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The primary objective of this study is to introduce two novel extragradient-type iterative schemes for solving variational
inequality problems in a real Hilbert space. The proposed iterative schemes extend the well-known subgradient extragradient
method and are used to solve variational inequalities involving the pseudomonotone operator in real Hilbert spaces. The
proposed iterative methods have the primary advantage of using a simple mathematical formula for step size rule based on
operator information rather than the Lipschitz constant or another line search method. Strong convergence results for the
suggested iterative algorithms are well-established for mild conditions, such as Lipschitz continuity and mapping
monotonicity. Finally, we present many numerical experiments that show the effectiveness and superiority of iterative methods.

1. Introduction

The primary objective of this research is to investigate the
iterative methodologies used to estimate the solution of
variational inequalities in a real Hilbert space. To establish
the convergence analysis theorems, the following conditions
need to be satisfied:

Condition 1. The solution set of the problem (VIP) denoted
by Ω and it is nonempty.

Condition 2. A mapping L : Z ⟶Z is said to be pseudo-
monotone if

L p1ð Þ, p2 − p1h i ≥ 0⇒ L p2ð Þ, p1 − p2h i ≤ 0, ∀p1, p2 ∈A PMð Þ:
ð1Þ

Condition 3. A mappingL : Z ⟶Z is said to be Lipschitz
continuous with constant L > 0 if

L p1ð Þ −L p2ð Þk k ≤ L p1 − p2k k, ∀p1, p2 ∈A LCð Þ: ð2Þ

Condition 4. A mapping L : Z ⟶Z is said to be weakly
sequentially continuous if fLðunÞg converges weakly to Lðu
Þ for each sequence fung converges weakly to an element u:

Let Z be any real Hilbert space and A be any nonempty
convex closed subset of a Hilbert space Z: Assume that L
: Z ⟶Z be an arbitrary mapping. The variational
inequality problem for an operator L on A is defined in
the following manner [1, 2]:

Find q∗ ∈A such that L q∗ð Þ, y − q∗h i ≥ 0, ∀y ∈A VIPð Þ:
ð3Þ
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Let Ω stand for the solution set for the problem (VIP).
The mathematical model of variational inequalities covers
many mathematical problems, such as partial differential
equations, optimization, optimal control, mechanics,
finance, and mathematical programming (see for details
[3–9]) and others in [10–20]. Since it is a fundamental prob-
lem in the applied sciences and nonlinear functional analy-
sis, many researchers are investigating not only the stability
and existence of solutions to such problems but also iterative
methods for solving them numerically. In order to solve var-
iational inequalities numerically, projection iterative
methods are a very important tool. Many researchers have
provided various projection method extensions and modifi-
cations to solve the problem (VIP) (see [21–33]). The extra-
gradient method described below was developed by
Korpelevich [25] and Antipin [34]. Their method takes the
form of

u1 ∈A ,
pn = PA un − δL unð Þ½ �,
un+1 = PA un − δL pnð Þ½ �,

8>><
>>: ð4Þ

where 0 < δ < 1/L: For each iteration of the above iterative
scheme, two projections on the feasible set A are required
to be figured out. Of course, if the feasible set A has a com-
plicated framework, this can affect the method’s computa-
tional effectiveness. The first one is to follow the
subgradient extragradient method designed by Censor
et al. [22] to overcome this deficiency. This method is in
the form of

u1 ∈A ,
pn = PA un − δL unð Þ½ �,
un+1 = PZn

un − δL pnð Þ½ �,

8>><
>>: ð5Þ

where 0 < δ < 1/L and

Zn = z ∈Z : un − δL unð Þ − pn, z − pnh i ≤ 0f g: ð6Þ

It is a key point to note that the above-mentioned well-
established methods have two major drawbacks. The first is
the fixed constant step size, which needs knowledge or
approximation of the appropriate operator Lipschitz con-
stant, and also is only weakly convergent in Hilbert spaces.
Using a fixed step size can be difficult in terms of computa-
tion, affecting the method convergence rate and efficiency.

Hence, a natural question arises:
“Is it possible to propose two new strongly convergent

subgradient extragradient algorithms with a nonmonotone
self-adaptive step size rule to solve the problem (VIP)?”

The primary objective of this study is to introduce two
new strongly convergent subgradient extragradient methods
for enhancing the convergence rate of an iterative sequence.
The answer to the above question is given in this study,
which would be the subgradient extragradient algorithms,
which set up a strong convergent iterative sequence by let-

ting a variable nonmonotone step size rule. The suggested
methods are employed to solve variational inequality prob-
lems involving pseudomonotone and Lipschitz regular oper-
ators in real Hilbert space. The proposed methods are based
on the projection method [22] as well as the methods pro-
posed in [26, 35]. The established method only needs to
compute one projection onto the feasible set and one projec-
tion onto the half-space for each iteration. The iterative
sequences established by the proposed method strongly con-
verge to some solution of the underlined problem in the
framework of some appropriate conditions on control
parameters. A number of numerical examples are also added
to elaborate on the computational effectiveness of the new
methods over some existing methods presented in [36, 37].

The paper is arranged in the following manner: In Sec-
tion 2, we provide some basic identities and preliminary
results that were used in this paper. Section 3 includes the
proposed methods and proves their convergence analysis.
Finally, Section 4 presents some numerical results to illus-
trate the convergence and the effectiveness of the proposed
methods.

2. Preliminaries

This section contains a number of important identities, as
well as useful lemmas and definitions. For all u, y ∈Z , we
have

u + yk k2 = uk k2 + 2 u, yh i + yk k2: ð7Þ

A metric projection PAðp1Þ of an element p1 ∈Z is eval-
uated by

PA p1ð Þ = argmin p1 − p2k k: p2 ∈Af g: ð8Þ

Next, we list some of the important identities that are
used to prove the convergence analysis.

Lemma 1 (see [38]). Let PA : Z ⟶A be a metric projec-
tion on set A : For each p1, p2 ∈Z and ℓ ∈ℝ, then the follow-
ing inequalities are satisfied:

(i) p3 = PAðp1Þ is true if and only if

p1 − p3, p2 − p3h i ≤ 0, ∀p2 ∈A , ð9Þ

(ii)

p1 − PA p2ð Þk k2 + PA p2ð Þ − p2k k2 ≤ p1 − p2k k2, p1 ∈A , p2 ∈Z ,
ð10Þ

(iii)
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p1 − PA p1ð Þk k ≤ p1 − p2k k, p2 ∈A , p1 ∈Z , ð11Þ

(iv)

ℓp1 + 1 − ℓð Þp2k k2 = ℓ p1k k2 + 1 − ℓð Þ p2k k2 − ℓ 1 − ℓð Þ p1 − p2k k2,
ð12Þ

(v)

p1 + p2k k2 ≤ p1k k2 + 2 p2, p1 + p2h i: ð13Þ

Lemma 2 (see [39]). Assuming that fcng ⊂ ½0,+∞Þ, a
sequence meets the following criteria:

cn+1 ≤ 1 − dnð Þcn + dnen, ∀n ∈ℕ: ð14Þ

Moreover, fdng ⊂ ð0, 1Þ and feng ⊂ℝ are two sequences
such that

lim
n⟶+∞

dn = 0, 〠
+∞

n=1
dn = +∞and limsup

n⟶+∞
en ≤ 0: ð15Þ

Then, limn⟶+∞cn = 0:

Lemma 3 (see [40]). Assume that a sequence fcng of real
numbers and there is fnig subsequence of fng such that

cni < cni+1 , ∀i ∈ℕ:(102)
Thus, there exists a natural nondecreasing sequence fmjg

with mj ⟶ +∞ as j⟶ +∞ and satisfies the following cri-
teria for j ∈ℕ:

cmj
≤ cmj+1

, cj ≤ cmj+1
: ð16Þ

Indeed, mj =max fj ≤ j : cj ≤ cj+1g:

Lemma 4 (see [41]). Assume that L : A ⟶Z is a pseudo-
monotone and continuous mapping. Then, q∗ is a solution of
the problem (VIP) if and only if q∗ is a solution of the follow-
ing problem:

Find u ∈A such that L yð Þ, y − uh i ≥ 0, ∀y ∈A : ð17Þ

3. Main Results

In this part of the research article, we propose two new
methods and the corresponding strong convergence theo-
rems. Both methods are presented in the following manner.
The first method is of the following form.

Assume that g : Z ⟶Z is a contraction having con-
stant ξ ∈ ½0, 1Þ: The second major contribution of this study
work is as follows. The second main algorithm has the fol-
lowing form.

Lemma 5. A sequence fδng generated by (3.1) is convergent
to δ and satisfies the following inequality:

min μ

L
, δ1

n o
≤ δ ≤ δ1 + P where P = 〠

+∞

n=1
φn: ð18Þ

Proof. Let hLðunÞ −LðpnÞ, qn − pni > 0 such that

μ un − pnk k2 + qn − pnk k2� �
2 L unð Þ −L pnð Þ, qn − pnh i ≥

2μ un − pnk k qn − pnk k
2 L unð Þ −L pnð Þk k qn − pnk k

≥
2μ un − pnk k qn − pnk k
2L un − pnk k qn − pnk k ≥

μ

L
:

ð19Þ

By using mathematical induction on the definition of
δn+1, we have

min μ

L
, δ1

n o
≤ δn ≤ δ1 + P: ð20Þ

Let

δn+1 − δn½ �+ = max 0, δn+1 − δnf g,
δn+1 − δn½ �− =max 0,− δn+1 − δnð Þf g:

ð21Þ

Due to expression of fδng, we can write

〠
+∞

n=1
δn+1 − δnð Þ+ = 〠

+∞

n=1
max 0, δn+1 − δnf g ≤ P < +∞: ð22Þ

Thus, ∑+∞
n=1ðδn+1 − δnÞ+ is convergent. Next, we have to

prove the convergence of the following series:

〠
+∞

n=1
δn+1 − δnð Þ−: ð23Þ

Let ∑+∞
n=1ðδn+1 − δnÞ− = +∞. Thus, we have δn+1 − δn =

ðδn+1 − δnÞ+ − ðδn+1 − δnÞ−: Thus, we have

δk+1 − δ1 = 〠
k

n=0
δn+1 − δnð Þ = 〠

k

n=0
δn+1 − δnð Þ+ − 〠

k

n=0
δn+1 − δnð Þ−:

ð24Þ

Letting k⟶ +∞ in (24), we obtain δk ⟶ −∞ as k
⟶∞: This is a contradiction. Due to the convergence of
the series ∑k

n=0ðδn+1 − δnÞ+ and ∑k
n=0ðδn+1 − δnÞ− taking k

⟶ +∞ in (24), we obtain limn⟶∞δn = δ: This completes
the proof.☐☐

Lemma 6. Let L : Z ⟶Z be an operator satisfies the cri-
teria Condition 1–Condition 4. For a given q∗ ∈Ω ≠∅, we
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have

qn − q∗k k2 ≤ un − q∗k k2 − 1 −
μδn
δn+1

� �
un − pnk k2 − 1 −

μδn
δn+1

� �
qn − pnk k2:

ð25Þ

Proof. We have to evaluate

qn − q∗k k2 = PZn
un − δnL pnð Þ½ � − q∗

�� ��2
= PZn

un − δnL pnð Þ½ � + un − δnL pnð Þ½ ���
− un − δnL pnð Þ½ � − q∗k2

= un − δnL pnð Þ½ � − q∗k k2 + PZn
un − δnL pnð Þ½ ���

− un − δnL pnð Þ½ �k2 + 2 PZn
un − δnL pnð Þ½ ��

− un − δnL pnð Þ½ �, un − δnL pnð Þ½ � − q∗i:
ð26Þ

It is given that q∗ ∈Ω ⊂A ⊂Zn such that

PZn
un − δnL pnð Þ½ � − un − δnL pnð Þ½ ��� ��2

+ PZn
un − δnL pnð Þ½ � − un − δnL pnð Þ½ �, un − δnL pnð Þ½ ��

− q∗i = un − δnL pnð Þ½ � − PZn
un − δnL pnð Þ½ �, q∗�

− PZn
un − δnL pnð Þ½ �� ≤ 0:

ð27Þ

Furthermore, it implies that

PZn
un − δnL pnð Þ½ � − un − δnL pnð Þ½ �, un − δnL pnð Þ½ � − q∗

� �
≤ − PZn

un − δnL pnð Þ½ � − un − δnL pnð Þ½ ��� ��2:
ð28Þ

By using expressions (26) and (28), we obtain

qn − q∗k k2 ≤ un − δnL pnð Þ − q∗k k2 − PZn
un − δnL pnð Þ½ ���

− un − δnL pnð Þ½ �k2
≤ un − q∗k k2 − un − qnk k2 + 2δn L pnð Þ, q∗ − qnh i:

ð29Þ

Since q∗ is the solution of problem (VIP), we have

L q∗ð Þ, y − q∗h i ≥ 0, ∀y ∈A : ð30Þ

We have condition on mapping L with feasible set A ,
we get

L yð Þ, y − q∗h i ≥ 0, ∀y ∈A : ð31Þ

By substituting y = pn ∈A , we get

L pnð Þ, pn − q∗h i ≥ 0: ð32Þ

Therefore, we have

L pnð Þ, q∗ − qnh i = L pnð Þ, q∗ − pnh i + L pnð Þ, pn − qnh i
≤ L pnð Þ, pn − qnh i:

ð33Þ

From (29) and (33), we get

∥qn − q∗∥2 ≤ ∥un − q∗∥2−∥un − qn∥
2 + 2δn L pnð Þ, pn − qnh i

≤ ∥un − q∗∥2−∥un − pn + pn − qn∥
2

+ 2δn L pnð Þ, pn − qnh i
≤ ∥un − q∗∥2−∥un − pn∥

2−∥pn − qn∥
2

+ 2 un − δnL pnð Þ − pn, qn − pnh i:
ð34Þ

Since qn = PZn
½un − δnLðpnÞ� and from δn+1, we have

2 un − δnL pnð Þ − pn, qn − pnh i = 2 un − δnL unð Þ − pn, qn − pnh i
+ 2δn L unð Þ −L pnð Þ, qn − pnh i

≤
δn
δn+1

2δn+1 L unð Þ −L pnð Þ, qn − pnh i

≤
μδn
δn+1

un − pnk k2 + μδn
δn+1

qn − pnk k2:

ð35Þ

Combining expressions (34) and (35), we obtain

qn − q∗k k2 ≤ un − q∗k k2 − un − pnk k2 − pn − qnk k2

+ δn
δn+1

μ un − pnk k2 + μ qn − pnk k2	 

≤ un − q∗k k2 − 1 − μδn

δn+1

� �
un − pnk k2

− 1 − μδn
δn+1

� �
qn − pnk k2:

ð36Þ

☐☐

Lemma 7. Let L : Z ⟶Z be a mapping meet the items
Condition 1–Condition 4. If there exists a subsequence funk
g convergent weakly to û and limk⟶∞kunk − pnkk = 0, then
û is the solution of (VIP).

Proof. We need to prove that û ∈Ω: Indeed, we have

pnk = PA unk − δnkL unk
� �	 


, ð37Þ

that is equivalent to

unk − δnkL unk
� �

− pnk , y − pnk

D E
≤ 0, ∀y ∈A : ð38Þ
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The above inequality implies that

unk − pnk , y − pnk

D E
≤ δnk L unk

� �
, y − pnk

D E
, ∀y ∈A :

ð39Þ

Thus, we obtain

1
δnk

unk − pnk , y − pnk

D E
+ L unk

� �
, pnk − unk

D E
≤ L unk

� �
, y − unk

� �
, ∀y ∈A :

ð40Þ

Since min fμ/L, δ1g ≤ δ ≤ δ1 + P and funkg is a bounded
sequence. By taking limk⟶∞kunk − pnkk = 0 and k⟶∞ in
(18), we obtain

liminf
k⟶∞

L unk
� �

, y − unk
� �

≥ 0, ∀y ∈A : ð41Þ

Moreover, we have

L pnk

� �
, y − pnk

D E
= L pnk

� �
−L unk

� �
, y − unk

D E
+ L unk

� �
, y − unk

� �
+ L pnk

� �
, unk − pnk

D E
:

ð42Þ

Since limk⟶∞kunk − pnkk = 0 and L is L-Lipschitz con-
tinuity on Z , we have

lim
k⟶∞

L unk
� �

−L pnk

� ���� ��� = 0, ð43Þ

which together with (42) and (43), we obtain

liminf
k⟶∞

L pnk

� �
, y − pnk

D E
≥ 0, ∀y ∈A : ð44Þ

Next, we have

L uni
� �

, y − uni
� �

+ εk ≥ 0, ∀i ≥mk: ð45Þ

Due to fεkg decreasing, this implies that fmkg is increas-
ing.☐☐

Case I. Suppose that a subsequence unmkj

of unmk
such as L

ðunmkj

Þ = 0 (∀j). Let j⟶∞, we get

L ûð Þ, y − ûh i = lim
j⟶∞

L unmkj

� �
, y − û


 �
= 0: ð46Þ

Then, û ∈A which further implies that û ∈Ω:

Case II. Suppose that there exists N0 ∈ℕ such that for all
nmk

≥N0, Lðunmk
Þ ≠ 0: Consider that

Ξnmk
=

L unmk

� �
∥L unmk

� �
∥2
, ∀nmk

≥N0: ð47Þ

Due to the above definition, we obtain

L unmk

� �
, Ξnmk

D E
= 1, ∀nmk

≥N0: ð48Þ

Moreover, expressions (45) and (48) for all nmk
≥N0, we

have

L unmk

� �
, y + εkΞnmk

− unmk

D E
≥ 0: ð49Þ

Due to the pseudomonotonicity of L for nmk
≥N0, we

have

L y + εkΞnmk

� �
, y + εkΞnmk

− unmk

D E
≥ 0: ð50Þ

For all nmk
≥N0, we have

L yð Þ, y − unmk

D E
≥ L yð Þ −L y + εkΞnmk

� �
, y + εkΞnmk

− unmk

D E
− εk L yð Þ, Ξnmk

D E
:

ð51Þ

Let us consider that LðûÞ ≠ 0; we obtain

L ûð Þk k ≤ liminf
k⟶∞

L unk
� ��� ��: ð52Þ

Thus, we obtain

0 ≤ lim
k⟶∞

εkΞnmk

��� ��� = lim
k⟶∞

εk

L unmk

� ���� ��� ≤
0

L ûð Þk k = 0:

ð53Þ

By letting k⟶∞ in (51), we obtain

L yð Þ, y − ûh i ≥ 0, ∀y ∈A : ð54Þ

Due to the Minty Lemma in [41], we infer that û ∈Ω:

Theorem 8. LetL : Z ⟶Z be a mapping that satisfies the
conditions Condition 1–Condition 4. Then, fung sequence
generated by Algorithm 1 strongly converges to an element
q∗ ∈Ω:
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Proof. Since δn ⟶ δ, there exists a fixed number ε ∈ ð0, 1
− μÞ such that

lim
n⟶∞

1 − μδn
δn+1

� �
= 1 − μ > ε > 0, ∀n ≥ n0: ð55Þ

Thus, expression (36) gives that

qn − q∗k k2 ≤ un − q∗k k2, ∀n ≥ n0: ð56Þ

It is given that q∗ ∈Ω; we obtain

un+1 − q∗k k = 1 − ϕn − ψnð Þun + ϕnqn − q∗k k
= 1 − ϕn − ψnð Þ un − q∗ð Þ + ϕn qn − q∗ð Þ − ψnq

∗k k
≤ 1 − ϕn − ψnð Þ un − q∗ð Þ + ϕn qn − q∗ð Þk k + ψn q∗k k:

ð57Þ

Next, we have to evaluate the following:

1 − ϕn − ψnð Þ un − q∗ð Þ + ϕn qn − q∗ð Þk k2
= 1 − ϕn − ψnð Þ2 un − q∗k k2 + ϕ2n qn − q∗k k2

+ 2 1 − ϕn − ψnð Þ un − q∗ð Þ, ϕn qn − q∗ð Þh i
≤ 1 − ϕn − ψnð Þ2 un − q∗k k2 + ϕ2n qn − q∗k k2
+ 2ϕn 1 − ϕn − ψnð Þ un − q∗k k qn − q∗k k,

ð58Þ

≤ 1 − ϕn − ψnð Þ2 qn − q∗k k2 + ϕ2n qn − q∗k k2
+ ϕn 1 − ϕn − ψnð Þ un − q∗k k2 + ϕn 1 − ϕn − ψnð Þ qn − q∗k k2

≤ 1 − ϕn − ψnð Þ 1 − ψnð Þ un − q∗k k2 + ϕn 1 − ψnð Þ qn − q∗k k2:
ð59Þ

Substituting (56) into (59), we obtain

1 − ϕn − ψnð Þ un − q∗ð Þ + ϕn qn − q∗ð Þk k2
≤ 1 − ϕn − ψnð Þ 1 − ψnð Þ un − q∗k k2 + ϕn 1 − ψnð Þ un − q∗k k2
= 1 − ψnð Þ2 un − q∗k k2:

ð60Þ

Next, we have

1 − ϕn − ψnð Þ un − q∗ð Þ + ϕn qn − q∗ð Þk k ≤ 1 − ψnð Þ un − q∗k k:
ð61Þ

From expressions (57) and (61), we obtain

un+1 − q∗k k ≤ 1 − ψnð Þ un − q∗k k + ψn q∗k k ≤max un − q∗k k, q∗k kf g
≤max un0 − q∗

�� ��, q∗k k� �
:

ð62Þ

Thus, from the above relation, we obtain that fung is
bounded sequence. From sequence fun+1g, we can write

un+1 − q∗k k2 = 1 − ϕn − ψnð Þun + ϕnqn − q∗k k2
= 1 − ϕn − ψnð Þ un − q∗ð Þ + ϕn qn − q∗ð Þ − ψnq

∗k k2
= 1 − ϕn − ψnð Þ un − q∗ð Þ + ϕn qn − q∗ð Þk k2

+ ψ2
n q∗k k2 − 2 1 − ϕn − ψnð Þ un − q∗ð Þh

+ ϕn qn − q∗ð Þ, ψnq
∗i:

ð63Þ

By the use of expression (59), we have

1 − ϕn − ψnð Þ un − q∗ð Þ + ϕn qn − q∗ð Þk k2
≤ 1 − ϕn − ψnð Þ 1 − ψnð Þ un − q∗k k2 + ϕn 1 − ψnð Þ qn − q∗k k2:

ð64Þ

Step 0: take u1 ∈A ,δ1 > 0 and select a nonnegative sequence of real numbers fφng such that ∑+∞
n=1φn < +∞. Moreover, fϕng ⊂ ða, b

Þ ⊂ ð0, 1 − ψnÞ and fψng ⊂ ð0, 1Þ meet the following criteria:
lim

n⟶+∞
ψn = 0 and∑+∞

n=1ψn = +∞:

Step 1: evaluate
pn = PA ðun − δnLðunÞÞ:

If un = pn, then STOP. Otherwise, go to Step 2.
Step 2: firstly, construct a half-space

Zn = fz ∈Z : hun − δnLðunÞ − pn, z − pni ≤ 0g,
and compute

qn = PZn
ðun − δnLðpnÞÞ:

Step 3: evaluate
un+1 = ð1 − ϕn − ψnÞun + ϕnqn:

Step 4: evaluate

δn+1 =
min fδn + φn, ðμ∥un − pn∥

2 + μ∥qn − pn∥
2/2½hLðunÞ −LðpnÞ, qn − pni�Þg ifhLðunÞ −LðpnÞ, qn − pni > 0,

φn + δn, otherwise:

  
3:1Þ

Set n≔ n + 1 and go back to Step 1.

Algorithm 1: Nonmonotonic explicit Mann-type subgradient extragradient method.
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Combining expressions (63) and (64) (for some K2 > 0),
we obtain

un+1 − q∗k k2 ≤ 1 − ϕn − ψnð Þ 1 − ψnð Þ un − q∗k k2 + ϕn 1 − ψnð Þ qn − q∗k k2 + ψnK2

≤ 1 − ϕn − ψnð Þ 1 − ψnð Þ un − q∗k k2 + ψnK2 + ϕn 1 − ψnð Þ
� un − q∗k k2 − 1 − μδn

δn+1

� �
un − pnk k2 − 1 − μδn

δn+1

� �
qn − pnk k2

� �
= 1 − ψnð Þ2 un − q∗k k2 + ψnK2 − ϕn 1 − ψnð Þ
� 1 − μδn

δn+1

� �
un − pnk k2 + 1 − μδn

δn+1

� �
qn − pnk k2

� �
≤ un − q∗k k2 + ψnK2 − ϕn 1 − ψnð Þ
� 1 − μδn

δn+1

� �
un − pnk k2 + 1 − μδn

δn+1

� �
qn − pnk k2

� �
:

ð65Þ

The remainder of the proof is now split into two parts:

Case 1. Suppose that there exists a fixed number n1 ∈ℕ
(n1 ≥ n0) such that

un+1 − q∗k k ≤ un − q∗k k, ∀n ≥ n1: ð66Þ

Then, limn⟶∞kun − q∗k exists. From (65), we have

ϕn 1 − ψnð Þ 1 − μδn
δn+1

� �
un − pnk k2 + 1 − μδn

δn+1

� �
qn − pnk k2

� �
≤ un − q∗k k2 + ψnK2 − un+1 − q∗k k2:

ð67Þ

Due to the existence of limn⟶+∞kun − q∗k and ψn
⟶ 0, we infer that

lim
n⟶∞

un − pnk k = lim
n⟶∞

qn − pnk k = 0: ð68Þ

It follows that

lim
n⟶∞

un − qnk k ≤ lim
n⟶∞

un − pnk k + lim
n⟶∞

pn − qnk k = 0:

ð69Þ

It follows from expression (69) and ψn ⟶ 0 that

un+1 − unk k = 1 − ϕn − ψnð Þun + ϕnqn − unk k
= un − ψnun + ϕnqn − ϕnun − unk k
≤ ϕn qn − unk k + ψn unk k,

ð70Þ

which implies that

un+1 − unk k⟶ 0 as n⟶ +∞: ð71Þ

We have q∗ = PΩð0Þ and by using Lemma 1 (i), we can
write

0 − q∗, y − q∗h i ≤ 0, ∀y ∈Ω: ð72Þ

By using expression (72) and Lemma 7, we obtain

limsup
n⟶∞

q∗, q∗ − unh i = limsup
k⟶∞

q∗, q∗ − unk
� �

= q∗, q∗ − ûh i ≤ 0:

ð73Þ

Due to limn⟶∞kun+1 − unk = 0. It gives that

limsup
n⟶∞

q∗, q∗ − un+1h i ≤ limsup
n⟶∞

q∗, q∗ − unh i + limsup
n⟶∞

q∗, un − un+1h i ≤ 0:

ð74Þ

Next, we assume that

tn = 1 − ϕnð Þun + ϕnqn: ð75Þ

Thus, we have

un+1 = tn − ψnun = 1 − ψnð Þtn − ψn un − tnð Þ
= 1 − ψnð Þtn − ψnϕn un − qnð Þ, ð76Þ

where

un − tn = un − 1 − ϕnð Þun − ϕnqn = ϕn un − qnð Þ: ð77Þ

Thus, we obtain

un+1 − q∗k k2 = 1 − ψnð Þtn + ϕnψn qn − unð Þ − q∗k k2
= 1 − ψnð Þ tn − q∗ð Þ + ϕnψn qn − unð Þ − ψnq

∗½ �k k2
≤ 1 − ψnð Þ2 tn − q∗k k2 + 2 ϕnψn qn − unð Þh

− ψnq
∗, 1 − ψnð Þ tn − q∗ð Þ + ϕnψn qn − unð Þ − ψnq

∗i
= 1 − ψnð Þ2 tn − q∗k k2 + 2 ϕnψn qn − unð Þh

− ψnq
∗, tn − ψntn − ψn un − tnð Þ − q∗i

= 1 − ψnð Þ tn − q∗k k2 + 2ϕnψn qn − un, un+1 − q∗h i
+ 2ψn q∗, q∗ − un+1h i

≤ 1 − ψnð Þ tn − q∗k k2 + 2ϕnψn qn − unk k un+1k
− q∗k + 2ψn q∗, q∗ − un+1h i:

ð78Þ

Next, we have to compute

tn − q∗k k2 = 1 − ϕnð Þun + ϕnqn − q∗k k2
= 1 − ϕnð Þ un − q∗ð Þ + ϕn qn − q∗ð Þk k2
= 1 − ϕnð Þ2 un − q∗k k2 + ϕ2n qn − q∗k k2

+ 2 1 − ϕnð Þ un − q∗ð Þ, ϕn qn − q∗ð Þh i
≤ 1 − ϕnð Þ2 un − q∗k k2 + ϕ2n qn − q∗k k2

+ 2ϕn 1 − ϕnð Þ un − q∗k k qn − q∗k k
≤ 1 − ϕnð Þ2 un − q∗k k2 + ϕ2n qn − q∗k k2

+ ϕn 1 − ϕnð Þ un − q∗k k2 + ϕn 1 − ϕnð Þ qn − q∗k k2
= 1 − ϕnð Þ un − q∗k k2 + ϕn qn − q∗k k2
≤ 1 − ϕnð Þ un − q∗k k2 + ϕn un − q∗k k2 = un − q∗k k2:

ð79Þ
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From expressions (78) and (79), we have

un+1 − q∗k k2 ≤ 1 − ψnð Þ un − q∗k k2 + ψn 2ϕn qn − unk k un+1k½
− q∗k + 2 q∗, q∗ − un+1h i�:

ð80Þ

By the use of expressions (74) and (80) and Lemma 2, we
can derive that kun − q∗k⟶ 0 as n⟶ +∞:

Case 2. Suppose that there exists a subsequence fnig of fng
in order that

uni − q∗
�� �� ≤ uni+1 − q∗

�� ��, ∀i ∈ℕ: ð81Þ

By Lemma 3, we have

umk
− q∗

�� �� ≤ umk+1
− q∗

�� �� and  uk − q∗k k ≤ umk+1
− q∗

�� ��, ∀k ∈ℕ:

ð82Þ

By the use of expression (67), we have

ϕmk
1 − ψmk

� �
1 −

μδmk

δmk+1

 !
umk

− pmk

��� ���2 + 1 −
μδmk

δmk+1

 !
qmk

− pmk

��� ���2
" #

≤ umk
− q∗

�� ��2 + ψmk
K2 − umk+1 − q∗

�� ��2:
ð83Þ

Due to ψmk
⟶ 0, we can deduce as follows:

lim
k⟶∞

umk
− pmk

��� ��� = lim
k⟶∞

qmk
− pmk

��� ��� = 0: ð84Þ

It follows that

lim
k⟶∞

umk
− qmk

��� ��� ≤ lim
k⟶∞

umk
− pmk

��� ��� + lim
k⟶∞

pmk
− qmk

��� ��� = 0:

ð85Þ

Further, it implies that

umk+1 − umk

�� �� = 1 − ϕmk
− ψmk

� �
umk

+ ϕmk
qmk

− umk

��� ���
= umk

− ψmk
umk

+ ϕmk
qmk

− ϕmk
umk

− umk

��� ���
≤ ϕmk

qmk
− umk

��� ��� + ψmk
umk

�� ��⟶ 0:

ð86Þ

Similar to Case 1, we obtain

limsup
k⟶∞

q∗, umk+1 − q∗
� �

≤ 0: ð87Þ

Step 0: take u1 ∈A ,δ1 > 0 and select a nonnegative sequence of real number fφng such that ∑+∞
n=1φn < +∞. Moreover, fψng ⊂ ð0, 1Þ

meet the following criteria:
lim

n⟶+∞
ψn = 0 and∑+∞

n=1ψn = +∞:

Step 1: evaluate
pn = PA ðun − δnLðunÞÞ:

If un = pn, then STOP. Otherwise, go to Step 2.
Step 2: evaluate

Zn = fz ∈Z : hun − δnLðunÞ − pn, z − pni ≤ 0g,
and compute

qn = PZn
ðun − δnLðpnÞÞ:

Step 3: evaluate
un+1 = ψngðunÞ + ð1 − ψnÞqn:

Step 4: evaluate

δn+1 =
min fδn + φn, ðμkun − pnk2 + μkqn − pnk2/2½hLðunÞ −LðpnÞ, qn − pni�Þg if hLðunÞ −LðpnÞ, qn − pni > 0,
φn + δn, otherwise:

  
3:2Þ

Set n≔ n + 1 and go back to Step 1.

