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*is paper investigates the state feedback stabilization problem for a class of impulsive linear time-varying systems over specified
time intervals and piecewise quadratic domains (PQDs). First, concepts related to finite-time stability and PQDs are given.
Second, finite-time stability analysis over PQDs is implemented, and a variety of stability conditions involving differential linear
matrix inequalities are investigated. *en, computationally tractable stability conditions are established for the control design.
Finally, an illustrative example is presented to show the effectiveness of the designed state feedback control.

1. Introduction

Finite-time stability and stabilization are of importance in
the applied mathematics and control fields and become a
growing cross-disciplinary research area in the past decades.
*ey can be found useful in a variety of applications; for
example, when a rocket is launched, it should be controlled
to stay in a specified region after a given time interval. Other
practical applications include ATM networks [1], neural
networks [2], and car suspension systems [3].

In this paper, we are interested in the finite-time stability
and stabilization problems of impulsive linear systems in the
quantitative sense. *e system trajectory evolves in re-
strained regions during a specified interval of time. *e
concept of finite-time stability is different from that in the
qualitative sense [4, 5], which emphasizes that the asymp-
totically stable system is capable to reach the equilibrium at
the settling time. Lots of research results about Lyapunov
stability for dynamical systems with impulsive effects have
been developed (see, e.g., [6–9] and the references therein).
Impulsive synchronization and control problems have
attracted much research interest as well [10–16]. Further-
more, a variety of finite-time stability and stabilization
problems are investigated for linear time-varying systems

and impulsive linear systems [3, 17, 18]. *e initial domain
X0 and the trajectory domainsXt are usually in the form of
ellipsoids and polytopes [3, 19]. Recently, generalized
piecewise quadratic domains are proposed for the initial and
trajectory domains and stability conditions with less con-
servatism has been established in [20] and also reviewed in a
recent review paper [21]. However, it should be worth noting
that the existing stabilization and control methods such as
those in [2, 3, 17, 18] are only suitable to ellipsoidal initial
and trajectory domains and cannot be applied to the gen-
eralized piecewise quadratic domains, which motivates our
research of this paper.

*is paper investigates the state feedback finite-time
stabilization problem for an impulsive linear system. Several
sufficient conditions for finite-time stability are derived, and
a state feedback control is designed. Comparing with pre-
vious work in [18, 19, 22], this paper has the following main
contributions: (1) notions of piecewise quadratic functions
and piecewise quadratic domains have been extended to
impulsive linear time-varying systems; (2) computationally
tractable sufficient conditions for finite-time stability with
PQDs are established; and (3) efficient state feedback control
to stabilize impulsive linear systems with respect to PQDs is
designed.
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*e remainder of this paper is as follows. Section 2
presents the impulsive linear system model and preliminary
concepts. Section 3 develops sufficient conditions for finite-
time stability with PQDs. *ese stability results involve
several computational efficient conditions to design state
feedback control. In the next Section 4, a numerical example
is given to demonstrate the obtained results. Finally, a
conclusion is provided in Section 5.

1.1. Notations. Let R+ denote a set of nonnegative real
numbers and N+ a set of positive integers. Let Rn be the
n-dimensional Euclidean space, and Ω � [0, T], T> 0, be the
time interval. Let A⊤ denote the transpose of A and I the
identity matrix with an appropriate dimension. Let ∗ be the
symmetric component of a matrix. *e matrix A≥ 0 (A> 0)

is positive semidefinite (positive definite) if x⊤Ax≥ 0
(x⊤Ax> 0) for all x ∈ Rn. A≥B is equivalent to A − B≥ 0.
For a set Sp � x1, x2, . . . , xp ⊆Rn, let cone(Sp) denote its
conical hull, i.e., cone(Sp) � x|x � 

p
i�1 αixi, αi ≥ 0 . Let

Ner(S) denote the set of normalized extremal rays gener-
ating Sq, where Ner(S) � x1, . . . , xq  with ‖xi‖2 � 1,
i � 1, . . . , q≤p. For a piecewise continuous matrix-valued
(or vector-valued) function F(·) over Ω and a positive real
number ε, let us denote F− (t) � limε⟶0F(t − ε) and
F+(t) � limε⟶0F(t + ε).

2. Problem Statement

Consider the following impulsive linear system with time-
dependent impulses:

_x(t) � A(t)x(t) + B(t)u(t), x t0(  � x0, t ∉ l � t1, t2, . . .  ⊂ Ω,

x t
+

(  � C(t)x(t), t ∈ l, k � 1, 2, . . . ,


(1)
where t ∈ R+ is the time, x(t) ∈ Rn is the state satisfying
x(t− ) � limt⟶0−x(t) � x(t), and u(t) ∈ Rm is the control.
Moreover, A(t), B(t), and C(t) are given matrix-valued
functions with appropriate dimensions. Without loss of
generally, we assume that there exists a unique solution of
equation (1).

Let U0
i (i � 1, 2, . . . , v) and Uj (j � 1, 2, . . . , u) be the

collections of cones satisfying the following conditions: (1)
the dimensions of U0

i and Uj are equal to n; (2) both the
union of U0

i , i � 1, . . . , v, and the union of Uj, j � 1, . . . , u,
can cover the state space Rn, i.e., ∪ v

i�1U
0
i � ∪ u

j�1Uj � Rn;
and (3) In U0

p ∩ In U0
q  � ∅ and In Up ∩ In Uq  � ∅ for

all p≠ q, where In ·{ } is the interior operator. We denote by
Θ(Up, Uq) the cone’s intersection Up ∩Uq and Ner(S) �

x1, . . . , xq  normalized extremal rays generating S where
xi2 � 1, i � 1, . . . , q. First, we need the following concepts on
piecewise quadratic domains and finite-time stability over
PQDs, which have been defined in [3, 20].

Definition 1 (piecewise quadratic functions (PQFs)). A
time-varying positive definite quadratic function

PP(x, t) � x
⊤

Pi(t)x, ∀x ∈ Ui with i � 1, . . . , v, (2)

is said to be a piecewise quadratic function over a conical
partition P � U1, U2, . . . , Uv  of Rn, where Pi ∈ Rn×n, i � 1,

. . . , v, are symmetric positive definite matrices in the cone
Ui.

Definition 2 (piecewise quadratic domains (PQDs)). A
compact domain whose boundary is the unitary level curve
of the piecewise quadratic function PP(t, x) is said to be a
piecewise quadratic domain (PQD) over a conical partition
P � U1, U2, . . . , Uv  of Rn, i.e.,

XPP
(t) ≔ x: PP(t, x)≤ 1 ,

� x: x
⊤

Pi(t)x≤ 1, x ∈ Ui, i � 1, 2, . . . , v .
(3)

Remark 1. Traditionally, both the initial domain and the
trajectory domain are given in the form of the standard
weighted quadratic norm (i.e., they are in ellipsoidal shapes).
*ese restrictions will be much convenient to introduce
quadratic Lyapunov functions to investigate the finite-time
stability and stabilization problems. However, the obtained
results are not suitable for polytopic domain cases. Piecewise
quadratic domains not only are expressed as the class of
ellipsoids but also are regarded as the generalization of
polytopic domains. *ey can be applied to model initial and
trajectory domains of different forms in many practical
applications, such as those in mass-spring-friction systems
and electrical circuits [3, 20].

Definition 3 (finite-time stability with PQDs). Given two
sets X0 andX(t), 0 ∈ X0, the system equation (1) is said to
be finite-time stable with respect to (Ω,X0,X(t)) if

x0 ∈ X0 impliesx(t) ∈ X(t) for t ∈ Ω, (4)

where the initial and trajectory domains are described asX0 �

x ∈ Rn|x⊤0 Rix0 ≤ 1, x0 ∈ U0
i , i � 1, 2, . . . , u ⊆X(t0) and Xt

� x⊤Qj(t)x≤ 1, x ∈ Uj, j � 1, 2, . . . , v  over conical parti-
tions P0 � U0

1, U0
2, . . . , U0

u  and P � U1, U2, . . . , Uv}.
*is paper aims to design a feedback controller u(t) �

Fx(t), F ∈ Rm×n such that the controlled impulsive linear
system equation (1) ensures the finite-time stability with
PQDs. Now, we need to introduce the following lemma.

Lemma 1 (see [20, 22]). For a piecewise quadratic function
PP(t, x) over the given conical partition P, we denote by vP �

x1, x2, . . . , xq  the set of generating rays. 5e piecewise
quadratic function PP(x, t) is continuous if and only if

x
⊤
h Pi(t)xh � x

⊤
h Pj(t)xh,

x
⊤
h Pi(t)xl � x

⊤
h Pj(t)xl,

(5)

for all xh, xl ∈ Ner Θ(Ui, Uj) , where Θ(Ui, Uj) � Ui ∩Uj.

3. Main Results

In this section, we establish several sufficient conditions of
finite-time stability with PQDs for the impulsive linear
system equation (1). For simplicity, we consider the initial

2 Complexity



setX0 and the time-varying setXt to be piecewise quadratic
domains over the conical partition P � Ui , i � 1, 2, . . . , u.
*en, when the control u(t) � 0, we have the following
sufficient conditions for finite-time stability with PQDs.

Theorem 1. 5e system equation (1) is finite-time stable with
respect to (Ω,X0,Xt), where the setsX0 andXt are the given
PQDs, if there exist a positive monotone increasing function
ρ(·) and a piecewise Lyapunov-like function V(t, x) such that

zV(t, x)

zt
+

zV(t, x)

zx
A(t)x(t)< 0, t ∉ l, (6)

V t
+
, x( <V(t, x), t ∈ l, (7)

ρ x
⊤

Qi(t)x( ≤V(t, x),

V t0, x0( < ρ x
⊤
0 Rix0( ,

(8)

for t ∈ Ω and x ∈ Ui with i � 1, . . . , v.

Proof. We choose x0 satisfying x⊤0 Rix0 ≤ 1 and denote by
x(t, x0) the solution of the system equation (1). Next, we
consider the case t ∈ (tk, tk+1]. Based on the condition
equation (8), we have

x
⊤

Qi(t)x≤ ρ−1
(V(t, x)). (9)

Moreover, the condition equation (6) ensures that
V(t, x) will decrease along the solution of the system
equation (1), and hence we have V(t, x)≤V(t+

k , x(t+
k )), for

t ∈ (tk, tk+1]. In view of equation (7), we say
V(t, x)≤V(tk, x(tk)) will be satisfied. Repeatedly using
equations (6) and (7), we get

V(t, x)<V t0, x0( . (10)

Hence, it follows from equations (9) and (10) and the fact
that ρ(·) is positive monotone increasing that

x
⊤

Qi(t)x< ρ−1
V t0, x0( ( . (11)

Finally, using equation (8) and the fact x⊤0 Rix0 ≤ 1, we
obtain x⊤Qi(t)x< 1. It completes the proof.

We choose a positive definite monotone increasing
function ρ(η) � η where η ∈ R+ and a piecewise quadratic
Lyapunov-like function over the above conical partition P as

VX(t, x) � x
⊤

Pi(t)x, ∀x ∈ Ui,with i � 1, . . . , v, (12)

where Pi ∈ Rn×n, i � 1, . . . , v, are symmetric matrices. *en,
a sufficient condition for the finite-time stability of impulsive
linear system equation (1) can be given as follows.

Theorem 2. 5e system equation (1) is finite-time stable with
respect to (Ω,X0,Xt), where the setsX0 andXt are the given
PQDs, if there exist piecewise continuously differentiable
matrix-valued functions Pi(t) ∈ Rn×n such that

x
⊤ _Pi(t) + A(t)

⊤
Pi(t) + Pi(t)A(t) x< 0, t ∉ l, (13)

x
⊤

C
⊤

(t)P
+
i (t)C(t)x< x

⊤
Pi(t)x, t ∈ l, (14)

x
⊤

Qi(t) − Pi( x≤ 0, x
⊤
0 P t0(  − Ri( x0 < 0, (15)

for t ∈ Ω and x ∈ Ui with i � 1, . . . , v.

Proof. By choosing VX(t, x) � x⊤Pi(t)x, it is straightfor-
wardly derived that equations (11)–(13) can be guaranteed
by equations (6)–(8).*en, by*eorem 1, we ensure that the
system equation (1) is finite-time stable with respect to
(Ω,X0,Xt).

Sufficient conditions equations (11)–(13) in *eorem 2
are only theoretically useful because of the existence of the
infinite number of differential linear matrix inequalities.
Applying S-Procedure arguments and using the state
feedback control u(t) � Fx(t), we can derive the following
computationally tractable sufficient conditions.

Corollary 1. 5e system equation (1) is finite-time stabi-
lizable with respect to (Ω,X0,Xt) under the feedback control
law u(t) � Fx(t), where the sets X0 and Xt are the given
PQDs if there exist positive numbers bi,l, positive real-valued
functions ci,l(t), zi,l(t), and matrices Hi,l, satisfying
x⊤Hi,lx≤ 0,∀x ∈ Si, i � 1, . . . , v, l � 1, . . . , s such that there
exist positive piecewise continuously differentiable matrix-
valued functions Pi(t) ∈ Rn×n, such that the following con-
ditions containing differential linear matrix inequalities are
satisfied:

_Pi(t) +(A(t) + B(t)F]
⊤

Pi(t) + Pi(t)(A(t) + B(t)F)

− 
s

l�1
ci,l(t)Qi,l < 0, t ∉ l,

(16)

C
⊤

(t)P
+
i (t)C(t)<Pi(t), t ∈ l, (17)

Pi(t) − Qi(t) + 
s

l�1
zi,l(t)Hi,l ≥ 0, (18)

Pi(0) − Ri − 

s

l�1
bi,lHi,l < 0, (19)

x
⊤
l Pi(t)xl � x

⊤
l Pj(t)xl, ∀xl ∈ Ner Ui ∩Uj , (20)

x
⊤
h Pi(t)xl � x

⊤
h Pj(t)xl, ∀xh, xl ∈ Ner Ui ∩Uj . (21)

Proof. Using S-Procedure and *eorem 5 of [20], we obtain
that the conditions equations (13)–(15) are derived if the
conditions equations (16) and (19) are satisfied. Moreover, it
follows from Lemma 1 and equations (20) and (21) that the
piecewise quadratic Lyapunov function VX(t, x) � x⊤Pi(t)x

is continuous. *us, by *eorem 2, the conclusion of this
theorem is obtained.
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Remark 2. In Corollary 1, solving differential linear matrix
inequalities and deciding the conical partitions are two main
steps to influence the computational complexity. In the
former step, more accurate approximation will increase the
computational complexity, and in the later step, a greater
number of the conical partitions will cause the computa-
tional burden as well.

4. An Illustrative Example

In this section, we give an example to demonstrate the ef-
fectiveness of the proposed conditions. Let us consider the
following impulsive linear control system:

_x(t) �
−3t 1

1.5 t
 x(t) +

1.5 2

1.6 1
 u(t), t ∉ l � 0.1, . . . , 0.1k, . . .{ },

x t
+

(  �
1.1 0

0 1.2
 x t

−
( ), t ∈ l, k ∈ N+

,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(22)
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x1 (t)
x2 (t)

Figure 1: State trajectories x1(t) and x2(t) of the uncontrolled impulsive linear system equation (22) with 0.1 s equidistant impulsive
intervals.
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Figure 2: Phase portrait of the uncontrolled impulsive linear system equation (22) with 0.1 s equidistant impulsive intervals.

4 Complexity



with t ∈ Ω � [0, 2] and the initial and trajectory domains

X0 � x: x
⊤

x< 4 , andXt � x: x
⊤

x< 9 . (23)

When the state feedback control u(t) is not imple-
mented, the state trajectories and phase portrait of the
impulsive linear system equation (10) with 0.1 s equidistant
impulsive intervals are seen in Figures 1 and 2. From them,
we can see that the state has been outside the setXt at T � 2,
and hence the impulsive linear system equation (22) is not
finite-time stable with respect to (Ω,X0,Xt). Since in this
example both initial and trajectory domains are ellipsoidal,
the piecewise quadratic Lyapunov function will be contin-
uous everywhere. Hence, equations (20) and (21) will be
guaranteed straightforwardly. By using conditions equations
(16)–(19), we can obtain a feasible solution for the state
feedback matrix:

F �
3.1765 −0.9412

−3.8824 0.9059
 . (24)

*en, applying u(t) � Fx(t) to equation (22), we sim-
ulate the state trajectories and phase portrait of the impulsive
linear system equation (10) with 0.1 s equidistant impulsive
interval in Figures 3 and 4, which show that the impulsive
linear control system equation (22) is finite-time stable with
respect to the given (Ω,X0,Xt). So, the designed state
feedback finite-time stabilizing controller is effective.

5. Conclusion

*is paper has investigated the feedback finite-time stabi-
lizing control problem for impulsive linear systems with
respect to PQDs. First, the concepts of piecewise quadratic

0 0.5 1 1.5 2
t

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

x

x1 (t)
x2 (t)

Figure 3: State trajectories x1(t) and x2(t) of the impulsive linear control system equation (22) with 0.1 s equidistant impulsive intervals.
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Figure 4: Phase portrait of the impulsive linear control system equation (22) with 0.1 s equidistant impulsive intervals.
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functions and piecewise quadratic domains are provided.
Finite-time stability in the quantitative sense is investigated.
*en, sufficient conditions of finite-time stability with PQDs
for impulsive linear systems are established. Based on these
stability criteria, computationally tractable conditions to
design state feedback control for the impulsive linear sys-
tems are derived. A numerical example is finally given to
demonstrate the usefulness of the designed state feedback
control.
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-e study of structure-property relations including the transformations of molecules is of utmost importance in correlations with
corresponding physicochemical properties. -e graph topological indices have been used effectively for such study and, in
particular, bond-based indices play a vital role. -e bond-additive topological indices of a molecular graph are defined as a sum of
edge measures over all edges in which edge measures can be computed based on degrees, closeness, peripherality, and irregularity.
In this study, we provide the mathematical characterization of the transformation of a structure that can be accomplished by the
novel edge adjacency and incidence relations. We derive the exact expressions of bond type indices such as second Zagreb, sigma
indices, and their coindices of total transformation and two types of semitransformations of the molecules which in turn can be
used to characterize the topochemical and topostructural properties.

1. Introduction

Topological indices are graph invariants that play an important
role in chemical and pharmaceutical sciences, since they can be
used to predict physicochemical properties of organic com-
pounds in view of successful applications in QSAR and QSPR
techniques [1–5]. -ese indices are mainly classified into
distance-based and degree-based. Development of such to-
pological indices is of immense value in quantitative structure-
activity relations. -e first and second Zagreb indices were the
oldest degree-based indices and found significant applications
[6, 7].-e Zagreb indices have first appeared in the topological
formula for the total π-energy of conjugatedmolecules and also
useful in the study of anti-inflammatory activities of chemical
instances.-e generalization of the first Zagreb index is named
as general sum-connectivity index [8] and there aremany types

of generalization and reformulation on the Zagreb indices
based on vertex and edge degrees [8–11], in particular, the
forgotten index is recently revisited with important applica-
tions to drug molecular structures [12, 13].

It was known thatmost of themolecular structures are not
regular and, hence, the quantitative measure based on ir-
regularity is of great importance in mathematical chemistry.
In the case of octane isomers, the application of various
degree-based irregularity measures for the prediction of
physicochemical properties such as boiling point, standard
enthalpy of vaporization, acentric factor, enthalpy of
vaporization, and entropy was tested and predicted with good
accuracy [14]. As a result of whichmany topological indices of
this kind have been discussed and a few of them are Col-
latz–Sinogowitz, degree variance, discrepancy, Albertson,
Bell, and total irregularity and sigma indices [14–17].
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-e Albertson index is the most commonly used ir-
regularity measures that provide the structural perfection
of chemical compounds. For this purpose, the imbalance of
an edge is defined as the absolute difference between the
degrees of end vertices and the summation is taken over all
edges. In this paper, we focus our attention on the recently
popular, sigma index, which is defined as the sum of
squares of imbalance of every edge. Moreover, there is a
nice relationship between second Zagreb, forgotten, and
sigma indices which states that the difference between
forgotten and sigma indices is twice the second Zagreb
index [18] and some properties of the sigma index dis-
cussed in [19].

-e structure of a molecular graph G can be trans-
formed into another graph T(G) by imposing desired rules
based on the original structure of G so that there is a one-
to-one correspondence between original graph G and the
transformation graph T(G). Such a transformation of
graphs and their characterization was attempted by many
researchers in chemical graph theory [20–26] because the
complex structure of transformation graph can be easily
analyzed by the original graph. For instance, the first
Zagreb index [21, 25], second Zagreb index [21, 27], for-
gotten index [20, 28] of transformation graphs, and Zagreb
indices of transformation of line graph of subdivision
graphs [29] were discussed. In this, we observe that the
entire process of the second Zagreb index [27] was wrongly
dealt and we will discuss with details in Section 3.
Moreover, the forgotten index [20, 28] of transformation of
graphs was considered with vertex a-Zagreb and (a, b)-
Zagreb indices. In this study, we give the correct expres-
sions for the second Zagreb index of transformation graphs
and rewrite for the forgotten index via general sum-con-
nectivity index. Finally, we derive the analytical expressions
for the sigma index of two types of semitransformations
and a total transformation.

-roughout this paper, we write G to denote a simple
connected graph with vertex set V(G) and edge set E(G).
-e number of elements in the vertex set and the edge set,
respectively, is denoted by n (order) and m (size). -e
number of edges incident with a vertex s ∈ V(G) is called
the degree of the vertex s, denoted by dG(s). -e neigh-
borhood of a vertex s, denoted by NG(s), is a set of all
vertices which are adjacent to s. Two edges e, f ∈ E(G) are
said to be adjacent if they share a common vertex and we
write as e ∼ f and in case they are not adjacent, e≁f. In the
same line of notation, s ∈ V(G), f ∈ E(G), and s ∼ f mean
that s is an end vertex of f while s≁f that s is not an end
vertex of f. -e degree of an edge e � st, denoted by dG(e),
is the number of edges that are adjacent to e, i.e.,
dG(e) � dG(s) + dG(t) − 2. -e complement of a graph G,
represented by G, is a graph obtained from G with the same
vertex set of G such that s is adjacent to t in G if and only if s

is not adjacent to t in G. Hence, the size of G is
(1/2)[n2 − n − 2m], and the degree of each vertex s ∈ V(G)

is d
G

(s) � n − dG(s) − 1.
We close this section by listing down (in Table 1) certain

bond-additive topological indices [7–13, 18, 28, 30, 31] and
their coindices which are needed for our study.

2. Transformation Graphs

-e concept of transformation graphs is to construct a new
graph from the original graph G based on the structural
connectivity. Generally, we can transform the original graph
by imposing any combinations of the following:

For α, β, c ∈ +, −{ }, vi ∈ V(G), 1≤ i≤ n, and ej ∈ E(G),
1≤ j≤m,

(1) vi, vj ∈ V(G), vi is adjacent to vj in G if α � + and vi

is not adjacent to vj in G if α � −

(2) ei, ej ∈ E(G), ei is adjacent to ej in G if β � + and ei is
not adjacent to ej in G if β � −

(3) vi ∈ V(G) and ej ∈ E(G), ej is incident to vi in G if
c � + and ej is not incident to vi in G if c � −

-e type-I semitransformation of a graph G, denoted by
T1αc(G), is a graph with the vertex set V(G)∪E(G), and for
s, t ∈ V(T1αc(G)), s and t are adjacent inT1αc(G) if and only if
(#1) and (#3) hold [21]. Following this, it is natural to define
another semitransformation, called type-II semitransformation
and denoted byT2βc(G), whose vertex set isV(G)∪E(G), and
for s, t ∈ V(T2βc(G)), s and t are adjacent in T2βc(G) if and
only if (#2) and (#3) hold. -e total transformation graph
Tαβc(G) is a graph with the same vertex set as above
V(G)∪E(G), and for s, t ∈ V(Tαβc(G)), s and t are adjacent
in Tαβc(G) if and only if (#1), (#2), and (#3) hold [32].

-e concept of semitotal point, semitotal line, and total
graphs came into the literature earlier [33, 34] and these
three graphs are particular cases of our T1αc(G), T2βc(G),
and Tαβc(G), i.e., T1++(G) is the semitotal point graph,
T2++(G) is the semitotal line graph, and T+++(G) is the total
graph. Since there are four distinct 2-permutations of +, −{ },
we can construct totally eight different graphs from two
types of semitransformations. For a graph G depicted in
Figure 1, the two types of semitransformation graphs are
shown in Figure 2. In the same way, there are eight distinct
3-permutations of +, −{ } and again totally eight graphs can
be constructed from the total transformation in which
T− − − (G) � T+++(G), T− − +(G) � T++− (G), T− +− (G) �

T+− +(G), and T− ++(G) � T+− − (G). For the same graph in
Figure 1, the eight classes of total transformation graphs are
given in Figure 3.

Lemma 1 (see [21]). Let G be graph with n and m as its order
and size, respectively. 8en, the order of T1αc(G) is (m + n),
and the size is

ET1αc(G)


 �

3m, : α � +, c � +,

m(n − 1), : α � +, c � − ,

1
2

n(n − 1) + m, : α � − , c � +,

1
2

n(n − 1) + m(n − 3), : α � − , c � − .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)
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Table 1: Bond-additive indices of G.

Item Index Coindex
First Zagreb M1(G) � st∈E(G)[dG(s) + dG(t)] M1(G) � st∉E(G)[dG(s) + dG(t))]

Second Zagreb M2(G) � st∈E(G)dG(s)dG(t) M2(G) � st∉E(G)dG(s)dG(t)

Forgotten F(G) � st∈E(G)[dG(s)2 + dG(t)2] F(G) � st∉E(G)[dG(s)2 + dG(t)2]

Sum-connectivity χα(G) � st∈E(G)[dG(s) + dG(t)]α χα(G) � st∉E(G)[dG(s) + dG(t)]α

Reformulated first Zagreb EM1(G) � e,f∈E(G)e∼f[dG(e) + dG(f)] EM1(G) � e,f∈E(G)e≁f[dG(e) + dG(f)]

Reformulated second Zagreb EM2(G) � e,f∈E(G)e∼fdG(e)dG(f) EM2(G) � e,f∈E(G)e≁fdG(e)dG(f)

Sigma σ(G) � st∈E(G)[dG(s) − dG(t)]2 σ(G) � st∉E(G)[dG(s) − dG(t)]2

u4

u3

u1 u2e12
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e34

Figure 1: -e graph G.
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Figure 2: (a) T1++(G); (b) T1+− (G); (c) T1− +(G); (d) T1− − (G); (e) T2++(G); (f ) T2+− (G); (g) T2− +(G); (h) T2− − (G).
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Figure 3: (a) T+++(G); (b) T++− (G); (c) T− +− (G); (d) T− ++(G); (e) T− − − (G); (f ) T− − +(G); (g) T+− +(G); (h) T+− − (G).
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Lemma 2. Let G be graph with n and m as its order and size,
respectively. 8en, the order of T2βc(G) is (m + n), and the
size is

E T2βc(G) 


 �

1
2
M1(G) + m, : β � +, c � +,

1
2
M1(G) + mn − 3m, : β � +, c � − ,

1
2

m
2

+ 5m − M1(G) , : β � − , c � +,

1
2

m
2

+ 2mn − 3m − M1(G) , : β � − , c � − .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

Lemma 3. Let G be graph with n and m as its order and size,
respectively. 8en, the order of Tαβc(G) is (m + n), and the
size is

E Tαβc(G) 


 �

1
2

M1(G) + 4m , : α � +, β � +, c � +,

1
2

M1(G) + 2m(n − 2) , : α � +, β � +, c � − ,

1
2

m
2

+ 7m − M1(G) , : α � +, β � − , c � +,

1
2

M1(G) + n(n − 1) , : α � − , β � +, c � +,

1
2

(m + n)
2

− 5m − n − M1(G) , : α � − , β � − , c � − ,

1
2

m
2

+ n(n − 1) + 3m − M1(G) , : α � − , β � − , c � +,

1
2

M1(G) + 2m(n − 4) + n(n − 1) , : α � − , β � +, c � − ,

1
2

m
2

+ 2mn − m − M1(G) , : α � +, β � − , c � − .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

We now recall the results pertaining to the first and
second Zagreb indices of type-I semitransformation graphs
and the first Zagreb index of total transformation graph
which are helpful for our study.

Lemma 4 (see [21, 25]). Let G be a graph with order n and
size m. 8en,

(i) M1(T1++(G)) � 4[m + M1(G))]

(ii) M1(T1+− (G)) � nm2 + m(n − 2)2

(iii) M1(T1− +(G)) � n(n − 1)2 + 4m

(iv) M1(T1− − (G)) � 4M1(G) + m(n − 2)2 + (m + n− 1)

[n(m + n − 1) − 8m]

Lemma 5 (see [21]). Let G be a graph with order n and size
m. 8en,

(i) M2(T1++(G)) � 4M1(G) + 4M2(G)

(ii) M2(T1+− (G)) � m3 + m2(n − 2)2

(iii) M2(T1− +(G)) � (1/2)[n(n − 1)3 − 2m(n − 1)2+ 8m

(n − 1)]
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(iv) M2(T1− − (G)) � (1 /2)[4(n − 2)M1(G)− 4(m+ n −

1)M1(G) + 8M2(G) + (m + n − 1)
2
(n

2
− n − 2m) +

2m(m + n − 1)(n − 2)
2

− 8m
2
(n − 2)]

Lemma 6 (see [25]). Let G be a graph with order n and size
m. 8en,

(i) M1(T+++(G)) � 4M1(G) + 2M2(G) + F(G)

(ii) M1(T++− (G)) � mn(m + n − 8) + 16m + 2(n − 4)

M1(G) + 2M2(G) + F(G)

(iii) M1(T+− +(G)) � m(m + 3)2 − 2(m + 1)M1(G)+

2M2(G) + F(G)

(iv) M1(T− ++(G)) � n(n − 1)2 + 2M2(G) + F(G)

(v) M1(T− − − (G)) � (m + n)[(m + n)2 − 10m − 2n+

1] + 8m − 2(m + n − 3)M1(G) + 2M2(G) + F(G)

(vi) M1(T− − +(G)) � n(n − 1)2 + m(m + 3)2 − (2m+

6) M1(G) + 2M2(G) + F(G)

(vii) M1(T− +− (G)) � m(m + 3)2 + (m + n)(m+ n − 1)2

− 2(m2 + 7m)(m + n − 1) + 2(n − 2)M1(G) +

2M2(G) + F(G)

(viii) M1(T+− − (G)) � m[(mn + 1) + (m + n)(m + n−

2)] − 2(m + n − 1)M1(G) + 2M2(G) + F(G)

3. Main Results

In this section, we derive the analytic expressions for the
sigma index and coindex of semi and total transformations
of graphs. Bearing the relation σ(G) � F(G) − 2M2(G) in
mind, we first study the second Zagreb index and then the
forgotten index and finally deduce the results for the sigma
index.

3.1. Second Zagreb Index of Transformation Graphs. -e
second Zagreb index of total transformation of graphs was
expressed in [27], and by careful inspection, we notice that
the entire process is vague and results in incorrect expres-
sions. For instance, it was proved [27] that
M2(T+++(G)) � 8M1(G) + 6M2(G) + F(G). Suppose
G � Pn, a path on n vertices. -en, T+++(Pn) is a graph on
2n − 1 vertices and 4n − 5 edges in which 2 vertices of de-
grees 2 and 3 each and 2n − 5 vertices of degree 4 while 2

edges with degrees of end vertices (2, 3) and (2, 4)each, and
4 edges with (3, 4) and 4n − 13 edges with (4, 4). Hence,
M2(T+++ (G)) � 6 × 2 + 8 × 2 + 12× 4 + 16 × (4n − 13) �

64n − 132. However, M1(Pn) � 4n − 6, M2(Pn) � 4n − 8,
and F(Pn) � 8n − 14, resulting that 8M1(Pn)+ 6M2
(Pn) + F(G) � 64n − 110. Hence, we now compute the
correct analytic expressions of the second Zagreb index and
coindex of total transformation graphs using reformulated
Zagreb indices. Moreover, the type-II semitransformation is
newly introduced in this paper, and hence we also obtain the
exact expressions for first and second Zagreb indices. -e
following theorem gives the exact expression for second
Zagreb indices of first four transformations in terms of edge
version of first and second Zagreb indices of the arbitrary
graph.

Theorem 1. Let G be a graph with order n and size m. 8en,

(i) M2(T+++(G)) � EM2(G) + 2EM1(G) + 8M2(G)+

2M1(G) + 2F(G) − 4m

(ii) M2(T++− (G)) � EM2(G) + (n − 2)EM1(G)+

(1/2)[(n − 2)2 + 2m(n − 2)]M1(G) + m3 + m2(n −

2)(n − 4) − m(n − 2)2

(iii) M2(T+− +(G)) � EM2(G) − (m + 1)EM1(G)+

(1/2)[m(m + 1)3] − (1/2)[(m2 − 2m − 11)M1
(G)] − 2F(G)

(iv) M2(T− ++(G)) � EM2(G) + 2EM1(G) + 2nM1
(G) + (1/2)n(n − 1)3 − m[n2 − 2n + 5]

Proof. -e graph T+++(G) has m + n vertices and
(1/2)M1(G) + 2m edges in which m edges are actual edges
in G by condition (#1), (1/2)M1(G) − m edges are produced
by condition (#2) called edge adjacency relation edges (line
graph edges), and 2m edges are edges produced by condition
(#3) called incidence relation edges. For any vertex
s ∈ V(T+++(G)),

dT+++(G)(s) �
2dG(s), if s ∈ V(G),

dG(s) + 2, if s ∈ E(G).
 (4)

-erefore,

M2 T+++(G)(  � 

st∈E T+++(G)( )

dT+++(G)(s)dT+++(G)(t)

� 

st∈E T+++(G)( ) ∩E(G)

dT+++(G)(s)dT+++(G)(t) + 

st∈E T+++(G)( )∩E(L(G))

dT+++(G)(s)dT+++(G)(t)

+ 

st∈E T+++(G)( )∖[E(G) ∪E(L(G))]

dT+++(G)(s)dT+++(G)(t)

� 
st∈E(G)

2dG(s)2dG(t) + 
s,t∈E(G)s ∼ t

dG(s) + 2(  dG(t) + 2( 
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+ 
s∈V(G),t∈E(G)s ∼ t

2dG(s) dG(t) + 2( 

� 4M2(G) + 
s,t∈E(G)s ∼ t

dG(s)dG(t)

+ 
s,t∈E(G)s ∼ t

2 dG(s) + dG(t)  + 4|E(L(G))|

+ 
s∈V(G)


x∈NG(s)

2dG(s) dG(s) + dG(x) 

� 4M2(G) + EM2(G) + 2EM1(G) + 4|E(L(G))|

+ 2 
s∈V(G)

dG(s)
3

+ 2 
s∈V(G)


x∈NG(s)

dG(s)dG(x)

� 4M2(G) + EM2(G) + 2EM1(G) + 4
M1(G)

2
− m  + 2F(G) + 4M2(G)

� EM2(G) + 2EM1(G) + 8M2(G) + 2M1(G) + 2F(G) − 4m.

(5)

-is completes the proof of assertion (i). Next, for any
vertex s ∈ V(T++− (G)),

dT++− (G)(s) �
m, if s ∈ V(G),

dG(s) + n − 2, if s ∈ E(G).
 (6)

It can be seen that

M2 T++− (G)(  � 
st∈E(G)

dG(s)dG(t) + 
s,t∈E(G)s ∼ t

dG(s)dG(t) + 
s∈V(G),t∈E(G)s≁t

dG(s)dG(t)

� 
st∈E(G)

m · m + 
s,t∈E(G)s ∼ t

dG(s) + n − 2(  dG(t) + n − 2(  + 
s∈V(G),t∈E(G)s≁t

m dG(t) + n − 2( 

� m
3

+ EM2(G) + (n − 2)EM1(G) + (n − 2)
2
|E(L(G))|

+ 
t∈E(G)


s∈V(G)s≁t

m dG(t) + n − 2( 

� m
3

+ EM2(G) + (n − 2)EM1(G) + (n − 2)
2 M1(G)

2
− m 

+ m 
t∈E(G)

(n − 2) dG(t) + n − 2( 

� m
3

+ EM2(G) + (n − 2)EM1(G) +
1
2

(n − 2)
2
M1(G) − 2m(n − 2)

2
 

+ m(n − 2) 
t∈E(G)

dG(t)⎛⎝ ⎞⎠ + m
2
(n − 2)

2

� m
3

+ EM2(G) + (n − 2)EM1(G) +
1
2

(n − 2)
2
M1(G) − 2m(n − 2)

2
 

+ m(n − 2) M1(G) − 2m  + m
2
(n − 2)

2

� EM2(G) + (n − 2)EM1(G) +
1
2

(n − 2)
2

+ 2m(n − 2) M1(G)

+ m
3

+ m
2
(n − 2)(n − 4) − m(n − 2)

2
.

(7)
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To complete the proof of assertion (iii), we notice that for
any vertex, s ∈ V(T+− +(G)),

dT+− +(G)(s) �
2dG(s), if s ∈ V(G),

m + 1 − dG(s), if s ∈ E(G).
 (8)

As before, we can easily write that

M2 T+− +(G)(  � 
st∈E(G)

2dG(s)2dG(t) + 
s,t∈E(G)s≁t

m + 1 − dG(s)(  m + 1 − dG(t)( 

+ 
s∈V(G),t∈E(G)s ∼ t

2dG(s) m + 1 − dG(t)( 

� 4M2(G) + (m + 1)
2 m(m − 1)

2
− |E(L(G))|  − (m + 1)EM1(G) + EM2(G)

+ 2 
s∈V(G)


x∈NG(s)

dG(s) m + 3 − dG(s) + tdGn(x)( ( 

� EM2(G) − (m + 1)EM1(G) + 4M2(G) +
1
2

m(m + 1)
3

− (m + 1)
2
M1(G) 

+ 2(m + 3)M1(G) − 2F(G) − 4M2(G)

� EM2(G) − (m + 1)EM1(G) +
1
2

m(m + 1)
3

  −
1
2

m
2

− 2m − 11 M1(G)  − 2F(G).

(9)

-e final assertion follows from the fact that for any
vertex s ∈ V(T− ++(G)),

dT− ++(G)(s) �
n − 1, if s ∈ V(G),

dG(s) + 2, if s ∈ E(G).
 (10)

□

Theorem 2. Let G be a graph with order n and size m. 8en,

(1) M2(T− − − (G)) � (1/2)[M2
1(G) − (3(m + n − 1)2− 8

(2m + n − 2)) M1(G) + (4m + 4n − 22) M2(G)+

(2m + 2n − 7)F(G) − 2EM2(G) − 4EM1 (G) + (m+

n)(m + n − 1)3 − 12m(m + n − 1)2 + 8m(2m + 1)]

(2) M2(T− − +(G)) � (1/2)[M2
1(G) − (3m2 + 14m+ 12n−

17)M1(G) + (4m + 4n − 6) M2(G) + (2m + 2n − 3)

F(G) − 2EM2(G) − 2(n − 2)EM1 (G) + m4 + 7m3+

4m2n + 11m2 − 2mn2 + 24mn − 29m + n4 − 3n3+

3n2 − n]

(3) M2(T− +− (G)) � (1/2) [M2
1(G) + (3(m + n − 1)2−

2(m2 + 7m) − 2(m + 1) (2m + 2n − 3) + m2 − 2m−

11)M1(G) + 2(2m + 2n − 3) M2(G) + (2m + 2n+ 1)

F(G) − 2EM2(G) + 2(m + 1) EM1 (G) + (m + n)

(m + n − 1)3 − 3(m + n − 1)2(m2 + 7m) + (m2+

7m)2 + m(m + 3)2(2m + 2n − 3) − m(m + 1)3]

(4) M2(T+− − (G)) � (1/2)[M2
1(G) + (2n(n − 1)− 3 (m+

n − 1)2 − 4n)M1(G) +2(2m + 2n − 3)M2(G)+ (2m+

2n − 3)F(G) − 2EM2(G) − 4EM1(G) + (m+ n) (m+

n − 1)3 − 3n(n − 1)(m + n − 1)2 + n2(n − 1)2+ n(n−

1)2 (2m + 2n − 3) − n(n − 1)3 + 2m(n2 − 2n+ 5)]

Proof. It was proved [35] that

M2(G) �
1
2

n(n − 1)
3

− 3m(n − 1)
2

+ 2m
2

+
2n − 3

2
M1(G) − M2(G),

(11)

and known that T+++(G) � T− − − (G), T++− (G) � T− − +(G),
T+− +(G) � T− +− (G), and T+− − (G) � T− ++(G). By Lemma 6
and -eorem 1, we can easily complete the proof. □

-e Zagreb coindices are introduced in [36] with ex-
tensive applications in the field of chemical graph theory and
widely discussed in [9, 10, 37–39]. -erefore, it will be worth
finding the second Zagreb coindices of total transformations.

Theorem 3. Let G be a graph with order n and size m. 8en,

(1) M2 (T+++(G)) � (1/2)[M2
1(G) + 8(m − 1) M1(G) −

18M2(G) − 5F(G) − 2EM2(G) − 4EM1(G) + 8m(2
m + 1)]

(2) M2(T++− (G)) � (1/2)[M2
1 (G) + (2mn − 4m − n2 +

2n + 4)M1(G) − 2M2(G) − F (G) − 2EM2 (G) − 2(n

− 2)EM1(G) + 2m2n2 − 2m3 − 5m2n + mn2 − 8m]

(3) M2 (T+− + (G)) � (1/2) [M2
1(G) − (m2 + 14m + 9)

M1 (G) − 2M2(G) + 3F(G) − 2EM2(G)+ 2(m + 1)

EM1(G) + 10m3 + 40m2 − 10m]

(4) M2(T− ++(G)) � (1/2)[M2
1(G) + 2n(n − 3) M1(G)−

2M2(G) − F(G) − 2EM2 (G) − 4EM1(G) + 2m(n2−

2n + 5)]
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(5) M2(T− − − (G)) � (1/2)[2EM2 (G) + 4EM1(G)+

(m2+ n2 + 2mn − 10m − 10n + 13)M1(G) − 4 (m+

n − 5)M2(G) − 2(m + n − 3) F(G) + 4m3 + 8m2n−

8m2 + 4mn2 − 8mn − 4m]

(6) M2(T− − +(G)) � (1/2)[2EM2(G) + 2(n − 2) EM1
(G) + (m2 − 2n2 + 10m + 14n − 11) M1(G) − 4(m+

n − 1)M2(G) − 2 (m + n − 1)F(G) − 2m3 + 2m2n2−

6m2n − 8m2 + 8mn2 − 30mn + 20m]

(7) M2(T− +− (G)) � (1/2)[2EM2(G) − 2(m + 1) EM1
(G) + (2m2 − n2 + 2mn + 4m + 6n + 6) M1(G) − 4
(m + n − 1)M2(G) − 2(m + n + 1) F(G) + m2n2+

7mn2 − 32mn − 2m3 − 16m2 + 26m]

(8) M2(T+− − (G)) � (1/2) [2EM2(G) + 4EM1(G)+

(m2+ 2mn − 2m + n2 + 2n + 1)M1(G) − 4(m + n−

1)M2(G) − 2(m + n − 1) F (G) + m2n2 − 2mn2−

m2n + 4mn − 10m]

Proof. It was shown in [35] that

M2(G) � 2m
2

−
1
2
M1(G) − M2(G), (12)

and combining the results of Lemma 6 and-eorem 1, we can
finish the proof by simple mathematical calculations. □

-e following theorem fills the gap in the literature with
respect to the results found in [21, 25].

Theorem 4. Let G be a graph with order n and size m. 8en,

(1) M1(T2++(G)) � M1(G) + F(G) + 2M2(G) [25]
(2) M1(T2+− (G)) � 2M2(G) + F(G) + (2n− 7)M1 (G)+

mn(m + n) − 4m(m + 2n − 4)

(3) M1(T2− +(G)) � 2M2(G) + F(G) − (2m+ 5)M1
(G)+ m(m + 3)2

(4) M1(T2− − (G)) � 2M2(G) + F(G) − (2m + 2n− 3)M1
(G) + m2(n − 4) + m(m + n − 1)2

(5) M1(T2++(G)) � (m + n − 2)M1(G) − 2M2(G)− F

(G) + 2mn + 2m(m − 1) [25]
(6) M1(T2+− (G)) � (m − n + 6) M1(G) − 2M2(G)− F

(G) + mn(m + n) − 2m(m + 5)

(7) M1 (T2− +(G)) � (m − n + 6)M1(G) − 2M2(G)− F

(G) + mn(m + 5) − 2m(m + 7)

(8) M1 (T2− − (G)) � (m + n − 2)M1(G) − 2M2(G)− F

(G) + mn(n − 3) + 2m(m + 1)

Proof. From the construction of type-II semi-
transformation, it is easily seen that for any vertex
s ∈ V(T2βc(G)) such that s ∈ V(G),

dT2βc(G)(s) �

dG(s), : β � +, c � +,

dG(s), : β � − , c � +,

m − dG(s), : β � +, c � − ,

m − dG(s), : β � − , c � − .

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(13)

In the same way, for any vertex s ∈ V(T2βc(G)) such that
s ∈ E(G),

dT2βc(G)(s) �

dG(s) + 2, : β � +, c � +,

m + 1 − dG(s), : β � − , c � +,

n − 2 + dG(s), : β � +, c � − ,

m + n − 3 − dG(s), : β � − , c � − .

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(14)

-e proof follows from routine mathematical simplifi-
cations and, in addition, using the relation M1(G) � 2m(n −

1) − M1(G) [35]. □

In [25], the authors have made an attempt to find the
second Zagreb index of type-I semitransformation and
left the calculations of type-II semitransformation due to
its computational complexity. -e following theorem
gives the exact analytical expressions of the second
Zagreb indices for type-II transformations of an arbi-
trary graph.

Theorem 5. Let G be a graph with order n and size m. 8en,

(1) M2(T2++(G)) � EM2(G) + 2EM1(G) + 2M2(G)+ 2
M1(G) + F(G) − 4m

(2) M2(T2+− (G)) � EM2(G) + (n − 2)EM1 (G) + 2M2
(G) + (1/2) [n2 + 2mn − 8m − 2n − 4]M1(G) + F

(G) + m2(n − 4)2 − m(n − 2)2

(3) M2(T2− +(G)) � EM2(G) − (m + 1) EM1(G) − 2M2
(G) − (1/2)(m2 − 5)M1 (G) − F(G) + (1/2)m

(m + 1)3

(4) M2(T2− − (G)) � EM2(G) − (m + n − 3) EM1(G)−

(1/2) [(m + n − 3)2 + 2mn − 10m − 2n + 2]M1(G)−

2M2(G) − F(G) + (1/2) [m(m + 1)(m + n − 3)2+

2m2(n − 4)(m + n − 1)]

(5) M2(T2++(G)) � (1/2) [M2
1(G) + (4m − 5)M1(G)−

3F(G) − 2EM2 (G) − 4EM1(G) − 6M2(G)+ 4m

(m + 2)]

(6) M2(T2+− (G)) � (1/2) [M2
1(G) + (2mn − n2 − 4m+

11)M1(G) − 3 F(G) − 2EM2(G) − 2(n − 2)EM1
(G)− 6M2(G) + mn(2mn − 9m + n) + 8m(m − 1)]

(7) M2(T2− +(G)) � (1/2) [M2
1(G) − m(m + 8)M1(G)+

2M2(G) − 2EM2 (G) + 2(m + 1)EM1(G) + F(G)+

2m(3m2 + 8m − 5)]

(8) M2(T2− − (G)) � (1/2) [M2
1(G) − (m2 − n2 + 8m+

6n − 8)M1(G) + 2M2(G) + F(G) − 2EM2(G)+ 2
(m+ n − 3)EM1(G) + mn(mn − m − 2n + 8) + 2m

(3m2 + 2m − 5)]

Proof. -e proof of (i)–(iv) is similar to -eorem 1, and for
the sake the completeness, we give the proof of (i).-e graph
T2++(G) has m + n vertices and (1/2)M1(G) + m edges in
which (1/2)M1(G) − m edges are produced by condition
(#2) called edge adjacency relation edges (line graph edges)
and 2m edges are edges produced by condition (#3) called
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incidence relation edges. Also, for any vertex,
s ∈ V(T2++(G)),

dT2++(G)(s) �
dG(s), if s ∈ V(G),

dG(s) + 2, if s ∈ E(G).
 (15)

Hence,

M2 T2++(G)(  � 

st∈E T2++(G)( )

dT2++(G)(s)dT2++(G)(t)

� 

st∈E T2++(G)( )∩E(L(G))

dT2++(G)(s)dT2++(G)(t) + 

st∈E T2++(G)( )∖E(L(G))

dT2++(G)(s)dT2++(G)(t)

� 
s,t∈E(G)s ∼ t

dG(s) + 2(  dG(t) + 2(  + 
s∈V(G),t∈E(G)s ∼ t

dG(s) dG(t) + 2 

� 
s,t∈E(G)s ∼ t

dG(s)dG(t) + 
s,t∈E(G)s ∼ t

2 dG(s) + dG(t)  + 4|E(L(G))|

+ 
s∈V(G)


x∈NG(s)

dG(s) dG(s) + dG(x) 

� 
s,t∈E(G)s ∼ t

dG(s)dG(t) + 
s,t∈E(G)s ∼ t

2 dG(s) + dG(t)  + 4|E(L(G))| + 
s∈V(G)

dG(s)
3

+ 
s∈V(G)


x∈NG(s)

dG(s)dG(x)

� EM2(G) + 2EM1(G) + 4
M1(G)

2
− m  + F(G) + 2M2(G)

� EM2(G) + 2EM1(G) + 2M2(G) + 2M1(G) + F(G) − 4m.

(16)

To complete the remaining parts, we apply equation (12)
with the help of -eorem 4. □

3.2. F-Index of Transformation Graphs. -e forgotten index
and coindex of type-I semi and total transformations of
graphs have been obtained [20, 28] in terms of first Zagreb,
second Zagreb, vertex a-Zagreb, and (a, b)-Zagreb indices. In
this section, we rewrite vertex a-Zagreb and (a, b)-Zagreb
indices in terms of the sum-connectivity index. Before
proceeding to this, we shall state a basic lemma.

Lemma 7 (see [28]). Let G be a connected graph of order n

and size m. 8en,

(i) F(G) � n(n − 1)3 − F(G) − 6m (n − 1)2 + 3(n − 1)

M1(G)

(ii) F(G) � (n − 1)M1(G) − F(G)

-e following theorem is crucial for finding the sigma
index of the transformation of an arbitrary graph.

Theorem 6. Let G be a connected graph of order n and size
m. 8en,

(1) F(T+++(G)) � 8F(G) + χ3(G)

(2) F(T++− (G)) � χ3 (G) + (3n − 12)[F(G) + 2M2
(G)] + 3(n − 4)2M1(G) + m(n − 4)3 + m3n

(3) F(T+− +(G)) � (3m + 17)F(G) − χ3(G) + m (m+

3)3− 3(m + 3)2M1(G) + 6(m + 3)M2(G)

(4) F(T− ++(G)) � n(n − 1)3 + χ3(G)

(5) F(T− − − (G)) � 6(m + n − 1)M2(G) − (3m2 − 18m+

6mn − 18n + 3n2 + 15) M1(G) + (3m + 3n − 11)

F(G) − χ3(G) + (m + n)(m + n − 1)3 − 12m (m+

n − 1)2

(6) F(T− − +(G)) � (3m + 9) F (G) − χ3(G) − (3m2+

18m+ 27)M1(G) + (6m + 18)M2(G) + m4+ 9m3+

27m2 + 27m + n4 − 3n3 + 3n2 − n

(7) F(T− +− (G)) � χ3(G) + (3n − 20)F (G) + (3n2−

12n + 12m + 36)M1 (G) + (6n − 24)M2(G) + (m+

n)(m+ n − 1)3 − m(m + 3)3 − 3(m + n− 1)2(m2+

7m) + 3m(m + 3)2(m + n − 1)
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(8) F(T+− − (G)) � 3(m + n − 1)F(G) + 6 (m + n − 1)

M2(G) − 3(m + n − 1)2M1 (G) − χ3(G) + (m + n)

(m + n − 1)3 − n(n − 1)3 − 3mn(n − 1)(m + n − 1)

Proof. -e proof of (i)–(iv) can be derived using the degrees
of vertices from the proof of -eorem 1 and the remaining
parts from Lemma 7. □

-e following theorem is an easy consequence of
combining Lemma 7 and -eorem 6, which will be used to
compute the analytical expressions of the forgotten coin-
dices of total transformations of an arbitrary graph.

Theorem 7. Let G be a connected graph of order n and size
m. 8en,

(1) F(T+++(G)) � 4(m + n − 1)M1(G) + 2 (m + n − 1)

M2(G) + (m + n − 9)F(G) − χ3(G)

(2) F(T++− (G)) � (m − 2n + 11)F(G) − χ3 (G) − (n2−

2mn + 8m − 14n + 40)M1(G) + (2m − 4n + 22) M2
(G) + 2m2n2 − 9m2n + 16m2 + 3mn2 − 24mn + 48m

(3) F(T+− +(G)) � (n − 2m − 18)F(G) + χ3 (G) + (m2+

18m − 2mn − 2n + 29)M1(G) + (2n − 4m− 20)M2
(G) + m3n − 4m3 + 6m2n − 24m2+ 9mn − 36m

(4) F(T− ++(G)) � (m + n − 1)F(G) + 2(m + n − 1) M2
(G) − χ3(G) + mn3 − 2mn2 + mn

(5) F(T− − − (G)) � χ3(G) − (2m + 2n − 10)F(G)+ (m2 +

n2 + 2mn − 10m − 10n + 9)M1(G) − 4 (m + n − 1)

M2(G) + 4m3 + 8m2n − 8m2 + 4mn2 − 8mn + 4m

(6) F(T− − +(G)) � χ3(G) + (m2 + 14m − 2mn − 6n+ 33)

M1(G) − (4m − 2n + 20) M2(G) − (2m − n + 10)

F(G) + m3n − 4m3 + 6m2n − 24m2 + mn3 − 2mn2+

10mn − 36
(7) F(T− +− (G)) � 2(m − 2n + 11) M2(G) − χ3(G)−

(n2− 2mn + 16m − 6n + 32)M1(G) + (m − 2n+ 19)

F(G) + 4m3 + m2n2 + 8m2 + 7mn2 − 32mn + 52m

(8) F(T+− − (G)) � χ3(G) − 4 (m + n − 1)M2(G) − 2
(m+ n − 1)F(G)+ (m + n − 1)2M1(G) + m2n2− m2n

Theorem 8 (see [20]). Let G be a connected graph of order n

and size m. 8en,

(1) F(T1++(G)) � 8F(G) + 8m

(2) F(T1+− (G)) � nm3 + m(n − 2)3

(3) F(T1− +(G)) � n(n − 1)3 + 8m

(4) F(T1− − (G)) � 12(m + n − 1)M1 (G) − 8F(G) + n

(m + n − 1)3 − 12m(m + n − 1)2 + m(n − 2)3

(5) F(T1++(G)) � 4m (m + n − 1) − 8m + 4(m + n − 1)

M1(G) − 8F(G)

(6) F(T1+− (G)) � (m + n − 1) (nm2 + m(n− 2)2)−

nm3 − m(n − 2)3

(7) F(T1− +(G)) � (m + n − 1) (4m + n(n − 1)2) − n

(n − 1)3 − 8m

(8) F(T1− − (G)) � 8F (G) − 8(m + n − 1)M1(G) + m

(m+ n − 1)(n − 2)2 + (m + n − 1)2(n(m + n − 1)+

4m) − n(m + n − 1)3 − m(n − 2)3

Theorem 9. Let G be a connected graph of order n and size
m. 8en,

(1) F(T2++(G)) � F(G) + χ3(G)

(2) F(T2+− (G)) � m3(n − 6) + m (n − 4)3 + χ3(G)+

(3n − 13)F(G) + 6(n − 4)M2(G) + [3(n − 4)2 + 3m]

M1(G)

(3) F(T2− +(G)) � F(G) + m(m + 3)3 − 3(m + 3)2 M1
(G) + 3(m + 3)[F(G) + 2M2(G)] − χ3(G)

(4) F(T2− − (G)) � m3(n − 6) + m (m + n − 1)3 + (3m+

3n − 4)F(G) + 6(m + n − 1)M2(G) + [3m − 3 (m+

n − 1)2]M1(G) − χ3(G)

(5) F(T2++(G)) � (m + n − 1)[M1(G) + 2M2(G)] + (m

+n − 2)F(G) − χ3(G)

(6) F (T2+− (G)) � ( 2m − 4n + 22) M2 (G) + (2mn − n2

+15n − 10m − 41)M1(G) + (m − 2n + 12)F(G) − χ3
(G) + (m + n − 1)(mn(m + n) − 4m(m + 2n − 4)) −

m3(n − 6) − m(n − 4)3

(7) F (T2− + (G)) � (2n − 4m − 20) M2 (G) + (n − 2m

− 11)F (G) + (m2 + 15m − 2mn − 5n + 32)M1 (G) +

χ3 (G) +m(m + 3)2(n − 4)

(8) F (T2− − (G)) � χ3(G) − 4 (m + n − 1) M2 (G) + (m2

+2mn − 4m − n + n2)M1(G) − (2m + 2n − 3)F(G) +

2m3 +m2n2 − 5m2n + 4m2

Proof. -e proof of the theorem follows from using the
degrees of vertices as given in the proof of -eorem 4 and
Lemma 7. □

3.3. σ-Index of Transformation Graphs. In this section, we
first derive a relation between σ-index of a graph and its
coindex. Following this, we derive another relation between
σ-coindex of a graph and σ-index of the complement graph.
Finally, we list down the σ-index and coindex of semi and
total transformations of graphs from the above subsections.
-e following theorem gives the relationship between the
sigma index and its coindex.

Theorem 10. Let G be any graph with n vertices and m edges.
8en,

10 Complexity



σ(G) + σ(G) � nM1(G) − 4m
2
. (17) Proof. -e proof is completed from the definitions of

σ-index and coindex as explained in the following:

σ(G) + σ(G) � 
st∈E(G)

dG(s) − dG(t) 
2

+ 
st ∉ E(G)

dG(s) − dG(t) 
2

� 
s,t{ }⊆V(G)

dG(s) − dG(t) 
2

� 
s,t{ }⊆V(G)

dG(s)
2

+ dG(t)
2

− 2dG(s)dG(t) 

� 
s,t{ }⊆V(G)

dG(s)
2

+ dG(t)
2

  − 
s,t{ }⊆V(G)

2dG(s)dG(t)

� F(G) + F(G) − 2M2(G) − 2M2(G)

� (n − 1)M1(G) − 2M2(G) − 2 2m
2

− M2(G) −
M1(G)

2
 

� nM1(G) − 4m
2
.

(18)

□
Corollary 1. Let G be any graph with n vertices and m edges.
8en,

σ(G) � nM1(G) + 2M2(G) − F(G) − 4m
2
. (19)

-e following theorem establishes interesting result that
the sigma index of the complement of a graph and sigma
coindex of a graph is one and the same.

Theorem 11. Let G be any graph with n vertices and m edges.
8en,

σ(G) � σ(G). (20)

Proof. For any vertex s ∈ V(G), d
G

(s) � n − 1 − dG(s), and
we have

σ(G) � 

st∈E(G)

d
G

(s) − d
G

(t) 
2

� 
st ∉ E(G)

n − 1 − dG(s)(  − n − 1 − dG(t)(  
2

� 
st ∉ E(G)

dG(t) − dG(s) 
2

� σ(G).

(21)
□

Corollary 2. Let G be any graph with n vertices and m edges.
8en,

σ(G) � σ(G). (22)

-e main objective of this section is the following
theorem.

Theorem 12. Let G be a connected graph of order n and size
m. 8en,

(1) σ(T+++(G)) � 4F(G) + χ3(G) − 2EM2(G) − 4EM1
(G) − 16M2(G) − 4M1(G) + 8m

(2) σ(T++− (G)) � χ3(G) + (3n − 12)[F(G) + 2M2(G)]

− [(n − 2)2 + 2m(n − 2) − 3(n − 4))2]M1(G) − 2E

M2(G) − 2(n − 2)EM1(G) − 2m3 − 2m2(n − 2)(n −

4) + 2m(n − 2)2 + m(n − 4)3 + m3n

(3) σ(T+− +(G)) � 12F(G) − χ3(G) + 3(m + 3)χ2(G) − 2
EM2(G) + 2(m + 1)EM1(G) + [m2 − 2m − 11 − 3
(m + 3)2]M1(G) + m(m + 3)3 − m(m + 1)3

(4) σ(T− ++(G)) � χ3(G) − 2EM2(G) − 4EM1(G) − 4n

M1(G) + 2m(n2 − 2n + 5)

(5) σ(T− − − (G)) � 2EM2(G) + 4EM1(G) − M2
1(G) + 4

(n − m + 1)M1(G) + 2(m + n + 8)M2(G) + (m + n

− 4)F(G) − χ3(G) − 8m(2m + 1)

(6) σ(T− − +(G)) � 2EM2(G) + 2(n − 2)EM1(G) − M2
1

(G) − χ3(G) + (12n − 4m − 44)M1(G) + (2m − 4n

+24)M2(G) + (m − 2n + 12)F(G) + 2m3 + 16m2 −

4m2n + 2mn2 − 24mn + 56m
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(7) σ(T− +− (G)) � 2EM2(G) − 2(m + 1)EM1(G) − M2
1

(G) + χ3(G) + (2m2 + 32m − 2mn + 38 − 2n)M1(G)

+(2n − 4m − 18)M2(G) + (n − 2m − 21)F(G) + m3

n − 14m3 + 6m2n − 64m2 + 9mn − 26m

(8) σ(T+− − (G)) � 2EM2(G) + 4EM1(G) − M2
1(G) − χ3

(G) − 2n(n − 3)M1(G) + (2m + 2n)M2(G) + (m +

n)F(G) + n3m − 4n2m + 5nm − 10m

In sequence to -eorems 3 and 7, we have the following.

Theorem 13. Let G be a connected graph of order n and size
m. 8en,

(1) σ(T+++(G)) � 2EM2(G) + 4EM1(G) + 2(m + n + 8)

M2(G) + 4(n − m + 1)M1(G) + (m + n − 4)F(G) −

χ3(G) − M2
1(G) − 16m2 − 8m

(2) σ(T++− (G)) � 2EM2(G) + 2(n − 2)EM1(G) + 2(m

− 2n + 12)M2(G) + 4(3n − m − 11)M1(G) + (m − 2
n + 12)F(G) − χ3(G) − M2

1(G) + 2m3 − 4m2n + 16
m2 + 2mn2 − 24mn + 56m

(3) σ(T+− +(G)) � 2EM2(G) − 2(m + 1)EM1(G) + χ3
(G) − M2

1(G) + (2n − 4m − 18)M2(G) + (2m2 + 32
m − 2mn + 38 − 2n)M1(G) + (n − 2m − 21)F(G) +

m3n − 14m3 + 6m2n − 64m2 + 9mn − 26m

(4) σ(T− ++(G)) � 2EM2(G) + 4EM1(G) + 2(m + n)M2
(G) − 2n (n − 3) M1(G) + (m + n) F(G) − χ3 (G) −

M2
1(G) + mn(n − 1)2 − 2m(n2 − 2n + 5)

(5) σ(T− − − (G)) � σ(T+++(G))

(6) σ(T− − +(G)) � σ(T++− (G))

(7) σ(T− +− (G)) � σ(T+− +(G))

(8) σ(T+− − (G)) � σ(T− ++(G))

-e following theorems give the exact expressions of the
sigma index of type-I and type-II semitransformations.

Theorem 14. Let G be graph with n and m as its order and
size, respectively. 8en,

(1) σ(T1++(G)) � 8F(G) − 8M1(G) − 8M2(G) + 8m

(2) σ(T1+− (G)) � nm3 + m(n − 2)3 − 2m3 − 2m2(n− 2)2

Figure 4: -e molecular graph of perhydrophenalene G.

Table 2: Second Zagreb and sigma indices of total transformations of perhydrophenalene G.

S. no. Total transformations of G Second Zagreb index Sigma index
1. T+++(G) 1587 48
2. T++− (G) 41652 342
3. T+− +(G) 16968 2334
4. T− ++(G) 11331 1584
5. T− − − (G) 155358 504
6. T− − +(G) 28560 534
7. T− +− (G) 86868 12582
8. T+− − (G) 99894 8760

Table 3: Second Zagreb and sigma indices for semitransformations of perhydrophenalene G.

S. no. Semitransformations of G Second Zagreb index Sigma index
1. T1++(G) 636 288
2. T1+− (G) 30600 2640
3. T1− +(G) 9792 3000
4. T1− − (G) 72372 22608
5. T2++(G) 885 192
6. T2+− (G) 33069 318
7. T2− +(G) 15678 3654
8. T2− − (G) 217794 15120
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(3) σ(T1− +(G)) � 2m(n − 1)2 − 8m(n − 1) + 8m

(4) σ(T1− − (G)) � 4(m + n − 1)M1(G) − 8F(G) + 4(3m

+2n − 1)M1(G) − 8M2(G) + m3n − 8mn2 − 6m2n +

17mn − 10m3 − 4m2 − 10m

(5) σ(T1++(G)) � 4(m + n + 2)M1(G) + 8M2(G) − 8F

(G) − 4m(8m − n + 2)

(6) σ(T1+− (G)) � 2m2(m − 2n + 4) + 2mn(n − 4) + 8m

(7) σ(T1− +(G)) � mn3 − 8mn2 + 21mn − 18m

(8) σ(T1− − (G)) � 8F(G) − 4(2m + n − 1)M1(G) − 4(m

+n − 1)M1(G) + 8M2(G) + 2m2(m + 4n − 10) + 2m

(4n2 − 8n + 5)

Theorem 15. Let G be graph with n and m as its order and
size, respectively. 8en,

(1) σ(T2++(G)) � χ3(G) − 2EM2(G) − 4EM1(G) − 4M2
(G) − 4M1(G) − F(G) + 8m

(2) σ(T2+− (G)) � χ3(G) + 3(n − 5)F(G) + 2(3n − 14)

M2(G) + (2n2 − 2mn + 11m − 22n + 52)M1(G) − 2
EM2(G) − 2(n − 2)EM1(G) + m3n + mn3 − 6m3 − 2
m2n2 + 16m2n − 10mn2 − 32m2 + 40mn − 56m

(3) σ(T2− +(G)) � 2(m + 1)EM1(G) − 2EM2(G) − (2m2

+18m + 32)M1(G) + 3(m + 4)F(G) + 2(3m + 11)

M2(G) − χ3(G) + 6m3 + 24m2 + 26m

(4) σ (T2− − (G)) � 2(m + n − 3)EM1 (G) − 2EM2(G)−

(2 m2 + 2mn + 2n2 + 7m + 2n − 8)M1(G) + (3m + 3
n − 2)F(G) + (6m + 6n − 2)M2(G) − χ3(G) + 4m3 +

mn3 − 4mn2 + 8m2n + 9mn − 8m2 − 10m

(5) σ(T2++(G)) � 2EM2(G) + 4EM1(G) − (3m − n − 4)

M1(G) − M2
1(G) + (m + n + 1)F(G) + 2(m + n + 2)

M2(G) − χ3(G) − 4m2 − 8m

(6) σ(T2+− (G)) � 2EM2(G) + 2(n − 2)EM1(G) − M2
1

(G) − χ3(G) + (15n − 6m − 52)M1(G) + (2m − 4n+

28)M2(G) + (m − 2n + 15)F(G) + 2m3 − 4m2n + 12
m2 + 2mn2 − 24mn + 56m

(7) σ (T2− + (G)) � 2EM2(G) − 2 (m + 1)EM1(G) − M2
1

(G) + χ3(G) + (2m2 − 2mn + 23m − 5n + 32)M1(G)

− 2(2m − n + 11) M2(G) − (2m − n + 12) F(G) + m3

n − 10m3 + 6m2n − 40m2 + 9mn − 26m

(8) σ (T2− − (G)) � 2EM2 (G) − 2 (m + n − 3) EM1 (G)+

χ3 (G) − M2
1 (G) + (2m2 + 2mn + 4m + 5n − 8) M1

(G) − 2(2m + 2n − 1)M2(G) − 2(m + n − 1)F(G) −

4m3 − 4 m2n + 2mn2 − 8mn + 10m

4. Results and Discussion

-e various expressions for the Zagreb and sigma topological
indices computed here can be extremely useful in the ther-
modynamic properties such as the heat of formation and en-
tropy for the structure-property predictions of the
transformation ofmolecularmaterials when combinedwith total
and semitype transformations. Since the enumeration and
construction of different structures under given specific con-
straints have found potential applications in drug discovery via
topological indices [40, 41], it can help the chemists by reducing
the number of potential drug compounds that need to be ex-
perimentally considered.We computed expressions based on the
degree measures of the given graph, and hence it can be con-
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Figure 5: (a) Total transformation of the second Zagreb and sigma indices; (b) semitransformation of second the Zagreb and sigma indices.
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sidered as an efficient technique for vibrational spectroscopic
chemical analysis through the vertex partitioning and providing
significant simplifications in the vibrational mode analysis.
Moreover, sigma indices obtained here offer the regularity
perfection of the structure.

-e semi and total transformation considered here
provide 16 classes of new structures for the given graph
based on the edge adjacency and incidence relations. Once
we compute the topological indices such as Zagreb, refor-
mulated Zagreb, forgotten, sum-connectivity, and sigma for
the base graph and then using the results from -eorems
1–15 , one can readily obtain the Zagreb and sigma indices
for the new structures.

We now present the applications of our computed re-
sults for perhydrophenalene. -e molecular graph of per-
hydrophenalene G is shown in Figure 4 and has 13 vertices
and 15 edges. Moreover, G has 9 vertices of degree 2 and 4
vertices of degree 3. Clearly, the edge partition of G has three
classes based on the degree of end vertices, namely, (2, 2),
(2, 3), and (3, 3) while the number of edges in the classes,
respectively, are 6, 6, and 3.

From the above data, one can easily derive M1(G) � 72,
M2(G) � 87, EM1(G) � 126, EM2(G) � 195, F(G) � 180,
EM1(G) � 462, EM2(G) � 624, M1(G) � 288,
M2(G) � 327, χ2(G) � 354, and χ3(G) � 1782. -en, the
calculations of second Zagreb and sigma indices of total and
semitransformations of G are obtained from-eorems 1–15
and presented in Tables 2 and 3, respectively. -ese values
are compared graphically and depicted in Figure 5.

In the case of the second Zagreb index of the molecular
graph G of perhydrophenalene, we infer that M2(T+++

(G))≤M2 (T− ++(G))≤M2(T+− + (G))≤M2(T− − +(G))

≤M2(T++− (G))≤M2(T− + − (G))≤M2(T+− − (G))≤ M2
(T− − − (G)) and M2(T1++(G))≤M2(T2++(G)) ≤M2(T1− +

(G))≤M2(T2− + (G))≤M2(T1+− (G))≤ M2(T2+− (G))≤M2
(T1− − (G))≤ M2(T2− − (G)).

On the other side, for the sigma index, we observe that
σ(T+++(G))≤ σ(T++− (G)) ≤ σ(T− − − (G))≤ σ(T− − + (G))≤ σ
(T− ++(G))≤ σ(T+− +(G))≤ σ (T+− − (G))≤ σ(T− +− (G)) and
σ(T2++(G)) ≤ σ(T1++(G))≤ σ(T2+− (G))≤ σ(T1+− (G))≤
σ(T1− +(G))≤ σ(T2− +(G))≤ σ(T2− − (G))≤ σ(T1− − (G)).

5. Conclusion

-e topological characterization of graphs and their
transformations has been discussed in many research pa-
pers, in particular to Zagreb indices. Unfortunately, we
have noticed the study on the second Zagreb index in total
transformation graphs with some technical failures such as
missing out edge degree-based indices and giving incorrect
expressions. In this paper, we made a detailed study and
derived the exact analytic expressions by incorporating
reformulated Zagreb indices. As a byproduct, we have
derived the sigma index of transformation graphs effec-
tively using the forgotten index, and in addition, we have
considered all possible semitransformations. -e locus of
this work will be definitely useful in computing other
pending topological indices which are not computed for
total transformation of graphs.
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,e problem of finite-time stability of switched genetic regulatory networks (GRNs) with time-varying delays via Wirtinger’s
integral inequality is addressed in this study. A novel Lyapunov–Krasovskii functional is proposed to capture the dynamical
characteristic of GRNs. Using Wirtinger’s integral inequality, reciprocally convex combination technique and the average dwell
time method conditions in the form of linear matrix inequalities (LMIs) are established for finite-time stability of switched GRNs.
,e applicability of the developed finite-time stability conditions is validated by numerical results.

1. Introduction

In recent years, GRNs have received much research atten-
tion, and many interesting results have been reported [1–8].
Generally, there are two types of gene network models, the
Boolean model [9] and differential equation model [10]. In
the Boolean model, the state converges to a terminal state via
a series of state transitions that is determined by the Boolean
rules. In this model, the activity of each gene is expressed in
one of two states, ON or OFF, which is determined by
a Boolean function by its own and by other related states.
Whereas in the differential equation model, the variables
describe the concentrations of gene products, such as mRNA
and proteins as continuous values of the gene regulation
system, and also, this model talks about the concentrations
of gene products such as mRNA and proteins as variables in

GRNs [11–14]. ,ere are many research results on the
stability analysis for GRNs with time delay (e.g., [15–18]).

Time delays are ubiquitous in many fields because of
finite propagation speeds of signals, finite processing times,
finite reaction times, and finite switching speed of amplifiers.
Since the biological system especially GRNs is a slow process
of transcription, translation, and translocation [19–23], the
time delay cannot be avoided. From the long term in-
vestigations, time delay will bring instability of the system,
sustained oscillations such as bifurcation [24–26]. So, it is of
great importance to deal delayed GRNs. For instance, in
[27], authors presented a different equation model for GRNs
with constant time delays and proposed stability analysis for
GRNs with time delays. In [28], authors developed delay
dependent criteria for stability of GRNs with delay and free-
weighting matrices.
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On the other hand, Markovian switching and switched
systems have been studied extensively over the past decades,
for its capacity in modeling practical systems and its po-
tential applications. Including a variety of subsystems as
constituent parts, switched systems are governed by
a switching rule to coordinate the switching. Recently, the
stability problem of Markovian jump GRNs and switched
GRNs has been investigated in [29–34]. As we all know, most
of gene networks contain some kinds of switching mecha-
nisms. For instance, by increasing stimulation or by
changing some regulatory mechanisms, a bistable system
can switch from one steady state to the other. In [33, 35–39],
authors investigated the stability for switched systems with
time delays by utilizing an average dwell time approach.

Recently, many kinds of finite-time issues have attracted
particular research interests, and there have been some
results on finite-time stabilization and synchronization
[40–47]. However, to the best of the authors knowledge,
there have been very few results on the finite-time stability
problem for delayed GRNs with time delays [48, 49], and the
purpose of this study is therefore to shorten such a gap.

Motivated by the above discussion, in this study, we are
concerned with the finite-time stability of switched GRNs,
where the parameter values switch from one mode to an-
other. By utilizing the average dwell time approach and by
using a novel Lyapunov–Krasovskii functional, it is shown
that the finite-time stability problem is solvable if a set of
linear matrix inequalities (LMIs) is feasible. Finally, three
examples are provided in the end of the study to show the
effectiveness of the proposed criteria.

,e rest of this study is organized as follows: in Section 2,
preliminaries and problem formulation are given. In Section
3, some conditions are established to ensure the finite-time
stability of the considered system. In Section 4, three ex-
amples are illustrated to show the effectiveness of the ob-
tained theoretical results. And finally, conclusions are given
in Section 5.

Notations: throughout this study, R, Rn, and Rn×m

denote, respectively, the set of all real numbers, real n-
dimensional space, and real n × m-dimensional space.
‖ · ‖ denote the Euclidean norms in Rn. For a vector or
matrix P, PT denotes its transpose. For a square matrix
P, λmax(P) and λmin(P) denote the maximum eigen-
value and minimum eigenvalue of matrix P, re-
spectively, and sym (P) is used to represent P + PT. For
simplicity, in symmetric block matrices, we often use ∗
to represent the term that is induced by symmetry.

2. Problem Description and Preliminaries

Consider the following nonlinear GRNs with time-varying
delays described by

_e1(t) � − Ae1(t) + Bf e2(t − τ(t))(  + I,

_e2(t) � − Ce2(t) + D e1(t − σ(t))( ,
 (1)

where e1(t) � [e11(t), e12(t), . . . , e1n(t)]T ∈ Rn, e2(t) � [e21
(t), e22(t), . . . , e2n(t)]T ∈ Rn:, e2i(t) ∈ R are the concentra-
tions of mRNA and protein, respectively; f(·) � [f1(·), . . . ,

fn(·)]T is the regulatory functions of mRNAs,
A � diag(a1, a2, . . . , an) and C � diag(c1, c2, . . . , cn) are the
constant matrices, and they are the rates of degradation; D �

diag(d1, d2, . . . , dn) represents the translation rate; B � (bij)

is the regulative matrix, and τ(t) and σ(t) are the time-
varying delays.

For obtaining our conclusions, we make the following
assumptions.

Assumption 1. fs: R⟶ R, s� 1, 2, . . ., n are mono-
tonically increasing functions with saturation and satisfy

0≤
fs(a) − fs(b)

a − b
≤ us, ∀a, b ∈ R, s � 1, 2, . . . , n, (2)

where us, s� 1, 2, . . ., n are the nonnegative constants.

Assumption 2. τ(t) and σ(t) are the time-varying delays
satisfying

0≤ τ1 ≤ τ(t)≤ τ2,
_τ(t)≤ τd <∞,

0≤ σ1 ≤ σ(t)≤ σ2,
_σ(t)≤ σd <∞,

τ12 � τ2 − τ1,

σ12 � σ2 − σ1,

(3)

where τ1, τ2, σ1, σ2 are the constants. ,e initial condition of
system (1) is assumed to be

− ρ≤ t≤ 0, ρ � max τ2, σ2 . (4)

Use the following transformation:

x(t) � e1(t) − e1(t)
∗
,

y(t) � e2(t) − e2(t)
∗
,

(5)

where e∗1 � [e∗11, e∗12, . . . , e∗1n]T and e∗2 � [e∗21, e∗22, . . . , e∗2n]T

constitute an equilibrium point of system (1) and then shift
the intended equilibrium point to the origin. In this way, the
system equation turns to be

_x(t) � − Ax(t) + Bg(y(t − τ(t))),

_y(t) � − Cy(t) + D(x(t − σ(t))),
 (6)

where g(·) � [g1(·), . . . , gn(·)]T, and gs(y(t)) � fs

(y(t) + e∗2 ) − fs(e∗2 ).
According to Assumption 1 and the definition of gs(·),

we know that gs(·) is bounded, that is, ∃F> 0, such that
|gs(·)|≤F, s� 1, 2, . . ., n and satisfies the following sector
condition:

0≤
gs(a)

a
≤ us, ∀a ∈ R/ 0{ }, s � 1, 2, . . . , n. (7)

Let U � diag u1, u2, . . . , un .

Sometimes, GRNs were described by the continuous
time switched system, as in [33]; so system (6) can be de-
scribed as the switching system with switching signal:
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_x(t) � − Ap(t)x(t) + Bp(t)g(y(t − τ(t))),

_y(t) � − Cp(t)y(t) + Dp(t)(x(t − σ(t))),

⎧⎨

⎩ (8)

where p(t): [0,∞)⟶ N � 1, 2, . . . , N{ } is the switching
signal, which is a piece constant function depending on time
t. For each i ∈ N, the matrices are constant matrices of
appropriate dimensions.

For the switching signal p(t), we have the following
switching sequence: (i0, t0), . . . , (ik, tk), . . . , | ik ∈ N, k �

0, 1, . . .}; in other words, when t ∈ [tk, tk+1), ithk subsystem is
activated. To assume x(t) � ϕ(t), y(t) � ψ(t).

For proving the theorem, we recall the following defi-
nition and lemmas.

Definition 1 (See [50]). ,e system (8) is said to be finite-
time stable with respect to positive real numbers (c1, c2, T), if

‖Φ(t)‖
2

+‖Ψ(t)‖
2 ≤ c1⇒ ‖x(t)‖

2
+‖y(t)‖

2 ≤ c2, t ∈ (0, T],

(9)

where

‖Φ(t)‖ � sup− ρ≤t≤0 ‖ϕ(t)‖, ‖ _ϕ(t)‖ ,

‖Ψ(t)‖ � sup− ρ≤t≤0 ‖ψ(t)‖, ‖ _ψ(t)‖ .
(10)

Definition 2 (See [51]). For any T2 >T1 ≥ 0, let Np(T1, T2)

denote the switching number of p(t) on an interval (T1, T2).
If

Np T1, T2( ≤N0 +
T2 − T1

τa

(11)

holds for given N0 ≥ 0, τa > 0, then the constant τa is called
the average dwell time and N0 is the chatter bound. Without
loss of generality, we choose N0 � 0 throughout this study.

Lemma 1 (See [52]). For any constant matrix M ∈ Rn×n,
M � MT > 0, scalars η2 > η1 > 0, and vector function
w: [η1, η2]⟶ Rn such that the integrations concerned are
well defined, and the following inequality holds


t− η1

t− η2
w(s)ds 

T

M 
t− η1

t− η2
w(s)ds ≤ η2 − η1(  

t− η1

t− η2
w

T
(s)Mw(s)ds.


− η1

− η2


t

t+θ
w(s)ds 

T

M 
− η1

− η2
w(s)ds ≤

η22 − η21 

2


− η1

− η2


t

t+θ
w

T
(s)Mw(s)ds.

(12)

Lemma 2 (See [53]). Let f1, f2, . . . , fN: Rm⟶ R have
positive values in an open subset D of Rm. $en, the re-
ciprocally convex combination of fi over D satisfies

min
βi|βi > 0i

βi�1 


i

fi(t) + maxgi,j(t) 
i≠j

gi,j(t),
(13)

subjected to

gij: R
m⟶ R, gj,i(t) � gij(t),

fi(t) gi,j(t)

gi,j(t) fj(t)
⎡⎣ ⎤⎦≥ 0

⎧⎨

⎩

⎫⎬

⎭.

(14)

Lemma 3 (See [54]). For a positive definite matrix M> 0,
the following inequality holds for all continuously differen-
tiable function x(t) in [a, b] ∈ Rn×n:

− (b − a) 
b

a
_x
T
(s)M _x(s)ds≤ − ΦT

1 MΦ1 − 3 − ΦT
2 MΦ2,

� −
Φ1
Φ2

 

T
M 0

0 3M
 

Φ1
Φ2

 ,

(15)

where Φ1 � x(b) − x(a), and Φ2 � x(b) + x(a) − 2/
(b − a) 

b

a
x(s)ds.

3. Main Results

In this section, we present a finite-time stability theorem for
switching genetic regulatory networks with interval time-
varying delays (8).

Theorem 1. $e switched genetic networks (8) is finite-time
stable with respect to positive real numbers (c1, c2, Tf) and
constants σ1, σ2, τ1, and τ2; if there exist symmetric positive
definite matrices P1i, P2i, Qni(n � 1, 2, 3), Rni(n � 1, 2, . . . ,

12), Sni(n � 1, 2, . . . , 4) for all i ∈ N, the diagonal matrix
Lm � diag(l1m, l2m, . . . , lnm)≥ 0, m � 1, 2, and positive scalars
μ≥ 1 and αi � α> 0 such that the following LMIs hold

R3i M1i

∗ R4i

 > 0,

R6i R6i

∗ R6i

 ≥ 0,

R8i R8i

∗ R8i

 ≥ 0,

R10i R10i

∗ R10i

 > 0,

R12i M12i

∗ R12i

 > 0,

(16)

Θp(t) � Θij 22×22< 0, (17)

Complexity 3



Pli ≤ μPlj, l � 1, 2,

Qli ≤ μQlj, l � 1, 2, 3,

Rli ≤ μRlj, l � 1, 2, . . . , 12,

M1i ≤ μM1j, Sli ≤ μSlj, l � 1, 2, 3,

(18)

e 
N

i�1 αiT 
dc1 ≤ c2 λ1 + λ2( , (19)

and the average dwell time of the switching signal p (t) satisfies

τai > τ
∗
ai �

T ln μi

ln c2 λ1 + λ2( (  − ln e
αiTdc1 

, (20)

where

Θ11 � − P1iA − A
T
P

T
1i + Q1i + Q3i + σ21R5i + σ212R6i − 3e

− ασ1R7i − e
− ασ1R7i + αP1i,

Θ13 � e
− ασ1R7i − 3e

− ασ1R7i,

Θ110 � P1iB,Θ113 �
6
σ1

e
− ασ1R7i,

Θ22 � R1i + R3i − P2iC − C
T
P

T
2i + τ21R9i + τ212R10i − e

− ατ1R11i − 3e
− ατ1R11i + αP2i,

Θ24 � P2iD,

Θ26 � e
− ατ1R11i − 3e

− ατ1R11i,

Θ29 � M1i + U
T
L

T
1 ,

Θ218 �
6
τ1

e
− ατ1R11i,

Θ33 � − e
− ασ1Q1i + e

− ασ1Q2i − e
− ασ1R7i − 3e

− ασ1R7i − e
− ασ2R8i,

Θ34 � − e
− ασ2R

T

8i + e
− ασ2R8i,

Θ35 � e
− ασ2R

T

8i,Θ313 �
6
σ1

e
− ασ1R7i,

Θ44 � − 1 − σd( e
− ασ(t)

Q3i + 2e
− ασ2R8i − 2e

− ασ2R8i,

Θ45 � e
− ασ2R

T

8i + e
− ασ2R8i,

Θ55 � e
− ασ2Q

T
2i − e

− ασ2R8i,

Θ66 � − e
− ατ1R1i + e

− ατ1R2i − e
− ατ1R11i − 3e

− ατ1R11i − e
− ατ2R12i,

Θ67 � − e
− ατ2R

T

12i + e
− ατ2R12i,

Θ68 � − e
− ατ2R

T

12i,

Θ618 �
6
τ1

e
− ατ1R11i,

Θ77 � − 1 − τd( e
− ατ(t)

R3i + 2e
− ατ2R12i − 2e

− ατ2R12i,

Θ78 � e
− ατ2R

T

12i + e
− ατ2R12i,

Θ710 � − 1 − τd( e
− ατ(t)

M1i + UL2,
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Θ88 � − e
− ατ2R

T
2i − e

− ατ2R12i,

Θ99 � R4i − 2L1,

Θ1010 � − 1 − τd( e
− ατ2R4i − 2L2,

Θ1111 � σ21R7i + σ212R8i + e
αte

ασ2 − ασ2 − 1
α2

S1i + e
αte

ασ2 − e
ασ1 − α σ2 − σ1( 

α2
S2i,

Θ1212 � τ21R11i + τ212R12i + e
αte

ατ2 − ατ2 − 1
α2

S3i + e
αte

ατ2 − e
ατ1 − α τ2 − τ1( 

α2
S4i,

Θ1313 � − e
ασ1R5i −

12
σ21

e
− ασ1R7i,Θ1414 � − e

ασ2R6i,

Θ1415 � − e
ασ2R6i,Θ1515 � − e

ασ2R6i,

Θ1616 � − e
αt

S1i,

Θ1717 � − e
αt

S2i,

Θ1818 � − e
ατ1R9i −

12
τ21

e
− ατ1R11i,

Θ1919 � − e
ατ2R10i,Θ1920 � − e

ατ2R10i,

Θ2020 � − e
ατ2R10i,Θ2121 � − e

αt
S3i,

Θ2222 � − e
αt

S4i,

d � λ3 + λ4 + λ5σ1e
− ασ1 + λ6 σ2 − σ1( e

− ασ2 + λ7σ2e
− ασ2 + λ8τ1e

− ατ1

+ λ9 τ2 − τ1( e
− ατ1 + λ10τ2e

− ατ2 + 2λ11τ2e
− ατ2 + λ12τ2e

− ατ2 + λ13
σ31
2

e
− ασ1

+ λ14
σ2 − σ1( 

3

2
e

− ασ2 + λ15
σ31
2

e
− ασ1 + λ16

τ2 − τ1( 
3

2
e

− ατ2 + λ17
τ31
2

e
− ατ1

+ λ18
τ2 − τ1( 

3

2
e

− ατ2 + λ19
τ31
2

e
− ατ1 + λ20

τ2 − τ1( 
3

2
e

− ατ2 + λ21
σ51
4

e
− ασ1

+ λ22
σ22 − σ21  σ2 − σ1( 

3

4
e

− ασ2 + λ23
τ51
4

e
− ατ1 + λ24

τ22 − τ21  τ2 − τ1( 
3

4
e

− ατ2 ,

λ1 � mini∈Nλmin P1i( , λ2 � mini∈Nλmin P2i( , λ3 � maxi∈Nλmax P1i( ,

λ4 � maxi∈Nλmax P2i( , λ5 � maxi∈Nλmax Q1i( , λ6 � maxi∈Nλmax Q2i( ,

λ7 � maxi∈Nλmax Q3i( , λ8 � maxi∈Nλmax R1i( , λ10 � maxi∈Nλmax R2i( ,

λ11 � maxi∈Nλmax R3i( , λ12 � maxi∈Nλmax R4i( , λ13 � maxi∈Nλmax R5i( ,

λ14 � maxi∈Nλmax R6i( , λ15 � maxi∈Nλmax R7i( , λ16 � maxi∈Nλmax R8i( ,

λ17 � maxi∈Nλmax R9i( , λ18 � maxi∈Nλmax R10i( , λ19 � maxi∈Nλmax R11i( ,

λ20 � maxi∈Nλmax R12i( , λ21 � maxi∈Nλmax S1i( , λ22 � maxi∈Nλmax S2i( ,

λ23 � maxi∈Nλmax S3i( , λ24 � maxi∈Nλmax S4i( .

(21)
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Proof. Choose the Lyapunov functional candidate as

Vp(t)(t) � V1p(t) + V2p(t) + V3p(t) + V4p(t) + V5p(t) + V6p(t),

(22)

where

V1p(t) � x
T
(t)P1ix(t) + y

T
(t)P2iy(t),

V2p(t) � 
t

t− σ1
e
α(s− t)

x
T
(s)Q1ix(s)ds + 

t− σ1

t− σ2
e
α(s− t)

x
T
(s)Q2ix(s)ds

+ 
t

t− σ(t)
e
α(s− t)

x
T

(s)Q3ix(s)ds,

V3p(t) � 
t

t− τ1
e
α(s− t)

y
T
(s)R1iy(s)ds + 

t− τ1

t− τ2
e
α(s− t)

y
T
(s)R2iy(s)ds

+ 
t

t− τ(t)
e
α(s− t)

y(s)

g(y(s))

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

T
R3i M1i

∗ R4i

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

y(s)

g(y(s))

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ds,

V4p(t) � 
0

− σ1


t

t+θ
σ1e

α(s− t)
x

T
(s)R5ix(s)dsdθ + 

− σ1

− σ2


t

t+θ
σ12e

α(s− t)
x

T
(s)R6ix(s)dsdθ

+ 
0

− σ1


t

t+θ
σ1e

α(s− t)
_x
T
(s)R7i _x(s)dsdθ + 

− σ1

− σ2


t

t+θ
σ12e

α(s− t)
_x
T
(s)R8i _x(s)dsdθ,

V5p(t) � 
0

− τ1


t

t+θ
τ1e

α(s− t)
y

T
(s)R9iy(s)dsdθ + 

− τ1

− τ2


t

t+θ
τ12e

α(s− t)
y

T
(s)R10iy(s)dsdθ

+ 
0

− τ1


t

t+θ
τ1e

α(s− t)
_y
T
(s)R11i _y(s)dsdθ + 

− τ1

− τ2


t

t+θ
τ12e

α(s− t)
_y
T
(s)R12i _y(s)dsdθ,

V6p(t) � 
0

− σ2

0

θ


t

t+]

σ21
2

e
α(s− θ)

_x
T
(s)S1i _x(s)dsd]dθ + 

− σ1

− σ2

0

θ


t

t+]

1
2

σ22 − σ21 e
α(s− θ)

_x
T
(s)S2i _x(s)dsd]dθ

+ 
0

− τ2

0

θ


t

t+]

τ21
2

e
α(s− θ)

_y
T
(s)S3i _y(s)dsd] dθ + 

− τ1

− τ2

0

θ


t

t+]

1
2

τ22 − τ21 e
α(s− θ)

_y
T
(s)S4i _y(s)dsd]dθ.

(23)

Taking the derivatives of Vp(t) along the trajectory of
system (8), we have that

_V1p(t) � 2x
T
(t)P1i _x(t) + 2y

T
(t)P2i _y(t), (24)

_V2p(t) � − αV2p(t) + x
T
(t)Q1ix(t) − e

− ασ1x
T

t − σ1( Q1ix t − σ1( 

+ e
− ασ1x

T
t − σ1( Q2ix t − σ1(  − e

− ασ2x
T

t − σ2( Q2ix t − σ2( 

+ x
T
(t)Q3ix(t) − (1 − _σ(t))e

− ασ(t)
x

T
(t − σ(t))Q3ix(t − σ(t)),

(25)
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_V3p(t) � − αV3p(t) + y
T
(t)R1iy(t) − e

− ατ1y
T

t − τ1( R1iy t − τ1(  + e
− ατ1y

T
t − τ1( R2iy t − τ1( 

− e
− ατ2y

T
t − τ2( R2iy t − τ2(  +

y(t)

g(y(t))

⎡⎢⎢⎣ ⎤⎥⎥⎦

T
R3i M1i

∗ R4i

 
y(t)

g(y(t))
 

− (1 − _τ(t))e
− ατ(t)

y(t − τ(t))

g(y(t − τ(t)))

⎡⎢⎢⎣ ⎤⎥⎥⎦

T
R3i M1i

∗ R4i

 
y(t − τ(t))

g(y(t − τ(t)))
 

≤ − αV3p(t) + y
T
(t)R1iy(t) − e

− ατ1y
T

t − τ1( R1iy t − τ1(  + e
− ατ1y

T
t − τ1( R2iy t − τ1( 

− e
− ατ2y

T
t − τ2( R2iy t − τ2(  +

y(t)

g(y(t))

⎡⎢⎢⎣ ⎤⎥⎥⎦

T
R3i M1i

∗ R4i

 
y(t)

g(y(t))
 

− (1 − _τ(t))e
− ατ2

y(t − τ(t))

g(y(t − τ(t)))

⎡⎢⎢⎣ ⎤⎥⎥⎦

T
R3i M1i

∗ R4i

 
y(t − τ(t))

g(y(t − τ(t)))
 ,

(26)

_V4p(t) � − αV4p(t) + σ21x
T

(t)R5ix(t) − 
t

t− σ1
σ1e

α(s− t)
x

T
(s)R5ix(s)ds

+ σ212x
T
(t)R6ix(t) − 

t− σ1

t− σ2
σ12e

α(s− t)
x

T
(s)R6ix(s)ds

+ σ21 _x
T
(t)R7i _x(t) − 

t

t− σ1
σ1e

α(s− t)
_x
T
(s)R7i _x(s)ds

+ σ212 _x
T
(t)R8i _x(t) − 

t− σ1

t− σ2
σ12e

α(s− t)
_x
T
(s)R8i _x(s)ds,

(27)

_V5p(t) � − αV5p(t) + τ21y
T
(t)R9iy(t) − 

t

t− τ1
τ1e

α(s− t)
y

T
(s)R9iy(s)ds

+ τ212y
T
(t)R10iy(t) − 

t− τ1

t− τ2
τ12e

α(s− t)
y

T
(s)R10iy(s)ds

+ τ21 _y
T
(t)R11i _y(t) − 

t

t− τ1
τ1e

α(s− t)
_y
T
(s)R11i _y(s)ds

+ τ212 _y
T
(t)R12i _y(t) − 

t− τ1

t− τ2
τ12e

α(s− t)
_y
T
(s)R12i _y(s)ds,

(28)

_V6p(t) � − αV6p(t) + e
αt

_x
T
(t)

e
ασ2 − ασ2 − 1

α2
S1i _x(t) − e

αt

0

− σ2


t

t+θ
_x
T
(s)S1i _x(s)dsdθ

+ e
αt

_x
T
(t)

e
ασ2 − e

ασ1 − α σ2 − σ1( 

α2
S2i _x(t) − e

αt


− σ1

− σ2


t

t+θ
_x
T
(s)S2i _x(s)dsdθ

+ e
αt

_x
T
(t)

e
ατ2 − ατ2 − 1

α2
S3i _x(t) − e

αt

0

− τ2


t

t+θ
_x
T
(s)S3i _x(s)dsdθ

+ e
αt

_x
T
(t)

e
ατ2 − e

ατ1 − α τ2 − τ1( 

α2
S4i _x(t) − e

αt


− τ1

− τ2


t

t+θ
_x
T
(s)S4i _x(s)dsdθ.

(29)
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From Lemmas 1 and 3, we have

− σ1 
t

t− σ1
e
α(s− t)

x
T
(s)R5ix(s)ds≤ − e

− ασ1 
t

t− σ1
x(s)ds 

T

R5i 
t

t− σ1
x(s)ds ,

− σ1 
t

t− σ1
e
α(s− t)

_x
T
(s)R7i _x(s)ds≤ − e

− ασ1
Φ1(t)

Φ2(t)

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦

T
R7i 0

∗ 3R7i

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦
Φ1(t)

Φ2(t)

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

− τ1 
t

t− τ1
e
α(s− t)

y
T
(s)R9iy(s)ds≤ − e

− ατ1 
t

t− τ1
y(s)ds 

T

R9i 
t

t− τ1
y(s)ds ,

− τ1 
t

t− τ1
e
α(s− t)

_y
T
(s)R11i _y(s)ds≤ e

− ατ1
Φ3(t)

Φ4(t)

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦

T
R11i 0

∗ 3R11i

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦
Φ3(t)

Φ4(t)

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

(30)

and from Lemma 2, we can obtain

− σ12 
t− σ1

t− σ2
e
α(s− t)

x
T
(s)R6ix(s)ds � − σ12e

− ασ2 
t− σ(t)

t− σ2
x

T
(s)R6ix(s)ds

− σ12e
− ασ2 

t− σ1

t− σ(t)
x

T
(s)R6ix(s)ds≤ e

− ασ2
ψ1

ψ2

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

T
− R6i R6i

∗ − R6i

⎡⎣ ⎤⎦
ψ1

ψ2
 .

(31)

Similarly, we have

− σ12 
t− σ1

t− σ2
e
α(s− t)

x
T
(s)R8ix(s)ds≤ e

− ασ2
ψ3

ψ4

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

T
− R8i R8i

∗ − R8i

⎡⎣ ⎤⎦
ψ3

ψ4
 , (32)

− τ12 
t− τ1

t− τ2
e
α(s− t)

x
T
(s)R10ix(s)ds � − τ12e

− ατ2 
t− τ(t)

t− τ2
x

T
(s)R10ix(s)ds

− τ12e
− ατ2 

t− τ1

t− τ(t)
x

T
(s)R10ix(s)ds≤ e

− ατ2
ψ5

ψ6

⎡⎢⎣ ⎤⎥⎦

T
− R10i R10i

∗ − R10i

 
ψ5

ψ6
 ,

(33)

− τ12 
t− τ1

t− τ2
e
τ(s− t)

x
T
(s)R12ix(s)ds≤ e

− ατ2
ψ7

ψ8

⎡⎢⎣ ⎤⎥⎦

T
− R12i R12i

∗ − R12i

 
ψ7

ψ8
 , (34)

where
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ψ1 � 
t− σ(t)

t− σ2
x(s)ds,

ψ2 � 
t− σ1

t− σ(t)
x(s)ds,

ψ3 � x(t − σ(t)) − x t − σ2( ,

ψ4 � x t − σ1(  − x(t − σ(t)),

ψ5 � 
t− τ(t)

t− τ2
y(s)ds,

ψ6 � 
t− τ1

t− τ(t)
y(s)ds,

ψ7 � y(t − τ(t)) − y t − τ2( ,

ψ8 � y t − τ1(  − y(t − τ(t)),

Φ1(t) � x(t) − x t − σ1( ,

Φ2(t) � x(t) + x t − σ1(  −
2
σ1


t

t− σ1
x(s)ds,

Φ3(t) � y(t) − y t − τ1( ,

Φ4(t) � y(t) + y t − τ1(  −
2
τ1


t

t− τ1
y(s)ds.

(35)

Meanwhile, for any Lm � diag(l1m, l2m, . . . ,

lnm)≥ 0, m � 1, 2, the following inequality is true from As-
sumption 1.

− 2
n

i�1
l1igi yi(t)(  gi yi(t)(  − uiyi(t) 

− 2
n

i�1
l2igi yi(t − τ(t))(  gi yi(t − τ(t))(  − uiyi(t − τ(t)) ≥ 0.

(36)

It can written as

− 2gT(y(t))L1g(y(t)) + 2y
T
(t)UL1g(y(t))

− 2g
T
(y(t − τ(t)))L2g(y(t − τ(t)))

+ 2y
T

(t − τ(t))UL2g(y(t − τ(t))) ≥ 0.

(37)

What is more, the following equations are true for any
matrices N1, N2 with appropriate dimensions from system
(8).

2 _x
T
(t)N1[− Ax(t) + Bg(y(t − τ(t))) − _x(t)] � 0, (38)

2 _y
T
(t)N2[− Cy(t) + Dx(t − τ(t)) − _y(t)] � 0. (39)

From (24) to (39), we have that

_Vp(t) − αVp(t) ≤ ξ
T
(t)Θiξ(t), (40)

where

ξT
(t) �  x

T
(t) y

T
(t) x

T
t − σ1(  x

T
(t − σ(t)) x

T
t − σ2(  y

T
t − τ1( 

y
T
(t − τ(t)) y

T
t − τ2(  g

T
(y(t)) g

T
(y(t − τ(t))) _x

T
(t) _y

T
(t) 

t

t− σ1
x

T
(s)ds


t− σ(t)

t− σ2
x

T
(s)ds 

t− σ1

t− σ(t)
x

T
(s)ds 

0

t− σ1


t

t+θ
_x
T
(s)dsdθ 

− σ1

− σ2


t

t+θ
_x
T
(s)dsdθ


t

t− τ1
y

T
(s)ds 

t− τ(t)

t− τ2
y

T
(s)ds 

t− τ1

t− τ(t)
y

T
(s)ds 

0

t− τ1


t

t+θ
_y
T
(s)dsdθ


− τ1

− τ2


t

t+θ
_y
T
(s)dsdθ .

(41)

By condition (17), we have
_Vp(t) + αVp(t) < 0. (42)

Note that

d

dt
e

− αt
Vp(t) < 0. (43)

For any T> 0, let t0 � 0, and we denote
t0, t1, t2, t3, . . . , ti, . . . , tNP(0,T) and t1, t2, . . . , ti, . . . , tNP(0,T) as
the switching times on the interval [0, 1], where

Np(0, T) � 
M

i

Npi(0, T). (44)

By integrating (43) for any t ∈ [ti, ti+1], we find that

Vp(t) ≤ e
αp ti( ) t− ti( )Vp(t). (45)

From (18), we can obtain

Vp(t) ≤ μV pt−
i
, p t

−
i(  , ∀ p ti(  � i, p t

−
i(  � j(  ∈ N × N, i≠ j.

(46)
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By substituting (46) into (45), we can obtain

Vp(t) ≤ e

α
p tNp(t)(0,t) 

t− tNp(t)(0,t) 
⎧⎨

⎩

⎫⎬

⎭
V tNp(0,t), p tNp(0,t)  

≤ μ
p tNp

(0,t) 
e

α
p tNp

(0,t) 
t− tNp

(0,t) 
⎧⎨

⎩

⎫⎬

⎭
V xt−

Np(0,t)
, p tNp(0,t)− 1  

≤ μ
p tNp

(0,T) 
e

α
p tNp

(t,T) 
t− tNp(0,T) +α

p tNp
(0,T)− 1 

tNp(0,T)− tNp(0,T)− 1 
⎧⎨

⎩

⎫⎬

⎭

V xtNp(0,T)− 1
, p tNp(0,T)− 1   + μ

p tNp(0,T) 


tNp(0,T)

tNp(0,T)− 1

e

α
p tNp

(0,T) 
T− tNp(0,T) 

⎧⎨

⎩

⎫⎬

⎭
+ · · ·

≤ 

Np(0,T)− 1

l�0
μp tl+1( )e


Np(0,T)− 1
l�0 αp tl+1( )+αp tl( ) tl+1+α

p tNp(0,T) 
T+αp t0( )t0

⎧⎨

⎩

⎫⎬

⎭
V xt0

, p t0(  

≤ e 
N

i�1 Ti(0,T)/τai( )ln μi+ 
N

i�1αiTi(0,T) 
V xt0

, p t0(  

≤ e 
N

i�1 ln μi/τai( )+αi( )T 
V xt0

, p t0(  .

(47)

On the other hand, it follows from (22) that

Vp(0)(0) � x
T
(0)P1ix(0) + y

T
(0)P2iy(0) + 

0

− σ1
e
α(s)

x
T
(s)Q1ix(s)ds + 

− σ1

− σ2
e
α(s)

x
T
(s)Q2ix(s)ds

+ 
0

− σ(0)
e
α(s)

x
T
(s)Q3ix(s)ds + 

0

− τ1
e
α(s)

y
T
(s)R1iy(s)ds

+ 
− τ1

− τ2
e
α(s)

y
T
(s)R2iy(s)ds + 

0

− τ(0)
e
α(s)

y(s)

g(y(s))

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦

T
R3i M1i

∗ R4i

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦

y(s)

g(y(s))

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦ds

+ 
0

− σ1

0

θ
σ1e

α(s)
x

T
(s)R5ix(s)dsdθ + 

− σ2

− σ2

0

θ
σ12e

α(s)
x

T
(s)R6ix(s)dsdθ

+ 
0

− σ1

0

θ
σ1e

α(s)
_x
T
(s)R7i _x(s)dsdθ + 

− σ2

− σ2

0

θ
σ12e

α(s)
_x
T
(s)R8i _x(s)dsdθ

+ 
0

− τ1

0

θ
τ1e

α(s)
y

T
(s)R9iy(s)dsdθ + 

− τ2

− τ2

0

θ
τ12e

α(s)
y

T
(s)R10iy(s)dsdθ

+ 
0

− τ1

0

θ
τ1e

α(s)
_y
T
(s)R11i _y(s)dsdθ + 

− τ2

− τ2

0

θ
τ12e

α(s)
_y
T
(s)R12i _y(s)dsdθ

10 Complexity



+ 
0

− σ2

0

θ

0

]

σ21
2

e
α(s− θ)

_x
T
(s)S1i _x(s)dsd]dθ + 

− σ1

− σ2

0

θ

0

]
σ13e

α(s− θ)
_x
T
(s)S2i _x(s)dsd]dθ

+ 
0

− τ2

0

θ

0

]

τ21
2

e
α(s− θ)

_y
T
(s)S3i _y(s)dsd]dθ + 

− τ1

− τ2

0

θ

0

]
τ13e

α(s− θ)
_y
T
(s)S4i _y(s)dsd]dθ,

Vp(0)(0)≤maxi∈Nλmax P1i(  + maxi∈Nλmax P2i(  + σ1e
− ασ1maxi∈Nλmax Q1i(  + σ2 − σ1( e

− ασ2maxi∈Nλmax Q2i(

+ σ2e
− ασ2maxi∈Nλmax Q3i(  + τ1e

− ατ1maxi∈Nλmax R1i(  + τ2 − τ1( e
− ατ1maxi∈Nλmax R2i( 

+ τ2e
− ατ2maxi∈Nλmax R3i(  + 2τ2e

− ατ2maxi∈Nλmax M1i(  + τ2e
− ατ2maxi∈Nλmax R4i(  max L

−
i , L

+
i


  

2

+
σ31
2

e
− ασ1maxi∈Nλmax R5i(  +

σ2 − σ1( 
3

2
e

− ασ2maxi∈Nλmax R6i(  +
σ31
2

e
− ασ1maxi∈Nλmax R7i( 

+
σ2 − σ1( 

3

2
e

− ασ2maxi∈Nλmax R8i(  +
τ31
2

e
− ατ1maxi∈Nλmax R9i(  +

τ2 − τ1( 
3

2
e

− ατ2maxi∈Nλmax R10i( 

+
τ31
2

e
− ατ1maxi∈Nλmax R11i(  +

τ2 − τ1( 
3

2
e

− ατ2maxi∈Nλmax R12i(  +
σ51
4

e
− ασ1maxi∈Nλmax S1i( 

+
σ22 − σ21  σ2 − σ1( 

3

4
e

− ασ2maxi∈Nλmax S2i(  +
τ51
4

e
− ατ1maxi∈Nλmax S3i( 

+
τ22 − τ21  τ2 − τ1( 

3

4
e

− ατ2maxi∈Nλmax S4i( 
⎫⎬

⎭

× sup
− ρ≤t≤0

‖Φ(t)‖
2
, ‖Ψ(t)‖

2
 ,

≤ λ3 + λ4 + λ5σ1e
− ασ1 + λ6 σ2 − σ1( e

− ασ2 + λ7σ2e
− ασ2 + λ8τ1e

− ατ1(

+ λ9 τ2 − τ1( e
− ατ1 + λ10τ2e

− ατ2 + 2λ11τ2e
− ατ2 + λ12τ2e

− ατ2 + λ13
σ31
2

e
− ασ1

+ λ14
σ2 − σ1( 

3

2
e

− ασ2 + λ15
σ31
2

e
− ασ1 + λ16

τ2 − τ1( 
3

2
e

− ατ2 + λ17
τ31
2

e
− ατ1

+ λ18
τ2 − τ1( 

3

2
e

− ατ2 + λ19
τ31
2

e
− ατ1 + λ20

τ2 − τ1( 
3

2
e

− ατ2 + λ21
σ51
4

e
− ασ1

+ λ22
σ22 − σ21  σ2 − σ1( 

3

4
e

− ασ2 + λ23
τ51
4

e
− ατ1 + λ24

τ22 − τ21  τ2 − τ1( 
3

4
e

− ατ2⎞⎠c1,

� dc1.

(48)
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,en, we can easily obtain

Vp(t)(t) � e 
N

i�1 ln μi/τai( )− αi( )T 
dc1, (49)

Vp(t)(t) � x
T
(t)P1ix(t) + y

T
(t)P2iy(t)

≥mini∈N λmin P1i( ‖x(t)‖
2

+ λmin P2i( ‖y(t)‖
2

 

� λ1 + λ2(  ‖x(t)‖
2

+‖y(t)‖
2

 .

(50)

From (49) and (50), we obtain

‖x(t)‖
2

+‖y(t)‖
2 ≤

e 
N

i�1 ln μi/τai( )− αi( )T 
dc1

λ1 + λ2( 
. (51)

,erefore, by Definition 1, we conclude that
‖x(t)‖2 + ‖y(t)‖2 < c2. ,is completes the proof.

Remark 1. We introduce 
0

− σ2

0

θ


t

t+]
(σ21/2) e

α(s− θ)
_x
T

(s)S1i _x(s)dsd]dθ + 
− σ1

− σ2

0

θ


t

t+]
σ13e

α(s− θ)
_x
T
(s)S2i _x (s)dsd]

dθ + 
0

− τ2

0

θ


t

t+]
(τ21/2)e

α(s− θ)
_y
T
(s)S3i _y(s)dsd]dθ + 

− τ1

− τ2

0

θ


t

t+]
τ13e

α(s− θ)
_y
T
(s)S4i _y(s)dsd]dθ in our Lyapunov–Kra-

sovskii functional. ,e novel Lyapunov–Krasovskii func-
tional can make the stability criteria applicable to both fast
and slow time-varying delays directly. Besides, by using the
convex combination technique together with the Jensen
inequality lemma, less conservative criteria are obtained.

Case: we consider the following genetic regulatory
networks without switched term:

_x(t) � − Ax(t) + Bg(y(t − τ(t))),

_y(t) � − Cy(t) + D(x(t − σ(t))).
 (52)

Based on,eorem 1, the next rate-independent corollary
is derived.

Corollary 1. $e genetic regulatory network (52) is as-
ymptotically stable with respect to positive real numbers
σ1, σ2, τ1, τ2; if there exist symmetric positive definite ma-
trices P1, P2, Qn(n � 1, 2, 3), Rn(n � 1, 2, . . . , 12), Sn(n �

1, 2, . . . , 4), the diagonal matrix Lm � diag(l1m,

l2m, . . . , lnm)≥ 0, m � 1, 2 such that the following LMIs hold

R3 M1

∗ R4
 ≥ 0,

R6 R6

∗ R6

⎡⎣ ⎤⎦≥ 0,

R8 R8

∗ R8

⎡⎣ ⎤⎦≥ 0,

R10 R10

∗ R10

⎡⎣ ⎤⎦≥ 0,

R12 R12

∗ R12

⎡⎣ ⎤⎦≥ 0,

Θ � Θij 22×22< 0,

(53)

where,

Θ11 � − P1A − A
T
P

T
1 + Q1 + Q3 + σ21R5 + σ212R6 − 3e

− ασ1R7 − e
− ασ1R7 + αP1,

Θ13 � e
− ασ1R7 − 3e

− ασ1R7,

Θ110 � P1B,Θ113 �
6
σ1

e
− ασ1R7,

Θ22 � R1 + R3 − P2C − C
T
P

T
2 + τ21R9 + τ212R10 − e

− ατ1R11 − 3e
− ατ1R11 + αP2,

Θ24 � P2D,

Θ26 � e
− ατ1R11 − 3e

− ατ1R11,

Θ29 � M1 + U
T
L

T
1 ,Θ218 �

6
τ1

e
− ατ1R11,

Θ33 � − e
− ασ1Q1 + e

− ασ1Q2 − e
− ασ1R7 − 3e

− ασ1R7 − e
− ασ2R8,

Θ34 � − e
− ασ2R

T

8 + e
− ασ2R8,

Θ35 � e
− ασ2R

T

8 ,

Θ313 �
6
σ1

e
− ασ1R7,

12 Complexity



Θ44 � − 1 − σd( e
− ασ(t)

Q3 + 2e
− ασ2R8 − 2e

− ασ2R8,

Θ45 � e
− ασ2R

T

8 + e
− ασ2R8,

Θ55 � e
− ασ2Q

T
2 − e

− ασ2R8,

Θ66 � − e
− ατ1R1 + e

− ατ1R2 − e
− ατ1R11 − 3e

− ατ1R11 − e
− ατ2R12,

Θ67 � − e
− ατ2R

T

12 + e
− ατ2R12,

Θ68 � − e
− ατ2R

T

12,

Θ618 �
6
τ1

e
− ατ1R11,

Θ77 � − 1 − τd( e
− ατ(t)

R3 + 2e
− ατ2R12 − 2e

− ατ2R12,

Θ78 � e
− ατ2R

T

12 + e
− ατ2R12,

Θ710 � − 1 − τd( e
− ατ(t)

M1 + UL2,

Θ88 � − e
− ατ2R

T
2 − e

− ατ2R12,

Θ99 � R4 − 2L1,

Θ1010 � − 1 − τd( e
− ατ2R4 − 2L2,

Θ1111 � σ21R7 + σ212R8 + e
αte

ασ2 − ασ2 − 1
α2

S1 + e
αte

ασ2 − e
ασ1 − α σ2 − σ1( 

α2
S2,

Θ1212 � τ21R11 + τ212R12 + e
αte

ατ2 − ατ2 − 1
α2

S3 + e
αte

ατ2 − e
ατ1 − α τ2 − τ1( 

α2
S4,

Θ1313 � − e
ασ1R5 −

12
σ21

e
− ασ1R7,

Θ1414 � − e
ασ2R6,

Θ1415 � − e
ασ2R6,

Θ1515 � − e
ασ2R6,

Θ1616 � − e
αt

S1,

Θ1717 � − e
αt

S2,

Θ1818 � − e
ατ1R9 −

12
τ21

e
− ατ1R11,

Θ1919 � − e
ατ2R10,

Θ1920 � − e
ατ2R10,

Θ2020 � − e
ατ2R10,

Θ2121 � − e
αt

S3,

Θ2222 � − e
αt

S4.

(54)
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Proof. ,e corollary follows by a similar argument as that in
proof of ,eorem 1.

4. Numerical Example

In this section, numerical examples are provided to illustrate
the validity and the advantage of the proposed finite-time
stability of switched GRNs with time-varying delays.

Example 1. Consider switched GRNs with time-varying
delay (8) as

_x(t) � − Ap(t)x(t) + Bp(t)g(y(t − τ(t))),

_y(t) � − Cp(t)y(t) + Dp(t)(x(t − σ(t))),

⎧⎨

⎩ (55)

with

A1 �

2 0 0

0 2 0

0 0 2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

B1 �

0 0 − 2

− 2 0 0

0 − 2 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

C1 �

3 0 0

0 3 0

0 0 3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

D1 �

0.9 0 0

0 0.9 0

0 0 0.9

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

A2 �

3 0 0

0 3 0

0 0 3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

B2 �

0 − 1.5 0

− 1.5 0 0

0 − 1.5 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

C2 �

4 0 0

0 4 0

0 0 4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

D2 �

1.2 0 0

0 1.2 0

0 0 1.2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(56)

,e activation function is chosen as U � diag 0.65,{

0.65, 0.65}, and the values of c1, c2, T are given as follows:

σ1 � 0.7,

σ2 � 3.5,

σd � 0.4,

τ1 � 0.6,

τ2 � 3.2,

τd � 0.2,

c1 � 1.5,

c2 � 4.5,

T � 6,

μ � 1.5.

(57)

We show the simulation result of the trajectories of the
variables x(t) and y(t) in Figures 1 and 2. It should be point
out that the condition is feasible when employing the LMI
toolbox inMATLAB, solve LMIs (16)–(20), and then, we can
reach feasible solution. Hence, the switched GRNs (8) is
finite-time stable.

P11 �

0.1837 − 0.0007 − 0.0007

− 0.0007 0.1837 − 0.0007

− 0.0007 − 0.0007 0.1837

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

P21 �

0.5336 0.0008 0.0008

0.0008 0.5336 0.0008

0.0008 0.0008 0.5336

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Q11 �

0.0419 − 0.0000 − 0.0000

− 0.0000 0.0419 − 0.0000

− 0.0000 − 0.0000 0.0419

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Q21 �

0.0225 0.0000 0.0000

0.0000 0.0225 0.0000

0.0000 0.0000 0.0225

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Q31 �

0.1556 0.0003 0.0003

0.0003 0.1556 0.0003

0.0003 0.0003 0.1556

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

R11 �

0.0669 0.0001 0.0001

0.0001 0.0669 0.0001

0.0001 0.0001 0.0669

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

R21 �

0.0287 0.0000 0.0000

0.0000 0.0287 0.0000

0.0000 0.0000 0.0287

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

R31 �

0.1518 − 0.0001 − 0.0001

− 0.0001 0.1518 − 0.0001

− 0.0001 − 0.0001 0.1518

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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R41 �

0.0389 0.0000 0.0000

0.0000 0.0389 0.0000

0.0000 0.0000 0.0389

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

R51 �

0.0570 − 0.0000 − 0.0000

− 0.0000 0.0570 − 0.0000

− 0.0000 − 0.0000 0.0570

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

R61 �

0.0053 0.0000 0.0000

0.0000 0.0053 0.0000

0.0000 0.0000 0.0053

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

R71 �

0.0562 0.0000 0.0000

0.0000 0.0562 0.0000

0.0000 0.0000 0.0562

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

R81 �

0.0057 − 0.0000 − 0.0000

− 0.0000 0.0057 − 0.0000

− 0.0000 − 0.0000 0.0057

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

R91 �

0.1006 0.0000 0.0000

0.0000 0.1006 0.0000

0.0000 0.0000 0.1006

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

R101 �

0.0094 0.0000 0.0000

0.0000 0.0094 0.0000

0.0000 0.0000 0.0094

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

R111 �

0.0627 − 0.0001 − 0.0001

− 0.0001 0.0627 − 0.0001

− 0.0001 − 0.0001 0.0627

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

R121 �

0.0057 − 0.0000 − 0.0000

− 0.0000 0.0057 − 0.0000

− 0.0000 − 0.0000 0.0057

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

S11 �

0.0016 − 0.0000 − 0.0000

− 0.0000 0.0016 − 0.0000

− 0.0000 − 0.0000 0.0016

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

S21 � 10− 3
×

0.2915 0.0005 0.0005

0.0005 0.2915 0.0005

0.0005 0.0005 0.2915

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

S31 �

0.0023 0.0000 0.0000

0.0000 0.0023 0.0000

0.0000 0.0000 0.0023

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

S41 � 10− 3
×

0.4960 0.0007 0.0007

0.0007 0.4960 0.0007

0.0007 0.0007 0.4960

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

P12 �

0.1747 0.0001 0.0001

0.0001 0.1747 0.0001

0.0001 0.0001 0.1747

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

P22 �

0.1267 0.0003 0.0003

0.0003 0.1267 0.0003

0.0003 0.0003 0.1267

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Q12 �

0.1265 0.0004 0.0004

0.0004 0.1265 0.0004

0.0004 0.0004 0.1265

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Q22 �

0.1121 − 0.0004 − 0.0004

− 0.0004 0.1121 − 0.0004

− 0.0004 − 0.0004 0.1121

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Q32 �

0.1745 0.0014 0.0014

0.0014 0.1745 0.0014

0.0014 0.0014 0.1745

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Complexity 15



R12 �

0.1231 0.0008 0.0008

0.0008 0.1231 0.0008

0.0008 0.0008 0.1231

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

R22 �

0.1145 − 0.0005 − 0.0005

− 0.0005 0.1145 − 0.0005

− 0.0005 − 0.0005 0.1145

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

R32 �

0.1434 0.0020 0.0020

0.0020 0.1434 0.0020

0.0020 0.0020 0.1434

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

R42 �

0.0863 0.0001 0.0001

0.0001 0.0863 0.0001

0.0001 0.0001 0.0863

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

R52 �

0.1176 − 0.0002 − 0.0002

− 0.0002 0.1176 − 0.0002

− 0.0002 − 0.0002 0.1176

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

R62 �

0.0641 − 0.0005 − 0.0005

− 0.0005 0.0641 − 0.0005

− 0.0005 − 0.0005 0.0641

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

R72 �

0.0886 − 0.0005 − 0.0005

− 0.0005 0.0886 − 0.0005

− 0.0005 − 0.0005 0.0886

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

R82 �

0.1177 − 0.0004 − 0.0004

− 0.0004 0.1177 − 0.0004

− 0.0004 − 0.0004 0.1177

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

R92 �

0.1230 − 0.0001 − 0.0001

− 0.0001 0.1230 − 0.0001

− 0.0001 − 0.0001 0.1230

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

R102 �

0.0675 − 0.0005 − 0.0005

− 0.0005 0.0675 − 0.0005

− 0.0005 − 0.0005 0.0675

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

R112 �

0.0878 − 0.0006 − 0.0006

− 0.0006 0.0878 − 0.0006

− 0.0006 − 0.0006 0.0878

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

R122 �

0.1055 − 0.0008 − 0.0008

− 0.0008 0.1055 − 0.0008

− 0.0008 − 0.0008 0.1055

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

S12 �

0.1889 − 0.0000 − 0.0000

− 0.0000 0.1889 − 0.0000

− 0.0000 − 0.0000 0.1889

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

S22 �

0.0736 0.0000 0.0000

0.0000 0.0736 0.0000

0.0000 0.0000 0.0736

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

S32 �

0.1937 − 0.0000 − 0.0000

− 0.0000 0.1937 − 0.0000

− 0.0000 − 0.0000 0.1937

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

S42 �

0.0685 0.0000 0.0000

0.0000 0.0685 0.0000

0.0000 0.0000 0.0685

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(58)
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Figure 1: ,e mRNA concentrations x(t) in Example 1.
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Figure 2: Protein concentrations y(t) in Example 2.

Table 1: ,e maximum allowable time delay upper bound for τ2 with different values of σ12.

σ12 0.125 0.25 0.55 1.0 1.1

[15] 0.5 — — − 8 —
[16] — — 1.0 — —
[17] 2.8273 2.1661 1.1544 0.4904 0.3845
[18] 3.2957 3.1932 2.9455 2.5661 2.4799
Corollary 3.3 5.4924 5.0257 4.6412 4.4670 3.9249
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Example 2

A �

3 0 0

0 3 0

0 0 3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

B �

0 0 − 2.5

− 2.5 0 0

0 − 2.5 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

C �

2.5 0 0

0 2.5 0

0 0 2.5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

D �

0.8 0 0

0 0.8 0

0 0 0.8

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(59)

g(y) � y2/1 + y2 and U � diag 0.65, 0.65, 0.65{ }.
Furthermore, for the parameters listed above, let τd � 0.5

and σd � 0.5.
In order to compare the results in [15–18], using Cor-

ollary 1, the comparison results are listed in Table 1 for τ2.
Clearly, the results proposed in this study provide a larger
admissible upper bound delay to guarantee the asymptoti-
cally stable system (52). In addition, the trajectories of the
genetic regulatory network (52) are shown in Figures 3
and 4.

Remark 2. ,e discussion in Example 2 illustrates that the
conditions in this study (Corollary 1) is less conservative
than those in [15–18], which shows the superiority of our
method compared with that in [15–18].

Example 3. Consider the following switched GRNs with
time-varying delay:

_x(t) � − Ap(t)x(t) + Bp(t)g(y(t − τ(t))),

_y(t) � − Cp(t)y(t) + Dp(t)(x(t − σ(t))),

⎧⎨

⎩ (60)

with

A1 �
3 0

0 3
⎡⎢⎣ ⎤⎥⎦,

B1 �
0.81 − 0.20

0.10 0.64
⎡⎢⎣ ⎤⎥⎦,

C1 �
3 0

0 3
⎡⎢⎣ ⎤⎥⎦,

D1 �
1 0

0 1
⎡⎢⎣ ⎤⎥⎦,

A2 �
4 0

0 4
⎡⎢⎣ ⎤⎥⎦,

B2 �
0.1 − 1

− 1 0.1
⎡⎢⎣ ⎤⎥⎦,

C2 �
4 0

0 4
⎡⎢⎣ ⎤⎥⎦,

D2 �
0.8 0

0 0.8
⎡⎢⎣ ⎤⎥⎦.

