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The primary objective of this study is to introduce two novel extragradient-type iterative schemes for solving variational
inequality problems in a real Hilbert space. The proposed iterative schemes extend the well-known subgradient extragradient
method and are used to solve variational inequalities involving the pseudomonotone operator in real Hilbert spaces. The
proposed iterative methods have the primary advantage of using a simple mathematical formula for step size rule based on
operator information rather than the Lipschitz constant or another line search method. Strong convergence results for the
suggested iterative algorithms are well-established for mild conditions, such as Lipschitz continuity and mapping
monotonicity. Finally, we present many numerical experiments that show the effectiveness and superiority of iterative methods.

1. Introduction

The primary objective of this research is to investigate the
iterative methodologies used to estimate the solution of
variational inequalities in a real Hilbert space. To establish
the convergence analysis theorems, the following conditions
need to be satisfied:

Condition 1. The solution set of the problem (VIP) denoted
by Q and it is nonempty.

Condition 2. A mapping & : Z — Z is said to be pseudo-
monotone if

<3)(P1)’p2 _p1> 20= <g( 2),[)1 _P2> <0, vpl)pz E'Q[(PM)'

(1)

Condition 3. A mapping & : Z — Z is said to be Lipschitz
continuous with constant L > 0 if

1) =Z @)l <Llpy=palls - Vp1pr € 4(LC). (2)
Condition 4. A mapping & : Z — Z is said to be weakly
sequentially continuous if {&(u,,)} converges weakly to & (u
) for each sequence {u, } converges weakly to an element u.

Let Z be any real Hilbert space and & be any nonempty
convex closed subset of a Hilbert space Z. Assume that &
:Z — % be an arbitrary mapping. The variational
inequality problem for an operator & on & is defined in
the following manner [1, 2]:

Findq* € & suchthat (Z(q"),y—q") =0, Vyed (VIP).

(3)


https://orcid.org/0000-0003-3556-2591
https://orcid.org/0000-0002-0531-8523
https://orcid.org/0000-0002-0224-4661
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/8327694

Let Q stand for the solution set for the problem (VIP).
The mathematical model of variational inequalities covers
many mathematical problems, such as partial differential
equations, optimization, optimal control, mechanics,
finance, and mathematical programming (see for details
[3-9]) and others in [10-20]. Since it is a fundamental prob-
lem in the applied sciences and nonlinear functional analy-
sis, many researchers are investigating not only the stability
and existence of solutions to such problems but also iterative
methods for solving them numerically. In order to solve var-
iational inequalities numerically, projection iterative
methods are a very important tool. Many researchers have
provided various projection method extensions and modifi-
cations to solve the problem (VIP) (see [21-33]). The extra-
gradient method described below was developed by
Korpelevich [25] and Antipin [34]. Their method takes the
form of

u ed,

Py =Pylu, = 0L (u,)]; (4)
Uyl = P.szf[un - 83( n)]’

where 0 <8 < 1/L. For each iteration of the above iterative
scheme, two projections on the feasible set &/ are required
to be figured out. Of course, if the feasible set o has a com-
plicated framework, this can affect the method’s computa-
tional effectiveness. The first one is to follow the
subgradient extragradient method designed by Censor
et al. [22] to overcome this deficiency. This method is in
the form of

u, €,
Py =Pyluy =02 (u,)], (5)
Uyl =P2°n [un - 63(1)”)},

where 0 <8 < 1/L and
Z,={z€ T (u,~ 0L (u,) ~ppz-p,) <O} (6)

It is a key point to note that the above-mentioned well-
established methods have two major drawbacks. The first is
the fixed constant step size, which needs knowledge or
approximation of the appropriate operator Lipschitz con-
stant, and also is only weakly convergent in Hilbert spaces.
Using a fixed step size can be difficult in terms of computa-
tion, affecting the method convergence rate and efficiency.

Hence, a natural question arises:

“Is it possible to propose two new strongly convergent
subgradient extragradient algorithms with a nonmonotone
self-adaptive step size rule to solve the problem (VIP)?”

The primary objective of this study is to introduce two
new strongly convergent subgradient extragradient methods
for enhancing the convergence rate of an iterative sequence.
The answer to the above question is given in this study,
which would be the subgradient extragradient algorithms,
which set up a strong convergent iterative sequence by let-
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ting a variable nonmonotone step size rule. The suggested
methods are employed to solve variational inequality prob-
lems involving pseudomonotone and Lipschitz regular oper-
ators in real Hilbert space. The proposed methods are based
on the projection method [22] as well as the methods pro-
posed in [26, 35]. The established method only needs to
compute one projection onto the feasible set and one projec-
tion onto the half-space for each iteration. The iterative
sequences established by the proposed method strongly con-
verge to some solution of the underlined problem in the
framework of some appropriate conditions on control
parameters. A number of numerical examples are also added
to elaborate on the computational effectiveness of the new
methods over some existing methods presented in [36, 37].

The paper is arranged in the following manner: In Sec-
tion 2, we provide some basic identities and preliminary
results that were used in this paper. Section 3 includes the
proposed methods and proves their convergence analysis.
Finally, Section 4 presents some numerical results to illus-
trate the convergence and the effectiveness of the proposed
methods.

2. Preliminaries

This section contains a number of important identities, as
well as useful lemmas and definitions. For all u,y € Z, we
have

e+ 117 = [lul* + 2{w ) + 1)1 (7)

A metric projection P, (p,) of an element p, € Z is eval-
uated by

Py (p,) =argmin{||p, — p,||: p, € &}. (8)

Next, we list some of the important identities that are
used to prove the convergence analysis.

Lemma 1 (see [38]). Let P, : Z — < be a metric projec-
tion on set 9. For each p,,p, € Z and £ € R, then the follow-

ing inequalities are satisfied:

(i) p; =P (p,) is true if and only if

(p1—P3»P,—p3) <0, Vp,ed, )

(ii)
10, = Py (02)|I” + 1P (Ps) = pall* < |lpy = PolI”s Py elip,e Z,

(10)

(iii)



Journal of Function Spaces

o, = Poy (P <llps —Palls  P2€Ap € Z, (11)

(iv)

16, + (1= 0)p,||* = ellp, |I* + (1= O)Ip,[1” = &(1 = ©)Ip, = 1%,
(12)

)

o1+ Pall” < 1Pl + 2(p2 Py + P2)- (13)

Lemma 2 (see [39]). Assuming that {c,} C[0,+00), a
sequence meets the following criteria:
C <(1-d,)c, +dye,, VYnelN. (14)

Moreover, {d,} c(0,1) and {e,} C R are two sequences
such that

+00
lim d,=0, Z d, = +ooand limsupe, < 0. (15)
n——+00 =1 n—s+00
Then, lim ¢, =0.

n—+00-n

Lemma 3 (see [40]). Assume that a sequence {c,} of real
numbers and there is {n;} subsequence of {n} such that

€y, <€y » Vi€ N.(102)

Thus, there exists a natural nondecreasing sequence {m,}
with m; — +00 as j — +00 and satisfies the following cri-
teria for j € N:

< <
Coy S Gy, > GG S G- (16)

Indeed, m;=max {j<j:c;<c;,}.
Lemma 4 (see [41]). Assume that & : o — Z is a pseudo-
monotone and continuous mapping. Then, q* is a solution of
the problem (VIP) if and only if q* is a solution of the follow-
ing problem:

Findu € of suchthat (ZL(y),y —u)>0, Vyed. (17)

3. Main Results

In this part of the research article, we propose two new
methods and the corresponding strong convergence theo-
rems. Both methods are presented in the following manner.
The first method is of the following form.

Assume that g: Z — Z is a contraction having con-
stant £ € [0, 1). The second major contribution of this study
work is as follows. The second main algorithm has the fol-
lowing form.

Lemma 5. A sequence {8,} generated by (3.1) is convergent
to § and satisfies the following inequality:

min {%,81}38351+P whereP=+ZO:O¢n. (18)

n=1

Proof. Let (Z(u,) — ZL(p,)> 4, — P,) > 0 such that

w(llen = pall* + 190 = Pull®) 5 2wy = Pullllgn = Pul
2<$(1/{n> - g( n)’ q, _pn> 2”3(””) - g(pn)Han _an
ZZMHun_PnHan_an Zﬁ-
2L||un_pn||||qn_pn|| L

(19)

By using mathematical induction on the definition of
8,.,1> we have

min {%,al}sansal +P. (20)

Let

[6n+1 - 8n]+ =max {0’ 8n+1 - 871}’

(21)
[8n+1 - 6n]_ = max {0’_(8n+1 - 811)}

Due to expression of {3, }, we can write

Z (81 =0,)" = Z max {0,6,,, —6,} <P<+oo. (22)
n=1

n=1

Thus, Y (8,,, —96,)" is convergent. Next, we have to

prove the convergence of the following series:

+
8

(8n+1 - 811)_' (23)

S
Il
—

Let ZZS (8n+1 - (Sn
(8,,,-6,)" = (8,,,—95,) . Thus, we have

)" =+00. Thus, we have §,,, -9, =

k k

k
01— 6, = Z((Snﬂ _an) = Z (8n+1 _an)Jr - Z (6n+1 _Sn)i'

n=0 n=0 n=0

(24)

Letting k — +00 in (24), we obtain §, — —0c0 as k
— 00. This is a contradiction. Due to the convergence of
the series Y*_(8,,, -9,)" and Y*_(8,,, -8,)  taking k
— +00 in (24), we obtain lim d, = 0. This completes

n—aoo-n

the proof.(00J O

Lemma 6. Let & : £ — Z be an operator satisfies the cri-
teria Condition 1-Condition 4. For a given q* € Q + O, we



have

I’“Sn _ 2 _ _
£, p, - (1

Proof. We have to evaluate

l’l8n _ 2
£0) l, -

(25)

* 12 %12
g, - 4" < s — 0"l —(1—

%12

19, — "I =[Pz, [, — 8,%(p,)] -
=Pz, [, = 8, Z(p,)] + [un = 8,2 (p,)]
~ [y = 8,2(p,)] - 4|
=l = 8,Z ()~ " I” + ||Pe, [, — 3,2 (p,)]
= [y = 8, L (p)]II” + 2(Ps, [, - 8,2 (p,)
= [y =8, Z(P,)]s [y = 0,2 (P,)] = q")-

(26)

It is given that g* e Q ¢ &/ ¢ £, such that
1P, [, - 8,2 (p,)] -
+ <P2°n [un - 6ng(pn)] - [un - 6ng(pn)]’ [un - (Sng(pn)]

- q*> = <[un _5113(1711)} _Pz“n [un _8ng(pn)}’q*
_PSZ’n[un _Bng(pn)p <0

-0,2 ()|’

(27)
Furthermore, it implies that

(Py [, = 8, 2(p,)] - [, = 8,Z(p,)] [ty - 8,Z(p,)] —47)
<-||Ps. [, - 8,%(p,)] - [u, - 8,2 (p,)]||*
(28)

By using expressions (26) and (28), we obtain

an - q*”Z < ||un _ang(pn) _q*||2 - ’|szn [un _6;13( n)]

- [un - 8n3( n)]||2
<ty =41 = |ty = 4,117 +28,(Z (). 4" ~ q,.)-
(29)
Since g* is the solution of problem (VIP), we have
(Z(q"),y-q")=0, Vyed. (30)

We have condition on mapping & with feasible set &/,
we get

(Z0)hy-q)20, Vyed. (31)
By substituting y = p, € o/, we get

<$(Pn)’pn_q*>20' (32)
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Therefore, we have

(ZPn)q" = a,) =(Z(Pn)- 4" ~Pa) +

< <3(pn)’pn - qn>

(ZPn)Pn = 4)

(33)
From (29) and (33), we get

Iq, = q°1* < llu, = q" =N, = q,I* +28,(Z(P,), P, — 4,)

<lu, - q" 1=, - p, +p, - 4,
+20,(Z(Py)> P~ 4qn)

<lu, - q*1>~llu, - p,I>~lp, - 4,

+2(ty =8, Z(Py) = P> Gn — Pu)-

I”
(34)
Since g, = P4 [u, - 06,Z(p,)] and from §,,,,, we have

2<un _8n$(pn) —Pw 49, _pn> = 2<un _(Sng(un) —Pw 4, _pn>

+26n<g(un)_g(l)n)’qn_pn>
611
8 128n+1< ( n)_‘g(pn)’qn_pn>
2, U0, 2
P+ 52 g,

(35)
Combining expressions (34) and (35), we obtain

I, = 1> <ty = 1 = 1ty = Pull* = 112 = ]I

" [ullw, = pull* + plld, = pall’]

n+l

<l =" (1= 52 I
n+1
_ _”811 _ 2
(1= 57 laa-pul?

00 ]

Lemma 7. Let & : Z — Z be a mapping meet the items
Condition 1-Condition 4. If there exists a subsequence {u,,

} convergent weakly to @ and limy__ . [|u, —p, || =0, then
u is the solution of (VIP).

Proof. We need to prove that % € Q. Indeed, we have

Do = Pay[ths, =8, L (uy, )], (37)

that is equivalent to

<unk—6nk3(unk)—pnk,y—pnk>SO, Vyed. (38)
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The above inequality implies that

(b, =Py =10, ) <0, (L () 7= p, ) Wy,

(39)
Thus, we obtain
1
67<u”k _p"k’y_P"k> + <g(u“k)’pnk - u"k> < <g(u“k)’y_ u"k>’ VyE o
(40)

Since min {¢/L,8,} <8 <8, + P and {u, } is a bounded
sequence. By taking lim;__,.[|u,, —p, || =0and k— coin
(18), we obtain

linjg<3(unk),y—unk>20, Vyed. (41)

Moreover, we have

(2(5) 7.y = (2(p0) - 2l oy
+ (:Z(unk),y - unk> + <£Z<pnk), U, —pnk>.
(42)

Since limy__ [, = p,, [| =0 and £ is L-Lipschitz con-
tinuity on Z, we have

lim Hg(unk) —g(pnk)

k—00

’ =0, (43)
which together with (42) and (43), we obtain

limin <§Z(pnk),y —pnk> >0, Vyed. (44)

—00

Next, we have

(L(uy),y—u, )+ =0, Vizmy. (45)

Due to {¢,} decreasing, this implies that {m, } is increas-
ing.000J |

. suchas &

Case I. Suppose that a subsequence u, of u
- -

7
(u, )=0(Vj). Let j— oo, we get

kj

(ZL(i1),y - 1) = lim <5£<unmk]),y—a>=o. (46)

J7/©

Then, @ € o/ which further implies that &1 € Q.

Case II. Suppose that there exists N, € N such that for all
My, 2 No, L(u,, )#0. Consider that

ﬂmk

()
By, = —— K, Vn, =N, (47)
1 (w,,, )1

Due to the above definition, we obtain
<Sf(un )5 > =1, Vn, >N, (48)
IYlk Mk

Moreover, expressions (45) and (48) for all n,, >N, we
have

<§f(un ),y+sk5n -u, >20. (49)
my i mi

Due to the pseudomonotonicity of Z for n,, >N, we
have

<3<y + &, ) e, - uan> >0. (50)

For all n,, >N, we have

Let us consider that &(%) # 0; we obtain

| (@) < liminf | £ (u,,) | (52)

Thus, we obtain

0< lim Hs = = lim i < 0 =0
S k=n = < — =V.
R o N
myc
(53)
By letting k — o0 in (51), we obtain
(Z(y),y-u)=0, Vyed. (54)

Due to the Minty Lemma in [41], we infer that & € Q.

Theorem 8. Let & : & — Z be a mapping that satisfies the
conditions Condition 1-Condition 4. Then, {u,} sequence
generated by Algorithm 1 strongly converges to an element
q" €.
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)€ (0,1-v,) and {y,} c (0,1) meet the following criteria:

lim y, =0and Yy, = +0o.

Step 1: evaluate
P :Pd(un _6113(1471))'
If u, =p,, then STOP. Otherwise, go to Step 2.
Step 2: firstly, construct a half-space
zn = {Z €Z: <un _ang(un) _pn’z_pn> < 0}’
and compute
4, :Pﬁ?n(un - 8n3(pn))
Step 3: evaluate
Uy = (1 - ¢n - Wn)un + (pnqn'
Step 4: evaluate

¢, +96,, otherwise.
Set n:=n+1 and go back to Step 1.

Step 0: take u; € &/,8, >0 and select a nonnegative sequence of real numbers {¢, } such that }/%¢, < +0o0. Moreover, {¢,} C (a,b

s :(min{anwn,(uuun—pnuz+u||qn—pn||2/2[<3(un)—ff(m,qn—pm)} if(L(w,) = Z(p,)s 4, = ) > 0, (S‘l)

ArcoriTHM 1: Nonmonotonic explicit Mann-type subgradient extragradient method.

Proof. Since §,, — 9§, there exists a fixed number ¢ € (0, 1
— u) such that

lim (l—g8n>=1—[4>£>0, Vn 2> ny. (55)

n—~ao n+l
Thus, expression (36) gives that

19, = a"” < jun = q"|",  ¥n=np. (56)

It is given that g* € (2; we obtain

s =" | = [1(1 = by =W, )t + 6,9, — 4" |
===y, )(u,—q") +¢,(a,— ") v, 4"
(=g, =y, (u,—q") +¢,(a, —a) | + v, |-
(57)

Next, we have to evaluate the following:

(1=, = v,) (1, —4") +$,(q,— 7)|°
=(1=¢,—v,) lu,— " |+ 5llq, — 9" |I*
+2((1-¢,~v,)(u,~q"), $,(q,~q"))  (58)
<(1=¢,—v,)lu,—a >+ ¢5llq, - 4" |
+2¢,(1-¢, - v, )lu.—q 14, — 9" II>

<(1-¢,-v,) 19— 4’1 + $lla, - q"|I°
+¢,(1=¢, =y ) u,—q > +¢,(1 = ¢~y g, - 4"|°
<(1-¢, -y -y u, - q" >+ 6,0 -v,) 49, —a°|*-
(59)

Substituting (56) into (59), we obtain

||(1 _¢n _Wn)(un _q*) +¢n(qn _q*)Hz
<(=¢, - v,) 1=, u, = 4| +¢,(1=v,)|u, — 4"
L=y ="

(60)
Next, we have

||(1 - ¢n _V/n)(un - q*) + ¢n(qn - q*)H = (1 _V/n)”un - q*”
(61)

From expressions (57) and (61), we obtain

[t =471 < L=yl =471+ ¥, llq7 || < max {[[u, =47 ||, |97}
< max {Hu”u _q* > Hq*H}

(62)

Thus, from the above relation, we obtain that {u,} is
bounded sequence. From sequence {u,,,}, we can write

[thr =[P = (1= 6, = v, )18, + 6,9, — "I’
=1 = ¢ = v,) (=) + 6,0, —q") — v, 0" |
= (1= ¢, = v,) (0, — ") + b, (a, — )|’
+yallg 1 =201 = ¢, — ) (4, = q7)
+¢,(2,-9")v,9")-

By the use of expression (59), we have

(1= ¢, =v,) (=) + by(a, )|’
(==, (1=, ) |y =" + &, (1= w,) 14, - " |I*
(64)



Journal of Function Spaces

Combining expressions (63) and (64) (for some K, > 0),
we obtain

ety = "1 < (1= ¢, =, ) L=yl = " | + €, (L= )14, — 41 + 9, K,
< (1=, = v) (1 -y, —a'” +y, K +9,(1-v,)

[ w112 us, 2 us, 2
M-~ (1- )p —(1— )qn—pn }
[y ( £ =, £ g, -p.|

Pl = YK = ,(1-¥,)
'- _[’“Sn _ 2 _[’Ksn _ 2
(G [N (R PR

<y = I + 9K = $0(1 - )
)Hq,,—pnnz}

M6n> 2 < /’“Sn
1= u, —p, "+ (1-
_< 5n+1 H “ 8n+l

1]
—
—_

(65)
O
The remainder of the proof is now split into two parts:

Case 1. Suppose that there exists a fixed number n; € N
(n, = n,) such that
[tpir =" < luy =q" |, Vnzny. (66)

Then, lim,_,|lu, — q*| exists. From (65), we have

é S
¢n(l_er) |:<1_ ([; ”) Hun_pn‘|2+ <1_ ([; n>||qn_pn||2:|

n+l n+l

<ty =471+ ¥, K = [lttyn = 47|
(67)

Due to the existence of lim, . |lu,-q"| and vy,
— 0, we infer that

i [lu,~p,)|= lim g, ~p,[=0.  (68)
It follows that
nli_r,noonun - qn” = nli_r)nooHun _an + nh_r)nooHpn - qn” =0.
(69)
It follows from expression (69) and y, — 0 that

||”n+1 - un” = ”(1 - ¢n _V/n)un * ¢nqn - unH
= ||un YUyt (/)nqn - ¢nun - un” (70)
<bull g, = all + Wl

which implies that
|41 — 1, || — O as n — +00. (71)

We have g* = P,(0) and by using Lemma 1 (i), we can
write

(0-q",y—q)<0, VyeQ. (72)

By using expression (72) and Lemma 7, we obtain

limsup (q*, q* - u,,) = limsup(q*, q* -

n—00 k—00

Uy, ) =(q"q" ~ ) <0.
(73)

Due to lim u,|| = 0. It gives that

n—>oo||un+1 -

limsup(q”*, q* — u,,,) <limsup(q*,q* —u,) +limsup(q*, u, — u,,) <0.

(74)
Next, we assume that
ty=(1—¢,)u, +¢,9, (75)

Thus, we have

U1 =t, — Y, n:(l_Wn)tn_Wn(un_tn) (76)
= (1 _V/n)tn _Wn(l)n(un - qn)’

where

un_tn:un_(1_¢n)un_¢nqn:¢n(un_qn)' (77)

Thus, we obtain

[t =@ 11° = (1=, )t + $,¥,(q, — ) = 4" |1
= (=)t = ") + [0,9,(4, — 1) = v, ]|
< (L=v,) [ty = q"|I* +2(8,¥,(q, ~ 1)
v, 4 (L=v,) (= q") + 6,v,(d, — u,) —v,4")
= (1=, [Its =" |I” + 2(8,¥,(q, — 1)
Y by Wt (U, — ) —q7)
= (L=y )10 =" |* + 20,9,y = thy U = q°)
+29,(9"5 9" — tyy)
U=y )tn = @' 11° + 26,0, 114, = |41
4 +29,(q7 9" — )
(78)

Next, we have to compute

It =" 17 =11 - ¢,)tt, + b, — "I
= (1= ¢) (4, = q) + b9, — 9"
=(1=¢,) |ty = | + $2llq, |’
+2((1=¢,)(u, =9 ), ¢,(9,—4"))
<(1=¢,)[lu,— "I + $3llq, - 4|
+2¢,(1-¢,)llu, — "1, — 9" ||
<(1=¢,)u,~q |+ ¢2llg, - q |’
+¢, (1= ), — 4"+ 6,(1-8,)ll9, — "I’
(=), =g + Mg, — a7 |1
<(U=¢) |ty = | + Pullta = q" 17 = s — "I
(79)
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meet the following criteria:
lim y,=0and) Ny, =+co.

n—->+00
Step 1: evaluate

P :P&{(un —6,‘3(1/[")).
If u, = p,, then STOP. Otherwise, go to Step 2.
Step 2: evaluate

Zn = {Z €Z: <un _ang(un) _Pn’Z_Pn> < 0}’
and compute

4, :Pzn(un - 8ng(pn))
Step 3: evaluate

Upp1 = V/ng(”n) + (1 - Wn)qn'
Step 4: evaluate

¢, +6,, otherwise.
Set n:=n+1 and go back to Step 1.

Step 0: take u; € o/,8; > 0 and select a nonnegative sequence of real number {¢, } such that }/%¢, < +00. Moreover, {y, } ¢ (0,1)

. (mm 18,490 (Wl =l + g, =P 20(Z ) ~ Z(p,). 0, =P} (L(1,) = Z(p,),,~p,) >0, <3'2)

ArcoriTHM 2: Nonmonotonic explicit viscosity-type subgradient extragradient method.

10!
109 <
Dﬁ 107! <
102 -
107
0 70
Number of iterations
—— Method-1 --- Method-3
- -~ Method-2 --- Method-4
Ficure 1: Algorithmic descriptions of Algorithm 1 and

Algorithm 2 as well Algorithm 2 in [37] and Algorithm 1 in [36]
when m =5.

From expressions (78) and (79), we have
* (12 * 112
s =717 < (A=) [ty = a7 + v, 200119, — [ 1401

=4 +2(q", q" — tyy1))-
(80)

By the use of expressions (74) and (80) and Lemma 2, we
can derive that ||u, — g*|| — 0 as n — +00.

Case 2. Suppose that there exists a subsequence {n,} of {n}
in order that

*

Hu"i _q* < Hu”i+1 —4q | Vie N. (81)

By Lemma 3, we have

*

, VkeN.
(82)

[, = 4" || < [ltem,., =4[] and g = g7 < |, , -~ 4"

By the use of expression (67), we have

us,, 2 us,, 2
1- 1- k - 1- k _
o (190 | (1522 Y= (1= 2 o =2
< Hu”"k _q* ’ + ll/kaZ - HumkH - q* 2~
(83)
Due to y,, — 0, we can deduce as follows:
kg}nm“umk_pmk :kkllqumk _pmk =0. (84)
It follows that
i = et =+ i, o = =0
(85)

Further, it implies that

Humkﬂ - umkH = H <]' - (/)mk _ka)umk + ¢mkqu - umk

= Humk - ‘//mk”mk + ¢mkqu - ¢mkumk —Up,

< (pmk qu - umk + kaHumkH — 0.
(86)
Similar to Case 1, we obtain
limsup(q”, ,, ,; —q") <0. (87)

k—00
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10!
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FIGURE 2: Algorithmic descriptions of Algorithm 1 and Algorithm 2 with Algorithm 2 in [37] and Algorithm 1 in [36] when m =5.

1073 T T T T T
0 50 100 150 200 250 300

Number of iterations

—— Method-1 --- Method-3
-~~~ Method-2 --- Method-4

F1GUre 3: Algorithmic descriptions of Algorithm 1 and Algorithm 2 with Algorithm 2 in [37] and Algorithm 1 in [36] when m = 10.

By the use of expressions (80) and (82), we have It follows that

o1 = 47| + 209" 4" = thyy11)-
(89)

Humkﬂ - q* HZ < 2¢mk qu - umk

tmer =" < (1= w0, ="+ ¥,
- [24,, [t ="} +2(0"0" = 1)
< (1= v, ) o, = "1+ 9,
. [2%

qu U,
Since y,, — 0 and |[u,, —q"[| is a bounded sequence
with (87) and (89), we have

||umk+1 -q || + 2<q*’ q - umk+1>] .
(88) H umkﬂ —-q

D, ~ Uy

*

> —0,ask — oo. (90)
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10!
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FIGURE 4: Algorithmic descriptions of Algorithm 1 and Algorithm 2 with Algorithm 2 in [37] and Algorithm 1 in [36] when m = 10.
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F1GURE 5: Algorithmic descriptions of Algorithm 1 and Algorithm 2 with Algorithm 2 in [37] and Algorithm 1 in [36] when m = 20.

The above expression implies that

2<0.  (91)

. %12 . *
Jim =g " < Tim w0 -q°]

From the above discussions, we have u, — q* as n
— 00.

Theorem 9. Assume that &£ : £ — Z is a mapping that
meets the conditions Condition 1-Condition 4. Then, the {

u,} sequence generated by Algorithm 2 strongly converges to
an element g* € Q.

Proof. Since 8, — &, there exists a positive number ¢ € (0,
1 — p) such that

lim (1—?6”):1—y>e>0. (92)

—
n o0 n+1
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FIGURE 6: Algorithmic descriptions of Algorithm 1 and Algorithm 2 with Algorithm 2 in [37] and Algorithm 1 in [36] when m = 20.
TasBLE 1: Algorithmic study for Example 11.
" Method-1 Method-2 Method-3 Method-4
Iter. Time Iter. Time Iter. Time Iter. Time
5 68 0.798005200 57 0.665091600 42 0.480156900 29 0.360117900
10 264 3.218157200 241 2.998657400 95 1.121305500 58 0.733156900
20 384 4.884210700 297 3.593486400 164 1.930182900 113 1.339267400
30 649 8.356499700 545 7.850765000 308 3.986678100 196 2.593555200
40 1138 16.96909990 997 15.25866440 357 4.784712300 238 3.410400500
50 2467 37.42977650 17962 24.32523500 558 10.32619485 487 6.132444757
TaBLE 2: Algorithmic study for Example 12.
m Method-1 Method-2 Method-3 Method-4
Iter. Time Iter. Time Iter. Time Iter. Time
1 482 0.294028700 406 0.211852600 349 0.166720900 308 0.166098200
t* 268 0.136482920 196 0.112184600 155 0.103728300 112 0.094193700
¢ 371 0.145282000 311 0.123552000 255 0.099748260 211 0.073510000
sin (t) 431 0.212849200 389 0.201682200 279 0.112940100 239 0.102749200
Thus, there exists a number N, € N such that Next, we have
ud [t =411 = 1Y,8(a) + (1= ,)q, = 4|
(1_ n) >€>0, VnzN,. (93) = llyulg(,) ']+ (1= y,)lg, — 4]l
o =l [8(u,) +8(a") ~8(q") ~ ']+ (1~ v,)[a, ']l
<y, lI8(u,) —8(@)ll +v,lls(@) — a7l + (L -w,)llg, — 4"
From expression (36), we obtain <y 8w, - a" | +v,llg@) -4l + A -v,)lla, - 9" |-
(95)
* (|2 * (12 Vn>N 94
9, =4I < luy = q"|I>, VnzN,. (94)

From expressions (94) and (95) and v, c (0,1), we
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TasLE 3: Example 13: algorithmic description of Algorithm 2 in [37] and u, = (1,2, 3, 4)

Iter. (n) U u, us u,

1 4.59999999902338 18.5464999999117 18.7004999999153 17.5944999993118
2 -6.26760004899506 16.7378886580863 16.9671141650914 15.8548101409442
3 -5.91418181483705 16.0308795300640 16.2986437617166 15.2919549387799
4 -5.38921479466356 4.78801650028211 4.64461284974750 5.38714304326419
5 1.00580406596249 4.73241274186297 4.62870240188635 5.25179596894124
6 1.23013013951725 4.70677542647729 4.63592929873170 4.97142857141815
7 1.44950907993550 4.70213655930865 4.65912535719577 4.97499999984847
8 1.66717886007189 4.71660015705847 4.69751098404819 4.97777776498426
9 1.88563318471514 4.74871960483109 4.75038581190807 4.97999999900850
10 2.10707812245062 4.79781281512387 4.81759412391964 4.98181818166635
11 2.33359792353143 4.86377467908333 4.89941458277316 4.98333333327664
12 2.56667054007920 4.94667114193612 4.98265426879577 4.98294766642007
13 2.79924540130681 4.96031745289142 4.97036949333673 4.98462062077961
14 3.03033454990915 4.96124045379347 4.97356261422028 4.98546003308369
15 3.26012741095086 4.96358686948872 4.97505259464489 4.98655189412727
1086 4.99924843119192 4.99944280475227 4.99963717745358 4.99983154929598
1087 4.99924912189630 4.99944331684910 4.99963751094444 4.99983170418246
1088 4.99924981133227 4.99944382800546 4.99963784382278 4.99983185878434
1089 4.99925049950333 4.99944433822395 4.99963817609027 4.99983201310240
1090 4.99925118641296 4.99944484750715 4.99963850774860 4.99983216713743
1091 4.99925187206462 4.99944535585762 4.99963883879944 4.99983232089020
1092 4.99925255646177 4.99944586327793 4.99963916924446 4.99983247436150
1093 4.99925323960783 4.99944636977061 4.99963949908532 4.99983262755208
1094 4.99925392150626 4.99944687533823 4.99963982832368 4.99983278046273
1095 4.99925460216044 4.99944737998330 4.99964015696118 4.99983293309420
1096 4.99925528157380 4.99944788370835 4.99964048499947 4.99983308544727
1097 4.99925595974971 4.99944838651589 4.99964081244018 4.99983323752269
1098 4.99925663669156 4.99944888840844 4.99964113928495 4.99983338932122
1099 4.99925731240271 4.99944938938848 4.99964146553540 4.99983354084361
1100 4.99925798688652 4.99944988945849 4.99964179119316 4.99983369209063
1101 4.99925866014632 4.99945038862097 4.99964211625983 4.99983384306301
1102 4.99925933218544 4.99945088687837 4.99964244073702 4.99983399376152
1103 4.99926000300721 4.99945138423316 4.99964276462634 4.99983414418688
1104 4.99926067261492 4.99945188068778 4.99964308792938 4.99983429433984
1105 4.99926134101187 4.99945237624468 4.99964341064774 4.99983444422115
1106 4.99926200820134 4.99945287090629 4.99964373278299 4.99983459383154
1107 4.99926267418660 4.99945336467504 4.99964405433671 4.99983474317174
CPU time is seconds 8.339245

obtain

ltner = a1 v, Ellu, —q" || +w,llg(a") ="l + (L= v,)|u, =]
==y, +&y,llu, - " || +y,(1-§)

(@) -4
§)

w18
£max{||u,,—q B I

(-

lglqd") - 4"l
(1-9)

}Smax {HuN‘ -q*

Therefore, we infer that the {u,} is a bounded sequence.
Now, we are in a position to use the Banach contraction the-
orem for the existence of a unique fixed point g* € Q such

that

lg(q") 4"l
e

(96)

(97)
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Due to the projection mapping, we can write

(8q)-q"y-q")<0, VyeQ. (98)

From Lemma 1 and expression (36), we have

et =" 1° = 1v,8(u,) + (1= v,)4, — 4" |I°
=y, lgw,) -1+ (1 -v,)lq, - 4|7
=y, lgw,) -4 IP+ 1=y, - 4|’
~v,(1-v,)8(x,) g,
<y,llgu,) -4 1>+ (1-v,)

S
i, - q° 2_(1_.’"»«) u, - p, 2
(W= = (1= 522 o=
5,
- (1 H )quﬁpnﬂ (1= ) ) - 4l

<y, /Ig(t,) =" |* + |lu, ~a'I = (1-w,)

-9
8”
(1= 8 == - (1= 5=l
n+l

(99)

The above expression implies that

(-v(1

® (|2 * 12 * (2
<SWllg(un) = " + [l =7 |" = [t — 7"

(100)

d |

Case 1. Suppose that there exists a fixed number N, € N
(N, > N,) such that

01 =471 < |up =g, VR 2 N, (101)

n+1

Then, lim,_, ||u, —q*|| exists and let lim,_ ,|lu, -

q*|| =1. By the use of expression (99), we have

(-v)1-

n+

<, l18(u) = @ 1P+ 0y = 471 = ltr 4"
(102)
By the of existence of a limit of a sequence lim,,_,[lu,
—-q"| and v, — 0, we obtain
lim ||un_an: lim an_anZO' (103)
n—~oo n—=a~0

Furthermore, it implies that

nlE)nm”un _pn” < nlinoo”un _an +nh_r)noo||qn _an =0.

(104)

ud, ud,
-5 = pl+ (=) (1- 52 ) g,
n+l n+l

o,
) o=l + (1= ,) (1= 5 ) g,
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Thus, we have

un” = ”Vlng(un) + (1 - V/n)qn - un”
= ”an[g(un) - un} + (1 - vjn)[qn - un]”

Hun+1 -

< Wn”g(un) - un” + (1 - Wn)”qn - ”nH —0.
(105)
Thus, we have
lim ||un+1 - un” =0. (106)

n—=~oo

By using expression (97) and Lemma 7, we obtain

limsup (g(q") ~q',, —q") =limsup(g(q") =q",w,, ~4")
=(g(q")-q"u-q")<0
(107)

By the use of lim u,|| =0, we have

n—>ooHun+1 -

limsup(g(q”) —q° . —q") <limsup(g(q") = 4", u,; — 1)
+limsup(g(q*) —q", u, —q") <0.

(108)
By using Lemma 1 and expression (94), we have

”un+1 - q*”z = Hwng(un) + (1 - Wn)qn - q* H2
= y,lg(u) = a']+ (1-v,)[4, - 4']II°
\

<(U=v) M4, ~q" " + 29, (8(w,) = 4" (1= y,) 4, — 4]
+,[8(u,) —q'])
( w)z\q —q"|* +2y,,(8(u,) -~ 8(q")

+g(q") - -q)
=(1 t//)z\lqn q H +2y,,(8(u,) = 8(4")s Uy —4°)
+2y,(8(a") —q" Uy —q°)

<(1-v,)(lq, - q*\lz+2wnf|\un—q*\lzllun+1—q*H
+2y,(8(9") — 4"t —q")

<(L+vh -2y, llu, - " |* + 2,8l u, - 4"
+29,(8(07) — 4"t = q°)

= (1 =2y, = q"|* + i, = " 1P + 29,8 w, — 47|
+29,(8(47) = 4"ty —47) = [1 = 29,(1 = )], —q"|]°

+2y,(1-§) P’n“l(‘l _g) I . (8 )_?*_’?m _q*>]‘

(109)

It is clear from expressions (108) and (109) such that

_q*q <0.

(110)

Yol —al®, (8(a°) — 4"y
2(1-8) 1-&

limsup [

n—~oo

By choosing n>N; € N (N; >N,) large enough such
that 2y,(1-&) <1. By the use of (109) and (110) and
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TaBLE 4: Example 13: algorithmic description of Algorithm 1 in [36] and u, = (1,2, 3, 4)

Iter. (n) U u, Us u,

1 4.54999999902338 18.4464999999117 18.5504999999153 17.3944999993118
2 -6.24222797440616 13.5241851137974 13.6213471992304 12.5302619081771
3 -0.659876119446077 4.68238127646957 4.65194330093169 5.00329162462314
4 0.946802477625882 4.61084600770298 4.58119171017774 4.92362497958044
5 1.04934390009719 4.55766490194321 4.52868493067142 4.86118347395020
6 1.14854226167386 4.51824332123436 4.48986816365673 4.81270779537308
7 1.24574590629948 4.48946698164860 4.46164839905812 4.77550686438977
8 1.34146056234125 4.46933050144783 4.44203357836196 4.74729888976619
9 1.43627311838568 4.45647220663972 4.42967080774664 4.72665515468439
10 1.53065237050934 4.44994299224969 4.42361803309317 4.71255603858976
11 1.62498530558409 4.44907178330946 4.42320908822800 4.70425974095071
12 1.71962000624484 4.45338248767389 4.42797158878528 4.70123046557113
13 1.81488364798492 4.46254250802635 4.43757564752582 4.70308628647431
14 1.91109217493918 4.47632857351891 4.45180046474299 4.70956149682268
15 2.00855776273081 4.49460389018728 4.47051224149727 4.72048089550204
1081 4.99949078231531 4.99949078231531 4.99949078231531 4.99949078231531
1082 4.99949130039142 4.99949130039142 4.99949130039142 4.99949130039142
1083 4.99949181741442 4.99949181741442 4.99949181741442 4.99949181741442
1084 4.99949233338752 4.99949233338752 4.99949233338752 4.99949233338752
1085 4.99949284831392 4.99949284831392 4.99949284831392 4.99949284831392
1086 4.99949336219679 4.99949336219679 4.99949336219679 4.99949336219679
1087 4.99949387503931 4.99949387503931 4.99949387503931 4.99949387503931
1088 4.99949438684463 4.99949438684463 4.99949438684463 4.99949438684463
1089 4.99949489761590 4.99949489761590 4.99949489761590 4.99949489761590
1090 4.99949540735624 4.99949540735624 4.99949540735624 4.99949540735624
1091 4.99949591606878 4.99949591606878 4.99949591606878 4.99949591606878
1092 4.99949642375661 4.99949642375661 4.99949642375661 4.99949642375661
1093 4.99949693042284 4.99949693042284 4.99949693042284 4.99949693042284
1094 4.99949743607054 4.99949743607054 4.99949743607054 4.99949743607054
1095 4.99949794070278 4.99949794070278 4.99949794070278 4.99949794070278
1096 4.99949844432262 4.99949844432262 4.99949844432262 4.99949844432262
1097 4.99949894693310 4.99949894693310 4.99949894693310 4.99949894693310
1098 4.99949944853725 4.99949944853725 4.99949944853725 4.99949944853725
1099 4.99949994913809 4.99949994913809 4.99949994913809 4.99949994913809
1000 4.99950044873863 4.99950044873863 4.99950044873863 4.99950044873863
1001 4.99950094734186 4.99950094734186 4.99950094734186 4.99950094734186
CPU time is seconds 7.690413

through Lemma 2, we conclude that [lu, — q*[|—0 as n

— OQ.

as {m; } — oo, such that

Case 2. Consider that there exists a subsequence {n,;} of {n}

such that

Hu”i_q*

< Hu”m -4

*

, VielN.

Humk _q*

(111)

= Humk+1 - q*

N =g < ||, —

Then, using Lemma 3, there exists a sequence {m; } C N

*

, forallk € N.
(112)




Journal of Function Spaces 15
TasLE 5: Example 13: algorithmic description of Algorithm 1 and u, = (1,2, 3, 4",

Iter. (n) Uy u, U u,

1 4.76666666563579 19.3990833332401 19.4727499999106 18.2164166659403
2 -6.89912059339238 18.1614280199001 18.2430063869481 16.8357425433078
3 -6.79443152520300 17.8896263780042 17.9698451056013 16.5860356593549
4 -6.48577908884055 4.74876581346600 4.68957409065068 5.74296770759381
5 0.967259458426478 4.73386092054218 4.67600506823831 5.28600264404358
6 1.95405193843723 6.82802561081780 6.99483339988724 5.16669743240466
7 3.19683502766684 5.04658834550239 5.03534741320422 5.05670610709957
8 4.88155078605583 4.96308402800923 4.96500619808367 4.96133883492052
9 1.29027081990860 6.20942957200619 6.32344981434144 6.10583077439888
10 -16.8977269679284 39.2523493068962 39.5416762684644 38.9810641968152
11 -16.8686988161152 39.2288250269955 39.5165446165549 38.9590470564150
12 -17.5936196810597 5.25777948675977 5.05059553613937 5.45334598035476
13 0.953804394536662 5.24340705918321 5.03779221686998 5.23720308394482
14 -2.97340727848293 17.2929482826102 17.1772480445095 17.2896868859967
15 -2.98444635460549 17.2911791507813 17.1759609970061 17.2879313433204
718 4.99913721960184 4.99966942735891 4.99966941266818 4.99966942693145
719 4.99913841886068 4.99966988620944 4.99966987154072 4.99966988578262
720 4.99913961479023 4.99967034378793 4.99967032914114 4.99967034336174
721 4.99914080740432 4.99967080009965 4.99967078547474 4.99967079967410
722 4.99914199671672 4.99967125514986 4.99967124054676 4.99967125472495
723 4.99914318274110 4.99967170894380 4.99967169436244 4.99967170851951
724 4.99914436549112 4.99967216148664 4.99967214692697 4.99967216106299
725 4.99914554498034 4.99967261278354 4.99967259824550 4.99967261236052
726 4.99914672122220 4.99967306283966 4.99967304832317 4.99967306241727
727 4.99914789423003 4.99967351166012 4.99967349716513 4.99967351123835
728 4.99914906401720 4.99967395924998 4.99967394477643 4.99967395882883
729 4.99915023059699 4.99967440561429 4.99967439116212 4.99967440519377
730 4.99915139398255 4.99967485075809 4.99967483632724 4.99967485033819
731 4.99915255418697 4.99967529468638 4.99967528027678 4.99967529426709
732 4.99915371122326 4.99967573740412 4.99967572301572 4.99967573698545
733 4.99915486510439 4.99967617891628 4.99967616454901 4.99967617849822
734 4.99915601584329 4.99967661922774 4.99967660488156 4.99967661881030
735 4.99915716345274 4.99967705834342 4.99967704401826 4.99967705792660
736 4.99915830794551 4.99967749626818 4.99967748196397 4.99967749585196
737 4.99915944933426 4.99967793300684 4.99967791872353 4.99967793259123
738 4.99916058763160 4.99967836856424 4.99967835430177 4.99967836814924
739 4.99916172285006 4.99967880294516 4.99967878870346 4.99967880253076
740 4.99916285500216 4.99967923615434 4.99967922193337 4.99967923574055
741 4.99916398410028 4.99967966819653 4.99967965399622 4.99967966778334
742 4.99916511015677 4.99968009907643 4.99968008489673 4.99968009866384
743 4.99916623318388 4.99968052879874 4.99968051463958 4.99968052838674
744 4.99916735319382 4.99968095736811 4.99968094322945 4.99968095695672
745 4.99916847019876 4.99968138478917 4.99968137067095 4.99968138437837
CPU time is seconds 5.182248
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TaBLE 6: Example 13: algorithmic description of Algorithm 2 and u, = (1,2, 3, 4",
Iter. (n) U u, Us u,
1 3.72399999925560 14.5721099999327 14.9072699999354 14.2820299994755
2 -2.15456883397507 14.1819518247169 14.5351508101264 13.8743472579798
3 -1.91884564644980 14.7335505679521 15.0699505703768 14.4407029303704
4 -3.75031965270586 8.60066516780067 8.66301230690689 8.54719173870520
5 -0.610354905863696 5.97030538364658 5.97335233684089 5.96773839611341
6 -0.760180052633688 6.39612802072305 6.39915756275061 6.39357570169468
7 0.883426357410548 5.46334299554989 5.45041815549462 5.47423303492034
8 2.24275125763655 5.11576078694906 5.12103138003741 5.11131429071216
9 1.88904098349673 6.05244056925146 6.05529370932879 6.05002755957568
10 2.94173536203857 5.29641543454450 5.29701704593678 5.29590634994195
11 3.95963752720103 5.10693325887312 5.10709889135520 5.10679307211866
12 4.05539113558902 5.22425012478815 5.22438849354865 5.22413300798106
13 4.48640280826840 5.09245571277969 5.09251889856043 5.09240223042630
14 4.63687195165905 5.07427886151574 5.07432105870254 5.07424314405336
15 4.78911903854907 5.03528185258641 5.03530457387877 5.03526262019362
616 4.99913861830495 4.99967028584338 4.99967032490328 4.99967025278006
617 4.99914001259341 4.99967081825953 4.99967085725320 4.99967078525225
618 4.99914140237539 4.99967134895898 4.99967138788665 4.99967131600757
619 4.99914278767268 4.99967187795002 4.99967191681191 4.99967184505430
620 4.99914416850695 4.99967240524090 4.99967244403722 4.99967237240068
621 4.99914554489976 4.99967293083979 4.99967296957076 4.99967289805489
622 4.99914691687247 4.99967345475484 4.99967349342067 4.99967342202507
623 4.99914828444637 4.99967397699410 4.99967401559502 4.99967394431929
624 4.99914964764256 4.99967449756562 4.99967453610183 4.99967446494558
625 4.99915100648201 4.99967501647738 4.99967505494909 4.99967498391194
626 4.99915236098562 4.99967553373728 4.99967557214471 4.99967550122626
627 4.99915371117408 4.99967604935322 4.99967608769656 4.99967601689643
628 4.99915505706797 4.99967656333301 4.99967660161249 4.99967653093029
629 4.99915639868777 4.99967707568443 4.99967711390025 4.99967704333559
631 4.99915773605379 4.99967758641521 4.99967762456757 4.99967755412008
632 4.99915906918624 4.99967809553302 4.99967813362214 4.99967806329143
633 4.99916039810519 4.99967860304549 4.99967864107156 4.99967857085726
634 4.99916172283057 4.99967910896021 4.99967914692344 4.99967907682517
635 4.99916304338221 4.99967961328470 4.99967965118530 4.99967958120268
636 4.99916435977982 4.99968011602645 4.99968015386462 4.99968008399728
637 4.99916567204293 4.99968061719291 4.99968065496885 4.99968058521642
638 4.99916698019104 4.99968111679145 4.99968115450536 4.99968108486747
639 4.99916828424343 4.99968161482945 4.99968165248151 4.99968158295780
CPU time is seconds 4.517220
Thus, we have Since y,, — 0 implies that
2 2
NI (o | o R GN][S
<V ll8Can) =" |+ [t = "I = e =" . .
(113) kﬁnm"umk _pm" :k@m“qu _pmk =0 (114)
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FiGurg 7: Algorithmic descriptions of Algorithm 1 and Algorithm 2 as well as Algorithm 2 in [37] and Algorithm 1 in [36] when u, =
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F1Gure 8: Algorithmic descriptions of Algorithm 1 and Algorithm 2 as well as Algorithm 2 in [37] and Algorithm 1 in [36] when u, =
[0,0]".

Next, we obtain Similar to the Case 1, we can write

H”mkﬂ - umkH = meg(”mk) + (1 - ka)qu U,
= [ ) =]+ (1= [, = ]
<V, [1804m,) =t ]|+ (1=, )

limsup(g(q") = 4", U1 —q") <0 (116)

’ k—00

— 0.

‘ka - Mmk

(115) By using (109) and (112), we have



18

102

10!

10°

A 107!

1072

0 100

—— Method-1
-~ Method-2

I I I I I
300 400 500 600 700 800

Number of iterations

-~ Method-3
- -- Method-4

Journal of Function Spaces
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FiGure 10: Algorithmic descriptions of Algorithm 1 and Algorithm 2 as well as Algorithm 2 in [37] and Algorithm 1 in [36] when u, =

[-5,-5]".
TaBLE 7: Algorithmic study for Example 14.
" Method-1 Method-2 Method-3 Method-4
1 Iter. Time Iter. Time Iter. Time Iter. Time

[1.5,1.7}T 170 9.38124300 147 8.166378500 81 5.082575400 61 3.489680300
[0, O]T 267 14.7065173 166 9.695011100 107 5.894192000 64 3.753339200
[10, IO}T 729 40.4305133 160 8.596874100 89 4.762929600 64 3.520466200
[—5,—5]T 483 28.03565270 150 8.570527900 118 6.676780500 60 3.331014400
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||umk+1_q* ZS [I_Zka(l_E)]Humk_q* 2+21mG(1_£)
[yl -l (849 4" 1 - 4)]
I 2(1—{) 1-& ]
< (12, (1= )] [t =4[ + 29, (1 - )
[yl a1 (8(a9) 4" 1 - 47)]
2(1—{) 1-& ’

(117)
Moreover, we have

2 < ka"umk _q* ”2 n <g(q*) _q*’umk+1 _q*>
- 2(1-¢) 1-¢& '
(118)

*

Humk-ﬂ -4

Since y,, — 0 and |[u,, —q"[ is a bounded sequence.
Then, the expressions (116) and (118) imply that

Humkﬂ—q*|2—>0, ask — oo. (119)
The above expression implies that
lim |lu,—q"|* < lim Hum a-q' <o. (120)
k—00 k—00 k

Consequently, u, — g* as n — oco. This completes the
proof of the theorem. O

Remark 10.

(i) Two nonmonotonic explicit extragradient-type
methods for finding an approximate solution of var-
iational inequalities involving pseudomonotone
mapping in a real Hilbert space have been
established

(ii) Two strongly convergent results, corresponding to
the proposed algorithms have been proven

(iii) It is important to note that these methods use non-
monotonic step size rules that use an operator value
rather than the Lipschitz constant of an operator

4. Numerical Illustrations

In this section, computational results of the proposed
methods are described and compared to existing related
work in the literature. All computations are done in
MATLAB R2018b and run on an HP i-5 Core(TM)i5-6200
8.00 GB (7.78 GB usable) RAM laptop.

Example 11. Let a mapping & : R — R be defined by

ZL(u)=Mu+q, (121)
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with g € R and

M=NNT +B+D. (122)
During this experiment, we have chosen N = rand (m) to
be a random matrix and B=0.5K —0.5K” to be a skew-
symmetric matrix with K =rand (m), and D = diag (rand (
m, 1)) is a diagonal matrix. The feasible set & is defined in
the subsequent sense:
d={ueR": Qu<b}, (123)
where Q =rand (100, m) and b =rand (100,1). It is obvious
that & is monotone and Lipschitz continuous by L = || M]||.
The starting point is u; = (2,2,--,2) and D, = |ju, —p,|| <1
073. The numerical results of these methods are shown in
Figures 1-6 and Table 1. The control conditions are taken
in the following manner: (1) Algorithm 2 in [37] (shortly,
Method-1): 8, =0.12, 4 =0.55,¢, =1/50(n +2); (2) Algo-
rithm 1 in [36] (shortly, Method-2): §, =0.12,y =0.55, ¢,
=12(n+2),f(u)=u/3; (3) Algorithm 1 (shortly,
Method-3): 8, =0.12, = 0.55,y, = 1/2(n +2), ¢, = (5/10)(
1-v,),¢, =100/(n+1)*; and (4) Algorithm 2 (shortly,
Method-4): 8, =0.12,4=0.55, vy, =1/2(n+2), f(u) = u/3,
@, =100/(n+1).

Example 12. Let Z = L*([0, 1]) be a Hilbert space having an
inner product

1
(u,y) = J u(t)y(t)dt, Vu,yeZ, (124)
0
and the induced norm is determined as follows:
1
lleell = J |u(t)|2dt. (125)
0

Let of = {u e L*([0,1]): ||u|| <1} be a unit ball. A map-
ping & : of — Z is defined by

Z(u)(t) = JO(”(f) —H(L9)f (u(s)ds+g(t),  (126)
where
Se(H—s) e
H(t,s)= ez\t/m,f(u) =cosu, g(t) = ; 2:2 = (127)

It can easily be seen that £ is Lipschitz-continuous with
the constant L = 2 and monotone. The starting point for this
experiment is taken differently, and D, = ||u, —p, || <107°.
The numerical results of these methods are shown in
Table 2. The control conditions are taken as follows: (1)
Algorithm 2 in [37] (shortly, Method-1): §, =0.33, 4 =0.75
,¢,=1/100(n+2); (2) Algorithm 1 in [36] (shortly,
Method-2): 8, =0.33,y=0.75,¢, = 1/100(n + 2), f (u) = u/2
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; (3) Algorithm 1 (shortly, Method-3): §, =0.33, 4 =0.75,
v, =1/100(n +2), ¢, = (7/10)(1 -y, ), @, = 100/(n + 1)*;
and (4) Algorithm 2 (shortly, Method-4): §,=0.33,u=
0.75,w, = 1/100(n + 2), f (u) = u/2, @, = 100/(n + 1)*.

Example 13. Let a mapping & : R* — R* be defined by

Uy +uy +us +uy —4u,usuy

Uy + Uy + Uy +uy — 4 sy,

L(u) = (128)
Uy +uy +ug +uy —4u Uy
Uy +uy +ug +uy — 4 Uy
Moreover, the constraint set & is defined by
d={ueR*: 1<u;<5i=1,2,3,4}. (129)

It is clear to see that & is not monotone on the set <.
The starting point for this experiment is u, =(1,2,3, 4)T
and D, = ||u, —p,|| <107, The numerical results of these
methods are shown in Tables 3-6. The control conditions
are taken as follows: (1) Algorithm 2 in [37] (shortly,
Method-1): 8, =0.05, 4 =0.33,¢, = 1/20(n +2); (2) Algo-
rithm 1 in [36] (shortly, Method-2): §, =0.05,y =0.33, ¢,
=1/20(n+2),f(u) =u/4; (3) Algorithm 1 (shortly,
Method-3): 8, =0.05, = 0.33,y, = 1/20(n +2), ¢, = (6/10)
(1-v,),9,=100/(n+1)*; and (4) Algorithm 2 (shortly,
Method-4): 8, =0.05, 4 =0.33,y, = 1/20(n +2), f (u) = u/4,
@, =100/(n+1).

Example 14. This test problem is taken from [42]. Let a map-
ping # : R> — R? be defined by

) 0.5u,uy — 2u, — 107
u)= s
—4u; —0.1u5 - 107

d={ueR: (u; -2)*+(u,-2)*<1}.

(130)

where
(131)

We can easily observe that the mapping & is not mono-
tone on & but pseudomonotone and Lipschitz continuous
with L=5. This problem has a unique solution that is u*
= (2.707,2.707)". The starting point for this experiment is
taken differently, and D, = ||u,, — p, || < 1073. The numerical
results of these methods are shown in Figures 7-10 and
Table 7. The control conditions are taken as follows: (1)
Algorithm 2 in [37] (shortly, Method-1): §, =0.333, u=
0.90,¢,=1/3(n+2); (2) Algorithm 1 in [36] (shortly,
Method-2): &, =0.333,y=0.90, ¢, =1/2(n+2), f(u) = ul/5
; (3) Algorithm 1 (shortly, Method-3): §, =0.333, 4 =0.90
W, =12(n+2),¢, = (510)(1-y,),p, =100/(n+1)*;
and (4) Algorithm 2 (shortly, Method-4): §, =0.333, u=
0.90, v, = 1/2(n +2), f(u) = u/5, ¢, = 100/(n +1)*,
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5. Conclusion

Two nonmonotonic explicit extragradient-type methods for
finding an approximate solution of variational inequalities
involving pseudomonotone mapping in a real Hilbert space
have been established. Two strongly convergent results, cor-
responding to the proposed algorithms have been proven.
The numerical results were interpreted to demonstrate that
the proposed algorithms worked numerically better than
current methods. According to these numerical findings,
the nonmonotone variable step size rule improves the effi-
ciency of the iterative sequence in this case.
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How do investors require a distribution of the wealth among multiple risky assets while facing the risk of the uncontrollable
payment for random liabilities? To cope with this problem, firstly, this paper explores the approach of asset-liability
management under the state-dependent risk aversion with only risky assets, which has been considered under a continuous-
time Markov regime-switching setting. Next, based on this realistic modelling, an extended Hamilton-Jacob-Bellman (HJB)
system has been necessarily established for solving the optimization problem of asset-liability management. It has been derived
closed-form analytical expressions applied in the time-inconsistent investment with optimal control theory to see that happens
to the optimal value of the function. Ultimately, numerical examples presented with comparisons of the analytical results
under different market conditions are exposed to analyse numerically the developed mean variance asset liability management

strategy. We find that our proposed model can explain the financial phenomena more effectively and accurately.

1. Introduction

Portfolio optimization selection problem, well known as an
essential topic in financial markets, has been done in deep
researches by many scholars after the first reported by Mar-
kowitz [1]. The most frequently used method of optimal
asset allocation strategies is HJB equation, ie. the
Hamilton-Jacobi-Bellman equation (see Detemple and Fer-
nando [2], Bjork et al. [3]). In the analysis of portfolio opti-
mization, utility function and several system parameters are
given to find the optimal values of the control parameters to
realise the final utility maximization. Previous researches in
this area are classified for the endogenous habit formation
[2], the classic constant relative risk aversion (CRRA) by
Yu and Yuan [4], the hyperbolic discounting [3], and the
utilities like the mean-variance utility proposed by Li et al.
[5]. In recent paper by Li et al. [6], the analytical solution
portfolio optimization problem involving stochastic short-
term interest rates is provided, which can be controlled by
the mean-variance utility function with state dependent risk

aversion (SDRA). The paper [6] uses the Nash equilibrium
for the subgame strategy to concrete analytical expressions
of value function and control policy of equilibrium and fig-
ure out under the condition of the stochastic short-term
interest rates, how do investors with “natural risk aversion”
achieve optimal control policies by simplifying financial
settings.

Under the framework of mean variance equilibrium
asset liability management with SDRA, some extended
models have been constructed, such as the mean-variance
asset-liability management problem by regime-switching
models, as well as mean-variance models with only risky
assets (see Bening and Koroley [7]; the asset-only models
to asset-liability models have been greatly expanded by Yao
et al. [8, 9]). A geometric method raised by Leippold et al.
[10] is supposed to apply into the multiperiod mean-
variance asset-liability management model by taking the
implied mean-variance of liability frontier into consider-
ation. A study by Chiu and Li [11] reported that the influ-
ence of the rebalancing frequency is quantified to
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determine the allocation of optimal initial funds. The work
of extension into a continuous-time setting has been devel-
oped with the aid of a stochastic linear quadratic control
approach. Based on the assumptions used in Leippold et al.
[10], analytical results have been derived in a complete mar-
ket with discussing the impact of liability on the optimal
funding ratio. To construct more realistic models, more
focus has been put on studying the asset-liability manage-
ment under the market behavior in the face of many restric-
tion conditions, for example, an uncertain investment
horizon (see Li and Ng [12]; Li and Yao [13]), regime-
switching to describe phenomena between “Bullish” and
“Bearish” markets (see Elliott et al. [14]; Wei et al. [15];
Wu and Li [16]; Wu and Chen [17]; Yu [18]), the choice
of optimal portfolio selection for assets with transaction
costs without short sales (see Li et al. [19]), portfolio selec-
tion under partial information (see Xiong and Zhou [20]),
bankruptcy control (see Li and Li [21]), jump-diffusion in
financial markets (see Lim [22]; Zeng and Li [23]), and sto-
chastic volatility and stochastic interest rates (see Lim [22];
Lim and Zhou [24]). Also, various studies of assets and lia-
bilities management problem have been carried out in some
particular field with application in insurance and pension
fund, including Drijver [25] for pension funds Hilli et al.
[26] for a Finnish pension company, and Gerstner et al.
[27] and Chiu and Wong [28] for life insurance policies.
Among them, regime-switching models have become
popular in finance and related fields, which is expected to
describe the characteristics of different markets (called “Bull-
ish” versus“Bearish”). A limited number of regimes have
been applied to represent the various patterns of the market
states. According to diverse financial markets as the change
market pattern occurs, indices for instance the interest rate,
appreciation rates, and volatilities of stock and liability may
be different. Boyle and Draviam’s study [29] is an interesting
example of regime-switching modelling applied in option
pricing achieved by [29], followed by Elliott and Siu [30],
who have embedded the regime-switching modelling into
the bond valuation, the concept of which has been put for-
ward in the portfolio selection problem by Zhou and Yin
[31], Chen et al. [32], and Chen and Yang [33]. The research
studied in [32, 33] involves both the asset-liability feature
and Markovian regime-switching modelling. As we all know,
the models with only risk assets are valuable to be studied.
Yao et al. [8] were working on the research of the
continuous-time mean-variance model for only risky assets.
It is rare for risk-free asset in reality; as a matter of fact, a rel-
atively long investment is considered, corresponding to the
stochastic nature real interest rates and the inflation risk
(see Viceira [34]). The previous method of a nominal risk-
free asset incorporated into the market will simplify the pro-
cess of selecting portfolio but degenerate the GMV strategy
to a bank deposit strategy with zero risks, which is not
favourable to investors. Besides, the empirical evidence in
the study by DeMiguel et al. [35] shows that the static global
minimum-variance (GMV) strategy with only risky assets
(derived by Markowitz [1]) tends to be better in perfor-
mance out-of-sample among all estimated optimal strate-
gies. Then in general, the properties of the time-consistent
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MV strategies have been shown in a market only with risky
assets by Chi [36] on the analysis of Yao et al. [8] and Zhang
et al. [37].