Algorithm 2: Nonmonotonic explicit viscosity-type subgradient extragradient method.

Number of iterations

Method-1
Method-2

Method-3
Method-4

0 10 20 30 40 50 60 70

10–2

10–1

100

101

10–3

D
n

Figure 1: Algorithmic descriptions of Algorithm 1 and
Algorithm 2 as well Algorithm 2 in [37] and Algorithm 1 in [36]
when m = 5:
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By the use of expressions (80) and (82), we have

umk+1 − q∗
�� ��2 ≤ 1 − ψmk

� �
umk

− q∗
�� ��2 + ψmk

� 2ϕmk
qmk

− umk

��� ��� umk+1 − q∗
�� �� + 2 q∗, q∗ − umk+1

� �h i
≤ 1 − ψmk

� �
umk+1

− q∗
�� ��2 + ψmk

� 2ϕmk
qmk

− umk

��� ��� umk+1 − q∗
�� �� + 2 q∗, q∗ − umk+1

� �h i
:

ð88Þ

It follows that

umk+1 − q∗
�� ��2 ≤ 2ϕmk

qmk
− umk

��� ��� umk+1 − q∗
�� �� + 2 q∗, q∗ − umk+1

� �
:

ð89Þ

Since ψmk
⟶ 0 and kumk

− q∗k is a bounded sequence
with (87) and (89), we have

umk+1 − q∗
�� ��2 ⟶ 0, ask⟶∞: ð90Þ

Elapsed time (sec)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

10–2

10–1

100

101

10–3

D
n
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Method-3
Method-4

Figure 2: Algorithmic descriptions of Algorithm 1 and Algorithm 2 with Algorithm 2 in [37] and Algorithm 1 in [36] when m = 5:
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Number of iterations

500

10–2

10–1

100

101

10–3

D
n

Method-1
Method-2

Method-3
Method-4

Figure 3: Algorithmic descriptions of Algorithm 1 and Algorithm 2 with Algorithm 2 in [37] and Algorithm 1 in [36] when m = 10:
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The above expression implies that

lim
k⟶∞

uk − q∗k k2 ≤ lim
k⟶∞

umk+1 − q∗
�� ��2 ≤ 0: ð91Þ

From the above discussions, we have un ⟶ q∗ as n
⟶∞:

Theorem 9. Assume that L : Z ⟶Z is a mapping that
meets the conditions Condition 1–Condition 4. Then, the f

ung sequence generated by Algorithm 2 strongly converges to
an element q∗ ∈Ω:

Proof. Since δn ⟶ δ, there exists a positive number ε ∈ ð0,
1 − μÞ such that

lim
n⟶∞

1 − μδn
δn+1

� �
= 1 − μ > ε > 0: ð92Þ
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Figure 4: Algorithmic descriptions of Algorithm 1 and Algorithm 2 with Algorithm 2 in [37] and Algorithm 1 in [36] when m = 10:
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Figure 5: Algorithmic descriptions of Algorithm 1 and Algorithm 2 with Algorithm 2 in [37] and Algorithm 1 in [36] when m = 20:
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Thus, there exists a number N1 ∈ℕ such that

1 − μδn
δn+1

� �
> ε > 0, ∀n ≥N1: ð93Þ

From expression (36), we obtain

qn − q∗k k2 ≤ un − q∗k k2, ∀n ≥N1: ð94Þ

Next, we have

un+1 − q∗k k = ψng unð Þ + 1 − ψnð Þqn − q∗k k
= ψn g unð Þ − q∗½ � + 1 − ψnð Þ qn − q∗½ �k k
= ψn g unð Þ + g q∗ð Þ − g q∗ð Þ − q∗½ � + 1 − ψnð Þ qn − q∗½ �k k
≤ ψn g unð Þ − g q∗ð Þk k + ψn g q∗ð Þ − q∗k k + 1 − ψnð Þ qn − q∗k k
≤ ψnξ un − q∗k k + ψn g q∗ð Þ − q∗k k + 1 − ψnð Þ qn − q∗k k:

ð95Þ

From expressions (94) and (95) and ψn ⊂ ð0, 1Þ, we
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Figure 6: Algorithmic descriptions of Algorithm 1 and Algorithm 2 with Algorithm 2 in [37] and Algorithm 1 in [36] when m = 20:

Table 1: Algorithmic study for Example 11.

m
Method-1 Method-2 Method-3 Method-4

Iter. Time Iter. Time Iter. Time Iter. Time

5 68 0.798005200 57 0.665091600 42 0.480156900 29 0.360117900

10 264 3.218157200 241 2.998657400 95 1.121305500 58 0.733156900

20 384 4.884210700 297 3.593486400 164 1.930182900 113 1.339267400

30 649 8.356499700 545 7.850765000 308 3.986678100 196 2.593555200

40 1138 16.96909990 997 15.25866440 357 4.784712300 238 3.410400500

50 2467 37.42977650 17962 24.32523500 558 10.32619485 487 6.132444757

Table 2: Algorithmic study for Example 12.

m
Method-1 Method-2 Method-3 Method-4

Iter. Time Iter. Time Iter. Time Iter. Time

1 482 0.294028700 406 0.211852600 349 0.166720900 308 0.166098200

t2 268 0.136482920 196 0.112184600 155 0.103728300 112 0.094193700

et 371 0.145282000 311 0.123552000 255 0.099748260 211 0.073510000

sin tð Þ 431 0.212849200 389 0.201682200 279 0.112940100 239 0.102749200
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obtain

un+1 − q∗k k ≤ ψnξ un − q∗k k + ψn g q∗ð Þ − q∗k k + 1 − ψnð Þ un − q∗k k
= 1 − ψn + ξψn½ � un − q∗k k + ψn 1 − ξð Þ g q∗ð Þ − q∗k k

1 − ξð Þ
≤max un − q∗k k, g q∗ð Þ − q∗k k

1 − ξð Þ
� �

≤max uN1
− q∗

�� ��, g q∗ð Þ − q∗k k
1 − ξð Þ

� �
:

ð96Þ

Therefore, we infer that the fung is a bounded sequence.
Now, we are in a position to use the Banach contraction the-
orem for the existence of a unique fixed point q∗ ∈Ω such
that

q∗ = PΩ g q∗ð Þð Þ: ð97Þ

Table 3: Example 13: algorithmic description of Algorithm 2 in [37] and u1 = ð1, 2, 3, 4ÞT .
Iter. (n) u1 u2 u3 u4
1 4.59999999902338 18.5464999999117 18.7004999999153 17.5944999993118

2 -6.26760004899506 16.7378886580863 16.9671141650914 15.8548101409442

3 -5.91418181483705 16.0308795300640 16.2986437617166 15.2919549387799

4 -5.38921479466356 4.78801650028211 4.64461284974750 5.38714304326419

5 1.00580406596249 4.73241274186297 4.62870240188635 5.25179596894124

6 1.23013013951725 4.70677542647729 4.63592929873170 4.97142857141815

7 1.44950907993550 4.70213655930865 4.65912535719577 4.97499999984847

8 1.66717886007189 4.71660015705847 4.69751098404819 4.97777776498426

9 1.88563318471514 4.74871960483109 4.75038581190807 4.97999999900850

10 2.10707812245062 4.79781281512387 4.81759412391964 4.98181818166635

11 2.33359792353143 4.86377467908333 4.89941458277316 4.98333333327664

12 2.56667054007920 4.94667114193612 4.98265426879577 4.98294766642007

13 2.79924540130681 4.96031745289142 4.97036949333673 4.98462062077961

14 3.03033454990915 4.96124045379347 4.97356261422028 4.98546003308369

15 3.26012741095086 4.96358686948872 4.97505259464489 4.98655189412727

⋮ ⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮ ⋮
1086 4.99924843119192 4.99944280475227 4.99963717745358 4.99983154929598

1087 4.99924912189630 4.99944331684910 4.99963751094444 4.99983170418246

1088 4.99924981133227 4.99944382800546 4.99963784382278 4.99983185878434

1089 4.99925049950333 4.99944433822395 4.99963817609027 4.99983201310240

1090 4.99925118641296 4.99944484750715 4.99963850774860 4.99983216713743

1091 4.99925187206462 4.99944535585762 4.99963883879944 4.99983232089020

1092 4.99925255646177 4.99944586327793 4.99963916924446 4.99983247436150

1093 4.99925323960783 4.99944636977061 4.99963949908532 4.99983262755208

1094 4.99925392150626 4.99944687533823 4.99963982832368 4.99983278046273

1095 4.99925460216044 4.99944737998330 4.99964015696118 4.99983293309420

1096 4.99925528157380 4.99944788370835 4.99964048499947 4.99983308544727

1097 4.99925595974971 4.99944838651589 4.99964081244018 4.99983323752269

1098 4.99925663669156 4.99944888840844 4.99964113928495 4.99983338932122

1099 4.99925731240271 4.99944938938848 4.99964146553540 4.99983354084361

1100 4.99925798688652 4.99944988945849 4.99964179119316 4.99983369209063

1101 4.99925866014632 4.99945038862097 4.99964211625983 4.99983384306301

1102 4.99925933218544 4.99945088687837 4.99964244073702 4.99983399376152

1103 4.99926000300721 4.99945138423316 4.99964276462634 4.99983414418688

1104 4.99926067261492 4.99945188068778 4.99964308792938 4.99983429433984

1105 4.99926134101187 4.99945237624468 4.99964341064774 4.99983444422115

1106 4.99926200820134 4.99945287090629 4.99964373278299 4.99983459383154

1107 4.99926267418660 4.99945336467504 4.99964405433671 4.99983474317174

CPU time is seconds 8.339245
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Due to the projection mapping, we can write

g q∗ð Þ − q∗, y − q∗h i ≤ 0, ∀y ∈Ω: ð98Þ

From Lemma 1 and expression (36), we have

un+1 − q∗k k2 = ψng unð Þ + 1 − ψnð Þqn − q∗k k2
= ψn g unð Þ − q∗½ � + 1 − ψnð Þ qn − q∗½ �k k2
= ψn g unð Þ − q∗k k2 + 1 − ψnð Þ qn − q∗k k2

− ψn 1 − ψnð Þ g unð Þ − qnk k2
≤ ψn g unð Þ − q∗k k2 + 1 − ψnð Þ
� ∥ un − q∗k k2 − 1 − μδn

δn+1

� �
un − pnk k2

�

− 1 − μδn
δn+1

� �
qn − pnk k2

�
− ψn 1 − ψnð Þ g unð Þ − qnk k2

≤ ψn g unð Þ − q∗k k2 + un − q∗k k2 − 1 − ψnð Þ
� 1 − μδn

δn+1

� �
un − pnk k2 − 1 − ψnð Þ 1 − μδn

δn+1

� �
qn − pnk k2:

ð99Þ

The above expression implies that

1 − ψnð Þ 1 − μδn
δn+1

� �
un − pnk k2 + 1 − ψnð Þ 1 − μδn

δn+1

� �
qn − pnk k2

≤ ψn g unð Þ − q∗k k2 + un − q∗k k2 − un+1 − q∗k k2:
ð100Þ

☐

Case 1. Suppose that there exists a fixed number N2 ∈ℕ
(N2 ≥N1) such that

un+1 − q∗k k ≤ un − q∗k k, ∀n ≥N2: ð101Þ

Then, limn⟶∞kun − q∗k exists and let limn⟶∞kun −
q∗k = l: By the use of expression (99), we have

1 − ψnð Þ 1 − μδn
δn+1

� �
un − pnk k2 + 1 − ψnð Þ 1 − μδn

δn+1

� �
qn − pnk k2

≤ ψn g unð Þ − q∗k k2+∥ un − q∗k k2 − un+1 − q∗k k2:
ð102Þ

By the of existence of a limit of a sequence limn⟶∞∥un
− q∗∥ and ψn ⟶ 0, we obtain

lim
n⟶∞

un − pnk k = lim
n⟶∞

qn − pnk k = 0: ð103Þ

Furthermore, it implies that

lim
n⟶∞

un − pnk k ≤ lim
n⟶∞

un − pnk k + lim
n⟶∞

qn − pnk k = 0:

ð104Þ

Thus, we have

un+1 − unk k = ψng unð Þ + 1 − ψnð Þqn − unk k
= ψn g unð Þ − un½ � + 1 − ψnð Þ qn − un½ �k k
≤ ψn g unð Þ − unk k + 1 − ψnð Þ qn − unk k⟶ 0:

ð105Þ

Thus, we have

lim
n⟶∞

un+1 − unk k = 0: ð106Þ

By using expression (97) and Lemma 7, we obtain

limsup
n⟶∞

g q∗ð Þ − q∗, un − q∗h i = limsup
k⟶∞

g q∗ð Þ − q∗, unk − q∗
� �

= g q∗ð Þ − q∗, û − q∗h i ≤ 0:
ð107Þ

By the use of limn⟶∞kun+1 − unk = 0, we have

limsup
n⟶∞

g q∗ð Þ − q∗, un+1 − q∗h i ≤ limsup
n⟶∞

g q∗ð Þ − q∗, un+1 − unh i
+ limsup

n⟶∞
g q∗ð Þ − q∗, un − q∗h i ≤ 0:

ð108Þ

By using Lemma 1 and expression (94), we have

un+1 − q∗k k2 = ψng unð Þ + 1 − ψnð Þqn − q∗k k2
= ψn g unð Þ − q∗½ � + 1 − ψnð Þ qn − q∗½ �k k2
≤ 1 − ψnð Þ2 qn − q∗k k2 + 2ψn g unð Þ − q∗, 1 − ψnð Þ qn − q∗½ �h

+ ψn g unð Þ − q∗½ �i
= 1 − ψnð Þ2 qn − q∗k k2 + 2ψn g unð Þ − g q∗ð Þh

+ g q∗ð Þ − q∗, un+1 − q∗i
= 1 − ψnð Þ2 qn − q∗k k2 + 2ψn g unð Þ − g q∗ð Þ, un+1 − q∗h i

+ 2ψn g q∗ð Þ − q∗, un+1 − q∗h i
≤ 1 − ψnð Þ2 qn − q∗k k2 + 2ψnξ un − q∗k k2 un+1 − q∗k k

+ 2ψn g q∗ð Þ − q∗, un+1 − q∗h i
≤ 1 + ψ2

n − 2ψn

� �
un − q∗k k2 + 2ψnξ un − q∗k k2

+ 2ψn g q∗ð Þ − q∗, un+1 − q∗h i
= 1 − 2ψnð Þ un − q∗k k2 + ψ2

n un − q∗k k2 + 2ψnξ un − q∗k k2
+ 2ψn g q∗ð Þ − q∗, un+1 − q∗h i = 1 − 2ψn 1 − ξð Þ½ � un − q∗k k2

+ 2ψn 1 − ξð Þ ψn un − q∗k k2
2 1 − ξð Þ + g q∗ð Þ − q∗, un+1 − q∗h i

1 − ξ

� �
:

ð109Þ

It is clear from expressions (108) and (109) such that

limsup
n⟶∞

ψn un − q∗k k2
2 1 − ξð Þ + g q∗ð Þ − q∗, un+1 − q∗h i

1 − ξ

� �
≤ 0:

ð110Þ

By choosing n ≥N3 ∈ℕ (N3 ≥N2) large enough such
that 2γnð1 − ξÞ < 1: By the use of (109) and (110) and
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through Lemma 2, we conclude that ∥un − q∗∥⟶0 as n
⟶∞:

Case 2. Consider that there exists a subsequence fnig of fng
such that

uni − q∗
�� �� ≤ uni+1 − q∗

�� ��, ∀i ∈ℕ: ð111Þ

Then, using Lemma 3, there exists a sequence fmkg ⊂ℕ
as fmkg⟶∞, such that

umk
− q∗

�� �� ≤ umk+1
− q∗

�� ��, uk − q∗k k ≤ umk+1
− q∗

�� ��, for allk ∈ℕ:

ð112Þ

Table 4: Example 13: algorithmic description of Algorithm 1 in [36] and u1 = ð1, 2, 3, 4ÞT .
Iter. (n) u1 u2 u3 u4
1 4.54999999902338 18.4464999999117 18.5504999999153 17.3944999993118

2 -6.24222797440616 13.5241851137974 13.6213471992304 12.5302619081771

3 -0.659876119446077 4.68238127646957 4.65194330093169 5.00329162462314

4 0.946802477625882 4.61084600770298 4.58119171017774 4.92362497958044

5 1.04934390009719 4.55766490194321 4.52868493067142 4.86118347395020

6 1.14854226167386 4.51824332123436 4.48986816365673 4.81270779537308

7 1.24574590629948 4.48946698164860 4.46164839905812 4.77550686438977

8 1.34146056234125 4.46933050144783 4.44203357836196 4.74729888976619

9 1.43627311838568 4.45647220663972 4.42967080774664 4.72665515468439

10 1.53065237050934 4.44994299224969 4.42361803309317 4.71255603858976

11 1.62498530558409 4.44907178330946 4.42320908822800 4.70425974095071

12 1.71962000624484 4.45338248767389 4.42797158878528 4.70123046557113

13 1.81488364798492 4.46254250802635 4.43757564752582 4.70308628647431

14 1.91109217493918 4.47632857351891 4.45180046474299 4.70956149682268

15 2.00855776273081 4.49460389018728 4.47051224149727 4.72048089550204

⋮ ⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮ ⋮
1081 4.99949078231531 4.99949078231531 4.99949078231531 4.99949078231531

1082 4.99949130039142 4.99949130039142 4.99949130039142 4.99949130039142

1083 4.99949181741442 4.99949181741442 4.99949181741442 4.99949181741442

1084 4.99949233338752 4.99949233338752 4.99949233338752 4.99949233338752

1085 4.99949284831392 4.99949284831392 4.99949284831392 4.99949284831392

1086 4.99949336219679 4.99949336219679 4.99949336219679 4.99949336219679

1087 4.99949387503931 4.99949387503931 4.99949387503931 4.99949387503931

1088 4.99949438684463 4.99949438684463 4.99949438684463 4.99949438684463

1089 4.99949489761590 4.99949489761590 4.99949489761590 4.99949489761590

1090 4.99949540735624 4.99949540735624 4.99949540735624 4.99949540735624

1091 4.99949591606878 4.99949591606878 4.99949591606878 4.99949591606878

1092 4.99949642375661 4.99949642375661 4.99949642375661 4.99949642375661

1093 4.99949693042284 4.99949693042284 4.99949693042284 4.99949693042284

1094 4.99949743607054 4.99949743607054 4.99949743607054 4.99949743607054

1095 4.99949794070278 4.99949794070278 4.99949794070278 4.99949794070278

1096 4.99949844432262 4.99949844432262 4.99949844432262 4.99949844432262

1097 4.99949894693310 4.99949894693310 4.99949894693310 4.99949894693310

1098 4.99949944853725 4.99949944853725 4.99949944853725 4.99949944853725

1099 4.99949994913809 4.99949994913809 4.99949994913809 4.99949994913809

1000 4.99950044873863 4.99950044873863 4.99950044873863 4.99950044873863

1001 4.99950094734186 4.99950094734186 4.99950094734186 4.99950094734186

CPU time is seconds 7.690413
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Table 5: Example 13: algorithmic description of Algorithm 1 and u1 = ð1, 2, 3, 4ÞT .
Iter. (n) u1 u2 u3 u4
1 4.76666666563579 19.3990833332401 19.4727499999106 18.2164166659403

2 -6.89912059339238 18.1614280199001 18.2430063869481 16.8357425433078

3 -6.79443152520300 17.8896263780042 17.9698451056013 16.5860356593549

4 -6.48577908884055 4.74876581346600 4.68957409065068 5.74296770759381

5 0.967259458426478 4.73386092054218 4.67600506823831 5.28600264404358

6 1.95405193843723 6.82802561081780 6.99483339988724 5.16669743240466

7 3.19683502766684 5.04658834550239 5.03534741320422 5.05670610709957

8 4.88155078605583 4.96308402800923 4.96500619808367 4.96133883492052

9 1.29027081990860 6.20942957200619 6.32344981434144 6.10583077439888

10 -16.8977269679284 39.2523493068962 39.5416762684644 38.9810641968152

11 -16.8686988161152 39.2288250269955 39.5165446165549 38.9590470564150

12 -17.5936196810597 5.25777948675977 5.05059553613937 5.45334598035476

13 0.953804394536662 5.24340705918321 5.03779221686998 5.23720308394482

14 -2.97340727848293 17.2929482826102 17.1772480445095 17.2896868859967

15 -2.98444635460549 17.2911791507813 17.1759609970061 17.2879313433204

⋮ ⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮ ⋮
718 4.99913721960184 4.99966942735891 4.99966941266818 4.99966942693145

719 4.99913841886068 4.99966988620944 4.99966987154072 4.99966988578262

720 4.99913961479023 4.99967034378793 4.99967032914114 4.99967034336174

721 4.99914080740432 4.99967080009965 4.99967078547474 4.99967079967410

722 4.99914199671672 4.99967125514986 4.99967124054676 4.99967125472495

723 4.99914318274110 4.99967170894380 4.99967169436244 4.99967170851951

724 4.99914436549112 4.99967216148664 4.99967214692697 4.99967216106299

725 4.99914554498034 4.99967261278354 4.99967259824550 4.99967261236052

726 4.99914672122220 4.99967306283966 4.99967304832317 4.99967306241727

727 4.99914789423003 4.99967351166012 4.99967349716513 4.99967351123835

728 4.99914906401720 4.99967395924998 4.99967394477643 4.99967395882883

729 4.99915023059699 4.99967440561429 4.99967439116212 4.99967440519377

730 4.99915139398255 4.99967485075809 4.99967483632724 4.99967485033819

731 4.99915255418697 4.99967529468638 4.99967528027678 4.99967529426709

732 4.99915371122326 4.99967573740412 4.99967572301572 4.99967573698545

733 4.99915486510439 4.99967617891628 4.99967616454901 4.99967617849822

734 4.99915601584329 4.99967661922774 4.99967660488156 4.99967661881030

735 4.99915716345274 4.99967705834342 4.99967704401826 4.99967705792660

736 4.99915830794551 4.99967749626818 4.99967748196397 4.99967749585196

737 4.99915944933426 4.99967793300684 4.99967791872353 4.99967793259123

738 4.99916058763160 4.99967836856424 4.99967835430177 4.99967836814924

739 4.99916172285006 4.99967880294516 4.99967878870346 4.99967880253076

740 4.99916285500216 4.99967923615434 4.99967922193337 4.99967923574055

741 4.99916398410028 4.99967966819653 4.99967965399622 4.99967966778334

742 4.99916511015677 4.99968009907643 4.99968008489673 4.99968009866384

743 4.99916623318388 4.99968052879874 4.99968051463958 4.99968052838674

744 4.99916735319382 4.99968095736811 4.99968094322945 4.99968095695672

745 4.99916847019876 4.99968138478917 4.99968137067095 4.99968138437837

CPU time is seconds 5.182248
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Thus, we have

1 − ψmk

� �
1 −

μδmk

δmk+1

 !
umk

− pmk

��� ���2 + 1 − ψmk

� �
1 −

μδmk

δmk+1

 !
qmk

− pmk

��� ���2
≤ ψmk

g umk

� �
− q∗

�� ��2 + umk
− q∗

�� ��2 − umk+1 − q∗
�� ��2:

ð113Þ

Since ψmk
⟶ 0 implies that

lim
k⟶∞

umk
− pmk

��� ��� = lim
k⟶∞

qmk
− pmk

��� ��� = 0: ð114Þ

Table 6: Example 13: algorithmic description of Algorithm 2 and u1 = ð1, 2, 3, 4ÞT .
Iter. (n) u1 u2 u3 u4
1 3.72399999925560 14.5721099999327 14.9072699999354 14.2820299994755

2 -2.15456883397507 14.1819518247169 14.5351508101264 13.8743472579798

3 -1.91884564644980 14.7335505679521 15.0699505703768 14.4407029303704

4 -3.75031965270586 8.60066516780067 8.66301230690689 8.54719173870520

5 -0.610354905863696 5.97030538364658 5.97335233684089 5.96773839611341

6 -0.760180052633688 6.39612802072305 6.39915756275061 6.39357570169468

7 0.883426357410548 5.46334299554989 5.45041815549462 5.47423303492034

8 2.24275125763655 5.11576078694906 5.12103138003741 5.11131429071216

9 1.88904098349673 6.05244056925146 6.05529370932879 6.05002755957568

10 2.94173536203857 5.29641543454450 5.29701704593678 5.29590634994195

11 3.95963752720103 5.10693325887312 5.10709889135520 5.10679307211866

12 4.05539113558902 5.22425012478815 5.22438849354865 5.22413300798106

13 4.48640280826840 5.09245571277969 5.09251889856043 5.09240223042630

14 4.63687195165905 5.07427886151574 5.07432105870254 5.07424314405336

15 4.78911903854907 5.03528185258641 5.03530457387877 5.03526262019362

⋮ ⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮ ⋮
616 4.99913861830495 4.99967028584338 4.99967032490328 4.99967025278006

617 4.99914001259341 4.99967081825953 4.99967085725320 4.99967078525225

618 4.99914140237539 4.99967134895898 4.99967138788665 4.99967131600757

619 4.99914278767268 4.99967187795002 4.99967191681191 4.99967184505430

620 4.99914416850695 4.99967240524090 4.99967244403722 4.99967237240068

621 4.99914554489976 4.99967293083979 4.99967296957076 4.99967289805489

622 4.99914691687247 4.99967345475484 4.99967349342067 4.99967342202507

623 4.99914828444637 4.99967397699410 4.99967401559502 4.99967394431929

624 4.99914964764256 4.99967449756562 4.99967453610183 4.99967446494558

625 4.99915100648201 4.99967501647738 4.99967505494909 4.99967498391194

626 4.99915236098562 4.99967553373728 4.99967557214471 4.99967550122626

627 4.99915371117408 4.99967604935322 4.99967608769656 4.99967601689643

628 4.99915505706797 4.99967656333301 4.99967660161249 4.99967653093029

629 4.99915639868777 4.99967707568443 4.99967711390025 4.99967704333559

631 4.99915773605379 4.99967758641521 4.99967762456757 4.99967755412008

632 4.99915906918624 4.99967809553302 4.99967813362214 4.99967806329143

633 4.99916039810519 4.99967860304549 4.99967864107156 4.99967857085726

634 4.99916172283057 4.99967910896021 4.99967914692344 4.99967907682517

635 4.99916304338221 4.99967961328470 4.99967965118530 4.99967958120268

636 4.99916435977982 4.99968011602645 4.99968015386462 4.99968008399728

637 4.99916567204293 4.99968061719291 4.99968065496885 4.99968058521642

638 4.99916698019104 4.99968111679145 4.99968115450536 4.99968108486747

639 4.99916828424343 4.99968161482945 4.99968165248151 4.99968158295780

CPU time is seconds 4.517220
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Next, we obtain

umk+1 − umk

�� �� = ψmk
g umk

� �
+ 1 − ψmk

� �
qmk

− umk

��� ���
= ψmk

g umk

� �
− umk

	 

+ 1 − ψmk

� �
qmk

− umk

h i��� ���
≤ ψmk

g umk

� �
− umk

�� �� + 1 − ψmk

� �
qmk

− umk

��� ���⟶ 0:

ð115Þ

Similar to the Case 1, we can write

limsup
k⟶∞

g q∗ð Þ − q∗, umk+1 − q∗
� �

≤ 0: ð116Þ

By using (109) and (112), we have
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Figure 7: Algorithmic descriptions of Algorithm 1 and Algorithm 2 as well as Algorithm 2 in [37] and Algorithm 1 in [36] when u1 =
½1:5,1:7�T :
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Figure 8: Algorithmic descriptions of Algorithm 1 and Algorithm 2 as well as Algorithm 2 in [37] and Algorithm 1 in [36] when u1 =
½0, 0�T :
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Figure 9: Algorithmic descriptions of Algorithm 1 and Algorithm 2 as well as Algorithm 2 in [37] and Algorithm 1 in [36] when u1 =
½10, 10�T :
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Figure 10: Algorithmic descriptions of Algorithm 1 and Algorithm 2 as well as Algorithm 2 in [37] and Algorithm 1 in [36] when u1 =
½−5,−5�T :

Table 7: Algorithmic study for Example 14.

u1
Method-1 Method-2 Method-3 Method-4

Iter. Time Iter. Time Iter. Time Iter. Time

1:5,1:7½ �T 170 9.38124300 147 8.166378500 81 5.082575400 61 3.489680300

0, 0½ �T 267 14.7065173 166 9.695011100 107 5.894192000 64 3.753339200

10, 10½ �T 729 40.4305133 160 8.596874100 89 4.762929600 64 3.520466200

−5,−5½ �T 483 28.03565270 150 8.570527900 118 6.676780500 60 3.331014400
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umk+1 − q∗
�� ��2 ≤ 1 − 2ψmk

1 − ξð Þ
h i

umk
− q∗

�� ��2 + 2ψmk
1 − ξð Þ

� ψmk
umk

− q∗
�� ��1
2 1 − ξð Þ +

g q∗ð Þ − q∗, umk+1 − q∗
� �

1 − ξ

" #

≤ 1 − 2ψmk
1 − ξð Þ

h i
umk+1 − q∗
�� ��2 + 2ψmk

1 − ξð Þ

� ψmk
umk

− q∗
�� ��2
2 1 − ξð Þ +

g q∗ð Þ − q∗, umk+1 − q∗
� �

1 − ξ

" #
:

ð117Þ

Moreover, we have

umk+1 − q∗
�� ��2 ≤ ψmk

∥umk
− q∗∥2

2 1 − ξð Þ +
g q∗ð Þ − q∗, umk+1 − q∗
� �

1 − ξ
:

ð118Þ

Since ψmk
⟶ 0 and kumk

− q∗k is a bounded sequence.
Then, the expressions (116) and (118) imply that

umk+1 − q∗
�� ��2 ⟶ 0, ask⟶∞: ð119Þ

The above expression implies that

lim
k⟶∞

uk − q∗k k2 ≤ lim
k⟶∞

umk+1 − q∗
�� ��2 ≤ 0: ð120Þ

Consequently, un ⟶ q∗ as n⟶∞: This completes the
proof of the theorem. ☐

Remark 10.