(61)

,e activation function is chosen as U � diag 0.2, 0.2{ }, and
the values of c1, c2, T are given as follows:
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Figure 4: ,e trajectories of y(t) in Example 2.
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Figure 3: ,e trajectories of x(t) in Example 2.
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σ1 � 0.2,

σ2 � 3.2,

σd � 1,

τ1 � 0.1,

τ2 � 0.3,

τd � 0.1,

c1 � 1,

c2 � 3.2,

T � 4,

μ � 0.9.

(62)

By employing the LMI toolbox in MATLAB, solve LMIs
(16)–(20), and the feasible solutions are then reached.

5. Conclusion

In this study, a finite-time stability analysis for switched
GRNs with time-varying delays has been investigated. We
utilized the reciprocally convex combination method,
Wirtinger’s integral inequality, and new triple integral with
exponential function in Lyapunov–Krasovskii functionals;
a less conservative LMI-based finite-time stability criterion is
obtained with the switched ADT approach to reduce the
conservatism of our results, compared with existing ones. A
numerical example has been given to demonstrate the ef-
fectiveness and the advantage of our proposed methods.
State estimation as well as other research topics such as
switched lure systems and complex networks [55, 56] and
stabilization of probabilistic Boolean networks [57, 58] of the
time delay systems will be further investigated based on the
methods proposed in this study.
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In this paper, we investigated the effectiveness of price limit on stock market with the correlation study and complex network
technology. We proposed a time-migrated DCCA cross-correlation coefficient which is beneficial to detect the asynchronous
correlations of nonstationary time series. +e stock market network is constructed with the threshold method based on time-
migrated DCCA. +e effectiveness of the price limit during the stock market crash period is studied based on the time-migrated
DCCA stockmarket network.+e results indicate that the time-migrated DCCA ensures more relevant results than the equal-time
DCCAmethod. An interesting finding is that the price limit has different effects on the stock market network at different stages of
dynamic evolution. Market stabilization will be lowered and the systemic risk will be increased if the price limit is enhanced. Such
studies are relevant for a better understanding of the stock market and have a significant contribution to the stock market
in reality.

1. Introduction

It is believed that a number of systems could be described by
complex networks, including traffic systems, ecological
systems, and financial systems. +e applications of complex
networks have provided a new perspective for studying the
mechanisms of these systems. In essence, the stock market is
a typical complex network system since the vertices are
stocks in the financial market and some vertices are con-
nected by an edge if they have a relationship with each other.
In the stock market, the price of stock fluctuates frequently
with the dynamic evolution of the entire financial system.
Previous studies suggest that a stock market network could
be established based on the price correlations. From different
angles, people provided many effective complex network
construction methods such as minimum cost spanning tree
(MST), planar maximally filtered graph (PMFG), and cor-
relation threshold method. Huang and Tse used the cor-
relation threshold method to construct a stock correlation
network in order to analyze the information of stockmarkets

where the nodes are the stocks and the connections are
determined by the threshold of Pearson correlation (PCC)
[1, 2]. Originally, Mantegna used the Pearson correlation
and MSTmethod to build a stock network and revealed the
general hierarchical structure of the market [3]. Bonanno
et al. also used the method and found that stock market
networks present different hierarchical structures as the time
horizon changes [4]. Tumminello et al. also used the cor-
relation coefficient between stock price dynamics time series
and the PMFG method to generate stock networks [5].

Since the stock price correlations are widely used in the
popular methods mentioned above, the studies of dynamic
correlations and relationships become crucial for con-
structing the stock market complex network and analyzing
the economic features of the stock market. In previous
studies, there are some conventional methods to quantify the
correlations of stock price time series, such as Pearson
correlation, cross-correlation, and canonical correlation. But
it is known that financial data are highly nonstationary and
the conventional methods may not suited for it [6].
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Accordingly, it is important to investigate the time-migrated
or time-asynchronous correlations. To investigate the time
characters of financial series, Grey Relational Analysis [7],
Detrended Fluctuation Analysis (DFA), and Detrended
Cross-correlation Analysis (DCCA) [8] were proposed to
quantify the long-range power-law correlations of nonsta-
tionary time series.

Previous research has established that DCCA provides a
proper approach to quantitatively measure the long-range
cross-correlation of nonstationary time series. It inspires us
to investigate the time series of stock market using these
methods. To the best of our knowledge, there is still little
research to gain the insights into time-migrated or time-
asynchronous correlations of the stock market price series.
+erefore, we present a time-migrated DCCA correlation
coefficient in this paper. We not only calculate the DCCA
correlation coefficients of the stock market but also inves-
tigate the time-migrated relationships. In the field of stock
market regulation, price limit policy is widely used to
prevent stock prices from rising or falling too violently,
especially during the stock crash period. Once stock prices
hit the limit, they are not allowed to move beyond the limit.
+e price limit is supposed to give frenzied traders time to
cool off and save the price from “falling off a cliff” [9]. Many
of the stock exchanges adopt price limit to maintain the
stability and curb the overreaction of the stock market [10].
But there are other voices that the price limit is ineffective
and imposes serious costs to the stock market [11]. Rare
literature of price limit refers to the econometric analysis of
the stock market model. In that case, we also evaluate the
effectiveness of the price limit from the perspective of
complex network in this paper. In this context, this research
aims to address the following three questions:

(1) How to mining the time-migrated correlations of the
stock prices?

(2) What are the properties and community structures
of the stock market from the perspective of complex
network.

(3) How to evaluate the effectiveness of price limit re-
form on the stock market network.

To achieve this goal, we propose a time-migrated DCCA
method and study the correlations of Chinese stock market.
Lately, we apply the threshold method to construct stock
market networks for analyzing the effectiveness of the price
limit reform.

+e paper is organized as follows. Section 2 presents
dataset and methods employed in this study. Section 3 shows
the properties and community structures of the stock market
and provides effectiveness results of the price limit reform on
stability and systemic risk. Section 4 concludes the paper.
Finally, Data availability and References are also presented.

2. Materials and Methods

2.1. Stock Market Dataset. In this paper, we choose the CSI
300.+e CSI 300 dataset contains the daily close prices of the
300 large-scale stocks with good liquidity. +e CSI 300 index

usually covers about 60% of the Shanghai Composite and
Shenzhen Component. +e dataset of CSI 300 stock index is
from Mar 28th, 2012 to Mar 29th, 2019 (data source: Choice
Financial Terminal) which contains 1703 daily close prices of
the CSI 300 companies, including the 2015 market crash
period. +e samples of the close price series are presented in
Table 1.

To get a more stable price series, we calculate the return
price of the dataset by

ri(t) � ln
pi(t + 1)

pi(t)
 , (1)

where ri(t) is the return price of stock i at the day t, pi(t + 1)

and pi(t) are the close prices of stock i at the day t and the
day t − 1. +us, i ∈ [1, 300] and t ∈ [1, 1702]. +e daily
return prices of the stock 000415 are presented in Figure 1.
As is shown in Figure 1, the return price varies between [–1,
1] while the close price varies between [3.38, 28.28]. +us,
the return price has better properties to avoid the excessive
influence and nonstationarity of the dataset.

In this paper, we obtain the DCCA cross-correlation
coefficient and time-migrated DCCA cross-correlation co-
efficient with the return prices. For this purpose, we in-
troduce a brief theoretical description of the two methods.

2.2. DCCA Cross-Correlation Coefficient. Traditionally, the
DCCA cross-correlation coefficient is derived fromDFA and
DCCA [6, 12, 13]. +e DFA method is a common method
for investigating the long-range power-law self-correlations
of single time series, and the DCCA method has demon-
strated its usefulness to determine the long-range power-law
cross-correlations of two nonstationary time series [14]. One
step further, the DCCA cross-correlation coefficient is an
effective method to quantify the level of cross-correlation
between two nonstationary time series at different temporal
scales [15–17]. +e algorithm of DCCA correlation coeffi-
cient consists of five steps.

Step 1: Supposing that there are two stock price series
ξ(t) and η(t), we obtained two removing mean and
accumulated time sequences:

ξ′(t) � 

t

i�1
[ξ(i) − ξ],

η′(t) � 
t

i�1
[η(i) − η].

(2)

Where ξ and η are the mean value of time series ξ(t)

and η(t), t � 1, 2, . . . , T.
Step 2: We cut both time sequences ξ′(t) and η′(t) into
(N − s) overlapping segments ξk

′(t) and ηk
′(t), with k �

1, . . . , T − s and 0≤ s < T − 1. +e length of ξk
′(t) and

ηk
′(t) is s + 1.

Step 3: we calculate the local trend of each segment
ξk
′(t) and ηk

′(t) by a least-squares fit method, ξ
⌣

k(t) and
η⌣k(t). +en we define the detrended time series for each
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segment and calculate self-variance and covariance of
each residual by:

F
2
ξξ(i) �

1
s + 1



s+1

t�1
ξ
⌣

i(t) − ξi
′(t) 

2
,

F
2
ηη(i) �

1
s + 1



s+1

t�1
η⌣i(t) − ηi

′(t) 
2
,

(3)

F
2
ξη(i) �

1
s + 1



s+1

t�1
ξ
⌣

i(t) − ξi
′(t)  η⌣i(t) − ηi

′(t) . (4)

Where ξ
⌣

k(t) and η⌣k(t) are the fitting polynomials of
segment k. And ξ

⌣

i(t) − ξi
′(t) and η⌣i(t) − ηi

′(t) are the
detrended time series of the segment i, respectively.
Step 4: We obtain the detrended covariance function of
all segments by

FDFA−ξ(s) �
1

N − s


N−s

i�1
F
2
ξξ(i)⎛⎝ ⎞⎠

(1/2)

,

FDFA−η(s) �
1

N − s


N−s

i�1
F
2
ηη(i)⎛⎝ ⎞⎠

(1/2)

,

F
2
DCCA(s) �

1
N − s



N−S

i�1
F
2
ξη(i).

(5)

Step 5: Finally, we calculate the DCCA cross-correla-
tion coefficient by

ρDCCA(s) �
F
2
DCCA(s)

FDFA−ξ(s)FDFA−η(s)
. (6)

+e DCCA cross-correlation coefficient is a function
of the time segment length s. As we can see, the
DCCA cross-correlation coefficient equals to Pearson
cross-correlation coefficient when s � 0. According
to the Cauchy–Schwarz inequality, the DCCA cross-
correlation coefficient ranges [–1, 1]. Like the
Pearson cross-correlation coefficient, the value of
ρDCCA(s) � 0 means there is no correlation between
the two time series. +e ρDCCA(s) � 1 means a full
positive correlation, whereas ρDCCA(s) � −1 means a
full negative correlation. A major advantage of
ρDCCA(s) is to measure the cross-correlations be-
tween two nonstationary time series at the different
segment length s [15]. It is more robust to con-
taminated noises and amplitude ratio than Pearson
correlation [18]. +ere are a number of ρDCCA ap-
plications in meteorology [19, 20], physiology
[21, 22], economy [13, 23], financial [14, 16, 24–26],
and other research areas.

2.3. Time-Migrated DCCA Cross-Correlation Coefficient.
Traditionally, the DCCA cross-correlation coefficient is
implemented by measuring the correlations of each
detrended segment synchronously. As is shown in equation
(4), we use the equal-time segment i of ξ(t) and η(t) in
Figure 2(a) when we calculate F2

ξη(i). However, it should be
further noticed that the price series have not only syn-
chronous relationships but also asynchronous relationships
in real-time stock markets. For example, there is a lead-lag
effect on the stock market, which means that stock prices of
some firms show a delayed or ahead temporal evolution
pattern to other firms’ stock prices [27–30]. Since a possible
delay between the stocks could be accounted in the time
series, we consider the following case in Figure 2(b): sup-
posing two time series ξ(t) and η(t) in the stock market, we
calculate the detrended correlations of each segment i in ξ(t)

and η(t), but in some cases, the segment i of ξ(t) may have a
relationship with segment j of η(t) in some cases. So we
consider these asynchronous relationships in the time-mi-
grated DCCA cross-correlation coefficient.

+e algorithm of time-migrated DCCA correlation co-
efficient consists of the following seven steps:

Step 1: We calculate removing mean and accumulated
time sequences of ξ(t) and η(t):

ξ′(t) � 
t

i�1
[ξ(i) − ξ],

η′(t) � 
t

i�1
[η(i) − η].

(7)

Where ξ and η are the mean value of time series ξ(t)

and η(t), t � 1, 2, . . . , T.
Step 2: We cut both two time sequences ξ′(t) and η′(t)

into (N − s) overlapping segments ξk
′(t) and ηk

′(t),
with k � 1, . . . , T − s and 0≤ s < T − 1. +e length of
ξk
′(t) and ηk

′(t) is s + 1.
Step 3: For the detrended time series of the segment i,
we calculate the time-migrated covariance of ξ

⌣

i(t) −

ξi
′(t) and η⌣j(t) − ηj

′(t), where i, j � 1, . . . , T − s.

F
2
ξη(i, j) �

1
s + 1



s+1

t�1
ξ
⌣

i(t) − ξi
′(t)  η⌣j(t) − ηj

′(t) .

(8)

Step 4: We find the max value of F2
ξη

(i, j) for ξ′(t) by

F
2
max ξη(i) � max

1≤j≤N−s
F
2
ξη(i, j). (9)

Where i, j � 1, . . . , T − s and j∗ is the argument that
makes the equation (9) true:

j
∗
(i) � argmax

1≤j≤N−s

F
2
ξη(i, j). (10)
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Step 5: We calculate the detrended self-variance in each
segment i of ξ(t) by

F
2
ξξ(i) �

1
s



s+1

t�1
ξ
⌣

i(t) − ξi
′(t) 

2
. (11)

According to the Cauchy–Schwarz inequality, we cal-
culate detrended self-variance in the segment j∗(i) of
η(t):

F
2
η∗η∗(i) �

1
s



s+1

t�1
η⌣j∗(i)(t) − ηj∗(i)

′(t) 
2
. (12)

Step 6: We obtain the time-migrated detrended co-
variance function F2

tm−DCCA(s), FDFA−ξ(s) and FDFAη
(s)

by

F
2
tm−DCCA(s) �

1
N − s



N−s

i�1
F
2
max ξη,

FDFA−ξ(s) �
1

N − s


N−S

i�1
F
2
ξξ(i)⎛⎝ ⎞⎠

(1/2)

,

FDFA−η∗(s) �
1

N − s


N−S

i�1
F
2
η∗η∗(i)⎛⎝ ⎞⎠

(1/2)

.

(13)

Step 7: Finally, we calculate the time-migrated DCCA
cross-correlation coefficient by

ρtm−DCCA(s) �
F
2
tm−DCCA(s)

FDFA−ξ(s)FDFA−η∗(s)
. (14)

We calculate the relationships asynchronously in the
time-migrated DCCA cross-correlation coefficient. We get
the maximum of F2

ξη(i, j) to detect the time-migrated re-
lationships of two stocks in order to maximize the corre-
lation detection ability. According to the Cauchy–Schwarz
inequality, the time-migrated DCCA cross-correlation co-
efficient is also a set of dimensionless coefficient ranging
from −1 to 1. A higher value of DCCA cross-correlation
coefficient means a closer relationship with each other.

+e DCCA cross-correlation coefficient provides a
proper approach to measure equal-time relationships be-
tween two nonstationary time series, but the time-migrated
DCCA cross-correlation coefficient is also available for
measuring relationships between two nonstationary time
series with asynchronous relationships. +ey are both di-
mensionless coefficients that can be compared with other
nondimensional methods, such as Pearson coefficients.

2.4. Stock Market Network Model. In the upper subsection,
we studied the equal-time DCCA cross-correlation coeffi-
cient and the time-migrated DCCA cross-correlation co-
efficient. It is now well established from a variety of studies
that a network could be constructed from the Pearson
correlation coefficient matrix of the complex system

[1, 2, 4, 31–33]. In this section, we apply the threshold
method to construct stock market networks with these two
methods. Additionally, we compare the topology properties
and community structures of the stock networks. First we
calculate the equal-time DCCA cross-correlation coefficient
ρij

DCCA(s) and time-migrated DCCA cross-correlation co-
efficient ρij

tm−DCCA(s) of the entire return price pairs in the
dataset on a different time scale s. +en we obtain the
maximum value when s � s∗ by

ρij

DCCA−max � max
s�s∗

ρij

DCCA(s), i, j ∈ [1, 300],

ρij

tm−DCCA−max � max
s�s∗

ρij

tm−DCCA(s), i, j ∈ [1, 300],
(15)

where ρij

DCCA−max and ρij

tm−DCCA−max are the max coefficients
between stocks i and j.

+en a metric distance of stock i and j can be translated
into connection weight by [3, 4, 32]

D
ij

DCCA �

��������������

2 1 − ρij

DCCA−max 



,

w
ij

DCCA �
1

D
ij

DCCA

,

D
ij

tm−DCCA �

�����������������

2 1 − ρij

tm−DCCA−max 



,

w
ij

tm−DCCA �
1

D
ij

tm−DCCA

.

(16)

In both cases, we get 300×300 matrix of connection
weights WDCCA and Wtm−DCCA.

Finally, we set a certain threshold value θ to construct the
stock market network. Let the Graph G � (V, E) represents
stock market network, where the node vi ∈ V represents
stock i and edge eij ∈ E represents the connections of the
stock i and stock j. +e set of connections is established by

E �
eij � 1, i≠ j andwij > θ,

eij � 0, i � j.

⎧⎨

⎩ (17)

+e complex network construction algorithm is given by
Algorithm 1. We get different connection topologies with
different values of threshold θ.

3. Results and Discussion

In this study, we construct the stock market complex net-
work based on the threshold method with two sets of co-
efficient matrices. Previous research has established certain
applications of the complex network in economics: rela-
tionships [34], contagion [35–37], risk [38–41] and so on
[42, 43], but few studies are based on the policy effect. So in
order to quantify the effectiveness of price limit reform, we
first analyze statistical characteristics of the coefficients and
network properties; then we make an econometric analysis
about the bailout strategy such as price limit reform base on
the stock market network in this section.
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3.1. StatisticalAnalysis. Based on the methods and dataset of
Section 2, we calculate the correlation matrices with the two
methods and examine the distributions of the empirical,
respectively. It is crucial to ρtm−DCCA−max and ρDCCA−max with
proper values of time segment length s. As is shown in
Figure 3, a clear spike of ρtm−DCCA−max and ρDCCA−max appears
with smaller value of s and the curves tend to flat as s in-
creases. So we choose segment length 1≤ s≤ 15 to analyze
the relatively short term correlation coefficients.

We display the statistical results of DCCA and time-
migrated DCCA in contrast to the PCC in Figure 4 and
Table 2. +e details of PCC coefficient could be obtained in

[1, 31]. It can be seen in Figure 4 that the ρDCCA distribution
plot has a shape similar to the ρPCC distribution, and the
time-migrated DCCA has a bigger mean value and kurtosis
value than DCCA and PCC. It tells us we get a bigger
correlation in most cases and the distribution is more
concentrated. +e time-migrated DCCA method could
ensure more relevant results than the other two methods. In
Figure 4, it is easy to see a more concentrated distribution of
time-migrated DCCA which is more sensitive to the
changing of threshold θ. As a result, the constructed network
based on the time-migrated DCCA is more representative
with threshold θ.
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Figure 1: Closing prices and return prices of stock 000415.

Table 1: Close prices of three stocks in four trading days.

Stock code Major business May 13, 2016 May 16, 2016 May 17, 2016 May 18, 2016 May 19, 2016
000100 Electronic equipment 3.36 3.38 3.36 3.3 3.3
000157 Special equipment 4.12 4.13 4.11 4.06 4.05
000166 Securities service 8.06 8.08 8.06 8.07 8.03
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Table 2 compares an overview of the three coefficients. It
can be seen from Table 2 that statistics of DCCA and PCC
are more similar to each other. +e mean value of time-
migrated DCCA is larger than DCCA and PCC, which
means time-migrated DCCA detects more relationships of
the dataset. +e maximum of time-migrated DCCA is
smaller than DCCA and PCC and the minimum is larger,
which means the time-migrated DCCA has a smaller range.
+e smaller STD means a higher level data concentration of
time-migrated DCCA and more sensitive to the threshold θ.

3.2. Network Properties and Community Structure

3.2.1. Evaluation of Coefficients. +e next section of the
survey is concerned with network properties. First we an-
alyze the giant component of the network with a different

threshold θ. +e giant component is an important quantity
representing the largest fraction of the complex network,
which is a measurement of the network effectiveness [44]. In
Figure 5, we can see that the giant components of the DCCA
stock network and time-migrated network decrease as the
threshold θ increases. Especially when threshold θ increases
from 1.32 to 2, the giant component of time-migrated DCCA
network drops from 0.98 to 0.02 sharply. It is because most
of the ρTM−DCCA are distributed in this range. As a result, the
stock market networks are scale-free. In addition, we in-
troduce the dataset of Shanghai and Shenzhen A-shares
(2016–2018) to testify the applicability of the stock network
model. We find that the stock market network is still scale-
free and these statistics are also available for further research.
We think that the network model remains robust across
different periods and datasets.
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Figure 3: Some samples of ρtm−DCCA−max and ρDCCA−max at different time scales s.
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Figure 2: (a) Principles of DCCA cross-correlation coefficient (synchronous correlations). (b) +e possible scenario of time-migrated
DCCA cross-correlation coefficient (asynchronous correlations).
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To construct the stock market network, we need a proper
threshold θ to determine the edge connectivity of the nodes.
We divide all the ρTM−DCCA and ρDCCA into three conditions
according to different thresholds by Table 3, suggested in
[15]. In this paper, we consider that the pair of nodes have
strong correlations if the ρTM−DCCA has a greater value (more
than 1.62). Here we choose the threshold θTM−DCCA � 1.62
and θDCCA � 1.25 to construct the stock networks, which
represents the stock network with connections. +erefore,
about 33% of total nodes are included in the stock networks
according to the threshold θTM−DCCA � 1.62 and
θDCCA � 1.25. Other isolated nodes are removed. +en, the
connected nodes of the stock works are 106 and 101, the
number of connections are 646 and 203. Finally, the average
node degree is 12.189 and 4.02, average clustering coefficient
is 0.066 and 0.77. With the threshold θ defined, we describe

the network parameters in Table 4. +e average degree of
time-migrated DCCA network is much bigger than DCCA.
In the time-migrated DCCA network, a smaller community
has a bigger average degree which means that stocks in a
smaller community have denser connections with each
other.

3.2.2. Evaluation of Coefficients. In this section, we wish to
compare the community structure of the stock market
network. It helps us to analyze the relationships and network
structure for further research. We apply the algorithm of
Blondel to detect communities of the stock network which
has been widely used in complex network analysis [45].
+ere are several advantages of the Blondel algorithm. +e
algorithm is a heuristic method that is fast and good for
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Figure 4: Distributions of time-migrated DCCA, DCCA and PCC coefficients.

Input:An empty complex network graph of stock market G � (V, E),+e sets of the stock market nodes vi ∈ V, +e weight matrix
of the stock market wij ∈W, +e connection matrix of the stock market eij ∈ E, +e threshold θ, where i, j � 1, . . . , N;
Output: +e complex network graph of stock market
G(V, E);

(1) for each vi ∈ V do
(2) add node vi to V and update G � (V, E)

(3) end
(4) for each eij and wij do
(5) if i≠ j and wij > θ then
(6) set eij � 1 and add edge eij to E

(7) update G � (V, E);
(8) end
(9) end

ALGORITHM 1: Complex network construction algorithm on stock market.
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large-scale networks. It is shown to outperform all other
known community detection methods in terms of compu-
tation time in literature [45]. +e algorithm is divided into
two phases that are repeated iteratively. +e first phase
repeats the nodes allocation process until the maximum of
the modularity is attained. +e second phase consists in
building a new network whose nodes are in the communities
found during the first phase. A separating layout is used to
reveal communities in stock market networks. As is shown
in Figures 6-7, different node colors represent different
communities and node label sizes reflect the node degree.
Intuitively, nodes in the same community are stocks be-
longing to the same industry classification in the DCCA
stock network in Figure 6. +at matches our expectations. It
is because the stock companies belonging to the same in-
dustry classification interact more frequently with each other
and usually have closer relationships in reality. +e

communities of time-migrated DCCA are density connected
in comparison with DCCA.

+e statistic details are shown in Table 5. We present 5
main communities in the DCCA network while 3 main
communities in time-migrated DCCA in Table 5. We can see
that the community sizes of time-migrated DCCA network
are larger than DCCA. What stands out in the table is that
the major business of DCCA network concentrated in one or
two fields, but the major business of time-migrated DCCA
network distributed in more than six fields. +ese findings
suggest that the time-migrated DCCA network contains
more relevant information than the DCCA network. Intu-
itively, the stock market networks can reflect important
properties of the real stock market. +is inspires us of a new
idea: the stock network model could be helpful to analyze the
effectiveness of the stock market policy according to the
dynamic evolution process of the complex network system.
Denser connections could give us more information about
the relationships. +us, we use the time-migrated DCCA
stock network model to conduct our analysis on the ef-
fectiveness of price limit policy (Table 6).

3.3. Simulation Results of Price Limit. In this section, we
attempt to provide some insight into the effectiveness of
price limit by simulating the dynamic evolution of time-
migrated DCCA stock network model. After evaluating the
market stability and risk level under price limit and other
situations, we find that the price limit has different effects at
different stages of stock network evolution.

3.3.1. Experimental Indicators

May–Wigner Stability <eorem. May established a model for
measuring the stability of a large complex ecosystem [46].
+e theorem was approved and improved by researchers
[47, 48]. +e May–Wigner Stability theorem is used to in-
vestigate the stability of the financial system such as stock
market complex systems [49, 50]. As a generalized stability
indicator, the May–Wigner stability theorem is defined by 3
permanents: the size of the network N, the density of
connections D, and the average interaction strength a [50].

NS �
����
N D

√
a, (18)

where NS represents the network stability. +e system is
considered stable when NS< 1 and a smaller value of NS

means the network is more stable. By definition, the density
of connections D (graph density) and average interaction
strength a (average node degree) in our research are given by

D �
m

c
2
N

,

a �
m

N
,

(19)

where m is the number of connections and C2
N is the

maximum number of possible connections. +e network
stability factor has the following formula:
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Figure 5: Giant components of time-migrated DCCA and DCCA
coefficients.

Table 2: Statistical analysis of Time-migrated DCCA, DCCA, and
PCC.

Statistics Time-migrated DCCA DCCA PCC
Mean 0.6892 0.2769 0.2572
Max 0.8803 0.8900 0.8918
Min 0.4116 −0.0159 −0.0241
STD 0.0659 0.1234 0.1227
Skewness −0.6612 0.5650 0.6173
Kurtosis 3.7184 3.4296 3.5463

Table 3: Correlation conditions of time-migrated DCCA and
DCCA.

Correlation condition Weak Medium Strong
Giant component 1.0–0.7 0.7–0.4 0.4–0.02
ρTM−DCCA 1.32–1.5 1.5–1.62 1.62–2.0
ρDCCA 0.78–0.96 0.96–1.08 1.08–1.76
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NS �
����
N D

√
a �

�����

N
m

c
2
N


m

N
�

m
(3/2)

N
�����
N − 1

√ . (20)

So we can calculate the network stability NS(t) at time t.
In this study, we focus on the dynamic changes of the

stock network. If the NS(t) changes rapidly, it means that
the stability of the stock network varies dramatically, which
represents a more volatile market. In order to measure the
instability of the complex network, we define a dimen-
sionless evaluation factor stability variation SV as follows:

SV �

���������������������


n
t�1(NS(t) − NS(t))/n 



NS(t)
, (21)

where NS(t) is the network stability of time t and a smaller
value of SV means a milder stability fluctuation.

Systemic Risk Evaluation. An important area of risk man-
agement is the systemic risk evaluation. Studying the cor-
relation coefficient matrix is an important topic of systemic
risk evaluation [51]. We perform eigenvector technique on
the stock network to measure the systemic risk. Using this
approach, researchers have been able to evaluate the risk
contributions of the stocks and calculate the systemic risk
[44, 52, 53, 54, 55]. In this study, we evaluate risk contri-
butions based on the eigenvector centrality:

Ri �
1
λ



N

j�1
Rjgij, i, j � 1, . . . , N, (22)

where Ri is the risk contribution of stock i, which is defined
to be proportional to the weighted sum of all the stocks
connected to stock i. N is the total number of nodes in the
stock network. gij is the element of correlation coefficient
matrix G, which represents the ρTM−DCCA of stock i and stock
j. It could be also expressed as in matrix form according to
the eigenvector centrality theory:

G R
→

� λR
→

, (23)

where λ is the eigenvalue corresponding to the eigenvector.
+en we compute the average of the risk contribution of all
the stocks in the network and obtain the systemic risk of the
whole stock market network at time t.

NR(t) �
1
N



N

i�1
Ri, i � 1, . . . , N. (24)

And we evaluate the systemic risk under each conditions
by

NR �
1
T



T

t�1
NRt, t � 1, . . . , T. (25)

3.3.2. Simulation Results. +e fluctuations of the stock
prices play an important role in the price discovery process,
which provides crucial information on economic [56]. From

Figure 6: Topology graph of the DCCA stock network. Different
node colors represent different communities and node and label
sizes reflect the node degree.

Figure 7: Topology graph of the time-migrated DCCA stock
network. Different node colors represent different communities
and node label sizes reflect the node degree.

Table 4: Network parameters of time-migrated DCCA and DCCA
stock networks.

Parameters θTM−DCCA � 1.62 θDCCA � 1.25

Number of nodes 300 300
Connected nodes 106 101
Number of connections 646 203
Average node degree 12.189 4.02
Graph density 0.116 0.04
Graph diameter 4 6
Average path length 2.283 1.796
Average clustering coefficient 0.066 0.77
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the perspective of price limit, the stock price is frenzied and
the price discovery ability is weakened if a stock hits price
limit [9, 11]. It leads to marketfailure somehow. At this
point, we assume such an evaluation model: if the stock price
i hits the price limit as it loses functionality, then node i will
be removed from the network.

+e simulation experiment is arranged as follows. First
we calculate the stability factor and systemic risk factor
NS(t) at time t(t � 1, . . . , T). And we enhance price limit to
analyze effectiveness of the time limit. +en we set the target
removing and random removing strategy as the control
group. Details of targeted removing and random removing
strategy could be obtained in [57, 58]. Finally, we get the
results of stability analysis and systemic risk analysis.

Figure 8 presents an overview of NS(t) of the time scale t

for the four situations. Generally, we notice that all the
stability factors exhibit a downward trend as evolution of the
network because the number of nodes decreases faster than
the edges. Especially we can see the following:

Targeted Removal: +e nodes of the stock network are
removed in accordance with the sequence from the
biggest degree value to the smallest, which is called
targeted removal of the most important nodes [58].
From Figure 8, we can see that the network stability of
targeted removal curve (green line) drops off sharply at
the begging of the time step. +us, this result indicates
that the stock network is extremely vulnerable to tar-
geted removal of the most important nodes.

Random Removal: +e nodes of the stock network are
removed in a random order. Figure 8 shows that
network stability factor of random removal (red line)
has a relatively milder dynamic pattern compared to
targeted removal. +is indicates that the stock network
is resistant to random removal.

Table 5: Community Properties of DCCA stock market network.

DCCA communities
(θDCCA � 1.25) Community A Community B Community

C Community D Community E

Nodes 18 17 13 8 6

Major business Securities service (17),
pharmaceutical industry (1)

Mining industry (15),
special equipment (2) Banking (13) Civil

engineering (8)
Aerospace

equipment (6)
Edges 77 26 39 12 11
Average node degree 8.56 3.059 6.000 3.000 3.667
Average path length 1.49 2.58 1.5 1.71 1.26
Graph density 0.503 0.191 0.500 0.429 0.733

Table 6: Community properties of the time-migrated DCCA stock market network.

Time-migrated DCCA
communities
(θTM−DCCA � 1.62)

Community A Community B Community C

Nodes 48 36 22

Major business

Securities service (9), banking (8),
manufacturing (7), mining industry
(4), pharmaceutical industry (3), real

estate (3), energy industry (3),
chemical industry (2), others (9)

Manufacturing (9), pharmaceutical
industry (4), securities service (3),

banking (2), real estate (2),
transportation (2), information

technology (2), civil engineering (2),
others (10)

Mining industry (5), securities
service (3), transportation (3),
information technology (3),

banking (2), others (6)

Edges 132 163 85
Average node degree 5.5 7.7 9.5
Average path length 2.24 1.72 1.97
Graph density 0.117 0.368 0.259
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Figure 8: Network stability NS(t) in different situations.
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2015 Market Crash: +e 2015 stock market began in
June and lasted until August. About one thousand
stocks hit the price limit. +e stock market lost ap-
proximately 30 percent around the market crash. For
the market crash simulation, we remove the node i if
the stock i hits the price limit (10%) during the 2015
market crash. We can see that (blue line) the network
factor of market crash drops at the beginning and a
platform zone appears in the middle time, reflecting the
actual situation of actual situation.
Price Limit Hit: In contrast to stock with 10% price
limit, the price limit is set to 5% for investigating the
network stability performance with an enhanced price
limit level. In Figure 8, we find that the price limit hit
(magenta line) drops more gently than market crash in
the beginning, which means the network stability. +en
the network stability factor of price limit hit presents a
more precipitous drop than market crash afterward. It

means that the price limit hit could prevent violent
variation, but also may lead to more violent variations
afterwards.

In this case, it is possible to conclude that the cooling-off
effect is significant when the price limit is first implemented,
but themagnet effect also exists at the same time which takes
the dominant in later time steps.

Figure 9 provides the normalized SV of different situ-
ations. Actually, price limit group indicates more the sta-
bility changes on average than the other three groups. It
means that the price limit may cause stability changes in the
stock market.

Figure 10 presents the systemic risk NR to compare the
difference of the four situations. From Figure 10, we can see
that systemic risk of targeted removal is higher than the
random removal. And the price limit has the largest systemic
risk. From the statistical results of systemic risk evaluation,
we draw the conclusion that changing price limit has an
effect on the market stabilization, and the systemic risk
increases if the price limit is enhanced.

4. Conclusion

In this paper, we investigated the effectiveness of price limit
on stock market based on the correlation study and complex
network technology. Firstly, we proposed a time-migrated
DCCA cross-correlation coefficient based on the DCCA
cross-correlation coefficient. +e time-migrated DCCA
cross-correlation coefficient is suitable for nonstationary
time series and detecting the time-migrated correlations,
which ensure more relevant results than the DCCA method.
Furthermore, we apply the threshold method to construct
the stock networks and compare the topology properties and
community structure of the stock network. We find that the
time-migrated DCCA and DCCA stock network has dif-
ferent statistical properties and communities structures. And
this fact has given us the opportunity to study the effec-
tiveness of the price limit, especially during the stock market
crash period. Finally, we simulated the dynamic evolution of
the stock network under different situations. An interesting
finding is that the price limit has different effects at different
stages of evolution. We draw the conclusion that changing
the price limit has an effect on market stabilization and the
systemic risk, and the market stabilization will be lowered
and the systemic risk will be increased if we enhance the
price limit. We believe that such studies are relevant for a
better understanding of the stock market and may lead to a
better insight into the policy influence on the stock markets
in further work. For example, the stock market network
model could be helpful to evaluate the price limit perfor-
mance in different situations. It may also contribute to risk
management and stability regulation, which has a significant
contribution to the stock market in reality.

Data Availability

All data used in this study are available from the Choice
Financial Terminal and http://choice.eastmoney.com.
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In this paper, the stability and stabilization issues for a class of delayed neural networks with time-varying hybrid impulses are
investigated. -e hybrid effect of two types of impulses including both stabilizing and destabilizing impulses is considered
simultaneously in the analysis of systems. To characterize the occurrence features of impulses, the concepts of average impulse
interval and average impulse strength are employed. Based on the analysis of stability, a pinning impulsive controller which can
ensure the global exponential stability of the studied neural networks is designed by pinning a small fraction of neurons. Finally,
two numerical examples are given to illustrate the effectiveness of the proposed control schemes for delayed neural networks with
hybrid impulses.

1. Introduction

During the past few decades, dynamic networks have been
systematically studied due to their broad application
background in different areas [1–9]. In recent years, in order
to cater to the specific needs of modeling various practical
systems, many kinds of dynamic networks with special
structures have been developed, for example, [10–13] and
the references therein. When networks encounter transient
disturbance or abrupt dynamic variation in various instants,
systems may display switching or impulsive behaviors
[14, 15]. Consequently, impulsive neural networks, which
can model various electronic or biological networks en-
countering instantaneous and abrupt changes frequently,
have been extensively investigated in various fields of science
and engineering [16–19]. On the contrary, time delays
frequently appear in various dynamical systems [20, 21]. -e
existence of time delays in neural networks may induce more
complex dynamical behaviors such as instability,

oscillations, and chaos [22–27]. -erefore, it is necessary to
investigate effects of time delays and impulses on the stability
of neural networks.

Generally, impulses can be divided into two categories
according to their impact on systems. It is supposed that the
impulses are destabilizing if the impulses can potentially
destroy the stability of dynamical systems, while the im-
pulses are considered to be stabilizing if they are potentially
beneficial for the stabilization of dynamical systems. Sta-
bilizing impulses can be considered as impulsive controllers,
which can enhance the stabilization of dynamical systems. In
the last several decades, stabilizing impulses and destabi-
lizing impulses have been studied by a great many scholars
[28–31]. At the same time, the impulsive control method has
received many researchers’ attention (see [32–36] and ref-
erences therein). Particularly, stability or stabilization issue
for dynamical systems with delays and impulses was in-
vestigated in [37–41] and references therein. In [42], a
unified synchronization criterion for impulsive dynamical
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networks subject to desynchronizing or synchronizing im-
pulses was derived by using the average impulsive interval
approach. In [43], some adequate conditions that can ensure
the exponential synchronization of inertial memristor-based
neural networks with time delay were given by utilizing the
average impulsive interval approach. In [44], the pinning
impulsive control strategy was proposed. By utilizing the
Lyapunov method combined with the comparison principle,
pinning stabilization of probabilistic Boolean networks
subject to time delays was investigated in [45]. Synchroni-
zation problem for stochastic neural networks was studied
by impulsively controlling partial states in [46]. Recently,
networks with hybrid impulses were explored in [47, 48]. To
reduce conservativeness, a novel piecewise Lyapu-
nov–Krasovskii functional (LKF) was constructed by in-
troducing a line-integral type Lyapunov function and some
useful terms that take full advantage of the available in-
formation about the actual sampling pattern in [49].

In this paper, the concepts of average impulsive interval
and average impulsive strength are introduced to charac-
terize the features of hybrid impulses. -en, based on the
Lyapunov method combined with the utilization of proper
mathematical analysis techniques, the stability analysis for
neural networks with time-varying delays and hybrid
impulses is carried out. Under this circumstance, the
classification of stabilizing and destabilizing impulses is not
taken into account; just the overall effect of the impulses is
taken into consideration. Furthermore, a pinning impul-
sive controller design procedure for the stabilization of the
investigated neural networks is proposed based on the
above analysis. In this controller, only a small fraction of
variables is impulsively controlled to ensure the global and
exponential stability of neural networks. -e main con-
tributions of this paper are summarized as follows: (1) a
new concept of “average impulsive strength,” which can be
used to characterize much wider range of impulsive se-
quences, is introduced to describe the hybrid impulses
investigated in this paper. (2) By virtue of some proper
disposing techniques relevant to average impulsive interval
and average impulsive strength in the proof process of the
main results, less conservative results can thereafter be
obtained. (3) In consideration of the advantages of low cost
and high efficiency of the pinning controller, the strategy
that selects only a small fraction of neurons for impulsive
control is adopted to achieve the stabilization of the delayed
neural networks.

-e remainder of this paper is arranged as follows: in
Section 2, we propose the problem of stability and stabili-
zation of delayed neural networks with hybrid impulses and
give some necessary preliminaries. In Section 3, a criterion
for determining the stability of delayed neural networks with
hybrid impulses is established, and then a pinning impulsive
controller is designed to stabilize delayed neural networks.
In Section 4, numerical examples are given to illustrate our
theoretical results. Finally, Section 5 presents the conclusion.

Notation 1 . -e standard notations are used in this paper.
R+ and Rn denote the set of nonnegative real numbers and
the n-dimensional Euclidean space. N+ denotes the set of

positive integers. -e superscript “T” represents the trans-
pose of the matrix or vector. For x ∈ Rn, |x| denotes the
Euclidean norm of x. For matrix
A ∈ Rn, ‖A‖ �

���������
λmax(ATA)


, where λmax(·) represents the

largest eigenvalue. diag(· · ·) stands for a block-diagonal
matrix. Given τ > 0, C([− τ, 0],Rn) denotes the family of
continuous functions from [− τ, 0] to Rn.

2. Preliminaries

In this section, some preliminaries including model for-
mulation, lemmas, and definitions are presented.

Consider the following neural network:

_x(t) � Cx(t) + Bg(x(t)) + Dg(x(t − τ(t))) + I, (1)

where x(t) � (x1(t), x2(t), . . . , xn(t))T ∈ Rn is the state
vector associated with the neurons; C � diag(c1, c2,

. . . , cn)< 0 is the self-feedback matrix; B � (bij)n×n and D �

(dij)n×n are the connection weight matrices;
g(x(t)) � (g1(x(t)), g2(x(t)), . . . , gn(x(t)))T denotes the
activation function of the neurons; I ∈ Rn signifies constant
external input; and τ(t) represents the time-varying delays
that satisfies 0≤ τ(t)≤ τ. For the nonlinear function g(·), we
have the following assumption.

Assumption 1. Assume that gi(·)(i � 1, 2, . . . , n) are glob-
ally Lipschitz continuous functions, i.e., there exist constants
li > 0(i � 1, 2, . . . , n) such that

gi x1(  − gi x2( 


≤ li x1 − x2


, for any x1, x2 ∈ R. (2)

Denote L � diag(l1, l2, . . . , ln).
Let x∗ be the equilibrium point of (1). For convenience,

we can shift the intended equilibrium x∗ to be original by
letting y � x − x∗, and then system (1) can be transformed
into

_y(t) � Cy(t) + Bf(y(t)) + Df(y(t − τ(t))), (3)

where y(t) � (y1(t), y2(t), . . . , yn(t))T ∈ Rn is the state
vector of the transformed system. It follows from (2) that the
function f(y) � g(y + x∗) − g(x∗) satisfies

fi x1(  − fi x2( 


≤ li x1 − x2


, for any x1, x2 ∈ R. (4)

In consideration of the time-varying impulse effects, the
impulsive delayed neural network can be obtained in the
following form:

_y(t) � Cy(t) + Bf(y(t)) + Df(y(t − τ(t))), t≠ tk,

y t
+
k(  � αky t

−
k( , k ∈ N+,



(5)

where t1, t2, t3, . . . ,  is a sequence of strictly increasing
impulsive moments. αk ∈ R represents the strength of im-
pulses. We assume that y(t) is right-continuous at
t � tk, i.e., y(tk) � y(t+

k ). Hence, the solutions of (5) are
piecewise right-hand continuous functions which are dis-
continuous at t � tk for k ∈ N+. -e initial condition of (5) is
given by y(t) � ϕ(t) ∈ C([− τ, 0],Rn).
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Definition 1. (average impulsive interval; see [42]). Ta is
called the average impulsive interval of the impulsive se-
quence ζ � t1, t2, . . . ,  if

T − t

Ta

− N0 ≤Nζ(T, t)≤
T − t

Ta

+ N0, for allT≥ t≥ 0,

(6)

where N0 is a positive integer and Ta is a positive number.
Nζ(T, t) denotes the impulsive times of the impulsive se-
quence ζ in the time interval (t, T).

Definition 2 (average impulsive strength). α is called the
average impulsive strength of the sequence

ζ(T, t) � tl, tl+1, . . . , tl+Nζ(T,t)− 1 for all T≥ t≥ 0 if

αNζ(t,0)



 + αNζ(t,0)+1



 + · · · + αNζ(T,0)− 1





α
− N1 ≤Nζ(T, t)

≤
αNζ(t,0)



 + αNζ(t,0)+1



 + · · · + αNζ(T,0)− 1





α
+ N1,

(7)

where N1 is a positive integer and α is a positive number.
Nζ(T, t) denotes the impulsive times of the impulsive se-
quence ζ in the time interval (t, T).

Furthermore, inequality (7) implies that

α 1 −
N1

Nζ(T, t)
 ≤

αNζ(t,0)



 + αNζ(t,0)+1



 + · · · + αNζ(T,0)− 1





Nζ(T, t)

≤ α 1 +
N1

Nζ(T, t)
 .

(8)

Remark 1. -e concept of average impulsive gain was
proposed in [48], where the problem of the globally expo-
nential synchronization of coupled neural networks with
hybrid impulses was investigated. However, when the time-
varying delays are taken into consideration simultaneously,
this idea may fail to be applied to the analysis of the stability
of delayed neural networks with hybrid impulses. To deal
with the difficulties coming from time-varying delays, a new
concept named “average impulsive strength” is introduced
in this paper. -e conditions of our concept are more strict,
so it can ensure the establishment of the inequality in the
comparison principle.

Definition 3. Impulsive neural networks (5) are said to be
globally exponentially stable if there exist constants
M> 0, λ> 0, and T0 > 0 such that, for any initial values,
|y(t)|2 ≤Me− λt holds for all t≥T0.

Lemma 1 (see [42]). For any vectors x, y ∈ Rn, scale ϵ> 0,
and positive definite matrix Q ∈ Rn×n, the following in-
equality holds: 2xTy≤ εxTQx + ε− 1yTQ− 1y.

Lemma 2 (see [35]). Let 0≤ τi(t)≤ τ.
F(t, u, u1, u2, . . . , um): R+ × R × · · · × R

√√√√√√√√m+1

⟶ R is nonde-
creasing in ui for each fixed (t, u, u1, . . . ,

ui− 1, ui− 2, . . . , um), i � 1, 2, . . . , m, and Ik(u): R⟶ R is
nondecreasing in u.

Suppose that

D
+
u(t)≤F t, u(t), u t − τ1(t)( , . . . , u t − τm(t)( ( ,

u t
+
k( ≤ Ik u t

−
k( ( , k ∈ N+,

⎧⎨

⎩

D
+](t)>F t, ](t), ] t − τ1(t)( , . . . , ] t − τm(t)( ( ,

] t
+
k( ≥ Ik ] t

−
k( ( , k ∈ N+.

⎧⎨

⎩

(9)

Aen, u(t)≤ ](t), for − τ ≤ t≤ 0, implies that u(t)≤ ](t),
for t≥ 0.

3. Main Results

In this section, we will analyze the global exponential sta-
bility of delayed neural networks with hybrid impulses in-
cluding both destabilizing and stabilizing impulses.

Theorem 1. Consider time-varying neural network (5) with
hybrid impulses including both destabilizing and stabilizing
impulses. Suppose that Assumption 1 holds and that the
average impulsive interval of the impulsive sequence
ζ � t1, t2, . . . ,  is Ta. Aen, neural networks (5) with hybrid
impulses are globally exponentially stable if the following
inequality holds:

η1 + M0q< 0, (10)

where η1 � p + 2 ln α/Ta, p � λmax(C + CT + BBT +

LTL + DDT), q � λmax(LTL), and M0 is a constant satisfying
the following condition: when α≥ 1, M0 � e2N1α2N0 ; other-
wise, M0 � e2N1α− 2N0 .

Proof. Consider the Lyapunov function V(t) � yT(t)y(t).
-en, the derivative of V(t) along the trajectories of system
(5) can be obtained as follows:

D
+
V(t) � y

T
(t) C + C

T
 y(t) + 2y

T
(t)Bf(y(t))

+ 2y
T
(t)Df(y(t − τ(t))), t ∈ tk− 1, tk( , k ∈ N+.

(11)

By Lemma 1, one obtains

2y
T
(t)Bf(y(t)) ≤y

T
(t)BB

T
y(t) + f

T
(y(t))f(y(t))

≤y
T
(t)BB

T
y(t) + y

T
(t)L

T
Ly(t),

(12)

2y
T
(t)Df(t − τ(t)))≤y

T
(t)DD

T
y(t) + f

T
(y(t − τ(t)))

· f(y(t − τ(t)))≤y
T
(t)DD

T
y(t)

+ y
T
(t − τ(t))L

T
Ly(t − τ(t)).

(13)

From (11) to (13), it follows that
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D
+
V(t)≤y

T
(t) C + C

T
+ BB

T
+ L

T
L + DD

T
 y(t)

+ y
T
(t − τ(t))L

T
Ly(t − τ(t))

≤ λmax C + C
T

+ BB
T

+ L
T
L + DD

T
 V(t)

+ λmax L
T
L V(t − τ(t)) � pV(t) + qV(t − τ(t)),

t ∈ tk− 1, tk( , k ∈ N+.

(14)

For t � tk, one has

V t
+
k(  � y

T
t
+
k( y t

+
k(  � α2ky

T
t
−
k( y t

−
k(  � α2kV t

−
k( . (15)

For any ε> 0, let ](t) be a unique solution of the fol-
lowing impulsive delay system:

_](t) � p](t) + q](t − τ(t)) + ε, t≠ tk,

] t
−
k(  �α2k] t

−
k( , t � tk k ∈ N+,

](t) � |ϕ(t)|
2
, − τ ≤ t≤ 0.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(16)

According to Lemma 2, one gets

](t)≥V(t), t≥ 0. (17)

By the formula for the variation of parameters, it follows
from (16) that

](t) � w(t, 0)](0) + 
t

0
w(t, s)[q](s − τ(s) + ε]ds, (18)

where w(t, s), t> s≥ 0, is the Cauchy matrix of the linear
system

_z(t) � pz(t), t≠ tk,

z t
+
k(  �α2kz t

−
k( , t � tk k ∈ N+.

⎧⎨

⎩ (19)

According to the representation of the Cauchy matrix,
we can obtain the following estimation: if Nζ(t, s)> 0, one
has

w(t, s) � e
p(t− s)


s<tk ≤t

α2k

≤ e
p(t− s)

αNζ(s,0)



 + αNζ(s,0)+1



 + · · · + αNζ(t− s)− 1





Nζ(t − s)
⎛⎝ ⎞⎠

2Nζ(t− s)

≤ e
p(t− s) α 1 +

N1

Nζ(t − s)
  

2Nζ(t− s)

≤ e
2N1e

p(t− s)α2Nζ(t− s)
.

(20)

Otherwise, when Nζ(t, s)> 0, one also has

w(t, s) � e
p(t− s) ≤ e

2N1e
p(t− s)α2Nζ(t,s)

. (21)

Since the average impulsive interval of the impulsive
sequence ζ � t1, t2, . . . ,  is equal to Ta, we have

t − s

Ta

− N0 ≤Nζ(t, s)≤
t − s

Ta

+ N0, for all t≥ s≥ 0. (22)

If α≥ 1, it follows from (20) to (22) that

w(t, s)≤ e
2N1e

p(t− s)α2 t− s/Ta+N0( ) ≤ α2N0e
2N1e

p+2lnα/Ta( )(t− s)
.

(23)

Similarly, when α< 1, it follows from (20) and (22) that

w(t, s)≤ e
2N1e

p(t− s)α2 t− s/Ta− N0( ) ≤ α− 2N0e
2N1e

p+2lnα/Ta( )(t− s)
.

(24)

Letting ε⟶ 0 and summarizing inequalities (23) and
(24) give that there exists constant
M0 � max α2N0e2N1 , α− 2N0e2N1  such that

w(t, s)<M0e
η1(t− s)

, (25)

where η1 � p + 2lnα/Ta.
Let η � M0sup− τ≤s≤0|ϕ(s)|2. From (18) and (25), one

obtains

](t)≤ ηe
η1t

+ 
t

0
M0e

η1(t− s)
[q](s − τ(s)) + ε]ds. (26)

Define h(v) � v + η1 + M0qevτ . It follows from (10) that
h(0)< 0. Since h(+∞) � +∞ and _h(v)> 0, there exists a
unique λ> 0 such that

λ + η1 + M0qe
λτ

� 0. (27)

On the contrary, it is obvious from (10) that
M− 1

0 η1 + q< 0. Hence,

](t) � |ϕ(t)|
2 ≤ η< ηe

− λt
−

ε
M

− 1
0 η1 + q

, − τ ≤ t≤ 0. (28)

-en, we claim

](t)< ηe
− λt

−
ε

M
− 1
0 η1 + q

. (29)

If inequality (29) is not true, there exists t∗ > 0 such that

] t
∗

( ≥ ηe
− λt∗

−
ε

M
− 1
0 η1 + q

, (30)

](t)< ηe
− λt

−
ε

M
− 1
0 η1 + q

, t< t
∗
. (31)

From (26) to (31), we have

] t
∗

( ≤ ηe
η1t∗

+ 
t∗

0
M0e

η1 t∗− s( )
[q](s − τ(s)) + ε]ds

< e
η1t∗ η −

ε
M

− 1
0 η1 + q

+ 
t∗

0
M0e

− η1s


· q ηe
− λ(s− τ(s))

−
ε

M
− 1
0 η1 + q

  + ε ds.

(32)

It is derived from (27) and (32) that
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] t
∗

( < e
η1t∗ η −

ε
M

− 1
0 η1 + q

+ ηe
− η1+λ( )t∗



− η −
ε

M
− 1
0 η1 + q

e
− η1t∗

+
ε

M
− 1
0 η1 + q



� ηe
− λt∗

−
ε

M
− 1
0 η1 + q

,

(33)

which contradicts with (30), and so, (29) holds. Letting
ε⟶ 0, one gets from (17) that

V(t)≤ ](t)≤ ηe
− λt

. (34)

By Definition 3, the solution y(t) of impulsive neural
networks (5) is exponentially stable. -e proof is hence
completed. □

Remark 2. -e concepts of average impulse interval [42, 43]
and average impulsive strength are employed to characterize
the features of hybrid impulses. -e classification of stabi-
lizing and destabilizing impulses is not taken into account;
just the overall effect of the impulses is taken into consid-
eration. By utilizing the comparison principle [35, 44],
Lyapunov theory [35, 42–44], Young’s inequality technique
[42, 43, 48], average impulsive interval approach [42, 43],
and the concept of average impulsive strength, -eorem 1
presenting conditions of ensuring the global exponential
stability of delayed neural networks (5) is derived.

In the following section, a pinning impulsive controller
will be designed to globally and exponentially stabilize
neural networks (5). In order to drive system (5) into the
equilibrium point x∗, the following impulsive controller is
constructed for l partial variables (l< n):

ui tk(  �

0, i ∉ D tk( ,



+∞

k�1
μyi(t)δ t − tk( , i ∈ D tk( ,

⎧⎪⎪⎨

⎪⎪⎩
(35)

where μ ∈ (− 2, − 1)∪ (− 1, 0) is a constant, which means that
the impulsive effects can be used to stabilize the delayed
neural networks; the index set of l partial variables D(tk)

which should be impulsively controlled is defined as follows:
at time instant tk, for the error of states of the partial
variables y1(tk), y2(tk), . . . , yn(tk), one can reorder the
states such that |yp1

(tk)|≥ |yp2
(tk)|≥ · · · ≥ |ypn

(tk)|.
-en, the index set of l controlled variables D(tk) is

defined as D(tk) � {p1, p2, . . ., pl}. After adding pinning
impulsive controller (35) to the variables D(tk), the con-
trolled delayed neural networks can be rewritten as follows:

_y(t) � Cy(t) + Bf(y(t)) + Df(y(t − τ(t))), t≠ tk,

yi t
+
k(  � μyi t

−
k(  + yi t

−
k( , i ∈ D tk( ,

y t
+
k(  � yi t

−
k( , i ∉ D tk( .

(36)

-e initial conditions of delayed neural networks (36)
are given by

yi(t) � ϕi(t) − τ ≤ t≤ 0 (i � 1, 2, . . . , n), (37)

where ϕi(t) ∈ C([− τ, 0],R) with C([− τ, 0],R) being the set
of continuous functions from [− τ, 0] to R.

Theorem 2. Let ρ � n + lμ(μ + 2)/n ∈ (0, 1). Suppose that
Assumption 1 holds and that the average impulsive interval
ζ � t1, t2, . . . ,  is Ta. Aen, neural networks (36) are globally
exponentially stabilized to the state x∗ by pinning controller
(35) if the following inequality holds:

η2 + M1q< 0, (38)

where η2 � p + ln ρ/Ta, p � λmax(C + CT + BBT + LTL +

DDT), q � λmax(LTL), andM1 � ρ− N0 .

Proof. Construct a Lyapunov function in the form of

V(t) � y
T
(t)y(t) � 

n

i�1
y
2
i (t). (39)

By a similar analysis as -eorem 1, for any t ∈ [tk− 1, tk),
taking the derivative of V(t) along the solution of (36) gives
that

D
+
V(t)≤pV(t) + qV(t − τ(t)). (40)

For any k ∈ N+, we have

V t
+
k(  � 

n

i�1
y

T
i t

+
k( yi t

+
k(  � 

i∈D tk( )

(1 + μ)
2
y

T
i t

−
k( yi t

−
k( 

+ 

i∉D tk( )

y
T
i t

−
k( yi t

−
k( .

(41)

For any k ∈ N+, let φ(t−
k ) � min |yi(t−

k )|: i ∈ D(tk)  and
ψ(t−

k ) � max |yi(t−
k )|: i ∉ D(tk) . According to the selec-

tion of parameters in setD(tk), we have φ(t−
k )≥ψ(t−

k ). Since
ρ � 1 + l/n · μ(μ + 2) ∈ (0, 1), we get (1 − ρ)(n − l) �

[ρ − (1 + μ)2]l. Hence, one has

(1 − ρ) 

i ∉ D tk( )

y
T
i t

−
k( yi t

−
k( ≤ (1 − ρ)(N − l) ψ t

−
k( ( 

2

≤ (1 − ρ)(N − l) φ t
−
k( ( 

2 ≤ l ρ − (1 + μ)
2

  φ t
−
k(( ( 

2

≤ ρ − (1 + μ)
2

  

i∈D tk( )

y
T
i t

−
k( yi t

−
k( ,

(42)

which follows that

(1 + μ)
2



i∈D tk( )

y
T
i t

−
k( yi t

−
k(  + 

i ∉ D tk( )

y
T
i t

−
k( yi t

−
k( 

≤ ρ
n

i�1
y

T
i t

−
k( yi t

−
k( .

(43)

From (41) to (43), we have
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V t
+
k( ≤ ρV t

−
k( . (44)

For any ε> 0, let ](t) be a unique solution of the fol-
lowing impulsive delayed system:

_](t) � p](t) + q] t − τm(t)(  + ε, t≠ tk,

] t
+
k(  � ρ] t

−
k( , t � tk k ∈ N+,

](t) � |ϕ(t)|
2
, − τ ≤ t≤ 0.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(45)

According to Lemma 2, we can get

](t)≥V(t), t≥ 0. (46)

By the formula for the variation of parameters, it follows
from (45) that

](t) � w(t, 0)](0) + 
t

0
w(t, s)[q](s − τ(s) + ε]ds, (47)

where w(t, s), t> s≥ 0, is the Cauchy matrix of the linear
system

_z(t) � pz(t), t≠ tk,

z t
+
k(  � ρz t

−
k( , t � tk k ∈ N+.

 (48)

According to the representation of the Cauchy matrix,
since 0< ρ< 1 and t − s/Ta − N0 ≤Nζ(t, s)≤ t − s/Ta + N0,
we can obtain the following estimation:

w(t, s) � e
p(t− s)


s<tk<t

ρ≤ e
p(t− s)ρNζ(t,s) ≤ e

p(t− s)ρt− s/Ta− N0

� M1e
η2(t− s)

,

(49)

where M1 � ρ− N0 and η2 � p + lnρ/Ta. Let M2 � M1
sup− τ≤s≤0|ϕ(s)|2. -en, it can be derived from (45) and (49)
that

](t)≤M2e
η2t

+ 
t

0
M1e

η2(t− s)
[q](s − τ(s)) + ε]ds. (50)

Define h(v) � v + η2 + M1qevτ . It follows from (38) that
h(0)< 0. Since h(+∞) � +∞ and _h(v)> 0, there exists
unique λ> 0 such that

λ + η2 + M1qe
λτ

� 0. (51)

On the contrary, it is obvious from (38) that
M− 1

1 η2 + q< 0. Hence,

](t) � |ϕ(t)|
2 <M2e

− λt
−

εM1

η2 + M1q
, − τ ≤ t≤ 0. (52)

-en, we claim

](t)<M2e
− λt

−
εM1

η2 + M1q
. (53)

If inequality (51) is not true, there exists t∗ > 0 such that

] t
∗

( ≥M2e
− λt∗

−
εM1

η2 + M1q
, (54)

](t)<M2e
− λt

−
εM1

η2 + M1q
, t< t

∗
. (55)

From (50) and (55), we have

] t
∗

( ≤M2e
η2t∗

+ 
t∗

0
M1e

η2 t∗− s( )
[q](s − τ(s)) + ε]ds

< e
η2t∗

M2 −
εM1

η2 + M1q
+ 

t∗

0
M1e

− η2s


· q M2e
− λ(s− τ(s))

−
εM1

η2 + M1q
  + ε ds.

(56)

It is derived from (51) and (56) that

] t
∗

( < e
η2t∗

M2 −
εM1

η2 + M1q
+ M2e

− η2+λ( )t∗
− M2

+
εM1

η2 + M1q
−

εM1

η2 + M1q
e

− η2t∗
 � M2e

− λt∗

−
εM1

η2 + M1q
,

(57)

which contradicts with (54), and so, (53) holds. Letting
ε⟶ 0, one gets from (17) that

V(t)≤ ](t)≤M2e
− λt

. (58)

-e proof is completed. □

4. Numerical Examples

Two numerical examples are presented to demonstrate the
validity of the above results in this section.

Example 1. Consider neural networks (5) with the following
parameters:

C �
− 3 0

0 − 8
⎡⎢⎣ ⎤⎥⎦,

B �
0.3 0.1

0.2 0.2
⎡⎢⎣ ⎤⎥⎦,

D �
0.4 0.2

0 0.2
⎡⎢⎣ ⎤⎥⎦,

L �
0.1 0

0 0.2
⎡⎢⎣ ⎤⎥⎦,

(59)

and f(y(t)) � tanh(0.8y(t)), τ(t) � et/1 + et, where y(t) �

(y1(t), y2(t))T is the state vector of the neural networks. By
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calculation, we can easily know η1 + M0q � − 3.5126. Fig-
ure 1 represents a hybrid impulsive sequence where
Ta � 0.2, N0 � 5, N1 � 2, and α � 1.2. -e effect of the
hybrid impulsive sequence is destabilizing.

According to-eorem 1, neural networks (5) with time-
varying impulses will be globally exponentially stable if
condition (10) is satisfied. Our numerical simulation draws
the conclusion of Figure 2. From Figure 2, it can be observed
that the state response of the neural networks tends to be
stable quickly, which means the simulation results are
consistent with the theory analysis.

Example 2. Consider neural networks (5) with

C �

1 0 0 0 0 0

0 − 4 0 0 0 0

0 0 − 1 0 0 0

0 0 0 − 3 0 0

0 0 0 0 − 2 0

0 0 0 0 0 − 3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

B �

0.08 0 − 0.1 0 0 0

0 0.02 0 0.1 − 0.3 0

− 0.05 0 − 0.1 0.5 0 0.4

0.4 0.2 − 0.3 0.6 − 0.2 0.1

0 0 0 0.2 − 0.3 0

0.1 − 0.2 0 0 0.5 − 0.2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

D �

0.2 0.1 0 0 0 0

0 0.1 0.2 0.3 0 0

0.1 0 − 0.2 0 4 0.2

0 0.1 0 0.1 0.2 0.2

0 0.1 0.2 0.3 0 0

0.2 0.1 0.3 0 0 0.2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

L �

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(60)

and f(y(t)) � tanh(0.8y(t)), τ(t) � et/1 + et, where y(t) �

(y1(t), y2(t), . . . , y6(t))T is the state vector of the neural

networks. -e state response of neural networks (5) tends to
be unstable without any controller, as is depicted in Figure 3.
We select controller (35) with Ta � 0.25, N0 �

3, μ � − 1.5, l � 3, and n � 6. By calculation, we can easily
know η2 + M1q � − 4.570469. According to -eorem 2, the
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Figure 1:-ehybrid impulsive sequencewithTa � 0.2, N0 � 5, N1 � 2,
and α � 1.2.
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Figure 2: -e state response of the neural networks in -eorem 1.
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Figure 3: -e state response of neural networks (5) without any
controller in -eorem 2.
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pinning impulsive controller ensures global exponential
stability of the considered neural networks. Simulation re-
sults approve the declared property (see Figure 4).

5. Conclusion

In this paper, the stability and stabilization problems of
delayed neural networks with hybrid impulses have been
studied. Based on Lyapunov stability theory combined with
the comparison principle and the conception of average
impulsive strength, a criterion for the exponential stability of
delayed neural networks with hybrid impulses has been
proposed. -en, a pinning impulsive controller has been
designed to globally and exponentially stabilize the delayed
neural networks with hybrid impulses. By revising the proof
of the main results, some methods related to the concepts of
average impulsive interval and average impulsive strength
have been used to make the theoretical results less con-
servative. -e derived stabilization criterion and the con-
vergence rate are closely related with the proportion of the
controlled neurons, time delay, impulsive strengths, and
average impulsive interval of the neural networks. -e
validity of the theoretical results has been well explained by
simulation results. In the future research, finite-time sta-
bilization, persistent dwell-time, and state constraints will be
included.
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To solve the consensus problem of fractional-order multiagent systems with nonzero initial states, both open- and closed-loop
PDα-type fractional-order iterative learning control are presented. Considering the nonzero states, an initial state learning
mechanism is designed.*e finite time convergences of the proposed methods are discussed in detail and strictly proved by using
Lebesgue-p norm theory and fractional-order calculus. *e convergence conditions of the proposed algorithms are presented.
Finally, some simulations are applied to verify the effectiveness of the proposed methods.

1. Introduction

Fractional-order multiagent systems (FOMASs) is com-
posed of multiple agents, which can coordinate with each
other to perceive the external environment, and apply
fractional-order calculus principle. Due to the autonomy,
fault tolerance, flexibility, scalability, and collaboration
capabilities of the FOMASs, it can be applied to the in-
telligent environment perception and intelligent operation,
such as air formation control, traffic vehicle control, data
convergence, sensor networks, and so on [1–4]. In order to
realize the wide application of FOMASs, it is necessary to
design the coordinated control effectively, including con-
sensus control, formation control, coalescence control, and
rendezvous control. And the consensus problem is the
basic problem in FOMASs distributed coordination con-
trol. Its purpose is to design an appropriate distributed
consensus control protocol based on the neighbor states of
the agent and its own state information, so that the states of
all the agents converge to the same value at a specific
position or a certain moment.

*e consensus problem of FOMASs was studied in [5]
for the first time, in which the relationship between the
consensus problem of FOMAS and the number of agents

and fractional orders was discussed, and some control
strategies were given to improve the convergence speed of
the FOMASs. In the same year, Cao and Ren [6] also applied
the consensus theory to the formation control problem of
FOMASs. Since then, the research and application of
FOMASs consensus problems have been emerging, in-
cluding linear fractional-order multiagents [7–10] and
nonlinear fractional-order multiagents [11–14]. Song and
Cao [7] used the stability theory of FOSs and linear matrix
inequality to study the consensus problem of linear
FOMASs. And then they further considered the robust
consensus problem of linear FOMASs when the fractional
order satisfies α ∈ (0, 2)[8]. Yu et al. [9] used the algebraic
graph theory tool and the Lyapunov method to study the
consensus problem of nonlinear FOMASs with a leader-
following structure. Similarly, in [10, 11], the adaptive
control and the sampling data control were designed to solve
the consensus problem of nonlinear and linear FOMASs
with and without leader-following structure, and some
sufficient and necessary conditions related to fractional
order, coupling gain, and Laplacian matrix spectrum were
obtained to ensure that the system can achieve consensus.
For the study of nonlinear FOMASs, there are also literatures
[12–14].
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However, most of the research just consider the as-
ymptotic convergence problem of FOMASs, which means
the tracking errors of the fractional-order agents gradually
converge to zero as time increases. On some special occa-
sions, such as industrial automatic production lines, the
asymptotic convergence cannot meet the actual demands. As
we all know, fractional-order iterative learning control
(FOILC)methods for repetitive running systems can achieve
complete tracking problems in finite time [15,16]. In [17,18],
both distributed Dα- and PDα-type FOILC were proposed
and applied to linear FOMASs with fixed topology. Fur-
thermore, for the linear time-varying integer-order system,
Luo et al. proposed a FOILC framework with initial state
learning and presented sufficient and necessary conditions
for open-loop and closed-loop Dα-type FOILC. But for
FOMASs, it has not been researched using open and closed
FOILC.

In the literature [17], the consensus problem of FOMASs
is discussed using FOLIC. However, the authors just con-
sidered the zero initial states of FOMASs, which must ensure
the strict positioning of the initial state during the iteration
process. In this paper, for linear time-varying FOMASs with
fixing the initial states over the directed graph, we design
several fractional iterative learning controllers with the
initial states learning algorithms. *e contributions are
summarized as follows. First, considering the nonzero initial
state of FOMASs, we propose three different forms of
fractional-order iterative learning updating laws. Second, an
initial state learning algorithm together with the FOILC
updating laws is designed. Finally, the convergences of the
proposed algorithm are discussed and the convergence
conditions are presented. *e theoretical analysis and
simulation experiments verify the effectiveness of the pro-
posed method.*e results show that both the tracking errors
and the nonzero initial states can tend to zero in finite time
as the iterative number increases.

*e remainder of this paper is organized as follows.
Section 2 overviews the related theories related to this
article, including the graph theory, the definition of frac-
tional calculus, and the problem formulation. *e algo-
rithm design and analysis employing FOILC with initial
learning are discussed in Section 3. Section 4 demonstrates
the simulation results to verify the effectiveness of the
proposed methods. And briefly, conclusions are presented
in Section 5.

2. Preliminaries

In this part, first, we introduce some basic definitions,
lemmas, and properties, which will be used in the following
sections.

2.1. Graph eory. Consider N multiagents with the same
dynamic. *e direct graph G � V ,E,M{ } is used to describe
the information transfer between multiagents, where V �

v1, . . . , vN  is the node set, E⊆V × V is the edge set, and
M � (aik)N×N is the adjacency matrix of the direct graph.
(k, i) ∈ E⊆V × V is a direct edge of the agents k and i. *e set

of neighbors of the ith agent is denoted by Ni � k ∈ V : (k,{

i) ∈ E}. *e matrix element aik > 0 represents node k passing
information to node i; otherwise, aik � 0. Here, the com-
munication topology graph has no self-loop phenomenon,
namely, ai,i � 0. D � diag di, i ∈ SN  is defined as the de-
gree matrix, where di � 

N
k�1 ai,k, and L � D − M is the

Laplacian matrix of the direct graph.

2.2.eNorm. In this paper, the vector Euclidian norm and
its induced matrix norm is defined as ‖ · ‖. Im ∈ Rm×m is the
identity matrix. Cm[0, T] is defined as a function set and the
mth derivative ofCm[0, T]∧ # is continuous over a finite time
interval [0, T]. R and N are the sets of real and natural
numbers. SN � 0, 1, . . . , N{ }. Denote the Kronecker product
by ⊗ , for some matrices A,B, C, and D, the following
properties will be satisfied such that

k(A⊗B) � kA⊗B � A⊗ kB, (1)

(A+B)⊗C � A⊗C + B⊗C, (2)

(A⊗B)(C⊗D) � AC⊗BD, (3)

‖A⊗B‖ � ‖A‖ · ‖B‖. (4)

Definition 1. Assuming the continuous vector function
f: [0, T]⟶ Rnf(t) � [f1(t), f2(t), . . . , fn(t)]T, the Leb-
esgue-p norm of f(t) is defined as

‖f(t)‖p � 
T

0
max
1≤i≤n

|f
i
(t)| 

p

dt 

(1/p)

, 1≤p<∞. (5)

Lemma 1 (see [19]). Assuming the functions g(t) ∈ Lq[0, T]

and h(t) ∈ Lp[0, T], then the convolution generalized Yong
inequality of the functions g(t) and h(t) is

‖(g∗h)(t)‖r ≤ ‖g(t)‖q‖h(t)‖p, (6)

where 1≤ p, q, r≤∞, (1/r) � (1/p) + (1/q) − 1, and
(g∗h)(t) � 

t

0 g(t − τ)h(τ)dτ is the convolution integral of
g(t) and h(t). In particular, if r � p, the inequality is con-
verted to ‖(g∗h)(t)‖p ≤ ‖g(t)‖1‖h(t)‖p.

2.3. Fractional Calculus

Definition 2 (see [21]). *e [21, 22] Riemann–Liouville
fractional integrals of f(t) with order α ∈ (0, 1) are defined
as

t0
D

− α
t

f(t) �
1
Γ(α)


t

t0

(t − τ)
α− 1

f(τ)dτ, t> t0( ,

tD
− α
t f(t) �

1
Γ(α)


T

t
(τ − t)

α− 1
f(τ)dτ, (t<T),

(7)

where Γ(·) is gamma function. *e left- and right-sided
Caputo derivatives are
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C
t0

D
α
t f(t) � t0

D
− ([α]− α+1)
t

d[α]+1

dt
[α]+1 f(t) , t> t0( ,

C
t D

α
Tf(t) � tD

− ([α]− α+1)
T

d[α]+1

dt
[α]+1 f(t) , (t<T),

(8)

where α ∈ R+ and [α] means the integral part of α.

Lemma 2 (see [20]). Suppose the functions f(t),g(t) are
continuous in [0, T], and C

t D
α
Tf(t), C

0 D
α
Tg(t)(t ∈ [0, T])

exist, then the fractional integration by parts is


T

0

C
t D

α
Tf(t) g(t)dt � 

T

0
f(t)

C
0 D

α
Tg(t) dt. (9)

Definition 3 (see [20, 23]). *e Mittag–Leffler function can
be described as

Eα,β(z) � 
∞

k�0

z
k

Γ(αk + β)
α> 0, β> 0, z ∈ C

n×n
( . (10)

Particularly, when β � 1, we can obtain

Eα,1(z) � Eα(z) � 
∞

k�0

z
k

Γ(αk + 1)
, α> 0, z ∈ C

n×n
( .

(11)

Lemma 3 (see [20]). Let Φα,β(A, t) � tβ− 1Eα,β(Atα)t ∈
[0, +∞)α> 0, β> 0, z ∈ Cn×n; then we have
C
τD

1− α
t f(t)Φα,1(A, t − τ) � Φα,α(A, t − τ), 0< α< 1,

d
dτ
Φα,1(A, t − τ) � − Φα,α(A, t − τ)A, α> 0, A ∈ C

n×n
.

(12)

Lemma 4 (see [23]). For the initial value problem
C
t0

D
α
t x(t) � Ax(t) + Bu(t),

x t0(  � x0.

⎧⎨

⎩ , A ∈ C
n×n

, B ∈ C
n×p

, 0< α< 1.

(13)

*e Volterra-type nonlinear integral equation can be
obtained as

x(t) � Φα,1(A, t)x0 + 
t

t0

Φα,α(A, t − τ)Bu(τ)dτ. (14)

Property 1. If f(t) ∈ C(t0,∞), then D1− αDαf(t) � f(1)(t),

α ∈ (0, 1), where f(1)(t) � (d/dt)f(t).

3. Problem Description

Considering N homogeneous fractional-order linear time-
delay MASs, it is assumed that each agent is completely
nonregular and has repeated operational characteristics in a

finite time interval. At the ith iteration, the dynamics of the
jth agent can be described as follows:

C
0 D

α
t xi,j(t) � Axi,j(t) + Bui,j(t),

yi,j(t) � Cxi,j(t),

⎧⎨

⎩ (15)

where t ∈ [0, T], C
0 D

α
t xi,j(t) is the left-sided α-order deriv-

ative of xi,j(t), α ∈ (0, 1). xi,j(t) ∈ Rm is the state vectors,
ui,j(t) ∈ Rm1 and yi,j(t) ∈ Rm2 are the input and output
vectors, respectively, and A,B,C are constant matrices with
m × m, m × m1, and m2 × m.

*e expected trajectory yd(t) on the finite-time interval
[0, T] is generated by the virtual leader and it is described as

C
0 D

α
t xd(t) � Axd(t) + Bud(t),

yd(t) � Cxd(t),

⎧⎨

⎩ (16)

where ud(t) is the desired control input, and it is continuous
and unique control input.

If the virtual leader is the agent 0, the new graph can be
expressed as G � 0∪V ,E, M , where E and M are the new
edge set and the new adjacency matrix of G. *e purpose is
to design appropriate FOILC algorithms that enable each
agent in the network topology to track the leader’s trajectory
over a finite time interval.

ξi,j(t) is defined as the distributed information of the jth
agent, which is measured or received from other agents at
the ith iteration. Consider

ξi,j(t) � 
k∈Nj

aj,k yi,k(t) − yi,j(t)  + sj yd(t) − yi,j(t) ,

(17)

where aj,k is the entry of adjacency matrixM, sj � 1 if the jth
agent can obtain the desired trajectory, and sj � 0 otherwise.

*e tracking error of the jth agent is defined as
ei,j(t) � yd(t) − yi,j(t). *en, equation (17) can be reor-
ganized as

ξi,j(t) � 
k∈Nj

aj,k ei,j(t) − ei,k(t)  + sjei,j(t).
(18)

Define column stack vectors in the ith iteration

xi(t) � xi,1(t)
T

, xi,2(t)
T
, . . . , xi,N(t)

T
 

T
,

ei(t) � ei,1(t)
T
, ei,2(t)

T
, . . . , ei,N(t)

T
 

T
,

ui(t) � ui,1(t)
T
, ui,2(t)

T
, . . . ,ui,N(t)

T
 

T
,

ξi(t) � ξi,1(t)
T
, ξi,2(t)

T
, . . . , ξi,N(t)

T
 

T
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(19)

According to (19), (18) can be reorganized in a compact
form

ξi(t) � (L + S)⊗ Im( ei(t), (20)

where L is the Laplacian matrix of graphG, Im is unit matrix,
and S � diag sj, j ∈ SN .
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Similarly, equation (15) can be rearranged as
C
0 D

α
t xi(t) � IN ⊗A( xi(t) + IN ⊗B( ui(t).

yi(t) � IN ⊗C( xi(t).

⎧⎨

⎩ (21)

3.1. Open-Loop PDα-type FOILC. For FOMASs described by
(15), considering the nonzero initial state, the open-loop
PDα-type FOILC algorithm with initial state learning is
proposed as follows:

ui+1,j(t) � ui,j(t) + ΓP1ξi,j(t) + ΓD1
C
0 D

α
t ξi,j(t),

xi+1,j(0) � xi,j(0) + BΓD1ξi,j(0).

⎧⎨

⎩ (22)

Similar to (20), the updating law (22) can be rewritten as

ui+1(t) � ui(t) + (L + S)⊗ΓP1( ei(t) + (L + S)⊗ΓD1( 
C
0 D

α
t ei(t),

xi+1(0) � xi(0) + (L + S)⊗BΓD1( ei(0).

⎧⎨

⎩

(23)

In order to facilitate the convergence analysis of the
proposed methods, the following assumptions hold.

Assumption 1. CB is of full column rank.

Remark 1. In order to guarantee the flawless tracking
performance, a typical supposition, i.e., identical initiali-
zation condition, is needed to be made in the ILC design.
Remember that accurate tracking can only be accomplished
with perfect initial conditions.

Assumption 2 (see [17]). *e graph G contains a spanning
tree with the leader being the root.

Remark 2. *is supposition is a prerequisite for the
FOMASs consensus tracking problem, which means all
followers can receive the leader’s information directly or
indirectly. Otherwise, due to the absence of data to make
their control inputs accurate, the isolated agents cannot keep
track of the leader’s trajectory.

Theorem 1. Consider the FOMASs (15) and under the
communication graph G, if Assumption 1 and 2 are satisfied.
Distributed PDα-type updating rule (23) is applied to the
FOMASs (15). If the matrices A,B,C and the learning gains
ΓP1 and ΓD1 satisfy the following condition:

ρ1 � I − (L + S)⊗CBΓD1
����

���� + β< 1, (24)

where β � ‖IN ⊗ C‖‖(L + S)⊗ (BΓP1 + ABΓD1)‖‖Φα,α(IN ⊗
A, t)‖1, then limi⟶∞‖ei+1(t)‖p � 0. Namely, the output
yi(t) converges uniformly to the desired trajectory yd(t) as
i⟶∞.

Proof. *e convergence discussed is as follows.
Based on Lemma 4, we can write the FOMASs (15) as

follows:

xi(t) � Φα,1 IN ⊗A, t( xi(0)

+ 
t

0
Φα,α IN ⊗A, t − τ(  IN ⊗B( ui(τ)dτ.

(25)

According to equalities (21), (23), and (25), we can
obtain

ei+1(t) � 1N ⊗ yd(t) − yi+1(t)

� 1N ⊗ yd(t) − yi(t)(  − yi+1(t) − yi(t)( 

� ei(t) − IN ⊗C(  xi+1(t) − xi(t)( 

� ei(t) − IN ⊗C( Φα,1 IN ⊗A, t(  xi+1(0) − xi(0)( 

− IN ⊗C(  
t

0
Φα,α IN ⊗A, t − τ(  IN ⊗B(  ui+1(τ) − ui(τ)( dτ

� ei(t) − IN ⊗C( Φα,1 IN ⊗A, t(  (L + S)⊗BΓD1( ei(0)

− IN ⊗C(  
t

0
Φα,α IN ⊗A, t − τ(  IN ⊗B(  (L + S)⊗ ΓP1( ei(τ)dτ

− IN ⊗C(  
t

0
Φα,α IN ⊗A, t − τ(  IN ⊗B(  (L + S)⊗ ΓD1( 

C
0 D

α
Tei(t)dτ

� ei(t) − IN ⊗C( Φα,1 IN ⊗A, t(  (L + S)⊗BΓD1( ei(0)

− IN ⊗C(  
t

0
Φα,α IN ⊗A, t − τ(  (L + S)⊗BΓP1( ei(τ)dτ

− IN ⊗C(  
t

0
Φα,α IN ⊗A, t − τ(  (L + S)⊗BΓD1( 

C
0 D

α
Tei(τ)dτ

(26)
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where 1(·) is a vector in which all entries are 1. From Lemma 2 and 3, we can see that


t

0
Φα,α IN ⊗A, t − τ(  (L + S)⊗BΓD1( 

C
0 D

α
t ei(t)dτ

� 
t

0

C
τ D

1− α
t Φα,1 IN ⊗A, t − τ(   (L + S)⊗BΓD1( 

C
0 D

α
t ei(t)dτ

� 
t

0
Φα,1 IN ⊗A, t − τ(  (L + S)⊗BΓD1( 

C
0 D

1− α
t

C
0 D

α
t ei(t) dτ

� 
t

0
Φα,1 IN ⊗A, t − τ(  (L + S)⊗BΓD1( ei

′(τ)dτ

� 
t

0
Φα,1 IN ⊗A, t − τ(  (L + S)⊗BΓD1( dei(τ)

� Φα,1 IN ⊗A, t − τ(  (L + S)⊗BΓD1( ei(τ)|
t
0

− 
t

0

d
dτ
Φα,1 IN ⊗A, t − τ(  (L + S)⊗BΓD1(  ei(τ)dτ

� Φα,1 IN ⊗A, 0(  (L + S)⊗BΓD1( ei(t)

− Φα,1 IN ⊗A, t(  (L + S)⊗BΓD1( ei(0)

+ 
t

0
Φα,1 IN ⊗A, t − τ(  IN ⊗A(  IN ⊗B(  (L + S)⊗ΓD1( ei(τ)dτ

� (L + S)⊗BΓD1( ei(t) − Φα,1 IN ⊗A, t(  (L + S)⊗BΓD1( ei(0)

+ 
t

0
Φα,1 IN ⊗A, t − τ(  (L + S)⊗ABΓD1( ei(τ)dτ.

(27)

Taking (27) into (26), we further get

ei+1(t) � (I − IN ⊗C(  (L + S)⊗BΓD1( ei(t)

− IN ⊗C(  
t

0
Φα,α IN ⊗A, t − τ(  (L + S)⊗BΓP1( ei(τ)dτ

− IN ⊗C(  
t

0
Φα,1 IN ⊗A, t − τ(  (L + S)⊗ABΓD1( ei(τ)dτ

� I − (L + S)⊗CBΓD1( ei(t) − IN ⊗C(  
t

0
Φα,α IN ⊗A, t − τ(  (L + S)⊗ BΓP1 + ABΓD1( ( ei(τ)dτ.

(28)

According to Lemma 1, taking Lebesgue-p norm on both
sides of (28), we achieve

ei+1(t)
����

����p
≤ I − (L + S)⊗CBΓD1

����
���� + β  ei(t)

����
����p

� ρ1 ei(t)
����

����p
,

(29)

where

β � IN ⊗C
����

���� (L + S)⊗ BΓP1 + ABΓD1( 
����

���� Φα,α IN ⊗A, t( 
����

����1.

(30)

Recalling the condition of ρ< 1, it deduces that

ei+1(t)
����

����p
≤ ρ1 ei(t)

����
����p
≤ ρi

1 e1(t)
����

����p
. (31)

So, as the iterations number increases, i.e., i⟶∞, we
obtain

lim
i⟶∞

ei+1(t)
����

����p
� 0. (32)

It shows that the tracking errors of all the agents tend to
reach zero in finite time when i⟶∞. *e proof is
completed. When ΓP1 � 0, the open-loop PDα-type frac-
tional-order algorithm degenerates into the Dα-type frac-
tional-order algorithm, which has the following form:
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ui+1(t) � ui(t) + (L + S)⊗ ΓD1( e(α)
i (t). (33)

*us, the following corollary can be obtained. □

Corollary 1. Consider the FOMASs (15) and under the
communication graphG, if Assumptions 1 and 2 are satisfied.
Distributed Dα-type updating rule (33) is applied to the
FOMASs (15). Assuming that

I − (L + S)⊗CBΓD1
����

���� + β0 < 1 (34)

holds for all [0, T], where β0 � ‖IN ⊗C‖‖(L + S)⊗
ABΓD1‖‖Φα,α(IN ⊗A, t)‖1, then limi⟶∞‖ei+1(t)‖p � 0.
Namely, the output yi(t) converges uniformly to the desired
trajectory yd(t) as i⟶∞.

Proof. *e process of proof is similar to *eorem 1. □

3.2. Closed-Loop PDα -Type FOILC. *e closed-loop PDα

-type FOILC updating law for the FOMASs (15) is designed
as follows:

ui+1,j(t) � ui,j(t) + ΓP2ξi+1,j(t) + ΓD2
C
0 D

α
t ξi+1,j(t),

xi+1,j(0) � xi,j(0) + BΓD2ξi+1,j(0).

⎧⎨

⎩

(35)

Similar to (23), the updating law (35) can be rewritten by
the Kronecker product as

ui+1(t) � ui(t) + (L + S)⊗ ΓP2( ei+1(t) + (L + S)⊗ ΓD2( 
C
0 D

α
t ei+1(t),

xi+1(0) � xi(0) + (L + S)⊗BΓD2( ei+1(0),

⎧⎨

⎩ (36)

where L and S are the same as defined in (20).

Theorem 2. Consider the FOMASs (15) under a directed
graph G, if Assumptions 1 and 2 hold. e closed-loop
PDα-type FOILC described in (36) is applied for the system
(15). If learning gains ΓP2 and ΓD2 satisfy

0< ρ2 �
1

I +(L + S)⊗CBΓD2( 
− 1

�����

�����
− c⎛⎝ ⎞⎠

− 1

< 1, (37)

where

c � IN ⊗C
����

���� (L + S)⊗ BΓP2 + ABΓD2( 
����

���� Φα,α IN ⊗A, t( 
����

����1,

(38)

then limi⟶∞‖ei+1(t)‖p � 0. Hence, the system outputs yi(t)

can fully track the desired trajectory yd(t) in a finite time
when i⟶∞ for all t ∈ [0, T]; that is, limi⟶∞yi(t) �

yd(t), (t ∈ [0, T]).

Proof. From (15) and (36), we can get

ei+1(t) � ei(t) − IN ⊗C(  xi+1(t) − xi(t)(  � ei(t) − IN ⊗C( Φα,1 IN ⊗A, t(  xi+1(0) − xi(0)( 

− IN ⊗C(  
t

0
Φα,α IN ⊗A, t − τ(  IN ⊗B(  ui+1(τ) − ui(τ)( dτ

� ei(t) − IN ⊗C( Φα,1 IN ⊗A, t(  (L + S)⊗BΓD2( ei+1(0)

− IN ⊗C(  
t

0
Φα,α IN ⊗A, t − τ(  (L + S)⊗BΓP2( ei+1(τ)dτ

− IN ⊗C(  
t

0
Φα,α IN ⊗A, t − τ(  (L + S)⊗BΓD2( 

C
0 D

α
t ei+1(t)dτ,

(39)

where 1(·) is a vector in which all entries are 1. Similar to the derivation of (27), one can conclude that


t

0
Φα,α IN ⊗A, t − τ(  (L + S)⊗BΓD2( 

C
0 D

α
t ei+1(t)dτ � (L + S)⊗BΓD2( ei+1(t) − Φα,1 IN ⊗A, t(  (L + S)⊗BΓD2( ei+1(0)

+ 
t

0
Φα,1 IN ⊗A, t − τ(  (L + S)⊗ABΓD2( ei+1(τ)dτ.

(40)
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Substituting (40) into (39), it yields

ei+1(t) � ei(t) − IN ⊗C(  (L + S)⊗BΓD2( ei+1(t)

− IN ⊗C(  
t

0
Φα,α IN ⊗A, t − τ(  (L + S)⊗BΓP2( ei+1(τ)dτ

− IN ⊗C(  
t

0
Φα,1 IN ⊗A, t − τ(  (L + S)⊗ABΓD2( ei+1(τ)dτ

� ei(t) − (L + S)⊗CBΓD2( ei+1(τ) − IN ⊗C( 

· 
t

0
Φα,α IN ⊗A, t − τ(  (L + S)⊗ BΓP2 + ABΓD2( ( ei+1(τ)dτ.

(41)

*erefore,

I +(L + S)⊗CBΓD2( ei+1(t)

� ei(t) − IN ⊗C(  
t

0
Φα,α IN ⊗A, t − τ(  (L + S)(

⊗ BΓP2 + ABΓD2( ei+1(τ)dτ.

(42)

According to Assumption 1, one can find a feedback gain
matrix of differentiation ΓD2 such that I + (L + S)⊗CBΓD2 is
a nonsingular matrix. *erefore, premultiplying by (I + (L+

S)⊗CBΓD2)
− 1 on both sides of (42), taking Lebesgue-p

norm, and adopting the generalized Young inequality of
convolution integral, it can be concluded that

ei+1(t)
����

����p
≤ I +(L + S)⊗CBΓD2( 

− 1
�����

����� ei(t)
����

����p
+ λ ei+1(t)

����
����p

 ,

(43)

where

c � IN ⊗C
����

���� (L + S)⊗ BΓP2 + ABΓD2( 
����

���� Φα,α IN ⊗A, t( 
����

����1.

(44)

Further

ei+1(t)
����

����p
≤

1
I +(L + S)⊗CBΓD2( 

− 1
�����

�����
− c⎛⎝ ⎞⎠

− 1

ei(t)
����

����p

� ρ2 ei(t)
����

����p
.

(45)

Recalling the condition of ρ2 < 1, according to inequality
(43), it is deduced that

ei+1(t)
����

����p
≤ ρ2 ei(t)

����
����p
≤ ρi

2 e1(t)
����

����p
. (46)

From (45), when the number of iterations is large
enough, i.e., i⟶∞, we obtain

lim
i⟶∞

ei+1(t)
����

����p
⟶ 0. (47)

So, it can be proved that the errors of all the fractional-
order agents tend to zero as i⟶∞. For the FOMASs (15),
ifΓP2 � 0 in (37), then the PDα -type FOILC will become
Dα-type FOILC.

ui+1(t) � ui(t) + (L + S)⊗ ΓD2( e(α)
i+1(t). (48)

*us, according to *eorem 2, we can obtain a corollary
as follows. □

Corollary 2. For the FOMASs (15) under a directed graph G,
suppose Assumptions 1 and 2 hold. If the learning gain ΓD2 in
(48) is chosen such that

1
I +(L + S)⊗CBΓD2( 

− 1
�����

�����
− c0

⎛⎝ ⎞⎠

− 1

< 1, (49)

where

c0 � IN ⊗C
����

���� (L + S)⊗ABΓD2
����

���� Φα,α IN ⊗A, t( 
����

����1. (50)

en the tracking error satisfies limi⟶∞‖ei+1(t)‖p � 0.
Namely, the outputs yi(t) of the FOMASs (15) converge to the
desired trajectory yd(t) uniformly in a finite time when
i⟶∞, i.e., limi⟶∞yi(t) � yd(t), (t ∈ [0, T]).

Proof. *e proof process of the corollary is similar to
*eorem 2. □

3.3. Open-Closed-Loop PDα-Type FOILC. Considering the
FOMASs (15), an open-closed-loop PDα-type FOILC is
designed as

ui+1,j(t) � ui,j(t) + ΓP1ξi,j(t) + ΓD1
C
0 D

α
t ξi,j(t) + ΓP2ξi+1,j(t) + ΓD2

C
0 D

α
t ξi+1,j(t),

xi+1,j(0) � xi,j(0) + B ΓD1ξi,j(0) + ΓD2ξi+1,j(0) .

⎧⎪⎨

⎪⎩
(51)
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Similar to (25), the updating law (51) can be rewritten by
the Kronecker product as

ui+1(t) � ui(t) + (L + S)⊗ ΓP1( ei(t) + (L + S)⊗ ΓD1( 
C
0 D

α
t ei(t) + (L + S)⊗ ΓP2( ei+1(t) + (L + S)⊗ ΓD2( 

C
0 D

α
t ei+1(t),

xi+1(0) � xi(0) +(L + S)⊗B ΓD1ei(0) + ΓD2ei+1(0)( ,

⎧⎨

⎩

(52)

where L and S are the same as defined in (20) and (36).

Theorem 3. Consider the FOMASs (15) under a directed
graph G, if Assumptions 1 and 2 hold. Let the distributed
closed-loop PDα-type FOILC described in (52) be applied for
the system with learning gains ΓP1ΓP2,ΓD1, and ΓD2 satisfying

ρ2ρ1 < 1, (53)

where

ρ1 � I − (L + S)⊗CBΓD1
����

���� + β,

ρ2 �
1

I +(L + S)⊗CBΓD2( 
− 1

�����

�����
− c⎛⎝ ⎞⎠

− 1

> 0,

β � IN ⊗C
����

���� (L + S)⊗ BΓP1 + ABΓD1( 
����

���� Φα,α IN ⊗A, t( 
����

����1

c � IN ⊗C
����

���� (L + S)⊗ BΓP2 + ABΓD2( 
����

���� Φα,α IN ⊗A, t( 
����

����1.

(54)

en limi⟶∞‖ei+1(t)‖p � 0. us, the system outputs yi(t) of
the fractional-order agents converge to yd(t) when i⟶∞
for all t ∈ [0, T]; that is, limi⟶∞yi(t) � yd(t), (t ∈ [0, T]).

Remark 3. According to the conditions of*eorems 1 and 2,
in the sense of Lebesgue-p norm, the convergence conditions
of the proposed algorithms are determined by the learning
gain and the properties of the system.

4. Simulation

In this section, five fractional-order agents are considered,
including a virtual leader and four followers. *e directed
fixed communication topology among agents is shown in
Figure 1, where the fractional-order agents are labeled with
0, 1, 2, 3, and 4, respectively. *e virtual leader has directed
edges to agents 1 and 3.

From Figure 1, the Laplacian matrix L and the infor-
mation transfer matrix S of the leader to the followers can be
obtained as follows:

L �

1 − 1 0 0

− 1 2 0 − 1

0 0 1 − 1

0 − 1 − 1 2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

S � diag(1, 0, 1, 0).

(55)

*e dynamic model of the jth agent is described as

D
αxj(t) �

0.4 2

5 − 6
 xj(t) +

1 0

0 1
 uj(t),

yj(t) �
0.85 0

0 1
 xj(t),

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(56)

Here, t ∈ [0, 1], α � 0.75.
Let the virtual leader be the given expected reference

trajectory

yd1 � t
2

+ sin(2πt), (t ∈ [0, 1]),

yd2 � sin(2πt), (t ∈ [0, 1]).

⎧⎨

⎩ (57)

In the following simulations, the initial states of the
followers at first iteration are set as x0,1 � 0.1 0.3 

T, x0,2 �

− 0.5 − 0.7 
T, x0,3 � 0.2 0.4 

T , and x0,4 � − 0.6 0.8 
T .

*e control objective of the initial state is xd � 0 0 
T and

the initial control is set as u0,j(t) � 0, j � 1, 2, 3, 4 for all
agents.

Case 1. Open-loop PDα-type: the open-loop PDα-type is
applied to the multiagent system (1). Based on *eorem 1,

the gains are selected as ΓP1 �
0.4 0
0 0.6 ,ΓD1 �

0.2 0
0 0.3 .

*us, we can calculate ρ1 � ‖I − ((L + D)⊗ ΓD1CB)‖ + β1 �

0.9421< 1, which satisfies the convergence condition (26).
*e simulation results are shown in Figures 2–4. *e

initial states of the followers at the first iteration are x0,1 �

0.1 0.3 
T, x0,2 � − 0.5 − 0.7 

T, x0,3 � 0.2 0.4 
T, and

x0,4 � − 0.6 0.8 
T. And the desired initial states of the four

followers are zero; that is x0,j � 0 0 
T for j� 1, 2, 3, 4.

Figure 2 shows the initial state learning process. It can be
seen that the initial states x1 and x2 of the multiagent at time
zero have a large error from the desired state at the be-
ginning of the iteration, because the initial control is set as
u0,j(t) � 0, j � 1, 2, 3, 4 for all agents. But as the number of
iterations increases, the errors of the initial states gradually
decrease. When the number of iterations reaches the 40th
iteration, the initial state of x2 also converges to the desired
initial state. And when the number of iterations reaches the
60th iteration, the initial state of x1 converges to the desired
initial state. Figure 3 shows the output tracking results of y1
and y2. It can be seen that each subsystem does not track the
desired trajectory at the 5th iteration. With the increase of
the number of iterations, when it reaches the 100th iteration,
both the outputs y1 and y2 of all the agents fully track the
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Figure 1: Communication graph among agents in the network.
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Figure 2: Initial state profile vs. iteration number by open-loop PDα-type. (a) Initial state learning of x1. (b) Initial state learning of x2.
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Figure 3: *e tracking results of all agents at different iterations by open-loop PDα-type. (a) Output y1 at the 5th iteration. (b) Output y1 at
the 100th iteration. (c) Output y2 at the 5th iteration. (d) Output y2 at the 100th iteration.
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desired trajectory over the time period [0, 1]. We define the
errors in the 2-norm sense at the ith iteration as
‖yd,1 − y1i,j‖2 and ‖yd,2 − y2i,j‖ for j � 1, 2, 3, 4. Figure 4
depicts the tracking errors in each iteration; it shows that the
tracking errors converge to zero as the iteration number
increases. By the 60th iteration, the tracking errors of y1 of
the four followers in the 2-norm sense are 0.000456,
0.000862, 0.000351, and 0.000785, respectively. By the 80th
iteration, the tracking errors of y2 of the four followers in the
2-norm sense are 0.000648, 0.000978, 0.000596, and
0.000895, respectively.

Case 2. Closed-loop PDα-type: the initial inputs and initial
state of the multiagents are the same as Case 1. Based on
*eorem 2, we select the learning gains as ΓP2 �

0.504 0
0 0.396 ,ΓD2 �

6 0
0 7 . Clearly, ρ2 � (1/‖I + H⊗ ΓD2

CB‖) � 0.2146< 1; thus, the convergence condition can be
satisfied.

Figures 5–7 show the trajectory tracking performances
employing the closed-loop PDα-type ILC scheme. As it
can be seen from Figure 5, similar to the simulation results
of Case 1, the initial state of the agents tends to reach the

desired initial state as the iteration number increases.
Figure 6 shows the outputs y1 and y2 with closed-loop
PDα-type ILC at the 5th and 30th iterations. From Fig-
ure 6, the trajectories y1 and y2 of the followers can track
the desired trajectory generated by the leader as the it-
eration number increases over the time period [0, 1].
Figure 7 shows the tracking errors of y1 and y2 of the four
followers in 2-norm sense with the number of iterations. It
can be seen that the errors gradually decrease and ap-
proach zero as the number of iteration increases. By the
30th iteration, the tracking errors of y1 of the four fol-
lowers in 2-norm sense are 0.000279, 0.000648, 0.000324,
and 0.000472. *e tracking errors of y2 of the four fol-
lowers in 2-norm sense are, respectively, 0.000187,
0.000547, 0.000298, and 0.000385. Besides, compared with
the open-loop PDα-type, the closed-loop FOILC performs
better and has faster convergence speed than the open-
loop one.

Case 3. Open-closed-loop PDα-type
In this simulation, the initial states and inputs are the

same as Case 1 and Case 2. According to *eorem 3, the
learning gain matrix can be obtained as follows:

0

10

20

30

Tr
ac

ki
ng

 er
ro

r

80 1001 20 40 60
Iteration number

Agent 1
Agent 2

Agent 3
Agent 4

(a)

0

10

20

5

15

Tr
ac

ki
ng

 er
ro

r

80 1001 20 40 60
Iteration number

Agent 1
Agent 2

Agent 3
Agent 4

(b)

Figure 4: *e 2-norm of tracking errors for all agents in each interaction by open-loop PDα-type. (a) Tracking errors of y1 with iterations.
(b) Tracking errors of y2 with iterations.
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Figure 5: Initial state profile vs. iteration number by closed-loop PDα-type. (a) Initial state learning of x1. (b) Initial state learning of x2.
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ΓP1 �

0.616 0

0 0.484

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦,

ΓD1 �

4.5 0

0 1.8
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

ΓP2 �
0.5 0

0 0.4
⎡⎢⎢⎣ ⎤⎥⎥⎦,

ΓD2 �
6 0

0 7
⎡⎢⎢⎣ ⎤⎥⎥⎦.

(58)
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Figure 6: *e tracking results of all agents at different iterations by closed-loop PDα-type. (a) Trajectories of y1 at the 5th iteration. (b)
Trajectories of y1 at the 30th iteration. (c) Trajectories of y2 at the 5th iteration. (d) Trajectories of y2 at the 30th iteration.
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Figure 7: *e 2-norm of tracking errors for all agents in each interaction by closed-loop PDα-type. (a) Tracking errors of y1 with iterations.
(b) Tracking errors of y2 with iterations.
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Clearly, ρ2ρ1 � 0.245< 1; thus, the convergence condition in
*eorem 3 can be satisfied.

*e simulation results with open-closed-loop PDα-type
FOILC are presented in Figures 8–10. *e results are
similar to those of the open-loop and closed-loop PDα-type
FOILC. From the results, both the initial states and the

outputs can converge to the desired values. And we can
conclude that the proposed FOILC scheme with initial
state learning works well as the iteration number in-
creases. Figure 9 shows the output tracking results of y1
and y2. It can be seen that the followers can fully track the
desired trajectory as the iteration increases over the time
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Figure 8: Initial state profile vs. iteration number by open-closed-loop PDα-type. (a) Initial state learning of x1. (b) Initial state learning of
x2.
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Figure 9:*e tracking results of all agents at different iterations by open-closed-loop PDα-type. (a) Trajectories of y1 at the 5th iteration. (b)
Trajectories of y1 at the 30th iteration. (c) Trajectories of y2 at the 5th iteration. (d) Trajectories of y2 at the 30th iteration.
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period [0, 1].In addition, compared with open-loop PDα-
type FOILC and closed-loop PDα-type, applying open-
closed-loop PDα-type FOILC has better performance in
the initial state and for the outputs.

5. Conclusion

In this paper, we have discussed the consensus problem
with fixed communication graph, which has been
addressed for fractional-order multiagent systems with
initial state shift. Considering the initial state learning
mechanism, open-loop PDα type, closed-loop PDα type,
and open-closed-loop PDα type FOILC are proposed. *e
theoretical convergence of the proposed algorithm is an-
alyzed and sufficient conditions are presented. *eoretical
analysis shows that the proposed algorithms can guarantee
the tracking errors of all the agents and the errors in the
initial state tend to be zero in a finite time as the number of
iterations increases. Finally, some simulation examples are
used to validate the effectiveness. As a recommendation for
the future, the convergence and robustness of fractional-
order nonlinear systems can be studied by using the
proposed method of this paper.
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In the past decades, there has been a growing research interest in the field of finite-time stability and stabilization.*is paper aims
to provide a self-contained tutorial review in the field. After a brief introduction to notations and two distinct finite-time stability
concepts, dynamical system models, particularly in the form of linear time-varying systems and impulsive linear systems, are
studied. *e finite-time stability analysis in a quantitative sense is reviewed, and a variety of stability results including state
transition matrix conditions, the piecewise continuous Lyapunov-like function theory, and the converse Lyapunov-like theorem
are investigated. *en, robustness and time delay issues are studied. Finally, fundamental finite-time stability results in a
qualitative sense are briefly reviewed.

1. Introduction

Finite-time stability was first introduced in a Russian
journal [1] and later appeared in the western literature
[2–4]. *e term short-time stability is another name for it
[5]. In the current literature, there are two different con-
cepts of finite-time stability. *e first is the traditional
finite-time stability concept which concerns the restrained
system behavior during a specified interval of time. *e
initial and trajectory domains and the time interval need to
be specified in advance, so the traditional concept is a
quantitative one. We call it finite-time stability in a
quantitative sense. *e second one characterizes an as-
ymptotically stable system whose state reaches zero in a
finite time, called a settling time. Similar to the Lyapunov
stability, it is a qualitative concept, and hence, we call the
second concept finite-time stability in the qualitative sense.
*e analysis and synthesis results of both finite-time sta-
bility concepts can be applied to many practical applica-
tions such as ATM networks [6], car suspension systems
[7], and robot manipulators [8].

Finite-time stability in a quantitative sense emphasizes
the following characteristics: the system restrains its tra-
jectory to a predefined time-varying domain over a finite
time interval for a bounded initial condition. Even though it

mimics the Lyapunov stability, it is quite different from the
classical one due to its finite time interval and specified do-
mains for initial conditions and system trajectories, i.e., a
system is finite-time stable for some chosen initial and tra-
jectory domains and time intervals but not finite-time stable for
different ones. In the past few decades, many finite-time sta-
bility analysis and control design problems have been inves-
tigated and a variety of stability criteria have been obtained, see,
for example, [3, 4, 9] and the references therein. Recently,
computationally tractable finite-time stability criteria with less
conservatism have been established under the help of new tools
such as linear matrix inequalities [10], Lyapunov matrix
equations [11], and differential linear matrix inequalities [12].
More recently, studies on the finite-time stability and stabili-
zation have been extended from linear time-varying systems to
complex dynamical systems such as switched systems [13–15]
and stochastic systems [16].

On the other hand, finite-time stability in a qualitative
sense has attracted much attention in recent years and
become a growing interdisciplinary research area. It focuses
on asymptotical stability analysis for dynamical systems
whose trajectories reach an equilibrium point in a finite time.
It is a stronger concept than asymptotical stability and has
the settling-time characteristic. Relevant results on auton-
omous and nonautonomous nonlinear systems have been
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discussed in [17–20]. Later, switched versions and time-
delay versions appeared in the literature, e.g., [21–23]. Re-
cently, relevant issues of underactuated systems with dis-
turbance have been considered in [24]. In the context of this
paper, the readers should be not hard to distinguish whether
the concept of finite-time stability is quantitative or quali-
tative, so we can use the term “finite-time stability” in most
places without causing confusion.

In this paper, we will summarize the results of finite-time
stability from both quantitative and qualitative aspects.
Several excellent surveys on finite-time stability have been
found, see, for example, the review papers [25–27], the books
[7, 28, 29], and the references therein. *ese publications
report and survey finite-time stability on one aspect or
another. *is paper aims to provide a unified self-contained
tutorial review of finite-time stability to introduce the recent
discoveries in the field.

*e remainder of this paper is as follows. Section 2 gives
some basic mathematical preliminaries including two finite-
time stability concepts. Section 3 reviews finite-time stability
results in a quantitative sense, mostly for linear time-varying
systems. Results involving time-dependent and state-de-
pendent impulses, time delays, and uncertainty are also
investigated. In Section 4, we briefly overview some results
on finite-time stability in a qualitative sense. Finally, a
conclusion is drawn in Section 5.

2. Mathematical Preliminaries

2.1. Notations and Definitions. Let R+ denote a set of non-
negative real numbers and Rn the n-dimensional Euclidean
space, and consider the time intervalΩ � [0, T], T> 0. LetAT

be the transpose of A and I be the identity matrix with an
appropriate dimension. For a square matrix A, we denote by
λ(A), λmax(A), and λmin(A) the set of eigenvalues, the
maximum eigenvalues, and the minimum eigenvalues of A,
respectively. *e symmetric components in a matrix are
represented by ∗ . A≥ 0(A> 0), called to be positive semi-
definite (positive definite), means x⊤Ax≥ 0(x⊤Ax> 0) for all
x ∈ Rn.A≥B is equivalent to A − B≥ 0. Let C([−h, 0], Rn)

denote the set of all vector-valued continuous functions on
[−h, 0]. For x(t) ∈ C([−h, 0],Rn), it is represented by xt �

x(t + s): s ∈ [−h, 0]{ } with the norm
‖xt‖ � sups∈[−h,0]‖x(t + s)‖. Let Sρ and Sρ denote the open
and closed sets of the allowable system states defined as Sρ �

x ∈ Rn|‖x(t)‖2Q < ρ  and Sρ � x ∈ Rn|‖x(t)‖2Q ≤ ρ , re-
spectively, where ρ> 0 and Q is a symmetric positive definite
real matrix. We denote V

ρ
min(t) � min‖x‖�ρV(x, t) and

V
ρ
max(t) � max‖x‖�ρV(x, t). For a set Sp �

x1, x2, . . . , xp ⊆Rn, the conical hull of Sp is the set of all
conical combinations, i.e., cone(Sp) � x|x �{


p

i�1 aixi, ai ≥ 0}. *e set of normalized extremal rays gen-
erating Sq, denoted by extr(S) � x1, . . . , xq  with ‖xi‖2 � 1,
i � 1, . . . , q≤p, is the minimal set of unit vectors such that
S � cone( x1, . . . , xq ). Given a piecewise continuous ma-
trix-valued (or vector-valued) function H(·) over Ω and a

positive real number ε, we denote H− (t) � limε⟶0H(t − ε)
and H+(t) � limε⟶0H(t + ε), i.e., H− (t) and H+(t) are the
left and right limits, respectively. Let the setC be an open set
having the origin and a boundary zC.

We first look at the basic definition of finite-time stability
for a dynamical system

_x(t) � f(t, x(t)), (1)

where t ∈ R+ is the time variable, x ∈ Rn is the state variable,
andf(·) is aRn-valued function. Suppose that system (1) has
a unique solution. We first introduce the concepts of “finite-
time stability” in a quantitative sense and in a qualitative
sense, respectively.

Definition 1 (Finite-Time Stability in a Quantitative
Sense). Given two sets X0 and X(t), 0 ∈ X0, system (1) is
said to be finite-time stable with respect to (Ω,X0,X(t)) if

x0 ∈ X0 impliesx(t) ∈ X(t) for t ∈ Ω. (2)

In Figure 1, we can see a graphical explanation of
Definition 1, where the initial set X0 and the time-varying
set Xt can be in various forms.

(1) When they are ellipsoids, which are the most
common forms existing in the literature (see, e.g.,
[7, 30–32]), they can be formulated as
X0 � x0 ∈ Rn|x⊤0 Rx0 ≤ 1  and Xt � x ∈ Rn|{

x⊤Q(t)x≤ 1}, where Q(t) is a bounded and piece-
wise continuous matrix-valued function of time and
Q(0)<R. In many cases, X0 and Xt can also be
expressed as X0 � x0 ∈ Rn|‖x0‖

2
Q < c1  and

Xt � x ∈ Rn|‖xt‖
2
Q < c2  for c2 > c1 > 0 [33].

(2) When they are in the form of polytopes, they can be
described by X0 � conv x

(0)
1 , x

(0)
2 , . . . , x(0)

p  and
Xt � conv x

(t)
1 , x

(t)
2 , . . . , x(t)

q } � x ∈ Rn|{

a⊤i x≤ 1, i � 1, 2, . . . , q}, where p and q are the
number of vertices of the polytopes X0 and Xt, and
x

(0)
i and x

(t)
j are the i-th vertex of the polytope X0

and the j-th vertex of the polytope Xt [34].
(3) *ey can be formulated as much generalized

piecewise quadratic domains over conical partitions
P0 � U0

1, U0
2, . . . , U0

u  and Pt � Ut
1, Ut

2, . . . , Ut
v}.

*en, X0 � x0 ∈ Rn|x⊤0 Rix0 ≤ 1,

x0 ∈ U0
i , i � 1, 2, . . . , u} and Xt � x ∈ Rn|{

x⊤Qi(t)x≤ 1, x ∈ Ut
i , i � 1, 2, . . . , v}. It is obvious to

see that the set of piecewise quadratic domains is a
generalized set of ellipsoidal domains since an
ellipsoidal domain is indeed a piecewise quadratic
domain choosing Qi � Q for all i � 1, 2, . . . , v. It
can also represent the set of polytopic domains
whose boundary is a polyhedral function’s level
curve.

Definition 2 (Finite-Time Stability in a Qualitative
Sense). System (1) is said to be finite-time stable if for any
x0 ∈ C ⊂ Rn, t≥ 0 and ε> 0, there exist δ(t, x0)> 0 and
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T(x0)> 0 such that ‖x0‖≤ δ implies ‖x(t, x0)‖≤ ε,
limt⟶∞‖x(t, x0)‖ � 0 and x(t) � 0 for all t>T(x0). Here,
T(x0) � inf T≥{ 0 | x(t, x0) � 0, ∀t≥T} is called the settling-
time function of system (1), and the setC is called the domain of
attraction.Moreover, ifC � Rn, system (1) is globally finite-time
stable.

Similarly, a schematic illustration of Definition 2 is given
in Figure 2.

2.2. Mathematical Formulations. System (1) is a general
model for both linear and nonlinear systems depending on
the choice of the function f(·). In the first part of this paper,
we will focus on finite-time stability issues in a quantitative
sense for continuous-time linear time-varying systems with
and without finite jumps. In the second part of this paper, we
will analyze finite-time stability in a qualitative sense for
continuous-time nonlinear systems.

First, we introduce a linear time-varying system de-
scribed as

_x(t) � A(t)x(t), (3)

for a given initial condition x(0) � x0, which has been
considered in many papers, see, e.g., [7, 30]. Here,
A(·): Ω↦Rn×n is a continuous matrix-valued function.

In many practical scenarios, abrupt state changes and
system jumping behaviors are commonly existing, and these
finite jumps occur when the time points and/or the system
states satisfy a certain triggering condition, say
(t, x(t)) ∈ S ⊂ Ω × Rn. When the impulses are triggered,
the impulsive mappings can be described by

x
+
(t) � B(t)x

−
(t) � B(t)x(t), (t, x(t)) ∈ S, (4)

where B(·): Ω↦Rn×n is a matrix-valued function, which
describes the jumping behavior of system (3) with left
continuity over the triggering set S ⊂ Ω × Rn. We call a
dynamical system modeled by (3) and (4) to be an impulsive
linear system. According to the triggering set S, impulsive
linear systems expressed by (3) and (4) can be categorized
into two main types: the time-dependent impulsive linear
systems and the state-dependent impulsive linear systems,
which can be described by

_x(t) � A(t)x(t), x t0(  � x0, t ∉ I � t1, t2, . . .  ⊂ Ω,

x t
+

(  � B(t)x(t), t ∈ I, k � 1, 2, . . . ,


(5)

_x(t) � A(t)x(t), x t0(  � x0, x(t) ∈ Rn
\ ∪

N

k�1
Sk,

x t
+

(  � B(t)x(t), x(t) ∈ Sk, k � 1, 2, . . . ,

⎧⎪⎪⎨

⎪⎪⎩

(6)

respectively [31, 32, 35]. For a time-dependent impulsive
linear system, the impulses occur at the given time points,
t ∈ I � t1, t2, . . .  ⊂ Ω, so the triggering set S can be
written as S � I × D(x0,I), where D(x0,I) � x{

(t): t ∈ I} ⊂ Rn. For a state-dependent impulsive linear
system, the impulses happen when the system state reaches a
preassigned set D ⊂ Rn, and then, the triggering set S is
written as I(x0,D) � t ∈ Ω: x(t) ∈ D{ } ⊂ Ω. It is worth
pointing out that the well-posedness of the triggering times
should be guaranteed and the Zeno phenomena need to be
avoided in this paper.

3. Finite-Time Stability in a Quantitative Sense

In this section, we will provide some results on finite-time
stability in a quantitative sense for linear time-varying
system (3) and its variants with impulses (4).

3.1. State Transition Matrix. In linear system theory, we
know that the solution of (3) can be described as
x(t) � Φ(t, 0)x(0), where the matrix-valued functionΦ(·, ·)

has the following basic properties:

_Φ(t, 0) � A(t)Φ(t, 0),

Φ(0, 0) � I.
(7)

*is matrix-valued function Φ(·, ·) is called to be the
state transition matrix, and an appropriate assumption on
the nature of A(t) can ensure the existence and uniqueness
of the state transitionmatrix. For system (3), it is stable in the
sense of Lyapunov if there exists a positive constant M such
that ‖Φ(t, 0)‖<M for all t≥ 0. Moreover, system (3) is
asymptotically stable if it is stable and limt⟶∞Φ(t, 0) � 0.

x1

xn

t

T

∞

Figure 2: Schematic illustration of finite-time stability in a qual-
itative sense.

x1

xn

t

T

x0
xT

Figure 1: Schematic illustration of finite-time stability in a
quantitative sense.
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As for finite-time stability of the system (3), a necessary and
sufficient stability condition will be provided in the following
theorem [30].

Theorem 1. System (3) is finite-time stable with respect to
(Ω,X0,Xt), where X0 � x ∈ Rn | x⊤0 Rx0 ≤ 1  and
Xt � x ∈ Rn | x⊤Q(t)x≤ 1{ } if and only if the state transition
matrix of system (3) satisfies

Φ(t, 0)
⊤

Q(t)Φ(t, 0)<R. (8)

*e state transition matrix approach has been extended to
impulsive linear system (5) in [31, 32, 36]. Letting T ∈ [tl, tl+1],
the solution of the impulsive linear system (5) will be
x(t) � Φ(t, 0)x0, t ∈ Ω, where Φ(t, 0), called the state tran-
sition matrix of (5), is a piecewise continuous matrix-valued
function with discontinuous right-hand sides at the time in-
stants tk, k � 1, 2, . . . , l. In detail, when t ∈ (0, t1], Φ(t, 0) is
the solution of the following matrix differential equation:

z

zt
Φ(t, 0) � A(t)Φ(t, 0), Φ(0, 0) � I,

Φ t
+
1 , 0(  � B t1(  Φ t1, 0( .

(9)

In the sequel intervals for k � 1, 2, . . . , l − 1, Φ(t, tk)

should satisfy

z

zt
Φ t, t

+
k(  � A(t) Φ t, t

+
k( , t ∈ tk, tk+1( ,

Φ t
+
k+1, t

+
k(  � B tk+1(  Φ tk+1, t

+
k( .

(10)

In the end, when t ∈ (tl, tl+1], we have

z

zt
Φ t, t

+
l(  � A(t) Φ t, t

+
l( , t ∈ tl, T( . (11)

Theorem 2. Impulsive linear system (5) is finite-time stable
with respect to (Ω,X0,Xt), where the setsX0 andXt are the
same with those in 6eorem 1, if and only if for all t ∈ [0, T],
the following is satisfied:

Φ(t, 0)
⊤

Q(t) Φ(t, 0)<R. (12)

*e conditions in the form of state transition matrices
(8) and (12) in *eorems 1 and 2 are valuable for theoretical
analysis but hard to apply due to the high computational
difficulty, particularly for the time-varying case.

To obtain computational conditions for finite-time
stability, some Lyapunov-like functions are needed to es-
tablish conditions in the form of linear matrix equalities or
Lyapunov matrix inequalities. In some early work such as
[3], it concludes that system (1) is finite-time stable with
respect to (Ω,Sα,Sβ) if and only if there exists a real-valued
Lipschitz function V(t, x), continuous on Ω × Sβ, and a
real-valued integrable function φ(t) such that, for t ∈ Ω, we
have _V0(t, x)≤φ(t) for all x ∈ [Sβ − Sα] and


t2

t1
φ(t)dt<V

β
min(t2) − Vα

max(t1) for t1 < t2 and t1, t2 ∈ Ω. A

piecewise continuous Lyapunov-like function is the most
common one in the literature, and relevant results will be
presented in the following subsection.

3.2. Piecewise Continuous Lyapunov-Like Functions. To ob-
tain computationally tractable finite-time stability conditions,
we choose a quadratic piecewise continuous Lyapunov-like
function V(t, x) � x⊤P(t)x and establish the following con-
ditions containing coupled differential Lyapunov matrix
equations and differential linear matrix inequalities.

Theorem 3 (see [7, 30]). System (3) is finite-time stable with
respect to (Ω,X0,Xt), where the setsX0 andXt are the same
with those in6eorem 1, if and only if for all t ∈ Ω, there exists
a symmetric piecewise differentiable matrix-valued function
P(·) such that the following conditions involving the differ-
ential matrix equation with boundary conditions are satisfied:

_P(τ) � −A(τ)
⊤

P(τ) − P(τ)A(τ) − εI, τ ∈ [0, t], ε> 0,

P(t) � Q(t), P(0)<R.

(13)

We see that *eorem 3 provides a necessary and suffi-
cient condition for finite-stability of system (3). However, it
is not practicable to verify the differential matrix equation in
(13) for every τ ∈ [0, t], and hence, *eorem 3 is not suitable
for the computational purpose. Using *eorem 3, we can
obtain a sufficient condition with computational tractability
for finite-stability of system (3).

Theorem 4 (see [7, 30]). System (3) is finite-time stable with
respect to (Ω,X0,Xt), where the setsX0 andXt are the same
as those in6eorem 1, if and only if for all t ∈ Ω there exists a
symmetric piecewise differentiable matrix-valued function
P(·) such that the following conditions involving the differ-
ential matrix equation with boundary conditions are satisfied:

_P(t) � −A(t)
⊤

P(t) − P(t)A(t) − εI, ε> 0,

P(t) � Q(t), P(0)<R.
(14)

Nowadays, computational tools in the convex optimization
framework such as linear matrix inequalities or differential
linear matrix inequalities are very efficient, and we can obtain
the following necessary and sufficient conditions including
differential linear matrix inequalities, equivalent to (13):

_P(τ)< − A(τ)
⊤

P(τ) − P(τ)A(τ),

Q(t)≤P(t), P(0)<R.
(15)

*e piecewise continuous Lyapunov-like function is also
applied to the finite-time stability problem of impulsive linear
systems. For linear time-varying systems with time-dependent
impulses, we have the following finite-time stability results.

Theorem 5 (see [36]). System (5) is finite-time stable with
respect to (Ω,X0,Xt), where the setsX0 andXt are the same
with those in6eorem 1, if and only if for all t ∈ Ω there exists
a piecewise differentiable positive definite matrix-valued
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function P(·) such that the following conditions involving
differential linear matrix inequalities are satisfied:

_P(t) + A(t)
⊤

P(t) + P(t)A(t)< 0, t ∉ I,

P tk( >B tk( 
⊤

P t
+
k( B tk( , k � 1, 2, . . . ,

P(t)≥Q(t), P(0)<R.

(16)

Moreover, it is finite-time stable with respect to
(Ω,X0,Xt) if and only if there exists a piecewise continuous
positive definite matrix-valued solution Z(·): Ω↦Rn×n

such that the following conditions involving differential/
difference Lyapunov equations are satisfied:

_Z(t) − A(t)Z(t) − Z(t)A(t)
⊤

� 0, t ∉ I,

Z
+

tk(  � B tk( Z
−

tk( B tk( 
⊤

,

&9; t ∈ I, Z(0) � R
− 1

,

G(t)W(t)G
⊤

(t)< I, ∀t ∈ Ω,

(17)

where G(·) is a nonsingular matrix-valued function satis-
fying Q(t) � G⊤(t)G(t) in Ω.

As for a linear time-varying system with state-dependent
impulses (6), we have the following theorem to provide a
sufficient condition for its finite-time stability.

Theorem 6 (see [35]). System (6) is finite-time stable with
respect to (Ω,X0,Xt), where the setsX0 andXt are the same
with those in6eorem 1, if and only if for all t ∈ Ω there exists
a piecewise differentiable positive definite matrix-valued
function P(·) such that the following conditions involving
linear differential/difference matrix inequalities are satisfied:

_P(t) + A(t)
⊤

P(t) + P(t)A(t) < 0, x(t) ∈ Rn
\ ∪

N

k�1
Sk,

x
⊤

B(t)
⊤

P(t)B(t) − P(t)( x< 0, x(t) ∈ Sk, k � 1, . . . , N,

P(t)≥G(t), P(0)<R.

(18)

When the initial set X0 and the time-varying set Xt are
two given polytopes and a quadratic function V(x) � x⊤Px

is chosen, we have following sufficient conditions of finite-
time stability for a quadratic system:

_x � Ax + x
⊤

C
⊤
1 x, x
⊤

C
⊤
2 x, . . . , x

⊤
C
⊤
n x 
⊤

, (19)

where Ci ∈ Rn×n, i � 1, . . . , n.

Theorem 7 (see [34]). System (19) is finite-time stable with
respect to (Ω,X0,Xt), where the sets X0 and Xt are two
given polytopes, if there exists a positive definite symmetric
matrix P ∈ Rn×n such that

λmax(P)max
i

x
(i)
X0

�����

�����
2
e
αT

1 a
⊤
k

ak P
⎛⎝ ⎞⎠

A
⊤

+ B
⊤
1 x

(i)
Xt

B
⊤
2 x

(i)
Xt

. . . B
⊤
n x

(i)
Xt

  P + P A + B
⊤
1 x

(i)
Xt

B
⊤
2 x

(i)
Xt

. . . B
⊤
n x

(i)
Xt

 
⊤

  − αP≤ 0.