In this paper, on the basis of the work of Bjork et al. [3],
it is determinate to make a further realistic financial model,
and it makes sense to select a regime-switching market with
only risky assets. Afterwards, the general expansion of the
HJB equation will be reached according to the control theory
with time inconsistency by Bjork and Murgoci [38]. Finally,
it proceeds the numerical illustrations to show our extended
results and state the relationships with previous researches.
The rest of the paper is completed as follows: the setting of
the financial market will be explained in Section 2, with
the developed structure of mean-variance asset-liability
management with state-dependent risk aversion in a
regime-switching market with only risky assets. Also, the
HJB equation is generalized to the general situation. In Sec-
tion 3, three different cases with derived solutions will be
illustrated in details. More numerical examples are presented
in Section 4 with corresponding figures and illustrations,
and a conclusion is given in Section 5.

2. Model Formulation

In a given probability space filtered, (Q, P, #, {5, }.,or)> let
W(t) = (W, (t), Wy(t), -, W, (t)) be a standard m
-dimensional Brownian motion with definition of (Q,P, %
) over the period of [0, T]. Since the involution of individual
investments has been found, a few number of investors will
not make much effect on the whole market. The mode of
the market dynamics is described by a Markov chain process
a(t). For that sense, the processes of W(t) and «(t) are inde-
pendent of each other. §,=0c{W(s), a(s);0<s<t} could
be augmented in the case of all the P-null sets in &%, where
F = ;. Some finite T is used to denote the range of invest-
ment time. All random variables taken into consideration, in
this paper, are defined within this filtered probability space.
Assuming that there are d regimes for the market state, it
means that the Markov chain «, gets one of the values from
the set of {1,2,3, -+, d} every time. By assumption, a gener-
ator Q=(q;), , in the Markov chain with the stationary

transition probabilities such that p;(t) =P(a(s+ 1) =j| afs
)=k), where s,t>0,k j=1,2,--.d, q;=(d/dt)p(t)| _

and Z?:quj =0,9; = —ijlqkj <0,g;;>0. A financial mar-
ket with continuous-time under the standard assumptions
has been considered. Concretely speaking, the market
assumptions in this paper are listed here with permission
for continuous trading, no transaction cost or tax in trading,
and infinitely divisible assets.

2.1. Financial Market

2.1.1. Assets. Suppose that an investor decides to allocate his
wealth among # + 1 risky assets. The prices of these risky
assets meet the following requirements of stochastic differ-
ential equations (SDE) driven by the geometric Brownion
motion (GBM) (1):
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dPy(t) = P;(t) <bi(t’ a(t))

P;(0)

dt+ Y oyt oc(t))dWh(t)>, 0<t<T,
h=1

=p;>0, i=0,1,2,--,m,

(1)

where P;(t) means the initial prices of the risky assets, (p;, i =
0,1,2, -+, n); a(t) is defined as volatility factor; and (b, (¢, a(t
))> by (8 (b)), -+ b, (8 () and (0, (£ &(t))) (1) vefer
to the appreciation rate vector and the volatility matrix of these
assets, respectively, with assumption of positive continuous
bounded deterministic functions of time ¢. As mentioned above,
the GBM vector {W(t)=(W,(t), W,(t),---, W, ()"} is
supposed to have a detailed description of all the random factors
influencing the prices of risky assets.

where

2.1.2. Wealth Process. It is assumed that an investor endowed
with an initial wealth X, at time 0 is intended to invest in the
market dynamically through the period of [0, T]. Here, X(¢)
stands for the total wealth at time ¢ for an investor, and u;(¢)
denotes the amount investment in asset i and N;,(t) for the
total of units of asset i in an investor’s portfolio, i=0, 1,2

-+, n. The sum of investment in the Oth asset after the
deduction of liability is described as {X(t)— Y™ u;(t)}.
Therefore, under the conditions above, the wealth held by
the investor at time ¢, X(¢) is shown as follows:

™=

dX(t)= ) Ni(t)dPi(t) =

1l
(=]
I
o

1

To further simplify dX(¢) in equation (2), the SDE will
be represented as

bo(t, a(t))X(t) + B'(t, a(t))u(t)} dt+ [X(t)o(')(t, a(t)) +u' (Ho(t, a(t)) |[dW(2),

u(t) = (uy (D) () +5 1,(1)) e

B(t, k) = (by(t, k) = by (£, k), by (1. k) = by (t, k) -+, by, (£, k) = by (£, K)) s @
Gi(t k) ( rl(t k) zZ(t’ k)’ ""aim(t’ k))/mxl’
o(t,k) = (0, (t: k) = 0y (£ k), 05(t k) = 0o(t: k)s -+, 0,y (1 k) = 0o (1K) -

We assume that all the functions are measurable and
uniformly bounded in [0, T]. Here, L%(t, T;R™!) is
denoted as the set of all R**!-valued and measurable sto-
chastic processes f (s, a(s)) are adjusted to {S,}.., on [0, T]
such that

s>t

E[f|f<s,a<s>>|2ds] <-+o0. (5)

2.1.3. Liability Process. In fact, the investor in the financial
market is exposed to the uncontrollable liability, with value
process by the following SDE:

a(t))dt+p'(t, a(t)dW(t),

dL(t) = u(t,
{ L(t) = (e »

L(0) =1,

where L(t) is the stochastic liability process and I, is defined
as the initial value of the liability. Besides, u(t, a(t)) and p(
ta(t)) = (p, (1 alt)), py(1,a(t), -+, p,, (1 a(t))’ are
expressed as the appreciation and volatility in liability,
respectively, on the assumption of stochastic functions at
time ¢ with Markov process «(t). In addition, generally, the
liability is functioned as the real liability excluding the ran-
dom income of the investor. As a result, it turns out to be
negative liabilities; the random income of the investor can
be more than the real liability.

Remark 1.1t is clearly to see the correlation between liabil-
ity value and risky assets in the dynamic processes by m
-dimensional geometric Brownian motion W(¢). Since
the investment portfolio has n + 1 risky assets and one lia-
bility, it leads to m>n+2 in the asset liability manage-
ment model.



2.1.4. Surplus Process. Let S(¢) = X(t) — L(t) represent the
current surplus of our fortune. By substituting the wealth
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and liability processes, we have

d&ﬂz{%ﬁﬂﬁnﬂﬂ—y@aﬁ»+FOJU»MQ}&+{ﬂﬂ%aﬂa»—ﬂ@ﬂa»+u%ﬂﬁhﬂﬂ%dway

dL(t)=u @au»w+p%aqowwqm
()—So—xo 0
L(0) = I, a(0) = ko.

2.2. Mean-Variance Risky Asset Management (MVRAM).
First, %[0, T] is denoted as the set of all avaliable strategies
{(uy(t), uy(t), -+, u,(£))} over [0,T]. Naturally, the
MVRAM problem will give emphasis on finding optimal
admissible strategy to maximize mean-variance utility at ter-
minal time T. So the objective function of J(¢,s, 1, k, u) and
the equilibrium value function of V(t,s,1, k) are described
mathematically as follows:

Jts k) = Eg 8] - X8 var s, ®)
V(e 8) =y EalS(D)) - P Var, i) |
=J(t,s, k,u").
)
where  E, []=E[S*(t,k) =s,L*(t,k) =L a"(t) = k], in

which S%(t, k), L*(t, k), a"(t) successively represent the sur-
plus process, liability, and market dynamics obtained by
using the control strategy w = (u,(t), u, (¢), -, u,(¢), and r(
s, k) means the risk aversion coefficient depending on s
and k. As a result, J(¢,s, k, u) can be defined as

(15 K ) = By [F(5, b, 8°(T))] + G5, ks By [S°(T))),

(10)

AN (L5, k) =0, 0<t<T,
Ag(t,s,k)=0, 0<t<T,
V(T,s, k) =s,

f’"'h(T) sk)=s— Y(”; h) 2,
9(T,s.k)=s,

SUp, e { A"V (1,5, K) = A (1,5, k k) + Af¥(8,5,K) = A%(G 2 g) (1,5, k) + H'g(t, k) | =0,

where

= Y(Sz’ k)yZ, Y(S’ k) 2 (11)

F(s k. y)= 5

G(sky)=
where in here y represents E, [S*(T)].

Second, letAbe infinitesimal generator, for any fixed u
€ U; the controlled infinitesimal generator A* corresponded
to

oW(t,s k) y 10W(t, s, k)
7& + [bos -y+B u} 5

+ quj t s,

oW(t, s, k
.%{WO_M'“}.

A“W(t, 5, k) =

1 ! ! !
2{500—p +u 0}

(12)

Based on the analysis of Bjork Bjrk and Murgoci [38],
with the definition of equilibrium control in equation (9)
and the infinitesimal generator A* in equation (12), the
HJB equation will be extended as follow, as well as the veri-
fication of theorem.

Theorem 1 (verification theorem). It is assumed that (V, f
,g) is a solution to the following extended HJB system with
the supremum of control law # in the equation. Then, Ui is
subject to an equilibrium control law, and V is supposed to
the corresponding value function.

0<t<T,

(13)
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with the following conditions and definitions:

™ (8, s,k) = f(t, 5, k, m, h),
(Gog)(t,5,K) = G(s K gt ),
H'g(t,s, k)= Gy(s, k,y)xA"g(t,
0G(s, k, )

ay

s, k), (14)

Gy(s’ k’y) =

Moreover, f and g have the following probabilistic repre-
sentations:

f(t.s,k,mh)=E, [F(m,h,S"(T))],

g(ts k) = By [S7(T) ], (15)
V(t,s, k) =f(t,s, k) + G(s, k, g(t, s, k)).

Proof. On the basis of the HJB equation in [2] and the objec-
tive function [3], it can be derived as

V(6 S ki) = supep J (£ Sps ki U) (16)
and consequently have

J(t, S ki U)=Eys 1 [F(s:k S7)] + G (s, k Ey5 1 [ST])s

(17)

where the forms of the function F and function G are
described in (11).
When [ > t, we have
J(L Sk, U) = Eisx, [F(Sl’ k;, Sg)] + G(Sl’ k;, Eis.k, [Sg] )
Eisx, [F(Sl’ k;, 5?)] :fU(l’ Sp ki sp ki)
Egx [S7] = 9" (L Sy k).
(18)

Hence, equation (18) above can simply be represented as

J(L, Sy, Ky, U) =fU(l) Sps ki s kp) + GY (51) kis gU(Z> Sp kl)) :

(19)
So the expectations of the equation can be shown

Eis k. (LS, Ky, U] =E; sk, {fU(l) Sp Ky s, ky)

+E;g i [G(Sz’ k;, HU(L S kl))} >
(20)

and substituting this result into the definition of (17), we
then have

Eysu, (LS ki U) = J (6 S ki U) + By g 1,
[f (L Sp ks s kl)} :s K, [ (5» k, Sg)]

+E;5 1 [G s ki gV (1S Ky)) |
- G(sk Eys 1 [ST])-

(21)
After the process of iteration, we obtain
Exsi, [F (50K S7)] = By, [Eusyi [F (s ki S7) ] )
=E sk, [fU(l’ Sikpy sps kl)} >
E sk, [S7] = Eis x [Els,ks | =Eis., [9Y(L S Ky)].
(23)

By substituting the results of (22) and (23) back into the
equation of (21), we can get

Es k. (LS, Kk, U] —Eisk, {fU(l’ Si kps sps kl)]
+Es 1 {fU(l’ Si kis sps kl)]
- ](t’ St’ kt’ U)
—Es k. [G (51’ k;, 9U(l’ S kl))]

+G(s k By, [97(L S ky)]) =
(24)

Then

SUPMGU{ ek, (L Sp ki, U) = Eyg g {fU(l’ Sp kps sps kz)}
+Eg ) [fU(l) S kps 515 kl)] = J(t Sk, U)
- Et,S[,kt [G(Sz’ k;, U(l Sp kl))]
+G(sp ki Eps 1 [97 (1 S Kr)]) } =0.
(25)

Through our proposed problem (16) with the definition
of the control law in the classic work, it can be found out
that the control U coincides with the equilibrium law # in
[, T], and we formulate the following results:

J(L Sy, ky, #) = V(L Sp, ky),
£ Sy ks k) = £ (1S, K5, ), (26)
9U(l> Sp ki) =9g(L, S, ky).



Thus, the optimization problem of (25) can be solved as

Ey s, ue [ (I S ey 1, Ky)]

SupueU{EtS K, V(L S, k)] -
! V(S k)

+Et5 , [f( ,Sps kl,Sl,kl)]
Ey s,k [G(sp ki g(1 S k)]
+G(yp s 197 (b SpK)]) } =0

(27)

Here, by using the operator denotations of similarity, we
have

Et,S,,kt V(L S, k)| - V(t,S;, k) =A"V
Es.i [f (LS ks s kp)) = A,

Ep sk [f (LS k)] = Atf, (28)
Et,Sf,kt (G(sp ki» g(L Spp )] = A“G,

G(St’ k,, Et,St,kt [gU(l’ Sp kl)] ) =H"g.

The derivation of the extended HJB equation with sto-
chastic volatility will be given as,

sup,y{A"V (L5, k) = A"f (L 5,k 5, k)
FAPH LK) - A G g)(tsk) (29
+H'g(t,s,k)} =0,0<t<T.

O

sup.(w{ff‘(m’vk)*)f(kaJy(mwk)y,(ka)*;«l[/‘?k(h-‘»k)w(s»k)y(t»ka)yy(hS»k)]+:hurwﬂ'u][fi“(t~-’vk)+v< Kg(t. K)g,(6:5.K)] + {a o+

fI””(r,s,k]+[bUsfM+B ]j (b5, k) + {:a+ '+ /\U}j (ts k){m 7p'+uA’U}/+iqk)f"h(ns,)):ﬂ,
b=

1 , .-
gt k) + y —u+B" ]g(r,s,k)+i{m[’,fp'+14/\’U}5W(t,s,k){soéfp +uA’a} +;u]k,g(t,s,j):l),
FTskmiy=s- 1R o
g(T,s.k) =s.

2

Adding up all the terms related to u in (32), we have
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3. Solution Scheme

3.1. The Case with a Generated y(s, k)
Theorem 2. Under the general form of states dependent risk

aversion, the optimal control strategy of MVRAM among
risky assets is

a(t, s, k)=— <aé)‘1 {MB + (so0, — ap) }
[+ v(s k)99,

(30)

where f** and g represent the function f*(t,s, k) and g(t, s
, k) by partial equations in (32).

Proof. By using the definition of the infinitesimal generator,
we simplify and thus have

AMV (1,5, k) — AYf(t, 5,k 5, k) + A*f(t, 5, k)
- A%(Gog)(t,s, k) +H"g(t,s, k) (31)
= A (t,5, k) + H'g(t, s, k).

The resulting extended HJB equations can be rewritten
as

}[/;k(l,s,k)+y[s.k)g(l.x,k]g“(nx.k)]{xuu'f(a,,'fp'>l+u'a}'+qu/[ (5,)) + ¥(5 K)g(t 5, K)g(ts, ]}70.

(32)

where

o =f+y(sk)gg.e =1 +y(skgg,  (34)

Therefore, the first-order condition for u(t) correspond-
ing to optimal strategy can be described as
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u(t, s, k) = —(00')71 [81 B+ (so0, - ap)}

. (35)
_ N R (s k)gg,
=— <oo ) {—;k vty B+ (so0y —op) }

O

3.2. The Case with a Natural Choice y(s, k). Here, we have
y(s, k) =y(k)/s as a special form of y(s, k). Then, equation
(30) has been changed into the following form:

N~ s,k k
ﬁ(t,s,k)=—(aa) {%B+(saao—am}. (36)

Then, we make use of the following natural choice of y
(s, k):
g(t,s, k) =a(t, k)s+n(t, k),
y(h) (37)

2m
- [A(t, k)5 +2D(t, k)s + N(t, k).

f(tss,k,m,h) =a(t, k)s+n(t, k) -

By differentiation, we have

g =as+i,g.=a,g,=0,

hr. . .
ft:ds+h—¥ As? +2Ds+ N|,
m

n . d
Angmh —% A+2AM, + H H A+ Y A
j=1

4 a4
Ag= (:’1+M,a+ qu}a/>s+ (r'wMqur Z% ]> =0.
= =

From equation (42), we can have the following system of
ordinary differential equations (ODE):

d
A+2MA+H'HA+ ) quA;=0,
j=1

h7$D+M1(a7$D> Y(h)MA y(h)AH H2+quj<u7y,(::>Dj>=0,

h) h h
n—%N-f—Mz(a—%)D) - %AHerZ+ leqk/(n]—y;—m)N> =0,

J

a+Ma+ qu}a =0,

n+M,a+ qujn] =0.
j=1

fsza_ﬁ[As*-D]’fss: m (38)

Substituting the above expressions into #(t, s, k), we have
u=k;s+k,, (39)

where

(e ()

kzz (O’d’)_l {Q-Z—D

Then, we can simplify

B+ ap} . (40)

bys—p+B'ii= (bo +B'k1)s+ (B’k2 —y) =M;s+M,,
—p+o'u= (00 +0'k1>s+ (G'k2 —p) =H;s+H,.
(41)

By substituting these expressions into (32), we also have
the following alternative expressions for A" f™" and A*"g:

R . h h h d h h) h h , d K
e { W0 b, (o K000, (200) - it 1, (s gm,)]ﬁ { 05t (- 2000) - X0 S, (o _MNH

iT om

(42)

By simplifying and substituting the expressions of M,
M,, H,, H,, and k,, k, into the above equation (43), we have
the following system of ODEs:

At [2(by -8, —8,]A + (“”“

+ th i~

a*(1+ya)nd,

D+ (by—6,-6,)D+ VA +(0; —p)A+ quij=0,
j=1

4
N- %(uznz—Dz) +2(8; - D+ Zq,qN]:O, (44)

A
+ (b0+ wé -9 )a+ quja)—O
yA

a8,
n+7n——6 + (03 —p)a+ qu]n =0.




with the terminal conditions

A(T, k) =a(T, k) = 1,D(T, k) = N(T, k) = n(T, k) = 0, (45)

where
8, =B (00’>_1B, 8,=B (00')_1000, 8,=B (00')_10;).
(46)

Following the process of simplification, the equilibrium
control can be represented as (39)

ﬁ(t, S, k) :kl(t, k)5+k2) (47)

where

Nl /a-y(k k)a
k1=<00) <a V(y)(fz);?()

2
B—000>,

B+ ap] : (48)

k, = (00')71 {a i Z\_D

and the equilibrium value function of correspondence is
given as

V(t,s k)= [@( (t,k)—A(t,k)) +a(t k)}
- %’:) [n*(t, k) = N(t, k)]
+ [y(k)(a(t, k)n(t, k) — D(t, k)) + n(t, k)],
(49)
where A(+), D(+), N(-), a(-), and n(-) satisfy the ODE system
in (44).

3.3. The Case without Liability. By letting I(t) = 0, the asset
liability problem will be tackled as a portfolio selection prob-
lem. We have S(t)=X(¢t), V(t,sk)=](t,s k u(-)), and
then, the portfolio optimal control # turns to be

a(txk) = (00") KWB—MQH ;(a : n—D)},
(50)

which corresponds to equilibrium value function defined as

V(t,x k) = g (a® = 4) +a|x+ [y(a-n-D)+n]

(51)
+ 2lx(nz—N),
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where A, a, D, n, N satisty the following system of ODEs:

+[2(by—8,) - 6,]A+ (a ’ Va

+ quf ]—0

a*( 1+ya

D+ (by-8,-8,)D+

+ qu}

. a*n?-D?
Ne =30 ZlqijfO)
=

—vA 2 d
+ <b0+ w(ﬂ —82>a+ qujaj=o,
YA =1

28, D
n+ a—n—a—S + qu]n =0,

(52)
with the terminal conditions
A(T,k)=a(T,k)=1,D(T, k) =N(T, k) =n(T,k)=0. (53)

The ODE:s are still complicated, which requires to make
a further restriction such that the first asset is risk-free,
namely, b,(t, k) =r(t),o,(t, k) = (0,---,0)", and we have &,
=0, nor does liability. Hence, the portfolio optimal control
71 is shown as follows:

1 _ A 2 B
u(t,x, k)= (00') K%Bx+ Z(a-n—D) .
(54)
Then, it comes to the equilibrium value function as
(Y2 _ Y (2
V(t,x, k)= 5(a A)+a|x+[y(a-n-D)+n]+ a(n N),
(55)

where A, a, D, n, N satisfy the following system of ODEs:

, +

A+[2r—81]A+(a y +qu] =0,

. 1+ya
D+(r—61)D+ +qu] D; =0,

. a*n?-D?

fo oD 6+ Y N, =0, (56)

j=1
, a-—yA +ya* d
a+ r+7yA 0, a+;qkjaj=0,

n+—n——6 + qu]n =0,
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with the terminal conditions

A(T, k) =a(T, k) = 1, D(T, k) = N(T, k) = n(T, k) = 0. (57)

4. Numerical Example

According to the research studied by Chen et al. [32] and
Wei et al. [15], the market state is either “Bullish” or “Bear-
ish” with the assumption of d = 2, where Regime 1 refers to
“Bullish” and Regime 2 to “Bearish.” In this section, it is
exposed to illustrate the results numerically obtained in Sec-
tion 3. We present the optimal control strategy and the equi-
librium value in three different situations: the first situation
is state-dependent risk aversion in a regime switching mar-
ket with one bond and one risky asset without liability; the
second situation is different from the first with liability,
while the last one is in the same situation but with two risky
assets.

4.1. The Case with Liability. Similarly, all the related constant
parameters in situation two can been seen in Table 1, which
are specified for the illustrative purpose.

The corresponding ODE system becomes

(a2 + YIa%>2611
yid,

Al +2r = 8]A + +q4A; + 4,4, =0,

. (“2 + Yz“%)zfslz

Ay +[2r=8p)A + oy +qyA; + 44, =0,
Y24,

aj(1+y,a,)n,8

Dy + (r,=8,1)D; + (85, — ) )A, + U 49,0 +4q,D,=0,

114,
. a3 (1 + y,a,)n,8
Dy +(ry =815)Dy + (83, — ) As + % +4, D, +q,,D, =0,
242
. a*n? - D?
Ny +2(85 —uy)Dy + %611 +4;N, +q,N, =0,
1

azn?

. - D?
N,y +2(85, —p,)D, + %612 +45 Ny +q5,N, =0,
2

a, —y,A, +vy,a°
ay + <’"1 + L;yllé\u)% +4y,8, + 41,8, =0,
Y144

2
. a, —y,A, +y,a

2 Y Ar 1,4 _
a + <’2 + 220y Ay + 4y,a + G50, =0,

V24,
. a? a,D
ny+ 211 ny - %511 + (831 — py)ay + gy m +qpn, =0,
1 1

2

. a3, a,D,

ny+ 2 T 81y + (83— )@y + 45111y + Gy, =0,
2 2

with the terminal conditions

TaBLE 1: All the related constant parameters in the case with
liability.

Regime 1 Regime 2
Parameter (symbol) (i=1) (i=2)
Exit time (T}) 10 10
Risk-free interest rate (r;) 0.04 0.04
Risky asset appreciation rate (b;) 0.2 0.05
Risky asset volatility (o;) 0.3 0.07
Liability appreciation rate (u,) 0.08 0.04
Liability volatility (p,) 0.3 0.1
Differentiation of transition
probabilities (g;) 03 07
Risk aversion (y,) 0.5 0.9
where
2
K- (bl 1’1) 5. = (bZ B 7’2)
11 G% 013 G% ’
b,—r b,—r
631 — ( 1 1)p1’632= ( 2 2)p2. (60)

0 0,

4.2. The Case with a Natural Choice y(s, k). Again, all the
related constant parameters in situation three have been rep-
resented in Table 2. All parameters are specified for the illus-
trative purpose.

The resulting ODE system are shown as follows:

(al + Yﬂ%)zal

Al+[2(b01 =0y) — 0y JA + 24 ! +4 A 41,4, =0,
Y1

2
. a, +y,a3)"8
Ay +2(bgyy — 85) — 81]A, + (a2 +7283) 01 Y; 1) % + Gy A; + A, =0,
2412

at(1+y,a)md,

Dy + (b = 85 = 8,,)Dy + (83, — 1,)A, + VA L +4,,D, +q,D, =0,
1411

a2(1 +y,a,)n,0
=0y =0,)Dy + (83, — 1) Ay + w +qy, D) +45,D,=0,

D, + (b
5 + (boy Vs
- a1}
Ny +2(85 —py)Dy + 811 +q, Ny +q,,N, =0,
any - D

N, +2(85, - ,)D, +

81, +qy Ny +q,N, =0,

-y,A, +y,a2
ap + (bm 0y + W‘Su)“l 41161 + 41,8, =0,
141

. Ay = VoA, + 7,43
a + (boz —0p+ %512 @y +qy; +qpa, =0,
24

2

aid a
11
Ly

. D
n+ A M 1141]611+(631_!"1)“1+411”1+‘112”2:0’

2
. a3l a,D.
ny+ zAunz_ ZA2512"’(832_.‘42)‘12*‘121”1+‘122"2:0s
2
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with the terminal conditions

=
=
I
b
=
-
I
RS
-
I
S
no
\j
I
=

(62)

where

S = (by; _bm)z _ (blz_boz)z S = (byy = boy)ogy
n=——y3

(011_001)2) e (‘712_002)2) 2 oy -0y
8o = (b1, = bp2)00, S = (b1 = boy)p, Sur = (b2 = b)) Py
2 012 =02 o 011 =001 - 01 =0
(63)

4.3. The Case without Liability. All the related constant
parameters in situation one have been displayed in Table 3,
which are specified for the illustrative purpose.

The ODE system of (56) can then be simplified in the
form of the following expressions:

(a, + ylaf)z(s

; 11
Ap+[2r = 6y]A + +qpA; +41,4,=0,

Y%Al
2

; a, +7,43) 0,

Ayt [2r, = 85)A, + % +qy A, 4,4, =0,
Y24,

. 2(1 + é

Dy +(ry = 8y,)D; + ‘11()’1—21)"111 +q,,D, +q,,D,=0,
Y144

. 2(1 + é

D, +(ry=681,)D, + 612())2—:2)’1212 +4y Dy +4,5,D, =0,
Y242

. 2.2 _DZ

N, + %511 +q Ny +q;,N, =0,

1
) 2,2 _ 2
N, + B 2512+‘J21N1+Q22N2=0’
A,
-y, A +v,a
a) + ("1 + Lfiwan)“l +4q5,0, + 4,8, =0,
Y144
. —y,A, +y,d>
a + (”2 + Lmalz) ay + 45,01 + qpa, =0,
Y242
28 D
ny+ kol n = 4 l611 + 4,1 + g1, =0,

A A
5%512 a,D, 5

n, + n, —
2 2
A2 A2

12+ qa 1 + 451, =0,

(64)

with the terminal conditions
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TaBLE 2: All the related constant parameters in the case with a
natural choice y(s, k).

Regime 1 Regime 2
Parameter (symbol) (i=1) (i=2)
Exit time (T}) 10 10
The first risky asset appreciation rate 03 0.06
(boi)
Other risky asset appreciation rate 02 0.05
(by,)
The first risky asset volatility (o;) 0.3 0.07
Other risky asset volatility (o;) 0.2 0.09
Liability appreciation rate (4,) 0.08 0.04
Liability volatility (p,) 0.3 0.1
Differentiation of transition
probabilities (g;) 0.3 0.7
Risk aversion (y;) 0.5 0.9

TaBLE 3: All the related constant parameters in the case without
liability.

Regime 1 Regime 2
Parameter (symbol) (i=1) (i=2)
Exit time (T)) 10 10
Risk-free interest rate (r;) 0.04 0.04
Risky asset appreciation rate (b;) 0.2 0.05
Risky asset volatility (o;) 0.3 0.07
Liability appreciation rate (4,) 0.08 0.04
Liability volatility (p,) 0.3 0.1
D1fferer.1F1z.1t1on of transition 03 0.7
probabilities (g;)
Risk aversion (y;) 0.5 0.9
where
by 1) (by—1,)°
5, =N Oy = 22 66
11 O'% 12 (T% ( )

From Figures 1-6, in the “Bearish” market, we could see
the optimal control strategy u is increasing as time goes by
along with the increase of equilibrium value. They capture
the optimal strategy of the utility and keep it for the whole
time, because the investor pays attention to the utility func-
tions during the entire time. It is reasonable for the time
consistent investor to sacrifice parts of the utility or happi-
ness to secure suflicient budget in order to avoid unpredict-
able deficits. On the other hand, from Figures 1-6 for the
“Bullish” market, the optimal control strategy is growing
with time while the equilibrium value decreases. At the
beginning of the investment in the “Bullish” market, the
investor is confident enough to employ the strategy which
would lead to a optimize equilibrium value. Over time, the
investor will have less investment time to invest to maximize
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Optimal control (u)

Equilibrium value (V)

Optimal control (u)
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Time (t)
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FiGure 1: Optimal Control u.
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F1GURE 2: Equilibrium value V.
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FIGURE 3: Optimal control u.
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Equilibrium value (V)

Optimal control (u)

Equilibrium value (V)
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FIGURE 4: Equilibrium value V.
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FIGURE 5: Optimal control u.
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FIGURE 6: Equilibrium value V.
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Comparison of optimal control  in bull Market

300 A

200

100

Optimal control (u;
S

—-100 -

—-200

=300 T T T

Time (t)

—— Risk free without liability

——— Risk free with liability

Risky assets with liability

FiGgure 7: Comparison of optimal control u in Bull market.

Comparison of equilibrium value in bull market

150 4

140 4

130 4

120 4

Equilibrium value (V)

110 4

100 T T T

Time (t)

—— Risk asset without liability

——— Risk asset with liability
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FiGure 8: Comparison of equilibrium value in Bull market.

their current utility as well as the benefit from the “Bullish”
market because of the state-dependent risk aversion.

In Figures 7 and 8, they compare the results of optimal
control strategy and the equilibrium value among three dif-
ferent situations under the “Bullish” market.

In Figure 7, with the comparison of optimal control strat-
egy (u) in Bull market among three different situations, we
find that there is no significant difference between the situa-
tions with and without liability. When the investors come
across the “Bullish” market, they are willing to invest the risky
asset instead of bearing the liability. However, in the situation
with all risky assets, the optimal control strategy provides a
way to invest in one of risky assets, which highly depends on
the parameters of the two risky assets. In Figure 8, the compar-

ison analysis on the equilibrium values in Bull market among
three different situations has been conducted. The figure
shows decreasing evidence along with levelling off, of which
the reason has been explained above. For the situation with
all risky assets, the equilibrium value has a more stable trend
which also depends on the selected two risky assets.

In the last picture, the comparison has been made about
the optimal control strategy by varying the risk aversion
coeflicient. The effect of the risk aversion has been analysed
in Figure 9, which presents the optimal control strategy (u)
under three different risk aversions. Obviously, as the risk
aversion increases, it can be seen that the investor is less
likely to invest in risky assets, which is consistent with com-
mon sense.
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Optimal control u under different risk aversion
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FIGURE 9: Optimal control » under different risk aversions.

5. Conclusions

In this paper, the mean variance model of asset-liability
management has been discussed in the case of state-
dependent risk aversion with only risky assets. Based on
the continuous-time Markov regime-switching, this paper
derives an analytical optimal control expressions theoreti-
cally in a more realistic financial market and then makes
numerical analysis on a series of special cases. From the
numerical results, this paper reveals the feasibility and appli-
cation of introducing factors, such as regime-switching, lia-
bility, and risky asset in a mean-variance optimization
framework, and also shows the relationships between a set
of risk aversions and the optimal controller.
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Lie symmetry analysis of differential equations proves to be a powerful tool to solve or at least reduce the order and nonlinearity of the
equation. Symmetries of differential equations is the most significant concept in the study of DE’s and other branches of science like
physics and chemistry. In this present work, we focus on Lie symmetry analysis to find symmetries of some general classes of KS-type

equation. We also compute transformed equivalent equations and some invariant solutions of this equation.

1. Introduction

Symmetry has been a source of inspiration as a powerful tool
in the formulation of the laws of the universe. A great num-
ber of physical phenomena is transformed into differential
equations. Lie symmetry analysis can change the given differ-
ential equation into an equivalent form which is easier to
solve. In the analysis of differential equations, the symmetry
group approach is quite useful. Galois’s use of finite groups
to solve algebraic equations of degrees two, three, and four,
as well as to prove that the general polynomial equation of
degrees larger than four could not be solved by radicals,
served as the paradigm for this application [1-7]. The sym-
metry group approach is well-known for its importance in
the field of differential equations analysis. Sophus Lie is cred-
ited with the invention of group categorization methods and
the theoretical basis for the Lie groups.

There are many different methods for computing the
symmetries of differential equations. But Lie symmetry anal-
ysis is the best because it is a systematic and algorithmic
procedure that does not take into account any guesses or
approximations. The principal paper on Lie symmetry is

[1], in which Lie demonstrated that a linear 2D, 2nd-order
PDE admits at most three boundary invariance group. He
processed the maximal invariance group of the one-
dimensional heat conductivity and used this analysis to com-
pute its explicit solutions. Symmetry reduction is a leading strat-
egy for resolving nonlinear PDEs. Ovisiannikov made a
substantial contribution in persisting with these techniques.
He presented the strategy of partially invariant solutions [2,
3]. In this work, he gave a methodology that is based on the idea
of group called the equivalence group. Gazizov and Ibragimov
[8] tracked down the total symmetry analysis of the one-
dimensional Black-Scholes model. Shu-Yong and Feng-Xiang,
[9] discussed about the connection between the form invariance
and Lie symmetry of nonholonomic framework. Buckwar and
Luchko [4] initiated the study of symmetry group of scaling
transformation for PDEs of fractional order. Yan et al. [6] per-
formed Lie symmetry analysis and fundamental similarity
reductions for the coupled Kuramoto-Sivashinsky(KS) equa-
tions. Bozhkov and Dimas [10] computed the conversation
laws and group classification for generalized 2D KS equation.
Nadjafikhah and Ahangari [7] determined the Lie symme-
tries and reduction for the two-dimensional damped
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FIGURE 1: Flame front position.

Kuramoto-Sivashinsky ((2D) DKS) equation. Najafikhah
and Ahangari also computed Lie symmetry of 2D generalized
Kuramoto-Sivashinsky (KS) equation in [11]. The one-
dimensional modified KS-type equation is
ut+uxx+uxxxx+(A_l)ui_auixzo’ (1)

Chou [12] determined the solution of the cauchy prob-
lem for the MKS equation and also computed the solvability
with the help of the blow up theorem.

In the present paper, we deal with the generalized modified
one-dimensional Kuramoto-Sivashinsky (GMKS) type equa-
tion and determine the symmetry algebra by using Lie symme-
try analysis. In particular, we want to find the optimal system
and similarity solutions corresponding to some special cases
of GMKS equation. The GMKS type equation is given as

fl)u, + v+t + (A - 1)ui—aufm:0. (2)

We seek the Lie symmetry algebras for this GMKS equa-
tions for f(u) =u", f(u)=e"™, and f(u) =" where A and o
are arbitrary constant and A # 1. For A = 1, equation (2) is pro-
posed in [13]. Its second derivative satisfies an equation of
Cahn-Hilliard type in [14]. This equation has various applica-
tions as physical models in biofluids, mechanics, and liquids.
In equation (2), u is the velocity function, x is space parameter,
and ¢ is time variable. This equation can also be derived from a
model in the continuity equation by fitting a suitable function
[15]. Actually, the Kuramoto-Sivashinsky equation gives the
change of the position of a flame front (Figure 1). It shows
the flame front position against time for horizontally propa-
gating methane flame, the movement of a fluid going down
a vertical wall, or a spatially uniform oscillating chemical reac-
tion in a homogeneous medium [16]. This equation is also
helpful to display solitary pulses in a falling slender film [17].
Figure 2 shows the schematic representation of the flow show-
ing a film flowing vertically down, subjected to an electric field
imposed across electrodes separated by a distance d.

Journal of Function Spaces

2. Lie Symmetry of Generalized Modified
Kuramoto-Sivashinsky Equation

In this part, we compute our main results.

Consider one parameter local Lie group of transforma-
tion for the independent factors x, ¢ and dependent factor
u as follows:

x" =x+0a(x, t,u) + 0(62),
t" =t +8p(x, t,u) + O(8?), (3)
u'=u+dy(x,t,u)+ 0(62),

in which § € R is the parameter.

Proposition 1. For all n> 1, n € N, the algebra of symmetries

of

W'+ Uy + Uy + (A= Dl —oul, =0, (4)

is 2-dimensional Abelian Lie algebra.

Proof. The general infinitesimal generator (symmetries) is
H=ua(x,t,u)0, + B(x, t,u)0, + y(x, t, u)0,,. (5)

The derivation of nth prolongation of H

a 9
wm:H+ZZﬁmM(aJ, (6)
-1 P Up

interprets the relating jet space Q" ¢ X x U”", where q is a
dependent variables, and P = (P, P,, ---P,) with 1< P, <p,
1<k<nand

p p
n 1 i i
Vf(x’” )=Dp <Vi_ Z“”l) + Z‘xl“ P> (7)
I=1 1=1

where p is an independent variable and u', = du'/0u’ and
u'p, = 0up/0x!.
The fourth-order prolongation of H is

P —HAy 0yt O O e O
Y ou,, Y ou, Y ou,, Y ou,,
+ ytt ai” + ,yxxx a axxx + yxxt auaxﬂ + yxtt ajxn (8>
d 0
" Otdyyy e Oy o T
0 0 0
o Othyy o Othyyy o Oty

pr[u'u, + vy + ug + (A - 1)1} — o1, | =0 mod (2),

nun—l,yt + yxx + yxxxx + 2(/1 _ 1)uxyx _ 2O'Uxxyxx =0 mod (2)
)
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FIGURE 2: Schematic representation of the flow showing a film flowing vertically down.

TasLE 1: Commutator table.

[] H, H,

TaBLE 2: Adjoint table.

ad H, H,
Hl Hl H2
H2 Hl HZ

We can calculate y',y*, y**, and y*** from equation (7)
such that

Dy(y — au, — Bu,) + au,, + Puy,

Dx(y au, — ﬁut +au,, + ﬁuxt’

X + ﬁuxxt’

)
=D (y — au, — Bu,) + au,,
Y —au, = ﬁut) T AUy t ﬁuxxxxt’

2
x(

D*
XXXX x(
where D, and D, are total derivatives.(J O

Putting all the above in equation (9) and eliminating u,
by using the relation u,=1/u"(ou?, —(A-1)u-u,, -
U,y )> WE get a polynomial equation containing the different
differentials of u. Equating the coeflicient of u to zero, which
are some derivatives of «, 3, and y, it gives the total set of
determining equations.

a,=a,=a,=0,8=p,=06,=0,y=0. (11)
This gives
a(x, t,u) =0, B(x, t,u) =0,p(x, t,u) =0. (12)

This implies that the Lie group (algebra) of infinitesimal
generators of equaution (2) is comprised of two vector fields:

H, =9,

(13)
H,=0,.
The commutator table of the Lie group for equation (2)
is given as in Table 1,
The adjoint table of infinitesimal symmetries for equa-
tion (2) is given as in Table 2,

In this case, we have only two different basis for a Lie
algebra of symmetries.

Hence, this shows that the group of symmetries of equa-
tion (2) is two dimensional and tables ensure that it is
abelian.

Proposition 2. For all n > 1 and n € N, the group of symme-
tries of

u' 2 2 _
€U+ U+ Uy + (A= Dy —ouy, =0,

(14)
is two-dimensional abelian.

Proof. The infinitesimal generator is

X =a(x, t,u)0x + B(x, t, u)0t + y(x, t, u)ou. (15)

In order to find the symmetry group of equation (14), we
have to apply invariance condition that is X®(5)=0
mod (6) on equation .(14) where X is the fourth-order
prolongation of X given as

0 0
P (4) I XX xt "~
g Ty ou,, AR ou,,
+y oy Y oy 2
autt auxxx auxxt auxtt (16)
0 0
ttt XXXX XXXt
y auttt ' y auxxxx ' y auxxxt
xxtt 0 Xttt 0 tttt 0

Ty ou 4 ou

Ty
xxtt Otdyyyy

Xttt

After applying an invariance condition on equation (14),
we get
ey Yy 2 (A - Duy”

=0.mod (2). (17)

- Zouxxy

We can calculate ', y*, ™, and y** from equation (7)
such that

Y = D,(y — au, — Bu,) + au,, + Pu,,
V' =Dy (y —au, — Pu,) + audy, + Puy, (18)
P = ch(y au, — Pu,) + Kty + Py
YO = Dy = e — Bit) + ik + P

where D, and D, are total derivatives.(J O



TaBLE 3: Commutator table.

[ -] X, X,
X, 0 0
X, 0

TaBLE 4: Adjoint table.

ad X, X,
Xl Xl XZ
XZ Xl XZ

After putting all the above in equation (17), and elimi-
nating u, by using the relation u, =1/¢* (ou, — (A —1)u?
— Uy — Uy )> We get a polynomial equation containing
the different differentials of u. Equating the coefficient of u
to zero, which are some derivatives of «, f3, and y, it gives
the total set of determining equations, as given by

‘xx:at:au:o’ ﬁx:ﬂt:ﬂuzo’ YZO’

that gives

a(x, t,u) =0, B(x, t,u) =0, p(x, t,u) =0. (19)

This implies that the Lie group (algebra) of infinitesimal
generators of equation (9) comprises two vector fields. Fol-
lowing, Table 3 gives the commutator table as

20
X,=9,. (20)

The commutator table of the Lie group for equation (14)
is given in Table 3,

The adjoint table of infinitesimal symmetries for equa-
tion (14) is given in Table 4,

In this case, we have only two different basis for Lie
algebra.

Hence, this shows that the group of symmetries of equa-
tion (14) is two-dimensional abelian.

2.1. Symmetry Algebra for e u, + uy, + iy + (A= D2 -0
u2_ =0 When n= 1. For n= 1, the equation is

AU+ g + U, + (A= 1)l —oul =0. (21)

The general infinitesimal generator is
V =1(x,t,u)0x + p(x, t, u)0t + v(x, t, u)ou. (22)

In order to find the symmetry algebra, we have to apply
invariance condition that is

V"M (A)=0mod (4), (23)

on equation (21) where V* is the fourth-order prolonga-
tion of V such that

Journal of Function Spaces

0 0 0
PrOV=V4+v —— v — 4™ + 7
ou, ou, ou,, ou,,
0 0 0
+ vtt + XXX + Vxxt + vxtt
autt auxxx auxxt auxtt
+ vttt a + XXXX a + vxxxt a
auttt auxxxx auxxxt
+ ,vxxtt a Xttt a tttt a
Othyyy Othyyyy Oty
(24)

After applying invariance condition (23) on equation
21

ue"vi + v + v 4 2(A = D u v - 20u,v™ =0 mod (A),

(25)
where v/, V¥, v, and v¥** from equation (7) such that

t
v =D,(v—Tu, — pu,) + Tu, + puly,

X _
V' =D, (v —Tu, — pu,) + Ty, + [y,

)
V= Dyzc(v —TU, — [’lut) T Tl T Pl
)

XXXX _ 1yd
v - Dx(v —TU, — YUy )+ Tl T Wl

where D, and D; are total derivative.

Putting all the above in equation (25), we eliminateu, by
using the relation u, =1/e“(ou?, — (A= 1)1 — uy, — tiyyyy)
and get a polynomial equation containing the different dif-
ferentials of u. Equating the coefficient of u to zero, which
are some derivatives of 7, g, and v, it gives the total set of
determining equations.

szth‘ru:O’ [/lx=‘l/l[=‘uu=0, V=0,

that gives

T(x, tu) = p(x, Lu)=cit+ o, v(x, tbu)=¢;. (27)
This implies that the Lie group (algebra) of infinitesimal

generators of equation (21) is comprised of three vector
fields:

V,=0,+t0, (28)
V,=0, (29)
V;=0,. (30)

The commutator table of the Lie group for equation (21)
is given in Table 5,

The adjoint table of infinitesimal symmetries for equa-
tion (21) is given in Table 6,

In this case, we have three different Lie algebras.

Theorem 3. The algebra of symmetries of Kuramoto-
Sivashinsky type equation is

e Uy + Uy + U + (A= D1 — 012, =0, (31)
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TaBLE 5: Commutator table.

[ > ] Vl V2 V3
v, 0 -V, 0
V, V, 0 0
v, 0 0 0

[ad] Vi v, Vs
v, Vi V,eé Vs
v, V, -V, v, Vs
Vs Vi v, Vs

where it is two-dimensional abelian for all n> 1, neN and
three-dimensional nonabelian for n=1.

Proof. The proof follows easily using Propositions 1 and 2.0J
O

Theorem 4. If G (x, t, u) be the one parameter group gener-
ated by equation (28) then

Gl(x, t,u) = (x,€'t,u),
GX(x, t,u) = (x,t+s,u), (32)

G(x t,u) = (x+s,t,u).

There will be a family of solutions to each one parameter
subgroups of the full symmetry group of a system called group
invariant solutions.

Theorem 5. If u = f(x, t) is a solution of equation (21), so are
the functions

! =f(x,e"t),
W =f(xt-s), (33)
113=f(x—s, t),

where &' =G’ x f(x,t), i=1,2,3 and s<<I is any positive
number.

Proof. The one parameter Lie group of equation (21) is
G : (v, t,u) — (x, €'t u), (34)
with the infinitesimal generator
V, =tot + du, (35)
if ' (x, t) is any function then it transformed by G! as

i =u,

' =f(x,t), (36)

F1GURE 3: For u!(x, t) = sin (x) + (), s = 0.00001.

now

(5c, ?) =(x,€7°t),
therefore,

' =f(x et).

The graph for ' = f(x, e™t) is given in Figure 3.
The one parameter Lie group of equation (21) is

Gf C(xtu) — (X t—s,u),
with the infinitesimal generator
V, = tot,

if #*(x, t) is any function then it transformed by G? as

~2

o =u,
i = f(x 1),
now
(% 1) = (x, t =),
therefore

W =f(xt-5s).

The graph for #* = f(x, t - s) is given in Figure 4.
The one parameter Lie group of equation (21) is

G :(xtu)— (x—stu),

(37)

(38)



FIGURE 4: For u!(x,t) =log (x +t) — 5,5 = 0.00001.

with the infinitesimal generator
V, =1tox, (45)

if i1’ (x, t) is any function then it transformed by G as

w=u,
(46)
i = flx,1),
now
(% 1) = (x =5, 1), (47)
therefore

i =f(x-s1). (48)

The graph for &’ = f(x —s,t) as a solution is given in
Figure 5.00 |

3. Optimal System of Subalgebras

This is remarkable that the Lie symmetry technique assumes
a significant part to determine the solutions of PDEs as well
as performing the symmetric reductions. Every combination
(should be linear) of infinitesimal symmetries(generators)
is a result of another infinitesimal symmetry(generator).
As any transformation in the full symmetry groups plot a
solution to another, it is sufficient to determine the invariant
solution which are not related by transformations in the full
symmetry group; this prompted the Optimal system [18, 19].
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FIGURE 5: For u3(x,t) = (x —s) + cos (t), s = 0.00001.

Theorem 6. A 1D optimal system of equation (21) is given by
those generated by

Y, =V,
Y,=V,,

Y, =V, (49)
Y, =V, +V,

Y,=V,-V,

Proof. Since the combination of vector field (infinitesimal
generator) is also a vector field. Consider a linear combina-
tion V of V, V,, and V5,

3
V=Y =bV, (50)
i=1

a nonzero vector field. Here, for proof, we will improve

as many of the coefficient b,'s as possible by using adjoint
application on V.(J

Case 1. Firstly assume that b; # 0 then
V=bV, +bV,+V,, (51)
acting on V with Adj(exp (b,/b,)V,) by using the adjoint
table (adjoint Table 3)
, . b,
V' = Adj( exp b_V2 V=bV, +V,. (52)
1

When b, >0, then we get Y.
When b, <0, then we get Y.
When b, =0, then we get Y.
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Case 2. Let b; =0 and b, =0,
V=50V, (53)

when b; =1 then we get Y, Let b; =0, b, = 0 and b,, then we
get Y, There is no any more cases for consultation and the
proof is complete.

4. Lie Invariants and Similarity Solutions

We can discover that the invariants correlate with the infin-
itesimal symmetries (28); they can be determined by solving
the equations (by using characteristic method). For V, = 0t,
the characteristic equation is dx/0 = dt/1 = du/0 and the cor-
responding invariants of this system x =r and u = w.

We obtain a similar solution of the form w =w(r), and
we put it into equation (21) to obtain the form of the func-
tion w, and then, we conclude that w = w(r) = w(x) solution
of the following differential equation as similarity reduce
equation:

Wy + Wy + (A - l)wz - war =0. (54)

For other example, take V; = 0x; the characteristic equation
for this has the form dx/1 = dt/0 = du/0 so the correspond-
ing invariants are t =r and u = w.

Taking into account the last invariants, the following
similarity solution is obtained w=w(r)=w(t) where the
solution satisfied the similarity reduce equation:

e’w, =0. (55)

r

5. Conclusions

The present paper addresses Lie symmetries for some gen-
eral cases of modified one-dimensional Kuramoto-
Sivashinky equation (MKS) as well as its similarity solutions
using a symmetry operator. In Section 2, we discussed gen-
eral results for Lie algebras for some general cases of MKS
and provide a comparison between them and obtained some
general results. In Section 3, we find the optimal system for
(MKS). In the last section, we obtained similarity solutions
and Lie invariants.

Remarks. It is worthmentioning that f(u) can be any arbi-
trary function. For other similar functions chosen as f(u),
the procedure for symmetry analysis can be very tedious
and symmetry algebra can be different.
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This paper deals with a class of quasilinear parabolic equation with power nonlinearity and nonlocal source under homogeneous
Dirichlet boundary condition in a smooth bounded domain; we obtain the blow-up condition and blow-up results under the

condition of nonpositive initial energy.

1. Introduction

In this paper, we consider the following quasilinear
parabolic equation with power nonlinearity and nonlocal
source term:

U= A+ yupj uP“(y, t)dy - k|u|P_2u, (x,1) € Q2 x (0, T),
Q

u(x,t) =0, (x,t) €0Qx (0, T),

u(x,0) = uy(x), xX€Q,

(1)

where QCRY(N>1) is a bounded domain with smooth
boundary 9Q and A,u=div (|Vul’ “Vu) is the standard

p-Laplace operator with p > 2, i, k > 0, u,(x) € W () \ {0}.

In the past decades, many physical phenomena have
been expressed as nonlocal mathematical models (see [1,
2]). It is also suggested that the nonlocal growth term pro-
vides a more realistic model for the physical model of com-
pressible reaction gas. Problem (1) appears in the study of
fluid flow through porous media with integral source (see
[3, 4]) and population dynamics (see [5, 6]). Actually, equa-
tions of the above form are mathematical models occurring

in studies of the p-Laplace equation ([7-15] and references
therein), generalized reaction-diffusion theory [16], non-
Newtonian fluid theory [17, 18], non-Newtonian filtration
theory [19, 20], and the turbulent flow of a gas in porous
medium [7]. Media with p > 2 are called dilatant fluids and
those with p <2 are called pseudoplastics. If p =2, they are
Newtonian fluids. When p # 2, the problem becomes more
complicated since certain nice properties inherent to the
case p =2 seem to be lose or at least difficult to verify.

Blow-up results of parabolic equations with nonlocal
sources have been studied as well. For example, the problem
of the form

u, =div (|Vuf?Vu) + J uldx, (x,1)eQx(0,T)
o

(x,t) €0Qx(0,T)
x €],

(2)

was studied by Li and Xie [7]. They established global
existence of solutions and discussed the blow-up proper-
ties of solutions.
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The authors in [8] studied the following p-Laplacian
equation with power nonlinearity

u, — div (|Vu|P'2Vu) + \u|"_2u= |u\"'2uln lul, xeQ,t>0,
(x,1) €202 (0, T),
xeN.

u(x,t) =0,
u(x,0) = uy(x),

(3)

By using an efficient technique and according to some suf-
ficient conditions, the global existence and decay estimates of
solutions under some sufficient conditions are discussed.

The authors in [9] considered the Neumann problem to
the following initial parabolic equation with logarithmic
source:

u, —div (|Vul2Vu) = [ul’u log |u] —i) |ufP*ulog [uldx, xe€Q,t>0,
o
0
u(x, t) -0,
on
(3.0) = 1y x),

x€00Q,t>0,

x €,

(4)

in a bounded domain with smooth boundary, p > 2. By using
the logarithmic Sobolev inequality and potential wells
method, they obtain the decay, blow-up, and nonextinction
of solutions under some conditions.

In [10], the following model of a quasilinear diffusion
equation with interior logarithmic source has been studied:

u, —div (|Vulf?Vu) = [ulf Pulog [u|, xe€Q,t>0,

u(x,t) =0, x€00,t>0,

u(x,0) = uy(x), x€Q,

(5)

in which p > 2, uy(x) € Wy () \ {0}. By using the potential
well method and a logarithmic Sobolev inequality, the
authors obtained results of existence or nonexistence of
global weak solution. They also provided sufficient condi-
tions for the large time decay of global weak solutions and
for the finite time blow-up of weak solutions. Among some
other interesting results, they showed that the weak solution
u(x, t) of problem (5) blows up at finite time under the con-
dition J(u,) <M and I(u,) <0, where M >0 is a constant;
the energy functional J(u) and Nehari functional I(u) are
defined as follows:

1 1 1
J(u) =~ Vup——J ul? log |uldx + — ||ul?,
()= 19l = - | Jul og fufd +
(6)
I(u) = ||Vl —j juf? log |uldx,
? (0}

in which [, = (J,|-FPdx)"”.
Motivated by the above studies, in this paper, we
investigate blow-up results of problem (1). We will give the
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conditions for the blow-up results and establish the lower
bounds for the blow-up rate. Our main results are as follows.

Theorem 1. Assume that J;(u,) < 0. Then, the weak solution
u=u(x,t) of problem (1) blows up at finite time.

Theorem 2. Assume that u,€ H)(Q) and J,(u,) <0, let
u=u(x,t) be the nonnegative solution of problem (1), then
u blows up in finite time

o el
1= @+ 4, @)

Theorem 3. Assume that u,€ H)(Q), J;(uy) <0, jg"

|ug(-5)|[3ds >0 for any t,>0, then, the weak solution
u=u(x,t) of problem (1) blows up at infinity. Moreover,
if |lugll, < (=) (1)), the lower bound for blow-up rate
can be estimated by

2 [ 15 (8)

2. Criterions of Blow-Up

2.1. Preliminaries. In this section, we start with the definition
of weak solution and blow-up at infinity of (1).

Definition 4 (weak solution). Let T>0. A function u=
u(x,t) € L°(0, T; X,) with u, € P (0,T; W' (Q)) N L2
(0, T5L*(Q)) is called a weak solution to problem
(1) in Qx[0,T), if u(x,0)=u,(x)eX, and wu(x,t)
satisfies (1) in the sense of distribution, i.e.,

(u,, ) + <\Vu\P’2Vu,Vw> + k<|u\"’2u,w> = [,t<uPJQu"”(y, t)dy,a)>,
9)

for all we WyP(Q),t€(0,T), where X,=W,*(©)\ {0},
W2(Q) to denote the dual space of Wy (), and
p is Holder conjugate exponent of p>1.

Definition 5 (blow-up at infinity). Let u(x, t) be a weak solu-
tion of (1), we call u(x,t) blow-up at +co if the maximal
existence time T = +00 and

lim |ju(- t)||, = co. (10)

t—>+00

To obtain the blow-up results, define the potential
energy functional and the Nehari’s functional as follows:

1 k U
T (u) = = |Vul|l? + = ||u|lf - JJu"”x,tuP“ L Hdxdy,
1) pH II7 pH II7 o (x, )" (y, t)dxdy

2p+2
1) = 9l Klul ~ ]| s 00 0, )y
(1)

To prove the main result, we need the following lemmas.
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Lemma 6. Assume that u(x, t) is a weak solution of (1). Then,
J,(u) is nonincreasing with respect to t and satisfies the
energy inequality

J;IIMS("S)|§d$+11(”)ﬁh(uo)’f€[0>To)- (12)

Proof. Similar to the proof in [8, 10, 11], we can get
the result. O

Lemma 7. [8] J,(u) is a nonincreasing function, for t >0,
Ti(u) =~ lug||* < 0. (13)

Lemma 8 [12]. Let @ be a positive, twice differentiable func-
tion satisfying the following conditions:

D(1) > 0,
. (14)
D () >0,
for some t € [0, T), and the inequality
I ! 2
o)D" (1) - oc(CD (t)) >0vte[f, T,  (15)

where a> 1. Then, we have

i 1/(a—1) .
®m2<5zg;z@fa> et e

in which @ is a positive constant, and

T =t+ — (17)
(a- D)@ (1)
This implies
lin% D(t) = +00. (18)
t—T*

Lemma 9 [9]. Suppose that 0> 0, a>0, $>0, and h(t) is a
nonnegative and absolutely continuous function satisfying h
"(t) + ah®(t) = B, then for 0 < t < +0o0, it holds

h(t) > min {h(O), (g) 1/9}‘ (19

2.2. Proof of the Main Results. We will consider the finite
time blow-up results of problem (1) under the condition of
nonpositive initial energy. The theorems are proved as
follows.

~—

Proof of Theorem 1. Assume that u(x, t) is the weak solution
of problem (1), for any T > 0, we define the functional

I(t)= JOII“(’: $)l5ds + (T = £)l|uo I3 £ €0, 7). (20)

It is obvious that I'(t) >0 for all t€[0, T]. Since I' is
continuous, there exists p >0 (independent of T) such that
I'(t)>pforallte|o,T]

Then, we have

() = lu(> )13 = lluoll3» (21)

') = ZJQu,udx =21, (u) > -2p], (u). (22)

By using (12) in Lemma 7, we have

t

—@M@Z@LW&@M%—@M%) (23)

From J;(u,) <0, (22) and (23), we get

t t
FWﬂZMJW&@M$—@hw0>ij&@ﬁ¢-
0 0
(24)
Now, multiplying (24) by I'(¢), we have
t
I > 2 (- IR0
0
t t
=MJW&@ﬁ%JW@$M$ (25)
0 0
t
+@a>nw%Mwaﬁm%s
Noticing that
I (1) = [ 1)|12 — [t
t d )
= %(H”(“S)”z)ds (26)

then

(r’ (t))2 =4 <J;Jousudxds> } (27)

With the help of Cauchy-Schwarz inequality, we have

t

(@) <] I ] jutofias 2s)



Using (25) and (28), we further get

t

L or) -5 (1'©) > 27 - 0llwll ] ) s>

(29)
for all ¢ € [0, T7.
By Lemma 8, there exists T* > 0 such that
lirr% I'(t) =+o0, (30)
t—T*
which implies
t
lim J (- s)||3ds = +oo0. (31)
t—T" )
As a consequence, we get
lim,[|u(, t)||3ds = +0o0, (32)
t—T"
this means u(x, t) blows up at finite time T™. O

Proof of Theorem 2. Set G(t) = ||u(-,s)|3, then

G'(t)= 2J u,udx
Q

<2<l ][ w5 00 )y Kl
0JQ

=21, (u)
> F(t),
)
in which
(1) =~(4p+ ), (0
k
2 - gy,

+ ZyJ J ul* (x, Y ul ! (y, t)dxdy.
ala
By Lemma 6, we can get
' d 2
F(t)y=-(4p+4) %]1(14) =(4p+ 4)J |u,[*dx>0. (35)
Q

From (35) and the condition J,(u,) <0, we can get
F(t) >0. Then, by Cauchy-Schwarz inequality and (21),
the following inequality can be obtained:
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G(t)F'(t) = (4p + 4)JQ|u|2de |u,|*dx

> (4p+4) (L}uu,dx) (36)
=(p+1) {G'(t)r
> (p+1)G'(t)F(¢),
that is,
1;((;)) 2(p+1)GGT(:)). (37)

Integrating (37) on [0, t], we can get

In [F(t)] -1In [F(0)] = (p+1) In [G(t)] - (p+ 1) In [G(0)],

(38)
that is,
() | F(©) “
COTSMCOIE ()
By (33), we have
Gt | F©) 0
[GOP* GO 0
By integrating (40) on [0, t], we can get
1 1 pF(0) o G(O)—pF(O)t- (a1)
[G@P ~ [GOF (GO [G(O)F*!
Take the reciprocal of (41) to get
(GO
(G(1)]F = G(0) < pFO)" (42)
Let

CPF(0)  —p(4p+4)],(u)

when t— T~, we can get [G(t)]f — +o0; this means

that u blows up in a finite time. O

Proof of Theorem 3. Assume that u(x, t) is the weak solution
of problem (1). Set G(t) = ||u( s)|)3, then

G'(t)= ZJQutudx =-2I,(u) = -2pJ,(u), (44)

By (12) in Lemma 6 and the condition J,(u,) <0, we
can get
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t

~3p], () zzpjonus(-, 9|I2ds. (45)

Then, by (44) and (45), we have

t

G'(1)22p| 9> 0. (46)

Fix t,>0 and let K:jg||u||§ds. By the condition
g°||us(~,s)\|§ds>0, we can get x, which is a positive
constant. Integrating (46) over (t,,t), we can get

G(t) 2 G(t,) + 2th j 4, 5)| 2dsdr
> G(ty) + Zth kdt (47)

ty

> 2px(t—t).
Hence, we have

lim G(t) = oo. (48)

t—+00

This means that the weak solution u=u(x,t) of
problem (1) blows up at infinity.
From (12) and (44), we have

G'(t) = =2p], (u) = =2p], (),

(49)
G'(t)+ G (1) = =2p], (ug) = —T, (19),

for p> 2.
By Lemma 9, consider J,(u#y)<0 and |lu,l;<
(=], (1)), we have

G(t) 2 min {jug|15, (~J1(u0))**} = [[ugl3  (50)
this ends the proof. O

3. Conclusions

In this work, we consider the initial boundary value problem
for a class of quasilinear parabolic equation with power non-
linearity and nonlocal source under homogeneous Dirichlet
boundary condition in a smooth bounded domain. Some
new results of blow-up and blow-up time under the condi-
tion of nonpositive initial energy are obtained. The blow-
up results of problem (1) with arbitrary initial energy will
be the direction of further research.
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In this paper, we consider the multiplicity of solutions for a discrete boundary value problem involving the singular ¢-Laplacian.
In order to apply the critical point theory, we extend the domain of the singular operator to the whole real numbers. Instead, we
consider an auxiliary problem associated with the original one. We show that, if the nonlinear term oscillates suitably at the origin,
there exists a sequence of pairwise distinct nontrivial solutions with the norms tend to zero. By our strong maximum principle, we
show that all these solutions are positive under some assumptions. Moreover, the solutions of the auxiliary problem are solutions
of the original one if the solutions are appropriately small. Lastly, we give an example to illustrate our main results.

