item similarity in the
trust network; MFrating (v, i) indicates the true rating of
item i by user v in the matrix factorization based recom-
mendation method in the trust network; IPrating (v, i)
indicates the real rating of item i by user v in the recom-
mendation method based on the popularity of the item in the
trusted social network; IFrating (v, i) indicates the real rating
of item i by user v in the recommendation method based on
implicit feedback dataset in the trusted social network;
Gigrust indicates a single trusted user of a group member in a
recommendation method based on item similarity; Gygus
denotes a single trusted user of a group member in a matrix
factorization based recommendation method; Gy indi-
cates a single trusted user of a group member in a recom-
mendation method based on the popularity of an item; and
Giprust FEpresents a single trusted user of a group member in
a recommendation method based on an implicit feedback
dataset. These parameters are introduced into the group
recommendations based on group recommender systems
based on members’ preference for trusted in social networks.
Even in group recommendation without the average strat-
egy, data sparsity and cold start problems in group rec-
ommendations can be alleviated to some extent by trusting
ISTR (TR, i), MFTR (TR, i), IPTR (TR, i), and IFTR (TR, i) in
social network.

3.2. Group Recommendation Method Based on Members’
Preference for Trusted Social Network Item Similarity. In the
group recommendation based on the preference of members
who trust social network item similarity, first, the recom-
mendation method based on item similarity is used to
generate personalized recommendations for users, and
groups are randomly divided to make group recommen-
dations based on the average strategy of item similarity.
Through the group recommendation, the following methods
are proposed to solve the problem of preference divergence
in group recommendation of the average strategy:

n
- 47| - ISGP (G, ) + ; - ISTR (TR, i)
ISpre(G,1) =1 1sGp(G,i), if ISTR(TR,i) = &,
| ISTR(TR, i), ifISGP(G,i) = @,

(14)

where ISGP (G, i) (item similar group prediction) indicates a
group recommendation based on item similarity average
strategy; ISTR (TR, i) (item similarity trust rating) indicates
the rating of recommendation methods that trust the sim-
ilarity of items of social network members; and y; indicates
that the divergence degree or standard value is obtained as
correction factors. The function of the correction factor is to
reduce the problem of preference divergence among group
members in the average strategy. ISpre (G, i) (item similarity
prediction) indicates a group recommendation based on the
preference of members who trust the similarity of social
network items. If ISTR(TR,i) = &, the members of the

group do not trust the network. At this time, we adopt the
group recommendation based on the average strategy of
item similarity. If ISGP (G, i) = &, there is no exact group
recommendation for the group recommendation of average
strategy; then, a recommendation based on the trusted social
network is adopted.

3.3. Group Recommendation Method Based on Members’
Preference for Trusted Social Network Matrix Factorization.
In the group recommendation based on the trust social
network matrix factorization preference, the recommen-
dation method based on matrix decomposition is used to
generate personalized recommendations for the user. The
group is randomly divided, and the group is recommended
based on the matrix factorization average strategy. After the
group recommendation, for the divergence problem in the
group recommendation of the average strategy, the fol-
lowing methods are proposed:

(1
o |- MEGP (G, i) + y; - MFTR (TR, i)
MEpre(G,i) =3 MEGP(G,i), if MFTR(TR,i) = &,
| MFTR (TR, i), if MFGP(G,i) = @,

(15)

where MFGP (G, i) (matrix factorization group prediction)
indicates a group recommendation based on the matrix
factorization average strategy; MFTR (TR, i) (matrix fac-
torization trust rating) indicates the score of the recom-
mendation method based on matrix factorization of trusted
social network member preferences; and y; indicates that the
divergence degree or the standard value is obtained as a
correction factor. The function of the correction factor is to
correct the preference differences among the group mem-
bers in the group recommendation of the average strategy.
MFpre (G, i) (matrix factorization prediction) indicates a
group recommendation based on trusted social network
matrix factorization member preferences. If
MFTR(TR,i) = &, the group members do not trust the
social network. In this case, the average strategy group
recommendation based on matrix factorization is adopted. If
MFGP (G, i) = &, no group recommendation is formed in
the random group. At this time, the recommendation based
on the trusted social network is adopted.

3.4. Group Recommendation Method Based on Members’
Preference for Trusted Social Network Item Popularity. In
group recommendations based on trusted social network
item popularity membership preferences, personalized
recommendations are generated for users by the recom-
mendation method based on the popularity of the item.
Then, the groups are randomly divided and group recom-
mendations are made based on the average strategy of the
popularity of the item. After the group recommendation, the
following methods are proposed to solve the problem of
preference divergence in the group recommendation based



on the average strategy of trusted social network item
popularity:

1
‘E — 12| - TPGP (G, i) + p; - IPTR (TR, i)
IPpre(G.i) =7 1pGp(G,i), if IPTR(TR,i) = &,
| IPTR(TR, i), if IPGP(G,i) = @.

(16)

where IPGP (G, i) (item popular group prediction) indicates
the average strategy group recommendation based on the
popularity of the item; IPTR (TR, i) (item popular trust
rating) indicates a recommended method for trusting the
popularity of the social networking item; y; is the divergence
degree or standard value obtained and used as a correction
factor to correct the preference divergence problem among
group members in group recommendation based on the
average strategy of item popularity; and IPpre (G, i) (item
popular prediction) indicates a group recommendation
based on member preference of trusted social network item
popularity. If IPTR(TR,7) = &, the members of the group
do not trust the social network, and the average strategy
group recommendation based on the popularity of the item
is adopted. This means that no group recommendation
based on the average strategy of the popularity of the item
has been formed; thus, the recommendation based on the
trusted social network will be adopted.

3.5. Group Recommendation Method Based on Implicit
Feedback of the Dataset of Members’ Preference by Trusted
Social Networks. In group recommendations based on im-
plicit feedback of member preferences by trusted social
networks, a recommendation method based on implicit
feedback dataset is used to generate personalized recom-
mendations for users, groups are randomly divided, and
group recommendations based on the average strategy of
implicit feedback datasets are carried out on the groups.
After group recommendation, the following methods are
proposed to solve the preference divergence problem in the
group recommendation based on the implicit feedback
dataset average strategy:

a0
~ — 1| - IFGP (G, i) + ; - IFTR (TR, i)
TFpre(Gii) =9 1RGP (G,i), if IFTR(TR, 1) = @,
| IFTR(TR, ), if IFGP (G, i) = &,

(17)

where IFGP (G, i) (implicit feedback group prediction)
indicates the group recommendation of average strategy
based on the implicit feedback dataset; IFTR (TR, i) (implicit
feedback trust rating) represents recommendations based on
implicit feedback datasets of trusted social network mem-
bers; y; is used to find the divergence degree and standard
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value as correction factors to correct the preference diver-
gence problem in group recommendation based on the
implicit feedback dataset average strategy; and IFpre (G, i)
(implicit feedback prediction) indicates a group recom-
mendation based on the implicit feedback of dataset member
preferences by trusted social networks. If IFTR (TR, 1) = &,
the members of the group do not trust the social network,
and the group recommendation based on the implicit
feedback dataset average strategy is adopted. If
IFGP (G, i) = &, the average strategy group recommenda-
tion based on the implicit feedback dataset has not formed
an effective group recommendation; at this time, the rec-
ommendation based on the implicit feedback dataset and the
trusted social network is adopted.

3.6. Algorithm Based on Members’ Preference for Trusted Social
Networks. The evaluation dataset is divided into a training set
and a test set. After preprocessing the data, all trust-based
social networks will be used. At the same time, the following
group member preference algorithm is proposed to reduce the
preference divergence problem in the group recommendation
of average strategy. The basic idea behind the experiment is as
follows: using recommendation methods based on item
similarity, matrix factorization, item popularity, and implicit
feedback dataset, personalized recommendations are gener-
ated for users. Groups are divided randomly and y is cal-
culated according to the divergence and standard value.
Through trusting social networks, trust members are found
for team members, after which group recommendations are
generated and the MAE is calculated by correcting for the
preference differences of trusted social networks. Through
trusted social networks, we can find trusted members for team
members and can generate group recommendations through
correcting the differences in the preferences of trusted social
networks. Finally, we calculate MAE. The algorithm is named
GRIMPFTSN (group recommendation involves members
preference for trusted social networks) Algorithm 1 was
proposed and verified by experiments.

4. Experiment and Analysis

4.1. Experimental Dataset. The dataset uses the FilmTrust
dataset (https://www.librec.net/datasets/filmtrust.zip) [23].
The dataset includes 1508 users, 2071 movies, and 35497
reviews. The density of data is 1.14%. The dataset is pre-
processed as follows: users are randomly divided into
training sets and test sets according to a certain proportion,
80% for training sets and 20% for test sets. Assuming that a
user has 10 scores on items, we select 8 of the users as
training sets and 2 as test sets. To divide the data, we select
users who score items more than 5 times. Through data
preprocessing, it can be obtained that there are 1478 training
set users and 1420 testing set users. Further, 607 users in the
trusted social network have trusted objects through the
trusted social network, and 41% of users in the training set
will use trusted social networks. In this paper, a randomized
group approach is used for experimental research. The goal
is to alleviate the computational cost of the experiment and
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Output: MAE

Repeat

else

else

End if
Until MAE

Input: Ratingmatrix, Trustmatrix
Initial: Pro (u, i), TR (u, i) by RS methods
Gpro (G, i) by GRS for the average strategy
If TR (u, i) = =null then
Pre (G, i) =Gpro (G, i)

Gpro (G, i) = =null,
Pre (G, i)=TR (u, i)

Pre (G, i)=(1/2) = y?| + y; - TR(TR, i)
y; from dis and standard value

ALGorITHM 1: GRIMPFTSN.

to verify the validity of the group preference group rec-
ommendations of the social networks that trust the ran-
domly generated team.

4.2. Evaluation Method MAE. To evaluate the effectiveness
of the group recommendation based on trusted social
network preferences, the offline data evaluation method,
mean absolute error (MAE) [24], is used to measure the
prediction accuracy:

SN (pre(G,i) - real (G, ) (18)
N

MAE =

where pre (G, i) represents a group recommendation based
on trusted social network preferences; real (G, i) represents
the real recommendation in the group; and N represents the
number of items in the group recommendation.

4.3. Group Recommendation Experiment Based on Members’
Preference for Trusted Social Network Item Similarity.
Experimental description: in Table 1, IS_average represents
the group recommendation based on item similarity average
strategy (GRBOISAS) and pg4;, indicates the method cal-
culated according to the degree of divergence, named
IStrust_dis. Other methods are not applicable to group
recommendation based on members’ preference for trusted
social network item similarity.

In this experiment, we randomly selected 100 times
according to the number of the group. The group size is 3-11
people. Each group sampling is relatively independent. We
obtained MAE through the experiment. The MAE shows the
difference between group recommendation based on
member preference for trusted social network item popu-
larity and group recommendations based on the average
strategy. As shown in this experiment, we made 100 random
selections according to the number in the group. Each group
sampling is relatively independent, including 3-11 people.
We obtained the MAE through the experiment. MAE is the
mean absolute error. The mean absolute error shows the
difference between group recommendations based on the

TaBLE 1: IS experimental description.

Name Description
IS_average GRBOISAS

IStrust_dis Hisdis

preference of similar members of trusted social network
items and group recommendations based on the average
strategy of the trusted social network. The results are shown
in Figure 1.

It is apparent in Figure 1 that under the average strategy
based on item similarity, the MAE of IS_average decreases as
the group increases in size. In the group recommendation
based on the item similarity average strategy, there is no
accumulation of the user’s historical behavior, and it is not a
personalized recommendation. Thus, the differences in the
recommendation results of all users are very small. When the
difference in the users’ recommendation results is small, the
difference in the group recommendation based on the av-
erage strategy formed by the user is also small. In this ex-
periment, the group recommendation based on the average
strategy of item similarity is also verified to have a good
recommendation effect by randomly dividing the groups.
IStrust_dis corrects the preferences of group members in the
group recommendation based on the average strategy of
item similarity. By revising the preferences of group
members, the effect of group recommendation based on the
item similarity average strategy is further improved.

4.4. Group Recommendation Experiment Based on Members’
Preference for Trusted Social Network Matrix Factorization.
The variables in Table 2 are as follows: MF_average is the
group recommendation based on the matrix factorization
average strategy (GRBOMFAS). 4ty p4is denotes a method for
calculating the correction factor according to the divergence
degree, which is named MFtrust_ dis;ppq Means that in
the calculation of the standard value, the sample standard
variance is used to calculate the correction factor, named
MFtrust_sd; pppemigale Means that the standard variance



MAE

Group size

—=— [S_average
—e— IStrust_dis

FiGUure 1: MAE comparison of different group sizes based on the
item similarity average strategy.

TaBLE 2: MF experimental description.

Name Description
MF_average GRBOMFAS
MFtrust_dis HUMFdis
MFtrust_sd HUMEssd
MFtrust_smiddle HUMFsmiddle
MFtrust_smedian UMFsmedian

calculation method of samples is adopted in the calculation
of the standard value, named MFtrust smiddle; and
Unipsmedian Means that in the calculation of the standard
value, the calculation method of the median value of the
evaluated item is adopted and is named MFtrust_smedian.

In this experiment, we made 100 random selections
according to the number of the group, and the group size
was 3-11. Each group sampling is relatively independent,
and Figure 2 is obtained through experiments. MAE is the
mean absolute error. In this experiment, the root mean
square error is used to represent the performance difference
between the group recommendations based on trusted social
network matrix factorization member preferences and group
recommendations based on the matrix factorization average
strategy.