(20)

*e initial setX0 and the time-varying setXt can also be
piecewise quadratic domains over conical partitions P0 �

U0
1, U0

2, . . . , U0
u  and Pt � Ut

1, Ut
2, . . . , Ut

v , say
X0 � x ∈ Rn|x⊤0 Rix0 ≤ 1, x0 ∈ U0

i , i � 1, 2, . . . , u  and
Xt � x⊤Qi(t)x≤ 1, x ∈ Ut

i , i � 1, 2, . . . , v  [37, 38]. In such
cases, we choose a time-varying piecewise quadratic Lya-
punov-like function defined over the abovementioned
conical partition as

VXt
(t, x) � x

⊤
Pi(t)x, ∀x ∈ Si with i � 1, . . . , v, (21)

where Pi ∈ Rn×n, i � 1, . . . , v, are symmetric matrices. *en,
a sufficient condition for the finite-time stability of linear-
varying system (1) can be presented as follows.

Theorem 8 (see [37]). System (3) is finite-time stable with
respect to (Ω,X0,Xt), where the setsX0 andXt are the given
piecewise quadratic domains, if there exist positive definite
symmetric matrices Pi ∈ Rn×n such that

x
⊤ _Pi(t) + A(t)

⊤
Pi(t) + Pi(t)A(t) x< 0,

x
⊤

Pi(t) − Qi(t)( x≥ 0,

x
⊤

Pi(0) − Ri( x< 0.

(22)

For t ∈ Ω and x ∈ Si with i � 1, . . . , v.

*esufficient conditions in (22) are not applicable due to the
infinite number of matrix inequalities. Applying S-procedure
arguments and considering the conical partition, a computa-
tionally tractable sufficient condition is also obtained in [37].

Theorem 9 (see [37]). System (3) is finite-time stable with
respect to (Ω,X0,Xt), where the setsX0 andXt are the given
piecewise quadratic domains, if there exist positive numbers
bi,k, positive real-valued functions ci,k(t), zi,k(t) and matrices
Hi,k, i � 1, . . . , v and k � 1, . . . , s, and positive definite
symmetric matrices Pi ∈ Rn×n such that x⊤Hi,kx≤ 0, ∀x ∈ Si

and there exist positive piecewise continuously differentiable
matrix-valued functions Pi(t) ∈ Rn×n, such that the following
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conditions involving differential linear matrix inequalities
and linear matrix inequalities are satisfied:

_Pi(t) + A(t)
⊤

Pi(t) + Pi(t)A(t) − 
s

k�1
ci,k(t)Hi,k < 0,

Pi(t) − Qi(t) + 
s

k�1
zi,k(t)Hi,k ≥ 0,

Pi(0) − Ri − 
s

k�1
bi,kHi,k < 0,

x
⊤
k Pi(t)xk � x

⊤
k Pj(t)xk,∀xk ∈ extr Si ∩ Sj ,

x
⊤
h Pi(t)xk � x

⊤
h Pj(t)xk,∀xh, xk ∈ extr Si ∩ Sj .

(23)

3.3. Converse Lyapunov-Like 6eorem. In [9], a converse
Lyapunov-like theorem is established for finite-time uni-
formly stable continuous-time nonautonomous system (1).
It provides the characterization of finite-time stability with
regards to the existence of Lyapunov-like functions.

Theorem 10 (see [9]). If system (1) is uniformly stable with
respect to (Ω,Sα,Sβ), α< β, then there exists a real-valued
Lyapunov-like function V(t, x) satisfying

_V0(t, x)≤φ(t), (24)

for all x ∈ [Sβ − Sα], and


t2

t1

φ(t)dt<V
β
min t2(  − V

α
max t1( , (25)

for t1 < t2 and t1, t2 ∈ Ω.

Moreover, two necessary and sufficient conditions for
the existence of a Lyapunov-like function V(t, x) for finite-
time stability are given as follows.

Theorem 11 (see [9]). System (1) is finite-time stable with
respect to (Ω,Sα,Sβ), α< β, if and only if there exist a Lipschitz
continuous real-valued Lyapunov-like function V(t, x) and a
continuous real-valued function μ(·) such that the following
conditions are satisfied: (i) V(t, x)≥ μ(‖x‖) for all, (ii)
_V(t, x)≤ 0 for all x ∈ [Sβ − Sα], and (iii) Vα

max(t)< μ(β).

Theorem 12 (see [39]). System (1) is finite-time stable with
respect to (Ω,Sα,Sβ), α< β, if and only if there exist a con-
tinuous real-valued Lyapunov-like function V(t, x) such that

_V(t, x)≤ 0, (26)

for all x ∈ Sβ, and

V
β
min t2( <V

α
max t1( , (27)

for all t2 > t1 and δ < α with t1, t2 ∈ Ω.

3.4.Miscellaneous Issues. Time delays are often encountered
in many practical systems such as chemical processes,
electric circuits, and networked systems, leading to

unsatisfactory system behaviours and even instability. So,
various stability problems for delayed systems have attracted
much attention to lots of researchers. Among them, finite-
time stability analysis has been of particular interest bringing
forth many papers such as [40–42].

A linear time-invariant delayed system can be repre-
sented by

_x(t) � A0x(t) + A1x(t − h), h> 0, (28)

with an associated initial state function

x(t) � ψ(t), −h≤ t≤ 0. (29)

To proceed, we need the following definitions.

Definition 3. System (28) associated with initial condition
(29) is said to be finite-time stable with respect to (ζ(·), β, h)

if ψ(t)⊤ψ(t)< ζ(t), ∀t ∈ [−τ, 0], which implies
x(t)⊤x(t)< β, ∀t ∈ Ω, where ζ(·) is a positive scalar-valued
function satisfying ζ(t)≤ α for −h≤ t≤ 0, and β> α> 0.

Definition 4. System (28) associated with initial condition
(29) is said to be finite-time stable with respect to (Ω, α, β) if
(sup− h≤θ≤0‖ψ(θ)‖)2 < α implies ‖x(t)‖2 < β, ∀t ∈ Ω.

Next, we introduce two sufficient conditions for finite-
time stability of linear delayed system (28) in the following
two theorems.

Theorem 13 (see [41]). System (28) associated with the
initial condition (29) is finite-time stable with respect to
(α, β, h) if for all t ∈ Ω, we have

‖Φ(t)‖<
�����
(β/α)



1 + A1
����

����
, (30)

where Φ(t) is the fundamental matrix of linear delayed
system (28).

Theorem 14 (see [41]). System (28) associated with initial
condition (29) is finite-time stable with respect to (Ω, α, β) if

1 + σmt( 
2
e
2σmt <

β
α

, (31)

where

σm � σmax A0(  + σmax A1( , (32)

with σm(·) being the largest singular value of the corre-
sponding matrix.

In [40], the authors construct a delay-dependent Lya-
punov-like function

V(t) � x(t) + 
h

0
J(θ)x(t − θ)dθ 

⊤

x(t) + 
h

0
J(θ)x(t − θ)dθ ,

(33)

where J(t) ∈ Rn×n is a differentiable matrix-valued function
on [0, h] such that the following differential matrix equation
is satisfied:
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_J(θ) � A0 + J(0)( J(θ), θ ∈ [0, h], (34)

with the initial condition J(h) � A1. *en, the following
result based on Lyapunov function (33) can be given.

Theorem 15 (see [40]). System (28) associated with initial
condition (29) is finite-time stable with respect to (α, β, h) if
there exists a positive real number c such that the following
conditions are satisfied:

x(t − θ)
⊤

x(t − θ)

· (1 + h)(1 + ψ) 1 − cψ −
ah

c
 

− 1

e
λmax R⊤+R( )T <

β
α

,

c ∈ max c1, 0 , c2( , c1,2 �
1 ±

��������
1 − 4ψha



2ψ
, 4ψha< 1,

ψ � λmax J(0)J
⊤

(0)( 
e
2μ1 A0( )h

− 1
2μ1 A0( 

, A0 � A0 + J(0),

(35)

where μ1(·) is a matrix measure of the given matrix and J(0)

is the solution of the following transcendental matrix
equation:

e
A0+J(0)h

J(0) � A1. (36)

Next, consider a singular linear delayed system

E _x(t) � A0x(t) + A1x(t − h), h> 0, (37)

where E ∈ Rn×n is a singular matrix with rank r< n. *ere

exist two nonsingular matrices M �
M1
M2

  and G such that

G such that Ir 0
0 0  � MEG. Let

MA0G �
A11 A12

A21 A22

⎛⎝ ⎞⎠,
0

M2

⎛⎝ ⎞⎠A0G �
0 0

A21 A22

⎛⎝ ⎞⎠, MA2G �
D11 D12

D21 D22

⎛⎝ ⎞⎠,

W1 � PA0 + A
⊤
0 P
⊤

+ Q1 + Q2MA0 + A
⊤
0 M
⊤

Q
⊤
2 − ηPE, W2 � PA1 + Q2MA1,

M �

0

M2

⎛⎝ ⎞⎠, G
⊤

PM
− 1

�

P11 P12

P21 P22

⎛⎝ ⎞⎠, M
− 1⊤

M
− 1

�

R11 R12

∗ R22

⎛⎝ ⎞⎠,

α1 �
λmin P11( 

λmax R11( 
, α2 �

λmax P11( 

λmin G
⊤

G( 
+ hλmax Q1( , α3 �

α2α
α1

,

α4 � 

[⊤/h]−1

i�0
A

−1
22D22

����
����

i
, η � A

−1
22D21 + A

−1
22D22

����
����, α6 � λmax G

⊤
G( .

(38)

*en, a sufficient condition for the finite-time stability of
singular linear delayed system (37) was established in [42].

Theorem 16 (see [42]). System (37) associated with initial
condition (29) is finite-time stable with respect to (α, β, h) if
there exists a positive number c, a symmetric positive definite
matrix Q1 ∈ Rn×n, a nonsingular matrix P ∈ Rn×n, and a
matrix Q2 ∈ Rn×n such that

PE � E
⊤

P≥ 0,
W1 W2

∗ −Q1

⎛⎝ ⎞⎠< 0,

e
cTα3 + α5 + ηα4

�����

ecTα3


 
2
≤
β
α6

.

(39)

More recently, the Lyapunov–Razumikhin approach is
extended to finite-time stability for a nonlinear delayed
system

_x(t) � f(t, x(t − h)), (40)

in [43]. Sufficient conditions can be illustrated through the
following theorem.

Theorem 17 (see [43]). System (40) associated with initial
condition (29) is finite-time stable with respect to (α, β, h) if
there exists positive scalars α, β, η, σ, T with η< α< β and
σ ∈ (0, T), integrable real-valued function c(·): R+↦R,
class K functions c1, c2, and a differentiable function
V: [−h, T] × Rn↦R+ such that (i) c1(|x|)≤V(t, x)≤ c2
(|x|), ∀(t, x) ∈ [−h, T] × Rn, (ii) _V(t,ψ(0))≤ c(t)V(t,
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ψ(0)), whenever V(t + s,ψ(s))≤Θ(t, s)V(t,ψ(0)) for all
t ∈ [0, T], s ∈ [−h, 0], where

Θ(t, s) � exp − 
t

max t+s,0{ }
c(u)du , (41)

and (iii)


t

0
c(u)du≤ ln

c1(η)

c2(
��
α

√
)
, ∀t ∈ [0, T]. (42)

Besides time delays, uncertainty is another important
phenomenon commonly encountered in practical systems.
*e existence of uncertainty causes the poor performance
and even instability. *e finite-stability concept has been
extended to uncertain linear systems [44–46]. *e uncer-
tainty can be expressed as norm-bounded uncertainty and
structured uncertainty. Consider an uncertain linear system

_x � A(t) + F1(t)(I − Δ(t)H(t))
− 1Δ(t)F2(t) x(t), (43)

where x(t) ∈ Rn, Δ(·) is a norm-bounded uncertainty
function such as ‖Δ(t)‖≤ 1 and F1(·), F2(·) are known
matrices of appropriate dimensions. *e following theorem
will present a necessary and sufficient condition for finite-
time stability of system (43).

Theorem 18 (see [46]). System (43) is finite-time stable with
respect to (Ω,X0,Xt), where the setsX0 andXt are the same
as those in 6eorem 1, if and only if for all t ∈ Ω, there exist a
piecewise continuous function c and a symmetric piecewise
differentiable matrix-valued function P(·) such that the
following conditions involving differential linear matrix in-
equalities are satisfied:

_P(τ) + A
⊤

(τ)P(τ) + P(τ)A(τ) + c(τ)F
⊤
2 (τ)F2(τ) P(τ)F1(τ) + c(τ)F

⊤
2 (τ)H(τ)

F
⊤
1 (τ)P(τ) + c(τ)H(τ)F2(τ) −c(τ) I − H

⊤
(τ)H(τ)( 

⎛⎝ ⎞⎠< 0,

P(t)≥Q(t), P(0)<R, c(t)> 0, τ ∈ [0, t].

(44)

Similar to*eorem 3, necessary and sufficient conditions
in *eorem 18 are not computationally tractable. For the
computational purposes, we can see the following sufficient
condition for finite-time stability of system (43).

Theorem 19 (see [46]). System (43) is finite-time stable with
respect to (Ω,X0,Xt), where the setsX0 andXt are the same

as those in 6eorem 1, if and only if for all t ∈ Ω, there exist a
piecewise continuous function c and a symmetric piecewise
differentiable matrix-valued function P(·) such that the
following conditions involving differential linear matrix in-
equalities are satisfied:

_P(t) + A
⊤

(t)P(t) + P(t)A(t) + c(t)F
⊤
2 (t)F2(t) P(t)F1(t) + c(t)F

⊤
2 (t)H(t)

F
⊤
1 (t)P(t) + c(t)H(t)F2(t) −c(t) I − H

⊤
(t)H(t)( 

⎛⎝ ⎞⎠< 0,

P(t)≥Q(t), P(0)<R, c(t)> 0, t ∈ Ω.

(45)

Robustness analysis for a linear delayed system with
structured uncertainty was conducted in [45], where the
uncertain system is described by

_x(t) � A0 + D0F(t)E0( x(t) + A1 + D1F(t)E1( x(t − h),

(46)

where D0, E0, D1, E1 are known matrices of appropriate
dimension, and F(t) is the uncertain time-varying matrix
with F(t)F(t)⊤ ≤ I, ∀t ∈ Ω.

Theorem 20. (see [45]). System (46) associated with initial
condition (29) is finite-time stable with respect to (α, β, h) if
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there exists positive real numbers c, δ, β0, β1, β2, β3 and
symmetric positive definite matrices P1 and P2 such that the
following conditions are satisfied:

Ω11 P1A1 P1D0 P1D1

∗ −P2 + δE
⊤
1 E1 0 0

∗ ∗ −cI 0
∗ ∗ ∗ −δI

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0,

Ω11 � A
⊤
0 P1 + P1A0 + P2 − β0P1 + cE

⊤
0 E0, β1I<P1 < β2I, 0<P2 < β3I,

−βe
− β0Tβ1

��
α

√
β2

���
αh

√
β3

∗ −β2 0
∗ ∗ −β3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦< 0.

(47)

If uncertain linear system (43) is affected by finite im-
pulses (4), the system state will undergo abrupt changes at
discrete time instants, which leads to more difficulty to
analyze its stability performance. *e following theorem
from [46] gives a sufficient condition for finite-time stability
of the linear time-varying system with both time-dependent
impulses and uncertainty. More complex cases with a norm-
bounded uncertainty on the impulsive matrix-valued

function and state-dependent impulses were also provided
in [46] as well.

Theorem 21 (see [44]). System (3) is finite-time stable with
respect to (Ω,X0,Xt), where the setsX0 andXt are the same
as those in 6eorem 1, if and only if for all t ∈ Ω, there exists
positive real number c and a symmetric piecewise differen-
tiable matrix-valued function P(·) such that the following
conditions are satisfied:

_P(t) + A
⊤

(t)P(t) + P(t)A(t) + cF
⊤
2 F2 P(t)F1 + cF

⊤
2 H

F
⊤
1 P(t) + cH

⊤
F2 −c I − H

⊤
H( 

⎛⎝ ⎞⎠< 0, t ∉ I,

B(t)
⊤

P
+
(t)B(t) − P(t)≤ 0, t ∈ I,

(48)

All results mentioned above have illustrated the finite-
time stability conditions in a quantitative sense, and we
continue to introduce more results in a qualitative sense.

4. Finite-Time Stability in a Qualitative Sense

It is well known that a radially unbounded positive definite
function V: C ⊂ Rn⟶ R+ with the property _V(x)< 0 is a
Lyapunov function. Lyapunov’s second method demon-
strates that the existence of the Lyapunov function is also
equivalent to the asymptotical stability of system (1), which
provides the foundation for the following necessary and
sufficient conditions for finite-time stability results.

Theorem 22 (see [27, 47]). Consider an autonomous non-
linear system

_V(x)≤ − cV(x)
η
, for allx ∈ C. (49)

System (49) is finite-time stable if and only if there exists a
smooth Lyapunov function (equivalently, all smooth Lya-
punov functions) V: C⟶ R+ such that for all x ∈ C,

T(x) � 
0

V(x)

ds

_V x θx(s), x( ( 
< +∞, (50)

where the map θx is the inverse of t↦V(x(t, x)).

Theorem 23 (see [27, 47]). System (49) is finite-time stable
with a continuous settling-time function at the origin if
and only if there exist a scalar η ∈ (0, 1), a positive
scalar c, and a smooth Lyapunov function V: C⟶ R+

such that
_V(x)≤ − cV(x)

η
, for allx ∈ C. (51)

Moreover, the settling-time function T(x) should satisfy

T(x)≤
V(x)

1− η

c(1 − η)
. (52)

A converse Lyapunov theorem was obtained for finite-
time stability of nonlinear system (49) in [18]. As for the case
that settling-time is continuous, we have the following
converse theorem.
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Theorem 24 (see [18]). If system (49) is finite-time stable
with a continuous settling-time function at the origin and
η ∈ (0, 1), then there exists a continuous function
V: C⟶ R+ such that

_V(x)≤ − cV(x)
η
, for allx ∈ C. (53)

*e abovementioned Lyapunov-based methods for
analysis of finite-time stability may not be suitable for
constructive design. Recently, an implicit Lyapunov func-
tion method to solve an algebraic equation was derived in
[48], which provides a design method for a robust controller
for the closed-loop systems to handle exogenous distur-
bances. *e implicit Lyapunov function theorem only
verifies stability conditions in an implicit way and does not
need to solve the equation.

Theorem 25 (see [48]). System (1) is finite-time stable with a
settling-time function T(x0)≤ (V

μ
0/(cμ)), where Q(V0, x0) �

0 if there exists a continuously differentiable function Z: R+ ×

Rn⟶ R such that for any x ∈ C, there exists a radially
unbounded function V ∈ R+ such that

Z(V, x) � 0,
zZ(V, x)

zV
< 0,

sup
t∈R+

zZ(V, x)

zx
f< 0,

(54)

for all (V, x) ∈ Ω, where Ω � (V, x) ∈ R+×{ Rn: Z(V, x) �

0} and limx⟶0V � 0.

Recently, the notion of finite-time stability for nonlinear
autonomous system (49) was extended to nonautonomous
nonlinear system (1). *ese Lyapunov and converse Lya-
punov results are derived and introduced in the following
theorems.

Theorem 26. (see [17]). System (1) is finite-time stable if
there exist a scalar η ∈ (0, 1), a positive function c(t), a class
K function c1(·), and a continuously differentiable function
V: R+ × C⟶ R+ such that V(t, 0) � 0, V(t, x)≥ c1(·),
and

_V(x)≤ − c(t)V(x)
η
, for all x ∈ C. (55)

Moreover, for the case C � Rn, then system (1) is be
globally finite-time stable. If there exists a class K function
c2(·) such that V(t, x)≤ c2(·), then system (1) is uniformly
finite-time stable.

Theorem 27 (see [17]). Let η ∈ (0, 1) and there exists a class
K function φ: [0, r]⟶ R+, where r> 0 such that
Br(0)⊆C and

‖f(t, x)‖≤φ(‖x‖), t ∈ [0,∞), x ∈Br(0). (56)

If system (1) is uniformly finite-time stable and the set-
tling-time function T(·, ·) is jointly continuous at (t, 0), t≥ 0,
then there exist a positive scalar c, a classK function c(·), and

a continuously differentiable function V: R+ × C⟶ R+

such that V(t, 0) � 0, V(t, x)≥ c(·), and
_V(x)≤ − cV(x)

η
, for allx ∈ C. (57)

5. Conclusions

*is paper has overviewed the fundamental results of the
finite-time stability analysis of dynamical systems. *e
concepts of finite-time stability are classified into those in the
quantitative and qualitative senses. Finite-time stability in a
quantitative sense is firstly investigated. *en, finite-time
stability results in a qualitative sense are outlined. *is re-
view paper is far from complete due to our limitations and
nonawareness. We hope that this paper can be a useful
resource for practitioners, researchers, and graduate stu-
dents working in this field.
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,e issue of fixed-time trajectory tracking control for the autonomous surface vehicles (ASVs) system with model uncertainties
and external disturbances is investigated in this paper. Particularly, convergence time does not depend on initial conditions. ,e
major contributions include the following: (1) An integral sliding mode controller (ISMC) via integral sliding mode surface is first
proposed, which can ensure that the system states can follow the desired trajectory within a fixed time. (2) Unknown external
disturbances are absolutely estimated by means of designing a fixed-time disturbance observer (FTDO). By combining the FTDO
and ISMC techniques, a new control scheme (FTDO-ISMC) is developed, which can achieve both disturbance compensation and
chattering-free condition. (3) Aiming at reconstructing the unknown nonlinear dynamics and external disturbances, a fixed-time
unknown observer (FTUO) is proposed, thus providing the FTUO-ISMC scheme that finally achieves trajectory tracking of ASVs
with unknown parameters. Finally, simulation tests and detailed comparisons indicate the effectiveness of the proposed
control scheme.

1. Introduction

With marine engineering operations developing and pro-
gressing, autonomous surface vehicles (ASVs) are instru-
mental in river and oil pipeline inspection, hull inspection,
ocean survey, levee inspection, underwater archaeology, and
underwater wreck inspection [1–5]. ASVs are usually per-
ceived as a class of nonlinear dynamic systems equipped
with complex external disturbances and model uncertainties
[6]. It is an overwhelming matter to design a highly efficient
controller for the ASV system.

Trajectory tracking is a basic problem for ASVs; how-
ever, as the system dynamics of ASV are highly nonlinear
and there are unpredictable external disturbances in the
marine environment, designing an effective controller for
ASVs is a challenging issue. Many classical control algo-
rithms such as feedback linearization [7], backstepping
control [8], PID control [9], adaptive control [10], fuzzy
control [11], and neural networks control [12] have been
implemented to the trajectory tracking control of ASVs. ,e

system states generally realize either asymptotic convergence
or exponential convergence. In addition, many scholars have
proposed many compound control methods in combination
with above different control theories that apply to actual
control systems [13–18], especially ASV systems [5, 6, 9], etc.

,e finite-time control scheme profits from short di-
vergence span and strong robustness, which is applied to
various nonlinear control systems. In this respect, contin-
uous finite-time control schemes for robotic manipulators
have already been designed utilizing terminal sliding mode
control theory in [19], and a nonsingular terminal sliding
mode control scheme for a marine vehicle with complex
unknowns has been presented in [20]. Moreover, a finite-
time integral sliding controller in [21] has been designed to
realize the path following of the ASVs.

Although the finite-time tracking control problems are
achieved in the above references, the convergence time is to
depend on the original states. When the initial time tends to
infinity, the convergence time also tends to infinity. How-
ever, compared with the finite-time control schemes, the
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converge speed of the fixed-time control schemes is quite
insensitive to initial condition [22, 23]. Recently, many
fixed-time sliding mode control schemes have been pro-
posed. For nonlinear systems with matched uncertainties
and disturbances, a fixed-time nonsingular terminal sliding
mode controller has been proposed in [24]. In [25], for the
trajectory tracking control, a fixed-time nonsingular ter-
minal sliding mode controller for a warship-launched
submarine withmultiple disturbances has been presented. In
addition, a fixed-time sliding mode control for fault-tolerant
trajectory tracking of an ASV has been designed in [26].

As known, chattering is an inherent phenomenon in
sliding mode control. To reduce the chattering, a feasible
solution is that disturbance observer-based control (DOBC)
schemes are used to estimate external disturbances and
model uncertainties and the disturbance estimation values
are introduced into sliding mode control law. In order to
improve the convergence speed and robustness, some finite-
time disturbance observers were designed to estimate ex-
ternal disturbances and model uncertainties [27–32].

In this brief, the fixed-time trajectory tracking control
scheme for ASVs with external disturbances and model
uncertainties is explored. An integral sliding mode controller
(ISMC) is firstly intended by using ISM surface for the ASV
system without external disturbances, so that system states
can attain the expected value in fixed time. Next, a fixed-time
disturbance observer (FTDO) is designed to estimate the
external disturbances and a new control scheme (FTDO-
ISMC) is constructed to enable that the system states can
accurately track the expected trajectory within fixed time even
if there exist unexpected external disturbances. Furthermore,
to guarantee good tracking performance against both dis-
turbances and unknown system dynamics, a corresponding
fixed-time unknown observer based on ISMC (FTUO-ISMC)
control scheme is proposed. As a consequence, simulation
results imply that the proposed control schemes can guar-
antee the system states to track the desired trajectory in a fixed
time in spite of the ASV system subject to unknown dis-
turbances andmodel uncertainties and the convergence speed
is regardless of the origin states of the ASV system.

,e remainder of this paper is structured as follows: In
Section 2, some definitions and lemmas related to the tra-
jectory tracking problem are formulated. ,e problem of the
paper is described in Section 3. Section 4 describes the design
of fixed-time controller and its stability analysis. Simulation
results and discussion are mentioned in Section 5. And,
Section 6 summarizes the main conclusions of this paper.

2. Preliminaries

Lemma 1 (see [33]). Consider the following double-inte-
grator system:

_x1 � x2,

_x2 � u,

x(0) � x0,

(1)

with the control law

u(t) � − k1 x1 
ϱ1 + k1′ x1  + k2″ x1 

ϱ1′ 

− k2 x2 
ϱ2 + k2′ x2  + k2″ x2 

ϱ2′ ,
(2)

where parameters ki > 0, ki
′ > 0, k′

′
i > 0 (i � 1, 2), and ϱi, ϱi′,

(i � 1, 2) are chosen by

ϱ1 �
ϱ

2 − ϱ
,

ϱ2 � ϱ,

ϱ1′ �
4 − 3ϱ
2 − ϱ

,

ϱ2′ �
4 − 3ϱ
3 − 2ϱ

,

(3)

with ϱ ∈ (0, 1) and [x]α � |x|αsign(x), α≥ 0. Next, the state
of the double-integrator system is fixed-time stability with
convergence time tf.

Lemma 2 (see [34]). Consider the following nonlinear
system:

_x(t) � f(x, t),

f(0, t) � 0,

x(0) � x0,

(4)

where x ∈ Rn and f: R+ × Rn⟶ Rn is a nonlinear func-
tion. For the above system, suppose that there is a continuous
radially unbounded function V: Rn⟶ R+U 0{ } which
satisfies

(1) V(x) � 0, when x � 0
(2) _V(x)≤ − αVp(x) − βVq(x) for some α, β, p, q> 0,

with 0<p< 1 and q> 1

/e considered nonlinear system is globally fixed-time
stable within the settling time T satisfying

T≤Tmax ≔
1

α(1 − p)
+

1
β(q − 1)

. (5)

3. System Modeling and Problem Formulation

,e kinematics and dynamics of the ASV system regarded as
rigid body with three degrees of freedom (3-DOF) are
represented by [6]

_η � R(φ)υ, (6)

M _υ � − C(υ)υ − D(υ)υ − g(η) + τ + MR
T
dl(t), (7)

where η � [x, y,φ]T is the location (x, y) and course angle
(φ) of ASVs in an earth-fixed inertial frame, υ � [u, ], r]T is
the linear velocities (u, ]) and angular rate (r) in the body-
fixed frame, τ � [Fu, F], Fr]

T stands for the actual control
thrust, and dl(t) denotes unsuspected external disturbances
owing to complex surface environment including wind,
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waves, and ocean current. ,e rotation matrix R(φ) is de-
fined by

R(φ) �

cosφ − sinφ 0

sinφ cosφ 0

0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (8)

being provided with the following characters: RT(φ)

R(φ) � I, _R(φ) � R(φ)S(r), ∀φ⊆[0, 2π], and RT(φ)S(r)

R(φ) � R(φ)S(r)RT(φ) � S(r), where

S(r) �

0 − r 0

r 0 0

0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (9)

is the inertia matrix M � MT > 0 and

M �

m − X _u 0 0

0 m − Y _] mxg − Y _r

0 mxg − N _] Iz − N _r

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (10)

where m is the mass of the system, Iz is the inertia matrix
concerned with the yaw angle, Y _r � N _], and X∗, Y∗, andZ∗
denote the corresponding hydrodynamic derivatives.
Coriolis and centripetal matrix C(υ) � − C(υ)T have the
following form:

C(v) �

0 0 c13(v)

0 0 c23(v)

− c13(v) − c23(v) 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (11)

and the damping matrix D(v) is described by

D(v) �

d11(v) 0 0

0 d22(v) d23(v)

0 d32(v) d33(v)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (12)

where c13(v) � − m(xgr + ]) + X _u] + Y _rr, c23(v) � mu−

X _uu, and d11(v) � − Xu − X|u|u|u| − Xuuuu2, d22(v) �

− Y] − Y|]|]|]|, d23(v) � − Yr − Y|]|r|]| − Y|r|r|r|, d32(v) �

− N] − N|]|]|]| − N|r|]|r|, and d33(v) � − Nr − N|]|r|]|−

N|r|r|r|. And g(η) is the gravity and buoyancy forces and
moments, which is usually used as a constant in ASV.

Consider the desired trajectory as follows:

_ηd � R φd( υd, (13)

M _υd � − C υd( υd − D υd( υd + τd, (14)

where ηd � [xd, yd,φd]T and υd � [ud, ]d, rd]T denote its
desired position and velocity vectors, and the model con-
tains no unknown nonlinear dynamics including external
disturbances and model uncertainties.

Assumption 1. For disturbance vector dl(t), it is given that
constants κi satisfies | _dli(t)|≤ κi, where κi is an unknown
nonnegative bounded constant.

,e control purpose, in this paper, is to design fixed-time
trajectory tracking control schemes so that the practical

position and velocity (6)-(7) can precisely pursuit the ex-
pected ones (13)-(14), respectively.

4. Controller Design and Stability Analysis

4.1. Coordinate Transformation. Consider coordinate
transformations as follows:

σ � Rυ,

σ ∈ σ, σd ,

υ ∈ υ, υd ,

R ∈ R, Rd ,

(15)

where σ � [σ1, σ2, σ3]
T, σd � [σd1, σd2, σd3]

T, R � R(φ), and
Rd � R(φd).

By combining (6)-(7) and (15), we can obtain

_η � σ,

_σ � RM
− 1τ + Θ(η, σ) + dl(t),

(16)

where

Θ(η, σ) � S(σ)σ − RM
− 1

C R
Tσ  + D R

Tσ  R
T

σ − RM
− 1

g(η).
(17)

Similarly, together with (13), (14), and (15), we obtain

_ηd � σd,

_σd � RdM
− 1τd + Θd ηd, σd( ,

(18)

where

Θd ηd, σd(  � S σd( σd − RdM
− 1

C R
T
dσd 

+ D R
T
dσd R

T
dσd.

(19)

Define the position and velocity error ηe � [ηe1,

ηe2, ηe3]
T and σe � [σe1, σe2, σe3]

T. ,en, we have

_ηe � σe,

_σe � RM
− 1τ − RdM

− 1τd + dl(t) + Θe η, σ, ηd, σd( ,
(20)

where

Θe η, σ, ηd, σd(  � Θ(η, σ) − Θd ηd, σd( . (21)

4.2.Designof the ISMCwithoutExternalDisturbances. In this
section, an ISMC is firstly proposed for tracking error
systems (20) and (21) without external disturbances, and the
fixed-time stability is verified.

,e ISM manifold is designed as follows:

s σe(t)(  � σe(t) + 
t

t0

un σe(θ)( dθ, (22)

where
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un � k1 ηe 
ϱ1 + k1′ ηe  + k1″ ηe 

ϱ1′ + k2 σe 
ϱ2 + k2′ σe  + k2″ σe 

ϱ2′.

(23)

and parameters are provided in Lemma 1.
,e ISMC can be designed as

τISMC � MR
− 1

RdM
− 1τd − Θe − un − ξ1[s]

α
− ξ2[s]

β
 ,

(24)

where 0< α< 1, β> 1, ξ1 > 0, and ξ2 > 0.

Theorem 1 (ISMC). Consider tracking error systems (20)-
(21) without external disturbances, and an ISMC is designed
by (24). Systems (6) and (7) can converge to desired trajec-
tories (13) and (14) within a fixed time, i.e., η ≡ ηd and υ ≡ υd,
when t>Tf1.

Proof. ,ere are two processes in the whole verification: the
reaching and the sliding phases:

(i) Step 1: taking the derivative of ISM surfaces (22) and
(23) along error systems (20) and (21) without ex-
ternal disturbances dl(t) and combining with the
control law (24), we can obtain

_s � _σe + un � − ξ1[s]
α

− ξ2[s]
β
. (25)

Take the candidate Lyapunov function as follows:

V(s) �
1
2
s
2
. (26)

Differentiating it along the dynamics (25), we obtain

_V(s) � s _s � s − ξ1[s]
α

− ξ2[s]
β

  � − ξ1|s|
α+1

− ξ2|s|
β+1

� − 2α+1/2ξ1V
α+1/2

− 2β+1/2ξ2V
β+1

.

(27)

According to Lemma 2, it is claimed that the ISM
control law will let the system states reach the ISM
surface s � 0 within a fixed time.

(ii) Step 2: at that moment, error system (20) will reduce
to the following system:

_ηe � σe,

_σe � − un ηe, σe( .
(28)

By applying Lemma 1, we have that system (28) is
globally fixed-time stable. Eventually, errors ηe and σe are
converging to zero within a fixed time tf, so this completes
the proof. Under the ISMC scheme, the convergence time of
the ASV system is Tf1 � T0 + tf, where T0 � 1/2(α− 1)/2

ξ1(1 − α) + 1/2(β− 1)/2ξ2(β − 1).

Remark 1. External disturbances are not considered in
ISMC excogitation, but they are actually exist in the actual

environment. ,erefore, controller design for the ASV
system with external disturbances is essential.

4.3. Design of FTDO-ISMC. To achieve accurate tracking
performance, in this section, a FTDO is built to estimate the
external disturbances. Inspired by [35–37], a FTDO algo-
rithm is established as

χ0 � σ − χ,

_χ � RM
− 1τ − RdM

− 1τd + Θe η, σ, ηd, σd(  + dl(t) + ψi,

ψi � λ1i χ0i



1/2sign χ0i(  + λ2i χ0i



cisign χ0i( ,

_dl(t) � βisign χ0i( , i � 1, 2, 3,

(29)

where χ0 � [χ01, χ02, χ03]
T is an auxiliary variable, ψ � [ψ1,

ψ2,ψ3]
T, dl(t) � [dl1(t), dl2(t), dl3(t)]T denotes the esti-

mation of dl(t), λ1i and λ2i are constants greater than zero,
βi > κi, and ci > 1.

,e error dynamic of the observer is described as

_χ0i � χ1i − λ1i χ0i



1/2sign χ0i(  − λ2i χ0i



cisign χ0i( ,

χ1i

.
� − βisign χ0i(  + _dli(t),

(30)

where χ1i � dli(t) − dli(t) is the estimation error of external
disturbance. It can be derived from [36, 37] that observer
error system (18) is fixed-time stable according to As-
sumption 1, i.e., when t> t1, χ0i � χ1i � 0. And the t1 satisfies
t1 ≤ (1/λ2(c − 1)εc− 1 + 2ε1/2/λ1)(1 + 1/m((1/M) − (h(λ1)/
λ1))) with ε> 0, M � α − κ, m � α + κ, and h(λ1) �

1/λ1 + (2exp(1)/mλ1)
1/3.

Theorem 2 (FTDO-ISMC). Consider tracking error systems
(20)-(21) with external disturbances satisfying Assumption 1;
then, a FTDO-ISMC is designed as

τFTDO− ISMC � MR
− 1

RdM
− 1τd − Θe − un − dl(t) − ξ1[s]

α
− ξ2[s]

β
 ,

(31)

with dl estimated by FTDO (30). Systems (6) and (7) can
converge to desired trajectories (13) and (14) within a fixed
time, i.e., dl(t) ≡ dl(t), η ≡ ηd, and υ ≡ υd, when t>Tf2.

Proof. ,e derivative of ISM surface (13) is rewritten as

_s � χ1 − ξ1[s]
α

− ξ2[s]
β
. (32)

And derivative Lyapunov function V based on (32)
obtains

_V � sχ1 − ξ1|s|
α+1

− ξ2|s|
β+1

. (33)

When the time t> t1, dl(t) equals dl(t), that is to say that
the disturbance estimation error χ1i converges to zero within
a fixed time. (33) is rewritten as

_V � − ξ1|s|
α+1

− ξ2|s|
β+1

. (34)
Based on Lemma 2, (34) is described by

_V � − 2α+1/2ξ1Vα+1/2 − 2β+1/2ξ2Vβ+1/2 and we obtain that the
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ISM manifold s � 0 will be arrived within a fixed time
T1 � 1/2(α− 1)/2ξ1(1 − α) + 1/2(β− 1)/2ξ2(β − 1). ,e system is
still the same as (28) while s � 0. In other words, the tracking
error system states ηe and υe are still sufficient to ensure
convergence along the sliding surface in a fixed time tf.
Under the FTDO-ISMC scheme, the convergence time of the
ASV system is Tf2 ≤ t1 + T1 + tf. ,is concludes the proof.

Remark 2. Note that we do not testify that the proposed
controller (31) can ensure the boundedness of errors ηe and
σe in the time quantum [0, t1] since the analysis of the
dynamics of tracking error system is a difficult subject due to
the complex nonlinear terms. In view of this reason, we have
done a large number of simulations for ASV systems (6)-(7)
under observer (29) and control laws (31), in which any
divergence phenomenon is not observed. Practically, for the
purpose of guaranteeing the boundedness of error system
states in engineering, a bounded control rule can be applied
in [0, t1]. ,erefore, it can assume that all states will not be
divergent in fixed time in advance of the observer error
dynamics converging.

Remark 3. Notice that it is difficult for Θe to obtain the real
value because C(v) and D(v) are unknown because of
existing uncertainties in ASV uncertainties. ,e FTDO only
estimates the external disturbances and the influence of
nonlinear terms is not considered, which will be solved in
this context.

4.4. Design of FTUO-ISMC. In this section, the unknown
nonlinear term consisting of C(υ), D(υ), and g(η) together
with the external disturbances dl(t) are regarded as the
lumped disturbances. ,erefore, rewriting tracking error
systems (20) and (21) yields

_ηe � σe,

_σe � RM
− 1τ − RdM

− 1τd − Θd + S(σ)σ +Φ,
(35)

where

Φ � − RM
− 1

C R
Tσ  + D R

Tσ  R
Tσ − RM

− 1
g(η) + dl(t),

(36)

is an unknown nonlinearity regarded as the lumped dis-
turbances. According to [29], an assumption is presented as
follows.

Assumption 2. ,ere exists a bounded constant h0 such that
| _Φ|≤ h0.

A FTUO is presented as

e0 � σ − e,

_e � RM
− 1τ − RdM

− 1τd − Θd ηd, σd(  + S(σ)σ + Φ + ψi,

ψi � λ1i e0i



1/2sign e0i(  + λ2i e0i



cisign e0i( ,

Φ
.

i � βisign e0i( , i � 1, 2, 3,

(37)

where e0 � [e01, e02, e03]
T is an auxiliary variable,

ψ � [ψ1,ψ2,ψ3]
T, Φ � [ Φ1, Φ2, Φ3]

T is the estimation of the
unknown lumped disturbances Φ, λ1i and λ2i are positive
constants, βi > h0, and ci > 1.

,e error dynamic of the observer is described as

_e0i � e1i − λ1i e0i



1/2sign e0i(  − λ2i e0i



cisign e0i( ,

_e1i � − βisign e0i(  + _Φi(t),
(38)

where the lumped disturbance estimation error is described
as e1i � Φi − Φi. With the help of Assumption 2, observer
error system (38) is found to be fixed-time stable according
to [36, 37], i.e., when t> t2, e0i � e1i � 0. And, the t2 ≤
((1/λ2(c − 1)εc− 1) + (2ε1/2/λ1))(1 + (1/m(1/M − h(λ1)/
λ1))) with M � α − h0 andm � α + h0 is different from the
FTDO.

Theorem 3 (FTUO-ISMC). Considering tracking error
systems (35)-(36) with the unknown lumped disturbances
satisfying Assumption 2, a FTUO-ISMC is designed as

τFTUO− ISMC � MR
− 1

RdM
− 1τd + Θd − S(σ)σ , (39)

with Φ estimated by FTUO (40). Systems (6) and (7) can
converge to desired ones (13) and (14) within a fixed time, i.e.,
Φ ≡ Φ, η ≡ ηd, and υ ≡ υd, when t>Tf3.

Proof. ,e derivative of ISM surface (22) is redescribed as
follows:

_s � e1 − ξ1[s]
α

− ξ2[s]
β
. (40)

And the derivation of Lyapunov function (25) will be
changed as

_V � se1 − ξ1|s|
α+1

− ξ2|s|
β+1

. (41)

When the time t> t2, Φ equalsΦ; to put it differently, the
unknown lumped disturbance estimation error e1 converges
to zero in a fixed time, which makes equation (41) become
(27) such that system states arrive at s � 0 within a fixed time
T2 � (1/2(α− 1)/2)ξ1(1 − α) + (1/2(β− 1)/2)ξ2(β − 1) based on
Lemma 2. ,e tracking error system is the same as (28) after
reaching the sliding surface, and it converges to origin along
the sliding surface in a fixed time based on Lemma 1. Under
the FTUO-ISMC scheme, the convergence time of the ASV
system is Tf3 ≤ t2 + T2 + tf. ,e proof is absolutely
accomplished.

Remark 4. Although the states of tracking error systems
(35)-(36) under control law (40) are not proved to be
bounded within [0, t2] analogous to Remark 2, sufficient
simulation results have been shown that any state does not
diverge in [0, t2]. Hence, we still suppose that the states of
(35) are bounded within the time period [0, t2].

Remark 5. ,e ISMC scheme is designed based on inte-
grated sliding mode surface for ASV systems without ex-
ternal disturbances. ,e FTDO-ISMC scheme is designed
when there are external disturbances in the ASV system.,e
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FTUO-ISMC scheme is designed considering the model
uncertainties and external disturbances of the ASV system.
,e similarity lies in that ISMC, FTDO-ISMC, and FTUO-
ISMC schemes are all based on the state feedback to design
the integral sliding mode controllers.

5. Simulation

For the sake of illustrating the efficiency and superiority of
the developed ISMC, FTDO-ISMC, and FTUO-ISMC points
at trajectory following of an ASV, simulation machine
adopted the surface vehicle CyberShip II [38] whose main
parameters can be found in [27].

In this section, simulation proposed three control laws
verifying that the system states can track the trajectory given
by (13) and (14) within a fixed time, where desired control
input τd is conducted by τd � [5, 2 cos2(0.1πt),

sin2(0.1πt)]T. ,e origin condition is given by η(0) �

[2, 1, π/2]T, υ(0) � [0, 0, 0]T, ηd(0) � [1, 2, π/4]T, and
υd(0) � [0, 0, 0]T.

5.1. Simulation on the ISMC. ,e ISMC scheme is simulated
without considering external disturbances, and the pa-
rameters of this scheme are chosen as follows: ϱ � 0.7,
ki � ki
′ � k′
′
i � 5, ξ1 � ξ2 � 3, α � 0.5, and β � 2. It is clearly

expressed from Figures 1–3 that the desired system state is
fully tracked by the system states within a fixed time.

In Figures 4 and 5, curves of tracking error are shown
under two sets of initial conditions. ,e case one is as above
and the case two is η(0) � [1, 1, π/3]T, υ(0) � [1, 0, 0]T,
ηd(0) � [1, 0, π/2]T, and υd(0) � [0, 1, 0]T. ,e convergence
time can be demonstrated to be similar in distinct initial
states. ,e control input of ISMC is shown in Figure 6.

5.2. Simulation on the FTDO-ISMC. In general, the external
disturbances always exist in the ASV dynamics. ,e un-
known external disturbances dl(t) are chosen as

dl(t) �

9sin 0.1πt −
π
5

 

6sin 0.3πt +
π
6

 

3sin 0.2πt +
π
3

 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (42)

And the parameters of the proposed FTDO and cor-
responding controller τFTDO− ISMC are chosen as follows:

λ1i � λ2i � 6, β1 � 9, β2 � 6, β3 � 3; c1 � c2 � 0.3,
c3 � 0.8; ϱ � 0.7, ki � ki

′ � k′
′
i � 5, ξ1 � ξ2 � 4, α � 0.5, and

β � 2.
Accordingly, simulation results of FTDO-ISMC scheme

are illustrated in Figures 7–13. From Figures 7–12, compared
to the performance with ISMC, the FTDO-ISMC scheme
can also accurately control for tracking control of the ASV
system among brief time in the presence of external dis-
turbances. As can be seen from Figure 12, the FTDO can
accurately estimate the external disturbances. ,e control
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input of the ASV system under FTDO-ISMC scheme is
shown in Figure 13. ,erefore, it can be concluded that the
FTDO-ISMC scheme can achieve good tracking perfor-
mance while external disturbances are existing.

5.3. Simulation on the FTUO-ISMC. ,e unknown lumped
disturbances composed of the external disturbances and the
model uncertainties of the ASV system are estimated to-
gether by the FTUO.,e parameters of the proposed FTUO
and corresponding controller τFTUO− ISMC are chosen as
follows: λ1i � λ2i � 6, β1 � 9, β2 � 7, and β3 � 4; c1 � c2 �

0.3 and c3 � 0.6; ϱ � 0.3, ki � ki
′ � k′
′
i � 5, ξ1 � 4, ξ2 � 4,

α � 0.1, and β � 2.
,e simulation results of the ASV system under FTUO-

ISMC are all provided in Figures 14–17. It could be described
from Figures 14–16 that the vehicle can follow the expected

trajectory accurately with the fixed time while the unknown
lumped disturbances are presenting. In Figure 17, curves of
unknown lumped disturbances and estimations are pre-
sented. From this figure, we can see that the proposed FTUO
can effectively estimate the lumped disturbances. As a
conclusion, the tracking performance of the FTUO-ISMC is
satisfied for the ASV system with external disturbances and
parameter uncertainties.

6. Conclusion

In this paper, the problem of fixed-time trajectory tracking
control has been investigated for ASVs with external dis-
turbances and model uncertainties. By introducing integral
sliding mode surface, an ISMC scheme has been proposed for
ASVs, which can achieve position and velocity tracking in
fixed time. ,en, a fixed-time disturbance observer (FTDO)
has been designed to estimate the external disturbances. ,e
control scheme (FTDO-ISMC) proposed by combining the
ISM surface and the output of FTDO can accurately track the
desired trajectory for ASVs with the external disturbances. A
fixed-time unknown observer (FTUO) has been developed to
calculate the unknown lumped disturbances, and a control
law in the light of fixed-time unknown observer (FTUO-
ISMC) has been proposed to achieve accurate disturbances
attenuation and trajectory tracking for the ASVs. Results on
simulation have been used to illustrate the superiority and
efficiency of the control schemes proposed.
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In this paper, the finite-time stabilization and destabilization of a class of quaternion-valued neural networks (QVNNs) with
discrete delays are investigated. In order to surmount the difficulty of noncommutativity of quaternion, a new vector matrix
differential equation (VMDE) is proposed by employing decomposition method. And then, a nonlinear controller is designed to
stabilize the VMDE in a finite-time interval. Furthermore, under that controller, the finite-time stability and instability of the
QVNNs are analyzed via Lyapunov function approach, and two criteria are derived, respectively; furthermore, the settling time is
also estimated. At last, by two illustrative examples we verify the correctness of the conclusions.

1. Introduction

In 1961, in order to investigate the transient performance of
the system, Perter Dorato gave a definition of short-time
stability, which was also called finite-time stability later [1].
*ere are some differences between finite-time stability and
classical stability theory, Lyapunov stability. Actually, the
finite-time stability mainly reveals the transient dynamic
characteristics of the system in a short and desired time
interval; however, the Lyapunov stability mainly reveals
dynamical behavior of the system in an infinite time in-
terval [2–4]. For a long time, the research concerning the
finite-time stability only focused on the stability analysis.
However, very limited references considered the problem
of controllability due to the difficulty in designing the
control strategy [3,5–8]. In fact, many practical systems are
required to reach their desired state quickly, such as flight
control system, communication network system, and robot
control [9–16].*erefore, lots of scholars are devoted to the
controllability of finite-time stability, and some interesting
and meaningful results have been reported [2,4,9,17–28].

Nersesov et al. extended the finite-time stability theory and
gave a control strategy to reach finite-time stability [2]. For
the delayed complex-valued memristive neural networks, a
new nonlinear delayed controller was designed to get the
finite-time stabilization [4]. When discussing scalar linear
systems, a finite-time controller was proposed in [22].
Based on state and output feedback, several especial finite-
time controllers were firstly proposed for the stochastic
system in [23]. On the other hand, it is also interesting to
destabilize a stable system in a finite-time interval, such as
preventing eavesdropping and signal encryption. Wang
and Shen proposed some finite-time destabilization alge-
braic criteria for memristive neural networks, and a more
general controller was designed to realize the finite-time
destabilization for delayed complex-valued memristive
neural networks [24]. However, the controllers designed in
existing references are invalid to QVNNs because of the
noncommutativity of quaternion. And many effective
methods for studying the finite-time stability of QVNNs
are yet to be discovered, which stimulates us to do this
research.
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Like x � c + di + ej + fk, c, d, e, f ∈ R, we call number
x a quaternion proposed in 1843, and it satisfies the fol-
lowing rule:

i × i � j × j � k × k � − 1, i × j � − j × i � k,

j × k � − k × j � i, k × i � − i × k � j.
(1)

Quaternion has been widely used in space control,
computer 3D image processing, and attitude control of
spacecraft [29]. Up to now, the neural network has obtained
great development in many fields, such as signal processing,
artificial intelligence, and optimization. Particularly, for the
real-valued neural networks (RVNNs),many researchers have
carried out a lot of work [30–33], as well as complex-valued
neural networks (CVNNs) [3,4,34–37]. Since there are three
imaginary parts of quaternion, combined with many ad-
vantages of neural network, QVNNs have many properties
that RVNNs and CVNNs do not have and have been applied
in many practical fields, such as high-dimensional data
processing, image compression, pattern recognition, and
optimization. While, much fewer attentions are given to the
dynamical behavior of QVNNs [20,38–47]. Li and Zheng
investigated the globally exponential passivity of quaternion-
valued memristor-based neural networks with time delays
[29]. Tu et al. investigated the globally asymptotical stability
and exponential stability of a class of QVNNs with mixed
delays via nonseparating technologies [42]. Based on frac-
tional-order QVNNs, quasi-synchronization and bifurcation
were also considered [43]. Nevertheless, according to our
knowledge, it is still open and significative to study the finite-
time stabilization of delayedQVNNs, such as how to carry out
the finite-time stabilization of QVNNs and how to design the
controller to stabilize the instable systems remain unresolv-
able. Some new theory and methods should be explored to
resolve those problems. We mainly want to discuss the finite-
time stability of QVNNs in this paper. By constructing a new
vector Lyapunov candidate function and designing a non-
linear vector-matrix controller, both finite-time stabilization
and destabilization of delayed QVNNs are analyzed. Fur-
thermore, we only need to adjust the appropriate parameters,
and the finite-time stabilization and destabilization can be
realized. We sort out the chief contributions of this article as
follows:

(1) It is the first time that the finite-time stabilization and
destabilization of QVNNs with discrete delays are
studied. A new vector Lyapunov function is con-
structed and a new nonlinear vector-matrix controller
is designed to investigate the aforementioned problem.

(2) Based on the new developed method, some easily
checked results for the finite-time stabilization and
destabilization of QVNNs are provided, respectively.
Compared to [4], the obtained criteria are more
concise and natural.

(3) *e influence of initial condition of the system and
parameter of the designed controller to the settling
time is analyzed in detail.

*e remaining sections of this article will be arranged as
follows. In Section 2, an equivalent VMDE of QVNNs is

established and several correlative definitions, lemmas, and
assumptions are presented. In Section 3, a new nonlinear
vector-matrix controller is given, and both the finite-time
destabilization and stabilization of QVNNs with discrete
delays is analyzed. In Section 4, the validity of our proposed
criteria is checked by two illustrative examples. In Section 5,
a summary of the paper is given and some thoughts on the
future work of finite-time problems are conceived.

Notations. *e symbol R expresses the real number set, the
symbol C expresses complex number set, and the symbol Q
expresses quaternion set. We call Rm× l and Qm × l all m × l

real matrices set and quaternion matrices set, respectively.
Ql is said to be l-dimensional quaternion space. A contin-
uous mapping from [t0 − τ, t0] to Ql is
ϕ ∈ C([t0 − τ, t0];Q

l). *e transpose of B is noted by symbol
BT. We can use B> 0 (B< 0) to represent a positive definite
(negative definite) matrix, respectively. A vector
y � (y1, y2, . . . , yl)

T ∈ Rl < 0 means that yi < 0, i � 1,

. . . , l. *e 1-norm of vector Q ∈ Rl is written as
‖Q‖ � 

l
i�1 |Q|i. When b(t) � (b1(t), b2(t), . . . , bl(t))T ∈ Rl

and c ∈ R, |b(t)|c � (|b1(t)|c, |b2(t)|c, . . . , |bl(t)|c)T,
sgn(b(t)) � (sgn(b1(t)), sgn(b2(t)), . . . , sgn(bl(t)))T.
|B| � (|bij|) ∈ Rl×l, where B � (bij) ∈ Rl×l. A continuous
function α: [0, a)⟶ [0, +∞) is a class K function if it is
strictly increasing and α(0) � 0. I � (1, 1, . . . , 1)T ∈ Rl. E is
an identity matrix.

2. Preliminaries

Based on the following QVNNs model with discrete time-
varying delays, we will analyze how to stabilize and desta-
bilize the QVNNs in a finite- and short-time interval:

_x(t) � − Cx(t) + Mg(x(t)) + Ng(x(t − τ(t))) + I(t),

(2)

where x(t) � (x1(t), x2(t), . . . , xl(t)) ∈ Ql is called a l-di-
mensional state variable at time t, C � diag c1,

c2, . . . , cl} ∈ Rl×l is called a self-feedback link weight matrix
with ci > 0, i � 1, 2, . . . , l, M, N∈ Ql×l denote link weight
matrices, g(x(·)) � (g1(x1(·)), g2(x2(·)), . . . , gl(xl(·)))T

∈ Ql is activation function, τ(t) satisfies
0< τ(t)< τ, 0< τ < +∞, which is the time-varying delay,
and I(t) � (I1(t), I2(t), . . . , Il(t))T ∈ Ql denotes outer
input vector which will be designed later. *e initial con-
dition is given by x(s) � ψ(s) ∈ Ql, s ∈ [t0 − τ, t0], where
ψ(s) � ψ(r)(s) + ψ(i)(s)i + ψ(j)(s)j + ψ(k)(s)k.

Let

x(t) � x
(r)

(t) + x
(i)

(t)i + x
(j)

(t)j + x
(k)

(t)k,

M � M
(r)

+ M
(i)

i + M
(j)

j + M
(k)

k,

N � N
(r)

+ N
(i)

i + N
(j)

j + N
(k)

k,

g(x(t)) � g
(r)

x
(r)

(t)  + g
(i)

x
(i)

(t) i

+ g
(j)

x
(j)

(t) j + g
(k)

x
(k)

(t) k,

(3)
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where x(p)(t), g(p)(x(p)(t)) ∈ Rl and M(p), N(p) ∈ Rl×l,
p � r, i, j, k.

Remark 1. In general, let x � x(r) + x(i)i + x(j)j + x(k)k, and
the activation function g(x) should be written as follows:

g(x) � g
(r)

x
(r)

, x
(i)

, x
(j)

, x
(k)

  + g
(i)

x
(r)

, x
(i)

, x
(j)

, x
(k)

 i

+ g
(j)

x
(r)

, x
(i)

, x
(j)

, x
(k)

 j

+ g
(r)

x
(r)

, x
(i)

, x
(j)

, x
(k)

 k.

(4)

However, in this paper, to reduce the difficulty of re-
search and simplify the results of finite-time stability of

QVNNs, we employ a special activation function introduced
above, such as the activation functions of illustrative ex-
amples later.

By means of decomposition methods as those used in
[41,47], we decompose QVNNs (2) into four RVNNs equally
and combine them into a equivalent VMDE as follows

_Q(t) � − CQ(t) + Ag(Q(t)) + Bg(Q(t − τ(t))) + I(t),

(5)

Q(s) � Ψ(s), s ∈ t0 − τ, t0 , (6)

where

C � diag C, C, C, C{ } ∈ R4l×4l
,

A �

M
(r)

− M
(i)

− M
(j)

− M
(k)

M
(i)

M
(r)

− M
(k)

M
(j)

M
(j)

M
(k)

M
(r)

− M
(i)

M
(k)

− M
(j)

M
(i)

M
(r)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ R4l×4l

, B �

N
(r)

− N
(i)

− N
(j)

− N
(k)

N
(i)

N
(r)

− N
(k)

N
(j)

N
(j)

N
(k)

N
(r)

− N
(i)

N
(k)

− N
(j)

N
(i)

N
(r)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ R4l×4l

,

Q(t) � x
(r)

(t)
T
, x

(i)
(t)

T
, x

(j)
(t)

T
, x

(k)
(t)

T
 

T
∈ R4l

,

Ψ(s) � Ψ � ψ(r)
(t)

T
,ψ(i)

(t)
T
,ψ(j)

(t)
T

,ψ(k)
(t)

T
 

T
∈ R4l

,

I(t) � I
(r)

(t) 
T
, I

(i)
(t) 

T
, I

(j)
(t) 

T
, I

(k)
(t) 

T
 

T

∈ R4l
,

g(Q(t)) � g
(r)

x
(r)

(t)  
T
, g

(i)
x

(i)
(t)  

T
, g

(j)
x

(j)
(t)  

T
, g

(k)
x

(k)
(t)  

T
 

T

∈ R4l
,

g(Q(t − τ(t))) � g
(r)

x
(r)

(t − τ(t))  
T
, g

(i)
x

(i)
(t − τ(t))  

T
, g

(j)
x

(j)
 t − τ(t))  

T
,

g
(k)

x
(k)

(t − τ(t)) 
T
∈ R4l

.

(7)

Remark 2. In fact, system (5) is a real-valued system. Evi-
dently, the dynamic characteristics of QVNNs (2) are in
accord with those of system (5) by considering that
x(t)=x(r)(t)+ x(i)(t)i+x(j)(t)j+x(k)(t)k corresponds to
Q(t). *erefore, one only needs to analyze system (5)’s
dynamical characteristics instead of system (2), and the
difficulty of noncommutativity of quaternion can be
overcome.

In order to explicitly present main results, some defi-
nitions, assumptions, and lemmas should be introduced
firstly.

Assumption 1. g: Rl⟶ Rl (or g � (g1, g2, . . . , gl)
T),

which is a continuous function, is called a function of class
Δ α1, α2, . . . , αl ; if g(x) satisfies gi(0) � 0 and for each
a, b ∈ R, a≠ b, there exist αi > 0 such that

0≤
gi(a) − gi(b)

a − b
≤ αi, i � 1, 2, . . . , l, (8)

and let Δ � diag α1, α2, . . . , αl .

Definition 1 (see [7]). System (5)can reach a stable state in a
finite time if a initial condition Ψ is given such that the
system (5) is Lyapunov stable and any solution Q(t,Ψ) of (5)
satisfies Q(t,Ψ) � 0, ∀t≥T(Ψ), where
T(Ψ): R4l⟶ R+ ∪ 0{ } is the settling time function.

Remark 3. *e convergence time interval of finite-time
stability must be given in advance, but it is difficult to es-
timate the upper boundary of the time interval. In this paper,
some new vector-matrix analysis techniques are developed
to derive the upper boundary, and the vector-matrix tech-
niques can be used to investigate the finite-time synchro-
nization of QVNNs in future work.

Assumption 2. If Assumption 1 holds, one obtains
g � ((g(r))T, (g(i))T, (g(j))T, (g(k))T)T = ( g1, g2, · · ·, g4l)

T:
R4l⟶ R4l, g ∈ Δ α1, α2, . . . , αl, α1, α2, . . . , αl, α1,
α2, . . . , αl, α1, α2, . . . , αl} and Δ � diag Δ,Δ,Δ,Δ{ }.

Lemma 1 (see [48]). �e system VMDE (5) is called to be
finite-time stable; if under Assumption 1 and the initial
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condition ψ ∈ Ω, a continuous function
V: [0, +∞) ×Ω⟶ R+ (α, r ∈K ) can satisfy:

(1) V(t, 0) � 0, α(‖ψ‖)≤V(t,ψ), t ∈ [0, +∞).

(2) D+V(t,ψ)≤ − r(V(t,ψ))with
ε
0(dz/r(z))< +∞,

for allε> 0,ψ ∈ Ω.

And the settling time is estimated to be
T≤ 

V(0,ψ)

0 (dz/r(z)). Moreover, when r(V) � kVσ

(k> 0, 0< σ < 1), the settling time can be estimated by the
following inequality:

T≤ 
V(0,ψ)

0

dz

r(z)
�

V
1− σ

(0,ψ)

k(1 − σ)
. (9)

Lemma 2 (see [49]). Let Qj ≥ 0 for j � 1, 2, . . . , l, and
0< a≤ 1, b> 1; then, the following inequalities hold:



l

j�1
Qj

⎛⎝ ⎞⎠

a

≤ 
l

j�1
Q

a
j , l

1− b


l

j�1
Qj

⎛⎝ ⎞⎠

b

≤ 
l

j�1
Q

b
j. (10)

Lemma 3 (see [48]). If system (5) can reach a finite-time
stable state, then we can find a function r ∈K, which is a

continuous and positive definite, such that, for all Lyapunov
functionsV(t,ψ) (V(t,ψ) is the same asV(t,ψ) in Lemma 1),

D
−

V(t,ψ)≥ − r(V(t,ψ)), (11)


ε

0

1
r(z)

dz < +∞, (12)

always hold.

Remark 4. Lemma 1 is a sufficient condition for judging
finite-time stability, and Lemma 3 is a necessary condition
about finite-time stability. Lemma 3 can be used when we
judge finite-time instability of that QVNN. Lemma 2 will be
used to derive D+V(t,ψ)≤ − r(V(t,ψ)) and D− V(t,ψ)≥ −

r(V(t,ψ)) in the proof of *eorems 1 and 2 later.

3. Main Results

In this section, by designing several suitable nonlinear
controllers, some criteria are proposed to carry out stabi-
lization and destabilization of system (5) in a finite time.*e
following controllers are designed:

I
(r)

(t) � − λ(r)
1 x

(r)
(t) − λ(r)

2 x
(r)

(t)



σ1

 
T

sgn x
(r)

(t)  − θ(r)
x

(r)
(t − τ(t))



 
T

sgn x
(r)

(t) ,

I
(i)

(t) � − λ(i)
1 x

(i)
(t) − λ(i)

2 x
(i)

(t)



σ1

 
T

sgn x
(i)

(t)  − θ(i)
x

(i)
(t − τ(t))



 
T

sgn x
(i)

(t) ,

I
(j)

(t) � − λ(j)
1 x

(j)
(t) − λ(j)

2 x
(j)

(t)



σ1

 
T

sgn x
(j)

(t)  − θ(j)
x

(j)
(t − τ(t))



 
T

sgn x
(j)

(t) ,

I
(k)

(t) � − λ(k)
1 x

(k)
(t) − λ(k)

2 x
(k)

(t)



σ1

 
T

sgn x
(k)

(t)  − θ(k)
x

(k)
(t − τ(t))



 
T

sgn x
(k)

(t) ,

(13)

and the vector form
I(t) � − Λ1Q(t) − Λ2Q

σ1
t sgn(Q(t)) − ΘQt− τsgn(Q(t)),

(14)

where σ1 > 0, and λ(p)
1 , λ(p)

2 , θ(p) ∈ R, p � r, i, j, k,

Λ1 � diag λ(r)
1 , . . . , λ(r)

1 , λ(i)
1 , . . . , λ(i)

1 , λ(j)
1 , . . . , λ(j)

1 , λ(k)
1 , . . . , λ(k)

1  ∈ Q4l×4l
,

Λ2 � diag λ(r)
2 , . . . , λ(r)

2 , λ(i)
2 , . . . , λ(i)

2 , λ(j)
2 , . . . , λ(j)

2 , λ(k)
2 , . . . , λ(k)

2  ∈ Q4l×4l
,

Θ � diag θ(r)
, . . . , θ(r)

, θ(i)
, . . . , θ(i)

, θ(j)
, . . . , θ(j)

, θ(k)
, . . . , θ(k)

  ∈ Q4l×4l
,

Qt � diag x
(r)
1 (t)



, . . . , x
(r)
l (t)



, x
(i)
1 (t)



, . . . , x
(i)
l (t)



, x
(j)
1 (t)



, . . . , x
(j)

l (t)


, x
(k)
1 (t)



, . . . , x
(k)
l (t)



  ∈ Q4l×4l
,

Qt− τ � diag x
(r)
1 (t − (τ)t)



, . . . , x
(r)
l (t − (τ)t)



, x
(i)
1 (t − (τ)t)



, . . . , x
(i)
l (t − (τ)t)



, x
(j)
1 (t − (τ)t)



, . . . , x
(j)

l (t − (τ)t)


,

x
(k)
1 (t − (τ)t)



, . . . , x
(k)
l (t − (τ)t)



 ∈ Q
4l×4l

,

sgn(Q(t)) � sgn x
(r)

(t) 
T

, sgn x
(i)

(t) 
T
, sgn x

(j)
(t) 

T
, sgn x

(k)
(t) 

T
 

T

∈ Q4l
.

(15)
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Theorem 1. When Assumptions 1 and 2 hold, 0< σ1 < 1 and
Λ2 > 0, given positive diagonal matrices Λ1 and Θ such that

I
T

− C + Λ1  +|A|Δ < 0,

I
T
(|B|Δ − Θ )< 0,

(16)

then under controller (14), the VMDE (5) will reach a stable
state in a finite-time interval. T is the settling time and can be
prescribed by T≤ (1/λ2min(1 − σ1))V(0)1− σ1 , where
λ2min � min λ(μ)

2 , μ � r, i, j, k.

Proof. *e following Lyapunov candidate functional will be
considered by us:

V(t) � ‖Q(t)‖. (17)

Based on the solution trajectories of system (5) to cal-
culate the upper-right Dini derivative of V(t), one obtains

D
+
V(t) � sgn(Q(t))

T _Q(t)

� sgn(Q(t))
T

− CQ(t) + Ag(Q(t)) + Bg(Q(t − τ(t))) − Λ1Q(t) − Λ2Q
σ1
t sgn(Q(t)) − ΘQt− τsgn(Q(t)) 

≤ − I
T C + Λ1 |Q(t)| + I

T
|A‖g(Q(t))| + I

T
|B‖g(Q(t − τ(t)))| − I

TΛ2Q
σ1
t I − I

TΘQt− τI

≤ − I
T C + Λ1 |Q(t)| + I

T
|A|Δ|Q(t)| + I

T
|B|Δ|Q(t − τ(t))| − I

TΘQt− τI − I
TΛ2Q

σ1
t I

≤ − I
T C + Λ1 |Q(t)| + I

T
|A|Δ|Q(t)| + I

T
(|B|Δ − Θ )Qt− τI − I

TΛ2Q
σ1
t I

� I
T

− C + Λ1  + |A|Δ |Q(t)| + I
T
(|B|Δ − Θ )|Q(t − τ(t))| − I

TΛ2Q
σ1
t I,

(18)

Here, by Assumption 2, |gi(Qi(t)) − gi(0)|≤ αi|Qi(t) −

0 | (i � 1, . . . , 4l) is used.
In view of IT[− (C + Λ1) + |A|Δ]< 0, IT(|B|Δ − Θ )< 0,

and Lemma 2, the following inequality can be established:

D
+
V(t)≤ − I

TΛ2Q
σ1
t I

≤ − λ2min I
T

QtI 
σ1

� − λ2min‖Q(t)‖
σ1

� − λ2minV
σ1(t),

(19)

where λ2min � min λ(μ)
2 , μ � r, i, j, k,Λ2 > 0.

And for all ε> 0, one has


ε

0

1
λ2minz

σdz �
1

λ2min 1 − σ1( 
ε1− σ1 < +∞. (20)

Hence, by Lemma 1, we obtain that system (5) is finite-
time stable under controller (14). And the settling time is
prescribed by

T≤ 
V(0)

0

1
λ2minz

σ1( 
dz �

1
λ2min 1 − σ1( 

V(0)
1− σ1 . (21)

□

Remark 5. Obviously, the settling time is related to the
parameters λ2min and V(0) under 0< σ1 < 1. *e results

obtained here is more general; let σ1 choose some special
value, and the exponentially stable and power stable can be
obtained. If σ1 � 1, the VMDE (5) is exponentially stable.
However, when σ1 > 1, t � 

V(0)

V(t)
1/λ2minzσ1dz � V(t)1− σ1 −

V(0)1− σ1 /λ2min(σ1 − 1) or V(t) � [V(0)1− σ1 + λ2min
(σ1 − 1)t]1/1− σ ; then, we know VMDE (5) is power stable
with power rate (1/1 − σ1).

Theorem 2. When Assumptions 1 and 2 hold, σ1 > 1 and
Λ2 > 0, given negative definite diagonal matrices Λ1 and Θ ,
such that

I
T C + Λ1 +|A|Δ < 0, (22)

I
T
[|B|Δ + Θ ]< 0, (23)

then under controller (14), the VMDE (5) cannot reach a
stable state in a finite time.

Proof. Choose the same Lyapunov candidate function as
*eorem 1:

V(t) � ‖Q(t)‖. (24)

Computing the lower-right Dini derivative of V(t) based
on the solution trajectories of system (5), one
obtains&ecmath;
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D
−

V(t) � sgn(Q(t))
T _Q(t)

� sgn(Q(t))
T

− ĈQ(t) + Âĝ(Q(t)) + B̂ĝ

· − Λ1Q(t) − Λ2Q
σ1
t sgn(Q(t)) − ΘQt− τsgn(Q(t))( 

≥ − I
T

Ĉ + Λ1 |Q(t)| − I
T
|Â‖ĝ(Q(t)) − I

T
B̂



�����ĝ

· (Q(t − τ(t)) − I
T

 Λ2Q
σ1
t I − I

TΘQt− τI

≥ − I
T

Ĉ + Λ1 |Q(t)| − I
T
|Â|Δ̂|Q(t)| − I

T
|B̂|Δ̂|Q

· (t − τ(t))| − I
TΘQt− τI − I

TΛ2Q
σ1
t I

≥ − I
T

Ĉ + Λ1 |Q(t) − I
T



Â|Δ̂|Q(t) − I
T

 |B̂|Δ̂ + Θ )

· Qt− τI − I
TΛ2Q

σ1
t I

� − I
T

Ĉ + Λ1 +|Â|Δ̂ |Q(t)| − I
T
(|B̂|Δ̂ + Θ )|Q

· (t − τ(t))| − I
T

 Λ2Q
σ1
t I.

(25)
Here, by Assumption 2, |gi(Qi(t)) − gi(0)|≤ αi|Qi(t) −

0|(i � 1, . . . , 4l) is employed.
And it follows from C + Λ1 + |A|Γ < 0, |B|tΓn + qΘh < 0,

and Lemma 2 that

D
−

V(t)≥ − I
TΛ2Q

σ1
t I

≥ − (4l)
1− σ1( )λ2max I

T
QtI 

σ1

� − (4l)
1− σ1( )λ2max‖Q(t)‖

σ1 ,

(26)

where λ2max � max λ(p)
2 , p � r, i, j, k, Λ2 > 0.

*erefore,

D
−

V(t) ≥ − (4l)
1− σ1( )λ2maxV

σ1(t). (27)

However, by σ1 > 1, for all ε> 0,


ε

0

1

(4l)
1− σ1( )λ2maxz

σ1
dz �

(4l)
σ1− 1( )

λ2max 1 − σ1( 

· ε1− σ1 − lim
z⟶0+

z
1− σ1  � +∞.

(28)

By Lemma 1, one obtains that system (5) under con-
troller (14) cannot be finite-time stable. □

Remark 6. *e time-varying delays of system (5) under
controller (14) can be understood as follows. In fact, the third
term − ΘQt− τsgn(Q(t)) in controller (14) and scaling tech-
niques is employed to reduce its influence. And if the time
delays are infinite, the system cannot achieve finite-time sta-
bilization; therefore, τ(t) is supposed to be finite. Furthermore,
we cannot ignore time delays’ influence when discussing the
short-time stability of various dynamical systems. However,
fewer literature utilized the time delays in their controllers;

hence, this paper attempts to design a nonlinear controller with
time delays, which is a meaningful work.

Remark 7. IT[− (C + Λ1) + |A|Δ]< 0, as well as (16), (22),
and (23), indicate the column summations of square ma-
trices are negative. And they are algebraic expressions which
can be easily checked.

Remark 8. Zhang et al. [4] considers stability and instability
of a complex value neural network in a finite time. In this
paper, the analysis method of [4] is generalized to the finite-
time stability and instability of QVNNs. Compared to [4],
though the derivation process of this paper is very brief, it
can also explain the stability and instability of QVNNs well.
*erefore, the vector-matrix analysis method can be widely
used for the other stability analysis of neural networks.
Furthermore, there is no result to discuss the finite-time
stability and instability of QVNNs with discrete delays. *is
paper is one of the first to do this attempt.

4. Illustrative Examples

In this section, the validity and superiority of the proposed
criteria will be checked via two illustrative examples. And we
will show that our vector-matrix methods are more suitable
for calculating some problems of high-dimension systems by
computer programming.

Example 1. Consider the QVNNs model as follows:

_x(t) � − Cx(t) + Mg(x(t)) + Ng(x(t − τ(t))) + I(t),

(29)

where

M �
− 6 + 5i + 5j + 5k − 4 + 2i − 3j + 1k

4 − 2i + 3j + 1k 9 + 5i + 1j + 6k

⎛⎝ ⎞⎠,

N �
3 + 2i + 3j + 1.3k 4 + 4i − 4j − 2k

− 4 − 4i + 4j + 3k 2 + 2i + 3j + 4k

⎛⎝ ⎞⎠,

C � diag 18, 7{ }, τ(t) � 0.45 sin t + 0.35,

g(x(t)) �
x

(r)
(t) + 1



 − x
(r)

(t) − 1




2

+
x

(i)
(t) + 1



 − x
(i)

(t) − 1




2
i

+
x

(j)
(t) + 1



 − x
(j)

(t) − 1




2
j

+
x

(k)
(t) + 1



 − x
(k)

(t) − 1




2
k.

(30)
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Under I(t) � 0 and initial condition

x(s) �
2
3  +

− 3
2.5 i +

− 3
− 3.1 j +

3
4 k, s ∈ [0.8, 0],

the state trajectories of system (29) are shown in Figure 1(a),
which shows that system (29) is unstable. By Assumptions 1
and 2, choose Δ � diag 0.01, 0.01, 0.01, 0.01, 0.01,{

0.01, 0.01, 0.01}. To reach the finite-time stable conditions of
*eorem 1, by (14), the following controller is designed:

I(t) � − Λ1Q(t) − Λ2Q
σ1
t sgn(Q(t)) − ΘQt− τsgn(Q(t)),

(31)

where

σ1 � 0.5,

Λ2 � diag 20, 20, 20, 20, 20, 20, 20, 20{ }.
(32)

*en, when consider appropriate Δ,Λ1 such that
− C − Λ1 + AΔ< 0, the LMI toolbox inMATLAB is used, and
then it is easy to check IT(− C − Λ1 + AΔ)< 0. So, the fol-
lowing feasible solutions of Λ1 and Θ can be obtained:

Λ1 � diag 417.7830, 417.7830, 417.7830, 417.7830, 417.7830, 417.7830, 417.7830, 417.7830{ },

Θ � diag 423.9499, 423.9499, 423.9499, 423.9499, 423.9499, 423.9499, 423.9499, 423.9499{ },

I
T

− C − Λ1 +|A|Δ  � − 434.5630, − 423.9430, − 434.4430, − 423.9030, − 434.5030, − 423.8330, − 434.2130, − 423.2530{ }< 0,

I
T
(− Θ + |B|Δ) � − 423.3759, − 422.9399, − 422.9669, − 422.8299, − 423.1369, − 422.8899, − 422.9669, − 422.8899{ }< 0.

(33)

*erefore, condition (16) of *eorem 1 can be veri-
fied. Hence, by *eorem 1, under controller (31), system
(29) can reach the stable state in finite time, and one can
estimate the settling time T≤ 0.9716. Furthermore, the
state trajectories of x(t) of system (29) under controller
(31) are shown in Figure 1(b), which shows that any
solution of system (29) can converge to zero in a finite-
time interval. *erefore, the correctness of *eorem 1 is
verified.

Now, we analyze the effect of the parameter Λ2 and
initial condition on the settling time T. When initial con-
dition x(t) � 0, obviously, T � 0. Fix other values and in-
crease the value λ2min; the settling time will decrease, which
can be shown in Figure 2. *erefore, the settling time in
*eorem 1 is reasonable.

Example 2. Consider the QVNNs model as follows:

_x(t) � − Cx(t) + Mg(x(t)) + Ng(x(t − τ(t))) + I(t),

(34)

where

M �
− 3 + 2i + 2j − 4k − 0.4 − 2i − 3j + 1k

0.4 + 2i + 3j − 1k 3 + 0.5i + 1j + 1.9k

⎛⎝ ⎞⎠,

N �

2 + 2i + 3j + 1.3k − 1.4 + 0.4i − 4j − 1.2k

1.4 − 0.4i + 4j + 1.2k 2 + 2i + 3j + 4k

⎛⎝ ⎞⎠,

C � diag 20, 20{ },

τ(t) � 0.45 sin t + 0.1,

g(x(t)) �
x

(r)
(t) + 1



 − x
(r)

(t) − 1






2

+
x

(i)
(t) + 1



 − x
(i)

(t) − 1




2
i

+
x

(j)
(t) + 1| − |x

(j)
(t) − 1





2
j

+
x

(k)
(t) + 1| − x

(k)
(t) − 1









2
k.

(35)
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Figure 1: *e state trajectories of xr(t), xi(t), xj(t), xk(t) of QVVNs (29). (a) With I(t)� 0. (b) Under controller (31).
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Figure 2: Continued.

8 Complexity



x1
(r)(t)

x1
(i)(t)
x2
(r)(t)

x2
(i)(t)

x1
(j)(t)

x1
(k)(t)
x2
(j)(t)

x2
(k)(t)

–4

–3

–2

–1

0

1

2

3

4
q(
t)

0.02 0.04 0.06 0.08 0.10
t

(c)

x1
(r)(t)

x1
(i)(t)
x2
(r)(t)

x2
(i)(t)

x1
(j)(t)

x1
(k)(t)
x2
(j)(t)

x2
(k)(t)

–4

–3

–2

–1

0

1

2

3

4

q(
t)

0.02 0.04 0.06 0.08 0.10
t

(d)

Figure 2: Effect of the change of Λ2 on the settling time of QVNNs model (29). (a) Λ2 � 20×E, (b) Λ2 � 100× E, (c) Λ2 � 500×E, and
(d) Λ2 � 750×E.
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Figure 3: *e state trajectories of x(r)(t), x(i)(t), x(j)(t), andx(k)(t) of QVVNs model (34). (a) With I(t)� 0. (b) Under controller (31).
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Under I(t) � 0 and initial condition

x(s) �
2

− 1  +
3
1.2 i +

− 3.2
− 2.1 j +

− 2
1 k, s ∈ [0.55,

0], the state trajectories of system (34) are shown in
Figure 3(a), which shows that system (34) is stable. By
Assumptions 1 and 2, we let Δ � diag 5, 5, 5, 5, 5, 5, 5, 5{ }. To
reach the finite-time instable conditions of *eorem 1, by
(14), the following controller is designed:

I(t) � − Λ1Q(t) − Λ2Q
σ1
t sgn(Q(t)) − ΘQt− τsgn(Q(t)),

(36)

where

σ1 � 1.1,

Λ2 � diag 10, 10, 10, 10, 10, 10, 10, 10{ }.
(37)

*en, similarly, to realize
C + Λ1 + |A|Δ< 0, Θ + |B|Δ< 0, the LMI toolbox in MAT-
LAB is used and the following feasible solutions ofΛ1 and Θ
can be obtained:

Λ1 � diag − 18361, − 18361, − 18361, − 18361, − 18361,{

− 18361, − 18361, − 18361},

Θ � diag − 18337, − 18337, − 18337, − 18337, − 18337,{

− 18337, − 18337, − 18337}.

(38)

And it so happened that

I
T C + Λ1 +|A|Δ  � 104 ∗ − 1.7779, − 1.8002, − 1.7779,{

− 1.7897, − 1.7874, − 1.8040, − 1.7931,

− 1.7954}< 0,

I
T

(Θ +|B|Δ) � 104 ∗ − 1.8023, − 1.7753, − 1.7595,{

− 1.7582, − 1.8032, − 1.8019, − 1.7937,

− 1.7924}< 0,

(39)

*erefore, conditions (22) and (23) of *eorem 2 can be
verified. *e state trajectories of x(t) of system (34) are
shown in Figure 3(b), which shows that the state variables of
system (34) can become big enough from zero point in a
finite time, i.e., system (34) can reach the instable state in a
finite-time interval under (36). Hence, the correctness of
*eorem 2 is verified.

Remark 9. *rough the analysis of these two examples, the
advantages of the vector-matrix method processing finite-
time stabilization and destabilization of QVNNs are
checked, which is easy to calculate by computer program-
ming. Furthermore, this approach is applicable when dis-
cussing other high-dimensional systems.

5. Conclusion

In this paper, we analyze two interesting problems, the fi-
nite-time stabilization and destabilization of QVNNs with
discrete delays, respectively. Utilizing the decomposition
method, a new, vector-matrix and suitable nonlinear con-
troller is constructed to carry out the finite-time stabilization
and destabilization of the discussed QVNNs, which is used
by fewer references. Furthermore, the obtained criteria are
compact, effective, and easily checked. *rough two nu-
merical examples, the correctness, the convenience, and the
applicability of the two criteria are all verified. In addition,
the problems of fixed-time stabilization and preassigned-
time control of QVNNs are also interesting and challenging,
which we will consider in the near future. Moreover, in this
paper, the activation functions in model (2) are special
functions; hence, we will also discuss the finite-time stability
of QVNNs with more general activation functions in future
work.
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Turing instability constitutes a universal paradigm for the spontaneous generation of spatially organized patterns, especially in a
chemical reaction. In this paper, we investigated the pattern dynamics of Brusselator from the view of complex networks and
considered the interaction between diffusion and reaction in the random network. After a detailed theoretical analysis, we
obtained the approximate instability region about the diffusion coefficient and the connection probability of the random network.
In the meantime, we also obtained the critical condition of Turing instability in the network-organized system and found that how
the network connection probability and diffusion coefficient affect the reaction-diffusion system of the Brusselator model. In the
end, the reason for arising of Turing instability in the Brusselator with the random network was explained. Numerical simulation
verified the theoretical results.

1. Introduction

Pattern formation, a kind of nonuniform macroscopic
structure with some regularity in space or time, is ubiq-
uitous. It was first proposed by Turing [1] for systems
containing morphogens, although initially, they may be
very uniform, a pattern or structure may later emerge due
to the instability of the uniform equilibrium, which is
triggered by random disturbances. A theoretical analysis of
Turing instability in a semidiscrete Brusselator model has
been investigated [2]. In [3], the authors proposed and
discussed the Brusselator model in a random framework.
*e mean-field equation, which proved that an organized
Turing pattern could be produced in a specific parameter
region, was derived. To reveal the effect of external noise on
the system, a detailed random analysis of the Brusselator
scheme was conducted. *e stochastic analysis revealed
that such systems’ structural stability would be disturbed
even if the bifurcation parameters are subject to small
external disturbances. *ere would be different space and

time structures in a certain range of noise intensity and
correlation time [4]. It is well known that the Brusselator
model is a typical model for studying patterns, so it has
attracted the interest of many scholars in different fields.
Firstly, the superdiffusion term on pattern formation and
pattern selection in the Brusselator model has been well
studied. *ey found that Turing instability can occur under
superdiffusion even though the diffusing initiator is faster
than the inhibitor [5]. And the model with superdiffusion
has been well investigated in [6]. For the Brusselator model,
the nonlinear diffusion term and the linear diffusion on the
pattern patterns are compared. *e process of pattern
formation in one-dimensional and two-dimensional space
domain was also studied in [7]. In addition, the Brusselator
model also attracts interest from scholars studying
chemistry and stochastic oscillations in [8, 9]. *en, from a
basic point of equilibrium, the authors studied the regular
Hopf bifurcation and the singular Hopf bifurcation of the
Brusselator model under the reaction periodic force and
obtained a method suitable for the study of the nonlinear

Hindawi
Complexity
Volume 2020, Article ID 1572743, 12 pages
https://doi.org/10.1155/2020/1572743

mailto:xcjwshen@gmail.com
https://orcid.org/0000-0003-1289-8674
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/1572743


vibration of periodic forces in general [10]. Besides, the
existence of the pattern formation of the Brusselator model
under homogeneous Neumann boundary conditions and
the prediction of pattern formation caused by Turing in-
stability under certain assumptions have been well studied
[11].

*e study of random networks has become more and
more popular among scholars in recent years. It is widely
used in various fields such as biology, chemistry, and
engineering, as discussed in [12–14]. In the study of
chemical reactions, random networks can be used to
describe the self-diffusion of molecules. In [15], the
relationship between the eigenvalues of the Laplace
matrix and the degree was pointed out. *e localization
properties of the Laplace eigenvectors in various random
networks were explained. In particular, it provided a
theoretical basis and method for further study of the
dynamic characteristics of correlated stochastic net-
works. In [16], McCullen and Wagenknecht emphasized
the importance of network structure, revealed the basic
connection between small-scale activity patterns on the
network and local pattern formation of the whole dis-
cipline, and investigated the reaction-diffusion system on
the complex network topology. Regarding the analysis of
self-organized systems on the network, Nakao and
Mikhailov provided a new perspective on analyzing the
pattern formation of activator-inhibitor systems on the
network in [17]. *e system instability caused by the
diffusion term on an undirected random network with a
certain probability was studied. *e pattern theory of the
directed network can be derived from [18]. *en, the
Turing instability of the reaction-diffusion model defined
on the complex network was studied in [19], and three
types of models on the complex network were shown in
the article. Numerical results showed that the uniform
steady-state stability region depends on the network
system’s structure in the diffusion coefficient space. In
[20], they inferred a general theoretical proof that the
Turing system’s three key features are directly deter-
mined by the topology. Recently, Mimar et al. [21]
proved that the degree of Laplace can reflect the system’s
topological characteristics under different networks,
which is related to the local characteristics of the dif-
fusion coefficient.

Nowadays, Zheng and Shen [22] investigated the pattern
formation in FitzHugh–Nagumo model with a random
network, obtained the approximated Turing instability re-
gion about the diffusion coefficient and connection prob-
ability, and gave a feasible method for studying reaction-
diffusion system with connection probability. Although it is
known that connection probability plays an essential role in
random networks, the influence of random networks on
Brusselator cannot be ignored. Still, there are a few literature
studies on the effects of network connection probability on
Brusselator. In this paper, we explored the effect of random
networks on the pattern formation of the reaction-diffusion
system from node connection probability.

Next, we will combine the above methods to inves-
tigate the pattern dynamics behaviour of the Brusselator
model in a random network with connection probability.
For the network Laplacian matrix, the connection prob-
ability between network node pairs also plays an ex-
tremely significant role. Besides, the connection
probability affects the diffusion term of the system by
changing Laplacian eigenvalues and then affects the sta-
bility of the reaction-diffusion system. In Section 2, based
on the positive equilibrium point, the Brusselator model’s
stability is analyzed. *e critical condition of Turing in-
stability for the reaction-diffusion system concerning the
diffusion coefficient was obtained. In Section 3, the the-
oretical analysis of Turing instability for the reaction-
diffusion system with diffusion term was introduced. In
Section 4, the theoretical results obtained in the paper are
summarized, and the results are verified by numerical
simulation.

2. The Analysis of the Brusselator Model

2.1. Linear Stability Analysis of Brusselator. *e reaction
between molecules is described by the Brusselator model,
which is a mathematical model proposed by the Brussels
school to simulate self-organized phenomena. *e Brusse-
lator model studied in this paper is given by the following
reaction formula [4]:

A⟶
k1

X, B + X⟶
k2

Y + D, 2X + Y⟶
k3 3X, X⟶

k4
E,

(1)

where ki (i �1, 2, 3, 4) is a positive parameter representing
the reaction rate constant. According to the law of mass
action, the differential equation of X and Y concentration
can be written as follows:

dcX

dτ
� k1cA − k2cB + k4( cX + k3c

2
XcY,

dcY

dτ
� k2cBcX − k3c

2
XcY,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(2)

where cM is the constant variable representing the con-
centrations of M (M is the substance A, B.), and cX and cY

are the variables representing the concentrations of X and Y.
To dimensionless, the differential equation (2) becomes the
following:

dx

dt
� a − (b + 1)x + x

2
y � f(x, y),

dy

dt
� bx − x

2
y � g(x, y),

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(3)

where x, y, t, a, and b are scale variables, and their ex-
pressions are as follows:
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t � k4τ,

a �

����

k
2
1k3

k
3
4




cA,

b �
k2

k4
cB,

x �

��
k3

k4



cX,

y �

��
k3

k4



cY.

(4)

It is well known that for chemical reaction systems, the
positive equilibrium point has scientific significance.
*erefore, we have a great deal of interest in the nonnegative
equilibrium point and focus on the system’s stability near the
positive constant fixed points. Obviously, system (3) has the
unique constant solution M(x, y), where x � a and
y � (b/a). According to the coordinate translation trans-
formation, the equilibrium point M is translated to the
origin O(0, 0), that is, introducing X � x + x, Y � y + y in
the system. *en, the linearized system (3) can be expressed
as follows:

dX

dt
� (b − 1)X + a

2
Y,

dY

dt
� − bX − a

2
Y.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(5)

To analyze the stability of the equilibrium point of
system (5), we write the corresponding Jacobian matrix of
the linearized system as follows:

J �
b − 1 a

2

− b − a
2

⎛⎝ ⎞⎠. (6)

*e characteristic equation of the system at point O is
given by

λ2i − Pλi + Q � 0, (7)

P � b − 1 − a
2
,

Q � a
2
.

(8)

According to Weida’s theorem and local equilibrium
point stability theory, the equilibrium O is stable if and only
if P< 0 and Q> 0 holds. From Q � a2 and the parameter
domain, it is obvious that Q> 0, and from p � b − 1 − a2, we
can obtain parameters satisfying the condition

0< b< 1 + a
2
, (9)

which is consistent with the condition that system (3) has a
unique positive equilibrium point.

Lemma 1. If the condition (9) holds, the unique positive
equilibrium point M(x, y) of system (3) is asymptotically
stable.

Proof. From the stability analysis of the above linearized
system, it is clear that when condition (9) holds, the real part of
the eigenvalues is negative, that is, the equilibrium point O is
stable.*erefore, the equilibrium point M of nonlinear system
(3) is the stable focus. When condition (9) holds, the unique
positive constant solution M of the initial reaction system is
asymptotically stable (Figure 1). *e proof is completed. □

2.2. Brusselator Model with Random Network. *e Brusse-
lator model with the diffusion term can be described as the
following equation set:

zx

dt
� f(x, y) + d1∇

2
x,

zy

dt
� g(x, y) + d2∇

2
y.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(10)

Many scholars have well studied the system with the
nonnetwork diffusion term. In this paper, the random
network can describe the self-diffusion of molecules to in-
vestigate the stability change of the homogeneous state of
system (3), where the connecting probability of a pair of
network nodes is p. *e following steps generate the random
network and the adjacency matrix element:

Step 1: suppose the network consists of n nodes
Step 2: the value of the element Aij of the adjacency
matrix is generated as follows: there is an edge between
i and j when the random number <p, which is
Aij � Aji � 1, otherwise Aij � Aji � 0. For example,
Figure 2 shows a random network structure with a
connection probability of p � 0.05.

*en, the balance equation (3) corresponding to each
network node can be rewritten as follows:

dxi

dt
� f xi, yi(  + d1 

j

Lijxi,

dyi

dt
� g xi, yi(  + d2 

j

Lijyi,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(11)

where Lij � Aij − kiδij is the Laplacian matrix, ki is the
degree of note i, δij � 0 if i≠ j, and δij � 1 otherwise.

*e general solution of equation (3) can be expressed as
follows:

xi � 
N

m�1
cmβme

λmtϕm
i ,

yi � 
N

m�1
cme

λmtϕm
i ,

(12)

where jLijϕ
m
j � Λmϕ

m
i .
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Firstly, we consider the system’s unique positive equi-
librium state M(x, y) after joining the network diffusion,
where f(x, y) � g(x, y) � 0. Suppose that the eigenvalues
of the Laplacian matrix is Λi(i � 1, 2, . . . , n), which is
arranged in descending order, i.e., 0 � Λ1 >Λ2 > · · · >Λn.
*en the Jacobian matrix of each node in the network
diffusion system is expressed as follows:

Ji �
b − 1 + d1Λi a

2

− b − a
2

+ d2Λi

⎛⎝ ⎞⎠. (13)

*en the characteristic function of system (11) can be
written as follows:

λ2 − b − 1 − a
2

+ d1Λi + d2Λi λ + d1d2Λ
2
i

+ (b − 1)d2 − a
2
d1 Λi + a

2
� 0.

(14)

From Section 2.1, we can know that
b − 1 − a2 + d1Λi + d2Λi < 0, so the necessary and sufficient
condition for Turing instability is that there exists at least
oneΛi to satisfy wΛi

� d1d2Λ2i + ((b − 1)d2 − a2d1)Λi+ a2 < 0
or Re(λ)> 0. In addition, in order to obtain the Turing
instability region of the system, we analyzed the stability of
the reaction-diffusion system and obtained its critical value
satisfies (4d1d2a

2 − ((b − 1) d2 − a2d1)
2/4d1d2) � 0 (Fig-

ure 3). It is obvious that this equation has two roots k2
1c, k2

2c,
when Reλ(k2) � 0. When the continuous system is unstable,
Reλ(k2) � 0 is established in Figure 4, that is, the value range
is k2 ∈ D � λ | k2

1c < λ< k2
2c}. In addition, the relationship

between the network node degree ki and the local eigen-
vectors − Λi of the Laplacian matrix and the eigenvalues can
be obtained in Figure 5.

Lemma 2. For the network Laplacian matrix L, generally
kmax � max ki , kmin � min ki  and Λ is the eigenvalue of L.
;erefore, Λ ∈ C � Λ | − 2kmax <Λ<M0 − kmin .

Lemma 3. For a network-organized system, the system is
always stable when all the eigenvalues of the network Lap-
lacian matrix are not in the instability region Λ∩D � Φ

(empty set), the instability occurs when Λ∩D≠Φ, and
D∩C≠Φ.

*e detailed proofs of Lemmas 2 and 3 are given in
reference [22].

2.3. Application of Mean-Field Approximation. *en, the
mean-field approximation theory is applied to analyze
further the reaction-diffusion system, which can explain the
Turing instability mechanism induced by the network dif-
fusion term. In the mean field, the reaction-diffusion system
can be expressed as follows:

×104

x
y

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20
t

0.9
1

1.1
1.2
1.3
1.4
1.5
1.6

(a)

0.97 0.98 0.99 1 1.01 1.02 1.03 1.04 1.05 1.06 1.07
1.42
1.44
1.46
1.48

1.5
1.52
1.54
1.56

(b)

Figure 1: When the parameters a � 1 and b � 1.5, the equilibrium of the Brusselator system (2) is asymptotically stable. (a) *e time
evolution diagram of the initial value around the equilibrium point. (b) *e phase plane.
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Figure 2: Network structure is displayed when connection
probability p � 0.05.
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Figure 3: A region diagram of the occurrence of Turing instability
for diffusion coefficient.
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dxi

dt
� f xi, yi(  + d1 C

x
− kixi( ,

dyi

dt
� g xi, yi(  + d2 C

y
− kiyi( .

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(15)

where Cx � 
N
j�1 Aijxj, Cy � 

N
j�1 Aijyj, and ki represents

the degree of the network.
Mean-field approximation is a method to study complex

multibody problems, turning multibody problems into
monomer problems. For the Brusselator model, the interaction
between a single molecule and other molecules is replaced by
an external field effect on this molecule. *erefore, when the
role of other molecules is fixed, and only the equilibrium state
M(x, y) of the system is considered, the corresponding a single
node system can be expressed as follows:

dxi

dt
� f xi, yi(  + d1 x − kixi( ,

dyi

dt
� g xi, yi(  + d2 y − kiyi( .

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(16)

From the linear analysis of system (16), the characteristic
equation is given as follows:

λ2 − b − 1 − a
2

− d1ki − d2ki λ + d1d2k
2
i

+ a
2
d1 − (b − 1)d2 ki + a

2
� 0.

(17)

From the above analysis of the stability of Brusselator,
system (16) without the diffusion effect is stable when
0< b< 1 + a2 holds. Assuming that λ1 and λ2 are the ei-
genvalues of equation (17), the stability of system (16) de-
pends on the sign of wki

, where wki
� d1d2k

2
i +

(a2d1 − (b − 1)d2)ki + a2. If wki
> 0, system (16) is stable,

otherwise unstable.

3. Results

In this section, we present an explanation of theoretical
results based on chemical mechanisms. Firstly, the network
adjacency matrix A is a symmetric matrix which is randomly
generated based on a random network with probability p.
*e relationship between the Laplacian matrix and the

–Λ2
ki
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Figure 5: *e role of ki. (a) *e relationship graph between degree ki and eigenvalue − Λi. (b) About the dispersion relationship of ki is
shown.
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�
6

√
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√
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�
6

√
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adjacency matrix of the network is Lij � Aij − kiδij, where ki

is the degree of the node i and δij is a Dirac function, if i � j,
δij � 1, otherwise δij � 0.

We choose the parameters a � 1 and b � 1.5 and derive
the relationship between the diffusion coefficients d1 and d2
when the Hopf bifurcation occurs from Figure 3, which shows
the critical condition for d1 and d2 when Hopf instability
occurs.When diffusion coefficients d1 and d2 meet the critical
value, Hopf instability occurs after control parameters are set.
And we can get that the system may be in an instability state
when d2 > (10 + 4

�
6

√
)d1. When the ratio of d2 to d1 exceeds

the critical value, the substance continues to interact to de-
stroy the system’s existing equilibrium state. However, when
we consider the connection probability, not all values of the
instability region can induce Turing instability in that the
connection probability of network nodes will also affect the
stability of the system. Next, we can give the numerical
simulation to verify that Turing instability occurs which is not
only related to the diffusion coefficients but also to the
probability p. In addition, since the eigenvalues of the Lap-
lacian matrix are discrete, it is a feasible method to study the
effect of the distribution of eigenvalues on the systemwhenwe
analyze continuous systems. From Lemma 2 and Figure 5, we
can gain that the network Laplacian matrix eigenvalue − Λi is
proportional to the node degree so that it can be approxi-
mated by the degree of the node.

*e bifurcation diagram of the system concerning d2,
displayed in Figure 6, shows that the system remains stable
when p � 0.0004 and p � 0.69. And we perform some
numerical simulations to certify the above analysis of the
system’s instability conditions, and the chemical mechanism
of Turing instability in the system is given.

Firstly, we obtain the bifurcation diagram
(Figures 7–11(a)) of the reaction-diffusion system with re-
spect to d2 when d1 � 0.01 under different parameter p,
which shows that the bifurcation point is consistent with the
critical value for theoretical analysis.

In Figure 7, we can see that when p � 0.0005> 0.0004, d2
exceeds the critical value of instability; Turing instability will
occur in the reaction-diffusion system. Figure 7(a) shows the
bifurcation diagram of the system with respect to the diffusion
coefficient, indicating that the system’s stability will be
destroyed with the increase of d2. Figure 7(b) shows that the
system will appear unstable when d2 � 1.5 and p � 0.0005.

Figure 8 demonstrates the stability of the network diffusion
system with respect to the diffusion coefficient at p � 0.1.
Figure 8(a) shows that the bifurcation diagram of system (11)
on the diffusion coefficient can be obtained when the con-
nection probability is given. When d2 � 0.1, Figure 8(b)
demonstrates that the system is stable. But when p � 0.1
and d2 � 0.3, the corresponding pattern formation
(Figure 8(c)) is unstable. When p � 0.1 and d2 � 0.3, the real
part of the eigenvalues of the system characteristic equation
(17) changes with ki and − Λi is shown in Figure 8(d), which
shows that the system is unstable and Turing instability occurs.

When p � 0.2, the bifurcation diagram of xi on d2 is
shown in Figure 9(a), which illustrates that the system’s
equilibrium point is stable when d2 is lower than the critical
bifurcation value. Still, Turing instability occurs when d2 is

larger than the critical bifurcation value, and the substance
will continue to react. From the pattern formation, which is
shown in Figures 9(b) and 9(c), it can be seen that the
Brusselator system is stable when p � 0.2 and d2 � 0.1 and
the system is unstable when d2 � 0.3, which is consistent
with the bifurcation diagram on d2. From Figure 9(d), it can
be concluded that when d2 � 0.3, there exist some Re(Λi)

falling into the unstable region, so the system is unstable.
When p � 0.33, the bifurcation diagram of xi on d2 is

shown in Figure 10(a), which illustrates that the system’s
equilibrium point is stable when d2 is lower than the critical
bifurcation value. Still, Turing instability occurs when d2 is
larger than the critical bifurcation value, and the substance
will continue to react. From the pattern formation, which is
shown in Figures 10(b) and 10(c), it can be seen that the
Brusselator system is stable when p � 0.33 and d2 � 0.1 and
the system is unstable when d2 � 0.3, which is consistent
with the bifurcation diagram on d2. Figure 10(d) shows that
when d2 � 0.3, there are some Re(Λi) falling into the un-
stable region, so the system is unstable.

For p � 0.43, the bifurcation diagram of concentration
xi with respect to d2 can be drawn as Figure 11, and the
bifurcation point is consistent with the Turing instability
threshold. *e bifurcation diagram shows that when d2 is
less than the critical value, the system is stable, otherwise
unstable. As can be seen from Figures 11(b) and 11(c), the
corresponding pattern information is stable when d2 � 0.1,
but unstable when d2 � 0.3. In Figure 11(d), there exist some
− Λi belonging to D, so Turing instability occurs when
d2 � 0.3.

When p � 0.53, we can give the bifurcation diagram of
d2, as shown in Figure 12(a), and the pattern formation
when d2 � 0.1 is shown in Figure 12(b), which shows the
system is stable. When the diffusion coefficient increases to a
critical value, the uniform equilibrium point of the system
begins to become unstable, and the current equilibrium state
of the system is broken. So from Figure 12(c), when d2 � 0.3,
Turing instability occurs, and the system continues to in-
teract. In Figure 12(d), there are some − Λi falling into the
instability region, so the system appears the Turing bifur-
cation phenomenon when d2 � 0.3.

But when p � 0.8, the bifurcation of d2 and the corre-
sponding pattern formation of the system are exhibited in

x i

0.2 0.4 0.6 0.8 1.81.2 1.4 1.6 20 1
d2

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

Figure 6: *e bifurcation about d2 illustrates the system is stable
when p � 0.0004 and p � 0.69.

6 Complexity



Figure 13, demonstrating the system is stable. And the
pattern formation, shown in Figures 13(b) and 13(c), in-
dicates that when d2 � 0.1 and d2 � 0.3, the system is stable.
Figure 13(d) demonstrates that the system’s eigenvalues do
not fall in the Turing instability region Λ∩D � Φ, so when
d2 � 0.3, the system is stable. As the connection probability
increases, the system’s bifurcation threshold will be in-
creased or even disappeared.

From Figure 4, we can conclude that Turing instability
occurs when ki ∈ [8, 39] by the mean-field theory. From
Figure 14(a), we can obtain that when ki � 7< [8, 39] does

not belong to the instability region, the system will remain in
a stable state. When ki � 20 (or 30) ∈ [8, 39] falls into the
unstable region, the stability of the equilibrium changes.
Figures 14(b) and 14(c) mean that the molecular concen-
tration does not reach a steady state, and the reaction
continues. Figure 14(d) shows that the system is stable when
ki � 50> [8, 39].

In Figure 15, we give the bifurcation diagram of the
deterministic system (16) with respect to the node degree.
*e figure shows that the system has a transcritical bifur-
cation about the parameter ki near the equilibrium point,
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Figure 8: (a) *e bifurcation diagram of d2 when p � 0.1. *e pattern formation of the system when p � 0.1. (b) *e system is stable when
d2 � 0.1. (c) Turing instability occurs when d2 � 0.3. (d) When some − Λi fall into the instability region, Turing instability occurs in the
system.
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Figure 7: (a) *e bifurcation diagram about d2 when p � 0.0005 illustrates that the Turing instability occurs. (b) *e pattern formation of
the system when p � 0.0005 and d2 � 1.5 illustrates the system is unstable.
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Figure 9: (a) *e bifurcation diagram of d2 when p � 0.2. *e pattern formation of the system when p � 0.2. (b) *e system is stable when
d2 � 0.1. (c) Turing instability occurs when d2 � 0.3. (d) When some − Λi fall into the instability region, Turing instability occurs in the
system.
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Figure 10: (a) *e bifurcation diagram of d2 when p � 0.33. *e pattern formation of the system when p � 0.33. (b) *e system is stable
when d2 � 0.1. (c) Turing instability occurs when d2 � 0.3. (d)When some − Λi fall into the instability region, Turing instability occurs in the
system.
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Figure 11: (a)*e bifurcation diagram of d2 when p � 0.43,. *e pattern formation of the system when p � 0.43. *e system is stable when
d2 � 0.1 (b) and when d2 � 0.3 (c). (d) When some − Λi fall into the instability region, Turing instability occurs in the system.
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Figure 12: (a) *e bifurcation diagram of d2 when p � 0.53. *e pattern formation of the system when p � 0.53. (b) *e system is stable
when d2 � 0.1. (c) Turing instability occurs when d2 � 0.3. (d)When some − Λi fall into the instability region, Turing instability occurs in the
system.
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Figure 13: (a) *e bifurcation diagram of d2 when p � 0.8. *e pattern formation of the system when p � 0.8. *e system is stable when
d2 � 0.1 (b) and d2 � 0.3 (c). (d) When all − Λi do not fall into the instability region, the system is stable.
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Figure 14: Continued.

10 Complexity



where the bifurcation points are, respectively, k1c � 7.033
and k2c � 37.86, further confirming the system instability
region about ki.

For how the connection probability p affects the stability
of the Brusselator system, the numerical simulation shows

that the Turing instability occurs when the connection
probability is very large or very small. *e approximate
instability region of the reaction-diffusion system for the
Brusselator model with respect to d2 and p is shown in
Figure 16.

*erefore, from Lemma 3 and the above analysis when
there is some Re(λ) in the Turing instability region
Λ∩D≠Φ, Turing instability occurs. It means that the in-
troduction of a random network disrupts the equilibrium
state of the reaction system.

Finally, through the above analysis and numerical
simulation, we obtained the approximate region of Turing
instability of d2 and p, which is given by Figure 16. In
addition, we can also draw that the approximate instability
region of the system on connection probability is
(1/n2)<p< (d2c/d1)(4/5)(ln n/n), where (1/n2) means that
the network node pairs are almost sparse. Here, we only give
the approximate instability region for the connection
probability. However, the more precise instability region and
the derivation process for the Brusselator reaction-diffusion
system still need further study.

4. Conclusion

In conclusion, firstly, the Turing instability critical value of
the Brusselator model with a random network is obtained in
Figure 3. In addition, for the connection probability,
through numerical simulation and the eigenvalue charac-
teristics of the network matrix, we can conclude that the
critical value of Turing instability of the system about p is
either very large or very small, that is, the approximate range
of p is (1/n2)<p< (d2c/d1)(4/5)(ln n/n). When the control
parameters and d1 are given, the bifurcation of the reactant
concentration on d2 under different connection probabilities
verifies the approximate region of the system about p. It can
be seen from the bifurcation graph that Turing instability
will occur when p falls into the instability region from
Figures 7–13(a). And we give the numerical simulation of the
relation between the real part of the root of the characteristic
equation and the eigenvalues of the network matrix. *e
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Figure 14: *e mean-field approximation. (a) *e system is stable when ki � 7 is not in instability region. *e system is unstable when
ki � 20 (b) and ki � 30 (c) are in instability region. (d) *e system is stable when ki � 50 crosses instability region.
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stability of the system near the equilibrium point is judged
and verified by the real part of the eigenvalue exceeding the
zero line in Figures 8–13(d) [18]. However, the upper bound
of Turing instability on the connection probability is the best
result of numerical simulation in this system, and its exact
value needs to be explicitly derived. *erefore, we need to
study the precise value of the upper bound on the Turing
instability of the system concerning p.

Finally, we apply the mean-field theory to transform the
problem of multimolecule interactions into a single-mole-
cule problem. And the instability region of the reaction-
diffusion system with respect to the network node degree is
obtained. When ki � 7< [8, 39], the system remains stable at
the equilibrium point. When ki � 20(30) ∈ [8, 39], the
system has Turing instability. When ki � 50> [8, 39], the
system is stable at the positive equilibrium point. And the
bifurcation of ki Figure 15 further verified this conclusion. In
future research, we can further study the effect of random
networks with specific characteristics on the reaction-dif-
fusion system and work to determine the appropriate
random networks for each system and the differences and
connections between the effects of different random net-
works on the same reaction system.
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In this paper, a finite-time simultaneous stabilization problem is investigated for a set of stochastic port-controlled Hamiltonian
(PCH) systems over delayed and fading noisy channels. +e feedback control signals transmitted via a communication network
suffer from both constant transmission delay and fading channels which are modeled as a time-varying stochastic model. First, on
the basis of dissipative Hamiltonian structural properties, two stochastic PCH systems are combined to form an augmented
system by a single output feedback controller and then sufficient conditions are developed for the semiglobally finite-time
simultaneous stability in probability (SGFSSP) of the resulting closed-loop systems.+e case of multiple stochastic PCH systems is
also considered and a new control scheme is proposed for the systems to save costs and achieve computational simplification.
Finally, an example is provided to verify the feasibility of the proposed simultaneous stabilization method.

1. Introduction

Port-controlled Hamiltonian (PCH) systems are known as
an important class of nonlinear systems ([1, 2]). Compared
to the general nonlinear systems, an excellent benefit of PCH
systems is that the Hamiltonian function in the systems can
be used as a Lyapunov function candidate in stability
analysis (see, for instance, [3–5]). +anks to the special
system structure and clear physical meaning, applications of
PCH systems can be found in a variety of engineering
systems including power systems, robotic systems, and ir-
reversible thermodynamic systems ([6–10]). In recent years,
stabilization as well as simultaneous stabilization problem
has been extensively studied for PCH systems ([11–14]). In
terms of PCH systems with disturbances, the above stabi-
lization problem has been resolved in [11, 13]. Taking ac-
tuator saturation into account, the study in [14] has
proposed an adaptive control strategy to simultaneously
stabilize PCH systems with parameter uncertainties.

On the other hand, there usually exist stochastic com-
ponents and random disturbances in practical control

plants, which often result in performance degradation, as
well as destabilization of the systems. In the last few decades,
many researchers have made efforts to deal with the sta-
bilization problem of stochastic systems ([15, 16]). For ex-
ample, in [15], output feedback stabilization has been
studied using the backstepping approach for Itô-type sto-
chastic systems. As for stochastic PCH systems, the control
problem has also captured public attentions ([17–20]).
Exploiting an energy-based feedback control scheme, the
authors of [17] have raised stochastic feedback stabilization
results. In regard to time-varying stochastic PCH systems,
the study in [18] has come up with a kind of stochastic
generalized canonical transformations approach to stabilize
stochastic PCH systems. In addition, the adaptive control
topic for nonlinear stochastic Hamiltonian systems has been
introduced in [19, 20]. Parameter uncertainty, randomness,
and time delay are all considered in above references.

In many practical problems, the fast convergence within
a fixed finite time interval plays an important role. Finite-
time stabilization makes closed-loop systems enjoy fast
convergence. In addition, disturbance rejection properties
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and better robustness both can be reflected in the finite-time
stabilization. +us, many investigations about finite-time
stabilization controller design have been carried out
([21–29]). For stochastic nonlinear systems which are
written as Itô differential form, [23] has proposed a method
to solve the finite-time stabilization problem.+e finite-time
stabilization of the Hamiltonian systems has been studied in
[21, 25, 27, 28]. For instance, the finite-time feedback control
manner is developed in [21] to deal with finite-time stabi-
lization problem for PCH systems with nonvanishing
disturbances.

Generally speaking, the phenomenon of fading channels
as well as network-induced delay is very likely to occur in the
networked control system, which can lead to various dis-
tortions and information constraints. By now, a considerable
number of researches have been done for continuous and
discrete systems over network-induced phenomenon
([30–38]). Under memoryless fading channels environment,
the study in [33] has illustrated state feedback stabilization
problem for linear continuous systems. +is problem has
been solved by realizing the balance between the demand of
communication resource and the supply of that. Different
from [33], an output feedback control scheme has been
introduced in [35] to achieve mean-square stabilization over
multiplicative fading channels for discrete systems. For
continuous linear network control systems over delayed and
fading channels, a necessary and sufficient condition has
been established by algebraic Riccati equation method in
[37], and mean-square stabilization problem has also been
resolved. Recently, the problem of H∞ filtering design has
been solved in [36] for a class of nonlinear Hamiltonian
systems considering fading channel and saturation.

Summarizing the above discussion, in this paper, we try
to solve the finite-time simultaneous stabilization problem
of stochastic PCH systems over delayed and fading channels
and propose some new results that serve for the design of
feedback controllers. +e fading noisy channels modeled as
multiple independent and memoryless forms exist between
the controller and the plant. We try to design feedback
controller to render closed-loop systems semiglobally finite-
time simultaneous stable in probability (SGFSSP). To begin
with, two stochastic PCH systems are considered. We will
design a single output feedback controller which contributes
to SGFSSP for the systems. Utilizing the structural properties
of dissipative Hamiltonian systems, the two stochastic PCH
systems form an augmented stochastic PCH system, which
makes the problem solved easily. +rough the Lyapunov
function method and Itô differential formula, the closed-
loop systems will be SGFSSP. Besides, we will extend our
approach to the case of multiple stochastic PCH systems
over delayed and fading channels. A feedback control
strategy is proposed. At last, the feasibility of the above
method is illustrated by the simulation.

+e contributions of this paper mainly lie in the fol-
lowing two aspects: (1) taking network-induced delay and
fading noisy channels environment into consideration, a
new single output feedback controller design method is
raised to deal with the SGFSSP problem for stochastic PCH
systems. In this way, the controller implementation costs can

be greatly reduced, and the computational simplification of
control can be achieved. (2) We make an in-depth study of
the proposed method by extending the approach to the case
of multiple PCH systems. SGFSSP result for multiple PCH
systems over delayed and fading channels is given.

Notation: Rn denotes the n-dimensional real column
vectors andRn×m is the real matrices with dimensions n × m.
A real-valued function f(x) ∈ C2 represents that f(x) is a
continuously twice differentiable function. ‖ · ‖ represents
the 2-norm. diag a1, a2, . . . , am  represents diagonal matrix
with a1, a2, . . . , am as its diagonal elements. We denote
λmin(·) as the smallest eigenvalue operator, E ·{ } as the ex-
pectation operator, and Cov(·) as the covariance operator,
respectively. For the probability space (Ω,F,P), Ω denotes
the sample space,F denotes the σ-algebra of the observable
random events, and P is the probability measure on Ω.

2. Problem Formulation and Preliminaries

Consider the following two stochastic PCH systems:
dx(t) � [J(x(t)) − R(x(t))]∇H1(x(t))dt + g1u(t)dt + h1dω(t),

y(t) � g
T
1∇H1(x(t)),



(1)

dξ(t) � [J(ξ(t)) − R(ξ(t)]∇H2(ξ(t))dt + g2u(t)dt + h2dρ(t),

η(t) � g
T
2∇H2(ξ(t)),

⎧⎨

⎩

(2)

where x(t), ξ(t) ∈ Rn are the system state vectors, u(t) ∈ Rm

is the control input which satisfies E 
t

0 ‖u(s)‖2ds <∞, and
y(t), η(t) ∈ Rm are the outputs of systems. +e signals ω(t)

and ρ(t) are both κ−dimensional independent standard
Wiener process defined on probability space (Ω,F,P). We
assume E dω(t){ } � 0, E dρ(t)  � 0, E [dω(t)]2  � dt, and
E [dρ(t)]2  � dt. ∇Hi(x) ∈ Rn×1 is the gradient of the
Hamilton function Hi(x): Rn↦R, which is defined as
∇Hi(x) � (zHi(x)/zx), and Hi(x)≥ 0, Hi(0) � 0, for all
t≥ 0. J(x) ∈ Rn×n and J(ξ) ∈ Rn×n are both skew-symmetric
structure matrices; R(x) ∈ Rn×n and R(ξ) ∈ Rn×n are posi-
tive definite strict dissipation matrices; g1, g2, h1, and h2 are
known real constant gain matrices. In addition, by setting
f1(x, u) � [J(x) − R(x)]∇H1(x) + g1u, f2(ξ, u) � [J(ξ) −
R(ξ)]∇H2(ξ) + g2u. Suppose that there exist constants
kF > 0 and kG > 0 such that

fi θ1, u(  − fi θ2, u( 
����

����≤ kF θ1 − θ2
����

����,

fi θ1, u( 
����

���� + hi

����
����≤ kG 1 + θ1

����
���� +‖u‖ ,

(3)

hold for all θ1, θ2 ∈ Rn, u(t) ∈ Rm, t≥ 0, and i � 1, 2.
For generalized PCH systems, it is shown in [13] that the

two PCH systems can be simultaneously stabilized by a
controller u � −K(y(t) − η(t)) over constraint conditions,
where K is a gain matrix with appropriate dimension.
Unfortunately, when it comes to the stochastic networked
control system (NCS), the feedback control signals trans-
mitted via a communication network may suffer from
delayed and fading noisy channels.
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Let us focus on the NCS as depicted in Figure 1. Suppose
that the control signal u(t) suffers both constant trans-
mission delay d> 0 and signal attenuation in the closed-loop
system. +e transmission delay d is caused by the message
delivery from the controller to the actuator. +e transmis-
sion of signal u(t) is accomplished in a form of components
through independent parallel channels. +en, the control
signal u(t) arriving at the actuator is modeled by the fol-
lowing multiple independent and memoryless forms:

ε(t)u(t − d) + q(t), (4)

where u(t) ∈ Rm and (ε(t)u(t − d) + q(t)) ∈ Rm are the
input and output of channels, respectively. ε(t) ∈ Rm×m

represents the multiplicative noise with the following form:

ε(t) � diag ε1(t), ε2(t), . . . , εm(t) . (5)

E εi(t)  � μi, Cov(εi(t), εi(s)) � σ2i δ(t − s), μi ≠ 0, σ2i is
known power spectral density. q(t) � [q1(t), q2(t), . . . ,

qm(t)]T ∈ Rm is an additive white Gaussian process noise
with E qi(t)  � 0 and known power spectral density ϱ2i , i.e.,
Cov(qi(t), qi(s)) � ϱ2i δ(t − s), δ denotes the Dirac delta
function, i � 1, . . . , m. We make the following assumption
for ε(t).

Assumption 1

(1) εi(t) and εj(t) are uncorrelated for i≠ j, i.e.,
E εi(t1)εj(t2)  � 0, ∀t1, t2 > 0, and i≠ j

(2) ε(t) is uncorrelated with ω(t) and ρ(t)

Remark 1. We consider interference channels noise in the
systems and input channels noise. +e conditions of As-
sumption 1 avoid the possible occurrence of noise coupling
phenomenon.

Denote

M ≔ diag μ1, μ2, . . . , μm ,

Q ≔ diag ϱ21, ϱ
2
2, . . . , ϱ2m .

(6)

Obviously, M is nonsingular since μi ≠ 0. Without loss of
generality, we assume ϱ2i � 1, i.e., Q � Im ∈ Rm×m for sim-
plicity hereinafter, i � 1, 2, . . . , m.

Substituting (4) into (1) and (2), we get

dx(t) � [J(x(t)) − R(x(t))]∇H1(x(t))dt

+ g1ε(t)u(t − d)dt + g1dϖ(t) + h1dω(t),

y(t) � g
T
1∇H1(x(t)),

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(7)

dξ(t) � [J(ξ(t)) − R(ξ(t))]∇H2(ξ(t))dt

+ g2ε(t)u(t − d)dt + g2dϖ(t) + h2dρ(t),

η(t) � g
T
2∇H2(ξ(t)).

⎧⎪⎪⎨

⎪⎪⎩
(8)

Remark 2. q(t) is a white noise, which is formally regarded
as the derivative of a Brownian motion ϖ(t) (see [39]), i.e.,
q(t) � (dϖ(t)/dt), so we can further write that
q(t)dt � dϖ(t).

Before proceeding further, we need to put forward a
definition as follows.

Definition 1. +e stochastic PCH systems (7) and (8) are
said to be semiglobally finite-time simultaneous stable in
probability (SGFSSP) if

(1) for any initial values X0 ∈ R2n, the solution X(t) of
systems (7) and (8) exists and is unique, where
X(t) � xT(t) ξT

(t) 
T

(2) for every X0 ∈ R2n\ Ω{ } and ϵ> 0, the first hitting
time T(X0, ϵ) � inf t: X(t;X0) ∈ Ω  is finite al-
most surely; T(X0, ε) and Ω are called the settling
time and the compact set, respectively

(3) for all t≥T(X0, ε), the solution X(t) of systems (7)
and (8) satisfies E(‖X(t;X0)‖)< ϵ

Lemma 1. Consider the following Itô form stochastic system:

dx(t) � f(x)dt + g(x)dω. (9)

Suppose f(x) and g(x) are locally Lipschitz continuous
in x and locally bounded, f(0) � 0, and g(0) � 0. If, for any
x0 ∈ Rn, there exist class-K∞ functions c1 and c2, real
numbers c> 0, 0< Z< 1, a> 0 and a positive definite,
function V(x) ∈ C2 such that

c1(‖x‖)≤V(x)≤ c2(‖x‖), (10)

E LV(x){ }≤ − cV
Z
(x) + a, (11)

then system (9) is SGFSSP. Furthermore, the compact set Ω
is expressed as

Ω � x | V
Z
(x)≤

a

c(1 − b)
 , ∀0< b< 1, (12)

and the settling time of system (9) with respect to x0 satisfies

Actuator 1

Actuator 2

Plant (1) Sensor 1

Sensor 2

Controller

Plant (2)

Delay Fading channels

Network

y(t)

η(t)

ξ(t)

ε(t) u(t – d) + q(t)

ε(t) u(t – d) + q(t)

ε(t) u(t) + q(t)
u(t)

x(t)

Figure 1: NCS over delayed and fading noisy channels.
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T
∗

�
1

bc(1 − Z)
V

1− Z
x0(  −

a

c(1 − b)
 

(1− Z)/Z⎧⎨

⎩

⎫⎬

⎭. (13)

Lemma 2. For any real number zi, i � 1, . . . , n, and any
positive real numbers ϵ1, ϵ2 which satisfy 0< ϵ1 ≤ ϵ2, it holds



n

i�1
zi



ϵ2⎛⎝ ⎞⎠

1/ϵ2( )

≤ 
n

i�1
zi



ϵ1⎛⎝ ⎞⎠

1/ϵ1( )

. (14)

In Lemma 2, if ϵ1 � β≥ 1 and ϵ2 � 1, then



n

i�1
zi



1/β ≤ 

n

i�1
zi


⎛⎝ ⎞⎠

1/β

, (15)

for any real number zi, i � 1, . . . , n.
In this paper, our main goal is to make the two systems

(1) and (2) with the delayed and fading noisy channels
SGFSSP. More specifically, based on Lemma 1, we have an
interest in designing a suitable output feedback controller
u(t − d) such that systems (7) and (8) satisfy (10) and (11).
Besides, we extend our results to multiple stochastic PCH
systems.

For the above purpose, the following assumptions and
lemmas are essential in the sequel.

Assumption 2. +e Hamilton functions H1(x) and H2(ξ)

are given as

H1(x) � 
n

i�1
x
2
i 

α/(2α− 1)
,

H2(ξ) � 
n

i�1
ξ2i 

α/(2α− 1)
,

(16)

where α> 1 is a real number.

Assumption 3. +ere exist constants c1 > 0 and c2 > 0 such
that

c1 � inf
t≥0

λmin(R(x(t))) ,

c2 � inf
t≥0

λmin(R(ξ(t))) .
(17)

Lemma 3. For any matrices P1, P2 ∈ Rm×n, it follows that

P
T
1 P2 + P

T
2 P1 ≤P

T
1 P1 + P

T
2 P2. (18)

3. SGFSSP of Two Stochastic PCH Systems and
That of Multiple Stochastic PCH Systems

In this section, we will give the analysis result that serves for
the SGFSSP of two stochastic PCH systems.