1. Introduction

Let Z and R denote the sets of integers and real numbers,
respectively. For a,b € Z, define Z(a) ={a,a+1,---} and Z(
a,b)={a,a+1,--,b} whena<b.

In this paper, we consider the following boundary value
problem of prescribed mean curvature equations in Min-
kowski spaces:

Auk
1 - (Auy)?

+Af(k,u)=0, keZ(1,T),

Uy =au, ur, =0,

(1)

where T is a given positive integer, « is a constant in [0, 1], V
is the backward difference operator defined by Vu, =u; —
Uy, A is the forward difference operator defined by Ay =
Upy — U and f(k,-) € C(R,R) for each k€ Z(1, T).

In 2019, Chen et al. in [1] considered problem (1) in the
case where f(k, x) =y, x? and a = 1, that is,

Auk
1— (Auy)?

+ A (u)1=0, keZ(1,T),

Aug=0=urg,;.

(2)

By using upper and lower solutions, the Brouwer degree
theory, and Szulkin’s critical point theory for convex, lower
semicontinuous perturbations of C'-functions, the authors
obtained the intervals of the parameter A such that problem
(2) has zero, one, or two positive solutions. Earlier in 2008,
Bereanu and Mawhin in [2] obtained the existence of at least
one or two solutions for the boundary value problems of
second-order nonlinear differences with singular ¢-Lapla-
cian by using the Brouwer degree together with fixed point
reformulations. For the existence and multiplicity of positive
solutions of the associated differential problems to (1), we
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refer to [3, 4]. And for the boundary value problems of non-
singular differential equations, we refer to [5-9].

Difference equations arise in various research fields. For
the existence and multiplicity of solutions of boundary value
problems of difference equations, the classical methods are
fixed point theory, the method of upper and lower solution
techniques, Rabinowitz’s global bifurcation theorem, etc.
(see [2, 10, 11]). Since 2003, variational methods have been
employed to study difference equations [12], by which vari-
ous results are obtained. See, for example, periodic solutions
and subharmonic solutions [13, 14], homoclinic solutions
[15-22], heteroclinic solutions [23], and boundary value
problems [24-27]. In recent years, boundary value problems
of difference equations involving ¢-Laplacian have aroused
extensive attention from scholars; for example, in 2019,
Zhou and Ling in [28] considered the following Dirichlet
problem of the second-order nonlinear difference equation:

{ ~A(@(Auyy)) = Af (ks ug)

Uy =Upyy = 0’

keZ(1,T), 5

where ¢ is the mean curvature operator defined by ¢,(s)

=s/v/'1 + s2. The authors obtained the existence of infinitely
many positive solutions for problem (3). The authors in [29]
extended the results of [28] to the following Dirichlet prob-
lem:

{ —A(P(Auyy)) + 4ib () = Af (s ),

Uy =gy =0.

keZ(1,T),

(4)

For the Robin problem of the second-order nonlinear
difference equation,

A9, (A 1)) + 4, () = Mf ko), keZ(1,T),
Aug = up,, =0,

(5)

where ¢, is a special ¢-Laplacian operator [13] defined by
,(s) = pls|P2s/2+/1 + |s| with p > 2; we refer to [30].

Up to now, there is less work on the boundary value
problems of difference equations involving the singular ¢-
Laplcian; the known results are the existence of at least one
or two solutions. The aim of this paper is to obtain the exis-
tence of infinitely many solutions for problem (1), and prob-
lem (1) contains the Dirichlet problem (when «=0) and
Robin problem (when a = 1) as special cases. The difficulty
lies that the domain of the singular ¢-Laplcian is a finite
open interval (—a, a), not (—co, + 00). The tool is a critical
point result in [31]. However, we can not apply the critical
point theory to the problem (1) directly, since the domain
of the singular ¢-Laplcian in (1) is (—1, 1); we need to extend
the domain of the singular ¢-Laplcian to (-o0, +00).
Instead, we consider the auxiliary problem (20) associated
with problem (1) in Section 2. We will show that solutions
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of problem (20) are solutions of problem (1) if the solutions
are appropriately small. For general background on differ-
ence equations, we refer the reader to monographs [32, 33].

This paper is organized as follows. In Section 2, an aux-
iliary problem associated with problem (1) is established, the
variational framework associated with this auxiliary problem
is established, and the abstract critical point theorem is
recalled. In Section 3, our main results are presented. And
we also establish a strong maximum principle and obtain
the existence of infinitely many positive solutions for (1)
according to the oscillating behavior of f at the origin.
Finally, in Section 4, an example is given to illustrate our
main results.

2. Preliminaries

In this section, we will first introduce a lemma (Theorem 2.5
of [31]).

Let X be a reflexive real Banach space, and let I : X
— R be a function satisfying the following structure
hypothesis:

(M) (u) =®(u) — AV (u) for all u € X, where @, ¥ : X
— R are two functions of class C' on X with @ coercive,
ie, limy,_,,@(u)=+co, and A is a real positive
parameter.

If inf y®@ <, let

( sup ‘P(v))—‘f’(u)
ve@'l(—oo,r) ’

r—®(u) (6)
6:= liminf p(r).

u(r)= inf

ue@! (—oo,r)

r—> (ir)}f q))

Obviously, § > 0. When 6 =0, in the sequel, we agree to
read 1/ as +oo.

Lemma 1. Assume that the condition (A) holds, and & < +00;
then, for each A€ (0,1/9), the following alternative holds:
either

(a,) there is a global minimum of © which is a local min-
imum of I, or

(a,) there is a sequence {u,} of pairwise distinct critical
points (local minima) of I,, with lim,_, @(u,) =inf @,
which weakly converges to the global minimum of ®.

We will use this lemma to investigate problem (1). Now,
we establish the variational framework associated with prob-
lem (1). We consider the T-dimensional Banach space.

S={u:Z(0,T+1) —R:uy=au,up,, =0} (7)

endowed with the norm

—

T 12
[Jull = (; (A”k)2> : (8)
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We consider another norm in S, that is,
|||, = max {|u|: k€ Z(1,T)}. 9)

For each u €S, there exists a 7 € Z(1, T), such that

T T
[ullgo = || = | D Aug| < Y| Ay | < T Ju], (10)
k=1 k=1
thus,
1
[lull = WH”HOO- (11)

We mention that the equality in (11) holds if we let u;
=(T+1-k)c,ke€Z(1,T), u,=aTc, where ¢ is a nonzero
constant. In fact, in this case, ||u|| = T"?|c| and ||u||,, = T|c|.

We notice that the singular operator ¢(s) =s/v/1 —s2 in
problem (1) only defined for se(-1,1). In order to use
Lemma 1, we need to extend the domain of the singular

operator ¢ to (—0o, 00). Take
S \/5
Nier Is| < -
1-s
905) - . (12)
3
2s, || > -5

Then, g(s) is continuous in (—co, + o), and the pri-
mary function of g is given by

” <Y
G(s) = 1+V1-s2 2 (13)
, 1 V3
e |s| > -
We define
I u
D)= Y Glaw) + ),
k=0
. (14)
¥(u) = kZF(k, ),

for each u €S, where F(k, u) = [ f(k, 7)dt for every k € Z(

T). When a =1, we read (aG(Au,))/(1 - «) as 0 in (14),
since

i aG(Auy) _ lim a(l-a)*u? _
o=l 1-a el (1-a)(1+/1-(1-a)’u
(15)
Put
I () = B(u) - 1¥ (u) (16)

for u € S. Then, @ and ¥ are two functionals of class C' (S, R)
whose Gateaux derivatives at the point u € S are given by

T
Z (Aug)Avy + 79(Au0)m}0
k=0 1-
(17)
T
!
o (u)(v) = Zf(k’ U ) Vi
k=1
for all u, v €S. It is clear that
T T T
Y (M) Ave=Y g(Au)vy, - Zg Aug)vy
k=0 k=0
T T
= Z 9(Auy_y)vy 9(Au v — g(Aug)v,
k=1 k=1
T
=- Z V(g(Auy))vy — ag(Aug)v,
k=1
S ag(Auy)Av,
==Y V(g(au))y, - LT,
k=1
(18)
then,

@' (u) = 2 ()| (v) == Y [V(g(

k=1

Au)) + Af (ks we)|vi

(19)

Consequently, the critical points of I; in S are exactly the
solutions of the following boundary value problem:

keZ(1,T),

{ V(g(Aug)) + Af (k1) =0, (20)

uy=auy, ur,; =0.

Remark 2. If u €S is a solution of problem (20) with |Au,|
<+/3/2 for k € Z(0, T), then, u is a solution of problem (1).

3. Main Results

First, we consider the existence of nontrivial solutions for
problem (1). Let

Z{_lfz(k, 28 (1)

B :=limsup

t—07"

We have the following:

Theorem 3. Assume that there exist two real sequences {u,,}
and {v,}, with v, > 0 and lim v, =0, such that

n—+00 "' n



n

u? (1-a)u
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<,

N n
Ley/I-uw 14 11— 2T

Yo maxF(k 1) = ¥y F(k, u,)

< nEZ(l), (22)

2B

y := liminf

Then, for each A € ((2 - «)/2B, 1/y), problem (1) admits a
sequence of nontrivial solutions which converges to zero.

Remark 4. A sequence { u(”)} in § is said to converge to zero
if |u"|| — 0 as n — co.

Proof. Take @ and ¥ as defined by (14); we will prove
Theorem 3 by using Lemma 1. Since limy G(s) =
limy 8" = (1/4) = +0o, it is easy to see that lim,
@(u) = +00, and (A) is satisfied. Put

—>+00

2
%
e 24
e ()
Since lim,,_, v, =0, there is no harm in assuming that

v, <V/T; then, r, <1/2. If u € S and

D(u) = i G(Auy) + OCGl(iAZO) <Tp (25)

k=0 -

then, G(Au,.) < (1/2) for k € Z(0, T). Noting that G(s) > 1/2
for |s| > 1/3/2, we see that |Au;| < v/3/2 for ke Z(0, T) and
@(u) takes the form

Yio maxF(k ) - T F (ks (w,),)

Y wpr- (ug/<1 + \/T_‘Jz;)) _ <<(1_“)uﬁ)/<1+ G —a)%ﬁ)) S (23)

Therefore,
1z
5 z (Auk)z <O(u)<r, (27)
k=1

which implies that ||u|| < \/2r,. By (11), we have

llull </2T7,=v,. (28)

According to the definition of y, we have

Yo maxF(k, 1) = Yy F(k, uy)

[t]<v

(v212T) — D(u) (29)

< inf
¢ T’n) uetl)’}l(l—oo,rn)

For each n € Z(1), let w, € S be defined by (w,,), = u,, for
every ke Z(1,T) and (w,), =a(w,),, (w,)r,; = 0. Then,

u? (1-a)u? V2
D(w,) = 1 + n <L =r,
L+ /11— 1+4/1-(1-a)u? 2T

(30)

by using (22). Thus,

XL maxF(k, ) ~ XL, Fk )

u(r,) < (v2/2T) - D(w,) ) (12T) - (u%/<l+m>) - (((1_a)ug)/<1+ 1—(1_04)2”3[)).

Therefore, by (23), we know that & <liminf, u(r,)
<y <+00.

To get our results, we need to show that conclusion
(a,) of Lemma 1 holds. Therefore, we want to show that

(31)

the global minimum u=0 of @ is not a local minimum
of I,. To prove this, we consider two cases: B=+co and
B < +00. In the case where B=+00, let {t,} be a sequence
of positive numbers, with t, € (0,/3/2) and lim,__,_t,
=0, such that
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312
F(k,t)> -2,
Y Flkt,)z 5

k=1

neZ(l). (32)

Defining a sequence {6,} in S by (0,),=t, for ke Z
(1’ T) and (Gn)o = ‘x(en)l’ (Gn)T+l = 0’ we have

NG — (=96 33 Fr,)

+
LHVI=6 14 1-(1-a22 i

=—(1+a)t* <0.
(1+a)t,

(33)

In the case where B < +00, since A > (2 — «)/2B, we can
choose a small number & € (0, v/3/2) such that

1 (1-a)

+
L+vi-e 14 /1-(1-a)e

<A(B-¢). (34)

By the definition of B, we can find a sequence of real

numbers {7,} with 7, €(0,¢) such that lim, ,, 7,=0
and
T
Y F(k7,)> (B-¢)T). (35)
k=1

Defining a sequence {&,} in S by (§,), =7, for ke Z
(1, T) and (&,)g = &(&,)1> (§:) 14y =0, we have

7 (1-a)7? <

LE)=— " " AN Flkt,
&) 1+1-72 1, 1-(1-a)’c? k; o)
1 (1-a) )
+ -A(B-¢) |1,

l+vi-e 1, 1-(1-a)e? ( )

<0.

(36)

Noticing that I,(0) =0, we see that =0 is not a local
minimum of I, by combining the above two cases. There-
fore, by Lemma 1 and Remark 2, we know the conclusion
of Theorem 3 holds.

Now, let

Z,il maxF(k, s)
B, =liminf — "= (37)
t—07" t

Then, there exists a sequence {v,} of positive numbers
with lim v, =0 such that

n—+00 "' n

Y+, maxF(k,t)
. |t|<v,
lim =B

n—o00 V% *

Taking u, =0 for all n € Z(1), by Theorem 3, we get the
following corollary.

Corollary 5. If

B
TB, < —.

Y (39)

Then, for each A€ ((2-a)/2B,1/2TB,), problem (1)
admits a sequence of nontrivial solutions which converges to
zero.

To obtain the positive solutions of problem (20), we
need the following strong maximum principle.

Theorem 6. Assume u € S such that either

u, > 00rV(g(Auy)) <0, (40)

for all ke Z(1,T). Then, either u, >0 for all ke Z(1, T) or
u=0.

Proof. There exists T € Z(1, T) such that

u, =min {u, : ke N(1, T)}. (41)
If u, >0, then u, >0 for all k € Z(1, T) and the proof is

complete.
If u, <0, then u, =min {u, : ke N(0, T +1)}. Because

Au, y=u,—u,_; <0 and Au,=u,,—-u,20, g(s) is
increasing in s, and g(0) = 0, we have
9(8u;) =03 g(du, ). (42)
On the other hand, let k = 7; (40) implies
9(Au;) < g(Auy_y). (43)

By combining (42) with (43), we get g(Au,)=0=g(A
u, ). Thatis u,,; =u, ;=u,. If 7+1=T+1, we have u,
=0. Otherwise, 7+ 1€ N(1, T). Replacing 7 by 7+1, we
get u_, =u_,,. Continuing this process T + 1 — 7 times, we

have u,,;=0 for j€ Z(0, T +1 - 7). Similarly, we have u; =

T+j
0 for j€ Z(0, 7). Thus, u= 0 and the proof is complete.
Now, we are ready to establish the existence of positive

solutions for problem (1); we have

Corollary 7. If f(k,0) > 0 for all ke Z(1, T),

ZTZZ:I (?Qi)t(j;f(k’ x)dx  ,p
A, :=liminf == < .
t—0 t2 2-«

(44)

Then, for each A € ((2— «)/2B, 1/A,), problem (1) admits
a sequence of positive solutions which converges to zero.



Proof. Put

. - flk,x), ifx>0,
/ (k’x)_{ f(ko0), ifx<o. (45)

Noticing that f(k, 0) >0, we see that

max Jsf* (k, x)dx = maxrf(k, x)dx, (46)

0<|s|<t J o 0ss<t |

for all £ > 0. By Corollary 5, we know that problem (1) with f
replaced by f* admits a sequence of nontrivial solutions
which converges to zero for each A€ ((2-a)/2B,1/A,).
And by Theorem 6, we know that all these solutions are
positive.

4. An Example

In this section, we give an example to illustrate our main
results.

Example 8. Consider the boundary value problem (1) with

x(2+2e+2sin (eln |x]) +ecos (eln |x])), x#0,
f(k,x):f(x):{ (2+2¢+2sin (eIn x]) + & cos e n x])
0, x=0,

(47)
for k€ Z(1, T). Then,
F(k,x):F(x):fo(s)ds:x2(1+e+sin(slnx)), forx > 0.

0
(48)

Since f(x) = 0 for x > 0, we see that F(x) is increasing in
x € [0, +00). Thus,

ZTZ,?:I maxfsof(k, x)dx
A, = limi(r)lf OSSS;Z
t—0*

= liminf2T2(1 +e+sin (elnt)) = 272,

t—0"
T
F(k,t (49)
B:=limsup Lo F (k1) 2( )
t_)0+ t

=limsupT(1 + & +sin (e In 1))

Lete€(0,2/((2T — aT - 1))); then (44) holds. By Corol-
lary 7, for each A€ ((2-a)/(2T(2+¢)), 1/2T%), problem
(1) admits a sequence of positive solutions which converges
to zero.

5. Conclusions

In this paper, we consider a discrete boundary value problem
involving the singular ¢-Laplacian. The problem contains
the Dirichlet problem (when a=0) and Robin problem
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(when a = 1) as special cases. Since the domain of the singu-
lar operator ¢ is (-1, 1), we can not apply the critical point
theory to this problem directly. Therefore, we extend the
domain of the singular operator to the whole real numbers
and consider an auxiliary problem associated with the orig-
inal one. The conditions for the multiplicity of positive solu-
tions of the discrete boundary problem are found, and an
illustrative example is given. The method in this paper pro-
vides a new way to discuss the boundary value problems
containing a singular Laplacian.
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This paper proposes a numerical method for solving fractional relaxation-oscillation equations. A relaxation oscillator is a type of
oscillator that is based on how a physical system returns to equilibrium after being disrupted. The primary equation of relaxation
and oscillation processes is the relaxation-oscillation equation. The fractional derivatives in the relaxation-oscillation equations
under consideration are defined in the @-Caputo sense. The numerical method relies on a novel type of operational matrix
method, namely, the @-Haar wavelet operational matrix method. The operational matrix approach has a lower computational
complexity. The proposed scheme simplifies the main problem to a set of linear algebraic equations. Numerical examples

demonstrate the validity and applicability of the proposed technique.

1. Introduction

The history of fractional or noninteger order differential and
integral operators can be traced back to the origins of integer
order calculus [1]. In recent years, fractional differential
equations have attracted a lot of attention. In fields such as
damping laws, diffusion processes, and other physical phe-
nomena, fractional differential equations have proven to be
adequate models. Since the majority of fractional differential
equations do not have analytical solutions, we must use an
approximate method. Many studies have analyzed solution
techniques for fractional differential equation such as the col-
location method, Adomian decomposition method, varia-

tional iteration method, tau method, and operational
matrix method [2-12].

A relaxation oscillator is a type of oscillator that is based
on a physical system’s ability to return to equilibrium after
being disrupted. The main equation of relaxation and oscil-
lation processes is the relaxation-oscillation (R-O) equation.
A relaxation equation in its standard form is given by

u'(x) +pu(x) = g(x), (1)

where p is a real number and g is a given function. Equation
(1) can be used to represent a variety of physical processes,
such as the Maxwell model, which uses a spring and a
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dashpot in succession to explain the characteristics of a
viscoelastic material. A simple physical process with a reg-
ulated phase shift is described by the standard oscillation
equation. The equation that defines the oscillation u of a
system corresponding to an external force g has the sim-
plest linear form as

u" (x) +uu(x) = 9(x)- (2)

where p is the oscillator’s natural frequency. In the relaxation
and oscillation models given in Equations (1) and (2), frac-
tional derivatives are used to depict slow relaxation and
damped oscillation (see [13, 14]). The fractional relaxation-
oscillation differential equation (FRODE) is given by

Du(x) +pu(x)=9(x), x>0,0<a<2 wherea#1, (3)

having the following initial conditions: u(0) = u,, if 0 < < 1,
and u'(0) = uy, if 1 < & < 2, where D denotes a fractional dif-
ferential operator of order a.

The numerical investigation of FRODEs has received a
lot of interest recently. The numerical solution of problem
(3) (with g(y) =0) was investigated in [15] by taking into
account the positive fractional and fractal derivatives. The
authors of [16] employed a Taylor matrix method to find
the numerical solution of problem (3) by taking into account
the Caputo fractional derivative. This approach is based on a
fractional version of Taylor’s formula, which was first pro-
posed in [17]. The numerical solution of problem (3) is
achieved by the optimal homotopy asymptotic approach in
[18], where the fractional derivative is given in the Caputo
sense. In [19], a trapezoidal approximation of the fractional
integral is used to get the numerical solution of problem (3)
with Caputo fractional derivative. To solve problem (3), [20]
proposes a generalized wavelet collocation operational
matrix approach based on the Haar wavelet (HW), where
the fractional derivative is represented in the Caputo sense.
Inspired by the above-mentioned studies, this paper focuses
on a numerical solution of the fractional differential equa-
tion of the form

D*Pu(x) +pu(x) = 9(x)» X €[ab], (4)
with initial conditions (dg,)"u(a) =u,,n=0,1,2,--, {m -1
,where max {m —1,1/2} <@ <m, and m is a natural num-
ber. D*? is the ®-Caputo fractional derivative of order &, and

u(x)» ifn=0,
(do)"u(x)=q (1 d\" _
(ga> u(x), ifn=123--m-1

(5)

These problems are studied in [21] by using an operational
matrix of @-shifted Legendre polynomials.

As far as we know, there is no open literature article
dealing with the numerical treatment of FRODEs involving
the @-Caputo fractional derivative employing HW. There-
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fore, the basic aim of this paper is to provide a numerical
technique for solving @-FRODE: that arise in physics. Our
method is based on a new type of operational matrix of frac-
tional integration called the @-HW operational matrix. We
provide a rigorous verification of convergence for the sug-
gested method. Furthermore, numerical experiments are
presented to demonstrate the convergence of the procedure
by comparing the exact values to numerical approximation.

Different types of orthogonal polynomials, including
Chebyshev polynomials [22], Legendre polynomials [23],
and Laguerre and Hermite polynomials [24], have been uti-
lized with the operational matrix of integer order integra-
tion. Many authors then expanded it to the fractional case,
as seen in [25-31] and the references therein. Only Caputo
or Riemann-Liouville fractional derivatives were examined
in all of the above listed papers.

The following is a description of this paper’s structure.

In Section 2, we go through the basic fundamentals of
fractional calculus. We introduce HW and function approx-
imation using HW in Section 3. In Section 4, we construct
an explicit formula for the @-fractional integration of the
HW and the @-Haar wavelet operational matrix. Section 5
discusses the numerical scheme as well as the method’s
convergence.

2. Preliminaries

We will go over some definitions of @-fractional integral and
differential operators in this section.

Let the function g : [a,, a,] — R be integrable, « is a pos-
itive real number, 7 is a natural number, @ € C'([a,, a,]), and
@' (x) # 0V € [a,, a,), where @ is increasing,

Definition 1 (see [32-34]). The ®@-Riemann-Liouvile (-RL)
fractional integral operator of order « is defined by

"0 (@) - 0(9) g(9)ds. (6)

a,

T2%9(x) = ﬁj

The @-RL differential operator of fractional « is defined by
1 d)’
D90 = | ——=-] Ja“Palx
L 9(X) <<D'(x)dX> L9

1 1 d\ ¢, (7)
o o (QD—W—Q Ll@ (@)

- @(s))"“ ' g(s)ds, wheren=|al+1.
Definition 2 (see [21, 35, 36]). Let « be a positive real number,
n a natural number, g, ® € C"([a,,a,]), and @'(x)#0Vy
€ [ay, a,], where @ is increasing. The ®-Caputo differential
operator of fractional-order « is defined by

Cr %P 1 X ! n—a—1pyn,o
DXg(x) = j &' (5)(@(x) - D($)" D g (s)ds,

I'(n-a) a
(8)
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where D™®g(x) = (1/®' (x))(d/dx))"g(x), n=|a] +1 for
a¢ N and n=a when a € N.

2.1. Function Approximation by Haar Wavelet. HW are the
simplest wavelets with a compact support among the various
wavelet families. These wavelets have been shown to be an

1, whenye [al +(a2—a1)a

0, otherwise,

where m = 2j,j =0,1,2,3, -, ], is the dilation parameter and
k=0,1,2,3,---,m—1 is the translation parameter. J is the
max resolution level of HW. The parameters i, j, and « are
related by the equation i=2/ + x+ 1; i is called the wavelet
number. Equation (9) holds true for i > 3.

For i=1 and i =2, the scaling functions for HW family
are defined, respectively, by

1,
hy(x) = { 0

1, whenye [a,

when x € [a, b),

a+b
2 b
-1, whenye [a;b,b);

0, otherwise.

otherwise,

(10)
hy(x) =

A square integrable function on (a,b), u(y) can be
approximated by HW in the following way:

-1, whenye [al +(a, -

effective method for numerical function approximation.
The Haar functions, which are orthogonal, contain only
one wavelet during some subinterval of time and remain
zero elsewhere.

The ith HW, h;(x), where y € [a,, a,] in the HW family
is defined as [37]

al) 2m

where ¢; is defined by the inner product of u(y) and h;(x)
and (.) represents the inner product. The first m terms are
employed for function approximation, that is,

—

m—

u(x) = um(x)= Y. chix), (12)
which can be written in the matrix notation as
u(X) = thy (X) = CoeHow (1), (13)

, m,l]T is the coefficient matrix deter-

mined by ¢; = (u(x), h;(x)) and H = [h(x), b (x)> Ba (X)+-+»
Byt (x)]" is the vector of Haar functions.

where C = [cy, €1, 65,0+ *,C

3. ©®-HW Operational Matrix

u(x) = OZO: c¢:hi(X) (11) The fractional-ordered @-RL integral of the HW is defined
i=0 by
1
ja’(phl( ): F((X+ 1) [CD(X) _q)(al)]a’
1 (* .
PEP(x) = 7*%y(x) = qu’ (@) - P() " (5)ds
0, if x <y (), (14)

if x € [¢,(D), 6(1),
if x € (G, (1), &),
if y > ¢5(0),



i

1
i

/1/////1//////%%%%”” /” ﬁﬁ”” "
7

55////:’1”
e ,//

i) 1/'11” //
ZIIIIII//I;’ I % i 7
////

@-RL integral of g (x)

3 Numerical
[ Exact

Ficure 1: The exact and numerical @-RL integral of g(x) =

where {,(I)=a, + (a, —a;)(x/m),{,(I) =a, + (a, -
+1)2m), () =a, + (ay —a;)((k + 1)/m).

The ®-HW operational matrix P*® is computed in the
interval [0, 1] for @(x)=x* and a=0.75. The numerical

a)((2%

[ 0.3331 -0.2641 -0.0553 -0.2141
—-0.1258 0.1948 —-0.0553 0.2584
-0.0662 0.0395 0.0403 -0.0179

P _ 0.0386 —0.0386 0 0.1455
—-0.0130 -0.0007 0.0080 -—0.0016
-0.0175 0.0251 -0.0076 —0.0088
—-0.0051 0.0051 0 0.0680

| 0.0285 -0.0285 0 -0.0571

4. Error Analysis

Caputo-type FDEs have recently been investigated in con-
text of error analysis in [38]. In addition, the convergence
analysis of solution of nonlinear Fredholm integral equa-
tions by HW is given in [39].

Using the @-Caputo fractional differential operator, we
estimated the max error, demonstrating the efficiency of
the @-HW approach for @-FDEs.

Theorem 3. Let D%y be continuous on [a,, a,] and suppose
that M > 0 so that |D*®u(y)| < MV € [a,, a,], where a,, a,

eR", DYu(y) = (110 (x))(didy)) u(y) and D u(y)

is approximated by CIDZ’:Due (x), then we have

i
i
i

Absolute error

and exact @-RL integration of the function ®(y) =

Journal of Function Spaces

D(x) for J=5 and 1 < @ <2 and their absolute error.

=6 and different values of « is plotted in Figure 1.

~0.0115  —0.0449
~0.0115  —0.0449
00115 0.0537
0 0
0.0078  ~0.0035
0 00310
0 0
0 0
|0 u(0 - D

—0.0850
0.1201
—-0.0146
—-0.1026
-0.0010
—-0.0081
0.0623
0

a,D

()|
(ay—a;)M ((Dl(az))‘z_u

E

-0.12957]
0.1433
—-0.0053
0.1988
—-0.0005
—-0.0022
-0.0135

0.0999 |

1 1

I'€-a+1)

k(=) [1 _ 22(0(—@)] 12"

Proof. CIDZ;@)/ can be approximated by HW as

= Zcihi(X)

Here, ¢; is given by

= (D5 u(. b)) = Jb (0"

(X))hi(X)dX'

x® for J

(15)

(17)
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. D Ll :
Let the approximation of CIDZ‘fDu be CIDZ1 u, which is so that we arrive at

defined by
o oo ¢;=2"(a,-a {( < > —(a, +x2 J))C[DZ;(DM(XI)
D, u(x)= 2 chi(x), (19)
i=0 —(a ;c+12j—( ( )2J>CD (Xz)}
in which £=2/*1,=1,2,3, .. =2%(a, ) {277 (D () - By u(xy) ) -
Therefore, (25)
Dal M(X) Dal uE(X) 1;1 Clhl(X) lz;l Czht(X)' (20) Therefore,
This gives a®d cp®

& =27, - o, (D} u(x,) -

u)) s (26)

|z uto S uo)

a, a, "t

” ° . o 5 Applying the @-Caputo fractional differential operator
=J (CIDZI u(x) - CD:I uQ(X)) dy 1) along with the facts that @ is increasing and |D*®u(y)| <

a M, we get
00 00 X
=y > cici'J hi(xX)hy (X)dyx-
. D5 u(0) -0 u()
The sequence {h,,(x)} being orthogonal, we get f“zh 1 L a1 D
=— 0} ) - DY d

(X)hm(x)dx =1, I, which represents the identity matrix re-a Ll (D(@0n) = (x) “0dx
of order m.OJ |

- J " 0! (1) (@) - D) D Pu(x)dy

a,

Therefore, from Equation (21) we have
1

|25 a0 - b5 wx)| - Z g (2 TT(E-a)

1o+l )
B J " 0! (1) (@ (1) - D) D Pu(x)dy

ay

A —a-1 0D
j@(x)(@(x»—@(x)) DM u(x)dy

a,

Equation (18) gives
X2
- J @' (X)(@(x,) ~ P(x) VD Pu(y)dy

X1

= jb (“D5"u(0) ) m(0dx

1 X1 , o (at]
<— || D (x)(D(x,)-D @ DtPy(y)d
" vt (e < gy ||, /00000 -000) u(x)dx
-7 Ja +(ay—a,)k277 Dul u(X)dX (23) X1
oot - [0 @) - o0 D Cunay
| CDZ“@M(X)ofx} ,
ay+(ay=ay)(r+;)27 ] X2 _
et | o) - o) =0 utay
X1
Employing mean value theorem of integration Iy, x, ) ”
€ (a1.4,) where e ( | oo @) -0
- 1\ _;
ay+ (ay —ay)K27 < x, <ay + (ay - ay) <K+ 5)2 7, —(D(x,) —D(x))" (‘”1)} D*Pu(x)dy

1 . )
a1+(a2—a1)(;c+2)2_]<X2<a1+(a2—a1)(1c+1)2_1, .

JXZ(D'(X)(CD(XZ) = @(x)) VD P u(x)dy
(24)

X1

)



“realf.

- (@) - () | D*Pu(x) | dx

@' (1) (@(x) - @)

- rz ' (0)(@(x5,) - ()P u(y) \dx)
X1

“ra .

- (@(6) = ()| [B*u(x) | dx

' () [(@(1) - ()Y

+ JXZ(D'(X)((D(Xz) - @(x) VD ux) |dx>,
X1

where€>1+a<

- D) - (@ () - @) dy

+ JXZCD'(X) (D(x,) - Cl’(x))e‘("‘“)d)c)

X1
- Femw e (@) 0@+ 00)
—D(1))" " = (@(x) - P(ar)
+(@(1) - D)) = ﬁ (@)

- ®(a)" - (@(xy) - ()
+2(0(1,) - 0(1,)) ).

(27)
As x,» X, >a and y, < x, also @(x) are increasing, so

(@(x,) = P(@))"" = (@(x,) - P(a)) " <0.  (28)

Therefore,

D5y () - B ¥ ()
(29)
< ey (@U) - P0)

According to the mean value theorem, 3¢ € [x,, x,| €
[a1, a,) such that ®(x,) = D(x,) < (x, — x,)P' ({), we get

D5 y(x,) - °D5 "y (x,)
2M ’ L—a

S Fary (0?0 (30)

2M ,

= r(e-a+1)2/t ((D (QZ)) ’

-
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which implies that

o,D o,D 2
(“05"v00) - D5 y(x))
4M?

31)
2(8-a) (

< , @'
I*(e—a+1)2%t9 ( (’ZZ))

Putting (31) in (26), we get

4M?

(D’ 4 2(-a)
(e - a+1)2%t9 ( ( 2))

<27 (a, - al)z

(32)

Putting together equations (22) and (32), we have

|25 00 - 05w 00|

1

-3 5 (%)

i=2p+1 J=B+1\ i=2i
(o) M2

< a,—a,)* : ,
HZH( 2= ) r2(e—a+1)22Ee)

(@) 12

(ay —a,)*M? ((D,(az))z(e—a) 00

1
Z 22j(t-a)

r’e-a+1) )
2(8-a)
(a, - al)zMz ((D,(az)) 1 1
- F2(£ —a+ 1) 22(ﬁ+1)(€—0¢) 1= 22(06—€) >
(33)
which implies that
@
| “Dsu0) - Dy ()|,
(@ -a)M(@'(@)) 4 I
hS 1—.(8 “a+ 1) 2(ﬁ+1)(€—zx) [1 _ 22(,,(7@)] 12"
(34)
Let x=2P*1, (34) can also be written as
o, D o, D
|05 u0) - 0w |
e_
(@-a)M(@'@)) " | G5)

<

I't-—a+1) x(t-9) [1 _ 22(a—8)] 12"
To compute the error bound, we need the value of M.
So we will estimate M first. Since D*u(y) is continuous

and bounded on [a,,a,], so is D*®u(y) and it is approxi-
mated by
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DCu() = Y oh(0=CIH,(0:  (9)

where C, =[cp, ¢y, c2,---,cr71]T and H,(x) = [hy(x), by (x)> h,

()b (01
Integration of (36) gives

X
D u() = [ D u(dy+ D ua)

. (37)
- " Dty = o).
Similarly,
X
DT u(x) = J DM Pu(x)dx + Dy (a))
. ) (38)
= || o1 ugdy= i .
Continuing in the same manner, we arrive at
DPu(x) = Co P*PH(x)- (39)

Taking X;= (j—1/2)/¢,j=0,1,2,---,m, and putting it in
(39), we have

D(I)M(Xj) = CIP*H, (Xj)- (40)
The matrix form of (40) is as
D?U’ = CZPZ’(DHL; (Xj) where DUT

= [D%u(x,), D®u(xy), D°u(xs) D u(x,)]
(41)

The linear system in (41) determines the value of the
vector C{; by putting this value in (36), D*?(y) can be
obtained Vy € [a,, a,].

Let 7, € [a,, a,], then D*Pu(t,) can be computed for the
equidistant points i=1,2,3,---,¢, then &+ max |Du(t,)| is
the approximation of M.

Theorem 4. Assume that CIDZ;(DME, computed from O-HW is

estimated by CIDZ;(Du, then we have

MN 1 1

40 400 < 7
(42)
where N = max| (a, - a,)(®(a,))"*(®(x) - D(0))" |.

Theorem 4 can be proven easily by following the proce-
dure of Theorem 3. From Equation (42), we noted that

a+ DI(E—a+ 1) [1 - 226-0)] 2

lu(x) — ue(x)|[p — 0 as € —> oo. Thus, the convergence
of the ®-HW method is inferred.

5. Numerical Examples

We present several examples of how to get numerical solu-
tions of @-FRODEs using the @-HW operational matrix
approach.

Example 5. Consider the @-FRODE

D*®u(x) +au(x) =g(x), 0 <a<1,x €[0,1], u(0) =0.
(43)

For a=2/I'(3 -a) and g(x) = (2/I'(3 - a))(D(x))* ™ +
(@(x)*), the actual solution of Equation (43) is u(y)=
(@(x))*. We use the ®-HW technique to solve problem
(43).

Let

o, D
‘D" u(x) = CoH (x)- (44)

Integrating Equation (44) with respect to .#*® and using

the initial conditions, we have
u(x) = 7" CoHm(x) = CoPrim Hin (X)- - (45)

mo mxmoTm

Substituting (44) and (45) into (43), we have

Co (Hin (X) + aP52  Ho (X)) = 9(X)- (46)

Equation (46) has the following matrix form:

Con (Hin (x) + 4P Hon (1)) = Gy (47)
where G is the matrix representation of g at the collocation
points.

Solving the algebraic system given by Equation (47) for
CZ; and substituting this value into Equation (45), we will
have the required numerical solution. In Table 1, the max
absolute error is given for J = 6 and ¢({) = {*. Approximate
solutions for J =6 and «=0.5 and different choices of the
function @ are plotted in Figure 2. Also, actual and approx-
imate results and the absolute error are given for J =6, a =
0.8, and @(y) = 1/3(x” - x* — x) in Figure 2.

Example 6. Consider the composite ©-FRODE

D u(y) + bux) = e ) (@00) 1+ (@) 0 <a
<l,xel0,1],
(49)
u(0)=0. (49)

For b=T(2a+1)/I'(a+1).
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TABLE 1: Max absolute error for various choices of « and J.

o J=5 J=6 J=7 J=8 J=9
0.6 1.0141x 1074 3.2169 x 107° 1.0296 x 107 3.3179x 107° 1.0751x107°
0.7 9.2421x107° 2.7180x 107° 8.0595 x 107° 2.4056 x 107° 7.2213x 1077
0.8 7.8481 x 107° 2.1470 x 107> 5.9091 x 107° 1.6349 x 107° 4.5452 %1077
0.9 6.3749 x 107° 1.6437 x 107° 4.2464%x107° 1.0994 x 107° 2.8527 x 1077
1.0 5.3010 x 10~° 1.3250 x 107° 3.3127x107° 8.2817x 1077 2.0704 x 1077
1 Numerical solutions for & = 0.5 and diffetent choices of @
0.9 |
0.8 |
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0.6 |
= 054
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FIGURE 2: Approximate and exact results of Equation (43) and their absolute error.
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TABLE 2: Max absolute error for various choices of « and J.

o J=5 J=6 J=7 J=8 J=9

0.6 1.2082x 1074 3.9804 x 107° 1.3061 x 107 4.2822%x107° 1.4045 x 107°
0.7 9.1203x107° 2.8002 x 107° 8.5466 x 107° 2.6042x107° 7.9372x 1077
0.8 6.7053 x 107> 1.9253 x 107> 5.4799 x 107° 1.5545 % 107° 4.4065 %1077
0.9 4.8650 x 107° 1.3151x107° 3.5128 x 107° 9.3312x 1077 2.4729 x 1077
1.0 3.5205% 107° 9.0544 x 107° 2.2954 x 107° 5.7785 % 1077 1.4496 x 1077

The exact solution for the problem (48) is u(y) =

(@(x))™
For the numerical solution, we employ the ®-HW
technique.
Let
D" u(x) = CLHa (1) (50)

Integrating Equation (50) with respect to #*® and uti-
lizing the initial condition, we have
w(x) = FCCoHn () = CuPrlnH(x).  (51)

Substituting Equations (50) and (51) in Equation (48), we
get

Con (H () + PremHin (X)) = 9(X), (52)

where (I'(2a+1)/T'(a+1))(@(x))*[1 + (D(x))"]- Equation
(52) in matrix form is given as

sz (Hm(X) + Pﬁ%‘mem(X)) =G. (53)

where G is the matrix representation of g(x).
Required approximate solutions can be obtained by
using the value of Cz; from Equation (53) into Equation (51).

The max absolute error is tabulated for ®(y) = (x)*/5
and various choices of J and « in Table 2, which shows that
the Maximum Absolute Error decreases by increasing the
values of J. Figure 3 represents approximate solutions for
different choices of a. Also, comparison of actual and
approximate results and their absolute error is displayed in
Figure 3.

Example 7. Consider the @-FRODE

DCu(x) +u(x) = 1= 4D(x) + 5(P(1))’

where 0 <a<1,x€[0,1],andu(0) =1. It is easy to verify
that u(y)=1-4®(x) +5(P(x))* is the actual solution of

Equation (54). For numerical approximation, we employ
the O@-HW technique.
Let

“D**u(x) = ChHu (x)- (55)

Integrating Equation (55) with respect to 7% and using
the initial conditions, we have

u(x)=F*PCLH (x) +u(0)=CLP¥® H_ (x)+1. (56)

m- omxmTom

Substituting (55) and (56) into (54), we have
Con(Hi (X) + PrzHu (1)) = 9(1)- (57)

where  g(x) =—4D(x) +5(P(x))* - (4/T'(2 - @) (D(x)) ™
+(10/T(3 - a))(D(x))**.
The matrix form of Equation (57) is

Con (Hin (1) + PriimHu (X)) = G (58)

where G is the matrix representation of g(y).

Required approximate solutions can be obtained by
using the value of C,Tn from Equation (58) in Equation (56).
Table 3 shows that the Maximum Absolute Error decreases
by increasing the values of ]. Approximate solutions are dis-
played in Figure 4 for various values of @. Also, Figure 4 rep-
resents approximate and exact solutions and their max

absolute error for a=0.75,] =6, and ®(x) = (x)*/15.

Example 8. Consider the @-FRODE

D*Pu(x) +pu(x)=g(x),0<a< 1,x€[0,1]u(0)=0. (59)

For p=1 and g(x) = (I'2a+1)/T'(1+a))(D(x))" + (T
(2)IT(2 = a))(@(x)" + (D(x))** + D(x), the exact solu-
tion of Equation (59) is (@(x))** + ®(x).

For approximate solutions, we use the @-HW technique.

Let

“D*®u(x) = CouHpn ()- (60)
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L4 Numerical solutions for @ = 1/3 (x’~x*~x) and various choices of &
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FIGURE 3: Approximate results of Equation (48) for various choices of «, actual, approximate results, and the absolute error.
TaBLE 3: Max absolute error for @(x) = x*/15 and various choices of J and a.
o J=5 J=6 J=7 J=8 J=9
0.6 9.0149 x 107 2.9995 % 10~° 9.9647 x 10°° 3.3058 x 10°° 1.0954 % 107
0.7 43216 x107° 1.3568 x 10™° 4.2468 x 107 1.3254 % 10°° 4.1271x 1077
0.8 1.5201 x 107 4.5357 x 107° 1.3466 x 107 3.9805 x 1077 1.1721 x 1077
0.9 2.2599 x 107 6.0704 x 107 1.5981 x 107° 4.1680 x 1077 1.0825x 1077
1.0 2.2302x 107 5.7525 x 107° 1.4605 x 107 3.6795x 1077 9.2342x 1078
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Fi1GURE 4: Approximate solutions for different choices of « and functions @(x).
Integrating Equation (60) with respect to Z&'® and using The matrix representation of Equation (62) is
the initial conditions, we have
T D _
DT T o Cm(Hm(X) +[’lp(txn><mHm(X)) _G’ (63)
! — o,
M(X) = jO CmHm (x) - Cmpmmem (X) (61)
Substituting (60) and (61) into (59), we have
T D _
Con (Hu (X) + 4P Hin (X)) = 9(X)- (62)

where G is the matrix representation of g() at the colloca-
tion points.

Required approximate solutions can be obtained by
using the value of CZ;, from Equation (58) in Equation (61).
Table 4 shows that the Maximum Absolute Error decreases
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TaBLE 4: Max absolute error for () = x2/15 and various choices of J and a.

o J=5 J=6 J=7 J=8 J=9

0.6 3.8255% 107° 1.2688 x 107° 4.1987x107° 1.3876 x 107° 4.5829 %1077
0.7 2.0382x107° 6.3431x107° 1.9679 x 107° 6.0937 x 1077 1.8843x 1077
0.8 9.0481 x 107° 2.6383%x107° 7.6857 x 1077 2.2372%x 1077 6.5069 x 1078
0.9 3.0670 x 107° 8.0025 x 1077 2.1048 x 1077 5.5848 x 107° 1.4938 x 1078
1.0 2.0360 x 107° 5.1692 x 1077 1.3022 x 1077 3.2678 x 1078 8.1852x107°

Numerical solutions for @ = 1/15(x3+x2+ X) and various choices of «
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Figure 5: Numerical solutions for « =1, ] = 8 and for different functions ®(y).
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by increasing the values of J. Also the approximate solutions
are displayed in Figure 5 for various values of a.

6. Conclusion

This study introduces a numerical approach for solving a
class of fractional differential equations with a ®-Caputo
fractional derivative based on a novel type of operational
matrix of fractional integration, namely, the ®-HW opera-
tional matrix. The convergence of the proposed method is
demonstrated, and the numerical tests reported in Section
5 corroborate the efficacy of our approach.

Data Availability

The numerical data used to support the findings of this
study are included within the article.
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Financial big data are obtained by web crawler, and investors’ recognition abilities for risk and profit in online loan markets are
researched using heteroskedastic Probit models. The conclusions are obtained as follows: First, the preference for the item is
reflected directly in the time and indirectly in the number of participants for being full, and the larger the preference, the
shorter the time and the fewer the participants. Second, investors can discriminate the default risk not reflected by the interest
rate, and the bigger the default risk, the longer the time and the more participants being full. Third, investors can discriminate
the pure return rate deducted from the maturity term and credit risk, and the higher the return, the shorter the time and the
fewer the participants being full. Fourth, default risks are reflected well by online loan platform interest rates, and inventors do
not choose the item blindly according to the interest rate but consider comprehensively the profit and the risk. In the future,
interest rate liberalization should be deepened, the choosing function of interest rates should be played better, and the
information disclosure, investor education, and investor effective usage of other information should be strengthened.

1. Background

With the rapid development of electronic information, inter-
net finance, which has low transaction costs, low participa-
tion threshold, and convenient features, gets development
in full swing. But there are also many internet finance plat-
forms that have gone bankrupt in recent years. In this con-
text, the government pays more attention to internet
finance, and the focus also changes from healthy and stan-
dardized development to preventing accumulated risks and
strengthening supervision. Thus, it is necessary to research
issues of yield and risk of internet finance and to ascertain
how investors can participate in internet finance platforms
and whether they can discriminate risk and yield.
Traditional debit and credit usually take bank as the
intermedium, and depositors and lenders are passive
receivers of the interest rate, and thus, characteristics of rate
marketization cannot be reflected completely. Although the

online-loan-platform interest rate is also one kind of non-
fully market-oriented interest rate, the full bid rate, the result
of depositors and lenders weighing each other, reflects well
the characteristics of interest rate marketization. Traditional
financial institutions such as banks do not announce the
information of depositors and lenders, but online-loan-
platforms announce information of borrowers to potential
lenders to promote a deal. Online loan platforms have more
characteristics of Financial Big Data than traditional finan-
cial institutions and thus can provide rich data resources
for researching how online investors weight risks and
rewards of online debt items and whether they can.

The online loan platform, without the participation of
traditional banks and other financial institutions, can reduce
costs and improve the efficiency of capital allocation through
direct financing between borrowers and lenders and thus
affords a new path to solve the problems of difficult and
expensive financing for Small and Medium-Sized
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Enterprises (SMEs). The online loan platform, as a new
financial medium, broadens investing and financing chan-
nels of grassroot debit and credit and makes the common
people have a chance to get a higher return. As to whether
the online loan platforms have a price discovery function,
whether investors are rational and can recognize risks and
returns, and whether investors can effectively identify differ-
ent default risks behind the same interest rate and the net
yield difference after deducting maturity period and credit
risk, all those need research deeply, and there are great the-
oretical and practical meanings for understanding and regu-
lating behaviors of Chinese online loan investors and
promoting online loan developing healthily. The online loan
is an important aspect of internet finances, and the failure
probability is very high in recent years, but there are many
fake internet finances which are excluded by the paper.
The paper researches the recognition ability of risk and
return and expects to afford suggestions for formal online
loan’s healthy and sustainable development based on the
Renrendai Online Loan Platform.

2. Literature Reviews

Big financial data accumulated by online loan provide mate-
rial for deeply researching references and behavior of bor-
rowers and investors. Existing research mainly focuses on
researching the full rate, the default rate, and investor’s
rational consciousness and behavior, and these issues mix
up and can be roughly divided into the following categories
by evolving process.

Factors influencing the full rate and lender’s judgment
have been researched by many literatures, and the full rate
is a fundamental problem about online loan. Klafft [1] has
tested the factors influencing the success of online loans
based on the America Prosper platform, and the results
show that credit rating, individual character, etc. are impor-
tant to the success rate of the item. Li et al. [2] analyze the
basic statistical characteristics of the online loan item using
the data of ppdai and find that basic information of the bor-
rower and item has an important effect on the loan success
rate. Li et al. [3] find that descriptive information having a
positive impact on the full rate and the more positive infor-
mation are beneficial to successful fundraising. Liu et al. [4]
research lenders’ decision-making characteristics and found
that friendship has an important effect in the online loan
market, and there is a herding effect in the market, namely,
lenders following their friends’ lending decision. Wan et al.
[5] find that the initial trust and consciousness on yield are
the main factors affecting lenders’ lending in the online loan
market.

Some researchers are concerned about borrowers’ final
activities, namely, factors influencing the default rate, and
some are focused on whether principal and interest of online
loan can be paid on schedule. Iyer et al. [6] test empirically
the role of credit score to online loan’s default rate based
on data of Prosper, and the results showed that credit level
has significant influence on the default rate. Liao et al. [7]
test empirically the relationship between interest rates and
default rates using data from the Renrendai website.
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Serrano-Cinca et al. [8] research empirically factors
influencing online loan default rates based on data from
the Lending Club which is the biggest P2P company in the
USA. Emekter et al. [9] research the characteristic of the
P2P online loan using data from the Lending Club website,
and the empirical test showed that indicators such as credit
rating have a significant effect on default rates of items and
that high interest rate corresponding to high risk cannot
compensate the higher loan default rate. Ge et al. [10] test
empirically the influence of social medium information
shown by the borrower itself to the online loan default rate.
Liu et al. [11] test empirically the forecasting effect of
lender’s information on default rates of items using data
from the Renrendai website.

There are also-many literatures that combined the for-
mer two questions and researched comprehensively suc-
cess rates and default rates of fundraising. Using data
from the Prosper company, Ravina [12] finds that bor-
rower’s individual characteristics such as ethnicity, looking
credible, beauty, and body weight have an important effect
on financing success rate, but those characteristics except
beauty have no influence on the late performance of the
item, and although beautiful borrowers more easily get a
loan from the online market, they are more likely to delay
repayments. Freedman and Jin [13] test empirically the
information discrimination of online loans and thought
that there are three issues: adverse selection, lender mis-
judgment, and high interest rate corresponding to high
risk in the online loan market, and the former two issues
are unique to the online loan market and can be relieved
by announcing more borrowers’ information and lenders’
studies, and the last issue is also existing in traditional
markets, and online loans will eventually compete with
traditional banks directly. Guo [14] researched roles of
internet nicknames and real names on fundraising success
rate and default rate, and the empirical test shows that real
names cannot increase the success rate and decrease the
default rate. Yue et al. [15] test empirically market infor-
mation’s role on investor behavior and forecasting item’s
default rate. Guo [16] researched the role of marriage in
online loans and found that marriage benefits for both
increasing fundraising success rate and decreasing default
rate. Zhang and Cai [17] research “title bias,” namely,
the difference in the role of the title to the full rate and
default rate. Xu and Chau [18] research the role of com-
munication between lender and borrower on the full rate
and default rate and showed that information communica-
tion plays a significance effect on the full rate but a non-
significant effect on the default rate. Caldieraro et al. [19]
research the role of nonverified information offered by
the borrower to fundraising and the item’s late perfor-
mance and found that verified and nonverified informa-
tion both have an important effect on online loans. Hu
et al. [20] research the performance, financing difficulty,
and financing cost of the peasantry and low-income peo-
ple on the Renrendai platform by combining inclusive
finance and online loans. Babaei and Bamdad [21] have
evaluated the return and risk of the P2P item using Arti-
ficial Neural Network and Logistic function, respectively.
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With the deepening of research, some scholars have
done deep and detailed research on investors’ rational con-
sciousness and choosing behavior. Freedman and Jin [22]
show that studying benefits clearing information asymmetry
among market participants, and online loan lenders step
away from high-risk items and subprime borrowers are
excluded from the Prosper website.

Liao et al. [7] research choosing behaviors of online loan
investors on the background of China’s non-completely-
market-oriented interest rate and tested whether informa-
tion in addition to interest rate has an indicative effect, and
investors can discriminate the different default risk implied
in the same interest rate based on testing the relationship
between interest and default rates, but they have not consid-
ered the time value of the interest rate and excluded the
credit risk from the interest rate. Gao et al. [23] test “gender
effect” using data from the Renrendai website and showed
that men operate more frequently based on self-confidence
and have a lower yield because of exchanging costs than
women in the online loan market. Dorfleitner et al. [24] have
researched the role of credit risk and social impact on
interest-free P2P lending using Logistic and Tobit models.

Hu and Song [25] test well the investor’s rational con-
sciousness from two angles which are the default rate and
the full rate and showed that Chinese online investors have
rational consciousness of preferring yield and avoiding risk,
but they have not tested the relationship between investor
number and default rate at full circumstance, and they dis-
criminated yield and default risk by choosing different kinds
of items. Although it is rational relatively, there are further
chances in the interaction of interest rate and default rate.
In the meantime, Liao et al. [7] and Hu and Song [25] have
not considered the heteroskedasticity effect of the model.
The paper tests the investors’ discriminating ability of yield
and risk after considering time value of interest rate, rela-
tionship between interest rate and credit risk, and heteroske-
dasticity effect.

Existing research focuses mainly on the full rate and the
default rate, and some discuss deep-seated questions such as
investors’ rational consciousness, but they are not deep
enough, and methods used are relatively simple. In the
meantime, information asymmetry and adverse selection
are more serious in online loan markets than traditional off-
line markets: on the one hand, online loan lenders have dif-
ficulties to get complete credit notes of borrowers; on the
other hand, many online loan borrowers are fundraisers
who have difficulties in getting credit debts offline [22].
Unlike American market-oriented completely interest rate,
the Chinese online loan interest rate is incompletely
market-oriented and set up initially by borrowers according
to self-conditions within ranges specified by the government
and then bidden by lenders according to items’ interest rates
and information. It is to be called a full bid if the investment
fund reaches the amount the borrower is planning to get,
and the corresponding interest rate is effective; otherwise,
it is to be called a flow bid, and the corresponding interest
rate is noneffective. Compared with traditional bank credit
debts, lenders in the online loan market are at information
disadvantages, and they can only decide based on the items

and borrowers’ information published by the website and
their own experience and then whether the decision is ratio-
nal, but can the investor discriminate the default rate differ-
ence behind the same interest rate? Can the investor
discriminate the yield difference behind the same credit risk?
There are great theoretical and real meanings for sorting out
these questions in the background of constant advancement
and coming to an end of the market-oriented Chinese inter-
est rate.

The work of the paper is mainly exhibited: First, the
rational consciousness of the online loan investor has been
researched from two angles which are the interest rate and
the default risk. Interest rate and default risk are influencing
each other, but most of the exiting research have not elimi-
nated the mutual influence when testing the impact of inter-
est rate and default rate on investor behavior. And then on
the one hand, there may be implied the impact of default
risk when testing the impact of interest rate on investor
behavior; on the other hand, there may be implied the
impact of interest compensation when testing the impact
of default risk on investor behavior. (Liao et al. [7] research
the impact of default risks not reflected by interest rates on
investors’ behaviors, and they deduct the implied effect of
interest rate on default risk, but they do not deduct the
implied effect of default rate on interest rate, namely, the
influence of interest rate on investor’s behavior maybe is
caused by the default risk corresponding to the interest rate.
And they have not considered the term structure of the
interest rate and heteroskedasticity effect.) The paper not
only excludes the role of interest rate from default risk but
also excludes the role of default risk from interest rate and
tests impacts of default risk not reflected by interest rate
and pure yield excluded time term structure and default risk
on investor behavior. Second, the paper is based on micro-
data, and macro and micro are combined. The paper
crawled more than 0.3 million data from the Renrendai web-
site using web crawling technology, and the data reflect in
detail the microcharacteristics of online loans, and thus,
effectiveness, credibility, and reality microfoundation of
empirical tests are ensured. Term structure theory of interest
rates in the macrofield is applied to the microfield, and the
influence of different maturities on the interest rate is con-
sidered. Third, at the research perspective, both borrowers’
characteristics and lenders’ subjective initiatives are consid-
ered, and lenders’ identification ability of yield and default
risk is researched, and at the econometric model, heteroske-
dasticity is considered, characteristics of Chinese online
loans are analyzed, and suggestions on how to develop
healthy online loans are offered based on situation analysis,
theory combing, and empirical tests.

3. Theoretical Analysis and
Research Hypothesis

3.1. Theoretical Analysis. Whether traditional offline or
online financial market, investors mainly think of two fac-
tors: yield and risk, and for online loan platforms, investors’
concern is mainly on the item’s interest rate and default risk.
Because we research the default risk (credit risk) directly,



investors avoiding risk is in keeping with facts. Investors
chasing yield and avoiding default risk has become a consis-
tent conclusion. Liao et al. [7] showed that investors in the
Renrendai Market are disgusted with risk and thus chase
the minimized risk at the equal yield. Hu and Song [25] test
the phenomenon that investors of online loans prefer the
item with lower default risk at the same yield or higher yield
with the same default risk. Next, we should research further
how to measure the default risk difference behind the same
interest rate, the yield difference behind the same default
risk, and whether investors can determine the difference
and how to determine it. Akerlof [26] discusses commodity
quality uncertainty, information asymmetry, and market
structure. In some markets, consumers evaluate utilities of
potential purchases according to market statics information,
and this will produce the profit difference between the whole
and the individual seller. Benefits for all parties can be
enhanced by government regulation. Unwritten promises
are preconditions for many products and trades that proceed
well, but adverse choices caused by information asymmetry
may make prices disorderly and the configuration efficiency
low. Borrowers in online markets are at an information
advantage, and investors can only judge whether borrowers
can pay back capital and interest timely in the future accord-
ing to items and borrowers’ information published by bor-
rowers in online platforms and investors’ experience. In an
imperfect market, different dealers hold different informa-
tion, some hold specific information and some do not hold
specific information only aimed at communication, and
some may judge erroneously public information, and gener-
ally, dealers who hold advantageous information will gain
[27]. People’s attention is limited, and mutual interference
will appear when attention increase cannot satisfy increased
needs [28], and online market platforms publish much
information on items and borrowers, and the information
mingles with each other, and investors should pay consistent
attention to this information and give correct judgments.
Peng and Xiong [29] analyze investors’ classification learn-
ing abilities and their roles in asset dynamic pricing; inves-
tors prefer applying limited attention to classification
learning and are adept in using markets and industry infor-
mation but are weak on company-specific information, and
thus, investors in online platforms also prefer classification
recognition and learning according to information published
by the platform and then give investment decision.

In a prefect nonarbitrage market with transparent infor-
mation, the yield and the risk correspond to each other. But
as said in the former, online market information is asym-
metric, and risk cannot be indicated by yield and yield can-
not be indicated by risk. Default risks behind the two items
with the same interest rate have heterogeneity; whether
investors can and how to discriminate the heterogeneity
need to be discussed further. With the gradual deepening
of interest rate marketization, Chinese interest rate marketi-
zation has been to the final stage. Online loan interest rate is
marketized incompletely, and borrowers decide interest rate
levels themselves in the range specified by the government,
and lenders decide whether to invest and how much to
invest according to information such as borrowers’ credit
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level published in the online website. There are many partic-
ipants in the online loan website, and information commu-
nicates rapidly, and thus, there are generally multiple
participants involved in the full item finished in the specified
time, and this embodies fully the strength of the market.
Investors make decisions mainly considering from the two
angles of yield and risk.

In short, theories and existing empirical research show
that rational investors in online loan markets chase default
risk minimizing at the same yield or yield maximizing at
the same risk. The default risk behind the same interest rate
and interest rate corresponding to the same default risk may
be different, and then, whether Chinese online loan investors
can effectively discriminate these differences, and how to
behave if they can, all these need to be tested by empirical
data.

3.2. Research Hypothesis. The former analyses show that
default risk behind the same interest rate in online loan mar-
kets may be different, and there may exist a default risk not
reflected by the interest rate, which is later called the excess
default risk. The interest rate level corresponding to the
same default risk may be also different, and there may exist
an interest rate that does not correspond to the default risk,
which is later called the short excess yield.

Investors who can discriminate the kinds of excess
default risk and excess yield will show different preferences
to the corresponding item. Generally, the more investors
prefer the item, the more investors will make investing deci-
sions rapidly and the investing amount, and thus, items pre-
ferred by investors will be full in shorter time and need fewer
people, and thus, the preference of investors for the item can
be reflected by the full time and full participant number.
Rational investors are prone to avoid items with extra
default risk, and this will be expressed in two aspects: one
is less investors choosing the item and the other is the inves-
tor of the item investing with a smaller amount for prudent
goal, and the two behaviors will make the full time take lon-
ger. Based on the above analysis, we conclude hypothesis 1.