As shown in Figure 2, when the group size is 3-6, the
experimental effect of MFtrust_dis is obviously better than
other experimental effects. The performance of the group
recommendation based on the average strategy of matrix
factorization is greatly improved. When the group size is
7-11, the MAE obtained by the MFtrust_smiddle method is
lower, and the group recommendation effect is better.

4.5. Group Recommendation Based on Members’ Preference
for Trusted Social Network Item Popularity. The variables
given in Table 3 are defined as follows: IP_average is a group
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FIGURE 2: MAE comparison of different group sizes based on the
matrix factorization average strategy.

recommendation based on item popularity average strategy
(GRBOIPAS); pypg;s refers to the method of calculating the
correction factor according to the divergence degree, named
IPtrust_dis; pjpeq means that in the calculation of the
standard value, the sample standard variance is used to
calculate the correction factor, named IPtrust_sd; pipsmiddie
means that in the calculation of the standard value, the
middle value of the evaluable range is adopted as the cal-
culation method of the standard value, named IPtrust_s-
middle; and ppg,qgian indicates that in the calculation of the
standard value, the calculation method of the median value
of the evaluated article is adopted, named IPtrust_ smedian.

In this experiment, we made 100 random selections
according to the number of groups, with a group size of
3-11, for which each group sampling was relatively inde-
pendent. Figure 3 is obtained through the experiment. In
this experiment, MAE represents the effect of group rec-
ommendation based on the preference of members of the
popularity of the item and the group recommendation based
on the average popularity strategy of the item.

As shown in Figure 3, the experimental effect of
IPtrust_dis is obviously better than other experimental ef-
fects when the group size is 3-4. When the group size is 5-7,
the MAE of the IPtrust_smedian method is lower than those
of other methods, and the group recommendation effect is
better. When the group size is 8-11, the MAE of
IPtrust_smiddle is lower than those of other methods, and
the group recommendation effect is better.

4.6. Group Recommendation Based on Members’ Preference
for Trusted Social Network Implicit Feedback Datasets.
The variables in Table 4 are defined as follows: IF_average isa
group recommendation based on an implicit feedback
dataset average strategy (GRBOAIFDAS); pp4;s indicates the
method of calculating the correction factor according to the
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TaBLE 3: IP experimental description.

Name Description
IP_average GRBOIPAS
IPtrust_dis Hrpdis
IPtrust_sd Hipssd
IPtrust_smiddle Hipsmiddle
IPtrust_smedian H1psmedian
1.8 +
1.6
ECJ 14
3L
1.2
1.0 |
1 1 1 1 1
3 4 5 6 7 8 9 10 11

Group size

—w— [Ptrust_smiddle
—&— [Ptrust_smedian

—m— [P_average
—e— [Ptrust_dis
—a— IPtrust_sd

FIGURe 3: MAE comparison of different group sizes based on the
item popularity average strategy.

TaBLE 4: IF experimental description.

Name Description
IF_average GRBOIPAS
IFtrust_dis Mirdis
IFtrust_sd U1pssd
IFtrust_smiddle HUiFsmiddle
IFtrust_smedian M1Fsmedian

divergence degree, named IFtrust_dis; yp,q means that in
the calculation of the standard value, the sample standard
variance is used to calculate the correction factor, named
IFtrust_sd; ppmiqae Means that in the calculation of the
standard value, the middle value of the evaluable range is
used as the calculation method of the standard value,
named IFtrust_smiddle; and ppeqin Means that in the
calculation of the standard value, the method of calculating
the median of the evaluated items is adopted, named
IFtrust_smedian.

In this experiment, we made 100 random selections
according to the number of groups, with a group size of
3-11. Each group sampling was relatively independent.
Figure 4 is obtained through the experiment. MAE repre-
sents mean absolute error, and MAE represents group
recommendation based on the trusted social network im-
plicit feedback dataset member preference and group

MAE

0.9

0.8

3 4 5 6 7 8 9 10 11
Group size

—w— IFtrust_smiddle
—&— IFtrust_smedian

—m— IF_average
—eo— IFtrust_dis
—aA— IFtrust_sd

FIGURE 4: MAE comparison of different group sizes based on the
implicit feedback dataset average strategy.

TaBLE 5: UR experimental description.

Name Description
IS_rate SNUBOIS
MF _rate SNUBOMEF
IP_rate SNUBOTPOI
IF_rate SNUBOIFD

recommendation effect based on the implicit feedback
dataset average strategy.

From Figure 4, it is apparent that the experimental effect
of IFtrust_dis is obviously better than other experimental
effects when the group size is 3-6. When the group size is
7-11, the MAE of IFtrust_smiddle is lower than that of other
methods.

4.7. Utilization Rate of Trusted Social Networks. The variables
in Table 5 are defined as follows: IS_rate is the social network
utilization based on item similarity (SNUBOIS); MF_rate is
the social network utilization based on matrix factorization
(SNUBOMF); IP_rate is the social network utilization based
on item popularity (SNUBOIP); and IF_rate is the social
network utilization based on implicit feedback dataset
(SNUBOIFD).

In this experiment, we made 100 random selections
according to the number of groups, with a group size of
3-11. Each group sampling was relatively independent.
Figure 5 is obtained through the experiment. Percent in-
dicates the utilization rate of social networks, and group size
indicates the size of groups.

Figure 5 shows that the utilization rate of trusted social
networks is higher when the group is larger, showing a
relatively stable trend. Through the above experiments, it is
apparent that when the group is bigger, the higher the social
network utilization rate. The utilization rate of social
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FIGURE 5: Social network utilization rate.

networks shows that the utilization rate of social networks
recommended by groups based on the preference of similar
members of projects is relatively low. Thus, the average
strategy group recommendation approach is more suitable.

5. Conclusion

This paper introduces group recommendation based on
members’ preferences of trusted social networks. Compared
with previous experiments, this paper proposes that group
recommendation based on trusted social network preferences
greatly reduced the MAE and produced an optimal model in
the face of different recommendation methods. In this paper,
the preferences of group members are modified to reduce the
divergence of group members and further optimize the group
recommendation of average strategy. By comparing four
types of group recommendations based on trusted social
networks, it was found that group recommendations based on
the preferences of similar members of trusted social networks
produced superior results. In this experiment, the item-based
recommendation system that has been used in previous ex-
periments is further verified to be suitable for recommen-
dation fusion. Therefore, it is also discovered that the
recommendation effect of the members’ preference group
based on trusted social network project similarity is also
optimal. By comparing four types of group recommendation
systems based on trusted social network member preferences,
it is found that the recommendation system based on trusted
social network item popularity has the best interpretability.
The effect of this experiment has been greatly improved. And
different types of group recommendation systems based on
social networks are also compared. However, for each group
recommendation system based on trusted social network
member preferences, there is no in-depth study, nor does it
exactly indicate which exact factors of social network affect
the results of group recommendation. It needs to be extended
to use in different datasets.
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Data Availability

The FilmTrust dataset used to support the study is available
at https://www.librec.net/datasets/filmtrust.zip [23].
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Chaos has been widely used in image encryption due to its rich properties. However, it remains an irreconcilable contradiction for
security and implementation efficiency for image encryption schemes. In this paper, a novel chaos-based image encryption
scheme has been proposed, where the Lorenz chaotic system is applied to generate pseudorandom sequences with good ran-
domness, and a random switch control mechanism is introduced to ensure the security of the encryption scheme. Experimental

results demonstrate the effectiveness and superiority of the algorithm.

1. Introduction

Mass data transmission on various communication net-
works has led to a security risk in multimedia data. Digital
images have become an important expression in the net-
work of information transmission due to its intuitive and
vivid attribute; meanwhile, a great deal of researches on
image processing has emerged [1-4]. The increasingly
rampant network crime makes the digital image security
particularly important. In the past few decades, many
encryption algorithms such as Data Encryption Standard
(DES), International Data Encryption Algorithm (IDEA),
and Advanced Encryption Standard (AES) have been put
forward. However, those methods are more suitable for text
encryption rather than image encryption owing to the
special properties of images including large amount of data,
high redundancy, and strong correlation between pixels.
Chaotic system has features such as sensitivity to initial
conditions and control parameters, dense periodic points,
and topological transitivity, which make it especially
suitable for image encryption. A chaotic image encryption
algorithm was firstly proposed in 1989 [5]. Ever since then,
a variety of chaos-based image encryption algorithms have
been put forward [6-16].

Early chaotic image encryption schemes were mostly
based on simple low-dimensional chaotic systems, such as

Logistic chaotic map [17], tent chaotic map [18], cat
chaotic map [11], Baker chaotic map [19], and so on [20].
Specific can elaborate as: El Assad and Farajallah [11]
proposed an image encryption system based on 2D cat
map, where a diffusion layer along with a bit-permutation
layer was contained. Li et al. [18] proposed a novel image
encryption scheme based on the tent map, which had been
proved to perform well. Zhang and Wang [21] proposed a
new multiple-image encryption algorithm based on the
mixed image element and piecewise linear chaotic map, which
is a quite fast way to encrypt, and the like. However, some
existing schemes have been revealed to be security risk owing
to the simple structure of the applied chaotic maps [22]. Then,
researchers tried to design image encryption schemes by using
various deformation or combinations of these well-known
chaotic maps and other mathematical manipulation [23-26],
such as the composition of logistic and tent map [27], the
Logistic-Sine-coupling map [28], and baker map and logistic
map [29]. These solutions have enhanced the security of
algorithms and were effective to some certain extent. With the
turther study of chaotic systems, more and more image en-
cryption schemes based on higher-dimensional chaotic sys-
tems, especially for hyperchaos and spatiotemporal chaos,
emerge gradually [13, 30-32]. Actually, most of these schemes
have a high level of security, as opposed to a high imple-
mentation cost. Moreover, some new technologies have been


mailto:dys0377@163.com
https://orcid.org/0000-0002-0066-2077
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/7913061

introduced to the design and security analysis of image en-
cryption schemes such as neural network [33], DNA coding
[34], genetic recombination [31], compressed sensing [35],
and machine leaning [36]. In general, there exists an irrec-
oncilable contradiction between the security and imple-
mentation complexity of cryptographic algorithms.

Switch control technology has been addressed in many
fields such as biological and medical systems [37], electric
power systems [38], and others. It is worth mentioning that
switch control can be used to realize the chaotification of
given dynamical systems or make an original simple system
become complex, etc. Motivated by the above discussion, in
this paper, we introduce the switch control mechanism into
the chaos-based image encryption scheme, where the re-
quired pseudorandom numbers for encryption are still
generated by chaos, and substitutions of rows or columns
of image in the permutation of plain images are determined
by the designed random switch control mechanism.
Moreover, the confusion of the permuted image is com-
pleted to ensure the security of the whole image encryption.
Finally, experimental results are carried out to show the
effect of the scheme. Given that the process of image en-
cryption can hide any information about the original image
as much as possible, the whole process can be regarded as
the process of decreasing entropy. Then, performance
comparisons with some existing image schemes are carried
out by using information entropy along with other indi-
cators to show the superiority of the proposed image en-
cryption algorithm.

The rest of this paper is organized as follows. Some
preliminaries are given in Section 2. In Section 3, we present a
novel image encryption scheme via switch control mecha-
nism. In Section 4, some numerical examples are given to
illustrate the validity and superiority of image encryption
algorithm. Section 5 concludes this paper.

2. Pseudorandom Number Generator Based on
Lorenz Chaotic System

For a given plain image, the whole encryption requires a
series of random numbers to produce secret image. Therein,
this paper exploits the effectiveness of the Lorenz chaotic
system to generate pseudorandom numbers. The Lorenz
system is formally defined as

Xx=a(y-x),
y=cx—y-xz (1)
zZ=xy-bz,

where a, b, and ¢ are system parameters. It is well known
that the system has a strange chaotic attractor over the
parameters a=10, b=28/3, and c¢=28, as depicted in
Figure 1.

Motivated by the idea in [39] that proper stretch
transformation along with modular operation can make the
chaotic system generate pseudorandom numbers with good
randomness, two new pseudorandom number generators
are designed as
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S1; = mod(round((xi +y;) * 1012,2)); i=1,2,...,
(2)

$2; = mod(round(z; #10'),256); i=12..., (3)

where {x;}, {y;}, and {z;} are sample sequences of the Lorenz
chaotic system over the sampling interval T=0.1. Actually,
the chaotic signal can be completely described by its samples
for this sampling interval [39].

The standard NIST SP800-22 test is applied to evaluate
the performance of two pseudorandom number generators,
and the test results are summarized in Table 1. As shown in
the table, two pseudorandom number generators have
passed all the tests, which indicate that both of them have
good randomness, thus can be used in the next image en-
cryption process.

3. Proposed Image Encryption Scheme

This section presents the proposed image encryption in
detail. The encryption scheme consists of two main parts:
image confusion and image diffusion. The confusion process
generates scrambled images from a series of plain images by
relocating image pixels, where it is determined by a switch
control rule. The diffusion increases the security of per-
mutated images by using mixed operation on relocated pixel
values of images.

3.1. Image Encryption Process. Let I be an image with the size
of M x N, which can be turned into the vector form as
follows:

I={I,,1,,....,Iyn} (4)

where I; denotes the image pixel at i-th position, for
i=1,2,...,M-N.

3.1.1. Image Confusion via Switch Control Mechanism.
To perform the image confusion, the proposed method
exploits the Lorenz chaotic system to generate two chaotic
sequences denoted as follows:

R={R,R,,...
L={L,L,..