Theorem 1. Consider systems (7) and (8). Assumptions 2
and 3 are satisfied. If there exist matrices K � KT, L1 � LT

1 ,

L2 � LT
2 , and L3 � LT

3 such that the following matrix
inequality

Π1 �

A11 A12 0 0 A15 −g1Kg
T
2

∗ −L2 0 0 A25 0

∗ ∗ A33 A34 g2Kg
T
1 A36

∗ ∗ ∗ −
1
2
L2 0 A46

∗ ∗ ∗ ∗ −L3 0

∗ ∗ ∗ ∗ −L3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0 (19)

holds, where

A11 � −2c1In − 2g1Kg
T
1 − L1,

A12 �
1
2

L1 + L2( ,

A15 � g1Kg
T
1 +

1
2

L1 + L3( ,

A25 � −
1
2

L2 + L3( ,

A33 � −2c2In + 2g2Kg
T
2 − L1,

A34 �
1
2

L1 + L2( ,

A36 � −g2Kg
T
2 +

1
2

L1 + L3( ,

A46 � −
1
2

L2 + L3( ,

(20)

then systems (7) and (8) are SGFSSP under the output
feedback control law

u(t − d) � −M
− 1

K(y(t − d) − η(t − d)). (21)

Proof. First of all, substituting (21) into (7) and (8), we
obtain

dx(t) � [J(x(t)) − R(x(t))]∇H1(x(t))dt

− g1ε(t)M
− 1

Kg
T
1∇H1(x(t − d))dt

+ g1ε(t)M
− 1

Kg
T
2∇H2(ξ(t − d))dt

+ g1dϖ(t) + h1dω(t),

(22)

dξ(t) � [J(ξ(t)) − R(ξ(t))]∇H2(ξ(t))dt

− g2ε(t)M
− 1

Kg
T
1∇H1(x(t − d))dt

+ g2ε(t)M
− 1

Kg
T
2∇H2(ξ(t − d))dt

+ g2dϖ(t) + h2dρ(t).

(23)

Applying Newton–Leibnitz formula, we have
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∇H1(x(t)) − ∇H1(x(t − d))

� 
t

t−d
∇H1(x(s))( ′ds,

(24)

∇H2(ξ(t)) − ∇H2(ξ(t − d))

� 
t

t−d
∇H2(ξ(s))( ′ds.

(25)

+en, systems (22) and (23) can be rewritten as

dx(t) � [J(x(t)) − R(x(t))]∇H1(x(t))dt

− g1ε(t)M
− 1

Kg
T
1∇H1(x)dt

+ g1ε(t)M
− 1

Kg
T
2∇H2(ξ))dt

+ g1ε(t)M
− 1

Kg
T
1 

t

t−d
∇H1(x(s))( ′dsdt

− g1ε(t)M
− 1

Kg
T
2 

t

t−d
∇H2(ξ(s))( ′dsdt

+ g1dϖ(t) + h1dω(t),

(26)

dξ(t) � −g2ε(t)M
− 1

Kg
T
1∇H1(x)dt

+[J(ξ(t)) − R(ξ(t))]∇H2(ξ(t))dt

+ g2ε(t)M
− 1

Kg
T
2∇H2(ξ))dt

+ g2ε(t)M
− 1

Kg
T
1 

t

t−d
∇H1(x(s))( ′dsdt

− g2ε(t)M
− 1

Kg
T
2 

t

t−d
∇H2(ξ(s))( ′dsdt

+ g2dϖ(t) + h2dρ(t).

(27)

Defining the vectors X(t) � xT(t) ξT
(t) 

T
,

ζ(t) � ωT(t) ρT(t) 
T, the above equations can be further

rewritten into an augmented Itô form stochastic PCH
system described as

dX(t) � [J(X(t)) − R(X(t))]∇H(X(t))dt

+ G(t) 
t

t−d
∇H(X(s)))′dsdt

+ gdϖ(t) + hdζ(t),

(28)

where H(X(t)) � H1(x(t)) + H2(ξ(t)), R(X(t)) � diag
R(x(t)) + g1ε(t)M− 1KgT

1 , R(ξ(t)) − g2ε(t)M− 1 KgT
2 },

J(X(t)) �
J(x(t)) g1ε(t)M

− 1
Kg

T
2

−g2ε(t)M
− 1

Kg
T
1

J(ξ(t))
⎡⎣ ⎤⎦,

G(t) �
g1ε(t)M

− 1
Kg

T
1 −g1ε(t)M

− 1
Kg

T
2

g2ε(t)M
− 1

Kg
T
1 −g2ε(t)M

− 1
Kg

T
2

⎡⎣ ⎤⎦,


t

t−d
(∇H(X(s)))′ds �


t

t−d
∇H1(x(s))( ′ds


t

t−d
∇H2(ξ(s))( ′ds

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

g �
g1

g2
 ,

h �
h1 0
0 h2

 .

(29)

Next, choosing the following Lyapunov function
candidate:

V(X(t)) � 2H(X(t)), (30)

and according to Itô differential formula, we have

dV(X(t)) � LV(X(t))dt +
zV(X(t))

zX(t)
gdϖ(t)

+
zV(X(t))

zX(t)
hdζ(t),

(31)

where

LV(X(t)) � 2∇T
H(X(t))[J(X(t)) − R(X(t))]∇H(X(t))

+ 2∇T
H(X(t))G(t) 

t

t−d
(∇H(X(s)))′ds

+ tr g
THess(H(X))g 

+ tr h
THess(H(X))h .

(32)

Letting λ � supt≥0‖Hess(H1(x) + H2(ξ))‖2 and based
on Lemma 3, we conclude that

tr g
THess(H(X))g 

≤
1
2
tr g

T
g  +

1
2
tr g

THess(H(X))HessT
(H(X))g 

≤
1
2

(λ + 1)tr g
T
g 

�
1
2

(λ + 1) 
m

j�1


n

i�1
g
2
ij + g

2
ij ,

(33)

where gij and gij are the components of the matrices g1 �

(gij)n×m and g2 � (gij)n×m, respectively. Similarly, we have

tr g
THess(H(X))h 

≤
1
2
tr h

T
h  +

1
2
tr h

THess(H(X))HessT
(H(X))h 

≤
1
2

(λ + 1)tr h
T
h 

�
1
2

(λ + 1) 
κ

k�1


n

i�1
h
2
ik + h

2
ik .

(34)

+en, denoting

τ ≔ 
m

j�1


n

i�1
g
2
ij + g

2
ij  + 

κ

k�1


n

i�1
h
2
ik + h

2
ik , (35)

we obtain that
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tr g
THess(H(X))g + h

THess(H(X))h 

≤
1
2

(λ + 1) 
m

j�1


n

i�1
g
2
ij + g

2
ij  + 

κ

k�1


n

i�1
h
2
ik + h

2
ik ⎡⎢⎢⎣ ⎤⎥⎥⎦

�
1
2

(λ + 1)τ.

(36)

+us, taking expectations of both sides of (32), we have

E LV(X(t)){ }

≤ 2E ∇T
H(X(t))(J(X(t)) − R(X(t)))∇H(X(t)) 

+ 2E ∇T
H(X(t))G(t) 

t

t−d
(∇H(X(s)))′ds 

+
1
2

(λ + 1)τ.

(37)

Due to the fact that

E ∇T
H(X(t))J(X(t))∇H(X(t)) 

� ∇T
H(X(t))J(X(t))∇H(X(t)),

(38)

where

J(X(t)) �
J(x(t)) g1Kg

T
2

−g2Kg
T
1

J(ξ(t))

⎡⎢⎣ ⎤⎥⎦

�
J(x(t)) g1Kg

T
2

− g1Kg
T
2 

T
J(ξ(t))

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦,

(39)

and the fact that J(X(t)) � −J
T
(X(t)), we get

∇T
H(X(t))J(X(t))∇H(X(t)) � 0. (40)

Furthermore, the following inequality holds:

E LV(X(t)){ }

≤ − ∇T
H(X(t)) R(X(t) + R

T
(X(t))∇H(X(t))

+ 2∇T
H(X(t))G 

t

t−d
(∇H(X(s)))′ds

+
1
2

(λ + 1)τ,

(41)

where R(X(t)) � diag R(x(t)) + g1KgT
1 , R(ξ(t)) − g2KgT

2 ,

G �
g1Kg

T
1 −g1Kg

T
2

g2Kg
T
1 −g2Kg

T
2

⎡⎢⎣ ⎤⎥⎦. (42)

Since Assumption 3 holds, the following inequalities

− ∇T
H1(x(t))R(x(t))∇H1(x(t))

≤ − λmin(R(x(t)))∇T
H1(x(t))∇H1(x(t))

≤ − c1∇
T
H1(x(t))∇H1(x(t))

� −∇T
H1(x(t)) c1In( ∇H1(x(t)),

(43)

− ∇T
H2(ξ(t))R(ξ(t))∇H2(ξ(t))

≤ − λmin(R(ξ(t)))∇T
H2(ξ(t))∇H2(ξ(t))

≤ − c2∇
T
H2(ξ(t))∇H2(ξ(t))

� −∇T
H2(ξ(t)) c2In( ∇H2(ξ(t)),

(44)

are true. +en, (41) becomes

E LV(X(t)){ }

≤ − ∇T
H(X(t)) R + R

T
 ∇H(X(t))

+ 2∇T
H(X(t))G 

t

t−d
(∇H(X(s)))′ds

+
1
2

(λ + 1)τ,

(45)

where R � diag c1In + g1KgT
1 , c2In − g2KgT

2 .
Assume that there exist matrices L1 � LT

1 , L2 � LT
2 , and

L3 � LT
3 such that

(∇H(X(t)) − ∇H(X(t − d))

− 
t

t−d
(∇H(X(s)))′ds

T

· −diag L1, L1 ∇H(X(t))(

+ diag L2, L2 ∇H(X(t − d))

+ diag L3, L3  
t

t−d
(∇H(X(s)))′ds ≡ 0.

(46)

Combining (45) and (46), we deduce that

E LV(X(t)){ }

≤ − ∇T
H(X(t)) R + R

T
 ∇H(X(t))

+ 2∇T
H(X(t))G 

t

t−d
(∇H(X(s)))′ds

+(∇H(X(t)) − ∇H(X(t − d))

− 
t

t−d
(∇H(X(s)))′ds

T

· −diag L1, L1 ∇H(X(t))(

+ diag L2, L2 ∇H(X(t − d))

+ diag L3, L3  
t

t−d
(∇H(X(s)))′ds

+
1
2

(λ + 1)τ

� υT
(t)Π1υ(t) +

1
2

(λ + 1)τ,

(47)
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where

υ(t) �

∇H1(x(t))

∇H1(x(t − d))

∇H2(ξ(t))

∇H2(ξ(t − d))


t

t−d
∇H1(x(s))( ′ds


t

t−d
∇H2(ξ(s))( ′ds

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (48)

Since Π1 < 0, we further obtain

E LV(X){ }

≤ − λmin −Π1(  ∇T
H1(x(t))∇H1(x(t))

+∇T
H2(ξ(t))∇H2(ξ(t))

+
1
2

(λ + 1)τ

� −λmin −Π1( ∇T
H(X)∇H(X)

+
1
2

(λ + 1)τ.

(49)

According to Assumption 2 and Lemma 2, we have

∇T
H(X)∇H(X)

�
2α

2α − 1
x
2
1 

(1− α)/2α−1
x1, . . . ,

2α
2α − 1

x
2
n 

(1− α)/2α−1
xn,

2α
2α − 1

ξ21 
(1− α)/2α−1

ξ1, . . . ,
2α

2α − 1
ξ2n 

(1− α)/2α−1
ξn

·
2α

2α − 1
x
2
1 

(1− α)/2α−1
x1, . . . ,

2α
2α − 1

x
2
n 

(1− α)/2α−1
xn,

2α
2α − 1

ξ21 
(1− α)/2α−1

ξ1, . . . ,
2α

2α − 1
ξ2n 

(1− α)/2α−1
ξn

T

�
2α

2α − 1
 

2


n

i�1
x
2
i 

1/(2α− 1)
+ 

n

i�1
ξ2i 

1/(2α− 1)⎛⎝ ⎞⎠

�
2α

2α − 1
 

2


2n

i�1
X

2
i 

1/(2α− 1)

�
2α

2α − 1
 

2


2n

i�1
X

2
i 

α/(2α− 1)
 

1/α

≥
2α

2α − 1
 

2


2n

i�1
X

2
i 

α/(2α− 1)⎡⎣ ⎤⎦

1/α

�
2α

2α − 1
 

2
V

1/α
(X).

(50)

+en inequality in (49) becomes

E LV(X){ }≤ − λmin −Π1( 
2α

2α − 1
 

2
V

1/α
(X)

+
1
2

(λ + 1)τ

� −cV
Z1(X) + a1,

(51)

where c � λmin(−Π1)(2α/(2α − 1))2 > 0, 0< Z1 � (1/α)< 1
and a1 � (1/2)(λ + 1)τ > 0. +us, we obtain that inequality
(51) satisfies (11) in Lemma 1. In addition, there exist two
class-K∞ functions c1(‖X‖) � 2‖X‖ and c2(‖X‖) � 2‖X‖2

such that (10) in Lemma 1 holds.
Eventually, in view of Lemma 1, we arrive at a conclusion

that systems (7) and (8) are SGFSSP under the output
feedback controller (21). Furthermore, the settling time T∗1
is obtained and satisfies

T
∗
1 �

1
b1c 1 − Z1( 

V
1− Z1 X0( 

−
1

b1c 1 − Z1( 

a1

c 1 − b1( 
 

1− Z1( )/Z1

,

(52)

where 0< b1 < 1. In addition, the compact setΩ1 is expressed
as

Ω1 � x | V
Z1(X)≤

a1

c 1 − b1( 
 . (53)

+e proof of this theorem is now completed. □

Remark 3. In [33], the channel is modeled as a cascade of a
multiplicative noise and an additive white Gaussian noise.
Based on this channel, we take the constant transmission
delay into consideration. +us, the channel model in this
paper is more general. In addition, [33] proposes a state
feedback controller design strategy to stabilize linear sys-
tems. Meanwhile, this paper deals with the output feedback
simultaneous stabilization problem for stochastic PCH
systems in finite time.

Remark 4. Under Lemma 1, how to choose a suitable
Lyapunov function is an essential difficulty during the re-
search. Accordingly, we have overcome this difficulty by
taking H(x) as a Lyapunov function, and H(x) has a
concrete form which is given in (19) in Assumption 2.

Remark 5. +rough the proof of +eorem 1, we can see that
even if the dimensions of x(t) are not the same as that of
ξ(t), the result of +eorem 1 still holds. +us, the design
strategy of controllers in +eorem 1 can be extended to
multiple systems.+us, we have the following analysis about
SGFSSP of multiple stochastic PCH systems.

Next, consider the following multiple stochastic PCH
systems:
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dxj(t) � Jj xj(t)  − Rj xj(t)  ∇Hj xj(t) dt

+gju(t)dt + hjdωj(t),

yj(t) � g
T
j xj ∇Hj xj , j � 1, 2, . . . , V,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(54)

whereV is the number of stochastic systems, xj(t) ∈ Rnj is the
plant state vector, yj(t) ∈ Rm is the outputs of the plant, and
the signalωj(t) ∈ Rrj is the independent scalarWiener process
with E dωj(t)  � 0 and E [dωj(t)]2  � dt.
∇Hj(xj) ∈ Rnj×1 is the gradient of the Hamilton function
Hj(xj): R

nj↦R, which is defined as
∇Hj(xj) � (zHj(xj)/zxj), and Hj(xj)≥ 0, Hj(0) � 0, for
all t≥ 0. Jj(xj) is a skew-symmetric structure matrix;
Rj(xj) ∈ Rnj×nj is a positive definite strict dissipation matrix;
gj and hj are known real constant gain matrices. In addition,
Jj(xj), Rj(xj), gj, and hj satisfy locally Lipschitz condition.

Assumption 4. +e Hamilton functions Hj(xj) are given as

Hj xj  � 

nj

i�1
x
2
ji 

α/(2α− 1)
. (55)

Assumption 5. +ere exist constants c3 > 0 and c4 > 0 such
that

c3 � inf
t≥0

λmin Rj1
xj1

(t) , . . . , RjS
xjS

(t)   ,

c4 � inf
t≥0

λmin RjS+1
xjS+1

(t) , . . . , RjV
xjV

(t)   .
(56)

Assume that we can find out an arbitrary permutation
(j1, j2, . . . , jV)) from the positive integer set 1, 2, . . . , V{ }

and that S is a positive integer which satisfies 1≤ S≤V − 1. In
addition, taking V1 � nj1

+ · · · + njS
, V2 � njS+1

+ · · · + njV
,

r1 � rj1
+ · · · + rjS

, and r2 � rjS+1
+ · · · + rjV

, we divide the V

stochastic PCH systems into two parts: j1, . . . , jS  and
jS+1, . . . , jV .

Defining the vectors X1(t) � xT
j1

(t), . . . , xT
jS

(t) 
T

∈ RV1 , W1(t) � ωT
j1

(t), . . . ,ωT
jS

(t) 
T ∈ Rr1 , X2(t) �

xT
jS+1

(t) . . . , xT
jV

(t) 
T ∈ RV2 , W2(t) � ωT

jS+1
(t), . . . ,

ωT
jV

(t)]T ∈ Rr2 , then system (54) becomes

dX1(t) � J1 X1(t)(  − R1 X1(t)(  ∇ H1 X1(t)( dt

+g1u(t)dt + h1dW1(t),

Y1(t) � g
T
1∇ H1 X1(t)( ,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(57)

dX2(t) � J2 X2(t)(  − R2 X2(t)(  ∇ H2 X2(t)( dt

+g2u(t)dt + h2dW2(t),

Y2(t) � g
T
2∇ H2 X2(t)( ,

⎧⎪⎪⎨

⎪⎪⎩

(58)

where

J1 X1(  � −J
T

1 X1( 

� diag Jj1
xj1

 , . . . , JjS
xjS

   ∈ RV1×V1 ,

R1 X1(  � diag Rj1
xj1

 , . . . , RjS
xjS

  > 0,

g1 � gj1
, . . . , gjS

 
T ∈ RV1×m

,

h1 � diag hj1
, . . . , hjS

  ∈ RV1×r1 ,

J2 X2(  � −J
T

2 X2( 

� diag JjS+1
xjS+1

 , . . . , JjV
xjV

   ∈ RV2×V2 ,

R2 X2(  � diag RjS+1
xjS+1

 , . . . , RjV
xjV

  > 0,

g2 � gjS+1
, . . . , gjV

 
T ∈ RV2×m

,

h2 � diag hjS+1
, . . . , hjV

  ∈ RV2×r2 ,

H1 X1(  � 
S

k�1
Hjk

xjk
 , H2 X2( 

Y1 � yj1
+ · · · + yjS

,

Y2 � yjS+1
+ · · · + yjV

.

(59)

Substituting (4) into systems (57) and (58), we have

dX1(t) � J1 X1(t)(  − R1 X1(t)(  ∇ H1 X1(t)( dt

+ g1ε(t)u(t − d)dt + g1dϖ(t)

+ h1dW1(t),

Y1(t) � g
T
1∇ H1 X1(t)( ,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(60)

dX2(t) � J2 X2(t)(  − R2 X2(t)(  ∇ H2 X2(t)( dt

+g2ε(t)u(t − d)dt + g2dϖ(t)

+h2dW2(t),

Y2(t) � g
T
2∇ H2 X2(t)( .

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(61)

Furthermore, we can obtain the following corollary.

Corollary 1. Consider systems (60) and (61). Assumptions 4
and 5 are satisfied. If there exist matrices K � KT, N1 � NT

1 ,
N2 � NT

2 , N3 � NT
3 , an arbitrary permutation

(j1, j2, . . . , jV) of 1, 2, . . . , V{ } and a positive integer
S(1≤ S≤V) such that
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Π2 �

B11 B12 0 0 B15 −g1Kg
T
2

∗ −N2 0 0 B25 0

∗ ∗ B33 B34 g2Kg
T
1 B36

∗ ∗ ∗ −
1
2
N2 0 B46

∗ ∗ ∗ ∗ −N3 0

∗ ∗ ∗ ∗ ∗ −N3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0

(62)

holds, where

B11 � −2c3IV1
− 2g1Kg

T
1 − N1,

B12 �
1
2

N1 + N2( ,

B15 � g1Kg
T
1 +

1
2

N1 + N3( ,

B25 � −
1
2

N2 + N3( ,

B33 � −2c4IV2
+ 2g2Kg

T
2 − N1,

B34 �
1
2

N1 + N2( ,

B36 � −g2Kg
T
2 +

1
2

N1 + N3( ,

B46 � −
1
2

N2 + N3( ,

(63)

then systems (60) and (61) are SGFSSP under the output
feedback control law:

u(t − d) � −M
− 1

K Y1(t − d) − Y2(t − d)( . (64)

Proof: the proof of this corollary is similar to the proof of
Feorem 1, and we give some main analysis. First, similar to
the proof of Feorem 1, we can obtain an augmented Itô form
stochastic PCH system with state X(t) � X1(t) X2(t) 

T.
Next, choose the following Lyapunov function candidate:

V(X(t)) � 2 H1 X1(t)(  + H2 X2(t)( ( . (65)

Let λ1 � supt≥0‖Hess(
V
j�1 Hj(xj))‖

2 and τ1 � tr(
V
j�1

gT
j gj + 

V
j�1 hT

j hj). Fen, we have

E LV(X) ≤ − λmin −Π2( 
2α

2α − 1
 

2
V

1/α
(X)

+
1
2

λ1 + 1( τ1

� −cV
Z1(X) + a,

(66)

where c � λmin(−Π2)(2α/(2α − 1))2 > 0 and
a � (1/2)(λ1 + 1)τ1 > 0. In the end, under Lemma 1, we can
see that systems (60) and (61) are SGFSSP under the output
feedback controller (64). Furthermore, the settling time T∗2
satisfies

T
∗
2 �

1
bc 1 − Z1( 

V
1− Z1 X0 

−
1

bc 1 − Z1( 

a

c(1 − b)
 

1− Z1( )/Z1

,

(67)

where 0< b< 1. In addition, we have

Ω2 � x | V
Z1(X)≤

a

c(1 − b)
 . (68)

Fe proof of this corollary is now completed.

4. Illustrative Example

In this section, a numerical example is performed to illus-
trate the stabilization scheme for stochastic PCH systems
subject to delayed and fading channels.

+e considered systems are two stochastic PCH systems:

dx(t) � [J(x) − R(x)]∇H1(x)dt + g1u(t)dt

+ h1dω(t),

y(t) � g
T
1∇H1(x(t)),

⎧⎪⎪⎨

⎪⎪⎩
(69)

dξ(t) � [J (ξ)t − nRq(ξ)]∇H2(ξ)d + g2u(t)dt

+H2dρ(t),

η(t) � g
T
2∇H2(ξ(t)),

⎧⎪⎪⎨

⎪⎪⎩

(70)

where x � x1 x2 
T ∈ R2, ξ � ξ1 ξ2 

T ∈ R2,
H1(x) � x4/3

1 + x4/3
2 (α � 2), H2(ξ) � ξ4/31 + ξ4/32 (α � 2),

J(x) �
0 1

−1 0
 ,

R(x) �
1 0

0 2
 ,

J(ξ) �
0 2

−2 0
 ,

R(ξ) �
2 0

0 3
 ,

g1 � 0.025 0.05 
T

,

h1 � 0.05 0.05 
T
,

g2 � 0.05 0.05 
T
,

h2 � 0.05 0.025 
T

.

(71)

We take the constant transmission delay d � 0.25. +e
control input signal u(t − d) is sent through the delayed and
fading noisy channels to the actuator, so a single controller
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for systems (69) and (70) is modeled as (4). +rough sta-
tistical experiments, the probability density function of
multiplicative noise ε(t) with mean μ � 0.9 and variance
σ2 � 0.065 is listed as

pt(s) �

0.05, s � 0,

0.10, s � 0.5,

0.85, s � 1.

⎧⎪⎪⎨

⎪⎪⎩
(72)

Obviously, M � μ � 0.9.
Substituting (4) into (69) and (70) leads to

dx(t) � [J(x) − R(x)]∇H1(x)dt

+ g1ε(t)u(t − 0.25)dt + g1dϖ(t)

+ h1dω(t),

(73)

dξ(t) � J(ξ) − R2(ξ) ∇H2(ξ)dt

+ g2ε(t)u(t − 0.25)dt + g2dϖ(t)

+ h2dρ(t).

(74)

Choose L1 �
2 1
1 −1 , L2 �

1 1
1 6 , and L3 �

3 1
1 1 .

+en we can use the LMI toolbox of MATLAB to obtain

K � 4.447. (75)

To sum up, all the conditions of +eorem 1 hold.
Consequently, from +eorem 1, systems (73) and (74) are
SGFSSP under the output feedback control law:

u(t − d) � −0.16x
1/3
1 (t − d) − 0.33x

1/3
2 (t − d)

+ 0.33ξ1/31 (t − d) + 0.33ξ1/32 (t − d).
(76)

In the simulation, we choose the initial states of the
systems as x(0) � −0.3 0.3 

T, ξ(0) � 0.6 0.4 
T, and set

the parameter b1 � 0.6.+en, considering (52) in+eorem 1,
it is easy to obtain that the settling time T∗1 � 0.32s.+e state
trajectories of x and ξ are shown in Figures 2 and 3,
respectively.

From Figures 2 and 3 in the simulation, we can see that a
single controller (76) can simultaneously stabilize systems
(69) and (70) in finite time.+e settling timeT∗1 is consistent
with that of (52), and the states converge to the origin in
0.32 s. In summary, the output feedback controller proposed
in +eorem 1 performs well in the SGFSSP of systems (69)
and (70).

5. Conclusion

In this paper, the finite-time simultaneous stabilization in
probability of stochastic PCH systems over delayed and fading
channels has been investigated. On the basis of the dissipative
Hamiltonian structural properties and Lyapunov functional
technique, a single output feedback controller has been
designed for two stochastic PCH systems, which guarantees
the SGFSSP of the closed-loop Hamiltonian systems.+e case
of multiple stochastic PCH systems also has been studied.
Sufficient conditions for the existence of the stabilization
controllers have been derived in consideration of the

phenomenon of delayed and fading channels. At last, a nu-
merical example has highlighted the effectiveness of the
stabilization technology proposed in this paper. As for net-
work-based control, sometimes the states of systems are not
fully measured, so a possible future research will be involved
in observer-based simultaneous stabilization of a set of sto-
chastic PCH systems over delayed and fading channels.

Data Availability

No data were used to support this study.

Conflicts of Interest

+e authors declare that they have no conflicts of interest.

Acknowledgments

+is work was supported by the National Natural Science
Foundation of China under grant 62073189.

Time (sec)

–0.4

–0.3

–0.2

–0.1

0

0.1

0.2

0.3

0.4

St
at

e (
pe

r u
ni

t)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

x1
x2

Figure 2: State trajectory of x1 and x2.

Time (sec)

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

St
at

e (
pe

r u
ni

t)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

ξ2

ξ1

Figure 3: State trajectory of ξ1 and ξ2.

10 Complexity



References

[1] B. Maschke and A. J. Van der Schaft, “Port-controlled
Hamiltonian systems: modeling origins and system theoretic
properties,” in Proceedings of the IFAC Symposium Nonlinear
Control Systems Design, pp. 282–288, Bordeaux, France, 1992.

[2] A. J. van der Schaft and B. Maschke, “+e Hamiltonian
formulation of energy conserving physical systems with ex-
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In this paper, based on the fast finite-time stability theorem, an adaptive fuzzy control problem is considered for a class of
nonlinear systems in pure-feedback form with unknown disturbance. In the controller design process, the mean value theorem is
applied to address the nonaffine structure of the pure-feedback plant, the universal approximation capability of the fuzzy logic
system (FLS) is utilized to compensate the unknown uncertainties, and the adaptive backstepping technique is used to design the
controller model. Combined with the selection of the appropriate Lyapunov function at each step, a fuzzy-based adaptive tracking
control scheme is proposed, which ensures that all signals in the closed-loop system are bounded and tracking error converges to a
small neighborhood of the origin in fast finite-time. Finally, simulation results illustrate the validity of the proposed approach.

1. Introduction

During the recent years, the topics related to the field of
nonlinear control have attracted a lot of attention [1–3].
Many approaches for controller design have been investi-
gated, such as backstepping control, dynamic surface con-
trol, adaptive control, and so on. Among them, the adaptive
control combined with the backstepping technique has
provided a systematic framework model-based for control
design.,e adaptive backstepping control method solves the
control design problem for nonlinear systems with un-
matched conditions and uncertain parameters and ensures
the stability of the closed-loop system successfully. Besides, it
supplies an approach which can achieve the transient per-
formance of the systems better by tuning design parameters.
Until now, it has already become one of the popular control
methods for nonlinear systems in [4–7]. In [8], an adaptive
tracking control scheme was proposed for nonlinear strict-
feedback systems with additive disturbances. In [9], the
authors focused on the position control for a gear trans-
mission servo system by using the backstepping technique.
In [10], an adaptive controller was designed via backstepping

for nonlinear systems with quantized states. In [11], the
adaptive backstepping control approach was developed for a
class of stochastic cascade nonlinear time-delay systems.

Despite the adaptive backstepping control method
having a few merits, there is a need for large-enough gains to
suppress uncertainties, which will degrade control perfor-
mances. It is not feasible for a controlled system with un-
known nonlinear functions to use this method alone. ,en,
the fuzzy logic system (FLS) proposed by Wang and Mendel
[12] and the neural network (NN) proposed by Polycarpou
[13] have solved this problem well. Because of their universal
approximation capabilities, they have become a set of
powerful tools to compensate the unknown nonlinear
functions of closed-loop systems. During the past decades,
many scholars have obtained a lot of meaningful results by
using FLSs and NNs combined with the adaptive back-
stepping technique in [14–26]. An adaptive NN-based fault-
tolerant controller for the nonlinear system was investigated
in [27]. Combining the adaptive backstepping technique
with FLSs and NNs, several interesting control strategies
were designed for uncertain stochastic nonlinear systems in
[28, 29]. In [30], the authors presented a NNs-based robust
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adaptive tracking control scheme for hexacopter UAVs. In
[31], an adaptive fuzzy-based event-triggered controller was
considered for strict-feedback nonlinear systems.

Although the fuzzy-based or NNs-based adaptive
backstepping control approaches have made great progress,
the existing literatures are restricted to the strict-feedback
nonlinear systems, and only few results are available about
the control of nonlinear systems in pure-feedback form.
Different from the strict-feedback nonlinear systems, pure-
feedback nonlinear systems possess nonaffine property. It
means that there are not state variables to be used as virtual
control signals and the actual control input in the pure-
feedback form. ,erefore, it is more hard and challenging to
address the problems of controller design and stability
analysis in the pure-feedback systems. In [32, 33], the au-
thors presented the adaptive neural control for nonlinear
pure-feedback systems. A fuzzy-based adaptive controller
was designed for pure-feedback nonlinear systems in [34].
,e control schemes were proposed for pure-feedback
nonlinear systems with unknown uncertainties in [35, 36],
which were designed by combining dynamic surface control
with adaptive backstepping algorithm.

It is worth pointing out that the abovementioned lit-
eratures are developed on the basis of the Lyapunov as-
ymptotically stability theorem. However, in practical
applications, the finite-time control method has lots of
advantages such as higher tracking precision, better ro-
bustness, and the ability to achieve systems transient per-
formance faster. Recently, plenty of meaningful research
results have been produced about the finite-time control
problem in [37–42]. Based on the finite-time fault-tolerant
control, a new control approach was introduced for robot
manipulators by utilizing time-delay estimation in [43]. ,e
adaptive finite-time control problem was addressed for a
class of nonlinear systems with the actuator faults in [44]. In
[45], the authors designed an adaptive decentralized con-
troller for time-varying output-constrained nonlinear large-
scale systems in finite-time.,e Lyapunov theorem of finite-
time stability was proposed for the first time in [46].,en, in
order to obtain the faster convergence rate, the fast finite-
time stability was introduced in [47]. However, compared
with the asymptotic control design process, the procedure of
adaptive finite-time or fast finite-time controller design is
more complex for the nonlinear strict-feedback systems.
Furthermore, it is a difficult but meaningful unsolved issue
to develop an adaptive fuzzy fast finite-time tracking control
scheme for nonlinear systems in pure-feedback form. It is
the main motivation of this paper.

Inspired by the aforementioned observations, in this
paper, the problem of adaptive fuzzy fast finite-time tracking
control is considered for a class of nonlinear systems in pure-
feedback form with unknown disturbance. During the
controller design, the mean value theorem is applied to deal
with the nonaffine problem of the pure-feedback systems,
FLSs are adopted to approximate packaged unknown
nonlinearities, and an improved adaptive fuzzy fast finite-

time controller is designed via the backstepping technique.
,e stability of the closed-loop systems is guaranteed in fast
finite-time. To sum up, the main contributions in this paper
are listed below:

(1) ,e fast finite-time theorem is extended to pure-
feedback systems for the first time. Also, a fuzzy-
based adaptive fast finite-time tracking control
scheme for nonlinear systems in pure-feedback form
with unknown disturbance is proposed for the first
time, too.

(2) Combined the traditional adaptive backstepping
technique with the characteristics of the radial basis
function of fuzzy logic systems, by applying the mean
value theorem and the fast finite-time theory, the
system structure is simplified so that reduces com-
plexity of the controller design.

,e remaining parts are organized as follows. Section 2
introduces problem formulation and preliminaries. Section
3 presents the controller design procedure in detail and
stability analysis. Section 4 provides simulation results.
Section 5 concludes this research.

2. Problem Formulation and Preliminaries

2.1. System Descriptions and Control Problem. Consider a
class of nonlinear pure-feedback systems described as
follows:

_xi(t) � fi xi, xi+1( , 1≤ i≤ n − 1,

_xn(t) � fn xn, u(  + d(t),

y(t) � x1(t),

⎧⎪⎪⎨

⎪⎪⎩
(1)

in which xi(t) � [x1(t), . . . , xi(t)]T ∈ Ri, i � 1, . . . , n − 1 is
the vector of the states and xn(t) � [xn(t), . . . , xn(t)]T ∈ Rn;
y(t) ∈ R represents the system output; u ∈ R denotes input
signal; d(t) is a bounded disturbance; and fi(·) and fn(·)

represent unknown smooth functions.
Using the mean value theorem [48], we can express fi(·)

and fn(·) in (1) as follows:

fi xi, xi+1(  � fi xi, x
0
i+1  +

zfi xi, xi+1( 

zxi+1

xi+1�x
δi
i+1

× xi+1 − x
0
i+1 , 1≤ i≤ n − 1,

(2)

fn xn, u(  � fn xn, u
0

  +
zfn xn, u( 

zu

u�uδn

× u − u
0

 , (3)

where x
δi

i+1 � δixi+1 + (1 − δi)x
0
i+1, with 0< δi < 1, and

uδn � δnu + (1 − δn)u0, with 0< δn < 1.
For convenience of writing, we define hi(xi, x

δi

i+1) �

(zfi(xi, xi+1)/(zxi+1)|xi+1�x
δi
i+1

and hn(xn, uδn ) �

(zfn(xn, u))/(zu)|u�uδn , which are unknown nonlinear
functions. ,en, substituting (2) with (3) into (4) and
choosing x0

i+1 � 0, u0 � 0, we get
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_xi(t) � fi xi, 0(  + hi xi, x
δi

i+1 xi+1,

_xn(t) � fn xn, 0(  + hn xn, u
δn u + d(t),

y(t) � x1(t).

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(4)

,e objective of this paper is to design a fuzzy-based fast
finite-time tracking controller such that all signals in the
closed-loop system are bounded and the output y can follow
the specified desired trajectory yd.

,roughout this paper, the following assumptions and
lemmas are imposed on system (4).

Assumption 1 (see [49]). ,e desired trajectory signal yd

and that up to the nth derivative are smooth and bounded.

Assumption 2 (see [33]). ,ere exists an unknown bounded
constant d∗ such that |d(t)|≤d∗.

Assumption 3 (see [50]). ,e function hi(xi, x
δi

i+1) satisfies
0< hi ≤ |hi(·)|≤ hi <∞, for i � 1, . . . , n, where hi and hi are
unknown constants.

Remark 1. According to Assumption 3, it is reasonable that
the unknown smooth function hi is strictly either positive or
negative. Without losing generality, we assume that hi > 0.
For facilitating the actual controller design, hn is known.

Lemma 1 (see [51]). Consider the system _x � f(x), if there
exists continuous function V(x), μ1 > 0, μ2 > 0, 0< c< 1, and
0< η<∞, so that _V(x)≤ − μ1V(x) − μ2Vc(x) + η, then the
trajectory of system _x � f(x) is practical finite-time stable,
and the residual set of the solution of system _x � f(x) is given
by

lim
t⟶Tr

V(x)≤min
η

1 − θ0( μ1
,

η
1 − θ0( μ2

 

1/c⎧⎨

⎩

⎫⎬

⎭, (5)

where θ0 satisfies 0< θ0 < 1. %e settling time is bounded as

Tr ≤max t0 +
1

θ0μ1(1 − c)
ln
θ0μ1V

1− c
t0(  + μ2

μ2
, t0

+
1

μ1(1 − c)
ln
μ1V

1− c
t0(  + θ0μ2

θ0μ2
.

(6)

Remark 2. For the convenience of derivation and the proof
of the process in this paper, the parameter in the afore-
mentioned inequality is chosen as c � 3/4.

Lemma 2 (see [52]). For any constant ε> 0 and variable
z ∈ R, we have

0≤ |z| −
z
2

������
z
2

+ ε2
 < ε. (7)

Lemma 3 (see [53]). For xi ∈ R, i � 1, . . . , n and ϕ ∈ [0, 1],
we have



n

k�1
xk


⎛⎝ ⎞⎠

ϕ

≤ 
n

k�1
xk



ϕ
. (8)

Lemma 4 (see [54]). For o1 > 0, o2 > 0, o3 > 0, c1 ≥ 0, c2 ≥ 0,

c3 ≥ 0, the following inequality holds:

c
o1
1 c

o2
2 c3 ≤ o3c

o1+o2
1 +

o2
o1 + o2

×
o1

o3 o1 + o2( 
 

o1/o2
c

o1+o2
2 c

o1+o2/o2( )
3 .

(9)

2.2. Fuzzy Logic Systems. An FLS is composed of the
knowledge base, the fuzzifier, the fuzzy inference engine, and
the defuzzifier.,e knowledge base comprises a collection of
fuzzy If-,en rules of the following form:

Rl: If Z1 is Fl
1, . . ., and Zn is Fl

n, then ϖ is
Gl, l � 1, . . . , N

Where Z � [Z1, . . . , Zn]T ∈ R and ϖ represent the FLS
input and output, Fl

i and Gl are fuzzy sets, their fuzzy
membership functions are μFl

i
(Zi) and μGl (ϖ), and N is rule

number of If-,en. ϖ can be expressed as

ϖ(Z) � 

N

l�1
Wj


n
l�1 μFl

i
Zi( 


N

l�1 

n

l�1
μFl

i
Zi( ⎡⎣ ⎤⎦,

(10)

where Wj � maxϖ∈RμGl (ϖ).
Let

Sj(Z) �


n

l�1μFl
i

Zi( 


N

l�1 
n

l�1μFl
i

Zi(  
. (11)

Denoting W � [W1, . . . , WN]T and S(Z) � [S1(Z), . . . ,

SN(Z)]T, the FLS can be reformulated as

ϖ(Z) � W
T
S(Z). (12)

Lemma 5 (see [12]). For a continuous function f(Z) defined
on a compact set Ω and ∀ε> 0, there exists an FLS (12)
satisfying

sup
Z∈Ω

f(Z) − W
T
S(Z)



≤ ε. (13)

3. Adaptive Fuzzy Controller Design

In this section, a fuzzy-based adaptive control scheme is
proposed by using the backstepping technique and FLSs for
system (4). ,e design process of the controller contains n

steps based on the following change of coordinates:

z1 � x1 − yd,

zi � xi − αi− 1, i � 2, . . . , n,
 (14)
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where αi− 1 is an intermediate control which will be devel-
oped for the corresponding i-subsystem combined with
choosing the proper Lyapunov functions. ,e actual control
law u will be constructed at Step n to cope with the stability
problem of the closed-loop system and the unknown
disturbance.

In each step, we apply an FLS WT
i Si(Zi) to approximate

the unknown nonlinearities and define an uncertain pa-
rameter θi, θi is the estimate of θi, and θi � θi − θi. For the
sake of simplicity, hi(xi, x

δi

i+1) and hn(xn, uδn ) will be ab-
breviated to hi for i � 1, . . . , n − 1 and hn.

Step 1: according to z1 � x1 − yd, and x2 � z2 + α1, it
follows from (14) that

_z1 � _x1 − _yd,

� f1 + h1x2 − _yd ,

� f1 + h1 z2 + α1(  − _yd,

� f1 + h1z2 + h1α1 − _yd.

(15)

Consider Lyapunov function V1 as

V1 �
1
2
z
2
1 +

h1′θ
2
1

2r1
, (16)

where h1′ �
��
h1


and the design parameter r1 > 0.

,en, we get

_V1 � z1 _z1 −
h1′

r1

θ1θ
.

1,

� z1 h1z2 + h1α1 + Λ1(  −
z
2
1
2

−
h1′

r1

θ1θ
.

1,

(17)

where Λ1 � f1 − _yd + (z1/2) is an unknown smooth
function, and it can be approximated by FLS such that

Λ1 Z1(  � W
T
1 S1 Z1(  + δ1 Z1( , δ1 Z1( 


≤ ε1, (18)

where Z1 � [x1, yd, _yd]T, δ1(Z1) is the estimate error.
By using Lemma 5 and the completion of squares, one
has

z1Λ1 Z1(  � z1 W
T
1 S1 Z1(  + δ1 Z1(  

≤ |z1| W1
����

���� S1 Z1( 
����

���� + ε1 

≤
h1′

2a
2
1
z
2
1θ1S

T
1 S1 +

a
2
1
2

+
z
2
1
2

+
ε21
2

,

(19)

where θ1 � ‖W1‖
2/h1′ and the constant a1 > 0.

Substituting (19) into (17) yields

V1
.

≤ z1h1z2 + z1h1α1 +
a
2
1
2

+
ε21
2

+
h1′

2a
2
1
z
2
1θ1S

T
1 S1 −

h1′

r1

θ1θ
.

1.

(20)

,e virtual control law α1is designed as follows:

α1 � −
z1�α21��������

z
2
1�α21 + ε21

 . (21)

Combining with Lemma 2, one has

z1h1α1 ≤ −
h1z

2
1�α21��������

z
2
1�α

2
1 + ε21



≤ ε1 − z1�α1h1′

. (22)

,en, choose �α1 and adaption law θ
.

1 as

�α1 �
1
2
K11z1 + K12

1
2

 
3/4

z
2
1 

1/4
+

1
2a

2
1
z1

θ1S
T
1 S1, (23)

θ
.

1 �
r1

2a
2
1
z
2
1S

T
1 S1 − ε1θ1, (24)

where the design parameters a1, K11, K12 > 0.
Substituting (21)–(24) into (20) yields

_V1 ≤ − K11
z
2
1
2

  − K12
z2
1
2

 

3/4

+ z1h1z2 +
h1′ε1θ1θ1

r1
+ σ1,

(25)

where K11 � K11h1′, K12 � K12h1′, and σ1 � (a2
1/2)+

(ε21/2) + ε1 > 0.
Step i(2≤ i≤ n − 1): utilizing the coordinate transfor-
mation in (14), the derivative of zi is

_zi � _xi − _αi− 1,

� fi + hixi+1 − _αi− 1,

� fi + hi zi+1 + αi(  − _αi− 1,

� fi + hizi+1 + hiαi − _αi− 1,

(26)

where _αi− 1 � 
i− 1
j�1(zαi− 1/z xj)(fj + hjxj+1) +


i− 1
j�1(zαi− 1/ zθj)

θ
.

j + 
i− 1
j�0(zαi− 1/zy

(j)

d )y
(j+1)

d .
Select a Lyapunov function as
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Vi � Vi− 1 +
1
2
z
2
i +

hi
′θ

2
i

2ri

, (27)

where hi
′ �

��
hi


and the parameter ri > 0.

Next, the derivative of Vi is

_Vi � _Vi− 1 + zi _zi −
hi
′θi

θ
.

i

ri

,

� − 
i− 1

j�1
Kj1

z
2
j

2
⎛⎝ ⎞⎠ − 

i− 1

j�1
Kj2

z2
j

2
 

3/4

+ 

i− 1

j�1

hj
′εj

θj
θj

rj

+ zi hizi+1 + hiαi + Λi( 

−
z
2
i

2
−

h
′
i
θi

θ
.

i

ri

+ σi− 1,

(28)

where Λi � fi − _αi− 1 + zi− 1hi− 1 + (zi/2) is an unknown
smooth function, and we adopt an FLS to approximate
it such that

Λi Zi(  � W
T
i Si Zi(  + δi Zi( , δi Zi( 


≤ εi. (29)

Combing Lemma 5 with the completion of squares, the
following result holds:

ziΛi Zi(  � zi W
T
i Si Zi(  + δi Zi(  

≤ zi


 Wi

����
���� Si Zi( 
����

���� + εi 

≤
hi
′

2a
2
i

z
2
i θiS

T
i Si +

a
2
i

2
+

z
2
i

2
+
ε2i
2

,

(30)

where θi � ‖Wi‖
2/hi
′ and ai > 0 is a constant.

Furthermore, substituting (30) into (28) yields

_Vi ≤ − 
i− 1

j�1
Kj1

z
2
j

2
⎛⎝ ⎞⎠ − 

i− 1

j�1
Kj2

z2
j

2
 

3/4

+ 

i′1

j�1

hj
′εj

θj
θj

rj

−
hi
′θi

θ
.

i

ri

+ zihizi+1 + zihiαi + σi− 1

+
hi
′

2a
2
i

z
2
i θiS

T
i Si +

a
2
i

2
+
ε2i
2

.

(31)

,e virtual control law αi is chosen as follows:

αi � −
zi�α

2
i��������

z
2
i �α2i + ε2i

 . (32)

By using Lemma 2, we have

zihiαi ≤ −
hiz

2
i �α2i��������

z
2
i �α2i + ε2i



≤ εi − zi�αihi
′

. (33)

Next, �αi and θ
.

i are chosen as

�αi �
1
2
Ki1zi + Ki2

1
2

 
3/4

z
2
i 

1/4
+

1
2a

2
i

zi
θiS

T
i Si, (34)

θ
.

i �
ri

2a
2
i

z
2
i S

T
i Si − εi

θi, (35)

where ai, Ki1, Ki2 are positive design parameters.
By substituting (33)–(35) into (31), the following result
holds:

_Vi ≤ − 

i

j�1
Kj1

z
2
j

2
⎛⎝ ⎞⎠ − 

i

j�1
Kj2

z2
j

2
 

3/4

+ 
i

j�1

hj
′εj

θj
θj

rj

+ zihizi+1 + σi,

(36)

where 
i
j�1 Kj1 � 

i
j�1 Kj1hj

′, 
i
j�1 Kj2 � 

i
j�1 Kj2hj

′,
and σi � σi− 1 + (a2

i /2) + (ε2i /2) + εi > 0.
Step n: the control input u will be designed in this step.
Since zn � xn − αn− 1 in (14), the derivative of zn is

_zn � _xn − _αn− 1,

� fn + hnu + d(t) − _αn− 1.
(37)

Consider the following Lyapunov function:

Vn � Vn− 1 +
1
2
z
2
n +

hn
′θ

2
n

2rn

+
1
2rd

d
2
, (38)

where hn
′ �

��
hn


, d � d∗ − d, d is the estimate of the dis-

turbance d∗, and rn and rd are positive design parameters.
,en, the time derivative of Vn is expressed as
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_Vn � _Vn− 1 + zn _zn −
hn
′θn

θ
.

n

rn

−
1
rd

dd

·

,

� − 
n− 1

j�1
Kj1

z
2
j

2
⎛⎝ ⎞⎠ − 

n− 1

j�1
Kj2

z2
j

2
 

3/4

+ 
n− 1

j�1

hj
′εj

θj
θj

rj

+ zn hnu + Λn(  −
z
2
n

2
+ znd(t)

−
hn
′θn

θ
.

n

rn

+
1
rd

dd
·

+ σn− 1,

(39)

where Λn � fn − _αn− 1 + zn− 1hn− 1 + (zn/2) is an unknown
smooth function, and it can be approximated by FLS such
that

Λn Zn(  � W
T
n Sn Zn(  + δn Zn( , δn Zn( 


≤ εn. (40)

With the help of the completion of squares and Lemma
5, one has

znΛn Zn(  � zn W
T
n Sn Zn(  + δn Zn(  

≤ zn


 Wn

����
���� Sn Zn( 
����

���� + εn 

≤
hn
′

2a
2
n

z
2
nθnS

T
n Sn +

a
2
n

2
+

z
2
n

2
+
ε2n
2

,

(41)

where θn � ‖Wn‖2/hn
′ and an > 0 is a constant.

Furthermore, based on Assumption 2, (39) becomes

_Vn ≤ − 
n− 1

j�1
Kj1

z
2
j

2
⎛⎝ ⎞⎠ − 

n− 1

j�1
Kj2

z2
j

2
 

3/4

+ 
n− 1

j�1

hj
′εj

θj
θj

rj

−
hn
′θn

θ
.

n

rn

+ znhnu +
hn
′

2a
2
n

z
2
nθnS

T
n Sn

+
a
2
n

2
+
ε2n
2

+ σn− 1 + |zn|d
∗

−
1
rd

dd

·

.

(42)

Design the actual control signal u

u � −
zn�α2n��������

z
2
n�α2n + ε2n

 −
tanh zn/ω( d

hn

, (43)

where ω is a positive constant.
Combing (43) with Lemma 2, one has

znhnu≤ −
hnz

2
n�α2n��������

z
2
n�α2n + ε2n

 − zntanh
zn

ω
 d

≤ εn − zn�αnhn
′ − zntanh

zn

ω
 d.

(44)

,en, choose �αn and θ
.

n as follows:

�αn �
1
2
Kn1zn + Kn2

1
2

 
3/4

z
2
n 

1/4
+

1
2a

2
n

zn
θnS

T
n Sn, (45)

θ
.

n �
rn

2a
2
n

z
2
nS

T
n Sn − εn

θn, (46)

where an, Kn1, Kn2 are positive constants.
Combing (43)–(46), Vn can be rewritten as

_Vn ≤ − 
n− 1

j�1
Kj1

z
2
j

2
⎛⎝ ⎞⎠ − 

n− 1

j�1
Kj2

z2
j

2
 

3/4

+ 
n− 1

j�1

hj
′εj

θj
θj

rj

−
1
2
Kn1hn
′z2

n − Kn2hn
′ z2

n

2
 

3/4

− zntanh
zn

ω
  d

∗
− d 

+ zn


d
∗

+
a
2
n

2
+
ε2n
2

+ σn− 1 + εn −
dd

·

rd

.

(47)

Utilizing the following property of the hyperbolic tan-
gent function

0≤ zn


 − zntanh

zn

ω
 ≤ 0.2785ω, (48)

we have

_Vn ≤ − 
n− 1

j�1
Kj1

z
2
j

2
⎛⎝ ⎞⎠ − 

n− 1

j�1
Kj2

z2
j

2
 

3/4

+ 
n− 1

j�1

hj
′εj

θj
θj

rj

−
1
2
Kn1hn
′z2

n − Kn2hn
′ z2

n

2
 

3/4

+ d zntanh
zn

ω
  −

d

·

rd

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

+ 0.2785ωd
∗

+
a
2
n

2
+
ε2n
2

+ σn− 1 + εn,

(49)

and d

·

can be constructed as

d

·

� rd zntanh
zn

ω
  − σd

d , (50)

where σd is a positive constant.
By Young’s inequality, the following inequality holds:

σd
dd � σd

d d
∗

− d 

≤ −
σd

d
2

2
+
σdd
∗2

2
.

(51)

Substituting (50) and (51) into (49), it yields
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_Vn ≤ − 
n

j�1
Kj1

z
2
j

2
⎛⎝ ⎞⎠ − 

n

j�1
Kj2

z2
j

2
 

3/4

+ 

n

j�1

hj
′εj

θj
θj

rj

+ 0.2785ωd
∗

+
σdd
∗2

2
−
σd

d
2

2
+ σn,

(52)

where 
n
j�1 Kj1 � 

n
j�1 Kj1hj

′, 
n
j�1 Kj2 � 

n
j�1 Kj2hj

′, and
σn � σn− 1 + (a2

n/2) + (ε2n/2) + εn > 0.
For μ1 � min(K11, K21, . . . , Kn1), μ2 � min(K12,

K22, . . . , Kn2), and Lemma 3, we have

− 

n

j�1
Kj1

z
2
j

2
⎛⎝ ⎞⎠≤ − μ1 

n

j�1

z
2
j

2
⎛⎝ ⎞⎠≤ − μ1 

n

j�1

z
2
j

2
⎛⎝ ⎞⎠, (53)

− 

n

j�1
Kj2

z2
j

2
 

3/4

≤ − μ2 

n

j�1

z2
j

2
 

3/4

≤ − μ2 

n

j�1

z2
j

2
⎛⎝ ⎞⎠

3/4

.

(54)

Furthermore, by applying Young’s inequality, we obtain



n

j�1

hj
′εj

θj
θj

rj

≤ − 
n

j�1

hj
′εj

θ
2
j

2rj

+ 
n

j�1

hj
′εjθ

2
j

2rj

. (55)

Substituting (53)–(55) into (52), one gets

_Vn ≤ − μ1 

n

j�1

z
2
j

2
⎛⎝ ⎞⎠ − μ2 

n

j�1

z2
j

2
⎛⎝ ⎞⎠

3/4

− 
n

j�1

hj
′εj

θ
2
j

2rj

+ 
n

j�1

hj
′εjθ

2
j

2rj

− 
n

j�1

θ
2
j

2rj

⎛⎝ ⎞⎠

3/4

+ 
n

j�1

θ
2
j

2rj

⎛⎝ ⎞⎠

3/4

−
d
2

2rd

⎛⎝ ⎞⎠

3/4

+
d
2

2rd

⎛⎝ ⎞⎠

3/4

−
σd

d
2

2

+ 0.2785ωd
∗

+
σdd
∗2

2
+ σn.

(56)

Using Lemma 4, for o1 � 1 − o2, o2 � 3/4, o3 � o1o
3
2, c

1 � 1, c2 � 
n
j�1

θ
2
j/2rj, c3 � 1, the following inequality

holds:



n

j�1

θ
2
j

2rj

⎛⎝ ⎞⎠

3/4

≤ o3 + 
n

j�1

θ
2
j

2rj

. (57)

Similarly, for o1 � 1 − o2, o2 � 3/4, o3 � o1o
3
2, c1 �

1, c2 � d
2
/2rd, c3 � 1, one has

d
2

2rd

⎛⎝ ⎞⎠

3/4

≤ o3 +
d
2

2rd

. (58)

Substituting (57) and (58) into (56), we get

_Vn ≤ − μ1 

n

j�1

z
2
j

2
⎛⎝ ⎞⎠ − μ2 

n

j�1

z2
j

2
⎛⎝ ⎞⎠

3/4

− 

n

j�1

θ
2
j

2rj

⎛⎝ ⎞⎠

3/4

− hj
′εj − 1  

n

j�1

θ
2
j

2rj

−
d
2

2rd

⎛⎝ ⎞⎠

3/4

− rdσd − 1( 
d
2

2rd

+ Ξ,

(59)

where
Ξ � 

n
j�1 hj
′εjθ

2
j/2rj + 0.2785ωd∗ + (σdd∗2/2) + 2o3 + σn.

Finally, for μ1 � min μ1, hj
′εj − 1, rdσd − 1 , μ2 �

min μ2, 1 , according to Lemma 3, we obtain

_Vn ≤ − μ1 

n

j�1

z
2
j

2
⎛⎝ ⎞⎠ + 

n

j�1

θ
2
j

2rj

⎛⎝ ⎞⎠ +
d
2

2rd

⎛⎝ ⎞⎠⎛⎝ ⎞⎠

− μ2 

n

j�1

z2
j

2
⎛⎝ ⎞⎠

3/4

+ 
n

j�1

θ
2
j

2rj

⎛⎝ ⎞⎠

3/4

+
d
2

2rd

⎛⎝ ⎞⎠

3/4

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠ + Ξ

≤ − μ1Vn − μ2V
3/4
n + Ξ.

(60)

In the present stage, the controller design has been
finished and the following theorem concludes the main
result of this research:

Theorem 1. consider the closed-loop system consisting of the
plant (1) and the control input (43) with the adaptive laws
(24), (35), and (46). Under Assumptions 1–3 and the bounded
initial conditions, all the signals defined in the closed-loop
system are fast finite-time bounded and the tracking error z1
satisfies

z1


≤

����
2Ξ
θ0μ1



, (61)

with assured settling time Tr as

Tr ≤max t0 +
4

θ0μ1
ln
θ0μ1V

1/4
t0(  + μ2

μ2
, t0

+
4
μ1

ln
μ1V

1/4
t0(  + θ0μ2
θ0μ2

.

(62)

Proof. According to (60), it can be concluded that Vn is
bounded, since when Vn ≥Ξ/μ1, _Vn ≤ − μ2V3/4

n ≤ 0. Also,
zj,

θj,
d are bounded from the boundedness of Vn. ,e

boundedness of θj and θj guarantee the boundedness of θj.
Similarly, d is also bounded since d � d − d∗. From (24), �α1
is bounded which is the result from the boundedness of z1
and θ1. ,e boundedness of α1 in (21) can be also inferred.
As z2 � x2 − α1, x2 is bounded because of the boundedness
of α1 and z2. In an inductive manner, the boundedness of
θ2, . . . , θn, α2, . . . , αn, as well as x3, . . . , xn, can be
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guaranteed. ,e boundedness of actual control signal u in
(43) can also be inferred. ,us, the boundedness of all
closed-loop signals can be explained.

Furthermore, we transform (60) _Vn ≤ − μ1Vn − μ2V3/4
n +

Ξ into the following form _Vn ≤ − (1 − θ0)μ1Vn−

θ0μ1Vn − μ2V3/4
n + Ξ, where 0< θ0 < 1. When Vn ≥Ξ/θ0μ1,

namely, Ξ≤ θ0μ1Vn, one has _Vn ≤ − (1 − θ0)μ1Vn − μ2V3/4
n .

Based on (60) and Lemma 1, we obtain that Vn converges
to the setΩV � Vn: Vn <Ξ/θ0μ1  in fast finite-time with the
settling-time estimation

Tr ≤max t0 +
4

θ0μ1
ln
θ0μ1V

1/4
t0(  + μ2

μ2
, t0

+
4
μ1

ln
μ1V

1/4
t0(  + θ0μ2
θ0μ2

.

(63)

Combing with the definition of Vn in (38), it can be
observed that 1/2z2

1 ≤Vn <Ξ/θ0μ1. ,erefore, we have
|z1|≤

�������
2Ξ/θ0μ1


in fast finite-time with guaranteed con-

vergence time estimated as Tr in (63).
,rough the abovementioned analysis, we have com-

pleted the proof. □

4. Simulation

,is part gives an example to prove that the proposed
control scheme is valid. Consider the second-order pure-
feedback nonlinear system with disturbance as follows:

_x1 � 0.5 cos x1(  + x2 + 0.05 sin x2( ,

_x2 � cos x
2
2  + 2u + 0.5 sin u + 0.1 sin(t),

y � x1,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(64)

where x1 and x2 represent the state variables and y and u

denote the output and input signal, respectively.
f1(x1, x2) � 0.5 cos(x1) + x2 + 0.05 sin(x2), f2(x2, u) �

cos(x2
2) + 2u + 0.5 sin u, and d(t) � 0.1 sin(t). ,e purpose

is to establish a controller which can guarantee that all
signals remain bounded in the closed-loop system, the
system output y � x1 tracks the reference signal
yd � 0.4(sin(t) + sin(0.5t)), and the tracking error
z1 � x1 − yd is convergent.

By using ,eorem 1, the virtual control signals and
actual controller are expressed as follows:

α1 � −
z1�α21��������

z
2
1�α

2
1 + ε21

 ,

�α1 �
1
2
K11z1 + K12

1
2

 
3/4

z
2
1 

1/4
+

1
2a

2
1
z1

θ1S
T
1 S1,

u � −
z2�α22��������

z
2
2�α

2
2 + ε22

 −
tanh z2/ω( d

h2
,

�α2 �
1
2
K21z2 + K22

1
2

 
3/4

z
2
2 

1/4
+

1
2a

2
2
z2

θ2S
T
2 S2,

(65)

and the adaptive laws are constructed in the following forms:

θ
.

1 �
r1

2a
2
1
z
2
1S

T
1 S1 − ε1θ1,

θ
.

2 �
r2

2a
2
2
z
2
2S

T
2 S2 − ε2θ2,

d

·

� rd z2tanh
z2

ω
  − σd

d .

(66)

In the simulation, the initial conditions are set as

x1(0) x2(0) d(0) θ1(0) θ2(0) 
T

� 0.1 0.1 0 0.1 0 
T. Also,

the simulation is run by taking the design parameters as
K11 � K12 � 40,K21 � K22 � 20,a1 � a2 � ε1 � ε 2 � ε2 � 1, r1 �

r2 � ε1 � 0.01,ω� rd � 0.1,σd � 10,h2 � 1.
Figures 1–5 illustrate the simulation results. Figure 1

shows the desired signal yd and the output y � x1. Figure 2
depicts the trajectory of the tracking error z1. Figure 3 shows
the curve of the state x2. From the abovementioned three

x1
yd

–1

–0.5

0

0.5

1

10 20 30 40 500
Time (sec)

Figure 1: Reference signal yd and system output x1.

z1

–0.05

0

0.05

0.1

10 20 30 40 500
Time (sec)

Figure 2: ,e tracking error z1.
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figures, we can observe that the states x1(t) and x2(t) of (64)
are bounded and x1 can tracks yd under our design con-
troller in Figures 1 and 3. Moreover, the tracking error z1 −

x1 − yd in Figure 2 is very small and converges into a small
neighborhood of zero. Figure 4 displays that the adaptive
laws θ1, θ2, and d are bounded. ,e trajectory of u(t) is
depicted in Figure 5, from which it can be seen that u(t) is
bounded. ,rough the numerical simulation in Figures 1–5,
the proposed control scheme achieves that y tracks yd in a
quick and precise way and desired convergence with the
control performance.

5. Conclusions

,e adaptive fuzzy-based fast finite-time tracking control via
the backstepping technique has been developed for non-
linear systems in pure-feedback form with unknown dis-
turbance. ,e mean value theorem was used to address the
nonaffine problem of the pure-feedback systems, and FLSs
were applied to approximate packaged unknown nonline-
arities. All signals in the closed-loop system are bounded,
and the reference signal can be tracked in fast finite-time.
Simulation results have been given to prove the effectiveness
of the suggested scheme. In this paper, the approximation
error of the FLS is not taken into account. ,e future work
will be concentrated on extending the results to more general
nonlinear systems.
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*is paper focuses on a class of delayed fractional Cohen–Grossberg neural networks with the fractional order between 1 and 2.
Two kinds of criteria are developed to guarantee the finite-time stability of networks based on some analytical techniques. *is
method is different from those in some earlier works. Moreover, the obtained criteria are expressed as some algebraic in-
equalities independent of the Mittag–Leffler functions, and thus, the calculation is relatively simple in both theoretical analysis
and practical applications. Finally, the feasibility and validity of obtained results are supported by the analysis of
numerical simulations.

1. Introduction

Neural networks have been paid much attention owing to
the powerful applications in diverse fields. With the in-
creasing requirements in practical applications, many re-
searchers have made great efforts to develop various types
of neural networks, such as Cohen–Grossberg neural
networks (CGNNs) [1], cellular neural networks, bidirec-
tional associative memory neural networks, and recurrent
neural networks. As a kind of special recurrent neural
network, CGNNs were firstly proposed by Cohen and
Grossberg in [1]. CGNN is quite general since it includes
some well-known types of neural networks, such as
Hopfield neural network, cellular neural network, and
shunting neural network. Nowadays, CGNNs have gained
more and more interests due to their promising applica-
tions in classification, parallel computation and optimi-
zation, etc. Many researchers have made great contribution
to the research on CGNNs; see [2–11] and the references
therein.

Nowadays, the fractional calculus has achieved sig-
nificant progress in both theoretical research and practical
applications. Compared with the integer-order derivative,
the fractional-order derivative has some distinctive

features, such as infinite memory and great freedom.
Consequently, the fractional-order derivative can better
characterize many systems in the real world [12–14]. In
order to more accurately model the dynamics of neurons,
various fractional-order neural networks (FONNs) have
been generated based on the integration of the fractional
calculus and neural networks. In the recent decades, the
research on FONNs has undergone a prosperous devel-
opment, and there have been numerous works (see
[10, 15–20] and the references therein). As we all know, the
successful applications of FONNs are closely associated to
the dynamics of networks, among which stability has been
an active topic. *ere have been substantial works on
various types of stability, such as asymptotical stability [10],
finite-time stability [21], exponential stability [22], Mit-
tag–Leffler stability [8], and Lagrange stability [11]. Many
sufficient conditions have been established to achieve the
stability of systems; see [16, 18–20, 23, 24] and the refer-
ences therein.

Among various types of stability, finite-time stability
(FTS) has aroused more interests in many fields, since
many systems always operate over a limited period of time
or it is necessary to focus on the behavior of systems within
a limited period of time. In the existing works, there are
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mainly two concepts of FTS. One means that the error of
any two state variables tends to zero in a limited time
interval, which is also regarded as a special case of Lya-
punov asymptotic stability. *e other is also called finite-
time boundedness, which describes that the quantity re-
lated to state does not exceed a prescribed threshold in a
limited time interval for a given bound on the initial value
[25, 26]. It is obvious that “boundedness” is a distinctive
feature of this FTS. As revealed in [25, 26], it is essentially
different from the classical Lyapunov asymptotic stability.
In practical applications, this kind of FTS can provide a
quantitative bound related to the state, and it has made
great contribution for describing the transient performance
of system.

In the literature, there have been some interesting
results [8–11, 23, 24, 27, 28] on fractional-order
Cohen–Grossberg neural networks (FOCGNNs). For
example, Ke and Miao [9] investigated the FTS for a class
of delayed FOCGNNs by the generalized Bellman–
Gronwall inequality. In [23], Zheng et al. studied the FTS
and synchronization problem of a class of memristor-
based FOCGNNs. Rajivganthi et al. [24] reported the FTS
for a class of BAM FOCGNNs with time delays. In these
works, the proofs are mainly based on some generalized
Gronwall inequalities. In [8], Wan and Wu considered
the Mittag–Leffler stability of fuzzy FOCGNNs with
deviating argument. Recently, Pratap et al. [10] con-
sidered the asymptotic stability and pinning synchro-
nization for a class of delayed FOCGNNs with
discontinuous activations, and Huang et al. [11] inves-
tigated the Lagrange stability and the asymptotical sta-
bility for a class of delayed FOCGNNs. *e proofs are
mainly based on the Lyapunov theory and some prop-
erties related to the fractional calculus. For the FONNs in
the aforementioned works, notice that the fractional
order α is between 0 and 1. In the real world, the frac-
tional systems with high fractional order can appropri-
ately describe many phenomena and have been
successfully applied in physics, biology, and information
science (see, for instance, [29–32]). On the other hand,
some classical methods for the case α ∈ (0, 1), such as
some Lyapunov methods [10] and LMI method [33],
could not be directly extended to the high-order cases.
*erefore, it is significant to follow through the problems
on high-order FONNs.

For FONNs with the fractional order α ∈ (1, 2), there
have been many excellent works on the finite-time stability
or finite-time synchronization [15–17, 34–37]. *e analysis
is mainly based on the Laplace transform, the inverse
Laplace transform, and the generalized Gronwall inequality
related to the Mittag–Leffler functions. However, this
method can not be directly used to deal with the FTS for
FOCGNNs with α ∈ (1, 2) owing to the technical reason. In
order to solve this problem, it is desired to investigate a kind
of different method.

In this paper, we are devoted to the FTS for a class of
delayed FOCGNNs with α ∈ (1, 2). *e main contribu-
tions are summarized as follows: (i) *e fractional order
of system considered in this paper is between 1 and 2. A

criterion is derived to achieve the FTS of system.
Moreover, a criterion is established to ensure the FTS for
the equilibrium point of system. (ii) *e proofs are based
on some analytical techniques, such as the Cauchy-
Schwartz inequality, the generalized Gronwall inequality,
and some properties of the Caputo derivative. *is
method is completely different from those in some earlier
works [9, 15–17, 24, 34–37]. In particular, the obtained
criteria are expressed as some algebraic inequalities and
hence, the calculation is relatively easy in practical
applications.

2. Preliminaries

*is section starts with recalling some necessary definitions
and properties related to the Caputo derivative.

Definition 1 (see [38]). Let μ ∈ R+
, m ∈ Z+ and

m − 1< μ<m For θ(t) ∈ Cm([t0, +∞),Rn) *e Caputo
derivative with fractional order μ of θ is defined by

C
t0

D
μ
t θ(t) �

1
Γ(m − μ)


t

t0

(t − r)
m− μ− 1θ(m)

(r)dr, t≥ t0,

(1)

where Γ(·) denotes the Gamma function, i.e.,

Γ(r) � 
+∞

0
t
r− 1

e
− tdt. (2)

Definition 2 (see [38]). For μ ∈ R+the fractional order in-
tegral with order μ of a function θ(t) is defined by

D
− μ
t0 ,tθ(t) �

1
Γ(μ)


t

t0

(t − r)
μ− 1θ(r)dr. (3)

Proposition 1 (see [39]). Let μ ∈ R+, m ∈ Z+, and
m − 1< μ<m. If θ(t) ∈ Cm([t0, +∞),R), then

D
− μ
t0 ,t

C
t0

D
μ
t θ(t)  � θ(t) − 

m− 1

k�0

θ(k)
t0( 

k!
t
k
. (4)

Next, we list two inequalities, which will play a key role in
the proofs of main results.

Proposition 2 (generalized Gronwall inequality [40]). Let
u(t), v(t) and w(t) be nonnegative Lq functions on the in-
terval [0, T] For q ∈ [1, +∞) if

u(t)≤ v(t) + w(t) 
t

0
u

q
(r)dr 

1/q

, t ∈ [0, T]. (5)

Then,


t

0
u

q
(r)dr≤ 1 − (1 − Φ(t))

1/q
 

− q


t

0
v

q
(r)Φ(r)dr, (6)

where Φ(t) � exp(− 
t

0 wq(r)dr).

2 Complexity



Proposition 3 (generalized Bernoulli inequality [41]). Let
t< 1 and t≠ 0. For 0< d< 1. we have (1 − t)d < 1 − dt.
Moreover, (1 − (1 − t)d)− 1 < (dt)− 1.

In what follows, we introduce a class of delayed
FOCGNNs, which can be described as

C
0 D

α
t xi(t) � − pi xi(t)(  qi xi(t)(  − 

n

j�1
aijfj xi(t)( ⎡⎢⎢⎣

− 
n

j�1
bijgj xi(t − τ)(  − Ii

⎤⎥⎥⎦, i � 1, 2, · · · , n,

(7)

where 1< α< 2xi(t) ∈ R is the state of the i-th neuron at
time t. pi(·) stands for the amplification function and qi(·)

corresponds to the behaved function. *e constant τ > 0
denotes the time delay. aij and bij are the connection
weights. fj and gj represent the activation functions. Ii

stands for the constant external input.
For h(t) ∈ C([− τ, 0],Rm), the norm is defined

as‖h‖ � sup− τ≤r≤0 
m
i�1 |hi(r)|. Let x(t) and y(t) stand for

two arbitrary solutions for network (7), and let
z(t) � x(t) − y(t). *e initial condition is given as follows:

z(t) � φ(t),

z′(t) � ψ(t),

t ∈ [− τ, 0],

(8)

where φ(t),ψ(t) ∈ C([− τ, 0],Rn)

Definition 3. Let 0< δ < ε. For 1< α< 2, if ‖φ‖, ‖ψ‖ < δ
implies

‖z(t)‖< ε, ∀t ∈ [0, T], (9)

where ‖z(t)‖ � 
n
i�1 |zi(t)|, then network (7) can achieve the

finite-time stability w.r.t. δ, ε, T{ }.

3. Main Results

In this section, we are devoted to two kinds of finite-time
stability criteria for network (7) based on some properties
related to the Caputo derivative and some inequalities.

3.1. StabilityCriterion I forNetwork (7). Let us first introduce
some further assumptions on the parameters of network (7)
and some necessary notation.

(A1) *e function pi (i � 1, 2, . . . , n)is a continuous
and bounded function such that

0<p
i
≤pi(x)≤pi,

pi(x) − pi(y)


≤p
∗
|x − y|,

(10)

for x, y ∈ R, where pi , pi, and p∗are some positive
constants.
(A2) For the functions pi and qi (i � 1, 2, · · · , n), there
exists θi > 0 such that

pi(x)qi(x) − pi(y)qi(y)


≤ θi|x − y|, ∀x, y ∈ R. (11)

(A3) *e functions fj and gj (j � 1, 2, · · · , n)are
bounded and satisfy the Lipschitz conditions,
namely,

fj(x)


≤Fj,

gj(x)


≤Gj,

fj(x) − fj(y)


≤ ξj|x − y|,

gj(x) − gj(y)


≤ ηj|x − y|,

∀x, y ∈ R,

(12)

where Fj, Gj, ξj and ηj are positive constants.
Let

λ1 � max
1≤i≤n

θi + p
∗

Ii


 + p
∗



n

j�1
aij



Fj + bij



Gj 

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

+ max
1≤i≤n



n

i�1
ξjpi aij



⎛⎝ ⎞⎠,

λ2 � max
1≤j≤n



n

i�1
ηjpi bij



⎛⎝ ⎞⎠.

(13)

Theorem 1. Let 0< δ < ε. Under the assumptions (A1)–(A3),
network (7) can achieve the FTS w.r.t. δ, ε, T{ } if
max ‖φ‖, ‖ψ‖ < δ and

(1 + t) 1 + 2e
Λ2+1( )t 1 − e

− Λ2t
 

1/2
 <

ε
δ
, ∀t ∈ [0, T],

(14)

where Λ � (λ1 + λ2e− t)
���������
2Γ(2α − 1)


/2αΓ(α).

Proof. Let x(t), y(t), and z(t) be defined as in Section 2. By
Proposition 1, we obtain
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xi(t) − yi(t) � xi(0) − yi(0) + xi
′(0) − yi

′(0)( t

−
1
Γ(α)


t

0
(t − r)

α− 1
pi xi(r)( qi xi(r)(  − pi yi(r)( qi yi(r)( ( dr

+
1
Γ(α)


t

0
(t − r)

α− 1
pi xi(r)(  

n

j�1
aijfj xj(r)  − pi yi(r)(  

n

j�1
aijfj yi(r)( 

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
dr

+
1
Γ(α)


t

0
(t − r)

α− 1
pi xi(r)(  

n

j�1
bij gjxj(r − τ)  − pi yi(r)(  

n

j�1
bijgj yj(r − τ) 

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
dr

+
1
Γ(α)


t

0
(t − r)

α− 1
Ii pi xi(r)(  − pi yi(r)(  dr.

(15)

Using the assumptions (A1)-(A2), we have

xi(t) − yi(t)


≤ xi(0) − yi(0)


 + xi
′(0) − yi

′(0)


t

+
θi + p

∗
Ii




Γ(α)


t

0
(t − r)

α− 1
xi(r) − yi(r)


dr

+
1
Γ(α)


t

0
(t − r)

α− 1
pi xi(r)(  

n

j�1
aijfj xj(r)  − pi yi(r)(  

n

j�1
aijfj yj(r) 




dr

+
1
Γ(α)


t

0
(t − r)

α− 1
pi xi(r)(  

n

j�1
bij gjxj(r − τ)  − pi yi(r)(  

n

j�1
bijgj yj(r − τ) 




dr.

(16)

For the term |pi(xi(r)) 
n
j�1 aijfj(xj(r)) − pi(yi(r))


n
j�1 aijfj(yj(r))|, the assumptions (A1) and (A3) lead to

pi xi(r)(  

n

j�1
aijfj xj(r)  − pi yi(r)(  

n

j�1
aijfj yj(r) 





� pi xi(r)(  

n

j�1
aijfj xj(r)  − pi yi(r)(  

n

j�1
aijfj xj(r) 



+pi yi(r)(  

n

j�1
aijfj xj(r)  − pi yi(r)(  

n

j�1
aijfj yj(r) 



≤ 
n

j�1
p
∗

aij



Fj xi(r) − yi(r)


 + 
n

j�1
piξj aij



 xj(r) − yj(r)


.

(17)

In the same way, we obtain

pi xi(r)(  

n

j�1
bij gjxj(r − τ)  − pi yi(r)(  

n

j�1
bij gjyj(r − τ) 





≤ 
n

j�1
p
∗

bij



Gj xi(r) − yi(r)


 + 
n

j�1
piηj bij



 xj(r − τ) − yj(r − τ)


.

(18)

4 Complexity



Substituting (17) and (18) into (16), we obtain

zi(t)


≤ zi(0)


 + zi
′(0)


t

+
1
Γ(α)


t

0
(t − r)

α− 1 θi + p
∗

Ii




+ p
∗



n

j�1
aij



Fj + bij



Gj ⎤⎥⎥⎦ zi(r)


dr

+
1
Γ(α)


t

0
(t − r)

α− 1


n

j�1
ξjpi aij



 zj(r)


⎛⎝ ⎞⎠dr

+
1
Γ(α)


t

0
(t − r)

α− 1


n

j�1
ηjpi bij



 zj(r − τ)


⎛⎝ ⎞⎠dr.

(19)

Consequently,

‖z(t)‖ ≤ ‖z(0)‖ + z′(0)
����

����t +
λ1
Γ(α)


t

0
(t − r)

α− 1
‖z(r)‖dr

+
λ2
Γ(α)


t

0
(t − r)

α− 1
‖z(r − τ)‖dr.

(20)

With the Cauchy–Schwartz inequality, we obtain

‖z(t)‖≤ ‖z(0)‖ + z′(0)
����

����t

+
λ1
Γ(α)


t

0
(t − r)

2(α− 1)
e
2rdr 

1/2


t

0
e

− 2r
‖z(r)‖

2dr 

1/2

+
λ2
Γ(α)


t

0
(t − r)

2(α− 1)
e
2rdr 

1/2


t

0
e

− 2r
‖z(r − τ)‖

2dr 

1/2

.

(21)

In view of 
t

0 (t − r)2(α− 1)e2rdr< (2e2t/4α)Γ(2α − 1), we
derive

‖z(t)‖e
− t ≤ ‖z(0)‖e

− t
+ z′(0)

����
����e

− t

+

���������
2Γ(2α − 1)



2αΓ(α)
λ1 

t

0
e

− 2r
‖z(r)‖

2dr 

1/2⎧⎨

⎩

+λ2e
− τ


t

0
e

− 2(r− τ)
‖z(r − τ)‖

2dr 

1/2⎫⎬

⎭.

(22)

Letϖ(t) � supt− τ≤t≤te
− t‖z(t)‖, then, for any r ∈ [0, t], we

have

e
− r

‖z(r)‖ ≤ϖ(r),

e
− (r− τ)

‖z(r − τ)‖≤ϖ(r).
(23)

*us, inequality (22) gives

ϖ(t)≤ δe
− t

(1 + t) + Λ 
t

0
ϖ2(r)dr 

1/2

. (24)

With Proposition 2, this yields


t

0
ϖ2(s)ds 

1/2

≤ δ 1 − 1 − e
− Λ2t

 
1/2

 

− 1

· 
t

0
(1 + r)

2
e

− 2r
e

− Λrdr 

1/2

.

(25)

Substituting this into inequality (24), we obtain

ϖ(t)≤ δe
− t

(1 + t) + δΛ 1 − 1 − e
− Λ2t

 
1/2

 

− 1

· 
t

0
(1 + r)

2
e

− 2r
e

− Λ2rdr 

1/2

.

(26)

By virtue of Proposition 3, it follows that

ϖ(t)≤ δ(1 + t)e
− t

+ 2δe
Λ2t

(1 + t) 1 − e
− Λ2t

 
1/2

. (27)

*us,

‖z(t)‖≤ δ(1 + t) 1 + 2e
Λ2+1( )t 1 − e

− Λ2t
 

1/2
 . (28)

With (14), this gives ‖z(t)‖< ε for t ∈ [0, T], which
shows that network (7) achieves the FTS w.r.t. δ, ε, T{ }. *e
proof is finished. □

3.2. Stability Criterion II for Network (7). In this section, we
discuss the finite-time stability of equilibrium point for
network (7). For the parameters of network (7), some further
hypotheses [9] are given as follows:

(H1) *e function pi(·) (i � 1, 2, · · · , n) is a continuous
and bounded function such that 0<p

i
≤pi(·)≤pi onR,

where p
i
and pi are two positive constants.

(H2) *e function qi(·) (i � 1, 2, · · · , n) is a monotonic
differentiable function such that 0< q

i
≤ qi
′(·)≤ qi on R,

where q
i
and qi are two positive constants.

(H3) *e functions fj and gj (j � 1, 2, · · · , n) satisfy
the Lipschitz conditions:

fj(x) − fj(y)


≤ ξj|x − y|,

gj(x) − gj(y)


≤ ηj|x − y|,

∀x, y ∈ R,

(29)

where ξj and ηj are two positive constants.
(H4) For i, j � 1, 2, · · · , n, aij, bij, q

i
, ξj and ηj satisfy the

following condition:
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n

i�1

1
q

i

max1≤j≤n a
∗ξj + b

∗ηj < 1, (30)

where a∗ � max1≤j≤n 
n
i�1 |aij|, b∗ � max1≤j≤n 

n
i�1 |bij|.

By an argument similar to that in [9, 24], the assump-
tions (H1)–(H4) can guarantee the existence and uniqueness
of equilibrium point for network (7). In what follows, we will
concentrate on the finite-time stability for the equilibrium
point x∗ Now, we introduce some notation. Let

ρ1 � max
1≤i≤n

piqi  + max
1≤j≤n

a
∗ξj 

n

i�1
pi

⎛⎝ ⎞⎠,

ρ2 � max
1≤j≤n

b
∗ηj 

n

i�1
pi

⎛⎝ ⎞⎠,

ϑ �
ρ1 + ρ2e

− τ
( 

���������
2Γ(2α − 1)



2αΓ(α)
.

(31)

For network (7), let x(t) represent an arbitrary solution
with the initial conditions: x(t) � ϕ(0)(t), x′(t)(t ∈ [− τ, 0]),

where ϕ(0)(t),ϕ(1)(t) ∈ C([− τ, 0],Rn). Let ‖ϕ − x∗‖ �

max ‖ϕ(0)(t) − x∗‖, ‖ϕ(1)(t) − (x∗)′‖ .

Theorem 2. Let 0< δ < ε.Under the assumptions (H1)–(H4),
the unique equilibrium point x∗ of network (7) achieves the
FTS w.r.t. δ, ε, T{ }, if ‖φ − x∗‖< δ and

(1 + t) 1 + 2e
ϑ2+1( )t 1 − e

− ϑ2t
 

1/2
 <

ε
δ
, ∀t ∈ [0, T].

(32)

Proof. Since x∗ is the equilibrium point for system (7), we
have

qi x
∗
i(  − 

n

j�1
aijfj x

∗
i(  − 

n

j�1
bijgj x

∗
i(  − Ii � 0,

i � 1, 2, · · · , n.

(33)

Based on (7) and (33), we use Proposition 1 to obtain

xi(t) − x
∗
i � xi(0) − x

∗
i + xi
′(0)t

−
1
Γ(α)


t

0
(t − r)

α− 1
pi xi(  qi xi(r)(  − qi x

∗
i( ( ( dr

+
1
Γ(α)


t

0
(t − r)

α− 1
pi xi(  

n

j�1
aij fj xj(r)  − fj x

∗
j  ⎛⎝ ⎞⎠dr

+
1
Γ(α)


t

0
(t − r)

α− 1
pi xi(  

n

j�1
bij gj xj(r − τ)  − gj x

∗
j  ⎛⎝ ⎞⎠dr.

(34)

For the term qi(xi(r)) − qi(x∗i ), applying Lagrange’s
mean value theorem, it follows that

qi xi(r)(  − qi x
∗
i( 


≤ qi xi(r) − x

∗
i


. (35)

Let ui(t) � xi(t) − x∗i . Obviously, equation (34) leads to

ui(t)


≤ ui(0)


 + ui
′(0)


t +

1
Γ(α)


t

0
(t − r)

α− 1
piqi ui(r)




+ 
n

j�1
pi aij



ξj uj(r)


 + 
n

j�1
pi bij



ηj uj(r − τ)


⎞⎠ds.

(36)

Following the treatment similar to that of (20), we can
obtain inequality (32). □

Remark 1. When pi(xi(t)) � 1 and qi(xi(t)) �

cixi(t)(ci > 0), network (7) is reduced to that in [34]. *e
corresponding results can be easily derived from those in
this paper.

Remark 2. When α � 1, network (7) is reduced to an in-
teger-order one. *e corresponding finite-time criteria can
be easily obtained by repeating the Proofs of *eorems 1
and 2.

Remark 3. For α ∈ (0, 1), Ke and Miao [9] studied the FTS
of equilibrium point for a class of delayed FOCGNNs based
on the generalized Bellman–Gronwall inequality; Rajiv-
ganthi et al. [24] considered the FTS for a class of BAM
FOCGNNs with delay by resorting to some inequalities;
Zheng et al. [23] reported the FTS for a class of memristor-
based FOCGNNs with delay based on a kind of Gronwall’s
inequality. It seems to us that these methods can not be
directly extended to the case of α ∈ (1, 2).

Remark 4. In the literature, there have been many works
[15–17, 34–37] on the finite-time stability or finite-time
synchronization for FONNs with α ∈ (1, 2).*e obtained
sufficient conditions are some inequalities involving the
Mittag–Leffler functions.*e proofs are mainly based on the
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Laplace transform, the inverse Laplace transform, and the
generalized Gronwall–Bellman inequalities related to the
Mittag–Leffler functions. However, this method is not ap-
plicable to network (7) owing to the technical reason. In the
present paper, a kind of different method was used to discuss
the FTS of network (7). More precisely, two kinds of finite-
time criteria were obtained based on some properties of the
Caputo derivative and some inequalities. Especially, these
two criteria are expressed as some algebraic inequalities
independent of the Mittag–Leffler functions. *erefore, the
verification is relatively easy in practical applications.

4. Numerical Simulations

In this section, two examples are presented to illustrate the
effectiveness of two criteria.

Example 1. Consider the following FOCGNN model:

C
0 D

1.8
t xi(t) � − pi xi(t)(  qi xi(t)(  − 

3

j�1
aijfj xj(t) ⎡⎢⎢⎣

− 
3

j�1
bijgj xj(t − 0.1)  − Ii

⎤⎥⎥⎦, i � 1, 2, 3.

(37)

Here, pi(xi(t)) � 0.2 sin(xi(t)) + 0.3 and qi(xi(t)) �

0.8 cos(xi(t)) for i � 1, 2, 3, a11 � 0.027, a12 � 0.008, a13 �

0.029, a21 � 0.018, a22 � 0.017, a23 � 0.005, a31 � 0.003,
a32 � 0.029, a33 � 0.029, b11 � 0.029, b12 � 0.004, b13 �

0.024, b21 � 0.015, b22 � 0.013, b23 � 0.029, b31 � 0.024,
b32 � 0.028, b33 � 0.02, fj(xj(t)) � 0.05(|xj(t) + 1| −

|xj(t) − 1|), gj(xj(t − 0.1)) � 0.05(|xj(t − 0.1) + 1| −

|xj(t − 0.1) − 1|), I1 � 0.0478, I2 � − 0.014, and I3 � 0.081.
Obviously, 0.1≤p1(x1)≤ 0.5, 0.1≤p2(x2)≤ 0.5,

0.1≤p3(x3)≤ 0.5, p∗ � 0.2, θ1 � θ2 � θ3 � 0.56, Fj � Gj �

ξj � ηj � 0.1. Moreover, we obtain λ1 � 0.5815, λ2 � 0.011,
and Λ � 0.218

Let x(t) and y(t) be two solutions of network (37) with
the initial conditions:

x(t) � (1.12 − 0.007t, 1.56 + 0.002t, − 1.53 + 0.01t)
T
,

x′(t) � (− 0.007, 0.002, 0.01)
T
,

y(t) � (1.125 − 0.001t, 1.566 + 0.006t, − 1.525 + 0.02t)
T
,

y′(t) � (− 0.001, 0.006, 0.02)
T
,

(38)

for t ∈ [− 0.1, 0].*e time curves for x(t) and y(t) are shown
in Figure 1.

Based on the initial conditions, δ is taken as δ � 0.02. Let
ε � 1. Inequality (14) gives the settling time Ts � 2.7424. *e
time response of ‖x(t) − y(t)‖ is depicted in Figure 2.
Obviously, ‖x(t) − y(t)‖< 1 holds for any t ∈ [0, 2.7424]

which coincides with the result of *eorem 1.

Example 2. Consider the following FOCGNN model:

C
0 D

1.6
t xi(t) � − pi xi(t)(  qi xi(t)(  − 

3

j�1
aijfj xj(t) ⎡⎢⎢⎣

− 
3

j�1
bijgj xj(t − 0.1)  − Ii

⎤⎥⎥⎦,

(39)

for i � 1, 2, 3, where pi(xi(t)) � 0.1 cos(xi(t)) +

0.2 (i � 1, 2, 3), q1(x1(t)) � 0.25x1(t), q2(x2(t)) � 0.4x2(t),
q3(x3(t)) � 0.5x3(t), a11 � 0.04, a12 � 0.05, a13 � − 0.01,
a21 � 0.04, a22 � − 0.03, a23 � − 0.03, a31 � − 0.06, a32 � 0.05,
a33 � 0.05, b11 � − 0.05, b12 � 0.05, b13 � 0.09, b21 � 0.08,
b22 � − 0.024, b23 � − 0.02, b31 � 0.05, b32 � − 0.04, b33 � 0.04,
fj(xj(t)) � 0.025(|xj(t) + 1| − |xj(t) − 1|), gj(xj(t − 0.1))

� 0.025(|xj(t − 0.1) + 1| − |xj(t − 0.1) − 1|), I1 � 0.042, I2
� 0.061, and I3 � 0.039.

Obviously,

0.1≤p1 x1( ≤ 0.3,

0.1≤p2 x2( ≤ 0.3,

0.1≤p3 x3( ≤ 0.3,

dq1 x1( 

dx1
� 0.25,

dq2 x2( 

dx2
� 0.4,

dq3 x3( 

dx3
� 0.5.

(40)

From the above data, we take ξj � ηj � 0.05 (j � 1, 2, 3),
a∗ � 0.14, and b∗ � 0.18. Moreover,



n

i�1

1
q

i

max
1≤j≤n

a
∗ξj + b

∗ηj  � 0.136< 1. (41)

*is indicates that network (39) has a unique equilib-
rium point x∗. Based on (33), we have

0.25x
∗
1 + 0.01f1 x

∗
1(  − 0.1f2 x

∗
2(  − 0.08f3 x

∗
3(  − 0.042 � 0,

0.4x
∗
2 − 0.12f1 x

∗
1(  + 0.054f2 x

∗
2(  + 0.05f3 x

∗
3(  − 0.061 � 0,

0.5x
∗
3 + 0.01f1 x

∗
1(  − 0.01f2 x

∗
2(  − 0.09f3 x

∗
3(  − 0.039 � 0.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(42)
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*is gives the equilibrium point x∗ � (0.17, 0.15, 0.08)T.
Let x(t) and y(t) be two solutions with the initial

conditions:

x(t) � (0.15 + 0.0015t, 0.16 − 0.001t, 0.1 − 0.001t)
T
,

x′(t) � (0.0015, − 0.001, − 0.001)
T
,

y(t) � (0.18 − 0.001t, 0.13 + 0.0012t, 0.007 + 0.0012t)
T
,

y′(t) � (− 0.001, 0.0012, 0.0012)
T

,

(43)

for any t ∈ [− 0.1, 0]. *e time curves are depicted in
Figure 3. Moreover, the time evolution for ‖x(t) − x∗‖ and
‖y(t) − x∗‖ is shown in Figure 4.
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Figure 1: *e time response for x(t) and y(t).
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Based on the above data, it follows that ρ1 � 0.1563, ρ2 �

0.0081 and ϑ � 0.0897. We take δ � 0.05. Let ε � 1. *e
condition (32) gives the settling time Ts � 2.694. From
Figure 4, it can be checked that ‖x(t) − x∗‖< 1 and ‖y(t) −

x∗‖< 1 hold for t ∈ [0, 2.694]. *is fact is consistent with
*eorem 2.

5. Conclusions

In the recent decade, many efforts have been made to the
research on FONNs with the fractional order between 1 and
2. *e methods are mainly based on the Laplace transform,
the inverse Laplace transform, and the generalized Gronwall
inequality related to the Mittag–Leffler functions. However,
these methods do not work well for the considered
FOCGNNs owing to the technical reason. In this paper, the
finite-time stability criteria were derived based on the an-
alytic techniques and some inequalities. *is kind of method
is completely different from the above ones. In particular, the
obtained criteria are expressed as some algebraic inequalities
independent of the Mittag–Leffler functions and thus, they
can be easily verified in practical applications. In the future
work, we will investigate the finite-time guaranteed cost
control for FONNs with high fractional order. It seems to us
that some new techniques would be developed to deal with
this problem.
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(e distributed prescribed finite time consensus schemes for economic dispatch (ED) of smart grids with and without the valve
point effect are researched in this paper. First, the optimization problem is transformed into a consensus of multiagent system
problem, where both with and without the valve point effect are considered. Second, for the directed balance network, a prescribed
finite time method has been arranged to solve the ED problem with and without the valve point effect. (ird, with considering the
constraints of generation units, the prescribed finite time result is also achieved. Finally, from the simulations, the efficiency of the
proposed algorithms is validated.

1. Introduction

In the recent years, the research about the ED problem has
attracted tremendous attentions, which is particularly im-
portant in the smart grid. (e aim of the ED problem is to
find the optimization of the minimum total generation cost.
When there are certain practical constraints, the aim of the
ED problem is to find the optimal outputs to minimum total
generation cost while meeting the power demand. (e
traditional ways of solving the ED problem (e.g., genetic
algorithm [1, 2], particle swarm optimization [3–6], and
multiobjective collective decision optimization algorithm
[7]) are centralized methods.

Recently, many research results focus on the distributed
approach to resolve the ED problem [8–17], where the
generation units only get the neighbor’s information. (e
low communication cost, easy implementation and main-
tenance, and strong robustness against communication
uncertainties are the benefits of distributed ED algorithms
[8]. Many pioneering work about distributed ED were
pointed in [8–10], but these results are not fully distributed.
(e fully distributed ED algorithms were first proposed in

[11], where the distributed consensus methods in multiagent
systems (MASs) have been used. When there exist unknown
communication uncertainties, the ED problem is developed
by using the adaptive consensus-based robust strategy [12].
For sparse communication networks and time delay, a
distributed scheme is provided based on consensus strategy
[13]. In order to reduce the amount of communication of the
smart grids, the event-triggered control solution was devised
to achieve the distributed reactive power sharing control
[14–16]. In the smart grids, the second-order consensus
methods have been used to solve the ED problem [17].
Considering the complex networks with the reaction dif-
fusion terms and the probabilistic Boolean networks, the
synchronization and stabilizationmethods were investigated
in [18–20], and we will focus on the ED algorithms in these
kinds of networks.

(e rate of convergence is a key factor of solving the ED
problem [21–25], and fast convergence rate and strong
robustness are the advantages of the finite time method
[26, 27]. Considering the ED problem of generation, the
distributed finite-step iterative strategy is arranged [21]. If
the topology is jointly connected, distributed finite time ED
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in smart grid is derived [22]. In [15, 22], the homogeneous
method is applied to solve the finite time ED problem, but it
is hard to estimate the convergence time. A novel fully
distributed finite time algorithm is devised to address the ED
problem in the smart grids [23].(e convergence time in the
abovementioned algorithms is connected with the initial
condition, if the initial condition is large, the convergence
time will be very long.(e prescribed finite timemethod was
proposed for the first time in [24], where the convergence
time can be set by the designer. Very recently, a distributed
prescribed finite time method for the ED problem was
proposed [25].

Another important topic is about the valve point effect
[28–41]. Many meaningful works are focused on the valve
point effect, such as evolutionary programming [28, 29],
genetic algorithm [30–33], and particle swarm optimisation
[34, 35]. (e complicated, nonlinear, and nonconvex ED
problem with the valve point effect has been settled by using
the Maclaurin series-based Lagrangian algorithm [36]. In
[37], the valve point loading effect and transmission losses
are considered, where the ED problem has been resolved
with the gradient and Newton methods. But, most algo-
rithms are centralized, and relatively speaking, distributed
methods are more consistent with the actual requirements.
In [38], the ED problem with the valve point effect is re-
solved with a distributed pattern search scheme.

(e contributions of this paper can be listed in the
following three aspects. (1) For the directed balance network,
a prescribed finite time approach has been pointed out to
solve the ED problem. (2)(e prescribed finite time method
was also derived for solving the ED problem with consid-
ering the valve point effect in this paper. (3) With consid-
ering the constraints of generation units, the prescribed
finite time result is still correct.

(e remainder of this article is organized as follows. (e
graph theory and problem statement are introduced in
Section 2. Section 3 proposes distributed prescribed finite
time consensus algorithms of solving the optimization
without and with the valve point effect and the generation
constraints of generation units. (ree simulation examples
are proposed to validate our results in Section 4. In Section 5,
the conclusion has been presented.

2. Graph Theory and Problem Statement

In this section, the graph theory and the problem statement
are introduced.

2.1. Graph ,eory. We define G � (V, E, A) as a weighted
directed graph, where V � v1, . . . , vn  represents the set of
nodes, E⊆V × V represents the set of edges, (vi, vj) ∈ E

represents that nodes i can receive information from node j,
and A � [aij] ∈ Rn×n is the weighted adjacency matrix. If and
only if there is a directed edge (vi, vj) in G, then the weight of
the edge aij > 0; otherwise, aij � 0, (i≠ j, i, j � 1, . . . , n).
Assume that aii � 0 for all i ∈ 1, . . . , n{ }. (e Laplacian
matrix of a directed graph G is L � [lij] ∈ Rn×n, where lii �


n
j�1 aij and lij � − aij, i≠ j, i, j � 1, . . . , n.

(e direct path from the node i1 to node im is
(i1, i2), (i2, i3), . . . , (im− 1, im). If one node in a directed graph
at least has a directed path to another node, the graph
contains a directed spanning tree. If each node has a directed
path to all other nodes in a directed graph, the directed graph
is said to be strongly connected. If all the nodes satisfy
din(i) � 

N
j�1 aij � dout(i) � 

N
j�1 aji, i, j � 1, . . . , n and the

in-degree is equal to the out-degree, then the direct graph is
said to be a balance graph.

Define an undirected mirror graph G � V, E, A , which
has the same nodes V as G. (e set of edges is E⊆V × V, and
the weighted symmetric adjacency matrix is A � [aij], where

aij � aji �
aij + aji

2
≥ 0. (1)

2.2. Problem Statement. Suppose the MASs consist of n

agents. Also, we can describe the dynamics of the agent as
follows:

x
.

i � ui, (2)

where ui is the control inputs, i � 1, . . . , n.

Definition 1. (e MASs (2) is said to reach consensus in
prescribed finite time, if for any preselected time T> 0 such
that limt⟶T xi � xj and for all t≥T, xi � xj,
i, j ∈ 1, . . . , n{ }.

Lemma 1 (see [10]). For the irreducible Laplacian matrix L,
the algebraic connectivity a(L)> 0, where a(L) � minxTξ�0,x≠ 0
xTLx/xTΞx, with L � ΞL + LTΞ/2, ξ � (ξ1, ξ2, . . . , ξn)> 0,
Ξ � diag(ξ1, . . . , ξn), 

n
i�1 ξi � 1, and ξT

L � 0.
In this paper, the ED problem with and without the valve

point effect is considered. Suppose there are n generating
units. (e cost function of each generator is as follows:

Ci(P)i � aiP
2
i + biPi + ci + di sin ei P

min
i − Pi  



, (3)

where Ci(Pi) is the cost of the i-th generator, Pi is the real
power generation of the i-th unit, Pmin

i is the lower bound of
the generation capacity, and ai, bi, ci, di, and ei are the
positive cost function coefficients. di|sin(ei(Pmin

i − Pi))| is
the valve point effect. If di � 0, it means that the valve point
effect is not exist.

Our research objective is to minimize the total cost of n

power generation systems in the case of power demand and
supply balance.

The optimization problem can be summarized as
follows:

min
n

i�1
Ci Pi( . (4)

Subjecting to the power balance constraint,



n

i�1
Pi � PD, (5)

where PD is the total load of the power system.
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3. Main Theoretical Results

3.1. Optimization byConsensuswithout theValve Point Effect.
In this section, the distributed control method is devised to
solve the optimization problem without the valve point effect.

Definition 2. (e incremental cost of each generator i

without valve point effect is defined as
ICi � zCi(Pi)/zPi � riPi + bi, i � 1, 2, . . . , n, where ri � 2ai.

(e Lagrange multiplier algorithm is applied to solve the
optimization problem.

L Pi, λ(  � 
n

i�1
Ci Pi(  + λ PD − 

n

i�1
Pi

⎛⎝ ⎞⎠

� 

n

i�1
aiP

2
i + biPi + ci  + λ PD − 

n

i�1
Pi

⎛⎝ ⎞⎠,

(6)

where λ is the Lagrange multiplier.
(e minimum value of (6) can be obtained by differ-

entiating the abovementioned equation.

zL

zPi

�
zCi Pi( 

zPi

− λ � riPi + bi − λ � 0. (7)

So, 
n
i�1 Pi � PD. We have

λ � riPi + bi. (8)

We define yi(t) � λi � riPi + bi. (en, a distributed
prescribed finite time protocol is designed for the optimi-
zation problem.

y
.

i(t) � crik(t) 
n

j�1
aij yj(t) − yi(t)  � − crik(t) 

n

j�1

Lijyj(t).

(9)

With initial conditions yi(0) � riPi(0) + bi, the follow-
ing equation is satisfied:



n

i�1
Pi(0) � PD. (10)

k(t) � k1 + k2/T − tsign[1 + sign(T − t)], k1 > 0, k2 > 0,
and c≥ 1/a(Ξ− 1L)> 0 are constants. T> 0 is a prespecifiable
convergence time.

From [10], condition (10) is satisfied.

Theorem 1. If the topological graph is a strongly connected
direct balance graph, the distributed prescribed finite time
protocol (9) is designed to solve the prescribed finite time
optimization problem without the valve point effect (4) via the
initial conditions in (10).

Proof. First, we will prove the balance between demand and
supply of powers.

Let ξm � 1/rrm, and y∗(t) � 
n
m�1 ξmym(t) � (1/r)


n
m�1(bm/rm + Pm(t)) be the weighted average value of all

the incremental costs, where r � 
n
m�1 1/rm, m � 1, 2, . . . , n.

We know L is zero row-sum and symmetric, so

y
.∗

(t) � −
ck(t)

r


n

m�1


n

j�1

Lmjyj(t) � 0 �
1
r



n

m�1
P
.

m(t). (11)

(is means



n

m�1
Pm(t) � 

n

m�1
Pm(0) � PD. (12)

From (12), we know the total output power of all the
generators is a constant value, which means the balance
between the demand and supply of powers is always true.

(en, we will prove the prescribed finite time consensus
for the incremental cost of each generator.

We define δi � yi − y∗ as the error states between the
average value and the i-th generator, δ � (δ1, . . . , δn)T. It is
easy to see that 

n
k�1 ξk � 1 and 

n
k�1 ξkδk � 0. So, we can get

the error system:

δ
.

i(t) � crik(t) 
n

j�1
aij δj(t) − δi(t)  � − crik(t) 

n

j�1

Lijδj(t).

(13)

We choose the following Lyapunov function:

V(t) � 
n

i�1

δT
i δi

ri

. (14)

By using Lemma 1, the derivative of V(t) can be de-
scribed as

V
.

(t) � 2
n

i�1

δT
i δ

.

i

ri

� − 2ck(t) 
n

i�1


n

j�1
δT

i
Lijδj � − 2ck(t)δTLδ

≤ − ck(t)a Ξ− 1L δTΞδ ≤ − ck(t)a Ξ− 1L V(t).

(15)

As k(t) � k1 + k2/T − tsign[1 + sign(T − t)], we will
prove the result in two intervals [0, T) and [T,∞).

For t ∈ [0, T), k(t) � k1 + k2/T − t. We have

V
.

(t)≤ − c k1 +
k2

T − t
 a Ξ− 1L V � − ck1a Ξ

− 1L V

− c
k2

T − t
a Ξ− 1L V.

(16)

We define z � (T − t)− k2/2, t ∈ [0, T). (en, z
.

� k2/2
(T − t)− (k2/2)− 1, z

.
/z � k2/2(T − t). As c≥ 1/a(Ξ− 1L)> 0,

we have

V
.

(t)≤ − k1V(t) −
k2

T − t
V(t) � − k1V(t) − 2

z
.

z
V(t).

(17)

(en,

z
2
V
.

(t)≤ − k1z
2
V(t) − 2zz

.
V(t). (18)

So,

Complexity 3



d z
2
V(t) 

dt
� z

2
V
.

(t) + 2zz
.
V(t) ≤ − k1z

2
V(t). (19)

(en,

z
2
V(t)≤ exp− k1t

z(0)
2
V(0), (20)

V(t)≤ z
− 2exp− k1t

z(0)
2
V(0) �

T − t

T
 

2
exp− k1t

V(0).

(21)

From (21), we know limt⟶T− V(t) � 0.
For t ∈ [T,∞), k(t) � k1. We have

V
.

(t)≤ − ck1a Ξ
− 1L V< 0. (22)

It means V will not rise anymore. So, ∀t≥T,
V(t) � V(T) ≡ 0.

(e prescribed finite time optimization problem without
the valve point effect has been proved. (e proof is
completed.

Remark 1: the prescribed finite time fully distributed
method is designed for solving the ED problem in
(eorem 1. (e result here is a fully distributed result,
and it is different from the centralized algorithms.
Remark 2: note that the graph in (eorem 1 is a direct
strongly connected balance graph, and it is an im-
provement over an undirected graph. (e result here
can also be used for any undirected connected graph. In
the future work, we will focus on other direct graphs.
Remark 3: the prescribed finite time result has two
advantages compared with the finite time result. Firstly,
the convergence time can be preassigned as needed by
the designer, as we know that the convergence time of
the finite time results is connected with the initial
condition. Secondly, the controller in the prescribed
finite time result is continuous, while the controller in
the finite time result is discontinuous. (e continuous
controller can make the system state change smoothly.

3.2.ValvePointEffect. In this section, the valve point effect is
introduced. In the interval [0, π], the piecewise linearization
is employed. (e effect of the valve point effect on the cost
function is the type of the sine-wave function, as in
Figure 1(a). (e active real power generated can obtained
from the derivative of the sine-wave function, as in
Figure 1(b). As the function in Figure 1(b) is periodic, the
piecewise linearization is introduced to approximate the
sine-wave function, as in Figure 1(c) [42].

Taking the derivative of formula (3),

dCi Pi( 

d Pi( 
� 2aiPi + bi + dieicos mod ei P

min
i − Pi , π  ,

(23)

where mod means the MOD function.

(e piecewise linearization with different slopes is
introduced:

dieicos mod ei P
min
i − Pi , π   � gi Pi − qi

π
ei

   + ki,

(24)

where gi and ki are constants and qi � [(Pi − Pmin
i )/(π/ei)] is

an integer number of intervals. From (23) and (24),

dCi Pi( 

d Pi( 
� 2aiPi + bi + gi Pi − qi

π
ei

   + ki

� 2ai + gi( Pi − giqi

π
ei

  + bi + ki.

(25)

3.3. Optimization by Consensus with the Valve Point Effect.
Next, the distributed control approach is devised of solving
the optimization problem with the valve point effect.

Definition 3. We define the incremental cost of each gen-
erator i as ICi � zCi(Pi)/zPi � riPi + ηi, where ri � 2ai + gi

and ηi � − giqi(π/ei) + bi + ki, i � 1, 2, . . . , n.
(e Lagrange multiplier algorithm is used to solve the

optimization problem with the valve point effect.

L Pi, λ(  � 
n

i�1
Ci Pi(  + λ PD − 

n

i�1
Pi

⎛⎝ ⎞⎠

� 
n

i�1
aiP

2
i + biPi + ci + di sin ei P

min
i − Pi  





+ λ PD − 
n

i�1
Pi

⎛⎝ ⎞⎠.

(26)

(e minimum value of (26) can be obtained by differ-
entiating equation (26).

zL

zPi

�
zCi Pi( 

zPi

− λ � riPi + ηi − λ � 0. (27)

So, 
n
i�1 Pi � PD. We have

λ � riPi + ηi. (28)

We define xi(t) � λi � riPi + ηi, i � 1, 2, . . . , n. (en, a
distributed prescribed finite time protocol is designed for the
optimization problem.

x
.

i(t) � crik(t) 
n

j�1
aij xj(t) − xi(t)  � − crik(t) 

n

j�1

Lijxj(t).

(29)

With initial conditions xi(0) � riPi(0) + ηi, the fol-
lowing equation is satisfied:



n

i�1
Pi(0) � PD. (30)
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k(t) � k1 + k2/T − tsign[1 + sign(T − t)], c≥ 1/a(Ξ− 1L)

> 0, k1 > 0, k2 > 0 are constants. T> 0 is a prespecifiable
convergence time.

Theorem 2. If the topological graph is a strongly connected
direct balance graph, the distributed prescribed finite time
protocol (29) is designed to solve the prescribed finite time
optimization problem with the valve point effect (4) via the
initial conditions in (30).

The proof here is similar to the proof in Theorem 1. We
omitted the proof here.

3.4. Optimization by Consensus with the Power Generation
Constraints. Next, considering the power generation con-
straints of the generation-demand constraint, we need to
further revise the distributed algorithms (9)-(10) to solve the
ED problem.

(e following three steps are derived to solve the con-
straints problem:

Step 1: by using the algorithm (9)-(10) in(eorem 1, we
can get the optimal incremental cost λ∗ and the optimal
power generation value P∗i .
Step 2: from Step 1, we get P∗i . We check to see whether
P∗ is in the interval [Pi,min, Pi,max]. If P∗i >Pi,max, let
P∗i � Pi,max. If P∗i <Pi,min, let P∗i � Pi,min.
We define Ωp as the generation units whose optimal
values of power generation are P∗i � Pi,max or
P∗i � Pi,min. Two auxiliary variables xi, yi are intro-
duced, and the initialize condition are

xi �

λ∗ − bi

2ai

− P
∗
i , i ∈ Ωp,

0, i ∉ Ωp,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

yi �

1
2ai

, i ∉ Ωp,

0, i ∈ Ωp.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(31)

(e distributed average algorithms are introduced:

x
.

i(t) � crik(t) 
n

j�1
aij xj(t) − xi(t) , (32)

y
.

i(t) � crik(t) 
n

i�1
aij yj(t) − yi(t) . (33)

Corollary 1. If the topological graph is a strongly connected
direct balance graph, the distributed prescribed finite time
algorithms (32) and (33) can solve the optimization problem
with the power generation constraints in the preselected finite
time T1, i.e.,

lim
t⟶T1

x
∗
(t) � 

n

i�1
ξixi(0) � 

i∈Ωp

ξi

λ∗ − bi

2ai

− P
∗
i , (34)

lim
t⟶T1

y
∗
(t) � 

n

i�1
ξi yi(0) � 

i∈Ωp

ξi

2ai

. (35)

Proof. When we set ai � 0.5, it is easy to get the results (34)
and (35), and the proof is similar to the proof in (eorem 1.

From (34) and (35), each generation unit obtains the
average values of x∗i and y∗i . We can get the new incre-
mental cost λ∗∗ as follows:

λ∗∗ � λ∗ +
x
∗
i

y
∗
i

. (36)

(e new optimal value P∗ ∗i can be obtained by

P
∗∗

�

λ∗∗ − bi

2ai

i ∉ Ωp

Pi,min orPi,max i ∈ Ωp

.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(37)

Step 3: check to see weather P∗∗ is in the interval
[Pi,min, Pi,max]. If P∗∗ is not in the interval, set λ∗ � λ∗∗
and repeat Step 2. Otherwise, P∗∗ is the final value. □

π 2π

(a)

π 2π

(b)

π

(c)

Figure 1: Piecewise linearization of the sine-wave part.
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4. Numerical Examples

In this section, in order to verify the effectiveness of pre-
scribed finite time algorithm for the ED problem of smart
grids with the valve point effect, three numerical examples
are listed, prescribed finite time optimization by consensus,
prescribed finite time optimization by consensus with power
generation constraints of generation units, and prescribed
finite time optimization by consensus with the valve point
effect. In this paper, a simulation model with 5 generators is
selected, and the communication topology of the generator
model can be seen in Figure 2.

(e topology is balance directed, the adjacent matrix of

the graph can be written as A �

0 2 0 0 6
4 0 3 0 3
0 3 0 0 0
0 0 0 0 2
4 5 0 2 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, and the

Laplacian matrix of the MASs is L �

8 − 2 0 0 − 6
− 4 10 − 3 0 − 3
0 − 3 3 0 0
0 0 0 2 − 2

− 4 − 5 0 − 2 11

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(e mirror diagram can be further obtained as

A �

0 3 0 0 5
3 0 3 0 4
0 3 0 0 0
0 0 0 0 2
5 4 0 2 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, and the Laplacian matrix of mirror

diagram is L �

8 − 3 0 0 − 5
− 3 10 − 3 0 − 4
0 − 3 3 0 0
0 0 0 2 − 2

− 5 − 4 0 − 2 11

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

For k(t) � k1 + k2/T − tsign[1 + sign(T − t)], select
k1 � 1, k2 � 2, c � 2 in equation (9). Set a1 � 0.096,
a2 � 0.072, a3 � 0.105, a4 � 0.082, a5 � 0.103, b1 � 1.22,
b2 � 1.41, b3 � 1.53, b4 � 1.02, b5 � 1.50, c1 � 51, c2 � 31,
c3 � 78, c4 � 42, and c5 � 81. (e original values of λi(0) are

G1

G2

G3

G5 G4
5

3
3 3

2

2

2

4
4 6

Figure 2: (e topology graph of the generator model.
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Figure 3: (e incremental cost of generator λi.
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Figure 4: Total power demand of the generator.
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Figure 5: (e output power of generator Pi.
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λ1(0) � 12.74, λ2(0) � 13.61, λ3(0) � 23.53, λ4(0) � 17.14,
and λ5(0) � 22.01.

4.1. Prescribed Finite Time Optimization by Consensus. In
this section, distributed ED algorithm (9) in a directed to-
pology is used to solve the optimization problem without
considering power generation constraints.

(e convergence time can be set as 1 s. Figure 3 shows
the incremental cost of the generator λi, and the stable
consensus λ∗ � 17.38 after 1s. We can see that the generator
power demand is about 447.34MW from Figure 4, which
satisfies the balance condition of power demand. It can be
seen from Figure 5 that the optimal values of the generator

power output are P1 � 84.16MW, P2 � 110.89MW,
P3 � 75.47MW, P4 � 99.74MW, and P5 � 77.08MW.

4.2. Prescribed Finite Time Optimization by Consensus with
Power Generation Constraints. Power generation con-
straints of generator units are taken into account in this
simulation. (e maximum values of each generator con-
straints are P1H � 200, P2H � 190, P3H � 180, P4H � 120,
and P5H � 180. (e minimum power of each generators are
P1L � 60, P2L � 40, P3L � 50, P4L � 30, and P5l � 20. (e
initial condition of the two auxiliary variables are x1(0) � 0,
x2(0) � 0, x3(0) � 0, x4(0) � 0, x5(0) � 10, y1(0) � 5.21,
y2(0) � 6.94, y3(0) � 4.76, y4(0) � 0.10, and y5(0) � 4.65.
(e convergence time is selected as 5 s. (e incremental cost
of the generator is λ∗ � 17.03, as in Figure 6. According to
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Figure 6: (e incremental cost of generator λi with power gen-
eration constraints.
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Figure 7: (e incremental cost of generator xi with power gen-
eration constraints.
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Figure 8: (e incremental cost of generator yi with power gen-
eration constraints.
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Figure 9: Total power demand of generator with power generation
constraints.
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(33) and (34), x∗i � 1.74 in Figure 7 and y∗i � 4.35 in
Figure 8 reach consensus in 5 s. From (37), we can get the
final incremental cost λ∗ � 17.43. It can be seen from
Figure 9 that the total generator demand is 437.67MW,
which satisfies the balance condition of power demand. From
Figure 10, we found that eachPi will reach a value in prescribed
finite time, that is, P∗∗1 � 82.35MW, P∗∗2 � 108.48MW,

P∗∗3 � 73.81MW, P∗∗4 � 97.63MW, and P∗∗5 � 75.40MW.

4.3. Prescribed Finite Time Consensus with the Valve Point
Effect. According to (23), d1 � 0.45, d2 � 0.6, d3 � 0.32,
d4 � 0.26, d5 � 0.33, e1 � 0.041, e2 � 0.036, e3 � 0.028,

e4 � 0.052, and e5 � 0.031 are selected in this paper. In
line with formula (28), we can set the convergence time as
1s. (e incremental cost of the generator with the valve
point effect is λ∗ � 17.24, as shown in Figure 11. (e total
power requirement is 474.79MW, as in Figure 12, which
meets the balance of power demand and supply. From
Figure 13, it is found that all Pi can reach consensus
in prescribed finite time, where the steady states are P1 �

91.22MW, P2 � 124.10MW, P3 � 77.28MW,

P4 � 103.14MW, andP5 � 79.05MW.

5. Conclusions

(is paper has solved the distributed prescribed finite time
optimization ED problem with and without the valve point
effect. (e relationship between the consensus and

DG1
DG2
DG3

DG4
DG5

50

60

70

80

90

100

110

120
Pi

 (M
W

)

Times (sec)
0 1 2 3 4 5 6 7 8 9 10

Figure 10: (e output power of generator Pi with power gener-
ation constraints.
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Figure 11:(e incremental cost of generator λi with the valve point
effect.
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optimization problem of ED has been derived, and we can
easily transform the optimization problem into a consensus
problem. For both an undirected network and balance di-
rected network, the prescribed finite time consensus
schemes for ED of smart grids have been investigated. We
found that if there exist constraints of generation units, the
prescribed finite time optimization ED problem can also be
solved.
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+is paper considers the two-player location game in a closed-loop market with quantity competition. Based on the Cournot and
Hotelling models, a circle model is established for a closed-loop market in which two players (firms) play a location game under
quantity competition. Using a two-stage (location-then-quantity) pattern and backward induction method, the existence of
subgame-perfect Nash equilibria is proved for the location game in the circle model with a minimum distance transportation cost
function. In addition, sales strategies are proposed for the two players for every local market on the circle when the players are in
the equilibrium positions. Finally, an algorithm for simulating the competitive dynamics of the closed-loop market is designed,
and two numerical simulations are provided to substantiate the effectiveness of the obtained results.

1. Introduction

Game theory, the science of strategy, was pioneered by John
von Neumann when he proved the basic principles in 1928
[1]. As one of the main basic analysis tools for phenomena
related to struggle or competition, game theory has been
widely applied in politics, international relations, military
strategy, biology, economics, computer science, and many
other fields [2–7].

+e location problem is an important topic in the
fields of supply chain management and industrial orga-
nization. In 1929, Hotelling first introduced the game
theory to the location problem and established the classic
Hotelling model [8]. In this model, consumers are as-
sumed to be evenly distributed on a linear street, and two
companies of the same size that produce homogeneous
goods determine their locations such that the profits are
maximized. During the following decades, researchers
investigated variations of the location problem based on
the classic model and obtained a variety of results. In [9],
the authors claimed that a price equilibrium solution
exists everywhere in a modified version of the Hotelling

model and showed that both sellers tend to maximize
their differentiation for this model. In [10], the authors
studied Cournot competition in linear city model with a
nonuniform consumer distribution and derived a nec-
essary condition for an agglomeration equilibrium. In
[11], the authors proved that a mixed strategy equilibrium
exists for the Hotelling model if a pure strategy equi-
librium does not exist. In [12], the authors extended the
Hotelling spatial competition model in three aspects,
namely, the number of firms, shape of the demand curve,
and type of space. In [13], the author examined the
Hotelling model for duopolistic competition with a class
of utility functions and proved the existence of an
equilibrium when the curvature of the utility functions is
sufficiently high. In [14], the authors analyzed the rela-
tionship between consumer density and the equilibrium
locations of the Hotelling model and noted that the
equilibrium locations are closer if the density is higher. In
[15], the author considered the problem of the existence
of equilibrium states in the Hotelling model in the
n-player case and analyzed the influence of the number of
firms on the equilibrium outcome of Hotelling games. In
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[16], the authors discussed the Hotelling duopoly model
with network effects and brand loyalty and showed that a
pure strategy price equilibrium exists if the trans-
portation costs are linear functions. In [17], the authors
considered the influence of production technology and
labor inputs on spatial competition in Hotelling model
and found that the production technology is the main
influence on the equilibrium locations. It was proved that
a pure strategy price-location Nash equilibrium exists in
the Hotelling duopoly model under general conditions on
the cost-of-location function in [18]. In [19], the authors
developed a duopoly game using the Hotelling model to
research the competition between brick-and-mortar re-
tailers and online retailers.

In general, the real market cannot be described by a linear
segment with evenly distributed customers such as Hotelling
model and its extended versions. In actual situations, markets
are distributed along complex transportation networks.
+erefore, many researchers considered spatial competition in
the pattern of circles and complex networks to more accurately
represent actual markets. For example, the existence of an
equilibrium in the circlemodel was proved by using a two-stage
(location-then-price) method in [20]. It was shown that a
unique price equilibrium exists on a circular road when the
transportation cost function is quadratic in [21]. In [22], the
authors studied the location game in a circular market and
demonstrated that the equidistant location pattern is the
unique equilibrium location for the players in this market. In
[23], the authors investigated two shipping duopoly models in
circular markets and proved the existence and nonexistence of
the equilibrium in different models. In [24], the authors
considered spatial competition among for a multiplant
Cournot oligopoly in a circular city and proved the uniqueness
of the equilibrium location if the number of plants is equal for
the two firms. In [25], the authors derived some conditions for
even spacing to be an equilibrium of a circular market based on
a two-stage approach. In [26], the authors investigated spatial
Cournot competition in a circular city and showed that
nonmaximum dispersion is the unique location equilibrium
when duopoly firms deliver products in different trans-
portation modes.

Strongly motivated by the above discussion, in this
paper, we investigate the two-player location game in a
closed-loop market. In such a game, two players develop
quantity competition in the market, whose shape can be
viewed as a circle. +e goal of each player is to choose the
optimal point on the circle as its location such that its profit
is maximized. +e main contributions of this paper are
highlighted as follows:

(1) Not only is the optimal equilibrium state of the
location game investigated, but also the optimal
strategy, including the price and quantity plan for
each player, is proposed.

(2) A computer algorithm is designed to simulate the
evolutionary process of the two-player game in a
closed-loop market. +e simulation examples dem-
onstrate the effectiveness and feasibility of the
algorithm.

(3) It is shown that the two players follow the principle
of maximum differentiation to choose their optimal
locations in a closed-loop market model, which is
strikingly different from Hotelling’s minimum dif-
ferentiation principle for a linear market model.

+e remainder of this paper is organized as follows. In
Section 2, some descriptions and assumptions for the two-
player location game in a closed-loopmarket are introduced,
and some important lemmas are provided. In Section 3, the
two-player quantity competition in the closed-loop market
is considered when the players’ locations are fixed. +e two-
player location game in a closed-loop market is discussed in
Section 4. An algorithm for simulating the dynamic evo-
lution of the two players in themarket is presented in Section
5. Finally, some conclusions are drawn in Section 6.

To end this section, we give some notations used in this
paper. x ∈ [0, 1) stands for the position of the local market in
a closed-loop market. x1 and x2 represent the positions of
firms A and B, respectively. p is the price of the product,
while q1 and q2 are the quantities produced by the two
players. +e function ci represents the transportation cost
per unit product from the position xi to x, where i � 1, 2.

2. Basic Assumptions of the Closed-
Loop Market

Consider two firms A and B in a closed-loop market.
Without loss of generality, it is assumed that the closed loop
is a circle with a circumference of 1. +e points on the circle
are arranged in the counterclockwise direction, and each
point is called a local market. Consumers are evenly dis-
tributed on the circle with a density of 1. Firms A and B are
distributed at two points on the circle (as shown in
Figure 1(a)), and each firm produces homogeneous products
with zero production cost.

For convenience of representation, the circle is dis-
connected at a certain point O in Figure 1(a), and the circle is
straightened into a line segment OO′ of length 1 (as shown
in Figure 1(b)). Clearly, the line OO′ in Figure 1(b) can be
transformed into the circle in Figure 1(a). +erefore, the
circle is equivalent to the segment OO′. Note that the two
ends O and O′ of the line segment correspond to the same
point O on the circle. Take the left end O of line OO′ as the
origin, and take the OO′ direction as the positive direction to
establish a number axis. +en, the coordinate value x of a
point on the right-half number axis represents the distance
from the point to the origin O.

Suppose the locations of the firms A and B are, re-
spectively, x1 and x2, where x1, x2 ∈ [0, 1). +e firms are
responsible for the distribution of goods to the local market
x, and the transportation cost is 1 per unit product per unit
distance. +ere are two ways to transport products from
location xi to the local market x, that is, counterclockwise
and clockwise. We should choose the minimum distance for
distribution. +erefore, the transportation cost per unit
product from location xi to the local market x is

ci(x) � min xi − x


, 1 − xi − x


 , i � 1, 2. (1)
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Clearly, c1(x) � c2(x) when x1 � x2, and
c1(x) + c2(x) � 1/2 when |x1 − x2| � 1/2. +e trans-
portation costs of the two firms from the same location to the
local market x are equal if they are located at the same point,
while the total transportation costs are 1/2 if they are located
at opposite ends of a certain diameter in the circle.