Hypothesis 1 (extra default risk and full time have a positive
relationship). At a given yield, the greater the risk uncom-
pensated by the interest rate, the longer the time needed
for full.

Not only is the risk not reflected by the interest rate but
also the net yield influences investor behavior, and the
higher the net yield after being deducted the credit risk
and time value, the more investors prefer the item and are
willing to invest in the item. Rational investors prefer to
choose items with extra yield, and we can get hypothesis 2
similarly to the above analysis.

Hypothesis 2 (extra yield and full time have a reverse rela-
tionship). At a given default rate, the greater the net yield
after being deducted the credit risk and time value, the
shorter the time needed for full.
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The preference an investor pays to the item exhibits not
only directly in the full time but also indirectly in the partic-
ipant number for full.

When investors prefer to avoid the item with extra
default risk, participant number will appear in two situa-
tions: one is that the participant number willing to invest
in the item decreases, which makes the item fail, and the
other is that at full circumstance, the amount the investor
is willing to invest decreases, which leads to the number
needed for full to increase. The two situations correspond
to two opinions on participant number: one is that the more
the public prefers the item, the participant number is more
and leads to it easily being full [25], and the other is at full
circumstance, the risk not reflected by the interest rate is big-
ger, the investor is more careful and thus full need the more
participant number. And thus, the impact of the investor
choosing behavior on the participant number has not coin-
cided, and it is necessary to test empirically further for deter-
mining the influencing mechanic and effect. Thus, the
impact of investor choosing behavior on participant number
has not coincided, and further empirical test is needed to
determine the influencing mechanism and result. Because
we research the situation of full, it is expected to be the sec-
ond situation in the paper. Namely, risk premium not
reflected by the interest rate has a positive relationship with
time and participant number for full. The bigger the risk not
predicted by the interest rate exhibits directly in the longer
time and indirectly, the more the participant number needed
for being full. And thus, we get hypothesis 3.

Hypothesis 3 (extra default risk and participant number for
being full have a positive relationship). At a given yield,
the bigger the risk not compensated by the interest rate,
the more the participant number for being full.

Not only is the risk not reflected by the interest rate but
also the net yield has an influence on investor’s behavior.
The higher the net yield, which is deducted the credit risk
and time value, the investor prefers the item more and thus
is more willing to invest in it. The higher net yield means
fewer participants can complete the full bid, and thus, the
smaller the participant number needed for being full. Ratio-
nal investors prefer to choose items with extra yield, and we
can get hypothesis 4 similarly to the above analysis.

Hypothesis 4 (extra yield and participant number for being
full have a reverse relationship). At a given default rate, the
greater the net yield after being deducted the credit risk
and time value, the fewer participants for being full.

4. Research Design, Variable Selection, and
Sample Characteristics

4.1. Research Design. The interest rate is one of the most
important factors in P2P Lending [24]. Generally, the item’s
interest rate level corresponds to its risk level, and they inter-
act with each other. If empirical tests directly use the interest
rate and default rate of the market, investors” discriminating
abilities on risk premium not being reflected by yield and

pure yield after the term structure and credit risk have been
deducted cannot be measured effectively, because the inter-
acting effect of yield and credit risk is not discriminated.
And thus, we conduct, respectively, the default rate not
reflected by yield and the pure yield after the term structure
and credit risk are deducted based on the relationships
among the default rate, interest rate, and credit level.

P(d;=1|r)) =f(r;) + e (1)
P(d;=1|rpx;)=f(rpX;) + e (2)
AP, =P(d;=1|r,x;)—P(d;=1]r;). (3)

d; expresses whether default, r; expresses interest rate,
and P, expresses default probity, equation (1) expresses
default probity calculated only based on interest rate, equa-
tion (2) expresses default probity calculated based on inter-
est rate and other factors which may influence the default
rate, and equation (3) measures the default rate which is
not reflected by interest rate, measuring the default differ-
ence behind the same interest rate, namely, extra-default
rate. The smart investor can discriminate the difference,
and it is reflected in whether to bid and the bid amount,
and in addition directly reflected the time and indirectly par-
ticipant number needed for being full. To discriminate dif-
ferent maturity influences, term structure theory of interest
rate is applied to online loan interest rate, and the interest
rates are converted to continuous compound interest. After
discriminating impacts of maturity, interest rates are influ-
enced mainly by credit risk, and each item’s credit risk cor-
responds to a level of interest rate, and the gap between it
and the factual interest rate measures the yield no credit risk
is corresponding to, namely, the extra yield.

Lo(l+t#71,) Lo(l+t#*r,)/t
Ar = — .
' f ( oI, hb, ho )

r, is the interest rate of term ¢, (Ln(1 +¢ = r,))/t elimi-
nates the influence of the maturity term and translates r,
to the continuous compound interest, f((Ln(1+t = r,)/t)/
cl, hb, ho) is the continuous compound interest correspond-
ing to and predicted by the known credit level, and Ar mea-
sures the pure yield that being eliminated the differences of
maturity term and credit level, namely, the extra yield.

Extra risk and extra yield can be obtained by formulas
(3) and (4), and in addition, equations can be made up by
taking the time for being full or the participant number for
being full as the explained variable. And specific influencing
effects of extra risk and extra yield on the time and the par-
ticipant number for being full can be tested empirically.

4.2. Variable Selection and Sample Characteristics. Different
from the completely marketized mechanism of the online
loan interest rate decided by the relationship between bor-
rowers and lenders in USA and England, etc., the Chinese
online loan interest rate is determined mainly by borrowers
according to their situations and is verified by the platform,
and then, potential lenders decide whether to invest and the



investment amounts according to information published by
the platform. The item fails if the amount investors are will-
ing to invest cannot reach the amount planned to be raised
in the given term, which is called out of bid, and the item
succeeds if the amount investors are willing to invest reaches
the amount planned to be raised in the given term, which is
called the full bid. Investors cannot decide the item’s interest
rate level directly, but they can impact indirectly the final
actual interest rate by the model of “vote with feet,” and this
is an incompletely marketized mechanism of interest rate.
Our primary purpose is to research whether investors can
discriminate the interest rate and risk of an online loan item,
especially the different default risk behind the same interest
rate and the different yield behind the same credit risk.

According to the former theoretical analysis, research
hypothesis, existing research practices, and data available, we
will take the following variables: (1) Whether default (d): it will
be assigned 0 if the full item does not default at maturity and 1
if it defaults. (2) Interest rate (r): the promised interest rate of
the item. (3) Time for being full (ft): the duration needed for
being full, and the unit is day. (4) Number for being full (n):
participant number when being full. (5) Total amount (ta):
planning to raise the total loan amount, and the unit is yuan.
(6) Deadline for repayment (dd): the planned deadline for pay-
ing back the raised fund of the item, and the unit is month. (7)
Credit level (cl): borrower’s credit level, and Renrendai plat-
form offers a comprehensive credit valuing index according
to the borrower’s various indicators, and seven grades from
high to low according to credit level are given—AA, A, B, C,
D, E, and HR—and are expressed, respectively, by 7, 6, 5, 4,
3,2,and 1, and thus, the bigger cl means the higher credit level.
(8) Historical borrowing times (hb): the times when the bor-
rower issued a financing project in the Renrendai platform.
(9) Historical overdue times (ho): the times when the borrower
borrowed successfully and overdue in the Renrendai platform.
(10) Year (y): the age of the borrower, and it is required to be
from 22 to 70 in the Renrendai platform. (11) Education (e):
the borrower’s educational background, and it is divided into
four grades—high school (or below), college, undergraduate,
and postgraduate (above)—is and expressed, respectively, by
0, 1, 2, and 3, and thus, the bigger e means the higher the edu-
cational background. (12) Marriage (): The borrower’s mar-
riage situation—1 if married and 0 if not married. (13)
Housing (h): the borrower’s housing situation—1 if having
house and 0 if else. (14) Car (c): the borrower’s car situation—1
if having a car and 0 if else. (15) Income (i): the total borrower
family income, and the unit is yuan.

In the above, whether default (d) and interest rate (r) are
the most concerned indexes by investors, and investors
chase high yield and low credit risk, in which generally, the
two cannot be both obtained. Time for being full (ft) and
number for being full (n) mainly measure investors’
preferences to items. Total amount (ta) and deadline for
repayment (dd) reflect the basic information of items, credit
level (cl), and historical borrowing times (hb), and historical
overdue times (ho) reflect borrowers’ credit situations. Year
(y), education (e), marriage (m), housing (h), car (c), and
income (i) reflect borrowers’ individual and family
situations.
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The data are grabbed using web crawl technology and
Python3.6 after registering in the Renrendai website which is
an online loan platform offering information on loan items.
Default or not need not only have been full but also have been
finished, and generally, the longest deadline for repayment in
the Renrendai platform is 3 years. The sample term we choose
is from 2010.10.11 to 2015.01.04, and thus, our entire sample
does not conclude the item in repayment. We first grab more
than 300,000 sample data and then further remove samples
which are not full or are incompatible to the age requirement
of the Renrendai website or samples having other obviously
abnormal features or missing information, and finally, there
are 99,492 samples that can be used.

According to Table 1 at full circumstance, the means of
default rates and interest rates are about 5.62% and
12.68%, and the average time and number for being full
are about 0.6 hours and 43 people. The average borrowing
amount and deadline for repayment are about 56,000 yuan
and 2 years. The average credit level is relatively high, histor-
ical borrowing times are over 2, and historical overdue times
are less than 1. The average age of borrowers is about 39
years, and most borrowers’ education gradations are not
high. Most borrowers have been married, half of families
have a house, and 27.16% of families have a car. Intuitively,
the default rate of the Renrendai online loan is relatively low,
the interest rate is much higher than the bank interest rate
but also in the government-given range, the average time
for being full is relatively short and less than 1 hour, and
fundraisers who have a historical borrowing record and less
overdue are easy to raise funds successfully and be full.

5. Empirical Results

5.1. Measuring Default Rates Not Reflected by Interest Rates.
The most fundamental purpose of lenders investing in items
on the online platform is to gain yield, and they are con-
cerned mostly with the default rate and interest rate, and
they want to gain a stable high yield and simultaneously fear
borrowers defaulting and not repaying the principal and
interest on time. In circumstances of nonarbitrage and infor-
mation transparency, the default rate and interest rate have a
linear correspondence relationship, and thus, default levels
can be reflected by only using interest rates. We construct
the single-factor heteroskedasticity Probit model by taking
the default rate as an explained variable and the interest rate
as an explanatory variable, and the heteroskedasticity is in
the form of [30]

Py =P(d;=1|r)=@(r;) +&,¢~N(0,07),

012 = ezf(ri) .

1

(5)
Parameters can be estimated by the maximum likelihood

function [30]:

n 1< I ’ 2
log L= log2m— 23 2f(r) = 5 ) ¢ (Py - @(r}))",

(6)
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TaBLE 1: Samples of statistical characteristics.

Variables Sample number Mean Standard deviation Minimum Maximum

d 99492 0.0562 0.2304 0.0000 1.0000

r 99492 12.6786 1.3382 3.0000 24.4000

ft 99492 0.6076 2.0330 0.0000 36.9083

n 99492 42.6097 59.8358 1.0000 1840.0000

ta 99492 56242.8200 57495.49 3000.0000 3000000.0000

dd 99492 25.1656 10.8038 1.0000 36.0000

d 99492 5.4630 1.4584 1.0000 7.0000

hb 99492 2.1502 6.9564 1.0000 148.0000

ho 99492 0.5926 2.8495 0.0000 54.0000

y 99492 39.2862 8.2369 22.0000 60.0000

e 99492 0.9819 0.7374 0.0000 3.0000

m 99492 0.7193 0.4493 0.0000 1.0000

h 99492 0.4789 0.4996 0.0000 1.0000

c 99492 0.2716 0.4448 0.0000 1.0000

i 99492 15677.0400 14727.5000 1000.0000 50000.0000

The statistics for heteroskedasticity obey the chi-square
distribution [30]:

n log Z Z M. o

According to Table 2, first, there is the heteroskedasticity
effect. Heteroskedasticity testing shows that the null hypoth-
esis there does not exist and heteroskedasticity is denied, and
this illustrates that the traditional Probit model cannot
reflect effectively the heteroskedasticity effect that existed
in the model, and the heteroskedasticity Probit model needs
to be used. Second, interest rates have a significant positive
role on default rates. The higher interest rate corresponds
to the higher default rate, and this indicates that online loan
investors cannot purely choose the item with the high inter-
est rate but must balance default rates and interest rates.
Third, the default rate level reflected by the interest rate
can be calculated based on formula (3) and the parameters
given in Table 2.

If in a complete market-oriented interest rate circum-
stance as mentioned above, then the interest rate can reflect
completely the default risk. In fact, the Chinese online loan
interest rate is incomplete market-oriented, it is decided by
the borrower unilaterally, and the investor can only take
the passive decision mode of “voting with feet.” Thus, we
add other variables into the default rate estimating model
and construct the following multiple-factor heteroskedasti-
city Probit model, and the heteroskedasticity takes the form
of [30]
di=1|r,x;)

si~N(0, oiz),

P, =P( =D(r;, x;) +¢€

i
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Parameters can be estimated by the maximum likelihood
function [30]:

n

15 i,

i=1

- Cl)(ri,xi))2.

)

The statistics for heteroskedasticity obey the chi-square
distribution [30]:
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According to Table 3, first, there is a heteroskedasticity
effect in the driving factor model of the default rate. The het-
eroskedasticity existing test shows that the null hypothesis
that heteroskedasticity does not exist is denied, and this
illustrates that the traditional Probit model cannot reflect
effectively the heteroskedasticity effect existing in the model,
and thus, the heteroskedasticity Probit model needs to be
used. Second, total loan amount, deadline, age, and historical
overdue times have a significant positive relationship with
default rates. The bigger the loan amounts, the bigger the
stress for repaying principal and interest in a timely manner,
and thus, the bigger the corresponding default rate. The lon-
ger the deadline, the larger the uncertainty factor and the
bigger the risk for lenders regaining their principal and
interest at maturity and thus the corresponding bigger
default rate. The older borrowers correspond to the higher
default rate possibly because older borrowers in the online
loan market have been given the restricted employment
chance and reduced ability to repay principal and interest
in a timely manner, and thus a corresponding higher default
rate. The bigger historical overdue times indicate the
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TaBLE 2: Single factor estimated results of heteroskedasticity Probit model of default.
Variables Explained variable: whether default
dy/dx z-statistics and p value
r 0.0145 28.0700 (<0.001)***

Testing whether existing heteroskedasticity
Null hypothesis
Homoskedasticity
Variance equation
Variables
r -0.0367

Lr-statistics and p value
104.48 (<0.001)***

Coeflicient estimated values

Conclusions

Rejecting null hypothesis, namely, existing heteroskedasticity

z-statistics and p value
-11.51 (£0.001)***

Note: ##+ means that the corresponding coefficient is significant at 1% significance level.

borrowers having a relatively poor historical performance
record, and the significant positive effect of historical over-
due times on default rates indicates that the borrowers’
repaying behaviors have inertial characteristics and the bor-
rowers’ past performance record has a significant forecasting
effect on his future repaying behavior. Total loan amount,
deadline, age, and historical overdue times that have a signif-
icant positive effect on default rates is not only in accordance
with theories but also actual situations. Third, credit level,
education, historical borrowing times, income, housing,
and car have significant negative effects on default rates.
Credit level is a comprehensive valuing index given by the
online loan platform according to borrowers’ various
indexes, and the borrower’s higher credit level means the
borrower’s better credibility and the stronger ability and
willingness for borrowers to repay principal and interest in
a timely manner. Generally, the higher the education degree
means the better the skill, employment, and development
opportunities, and the stronger the ability to repay the prin-
cipal and interest in a timely manner, and thus, the higher
borrower’s education degree corresponds to the lower
default rate. Historical borrowing times represent the suc-
cess times of the fundraiser in the online loan market in
the past, and the more times mean the fundraiser’s more
successful experience and have a positive feedback on the
borrower repaying the principal and interest in a timely
manner and thus corresponds to the lower default rate.
The higher the fundraiser’s income, the better his ability to
repay the principal and interest in a timely manner in the
future, and thus, the income level has a reverse relationship
with the default rate. Housing and car are one kind of capi-
tal; on the one hand, owners have had some capital accumu-
lation, and on the other hand, owners’ future rigid
expenditures on housing and car are lower than those of
nonholders, and thus, both housing and car have a signifi-
cant negative influence on the default rate. Credit level, edu-
cation, historical borrowing times, income, housing, and car
have significant negative influences on default rates which
coincide not only on theory requirements but also in actual
situations.

In addition, by integrating Tables 2 and 3, seeing from
the size and significance of r’s coefficient, introducing other
variables reduces greatly r’s role, and not only does other
information have a relatively strong role on the default rate

but also the role of the interest rate on the default rate can
be embodied by other information, namely, the role of the
interest rate on the default rate is partly through indirect
credit level indexes. Default rates which synthesize various
information, and which utilize only the interest rate, can
be deduced by the models corresponding to Tables 2 and
3. The difference between the two is the default rate, which
is not reflected by the interest rate, namely, extra default risk,
and it has been excluded in the interest rates’ role, and this
kind of default rate does not have an interest rate return
and can be discriminated and avoided by rational investors.

5.2. Measuring Interest Rate Eliminating Time Value and
Default Factor. We have measured different risks behind
the same interest rate and obtained the default rate not fully
reflected by the interest rate. Next, we apply the term struc-
ture theory of interest rate to the online loan interest rate
and measure the interest rate that excluded the default risk
according to the relationship between interest rates and
default risk, and it is the pure yield not corresponding to
the default risk, and then, we further test whether online
loan investors can discriminate the kind of pure yield and
make rational choices.

Interest rates published in the online loan website have
different maturities, and interest rates with different matu-
rities are different according to the term structure theory of
the interest rate. In order to strengthen the comparability
and analyze more specifically the investors’ yield discrimi-
nating ability, we transfer the interest rate into a continuous
compound form according to the formula [Ln(1 + ¢ = r,)]/t,
and thus, heterogeneity effect of different maturities is
eliminated.

Since the default rate is ex post variable and cannot be
determined completely beforehand, namely, the default rate
cannot be measured directly, thus, we apply indirect
methods: method 1 only using credit factor and method 2
using various factors. Generally, the default risk is mainly
decided by borrowers’ credit risk level, and thus, borrowers
enact the item’s interest rate level according to their own
credit risk level, and investors decide whether to accept the
interest rate level published by borrowers according to the
borrowers’ credit level. The Renrendai website publishes a
credit level (cl) index according comprehensively to bor-
rowers’ various information, and the two indexes are directly
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TaBLE 3: Multifactor estimated results of heteroskedasticity Probit model of default.

(a)

Variables Explained variable: whether default

dy/dx z-statistics and p value
r 0.0002 1.56 (0.119)
cl -0.0019 -8.29 (<0.001)***
Inta 0.0021 5.41 (<0.001)***
dd 0.0002*** 6.61 (<0.001)***
y 0.0001 2.58 (0.010)***
e -0.0008 -2.32 (0.020)**
m 0.0002 0.27 (0.785)
hb -0.0030 -18.22 (<0.001)***
ho 0.0177 26.60 (<0.001)***
Ini -0.0014 -3.82 (<0.001)***
Housing (h) -0.0016 -2.81 (0.005)***
c -0.0013 -1.99 (0.047)**

Testing whether existing heteroskedasticity

Null hypothesis Lr-statistics and p value

Conclusions

Homoskedasticity 8971.15 (<0.001) Rejecting null hypothesis, namely, existing heteroskedasticity
(b)

Variance equation
Variables Coefficient estimated values z-statistics and p value
r 0.0323 4.1500 (<0.001)***
cl 0.0326 2.3100 (0.0210)**
Inta -0.0805 -3.6600 (<0.001)***
dd -0.0335 -14.3000 (<0.001)***
Y -0.0071 -2.5300 (0.0110)**
e 0.0109 0.5000 (0.6180)
m -0.0046 -0.1100 (0.9130)
hb 0.0413 10.8300 (<0.001)***
ho 0.5852 30.8900 (<0.001)***
Ini 0.0908 4.0400 (<0.001)***
h 0.1730 4.4800 (<0.001)***
c 0.0603 1.4900 (0.1350)

Note: #** means that the corresponding coefficient is significant at 1% significance level, and ** means that the corresponding coefficient is significant at 5%

significance level.

related borrowers’ credit level: historical borrowing times
(hb) and historical overdue times (ho). Historical borrowing
times (hb) reflect the times which borrowers have issued
items and succeeded to be full in the Renrendai website.
The more historical borrowing times mean borrowers hav-
ing better historical records and being accepted by online
loan investors in the past, and this shows indirectly bor-
rowers having a higher credit level and more probability to
repay the principal and interest rate in a timely manner. His-
torical overdue times (ho) reflect the times borrowers raise
funds successfully in Renrendai platform but cannot repay

the principal or interest timely in the end; the more histori-
cal overdue times indicate borrowers having the worse
records previously, and this indirectly shows that the bor-
rower’s credit level is not high, and there is relatively bigger
probability to being overdue. To reflecting the impact of the
credit risk on the interest rate fully, besides the credit level,
historical borrowing times and historical overdue times are
also introduced as supplementary variables.

According to Table 4, credit factors have important deci-
sive effects on interest rates, and the credit level and interest
rate level are in a significant negative relationship. This is in
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TaBLE 4: The influencing results of credit factors on continuous
compound interest.

Explained variable: continuous compound interest

Variables Coeficient estimated z-statistics and p
values value

cl -0.2894 -103.58 (<0.001)***

hb -0.0007 -1.29 (0.197)

ho 0.0559 37.78 (<0.001)***

Constant 12.7960 795.30 (<0.001)***

term

Note: ##% means that the corresponding coeflicient is significant at 1%
significance level.

accordance with economic theories, and the higher the
credit level indicates the lower the borrower’s credit risk
and thus corresponds necessarily to the smaller interest rate
level. Investors select the interest rate according to not only
the credit level but also other credit factors, and the signifi-
cant positive effect of historical overdue times on the interest
rate indicates that maybe the higher historical overdue times
correspond to the higher default rate and need the higher
yield compensation, and thus items with higher historical
overdue times generally correspond to a higher interest rate.
This indirectly indicates that market investors are clever and
can discriminate credit risk and have the willingness to take
part in items with higher risk only when are given higher
yield compensation.

The influence of the item credit risk on interest rate is
mainly indirectly measured using factors which have direct
relationship with credit in Table 4. Although default risks
behave mostly as credit risks, other factors also have certain
influence on default rate. To measure fully the impact of
default risks on interest rates, we further consider more fac-
tors and indirectly measure the impact using various factors,
and the econometric results are seen in Table 5.

Table 5 reflects the driving effects of borrower’s informa-
tion published by the online loan platform on the item’s
interest rate, and these factors indirectly embody the bor-
rower’s default risk. Testing results in Table 5 are also in
accordance with economic theories and actual situations:
credit level, education, historical borrowing times, and hous-
ing have significant negative effects on interest rates, and this
goes along with empirical results of Table 3, and these fac-
tors also have significant negative effects on default risks,
and all these embody low default risks which correspond
to low interest rates. Deadline for repayment, year, and his-
torical overdue times have significant positive effects on the
interest rate, and this also goes along with the empirical
results of Table 3, and these factors also have significant pos-
itive effects on default risks, and all these embody high
default risks which correspond to high interest rates.

Term structure theory of the interest rate is applied to
decide the interest rate level, and the continuous compound
interest is calculated. To further eliminate the credit level’s
impact, the interest rates, corresponding to a certain default
risk, are calculated according to the models corresponding to
Tables 4 and 5, respectively. The differences between contin-

Journal of Function Spaces

TaBLE 5: Influencing factors of continuous compound interests.

Explained variable: continuous compound interest

Variables Coefficient estimated t statistics and p
values value

c -0.2203 -63.87(<0.001)***
Inta -0.2729 -44.83 (<0.001)***
dd 0.0022 5.03 (<0.001)***

y 0.0050 11.37 (<0.001)***
e -0.0599 -12.83 (<0.001)***
m -0.0265 -3.34 (0.001)***

hb -0.0088 -15.63 (<0.001)***
ho 0.0588 40.19 (<0.001)***
Ini 0.0058 1.35 (0.175)

h -0.0304 -3.91 (<0.001)***
c 0.1021 12.40 (<0.001)***
gr’rl:ftant 15.1065 268.56 (<0.001)***

Note: ##* means that the corresponding coefficient is significant at 1%
significance level.

uous compound interests and the two former interest rates
represent pure yields deducted by default risks and are
expressed by Arl and Ar2, and thus, extra yields after the
deduced term structure and default risk factor are obtained.

5.3. Research on Participant Numbers and Time for Being
Full. Although online loan interest rates are decided volun-
tarily by the fundraiser at the government-given range, the
investors can also determine the final bargaining interest
rate level by the mode of “vote with feet.” After the interest
rate level is decided by the fundraiser, the investor will make
the decision whether to invest comprehensively according to
the deadline and risk level, and generally, investors make the
decision from the two angles of yield and risk, and they
chase the minimal risk at the same yield or the maximal
yield at the same risk.

As to the default risk, Liao et al. [7] get the default risk
which has no interest rate return by excluding the default
risk reflected by the interest rate factor, and thus, the impact
of the interest rate can be eliminated when measuring the
impact of the default risk on the investor’s behavior. But as
to the interest rate factor, they have not considered the term
structure and default risk level, and thus, the item’s interest
rate may contain the corresponding term and default risk
factors. We first apply the term structure theory of the inter-
est rate in the macroeconomic field to online loan interest
rates and get the continuous compound interest to eliminate
the influences of different deadlines and then compare it
with the continuous compound interest corresponding to
the default factors and further get the pure yield deducted
the impacts of different maturities and default risk. We mea-
sure investors” weighing behaviors, respectively, based on the
default risk not reflected by the interest rate and pure yield
after deducting the impacts of maturity and default risk.
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TABLE 6: Regression results to time for being full.
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Explanatory variables

Equation (1)
Estimated values
and p value

Explained variable: unit financing’s time for being full

Equation (2)
Estimated values
and p value

Equation (3)
Estimated values
and p value

Equation (4)
Estimated values
and p value

Equation (5)
Estimated values
and p value

Mean equation
Constant term
Ary
Ar,

AP,
ar(1)
ma(1)

Variance equation
Constant term
RESID(-1)*
GARCH(-1)

Residual test

F-statistics of

heteroskedasticity test

DW value of
autocorrelation test

Root inverse of ar and ma

ADF statistics of
stationarity test

0.1037 (<0.001)***
-0.0610 (<0.001)***

0.8505 (<0.001)***
-0.6445 (<0.001)***

0.0161 (<0.001)***
0.0779 (<0.001)***
0.8912 (<0.001)***

0.0549 (0.8147)

2.1004

Within unit circle

-36.7565
(<0.001)***

0.1006 (<0.001)***

-0.0856 (<0.001)***

0.8588 (<0.001)"**
-0.6537 (<0.001)***

0.0161 (<0.001)***

0.0824 (<0.001***)
0.8886 (<0.001)***

0.0357 (0.8501)

2.0994

Within unit circle

-36.3303
(<0.001)***

0.1189 (<0.001)***

1.0305 (<0.001)***

-0.0014 (<0.001)***

0.2176 (<0.001)***
0.7824 (<0.001)***

0.1607 (0.6885)

1.7299

Within unit circle

-30.7849
(<0.001)***

0.0864 (<0.001)***
-0.0077 (<0.001)***

0.0375 (<0.001)***
0.9682 (<0.001)***
-0.7945 (<0.001)***

0.0001 (<0.001)***
0.1010 (<0.001)***
0.8974 (<0.001)***

0.6629 (0.4155)

1.9312

Within unit circle

-31.2582
(<0.001)***

0.0865 (<0.001)***

-0.0106 (<0.001)***
0.0346 (<0.001)***
0.9688 (<0.001)***
-0.7952 (<0.001)***

0.0001 (<0.001)***
0.1000 (<0.001)***
0.8984 (<0.001)***

0.7008 (0.4025)

1.9290

Within unit circle

-31.2583
(<0.001)***

Note: = means that the corresponding coefficient is significant at 1% significance level.

As to the explained variables time and participant num-
ber for being full, Liao et al. [7] apply directly the value cor-
responding to each item and take the raising amount as the
explaining variable.

Considering that time and participant number for being
full will certainly be affected by the amount being raised, and
to measure better the investors’ risk and yield discrimination
abilities, we use time and participant number corresponding
to unit financing, namely, time and participant number of
each item divided by the amount being raised by each item.
Empirical results are seen in Tables 6 and 7, and they mea-
sure, respectively, online loan investors’ weighing behaviors
between risk and yield through time and participant number
for being full.

According to Table 6, first, it is necessary to consider the
model heteroskedasticity. On the one hand, coefficients of
AR and GARCH terms in the variance equation are signifi-
cant, and this illustrates that it is necessary to consider het-
eroskedasticity; on the other hand, residual testing results
show that there no longer exists heteroskedasticity in models
after considering the first-order GARCH effect, and at the
same time, models’ residuals are stationary, and all these
explain that the models are effective. Second, the default rate
not reflected by the interest rate has a significant positive
relationship with time for being full, and the bigger default
risk corresponds to the longer time for being full, and thus,
hypothesis 1 is verified. The pure yield after deducting the
effects of different terms and credit risk levels has a signifi-

cant negative relationship with time for being full, and the
higher yield corresponds to the shorter time, and thus,
hypothesis 2 is verified. The front empirical tests are about
the time for being full, but the preference of the investor
for the item appears in not only time but also participant
number for being full. Next, we research how the default risk
not reflected by the interest rate and the pure yield after
deducting the effects of different terms and credit risk levels
influence the participant number for being full.

According to Table 7, the model heteroskedasticity effect
can be measured effectively by the GARCH(1,1) model. On
the one hand, the equation coefficients are significant, and
this indicates that it is necessary to use the GARCH(1,1)
model; on the other hand, it is not necessary to use the
higher-order GARCH model by model residual tests, and
in addition, model residuals also pass the stationarity test,
and all these indicate the models’ effectiveness.

Results in Table 7 show that the default rate not reflected
by the interest rate has a significant positive relationship
with the participant number, and this indicates that the
investor can discriminate the default risk not compensated
by the yield and make prudent measures and generally
reduce the item’s investing amount, and thus, more partici-
pants are needed to complete the full bid, and hypothesis 3
is fulfilled. The pure yield after deducting the term and credit
risk has a significant negative relationship with the partici-
pant number for being full, and this indicates that the inves-
tor prefers more the item with the higher pure yield, and
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TABLE 7: Regression results to participant number for being full.

Explanatory variables

Explained variable: unit financing’s participant number for being full

Equation (6)
Estimated values
and p value

Equation (7)
Estimated values
and p value

Equation (8)
Estimated values
and p value

Equation (9)
Estimated values
and p value

Equation (10)
Estimated values
and p value

Mean equation
Constant term
Ary
Ar,

AP,
ar(1)
ma(1)

Variance equation
Constant term
RESID(-1)*
GARCH(-1)

Residual test

F-statistics of

heteroskedasticity test

DW value of
autocorrelation test

Root inverse of ar and ma

ADF statistics of
stationarity test

0.0872 (<0.001)***
-0.0096 (<0.001)***

0.9696 (<0.001)***
-0.7920 (<0.001)***

0.0001 (<0.001)***
0.0990 (<0.001)***
0.8978 (<0.001)***

0.7385 (0.3901)

1.9312

Within unit circle

-31.2087
(<0.001)***

0.0873 (<0.001)***

-0.0121 (<0.001)***

0.9700 (<0.001)***
-0.7928 (<0.001)***

0.0001 (<0.001)"**
0.0981 (<0.001)***
0.8988 (<0.001)***

0.7781 (0.3777)

1.9289

Within unit circle

-31.2277
(<0.001)***

0.0864 (<0.001)***

0.0465 (<0.001)***
0.9665 (<0.001)***
-0.7919 (<0.001)***

0.0001 (<0.001)***
0.1023 (<0.001)***
0.8957 (<0.001)***

0.6376 (0.4246)

1.9374

Within unit circle

-31.7400
(<0.001)***

0.0864 (<0.001)***
-0.0077 (<0.001)***

0.0375 (<0.001)***
0.9682 (<0.001)***
-0.7945 (<0.001)***

0.0001 (<0.001)***
0.1010 (<0.001)***
0.8974 (<0.001)***

0.6629 (0.4155)

1.9312

Within unit circle

-31.2582
(<0.001)***

0.0865 (<0.001)***

-0.0106 (<0.001)***
0.0346 (<0.001)***
0.9688 (<0.001)***
-0.7952 (<0.001)***

0.0001 (<0.001)***
0.1000 (<0.001)***
0.8984 (<0.001)***

0.7008 (0.4025)

1.9290

Within unit circle

-31.2583
(<0.001)***

Note: = means that the corresponding coefficient is significant at 1% significance level.

thus, less participants are needed to complete the full bid
and hypothesis 4 is fulfilled.

The front hypotheses are verified by empirical tests, and
the following results can be obtained: First, interest rates and
risks mingle with each other, online platform interest rates
embody default risks, investors can give trade-offs, and
incomplete market-oriented online interest rates reflect the
matching result well between the investor and the fundrai-
ser. Second, it is necessary to consider model heteroskedasti-
city in econometric methods and the blending effect of the
interest rate and the default risk in index measurements
the impacts of different terms and credit risk levels on inter-
est rates, and the impacts that have been reflected by the
interest rate as well as the default rate. Third, the investor’s
preference for the item embodies directly the time and indi-
rectly the participant number for being full, and generally, if
the investor prefers the item more, the shorter the time and
the less the participant number needed to be full. Fourth, the
investor can discriminate not only default risk not reflected
by the interest rate but also pure yield after deducting
impacts of different terms and credit risks.

Empirical tests have fulfilled the four hypotheses in the
paper’s front and verified whether the investor who prefers
the item directly embodies the time and specifically shows
that the more the preference for the item, the shorter the
time for being full, and indirectly embodies the participant
number and specifically shows that the more preference for
the item, the less the participant number for being full. Com-

pared with the results of Liao et al. [7], both the influencing
direction and the significance of different default risks
behind the same interest rate on time and participant num-
ber for being full are consistent, but either the influencing
direction or the significance of the interest rate on time
and participant number for being full is inconsistent. It
may be due that Liao et al. [7] directly use interest rates
without deducting default risks, and thus, the empirical tests
show that interest rates have no significant impact on time
for being full. On the one hand, our empirical results’ cred-
ibility is verified; on the other hand, not only should default
risks deduct the parts reflected by interest rates but also
interest rates should deduct the parts used to compensate
the default risk.

5.4. Robustness Test. In the front, we only consider the two
factors, the interest rate and the default rate, when research-
ing the time and participant number for being full, and to
test robustly, we further consider family income and test
adding other variables whether they have some impacts on
the conclusions.

According to Table 8, after introducing the income fac-
tor, although the coeflicient’s sizes change slightly, signifi-
cance and signs of coefficients are the same with the
former without considering the income factor, and effective-
ness and robustness of our empirical testing results are ver-
ified. Additionally, the income level has a significant
negative effect on time and participant number for being
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TABLE 8: Regression results to time and participant number for being full.
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Explained variable: time for being full

Explained variable: participant number for being

Explanatory variables

Mean equation
Constant term
Ary
Ar,

AP,
Ini
ar(1)
ma(1)
ar(2)
ma(2)

Variance equation
Constant term
RESID(-1)*
GARCH(-1)
RESID(-2)?
GARCH(-2)

Equation (11)

Equation (12)

Equation (13)

Equation (14)

Estimated values and p  Estimated values and p  Estimated values and p  Estimated values and p

value

0.6105 (<0.001)***
-0.0472 (<0.001)***

1.1429 (<0.001)***
-0.0538 (<0.001)**"
0.0233 (<0.001)***

0.8968 (<0.001)***
-0.8721 (<0.001)***

0.0615 (<0.001)***
-0.0614 (<0.001)***
1.7409 (<0.001)***
-0.7410 (<0.001)***

value

0.4612 (<0.001)***

-0.0361 (<0.001)***
1.3552 (<0.001)***
-0.0401 (<0.001)***
0.9949 (<0.001)***
-0.9917 (<0.001)***

0.2222 (<0.001)***
-0.2219 (<0.001)***
1.4562 (<0.001)***
-0.4565 (<0.001)***

value

0.1266 (<0.001)***
-0.0080 (<0.001)***

0.0364 (<0.001)***
-0.0043 (<0.001)***
0.9686 (<0.001)***
-0.7951 (<0.001)***

0.0001 (<0.001)***
0.0993 (<0.001)"**
0.8983 (<0.001)***

value

0.1228 (<0.001)***

-0.0104 (<0.001)***
0.0340 (<0.001)***
-0.0039 (<0.001)***
0.9691 (<0.001)***
-0.7958 (<0.001)***

0.0001 (<0.001)***
0.0984 (<0.001)***
0.8992 (<0.001)***

Residual test

F-statistics of

heteroskedasticity test 0.071590Re8)

DW value of autocorrelation
test

1.8636

Root inverse of ar and ma Within unit circle

ADF statistics of stationarity

-34.3592 (<0.001)***
test

0.1073 (0.7432)

Within unit circle

-42.9152 (<0.001)***

0.6906 (0.406) 0.7312 (0.3925)

1.8412 1.9292 1.9271

Within unit circle Within unit circle

-31.3891 (<0.001)***  -31.4052 (<0.001)***

Note: #*+* means that the corresponding coefficient is significant at 1% significance level.

full, and the investor prefers the item corresponding to the
higher income level; thus, the full bid needs a relatively
shorter time and fewer participants. Our previous basic
hypotheses are verified further, namely, investors’ prefer-
ences for items directly embody the time and express a
shorter time needed and indirectly embody the participant
number and are expressed as a less participant number
needed. Term structure of the interest rate is applied to the
online loan interest rate, and the impact of different dead-
lines is eliminated using continuous compound interest.
Further, the annual compound interest is applied (to save
space, the testing results are omitted), and the results indi-
cate that signs and significance of coefficients are the same
with continuous compound interest except slight changes
of coefficient sizes, and effectiveness and robustness of
empirical testing results are ensured.

6. Conclusions

Risk levels not reflected by interest rates and pure yields after
deducting the term and risk factors are applied to measure

investors’ discrimination abilities on risks and yields, and
online loan investors’ discrimination abilities and matching
consciousness on risks and yields are researched from the
angles of the time and participant number for being full,
and the main conclusions and suggestions are obtained as
follows.

First, investors have relatively strong matching con-
sciousness, and investors have not blindly selected the item
with the high interest rate. Although the higher interest rate
corresponds to the higher default risk, the interest rate can-
not completely reflect the default risk, and other information
are also helpful for reflecting default risk, and investors as
passive receivers of online loan rate cannot directly decide
the interest rate level, but they can take part in the final
interest rate decision by the mode of “vote with feet.”

Second, investors’ preferences to items embody directly
the time and indirectly the participant number for being full.
Generally, if the investor prefers the item more, the shorter
the time and the less participant number needed for being
full. Yield, default rate, and borrower’s income are all in
accordance with the characteristics.
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Third, investors have relatively strong risk discrimina-
tion abilities and can identify default risks not reflected by
interest rates. If interest rates have been completely mar-
ket-oriented, then default risks can be reflected entirely by
interest rates, and Chinese interest rates are incompletely
market-oriented and the same interest rate may correspond
to the different default risks, and investors identify this kind
of default risk using other information besides interest rates.
Investors’ discrimination consciousness on this kind of
default risk embody directly the time and indirectly the par-
ticipant number, and items with the bigger kind of default
risk need longer time and more participant number for
being full.

Fourth, investors have relatively strong yield discrimina-
tion abilities and can identify pure yields after deducting
deadline and credit risk factors. Investors’ discrimination
on pure yields embody directly the time and indirectly the
participant number, and items with the bigger pure yields
need the shorter time and the less participant number for
being full.

Fifth, the online loan platform has a relatively strong
self-purification function, and historical information (bor-
rowing times and overdue times) have significant forecasting
effect on the default risk. The self-purification function of
the online loan platform guarantees its sustainable develop-
ment, but there is further subdivided space in credit valuing,
and it is necessary to strengthen the discrimination function
of credit valuing to the default risk.

In short, although the online loan interest rate is incom-
pletely market-oriented, it embodies demands of borrowers
and lenders and is the weighing result of borrowers and
lenders. Investors can identify the different default risks
behind the same interest rate and the different yield level
behind the same credit risk. Our empirical results show the
following: the completely market-oriented online loan interest
rate has both actual basis and necessity. Investors having rela-
tively strong rational consciousness can identify not only the
different credit risk behind the same interest rate but also the
pure yield after deducting the different deadline and credit
risk’s effects, and these offer feasible actual basis for marketiza-
tion of online loan interest rates. Additionally, when the
default risk has not been compensated by the interest rate or
the pure yield, after deducting deadline and credit risk effects,
is too low, the item being full bid needs more participants and
a longer time. If investors’ number is limited in the online loan
market, many items may be un-full bid, and the effective funds
needed may be suppressed. Complete market-oriented interest
rates can make the item be full bid by use of shortening time
and reducing participant number for being full, thus satisfying
better borrowers’ financing needs. ,Next interest rate marketi-
zation reform should be strengthened further, and interest rate
marketization and competing mechanism should be loosened
and introduced in online loan markets, and thus, the price
decision mechanism of the interest rate is played better, and
investors’ behavior is guided better by the interest rate.

In addition, the online loan platform as a shared infor-
mation platform can exert the roles of information interme-
diary, transaction cost reduction, and fund allocation
effectiveness improvement, but compared with the tradi-

Journal of Function Spaces

tional financial market, the network information asymmetry
is serious. And thus, in the next, information disclosure
especially borrowers’ historical information should be per-
fected and strengthened further, and online loan investors’
information collection ability and yield and risk identifica-
tion abilities using existed information should be enhanced.

The paper has researched investors’ recognition abilities
on default and yield using big financial data but the mathe-
matics deduction has not been offered, and in the future, we
will give a rigorous mathematical proof.

Data Availability

The raw data can be obtained through the crawler method
after registering a personal account in the Renrendai plat-
form. And the data are also available from the corresponding
author upon request.
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In this paper, we consider the existence and multiplicity of solutions for a discrete Dirichlet boundary value problem involving the
(p» q)-Laplacian. By using the critical point theory, we obtain the existence of infinitely many solutions under some suitable
assumptions on the nonlinear term. Also, by our strong maximum principle, we can obtain the existence of infinitely many

positive solutions.

1. Introduction

Let N be a positive integer and denote with [1, N] the discrete
set {1, -+, N'}. In this paper, we consider the existence of infi-
nitely many solutions for the following discrete Dirichlet
boundary value problem

~Apu(j=1) = Agu(j = 1) + a(j)d, (u(j)) + B(7)$,(u(j)) = Ag(j> u(j)).Vj € [1, N],
u(0)=u(N+1)=0,

(1)

where A u(j) = A(¢,(Au(j))) is the discrete r-Laplacian,
¢, (u) = [u| u with u € R, Au(j) = u(j + 1) — u(j) is the for-
ward difference operator, g(j,-): R — R is continuous for
each je[I,N], 1<q<p<+00, A is a positive parameter,
and «(j), B(j) > 0 for all j € [1, N].

In the past decades, there has been tremendous interest
in the study of difference equations, with the development
of engineering, physics, economy, and so on (see [1-4]).
Most results about the boundary value problems of differ-
ence equations are obtained by using the method of upper
and lower solutions and fixed point methods (see [5-7]).
In 2003, Guo and Yu [8] first applied the critical point the-
ory to study the existence of periodic and subharmonic solu-
tions for a second-order difference equation. Since then, the
critical point theory has been employed to study difference

equations, and many meaningful results have been obtained,
concerning periodic solutions [9, 10], homoclinic solutions
[11-13], heteroclinic solutions [14], and especially in bound-
ary value problems [15-20]. For example, Candito and Gio-
vannelli [21] established the existence of multiple solutions
of the following problem

<_Apu(j_ 1) =Af(j u(j))>j € [LN], )

u(0)=u(N+1)=0.

Later, Bonanno and Candito [22] established the exis-
tence of infinitely many solutions of the following problem

—A,u(j = 1) +q(k)$, (u(j)) = Af (j» u(j)). j € [1. N,
u(0)=u(N+1)=0,

(3)

where g(j) > 0 for all j € [1, N]. Obviously, (2) is a special
case (q(j) =0) of (3). After that, under different conditions,
D’Agui et al. [23] established the existence of at least two
positive solutions of (3).
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In [24], Li and Zhou considered the following discrete
mixed boundary value problem

—A,u(j = 1) + (1) by (u(j) = Af (k. u(k)), j € [1, N,
u(0) = Au(N) = 0,
(4)

where s(j) > 0 for all j € [1, N]. By using the critical point
theory, the authors obtained the existence of at least two
positive solutions for (4).

The boundary value problems involving the sum of a p-
Laplacian operator and of a g-Laplacian operator is more
common, because this arises in the study of stationary solu-
tions of reaction-diffusion systems (see [25]). For example,
Mugnai and Papageorgiou [26] and Marano et al. [27] inves-
tigated the following Dirichlet problem

(—Apu —plu=f(xu), in QO (5)

u=0, on 00,

where f: QxR — R satisfies Carathéodory’s condi-
tions, and they obtained the existence of multiple solutions
of (5).

In [28], Nastasi et al. proved the existence of at least two
positive solutions for problem (1). Compared with the dis-
crete boundary value problem involving p-Laplacian opera-
tor, there are few results on the discrete boundary value
problem with (p, q)-Laplacian operator except [28]. Inspired
by the above results, we want to investigate the multiplicity
of solutions for problem (1).

In this paper, under suitable assumptions, we use the
critical point theory obtained in [29] to establish the exis-
tence of infinitely many solutions for discrete (p, g)-Lapla-
cian equations with Dirichlet type boundary conditions.
Moreover, by our strong maximum principle, we can obtain
the existence of infinitely many positive solutions of (1).

The rest of this paper is organized as follows. In Section
2, we recall the critical point theory and show some basic
lemmas. In Section 3, our main results and proofs are pre-
sented. After that, we have two examples to explain our main
results. We conclude our results in the last section.

2. Preliminaries

Let X be a reflexive real Banach space andlet I, : X — R be
a function satisfying the following structure hypothesis:

(H) I,(u) =D(u) — A¥(u) for all u € X, where @, ¥ : X
— R are two functions of class C' on X with @ coercive,

ie., | %im @(u) = +00, and A is a real positive parameter
uj|I—00

Provided that inf , @ < r, put

( sup ‘P(v)) - ¥(u)
ved™! (]-co,r])
r—D(u)

r)= inf
ue@! (]=o0,r[)

, (6)
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and

y =liminf(r), § =

r—+00

liminf  ¢(r). (7)

r—> (il)l(f @)

There is no doubt that y>0 and § >0. When y =0 (or
8 =0), in the sequel, we agree to regard 1/y (or 1/8) as +oo.

Now, we recall Theorem 2.1 of [29], which is our main
tool for investigating problem (1).

Lemma 1. Assume that the condition (H) holds. We have

(a) For every r>infy® and every A€]0,1/¢(r)[, the
restriction of the functional I, =® - A¥ to @ !(]-co,r|)
admits a global minimum, which is a critical point (local
minimum) of I in X.

(b) If y < +0c0 then, for each A€]0,1/y]|, the following
alternative holds: either

(b))I, possesses a global minimum, or

(b,) There is a sequence {u,,} of critical points (local min-
imum) of I, such that nirilood)(un) =+00

(c) If < +00 then, for each A€]0,1/8], the following
alternative holds: either

(¢;) There is a global minimum of ® which is a local min-
imum of I, or

(c,) There is a sequence {u,} of pairwise distinct critical
points (local minima) of I,, with nlin}mQ(un) =inf @,

which weakly converges to a global minimum of ©@

Here, we consider the N-dimensional Banach space

Xy;={u:[0,N+1]— R such that u(0)=u(N+1)=0},

and define the norm

N 1/r
lul = <Z AuG) + Y, h<j>|u<j>|r> O
j=0

where h : [1,N] — R, with h(j) >0 for all j€[1,N], and r
€]1,+00]. Then, let X; be endowed with the norm |ul = |
ullp,a + ||u||q,/3. We denote the usual sup-norm by |ull,, =

n[1ax} |u(j)|, and then we consider the inequality (see
je|LN

([30], Lemma 2.2)):

(N + 1)(7—1)/?

€X,. 10
> u d (10)

l[4lloo = ull,  for all

Lemma 2. Let h= ZJIL h(j). The following inequalities hold

v 1/r
m||”||ooﬁ|\””r,h5(2N+h) [l (11)

Proof. The left-hand side of (11) follows by [30]. Consider
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the right-hand inequality,

N N
lully, = Y [Au()"+ Y h()|uGi)
j=0 j=1
N-1 N
= |Au(0)[" + [Au(N)["+ 1 | Au(j)|" + Zl h(i)u(i)"
Jj= j=
N-1 N
<2lully+ Y @lull) + Y. h(j)llul,
j=1 j=1

< (2N +h)llull,.

Put

1
A(u)= Ellull Ay (u) = allulng3 and

P’
N (13)
=Y G(ju(j)), for all

i

MEXd,

where the function G : [1, N] x R — R is given by G(j, t)
= [, g(js)ds, forallt € R, j € [1,N].

Clearly, A}, A,, ¥ € C' (X, R) and we have the following
Géteaux derivatives at the point u € X ;:

j=0 j=1
(14)
(A3, v) = Y 6,(Au)AV() + ) BI)E,(u()V()
j=0 j=1
(15)
('), v) =Y gliuli)v(), (16)
j=1
for all v € X ;. Now, for r € ]1,+00],
2 ¢ (Au())Av(j)
j=0
= 2 19.(Au(i)v(i+ 1) - ¢, (Au(i)v()]
) . (17)
= 2 9.(Au(i=1)v(i) - 3 &, (Au(i)v())
j=1 j=1
== Ap.(Au(j~1))v(j)-
j=1

If we plug this result back into the calculation of Gateaux

derivatives above, then

() = ¥ [, (auti- 1) + ), (40))] v,

=
(18)
(Ayw)v) = i [~2,(Au(i - 1)) + BG)$,(u(7) | ()
]7 (19)
for all u, v € X,;. Let
D(u) = A, (u) + Ay (). (20)
Consider the functional I, : X, — R given as
L(u)=D(u) - AP (4), for all ueX,  (21)
We have
(T(w).v)

.
= 2 [t~ = A= 1)+ ) 001) B 40) = A9 7))

(22)

for all u,v € X,;. Thus, u € X is a solution of problem (1) if
and only if u is a critical point of I,.

Lemma 3. Fix u € X; such that either

u(j) > Oor—Apu(j— 1) —Aqu(j— 1)
+ali)g,(u() + B9, (u(j)) 2 0

for all j€[1,N]. Then, either u> 0 in [I, N] or u=0.

(23)

Proof. Fix ue X;\ {0} and Z={je[l,N]: u(j)<0}. If Z=
&, then, u > 0. Now, if min Z =1, we can get

=4,u(0) = Agu(0) + a(1)$, (u(1)) + B(1)¢,(u(1)) 2 0,
(24)
which implies that
A(gbp(Au(O))) +A<¢q (Au(0 ) .

<a(1)g,(u(1)) + B(1)¢,(u(1)) <0
Thus,
$p(Au(1)) + ¢, (Au(1)) < ¢, (Au(0)) + ¢4 (Au(0)).  (26)
Since ¢, and ¢, are both strictly increasing, we have A

u(1) < Au(0), which implies u(2) - u(1)<u(1)-0<0. It
follows that u(2) <0, then A(¢,(Au(1))) + A(¢,(Au(1))) <



a(2)¢,(u(2)) + B(2)$,(1(2)) < 0. An easy induction gives
O=u(N+1)<u(N)<--<u(l)<0. (27)

That is u =0, and this is absurd. Next, we assume that
min Z=z€[2,N],

A((pp(Au(z - 1))) + A((pq(Au(z - 1)))
<a(z)¢,(u(z)) + B(2)¢,(u(2)) < 0.

(28)

Due to the monotonicity of ¢, and ¢, Au(z) < Au(z - 1)
, which means u(z + 1) — u(z) <u(z) — u(z — 1). Because u(
z—1)>0, we have u(z+1)<u(z)<0. By repeating this
argument, it is easy to see

0=u(N+1)<u(N)<--<u(z)<0, (29)

which leads to a contradiction. O

Now, consider the function G* : [I, N] x R — R given
as

t
G"(j.t) =J g(j,s)ds, for all teR,je[l,N], (30)
0

where s* = max {s,0}. Now, we define I} (1) = ®(u) - A¥*(
u), forallu € X;, where ¥*(u) = Z]Iil G*(j, u(j)). Similarly,
the critical points of I] are the solutions of the following

2a

n
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problem

=Apu(j=1) = Au(j— 1) + a(j), (u(j)) + B, (u(7) = Ag(i> u* (7)).Yj € [1, N,
u(0)=u(N+1)=0.

(31)

Lemma 4. If g(j, 0) > 0 for all j € [1,N], then each nonzero
critical point of I} is a positive solution of (1).

Proof. We note that each positive solution u € X; of (31) is a
positive solution of (1). By an application of Lemma 3, we
conclude that u > 0. It follows that the nonzero solutions of
(31) are positive and hence are positive solutions of (1). [

3. Main Results

Let
N N .
. . n . Gt
a= Y (i)=Y, Bl Leoli) =limint YD anar,
=1 =1
= min Loo(/)

(32)
The main results are as follows.

Theorem 5. Assume that L. >0, and there are two real
sequences {a,} and {b,}, with lim a,=+oco, such that
n—+00

2a

b, | < min ,
0] {(a+2)1’P(N+1)@-1>’P (B+2)"UN +1

ij\il maxG(j, t) - Z]Iil G(j. b,)

A__ = liminf f=a

n )(q_l)/q}, for every nelN, (33)

9L,

(09

Then for each A€][(22+29)N+a+ f)/iqLy,, 1/A[;
problem (1) admits an unbounded sequence of solutions.

Proof. FixAin][(2P + 29)N + a + f§]/gL ., 1/A [, then, we can
take the real Banach space X, as defined in Section 2, and
the definitions of @, ¥, I, are the same as before. We will
prove Theorem 5 by applying Lemma 1 part (b) to function
I,. Since (H) is trivial to prove, it suffices to prove y < +co
and I, turns out to be unbounded from below. To this
end, let

(2a,)"

q
N o= o
p +

—— " for eve neN.
"og(N+1)T! R

le::

(35)

s (20, PIp(N+ 177) + (26, (N + )7 <[+ ipllb, = [+ Biallb! ~ T+ ZINva+f

(34)

Since, owing to (10), if [|ull,, < (ppn)”P then [lul, <a,,
and if Jlull,z < (qo,)" then |lull, <a,. So, let r,=p, +0,.
From ®(u) <r,, we have |u|, <a,.

We obtain
3, maxGlit) - £, G u(j)
inf <a,
(P(rn) S (D(IBSTH rn _ (D(M) (36)

Then, we define w(j) such that w,(j) = b, for every je
[1,N], w,(0) =w,(N +1) =0. Clearly w,(j) € X; and ®(w,
) <r, owing to (33). One has
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S maxG(i, ) - 5, GG )

((2a,)"1q(N +1)") = [(2 + @)lp]|b, ~ [(2 + B)/a] b,
(37)

9lm) < ((2a,PIp(N+1)P7") +

Therefore, y <liminfe(r,) <A, <+co. It remains to

n—+00
show that I, is unbounded from below.
Let {u,} c X, be a sequence with u,(j) >1 for j€[1,N]
such that lim |lu,| = + co. Because L, >0, fix L such that
n—~oo

Ly, >L>[(2"+29)N + a+ f]/g), and we deduce that there
is §;> 0 such that G(j, t) > Lt for all £ > §;. Moreover, since

G(j, t) is a continuous function, there exists a constant C(j
) 20 such that G(j, t) > Lt* - C(j) for all ¢ €[0,8;]. Thus, G
(j, t) = Lt* — C(j) for all £ >0 and j € [1, N]. It follows that

N N
lF(“n) = Z G( ’un(])) 2 Z [L(un(]))p_ (])]
=1 =1 (38)
>Llu,lP,-C, for all neN,
where C= Y%, C(j). Since [lu, ||, > 1, one has
u b, Nl
I,(u,) = w ‘lﬁ AZ (j» u
p
2’N + « N+
< e, 15, + ﬁllunll:’;o = AL|u, |2, +AC
20 424
<[E2INTar B e+ AC,
q
(39)

As [(2?+29)N+a+fl/lq—AL <0, it is obvious that

lim I,(u,)=-0co. Hence, I) is unbounded from below
n—+00

and the proof is complete. O
Let

N .
. G(j,t
B® = limsup M .

. (40)

t—+00

The following theorem can be obtained if we change
some of the conditions.

Theorem 6. Assume that there are two real sequences {a,}
and {b,}, with lim a, =+0o, such that (33) holds and
n—+00

Z] ; maxG(j, t) = Z?:I G(js by)

ltl<a,

Ao = Y (e PN + 1)+ (2, (N + 17 T) ~ [(2+ @)l (2 By

B®
<—.
d+a+p

(41)

Then, for each A €](4+ a+ f)/gB®, 1/A.|, problem (1)
admits an unbounded sequence of solutions.

Proof. The first half of the argument is analogous to that in
Theorem 5, and put @, ¥, I,,r, as above. So, we have y <
liminf ¢(r,) < A, < +00.

n—s+00

Our task now is to verify that I, is unbounded from
below. First, we assume that B =+oco. Fix M such that
B®>M> (4+a+p)/qA, and let {t,} be a sequence with

t,>21and lim t,=+0o0, such that
n—-+00

G(j,t,)>Mth, for all nelN. (42)

M=

-
I
—_

Taking the sequence x, in X; defined by x,(j) =¢, for

every j€[1,N], x,(0) =x,(N + 1) = 0, we have
116 ||x 1% l
I)(x,)= —2% b ), G(J,
) = = ; Z (s %4(7))
2 2 <
=—+“ﬂ;+—+’3tz—A it
P A (13)
< H—atﬁ 2+ﬁ - AMt?
4
< (ﬂ _/\M) tfy’l
q

It is easy to see lim I,(x,)=—o0.
n—-+00

Then, we assume that B® < +00 and fix € > 0 such that
e<B® - (4+a+ f)IqA. Let {t,} be a sequence with ¢, >1
such that lim ¢, =+co and

n—-+00

N
(B® +e)th > Z G(j.t,) >
j=1

(B® —¢)th Vn e N. (44)

Let the sequence {x,} in X, be the same as the case
where B® = +00, such that

4+a+f

- AB® -¢) |V,
p (B™ —¢)

n

I)L(xn) < (45)

which implies that lim I,(x,)=—co.
n—-+00

So, in both cases, I, is unbounded from below, which
completes the proof of Theorem 6.
Let

= limsup w

46
msup =2 (46)

Applying part (c) of Lemma 1, we get the following the-
orem. O



Theorem 7. Assume that there exist two real sequences {c,
} and {d,}, with lim d, =0, such that

n—+00

n

2d 2d
|c,| < min 7 i T oy for every neNN,
(a+2)/P(N + )07 (B4 2)a(N 4 1)(aDa

(47)

pnlt maxG(j, 1) - YL Glscy)

A, = liminf
n—ieo ((2d, Y Ip(N + )P ") +

B
<
d+a+f

((2d,) 1q(N + 1)) = [(2+ @)lpl[c,|” = [(2+ B)/allc, |*

(48)

Then, for each A€|(4+a+ B)/qB’, 1/A,|, problem (1)
admits a sequence of nonzero solutions which converges to
zero.

Proof. Fix A in |(4+ a+ f)/qB°, 1/A,|, and we can take the
real Banach space X,; and functional @, 'V, I, as defined in
Section 2. Our aim is to apply Lemma 1 part (c) to function
I,. To this end, let

(2d, ) (2d,)"
= 0,=——", for every nelN.
PN+ 1) q(N+1)1
(49)
Owing to (10), if [lul,, < (pp,)"” then |lull., <d,, and if

lull, s < (90, )4 then |ull, <d,. So, let r, =p, +0,. It fol-
lows that if ®(u) <r,, then |ul,, <d,. We obtain
i maxG(j, t) - YL GG u(j))
. ltl<d,
¢(r,) < inf . (50)

D), ru=llull} Jp=llulll /g

Now, for each n € N, let v, (j) be defined by v, (j) = ¢, for

every je€[l,N], v,(0)=v,(N+1)=0. Clearly v,(j) € Xy,
and @(v,) <r, from (47). We have

pl maxG(j, ) - Y Gl ca)

()P 1p(N + 1)) + ((2d,)"1q(N + 1)) = (2 + @)p]le,* = [(2+ B)/allc, |

(51)

o(r,) <

Hence, § < liminf¢(r,)) <A, < +00 follows.

n—-+00

In fact, infy @ =0, so our task now is to verify that the 0

is not a local minimum of I,. First, assume that B° = +00.
Fix M such that B > M > (4 + a + B)/gA, and let {s,} be a
sequence of positive numbers, with s, <1 and lim s,=0,

n—+00
such that

G(j,s,) >Msl, for all neN. (52)

M=

.
I
—_

Thus, taking the sequence {y,} in X, let y,(j) =s, for
every j € [1,N],5,(0) =y,(N + 1) = 0. Some tedious manipu-
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lation yields
4+a+p
By« (1 ), 53)

which implies that I, (y,) <0
Then, we assume that B® < +c0 and fix € >0 such that

e<B’—(4+a+P)/qA. Let {s,} be a sequence of positive
numbers, with s, <1, such that lim s, =0 and
n—-+00
N
+e)sl> Z G(j B’ —¢)si¥neN. (54)
j=1

Choosing the same {y, } in X, as the case B” = +0c0, one
has

4+a+p

I)l( n) < q

- A(B%-¢) s (55)
Thatis I;(y,) < 0. Since 0 is the global minimum of @, in

both cases, u =0 is not a local minimum of I, and the proof
is complete. O

By setting

Zj 1 maxG(], t)

|t|<a,, =

VA
((2a,)g(N+1)71) "%

. = liminf
n—+oo ((2a,)PIp(N +1)P71) +

Zfrl maXG( j, &)

:= liminf IBl<t ,
t—+00 t1 + tP
(56)
we get the following consequences.
Corollary 8. Assume that
_ 24
Ay < B%. (57)

PN+ 1Y (4+a+p)

Then, for each A €|(4+a+ f)/gB™,29/p(N + 1)’ 'A_ |,
problem (1) admits an unbounded sequence of solutions.