(i) Two nonmonotonic explicit extragradient-type
methods for finding an approximate solution of var-
iational inequalities involving pseudomonotone
mapping in a real Hilbert space have been
established

(ii) Two strongly convergent results, corresponding to
the proposed algorithms have been proven

(iii) It is important to note that these methods use non-
monotonic step size rules that use an operator value
rather than the Lipschitz constant of an operator

4. Numerical Illustrations

In this section, computational results of the proposed
methods are described and compared to existing related
work in the literature. All computations are done in
MATLAB R2018b and run on an HP i-5 Core(TM)i5-6200
8.00GB (7.78GB usable) RAM laptop.

Example 11. Let a mapping L : ℝm ⟶ℝm be defined by

L uð Þ =Mu + q, ð121Þ

with q ∈ℝm and

M =NNT + B +D: ð122Þ

During this experiment, we have chosen N = rand ðmÞ to
be a random matrix and B = 0:5K − 0:5KT to be a skew-
symmetric matrix with K = rand ðmÞ, and D = diag ðrand ð
m, 1ÞÞ is a diagonal matrix. The feasible set A is defined in
the subsequent sense:

A = u ∈ℝm : Qu ≤ bf g, ð123Þ

where Q = rand ð100,mÞ and b = rand ð100,1Þ: It is obvious
that L is monotone and Lipschitz continuous by L = kMk:
The starting point is u1 = ð2, 2,⋯,2Þ and Dn = kun − pnk ≤ 1
0−3: The numerical results of these methods are shown in
Figures 1–6 and Table 1. The control conditions are taken
in the following manner: (1) Algorithm 2 in [37] (shortly,
Method-1): δ1 = 0:12, μ = 0:55, ϕn = 1/50ðn + 2Þ ; (2) Algo-
rithm 1 in [36] (shortly, Method-2): δ1 = 0:12, γ = 0:55, ϕn
= 1/2ðn + 2Þ, f ðuÞ = u/3 ; (3) Algorithm 1 (shortly,
Method-3): δ1 = 0:12, μ = 0:55, ψn = 1/2ðn + 2Þ, ϕn = ð5/10Þð
1 − ψnÞ, φn = 100/ðn + 1Þ2 ; and (4) Algorithm 2 (shortly,
Method-4): δ1 = 0:12, μ = 0:55, ψn = 1/2ðn + 2Þ, f ðuÞ = u/3,
φn = 100/ðn + 1Þ2:

Example 12. Let Z = L2ð½0, 1�Þ be a Hilbert space having an
inner product

u, yh i =
ð1
0
u tð Þy tð Þdt, ∀u, y ∈Z , ð124Þ

and the induced norm is determined as follows:

∥u∥ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1
0
u tð Þj j2dt

s
: ð125Þ

Let A ≔ fu ∈ L2ð½0, 1�Þ: kuk ≤ 1g be a unit ball. A map-
ping L : A ⟶Z is defined by

L uð Þ tð Þ =
ð1
0
u tð Þ −H t, sð Þf u sð Þð Þð Þds + g tð Þ, ð126Þ

where

H t, sð Þ = 2tse t+sð Þ

e
ffiffiffiffiffiffiffiffiffiffiffi
e2 − 1

p , f uð Þ = cos u, g tð Þ = 2tet

e
ffiffiffiffiffiffiffiffiffiffiffi
e2 − 1

p : ð127Þ

It can easily be seen that L is Lipschitz-continuous with
the constant L = 2 and monotone. The starting point for this
experiment is taken differently, and Dn = kun − pnk ≤ 10−3:
The numerical results of these methods are shown in
Table 2. The control conditions are taken as follows: (1)
Algorithm 2 in [37] (shortly, Method-1): δ1 = 0:33, μ = 0:75
, ϕn = 1/100ðn + 2Þ ; (2) Algorithm 1 in [36] (shortly,
Method-2): δ1 = 0:33, γ = 0:75, ϕn = 1/100ðn + 2Þ, f ðuÞ = u/2
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; (3) Algorithm 1 (shortly, Method-3): δ1 = 0:33, μ = 0:75,
ψn = 1/100ðn + 2Þ, ϕn = ð7/10Þð1 − ψnÞ, φn = 100/ðn + 1Þ2 ;
and (4) Algorithm 2 (shortly, Method-4): δ1 = 0:33, μ =
0:75, ψn = 1/100ðn + 2Þ, f ðuÞ = u/2, φn = 100/ðn + 1Þ2:

Example 13. Let a mapping L : ℝ4 ⟶ℝ4 be defined by

L uð Þ =

u1 + u2 + u3 + u4 − 4u2u3u4
u1 + u2 + u3 + u4 − 4u1u3u4
u1 + u2 + u3 + u4 − 4u1u2u4
u1 + u2 + u3 + u4 − 4u1u2u3

0
BBBBB@

1
CCCCCA: ð128Þ

Moreover, the constraint set A is defined by

A = u ∈ℝ4 : 1 ≤ ui ≤ 5, i = 1, 2, 3, 4
� �

: ð129Þ

It is clear to see that L is not monotone on the set A :

The starting point for this experiment is u1 = ð1, 2, 3, 4ÞT
and Dn = kun − pnk ≤ 10−3: The numerical results of these
methods are shown in Tables 3–6. The control conditions
are taken as follows: (1) Algorithm 2 in [37] (shortly,
Method-1): δ1 = 0:05, μ = 0:33, ϕn = 1/20ðn + 2Þ ; (2) Algo-
rithm 1 in [36] (shortly, Method-2): δ1 = 0:05, γ = 0:33, ϕn
= 1/20ðn + 2Þ, f ðuÞ = u/4 ; (3) Algorithm 1 (shortly,
Method-3): δ1 = 0:05, μ = 0:33, ψn = 1/20ðn + 2Þ, ϕn = ð6/10Þ
ð1 − ψnÞ, φn = 100/ðn + 1Þ2 ; and (4) Algorithm 2 (shortly,
Method-4): δ1 = 0:05, μ = 0:33, ψn = 1/20ðn + 2Þ, f ðuÞ = u/4,
φn = 100/ðn + 1Þ2:

Example 14. This test problem is taken from [42]. Let a map-
ping L : ℝ2 ⟶ℝ2 be defined by

L uð Þ = 0:5u1u2 − 2u2 − 107

−4u1 − 0:1u22 − 107

 !
, ð130Þ

where

A = u ∈ℝ2 : u1 − 2ð Þ2 + u2 − 2ð Þ2 ≤ 1
� �

: ð131Þ

We can easily observe that the mapping L is not mono-
tone on A but pseudomonotone and Lipschitz continuous
with L = 5: This problem has a unique solution that is u∗

= ð2:707,2:707ÞT : The starting point for this experiment is
taken differently, and Dn = kun − pnk ≤ 10−3: The numerical
results of these methods are shown in Figures 7–10 and
Table 7. The control conditions are taken as follows: (1)
Algorithm 2 in [37] (shortly, Method-1): δ1 = 0:333, μ =
0:90, ϕn = 1/3ðn + 2Þ ; (2) Algorithm 1 in [36] (shortly,
Method-2): δ1 = 0:333, γ = 0:90, ϕn = 1/2ðn + 2Þ, f ðuÞ = u/5
; (3) Algorithm 1 (shortly, Method-3): δ1 = 0:333, μ = 0:90
, ψn = 1/2ðn + 2Þ, ϕn = ð5/10Þð1 − ψnÞ, φn = 100/ðn + 1Þ2 ;
and (4) Algorithm 2 (shortly, Method-4): δ1 = 0:333, μ =
0:90, ψn = 1/2ðn + 2Þ, f ðuÞ = u/5, φn = 100/ðn + 1Þ2:

5. Conclusion

Two nonmonotonic explicit extragradient-type methods for
finding an approximate solution of variational inequalities
involving pseudomonotone mapping in a real Hilbert space
have been established. Two strongly convergent results, cor-
responding to the proposed algorithms have been proven.
The numerical results were interpreted to demonstrate that
the proposed algorithms worked numerically better than
current methods. According to these numerical findings,
the nonmonotone variable step size rule improves the effi-
ciency of the iterative sequence in this case.
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How do investors require a distribution of the wealth among multiple risky assets while facing the risk of the uncontrollable
payment for random liabilities? To cope with this problem, firstly, this paper explores the approach of asset-liability
management under the state-dependent risk aversion with only risky assets, which has been considered under a continuous-
time Markov regime-switching setting. Next, based on this realistic modelling, an extended Hamilton-Jacob-Bellman (HJB)
system has been necessarily established for solving the optimization problem of asset-liability management. It has been derived
closed-form analytical expressions applied in the time-inconsistent investment with optimal control theory to see that happens
to the optimal value of the function. Ultimately, numerical examples presented with comparisons of the analytical results
under different market conditions are exposed to analyse numerically the developed mean variance asset liability management
strategy. We find that our proposed model can explain the financial phenomena more effectively and accurately.

1. Introduction

Portfolio optimization selection problem, well known as an
essential topic in financial markets, has been done in deep
researches by many scholars after the first reported by Mar-
kowitz [1]. The most frequently used method of optimal
asset allocation strategies is HJB equation, i.e., the
Hamilton-Jacobi-Bellman equation (see Detemple and Fer-
nando [2], Björk et al. [3]). In the analysis of portfolio opti-
mization, utility function and several system parameters are
given to find the optimal values of the control parameters to
realise the final utility maximization. Previous researches in
this area are classified for the endogenous habit formation
[2], the classic constant relative risk aversion (CRRA) by
Yu and Yuan [4], the hyperbolic discounting [3], and the
utilities like the mean-variance utility proposed by Li et al.
[5]. In recent paper by Li et al. [6], the analytical solution
portfolio optimization problem involving stochastic short-
term interest rates is provided, which can be controlled by
the mean-variance utility function with state dependent risk

aversion (SDRA). The paper [6] uses the Nash equilibrium
for the subgame strategy to concrete analytical expressions
of value function and control policy of equilibrium and fig-
ure out under the condition of the stochastic short-term
interest rates, how do investors with “natural risk aversion”
achieve optimal control policies by simplifying financial
settings.

Under the framework of mean variance equilibrium
asset liability management with SDRA, some extended
models have been constructed, such as the mean-variance
asset-liability management problem by regime-switching
models, as well as mean-variance models with only risky
assets (see Bening and Koroley [7]; the asset-only models
to asset-liability models have been greatly expanded by Yao
et al. [8, 9]). A geometric method raised by Leippold et al.
[10] is supposed to apply into the multiperiod mean-
variance asset-liability management model by taking the
implied mean-variance of liability frontier into consider-
ation. A study by Chiu and Li [11] reported that the influ-
ence of the rebalancing frequency is quantified to
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determine the allocation of optimal initial funds. The work
of extension into a continuous-time setting has been devel-
oped with the aid of a stochastic linear quadratic control
approach. Based on the assumptions used in Leippold et al.
[10], analytical results have been derived in a complete mar-
ket with discussing the impact of liability on the optimal
funding ratio. To construct more realistic models, more
focus has been put on studying the asset-liability manage-
ment under the market behavior in the face of many restric-
tion conditions, for example, an uncertain investment
horizon (see Li and Ng [12]; Li and Yao [13]), regime-
switching to describe phenomena between “Bullish” and
“Bearish” markets (see Elliott et al. [14]; Wei et al. [15];
Wu and Li [16]; Wu and Chen [17]; Yu [18]), the choice
of optimal portfolio selection for assets with transaction
costs without short sales (see Li et al. [19]), portfolio selec-
tion under partial information (see Xiong and Zhou [20]),
bankruptcy control (see Li and Li [21]), jump-diffusion in
financial markets (see Lim [22]; Zeng and Li [23]), and sto-
chastic volatility and stochastic interest rates (see Lim [22];
Lim and Zhou [24]). Also, various studies of assets and lia-
bilities management problem have been carried out in some
particular field with application in insurance and pension
fund, including Drijver [25] for pension funds Hilli et al.
[26] for a Finnish pension company, and Gerstner et al.
[27] and Chiu and Wong [28] for life insurance policies.

Among them, regime-switching models have become
popular in finance and related fields, which is expected to
describe the characteristics of different markets (called “Bull-
ish” versus“Bearish”). A limited number of regimes have
been applied to represent the various patterns of the market
states. According to diverse financial markets as the change
market pattern occurs, indices for instance the interest rate,
appreciation rates, and volatilities of stock and liability may
be different. Boyle and Draviam’s study [29] is an interesting
example of regime-switching modelling applied in option
pricing achieved by [29], followed by Elliott and Siu [30],
who have embedded the regime-switching modelling into
the bond valuation, the concept of which has been put for-
ward in the portfolio selection problem by Zhou and Yin
[31], Chen et al. [32], and Chen and Yang [33]. The research
studied in [32, 33] involves both the asset-liability feature
and Markovian regime-switching modelling. As we all know,
the models with only risk assets are valuable to be studied.
Yao et al. [8] were working on the research of the
continuous-time mean-variance model for only risky assets.
It is rare for risk-free asset in reality; as a matter of fact, a rel-
atively long investment is considered, corresponding to the
stochastic nature real interest rates and the inflation risk
(see Viceira [34]). The previous method of a nominal risk-
free asset incorporated into the market will simplify the pro-
cess of selecting portfolio but degenerate the GMV strategy
to a bank deposit strategy with zero risks, which is not
favourable to investors. Besides, the empirical evidence in
the study by DeMiguel et al. [35] shows that the static global
minimum-variance (GMV) strategy with only risky assets
(derived by Markowitz [1]) tends to be better in perfor-
mance out-of-sample among all estimated optimal strate-
gies. Then in general, the properties of the time-consistent

MV strategies have been shown in a market only with risky
assets by Chi [36] on the analysis of Yao et al. [8] and Zhang
et al. [37].

In this paper, on the basis of the work of Björk et al. [3],
it is determinate to make a further realistic financial model,
and it makes sense to select a regime-switching market with
only risky assets. Afterwards, the general expansion of the
HJB equation will be reached according to the control theory
with time inconsistency by Björk and Murgoci [38]. Finally,
it proceeds the numerical illustrations to show our extended
results and state the relationships with previous researches.
The rest of the paper is completed as follows: the setting of
the financial market will be explained in Section 2, with
the developed structure of mean-variance asset-liability
management with state-dependent risk aversion in a
regime-switching market with only risky assets. Also, the
HJB equation is generalized to the general situation. In Sec-
tion 3, three different cases with derived solutions will be
illustrated in details. More numerical examples are presented
in Section 4 with corresponding figures and illustrations,
and a conclusion is given in Section 5.

2. Model Formulation

In a given probability space filtered, ðΩ, P,F , fItg0≤t≤TÞ, let
WðtÞ = ðW1ðtÞ,W2ðtÞ,⋯,WmðtÞÞ′ be a standard m
-dimensional Brownian motion with definition of ðΩ, P,F
Þ over the period of ½0, T�. Since the involution of individual
investments has been found, a few number of investors will
not make much effect on the whole market. The mode of
the market dynamics is described by a Markov chain process
αðtÞ. For that sense, the processes ofWðtÞ and αðtÞ are inde-
pendent of each other. It = σfWðsÞ, αðsÞ ; 0 ≤ s ≤ tg could
be augmented in the case of all the P-null sets in F , where
F =IT . Some finite T is used to denote the range of invest-
ment time. All random variables taken into consideration, in
this paper, are defined within this filtered probability space.
Assuming that there are d regimes for the market state, it
means that the Markov chain αt gets one of the values from
the set of f1, 2, 3,⋯, dg every time. By assumption, a gener-
ator Q = ðqkjÞd×d in the Markov chain with the stationary

transition probabilities such that pkjðtÞ =ℙðαðs + tÞ = j ∣ αðs
Þ = kÞ, where s, t ≥ 0, k, j = 1, 2,⋯, d, qkj = ðd/dtÞpkjðtÞjt=0
and ∑d

j=1qkj = 0, qjj = −∑d
j=1qkj < 0, qkj > 0. A financial mar-

ket with continuous-time under the standard assumptions
has been considered. Concretely speaking, the market
assumptions in this paper are listed here with permission
for continuous trading, no transaction cost or tax in trading,
and infinitely divisible assets.

2.1. Financial Market

2.1.1. Assets. Suppose that an investor decides to allocate his
wealth among n + 1 risky assets. The prices of these risky
assets meet the following requirements of stochastic differ-
ential equations (SDE) driven by the geometric Brownion
motion (GBM) (1):

2 Journal of Function Spaces



dPi tð Þ = Pi tð Þ bi t, α tð Þð Þdt + 〠
m

h=1
σih t, α tð Þð ÞdWh tð Þ

 !
, 0 ≤ t ≤ T ,

Pi 0ð Þ = pi > 0, i = 0, 1, 2,⋯, n,

8>><
>>:

ð1Þ

where PiðtÞ means the initial prices of the risky assets, ðpi, i =
0, 1, 2,⋯, nÞ; αðtÞ is defined as volatility factor; and ðb0ðt, αðt
ÞÞ, b1ðt, αðtÞÞ,⋯, bnðt, αðtÞÞÞ and ðσihðt, αðtÞÞÞðn+1Þ×m refer
to the appreciation rate vector and the volatility matrix of these
assets, respectively, with assumption of positive continuous
bounded deterministic functions of time t. Asmentioned above,
the GBM vector fWðtÞ = ðW1ðtÞ,W2ðtÞ,⋯,WmðtÞÞ′g is
supposed to have a detailed description of all the random factors
influencing the prices of risky assets.

2.1.2. Wealth Process. It is assumed that an investor endowed
with an initial wealth X0 at time 0 is intended to invest in the
market dynamically through the period of ½0, T�. Here, XðtÞ
stands for the total wealth at time t for an investor, and uiðtÞ
denotes the amount investment in asset i and NiðtÞ for the
total of units of asset i in an investor’s portfolio, i = 0, 1, 2
⋯ , n. The sum of investment in the 0th asset after the
deduction of liability is described as fXðtÞ − ∑n

i=1uiðtÞg.
Therefore, under the conditions above, the wealth held by
the investor at time t, XðtÞ is shown as follows:

dX tð Þ = 〠
n

i=0
Ni tð ÞdPi tð Þ = 〠

n

i=0
ui tð Þ

dPi tð Þ
Pi tð Þ

: ð2Þ

To further simplify dXðtÞ in equation (2), the SDE will
be represented as

where

We assume that all the functions are measurable and
uniformly bounded in ½0, T�. Here, L2Fðt, T ;ℝn+1Þ is
denoted as the set of all ℝn+1-valued and measurable sto-
chastic processes f ðs, αðsÞÞ are adjusted to fIsgs≥t on ½0, T�
such that

E
ðT
t
f s, α sð Þð Þj j2ds

� �
< +∞: ð5Þ

2.1.3. Liability Process. In fact, the investor in the financial
market is exposed to the uncontrollable liability, with value
process by the following SDE:

dL tð Þ = μ t, α tð Þð Þdt + ρ′ t, α tð Þð ÞdW tð Þ,
L 0ð Þ = l0,

(
ð6Þ

where LðtÞ is the stochastic liability process and l0 is defined
as the initial value of the liability. Besides, μðt, αðtÞÞ and ρð
t, αðtÞÞ = ðρ1ðt, αðtÞÞ, ρ2ðt, αðtÞÞ,⋯, ρmðt, αðtÞÞÞ′ are
expressed as the appreciation and volatility in liability,
respectively, on the assumption of stochastic functions at
time t with Markov process αðtÞ. In addition, generally, the
liability is functioned as the real liability excluding the ran-
dom income of the investor. As a result, it turns out to be
negative liabilities; the random income of the investor can
be more than the real liability.

Remark 1. It is clearly to see the correlation between liabil-
ity value and risky assets in the dynamic processes by m
-dimensional geometric Brownian motion WðtÞ. Since
the investment portfolio has n + 1 risky assets and one lia-
bility, it leads to m ≥ n + 2 in the asset liability manage-
ment model.

dX tð Þ = b0 t, α tð Þð ÞX tð Þ + B′ t, α tð Þð Þu tð Þ
h i

dt + X tð Þσ0′ t, α tð Þð Þ + u′ tð Þσ t, α tð Þð Þ
h i

dW tð Þ,
X 0ð Þ = X0,
α 0ð Þ = k0,

8>>><
>>>:

ð3Þ

u tð Þ = u1 tð Þ, u2 tð Þ,⋯, un tð Þð Þ′n×1,
B t, kð Þ = b1 t, kð Þ − b0 t, kð Þ, b2 t, kð Þ − b0 t, kð Þ⋯ , bn t, kð Þ − b0 t, kð Þð Þ′n×1,
σi t, kð Þ = σi1 t, kð Þ, σi2 t, kð Þ,⋯, σim t, kð Þð Þ′m×1,
σ t, kð Þ = σ1 t, kð Þ − σ0 t, kð Þ, σ2 t, kð Þ − σ0 t, kð Þ,⋯, σn t, kð Þ − σ0 t, kð Þð Þ′n×m:

8>>>>><
>>>>>:

ð4Þ
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2.1.4. Surplus Process. Let SðtÞ = XðtÞ − LðtÞ represent the
current surplus of our fortune. By substituting the wealth

and liability processes, we have

2.2. Mean-Variance Risky Asset Management (MVRAM).
First, U½0, T� is denoted as the set of all avaliable strategies
fðu0ðtÞ, u1ðtÞ,⋯, unðtÞÞg over ½0, T�. Naturally, the
MVRAM problem will give emphasis on finding optimal
admissible strategy to maximize mean-variance utility at ter-
minal time T . So the objective function of Jðt, s, l, k, uÞ and
the equilibrium value function of Vðt, s, l, kÞ are described
mathematically as follows:

J t, s, k, uð Þ = Et,s,k S
u Tð Þ½ � − γ s, kð Þ

2 Vart,s,k S
u Tð Þ½ �, ð8Þ

V t, s, kð Þ =maxu ·ð Þ∈U 0,T½ � Et,s,k S Tð Þ½ � − γ s, kð Þ
2 Vart,s,k S Tð Þ½ �

� �
= J t, s, k, u∗ð Þ:

ð9Þ

where Et,s,k½·� = E½·∣Suðt, kÞ = s, Luðt, kÞ = l, αuðtÞ = k�, in
which Suðt, kÞ, Luðt, kÞ, αuðtÞ successively represent the sur-
plus process, liability, and market dynamics obtained by
using the control strategy u = ðu0ðtÞ, u1ðtÞ,⋯, unðtÞ, and rð
s, kÞ means the risk aversion coefficient depending on s
and k. As a result, Jðt, s, k, uÞ can be defined as

J t, s, k, uð Þ = Et,s,k F s, k, Su Tð Þð Þ½ � +G s, k, Et,s,k S
u Tð Þ½ �ð Þ,

ð10Þ

where

F s, k, yð Þ = y −
γ s, kð Þ

2 y2,G s, k, yð Þ = γ s, kð Þ
2 y2, ð11Þ

where in here y represents Et,s,k½SuðTÞ�.
Second, letAbe infinitesimal generator, for any fixed u

∈U; the controlled infinitesimal generator Au corresponded
to

AuW t, s, kð Þ = ∂W t, s, kð Þ
∂t

+ b0s − μ + B′u
h i ∂W t, s, kð Þ

∂s

+ 〠
d

j=1
qkjW t, s, jð Þ + 1

2 sσ0′ − ρ′ + u′σ
n o

� ∂W t, s, kð Þ
∂s2

sσ0 − ρ + σ′u
n o

:

ð12Þ

Based on the analysis of Björk Bjrk and Murgoci [38],
with the definition of equilibrium control in equation (9)
and the infinitesimal generator Au in equation (12), the
HJB equation will be extended as follow, as well as the veri-
fication of theorem.

Theorem 1 (verification theorem). It is assumed that ðV , f
, gÞ is a solution to the following extended HJB system with
the supremum of control law û in the equation. Then, û is
subject to an equilibrium control law, and V is supposed to
the corresponding value function.

dS tð Þ = b0 t, α tð Þð ÞS tð Þ − μ t, α tð Þð Þ + B′ t, α tð Þð Þu tð Þ
n o

dt + S tð Þσ0′ t, α tð Þð Þ − ρ′ t, α tð Þð Þ + u′ tð Þσ t, α tð Þð Þ
n o

dW tð Þ,

dL tð Þ = μ t, α tð Þð Þdt + ρ′ t, α tð Þð ÞdW tð Þ,
S 0ð Þ = s0 = x0 − l0,
L 0ð Þ = l0, α 0ð Þ = k0:

8>>>>>><
>>>>>>:

ð7Þ

supu∈U AuV t, s, kð Þ − Auf t, s, k, s, kð Þ + Auf s,k t, s, kð Þ − Au G ∘ gð Þ t, s, kð Þ +Hug t, s, kð Þ
n o

= 0, 0 ≤ t ≤ T ,

Au∧ f m,h t, s, kð Þ = 0, 0 ≤ t ≤ T ,
Au∧g t, s, kð Þ = 0, 0 ≤ t ≤ T ,
V T , s, kð Þ = s,

f m,h T , s, kð Þ = s −
γ m, hð Þ

2 s2,

g T , s, kð Þ = s,

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð13Þ
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with the following conditions and definitions:

f m,h t, s, kð Þ = f t, s, k,m, hð Þ,
G ∘ gð Þ t, s, kð Þ = G s, k, g t, s, kð Þð Þ,
Hug t, s, kð Þ =Gy s, k, yð Þ × Aug t, s, kð Þ,

Gy s, k, yð Þ = ∂G s, k, yð Þ
∂y

:

8>>>>>>><
>>>>>>>:

ð14Þ

Moreover, f and g have the following probabilistic repre-
sentations:

f t, s, k,m, hð Þ = Et,s,k F m, h, Su∧ Tð Þ� �� 	
,

g t, s, kð Þ = Et,s,k Su∧ Tð Þ� 	
,

V t, s, kð Þ = f t, s, kð Þ + G s, k, g t, s, kð Þð Þ:
ð15Þ

Proof. On the basis of the HJB equation in [2] and the objec-
tive function [3], it can be derived as

V t, St , ktð Þ = supu∈U J t, St , kt ,Uð Þ ð16Þ

and consequently have

J t, St , kt ,Uð Þ = Et,St ,kt F s, k, SUT
� �� 	

+G s, k, Et,St ,kt S
U
T

� 	� �
,
ð17Þ

where the forms of the function F and function G are
described in (11).

When l > t, we have

J l, Sl, kl,Uð Þ = El,Sl ,kl F sl, kl, SUT
� �� 	

+G sl, kl, El,Sl ,kl S
U
T

� 	� �
,

El,Sl ,kl F sl, kl, SUT
� �� 	

= f U l, Sl, kl, sl, klð Þ,
El,Sl ,kl S

U
T

� 	
= gU l, Sl, klð Þ:

ð18Þ

Hence, equation (18) above can simply be represented as

J l, Sl, kl,Uð Þ = f U l, Sl, kl, sl, klð Þ + GU sl, kl, gU l, Sl, klð Þ� �
:

ð19Þ

So the expectations of the equation can be shown

Et,St ,kt J l, Sl, kl,Uð Þ½ � = Et,St ,kt f U l, Sl, kl, sl, klð Þ
h

+ Et,St ,kt G sl, kl, gU l, Sl, klð Þ� �� 	
,
ð20Þ

and substituting this result into the definition of (17), we
then have

Et,St ,kt J l, Sl , kl,Uð Þ½ � = J t, St , kt ,Uð Þ + Et,St ,kt

� f U l, Sl , kl , sl , klð Þ
h i

− Et,St ,kt F s, k, SUT
� �� 	

+ Et,St ,kt G sl , kl, gU l, Sl , klð Þ� �� 	
−G s, k, Et,St ,kt S

U
T

� 	� �
:

ð21Þ

After the process of iteration, we obtain

Et,St ,kt F sl, kl, SUT
� �� 	

= Et,St ,kt El,Sl ,kl F sl, kl, SUT
� �� 	� 	

= Et,St ,kt f U l, Sl, kl, sl, klð Þ
h i

,
ð22Þ

Et,St ,kt S
U
T

� 	
= Et,St ,kt El,Sl ,kl S

U
T

� 	
= Et,St ,kt g

U l, Sl, klð Þ� 	
:

ð23Þ

By substituting the results of (22) and (23) back into the
equation of (21), we can get

Et,St ,kt J l, Sl, kl,Uð Þ½ � − Et,St ,kt f U l, Sl, kl, sl, klð Þ
h i

+ Et,St ,kt f U l, Sl, kl, sl, klð Þ
h i

− J t, St , kt ,Uð Þ
− Et,St ,kt G sl, kl, gU l, Sl, klð Þ� �� 	
+G s, k, Et,St ,kt g

U l, Sl, klð Þ� 	� �
= 0:

ð24Þ

Then

supu∈U Et,St ,kt J l, Sl, kl,Uð Þ½ � − Et,St ,kt f U l, Sl, kl, sl, klð Þ
h in

+ Et,St ,kt f U l, Sl, kl, sl, klð Þ
h i

− J t, St , kt ,Uð Þ
− Et,St ,kt G sl, kl, gU l, Sl, klð Þ� �� 	
+G st , kt , Et,St ,kt g

U l, Sl, klð Þ� 	� �

= 0:

ð25Þ

Through our proposed problem (16) with the definition
of the control law in the classic work, it can be found out
that the control U coincides with the equilibrium law û in
½l, T�, and we formulate the following results:

J l, Sl, kl, ûð Þ = V l, Sl, klð Þ,
f U l, Sl, kl, s, kð Þ = f l, Sl, kl, s, kð Þ,

gU l, Sl, klð Þ = g l, Sl, klð Þ:
ð26Þ
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Thus, the optimization problem of (25) can be solved as

supu∈U Et,St ,kt V l, Sl, klð Þ½ � − Et,St ,kt f l, Sl, kl, sl, klð Þ½ ��
+ Et,St ,kt f l, Sl, kl, sl, klð Þ½ � −V t, St , ktð Þ
− Et,St ,kt G sl, kl, g l, Sl, klð Þð Þ½ �
+G yt , Et,St ,kt g

U l, Sl, klð Þ� 	� �

= 0:

ð27Þ

Here, by using the operator denotations of similarity, we
have

Et,St ,kt V l, Sl, klð Þ½ � −V t, St , ktð Þ = AuV ,
Et,St ,kt f l, Sl, kl, sl, klð Þ½ � = Auf ,

Et,St ,kt f l, Sl, klð Þ½ � = Auf s,k,
Et,St ,kt G sl, kl, g l, Sl, klð Þð Þ½ � = AuG,

G st , kt , Et,St ,kt g
U l, Sl, klð Þ� 	� �

=Hug:

ð28Þ

The derivation of the extended HJB equation with sto-
chastic volatility will be given as,

supu∈U AuV t, s, kð Þ − Auf t, s, k, s, kð Þf
+ Auf s,k t, s, kð Þ − Au G ∗ gð Þ t, s, kð Þ
+Hug t, s, kð Þg = 0, 0 ≤ t ≤ T:

ð29Þ

3. Solution Scheme

3.1. The Case with a Generated γðs, kÞ

Theorem 2. Under the general form of states dependent risk
aversion, the optimal control strategy of MVRAM among
risky assets is

û t, s, kð Þ = − σσ́Þ−1 f s,ks + γ s, kð Þggs

f s,kss + γ s, kð Þggss
B + sσσ0 − σρð Þ

( )
,

 

ð30Þ

where f s,k: and g represent the function f s,k: ðt, s, kÞ and gðt, s
, kÞ by partial equations in (32).