In the following sections, the total costs of transportation
on the circle and the total profit of the firms, which are
related to some integrals of ci(x), will be calculated.
+erefore, we present some conclusions on integrals of
ci(x).

Lemma 1. For ci(x) and c2i (x), the following integrals hold:


1

0
ci(x)dx �

1
4
,


1

0
c
2
i (x)dx �

1
12

.

(2)

Lemma 2. For the integral of the product of c1(x) and c2(x),
the following results are correct.

(i) When (x1, x2) ∈ [0, (1/2)) × [0, (1/2)),


1

0
c1(x)c2(x)dx �

2
3

x1 − x2



3

−
1
2

x1 − x2( 
2

+
1
12

.

(3)

(ii) When (x1, x2) ∈ [0, (1/2)) × [(1/2), 1),


1

0
c1(x)c2(x)dx � −

2
3

x1 − x2 +
1
2





3
+
1
2

x1 − x2 +
1
2

 
2

+
1
24

.

(4)

(iii) When (x1, x2) ∈ [(1/2), 1) × [0, (1/2)),


1

0
c1(x)c2(x)dx � −

2
3

x2 − x1 +
1
2





3
+
1
2

x2 − x1 +
1
2

 
2

+
1
24

.

(5)

(iv) When (x1, x2) ∈ [(1/2), 1) × [(1/2), 1),


1

0
c1(x)c2(x)dx �

2
3

x1 − x2



3

−
1
2

x1 − x2( 
2

+
1
12

. (6)

Specifically,


1

0
c1(x)c2(x)dx �

1
12

, if x1 � x2,


1

0
c1(x)c2(x)dx �

1
24

, if x1 − x2


 �
1
2
.

(7)

The proofs of Lemmas 1 and 2 are presented in the
appendix.

3. Quantity Competition in the Closed-
Loop Market

In this section, we first recall the Cournot duopoly model
proposed by Cournot in 1838 [27]. In this model, two players
(firms) producing the same products compete by choosing
their outputs independently under the assumption that their
competitor does not change their output in response, which
leads to a balanced result between competition and
monopoly.

+e basic assumptions of the Cournot model are that the
market includes only two firms A and B that sell identical
products; the production cost is zero (such as the acquisition
of mineral water); the inverse demand function of the
market is linear; firms A and B know the demand function of
the market accurately; and both firms know each other’s
output. In this situation, each firm determines the output
that can yield the maximum profit for them, which means
that each firm passively adapts its output to the determined
output of the other party. Next, we use the response function
method to analyze the equilibrium state of production in the
Cournot model.

Let the total market capacity be 1 and the inverse de-
mand function be

p � f q1 + q2(  � 1 − q1 − q2, (8)

where p is the price of the product and q1 and q2 are the
quantities produced by firms A and B, respectively.+en, the
profits of firms A and B are as follows:

y

B

A

O x

(a)

A B

O O′
x

(b)

Figure 1: Circular market and its linearization. (a) Diagram of the circular market. (b) Linearization of the circle.
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π1 q1, q2(  � pq1 � q1 − q
2
1 − q1q2,

π2 q1, q2(  � pq2 � q2 − q
2
2 − q1q2.

(9)

For firm A, the first-order condition maximizing its
profit is that

zπ1

zq1
� 1 − 2q1 − q2 � 0,

or q1 �
1
2

1 − q2( .

(10)

Equation (10) is firm A’s best response function, which
represents the optimal output of firm A depending on the
output of firm B. In other words, for each output of firm B,
firm A will respond and determine the product that can
maximize its profit.

Similarly, for firm B, the first-order profit-maximizing
condition is

zπ2

zq2
� 1 − 2q2 − q1 � 0,

or q2 �
1
2

1 − q1( .

(11)

Equation (11) is firm B’s best response function, which
represents the relationship between the optimal output of
firm B and the output of firm A.

By combining the best response functions (10) and (11),
the equilibrium output solution of firms A and B can be
obtained as follows:

q
∗
1 � q

∗
2 �

1
3
. (12)

+e equilibrium output of each firm is 1/3 of the market
capacity. As shown in Figure 2, the response functions of
firms A and B are linear since the demand function is linear.
+e intersection E of the two lines is the equilibrium solution
of the Cournot model.

In the following, we consider the two-player game in a
closed-loop market with quantity competition. Like demand
function (8) in the Cournot model, for the closed-loop market,
we assume that the demand function of the local market at x is

p(x) � 1 − q1(x) − q2(x), ∀x ∈ [0, 1), (13)

where p(x) is the price of the product for the local market x

and q1(x) and q2(x) are the sales of firms A and B for the
local market x, respectively. +erefore, the profits π1 and π2
of firms A and B in the local market x are, respectively,

π1 � 1 − q1(x) − q2(x) − c1(x) q1(x), (14)

π2 � 1 − q1(x) − q2(x) − c2(x) q2(x), (15)

where ci(x), defined in (1), represents the transportation
cost per unit product from location xi of the firm to the local
market x. In a similar way to the response function approach
for analyzing the Cournot model, we can extend the dis-
cussion. By calculating the partial derivatives of (14) and

(15), the first-order conditions for maximizing the profits of
firms A and B in the local market x are obtained as follows:

zπ1
zq1

� 1 − 2q1(x) − q2(x) − c1(x) � 0,

zπ2
zq2

� 1 − q1(x) − 2q2(x) − c2(x) � 0.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(16)

+en, the response functions of firms A and B in local
market x are as follows:

q1(x) �
1
2

1 − q2(x) − c1(x) , (17)

q2(x) �
1
2

1 − q1(x) − c2(x) . (18)

According to the above equations, in the equilibrium
state of output competition, the quantities of products sold
by the two firms in local market x are

q
∗
1 (x) �

1
3

1 − 2c1(x) + c2(x) ,

q
∗
2 (x) �

1
3

1 + c1(x) − 2c2(x) .

(19)

Meanwhile, according to (14), (15), and (19), the profits
of firms A and B in local market x are

π ∗1 (x) �
1
9
1 − 2c1(x) + c2(x) 

2
,

π ∗2 (x) �
1
9
1 + c1(x) − 2c2(x) 

2
.

(20)

By integrating (19) and employing Lemma 1, it can be
obtained that the total outputs Q∗1 and Q∗2 of firms A and B
are, respectively,

Q
∗
1 � 

1

0
q
∗
1 (x)dx �

1
4
,

Q
∗
2 � 

1

0
q
∗
2 (x)dx �

1
4
,

(21)

O

q2

q1 = 1/2 (1–q2)

E

q2 = 1/2 (1–q1)

q1

Figure 2: +e response functions in the Cournot model.
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which means that the equilibrium output of each firm is 1/4
of the market capacity.

Based on the above analysis, we can summarize the
results in the following proposition.

Proposition 1. In a closed-loop market with inverse demand
function (8) and transportation cost function (1), if two
players compete with the quantity of outputs, their equilib-
rium outputs are both 1/4, regardless of their locations x1 and
x2.

Remark 1. Comparing the demand function (8) in the
Cournot model with the demand function (13) in the closed-
loop market discussed in this section, we find that the
meaning of (13) is the same as that of (8) if x in (13) is fixed.
+erefore, the output competition in each local market x on
the circle can be regarded as a Cournot model with quantity
competition, while the whole circle market can be regarded
as being composed of an infinite number of Cournot models.

Remark 2. Comparing the response functions (10) and (11)
in the Cournot model with the response functions (17) and
(18) in the closed-loop market model, we find that the
outputs qi(x) in response functions (17) and (18) must
deduce quantities whose values are equivalent to the
transportation cost in the closed-loop market. As a result,
the proportion of the equilibrium output of each firm to the
total market capacity is reduced by 1/12.

4. Location Game in the Closed-Loop Market

In the previous section, we assumed that positions x1 and x2
of firms A and B are fixed. In this section, we consider the
locations of the firms as decision variables. +erefore, this
section considers how firms A and B choose their optimal
locations x1 and x2 to obtain the maximum profits through
quantity competition.

In this situation, we can analyze the problem as a
complete information dynamic game process composed of

two stages. In the first stage of the game, the two firms
choose their locations in the circle market independently.
+en, in the second stage, each firm launches the output
competition after observing the location of the other firm.
We adopt backward induction to solve the subgame-perfect
Nash equilibria of this game.

In the second stage, each firm observes the position of
the other firm and then competes for outputs. +erefore, the
analysis approach in this stage is the same as that in the
previous section. Since we still assume that the demand
function p(x) is in the form of (13), the product quantities
q∗1 (x) and q∗2 (x) sold by firms A and B in the local market x
are still in the form of (19) when the output competition
reaches the equilibrium state. +erefore, the profits π ∗1 and
π ∗2 of firms A and B are still calculated according to (20) in
the local market x.

In the first stage, each firm chooses its own optimal
location to maximize its profit.+e total profitsΠi of firms A
and B in the whole closed-loop market are

Πi x1, x2(  � 
1

0
π ∗i dx, i � 1, 2. (22)

Substituting (20) into (22) and according to Lemma 1, it
can be seen that

Πi x1, x2(  �
11
108

−
4
9


1

0
c1(x)c2(x)dx. (23)

+en, the first-order conditions of profit maximization
are that

zΠ1
zq1

� 0, or
zΠ1
zq1

does not exist,

zΠ2
zq2

� 0, or
zΠ2
zq2

does not exist,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(24)

which are equivalent to

z

zx1

1

0
c1(x)c2(x)dx � 0, or

z

zx1

1

0
c1(x)c2(x)dx does not exist,

z

zx2

1

0
c1(x)c2(x)dx � 0, or

z

zx2

1

0
c1(x)c2(x)dx does not exist.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(25)

We discuss (x1, x2) and whether they satisfy conditions
(25) in four cases: (i) (x1, x2) ∈ [0, (1/2)) × [0, (1/2)), (ii)
(x1, x2) ∈ [0, (1/2)) × [(1/2), 1), (iii) (x1, x2) ∈ [(1/2), 1) ×

[0, (1/2)), and (iv) (x1, x2) ∈ [(1/2), 1) × [(1/2), 1).
For cases (i) and (iv), z/zx1 

1
0 c1(x)c2(x)dx does not

exist if x1 � x2 according to Lemma 2. Hence, conditions
(25) are satisfied if x1 � x2. Similarly, for case (ii),

conditions (25) are satisfied if x2 − x1 � 1/2. For case (iii),
conditions (25) are satisfied if x1 − x2 � 1/2. +erefore, the
possible equilibrium positions of the two firms are at the
same point or at opposite ends of a diameter of the circular
market.

According to (23) and Lemma 2, we can calculate the
profits of the two firms in the possible equilibrium locations
as follows:
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Πi �

7
108

, x
∗
1 � x

∗
2 (at the same point),

1
12

, x
∗
1 − x

∗
2


 �

1
2
, (at opposite ends of a diameter).

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(26)

+is result indicates that the maximum profit of the two
firms at opposite ends of a diameter is larger than that at the
same point. Next, we analyze the sales program, including
sales volume and sales price, for the firms in the two possible
equilibrium locations.

If the equilibrium location is at the same point, that is,
x∗1 � x∗2 , according to (19) and (13), noting that c1(x) � c2(x),
each firm chooses a sales quantity q∗i (x) and a corresponding
sales price p∗(x) for the local market x as follows:

q
∗
1 (x) � q

∗
2 (x) �

1
3

1 − ci(x) ,

p
∗
(x) �

1
3

1 + 2ci(x) .

(27)

+en, the total sales quantity Q∗i of each firm in the
whole market is

Q
∗
1 � Q

∗
2 � 

1

0
q
∗
i (x)dx �

1
4
. (28)

In this situation, as shown in Figure 3, the sales price
p∗(x) of the firms is positively correlated with the trans-
portation cost ci(x) and negatively correlated with the sales
volume q∗i (x). +erefore, the price increases with an in-
crease in the cost, while the sales volume decreases with an
increase in the price.

If the equilibrium location is at opposite ends of a di-
ameter, that is, |x∗1 − x∗2 | � 1/2, according to (19) and
noting that c1(x) + c2(x) � 1/2, each manufacturer chooses
a sales quantity q∗i (x) and a corresponding sales price p∗(x)

for the local market x as follows:

q
∗
1 (x) � c2(x),

q
∗
2 (x) � c1(x),

p
∗
(x) � 1 − c1(x) − c2(x) �

1
2
.

(29)

In this situation, as shown in Figure 4, the sales price
p∗(x) of the two firms is a constant, while the sales volume
q∗i (x) is negatively related to the transportation cost ci(x).
+us, regardless of how the cost and sales volume change,
the price is always constant, and the sales volume decreases
as the cost increases.

Summarizing the above discussion, we obtain the con-
clusions shown in Table 1.

In fact, strategy 1 is not optimal. Based on (23) and
Lemma 2, the second-order conditions can be calculated as

lim
x1⟶x2

z
2Πi

zx
2
i

�
4
9
> 0. (30)

+erefore, the second-order condition of maximizing
Πi(x1, x2) is not satisfied if x1 � x2. In addition, the profit
Πi(x1, x2) can also be Pareto improved. For example, the
profit Πi(x1, x2) of each firm is 7/108 if the firms are located
at the same point; that is, x1 � x2. Now, assume that firm A’s
position is fixed at x1 and firm B’s position x2 is changed
slightly, that is, x2 � x1 + δ, where δ is a number close to but
not zero. According to (23) and Lemma 2, the increment
ΔΠi of the profit can be calculated as follows:

ΔΠi � Πi x1, x1 + δ(  − Πi x1, x2(  �
2
9
δ2 −

8
27

|δ|
3 > 0,

(31)

which shows that the profits of firms A and B have both
increased.

Strategy 2 can be viewed as optimal because it cannot be
Pareto improved. If the positions of firms A and B are
changed from |x1 − x2| − (1/2) � 0 to |x1 − x2| − (1/2) � δ,
where δ represents a number close to but not equal to zero,
then the increment ΔΠi of the profit can be calculated as

ΔΠi �
8
27

|δ|
3

−
2
9
δ2 < 0. (32)

0 1

1

x1
∗ = x2

∗ x

ci(x)

qi∗ (x)

p∗ (x)

Figure 3: Price and quantity curves with the equilibrium positions
at the same point.

p∗ (x)

1

0.5

0 1x1
∗ x2

∗ x

q2
∗(x) = c1(x) q1

∗(x) = c2(x)

Figure 4: Price and quantity curves with equilibrium positions at
opposite ends of a diameter.
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+us, the profit of each firm decreases.
Based on the above discussion, we summarize what we

have demonstrated.

Proposition 2. In the closed-loop market with inverse de-
mand function (8) and transportation cost function (1), if the
two players develop the location game with quantity com-
petition, the equilibrium locations x∗1 and x∗2 satisfy
|x∗1 − x∗2 | � (1/2), which means that they are at opposite
ends of a diameter of the market. Furthermore, when the firms
are at their equilibrium locations, the sales strategies, in-
cluding price and quantity, in the local market x are as
follows:

p
∗
(x) �

1
2
,

q
∗
1 (x) � min x

∗
2 − x


, 1 − x

∗
2 − x


 ,

q
∗
2 (x) � min x

∗
1 − x


, 1 − x

∗
1 − x


 .

(33)

Remark 3. Proposition 2 indicates that when the two players
are at the equilibrium locations, they should provide dif-
ferent quantities of products for different local markets. In
the quantity strategy, a player provides greater quantities to
the local market that is closest to its location. However, the
player adopts the same price strategy for every local market,
which means that the price is indiscriminately unified in the
entire closed-loop market.

Remark 4. For a linear city model, H. Hotelling proposed
the principle of minimum differentiation, according to
which, two competing players will be located in the same
location [8]. However, Proposition 2 describes the principle
of maximum differentiation in this paper. In a closed-loop
market, due to the nonlinearity of the transportation cost
function (1), two players will keep the maximum dispersion
between their locations, which is contrary to Hotelling’s
principle.

5. Numerical Simulations

To illustrate the competitive dynamics in the close-loop
market and verify the validity of the results, we employ
MATLAB to simulate the game process of players 1 and 2
(firms A and B). At the beginning of the simulation, each
player randomly and independently chooses a point xi on
the circle as its position. +en, the two players start the first
round of position adjustments based on their profits. Player
1 uses (23) to calculate its own profit Π1(x1, x2) based on its

position x1 and player 2’s position x2 and moves a small step
around the circle in the appropriate direction such that its
new position increases its profit. +en, player 2 computes its
own profit Π2(x1, x2) and moves a small step around the
circle in the same manner as player 1. In this way, the two
players adjust their positions in each round and move al-
ternately around the circle until their profits no longer
increase.

+erefore, the algorithm for simulating competitive
dynamics in the close-loop market can be designed as
follows.

Step 1: initialize the move step size h with a small
number. Initialize the positions x1 and x2 of the two
players with two random numbers in [0, 1].
Step 2: use (23) to compute M1 � Π1(x1, x2),
M2 � Π1(x1 + h, x2), and M3 � Π1(x1 − h, x2).
Step 3: if M1 <M2, assign the value x1 + h to x1. If
M1 <M3, assign the value x1 − h to x1.
Step 4: use (23) to compute N1 � Π2(x1, x2),
N2 � Π2(x1, x2 + h), and N3 � Π2(x1, x2 − h).
Step 5: if N1 <N2, assign the value x2 + h to x2 and
return to Step 2. If N1 <N3, assign the value x2 − h to
x2 and return to Step 2.

Based on this algorithm, two numerical simulations are
performed for different pairs of initial positions, and the
dynamic evolution of the players in the closed-loopmarket is
shown in Figures 5 and 6. +e initial positions of the two
players are x1 � 0.06 and x2 � 0.68 for the first simulation in
Figure 5 and x1 � 0.66 and x2 � 0.52 for the second sim-
ulation in Figure 6. +e number of rounds from the initial
state to the equilibrium state is 6 in the first simulation and
18 in the second simulation since the distance between the
two positions in the initial state is shorter in the first sim-
ulation. It is seen that in the last round the positions x1 and
x2 are not changed and satisfy |x1 − x2| � (1/2) in each
simulation.

Remark 5. In [26], the authors investigated the location
game in a circular market and derived some conditions for
guaranteeing the existence and uniqueness of the location
equilibrium. Compared with this previous work, we have not
only shown that a maximum dispersion is the location
equilibrium in a closed-loop market, but also proposed the
sales strategies for the two players in the equilibrium po-
sition. Furthermore, an algorithm is designed for simulating
the competitive dynamics of a closed-loop market. To the
best of our knowledge, this algorithm has not been proposed
in the literature on circular markets.

Table 1: Location game strategies based on possible equilibrium positions.

Strategy Equilibrium points Cost
Sales program

Profit
Price Quantity Total quantity

1 x∗1 � x∗2 c1(x) � c2(x) (1/3)[1 + 2ci(x)] (1/3)[1 − ci(x)] Q∗1 � Q∗2 � (1/4) 7/108

2 |x∗1 − x∗2 | � (1/2) c1(x) + c2(x) � (1/2) 1/2 q∗1 (x) � c2(x)
Q∗1 � Q∗2 � (1/4) 1/12

q∗2 (x) � c1(x)
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Figure 5: Dynamic evolution of the two-player location game in the closed-loop market with initial positions x1 � 0.06 and x2 � 0.68.
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Figure 6: Dynamic evolution of the two-player location game in the closed-loop market with initial positions x1 � 0.66 and x2 � 0.52.
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6. Conclusion

To research the two-player location game in the closed-loop
market, we consider the shape of the market as a circle. +e
location game with quantity competition between two
players in a circular market is established. Using a two-stage
approach, we solve the subgame-perfect Nash equilibria of
the location game in the circular market. Moreover, we
design an algorithm to simulate the dynamic evolution of the
two-player location game in the closed-loop market and
provide two numerical simulations to illustrate and validate
the theoretical findings. +e present research shows that the
two players set their positions at opposite ends of a circle
diameter in the optimal equilibrium state of the location
game. At this point, they should adopt a differentiated
quantity strategy and undifferentiated price strategy for the
local markets. +is paper considers the geometry of the
market as a circle, which is a basic shape of the market. In
fact, the geometry of themarket could be very complex in the
real world.+erefore, we will mainly focus on the research of
multiplayer location game on complex networks in future.

Remark 6. Although the model in this paper is established
under some ideal assumptions, the results have some pos-
itive reference value. In the real economic world, the whole
Earth can be regarded as a circular market if observed along
the Earth’s latitude. +ere are two large countries, one in the
east and the other in the west, at opposite ends of the di-
ameter of the circular market. In theory, the competitive
firms in the two countries are in an ideal equilibrium po-
sition. In fact, from the perspective of global geographical
location, the firms in an equilibrium position have more
location advantages than firms in other positions.

Appendix

In this appendix, we prove Lemmas 1 and 2. Before proving
them, we rewrite expression (1) of ci(x). +en, the rela-
tionship between |xi − x| and 1 − |xi − x| in (1) needs to be
discussed in the following six cases.

(a) xi − x> 0 and |xi − x|< 1 − |xi − x|, if xi ∈ [0, (1/2))

and x ∈ [0, xi)

(b) xi − x≤ 0 and |xi − x|< 1 − |xi − x|, if xi ∈ [0, (1/2))

and x ∈ [xi, xi + (1/2))

(c) xi − x< 0 and |xi − x|≥ 1 − |xi − x|, if xi ∈ [0, (1/2))

and x ∈ [xi + (1/2), 1)

(d) xi − x> 0 and |xi − x|> 1 − |xi − x|, if xi ∈ [(1/2), 1)

and x ∈ [0, xi − (1/2))

(e) xi − x> 0 and |xi − x|≤ 1 − |xi − x|, if xi ∈ [(1/2), 1)

and x ∈ [xi − (1/2), xi)

(f ) xi − x≤ 0 and |xi − x|< 1 − |xi − x|, if xi ∈ [(1/2), 1)

and x ∈ [xi, 1)

+erefore, ci can be regarded as a binary function with
two variables xi and x, which can be rewritten as

ci �

xi − x, xi, x(  ∈ 0,
1
2

  ×[0, x)∪
1
2
, 1  × xi −

1
2
, xi ,

x − xi, xi, x(  ∈ 0,
1
2

  × xi, xi +
1
2

 ∪
1
2
, 1  × xi, 1 ,

1 − x + xi, xi, x(  ∈ 0,
1
2

  × xi +
1
2
, 1 ,

1 − xi + x, xi, x(  ∈
1
2
, 1  × 0, xi −

1
2

 .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(A.1)

UsingMATLAB, the graph of the function ci is plotted as
shown in Figure 7. Obviously, ci is a continuous function,
but its partial derivatives do not exist at |xi − x| � 0 and
|xi − x| � (1/2).

:e Proof of Lemma 1. According to expression (A.1) of ci

and by the method of subsection integration, the lemma can
be proved directly. +e detailed calculation process is as
follows.

For xi ∈ [0, (1/2)), we can compute


1

0
ci(x)dx � 

xi

0
xi − x( dx + 

xi+(1/2)

xi

xi − x( dx

+ 
1

xi+(1/2)
1 − x + xi( dx

�
1
2
x
2
i +

1
8

+
1
8

−
1
2
x
2
i  �

1
4
.

(A.2)

For xi ∈ [(1/2), 1), we can compute


1

0
ci(x)dx � 

xi − (1/2)

0
1 − xi + x( dx + 

xi

xi − (1/2)
xi − x( dx

+ 
1

xi

x − xi( dx

� −
1
2
x
2
i + xi −

3
8

  +
1
8

+
1
2
x
2
i − xi +

1
2

  �
1
4
.

(A.3)

ci

0.5

0.25

1

0.5

0
x

1

xi

0

0.5

0

Figure 7: +e graph of the function ci.
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It follows from (A.2) and (A.3) that 
1
0 ci(x)dx � (1/4).

For xi ∈ [0, (1/2)), we can compute


1

0
c
2
i (x)dx � 

xi

0
xi − x( 

2dx + 
xi+(1/2)

xi

xi − x( 
2dx

+ 
1

xi+(1/2)
1 − x + xi( 

2dx

� 
xi+(1/2)

0
xi − x( 

2dx + 
1

xi+(1/2)
1 − x + xi( 

2dx

�
1
3
x
3
i +

1
24

  +
1
24

−
1
3
x
3
i  �

1
12

.

(A.4)

For xi ∈ [(1/2), 1), we can compute


1

0
c
2
i (x)dx � 

xi− (1/2)

0
1 − xi + x( 

2dx + 
xi

xi − (1/2)
xi − x( 

2dx

+ 
1

xi

x − xi( 
2dx

� 
xi− (1/2)

0
1 − xi + x( 

2dx + 
1

xi − (1/2)
xi − x( 

2dx

�
1
3
x
3
i − x

2
i + xi −

7
24

  + −
1
3
x
3
i + x

2
i − xi −

3
8

  �
1
12

.

(A.5)

It follows from (A.4) and (A.5) that 
1
0 c2i (x)dx � (1/12).

:e Proof of Lemma 2

(i) For (x1, x2) ∈ [0, (1/2))× [0, (1/2)), it follows from
(A.1) that

ci(x) �

xi − x, x ∈ 0, xi ,

x − xi, x ∈ xi, xi +
1
2

 ,

1 − x + xi, x ∈ xi +
1
2
, 1 .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(A.6)

Consequently, for x1 ≤x2, we can compute


1

0
c1(x)c2(x)dx � 

x1

0
x1 − x(  x2 − x( dx + 

x2

x1

· x − x1(  x2 − x( dx

+ 
x1+(1/2)

x2

x − x1(  x2 − x( dx + 
x2+(1/2)

x1+(1/2)

· 1 − x + x1(  x2 − x( dx

+ 
1

x2+(1/2)
1 − x + x1(  1 − x + x2( dx

� −
2
3

x1 − x2( 
3

−
1
2

x1 − x2( 
2

+
1
12

.

(A.7)

Similarly, for x1 >x2, the following can be calculated:


1

0
c1(x)c2(x)dx �

2
3

x1 − x2( 
3

−
1
2

x1 − x2( 
2

+
1
12

.

(A.8)

Combining (A.7) and (A.8), we have


1

0
c1(x)c2(x)dx �

2
3

x1 − x2



3

−
1
2

x1 − x2( 
2

+
1
12

,

(A.9)

for (x1, x2) ∈ [0, (1/2)) × [0, (1/2)).
(ii) For (x1, x2) ∈ [0, (1/2)) × [(1/2), 1), it follows from

(A.1) that

c1(x) �

x1 − x, x ∈ 0, x1 ,

x − x1, x ∈ x1, x1 +
1
2

 ,

1 − x + x1, x ∈ x1 +
1
2
, 1 ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

c2(x) �

1 − x2 + x, x ∈ 0, x2 −
1
2

 ,

x2 − x, x ∈ x2 −
1
2
, x2 ,

x − x2, x ∈ x2, 1 .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(A.10)

Consequently, for x1 ≤x2 − (1/2), the following can be
computed:

10 Complexity




1

0
c1(x)c2(x)dx � 

x1

0
x1 − x(  1 − x2 + x( dx + 

x2− (1/2)

x1

· x − x1(  1 − x2 + x( dx

+ 
x1+(1/2)

x2− (1/2)
x − x1(  x2 − x( dx + 

x2

x1+(1/2)

· 1 − x + x1(  x2 − x( dx

+ 
1

x2

1 − x + x1(  x − x2( dx

�
2
3

x1 − x2 +
1
2

 
3

+
1
2

x1 − x2 +
1
2

 
2

+
1
24

.

(A.11)

Similarly, for x1 >x2 − (1/2), we can compute


1

0
c1(x)c2(x)dx � −

2
3

x1 − x2 +
1
2

 
3

+
1
2

x1 − x2 +
1
2

 
2

+
1
24

.

(A.12)

It follows from (A.11) and (A.12) that


1

0
c1(x)c2(x)dx � −

2
3

x1 − x2 +
1
2





3
+
1
2

x1 − x2 +
1
2

 
2

+
1
24

,

(A.13)

if (x1, x2) ∈ [0, (1/2)) × [(1/2), 1).
(iii) For (x1, x2) ∈ [(1/2), 1) × [0, (1/2)), as in (ii), we

can compute


1

0
c1(x)c2(x)dx � −

2
3

x2 − x1 +
1
2





3
+
1
2

x2 − x1 +
1
2

 
2

+
1
24

.

(A.14)

(iv) For (x1, x2) ∈ [(1/2), 1) × [(1/2), 1), according to
(A.1), ci(x) can be reduced to

ci(x) �

1 − xi + x, x ∈ 0, xi −
1
2

 ,

xi − x, x ∈ xi −
1
2
, xi ,

x − xi, x ∈ xi, 1 .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(A.15)

Consequently, for x1 ≤ x2, we can compute


1

0
c1(x)c2(x)dx � 

x1− (1/2)

0
c1(x)c2(x)dx + 

x2− (1/2)

x1− (1/2)
c1(x)c2

· (x)dx + 
x1

x2− (1/2)
c1(x)c2(x)dx + 

x2

x1

c1

· (x)c2(x)dx + 
1

x2

c1(x)c2(x)dx

� −
2
3

x1 − x2( 
3

−
1
2

x1 − x2( 
2

+
1
24

.

(A.16)

Similarly, for x1 > x2, we can computethe following:


1

0
c1(x)c2(x)dx �

2
3

x1 − x2( 
3

−
1
2

x1 − x2( 
2

+
1
24

.

(A.17)

It follows from (A.16) and (A.17) that


1

0
c1(x)c2(x)dx �

2
3

x1 − x2



3

−
1
2

x1 − x2( 
2

+
1
24

,

(A.18)

for (x1, x2) ∈ [(1/2), 1) × [(1/2), 1).
Specifically, for x1 � x2, it follows from (A.13) and

(A.18) that


1

0
c1(x)c2(x)dx �

1
12

. (A.19)

For |x1 − x2| � (1/2), according to (A.13) and (A.14), we
can obtain


1

0
c1(x)c2(x)dx �

1
24

. (A.20)
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:éoris des Richesses, Hachette, Paris, France, 1838.

12 Complexity



Research Article
A Polynomial Splines Identification Method Based on
Control Nets

Zhihua Wang 1,2 and Hongmei Kang3

1School of Mathematical Sciences, University of Science and Technology of China, Hefei 230026, China
2School of Mathematics and Computer Science, Anqing Normal University, Anqing 246011, China
3School of Mathematical Sciences, Soochow University, No. 1 Road Shizi, Suzhou, Jiangsu, China

Correspondence should be addressed to Zhihua Wang; 1208044765@qq.com

Received 22 April 2020; Revised 29 June 2020; Accepted 13 July 2020; Published 19 August 2020

Academic Editor: Oh-Min Kwon

Copyright © 2020 Zhihua Wang and Hongmei Kang. 1is is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in anymedium, provided the original work is
properly cited.

In this study, based on Polynomial Splines with control nets, an identification method is investigated. We introduce polynomial
splines with control nets defined over T-mesh. 1e basic idea is to extend T-vertices such that those T-vertices become interior
cross vertices or boundary vertices. To this end, we introduce the design-suitable T-mesh for constructing polynomial splines with
control net. In design-suitable T-meshes, there are no extra basis vertices produced by an appropriate extension of T-vertices. 1e
basis functions are defined over each vertex in a design-suitable T-mesh by the means of constructing PHT-splines basis functions.

1. Introduction

T-splines [1, 2] are introduced to overcome the weakness of
NURBS by allowing T-junctions. T-splines are considered as
a generalization of NURBS surfaces and capable of local
refinement, whichmakes T-splines a powerful modeling tool
for advanced geometric modeling and adaptive isogeometric
analysis (IGA) [3, 4]. Stimulated by the advent of T-splines
and isogeometric analysis, locally refinable splines are born
and now becoming flourishing. Currently, there are Hier-
archical B-splines [5–7], truncated hierarchical B-splines
(THB-splines) [8], truncated T-splines [9], truncated hier-
archical tricubic C0 spline [10], blended B-spline based on
unstructured quadrilateral and hexahedral meshes [11],
analysis-suitable T-splines (AST-splines) [12], LR B-splines
[13], modified T-splines [14], and polynomial splines over
hierarchical T-meshes (PHT-splines) [15].

PHT-splines are introduced in [15] as bicubic C1 con-
tinuous polynomial splines spaces defined over hierarchical
T-meshes. PHT-splines possess a set of nonnegative and
linearly independent basis functions and allow for very
efficient local refinement. PHT-splines have been widely
applied in geometric processing and analysis. 1e finite

element discretization of elliptic equations based on PHT-
splines was discussed in [16], where numerical solutions are
refined adaptively and have the optimal convergence rate.
PHT-splines are also favored in isogeometric analysis for
solving elastic problems [3, 17, 18] and adaptive iso-
geometrican analysis [19]. PHT-splines are also applied in
reconstructing surface models efficiently. PHT-splines were
used in stitching several surface patches to construct
complex models in paper [20] and PHT-splines were also
applied in surface reconstruction from a very large set of
point clouds in implicit form [21]. IGA collocation ap-
proaches are introduced in paper [22], and PHT-splines
have been used as basis functions for the adaptive collocation
method [23].

In order to make PHT-splines better suited for analysis
and geometric processing, some improvements and exten-
sions have been made to PHTsplines in recent years. In [24],
the authors discussed the decay phenomenon of PHT-
splines basis functions. 1ey found some of the basis
functions will tend to zero as the refinement level increases
under certain types of refinement. Such a decay makes the
stiffness matrix in isogeometric analysis be ill-conditioned,
which is not expected by analysis. 1us a new basis
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construction method is proposed for PHT-splines to avoid
the decay. 1e extension of PHT-splines to general
T-meshes is considered in [25], where the bicubic C1

continuous polynomial splines are defined over general
T-meshes.1e basis functions are constructed by computing
the geometric information at basis vertices such that the
resulting basis functions are nonnegative and linearly in-
dependent and form a partition of unity. PHT splines were
defined over hierarchical T-meshes without irregular vertex
in [15], and then the bicubic C1 continuous splines con-
struction based on irregular quad layout were discussed in
[26]. Current implementation of PHT-splines stores the
basis functions in Bézier forms, which saves some com-
putational costs but consumes a lot of memories. In [27], an
algorithm to evaluate PHT-splines is provided where only
the information about the control coefficients and the hi-
erarchical mesh structure is given. 1e evaluation algorithm
takes about the same computational costs while requiring
much less amount of memory compared with the Bézier
representations.

For PHT-splines, there is no one-to-one correspondence
between the vertices in the underlying T-mesh and PHT-
splines basis functions. 1e boundary vertices and interior
cross vertices are called basis vertices. Each basis vertex is
associated with four basis functions. 1e control net concept
is essential in computer aided geometric design (CAGD),
because the control net makes editing models easily and
intuitively. In this paper, we introduce polynomial splines
with control polygon to complement PHT-splines. 1e
proposed splines defined over all the vertices of the un-
derlying T-meshes, such that there is a one-to-one corre-
spondence between control points and vertices in T-meshes.
1e basis idea is to extend T-vertices to be basis vertices. In
order to avoid generating extra basis vertices when
extending T-vertices, we introduce a subset of T-meshes,
called design-suitable T-meshes. Over design-suitable
T-meshes, the T-vertices can be extended appropriately
without generating extra basis vertices. For a given T-mesh,
it needs to connect some T-vertices to be a design-suitable
T-mesh. We define polynomial splines basis functions over
the design-suitable T-mesh. 1e resulting splines not only
inherit the nice properties of PHT-splines, but also have
control nets.

1e paper is organized as follows. In Section 2, we review
some preliminary knowledge about polynomial splines over
T-meshes. In Section 3, we proposed a subset of T-mesh
called design-suitable T-mesh and prove that there are no
extra basis vertices produced by an appropriate extension. In
Section 4, we present an algorithm of local refinement of the
proposed splines. Finally, we give a conclusion of this paper
in Section 5.

2. Preliminary Knowledge

2.1. T-Meshes. A T-mesh is a rectangular grid with
T-junctions.1e cells in a T-mesh must be rectangles. A grid
point in a T-mesh is called a vertex. And the vertex on a
boundary grid line is called a boundary vertex; otherwise, it is
called an interior vertex. Interior vertices consist of cross

vertices and T-vertices. We adopt the notations ⊤, ⊥, ⊢, and ⊣
to indicate the four possible orientations of T-vertices. 1e
T-vertices of type ⊢ and ⊣ are called horizontal T-vertices and
the T-vertices of type ⊤ and ⊥ are called vertical T-vertices.

2.2. Bicubic C1 Continuous B-Splines. Let

t0, t0 � t1, t1 < t2, t2 < · · · < tj, tj < · · · < tn−1,

tn−1 � tn, tn,
(1)

be a knot vector with interior knots of multiplicity two.1en
each knot tj is associated with two cubic B-splines N1

j(t) �

N3[tj−1, tj−1, tj, tj, tj+1](t) and N2
j(t) � N3[tj−1, tj, tj,

tj+1, tj+1](t). Both N1
j(t) and N2

j(t) together with their
derivatives have the same support [tj−1, tj+1]. Except for
N1

j(t) and N2
j(t), all the other cubic B-splines and their

derivatives vanish at tj.
For given a tensor product mesh T, the two associated

global knot vectors in s-direction and t-direction are

U � s0, s0 � s1, s1 < s2, s2 < · · · < sj, sj < · · · < sm−1, sm−1 � sm, sm ,

V � t0, t0 � t1, t1 < t2, t2 < · · · < tj, tj < · · · < tn−1, tn−1 � tn, tn ,

(2)

respectively. 1e bicubic C1 continuous B-splines surface
defined over T is spanned by the Nk

i,j 
i�m,j�n,k�3
i�0,j�0,k�0 , where

Nk
i,j(s, t) � Nk%2

i (s)N[k/2]
j (t), k � 0, 1, 2, 3 are the four

B-splines associated with the vertex (si, tj).
For a function f(x, y), the function value, the first

partial derivatives, and the mixed partial derivative are called
the geometric information of f(x, y), denoted by

Gf(x, y) � f(x, y), fx(x, y), fy(x, y), fxy(x, y) . (3)

For the basis function Nk
i,j defined above, it has

GNk
i,j(sp, tq) � δipδjq and δip � 1, if i � p; otherwise,

δip � 0. 1at is the geometric information of Nk
i,j vanishes at

other vertices in T except its associated vertex (si, tj).

3. Polynomial Splines with Control Nets
Defined over T-Meshes

PHT-splines span the polynomial splines space S(3, 3, 1, 1) over
a T-mesh and are defined over cross interior vertices and
boundary vertices (called basis vertices), resulting in PHT-
splines lacking control net. Our aim is to equip PHT-splineswith
control net. For any given control mesh, we parameterize the
control mesh into a T-mesh in 2D domain and then extend all
T-vertices in the T-mesh such that they become basis vertices
and no extra basis vertices is introduced, and finally construct
basis functions of S(3, 3, 1, 1) over the extended T-mesh. 1us,
there is a one-to-one correspondence between the control mesh
and parameter T-mesh. For arbitrary T-mesh, it is inevitable
that extra basis vertices are produced by directly extending
T-vertices. 1erefore, in order to avoid extra basis vertices,
we introduce design-suitable T-meshes for defining basis
functions.
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3.1. Design-Suitable T-Meshes. For a given T-mesh T, we
shall adopt some definitions and notations (Figure 1).

(i) Extension of T-vertex. 1e closed line segment
created by extending a T-vertex in the missing
direction until it intersects with an edge is called
the extension of this T-vertex. Particularly, if the
edge is an edge inT, then the extension is called a
full-extension. 1e extension of a horizontal
(vertical) T-vertex is called the horizontal (vertical)
extension, respectively. In Figure 1(b), the dotted
line segments are full-extensions of T-vertices.

(ii) Full-Extension Mesh. A T-mesh together with the
full-extensions of all T-vertices in this T-mesh
forms the full-extension mesh. Figure 1(b) shows
the full-extension mesh of the T-mesh in
Figure 1(a).

(iii) Edge-Type Intersections. 1e intersection between
two same type extensions and the intersection
between an extension and a boundary edge is
called an edge-type intersection (E-intersection for
short). In Figure 1(b), v0, v1, . . . , v7 are all
E-intersections.

(iv) Face-Type Intersections. 1e intersection between a
horizontal extension and a vertical extension is
called a face-type intersection (F-intersection for
short). In Figure 1(b), v8, v9, . . . , v13 are all
F-intersections.

(v) Connectable Vertex. Two vertices can be connected
if the line segment formed by these two vertices
splits the lying face into two subrectangles. If two
T-vertices can be connected, then they are called
connectable T-vertices (CT-vertex for short). 1e
vertices are marked by blue solid circles in
Figure 1(a).

(vi) E-Connectable T-Vertex. For a T-vertex, if its ex-
tension intersects with the extension of another
same type T-vertex or with a boundary edge, then
the T-vertex is called an e-connectable T-vertex
(ECT-vertex). 1e vertices marked by yellow solid
circles in Figure 1(a) are ECT-vertices.

(vii) Normal T-Vertex. For a T-vertex, if it is either a
CT-vertex or an ECT-vertex, then it is called a
normal T-vertex.

(viii) T-Element. If there are T-vertices lying on the
edges of an element, then the element is called a
T-element.

(ix) C-Element. For a T-element inT, if there are ECT-
vertices on the edges of this element, then the
element is called a C-element. 1ose elements
F1, F2, . . . , F6 in Figure 1(a) are connectable
elements.

(x) S-Element. For a C-element, if there exists a normal
vertical (horizontal) T-vertex in the element such
that its extension subdivides the element into two
subelements and one subelement contains all the
horizontal (vertical) ECT-vertices, then the

connectable element is called a S-element and the
normal vertical (horizontal) T-vertex is called a
ST-vertex. 1e element F6 is a S-element, while
F1, . . . , F5 are not S-elements.

Definition 1. For a given T-meshT, the corresponding full-
extension T-mesh is denoted by Text, if

(i) there are no connectable T-vertices in T

(ii) for each edge-type intersection in Text, the under-
lying edge is attached to a S-element;

then T is called a design-suitable T-mesh.
1e diagonal T-mesh (the diagonal elements are refined

in the diagonal direction) shown in Figure 2(a) is a design-
suitable T-mesh. 1e T-mesh shown in Figure 1(b) is not a
design-suitable T-mesh. But if we connect all the CT-vertices
and ECT-vertices, then the resulting mesh is a design-
suitable T-mesh which is shown in Figure 3(a).

For a design-suitable T-mesh, there are no extra basis
vertices produced by extending T-vertices appropriately.1e
intuitive way is to extend a T-vertex in the missing direction,
until it intersects with an edge in the underlying mesh in-
stead of the original T-mesh.We call such a way of extending
T-vertices as p-extending to distinguish from the extension
mentioned above. For the design-suitable T-mesh shown in
Figure 2(a), the new T-mesh produced by p-extending
T-vertices is shown in Figure 2(b). We also plot the full-
extension T-mesh in Figure 2(c) for comparison. 1is
p-extending way is not enough for the T-meshes containing
ECT-vertices. It still requires an order of extending T-ver-
tices. 1us, we introduce the following algorithm to extend
T-vertices in a given T-mesh, and the resulting T-mesh is
denoted by Te.

(i) Step one: p-extend T-vertices in S-elements and the
adjacent elements of S-elements

(a) S-element: First p-extend the ST-vertices of an
S-element; then p-extend the rest of T-vertices in
the element

(b) Adjacent elements: First p-extend ECT-vertices;
then p-extend the normal T-vertices

(ii) Step two: p-extend T-vertices in the rest of
T-elements

(a) First p-extend horizontal T-vertices; then p-ex-
tend vertical T-vertices

We take Figure 3 as an example to explain the above
algorithm. In the T-mesh shown in Figure 3(a),
F1, F2, . . . , F6 are T-elements. We need to extend the
T-vertices in these elements.1e element F3 is an S-element.
We start from extending T-vertices in this element. 1e
vertex v5 is a ST-vertex, and it is extended until it intersects
with an existing edge. 1en we extend the vertex v4, and the
first edge it intersects with is the extension of v5.1e element
F6 is the adjacent element of F3. 1e vertex v8 is p-extended.
For the rest T-elements, if there are horizontal T-vertices,
then extend them first. 1us, in F3, v3 is extended first and
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then v2 is extended.1e resulting extended T-mesh is shown
Figure 3(b).

Theorem 1. For a design-suitable T-mesh T, extend the
T-vertices in T as above. 4en there is a one-to-one corre-
spondence between basis vertices in Te and vertices in T,

which means there are no extra basis vertices produced inTe

by extending T-vertices in T appropriately.

Proof. We only need to deal with T-elements. We extend
T-vertices element by element. We need to prove there are no
edge-type intersections and face-type intersections in Te. In a

(a) (b) (c)

Figure 2: A design-suitable T-mesh and the p-extending. (a) Diagonal T-mesh, (b) p-extending, and (c) full-extension T-mesh.

v6 v7

v5

v4v2

v1
v3

v8
F4

F5
F6

F3

F2F1

(a) (b)

Figure 3: 1e proposed algorithm for extending T-vertices. (a) Design-suitable T-mesh; (b) extended T-mesh Te.

F1

F2
F3 F4

F5

F6

(a)

V5 V6 V13

V7

V4

V12
V3

V10

V1

V9
V2 V8

V0

V11

(b)

Figure 1: Full-extension T-mesh. (a) T-mesh; (b) full-extension T-mesh Text.
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design-suitable T-mesh, only extending ECT-vertices may
produce edge-type intersections. Furthermore, there are no face-
type intersections produced by p-extending. S-elements are
extended first according to the above algorithm. Since ST-
vertices are normal T-vertices, then their extensions intersect
with existing edges and the intersections are T-vertices.
According to the definition of ST-vertices, the extensions of ST-
vertices prevent the intersection between ECT-vertices. 1en
extending T-vertices in the adjacent T-elements of S-elements
will not produce new basis vertices. For the rest T-elements,
there are no basis vertices produced by p-extending. □

3.2. Construct Basis Functions over Te. Let
Bi(s, t) � (B1

i (s, t), B2
i (s, t), B3

i (s, t), B4
i (s, t)) be the basis

functions associated with Vi needed to be constructed.1ere
are mainly three steps for constructing Bi(s, t) in [25]:

(i) Find a rectangle containing all the vertices at which
Bi(s, t) which do not vanish in Te

(ii) Set the geometric information of bicubic C1 con-
tinuous B-splines associated with Vi over the
rectangle as the geometric information of Bi(s, t)

(iii) Set the geometric information at other basis vertices
in the rectangle as zeros and represent Bi(s, t) in the
Bézier form or B-splines form

1e method for finding a rectangle for each basis vertex
in Te is stated as follows. For a basis vertex vi � (si0

, ti0
) in

Te, first put vi into Ki, then check the neighboring vertices
of the vertices inKi and put the T-vertices intoKi recursively
until there is no vertex added into Ki. 1e minimal rectangle
containing all the vertices in Ki is denoted by
RV � [s0, s1] × [t0, t1], then RV together with the knot lines
s � si0

and t � ti0
forms a 2 × 2 tensor product mesh

MV � s0, si0
, s1  × t0, ti0

, t1 . For the sake of clearness, we
call Mv as the support mesh of basis vertex vi. Figure 4 shows
the support meshes of four basis vertices v13, v17, and v4 in
the extended T-mesh, where the support meshes are shaded.
In Figure 4(a), v13 is a basis vertex and among the neighbors
of v13, v48 is a T-vertex; thus, it is put into Ki. 1en we check
the neighbors of v48, and v49 is a T-vertex which is put into
Ki. For v49, there are no more vertices needed to be added
into Ki. 1us, the set Ki � v13, v48, v49 . Similarly for v17 in
Figure 4(b), now ki � v17, v50, v51 . For the basis vertex v4
shown in Figure 4(c), Ki � v4, v53 .

1e four B-spline basis functions defined over Mv are
denoted by Nk(s, t), k � 0, 1, 2, 3, and

Nk(s, t) � N
3

s0, s0, si0
, si0

, s1, s1 (s) × N
3

t0, t0, ti0
, ti0

, t1, t1 (t).

(4)

1en the geometric information of four basis functions
Bi(s, t) at Vi is defined as the geometric information of
Nk(s, t), k � 0, 1, 2, 3.1e geometric information ofBi(s, t) at
the other basis vertices in Mv is set as zero. And the geometric
information of Bi(s, t) at T-vertices in Mv is computed by C1

constraints. According to the known geometric information of
Bi(s, t) at the vertices in Mv, then Bi(s, t) can be easily
represented in Bézier form or B-splines form.

3.3. Polynomial SplineswithControlNetDefinedonT-Meshes.
With the help of index T-mesh, there is a one-to-one corre-
spondence between vertices and basis functions. 1e index
T-mesh is adopted in [3] for ease of constructing T-splines. It is
constructed by plotting the knots at equally spaced intervals
regardless of their actual spacing and labeling each knot line
with integer values [3]. Figure 5(b) shows the index T-mesh of
the mesh shown in Figure 5(a). Figure 5(c) shows a control net
in R3 corresponding to the T-mesh shown in Figure 5(a).
Figure 5(d) shows the polynomial splines surface with control
net Figure 5(c) defined on the design-suitable T-mesh
Figure 5(a). Notice the knots in this paper are of multiplicity
two; thus, if we view the T-mesh in index space, each vertex in
T-meshes corresponds to four vertices in index T-mesh. In a
design-suitable T-mesh, it happens that each vertex is associated
with four basis functions. 1us, there is a one-to-one corre-
spondence between vertices and basis functions exactly in a
design-suitable T-mesh. For convenience, in this paper, we still
use T-meshes for constructing T-meshes and local refinement.
1e index T-mesh is used only to explain the control net.

For a design-suitable T-mesh T, we construct basis
functions on the extended T-mesh Te as stated in section
3.2.1e polynomial splines surface defined overT is defined
as follows:

S(u, v) � 
n

i�1


4

k�1
Pk

i B
k
i (u, v), (u, v) ∈ [a, b] ×[c, d], (5)

where Bk
i (u, v) are basis functions constructed in section

3.2 and Pk
i ∈ R

3 are the corresponding control points.
Figure 6 presents the polynomial splines model with
control nets. 1e construction method is based on the
above polynomial splines with control nets defined over
T-meshes; we design a goblet model and a dolphin model;
see Figures 7 and 8.

For a design-suitable T-mesh, we define four basis
functions at each vertex. If we need to adjust the surface
part corresponding to a T-vertex, we can adjust the control
point corresponding to the basis functions defined at the
T-vertex to modify the surface directly. But for PHT-spline
surface, it can only be adjusted indirectly by adjusting the
control points corresponding to the basis functions defined
at other basis vertices. Figure 9 shows the modification of
the surface by adjusting the position of the control points
corresponding to the T-vertices and the normal basis
vertices.

4. Local Refinement

Given a design-suitable T-mesh T1, denote the extended
T-mesh asT1

e . 1e edge insertion is to insert edges intoT1,
the resulting T-mesh is denoted byT2. 1e local refinement
is attributed to how to construct the extended T-mesh T2

e

such that S(3, 3, 1, 1,T1
e)⊆S(3, 3, 1, 1,T2

e), which is
equivalent to T1

e⊆T
2
e .

Suppose a vertical edge e � v0v1 is inserted into a ele-
ment F, and the 2-neighboring elements of F in vertical
direction are denoted by Fi, i � 1, 2, . . . , l (if existing). 1e
local refinement algorithm is described as follows:

Complexity 5



(1) If v0(v1) is a CT-vertex or a ECT-vertex, then extend
them until it is either a CT-vertex or ECT-vertex.

(2) Among the T-vertices in Fi 
l

i�1 and F, if the ex-
tension of a T-vertex in T1

e intersects with e, then
p-extend the T-vertex. 1e resulting T-mesh is
denoted by T2.

(3) Construct the extended T-mesh T2
e .

(i) Update the new T-vertices which are in T2 but
not in T1 by p-extending.

(ii) Keep the extensions in T1
e of the original

T-vertices.

We use Figure 10 to demonstrate the local refinement
algorithm as proposed above. A design-suitable T-mesh T1

is shown in Figure 10(a) and the corresponding extended

v13
v3

v2
v48 v49

(a)

v51 v50
v4 v17

(b)

v4 v53

(c)

Figure 4: 1e support meshes of three basis vertices v13, v17 and v4. (a) T-mesh, (b) extended T-mesh, and (c) extended T-mesh.

12

10

8

6

121086

4

4

2

2
0
0

(a)

12

14

10

8

6

4

2

0
12 141086420
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(c) (d)

Figure 5: 1e index space and the control mesh. (a) A Design-suitable T-mesh. (b) 1e index mesh. (c) 1e control net. (d) 1e surface
generated by the control net shown in (c).
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T-mesh T1
e is shown in Figure 10(b). A vertical edge v0v1

(marked by red line) is inserted in T1, which is shown in
Figure 10(c). Now v0 is a CT-vertex and v1 is a ECT-vertex;

then they are extended as shown in Figure 10(d). For the
horizontal T-vertices in F1 and F, their extensions with
respect to T1

e intersect with e, extend them as shown in

Figure 6: A model of the polynomial splines with control nets.

Figure 7: A goblet model designed by the polynomial splines with control nets.
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Figure 10(e). 1e resulting T-mesh is a design-suitable
T-mesh, denoted by T2. Finally, we construct the extended
T-mesh corresponding to T2. We only need to update the
extension of the new T-vertices. Figure 10(f) shows the
extended T-mesh T2

e .
Figure 11 shows the local refinement of a diagonal

T-mesh. 1e inserted edges are marked by red line segments
and the additional inserted edges are marked by blue line

segments in Figures 11(c) and 11(e). Figures 10(d) and 10(f)
show the extended T-meshes of Figures 11(c) and 11(e),
respectively. Obviously, the extended T-mesh of the diag-
onal T-mesh shown in Figure 11(a) is contained in both the
extended T-meshes shown in Figures 10(d) and 10(f). Notice
there are at most 1 neighboring elements of the element F

are need to be inserted into edges; thus, the refinement are
local.

0
15

10

5

0 0 5 10 15

(a) (b)

(c) (d)

Figure 9: 1e index space and the control mesh. (a) Adjusting the position of the control points corresponding to the T-vertices in the
Figure 5(c). (b) 1e surface figure obtained by adjusting the position of the control point corresponding to the T-vertices. (c) Adjusting the
position of the control points corresponding to the basis vertices in the Figure 5(c). (d)1e surface figure obtained by adjusting the position
of the control point corresponding to the basis vertices.

Figure 8: A dolphin model designed by the polynomial splines with control nets.
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(a) (b)

F3 F4

F2

F

F1

F0

v0

v1

(c)

v0

v1

(d)

v0

v1

(e) (f)

Figure 10: Steps of local refinement algorithm. (a) Design-suitable T-mesh T1, (b) extended T-mesh T1
e , (c) insert an edge (red line), (d)

first step: extend v0 and v1, (e) design-suitable T-mesh T2, (f ) extended T-mesh T2
e .
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(a) (b)

(c) (d)

(e) (f)

Figure 11: Local refinement of a diagonal T-mesh. (a) Design-suitable T-mesh T1. (b) Extended T-mesh T1
e . (c) Insert an edge (red line)

T2. (d) Extended T-mesh T2
e . (e) Insert an edge (red line) T2. (f ) Extended T-mesh T2

e .
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5. Conclusions

In this paper, we present an algorithm for extending bicubic
C1 polynomial spline spaces defined over any given
T-meshes such that there is a one-to-one correspondence
between basis functions and vertices in the T-meshes. 1e
key idea is to extend the T-junctions such that the
T-junctions become basis vertices. 1us how to extend these
T-junctions to avoid extra basis vertices produced is the
main challenge. In this paper, we proposed a subset of
T-meshes called design-suitable T-meshes. For design-
suitable T-meshes, we first extend T-vertices through an
appropriate order and then construct basis functions on the
extended T-meshes. 1ere is a one-to-one correspondence
between basis functions and vertices in the T-mesh. Fur-
thermore, it is easy to modify a given T-mesh such that it
becomes a design-suitable T-mesh.
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+is paper addresses the finite-time adaptive tracking control problem for a class of pure feedback nonlinear systems whose
nonaffine functions may not be differentiable. By properly modeling the nonaffine function, the design difficulty of the pure
feedback structure is overcome without using the median value theorem. In our design procedure, an finite-time adaptive
controller is elaborately developed using the decoupling technology, which eliminates the limitation assumption on the partial
derivatives of nonaffine functions. Furthermore, the constructed controller can stabilize the system within a finite-time so that all
signals in the closed-loop system are semiglobally uniformly finite-time bounded (SGUFB), while ensuring the tracking per-
formance. Finally, the simulation results prove the effectiveness of the proposed method.

1. Introduction

In the past few decades, there have been various research
results on the nonfinite time stability of nonlinear systems
[1–10], and these results are widely applied to practical
systems. However, in actual engineering, the control goal is
always expected to be achieved within a finite time. Non-
finite time stable schemes cannot accomplish such control
objective because nonfinite time stable control often requires
a long transient response. +erefore, the definition of finite-
time stability was first proposed in [11, 12] and has received
great attention. +e finite-time stability can ensure that the
system state variables quickly converge to equilibrium
within a limited time. At present, the finite-time control of
nonlinear systems has become a new research hot spot
[13–15]. At the same time, there are many challenging
problems which needs hard work to overcome.

On the contrary, the rapid development of computer
technology has made great progress in the research of
adaptive control [16–23]. It is worth mentioning that when

there exist completely unknown nonlinear functions in a
nonlinear systemwith a strict feedback structure, radial basis
function neural networks (RBF NNs) and fuzzy logic sys-
tems play an important role in its adaptive control [24–35].
Using the approximation ability of RBF NNs or fuzzy logic
systems, there have been many meaningful research results
on adaptive intelligent control for strict feedback nonlinear
systems [36–39]. Despite great success in the research on
adaptive intelligent control for strict feedback nonlinear
systems have been achieved, the research on finite-time
control for the nonlinear system is not fully considered
[40–42].

In recent years, the finite-time adaptive control schemes
for strict-feedback nonlinear systems have been developed in
[43–47]. However, the finite-time control strategies in
[43–47] are only applicable to the strict feedback nonlinear
systems, but not applicable to the pure feedback nonlinear
systems. It is worth noting that the study on the finite-time
tracking control of pure feedback systems has achieved some
results [48, 49], but almost all the results are obtained based
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on the use of differential median theorem, which can convert
the pure feedback structure into the strict feedback structure.
+is requires us to make restrictive assumptions for the
partial derivatives of nonaffine functions. However, it is well
known that nonsmooth nonlinearities, such as dead zones
and hysteresis, exist in a wide range of practical control
systems. +us, not all system functions are differentiable in
actual control, which requires exploring a new design
technique to deal with the pure feedback structure.

In order to meet the actual requirements better, we
consider the finite-time adaptive control problem for a
class of nonlinear systems with the pure-feedback
structure as well as external disturbances. A finite-time
adaptive control method based on the decoupling tech-
nology is proposed to make the system have better
transient response. By selecting the design parameters
appropriately, the generated tracking error can converge
to a smaller neighborhood of the origin so that the system
output follows the desired trajectory within a limited time.
+e main contributions of this article are as follows. First,
we consider a more general class of pure-feedback systems
with nonaffine nonlinear functions that may not be dif-
ferentiable. In order to make our method more practical
in industrial control systems than the existing methods
[50–59], the limitation of using the differential median
theorem in the study of pure feedback systems is elimi-
nated. Second, we construct a suitable controller to sta-
bilize the system in a finite time, which not only ensures
that the system state variables quickly converge to equi-
librium within a limited time but also improves the ro-
bustness of the system and reduces the effects of
approximation errors. +ird, the appropriate scaling
technique is applied to reduce the number of adaptive
parameters in the process of designing the controller such
that the developed result is more suitable for the actual
operation process, which also reduces the complexity of
the design procedure. In the end, even if the control
direction of the system is unknown, our method can still
make all signals in the closed-loop system which are
SGUFB.

2. Mathematical Preliminaries

Consider a class of pure-feedback nonlinear systems given
by

_τi � gi τi, τi+1(  + ri(t), 1≤ i≤ n − 1,

_τn � gn τn, u(  + rn(t),

y � τ1,

⎧⎪⎪⎨

⎪⎪⎩
(1)

where τi � [τ1, τ2, . . . , τi]
T ∈ Ri, y ∈ R, and u ∈ R are the

system state, output, and control input, respectively,
gi(τi, τi + 1), 1≤ i≤ n are unknown nonaffine nonlinear
functions, and ri(t) are the unknown external disturbances.

Definition 1 (see [60]). The equilibrium ζ � 0 of nonlinear
system _ζ � g(ζ) is semiglobal practical finite-time stable
(SGPFS) if for all ζ(t0) � ζ0, there exists ε> 0 and a settling
time T(ε, ζ0)<∞ to make ‖ζ(t)‖< ε, for all t≥ t0 + T.

Lemma 1 (see [60]). Consider the system _ζ � f(ζ). If there is
a smooth positive definite function V(ζ) and scalars κ> 0,
0< η< 1, and ρ> 0 such that

_V(ζ)≤ − κV
η
(ζ) + ρ, t≥ 0, (2)

then this nonlinear system _ζ � f(ζ) is SGPFS.

Proof. For ∀0< θ≤ 1, from (2), one has
_V(ζ)≤ − θκV

η
(ζ) − (1 − θ)κV

η
(ζ) + ρ. (3)

Let Ωζ � ζ | Vη(ζ)≤ ρ/(1 − θ)κ  and Ωζ � ζ | Vη(ζ)>{

ρ/(1 − θ)κ}, if ζ(t) ∈ Ωζ , one yields _V(ζ)≤ − θκVη(ζ). By
solving differential equations, we can obtain that

Treach �
1

(1 − η)θκ
V

1− η
(ζ(0)) −

ρ
(1 − θ)κ

 

(1− η)/η
⎡⎣ ⎤⎦.

(4)

So, ζ(t) ∈ Ωζ is held for ∀T≥Treach, otherwise, the
trajectory of ζ(t) does not exceed the set Ωζ . +is means
that the time to reach the set Ωζ is bounded as Treach. In
other words, the solution of _ζ � f(ζ) is bounded in a finite
time.

Lemma 2 (see [61]). For real variables z and ς and any
positive constants β, μ, and ι, the following relation holds:

|z|
μ
|ς|β ≤

μ
μ + β

ι|z|
μ+β

+
β

μ + β
ι− μ/β

|ς|μ+β
. (5)

Lemma 3 (see [62]). For zi ∈ R, i � 1, . . . , n, 0≤p≤ 1, the
following inequality is true:



n

i�1
zi


⎛⎝ ⎞⎠

p

≤ 
n

i�1
zi



p ≤ n

1− p


n

i�1
zi


⎛⎝ ⎞⎠

p

. (6)

Remark 1. It is worth noting that system function gi(τi, τi+1)

is always assumed to satisfy 0≤p
i
≤ zgi(τi, τi+1)/zτi+1 ≤

pi, (p
i
, pi ∈ R) in existing articles [52, 54, 55]. However, it is

well known that not all system functions are differen-
tiable in actual control, which requires exploring a new
design technique to deal with the pure feedback struc-
tures. Next, we will introduce a decoupling technique to
deal with the unknown nonaffine nonlinear functions of
the pure feedback system (1) rather than the median
theorem.

Lemma 4 (see [63]). In order to effectively design the control
input of the system, the decoupling technology is utilized to
deal with the nonaffine terms. After a series of processing, the
following formula can be obtained:

gi τi, τi+1(  � gi τi, 0(  + Pi τi+1( τi+1 + Γi τi+1( , (7)

where Pi(τi+1) and Γi(τi+1) are defined immediately below.
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Proof. Define Gi(τi, τi+1) � gi(τi, τi+1) − gi(τi, 0), i � 1,

2, . . . , n, where τn+1 � u and τn+1 � [τT
n , u]T. We assume that

the function Gi(τi, τi+1) satisfies

Giτi+1 + Δ1i ≤Gi τi, τi+1( ≤Giτi+1 + Δ2i, τi+1 ≥ 0,

Gi
′τi+1 + Δ3i ≤Gi τi, τi+1( ≤Gi

′τi+1 + Δ4i, τi+1 ≤ 0,

⎧⎨

⎩ (8)

where Gi, Gi, Gi
′, andGi

′ are unknown positive constants and
Δ1i,Δ2i,Δ3i, andΔ4i, i � 1, . . . , n, are unknown constants.

It can be shown that there exist functions ϑi1(τi+1) and
ϑi2(τi+1), taking values in the closed interval [0, 1] and satisfying

Gi τi, τi+1(  � 1 − ϑi1 τi+1( (  Giτi+1 + Δ1i(  + ϑi1 τi+1(  Giτi+1 + Δ2i( , τi+1 ≥ 0,

Gi τi, τi+1(  � 1 − ϑi2 τi+1( (  Gi
′τi+1 + Δ3i(  + ϑi2 τi+1(  Gi

′τi+1 + Δ4i( , τi+1 ≤ 0.

⎧⎨

⎩ (9)

To facilitate the controller design, we have defined the
following simplified symbols Pi(τi+1) and Γi(τi+1) as

Pi τi+1(  �
1 − ϑi1 τi+1( ( Gi + ϑi1 τi+1( Gi, τi+1 ≥ 0,

ϑi2 τi+1( Gi
′ + 1 − ϑi2 τi+1( ( Gi

′, τi+1 ≤ 0,

⎧⎨

⎩ (10)

Γi τi+1(  �
1 − ϑi1 τi+1( ( Δ1i + ϑi1 τi+1( Δ2i, τi+1 ≥ 0,

ϑi2 τi+1( Δ4i + 1 − ϑi2 τi+1( ( Δ3i, τi+1 ≤ 0.
 (11)

We can infer from the above definition that Pi(τi+1) and
Γi(τi+1) are bounded. +en, we can model the nonaffine
terms Gi(τi, τi + 1) as

Gi τi, τi + 1(  � Pi τi+1( τi+1 + Γi τi+1( . (12)

Hence, (7) was established, and we can rewrite (1) as
_τi � gi τi, 0(  + Pi τi+1( τi+1 + Γi τi+1(  + ri(t), 1≤ i≤ n − 1,

_τn � gn τn, 0(  + Pn τn+1( u + Γn τn+1(  + rn(t),

y � τ1.

⎧⎪⎪⎨

⎪⎪⎩

(13)

In backstepping design, the variable τi+1 is usually taken
as the virtual control input for the ith subsystem. So, the
virtual control coefficient function Pi(τi+1) should not pass
though the zero point. +erefore, the following assumption
is pressed on the system (13).

Assumption 1. +e desired trajectory yd and its derivatives
_yd and €yd are continuous and bounded.

Assumption 2. Due to realistic considerations, for
i � 1, . . . , n, there exist unknown positive constants r∗i such
that |ri(t)|≤ r∗i .

Remark 2. Define Pm � mini�1,2,...,ρ Gi, Gi, Gi
′, Gi
′ , PM �

maxi�1,2,...,ρ Gi, Gi, Gi
′, Gi
′ , and A∗i � maxi�1,2,...,ρ |Δ1i| +

|Δ2i|, |Δ3i| + |Δ4i|}. It can be inferred from definitions (10)
and (11) that the functions Pi(τi+1) and Γi(τi+1) satisfy

0≤Pm ≤Pi τi+1( ≤PM, (14)

0≤ Γi τi+1( 


≤A
∗
i . (15)

RBFNNs: in the design of this article, the following
radial basis function neural networks (RBF NNs) is used to
approximate the continuous function h(Z): Rn⟶ R:

hnn(Z) � W
Tξ(Z), (16)

where W � [W1, W2, . . . , Wl] ∈ Rl is the weight vector and
the neural network node number l> 1. ξ(Z) �

[ξ1(Z), . . . , ξl(Z)]T is the basic vector being chosen as the
commonly used Gaussian functions, which has the form:

ξi(Z) � exp
− Z − μi( 

T
Z − μi( 

κ2
 , (17)

where Z ∈ ΩZ ⊂ Rn is the input vector, μi � [μi1, . . . , μin]T is
the center of the respective field, and κ is the width of the
Gaussian function.

As shown in [64], the neural network can approximate
any continuous function on the compact set ΩZ ⊂ Rq to any
desired accuracy ε∗ as follows:

hnn(Z) � W
∗Tξ(Z) + ε(Z), Z ∈ ΩZ ⊂ R

q
, (18)
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where W∗ is the ideal constant weight vector and ε(Z) is the
approximation error satisfying |ε(Z)|≤ ε∗, ε∗ > 0 is a very
small constant.

3. Adaptive State-Feedback Controller Design

In this section, the finite-time adaptive controller is pro-
posed for the backstepping control of system (13). To start,
consider the following change of coordinates:

Ξi � τi − αi− 1, i � 1, 2, 3, . . . , n, (19)

where αi− 1 is the virtual control signal constructed in step
i − 1 and α0 � yd.

Step 1: differentiating Ξ1 through the first system of
(13), we have

_Ξ1 � _τ1 − _yd � g1 τ1, 0(  + P1 τ2( τ2 + Γ1 τ2(  + r1(t) − _yd.

(20)

Choose Lyapunov function candidate to construct the
virtual control signal of this system as

V1 �
1
2
Ξ21 +

Pm

2c1
ψ2
1. (21)

By substituting (20), we can get the time derivative of
V1 as

_V1 � Ξ1 g1 τ1, 0(  + P1 τ2(  Ξ2 + α1(  + Γ1 τ2( 

+ r1(t) − _yd −
Pm

c1
ψ1

_
ψ
∧
1,

(22)

where Ξ2 � τ2 − α1. Now, we define a new function as
g1′ � g1(τ1, 0) + (1/2)PMΞ1 − _yd + k1Ξ

2η− 1
1 + (3/2)Ξ1

with η � (2n − 1)/(2n + 1), where n is a natural number
and k1 > 0 is a constant. +en, (22) can be rewritten as

_V1 � Ξ1 g1′ − k1Ξ
2η− 1
1 −

1
2
PMΞ1 −

3
2
Ξ1 + P1 τ2(  Ξ2 + α1( 

+ Γ1 τ2(  + r1(t) −
Pm

c1
ψ1

_
ψ
∧
1

� Ξ1 g1′ + P1 τ2(  Ξ2 + α1(   + Ξ1 Γ1 τ2( (

+ r1(t) −
1
2
PMΞ

2
1 − k1Ξ

2η
1

−
3
2
Ξ21 −

Pm

c1
ψ1

_
ψ
∧
1.

(23)

Next, based on (15) and Assumption 2, we can obtain

_V1 ≤ −
PM

2
Ξ21 − k1Ξ

2η
1 + Ξ1 g1′ + P1 τ2(  Ξ2 + α1( ( 

+ Ξ1


 A
∗
1 + r
∗
1(  −

3
2
Ξ21 −

Pm

c1
ψ1

_
ψ
∧
1.

(24)

Because the unknown function g1′ cannot be used for
the controller design, we can infer from (18) that

g1′ � W∗T
1 ξ1 τ1′(  + ε1 τ1′( , ε1 τ1′( 


≤ ε∗1 , (25)

where τ1′ � [τ1, yd, _yd]T. For simplicity, we use ξ1 and
ε1 instead of ξ1(τ1′) and ε1(τ1′), respectively. Define
ψ1 � ‖W∗1 ‖2/Pm, and ψ1 � ψ1 − ψ

∧
1 is the parameter

estimation error; then, using Yang’s inequality and
Remark 2, one yields

Ξ1P1 τ2( Ξ2 ≤
PM

2
Ξ21 +

PM

2
Ξ22, (26)

Ξ1


 A
∗
1 + r
∗
1( ≤Ξ21 +

1
2
A
∗2
1 +

1
2
r
∗2
1 , (27)

Ξ1g1′ � Ξ1W
∗T
1 ξ1 + Ξ1ε1 ≤

Pm

2a2
1
Ξ21ψ1ξ

T
1 ξ1

+
1
2
a
2
1 +

1
2
Ξ21 +

1
2
ε∗21 ,

(28)

where a1 > 0 is the design positive constant.
Substituting (26) and (28) into (24) produces

_V1 ≤ −
c1

1 + Pm( 
Ξ2η1 + Ξ1

Pm

2a2
1
Ξ1ψ1ξ

T
1 ξ1 + P1 τ2( α1 

+
1
2
δ∗21 −

Pm

c1
ψ1

_
ψ
∧
1 +

PM

2
Ξ22,

(29)

where c1 � k1(1 + Pm) and δ∗21 � a2
1 + ε∗21 + A∗21 + r∗21 .

Next, we construct a virtual signal as

α1 � − k1Ξ
2η− 1
1 −

ψ
∧
1

2a2
1
Ξ1ξ

T
1 ξ1. (30)

Substituting (30) into (29) yields

_V1 ≤ − c1Ξ
2η
1 +

Pm

c1
ψ1

c1

2a2
1
Ξ21ξ

T
1 ξ1 −

_
ψ
∧
1  +

1
2
δ∗21 +

PM

2
Ξ22.

(31)

Next, we construct the adaptive rate
_
ψ
∧
1 as
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_
ψ
∧
1 �

c1

2a2
1
Ξ21ξ

T
1 ξ1 − Υ1ψ

∧
1, ψ
∧
1(0)≥ 0, (32)

where c1 > 0 and Υ1 > 0 are two design constants. As a
result, one can obtain the following formula:

_V1 ≤ − c1Ξ
2η
1 +

PmΥ1
c1

ψ1ψ
∧
1 +

1
2
δ∗21 +

PM

2
Ξ22. (33)

Step i(i � 2, . . . , n − 1): from (19), we can know that
Ξi � τi − αi− 1. Next, we use Pi and Γi instead of Pi(τi+1)

and Γi(τi+1) for simplicity. +en, the dynamic equation
of Ξi is constructed as follows:

_Ξi � gi τi, 0(  + Piτi+1 + Γi + ri(t) − _αi− 1, (34)

where

_αi− 1 � 
i− 1

k�1

zαi− 1

zτk

gk τk, 0(  + Pkτk+1 + Γk  + 
i− 1

k�1

zαi− 1

zψ
∧

k

_
ψ
∧

k

+ 
i− 1

k�0

zαi− 1

zy
(k)
d

y
(k+1)
d .

(35)

Choose a Lyapunov function candidate as

Vi � Vi− 1 +
1
2
Ξ2i +

Pm

2ci

ψ2
i . (36)

Differentiating Vi results in

_Vi � _Vi− 1 + Ξi gi τi, 0(  + Piτi+1 + Γi + ri(t) − _αi− 1  −
Pm

ci

ψi

_
ψ
∧

i,

(37)

where ψi � ‖W∗2i ‖/Pm, ψi � ψi − ψ
∧

i, represents the
parameter estimation error. Similar to the processing in
the first step, we need to define a new function as
gi
′ � gi(τi, 0) + PMΞi − _αi− 1 + kiΞ

2η− 1
i + (3/2)Ξi, with

ki > 0 is a design constant. +en, (37) can be rewritten
as

_Vi � _Vi− 1 + Ξi gi
′ + Pi Ξi+1 + αi(   + Ξi Γi + ri(t) 

− PMΞ
2
i − kiΞ

2η
i −

3
2
Ξ2i −

Pm

ci

ψi

_
ψ
∧

i.

(38)

Now, based on Assumptions 2 and Remark 2, one can
obtain

_Vi ≤ _Vi− 1 + Ξi gi
′ + Pi Ξi+1 + αi(   + Ξi


 A
∗
i + r
∗
i 

− PMΞ
2
i − kiΞ

2η
i −

3
2
Ξ2i −

Pm

ci

ψi

_
ψ
∧

i.

(39)

According to (18), we can choose the following neural
network system:

gi
′ � W∗i ∧ ∧∗T{ }ξi τi

′(  + εi τi
′( , εi τi
′( 


≤ ε∗i , (40)

where τ ≤ i
′ � [τT

i ,ψ
∧T

i− 1, y
(i)T

d ]T ∈ Ωτi
⊂ R3i and ψ

∧
i− 1 �

[ψ
∧
1,ψ
∧
2, . . . ,ψ

∧
i− 1]

T. For simplicity, we use ξi and εi to
represent ξi(τi

′) and εi(τi
′), respectively. +us, we can

obtain

ΞiPiΞi+1 ≤
PM

2
Ξ2i +

PM

2
Ξ2i+1, (41)

Ξi


 A
∗
i + r
∗
i( ≤Ξ2i +

1
2
A
∗2
i +

1
2
r
∗2
i , (42)

Ξigi
′ � ΞiW

∗T
i ξi + Ξiεi ≤

Pm

2a2
i

Ξ2i ψiξ
T
i ξi +

1
2
a
2
i +

1
2
Ξ2i +

1
2
ε∗2i ,

(43)

where ai > 0 is the design positive constant. Like the
first step, substituting (41)–(43) into (39), the following
inequality holds:

_Vi ≤ −
ci

1 + Pm( 
Ξ2ηi + Ξi

Pm

2a2
i

Ξiψiξ
T
i ξi + Piαi  +

1
2
δ∗2i

−
Pm

ci

ψi

_
ψ
∧

i +
PM

2
Ξ2i+1 −

PM

2
Ξ2i + _Vi− 1,

(44)

where ci � ki(1 + Pm) and δ∗2i � a2
i + ε∗2i + A∗2i + r∗2i .

Next, we construct the virtual signal αi as well as the
adaptive rate

_
ψ
∧

i as follows:

αi � − kiΞ
2η− 1
i −

ψ
∧

i

2a2
i

Ξiξ
T
i ξi, (45)

_
ψ
∧

i �
ci

2a2
i

Ξ2i ξ
T
i ξi − Υiψ

∧
i,ψ
∧

i(0)≥ 0, (46)

where ci > 0 and Υi > 0 are two design constants. As a
result, substituting (45) and (46) into (44), one can get
the following formula:
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_Vi ≤ _Vi− 1 −
PM

2
Ξ2i − ciΞ

2η
i +

PmΥi

ci

ψiψ
∧

i +
1
2
δ∗2i +

PM

2
Ξ2i+1.

(47)

Comparing (33) and (47), we can get the following
formula by mathematical induction:

_Vi ≤ − 
i

k�1
ckΞ

2η
k + 

i

k�1

PmΥk

ck

ψkψ
∧

k + 
i

k�1

1
2
δ∗2k +

PM

2
Ξ2i+1.

(48)

Remark 3. As can be seen from formulas (28) and (43), we
used Yang’s inequality to obtain ψi � ‖W∗2i ‖/Pm in advance
such that only one adaptive parameter should be estimated
in each step of the controller design. However, multidi-
mensional vectors (weight vectors) are directly estimated in
some literatures such as W

∧
i � Γi((1 − m(Zi))ziSi(Zi)

− σiW
∧

i) in [65], which makes the design of the adaptive rate
more difficult. +erefore, the method we adopt can reduce
the number of adaptive parameters compared to the pre-
vious method in [65].

Step n: define ψn � ‖W∗n ‖2/Pm, where W∗n is the ideal
weight vector, and ψn � ψn − ψ

∧
n is the parameter es-

timation error. Choose the Lyapunov function candi-
date for system (13) as follows:

Vn � Vn− 1 +
1
2
Ξ2n +

Pm

2cn

ψ2
n, (49)

where cn > 0 is a design positive constant. It can be seen
from the previous n − 1 step that the virtual control
signal αn− 1 can be constructed such that the following
inequality can be obtained:

_Vn− 1 ≤ − 
n− 1

k�1
ckΞ

2η
k + 

n− 1

k�1

PmΥk

ck

ψkψ
∧

k + 
n− 1

k�1

1
2
δ∗2k +

PM

2
Ξ2n.

(50)

As we all know, the dynamic equation of Ξn is as
follows:

_Ξn � gn τn, 0(  + Pnu + Γn + rn(t) − _αn− 1, (51)

with

_αn− 1 � 
n− 1

k�1

zαn− 1

zτk

gk τk, 0(  + Pkτk+1 + Γk  + 
n− 1

k�1

zαn− 1

zψ
∧

k

_
ψ
∧

k

+ 
n− 1

k�0

zαn− 1

zy
(k)
d

y
(k+1)
d .

(52)

From (49), one can get the time derivative of Vn along
(51) as

_Vn � _Vn− 1 + Ξn gn τn, 0(  + Pnu + Γn

+ rn(t) − _αn− 1 −
Pm

cn

ψn

_
ψ
∧

n.

(53)

Similar to the processing in the above steps, we define a
new function as gn

′ � gn + (1/2)PMΞn − _αn− 1 +

knΞ2η− 1
n + (3/2)Ξn, where kn > 0 is a design constant.

+en, (53) can be rewritten as

_Vn � _Vn− 1 + Ξn gn
′ + Pnu  + Ξn Γn + rn(t) 

−
1
2
PMΞ

2
n − knΞ

2η
n −

3
2
Ξ2n −

Pm

cn

ψn

_
ψ
∧

n.

(54)

We designed the actual controller and the adaptation
law as follows:

u � − knΞ
2η− 1
n −

ψ
∧

n

2a2
n

Ξnξ
T
n ξn, (55)

_
ψ
∧

n �
cn

2a2
n

Ξ2nξ
T
n ξn − Υnψ

∧
n, ψ
∧

n(0)≥ 0, (56)

where cn > 0 and Υn > 0 are two design constants. Like
(38)–(48), it is easy to obtain

_Vn ≤ − 
n

j�1
cjΞ

2η
j + 

n

j�1

PmΥj

cj

ψjψ
∧

j + 
n

j�1

δ∗2j

2
, (57)

where cj � kj(1 + Pm) and δ∗2j � a2
j + ε∗2j + A∗2j + r∗2j .

4. Stability Analysis

In this section, the main result will be summarized in
+eorem 1.

Theorem 1. Consider system (1) satisfying Assumptions 1–2,
and suppose that the finite-time adaptive controller (55) and
the adaptive law (46) as well as (56) are constructed based on
the decoupling technology. As long as the design parameters
η, k, a, c, and Υ are properly selected, it can be ensured that
the system output y follows the desired trajectory yd, and at
the same time all the signals of the pure-feedback nonlinear
systems (1) are SGUFB.

Proof. For the Lyapunov function candidate V � Vn, define
c � min cj,Υj, j � 1, 2, ..., n . +en, it follows from (57) that

_V≤ − c 
n

j�1
Ξ2ηj + 

n

j�1

PmΥj

cj

ψjψ
∧

j + 
n

k�1

δ∗2j

2
. (58)

From the definition of ψ, we can get
ψjψ
∧

j ≤ (1/2)ψ2
j − (1/2)ψ2

j ; further rewrite (58) as
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_V≤ − 2ηc 
n

j�1

Ξ2j
2

 

η

− c 
n

j�1

Pm

2cj

ψ2
j + 

n

k�1

δ∗2j

2
+ 

n

j�1

PmΥj

2cj

ψ2
j .

(59)

For Lemma 2, we choose the appropriate parameters for
z � 1, ς � c1/η 

n
j�1(Pm/2cj)ψ2

j , and μ � 1 − η, β � η, ι
� (cη/η)− η/(1− η). +en, one can obtain

c 

n

j�1

Pm

2cj

ψ2
j

⎛⎝ ⎞⎠

η

≤ (1 − η)ι + c 

n

j�1

Pm

2cj

ψ2
j . (60)

Substituting (60) into (59) and using the zoom method
of (6), the following inequality holds:

_V≤ − 2ηc 
n

j�1

Ξ2j
2

⎛⎝ ⎞⎠

η

− c 
n

j�1

Pm

2cj

ψ2
j

⎛⎝ ⎞⎠

η

+ c 
n

j�1

Pm

2cj

ψ2
j

⎛⎝ ⎞⎠

η

− c 
n

j�1

Pm

2cj

ψ2
j + 

n

k�1

δ∗2j

2
+ 

n

j�1

PmΥj

2cj

ψ2
j ,

≤ − 2ηc 
n

j�1

Ξ2j
2

⎛⎝ ⎞⎠

η

− c 
n

j�1

Pm

2cj

ψ2
j

⎛⎝ ⎞⎠

η

+(1 − η)ι

+ 
n

k�1

δ∗2j

2
+ 

n

j�1

PmΥj

2cj

ψ2
j .

(61)

Applying Lemma 3, we can further simplify the time
derivative of V as

_V≤ − κV
η

+ ρ, (62)

where

κ � min 2ηc, c ,

ρ � (1 − η)ι + 
n

k�1

δ∗2j

2
+ 

n

j�1

PmΥj

2cj

ψ2
j .

(63)

Now, define T∗ � 1/((1 − η)θκ)[V1− η(Ξ(0),Φ(0))

− (ρ/(1 − θ)κ)(1− η)/η] with Ξ(0) � (Ξ1(0), Ξ2(0), . . . ,

Ξn(0))T, and Φ(0) � (ψ1(0),ψ2(0), . . . ,ψn(0))T. Based on
Lemma 1, we can get Vη(ζ)≤ ρ/((1 − θ)κ) for ∀T≥T∗. So,
the solution of _ζ � f(ζ) is bounded in a finite time and all
the signals in the nonlinear system (1) are SGUFB. To be
more precise, the finite-time controller proposed by us can
converge the tracking error to a small neighborhood of zero
and remains there after the finite time T∗. In order to be
more intuitive, we will confirm the research results through a
simulation example.

5. A Simulation Example

In this section, we will demonstrate the effectiveness of the
proposed scheme through the following simulation example.

Let us consider a two-dimensional nonaffine pure-
feedback nonlinear system with disturbance as follows:

_τ1 � τ1 + τ2 +
τ32
5

+ 0.2 sin2 τ1τ2( ,

_τ2 � τ1τ2 + u + 0.1 sin τ1τ2( ,

y � τ1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(64)

where τi � [τ1, τ2, . . . , τi]
T ∈ Ri, i � 1, . . . , n, y ∈ R are the

system state and output and u ∈ R are the system control
input, respectively. +e reference signal of the system output
is given as yd � 0.1 sin(t). According Lemma 3, we construct
virtual control signal and actual controller as well as the
adaptation law for system (64) as follows:

α1 � − k1Ξ
2η− 1
1 −

ψ
∧
1

2a2
1
Ξ1ξ

T
1 ξ1,

_
ψ
∧
1 �

c1

2a2
1
Ξ21ξ

T
1 ξ1 − Υ1ψ

∧
1, ψ
∧
1(0)≥ 0,

u � − k2Ξ
2η− 1
2 −

ψ
∧
2

2a2
2
Ξ2ξ

T
2 ξ2,

_
ψ
∧
2 �

c2

2a2
2
Ξ22ξ

T
2 ξ2 − Υ2ψ

∧
2, ψ
∧

n(0)≥ 0.

(65)

+en, the initial conditions are given as
τ1(0) � 0, τ2(0) � 0, and ψ

∧
(0) � 0. We choose the design

parameter in the simulation as follows: η � 99/101, k1 �

15, k2 � 8, a1 � 1, a2 � 1, c1 � 10, c2 � 10, Υ1 � 0.5, andΥ2 �

0.5. Finally, we get Figures 1–6. Figure 1 denotes the re-
sponses of the system out y(t) and reference signal yd of the
example. +e tracking error Ξ1 of the example between the
output of the system and the reference signal converges to a
small neighborhood, which can be observed intuitively in
Figure 2. Figure 3 shows the response of the state τ2 variable.

0 10 20 30 40 50 60 70 80 90 100
–1.5

–1

–0.5

0

0.5

1

1.5

2

y
yd

Figure 1:+e responses of the system out y(t) and reference signal
yd of the example.
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From the trends in Figures 4 and 5, it is clear to see that the

boundedness of the adaptive rate
_
ψ
∧
1 and

_
ψ
∧
2. It can be seen

from these results that even though the nonaffine function of
our simulation system is not differentiable, it has achieved
excellent control performance. Finally, the response of the
control law uf is shown in Figure 6.

6. Conclusions

A novel finite-time adaptive controller has been presented
for the considered pure-feedback nonlinear system in this
paper. +e first design difficulty in this paper is to decouple
the pure feedback system without using the median value
theorem. +e second design difficulty is the extremely
complicated formula derivation when designing the finite-
time controller, in order to make the system variables
converge to the equilibrium quickly in a limited time.
Compared with the existing results, the developed method
addressed the finite-time adaptive tracking control problem
for the pure feedback system whose nonaffine functions may
not be differentiable. Furthermore, the decoupling tech-
nology has been used in our design frame to eliminate the
restrictive assumption of partial derivatives of nonaffine
functions, which makes the method more widely used. It is
worth noting that the finite-time controller constructed by
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Figure 4: +e response of the adaptive rate ψ1 of the example.
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Figure 5: +e response of the adaptive rate ψ2 of the example.
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Figure 6: +e response of the control law input u.
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Figure 2: +e response of the tracking error Ξ1 of the example.
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Figure 3: +e response of the state variable τ2 of the example.
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us can not only ensure that the system state variables quickly
converge to equilibrium within a limited time but also
improve the robustness of the closed-loop system. In the
future, the finite-time adaptive control of various types of
complex switched nonlinear systems can be further dis-
cussed, such as multiple input multiple output stochastic
switched nonlower triangular systems and stochastic
switched nonlower triangular pure feedback nonlinear
systems.
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)is paper investigates the finite-time stability problem of p-norm stochastic nonlinear systems subject to output constraint. To
cope with the constraint on system output, a tan-type barrier Lyapunov function (BLF) is constructed. By using the constructed
BLF and the backstepping technique, a new control algorithm is proposed with a continuous state-feedback controller being
designed, which guarantees not only that the requirement of output constraint is always achieved but also that the origin of the
system is finite-time stable. )is result is demonstrated by both the rigorous analysis and the simulation example.

1. Introduction

During the past decades, the control problem of nonlinear
systems has long been a hot topic, and many control design
approaches have been proposed for various kinds of non-
linear systems, such as adaptive fuzzy control [1, 2], output
tracking control [3, 4], H∞ control [5, 6], and sliding mode
control [7–10]. Due to their important roles in many science
and industry applications, the stochastic nonlinear systems
have attracted much interest in recent years. With the de-
velopment of stochastic theory, various control design
strategies have been developed for types of stochastic
nonlinear systems by the backstepping technique, see
[11–14], for examples. Especially, some works have con-
sidered p-norm stochastic nonlinear systems, which are
inherently nonlinear due to the fractional powers of such
systems being not identically equal to one. It should be noted
that the inherent nonlinearities cause the stability and
control design problems, which are not very easy to be
solved [15]. Luckily, the issues have been well studied for
p-norm stochastic nonlinear systems with different struc-
tures by the adding a power integrator technique in the
existing literatures. For instance, Li et al. [16] have

considered the adaptive state-feedback stabilization for
p-norm stochastic nonlinear systems; the output-feedback
control has been addressed for p-norm stochastic nonlinear
systems with time-varying delays in [17]; Zhao et al. [18]
have proposed a neural tracking control algorithm for
p-norm switched stochastic nonlinear systems. More latest
studies can be found in [19–21] and the references within.

However, most of the abovementioned works about
p-norm stochastic nonlinear systems did not take the output
constraint into consideration. As it is well known, many
actual systems are subject to output constraint due to the
consideration of the system performance and operation
safety [22, 23]. For this reason, the constrained control issue
of nonlinear systems has drawn attention from many
scholars. Tee et al. [24] have first proposed the notion of the
barrier Lyapunov function (BLF) and consequently have
developed a control design strategy for a class of strict-
feedback deterministic nonlinear systems with output
constraints. After then, with the aid of BLFs, control design
schemes have been presented for many deterministic non-
linear systems with different types of constraints, including
stability control for nonlinear systems with time-varying or
asymmetric output constraints [25, 26], adaptive control for
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nonlinear systems with full-state constrains [27], and sliding
mode control for nonlinear systems with output constraints
[28–30]. Moreover, since the finite-time control possesses
some inherent advantages [31–33], techniques for the finite-
time stabilization under output/state constraints have also
been developed, respectively, for strict-feedback nonlinear
systems [34], norm nonlinear systems [35–37], and switched
nonlinear systems [38]. On the basis of these results, the
constrained control schemes for some classes of stochastic
nonlinear systems have also been proposed. Jin [39] has
constructed an adaptive tracking controller for a class of
output-constrained stochastic nonlinear systems in strict-
feedback form. Later, the adaptive control problem and the
finite-time control problem have been, respectively,
addressed for stochastic nonlinear systems with full-state
constraints in [40, 41]. Furthermore, the adaptive neural
network or fuzzy constrained control problems have
attracted some attention [42–46]. Nevertheless, the sto-
chastic nonlinear systems with output constraints consid-
ered in most of the existing related works are in the strict-
feedback form, rather than in p-normal form. On the
contrary, the existing research has mainly focused on the
adaptive control problem but did not take the finite-time
stabilization into account.

Motivated by the above discussions, we will investigate
the problem of the finite-time stabilization for a class of
p-norm stochastic nonlinear systems with output con-
straints and unknown time-varying parameters. First of all, a
BLF-based control strategy will be developed by the back-
stepping approach. Secondly, applying stochastic Lyapunov
theorems and ItÔ’s formula, the constructed state-feedback
controller is rigorously proved to be able to ensure the
achievement of the output constraint and the finite-time
stability of the considered systems simultaneously. Finally,
the main result of this paper will be further demonstrated by
a simulation example.

2. Problem and Preliminaries

2.1. Problem Statement. )e following class of stochastic
nonlinear systems are considered:

dxi � ϑi(t)x
qi

i+1dt + fi xi( dt + g
T
i xi( dω,

i � 1, . . . , n − 1,

dxn � ϑn(t)u
qndt + fn xn( dt + g

T
n xn( dω,

y � x1,

(1)

where ω is a N-dimension standard Wiener process; xi �

(x1, . . . , xi)
T ∈ Ri, u ∈ R andy ∈ R are system state, control

input, and output, respectively; ϑi(t) is the time-varying
parameter; the nonlinear functions fi: Ri⟶ R and
gi: Ri⟶ RN are continuous and satisfy fi(0) � gi(0) � 0;
and the fractional powers qi’s meet the requirement
qi ∈ R≥1odd: � τ ≥ 1, τ is the positive odd integersratio . )e
output y is required to satisfy

y ∈
1

� y(t) ∈ R, |y(t)|< b  � x1 ∈ R, x1(t)


< b ,

(2)

where b is a known positive constant.
)is paper aims to design a continuous state-feedback

controller for system (1), which can ensure that the origin of
the closed-loop system is finite-time stable in probability and
the requirement of the output constraint is achieved.

2.2. Preliminaries

Notations 1. For k � 1, . . . , n, let g− T
k (xk) � (gT

1 (x1), . . . , gT
i

(xk)) and Πk � xk ∈ Rk, |x1(t)|< b . For any ς ∈ R and
θ> 0, denote φ(ς) � [ς]θ: � |ς|θsgn(ς).

Consider the following stochastic system:

dx � f(x)dt + g(x)dω, (3)

where f(x) and g(x) are continuous satisfying f(0) � 0
and g(0) � 0.

Definition 1 (see [13]). For any given V(x) ∈ C2(Rn), as-
sociated with system (1), the second-order differential op-
erator is defined as follows:

ℓV �
zV

zx
f(x) +

1
2

tr g
T
(x)

z2V

zx2 g(x) . (4)

Definition 2 (see [24]). Suppose that Π is an open set
containing the origin and V: Π⟶ R is positive definite
and continuously differentiable. )en, for system _x �

g(x), V(x(t)) is called a BLF if for each solution x(t)

starting from x(t0) ∈ Π, V(x(t))⟶∞, as x(t)⟶ zΠ,
V(x(t)) ≤ τ for all t≥ t0 and for some τ ∈ R+.

Assumption 1 (see [36]). For ∀i � 1, . . . , n, there exist
known positive constants ϑi and ϑi such that ϑi ≤ ϑi(t)≤ ϑi.

Assumption 2. For i � 1, . . . , n, there are a constant
μ ∈ (− [1 + 

n
j�2 q1 · · · qj− 1]

− 1, 0) and known nonnegative
smooth functions ψi(xi), ηi(xi) such that

fi xi( 


≤ψi xi(  

i

j�1
xj




vi+μ/vj( 

,

gi xi( 
����

����≤ ηi xi(  

i

j�1
xj




2vi+μ/2vj( 

,

(5)

for all t≥ 0, where v1 � 1, vj+1 � ((vj + μ)/qj)> 0, j � 1, . . . ,

n.

Remark 1. Note that condition (4) is borrowed from [34].
However, the systems considered in [34] are p-norm de-
terministic nonlinear systems, while we consider p-norm
stochastic nonlinear systems with drift terms fi’s and
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diffusion terms gi’s in this paper. In light of
μ ∈ (− [1 + 

n
j�2 q1 · · · qj− 1]

− 1, 0), the value of μ is generally
taken as μ � − (m/p) for simplicity, where m and p represent
even and odd integers, respectively. )en, the value of each
vj(j � 2, . . . , n) can be obtained by applying v1 � 1 and
vj+1 � ((vj + μ)/qj)> 0. It can also be observed that both the
denominator and numerator of each vj are odd.

Lemma 1 (see [13]). Suppose that there exists a positive
Lyapunov function V ∈ C2(Rn), which satisfies lim|x|⟶∞
V(x) �∞. If ℓV is with respect to (3) and satisfies
ℓV≤ 0,∀x ∈ Rn, then system (3) has a solution for any initial
value.

Lemma 2 (see [13]). Suppose that system (3) admits a so-
lution for each initial value. If there are κ∞ class functions
91(·) and 92(·), a positive C2 Lyapunov function V, real
numbers c> 0, and 0< c< 1, such that

ϱ1(|x|)≤V(x)≤ ϱ2(|x|), x ∈ R
n
,

ℓV(x)≤ − cV
c
(x), x ∈ R

n
\ 0{ }.

(6)

For all t≥ 0, then the origin of system (3) is finite-time
stable in probability.

Lemma 3 (see [37]). Let a, b, ρ, and ς be positive real
numbers. For any z1, z2 ∈ R, we have

ρ z1



a

z2



b ≤ ς

a

a + b
z1



a+b

+
b

a + b
ρa+b/bς− a/b

z2



a+b

. (7)

Lemma 4 (see [8]). Let p ∈ (0,∞); for any ςi ∈ R, i � 1, . . . ,

n, one has

ς1


 + · · · + ςn


 

p
≤ d ς1



p

+ · · · + ςn



p

 , (8)

where d � np− 1 if p≥ 1 and d � 1 if 0<p< 1.

Lemma 5 (see [10]). Leta, d ∈ R+ with a≥ 1. For any
ς1, ς2 ∈ R, we have

(i) |ςa
1 − ςa

2|≤ a(2a− 2 + 2)|ς1 − ς2|(|ς1 − ς2|
a− 1 + ςa− 1

2 )

(ii) |ς(d/a)
1 − ς(d/a)

2 |≤ 21− (1/a)|⌈ς1⌉
d − ⌈ς2⌉

d|(1/a)

(iii) (|ς1| + |ς2|)
1/a ≤ |ς1|

1/a + |ς2|
1/a ≤ 21− (1/a)(|ς1|+

|ς2|)
1/a

3. Main Results

3.1. A Tan-Type BLF. Before carrying out the control design
for system (1), we should handle the output constraint issue.

Firstly, we denote v0 � max1≤i≤n vi  and
ci � (v0/vi)(i � 1, . . . , n). Let σ be a constant parameter
satisfying σ ≥ σ0, where the value of σ0 is chosen as below:

(i) If for all 2≤ i≤ n, 1≤ ci ≤ 2, then σ0 � 2v0

(ii) If for all 2≤ i≤ n, ci ≥ 2, then σ0 � v0

Consequently, it is clear that (σ/vi)≥ 2.
)en, a tan-type BLF can be constructed on Π1 as

follows:

Vb x1(  �
2b4σ− μ

(4σ − μ)π
tan

π x1



4σ− μ

2b4σ− μ
⎛⎝ ⎞⎠, (9)

where μ is given by Assumption 2 and σ is defined as above.
It is not hard to obtain from the expression of Vb(x1)

that

zVb

zx1
� sec2

π x1



4σ− μ

2b4σ− μ
⎛⎝ ⎞⎠⌈x1⌉

4σ− μ− 1
� G x1( ⌈x1⌉

4σ− μ− 1
,

z2Vb

zx2
1

� (4σ − μ − 1)G x1(  x1



4σ− μ− 2

+
π(4σ − μ)

b4σ− μ G x1( tan
π x1



4σ− μ

2b4σ− μ
⎛⎝ ⎞⎠ x1



2(4σ− μ− 1)

,

(10)

where G(x1) � sec2((π|x1|
4σ− μ)/2b4σ− μ).

Remark 2. It should be noted that the BLF is modified from
[34], which is constructed by fully taking the advantage of
the given nonlinear growth conditions. As stated in [34], the
control strategy based on Vb(x1) is a universal method,
which can handle stochastic systems with or without output
constraints.

3.2. ControllerDesign andStabilityAnalysis. In what follows,
a continuous state-feedback controller will be constructed,
and the stability of system (1) under the designed controller
will be rigorously analysed. To this end, a theorem is pre-
sented to describe the main result.

Theorem 1. Suppose Assumptions 1-2 hold for system (1).
For any constant b> 0, there is a continuous state-feedback
controller such that

(i) Je output of system (1) is kept in a given constrained
set in the sense of probability, i.e., P |y(t)|< b  � 1

(ii) Je origin of the closed-loop system is finite-time
stable in probability.

Proof. )e proof contains three parts. First of all, the design
procedure of the controller is explicitly displayed. )en, the
system output is proved to be kept in the given constrained
set with probability one. In the last part, the finite-time
stability of system (1) is rigorously analysed. □

3.2.1. Part I: Design Procedure

Step 1. Let ς1 � ⌈x1⌉
σ , and choose the Lyapunov function

V1(x1) � Vb(x1). )en, we can directly get from Definition
1 that

Complexity 3



ℓV1 ≤ ϑ1(t)G x1( ⌈x1⌉
4σ− μ− 1

x
q1
2 +

4σ − μ − 1
2

· G x1(  x1



4σ− μ− 2η21 x1



2+μ

+ ϑ1G x1(  x1



4σ− μ− 1ψ1 x1



1+μ

+
π(4σ − μ)

2b4σ− μ

· x1



2(4σ− μ− 1)

G x1( tan
π x1



4σ− μ

2b4σ− μ
⎛⎝ ⎞⎠η2 x1



2+μ

≤ ϑ1(t)G x1( ⌈ς1⌉
((4σ− μ− 1)/σ)ξq1

2 + ϑ1(t)

· G x1( ⌈ς1⌉
((4σ− μ− 1)/σ)

x
q1
2 − ξq1

2(  + H1 x1( G x1( ς41,
(11)

where H1(x1)≥ ϑ1ψ1 + (1/2)η21(4σ − μ − 1) + (π(4σ − μ)

η21/2b4σ− μ)tan(π|x1|
4σ− μ/2b4σ− μ)|x1|

4σ− μ is a nonnegative C2

function and ξ2 is a virtual controller required to be design
after later.

)en, we design

ξ2 � − λ1 x1( ⌈ς1⌉
v2/σ( ) with λ1 x1(  �

n + H1 x1( 

ϑ1
 

1/q1( )

> 0.

(12)

Substituting (12) into (13) yields

ℓV1 x1( ≤ − nG x1( ς41 + ϑ1(t)G x1( ⌈ς1⌉
((4σ− μ− 1)/σ)

· x
q1
2 − ξq1

2( 

� −
1
2

G x1( ς41 − n −
1
2

 G x1( ς41 + ϑ1(t)

· G x1( ⌈ς1⌉
((4σ− μ− 1)/σ)

x
q1
2 − ξq1

2( 

≤ −
1
2

G x1( ς41 − n −
1
2

 ς41 + ϑ1(t)

· G x1( ⌈ς1⌉
((4σ− μ− 1)/σ)

x
q1
2 − ξq1

2( .

(13)

Step 2. We denote ς2 � ⌈x2⌉
σ/v2 − ⌈ξ2⌉

σ/v2 and define the
positive Lyapunov function V2 on Π2 as V2 � V1 + Ψ2 with

Ψ2 � 
x2

ξ2
⌈⌈r⌉ σ/v2( ) − ⌈ξ2⌉

σ/v2( )⌉((4σ− μ− 1)/σ)dr. (14)

Since (z⌈ξ2⌉
(σ/v2)/zx1) � − (zλ(σ/v2)

1 (x1)/⌈x1⌉
σ − σλ(σ/v2)

1
(x1)|x1|

(σ− 1) is valid, one can obtain

zΨ2
zx2

� ⌈ς2⌉
((4σ− μ− 1)/σ)

,

zΨ2
zx1

�
− 4σ − μ − v2

σ
z⌈ξ2⌉

σ/v2( )

zx1


x2

ξ2
⌈r⌉ σ/v2( ) − ⌈ξ2⌉

σ/v2( )



3σ− μ− v2( )/σ( )

dr,

z2Ψ2
zx1zx2

�
4σ − μ − v2

σ
⌈ς2⌉

3σ− μ− v2( )/σ( )z⌈ξ2⌉
σ/v2( )

zx1
,

z2Ψ2
zx2

2
�
4σ − μ − v2

v2
x2




σ− v2( )/v2⌈ς2⌉
3σ− μ− v2( )/σ( ),

z2Ψ2
zx2

1
�

− 4σ − μ − v2

σ
z2⌈ξ2⌉

σ/v2( )

zx2
1


x2

ξ2
⌈r⌉ σ/v2( ) − ⌈ξ2⌉

σ/v2



3σ− μ− v2( )/σ( )

dr

+
4σ − μ − v2

σ
×
3σ − μ − v2

σ
z⌈ξ2⌉

σ/v2

zx1
 

2


x2

ξ2
⌈r⌉ σ/v2( ) − ⌈ξ2⌉

σ/v2( )



2σ− μ− v2( )/σ( )

dr.

(15)

Using Definition 1 again, we have

ℓV2 ≤ −
1
2

G x1( ζ41 − n −
1
2

 ζ41 + ϑ1(t)G x1(  x1 
4σ− μ− 1

x
q1
2 − ξq1

2(  +
zΨ2
zx1

ϑ1(t)x
q1
2 + f1 x1( ( 

+
zΨ2
zx1

f2 x2(  +
1
2

tr g
T
2
z2Ψ2
zx2

2
g2  +

zΨ2
zx2

ϑ2(t)ξq2
3 +

zΨ2
zx2

ϑ2(t) x
q2
3 − ξq2

3( ,

(16)
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where ξ3 is the virtual controller required to be designed
later.

In the following, each term in the right hand of (16) will
be estimated by its upper bound.

Firstly, applying 0< (v2/σ)≤ 1, 0< ((1 + μ)/σ)≤ 1 and
Lemma 5, it is easily obtained that

x2 − ξ2


≤ ⌈x2⌉
σ/υ2 − ⌈ξ2⌉

σ/υ2



υ2/σ

× 21− υ2/σ( ) ≤ 2 ζ2



υ2/σ ,

(17)

x2



q1 ≤ ζ2 +⌈ξ2⌉

σ/υ2



(1+μ)/σ
≤ ζ2



(1+μ)/σ

+ λ1
(1+μ)/υ2 ζ2



(1+μ)/σ

,

(18)

x
q1
2 − ξq1

2


≤ 21− (1+μ)/σ ⌈x2⌉
σ/υ2 − ⌈ξ2⌉

σ/υ2



(1+μ)/σ
≤ 2 ζ2



(1+μ)/σ

.

(19)

It can be deduced from (19) and Lemma 3 that

ϑ1(t)G x1(  x1 
4σ− μ− 1

x
q1
2 − ξq1

2( ≤ 2ϑ1G x1(  ζ1



(4σ− μ− 1)/σ

· ζ2



(μ+1)/σ ≤

1
8
ζ41 + H21 x2( ζ42,

(20)

where H21(x2)≥ ((μ + 1)/4σ)(2ϑ1G(x1))
4σ/(μ+1)(4σ/

(8(4σ − μ − 1)))− (4σ− μ− 1)/1+μ ≥ 0 is a C2 function.
Secondly, one can obtain from Assumption 1 and

Lemma 4 that

f2 x2( 


≤ ψ2 x2(  x1



υ2+μ( )/υ1 + x2




υ2+μ( )/υ2 

≤ ψ2 x2(  ζ1



υ2+μ( )/σ

+ λ υ2+μ( )/υ2
1 ζ1




υ2+μ( )/σ


+ ζ2



υ2+μ( )/σ



≤ ψ2 x2(  ζ1



υ2+μ( )/σ

+ ζ υ2+μ( )/σ
2 ,

(21)

g2 x2( 
����

����≤ η2 x2(  x1



2υ2+μ( )/2υ1 + x2




2υ2+μ( )/2υ2 

≤ η2 x2(  ζ1



2υ2+μ( )/2σ

+ λ 2υ2+μ( )/2υ2
1 ζ1




2υ2+μ( )/2σ


+ ζ2



2υ2+μ( )/2σ≤ η2 x2( 

· ζ1



2υ2+μ( )/2σ

+ ζ2



2υ2+μ( )/2σ

 ,

(22)

where ψ2(x2)≥ψ2(x2)(1 + λ(v2+μ)/v2
1 ) and η2(x2)≥

η2(x2)(1 + λ(2v2+μ)/2v2
1 ) are nonnegative smooth functions.

Additionally, note that (σ/v2)≥ 2.)en, as stated in [36],
there exist C2 functions M21(x2)≥ 0, K21(x2)≥ 0, and
M21(x2)≥ 0, such that

z⌈ξ2⌉
σ/υ2

zx2
1




≤

zλσ/υ21
zx1




x1



σ

+ σλσ/υ21 x1



σ− 1 ≤M21 x2(  ζ1



1− (1/σ)

,

(23)

z2⌈ξ2⌉
σ/υ2

zx2
1




≤

z2λσ/υ21
zx2

1




x1



σ

+ 2σ
zλσ/υ21
zx1




x1



σ− 1

+ σ(σ − 1)λσ/υ21 x1



σ− 2 ≤Κ21 x2(  ζ1



1− (2/σ)

,

(24)

zΨ2
zx1
≤
4σ − μ − υ2

σ
z⌈ξ2⌉

σ/υ2

zx1




⌈x2⌉

σ/υ2 − ⌈ξ2⌉
σ/υ2




3σ− μ− υ2( )/σ

· x2 − ξ2


≤
4σ − μ − υ2

σ
× M21 x2(  ζ1



1− (1/σ) ζ2




3σ− μ− υ2( )/σ
× 2 ζ2



υ2/σ

≤ M21 x2(  ζ1



1− (1/σ) ζ2



(3σ− μ)/σ

,

(25)

1
2

z2Ψ2
zx2

1
≤
4σ − μ − υ2

2σ
z2⌈ξ2⌉

σ/υ2

zx2
1




⌈x2⌉

σ/υ2 − ⌈ξ2⌉
σ/υ2




3σ− μ− υ2( )/σ

· x2 − ξ2


 +
4σ − μ − υ2(  3σ − μ − υ2( 

2σ2
z⌈ξ2⌉

σ/υ2

zx1
 

· ⌈x2⌉
σ/υ2 − ⌈ξ2⌉

σ/υ2



2σ− μ− υ2( )/σ

x2 − ξ2




≤
4σ − μ − υ2

σ
K21 x2(  ζ1



1− (2/σ) ζ2



(3σ− μ)/σ

+
4σ − μ − υ2(  3σ − μ − υ2( 

σ2

· M
2
21 x2(  ζ1



2− (2/σ) ζ2



2σ− μ/σ

.

(26)

)en, using (18), (21), (25), Assumptions 1-2, and
Lemma 3, we can infer

zΨ2
zx1

ϑ1(t)x
q1
2 + f1 x1( ( ≤ M21 x2( ϑ1 ζ1



1− (1/σ) ζ2



(3σ− μ)/σ

· ζ2



(1− μ)/σ

+ λ1



(1+μ)/σ

 

+ M21 x2(  ζ1



1− (1/σ) ζ2



(3σ− μ)/σ

· ψ1 ζ1



1− (1/σ) ≤

1
8
ζ41 +Η22 x2( ζ42,

(27)
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where

H22 x2( ≥
3σ + 1
4σ

ϑ1 M21 
(4σ/(3σ+1)) 4σ

32(σ − 1)
 

(− (σ− 1)/3σ+1)

+
3σ − μ
4σ

ϑ1 M21λ
(1+σ)/v2
1 

(4σ/(3σ− μ))

·
4σ

32(σ + μ)
 

((− (σ+μ))/3σ− μ)

+
3σ − μ
4σ

ψ1
M21( 

(4σ/(3σ− μ))

·
4σ

16(σ + μ)
 

((− (σ+μ))/3σ− μ)

,

(28)

is a nonnegative C2 function.
Moreover, from (19), Assumption 2, and Lemma 3, it can

be deduced that
zΨ2
zx2

f2 x2( ≤ ζ2



4σ− μ− υ2( )/σ ψ2 ζ1




υ2+μ( )/σ
+ ζ2

υ2+μ( )/σ  

≤
1
8
ζ41 + H23 x2( ζ42,

(29)

where H23(x2)≥ ψ2 + ((4σ − μ − v2)/4σ)(ψ2)
4σ/(4σ− μ− v2)

(4σ/(8(μ + v2)))
(− (μ+v2))/(4σ− μ− v2) ≥ 0 is a C2 function.

On the contrary, it is noted that

1
2

tr g
T
2

z2Ψ2
zx2

2
g2  �

1
2

z2Ψ2
zx2

1
g1

����
����
2

+ g
T
1

z2Ψ2
zx1zx2

g2

+
1
2

z2Ψ2
zx2

2
g2

����
����
2
.

(30)

)en, applying (22), (26), Assumption 2, and Lemma 3,
there clearly exist nonnegative C2 functions
H241(x2), H242(x2), and H243(x2) such that

1
2

z2Ψ2
zx2

1
g1

����
����
2 ≤

4σ − μ − υ2
σ

K21 ζ1



1− (2/σ) ζ2



(3σ− μ)/ση21 ζ1



(2+μ)/σ

+
4σ − μ − υ2(  3σ − μ − υ2( 

2σ2

· M
2
21 ζ1



2− (2/σ) ζ2



(2σ− μ)/ση21 ζ1



(2+μ)/σ

≤
1
24
ζ41 + H241 x2( ζ42,

(31)

g
T
1

z2ψ2
zx1zx2

g2 ≤ η1 ζ1



(μ+2)/2σ4σ − μ − v2

σ
ζ2




3σ− μ− v2( )/σ

× M21 ζ1



(σ− 1)/σ

η2 ζ1



2v2+μ( )/2σ



+ ζ2



2v2+μ( )/2σ

≤
1
24
ζ41 + H242 x2( ζ42,

(32)

1
2

z2ψ2

zx2
2

g2
����

����
2 ≤

4σ − μ − v2

2v2
ζ2




3σ− μ− v2( )/σ

· ζ2



σ− v2( )/σ( )

+ λ σ− v2( )/v2( )
1 ζ1




σ− v2( )/σ( )
 

× 2η22 ζ1



2v2+μ( )/σ

+ ζ2



2v2+μ( )/σ

 

≤
1
24
ζ41 + H243 x2( ζ42.

(33)

Substituting equations (31)–(33) into (30), one obtains

1
2

tr g
T
2
z2Ψ2
zx2

2
g2 ≤

1
8
ζ41 + H24 x2( ζ42, (34)

where H24(x2) � H241(x2) + H242(x2) + H243(x2)≥ 0 is a
C2 function.

Let H2(x2) � H21(x2) + H22(x2) + H23(x2) + H24(x2)

≥ 0. Design the virtual controller ξ3 as

ξ3 � − λ2 x2( ⌈ζ2⌉
v3/σ( ) with λ2 x2( 

�
n − 1 + H2 x2( 

ϑ2
)
1/q2 > 0.

(35)

Substituting (20), (27), (29), (34), and (35) into (16), one
can obtain

ℓV2 ≤ −
1
2

G x1( ζ41 − (n − 1) ζ41 + ζ42  + ϑ2(t)⌈ζ2⌉
4σ− μ− v2( )/σ

· x
q2
3 − ξq2

3( .

(36)

Inductive Step. Suppose at step i − 1, there exist a C2

Lyapunov function Vi− 1: Πi− 1⟶ R+, and a range of con-
tinuous virtual controllers ξ1, ξ2, . . . , ξi defined as

ξ1 � 0,

ζ1 � ⌈x1⌉
σ/v1 − ⌈ξ1⌉

σ/v1 ,

ξ2 � − λ x1( ⌈ζ1⌉
v2/σ ,

ζ2 � ⌈x2⌉
σ/v2 − ⌈ξ2⌉

σ/v2 ,

ξ3 � − λ2 x2( ⌈ζ2⌉
v3/σ ,

ζ3 � ⌈x3⌉
σ/v3 − ⌈ξ3⌉

σ/v3 ,

⋮

ξi � − λi− 1 xi− 1( ⌈ζ i− 1⌉
vi/σ ,

ζ i � ⌈xi⌉
σ/vi − ⌈ξi⌉

σ/vi ,

(37)

with λk(xk)> 0, for k � 1, . . . , i − 1, such that
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ℓVi− 1 ≤ −
1
2

G x1( ζ41 − (n + 2 − i)

· 
i− 1

l�1
ζ4i + ϑi− 1(t)⌈ζ i− 1⌉

4σ− μ− vi( )/σ x
qi− 1
i − ξqi− 1

i( .

(38)

)en, the following property can be inferred.

Proposition 1. Choose the ith Lyapunov function
Vi: Πi⟶ R+ as Vi � Vi− 1 + Ψi with

Ψi � 
xi

ξi

⌈⌈r⌉σ/vi − ⌈ξi⌉
σ/vi⌉ 4σ− μ− vi( )/σdr. (39)

)en, Vi is C2 on Πi and there exists a virtual controller
ξi+1 such that

ℓVi ≤ −
1
2

G x1( ζ41 − (n + 1 − i) 
i

l�1
ζ4l + ϑi− 1(t)⌈ζ i⌉

4σ− μ− vi( )/σ

· x
qi

i+1 − ξqi

i+1( ,

(40)

where

ξi+1 � − λi xi( ⌈ζ i⌉
vi+1/σ with λi xi( 

�
n − i + 1 + Hi xi( 

ϑi

 

1/qi

> 0.

(41)

)e proof of above Proposition 1 is provided in the
Appendix.

Step 3. In light of the inductive step, when i � n and
xn+1 � u, Proposition 1 holds. )us, we choose the overall
Lyapunov function Vn as Vn � Vn− 1 + Ψn with

Ψn � 
xn

ξn

⌈⌈r⌉σ/vn − ⌈ξn⌉
σ/vn⌉ 4σ− μ− vn( )/σdr, (42)

and define the virtual controller ξn+1 as

ξn+1 � − λn(x)⌈ςn⌉
vn+1/σ with λn(x) �

1 + Hn(x)

ϑn

 

1/qn

> 0.

(43)

)en, Vn(x) is clearly a C2 function on Πn, and it is easy
to obtain that

ℓVn ≤ −
1
2

G x1( ζ4l − 
n

l�1
ζ4l + ϑn(t)⌈ζn⌉

4σ− μ− vn( )/σ u
qn − ξqn

n+1( .

(44)

)erefore, we can design

u � ξn+1(x) � − λn(x)⌈⌈xn⌉
σ/vn

+ λσ/vn

n− 1 ⌈xn− 1⌉
σ/vn− 1 + λσ/vn

n− 1 λ
σ/vn− 2
n− 2 ⌈xn− 2⌉

σ/vn− 2

+ · · · + λσ/vn

n− 1 λ
σ/vn− 1
n− 2 · · · λσ/v21 ⌈x1⌉

σ/v1⌉vn+μ/σqn
,

(45)

which results in

ℓVn ≤ −
1
2

G x1( ζ41 − 
n

l�1
ζ4l ≤ 0. (46)

3.2.2. Part II: Verification of Keeping the Output Constraint.
For any x(0) � (x1(0))T ∈ Πn, by Ito’s formula and (46), we
can deduce

0≤EVn(x(t)) � Vn(x(0)) + E 
t

0
ℓVn(x(τ))dr

≤Vn(x(0))<∞.

(47)

From Vn(x) � V1(x1) + 
n
l�2 Ψl > 0 and (47), it can be

further verified that

0≤EV1 x1(t)( ≤Vn x0( <∞, (48)

which indicates

P V1 x1(t)( <∞  � 1. (49)

Hence, P |y(t)|< b  � P |x1(t)|< b  � 1. )en, Part I of
)eorem 1 is proved.

3.2.3. Part III: Stability Analysis. Based on the definition
of Vn, we easily obtain the fact that Vn is radially un-
bounded. Combining the fact with (40) and Lemma 1
directly infers that system (1) has a solution x(t, x(0)) for
any x(0) ∈ Πn.

On the contrary, by a simple calculation, one obtains

Vn � V1 + 
n

l�2
Ψl

� V1 + 
n

l�2


xl

ξl

⌈⌈r⌉
σ
vl − ⌈ξl⌉

σ
vl⌉ 4σ− μ− vl( )/σdr

≤
2b4σ− μ

(4σ − μ)π
tan

π x1



4σ− μ

2b4σ− μ
⎛⎝ ⎞⎠ + 2

n

l�2
ζ l



(4σ− μ)/σ

.

(50)

In addition, since 4σ − μ> 1, it is easy to get that
0≤ (π|x1|

4σ− μ/2b4σ− μ)< (π/2) for all x1 ∈ Π1.)en, applying
the characteristics of tangent functions, it is not difficult to
infer that
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tan
π x1



4σ− μ

2b4σ− μ
⎛⎝ ⎞⎠≤

π
2b4σ− μ x1



4σ− μ

G x1( 

≤
π(4σ − μ)

2b4σ− μ x1



4σ− μ

G x1( .

(51)

Now, let c � 2(μ− 8σ)/(4σ− μ)4 > 0 and
0< c � (4σ/(4σ − μ))< 1. According to (44), (45), and
Lemma 4, we obtain

cV
c
n ≤ 2

(μ− 8σ)/(4σ− μ) 2b4σ− μ

(4σ − μ)π
tan

π x1



4σ− μ

2b4σ− μ
⎛⎝ ⎞⎠ + 2

n

l�1
ς1



4σ− μ
σ⎡⎢⎢⎣ ⎤⎥⎥⎦

4σ/(4σ− μ)

≤ 2(μ− 8σ)/(4σ− μ)
G x1( 

4σ/(4σ− μ)ς41

+
1
2



n

l�1
ζ41 ≤

1
2

G x1( ζ41 +
1
2



n

l�1
ς41.

(52)

So, one further obtains

ℓVn + cV
c
n � ℓVn + 2(μ− 8σ)/(4σ− μ)

V
4σ/(4σ− μ)
n

≤ −
1
2

G x1( ζ41 − 
n

l�1
ς41

+
1
2

G x1( ζ41 +
1
2



n

l�1
ζ41 ≤ −

1
2



n

l�1
ζ41 ≤ 0.

(53)

In other words, ℓVn ≤ − cV
c
n. Consequently, it is directly

deduced from Lemma 2 that the origin of system (1) under
controller (39) is finite-time stable in probability.

Remark 3. Comparing with the existing results in most of
the literatures, the paper mainly focuses on the finite-time
stabilization, instead of the boundness of tracking error.
Moreover, the proposed approach can be extend to the
tracking control by introducing a coordinate transformation
before constructing the BLF.

4. Simulation

In this section, we will provide the simulation results of the
following example to illustrate the validity of the proposed
strategy:

dx1 � x7/5
2 dt,

dx2 � udt +
1
2
x
2
1x

1/5
2 dt +

1
8
sinx2( 

2
x
3/5
2 dω,

y � x1,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(54)

where q1 � 7/5, q2 � 1, and μ � − 4/11 ∈ (− (5/12), 0). )en,
v1 � 1, v2 � 5/11, and v3 � 1/11. Since ϑ1(t) � ϑ2(t) � 1,

Assumption 1 is satisfied. And Assumption 2 is also satisfied
with ψ1 � η1 � 0, ψ2 � (1/2)x2

1, and η2 � (1/8)(sinx2)
2.

Furthermore, note that c1 � 1, c2 � 11/5> 2, and σ0 � 1.
)us, one can select σ � σ0 � 1.

Now, let ς1 � ⌈x1⌉ and G(x1) � sec2(π|x1|
48/11/2b48/11).

In view of design procedure in Part I of the proof, we can
design the virtual controller ξ2 as

ξ2 � − 25/7⌈ζ1⌉
5/11 ≔ − λ1⌈ζ1⌉

5/11
. (55)

Next, according to the design procedure, we denote ς2 �

⌈x2⌉
11/5 − ⌈ξ2⌉

11/5 and further obtain that

1.5 1.5

1

0.5

1

0.5

0

–0.5

X1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time (s)

0 0.1 0.2

x (0) = (1.45, 5)
x (0) = (1.3, 5)
x (0) = (1.1, 5)

x (0) = (0.8, 5)
x (0) = (0.5, 5)

Figure 1: Trajectories of x1(t).

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time (s)

x (0) = (1.45, 5)
x (0) = (1.3, 5)
x (0) = (1.1, 5)

x (0) = (0.8, 5)
x (0) = (0.5, 5)

6
5
4
3
2
1
0

–1
–2
–3
–4

X2

Figure 2: Trajectories of x2(t).
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H21 �
7
44

2G x1( ( 
44/7 44

296
 

− 37/7
,

H22 �
86
11
λ11/51 +

37
44

86
11
λ18/51 

44/37 44
56

 
− 7/37

,

H23 �
1
2
x
2
1λ

1/7
1 +

43
44

1
2
x
2
1λ

1/7
1 

44/43 44
8

 
− 1/43

,

H24 �
37
320

sinx2( 
4

+
32
44

37
320

sinx2( 
4λ12/51 

44/32 44
96

 
− 12/32

.

(56)

Let H2 � H21 + H22 + H23 + H24 and λ2 � 1 + H2; then,
the controller u can be designed as

u � − λ2 ζ2 
1/11

� − λ2 x2 
11/5

− ξ2 
11/5

 
1/11

. (57)

Finally, we suppose b � 1.5 and select some different
initial states x(0)’s with each x(0) satisfying x(0) ∈ Π2. )e
simulation results of system (48) are shown in Figures 1 and
2. Figure 1 curves trajectories of x1(t) under different initial
values, which illustrate that the output constraint is always
not violated. Meanwhile, the trajectories of x2(t) is given in
Figure 2. It can be observed from the two figures that system
(48) under controller (51) is finite-time stable.