Proof. Let {a,} be a sequence of positive numbers with
lim a, = +00, such that

n—=00

[€l<a,

zf | maxG(j, &)

A e a2 &8)
After simple scaling and calculation, we have
N+1)F
A, < 1% . (59)

Taking b, = 0 for each n € N, from Theorem 6, the con-
clusion follows. O
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If g(j, 0) satisfies the nonnegative condition, we have the
following conclusion.

Corollary 9. Assume that g(j, 0) > 0 for all j € [1, N], and

Ay < ?q B®. (60)
PN+ 1 (4+a+p)

Then, for each A €|(4+a+ B)/gB™,21/p(N+ 1) A,
problem (1) admits an unbounded sequence of positive
solutions.

Proof. Let

- (00 120 o
g(j,0), if t<0.

Since ¢(j,0) > 0,

max| oG OaE-max[ g0t (6

0<s<t 0 0<s<t 0

for all t+>0. From Corollary 8, we know that problem (1)
with g replaced by g* admits an unbounded sequence of
solutions for each A €](4 +a+ B)/gB®, 21/p(N + 1)/ 'A_|.
Then, all these solutions are positive solutions of problem
(1) by Lemma 4.

Let

[€]<t
11+ tP

) Y, maxG(j, £)
Ay=liminf — =0

t—0"

(63)

Arguing as in the proof of Corollary 8 and taking ¢, =0
for each n € [1, N|, by Theorem 7, we have the following cor-
ollary. O

Corollary 10. Assume that

_ 21 ,
Ay< - (64)
PN+ 1Y (4+a+p)

Then, for each Ae|(4+a+ B)/gB’ 29p(N + 1Y "4,
problem (1) admits a sequence of nonzero solutions which
converges to zero.

Arguing as in Corollary 9, we have the following result.
Corollary 11. Assume that g(j, 0) = 0 for all j € [1, N], and

_ 24 B

Ao < PN+ 1) (4+a+p) (65)

Then, for each Ae|(4+a+ B)/gB’ 29p(N +1¥ "4,
problem (1) admits a sequence of positive solutions which
converges to zero.

Finally, we give two easy examples to illustrate our
results.

Example 1. Let a=3=0,9=2,p=3,

9(j:x) = g(x)
(3xzsin<lln|x|>+lx2cos<lln|x|>+§x2, if x#0,
_ 2 2 2 8
0, if x=0.

(66)
for each j € [1, N]. Then,

maxfg [3x7 sin (In x/2) + x> cos (In x/2)/2 +25x*/8] dx

Lo st
%lﬂfgg 2+ 13
.. Psin(ln t/2)+25/24 1
= liminf =,
t—-+00 2+ 24
(67)
and

J"t [3x2 sin (In x/2) + x* cos (In x/2)/2 + 25x2/8} dx

lim sup 42 -
t—+00 t
_ £ sin (In #/2) +25t°/24 49
=limsup 3 =
t—+00 t 24
(68)
By choosing N = 3, we have
21 1
=2 (69)

pP(N+1)P (4+a+p) 48
From the above calculation, we obtain

213-:1 maxh['gx2 [3 sin (In x/2) + cos (In x/2)/2 + 25/8]dx
A, =lim inf i

t—+00

t2+t3
_1
8’

Y3, [ix2[3sin (In x/2) +cos (In x/2)/2+25/8]dx 49
B® =l L0 =
g e 8

(71)

It is clear that A_ <27B®/p(N+1)""'(4+a+ ), by
Corollary 9, the problem

(—(iAu(j)iH)Au(j) + (1Au( - DI+ Au( - 1) = J glu(i)vje [1,3)
u(0) =u(4)=0,
(72)

admits an unbounded sequence of positive solutions.



Example 2. Let g=2,p>2 and

) x(2+2e+2cos (eln|x|)-esin(eln|x])), if x#0,
9(jx) =g(x) = .

0, if x=0,

(73)

for each j € [1, N]. Then,

G(j,x) =G(x) = J: g(s)ds= xz[l +e+cos (elnx)], (74)

for x> 0. Since g(x) >0 for x>0, G(x) is increasing. We
have

YL maxG(j, )

O<E<t £2[1+e+cos (elnt)] 3

Ao = liminf —— o = Nliminf £+t =Ne,
(75)
N .
1 GUjr t £[1 In ¢t
B° =limsup M = Nlimsup [1+e+cos (eln £) =N(2+eg).
t—0° t t—0° t?
(76)

Let € be a sufficiently small constant, such that

24
pPIN+1Y ' (4+a+p)

Ne< N(2+e). (77)

Then, by Corollary 11, for each A €](4 + a + f)/qB°, 24/
p(N+1Y7'A,[, problem (1) admits a sequence of positive
solutions which converges to zero.

4. Conclusions

In this paper, we consider a discrete Dirichlet boundary
value problem involving the (p,q)-Laplacian. Unlike the
existing result in [28], which is the existence of at least two
positive solutions, we consider the existence of infinitely
many solutions for problem (1) for the first time. In fact,
by using Theorem 2.1 of [29], we show that problem (1)
admits a sequence of pairwise distinct solutions under some
appropriate assumptions on the nonlinear term near at
infinity and at the origin. Moreover, we prove the existence
of infinitely many positive solutions through our strong
maximum principle. It seems that we can use the method
in this paper to study other similar problems, such as the
existence and multiplicity of solutions for difference equa-
tions with different boundary value conditions. This will be
left as our future work.
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It has been found that the surface of implied volatility has appeared in financial market embrace volatility “Smile” and volatility
“Smirk” through the long-term observation. Compared to the conventional Black-Scholes option pricing models, it has been
proved to provide more accurate results by stochastic volatility model in terms of the implied volatility, while the classic
stochastic volatility model fails to capture the term structure phenomenon of volatility “Smirk.” More attempts have been
made to correct for American put option price with incorporating a fast-scale stochastic volatility and a slow-scale stochastic
volatility in this paper. Given that the combination in the process of multiscale volatility may lead to a high-dimensional
differential equation, an asymptotic approximation method is employed to reduce the dimension in this paper. The numerical
results of finite difference show that the multiscale volatility model can offer accurate explanations of the behavior of American

put option price.

1. Introduction

Compared to the European option, the biggest difference is
that American option can be exercised any time before its
maturity date. Due to the early exercise feature, the pricing
of American option has long been the most challenging
research topic in finance (see Karatzas [1], Rogers [2], and
Haugh and Kogan [3]). The American option can be valued
using an analytic approximation approach called the
Barone-Adesi and Whaley method (BAW method) when
the underlying asset is driven by a stochastic process with
constant volatility [4]. However, the significant leptokurtic
feature of the underlying asset process found from lots of
empirical evidences indicates that the volatility should be
randomly distributed rather than a constant, and thus, the
BAW model can hardly be applied if a stochastic process

drives the volatility. To solve this problem, many researchers
currently resort for the stochastic volatility models. In partic-
ular, the multiscale stochastic volatility model has been pro-
posed to deal with the fast data and slow data frequency of
the underlying asset.

1.1. Multiscale Stochastic Volatility Modelling. Most of the
early studies on the American option always assume that a
stochastic process with constant volatility drives the under-
lying asset. This assumption can simplify the problem but
fails to capture the real market feature of the volatility
(Giesecke et al. [5]). Numerous extensions have been made
for relaxing the overstrict assumption, namely, the stochastic
volatility models. The most popular stochastic volatility
models are Heston’s model (see [6]) and Stein and Stein’s
model (see [7]), which assume that the volatility is driven
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by a single-factor stochastic process. However, currently,
empirical study shows that the volatility can be rescaled
according to the frequency of the observed data. Besides,
multifactor stochastic models can be used to improve the
accuracy of the option pricing (see Fouque and Zhou [8]
and Christoffersen et al. [9]).

The studies by Clarke and Parrott [10] and Muzy et al.
[11] defined the time scale as the frequency of the observed
data in different time periods. Further study of the time scale
divided into fast scale and slow scale has been carried out by
Chacko and Viceira [12]. The fast scale describes the short
period fluctuation with high frequency, while the slow scale
describes the long-term variations with low frequency. A
comprehensive empirical analysis was presented by Fouque
and Zhou [8]. They proposed the slow-scale volatility model
to price the European option and investigated the long run
time correction effect on the option pricing. A multiscale
volatility model was developed to price option by Fouque
et al. [13], from which the authors combined both the fast-
scale volatility and slow-scale volatility into the volatility
processes. In Fouque et al’s research, the analysis of the
fast-scale volatility is connected with the singular perturba-
tion theory, while the study of the slow-scale volatility is
associated with the regular perturbation theory. Therefore,
the asymptotic approach can be applied to approximate
the volatility correction terms.

Despite the popularity of the classic European option
pricing, the multiscale model has also been widely used to
price other more complicated financial derivatives, such as
the Asian option and the VIX future (see Fouque and Han
[14] and Fouque and Saporito [15]). The multiscale volatility
model is studied in Liu et al. [16], from which the authors
incorporated the jump-diftusion terms in pricing European
option and the variance swap and applied the finite element
method to approximate the generated high-dimension par-
tial integral differential equation (PIDE). Recently, a perpet-
ual American option is investigated under the stochastic
elasticity of variance (CEV) model, and the fast-scale correc-
tion of the variance elasticities derived by the multiscale
asymptotic method [17-19]. Apart from the derivative pric-
ing, the multi-scale model can also be applied in studying
portfolio selection (see Fouque and Hu [20, 21]).

1.2. Pricing Methodologies for American Option. It is well
known that American-type option featured by early exercise
can be formulated as a free boundary PDE problem, whereas
the analytical solution is not available. Hence, numerous
studies have been conducted to find an approximation of the
American option price including the semianalytical approach,
the numerical approach, and the Monte Carlo simulations
(see Fouque et al. [22], Longstaff and Schwartz [23], and
Stentoft [24]).

The semianalytical approach can be divided into three
groups, including an analytical method of lines, the integral
equation approach, and capped option approximation
approach. A semianalytic valuation method for American
option is developed by randomizing the maturity date, from
which the maturity date is viewed as several jumps driven by
standard Poisson processes [25]. The integral equation
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approach is built by valuing and hedging American options
based on a recursive integration of the early exercise bound-
ary [26]. Instead of approximating the early exercise bound-
ary, the capped method is inclined to impose the lower and
upper bounds on American option value [27]. Although the
semianalytical methods are supposed to be more efficient, it
is hardly applicable if more factors are included. Regarding
the simulation approximation, various methods are applied
to undertake an analysis of the field. The simplest one is
the binomial tree method introduced by Cox et al. [28].
LSM method has been introduced by Longstaff and Schwartz
[23], who claimed that the simulation method is favourable
for multifactor models. The LSM method approximates
and simulates the conditionally expected pay-off function
from the cross-sectional information using the least square
method. However, the method is proved to be less efficient
compared to other numerical and semianalytic approaches.

According to Feynman-Kac theorem, American option
pricing problems essentially described by a nonlinear PDE
can be solved numerically by the finite difference method
and the finite element method [29]. For the time-dependent
American option, a free and moving boundary is considered
due to the early exercise feature. Two approaches, namely,
the fixed-point approach and the penalty approach, are com-
monly used to deal with the moving boundary. Merton et al.
[29] applied the front-fixing transformation to incorporate
the unknown boundary into the PDE and solved it numeri-
cally as a fixed boundary nonlinear PDE problem. The front-
fixing method is highly efficient because it does not have to
embed iteration at each time step of evolution. A detailed com-
parison between the front-fixing method and the penalty
method has been carried out by Nielsen et al. [30]. Different
from the front-fixing method, the penalty method removes
the free boundary by adding a small and continuous penalty
term which accurately captures the boundary properties.
Nielsen et al. [31] derived a penalty method for solving the
American multiasset option pricing problem, and they have
proved that the semi-implicit FDM method performs better
than the implicit method by avoiding the nonlinear term.
However, even though the numerical method is beneficial to
dealing with the PDE problem with free boundaries, the
method is not perfect for a high-dimensional problem con-
cerning the issue of computation efficiency.

This paper is aimed at expanding current research on the
subject of American option pricing problem with stochastic
volatilities. In our research, a multiscale stochastic volatility
model is incorporated to investigate the value of American
option. We compare the fast-scale and slow-scale effects of
the volatility, which helps to explain the investors’ different
behaviors when facing the short-run and long-run volatility
risks. Since more factors have been taken into account in the
model, it will result in a high-dimensional problem subject
to moving boundaries, which is hard to solve analytically.
Even though many of the numerical methods are useful in
solving the higher-dimensional PDE, such as the finite ele-
ment method in Liu et al. [16], it is highly time-consuming.
In our research, we propose an efficient approach to deal with
the problem by combining the asymptotic method with the
front-fixing method. Besides, as the valuation of the Greeks
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is closely related to hedging and the risk exposure of the port-
folio selection, in this paper, we study the Greeks numerically
to test the sensitivities of model parameters. Last but not least,
we apply the real financial market data to calibrate the correc-
tion terms, which makes our research more reliable and realis-
tic. Instead of using SPX 500 option quotes to calculate the
likelihood of the underlying distribution, we follow Fouque
et al’s calibration framework as an alternative approach to
analyse the linear relationship between the implied volatility
and the Log-Moneyness in Fouque et al. [13]. The idea of
the calibration is straightforward and more efficient with fewer
calibrated parameters.

The rest of the paper is organized as follows. Model Setup
describes the modelling of the underlying asset price, where its
volatility is driven by multiscale stochastic processes. Pricing
Approximation presents the asymptotic approximation
algorithm which is applied to reduce the dimension of the
resulting PDE for option pricing. Numerical Analysis is the
numerical approach of finite difference for the solution of
the PDE problem with free boundary. Numerical illustrations
are presented in Empirical Results and followed by a conclu-
sion with future work in light of the empirical findings.

2. Model Setup

We assume that the price of the underlying asset S is driven
by the following stochastic process in the form of stochastic
differential equation,

dS = uSdt + f (v, 2)SAW.”), (1)

where p is the constant drift term, WEO) is a standard Brow-

nian motion, and f(y, z) is a function of two factors y and z,
which represent “fast-” and “slow-"scale volatility, respec-
tively. The fast- and slow-scale volatilities y and z are driven
by the following two stochastic processes:

1 1 1
dy=za(y) - —=I,(1) |dt+ —B(y)dw',
y (Ea(y) i ()) + \/Eﬁ(y) )
2= (0c(z) — /oI, (2))dt + Vag(z)dw ),

where 1/€ and o denote, respectively, the fast-scale rate and
slow-scale rate of volatility; I'; (y) and I',(z) denote the risk
premium of the volatility risk under the risk-neutral assump-
tion; and the functions «a(y), B(y), c(z), g(z) are smooth and

at most linearly grow as y — 00 and z — co.

Here, we assume that the Brownian motion (WEO), Wﬁl),

WEZ)) is correlated with the following correlations: Cov(WEO)

W) =p,, Cov(W”, W) =p,, and Cov(W", W)=
P12

The American option provides the contract holder with
the right of early exercise before the expiration date T, which
is the key difference from European options. Hence, there
exists an optimal exercise boundary {B(t),t< T}, which
divides the area into the holding region and the exercise
region. It is optimal to exercise the American put option with

strike price K when S < B(7) subject to the following boundary
conditions:

OP(B(t).y, 1) _ |
oS - (3)
P(B(t),y,z,t) =K - B(t).

On the other hand, if S > B(7), it is the holding region, and
the investors choose to hold the contract until the maturity
time. The resulting boundary condition in this region becomes

P(S,y,z,t)=(K-S)", (4)

and the terminal condition of the free boundary at expiration
date is defined as

B(y,z, T) =K. (5)

3. Pricing Approximation

The asymptotic approximation method for American option
pricing can refer to the perturbation theorem, which aims at
correcting solutions of a PDE with respect to the small
variation of the coefficient. We generate the perturbation
theorem by introducing fast-scale correction and low-scale
correction at the same time into the process of approxima-
tion. The perturbation theorem can be grouped into the sin-
gular perturbation and the regular perturbation. The PDE
degenerates at the singularity point for the singular pertur-
bation, whereas the regular perturbation will not change
the nature of the PDE. In order to approximate the altering
of the solution under perturbation theorem, the asymptotic
approximation is adapted in the series expansion. In our
research, the correction of fast-scale stochastic volatility is
regarded as a singular perturbation, while the correction of
slow-scale stochastic volatility is considered to be a regular
perturbation similar to Fouque et al. [13].

Therefore, American option price P>’ can be decom-
posed into the leading term and two correction terms, i.e.,

P59 =Py, + Py, + P, + Error, (6)

where P, denotes the option price without the volatility

correction, Pio = \/EPLO the fast-scale volatility correction,
and P§, = /0P, the slow-scale volatility correction. The

error term Error is o(§ \f +/o + \/EE) with reference to
Fouque et al. [32].

Under the proposed fast-scale and slow-scale stochastic
volatility model, the price of an American put option P(S, y,
z, t) satisfies the following PDE problem with free boundary
conditions:



4
FP =0,
P*(S,,2,T)= (K-S,
B (y,2,t) < S<+00
PE)0<BEG }/,Z, ):K BEJ )’:Z, ))
PEo( 522 ) 3,2 ): (7)
P ”(BE" Y2, 1), ¥, 2, ) 0,
P "(Bg"(y z 1), 9.2, ) 0,
P*?(+00,,2,) =0,
where ¢ € [0, T]. The operator Z*° is given by
1 1 (]
$€’J=QO+ﬁ$1+zgz+\/&ﬂl+(fﬂz+%ﬂu=0,
(8)
with
=2 1f2 szaz+s -
T U TR T
82
— T -,
1 0’
L= 5B 0) 55 +a0) 5
2 0y? 0
g (©)
aZ
My =p,9(2)f (v, 2)S 350z 29(2)$>
1, 0 0
My =59°(2) 55 +c(2) 5
aZ
M= PP0)9(=) 557

To construct a singular perturbation expansion, the asymp-
totic price P is expanded in the form of

n
bo Z EPPI(S,y,2,t). (10)

To construct a regular perturbation expansion, the asymp-
totic price P’ is expanded in the form of

n
P’ =% 61”P, (S, .2, 1). (11)
j

Similarly, the asymptotic price of free boundary B(y, z, t) is

of the form
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= Y BBy, 2,0, (12)

B7=) 0B, (1. 21). (13)

We substitute (10) and (11) into &>°P5? =0 from (7) and
collect the similar terms up to order1/2; the results are shown as
below:

ZL53Py, =0,

L3Py + 2Py =0,

v (14)
o
@(T> : &Py, =0,
o
0 (%) C LyPy, + L\ Py, + Mly,Pyy =0,
O(1): ZLyPyy+ L\ Py + ZyPy, =0,
@(\/E>1 LyPyy+ L1 Pry+ ZLyPry =0,
O(Vo):  Z,P, + L P+ ZLoPy, + M \Poy+ M 1,P,  =0.
(15)

From (9), since the operators &, and Z, only contain the
derivatives with respect to y, it can be concluded that P, P, ,,
Py1»,and P, | are independent of y according to (14). As a result
of the fact that &, P, ; = 0, equation (15) is a Poisson equation
of the form

Z,P+ (%) =0, (16)
with (¥) := [ g(y)I1(dy) = 0 according to the centring resol-

vability of Poisson equation, where IT is an invariant distribu-
tion to y. Thus, we obtain

(Zo)Poo =0, (17)
(Z1Pyy) + (ZLo)Pro =0, (18)
(1) Pog +(ZL)Po, =0. (19)

Correspondingly, the free boundary conditions are neces-
sary to be expanded in terms of \/E and /0. By combining
(12) and (13) into (7) and applying Taylor expansion, we
obtain

0Py (B 2
Poo(Bog 25 1) + ﬁ(%&n +Pyo(Bogs 2 ) + Bl,O)
+ ﬁ(MBm + P (Bog 2 1) + Bo,1> =K~ By,

(20)
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0Py (Byp» 2 1)

OP2 (Byo, 2, t 0P, (Byo» 2, t
+\/E< 0,0( 0,0 )Bl,0+ 0,0( 0,0 ))

oS 0s? N
0P} (Byg» 2 t 0Py (Byg» 2 t
o(Lhllipetly, | Sollhpzt))
(21)
0Py (Boo» % 1) 9Pgo(Byy: 2 1) 0Po(Boo» 2 1)
> 5! 5! £ B > >
R e T PR TR =
9P5o(Bog» 2 t) 0Py (Boo> %, 1)
0005 ) B 010 =0.
“/‘;( 0%z Mt oz )
(22)

The boundary conditions can be derived from (20), (21),
and (22). The terminal condition can be rewritten as follows:

Pyo($,2,T) =
Po($,2T) =

(K=$)",

(23)
Py.(S,2,T) =0.
Here, we propose a series of theorems correspondingly
based on the assumptions above to assist for the pricing of
American option.

Theorem 1. Assume p =P, to be the leading term without

the volatility correction; p can be determined by solving
PDE (24):

(Zy)p=0,
p) 2 aZ d (24)
<go>—a —88 aSZ Sas_r,

where 8” = (fP(y,2)) = ffz (7, 2) [ 1(dy) = 0 denotes the mean
historical volatility of stock and is subject to the terminal and
boundary conditions:

p(ST)= (K~ 5)",
P(Sminr 1) = (K = Sy )™,
P(Spaer t) = 0, (25)
p(Bp,t) =K =By,
ap(Byt) _
ox ’

where B, =B, denotes the moving boundary of the leading
term.

Proof. The boundary conditions are easily derived from
(20).0 O

From Theorem 1, the leading term p can be obtained by
solving a one-dimensional PDE with free boundary condi-
tions. The analytical solution is impossible to obtain; thus,
we resort to the numerical solution presented in the next sec-
tion. Apart from the leading term, the fast-scale volatility and
slow-scale volatility terms can be determined by Theorem 2
and Theorem 3.

Theorem 2. Let P°= P, denote the fast-scale volatility
correction term which can be solved by

(Z)PF = VS gsp Vi o P rp (26)

08%

(-) denotes the integral with respect to y, subject to the
terminal and boundary conditions

P5(S, T) =0, P*(By, t) =0, (27)
where V

8- (BU)) - (@), Vi =T - (B()).

Proof. From (9) and (17), we obtain

2

R Y 0085) DA E)

Subtracting the first equation of (15) by (17) and setting

F29=-3 (8- £2), (29)

we obtain

<31P2,o>:<31351(<30>_30)P> <3 ¢S asz>

(30)
where ¢ = ¢(t, S, y, ).
According to the chain rule and PDE (18), we get
0’
Vi 9P
(Zo)Pro=~(Z1Pyy) = v‘s3 as3 52a . (31
where Vi = p,8(B(y))(®,) and V§ =T (B(y).

From Theorem 2, the fast-scale volatility term can be
determined by solving the PDE problem subject to the fixed
boundary condition, or it can be approximated by

Piy=~(T-1)7p, (32)

where 7 = V,§°(0°/08%) + 2V, 52(2%/0S?).
Substituting (32) into (26), we obtain

(Zo)Pro==Tp+(T-1)7(ZLo)p=-Tp.  (33)

d ]

Theorem 3. Let P° =P, denote the slow correction term
which can be solved from the PIDE:

2

(Lo)P?=ViS 080z %0z

(34)



subject to the terminal and boundary conditions

P7(S,T) =0,
(35)
P?(By, t) =0,
where V§ = L,g(2) and V§ =p,g(2) (f (5. 2)).
Proof. According to (19), we obtain
(Zo)Pos = (A1) Py (36)
with
My - VIS —— o - ViSs— a (37)
() - 050z 0z
Similarly,

2

(2 a Ua
Po,lz_(T_t)</ll>Po,0=_(T )(V Sas—g Vap>

(38)

where V§ =T,g(z), and V5 = p,g(2)(f(y, 2)).0 O
4. Numerical Analysis

For the convenience of numerical computation, both fast-
scale stochastic volatility and slow-scale stochastic volatility
processes are assumed to be mean-reverting Ornstein-
Uhlenbeck (OU) processes. Thus, the stochastic volatility
models under the risk-neutral adjustment are

dS = rSdt + f(y, 2)SdW; ")

1 1 %
dy=—(m* —y)dt + —v,\/ydw; ", (39)

: VE

dz = (k* - z)dt +/av,\/zdW;?

where r is the risk-free interest rate; m* and k™ are mean
reversion level; y and z are the fast-scale stochastic volatility
and slow-scale stochastic volatility, respectively; v, and v, are
the volatility of volatility, i.e., vol of vol; and Wt* (’), i=0,1,2,
are the standard Brownian motions under the risk neutral
measure.

As described in the previous section, the option price
could be approximated by the summation of the leading
term, the fast-scale correction, and the slow-scale correction
terms. In this section, the leading term is approximated
numerically by applying the front fixing method (FDM) in
the following work.

4.1. The Sensitivity Study of the Leading Term. Generally, to
obtain the leading term of the original American put option
P =Py(S,t), we first have to solve the following problem
numerically:
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op 1ondp Op
513 S é P +rS= 5 " P= 0. (40)

By applying the front fixing method (FDM) and letting
x =S/B(t), equation (40) becomes

op 1o ,0%p B'(t)) o
E 6 W + (T T a —Tp 0

x>1,

p(x,T)=0, x>0,
B(T) =K,
p(1,t) =K - B(t), (42)
op(l,t)
—5, = B,
p(xmax’ t) = 0

Discretizing (41) gives

P =Pl L2 2P~ 207 P
dt 2 7 x>

Bn+1 - B p pn
+ _ i+1 [t SN
<r Bdr ) i ade P

which can be simplified to

n+1

P =apl, +bip! tepl,,  i=2,-M, (44)

where for simplification, let I = dt/2dx and k = dt/dx":
Bn+l — B
B4t ’
by=1+08kx? + rdt, (45)
n+l _ pn
=—132kx?+xil po BB
2 ! Bn+1dt

The terminal and the boundary conditions (42) have
been reduced to

a;=-— l<_‘)‘2kxf -x;1 (r
2

py=K-B",
"=K-B"(1+dx),
P ( ) (46)
Py =0
BY =K.
Now, let
F(B")=a,(B")p; + by (K = B") + ¢;(B")(K - B"(1 + dx)),

(47)
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then the moving boundary can be approximated by applying
Newton’s method:

Bn,r+1 — Bn,r _

> (48)

where r denotes the rth iteration at time #n, and the iteration
stops once the solution converges.

Option Greeks are of great importance because Greeks
measure the evolution of the option price along with the
change of the model parameters, such as volatility and stock
price. Also, Greeks are useful tools for hedging purpose and
estimation of the risk exposure in portfolio selection. Here,
we study the Greeks including Delta, Gamma, and Vega of
the leading term, and the derived results will be used later
in the approximation of the first-order correction terms.

4.2. The Study of Delta. Let D=0p/0S denote the Delta,
which measures the rate of change of the option value for
the stock price. It then can be determined by solving the
following PDE:

oD 1 _,.00°D 0D 20°p  dp
— + -8 +1S— —rD=-88 — —r— (49
a2 o "as T FRMER (49)
subject to the terminal and the boundary conditions:
-1, ifK<S,
D(S,T)=
0, ifK>S§,
D(Smin’ t) = _e—f(T—i)’
D(Smax’ t) = 0’ (50)
D(B, t) =0,
0D(B,, t)
—==0.
oS

Using a similar approach as described in (41) and letting
x =S/B(t), equation (49) subject to the terminal and the
boundary conditions (50) becomes

2 ! 2
D 1o 28_D+<r_B(t)>xa_D_rD= 1oxdp rip

x>1.

(51)

ot 20" o ox 2" Box? Box

The terminal and the boundary conditions have been
rewritten as follows:

D(x,T)=0,
B(T) =K,

(1,t)=-1, (52)
oD(1,t)
ox
D(x

:0,

£)=0.

max’>

7
Discretizing (51) gives
D' -D! 1, ,D% 2D +D} B™'_B"™\ DI -D!
i 5 iy E62)612 i+1 dx; i-1 +< _ T )xi 1+12dx i-1 *VD?
B 1 Szxi +1 r "o Szxip;‘
"\ T2pae T 28 )P ax
182x,. 1 r "
+{ -5 - S|Pl
ZB"’dx2 2B"%dx |
(53)

which can be simplified to

n+l _ 7 71 n n
D" =a, D!, +bD; + ;D! +f},

i+ i:23"')M) (54)
where a;, b;, and ¢; are the same as described in (45) and the
force term is

1 1
fi= (—iézxik + rl)p?_l + 8% xkpl — (Eézxik + rl)p}il, i=2,-, M.

(55)

Formula (54) is an implicit scheme given the terminal
condition. It has been approved that the implicit scheme is
unconditionally stable, and for a parabolic type of PDE,
the convergence of the FDM requires that dt < <dx is
satisfied.

4.3. The Study of Gamma. Let G = 9°p/dx* = 9D/0x denote
the Gamma, which measures the rate of change of Delta,
and it can be approximated numerically by solving the
following PDE:

0G 1,0 0’°G =2\ .0G 2 10D
— + =56 — 267)S— -rG=—(90 ——
T35 g (e 28)sgg —rG=—(8er) 55
(56)
subject to the terminal and the boundary conditions:
G(S, T)=0,
G(Smin> ) =0,
G(Smax’ t) = 0’ (57)
G(By, t) =0,
0G(By, t) _
s

By using the similar approach as in (41), we let x =S/B
(t), and then, equation (56) subject to the terminal and the
boundary conditions (57) becomes

0G 1. ,0G B'(t)\ 9G <2 \1laD
R -y —rG=- ==, x=1,
TR U TN A (F+r) 5o *2

(58)



subject to the terminal and the boundary conditions:

G(L,1)=0,
0G(L 1)
ox 0.
G(x, T) =0, (59)
G(xmax’ t) = O’
G(T) =K.

Discretizing (58) gives

G?“—G;’ 12, G,y —2G] +GL
dt 2 i dx?
Bn+l_Bn G" G"
+<r_ Bdr )x" 7
:_(82+r) 1 D!, -Dr,
B"  2dx

which can be simplified to

n+1 n n n n
G =a,G}, +b,G! + ;G| + 17,

i~it+ i=2,-, M, (61)
where a;,b;, and ¢; are the same as defined in (45) and the
force term is

f?:—<32+r>—l(Dl”+l DY), i=2-M. (62)

4.4. The Study of Vega. The Vega measures the sensitivity of
the option value for the volatility, which can be obtained by
solving the following PDE:

ov 1228V
W —88 el +rSE

oV L0

—rV =-388 o5 (63)

subject to the terminal and the boundary conditions:
V(S T)=

V(smin’ t) =

V(Smax’ t) =

V(By, t) =0,

AV (By 1)
3s

0:
0. (64)

:0,

where V = 0p/08 denotes the Vega. Applying the approach
as used in (41), letting x = S/B(t), equation (63) subject to
the terminal and the boundary conditions (64) becomes

oV 1o ,0V B'(t) av ,0°p
E+Eé‘x a)CZ+<T— (t) -rV= 8 ﬁ’ x=1,
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subject to the terminal and the boundary conditions:

(
V(l, t) =0, (66)

£)=0.

max?>

Discretizing (65) gives

V?“—V? 1o, Vi, =2Vi+ Ve,
. x -
dt 2 ! dx?
Bn+1 _Bn Vn . V—l
! (r_ Bt )x' S @)
B S(py =200 +py)
dx*

which can be simplified to

Vi’l+1 — a Vn

i+1

+o, VitV +f], i=2,--M, (68)

where a;,b;, and ¢; are the same as defined in (45) and the
force term is

fi=-0k(p}, - i=2, M. (69)

5. Empirical Results

2p] +piy)s

In order to study our model effectively and efficiently, we
firstly calibrate the proposed model and fit it to the financial
market data. The source of the calibrated data in this section
is from the Chicago Board Options Exchange (see website
[33]), and the method we applied here is the least square
method.

5.1. Model Calibration. Instead of estimating the model
parameters (m*, vy, k", v,, p;, p,) in (39), Fouque et al. [32]

suggested that (V3, V3, V3§, V7) could be expressed as

] 5’
£ 5 5—d|—adr-
Vi=-8"[6-d] a6<r 2),

V? =8 a,
(70)
. &
vg:-a%-ms(r- _>,
2
Vi = -8 % b,

wherea, b, ¢, andd are calibrated by the following linear
relationship:

I~d+a+*LMMR+b*LM+c*T, (71)
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where I denotes the implied volatility, LM =log (X/K)
denotes the Log-Moneyness, LMMR = (log (X/K))/t denotes
the Log-Moneyness to maturity ratio, and 7 = T — t is the time
to maturity.

Table 1 is calculated by fitting the SPX500 implied vola-
tility as a linear function of LMMR, LM, and 7. Tables 1-3
present the calibrated results of three different days:
13/02/2017, 14/03/2017, and 26/05/2017. The calibrated
results will be used later in the approximation of the first-
order correction terms.

5.2. Numerical Analysis of the Leading Term. Figure 1(a) is
the profile of the American option value without volatility
correction with different interest rates. Figure 1(b) is the
profile of the moving boundary with different interest rates.
The region to the left of the free boundary is the holding
region, at which the investor will continue to hold the Amer-
ican put option instead of executing the option. The region
to the right of the free boundary is the exercising region.
The investor will exercise the American put option as soon
as the stock price reaches the optimal exercising boundary.

Interest rates play a key role in determining the optimal
exercising boundary. The opportunity cost of holding the
stock increases with the growth of the interest rate. When
r increases, holding stock becomes less attractive, and the
investors intend to hold the put option longer. As a result,
the put option price intends to decline. The leading term p
= Py 4, which can be solved numerically from (40), is shown
in Figures 2(a) and 2(b) with different interest rates.

To ensure the convergence of FDM scheme, we let the
time step size dt =107* and the space step size dx =0.128.
The trajectories of moving boundaries are compared in
Figures 3(a) and 3(b). As shown in Figure 3(a), the value
of American put option is increasing along with the volatil-
ity, which means that the put option has more chance to be
profitable as the volatility grows.

5.3. Sensitivity Analysis. The approximation of Greeks of the
leading term is studied in this subsection. Also, the option
valuation is intimately related to hedging and the risk expo-
sure of the portfolio selection, and it is interesting to see the
evolution of the most critical sensitivities. Here, Delta,
Gamma, and Vega will be studied numerically by using the
front-fixing method to be applied later in the formation of
the first-order correction terms.

Figures 4(a) and 4(b) show the evolution of Delta gov-
erned by (49). Delta, the sensitivity of option price to the
change of stock price, ranges from -1 to 0. However, the
results of Delta in Figures 4(a) and 4(b) are very steep due
to the discontinuity of the moving boundary.

A similar result can be viewed from Figures 5(a) and
5(b). The Gamma described by (56) is growing steeply
before reaching the peak; Figures 6(a) and 6(b) show the
Vega solved by (63), which represents the sensitivity of
volatility. The Greeks will be applied subsequently to solve
the first-order correction terms.

5.4. Numerical Analysis of Correction Terms. In this subsec-
tion, more details on the numerical analysis of the correction

9
TaBLE 1: Calibrated parameters of 13/02/2017.
a b c d
-0.1955046 -7.857835 -0.1233350 -0.0249121
v v v v
-0.069767 0.003055 -0.010911 0.122779
TaBLE 2: Calibrated parameters of 14/03/2017.
a b c d
-0.1291801 -11.2623374 -0.1975740 -0.0361232
Vi Vi Vo vi
-0.072217 0.002018 -0.010438 0.175974
TaBLE 3: Calibrated parameters of 26/05/2017.
a b c d
-0.2610624 -4.2253650 -0.0694265 -0.0119128
Vs vi Vi vy
-0.066865 0.004079 -0.005091 0.066021

terms are provided. According to Theorem 2, the fast-scale
correction term can be obtained by solving the following.
PDE:

oP* 1,00 0P o°D oD
o8 1S — P = VRS o + VS
or T2°° g TG T T e gg T 5
(72)
subject to the initial and the boundary conditions:
P58, T) =0,
B, =K,
(73)
PY(By, t) =0,
P*(Spaxr 1) =0,

where Vo = p, (B(»))(®,).

According to Theorem 3, the slow-scale correction term
can be solved from the following PDE:

(2 aV : (2
S Vls(ﬁ) +VIV

or° 1 ,— 9°P° or°
R S
o 12°° 3¢ T3S

subject to the initial and the boundary conditions
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FIGURE 1: Option value of the leading term.
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P’(S,T) =0,
B, =K,
’ (75)
P’(By, 1) =0,

PU(Smax’ t) =0.

The discretizing scheme is the same as (49) with differ-
ent force terms. Similarly, the front-fixing method is applied
to solve the fast-scale volatility and the slow-scale volatility
terms P* and P°. From Figures 7(a) and 7(b), they conclude
that the inclusion of the fast-scale volatility will result in the
increasing of the option price. Figures 8(a) and 8(b) show
that the inclusion of the slow-scale volatility also corrects
the leading term of American option price positively.

Moreover, it can be summarized from Figures 7(a) and
7(b) that volatility correction terms grow rapidly when the
underlying asset price is close to the strike price, and start
to decrease quickly when it is close to maturity. Table 4 pro-
vides the comparison of the American option price with and
without scale correction at the point where the underlying
asset price is close to the strike price (at the money). Assum-
ing S=13.0216 when the strike price K equals to 14 and €
=0=0.1, we can conclude that the short-term fast-scale
volatility has more significant effects on American option
pricing than the long-term slow-scale volatility. The possible
explanation behind this phenomenon is that the investors
are normally sensitive to the price change in the short run
than in the long run. In the long run, investors care more
about the quality of the investment rather than the short-
term economic indicators.
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TaBLE 4: Comparison of the American option pricing with and
without scale correction.

Date Witholut Fast—sc?le Slow—sc.ale
correction correction correction
13/02/2017 0.6957 0.039 0.00494
14/03/2017 0.6957 0.039 0.00462
26/05/2017 0.6957 0.038 0.00224

6. Conclusions

This paper has investigated the correction of multiscale
stochastic volatility to American put option pricing. The
application of the fast-scale volatility and slow-scale volatil-
ity is more practical to capture the behavior of the volatility
in a different time periods. The fast-scale volatility is mod-
elled to describe the highly oscillated fluctuation of the
return process in the short run. In contrast, the slow-scale
volatility makes a description of the slow-varied oscillation
fluctuation of long-run return process. The empirical study
conducted by Christoffersen et al. [9] offers a better explana-
tion of the leptokurtosis feature of implied volatility surface.
In fact, the effects of the multiscale volatility and the early
exercising feature of American option can be transferred to
a high-dimensional nonlinear partial differential equation
subject to a moving boundary.

However, this model is impossible to solve analytically.
In this paper, we reduce the high-dimensional PDE to three
one-dimensional PDEs with moving boundary by applying
the asymptotic approximation method. The asymptotic
approximation can be applied because the scales of the
fast-scale volatility and slow-scale volatility can be viewed
as a singular perturbation and a regular perturbation,
respectively. The resulted moving boundary problem has
been solved numerically by using the front-fixing method.
Moreover, the coefficients in the numerical study are cali-
brated by the implied volatility derived from S&P 500
options. The numerical results of finite difference show that
multiscale volatilities have a significant influence on the
American option pricing. The incorporation of the fast-
scale volatility and the slow-scale volatility will increase the
value of American option pricing, and the effects are more
evident in the long run than in the short run. In addition,
Greeks are also studied in this paper to show the sensitivity
of the model parameters. The first-order correction terms
are proved to be related to the sharpness of the leading term.
Even though we have successfully applied the multiscale
model in studying the pricing problem of the American
option, the application of the multiscale volatility model on
other path-dependent financial derivatives is also worth to
be evaluated in the future research.

Data Availability

The data used to support the findings of this study are avail-
able from the corresponding author upon request.

13

Conflicts of Interest

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The authors acknowledge the support of the National Natu-
ral Science Foundation of China under Grant 71901222 and
Grant 71974204. This work was supported in part by “the
Fundamental Research Funds for the Central Universities,”
Zhongnan University of Economics and Law, under Grant
2722020JCG062 and Grant 2722020JX005.

References

[1] L Karatzas, “On the pricing of American options,” Applied
Mathematics and Optimization, vol. 17, no. 1, pp. 37-60, 1988.

[2] L.C.G. Rogers, “Monte Carlo valuation of American options,”
Mathematical Finance, vol. 12, no. 3, pp. 271-286, 2002.

[3] M.B. Haugh and L. Kogan, “Pricing American options: a dual-
ity approach,” Operations Research, vol. 52, no. 2, pp. 258-270,
2004.

[4] G.Barone-Adesi and R. E. Whaley, “Efficient analytic approx-
imation of American option values,” The Journal of Finance,
vol. 42, no. 2, pp. 301-320, 1987.

[5] K. Giesecke, B. Kim, and S. Zhu, “Monte Carlo algorithms for
default timing problems,” Management Science, vol. 57, no. 12,
pp. 2115-2129, 2011.

[6] S.L.Heston, “A closed-form solution for options with stochas-
tic volatility with applications to bond and currency options,”
The Review of Financial Studies, vol. 6, no. 2, pp. 327-343,
1993.

[7] E. M. Stein and J. C. Stein, “Stock price distributions with sto-
chastic volatility: an analytic approach,” The Review of Finan-
cial Studies, vol. 4, no. 4, pp. 727-752, 1991.

[8] J. P. Fouque and X. Zhou, “Perturbed Gaussian copula,” in
Econometrics and Risk Management, pp. 103-121, Emerald
Group Publishing Limited, 2008.

[9] P. Christoffersen, S. Heston, and K. Jacobs, “The shape and
term structure of the index option smirk: why multifactor sto-
chastic volatility models work so well,” Management Science,
vol. 55, no. 12, pp. 1914-1932, 2009.

[10] N. Clarke and K. Parrott, “Multigrid for American option pric-
ing with stochastic volatility,” Applied Mathematical Finance,
vol. 6, no. 3, pp. 177-195, 1999.

[11] J. E. Muzy, J. Delour, and E. Bacry, “Modelling fluctuations of
financial time series: from cascade process to stochastic volatil-
ity model,” The European Physical Journal B: Condensed Mat-
ter and Complex Systems, vol. 17, no. 3, pp. 537-548, 2000.

[12] G. Chacko and L. M. Viceira, “Dynamic consumption and
portfolio choice with stochastic volatility in incomplete mar-
kets,” The Review of Financial Studies, vol. 18, no. 4,
pp. 1369-1402, 2005.

[13] J.P.Fouque, G. Papanicolaou, K. R. Sircar, and K. Solna, “Mul-
tiscale stochastic volatility asymptotics,” Multiscale Modeling
and Simulation, vol. 2, no. 1, pp. 22-42, 2003.

[14] J. P. Fouque and C. H. Han, “Asian options under multiscale
stochastic volatility,” Contemporary Mathematics, vol. 351,
pp. 125-138, 2004.



14

(15]

(16]

(17]

(18]

(19]

[20]

(21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

J. P. Fouque and Y. F. Saporito, “Heston stochastic vol-of-vol
model for joint calibration of VIX and S&P 500 options,”
Quantitative Finance, vol. 18, no. 6, pp. 1003-1016, 2018.

S. Liu, Y. Zhou, Y. Wu, and X. Ge, “Option pricing under the
jump diffusion and multifactor stochastic processes,” Journal of
Function Spaces, vol. 2019, Article ID 9754679, 12 pages, 2019.
S. P. Zhu and W. T. Chen, “Should an American option be
exercised earlier or later if volatility is not assumed to be a con-
stant?,” International Journal of Theoretical and Applied
Finance, vol. 14, no. 8, pp. 1279-1297, 2011.

J. H. Yoon, J. H. Kim, and S. Y. Choi, “Multiscale analysis of a
perpetual American option with the stochastic elasticity of var-
iance,” Applied Mathematics Letters, vol. 26, no. 7, pp. 670-
675, 2013.

W. T. Chen and S. P. Zhu, “Pricing perpetual American puts
under multi-scale stochastic volatility,” Asymptotic Analysis,
vol. 80, no. 1-2, pp. 133-148, 2012.

J. P. Fouque and R. Hu, “Optimal portfolio under fast mean-
reverting fractional stochastic environment,” SIAM Journal
on Financial Mathematics, vol. 9, no. 2, pp. 564-601, 2018.

J. P. Fouque and R. Hu, “Multiscale asymptotic analysis for
portfolio optimization under stochastic environment,” SITAM
Journal on Multiscale Modeling and Simulation, vol. 18,
no. 3, pp. 1318-1342, 2020.

J. P. Fouque, G. Papanicolaou, and K. R. Sircar, “From the
implied volatility skew to a robust correction to Black-
Scholes American option prices,” International Journal of The-
oretical and Applied Finance, vol. 4, no. 4, pp. 651-675, 2001.
F. A. Longstaff and E. S. Schwartz, “Valuing American options
by simulation: a simple leastsquares approach,” The Review of
Financial Studies, vol. 14, no. 1, pp. 113-147, 2001.

L. Stentoft, “Assessing the least squares Monte-Carlo approach
to American option valuation,” Review of Derivatives Research,
vol. 7, no. 2, pp. 129-168, 2010.

P. Carr, “Randomization and the American put,” The Review
of Financial Studies, vol. 11, no. 3, pp. 597-626, 1998.

J. Huang, M. G. Subrahmanyam, and G. G. Yu, “Pricing and
hedging American options: a recursive integration method,”
The Review of Financial Studies, vol. 9, no. 1, pp. 277-300, 1996.
M. Broadie and J. Detemple, “American option valuation: new
bounds, approximations, and a comparison of existing
methods,” The Review of Financial Studies, vol. 9, no. 4,
pp. 1211-1250, 1996.

J. C. Cox, S. A. Ross, and M. Rubinstein, “Option pricing: a
simplified approach,” Journal of Financial Economics, vol. 7,
no. 3, pp. 229-263, 1979.

R. C. Merton, M. J. Brennan, and E. S. Schwartz, “The valua-
tion of American put options,” Journal of Finance, vol. 32,
no. 2, pp. 449-462, 1977.

B. F. Nielsen, O. Skavhaug, and A. Tveito, A Penalty Scheme for
Solving American Option Problems, Springer, Berlin Heidel-
berg, 2002.

B. F. Nielsen, O. Skavhaug, and A. Tveito, “Penalty methods
for the numerical solution of American multi-asset option
problems,” Journal of Computational & Applied Mathematics,
vol. 222, no. 1, pp. 3-16, 2008.

J. P. Fouque, G. Papanicolaou, K. R. Sircar, and K. Solna, Mul-
tiscale Stochastic Volatility for Equity, Interest Rate, and Credit
Derivatives, Cambridge University Press, 2011.
http://www.cboe.com/products/stock-index-options-spx-rut-
msci-ftse/s-p-500-indexoptions.

Journal of Function Spaces


http://www.cboe.com/products/stock-index-options-spx-rut-msci-ftse/s-p-500-indexoptions
http://www.cboe.com/products/stock-index-options-spx-rut-msci-ftse/s-p-500-indexoptions

Hindawi

Journal of Function Spaces

Volume 2021, Article ID 3243020, 14 pages
https://doi.org/10.1155/2021/3243020

Research Article

Hindawi

Fixed Point Approximation of Monotone Nonexpansive

Mappings in Hyperbolic Spaces

Amna Kalsoom,' Naeem Saleem (),” Hiiseyin Isik (9, Tareq M. Al-Shami (), Amna Bibi,’

and Hafsa Khan!

IDepartment of Mathematics and Statistics, International Islamic University, Islamabad, Pakistan
Department of Mathematics, University of Management and Technology, Lahore, Pakistan

’Department of Engineering Science, Bandirma Onyedi Eyliil University, Bandirma 10200, Balikesir, Turkey
*Department of Mathematics, Sana’a University, Sana’a, Yemen

Correspondence should be addressed to Hiiseyin Isik; huseyin.isik@tdtu.edu.vn

and Tareq M. Al-Shami; tareqalshami83@gmail.com

Received 10 May 2021; Revised 1 July 2021; Accepted 13 July 2021; Published 10 August 2021

Academic Editor: Mustafa Avci

Copyright © 2021 Amna Kalsoom et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Fixed points of monotone a-nonexpansive and generalized $-nonexpansive mappings have been approximated in Banach space.
Our purpose is to approximate the fixed points for the above mappings in hyperbolic space. We prove the existence and

convergence results using some iteration processes.

1. Introduction

In 1965, Browder [1], Géhde [2], and Kirk [3] started work-
ing in the approximation of fixed point for nonexpansive
mappings. Firstly, Browder obtained fixed point theorem
for nonexpansive mapping on a subset of a Hilbert space that
is closed bounded and convex. Soon after, Browder [1] and
Gohde [2] generalized the same result from a Hilbert space
to a uniformly convex Banach space. Kirk [3] utilized normal
structure property in a reflexive Banach space to sum up the
similar results. Recently, Dehici and Najeh [4] and Tan and
Cho [5] approximated fixed point result for nonexpansive
mappings in Banach space and Hilbert space.

Fixed point theory in partially ordered metric spaces has
been initiated by Ran and Reurings [6] for finding applica-
tion to matrix equation. Nieto and Lopez [7] extended their
result for nondecreasing mapping and presented an applica-
tion to differential equations. Recently, Song et al. [8]
extended the notion of a-nonexpansive mapping to mono-
tone a-nonexpansive mapping in order Banach spaces and
obtained some existence and convergence theorem for the
Mann iteration (see also [9] and the reference therein). Moti-
vated by the work of Suzuki [10], Aoyama and Kohsaka [11],

Dehaish and Khamsi [9], and Song et al. [8], Pant and Shukla
obtained existence results in ordered Banach space for a
wider class of nonexpansive mappings [12, 13]. There are
many mathematicians who worked on weak and strong con-
vergence of nonexpansive mappings and its generalizations
by using one step, two step, and multistep iteration process
([8, 14, 15]). We obtain existence results in partial ordered
hyperbolic space for monotone generalized a-nonexpansive
and monotone generalized f-nonexpansive map. Particu-
larly, in Section 3, some auxiliary results and existence theo-
rems for monotone a-nonexpansive mappings in ordered
hyperbolic spaces are presented. In Section 4, we presented
numerical examples and graphical representation. In Section
5, we obtained some existence results for monotone general-
ized B-nonexpansive mappings in ordered hyperbolic spaces.

2. Preliminaries

In 1976, the concept of A -convergence was given by Lim [14].

Lim [14] initiated the idea that in a metric space, A
-convergence is possible. This concept is adapted for
CAT(0) spaces by Kirk and Panyanak [16], and they have
indicated that in numerous Banach space, outcomes
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comprising weak convergence were having exactly accurate
analogs in this manner.

Definition 1. A self map J on W is known as Lipschitz, if
there exists k > 0 such that

0(T8& Tn)<ko(&n), forallg,ne W. (1)

T is called to be contractive if k € (0, 1], and T is called
nonexpansive mapping, if k = 1, that is,

0(T8 Tn)<o(&,n), forallE,ne W. (2)

Suzuki [10] introduced an interesting generalized nonex-
pansive mapping as follows.

Definition 2. A self map I on W is said to satisfy condition
(3),ifforall &, ne W,

S0 TE <oEn) 2 o(TET <oEn). ()

Suzuki type generalized nonexpansive mapping is
another name of self map J holding condition (3).

Many generalizations of nonexpansive mapping have
been introduced in the literature (see [17-19]). Aoyama
and Kohsaka [11] defined a new type of nonexpansive map-
ping that satisfies the condition (3) known as a-nonexpan-
sive mapping as follows.

Definition 3. Let W be a nonempty subset of a Banach space
H. A self map I on W can be referred o -nonexpansive map-
ping, if forall§,n€ W and a < 1,

78Tl < TE "+ all§ =T + (1 ~2a) &~
(4)
The concept of monotone nonexpansive mappings was
introduced in 2015 by Bachar and Khamsi [20], and they
studied common approximate fixed point of monotone non-
expansive semigroup. To determine some order fixed points,
Dehaish and Khamsi [9] proposed weak convergence theo-

rems of the Mann iteration process for monotone nonexpan-
sive mappings in uniformly convex ordered Banach spaces.

Definition 4. Let T be a self map on W; then, T is said to be

(1) monotone [20] if TEXTy for all &,y € W with E<y;

(2) monotone nonexpansive [20] if T is monotone and

o(TE Ty) <o (&, 1), (5)
for all £, € W with &<

(3) monotone quasi-nonexpansive [8] if T is monotone
and

Journal of Function Spaces
o(T5,n) <o (&), (6)

where& € Wandy € F(T), and F(T) is the set of fixed points.

Definition 5 [21]. (H, 0, S) is called a hyperbolic space, if (
H, o) is a metric space and S : H x H x [0, 1] — H is a func-
tion holding

() o($,S(EnA)<(1-1)a(, &)+ Aa({,n);
(i) o(S(& A1), S(& 1 Ay)) <[4y = Ay (&, m)s
(iii) S(&mA)=S(m &1 -A);
(iv) o(S(8, ¢, 4), S(1, v, A)) < (1 = A)a (&, ) + Aa((, v),
forall§,1,{,ve Hand A, A, A, €0, 1].

Here, (i) defines the convexity in metric space (H, o) that
was first considered by Takahashi [22], (ii) provides a unique
geodesic between any two elements & and # of H by convexity
map S that is the space of hyperbolic type in the sense of Goe-
bel and Kirk [23], (iii) provides symmetry along the direction
of geodesic, and (iv) defines negative curvature or hyperboli-
city of metric space was first considered by Itoh [24].

Theorem 6 [11]. Let W be a nonempty closed convex subset of
a uniformly convex Banach space H and T : W — W be an
a -nonexpansive mapping. Then, F (T') is nonempty iff there
exists & € W such that {T" (&)} is bounded.

Since the hyperbolic spaces contain all normed linear
spaces and their convex subsets, so uniformly convex Banach
space is contained in hyperbolic metric space so it is natural
to generalize the above result to hyperbolic metric space.

Definition 7 [16]. A bounded sequence (§,) in H is known as
A-converge to an element £ € H, if £ is a unique asymptotic
centre of each subsequence {§, } of {¢,}.

In this section, following definitions and lemma are
stated in [9].

Definition 8. Let W be a nonempty set of a hyperbolic metric
space (H,0). A map 7: W —[0,00) is said to be a type
function, if there exists a bounded sequence {u,} in H such
that

7(u) =limsupo(u,, u), forallu e W. (7)

n—=00

It is known that each bounded sequence generates a
unique type function.

Lemma 9. Let (H, 0,%) be a uniformly convex hyperbolic met-
ric space and W a nonempty closed convex subset of H. Let
7: W —[0,00) be a type function. Then, T is continuous.
Furthermore, there exists a unique minimum point E€ W



Journal of Function Spaces

such that
7(&) =inf {T(u): ue W}. (8)

Definition 10. A hyperbolic space (H, o) known as uniformly
convex, if for every r >0 and € > 0,

O(r, &) = inf {1 - %0(%{@ %11, a) ;0(&,a)

<r,o(ma)<r,o(&n)=re} >0,

©)

for any a € H.

Definition 11. Let W be a nonempty subset of a hyperbolic
space H and {&,} be a bounded sequence in H. Then, for
every £ € H, define

(i) Asymptotic radius of {&,} at & by

r(& {&,}) =limsupo(&,, ). (10)

V—>00

(i) Asymptotic radius of the sequence {&,} relative to
the above supposed set W by

r(&{8.}) =inf {r(5,&,): S« W} (11)

(ili) Asymptotic centre of the sequence {&,} relative to
the above supposed set W by

AW S} ={r(& {8 ) =r(W. {&,}): Se W} (12)

Note that A(W,{¢,})# @. Further, A(W,{&,}) has
exactly one point if H is uniformly convex.

From now to onward, we will suppose that the ordered
intervals are convex and closed, and they are also contained
in ordered hyperbolic space (H,x,F); these are described as
follows:

[a,—)={Ee€H :ax&}and («—.b|={EeH : &b} foranya,bec H.

(13)

3. Monotone a-Nonexpansive Mappings

In this section, we will use the following iteration introduced
by Kalsoom et al. [25].

EeWw,
§v+1 = T((l - (xv)TEv + ‘XUTWU)’
My = (1 - ﬁu)zv + ﬁUTZU’

2,=(1=9,)8, +7,15, veN,

where {a,}, {B,} and {y,} arein (0, 1).
Now we define monotone a-nonexpansive mappings in

partially ordered hyperbolic metric space (H, 0,%) as follows.

Definition 12. Let W be a nonempty closed convex subset of
an ordered hyperbolic metric space H. A self map  on W is
monotone ¢-nonexpansive mapping, if 7 is monotone and
for some a < 1,

0 (TETn) <ad*(TEn) +ac®(E,Tn) + (1-2a)0* (&, n),

(15)
for all &,y € W with &x.

Lemma 13. Let W be a nonempty closed convex subset of an
ordered hyperbolic metric space H. A self map T on W is
monotone a-nonexpansive mapping; then,

(i) T is monotone quasi.

(ii) For all&,n € W with &E<n

(TE Tn) < P (En) + — 2(TE,E)

1-«
+ 2 o(TEE o) +o(TET))

-«
(16)

Proof. To prove (i), it is followed by definition of monotone «
-nonexpansive mappings that

o*(TEn) <ac®(TEn) +ao’ (& n) + (1 -2a)0> (&, 1),
(17)

implies 0(T&, 1) <o (&, 7).
Hence, I is monotone quasi for £ € W and 57 € F(9).
Now we will prove (ii), and if 0 < a < 1 then we have

0*(TE Tn) <ac®(TEn) +ad’ (&, Tn) + (1 -2a)0”(E7)
<ao?(TE &) +2a0(TEE)a (&, n) +ac®(E,7)
+a0(TE Tn) +200(TE Tn)o(TEE)
+ 0502(95, OH+(1- 204)02(5, ),



o (TETn) <o (En) + 12%02@/ £,&)
+ 2 S TEG) o (En) +o(TE Tn)]
(18)
This completes the proof. oo

Definition 14. An ordered hyperbolic metric space (H, 0,%) is
said to be uniformly convex, if for an arbitrary h € H,r >0
and £> 0,

st =int [1- o380 n)ioen

<ri;o(nh)<r;o(&n)=re > 0.

Now, we utilize iteration processes for monotone «
-nonexpansive mappings.

Lemma 15. Let (H,0,X) be a uniformly convex partially
ordered hyperbolic metric space (in short, UCPOHMS) and
W a nonempty closed convex subset of H. Let T : W — W
be a monotone mapping and &, € W be such that £,TE, |
or TE,<&,]. Then, for sequence {&,} defined by (14), we have

(a) Evﬁgfvﬁfvﬂ (01’ £v+15gfvﬁsu);

(b) &,zp(orp=E&,) provided {&,}A-converges to a point p
e WNMvelN.

Theorem 16. Let W be a nonempty closed convex subset of a
UCPOHMS (H,0,X) and T : W — W be a monotone «
-nonexpansive mapping. Assume that there exists £, € W such
that £,2T¢&, and {&,} defined in (14) is a bounded sequence
with &, < for all € W such that

liminfo (&, 7&,) = 0. (20)

V—>00
Then, F(T) + @.

Proof. Let {&,} defined by (14) be a bounded sequence such
that

lim info(&,, T

V—>00

)=0. (21)

v

Then, there exists a subsequence {qu} such that

lim o(EU ,TE, ) =0. (22)
k—00 q q
By Lemma 15, we have

6128, <6, - (23)
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Define
{uGW fl } (24)

forall g € N. Clearly, for every g € N, W is closed convex. As
ue Wq, it shows that Wq + . Define

(o8]
We= (W, #92. (25)
q=1
Then, W, is a closed convex subset of W. Let u e W .
Then,

£, <uvgeN. (26)

As we know, I is a mapping which is monotone; then,
for ge N,

£, 398, 2T u, (27)

Yq Yq

which implies that 7 (W) c W,. Let a type function 7
: W, — [0,00) generated by {Euq} such that

7(u) = limsupo (qu, u) . (28)

q—

Then, there exists a unique point z € W such that

7(z) =inf {T(u): ue W} (29)
By definition of type function,

17(Tz)= limsupa(fuq, 92). (30)

q—

By using Lemma 13, we get

02(9% ,572) 302(51),2) + ia (“Ev &, )

1

From the boundedness of the sequence {qu} and
qﬁoo (EU ,J€ ) 0, we have

z) <lim supo? (5%, z), (32)

q—

lim supo™ (%v T

q—00 !
7(z). It shows that 7z =z, and hence, F(T
0o

implies 7(Tz) =
)+ 3.

Theorem 17. Let W be a nonempty closed convex subset of a
UCPOHMS (H,0,%X) and T : W — W a monotone «
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-nonexpansive mapping. Assume that there exists £, € W such
that T&,<&, and {&,} defined by (14) is a bounded sequence
with &, < for all € W such that

lim info (&, TE,) = 0. (33)

V—>00
Then, F(T) + .

Theorem 18. Let (H, 0,<) be a UCPOHMS, C a closed convex
cone, and I : C — C a monotone a-nonexpansive mapping.
Assume that &, =0 and {&,} defined by (14) is a bounded
sequence with &, < for all n € W such that

lim info (&, T¢E,) = 0. (34)

V—>00

Then, F(T) + .

Proof. With the help of definition of partial order <, we know
that &, = 070 = T&,; then, the proof is directly from Theo-
rem 16. o0

We now prove some convergence results for monotone o
-nonexpansive mappings.

Lemma 19 [9]. Suppose (H, o) be a UC hyperbolic space and
also monotone modulus of uniform convexity 8, and suppose
z€H and a sequence {a,} such that 0<a<a,<b< 1. If
the sequences {u,} and {v,} are in H, in such a way that
limsup,  o(u,z)<r, limsup, o(v,,z)<r, and
lim, o(e,u,®(1-a,)v,z)=r, then lim, _ o(u,v,)

=0.