> RM})
Lyl

The proposed method then sort two these chaotic se-
quences R and L to yield the following sets:

SR ={SR,SR,,...,SRy},
SL ={SL,,SL,,...,SLy}.

(5)

(6)

Finally, marking the positions of each point in the se-
quences SR and SL in the original sequences R and L, we can
get two random permutations denoted as follows:

TR ={TR,,TR,,..., TRy},

(7)
TL ={TL,,TL,,...,TLy}.
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FIGURE 1: Lorenz chaotic attractor. (a) All directions. (b) x-y direction. (c) x-z direction. (d) y-z direction.
TaBLE 1: NIST SP800-22 test results of two generators.
Test S1 S2
est name
p value Results p value Results
Frequency 0.115026 SUCCESS 0.852445 SUCCESS
Block frequency 0.479345 SUCCESS 0.335341 SUCCESS
Cumulative sums 0.133011 SUCCESS 0.739284 SUCCESS
Runs 0.628042 SUCCESS 0.648365 SUCCESS
Longest runs of ones 0.746332 SUCCESS 0.269936 SUCCESS
Rank 0.955981 SUCCESS 0.057146 SUCCESS
FFT 0.713570 SUCCESS 0.818546 SUCCESS
Overlapping template matching 0.360195 SUCCESS 0.434233 SUCCESS
Universal statistical 0.689639 SUCCESS 0.693656 SUCCESS
Random excursions 0.364557 SUCCESS 0.504450 SUCCESS
Random excursions variant 0.490487 SUCCESS 0.490322 SUCCESS
Serial 0.880692 SUCCESS 0.157533 SUCCESS
Nonperiodic template 0.541996 SUCCESS 0.474985 SUCCESS
Linear complexity 0.519593 SUCCESS 0.736412 SUCCESS
Apen 0.909288 SUCCESS 0.401933 SUCCESS

To increase the randomness of rearrangement of image
pixels, a switch control mechanism is injected into the image
confusion step, which can be used to determine whether a

row or column transformation will be performed on plain
images. The switch control mechanism can be designed as
follows:
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(d)

(g)

F1GURE 2: Encryption and decryption of images. (a) Plaintext of Lena. (b) Encryption of Lena. (c) Decrypion of Lena. (d) Plaintext of bird. (e)
Encryption of bird. (f) Decryption of bird. (g) Plaintext of flower. (h) Encryption of flower. (i) Decryption of flower. (j) Plaintext of
photographer. (k) Encryption of photographer. (1) Decryption of photographer.
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ifS1,=0,

if S1,=1, ®)

7_{f1(1),
fZ(I)a

where I is the plain image, I is the scrambled image, and S1 is
the pseudorandom number generator expressed by equation
(2), whose randomness determines that the proposed switch
control law is also random. f1 and f2 represent row and
column transformation described as follows.

Row transformation ( f,): rearrange the positions of the
rows in I according to the order of TR, e.g., move the TR,
row to the first row, the TR, row to the second row, . . ., the
TR, row to the M th row.

Column transformation ( f,): rearrange the positions of
the columns in I according to the order of T'L, e.g., move the
TL, column to the first column, the TL, column to the
second column, ..., the TLy column to the Nth column.

Based on the above switch control rule, the confusion
process can be described as follows:

Step 1: select the first K points from S1 and let =351,
i=1,2,...,K, where K represents the maximum value
of M and N.

Step 2: relocate the pixels of image I according to the
switch control rule represented by equation (8) along
with the pseudorandom sequence S1. That is, if 6 = 0, a
row transformation will be performed on the plain
image; otherwise, column transformation works.

Step 3: a new matrix I can be got after MN times
transformations. If the pixel in the image has not been
permutated completely, discard the first M N points in S1,
and repeat Step 1-Step 2 until the results perform well.

3.1.2. Image Diffusion Process. To further increase the se-
curity level of the proposed image encryption, the scrambled
image I1' can be made more confusing via the pseudo-
random numbers S2 designed previously, where the whole
image can be processed as a sequence with length of MN.

The image diffusion can simply perform by utilizing the
following computation:

C;=(mod(Ci_y +1;+I,),256) ®S2, (9)

where C; is the current ciphered value, C;_; is the previous
ciphered value, T, is the current scrambled image value, and
I;_, is the previous scrambled image value, and S2 has been
calculated by equation (3). Set the initial value C, = 0.

3.2. The Decryption Process. The inverse process of image
diffusion aims to recover back the diffused image into its
original value, which can be viewed as the reverse of the
encryption part. The same keys as used in the encryption
process are introduced into the Lorenz chaotic system to
obtain three output sequences {x;}, {y;}, and {z;},
i=1,2,...,N. Then, the same method employed above to
calculate S1 and S2 was used.
The formula of the decryption is given as

I, =mod(C;®S2-C,_, - 1,_;,256), (10)

where C; is the current ciphered value, C,_, is the previous
ciphered value, Ti is the current scrambled image value, and
I;_, is the previous scrambled image value, and S2 has been
calculated by equation (3) . Without loss of generality, set
initial value I, =0.

The confusion of decryption: extract K points from S1 to
get 6. If 0 = 0, the corresponding part will be performed by
row transformation; else, the column transformation works.
And it is determined by the random permutation TR and T'L
how the image transforms. It is worth noting that the round
of permutation part used here should be the same as the one
designed in the encryption process. In this way, the plain
image I can be recovered.

4. Experimental Results and
Performance Analysis

Series of images are chosen here to verify the performance of
the proposed image encryption algorithm, where all image
sizes are normalized to 256 x 256 for convenience. Setting
the parameters and initial values of the Lorenz chaotic
system as a = 10, b = 8/3, c=28, x, =10, y,=5, and z,=9,
we carry out the encryption scheme.

We first invest the performance of the proposed en-
cryption algorithm for different images. It can be shown
from Figure 2 that the algorithm destroys the obvious
pattern of the plain image and makes the ciphered image
display a space filling with a noise-like pattern. The shuffling
process of pixels of the image hides the information of the
original plain image and makes the ciphered image seem
random to the intruder. Thus, the encryption scheme is
effective.

Then, we analyze the security of the proposed encryption
scheme. Generally, a good encryption scheme not only can
hide any information of the plain image but also can resist
some attacks. Some commonly used test indicators have
been applied to analyse the security of the proposed image
encryption scheme, which include key space and key sen-
sitivity analysis, histogram analysis, NPCR (number of pixel
change rate) and UACI (unified average changing intensity)
analysis, entropy analysis, and correlation analysis.

4.1. Key Space and Sensitivity Analysis. The size of key space
is an important indicator to measure the ability of resistance
to exhaustion attack. In general, the smaller the key space,
the more vulnerable the scheme is to attack. From the
cryptographic point of view, the size of key space should be
no smaller than 2'?® to make brute force attack ineffective.
Given that the secret keys include the initial value x,, y,, and
z, and system parameters a, b, and ¢, the size of the key space
can reach 10°F with computing precision 10%. In the case, the
key space is far more than 10%( = 2!%) if the precision
L > 14. Therefore, the key space is large enough to resist the
exhaustion attack.

A good image encryption scheme should also be sen-
sitive to tiny changes of keys, which means any tiny changes
of the keys can induce huge changes of the encrypted images.
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FiGure 3: Key Sensitivity Analysis. (a) Change a restoring diagram. (b) Change b restoring diagram. (c) Change ¢ restoring diagram.
(d) Change x, restoring diagram. (e) Change y, restoring diagram. (f) Change z, restoring diagram.
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FiGure 4: Histograms of plain and ciphered images. (a-d) Histograms of Lena, bird, flower, and photographer. (e-h) Histograms of

ciphered Lena, bird, flower, and photographer.

In this way, the attacker cannot decode the original image by
using the keys similar to the real ones.

Without loss of generality, we choose randomly system
parameters and initial values to carry out the process of

encryption and decryption and observe the influence of tiny
changes on the decryption. For each secret key, suppose that
the last one bit is changed in it and other keys are unchanged
and then investigate if the original images can be restored
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TaBLE 2: NPCR and UACI of different positions.
Position 1, 1) (64, 64) (128, 128) (1, 256) (256, 1) (256, 256)
NPCR (%) 99.6063 99.6048 99.6201 99.5880 99.6048 99.5926
UACI (%) 33.4621 33.2419 33.4538 33.3603 33.3034 33.3788
TaBLE 3: NPCR and UACI of proposed algorithm.
Image Lena Bird Flower Photographer
NPCR (%) 99.6063 99.6002 99.5834 99.6086
UACI (%) 33.4621 33.4665 33.4696 33.4434
TaBLE 4: Comparison of NPCR and UACI with other methods.
Scheme Proposed Ref. [26] Ref. [34] Ref. [12] Ref. [16]
NPCR (%) 99.6063 99.62000 99.6173 99.6552 99.6094
UACI (%) 33.4621 33.46000 29.5664 33.4846 28.6181
TaBLE 5: Correlation coefficients of images.
Plain image Ciphered image

Image . . . . . .

Horizontal Vertical Diagonal Horizontal Vertical Diagonal
Lena 0.9728 0.9281 0.9050 —-0.0011 0.0014 0.0005
Bird 0.9687 0.9596 0.9298 0.0004 -0.0020 0.0028
Flower 0.9694 0.9528 0.9301 0.0026 —0.0041 -0.0023
Photographer 0.9626 0.9231 0.9496 0.0029 —-0.0024 —0.0008

using the changed key. Setting the parameters a = 10, b=8/3,
=28, x,=10, y,=5, and z, =9, the decrypted images using
the same settings can be shown in Figure 2 in front.
Meanwhile, the decrypted image with the keys a, b, ¢, x4, ¥,
and z,, changed to 0.00000000001 is shown in Figure 3. To be
exact, the key a is changed to 10.00000000001. Similar
conclusions can be got for other keys. As shown in Figure 3,
the encrypted image cannot be cracked by using a similar key
(x,=10.00000000000001). Hence, the algorithm is sensitive
to tiny changes of keys.

4.2. Histogram Analysis. The histogram of an image is an
important statistical property which can reflect the relation
between gray level and its corresponding frequency. For a
good image encryption algorithm, its encrypted image
should have a histogram with uniform distribution to hide
the statistical characteristic. The images before and after
encryption are shown in Figure 4. It can be seen from
Figures 4(a)-4(d) that the frequency distributions of given
images are not uniform for different gray levels, which
makes attackers often easily get information from them. It
can be found from Figures 4(e)-4(h) that the frequency
distribution becomes quite uniform after encryption, which
indicates that the statistical characteristic has been hidden
and will not leak any information of the plain images, thus
enhance the security of the images.

4.3. NPCR and UACI Analysis. NPCR and UACI are two
measures to examine the performance of an image encryption
algorithm to resist differential attack. Actually, NPCR depicts

the number of pixels change rate while one pixels of plain
image changed, while UACI stands for the average intensity of
difference between the plain image and the ciphered image.
Two these indicators can be defined as follows:
D, j
NPCR = 2,0 1) % 100%,
W x H
(11)
UACI =

L g GG =Colh 0y,
5 >
ij

W x H & 25

where W and H are the width and height of C, or C,. C, or
C, is the encrypted image before and after one pixel of the
plain image is changed. D (i, j) can be defined as follows: if
C,#C,, D(i,j) = 1; else, D(i, j) = 0.

And the expectation of the NPCR and UACI with 8 bits
representation can be described as [40]

NPCR; = (1-27") x 100%
; 12
1 Y2 i +) (12)

UACH, = o5 ==L

x 100%,

where n denotes the digit. It can be calculated that NPCRy
and UACI} are close to 99.6094070 and 33.4635070 for 8
bits digits.

We invest the NPCR and UACI results of the encrypted
Lena images for different positions and different images
separately, and the results are shown in Tables 2 and 3,
respectively. As shown in two these tables, the values of
NPCR are close to the ideal value, which means the en-
cryption scheme is very sensitive to small changes in the
plain image. With respect to UACI, the values for different
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TaBLE 6: Comparison of correlation coefficients with other methods.

Scheme Lena Proposed Ref. [26] Ref. [34] Ref. [12] Ref. [16]

Horizontal 0.9728 —-0.0011 -0.0285 0.0027 —-0.0038 —-0.0245

Vertical 0.9281 0.0014 0.0014 0.0005 —-0.0026 -0.0226

Diagonal 0.9050 0.0005 0.0013 —0.0045 0.0017 -0.0193
TaBLE 7: Information entropy of images.

Image Lena Bird Flower Photographer

Plain 7.5545 7.6515 6.6792 6.5786

Ciphered 7.9974 7.9973 7.9970 7.9971
TaBLE 8: Approximate entropy of images.

Image Lena Bird Flower Photographer

Plain 0.6434 0.7828 0.4613 0.2723

Ciphered 2.1733 2.1785 2.1815 21734

TaBLE 9: Comparison of information entropy with other methods.
Scheme Plain image Encrypted image Ref. [26] Ref. [34] Ref. [12] Ref. [16]
Entropy 7.5545 7.9997 7.9993 7.9972 7.9874 7.9975

images are also close to the ideal value, which indicates that
the rate of influence due to one pixel change is very large. In
this way, the algorithm has strong ability to resist differential
attacks.

To further show the superiority of the algorithm,
comparisons with other existing schemes have been made
here, as depicted in Table 4. It is clear from the analysis result
that the algorithm has higher ability to resist differential
attack.