5. Conclusion

In this paper, the stability issue is addressed for a class of
p-norm stochastic systems with output constraints and
unknown time-varying parameters. Using a tan-type BLF,
the finite-time control strategy is proposed by the adding a
power integrator technique. On this basis, the designed
controller has been proved to ensure that the origin of the
closed-loop system is finite-time stable in probability and the
system output is kept in a pre-given set. )is conclusion has
also been verified by the simulation results. It should be
pointed out that the proposed approach is not applicable to
the case of asymmetrical output constraints. In the future, we
will try to modify the proposed method to be suitable for
stochastic systems with asymmetrical output constraints or
multi-input multi-output stochastic systems.

Appendix

Proof of Proposition 1. For j, k � 1, . . . , i − 1, one can get
from the definition of Ψi that

zΨi

zxi

� ⌈ςi⌉
4σ− μ− vi( )/σ ,

zΨi

zxj

�
− 4σ + μ + vi

σ
z⌈ξi⌉

σ/vi

zxj


xi

ξi

⌈r⌉σ/vi − ⌈ξi⌉
σ/vi




3σ− μ− vi( )/σdr,

z2Ψi

zxjzxi

�
− 4σ + μ + vi

σ
ςi




3σ− μ− vi( )/σz⌈ξi⌉
σ/vi

zxj

,

z2Ψi

zxjzxk

�
z2Ψi

zxkzxj

�
− 4σ + μ + vi

σ
z2⌈ξi⌉

σ/vi

zxkzxj


xi

ξi

⌈r⌉σ/vi − ⌈ξi⌉
σ/vi




3σ− μ− vi( )/σdr

+
4σ − μ − vi

σ
3σ − μ − vi

σ
z⌈ξi⌉

σ/vi

zxj

z⌈ξi⌉
σ/vi

zxk


xi

ξi

⌈r⌉σ/vi − ⌈ξi⌉
σ/vi




2σ− μ− vi( )/σdr,

z2Ψi

zx2
i

�
4σ − μ − vi

vi

xi




σ− vi( )/vi ςi




3σ− μ− vi( )/σ
.

(A.1)
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)en, we have

ℓVi � ℓVi− 1 + 
i− 1

j�1

zΨi

zxj

ϑj(t)x
qj

j+1 + fj  +
zΨi

zxj

ϑi(t)x
qi

i+1 + fi( 

+
1
2

tr g
T
i

z2Ψi

zx2
i

gi 

≤ −
1
2

G x1( ζ41 − (n + 2 − i) 

i− 1

l�1
ζ4l + ϑi− 1(t)

· ζ i− 1 
4σ− μ− vi− 1( )/σ x

qi− 1
j − ξqi− 1

i 

+ 

i− 1

j�1

zΨi

zxj

ϑj(t)x
qj

j+1 + fj  +
zΨi

zxi

ϑi(t)x
qi

i+1 +
zΨi

zxi

fi

+
1
2

tr g
T
i

z2Ψi

zx2
i

gi .

(A.2)

In the following, we introduce some sub-propositions to
simplify the proof. □

Proposition A.1. For i � 3, . . . , n, there exist smooth non-
negative functions ψi(·) and ηi(·) such that

fi xi( 


≤ ψi xi(  ζ1



vi+μ( )/σ

+ · · · + ζ i




vi+μ( )/σ
 ,

gi xi( 
����

����≤ ηi xi(  ζ1



2vi+μ( )/2σ

+ · · · + ζ i




2vi+μ( )/2σ
 .

(A.3)

Proof. For i � 3, . . . , n,j � 1, . . . , i, one has

xj




υi+μ( )/υj

� ζj +⌈ξi⌉
σ
υj





υi+μ( )/σ
≤ ζj




υi+μ( )/σ

+ λσ/υj

j− 1 ⌈ζj− 1⌉




υi+μ( )/σ
≤ ζj




υi+μ( )/σ

+ λ υi+μ( )/υj

j− 1 ζj− 1




υi+μ( )/σ

,

xj




2υi+μ( )/2υj

� ζj +⌈ξi⌉
σ
υj





2υi+μ( )/2σ
≤ ζj




2υi+μ( )/2σ

+ λσ/υj

j− 1 ⌈ζj− 1⌉




2υi+μ( )/2σ
≤ ζj




2υi+μ( )/2σ

+ λ 2υi+μ( )/2υj

j− 1 ζj− 1









2υi+μ( )/2σ
,

(A.4)

which means

fi xi( 


≤ψi xi(  ς1



vi+μ( )/σ

+ 
i

j�2
ςj




vi+μ( )/σ

+ λ vi+μ( )/vj

j− 1 ςj− 1




vi+μ( )/σ

 ⎡⎢⎢⎣ ⎤⎥⎥⎦≤ ψi xi(  

i

j�1
ςj




vi+μ( )/σ

,

gi xi( 
����

����≤ ηi xi(  ς1



2vi+μ( )/2σ

+ 
i

j�2
ςj




2vi+μ( )/2σ

+ λ 2vi+μ( )/2vj

j− 1 ςj− 1




2vi+μ( )/2σ

 ⎡⎢⎢⎣ ⎤⎥⎥⎦≤ ηi xi(  

i

j�1
ςj




2vi+μ( )/2σ

,

(A.5)

where ψi(·)≥ [
i
j�1(1 + λ(vi+μ)/vj

j− 1 )]ψi(·), ηi(·)≥ [
i
j�1(1+

λ(2vi+μ)/2vj

j− 1 )]ηi(·) are nonnegative smooth functions. □

Proposition A.2. For i � 3, . . . , n, there exist nonnegative C2

functions Hi1(·) such that

ϑi− 1(t) ζ i− 1 
4σ− μ− vi− 1( )/σ x

qi− 1
i − ξqi− 1

i( ≤
1
8
ζ4i− 1 + Hi1 xi( ζ4i .

(A.6)

Proof. Since (vi− 1 + μ)/σ ≤ 1, it can be gotten from Lemma 5
that

x
qi− 1
i − ξqi− 1

i


≤ 21− vi− 1+μ( )/σ( ) xi 

σ/vi − ξi 
σ/vi




vi− 1+μ( )/σ( )

≤ 2 ζ i




vi− 1+μ( )/σ( )
.

(A.7)

From (A.7) and Lemma 3, one can verify that

ϑi− 1(t) ςi− 1 
4σ− μ− vi− 1( )/σ x

qi − 1
i − ξqi − 1

i 

≤ 2ϑi− 1 ςi− 1



4σ− μ− vi− 1( )/σ ςi




vi− 1+μ( )/σ ≤
1
8
ς4i− 1 + Hi1 xi( ς4i ,

(A.8)

where Hi1(·)≥ 0 is a C2 function. □

Proposition A.3. For i � 3, . . . , n, there exist nonnegative C2

functions Hi2(·) such that



i− 1

j�1

zΨ
zxj

ϑj(t)x
qj

j− 1 + fj ≤
1
8



i− 1

l�4
ζ4l + Hi2 xi( ζ4i . (A.9)

Proof. For i � 3, . . . , n, j � 1, . . . , i − 1, there are nonnega-
tive C2 functions Mij(·), Mij(·) such that
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z ξi 
σ/vi

zxj




�

zλσ/vi

i− 1 xi− 1( 

zxj




ζ i− 1


 + λσ/vi

i− 1 xi− 1( 
zλσ/vi− 1

i− 2 xi− 2( 

zxj




ζ i− 2


 + . . . + λσ/τi

i− 1 xi− 1(  × λσ/ τi− 1( )
i− 2 xi− 2(  × · · ·

× λσ/vj+2
j+1 xj+1 

zλσ/ vi+1( )
j xj 

zxj




ζj



 + λσ/vi

i− 1 xi− 1(  × λσ/ vi− 1( )
i− 2 xi− 2(  × · · · × λσ/vj+2

j+1 xj− 1 λ
σ/vj+1
j xj  ×

σ
vj

xi




σ/vj( − 1

≤ Mij xi(  

i− 1

τ�j

ςτ


 + ςj




1− vj/σ( 

+ ςj− 1




1− vj/σ( 

λσ/vj− 1
j− 1 xj− 1 ⎡⎢⎢⎣ ⎤⎥⎥⎦≤Mij xi(  

i− 1

l�j− 1
ςj




1− vj/σ( 

.

(A.10)

)en, from (A.10), we can get

zΨi

zxi

ϑj(t)x
qj

j+1 + fj ≤
4σ − vi − μ

σ
ϑj ςi




4σ− vi − μ( )/σ( )− 1
× Mij xi( 

× 
i− 1

τ�j− 1
ςT



1− vj/σ( 

xi − ξi


⎡⎢⎢⎣ ⎤⎥⎥⎦ xj+1




vj+μ( / vj+1( 

+ ψj 

j

l�1
ςl




vj+μ( /σ⎡⎢⎣ ⎤⎥⎦≤
1

8(i − 1)


i− 1

l�1
ς4l + Hi2j xi( ς4i ,

(A.11)

where Mij(·), hil(·) and Hi2j(·) are nonnegative C2 func-
tions. Let Hi2(·) � 

i− 1
j�1Hi2j(·), which directly verify

(A.9). □

Proposition A.4. For i � 3, . . . , n, j � 1, . . . , i − 1, there
exist nonnegative C2 functions Hi3(·) such that

zΨi

zxi

fi ≤
1
8



i− 1

l

ζ4l + Hi3 xi( ζ4i . (A.12)

Proof. For i � 3, . . . , n, according to Proposition A.1 and
Lemma 3, there exist nonnegative C2 functions Hi3(·) such
that

zΨi

zxi

fi ≤ ςi




4σ− μ− vi( )/σ
× ψi xi(  

i

j�1
ςi




vi+μ( )/σ

≤
1
8



i− 1

l�1
ς4l + Hi3 xi( ς4i .

(A.13)

□

Proposition A.5. For i � 3, · · · , n, there exist nonnegative C2

functions Hi4(·) such that

1
2

tr g
T
i

z2Ψi

zx2
i

gi ≤
1
8



i− 1

l�1
ζ4l + Hi2 xi( ζ4i . (A.14)

Proof. Note that

1
2

tr g
T
i

z2Ψi

zx2
i

gi  �
1
2



i− 1

k,j�1,k≠j

z2Ψi

zxkzxj

g
T
k gj + 

i�1

k�1

z2Ψi

zx2
k

gk

����
����
2

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

+ 2
i− 1

j�1

z2Ψi

zxjzxi

g
T
j gi +

z2Ψi

zx2
i

gi

����
����
2

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
.

(A.15)

First of all, one gets from (A.10) that

z2 ξi 
σ/vi

zx2
k




≤

zMik xi( 

zxk





i− 1

l�1
ζ l



1− vk/σ( )

+ Mik xi( 
σ − vk

σ
ζk



− vk/σ( ) σ

vk

xk



σ/vk− 1

+ Mik xi( 
σ − vk

σ


i− 1

l�k+1
ζ l



− vk/σ( )

Mlk xi( 

· 
l− 1

q�k− 1
ζq




1− vk/σ( ) ≤Kik xi(  

i− 1

l�1
ζ l



1− 2vk/σ( )

,

(A.16)

where Kik(·)≥ 0 is a C2 function.
From equation (A.10) and Proposition A.1, it can be

inferred that

1
2

z2Ψi

zx2
k

gk

����
����
2 ≤

1
32(i − 1)



i− 1

l�1
ζ4l + Hi4k xi( ζ4l , (A.17)
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where Hi4k(·)≥ 0 is a C2 function.
)en, one gets

1
2



i− 1

k�1

z2Ψi

zx2
k

gk

����
����
2 ≤

1
32



i− 1

l�1
ζ4l + Hi41 xi( ζ4i , (A.18)

where Hi41(·) � 
i− 1
k�1

Hi4k(·).
Besides, if k≠ j, k> j, there exist C2 functions Kikj(·)≥ 0

such that

z2 ξi 
σ/vi

zxkzxj




≤

z Mij xi( 

zxk





i− 1

l�j

ζ l


 + xj




σ/vj( − 1⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

+ Mij xi(  

i− 1

l�k

zζ l

zxk




≤ Kikj xi( 

· 
i− 1

l�1
ζ l


 + xj




σ/vj( − 1

+ xk




σ/vk( )− 1⎡⎣ ⎤⎦.

(A.19)

Meanwhile, if k≠ j, k< j, we have

z2 ξi 
σ/vi

zxkzxj




�

z2 ξi 
σ/vi

zxjzxk




≤ Kijk xi( 

· 
i− 1

l�1
ζ l


 + xk




σ/vi( )− 1
+ xj




σ/vj( − 1

⎡⎣ ⎤⎦.

(A.20)

Hence, for ∀1≤ k≠ j≤ i − 1, combining (A.19) with
(A.20) yields

z2 ξi 
σ/vi

zxkzxj




≤Kikl xi(  

i− 1

l�1
ζ l


 + xk




σ/vk( )− 1
+ xj




σ/vj( − 1

⎡⎣ ⎤⎦.

(A.21)

)en, for ∀1≤ k≠ j≤ i − 1, it can be deduced from (A.21)
and Lemma 3 that

1
2

z2Ψi

zxkzxj

g
T
k gj ≤

4σ − μ − vi

σ
Kikj xi(  

i− 1

l�1
ςl


 + xk




σ/vk( )− 1
+ xj




σ/vj( − 1

⎡⎣ ⎤⎦ × ςi




3σ− μ− vi( )/σ
xi − ξi


 × ηk 

k

m�1
ςm




2vk+μ( )/2σ⎛⎝ ⎞⎠

× ηj 

j

m�1
ςm




2vj+μ( /2σ⎛⎝ ⎞⎠ +
4σ − μ − vi(  3σ − μ − vi( 

σ2
× Mik xi(  

i− 1

l�1
ςl



1− vk/σ( )⎡⎣ ⎤⎦ × Mij xi(  

i− 1

l�1
ςl



1− vj/σ( ⎡⎣ ⎤⎦

× ςi




2σ− μ− vi( )/σ
xi − ξi


 × ηk 

k

m�1
ςm




2vk+μ( )/2σ⎛⎝ ⎞⎠ × ηj 

j

m�1
ςm




2vj+μ( /2σ⎛⎝ ⎞⎠

≤
1

32(i − 1)(i − 2)


i− 1

l�1
ς4l + Hi4kj xi( ς4i ,

(A.22)

where Hi4kj(·)≥ 0 are C2 functions. Hence, one has

1
2



i− 1

k,j�1,k≠j

z2Ψi

zxkzxj

g
T
k gj ≤

1
32



i− 1

l�1
ζ4l


 + Hi42 xi( ζ4l , (A.23)

where Hi42(·) � 
i− 1
k,j�1,k≠jHi4kj. Similarly, applying (A.10),

Proposition A.1 and Lemma 3, we get



i− 1

j�1

z2Ψi

zxjzxi

g
T
j gi ≤

1
32



i− 1

l�1
ζ4l


 + Hi43 xi( ζ4l , (A.24)

z2Ψi

zx2
i

gi

����
����
2 ≤

1
32



i− 1

l�1
ζ4l


 + Hi43 xi( ζ4l , (A.25)

where Hi43(·) and Hi44(·) are nonnegative C2 functions.
Substituting (A.18), (A.23)–(A.25) into (A.15) directly infers
(A.14). Till now, the proof of Proposition A.5 is finished.

Combining Propositions A.1–A.5 with (A.2) yields

ℓVi ≤ −
1
2

G x1( ζ41 − (n + 1 − i) 
i− 1

l�1
ζ4l + Hi xi( ζ4l

+ ϑi(t) ζ i 
4σ− μ− vi( )/σξqi

i+1 + ϑi(t) ζ i 
4σ− μ− vi( )/σ

· x
qi

i+1 − ξqi

i+1( ,

(A.26)

where Hi(·) � 
4
τ�1 Hiτ(·)≥ 0 is a C2 functions.

Design

ξi+1 � − λi xi( ⌈ςi⌉
vi+1( )/σ with λi xi( 

�
n − i + 1 + Hi xi( 

ϑi

 

1/qi

> 0.

(A.27)

)en, substituting the value of ξi+1 into (A.27) yields that
(40) holds. □
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We consider the problem of remote estimation with time delay and multiplicative noise for multichannel systems. First, we apply
the reorganized innovation analysis approach to construct the original delay system into a new delay-free system. Secondly, the
delay-free system will be reconstructed by the quadratic filtering method to obtain an augmented system. (en, Kalman filtering
theory and projection formula are used to solve two Riccati equations and one Lyapunov equation for the augmented system, and
the quadratic filter for the measurement delay system on the packet loss network can be obtained. Finally, we use a numerical
example to illustrate the effectiveness of the method.

1. Introduction

In recent years, the problem of missing measurements
caused by unreliable channel transmission has been the
focus of many scholars [1–3].(e research on the problem of
packet loss can be roughly divided into two directions: one is
to solve the linear estimator based on the minimum mean
square error method and the other is to use the quadratic
filtering method. Nahi [4] believes that the observation
sequence may contain only noise when the packets are lost
and derives a set of recursive formulas similar to Kalman
filtering in the sense of the minimum mean square error. In
[5], the Kalman filter is implemented by intermittent ob-
servation to solve the problem of information loss in large
wireless sensor networks. Zhang et al. [6] propose an esti-
mator that can be applied to an infinite horizon, and its
iteration only includes solving a Riccati equation. (is es-
timator avoids the convergence analysis problem caused by
the calculation of the Lyapunov equation in traditional
estimation methods. (e authors in [7] apply the recom-
bination innovation analysis method to obtain an optimal
linear filter, which solves the remote estimation problem of
the packet loss network with the measurement delay system
obeying Bernoulli distribution.

However, with the development of engineering tech-
nology [8–10], the performance of the traditional linear
estimator cannot meet the requirements of the real system.
(erefore, people are paying more and more attention to the
optimization design and implementation of the estimator.
De Santis et al. [11] first propose a method called quadratic
filtering, which uses a quadratic function of the measure-
ment equation to improve the performance of the filter.
Experiments show that this method is superior to the linear
filtering method in estimating performance. (is research
has attracted great attention of many scholars. Caballero-
Águila et al. [12] consider using innovative methods to solve
the least square linear estimation problem and simplify the
quadratic estimation problem into a linear estimation
problem in a suitable augmented system. After that, Cacace
et al. [13] add the packet loss factor to the measurement
model and use the quadratic filtering method to obtain a
filter iteration equation with a smaller estimation error. (e
Kronecker algebraic rules are used in [14] to discuss the
stochastic properties of augmented noise in augmented
systems. (en, the linear estimation of the discrete-time
non-Gaussian system is obtained by the projection formula.
Cacace et al. [15] propose a feedback quadratic filter that
rewrites the system model by introducing an output

Hindawi
Complexity
Volume 2020, Article ID 1725121, 9 pages
https://doi.org/10.1155/2020/1725121

mailto:xinminsong@sina.com
https://orcid.org/0000-0003-4690-5588
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/1725121


injection term and prove that the performance of the
feedback quadratic filter depends on the gain parameter of
the output term.

Meanwhile, researchers found that time delay is com-
mon due to uncertain factors such as bandwidth and net-
work failures [16–21]. Especially, the state estimation
problem has received much attention for time-delay systems
in [22–26]. (e emergence of time delay often leads to the
instability and even worsens the overall performance of the
system. (erefore, solving the time-delay problem in life is
bound to be an important subject of our research. (e
emergence of time delay often leads to the instability of the
system and even makes the overall performance of the
system worse, so solving the problem of time delay in life is
bound to be the most important research content [27]. By
solving a partial differential equation, the solution of a
continuous observation delay system is obtained. (e au-
thors in [28] transform the discrete system with observation
delay into a nonobservation delay system estimation
problem by expanding the dimensions and then obtain the
filter based on the standard Kalman filtering theory. Zhang
et al. [29] propose a new-information reorganization
analysis theory, that is, keeping observation information
unchanged and then rearranging and combining observa-
tion data from different channels and different time delays
into a system without time delay. Finally, the new obser-
vation data are introduced into the innovation sequence, and
the signal is designed by using the projection theory. Song
et al. [7] extended the abovementioned innovation
restructuring theory to the study of infinite time estimation
and made a deeper demonstration of the estimation of
multistable systems.

Inspired by the above studies, this paper considers the
quadratic filter problem of time-delay systems with multi-
channel multiplicative noise in discrete time. First of all, we
assume that the measurement has a delay phenomenon, and
the measurement is transmitted through multiple com-
munication channels. (e packet loss of each channel is
described by the Bernoulli process of independent and
identical distribution. Secondly, we use the innovation re-
combination theory to rearrange and combine the above
observation data and obtain a new time-delay free obser-
vation system structure. Finally, we construct a quadratic
filtering equation for the new time-delay free observation
system and obtain a new filter by solving two Riccati
equations and one Lyapunov equation. (e main contri-
bution of this paper is to effectively combine the quadratic
filtering method with the innovation recombination theory;
therefore, so as to obtain the quadratic filtering scheme of
the discrete-time system with packet loss and measurement
delay.

(e rest of this article is organized as follows. First,
Section 2 provides the question statement and preliminary.
Section 3 provides quadratic filter solutions of the problem
with detailed derivation processes. (is part is the key result
of this paper. (en, Section 4 is a simulation example to
prove the effectiveness of the estimator algorithm in Section
3. Finally, the summary of this paper is given in Section 5.

1.1. Notation. (roughout this technical paper, the super-
scripts ”T” and ”-1” represent the transpose and inverse of a
matrix, Rn denotes the n-dimensional Euclidean space, E ·{ }

stands for the mathematical expectation operator, ⊗ and ⊙
are used to denote the Kronecker product and the Hadamard
product, respectively, I represents an identity matrix of the
appropriate dimension, and δij � 0 for i≠ j and δii � 1. We
use diag λ1, . . . , λn  to represent a diagonal matrix, where
λ1, . . . , λn are the diagonal elements of this diagonal matrix.
If the dimensions are not explicitly stated, matrices are
assumed to have compatible dimensions with algebraic
operations.

2. Problem Statement and Preliminary

In this section, we consider a discrete time-delay system for
which the state and measurement equations are as follows:

x(k + 1) � A(k)x(k) + n(k), (1)

y0(k) � ξ(k)B0(k)x(k) + v0(k), (2)

y1(k) � θ(k)B1(k)x(k − d) + v1(k), k≥ d, (3)

where k � 0, 1, 2, 3, . . . is the time instant, d is the mea-
surement delay time, x(k) ∈Rn, y0(k) ∈Rm1 , and
y1(k) ∈Rm2 are, respectively, the system state and mea-
surement, and n(k), v0(k), and v1(k) are the system noise
and measurement noise with zero mean and covariances
E n(k)nT(j)  � Qδk,j, E v0(k)vT

0 (j)  � R0δk,j, and
E v1(k)vT

1 (j)  � R1δk,j, respectively. Here, ξ(k) �

diag ξ1(k), . . . , ξm1(k)  and θ(k) � diag θ1(k), . . . ,

θm2(k)}. (e mutually uncorrelated and identically dis-
tributed (i.i.d.) Bernoulli random variables ξi(k) and θi(k)

are employed to describe, respectively. (e packet loss
phenomenon in the m1 channels and m2 channels is with
Pr ξi(k) � 1  � αi, Pr ξi(k) � 0  � 1 − αi, Pr θi(k) � 1  �

βi, and Pr θi(k) � 0  � 1 − βi. (e initial state x(0) is a
random vector with mean μ0 and covariance matrix
E [x(0) − μ0][x(0) − μ0]

T  � P0. It should be noted that for
simplicity, we assume that B0(k) and B1(k) are constant
matrices with appropriate dimensions. (e random pro-
cesses n(k), v0(k), v1(k), ξ(k), and θ(k) are independent of
the initial state x(0).

For convenience, the measurement y(k) can be re-
written as the following:

y(k) �

y0(k), 0≤ k<d,

y0(k)

y1(k)
 , k≥ d.

⎧⎪⎪⎨

⎪⎪⎩
(4)

2.1.ProblemStatement. For the given systems (1) and (4), we
try to construct the quadratic state and measurement vector
and then get the quadratic filter iteration equation of the new
system through the projection method and the basic theory
of the Kalman filter.
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3. Main Results

Since there is a time delay d at instant k, state x(k − d) has an
additional measurement y1(k). In addition, when k≥ d, the
measurement y(k) contains the time delay. According to
[29], the linear space L y(s) 

k
s�0  contains the same in-

formation as L Y1(s) 
k−d

s�0 , Y0(s) 
k

s�k−d+1 , where the
new observations Y1(s) and Y0(s) are provided as follows:

Y1(s) �
y0(s)

y1(s + d)
 , 0≤ s≤ k − d,

Y0(s) � y0(s), k − d< s≤ k.

(5)

For convenience, Y0(s) and Y1(s) can be rewritten as

Y1(s) � H1x(s) + V1(s),

Y0(s) � H0x(s) + V0(s),
(6)

where

H1 �
ξ(s)B0

θ(s + d)B1
 ,

H0 � ξ(s)B0,

V1(s) �
v0(s)

v1(s + d)
 ,

V0(s) � v0(s).

(7)

Before introducing the quadratic filtering problem, we
will construct the augmented state and measurement vectors
by stacking the original vectors and obtaining their second-
order Kronecker powers. (en, we can get the new state
vector and the measurement vector as shown below:

x
[2]

(s + 1) � A
[2]

x
[2]

(s) + f(s) + m
(2)
n(s), (8)

where

f(s) � n
[2]

(s) + Ax(s) ⊗ n(s) + n(s)⊗Ax(s) − m
(2)
n(s), (9)

with E f(s)  � 0.
Similarly, it is not difficult to obtain the following

measurement equation:

y
[2]
0 (s) � ϕ[2]

B
[2]
0 x

[2]
(s) + l(s) + m

[2]
V0(s),

y
[2]
1 (s) �

ϕ 0

0 φ
 

[2]
B0

B1
 

[2]

x
[2]

(s) + g(s) + m
(2)
V1(s),

(10)

where

l(s) � [ξ(s) − ϕ]
[2]

B
[2]
0 x

[2]
(s) + ξ(s)B0x(s) ⊗V0(s) + V0(s)⊗ ξ(s)B0x(s)  + V

[2]
0 (s) − m

(2)
V0(s),

g(s) � H
[2]

1 x
[2]

(s) + V
[2]
1 (s) + H1x(s)⊗V1(s) + V1(s)⊗H1x(s) − m

(2)
V1(s),

H1 �
ξ(s) − ϕ 0

0 θ(s + d) − φ
 

B0

B1
 ,

(11)

where

ϕ[2]
� E ξ(s)⊗ ξ(s){ } �

ϕ11 0 · · · 0

0 ϕ22 · · · 0

⋮ ⋮ ⋱ ⋮

0 0 · · · ϕm1m1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

ϕ 0

0 φ
 

[2]

� E
ξ(s) 0

0 θ(s)

⎡⎢⎣ ⎤⎥⎦⊗
ξ(s) 0

0 θ(s)
 

⎧⎨

⎩

⎫⎬

⎭

�

diag ϕ11,φ11  0 · · · 0

0 diag ϕ22,φ22  · · · 0

⋮ ⋮ ⋱ ⋮

0 0 · · · φm2m2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(12)

in which

ϕ11 �

α1 0 · · · 0
0 α1α2 · · · 0
⋮ ⋮ ⋱ ⋮
0 0 · · · α1αm1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

ϕ22 �

α2α1 0 · · · 0

0 α2 · · · 0

⋮ ⋮ ⋱ ⋮

0 0 · · · α2αm1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

ϕm1m1
�

αm1
α1 0 · · · 0

0 αm1
α2 · · · 0

⋮ ⋮ ⋱ ⋮

0 0 · · · αm1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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φ11 �

α1β1 0 · · · 0
0 α1β1 · · · 0
⋮ ⋮ ⋱ ⋮
0 0 · · · α1βm2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

φ22 �

α2β1 0 · · · 0
0 α2β2 · · · 0
⋮ ⋮ ⋱ ⋮
0 0 · · · α2βm2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

φm2m1
�

β1α1 0 · · · 0
0 β1α2 · · · 0
⋮ ⋮ ⋱ ⋮
0 0 · · · β1βm2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

φm2m2
�

βm2
α1 0 · · · 0
0 βm2

α2 · · · 0
⋮ ⋮ ⋱ ⋮
0 0 · · · βm2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(13)

with ϕ � diag α1, . . . , αm1
 ,φ � diag β1, . . . , βm2

 , E l(s){ } �

0, and E g(s)  � 0.
(en, the new state vector and the measurement vector

can be written as

x(s) ≜
x(s)

x[2](s)
 ,

y(s)≜
y(s)

y[2](s)
 .

(14)

Finally, we can derive the augmented system as follows:

x(s + 1) � Ax(s) + CU0(s) + F(s), (15)

Y0(s) � H0x(s) + E0U0(s) + L(s), (16)

Y1(s) � H1x(s) + E1U1(s) + G(s), (17)

where

A≜
A 0
0 A[2]

 ,

C≜
0 0

In2×n2 0
 ,

F(s)≜
n(s)

f(s)
 ,

H0 ≜
ϕB0 0
0 ϕ[2]B

[2]
0

 ,

E0 ≜
0 0
0 Im2

1×m2
1

⎡⎣ ⎤⎦,

U0(s)≜
m

(2)
n(s)

m
(2)
V0

(s)

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

L(s)≜
(ξ(s) − ϕ)B0x(s) + V0(s)

l(s)
 ,

U1(s)≜
m

(2)
n(s)

m
(2)
V1

(s)

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

E1 ≜
0 0
0 Im2

2×m2
2

⎡⎣ ⎤⎦,

G(s)≜
H1x(s) + V1(s)

g(s)
 ,

H1 ≜

ϕ 0
0 φ

 
B0

B1
  0

0
ϕ 0
0 φ

 

[2]
B0

B1
 

[2]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(18)

Note that the new measurements Y0(s) and Y1(s) are
delay free. F(s){ }, L(s){ }, and G(s){ } for all s and the initial
x(0) are mutually independent. Moreover, F(s){ }, L(s){ },
and G(s){ } are zero mean such that E F(s)FT(j)  �

QF(s)δs,j, E L(s)LT(j)  � QL(s)δs,j, and E G(s)GT(j)  �

QG(s)δs,j, and the detailed calculation processes are given
below:

QF(s) �
E n(s)nT(s)  E n(s)fT(s) 

E f(s)nT(s)  E f(s)fT(s) 

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦

�
E n(s)nT(s)  E n(s)n[2]T(s) 

E n[2](s)nT(s)  ∗1

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦,

(19)

where

∗1 � E n(s)n
T
(s) ⊗ n(s)n

T
(s)   − m

(2)
n(s)m

(2)T
n(s)

+(I + Π) AD(s)
T

 ⊗E n(s)n
T
(s)  (I + Π).

(20)

It should be pointed out that the entries of
E n(s)n[2]T(s) , E [n(s)nT(s)]⊗ [n(s)nT(s)] , and
E n(s)nT(s)  are known since they are the elements of m

(3)
n(s),

m
(4)
n(s), and m

(2)
n(s), respectively.

For convenience, let us define

D
(0,2)

(s)≜E x
[2]

(s) ,

D
(1,2)

(s)≜E x(s)x
[2]T

(s) ,

D
(2,2)

(s)≜E x
[2]

(s)x
[2]T

(s) .

(21)

(en, we can calculate that
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D
(0,2)

(s + 1) � E x
[2]

(s + 1)  � vecT
(D(s + 1)),

D
(1,2)

(s + 1) � E x(s + 1)x
[2]T

(s + 1) 

� E [Ax(s) + n(s)] A
[2]

x
[2]

(s) + f(s) + m
(2)
n(s)  

� AD
(1,2)

(s)A
[2]T

+ E n(s)n
[2]T

(s) ,

D
(2,2)

(s + 1) � E x
[2]

(s + 1)x
[2]T

(s + 1) 

� E A
[2]

x
[2]

(s) + f(s) + m
(2)
n(s)  × A

[2]
x

[2]
(s) + f(s) + m

(2)
n(s)  

� A
[2]

D
(2,2)

(s)A
[2]T

+ E n
[2]

(s)n
[2]T

(s)  +(I + Π) × AD(s)A
T

 ⊗E n(s)n
T
(s)  (I + Π),

(22)

where Π is the matrix which guarantees that
n(s)⊗Ax(s) � Π(Ax(s)⊗ n(s)).

Following the similar way for QF(s), one has

QL(s) � E L(s)LT
(s) 

�
Γ1 ⊙ B0D(s)BT

0(  + E V0(s)VT
0 (s)  ∗2

∗ T
2 ∗3

⎡⎣ ⎤⎦,

QG(s) � E G(s)GT
(s) 

�
diag Γ1,Λ1 ⊙ B1D(s)BT

1(  + E V1(s)VT
1 (s)  ∗ 4

∗ T
4 ∗ 5

⎡⎣ ⎤⎦,

(23)

where

∗2 � E V0(s)V
[2]T
0 (s)  + E [ξ(s) − ϕ][ξ(s) − ϕ]

[2]T
 B0D

(1,2)
(s)B

[2]T
0 ,

∗3 � Γ1 ⊗Γ1( ⊙ B
[2]
0 D

(2,2)
(s)B

[2]T
0  + E V

[2]
0 (s)V

[2]T
0 (s)  − m

(2)
V0(s)m

(2)T
V0(s)

+ E (ξ(s) − ϕ)
[2]

 B
[2]
0 D

(0,2)
(s)m

(2)T
V0(s) + m

(2)
V0(s)D

(0,2)T
(s)B

[2]T
0 E (ξ(s) − ϕ)

[2]T
 

+ I + Π1(  Γ1 ⊙ B0D(s)B
T
0 ⊗E V0(s)V

T
0 (s)   I +Π1( ,

∗4 � E H2H
[2]T

2  BD
(1,2)

(s)B
[2]T

  + E V1(s)V
[2]T
1 (s) ,

∗5 � diag Γ1,Λ1 ⊗ diag Γ1,Λ1 ( ⊙ B
[2]
1 D

(2,2)
(s)B

[2]T
1  + E V

[2]
1 (s)V

[2]T
1 (s) 

+ E H
[2]

2 B
[2]

D
(0,2)

(s)m
(2)T
V1(s) + m

(2)
V1(s)D

(0,2)T
(s)B

[2]T
E H

[2]T

2  − m
(2)
V1(s)m

(2)T
V1(s)

+ I + Π2(  diag Γ1,Λ1 ( ⊙ B
[2]
1 D

(2,2)
(s)B

[2]T
1 ⊗E V1(s)V

T
1 (s)   I +Π2( ,

(24)

where

Γ1 �

α1 1 − α1(  0 · · · 0
0 α2 1 − α2(  · · · 0
⋮ ⋮ ⋱ ⋮
0 0 · · · αm1

1 − αm1
 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

Λ1 �

β1 1 − β1(  0 · · · 0
0 β2 1 − β2(  · · · 0
⋮ ⋮ ⋱ ⋮
0 0 · · · βm2

1 − βm2
 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

H2 �
ξ(s) − ϕ 0

0 θ(s + d) − φ
 ,

B �
B0
B1

 .

(25)

It should be noted thatΠ1 andΠ2 are the matrices which
ensure V0(s)⊗H0x(s) � Π1(H0x(s)⊗V0(s)) and V1(s)⊗
H1x(s) � Π2(H1x(s)⊗V1(s)). (en, notice that the entries
of E V0(s)VT

0 (s) , E [V0(s)VT
0 (s)]⊗ [V0(s)VT

0 (s)] , E V
[2]
0

(s)VT
0 (s)}, E V1(s)VT

1 (s) , E V
[2]
1 (s)VT

1 (s) , and E [V1

(s)VT
1 (s)]⊗ [V1(s)VT

1 (s)]} are known because they are the
elements of m

(2)
V0(s), m

(4)
V0(s), m

(3)
V0(s), m

(2)
V1(s), m

(3)
V1(s), and m

(4)
V1(s),

respectively.
We define the quadratic state estimator x(s + 1 | s) as the

projection of x(s + 1) onto the linear space
L Y1(i) 

k−d

i�0 , Y0(i) 
k

i�k−d+1 . In order to derive the pro-
jection, we give the following definitions of the innovation
sequence:
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w(s, 0) � Y0(s) − Y0(s) � H0x(s) + L(s), (26)

w(s, 1) � Y1(s) − Y1(s) � H1x(s) + G(s), (27)

where Y1(s, 1) is the projection of Y1(s) onto the linear
space of L Y1(i) 

s−1
i�0  and Y0(s, 0) is the projection of

Y0(s) onto the linear space ofL Y1(i) 
k−d

i�0 , Y0(i) 
k

i�k−d+1 .
(en, we define x(s, 0) � x(s) − x(s, 0) and x(s, 1) �

x(s) − x(s, 1). It should be noted that the definitions of
x(s, 0) and x(s, 1) are similar to Y0(s, 0) and Y1(s, 1). In
addition, we reckon that w(i, 1){ }

k−d
i�0 , w(i, 0){ }

k
i�k−d+1  is an

independent white noise and spans the same linear space as
L Y1(i) 

k−d

i�0 , Y0(i) 
k

i�k−d+1 . Next, we derive the covari-
ance Rw(s,0) and Rw(s,1) of the innovation sequence. For
convenience, the following definitions are given:

P0(s)≜E x(s, 0)xT
(s, 0) ,

P1(s)≜E x(s, 1)xT
(s, 1) ,

D(s)≜E x(s)xT
(s) .

(28)

(en, the covariance matrices of the innovation se-
quences (26) and (27) can be derived by the following
formula:

Rw(s,0) � E w(s, 0)wT
(s, 0)  � H0P0(s)HT

0 + QL(s),

Rw(s,1) � E w(s, 1)wT
(s, 1)  � H1P1(s)HT

1 + QG(s).
(29)

Finally, the covariance matrices P0(s + 1) and P1(s + 1)

can be derived as

P1(s + 1) � AP1(s)AT
+ QF(s) − AP1(s)HT

1R
−1
w(s,1)H1P1(s)AT

,

(30)

P1(0) � D1(0), (31)

P0(s + 1) � AP0(s)AT
+ QF(s) − AP0(s)HT

0R
−1
w(s,0)H0P0(s)AT

,

(32)

P0(k − d + 1) � P1(k − d + 1), (33)

and the Lyapunov equation D(s + 1) can be calculated by

D(s + 1) � AD(s)AT
+ QF(s). (34)

Theorem 1. For given systems (15)–(17), the quadratic filter
x(k | k) can be derived as

x(k | k) � x(k, 0) + P0(k)HT
0R

−1
w(k,0) Y0(k) − H0x(k)

− E0U0(k),

(35)

where the estimator x(k | 0) is computed by

x(s + 1, 0) � Ax(s, 0) + CU0(s) + AP0(s)HT
0R

−1
w(s,0) Y0(s)

− H0x(s) − E0U0(s),

(36)

with the initial value x(k − d + 1, 0) � x(k − d + 1, 1), and
x(k − d + 1, 1) is obtained by

x(s + 1, 1) � Ax(s, 1) + CU0(s) + AP1(s)HT
1R

−1
w(s,1) Y1(s)

− H1x(s) − E1U1(s).

(37)

Proof. According to (15), we can directly prove (38) by the
projection theorem:

x(s + 1, 0) � Ax(s, 0) + E x(s + 1)wT
(s, 0) R−1

w(s,0)w(s, 0)

� Ax(s, 0) + CU0(s) + AP0(s)HT
0R

−1
w(s,0)

× Y0(s) − H0x(s) − E0U0(s) .

(38)

(en, we obtain the estimate error x(s + 1, 0) by sub-
tracting (38) from (15):

x(s + 1, 0) � Ax(s, 0) + F(s) − AP0(s)HT
0R

−1
w(s,0)w(s, 0).

(39)

(erefore, the prediction error covariance P0(s + 1) can
be calculated from (39):

P0(s +1) �E x(s +1,0)xT
(s +1,0) 

�AP0(s)AT
+QF(s) −AP0(s)HT

0R
−1
w(s,0)H0P0(s)AT

.

(40)

Similar to formula (39), we can deduce (41) as follows:

x(s + 1, 1) � Ax(s, 1) + E x(s + 1)wT
(s, 1) R−1

w(s,0)w(s, 1)

� Ax(s, 1) + CU0(s) + AP1(s)HT
0R

−1
w(s,1)

× Y1(s) − H1x(s) − E1U1(s) .

(41)

By combining (15) and (41), one has

x(s + 1, 1) � Ax(s, 1) + F(s) − AP1(s)HT
1R

−1
w(s,1)w(s, 1).

(42)

As such, we get the Riccati equation:

P1(s + 1) � E x(s + 1, 1)xT
(s + 1, 1) 

� AP1(s)AT
+ QF(s) − AP1(s)HT

1R
−1
w(s,1)

× H1P1(s)AT
. (43)

By the definition of x(k − d + 1, 0) and x(k − d + 1, 1),
we can conclude that x(k − d + 1, 0) � x(k − d + 1, 1).
(erefore, formula (33) is proved.

(e proof is finished. □
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4. Simulation Results

In this section, we demonstrate the effectiveness of the
proposed algorithm by a simulation example. (e linear
discrete-time system can be written as follows:

x(k + 1) �
0.88 0.1

0.45 0.28
 x(k) + n(k),

y0(k) � ξ(k)
1 2

2 1
 x(k) + v0(k),

y1(k) � θ(k)
2 1

1 2
 x(k) + v1(k),

(44)

with initial values given as x(0) �
0.6

−0.3 , x(0) �

0
0 , Q �

0.01 0
0 0.0225 , D(0) � P(0) �

1.08 0
0 0.03 ,

ϕ � diag 0.6, 0.7{ }, φ � diag 0.7, 0.9{ }, R0 �
0.0625 0

0 0.16 ,

andR1 �
0.04 0
0 0.09 ; n(k), v0(k), and v1(k) are the

white noises with zero mean and covariances Q, R0, and R1,
respectively.

We use MATLAB to simulate the performance of the
estimator in (eorem 1, and the numerical results are
shown in Figures 1–4. First, it can be seen that Figures 1
and 2 represent quadratic estimators with measurement

delays, and Figures 3 and 4 reflect the quadratic esti-
mation results without delays. (en, by comparing
Figures 1 and 3 and Figures 2 and 4, it can be observed
that the tracking effect of Figures 1 and 2 is better.
(erefore, this experiment shows that the information
from the measurement delay channel is really important
in the design of the quadratic estimator.

State
Estimator (delay)

0 10 20 30 40 50

x1 with delay

60 70 80 90 100
–0.6

–0.4

–0.2

0

0.2

0.4

0.6

Figure 1: (e first state component x1(k) and the filter x(k | k)

(delay).

State
Estimator (delay)

0 10 20 30 40 50 60 70 80 90 100

x2 with delay

–0.4

–0.3

–0.2

–0.1

0

0.1

0.2

0.3

0.4

Figure 2: (e second state component x2(k) and the filter x(k | k)

(delay).

State
Estimator (no delay)

0 10 20 30 40 50 60 70 80 90 100

x1 no delay

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

Figure 3:(e first state component x1(k) and the filter x(k | k) (no
delay).
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5. Conclusion

We considered the problem of remote estimation with time
delay and multiplicative noise for multichannel systems. At
first, we applied the reorganized innovation analysis approach
to construct the original delay system into a new delay-free
system. Secondly, the delay-free system was reconstructed by
the quadratic filtering method to obtain an augmented system.
(en, the Kalman filtering theory and the projection formula
were used to solve two Riccati equations and one Lyapunov
equation for the augmented system, and the quadratic filter for
the measurement delay system on the packet loss network was
obtained. Finally, simulation experiments proved the effec-
tiveness of the estimator algorithm.
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+is paper concerns the synchronization problem for a class of stochastic memristive neural networks with inertial term, linear
coupling, and time-varying delay. Based on the interval parametric uncertainty theory, the stochastic inertial memristor-based
neural networks (IMNNs for short) with linear coupling are transformed to a stochastic interval parametric uncertain system.
Furthermore, by applying the Lyapunov stability theorem, the stochastic analysis approach, and the Halanay inequality, some
sufficient conditions are obtained to realize synchronization in mean square. +e established criteria show that stochastic
perturbation is designed to ensure that the coupled IMNNs can be synchronized better by changing the state coefficients of
stochastic perturbation. Finally, an illustrative example is presented to demonstrate the efficiency of the theoretical results.

1. Introduction

+e memristor [1] is a kind of a nonlinear resistor with
memory and nanoscale, which is widely applied in chaotic
circuits, artificial neural networks, and so on. In [2], the
relevant mechanisms of neural networks, such as long-term
potentiation and spike time-dependent plasticity, are pre-
sented by applying basic electric circuits, and more complex
mechanisms are constructed to mimic the synaptic con-
nections in a (human) brain. During neuron transmission,
synchronous resonance is a very important biological
phenomenon. In recent years, a lot of systems have been
investigated to realize synchronization such as time-varying
switched systems, MNNs, and BAM neural networks [3–19].
In [8], a new switching pinning controller was designed to
finite-time synchronization in nonlinear coupled neural
networks by regulating a parameter. +erefore, it is neces-
sary for synchronization to design a suitable controller, such
as impulsive controller [11, 12, 20–22], nonchattering
controller [19], and switching controller [6–8]. Based on
parametric uncertainty and state dependency in the con-
nection weight matrices of MNNs, the connection weight

matrices jump in certain intervals. Duan and Huang [23]
proposed periodicity and dissipativity for memristor-based
neural networks with mixed delays involving both time-
varying delays and distributed delays via using Mawhin-like
coincidence theorem, inclusion theory, and M-matrix
properties. +e authors established two different types of
exponential synchronization criteria for the coupled MNNs
based on the master-slave (drive response) concept and
discontinuous state feedback controller, and simultaneously,
an estimation of the exponential synchronization rate was
estimated (see [24]). It is worth pointing out that, the au-
thors in [25, 26] added the linear coupling and interval term
into MNNs to achieve two different synchronization via
applying the Halanay inequality [27] and the Lyapunov
method. However, there were essential differences between
the synchronization results established by these two litera-
ture studies. In [25], the differential inclusion method was
applied to transform the coupled connection weight ma-
trices; moreover, a discontinuous controller was designed to
ensure that multiple IMMNs can be synchronized. Li and
Zheng [26] demonstrated that the coupled connection
weight matrices can be decomposed by interval analysis [28],
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which by weakening the matrices satisfies the conditions.
Besides, the new synchronization criteria for IMMNs with
linear coupling were established.

As we know, noise plays an important role in syn-
chronization since it can stabilize an unstable system. In
recent years, many scholars are very interested in syn-
chronization of stochastic networks with time-varying de-
lays [2, 29–38]. In 2013, the Jensen integral inequality was
improved by the so-called Wirtinger-based integral in-
equality [33]. Furthermore, Gao et al. [29] showed that a
state feedback controller and an adaptive updated law used
to guarantee stochastic memristor-based neural networks
with noise disturbance can be asymptotically synchronized.
In [38], the authors investigated the synchronization of a
stochastic multilayer dynamic network with time-varying
delays and additive couplings by designing two pinning
controllers. +erefore, taking stochastic perturbation into
complex neural networks is very necessary and important.

Note that the stochastic systems were mainly fist-order
neural networks in pervious works. In this paper, based on
the model of [26], considering xi(t), xi(t − τ(t)),

fi(xi(t)), fi(xi(t − τ(t))) will produce errors, the new
model of the stochastic coupled inertial memristor-based
neural networks is constructed. Meanwhile, new results on

synchronization in mean square are proposed. +e main
contributions of this paper are high-lighted as follows:

(i) Stochastic perturbation is taken into account in the
second-order [39] coupled memristor-based neural
networks with inertial term. Synchronization
analysis becomes more challenging for the system
with higher order and higher dimension.

(ii) +e criterion for stochastic inertial memristor-
based neural networks with linear coupling is
proposed by applying the stochastic analysis tech-
niques and the vector Lyapunov function method to
realize synchronization in mean square.

(iii) An illustrative example is given to illustrate that
system (1) can be synchronized under the coupled
network with five nodes. Besides, system (1) has
strong anti-interference.

2. Model Formulation and Preliminaries

In this paper, we consider the model of stochastic coupled
inertial memristor-based neural networks (IMMNs for
short) with N coupled identical nodes described by the
following equation:

d
dxi(t)

dt
  � − D

dxi(t)

dt
− Cxi((t)) + A xi(t)( f xi(t)(  + B xi(t)( f xi(t − τ(t))( 

+ c 
N

j�1
GijΓ

dxi(t)

dt
+ xj(t) ⎞⎠dt + σ1xi((t)) + σ2xi(t − τ(t))(

+ σ3f xi(t)(  + σ4f xi(t − τ(t))( dwt, i ∈ N,

(1)

where xi(t) � (xi1(t), xi2(t), . . . , xin(t))⊤ ∈ Rn, i ∈ N,
D � diag(β1, β2, . . . , βn), C � diag(c1, c2, . . . , cn), and
σi � diag(σi1, σi2, . . . , σin), i � 1, 2, 3, 4, are the constant
positive definite matrices and 0< τ(t)< τ; the connection
memristive weight matrix A(xi(t)) � [akj(xij(t))]n×n and
the delayed connection of the current voltage characteristics
B(xi(t)) � [bkj(xij(t))]n×n satisfy the following conditions:

akj xij(t)  �

a∗kj, xij



<Tj,

b∗∗kj , xij



>Tj,

⎧⎪⎨

⎪⎩

bkj xij(t)  �

a∗kj, xij



<Tj,

b∗∗kj , xij



<Tj,

⎧⎪⎨

⎪⎩

(2)

where T> 0 is the switching jump and a∗kj, a∗∗kj , , b∗kj, and b∗∗kj

are all constants, k, j ∈ n. +e network coupling strength
c> 0 is a constant, and Γ � diag(c1, c2, . . . , cn) ∈ Rn×n is the
inner coupling matrix. G � (Gij)N×N is the constant cou-
pling configuration matrix representing the topological
structure of the system. Gij > 0 is defined as a link from node
i to node j, otherwise, Gij � 0. Besides, G satisfies

Gii � − 
N

j�1,j≠ i

Gij, i ∈ N. (3)

+e initial condition associated with system (1) is given
as xi(s) � φi(s) ∈ c1([− τ, 0], Rn), i ∈ N. And, f(xi(t)) �

(f1(xi1(t)), f2(xi2(t)), . . . , fn(xin(t)))⊤ denotes the out-
put of the neuron unit, which satisfies the following
assumption:

(H1): for any two different u, v ∈ R, there exists a
positive scalar li > 0(i ∈ n) such that |fi(u) − fi(v)|≤
li|u − v|.

For stochastic systems, the It o formula plays an im-
portant role in the synchronization. Consider a general
stochastic system dx(t) � f(x(t), t)dt + g(x(t), t)dwt on
t> t0 with an initial value x(t0) � x0 ∈ Rn, where f: ∈ Rn ×

R+⟶ Rn×m and g: ∈ Rn × R+⟶ Rn×m. Denote a general
nonnegative function V(x, t) on Rn × R+ to be continuously
twice differentiable in x and once differentiable in t, an
stochastic differential operator tdV(x, t) � LV(x, t)dt +

Vx(x, t)g(x, t)dwt,
whereLV(x, t) � Vt (x, t) + Vx(x, t)f(x, t) +(1/2)trac

[g⊤(x, t)Vxx(x, t)g(x, t)], Vt(x, t) � zV(x, t)/zt, Vx(x, t)

� (zV(x, t)/zx1, zV(x, t)/zx1, . . . , zV(x, t)/zxn),
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Vxx(x, t) � (z2V(x, t)/zxizxj)n×m, and E[dV(x, t)] � E

[LV((x, t)dt].
Considering akj(xij) and bkj(xij) are bounded, there-

fore, A(xi(t)) ∈ [A, A], B(xi(t)) ∈ [B, B], where A �

(akj)n×n, A � (akj)n×n, B � (bkj)n×n, andB � (bkj)n×n with
akj � min a∗kj, a∗∗kj , akj � max a∗kj, a∗∗kj , bkj � min b∗kj,

b∗∗kj }, and bkj � max b∗kj, b∗∗kj .

By introducing the variable transformation,

ri(t) �
dxi(t)

dt
+ xi(t). (4)

System (1) can be transformed into

dxi(t) � − xi(t) + ri(t) dt,

dri(t) � − Θxi(t) − Λri(t) + A, A f xi(t)(  + B, B f xi(t − τ(t))(  + c 
N

j�1
GijΓri(t)⎛⎝ ⎞⎠dt

+ σ1xi(t) + σ2xi(t − τ(t)) + σ3f xi(t)(  + σ4f xi(t − τ(t))( ( dwt, i ∈ N,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(5)

where Θ � I + C − D,Λ � D − I.
Based on interval uncertainty theory, the intervals

[A, A] and [B, B] can be decomposed into [A, A] � A0 +

[− 1, 1]HA and [B, B] � B0 + [− 1, 1]HB, where A0 � (A +

A)/2, HA � (1/2)(A − A) andB0 � (B +B)/2, HB � (1/2)

(B − B).
+en, system (5) can be equivalently expressed as

dxi(t) � − xi(t) + ri(t) dt,

dri(t) � − Θxi(t) − Λri(t) + A0f xi(t)(  + B0f xi(t − τ(t))(  + EΔ(t) + c 
N

j�1
GijΓri(t)⎛⎝ ⎞⎠dt

+ σ1xi(t) + σ2xi(t − τ(t)) + σ3f xi(t)(  + σ4f xi(t − τ(t))( ( dwt, i ∈ N,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(6)

where

EΔ((t)) �
1
2

[− 1, 1] A − A( f xi(t)(  +
1
2

[− 1, 1] B − B( f xi(t − τ(t))( 

� [− 1, 1] HAf xi(t)(  + HBf xi(t − τ(t))( ( ,

(7)

and EΔ(t) is satisfied:

(EΔ(t))
⊤

(EΔ(t))≤ HAf xi(t)( ( 
⊤

HAf xi(t)( (  + HBf xi(t − τ(t))( ( 
⊤

HBf xi(t − τ(t))( ( . (8)

Let x(t) � (x1(t)⊤,x2(t)⊤, . . . ,xN(t)⊤)⊤, r(t) � (r1
(t)⊤, r2(t)⊤, .. . , rN(t)⊤)⊤, f(x(t)) � (f(x1(t))⊤,f(x2 (t))⊤,

. .. ,f(xN(t))⊤)⊤,Θ� IN⊗Θ,Λ� IN⊗Λ,G� G⊗Γ, A0 � IN⊗
A0,B0 � IN⊗B0, EΔ(t) � IN⊗EΔ(t),HA � IN⊗ HA,HB �

IN⊗HB, and σi � IN⊗σi, i � 1,2,3,4. For simplicity, we use
x,r, andxτ instead of x(t), r(t), andx(t − τ(t)) in the fol-
lowing sections. +en, system (6) can be written as

dx � (− x + r)dt,

dr � − Θx − Λr + A0f(x) + B0f xτ(  + EΔ(t) + cGr( dt

+ σ1x + σ2xτ + σ3f(x) + σ4f xτ( ( dwt, i ∈ N.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(9)
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Definition 1. +e stochastic coupled IMMNs (5) are said to
be globally synchronized in the mean square sense if
E[‖xi(t) − xj(t)‖2]⟶ 0 as t⟶ +∞ for any given initial
conditions ψi(0), where i, j � 1, 2, . . . , N.

Lemma 1 (see [1]). Let G be an N × N matrix in the set
T(R; k). 4en, the (N − 1) × (N − 1) matrix H defined by
H � MGJ satisfies MG � HM, where G and J are given,
respectively, by

M �

1 − 1 0 · · · 0 0

0 1 − 1 · · · 0 0

⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0 0 0 · · · 1 − 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(N− 1)×N

,

J �

1 1 1 · · · 1

0 1 1 · · · 1

⋮ ⋮ ⋱ ⋮ ⋮

0 0 · · · 1 1

0 0 · · · 0 1

0 0 · · · 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

N×(N− 1)

,

(10)

and T(R, K) is the set of matrices with entries in R such that
the sum of the entries in each row is equal to R.

Lemma 2. For any positive definite symmetric constant
matrix M ∈ Rn×n, if there exist the scalars r1 < r2 and vector
function w: [r1, r2]⟶ Rn such that the concerned inte-
grations are well defined, then the following inequality holds:


r2

r1

w(s)ds 

⊤

M 
r2

r1

w(s)ds≤ r12 
r2

r1

w
⊤

(s)Mw(s)ds,

(11)

where r12 � r2 − r1.

Lemma 3. Given any real matrics X andY and Q> 0 with
appropriate dimensions, then the following matrix inequality
holds:

X
⊤

Y + Y
⊤

X≤X
⊤

QX + Y
⊤

Q
− 1

Y. (12)

Lemma 4 (see [40]). 4e LMI S11(x) S12(x)

S⊤12(x) S22(x)
 > 0, where

S11(x) � S⊤11(x), S22(x) � F⊤(x), and S12(x) depend on x, is
equivalent to each of the following conditions:

(i) S11(x)> 0, S22(x) − S⊤12(x)S− 1
11(x)S12(x)> 0

(ii) S22(x)> 0, S11(x) − S⊤12(x)S− 1
22(x)S12(x)> 0

3. Main Results

Theorem 1. Under the assumption (H1), 0< τ(t)< τ, and
_τ(t)≤ μ(μ> 0), the stochastic coupled IMMNs (1) are globally
synchronized in mean square sense if there exist positive def-
inite symmetric matricesP, Q, Vi ∈ Rn×n, i � 1, 2, 3, 4, 5, 6, and
positive diagonal matrices R, S, T, R, S1, S2, S3, S4, S5 ∈ Rn×n,
such that the following matrix inequalities hold: Φ< 0 and
Π − ΨΦ− 1Ψ> 0, where

Φ �

Φ11 Φ12 Φ13

⋆ Φ22 Φ23

⋆ ⋆ Φ33

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Ψ �

P − QΘ1 − τ2R − V1 +
1
τ
V1S

− 1
V4 V1 +

1
τ
V1S

− 1
V5 V1 +

1
τ
V1S

− 1
V6

− V2 +
1
τ
V2S

− 1
V4 V2 +

1
τ
V2S

− 1
V5 V2 +

1
τ
V2S

− 1
V6

− V3 +
1
τ
V3S

− 1
V4 V3 +

1
τ
V3S

− 1
V5 V3 +

1
τ
V3S

− 1
V6

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Π �

Π44 + c44 V4 +
1
τ
V4S

− 1
V5 V4 +

1
τ
V4S

− 1
V6

⋆ 2V5 +
1
τ
V5S

− 1
V5 V5 +

1
τ
V5S

− 1
V6

⋆ ⋆ 2V6 − R +
1
τ
V6S

− 1
V6

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(13)
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with

Φ11 � − 2P + τ2 − 1 R + H
⊤
1 Q + τ2S H1 +

1
τ
V1S

− 1
V1 + τ2Θ⊤1 RΘ1 + c11,

Φ12 � H
⊤
1 Q + τ2S H2 +

1
τ
V1S

− 1
V2,

Φ13 � R +
1
τ
V1S

− 1
V3,

Φ22 � H
⊤
2 Q + τ2S H2 +

1
τ
V2S

− 1
V2 + c22,

Φ23 �
1
τ
V2S

− 1
V3,

Π44 � τ2 cH − Λ1( 
⊤R cH − Λ1(  + τ2R + 2Q cH − Λ1(  − 2V4 +

1
τ
V4S

− 1
V4,

c44 � Q + τ2 cH
⊤

− Λ⊤1( R  A
N− 1
0 + H

N− 1
A S1 A

N− 1⊤
0 + H

N− 1⊤
A  Q + τ2R cH − Λ1(  

+ Q + τ2 cH
⊤

− Λ⊤1( R  B
N− 1⊤
0 + H

N− 1⊤
B S2 B

N− 1
0 + H

N− 1
B  Q + τ2R cH − Λ1(  ,

c11 � 2 H
⊤
1 Q + τ2S H3 + τ2Θ⊤1 R A

N− 1
0 + H

N− 1
A  L + L

⊤
S

− 1
1 + S

− 1
4 + T L

+ L
⊤

H
⊤
3 Q + τ2S H3 + τ2 A

N− 1⊤
0 + H

N− 1⊤
A R A

N− 1
0 + H

N− 1
A  L

+ L
⊤

H
⊤
3 Q + τ2S H4 + τ2 A

N− 1⊤
0 + H

N− 1⊤
A R B

N− 1
0 + H

N− 1
B  

× S5 H
⊤
4 Q + τ2S H3 + τ2 B

N− 1⊤
0 + H

N− 1⊤
B R A

N− 1
0 + H

N− 1
A  L

+ H
⊤
1 Q + τ2S H4 + τ2Θ⊤1 R B

N− 1
0 + H

N− 1
B  S3

× H
⊤
4 Q + τ2S H1 + τ2 B

N− 1⊤
0 + H

N− 1⊤
B RΘ1 ,

c22 � L
⊤

S
− 1
2 + S

− 1
3 + S

− 1
5 + H

⊤
4 Q + τ2S H4 − (1 − μ)T L + 2H

⊤
2 Q + τ2S H4L

+ τ2L⊤ B
N− 1⊤
0 + H

N− 1⊤
B R B

N− 1
0 + H

N− 1
B L + H

⊤
2 Q + τ2S H3S4H

⊤
3 Q + τ2S H2.

(14)

Proof. For convenience, we set

g(t) � − Θx − Λr + A0f(x) + B0f xτ(  + EΔ(t) + cGr(t),

y(t) � σ1x + σ2xτ + σ3f(x) + σ4f xτ( .

(15)

Consider the following Lyapunov–Krasovskii functional:

V(t, x) � 
6

i�1
Vi(t, x), (16)

where

V1(t, x) � x(t)
⊤

M
⊤

PMx(t),

V2(t, x) � r(t)
⊤

M
⊤

QMr(t),

V3(t, x) � 
t

t− τ(t)
f(x(s))

⊤
M
⊤

TMf(x(s))ds,

V4(t, x) � τ 
0

− τ


t

t+θ
_x(s)
⊤

M
⊤

RM _x(s)ds dθ,

V5(t, x) � τ 
0

− τ


t

t+θ
y(s)
⊤

M
⊤

SMy(s)ds dθ,

V6(t, x) � τ 
0

− τ


t

t+θ
g(s)
⊤

M
⊤RMg(s)ds dθ,

(17)
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for simplicity, we use _x(t) instead of dx(t)/dt in the paper.
By the It o formula, we can calculate LV(t, x) along

system (9), and then we have

LV(t, x) � 
6

i�1
LVi(t, x), (18)

and LVi(t, x), i � 1, 2, 3, 4, 5, 6 are calculated along system
(9) as follows:

LV1(t) � 2x
⊤

M
⊤

P(− x + r)≜ ξ(t)
⊤Ω1ξ(t), (19)

where

ξ(t)
⊤

� x(t)
⊤

M
⊤

, x(t − τ(t))
⊤

M
⊤

, x(t − τ)
⊤

M
⊤

, r(t)
⊤

M
⊤

, r(t − τ)
⊤

M
⊤

, 
t

t− τ
Mg(s)ds 

⊤

 ,

Ω1 �

− 2P 0 0 P 0 0

0 0 0 0 0 0

0 0 0 0 0 0

P 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(20)

LV2(t) � 2r
⊤

M
⊤

QMg(t) + y(t)
⊤

M
⊤

QMy(t)

≤ ξ(t)
⊤Ω2ξ(t) + 2x

⊤
M
⊤

H
⊤
1 QH3Mf(x) + 2x

⊤
M
⊤

H
⊤
1 QH4Mf xτ( 

+ 2r
⊤

M
⊤

Q AN− 1
0 + HN− 1

A Mf(x) + 2r
⊤

M
⊤

Q BN− 1
0 + HN− 1

B Mf xτ( 

+ 2x
⊤
τ M
⊤

H
⊤
2 QH3Mf(x) + 2x

⊤
τ M
⊤

H
⊤
2 QH4Mf xτ(  + f(x)

⊤
M
⊤

H
⊤
3 QH3Mf(x)

+ 2f(x)
⊤

M
⊤

H
⊤
3 QH4Mf xτ(  + f xτ( 

⊤
M
⊤

H
⊤
4 QH4Mf xτ( ,

(21)

where

Mσi � HiM, (i � 1, 2, 3, 4), MΘ � Θ1M, MΛ � Λ1M, MA0 � AN− 1
0 M,

MB0 � BN− 1
0 M, MHA � HN− 1

A M, MHB � HN− 1
B M,

Ω2 �

H⊤1 QH1 H⊤1 QH2 0 − QΘ1 0 0

H⊤1 QH2 H⊤2 QH2 0 0 0 0

0 0 0 0 0 0

− QΘ1 0 0 2Q cH − Λ1(  0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(22)

LV3(t) � f((x))
⊤

TMf(x) − (1 − _τ(t))f xτ( 
⊤

M
⊤

TMf xτ( 

≤ f(x)
⊤

M
⊤

TMf(x) − (1 − μ)f xτ( 
⊤

M
⊤

TMf xτ( ,
(23)

LV4(t) � τ2x(t)
. ⊤

M
⊤

RMx(t)
.

− τ 
t

t− τ
_x(s)
⊤

M
⊤

RM _x(s)ds, (24)

where _τ(t) is the derivative of τ(t). By applying Lemma 2, one has
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− τ 
t

t− τ
_x(s)
⊤

M
⊤

RM _x(s)ds≤ − 
t

t− τ
M _x(s)ds 

⊤

R 
t

t− τ
M _x(s)ds , (25)

then LV4(t)≤ ξ(t)⊤Ω3ξ(t),where

Ω3 �

τ2 − 1( R 0 R − τ2R 0 0

0 0 0 0 0 0

R 0 − R 0 0 0

− τ2R 0 0 τ2R 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

LV5(t) � τ2y(t)
⊤

M
⊤

SMy(t) − τ 
t

t− τ
y(s)
⊤

M
⊤

SMy(s)ds.

(26)

Recalling (9) and (15), it is easy to see that the following
equalities hold:

0 � 2ξ(t)
⊤

V r(t) − r(t − τ) − 
t

t− τ
g(s)ds − 

t

t− τ
y(s)dws ,

(27)

where
V � V1(t)⊤ V2(t)⊤ V3(t)⊤ V4(t)⊤ V5(t)⊤ V6(t)⊤( 

⊤.
By Lemma 3, we have

2ξ(t)
⊤

V 
t

t− τ
y(s)dws ≤

1
τ
ξ(t)
⊤

VS
− 1

V
⊤ξ(t) + τ 

t

t− τ
y(s)dws 

⊤

S 
t

t− τ
y(s)dws . (28)

+en,

LV5(t)≤ ξ(t)
⊤Ω4ξ(t) + τ 

t

t− τ
My(s)dws 

⊤


t

t− τ
My(s)dws 

− τ 
t

t− τ
y(s)
⊤

M
⊤

SMy(s)ds + 2τ2x⊤M⊤H⊤1 SH3Mf(x)

+ 2τ2x⊤M⊤H⊤1 SH4Mf xτ(  + 2τ2x⊤τ M
⊤

H
⊤
2 SH3Mf(x)

+ 2τ2x⊤τ M
⊤

H
⊤
2 SH4Mf xτ(  + τ2f(x)

⊤
M
⊤

H
⊤
3 SH3Mf(x)

+ 2τ2f(x)
⊤

M
⊤

H
⊤
3 SH4Mf xτ(  + τ2f xτ( 

⊤
M
⊤

H
⊤
4 SH4Mf xτ( ,

(29)

where

Ω4 �

τ2H⊤1 SH1 τ2H⊤1 SH2 0 − V1 V1 V1

⋆ τ2H⊤2 SH2 0 − V2 V2 V2

⋆ ⋆ 0 − V3 V3 V3

⋆ ⋆ ⋆ − 2V4 V4 V4

⋆ ⋆ ⋆ ⋆ 2V5 V5

⋆ ⋆ ⋆ ⋆ ⋆ 2V6

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+
1
τ

VS
− 1

V
⊤

.

(30)

Using the property of the Ito isometry, we have

E 
t

t− τ
My(s)dws 

⊤

S 
t

t− τ
My(s)dws   � E 

t

t− τ
y(s)
⊤

M
⊤

SMy(s)ds . (31)

Based on Lemma 2 and (15), we have
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LV6(t) � τ2g(t)
⊤

M
⊤RMg(t) − τ 

t

t− τ
g(s)
⊤

M
⊤RMg(s)ds

≤ τ2g(t)
⊤

M
⊤RMg(t) − 

t

t− τ
Mg(s)ds 

⊤
R 

t

t− τ
Mg(s)ds 

≤ ξ(t)
⊤Ω5ξ(t) + 2τ2x⊤M⊤Θ⊤1 R AN− 1

0 + HN− 1
A Mf(x)

+ 2τ2x⊤M⊤Θ⊤1 R BN− 1
0 + HN− 1

B Mf xτ( 

+ 2τ2r⊤M⊤ cH
⊤

− Λ⊤1( R AN− 1
0 + HN− 1

A Mf(x)

+ 2τ2r⊤M⊤ cH
⊤

− Λ⊤1( R BN− 1
0 + HN− 1

B Mf xτ( 

+ τ2f(x)
⊤

M
⊤ AN− 1⊤

0 + HN− 1⊤
A R AN− 1

0 + HN− 1
A Mf(x)

+ 2τ2f(x)
⊤

M
⊤ AN− 1⊤

0 + HN− 1⊤
B R BN− 1

0 + HN− 1
B Mf xτ( 

+ τ2f xτ( 
⊤

M
⊤ BN− 1⊤

0 + HN− 1⊤
B R BN− 1

0 + HN− 1
B Mf xτ( ,

(32)

where

MG � HM,

Ω5 �

τ2Θ⊤1 RΘ1 0 0 − τ2Θ⊤1 R cH − Λ1(  0 0

0 0 0 0 0 0

0 0 0 0 0 0

− τ2Θ⊤1 R cH − Λ1(  0 0 τ2 cH⊤ − Λ⊤1( R cH − Λ1(  0 0

0 0 0 0 0 0

0 0 0 0 0 − R

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
(33)

Under assumption (H1) and Lemma 3, we obtain

2r
⊤

M
⊤

Q + τ2 cH
⊤

− Λ⊤1( R  AN− 1
0 + HN− 1

A Mf(x)

� 2 

N− 1

i�1
ri − ri+1( 

⊤
Q + τ2 cH

⊤
− Λ⊤1( R  AN− 1

0 + HN− 1⊤
A  f xi(  − f xi+1( ( 

≤ 2 
N− 1

i�1
ri − ri− 1( 

⊤
Q + τ2 cH

⊤
− Λ⊤1( R  AN− 1

0 + HN− 1
A L xi − xi+1( 

≤ 

N− 1

i�1
ri − ri+1( 

⊤
Q + τ2 cH

⊤
− Λ⊤1( R  AN− 1

0 + HN− 1
A S1 AN− 1⊤

0 + HN− 1⊤
A 

× Q + τ2R cH − Λ1(   ri − ri+1(  + 
N− 1

i�1
xi − xi+1( 

⊤
L
⊤

S
− 1
1 L xi − xi+1( 

� r
⊤

M
⊤

Q + τ2 cH
⊤

− Λ⊤1( R  AN− 1
0 + HN− 1

A S1 AN− 1⊤
0 + HN− 1⊤

A 

× Q + τ2R cH − Λ1(  Mr + x
⊤

M
⊤

L
⊤

S
− 1
1 LMx.

(34)

Similarly, we have
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2r
⊤

M
⊤

Q + τ2 cH
⊤

− Λ⊤1( R  BN− 1
0 + HN− 1

B Mf xτ( 

≤ 
N− 1

i�1
ri − ri+1( 

⊤
Q + τ2 cH

⊤
− Λ⊤1( R  BN− 1

0 + HN− 1
B S2

× BN− 1⊤
0 + HN− 1⊤

B  Q + τ2R cH − Λ1(   ri − ri+1( 

+ 
N− 1

i�1
xi(t − τ(t)) − xi+1(t − τ(t))( 

⊤
L
⊤

S
− 1
2 L xi(t − τ(t)) − xi+1(t − τ(t))( 

� r
⊤

M
⊤

Q + τ2 cH
⊤

− Λ⊤1( R  BN− 1
0 + HN− 1

B S2 BN− 1⊤
0 + HN− 1⊤

0 

× Q + τ2R cH − Λ1(  Mr + x
⊤
τ M
⊤

L
⊤

S
− 1
2 LMxτ .

(35)

Next, it is easy to verify that

2x
⊤

M
⊤

H1 Q + τ2S H3 + τ2Θ⊤1 R AN− 1
0 + HN− 1

A  Mf(x)

≤ x
⊤

M
⊤ 2H

⊤
1 Q + τ2S H3 + 2τ2Θ⊤1 R AN− 1

0 + HN− 1
A  LMx,

(36)

2x
⊤

M
⊤

H1 Q + τ2S H4 + τ2Θ⊤1 R BN− 1
0 + HN− 1

B  Mf xτ( 

≤x
⊤

M
⊤

H
⊤
1 Q + τ2S H4 + τ2Θ⊤1 R BN− 1

0 + HN− 1
B  S3

× H
⊤
4 Q + τ2S H1 + τ2 BN− 1⊤

0 + HN− 1⊤
B RΘ1 Mx + x

⊤
τ M
⊤

L
⊤

S
− 1
3 LMxτ ,

(37)

2x
⊤
τ M
⊤

H
⊤
2 Q + τ2S H3Mf(x)

≤ x
⊤

M
⊤

L
⊤

S
− 1
4 LMx + x

⊤
τ M
⊤

H
⊤
2 Q + τ2S H3S4H

⊤
3 Q + τ2S H2Mxτ ,

(38)

2x
⊤
τ M
⊤

H
⊤
2 Q + τ2S H4Mf xτ( ≤ 2x

⊤
τ M
⊤

H
⊤
2 Q + τ2S H4LMxτ , (39)

f (x)
⊤

( M
⊤ τ2 AN− 1⊤

0 + HN− 1⊤
A R AN− 1⊤

0 + HN− 1⊤
A  + H

⊤
3 Q + τ2S H3 + T Mf(x)

≤x
⊤

M
⊤

L
⊤

T + H
⊤
3 Q + τ2S H3 + τ2 � AN− 1⊤

0 + HN− 1⊤
A  R AN− 1⊤

0 + HN− 1⊤
A  LMx,

(40)

2f(x)
⊤

M
⊤ τ2 AN− 1⊤

0 + HN− 1⊤
A R BN− 1

0 + HN− 1
B  + H

⊤
3 Q + τ2S H4 Mf xτ( 

≤ x
⊤

M
⊤

L
⊤

H
⊤
3 Q + τ2S H4 + τ2 AN− 1⊤

0 + HN− 1⊤
A R BN− 1

0 + HN− 1
B  

× S5 H
⊤
4 Q + τ2S H3 + τ2 BN− 1⊤

0 + HN− 1⊤
B R AN− 1

0 + HN− 1
A  LMx

+ x
⊤
τ M
⊤

L
⊤

S
− 1
5 LMxτ ,

(41)

f xτ( 
⊤

M
⊤ τ2 BN− 1⊤

0 + HN− 1⊤
B R BN− 1

0 + HN− 1
B  Mf xτ( 

+ f xτ( 
⊤

M
⊤

H
⊤
4 Q + τ2S H4 − (1 − μ)T Mf xτ( 

≤x
⊤
τ M
⊤

L
⊤

H
⊤
4 Q + τ2S H4 − (1 − μ)T LMxτ

+ x
⊤
τ M
⊤

L
⊤ τ2 BN− 1⊤

0 + HN− 1⊤
B R BN− 1

0 + HN− 1
B  LMxτ .

(42)

Substituting (19)–(42) into (18), we arrive at

E[LV(t)] ≤E ξ(t)
⊤Ξξ(t) ≤ λmax(Ξ)E ‖ξ(t)‖

2
 , (43)

where
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Ξ �

Ξ11 Ξ12 Ξ13 Ξ14 Ξ15 Ξ16
⋆ Ξ22 Ξ23 Ξ24 Ξ25 Ξ26
⋆ ⋆ Ξ33 Ξ34 Ξ35 Ξ36
⋆ ⋆ ⋆ Ξ44 Ξ45 Ξ46
⋆ ⋆ ⋆ ⋆ Ξ55 Ξ56
⋆ ⋆ ⋆ ⋆ ⋆ Ξ66

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (44)

with

Ξ11 � − 2P + τ2 − 1 R + H
⊤
1 Q + τ2S H1 +

1
τ
V1S

− 1
V1 + τ2Θ⊤1 RΘ1 + c11,

Ξ12 � H
⊤
1 Q + τ2S H2 +

1
τ
V1S

− 1
V2,

Ξ13 � R +
1
τ
V1S

− 1
V3,

Ξ14 � P − QΘ1 − τ2R +
1
τ
V1S

− 1
V4 − V1,

Ξ15 � V1 +
1
τ
V1S

− 1
V5,

Ξ16 � V1 +
1
τ
V1S

− 1
V6,

Ξ22 � H
⊤
2 Q + τ2S H2 +

1
τ
V2S

− 1
V2 + c22,

Ξ23 �
1
τ
V2S

− 1
V3,

Ξ24 � − V2 +
1
τ
V2S

− 1
V4,

Ξ25 � V2 +
1
τ
V2S

− 1
V5,

Ξ26 � V2 +
1
τ
V2S

− 1
V6,

Ξ33 � − R +
1
τ
V3S

− 1
V3,

Ξ34 � − V3 +
1
τ
V3S

− 1
V4,

Ξ35 � V3 +
1
τ
V3S

− 1
V5,
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Ξ36 � V3 +
1
τ
V3S

− 1
V6,

Ξ44 � τ2 cH − Λ1( 
⊤R cH − Λ1(  + τ2R + 2Q cH − Λ1(  − 2V4 +

1
τ
V4S

− 1
V4 + c44,

Ξ45 � V4 +
1
τ
V4S

− 1
V5,

Ξ46 � V4 +
1
τ
V4S

− 1
V6,

Ξ55 � 2V5 +
1
τ
V5S

− 1
V5,

Ξ56 � V5 − R +
1
τ
V5S

− 1
V6,

Ξ66 � 2V6 − R +
1
τ
V6S

− 1
V6,

c11 � 2 H
⊤
1 Q + τ2S H3 + τ2Θ⊤1 R A

N− 1
0 + H

N− 1
A  L + L

⊤
S

− 1
1 + S

− 1
4 + T L

+ L
⊤

H
⊤
3 Q + τ2S H3 + τ2 A

N− 1⊤
0 + H

N− 1⊤
A R A

N− 1
0 + H

N− 1
A  L

+ L
⊤

H
⊤
3 Q + τ2S H4 + τ2 A

N− 1⊤
0 + H

N− 1⊤
A R B

N− 1
0 + H

N− 1
B  

× S5 H
⊤
4 Q + τ2S H3 + τ2 B

N− 1⊤
0 + H

N− 1⊤
A R A

N− 1
0 + H

N− 1
A  L

+ H
⊤
1 Q + τ2S H4 + τ2Θ⊤1 R B

N− 1
0 + H

N− 1
B  S3

× H
⊤
4 Q + τ2S H1 + τ2 B

N− 1⊤
0 + H

N− 1⊤
B RΘ1 ,

c22 � L
⊤

S
− 1
2 + S

− 1
3 + S

− 1
5 + H

⊤
4 Q + τ2S H4 − (1 − μ)T L + 2H

⊤
2 Q + τ2S H4L

+ τ2L⊤ B
N− 1⊤
0 + H

N− 1⊤
B R B

N− 1
0 + H

N− 1
B L + H

⊤
2 Q + τ2S H3S4H

⊤
3 Q + τ2S H2,

c44 � Q + τ2 cH
⊤

− Λ⊤1( R  A
N− 1
0 + H

N− 1
A S1 A

N− 1⊤
0 + H

N− 1⊤
A  Q + τ2R cH − Λ1(  

+ Q + τ2 cH
⊤

− Λ⊤1( R  B
N− 1⊤
0 + H

N− 1⊤
B S2 B

N− 1
0 + H

N− 1
B  Q + τ2R cH − Λ1(  .

(45)

Based on Lemma 4 and the conditions of +eorem 1, we
have the matrix Ξ< 0; then, λmax(Ξ)< 0.

Obviously, we obtain E[LV(t)]< 0. Hence, it follows
the stochastic stability theory that the stochastic coupled
IMMNs (1) are globally synchronized in mean square
sense. □

4. Conclusion

Based on interval uncertainty theory, the stochastic analysis
techniques and the vector Lyapunov function method are
applied to realize the global synchronization in mean square
sense. Nevertheless, the criterion given in +eorem 1 is
different from the results in the existing literature. Moreover,
the time delay is dependent, and the upper bound of the
delayed derivative is 0 or less than 1. Hence, +eorem 1

would be feasible and less conservative. It is worth noting
that the upper bound of the random factor can be calculated
when the state parameter of the system is selected based on
+eorem 1. Similarly, the stochastic coupled IMMNs (1)
have strong anti-interference. In addition, the coupling of
various neural nodes can be described. +e example in
Section 5 fully illustrates these two points.

5. Numerical Simulations

Now, we perform some numerical simulations to illustrate
our analysis.

Example 1. Consider the following stochastic inertial
memristor-based neural networks with five coupled iden-
tical nodes:
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d
dxi(t)

dt
  � − D

dxi(t)

dt
− Cxi(t) + A xi(t)( f xi(t)(  + B xi(t)( f xi(t − τ(t))( 

+ c 

N

j�1
GijΓ

dxi(t)

dt
+ xj(t)  dt + σ1xi(t) + σ2xi(t − τ(t))(

+ σ3f xi(t)(  + σ4f xi(t − τ(t))( dwt, i � 1, 2, 3, 4, 5,

(46)

where the activation function f(xi(t)) � 0.6 tanh(xi), the
time delay τ(t) � et/(et + 1), and the coupling strength
c � 0.5. +e system parameters are taken as

D �
6 0

0 6
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

C �
2 0

0 2
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

Γ �
1 0

0 1
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

G �

− 2.2 1 0 0 0.2

1 − 3.2 1.2 0 0

0 2 − 3.5 0.5 0

0 0 2 − 4.4 1.4

0.2 0 0 3 − 4.2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

σ1 �
2 0

0 2
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

σ2 �
1.8 0

0 1.8
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

σ3 �
1.6 0

0 1.6
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

σ4 �
1.4 0

0 1.4
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

A xi(t)(  �
a11 xi1(t)(  a12 xi2(t)( 

a21 xi1(t)(  a22 xi2(t)( 

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

B xi(t)(  �
b11 xi1(t)(  b12 xi2(t)( 

b21 xi1(t)(  b22 xi2(t)( 

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

(47)

with the memristor connection weights:

a11(x) �

0.2, |x|≤ 0.1,

− 0.2, |x|> 0.1,

⎧⎪⎨

⎪⎩

a12(x) �
0.6, |x|≤ 0.1,

− 0.6, |x|> 0.1,

⎧⎪⎨

⎪⎩

a21(x) �

0.4, |x|≤ 0.1,

− 0.4, |x|> 0.1,

⎧⎪⎨

⎪⎩

a22(x) �
0.4, |x|≤ 0.1,

− 0.4, |x|> 0.1,

⎧⎪⎨

⎪⎩

b11(x) �

0.2, |x|≤ 0.1,

− 0.2, |x|> 0.1,

⎧⎪⎨

⎪⎩

a12(x) �

0.4, |x|≤ 0.1,

− 0.4, |x|> 0.1,

⎧⎪⎨

⎪⎩

b21(x) �

0.3, |x|≤ 0.1,

− 0.3, |x|> 0.1,

⎧⎪⎨

⎪⎩

b22(x) �

0.3, |x|≤ 0.1,

− 0.3, |x|> 0.1.

⎧⎪⎨

⎪⎩

(48)

Obviously, by calculation, we can get the Lipschitz
constants L � 0.6∗ I2, and the upper bound of the delay
τ � 1.

In order to show the effectiveness of +eorem 1, we
display the synchronization of each node xij(t)(i �

1, 2, 3, 4, 5; j � 1, 2) in Figure 1. Moreover, Figures 2 and 3
depict the synchronization error trajectories of xi1(t) − x11(t)

and xi2(t) − x12(t), i � 1, 2, 3, 4.
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,e dynamics of a delay multiparticle swarm, which contains symmetric and asymmetric pairwise influence functions, are
analyzed. Two different sufficient conditions to achieve conditional flocking are obtained. One does not have a clear relationship
with this delay, and the other proposes a range of processing delays that affect the emergence of a flock. It is also pointed out that if
the interparticle communication function has tail dissipation, unconditional flocking can be guaranteed. Compared with the
previous results, the range of the communication rate β that allows a flock to emerge has been expanded from 1/4 to 1/2.

1. Introduction

,ere are many survival-oriented clusters in nature, such as
ant colonies that coordinate food transportation, birds that
increase the success rate of foraging, and fish that unite
against danger, and so on. ,e research on the colony of
biological groups should be traced back to Reynolds’ sim-
ulation experiments on birds in [1]; further some scholars
have proposed many motion models to mathematically
characterize them. Among them, a second-order model
proposed by Cucker and Smale in [2, 3] to explain self-
organizing behavior in complex adaptive systems has been
favored by researchers and continuously improved. For
example, Motsch and Tadmor in [4] modified the symmetry
of the influence intensity between particles to be asymmetric
to explore the aggregation behavior of nonuniformly dis-
tributed particle swarms. Some scholars have carried out the
impact of the time delay on flocking or consensus of the
system in [5–7] and the references therein.

Liu and Wu in [5] proposed a model with processing
delay, which is described as

_xi(t) � vi(t), i � 1, 2, . . . , N,

_vi(t) � α 
N

j�1
I xi(t − τ) − xj(t − τ)

�����

�����  vj(t − τ) − vi(t) ,

⎧⎪⎪⎨

⎪⎪⎩

(1)

where xi, vi ∈ Rd and d is a positive integer, α> 0 indicates
the intensity of the influence between particles, and τ > 0
represents the time lag, which includes the response time of
the particle i and the communication time between particles
i and j. ,e communication function can be defined as

I rij  � I
CS

rij  ≔
ψ rij 

N
or I rij 

� I
MT

rij  ≔
ψ rij 


N
k�1 ψ rik( 

,

(2)

which further satisfies 
N
l�1 I(rkl) � 1 for all k ∈ Γ, where

ψ(r) � (1 + r2)−β, β≥ 0, rij(t) � ‖xi(t) − xj(t)‖, i, j ∈ Γ.
Further, system (1) can be simplified to

_xi(t) � vi(t), i ∈ Γ,

_vi(t) � α vi(t) − vi(t)( ,
 (3)

where vi(t) � 
N
j�1 I(rij(t − τ))vj(t − τ). ,e initial condi-

tions are

xi(θ) � φi(θ),

vi(θ) � ϕi(θ),

θ ∈ [−τ, 0],

(4)
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where (φi, ϕi) ∈ C2 � C × C and C ≔ C([−τ, 0], R2) is the
Banach space of all continuous functions.

In this study, we further consider the flocking conditions
of the delayed model proposed in [5]. ,e significant
contributions of our results are reflected in the following
three aspects. (1) Compared with ,eorem 3.1 in [5], the
unconditional flocking condition 

∞ψ2(r)dr �∞ is im-
proved to 

∞ψ(r)dr �∞, that is, the communication rate β
is expanded from 1/4 to 1/2. (2) Note that with τ � 0 in (1),
the communication rate β of unconditional flocking in [4]
has also been expanded from 1/4 to 1/2. (3) It is clearly
pointed out that processing delay can affect the occurrence
of aggregation behavior, which is specifically manifested in
the controllable range of the delay in flocking conditions.

,e following two variables (Dx and Dv) are used to
analyze the evolution of the aggregation behavior of systems
(3) and (4), for t≥ −τ:

Dx(t) � maxi,j∈Γ xi(t) − xj(t)
�����

����� ,

Dv(t) � maxi,j∈Γ vi(t) − vj(t)
�����

����� .

(5)

,us, for both ICS(r) and IMT(r), it follows from a few
simple calculations that a uniform result can be directly
verified about the estimation of influence function I(r) as

I rij(t − τ) ≥
ψ Dx(t − τ)( 

N
, for all i, j ∈ Γ. (6)

We still adopt the definition of time-asymptotic flocking
proposed in [4].

Definition 1. Let xi(t), vi(t) 
N

i�1 be a solution to systems
(3) and (4); a time-asymptotic flocking can be achieved
if and only if the solution satisfies sup t>0 Dx(t)< +∞
and limt⟶+∞Dv(t) � 0, where Dx(t) and Dv (t) are given in
(5).

2. Main Results

,is section proposes two different sufficient conditions for
systems (3) and (4) with ICS or IMT to achieve the condi-
tional flocking in ,eorem 1 and ,eorem 2. We have also
established certain conditions for the completion of un-
conditional flocking in ,eorem 3.

2.1. Conditional Flocking. To establish the flocking solution
of systems (3) and (4), the following important auxiliary
lemmas are introduced first.

Lemma 1 (see [8]). Let x(t) be the solution of the linear
functional differential equation, _x(t) � λ − δ1x(t)+

δ2x(t − τ). If |δ2|< δ1, then

lim
t⟶+∞

x(t) � x
∗

�
λ

δ1 − δ2
. (7)

Lemma 2. Let xi(t), vi(t) 
N

i�1 be a solution to systems (3)
and (4); then, we have

〈vi(t) − vj(t), vi(t) − vj(t)〉

≤ 1 −
ψ Dx(t − τ)( 

N
 Dv(t)Dv(t − τ),

(8)

where Dx and Dv are defined in (5).

Proof. Making use of system (3) yields

〈vi(t) − vj(t), vi(t) − vj(t)〉

� 
N

p�1
I rip(t − τ)  

q≠p
I rjq(t − τ) 

· 〈vi(t) − vj(t), vp(t − τ) − vq(t − τ)〉

≤ 

N

p�1
I rip(t − τ)  

q≠p
I rjq(t − τ) Dv(t)Dv(t − τ).

(9)

Using inequality (6) and the normalization assumptions
for communication functions, that is, 

N
j�1 I(rij(t − τ)) � 1,

we get

〈vi(t) − vj(t), vi(t) − vj(t)〉

≤ 
N

p�1
I rip(t − τ)  

q≠p
I rjq(t − τ) Dv(t)Dv(t − τ)

� 
N

p�1
I rip(t − τ)  1 − I rjp(t − τ)  Dv(t)Dv(t − τ)

≤ 1 −
ψ Dx(t − τ)( 

N
 Dv(t)Dv(t − τ),

(10)

and this proof is completed. □

Lemma 3. Let xi(t), vi(t) 
N

i�1 be a solution of systems (3)
and (4); then, the upper Dini derivative of Dx(t) and Dv(t)

satisfies

D
+
Dx(t)≤Dv(t), a.e.t ≥ −τ,

D
+
Dv(t)≤ α 1 −

ψ Dx(t − τ)( 

N
 Dv(t − τ) − αDv(t).

(11)

Proof. Without loss of generality, let Dx(t) � ‖xp(t) −

xq(t)‖ at time t, where p, q ∈ Γ. One can obtain

D
+
Dx(t)≤ _xp(t) − _xq(t)

�����

����� � vp(t) − vq(t)
�����

�����≤Dv(t).

(12)

Similarly, without loss of generality, let Dv(t) satisfy
Dv(t) � vp(t) − vq(t) at time t, where p, q ∈ 1, 2, . . . N; it
follows from Lemma 2 that
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D
+
D

2
v(t) � 2α〈vp(t) − vq(t), _vp(t) − _vq(t)〉

� 2α〈vp(t) − vq(t), vp(t) − vq(t)〉 − 2αD
2
v(t)

≤ 2α 1 −
ψ Dx(t − τ)( 

N
 Dv(t)Dv(t − τ) − 2αD

2
v(t).

(13)

,erefore, (11) is proven.
To establish the flocking conditions, we define a set

containing all the initial configurations of asymptotic
flocking allowed, that is,

S ≔

xi(θ), vi(θ)( ,

θ ∈ [−τ, 0],

i � 1, 2, . . . , N.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Dv(0) + α
0

−τ
Dv(s)ds <

α
N


∞

Dx(−τ)
ψ(r)dr,

(14)

where Dx and Dv are shown in (5) and ψ(r) � (1+

r2)−β, β≥ 0 is defined in [2, 3]. □

Theorem 1. For β> (1/2), suppose that the initial conditions
(4) are selected from the set S; then systems (3) and (4) with
IMT(r) or ICS(r) can complete the conditional flocking.

Proof. Inspired by the work in [5, 9], we take the following
Lyapunov function:

E Dx, Dv( (t) � Dv(t) +
α
N


Dx(t−τ)

Dx(−τ)
ψ(r)dr

+ α
0

−τ
Dv(t + s)ds.

(15)

,us, the upper Dini derivative of E(Dx, Dv)(t) along
(Dx, Dv) with respect to t is shown below.

D
+
E Dx(t), Dv(t)( 

� D
+
Dv(t) +

α
N

D
+


Dx(t−τ)

Dx(−τ)
ψ(r)dr + αD

+

0

−τ
Dv(t + s)ds.

(16)

Furthermore, combining with Lemma 3, we have
D+E(Dx(t), Dv(t))≤ 0, which means that E(Dx, Dv)(t) is
nonincreasing and then E(Dx, Dv)(t)≤E(Dx, Dv)(0) for all
t> 0. ,us,

α
N


Dx(t−τ)

Dx(−τ)
ψ(r)dr≤Dv(0) + α

0

−τ
Dv(s)ds. (17)

Since the initial conditions (4) are selected from the set
S, it follows from (16) that

α
N


Dx(t−τ)

Dx(−τ)
ψ(r)dr<

α
N


∞

Dx(−τ)
ψ(r)dr. (18)

Due to the fact that ψ has a divergent tail, there must be a
constant D∗ <∞ such that Dx(t − τ)≤D∗ for t≥ 0. Con-
sidering inequality (6) yields

I rij(t − τ) ≥
ψ Dx(t − τ)( 

N
≥
ψ D∗( )

N
, for all j ∈ Γ.

(19)

Using the second inequality in (11) in Lemma 3, we can
further derive that

D+Dv(t)≤ α 1 −
ψ D∗( )

N
 Dv(t − τ) − αDv(t). (20)

Making use of Lemma 1, we can show that Dv(t)⟶ 0
as t⟶∞ and systems (3) and (4) converge to a flock as
shown in Definition 1. ,e proof is completed.

Another flocking condition closely related to processing
delay is proposed in the following theorem. □

Theorem 2. For β> (1/2), suppose that the initial configu-
rations (4) are met as follows:

0<Dv(0)<
α
N


∞

Dx(−τ)
ψ(r)dr, (21)

and the processing delay τ satisfies

0< τ < τ0 ≔
1

αRτ

α
N


∞

Dx(−τ)
ψ(r)dr − Dv(0) , (22)

where Rτ ≔ maxθ∈[−τ,0]Dv(θ) > 0 and Dx, Dv are defined in
(5); then, systems (3) and (4) with IMT(r) or ICS(r) converge
to a flock.

Proof. We only need to prove that the initial conditions
which satisfy (22) all exist in the set S defined in (8). Note
that

α
N


∞

Dx(−τ)
ψ(r)dr>Dv(0) + ατRτ >Dv(0) + α

0

−τ
Dv(s)ds,

(23)

which means that the initial conditions which satisfy (22) all
exist in set S. Consequently, systems (3) and (4) converge to
a flock. □

Remark 1. ,e following notes are listed for the above two
different results of conditional flocking.

(1) Note that with τ � 0, ,eorem 1 and ,eorem 2 will
degenerate into Dv(0)< (α/N)

∞ψ(r)dr. If α � N,
then the flocking condition is further written as
Dv(0)<

∞ψ(r)dr, thereby improving ,eorem 3.1
in [4].

(2) Comparing ,eorem 1 and ,eorem 2, we can get
the following two points worthy of attention. First, it
is clear from the set of allowed initial conditions that
the former is larger than the latter. Second, the latter
helps us realize that the occurrence of aggregation
behavior is indeed affected by the size of τ.
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2.2. Unconditional Flocking. ,e following theorem de-
scribes the implementation of unconditional flocking for
systems (3) and (4).

Theorem 3. For β ∈ [0, (1/2)], systems (3) and (4) with
IMT(r) or ICS(r) converge unconditionally to a flock.

Proof. If β ∈ [0, (1/2)], then the interparticle communica-
tion function has a tail dissipation 

∞ψ(r)dr �∞. Similar
to the proof of ,eorem 1, it can directly verify the un-
conditional flocking result. It will be omitted here. □

Remark 2. ,e two annotations for,eorem 3 are described
below.

(1) ,e fundamental reason for the unconditional
flocking of systems (3) and (4) is that the following
condition always holds for any initial configuration:

Dv(0) + α
0
−τ Dv(s)ds<

α
N


∞

Dx(−τ)
ψ(r)dr �∞. (24)

(2) Note that with τ � 0, the unconditional flocking
result in [4] is improved to 

∞ψ(r)dr �∞, which
means that the communication rate β is expanded
from 1/4 to 1/2.

(3) Compared with ,eorem 3.1 in [5], the range of
communication rate β has been expanded. Specifi-
cally, we promote the results from 

∞ψ2(r)dr �∞
to 
∞ψ(r)dr �∞, that is, we extend the commu-

nication rate β from 1/4 to 1/2.,us, the results in [5]
have been improved.

3. Numerical Simulations

Some numerical simulations will be enumerated to illustrate
the effect of processing delay on the aggregation behavior of
systems (3) and (4). For the convenience of calculation,
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Figure 1: α � 15, β � 0.51> 0.5, τ � 0. Systems (3) and (4) converge to a flock.
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Figure 2: α � 15, β � 0.51, τ � 1< τ0. Systems (3) and (4) converge asymptotically to form a flock. ,e convergence rate is slower than that
in Example 1 due to processing delays. ,e diameter of the population is larger than that in Example 1, which means that the cohesion and
aggregation density between particles are not as good as the case in Example 1.
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consider a particle swarm composed of 8 particles and its
initial conditions are set as (φi(θ), ϕi(θ)) � (8 − i, 4−

i), i � 1, . . . , 8, θ ∈ [−τ, 0]. ,e parameters in (3) are fixed as
α � 15, β � 0.51> 0.5, and further we have τ0 � 1.0116 from
(22). To understand the aggregation behavior of the groups
(3) and (4) intuitively and conveniently, we used two fea-
tures in all experiments, namely, the velocity of each particle
and the maximum of the relative position between particles.

Example 1. α � 15, β � 0.51, τ � 0 (see Figure 1).
It can be seen from Figure 1 that without a time delay, the

particle swarm can converge asymptotically to form a flock
under the fixed initial configurations and the above
parameters.

Example 2. α � 15, β � 0.51, τ � 1< τ0 (see Figure 2).
Considering the delay range (22) established in,eorem

2, we can claim that the flocking of the particle population
(3) and (4) with τ � 1< τ0 can be maintained. As we can see
in Figure 2, systems (3) and (4) can still aggregate and form a

flock after introducing processing time lag τ, which satisfies
(22).

Example 3. α � 15, β � 0.51, τ � 12> τ0 (see Figure 3).
As shown in Figure 3, under the same initial condition

with Example 2, this group cannot converge to a flock, and
its fatal factor is that τ � 12> τ0, that is, (22) in,eorem 2 is
broken.

To realize the emergence of flocking in this group, the
following method can be adopted, that is, to appropriately
adjust the communication rate between particles so that
β< 0.5. It may be selected as β � 0.2< 0.5 and then combined
with the discussion in ,eorem 3; the system uncondi-
tionally converges to a flock. ,e simulation results are
shown in Figure 4.

4. Conclusions

We study the emergence conditions of flocking of multiple
particle swarms with processing delays, establish two
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Figure 3: α � 15, β � 0.51, τ � 12> τ0. Systems (3) and (4) fail to the emergence of flocking due to the destruction of (22) in ,eorem 2.
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Figure 4: α � 15, β � 0.2< 0.5, τ � 12. Systems (3) and (4) form a flock unconditionally.
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sufficient conditions for conditional flocking in ,eorem 1
and,eorem 2, and give an unconditional flocking result in
,eorem 3. In particular, ,eorem 2 intuitively explains the
fact that processing delays affect the emergence of flocking,
which is reflected in the time-lag range (22) that affects the
emergence of flocking. For 0≤ β≤ 1/2, we note that τ � 0,
which is obtained from the analysis in Remark 1 and Remark
2, and the flocking results in [4] have been improved from
Dv(0)<

∞ψ2(r)dr to Dv(0)<
∞ψ(r)dr. It means that the

communication rate β has been expanded from 1/4 to 1/2.
Compared with the work on the flocking results in [5], we
have also expanded β from 1/4 to 1/2.
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Most cross-modal retrieval methods based on subspace learning just focus on learning the projection matrices that map different
modalities to a common subspace and pay less attention to the retrieval task specificity and class information. To address the two
limitations and make full use of unlabelled data, we propose a novel semi-supervised method for cross-modal retrieval named
modal-related retrieval based on discriminative comapping (MRRDC). *e projection matrices are obtained to map multimodal
data into a common subspace for different tasks. In the process of projection matrix learning, a linear discriminant constraint is
introduced to preserve the original class information in different modal spaces. An iterative optimization algorithm based on label
propagation is presented to solve the proposed joint learning formulations. *e experimental results on several datasets
demonstrate the superiority of our method compared with state-of-the-art subspace methods.

1. Introduction

In real applications, data are often represented in different
ways or obtained from various domains. As a consequence,
the data with the same semantic may exist in different
modalities or exhibit heterogeneous properties. With the
rapid growth of multimodal data, there is an urgent need for
effectively analyzing the data obtained from different mo-
dalities [1–5]. Although there is much attention to the
multimodal analysis, the most common method is to en-
semble the multimodal data to improve the performance
[6–9]. Cross-modal retrieval is an efficient way to achieve
data from different modal data.*e typical example is to take
the image as a query to retrieve related texts (I2T) or to
search images by utilizing the textual description (T2I).
Figure 1 shows the detailed process for I2T and T2I tasks.
*e results obtained by cross-modal retrieval are more
comprehensive compared with the results of traditional
single-modality.

Generally, semantic gap and relevant measure impede
the development of cross-modal retrieval. Although there
are many approaches to solve this problem, the performance
of these approaches still cannot achieve a satisfactory level.

*erefore, the methods [10–16] are proposed to learn a
common subspace by minimizing the pairwise differences to
make different modalities comparable. However, task
specificity and class information are often ignored, which
leads to low-level retrieval performance.

To solve these problems mentioned above, this paper
proposes a novel semi-supervised joint learning framework
for cross-modal retrieval by integrating the common
subspace learning, task-related learning, and class dis-
criminative learning. Firstly, inspired by canonical corre-
lation analysis (CCA) [7] and linear least squares, a couple
of projection matrices are learnt by coupled linear re-
gression to map original multimodal data to the common
subspace. At the same time, linear discriminant analysis
(LDA) and task-related learning (TRL) are used to keep the
data structure in different modalities and the semantic
relationship in the projection space. Furthermore, to mine
the category information of unlabelled data, a semi-su-
pervised strategy is utilized to propagate the semantic
information from labelled data to unlabelled data. Exper-
imental results on three public datasets show that the
proposed method outperforms the previous state-of-the-
art subspace approaches.
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*emain contributions of this paper can be summarized
as follows:

(1) *e proposed joint formulation seamlessly combines
semi-supervised learning, task-related learning, and
linear discriminative analysis into a unified frame-
work for cross-modal retrieval

(2) *e class information of labelled data is propagated
to unlabelled data, and the linear discriminative
constraint is introduced to preserve the interclass
and intraclass similarity among different modalities

*e remainder of the paper is organized as follows. In
Section 2, we briefly overview the related work on the cross-
modal retrieval problem. *e details of the proposed meth-
odology and the iterative optimizationmethod are introduced
in Section 3. Section 4 reports the experimental results and
analysis. Conclusions are finally given in Section 5.

2. Related Work

Because cross-modal retrieval plays an important role in
various applications, many subspace-based methods have been
proposed by establishing the intermodal and intramodal
correlation. Rasiwasia et al. [7] investigated the retrieval per-
formance of various combinations of image features and
textual representations, which cover all possibilities in terms of
the two guiding hypotheses. Later, partial least squares (PLS)
[17] has also been used for the cross-modal matching problem.
Sharma and Jacobs [18] used PLS to linearly map images from
different views into a common linear subspace, where the
images have a high correlation. Chen et al. [19] solved the
problem of cross-modal document retrieval by using PLS to
transform image features into the text space, and the method
easily achieved the similarity measure between two modalities.
In [20, 21], the bilinear model and generalized multiview
analysis (GMA) have been proposed and performed well in the
field of cross-modal retrieval.

In addition to CCA, PLS, and GMA, Mahadevan et al.
[22] proposed a manifold learning algorithm that can si-
multaneously reduce the dimension of data from different
modalities. Mao et al. [23] introduced a cross-media retrieval
method named parallel field alignment retrieval, which

integrates a manifold alignment framework from the per-
spective of vector fields. Lin and Tang [24] proposed a
common discriminant feature extraction (CDFE) method to
learn the difference within each scattering matrix and be-
tween scattering matrices. Sharma et al. [21] improved LDA
and marginal Fisher analysis (MFA) to generalized multiview
LDA (GMLDA) and generalized multiview MFA (GMMFA)
by extending from single-modality to multimodalities. In-
spired by the semantic information, Gong et al. [25] proposed
a three-view CCA to deeply explore the correlation between
features and their corresponding semantics in different
modalities.

Furthermore, other methods, such as dictionary
learning, graph-based learning, and multiview embedding,
are proposed for the cross-modal problem [26–29]. Zhuang
et al. [30] proposed SliM2 by adding a group sparse rep-
resentation to the pairwise relation learning to project
different modalities into a common space. Xu et al. [31]
proposed that dictionary learning and feature learning
should be combined to learn the projection matrix adap-
tively. Deng et al. [32] proposed a discriminative dictionary
learning method with the common label alignment by
learning the coefficients of different modalities. Wei et al.
[33] proposed a modal-related method named MDCR to
solve the modal semantic problem. Wu et al. [34] utilized
spectral regression and a graph model to jointly learn the
minimum error regression and latent space. Wang et al.
[35] proposed an adversarial learning framework, which
can learn modality-invariant and discriminative repre-
sentations of different modalities. And in this framework,
the modality classifier and the feature projector compete
with each other to obtain a better pair of feature repre-
sentations. Cao et al. [36] used multiview embedding to
obtain latent representations for visual object recognition
and cross-modal retrieval. Zhang et al. [37] utilized a graph
model to learn a common space for cross-modal by adding
the relationship of intraclass and interclass in the projec-
tion process.

*e main purpose of these methods is to solve the
correlation of distance measure, but the class information
and task specificity are not well solved. *erefore, how to
solve the two problems at the same time for different tasks is
particularly important. Based on the idea, we learn two
couples of projections for different retrieval tasks and apply a
linear discriminative constraint to the projection matrices.
To achieve this goal, we combine task-related learning with
linear discriminative analysis through semi-supervised label
propagation. Figure 2 shows the flowchart of our method.
Experimental results on three open cross-modal datasets
demonstrate that our cross-modal retrieval method out-
performs the latest methods.

3. Methodology

To improve the retrieval performance, we introduce the
discriminative comapping and pay more attention to dif-
ferent retrieval tasks and class information preservation.
Here, we focus on the retrieval of I2T and I2T, and it is easy
to expand our method to the retrieval of other modalities.

I2T

T2IA boat moving in a river.

Two bald eagles perched on a branch.
Two eagles sitting on a long branch.
Two eagles are perched on a branch.

Two eagles perched on a branch.

Figure 1: Using an image to retrieve texts and a text to retrieve
images.
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3.1. #e Objective Function. Define image data as I �

[Il; Iu] ∈ Rn×p and text data as T � [Tl; Tu] ∈ Rn×q sepa-
rately, where Il ∈ Rnl×p and Tl ∈ Rnl×q denote the labelled
image nl and its text with p dimensions, and Iu ∈ Rnu×p and
Tu ∈ Rnu×q represent the unlabelled image nu and its text
with q dimensions. Let D � Ii, Ti 

n

i�1 be n pairs of image and
text documents, where Dl � Il, Tl 

nl

i�1 and Du � Iu, Tu 
nu

i�1
denote the labelled and unlabelled documents, respectively.
S � [Sl; Su] ∈ Rn×c is the semantic matrix, where c is the
category number, Sl is the label of labelled data with one-hot
coding, and Su is the pseudo-label of unlabelled data. *e
goal of our method is to learn two couples of projection
matrices that project data from different modalities into a
common space for different tasks. *en, the cross-modal
retrieval can be performed in the common space.

We propose a novel modal-related projection strategy
based on semi-supervised learning for task specificity.
Here, the pairwise closeness of multimodal data and the
semantic projection are combined into a unified formu-
lation. For I2T and T2I, the minimization forms are ob-
tained as follows:

f1(V, W) � min
V,W

IV
T

− TW
T

����
����
2
F

+ IV
T

− S
����

����
2
F
, (1)

f2(V, W) � min
V,W

IV
T

− TW
T

����
����
2
F

+ TW
T

− S
����

����
2
F
, (2)

where V and W stand for the projection matrices for mo-
dalities I and T separately.

*e linear discriminant constraint to equations (1) and
(2) is introduced to preserve the class information in the
latent projection subspace. We denote mi as the mean of the
labelled samples in the ith class and m as the mean of all
labelled samples. *e intraclass scatter matrix can be defined

as Sw � 
c
i�1(P(i)/ni)xk∈class i(xk − mi)(xk − mi)

T, and the
total scatter matrix can be represented as
St � 

c
i�1 P(i)(mi − m)(mi − m)T. *e objective function is

represented as follows:

min
WWT�Ik

tr WTSwW( 

tr WTStW( 
, (3)

where W ∈ Rd×k is the projection matrix and d is the di-
mension of the basic vector.

According to equation (3), the linear discriminant
constraint can be transformed into WSw−tW

T, where Sw−t is
Sw − cSt. *e intraclass scatter of I is represented as SwI, and
the interclass scatter of I is St. Under the multimodal
condition, our method utilizes LDA projections to preserve
class information of each modal.*e corresponding formula
is as follows:

min
V,W

V
T
AV + W

T
BW, (4)

where A and B denote SwI − c1StI and SwT − c2StT

separately.
We add equation (4) to equations (1) and (2), respec-

tively, and then get the objective functions of I2T and T2I in
the following:

F1(V,W) �min
V,W

λ IV
T

− TW
T

����
����
2
F

+(1−λ) IV
T

− S
����

����
2
F

+μ1tr V
T
AV  +μ2tr W

T
BW ,

(5)

F2(V,W) �min
V,W

λ IV
T

− TW
T

����
����
2
F

+(1−λ) TW
T

− S
����

����
2
F

+μ1tr V
T
AV  +μ2tr W

T
BW ,

(6)

Image space LDA space Minimum squared error

Feature
distance

Bike
Plane

Feature distance
Semantic latent space for
I2T

Semantic latent space for
T2I

Iterative optimization

Plane
Bike

Minimum squared error

Text space

LDA space

Feature distance
Feature distance

Correlation analysis

Iterative optimization

Figure 2: *e flowchart of the proposed method. Images are represented by square icons, and the texts are represented by round icons. *e
images and texts with full lines are labelled data, and the rest are unlabelled data. Different colours indicate different categories. Our method
adopts LDA to make different classes separate and make full use of the semi-supervised strategy to maximize the correlation between
different modals simultaneously.
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where λ is a tradeoff coefficient to balance pairwise infor-
mation and semantic information and μ1 and μ2 are regu-
larization parameters to balance the structure information of
the image and text. According to equations (1) and (2), the
structure projection of I and T is the same as the semantic
projection. Consequently, our method can bridge the feature
and semantic spaces. *is can decrease the loss of projection
and improve the performance of cross-modal retrieval.

We introduce the semi-supervised learning strategy. To
propagate the label information from the labelled data, we
utilize the radial basis function (RBF) kernel to evaluate the
pairwise similarities between the unlabelled data after
projection, and then the similarities are regarded as the label
information to be updated in the optimization process until
the results converge. For any data xi and xj, the kernel
function is defined as follows:

k xi, xj  � exp
Xi − Xj

�����

�����
2

2β2
⎛⎜⎜⎝ ⎞⎟⎟⎠, (7)

where β is the kernel parameter.

3.2. Algorithm Optimization. *e objective functions of
equations (5) and (6) are nonconvex, so the iterationmethod
is used to update each variant when other variants are fixed
alternatively.

For any matrix M ∈ RN×d, the partial derivative of
equation (5) is represented as follows:

zF1

zV
� 2 λ VI

T
I − WT

T
I  +(1 − λ) VI

T
I − S

T
I  

+ μ1 VA + VA
T

 ,

(8)

zF1

zW
� 2λ WT

T
T − VI

T
T  + μ2 WB + WB

T
 . (9)

Similarly, the partial derivative of equation (6) is given as
follows:

zF2

zW
� 2 λ WT

T
T − VI

T
T  +(1−λ) WT

T
T − S

T
T  

+μ2 WB + WB
T

 ,

(10)

zF2

zV
� 2λ VI

T
I − WT

T
I  +μ1 VA + VA

T
 . (11)

According to equations (8)–(11), our method can be
solved by gradient descent. Algorithm 1 describes the op-
timization of cross-modal learning. After the projection
matrices for the I2T and T2I tasks are obtained, I and T can
be mapped to the common space where cross-modal re-
trieval is achieved.

4. Experiments

To evaluate the performance of the proposed method
(MRRDC), we do comparison experiments with several
other methods on three public datasets.

4.1. Datasets

4.1.1. Wikipedia Dataset. *is dataset consists of 2,866
image-text pairs labelled with one of 10 semantic classes. In
this dataset, 2,173 pairs of data are selected as the training
set, and the rest are the testing set. In our experiments, we
use the public dataset [7] provided by Rasiwasia et al. (wiki-
R), where images are represented by 128-dimensional SIFT
description histograms [38], and the representation of the
texts with 10 dimensions is derived from an LDA model
[39]. At the same time, we also use the dataset provided by
Wei et al. (wiki-W) [40], where 4,096-dimensional CNN
features [41] are used to present images and 100-dimen-
sional LDA features are utilized to denote the texts.

4.1.2. Pascal Sentence Dataset [40]. *is dataset consists of
1,000 image-text pairs with 20 categories. We randomly
choose 30 pairs from each category as training samples and
the rest as test samples. *e image features are 4,096-di-
mensional CNN features, and the text features are 100-di-
mensional LDA features.

4.1.3. INRIA-Websearch [42]. *is dataset contains 71,478
pairs of image and text annotations from 353 classes. We
remove some pairs which are marked as irrelevant and select
the pairs that belong to any one of the 100 largest categories.
*en, we get a subset of 14,698 pairs for evaluation. We
randomly select 70% of pairs from each category as the
training set (10,332 pairs), and the rest are treated as the
testing set (4,366 pairs). Similarly, images are represented
with 4,096-dimensional CNN features, and the textual tags
are represented with 100-dimensional LDA features.

4.2. Evaluation Metrics. To evaluate the performance of the
proposed method, two typical cross-modal retrieval tasks are
conducted: I2T and T2I. In the test phase, the projection
matrices are used to map the multimodal data into the
common subspace.*en, the data of different modalities can
be retrieved. In all experiments, the cosine distance is
adopted to measure the feature similarities. Given a query,
the aim of each cross-modal task is to find the top-k nearest
neighbors from the retrieval results.

*e performance of the algorithms is evaluated by mean
average precision (mAP), which is one of the standard in-
formation retrieval metrics. To obtain mAP, average pre-
cision (AP) is calculated by

AP �
1
R



T

i�1
P(i)σ(i), (12)

where R is the number of correlation data in the test dataset,
P(i) is the precision of top r retrieval data, and if σ(i) � 1,
the top r retrieval data are relevant; otherwise, σ(i) � 0.
*en, the value of mAP can be obtained by averaging AP for
all queries. *e larger the mAP, the better the retrieval
performance. Besides the mAP, the precision-recall curves
and mAP performance for each class are used to evaluate the
effectiveness of different methods.
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4.3. Comparison Methods. To verify that our method has
good performance, we compare our method with seven
state-of-the-art methods, such as PLS [18], CCA [7], SM [7],
SCM [7], GMLDA [21], GMMFA [21], MDCR [33], JLSLR
[34], ACMR [35], and SGRCR [37].

PLS, CCA, SM, and SCM are typical methods that utilize
pairwise information to learn a common latent subspace,
where the similarity between different multimodals can be
measured by metric methods directly. *ese kinds of ap-
proaches make the pairwise data in the multimodal dataset
closer in the learned common subspace. GMLDA, GMMFA,
and MDCR are based on the semantic category information
via supervised learning. Due to the use of label information,
these methods can easily learn a more discriminative
subspace.

4.4. Experimental Setup. *e parameters of the proposed
MRRDC in Algorithm 1 for the retrieval tasks of I2T and T2I
are set as follows: λ � 0.5, c1 � 0.3, c2 � 0.3, μ1 � 0.5,
μ2 � 0.5, c1 � 0.5, c2 � 0.5, ∈1 � 10− 5, and ∈2 � 0.001 on
Wikipedia provided by Rasiwasia and INRIA-Websearch.
On Wikipedia provided by Wei and Pascal, λ � 0.3, and the
rest are the same with the above. In our experiment, learning
rate σ is set 10− 4.

4.5. Results and Analysis. Table 1 shows all the mAP scores
achieved by PLS, CCA, SM, SCM, GMMFA, GMLDA,
MDCR, and our method on wiki-R, wiki-W, Pascal Sen-
tence, and INRIA-Websearch. We observe that our method
outperforms its counterparts. *is may be because the

projection matrices preserve more discriminative class in-
formation via semi-supervised learning. *e common
subspace of our method is more discriminative and effective
by further exploiting the class semantic of intramodality and
intermodality similarity simultaneously. From Table 1, we
also find that, in most cases, GMMFA, GMLDA, MDCR,
andMRRDC always perform better than PLS, CCA, SM, and
SCM, and images with CNN features have superiority
compared with the shallow features. For the first result, this
is because PLS, CCA, SM, and SCM only use pairwise in-
formation, but the other approaches add class information
to their objective functions, which provides better separation
between different categories in the latent common subspace.
For the second result, this is due to the powerful semantic
representation of CNN.

*e precision-recall curves on wiki-R, wiki-W, Pascal
Sentence, and INRIA-Websearch are plotted in Figure 3.
Figure 4 shows the mAP scores of comparison approaches
and our method, and the rightmost bar of each figure shows
the averagemAP scores. Formost categories, themAP of our
method outperforms that of comparison methods. From
these experimental results, we can draw the following
conclusions:

(1) Compared with the current state-of-the-art methods,
our method improves the average mAP greatly. Our
method consistently outperforms compared
methods, which is due to the factor that MRRDC
learns projection matrices in task-related and linear
discrimination ways for different modalities, where
different modalities can preserve semantic and
original class information. Besides, both labelled data

Input: all image feature matrices I ∈ Rn×q, all text feature matrices T ∈ Rn×p, and the corresponding semantic matrix S � [Sl; Su].
Initial: Vi, Wj, i � 0, j � 0, and set the parameters λ, μ1, μ2, ∈1, ∈2, σ and maximum iteration time. σ is the step size in the
alternating updating process, ε1and ε2 is the convergence condition.
Repeat:
value1 � F1(Vi, Wj)

� minVi,Wj
λ‖IVT

i − TWT
j ‖

2
F

+ (1 − λ)‖IVT
i − St‖

2
F + μ1tr(VTAV) + μ2tr(WTBW);

Vi+1 � Vi − σ((zf1t(Vi, Wj))/zVi);

value2 � F1(Vi+1, Wj)

� minVi+1 ,Wj
λ‖IVT

i+1 − TWT
j ‖

2
F

+ (1 − λ)‖IVT
i+1 − St‖

2
F + μ1tr(VTAV) + μ2tr(WTBW);

i � i + 1;

Until value1 − value2<∈1;
Repeat:
value3 � F1(Vi, Wj)

� minVi,Wj
λ‖IVT

i − TWT
j ‖

2
F

+ (1 − λ)‖IVT
i − St‖

2
F + μ1tr(VTAV) + μ2tr(WTBW);

Wj+1 � Wj − σ((zf1t(Vi, Wj))/zWj);

value4 � F1(Vi, Wj+1)

� minVi,Wj+1
λ‖IVT

i − TWT
j+1‖

2
F

+ (1 − λ)‖IVT
i − St‖

2
F + μ1tr(VTAV) + μ2tr(WTBW);

j � j + 1;

Until value3 − value4<∈2;
Su � k(IuVT, TuWT);

t � t + 1;

St � (Sl, Su);

Until t> maximum iteration number
Output: Vi, Wj

ALGORITHM 1: Optimization for MRRDC.
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Table 1: Retrieval performance (mAP) on three public datasets.

wiki-R wiki-W
Methods I2T (%) T2I (%) Average (%) I2T (%) T2I (%) Average (%)
PLS 23.75 17.23 20.49 35.95 35.10 35.53
CCA 24.14 19.71 21.93 33.16 31.66 32.41
SM 22.64 21.84 22.24 36.85 38.67 37.76
SCM 26.62 22.57 24.59 37.48 39.26 38.37
GMMFA 23.09 20.34 21.72 28.41 24.87 26.64
GMLDA 24.64 19.52 22.08 30.03 28.06 29.05
JLSLR 23.60 21.22 22.41 39.42 36.91 38.17
MDCR 26.19 21.03 23.61 41.07 37.75 39.41
ACMR 33.22 24.50 28.86 50.61 42.82 46.72
SGRCR 28.42 22.71 25.57 43.65 40.60 42.10
MRRDC 28.93 26.29 27.61 62.34 53.00 57.67

Pascal sentence INRIA-Websearch
PLS 36.53 37.63 37.08 19.38 26.03 22.71
CCA 37.99 37.20 37.59 26.03 27.95 26.99
SM 44.98 43.39 44.19 37.83 35.31 36.57
SCM 40.71 39.35 40.03 35.44 30.87 33.16
GMMFA 37.32 34.70 36.01 28.09 30.37 29.23
GMLDA 40.80 38.77 39.79 47.59 54.07 50.83
JLSLR 45.42 45.56 45.49 52.51 54.53 53.52
MDCR 43.22 46.22 44.72 47.09 45.99 46.54
ACMR 46.81 56.23 51.52 55.85 66.92 61.39
SGRCR 49.23 50.00 49.60 54.10 55.40 54.78
MRRDC 66.49 58.54 62.52 56.70 68.81 62.76
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Figure 3: Continued.
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Figure 3: Precision-recall curves of the proposedMRRDC and compared methods. (a) I2Ton wiki-R. (b) T2I on wiki-R. (c) I2Ton wiki-W.
(d) T2I on wiki-W. (e) I2T on Pascal. (f ) T2I on Pascal. (g) I2T on INRIA-Websearch. (h) T2I on INRIA-Websearch.
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Figure 4: Continued.
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Figure 4: *e mAP performance for each class on Wikipedia datasets and Pascal Sentence dataset. (a) I2Ton wiki-R. (b) T2I on wiki-R. (c)
Average on wiki-R. (d) I2Ton wiki-W. (e) T2I on wiki-W. (f ) Average on wiki-W. (g) I2Ton Pascal. (h) T2I on Pascal. (i) Average on Pascal.
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and unlabelled data of all the different modalities are
explored. *e labelled information can be propa-
gated to the unlabelled data during the training
process.

(2) In most cases, GMLDA and GMMFA outperform
CCA since GMLDA and GMMFA add category
information to their formulation, which makes the
common projection subspace more suitable for
cross-modal retrieval.

(3) Compared with the shallow features, CNN features
have great advantages for the I2T task, which is
because CNN features can easily obtain the semantic
information from original images directly.

To further verify the effectiveness of our proposed
MRRDC, we also provide the confusion matrices on single-
modal retrieval and the query examples for I2T and T2I in
Figures 5 and 6 separately. Intuitively, from Figure 5, our
method can achieve high precision in each category, which
proves that the projection space is discriminative. We also
observe from Figure 6 that, in many categories, our proposed

method always successfully obtains the best retrieval results
from query samples.

4.6. Convergence. Our objective formulation is solved by an
iterative optimization algorithm. In a practical application, a
fast retrieval speed is necessary. In Figure 7, we plot the
convergence curves of our optimization algorithm as to the
objective function value of equations (5) and (6) at each
iteration on wiki-W and Pascal Sentence datasets separately.
In this figure, the curve is monotonic at each iteration, and
the algorithm generally converges within about 20 iterations
for these datasets. *e fast speed can ensure the high effi-
ciency of our method.

5. Conclusion

In this paper, we propose an effective semi-supervised cross-
modal retrieval approach based on discriminative comap-
ping. Our approach uses different couples of discriminative
projection matrices to map different modalities to the
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Figure 7: Convergence curves of the objective function value using Algorithm 1 onWikipedia and Pascal datasets.*e figure shows that the
objective function value monotonically decreases until convergence by applying the iterative algorithm. (a) Image query on wiki-W. (b) Text
query on wiki-W. (c) Image query on Pascal. (d) Text query on Pascal.
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common space where the correlation between different
modalities can be maximum for different retrieval tasks. In
particular, we use labelled samples to propagate the category
information to unlabelled samples, and the original class
information is preserved by using linear discriminant
analysis. *erefore, the proposed method not only uses the
relationship of different retrieval tasks but also keeps the
structure information for different modalities. In the future,
we will mine the correlation between different modalities
and focus on the unsupervised cross-modal retrieval method
for unlabelled data.
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In this paper, the design of finite-time H2/H∞ controller for linear Itô stochastic Poisson systems is considered. First, the
definition of finite-time H2/H∞ control is proposed, which considers the transient performance, H2 index, and H∞ index
simultaneously in a predetermined finite-time interval. )en, the state feedback and observer-based finite-time H2/H∞ con-
trollers are presented and some new sufficient conditions are obtained. Moreover, an algorithm is given to optimize H2 and H∞
index, simultaneously. Finally, a simulation example indicates the effectiveness of the results.