Theorem 20. Let W be a nonempty closed convex subset of a
UCPOHMS (H, 0,%) and T : W — W a monotone a-non-
expansive mapping. Suppose there exists a sequence {&,}
defined by (14) with &,2TE(or T&,<&)) and F(T)+ Q.
Then,

(1) {&,} is bounded

2) o(&,,;,2)<0(,,z) andlim
ze F(T)

(3) lim,_, ,0(9¢&,,¢&,)=0.

o(&,, z) exists for all

V—00

Proof. Suppose that &;<z and z € F(J), and as we know that
J is monotone, then 7,7z, and so

ISECAIE2 (35)
It follows from Lemma 15.
§,%8,12T 8,2z, (36)
which gives that

&%z YveN. (37)

It shows that {&,} is bounded. On the other hand, by
using Lemma 13, we get

G(Ev+1’z) SU(EU’Z)’ (38)

and so

U(Ev+1’ Z) < ﬁva(gv’ Z) + (1 - ﬁv)o(ggv’ Z)
<B,o(82) + (1= B,)0(8,2)
=0(8,2) (39)

<o(&,,2).

Then, the sequence {o({,,z)} is nonincreasing and

bounded sequence; hence, (i) and (ii) proved. So lim,_, o
(&,,2) exists for all z € F(J) and v € N. Suppose that
v@ma(ﬁv, z) <s. (40)
As J is monotone quasi,
lim supo(J¢,,z) <s, (41)
v—00
and hence,
lim supo(E,,,,z) <s,
v—00
s=limsup{B0(8,2) + (1-B)0(TE D)) (a2)
=lim supo (&, 2).
It concludes from Lemma 19 that
lim supo(&,,z) =0. (43)
v—00
0o

Theorem 21. Let W be a nonempty closed convex subset of a
UCPOHMS (H, 0,%) and T : W — W a monotone a-non-
expansive mapping. Suppose there exists a sequence {&,}
defined by (14) with &,xT & (or TE,xE)) and F(T )+ D.
Then, {&,} A-converges to a fixed point of T .

Proof. By the Theorem 18, we have {£,} is bounded. So, there
exists a subsequence {qu} of {&,}A-converges to some p €

W such that

£,<E, <pVqeN. (44)

In the next step, we prove there exists a unique A-limit in
F(J) corresponding to each A-convergent subsequence of
{¢,}. Consider {&,} has two subsequences {ﬁvq} and {§, }

which are A-convergent to [ and m, respectively. Then, {&,}
is bounded and



lim G(J &8, ) (45)

q—>00

which concludes that I € F(J). Let T : W — [0,00) is a type
function which is generated by {5%}. Then,

(1) = lim supo (5 l),

V—>00

(1) =lim supo(f G”l).

V—>00

By Lemma 13, we infer
(7%, 1) <0 (8,1) + L““ *(7%,,8,)
. 12_"‘“0(9‘50 &) o6, 1) @)
+o(7,,91))
as

Jim o(7¢, €, ) =0,
) 11;11_?;1)130’(5 l).

By uniqueness of element [ and definition of A-conver-
gence, we conclude that

(48)
lim supo ( G‘E

q—

Tl=1. (49)
Similarly, one can easily show that
Tm=m. (50)

By continuity of 7 and definition of A-convergence, we
get

lim supo (&, [) <lim supa(qu, l) <lim supo( vy m)

v—>00 q—00 q—00
=lim supo (€, m) = lim supo (€, , m)
v—>00 r—00 !

<lim supo (§, . 1),

r—00

(51)

which shows that [=m oo
Theorem 22. Let W be a nonempty closed convex subset of a
UCPOHMS (H, 0,%) and T : W — W a monotone a-non-
expansive mapping. Suppose there exists a sequence {&,}
defined by (14) with £, xT &, (or TE,<¢,) and

lim supB,(1-,) > 0. (52)

V—>00

Then, {&,} converges strongly to a fixed point of .
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Proof. By Theorem 18, there exists a subsequence {qu} of {

&, } which converges strongly to a point # € W. From Lemma
15, we get

§<8, <nVqeN. (53)

By Theorem 17, F(J) # @ and {&,} is bounded, and

lim info(JE,,&,) =0. (54)

V—>00

Without loss of generality, we get

lim a(./ &8, ) (55)

q—

On the other hand, by Lemma 13, we derive

02(9”5%,9”11) (Ev,n) (G”EU,E)
: 12_—0(“"(9‘%%) [o(8,m)  (50)

+ o(?f&vq, 97;7)},

as

lim a(?]qu, qu) =0,

q—

lim supo ( C‘E

q—00

17) <lim supa(fv , 17)

q—0

By boundedness of {qu}, we have

lim supa(qu, 17) =0,
o (58)
li;;sllopa (Ffuq, 917) =0,

and hence,

lim 0(

q—0

N

Ew“fn)

Il
(=)
—~
wl
\O
~—

Therefore,

q&nmg(qu,gq> :q@lma(qu,gf ) + lim O‘(J fuq>9ﬂ) =0,

q—>00

(60)

which shows that 17 € F(T
1) exists, so

). By Theorem 18, lim,_,_ o (&,,

lim o(£,,7)=0. (61)

This completes the proof. oo
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Example 1. Let W = [1, 4] be a nonempty closed convex sub-
set of a UCPOHMS (R, 0,<) and T : W — W defined by
Tx=(2x+ 4)1/3 be a monotone a-nonexpansive mapping.
Then, for the sequences a,=3n/(2n+1)% B,=2n+1/
(7n+3)%, and y, = 51+ 2/(3n +2)’, there exists a sequence

{&,} for which all the conditions of Theorem 22 are satisfied
by T, and hence, x =2 is the required fixed point.

4. Comparison of Iteration Processes

In this section, we are presenting some iterations [25-31]
which we will be used in the numerical example.

Mann iteration process

In 1953, Mann proposed an iteration, namely, Mann iter-
ation, for calculation of a fixed point for a nonexpansive
mapping 7, defined as

Ev+1 = ﬁv£U + (1 - ﬁv)ggv’ (62)

for each v>1and {f,} (0, 1).

Ishikawa iteration process

In 1974, Ishikawa proposed the two-step iteration pro-
cess as follows:

& =Eew,
Ei=(1-a)é, +a,T1, (63
n,=(1-B)¢, +B,7&, veN,

~—

where {a,} and {f3,} arein (0, 1).

Noor iteration process

In 2000, Noor proposed the three-step iteration as fol-
lows:

& =8eW,
£v+1 = (1 - ‘xv)gv + ‘xvgr]u’
M, = (1 - ﬁu)fv + ﬁvgzv’

z,=(1-y,)8, +y,7¢&,, veN,

where {a,}, {8, }, and {y,} are in (0, 1).

Agarwal iteration process

In 2007, Agarwal et al. introduced the three-step iteration
as follows:

& =8ew,
£v+1 = (1 -
My = (1 - ﬁv)fv + ﬁvggv’

)T &, +a,Tn, (65)

veN,

where {a,} and {f,} arein (0, 1).
Abbas and Nazir iteration process

TasLE 1: Convergence behavior of Mann, Ishikawa, Noor, Agarwal,
Abbas, Thakur, and Kalsoom et al. iterations towards fixed point.

Initial points 0.5 0.7 1.3 1.8
Mann 3978 3980 3981 3981
Ishikawa 2656 2657 2659 2600
Noor 2279 2280 2282 2283
Agarwal 1590 1590 1590 1576
Abbas 1000 1000 1000 1001
Thakur 883 883 883 882
Kalsoom 795 795 795 786

In 2014, Abbas and Nazir introduced the three-step iter-
ation as follows:
4 1= §ew,
Ev+1 = (1 - av)gzv + “0‘07’71)’
= (1 - ﬁu)g—é‘v + /30920,

Zy= (1 - YU)EU + vaéu’

(66)
veN,

where {a,}, {B,}, and {y,} arein (0, 1).

Thakur iteration process

In 2016, Thakur et al. proposed the three-step iteration as
follows:

51 ZEE w,
£v+1 =gnu’
n,=7((1-a,)¢,+a,z,),

(1 _/jv)sv + ﬁvggm

(67)

veN,

Zy

where {«,} and {f,} arein (0, 1).

Two qualities fastness and stability play a vital role in iter-
ation process to be performed. In [32], Rhoades mentioned
that for the increasing functions, Ishikawa [27] iteration pro-
cess is faster than Mann iteration process [26] but in the case
of decreasing function, condition is reverse. In [29], Agarwal
et al. proved that their iteration process was more stable than
the previous ones. In [31], Thakur iteration process was con-
sidered faster convergent than all the abovementioned itera-
tion processes.

Recently, Kalsoom et al. [25] introduced a new iteration
process and proved it to be the fastest convergent than all.
The following example is given to support this claim.

Example 2. Define
FE=sin&-1+cosé, (68)

for £ €]0,2). Then, I is monotone nonexpansive mapping
as well as 7 is monotone a-nonexpansive mapping.
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Now we will compare abovementioned iteration pro-
cesses to check the convergence of mapping J. By using
MATLAB, we present graphs and table.

In Table 1, we discussed the convergence behavior of
some iteration processes. It is clear that all iterations
approach to 0 which is the fixed point of mapping 7. In this
case, Figures 1-3 show that Kalsoom et al. iteration process
converges faster to the fixed point as compared the other
iterations.
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Ficure 3: Convergence behavior of Abbas, Thakur, and Kalsoom
et al. iterations towards fixed point.

5. Monotone Generalized 3-Nonexpansive
Mappings

In this section, we define monotone generalized 3-nonex-
pansive mapping which generalizes the results of Pandey
and Shukla [13] in hyperbolic spaces.

Now we will define monotone generalized 3-nonexpan-
sive mappings in hyperbolic space with nontrivial example.

Definition 23. Let W be a nonempty subset of an ordered
hyperbolic metric space (H,0,%). A mapping 7 : W —
W is said to be monotone generalized 3-nonexpansive map-
ping, if 7 is monotone and there exists 8 € [0, 1) such that

|
2
e
N
N
In

o(§n)=0(7¢ Tn)
<o&n) +B{an) -a(TET)}

(69)

for all &,y € W with &=y

Proposition 24. Every monotone nonexpansive mapping is
monotone generalized -nonexpansive mapping, but converse
is not true.

Proof. By putting 5= 0 in (69), we have

S0 TE <oEn) 2 o(TET <on),  (70)

which shows that monotone generalized S-nonexpansive
mapping reduces to monotone nonexpansive mapping satis-
fying the condition (3). The following example will prove the
converse statement does not hold. o0
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Example 3. Let W = [0 4] be a subset of H endowed with

usual order. Define 7 : W — W by
0, &§#4

e o
2, &=4.

Then, for & € (2,8/3] and =4,

1
508 T8 <o), (72)
implies
o(TETn)=2>0(En), (73)
and so I does not hold condition (3). Again, & € (2, 3] and
n=4,
1
50 Tn)<o(n)=0(TETn)>0En),  (74)

and I does not satisfy condition (3). Nevertheless, I is
generalized -nonexpansive mapping with 3> 1/3.

Proposition 25. Let W be a nonempty subset of an ordered
hyperbolic metric space (H,0,X) and T : W — W a mono-
tone generalized -nonexpansive mapping which has a fixed
point € W with E<y. Then, T can be referred as a monotone
quasi-nonexpansive mapping.

Proof. Let € F(J) and & € W; then, by (69),

~0(E,TE) <ok n) = 0(TET)
<o(&n) +plo(&n) - o(TE Tn)),

o(7&n) <a(§n)+po(&n) - Po(TEn),

(1+B)a(T&n) < (1+B)a(sn), (75)
where (1+ ) >0 as $€[0,1) which shows that T is
monotone quasi-nonexpansive mapping. oagd

Proposition 26. Let W be a nonempty subset of an ordered
hyperbolic metric space (H,0,%). If T : W — W is mono-
tone generalized [-nonexpansive mapping, then F(T) is
closed. Furthermore, if H is strictly convex, then W is convex
and F(T) is also convex.

Proof. Let {z,} be a sequence in F(T
€ W. Since

) which converges to z

~0(2,, T 2,) <0(2, 2), (76)

with the help of continuity of metric, we have

lim 0(9z,Jz) < lim o(z,, Jz),

V—>00 V—>00

lim o(z,, Jz)< lim [o(z

V—00 V—>00

w2+ Plo(z,2) ~0(T 2, T2)}],

lim o(z,,Jz)< lim o(z,,2)+ B lim o(z,,2) - Tz),

V—00 V—>00

B lim o(z,,
V—00

(1+p) lim o(z,,Iz) < (1+ ) lim o(z,,2),

(I+B)>0 as Pe[0,1),

lim o(z,,Jz) < lim 0(z,,2),Tz=z. (77)

V—00 V—00

Hence, F(J) is closed. Now, we assume that H is strictly
convex and W is convex. Let A € [0,1),&, 1€ F(T) with & #1
s then, putz=Aa@ (1-A)pe W.

o(§T&) =
0(7¢ T2)<0(§2)+plo(§2) -o(TE T 7)),
(1+B)o(TE Tz)<(1+P)o(&, 2), (78)
(1+B)>0asfel0,1),

=0(7¢892)<0(8,2).

1
~ 0 < > >
5 o(&,2)
<

By similar argument, we get

% o(n, Tn)=0<0o(n,2),
o(Tn,Tz)<a(n,z) +B{o(n.2) —o(Tn, Tz)},
(1+B)o(Tn, Tz) < (1+ B)o(n, 2), (79)

(1+B)>0asPBe|0,1),
=0(In,Tz)<o(n,z).

Therefore,

1) (80)
"

From strict convexity of H, there exists y € [0,1) such
that

0§, T8 <0(é,
o use(1-un) <o 2),
(I-po(n) <o(& 2)n.

By using value of &, it gives

(I-po(n)<(1-

Tr=pE® (1-p),
2),
o

(81)

Mo (&, n), (82)
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and similarly,

o(n,Tz) <

o(n, z). (83)
By putting values of z and Iz, we infer

uo (& 1) < Ao (& m). (84)

From the above two inequalities, it is concluded that
p=A2, (85)
z

Hence, F(J) is convex. 00

Lemma 27. Let W be a nonempty subset of an ordered hyper-
bolic metric space (H,0,%) and T : W — W a monotone
generalized -nonexpansive mapping. Then, for each &,1 €
W with <7,

(a) o(TE, T°€) <0 (&, TE).

(b) Either 1/20(&, TE) <o (&, 1) or 1/120(TE, T?E) < o(TE
1)-

(c) Either o(T¢, Tn) <o (&, 1) + p{o (&, n)o(TE, Tn)} or

if(Tzf, T°n) <o(T&n) + B{~o(T& 1) — a(T?, Ty)
Proof. Since
106 T <0 TE) (80
implies
o(TETH) <06, TE) + ot TE) -0 (TE TE)},
(1+B)o(TE T?E) < (1+P)o(& TE),
(I1+B)>0, pel0,1),
o(TE, 925) <o(& TE).
(87)

Hence, part (a) is satisfied. Now, we will prove part (b);
we argue with contradiction, and suppose

J06T€) > o(Eun),
(59

Journal of Function Spaces

By (a) and triangular inequality,

1

0§, TE <o n) +0(TEn) < %a(s, TE) + 50(9&, TE)

< Lo o)+ écf(s, TE <ot TE),

DN =

(89)

which is contradiction to our supposition, hence proved. The
proof of (c) is in a similar way, so we omit that. 00

Lemma 28. Let W be a nonempty subset of an ordered hyper-
bolic metric space (H,0,%) and J : W — W a monotone
generalized B-nonexpansive mapping. Then, for each &, 1€
W with &<,

o6 7)< (725)o€ 78 + (g)o@n. o0

Proof. By the help of Lemma 27, we infer either

o(78Tn) <o) +p{o&n) -o(TE T} (91)

or

o(T°8, T ) <0(TE

n)+B{o(TEn) -

In the first case, we have
o(§,Tn) <08, T8 +a(&n)+p{o(En) —a(T7E Tn)}
<0(§TE) +a(&n) +P{o§TE) +a(TEn) —0(TE Tn)}
<o(§, TE) +a(&n) + {5 TE +o&n) -0 Tn)}
<078 +0(&n)+p{o(§TE) +o(n.Tn)}
<0878 +0(&n) +Po(§,TE) +Po(&n) + Po(§, Tn)
(93)
and so
1 1
o6 = (Th)ow 70+ ({E)o@n. o

In second case,

o(E.Tn) <o(E TE) +0(TETX) +0 (T2 T)
<o T8 +a(E <°7f)+0(<°725,-/°‘11)
<2098 +o(TEn) +p{o(TEn) +0(T78Tn)}
<2098 +a(TEn) +p{o(§, TE) +o(n, Tn)}
<20(5 TE) +o(E 1) + Bo(E, TE) + fo(E.n) + fo(& Tn),
(95)

—~
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TaBLE 2: Convergence behavior of Mann, Ishikawa, Noor, Agarwal, Abbas, Thakur and Kalsoom et al. iterations towards fixed point.

Steps Mann Ishikawa Noor Agarwal Abbas Thakur Kalsoom
1 4.807669 4.457118 4.440406 4.264788 4.183261 4.098255 4.080140
2 4.653029 4210612 4.195196 4.072351 4.034941 4.010133 4.006740
3 4.528465 4.097407 4.086770 4.019942 4.006713 4.001050 4.000569
4 4.427974 4.045132 4.038623 4.005510 4.001291 4.000108 4.000048
5 4.346800 4.020928 4.017202 4.001523 4.000248 4.000011 4.000000
6 4.281160 4.009708 4.007663 4.000421 4.000047 4.000001 4.000000
7 4.228036 4.004504 4.003414 4.000116 4.000009 4.000000 4.000000
8 4.185011 4.002090 4.001521 4.000032 4.000001 4.000000 4
9 4.150144 4.000970 4.000677 4.000008 4.000000 4.000000 4
10 4.121875 4.000450 4.000302 4.000002 4.000000 4.000000 4
11 4.098946 4.000208 4.000134 4.000000 4.000000 4.000000 4
12 4.080342 4.000096 4.000059 4.000000 4.000000 4 4
13 4.065244 4.000044 4.000026 4.000000 4 4 4
14 4.052988 4.000020 4.000011 4.000000 4 4 4
15 4.043038 4.000009 4.000005 4.000000 4 4 4
16 4.034959 4.000004 4.000002 4.000000 4 4 4
17 4.028397 4.000002 4.000001 4 4 4 4
18 4.023069 4.000000 4.000000 4 4 4 4
19 4.018740 4.000000 4.000000 4 4 4 4
20 4.015225 4.000000 4.000000 4 4 4 4
21 4.012369 4 4 4 4 4 4
22 4.010049 4 4 4 4 4 4
23 4.008164 4 4 4 4 4 4
24 4.006633 4 4 4 4 4 4
25 4.006633 4 4 4 4 4 4
and hence, and & <z for all v € N. Now, we claim that {¢(,,,,,&,,,)} isa
nonincreasing sequence, that is,
o€ T < (b0 78+ (L) oen).  (6)
)= 1- /3 ﬁ 1)- O-(EU+1’ £u+2) (gv’ Ev+l) (99)
Hence, we get the desired result. oo Since

Theorem 29. Let W beg nonempty convex and closed subset 10(5U’ TE)<0(E,E), (100)
of an ordered hyperbolic metric space (H,0,X) and T : W 2

— W a monotone generalized [-nonexpansive mapping.
Then, F(T) + @ iff {T'E} is a sequence which is also bounded
for some & € W provides that TE<z for some z € W and &<

TE.

Proof. Let {T"&} be a bounded sequence for some & € W. As
we know that J is monotone and £xJ7E, so we get

TETE. (97)
In the same manner, we get
THTET < < TVE<T U ... (98)

Define £, =TJ¢,_, = TV, Vv € N. Then, the asymptotic
centre of {,} w.r.t Wis A(W, {&,}) = {z} where z is unique

which gives that

0<Ev+1’ v+2) :0< Ew U+1)
SG(EU’ Ev+1) +ﬁ{0( v’suﬁ-l) (O‘EU’JEU+1)}
= 0<Ev’ £v+ ) + ﬁ{(f( v’ £u+1) ( v+1> u+2)}
= (1 +/3) ( v+1> v+2) < (1 +ﬁ) (Ev’ Ev+1)
=0 ( v+1> v+2) ( E )
(101)
Now, we claim that
0(£U’£v+l) SzG(EU’z) or (102>

0(£v+1’ £v+2) = 20(£v+1’ Z)'
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FiGure 4: Convergence behavior of Mann, Ishikawa, and Kalsoom
et al. iterations towards fixed point.

To prove this, we consider the contradiction

20(50’ Z) < U(gv’ §U+1) and

(103)
20(£v+1’ Z) < U(£U+1’ Ev+2)'

By using triangular inequality,

O(Ev’ £v+1) < G(Ev’ Z) + 0(£u+1’ Z)

1 1
< EO'(EU, Ev+1) + Ea(€u+1’£v+2)

< a(£v’ Ev+1)’

(104)

which is not possible, so (102) is satisfied.
In the first case of (102),

(105)
Putting lim sup on both sides,

lim supo(T&

V—>00

I z) <lim supo(,, z),
V—>00

v?

(106)
Tz=z.
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4.5

4.45

4.4

4.35

4.3 1

4.25

4.2 1

4.15 +

4.1 A

4.05

N b T T T T
0 10 20 30 40 50
—%— Noor
—#— Agarwal
Kalsoom

FiGurg 5: Convergence behavior of Noor, Agarwal, and Kalsoom
et al. iterations towards fixed point.

4.25
4.2 4
4.15
4.1
4.05
4+ v 4 v v ¥
0 10 20 30 40 50
—%— Abbas
—%— Thakur
Kalsoom

FiGure 6: Convergence behavior of Abbas, Thakur, and Kalsoom
et al. iterations towards fixed point.

Similarly, in the second case,

%O(Ev+l’ €v+2) < a(£v+1’ Z)

G(EUH’gfvﬂ) SO’(EUH’Z)
0(96v+1,gz) G(Euﬂ’z) +ﬁ{0(£v+1’z) _G(ggvﬂ’gz)}

(1+B)0(T 81 T2) < (14 )0 (8115 2)

0(7¢,.1,92)<0(&,,1,2).

1
2
<

(107)
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Putting lim sup on both sides,

lim supo (¢, ,, T z) <lim supo(&,,;, 2),
V—>00 V—>00

(108)
Tz=z.

Conversely, F(J) # &; then, there exists some w € F(J)
and J°(w)=wVveN; then, {T’(w)} is a constant
sequence, and hence, it is bounded and this completes the
proof. 00

Example 4. Let 7 : W — W where W =3, 6]; then, T is
defined as

TE=/3E+4,

for any & € W; take &, = 0.7, 3, = 0.6, and y, = 0.5. The fixed
point of I is 4, and take initial point as £, =5. Then, 7 is
monotone generalized -nonexpansive mapping.

(109)

In Table 2, we discussed the convergence behavior of
some iteration processes. It is clear that all iterations
approach to 4 which is the fixed point of . In this case,
Figures 4-6 show that Kalsoom et al. iteration process con-
verges faster to the fixed point as compared the other
iterations.

6. Conclusion

It concludes that we have approximated fixed point results of
monotone « and generalized f-nonexpansive mappings in
hyperbolic spaces. Moreover, we proved some numerical
applications and presented the graphical representations by
using different iteration processes.
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In this paper, we will apply some fixed-point theorems to discuss the existence of solutions for fractional m-point boundary value
problems DE, (u" (£)) = h(t)f (u(t)), t €[0,1],1<q<2,u'(0) = u" (0) = u(1) =0, u" (1) = Y7 *a;ui” (§;) = 0. In addition, we also

1

present Lyapunov’s inequality and Ulam-Hyers stability results for the given m-point boundary value problems.

1. Introduction

Mathematical models due to fractional differential equations
can describe the natural phenomenon in physics, population
dynamics, chemical technology, biotechnology, aerodynam-
ics, electrodynamics of complex medium, polymer rheology,
and control of dynamical systems (see [1-4]). Due to the
nonlocal characteristics and the rapid development of the
theory of fractional operators, some authors have investi-
gated different aspects of fractional differential equations
including existence of solutions, Lyapunov’s inequality, and
Hyers-Ulam stability for fractional differential equations by
different mathematical techniques. For example, first, many
authors have discussed the existence of nontrivial solutions
of fractional differential equations in nonsingular case as well
as singular case. Usually, the proof is based on either the
method of upper and lower solutions, fixed-point theorems,
alternative principle of Leray-Schauder, topological degree
theory, or critical point theory. We refer the readers to [5-
20]. Second, Lyapunov, during his study of general theory
of stability of motion in 1892, introduced the stability crite-
rion for second-order differential equations, which yielded
a counter inequality be called Lyapunov inequality (see [21,
22]). Since then, we can find considerable modifications of
Lyapunov-type inequality of differential equations, such as
linear differential-algebraic equations, fractional differential

equations, extreme Pucci equations, and dynamic equations,
which are applied to study the stability and disconjugacy or
oscillatory criterion for the mentioned problems, and we
refer the readers to [23-32]. Finally, the stability of functional
equations was originally raised by Hyers in 1941 (see [33,
34]). Thereafter, the stability properties of all kinds of
equations have attracted the attention of many mathema-
ticians. To see more details on the Ulam-Hyers stability
and Ulam-Hyers-Rassias of differential equations, we refer
the readers to [35-38].

Inspired by the references, this paper is mainly concerned
with the existence, Lyapunov’s inequality, and Ulam-Hyers
stability results for the m-point boundary value problems.

Dj. (" (1)) = h(t)f (u(t)), t € [0,1], 1 <g <2,
m—2 (1)

u(1)=0,u"(1)- Y au’ ()=0,

i=1

where a;, &, h, and f satisfy the following assumptions:
(H1) Y77 el >1/g-1 and Y7 e <(1-£, )"
(q- I)Efn__zz((l ~&2) (g - 1)5:1"—_22)
(H2) h : [0,1] — R is Lebesgue integral
(H3) f : R — R is continuous
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For these goals, we first convert problem (1) into an inte-
gral equation via Green function. Furthermore, we study the
properties and estimates of the Green function. Then, on the
basis of these properties, we apply some fixed-point theorems
to establish some existence results of problem (1) under some
suitable conditions. In addition, the Lyapunov inequality and
Hyers-Ulam stability of the proposed problem are also
considered.

2. Preliminaries

Before beginning the main results, we state some classic and
modified definitions and lemmas from fractional calculus.

Definition 1 [4]. The fractional integral of order g >0 of a
function u : (0,+00) — R is given by

ILu(t) = th(t—s)qlu(s)ds, (2)

provided the right-hand side is pointwise defined on (0, +00)

Definition 2 [4]. The fractional derivative of order g >0 of a
continuous function u : (0,4+c0) — R is given by

where n = [g] + 1, provided that the right-hand side is point-
wise defined on (0, +00).

Definition 3 [21]. Assume that g > 0, then
I D0+u

ch (4)

for some C; €R,i=1,2, -
greater than or equal to g.

-, , where n is the smallest integer

Lemma 4. Assume that (HI1) holds. Then, for any y(t) €
L'[0, 1], the boundary value problem

DZ+( W' (t )) =y(t),te[0,1],1<q<2,

m=2 mn
- z au (&) =0,
i=1

u'(0)=u"(0) =u(1) =

(5)

has a unique solution u( fo s)ds. Let p=1-(q

- -2
- I)Z:LZ"QE?

<0, and we have
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(i) fors<t, s<§,
1 . .
G(t,s) = Tq+2) [(t—s)q 1_(1_s)q 1 }
bl (1=t [1-(1-9)""]
P
(ii) for t <s <&,
G(t,s) = L [_(1 §) 4 1 — gat!
T T(q+2)
7
Ceenpea-gry]
P
(iii) fors<t,§;<s<&,,,j=1,2-m-3
_ g9+l
G(t,s) = 1"(ql+2) llpt [(1 -9 —(q-1)
m-2 (8)
' Z “i(fi_s)qzl +(t =)™ —(1—5)‘1”]
i=j+1
(iv) fort<s, & <s<&,,, j=1,2,---,m-3
1 1+ t1%! .
Glt:5)= T(q+2) [ » l(l‘s)q -(q-1)
' mZ_Z “i(fi‘s)qﬂ - —S)W] (9)
i=j+1
(v) for&,, ,<s<t
_ g+l
G(t,s) = ﬁ |:(t—5)q+1 - (1 —S)q” + _1 t (1 _S)ql]
(10)

(vi) for&,, ,<s t<s

_ tq+1

G(t,s) = -s) 4 1—(1 —s)ql} (11)

1
Mg+ 2) {‘“

Proof. From Definition 3, it follows that

u' () =ILy(t) - C 17! = 172 (12)
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Since u" (0) = 0, it is clear that C, = 0. Then,

t

u" () =ILy(t) - C 7! = %Jo(t —$)Ty(s)ds — C, 147",
(13)

On one hand, taking the derivative of u''(t), we can get

um(t) = %J;(t —-5)T2y(s)ds— (- 1)C, 172 (14)

On the other hand, combining the boundary conditions
u(1) = u'(0) = 0, we have

, 1 t (T " Cl
u (t)y= — (1=9)""y(s)dr— —11

t Cl
= T+ I)J (t—s)Ty(s)ds - 715‘7.

Furthermore, we have

1

u(t) = —m JIJT(T —5)Ty(s)dsdr + %Jqud'r

tJo t
1

g | [y [ - 9rya]
. Cy(1-t1th)
qq+1)

(16)

According to these above expressions, we have

3
which yields
0 rors U;a -y [ -9
1 (j;u - sy(s)ds (19)
“a-n Y af e s)‘"zy(s)ds)]
If s<t,s<&,, wehave
Gt = o3 [(t g g L2
(-9 0o Y at —s)q*]
1 (20)
e (RUMBILEEAEE
S ey
O

In the similar way, we also can get the expression of
G(t,s) on other intervals.

Lemma 5. Assume that (H1) holds. Then, G(t, s) satisfies the
following properties:

(I) Sign of G(t,s)
(i) G(t,s)>0,for0<s<§,
(ii) G(t,s)<0,for&; <s<1
(II) The range of G(t, s)

(1) For 0<s<g,
<69« 5 [ 1o #} o)

(2) FOijSSSEjH,j:1,2,-~,m—3

1 1 1 m-2 ,
F(T—FZ) L; ((1—5)‘1 —(q—l)lz ai(gi_s)q >
(22)

-(1- s)q”] <G(t,s)<0



(3) Foré, ,<s<lI

1 l(l - 5>q_1 —(1- S)qﬂ

Tq+2) : <G(t,s)<0  (23)

Proof. For 0 < s < &, by the definition of G(t, s), it is clear that
G(t,s) is continuous and derivativable with respect to ¢ at
[0,1]. On one hand, if s<t<1, we have

G 1 1 - (1-5)"]
at—rwm(“‘”“mp) =

(24)

On the other hand, if 0 <t<s, we have

oGt 1-(1-s)7" B
ERNCES)) <—1 + — ) <0. (25)

Then, G(t,s) is nonincreasing on ¢, which yields that

min {G(t,s): £ € [0, 1]} = G(1,5) =0,

max {G(t,s): t €0, 1]}
[1 Sy LA u _S)qﬂ].

1
0= Fgey)

So for 0<s<&,, 0<t<1, it concludes that

muml()%] @)

For §;<s<&;,,(j=1,2,---,m~3), we have
min {G(t,s): t € [0,1]}
1 1 .
=G(0,s) = —F(q+2) |}—) ((1 _S)q—

m—2

-(q-1) Z (& - S)q_2> -(1 _5)q+1]>

i=j+1

(28)

max {G(t,s): t€[0,1]} = G(1,s) =0.

For & _, <s<1, we have

m=2 =

min {G(t,s): t € [0, 1]}

1 (1-s5)1" 'l

max {G(t,s): t€]0,1]} = G(1,5)=0.

=G(0,s) =
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Let

—(1-g)4!
G' = max __l__],%l_gwl_l_g_il_
sefo.£)] | I'(q+2) p

— 1 +1 1_(1_61)q_1
 I(q+2) [1_(1_£l)q ) T],
2= max ! (=97 — (1 —s)1"
G _se[fmz,ll{r(qﬁ)’ p e }
1 _ 3+l _ %
I(q+2) [(1 o) p ]
G = 1@3}_3{@3},
(30)
where
1 1
G]3- = max {7 - [(1 _S)qil
st Z(’j”) p (31)
@y ai@i—s)q‘zl (-9 }
i=j+1

From Lemma 5, it is clear that |G(t,s)| < G, where G =
max {G', G%, G°}.

Lemma 6. Assume that (H1) holds and &, >1 - (1/2)"17".
Then, G=G".

Proof. Let
G- = [ amom (a1 Y ag-9r
/ I'(qg+2)|p L T
—(1—s)q+1,se[E,,,fjﬂ],j:l,z)...’m_&

(32)
From (H1) and &, > 1 - (1/2)""7"", we can verify that
G' - |Gy(s)|

1

+1 1 —-1
=Wl1—<1—sl>q - (1-a-a)

+1 1 —s -1
—(1-s)1 +17<(1 )
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(1-a-g)-a-g))
5T -]
[ 2(1-¢)™ ;(1—2(1-51)q-l>
S e
F(q1+ )| 22/2—1 - q;li”g “i(fi—ﬁj)l >0.

Also, we can verify that

fara |08 - (1-a-8))

(10" 4 (0 sm_zﬁ*]

GI_G2:

1

o 1208 1 (1-20-8))]

! 1- ! >0
I'(q+2) 2%4-1 '

So, it concludes that G' > G*, G' > G, namely, G=G'. O

(34)

3. Main Results

3.1. Existence Results

Theorem 7. Assume that (H1)-(H3) hold. In addition, there
exists a positive constant L > 0 such that

If(u) = f(v)| <Llu—v|Yu,v € R. (35)
Then, problem (1) has a unique solution if LG|h|,: < 1.

Proof. Let C[0, 1] = {x(t): x(t) is continuouson [0, 1]} is a
Banach space with the norm ||x|| = max|x( )|. From Lemma

4, it is clear that solutions of (1) can be rewritten as fixed
points of operator T, which is defined by

1

Tu(t) = J G(t,s)h(s)f (u(s))ds. (36)

0

Now, we show that T : B, — B, and T is a contraction
map, where B, = {u € E : ||u|| < r} with

5
, Gl O (37)
L= GL[h],
On one hand, for any u € B,, we have
[T (u)(t)]| = ‘ JOG(f s)h(s)f (u(s))ds
<G O|h(5)f(”(5))|d5
< ol -soy+ o

1

<G| IoIlLr+1F(0)]ds
< Glhl,[Lr +f(0)] <7,

which implies that T'(B,) C B
On the other hand, for any u, v € E, we have

IT(u) - T()]| = ‘ JOG(L $)h(s)(f (u(s)))ds
< GJOIh(S)IIf(u(S)) —f(v(s))|ds (39)
< GLJ |h(s)||u(s) — v(s)|ds
< LGl u(t) = V(1)
which implies that T'is a contraction map. O

Therefore, by the Banach contraction mapping principle,
it follows that the operator T has a unique fixed point, which
is the unique solution for problem (1).

Theorem 8. Assume that (H1)-(H3) hold. In addition, there
exists a positive constant K such that |f(u)| <K for u € R.
Then, problem (1) has at least one solution.

The proof is based on the following fixed-point theorem.

Lemma 9 [39]. Let E be a Banach space, E, is a closed, convex
subset of E, Q an open subset of E,;, and 0 € Q. Suppose that
T : Q —> E, is completely continuous. Then, either

(i) T has a fixed point in Q, or

(ii) there are u € 0Q (the boundary of Q in E,) and p €
(0,1) with u=pTu

Proof of Theorem 8. First, we show that the operator T is uni-
formly bounded.



For any u € Q5 = {u € C[0, 1]: ||ul| <&}, we have

IT@) (1) = ‘ JOG(L s)h(s)f (u(s))ds|| < GK|h| 1, (40)

which implies that T(€) is uniformly bounded.
Second, for 0 < s <, from Lemma 4, we have

(1) ifs<t<1

oG(t,s)| 1 11— (1-5)7"]
’ at | Tgep |t »
1 11— (1-5)7"]
SF(q+1) <(t‘5)q+tq— » >
1 1
“T(g+1) (2‘,5)'
(41)
(ii) if0<t<s
0G(t,s)| 1 p tq[l—(l—s)q_l]
‘ ot | T+ »
< 1 tq— tq [1— (l—S)q_l] (42)
I'(q+1) p

“r (-

which implies that [0G(t, s)/0t| is bounded for 0 <'s
<&,,0<t<1.In the similar way, we know that there
exists a S > 0 such that |0G(t, s)/0t| < Sfor0<s,t < 1.

Furthermore, for t,, t, € [0, 1], we have

|Tu(ty) = Tu(t,)]

| Gt ) (uteds— | G, hs) (o

0 0

j (G(t2,5) = G(t, )| h(s)f (u(s))ds

0
< SKIh|i|t, — 1]

(43)

Therefore, applying the Arzela-Ascoli theorem [39], we
can find that T(Q;) is relatively compact.

Third, we claim that T : Q5 — R is continuous. Assume
that {u, }, ¢ O, which converges to u, uniformly on [0,1].
Since {(Tu,)(t)},2, is uniformly bounded and equicontinu-
ous on [0,1], from the Arzela-Ascoli theorem, it follows that
there exists a uniformly convergent subsequence in
{(Tu,)(1)}12,- Let {(Tu, ) ) (1)} be a subsequence which

converges to v(t) uniformly on [0,1]. Observe that
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Tty (1) =J G(t, s)h(s) f(un(m) (s)))ds. (44)

0

Furthermore, by Lebesgue’s dominated convergence the-
orem and letting m — 00, we have

v(t) = J G(t, 5)(s) (uy () ), (45)

0

namely, v(¢) = Tu,(t). This shows that each subsequence of
{(Tu,)(t)};2, uniformly converges to v(t). Therefore, the
sequence {(Tu,)(t)} 2, uniformly converges to Tu,(t). This
means that T is continuous at u,, € ;. So, T is continuous on
Qs. Thus, T is completely continuous.

Finally, let Qg = {u € C[0, 1]: ||lu|| <8} with 6 = GK|h|,:
+ 1. If u is a solution of problem (1), then, for p € (0,1), u
€ 0025, we have

Jull = pl| Tu(t)]| = p LGU, ()f (u(s))ds

1 (46)
< PG| (9 (u(s) s = GE.

which yields a contradiction. Therefore, by Lemma 9, the
operator T has a fixed point in Q.

Theorem 10. Assume that (H1)-(H3) hold. In addition, f sat-
isfies the following assumptions:

(H4) There exists a nondecreasing function y : Rt —
R* such that

)] < y(flul),vueR. (47)

(H5) There exists a constant R > 0 such that R/G|h|,y(
R) > 1. Then, problem (1) has at least one solution.

Proof. Now we show that (ii) of Lemma 9 does not hold. If u
is a solution of problem (1), then for p € (0, 1), we obtain

[ull =PI T(u(®)]l < PJ |G(t, $)h(s)f (u(s))|ds
’ (48)

< PGLIh(S)f(“(S))\dS < Glhlpy([lu])-

Let Bg = {u € C[0, 1]: ||u|| < R}. From the above inequal-
ity and (H5), it yields a contradiction. Therefore, by Lemma
9, the operator T has a fixed point in By. O

3.2. Lyapunov’s Inequality

Theorem 11. Assume that (H1)-(H3) hold. In addition, f(u)
is a concave function on R. Then, for any nontrivial solution
of problem (1), we have

1
J ih()|de > — 14 , (49)
0 G maxue[u*,u*] ‘f(u)|
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where

u, = minu(t), u" = maxu(t). (50)
te[0,1] te[0,1]

Proof. If u(t) is a nontrivial solution of problem (1), then by
Lemma 4, we have

u(t) =J G(t, $)h(s)f (u(s))ds. (51)

0

Furthermore, by Lemma 6, we have

uo)< [ G (5

Since f is continuous and concave, then from Jensen’s
inequality, it follows that

[u(O)ll <maXJ |G(t, 5) |1 (s)f (u(s))|ds

t€[0,1

<[ [maxicte. 1] eoruoas

te[0,1] 1 (53)
<G [ -l
<G, max /()

namely,

! ]
J o> mas,ey o 0] >y
O

3.3. Stability Analysis
Definition 12 [34]. Equation (1) is said to be Ulam-Hyers-
Rassias stability with respect to ¥ € C[0, 1] if there exists a

nonzero positive real number p such that for every £ >0
and each solution v € C[0, 1] of the inequality

(D" (6) = h(Of (V)| < e¥ (@)t e 0.1], - (55)

there exists a solution u € C[0, 1] of problem (1) such that |

u(t) = v(t)| < pe (t), t € [0, 1].

Theorem 13. Assume that (H1)-(H3) hold. In addition, there
exists a positive constant L > 0 such that

|f(u) = f(v)| <L|u—v|,Yu,veCl0,1]. (56)

Then, problem (1) is Ulam-Hyers-Rassias stability if LG
|h‘ < 1.

Proof. Let v € C[0, 1] be the solution of the inequality (55);
then,

|Dyv" (1) = h(t)f (v(1))| < e¥(t),t € [0,1].  (57)

Thus, for € > 0, we get

v(t) - JlG(t, s)h(s)f (v(s))ds| <e¥(t),t€[0,1].  (58)

0

By Theorem 7, problem (1) has a solution u(t) satisfies

u(t) = J G(t, s)h(s)f (u(s))ds. (59)

0

Then, for t € [0, 1], we have

v(t) - J G(t,s)h(s)f (u(s))ds

0

(1) —u(t)| =

<

v(t) - J G(t,s)h(s)f (v(s))ds

0

+

J G(t,s)h(s)(f (u(s)) = f(v(s)))ds

0

(60)
<eV(t) + LL\G(t, s)h(s)(u(s) = v(s))|ds

<e¥(t)+ LGJl |h(s)|[u(s) = v(s)|ds
<e¥(t) + LGlh| ;i |u(t) - v(t)],

which yields

e¥(t)

[v(t) —u(t)| < TGVI\U = ue¥(t), te)0, 1]. (61)

Therefore, problem (1) is Ulam-Hyers-Rassias stability.
O

4. Examples

Now we give some examples to illustrate our main results.

Example 1. We consider the following problem:

D3*u" (t) = 6t arctan u, t € [0, 1],

u (0)=u"(0)=u(1)=0,u" (1) = 2u" <§) - éu (g) =0,



where h(t) =12t and f(u) = 1/2 arctan u. It is obvious that
(H1)-(H3) hold. Via some computations, we have

4 1 3
£1=§>1_ olg 1~ g’
b5 VT
2 16v6
. 8 1 V5-1
G= 1-— - ~0.170285.
105+/7 l V55 \/5-512- 35/16\/6]
(63)
Since
! 1 ! 1 1
f(u)= (5 arctan u) = ) <3 =L, (64)
the function f satisfies the condition
|f(u) = f(v)| <L|u—v|,Yu,v e C0,1]. (65)

Furthermore, we can verify that GL|k|;, = 0.510855 < 1.
Therefore, by Theorem 7 and Theorem 13, problem (62)
has a solution u(t), which is Ulam-Hyers-Rassias stability.

Example 2. Let us consider the following problem:
Dy?u" (t) = 6t (2 arctan u'? + sin u), t € 0, 1],

u' (0)=u" (0) =u(1)=0,u" (1) - 2u" (:) - éu (g) =0,

(66)
where h(t) = 6t and
|f (u)| = |2 arctan u® + sin ul <2[ul|"* + [|u| = w(||ul])-
(67)

It is obvious that (H1)-(H4) hold. By computations of Exam-
ple 2, we have

G ~0.170285. (68)

Furthermore, for R > 4.362954, the inequality R/G|h|,1y
(R) > 1 holds, Therefore, by Theorem 10, problem (66) has
at least one solution.
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This paper presents an analysis based on a mixture of the Laplace transform and the new iteration method to obtain new
approximate results of the fractional-order Klein-Gordon equations in the Caputo-Fabrizio sense. So, a general system to
investigate the approximate results of the fractional-order Klein-Gordon equations is obtained. This technique’s effectiveness is
demonstrated by comparing the actual results of the fractional-order equations suggested with the results achieved.

1. Introduction

Fractional partial differential equations (FPDEs) are critical
tools for analyzing and simulating numerous narrative
models in physics and mathematical models, such as electri-
cal circuits, fluid dynamics, damping, induction, mathemati-
cal biology, ad relaxation, (Klimek, 2005; Baleanu et al., 2009;
Kilbas et al., 2010; Jumarie, 2009; Mainardi, 2010; Ortigueira,
2010). Fractional derivatives provide more precise represen-
tations of real-world problems than integer-order derivatives;
they are regarded as an effective technique for describing
such physical problems. The subject of fractional calculus is
an important and valuable branch of mathematics that plays
a critical and severe role in explaining complex dynamic
behavior in a wide range of application areas, helps to under-
stand the essence of the matter as well as simplify the control
design without any lack of inherited behavior, and describes
even more complex structures [1, 2].

The Klein-Gordon equations (KGEs) play an important
role in physics, nonlinear optics, quantum field theory and
solid state physics, plasma physics, kinematics, mathematical
biology, and the recurrence of the initial state. The modeling
of many phenomena, including the behavior of elementary
particles and dislocation of crystals propagation, is the
important applications of KGEs. To study solitons [3], exam-

ining nonlinear wave equations [4] and condensed matter
physics equations gained the attention of scholars. In the
previous few years, mathematicians have made many consid-
erable efforts to find the solutions to these equations. There
are many methods introduced to find the solution of these
equations such as the radial basis functions [5], B-spline
collocation method [5], auxiliary approach [6], and
exponential-type potential, and there are some more methods
mentioned in [7-11] for the solution of these equations. To
solve the KGEs of a nonlinear type got tremendous attention
of scholar, and a verity of methods were developed as men-
tioned in [12-14]. Some other methods are the stationary
solution [15], the Homotopy perturbation technique [16],
the tanh technique [17], the variation iteration technique
[18], the traveling wave solutions, and so on.

In the recent paper, we are applying new iterative trans-
form method to KGEs of both linear and nonlinear orders
of the following form:

®u  u
ﬁ_a_zz+¥/:g(€),l<p£2, (1)

with the boundary conditions
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p(8,0) = 044,(, 0) = k(C). (2)

Daftardar-Gejji and Jafari developed a new iterative
approach for solving nonlinear equations in 2006 [19, 20]. Jafari
et al. first applied the Laplace transformation in the iterative
technique. They proposed a new straightforward technique
called the iterative Laplace transform method (ILTM) [21] to
look for the numerical solution of the FPDE system. The itera-
tive Laplace transform method was used to solve linear and non-
linear partial differential equations such as the time-fractional
Fokker-Planck equation [22], Zakharov-Kuznetsov equation
[23], and Fornberg-Whitham equation [24]. The Elzaki trans-
form was used to modify the iterative technique, known as the
new iterative transform method.

The new iterative transform method is implemented to
investigate the fractional-order of the Klein-Gordon equa-
tions. The solution of the fractional-order problems and
integral-order models is calculated applying the current tech-
niques. The proposed approach is also helpful for dealing
with other fractional-orders of linear and nonlinear PDEs.

2. Fractional Calculus

This section provides some fundamental concepts of
fractional calculus.

Definition 1. The Liouville-Caputo operator (C) is given as [25]

3

(S-0)""u"((,0)d0,n-1<p<n,

(3)

where 1" ({, 0) is the derivative of integer nth order of u({, I),
n=1,2,---€e Nandn—1<<n.If0 << 1; then, we defined
the Laplace transformation for the Caputo fractional derivative
as follows:

E[D%u(c, 3)] (s) =s2Zu(¢, I)](s) - st [u(¢,0)]. (4)

Definition 2. The Caputo-Fabrizio operator (CF) is define as
given [25]:

Dgu((, ) = %J; exp (—Q S —Q@)) u"((,0)d0,n<q<n+1.
(5)

M(Q) is a normalization form, and M(0) = M(1) = 1. The
exponential law is used as the nonsingular kernel in this
fractional operator.

If 0 < p<1, then we define the Caputo-Fabrizio of the
Laplace transformation for the fractional derivative is
given as

e ) NN

s+o(1-5s)
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3. The Iterative Transform Method
Basic Procedure

Consider a particular type of a FPDE.

D2(C, 1)+ Mu(l, 1)+ Nv({,7)=h({,7),neN,n-1<Q<n,

(7)

where the functions of linear and nonlinear are M and N,
respectively.
With the initial condition

(0,0) = g0, k=0,1,2--n -1, (8)

implementing the Laplace transformation of Equation (7),
we have

L[D%(C, )] + LIMv({, 7) + Nv({, )] = L[h({, T)].  (9)
Applying the Laplace differentiation is given to
s+Q(1-5)

v((,0) + 3z

s+Q(1-5s)
- 2

Lp(& 7)) =

: L)

(10)
L[Mv({,7) + Nv({, 7)),

using the inverse Laplace transformation of Equation (10) into

o= [ (oo + iy )]

[ {5+Q(1—5)

(11)
5 LIMv({, ) + Nu(¢, T)]:|

As through the iterative technique, we have

18

(1) = v,,(¢, 7). (12)

0

3
I

Further, the operator M is linear; therefore

M(OZO: v, (¢, T)> =

m=0

Mg

Mv,,(C, 7)), (13)

3
I

and the operator N is nonlinear; we have the following

m=0 k=0

—N(i v ((, T))

k=0

N(OZO: v, (¢, T)) =0y((, 1) +M<i (e T))
(14)
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Putting Equations (12)-(14) in Equation (11), we obtain

1 {(év(f, 0)+ Q=) e ﬂ])]

s2

020: v, (¢, T)=L"

m=0

-L! {WB[M(% (e r)) —N(i v(¢, r))”.
§ k=0 k=0

(15)
The new iterative transform method is defined as
=1 (fuco + U g0 ).
T e S PR
Uyt (§7) =L [HQE+S)L [—M (kio (e r)) -N (kig v(¢, T)> } ] ,m>1.
7 7 (16)

Finally, Equations (7) and (8) provide the m-terms
solution in a series form given as

v((, 1) =vy(¢, 7) + 0, (§,T) + 0, (8 1)+ 0, (T), m=1,2, -
(17)

4. Applications of the Proposed Method

4.1. Example. Consider the fractional-order Klein-Gordon
equation [18]

o) Pu(l)

+u(C,1)=0 0<{ 7<0 0<q@<l,

7o+l ol
(18)
with the initial conditions
#(8,0) =0, 4,(3,0) = . (19)
Applying the Laplace transform to Equation (18), we have
SLIH(E )] = iy (6 0)5™ +p (0)52 4 Fg(f Dz, r)} .
(20)

L@, 1) =™ (G 0) 57 (60) + G F m - r)} -
(21)

Applying the inverse Laplace transform of Equation (21),
we have

uGr) =L [ (8, 0) 457w G 0)]

+ 17! l” e(1 =) L(az;;(é, i -u(@ r))] .

(22)

H(Er) = gr - o

Now, by using the suggested analytical method, we get

#o(C, 1) = {7,

Y e I A (S
- [0 P

{r
— (tp+3-3p),

_ o |ste(l-s) azl/‘l (¢,7)
(“2((’ T) =L [ 52 L< 8(2 _Ml(() T>>‘|
C 3

T 120
— 02
us (G, 1) = L [H- QEZI ) ( ”;éc ) —t,(G, T))] >
¢t
5040
+217°Q% - 217%¢Q°

)

(107Q - 107Q* — 40Q + 20 + 200 + 7°Q%),

Yy (6, 7) = (630Q” - 630Q + 210 - 210¢° + 7°¢’

- 2527Q” + 1267Q + 1267¢°),

uaar>=r*r+g“") (af§?T> uxaﬂ>],

2
{r°
262880 (TQ+6 - 6Q) * (1393

+2527Q° — 504710% + 2527Q,~5040°
+1512Q% — 1512 + 504),

py(C7) = -307%Q” + 307%¢

Ft+1@J72L1[@+«1—$VL<¥yxcr>_M(aﬂ>]‘

o¢

The series form result is

#(G 1) = (G 1) + py (8 1) + o (8 7) + 5 (6 1)+, (6 7),

2 {T"’

(te+3-30) + 20 (107Q - 107Q” - 40¢Q
C 4
5040
-210Q* + °@° + 217%Q* - 217%Q’ — 2521¢*

5
+6-6

362880 "° Q)
- (@ - 3077Q” + 307%Q” + 2527¢” - 5047¢”
+2527Q — 504Q” + 1512Q” — 15120 + 504) —--.
(24)

+20 +20Q” + 7°Q%) - (630Q” - 630Q + 210

+1267Q + 1267Q°) +

The problem has the exact solution at @ = 1:
p(¢,7)={ sin (7). (25)

In Figure 1, the exact and the approximate solutions of
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example 1 at @ = 1 are shown, and the second graph shows the
3D graph of different fractional-order p, respectively. From
the given graphs, it can be shown that both the approximate
and exact solutions are in close relation with each other. Also,
in Figure 2, the 2D figure of the approximate solutions of
problem 1 is analysis at different fractional-order p for { and
7. It is demonstrated that the outcomes of time-fractional
problems converge to an integer-order effect as the time-
fractional evaluation to integer-order.

4.2. Example. Consider the fractional-order Klein-Gordon
equation [18]:

A (S (%))

+u(l,t)=2sin({) 0<{ 7<0 0<@<l,

oretl o
(26)

with the initial conditions
u(2,0) = sin (0), 4, (£,0) = 1. (27

We apply the Laplace transformation to Equation (26),
and we get

52

L{p(C, 7)] = pr0) (G 0)s™" + Hir (6 0)s~?

s+Q(l-s) o
+L[azya(§2’1) - u(¢,7)+2sin (C)] ,
- b s+Q(l-s)
Llp(G 7)) = 0(60) + 57 (§,0) + —5—L
(29)

. LM(C’T) - T sin
[ w2 @ﬂ-

Now, using the inverse Laplace transformation of Equa-
tion (29), we have

UG =L [, 0) +5 2 4, 0)]

el amn)]

(30)
Now, by using the suggested analytical method, we get
Yo(¢, T) =sin ({) + 7,
w () =L" {S rell=9)) (az“"((’ D po(lo7) + 2 sin (())]

s2 b} CZ

T2
=—E(TQ+3—3Q),

MZ(C,T)=L_1 |:S+Q(1—S)L<a w6, 7) —u,({,7) +2 sin (()>:|,

52 8(2
_[2
120
+60Q + 107°Q - 107°¢%),

uxaﬂ=LIF+QS_”L<aﬁ§‘°—MACﬂ+2ﬂn@Q],

#,(8,7) = —— (207 - 607 + 207 + T°Q* — 60

2
__ T 2 32
Yy (¢, 1) =~ 010 (42007Q — 16807 — 16807Q” — 3367°Q
+12607° + 1267°0° + @*7° + 2520 — 25200
+ 14707%0% — 14707%0 + 21072 - 2107%Q°

+21Q%t* - 217%Q%),
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ﬂd£ﬂ=L4r+QS_$L<aggﬁ)—udéﬂ+2ﬂn@0}’

362880
+816487°0 — 39312770 — 3931207 + 30247°
+30247°0* + 360°1° - 360*7° — 10800°7°
+4320%7° +4327°Q" + 770" — 181440 + 11440Q
+ 226800770 + 45360720 — 2268007%¢?

— 4536077 — 105840 7* + 1058471*¢°
-20167"¢" + 201607"),

uy(G.7) =

(1814407Q” + 1814407 — 42336070

| Gre-9)" (9%,@ 1)
Hn(C’T)_L |: §2n+2 L( a{l

(31)
The series form result is

#(G 1) = o (6 7) + g (6 7) +11,(C5 7) + 3 (G )+, (8, T),

p(C, 1) ==sin ({) +7—- — (10 +3 - 3Q)

T2

6
T2

* T30 (207 - 607Q +207Q” + T°¢” — 60

2

T
+60Q + 10720 — 107%Q?) +—
@ +107°Q ~107°Q")+- 75

- (42007Q - 16807 — 16807¢” - 3367°¢”

+12607° + 1267°0% + @ 1° + 2520 — 25200

+ 147072 — 14707%Q + 21072 — 2107%¢° (32)
2

362880

- (18144070 + 1814407 — 42336070 + 816487°Q°

—393127°0% — 3931207° + 30247° + 302471°¢*

+36Q°7° — 360*7® — 10800°7° + 4320 1° + 4327°¢*

+77Q" - 181440 + 11440p + 2268007%Q + 453607°Q°

— 226800720 — 453607 — 105840%7* + 1058410’

-20167°Q* +201607")+---.

+21Q°t" - 217%Q") +

—u,(¢,7) +2sin (C))}

5
0 05 1 15 2 25 3 35 4 45 4 5
The problem has the exact solution at ¢ = I:
p(¢, ) =sin ({) +sin (7). (33)

In Figure 3, the exact and the approximate solutions of
example 2 at @ = 1 are shown. From the given figures, it can
be seen that both the approximate and exact solutions are
in close contact with each other. Also, in Figure 4, the 2D
graph of the approximate results of problem 2 is investigated
at different fractional-order p for { and 7. It is demonstrated
that the outcomes of time-fractional problems converge to an
integer-order effect as the time-fractional evaluation to
integer-order.

4.3. Example. Consider the fractional-order nonlinear
Klein-Gordon equation [18]:

AN S ()

+@ () =01 0<{ 1<0 0<@<l,

ot acz
(34)

with the initial conditions
#(6,0) =0, (¢, 0) =¢. (35)

Using the Laplace transform to Equation (34), we get

2

;;%fgumcm=mﬂcm¢+m4cmﬁ
aZ C T) (36)
+L lig((z’ - (¢ T) +5212],
-1 -2 s+o(l-s)
LG 1)) =57 p(5,0) +57p (6, 0) + ——L
) (37)
|9 (S ) + 22
[ acz ‘Ll (C’ ) +C ‘| :
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Applying the inverse Laplace transform of Equation The series form result is

(37), we have

Now, by using the suggested an approximate method, we get

#(G 1) = o (6 7) + 1y (6 7) + (6 7) + ps (G 7)1, (6, 7),

U@ r)="L" [5_1!4((: 0) +5 24 (€, 0)} +17! U, 1) =L+ 0+,
. [s+g(l —s)L<aZH2((, 7) e +CZT2>} (40)
2 2 > .
’ 9% The problem has the exact solution at @ = 2:
(38)

w7 =1r. (41)

Figure 5 compares the exact solution and approximate solu-
tion of example 3 for the nonlinear fractional-order Klein-

Ho(67) =7, Gordon equation at @ = 1. The figure shows the close relation-
- 2 ship between the exact and an approximate solution.
.ul(C) T):L—l |:S+Q£21 S)L<a AuO(E’ T) _Hg(C’T) +(2T2>:| :0, p pp
% 4.4. Example. Consider the fractional-order nonlinear Klein-
Gordon equation [18]:
_alste-s) (9, @) 2 cr 01
#,(G7) =L ' { 2 L( ol —Hﬁ(CT)HT . Faarii(fﬂ) _azl;(;’T) R T) =20 22 4+ P 0<{ 1<0 0<qs<l,

(39) (42)
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with the initial conditions

w8, 0)=p, (6, 0)=0. (43)
Using the Laplace transform to Equation (42), we get

32

ml’[#((’ T)] = [’4(0) ((, O)S_1 + M(T) (C, 0)5—2

+L 432#(5, 7 _ ()20 207 +

o

(44)

s+o(1-5)

s2 L

L{p(G 7)) =57 p(8, 0) + 572 (8, 0) +

o’u(¢,
THOT) 2 )+ 20— 22 + !
o¢
(45)
Applying the inverse Laplace transform of Equation (45),
we have

u(Er) =L [ (6, 0) +5 7 (G,0)] + L7

. |:S+Q£21 _S)L<azﬂ;§§’ ?) — W (1) + 207 - 27 +C4T4):| .

(46)
Now, by using the suggested analytical method, we get

(6, 7) =0,

w(Gr)=1" [S+Q§21 —S)L<azuaog, 7) SR+ 20 27 +(4r4)],

() = 3—T0 (—5913 +207200 % + 6007 — 600C2 + 30¢27 + 67°C — 6‘[4(49),

p(61) =

s2

_ i (
162116200

w(G =L { Iy <az"1 (%)

o

— () + 20 - 27 +C4r4>},

—324324007¢> — 27027007°*

— 32432400720 + 21621600770 — 2282287°9°*
+4564567°0%¢* — 2282287°0¢* + 120127°¢%¢°
—327600°7'°¢* +327600° ' 0¢* - 1365710 ¢*
+22932711 %0 + 2293271 (%0 + 50057°0°
+100100Q°7® — 1001000°7® — 115830077 @?
+57915077 ¢ — 4804807°¢* + 589687'°¢°
+18532807°¢° + 30888007°0> — 30888007°0
+2162160072¢* + 5791500° 77 — 86486407¢*

— 64864800°7° + 10296007° + 2402400%7°(°

— 2402400°78¢° + 131274077 (%% - 262548077
—96525770°¢* + 131274077 %0 — 11583077 0*¢*

— 6486480Q°T*(* + 648648002 7*¢* — 432432007°¢*

8

+216216007°0°¢* + 216216007 ¢ + 99¢3 037"

— 18532807%0¢? + 3088807°0%(* + 15444007°0°¢*
+5405407°Q°* — 68468407°0°(* + 61261207°0(”
+72072007°0%¢% + 277203728 - 27720° 28
+4804807°0°(* — 144144070 + 14414407%0(*
—589687'°¢% 0> — 1769047'°¢% ¢ — 18532807°¢ ¢’
+55598407°¢50? — 55598407°¢°0 + 648648007%0%(*
—21621600720°¢* — 648648007°QC* + 8648640710 (2
— 259459207 0%¢% + 1769047'°¢C% 0% + 259459200 21"
— 458647"1 (%0 +270270007> — 3243240002

— 540540(*7°0 — 16216200{>7Q + 32432407%¢*p
—1029600p°7° — 32432407%¢* - 324324007
+32432400p(” + 648648007 + 108108007%),

O, (&)

(¢, 7) :L’l[

$2

s+Q(lfs)L<

ar

—2 ) F20 20 (4T4>:| .