4.4. Correlation Analysis. The correlation between image
pixels is an important indicator to measure whether the
ciphered image can resist the chosen-plaintext attack. The
correlation between adjacent pixels can be characterized by
correlation coefficients, which can be defined as follows:

Cov(x, y)

" = D) = D)

where x and y are the grayscale values of two adjacent pixels
in the given image. D (x) and D (y) are the variance of x and
y, respectively. Cov (x, y) shows the covariance of x and y.

To measure the correlation of adjacent pixels, we first
select 2000 pairs of adjacent pixels (in vertical, horizontal,
and diagonal directions) randomly from plain images and
ciphered images, respectively, and calculate their correlation
coefficients. The mean value of the correlation coefficients
for different images is shown in Table 5. Obviously, the
correlation between two adjacent pixels can be greatly re-
duced after encryption. Figures 5 and 6 also depict the
correlations of plain and ciphered images in horizontal,
vertical and diagonal adjacent pixels, respectively. In addi-
tion, correlation performance comparison with other
existing image encryption algorithms is made, as shown in
Table 6. It can be observed that the correlation between two

(13)

adjacent pixels of plain images has been eliminated to a large
extent and then enhances the ability to resist the chosen-
plaintext attack. All these results indicate the proposed
image encryption algorithm is effective and has higher
security.

4.5. Entropy Analysis. For a given image, it is ideal that the
character information of the image can be hidden entirely
after being encrypted, and thus the intruder cannot carry
an effective attack on it. To measure the complexity or
uncertainty of given images, two entropy indicators are
introduced here: information entropy and approximate
entropy (ApEn) [41]. The former mainly measures the
uncertainty of an information source, while the latter
depicts the probability of new patterns appearing in the
information source. Normally, the more complicated the
sequence, the higher the entropy, and the less likely it is to
leak information.

The information entropy H (x) of an information source
x can be calculated as

H(x) = =) p(x)log, p(x), (14)

where p (x) represents the probability of source x. Normally,
the greater the uncertainty of source x, the higher the en-
tropy. A source with uniform distribution has the greatest
uncertainty, and the information entropy is at its maximum.
That is, the more information entropy closes to 8, the more
uncertainty there is, and less information the system may
leak. As shown in Table 7, the information entropy of
images is enhanced to be in close proximity to the maximum
value 8 under the current digit after encryption. That is,
the probability of information leakage is very small, which
means the encryption scheme is effective.
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Generally, the more evenly distributed, the less likely
new patterns are to emerge and the greater the ApEn value is.
As shown in Table 8, the ApEn values of the ciphered images
are enhanced to be more than 2.5 times than the ones of the
original images and even be close to the mean value (about
2.1773nat) of the random images with uniform distribution,
which further ensure the validity of the proposed scheme.

Furthermore, we compare the entropy performance of
the proposed algorithm with other existing chaos-based
image encryption schemes. As shown in Table 9, the in-
formation entropy of the proposed scheme is not only larger
than that of other schemes but also closer to the maximum
value of 8. In this way, the proposed scheme has higher
security.

5. Conclusion

Given that there exists a contradiction between the security
and implementation for most existing chaotic image en-
cryption schemes, a novel chaos-based encryption scheme
via switch control technology has been proposed. In this
scheme, the three-dimensional Lorenz chaotic system is
introduced to generate pseudorandom sequences with good
randomness, and a switch control law is designed to realize
the random permutation of the given images. The simulation
results show that the proposed algorithm has a good per-
formance, and the comparisons of entropy and other in-
dicators also show its superiority.
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In recent years, malware has evolved by using different obfuscation techniques; due to this evolution, the detection of malware has
become problematic. Signature-based and traditional behavior-based malware detectors cannot effectively detect this new
generation of malware. This paper proposes a subtractive center behavior model (SCBM) to create a malware dataset that captures
semantically related behaviors from sample programs. In the proposed model, system paths, where malware behaviors are
performed, and malware behaviors themselves are taken into consideration. This way malicious behavior patterns are differ-
entiated from benign behavior patterns. Features that could not exceed the specified score are removed from the dataset. The
datasets created using the proposed model contain far fewer features than the datasets created by n-gram and other models that
have been used in other studies. The proposed model can handle both known and unknown malware, and the obtained detection
rate and accuracy of the proposed model are higher than those of the known models. To show the effectiveness of the proposed
model, 2 datasets with score and without score are created by using SCBM. In total, 6700 malware samples and 3000 benign
samples are tested. The results are compared with those derived from #-gram and models from other studies in the literature. The
test results show that, by combining the proposed model with an appropriate machine learning algorithm, the detection rate, false

positive rate, and accuracy are measured as 99.9%, 0.2%, and 99.8%, respectively.

1. Introduction

Any software that performs malicious activities on victim
machines is considered to be malware. Sophisticated
malware uses packing and obfuscation techniques to make
the analysis and detection processes more difficult [1].
Malware lies at the root of almost all cyber threats and
attacks including global threats, advanced persistent
threats (APTs), sensitive data theft, remote code execu-
tion, and distributed denial of service (DDoS) attacks. In
recent years, the number, sophistication of malware at-
tacks, and the economic damage caused by malware have
been increasing exponentially. According to scientific and
business reports, approximately 1 million malware files
are created every day. According to cybersecurity ven-
tures, cybercrime will cost the world economy approxi-
mately $6 trillion annually by 2021 [2]. According to the
same report in 2019, ransomware malware costs around

$11.5 billion globally [2].

Mobile malware is on the rise. According to the McAfee
mobile threat report, there is a substantial increase in
backdoors, fake applications, and banking Trojans for
mobile devices [3]. The number of new mobile malware
variants increased by 54% from 2016 to 2017 [4], and most
types of unknown and mobile malware are evolved versions
of known malware [5]. Moreover, malware attacks related to
the healthcare industry, cloud computing, social media,
Internet of Things, and cryptocurrencies are also on the rise
[2, 6].

It is almost impossible to propose a method or system
that can detect every new generation of sophisticated
malware. The 4 main methods used to detect malware are
based on signature, behavior, heuristic, and model checking
detection. Each method has advantages and disadvantages.

Signature-based malware detector examines the features
that encapsulate the program’s structure and uniquely identify
the malware. This method detects known malware efliciently,
but it cannot detect unknown malware. Behavior-basedmalware
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detector observes program behaviors using monitoring tools
and determines whether the program is malware or benign.
Although program codes change, the behavior of the program
will remain relatively the same; thus, new malware can be
detected with this method [7]. However, some malware does
not run properly under the protected environment (e.g., virtual
machine and sandbox environment), and thus, the malware
sample may be incorrectly marked as benign.

In recent years, heuristic-based detection methods have
been used frequently. These methods are complex detection
methods that apply both experience and different techniques
such as rules and machine learning techniques [8]. However,
even if the heuristic technique can detect various forms of
known and unknown malware [7], it cannot detect new
malware that is quite different from existing malware. In model
checking-based detection, malware behaviors are manually
extracted, and behavior groups are coded using linear temporal
logic (LTL) to display a specific feature [9]. Although model
checking-based detection can successfully detect some un-
known malware that could not be detected with the previous 3
methods, it is insufficient for detecting all new malware.

In this paper, the subtractive center behavior model
(SCBM), which captures semantically associated behaviors
when creating a dataset, is proposed. In this model, in
addition to malware behaviors, system paths where malware
behaviors are executed are also considered.

The proposed model makes the following contributions:

(i) SCBM is proposed to create a malware dataset with
fewer features than known models.

(ii) Instead of directly using system calls as behaviors,
system calls are mapped to relevant behaviors.

(iii) Behaviors are divided into groups, and risk scores
are calculated based on the system path and active-
passive behaviors.

(iv) Features are extracted from behaviors according to
the type of resources and instances that have been
used. This way malicious behavior patterns are
segregated from benign behavior patterns.

(v) The proposed model can handle both known and
unknown malware.

(vi) The obtained detection rate and accuracy of the
proposed model are higher than those of the known
models.

The rest of this paper is organized as follows. Section 2
defines malware and describes trends in malware technol-
ogies. Related work is summarized in Section 3. SCBM is
explained in Section 4, and the case study is presented in
Section 5. The results and discussion are provided in Section
6. Finally, the limitations and future works are given in
Section 7, and the conclusion is given in Section 8.

2. Definition of Malware and Trends in
Malware Technologies

Any software that intentionally executes malicious payloads
on victim machines is considered to be malware [7]. There
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are different types of malware including viruses, worms,
Trojan horses, rootkits, and ransomware. Common malware
types and their primary characteristics can be seen in Table 1.
The malware types and families are designed to affect the
original victim machine in different ways (e.g., damaging the
targeted system, allowing remote code execution, and
stealing confidential data). Generally, hackers launch an
attack by using malware, which exploits vulnerabilities in
existing systems such as buffer overflow, injection, and
sensitive data misconfiguration [10]. These days, the clas-
sification of malware is becoming more complex because
some malware instances can present the characteristics of
multiple classes at the same time [11].

Viruses, which are considered to be first malware that
appeared in the wild, were defined as self-replicating
automata by John von Neumann in the 1950s. However,
practically the first virus called “the Creeper” was created in
1971 by Bob Thomas [12, 13]. In the early days, this software
was written for simple purposes, but in time, it was replaced
by a new generation of malware that targeted large com-
panies and governments. Malware that runs in the kernel
mode is more destructive and difficult to detect than tra-
ditional malware, and it can be defined as a new generation
(next generation) of malware. The comparison between
traditional and new generation malware can be seen in
Table 2.

The inability to implement the operating system control
features in the kernel mode makes the detection of new
generation malware difficult. This malware can easily bypass
protection software that is running in the kernel mode such
as antivirus software and firewalls. In addition, by using this
software, targeted and persistent cyberattacks that have
never been seen before can be launched, and more than one
type of malware can be used during the attacks. Examples of
traditional versus new generation malware can be seen in
Figures 1 and 2.

M represents malware, and (P}, P,, P;, P,) show the
running processes that interact with the malware. First, M
copies itself into different processes such as Pj, P,, and Ps.
Then, M deletes itself from the system to make itself invisible
(Figure 2). In early days, rootkits were using similar tech-
niques to hide themselves from the system. However, in
process of time, many other kinds of malware (in some cases,
rootkits are combining with viruses, worms, and Trojan
horses) have started to use similar techniques to hide
themselves as well. With the help of the processes, it has
recently copied (P; — P,; Py— P;; P;— P,) and it
connects to remote system and makes changes on the
victim’s operating system. Even if the actual malware
containing the malicious code has deleted itself from the
system, the new version of the malware remains in and
affects the system because the actual malware injected
itself into different processes such as existing system files,
third-party software, and newly created processes, which
make the malware almost impossible to detect. To de-
termine the malicious software mentioned in Figure 2, M
and the P;, P,, P5;, and P, processes must be examined
separately, and the relations among these processes
should be determined.
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TaBLE 1: Common malware types and their primary characteristics.

Common malware types Primary characteristics

Most common and well-known malware

Virus . .
Attaches itself to other programs to replicate

Spreads by using computer network
Worm Allows unauthorized access
Often opens backdoor in the victim system

Appears to be a normal program, but it is not
Can open backdoors
Can cause unauthorized access
Can send critical information to the third party

Trojan Horse

Bypasses traditional security mechanisms
Opens system to remote access
Usually installed by using Trojans and worms
Used by viruses and worms for complex attacks

Backdoor

Provides administrator-level access
Rootkit Hides their files from the operating system
Can combine with other malware

Encrypts the data on infected system

Ransomware - .
Victim needs to pay ransom to view the data

Collects victim’s sensitive information and sends them to third parties

Spyware . . . . . .
Pyw Commonly used to access credit card information or to identify user habits

Can be any type of malware

Obfuscated malware . . . .
Uses obfuscation techniques to make detection process more difficult

TaBLE 2: Comparison of traditional and new generation malware.

Comparison parameter Traditional New generation
Implementation level Simple coded Hard coded
State of behaviors Static Dynamic
Proliferation Each copy is similar Each copy is different
Through spreading Uses .exe extension Uses also different extensions
Permanence in the system Temporal Persistent
Interaction with processes A few processes Multiple processes
Using concealment techniques None Yes

Attack type General Targeted
Defensive challenge Easy Difficult
Targeted devices A few devices Many different devices

A
A\ 4
o

Remote
system

@_> P, [ Operating system ] Py
[ Hardware ]
FIGURE 1: Traditional malware.

In addition, the new generation malware uses the

common obfuscation techniques such as encryption, oli-

gomorphic, polymorphic, metamorphic, stealth, and pack-

ing methods to make the detection process more difficult.

This makes practically almost impossible to detect all

malware with single detection approach. The well-known

obfuscation techniques can be explained as follows:

Operating system

) ) ) ) FIGURE 2: New generation malware.
(1) Encryption: malware uses encryption to hide mali-

cious code block in its entire code [9]. Thus, malware difficult to detect malware, which uses the oligomor-
becomes invisible in the host. phic method rather than encryption.
(2) Oligomorphic: a different key is used when encrypting (3) Polymorphic: malware uses a different key to encrypt

and decrypting malware payload. Hence, it is more and decrypt likewise the key used in the oligomorphic



and encryption method. However, the encrypted
payload portion contains several copies of the decoder.
Thus, it is more difficult to detect polymorphic mal-
ware when compared to oligomorphic malware.

(4) Metamorphic: metamorphic method does not use
encryption. Instead, it uses dynamic code hiding
which the opcode is changing on each iteration when
the malicious process is executed [9]. It is very
difficult to detect such malware because each new
copy has a completely different signature.