Proof. By using the definition of the infinitesimal generator,
we simplify and thus have

AuV t, s, kð Þ − Auf t, s, k, s, kð Þ + Auf s,k t, s, kð Þ
− Au G ∘ gð Þ t, s, kð Þ +Hug t, s, kð Þ

= Auf s,k t, s, kð Þ +Hug t, s, kð Þ:
ð31Þ

The resulting extended HJB equations can be rewritten
as

Adding up all the terms related to u in (32), we have

1
2 u

′σσ′u f s,kss + γ s, kð Þggss

h i
+ f s,ks + γ s, kð Þggs

h i
B′u + sσ0′ − ρ′

h i
′σu f s,kss + γ s, kð Þggss
h in o

= 1
2 ε1 u′σσ′u + 2

ε1
ε2B′ σσ́Þ−1σ + sσ0′ − ρ′

� 

ε1

� i
σ′ug

h�

= 1
2 ε1

´
σ′u + 1

ε1
ε2σ′ σσ′

� 
−1
B + sσ0′ − ρ′
� 


ε1

� �� �

· σ′u + 1
ε1

ε2B′ σσ′
� 
−1

σ + sσ0′ − ρ′
� 


ε1

� �
′

�

−
1
2ε1

´́
ε2σ′ σσ′

� 
−1
B + sσ0′ − ρ′
� 


ε1

� �

· ε2σ′ σσ′
� 
−1

B + sσ0′ − ρ′
� 


ε1

� �
,

ð33Þ

where

ε1 = f s,kss + γ s, kð Þggss, ε2 = f s,ks + γ s, kð Þggs: ð34Þ

Therefore, the first-order condition for uðtÞ correspond-
ing to optimal strategy can be described as

supu∈U f s,kt t, s, kð Þ + γ s, kð Þg t, s, kð Þ gt t, s, kð Þ½ + μl f s,kl t, s, kð Þ + γ s, kð Þg t, s, kð Þgl t, s, kð Þ
h i

+ b0s − μ + B′u
h i

f s,ks t, s, kð Þ + γ s, kð Þg t, s, kð Þgs t, s, kð Þ
h i

+ 1
2 sσ0′ − ρ′ + u′σ
n o

f s,kss t, s, kð Þ + γ s, kð Þg t, s, kð Þgss t, s, kð Þ
h i

sσ0′ + σ0′ − ρ′
� 


l + u′σ
n o

′ + 〠
d

j=1
qkj f s,k t, s, jð Þ + γ s, kð Þg t, s, kð Þg t, s, jð Þ
h i( )

= 0,

f m,h
t t, s, kð Þ + b0s − μ + B′û

h i
f m,h
s t, s, kð Þ + 1

2 sσ0′+−ρ′ + u∧′σ
n o

f m,h
ss t, s, kð Þ sσ0′ − ρ′ + u∧′σ

n o
′ + 〠

d

j=1
qkj f

m,h t, s, jð Þ = 0,

gt t, s, kð Þ + b0s − μ + B′û
h i

gs t, s, kð Þ + 1
2 sσ0′ − ρ′ + u∧′σ
n o

gss t, s, kð Þ sσ0′ − ρ′ + u∧′σ
n o

′ + 〠
d

j=1
qkjg t, s, jð Þ = 0,

f T , s, k,m, hð Þ = s −
γ m, hð Þ

2 s2,

g T , s, kð Þ = s:

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

ð32Þ
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û t, s, kð Þ = − σσ′
� 
−1 ε2

ε1
B + sσσ0 − σρð Þ

� �

= − σσ′
� 
−1 f s,ks + γ s, kð Þggs

f s,kss + γ s, kð Þggss

B + sσσ0 − σρð Þ
( )

:

ð35Þ

3.2. The Case with a Natural Choice γðs, kÞ. Here, we have
γðs, kÞ = γðkÞ/s as a special form of γðs, kÞ. Then, equation
(30) has been changed into the following form:

û t, s, kð Þ = − σσ′
� 
−1 sf s,ks + γ kð Þggs

sf s,kss + γ kð Þggss
B + sσσ0 − σρð Þ

( )
: ð36Þ

Then, we make use of the following natural choice of γ
ðs, kÞ:

g t, s, kð Þ = a t, kð Þs + n t, kð Þ,

f t, s, k,m, hð Þ = a t, kð Þs + n t, kð Þ − γ hð Þ
2m

� A t, kð Þs2 + 2D t, kð Þs +N t, kð Þ� 	
:

ð37Þ

By differentiation, we have

gt = _as + _n, gs = a, gss = 0,

f t = _as + _n −
γ hð Þ
2m

_As2 + 2 _Ds + _N
h i

,

f s = a −
γ hð Þ
m

As +D½ �, f ss = −
γ hð Þ
m

A: ð38Þ

Substituting the above expressions into ûðt, s, kÞ, we have

û = k1s + k2, ð39Þ

where

k1 = σσ́Þ−1 a − γ kð ÞA + γ kð Þa2
γ kð ÞA B − σσ0

� �
,

�

k2 = σσ́Þ−1 a · n −D
A

B + σρ

� �
:

�
ð40Þ

Then, we can simplify

b0s − μ + B′û = b0 + B′k1
� 


s + B′k2 − μ
� 


=M1s +M2,

sσ0 − ρ + σ′û = σ0 + σ′k1
� 


s + σ′k2 − ρ
� 


=H1s +H2:

ð41Þ

By substituting these expressions into (32), we also have
the following alternative expressions for Au∧ f m,h and Au∧g:

From equation (42), we can have the following system of
ordinary differential equations (ODE):

_A + 2M1A +H1′H1A + 〠
d

j=1
qkjAj = 0,

_a −
γ hð Þ
m

_D +M1 a −
γ hð Þ
m

D
� �

−
γ hð Þ
m

M2A −
γ hð Þ
m

AH1′H2 + 〠
d

j=1
qkj aj −

γ hð Þ
m

Dj

� �
= 0,

_n −
γ hð Þ
2m

_N +M2 a −
γ hð Þ
m

D
� �

−
γ hð Þ
2m AH2′H2 + 〠

d

j=1
qkj nj −

γ hð Þ
2m Nj

� �
= 0,

_a +M1a + 〠
d

j=1
qkjaj = 0,

_n +M2a + 〠
d

j=1
qkjnj = 0:

8>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>:

ð43Þ

By simplifying and substituting the expressions of M1,
M2,H1,H2, and k1, k2 into the above equation (43), we have
the following system of ODEs:

_A + 2 b0 − δ2ð Þ − δ1½ �A + a + γa2
� �2

δ1
γ2A

+ 〠
d

j=1
qkjAj = 0,

_D + b0 − δ2 − δ1ð ÞD + a2 1 + γað Þnδ1
γA

+ δ3 − μð ÞA + 〠
d

j=1
qkjDj = 0,

_N −
δ1
A

a2n2 −D2� �
+ 2 δ3 − μð ÞD + 〠

d

j=1
qkjN j = 0,

_a + b0 +
a − γA + γa2

γA
δ1 − δ2

� �
a + 〠

d

j=1
qkjaj = 0,

_n + a2δ1
A

n −
aD
A

δ1 + δ3 − μð Þa + 〠
d

j=1
qkjnj = 0:

8>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>:

ð44Þ

Au∧ f m,h = −
γ hð Þ
2m

_A + 2AM1 +H1′H1A + 〠
d

j=1
qkjAj

" #
s2 + _a −

γ hð Þ
2m 2 _D +M1 a −

γ hð Þ
m

D
� �

+M2 −
γ hð Þ
m

A
� �

−
γ hð Þ
m

AH1′H2 + 〠
d

j=1
qkj aj −

γ hð Þ
2m 2Dj

� �" #
s + _n −

γ hð Þ
2m

_N +M2 a −
γ hð Þ
m

D
� �

−
γ hð Þ
2m AH2′H2 + 〠

d

j=1
qkj nj −

γ hð Þ
2m Nj

� �" #
= 0,

Au∧g = _a +M1a + 〠
d

j=1
qkjaj

 !
s + _n +M2a + 〠

d

j=1
qkjnj

 !
= 0:

8>>>>><
>>>>>:

ð42Þ
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with the terminal conditions

A T , kð Þ = a T , kð Þ = 1,D T , kð Þ =N T , kð Þ = n T , kð Þ = 0, ð45Þ

where

δ1 = B′ σσ′
� 
−1

B, δ2 = B′ σσ′
� 
−1

σσ0, δ3 = B′ σσ′
� 
−1

σρ:

ð46Þ

Following the process of simplification, the equilibrium
control can be represented as (39)

û t, s, kð Þ = k1 t, kð Þs + k2, ð47Þ

where

k1 = σσ′
� 
−1 a − γ kð ÞA + γ kð Þa2

γ kð ÞA B − σσ0

� �
,

k2 = σσ′
� 
−1 a · n −D

A
B + σρ

� �
, ð48Þ

and the equilibrium value function of correspondence is
given as

V t, s, kð Þ = γ kð Þ
2 a2 t, kð Þ − A t, kð Þ� �

+ a t, kð Þ
� �

s

+ γ kð Þ
2s n2 t, kð Þ −N t, kð Þ� 	

+ γ kð Þ a t, kð Þn t, kð Þ −D t, kð Þð Þ + n t, kð Þ½ �,
ð49Þ

where Að·Þ,Dð·Þ,Nð·Þ, að·Þ, and nð·Þ satisfy the ODE system
in (44).

3.3. The Case without Liability. By letting lðtÞ = 0, the asset
liability problem will be tackled as a portfolio selection prob-
lem. We have SðtÞ = XðtÞ, Vðt, s, kÞ = Jðt, s, k, ûð·ÞÞ, and
then, the portfolio optimal control û turns to be

û t, x, kð Þ = σσ′
� 
−1 a − γA + γa2

γA
B − σσ0

� �
x + B

A
a · n −Dð Þ

� �
,

ð50Þ

which corresponds to equilibrium value function defined as

V t, x, kð Þ = γ

2 a2 − A
� �

+ a
h i

x + γ a · n −Dð Þ + n½ �

+ γ

2x n2 −N
� �

,
ð51Þ

where A, a,D, n,N satisfy the following system of ODEs:

_A + 2 b0 − δ2ð Þ − δ1½ �A + a + γa2
� �2

δ1
γ2A

+ 〠
d

j=1
qkjAj = 0,

_D + b0 − δ2 − δ1ð ÞD + a2 1 + γað Þnδ1
γA

+ 〠
d

j=1
qkjDj = 0,

_N + a2n2 −D2

A
δ1 + 〠

d

j=1
qkjN j = 0,

_a + b0 +
a − γA + γa2

γA
δ1 − δ2

� �
a + 〠

d

j=1
qkjaj = 0,

_n + a2δ1
A

n −
aD
A

δ1 + 〠
d

j=1
qkjnj = 0,

8>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>:

ð52Þ

with the terminal conditions

A T , kð Þ = a T , kð Þ = 1,D T , kð Þ =N T , kð Þ = n T , kð Þ = 0: ð53Þ

The ODEs are still complicated, which requires to make
a further restriction such that the first asset is risk-free,
namely, b0ðt, kÞ = rðtÞ, σ0ðt, kÞ = ð0,⋯, 0Þ′, and we have δ2
= 0, nor does liability. Hence, the portfolio optimal control
û is shown as follows:

û t, x, kð Þ = σσ′
� 
−1 a − γA + γa2

γA
Bx + B

A
a · n −Dð Þ

� ��
:

ð54Þ

Then, it comes to the equilibrium value function as

V t, x, kð Þ = γ

2 a2 − A
� �

+ a
h i

x + γ a · n −Dð Þ + n½ � + γ

2x n2 −N
� �

,

ð55Þ

where A, a,D, n,N satisfy the following system of ODEs:

_A + 2r − δ1½ �A + a + γa2
� �2

δ1
γ2A

+ 〠
d

j=1
qkjAj = 0,

_D + r − δ1ð ÞD + a2 1 + γað Þnδ1
γA

+ 〠
d

j=1
qkjDj = 0,

_N + a2n2 −D2

A
δ1 + 〠

d

j=1
qkjN j = 0,

_a + r + a − γA + γa2

γA
δ1

� �
a + 〠

d

j=1
qkjaj = 0,

_n + a2δ1
A

n −
aD
A

δ1 + 〠
d

j=1
qkjnj = 0,

8>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>:

ð56Þ
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with the terminal conditions

A T , kð Þ = a T , kð Þ = 1,D T , kð Þ =N T , kð Þ = n T , kð Þ = 0: ð57Þ

4. Numerical Example

According to the research studied by Chen et al. [32] and
Wei et al. [15], the market state is either “Bullish” or “Bear-
ish” with the assumption of d = 2, where Regime 1 refers to
“Bullish” and Regime 2 to “Bearish.” In this section, it is
exposed to illustrate the results numerically obtained in Sec-
tion 3. We present the optimal control strategy and the equi-
librium value in three different situations: the first situation
is state-dependent risk aversion in a regime switching mar-
ket with one bond and one risky asset without liability; the
second situation is different from the first with liability,
while the last one is in the same situation but with two risky
assets.

4.1. The Case with Liability. Similarly, all the related constant
parameters in situation two can been seen in Table 1, which
are specified for the illustrative purpose.

The corresponding ODE system becomes

_A1 + 2r1 − δ11½ �A1 +
a1 + γ1a

2
1

� �2
δ11

γ21A1
+ q11A1 + q12A2 = 0,

_A2 + 2r2 − δ12½ �A2 +
a2 + γ2a

2
2

� �2
δ12

γ22A2
+ q21A1 + q22A2 = 0,

_D1 + r1 − δ11ð ÞD1 + δ31 − μ1ð ÞA1 +
a21 1 + γ1a1ð Þn1δ11

γ1A1
+ q11D1 + q12D2 = 0,

_D2 + r2 − δ12ð ÞD2 + δ32 − μ2ð ÞA2 +
a22 1 + γ2a2ð Þn2δ12

γ2A2
+ q21D1 + q22D2 = 0,

_N1 + 2 δ31 − μ1ð ÞD1 +
a21n

2
1 −D2

1
A1

δ11 + q11N1 + q12N2 = 0,

_N2 + 2 δ32 − μ2ð ÞD2 +
a22n

2
2 −D2

2
A2

δ12 + q21N1 + q22N2 = 0,

_a1 + r1 +
a1 − γ1A1 + γ1a

2
1

γ1A1
δ11

� �
a1 + q11a1 + q12a2 = 0,

_a2 + r2 +
a2 − γ2A2 + γ2a

2
2

γ2A2
δ12

� �
a2 + q21a1 + q22a2 = 0,

_n1 +
a21δ11
A1

n1 −
a1D1
A1

δ11 + δ31 − μ1ð Þa1 + q11n1 + q12n2 = 0,

_n2 +
a22δ12
A2

n2 −
a2D2
A2

δ12 + δ32 − μ2ð Þa2 + q21n1 + q22n2 = 0,

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð58Þ

with the terminal conditions

A1 Tð Þ = A2 Tð Þ = a1 Tð Þ = a2 Tð Þ = 1,
D1 Tð Þ =D2 Tð Þ =N1 Tð Þ =N2 Tð Þ = n1 Tð Þ = n2 Tð Þ = 0:

ð59Þ

where

δ11 =
b1 − r1ð Þ2

σ21
, δ12 =

b2 − r2ð Þ2
σ22

,

δ31 =
b1 − r1ð Þρ1

σ1
, δ32 =

b2 − r2ð Þρ2
σ2

: ð60Þ

4.2. The Case with a Natural Choice γðs, kÞ. Again, all the
related constant parameters in situation three have been rep-
resented in Table 2. All parameters are specified for the illus-
trative purpose.

The resulting ODE system are shown as follows:

_A1 + 2 b01 − δ21ð Þ − δ11½ �A1 +
a1 + γ1a

2
1

� �2
δ11

γ21A1
+ q11A1 + q12A2 = 0,

_A2 + 2 b02 − δ22ð Þ − δ12½ �A2 +
a2 + γ2a

2
2

� �2
δ12

γ22A2
+ q21A1 + q22A2 = 0,

_D1 + b01 − δ21 − δ11ð ÞD1 + δ31 − μ1ð ÞA1 +
a21 1 + γ1a1ð Þn1δ11

γ1A1
+ q11D1 + q12D2 = 0,

_D2 + b02 − δ22 − δ12ð ÞD2 + δ32 − μ2ð ÞA2 +
a22 1 + γ2a2ð Þn2δ12

γ2A2
+ q21D1 + q22D2 = 0,

_N1 + 2 δ31 − μ1ð ÞD1 +
a21n

2
1 −D2

1
A1

δ11 + q11N1 + q12N2 = 0,

_N2 + 2 δ32 − μ2ð ÞD2 +
a22n

2
2 −D2

2
A2

δ12 + q21N1 + q22N2 = 0,

_a1 + b01 − δ21 +
a1 − γ1A1 + γ1a

2
1

γ1A1
δ11

� �
a1 + q11a1 + q12a2 = 0,

_a2 + b02 − δ22 +
a2 − γ2A2 + γ2a

2
2

γ2A2
δ12

� �
a2 + q21a1 + q22a2 = 0,

_n1 +
a21δ11
A1

n1 −
a1D1
A1

δ11 + δ31 − μ1ð Þa1 + q11n1 + q12n2 = 0,

_n2 +
a22δ12
A2

n2 −
a2D2
A2

δ12 + δ32 − μ2ð Þa2 + q21n1 + q22n2 = 0,

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð61Þ

Table 1: All the related constant parameters in the case with
liability.

Parameter (symbol)
Regime 1
(i = 1)

Regime 2
(i = 2)

Exit time (Ti) 10 10

Risk-free interest rate (ri) 0.04 0.04

Risky asset appreciation rate (bi) 0.2 0.05

Risky asset volatility (σi) 0.3 0.07

Liability appreciation rate (μi) 0.08 0.04

Liability volatility (ρi) 0.3 0.1

Differentiation of transition
probabilities (qi)

0.3 0.7

Risk aversion (γi) 0.5 0.9

9Journal of Function Spaces



with the terminal conditions

A1 Tð Þ = A2 Tð Þ = a1 Tð Þ = a2 Tð Þ = 1,
D1 Tð Þ =D2 Tð Þ =N1 Tð Þ =N2 Tð Þ = n1 Tð Þ = n2 Tð Þ = 0:

ð62Þ

where

δ11 =
b11 − b01ð Þ2
σ11 − σ01ð Þ2 , δ12 =

b12 − b02ð Þ2
σ12 − σ02ð Þ2 , δ21 =

b11 − b01ð Þσ01
σ11 − σ01

,

δ22 =
b12 − b02ð Þσ02
σ12 − σ02

, δ31 =
b11 − b01ð Þρ1
σ11 − σ01

, δ32 =
b12 − b02ð Þρ2
σ12 − σ02

:

ð63Þ

4.3. The Case without Liability. All the related constant
parameters in situation one have been displayed in Table 3,
which are specified for the illustrative purpose.

The ODE system of (56) can then be simplified in the
form of the following expressions:

_A1 + 2r1 − δ11½ �A1 +
a1 + γ1a

2
1

� �2
δ11

γ21A1
+ q11A1 + q12A2 = 0,

_A2 + 2r2 − δ12½ �A2 +
a2 + γ2a

2
2

� �2
δ12

γ22A2
+ q21A1 + q22A2 = 0,

_D1 + r1 − δ11ð ÞD1 +
a21 1 + γ1a1ð Þn1δ11

γ1A1
+ q11D1 + q12D2 = 0,

_D2 + r2 − δ12ð ÞD2 +
a22 1 + γ2a2ð Þn2δ12

γ2A2
+ q21D1 + q22D2 = 0,

_N1 +
a21n

2
1 −D2

1
A1

δ11 + q11N1 + q12N2 = 0,

_N2 +
a22n

2
2 −D2

2
A2

δ12 + q21N1 + q22N2 = 0,

_a1 + r1 +
a1 − γ1A1 + γ1a

2
1

γ1A1
δ11

� �
a1 + q11a1 + q12a2 = 0,

_a2 + r2 +
a2 − γ2A2 + γ2a

2
2

γ2A2
δ12

� �
a2 + q21a1 + q22a2 = 0,

_n1 +
a21δ11
A1

n1 −
a1D1
A1

δ11 + q11n1 + q12n2 = 0,

_n2 +
a22δ12
A2

n2 −
a2D2
A2

δ12 + q21n1 + q22n2 = 0,

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð64Þ

with the terminal conditions

A1 Tð Þ = A2 Tð Þ = a1 Tð Þ = a2 Tð Þ = 1,
D1 Tð Þ =D2 Tð Þ =N1 Tð Þ =N2 Tð Þ = n1 Tð Þ = n2 Tð Þ = 0:

ð65Þ

where

δ11 =
b1 − r1ð Þ2

σ21
, δ12 =

b2 − r2ð Þ2
σ22

: ð66Þ

From Figures 1–6, in the “Bearish” market, we could see
the optimal control strategy u is increasing as time goes by
along with the increase of equilibrium value. They capture
the optimal strategy of the utility and keep it for the whole
time, because the investor pays attention to the utility func-
tions during the entire time. It is reasonable for the time
consistent investor to sacrifice parts of the utility or happi-
ness to secure sufficient budget in order to avoid unpredict-
able deficits. On the other hand, from Figures 1–6 for the
“Bullish” market, the optimal control strategy is growing
with time while the equilibrium value decreases. At the
beginning of the investment in the “Bullish” market, the
investor is confident enough to employ the strategy which
would lead to a optimize equilibrium value. Over time, the
investor will have less investment time to invest to maximize

Table 2: All the related constant parameters in the case with a
natural choice γðs, kÞ.

Parameter (symbol)
Regime 1
(i = 1)

Regime 2
(i = 2)

Exit time (Ti) 10 10

The first risky asset appreciation rate
(b0i)

0.3 0.06

Other risky asset appreciation rate
(b1i)

0.2 0.05

The first risky asset volatility (σ0i) 0.3 0.07

Other risky asset volatility (σ1i) 0.2 0.09

Liability appreciation rate (μi) 0.08 0.04

Liability volatility (ρi) 0.3 0.1

Differentiation of transition
probabilities (qi)

0.3 0.7

Risk aversion (γi) 0.5 0.9

Table 3: All the related constant parameters in the case without
liability.

Parameter (symbol)
Regime 1
(i = 1)

Regime 2
(i = 2)

Exit time (Ti) 10 10

Risk-free interest rate (ri) 0.04 0.04

Risky asset appreciation rate (bi) 0.2 0.05

Risky asset volatility (σi) 0.3 0.07

Liability appreciation rate (μi) 0.08 0.04

Liability volatility (ρi) 0.3 0.1

Differentiation of transition
probabilities (qi)

0.3 0.7

Risk aversion (γi) 0.5 0.9
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their current utility as well as the benefit from the “Bullish”
market because of the state-dependent risk aversion.

In Figures 7 and 8, they compare the results of optimal
control strategy and the equilibrium value among three dif-
ferent situations under the “Bullish” market.

In Figure 7, with the comparison of optimal control strat-
egy (u) in Bull market among three different situations, we
find that there is no significant difference between the situa-
tions with and without liability. When the investors come
across the “Bullish”market, they are willing to invest the risky
asset instead of bearing the liability. However, in the situation
with all risky assets, the optimal control strategy provides a
way to invest in one of risky assets, which highly depends on
the parameters of the two risky assets. In Figure 8, the compar-

ison analysis on the equilibrium values in Bull market among
three different situations has been conducted. The figure
shows decreasing evidence along with levelling off, of which
the reason has been explained above. For the situation with
all risky assets, the equilibrium value has a more stable trend
which also depends on the selected two risky assets.

In the last picture, the comparison has been made about
the optimal control strategy by varying the risk aversion
coefficient. The effect of the risk aversion has been analysed
in Figure 9, which presents the optimal control strategy (u)
under three different risk aversions. Obviously, as the risk
aversion increases, it can be seen that the investor is less
likely to invest in risky assets, which is consistent with com-
mon sense.
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5. Conclusions

In this paper, the mean variance model of asset-liability
management has been discussed in the case of state-
dependent risk aversion with only risky assets. Based on
the continuous-time Markov regime-switching, this paper
derives an analytical optimal control expressions theoreti-
cally in a more realistic financial market and then makes
numerical analysis on a series of special cases. From the
numerical results, this paper reveals the feasibility and appli-
cation of introducing factors, such as regime-switching, lia-
bility, and risky asset in a mean-variance optimization
framework, and also shows the relationships between a set
of risk aversions and the optimal controller.
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Lie symmetry analysis of differential equations proves to be a powerful tool to solve or at least reduce the order and nonlinearity of the
equation. Symmetries of differential equations is the most significant concept in the study of DE’s and other branches of science like
physics and chemistry. In this present work, we focus on Lie symmetry analysis to find symmetries of some general classes of KS-type
equation. We also compute transformed equivalent equations and some invariant solutions of this equation.

1. Introduction

Symmetry has been a source of inspiration as a powerful tool
in the formulation of the laws of the universe. A great num-
ber of physical phenomena is transformed into differential
equations. Lie symmetry analysis can change the given differ-
ential equation into an equivalent form which is easier to
solve. In the analysis of differential equations, the symmetry
group approach is quite useful. Galois’s use of finite groups
to solve algebraic equations of degrees two, three, and four,
as well as to prove that the general polynomial equation of
degrees larger than four could not be solved by radicals,
served as the paradigm for this application [1–7]. The sym-
metry group approach is well-known for its importance in
the field of differential equations analysis. Sophus Lie is cred-
ited with the invention of group categorization methods and
the theoretical basis for the Lie groups.

There are many different methods for computing the
symmetries of differential equations. But Lie symmetry anal-
ysis is the best because it is a systematic and algorithmic
procedure that does not take into account any guesses or
approximations. The principal paper on Lie symmetry is

[1], in which Lie demonstrated that a linear 2D, 2nd-order
PDE admits at most three boundary invariance group. He
processed the maximal invariance group of the one-
dimensional heat conductivity and used this analysis to com-
pute its explicit solutions. Symmetry reduction is a leading strat-
egy for resolving nonlinear PDEs. Ovisiannikov made a
substantial contribution in persisting with these techniques.
He presented the strategy of partially invariant solutions [2,
3]. In this work, he gave amethodology that is based on the idea
of group called the equivalence group. Gazizov and Ibragimov
[8] tracked down the total symmetry analysis of the one-
dimensional Black-Scholes model. Shu-Yong and Feng-Xiang,
[9] discussed about the connection between the form invariance
and Lie symmetry of nonholonomic framework. Buckwar and
Luchko [4] initiated the study of symmetry group of scaling
transformation for PDEs of fractional order. Yan et al. [6] per-
formed Lie symmetry analysis and fundamental similarity
reductions for the coupled Kuramoto-Sivashinsky(KS) equa-
tions. Bozhkov and Dimas [10] computed the conversation
laws and group classification for generalized 2D KS equation.
Nadjafikhah and Ahangari [7] determined the Lie symme-
tries and reduction for the two-dimensional damped
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Kuramoto-Sivashinsky ((2D) DKS) equation. Najafikhah
and Ahangari also computed Lie symmetry of 2D generalized
Kuramoto-Sivashinsky (KS) equation in [11]. The one-
dimensional modified KS-type equation is

ut + uxx + uxxxx + λ − 1ð Þu2x − σu2xx = 0, ð1Þ

Chou [12] determined the solution of the cauchy prob-
lem for the MKS equation and also computed the solvability
with the help of the blow up theorem.

In the present paper, we deal with the generalized modified
one-dimensional Kuramoto-Sivashinsky (GMKS) type equa-
tion and determine the symmetry algebra by using Lie symme-
try analysis. In particular, we want to find the optimal system
and similarity solutions corresponding to some special cases
of GMKS equation. The GMKS type equation is given as

f uð Þut + uxx + uxxxx + λ − 1ð Þu2x − σu2xx = 0: ð2Þ

We seek the Lie symmetry algebras for this GMKS equa-
tions for f ðuÞ = un, f ðuÞ = enu, and f ðuÞ = eu

n
where λ and σ

are arbitrary constant and λ ≠ 1: For λ = 1, equation (2) is pro-
posed in [13]. Its second derivative satisfies an equation of
Cahn-Hilliard type in [14]. This equation has various applica-
tions as physical models in biofluids, mechanics, and liquids.
In equation (2), u is the velocity function, x is space parameter,
and t is time variable. This equation can also be derived from a
model in the continuity equation by fitting a suitable function
[15]. Actually, the Kuramoto-Sivashinsky equation gives the
change of the position of a flame front (Figure 1). It shows
the flame front position against time for horizontally propa-
gating methane flame, the movement of a fluid going down
a vertical wall, or a spatially uniform oscillating chemical reac-
tion in a homogeneous medium [16]. This equation is also
helpful to display solitary pulses in a falling slender film [17].
Figure 2 shows the schematic representation of the flow show-
ing a film flowing vertically down, subjected to an electric field
imposed across electrodes separated by a distance d.

2. Lie Symmetry of Generalized Modified
Kuramoto-Sivashinsky Equation

In this part, we compute our main results.
Consider one parameter local Lie group of transforma-

tion for the independent factors x, t and dependent factor
u as follows:

x∗ = x + δα x, t, uð Þ +O δ2
� �

,

t∗ = t + δβ x, t, uð Þ +O δ2
� �

,

u∗ = u + δγ x, t, uð Þ +O δ2
� �

,

ð3Þ

in which δ ∈ℝ is the parameter.

Proposition 1. For all n ≥ 1, n ∈N , the algebra of symmetries
of

unut + uxx + uxxxx + λ − 1ð Þu2x − σu2xx = 0, ð4Þ

is 2-dimensional Abelian Lie algebra.

Proof. The general infinitesimal generator (symmetries) is

H = α x, t, uð Þ∂x + β x, t, uð Þ∂t + γ x, t, uð Þ∂u: ð5Þ

The derivation of nth prolongation of H

prnH =H + 〠
q

i=1
〠
P

γPi x, unð Þ ∂
∂uiP

� �
, ð6Þ

interprets the relating jet space Qn ⊂ X ×Un, where q is a
dependent variables, and P = ðP1, P2,⋯PkÞ with 1 ≤ Pk ≤ p,
1 ≤ k ≤ n and

γPi x, unð Þ =DP γi − 〠
p

l=1
αluil

 !