(47)
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The series form result is The problem has the exact solution at g = 1:

#(GT) = (6 1)+ (1) + (G 7) + 5 (G T) 4041, (G ), ,
,T) =1 49
u(l, )= % (—591’3 +207%0¢ %0 + 6007 — 6000 #(C ) ¢ ( )

T
162116200
- (~324324007Q - 27027007°Q” — 32432400770

+216216007%0> — 2282287°0°¢* + 4564567°0*¢*
—2282287°0¢* + 120127°¢°0% - 327600%7'°¢*
+327600°710¢* — 1365711 0°¢* + 22932711501
+22932711¢%0 + 50057°0° + 100100027*
—100100Q°7® - 115830077 @ + 57915077

— 4804807°¢" + 589687'°¢® + 18532807°¢°
+30888007°0 — 308880070 + 216216007°(*
+5791500° 17 — 86486407(* — 64864800*1°
+10296007° + 2402400°7%¢°® — 2402400°7%¢°
+131274077¢%0% — 262548077 (%% — 9652577 0* (>
+131274077¢% — 115830770 — 64864800°7*(*
+64864800%71¢" — 43243200702 + 216216007°0°¢*
+216216007°0¢* +99¢%07"® — 18532807%0¢>
+3088807°02¢” + 15444007°0°¢* + 5405407°0°¢*

— 68468407°Q°* + 61261207° QL% + 72072007°Q%(2
+27720%72¢% - 27720° 712 + 4804807°0°*

— 14414407°Q2¢" + 14414407°¢* - 589687'°¢%0°
—1769047'°¢%0 — 185328075¢°0” + 55598407°¢

— 55598407°°0 + 648648007%0%¢* — 21621600720°¢*
— 648648007200 + 86486407*0°(* — 259459207 0%(*
+1769047'°0% Q% + 2594592001 — 458647'1{*¢?
+270270007> — 324324000> — 540540(* 750

— 16216200870 + 32432407*¢* 0 — 1029600075
—32432407%* — 324324007 + 3243240002
+648648007Q + 108108007%)+---.

+300%rQ + 67t - 614(4Q>

(48)

In Figure 6, the exact and the approximate solutions of
example 4 at Q=1 are shown, and the second graph shows
the 3D graph of different fractional-order p, respectively.
From the given figures, it can be seen that both the approxi-
mate and exact solutions are in close contact with each other.
It is demonstrated that the outcomes of time-fractional prob-
lems converge to an integer-order effect as the time-
fractional evaluation to integer-order.

5. Conclusion

In this paper, the iterative transformation method is imple-
mented to achieve approximate analytical results of the
fractional-order Klein-Gordon equations, which is widely
applied in problems for spatial effects in applied sciences.
In physical models, the technique yields series form results
that converge very quickly. The obtained results in this
article are expected to be important for further analysis
of the sophisticated nonlinear models. The calculations of
this method are very simple and straightforward. As a
result, we conclude that this technique can be used to solve
a variety of nonlinear fractional-order partial differential
equation systems.
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We study the asymptotic behavior of solutions of the anisotropic heterogeneous linearized elasticity system in thin domain of R?
which has a fixed cross-section in the R? plane with Tresca friction condition. The novelty here is that stress tensor has given by the
most general form of Hooke’s law for anisotropic materials. We prove the convergence theorems for the transition 3D-2D when one
dimension of the domain tends to zero. The necessary mathematical framework and (2D) equation model with a specific weak form
of the Reynolds equation are determined. Finally, the properties of solution of the limit problem are given, in which it is confirmed

that the limit problem is well defined.

1. Introduction

In this paper, we are interested of the asymptotic behavior of
the linear elasticity system in a domain of R?® with a Tresca
friction condition where the boundary of this domain has a
fixed cross-section in dimension 2 and a small thickness.
One of the objectives of this study is to obtain two-
dimensional equation that allows a reasonable description
of the phenomenon occurring in the three-dimensional
domain by passing the limit to 0 on the small thickness of
the domain (3D). Let us mention for example [1-8] in which
the authors worked on the asymptotic behavior for the line-
arized elasticity system with different boundary conditions.
Some problems of Newtonian or non-Newtonian fluids are
considered in [9-11] where the authors proved a limit prob-
lem that gives a distribution of velocity and pressure through
the weak form of the Reynolds equation. In [6, 7], the authors
demonstrate the transition 3D-1D in anisotropic heteroge-
neous linearized elasticity; so, we mention here that this phe-
nomenon has been studied only about strong solutions,
without friction law. Benseridi in [2] investigated the asymp-
totic analysis of a dynamical problem of linear elasticity with

Tresca’s friction. The static case with a nonlinear term for lin-
ear elastic materials has been considered in [3]. See another
situation in [4] where the paper concerns asymptotic deriva-
tion of frictionless contact models for elastic rods on a foun-
dation with normal compliance. Recently, the authors in [5,
12] have proved the asymptotic behavior of a frictionless
contact problem between two elastic bodies, when the verti-
cal dimension of the two domain reaches zero. However, all
these papers have been only restricted in a homogeneous
and isotropic case of elastic materials.

The present work is a follow-up of [2, 3, 5] to study the
heterogeneous and anisotropic situation with Tresca’s friction.
Here, the stress tensor with its components is given by the gen-
eralized Hooke’s law (see [13]): 0© = A®e(u®), where u® denotes
the displacement vector, e(u®) is the linearized strain tensor,
and A°® is the fourth order tensor which describes the elastic
properties of the material. Many materials that follow the lin-
ear elastic model, although they are well made, are not subject
to the assumptions of isotropy, for example, wood, reinforced
concrete, composite materials, and many biological materials,
where the mechanical properties of these materials differ
according to the directions of space; in that case, the elasticity
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operator depends on the location of the point (see [14, 15]).
Necas in [7] and Sofonea in [16] established the existence of
a weak solution for the static frictional contact problem
involving linearly elastic and viscoelastic materials, by using
a results of convex optimization [17], and numerical approxi-
mation of this problem was studied in [18]. For the variational
analysis of various contact problems, we mention excellent ref-
erences in [14, 15]. Mathematically, the asymptotic analysis is
more difficult since in general, the limit problem involves an
equation that takes into account the anisotropy of the
medium, and it is thus important to identify the elastic com-
ponents of A® that appear in the (2D) equation model.

The paper is organized as follows; in section 2, the strong
and weak formulation of the problem is given in terms of u*
and also the related existence and uniqueness of the weak solu-
tion. In section 3, we introduce a scaling, and we find some
estimates on the displacement which are independent of the
parameter ¢. In section 4, we state the main results concerning
the existence of a weak limit u* of u?, the (2D) equation model
with a specific weak form of the Reynolds equation is proved,
the limit form of the Tresca boundary conditions is formu-
lated, and finally, the uniqueness of u* is given.

2. Mathematical Formulation

Let w be an open set in R with Lipschitz boundary, and we
consider a smooth function % : w — R be a class C! such
that 0 <h,, <h(x)<h,,,. for all x€w, where h_;, and
h_. are constants. We define the smooth bounded domain

max

O whose boundary has a flat part w,
Q={(xz2)eRxcw 0<z<h(x)}. (1)

We denote by I'; is the upper boundary of the equation
z=h(x), and I'; is the lateral boundary.

Let € > 0 be a small parameter, and we define Q° be the
change of scale z = x;/¢ and the points of €,

O ={(xx;) eR*,x €w, 0<x; <eh(x)}. (2)

We have I'* =@ UT; UT; which its boundary of Qf and
where I'{ is the upper surface defined by x; = eh(x), and I'}
is the lateral boundary. The unit outward normal to I'® is
denoted by v. It follows that there is correspondence between
the functions ¢: Q° — R" and ¢ : Q — R*(n=1,2,3)
given by é(x,2) = ¢(x, x3).

Let H'(I')’ be the space of traces of functions on I' of
functions from H'(02)’, and we use the vector function g €
HY(I')? such that

Lg.vds — 0. (3)

We denote by S, the space of symmetric tensors on R”
and |.| the Euclidean norm on R” and S,. Here and below,
the indices 4, j, k, [ run between 1 and 3, and the summation
convention overrepeated indices is adopted.
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The basic equations of frictionless contact problem for
the anisotropic heterogeneous elastic body occupy the
domain QF as follows:

The equations of equilibrium are as follows:

ao’fj € s e
axj + f7 = 0in’, (4)
05(u°) = Afyy g (u°)inQ’, (5)

where the vector f°=(f{,f5,f5) represents the forces of
density, u® = (uf, u5, u5) is the displacement field, the ele-
ments Ajy; denote the components of elasticity tensor A®,
and ¢;;(u%) is the rate of deformation operator,

us out
e;i(u) = (e(u%)),; = % <a Ly a;). (6)

0x; ;

On I}, the displacement is known:
u® = gonl;. (7)
On I'{, we assume that the elastic body is held fixed:
u® = g° =0onl?. (8)
On the surface w, we assume that the contact is bilateral:
wyv=g-v=0 9)

and satisfies the Tresca boundary condition [7] with friction
function k%;

{ lof| < kful =5,

|Uj| =k53) > Osuchthatu® = s — Ao%,

(10)

where s = g° on w. u$, 0%, and 07, are the tangential displace-
ment, the tangential, and the normal stress tensor, respec-
tively, with

Uy =ui — UV, 0L =05y, = (0)).v, 0, = (0%.v).v. (11)

Consider now the following closed convex subset of H'
(©2°)’ given by

K®= {qﬁ e H'(OF)’ : ¢=gonlt UTE, ¢.v:00nw}. (12)

Let us introduce the form a: K®* x K — R and the
functional J® : K* — R" defined by

a(u’, ¢) = J eAfjkzekz(”g)eij(¢)dxdx3’
(13)
(9)= | Klo-sidx

w
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In the study of the mechanical problem (3)-(10), we
assume that all components A, belong to L*(22°) and sat-
isfy the usual properties of symmetry and ellipticity [19], i.e.,

Ajjg = Ay = Agij € L7 (), (14)
and there exists a constant g > 0 such that

A ()& 2 uEVE €Sy aey e . (15)

Remark 1. It follows from previous properties and by Korn’ s
inequality (see [16], pp. 79), that the bilinear form a is coer-
cive and continuous, i.e.,

a(¢, ¢) 2 uCx||V9| 72 o) Yo € K, (16)

|a(@, w)| < M|[VO| 200 V¥l 2 ) Y ¥ € K5, (17)

where M = max
1<i,jk,I<3

constant depends on Q°,I'{, and I'5.

A%l o @) and Cy denoting a positive

Lemma 2. Assuming that f€ € L*(Q)’ and k® € L (w), the
variational formulation of problem (3)-(10) is equivalent to
Find u® € K* satisfying

a(uf, ¢ —uf) + J5(d) — JE(u°) = Jﬂefs.(qﬁ - u)dxdx;V¢ € KF,
(18)

for every € small fixed.

Moreover, if the assumptions of (14) and (15) hold, then
the variational inequality (18) has a unique solution u*® € K*.

Remark 3. A problem of the form (18) is called an elliptic var-
iational inequality of the second kind ([17]). The following
theorem (see [19], Theorem 6) allows us to replace the vari-
ational inequality (18) by a minimization problem. Thus,
we will not repeat the proof, but our goal is to study the
asymptotic behavior.

3. Some Estimates in Fixed Domain

To be able to study the asymptotic behavior of the solutions
of (18), we use the change of variable z = x,/¢, to return to
the fixed domain (2, and then we define the following func-
tions in :

U (x,z) = u;(x,x;) fori=1,2,3. (19)

For the data Aijkl’ f,» and k, we have the following rela-
tions:

3
Aijkl(x’ z) = Afjkl(x’ X3)s JA[i(x’ 2) =€ f; (% x3) and k = ek,
(20)
(for 1 <i,j,k, 1<3).
Let
K={veH'(Q)’:v=gonl'  UT,,v.v=0onw},
ov;
sz{V=(V1,V2,V3>EL2(Q)3 Za—z (21)

€l*(Q),i= 1,2,3;v=00nr1}.

V, is a Banach space for the following norm:

3 e 12
Vi
Vlly, = [Z(HWHEZ(Q) + )] : (22)
Q)

i1 0z
Everywhere in the sequel, the indexes «, 5,y and § run
from 1 to 2, and summation over repeated indices is implied.
Follow the same steps as in [6,12], passing to the fixed
domain (2, and using the symmetry of o; and Afy,, after mul-

tiplication by &, we have (18) that is equivalent to
Find #° € K, such that

a(ai 6 - a€> + LIQ

> il Lﬁ (@ - a) dxdz$ €K,

6 - s‘dx - J k| — s|dx
‘ (23)

where

~

99q dxdz
aXﬁ

a (aﬂ @) = ¢ JQF\aﬁye’éy@(as)

~

- 0
+ ZSJ Azy9,0(1°) a¢z"‘ dxdz
Q

A = (=€ d o
+ ZSZJQAaﬁweﬁ(” ) a—z/;dxdz

o~

- 0
+ 4€J A3)3,3(1°) % dxdz
Q

_ ¢
+e2J A 33233 (0°) 222 dxdz (24)
a3 33( )axﬁ
_ ¢
Asz58,5(0°) == dxd
+€JQ 33aﬁeaﬁ(u) s xdz
+ ZSJ A 333855 (U) aata dxdz
Q

S . 00,
2e| A £ 2 dxd
+ SL) 3303803 () 9z xaz

~

_ ¢
Asyyes (U°) =2 dxdz,
+€JQ 3333633 (U°) 9z xaz



and e(u°) = (Eij(ﬁs))ij is given by the relations

5 ﬁ‘“‘—l aa§+aa; 1

l]( )_5 ax] axi > s ] =14,

o en - e L lout 0w 25
e(U°) =ey(u") = 5 (g 9z a;>, i=1,2. (25)
e 103

ey (U°) = . 8z3

Lemma 4. Under the assumptions of Lemma 2, there exists a
constant C > 0 independent of ¢, such that

2 2

3

2|5

i=1

2 2

+e )13

@

As As
oi <C.

2(9)

ZZ

i,j=1

J J

(26)

Proof. Assume that u° is a solution of (2.12). As J*(u°) >0,
then

a(uf, uf) <a(uf, §) + J5(¢) + ‘[Qefs‘uedxdx3

(27)
- J ff.pdxdx;,, V¢ eKE
o
Using the Young’s inequality
2 b2
ab<n’ % +17? 5 (28)

in (17) for = /uCx/2, we find
¢ HCk o e M
la(u’, ¢)| < TK [V HIZ}(QS) + uCx ”V(pHiZ(Qf)' (29)

Also, by the Cauchy-Schwarz and Poincaré’s inequalities,
we get

JQE fE.pdxdx,

< ol 20y VOl 2 e (30)

then using Young’s inequality for 77 = /1/uCy to obtain

(ehmax)”
2uCy

2 uC
155122 ) + TK ||V¢||%2(Qf)~

(31)

J feufdxdx,| <
Qf

Using (16), (29), and (31) in (27), we get

(ehmax)”
uCx

K 2
F 9 2 <

M €112
TKHV‘#Hil(Qs) + 1N ey

C €
+ 9|12 ) +J K| - sldx.
(32)
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Taking into account the g function introduced in (5) and
using [20] (lemma 2 pp.24), there exists a function g€ H 1
() such that

g=gonl';and g.v=0onwUT},. (33)

Thus, choosing ¢ = g in (3.6), then multiplying product
inequality by ¢, and the fact that g = s on w, we obtain

2 2

M K (hmax)

uCx fﬁ(ﬂ)
M u

+ (ot + 155 el
IS

From [6], we can see the constant Korn Cy contained in
Remark 1 does not depend on ¢ and ¢, for ¢ €]0, 1]; more-
over, by changing the data of A%, remark that 4 and M are
independent of e. Therefore, passing to the fixed domain (2,
we get

B ]Vt ey <

(34)

3 2

aAs 2 aas
€]|Vi|f2 ) = Z Z
=1 j=1 J 2
12(Q) 35)
2 |0
+Zl 3. <C,
L @)
with
4 (hm x)z =||? M [/lC
- Sl I+ (s + 5 ) 1l |
ulyg | plg L*(Q) u
(36)
O

Lemma 5. Under the assumptions of Lemma 4, there exists
u* = (uj, uy,u;) € V, such that

U — u*weaklyinV ,, (37)

8% — Oweaklyinl(Q) (i= 1,2, 3anda=1,2),  (38)
X

8,p3(U°) — 0, weaklyinL*(Q) (o, f=1,2), (39)

*

. 1 auy —
ge,3(u) — 35 weaklyinL*(Q) (y =1, 2), (40)

*

E)u; weaklyinL*(Q). (41)

€ey3(u°) —

Proof. From (26), there exists a fixed constant C > 0 such that

ozt ||

0z

<C, fori=1,2,3. (42)
L}(Q)
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Using Poincaré’s inequality in the domain Q

on
171112 ) = Pmax % , fori=1,2,3,  (43)

X0

we deduce that % is bounded in V. From the last two esti-
mates, there exists u* = (u}, u;,u;) € V, and satisfies (37).
From (26), we can extract a subsequence such that e(0%;/0
x,) — 1 in L*(Q); on the other hand, from (37), we deduce
(38). Also, (39)-(41) follow from (37) and (38). O

4. Limit Problem and Main Result

At the limit & = 0, we give the satisfactory equations of #* and
the properties of solution of the limit problem for the system

(3)-(10).

Theorem 6. With the same assumptions as Lemma 5, u* sat-

isfies

I

> JQ]A‘ ($ - u*) dxdz, V;ﬁ €k,

(44)
where the symmetric matrix A* is given by
4;‘1313 4;‘1323 2;‘1333
A® = 4;\2313 432323 2;\2333 : (45)
21713313 2;‘3323 ;\3333
Moreover, we have
0 ) ou’
- A zys + 24 5552 =fo (@=1,2)
0 0 0 5
5 5 5 inL*(Q)
u, u;] -
5z {2A33asaz +Aszzz 83} e
(46)
Proof. As (23) can be written,
~ o~ ~ 3 -~ ~
a(as’ ¢) + J k|- s’dx - Z J fi(gbi - ﬁf)dxdz
@ =140 (47)

> a(u, ) + J k@ — s|dx.

Since the form a(.,.) is a symmetry and K-elliptic, and
the fact that ¢ — [ k[¢ — s|dx is convex and lower semi-
continuous, we deduce

liminf, [a(as, )+ J k|a© - s|dx]

>a(u”,u") +J 75|u* — s|dx.

w

(48)

Using Lemma 5, we let & tend to 0 in (47), to obtain
. our o /s~
4 A, —L— —u
JQ a3y3 az az (¢oc utx>dXdZ
~ ous 0 /~
2| A2 —u’ )dxd
+ JQ w33 35 (¢a ”a) xaz

~  0u; 0 [/~
2| Ay —=o=— —uj |dxd
" JQ 39 5z az( ’ u3) e

ouj 0 [~
R —ul)dxd
+JQ 3375, 37 (¢3 ”3) xaz

+J E(‘@—s’ - |u” —s|)dx
. ®
=1

> Z JQ_]A‘i (@1 - u:‘) dxdz.

(49)

)

This completes the proof of (44) if we cross (49) in the
matrix form A*. We choose in the variational inequation

(49) ai =uf vy, where y,¢ H}(Q) (for i=1,2,3), and
using Green’s formula, we find

o0 ( ~ Ouy . Ouj
_JQ 5 {4Aa3y3 = +24A 335 E}y/adxdz

0 ~ ou* ous:
| =124, . ¢ + A~ \y.dxd
JQ 82{ 3303 73, + Asz33 5z }‘/’3 Xxaz (50)

choosing v, =0 and v, € Hy(Q); then, y, =0 and y, €
Hy(Q), we get (59). a

Theorem 7. Under the assumptions of Theorem 6 then, the
solution of the limit problem (44)-(46) is unique in V ,.

Proof. Suppose that there exists two solutions «* and v* of the
variational inequality (44), and taking @: v* in (44), then
az u* in the inequality relating to v*. By subtracting the
two obtained inequalities, we have

<A*.a%(v* —u), (%(v* - u*)> <0.  (51)

15(0)

We must now check that A™ is ellipticity. So, we return to
the properties of A mentioned in (14) and (15); in particular,
we choose symmetric tensors ¢ that are given by §,; =0 (for
a, =1, 2); otherwise, the rest of the components (&;) let it
be whatever. Putting 1, = &5, for i = 1, 2, 3, we will get



A\ijklfklgij = 420(3[33’7[3’70( + 220‘3337]3’1“

~ _ (52)
+ 2A3303M, 15 + Asszallzl; =

At

Consequently, and as |&]> > ||, there exists a positive
constant , and for all vectors 7 in R?, we have

Atz |’ (53)

So, A™ is ellipticity. Thus, the relation (44) implies that

2 <0. (54)

and the proof of uniqueness of u* is complete. O

Theorem 8. Under the assumptions of Theorem 7, the traces
(s*,m*) with s* = () ;o and m* = (11} ), _,_; defined by

I<i<

s;(x) =uf (x,0),

1

S~ oul .
)= [y 52 + s o 05T (5

*

au ou;
|:2A33y3 92 + Az oz ](x, 0)s

satisfy the following limit form of the Tresca boundary condi-
tions:

J EW+$* —s|—s" —s|dx—J m*ydx > 0y € L (w)’, (57)

w

In*|<k=s"=s
a.e.inw. (58)

|n*| = k=3A > Osuchthat s* = s + A"

Moreover, if the coefficients Ai3j3for 1<, j< 3, depending
only on the variable x, we have the following weak form of the
Reynolds equation:
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L (F - gs* + Jhu*(x’ Z)dZ> Vy(x)dx =0, Vy € H' (w),

(59)
where InvA* (x) denotes the inverse of A*(x) and
h
F(x)= J F(x, p)dp - g?(x, h), (60)
GA
E(x, p) :InvA*(x).JZLf(x,y)dde. (61)

Proof. We now choose in the variational inequality (49) ai
=u; +y,, where y,€Hp . (Q) for i=1,2,3, and then
using Green’s formula, we obtain

0 ouy ouj
_J 3z {4A¢x3y3 5z + 240333 a—;}l//adxdz

- - 0u;
- <4Aa3y3 azy + 244333 a_;> Vo (%, 0)dx

0 8u*
a 33]}3 a
- ( Assya

| Rt of = s

ou;
+ Ay == 92 }wsdxdz
(©2)

ou;
Assz 5z >1//3(x, 0)dx

3
> ZJ fiwidxdz.

i=1JQ

On the other hand, from (46), we have

<Z”Z‘/’a + 713*%) dx>0

(63)

J k(ly+s* —s| - |s" —s\)dx—J

w

By density theorems, we find (57). For (58), we use the ana-
logue of [10].

To prove (59), we use those similar steps as in [2, 5, 9-
11], by integrating (46) from 0 to z, and taking into account
AB 73 depending only on x, we obtain

(64)
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It follows from (51) that it is a invertible matrix A* (x), for
almost every x € w. Therefore,

_ aa—f +InvA* (x).n* (x) =InvA* (x) .J:f(x, y)dy. (66)

By integrating between 0 and z, we obtain

—u"(x,2) + 5" (x) + zInvA* (x).7" (x) = F(x, 2). (67)

As u? (x, h(x)) =0, we have

h(x)
s*(x) + h(x)InvA* (x).7" (x) = JO F(x,y)dy. (68)

We integrate (67) from 0 to h(x), and we obtain

h(x) )2
—L u*(x,z)dz + hs* (x) + h(z) InvA* (x).7" (x)

h)
=J F(x, y)dy,
0

and by (68), we deduce that

h(x) .
—J u*(x,z)dz + @s* (x) — F(x) =0, (70)

0

such that F is already defined in (61), and let us finally get the
weak form (59) after multiplying (70) by Vy/(x) and integrate
itin w. O

5. Conclusions

We were able to find a framework to conclude that solving
our original problem leads to solving a well-defined problem
as in (44),(46) and (57)-(59) for the “small” parameter .

The key of the problem lies in the relation between the
matrices A® and A*. Note that they have the same properties
despite the difference in dimensions, therefore it played a key
role in the transition from u® to u*.

Indeed, the special case

Al = (801 + 830) + X760 (71)

where A°, y® > 0 are the Lamé coefficients (see [13] pp. 102-
103) corresponds to the homogeneous and isotropic case of
elastic materials, and has been studied in [2, 3, 5]. Thus also,
the Stokes flow in [11] can be recovered when A® tends to 0.
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In this paper, we discuss two variants of the generalized nonlinear vector variational-like inequality problem. We provide their
solutions by adopting topological approach. Topological properties such as compactness, closedness, and net theory are used in
the proof. The admissibility of the function space topology and KKM-Theorem have played important role in proving the results.

1. Introduction

Variational inequalities have appeared as a working and
important tool to investigate various fields of mathematics
as well as of sciences including elasticity, vector equilibrium
problems, and optimization problems [1-4]. In mid-sixties,
Browder [5] formulated and proved the basic existence
results for the solutions to a class of nonlinear variational
inequality problems. He used a reflexive Banach space X
and a monotone nonlinear map T from the space X to
its dual space X*, to set up the nonlinear variational
inequality problem. Browder used the property of hemi-
continuity and monotonicity of mapping T along with
the lower semicontinuity of f, for providing the existence
of the solution of nonlinear variational inequality problem.
After that, this problem has been generalized and extended
in various directions under different set-ups using different
techniques. Liu et al. [6], Zhao et al. [7], and Ahmad and
Irfan [8] are a few, who extended Browder’s results to
more generalized nonlinear variational inequalities. In
2009, Farajzadeh et al. [9] considered new kinds of
generalized variational-like inequality problems under the
frame work of topological vector spaces.

In the subsequent period, generalized quasi-variational
inequalities were studied by Hung and others [10-12]. In
2017, Irfan et al. introduced a new generalized variational-
like inclusion problem involving relaxed monotone operators
[13]. A class of #-generalized operator variational-like
inequalities were introduced by Kim et al. in 2018 [14]. In
the same year, Tavakoli et al. studied the C-pseudomono-
tone property for the set-valued mappings in order to solve
a generalized variational inequality problems [15]. On the
other hand, vector equilibrium problems for the set-valued
mappings were studied by Farajzadeh et al. and Chen et al.
during this period [16, 17]. This wide range of literature is a
clear indication of the importance that variational inequality
problems have gained in the recent years. In this paper, we
further add to this literature by providing solutions to a gen-
eralized nonlinear vector variational-like inequality problem,
using topological methods.

Variational-like inequalities have number of applications
which make it an interesting discipline for research. Vector
variational inequality on flow equilibrium problem on a net-
work has been discussed in [18]. Application of variational-
like inequality in fuzzy optimization problem is discussed in
[19]. More such studies are available in the literature [20-22].
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Motivated by these studies, here, we investigate a general-
ized nonlinear variational like inequality problem, which was
proposed by Farajzadeh et al. [9] as follows:

Generalized nonlinear variational-like inequality prob-
lem: let (X, X*) be a dual system of Hausdorff topological
vector spaces and K be a nonempty convex subset of X.
Given the mappings f,g,p: X* — X" and 1: KxK —
X, set-valued map M, S, T : K — X*, and amap h: KxK
— R, consider the following generalized nonlinear
variational-like inequality problem (GNVLIP)

Find x € K such that foreach y € K,
Ju € M(x), v € §(x), w € T(x) satisfying (1)
{p(u) = (f(v) = g(w)), (3, x)) = h(x, y)

In this paper, we consider two variants of nonlinear vec-
tor variational-like inequality problems in a more general set-
up as follows:

Let X and Y be two topological vector spaces, and let K be
a nonempty, closed, and convex subset of X and CL(X, Y) be
the space of all continuous linear mappings from the space X
to the space Y. Clearly, CL(X,Y) is nonempty as the zero
mapping, that is, k: X — Y defined as k(x)=0 for all
x€X is always linear and continuous, hence belongs to
CL(X, Y).

Further, let M, S, T : K — CL(X, Y) be set-valued map-
pings and f,g,p: CL(X,Y) — CL(X, Y) be single-valued
mappings. Suppose the maps #: KxK — X and h: K x
K — Y are two bifunctions.

Problem 1. Suppose CC Y is a closed, convex, pointed cone
with int C# . Then, the generalized nonlinear vector
variational-like inequality problem (I) (GNVVLIP (I)) is to
find x, € K, such that for each y € K, there exist u € M(x,),
v € 8(xy), and w € T(x,) such that

((p(#) = (f(v) = g())) (> %)) = h(xg> y) ¢ ~int C. (2)

Problem 2. Suppose C: K — Y is a set-valued map such
that for every x € K, C(x) is a proper, closed, convex, pointed
cone with nonempty interior. Then, the generalized nonlin-
ear vector variational-like inequality problem (II) (GNVVLI
(I1)) is to find x, € K such that for each y € K, Ju € M(x,),
v €S(x,), and w € T(x,) such that

((p(u) = (f(v) = g(w)))) (1(y> %)) = h(x0> ) ¢ ~int C(xp).
(3)

Here, we are trying to provide solutions to the above stated
generalized nonlinear vector variational-like inequality prob-
lems (I and II) from a topological point of view. We consider
X and Y to be any topological vector spaces and use the con-
cept of admissibility of the function space topology along with
net theory to prove the existence of solutions of these general-
ized nonlinear vector variational-like inequality problems.
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2. Preliminaries

Below, we provide some definitions and results related
mainly to set-valued maps between topological spaces.

Definition 3 [23]. Suppose (X,7,) and (Y,7,) are two
topological spaces and F : X — Y is a set-valued map.

(i) Fis called upper semicontinuous (in short, u.s.c.) ata
point x € X, if for every open set V in Y such that
F(x) €V, there exists an open set U in X with x €
U such that F(U) € V;

(ii) F is called lower semicontinuous (in short, Ls.c.) at a
point x € X, if for every open set V in Y such that
F(x) NV # @&, there exists an open set U in X with
x € U such that for each u € U, F(u) NV + &;

(iii) F is said to be continuous at x € X if it is both upper
semicontinuous and lower semicontinuous at x;

(iv) F is said to be continuous (resp. u.s.c. and L.s.c.) if it is
so at each point of X.

Lemma 4 [24]. Suppose (X, t,) and (Y, t,) are topological
spaces and F : X — Y is a set-valued map. Then,

(i) if F is upper semicontinuous at x € X and F(x) is com-
pact then for every net {x,},.p and y, € F(x,) with
X, — x and y, —> y, we have y € F(x);

(ii) F is lower semicontinuous at x € X if and only if for
every y € F(x) and every net {x,} ., with x, — x,
there exists a subnet {xg} ., where Q is a directed

BeQ

subset of D and a net {yﬁ}ﬁeo such that yg € F(xp)
with yg — y.

Theorem 5 [23]. Let (X,7) and (Y, u) be two topological
spaces. Let F : X — Y be a set-valued map. Then, F is lower
semicontinuous at x € X if for any net {x,},., in X converg-
ing to x € X, the image net { F(x,)},., converges to F(x).

Lemma 6 [25]. Suppose X and Y are topological spaces and
F:X—Y is a set-valued upper semicontinuous function.
If F(x) is compact for each x € X, then image of every compact
subset of X under F is compact.

Definition 7 [23, 26]. Let (Y, ;) and (Z, u,) be two topolog-
ical spaces. Let €(Y, Z) be the space of all continuous map-
pings from Y to Z. A topology T on €(Y,Z) is called
admissible, if the evaluation map e: €(Y,Z)xY — Z,
defined by e(f,y) = f(y), is continuous.

Definition 8 [26]. Let {f,}, ., be a net in €(Y,Z). Then,
{f 1} en s said to continuously converge to f if for each net

{Vin} e, in Y converging to y, {f,(¥,1) } (. meaxo COnVerges

to f(y) in Z.



Journal of Function Spaces

Theorem 9 [23]. Let (Y,t) and (Z,u) be two topological
spaces. A topology T on B(Y,Z), the family of continuous
mappings from Y to Z, is admissible if and only if for any
net {f,},cpin (Y, 2), {f,},ca converges to f in T implies
continuous convergence of {f,}, ., to f.

Definition 10 [27]. Suppose F : X — Y is a set-valued map
from X to Y. The graph of F, denoted by €(F), is

G(F)={(xy)eXxY|xeX,yeF(x)}. (4)

Definition 11 [28]. Suppose S is a nonempty subset of some
topological vector space X. A set-valued map F: S — X is
called a KKM-mapping if for every nonempty finite set {x,,
Xy, -+, x, } of S, we have

n

conv{x, Xy, -+, x, } € U F(x;). (5)

j=1
The following result is taken from [28].

Lemma 12 (KKM-Theorem). Suppose S is a nonempty subset
of some topological vector space X and F:S — X is a KKM-
mapping such that for every x € S, F(x) is a closed subset of
X. If there exists a point x, € S such that F(x,) is compact,
then (N, F(x) + @.

xeS

3. Main Results

Theorem 13. Suppose X and Y are two topological vector
spaces and CL(X, Y) is the space of all continuous linear map-
pings from the space X to the space Y equipped with an admis-
sible topology. Let K be a nonempty, compact, closed, and
convex subset of X. Suppose C C Y is a closed, convex, pointed
cone with int C # &. Further, let M,S, T : K — CL(X, Y) be
set-valued lower semicontinuous mappings and f,g,p: CL
(X,Y) — CL(X,Y) be continuous mappings. Suppose the
maps §: KxK— X and h: KxK— Y are affine map-
pings such that  is continuous in the second argument and
h is continuous in the first argument, respectively, with
n(x,x)=h(x,x)=0 for all xeK. Then, the generalized
nonlinear vector variational-like inequality problem (I) has a
solution. That is, there exists x, € K such that for each y € K,
there exist u € M(x,), v € S(x,), and w € T(x,) such that

((p(#) = (f(v) = g(w)))) (n(y> %)) = h(xp y) ¢ ~int C. (6)
Proof. We define a set-valued map F : K — K by

F(y)={x € K|3u e M(x),v € S(x), w € T(x) such that
“((p(u) = (f(v) = 9(w)))) (n(y x)) = h(x, y) ¢ —intC}.
(7)

Clearly, F(y) is nonempty as y € F(y). As y € K, we have
71(»,y) =h(y,y) =0. Thus, for each ue M(y), v€S(y), and

w € T(x), we have (p(u) - (f(v) - g(w)))(n(y,y)) = h(y:)

=(p(u) - (f(v) - g(w)))(0) —0=0. Since C is a closed con-
vex and pointed cone, thus 0 ¢ —int C.
The proof of the theorem is divided into two parts:

(i) F is a KKM-mapping on K:

Let A = {x,x,, -*~, X, } € K be any finite subset of K.

We show that conv{x,,x,, -, x,} €JL,F(x;). Let, if
possible, x' ¢ J F(x;) for some x' € conv{x,,x,, -, x,}.
Then, we have x' = Y7 p.x; for some y; >0 and Y/ . = 1.
Also, as x' ¢ F(x;), for all ueM(x'), veS(x'), and
we T(x"), we have ((p(u) = (f(v) - g(w))))(n(x;x")) = h(
x',x;) € =int C, for each i = 1,2, ---, . Since —int C is convex
and p; >0 with Y7, u, = 1, therefore Y, . [(p(u) — (f(v) -
g(w)))(n(x;x")) = h(x',x;)] € ~int C. As p(u), f(v), and
g(w) belong to CL(X, Y), they are linear. Therefore, we have
Yl (pu) = (f(v) = g(w)) (n(x; x)) = h(x', x,)] = (p(u)
= () = gw))(Ziipin(x, x)) = Ty pih(x', x,). Again,
and h are affine; hence, Y7, ((x, %) - Y1yt (h(x',x)
= (X mxis Z?:lﬂix’) - h(Z?:ll‘ix” DiniHix;) = n(x',x") -
h(x',x')=0asn(x',x")=0=h(x",x") by the given hypoth-
esis. Therefore, Y11 11 [p(u) = (f(v) = g(w)) (x> x")) = h(x’
, ;)] = 0. Thus, we have 0 € —int C, where 0 is the zero vector
in Y. Thus, 0 = -0 € int C, which is a contradiction. Therefore,
we have conv{x,, x,, -+, x,, } € | J, F(x;). Hence, F is a KKM-
mapping on K.

(ii) F(y) is closed for each y € K:

Let {x,},.p be anetin F(y), converging to some z, in X.
As K is closed, z, € K. We have to show that z, € F(y), that s,
there exist u, € M(z,), v, € S(z,), and w, € T(2,) such that

(p(ug) = (f(vo) = g(wo))) (n(y> 2)) = k(2. y) ¢ ~int C. Since

x, € F(y), therefore there exist some u, € M(x,), v, € S(x,),

and w, € T('xa) such that (.P(uoc) - (f(va) - g(wa)))(n(y’ Xa
)) — h(x,,y) ¢ —int C. Now, the maps M, S, and T are set-

valued lower semicontinuous functions; therefore, for each
uy € M(z,) and {x,} converging to z,, there exists a subnet

Xq, } of {x,} with u, €M(x, ) such that u, converges to
U, in view of Lemma 4. Now, {x,, } is a net in itself converg-
ing to z, and w, € T(z,); therefore, there exists a subnet
{xak’} of {x,, } with Ve, € S(xakl ). Similarly, we have a subnet
{x“kzm} of {xlxkl} with w%m € T(x%m) such that the subnets
{ug, }> {Vak, },and {w“kzm } converge to u,, v,, and w,, respec-
tively, in view of Lemma 4. As these nets are subnets of u, ,
V4> and w, , respectively, thus without loss of generality,
we denote the subnets {u, }, {vak,}’ and {wak’m} by {u,, }»
{ve,}> and {w, }, respectively, which converge to u,, v,
and wy, respectively.

Since the single-valued map p, f, and g are continuous,
therefore we have p(u, ), f(v, ), and g(w, ) converge to

p(uy), f(vy), and g(w,), respectively.
By the given hypothesis, that is, # is continuous in the
second argument, we have #(y,x, ) converges to #(y,z).

Since the space CL(X,Y) is given to be admissible, thus we



have (p(ug,) = (f(ve,) = 9(we ) (n(y> %, ) converges to
(p(u9) = (f(vo) = g(w))) (> 2)), by Theorem 9. As the
map h is continuous in the first component, therefore
h(x,,,y) converges to h(z,, y). Hence, ((p(u, ) = (f(vy,) — g
(we ) (B> %)) = h(xo,> ¥)) converges to (p(ug) = (f(v)
- g(wy)))(n(y>zy)) — h(zy, y), in view of the fact that CL(X,
Y) is admissible.

Now, we will show that (p(u,) — (f(vo) — g(wy))) (n(y>
zy)) —h(z,, y) ¢ —int C.

Let, if possible, (p(u) = (f(vy) = g(w)))(n(y: 29)) = h(
zy,y) € —int C. Then, by the convergence of net, we have (p
(ug,) = (f (ve) = 9w ) (s x4, ) = B(x > y) € ~int C
eventually, which leads to contradiction. Hence, (p(u,) — (f
(vo) — g(wp)))(n(y> zy)) — h(zy, y) ¢ —int C. Thus, we have
zy€F

Now F(y) is closed, and K is compact. This implies that
F(y) is a compact subset of K. Therefore, by KKM-Theorem,
N ek F (y) #+ @. Hence, there exists some x, € K such that x,

€(,ex F(7). That is, for each y € K, there exist u, € M(x,),

vy € S(x,), and w, € T(x,) such that (p(u,) — (f(vy) — g(
wy)))(n(y, x4)) — h(xy, ¥) ¢ —int C, hence the result. O

In the above theorem, we have proved that, along with other
conditions, lower semicontinuity of M, S, T ensures existence
of solutions for GNVVLIP (I).

In the next theorem, we are providing another set of condi-
tions for the existence of solutions for these class of problems.

Theorem 14. Suppose X and Y are two topological vector
spaces and CL(X, Y) is the space of all continuous linear map-
pings from the space X to the space Y equipped with an admis-
sible topology. Let K be a nonempty, closed, compact, and
convex subset of X. Suppose C C Y is a closed, convex, pointed
cone with int C + @. Further, let M, S, T : K— CL(X,Y) be
set-valued upper semicontinuous functions with nonempty
compact values, that is, M(x), S(x), and T(x) are compact
for every x € K. Let f,g,p: CL(X,Y) — CL(X,Y) be con-
tinuous mappings. Suppose the maps n: K x K — X and
h : K x K — Y are affine mappings such that n is continuous
in the second argument and h is continuous in the first argu-
ment, respectively, with n(x,x)=h(x,x)=0 for all x€K.
Then, there exists a solution to the generalized nonlinear vec-
tor variational inequality problem. That is, there exists x, € K
such that for each y € K, there exist u € M(x,), v € S(x,), and
w € T(x,) such that

((p(u) = (F(v) = g(W)))) (n(y> %)) = h(xgoy) ¢ ~int C. (8)
Proof. Consider a set-valued map F : K — K defined as

F(y)={xeK|Fu e M(x),v e S(x),w € T(x) such that
~((p(u) = (f(v) - 9(w)))) (n(r> ) — h(x, y) & ~intC}.
©)

The proof of the theorem is divided into two parts:

(i) Fis a KKM-mapping on K;
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(i) F(y) is closed for each y € K.

Proof of part (i) is similar to that of Theorem 13. There-
fore, we are providing the proof of part (ii) only.

Let {x,},.p be a netin F(y), converging to some z, € X.
As K is closed, z, € K. We have to show that z, € F(y), that s,
there exist u, € M(z,), v, € S(z,), and w, € T(z,) such that
(p(ug) = (f(vo) = g(wo))) (> 2)) = k(2> y) ¢ ~int C. Since
x, € F(y), therefore there exist some u, € M(x,), w, € T(x,),
and v, € S(x,) such that (p(u,) = (f(va) = 9(wa))) (n(y x,))
—h(x,,y) ¢ —int C. Now, K is a compact subset of X, and M
, S, and T are set-valued upper semicontinuous functions such
that M(x), S(x), and T(x) are compact. Therefore, M(K),
S(K), and T(K) are also compact by Lemma 6. As {u,},
{v,}, and {w,} are nets in M(K), S(K), and T(K), respec-

tively, there exist subnets {u,} . {v,} . and
k 1 1 2

{wam}%w3 such that {u, }, {v,}, and {w, } converge to
some u, € M(K), v, € S(K), and w, € T(K), respectively.

Now, we construct a directed set D, C D, defined in the
following way:

By the order property of the directed set D, for each trip-
let oy, ), @, € D, there exists some az € D such that ag > oy,
as >0y, and ag > a,,. We denote the collection of such ag's
by D,. It can be easily verified that D, is a directed set under
the induced ordering of D.

Thus, we have subnets {us}scp, » {Vs}sep,» and {wes}sep,
of {u, },{v,}>and {w, },respectively, such that {us}, {vs},
and {w;} converge to u, € M(K), v, € S(K), and w, € T(K),
respectively.

Then, proceeding as in Theorem 13, we have z, € F(y).
Thus, F(y) is closed, and K is compact. This implies that F
(y) is a compact subset of K. Therefore, by KKM-Theorem,
there exists some x, € F(y) for each y € K. That is, for each
y € K, there exist u, € M(x,), v, € S(x,), and w, € T(x,) such

that (p(uy) = (f(vo) = g(wy))) (n(y, o)) = h(xo, y) ¢ ~int 8

hence the result.

In the next theorem, we investigate the properties of solu-
tion sets of GNVVLIP (I).

Theorem 15. Let S € K be the set of all solutions of a general-
ized nonlinear vector variational-like inequality problem as
obtained in Theorem 13 (respectively, Theorem 14). Then, S
is closed and compact in K.

Proof. Suppose SCK is the solution set of the generalized
nonlinear vector variational-like inequality problem. Then,
by Theorem 13, we have S= (7., F(y), where

F(y)={x€K|3ueM(x),veS(x), we T(x) such that
((p(w) = (f(v) = g(W)))) (> %)) = h(x y) & ~intC}.
(10)

It has been proved in Theorem 13 that each F(y) is
closed. Therefore, S is a closed set and hence a closed subset
of K. Since K is compact, S is compact as well. O
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In the next set of theorems, we consider the other variant
of the generalized nonlinear vector variational-like inequality
problem and provide the conditions for the solution.

Theorem 16. Suppose X and Y are two topological vector
spaces and CL(X, Y) is the space of all continuous linear map-
pings from the space X to the space Y equipped with an admis-
sible topology. Let K be a nonempty, closed, compact, and
convex subset of X. Suppose C : K — Y is a set-valued map
such that for every x € K, C(x) is a proper closed, convex,
pointed cone with int C(x) # &. Further, suppose that G : K
—> Y is also a set-valued map defined by G(x)=7Y \ (—int
C(x)) such that the graph of G, €(G), is a closed set in X x
Y. Further, let M, S, T : K— CL(X, Y) be set-valued lower
semicontinuous mappings and f, g,p : CL(X,Y) — CL(X,
Y) be continuous mappings. Suppose the maps 1 : Kx K
— X and h : Kx K — Y are affine mappings such that 5
is continuous in the second argument and h is continuous in
the first argument, respectively, with n(x, x) = h(x, x) =0 for
all x € K. Then, the generalized nonlinear vector variational-
like inequality problem (II) has a solution. That is, there exists
X, € K such that for each y € K, Ju e M(x,), v €S(x,), and
w € T(x,) such that

((p(u) = (f(v) = g(w)))) (12> %9)) = h(xp> y) ¢ ~int C(xp).
(11)

Proof. Consider a set-valued map F : K — K defined as

F(y)={x¢ K|3u € M(x), v € S(x), w € T(x) such that
((p(u) = (f(v) - 9(w))))(n(y»x)) = h(x, y) ¢ —intC(x,) }-
(12)

Likewise in Theorem 13, the proof of this theorem is also
divided into two parts:

(i) F is a KKM-mapping on K;
(ii) F(y) is closed for each y € K.

Proof of part (i) is similar to that of Theorem 13. There-
fore, we are providing the proof of part (ii) only.

As in Theorem 13, it follows that the net {(p(u, ) — (f(
Vo) = 9w, ) (13, x4, ) = h(x,,, y)} converges to (p(u)
(f (vo) = g(wp))) ((y> 29)) — h(zy, ¥), in view of admissibility
of CL(X, Y), lower semicontinuity of T, and the other given
conditions of the hypothesis.

Now, we will show that (p(u,) — (f(vo) — g(wy))) (n(y,
zy)) — h(z,, y) ¢ —int C(z,). As in Theorem 13, we have the
net  {xo (p(utg) = (f (va) = 9(we ) (n(y, x4, ) = Blxe,5 )}
is convergent and converges to {z,, (p(u,) — (f(vy) — g(
wy)))(n(y>2zy)) —h(zy, y)}. Also, the net is contained in
Z(G), and the graph €(G) is closed; therefore, (z,, (p(u)
— (£ () - 9(100)) (13 20)) ~ h(z0,)) € §(G). Hence, we
have  p(ity) ~ (f (vo) ~ 9(w)))(1(7. 20)) — h(zg.y) € —int C(
z,)- Thus, we have z, € F(y). Therefore, F(y) is closed.

Now F(y) is closed, and K is compact. This implies that
F(y) is a compact subset of K. Therefore, by KKM-Theorem,
Myex F (y) #+ @. Hence, there exists some x,, € K such that x,
€ ﬂyeKF(y). That is, for each y € K, there exist u, € M(x,),
vy € S(x,), and w, € T(x,) such that (p(u,) — (f(vy) — g(
wy)))(n(y> x4)) — h(xy, ¥) ¢ —int C(x,), hence the result. O

Another solution of the generalized nonlinear vector
variational-like inequality problem (II) is provided below.

Theorem 17. Suppose X and Y are two topological vector
spaces and CL(X, Y) is the space of all continuous linear map-
pings from the space X to the space Y equipped with an admis-
sible topology. Let K be a nonempty, closed, compact, and
convex subset of X. Suppose C : K — Y is a set-valued map
such that for every x € K, C(x) is a proper, closed, convex,
pointed cone with int C(x) # &. Further, suppose that G : K
—> Y is also a set-valued map defined by G(x) =Y \ (—int
C(x)) such that graph of G, €(G), is a closed set in X X Y. Fur-
ther, let M, S, T : K— CL(X,Y) be set-valued upper semi-
continuous functions with nonempty compact values, that is,
M(x), S(x), and T(x) are compact for every x € K and let f,
g,p:CL(X,Y) — CL(X,Y) be continuous mappings.
Suppose the maps §: KxK — X and h : KxK —Y are
affine mappings such that v is continuous in the second argu-
ment and h is continuous in the first argument with n(x, x)
= h(x, x) = 0, respectively, for all x € K. Then, the generalized
nonlinear vector variational-like inequality problem (II) has a
solution. That is, there exists x, € K such that for each y € K,
Ju e M(x,), veS(x,), and w € T(x,) such that

((p(1) = (f(v) = g(w)))) (M(y %0)) = h(x0, y) & ~int C(xp).
(13)

Proof. The result can be proved on the similar lines as that of
Theorem 14 and Theorem 16. O

We can draw the following conclusions from the results
obtained so far:

(i) Suppose h: Kx K— Y is defined as the constant
map with h(x,y) =0 for all (x,y) e KxK and n: K
x K — Y is defined as #(x,y) =x—y, and M and S
are taken as zero functions. If f,p : CL(X,Y) — CL
(X,Y) are also defined as zero functions, that if f(x)
=p(x)=0 for all xeCL(X,Y) and g:CL(X,Y)
—> CL(X,Y) is taken as an identity map, that is,
g(x)=x for all xe CL(X,Y). Then, Theorem 16
ensures solution to the generalized vector variational
inequality problem discussed in [29]. Also, we have

(a) Theorem 16 reduces to Theorem 3.6 of [29];
(b) Theorem 17 reduces to Theorem 3.1 of [29].

Further, if T is single-valued, then Theorem 13 reduces to
Theorem 3.1 and Theorem 17 reduces to Theorem 3.2 of
[30], respectively.



4. Conclusion

In this paper, we have provided solutions to two variants of
the generalized vector variational-like inequality problem.
Our approach and the result obtained here differ significantly
from those of the existing literature. To be precise,

(i) The spaces X and Y considered in this paper are
topological vector spaces. In [15], the space Y is taken
to be R, whereas [13] deals with real Hilbert spaces;

(ii) We have used conditions of upper semicontinuity as
well as lower semicontinuity on the set-valued map-
pings to obtain our results. In [15], the concepts of
transfer closed and intersectionally closed are used
along with an assumption milder than C-pseudo-
monotonicity on the set-valued mappings. On the
other hand, relaxed monotonicity and relaxed
Lipschitz’s continuity are used in [13] and general-
ized C-quasi-convexity is used in [17] for the set-
valued mappings.

The approach adopted in our paper is topological and
varies significantly from the rest literature. Net theory is
extensively used in all the main results. We have used admis-
sibility of the function space topology to obtain our results.
The authors are not aware of any such results in the literature
of variational inequality which are proved adopting similar
techniques.
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In the recent progress, different iterative procedures have been constructed in order to find the fixed point for a given self-map in an
effective way. Among the other things, an effective iterative procedure called the JK iterative scheme was recently constructed and
its strong and weak convergence was established for the class of Suzuki mappings in the setting of Banach spaces. The first purpose
of this research is to obtain the strong and weak convergence of this scheme in the wider setting of generalized a-nonexpansive
mappings. Secondly, by constructing an example of generalized a-nonexpansive maps which is not a Suzuki map, we show that
the JK iterative scheme converges faster as compared the other iterative schemes. The presented results of this paper properly

extend and improve the corresponding results of the literature.

1. Introduction
A mapping & on a subset U of a Banach space is called con-

traction provided that for all z, z' € U follows that

|8z - 82'||<6|]z— 2", (1)

where 8 € [0, 1) is fixed. A point v, is called a fixed point for &
if vy = $'v,. Normally, we denote the set of all fixed points of
Sby Fg, thatis, Fg = {v, € U : Sv, =v,}. The Banach-Cac-
cioppoli fixed point theorem (BCFPT) [1, 2] provides the
existence of a unique fixed point for every self-contraction
of a complete metric space.

We say that a self-map & : U — U is nonexpansive on
the set U provided that

HcS’z—cS’z'HSHZ—z' , forallz,z' € U. (2)

We may observe that every contraction of a subset U of a
Banach space is nonexpansive but the converse may not hold
in general. Unlike contractions, every self-nonexpansive map-
ping of a complete metric space does not admit a fixed point.
After many years of BCFPT, Browder [3], Gohde [4] and
Kirk [5] independently obtained that a self-nonexpansive
mapping of a closed bounded convex subset of a uniformly
convex Banach space (UCBS, for short) always has a fixed
point.

In 2008, Suzuki [6] provided a new type of generalization
of nonexpansive mappings and proved some related fixed
point results for this class of mappings in Banach spaces.
Notice that a self-map & : U— U is mapping with the
(C) property (also called Suzuki mapping) if any z,z' € U
follows that

1
5||z—<§’z||st—z'Hﬂ”é’z—é’z'”§||Z—Z'H. (3)
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In 2011, Aoyama and Kohsaka [7] provided the idea of
a-nonexpansive mappings. A self-map & : U — U is called
a-nonexpansive if any z, z' € U follows that

|82~ 82'||* <al|z - 2'||" + |2’ — S2]|”
) (4)

+(1-2a)|z-2'|

where a € [0, 1).

In 2017, Pant and Shukla [8] defined a very general class
of nonexpansive mappings which properly contains the class
of Suzuki mappings and partially extends the class of «
-nonexpansive mappings. A self-map & : U — U is called
generalized a-nonexpansive if any z, z' € U follows that

le— Sz|| <||z-2'|| = || Sz - 57|
2
<af|z- 82| +al|<' - Sz (5)
+(1-2a)||z -2’

>

where a € [0, 1).

Fixed point approximation for nonexpansive mappings
under a suitable iterative method is a very active field of
research and provides many interesting and important appli-
cations in applied sciences (cf. [9-12] and others). Finding
the fixed points for nonexpansive and generalized nonexpan-
sive under Picard iteration is not possible in general. A simple
situation of such a case which is the rotation of the unit disk
about the origin in a plane is a best example of a nonexpan-
sive mapping which has a unique fixed point but Picard iter-
ation does not converge to this point. In order to find fixed
points of nonexpansive and hence generalized nonexpansive
mappings and secondly to obtain relatively high accuracy,
some authors introduced different types of iterative proce-
dures (cf. Mann [13], Ishikawa [14], Noor [15], Agarwal
et al. [16], Abbas and Nazir [17], Thakur et al. [18] and refer-
ences therein). Suppose that U is a closed nonempty convex
subset of a given Banach space, and assume further that &,
Mo Ui € (0,1), k€N, and § is a self-map of U.

The Mann [13] iteration process is stated as follows:

pi=pel,

(6)
Prrr = (1= &)y + 8 SPy-

The Ishikawa [14] iterative process may be viewed as a
two-step Mann iteration, which is given by

p=pey,
G = (1 =1 )i + 1SPpo (7)
Prry = (1= &)px + Sk Gye
In 2000, Noor [15] suggested a three-step iterative pro-

cess which is more general than the Mann and Ishikawa iter-
ation processes as follows:

Journal of Function Spaces

pi=pel,

= (1= #)Pr + i SPpo

@ = (L= 1)px + M ST
Prir = (1= &)pi + &S

In 2007, Agarwal et al. [16] suggested a new iteration pro-
cess, which converges faster than the Mann iteration for con-
traction mappings in Banach spaces:

pr=peU,
G = (1 = )Px + 1S P 9)
Prr = (1= &) Spy + &, 5g,.

In 2014, Abbas and Nazir [17] proposed a new three-step
iteration which converges faster than all of the Picard, Mann,
Ishikawa, and Agarwal iterative processes for nonexpansive
mappings, as follows:

py=peU,

= (1= #)Pr + W SPpo

@ = (1= 1) SPy + ST
P = (1= 8) Sy + .81

(10)

In 2016, Thakur et al. [18] suggested the following itera-
tion process, which converges faster than all of the above iter-
ative processes for Suzuki mappings:

p,=peU,

= (L= 1Pk + MeSPps

4= S((1 = 8)pi + &)
Pt = Sy

Very recently, Ahmad et al. [19] introduced a new itera-
tive process named JK iteration, as follows:

pi=peU,
e = (1= 1)Px + M SPpo (12)
G =STp

Prar =S (1= &) S+ §Sqy).-

They observed that JK iteration (12) can be used for fixed
points of Suzuki mappings. Moreover, they proved by pro-
viding a novel example of Suzuki mappings that the JK itera-
tion process converges faster than all of the above iterative
processes including the leading Thakur iteration (11). In this
paper, firstly, we improve and extend the main results of
Ahmad et al. [19] from the context of Suzuki mappings to
the more general framework of generalized a-nonexpansive
mappings. We then provide a novel example of generalized
a-nonexpansive mappings and show that its JK iterative pro-
cess is better than the mentioned iterative processes. Our
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results can be used for finding the solutions of split feasibility
problems, solutions of differential and integral equations
provided that the operator is generalized a-nonexpansive.

2. Preliminaries

We now provide some definitions.

Definition 1 [20]. A Banach space W is said to be endowed
with Opial’s property if every weakly convergence sequence
{p;} € W having a weak limit v, € W follows that

limsup|[p; — v, || <limsup |p; - u,,

for every choice of 1, # v,.

Definition 2 [21]. A self-mapping § of a subset U of a Banach
space is said to be endowed with condition I if one has a
nondecreasing function # : [0, c0) — [0, c0) having #(0)
=0 and #(v) >0 for every v €(0,00) and ||z - 8z| >5(d
(z,Fy)) for every z € U; here, d(z, F) stands for the dis-
tance of z from F.

Definition 3. Suppose that W is any given Banach space and
{py} € W is bounded. Assume that @# U € W is closed and
convex. Then, the asymptotic radius of the sequence {p, } rel-
ative to the set U is given by r(U, {p,}) = inf {limsup,
|lpx — 2|l - z € U}. Moreover, the asymptotic center of {p,}
with respect to U is given by A(U,p,})={z€U:
limsup, o,y — 2l = (U, p,)}-

Remark 4. The most well-known fact about the set A(U,
{p,}) is that it is always singleton whenever W is UCBS
[22]. The fact that the set A(U, {p,}) is convex and non-
empty also known in the case when U is weakly compact
and convex [23, 24].

Now, we combine some elementary properties of gener-
alized a-nonexpansive mappings, which can be found in [8].

Proposition 5. Suppose that U is any nonempty subset of a
Banach space W and 8 : U — U.

(a) If 8 is Suzuki mapping, then, § is generalized o
-nonexpansive

(b) If § is generalized a-nonexpansive having nonempty
fixed point set, then, for any v, € Fg, | Sz — Sv,| < ||
z=vy|| forallze U

(c) If 8 is generalized a-nonexpansive, then, the set F g is
closed in U. Also, F g is convex in the case when W is
strictly convex and U is convex

(d) If § is a generalized a-nonexpansive mapping, then,
for every choice of z,z' € U, the following holds:

(3+a)
(i-a

Hz—é’z’”s ||z—§z\|+”z—z'” (14)

(e) Suppose that S is generalized a-nonexpansive and W
is endowed with the Opial property. If {p,} is weakly
convergent to 1, and lim,__,_ ||p; — Spill =0, it fol-
lows that l, € F

The following useful lemma can be found in [25].

Lemma 6. Suppose that 0<i<y, <j<1 for each k € N and
A>0.If {p,} and {q, }are any sequences in a UCBS W endowed
with — limsupy o [[pll <A limsup,  [lqil <A and

hmk—»oo”ykpk + (1 _yk)qu = A’ then hmk—»oo”Pk - qu =0.
3. Main Results

The aim of this section is at giving some important weak
and strong convergence of JK (12) for the class of general-
ized a-nonexpansive mappings. We start the section with
a key lemma.

Lemma 7. Suppose that W is UCBS, @+ U C W is closed con-
vex, and 8 : U — U is a generalized a-nonexpansive having
Fgo+@. If {p.} is a JK iteration sequence as provided in (12).
Then, limy__,||p, — v, || exists for each v, € Fg.

Proof. If we choose v, € F ¢, then, using (12) along with Prop-
osition 5 (b), we have

175 = voll = | (L = m)pi + 1 Spy = ol

< (L=nm) 1Pk = voll + ISPy — Vol (15)
< (L=n)llpx = voll + mllee = voll
< |lpx = voll-

Hence,

[1Pke1 = Vol = [| (1 = &) ST + ExSaq) = vo |
<[ = 8) STy + &S = vo|
< (L= 8187 = voll + 8kl S = vl
< (=&l = voll + Skllax — voll (16)
= (L= &)l = voll + &l Sric = o |
< (1= 80l = voll + Exllre = voll
= {11 = voll < [l = voll-
Consequently, we conclude that {|p, —v,|/} is nonin-

creasing and bounded; accordingly, we must have that
lim_, o ||py — vol| exists for every element v, of F . O

Theorem 8. Suppose that W is UCBS, @+ U C W is closed
convex, and & : U— U is a generalized a-nonexpansive.



If {p,} is a JK iteration sequence as provided in (12). Then,
Fo# @ if and only if {p,} is bounded and lim;__||p,
- Spill =0.

Proof. Firstly, we may take F # &. According to Lemma 7,

one concludes that {p,} is bounded and lim;__,||p, — vo||
exists for every element v, of F . We now suppose

kh;nOOHPk_Vo” =A. (17)

We need to obtain that lim;_,||p, — Sp,|| = 0. Then,
using Lemma 7, we have

17 = voll < [|Px = Vol = limsup||ry — vy |
<limsup||p, = vo|| = A

—>00

Since v, € F ¢, so by Proposition 5 (b), we infer

| SPx = vol| < [Py = Vol = limsup|[Sp; — vy |

(19)
<limsup||p, = vy|| = A

—>00

Now from (16), we get
1Pks1 = Voll < lImic = voll- (20)
Using this together with (17), we obtain
ASI}imianrk—VOH. (21)
From (18) and (21), we deduce

Azklim 7k = vol|- (22)

Using (22), we get

A= kh_r)nooHrk — | :kl'inm”(l ~M)Pr + Mk SPx — Vol

23)
= k“j&)”“ =) (Px = Vo) + M (SP = Vo) |-
Thus,
A:khlnoou(l_Wk)(Pk_Vo)+’1k(°9Pk_V0)H' (24)

Using (17), (19), and (24) and keeping Lemma 6 in mind,
one concludes that

Jm |lpy = Spil| = 0. (25)
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Conversely, we may suppose that {p,} is bounded in U
such that lim;__, ||p, — Spil| = 0. The aim is to prove that
F¢+ @.If we take any v, € A(U, {p, }), then, using Proposi-
tion 5 (d), it follows that

(3+a)
(1-a)

A(SVer {Pi}) = limsup”pk — SVl < limsup”pk — Spill

+limsup |, — vo|| = limsup||p; — v, ||

—>00

=A(vo {Px})-

—00

(26)

It follows that v, € A(U, {p,}. Since W is UCBS, A
(U, {p;} contains only one element, that is, we must have
§v,=v,. Hence, v, € Fg, that is, the fixed point Fg is
nonempty. g

Now, we are in the position to prove our weak conver-
gence result.