1. Introduction

It is known to all that stochastic systems have been studied
extensively and applied to biological network [1], power
systems [2], financial systems [3, 4], and other fields. )ere
are also many other applications of stochastic systems (see,
e.g., [5–7]). In the past few decades, stochastic systems
driven by Wiener noise have been widely investigated. For
example, Shaikin [8] solved the optimization problem for
multiplicative stochastic systems with several external dis-
turbances and vector Wiener processes. Xiang et al. [9]
introduced the finite-time properties and state feedback H∞
control problem for switched stochastic systems with
Wiener noise. Yan et al. [10] were concerned with finite-time
H2 control of the Markovian stochastic systems withWiener
noise. However, in the real world, an actual physical system
is inevitably affected by Wiener noise and Poisson jump
noise. At present, some achievements have been made in the
research of stochastic Poisson systems (see, e.g., [11–14]).

On the other hand, H2/H∞ optimization control is one
of the most important problems in the controlled system.

)e H2 optimal control system has good system perfor-
mance, while the H∞ control theory can deal with the
system robustness problem well. In view of this, Bernstein
and Haddad [15] proposed the H2/H∞ mixed control
problem, which can solve both the problems of system
performance and robustness. Since then, the H2/H∞ control
has been developed and used extensively (see, e.g., [16–19]).
Besides, in some engineering research, such as communi-
cation system [20–23], robotic operating system [24], and
industrial production system [25], more attention should be
paid to the system transient performance. In order to de-
scribe system transient performance clearly, the concepts of
finite-time stability (FTS) and finite-time boundedness
(FTB) are proposed, which reflect the specific system be-
havior in a relatively short time interval. Nowadays, the
problems of FTS and FTB have been deeply investigated (see,
e.g., [26–36]). In consideration of the merits of FTB and
H2/H∞ control, the finite-time H2/H∞ control for sto-
chastic systems with Wiener noise is first presented in [37],
which satisfies both FTB and H2/H∞ performance index.
However, in many practical systems, it is not only disturbed
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by Wiener noise, but also by Poisson noise. So far, there are
few literature studies to investigate this problem of stochastic
Poisson systems affected by bothWiener and Poisson noises.

Motivated by aforementioned discussions, the problems
of finite-time H2/H∞ control for stochastic Poisson systems
with both Wiener noise and Poisson noise are considered in
this paper. )e main work of this paper consists of the
following three aspects:

(i) Unlike the model considered in [37], this paper
studies the model of stochastic Poisson systems with
Wiener and Poisson noises. )e former considers
only Wiener noise, and the latter considers both
Wiener and Poisson noises. Moreover, in the former
model, the measurement output y(t) is composed
of only the state, but the measurement output
considered in the latter model is composed of both
the state and external interference. )e latter model
is more general than the former model in [37],
which is used to model many real systems.

(ii) )e two theorems ()eorems 2 and 4) are obtained
to guarantee the existence of state feedback finite-
time (SFFT) and observer-based finite-time (OBFT)
H2/H∞ controllers, respectively. )e two theorems
()eorems 2 and 4) contain the parameters both α
and Poisson jump intensity λ, which are complex
than the corresponding conditions in [37]. By
adjusting the two parameters, the most satisfying
finite-time H2/H∞ controllers will be designed.

(iii) A new optimization algorithm constrained by
matrix inequality is proposed to demonstrate the
relationships among α, λ, and optimal H2/H∞
index, which is more complex than that in [37].

Notations: the notations presented in this work are
standard. For specific contents, one can refer to [37].

2. Preliminaries

Consider a continuous-time stochastic Poisson system

dx(t) � A11x(t) + B11v(t) + F1r(t) dt + A12x(t) + B12v(t) + F2r(t) dW(t)

+ A13x(t) + B13v(t) + F3r(t) dN(t),

y(t) � C11x(t) + D11r(t),

z(t) � C12x(t) + D12v(t),

x(0) � x0 ∈ Rn,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where A11, A12, A13, B11, B12, B13, C11, C12, D11, D12, F1, F2,
and F3 are known constant matrices. x(t) ∈Rl, y(t) ∈Rq,
z(t) ∈Rs, and v(t) ∈Rn are the state vector, measurement
output, control output, and control input, respectively. x0 is
the initial condition of the system. W(t) presents one-di-
mensional standard Wiener process andN(t) is the marked
Poisson process with Poisson jump intensity λ. r(t) ∈Rp is
the disturbance input which satisfies the following equation:

E
t

0
r′(s)r(s)ds<f, (f> 0). (2)

Next, the definition of mean-square FTB of system (1) is
introduced.

Definition 1. Given some scalars b2 > b1 > 0 and T > 0 and
a matrix R> 0, the above stochastic system (1) with v(t) ≡ 0
is mean-square FTB w.r.t. (b1, b2, T, R, f), if

E x′(0)Rx(0) ≤ b1⟹E x′(t)Rx(t) < b2, ∀t ∈ [0, T].

(3)

Remark 1. From Definition 1, we can know that the concept
of FTB describes the specific behavior of the stochastic
system (1) in a prescribed time interval.

Lemma 1 (see [38]). Let V(t, x) ∈ C2(R1, Rn) and
V(t, x)> 0. Consider the following system

dx(t) � A1(x)dt + A2(x)dW(t) + A3(x)dN(t), (4)

its stochastic differential of V(t, x) is given by

dV(t, x) � LV(t, x)dt +
zV′(t, x)

zx
A2(x)dW(t) + V t, x + A3(x)(  − V(t, x) dN(t), (5)

where

LV(t, x) �
zV(t, x)

zt
+

zV(t, x)

zx
A1(x) +

1
2
A2′ (x)

z2V(t, x)

zx2 A2(x) + λ V t, x + A3(x)(  − V(t, x) . (6)
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3. Design of SFFT H2/H‘ Controller

In this section, a SFFT H2/H∞ controller for system (1) is
designed. Consider a linear SF controller

v(t) � Kx(t), (7)

where K is the required SF gain matrix.
Substituting (7) into (1), the following closed-loop

system is obtained:

dx(t) � A11x(t) + F1r(t) dt + A12x(t) + F2r(t) dW(t) + A13x(t) + F3r(t) dN(t),

y(t) � C11x(t) + D11r(t),

z(t) � Cx(t),

x(0) � x0 ∈ Rn,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(8)

where A11 � A11 + B11K, A12 � A12 + B12K,
A13 � A13 + B13K, and C � C12 + D12K.

Next, we choose the following H2 cost function:

J1(x(t), v(t)) � E
T

0
x′(t)G1x(t) + v′(t)G2v(t) dt,

(9)

where G1 > 0 and G2 > 0 are known weighting scalars or
positive matrices.

Similarly, substituting the SF controller (7) into (9), the
following formula is obtained:

J1(x(t)) � E
T

0
x′(t)G1x(t) + x′(t)K′G2Kx(t) dt.

(10)

Given c> 0 and assuming zero initial condition, the
control output z(t) and the disturbance input r(t) satisfy the
following equation:

E
T

0
z′(t)z(t)dt < c

2
E

T

0
r′(t)r(t)dt. (11)

Based on the above preparations, the definition of the
SFFT H2/H∞ controller is introduced.

Definition 2. Given positive scalars b1, b2, T, and f and a
matrix R> 0. If a positive scalar J∗1 exists, a SF controller (7)
can be designed to make the following conditions hold:

(i) )e closed-loop system (8) is mean-square FTB
w.r.t. (b1, b2, T, R, f)

(ii) )e H2 cost function (10) meets J1(x(t))≤ J∗1 under
r(t) � 0 condition

(iii) Assuming that the initial state is zero and the
nonzero disturbance input and the control output
satisfy inequality (11); then (7) is the SFFT H2/H∞
controller for system (1)

Remark 2. Definition 3 implies that a SFFT H2/H∞ con-
troller not only makes the closed-loop system FTB, but also
gets minimum performance cost and better interference
suppression capability. In actual systems, these three aspects
really need to be considered. For example, in industrial steel

rolling heating furnace, excessive instantaneous furnace
temperature cannot be permitted. Moreover, it is hoped that
the fuel consumption is less and the anti-interference ability
is stronger in the rolling furnace.

Next, the following theorem is given for obtaining the
SFFT H2/H∞ controller.

Theorem 1. Given positive scalars b1, b2, T, and f and a
matrix R> 0, if there exist a nonnegative scalar α and two
matrices N > 0 and K such that

T1 F1
NA12′

�
λ

√
N A13 + I ′

∗ − c2I F2′
�
λ

√
F3′

∗ ∗ − N 0

∗ ∗ ∗ − N

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (12)

T2
NA12′

�
λ

√
N A13 + I ′

∗ − N 0
∗ ∗ − N

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦< 0, (13)

b1

λmin(N)
+ fc

2 <
b2

λmax(N)
e

− αT
, (14)

hold, where N � R− 1/2NR− 1/2,T1 � A11
N + NA11′ − λ N−

α N + N′ C′ C N, and T2 � A11
N + NA11′ − λ N − α N +

NG1
N + NK′G2K

N, then v(t) � Kx(t) is said to be a SFFT
H2/H∞ controller and we can get the upper bound of H2
index, that is, J∗state � λmax(N− 1)b1e

αT.

Proof. Here are three steps to prove )eorem 1.

Step 1: prove that system (3) is mean-square FTB.

Obviously,

NC′ C N 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

NC′

0

0

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

NC′

0

0

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

′

≥ 0. (15)

)erefore, condition (12) means
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T1 F1
NA12′

�
λ

√
N A13 + I ′

∗ − c2I F2′
�
λ

√
F3′

∗ ∗ − N 0

∗ ∗ ∗ − N

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (16)

where T1 � A11
N + NA11′ − λ N − α N.

Let V(x(t)) � x′(t) N
− 1

x(t), and applying Lemma 1
for V(x(t)), the L1V(x(t)) of system (8) is given by

L1V(x(t)) �
x(t)

r(t)
 

′ Z1 Z2

∗ Z3

⎡⎣ ⎤⎦
x(t)

r(t)
 , (17)

where Z1 � A11′ N
− 1

+ N
− 1 A11 + A12′ N

− 1 A12 + λ(A13+

I)′ N− 1
(A13 + I) − λ N

− 1, Z2 � λ(A13 + I)′ N− 1
F3+

A12′ N
− 1

F2 + N
− 1

F1, and Z3 � λF3′ N
− 1

F3 + F2′ N
− 1

F2.
Pre- and postmultiplying (16) by diag N

− 1
, I,

N
− 1

, N
− 1

}, we can get the following inequality:

I1
N

− 1
F1

A12′ N
− 1

I2

∗ − c2I F2′ N
− 1 �

λ
√

F3′ N
− 1

∗ ∗ − N
− 1 0

∗ ∗ ∗ − N
− 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (18)

where I1 � A11′ N
− 1

+ N
− 1 A11 − λ N

− 1
− α N

− 1 and
I2 �

�
λ

√
(A13 + I)′ N− 1.

By utilizing Schur complement, (18) is equivalent to

Z1 − α N
− 1

Z2

∗ Z3 − c2I

⎡⎢⎣ ⎤⎥⎦< 0. (19)

Taking conditions (17) and (19) into consideration, it
follows

L1V(x(t))< αV(x(t)) + c
2
r′(t)r(t). (20)

Integrating from 0 to t on both sides of (20), then taking
mathematical expectation, one has

EV(x(t))<EV(x(0)) + α
t

0
EV(x(s))ds + c

2


t

0
Er′(s)r(s)ds. (21)

Utilizing Gronwall inequality in [26], it follows

EV(x(t))<EV(x(0))e
αt

+ c
2
e
αt


t

0
Er′(s)r(s)ds.

(22)

On the basis of above conditions, we have

EV(x(t)) � E x′(t)R
1/2

N
− 1

R
1/2

x(t) ≥ λmin

· N
− 1

 Ε x′(t)Rx(t) ,

(23)

EV(x(0))e
αt

� E x′(0)R
1/2

N
− 1

R
1/2

x(0) e
αt

≤ λmax N
− 1

 Ε x′(0)Rx(0)e
αt

 

≤ λmax N
− 1

 b1e
αT

,

(24)

c
2
e
αt


t

0
Er′(s)r(s)ds < e

αT
fc

2
. (25)

From (22) to (25), the following inequality is obtained:

E x′(t)Rx(t) < λmax(N)e
αT b1

λmin(N)
+ fc

2
 . (26)

According to condition (14), we get that (26) leads to
E[x′(t)Rx(t)] < b2 for all t ∈ [0, T]. So, system (8) is
mean-square FTB w.r.t. (b1, b2, T, R, f).
Step 2: prove that the H2 cost function (10) satisfies
J1(x(t))≤ J∗1 under r(t) � 0 condition.

When r(t) � 0, we get that the L2V(x(t)) of system
(8) is given by

L2V(x(t)) � x′(t) A11′ N
− 1

+ N
− 1 A11 + A12′ N

− 1 A12

+ λ A13 + I ′ N
− 1 A13 + I  − λ N

− 1
x(t).

(27)

By Schur complement, the equivalent condition of (13)
is given by

NA11′ + A11
N + NA12′ N

− 1 A12
N

+ λ N A13 + I ′ N
− 1 A13 + I  N + NG1

N

+ NK′G2K
N − λ N − α N< 0.

(28)

Pre- and postmultiplying (28) by N
− 1, it yields

A11′ N
− 1

+ N
− 1 A11 + A12′ N

− 1 A12 + G1 + K′G2K

+ λ A13 + I ′ N
− 1 A13 + I  − λ N

− 1
− α N

− 1 < 0.

(29)

According to (27) and (29), we get

L2V(x(t)) + x′(t) G1 + K′G2K( x(t) − αV(x(t))< 0.

(30)

Integrating from 0 to t on both sides of (30), then taking
mathematical expectation, the following inequality is
obtained:
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E
t

0
x′(t) G1 + K′G2K( x(t)dt + EV(x(t))

<EV(x(0)) + αE
t

0
V(x(t))dt.

(31)

From (31), we get

EV(x(t))<E[V(x(0))] + αE
t

0
V(x(t))dt, (32)

J1(x(t))< αE
t

0
V(x(t))dt + E[V(x(0))]. (33)

From (32), by Gronwall inequality, one has

EV(x(t))<EV(x(0))e
αt

. (34)

Combining (33) and (34), it is obtained that

J1(x(t))< αE
t

0
x′(0)R

1/2
N

− 1
R
1/2

x(0)e
αtdt

+ E x′(0) N
− 1

x(0) 

� E x′(0)R
1/2

N
− 1

R
1/2

x(0)e
αt

 

< λmax N
− 1

 b1e
αT

� J
∗
1 .

(35)

Step 3: prove that the nonzero disturbance and the
control output satisfy inequality (11).

Pre- and postmultiplying (12) respectively by
diag N

− 1
, I, N

− 1
, N

− 1
 , and then using Schur com-

plement, we have

T3 Z2

∗ − c2I + Z2

⎡⎣ ⎤⎦< 0, (36)

where T3 � A11′ N
− 1

+ N
− 1 A11 + A12′ N

− 1 A12 +

λ(A13 + I)′ N− 1
(A13 + I) + C′ C − λ N

− 1
− α N

− 1.
Combining (17), (36), we get

L1V(x(t))< αV(x(t)) + c
2
r′(t)r(t) − z′(t)z(t).

(37)

Pre- and postmultiplying (37) by e− αt, one has

e
− αt

L1V(x(t))< αe
− αt

V(x(t)) + e
− αt

c
2
r′(t)r(t) − z′(t)z(t) .

(38)

By applying Lemma 1, we obtain

L1 e
− αt

V(x(t)  � − αe
− αt

V(x(t)) + e
− αt

L1V(x(t)).

(39)
□

According to (38) and (39), it yields

L1 e
− αt

Vx(t) < e
− αt

c
2
r′(t)r(t) − z′(t)z(t) . (40)

Because e− αt is between 0 and 1, for (40), we have

L1 e
− αt

V(x(t) < c
2
r′(t)r(t) − z′(t)z(t). (41)

Integrating from 0 to t on both sides of (41), then taking
mathematical expectation, the following inequality can be
obtained under zero initial condition:

e
− αt

EV(x(t))< c
2
E

t

0
r′(s)r(s)ds − E

t

0
z′(s)z(s)ds.

(42)

We know that e− αtEV(x(t))> 0, so it yields

E
t

0
z′(s)z(s)ds< c

2
E

t

0
r′(s)r(s)ds. (43)

)is completes the proof.
It is obvious that conditions (12)–(14) are not linear

matrix inequalities. In order to simplify the solving process,
the following theorem is given.

Theorem 2. Given positive scalars b1, b2, T, and f and a
matrix R> 0, if there exist two scalars m> 0 and α ≥ 0 and
two matrices N> 0 and Y such that

T4 F1 T5 T6 T7

∗ − c2I F2′ F3′ 0

∗ ∗ − N 0 0

∗ ∗ ∗ − N 0

∗ ∗ ∗ ∗ − I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (44)

T4 T5 T6
N Y′

∗ − N 0 0 0
∗ ∗ − N 0 0
∗ ∗ ∗ − G− 1

1 0
∗ ∗ ∗ ∗ − G− 1

2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (45)

fc2 − b2e
− αT

��
b1



∗ − m
 < 0, (46)

mI<N< I, (47)

hold, whereT4 � A11
N + NA11′ − λ N − α N + B11Y + Y′B11′ ,

T5 � NA12′ + Y′B12′ , T6 �
�
λ

√
( NA13′ + Y′B13′ + N), and

T7 � NC12′ + Y′D12′ , then v(t) � Kx(t) � Y N
− 1

x(t) is said
to be a SFFT H2/H∞ controller and we can get the upper
bound of H2 index, that is, J∗1 � m− 1b1e

αT.

Proof. Let Y � K N, inequalities (12) and (13) can be ob-
tained from (44) and (45), respectively, and (14) in )eorem
1 can be obtained from (46) and (47) easily. )is ends the
proof. □

Remark 3. In )eorem 2, when α is fixed, (44)–(47) can be
treated as LMIs which are easy to solve.
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4. Design of OBFT H2/H‘ Controller

In some practical cases, not all states can be measured di-
rectly. )erefore, the design of OBFT H2/H∞ controller is
necessary. Typically, an OB dynamic controller is given by

dx(t) � A11x(t) + B11v(t) + L y(t) − C11x(t)(  dt,

v(t) � Kx(t),

x(0) � 0,

⎧⎪⎪⎨

⎪⎪⎩

(48)

where x(t) ∈ Rn is the estimation of x(t) and L is the desired
estimator gain.

Substituting the OB controller (48) into system (1), we
will obtain the following closed-loop system:

dx(t) � A11x(t) + W1r(t) dt + A12x(t) + W2r(t) dW(t) + A13x(t) + W3r(t) dN(t),

z(t) � Hx(t),

⎧⎨

⎩ (49)

and then we get the closed-loop cost function

J2(x(t)) � E
T

0
x′(t)Ξx(t)dt, (50)

where

x(t) �
x(t)

x(t)
 ,

A11 �
A11 B11K

LC11 A11 + B11K − LC11
 ,

W1 �
F1

LD11
 ,

A2 �
A12 B12K

0 0
 ,

(51)

W2 �
F2

0
 ,

A13 �
A13 B13K

0 0
 ,

W3 �
F3

0
 ,

H � C12′ K′D12′ ′,

Ξ �
G1 0
0 K′G2K

 .

(52)

Assuming that the initial state is zero, the control output
z(t) and the arbitrary nonzero disturbance input r(t) satisfy
the following equation:

E
T

0
z′(t)z(t)dt< c

2
E

T

0
r′(t)r(t)dt. (53)

)en, we give the definition of OBFT H2/H∞ control.

Definition 3. Given positive scalars b1, b2, T, and f and a
matrix R> 0. If a positive scalar J∗2 exists, an OBFTcontroller
(48) can be designed to make the following conditions hold:

(i) System (49) is mean-square FTB w.r.t.
(b1, b2, T, R, f), that is, E[x′(0)Rx(0)]≤ b1⟹
E[x′(t)Rx(t)]< b2, where 0< b1 < b2, T> 0 and

R �
R 0
0 R

 

(ii) )e H2 cost function (50) meets J2(x(t))≤ J∗2 under
r(t) � 0 condition

(iii) Assuming that the initial state is zero, the nonzero
disturbance input and the control output satisfy
inequality (53); then (48) is an OBFT H2/H∞
controller for system (1)

Next, the following theorem is given for obtaining the
OBFT H2/H∞ controller for system (1).

Theorem 3. Given positive scalars b1, b2, T, and f and a
matrix R> 0, if there exist a nonnegative scalar β and a
positive matrix P such that

H1
PW1 A12′ P

�
λ

√
A13 + I( ′P

∗ − c2I W2′P
�
λ

√
W3′P

∗ ∗ − P 0

∗ ∗ ∗ − P

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (54)

A11′ P + PA11 + A12′ PA12 + λ A13 + I( ′P A13 + I( 

− λP − βP + Ξ< 0,
(55)

λmax(P)b1 + fc
2 < λmin(P)b2e

− βT
, (56)

hold, where P � R
1/2

PR
1/2 andH1 � A11′ P + PA11 + H′

H − βP − λP, then (48) is said to be an OBFT H2/H∞
controller and we can get the upper bound of H2 index, that is,
J∗2 � λmax(P)b1e

βT.

Proof. Here are three steps to prove the theorem.

Step 1: prove that system (49) is mean-square FTB.
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Let V(x(t)) � x′(t)Px(t) where P > 0. Applying
generalized Itô formula for V(x(t)), the L3V(x(t))

of system (49) is given by

L3V(x(t)) �
x(t)

r(t)
 

′ Z1
Z2

∗ Z3

⎡⎣ ⎤⎦
x(t)

r(t)
 , (57)

where Z1 � A11′P + PA11 + A′12PA12 + λ(A13 + I)′
P(A13 + I) − λP, Z2 � PW1 + A′12PW2 + λ(A13 + I)′
PW3, and Z3 � W2′PW2 + λW3′PW3.
Note that

H′H 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

H′

0

0

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

H′

0

0

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

′

≥ 0. (58)

)erefore, inequality (54) means

H2
PW1 A12′ P

�
λ

√
A13 + I( ′P

∗ − c2I W2′P
�
λ

√
W3′P

∗ ∗ − P 0

∗ ∗ ∗ − P

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (59)

where H2 � A11′ P + PA11 − βP − λP.
By utilizing Schur complement, (59) can be converted
into

Z1 − βP Z2

∗ − c2I + Z3

⎡⎣ ⎤⎦< 0. (60)

Combining (57) and (60), we get

L3V(x(t))< βV(x(t)) + c
2
r′(t)r(t). (61)

Integrating from 0 to t on both sides of (61), then taking
mathematical expectation, the following inequality is
obtained:

EV(x(t))<EV(x(0)) + β
t

0
EV(x(s))ds

+ c
2


t

0
Er′(s)r(s)ds.

(62)

According to Gronwall inequality, it yields

EV(x(t))<EV(x(0))e
βt

+ c
2
e
βt


t

0
Er′(s)r(s)ds.

(63)

According to known conditions, it yields

EV(x(t)) � E x′(t)R
1/2

PR
1/2

x(t) 

≥ λmin(P)E x′(t)Rx(t) ,

(64)

EV(x(0))e
βt

� E x′(0)R
1/2

PR
1/2

x(0) e
βt

≤ λmax(P)E x′(0)Rx(0)e
βt

 

≤ λmax(P)b1e
βT

,

(65)

c
2
e
βt


t

0
Er′(s)r(s)ds< e

βT
fc

2
. (66)

From (63) to –(66), we obtain

E x′(t)Rx(t) <
λmax(P)b1e

βT + fc2eβT

λmin(P)
. (67)

According to (56) and (67), we get E[x′(t)Rx(t)]< b2
for all t ∈ [0, T]. So, system (49) is FTB w.r.t.
(b1, b2, T, R, f).
Step 2: prove that the H2 cost function (50) satisfies
J2(x(t))≤ J∗2 under r(t) � 0 condition.
When r(t) � 0, we get that the L4V(x(t)) of system
(49) is given by

L4V(x(t)) � x′(t) A11′ P + PA11 + A12′ PA12

+λ A13 + I( ′P A13 + I(  − λPx(t).

(68)

According to (55), we have

L4V(x(t)) − βV(x(t)) + x′(t)Ξx(t)< 0. (69)

Integrating from 0 to t on both sides of (69), then taking
mathematical expectation, it yields

EV(x(t)) + E
t

0
x′(t)Ξx(t)dt

<EV(x(0)) + βE
t

0
V(x(t))dt.

(70)

From (70), we have

EV(x(t))<EV(x(0)) + βE
t

0
V(x(t))dt, (71)

E
t

0
x′(t)Ξx(t)dt<EV(x(0)) + βE

t

0
V(x(t))dt.

(72)

Using Gronwall inequality for (71), one has

EV(x(t))<EV(x(0))e
βt

. (73)

From (72) and (73), we have
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J2(x(t))< βE
t

0
V(x(t))dt + EV(x(0))

< βE
t

0
V(x(0))e

βtdt + EV(x(0))

� EV(x(0))e
βt < λmax(P)b1e

βT
� J
∗
2 .

(74)

Step 3: prove that the nonzero disturbance and the
control output satisfy the inequality (53).

By using Schur complement, we can obtain the following
equivalent conditions of (54):

Z1 + H′H − βP Z2

∗ Z3 − c2I
⎡⎣ ⎤⎦< 0. (75)

According to (57) and (75), we get

L3V(x(t))< βV(x(t)) + c
2
r′(t)r(t) − z′(t)z(t). (76)

Repeating the proof process of Step 3 in )eorem 1, it
yields

E
t

0
z′(s)z(s)ds < c

2
E

t

0
r′(s)r(s)ds. (77)

)is completes the proof.
Because the nonlinear problem of inequalities (54)–(56)

in )eorem 3 is difficult to solve, we transform the in-
equalities (54)–(56) into LMIs. □

Theorem 4. Given positive scalars b1, b2, T, and f, if there
exist two positive scalars β and ζ and three matrices P11 > 0,
P22 > 0, and M such that

Σ11 Σ12 Σ13
∗ Σ22 Σ23
∗ ∗ Σ33

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦< 0, (78)

Υ11 − (β + λ)P11 Υ12
∗ Υ22 − (β + λ)P22

 < 0, (79)

e
βT ζb1 + fc

2
  − b2 < 0, (80)

I< diag P11,
P22 < ζI, (81)

hold, where Σ11 � A11′ P11 + P11A11 + A12′ P11A12 + C12′ C12+

λ(A13′ + I)P11(A13 + I) − (β + λ)P11, Σ12 � C11′ M′ + P11
B11K + A12′ P11B12K + C12′ D12K + λ(A13′ + I)P11 B13K, Σ22 �

(A11 + B11K)′ P22 + P22 (A11 + B11K)+K′B12′ P11B12K + λK′
B13′ P11B13K + λP22 − MC11 − C11′ M′ + K′D12′ D12 K − (β +

λ) P22, Σ13 � P11 F1 + A12′ P11F2 + λ(A13′ + I)P11F3, Σ23 �

MD11 + K′B12′ P11F2 + λK′B13′ P11F3, Σ33 � F2′P11 F2 + λF3′
P11F3 − c2I, Υ11 � A11′ P11 + P11A11 + A12′ P11A12 + λ(A13′ +

I)P11 (A13 + I) + G1, Υ12 � C11′ M′ + P11B11 K + A12′ P11B12
K + λ(A13′ + I)P11 B13K, Υ22 � (A11 + B11K)′P22+P22
(A11 + B11K) + K′B12′ P11B12K − MC11 − C11′ M′ + λK′B13′
P11B13K + λP22 + K′G2K, then (48) is said to be an OBFT
H2/H∞ controller and we can get the upper bound of H2

index, that is, J∗2 � ζb1e
βT. Furthermore, the estimator gain

matrix L � P
− 1
22M is obtained.

Proof. Let P � diag P11, P22  and M � P22L, by substituting
(51) and (52) into (54) and (55), (78) and (79) can be easily
derived, respectively. From (80) and (81), we can deduce that
(49) holds. )is ends the proof. □

5. Algorithm

In this section, we propose an algorithm to optimize H2
index and H∞ index.

Analysis: in )eorem 2, let J∗1 < ξ, the following in-
equality is derived:

Ne− αT

b1
− ξ− 1

I> 0, (82)

where 0< b1 < b2, T> 0, α≥ 0, and m> 0.
)e main purpose of the algorithm is to check whether

inequalities (44)–(47) in )eorem 2 have feasible solutions
by changing the value of α. If there exist feasible solutions,
then ξ and c2 are optimized to get the minimum values. )e
detailed algorithm will be given as follows (Algorithm 1).

6. Examples

In this section, system (8) can be used to simulate a clothing
hanging device and the parameters are as follows:

A11 �
− 15 − 9

8 − 12
 ,

A12 �
− 0.6 1

1.3 − 1.2
 ,

A13 �
− 1.8 1

1.4 − 1.5
 ,

B11 � − 9 5 ′,

B12 � 8.7 2.3 ′,

B13 � − 2.8 1 ′,

F1 � − 0.6 0.5 ′,

F2 � 0.3 − 0.2 ′,

F3 � 0.4 − 0.2 ′,

C11 � − 0.9 − 1.5 ,

C12 � − 1.8 − 2.5 ,

x(0) � − 0.7 0.7 ′,

(83)

and G1 � 5, G2 � 4, D11 � 8, D12 � 10, b1 � 1, b2 � 4, T � 1,
R � I, f � 0.4, and λ � 2.5.

6.1. Design of SFFT H2/H∞ Controller. By using the above
algorithm in Section 5, the relationships of α and ξ (Fig-
ure 1), α and c (Figure 2), and ξ and c (Figure 3) are derived,
respectively. It can be seen from Figure 1 that the value of ξ
increases with the increase of α. Besides, it is obvious that
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ξ � 1 when α � 0 and ξ � 3.0344 when α � 1.11, that is, the
minimum and maximum values of H2 performance index
are 1 and 3.0344, respectively. Also, the range of α is [0, 1.11].

As you can see from Figure 2, the value of c decreases
first and then increases with the increase of α. When
α � 0.85, c can take the minimum value of 0.8688; at this
point, we can get the optimal value of H∞ performance
index. When α � 1.11, c can take the minimum value of
0.8822. Also, α can be taken within [0, 1.11].

In fact, Figure 3 reflects the relation between ξ and c. As
shown in Figure 3, with the increase of ξ, the value of c

decreases first, and at the point of ξ � 2.3397, the value of c

begins to increase. From Figures 1 to 3, we can see how to
choose the right state feedback finite-time H2/H∞ con-
troller. If the cost problem is mainly considered, a smaller α
can be selected. If the ability to suppress interference is
mainly considered, we need to refer to Figure 2 to select the
appropriate α.

Next, substituting α � 0 into )eorem 2, we get

N �
0.8673 − 0.0135

− 0.0135 0.8946
 , Y � − 0.0366 0.0770 ,

m � 0.5237.

(84)

)en, we get the controller gain matrix as follows:

K � − 0.0409 0.0854 . (85)

Because the state x(t) in this example is two-dimen-
sional, we make x(t) � [x1(t)x2(t)]′. Figure 4 describes the
trajectories of x1(t), x2(t), and E[x′(t)Rx(t)] with sto-
chastic fluctuation driven by both Wiener and Poisson
noises in Figures 5 and 6 versus the dimensionless time λt.
From Figure 4, we can see that the trajectory of
E[x′(t)Rx(t)] does not exceed b2 � 4 in the time interval
λT � 2.5. Obviously, when the time interval is T � 1, the
trajectory does not exceed the given range, so we conclude
that system (8) is mean-square FTB w.r.t. (1, 4, 1, I, 0.4).
Among them, we assume that
r(t) � sin t(

1
0 sin

2 tdt<f � 0.4).

6.2. Design of OBFT H2/H∞ Controller. As in the case of
state feedback, similar results can be obtained in the case of
observer-based finite-time H2/H∞ control. )e relation-
ships of β and ξ (Figure 7), β and c (Figure 8), and ξ and c

(Figure 9) are derived, respectively. It can be seen from
Figure 7 that the value of ξ increases with the increase of β.
Besides, it is obvious that ξ � 1 when β � 0 and ξ � 2.5857
when β � 0.95, that is, the minimum and maximum values
of H2 performance index are 1 and 2.5857, respectively.
Also, the range of β is [0, 0.95].

As you can see from Figure 8, the value of c decreases first
and then increases with the increase of β. When β � 0.72, c

can take the minimum value of 1.1456, and at this point, we
can get the optimal value of H∞ performance index. Besides,
the maximum value of H∞ performance index is 1.1650 when
β � 0.95. Also, the range of β is [0, 0.95].

In fact, Figure 9 reflects the relation between ξ and c. As
shown in Figure 9, with the increase of ξ, the value of c

decreases first, and at the point of ξ � 2.0544, the value of c

begins to increase. From Figures 7 to 9, we can see how to

Step 1: given b1, b2, R, T, f, and λ.
Step 2: take an appropriate step size dα for α, and then the values of α are expressed as αi.
Step 3: let i � 1.
Step 4: if αi makes the following problems mins.t.(37)− (40),(74),N>0ξ andmins.t.(37)− (40),(74),N>0c

2 feasible, then store αi into U(i), ξmin into
V(i), and cmin into W(i), and let αi+1 � αi + dα, loop. Otherwise, go to Step 5.

Step 5: exit.

ALGORITHM 1: Optimization algorithm.

0 0.2 0.4 0.6
α

0.8 1 1.2

ξ

3.5

3

2.5

2

1.5

1

(1.11, 3.0344)

Figure 1: ξ versus α.

0 0.2 0.4 0.6
α

0.8 1 1.2

γ

0.884

0.881
0.88

0.876

0.872

0.868

(1.11, 0.8822)

(0.85, 0.8688)

Figure 2: c versus α.
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choose the right OBFT H2/H∞ controller. If the cost
problem is mainly considered, select the smaller β with
reference to Figure 7. If the ability to suppress interference is
mainly considered, we need to refer to Figure 8 to select the
appropriate β.

1 1.5 2 2.5 3
ξ

3.5

γ

0.884

0.881
0.88

0.876

0.872

0.868

(3.0344, 0.8822)

(2.3397, 0.8688)

Figure 3: c versus ξ.

0 10.5 1.5 2
λt

2.5

4

3

2

1

0

–1

–2

x2
E[x′(t)Rx(t)]

x1

Figure 4: )e trajectory for E[x′(t)Rx(t)].

0 10.5 1.5 2
t

2.5

2.5

2

1.5

1

0.5

W
(t)

0

–5

Figure 5: )e time evolution of Wiener process.

0 10.5 1.5 2
λt

2.5

N
(t)

2.5

3

3.5

2

1.5

1

0.5

0

Figure 6: )e time evolution of Poisson counting process.

0 0.40.2 0.6 0.8
β

γ

1

1.17

1.165

1.16
1.1584

1.155

1.15

1.145

(0.95, 1.1650)

(0.72, 1.1456)

Figure 8: c versus β.

ξ

0 0.40.2 0.6 0.8
β

1

3

2.6

2.2

1.8

1.4

1

(0.95, 2.5857)

Figure 7: ξ versus β.
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Substituting β � 0 into )eorem 4, we have

P11 �
1.3326 0.0458

0.0458 1.5739
 ,

P22 �
1.4821 − 0.0298

− 0.0298 1.7362
 ,

M �
− 0.0326

0.1348
 ,

ζ � 2.7271.

(86)

)en, we obtain the following observer gain matrix:

L �
− 0.0205

0.0773
 . (87)

Because the state x in this example is two-dimensional,
we make x � [x1x2]′. Figure 10 describes the trajectories of
x1, x2, and E[x′(t)Rx(t)] with stochastic fluctuation driven
by both Wiener and Poisson noises in Figures 5 and 6

versus the dimensionless time λt. From Figure 10, it is
obvious that the trajectory of E[x′(t)Rx(t)] does not ex-
ceed b2 � 4 in the time interval λT � 2.5. Obviously, when
the time interval is T � 1, the trajectory does not exceed the
given range, so we draw a conclusion that system (8) is
mean-square FTB w.r.t. (1, 4, 1, I, 0.4). Among them, we
assume that r(t) � sin t(

1
0 sin

2 tdt<f � 0.4).

7. Conclusions

In this paper, state feedback and observer-based finite-
time H2/H∞ controllers for stochastic Poisson systems
have been designed, respectively. Two sufficient condi-
tions for guaranteeing the existence of controllers have
been proposed and converted to matrix inequality con-
strained optimization problems, and an algorithm for all
)eorems has been provided to derive the optimal H2
index and H∞ index under the condition of the finite-time
boundedness.
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stabilization of Itô stochastic systems with markovian
switching: mode-dependent parameter approach,” IEEE
Transactions on Automatic Control, vol. 60, no. 9, pp. 2428–
2433, 2015.

[28] Y.-j. Ma, B.-w.Wu, and Y.-E. Wang, “Finite-time stability and
finite-time boundedness of fractional order linear systems,”
Neurocomputing, vol. 173, no. 3, pp. 2076–2082, 2016.

[29] M. Li and J. Wang, “Finite time stability of fractional delay
differential equations,” Applied Mathematics Letters, vol. 64,
pp. 170–176, 2017.

[30] Z. Yan, Y. Song, and X. Liu, “Finite-time stability and sta-
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In this paper, the problem of finite-time tracking is investigated for switched buck power converters based on the pulse width
modulation (PWM) technique. For the continuous model, an equivalent continuous controller is solved by the backstepping
technique, such that all signals are finite-time stable. PWM-based finite-time tracking with the equivalent control input is
proposed for the switched buck converter, such that the tracking error converges to an arbitrarily small neighborhood of the origin
in finite time, and the origin of the closed-loop system is practically finite-time stable. Simulation results are given to demonstrate
the effectiveness of the proposed schemes.

1. Introduction

Electrical systems described by the multiple circuit topologies
associated with the regulating switch are switched DC-DC
power converters [1], which have widespread applications in
power systems, photovoltaic systems, communication equip-
ment, computers, and industrial electronics. ,e three basic
topologies of switched DC-DC power converters are buck,
boost, and buck-boost. ,e research of these power converters
has drawn a great deal of attention for the development in both
power electronics and control theory [2–4]. A good deal of
results on point stabilization and trajectory tracking has been
obtained under the switching method [5] and PWM technique
[6]. Some switching methods have been investigated for sta-
bilization of power converters, i.e., optimal switching instants
based on a numerical optimization approach [7], state-de-
pendent switchingwith the aid of variable-structure control [8],
and switching law by combining sliding mode control with an
equivalent control input [9–12]. ,e references mentioned
above regard the switching signal as the control input directly
based on switched systems theory.

,e output voltage regulation of PWM-based DC-DC
power converters has already been an extremely active re-
search. ,e output voltage tracking was discussed by selecting

passivity-based control [13–15], energy shaping control
[16, 17], and state feedback indirect control with non-
minimum phase [18, 19]. In order to estimate the uncertain
load resistances and enhance output performance, the adaptive
backstepping controllers were proposed with better robustness
and adaptability [20–23]. Most of the results focused on
asymptotical convergence rate for DC-DC power converters.
Compared with asymptotical stability, finite-time stability has a
faster convergence performance in terms of time optimization.
Finite-time control has aroused a great deal of interest in recent
years. For DC-DC buck converters, finite-time tracking control
via integral terminal sliding modes was presented in [24]. ,e
output voltage regulation control is investigated to guarantee
the finite-time convergence rate based on finite-time conver-
gent observer [25, 26] or via adaptive saturated finite-time
control algorithm [27]. However, all these references above
only considered point stabilization for continuous average
models with the continuous control as a control input.

Little work has been done on PWM control to achieve
the trajectory tracking problem of switched power con-
verters so far. In this paper, we consider PWM-based finite-
time tracking of switched buck power converters, where the
system input is a digital control. ,e main work consists of
the following aspects.
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(1) Finite-time stability of a nonlinear system with con-
tinuous control is given as a priori information, and it is
firstly proved that the closed-loop digital system is
practically finite-time stable in the condition of the
continuous control replaced by physical PWM control.

(2) For the corresponding continuous system, an equiv-
alent continuous controller is designed using the
backstepping method, such that the tracking error
tends to zero in a finite time, and the closed-loop error
system is finite-time stable in terms of time optimi-
zation compared with [22, 23].

(3) For the switched buck converter, PWM-based finite-
time tracking with the equivalent control input is
proposed such that the tracking error converges to
an arbitrarily small neighborhood of the origin in
finite time, and the origin of the closed-loop system
is practically finite-time stable.

,e paper is organized as follows. Problem formulation is
given in Section 2. PWM and its implementation are presented
in Section 3. PWM-based finite-time tracking is researched in
Section 4. Simulation results for buck converters are presented
in Section 5. ,e paper is concluded in Section 6.

Notations: For a vector x, |x| denotes its usual Euclidean
norm and xT denotes its transpose; |X| denotes the Fro-
benius norm of a matrix X defined by |X| � (Tr XXT )(1/2),
where Tr(·) denotes the trace of a square matrix;R+ denotes
the set of all nonnegative real numbers; Rn denotes the real
n-dimensional space; Rn×r denotes the real n × r matrix
space;Ci denotes the set of all functions with continuous i-th
partial derivative; AB denotes the distance between A and B;
SABCD denotes the area of a rectangle ABCD.

2. Problem Formulation

Consider the switch-regulated buck converter circuit as
shown in Figure 1. E is the voltage parameter of the supply
voltage,R is the resistance of the resistor,C is the capacitance
of the capacitor, L is the inductance of the inductor, VD is
the diode, and VT is a PWM gate drive controlled switch.
,e control variable σ is introduced to denote the switch
state, σ � 1 when VT � ON, and σ � 0 when VT � OFF.
,at is, such a control input takes values in the discrete set
0, 1{ }. It is assumed that there is no noise in the circuit;
Figure 2 is the equivalent circuit of Figure 1.

In order to establish the circuit model associated with the
regulating switch position, we need to make an explanation
for those physical symbols.,e inductive current _qL respects
the derivative of the circulating electric charge qL, qC is the
electrical charge stored in the capacitor, and (qC/C) is the
capacitor voltage. ,e switch-regulated buck converter
circuit is presented as

qC

C
� −R _qC − _qL( ,

L€qL � −R _qL − _qC(  + σE.

(1)

Substituting the second equation into the first, it can be
rewritten as

_qC � _qL −
qC

RC
,

€qL � −
qC

LC
+

E

L
σ.

(2)

Let x1 � (qC/C), x2 � _qL; the dynamic equation is de-
rived as

_x1 � −
1
RC

x1 +
1
C

x2,

_x2 � −
1
L

x1 +
1
L

Eσ,

(3)

where x1 and x2 represent the capacitor voltage and the
inductor current, respectively, and the variable σ is the
digital control which represents time series produced by
servo amplifiers and only take values from binary set 0, 1{ }.
Let y � x1, that is, the output is the capacitor voltage, which
is also the resistor voltage.

Given a smooth reference signal yr(t) ∈ C2(R), where
yr(t), _yr(t), €yr(t) are bounded with known constants. ,e
aim of this paper is to design a switching signal σ for the
switched buck converter (3), such that the capacitor voltage
y � x1 can be driven to track a given reference signal yr(t) in
a finite time; simultaneously, all signals in the resulting
system are required to be practically finite-time stable.

To study finite-time tracking, we introduce some basic
concepts and lemmas that will serve as the basis for the
development of our digital switching control.

C
R

L

VD

VT

PWM
gate drive 

E +

Figure 1: ,e buck converter circuit.

C
R

L

σE
+

Figure 2: Equivalent circuit of Figure 1.
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Definition 1 (see [29, 28]). Consider a nonlinear system
_x � f(x), x(0) � x0, x ∈ D⊆Rn, (4)

where f: D⟶ Rn is continuous, f(0) � 0, and D is an
open neighborhood of the origin. ,e origin of system (4) is
finite-time stable (FS), if it is Lyapunov stable and finite-time
convergent in a neighborhood D0 ⊆D of the origin. By
“finite-time convergence,” we mean that there is a settling
time T∗ ∈ (0,∞), such that for (∀x0 ∈ D0/ 0{ }), (x(t) ∈
D0/ 0{ }) for t ∈ [0, T∗), lim

t⟶T∗
x(t) � 0, that is,

x(t) � 0, ∀t>T∗. (5)

When D0 � D � Rn, the origin is a globally finite-time
stable equilibrium.

Definition 2 (see [30]). ,e origin of system (4) is said to be
practical finite-time stable (PFS), if for all initial conditions
x0, there exist a constant εT > 0 and a settling time T∗(εT,

x0)<∞, such that

|x(t)|≤ εT, ∀t>T∗. (6)

Remark 1. For PFS, if εT depends on T and T⟶ 0,
εT⟶ 0, then the effect of PFS is the same as FS. As T gets
smaller, the bound εT of PFS here becomes smaller and even
tends to zero compared with boundedness of [30].

Lemma 1 (see [31]). For any real number xi, i � 1, . . . , n,
and 0<p≤ 1, the following inequality holds:

x1


 + · · · + xn


 

p
≤ x1



p

+ · · · + xn



p
. (7)

Lemma 2 (see [28]). For system (4), suppose there exist
constants a> 0, 0< β< 1, and a positive definite function
V(x) ∈ C1: D⟶ R (D ⊂ D ⊂ Rn is a neighborhood of the
origin), such that

_V(x)≤ − aVβ(x), ∀x ∈ D, (8)

then, the origin of system (4) is finite-time stable, and the
settling time T∗ satisfies

T∗ ≤
1

a(1 − β)
V x0( 

1− β
. (9)

IfD � Rn and V(x) is radially unbounded, the origin of
system (4) is globally finite-time stable.

3. PWM and Its Implementation

For a nonlinear system
_x � f(x) + Bu, x(0) � x0 , (10)

where x ∈ Rn, f ∈ Rn×1 is a locally Lipschitz continuous
function, B ∈ Rn is a constant vector, and u ∈ R is the digital

control produced by servo amplifiers; it can only take values
from binary set 0, 1{ }.

In order to design such digital control, we first give a
priori hypothesis for system (10).

Assumption 1. ,ere exists a continuous static control

u � μ(x) ∈ [0, 1], (11)

such that the origin of the closed-loop system (10) with
continuous static control (11) is finite-time stable.

To achieve digitization, regarding μ(t): � μ(x(t)) as a
duty ratio, from the viewpoint of mathematics, a PWM
control is a strategy defined as [32]

u � σT(t) �
1, tk ≤ t< tk + μ tk( T,

0, tk + μ tk( T≤ t< tk + T,


tk+1 � tk + T, t0 � 0, k � 0, 1, 2, . . . ,

(12)

where tk is a sampling instant and T represents the sam-
pling period, where T is parameter-tuning. However, it is
very difficult to implement the PWM control (12). ,e one
is how to get exact μ(tk) at tk with variable-step resolution,
the other one comes from the fact that PWM control
should be a physical signal produced by a servo circuit
instead of numerical signal directly.

Remark 2. By [1], systems (10) and (11) are the average
models of the PWM controlled system (10) with (12). As
T⟶ 0, the duty ratio μ(t) as the equivalent control re-
places the PWM control σT(t) in (12). ,e duty ratio μ(t)

may be designed in the form of a state feedback function, and
thus it is easy to achieve some performance index of the
closed-loop PWM switched system. In practice, the PWM
control is generated as a discrete gate pulse signal [33],
comparing a desired analog control signal with a fixed-
frequency ramp.

One approximate implementation of PWM control (12)
is presented as

u � σT(t) �
1, μ(t)> u0(t),

0, μ(t)< u0(t),
 (13)

where μ(t) is the function as (11) and u0(t) is a triangular
wave with magnitude A � 1 and same period T as (12) (see
Figure 3).

If continuous control (11) is changed to PWM imple-
mentation (13), the stability analysis of system (10) will be
given as follows.

For PWM implementation (13), we will discuss the re-
lationship between σT(t) and μ(t) on the interval [0, t].

(1) If μ(t) � a (a ∈ (0, 1) is a constant), we have (see
Figure 4)
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(T/2)

0
μ(s)ds � SOFGE

�
aT
2

�
OF
OA

T

2

�
OH
OC

T

2

�
OD
OE

SOACE � SOABD

� 
(T/2)

0
σT(s)ds.

(14)

Case (1): ∃ n ∈ N+, t � nT; from (14),


t

0
σT(s)ds � 

nT

0
σT(s)ds � 

nT

0
μ(s)ds � 

t

0
μ(s)ds.

(15)

Case (2): ∃ n ∈ N+, t ∈ (nT, (n + 1)T); from (15) and
the values of μ(t) and σT(t),

lim
T⟶0


t

0
σT(s)ds � lim

T⟶0


t

0
μ(s)ds − lim

T⟶0


t

nT
μ(s)ds

+ lim
T⟶0


t

nT
σT(s)ds

� 
t

0
μ(s)ds.

(16)

From two cases above, if μ(t) � a, one gets that

lim
T⟶0


t

0
σT(s)ds � 

t

0
μ(s)ds, ∀t≥ 0. (17)

(2) If μ(t) is a continuous function, there exists simple
function series 

n
i�1 aiIEi

(t), such that

μ(t) � lim
n⟶∞



n

i�1
aiIEi

(t), (18)

where E1, . . . , En are n disjoint closed sets of [0,∞). Let the
length of Ei be less than that of T; then, T⟶ 0 leads to
n⟶∞.


t

0
μ(s)ds � lim

n⟶∞


n

i�1


t

0
aiIEi

(s)ds

� lim
n⟶∞



n

i�1
lim

T⟶0


t

0
σT(s)IEi

(s)ds

� lim
T⟶0


t

0
σT(s)ds, ∀t≥ 0.

(19)

,e solution of system (10) with (11) is denoted as xμ,
and the solution of system (10) and PWM implementation
(13) is denoted as xσT

; by formula (19), the following rela-
tionship holds

lim
T⟶0

xσT
(t) � x0 + 

t

0
f(x(s))ds + B lim

T⟶0


t

0
σT(s)ds

� x0 + 
t

0
f(x(s))ds + B 

t

0
μ(s)ds

� xμ(t), ∀t≥ 0.

(20)

which implies that

xσT
(t) � xμ(t) + DT, lim

T⟶0
DT � 0, ∀t≥ 0. (21)

According to Assumption 1, the origin of system (10)
with (11) is finite-time stable. By Definition 1, there exists a
settling time T∗ ∈ (0,∞), such that

xμ(t) � 0, ∀t>T∗. (22)
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Figure 4: ,e pulse generated comparing μ � a with a triangular
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From (22) and 21, we have that

xσT
(t)|≤ |DT



, lim
T⟶0

DT � 0, ∀t≥ 0. (23)

As a consequence, there exists eT, such that |DT|≤ eT,
and

xσT
(t)



≤ eT, lim
T⟶0

eT � 0, ∀t≥ 0. (24)

According to Definition 2, the origin of closed-loop
digital system (10) and (13) is practically finite-time stable.

From the above analysis, we can get the result.

Theorem 1. For system (10) under Assumption 1, if con-
tinuous static control μ(t) (11) is replaced by PWM control
σT(t) (13), then the origin of closed-loop digital system (10)
with (13) is practically finite-time stable.

Remark 3. According to ,eorem 1, system (10) with (13)
is practically finite-time stable. From (24), as T⟶ 0,
eT⟶ 0. ,is implies that the sampling period T can be
tuned smaller, and system (10) with (13) is closer to be finite-
time stable. Moreover, all signals can be made arbitrarily
small for small enough T.

4. PWM-Based Finite-Time Tracking

For the switched buck converter (3), in order to achieve the
tracking target, we give the ideas for design as follows:

(1) Design the equivalent continuous control by the
backstepping method

(2) ,e digital control is produced using the equivalent
continuous control based on the PWM technique

4.1. Design of a Finite-Time State Feedback Controller.
System (3) with equivalent continuous control μ is presented
as

_x1 � −
1
RC

x1 +
1
C

x2,

_x2 � −
1
L

x1 +
1
L

Eμ.

(25)

For the continuous system (25), the backstepping
method is adopted to design a finite-time state feedback
controller μ, such that the capacitor voltage x1 tracks the
given reference voltage yr(t) in a finite time.

Introduce the track error

z1 � x1 − yr. (26)

Step 1. From (25) and (26), the derivative of z1 with respect
to time turns out to be

_z1 � −
1
RC

x1 +
1
C

x2 − _yr. (27)

Choosing the Lyapunov function V1 � (1/2)z2
1, the

derivative of V1 along the system (27) is given by

_V1 � z1 −
1
RC

x1 +
1
C

x2 − _yr . (28)

As (1/C)x2 is just a variable and not an effective control
input, (27) cannot be enforced for all t≥ 0. Nevertheless, it
shows that the desired value for the variable (1/C)x2 is

α1 � −c1z
2β−1
1 +

1
RC

x1 + _yr, (29)

where c1 > 0 and β ∈ ((1/2), 1) are design parameters.
Substituting (29) into (28), we have

_V1 � −c1z
2β
1 + z1

1
C

x2 − α1 . (30)

Step 2. Indeed, design the error

z2 �
1
C

x2 − α1. (31)

From (25) and (31), deriving z2 with respect to time
yields

_z2 � −
1
LC

x1 +
1
LC

Eμ − _α1. (32)

For the second Lyapunov-like function V � V2 �

V1 + (1/2)z2
2, the derivative of V along the system (32)

satisfies

_V � −c1z
2β
1 + z1z2 + z1 _z2

� −c1z
2β
1 − c2z

2β
2 + z2 c2z

2β−1
2 + z1 −

1
LC

x1 +
1

LC
Eμ − _α1 ,

(33)

where c2 > 0 is a design parameter. ,e finite-time state
feedback controller is designed as

μ �
LC
E

−z1 − c2z
2β−1
2 +

1
LC

x1 + _α1 . (34)

Substituting (34) into (33) results in

_V � −c1z
2β
1 − c2z

2β
2 . (35)

In view of the above control analysis, we give the stability
result of the continuous system in the following.

Theorem 2. For system (3) with continuous control μ (34),
all the signals of the closed-loop error systems (27), (32), and
(34) are finite-time stable, and the tracking error converges to
the origin in a finite time. Moreover, the equivalent contin-
uous control (34) is bounded, and by choosing design pa-
rameters appropriately, μ can be obtained such that

μ(t) ∈ [0, 1], t≥ 0. (36)

Proof. By defining z � (zT
1 , zT

2 )T and V(z) � (1/2)z2
1 +

(1/2)z2
2, V(z) is a positive definite function. From (35) and

Lemma 1,
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_V � −c1z
2β
1 − c2z

2β
2

≤ − 2c1
z2
1
2

 

β

− 2c2
z2
2
2

 

β

≤ − c
1
2
z
2
1 +

1
2
z
2
2 

β

≤ − cV
β
,

(37)

where c � min 2c1, 2c2  and β ∈ ((1/2), 1). According to
Lemma 2, the closed-loop error system is finite-time stable.
Besides, based on Definition 1, we can obtain that

z(t) � 0, ∀t≥T∗ withT∗ ≤
1

c(1 − β)
V

1− β
z0( , z(t) � 0, ∀t≥T∗.

(38)

By the definition of z,

x1 − yr � 0, ∀t>T∗, (39)

that is, the tracking error converges to the origin in a finite
time. Furthermore, from (38), this implies that z is bounded.
For the boundedness of yr, _yr, and €yr, it can be obtained that
α1 and states x1, x2 are bounded. After that, ](t): �

LC[−z1 − c2z
2β−1
2 + (1/LC)x1 + _α1] is bounded, that is, there

exists a positive constant E> 0, such that |](t)|≤E. ,en,
μ � (](t)/E) ∈ [−1, 1]. Let the beginning values of inductor
current x1 and capacitor voltage x2 of circuits be zero, and

choose design parameters c1, c2 appropriately; we can get
μ(t) ∈ [0, 1], t≥ 0. □

4.2. Design of PWM-Based Finite-Time Tracking Controller.
For the switched buck converter (3), there exists a equivalent
continuous finite-time state feedback control (34), that is,

μ �
LC
E

−z1 − c2z
2β−1
2 +

1
LC

x1 + _α1  ∈ [0, 1], t≥ 0, (40)

by choosing positive parameters E, c1, c2 appropriately.
Based on PWM implementation (13) and continuous signal
(40), the binary PWM control is designed as

σ � σT(t) �
1, μ(t)> u0(t),

0, μ(t)< u0(t),
 (41)

where σ is the digital switch in the buck converter (3) and
u0(t) is the triangular wave with period T.

In order to indicate the proposed PWM-based finite-
time tracking control approach more clearly, the control
block diagram is shown in Figure 5, where the switching
signal σ(t) is generated by the PWM technique comparing
equivalent continuous control μ(t) with fixed-frequency
triangle wave by comparator.

Theorem 3. For the switched buck converter (3), if contin-
uous control μ (40) is replaced by binary PWM control σ (41),
then the closed-loop error systems (27) and (32) with (41) are

PWM signal

x1

x2

yr

mu

Equivalent continuous control

+
--+

Capacitor

Electrical reference

-+
I

Current sensor

-
+

V

V

Voltage sensor
SPS

PS-Simulink
converter

SPS

PS-Simulink
converter1

f(x) = 0

Solver
configuration

DC voltage source

MOSFET

+-
-

+

Diode

SPS
Converter2

Triangular wave generator
sampling period is T

Comparator

PS

Converter3

Signals of yr

References

+- -+

Inductor

+
--+

Resistor

S

A

Physical connection
Physical signal
Simulation signal

–

+ μ(t)

σ(t)
T

T1

1

+–

Figure 5: ,e control framework of buck converters under PWM-based finite-time tracking control.
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practically finite-time stable. Furthermore, the tracking error
can be made arbitrarily small for small enough T.

Proof. According to ,eorem 2, the closed-loop error sys-
tems (27) and (32) with (40) are finite-time stable. Based on
,eorem 1, the closed-loop error systems (27) and (32) with
(41) are practically finite-time stable.

Furthermore, z1 � x1 − yr is a component of states z of
the closed-loop error system; based on Remark 3, when T is
small enough, the tracking error x1 − yr can be made ar-
bitrarily small. □

Remark 4. Finite-time point regulation problem was dis-
cussed for continuous average models in [25–27] with the
continuous control as a control input. Compared with
[25–27], PWM control based on the equivalent control input
(i.e., the duty ratio function) is considered for finite-time
trajectory tracking of switched power converters in this
paper, and here the digital control is the system input.

5. Simulation Results

Example 1. To investigate the effectiveness of the proposed
control method, we give the simulation results as follows.

,e corresponding closed-loop systems are considered
with two different cases:

(i) ,e continuous model (25) based on finite-time state
feedback controller (40)

(ii) ,e switched buck converter (3) based on PWM-
based finite-time tracking (41)

In the simulation, suppose that the output voltage ref-
erence for tracking is yr(t) � 2 + sin t; the circuit parameters
are E � 8V, L � 0.2H, C � 0.001 F, and R � 5Ω; the initial
values are x1(0) � (qC(0)/C) � 0 and x2(0) � _qL(0) � 0;
and the design parameters are c1 � 80, c2 � 80, β � (99/101),
and T � 0.001.

To make comparisons of simulation results, the two
system cases are discussed keeping other parameters
intact, respectively. Figures 6 and 7 show the responses
of the corresponding closed-loop system with the dif-
ferent cases. Figure 6 implies that the tracking error
tends to the origin in a finite time. From Figure 7, it can
be learned that the tracking error converges to a small
neighborhood of the origin in a finite time. Compared
with Figure 6, Figure 7 illustrates the validity of PWM-
based finite-time tracking control of the closed-loop
system.

6. Conclusions

,e problem of finite-time tracking for switched buck
converters is considered in this paper. PWM-based
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Figure 6: ,e response of closed-loop continuous model (25) with equivalent continuous control (40).
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tracking control with the equivalent control input is
proposed for the switched buck converter, such that the
tracking error converges to an arbitrarily small neigh-
borhood of the origin in finite time, and the origin of the
closed-loop system is practically finite-time stable. Sim-
ulation results are given to demonstrate the effectiveness
of the proposed schemes.

It is an interesting and challenging direction under
current research. ,e finite-time control method can be
further generalized to solve other converters, such as boost
converter, buck-boost converter, and Ćuk converters; an-
other future research is regarding stochastic PWM control of
systems based on random theory [34, 35].
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-e optimal pricing of dual-channel supply chain with the third party product recovery and sales effort is considered in this paper.
-e optimal selling pricing of direct channel and retail channel in the forward supply chain and the optimal collection pricing of
retail channel and the third party in the backward supply chain are given for the general case under the centralized and
decentralized model. -en, the effect of sales effort of the retailer and the optimal pricing strategy with sales effort under the
centralized and decentralized model are provided and analyzed. Finally, the comparative analysis of four situations is carried out
by numerical results.

1. Introduction

In order to improve the utilization rate of resources and
reduce environmental pollution, many enterprises are en-
gaged in remanufacturing [1–4]. With the development of
science and technology, products could be used for recycling
and restoring their original function. Remanufacturing
products could meet expectations of consumers on new
products, at the same time, the process of remanufacturing
could reduce resource consumption and emissions. Re-
search has shown that, by implementing product remanu-
facturing strategy, enterprises can save the cost of 40%–65%.
-is not only saves the raw materials of the new parts but
also avoids the waste of the resource [5]. -e China Daily
reported on January 4, 2018, since China adopted the global
ban on the import of waste, the European and American
countries faced a garbage crisis. -erefore, recycling and
remanufacturing becomes even more important. In addi-
tion, due to changes in consumer shopping habits and the
environmental protection consciousness enhancement,
more and more enterprises would see the remanufacturing
as a strategy to expand market share, and many companies
have established a remanufacturing system [6–12].

Companies such as Caterpillar, GE Aviation, and Mercedes-
Benz have built remanufacturing plants in Shanghai.

Because the remanufacturing has very potent prospect,
many independent manufacturers have focused on this area
[13–20]. Many of construction equipment retailers are
gradually implementing the remanufacturing strategy, as a
result the remanufacturing has lower production cost.
-erefore, it is one available strategy through discounts to
attract consumers when facing competitive threat on the
market [21]. It is widely believed that the remanufacturing
market activities are more complex than the traditional
production and the sales process. For many different
characteristics of remanufacturing goods, such as the un-
certain sources of the product of supply chain, the process
involves the forward and reverse logistics [22].-erefore, for
those who are engaged in remanufacturing enterprise, how
to build a profitable closed-loop supply chain to effectively
recycle used products should be considered. On the con-
trary, the distribution of new products and remanufactured
products is one of the pressing problems.

Results on remanufacturing recycling dual-channel are
less researched in the existing literature. In [23], the presence
of competing retailers is considered in the reverse channel.
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Recovery system on the management of manufacturers and
retailers was modeled and studied. Huang et al. studied the
optimal decision of dual recycling channels of the closed-
loop supply chain and put forward the macroeconomic
regulation and control policy based on the numerical
analysis. -e authors discussed that the dual recycling
channel is more effective than the single recycling channel
for more manufacturers [24]. In [25], the authors studied the
manufacturer-oriented three reverse-mixed recycling
channels of the closed-loop supply chain structure, namely,
the manufacturer and retailer mix recycling channels,
manufacturer and third-party recycling channels, and re-
tailer and third-party mix recycling channels, coming to a
conclusion that the mixture of manufacturers and retailers is
the most effective recycling channels.

In real life, the sales effort on the market has become a
key factor in determining the selling price [26]. -ere are
many approaches to improve the market demand for
products through sales effort, such as providing the bigger
shelf space, promotion, and advertising. Many research
results about the effect of sales effort on achieving supply
chain coordination. Ma et al. discussed the profits of retailer
and manufacturer characteristics under different channel
strategies and sales effort levels [27]. In [28], the authors
predicted a supplier-retailer of agricultural supply chain,
including market demand which depends on the sales effort,
and provided service.

Based on the above analysis, this paper aims to study the
optimal pricing of the dual-channel supply chain with the
third-party product recovery and sales effort. First of all, for
the general case under the centralized and decentralized
model, discuss the optimal selling pricing of the direct
channel and retail channel in the forward supply chain and
the optimal collection pricing of the retail channel and the
third party in the backward supply chain. -en, the optimal
pricing strategy with sales effort under the centralized and
decentralized model is provided and analyzed. Finally, the
comparative analysis of four situations is carried out by
numerical results.

-e organizational structure of this paper is given as
follows. Section 1 is the introduction of this paper; Section 2
is the model description of this paper; Section 3 studies the
optimal selling pricing of the direct channel and retail
channel in the forward supply chain and the optimal col-
lection pricing of the retail channel and the third party in the
backward supply chain; Section 4 discusses the centralized
model and decentralized model with sales effort; Section 5
carries out the comparative analysis of four situations by
numerical results; Section 6 summarizes the research of this
paper.

2. Model Description

In this paper, we consider a kind of closed-loop supply chain
with a dual channel which consists of three members: one
manufacturer, one retailer, and one third party. As shown in
Figure 1, in the forward supply chain, the manufacturer
produces products at cost cr and sells products to consumer
by direct channel at price pd. -e manufacturer sells

products to the retailer at wholesale price w and the retailer
sells products to the consumer by the retail channel at price
pr. In the reverse supply chain, the retailer and the third
party collect the used products from the consumer at
recycling prices er and et, respectively. -e manufacturer
recycles the used products for remanufacturing from the
retailer and the third party at recycling price of e.

-e manufacturer should make a decision about the
price of the direct channel and the wholesale price to the
retailer, the retailer makes a decision about the price of the
retail channel and the recycling price er, and the third party
needs to consider the recycling price et to maximize their
own profits, respectively. -roughout this paper, the nota-
tions are given as Table 1.

To obtain the main results, we give the following
assumptions.

Assumption 1. As mentioned in [29], the demand function
is considered as one linear function on the direct selling
price and retail selling price. Since the influence of the self-
price on demand should be larger than the influence of cross
price, we assume that b1 > b2.

Assumption 2. For the significance of remanufacturing, the
unit produce cost of producing new products cn and unit
produce cost of remanufacturing products cr should satisfy
that cr + e≤ cn.

Assumption 3. Since that the profit of collecting products
must be nonnegative for the retailer and third party to
guarantee the effectiveness of recycle, there exists er ≤ e and
et ≤ e.

Assumption 4. Assume that the collection rate τ is a constant
number, which means that, for the whole demand function
D, τD would be remanufactured products and (1 − τ)D

would be new manufactured products.

Assumption 5. In this paper, similar with the market de-
mand functions, the collection functions for the retailer and
the third party are considered as linear functions on their
collection price. We assume that τr � (1 − α)τD + β1er−

β1et and τt � ατ D + β1et − β2er, where α represents the
basic market share to the third party, ατD stands for the
proportion of consumers’ preference for the third party, and

Consumer

The third party

Manufacturer

e

e

er pr

pd

et

w

Retailer

Figure 1: -e structure of the whole supply chain system.
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(1 − α)τ D stands for the proportion of consumers’
preference for the retail channel so that
τr + τt � τ D + (β1 − β2)(er + et).

Assumption 6. According to [30], we assume that the col-
lection cost is considered as the quadratic function of the
collection rate, which is considered as (1/2)kτ2i for i � r, t.

Based on Assumption 1, the demand functions of the
retail channel and direct channel are expressed as linear
functions of self-price, cross price, and market scale, which
are, respectively, shown as follows:

Dr � D1 − b1pr + b2pd,

Dd � D2 − b1pd + b2pr,
(1)

where D1 stands for the proportion of consumers’ prefer-
ence for the retail channel and D2 stands for the proportion
of consumers’ preference for the direct channel.

According to Assumption 5, the collection demand
functions of the retail channel and third party channel are
expressed as linear functions of self-collecting price, cross-

collecting price, and collecting rate, which are, respectively,
shown as follows:

τr � (1 − α)τ D + β1er − β2et,

τt � ατ D + β1et − β2er,
(2)

where D � D1 + D2 stands for the potential whole market
demand.

Accordingly, based on the above assumptions and de-
mand functions, the profit function of the retailer is con-
sidered as follows:

πr pr, er(  � Dr pr − w(  + τr e − er(  −
1
2

kτ2r , (3)

where Dr(pr − w) stands for the profit of selling products to
the consumer by the retail channel and τr(e − er) represents
the profit of collecting products from the manufacturer. -e
collection cost is considered as (1/2)kτ2r .

Denote that the unit produce cost of remanufacturing
products is cr; then, the profit function of the manufacturer
is given by

πd w, pd(  � Drw + Ddpd − (1 − τ)D − β1 − β2(  er + et(  cn − τ D + β1 − β2(  er + et(   cr + e( , (4)

where the Drw and Ddpd represents the profit of selling
products to the consumer by the retail channel and direct
channel, respectively. [(1 − τ)D − (β1 − β2)(er + et)]cn de-
notes the producing cost for new products and [τ D +

(β1 − β2)(er + et)](cr + e) stands for the recycling and
remanufacturing cost for the collected products.

-e collection cost of the third party is considered as
(1/2)kτ2r so that the profit function of the third party is
presented as

πt et(  � τt e − et(  −
1
2

kτ2t . (5)

3. Equilibrium Analysis

3.1. Centralized Model. In the centralized model, all mem-
bers of the supply chain system cooperatively make a de-
cision on the unit selling price of the retail channel and direct
channel and the collection price from the consumer. -e
profit of the whole supply chain is expressed as

Table 1: Table of notations.

Notation Meaning
i i � r, d, t stands for the retail channel, direct channel, and third party, respectively
pi Unit selling price of channel i, i � r, d

e -e collection price from the retailer and third party
ei -e collection price from the consumer through channel i, i � r, t

w -e wholesale of nongreen product to the retailer
s Sales effort
b1 Self-price demand elasticity coefficient
b2 Cross-price demand elasticity coefficient
τ Collection rate of products
τi Collection demand of channel i, i � r, t

βi Collection demand elasticity coefficient, i � 1, 2
cn Unit produce cost of producing new products
cr Unit produce cost of remanufacturing products
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πsc pr, pd, er, et(  � Drpr + Ddpd + β1 − β2(  er + et(  cn − cr(  − (1 − τ)Dcn

− τ Dcr − τrer − τtet −
1
2

kτ2r −
1
2

kτ2t

� D1 − b1pr + b2pd( pr + D2 − b1pd + b2pr( pd + β1 − β2(  er + et(  cn − cr( 

− (1 − τ)Dcn − τ Dcr − (1 − α)τ D + β1er − β2et er − ατ D + β1et − β2er( et

−
1
2

k (1 − α)τ D + β1er − β2et 
2

−
1
2

k ατ D + β1et − β2er( 
2
.

(6)

Proposition 1. When the market is under centralized situ-
ation, if the parameters satisfy that

(2β1 + kβ21 + kβ22) − 2β2(1 + kβ1)> 0, then there exists the
unique optimal solution:

p
c1∗
r �

b1D1 + b2D2

2 b21 − b22( 
,

p
c1∗
d �

b2D1 + b1D2

2 b21 − b22( 
,

e
c1∗
r �

2β1 + kβ21 + kβ22  β1 − β2(  cn − cr(  + kβ2ατ D − 1 + kβ1( (1 − α)τ D  + 2β2 1 + kβ1(  β1 − β2(  cn − cr(  + kβ2(1 − α)τ D − 1 + kβ1( ατ D 

2β1 + kβ21 + kβ22 
2

− 4β22 1 + kβ1( 
2

,

e
c1∗
t �

2β1 + kβ21 + kβ22  β1 − β2(  cn − cr(  + kβ2(1 − α)τ D − 1 + kβ1( ατ D  + 2β2 1 + kβ1(  β1 − β2(  cn − cr(  + kβ2ατ D − 1 + kβ1( (1 − α)τ D 

2β1 + kβ21 + kβ22 
2

− 4β22 1 + kβ1( 
2

.

(7)

Proof. According to the profit function of whole supply
chain (6), taking the first-order derivatives of
πsc(pr, pd, er, et) along the retail price pr, the direct price pd,

the collecting price of retailer er, and the collecting price of
the third party et, we could obtain

zπsc pr, pd, er, et( 

zpr

� − 2b1pr + 2b2pd + D1,

zπsc pr, pd, er, et( 

zpd

� 2b2pr − 2b1pd + D2,

zπsc pr, pd, er, et( 

zer

� − 2β1 + kβ21 + kβ22  + 2β2 1 + kβ1( et + β1 − β2(  cn − cr(  + kβ2ατ D − 1 + kβ1( (1 − α)τ D,

zπsc pr, pd, er, et( 

zet

� 2β2 1 + kβ1( er − 2β1 + kβ21 + kβ22 et + β1 − β2(  cn − cr(  + kβ2(1 − α)τ D − 1 + kβ1( ατ D.

(8)

Hence, the Hessian matrix is given as

H
c1

�

− 2b1 2b2 0 0

2b2 − 2b1 0 0

0 0 − 2β1 − kβ21 − kβ22 2β2 1 + kβ1( 

0 0 2β2 1 + kβ1(  − 2β1 − kβ21 − kβ22

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (9)

4 Complexity



Obviously, the second derivative satisfies that z2πsc(pr,

pd, er, et)/zp2
r � z2πsc(pr, pd, er, et)/zp2

d � − 2b1 < 0. Based
on the condition of proposition,
(2β1 + kβ21 + kβ22) − 2β2(1 + kβ1)> 0, it could be obtained
that (2β1 + kβ21 + kβ22)

2 − 4β22(1 + kβ1)
2 > 0. -erefore, the

profit function πsc(pr, pd, er, et) is joint concave on pr, pd,
er, and et. -e optimal solution could be obtained by solving
the first-order condition. -e proof is completed.

Remark 1. Proposition 1 shows the optimal solution under
centralized situation. According to the result of Proposition
1, it could be concluded that the retail selling price and direct
selling price are related with the values of D1 and D2. Under
the assumption that D1 � (1 − ρ)a and D2 � ρa, we could
find pc∗

r >pc∗
d if 0< ρ< 0.5 and pc∗

r <pc∗
d if 0.5< ρ< 1. It

demonstrates that the channel has higher selling price when
the channel occupies higher market share. Furthermore,
if α � 0.5, then ec1∗

r � ec1∗
t � ((2β1 + kβ21 + kβ22 + 2β2

(1 + kβ1)) [(β1 − β2)(cn − cr) + 0.5kβ2τ D − 0.5 (1 + kβ1)
τ D]/(2β1 + kβ21 + kβ22)

2 − 4β22(1 + kβ1)
2). It shows that,

under the centralized decision model, if the potential de-
mand of the retailer and the third party for the recycled
products was equal, there is no competitive relationship on
the behavior of the recycled products, and the price of the
recycled products is consistent.

3.2. Decentralized Model. -is section considers that man-
ufacturers, retailers, and third parties, respectively, make
sales pricing decisions and collection pricing decisions to
maximize their respective profits. Consider the supply chain
under the manufacturer-led Stackelberg model. According
to the profit function of retailer (3), profit function of
manufacturer (4), and profit function of third party (5), it
has

πr pr, er(  � D1 − b1pr + b2pd(  pr − w(  + (1 − α)τ D + β1er − β2et  e − er(  −
1
2

k (1 − α)τ D + β1er − β2et 
2
, (10)

πd pd, w(  � D1 − b1pr + b2pd( w + D2 − b1pr + b2pd( pd + β1 − β2(  cn − cr − e(  er + et(  − (1 − τ)Dcn − τ D cr + e( ,

(11)

πt et(  � ατ D + β1et − β2er(  e − et(  −
1
2

k ατ D + β1et − β2er( 
2
. (12)

Proposition 2. When the market is under decentralized
situation, if the parameters of supply chain (10)–(12) satisfy

the condition of β21(2 + kβ1)
2 − β22(1 + kβ1)

2 > 0, then there
exists the unique optimal solution:

p
d1∗
r �

3b21D1 − b22D1 + 2b1b2D2

4b1D1 b21 − b22( 
,

p
d1∗
d �

b2D1 + b1D2

2 b21 − b22( 
,

e
d1∗
r �

β1 2 + kβ1(  β1e − 1 + kβ1( (1 − α)τ D  + β2 1 + kβ1(  β1e − 1 + kβ1( ατ D 

β21 2 + kβ1( 
2

− β22 1 + kβ1( 
2 ,

e
d1∗
t �

β1 2 + kβ1(  β1e − 1 + kβ1( ατ D  + β2 1 + kβ1(  β1e − 1 + kβ1( (1 − α)τ D 

β21 2 + kβ1( 
2

− β22 1 + kβ1( 
2 .

(13)

Proof. For the retailer and the third party, according to the
profit functions of the retailer and the third party (10) and
(12), taking the first-order derivatives of πr(pr, er) and

πt(et) along the retail price pr, the collecting price of retailer
er, and the collecting price of the third party et, respectively,
we could obtain
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zπr pr, er( 

zpr

� − 2b1pr + b2pd + b1w + D1,

zπr pr, er( 

zer

� − β1 2 + kβ1( er + β2 1 + kβ1( et + β1e − 1 + kβ1( (1 − α)τ D,

zπt et( 

zet

� β2 1 + kβ1( er − β1 2 + kβ1( et + β1e − 1 + kβ1( ατ D.

(14)

Hence, the Hessian matrix is given as

H
d1

�

− 2b1 0 0

0 − β1 2 + kβ1(  β2 1 + kβ1( 

0 β2 1 + kβ1(  − β1 2 + kβ1( 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (15)

Obviously, the second derivative satisfies that
(z2πr(pr, er)/zp2

r) � − 2b1 < 0 and (z2πt(et)/ze2t ) � (z2πr

(pr, er)/ze2r) � − β1(2 + kβ1)< 0. Based on the condition of
proposition, β21(2 + kβ1)

2 − β22(1 + kβ1)
2 > 0. -erefore, the

profit functions πr(pr, er) and πt(et) are joint concave on pr,
er, and et. -e optimal solution could be obtained by solving
the first-order condition as follows:

p
d1∗
r �

1
2b1

b2pd + b1w + D1( ,

e
d1∗
r �

β1 2 + kβ1(  β1e − 1 + kβ1( (1 − α)τ D  + β2 1 + kβ1(  β1e − 1 + kβ1( ατ D 

β21 2 + kβ1( 
2

− β22 1 + kβ1( 
2 ,

e
d1∗
t �

β1 2 + kβ1(  β1e − 1 + kβ1( ατ D  + β2 1 + kβ1(  β1e − 1 + kβ1( (1 − α)τ D 

β21 2 + kβ1( 
2

− β22 1 + kβ1( 
2 .

(16)

Substitute the pd1∗
r , ed1∗

r , and ed1∗
t into profit function

(10), and it obtains

πd pd, w(  � D2 − b1pd +
b2

2b1
b2pd + b1w + D1(  pd +

1
2

b2pd + b1w + D1( w

+ β1 − β2(  cn − cr − e(  er + et(  − (1 − τ)Dcn − τ D cr + e( .

(17)

For the manufacturer, taking the first-order derivatives
of πd(pd, w) along the direct price pd and wholesale price w,
we could obtain

zπd pd, w( 

zpd

� − 2b1 +
b22
b1

 pd + b2w + D2 +
b2D1

2b1
,

zπd pd, w( 

zw
� b2pd − b1w +

D1

2
.

(18)

-e Hessian matrix is given as

H
d1
1 �

− 2b1 +
b22
b1

b2

b2 − b1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (19)

Obviously, the second derivative satisfies that
(z2πd(pd, w)/zp2

d) � − 2b1 + (b22/b1)< 0, (z2πd(pd, w)/
zw2) � − b1 < 0, and |Hd1

1 | � 2(b21 − b22)> 0. -erefore, the
profit function πd(pd, w) is joint concave on pd and w. -e
optimal solution could be obtained by solving the first-order
condition as follows:

p
d1∗
d �

b2D1 + b1D2

2 b21 − b22( 
,

w
1∗

�
b22D1 + b1b2D2

2b1 b21 − b22( 
+

D1

2b1
.

(20)

-e proof is completed.
According to the conclusion of Proposition 2, in the

decentralized model, the wholesale price of the
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manufacturer to retailers is the same as the retail selling price
of traditional channels in the centralized model, that is,
w2∗ � pc1∗

r , which leads to higher selling prices for retailers
under the decentralized model. As for the collection price,
the result shows the collection price under the centralized
model is higher than the collection price under decentralized
model for ec1∗

r > ed1∗
r and ec1∗

t > ed1∗
t . □

4. The Optimization on Sales Effort

-e decision on sales effort of the retailer is considered in
this section. In practical application, the sales effort on the
market has become a key factor of the retail price. More
examples show that the demand function depends on sales
effort. Taylor points out that the retailer’s sales effort service
(mainly sales work, includes providing space or shelf space,
promotion, and advertising) increases the demand for
products, and the results demonstrated how to realize
supply chain coordination through the sales and service
effect [26]. -erefore, this section discusses and compares

the optimal pricing and optimal profit with sales effort of
the retailer.

Denote the sales effort of the retailer as s; then, the
demand functions of dual channels are expressed as follows:

Dr � D1 − b1pr + b2pd + g1s,

Dd � D2 − b1pd + b2pr + g2s.
(21)

Based on the demand functions, the profit function of
the retailer is

πr pr, er(  � Dr pr − w(  + τr e − er(  −
1
2

kτ2 −
1
2
ηs

2
,

(22)

where Dr(pr − w) is the profit of selling products by the
retail channel and τr(e − er) is the profit of collection
products from consumers, (1/2)kτ2r is the cost of collection
products, and (1/2)ηs2 is the cost of sales effort.

-e profit function of the manufacturer is

πd w, pd(  � Drw + Ddpd + β1 − β2(  cn − cr − e(  er + et(  − (1 − τ)Dcn − τ D cr + e( , (23)

where Drw is the profit of the retail channel, Ddpd is the
profit of the direct channel, (1 − τ)Dcn is the production
cost of the new product, and τ D(cr + e) is the production
cost of the remanufactured product. -e profit function of
the third party is

πt et(  � τt e − et(  −
1
2

kτ2t . (24)

4.1. Centralized Model with Sales Effort. According to the
profit functions of the retailer, manufacturer, and third
party (22)–(24), the profit of the whole supply chain is
expressed as

πsc pr, pd, er, et(  � Drpr + Ddpd + β1 − β2(  cn − cr(  er + et(  − (1 − τ)Dcn

− τ Dcr − τrer − τtet −
1
2

kτ2r −
1
2

kτ2t

� D1 − b1pr + b2pd + g1s( pr + D2 − b1pd + b2pr + g2s( pd

− (1 − τ)Dcn − τ Dcr − (1 − α)τ D + β1er − β2et er

− ατ D + β1et − β2er et −
1
2

k (1 − α)τ D + β1er − β2et 
2

−
1
2

k ατ D + β1et − β2er 
2

−
1
2
ηs

2
.

(25)
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Proposition 3. When the market is under centralized situ-
ation with sales effort, if the parameters of (25) satisfy that
2b21η − 2b2g1g2 − b1(g2

1 + g2
2) − 2b22η> 0, then there exists

the unique optimal solution under the centralized model with
sales effort:

p
c2∗
r �

b1D1 + b2D2

2 b21 − b22( 
+

b1g1 + b2g2(  b1D1 + b2D2( g1 + b1D2 + b2D1( g2 

2 b21 − b22(  2η b21 − b22(  − b1g1 + b2g2( g1 − b1g2 + b2g1( g2 
,

p
c2∗
d �

b1D2 + b2D1

2 b21 − b22( 
+

b1g2 + b2g1(  b1D1 + b2D2( g1 + b1D2 + b2D1( g2 

2 b21 − b22(  2η b21 − b22(  − b1g1 + b2g2( g1 − b1g2 + b2g1( g2 
,

e
c2∗
r �

2β1 + kβ21 + kβ22  β1 − β2(  cn − cr(  + kβ2ατ D − 1 + kβ1( (1 − α)τ D  + 2β2 1 + kβ1(  β1 − β2(  cn − cr(  + kβ2(1 − α)τ D − 1 + kβ1( ατ D 

2β1 + kβ21 + kβ22 
2

− 4β22 1 + kβ1( 
2

,

e
c2∗
t �

2β1 + kβ21 + kβ22  β1 − β2(  cn − cr(  + kβ2(1 − α)τ D − 1 + kβ1( ατ D   + 2β2 1 + kβ1(  β1 − β2(  cn − cr(  + kβ2ατ D − 1 + kβ1( (1 − α)τ D 

2β1 + kβ21 + kβ22 
2

− 4β22 1 + kβ1( 
2

,

s
c2∗

�
b1D1 + b2D2( g1 + b1D2 + b2D1( g2

2η b21 − b22(  − b1g1 + b2g2( g1 − b1g2 + b2g1( g2
.

(26)

Proof. According to the profit function of the whole supply
chain with sales effort (25), taking the first-order derivatives
of πsc(pr, pd, er, et, s) along the retail price pr, the direct

price pd, the collecting price of retailer er, the collecting price
of the third party et, and the sales effort s, we could obtain

zπsc pr, pd, er, et, s( 

zpr

� − 2b1pr + 2b2pd + d1 + g1s,

zπsc pr, pd, er, et, s( 

zpd

� 2b2pr − 2b1pd + d2 + g2s,

zπsc pr, pd, er, et, s( 

zs
� g1pr + g2pd − ηs,

zπsc pr, pd, er, et, s( 

zer

� − 2β1 + kβ21 + kβ22 er + 2β2 1 + kβ1( et + β1 − β2(  cn − cr(  + kβ2ατ D − 1 + kβ1( (1 − α)τ D,

zπsc pr, pd, er, et, s( 

zet

� 2β2 1 + kβ1( er − 2β1 + kβ21 + kβ22 et + β1 − β2(  cn − cr(  + kβ2(1 − α)τ D − 1 + kβ1( ατ D.

(27)

Hence, the Hessian matrix is given as

H
c2

�

− 2b1 2b2 g1

2b2 − 2b1 g2

g1 g2 − η

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (28)

Obviously, the second derivative satisfies that
(z2πsc(pr, pd, er, et, s)/zp2

r) � (z2πsc(pr, pd, er, et, s)/zp2
d) �

− 2b1 < 0 and (z2πsc(pr, pd, er, et)/zs2) � − η< 0. Based on
the condition of proposition, 4b2(2β1 + kβ21+
kβ22) − 2β2(1 + kβ1)> 0, it could be obtained that
|Hc2| � − 4b21η + 4b2g1g2 + 2b1(g2

1 + g2
2) + 4b22η< 0. -ere-

fore, the profit function πsc(pr, pd, er, et, s) is joint concave
on pr, pd, er, et, and s. -e optimal solution could be ob-
tained by solving the first-order condition:

p
c2∗
r �

b1D1 + b2D2

2 b21 − b22( 
+

b1g1 + b2g2

2 b21 − b22( 
s

c2∗
,

p
c2∗
d �

b1D2 + b2D1

2 b21 − b22( 
+

b1g2 + b2g1

2 b21 − b22( 
s

c2∗
,

s
c2∗

�
b1D1 + b2D2( g1 + b1D2 + b2D1( g2

2η b21 − b22(  − b1g1 + b2g2( g1 − b1g2 + b2g1( g2
.

(29)

-e proof is completed.
According to Propositions 1 and 3, the optimal solution

of the centralized model with and without sales effort could
be obtained:
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p
c2∗
r − p

c1∗
r �

b1g1 + b2g2(  b1D1 + b2D2( g1 + b1D2 + b2D1( g2 

2 b21 − b22(  2η b21 − b22(  − b1g1 + b2g2( g1 − b1g2 + b2g1( g2 
> 0,

p
c2∗
d − p

c1∗
d �

b1g2 + b2g1(  b1D1 + b2D2( g1 + b1D2 + b2D1( g2 

2 b21 − b22(  2η b21 − b22(  − b1g1 + b2g2( g1 − b1g2 + b2g1( g2 
0.

(30)

It indicates that the cost of sales effort brings higher
selling price, and the increased part is proportional to the
sales effort: pc2∗

r − pc1∗
r � (b1g1 + b2g2/2(b21 − b22))s

c2∗ and
pc2∗

d − pc1∗
d � (b1g2 + b2g1/2(b21 − b22))s

c2∗. □

4.2. Decentralized Model with Sales Effort. -is section
considers that manufacturers, retailers, and third parties,

respectively, make sales pricing decisions and collection
pricing decisions to maximize their respective profits under
the decentralized model with sales effort. Consider the
supply chain under the manufacturer-led Stackelberg model.
According to the profit function of retailer (22), profit
function of manufacturer (23), and profit function of the
third party (24), it has

πr pr, er, s(  � D1 − b1pr + b2pd + g1s(  pr − w(  + (1 − α)τ D + β1er − β2et 

· e − er(  −
1
2

k (1 − α)τ D + β1er − β2et 
2

−
1
2
ηs

2
,

(31)

πd w, pd(  � D1 − b1pr + b2pd + g1s( w + D2 − b1pd + b2pr + g2s( pd

+ β1 − β2(  cn − cr − e(  er + et(  − (1 − τ)Dcn − τ D cr + e( ,
(32)

πt et(  � ατ D + β1et − β2er(  e − et(  −
1
2

k ατ D + β1et − β2er( 
2
. (33)

Proposition 4. When the market is under the decentralized
model with sales effort, if the parameters of supply chain
(31)–(33) satisfy the condition of 2b1η − g2

1 > 0 and

4b21η[(2b21 − b22)η − b1g
2
1 − b2g1g2] − (2b1b2η − b2g

2
1− b1g1

g2)
2 > 0, then there exists the unique optimal solution:

p
d2∗
r �

b2η 2b21ηφ + D1b1ηϕ(  + b1ηw − g2
1(  2D1b1ηκ + ϕφ( 

2b1η − g2
1(  4b21ηκ − ϕ2( 

+
D1η

2b1η − g2
1
,

s
d2∗

�
b2g1 2b21ηφ + D1b1ηϕ(  − b1g1 2D1b1ηκ + ϕφ( 

2b1η − g2
1(  4b21ηκ − ϕ2( 

+
D1g1

2b1η − g2
1
,

p
d2∗
d �

2b21ηφ + D1b1ηϕ
4b21ηκ − ϕ2

,

w
d2∗

�
2D1b1ηκ + ϕφ
4b21ηκ − ϕ2

,

w
d2∗

�
2D1b1ηκ + ϕφ
4b21ηκ − ϕ2

,

e
d2∗
r �

β1 2 + kβ1(  β1e − 1 + kβ1( (1 − α)τ D  + β2 1 + kβ1(  β1e − 1 + kβ1( ατ D 

β21 2 + kβ1( 
2

− β22 1 + kβ1( 
2 ,

e
d2∗
t �

β1 2 + kβ1(  β1e − 1 + kβ1( ατ D  + β2 1 + kβ1(  β1e − 1 + kβ1( (1 − α)τ D 

β21 2 + kβ1( 
2

− β22 1 + kβ1( 
2 ,

(34)

where φ � D1(b2η + g1g2) + D2(2b1η − g2
1), κ � (2b21 − b22)

η − b1g
2
1 − b2g1g2, and ϕ � 2b1b2η − b2g

2
1 − b1g1g2.

Proof. For the retailer and the third party, according to the
profit functions of the retailer and the third party (31) and
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(33), taking the first-order derivatives of πr(pr, er, s) and
πt(et) along the retail price pr, the collecting price of retailer

er, sales effort s, and the collecting price of the third party et,
respectively, we could obtain

zπr pr, er, s( 

zpr

� − 2b1pr + b2pd + b1w + g1s + D1,

zπr pr, er, s( 

zs
� g1pr − g1w − ηs,

zπr pr, er, s( 

zer

� − β1 2 + kβ1( er + β2 1 + kβ1( et + β1e − 1 + kβ1( (1 − α)τ D,

zπt et( 

zet

� β2 1 + kβ1( er − β1 2 + kβ1( et + β1e − 1 + kβ1( ατ D.

(35)

Based on the condition of proposition 2b1η − g2
1 > 0, it

obtains that

p
d2∗
r �

b2ηpd + b1ηw − g2
1( w + D1η

2b1η − g2
1

,

s
d2∗

�
b2g1pd − b1g1w + D1g1

2b1η − g2
1

,

e
d2∗
r �

β1 2 + kβ1(  β1e − 1 + kβ1( (1 − α)τ D  + β2 1 + kβ1(  β1e − 1 + kβ1( ατ D 

β21 2 + kβ1( 
2

− β22 1 + kβ1( 
2 ,

e
d2∗
t �

β1 2 + kβ1(  β1e − 1 + kβ1( ατ D  + β2 1 + kβ1(  β1e − 1 + kβ1( (1 − α)τ D 

β21 2 + kβ1( 
2

− β22 1 + kβ1( 
2 .

(36)

Substitute the pd2∗
r , sd2∗, ed2∗

r , and ed2∗
t into profit

function (32), for the manufacturer, taking the first-order
derivatives of πd(pd, w) along the direct price pd and
wholesale price w, and we could obtain

zπd pd, w( 

zpd

�
− 2 2b21 − b22( η − b1g

2
1 − b2g1g2 

2b1η − g2
1

pd +
2b1b2η − b2g

2
1 − b1g1g2

2b1η − g2
1

w +
D1 b2η + g1g2(  + D2 2b1η − g2

1( 

2b1η − g2
1

,

zπd pd, w( 

zw
�
2b1b2η − b2g

2
1 − b1g1g2

2b1η − g2
1

pd −
2b21η

2b1η − g2
1

w +
D1b1η

2b1η − g2
1
.

(37)

-e Hessian matrix is given as

H
d2

�
− 2 2b21 − b22( η − b1g

2
1 − b2g1g2  2b1b2η − b2g

2
1 − b1g1g2

2b1b2η − b2g
2
1 − b1g1g2 − 2b21η

 . (38)
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According to the condition of Proposition 4, 4b21η[(2b21
− b22)η − b1g

2
1 − b2g1g2] − (2b1b2η − b2g

2
1 − b1g1g2)

2 > 0, we
know |Hd2| � 4b21η[(2b21 − b22) η − b1g

2
1 − b2g1g2] − (2b1

b2η − b2g
2
1 − b1g1g2)

2 > 0. -erefore, the profit function
πD(pd, w) is joint concave on pd and w. -e optimal solution
could be obtained by solving the first-order condition as follows:

Table 2: Table of basic data.

Parameter b1 b2 τ cn cr η α β1 β2 k e g1 g2

Value 0.7 0.2 0.9 50 1 1 0.51 0.9 0.2 0.1 5 0.8 0.5
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Figure 2: -e optimal profit of whole supply chain under the centralized and decentralized model.
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Figure 3: -e optimal retail selling price under the centralized and decentralized model.
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p
d2∗
d �

2b21η D1 b2η + g1g2(  + D2 2b1η − g2
1(   + D1b1η 2b1b2η − b2g

2
1 − b1g1g2( 

4b21η 2b21 − b22( η − b1g
2
1 − b2g1g2  − 2b1b2η − b2g

2
1 − b1g1g2( 

2 ,

w
d2∗

�
2D1b1η 2b21 − b22( η − b1g

2
1 − b2g1g2 

4b21η 2b21 − b22( η − b1g
2
1 − b2g1g2  − 2b1b2η − b2g

2
1 − b1g1g2( 

2

+
2b1b2η − b2g

2
1 − b1g1g2(  D1 b2η + g1g2(  + D2 2b1η − g2

1(  

4b21η 2b21 − b22( η − b1g
2
1 − b2g1g2  − 2b1b2η − b2g

2
1 − b1g1g2( 

2.

(39)

-e proof is completed. □

20 22 24 26 28 30
D2

22

23

24

25

26

27

28

29

30

31
Th

e o
pt

im
al

 p
ric

in
g 

of
 d

ire
ct

 ch
an

ne
l

pc1∗d

pd1∗
d

(a)

22

23

24

25

26

27

28

29

30

31

Th
e o

pt
im

al
 p

ric
in

g 
of

 d
ire

ct
 ch

an
ne

l

22 24 26 28 3020
D2

pc2∗d

pd2∗
d

(b)

Figure 4: -e optimal direct selling price under the centralized and decentralized model.
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Figure 5: -e optimal collection price of the retailer under the centralized and decentralized model.
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Figure 6: -e optimal collection price of the third party under the centralized and decentralized model.
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Figure 7: -e optimal profit of whole supply chain with sales effort under the centralized model.
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Figure 8: Continued.
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Figure 8: -e optimal profit with and without sales effort under the decentralized model.
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Figure 9: -e effect of the value of η on profit under the centralized model and decentralized model.
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Figure 10: Continued.
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Remark 2. In the study of [19], analysis for strategy of the
closed-loop supply chain with dual recycling channel was
carried out. Based on game theory, the authors characterized
the supply chain performance in terms of the pricing de-
cisions and the recycling strategies for both the decentralized
and the centralized channel scenarios. On the contrary, the
supply chain channel strategy with quality and marketing
effort-dependent demand was considered in [22]. Different
from the existing results, this paper provides four scenarios
for different decisionmodels and with or without sales effort.
-e optimal solution is derived and comparison for four
scenarios is given in this paper.

5. Numerical Illustrations

-is section carries on numerical example analysis of the
proposed propositions by comparing the optimal decision of
four propositions. Sensitivity analysis are provided to il-
lustrate the impact of supply chain parameters on system
performance. Table 2 shows the basic data.

5.1. Centralized Model and Decentralized Model. By com-
paring the optimal solution under the centralized model and
decentralized model with and without sales effort, it could be
concluded from Figure 2 that the profit under the centralized
model is always higher than the profit under the decen-
tralized model. -erefore, Pareto improvement could be
achieved by the revenue sharing contract.

Figures 3 and 4 show that, with the increase of the
market scale, retail selling price and direct selling price will
increase. It is easy to understand that the increase of the
market scale leads to higher demand. Under the decen-
tralized model, the retail selling price is higher than the retail
selling price under the centralized model. -e existence of
wholesale price brings this result under the decentralized
model. Figure 4 shows that the direct selling price of the

manufacturer is independent of the decentralized model or
centralized model. Figures 5 and 6 are the collection price of
the retailer and the third party, respectively. With the increase
of the market scale, the collection price would decrease.

5.2. >e Effect of Sales Effort on Optimal Pricing and Profit.
-e demand for different channels depends on the choice of
consumers, and the sales effort of the retailer has an im-
portant influence on the market. In the process of operation
and management, managers should pay attention to the
channel preference of customers. As shown in Figure 7, sales
effort of the retailer under the centralized model could
increase the whole profit of supply chain.

It can be seen from Figure 8 that the sales effort of the
retailer under the decentralized model could increase the
whole profit of the supply chain and the profit of the
manufacturer and retailer, respectively.

5.3. Sensitivity Analysis. -is section discusses the effect of
the marginal cost coefficient of sales effort on profit. It can be
found from Figure 9 that when η increases, each member’s
profit decreases and the rate of change decreases.

It can be found from Figure 10 that when g1 increases,
the profits of each supply chain members all increase and the
rate of change increases.

6. Conclusions

-is paper studies the optimal pricing of the dual-channel
supply chain with the third-party product recovery and sales
effort. First of all, for the general case under the centralized
and decentralized model, the optimal selling pricing of the
direct channel and retail channel in the forward supply chain
and the optimal collection pricing of the retail channel and
the third party in the backward supply chain are discussed.
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Figure 10: -e effect of the value of g1 on profit under the centralized model and decentralized model.
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-en, the optimal pricing strategy with sales effort under the
centralized and decentralized model is provided and ana-
lyzed. Finally, the comparative analysis of four situations is
carried out by numerical results.-e effect of sales effort and
decision-making model on the optimal pricing, demand,
and profit is demonstrated.
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*is research work conducts an investigation of the stability issues of neutral-type Cohen–Grossberg neural network models
possessing discrete time delays in states and discrete neutral delays in time derivatives of neuron states. By setting a new
generalized appropriate Lyapunov functional candidate, some novel sufficient conditions are proposed for global asymptotic
stability for the considered neural networks of neutral type.*is paper exploits some basic properties of matrices in the derivation
of the results that establish a set of algebraic mathematical relationships between network parameters of this neural system. A key
feature of the obtained stability criteria is to be independent from time and neutral delays. *erefore, the derived results can be
easily tested. Moreover, a constructive numerical example is studied to check the verification of presented global
stability conditions.

1. Introduction

In the past few decades, a variety of neural network models
including Hopfield neural networks (HNNs), cellular neural
networks (CNNs), Cohen–Grossberg neural networks
(CGNNs), and bidirectional associative memory neural
networks (BAMNNs) have been utilized for solving some
typical engineering problems associated with pattern rec-
ognitions, signal processing, associative memories, and
optimization related problems [1–9]. In these typical engi-
neering applications, it is usually desired that the dynamics
of the employed neural network must exhibit some certain
behaviors depending on the characteristics of the problem to
be solved. For instance, if one needs to solve an optimization
problem, then the aimed designed neural network may
require to possess a unique and globally asymptotically
stable equilibrium point for every fixed input value. In this
aspect, it becomes an important requirement to analyze
stability behaviors of dynamical neural systems. On the
contrary, neural networks have also been electronically
implemented for real time applications of various classes of
engineering problems. It is known that, in the process of
electronically implementing a neural network, because of the

finite switching speed of operational amplifiers and signal
transmission times of neurons due to the communications of
neurons, delay parameters encounter. *e presence of the
time delay parameters may lead to various complex non-
linear dynamics including instability, periodic solutions, and
chaos.*erefore, one needs to consider the possible effects of
these time delays on the stability properties of neural sys-
tems. In the recent literature, the stability issues for delayed
neural networks have been addressed by a variety of re-
searchers, and various sets of novel sufficient results on
global asymptotic stability of the equilibrium point for
different neural network models have been published
[10–25]. It should mention that stability analysis of neural
networks whose mathematical model with only time delays
may not be appropriate to address the complete charac-
teristics of dynamics for these types of neural network
models. *e reason for this fact is that, in many cases, beside
the states involving time delays, the time derivative of the
states may also have some different types of delays. In this
sense, we need to consider the neural networks having delays
both in states and in time derivative of states. A neural
network that is modelled in this way is called neutral-type
neural network. A widely studied neural network of this class
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is that of Cohen–Grossberg neural networks possessing
discrete time and neutral delay parameters. *is neural
network model is defined by the nonlinear dynamical
equations:

_xi(t) � di xi(t)(  − ci xi(t)(  + 
n

j�1
aijfj xj(t) ⎛⎝

+ 
n

j�1
bijfj xj t − τj   + ui

⎞⎠ + 
n

j�1
eij _xj t − ζj .

(1)

where xi(t) is representing states for the neurons, ci(xi(t)) is
some behaved functions, and di(xi(t)) is representing the
amplification functions. *e constant elements aij and bij

are representing interconnection weights among the neu-
rons. τj(1≤ j≤ n) is representing time delays and
ζj(1≤ j≤ n) is representing neutral delays. *e element eij is
denoting the weights of time derivative of states including
delays. fj(·) is denoting neuronal activation functions, and
ui is constant input of ith neuron. In system (1), we state
some general assumptions. Let τ � max τj , ζ � max ζj ,
1≤ j≤ n, and δ � max τ, ζ{ }. Under these assumptions,
neural network model (1) keeps the initial values stated by
xi(t) � φi(t) and _xi(t) � ϑi(t) ∈ C([− δ, 0], R). We note that

C([− δ, 0], R) represents real-valued functions that are de-
scribed on the interval [− δ, 0] to R.

We can make some remarks on system (1) to address the
role of this system. If we make some simple changes in the
mathematical model of system (1), we can easily have some
other forms of neural network models. If we let eij � 0,∀i, j,
then system (5) becomes a delayed Cohen–Grossberg net-
work. If we let eij � 0,∀i, j and di(xi(t)) � 1 and
ci(xi(t)) � xi(t), then, system (1) will define the class of
Hopfield neural networks. If we let eij � 0,∀i, j,
di(xi(t)) � 1ci, ci(xi(t)) � xi(t), and fj(·) be a specific
activation function with the binary output values, then
neural network (1) turns into the cellular neural network.
*us, the stability analysis of (1) will also address the stability
of many different neural network models.

In stability analysis of the neutral-type network system
whose dynamical activities are governed by (1), the primary
question to be addressed is the determination of mathe-
matical relationships in the neuron states and the functions
di(xi(t)), ci(xi(t)), and fi(xi(t)). *e well-known basic
assumptions on these nonlinear functions are given below.

A1: the function di(xi(t)) has the following property:

0< μi ≤ di xi(t)( ≤ ρi,  ∀i, ∀xi(t) ∈ R, (2)

where μi and ρi are positive valued real constants.
A2: ci(xi(t)) have the following property:

0< ci ≤
ci xi(t)(  − ci yi(t)( 

xi(t) − yi(t)
�

ci xi(t)(  − ci yi(t)( 




xi(t) − yi(t)



≤ψi, ∀i, ∀xi(t), yi(t) ∈ R, xi(t)≠y(t), (3)

where ci and ψi are positive valued real constants. A3: the function di(xi(t)) has the following property:

fi xi(t)(  − fi yi(t)( 


≤ ℓi xi(t) − yi(t)


, ∀i, ∀xi(t), yi(t) ∈ R, xi(t)≠yi(t), (4)

where ℓi is positive-valued real constant.
If neutral-type neural networks possess discrete delays,

then the mathematical models of such neural systems can be
stated in the forms of vectors and matrices. *en, we can
study the stability of such neural networks by exploiting the
linear matrix inequality approach using the other appro-
priate mathematical methods. In [26–34], the stability of
neutral-type neural networks have been studied, and by
constructing some classes of suitable Lyapunov functionals
together with setting some useful lemmas and new math-
ematical techniques, different novel stability results on the
considered neutral-type neural networks of various types of
linear matrix inequalities have been presented. In [35–40],
novel global stability conditions for neutral-type neural
networks in the forms of different linear matrix inequality
formulations have been proposed by employing various
proper Lyapunov functionals with the triple or four integral
terms. In [41, 42] various stability problems for neutral-type
neural networks have been analyzed, and by setting the

semifree weighting matrix techniques and an augmented
Lyapunov functional, some less conservative and restrictive
global stability conditions of linear matrix inequalities have
been proposed. In [42], the stability for neural networks of
neutral-type possessing discrete delays has been suitable
conducted, and by employing a proper Lyapunov functional
that makes a combination of the descriptor model trans-
formation, a novel stability criterion has been formulated in
linear matrix inequalities. In [16], stability of neural systems
has been addressed, and by proposing an appropriate
Lyapunov functionals utilizing auxiliary function-type in-
tegral inequalities and reciprocally convex method, various
sets of stability results via linear matrix inequalities have
been obtained. In [43], the Lagrange stability issue of
neutral-type neural systems having mixed delays has been
analyzed, and by using the suitable Lyapunov functionals
and applying some appropriate linear matrix inequality
techniques, various sufficient criteria have been obtained to
ensure Lagrange stability of neural networks of neutral type.
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In [44], the issues associated with stability of neutral-type
singular neural systems involving different delay parameters
have been studied, and by setting a novel adequate Lyapunov
functional and some rarely integral inequalities, a new global
asymptotic stability condition via linear matrix inequality
has been derived. In [45], dynamical issues of neural net-
works of neutral-type possessing some various delay pa-
rameters have been analyzed, and different stability results
have been derived employing linear matrix inequality
combining with Razumikhin-like approaches.

We should point out that the results of [16, 26–45]
employ some various classes of linear matrix inequality
techniques to obtain different sets of stability conditions for
neutral-type neural networks. However, the stability results
derived via the linear matrix inequality method are required
to test some negative definite properties of high-dimensional
matrices whose elements are formed by the system pa-
rameters of neural networks. Due to these complex calcu-
lation problems, it becomes a necessity to propose different
stability conditions for neutral-type neural networks, which
are not stated in linear matrix inequality forms. In this
concept, the current paper will focus on the dynamical
analysis of neural system (1) to derive some easily verifiable
algebraic stability conditions.

2. Stability Analysis

*e basic contribution of this section will be deriving some
stability conditions implying the stability of neutral-type
Cohen–Grossberg neural system whose model is given by
(1). We now proceed with a first step to provide a simpler
procedure with the proofs of the stability conditions. *is
step needs to transform the equilibrium points
x � (x1, x2, . . . , xn)T of Cohen–Grossberg neural system
represented by equation (1) to the origin. *is will be
achieved by utilizing the simple formula zi(t) � xi(t) − xi,
which turns neutral-type neural network (1) to an equivalent
neutral-type neural network which has a set of differential
equations that govern the dynamics of this system:

_zi(t) � αi zi(t)(  − βi zi(t)(  + 
n

j�1
aijgj zj(t) ⎛⎝

+ 
n

j�1
bijgj zj t − τj  ⎞⎠ + 

n

j�1
eij _zj t − ζj .

(5)

(5) can be represented in the vectors and matrices forms
as given below:

_z(t) � α(z(t))(− β(z(t)) + Ag(z(t))

+ Bg(z(t − τ))) + E _z(t − ζ),
(6)

where the system matrices are A � (aij)n×n, B � (bij)n×n,

E � (eij)n×n, and

z(t) � z1(t), z2(t), . . . , zn(t)( 
T
,

z(t − τ) � z1 t − τ1(( , z2 t − τ2( , . . . , zn t − τn( ( 
T
,

g(z(t)) � g1 z1(t)( , g2 z2(t)( , . . . , gn zn(t)( 
T
,

α(z(t)) � diag α1 z1(t)( , α2 z2(t)( , . . . , αn zn(t)( ( ,

β(z(t)) � β1 z1(t)( , β2 z2(t)( , . . . , βn zn(t)( ( 
T
,

g(z(t − τ)) � g1 z1 t − τ1( ( , g2 z2 t − τ2( ( , . . . , gn zn t − τn( ( ( 
T
,

_z(t − ζ) � _z1 t − ζ1( , _z2 t − ζ2( , . . . , _zn t − ζn( ( 
T
.

(7)

After transforming neutral system (1) into neutral sys-
tem (5), we have new transformed functions in system (5).
*e function αi(zi(t)) are of the form

αi zi(t)(  � di zi(t) + xi( . (8)

*e function βi(zi(t)) are of the form

βi zi(t)(  � ci zi(t) + xi(  − ci xi( . (9)

*e function gi(zi(t)) are of the form

gi zi(t)(  � fi zi(t) + xi(  − fi xi( . (10)

According the properties by A1, A2, and A3, these new
transformed functions possess the following properties:

0< μi ≤ αi zi(t)( ≤ ρi,  ∀i,

ciz
2
i (t)≤ zi(t)βi zi(t)( ≤ψiz

2
i (t),  ∀i,

gi zi(t)( 


≤ ℓi zi(t)


,   ∀i.

(11)

Fact 1. Consider a real matrix A � (aij)n×n and a real vector
x � (x1, x2, . . . , xn)T. We can state the following inequality:

x
T
A

T
Ax≤ 

n

i�1


n

j�1


n

k�1
akiakj




x
2
i . (12)

Fact 2. Consider a real matrix A � (aij)n×n and a real vector
x � (x1, x2, . . . , xn)T. We can state the following inequality:

x
T
A
T
Ax≤ ‖A‖

2
2‖x‖

2
2. (13)

A combination of facts 1 and 2 can be expressed by the
following fact.

Fact 3. Consider a real matrix A � (aij)n×n and a real vector
x � (x1, x2, . . . , xn)T. We can state the following inequality:

x
T
A

T
Ax≤ k1 

n

i�1


n

j�1


n

k�1
akiakj




x
2
i + k2‖A‖

2
2 

n

i�1
x
2
i , (14)

where k1 and k2 are the binary constants such that k1 + k2 �

1 and k1k2 � 0.

Complexity 3



Fact 4. Let A � (aij)n×n be a real matrix, D � diag(di > 0) be
a positive diagonal matrix, and x � (x1, x2, . . . , xn)T be a
real vector. *e following inequality can be stated:

x
T
A

T
DD Ax≤ 

n

i�1


n

j�1


n

k�1
d
2
k akj



 akj



x
2
i . (15)

Fact 5. Consider any two real vectors x � (x1, x2, . . . , xn)T

and y � (y1, y2, . . . , yn)T. *e following inequality can be
stated:

2x
T
y≤ kx

T
x +

1
k

y
T
y, (16)

where k can be chosen as any arbitrary positive real number.
*e key contribution of this paper can now be presented

by the theorem stated below.

Theorem 1. Suppose the conditions given by A1, A2, and A3
hold. Let κ and ξ be positive real-valued numbers. 7en, the
origin of Cohen–Grossberg neural system of neutral type
expressed by (5) is globally asymptotically stable if the system
parameters of (5) satisfy the conditions:

εi �
c2

i

ℓ2i
− (2 + κ) p1 

n

j�1


n

k�1
akiakj




+ p2‖A‖

2
2

⎛⎝ ⎞⎠ − (2 + ξ) q1 

n

j�1


n

k�1
bkibkj




+ q2‖B‖

2
2

⎛⎝ ⎞⎠> 0,

εi � r1
1
ρ2i

− 1 +
1
κ

+
1
ξ

  

n

j�1


n

k�1

1
μ2k

eki


 ekj



⎛⎝ ⎞⎠ + r2
1
ρ2M

− 1 +
1
κ

+
1
ξ

 
1
μ2m

‖E‖
2
2 > 0,

(17)

where μm � min1≤i≤n(μi), ρM � max1≤i≤n(ρi), p1, p2, q1, q2,
r1, and r2 are the binary constants such that p1 + p2 � 1,
p1p2 � 0, q1 + q2 � 1, q1q2 � 0, r1 + r2 � 1, and r1r2 � 0.

Proof. Construct a suitable Lyapunov functional candidate
given by

V(t) � 
n

i�1


zi(t)

0
2
βi(s)

αi(s)
ds + 

n

i�1


t

t− ζ i

1α2i zi(s)( 

_z2
i (s)ds

+ k 
n

i�1


t

t− τi

z
2
i (s)ds,

+(2 + ξ) 

n

i�1


t

t− τi

ℓ2i q1 

n

j�1


n

k�1
bkibkj




+ q2‖B‖

2
2

⎛⎝ ⎞⎠z
2
i (s)ds,

(18)

where k is a real-valued positive number whose appropriate
value will be specified in the process of the proof. If we take
the time derivative of the Lyapunov functional V(t) along
the trajectories of Cohen–Grossberg neural network model
defined by (5), we will derive the equation:

_V(t) � 
n

i�1
2
βi zi(t)( 

αi zi(t)( 
_zi(t) +(2 + ξ) 

n

i�1
ℓ2i q1 

n

j�1


n

k�1
bkibkj




+ q2‖B‖

2
2

⎛⎝ ⎞⎠z
2
i (t)

− (2 + ξ) 
n

i�1
ℓ2i q1 

n

j�1


n

k�1
bkibkj




+ q2‖B‖

2
2

⎛⎝ ⎞⎠z
2
i t − τi( 

+ 
n

i�1

1
α2i zi(t)( 

_z
2
i (t) −

1
α2i zi t − ζ i( ( 

_z
2
i t − ζ i(  

+ k 
n

i�1
z
2
i (t) − k 

n

i�1
z
2
i t − τi( .

(19)

(19) may be rearranged as
_V(t) � 2βT(z(t))α− 1

(z(t)) _z(t)

+ 

n

i�1
−

1
α2i zi t − ζ i( ( 

_z
2
i t − ζ i(  + kz

2
i (t) − kz

2
i t − τi(  

+ α− 1
(z(t)) _z(t) 

T
α− 1

(z(t)) _z(t)

+(2 + ξ) 

n

i�1


t

t− τi

ℓ2i q1 

n

j�1


n

k�1
bkibkj




+ q2‖B‖

2
2

⎛⎝ ⎞⎠z
2
i (t)

− (2 + ξ) 

n

i�1


t

t− τi

ℓ2i q1 

n

j�1


n

k�1
bkibkj




+ q2‖B‖

2
2

⎛⎝ ⎞⎠z
2
i t − τi( .

(20)

Note the inequalities

2βT(z(t))α− 1
(z(t)) _z(t) � 2βT(z(t))(− β(z(t))

+ Ag(z(t)) + Bg(z(t − τ)))

+ 2βT
(z(t))α− 1

(z(t))E _z(t − ζ)

(21)

�

α− 1(z(t)) _z(t)( 
Tα− 1(z(t)) _z(t)

− β(z(t)) + Ag(z(t)) + Bg(z(t − τ)) + α− 1(z(t))E _z(t − ζ)( 
T

− β(z(t)) + Ag(z(t)) + Bg(z(t − τ)) + α− 1(z(t))E _z(t − ζ)( 

.

(22)

Combining (22) with (23) leads to
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2βT(z(t)) + α− 1
(z(t)) _z(t) 

T
)α− 1

(z(t))  _z(t)

− βT
(z(t))β(z(t)) + g

T
(z(t))A

T
Ag(z(t)) + g

T
(z(t − τ))B

T
Bg(z(t − τ))

+ 2g
T
(z(t))A

T
Bg(z(t − τ)) + 2g

T
(z(t))A

Tα− 1
(z(t))E _z(t − ζ)

+ 2g
T
(z(t − τ))B

Tα− 1
(z(t))E _z(t − ζ)

+ _z
T
(t − ζ)E

Tα− 1
(z(t))α− 1

(z(t))E _z(t − ζ).

(23)

By the virtue of fact 5, the following inequalities can be
written as

2g
T
(z(t))A

T
Bg(z(t − τ))≤g

T
(z(t))A

T
Ag(z(t)) + g

T
(z(t − τ))B

T
Bg(z(t − τ)), (24)

2g
T
(z(t))A

Tα− 1
(z(t))E _z(t − ζ)≤ κg

T
(z(t))A

T
Ag(z(t))

+
1
κ

_z
T
(t − ζ)E

Tα− 2
(z(t))E _z(t − ζ),

(25)

2g
T
(z(t − τ))B

Tα− 1
(z(t))E _z(t − ζ)≤ ξg

T
(z(t − τ))B

T
Bg(z(t − τ))

+
1
ξ

_z
T
(t − ζ)E

Tα− 2
(z(t))E _z(t − ζ).

(26)

Using (24)–(26) in (23) results in

2βT(z(t)) + α− 1
(z(t) _z(t))

T
 α− 1

(z(t)) _z(t) 

− βT(z(t))β(z(t)) +(2 + κ)g
T
(z(t))A

T
Ag(z(t))

+(2 + ξ)g
T
(z(t − τ))B

T
Bg(z(t − τ)) + 1 +

1
κ

+
1
ξ

  _z
T
(t − ζ)E

Tα− 2
(z(t))E _z(t − ζ)

(27)

We first note the following equality:

− βT(z(t))β(z(t)) � − 
n

i�1
β2i zi(t)( . (28)

By fact 3, we express the inequalities:

g
T
(z(t))A

T
Ag(z(t))≤ 

n

i�1
p1 

n

j�1


n

k�1
akiakj




g
2
i zi(t)(  + p2‖A‖

2
2g

2
i (z(t))⎛⎝ ⎞⎠,

g
T
(z(t − τ))B

T
Bg(z(t − τ))≤ q1 

n

i�1


n

j�1


n

k�1
bkibkj




g
2
i zi t − τi( ( 

+ q2‖B‖
2
2 

n

i�1
g
2
i zi t − τi( ( .

(29)
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Using the property of fact 4, we express the inequality:

_z
T
(t − ζ)E

Tα− 2
(z(t))E _z(t − ζ)≤ 

n

i�1
r1 

n

j�1

n

k�1

1
α2k zk(t)( 

eki


 ekj



 _z
2
i t − ζ i( ⎛⎝

+r2 α− 2
(z(t))

����
����
2
2‖E‖

2
2 _z

2
i t − ζ i( .

(30)

Using (28)–(30) in (27) yields

≤

2βT(z(t)) + α− 1(z(t)) _z(t)( 
T

 α− 1(z(t)) _z(t)

+(2 + ξ) 
n

i�1
q1 

n

j�1


n

k�1
bkibkj




g
2
i zi t − τi( (  + q2‖B‖

2
2g

2
i zi t − τi( ( ⎛⎝ ⎞⎠⎛⎝ ⎞⎠

− 
n

i�1
β2i zi(t)(  +(2 + κ) p1 

n

j�1


n

k�1
akiakj




g
2
i zi(t)(  + p2‖A‖

2
2g

2
i zi(t)( ⎛⎝ ⎞⎠⎛⎝ ⎞⎠

+ 1 +
1
κ

+
1
ξ

  r1 
n

i�1

n

j�1

n

k�1

1
α2k zk(t)( 

eki


 ekj



 _z
2
i


 t − ζ i( ⎛⎝

+r2 α− 2(z(t))
����

����
2
2‖E‖22 

n

i�1
_z2
i t − ζ i( .

(31)

A1 implies the following inequalities:

1
α2k zk(t)( 

≤
1
μ2k

(32)

α− 2
(z(t))

����
����
2
2 ≤

1
μ2m

. (33)

A2 implies that

c
2
i z

2
i (t)≤ β2i zi(t)( . (34)

A3 implies that

g
2
i zi(t)( ≤ ℓ2i z

2
i (t) (35)

g
2
i zi t − τi( ( ≤ ℓ2i z

2
i t − τi( . (36)

Using (32)–(36) in (37) leads to

≤

2βT(z(t)) + α− 1(z(t)) _z(t)( 
T

 α− 1(z(t)) _z(t)

− 
n

i�1
c2

i z2
i (t) +(2 + κ) 

n

i�1
ℓ2i p1 

n

j�1

n

k�1
akiakj




+ p2‖A‖22

⎛⎝ ⎞⎠z2
i (t)

+(2 + ξ) 
n

i�1
ℓ2i q1 

n

j�1

n

k�1
bkibkj




+ q2‖B‖22

⎛⎝ ⎞⎠z2
i t − τi( 

+ 1 +
1
κ

+
1
ξ

  
n

i�1
r1 

n

j�1

n

k�1

1
μ2k

eki


 ekj



 + r2
1
μ2m

‖E‖
2
2

⎛⎝ ⎞⎠ _z2i t − ζ i( .

(37)

A1 implies the following inequality:
1
ρ2M
≤
1
ρ2i
≤

1
α2i zi t − ζ i( ( 

. (38)

*en, by (38), we can write
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− 
n

i�1

1
α2i zi t − ζ i( ( 

_z
2
i t − ζ i( ≤ − r1 

n

i�1

1
ρ2i

_z
2
i t − ζ i( 

− r2
1
ρ2M



n

i�1
_z
2
i t − ζ i( .

(39)

Using (37) and (39) in (20) results in

_V(t)≤ 
n

i�1
− c

2
i z

2
i (t) +(2 + κ)ℓ2i p1 

n

j�1


n

k�1
akiakj




+ p2‖A‖

2
2

⎛⎝ ⎞⎠z
2
i (t)⎛⎝ ⎞⎠

+(2 + ξ) 
n

i�1
ℓ2i q1 

n

j�1


n

k�1
bkibkj




+ q2‖B‖

2
2

⎛⎝ ⎞⎠z
2
i (t)

+ 1 +
1
κ

+
1
ξ

  

n

i�1
r1 

n

j�1


n

k�1

1
μ2k

eki


 ekj



 + r2
1
μ2m

‖E‖
2
2

⎛⎝ ⎞⎠ _z
2
i t − ζ i( 

− r1 

n

i�1

1
ρ2i

_z
2
i t − ζ i(  − r2

1
ρ2M



n

i�1
_z
2
i t − ζ i(  + k 

n

i�1
z
2
i (t) − z

2
i t − τi(  

� − 
n

i�1
ℓ2i

c2
i

ℓ2i
− (2 + κ) p1 

n

j�1


n

k�1
akiakj




+ p2‖A‖

2
2

⎛⎝ ⎞⎠⎛⎝

− (2 + ξ) q1 

n

j�1


n

k�1
bkibkj




+ q2‖B‖

2
2

⎛⎝ ⎞⎠⎞⎠z
2
i (t)

− 
n

i�1
r1

1
ρ2i

− 1 +
1
κ

+
1
ξ

  

n

j�1


n

k�1

1
μ2k

eki


 ekj



⎛⎝ ⎞⎠ _z
2
i t − ζ i( 

− 
n

i�1
r2

1
ρ2M

− 1 +
1
κ

+
1
ξ

 
1
μ2m

‖E‖
2
2  _z

2
i t − ζ i(  + k 

n

i�1
z
2
i (t) − z

2
i t − τi(  

� 
n

i�1
− εiℓ

2
i z

2
i (t) − εi _z

2
i t − ζ i(   + k 

n

i�1
z
2
i (t) − z

2
i t − τi(  

≤ 

n

i�1
− εmℓ

2
mz

2
i (t) − εm _z

2
i t − ζ i(   + k 

n

i�1
z
2
i (t) − z

2
i t − τi(  

� − εmℓ
2
m − k ‖z(t)‖

2
2 − εm‖ _z(t − ζ)‖

2
2 − k‖z(t − τ)‖

2
2,

(40)

where εm � min1≤i≤n(εi), εm � min1≤i≤n(εi), and
ℓm � min1≤i≤n(ℓi).

From (40), one can obtain the inequality:
_V(t)≤ − εmℓ

2
m − k ‖z(t)‖

2
2. (41)

In (41), the choice k< εmℓ2m will make it possible for _V(t)

to be negative definite and every transformed states z(t)≠ 0.
In (40), taking z(t)≠ 0 will directly yield the result:

_V(t)≤ − k‖z(t − τ)‖
2
2. (42)

(42) directly implies that _V(t) will have negative values
for every transformed delayed state z(t − τ)≠ 0.

Let the transformed state z(t) � 0 together with delayed
transformed state z(t − τ) � 0. *en, we immediately get
from (40) that

_V(t)≤ − εm‖ _z(t − ζ)‖
2
2. (43)
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(43) directly yields that time derivative of this studied
Lyapunov functional _V(t) will be negative for every
_z(t − ζ)≠ 0.

Let z(t) � 0, z(t − τ) � 0, and _z(t − ζ) � 0. *is case
leads to the fact that _z(t) � 0. Hence, from (19), we get that
_V(t) � 0. Hence, we note that _V(t) � 0 at the equilibrium
point which is the origin of system (5) and _V(t)< 0 except
for the equilibrium point. Hence, this Lyapunov functional
analysis ensures that the origin of system (5) is asymptot-
ically stable. In addition, the Lyapunov functional given by
(18) is radially bounded, meaning that V(t)⟶∞ when
‖z(t)‖⟶∞. *e radially unboundedness of this Lyapu-
nov functional guarantees that the origin of neutral-type
Cohen–Grossberg neural network (5) is globally asymp-
totically stable. Q.E.D. □

3. An Instructive Example

*is section gives an instructive example for the sake of
indicating the applicability of results expressed by the
conditions of *eorem 1.