(5) Stealth: the stealth method also called code protec-
tion implements a number of countertechniques to
prevent it from being analyzed correctly. For ex-
ample, it can make changes on the system and keep it
hidden from detection systems.

(6) Packaging: packaging is an obfuscation technique to
compress malware to prevent detection or hiding the
actual code by using encryption. Due to this tech-
nique, malware can easily bypass firewall and anti-
virus software [7]. Packaged malware need to be
unpacked before being analyzed.

3. Related Work

In recent years, there has been a rapid increase in the
number of studies on malware analysis and detection. In the
early years, signature-based detection was used widely. Over
time, researchers have developed new techniques for
detecting malware including detection techniques based on
behavior, heuristics, and model checking. There is huge
demand for methods that effectively detect complex and
unknown malware. Thus, we present related research from
the literature and examine the pros and cons of each study.
The summary of related works can be seen in Table 3.

The similarities determined among features by using
system calls were described in [14, 20]. Wagener et al. [14]
proposed a flexible and automated approach that considered
system calls to be program behaviors. They used an align-
ment technique to identify similarities and calculated the
Hellinger distance to compute associated distances. The
paper claimed that the classification process can be im-
proved using a phylogenetic tree that represents the com-
mon functionalities of malware. They also claimed that
obfuscated malware variants that show similar behaviors can
be detected. The limitations of paper can be summarized as
follows:

(1) Lack of knowledge is provided about the malware
dataset.

(2) Statistical evaluation of performance is not provided.

(3) Comparison of proposed method against other
methods is not given. Besides, it is not clear how
phylogenetic tree can improve the performance.

Shan and Wang proposed a behavior-based clustering
method to classify malware [20]. Behaviors were generated
using system calls, and features within a cluster were shown
to be similar. According to paper, the proposed method can

Security and Communication Networks

detect 71.1% of unknown malware samples without FPs,
while the performance overhead is around 9.1%. The pro-
posed method is complex, not scalable for large datasets, and
there are some performance issues on servers. Eliminating
these deficiencies will improve the model performance.

A graph-based detection schema was defined in
[15, 17, 21]. Kolbitsch et al. [21] proposed a graph-based
detection method in which system calls are converted into a
behavior graph, where the nodes represent system calls and
the edges indicate transitions among system calls, to show
the data dependency. The program graph to be marked is
extracted and compared with the existing graph to deter-
mine whether the given program is malware. Although the
proposed model has performed well for the known malware,
it has difficulties detecting unknown malware.

Park et al. proposed a graph method that specifies the
common behaviors of malware and benign programs [15]. In
this method, kernel objects are determined by system calls,
and behaviors are determined according to these objects.
According to the paper, the proposed method is scalable and
can detect unknown malware with high detection rates
(DRs) and false positive (FP) rates close to 0%. In addition,
the proposed model is highly scalable regardless of new
instances added and robust against system call attacks.
However, the proposed method can observe only partial
behavior of an executable. To explore more possible exe-
cution paths would improve the accuracy of this method.

Naval et al. [17] suggested a dynamic malware detection
system that collects system calls and constructs a graph that
finds semantically relevant paths among them. To find all
semantically relevant paths in a graph is a NP-complete
problem. Thus, to reduce the time complexity, the authors
measured the most relevant paths, which specify malware
behaviors that cannot be found in benign samples. The
authors claim that the proposed approach outperforms its
counterparts because, unlike similar approaches, the pro-
posed approach can detect a high percentage of malware
using system call injection attacks. Paper has some limita-
tions such as performance overhead during path compu-
tation and vulnerable to call-injection attacks and cannot
identify all semantically relevant paths efficiently. Elimi-
nating these limitations may improve the performance.

Fukushima et al. proposed a behavior-based detection
method that can detect unknown and encrypted malware on
Windows OS [22]. The proposed framework not only checks
for specific behaviors that malware performs but also checks
normal behaviors that malware usually does not perform.
The proposed scheme’s malware DR was approximately 60%
to 67% without any FP. The DR is very low; to increase the
DR, more malicious behaviors can be identified, and to
prove the effectiveness of new method, the test set will be
extended.

Lanzi et al. [23] proposed a system-centric behavior
model. According to the authors, the interaction of malware
programs with system resources (directory, file, and registry)
is different from that of benign programs. The behavioral
sequences of the program to be marked are compared with
the behavior sequences of the two groups (i.e., malware and
benign). The paper claimed that the suggested system detects
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TaBLE 3: Summary of related works on malware detection methods.
Paper Feature representation Goal/success Year
Woagener et al. [14] System calls, Hellinger distance, phylogenetic tree Identify new and different forms of malware 2008
Park et al. [15] Creating system call diagrams Identify different forms of malware 2013
Islam et al. [16] Printable strings, API method frequencies Identify malware with 97% accuracy 2013
Naval et al. [17] Diagram of system calls and relations Detect code insertion attacks 2015
Das et al. [18] System call frequencies, n-gram Identify new and different forms of malware 2016
Zhang et al. [19] API calls sequence to construct a behavior chain It achieved 98.64% accuracy with 2% FPR 2019

a significant fraction of malware with a few FP. The proposed
method cannot detect all malicious activities such as mal-
ware which does not attempt to hide its presence or to gain
control of the OS and which uses only computer network for
transmission. To include network-related policies and rules
for malware, which ignores to modify legitimate applications
and the OS execution, can improve the performance.

Chandramohan et al. proposed BOFM (bounded feature
space behavior modeling), which limits the number of
features to detect malware [24]. First, system calls were
transformed into high-level behaviors. Then, features were
created using the behaviors. Finally, the feature vector is
created and machine learning algorithms are applied to the
feature vector to determine whether the program is malware
or benign. This method ignored the frequency of system
calls. Executing the same system call repeatedly can cause
DoS attacks. Considering the frequency of system calls can
improve DR and accuracy.

A hardware-enhanced architecture that uses a processor
and an FPGA (field-programmable gate array) is proposed
in [18]. The authors suggested using an FCM (frequency-
centralized model) to extract the system calls and construct
the features from the behaviors. Features obtained from the
benign and malware samples are used to train the machine
learning classifier to detect the malware. The paper claimed
that the suggested system achieved a high classification
accuracy, fast DR, low power consumption, and flexibility
for easy functionality upgrades to adapt to new malware
samples. However, malware can perform various behaviors,
and there is no uniform policy to specify number of be-
haviors and features to be extracted before triggering the
early prediction. Furthermore, the proposed method per-
formance has only been compared with BOFM and n-gram
which is not enough to determine the efficiency of the
proposed model.

Ye et al. proposed associative classification post-
processing techniques for malware detection [25]. The
proposed system greatly reduces the number of generated
rules by using rule pruning, rule ranking, and rule selection.
Thus, the technique does not need to deal with a large
database of rules, which accelerate the detection time and
improve the accuracy rate. According to the paper, the
proposed system outperformed popular antivirus software
tools such as McAfee, VirusScan, and Norton Antivirus and
data mining-based detection systems such as naive Bayes,
support vector machine (SVM), and decision tree. To collect
more API calls, which can provide more information about
malware, and identify complex relationships among the API
calls may improve the performance.

A supervised machine learning model is proposed in
[26]. The model applied a kernel-based SVM that used
weighting measure, which calculates the frequency of each
library call to detect Mac OS X malware. The DR was 91%
with an FP rate of 3.9%. Test results indicated that incre-
menting sample size increases the detection accuracy but
decreases the FPR. Combining static and dynamic features,
using other techniques such as fuzzy classification and deep
learning can increase the performance.

The method of grouping system calls using MapReduce
and detecting malware according to this grouping is de-
scribed by Liu et al. [27]. According to the authors, most of
the studies performed so far were process-oriented, which
determines a process as a malware only by its invoked system
calls. However, most current malware is module-based,
which consists of several processes, and it is transmitted to
the system via driver or DLL [28]. In such cases, malware
performs actions on the victim’s machine by using more
than one process instead of its own process. When only one
process is analyzed, malware can be marked as benign.
However, there are some limitations of the proposed
method. The limitations of this method can be addressed as
follows: (1) some malware does not require persistent be-
havior ASEP; (2) persistent malware behaviors can be
completed without using system calls; and (3) the cost of
data transmission has not been measured. Besides, the
proposed method results were not compared with other
studies in the literature. Eliminating abovementioned lim-
itations can improve the method performance.

A detection system that combines static and dynamic
features was proposed in [16]. This system has three
properties: the frequencies (in bytes) of the method, the
string information, and the system calls and their param-
eters. By combining these properties, the feature vector was
constructed and classified using classification algorithms.
The paper claimed that the detection of the proposed system
is reasonable and increases the probability of detecting
unknown malware compared to their first study. However,
the probability of detecting unknown malware is still low
and FPR is high. Using more distinctive features and train
model with more malware may improve the method per-
formance for unknown malware.

Recent works on malware behaviors are represented in
[19, 29-31]. Lightweight behavioral malware detection for
windows platforms is explained in [29]. It extracts features
from prefetch files and discriminates malware from benign
applications using these features. To show the effectiveness
of the malware detector on the prefetch datasets, they used
LR (logistic regression) and SVM (support vector machine)



classifier. According to the authors, test results are promising
especially TPR and FPR for practical malware detection. Choi
et al. proposed metamorphic malicious code behavior detection
using probabilistic inference methods [30]. It used FP-growth
and Markov logic networks algorithm to detect metamorphic
malware. FP-growth algorithm was used to find API patterns of
malicious behaviors from among the various APIs. Markov
logic networks algorithm was used to verify the proposed
methodology based on inference rules. According to the test
results, the proposed approach outperformed the Bayesian
network by 8% higher category classification.

Karbab and Debbabi proposed MalDy (mal die), a
portable (plug and play) malware detection, and family
threat attribution framework using supervised ML tech-
niques [31]. It uses behavioral reports into a sequence of
words, along with advanced natural language processing
(NLP) and ML techniques to extract relevant security fea-
tures. According to the test results, MalDy achieved 94%
success on Win32 malware reports. A depth detection
method on behavior chains (MALDC) is proposed in [19].
The MALDC monitors behavior points based on API calls
and uses the calling sequence of those behavior points at
runtime to construct behavior chains. Then, it uses the depth
detection method based on long short-term memory
(LSTM) to detect malicious behaviors from the behavior
chains. To verify the performance of the proposed model,
54.324 malware and 53.361 benign samples were collected
from Windows systems and tested. MALDC achieved
98.64% accuracy with 2% FPR in the best case.

The malware detection schema landscape is changing from
computers to mobile devices, and cloud-, deep learning-, and
mobile-based detection techniques are becoming popular.
However, these detection schemas have some problems, too.
For instance, deep learning-based detection approach is ef-
fective to detect new malware and reduces features space
sharply [32], but it is not resistant to some evasion attacks. On
the other hand, cloud-based detection approach increases DR,
decreases FPs, and provides bigger malware databases and
powerful computational resources [33]. However, the overhead
between client and server and lack of real monitoring is a still
challenging task in cloud environment. Mobile- and IoT-based
detection approaches can use both static and dynamic features
and improve detection rates on traditional and new generation
of malware [34]. But, they have difficulties to detect complex
malware and are not scalable for large bundle of apps.

In the literature review, the malware detection methods
have been summarized. Current studies can be divided into 2
major groups:

(1) Studies that apply certain rules directly to behaviors
or features to group similar behaviors and extract the
signature (no ML is required at this stage)

(2) Studies that determine behaviors, extract features
from behaviors, and apply classification by using ML
and data mining algorithms

In current studies, some new techniques and methods
have been used widely for many years. These techniques and
methods are can be listed as follows:
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(i) Datamining and ML have been used widely for a
decade, and cloud and deep learning have been used
recently in malware detection

(ii) The n-gram, n-tuple, bag, and graph models have
been used to determine the features from behaviors

(iii) Probability and statistical methods such as Hellinger
distance, cosine coefficient, chi-square, and distance
algorithms are used to specify similarities among
features

Current studies which are explained above have some
limitations and can be addressed as follows:

(i) Many detection methods produce high FPs and
require complex and resource-intensive hardware

(ii) Detection rate and accuracies are low

(iii) Cannot effectively handle new and complex
malware

(iv) Focused on specific malware type, family, or spe-
cific OS

(v) Prone to evasion techniques
(vi) Have difficulties to handle all malicious behaviors

(vii) Feature extraction methods are not effective, so the
size of the features increases overtime

As a result, the difficulties in defining behaviors and
identifying the similarities and differences among the
extracted properties have prevented the creation of an ef-
fective detection system. The use of new methods and ap-
proaches along with the use of ML and data mining
algorithms in malware detection has begun to play a major
role in making the extracted features meaningfully.

On the contrary, the SCBM has a high detection rate and
accuracy with low FP. It can handle new and complex
malware to a certain degree, and it is resistant to evasion
techniques. Besides, the feature extraction method is ef-
fective and only specifies the features which can discriminate
malware from benign. During the feature extraction process,
the SCBM assigns numbers to each feature, which shows the
importance of the feature in the dataset. Thus, the model
does not need feature selection techniques before ML, and
this makes SCBM faster and less resource-intensive.

4. Subtractive Center Behavior Model

This section describes the system architecture and explains
the proposed model in detail.

4.1. Architecture of the Proposed Model. The system archi-
tecture of the proposed malware detection model is sum-
marized in Figure 3.