Theorem 9. Suppose that W is UCBS, @+ U < W is closed
convex, and & : U— U is a generalized a-nonexpansive
having F¢ + @. If {p, } is a JK iteration sequence as provided
in (12) and W has Opial’s property, then, {p,} converges
weakly to a point of F.

Proof. By Theorem 8, {p, } is bounded. The uniform convex-
ity of W follows reflexivity of W, that is, {p,} has a weakly
convergent subsequence {p; } with a weak limit, namely, I,.
According to Theorem 8, lim,,__,[lp, — Sp; || =0. Hence,
using Proposition 5 (e), we get I, € Fg. We claim that [; is the
weak limit of {p, }. We may suppose on the contrary that I is
not the weak limit of {p, }, that is, {p, } has another weakly
convergent subsequence {p, } with a weak limit, namely, /,

'q&lo. According to Theorem 8, lim,__,|lp, —Sp; || =0.

Hence, using Proposition 5 (e), we get I, € F. Now using
Lemma 7 and Opial’s property, we have

limsup ||p;. — I|| :limsupHpk —IOH <limsupHpk —l(')H
k—00 " "

m—00 m—>00

=limsup |p; - l(')H :limsupHpk -1
k—00 S——00 ’

< limsupHka - IOH =limsupl[p, = 1|

§—00

(27)

Consequently, we obtained limsup,_ |lp. —loll <
limsup,_, 1Py — lol|> which suggests a contradiction. There-
fore, we conclude that [, is the weak limit of the sequence

{p1}- g

Now, we prove the following strong convergence result.

Theorem 10. Suppose that W is UCBS, @+ U € W is compact
convex, and & : U— U is a generalized a-nonexpansive
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having F ¢ + @. If {p,.} is a JK iteration sequence as provided
in (12), then, {p,} converges strongly to a point of F .

Proof. Since {p, } € U and U is compact, so we can find a sub-
sequence, namely, {p, } of {p,} such that lim,,_,_|lp, -

uy|| =0 for some element u, € U. Moreover, since Fg # &,
so according to the Theorem 8, lim,,,|lp, —&p; || =0.

Applying Proposition 5 (d), we get

(3+a)

(1-a)

O L I e

Consequently, p, — Su, provided that m — oo. But
W is a Banach space, and so, the limit of a convergent
sequence is always unique. Thus, Su,=u,. Lemma 7 pro-
vides us that lim;,__, ., ||p, — u,|| exists. Hence, u, is the strong

limit of {p,}. O

We now state and then prove another strong convergence
theorem as follows.

Theorem 11. Suppose that W is UCBS, @+ U C W is closed
convex, and & : U— U is a generalized a-nonexpansive
having Fg + @. If {p, } is a JK iteration sequence as provided
in (12), then, {p, } converges strongly to a point F ¢ whenever
liminf,_, d(p;, Fg) =0

Proof. According to Lemma 7, lim,_,_||p; — v, || exists, for
every choice of fixed point v, of §. It follows that lim,_
d(p,» Fg) exists. Accordingly, we have

lim d(p,, F) =0. (29)

The above strong limit suggests the existence of two sub-
sequences {p, }, {v,} in {p,} and F, respectively, with the

property ||p, — V| < (1/2°) for every natural constant s.

According to the proof of Lemma 7, the iterative sequence
{p} is nonincreasing. Accordingly, we have

(30)

Hpkerl V|| = Hpks —Vs

< =
25
Using the above and triangle inequality, one has

[|v < L + i
25+1 2s

s+l Vs” <

Vel _pks+1 + Hpkm — Vs

<

—0,

provided that s — oo.

(31)

25—1

Accordingly, we obtained lim,_, ||v,,; — V.|| =0, that is,
{v,} form the Cauchy sequence in the closed set F¢ C U. It
follows that lim,__, v, = u, for some u, € F . Cosequently,
uy € Fg. By Lemma 7, limy__, ||p, — v,|| exists, that is, u, is

also the strong limit of {p, }. O

TaBLE 1: Strong convergence comparison of JK (12), Thakur (11),
Abbas (10), Agarwal (9), Noor (8), Ishikawa (7), and Mann (6)
iterates for the self-map & in Example 13.

Ishikawa Mann
6.5000 6.5000
5.8044 5.9750
54313 5.6338
52313 54119
5.1240 5.2678
5.0665 5.1740
5.0357 5.1131
5.0191 5.0735
5.0103 5.0478
5.0055 5.0311
5.0029 5.0202
5.0016 5.0131
5.0008 5.0085
5.0005 5.0055
5.0002 5.0036
5.0001 5.0023
5.0001 5.0015
5.0000 5.0010
5.0000 5.0006
5.0000 5.0004
5.0000 5.0003
5.0000 5.0002
5.0000 5.0001
5.0000 5.0001
5.0000 5.0000

Noor
6.5000
5.7361
5.3613
5.1773
5.0870
5.0427
5.0210
5.0103
5.0050
5.0025
5.0012
5.0006
5.0003
5.0001
5.0001
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000

JK  Thakur Abbas Agarwal
6.5000 6.5000 6.5000 6.5000
5.1645 5.2897 5.3983 5.5794
5.0180 5.0559 5.1057 5.2238
5.0020 5.0108 5.0281 5.0864
5.0002 5.0021 5.0075 5.0334
5.0000 5.0004 5.0020 5.0129
5.0000 5.0001 5.0005 5.0050
5.0000 5.0000 5.0001 5.0019
5.0000 5.0000 5.0000 5.0007
5.0000 5.0000 5.0000 5.0003
5.0000 5.0000 5.0000 5.0001
5.0000 5.0000 5.0000 5.0000
5.0000 5.0000 5.0000 5.0000
5.0000 5.0000 5.0000 5.0000
5.0000 5.0000 5.0000 5.0000
5.0000 5.0000 5.0000 5.0000
5.0000 5.0000 5.0000 5.0000
5.0000 5.0000 5.0000 5.0000
5.0000 5.0000 5.0000 5.0000
5.0000 5.0000 5.0000 5.0000
5.0000 5.0000 5.0000 5.0000
5.0000 5.0000 5.0000 5.0000
5.0000 5.0000 5.0000 5.0000
5.0000 5.0000 5.0000 5.0000
5.0000 5.0000 5.0000 5.0000

O 0 N AN U WD =

[NS T NS T NG T NG R NS R S B T e e e e e e
G s W D= O 0 00 N O Ul v W NN~ O

We finish this section with a strong convergence theorem
under the condition I.

Theorem 12. Suppose that W is UCBS, &+ U C W is closed
convex, and & : U— U is a generalized a-nonexpansive
having F ¢+ @. If {p,.} is a JK iteration sequence as provided
in (12). Then, {p,} converges strongly to a point of F ; when-
ever § is endowed with condition I.

Proof. According to Theorem 8, one can conclude that
liminf,__||p; — Spill = 0. Applying the condition I of &
, one obtain liminf, , d(p;, Fg) =0. It now follows from
Theorem 11 that {p,} is strongly convergent in the set F.

a

4. Numerical Example

The aim of this section is to provide a new example of gener-
alized a-nonexpansive mappings that exceeds the class of
Suzuki mappings. We connect the mentioned iterative
schemes with this example to show the effectiveness of our
obtained results.
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1 12 13 14 15 16 17 18 19 20 21 22 23 24 25

(Number of iterations)

Mann
Ishikawa
—— Noor
Agarwal

—~— Abbas
Thakur
—— JK

Ficure 1: Convergence behavior of the sequences developed by remarkable iterative processes.

Example 13. We take a set U = [5, 10] and set a self-map on U
by the following rule:

z+5

, ifz<10,
Sz=

(32)
5, ifz=10.

We show that & is generalized a-nonexpansive having
a=(1/2), but not Suzuki mapping. This example thus
exceeds the class of Suzuki mappings.

Case 1. When z,z' € {10}, we have

l|z—c5’z'|+l|z'—cS’z’
2 2

1 / , (33)
+<1—2<5>|z—z |20=|oS’z—oS’z |
Case 2. When z,z' €[5, 10), we have
1 1 1
—‘z—é’z”+—|z'—<§°z|+ 1-2(= ‘z—z"
2 2 2
1, z+5 1 z'+5
=_lz - ([—)|+=|z-
2 2 2 2
!
> Mo (2 - (- (22 (34)
2 2 2
_ 112z —z-5-2z+z' +5 _1 3z -3z
"2 2 T2 2
_3 ! o !
——z—z|2—|z—z|—|c§’z—<§’z
2|

Case 3. When z' € {10} and z € [5, 10), we have

1|z—eS’z'|+ 1|z/—é’z|+ <1—2(1> ]z—z"
2 2 2

1 1|, [z+5 1
=—|z=-5|+=|z - |— |2 z|z- 5
2 2 2 2

z—-5
2

(35)

': |c5’z—cS’z'|.

The above cases clearly suggest that & is generalized 1/2
nonexpansive mapping having F¢={5}. Choose z=8.8
and z' =10; then, |z-z'| =1.2, |Sz— 8z'| = 1.9, and (1/2)]
z— &8z =0.95. Thus, it is seen that, (1/2)|z - 8z| < |z - 2’|
but |§z - 8z'| > |z - 2'|. Thus, & exceeds the class of Suzuki
mappings.

Now, we by choosing &, = 0.70, 77, = 0.65, and 4, = 0.80,
we may observe in Table 1 and Figure 1 that JK (12) iterative
process converges faster to 5¢€ Fy as compared the other
processes.

Now we show the further effectiveness of the JK iteration
(12) in the class of generalized a-nonexpansive mappings.
Using & defined in Example 13, we suggest some different
values for the parameters and p;. To do this, we set the stop-
ping criteria ||p;, — 5/ < 107"°. The obtained results are pro-
vided in Table 2. The bold numbers show that JK iteration
(12) requires less iteration numbers as compared to the lead-
ing three-step Thakur (11) and leading two-step Agarwal (9).

Remark 14. The main outcome of this paper extended the
corresponding results of Ahmad et al. [19] from the class of
Suzuki maps to the setting of generalized a-nonexpansive
maps. We have observed in Tables 1 and 2 as well as in
Figure 1 that the JK iterative scheme (12) is still more effec-
tive than the other iterative schemes even in the general set-
ting of generalized a-nonexpansive maps.
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TaBLE 2: Influence of parameters: comparison of various iterative

schemes.
Iterations Initial points
5.1 6.0 6.9 7.8 8.9 9.9
For &, = (1/k +5), i, = (klk + 3)
Agarwal 29 31 31 32 32 32
Thakur 18 20 20 20 20 21
JK 14 15 15 15 16
For & = 1/k, n, = (1/(k +23)'")
Agarwal 43 47 48 48 49 49
Thakur 22 24 24 24 25 25
JK 18 20 20 20 20 21
For & =1 (1/(4k +6))"”, 5, = 1/k*

Agarwal 44 48 49 49 50 50
Thakur 22 24 25 25 25 25
JK 18 20 20 20 20 21

For & = ((k+1)/(2k +1))"*, 5, = 1/(3k + 7)™
Agarwal 45 48 49 50 50 50
Thakur 24 25 25 25 25 25
JK 17 18 19 19 19

For &, =1 - (1/(4k +3))"*, 5, = UK’

Agarwal 44 48 49 49 50 50
Thakur 22 24 25 25 25 25
JK 18 19 20 20 20 20
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In this work, we consider a quasilinear system of viscoelastic equations with degenerate damping, dispersion, and source terms
under Dirichlet boundary condition. Under some restrictions on the initial datum and standard conditions on relaxation
functions, we study global existence and general decay of solutions. The results obtained here are generalization of the previous
recent work.

1. Introduction of two viscoelastic equations in the presence of degenerate

damping, dispersion, and source terms, namely,
Let Q be a bounded domain with a sufficiently smooth

boundary in R"(n>1). We investigate a quasilinear system

t

|| 1ty — Au + J hy(t = s)Au(s)ds — Au,, + (|u|k + |v|l) lu " uy = £, (1 v), (x,1) €2 % (0, T),

0
[v v, — Av+f)h2(t - 5)Av(s)ds — Av,, + <|v|9 + |u|Q) |vt|s’1vt =f,(u,v), (x, 1) € Qx (0, T),
u(x,t)=v(x,t) =0, (x,t) €02 x (0, T),

u(x,0) = uy(x), u,(x,0) = u; (x), x €,

v(x,0) =vy(x), v,(x,0) =v,(x), x € O,

where, s>1,7>0,k,1,6,0>0, and k;(.): R — R*(i=1,2) By taking
are positive relaxation functions which will be specified later. 2e41) bl 2

- ,v)=alu+ +v) + ,
(OO, and =A(.),, are the degenerate Fulwnv) = afu+ v (w4 v) + blufTuly] (2)

damping term and the dispersion term, respectively. Fo(uv) = alu+ vPE (u+ ) + blv|v|u*?,
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in which a > 0,b > 0, and

3—-n

l<k<+ooifn=1,2and1<«x< 2ifn23. (3)

It is simple to show that
uf (u,v) +vf, (1, v) =2(k + 2)F(u, v),¥ (1, v) €R*,  (4)

where

F(u,v) =

1
—— |aju+ v 4 2b|uv|"+2} . (5
2(k+2)

To motivate our problem (1), it can trace back to the ini-
tial boundary value problem for the single viscoelastic equa-
tion of the form

t

|| "1y, — Au+ Lh(t —5)Au(s)ds — Auy, + g(u, u,) = f(u).
(6)

This type problem appears a variety of mathematical
models in applied science. For instance, in the theory of vis-
coelasticity, physics, and material science, problem (5) has
been studied by various authors, and several results concern-
ing blow-up and energy decay have been studied case ( > 0).
For example, Liu [1] studied a general decay of solutions case
(g(u, u,) =0). Messaoudi and Tatar [2] applied the potential
well method to indicate the global existence and uniform
decay of solutions (g(u, u,) = 0 instead of Au,). Furthermore,
the authors obtained a blow-up result for positive initial
energy. Wu [3] studied a general decay of solution case
(g(u, u,) = |u,|"u,). Later, Wu [4] studied the same problem
case (g(u, u,) =u,) and discussed the decay rate of solution
energy. Recently, Yang et al. [5] proved the existence of
global solution and asymptotic stability result without
restrictive conditions on the relaxation function at infinity
case (f(u) =0o(x, )W, (¢, x)).

In case g(u, u,) =0 and without dispersion term, prob-
lem (5) has been investigated by Song [6], and the blow-up
result for positive initial energy has been proved.

For a coupled system, He [7] investigated the following
problem

t

|| "1ty — Au+ J hy (t = s)Au(s)ds — Auy, + |u,2u, = f, (4, v),
0
t

1= v | (=) Av(s)ds = A, [P, = )
0
7)

where #>0,j,s > 2. The author proved general and optimal
decay of solutions. Then, in [8], the author investigated the
same problem without damping term and established a gen-
eral decay of solutions. Furthermore, the author obtained a
blow-up of solutions for negative initial energy. In addition,
problem (1) with in case 77 =0 and without dispersion term,
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Wu [9] proved a general decay of solutions. Later, Piskin
and Ekinci [10] studied a general decay and blow-up of solu-
tions with nonpositive initial energy for problem (1) case
(Kirchhoff-type instead of Au and without dispersion term).
In recent years, some other authors investigate the hyperbolic
type system with degenerate damping term (see [11-14]).
The rest of the paper is arranged as follows: in Section 2,
as preliminaries, we give necessary assumptions and lemmas
that will be used later and local existence theorem without
proof. In Section 3, we prove the global existence of solution.
In the last section, we studied the general decay of solutions.

2. Preliminaries

We begin this section with some assumptions, notations,
lemmas, and theorems. Denote the standart L?(£2) norm by
111 = 1l-ll2() and LF(2) norm by [[.[|, = |-l ()
To state and prove our result, we need some assumptions:
(A1) Regarding h; : [0,00) — (0,00),(i=1,2) is C!
functions and satisfies

hi(a) > 0, hi(a) <0, 1-°hy(a)da=1,>0,a>0  (8)

and nonincreasing differentiable positive C' functions ¢; and
G, such that

hi(t) < —;(t)h(t), t20,i=1,2. (9)

(A2) For the nonlinearity, we assume that

1<jsifn=1,2,

. n+2 .
1<j,s< 21fn23.

(A3) Assume that # satisfies
O<niftn=1,2,

if n>3.

O<y<
il n—2

In addition, we present some notations:

(aoVw)(t) = Jo(x(t —5)||Vw(t)-Vw(s)||*ds, (12)

I=min {I,,1,}.
Lemma 1 (Sobolev-Poincare inequality) [15]. Let g be a num-
ber with2<q<oo(n=1,2) or2<q<2n/(n—-2)(n=>3), and
then there is a constant C, = C,(Q, q) such that
||u||qgC*||Vu||foruEHé(Q). (13)

Now, we state the local existence theorem that can be
established by combining arguments of [7, 10].

Theorem 2. Assume that (A1)-(A3) and (2) hold. Let u,, v,
€ H)(Q) and u,;,v, € L*(Q) be given. Then, for some T > 0,
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problem (1) has a unique local weak solution in the following
class:

u,veC([0, T]; H*(Q) N Hy(Q)),
u, € C([0, T]; Hy(Q)) N/ (Q), (14)
v, € C([O, T];H (Q)) ﬂLs+1(Q).

We define the energy function as follows:

+ + 1
() = g (Il [wl2) + 5 [0neva) )

+ (V) () + || Va||* + |97, 7]

e3| (1= [ meoas) 1w 1)
+ (1 - J;hz(s)ds) ||Vv(t)||2} —JQF(u, v)dx.
Also, we define
1) = 9P+ 99 (1 [ o) foue
(1= [ materte ) mwce v
+ (hyoVv)(1) - (K+2)J F(u, v)dx,

Q

0= 5[ (1= [ s vator « (1] mae)

. ||Vv(t)||2] + % [(hloVu)(t) + (hyoVy)(1)

(16)

+ ||V ||* + || Vv, | ?] —J F(u,v)dx.
Q
By computation, we get

%E(t) 5[(;1 oVu)() (h;on)(t)}
2 (VP + B 6)]99]?)
1 (17)

Jul* +\V| \”|]+1dx
—J <|v| +|u|Q)|vt|5”deO.
0

3. Global Existence

In this part, in order to state and prove the global existence of
solution (1), we firstly give two lemmas.

Lemma 3 [16]. Assume that (4) holds. Then, there exist p >0
such that for the solution (u, v),

+2
[+ V[3(erz) + 2l wvl[553 < p(L | Vul)? + L] Vv|?) . (18)

Kk+2 =

Lemma 4. Let uy, vy € H)(Q), u;, v, € L*(Q). Suppose that
(A1)-(A3) hold. If

1(0) > 0and p = p(Z(KK:IZ)E(O))KH <1, (19)
then
I(t) >0t > 0. (20)

Proof. We have I(0) >0 and by continuity of I(¢) about t,
there exist a maximal time ¢, > 0 such that

I(t)=0,0ont€0,t,]. (21)
Let t, be as follows:
{I(ty) =0andI(t) >0, forall0 <t < ty}. (22)

By using (8), (9), and (A1), we get

K+ 1

0= 5o { (1= [ moas) e

(1= [ et ) 191+ (o9
(23)

+ (hyo W) (1) + |V, ||* + |\Vv,||2} * 3y )

> 2"“ {LIVa() >+ L0+ (hyoVu)(2)
+ (hyoWW)(6) + | Vi |2+ |9,

From (7) and (10), we have

LVu(t) |+ L||Vv(t)|?
< 2(K+2)](t) < 2(K+2)E

K+ 1 K+ 1
E(O),Vte [0, to].

() (24)
- 2(k+2)
T ok+1

By (11) and (12), we infer that

2(k+ 2)JQF(u(tO), v(ty))dx

< (1| Vuto) | + L | Vv(to) |P)
HEDEQ)) (valto) P+ 19t
p (L Vu(t)] + Ll To(t0) )

1= [ o vuto e (1= [ (o)

20!

IN

P (25)

I/\

IN



Thus, from (8), we obtain
I(ty) >0, (26)
which contradicts to (13). Thus, I(¢) > 0 on [0, T].

Theorem 5. Suppose that the conditions of Lemma 4 hold,
then the solution (1) is bounded and global in time.

Proof. We have

1 2 2
BO0) 2 B =1(1) + 5 (Il + Ivl23)
k+1
> ——— (L||Vu(t)||* + L||Vv(t)||?
e IV + BT )
+[[Va||* + {991 + (ByoVu) (2)
2 2
+ (o)1) + (I3 + vl )
Thus,
IVu(O)* + [IVv(£)[|” + [Vue||* + [[Vv,|* < CE(0),  (28)
where positive constant C depends only on «,1;,1,. This

implies that the solution of problem (1) is global in time.

4. General Decay of Solutions

This section is devoted to show the decay of solution (1). Set

I(t):=ME(t) +ed(t) + F(t), (29)

Lemma 8 [16]. Let (A1)-(A3) hold. Assume that uy, v, € Hj(
Q), u,v,€L?(Q), be given and satisfying (12). Then,
throughout the solution (u,v) of (1), there exist two positive
constants 3, and f3, such that for any § > 0 and for all t > 0,

[ st [ o =5)00) - st

1)cs (hyoVu)(t)
45 ’

1_
< B,0(1|Vull + 1 7v]) +

[ o[ =)0 = s s
~1)E (Vi) (1)

1
< B0 (L] Vul? + L7 P) + ¢

e (U

o+l _o+2
- ll) Cy <
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where M and ¢ are positive constants and

1
= _ 1
D(t)=6,(t) [’1 ) JQ|uz| u,udx + JQVutVudx]

1
+6,(t —J v ”vvdx+J VvVvdx},
O R A

=] (o552 -

- (u(t) - u(s))dsdx] +8,(t) UQ (Avt -

|Vt|ﬂvt
n+1

(30)

. Jt hy(t — $)(v(t) - v(s))dsdx} .

0

Lemma 6. For & which is small enough while M is large
enough, the relation

(31)

o, I'(t) <E(t) <a,l'(t),Vt=0

holds for two positive constants «; and a,.
Proof. As references [1, 10], it can be show easily that I'(t)
and E(t) are equivalent in the sense that «; and a, are posi-

tive constants, depending on & and M.

Lemma 7 [3]. Assume that (12) holds. Let (u, v) be the solu-
tion of problem (1). Then, for o >0, we get

(k+ 2)E(0)> 0/2(h1<>vu)(t))

(+2E0)\" o
) e,

Lk+1

Lemma 9. Let uy, v, € Hy(Q), u;,v, € L*(Q), be given and
satisfying (12). Suppose that (A1)-(A3) hold. Then, for each t,
> 0, the functional I'(t) verifies, throughout the solution of (1)

I' (1) < =EE(t) + &,[(hoVu) (1) + (hyoVv) (1), t 2 Ly, (34)

where &,>0,(i=1,2).

Proof. By applying (18) and Eq.(1) and getting 8, = 1(i =
in (18), we have

1,2)

' 1 +2 +2 2 2
@'(1) < g (Iwellpa + Ival) = 17l = 9
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t
+ ||V ||* + ||Vvt||2J Vu(t)J hy(t —s)Vu(s)dsdx
o 0

+ Vv(t)Jt hy(t = s)Vv(s)dsdx + 2(x + 2)
Jo 0

—

F(u, v)dx — J u(|u|k + |v|’) u,|u, [~ dx
Q o

- v(|v|9 + |u|p)vt|vt|s’1dx.
Q

(35)

For estimating the seventh term in the right side of (22) as
follows (see [17]):

%||Vu||2+ %JQ (Jthl(t—s)(Wu(s) (36)

By exploiting Young’s inequality and the assumption that
ff) ds<f s)ds<1-1,, fory, >0,

‘L)Vu(z‘)rh1 (t = s)Vu(s)dsdx

0

< IVl 30| (j;m(t—s)wu(snds)zdx

(e D) ([[me-ima-vaias) o

< 19+ ) ([ mio )2||w||

3(003) oo

< 1+(1+y21)( B 1) ||VUH2
| (L)

2

) (g, 0vu)0)

Similarly with y, >0,

L)Vv(t)Jt hy(t = s)Vv(s)dsdx

0

< 1+(1+Y;)(1_12)2\|Vv||2 (38)
L () -

: h) (0w (6)

By estimating the following terms in (22), we have

[ (o o e
Q

(39)
sg|u|"“|u,|fdx+j v | .
Q

Exploiting Young’s inequality, Holder’s inequality,
Sobolev-Poincare inequality, (A3), and (15) for 3, >0, one
has

[
0

. jlj+1 . jlj+1
< <J |u|k|ut|1“dx> <J |u|’<+f“dx>
0 0

. —j+1/j ]+1Ck+]+1
S J e e+ BE e
j
. p—j+1/j )
< LIH J (|u|k . |v|l)|ut\f“dx
J Q
ﬁ]+1Ck+J+1 k+j-1/2

- [V,
j+1
Uﬂ|u||v|’|uﬂdx (40)
. jlj+1 ‘ jlj+1
< (], ptegia) (] )
(0] (0]
. —j+l/j
<L (o)
ﬁ]+1 i1
2oy (R el
—J+1/J j+1 G2y -1
< J (u| +|v|)|ut|”1dx+—ﬁ » X2
J+1 Q 2(j+1)
ﬁ]+1 2]+2X
(19 + P (),
2(j+1)
where
_ 2(k+2)E(0) _ 2(k+2)E(0)
T T e ) and X, = Lik+1) (41)
By inserting (27) and (28) into (26), we have
k ! j-1
ullul®+ v )u,|ul " dx
J, sl 1)l
2; —j+1/j ]
A R
jt1l Ja
/31+1 Uy ﬁ]“ (42)
(]+1) (” H) j+1

) . ]+2
. (Ci+]+lxgk+] 1)/2+ X1>|Vu||2



Similarly, for 3, > 0, we have

[ o101+ )
Q

2 —s+1/s
< sﬁz J (|‘V|9 + |u|p> |vt|”1dx
Q

s+1
s+1C2p p-1 s+1
w(” ull*) +

2s+2
(o S o

s+1

Thus, inserting (24) and (25) and (29) and (30) into (22),
we obtain

2 2
@' (1)< ﬁ (1755 + 1vlyi2 ) = a1V

—a,||Vy|* +2(x + Z)J F(u,v)dx + || Vu,|?
1+ 1y))(d

-1
v vy, e CEAIAZD) 6, gy
1+ (1/y,))(1-1 (44)
+ ( +( /Yzz))( 2) (hZOVV)(t)
2i —j+1/j )
e Pl o)
2 —s+1/s
e 2B | (Wl
S Q
where
o 1-ep-Ly gl
! 2 j+1
' Ck+j+1X(k+j’1)/2 . Ci]JrZX]l ﬁs-flczp p-1
A 2 2(s+1)
C1-(ep)(-b) B
2 2 s+1
C9+s+1 (B+s-1)/ 2+ CinX; _ ﬁJIHCileZil
2 2(j+1)
(45)
At this moment, choosing y, =1,/1 - 1,,y, =1,/1 - 1,, and
picking 3, and f3, small enough such that
j+1 -1
EJI_JF Ciﬂ'ﬂxgkﬂ;l)n‘l- C2]+2 ] ﬁs+1C2PXIID . l_l,
j+1 2 2(s+1) 4
S i+1 _
2+1 CZ+S+1X(20+S’1)/2+ CiS+2X52 N ﬁ]lJr ilez _ 172
s+1 2 2(j+1) 4
(46)
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Consequently, (31) yields

I
! n+2 n+2 1 2
o' (t)< ,m (173 + vlia) = 9w

_h [VV]|> +2(x + 2)J F(u, v)dx
4 (0]

-1 1-1
Tll (hoVu)(t) + TZZ (hyoV¥)(1) + (| Vi |I®
2i —j+1/j )
9w+ TP | (o)
Jjt1 o
2 —s+1/s
+ %J (191 + 1ul? ) " .
0
(47)
In order to estimate the F' (1), we set
1 t
Fu(0)= [ (0 ) o)) = u(s) s,
0
(48)

Then, by using equations (1), we have

o

(
(u(t) - (s))dsdx+J J hi(t-s)

- (Vult)-Vuls)dsd - | @ (t)j (£
- (Vu(t)~Vu(s))dsdx - ﬁjghﬂ"ut

: J (=) (u(t) — u(s))dsdx

0

. Jﬂfl(u, v)J;hl(t — ) (u(t) - u(s))dsdx

- ([ )iz ([ meo)ivar

(49)

For the first term of (33), by applying (A1), Holder’s
inequality, and Young’s inequality, we deduce
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L(t=$)Vu(s)ds )de

A
+ 5 JQ (J;h (t- s)(Vu(t)—Vu(s))ds) 2dx
L[]
1
+

46

hy(t=s)(|Vu(s)-Vu(t)| + \Vu(t)\)ds} dx
(Johl(s)ds> (hyoVu)(t) <28(1 - 1)?||Vu)?
+ (25 + %) (1=1,)(hyoVu)(t),¥8 > 0.

Then, in order to estimate the following term, we seperate
such that

] (] mte=swucns) ([ = vt -vuca s

From (A1) assumption, Holder’s inequality, and Young’s
inequality, we get

J Vu(l‘)Jth1 (t =) (Vu(t)-Vu(s))dsdx
(0] 0 L (54)
< ||Vul* + 481 (hyoVu)(t).

In order to estimate the forth term, we use Young’s

inequality, Sobolev-Poincare inequality, Holder’s inequality.
and (A1) assumption

<0192 - "4 (Wjowu) 0
t gl e 9 u) - ) s
k 1 i—-1 t 2
UQ(”| +|v| )Iut\f Mtjohl(t—s)(u(t)_U(S))de-x (51) s% [6||ut||z< ht %JQ(J h{(t—s)(u(t)—u(s))ds) dx]
=Il +12’ 1 , hl(o)ci . , i
I < |:6HutH2EZ+1; T4 JQth(t—s)|Vu(t)—Vu(s)| dsdx}
8 a(k+2)EON" 5 h(0)E /),
T T ( P ) 190 = g5+ <h1<>Vu>(t).
L =J |ua| o, | “tJ hy(t=s)(u(t) —u(s))dsdx, -
’ : (52)
I,= JQ|v|l|ut|j*1utth(t = 5)(u(t) — u(s))dsdx.

By Holder’s inequality, Young’s inequality, (15), and
(21), we get

1| < <Jﬂ|u|k|ut|j+1dx>j/j+l <JQ|u|k<Jth1(t—s)

j+1
- (u(t) - u(s))ds) dx)

- q—j+1/j
< J8
j+1

1/j+1

j+1

J
J (1ul* +|v\)|u\f+1dx+ >
0
<J hy(t=s)(
0 0

( 3¢
2(j+1)
u(s))ds> dx)
2k

(5

]8 —j+1/j
R D!

8j+1
|u| + |v\ |u, \f“dx+
0 j+1

(hloVu)(t)>
i+l

. S 21
[, (e Y e (%xél Vv
0 J

LRy -t (hloVu)(t))'

k—
X vu)®

L ey e
2

ja—jﬂlj
j+1

L] <

2

Combining these estimates (34)-(40) and (33) becomes

Fi(t) < [(zm 216>(1 -1)+

- (hyoVu)(t) + (5+25(1 ~1)+

O 2y (1 mzf“]

j+1
)
+1>

8j+1
+1

Jji+1 2[

s v

: (h;oVu> (t) + <8 + )>
- fh«s)ds) V] +

|| (ot o)
Q
g dx - b (Jth (s)ds)|u ||

t ’1+1 0 1 t ;1+2

- J fi(u, v)Jth1 (t = s)(u(t) — u(s))dsdx.
Q 0

2N
c;
|| Va* +

G
(k+2)E
K+ 1

hy(0)
46

1
5Ci(’7+1)

n+1

"
©

§

2j8—j+1/j
i+ 1

(56)

Similarly, let

Fa(t=a A= i) Ba(e= 9000 -

0

v(s))dsdx,

(57)



s+1

(hyoV)(t) + [ 8 +28(1 - 1,)* + ﬁﬁag-l
2 Y sv12 2

51 e 1y (0) 2
. 24 & 2\ *
I+ o vl = 2 (15

) (hQOVv)(t) + <8+ s (2(K+2)E(0)>”

st1 2s+2 S1 2s+1
F;(t)s{(26+216)(1—12)+8 "2(2x) (1~ 1) }

n+1 k+1

ds) ol 22 ] ()
e | folu j —(v(1) - () dsdx
- ([ g
(58)

Since the function k; (i =
>0,

1,2) is positive, then for any t,

t t
J hy(s)ds > J hy(s)ds = h,(0) = by >0Vt >t (59)

0 0

Hence, we conclude from (17), (10), (32), (41), and (42)
that

-
AT 121+ VE(0)\ "
o (“‘ ”)> (93 + [9%,P)

n+1 K+1

el el
- (5 - )ivue - (5 e 1ol

< (hyoVw)(t) + 2e(k + Z)J F(u,v)dx
Q

M hy(0) (<
+ = - +
2 48 ;1+1

2 2
(=) (I3 + vl ) - <h3 —e-5

[ A [ =) - utspasas
Q 0
| e [ rate =500 - vioasae
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where
j+1 2k, k-1 s+1 2p p1
c2=28(1—ll)2+6 fﬁ?ﬁ d
2(j+1) 2(s+ 1)
s+1 20, ,0-1 j+l 21 I-1
C3=26(1_lz)2+6 e +8 /5 >
2(5+ 1) (]+ 1) (61)
i+l 2j+2 i1 2j+1
c4=<25+ L)(l—ll)-ré Cs (2).(1) (1-1) ’
20 jt1
1 6s+lcis+2(2xz)5(1 _ l2)25+1
CS_<28+%)(1_12)+ s+1 ’

By using Lemma 8 and (15) for the last two terms of (43),
we obtain

r'e<-

2 2
et € ) (el + w2
B 8+8+6ci<’1”> 2+ 2EQO)"
n+1 K+1 ?
el
(9 199) - (= e 8+ a0 )

I
vl - (52

. (Zill + ;—)a “1) e thovue)

—e(ct (B + ﬁ2>612>) )2

SIER

C

| o

o
09‘*1\)

)(1 -L)+ c5: (hyoVv)(t)
()] vy
(] (v

. —j+llj
+2e(k+2)| F(u,v)dx+ <2]/_31 (s+1)—M)
o j+1

) 2s —s+1/s
() e+ P (e+1)-M
0 ! s+1

INCRTH
0

+
h
4

* N

=
+
—_

=
S oS &

L

% 8

2
4

NI RN N

(=9
=

+

—_

—

(62)

At this point, we choose € and & which are small enough,
and we have

1

n+1 s>
hyoe—o- et (2(;< + 2)E(0)>’7 o,
n+1 K+1 (63)
D (e (B + B3 >0
el,
2 (@t (Bt p,)0L) >0
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Further, we pick ¢ so small and

—s+1/s

(e+1)-M<0, 722
s+1

. —jt1l]
2][31]+ !
j+1

(e+1)-M<0. (64)

Once § is fixed, we choose M that is sufficently large so
that

M _h0)/ & M hy0) [ &
— = —+1]>0, — - ——+1)=0.
2 46 \n+1 2 46 \n+1

Consequently, for all ¢ > ¢, we reach at

I () < =& E(t) + &((hyoVu) () + (eVv)(1)),  (66)
where there are positive constants &;,i=1, 2.

Now, we are ready to state our stability result.
Theorem 10. Suppose that (4) and (A1)-(A3) hold, and that

(g, u;) € HY(Q) x L?(Q) and (vy,v;) € H)(Q) x L?(Q) sat-
isfy E(0) < E, and

112
(LlVuol® + L[[Vvo[|*) ™ < at,. (67)

Then for each, the energy of (1) satisfies
E(t) <Ke Ml 1> ¢, (68)

where 8(t) == min {8,(t), 8,(t)} and K and k are positive con-
stants.

Proof. Multiplying (46) by 8(t), we get
ST (1) < =& S(t)E(t) + E,8()[(hyoVu)(t) + (hyoVy)(1))].
(69)
Applying (A2) and 6(t) := min {8, (¢),5,(¢)} and since

~[(hjoVu)(t) + (hheVv)(t)] < —2E'(t) by (10), we obtain

S(E)T' (£) < —E,8(D)E(t) - £,5(t) [(h;ow) (t) + (h;ovv) (t)]
<&, 8(t)E(t) = 28,E" (1) Vt > ¢,
(70)

S(1)E(t) <—k8()G(t)VE=ty. (71

And here, G(t) = 8(¢)I'(t) + CE(¢) is equivalent to E(t) due
to (20), and k is a positive constant. A simple integration of
(50) leads to

G(t) < G(t)e O yr > ¢ (72)

This completes the proof.

5. Conclusion

As far as we know, there have not been any global existences
and general decay results in the literature known for quasi-
linear viscoelastic equations with degenerate damping terms.
Our work extends the works for some quasilinear viscoelastic
equations treated in the literature to the quasilinear viscoelas-
tic equation with degenerate damping terms.
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This paper systematically investigates a class of fourth-order differential equation with p-Laplacian on infinite interval in Banach
space. By means of the monotone iterative technique, we establish not only the existence of positive solutions but also iterative
schemes under the suitable conditions. At last, we give an example to demonstrate the application of the main result.

1. Introduction

The partial differential equation with the p-Laplacian operator
=div (|V, (%) Vu(x)) + b(x)g(u(x)) =0, (1)

which is often used to describe, for example, diffusion process
[1], with a spatial symmetric potential b, can be reduced to
(r(D)9, (' (1)) + c(t)p, (¥(£)) = 0, where @, (x) = [x/"x, p
> 1. This fact leads us to study the following p-Laplacian
boundary value problem (BVP):

(2, (4"(1)))" =R, (" (1)) = a(e) (1t u(t)). (0, +o0),

u(O):rog(t)u(t)dt,tlim u'(t)=E4d"(0)= lim u"(t)=0,

— 400 t—+00
(2)

where ¢, (x) = Ix|P~%x, p>1, ¢, = go;l, (1/p)+(1/g)=1,k>0
, &€ >0 are real constants, g : [0, +00) — [0, +00) is a Lebes-
gue integrable function with [° g(t)dt <1, [ tg(t)dt < +co
,a: (0,+00) — [0, +00) is continuous and may be singular
att=0, and f : [0, +00) X [0, +00) — [0, +00) is a continu-
ous function.

The p-Laplacian equation arises quite naturally in the
modeling of different physical and natural phenomena. For
instance, in fluid mechanics, the shear stress 7 and the veloc-
ity gradient V,u of certain fluids obey a relation of the form

7= a(x)V,u, where V,u = |V, [P"*Vu. Here, the real number
p>1and p =2 (respectively, p < 2, p > 2) designate a Newto-
nian (respectively, pseudoplastic, dilatant) fluid. Given a is a
constant, the resulting equations of motion then involve
div (aV,u), which reduces to aA,u=a divV,u. Over the
last couple of decades, many important results including
integral and fractional equations with p-Laplacian on cer-
tain boundary value conditions had been obtained. We
refer the reader to [2-17] and the references cited therein.
Liang and Zhang [18] considered the m-point BVP with a
p-Laplacian operator

((pp (u’(t)))’ +h(E)f (u(t)) =0, £ € (0, +00),
m-=2 (3)
u(0)= Y au(&), lim u'(t)=0,

‘ t—+00
i=1

where &; € (0, +00), with0< &, <&, <--- <&, , <+00,and a;
satisfies a; € [0, +00), 0< Y7 2a; <1, h: [0, +00) — [0,
+00) and has countably many singularities in [1, +00), f : |
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0, +00) — [0, +00) is a continuous function. The existence
of positive solutions is obtained by applying the fixed-point
theorem of Leggett-Williams.

Using the fixed point index theory, Xu and Yang in [19]
researched the existence of positive solutions for the fourth
order p-Laplacian BVP

(|u" |‘D_1u") "= f(t,u),te (0,1),

u®(0)=u®(1)=0,i=0,1,

(4)

where p> 0, f : [0,1] X [0, +00) — [0, +00) is a continuous
function.

The motivation for the present work stems from both
practical and theoretical aspects. In fact, many mathematical
problems in science and engineering are set in unbounded
domains, such as unsteady flow of gas through a semi-
infinite porous media, the theory of drain flows, plasma
physics, in determining the electrical potential in an isolated
neutral atom. In all these applications, it is frequent that only
positive solutions are useful. In this paper, we study the dif-
ferential equation with p-Laplacian operator as BVP (2);
when p =2, BVP (2) becomes the ordinary fourth-order dif-
ferential equation. The results for the existence of the maxi-
mal and minimal solutions to the BVP (2) are established.
In addition, we establish iterative schemes for approximating
the solutions, which start from the known simple linear func-
tions. However, to the best knowledge of the authors, there
are few works in the literature dealing with the existence of
positive solutions to boundary value problems of differential
equation on infinite intervals with p-Laplacian operator by
using iterative technique up to now. The goal of the present
paper is to fill the gap in this area, so it is interesting and
important to study the existence of positive solutions for
BVP (2).

2. Preliminaries and Lemmas

The basic space used in this paper is E, where E is denoted by

E=<ueC|0,+00): sup
{ [ ) te[0,4+00) I+t

Then, E is a Banach space equipped with the norm ||u|
= SUP,c(g400) ([4(t)1/(1 + ). Define a cone K in the Banach
space Eby K={u€E:u(t)>0,t€0,+00)}.

Lemma 1 (see [20]). Let y € C[0, +00) N L' (0, +00), then x is
a solution of

X" (t) = Kx(t) + y(t) = 0,t € (0, +00),

w0~ (6)

Jim x9=0,
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if and only if x is a solution of

xm=rb@wwﬁ ?)

0

where

1 ek (ekt - e_k'> ,0< t<s< 400,

oo ! (8)
2k okt (eks _ e-kS),ogss t < +00.

Lemma 2. Green’s function G(t, s) satisfies

(1) G(t,s) 20, for any t,s € [0, +00)
(2) G(t,s) <G(s,s) < 1/2k, for any t, s € [0, +00)

In what follows, we list some conditions for convenience.

(Hy) g:[0,+00) — [0,+00) is a Lebesgue integrable
function with [ g(t)dt < 1, [° tg(t)dt < +oo.

(H,) f:]0,+00) x [0, +00) — [0, +00) is a continuous
function, f(t,0)=0 on [0,+00) and f(t, (1 +t)x) is bounded,
fort €[0,+00), x € D, D C [0, +00) is a closed subinterval.

(H,) a: (0,400) — [0, +00) is continuous, a(t)=0 on
[0, +00) and

0< JOO G(s, s)a(s)ds
e e (9)

< 400, JO P, <L G(s, c)a(q)dq) ds < +00.

By routine discussion, Lemma 3 is valid.

Lemma 3. Assume that (H,) holds and ¢,(x) € C[0, +00) N

L'(0, +00); then, u is a solution of

u" (t) + ¢, (x(t)) =0, € (0, +00),
o (10)
gtu(t)dt, lim u'(t)=¢,

0 t—>+00

u(0) :J

if and only if u is a solution of

1 (o]
u(t) = W (EJ() tg(t)dt

+ JOO g(t)Jt JOO (pq(x(‘r))d‘rdsdt) (11)

0 0Js

+ Jt Joo ¢, (x(7))drds + &t.

0Js

Let x(t) = —(pp(u"(t)), then BVP (2) is divided into the
following two parts:
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x(0)= lim x(t)=0,

t—+00

{ X" (t) = Kx(t) + a(t)f (t, u(t)) = 0, € (0, +c0),

u (1) + 9, (x(£)) = 0, £ € (0, +00), (12)

u(0) = Joo gHu(t)dt, lim u'(t)=&.

0 t—>+00

From Lemmas 1 and 3, under the above assumptions
(H,) - (H,), denote the operator A : K — E as follows:

Au(t) = W (& rotoars [ a0 [o

(]} 6t atcyte e ) aras

[ [ o[} 6t eratss ute e
+&t,t € [0, +00).

(13)

Now, we claim that Au is well defined for u € K. In
fact, for any u € K, there exists >0, such that |(u(t))/(1
+1)| <r,te0,+00). From (H,) and the definition of [|-[,
we have

= sup {f(t,(1+ £)x): (t,x) €[0,+00) x 0, ]} < +o0.

(14
Thus, by (Fy)(Ha), we know
[ ou([} ctmerators utcpc avas -
) [ oo
Since
|| gt <1, " rgtojar <o (16)

Together with (15), for any t€[0,+00), we can see
that

T j;"’lg(t)dt <EJ:O tg(t)d”f I (t)J; Jw P

(]} 6t ateyte e aras

0

o[ [ o[ ctmoateisis u e anas g

0Js 0

< W (EJ:O tg(t)dt + ¢, (SJ") J:O P,

([ ats gaterde)as| " gtorir)

+9,(5) Jm P (Jm G(s, c)a(c)dc) ds+E.

0 0

(17)

So, by (15) and (17), we obtain

A
Aut) | <400
1+t

(18)

te[0,+00)

On the other hand, for any ¢, 1, € [0, +00), by (13), we
have

|Au(t,) — Au(ty)|

r ro K (Jm G(r.6)a(o)f (6 u(c))dc> drds

ty Js 0

<

+&|t, —t,| — 0,ast, — t,.

(19)

Therefore, Au € C[0,+00), for any ue€K. Hence, A
: K— E is well defined. Obviously, u is a positive solu-
tion of BVP (2) if and only if u is a fixed point of A in
K.

The Arzela-Ascoli theorem fails to work in the Banach
space E due to the fact that the infinite interval [0, +00) is
noncompact. The following compactness criterion will help
us to resolve this problem.

Lemma 4 (see [21, 22]). Let E be defined as (5) and M be any
bounded subset of E. Then, M is relatively compact in E if
{x(t)/(1+1): x€ M} is equicontinuous on any finite subin-
terval of [0, +00), and for any given ¢ > 0, there exists N > 0,
such that |(x(t,)/(1+1t;)) = (x(t,)/(1+1,))| <& uniformly
with respect to x € M, as t;,t, > N.

3. Main Results

Lemma 5. Assume that (H,) — (H,) hold. Then, A: K— K
is completely continuous.

Proof. 1t is clear that Au(t) >0 for any u €K, t € [0, +00).
Thus, A(K) € K. Now, we prove that A is continuous and
compact, respectively. Let M C K be a bounded subset. Then,
there exists R > 0, such that ||x|| < R, for any x € M. So, for
any x € M, we have
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So, for any € > 0, there exists > 0, such that for any t,,

1 1 (0] (o)
[Aull = sup EJ tg(t)dt + J g(1) t, € [0, T] with |¢, — t,] < &, and for any x € M, we have
te[0,+00) L+t I_L) 0 0
t oo o Au)(t Au)(t
[ o[ o @a@f@,u@)dc)m) ) G0 Js
0Js 0

Hence, {(Au)(¢)/(1+1t): ue M} is equicontinuous on
[0, T]. Since T >0 is arbitrary, {(Au)(¢)/(1+1t): ue M} is
1 00 00 locally equicontinuous on [0, +00).
S —s—— (f J tg(t)di+ ¢, (5}2) J ¢, Next, we prove that we show that A : K — K is equicon-
1- Jno g(t)dt 0 0 vergent at +co. For any u € M, we have

+ Jt ro ?, (JOO G(,6)a(c)f (s u(c))dc) drds + &t

0Js 0

. ( [/ et <>a<c)dc)dsj:° g(t)dt) fim Au(ﬂ‘
o o t—+oo| 1 + ¢
+§Dq(sj§)Jo W (Jo G(S’q)a(c)dc>ds+£<+z0) tl‘?oolit 1—101 £)dt (fjoo g(t)dt+J:O g(t)

[ (]} 6t 9ateir (s uioyas ) drasar

where 0Js

e[ [ o[} 6t ermtrss utc Jarde s 2

S}z =sup {f(t (1+1)x): (t,x) €[0,+00) x [0, R]} < +00. 0

(21) = lim JOO 0, (J:O G(r,¢)a(c)f (< u(c))dc> dr+E=¢.

So, AM is bounded in E. Moreover, given T € (0, +00), (24)
for any x € M and t,, t, € [0, T], without loss of generality,

we may assume that ¢, < f,. In fact, So, for any u € M, we have

Au(t)

Au(t))  Au(ty) . 5’
1+t 1+1t, i N N
< 1+1t1 1+1t2 1—f01 dt(fro ()dt+rog(t) =11+t(1_j01 mdt(fj g(t)dt+JO g(t)
- j ["o, (jm G(r.<)a(e)f (6. u dc) drdsdt K ([} et erateyrtc uwpac ardsc
o : J: Jjo P, <J:O G(1,6)a( dc) drds + J; J:X) %, (J:O G(1,6)a(5)f (s u(c))dc) drds + Et) - E’
. ::2 J: Loot‘/’q (J:O GI(T, c)a(s 1 dc) drds < % (W <EJ:O tg(t)dt + ¢, (ij)
+8 1 +1t1 1 +2t2 i t, 1+t 1- J“O g(t)dt - J:O ¢, (Jm G(s, c)a(c)dc) dstO g(t)dt)

(0]

< dt+‘Pq(Sf)Joo (t)dtj0 ¢ +(pq(sf)J s(pq(JmG(s,q)a(c)dc>dS
(], o )ds>+ () : >

1+t 1+1‘2 B
1+t

1w (J ) o -

tZ
2 (S )J J <J C)“(C)dc> drds Thus, for any € > 0, there exists N > 0, for any ¢ > N and
hs for any x € M, such that

tl 2

1+t 1+t

+¢&

Au(t)
1+t

2

-s’<_. (26)
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Consequently, for any t,,t, >N and for any x € M, we
have

Au(tl) _E < f
1+t 2’
Au(t2) _£ < E (27)
1+t 2’
t;,t, >N.

Therefore, for any ¢, t, > N and for any x € M, we have

Au(ty) Au(ty)| | (Au(t) Au(t,)
1+t 1+t _‘(1+t1 _€>_<1+t2 _E)’
Au(t,)
1+t1 E‘ 1+t, _5‘

<g t,t,>N.
(28)

This implies that AM is equiconvergent at +0co.
Let u,, — u as n — +00; then, there exists r,, such that
max, o3 {14l lull} < 7o, N is a natural number set. By

(H,), we have

00

G5 a(e)f (s (o)

|| 6t atotc m(eas - |

0 0

< [ 6 9016 ) (6 utelde
<28} J:O G(1, ¢)a(q)ds < +oo,
(29)
where
S = sup {f (1, (1+£)x): (£,) € [0, +00) x [0, 7]} < +o0.
(30)

So, for any & > 0, we can find a sufficiently large H, > 0,
such that

S}"J G(1,¢)a(c)ds < 2 (31)

0

It follows from the Lebesgue dominated convergence
theorem and continuity of f, we can get

Hy

G(1,6)a(o)f (s

0

H,
|, ot crate)sc u(eas - | u(€))de

0

Hy
< j G(r,)a(9) (6 14,()) - 16

— 0,n — +00, T € [0, +00).

u(c))|ds

So, for the above & > 0, there exists N >0, when n > N,,,
we have

| 6@ a6 m(e) - fleueplds < 5. ()

0

Therefore, when n > N,

(6]

G(7.6)a(s)f (s

0

u(s))ds

[ 6 ate)sc u(ende- |

0

< [ 6 )a(6)17(6 )~ o (6l

0

<] e aaais

{oe)
+J G(r,
Hy

(o)
E + ZS}UJ G(1,6)a(g)ds <,
Hy

U, () = f6, u,(5))|ds

)a(6)[f (6 u,(c) = f> u,(c))|ds

o

(34)

which implied that

%, (J :0 Gmo)alslf st (C))dc) (35)

o, ([} Gt a(or o uiac) | — o

0

as n — +00, T € [0, +00). Since

Jt JC’O #q (J:O G(m,6)a(6)f (s un(C))dC> drds

0Js

[ [ o[} ctmeratoss ate ares

(36)

< 2(pq (S}") J:O P, (J:O G(s, c)a(c)dc) ds < +00.

Then, by the Lebesgue dominated convergence theorem,
we get

A, - Au|
iiﬂlit 1—[01 dtng(t)
. jw (soq (joo (e ) (6 (<))
- (pq Of (s u(g))d<> ) drdsdt

+J J ( (J G(r.<)a (c)f(c,un(c))dq)
"’q( Of (6, u(C))ﬂk))des




g, 2L
g (Jm G(z,6)a(s)f (6 un(c))dc>

0

~ % (JOO G(7,6)a(s)f (6 u(c))dc) drdsdt

i

~,( ]| tr ate)s (6 u(o)as)
o g(t)dt o

(W + 1> JO s

(]} 6t ateifts (0

o[ Gmsia(orcm(c)is)

0

drds

IN

~ % (Jm G(s,6)a(o)f (s u(c))dc> ds

(37)

Therefore, A : K — K is continuous. In conclusion, by
Lemma 4, we know that A : K — K is completely continu-
ous. The proof is completed. O

Theorem 6. Assume that (H,) - (H,) hold and there exists
d > 2m which satisfies the following condition:
(H3)f (t,x;) < f(t, x,), t €[0,+00), 0 < x; < x5
(H)f (t: (1+1)x) < ¢,(d/2]), (t, x) € [0, +00) x [0, d],
where

- [ tg(t)dt
m= E (1 + W) >

= i gergrnl, ] oo o

Then, BVP (2) has the maximal and minimal positive
solutions yu* and p* on [0, +00), such that

(38)

0< sup W (t)] <d,
te[0,+00) I+t
- (39)
0< sup I (t)| <d.
te[0,+00) I+t
Moreover, for initial values
o tg(t)dt
o) = & g Ao tIOAEY
2 1- [, g(t)dt
- (40)
Hy(t) = 0,
t € 0, +c0),
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define the iterative sequences {u,} and {1} by

- W (&jw to(0de+ [ g

[ [ (]} 6 a6 (6 s € s

0Js 0

[ [ o[} ctmerat0r6 e et

0Js 0

i, - W (EJOO to(oyde+ [ (0

[ o]} 6t a6 (6 s € s

0Js 0

[ [ o[} ctmerntor(6 ) ) odste.

0Js

(41)
Then,
—u*(t
lim  sup (-1 _,
n—=+%0¢e[0,+00) I+t (42)
42
_ (1
i sy BO-EO]
n—>+ooz€[0’+oo) 1+t

Proof. From Lemma 5, we know that A: K —K is
completely continuous. For any u,, u, € K with u; < u,, from
the definition of A and (H,), we know that Au, < Au,. Let
K;={u €K : |lull<d}. In what follows, we firstly prove A
: K; — K. In fact, for any u € K ;, we have 0 < u(t)/(1 + 1)
<d,t€[0,+00). By (H,), we know that f(t,x) <¢,(d/2]),
(t,x) €[0,+00) % [0, d]. Also, by (H,), we have

e () <p, (0, 1E[0,400), =012, (43)

Thus, we have proved that A : K, — K. Let u(t)
= (dr2) + (e + ([ tg(0)at)/ (1 = [ g(t)d1))), t € [0, +00),
and then, p,(t) €K, Let u, =Apy, u,=Ap, =A%uy; by
Theorem 6, we have u,u, € K;. Denote y,  , =Au, =A"
Yppn=1,2,---. Since A:K;— K, we have pu, € A(K,)
CK,. It follows from the complete continuity of A that
{u,}:2, is a sequentially compact set. By (H,), we have

(0] 00

()= () = e (6] rgtope s [0

0

(]} ot oateisis meas ) drasar

0Js 0

+ Jt JOO ?, (Jzo G(t,¢)a(s)f (s, HO(C))ddq> drds + &t

0Js
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1 00 {oe)
T[T g(tydt i g“)‘”io e

. (J‘X’ G(s:5)a(S)f (6 o (q))dc) ds

0

o [soy([[ 6ts ateirts (e ) s
“(L ot ) S e
s (] 66t s

1- (07 g(t)dt

B
1_f0

+

IN

d tg(t)
= ( I{OJ )zﬂo(t)~
0
(44)
Together with (H,), we also have u,(t)=Au,(t)<A
to(t) = p, (1), t € [0, +00). By induction, we obtain
Yoy (1) S, (1), t€[0,+00), n=0,1,2,--. (45)

Therefore, there exists u* € K; such that y, — pu* as
n — +00. Applying the continuity of A and yu,,, =Ay,,
we get that Au* =pu*.

On the other hand, let f,(t)
fo(t) € K. Let iy = Apy, i1, = Aji, = A%[i; then, by Theorem
6, we have p1,, i1, € K;. Denote i, = Aji, = Ay, =1,2, .
Since A : K; — K, we have p, € A(K;) c K. It follows
from the complete continuity of A that {f, } is a sequen-
tially compact set. Since i, = A, € K, we have

=0, t€[0,+00), and then

iy (t) = Ap, (t) = AO(t) 2 0, t € [0, +00). (46)
By induction, we get
P (1) 2 (1), €0, #00),  n=1,2,--. (47)

Thus, there exists 4" € K such that g, — p* as n — +
co. Applying the continuity of A and 1, = Ap, , we get that
Ap*=p*.

Now, we are in a position to show that u* and p* are
the maximal and minimal positive solutions of BVP (2) in
(0, (d/2)+£(t+((jg°tg 1—[0 )]. Letu € [0,
(dr) +&(t+ (([3 tg)dt)/(1- [ g be any solu-
tion of BVP (2), that is, Au u. Noting that A is nonde-
creasing and f,(t) =0 <u(t) < (d/2) +&(t+ ([, tg(t)dt)/
(1[5 g(t)dt))) = py(t), then we have p,(t) = Apy(t) <u
(t) <Apy(t) = p, (1), for all te€[0,+0c0). By induction, we
have

n=1,2,3,. (48)

Since p* =lim,_,  p,p" =lim it follows

from (42)-(45) that

n—>+oo!’ln’

o <y S i, < SR
(49)

In virtue of f(¢,0), t € [0, +00), then the zero function is
not the solution of BVP (2). Therefore, by (46), we know
that 4* and p* are the maximal and minimal positive solu-
tions of BVP (2) in (0, (d/2) +&(t+ ([ tg(t)dt)/(1 - [(°
g(t)dt)))], which can be obtained by the corresponding
iterative sequences u,=Au, |, i, =Ap, ;. The proof is
completed. d

Remark 1. The iterative schemes in Theorem 6 start with a
known simple linear function and the zero function, respec-
tively. This is very convenient in application. So Theorem 6
is very interesting and importance. Similarly, we can obtain
Theorem 7.

Theorem 7. Assume that (H,) - (H
d,>d, >-->d,>d; >2m
condition:

(H' )f(t, (1+1)x) <g,(d;/21), (t,x) €[0, +00) x [0,d], j
=1,2,---,n.m,1 are defined as Theorem 6. Then, BVP (2)
has the maximal and minimal positive solutions y; and pi;,

on [0, +00), such that

3) hold and there exist
satisfying  the  following

it
0< (0] <d,
te[0,+00) I+t
e (1) | >0
ot
0< () <d.
te[0,+00) I+t
Moreover, for initial values
d; tg(t)dt
polt) = 2 v (04 S 9O
_fo g(t) t
- (51)
Hjo(t) =0,
t € [0, +00),

define the iterative sequences {u, } and {@i,,} by

(o)

Hin = 1-;01 tdt(ir ()dt+J0 g(t)

. J J J:;G (6 b0 ))dq) drdsdt)
(L G(r (c,#]n n(s ))d<>

. d‘rds +&t,



Hjn = 1_10 (Dt ( J g(t )dt+J:0 g(t)
( f(c, Hin-n) (S ))dC)desdt>
+J0 Js Py (JO G(t,6)a(s )f(c, yj(n_l)(q))dq>

-drds + &t
(52)
Then,
() = ut(t
lim sup M = 0’
"=+ [0,+00) I+t (53)
53
) )= ;1)
im sup ———— =0.
00110, 1 co) 1+t

Remark 2. We note that 4* and ¢* in Theorem 6 may coin-
cide; then, BVP (2) has only one solution in K. Similarly,
positive solutions 7 and 7 in Theorem 7 may also coincide.

4. Example
Consider the following BVP

=172

(") " (0)" = [u" ()" u" () = a(t)f (1, (1)), t € (0, +c0),

_ o 1 . Tipy \/_ " T "N
u(0) = L i t)3 u(t)dt, tlr?oou (t)= - (0)= tlngoou (t)=0.
(54)

Obviously, we know that p=3/2, k=1, & =+/3/4, g(t) =
1/(1+1)°, so we can get

. o
J :J 1+t 5<1,J° oo
1
:J 1+t3 =3 <t (59)
(¢ -e),0st<s< o0,
o89=3 { e'(e—e”),0<s<t<+o0.

Let

a(t)y=e*, f(t,x)

1 3
| sin (55¢+21)] + — (i) ,

144 (56)

1 3
| sin (55¢ +21)] + T <—> , o ox=22.
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By computation, we get

0 1 ([ 1
J G(s, s)a(s)ds < EJ e ¥ds= 1 < +00,

0 0

[ s
(e

+roc(s, ¢)als )dc>ds— % < +00.

N

So, the conditions (H,) - (H;) hold. For m=+/3/2,1=
13/216. Take d = 10, it follows that

filb L+ < 3 <o, (%) =9, (ﬁ%lﬁ))

1080

3 (t,x) €0, +00) x [0, 10].

Hence, condition (H,) holds, that is, all conditions of
Theorem 6 are satisfied. Therefore, BVP (51) has the minimal
and maximal positive solutions in (0,5 + (v/3/4)(t +1)],
which can be obtained by two explicit monotone iterative
sequences.
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