+ 〠
p

l=1
αluiP,l, ð7Þ

where p is an independent variable and uil = ∂ui/∂ul and
uiP,l = ∂uiP/∂xl.

The fourth-order prolongation of H is

Pr 4ð ÞH =H + γx
∂
∂ux

+ γt
∂
∂ut

+ γxx
∂

∂uxx
+ γxt

∂
∂uxt

+ γtt
∂

∂utt
+ γxxx

∂
∂uxxx

+ γxxt
∂

∂uxxt
+ γxtt

∂
∂uxtt

+ γttt
∂

∂uttt
+ γxxxx

∂
∂uxxxx

+ γxxxt
∂

∂uxxxt

+ γxxtt
∂

∂uxxtt
+ γxttt

∂
∂uxttt

+ γtttt
∂

∂utttt
,

ð8Þ

pr4 unut + uxx + uxxxx + λ − 1ð Þu2x − σu2xx
� �

≡ 0 mod 2ð Þ,
nun−1γt + γxx + γxxxx + 2 λ − 1ð Þuxγx − 2σuxxγxx ≡ 0 mod 2ð Þ:

ð9Þ
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Figure 1: Flame front position.
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We can calculate γt ,γx, γxx, and γxxxx from equation (7)
such that

γt =Dt γ − αux − βutð Þ + αuxt + βutt ,
γx =Dx γ − αux − βutð Þ + αuxx + βuxt ,
γxx =D2

x γ − αux − βutð Þ + αuxxx + βuxxt ,
γxxxx =D4

x γ − αux − βutð Þ + αuxxxxx + βuxxxxt ,

ð10Þ

where Dx and Dt are total derivatives.☐

Putting all the above in equation (9) and eliminating ut
by using the relation ut = 1/unðσu2xx − ðλ − 1Þu2x − uxx −
uxxxxÞ, we get a polynomial equation containing the different
differentials of u. Equating the coefficient of u to zero, which
are some derivatives of α, β, and γ, it gives the total set of
determining equations.

αx = αt = αu = 0, βx = βt = βu = 0, γ = 0: ð11Þ

This gives

α x, t, uð Þ = 0, β x, t, uð Þ = 0, γ x, t, uð Þ = 0: ð12Þ

This implies that the Lie group (algebra) of infinitesimal
generators of equaution (2) is comprised of two vector fields:

H1 = ∂x,
H2 = ∂t:

ð13Þ

The commutator table of the Lie group for equation (2)
is given as in Table 1,

The adjoint table of infinitesimal symmetries for equa-
tion (2) is given as in Table 2,

In this case, we have only two different basis for a Lie
algebra of symmetries.

Hence, this shows that the group of symmetries of equa-
tion (2) is two dimensional and tables ensure that it is
abelian.

Proposition 2. For all n > 1 and n ∈N , the group of symme-
tries of

eu
n
ut + uxx + uxxxx + λ − 1ð Þu2x − σu2xx = 0, ð14Þ

is two-dimensional abelian.

Proof. The infinitesimal generator is

X = α x, t, uð Þ∂x + β x, t, uð Þ∂t + γ x, t, uð Þ∂u: ð15Þ

In order to find the symmetry group of equation (14), we
have to apply invariance condition that is Xð4Þð5Þ ≡ 0
mod ð6Þ on equation .(14) where Xð4Þ is the fourth-order
prolongation of X given as

Pr 4ð ÞX = X + γx
∂
∂ux

+ γt
∂
∂ut

+ γxx
∂

∂uxx
+ γxt

∂
∂uxt

+ γtt
∂

∂utt
+ γxxx

∂
∂uxxx

+ γxxt
∂

∂uxxt
+ γxtt

∂
∂uxtt

+ γttt
∂

∂uttt
+ γxxxx

∂
∂uxxxx

+ γxxxt
∂

∂uxxxt

+ γxxtt
∂

∂uxxtt
+ γxttt

∂
∂uxttt

+ γtttt
∂

∂utttt
:

ð16Þ

After applying an invariance condition on equation (14),
we get

nun−1eu
n
γt + γxx + γxxxx + 2 λ − 1ð Þuxγx

− 2σuxxγxx ≡ 0:mod 2ð Þ:
ð17Þ

We can calculate γt , γx , γxx, and γxxxx from equation (7)
such that

γt =Dt γ − αux − βutð Þ + αuxt + βutt ,
γx =Dx γ − αux − βutð Þ + αuxx + βuxt ,
γxx =D2

x γ − αux − βutð Þ + αuxxx + βuxxt ,
γxxxx =D4

x γ − αux − βutð Þ + αuxxxxx + βuxxxxt ,

ð18Þ

where Dx and Dt are total derivatives.☐

y

x
u

g

y = d
∈
A
, σ

A

∈
F
, σ

F

v

Figure 2: Schematic representation of the flow showing a film flowing vertically down.

Table 1: Commutator table.

::, ::½ � H1 H2

H1 0 0

H2 0 0

Table 2: Adjoint table.

ad H1 H2
H1 H1 H2

H2 H1 H2
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After putting all the above in equation (17), and elimi-
nating ut by using the relation ut = 1/eunðσu2xx − ðλ − 1Þu2x
− uxx − uxxxxÞ, we get a polynomial equation containing
the different differentials of u. Equating the coefficient of u
to zero, which are some derivatives of α, β, and γ, it gives
the total set of determining equations, as given by

αx = αt = αu = 0, βx = βt = βu = 0, γ = 0,
that gives

α x, t, uð Þ = 0, β x, t, uð Þ = 0, γ x, t, uð Þ = 0: ð19Þ

This implies that the Lie group (algebra) of infinitesimal
generators of equation (9) comprises two vector fields. Fol-
lowing, Table 3 gives the commutator table as

X1 = ∂x,
X2 = ∂t:

ð20Þ

The commutator table of the Lie group for equation (14)
is given in Table 3,

The adjoint table of infinitesimal symmetries for equa-
tion (14) is given in Table 4,

In this case, we have only two different basis for Lie
algebra.

Hence, this shows that the group of symmetries of equa-
tion (14) is two-dimensional abelian.

2.1. Symmetry Algebra for eu
n
ut + uxx + uxxxx + ðλ − 1Þu2x − σ

u2xx = 0 When n = 1. For n = 1, the equation is

Δ : euut + uxx + uxxxx + λ − 1ð Þu2x − σu2xx = 0: ð21Þ

The general infinitesimal generator is

V = τ x, t, uð Þ∂x + μ x, t, uð Þ∂t + ν x, t, uð Þ∂u: ð22Þ

In order to find the symmetry algebra, we have to apply
invariance condition that is

V nð Þ Δð Þ ≡ 0 mod Δð Þ, ð23Þ

on equation (21) where V ð4Þ is the fourth-order prolonga-
tion of V such that

Pr 4ð ÞV = V + νx
∂
∂ux

+ νt
∂
∂ut

+ νxx
∂

∂uxx
+ νxt

∂
∂uxt

+ νtt
∂

∂utt
+ νxxx

∂
∂uxxx

+ νxxt
∂

∂uxxt
+ νxtt

∂
∂uxtt

+ νttt
∂

∂uttt
+ νxxxx

∂
∂uxxxx

+ νxxxt
∂

∂uxxxt

+ νxxtt
∂

∂uxxtt
+ νxttt

∂
∂uxttt

+ νtttt
∂

∂utttt
:

ð24Þ

After applying invariance condition (23) on equation
(21)

ueuνt + νxx + νxxxx + 2 λ − 1ð Þuxνx − 2σuxxνxx ≡ 0 mod Δð Þ,
ð25Þ

where νt ,νx, νxx , and νxxxx from equation (7) such that

νt =Dt ν − τux − μutð Þ + τuxt + μutt ,
νx =Dx ν − τux − μutð Þ + τuxx + μuxt ,
νxx =D2

x ν − τux − μutð Þ + τuxxx + μuxxt ,
νxxxx =D4

x ν − τux − μutð Þ + τuxxxxx + μuxxxxt ,

ð26Þ

where Dx and Dt are total derivative.
Putting all the above in equation (25), we eliminateut by

using the relation ut = 1/euðσu2xx − ðλ − 1Þu2x − uxx − uxxxxÞ
and get a polynomial equation containing the different dif-
ferentials of u. Equating the coefficient of u to zero, which
are some derivatives of τ, μ, and ν, it gives the total set of
determining equations.

τx = τt = τu = 0, μx = μt = μu = 0, ν = 0,
that gives

τ x, t, uð Þ = c3, μ x, t, uð Þ = c1t + c2, ν x, t, uð Þ = c1: ð27Þ

This implies that the Lie group (algebra) of infinitesimal
generators of equation (21) is comprised of three vector
fields:

V1 = ∂u + t∂t , ð28Þ

V2 = ∂t , ð29Þ
V3 = ∂x: ð30Þ

The commutator table of the Lie group for equation (21)
is given in Table 5,

The adjoint table of infinitesimal symmetries for equa-
tion (21) is given in Table 6,

In this case, we have three different Lie algebras.

Theorem 3. The algebra of symmetries of Kuramoto-
Sivashinsky type equation is

eu
n
ut + uxx + uxxxx + λ − 1ð Þu2x − σu2xx = 0, ð31Þ

Table 3: Commutator table.

::, ::½ � X1 X2

X1 0 0

X2 0 0

Table 4: Adjoint table.

ad X1 X2
X1 X1 X2

X2 X1 X2
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where it is two-dimensional abelian for all n > 1, nεN and
three-dimensional nonabelian for n = 1:

Proof. The proof follows easily using Propositions 1 and 2.☐

Theorem 4. If Gi
sðx, t, uÞ be the one parameter group gener-

ated by equation (28) then

G1
s x, t, uð Þ = x, est, uð Þ,

G2
s x, t, uð Þ = x, t + s, uð Þ,

G3
s x, t, uð Þ = x + s, t, uð Þ:

ð32Þ

There will be a family of solutions to each one parameter
subgroups of the full symmetry group of a system called group
invariant solutions.

Theorem 5. If u = f ðx, tÞ is a solution of equation (21), so are
the functions

~u1 = f x, e−stð Þ,
~u2 = f x, t − sð Þ,
~u3 = f x − s, tð Þ,

ð33Þ

where ~ui = Gi
s ∗ f ðx, tÞ, i = 1, 2, 3 and s < <1 is any positive

number.

Proof. The one parameter Lie group of equation (21) is

G1
s : x, t, uð Þ⟶ x, est, uð Þ, ð34Þ

with the infinitesimal generator

V1 = t∂t + ∂u, ð35Þ

if ~u1ðx, tÞ is any function then it transformed by G1
s as

~u1 = u,
~u1 = f x, tð Þ,

ð36Þ

now

~x,~t
� �

= x, e−stð Þ, ð37Þ

therefore,

~u1 = f x, e−stð Þ: ð38Þ

The graph for ~u1 = f ðx, e−stÞ is given in Figure 3.
The one parameter Lie group of equation (21) is

G2
s : x, t, uð Þ⟶ x, t − s, uð Þ, ð39Þ

with the infinitesimal generator

V2 = t∂t, ð40Þ

if ~u2ðx, tÞ is any function then it transformed by G2
s as

~u2 = u,
~u2 = f x, tð Þ,

ð41Þ

now

~x,~t
� �

= x, t − sð Þ, ð42Þ

therefore

~u2 = f x, t − sð Þ: ð43Þ

The graph for ~u2 = f ðx, t − sÞ is given in Figure 4.
The one parameter Lie group of equation (21) is

G3
s : x, t, uð Þ⟶ x − s, t, uð Þ, ð44Þ

Table 5: Commutator table.

::, ::½ � V1 V2 V3

V1 0 −V2 0

V2 V2 0 0

V3 0 0 0

Table 6: Adjoint table.

ad½ � V1 V2 V3

V1 V1 V2e
ε V3

V2 V1 − εV2 V2 V3

V3 V1 V2 V3

1.5

–1.5

1

–1

–1–1

0.5

–0.5
0

0 0
𝑡 𝑥

Figure 3: For u1ðx, tÞ = sin ðxÞ + e−sðtÞ, s = 0:00001.
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with the infinitesimal generator

V3 = t∂x, ð45Þ

if ~u3ðx, tÞ is any function then it transformed by G3
s as

~u3 = u,
~u3 = f x, tð Þ,

ð46Þ

now

~x,~t
� �

= x − s, tð Þ, ð47Þ

therefore

~u3 = f x − s, tð Þ: ð48Þ

The graph for ~u3 = f ðx − s, tÞ as a solution is given in
Figure 5.☐

3. Optimal System of Subalgebras

This is remarkable that the Lie symmetry technique assumes
a significant part to determine the solutions of PDEs as well
as performing the symmetric reductions. Every combination
(should be linear) of infinitesimal symmetries(generators)
is a result of another infinitesimal symmetry(generator).
As any transformation in the full symmetry groups plot a
solution to another, it is sufficient to determine the invariant
solution which are not related by transformations in the full
symmetry group; this prompted the Optimal system [18, 19].

Theorem 6. A 1D optimal system of equation (21) is given by
those generated by

Y1 = V1

Y2 = V2,
Y3 = V3,
Y4 =V1 + V3,
Y5 =V3 −V1:

ð49Þ

Proof. Since the combination of vector field (infinitesimal
generator) is also a vector field. Consider a linear combina-
tion V of V1, V2, and V3,

V = 〠
3

i=1
= biVi, ð50Þ

a nonzero vector field. Here, for proof, we will improve
as many of the coefficient bi′s as possible by using adjoint
application on V.☐

Case 1. Firstly assume that b3 ≠ 0 then

V = b1V1 + b2V2 + V3, ð51Þ

acting on V with Adjðexp ðb2/b1ÞV2Þ by using the adjoint
table (adjoint Table 3)

V ′ = Adj exp b2
b1

V2

� �
V = b1V1 +V3: ð52Þ

When b1 > 0, then we get Y4.
When b1 < 0, then we get Y5.
When b1 = 0, then we get Y3.

–1–1
–4

–3

–2

–1

0

1

0
𝑡 𝑥

0

Figure 4: For u1ðx, tÞ = log ðx + tÞ − s, s = 0:00001.

1.5

2

1

–1–1

0.5

0

0 0
𝑡 𝑥

Figure 5: For u3ðx, tÞ = ðx − sÞ + cos ðtÞ, s = 0:00001.
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Case 2. Let b3 = 0 and b1 = 0,

V = b2V2, ð53Þ

when b1 = 1 then we get Y2, Let b3 = 0, b2 = 0 and b1, then we
get Y1 There is no any more cases for consultation and the
proof is complete.

4. Lie Invariants and Similarity Solutions

We can discover that the invariants correlate with the infin-
itesimal symmetries (28); they can be determined by solving
the equations (by using characteristic method). For V2 = ∂t,
the characteristic equation is dx/0 = dt/1 = du/0 and the cor-
responding invariants of this system x = r and u =w.

We obtain a similar solution of the form w =wðrÞ, and
we put it into equation (21) to obtain the form of the func-
tion w, and then, we conclude that w =wðrÞ =wðxÞ solution
of the following differential equation as similarity reduce
equation:

wrr +wrrrr + λ − 1ð Þw2
r − σw2

rr = 0: ð54Þ

For other example, take V3 = ∂x; the characteristic equation
for this has the form dx/1 = dt/0 = du/0 so the correspond-
ing invariants are t = r and u =w.

Taking into account the last invariants, the following
similarity solution is obtained w =wðrÞ =wðtÞ where the
solution satisfied the similarity reduce equation:

ewwr = 0: ð55Þ

5. Conclusions

The present paper addresses Lie symmetries for some gen-
eral cases of modified one-dimensional Kuramoto-
Sivashinky equation (MKS) as well as its similarity solutions
using a symmetry operator. In Section 2, we discussed gen-
eral results for Lie algebras for some general cases of MKS
and provide a comparison between them and obtained some
general results. In Section 3, we find the optimal system for
(MKS). In the last section, we obtained similarity solutions
and Lie invariants.

Remarks. It is worthmentioning that f ðuÞ can be any arbi-
trary function. For other similar functions chosen as f ðuÞ,
the procedure for symmetry analysis can be very tedious
and symmetry algebra can be different.
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This paper deals with a class of quasilinear parabolic equation with power nonlinearity and nonlocal source under homogeneous
Dirichlet boundary condition in a smooth bounded domain; we obtain the blow-up condition and blow-up results under the
condition of nonpositive initial energy.

1. Introduction

In this paper, we consider the following quasilinear
parabolic equation with power nonlinearity and nonlocal
source term:

ut = Δpu + μup
ð
Ω

up+1 y, tð Þdy − k uj jp−2u, x, tð Þ ∈Ω × 0, Tð Þ,

u x, tð Þ = 0, x, tð Þ ∈ ∂Ω × 0, Tð Þ,
u x, 0ð Þ = u0 xð Þ, x ∈Ω,

8>>>><
>>>>:

ð1Þ

where Ω ⊂ RNðN ≥ 1Þ is a bounded domain with smooth
boundary ∂Ω and Δpu = div ðj∇ujp−2∇uÞ is the standard

p-Laplace operator with p > 2, μ, k > 0, u0ðxÞ ∈W1,p
0 ðΩÞ \ f0g.

In the past decades, many physical phenomena have
been expressed as nonlocal mathematical models (see [1,
2]). It is also suggested that the nonlocal growth term pro-
vides a more realistic model for the physical model of com-
pressible reaction gas. Problem (1) appears in the study of
fluid flow through porous media with integral source (see
[3, 4]) and population dynamics (see [5, 6]). Actually, equa-
tions of the above form are mathematical models occurring

in studies of the p-Laplace equation ([7–15] and references
therein), generalized reaction-diffusion theory [16], non-
Newtonian fluid theory [17, 18], non-Newtonian filtration
theory [19, 20], and the turbulent flow of a gas in porous
medium [7]. Media with p > 2 are called dilatant fluids and
those with p < 2 are called pseudoplastics. If p = 2, they are
Newtonian fluids. When p ≠ 2, the problem becomes more
complicated since certain nice properties inherent to the
case p = 2 seem to be lose or at least difficult to verify.

Blow-up results of parabolic equations with nonlocal
sources have been studied as well. For example, the problem
of the form

ut = div ∇uj jp−2∇u� �
+
ð
Ω

uqdx, x, tð Þ ∈Ω × 0, Tð Þ

u x, tð Þ = 0, x, tð Þ ∈ ∂Ω × 0, Tð Þ
u x, 0ð Þ = u0 xð Þ, x ∈Ω,

8>>>><
>>>>:

ð2Þ

was studied by Li and Xie [7]. They established global
existence of solutions and discussed the blow-up proper-
ties of solutions.
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The authors in [8] studied the following p-Laplacian
equation with power nonlinearity

ut − div ∇uj jp−2∇u� �
+ uj jp−2u = uj jp−2u ln uj j, x ∈Ω, t > 0,

u x, tð Þ = 0, x, tð Þ ∈ ∂Ω × 0, Tð Þ,
u x, 0ð Þ = u0 xð Þ, x ∈Ω:

8>><
>>:

ð3Þ

By using an efficient technique and according to some suf-
ficient conditions, the global existence and decay estimates of
solutions under some sufficient conditions are discussed.

The authors in [9] considered the Neumann problem to
the following initial parabolic equation with logarithmic
source:

ut − div ∇uj jp−2∇u� �
= uj jp−2u log uj j −

þ
Ω

uj jp−2u log uj jdx, x ∈Ω, t > 0,

∂u x, tð Þ
∂η

= 0, x ∈ ∂Ω, t > 0,

u x, 0ð Þ = u0 xð Þ, x ∈Ω,

8>>>>>><
>>>>>>:

ð4Þ

in a bounded domain with smooth boundary, p > 2. By using
the logarithmic Sobolev inequality and potential wells
method, they obtain the decay, blow-up, and nonextinction
of solutions under some conditions.

In [10], the following model of a quasilinear diffusion
equation with interior logarithmic source has been studied:

ut − div ∇uj jp−2∇u� �
= uj jp−2u log uj j, x ∈Ω, t > 0,

u x, tð Þ = 0, x ∈ ∂Ω, t > 0,
u x, 0ð Þ = u0 xð Þ, x ∈Ω,

8>><
>>:

ð5Þ

in which p > 2, u0ðxÞ ∈W1,p
0 ðΩÞ \ f0g: By using the potential

well method and a logarithmic Sobolev inequality, the
authors obtained results of existence or nonexistence of
global weak solution. They also provided sufficient condi-
tions for the large time decay of global weak solutions and
for the finite time blow-up of weak solutions. Among some
other interesting results, they showed that the weak solution
uðx, tÞ of problem (5) blows up at finite time under the con-
dition Jðu0Þ ≤M and Iðu0Þ < 0, where M > 0 is a constant;
the energy functional JðuÞ and Nehari functional IðuÞ are
defined as follows:

J uð Þ = 1
p

∇uk kpp −
1
p

ð
Ω

uj jp log uj jdx + 1
p2

uk kpp,

I uð Þ = ∇uk kpp −
ð
Ω

uj jp log uj jdx,
ð6Þ

in which k·kp = ðÐ
Ω
j·jpdxÞ1/p.

Motivated by the above studies, in this paper, we
investigate blow-up results of problem (1). We will give the

conditions for the blow-up results and establish the lower
bounds for the blow-up rate. Our main results are as follows.

Theorem 1. Assume that J1ðu0Þ < 0. Then, the weak solution
u = uðx, tÞ of problem (1) blows up at finite time.

Theorem 2. Assume that u0 ∈H1
0ðΩÞ and J1ðu0Þ < 0, let

u = uðx, tÞ be the nonnegative solution of problem (1), then
u blows up in finite time

T ≔
u0k k22

−p 4p + 4ð ÞJ1 u0ð Þ : ð7Þ

Theorem 3. Assume that u0 ∈H1
0ðΩÞ, J1ðu0Þ ≤ 0,

Ð t0
0

kusð·, sÞk22ds > 0 for any t0 > 0, then, the weak solution
u = uðx, tÞ of problem (1) blows up at infinity. Moreover,
if ku0k2 ≤ ð−Jðu0ÞÞ2/p, the lower bound for blow-up rate
can be estimated by

uk k22 ≥ u0k k22: ð8Þ

2. Criterions of Blow-Up

2.1. Preliminaries. In this section, we start with the definition
of weak solution and blow-up at infinity of (1).

Definition 4 (weak solution). Let T > 0. A function u =
uðx, tÞ ∈ L∞ð0, T ; X0Þ with ut ∈ Lp

′ð0, T ;W−1,p′ðΩÞÞ ∩ L2

ð0, T ; L2ðΩÞÞ is called a weak solution to problem
(1) in Ω × ½0, TÞ, if uðx, 0Þ = u0ðxÞ ∈ X0 and uðx, tÞ
satisfies (1) in the sense of distribution, i.e.,

ut , ωh i + ∇uj jp−2∇u,∇ω� �
+ k uj jp−2u, ω� �

= μ up
ð
Ω

up+1 y, tð Þdy, ω
� �

,

ð9Þ

for all ω ∈W1,p
0 ðΩÞ,t ∈ ð0, TÞ, where X0 =W1,p

0 ðΩÞ \ f0g,
W−1,~pðΩÞ to denote the dual space of W1,p

0 ðΩÞ, and
~p is Holder conjugate exponent of p > 1.

Definition 5 (blow-up at infinity). Let uðx, tÞ be a weak solu-
tion of (1), we call uðx, tÞ blow-up at +∞ if the maximal
existence time T = +∞ and

lim
t⟶+∞

u ·, tð Þk k2 =∞: ð10Þ

To obtain the blow-up results, define the potential
energy functional and the Nehari’s functional as follows:

J1 uð Þ = 1
p

∇uk kpp +
k
p

uk kpp −
μ

2p + 2

ð
Ω

ð
Ω

up+1 x, tð Þup+1 y, tð Þdxdy,

I1 uð Þ = ∇uk kpp + k uk kpp − μ
ð
Ω

ð
Ω

up+1 x, tð Þup+1 y, tð Þdxdy:

ð11Þ

To prove the main result, we need the following lemmas.

2 Journal of Function Spaces



Lemma 6. Assume that uðx, tÞ is a weak solution of (1). Then,
J1ðuÞ is nonincreasing with respect to t and satisfies the
energy inequality

ðt
0
us ·, sð Þk k22ds + J1 uð Þ ≤ J1 u0ð Þ, t ∈ 0, T0½ Þ: ð12Þ

Proof. Similar to the proof in [8, 10, 11], we can get
the result.

Lemma 7. [8] J1ðuÞ is a nonincreasing function, for t ≥ 0,

J1′ uð Þ = − utk k2 ≤ 0: ð13Þ

Lemma 8 [12]. Let Φ be a positive, twice differentiable func-
tion satisfying the following conditions:

Φ �tð Þ > 0,
Φ′ �tð Þ > 0,

ð14Þ

for some �t ∈ ½0, TÞ, and the inequality

Φ tð ÞΦ′′ tð Þ − α Φ′ tð Þ
� 	2

≥ 0,∀t ∈ �t, T½ �, ð15Þ

where α > 1. Then, we have

Φ tð Þ ≥ 1

Φ1−α �tð Þ − ~Φ t −�tð Þ

 !1/ α−1ð Þ
, t ∈ t, T∗½ �, ð16Þ

in which ~Φ is a positive constant, and

T∗ =�t + Φ �tð Þ
α − 1ð ÞΦ′ �tð Þ

: ð17Þ

This implies

lim
t⟶T∗

Φ tð Þ = +∞: ð18Þ

Lemma 9 [9]. Suppose that θ > 0, α > 0, β > 0, and hðtÞ is a
nonnegative and absolutely continuous function satisfying h
′ðtÞ + αhθðtÞ ≥ β, then for 0 < t < +∞, it holds

h tð Þ ≥min h 0ð Þ, β

α


 �1/θ
( )

: ð19Þ

2.2. Proof of the Main Results. We will consider the finite
time blow-up results of problem (1) under the condition of
nonpositive initial energy. The theorems are proved as
follows.

Proof of Theorem 1. Assume that uðx, tÞ is the weak solution
of problem (1), for any T > 0, we define the functional

Γ tð Þ =
ðt
0
u ·, sð Þk k22ds + T − tð Þ u0k k22, t ∈ 0, T½ �: ð20Þ

It is obvious that ΓðtÞ > 0 for all t ∈ ½0, T�. Since Γ is
continuous, there exists ρ > 0 (independent of T) such that
ΓðtÞ > ρ for all t ∈ ½0, T�.

Then, we have

Γ′ tð Þ = u ·, tð Þk k22 − u0k k22, ð21Þ

Γ′′ tð Þ = 2
ð
Ω

utudx = −2I1 uð Þ ≥ −2pJ1 uð Þ: ð22Þ

By using (12) in Lemma 7, we have

−2pJ1 uð Þ ≥ 2p
ðt
0
us ·, sð Þk k22ds − 2pJ1 u0ð Þ: ð23Þ

From J1ðu0Þ < 0, (22) and (23), we get

Γ′′ tð Þ ≥ 2p
ðt
0
us ·, sð Þk k22ds − 2pJ1 u0ð Þ > 2p

ðt
0
us ·, sð Þk k22ds:

ð24Þ

Now, multiplying (24) by ΓðtÞ, we have

Γ′′ tð ÞΓ tð Þ > 2p
ðt
0
us ·, sð Þk k22dsΓ tð Þ

= 2p
ðt
0
us ·, sð Þk k22ds

ðt
0
u ·, sð Þk k22ds

+ 2p T − tð Þ u0k k22
ðt
0
us ·, sð Þk k22ds:

ð25Þ

Noticing that

Γ′ tð Þ = u ·, tð Þk k22 − u0k k22
=
ðt
0

d
ds

u ·, sð Þk k22
� �

ds

= 2
ðt
0

ð
Ω

usudxds,

ð26Þ

then

Γ′ tð Þ
� 	2

= 4
ðt
0

ð
Ω

usudxds

 �2

: ð27Þ

With the help of Cauchy-Schwarz inequality, we have

Γ′ tð Þ
� 	2

≤ 4
ðt
0
us ·, sð Þk k22ds

ðt
0
u ·, sð Þk k22ds: ð28Þ
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Using (25) and (28), we further get

Γ′′ tð ÞΓ tð Þ − p
2 Γ′ tð Þ
� 	2

> 2p T − tð Þ u0k k22
ðt
0
us ·, sð Þk k22ds > 0,

ð29Þ

for all t ∈ ½0, T�:
By Lemma 8, there exists T∗ > 0 such that

lim
t⟶T∗

Γ tð Þ = +∞, ð30Þ

which implies

lim
t⟶T∗

ðt
0
u ·, sð Þk k22ds = +∞: ð31Þ

As a consequence, we get

lim
t⟶T∗

u ·, tð Þk k22ds = +∞, ð32Þ

this means uðx, tÞ blows up at finite time T∗.

Proof of Theorem 2. Set GðtÞ = kuð·, sÞk22, then

G′ tð Þ = 2
ð
Ω

utudx

= 2 − ∇uk kpp + μ
ð
Ω

ð
Ω

up+1 x, tð Þup+1 y, tð Þdxdy − k uk kpp

 �

= −2I1 uð Þ
≥ F tð Þ,

ð33Þ

in which

F tð Þ≔− 4p + 4ð ÞJ1 uð Þ
= −

4p + 4
p

∇uk kpp −
k 4p + 4ð Þ

p
uk kpp

+ 2μ
ð
Ω

ð
Ω

up+1 x, tð Þup+1 y, tð Þdxdy:
ð34Þ

By Lemma 6, we can get

F ′ tð Þ = − 4p + 4ð Þ d
dt

J1 uð Þ = 4p + 4ð Þ
ð
Ω

utj j2dx > 0: ð35Þ

From (35) and the condition J1ðu0Þ < 0, we can get
FðtÞ > 0. Then, by Cauchy-Schwarz inequality and (21),
the following inequality can be obtained:

G tð ÞF ′ tð Þ = 4p + 4ð Þ
ð
Ω

uj j2dx
ð
Ω

utj j2dx

≥ 4p + 4ð Þ
ð
Ω

uutdx

 �2

= p + 1ð Þ G′ tð Þ
h i2

≥ p + 1ð ÞG′ tð ÞF tð Þ,

ð36Þ

that is,

F ′ tð Þ
F tð Þ ≥ p + 1ð ÞG′ tð Þ

G tð Þ : ð37Þ

Integrating (37) on ½0, t�, we can get

ln F tð Þ½ � − ln F 0ð Þ½ � ≥ p + 1ð Þ ln G tð Þ½ � − p + 1ð Þ ln G 0ð Þ½ �,
ð38Þ

that is,

F tð Þ
G tð Þ½ �p+1 ≥

F 0ð Þ
G 0ð Þ½ �p+1 : ð39Þ

By (33), we have

G′ tð Þ
G tð Þ½ �p+1 ≥

F 0ð Þ
G 0ð Þ½ �p+1 : ð40Þ

By integrating (40) on ½0, t�, we can get

1
G tð Þ½ �p ≤

1
G 0ð Þ½ �p −

pF 0ð Þ
G 0ð Þ½ �p+1 t =

G 0ð Þ − pF 0ð Þt
G 0ð Þ½ �p+1 : ð41Þ

Take the reciprocal of (41) to get

G tð Þ½ �p ≥ G 0ð Þ½ �p+1
G 0ð Þ − pF 0ð Þt : ð42Þ

Let

T = G 0ð Þ
pF 0ð Þ =

u0k k22
−p 4p + 4ð ÞJ1 u0ð Þ , ð43Þ

when t⟶ T−, we can get ½GðtÞ�p ⟶ +∞; this means
that u blows up in a finite time.