Example: consider a case of neutral-type neural system
(1) of four neurons, which has the system matrices given as
follows:

A �
1
2

a a a a

− a − a a a

− a a − a a

a − a − a a

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

B �
1
2

b b b b

− b − b b b

− b b − b b

b − b − b b

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

E �
1
2

e e e e

e e e e

e e e e

e e e e

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(44)

where a, b, and e are being some positive constants. For this
example, we also make the choices for the parameters
μ1 � μ2 � μ3 � μ4 � 1, ρ1 � ρ2 � ρ3 � ρ4 � 1, c1 � c2 � c3 �

c4 � 2, ψ1 � ψ2 � ψ3 � ψ4 � 2, and ℓ1 � ℓ2 � ℓ3 � ℓ4 � 1.
For the system matrices A, B, and E, one may calculate

A
T
A �

a2 0 0 0

0 a2 0 0

0 0 a2 0

0 0 0 a2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

B
T
B �

b2 0 0 0

0 b2 0 0

0 0 b2 0

0 0 0 b2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

E
T
E �

e2 e2 e2 e2

e2 e2 e2 e2

e2 e2 e2 e2

e2 e2 e2 e2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(45)

*en, we can obtain the following:
‖A‖22 � a2, ‖B‖22 � b2, ‖E‖22 � 4e2, and



4

j�1


4

k�1
akiakj




� a

2
, 

4

j�1


4

k�1
bkibkj




� b

2
,  



4

j�1


4

k�1
eki


 ekj



 � 4e
2
,   i � 1, 2, 3, 4.

(46)

According to *eorem 1, this example establishes the
following conditions:

εi � 4 − (2 + κ) p1 + p2( a
2

− (2 + ξ) q1 + q2( b
2

� 4 − (2 + κ)a
2

− (2 + ξ)b
2
,

εi � r1 1 − 1 +
1
κ

+
1
ξ

 4e
2

  + r2 1 − 1 +
1
κ

+
1
ξ

 4e
2

 

� 1 − 1 +
1
κ

+
1
ξ

 4e
2

 .

(47)

Let κ � 2 and ξ � 2. *en, εi � 4(1 − a2 − b2) and ϵi �

1 − 8e2, i � 1, 2, 3, 4. Clearly, the conditions a2 + b2 < 1 and
e< (1/2

�
2

√
) establish the global stability of system (5).

4. Conclusions

*is research work has been conducted as an investigation of
the stability issues for neutral-type Cohen–Grossberg neural
network models possessing discrete time delays in states and
discrete neutral delays in time derivatives of neuron states.
By setting a novel generalized appropriate Lyapunov
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functional candidate, some new sufficient conditions have
been proposed for global asymptotic stability for the con-
sidered delayed neural networks of neutral type. *is paper
has exploited some basic properties of matrices in the
derivation of the results that established a set of algebraic
mathematical relationships between network parameters of
the neural system.*e obtained stability criteria proved to be
independent from the time and neutral delays.*erefore, the
proposed results can be easily verified. A constructive nu-
merical example has also been presented to check the ap-
plicability of the presented global stability conditions.
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)e hypercube Qn is one of the most admirable and efficient interconnection network due to its excellent performance for some
practical applications. )e Kirchhoff index Kf(G) is equal to the sum of resistance distances between any pairs of vertices in
networks. In this paper, we deduce some bounds with respect to Kirchhoff index of hypercube network Qn.

1. Introduction

Network is usually modelled by a connected graph
G � (VG, EG) with order n, labeled as VG � v1, v2, . . . , vn 

and EG � e1, e2, . . . , em . )e adjacency matrix A(G) of G is
a square matrix with n vertices, in which elements aij are 1 or
0, depending on whether there is an edge or not between
vertices i and j. )e degree diagonal matrix of G is denoted
by D(G) � diag d1, d2, . . . , dn , where d1, d2, . . . , dn are the
degree of vertices v1, v2, . . . , vn, respectively. Together with
the adjacency and degree matrix, one arrives at the Laplacian
matrix, whose expression can be written as
L(G) � D(G) − A(G). For other notations and graph the-
oretical terminologies that not state here, we follow [1].

Various parameters are always used to characterize and
describe the complex networks of which the fundamental one
is named as the distance dij, concerned as the shortest path
between the vertices i and j in networks. Similarly considering
the distance dij, Klein and Randić in 1993 presented a novel
distance function, named as resistance distance [2]. Denote rij

the resistance distance between two arbitrary vertices i and j in
electrical networks by replacing every edge by a unit resistor
[3–7]. )e Kirchhoff index Kf(G) of networks is defined as

Kf(G) � 
i<j

rij(G). (1)

)e Kirchhoff index has attracted more and more at-
tentions due to its practical applications in the fields of
physical interpretations, electric circuit, and so on [8–11].)e
Kirchhoff index of some product graphs, join graphs, and
corona graphs were studied [5, 7]. )e more results of the
applications on the Kirchhoff index were explored in [12–14].

In what follows, the rest of the context is summarized.
Section 2 proposes the main definition and preliminaries in our
discussion. Some bounds on the Kirchhoff index of hypercubes
Qn are deduced in Section 3.We conclude the paper in Section 4.

2. Definition and Preliminaries

In this section, we recall some basic definition in graph
theory. )e hypercube network Qn may be constructed from
the family of subsets of a set with a binary string of length n,
by making a vertex for each possible subset and joining two
vertices by an edge whenever the corresponding subsets differ
in a single binary string. )e hypercube network Qn admits
several definitions of which one is stated as below [15].

)e hypercube network Qn is repeatedly constructed by
making two copies of Qn− 1, written as Q0

n− 1 and Q1
n− 1, re-

spectively.Meanwhile, adding repeatedly 2n− 1 edges as below, let
V(Q0

n− 1) � 0U � 0u2u3 . . . un: ui � 0 or 1  and V(Q1
n− 1) �

1V � 1v2v3 . . . vn: vi � 0 or 1 . A node 0U � 0u2u3 . . . un of
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Q0
n− 1 is linked to another node 1V � 1v2v3 . . . vn of Q1

n− 1 if and
only if ui � vi for each i, 2≤ i≤ n.

)e hypercube network Qn obtained more and more
admirable concentrations due to its surprising properties,
for instance, symmetry, regular structure, strong connec-
tivity, small diameter, and so on [16, 17]. For more results on
the hypercube network and its applications, see [18–21].

Next, we recall the formula for the Kirchhoff index in the
hypercube Qn with n≥ 2.

Theorem 1 (see [3]). For the hypercube networkQn with n≥ 2,

Kf Qn(  � 2n


n

i�1

n

i
 

1
2i

, (2)

where 2i(i � 1, . . . , n) is the eigenvalue of the Laplacian
matrix of the hypercube network and the binomial coefficients

n

i
 are the multiplicities of the eigenvalues 2i.

Theorem 2 (see [22]).

lim
n⟶∞



n− 1

i�0

n

2i(n − i)
� 2. (3)

)e authors of [23] obtained a closed-form formula for
the Kirchhoff index of the d-dimensional hypercube and
found the asymptotic value 22 d/d by using probabilistic tools.
)e result of)eorem 3 is obtained by directly calculating the
eigenvalues of the Laplacianmatrix of the hypercube network,
which is different from the technique in [23].

3. Main Results

In this section, one will estimate the Kirchhoff index of n-di-
mensional hypercube, i.e., our goal is to estimate the quantity:

2n


n

i�1

n

i
 

1
2i

. (4)

Theorem 3. For the hypercube network Qn with n≥ 2, then
4n

n

n

n + 1
−

n(n + 2)

2n+1(n + 1)
 ≤Kf Qn( . (5)

Consider that



n

i�1

n

i
 

1
i
≥

n

i�1

n

i
 

1
i + 1

�
n

1
 

1
2

+
n

2
 

1
3

+ . . . +
n

n
 

1
n + 1

�
1
2

n!

1!(n − 1)!
+
1
3

n!

2!(n − 2)!
+ . . . +

1
n + 1

�
1

n + 1
(n + 1)!

2!(n − 1)!
+

1
n + 1

(n + 1)!

3!(n − 2)!
+ . . . +

1
n + 1

� 
n

i�1

n + 1
i + 1

 
1

n + 1
.

(6)

By virtue of



n

i�1

n + 1
i + 1

  � 2n+1
− n − 2. (7)

Bymeans of calculating the right of equation (6), one can
establish the following identity:



n

i�1

n + 1
i + 1

 
1

n + 1
�
2n+1 − n − 2

n + 1
. (8)

Since

2n+1 − n − 2
n + 1

≤ 
n

i�1

n

i
 

1
i

� 2
n

i�1

n

i
 

1
2i

,

2n+1 − n − 2
n + 1

≤ 2
n

i�1

n

i
 

1
2i

.

(9)

Hence,
2n2n

n + 1
−
2n− 1(n + 2)

n + 1
� 2n− 12n+1 − n − 2

n + 1
≤Kf Qn(  � 2n



n

i�1

n

i
 

1
2i

.

(10)

Simply, from the left of the above inequality, we obtain
4n

n

n

n + 1
−

n(n + 2)

2n+1(n + 1)
 ≤Kf Qn( . (11)

Apparently, the left of the above inequality converges to
the asymptotic value 22d/d for large enough n. )e proof of
lower bound is completed.

For the upper bound, we have similar theorem to
consider as follows.

Theorem 4. For the hypercube networks Qn with n≥ 2, then

Kf Qn( ≤
4n

n

2n

n + 1
−

n + 2
2n(n + 1)

 , (12)



n

i�1

1
2i

C
i
n ≤ 

n

i�1

1
i + 1

C
i
n

�
1
2
C
1
n +

1
3
C
2
n + . . . +

1
n + 1

C
n
n

�
1
2

n!

1!(n − 1)!
+
1
3

n!

2!(n − 2)!
+ . . . +

1
n + 1

�
1

n + 1
(n + 1)!

2!(n − 1)!
+

1
n + 1

(n + 1)!

3!(n − 2)!
+ . . . +

1
n + 1

� 
n

i�1

1
n + 1

C
i+1
n+1.

(13)

Based on equation (8), we can obtain that

2n


n

i�1

Ci
n

2i
� Kf Qn( ≤ 2n2n+1 − n − 2

n + 1
. (14)

Hence,
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Kf Qn( ≤ 2n2n+1 − n − 2
n + 1

�
4n

n

2n

n + 1
−

n + 2
2n(n + 1)

 . (15)

)e above estimate looks a little complicated. )e upper
bound is roughly twice the asymptotic value. Hence, a new
upper bound is explored as follows.

Theorem 5. For the hypercube network Qn with n≥ 2,

Kf Qn( ≤
4n

n
. (16)

Following the identity which is obtained in [24],



n

i�1

xi

i
�

1
n

+
1

n − 1
+ · · · + 1  + 

n

i�1

n

i
 

(x − 1)i

i
. (17)

Fixing x � 2, one arrives at



n

i�1

n

i
 

1
i

� 
n

i�1

2i

i
−

1
n

+
1

n − 1
+ · · · + 1 . (18)

Namely,



n

i�1

n

i
 

1
i

� 
n

i�1

2i − 1
i

. (19)

According to equation (19) and )eorem 2, one obtains

Kf Qn(  � 2n− 1
· 

n

i�1

2i − 1
i

. (20)

Using equation (20), one has

Kf Qn( ≤ 2n− 1
· 

n

i�1

2i

i
. (21)

On the contrary,

2n− 1
· 

n

i�1

2i

i
�
1
n

· 22n− 1
· 

n− 1

i�0

n

2i(n − i)
. (22)

Using)eorem 2 and substituting equations (22) to (21),
one obtains the desired result:

Kf Qn( ≤
4n

n
. (23)

)is has completed the proof.

4. Further Discussion

We, at this place, try another way to estimate the Kirchhoff
index of n-dimensional hypercubes.

Theorem 6. For the hypercube networks Qn with n≥ 2, then

Kf Qn(  � 2n− 1


n

i�1

2i − 1
i

. (24)

Let Sn � 
n
i�1 Ci

n/i, then

Sn − Sn− 1 � 
n

i�1

Ci
n

i
− 

n− 1

i�1

Ci
n− 1
i

�
1
n

+ 
n− 1

i�1

Ci
n

i
⎡⎣ ⎤⎦ − 

n− 1

i�1

Ci
n− 1
i

�
1
n

+ 

n− 1

i�1

1
i

C
i
n − C

i
n− 1 

�
1
n

+ 
n− 1

i�1

1
i
C

i− 1
n− 1.

(25)

Consequently,

n · Sn − Sn− 1(  � 1 + 
n− 1

i�1

n!

i!(n − i)!
� 1 + 

n− 1

i�1
C

i
n � 2n

− 1.

(26)

One can easily check that S1 � 1. Hence, Sn − Sn− 1 �

(2n/n) − (1/n).

By virtue of the above equality, we obtain

Sn � 
n

i�1

2i

i
− 

n

i�1

1
i
. (27)

)erefore,

Kf Qn(  � 2n− 1


n

i�1

2i − 1
i

. (28)

)e proof of )eorem 6 is completed.
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In this paper, we study the periodic averaging principle for neutral stochastic delay differential equations with impulses under
non-Lipschitz condition. By using the linear operator theory, we deal with the difficulty brought by delay term of the neutral
system and obtain the conclusion that the solutions of neutral stochastic delay differential equations with impulses converge to the
solutions of the corresponding averaged stochastic delay differential equations without impulses in the sense of mean square and
in probability. At last, an example is presented to show the validity of the proposed theories.

1. Introduction

Delay, impulse, and noise are natural phenomena in most
practical issues and those phenomena are generally modeled
by stochastic delay differential equations with impulses, and
noise can be described by Brownian motion. Recent theo-
retical and computational advancements indicate that sto-
chastic delay differential equations with impulses tend to
generate rich and complex dynamics. However, because of
the complexity of the system, it is difficult to obtain the exact
solution of the vast majority of stochastic delay differential
equations with impulses. In this background, it is very
important to look for an approximate system which is more
amenable for analysis and simulation, and it governs the
evolution of the original system over a long time scale.

(e averaging principle is an effective method to un-
derstand the main part of the behavior of dynamical systems.
It allows to avoid the detailed analysis of complex original
systems and consider the simplified equations. (e first
analysis for averaging principle for stochastic differential
equations was deeply addressed by Khasminskij [1]. And
then the averaging principle has been applied for various
types of stochastic differential equations. Generally speaking,
the results of averaging principle in standard form mainly
fall into two categories. (e first one is considered in slow-

fast systems or two-time-scale systems. It approximates
coupled slow component equation in two-time-scale sys-
tems by a noncoupled equation often called an averaged
equation. Many important results for averaging principle for
two-time-scale stochastic differential equations have been
carried out, see, for example, [2–6]. (e second is ap-
proximating a nonautonomous stochastic differential
equation by an autonomous stochastic differential equation.
(e results obtained by this method can be referred to the
papers [7–9] and the references therein. However, there are
few results on average principle for neutral stochastic delay
differential equations. Recently, averaging principle for
stochastic delay differential equations of the neutral type
driven by G-Brownianmotion was studied [10], in which the
impulses are not considered in the system.

Motivated by the previous discussion, in this paper, we
study the average principle for the neutral stochastic delay
differential equations with impulses. We overcome the
difficulties caused by the delay term which is included under
the differentiation at the left-hand side, and the impulse
appears in neutral stochastic differential equations.

(e structure of the paper is the following. In Section 2,
we introduce some basic concepts, notations, and necessary
hypotheses. In Section 3, under several sufficient conditions,
we obtain the main results that the solutions of neutral
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stochastic delay differential equations with impulses con-
verge to the solutions of the corresponding averaged sto-
chastic delay differential equations without impulses in the
sense of mean square and in probability. In Section 4, we
offer an example to illustrate the effectiveness of the obtained
results.

2. Model Description and Preliminaries

In this section, we will introduce the basic concepts, the
model, and some preliminary lemmas.

Let (Ω,F, Ft t≥ 0, P) be a complete probability space
with a filtration Ft t≥ 0 satisfying the usual conditions (i.e.,

it is right continuous and F0 contains all P-null sets) and
B(t) is m-dimensional Brownian motion defined on the
space. K denotes the family of all concave continuous
nondecreasing functions α: R+⟶ R+ such that
α(0) � 0, 0+ (ds/α(s)) �∞. Let C((− ∞, 0];Rd) denote the
family of all continuous functions ξ: (− ∞, 0]⟶ Rd with
the norm ‖ξ‖ � sup− ∞<θ≤0|ξ(θ)| and |·| denote any norm in
Rd. Let C2

Ft
((− ∞, 0];Rd) denote the family of all

Ft-measurable, C((− ∞, 0];Rd)-valued random variables
ξ � ξ(θ): (− ∞< θ≤ 0{ } such that E‖ξ‖2 <∞.

In this paper, we will discuss the following neutral
stochastic delay differential equations with impulses:

d[x(t) + c(t)x(t − τ)] � f(t, x(t), x(t − τ))dt + g(t, x(t), x(t − τ))dB(t), t≠ tj, j � 1, 2, . . . , l,

x t+
j  − x t−

j  � Ij x tj  , t � tj, j � 1, 2, . . . , l,

⎧⎪⎨

⎪⎩
(1)

where c ∈ C((− ∞, U], [0, 1)) is a T-periodic function,
0<U<∞. (e mappings f: [0, U] × Rd × Rd⟶ Rd and
g: [0, U] × Rd × Rd⟶ Rd×m are Borel measurable and
T-periodic in the first argument. Ij: R

d⟶ Rd, x(t+
j ) and

x(t−
j ) represent the right and the left limits of

x(tj), j ∈ 1, 2, . . . , l{ }. We assume that there exists a positive
constant l such that tj+l � tj + T, Ij+l(x(tj+l)) �

Ij(x(tj)), j ∈ Z+, and [0, T]∩ tj, j ∈ Z+  � t1, t2, . . . , tl .
(e initial condition x0 is defined by

x0 � ξ � ξ(t): − ∞< t≤ 0{ } ∈ C
2
Ft

(− ∞, 0];R
d

 . (2)

(e following lemmas are important to obtain our
results.

Lemma 1 (see [11]). Suppose H is a bounded linear operator
on Banach space X; if ‖H‖< 1, then I − H has bounded
inverse operator (I − H)− 1 and ‖(I − H)− 1‖≤ (1/
(1 − ‖H‖)).

Lemma 2 (see [11]). Suppose H is a bounded linear operator
on Banach space X and has an inverse bounded operator, for
arbitrary ΔH: X⟶ X, if ‖ΔH‖< (1/‖H− 1‖), then S � H +

ΔH has a bounded inverse and S− 1 � 
∞
j�0 (− 1)j

H− 1(H− 1ΔH)j.

Let

PC((− ∞, U]) � x: x |
tj,tj+1( 

(− ∞,U]

∈ C (− ∞, 0];R
d

 , x t
+
j 

� x tj , j � 1, 2, . . . , l,

(3)

and consider the Banach space

W � x: x ∈ PC((− ∞, U]), x(t) � x(t + T){ }. (4)

Let Φ: W⟶W be defined by

(Φx)(t) � x(t) + c(t)x(t − τ). (5)

Lemma 3 (see [12]). Let cM � maxt∈(− ∞,U]c(t). If
0≤ c(t)< 1, then Φ has a bounded inverse Φ− 1 on W, and for
all x ∈W,

Φ− 1
x (t) � 

j≥0


0≤i≤j− 1
(− 1)

j
c(t − iτ)x(t − jτ) (6)

and ‖Φ− 1x‖≤ (‖x‖/(1 − cM)).

SinceΦ andΦ− 1 are both linear operators, we can change
system (1) by using the inverse transformation of Φ into the
following form:

du(t) � f t, Φ− 1u( (t), Φ− 1u( (t − τ)( dt + g t, Φ− 1u( (t), Φ− 1u( (t − τ)( dB(t), t≠ tj, j � 1, 2, . . . , l,

u t+
j  − u t−

j  � ΦIjΦ− 1  u tj  , t � tj, j � 1, 2, . . . , l,

u(0) � Φ− 1x( (0) � u0.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(7)

Hence, u(t) is an T-periodic solution of system (2) if and
only if (Φ− 1u)(t) is an T-periodic solution of system (1).

To study the averaging principle of system (1), we impose
the following hypotheses on the coefficients.
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(H1) For all x1, y1, x2, y2 ∈ Rd and t ∈ [0, U], there exist
α ∈K such that

f t, x1, y1(  − f t, x2, y2( 



2 ∨ g t, x1, y1(  − g t, x2, y2( 



2

≤ α x1 − y1



2

+ x2 − y2



2

 ,

(8)

where a∨ b ≔ max a, b{ }.

Furthermore, by the definition of α, there must exist
positive constants k1 and k2 such that

α(r)≤ k1r + k2, for all r≥ 0. (9)

(H2) For every x ∈ Rd, there exists a positive constant
N1 such that |Ij(x)|≤N1.

Consider the standard form of system (2)

du∈(t) � εf t, Φ− 1uε( (t), Φ− 1uε( (t − τ)( dt +
�
ε

√
g t, Φ− 1uε( (t), Φ− 1uε( (t − τ)( dB(t), t≠ tj, j � 1, 2, . . . , l,

uε t+
j  − uε t−

j  � ε ΦIjΦ− 1  uε tj  , t � tj, j � 1, 2, . . . , l,

uε(0) � u0.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(10)

Accordingly, the standard form of system (1) is

d xε(t) + c(t)xε(t − τ)  � εf t, xε(t), xε(t − τ)( dt +
�
ε

√
g t, xε(t), xε(t − τ)( dB(t), t≠ tj, j � 1, 2, . . . , l,

xε t+
j  − xε t−

j  � εIj xε tj  , t � tj, j � 1, 2, . . . , l,

xε(0) � x0,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(11)

where the functions f, g, Ij, j ∈ 1, 2, . . . , l{ } have the same
conditions as in (H1) and (H2), and ε ∈ [0, ε0] is a positive
small parameter with ε0 is a fixed number.

Let f(x, y): Rd × Rd⟶ Rd, g(x, y): Rd×

Rd⟶ Rd×m, and ΦIΦ− 1(x): Rd⟶ Rd be measurable
functions and satisfy the conditions in (H1) − (H2) and the
following definitions:

f(x, y) �
1
T


T

0
f(s, x, y)ds,

g(x, y) �
1
T


T

0
g(s, x, y)ds,

ΦIΦ− 1(x) �
1
T



l

j�1
ΦIjΦ

− 1
 (x).

(12)

We also assume that the following hypothesis is satisfied.
(H3) (ere exists a constant M> 0 such that

|f(t, x, y)|2 <M, |g(t, x, y)|2 <M, |f(x, y)|2 <M, and
|g(x, y)|2 <M for every t ∈ [0, U].

Now, we consider the following averaged stochastic
delay differential equations which correspond to the original
standard form (10):

dvε(t) � ε f Φ− 1vε( (t), Φ− 1vε( (t − τ)(  +ΦIΦ− 1 vε(t)(  dt

+
�
ε

√
g Φ− 1vε( (t), Φ− 1vε( (t − τ)( dB(t),

vε(0) � u0.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(13)

Let (Φ− 1vε)(t) � yε(t), for system (11), we consider
averaged stochastic delay differential equations:

dyε(t) � ε f Φ− 1yε( (t), Φ− 1yε( (t − τ)(  +ΦIΦ− 1 yε(t)(  dt

+
�
ε

√
g Φ− 1yε( (t), Φ− 1yε( (t − τ)( dB(t),

yε(0) � x0.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(14)

Obviously, under hypotheses (H1) − (H2), one can
follow [13, 14] to prove the existence and uniqueness of the
periodic probability solutions on (− ∞, U] of the standard
form (10) and (11) and the averaged form (13) and (14),
respectively. Now, we offer the proof for the relationship
between xε(t) and yε(t).

3. Main Results and Proofs

In this section, we will use the periodic averaging principle to
investigate the neutral stochastic delay differential equations
with impulses.
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In the rest of the paper, Ci andOi, i � 1, 2, 3, and Pj, j �

1, 2, 3, 4 are all constants. Our main results are the following.

Theorem 1. Suppose hypotheses (H1) − (H3) are satisfied
and systems (10) and (13)–(11) and (14) have solutions uε, vε,
xε, and yε, respectively, where ε ∈ (0, ε0] is a positive small
parameter with ε0 a constant, then there exist constants
ε1 ∈ (0, ε0], μ1 > 0, and μ2 > 0 such that, for any
ε ∈ (0, ε1], t ∈ [0, μ2ε− 1],

E sup
t∈ 0,μ2ε− 1[ ]

uε(t) − vε(t)



2 ≤ μ1ε, (15)

and then, we obtain

E sup
t∈ 0,μ2ε− 1[ ]

xε(t) − yε(t)



2 ≤ Φ− 1����

����
2
μ1ε. (16)

Proof. By using the elementary inequality, for any t ∈ [0, U],
we have

uε(t) − vε(t)



2

≤ 3ε2 
t

0
f s, Φ− 1

uε (s), Φ− 1
uε (s − τ) 



− f Φ− 1
vε (s), Φ− 1

vε (s − τ) ds

2

+ 3ε 
t

0
g s, Φ− 1

uε (s), Φ− 1
uε (s − τ) 



− g Φ− 1
vε (s), Φ− 1

vε (s − τ) dB(s)

2

+ 3ε2 

∞

j�1
ΦIjΦ

− 1
  uε tj   − 

t

0
ΦIΦ− 1 vε(t)( ds





2

≔ J1 + J2 + J3.

(17)

For the first term J1, thanks again to the elementary
inequality yields:

E sup
0≤s≤t

J1

≤ 6ε2E sup
0≤s≤t


s

0
f θ, Φ− 1

uε (θ), Φ− 1
uε (θ − τ)  − f θ, Φ− 1

vε (θ), Φ− 1
vε (θ − τ)  dθ





2

+ 6ε2E sup
0≤s≤t


s

0
f θ, Φ− 1

vε (θ), Φ− 1
vε (θ − τ)  − f Φ− 1

vε (θ), Φ− 1
vε (θ − τ)  dθ





2
.

(18)

According H€older’s inequality and hypothesis (H1), we
arrive at

6ε2E sup
0≤s≤t


s

0
f θ, Φ− 1

uε (θ), Φ− 1
uε (θ − τ)  − f θ, Φ− 1

vε (θ), Φ− 1
vε (θ − τ)  dθ





2

≤ 6ε2tk1 
t

0
E sup

0≤θ≤s
Φ− 1

uε (θ) − Φ− 1
vε (θ)




2

+ Φ− 1
uε (θ − τ) − Φ− 1

vε (θ − τ)



2

 ds + 6ε2t2k2

≤ 6ε2tk1 
t

0
Φ− 1����

����
2
E sup

0≤θ≤s
uε(θ) − vε(θ)



2

+ uε(θ − τ) − vε(θ − τ)



2

 ds + 6ε2t2k2

≤ 12ε2tk1 Φ
− 1����

����
2


t

0
E sup

0≤θ≤s
uε(θ) − vε(θ)



2ds + 6ε2t2k2.

(19)

Let n be the largest integer such that nT≤ t. (en, for
every i � 1, . . . , n{ }, we obtain
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6ε2E sup
0≤s≤t


s

0
f θ, Φ− 1

vε (θ), Φ− 1
vε (θ − τ)  − f Φ− 1

vε (θ), Φ− 1
vε (θ − τ)  dθ





2

≤ 12ε2E sup
0≤s≤t



n

i�1


iT

(i− 1)T
f θ, Φ− 1

vε (θ), Φ− 1
vε (θ − τ)  − f Φ− 1

vε (θ), Φ− 1
vε (θ − τ)  dθ





2

+ 12ε2E sup
0≤s≤t


s

nT
f θ, Φ− 1

vε (θ), Φ− 1
vε (θ − τ)  − f Φ− 1

vε (θ), Φ− 1
vε (θ − τ)  dθ





2

≤ 72ε2nT 
T

0
E sup

0≤θ≤s
α Φ− 1

vε (θ) − Φ− 1
vε (iT)




2

+ Φ− 1
vε (θ − τ) − Φ− 1

vε (iT − τ)



2

 ds

+ 36ε2E sup
0≤s≤t



n

i�1


iT

(i− 1)T

f θ, Φ− 1
vε (iT), Φ− 1

vε (iT − τ)  − f Φ− 1
vε (iT), Φ− 1

vε (iT − τ)  dθ





2

+ 12ε2E sup
0≤s≤t


s

nT
f θ, Φ− 1

vε (θ), Φ− 1
vε (θ − τ)  − f Φ− 1

vε (θ), Φ− 1
vε (θ − τ)  dθ





2
.

(20)

By the H€older’s inequality, Burkholder–Davis–Gundy’s
inequality, and hypotheses (H1) and (H3), it follows that

E sup
0≤s≤t
Φ− 1

vε (s) − Φ− 1
vε (iT)




2

+ E sup
0≤s≤t
Φ− 1

vε (s − τ) − Φ− 1
vε (iT − τ)




2

≤ Φ− 1����
����
2
E sup

0≤s≤t
vε(iT) − vε(iT − τ)



2

+ 2 Φ− 1����
����
2
E sup

0≤s≤t
vε(s) − vε(iT)



2

≤C1 + C2ε
2
E sup

0≤s≤t


s

iT
f Φ− 1

vε (θ), Φ− 1
vε (θ − τ) 




2
dθ

+ C2εE sup
0≤s≤t


s

iT
g Φ− 1

vε (θ), Φ− 1
vε (θ − τ) 




2
dθ

≤C1 + C2ε
2
MT + C2εMT,

t ∈ [(i − 1)T, iT].

(21)

(e definition of f implies that

E sup
0≤s≤t



n

i�1


iT

(i− 1)T
f θ, Φ− 1

vε (iT), Φ− 1
vε (iT − τ)  − f Φ− 1

vε (iT), Φ− 1
vε (iT − τ)  dθ





2

≤ n 
n

i�1
E sup

0≤s≤t


T

0
f θ, Φ− 1

vε (iT), Φ− 1
vε (iT − τ) dθ − Tf Φ− 1

vε (iT), Φ− 1
vε (iT − τ) 





2

� 0.

(22)
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(us, we have

E sup
0≤s≤t

J1 ≤ 12ε
2
tk1 Φ

− 1����
����
2


t

0
E sup

0≤θ≤s
uε(θ) − vε(θ)



2ds + 6ε2t2k2

+ 72ε2nT 
T

0
E sup

0≤θ≤s
k1 Φ

− 1
vε (θ) − Φ− 1

vε (iT)



2

+ Φ− 1
vε (θ − τ) − Φ− 1

vε (iT − τ)



2

  + k2 ds + 48ε2tMT

≤ 12ε2tk1 Φ
− 1����

����
2


t

0
E sup

0≤θ≤s
uε(θ) − vε(θ)



2ds + 6ε2t2k2

+ 72ε2nk1T
2

C1 + C2ε
2
MT + C2εMT  + 72ε2nk2T

2
+ 48ε2tMT

≔ εO1 
t

0
E sup

0≤θ≤s
uε(θ) − vε(θ)



2ds + εP1.

(23)

For the second term J2, apply Burkholder–Davis–
Gundy’s inequality to deduce

E sup
0≤s≤t

J2

≤ 3εC3E sup
0≤s≤t


s

0
g θ, Φ− 1

uε (θ), Φ− 1
uε (θ − τ)  − g Φ− 1

vε (θ), Φ− 1
vε (θ − τ) 




2
dθ

≤ 6εC3E sup
0≤s≤t


s

0
g θ, Φ− 1

uε (θ), Φ− 1
uε (θ − τ)  − g θ, Φ− 1

vε (θ), Φ− 1
vε (θ − τ) 




2
dθ

+ 6εC3E sup
0≤s≤t


s

0
g θ, Φ− 1

vε (θ), Φ− 1
vε (θ − τ)  − g Φ− 1

vε (θ), Φ− 1
vε (θ − τ) 




2
dθ.

(24)

Furthermore, on account of hypothesis (H1), we have

E sup
0≤s≤t


s

0
g θ, Φ− 1

vε (θ), Φ− 1
vε (θ − τ)  − g Φ− 1

vε (θ), Φ− 1
vε (θ − τ) 




2
dθ

≤E sup
0≤s≤t



n

i�1


iT

(i− 1)T

g θ, Φ− 1
vε (θ), Φ− 1

vε (θ − τ)  − g Φ− 1
vε (θ), Φ− 1

vε (θ − τ) 



2
dθ

+ E sup
0≤s≤t



s

nT

g θ, Φ− 1
vε (θ), Φ− 1

vε (θ − τ)  − g Φ− 1
vε (θ), Φ− 1

vε (θ − τ) 



2
dθ

≤ 3E sup
0≤s≤t



n

i�1


iT

(i− 1)T
g θ, Φ− 1

vε (θ), Φ− 1
vε (θ − τ)  − g θ, Φ− 1

vε (iT), Φ− 1
vε (iT − τ) 




2
dθ

+ 3E sup
0≤s≤t



n

i�1


iT

(i− 1)T
g θ, Φ− 1

vε (iT), Φ− 1
vε (iT − τ)  − g Φ− 1

vε (iT), Φ− 1
vε (iT − τ) 




2
dθ

+ 3E sup
0≤s≤t



n

i�1


iT

(i− 1)T
g Φ− 1

vε (iT), Φ− 1
vε (iT − τ)  − g Φ− 1

vε (θ), Φ− 1
vε (θ − τ) 




2
dθ + 4MT

≤ 3n 
T

0
E sup

0≤θ≤s
α Φ− 1

vε (θ) − Φ− 1
vε (iT)




2

+ Φ− 1
vε (θ − τ) − Φ− 1

vε (iT − τ)



2

 ds

+ 12nMT + 4MT.

(25)
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Hence, we obtain

E sup
0≤s≤t

J2 ≤ 12εC3k1 Φ
− 1����

����
2


t

0
E sup

0≤θ≤s
uε(θ) − vε(θ)



2ds + 6εC3k2t + 18εC3nk2T

+ 18εC3nk1T C1 + ε2C2MT + εC2MT  + 72εC3nMT + 24εC3MT

≔ εO2 
t

0
E sup

0≤θ≤s
uε(θ) − vε(θ)



2ds + εP2.

(26)

For the third term J3, utilizing hypothesis (H2), we
deduce

E sup
0≤s≤t

J3 ≤ 6ε
2
l(n + 1)E sup

0≤s≤t


l

j�1
ΦIjΦ

− 1
  uε tj  



2

+ 6ε2
1

T2 ltE sup
0≤s≤t



l

j�1


s

0
ΦIjΦ

− 1
vε(θ)( 




2
dθ

≤ 6ε2l2(n + 1)N1 + 6ε2l2(n + 1)
2
N1

≔ εP3.

(27)

Combining (23), (23), and (27), we conclude that

E sup
0≤s≤t

uε(s) − vε(s)



2

≤ ε O1 + O2(  
t

0
E sup

0≤θ≤s
uε(θ) − vε(θ)



2ds + ε P1 + P2 + P3( 

≔ εO3 
t

0
E sup

0≤θ≤s
uε(θ) − vε(θ)



2ds + εP4,

(28)

and in addition, using Gronwall’s inequality, we have

E sup
0≤s≤t

uε(s) − vε(s)



2 ≤ εP4e

εO3t
. (29)

(erefore, selecting μ2 > 0 such that, for every
t ∈ [0, μ2ε− 1]⊆ [0, U], setting μ1 � P4e

O3μ2 , we can choose
ε1 ∈ (0, ε0] such that, for each ε ∈ (0, ε1] and t ∈ [0, μ2ε− 1],

E sup
t∈ 0,μ2ε− 1[ ]

uε(t) − vε(t)



2 ≤ μ1ε, (30)

and then, we obtain

E sup
t∈ 0,μ2ε− 1[ ]

xε(t) − yε(t)



2

� E sup
t∈ 0,μ2ε− 1[ ]

Φ− 1
uε (t) − Φ− 1

vε (t)



2
≤ Φ− 1����

����
2
μ1ε.

(31)
□

Corollary 1. Suppose hypotheses (H1) − (H3) are satisfied.
6en, for any parameter c> 0, we have

lim
ε⟶0

P xε(t) − yε(t)


> c  � 0. (32)

Proof. In fact, under the consequence of (eorem 1, by
using Chebyshev–Markov inequality, for any given number
c> 0, we can derive

P xε(t) − yε(t)


> c ≤
1
c2 E xε(t) − yε(t)



2 ≤
Φ− 1

����
����
2μ1ε

c2 .

(33)

(e conclusion follows by letting ε⟶ 0.
(e proof is complete. □

4. Illustrative Example

Example 1. Consider the following neutral stochastic delay
differential equations with impulses:

d xε(t) +
1
4
xε(t − τ)  � ε xε(t) + xε(t − τ)( dt + 2

�
ε

√
cos2 txε(t − τ)dB(t), t≠ tj, j � 1, 2, . . . , l,

xε t+
j  − xε t−

j  � − 0.04xε tj , t � tj, j � 1, 2, . . . , l,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(34)
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where xε(t) � ξ(t), t ∈ (− ∞, 0]. Let (Φx)(t) � x(t) + (1/4)x(t − τ) � u(t) and consider
the following stochastic delay differential equations with
impulses:

d uε(t)  � ε 
i≥ 0

− 1
4 

i
uε(t − iτ) + 

i≥ 0
− 1
4 

i
uε(t − (i + 1)τ) dt

+2
�
ε

√
cos2 t 

i≥ 0
− 1
4 

i
uε(t − (i + 1)τ)dB(t), t≠ tj, j � 1, 2, . . . , l,

uε t+
j  − uε t−

j  � − 0.04uε tj , t � tj, j � 1, 2, . . . , l,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f t, Φ− 1
uε (t), Φ− 1

uε (t − τ)  � 
i≥ 0

−
1
4

 
i

uε(t − iτ) + 
i≥ 0

−
1
4

 
i

uε(t − (i + 1)τ),

g t, Φ− 1
uε (t), Φ− 1

uε (t − τ)  � 2cos2 t 
i≥ 0

−
1
4

 
i

uε(t − (i + 1)τ),

ΦIjΦ
− 1

  uε tj   � − 0.04uε tj .

(35)

(en,

f Φ− 1
vε (t), Φ− 1

vε (t − τ)  �
1
π


π

0
f t, Φ− 1

vε (t), Φ− 1
vε (t − τ) dt

� 
i≥0

−
1
4

 
i

vε(t − iτ) + 
i≥ 0

−
1
4

 
i

vε(t − (i + 1)τ),

g Φ− 1
vε (t), Φ− 1

vε (t − τ)  �
1
π


π

0
g t, Φ− 1

vε (t), Φ− 1
vε (t − τ) dt

� 
i≥0

−
1
4

 
i

vε(t − (i + 1)τ),

ΦIΦ− 1 vε(t)(  �
1
π



q

j�1
ΦIjΦ

− 1
  vε tj  ,

(36)

and define a new averaged stochastic delay differential
equations:

dvε(t) � ε f Φ− 1
vε (t), Φ− 1

vε (t − τ)  +ΦIΦ− 1 vε(t)(  dt

+
�
ε

√
g Φ− 1

vε (t), Φ− 1
vε (t − τ) dB(t),

(37)
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namely,

dvε(t) � ε 
i≥ 0

−
1
4

 
i

vε(t − iτ) + 
i≥ 0

−
1
4

 
i

vε(t − (i + 1)τ) +
1
π



q

j�1
(− 0.04)vε tj ⎛⎝ ⎞⎠dt

+
�
ε

√

i≥ 0

−
1
4

 
i

vε(t − (i + 1)τ)dB(t).

(38)

Let (Φ− 1vε)(t) � yε(t), we have

dyε(t) � ε 
i≥ 0

−
1
4

 
i

yε(t − iτ) + 
i≥ 0

−
1
4

 
i

yε(t − (i + 1)τ) +
1
π



q

j�1
(− 0.04)yε tj ⎛⎝ ⎞⎠dt

+
�
ε

√

i≥ 0

−
1
4

 
i

yε(t − (i + 1)τ)dB(t).

(39)

When t ∈ [0, τ], the solution of system (3) can be de-
duced as

yε(t) � e
t

yε(0) + ε
t

0
e

− s

i≥ 1

−
1
4

 
i

yε(s − iτ)ds + ε
t

0
e

− s

i≥ 0

−
1
4

 
i

yε(s − (i + 1)τ)ds
⎧⎨

⎩

+εe− t1
π



q

j�1
(− 0.04)yε tj  +

�
ε

√


t

0
e

− s

i≥ 0

−
1
4

 
i

yε(s − (i + 1)τ)dB(s)
⎫⎪⎬

⎪⎭
.

(40)

When t ∈ [τ, 2τ], the solution of system (3) is deduced as

yε(t) � e
t− τ

yε(τ) + ε
t

τ
e

− (s− τ)

i≥ 1

−
1
4

 
i

yε(s − iτ)ds
⎧⎨

⎩

+ ε
t

τ
e

− (s− τ)

i≥ 0

−
1
4

 
i

yε(s − (i + 1)τ)ds + εe− (t− τ)1
π



q

j�1
(− 0.04)yε tj 

+
�
ε

√


t

τ
e

− (s− τ)

i≥ 0

−
1
4

 
i

yε(s − (i + 1)τ)dB(s)
⎫⎬

⎭.

(41)

Repeat the steps above on [2τ, 3τ], [3τ, 4τ], etc., and we
can get the solution yε(t) on the whole interval yε(t). In
addition, it is easy to verify that the hypotheses of(eorem 1
and Corollary 1 holds; hence, the solution of the averaged
system (3) converges to that of the standard system (1) in the
sense of mean square and in probability.

5. Conclusion

In this paper, we generalize the periodic averaging principle
for neutral stochastic delay differential equations with im-
pulses. (e main difficulties in the application of periodic
averaging principle for neutral system are caused by the
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delay term which is included under the differentiation at the
left-hand side of the system. Using the linear operator
theory,(eorem 1 and Corollary 1 show that the solutions of
neutral stochastic delay differential equations with impulses
converge to the solutions of the corresponding averaged
stochastic delay differential equations without impulses in
the sense of mean square and in probability. We remark that
when the noises are Le

�
vy processes other than Brownian

motion considered in this paper, and the approach presented
in the paper remains valid.
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Mathematics Letters, vol. 93, pp. 91–97, 2019.

[10] X. He, S. Han, and J. Tao, “Averaging principle for sdes of
neutral type driven by G-brownian motion,” Stochastics and
Dynamics, vol. 19, no. 1, Article ID 1950004, 2019.

[11] J. B. Conway, A Course in Functional Analysis, Vol. 96,
Springer Science & Business Media, Berlin, Germany, 2013.

[12] C. Wang, Y. Li, and Y. Fei, “(ree positive periodic solutions
to nonlinear neutral functional differential equations with
impulses and parameters on time scales,” Mathematical and
Computer Modelling, vol. 52, no. 9-10, pp. 1451–1462, 2010.

[13] M. Ji, W. Qi, Z. Shen, and Y. Yi, “Existence of periodic
probability solutions to fokker-planck equations with appli-
cations,” Journal of Functional Analysis, vol. 277, no. 11,
Article ID 108281, 2019.

[14] T. Taniguchi, “Successive approximations to solutions of
stochastic differential equations,” Journal of Differential
Equations, vol. 96, no. 1, pp. 152–169, 1992.

10 Complexity



Research Article
Fixed-Time Convergent Guidance Lawwith Impact Angle Control

Zhongtao Cheng ,1 Hao Wu,2 Bo Wang ,1 Lei Liu ,1 and Yongji Wang 1

1National Key Laboratory of Science and Technology on Multispectral Information Processing,
School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, China
2Beijing Aerospace Automatic Control Institute, Beijing, China

Correspondence should be addressed to Bo Wang; wb8517@hust.edu.cn

Received 4 April 2020; Accepted 12 May 2020; Published 29 May 2020

Academic Editor: Jianquan Lu

Copyright © 2020 Zhongtao Cheng et al. ,is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

,e existing convergence control guidance laws are designed via the Lyapunov asymptotic stability theory or finite-time stability
theory. However, guidance law based on the Lyapunov asymptotic stability theory would lead the states to zero only as time
approaches infinity, which is imperfect theory. ,e convergence time for guidance laws based on finite-time stable theory is
dependent on the initial states. A fixed-time convergent guidance law with impact angle control is proposed in this paper. ,e
proposed guidance law consists of two parts. One is the heading error angle shaping term, and the other is the bias term to achieve
the desired impact angle. ,e guidance command is continuous during the engagement without utilizing the switching logics.
Unlike the existing guidance law in the literature, the fixed-time stability theory is utilized to ensure the impact angle error to
converge to zero before the interception. Furthermore, the convergence rate is merely related to control parameters. Simulations
are carried out to illustrate the effectiveness of the proposed guidance law.

1. Introduction

In the design of the missile guidance system, the primary
objective is to reduce the relative range and achieve zero
miss-distance attacks. In modern warfare, the mission is
more diverse, and the battlefield is more complex [1, 2].
For example, the missile needs to avoid the defensive
system by using a detour in certain missions. Also, specific
impact angles to the weakest part of the target are effective
for anti-tank or anti-ship missiles. Primitive guidance
laws that only achieve the primary objective cannot ac-
commodate to modern war. Hence, studies on the impact
angle control guidance (IACG) have very high strategic
significance [3–5].

Since the first study on impact angle control on a reentry
vehicle [6], various guidance and control schemes are ap-
plied in the design of IACG, such as the proportional
navigation (PN) law and its variants, optimal control theory,
nonlinear control theory, and other geometry methods.

Due to the simple structure and optimality, many studies
on IACG are based on PN and its variants. Apart from the

terminal position constraint, specific impact angles with
high precision are achieved in simple proportional forms
with nonlinear adaptive parameters [7]. A two-stage PN
impact angle control law was present in [8], the orientation
navigation stage leads the missile to certain switching states,
which depend on the initial states of the missile and the
desired impact angle, and the final stage leads the missile to
the target with the desired impact angle. As an extension of
the work in [8], both the heading error constraint and the
impact angle constraint were considered in the two-stage PN
[9]. Switching logic was used in two-stage PN methods;
however, this would lead to an accumulated impact angle
error because of autopilot dynamics in practice.

After the optimal control theory was utilized in the
impact angle constraint research in [6], some other
guidance laws in the literature also solved the impact angle
control problem via this theory. In [10], considering
different missile dynamics, a generalized optimal guid-
ance law was offered in the state feedback form, and its
characteristics were also investigated. After obtaining a
new time-to-go estimation method, a novel optimal
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impact angle control guidance law was proposed for
constant velocity missile [11]. A new linear optimal IACG
was proposed in [12]; unlike the traditional framework,
the linearization was not conducted around the initial
LOS angle but around a nominal circular trajectory.

,e nonlinear control theories, such as the Lyapunov
stability theory and the sliding mode theory, were also
adopted in the design of IACG. In [13], to hit the target
with a specific angle, the Lyapunov candidate function was
augmented with an impact angle error term. A recent
Lyapunov stability theory-based guidance law was found
in [14], the candidate function was proposed to reduce the
heading error angle, and a two-stage IACG was proposed
for hitting the target in all aspects. However, the states
would converge to zero only as time approached infinitely
for the Lyapunov-based guidance law, theoretically.
Hence, some other studies involved the finite-time con-
vergence IACG. In [15], an IACG law that insured the
convergence of the line of sight (LOS) angle in finite-time
was proposed from the sliding mode control theory. In
[16], a finite-time convergent IACG based on the non-
singular terminal sliding mode control (NTSMT) method
was proposed, and the resulting guidance law can hit the
target with a desired impact angle. Another finite-time
convergent guidance law was found in [17]. However, a
guidance law based on the Lyapunov asymptotic stability
theory would lead the states to zero only as time ap-
proaches infinity, which is imperfect theory. Also, the
convergence time for guidance laws based on finite-time
stable theory is dependent on the initial states.

In addition to the methods described above, the geo-
metric and polynomial approach has also been adopted to
derive the IACG law. ,e first appearance of the polynomial
guidance was found in [18]. After that, an augmented impact
angle control polynomial guidance law considering accel-
eration constraint was proposed in [19]. ,e guidance
command was present in the form with unknown coeffi-
cients corresponding to the terminal constraints. To control
impact time and angle, the guidance command was pro-
posed as a function of range-to-go in [20]. A very recent
research involved the geometric and polynomial approach
found in [21], and the resulting guidance law was proposed
in the adaptive form.

In this study, to overcome the limitations of the
existing studies, a nonswitching fixed-time convergent
guidance law with impact angle control is proposed. First,
a heading error-shaping method is introduced to ensure
the successful impact of the target. Also, the terminal
characteristics of this error-shaping method are sum-
marized. ,en, the fixed-time stability theory is applied to
design a bias term, which can ensure the fixed-time
convergence of the impact angle error.

,e rest of this paper is organized as follows. Pre-
liminary on fixed-time stability is introduced in Section 2.
In Section 3, the heading error shaping and the design of
the bias term are offered. In Section 4, the effectiveness of
the proposed strategy is verified through different nu-
merical simulations. Finally, the conclusion can be found
in Section 5.

2. Fixed-Time Stability Theory of a
Nonlinear System

Before deriving the guidance law, it is obliged to introduce
some basic concepts of fixed-time stability theory [22].

Definition. ,e following nonlinear system is considered:
_x(t) � f(t, x(t)),

x(0) � x0,
(1)

where the state and the upper semicontinuous mapping are
denoted by x(t) ∈ Rl and f: R+ × Rn⟶ Rn, respectively.
,e state is fixed-time stability if it is globally finite-time
stable; meanwhile, the function of the settling time T(x0) is
restricted by a real positive number Tmax, i.e.,
T(x0)≤Tmax,∀x0 ∈ Rl. ,e definition can be stated math-
ematically as

limx t, x0(  � 0
t⟶T x0( )

, t ∈ t0, T x0(  ,

x t, x0(  � 0, t≥T x0( , T x0( <Tmax.

⎧⎪⎨

⎪⎩
(2)

It should be noted that the settling time in (2) is in-
dependent of the initial states. Denote by D∗φ(t) the upper
right-hand derivative of a function φ(t),
D∗φ(t) � lim

h⟶+0
(φ(t + h) − φ(t))/h. Also, the fixed-time

stability under the Lyapunov criterion is presented in
Lemma 1.

Lemma 1. Suppose a continuous positive definite and ra-
dially unbounded function as V(x): Rn⟶ R+ ∪ 0{ }, such
that

D
∗
V(x(t)) ≤ − mV

p
(x(t)) − nV

q
(x(t)), (3)

for m, n> 0, p � 1 − (1/2c), q � 1 + (1/2c), c> 1. /en, the
origin is fixed-time stable for the system in (1), and the settling
time is given by

T x0( ≤Tmax ≔
πc
���
mn

√ . (4)

Remark 1. Different from finite-time stability theory, the
bound of the settling time function for fixed-time stability
theory is merely connected with the design parameters.

3. ProblemStatement andGuidanceLawDesign

In this section, the two-dimensional kinematic equations that
stand for the engagement geometry between the target and
the missile are formulated, and the objective of the impact
angle control problem is elaborated. ,en, the concept of
fixed-time convergence of the impact angle error is intro-
duced, and the impact control guidance law is designed.

3.1. Engagement Geometry and Problem Statement. ,e
missile-to-target system is denoted in Figure 1, where the
planar engagement geometry is considered. In Figure 1, r
denotes the relative range between the missile and target. V
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and a represent the missile’s speed and later acceleration,
respectively. θ, σ, and λ stand for the flight path angle, the
heading error angle, and the line of the LOS angle,
respectively.

Assume the counterclockwise direction as the positive
direction for the aforementioned angles. Under the small
angle of attack assumption, the geometry relationship be-
tween the angles can be expressed as

σ � θ − λ. (5)

,e kinematic equations for the missile to intercept the
target can be obtained as

_r � − V cos σ, (6)

_λ �
− V sin σ

r
, (7)

_θ �
aM

V
. (8)

,e basic requirement for a guidance law is to lead to
missile to hit the target, which is also the primary objective
for the guidance law design in this paper. Apart from the
primary objective, the additional objective is that the impact
angle should converge to the desired value as the engage-
ment proceeds, which can be expressed mathematically as

θ⟶ θd, as t⟶ ts ≤ tf. (9)

It should be noted that θd in (9) refers to the desired
value for the impact angle, and ts should be smaller than the
final impact time.

3.2. Primary Guidance Law with Zero Miss-Distance. In this
subsection, the primary objective of the guidance law is
achieved through the heading error angle shaping method,
and the terminal characteristics of this method are briefly
summarized.

Since the angle of attack is assumed to be small in the
previous subsection, the missile will hit the target with zero
miss-distance by zeroing the heading error. Hence, the zero-

miss distance design problem is transformed into the
heading error angle control problem. In this regard, the
Lyapunov candidate function is proposed as

W1 � sin2
σ
2

. (10)

,e time derivative of (10) is

_W1 �
sin σ · _σ

2
. (11)

To meet the asymptotic stability requirement, the can-
didate function should be positive definite W1, and its de-
rivative _W1 should be negative definite.

Theorem 1. /e asymptotic stability condition can be met if
the heading error satisfies

_σ �
cV

r
sin σ, c≥ 1, (12)

where c controls the speed of the heading error rate.

Proof. Combining equations (11) and (12) yields

_W1 � −
cV

2r
sin2 σ. (13)

It can be concluded from (10) that W is positive definite,
and (13) denotes that _W1 is negative definite. Hence, the
Lyapunov asymptotic stability condition is satisfied, and the
proof of ,eorem 1 is completed.

,e Lyapunov asymptotic stability theory-based method
only ensures convergence when the time approaches infinity.
Obviously, this is imperfect theory. Hence, before pro-
longing the method to achieve the additional impact angle
objective, the terminal characteristics of this guidance
strategy are briefly summarized.

Dividing (12) by (6) yields

dσ
tan σ

�
c

r
dr. (14)

By solving a separable differential (15), σ can be
expressed as a function of r as

sin σ �
r

r0
 

c

sin σ0. (15)

It can be concluded from (15) that sin σ⟶ 0 as r⟶ 0,
if c≥ 1. As a result, the heading error can converge to zero at
the instant of attack.

,e derivative of (5) to time is

_σ � _θ − _λ. (16)

Substituting (7) and (12) into (16) yields

_θ � −
(c + 1)

c
_σ. (17)

In addition, combining (12) and (15) yields

0

YI

XI

aM

V

R

θ

σ λ

Figure 1: Engagement geometry.
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_σ � −
cV

rc
0

(r)
c− 1 sin σ0. (18)

Hence, the guidance command that leads the missile to
the target with zero miss-distance can be acquired as

a
L

� −
(c + 1)V2

rc
0

(r)
c− 1 sin σ0, (19)

where the superscript L stands for the terminal states of the
missile under the heading error-shaping method. By com-
bining (7) and (12), we have

_λ �
_σ
c
. (20)

Integrating both sides of (20) from current time t to final
time tf yields

λL
f � λ +

σL
f − σ

c
. (21)

Substituting (5) into (21) yields

θL
f � θ −

c + 1
c

σ. (22)
□

Remark 2. ,e heading error-shaping method can ensure
the convergence of the guidance command at the instance of
interception, and the terminal intercept angle under this
method can be calculated from equation (22). Also, the
impact angle error can be acquired.

3.3. Impact Angle Control Guidance Law Design. In this
section, the heading error-shaping method is further in-
vestigated. In addition, the impact angle control objective is
achieved. ,e difference between θd and θL

f calculated from
(22) is regarded as the impact angle error, which can be
expressed as follows:

eθf � θL
f − θd � θ −

c + 1
c

σ − θd. (23)

,e time derivative of (23) is

_eθf � _θ −
c + 1

c
_σ. (24)

If the impact angle error can converge to zero before the
final time, the additional objective expressed in (9) can be
achieved. Substituting (8) and (19) into (24) yields

_eθf �
aM

V
+

(c + 1)V sin σ
r

�
aM − aL

V
�

u

V
, (25)

where u is defined as the bias term of the guidance com-
mand, and the purpose of introducing the bias term u is
illustrated in Figure 2, which aims at governing the dynamics
of the impact angle error to zero. Hence, the objective of
impact angle control will be achieved through the design of
u. ,e impact angle control guidance command is con-
structed as

aM � a
L

+ u. (26)

Theorem 2. If the bias term u can make the impact angle
error of the missile satisfying

eθf _eθf +
m

2
e
1− (1/c)

θf +
n

2
e
1+(1/c)

θf ≤ 0, (27)

where m � const.> 0, n � const.> 0, c � const > 1, and then
the impact angle error will converge to zero in fixed-time. /e
convergence rate increases as the values of m and n increase,
and it will also increase as the value of c decreases. Besides,
different from the finite-time convergence guidance law, the
convergence time is independent of the missile’s initial states.

Proof. ,e following continuously differential candidate
function is considered:

W2 � e
2
θf . (28)

,e derivative of (28) to time is
_W2 � 2eθf _eθf. (29)

Substituting (28) and (29) into (27) yields
_W2 ≤ − mW

1− (1/2c)
2 − nW

1+(1/2c)
2 . (30)

According to Lemma 1, the impact angle error will
converge to zero in fixed-time, and the fixed-time is given by

ts ≤ tmax �
πc
���
mn

√ , (31)

where ts is the convergence time of the impact angle error
and tmax is the upper bound for the settling time. It can be
concluded from (31) that ts is independent of the initial
states. Define tf as the final time of the engagement. To
impact the target with a specific direction successfully, the
error dynamics of impact angle error of the collision course
should be achieved before tf. Unlike the finite-time con-
vergence guidance law, the convergence time ts is inde-
pendent of the initial states, which can be adjusted by control
parameters. Hence, ts < tf can be guaranteed through proper
selection of the control parameters. Figure 3 shows the
convergence process of the impact angle error. It is revealed
that the impact angle error converges to zero at ts and re-
mains there till the end of the engagement.

Substituting (25) into (27) yields

eθf

u

V
+

m

2
e
1− (1/c)

θf
+

n

2
e
1+(1/c)

θf ≤ 0. (32)

TargetMissile

V

σ0

aL

θL

θd

aM = aL + u

eθ f

Figure 2: ,e purpose of introducing the bias term u.
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,e bias term of the guidance command is chosen as

u � V
m

2
e
1− (1/c)

θf +
n

2
e
1+(1/c)

θf  + kVeθf, k> 0. (33)
□

Theorem 3. /e bias term in equation (33) can achieve fixed-
time convergence for the impact angle error.

Proof. Substituting equation (33) into equation (25), we
have

_eθf � −
m

2
e
1− (1/c)

θf
+

n

2
e
1+(1/c)

θf  − eθf. (34)

By substituting equation (34) into equation (27), we get

− e
2
θf ≤ 0. (35)

According to ,eorem 2, the proposed bias term in (33)
can lead to fixed-time convergence for the impact angle
error, and the convergence rate increases as the values of m
and n increase or as the value of c decreases. □

4. Simulations

Numerical simulation is performed to show the effec-
tiveness of the proposed method. ,ree simulations are
considered: In Case 1, the comparison between the pro-
posed method and the two-stage impact angle control
guidance law is considered. In Case 2, different impact
angles are achieved with the same control parameters. In
Case 3, three control parameters are considered to achieve
the same impact angle.

,e initial states for the missile and target used in this
simulation are tabulated in Table 1. ,e simulation step for
the second-order Runge–Kutta integral method applied in
this study is 0.001 s, and each simulation case will be ter-
minated when the relative range is smaller than 0.5m. Besides,
the maximal value for the acceleration constraint is 15 g.

4.1.Comparison Simulation. To show the effectiveness of the
proposed method, one existing guidance law in Ref. [9] is
considered in this comparison study. ,e guidance com-
mand for the comparison law is given by

a
two− stage

�
V _λ, first stage,

Ntwo− stageV _λ, final stage.

⎧⎨

⎩ (36)

,e switching criterion for the comparison law is cal-
culated from the desired impact angle, and the Ntwo− stage � 2
for the final stage. For the proposed method, the control
parameters are m� n� 0.05, c � 10.

,e results for this compassion simulation are shown in
Figure 4. Dotted lines represent the results of the com-
parison guidance law, and solid lines represent the results for
the proposed method. Figure 4(a) depicts the trajectories for
the missile and target. Figure 4(b) shows the acceleration
command. Figures 4(c) and 4(d) represent the profile of the
impact angle and impact angle rate, respectively.

It can be concluded from Figure 4 that both the proposed
method and the comparison law can nullify the impact angle
error and impact the target with the desired impact angle
successfully. However, the acceleration variation and the
convergence of the heading error are significantly different,
as shown in Figures 4(b) and 4(d). As for the comparison
law, the guidance command will switch to another value
once the heading error converges to zero. Due to the
switching logic for the comparison law, the guidance
command is switched to another value instantaneously; this
would lead to an accumulated impact angle error. Besides,
the missile cannot achieve this performance in practice with
autopilot dynamics.

For the proposed guidance law, there would be no
discontinuity. As a result, the proposed guidance law is more
applicable and can achieve higher accuracy than the com-
parison law. Hence, the proposed guidance law has better
performance over the comparison law.

4.2. Various Impact Angles. In this case, four different de-
sired impact angles selected from the range − 90° to 90° are
considered. ,e control parameters for the proposed
guidance law are the same as those of the previous
simulation.

,e simulation results are shown in Figure 5. Figure 5(a)
depicts the trajectories for the missile and target, and it can
be concluded from the trajectories that the primary objective
can be achieved by the proposed guidance law. Figure 5(b)
shows impact angle variation profile, and it can be concluded
each desired impact angle can be achieved, which means the

Table 1: Simulation parameters.

Parameter Value
Initial position for the missile (0, 0) m
Missile speed 150m/s
Initial heading angle for the missile 45°
Initial position for the target (6000, 0) m
Maximal acceleration constraint 15 g

y

eθ f

ts tf0 x

Figure 3: Impact angle error variation.
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addition objective can also be fulfilled. Also, Figure 5(c)
shows that the impact angle errors can converge to zero in
fixed-time, which is in line with ,eorem 3. Figure 5(d)
represents the profile of the heading angle error, which
converges to zero at the instant of attack, corresponding to
,eorem 1. Finally, the acceleration profile is demonstrated
in Figure 5(e). After the convergence of the impact angle
error, the bias term in the acceleration command will be
nullified.

4.3. Various Control Parameters. In this case, the perfor-
mance of the proposed guidance law is studied under three
different control parameters, which are
m � n � 0.5, m � n � 0.1, m � n � 0.05, c � 10.

,e simulation results are shown in Figure 6. Figure 6(a)
depicts the trajectories for the missile and target, and it can
be concluded from the trajectories that the primary objective
can be achieved by the proposed guidance law. Figure 6(b)
shows the impact angle variation profile, which means the
addition objective can also be fulfilled.

For all the various values of control parameters, the
impact angle can converge to zero in fixed-time, as is shown
in Figure 6(c), and this is in line with,eorem 3. Figure 5(d)
represents the profile of the heading angle error, which
converges to zero at the instant of attack, this corresponds to
,eorem 1. Finally, the acceleration profile is demonstrated
in Figure 5(e). After the convergence of the impact angle
error, the bias term in the acceleration command will be
nullified. It is obvious that the impact angle error converges
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more quickly with larger control parameters, and this is also
in line with ,eorem 1.

5. Conclusion

Considering the impact course can be achieved with the
heading error goes to zero, the heading error shaping is
applied to achieve the primary objective of the guidance law.
,en, the fixed-time stability theory is utilized to ensure the
convergence of the impact angle in fixed-time. ,e con-
vergence rate is merely related to control parameters, a
suitable selection of which can ensure the convergence
before the interception. Simulations are carried out to il-
lustrate the properties of the proposed guidance law. In our
future related work, more complex scenarios such as 3-D
engagement against moving targets and more constraints to
improve the missile performance should also be concerned.
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Based on the classical finite-time stability theory, the problem of finite-time stability (FTS) for time-varying nonlinear systems is
investigated in this paper. Several FTS theorems involving global form and local form are presented, and an estimate of the
settling-time of such systems is obtained. As an application, we consider the problem of asymptotic stabilization of the Brockett
integrator subject to time-varying disturbance. By the switched finite-time controller designmethodology, we establish a sufficient
condition to guarantee the relative asymptotic stability. For Brockett-like integrator subject to time-varying disturbance, we
achieve better convergence performance. Examples and their simulations are given to demonstrate the applicability of the
proposed results.

1. Introduction

Over the past decades, many researchers have focused on
Lyapunov asymptotic or exponential stability of dynamical
systems, see [1–7]. One of the typical features of the as-
ymptotic or exponential stability is that the solution will tend
to an equilibrium state as time tends to infinity. -us, it is
difficult to achieve fast transient and high-precision per-
formances. Finite-time stability (FTS) served as a special case
of asymptotic stability means that the system reaches an
equilibrium state in finite time, which presents an efficient
tool for many engineering problems. Lots of interesting
results on FTS have been raised from theoretical and
practical points of view. Haimo [8] introduced a definition of
continuous finite-time differential equations as fast accurate
controllers for dynamical systems. Bhat and Bernstein [9]
proposed Lyapunov theorem on FTS of continuous au-
tonomous systems. Bhat and Bernstein [10] achieved
globally FTS of the double integrator. Yang et al. [11]
concerned the stabilization of switched dynamical networks
with logarithmic quantization couplings in finite time.
Moulay and Perruquetti [12] studied the FTS for a class of
continuous systems using Lyapunov function. Furthermore,

Moulay et al. [13] established some FTS theorems for time-
delay systems based on Lyapunov functionals and the ex-
tension of Artsteins transformation. Polyakov and Hu et al.
[14, 15] introduced the concept of fixed-time stability, which
means that the system is globally finite-time stable and the
settling-time is bounded by some positive constant for any
initial values. However, most of existing results, such as
[8–13], are based on the framework of time invariant. Re-
cently, Haddad et al. [16] obtained a sufficient condition of
FTS for nonlinear time-varying systems. However, it can
only be applied to some special cases due to the strict re-
striction that the derivative of Lyapunov function is less than
zero almost everywhere. Moulay and Perruquetti [17] pre-
sented the FTS conditions for nonautonomous continuous
systems. However, it was simplified to the time-invariant
form through the inequality of the Lyapunov function.
Hence, more general methods should be established for
nonlinear time-varying systems. To avoid confusion, it
should be pointed out that the FTS considered in this paper
is different from another FTS concept adopted in [18–20],
which dealt with the finite-time boundedness.

As stated in Brockett’s result [21], Brockrtt integrator
(Nonholonomic integrator), covered in underactuated
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systems, was the first example of locally controllable non-
linear system which is not smoothly stabilizable and requires
additional constraints. In order to overcome the above-
mentioned limitations, various methods have been proposed
for the problem of asymptotic stabilization of the Brockett
integrator [22–26]. Astolfi [22] addressed the problem of
almost exponential stabilization with bounded control.
Banavar and Sankaranarayanan [23] studied a switched fi-
nite-time controller design methodology. Rehman [24] dealt
with steering control of nonholonomic systems with drift for
the extended nonholonomic double integrator. Rehman and
Ahmed [25] presented piecewise constant and state-de-
pendent feedback control for the nonholonomic integrator.
Chihchen [26] investigated the time-varying control for
globally exponential stabilization of the Brockett integrator.
However, the abovementioned works did not take distur-
bance into account and converged in infinite time domain.
-erefore, based on the FTS theorem for time-varying
systems, we will explore stability issues of the Brockett in-
tegrator subject to time-varying disturbance.

In this paper, we firstly address some essential stability
definitions in Section 2. -en, in Section 3, based on the
classical finite-time stability theorem [9], the FTS theorem
for time-varying nonlinear systems is considered. We apply
it to solve the problem of asymptotic stabilization of the
Brockett integrator subject to time-varying disturbance, as
shown in Section 4. By some examples, we verify the main
results in Section 5. In Section 6, conclusions are be
presented.

2. Preliminaries

Notations: letR denote the set of real numbers,R+ the set of
nonnegative numbers, Rn the n-dimensional real spaces
equipped with the Euclidean norm | · |, and N, D ⊂ Rn the
subspaces of Rn. a∨ b and a∧b are the maximum and
minimum of a and b, respectively. -e notation AT denotes
the transpose of A.

Consider the nonlinear system given by
_x(t) � f(t, x(t)),

x(0) � x0,
 (1)

where t≥ 0, x ∈ Rn denotes the state vector,
f(·): R+ × D⟶ Rn is a continuous function with f(t, 0) �

0 for all t≥ 0. We assume that f(t, x) satisfies suitable
conditions so the solution x(t) � x(t, 0, x0) with initial state
x0 ∈ D uniquely exists in forward time for all initial con-
ditions except possibly the origin (see [9]).

Definition 1 (see [9]). System (1) is said to be FTS if there
exist a function T: Rn⟼R+ and an open neighborhood
N⊆D such that the following statements hold:

(i) Finite-time convergence (FTC): for every x0 ∈ N/ 0{ },
x(t) ∈ N/ 0{ } holds for all t ∈ [0, T(x0)) and
x(t)⟶ 0 as t⟶ T(x0)

−

(ii) Lyapunov stability (LS): for every ε ball Bε around
the origin, there exists a δ ball Bδ around the origin

such that, for every x0 ∈ Bδ/ 0{ }, x(t) ∈ Bε for all
t ∈ [0, T(x0))

Definition 2 (see [23]). For a given set O that contains the
origin, system (1) is said to be relatively asymptotically stable
(RAS) with respect to the set O, if for any ε> 0, there exists
δ > 0 such that, for all x0 ∈ O∩Bδ, x(t) ∈ Bε holds when t≥ 0;
moreover, x(t)⟶ 0 as t⟶∞. Bδ and Bε are open balls
around the origin of radius δ and ε, respectively.

3. Main Results

In this section, we present a generalization of the classical
FTS theorem [9]. Given the following definition

_V(t, x(t))≜
zV

zt
(t, x) +

zV

zx
(t, x)f(t, x(t)), (2)

for a continuously differentiable function
V(t, x): R+ × Rn⟶ R+. With a slight stealing concept,
V(t, x): R+ × Rn⟶ R+ is said to be positive definite and
radially unbounded if there exists a positive definite and
radially unbounded continuous function W(x): Rn⟶ R+

such that V(t, x)≥W(x), for t≥ 0, x ∈ Rn.

Theorem 1. Consider system (1), if there exists a positive
definite, continuously differentiable function V: R+ × Rn

⟶ R+, an integrable function c(t): R+⟼R+, and two real
numbers α ∈ (0, 1), σ > 0, such that the derivative of V along
the solution x(t) � x(t, 0, x0) of system (1) satisfies

_V(t, x(t))≤ −c(t)V
α
(t, x(t)), ∀t≥ 0, (3)

where c(t) satisfies


+∞

0
c(s)ds≜ β≥

σ1− α

1 − α
. (4)

-en, system (1) is locally FTS with respect to x0 sat-
isfying V0 < σ, where V0 ≜V(0, x0). -e settling-time
function T: Rn⟼R+, depending on the initial state x0, is
bounded by

T x0( ≤ inf t> 0: 
t

0
c(s)ds �

V0
1− α

1 − α
 . (5)

Moreover, when β � +∞ and V is radially unbounded,
system (1) is globally FTS.

Proof. For a given x0 ∈ Rn/ 0{ }, let x(t) be the solution of
system (1) through (0, x0). By transforming (3), we obtain

dV

Vα ≤ − c(t)dt, ∀t≥ 0. (6)

Integrating both sides of the abovementioned inequality,
it gives


V(t,x(t))

V0

1
Vα dV≤ 

t

0
−c(s)ds. (7)

Since V is a positive definite function, we can obtain
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0≤
V1− α(t, x(t))

1 − α
≤

V0
1− α

1 − α
− 

t

0
c(s)ds. (8)

When β< +∞ and V0 < σ, it follows from (4) that there
exists a time point t∗ > 0 satisfying 

t∗

0 c(s)ds< σ1− α/(1 − α),
such that V0

1− α/(1 − α) − 
t∗

0 c(s)ds � 0. -at is to say
V(t∗, x(t∗)) � 0, from which the settling time T(x0) can be
estimated, namely, (5). When t≥T(x0), _V(t, x(t))≤ 0, it
follows from [27] that the solution of system (1) through
(T(x0), 0) is unique in forward time. -erefore,
V(t, x(t)) ≡ 0, for t≥T(x0), which means system (1) is
locally FTC with respect to x0 satisfying V0 < σ. Noting from
(3), it is easy to obtain that system (1) is LS. Combining these
two aspects, system (1) is locally FTS with respect to x0
satisfying V0 < σ.

When β � +∞ and V is radially unbounded, no matter
what initial value x0 it is, there always exists a time point
t∗∗ > 0, such that V0

1− α/(1 − α) − 
t∗∗

0 c(s)ds � 0, that is,
V(t∗∗, x(t∗∗)) � 0. -rough a similar procedure, we con-
clude that system (1) is globally FTS. □

Remark 1. -e classical FTS theorem mentioned in [9] has
been widely used in many fields, such as finite-time syn-
chronizion of complex networks, finite-time attitude sta-
bilization for spacecraft, and terminal sliding mode method
of nonlinear systems, see [10, 23]. However, these theoretical
results are applied under the framework of time invariant,
that is, c(t) ≡ c> 0. When inf c(t): t≥ 0{ } � 0, the classical
FTS theorem is unapplicable. However, in -eorem 1, we
can still achieve the FTS of system (1), as long as (3) and (4)
hold. -is assertion can be verified in Section 5.

4. Applications

Consider a class of systems described by equations of the
form

_x � G(x)u, (9)

where x ∈ Rn, u ∈ Rm, m< n, and G(x) is a matrix of proper
dimension. It has received considerable attention for the
asymptotic stabilization of such systems during the past
several decades. -e reason for such an interest lies in the
fact that system (9) cannot be asymptotically stabilized by
any continuous differentiable and state feedback control
laws (see [22]). -e Brockett integrator, as a special case of
system (9), has plenty of theoretical results with time-in-
variant form. However, there are few theoretical results
considering the form of time-varying systems. In this paper,
we study the Brockett integrator subject to time-varying
disturbance, that is,

_x1(t) � u1,

_x2(t) � u2,

_x3(t) � w1(t)x1u2 − w2(t)x2u1,

⎧⎪⎪⎨

⎪⎪⎩
(10)

where t≥ 0, xi(t): R+⟼R, i � 1, 2, 3, denotes the state
component, uj(t): R+⟼R, j � 1, 2, denotes the control
input, wj(t): R+⟼R, j � 1, 2, is continuous function

denoting the disturbance term. For any integrable function
ρ(t): R+⟼R, we introduce a set F as follows:

F � ρ(t) ∈ R: 
t

0
ρ(s)ds⟶ +∞ as t⟶ +∞ .

(11)

Assumption 1. -ere exists a continuous function
η(t): R+⟼R such that η(t)w1(t)≥ 0, for t≥ 0, and the
following inequality holds:


+∞

0
η(s)w1(s)ds � +∞. (12)

Assumption 2. -ere exist two functions ρ1(t), ρ2(t) ∈ F

such that

w1(t)ρ2(t) � w2(t)ρ1(t). (13)

Theorem 2. Assume that Assumptions 1 and 2 hold, then the
solution of system (10) converges to the origin and system (10)
is RAS with respect to the set O≜ x � (x1,

x2, x3)
T ∈ R3: x3 � 0, x1 ≠ 0} under the control input:

U �

u1

u2

⎛⎝ ⎞⎠ �

−ρ1(t)x1

−η(t)x3
1/3

x1
− ρ2(t)x2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (14)

Proof. We firstly show the attractivity of system (10). If
x1(0)≠ 0, then it follows from (14) that

_x1(t) � −ρ1(t)x1, (15)

which implies

x1(t) � x1(0)exp
t

0
−ρ1(s)ds. (16)

Note that ρ1(t) ∈ F; then, it is easy to see that

x1(t)⟶ 0 as t⟶ +∞, (17)

which shows that x1(t) asymptotically tends to zero.
In addition, the third state component of system (10)

becomes _x3(t) � −η(t)w1(t)x3
1/3 with control input u2,

which gives that x3(t) is FTS combining (12) and
-eorem 1. Moreover, the settling time T can be esti-
mated by (5). For the second state component of system
(10), when t>T, it holds x3

1/3/x1 ≡ 0; then, by (13), the
derivative of x2 becomes −ρ2(t)x2. Similar to the above
argument, we could conclude that the origin of x2(t)

asymptotically tends to zero. For the case that x1(0) � 0,
we can apply any open loop control to steer the system
to a nonzero value of x1. -is completes the proof of
attractivity.

Secondly, we show the relative stability of system (10).
When t>T, system (10) is transformed as
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_x1(t) � −ρ1(t)x1,

_x2(t) � −ρ2(t)x2,

x3(t) � 0,

(18)

which implies that x(t) enters the set O from this moment,
and x1(t) and x2(t) will converge to origin. -erefore, when
x(0) ∈ O, x3(t) ≡ 0x1(t), x2(t)⟶ 0 as t⟶∞, then one
can obtain that system (10) is RAS with respect to the set O.
-is completes the proof.

Remark 2. -eorem 2 provides a method for the problem of
asymptotic stabilization of the Brockett integrator subject to
time-varying disturbance. A relatively asymptotical stabili-
zation is achieved by weakening the stability conditions.
Besides, in the process of designing controller U, we apply a
switched finite-time controller design methodology. In fact,
it is also a discontinuous control.Worthmentioning that it is
of vital importance to design functions η(t), ρ1(t),

and ρ2(t), such that the FTS of x3(t) is achieved directly. In
Section 5, we will show an example to illustrate our
conclusion.

Corollary 1. Under conditions in ;eorem 1, when
w1(t) � w2(t), we just need ρ1(t) � ρ2(t) � p, where p is a
positive constant. ;en, the solution of system (10) converges
to the origin and system (10) is RAS with respect to the set
O≜ x � (x1, x2, x3)

T ∈ R3: x3 � 0, x1 ≠ 0  under the control
input:

U �
u1

u2

⎛⎝ ⎞⎠ �

−px1

−η(t)x3
1/3

x1
− px2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (19)

Remark 3. It should be pointed out that, in -eorem 2, the
selection of set O and control input U is not unique. In
-eorem 2, we only get the FTS of one state component. In
order to achieve better performance, we can further consider
multiple components to achieve the FTS for the Brockett-
like integrator, which is the result we will give in-eorem 3.

Consider the following Brockett-like integrator subject
to time-varying disturbance:

_x1(t) � u1,

_x2(t) � u2,

_x3(t) � w1(t)x1
ku2 − w2(t)x2u1,

⎧⎪⎪⎨

⎪⎪⎩
(20)

where t≥ 0, xi(t): R+⟼R, i � 1, 2, 3, denotes the state
component, uj(t): R+⟼R, j � 1, 2, denotes the control
input, wj(t): R+⟼R, j � 1, 2, is continuous function
denoting the disturbance term, k � a/b, a< b, and a and b are
positive odd numbers.

Assumption 3. -ere exists a continuous function
μ(t): R+⟼R such that μ(t)w1(t)≥ 0, for t≥ 0, and the
following inequality holds:


+∞

0
μ(s)w1(s)ds � +∞. (21)

Assumption 4. -ere exist two functions φ1(t), φ2(t) ∈ F
such that

w1(t)φ2(t) � w2(t)φ1(t). (22)

Assumption 5. -ere exist two functions T(x1) � inf
t> 0, x1 ≠ 0: 

t

0 φ1(s)ds � (x1
1− k/(1 − k)) , T(x3) � inf

t> 0: 
t

0 μ(s)w1(s)ds � ((x3
2/3)/2/3)  such that the set

K≜ x � (x1, x2, x3)
T ∈ R3: T(x3)<T(x1)  is not empty.

Theorem 3. Assume that Assumptions 3, 4, and 5 hold; then,
the solution of system (20) converges to the origin, and system
(20) is RAS with respect to the set Z≜ x � (x1, x2,

x3)
T ∈ R3: K∪ (0, 0, 0)T } under the control input:

U �

u1

u2

⎛⎝ ⎞⎠ �

−φ1(t)x1
k

−μ(t)x3
1/3

xk
1

− φ2(t)x2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (23)

Proof. If x1(0)≠ 0, it follows from (23) that
_x1(t) � −φ1(t)xk

1,

_x2(t) �
−μ(t)x3

1/3

xk
1

− φ2(t)x2,

_x3(t) � −μ(t)w1(t)x3
1/3.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(24)

About the first state component of system (20), we notice
that φ1(t) ∈ F and k � a/b, a< b, and a and b are positive
odd numbers, so obtained from -eorem 1, the first state
component of system (20) is FTS. Meanwhile, combining
(21), (22), and -eorem 1, the third state components of
system (20) is FTS. Hence, for initial value x1(0)and x3(0),
the settling time can be established, that is, T(x1(0)) and
T(x3(0)). Under the premise of Assumption 5, when
t>T(x3(0)), system (20) is transformed as

_x1(t) � −φ1(t)x1
k
,

_x2(t) � −φ2(t)x2,

x3(t) � 0.

(25)

Similar to the proof process of -eorem 2, we can obtain
that system (20) is RAS with respect to the setZ. For the case
that x1(0) � 0, we can apply any open loop control to steer the
system to a nonzero value of x1. -is completes the proof.

5. Numerical Simulations

In this section, we will demonstrate the effectiveness of the
proposed results for the above applications through the
following simulation examples.
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Example 1. Consider the following 2D time-varying system:

_x1(t) � (sin t − 1)x1
1/3 + sin tx2

2x1,

_x2(t) � (cos t − 1)x2
1/3 − x1

2x2,

⎧⎨

⎩ (26)

where t≥ 0. Consider the Lyapunov function
V(x) � x1

2 + x2
2, and the derivative along the trajectory of

the system (26) is
_V(t) � 2x1 (sin t − 1)x1

1/3
+ sin tx2

2
x1 

+ 2x2 (cos t − 1)x2
1/3

− x1
2
x2 

� 2(sin t − 1)x1
4/3

+ 2(cos t − 1)x2
4/3

+ 2(sin t − 1)x1
2
x2

2

≤ 2(sin t − 1)x1
4/3

+ 2(cos t − 1)x2
4/3

≤ 2((sin t − 1)∨ (cos t − 1)) x1
4/3

+ x2
4/3

 

≤ − c(t)V
2/3

(t),

(27)

where c(t) � 2 − 2(sin t∨ cos t) and c(t)≥ 0 on R+.
According to Lyapunov’s stability theory in [28], system
(26) is LS. It can be calculated that the lower bound of c(t)

is 0, so the classical FTS theorem in [9] is unapplicable.
On the contrary, note that c(t) satisfies (4) with β � +∞,
and it follows from-eorem 1 that system (26) is globally
FTS and the settling time can be estimated as
T(x0)≤ 4.51. Figure 1 illustrates the state trajectories of
system (26).

Example 2. Consider system (10) with w1(t) � t/20,
w2(t) � 1 − cos(t/2), η(t) � 1, ρ1(t) � t/200, and ρ2(t) �

1/10 − cos(t/2)/10. It is obvious that w1(t), w2(t) ∈F, η(t)

is a continuous function, and w1(t)ρ2(t) � w2(t)ρ1(t).
Hence, we can calculate that 

+∞
0 η(s)w1(s)ds � +∞. It

follows from-eorem 2 that system (10) is RAS with respect
to the set O≜ x � (x1, x2, x3)

T ∈ R3: x3 � 0, x1 ≠ 0 , and
the control input could be described by

U �

u1

u2

⎛⎝ ⎞⎠ �

−
t

200
 x1

−x3
1/3

x1
−

1
10

−
cos(t/2)

10
 x2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (28)

It is worth pointing out that the classic FTS theorem in
[9] is not applicable. -is is due to the existence of the
disturbance term, and the control input will reach infinity
within a certain time, which is impractical. -e numerical
simulations for system (10) are follows.

In Figure 2, it can be clearly seen that x3(t) firstly
converges to zero, then x1(t) andx3(t) converge to zero.
-e control input u1 and u2 change over time and turn into
0 when x(t) converges to zero. In Figure 3, the state vector
x(t) enters the set O and finally reaches the origin in finite-
time. All of these results are corresponding to the con-
clusion of -eorem 2, which illustrates the validity of the
-eorem 2.

Example 3. For convenience, the same parameters as in
Example 2 are used. Consider system (2) with w1(t) � t/20,
w2(t) � 1 − cos(t/2), μ(t) � 1, φ1(t) � t/200,

0 1 2 3 4 5 6 7 8 9 10
t

–1
0
1
2
3
4
5
6
7
8
9

10

||x
 (t

)||

X: 4.45
Y: 0

4.45 ≤ 4.51

Figure 1: Simulation results of states for system (26).
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Figure 2: Simulation results of states and control inputs for system
(10).
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Figure 3: Simulation results of states for system (10).
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φ2(t) � 1/10, − cos(t/2)/10, and k � 1/3. It is not difficult to
verify that the setK is not empty. -erefore, following from
(21), (22), and-eorem 3, system (20) is RAS with respect to
the set Z and the control input could be described by

U �

u1

u2

⎛⎝ ⎞⎠ �

−
t

200
 x1

1/3

−x3
1/3

x1
1/3 −

1
10

−
cos(t/2)

10
 x2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (29)

It can be seen from Figure 4 that the first and third state
components of the system (20) is FTS, and the second state
component of system (20) asymptotically tends to zero,
which shows the validity of -eorem 3.

6. Conclusion

-e problem of FTS for time-varying nonlinear systems is
investigated in this paper, where the results of global FTS
and local FTS are proposed, respectively. As an application,
the stabilization problem of the Brockett integrator sub-
jecting to time-varying disturbance is studied. By the
switched finite-time controller design methodology, we
achieve the RAS for the Brockett integrator subject to time-
varying disturbance. Further research topics would be
considered to extend the main results of this paper to other
more complex problems, such as the finite-time stabilization
for wheeled mobile robot subject to time-varying distur-
bance and the FTS theorem for time-varying nonlinear
systems in the sense of Lyapunov.
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With the continuous renewal of text classification rules, text classifiers need more powerful generalization ability to process the
datasets with new text categories or small training samples. In this paper, we propose a text classification framework under
insufficient training sample conditions. In the framework, we first quantify the texts by a character-level convolutional neural
network and input the textual features into an adversarial network and a classifier, respectively. ,en, we use the real textual
features to train a generator and a discriminator so as to make the distribution of generated data consistent with that of real data.
Finally, the classifier is cooperatively trained by real data and generated data. Extensive experimental validation on four public
datasets demonstrates that our method significantly performs better than the comparative methods.

1. Introduction

Machine-learning models have achieved remarkable results
in computer vision (CV), automatic speech recognition, and
neural language processing (NLP). With the development of
artificial neural networks, text classification becomes one of
the most intriguing fields of NLP [1, 2]. Text classification
refers to the division of texts in the corpus into predefined
categories based on its contents and other attributes. It is
widely used in many applications [3–9], such as spam fil-
tering, news categorization, sentiment analysis, and digital
library.

As typical supervised learning (SL), text classification
requires abundant manually labeled samples for training.
However, manually adding ground truth to vast amounts of
texts is difficult to achieve in practical application, so the
number of labeled samples is not enough to meet the re-
quirements. For small training samples, the insufficient
depiction leads to the poor generalization ability of classifiers
obtained from learning.

To improve the generalization ability of classifiers, the
feasible solution is to improve learning algorithms or in-
crease training samples. ,e method worth mentioning is

support vector machines (SVM), which improves the gen-
eralization ability on unknown samples by learning the
hyperplane of the maximum interval between different
categories. SVM alleviates the problem of small samples to
some extent, but the high time complexity leads to the
limitation of engineering applications, especially online
information processing. Besides, the existence of massive
unlabeled samples has gradually drawn the attention of
scholars to semisupervised learning (SSL). Most of the
semisupervised classification methods train the objective
classifier through an initial classifier until it reaches the
convergence condition. However, such methods have high-
computational complexity and may bring about large-scale
sample problems.

Compared with the computationally expensive SSL,
generative adversarial nets (GAN) proposed by Goodfellow
et al. [10] provides an effective method for generating new
data. In this paper, we employ GAN to generate the textual
samples according to the data distribution of the input
samples and label the generated samples. Furthermore, we use
Char-level CNN to extract the text semantics and utilize the
textual generative network to increase the training samples.
To summarize, our contributions are listed as follows:
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(1) ,e novel structure of Char-level CNN is designed
for small-scale datasets to generate textual features.
By optimizing the configuration of the convolutional
and pooling layers, the output comprehensively
inherits the text semantics. Besides, the dense net-
work is designed deeper because the generated data
reduces the risk of its overfitting.

(2) ,e data augmentation module based on high-level
semantic is proposed. ,e text semantics are
quantified and directly input into the network as real
data to obtain various textual features. ,e module
not only avoids the feature extraction of the gen-
erated texts and saves the computing resources but
also describes the overall distribution characteristics
of data to make the classifier perform better on
small-scale datasets.

,e rest of this paper is structured as follows. Section 2
summarizes the related work of textual feature construction,
text generation, and semisupervised learning. Section 3
details our model to solve the small-scale datasets text
classification problem. Section 4 presents the experimental
setting and results analysis. Section 5 concludes our whole
work and gives further research direction.

2. Related Work

Compared with other media streams, the most special aspect
of texts is that semantic information is difficult to express.
For subtasks in NLP, how to quantify abstract semantic
information is particularly critical. ,erefore, the final
performance of text classification is jointly affected by the
classification models and feature representation methods
[11–13].

,e mainstream representation methods for text clas-
sification can be roughly divided into three categories.
Traditional textual features are mainly generated through
methods such as bag of words (BOW) and n-gram. Both are
usually combined with term frequency-inverse document
frequency (TF-IDF) and other element features as textual
features. However, the momentous drawback of these
methods is that they ignore the context and order of words.
,e second language model is based on attention mecha-
nisms, commonly known as hierarchical attention and self-
attention, which extracts textual features by scoring input
words or sentences differentially. In the third language
model, text can be represented by sequence or structured
models through the introduction of artificial neural net-
works. In addition to the above three language models, some
pretraining models, such as XLNet and BERT, have also
been proposed for NLP. However, these pretrained models
require large amounts of labeled textual data and are not
suitable for new categories and small samples of textual data.

In the text representation methods based on the se-
quence or structured models, Bengio et al. [14] first tried to
use neural networks to produce dense, low-dimensional
vectors for words. Mikolov [15] proposed a language model,
called Word2Vec, which can transform each word into
vector form according to the context.,emodel can take the

representative words as the representation of text by
working with clustering algorithms. Besides, textual features
can be obtained by simply combining the word embeddings
to replace sentences or texts, and the linear model FastText
[16] is widely used in text classification in this way. Kim [17]
applied the convolutional neural network to the classifica-
tion process and obtained the textual features by processing
the matrix formed by word embedding. Kaichbrenner et al.
[18] proposed a convolutional architecture and dubbed the
dynamic convolutional neural network (DCNN) for sen-
tence modeling. Zhang et al. [19] proposed the use of
convolutional networks for text classification at the char-
acter level, but their network structures only work well on
large-scale datasets. ,en, for the structural configuration of
convolutional neural networks, Le et al. [20] studied the
importance of depth in convolutional models. At the same
time, the recurrent neural networks are also applied to the
language models due to their memorability and Turing
completeness. Chung et al. [21] compared different types of
recurrent units, especially gating mechanisms such as long
short-term memory (LSTM) and gated recurrent unit
(GRU). Zhu et al. [22] attempted to build structured rep-
resentations using prespecified parsing trees. Recently,
Zhang et al. [23] proposed a reinforcement learning (RL)
method to get structured sentence vectors. Note that before
the abovementioned methods were proposed, some tradi-
tional machine-learning algorithms were widely used in text
classification. For example, k-nearest neighbor (KNN) for
classification by measuring the distance between different
features, decision tree combining information entropy and
tree structure, and Naive Bayes based on Bayesian theory
and characteristic conditional independence hypothesis.
However, it is proved that the performance of machine-
learning algorithms is lower than that of the methods based
on deep learning in the text classification task.

To solve the problem of insufficient training samples,
many methods of data augmentation and semisupervised
learning can be used to improve the performance of clas-
sifiers. Wei and Zou [24] presented an easy data augmen-
tation (EDA) technique for boosting performance on text
classification tasks. Although EDA reduces overfitting when
training on smaller datasets, the improvement is at times
marginal. Wang and Wu [25] proposed a framework that
combines variational autoencoder (VAE) and neural net-
works to deal with text classification and generation tasks.
GAN [10, 26] was firstly proposed for continuous data
(image generation, inpainting, style transfer, etc.) and has
shown excellent performance in computer vision (CV). Yu
et al. [27] extended GAN to discrete and sequential data to
alleviate the above deficiency. Since then, various text
generation methods have been proposed via GAN. Xu et al.
[28] proposed a text generation model called DP-GAN,
which can encourage the generator to produce diverse and
informative text. Li et al. [29] combined reinforcement
learning, GAN, and recurrent neural networks to build a
category sentence generative adversarial network. Miyato
et al. [30] extended adversarial and virtual adversarial
training to the text domain. Ahamad [31] also tried to solve
the above problem by using Skip-,ought sentence
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embeddings in conjunction with GANs. Although the
methods utilize text generation and feature reconstruction to
alleviate the problem of small-scale datasets, the classifica-
tion performance is still difficult to further improve due to
the large work of feature engineering and the trouble of
textual feature extraction.

3. Methodology

In the section, the character-level convolutional and gen-
erative adversarial networks (CCNN-GAN) are utilized to
set up a novel hybrid text classification framework in Fig-
ure 1. In contrast to the implementation of continuous data,
the textual data is modelled by convolutional networks and
character quantization in our model. Char-level CNN em-
beds the texts in the corpus into fixed-length features, and
then the features are input into the generative adversarial
network (GAN) and backpropagation network (BP net-
work), respectively.,e generated data not only enriches the
textual features but also effectively solves the problems of
insufficient samples and single information when dealing
with small-scale datasets. After that the real samples and
generated samples from GAN are mixed into a BP network
for training. ,e design is modular, and the text information
is transmitted between modules in the form of processed
features.

3.1. Text Quantization Module. ,e acceptable encoding of
Char-level CNN includes alphabetic encoding, utf-8
encoding, and pretrained character embedding vector. Since
the proposed model is mainly used in the English-domi-
nated alphabetic attachment language, alphabetic encoding
is applied to the text quantization process. In the embedding
layer, features of encoded characters are used as input. An
alphabet of size α is stipulated; then, an embedded dictionary
is created and an embedding matrix is formed based on the
alphabet. Null character and characters that do not exist in
the alphabet are replaced by an all-zero vector. ,e quan-
tization length of the character feature is set to β. Assume
[19] that β characters in the text can reflect the content of the
text and the part that exceeds length β is ignored.

,e foundational alphabet (α � 45) and elaborate al-
phabet (α � 70 + α0) are stipulated, where α0 is the length of
the auxiliary characters, and the details are shown in Table 1.
,e foundational alphabet used in the proposed model
consists of 45 characters which are 36 English letters and
Arabic numerals, 8 other characters, and the null character.
,e alphabet is applicable to most documents. For the
corpus with high symbol content, the foundational alphabet
is supplemented by the elaborate alphabet. ,e elaborate
alphabet consists of 25 symbol characters and auxiliary
characters of varying lengths. Char-level CNN consists of 8
convolution layers, 3 pooling layers, and 3/4/5 fully con-
nected layers. ,e configuration of the convolutional neural
network is shown in Table 2 and Figure 2.

,e classifier that is composed of fully connected layers is
discussed in detail in Section 3.3. ,e Char-level CNN is

constructed to compute 1D convolution and the weights are
initialized using Gaussian distribution. ,e mean and
standard deviation to initialize the model is (0, 0.05). ,e
pooling layers are also applied between the convolutional
layers for increasing the area covered with the next receptive
fields.

In addition, a rectified linear unit (ReLU) is taken as the
activation function in the classifier, and local response
normalization (LRN) [32] is added behind each pooling
layer. ,e LRN imitates the biological neural system layer of
lateral inhibition mechanism and improves the generaliza-
tion ability of the model. ,e function is as follows:

L
i

�
Pi

k + a 
min(N− 1,i+n/2)
j�max(0,i− n/2) Pj( )

2
 

b
,

(1)

where P is the tensor obtained after pooling, i and j rep-
resent the ith and jth kernel, k, n, a, and b are hyper-
parameters, and N is the total number of kernels.

3.2. Data Augmentation Module. Different from the typical
RL setting, the data augmentation module enriches the
predetermined corpus at the semantic level. Specifically, the
module is an adversarial network, in which the generator can
generate directly many textual features with the same dis-
tribution of the processed real-world texts and the dis-
criminator takes the convolutional textual data as real data.
,us, given the processed textual features as input, the
adversarial network can generate various generated features
that contain diverse and informative text semantics.

To optimize the performance of the overall framework,
the data augmentation module is simplified. ,e output of
the module is not in the form of sentences or documents but
in the form of textual features that contain semantic in-
formation. Based on the abovementioned ideas, the
adversarial network no longer needs to connect with the
structure that converts textual features into sentences or
documents. During the network training, the processed
features and its category are all input into the adversarial
network so that it can output textual features that belong to
each category.

More formally, the input data X1:m �

X1, X2, X3, . . . , Xi, . . . , Xm  ofm categories comes from the
processed corpus Γ, and the high-level textual features is
denoted as Xi � xi,1:n � xi,1, xi,2, xi,3, . . . , xi,i, . . . , xi,n ,
where xi,j refers to the jth textual feature of category i. ,e
generative network outputs multiple categories of labeled
textual features X∗1:m � X∗1 , X∗2 , X∗3 , . . . , X∗i , . . . , X∗m ,
where X∗i � x∗i,l:n � x∗i,1, x∗i,2, x∗i,3, . . .  refers to the generated
features of category i.

,e representation of corpus in Section 3.1 show that the
data points xi,j  are independent of each other and iden-
tically are taken from real-world distribution pdata(x). ,e
generative network is to learn a generator’s distribution
pg(x) that gradually approximates to pdata(x). ,e value
function of conditional GAN is defined as follows:
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min
G

max
D

V(D, G) � Ex∼pdata(x)[logD(x ∣ y)]

+ Ez∼pz(Z)[log(1 − D(G(z ∣ y)))],

(2)

where x is the real textual feature, y is the category label
corresponding to feature x, and z is random noise. ,rough
the different settings of y, the textual features of different
categories can be obtained in the process of text generation.
Note that GAN is designed for continuous data, that is, it can
only be constructed by differentiable functions. In the
correlation processing of discrete data, it is difficult to
transfer the gradient of the discrete outputs to the dis-
criminator, so the discriminator cannot be updated. ,ere
are many feasible methods to solve the problem. ,is paper

uses the policy gradient [27] to improve the application field
of the adversarial network. ,e generator and discriminator
are trained alternatively and the detail of the adversarial
model is as follows.

3.2.1. ,e Generator for Textual Data. Recurrent neural
network (RNN) is designed to solve the vanishing and
exploding gradient in backpropagation, and it is widely used
in NLP because of the discrete distribution of textual data.
,e GRU is set as the generative network and the structure is
shown in Figure 3. ,e update gate zt is used to control how
much the previous state information is brought into the
current state. ,e higher the value of the zt is, the more state
information is brought at the previous moment. ,e
function of the updated gate is as follows:

zt � σ Wz · ht− 1, xt ( , (3)

where [h, x] is the vector concatenation. ,e reset gate rt

controls how much information is written to the current
candidate set ht from the previous state. ,e smaller the rt,
the less information is written from the previous state. ,e
function of the reset gate is as follows:

rt � σ Wr · ht− 1, xt ( . (4)

Since each unit has its reset and update gates, each
hidden unit learns dependencies on different scales. ,e
units that learn to capture short-term dependencies activate

Convolutional networks: convolutional and max-pooling

ClassifierText quantization

Data augmentation

Output units 
depend on 
specific taskLabel

Real 
data

Discriminator

Generator
Real or 

generated

z

x

x~

Figure 1: ,e framework of text classification.

Table 1: ,e nonspace characters of alphabets.

Alphabets Nonspace characters

Foundational a b c d e f g h i j k l m n o p q r s t u v w
x y z 0 1 2 3 4 5 6 7 8 9, ; . ! ? : ( )

Elaborate - ’ “ / \ | _ @ # $ %^& ? ∼ 0 + − � < > [ ] { }
. . . . . .

Table 2: ,e parameter setting of the convolutional neural
network.

Layer Feature Kernel Pooling
Stride

Conv Pool
1 256 5 N/A 1 3
2 256 5 3 1 3
3 256 5 N/A 1 3
4 256 5 3 1 3
5 256 3 N/A 1 3
6 256 3 N/A 1 3
7 256 3 N/A 1 3
8 256 3 3 1 3
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the reset gates, while the units that capture long-term de-
pendencies activate the update gates. ,e update functions
are as follows:

ht � tanh Wh
· rt ⊙ ht− 1, xt  ,

ht � 1 − zt(  ⊙ ht− 1 + zt ⊙ ht,

(5)

where ⊙ is the elementwise product. We use random noise as
input into the generator to construct the mapping of noise
space to text semantic space.

3.2.2. ,e Discriminator for Data Screening. Since both the
real text and the generated text can be quantified as a feature
of fixed length, a convolutional network is constructed to
discriminate the source of the text. ,e textual feature
x1, x2,. . ., xn  is processed as follows:

si � f xi ⊗ w + b( , (6)

where f(·) is a nonlinear function, xi is the l-dim textual
features, ⊗ is the convolution operation, w ∈ Rk is a 1D
kernel to produce a new feature map, and b is a bias term.
,e various numbers of kernels with different window sizes
are used to extract different features. Specifically, the textual
feature extracted by the kernel w with window size k is
represented as follows:

si � si,1, si,2,. . ., si,l− k+1 . (7)

Finally, the max-pooling operation is performed on the
feature map s � max s{ } and all pooling features from

different kernels are transferred to a fully connected softmax
layer to get the probability that a given feature is real. When
optimizing discriminative models, supervised training is
applied to minimize the crossentropy, and the objective
function is as follows:

H(x, q) � − p(x)log(q(x)) − (1 − p(x))log(1 − q(x)),

(8)

where p(x) is the real label of the textual features and q(x) is
the predicted probability from the discriminator.

3.3. Classifier Module. ,e classifier constructed by dense
networks is a multilayer-feedforward network based on
error backward propagation algorithm. ,e principle is to
calculate the difference between the actual output and the
expected output recursively, and the network adjusts the
weights according to the difference.

,e real features X1:m and generated features X∗1:m are
input to the network for training. Here, ReLU is used as the
activation. To explore the optimal network structure, the
dense network consisting of three to five fully connected
layers is constructed, as shown in Figure 4. Besides, the
dropout modules are inserted between the fully connected
layers to prevent overfitting, and the dropout probability is
0.5. ,e real semantics X1:m and generated semantics X∗1: m

are input to the network for training.,e activation function
and its derivative are as follows:

f(x) � max(0, x) �
0, x< 0,

1, x≥ 0,


f′(x) �
0, x< 0,

1, x≥ 0.


(9)

4. Experiments

In this section, we detail the experimental content and re-
lated setting, involving the datasets, the baselines, parameter
setting, and experimental result analysis. To effectively
demonstrate the advantages of the proposed method, we not
only compare different text classification methods but also
make the comparison of influence factors of our method. In
this way, we further study the feasibility of the method
through comparative experiments.

CONV1 → CONV2
256 × 45 × 1450 256 × 45 × 1446 256 × 45 × 478 256 × 45 × 474

Dense net

Input

45 × 1454

CONV3 → CONV4
256 × 45 × 150

CONV5 → → CONV8
256 × 45 × 156

POOL3

256 × 45 × 50

POOL2

256 × 45 × 158

POOL1

256 × 45 × 482

Output

Figure 2: ,e structure diagram of the convolutional neural network.

ht–1

xt

rt zt

ht

tanhσσ

×

+×

×

Update gateReset gate

1–

Figure 3: ,e detailed structure of the gated recurrent unit. zt and
rt are update gate and reset gate, respectively.
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4.1. Datasets. We use four corpora to evaluate the proposed
framework. ,ese datasets are

AG-News: original AG-News has over one million
news articles collected from over 2,000 different news
sources. We extract the data from the four largest
categories in the original dataset, including world,
environment, sport, and business news, and each
category contains 30,000 for training and 1,900 for
testing. ,e dataset can be downloaded from http://
www.di.unipi.it/∼gulli/AG_corpus_of_news_articles.
html.
DBPedia [33]: DBPedia ontology dataset is composed
of 14 nonoverlapping categories fromWikipedia. In the
experiment, we adopt the updated corpus by Zhang
et al. Each category contains 40,000 training samples
and 5,000 testing samples.
20NG: 20 newsgroup dataset is one of the international
standard datasets for text classification, text mining,
and information retrieval research. ,e dataset collects
about 20,000 newsgroup documents that are evenly
divided into newsgroup collections of 20 topics. Some
newsgroups are dedicated to similar subjects, and some
are completely unrelated. ,e dataset can be down-
loaded from http://qwone.com/∼jason/20Newsgroups.
IMDB: the dataset is widely used for binary sentiment
classification of movie reviews. It provides 25,000
highly polar movie reviews for training, 25,000 for
testing, and additional unlabeled data. ,e dataset
comes from http://ai.stanford.edu/∼amaas/data/
sentiment.

Note that most open datasets for text classification
consumed huge resources to artificially tag it. To simulate the
real-world small-scale datasets, we randomly extract parts of
these datasets in the experiment. ,e details of the datasets
are shown in Table 3.

4.2. Baselines. To make the experimental comparison more
comprehensive and objective, we reproduce the mainstream
text classification method, such as FastText, DPCNN,

LEAM, and Virtual Adversarial.,e details of these methods
are as follows:

Tree-LSTM [34]: the model proposed by Tai et al.
extends the LSTM of sequence to the tree structure,
that is, it can skip (or ignore) the whole subtree that
has little effect on the result through the forgetting
gate mechanism of LSTM, rather than just some
subsequences that may have no linguistic
significance.
Self-Attentive [35]: a model for extracting an inter-
pretable sentence embedding by introducing self-at-
tention. ,e method uses a 2D matrix to represent the
embedding and proposes a self-attention mechanism
and a special regularization term for the model.
Emb-CNN [17]: the model is a slight variant of the
CNN architecture of Collobert et al. It shows that a
simple CNN with little hyperparameter tuning and
static vectors achieves excellent results on multiple
benchmarks. Learning task-specific vectors through
fine-tuning offers further gains in performance. Kim
additionally proposes a simple modification to the
architecture to allow for the use of both task-specific
and static vectors.
Char-CNN [19]: the method treats text as a kind of
raw signal at character level and applies temporal
ConvNets to it. ,e most important conclusion from
the method is that character-level ConvNets can
work for text classification without the need for word
embedding.

Convolutional structure Classifier structure

Figure 4: ,e diagram of the classifier structure.

Table 3: Dataset statistics.

Dataset
Before extracting

K α
Train Test Unlabeled L

AG-News 120 k 7.6 k — 46 4 5
DBPedia 560 k 70 k — 56 14 5
20NG 11314 7532 — 221 20 10
IMDB 25 k 25 k 50 k 239 2 10
K is the number of categories, L is the average length of a document, and α is
the extracting times of the sample sets.
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Char-CRNN [36]: a architecture that utilizes both
convolution and recurrent layers to efficiently encode
character inputs. Compared with character-level con-
volution-only models, it can achieve comparable per-
formances with much fewer parameters.
FastText [16]: the linear models with a rank constraint
and fast loss approximation are often on par with deep-
learning classifiers in terms of accuracy, and many
orders of magnitude can be improved in evaluation.
L-MIXED [37]: a training strategy, even a simple
BiLSTM model with crossentropy loss, can achieve
competitive results compared with more complex
methods. In addition to crossentropy loss, by using a
combination of entropy minimization, adversarial, and
virtual adversarial losses for both labeled and unlabeled
data, the method can also perform very well.
DPCNN [38]: a low-complexity word-level deep con-
volutional neural network architecture for text classi-
fication that can efficiently represent long-range
associations in text. Johnson et al. studied deepening of
word-level CNNs to capture global representations of
text and found a simple network architecture with
which the best accuracy can be obtained by increasing
the network depth without increasing computational
cost by much.
LEAM [39]: the method of considering text classifi-
cation as a label-word joint embedding in which each
label is embedded in the same space with the word
vectors. It maintains the interpretability of word em-
bedding and has a built-in ability to leverage alternative
sources of information, in addition to input text
sequences.
Ad-Training [30]: the framework extends adversarial
and virtual adversarial training to the text domain. ,e
method applies perturbations to the word embedding
in recurrent neural networks rather than to the original
input itself.
Text GCN [40]: the model is initialized with one-hot
representation for word and document, and it then
jointly learns the embeddings for both words and
documents, as supervised by the known class labels for
documents.

4.3. ImplementationDetails. ,e 5/10-fold crossvalidation is
applied to each dataset.,e reduced training sets are marked
as a part-dataset part-i(i � 1, 2, 3, . . ., 8), where the amount
of text in the dataset is, respectively, 200, 400, 800, 1,500,
2,500, 4,000, 6,000, and 10,000. To reduce the occasionality
brought by sample selection, we use the same test set for
multisize training sets. ,e total test sets are used to evaluate
the performance on the 20NG dataset, and the other datasets
are tested with 10,000 samples, respectively. Note that, on
the IMDB, entire unlabeled samples are always provided for
the semisupervised methods.

,e baseline used in this paper replicates and sets pa-
rameters basically according to the original literature. ,e
special cases are as follows: L-MIXED has two objective

functions, the crossentropy loss LML is adopted on the
supervised datasets, and the mix functionLMIXED is adopted
on the IMDB. ,e unsupervised embeddings obtained by
tv-embedding training in DPCNN. Adversarial Training has
several training strategies, the virtual adversarial method
based on unidirectional LSTM is utilized on the supervised
datasets, and the bidirectional LSTM with virtual adversarial
training on the IMDB.

In the details of our method, the elaborate alphabet
length is set to 25, the convolution operation is set to “valid”
and the pooling operation is the max-pooling, β � 1454. ,e
number of output units for the last layer is determined by the
problem in the classifier, that is, for the DBPedia it is 14.
Besides, the other fully connected layers, all have 4096 units.
During the training process, CCNN-GAN without the data
augmentation module is first trained. ,en, the parameters
of the Char-level CNN are fixed and the data augmentation
module is introduced to conduct incremental training of the
classifier.

4.4. Results and Analysis. We analyze in detail the effect of
different model settings, including the size of the alphabet,
the number of generated features, and the structure of the
classifier network. Besides, we compare the performance of
the proposed method with those of the representative
methods on the benchmark datasets.

4.4.1. Model Parameter Analysis. We use AG-News to an-
alyze the impact of different settings. ,e alphabet size
directly affects the time and efficiency of the classification
method. We employ the foundational alphabet and the
elaborate alphabet with the auxiliary symbols, respectively.
As shown in Figure 5, the classification accuracy of the
proposed method significantly improves with the growth of
the dataset. When the scale increases to Part-6, the growth of
the classification accuracy tends to be flat, which indicates
that the dataset has a similar representational ability to the
complete dataset.

However, the classification accuracy of the synthetic
alphabet (the foundational alphabet and the elaborate al-
phabet) is similar to that of the foundational alphabet. Al-
though the elaborate alphabet increases the
representativeness of textual features, the improvement is
negligible. Besides, with the alphabet increase, the network
training time significantly increases.

To get the optimal network settings, we adjust the
classifier structure and the amounts of samples by the
generative network, respectively. Firstly, the number of fully
connected layers and neurons in each layer is adjusted
continuously to find the optimal configuration. ,en, we
adjust the quantity of generated texts and analyze the impact
of generated samples on the accuracy. We compare the
effects of the abovementioned variables on AG-News. As
shown in Figure 6, the increase of the fully connected layers
improves the accuracy of the classifier, but its change is not
obvious.

When the number of real-world samples is small, the
proposed framework can improve the performance of the
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classifier. However, when the number of generated samples
continues to increase after reaching a certain level, the
classifier is not significantly improved, which may be be-
cause the scale of original data limits the performance of the
generative network, further limits the generation space of
text, and finally affects the abstract semantic space of
samples.

4.4.2. Comparison of Different Methods. We test different
methods on the datasets mentioned in Section 4.1. To im-
prove the efficiency on the premise of better accuracy, the
structure setting of CCNN-GAN is as follows: the alphabet is
foundational, the number of fully connected layers is three,
and the number of generated textual features is the same as
the number of real samples.

CCNN-GAN is superior to all the comparison methods
when dealing with small-scale datasets, especially com-
pared to the state-of-the-art methods, which indicates that
the generated texts greatly optimize the training of the
classifier. We can see classification methods that perform
well on large-scale datasets lose their advantages on small-
scale datasets such as L-MIXED and DPCNN.,e reason is
that fewer samples lead to the overfitting of the deeper
network.,e unlabeled data provide useful information for
semisupervised learning, so the semisupervised methods
show good results on IMDB. As shown in Figure 7, the
classification accuracy of various semisupervised models is
similar, our method performs better than these semi-
supervised models on small-scale datasets. Note that, on
the Part-1 dataset, the classification accuracy of Ad-
training is slightly higher than that of the proposed

method, but it uses a large amount of unlabeled real data in
the training process. Besides, CCNN-GAN has the optimal
or suboptimal performance on datasets of various sizes,
which indicates that the method has a strong generalization
ability.

To observe the experimental effect more conveniently,
we bold the optimal experimental data. As shown in Tables 4
and 5, experimental results indicate that the accuracy of the
classifier improves with the increase of training data. When
the dataset is small, our method has better performance than
other methods, but its accuracy improves more slowly as the
dataset size increases. ,e reason is that the generation of
textual features further enriches the dataset, which indirectly
expands the dataset and reduces the importance of the
original dataset. Besides, the classification accuracy is close
to a saturation state when the dataset expands to a certain
extent.

Overall, the experimental results show that the classifier
based on deep neural networks achieves excellent perfor-
mance in multiclass text classification. Although the pro-
posed method is less competitive than the state-of-the-art
methods on some large-scale datasets, CCNN-GAN is better
than all the comparison methods in various small-scale
datasets. Besides, our method inherits the advantages of the
previous character-level convolutional network andmakes it
easier to adapt to multiple languages by updating the al-
phabet freely.
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Table 4: Test performance on the AG-news classification task.

Method
Dataset size

Part-1 Part-2 Part-3 Part-4 Part-5 Part-6 Part-7 Part-8 Total
Tree-LSTM 37.96 58.13 68.33 76.20 87.12 90.75 91.56 91.80 91.83
Self-Attentive 30.81 54.89 72.26 85.47 86.37 90.83 91.28 92.03 91.17
Emb-CNN 48.83 68.38 79.74 84.11 83.85 85.94 87.93 89.36 90.08
Char-CNN 52.97 72.14 78.93 84.46 85.85 88.02 87.36 87.75 87.28
Char-CRNN 52.47 68.36 75.29 85.17 84.78 90.26 91.53 91.26 91.44
FastText 53.36 68.48 75.48 80.83 85.37 91.05 91.25 91.54 91.51
L-MIXED 24.68 25.45 66.21 79.25 84.20 90.27 93.82 93.90 94.38
DPCNN 25.94 25.62 69.85 77.29 82.44 86.71 90.89 91.12 93.13
LEAM 33.24 49.13 61.85 70.21 80.97 87.38 91.75 91.82 92.45
Ad-Training 47.29 57.63 69.15 76.21 82.37 87.83 90.89 90.22 91.37
Text GCN 57.32 68.96 77.83 84.54 87.62 89.35 90.74 91.32 92.56
CCNN-GAN 66.47 77.53 85.37 86.93 88.34 91.48 91.25 91.79 91.94

Table 5: Test performance on the DBPedia and 20NG classification task.

Method
DBPedia 20NG

Part-1 Part-4 Part-7 Total Part-1 Part-4 Part-7 Total
Tree-LSTM 74.56 94.17 98.39 98.24 46.27 63.81 79.66 81.68
Self-Attentive 73.58 93.24 97.24 98.13 35.57 57.85 82.94 86.57
Emb-CNN 80.28 96.38 98.24 98.56 54.02 67.85 82.17 83.29
Char-CNN 76.86 97.38 98.24 98.37 52.53 73.19 81.28 82.61
Char-CRNN 80.12 96.27 98.50 98.67 53.95 67.38 81.72 83.78
FastText 82.68 95.98 98.45 98.63 44.32 67.29 85.64 87.26
L-MIXED 7.61 75.24 93.28 99.09 5.24 72.18 85.34 86.94
DPCNN 7.24 77.72 91.25 99.12 5.27 63.55 76.51 82.42
LEAM 79.65 95.26 97.38 99.02 49.16 64.81 83.67 87.13
Ad-Training 82.34 97.32 98.37 99.24 43.70 68.27 64.85 86.29
Text GCN 81.76 96.85 98.30 99.07 53.74 74.32 83.35 87.15
CCNN-GAN 84.84 97.35 98.47 98.64 56.79 76.28 84.32 88.14
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5. Conclusion

In this paper, we propose a hybrid neural network frame-
work for text classification. Our framework introduces
generative networks to enrich corpus and utilizes a char-
acter-level convolutional network to extract latent semantic.
Experimental results show that the performance of the
framework on large-scale datasets outperforms other
mainstream methods, and it performs significantly better
than other methods on small-scale datasets. In the future, we
intend to improve the output of the generative network and
further enrich the generated text semantics.

Data Availability

,e data supporting this paper are from the reported studies
and datasets in the cited references.

Conflicts of Interest

,e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

,e work was partially supported by the National Natural
Science Foundation of China (nos. 61702310 and 61772322)
Major Fundamental Research Project of Shandong, China
(no. ZR2019ZD03), and Taishan Scholar Project of Shan-
dong, China (no. ts20190924).

References

[1] Z. Wu, H. Zhu, G. Li et al., “An efficient wikipedia semantic
matching approach to text document classification,” Infor-
mation Sciences, vol. 393, pp. 15–28, 2017.

[2] T. Wang, L. Liu, N. Liu, H. Zhang, L. Zhang, and S. Feng, “A
multi-label text classification method via dynamic semantic
representation model and deep neural network,” Applied
Intelligence, pp. 1–13, 2020.

[3] F. Shang, H. Zhang, L. Zhu, and J. Sun, “Adversarial cross-
modal retrieval based on dictionary learning,” Neuro-
computing, vol. 355, pp. 93–104, 2019.

[4] F. Shang, H. Zhang, J. Sun, and L. Liu, “Semantic consistency
cross-modal dictionary learning with rank constraint,”
Journal of Visual Communication and Image Representation,
vol. 62, pp. 259–266, 2019.

[5] M.-F. Ge, C.-D. Liang, X.-S. Zhan, C.-Y. Chen, G. Xu, and
J. Chen, “Multiple time-varying formation of networked
heterogeneous robotic systems via estimator-based hierar-
chical cooperative algorithms,” Complexity, vol. 2020, Article
ID 8357428, 18 pages, 2020.

[6] X. Chen, D. Li, P. Wang, X. Yang, and H. Li, “Model-free
adaptive sliding mode robust control with neural network
estimator for the multi-degree-of-freedom robotic exoskele-
ton,” Complexity, vol. 2020, Article ID 8327456, 10 pages,
2020.

[7] X. Li, “Further analysis on uniform stability of impulsive
infinite delay differential equations,” Applied Mathematics
Letters, vol. 25, no. 2, pp. 133–137, 2012.

[8] X. Li, T. Caraballo, R. Rakkiyappan, and X. Han, “On the
stability of impulsive functional differential equations with

infinite delays,” Mathematical Methods in the Applied Sci-
ences, vol. 38, no. 14, pp. 3130–3140, 2015.

[9] X. Li, J. Shen, H. Akca, and R. Rakkiyappan, “LMI-based
stability for singularly perturbed nonlinear impulsive differ-
ential systems with delays of small parameter,” Applied
Mathematics and Computation, vol. 250, pp. 798–804, 2015.

[10] I. Goodfellow, J. Pouget-Abadie, M. Mirza et al., “Generative
adversarial nets,” in International Conference on Neural In-
formation Processing Systems, pp. 2672–2680, Montreal,
Canada, December 2014.

[11] M. Zhang, J. Li, H. Zhang, and L. Liu, “Deep semantic cross
modal hashing with correlation alignment,” Neurocomputing,
vol. 381, pp. 240–251, 2020.

[12] L. Liu, B. Zhang, H. Zhang, and N. Zhang, “Graph steered
discriminative projections based on collaborative represen-
tation for Image recognition,” Multimedia Tools and Appli-
cations, vol. 78, no. 17, pp. 24501–24518, 2019.

[13] L. Liu, S. Chen, X. Chen, T. Wang, and L. Zhang, “Fuzzy
weighted sparse reconstruction error-steered semi-supervised
learning for face recognition,”,e Visual Computer, pp. 1–14,
2019.

[14] Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin, “A neural
probabilistic language model,” Journal of Machine Learning
Research, vol. 3, pp. 1137–1155, 2003.

[15] T. Mikolov, Statistical Language Models Based on Neural
Networks, vol. 80, Brno University of Technology, Brno,
Czechia, 2012.

[16] A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov, “Bag of
tricks for efficient text classification,” 2016, https://arxiv.org/
abs/1607.01759.

[17] Y. Kim, “Convolutional neural networks for sentence clas-
sification,” 2014, https://arxiv.org/abs/1408.5882.

[18] N. Kalchbrenner, E. Grefenstette, and P. Blunsom, “A con-
volutional neural network for modelling sentences,” 2014,
https://arxiv.org/abs/1404.2188.

[19] X. Zhang, J. Zhao, and Y. LeCun, “Character-level con-
volutional networks for text classification,” in Proceedings of
the Advances in Neural Information Processing Systems,
pp. 649–657, Montreal, Canada, 2015.

[20] H. T. Le, C. Cerisara, and A. Denis, “Do convolutional net-
works need to be deep for text classification?” in Proceedings of
the Workshops at the ,irty-Second AAAI Conference on
Artificial Intelligence, New Orleans, LA, USA, February 2018.

[21] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical
evaluation of gated recurrent neural networks on sequence
modelling,” 2014, https://arxiv.org/abs/1412.3555.

[22] X. Zhu, P. Sobihani, and H. Guo, “Long short-term memory over
recursive structures,” inProceedings of the International Conference
on Machine Learning, pp. 1604–1612, Lille, France, July 2015.

[23] T. Zhang, M. Huang, and L. Zhao, “Learning structured
representation for text classification via reinforcement
learning,” in Proceedings of the ,irty-Second AAAI Confer-
ence on Artificial Intelligence, New Orleans, LA, USA, Feb-
ruary 2018.

[24] J. Wei and K. Zou, “Eda: easy data augmentation techniques
for boosting performance on text classification tasks,” 2019,
https://arxiv.org/abs/1901.11196.

[25] Z. Wang and Q. Wu, “An integrated deep generative model
for text classification and generation,”Mathematical Problems
in Engineering, vol. 2018, Article ID 7529286, 8 pages, 2018.

[26] M. Mirza and S. Osindero, “Conditional generative adver-
sarial nets,” 2014, https://arxiv.org/abs/1411.1784.

[27] L. Yu, W. Zhang, J. Wang, and Y. Yu, “Seqgan: sequence
generative adversarial nets with policy gradient,” in

10 Complexity

https://arxiv.org/abs/1607.01759
https://arxiv.org/abs/1607.01759
https://arxiv.org/abs/1408.5882
https://arxiv.org/abs/1404.2188
https://arxiv.org/abs/1412.3555
https://arxiv.org/abs/1901.11196
https://arxiv.org/abs/1411.1784


Proceedings of the ,irty-First AAAI Conference on Artificial
Intelligence, San Francisco, CA, USA, February 2017.

[28] J. Xu, X. Ren, J. Lin, and X. Sun, “DP-GAN: diversity-pro-
moting generative adversarial network for generating infor-
mative and diversified text,” 2018, https://arxiv.org/abs/1802.
01345.

[29] Y. Li, Q. Pan, S.Wang, T. Yang, and E. Cambria, “A generative
model for category text generation,” Information Sciences,
vol. 450, pp. 301–315, 2018.

[30] T. Miyato, A. M. Dai, and I. Goodfellow, “Adversarial training
methods for semi-supervised text classification,” 2016, https://
arxiv.org/abs/1605.07725.

[31] A. Ahamad, “Generating text through adversarial training
using skip-thought vectors,” 2018, https://arxiv.org/abs/1808.
08703.

[32] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet
classification with deep convolutional neural networks,” in
Proceedings of the Advances in Neural Information Processing
Systems, pp. 1097–1105, Lake Tahoe, CA, USA, 2012.

[33] J. Lehmann, R. Isele, M. Jakob et al., “DBpedia—a large-scale,
multilingual knowledge base extracted from wikipedia,” Se-
mantic Web, vol. 6, no. 2, pp. 167–195, 2015.

[34] K. S. Tai, R. Socher, and C. D. Manning, “Improved semantic
representations from tree-structured long short-term mem-
ory networks,” 2015, https://arxiv.org/abs/1503.00075.

[35] Z. Lin, M. Feng, and C. N. d. Santos, “A structured self-at-
tentive sentence embedding,” 2017, https://arxiv.org/abs/
1703.03130.

[36] Y. Xiao and K. Cho, “Efficient character-level document
classification by combining convolution and recurrent layers,”
2016, https://arxiv.org/abs/1602.00367.

[37] D. S. Sachan, M. Zaheer, and R. Salakhutdinov, “Revisiting
LSTM networks for semi-supervised text classification via
mixed objective function,” Proceedings of the AAAI Confer-
ence on Artificial Intelligence, vol. 33, pp. 6940–6948, 2019.

[38] R. Johnson and T. Zhang, “Deep pyramid convolutional
neural networks for text categorization,” in Proceedings of the
55th Annual Meeting of the Association for Computational
Linguistics, pp. 562–570, Vancouver, Canada, July 2017.

[39] G. Wang, C. Li, W. Wang et al., “Joint embedding of words
and labels for text classification,” 2018, https://arxiv.org/abs/
1805.04174.

[40] L. Yao, C. Mao, and Y. Luo, “Graph convolutional networks
for text classification,” Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 33, pp. 7370–7377, 2019.

Complexity 11

https://arxiv.org/abs/1802.01345
https://arxiv.org/abs/1802.01345
https://arxiv.org/abs/1605.07725
https://arxiv.org/abs/1605.07725
https://arxiv.org/abs/1808.08703
https://arxiv.org/abs/1808.08703
https://arxiv.org/abs/1503.00075
https://arxiv.org/abs/1703.03130
https://arxiv.org/abs/1703.03130
https://arxiv.org/abs/1602.00367
https://arxiv.org/abs/1805.04174
https://arxiv.org/abs/1805.04174