According to the proposed model, the program samples
are first collected and analyzed by relevant dynamic tools.
Then, the behavior is determined according to the results of
the analysis. After that, behaviors are grouped according to
the determined rules, and features are extracted. Finally, the
most important features are selected, and the system is
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FIGURE 3: Proposed model architecture.

trained. Based on the training data, each sample is marked as
malware or benign.

During the detection process, the SCBM specifies
malicious behavioral patterns which can be seen in malware,
but not seen or rarely seen in benign samples. Scoring system is
used to determine the behavioral patterns. For instance, even if
malware (M) and benign (B) samples system calls are the same
(in real examples, this is not the case) M=B={a, b, ¢, d, e}, the
behavior patterns will be different. Mjq¢ern(candidate) = {ab, ac,
ce}, where abyge=4, ACsore=1, Clsyore=3, while
Bpatern(candidate) = {ab, ac, cef, where abycore=1, acscore= 1,
and ceycore = 0. In this case, Myayern = {ab, ce}, while Bpgyern =1{ },
and we can easily differentiate malware from benign.

To collect the execution trace of each sample, both a
process monitor and explorer are used in this study, but
other dynamic tools such as API monitor and different
sandboxes can be used as well. The proposed system is

implemented using the Python scripting language, and
classification is done on Weka. To prove the efficiency of the
proposed model, different tools and programming language
have been used. However, someone can use different tools
and can get better results with proposed model. Thus, the
implementation of proposed model does not put restriction
on SCBM.

4.2. Proposed Model. In this study, the SCBM creates a
dataset. When the SCBM and the n-gram model are com-
pared, the SCBM contains far fewer features and determines
the related processes more clearly than n-gram. In the
proposed model, system paths, where malware behaviors are
performed, and the malware behaviors themselves are taken
into consideration. Based on each malware behavior and
related system path, a score is assigned. Features that do not
exceed the specified score are removed from the dataset. For
example, to run properly, each process accesses certain
system files and performs similar actions and behaviors.
Those behaviors and the resulting properties are not in-
cluded in the dataset. Therefore, the datasets created using
the proposed model contain far fewer features than the
datasets created by n-gram and the models used in other
studies. The proposed SCBM model consists of following
phases:

(i) Phase 1: convert the actions into behaviors

(ii) Phase 2: divide the behaviors into groups and
calculate the risk scores

(iii) Phase 3: group the behaviors according to the types
of resources

(iv) Phase 4: group the behaviors based on the same
resources but different instances

(v) Phase 5: extract the features from repeated
behaviors

(vi) Phase 6: extract the features from different data
sources

(vii) Phase 7: calculate the risk scores for each behavior
based on active/passive behaviors

The details of these phases are given below.

4.2.1. Phase 1: Convert Actions into Behaviors. In this phase,
system calls such as Windows API and Windows Native API
calls are converted into higher-level operations, and the
associated behaviors are generated. For example, if the se-
quence of the running program’s operations are in the order
of NtCreateFile, NtWriteFile, and NtCloseFile, then the
mapped behavior will be WriteFile. When we convert the
action into a behavior, we drop the Nt and remove the
NtCreateFile and NtCloseFile actions, which are not needed
for real behavior. Similarly, if the system calls are order of
NtCreateFile, NtQueryFile, and NtCloseFile, the mapped
behavior will be SearchFile. In this way, low-level system
calls are transformed into higher-level behaviors. The al-
gorithm used to create behaviors is shown in Algorithm 1.
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2) fori——1ton
(3) if (dijijstate) = = ‘AE)
(4) ye—A

(5) else
(6) ye—P
(7) end if

(8) if (P-name == dl'FileName)
9) y — self

(10)  elif (eST=="ss)

11) U —— system

(12)  elif (eST=="ts)

(13) y «— thirdParty

(14)  else
(15) 1=1
(16) end if

(17) if (dijim1ypo) ! = dagigfo))

(19) if (dyji1)s) == dugigs)
(20) Write.d,()

(21) end if

(22) end if

(23)  end if

(24)  if (di(i-11(01 = d11i110])
(25) if (dipiyyseey | = dagister)

(31) end for

(1) d, « file;, d, «—— filey, n — u(d,)

(18) if (dl[i][o] I=rcK && dl[i][o] I=cF && dl[i][o] I=tE && dl[i][o] 'ZPE)

(26) if (dl[i][o]! =rcK&& dl[i][o] I=cF && dl[i][o] I=tE && dl[,-] [o] = pE)
(27) write.d,()

(28) end if

(29) end if

(30) end if

ALGORITHM 1: Malware behavior creation algorithm.

In Algorithm 1, dy, d,, and # represent the input action
sequence, output behavior sequence, and input size, re-
spectively. The algorithm takes d; as an input and generates
d,. During this process, AE (active) and PE (passive) be-
haviors are identified, and sfPs (system file paths) such as
self, system, and third party’s software are determined. On
this basis, y and p, which represent action state and action
type, are calculated by using AE, PE, and eST (action state
type). Finally, system calls, which cannot define new be-
haviors, such as rcK: “RegCloseKey,” cF: “CloseFile,” tE:
“Thread Exit,” and pE: “Process Exit,” are eliminated from
the action list, and the rest of the actions are written to the d2
file.

An example system-call sequence and corresponding
behaviors are given in Table 4. The system calls that are
produced by each sample are formulated as S={a, b, ¢, d, .. .,
n}, where S represents the system-call sequence and a, b, ,
..., n represent each system call. Only s C S is taken into
consideration when building behaviors. In this way, the
behaviors that define the program are clarified, and the data
to be analyzed are reduced significantly before feature
extraction.

4.2.2. Phase 2: Divide the Behaviors into Groups and Cal-
culate the Risk Scores. The behaviors identified in the

previous phase are divided into three groups: self-generated
behaviors, behaviors on third-party software, and behaviors
on system software. In this section, the risk score is cal-
culated for each behavior and its path (Table 5). The risk
score is numbered from 0 to 4, where 0 means that related
behavior is normal and can be seen in both malware and
benign samples and 4 means that the related behavior is
risky, likely to be seen for malware and rarely seen in
benign samples (Table 5). The score is assigned based on
the behavior path performed by the program sample.
SGBI1 shows the first type of behaviors from self-generated
behaviors, TPB1 shows the first type of third-party be-
haviors, and SB1 shows the first type of system behaviors.
Higher score is given to system behaviors because more
differentiating malicious behaviors are performed on
system files. In addition, a score is assigned for active and
passive behaviors, as explained in phase 7. A threshold
value was used when excluding behaviors. For instance,
feature x; € feature set X consists of y1, ¥,,. . ., y,, behaviors.
The risk score for feature path (rsP) is calculated for x; as
follows:

x; (1sP) = 21 (rSP)"'J’z(fSI;)+"'+)’n(fSP)' ()

Let a be a specified threshold value, if x; (rsP) > g, x; is in
the feature set. Otherwise, x; is not in the feature set.
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TaBLE 4: Sample malware execution trace and behaviors (list is abbreviated).

Action call System path Extracted behavior
NtCreateFile “c:\windows\...\sfile;.exe,” malware.exe — 1 CreateFile (1)
NtCreateFile “c:\programfiles\...\,” malware.exe — 2 none
NtQueryDirectory 2, “c:\programfiles\...\,” malware.exe — 3 SearchDirectory (2)
NtReadFile 3, “c:\...\tfile;.txt,” malware.exe — 4 ReadFile (3)
NtReadFile 3, “c:\...\tfile,.exe,” malware.exe — 5 ReadFile (3)
NtCloseFile 4, “tfile;.txt,” malware.exe — 6 none
NtWriteFile 1, “sfile,.exe,” malware.exe — 7 WriteFile (1)
NtReadFile 7, “sfile;.exe,” malware.exe —> 8 ReadFile (7)
NtWriteFile 5, “tfile,.exe,” sfile;.exe — 9 WriteFile (5)
NtCreateKey “hklm\software\...\, key;,” tfile,.exe — 10 none
NtSetValue 10, “key;,” tfile,.exe — 11 SetValue (10)
NtRegCloseKey 11, “keyy,” tfiley.exe — 12 none
NtCreateFile “c:\windows\...\stfile,.dll,” tfile,.exe —> 13 none
NtCreateFile “c:\windows\...\stfile,.dll,” tfile,.exe —> 14 none
NtCloseFile 8, “sfile;.exe,” malware.exe —> 15 none
NtReadFile 13, “stfile;.dll,” tfile,.exe — 16 ReadFile (13)
NtReadFile 13, “stfile,.dll,” tfile,.exe —> 17 ReadFile (13)
NtReadFile 14, “stfile,.dll,” tfile,.exe —> 18 ReadFile (14)
NtCloseFile 17, “stfile,.dll,” tfile,.exe —> 19 none
NtCloseFile 18, “stfile,.dll,” tfile,.exe — 20 none
NtCloseFile 9, “tfile,.exe,” tfile,.exe — 21 none

TaBLE 5: Risk score calculation.

Behavior
) risk score

System path Path risk score (PRS) (BRS)
p A
SGBI, TPBI, SB1 0 0 3
SGB2, SB2 1 0 3
SB3 2 0 3
TPB2, SB4 3 0 3
SB5 4 0 3

(1) Phase 2.1: Self-generated behaviors (SGB). When an ex-
ecuted malware/benign sample performs behaviors on its
own directory (SGB1), these behaviors are determined as the
lowest dangerous behaviors and assigned a risk score of 0. In
this case, because the program needs to retrieve some data
from its own file to run properly, it generates normal be-
haviors that cannot be categorized as dangerous. However,
when an executed malware/benign sample presents registry
or network-related behaviors within some files (SGB2), this
behavior group is considered to be slightly more dangerous
and is assigned a risk score of 1. The behaviors marked with a
risk score of 1 are likely to be included in the dataset
according to the specified threshold. For instance, the be-
havior in which a file that creates another file and then copies
its own file content to another file is more dangerous than
the behavior that retrieves some data from its own file to run

properly.

(2) Phase 2.2: Third-Party Behaviors (TPBs). Many programs
require third-party software to run properly. For instance, in
order to compile and run a program written in the Python
language, the program will frequently perform behaviors for

the file path (TPB1) where this language exists. Such be-
havior is considered harmless, and the behavior risk score is
assigned as 0. However, behaviors related to directories and
files that are not related to the performed sample (TPB2) are
considered dangerous and the behavior risk score is assigned
as 3.

(3) Phase 2.3: System behaviors (SBs). Programs are needed
to interact with the operating system to work properly.
Typically, this interaction is provided by system DLLs,
background processes, Windows services, etc. on the
Windows operating system. Most of these interactions are
considered normal, while some of them are classified as
malicious. If a program contains interactions that are
necessary for the program to work properly, these type of
behaviors (SB1) are evaluated not dangerous and lowest level
risk score is assigned as 0. If the program uses “GDI32.d1l”
and “shell32.dll” [35] which can be used for both in mali-
cious and benign behaviors (SB2), the risk score assigned as
1. If the program uses “User32.dll” and “kernel32.dll,” which
can be used frequently by malware and also sometimes used
by benign (SB3), the risk score is assigned as 2. However, if
the program frequently calls “Wininet.dll,” “Advapi32.dll,”
and directly calls “Ntdll.dll” instead of “kernel32.dIl” or uses
high-level methods that are likely to be categorized as
dangerous such as “ReadProcessMemory” and “Adjust-
TokenPrivileges” [35] (SB4), then a behavior risk score is
assigned as 3.

In addition, if the program is attempting to interfere with
system processes such as “svchost.exe” and “winlogon.exe”
and to use these processes to access system databases that
contain critical information, then these behaviors (SB5) are also
considered malicious and behavior risk score is assigned as 4.
Furthermore, if the same name as the system files in different
system paths such as “svchost.exe,” “winlogon.exe,” and
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“smss.exe” have been created or if the file is automatically
initializing itself each time, the system is started (autostart
locations such as “hklm\software\...\currentversion\run,”
“hklm\software\...\currentversion\runonce,” “c:\users\...\
startmenu\...\startup”), then these behaviors (SB4) are also
considered malicious and behavior risk score is assigned as 3.

4.2.3. Phase 3: Group the Behaviors according to Types of
Resources. Operating system resources are divided into
groups such as file, registry, network, section, and thread;
and the same types of resources are generally considered
when determining property relationships. For instance, in
Table 4, the behaviors of ReadFile (7, “sfilel.exe,” malwar-
e.exe, 8) and WriteFile (5, “thle2.exe,” sfilel.exe, 9) are di-
rectly associated with each other. However, SetValue (10,
“keyl,” tfile2.exe, 11) and ReadFile (13, “\..\stfile1.dll,” tfi-
le2.exe, 16) are not directly associated with each other. Thus,
ReadFile and WriteFile can create a property, while SetValue
and ReadFile cannot create a property.

4.2.4. Phase 4: Group the Behaviors on the Same Resources
but Different Instances. While behaviors on the same re-
source (file and registry) and the same file format create the
same properties, behaviors on the same resource on different
file formats (exe, txt, sys, and dll) create different properties.
For example, ReadFile (“tfile.txt,” malware.exe — 4) and
ReadFile (“tfile,.exe,” malware.exe — 5) create two differ-
ent properties (Table 4), while ReadFile (13, “stfile;.dll,”
tfile,.exe —> 16) and  ReadFile (14, “stfile,.dll,”
tfile,.exe — 18) create the same property.

4.2.5. Phase 5: Extract the Features from Repeated Behaviors.
The successive behaviors on the same resource and sample
are set to a single property. Behaviors that occur in different
locations and names are set to the same feature as well, but
the importance of the feature increases.