Proof of Theorem 3. Assume that uðx, tÞ is the weak solution
of problem (1). Set GðtÞ = kuð·, sÞk22, then

G′ tð Þ = 2
ð
Ω

utudx = −2I1 uð Þ ≥ −2pJ1 uð Þ, ð44Þ

By (12) in Lemma 6 and the condition J1ðu0Þ ≤ 0, we
can get
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−2pJ1 uð Þ ≥ 2p
ðt
0
us ·, sð Þk k22ds: ð45Þ

Then, by (44) and (45), we have

G′ tð Þ ≥ 2p
ðt
0
us ·, sð Þk k22ds > 0: ð46Þ

Fix t0 > 0 and let κ =
Ð t
0kuk

2
2ds. By the conditionÐ t0

0 kusð·, sÞk
2
2ds > 0, we can get κ, which is a positive

constant. Integrating (46) over ðt0, tÞ, we can get

G tð Þ ≥G t0ð Þ + 2p
ðt
t0

ðt
0

us ·, sð Þk k22dsdτ

≥G t0ð Þ + 2p
ðt
t0

κdτ

≥ 2pκ t − t0ð Þ:

ð47Þ

Hence, we have

lim
t⟶+∞

G tð Þ =∞: ð48Þ

This means that the weak solution u = uðx, tÞ of
problem (1) blows up at infinity.

From (12) and (44), we have

G′ tð Þ ≥ −2pJ1 uð Þ ≥ −2pJ1 u0ð Þ,
G′ tð Þ +Gp/2 tð Þ ≥ −2pJ1 u0ð Þ ≥ −J1 u0ð Þ,

ð49Þ

for p > 2.
By Lemma 9, consider J1ðu0Þ < 0 and ku0k22 ≤

ð−J1ðu0ÞÞ2/p, we have

G tð Þ ≥min u0k k22, −J1 u0ð Þð Þ2/p� 

≥ u0k k22, ð50Þ

this ends the proof.

3. Conclusions

In this work, we consider the initial boundary value problem
for a class of quasilinear parabolic equation with power non-
linearity and nonlocal source under homogeneous Dirichlet
boundary condition in a smooth bounded domain. Some
new results of blow-up and blow-up time under the condi-
tion of nonpositive initial energy are obtained. The blow-
up results of problem (1) with arbitrary initial energy will
be the direction of further research.
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In this paper, we consider the multiplicity of solutions for a discrete boundary value problem involving the singular ϕ-Laplacian.
In order to apply the critical point theory, we extend the domain of the singular operator to the whole real numbers. Instead, we
consider an auxiliary problem associated with the original one. We show that, if the nonlinear term oscillates suitably at the origin,
there exists a sequence of pairwise distinct nontrivial solutions with the norms tend to zero. By our strong maximum principle, we
show that all these solutions are positive under some assumptions. Moreover, the solutions of the auxiliary problem are solutions
of the original one if the solutions are appropriately small. Lastly, we give an example to illustrate our main results.

1. Introduction

Let Z and R denote the sets of integers and real numbers,
respectively. For a, b ∈ Z, define ZðaÞ = fa, a + 1,⋯g and Zð
a, bÞ = fa, a + 1,⋯,bg when a ≤ b.

In this paper, we consider the following boundary value
problem of prescribed mean curvature equations in Min-
kowski spaces:

∇
Δukffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − Δukð Þ2
q

0
B@

1
CA + λf k, ukð Þ = 0, k ∈ Z 1, Tð Þ,

u0 = αu1, uT+1 = 0,

8>>><
>>>:

ð1Þ

where T is a given positive integer, α is a constant in ½0, 1�, ∇
is the backward difference operator defined by ∇uk = uk −
uk−1, Δ is the forward difference operator defined by Δuk =
uk+1 − uk, and f ðk, ·Þ ∈ CðR, RÞ for each k ∈ Zð1, TÞ.

In 2019, Chen et al. in [1] considered problem (1) in the
case where f ðk, xÞ = μkx

q and α = 1, that is,

∇
Δukffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − Δukð Þ2
q

0
B@

1
CA + λμk ukð Þq = 0, k ∈ Z 1, Tð Þ,

Δu0 = 0 = uT+1:

8>>><
>>>:

ð2Þ

By using upper and lower solutions, the Brouwer degree
theory, and Szulkin’s critical point theory for convex, lower
semicontinuous perturbations of C1-functions, the authors
obtained the intervals of the parameter λ such that problem
(2) has zero, one, or two positive solutions. Earlier in 2008,
Bereanu and Mawhin in [2] obtained the existence of at least
one or two solutions for the boundary value problems of
second-order nonlinear differences with singular ϕ-Lapla-
cian by using the Brouwer degree together with fixed point
reformulations. For the existence and multiplicity of positive
solutions of the associated differential problems to (1), we
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refer to [3, 4]. And for the boundary value problems of non-
singular differential equations, we refer to [5–9].

Difference equations arise in various research fields. For
the existence and multiplicity of solutions of boundary value
problems of difference equations, the classical methods are
fixed point theory, the method of upper and lower solution
techniques, Rabinowitz’s global bifurcation theorem, etc.
(see [2, 10, 11]). Since 2003, variational methods have been
employed to study difference equations [12], by which vari-
ous results are obtained. See, for example, periodic solutions
and subharmonic solutions [13, 14], homoclinic solutions
[15–22], heteroclinic solutions [23], and boundary value
problems [24–27]. In recent years, boundary value problems
of difference equations involving ϕ-Laplacian have aroused
extensive attention from scholars; for example, in 2019,
Zhou and Ling in [28] considered the following Dirichlet
problem of the second-order nonlinear difference equation:

−Δ ϕc Δuk−1ð Þð Þ = λf k, ukð Þ, k ∈ Z 1, Tð Þ,
u0 = uT+1 = 0,

(
ð3Þ

where ϕc is the mean curvature operator defined by ϕcðsÞ
= s/

ffiffiffiffiffiffiffiffiffiffiffi
1 + s2

p
. The authors obtained the existence of infinitely

many positive solutions for problem (3). The authors in [29]
extended the results of [28] to the following Dirichlet prob-
lem:

−Δ ϕc Δuk−1ð Þð Þ + qkϕc ukð Þ = λf k, ukð Þ, k ∈ Z 1, Tð Þ,
u0 = uT+1 = 0:

(

ð4Þ

For the Robin problem of the second-order nonlinear
difference equation,

−Δ φp Δuk−1ð Þ
� �

+ qkφp ukð Þ = λf k, ukð Þ, k ∈ Z 1, Tð Þ,
Δu0 = uT+1 = 0,

8<
:

ð5Þ

where φp is a special ϕ-Laplacian operator [13] defined by

φpðsÞ = pjsjp−2s/2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + jsjp

p
with p ≥ 2; we refer to [30].

Up to now, there is less work on the boundary value
problems of difference equations involving the singular ϕ-
Laplcian; the known results are the existence of at least one
or two solutions. The aim of this paper is to obtain the exis-
tence of infinitely many solutions for problem (1), and prob-
lem (1) contains the Dirichlet problem (when α = 0) and
Robin problem (when α = 1) as special cases. The difficulty
lies that the domain of the singular ϕ-Laplcian is a finite
open interval ð−a, aÞ, not ð−∞, +∞Þ. The tool is a critical
point result in [31]. However, we can not apply the critical
point theory to the problem (1) directly, since the domain
of the singular ϕ-Laplcian in (1) is ð−1, 1Þ; we need to extend
the domain of the singular ϕ-Laplcian to ð−∞, +∞Þ.
Instead, we consider the auxiliary problem (20) associated
with problem (1) in Section 2. We will show that solutions

of problem (20) are solutions of problem (1) if the solutions
are appropriately small. For general background on differ-
ence equations, we refer the reader to monographs [32, 33].

This paper is organized as follows. In Section 2, an aux-
iliary problem associated with problem (1) is established, the
variational framework associated with this auxiliary problem
is established, and the abstract critical point theorem is
recalled. In Section 3, our main results are presented. And
we also establish a strong maximum principle and obtain
the existence of infinitely many positive solutions for (1)
according to the oscillating behavior of f at the origin.
Finally, in Section 4, an example is given to illustrate our
main results.

2. Preliminaries

In this section, we will first introduce a lemma (Theorem 2.5
of [31]).

Let X be a reflexive real Banach space, and let Iλ : X
⟶ R be a function satisfying the following structure
hypothesis:

ðΛÞIλðuÞ≔ΦðuÞ − λΨðuÞ for all u ∈ X, where Φ,Ψ : X
⟶ R are two functions of class C1 on X with Φ coercive,
i.e., lim∥u∥⟶+∞ΦðuÞ = +∞, and λ is a real positive
parameter.

If infXΦ < r, let

μ rð Þ≔ inf
u∈Φ−1 −∞,rð Þ

sup
v∈Φ−1 −∞,rð Þ

Ψ vð Þ
 !

−Ψ uð Þ

r −Φ uð Þ ,

δ≔ liminf
r⟶ inf

X
Φ

� �+
μ rð Þ:

ð6Þ

Obviously, δ ≥ 0. When δ = 0, in the sequel, we agree to
read 1/δ as +∞.

Lemma 1. Assume that the condition ðΛÞ holds, and δ < +∞;
then, for each λ ∈ ð0, 1/δÞ, the following alternative holds:
either

(a1) there is a global minimum of Φ which is a local min-
imum of Iλ, or

(a2) there is a sequence fung of pairwise distinct critical
points (local minima) of Iλ, with limn⟶+∞ΦðunÞ = infXΦ,
which weakly converges to the global minimum of Φ.

We will use this lemma to investigate problem (1). Now,
we establish the variational framework associated with prob-
lem (1). We consider the T-dimensional Banach space.

S = u : Z 0, T + 1ð Þ⟶ R : u0 = αu1, uT+1 = 0f g ð7Þ

endowed with the norm

uk k≔ 〠
T

k=1
Δukð Þ2

 !1/2

: ð8Þ
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We consider another norm in S, that is,

uk k∞ ≔max ukj j: k ∈ Z 1, Tð Þf g: ð9Þ

For each u ∈ S, there exists a τ ∈ Zð1, TÞ, such that

uk k∞ = uτj j = 〠
T

k=τ
Δuk

�����
����� ≤ 〠

T

k=1
Δukj j ≤ T1/2 uk k, ð10Þ

thus,

uk k ≥ 1
T1/2 uk k∞: ð11Þ

We mention that the equality in (11) holds if we let uk
= ðT + 1 − kÞc, k ∈ Zð1, TÞ, u0 = αTc, where c is a nonzero
constant. In fact, in this case, kuk = T1/2jcj and kuk∞ = Tjcj.

We notice that the singular operator ϕðsÞ = s/
ffiffiffiffiffiffiffiffiffiffiffi
1 − s2

p
in

problem (1) only defined for s ∈ ð−1, 1Þ. In order to use
Lemma 1, we need to extend the domain of the singular
operator ϕ to ð−∞,∞Þ. Take

g sð Þ =
sffiffiffiffiffiffiffiffiffiffiffi

1 − s2
p ,  sj j ≤

ffiffiffi
3

p

2 ,

2s,  sj j >
ffiffiffi
3

p

2 :

8>>><
>>>:

ð12Þ

Then, gðsÞ is continuous in ð−∞, +∞Þ, and the pri-
mary function of g is given by

G sð Þ =
s

1 +
ffiffiffiffiffiffiffiffiffiffiffi
1 − s2

p ,  sj j ≤
ffiffiffi
3

p

2 ,

s2 −
1
4 ,  sj j >

ffiffiffi
3

p

2 :

8>>><
>>>:

ð13Þ

We define

Φ uð Þ = 〠
T

k=0
G Δukð Þ + αG Δu0ð Þ

1 − α
,

Ψ uð Þ = 〠
T

k=1
F k, ukð Þ,

ð14Þ

for each u ∈ S, where Fðk, uÞ = Ð u0 f ðk, τÞdτ for every k ∈ Zð
1, TÞ. When α = 1, we read ðαGðΔu0ÞÞ/ð1 − αÞ as 0 in (14),
since

lim
α⟶1

αG Δu0ð Þ
1 − α

= lim
α⟶1

α 1 − αð Þ2u21
1 − αð Þ 1 +ð p1 − 1 − αð Þ2u21

= 0:

ð15Þ

Put

Iλ uð Þ =Φ uð Þ − λΨ uð Þ, ð16Þ

for u ∈ S. Then, Φ andΨ are two functionals of class C1ðS, RÞ
whose Gâteaux derivatives at the point u ∈ S are given by

Φ′ uð Þ vð Þ = 〠
T

k=0
g Δukð ÞΔvk +

αg Δu0ð ÞΔv0
1 − α

,

Ψ′ uð Þ vð Þ = 〠
T

k=1
f k, ukð Þvk,

ð17Þ

for all u, v ∈ S. It is clear that

〠
T

k=0
g Δukð ÞΔvk = 〠

T

k=0
g Δukð Þvk+1 − 〠

T

k=0
g Δukð Þvk

= 〠
T

k=1
g Δuk−1ð Þvk − 〠

T

k=1
g Δukð Þvk − g Δu0ð Þv0

= −〠
T

k=1
∇ g Δukð Þð Þvk − αg Δu0ð Þv1

= −〠
T

k=1
∇ g Δukð Þð Þvk −

αg Δu0ð ÞΔv0
1 − α

,

ð18Þ

then,

Φ′ uð Þ − λΨ′ uð Þ
h i

vð Þ = −〠
T

k=1
∇ g Δukð Þð Þ + λf k, ukð Þ½ �vk:

ð19Þ

Consequently, the critical points of Iλ in S are exactly the
solutions of the following boundary value problem:

∇ g Δukð Þð Þ + λf k, ukð Þ = 0, k ∈ Z 1, Tð Þ,
u0 = αu1, uT+1 = 0:

(
ð20Þ

Remark 2. If u ∈ S is a solution of problem (20) with jΔukj
≤

ffiffiffi
3

p
/2 for k ∈ Zð0, TÞ, then, u is a solution of problem (1).

3. Main Results

First, we consider the existence of nontrivial solutions for
problem (1). Let

B≔ limsup
t⟶0+

∑T
k=1F k, tð Þ

t2
: ð21Þ

We have the following:

Theorem 3. Assume that there exist two real sequences fung
and fvng, with vn > 0 and limn⟶+∞vn = 0, such that
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Then, for each λ ∈ ðð2 − αÞ/2B, 1/γÞ, problem (1) admits a
sequence of nontrivial solutions which converges to zero.

Remark 4. A sequence fuðnÞg in S is said to converge to zero
if kuðnÞk⟶ 0 as n⟶∞.

Proof. Take Φ and Ψ as defined by (14); we will prove
Theorem 3 by using Lemma 1. Since limjsj⟶+∞GðsÞ =
limjsj⟶+∞s2 − ð1/4Þ = +∞, it is easy to see that limkuk⟶+∞
ΦðuÞ = +∞, and ðΛÞ is satisfied. Put

rn =
v2n
2T : ð24Þ

Since limn⟶∞vn = 0, there is no harm in assuming that
vn ≤

ffiffiffiffi
T

p
; then, rn ≤ 1/2. If u ∈ S and

Φ uð Þ = 〠
T

k=0
G Δukð Þ + αG Δu0ð Þ

1 − α
< rn, ð25Þ

then, GðΔukÞ < ð1/2Þ for k ∈ Zð0, TÞ. Noting that GðsÞ ≥ 1/2
for jsj ≥ ffiffiffi

3
p

/2, we see that jΔukj <
ffiffiffi
3

p
/2 for k ∈ Zð0, TÞ and

ΦðuÞ takes the form

Φ uð Þ = 〠
T

k=0

Δukð Þ2

1 +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Δukð Þ2

q + α 1 − αð Þu21
1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1 − αð Þ2u21

q : ð26Þ

Therefore,

1
2〠

T

k=1
Δukð Þ2 ≤Φ uð Þ < rn, ð27Þ

which implies that kuk < ffiffiffiffiffiffiffi2rn
p

. By (11), we have

uk k∞ <
ffiffiffiffiffiffiffiffiffiffi
2Trn

p
= vn: ð28Þ

According to the definition of μ, we have

μ rnð Þ ≤ inf
u∈Φ−1 −∞,rnð Þ

∑T
k=1 max

tj j≤vn
F k, tð Þ −∑T

k=1F k, ukð Þ
v2n/2Tð Þ −Φ uð Þ : ð29Þ

For each n ∈ Zð1Þ, let wn ∈ S be defined by ðwnÞk = un for
every k ∈ Zð1, TÞ and ðwnÞ0 = αðwnÞ1, ðwnÞT+1 = 0. Then,

Φ wnð Þ = u2n
1 +

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − u2n

p + 1 − αð Þu2n
1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1 − αð Þ2u2n

q < v2n
2T = rn,

ð30Þ

by using (22). Thus,

Therefore, by (23), we know that δ ≤ liminfn⟶+∞μðrnÞ
≤ γ < +∞:

To get our results, we need to show that conclusion
(a2) of Lemma 1 holds. Therefore, we want to show that

the global minimum u ≡ 0 of Φ is not a local minimum
of Iλ. To prove this, we consider two cases: B = +∞ and
B < +∞. In the case where B = +∞, let ftng be a sequence
of positive numbers, with tn ∈ ð0,

ffiffiffi
3

p
/2Þ and limn⟶+∞tn

= 0, such that

u2n
1 +

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − u2n

p + 1 − αð Þu2n
1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1 − αð Þ2u2n

q < v2n
2T , n ∈ Z 1ð Þ, ð22Þ

γ≔ liminf
n⟶∞

∑T
k=1 max

tj j≤vn
F k, tð Þ −∑T

k=1F k, unð Þ

v2n/2T − u2n/ 1 +
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − u2n

p� �� �
− 1 − αð Þu2nð Þ/ 1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1 − αð Þ2u2n

q� �� � < 2B
2 − α

: ð23Þ

μ rnð Þ ≤
∑T

k=1 max
tj j≤vn

F k, tð Þ −∑T
k=1F k, wnð Þk

� 	
v2n/2Tð Þ −Φ wnð Þ =

∑T
k=1 max

tj j≤vn
F k, tð Þ −∑T

k=1F k, unð Þ

v2n/2Tð Þ − u2n/ 1 +
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − u2n

p� �� �
− 1 − αð Þu2nð Þ/ 1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1 − αð Þ2u2n

q� �� � :

ð31Þ
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〠
T

k=1
F k, tnð Þ ≥ 3t2n

λ
, n ∈ Z 1ð Þ: ð32Þ

Defining a sequence fθng in S by ðθnÞk = tn for k ∈ Z
ð1, TÞ and ðθnÞ0 = αðθnÞ1, ðθnÞT+1 = 0, we have

Iλ θnð Þ = t2n
1 +

ffiffiffiffiffiffiffiffiffiffiffi
1 − t2n

p + 1 − αð Þt2n
1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1 − αð Þ2t2n

q − λ〠
T

k=1
F k, tnð Þ

= − 1 + αð Þt2n < 0:
ð33Þ

In the case where B < +∞, since λ > ð2 − αÞ/2B, we can
choose a small number ε ∈ ð0, ffiffiffi

3
p

/2Þ such that

1
1 +

ffiffiffiffiffiffiffiffiffiffiffi
1 − ε2

p + 1 − αð Þ
1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1 − αð Þ2ε2

q < λ B − εð Þ: ð34Þ

By the definition of B, we can find a sequence of real
numbers fτng with τn ∈ ð0, εÞ such that limn⟶+∞τn = 0
and

〠
T

k=1
F k, τnð Þ ≥ B − εð Þτ2n: ð35Þ

Defining a sequence fξng in S by ðξnÞk = τn for k ∈ Z
ð1, TÞ and ðξnÞ0 = αðξnÞ1, ðξnÞT+1 = 0, we have

Iλ ξnð Þ = τ2n
1 +

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − τ2n

p + 1 − αð Þτ2n
1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1 − αð Þ2τ2n

q − λ〠
T

k=1
F k, τnð Þ

≤
1

1 +
ffiffiffiffiffiffiffiffiffiffiffi
1 − ε2

p + 1 − αð Þ
1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1 − αð Þ2ε2

q − λ B − εð Þ

0
B@

1
CAτ2n

< 0:
ð36Þ

Noticing that Iλð0Þ = 0, we see that u ≡ 0 is not a local
minimum of Iλ by combining the above two cases. There-
fore, by Lemma 1 and Remark 2, we know the conclusion
of Theorem 3 holds.

Now, let

B∗ = liminf
t⟶0+

∑T
k=1 max

sj j≤t
F k, sð Þ

t2
: ð37Þ

Then, there exists a sequence fvng of positive numbers
with limn⟶+∞vn = 0 such that

lim
n⟶∞

∑T
k=1 max

tj j≤vn
F k, tð Þ

v2n
= B∗: ð38Þ

Taking un = 0 for all n ∈ Zð1Þ, by Theorem 3, we get the
following corollary.

Corollary 5. If

TB∗ <
B

2 − α
: ð39Þ

Then, for each λ ∈ ðð2 − αÞ/2B, 1/2TB∗Þ, problem (1)
admits a sequence of nontrivial solutions which converges to
zero.

To obtain the positive solutions of problem (20), we
need the following strong maximum principle.

Theorem 6. Assume u ∈ S such that either

uk > 0 or∇ g Δukð Þð Þ ≤ 0, ð40Þ

for all k ∈ Zð1, TÞ. Then, either uk > 0 for all k ∈ Zð1, TÞ or
u ≡ 0.

Proof. There exists τ ∈ Zð1, TÞ such that

uτ =min uk : k ∈N 1, Tð Þf g: ð41Þ

If uτ > 0, then uk > 0 for all k ∈ Zð1, TÞ and the proof is
complete.

If uτ ≤ 0, then uτ =min fuk : k ∈Nð0, T + 1Þg. Because
Δuτ−1 = uτ − uτ−1 ≤ 0 and Δuτ = uτ+1 − uτ ≥ 0, gðsÞ is
increasing in s, and gð0Þ = 0, we have

g Δuτð Þ ≥ 0 ≥ g Δuτ−1ð Þ: ð42Þ

On the other hand, let k = τ; (40) implies

g Δuτð Þ ≤ g Δuτ−1ð Þ: ð43Þ

By combining (42) with (43), we get gðΔuτÞ = 0 = gðΔ
uτ−1Þ. That is uτ+1 = uτ−1 = uτ. If τ + 1 = T + 1, we have uτ
= 0. Otherwise, τ + 1 ∈Nð1, TÞ. Replacing τ by τ + 1, we
get uτ+2 = uτ+1. Continuing this process T + 1 − τ times, we
have uτ+j = 0 for j ∈ Zð0, T + 1 − τÞ. Similarly, we have uj =
0 for j ∈ Zð0, τÞ. Thus, u ≡ 0 and the proof is complete.

Now, we are ready to establish the existence of positive
solutions for problem (1); we have

Corollary 7. If f ðk, 0Þ ≥ 0 for all k ∈ Zð1, TÞ,

A∗ ≔ liminf
t⟶0+

2T∑T
k=1 max

0≤s≤t

Ð s
0 f k, xð Þdx

t2
< 2B
2 − α

: ð44Þ

Then, for each λ ∈ ðð2 − αÞ/2B, 1/A∗Þ, problem (1) admits
a sequence of positive solutions which converges to zero.
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Proof. Put

f ∗ k, xð Þ =
f k, xð Þ, if x > 0,
f k, 0ð Þ, if x ≤ 0:

(
ð45Þ

Noticing that f ðk, 0Þ ≥ 0, we see that

max
0≤ sj j≤t

ðs
0
f ∗ k, xð Þdx =max

0≤s≤t

ðs
0
f k, xð Þdx, ð46Þ

for all t ≥ 0. By Corollary 5, we know that problem (1) with f
replaced by f ∗ admits a sequence of nontrivial solutions
which converges to zero for each λ ∈ ðð2 − αÞ/2B, 1/A∗Þ.
And by Theorem 6, we know that all these solutions are
positive.

4. An Example

In this section, we give an example to illustrate our main
results.

Example 8. Consider the boundary value problem (1) with

f k, xð Þ = f xð Þ =
x 2 + 2ε + 2 sin ε ln xj jð Þ + ε cos ε ln xj jð Þð Þ, x ≠ 0,
0, x = 0,

(

ð47Þ

for k ∈ Zð1, TÞ. Then,

F k, xð Þ = F xð Þ =
ðx
0
f sð Þds = x2 1 + ε + sin ε ln xð Þð Þ, for x > 0:

ð48Þ

Since f ðxÞ ≥ 0 for x ≥ 0, we see that FðxÞ is increasing in
x ∈ ½0, +∞Þ. Thus,

A∗ ≔ liminf
t⟶0+

2T∑T
k=1 max

0≤s≤t

Ð s
0 f k, xð Þdx

t2

= liminf
t⟶0+

2T2 1 + ε + sin ε ln tð Þð Þ = 2T2ε,

B≔ limsup
t⟶0+

∑T
k=1F k, tð Þ

t2

= limsup
t⟶0+

T 1 + ε + sin ε ln tð Þð Þ

= T 2 + εð Þ:

ð49Þ

Let ε ∈ ð0, 2/ðð2T − αT − 1ÞÞÞ; then (44) holds. By Corol-
lary 7, for each λ ∈ ðð2 − αÞ/ð2Tð2 + εÞÞ, 1/2T2εÞ, problem
(1) admits a sequence of positive solutions which converges
to zero.

5. Conclusions

In this paper, we consider a discrete boundary value problem
involving the singular ϕ-Laplacian. The problem contains
the Dirichlet problem (when α = 0) and Robin problem

(when α = 1) as special cases. Since the domain of the singu-
lar operator ϕ is ð−1, 1Þ, we can not apply the critical point
theory to this problem directly. Therefore, we extend the
domain of the singular operator to the whole real numbers
and consider an auxiliary problem associated with the orig-
inal one. The conditions for the multiplicity of positive solu-
tions of the discrete boundary problem are found, and an
illustrative example is given. The method in this paper pro-
vides a new way to discuss the boundary value problems
containing a singular Laplacian.
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This paper proposes a numerical method for solving fractional relaxation-oscillation equations. A relaxation oscillator is a type of
oscillator that is based on how a physical system returns to equilibrium after being disrupted. The primary equation of relaxation
and oscillation processes is the relaxation-oscillation equation. The fractional derivatives in the relaxation-oscillation equations
under consideration are defined in the Φ-Caputo sense. The numerical method relies on a novel type of operational matrix
method, namely, the Φ-Haar wavelet operational matrix method. The operational matrix approach has a lower computational
complexity. The proposed scheme simplifies the main problem to a set of linear algebraic equations. Numerical examples
demonstrate the validity and applicability of the proposed technique.

1. Introduction

The history of fractional or noninteger order differential and
integral operators can be traced back to the origins of integer
order calculus [1]. In recent years, fractional differential
equations have attracted a lot of attention. In fields such as
damping laws, diffusion processes, and other physical phe-
nomena, fractional differential equations have proven to be
adequate models. Since the majority of fractional differential
equations do not have analytical solutions, we must use an
approximate method. Many studies have analyzed solution
techniques for fractional differential equation such as the col-
location method, Adomian decomposition method, varia-

tional iteration method, tau method, and operational
matrix method [2–12].

A relaxation oscillator is a type of oscillator that is based
on a physical system’s ability to return to equilibrium after
being disrupted. The main equation of relaxation and oscil-
lation processes is the relaxation-oscillation (R-O) equation.
A relaxation equation in its standard form is given by

u′ χð Þ + μu χð Þ = g χð Þ, ð1Þ

where μ is a real number and g is a given function. Equation
(1) can be used to represent a variety of physical processes,
such as the Maxwell model, which uses a spring and a
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dashpot in succession to explain the characteristics of a
viscoelastic material. A simple physical process with a reg-
ulated phase shift is described by the standard oscillation
equation. The equation that defines the oscillation u of a
system corresponding to an external force g has the sim-
plest linear form as

u″ χð Þ + μu χð Þ = g χð Þ, ð2Þ

where μ is the oscillator’s natural frequency. In the relaxation
and oscillation models given in Equations (1) and (2), frac-
tional derivatives are used to depict slow relaxation and
damped oscillation (see [13, 14]). The fractional relaxation-
oscillation differential equation (FRODE) is given by

Dαu χð Þ + μu χð Þ = g χð Þ, χ > 0, 0 < α < 2 where α ≠ 1, ð3Þ

having the following initial conditions: uð0Þ = u0, if 0 < α < 1,
and u′ð0Þ = u1, if 1 < α < 2, where Dα denotes a fractional dif-
ferential operator of order α.

The numerical investigation of FRODEs has received a
lot of interest recently. The numerical solution of problem
(3) (with gðχÞ = 0) was investigated in [15] by taking into
account the positive fractional and fractal derivatives. The
authors of [16] employed a Taylor matrix method to find
the numerical solution of problem (3) by taking into account
the Caputo fractional derivative. This approach is based on a
fractional version of Taylor’s formula, which was first pro-
posed in [17]. The numerical solution of problem (3) is
achieved by the optimal homotopy asymptotic approach in
[18], where the fractional derivative is given in the Caputo
sense. In [19], a trapezoidal approximation of the fractional
integral is used to get the numerical solution of problem (3)
with Caputo fractional derivative. To solve problem (3), [20]
proposes a generalized wavelet collocation operational
matrix approach based on the Haar wavelet (HW), where
the fractional derivative is represented in the Caputo sense.
Inspired by the above-mentioned studies, this paper focuses
on a numerical solution of the fractional differential equa-
tion of the form

Dα,Φu χð Þ + μu χð Þ = g χð Þ, χ ∈ a, b½ �, ð4Þ

with initial conditions ðdΦÞnuðaÞ = un, n = 0, 1, 2,⋯, fm − 1
, where max fm − 1, 1/2g < α <m, and m is a natural num-
ber. Dα,Φ is the Φ-Caputo fractional derivative of order α, and

dΦð Þnu χð Þ =
u χð Þ, if n = 0,

1
Φ′

d
dχ

� �n

u χð Þ, if n = 1, 2, 3,⋯,m − 1:

8><
>:

ð5Þ

These problems are studied in [21] by using an operational
matrix of Φ-shifted Legendre polynomials.