4.2.6. Phase 6: Extract the Features from Different Data
Resources. Behaviors that are on different resources but are
indirectly determined as having a relationship also create a
property. For example, although their behaviors take place in
different resources, WriteFile (5, “tfile,.exe,” sfile;.exe — 9)
and SetValue (10, “key;,” tfile,.exe — 11) (Table 4) create a
property between them.

4.2.7. Phase 7: Calculate the Risk Scores for Each Behavior
Based on Active/Passive Behaviors. Active behaviors are
considered to be more dangerous than passive behaviors,
and consequently, a higher level of danger is assigned. For
example, while the danger level for ReadFile is set to 0, the
danger level of WriteFile is set to 3. The feature creation
algorithms are shown in Algorithms 2 and 3.

In Algorithms 2 and 3, the first algorithm contains
abbreviations d,, ds, (rD, tY, aS, and sRY), and pRS, which
define input file, output file, related file paths, and each file
path risk score and the second algorithm contains

Security and Communication Networks

(1) d, —filey, dy — files, n — u(d,)
(2) fori——1ton

(3) if (u=="self”)

(4) if ( P-name == dz-ﬁleName)

(5) pRS«——0
(6) elif (P-name! = d2-ﬁleName && dZ-ﬁleName == I'D)
(7) pRS«—3
(8) else
) pRS—2
(10) end if

(11)  elif (u=="ts")
(12) lf (dZ[i] [fP] == tY)

(13) pRS «—2

(14) # Registry Autostart Location
(15) elif (dz[,'][fp] == aS)

16) pRS — 3

17) else

18) PRS0

19) end if

(20)  elif (u=="ss)
(21) if (Pname == d2-ﬁleName)

(22) PRS «— 0

(23) elif ( d2-ﬁleName == -exe,)
(24) pRS=3

(25) elif (dz[,‘][sfp] == SRY)
(26) pRS — 3

(27) elif (dz[,-][sfp] == I'D)
(28) pRS — 3

(29) else

(30) pRS — 0

(31) end if

(32) end if

(33) end for

ALGORITHM 2: Feature creation algorithm 1.

abbreviations d,, da, as, (O, Oy, and O,), 7, rdF, and weF,
which define input file, output file, action state, action values,
operation value, “ReadFile,” and “WriteFile.” In Algo-
rithms 2 and 3, the risk score is first calculated for each
behavior, and the features from the related behaviors are
constructed. For example, let B={a, b, ¢, d} be a behavior
sequence, where a and c are active behaviors while b and d
are passive behaviors. In addition, behavior a is related to
behaviors b and ¢, and behavior b is related to behavior d. In
this case, features (F) and their risk scores (rS) are calculated
as

F ={a,ab,ac,b,bd, c,d},

1S ={3+7S,;3+7Sy;4+1S,:;0+71S8,; 0478533+ 180+ 1Sy},

(2)

where the first score represents the active-passive risk score
and the second score represents the path score. After the
feature sequences have been generated, the frequency of each
feature is calculated. The features that have a risk score above
a certain threshold are considered during classification. In
this case, the number of features decreases significantly, and
classification algorithms produce better results without the
use of feature selection algorithms.

ac’
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(1) dz(_ﬁlez, d4 — ﬁle4, n «— u(dz)
2) fori——1ton
3) if (i<n-10)
(4) for je—i+1toi+10
(5) P, = dapjystp)
(6) if (P;.as==P,.as && Pj.as=="A’)
(7) ye— AN’
(8) elif (P,.as==P,.as && P;.as==P)
9) y— PP’
(10) else
a1 Y — AP’ =PA’
12) end if
(13) if (dz[j][o] ==rdF && d2U+1][°] = ZWCF)
(14) 7'[%01+“+02
(15) if (dZ[}][,u] S ‘self)
(16) ne—n+‘S
(17) elif (dzm [w1== (tS))
(18) n——mn+ TP
(19) elif (dz[,-][‘#’] == (SS’)
(20) nme—mn+ST
(21) else
(22) 2e—2
(23) end if
(24) write.d,()
(25) if (sfP, ==sfP, && 0,!=0,)
(26) 7T<_Ol+(’+02
(27) if (dZL/][y] == ‘self)
(28) Te—+S
(29) elif (dz[f][‘ﬂ’] == ‘tS))
(30) ne—m+ TP
(31) elif (dz[j][‘”’] == ‘SS))
(32) me——m+ ‘ST
(33) else
(34) 22
(35) end if
(36) write.dy()
(37) end for
(38) end if
(39) end for

ALGORITHM 3: Feature creation algorithm II

Using the SCBM, Table 4 malware behaviors, Table 6
malware features, and Table 7 feature vector are generated.
In Table 6, the Risk IDs column provides information about
features. By looking at the Risk IDs column, the importance
of each feature and risk score can be understood. In the Risk
IDs, column I, represents property types such as self, third
party, and system; b represents the level of property; and A
and P represent active and passive, respectively. For ex-
ample, in [;2, A can be evaluated as a related process trying
to make changes on its files by using active behaviors, while
in I;1, P can be evaluated as a related process trying to
perform operations on system files by using passive be-
haviors. When the values for Table 7 are obtained by using
Table 6, a value of 0 is assigned for missing properties, 1 is
assigned for one-time repeated properties, and x is assigned
for x-time repeated properties. In addition, risk scores are
assigned as a subfeature of the feature, considering behav-
ioral groups and danger levels.

11

When comparing SCBM and the n-gram model, the test
results showed that the number of created features decreases
rapidly while the remaining features are more closely related one
another. The dataset constructed by n-gram contained approx-
imately 37-folds more features than the proposed model’s dataset,
which shows that machine learning algorithms likely perform
better on dataset that is generated by the proposed model.

5. Case Study

This section describes the case study and experiments. Test
cases were performed on different versions of Windows such
as Windows 7 virtual machines, Windows 8 virtual ma-
chines, and Windows 10. For malware analysis, a process
explorer and process monitor were used. To show the ef-
fectiveness of the proposed model, 2 datasets with score and
without score by using SCBM have been created, and the
results are compared with those of n-gram and other
methods from the literature. A dataset with score is a
modification of a dataset without score, which takes the
features that can precisely represent each sample. In total,
6700 malware and 3000 benign samples have been analyzed.
This section consists of 5 parts: data collection, represen-
tation, differentiate malicious patterns, ML and detection,
and model performance and evaluation.

5.1. Data Collection. Malware samples were collected from a
variety of sources such as Malware Benchmark [36],
ViruSign [37], Malshare [38], Malware [39], KerelMode
[40], and Tekdefense [41]. The malware was labeled using
Virustotal [42], which uses approximately 70 antivirus scanners
online and 10 antivirus scanners locally such as Avast, AVG,
ClamAYV, Kaspersky, McAfee, and Symantec. For this purpose,
6700 malware samples were randomly selected among 10,000
malware samples and analyzed. The dataset contains different
malware types including viruses, Trojans, worms, backdoor,
rootkit, ransomware, and packed malware (Figure 4) and
contains different malware families such as agent, rooter, ge-
neric, ransomlock, cryptolocker, sality, snoopy, win32, and
CTB-Locker. Analyzed malware is created from year 2000 to
2019 and can be categorized as regular known malware, packed
malware, complicated malware, and some zero-day malware.
The dataset contains 3000 benign samples from several cate-
gories including system tools, games, office documents, sound,
multimedia, and other third-party software.

The malware signature was used for each scanner, and
each malware was marked at the deepest level as possible.
For example, a Trojan downloader and a virus downloader
were marked as downloader, and key logger was marked as
keylogger instead of spyware. Some of the malware could not
be categorized; those malware files were marked as malware.
The majority of the malware tested were Trojan horses,
viruses, adware, worms, downloader, and backdoor. Other
types of malware tested were rootkit, ransomware, dropper,
injector, spyware, and packed malware (Figure 4).

5.2. Data Representation. As discussed in Section 4.2, the
proposed model takes each malware sample as an input and
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TABLE 6: Extracted features.

No Risk IDs Features Related sources

1 1,2, A {CreateFileSF} “c:\windows\...\sfile;.exe”

2 1,2, A {WriteFileSF } “c:\windows\...\sfile,.exe”

3 1,2, 1,2, A, P {WriteFileSF, ReadFileSF} “c:\windows\...\sfile;.exe” “c:\windows\...\sfile,.exe”

4 1,2, L2, P, A {ReadFileSF, WriteFileTP} “c:\windows\...\sfile;.exe” “c:\programfiles\...\tfile,.exe”

5 L2, P {SearchDirectoryTP} “c:\programfiles\...\”

6 L2, ,2, P, P {SearchDirectoryTP, ReadFileTP} “c:\programfiles\...\” “c:\programfiles\...\tfile;.txt”

7 L1, ,2, P, P {SearchDirectoryTP, ReadFileTP} “c:\programfiles\...\” “c:\programfiles\...\tfile,.exe”

8 L2, 1,2, A, A {WriteFileTP, SetValueTP} “c:\programFiles\...\tfile,.exe” “hklm\Software\...\...\key;”

9 L1, P {ReadFileST} “c:\windows\...\stfile;.dlI” “c:\windows\...\stfile,.dll”

TaBLE 7: Feature vector.

Features F1 F2 F3 F4 F5 F6 F/ F8 F9

1 1 1 1 2 1 1 0
3 2 3 5 1 0

Program 1

Progtamn — — — - - - — —  —

B Trojan (16%) m Virus (13%)
Adware (13%) Worm (11%)
B Downloader (11%) ® Backdoor (10%)
B Spyware (5%) B Dropper (5%)
B Malware (4%) B Ransomware (4%)
B Injector (3%) B Packed malware (2%)
B Rootkit (2%) Keylogger (1%)

FIGURE 4: Distribution of analyzed malware.

generates a vector consisting of a set of features uniquely
identifying the malware. Each feature is a combination of
malware behaviors that have been determined by system
calls to the operating system. Our model differentiates each
system call and where the system call has occurred. The
proposed model considers only features that can discrimi-
nate malware from benign samples.

5.3. Differentiate Malicious Behavior Patterns from Benign.
During the detection process, the SCBM specifies malicious
behavioral patterns, which can be seen frequently in

malware but rarely seen in benign samples. To do that the
algorithms in Section 4 have been used. To specify the
malicious behavior patterns, following procedures are taken
into consideration:

(1) The behaviors and the system paths where sample
program performed are identified

(2) Scores are calculated for each behavior

(3) Behavior that could not exceed the specified score is
removed from the list

(4) Behavior groups are determined according to the
order of the selected behaviors

(5) Classification is performed according to the fre-
quency of selected behaviors

By using these procedures, someone can easily separate
malicious behavior patterns from benign even if malware
and benign samples system calls are the same (in real examples,
this is not the case). Example real features from our dataset and
their frequencies are shown in Table 8. It can be clearly seen in
Table 8 that someone can easily differentiate malware and
benign samples by grouping to frequencies and level of fre-
quencies. One way to do that is group to frequencies by
numbering {0}, {1 to 20}, {21 to 100}, {101 to 200}, {201 to 300},
and {300+} and using decision tree for classification.

5.4. Machine Learning and Detection. Machine learning (ML)
algorithms have been used to discriminate malware from
benign samples. Even though ML algorithms have been used in
many different areas for a long time, they have not been used
sufficiently in malware detection. Thus, in this study, the most
appropriate algorithms were used including Bayesian network
(BN), naive Bayes (NB), decision tree variant (C4.5-J48), lo-
gistic model trees (LMT), random forest (RF), k-nearest
neighbor (KNN), multilayer perceptron (MLP), simple logistic
regression (SLR), and sequential minimal optimization (SMO).
It cannot be concluded that one algorithm is more efficient
than the others because each algorithm has its own advantages
and disadvantages. Each algorithm can perform better than
other algorithms under certain distributions of data, numbers
of features, and dependencies between properties.

NB does not return good results due to calculation on
assumptions that are not very related to each other, and BN
is not practically applicable for data sets with many features.
On our dataset, performance of these two algorithms was lower
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TABLE 8: Created dataset and its features.

Class, name, RegOpenKeyTP, RegQueryValueTP,
RegSetInfoKeyTP

Malware, f2ec3cbe4d3840b9b11d3b4052ee2dc7.exe, 760,0,508
Benign, cmd.exe,15,14,0

Malware, £2f72360bada04cb04a148334fb9b4f0.exe,67,48,48
Benign, calc.exe,62,59,9

Malware, £3261848058d68097¢7948cc3662963f.exe,546,701,305
Benign, notepad.exe,31,48,4

Malware, f3ab8adddce6730blee494e59ca88d70.exe, 321,312,213
Benign, services.exe, 103,84,0

Malware, f3aa954ad390fc6beObe4c89120138e0.exe,498,557,342
Benign, taskhost.exe,0,0,6

Features and number of rows are shortened.

than other ML algorithms. However, some satisfying results
have been measured in the literature. SVM and SMO work well
in both linear separation and nonlinear boundary situations
depending on the kernel used and performs well on high-
dimensional data, but the desired performance measurements
could not gather on the data sets generated. However, the SVM
and SMO perform better than NB and BN. KNN algorithm
requires a lot of storage space, and MLP algorithm requires
long calculation time during the learning phase. These 2 de-
ficiencies reduce the efficiency of these 2 algorithms. However,
KNN performance was much higher than NB and BN per-
formance. Although the fact that the SLR algorithm is inad-
equate to solve nonlinear problems and contains high bias
decreases the efficiency of the algorithm, it has returned good
results on the data sets created with the proposed model. On
the contrary, decision trees produce scalable and highly ac-
curate results, and they are the best performing classifiers
according to test results on our dataset makes these classifiers
more prominent than other classifiers. In the literature, except
in some cases, they have returned satisfying results as well.