As far as we know, there is no open literature article
dealing with the numerical treatment of FRODEs involving
the Φ-Caputo fractional derivative employing HW. There-

fore, the basic aim of this paper is to provide a numerical
technique for solving Φ-FRODEs that arise in physics. Our
method is based on a new type of operational matrix of frac-
tional integration called the Φ-HW operational matrix. We
provide a rigorous verification of convergence for the sug-
gested method. Furthermore, numerical experiments are
presented to demonstrate the convergence of the procedure
by comparing the exact values to numerical approximation.

Different types of orthogonal polynomials, including
Chebyshev polynomials [22], Legendre polynomials [23],
and Laguerre and Hermite polynomials [24], have been uti-
lized with the operational matrix of integer order integra-
tion. Many authors then expanded it to the fractional case,
as seen in [25–31] and the references therein. Only Caputo
or Riemann-Liouville fractional derivatives were examined
in all of the above listed papers.

The following is a description of this paper’s structure.
In Section 2, we go through the basic fundamentals of

fractional calculus. We introduce HW and function approx-
imation using HW in Section 3. In Section 4, we construct
an explicit formula for the Φ-fractional integration of the
HW and the Φ-Haar wavelet operational matrix. Section 5
discusses the numerical scheme as well as the method’s
convergence.

2. Preliminaries

We will go over some definitions of Φ-fractional integral and
differential operators in this section.

Let the function g : ½a1, a2�⟶ℝ be integrable, α is a pos-
itive real number, n is a natural number, Φ ∈ C1ð½a1, a2�Þ, and
Φ′ðχÞ ≠ 0∀χ ∈ ½a1, a2�, where Φ is increasing.

Definition 1 (see [32–34]). The Φ-Riemann-Liouvile (Φ-RL)
fractional integral operator of order α is defined by

J α,Φ
a1

g χð Þ = 1
Γ αð Þ

ðχ
a1

Φ′ sð Þ Φ χð Þ −Φ sð Þð Þα−1g sð Þds: ð6Þ

TheΦ-RL differential operator of fractional α is defined by

Dα,Φ
a1

g χð Þ = 1
Φ′ χð Þ

d
dχ

 !n

J n−α,Φ
a1

g χð Þ

= 1
Γ n − αð Þ

1
Φ′ χð Þ

d
dχ

 !nðχ
a1

Φ′ sð Þ Φ χð Þð

−Φ sð ÞÞn−α−1g sð Þds, wheren = αb c + 1:

ð7Þ

Definition 2 (see [21, 35, 36]). Let α be a positive real number,
n a natural number, g,Φ ∈ Cnð½a1, a2�Þ, and Φ′ðχÞ ≠ 0∀χ
∈ ½a1, a2�, where Φ is increasing. The Φ-Caputo differential
operator of fractional-order α is defined by

CD
α,Φ
a1

g χð Þ = 1
Γ n − αð Þ

ðχ
a1

Φ′ sð Þ Φ χð Þ −Φ sð Þð Þn−α−1Dn,Φg sð Þds,

ð8Þ
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where Dn,ΦgðχÞ = ðð1/Φ′ðχÞÞðd/dχÞÞngðχÞ, n = bαc + 1 for
α ∉ℕ and n = α when α ∈ℕ.

2.1. Function Approximation by Haar Wavelet. HW are the
simplest wavelets with a compact support among the various
wavelet families. These wavelets have been shown to be an

effective method for numerical function approximation.
The Haar functions, which are orthogonal, contain only
one wavelet during some subinterval of time and remain
zero elsewhere.

The ith HW, hiðχÞ, where χ ∈ ½a1, a2� in the HW family
is defined as [37]

wherem = 2 j,j = 0, 1, 2, 3,⋯, J , is the dilation parameter and
κ = 0, 1, 2, 3,⋯,m − 1 is the translation parameter. J is the
max resolution level of HW. The parameters i, j, and κ are
related by the equation i = 2j + κ + 1; i is called the wavelet
number. Equation (9) holds true for i ≥ 3.

For i = 1 and i = 2, the scaling functions for HW family
are defined, respectively, by

h1 χð Þ =
1, whenχ ∈ a, b½ Þ,
0, otherwise,

(

h2 χð Þ =

1, whenχ ∈ a, a + b
2

� �
,

−1, whenχ ∈
a + b
2 , b

� �
,

0, otherwise:

8>>>>>><
>>>>>>:

ð10Þ

A square integrable function on ða, bÞ, uðχÞ can be
approximated by HW in the following way:

u χð Þ = 〠
∞

i=0
cihi χð Þ, ð11Þ

where ci is defined by the inner product of uðχÞ and hiðχÞ
and h:i represents the inner product. The first m terms are
employed for function approximation, that is,

u χð Þ ≅ um χð Þ = 〠
m−1

i=0
cihi χð Þ, ð12Þ

which can be written in the matrix notation as

u χð Þ ≅ um χð Þ = CT
mHm χð Þ, ð13Þ

where C = ½c0, c1, c2,⋯,cm−1�T is the coefficient matrix deter-
mined by ci = huðχÞ, hiðχÞi and H = ½h0ðχÞ, h1ðχÞ, h2ðχÞ,⋯,
hm−1ðχÞ�T is the vector of Haar functions.

3. Φ-HW Operational Matrix

The fractional-ordered Φ-RL integral of the HW is defined
by

hi χð Þ =

1, whenχ ∈ a1 + a2 − a1ð Þ κ

m
, a1 + a2 − a1ð Þ 2κ + 1

2m

� �
,

−1, whenχ ∈ a1 + a2 − a1ð Þ 2κ + 1
2m , a1 + a2 − a1ð Þ κ + 1

m

� �
,

0, otherwise,

8>>>>>><
>>>>>>:

ð9Þ

J α,Φh1 χð Þ = 1
Γ α + 1ð Þ Φ χð Þ −Φ a1ð Þ½ �α,

Pα,Φ
l χð Þ = J α,Φhl χð Þ = 1

Γ αð Þ
ðχ
a1

Φ′ sð Þ Φ χð Þ −Φ sð Þð Þα−1hi sð Þds

= 1
Γ α + 1ð Þ

0, if χ < ζ1 lð Þ,
Φ χð Þ −Φ ζ1 lð Þð Þð Þα, if χ ∈ ζ1 lð Þ, ζ2 lð Þ½ Þ,
Φ χð Þ −Φ ζ1 lð Þð Þð Þα − 2 Φ χð Þ −Φ ζ2 lð Þð Þð Þα, if χ ∈ ζ2 lð Þ, ζ3 lð Þð �,
Φ χð Þ −Φ ζ1 lð Þð Þð Þα − 2 Φ χð Þ −Φ ζ2 lð Þð Þð Þα + Φ χð Þ −Φ ζ3 lð Þð Þð Þα, if χ > ζ3 lð Þ,

8>>>>>><
>>>>>>:

ð14Þ
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where ζ1ðlÞ = a1 + ða2 − a1Þðκ/mÞ, ζ2ðlÞ = a1 + ða2 − a1Þðð2κ
+ 1Þ/2mÞ, ζ3ðlÞ = a1 + ða2 − a1Þððκ + 1Þ/mÞ.

The Φ-HW operational matrix Pα,Φ is computed in the
interval [0, 1] for ΦðχÞ = χ3 and α = 0:75. The numerical

and exact Φ‐RL integration of the function ΦðχÞ = χ3 for J
= 6 and different values of α is plotted in Figure 1.

4. Error Analysis

Caputo-type FDEs have recently been investigated in con-
text of error analysis in [38]. In addition, the convergence
analysis of solution of nonlinear Fredholm integral equa-
tions by HW is given in [39].

Using the Φ-Caputo fractional differential operator, we
estimated the max error, demonstrating the efficiency of
the Φ-HW approach for Φ-FDEs.

Theorem 3. Let Dℓy be continuous on ½a1, a2� and suppose
that M > 0 so that jDℓ,ΦuðχÞj ≤M∀χ ∈ ½a1, a2�, where a1, a2
∈ℝ+, Dℓ,ΦuðχÞ = ðð1/Φ′ðχÞÞðd/dχÞÞℓuðχÞ and CD

α,Φ
a1

uðχÞ
is approximated by CD

α,Φ
a1

uℓðχÞ, then we have

CD
α,Φ
a1

u χð Þ − CD
α,Φ
a1

uℓ χð Þ
��� ���

E

≤
a2 − a1ð ÞM Φ′ a2ð Þ

� �ℓ−α
Γ ℓ − α + 1ð Þ

1

κ ℓ−αð Þ
1

1 − 22 α−ℓð Þ� 	1/2 :
ð16Þ

Proof. CDα,Φ
a1

y can be approximated by HW as

CD
α,Φ
a1

u χð Þ = 〠
∞

i=a
cihi χð Þ: ð17Þ

Here, ci is given by

ci = CD
α,Φ
a1

u χð Þ, hi χð Þ
D E

=
ðb
a1

CD
α,Φ
a1

u χð Þ
� �

hi χð Þdχ: ð18Þ
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Figure 1: The exact and numerical Φ-RL integral of gðχÞ =ΦðχÞ for J = 5 and 1 < α ≤ 2 and their absolute error.

Pα,Φ =

0:3331 −0:2641 −0:0553 −0:2141 −0:0115 −0:0449 −0:0850 −0:1295
−0:1258 0:1948 −0:0553 0:2584 −0:0115 −0:0449 0:1201 0:1433
−0:0662 0:0395 0:0403 −0:0179 −0:0115 0:0537 −0:0146 −0:0053
0:0386 −0:0386 0 0:1455 0 0 −0:1026 0:1988
−0:0130 −0:0007 0:0080 −0:0016 0:0078 −0:0035 −0:0010 −0:0005
−0:0175 0:0251 −0:0076 −0:0088 0 0:0310 −0:0081 −0:0022
−0:0051 0:0051 0 0:0680 0 0 0:0623 −0:0135
0:0285 −0:0285 0 −0:0571 0 0 0 0:0999

2
666666666666666664

3
777777777777777775

: ð15Þ
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Let the approximation of CDα,Φ
a1

u be CD
α,Φ
a1

uℓ which is
defined by

CD
α,Φ
a1

uℓ χð Þ = 〠
ℓ−1

i=0
cihi χð Þ, ð19Þ

in which ℓ = 2β+1, β = 1, 2, 3,⋯.
Therefore,

CD
α,Φ
a1

u χð Þ − CD
α,Φ
a1

uℓ χð Þ = 〠
∞

i=m
cihi χð Þ = 〠

∞

i=2β+1
cihi χð Þ: ð20Þ

This gives

CD
α,Φ
a1

u χð ÞCDα,Φ
a1

uℓ χð Þ
��� ���2

E

=
ðχ
a1

CD
α,Φ
a1

u χð Þ − CD
α,Φ
a1

uℓ χð Þ
� �2

dχ

= 〠
∞

i=2β+1
〠
∞

i′=2β+1
cici′

ðχ
a1

hi χð Þhi′ χð Þdχ:

ð21Þ

The sequence fhmðχÞg being orthogonal, we get
Ð a2
a1
hm

ðχÞhmðχÞdχ = Im, Im which represents the identity matrix
of order m.☐

Therefore, from Equation (21) we have

CD
α,Φ
a1

u χð Þ − CD
α,Φ
a1

uℓ χð Þ
��� ���2

E
= 〠

∞

i′=2β+1
c2i : ð22Þ

Equation (18) gives

ci =
ðb
a1

CCD
α,Φ
a1

u χð Þ
� �

hi χð Þdχ

= 2 j
2

(ða1+ a2−a1ð Þ κ+1
2ð Þ2− j

a1+ a2−a1ð Þκ2− j
CD

α,Φ
a1

u χð Þdχ

−
ða1+ a2−a1ð Þ κ+1ð Þ2− j

a1+ a2−a1ð Þ κ+1
2ð Þ2− j

CD
α,Φ
a1

u χð Þdχ
)
:

ð23Þ

Employing mean value theorem of integration ∃χ1, χ2
∈ ða1, a2Þ where

a1 + a2 − a1ð Þκ2−j < χ1 < a1 + a2 − a1ð Þ κ + 1
2

� �
2−j,

a1 + a2 − a1ð Þ κ + 1
2

� �
2−j < χ2 < a1 + a2 − a1ð Þ κ + 1ð Þ2−j,

ð24Þ

so that we arrive at

ci = 2j/2 a2 − a1ð Þ



a1 + κ + 1
2

� �
2−j − a1 + κ2−j

� �� �
CD

α,Φ
a1

u χ1ð Þ

− a1ð + κ + 1ð Þ2−j − a1 + κ + 1
2

� �
2−j

� �
CD

α,Φ
a1

u χ2ð Þ



= 2j/2 a2 − a1ð Þ 2−j−1 CD
α,Φ
a1

u χ1ð Þ − CD
α,Φ
a1

u χ2ð Þ
� �n o

:

ð25Þ

Therefore,

c2i = 2−j−2 a2 − a1ð Þ2 CD
α,Φ
a1

u χ1ð Þ − CD
α,Φ
a1

u χ2ð Þ
� �2

: ð26Þ

Applying the Φ-Caputo fractional differential operator
along with the facts that Φ is increasing and jDℓ,ΦuðχÞj ≤
M, we get

CD
α,Φ
a1

u χ1ð Þ − CD
α,Φ
a1

u χ2ð Þ
��� ���

= 1
Γ ℓ − αð Þ

ðχ1

a1

Φ′ χð Þ Φ χ1ð Þ −Φ χð Þð Þℓ−α−1Dℓ,Φu χð Þdχ
�����

−
ðχ2

a1

Φ′ χð Þ Φ χ2ð Þ −Φ χð Þð Þℓ− α+1ð ÞDℓ,Φu χð Þdχ
�����

= 1
Γ ℓ − αð Þ

ðχ1

a1

Φ′ χð Þ Φ χ1ð Þ −Φ χð Þð Þℓ−α−1Dℓ,Φu χð Þdχ
�����

−
ðχ1

a1

Φ′ χð Þ Φ χ2ð Þ −Φ χð Þð Þℓ− α+1ð ÞDℓ,Φu χð Þdχ

−
ðχ2

χ1

Φ′ χð Þ Φ χ2ð Þ −Φ χð Þð Þℓ− α+1ð ÞDℓ,Φu χð Þdχ
�����

≤
1

Γ ℓ − αð Þ
ðχ1

a1

Φ′ χð Þ Φ χ1ð Þ −Φ χð Þð Þℓ− α+1ð ÞDℓ,Φu χð Þdχ
�����

−
ðχ1

a1

Φ′ χð Þ Φ χ2ð Þ −Φ χð Þð Þℓ− α+1ð ÞDℓ,Φu χð Þdχ
�����

+
ðχ2

χ1

Φ′ χð Þ Φ χ2ð Þ −Φ χð Þð Þℓ− α+1ð ÞDℓ,Φu χð Þdχ
�����

�����
= 1
Γ ℓ − αð Þ

 ðχ1

a1

Φ′ χð Þ
h
Φ χ1ð Þ −Φ χð Þð Þℓ− α+1ð Þ

�����
− Φ χ2ð Þ −Φ χð Þð Þℓ− α+1ð Þ

i
Dℓ,Φu χð Þdχ

�����
+
ðχ2

χ1

Φ′ χð Þ Φ χ2ð Þ −Φ χð Þð Þℓ− α+1ð ÞDℓ,Φu χð Þdχ
�����

�����
!

5Journal of Function Spaces



≤
1

Γ ℓ − αð Þ

 ðχ1
a1

Φ′ χð Þ
h
Φ χ1ð Þ −Φ χð Þð Þℓ− α+1ð Þ

���
− Φ χ2ð Þ −Φ χð Þð Þℓ− α+1ð Þ

i
Dℓ,Φu χð Þ

���dχ
+
ðχ2

χ1

Φ′ χð Þ Φ χ2ð Þ −Φ χð Þð Þℓ− α+1ð ÞDℓ,Φu χð Þ
��� ���dχ

!

≤
1

Γ ℓ − αð Þ

 ðχ1
a1

Φ′ χð Þ
h
Φ χ1ð Þ −Φ χð Þð Þℓ− α+1ð Þ

− Φ χ2ð Þ −Φ χð Þð Þℓ− α+1ð Þ
i
Dℓ,Φu χð Þ�� ��dχ

+
ðχ2

χ1

Φ′ χð Þ Φ χ2ð Þ −Φ χð Þð Þℓ− α+1ð Þ Dℓ,Φu χð Þ�� ��dχ
!
,

where ℓ > 1 + α ≤
M

Γ ℓ − αð Þ

 ðχ1

a1

Φ′ χð Þ
h
Φ χ1ð Þð

−Φ χð ÞÞℓ− α+1ð Þ − Φ χ2ð Þ −Φ χð Þð Þℓ− α+1ð Þ
i
dχ

+
ðχ2

χ1

Φ′ χð Þ Φ χ2ð Þ −Φ χð Þð Þℓ− α+1ð Þdχ

!

= M
Γ ℓ − αð Þ

1
ℓ − αð Þ

�
Φ χ1ð Þ −Φ a1ð Þð Þℓ−α + Φ χ2ð Þð

−Φ χ1ð ÞÞℓ−α − Φ χ2ð Þ −Φ a1ð Þð Þℓ−α

+ Φ χ2ð Þ −Φ χ1ð Þð Þℓ−α
�
= M
Γ ℓ − α + 1ð Þ

�
Φ χ1ð Þð

−Φ a1ð ÞÞℓ−α − Φ χ2ð Þ −Φ a1ð Þð Þℓ−α

+ 2 Φ χ2ð Þ −Φ χ1ð Þð Þℓ−α
�
:

ð27Þ

As χ1, χ2 > a and χ1 < χ2 also ΦðχÞ are increasing, so

Φ χ1ð Þ −Φ a1ð Þð Þℓ−α − Φ χ2ð Þ −Φ a1ð Þð Þℓ−α < 0: ð28Þ

Therefore,

CD
α,Φ
a1

y χ1ð Þ − CD
α,Φ
a1

y χ2ð Þ
��� ���

≤
2M

Γ ℓ − α + 1ð Þ Φ χ2ð Þ −Φ χ1ð Þð Þℓ−α:
ð29Þ

According to the mean value theorem, ∃ζ ∈ ½χ1, χ2� ⊆
½a1, a2� such that Φðχ2Þ −Φðχ1Þ ≤ ðχ2 − χ1ÞΦ′ðζÞ, we get

CD
α,Φ
a1

y χ1ð Þ − CD
α,Φ
a1

y χ2ð Þ
��� ���

≤
2M

Γ ℓ − α + 1ð Þ χ2 − χ1ð ÞΦ′ ζð Þ
� �ℓ−α

≤
2M

Γ ℓ − α + 1ð Þ2j ℓ−αð Þ Φ′ a2ð Þ
� �ℓ−α

,

ð30Þ

which implies that

CD
α,Φ
a1

y χ1ð Þ − CD
α,Φ
a1

y χ2ð Þ
� �2

≤
4M2

Γ2 ℓ − α + 1ð Þ22j ℓ−αð Þ Φ′ a2ð Þ
� �2 ℓ−αð Þ

:
ð31Þ

Putting (31) in (26), we get

c2i ≤ 2−j−2 a2 − a1ð Þ2 4M2

Γ2 ℓ − α + 1ð Þ22j ℓ−αð Þ Φ′ a2ð Þ
� �2 ℓ−αð Þ

:

ð32Þ

Putting together equations (22) and (32), we have

CD
α,Φ
a1

u χð Þ − CD
α,Φ
a1

uℓ χð Þ
��� ���2

E

= 〠
∞

i=2β+1
c2i = 〠

∞

j=β+1
〠

2 j+1−1

i=2 j
c2i

 !

≤ 〠
∞

j=β+1
a2 − a1ð Þ2 M2

Γ2 ℓ − α + 1ð Þ22j ℓ−αð Þ+j

Φ′ a2ð Þ
� �2 ℓ−αð Þ

2j+1 − 1 − 2j + 1
� �

=
a2 − a1ð Þ2M2 Φ′ a2ð Þ

� �2 ℓ−αð Þ

Γ2 ℓ − α + 1ð Þ 〠
∞

j=β+1

1
22j ℓ−αð Þ

=
a2 − a1ð Þ2M2 Φ′ a2ð Þ

� �2 ℓ−αð Þ

Γ2 ℓ − α + 1ð Þ
1

22 β+1ð Þ ℓ−αð Þ
1

1 − 22 α−ℓð Þ ,

ð33Þ

which implies that

CDα,Φ
a1

u χð Þ − CD
α,Φ
a1

uℓ χð Þ
��� ���

E

≤
a2 − a1ð ÞM Φ′ a2ð Þ

� �ℓ−α
Γ ℓ − α + 1ð Þ

1
2 β+1ð Þ ℓ−αð Þ

1
1 − 22 α−ℓð Þ� 	1/2 :

ð34Þ

Let κ = 2β+1, (34) can also be written as

CD
α,Φ
a1

u χð Þ − CD
α,Φ
a1

uℓ χð Þ
��� ���

E

≤
a2 − a1ð ÞM Φ′ a2ð Þ

� �ℓ−α
Γ ℓ − α + 1ð Þ

1
κ ℓ−αð Þ

1
1 − 22 α−ℓð Þ� 	1/2 :

ð35Þ

To compute the error bound, we need the value of M.
So we will estimate M first. Since DℓuðχÞ is continuous

and bounded on ½a1, a2�, so is Dℓ,ΦuðχÞ and it is approxi-
mated by
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Dℓ,Φu χð Þ ≅ 〠
r−1

i=0
cihi χð Þ = CT

r Hr χð Þ, ð36Þ

where Cr = ½c0, c1, c2,⋯,cr−1�T and HrðχÞ = ½h0ðχÞ, h1ðχÞ, h2
ðχÞ,⋯,hr−1ðχÞ�T .

Integration of (36) gives

Dℓ−1,Φu χð Þ =
ðχ
a1

Dℓ,Φu χð Þdχ +Dℓ−1,Φu a1ð Þ

=
ðχ
a1

Dℓ,Φu χð Þdχ ≅ CT
r P

1,ΦHℓ χð Þ:
ð37Þ

Similarly,

Dℓ−2,Φu χð Þ =
ðχ
a1

Dℓ−1,Φu χð Þdχ +Dℓ−2,Φy a1ð Þ

=
ðχ
a1

Dℓ−1,Φu χð Þdχ ≅ CT
ℓ P

2,ΦHℓ χð Þ:
ð38Þ

Continuing in the same manner, we arrive at

DΦu χð Þ ≅ CT
ℓ P

ℓ,ΦHℓ χð Þ: ð39Þ

Taking χj = ðj − 1/2Þ/ℓ, j = 0, 1, 2,⋯,m, and putting it in
(39), we have

DΦu χj

� �
≅ CT

ℓ P
ℓ,ΦHℓ χj

� �
: ð40Þ

The matrix form of (40) is as

DΦUT ≅ CT
ℓ P

ℓ,ΦHℓ χj

� �
 whereDΦUT

= DΦu χ1ð Þ,DΦu χ2ð Þ,DΦu χ3ð Þ,⋯,DΦu χℓð Þ� 	T
:

ð41Þ

The linear system in (41) determines the value of the
vector CT

ℓ ; by putting this value in (36), Dℓ,ΦðχÞ can be
obtained ∀χ ∈ ½a1, a2�.

Let τi ∈ ½a1, a2�, then Dℓ,ΦuðtiÞ can be computed for the
equidistant points i = 1, 2, 3,⋯, ℓ, then ε +max jDℓuðtiÞj is
the approximation of M.

Theorem 4. Assume that CD
α,Φ
a1

uℓ, computed from Φ-HW is

estimated by CD
α,Φ
a1

u, then we have

u χð Þ − uℓ χð Þk kE ≤
MN

Γ α + 1ð ÞΓ ℓ − α + 1ð Þ
1

κ ℓ−αð Þ
1

1 − 22 α−ℓð Þ� 	1/2 ,
ð42Þ

where N =max ∣ ða2 − a1ÞðΦða2ÞÞℓ−αðΦðχÞ −Φð0ÞÞα ∣ .

Theorem 4 can be proven easily by following the proce-
dure of Theorem 3. From Equation (42), we noted that

kuðχÞ − uℓðχÞkE ⟶ 0 as ℓ⟶∞. Thus, the convergence
of the Φ-HW method is inferred.

5. Numerical Examples

We present several examples of how to get numerical solu-
tions of Φ-FRODEs using the Φ-HW operational matrix
approach.

Example 5. Consider the Φ-FRODE

Dα,Φu χð Þ + au χð Þ = g χð Þ, 0 < α ≤ 1, χ ∈ 0, 1½ �, u 0ð Þ = 0:
ð43Þ

For a = 2/Γð3 − αÞ and gðχÞ = ð2/Γð3 − αÞÞðΦðχÞÞ2−α +
ðΦðχÞ2Þ, the actual solution of Equation (43) is uðχÞ =
ðΦðχÞÞ2. We use the Φ-HW technique to solve problem
(43).

Let

CD
α,Φ

u χð Þ = CT
mHm χð Þ: ð44Þ

Integrating Equation (44) with respect to J α,Φ
a and using

the initial conditions, we have

u χð Þ = J α,ΦCT
mHm χð Þ = CT

mP
α,Φ
m×mHm χð Þ: ð45Þ

Substituting (44) and (45) into (43), we have

CT
m Hm χð Þ + aPα,Φ

m×mHm χð Þ� �
= g χð Þ: ð46Þ

Equation (46) has the following matrix form:

CT
m Hm χð Þ + aPα,Φ

m×mHm χð Þ� �
=G, ð47Þ

where G is the matrix representation of g at the collocation
points.

Solving the algebraic system given by Equation (47) for
CT
m and substituting this value into Equation (45), we will

have the required numerical solution. In Table 1, the max
absolute error is given for J = 6 and φðζÞ = ζ3. Approximate
solutions for J = 6 and α = 0:5 and different choices of the
function Φ are plotted in Figure 2. Also, actual and approx-
imate results and the absolute error are given for J = 6, α =
0:8, and ΦðχÞ = 1/3ðχ3 − χ2 − χÞ in Figure 2.

Example 6. Consider the composite Φ-FRODE

Dα,Φu χð Þ + bu χð Þ = Γ 2α + 1ð Þ
Γ α + 1ð Þ Φ χð Þð Þα 1 + Φ χð Þð Þα½ �, 0 < α

≤ 1, x ∈ 0, 1½ �,
ð48Þ

u 0ð Þ = 0: ð49Þ
For b = Γð2α + 1Þ/Γðα + 1Þ.
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Table 1: Max absolute error for various choices of α and J .

α J = 5 J = 6 J = 7 J = 8 J = 9
0.6 1:0141 × 10−4 3:2169 × 10−5 1:0296 × 10−5 3:3179 × 10−6 1:0751 × 10−6

0.7 9:2421 × 10−5 2:7180 × 10−5 8:0595 × 10−6 2:4056 × 10−6 7:2213 × 10−7

0.8 7:8481 × 10−5 2:1470 × 10−5 5:9091 × 10−6 1:6349 × 10−6 4:5452 × 10−7

0.9 6:3749 × 10−5 1:6437 × 10−5 4:2464 × 10−6 1:0994 × 10−6 2:8527 × 10−7

1.0 5:3010 × 10−5 1:3250 × 10−5 3:3127 × 10−6 8:2817 × 10−7 2:0704 × 10−7
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Figure 2: Approximate and exact results of Equation (43) and their absolute error.
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The exact solution for the problem (48) is uðχÞ =
ðΦðχÞÞ2α.

For the numerical solution, we employ the Φ-HW
technique.

Let

CD
α,Φ

u χð Þ = CT
mHm χð Þ: ð50Þ

Integrating Equation (50) with respect to J α,Φ
a and uti-

lizing the initial condition, we have

u χð Þ = J α,ΦCT
mHm xð Þ = CT

mP
α,Φ
m×mHm χð Þ: ð51Þ

Substituting Equations (50) and (51) in Equation (48), we
get

CT
m Hm χð Þ + Pα,Φ

m×mHm χð Þ� �
= g χð Þ, ð52Þ

where ðΓð2α + 1Þ/Γðα + 1ÞÞðΦðχÞÞα½1 + ðΦðχÞÞα�. Equation
(52) in matrix form is given as

CT
m Hm χð Þ + Pα,Φ

m×mHm χð Þ� �
=G: ð53Þ

where G is the matrix representation of gðχÞ.
Required approximate solutions can be obtained by

using the value of CT
m from Equation (53) into Equation (51).

The max absolute error is tabulated for ΦðχÞ = ðχÞ3/5
and various choices of J and α in Table 2, which shows that
the Maximum Absolute Error decreases by increasing the
values of J . Figure 3 represents approximate solutions for
different choices of α. Also, comparison of actual and
approximate results and their absolute error is displayed in
Figure 3.

Example 7. Consider the Φ-FRODE

Dα,Φu χð Þ + u χð Þ = 1 − 4Φ χð Þ + 5 Φ χð Þð Þ2

−
4

Γ 2 − αð Þ Φ χð Þð Þ1−α

+ 10
Γ 3 − αð Þ Φ χð Þð Þ2−α,

ð54Þ

where 0 < α ≤ 1, x ∈ ½0, 1�, and uð0Þ = 1: It is easy to verify
that uðχÞ = 1 − 4ΦðχÞ + 5ðΦðχÞÞ2 is the actual solution of

Equation (54). For numerical approximation, we employ
the Φ-HW technique.

Let

CD
α,Φ

u χð Þ = CT
mHm χð Þ: ð55Þ

Integrating Equation (55) with respect to J α,Φ
a and using

the initial conditions, we have

u χð Þ = J α,ΦCT
mHm xð Þ + u 0ð Þ = CT

mP
α,Φ
m×mHm χð Þ + 1: ð56Þ

Substituting (55) and (56) into (54), we have

CT
m Hm χð Þ + Pα,Φ

m×mHm χð Þ� �
= g χð Þ, ð57Þ

where gðχÞ = −4ΦðχÞ + 5ðΦðχÞÞ2 − ð4/Γð2 − αÞÞðΦðχÞÞ1−α
+ ð10/Γð3 − αÞÞðΦðχÞÞ2−α:

The matrix form of Equation (57) is

CT
m Hm χð Þ + Pα,Φ

m×mHm χð Þ� �
=G, ð58Þ

where G is the matrix representation of gðχÞ.
Required approximate solutions can be obtained by

using the value of CT
m from Equation (58) in Equation (56).

Table 3 shows that the Maximum Absolute Error decreases
by increasing the values of J . Approximate solutions are dis-
played in Figure 4 for various values of Φ. Also, Figure 4 rep-
resents approximate and exact solutions and their max
absolute error for α = 0:75, J = 6, and ΦðχÞ = ðχÞ3/15.

Example 8. Consider the Φ-FRODE

Dα,Φu χð Þ + μu χð Þ = g χð Þ, 0 < α ≤ 1, x ∈ 0, 1½ � u 0ð Þ = 0: ð59Þ

For μ = 1 and gðχÞ = ðΓð2α + 1Þ/Γð1 + αÞÞðΦðχÞÞα + ðΓ
ð2Þ/Γð2 − αÞÞðΦðχÞÞ1+α + ðΦðχÞÞ2α +ΦðχÞ, the exact solu-
tion of Equation (59) is ðΦðχÞÞ2α +ΦðχÞ.