5.5. Model Performance and Evaluation. To evaluate the
performance of the ML algorithms, DR, FP rate, f-measure,
and accuracy were used. These values are calculated using
the confusion matrix (Table 9).

These values are represented by the TP (the number of
malicious software being marked as malicious), TN (the
number of benign software being marked as normal), FP
(the number of benign software being mistakenly marked as
malicious), and FN (the number of malicious software ac-
cidentally being marked as benign). By using these values,
DR, FPR, f-measure, and accuracy are calculated as

DR = recall = L,
TP + FN
FP
FPR= ———,
FP + TN

(3)

2 % precision * recall

F — measure = — Y
precision + recall

TP + TN
accuracy = .
Y = IP+ TN+ FP+ EN
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To evaluate the model and ML performance, holdout,
cross-validation, and bootstrap have been used widely. For
small datasets, cross-validation is a preferable method be-
cause the model performs better on previously unknown
data, while the holdout method is useful for large datasets
because the system can be trained with enough instances.

In this study, both the holdout and cross-validation
methods were used to evaluate performance. At the be-
ginning, when the dataset was small, cross-validation
returned better results. However, when the dataset had
grown, the holdout method also generated favorable results.

6. Results and Discussion

The summarized test results can be seen in Tables 10-14 and
Figures 5 and 6. The test results show the DR, FPR, and
accuracy on n-gram and proposed models. The both holdout
and cross-validation methods perform well on the proposed
model. Thus, when evaluating a model performance, the
combination of 10-fold cross validation and percentage split
(75% training and 25% testing) for holdout results are used.
Similar results were obtained when parameters are changed.
Table 10 shows the comparison of the classification algo-
rithms on the SCBM and n-gram model that were used to
build the dataset.

In Table 10, 400 malware and 300 benign portable ex-
ecutables are tested. In almost all cases, the proposed model
achieved better results than 4-gram; similar results were
obtained using 2-gram, 3-gram, and 6-gram. For instance,
the SLR algorithm performance on 4-gram is measured as
94.6% for DR, 6.3% for FPR, and 94.5% for accuracy; versus
SCBM performance is measured as 98.5% for DR, 4% for
FPR, and 97.2% for accuracy. In the same way, J48 algorithm
achieved 91.4% for DR, 9.1% for FPR, and 91% for accuracy
when using 4-gram; and versus 99.5% for DR, 0.7% for FPR,
and 99.4% for accuracy when using SCBM. Other classifi-
cation algorithms achieved similar results on the n-gram and
SCBM datasets, which shows that the proposed model’s
results are much better than those of the n-gram models. The
n-gram uses consecutive system calls whether related or not
from properties. This causes malware features to grow
significantly, which increases the training time and makes
the detection processes challenging.

The test results with and without scores can be seen in
Tables 11 and 12 when 1000 program samples have been
analyzed. The both datasets without score and with score
have been created by using the proposed model. However,
the dataset with score contains far less features than dataset
without score. Thus, after 1000 programs have been ana-
lyzed, we have only continued to analyze programs for
dataset with score.

Decision tree classifiers (J48, LMT, and RF) give better
results than other classifiers such as SMO, KNN, BN, and NB
(Tables 11-13). For example, in J48, DR, FPR, and accuracy
were measured as 99.1%, 1.2%, and 99.2%, respectively
(Table 12). The test results also indicate that SLR performs
better than SMO, KNN, BN, and NB. However, KNN is
slightly better than SMO in terms of FPR and accuracy. SMO
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TaBLE 9: Confusion matrix.

Predicted class
Actual class

Yes No
Yes TP FN
No FP TN

TaBLE 10: Comparison of n-gram and the proposed model (400
malware and 300 benign).

Model Classifier DR (%) FPR (%) Acc. (%)
J48 914 9.1 91
LMT 97.7 2.4 97.4
RF 85.1 18.8 85
4-gram SLR 94.6 6.3 94.5
SMO 92 9.6 92.1
KNN 87 16.2 87.3
BN — — —
NB 86.7 16.4 87
J48 99.5 0.7 99.4
LMT 98.6 1.5 98.4
RFE 96.1 4.9 96
SLR 98.5 4 97.2
Proposed model )1y 97.4 24 97.3
KNN 87.4 13.6 87.7
BN 86.6 12.8 86.5
NB 75.8 20 75.5

TasLE 11: Classifiers results on the proposed model without score
(700 malware and 300 benign).

Classifier DR (%) FPR (%) F-score (%) Acc. (%)
J48 98.9 1.6 98.9 99
LMT 97.4 1.5 97.4 97.4
RF 93.9 8.2 92.2 94
SLR 97.3 1.4 97.3 97.3
SMO 89.8 12.1 89.9 90
KNN 88.3 7.3 88.5 88.4
BN 85.1 12.9 85.5 85
NB 78.3 14.1 79 78.4

TaBLE 12: Classifiers results on the proposed model with score (700
malware and 300 benign).

Classifier DR (%) FPR (%) F-score (%) Acc. (%)
J48 929.1 1.2 99.1 99.2
LMT 98.1 1.8 98.1 98
RF 95.7 6.5 95.7 96
SLR 97.3 2.2 97.4 97.4
SMO 92 7.9 92.1 92
KNN 92 9.7 92.1 92.2
BN 88.3 9 88.6 88.4
NB 73.5 16.8 74.5 74

performs better than BN and NB. NB shows lower per-
formance than other classifiers. Thus, NB is not an appro-
priate classifier for our dataset. MLP was too slow to classify
malware and benign samples in both the n-gram dataset and
the proposed method. Thus, it was not included in the test
results.
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TaBLE 13: Classifiers results on the proposed model with score
(6700 malware and 3000 benign).

Classifier DR (%) FPR (%) F-score (%) Acc. (%)
J48 99.9 0.2 99.8 99.8
LMT 99.9 0.1 99.9 99.87
RF 99.8 0.4 99.8 99.82
SLR 97.4 2 97.5 97.4
SMO 93.2 6.8 93.2 93.1
KNN 99.6 0.8 99.6 99.62
BN 89 8.6 89.3 89
NB 75.6 15.3 76.5 75.62

TaBLE 14: Comparison of classifiers from different studies.

DR  FPR  Acc.

Paper Classifier %) (%) (%) Year
. . NB 58.1 12.8 65.4

Firdausi et al. [43] m 90.9 18 936 2010
NB 63.3 — 50.2

Ye et al. [25] SVM 845 — 834 2010
J48 56.8 — 57.3
SVM — 14 84.3

Islam et al. [16] RE B 10.4 878 2013
II?\_II;I — 14 907

Santos et al. [44] J48 - 9 912 2013
NB — 31 79.6

SVM 95 5.07 93.4
Yousefi-Azar et al. [45] RF 932 6.82 90.1 2018
KNN 90 10 91.2

48 99.9 0.2 99.8

SLR 97.4 2 97.4
SMO 93.2 6.8 93.1 2019
KNN 99.6 0.8 99.62

NB 75.6 153  75.62

Proposed method

NB

BN

KNN

SMO

Classifier

SLR

RF

LMT

48

0 20 40 60 80 100
Percentage (%)

I Without score
I With score

Ficure 5: Comparison of classification algorithms accuracy on the
suggested model with and without scores.

The DRs and accuracies are increased when the number
of analyzed programs are increased, while FPRs are de-
creased (Tables 12 and 13). This shows that the proposed
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Number of executed programs
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~- Accuracy

FIGURE 6: Average accuracy and FPR of classifiers versus the
number of analyzed programs.

model successfully differentiates malicious from benign
patterns. However, the n-gram was too slow when the an-
alyzed programs increase. Hence, we stopped to analyze
more programs to create dataset with n-gram.

The test results also indicate that the proposed model
with score-specified malware properties is better than the
proposed model without score (Figure 5). The average
classification accuracy (cross-validation and holdout split by
75/25%) can be seen in Figure 5, which shows the accuracy of
the classifiers on the dataset with and without scores. It can
be clearly seen that, with the exception of the NB, all
classifiers performed much better when the scoring system
was used.

We have concluded that using the scoring schema for
our dataset eliminated less important features for discrim-
inating malware from benign samples. This is because the
SCBM model with score also works as a feature selection
algorithm and metric which produce better performance.
Feature selection algorithms use dependency, accuracy,
distance, and information measures such as information
gain and gain ratio to select more important features from
the dataset. The dataset with score outperformed the dataset
without score, which uses feature selection algorithms and
metrics. Thus, there is no need to use a feature selection
algorithm for most of the classifiers before classification.
Since decision tree classifiers use a feature selection algo-
rithm by default (feature selection and tree pruning), the
classification algorithm difference is low (Figure 5). For
example, J48 accuracy is 99.2% with score and 99% without
score, LMT accuracy is 98% with score and 97.4% without
score, and RF accuracy is 96% with score and 94% without
score. However, SMO accuracy is 92% with score and 90%
without score and KNN accuracy is 92.2% with score and
88.4% without score. Thus, providing fewer but more
meaningful features for classification produces better results.
It can also be concluded that using the feature selection
algorithm for the dataset without scoring for some classifiers
may increase the detection and accuracy rates.

To evaluate the proposed model more accurately, dif-
ferent numbers of malware and benign samples were tested.
Figure 6 shows the average accuracy rate and FPR when the
number of analyzed programs increase. The classification
accuracy increases when the number of analyzed programs
increase while FPR decreases for all ML algorithms that have
been used including J48, LMT, RF, SLR, SMO, KNN, BN,
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and NB. For example, when 200 programs were analyzed,
the accuracy rate was 89%. This accuracy increases over time
when more programs are analyzed, up to 94%, 95.3%, and
97% (Figure 6). However, FPR decreased sharply when more
programs were analyzed. FPR was 12% at the beginning, but
overtime, it decreased to 9.7%, 5.9%, and 4.1%. Based on the
test results, it can be concluded that the classifier results
improve when more programs are analyzed.

To evaluate the efficiency of the proposed model, DR,
FPR, and accuracies are also compared with different models
from the literature (Table 14). The proposed model produces
considerably better results than other models [16, 43, 45]
when the same classifier is used for evaluation. For instance,
when J48 is used as a classifier; the DR, FPR, and accuracies
are measured as 99.9%, 0.2%, and 99.8%, respectively, for the
proposed model, while 90.9%, 3.8%, and 93.6% for the model
from [43] (Table 14). For other classifiers, the proposed
model also performed better than other models. The worst
result was obtained for NB (75.6% DR, 15.3% FPR, and
75.62% accuracy for the proposed model), while DR of 58.1%
was obtained for the model in [43] and an FPR of 31% was
obtained for the model in [44]. Even if our result was fairly
low when using the NB classifier, it was still better than those
of other works in the literature.

Furthermore, some important findings were found
during analysis. These findings should be considered when
creating an effective detection system. The key findings of the
analysis are listed as follows:

(i) Most of the new generation malware uses existing
processes or newly created processes for malicious
purposes

(ii) New generation malware tries to hide itself by
creating similar systems and third-party software
files

(iii) Most malware creates malicious behaviors in
temporary file paths

(iv) Malware usually tries to become permanent in the
system by locating itself within Windows automatic
startup locations

(v) Some malware displays the actual behaviors only
when it runs with administrator-level authority

(vi) Most malware creates random files (using mean-
ingless file names)

(vii) Most new generation malware injects itself into
Windows system files (“svchost.exe,” “winlogo-
n.exe,” and “conhost.exe”) or copies itself into
different file paths with the same or similar names

(vii) Some malware tries to find and disable existing
security software (firewall and antivirus program)
as soon as it is performed

7. Limitations and Future Works

Even though SCBM is fast and efficient to detect malware,
there are some limitations needed to be mentioned. The
proposed model has been tested on uniformly distributed
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dataset, more zero-day malware need to be tested. The test
cases for malware is performed on virtual machines which
can represent limited behaviors of malware [46]. Thus,
running malware on real machine can improve the per-
formance. Besides, suggested schema only tested on our
dataset, if raw data of other datasets will be gathered, in the
future suggested schema will be tested on other datasets as
well. The suggested schema will be integrated with other
technologies such as cloud, blockchain, and deep learning to
build more powerful detection system [46].

8. Conclusion

The SCBM is presented. In the SCBM, malware behaviors
and system paths, where malware behaviors are performed,
are considered. Features that could not exceed the specified
score are removed from the dataset. This way malicious
behavior patterns were differentiated from benign behavior
patterns. Therefore, datasets created using the proposed
model contained far fewer features than datasets created by
n-gram. To evaluate the performance, the proposed model
was combined with an appropriate ML algorithm. The test
results showed that the proposed model outperformed n-
gram and some models used in other studies. For the
proposed model, DR, FPR, and accuracies were 99.9%, 0.2%,
and 99.8%, respectively, which are higher than those of n-
gram and other methods.

The test results also indicated that decision tree classifiers
(J48, LMT, and RF) and SLR yield better results than
classifiers such as SMO, KNN, BN, and NB. BN and NB
show lower performance than other classifiers, which show
that BN and NB are not appropriate classifiers. It can be
concluded that the proposed method combined with ap-
propriate ML algorithms has outperformed signature-based
detection method, n-gram model, and other behavior-based
detection methods. The proposed model has performed
effectively for known and unknown malware.
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