For approximate solutions, we use the Φ-HW technique.
Let

CDα,Φu χð Þ = CT
mHm χð Þ: ð60Þ

Table 2: Max absolute error for various choices of α and J .

α J = 5 J = 6 J = 7 J = 8 J = 9
0.6 1:2082 × 10−4 3:9804 × 10−5 1:3061 × 10−5 4:2822 × 10−6 1:4045 × 10−6

0.7 9:1203 × 10−5 2:8002 × 10−5 8:5466 × 10−6 2:6042 × 10−6 7:9372 × 10−7

0.8 6:7053 × 10−5 1:9253 × 10−5 5:4799 × 10−6 1:5545 × 10−6 4:4065 × 10−7

0.9 4:8650 × 10−5 1:3151 × 10−5 3:5128 × 10−6 9:3312 × 10−7 2:4729 × 10−7

1.0 3:5205 × 10−5 9:0544 × 10−6 2:2954 × 10−6 5:7785 × 10−7 1:4496 × 10−7
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Figure 3: Approximate results of Equation (48) for various choices of α, actual, approximate results, and the absolute error.

Table 3: Max absolute error for ΦðχÞ = χ3/15 and various choices of J and α.

α J = 5 J = 6 J = 7 J = 8 J = 9
0:6 9:0149 × 10−5 2:9995 × 10−5 9:9647 × 10−6 3:3058 × 10−6 1:0954 × 10−6

0:7 4:3216 × 10−5 1:3568 × 10−5 4:2468 × 10−6 1:3254 × 10−6 4:1271 × 10−7

0:8 1:5201 × 10−5 4:5357 × 10−6 1:3466 × 10−6 3:9805 × 10−7 1:1721 × 10−7

0:9 2:2599 × 10−5 6:0704 × 10−6 1:5981 × 10−6 4:1680 × 10−7 1:0825 × 10−7

1:0 2:2302 × 10−5 5:7525 × 10−6 1:4605 × 10−6 3:6795 × 10−7 9:2342 × 10−8
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Integrating Equation (60) with respect to J α,Φ
0 and using

the initial conditions, we have

u χð Þ = J α,Φ
0 CT

mHm xð Þ = CT
mP

α,Φ
m×mHm χð Þ: ð61Þ

Substituting (60) and (61) into (59), we have

CT
m Hm χð Þ + μPα,Φ

m×mHm χð Þ� �
= g χð Þ: ð62Þ

The matrix representation of Equation (62) is

CT
m Hm χð Þ + μPα,Φ

m×mHm χð Þ� �
= G, ð63Þ

where G is the matrix representation of gðχÞ at the colloca-
tion points.

Required approximate solutions can be obtained by
using the value of CT

m from Equation (58) in Equation (61).
Table 4 shows that the Maximum Absolute Error decreases
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Figure 4: Approximate solutions for different choices of α and functions ΦðxÞ.
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Table 4: Max absolute error for ΦðχÞ = χ2/15 and various choices of J and α.

α J = 5 J = 6 J = 7 J = 8 J = 9
0.6 3:8255 × 10−5 1:2688 × 10−5 4:1987 × 10−6 1:3876 × 10−6 4:5829 × 10−7

0.7 2:0382 × 10−5 6:3431 × 10−6 1:9679 × 10−6 6:0937 × 10−7 1:8843 × 10−7

0.8 9:0481 × 10−6 2:6383 × 10−6 7:6857 × 10−7 2:2372 × 10−7 6:5069 × 10−8

0.9 3:0670 × 10−6 8:0025 × 10−7 2:1048 × 10−7 5:5848 × 10−8 1:4938 × 10−8

1.0 2:0360 × 10−6 5:1692 × 10−7 1:3022 × 10−7 3:2678 × 10−8 8:1852 × 10−9
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Figure 5: Numerical solutions for α = 1, J = 8 and for different functions ΦðχÞ.
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by increasing the values of J . Also the approximate solutions
are displayed in Figure 5 for various values of α.

6. Conclusion

This study introduces a numerical approach for solving a
class of fractional differential equations with a Φ-Caputo
fractional derivative based on a novel type of operational
matrix of fractional integration, namely, the Φ-HW opera-
tional matrix. The convergence of the proposed method is
demonstrated, and the numerical tests reported in Section
5 corroborate the efficacy of our approach.
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Financial big data are obtained by web crawler, and investors’ recognition abilities for risk and profit in online loan markets are
researched using heteroskedastic Probit models. The conclusions are obtained as follows: First, the preference for the item is
reflected directly in the time and indirectly in the number of participants for being full, and the larger the preference, the
shorter the time and the fewer the participants. Second, investors can discriminate the default risk not reflected by the interest
rate, and the bigger the default risk, the longer the time and the more participants being full. Third, investors can discriminate
the pure return rate deducted from the maturity term and credit risk, and the higher the return, the shorter the time and the
fewer the participants being full. Fourth, default risks are reflected well by online loan platform interest rates, and inventors do
not choose the item blindly according to the interest rate but consider comprehensively the profit and the risk. In the future,
interest rate liberalization should be deepened, the choosing function of interest rates should be played better, and the
information disclosure, investor education, and investor effective usage of other information should be strengthened.

1. Background

With the rapid development of electronic information, inter-
net finance, which has low transaction costs, low participa-
tion threshold, and convenient features, gets development
in full swing. But there are also many internet finance plat-
forms that have gone bankrupt in recent years. In this con-
text, the government pays more attention to internet
finance, and the focus also changes from healthy and stan-
dardized development to preventing accumulated risks and
strengthening supervision. Thus, it is necessary to research
issues of yield and risk of internet finance and to ascertain
how investors can participate in internet finance platforms
and whether they can discriminate risk and yield.

Traditional debit and credit usually take bank as the
intermedium, and depositors and lenders are passive
receivers of the interest rate, and thus, characteristics of rate
marketization cannot be reflected completely. Although the

online-loan-platform interest rate is also one kind of non-
fully market-oriented interest rate, the full bid rate, the result
of depositors and lenders weighing each other, reflects well
the characteristics of interest rate marketization. Traditional
financial institutions such as banks do not announce the
information of depositors and lenders, but online-loan-
platforms announce information of borrowers to potential
lenders to promote a deal. Online loan platforms have more
characteristics of Financial Big Data than traditional finan-
cial institutions and thus can provide rich data resources
for researching how online investors weight risks and
rewards of online debt items and whether they can.

The online loan platform, without the participation of
traditional banks and other financial institutions, can reduce
costs and improve the efficiency of capital allocation through
direct financing between borrowers and lenders and thus
affords a new path to solve the problems of difficult and
expensive financing for Small and Medium-Sized
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Enterprises (SMEs). The online loan platform, as a new
financial medium, broadens investing and financing chan-
nels of grassroot debit and credit and makes the common
people have a chance to get a higher return. As to whether
the online loan platforms have a price discovery function,
whether investors are rational and can recognize risks and
returns, and whether investors can effectively identify differ-
ent default risks behind the same interest rate and the net
yield difference after deducting maturity period and credit
risk, all those need research deeply, and there are great the-
oretical and practical meanings for understanding and regu-
lating behaviors of Chinese online loan investors and
promoting online loan developing healthily. The online loan
is an important aspect of internet finances, and the failure
probability is very high in recent years, but there are many
fake internet finances which are excluded by the paper.
The paper researches the recognition ability of risk and
return and expects to afford suggestions for formal online
loan’s healthy and sustainable development based on the
Renrendai Online Loan Platform.

2. Literature Reviews

Big financial data accumulated by online loan provide mate-
rial for deeply researching references and behavior of bor-
rowers and investors. Existing research mainly focuses on
researching the full rate, the default rate, and investor’s
rational consciousness and behavior, and these issues mix
up and can be roughly divided into the following categories
by evolving process.

Factors influencing the full rate and lender’s judgment
have been researched by many literatures, and the full rate
is a fundamental problem about online loan. Klafft [1] has
tested the factors influencing the success of online loans
based on the America Prosper platform, and the results
show that credit rating, individual character, etc. are impor-
tant to the success rate of the item. Li et al. [2] analyze the
basic statistical characteristics of the online loan item using
the data of ppdai and find that basic information of the bor-
rower and item has an important effect on the loan success
rate. Li et al. [3] find that descriptive information having a
positive impact on the full rate and the more positive infor-
mation are beneficial to successful fundraising. Liu et al. [4]
research lenders’ decision-making characteristics and found
that friendship has an important effect in the online loan
market, and there is a herding effect in the market, namely,
lenders following their friends’ lending decision. Wan et al.
[5] find that the initial trust and consciousness on yield are
the main factors affecting lenders’ lending in the online loan
market.

Some researchers are concerned about borrowers’ final
activities, namely, factors influencing the default rate, and
some are focused on whether principal and interest of online
loan can be paid on schedule. Iyer et al. [6] test empirically
the role of credit score to online loan’s default rate based
on data of Prosper, and the results showed that credit level
has significant influence on the default rate. Liao et al. [7]
test empirically the relationship between interest rates and
default rates using data from the Renrendai website.

Serrano-Cinca et al. [8] research empirically factors
influencing online loan default rates based on data from
the Lending Club which is the biggest P2P company in the
USA. Emekter et al. [9] research the characteristic of the
P2P online loan using data from the Lending Club website,
and the empirical test showed that indicators such as credit
rating have a significant effect on default rates of items and
that high interest rate corresponding to high risk cannot
compensate the higher loan default rate. Ge et al. [10] test
empirically the influence of social medium information
shown by the borrower itself to the online loan default rate.
Liu et al. [11] test empirically the forecasting effect of
lender’s information on default rates of items using data
from the Renrendai website.

There are also many literatures that combined the for-
mer two questions and researched comprehensively suc-
cess rates and default rates of fundraising. Using data
from the Prosper company, Ravina [12] finds that bor-
rower’s individual characteristics such as ethnicity, looking
credible, beauty, and body weight have an important effect
on financing success rate, but those characteristics except
beauty have no influence on the late performance of the
item, and although beautiful borrowers more easily get a
loan from the online market, they are more likely to delay
repayments. Freedman and Jin [13] test empirically the
information discrimination of online loans and thought
that there are three issues: adverse selection, lender mis-
judgment, and high interest rate corresponding to high
risk in the online loan market, and the former two issues
are unique to the online loan market and can be relieved
by announcing more borrowers’ information and lenders’
studies, and the last issue is also existing in traditional
markets, and online loans will eventually compete with
traditional banks directly. Guo [14] researched roles of
internet nicknames and real names on fundraising success
rate and default rate, and the empirical test shows that real
names cannot increase the success rate and decrease the
default rate. Yue et al. [15] test empirically market infor-
mation’s role on investor behavior and forecasting item’s
default rate. Guo [16] researched the role of marriage in
online loans and found that marriage benefits for both
increasing fundraising success rate and decreasing default
rate. Zhang and Cai [17] research “title bias,” namely,
the difference in the role of the title to the full rate and
default rate. Xu and Chau [18] research the role of com-
munication between lender and borrower on the full rate
and default rate and showed that information communica-
tion plays a significance effect on the full rate but a non-
significant effect on the default rate. Caldieraro et al. [19]
research the role of nonverified information offered by
the borrower to fundraising and the item’s late perfor-
mance and found that verified and nonverified informa-
tion both have an important effect on online loans. Hu
et al. [20] research the performance, financing difficulty,
and financing cost of the peasantry and low-income peo-
ple on the Renrendai platform by combining inclusive
finance and online loans. Babaei and Bamdad [21] have
evaluated the return and risk of the P2P item using Arti-
ficial Neural Network and Logistic function, respectively.
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With the deepening of research, some scholars have
done deep and detailed research on investors’ rational con-
sciousness and choosing behavior. Freedman and Jin [22]
show that studying benefits clearing information asymmetry
among market participants, and online loan lenders step
away from high-risk items and subprime borrowers are
excluded from the Prosper website.

Liao et al. [7] research choosing behaviors of online loan
investors on the background of China’s non-completely-
market-oriented interest rate and tested whether informa-
tion in addition to interest rate has an indicative effect, and
investors can discriminate the different default risk implied
in the same interest rate based on testing the relationship
between interest and default rates, but they have not consid-
ered the time value of the interest rate and excluded the
credit risk from the interest rate. Gao et al. [23] test “gender
effect” using data from the Renrendai website and showed
that men operate more frequently based on self-confidence
and have a lower yield because of exchanging costs than
women in the online loan market. Dorfleitner et al. [24] have
researched the role of credit risk and social impact on
interest-free P2P lending using Logistic and Tobit models.

Hu and Song [25] test well the investor’s rational con-
sciousness from two angles which are the default rate and
the full rate and showed that Chinese online investors have
rational consciousness of preferring yield and avoiding risk,
but they have not tested the relationship between investor
number and default rate at full circumstance, and they dis-
criminated yield and default risk by choosing different kinds
of items. Although it is rational relatively, there are further
chances in the interaction of interest rate and default rate.
In the meantime, Liao et al. [7] and Hu and Song [25] have
not considered the heteroskedasticity effect of the model.
The paper tests the investors’ discriminating ability of yield
and risk after considering time value of interest rate, rela-
tionship between interest rate and credit risk, and heteroske-
dasticity effect.

Existing research focuses mainly on the full rate and the
default rate, and some discuss deep-seated questions such as
investors’ rational consciousness, but they are not deep
enough, and methods used are relatively simple. In the
meantime, information asymmetry and adverse selection
are more serious in online loan markets than traditional off-
line markets: on the one hand, online loan lenders have dif-
ficulties to get complete credit notes of borrowers; on the
other hand, many online loan borrowers are fundraisers
who have difficulties in getting credit debts offline [22].
Unlike American market-oriented completely interest rate,
the Chinese online loan interest rate is incompletely
market-oriented and set up initially by borrowers according
to self-conditions within ranges specified by the government
and then bidden by lenders according to items’ interest rates
and information. It is to be called a full bid if the investment
fund reaches the amount the borrower is planning to get,
and the corresponding interest rate is effective; otherwise,
it is to be called a flow bid, and the corresponding interest
rate is noneffective. Compared with traditional bank credit
debts, lenders in the online loan market are at information
disadvantages, and they can only decide based on the items

and borrowers’ information published by the website and
their own experience and then whether the decision is ratio-
nal, but can the investor discriminate the default rate differ-
ence behind the same interest rate? Can the investor
discriminate the yield difference behind the same credit risk?
There are great theoretical and real meanings for sorting out
these questions in the background of constant advancement
and coming to an end of the market-oriented Chinese inter-
est rate.

The work of the paper is mainly exhibited: First, the
rational consciousness of the online loan investor has been
researched from two angles which are the interest rate and
the default risk. Interest rate and default risk are influencing
each other, but most of the exiting research have not elimi-
nated the mutual influence when testing the impact of inter-
est rate and default rate on investor behavior. And then on
the one hand, there may be implied the impact of default
risk when testing the impact of interest rate on investor
behavior; on the other hand, there may be implied the
impact of interest compensation when testing the impact
of default risk on investor behavior. (Liao et al. [7] research
the impact of default risks not reflected by interest rates on
investors’ behaviors, and they deduct the implied effect of
interest rate on default risk, but they do not deduct the
implied effect of default rate on interest rate, namely, the
influence of interest rate on investor’s behavior maybe is
caused by the default risk corresponding to the interest rate.
And they have not considered the term structure of the
interest rate and heteroskedasticity effect.) The paper not
only excludes the role of interest rate from default risk but
also excludes the role of default risk from interest rate and
tests impacts of default risk not reflected by interest rate
and pure yield excluded time term structure and default risk
on investor behavior. Second, the paper is based on micro-
data, and macro and micro are combined. The paper
crawled more than 0.3 million data from the Renrendai web-
site using web crawling technology, and the data reflect in
detail the microcharacteristics of online loans, and thus,
effectiveness, credibility, and reality microfoundation of
empirical tests are ensured. Term structure theory of interest
rates in the macrofield is applied to the microfield, and the
influence of different maturities on the interest rate is con-
sidered. Third, at the research perspective, both borrowers’
characteristics and lenders’ subjective initiatives are consid-
ered, and lenders’ identification ability of yield and default
risk is researched, and at the econometric model, heteroske-
dasticity is considered, characteristics of Chinese online
loans are analyzed, and suggestions on how to develop
healthy online loans are offered based on situation analysis,
theory combing, and empirical tests.

3. Theoretical Analysis and
Research Hypothesis

3.1. Theoretical Analysis. Whether traditional offline or
online financial market, investors mainly think of two fac-
tors: yield and risk, and for online loan platforms, investors’
concern is mainly on the item’s interest rate and default risk.
Because we research the default risk (credit risk) directly,
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investors avoiding risk is in keeping with facts. Investors
chasing yield and avoiding default risk has become a consis-
tent conclusion. Liao et al. [7] showed that investors in the
Renrendai Market are disgusted with risk and thus chase
the minimized risk at the equal yield. Hu and Song [25] test
the phenomenon that investors of online loans prefer the
item with lower default risk at the same yield or higher yield
with the same default risk. Next, we should research further
how to measure the default risk difference behind the same
interest rate, the yield difference behind the same default
risk, and whether investors can determine the difference
and how to determine it. Akerlof [26] discusses commodity
quality uncertainty, information asymmetry, and market
structure. In some markets, consumers evaluate utilities of
potential purchases according to market statics information,
and this will produce the profit difference between the whole
and the individual seller. Benefits for all parties can be
enhanced by government regulation. Unwritten promises
are preconditions for many products and trades that proceed
well, but adverse choices caused by information asymmetry
may make prices disorderly and the configuration efficiency
low. Borrowers in online markets are at an information
advantage, and investors can only judge whether borrowers
can pay back capital and interest timely in the future accord-
ing to items and borrowers’ information published by bor-
rowers in online platforms and investors’ experience. In an
imperfect market, different dealers hold different informa-
tion, some hold specific information and some do not hold
specific information only aimed at communication, and
some may judge erroneously public information, and gener-
ally, dealers who hold advantageous information will gain
[27]. People’s attention is limited, and mutual interference
will appear when attention increase cannot satisfy increased
needs [28], and online market platforms publish much
information on items and borrowers, and the information
mingles with each other, and investors should pay consistent
attention to this information and give correct judgments.
Peng and Xiong [29] analyze investors’ classification learn-
ing abilities and their roles in asset dynamic pricing; inves-
tors prefer applying limited attention to classification
learning and are adept in using markets and industry infor-
mation but are weak on company-specific information, and
thus, investors in online platforms also prefer classification
recognition and learning according to information published
by the platform and then give investment decision.

In a prefect nonarbitrage market with transparent infor-
mation, the yield and the risk correspond to each other. But
as said in the former, online market information is asym-
metric, and risk cannot be indicated by yield and yield can-
not be indicated by risk. Default risks behind the two items
with the same interest rate have heterogeneity; whether
investors can and how to discriminate the heterogeneity
need to be discussed further. With the gradual deepening
of interest rate marketization, Chinese interest rate marketi-
zation has been to the final stage. Online loan interest rate is
marketized incompletely, and borrowers decide interest rate
levels themselves in the range specified by the government,
and lenders decide whether to invest and how much to
invest according to information such as borrowers’ credit

level published in the online website. There are many partic-
ipants in the online loan website, and information commu-
nicates rapidly, and thus, there are generally multiple
participants involved in the full item finished in the specified
time, and this embodies fully the strength of the market.
Investors make decisions mainly considering from the two
angles of yield and risk.

In short, theories and existing empirical research show
that rational investors in online loan markets chase default
risk minimizing at the same yield or yield maximizing at
the same risk. The default risk behind the same interest rate
and interest rate corresponding to the same default risk may
be different, and then, whether Chinese online loan investors
can effectively discriminate these differences, and how to
behave if they can, all these need to be tested by empirical
data.

3.2. Research Hypothesis. The former analyses show that
default risk behind the same interest rate in online loan mar-
kets may be different, and there may exist a default risk not
reflected by the interest rate, which is later called the excess
default risk. The interest rate level corresponding to the
same default risk may be also different, and there may exist
an interest rate that does not correspond to the default risk,
which is later called the short excess yield.

Investors who can discriminate the kinds of excess
default risk and excess yield will show different preferences
to the corresponding item. Generally, the more investors
prefer the item, the more investors will make investing deci-
sions rapidly and the investing amount, and thus, items pre-
ferred by investors will be full in shorter time and need fewer
people, and thus, the preference of investors for the item can
be reflected by the full time and full participant number.
Rational investors are prone to avoid items with extra
default risk, and this will be expressed in two aspects: one
is less investors choosing the item and the other is the inves-
tor of the item investing with a smaller amount for prudent
goal, and the two behaviors will make the full time take lon-
ger. Based on the above analysis, we conclude hypothesis 1.

Hypothesis 1 (extra default risk and full time have a positive
relationship). At a given yield, the greater the risk uncom-
pensated by the interest rate, the longer the time needed
for full.

Not only is the risk not reflected by the interest rate but
also the net yield influences investor behavior, and the
higher the net yield after being deducted the credit risk
and time value, the more investors prefer the item and are
willing to invest in the item. Rational investors prefer to
choose items with extra yield, and we can get hypothesis 2
similarly to the above analysis.

Hypothesis 2 (extra yield and full time have a reverse rela-
tionship). At a given default rate, the greater the net yield
after being deducted the credit risk and time value, the
shorter the time needed for full.
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The preference an investor pays to the item exhibits not
only directly in the full time but also indirectly in the partic-
ipant number for full.

When investors prefer to avoid the item with extra
default risk, participant number will appear in two situa-
tions: one is that the participant number willing to invest
in the item decreases, which makes the item fail, and the
other is that at full circumstance, the amount the investor
is willing to invest decreases, which leads to the number
needed for full to increase. The two situations correspond
to two opinions on participant number: one is that the more
the public prefers the item, the participant number is more
and leads to it easily being full [25], and the other is at full
circumstance, the risk not reflected by the interest rate is big-
ger, the investor is more careful and thus full need the more
participant number. And thus, the impact of the investor
choosing behavior on the participant number has not coin-
cided, and it is necessary to test empirically further for deter-
mining the influencing mechanic and effect. Thus, the
impact of investor choosing behavior on participant number
has not coincided, and further empirical test is needed to
determine the influencing mechanism and result. Because
we research the situation of full, it is expected to be the sec-
ond situation in the paper. Namely, risk premium not
reflected by the interest rate has a positive relationship with
time and participant number for full. The bigger the risk not
predicted by the interest rate exhibits directly in the longer
time and indirectly, the more the participant number needed
for being full. And thus, we get hypothesis 3.

Hypothesis 3 (extra default risk and participant number for
being full have a positive relationship). At a given yield,
the bigger the risk not compensated by the interest rate,
the more the participant number for being full.

Not only is the risk not reflected by the interest rate but
also the net yield has an influence on investor’s behavior.
The higher the net yield, which is deducted the credit risk
and time value, the investor prefers the item more and thus
is more willing to invest in it. The higher net yield means
fewer participants can complete the full bid, and thus, the
smaller the participant number needed for being full. Ratio-
nal investors prefer to choose items with extra yield, and we
can get hypothesis 4 similarly to the above analysis.

Hypothesis 4 (extra yield and participant number for being
full have a reverse relationship). At a given default rate, the
greater the net yield after being deducted the credit risk
and time value, the fewer participants for being full.

4. Research Design, Variable Selection, and
Sample Characteristics

4.1. Research Design. The interest rate is one of the most
important factors in P2P Lending [24]. Generally, the item’s
interest rate level corresponds to its risk level, and they inter-
act with each other. If empirical tests directly use the interest
rate and default rate of the market, investors’ discriminating
abilities on risk premium not being reflected by yield and

pure yield after the term structure and credit risk have been
deducted cannot be measured effectively, because the inter-
acting effect of yield and credit risk is not discriminated.
And thus, we conduct, respectively, the default rate not
reflected by yield and the pure yield after the term structure
and credit risk are deducted based on the relationships
among the default rate, interest rate, and credit level.

P di = 1 rijð Þ = f rið Þ + e1,i, ð1Þ

P di = 1 ∣ ri, xið Þ = f rt , xið Þ + e2,i, ð2Þ
ΔPdi

= P di = 1 ∣ ri, xið Þ − P di = 1 ∣ rið Þ: ð3Þ
di expresses whether default, ri expresses interest rate,

and Pdi
expresses default probity, equation (1) expresses

default probity calculated only based on interest rate, equa-
tion (2) expresses default probity calculated based on inter-
est rate and other factors which may influence the default
rate, and equation (3) measures the default rate which is
not reflected by interest rate, measuring the default differ-
ence behind the same interest rate, namely, extra-default
rate. The smart investor can discriminate the difference,
and it is reflected in whether to bid and the bid amount,
and in addition directly reflected the time and indirectly par-
ticipant number needed for being full. To discriminate dif-
ferent maturity influences, term structure theory of interest
rate is applied to online loan interest rate, and the interest
rates are converted to continuous compound interest. After
discriminating impacts of maturity, interest rates are influ-
enced mainly by credit risk, and each item’s credit risk cor-
responds to a level of interest rate, and the gap between it
and the factual interest rate measures the yield no credit risk
is corresponding to, namely, the extra yield.

Δr = Ln 1 + t ∗ rtð Þ
t

− f
Ln 1 + t ∗ rtð Þ/t

cl, hb, ho

� �
: ð4Þ

rt is the interest rate of term t, ðLnð1 + t ∗ rtÞÞ/t elimi-
nates the influence of the maturity term and translates rt
to the continuous compound interest, f ððLnð1 + t ∗ rtÞ/tÞ/
cl, hb, hoÞ is the continuous compound interest correspond-
ing to and predicted by the known credit level, and Δr mea-
sures the pure yield that being eliminated the differences of
maturity term and credit level, namely, the extra yield.

Extra risk and extra yield can be obtained by formulas
(3) and (4), and in addition, equations can be made up by
taking the time for being full or the participant number for
being full as the explained variable. And specific influencing
effects of extra risk and extra yield on the time and the par-
ticipant number for being full can be tested empirically.

4.2. Variable Selection and Sample Characteristics. Different
from the completely marketized mechanism of the online
loan interest rate decided by the relationship between bor-
rowers and lenders in USA and England, etc., the Chinese
online loan interest rate is determined mainly by borrowers
according to their situations and is verified by the platform,
and then, potential lenders decide whether to invest and the
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investment amounts according to information published by
the platform. The item fails if the amount investors are will-
ing to invest cannot reach the amount planned to be raised
in the given term, which is called out of bid, and the item
succeeds if the amount investors are willing to invest reaches
the amount planned to be raised in the given term, which is
called the full bid. Investors cannot decide the item’s interest
rate level directly, but they can impact indirectly the final
actual interest rate by the model of “vote with feet,” and this
is an incompletely marketized mechanism of interest rate.
Our primary purpose is to research whether investors can
discriminate the interest rate and risk of an online loan item,
especially the different default risk behind the same interest
rate and the different yield behind the same credit risk.

According to the former theoretical analysis, research
hypothesis, existing research practices, and data available, we
will take the following variables: (1) Whether default (d): it will
be assigned 0 if the full item does not default at maturity and 1
if it defaults. (2) Interest rate (r): the promised interest rate of
the item. (3) Time for being full (ft): the duration needed for
being full, and the unit is day. (4) Number for being full (n):
participant number when being full. (5) Total amount (ta):
planning to raise the total loan amount, and the unit is yuan.
(6) Deadline for repayment (dd): the planned deadline for pay-
ing back the raised fund of the item, and the unit is month. (7)
Credit level (cl): borrower’s credit level, and Renrendai plat-
form offers a comprehensive credit valuing index according
to the borrower’s various indicators, and seven grades from
high to low according to credit level are given—AA, A, B, C,
D, E, and HR—and are expressed, respectively, by 7, 6, 5, 4,
3, 2, and 1, and thus, the bigger cl means the higher credit level.
(8) Historical borrowing times (hb): the times when the bor-
rower issued a financing project in the Renrendai platform.
(9) Historical overdue times (ho): the times when the borrower
borrowed successfully and overdue in the Renrendai platform.
(10) Year (y): the age of the borrower, and it is required to be
from 22 to 70 in the Renrendai platform. (11) Education (e):
the borrower’s educational background, and it is divided into
four grades—high school (or below), college, undergraduate,
and postgraduate (above)—is and expressed, respectively, by
0, 1, 2, and 3, and thus, the bigger emeans the higher the edu-
cational background. (12) Marriage (m): The borrower’s mar-
riage situation—1 if married and 0 if not married. (13)
Housing (h): the borrower’s housing situation—1 if having
house and 0 if else. (14) Car (c): the borrower’s car situation—1
if having a car and 0 if else. (15) Income (i): the total borrower
family income, and the unit is yuan.

In the above, whether default (d) and interest rate (r) are
the most concerned indexes by investors, and investors
chase high yield and low credit risk, in which generally, the
two cannot be both obtained. Time for being full (ft) and
number for being full (n) mainly measure investors’
preferences to items. Total amount (ta) and deadline for
repayment (dd) reflect the basic information of items, credit
level (cl), and historical borrowing times (hb), and historical
overdue times (ho) reflect borrowers’ credit situations. Year
(y), education (e), marriage (m), housing (h), car (c), and
income (i) reflect borrowers’ individual and family
situations.

The data are grabbed using web crawl technology and
Python3.6 after registering in the Renrendai website which is
an online loan platform offering information on loan items.
Default or not need not only have been full but also have been
finished, and generally, the longest deadline for repayment in
the Renrendai platform is 3 years. The sample term we choose
is from 2010.10.11 to 2015.01.04, and thus, our entire sample
does not conclude the item in repayment. We first grab more
than 300,000 sample data and then further remove samples
which are not full or are incompatible to the age requirement
of the Renrendai website or samples having other obviously
abnormal features or missing information, and finally, there
are 99,492 samples that can be used.

According to Table 1 at full circumstance, the means of
default rates and interest rates are about 5.62% and
12.68%, and the average time and number for being full
are about 0.6 hours and 43 people. The average borrowing
amount and deadline for repayment are about 56,000 yuan
and 2 years. The average credit level is relatively high, histor-
ical borrowing times are over 2, and historical overdue times
are less than 1. The average age of borrowers is about 39
years, and most borrowers’ education gradations are not
high. Most borrowers have been married, half of families
have a house, and 27.16% of families have a car. Intuitively,
the default rate of the Renrendai online loan is relatively low,
the interest rate is much higher than the bank interest rate
but also in the government-given range, the average time
for being full is relatively short and less than 1 hour, and
fundraisers who have a historical borrowing record and less
overdue are easy to raise funds successfully and be full.

5. Empirical Results

5.1. Measuring Default Rates Not Reflected by Interest Rates.
The most fundamental purpose of lenders investing in items
on the online platform is to gain yield, and they are con-
cerned mostly with the default rate and interest rate, and
they want to gain a stable high yield and simultaneously fear
borrowers defaulting and not repaying the principal and
interest on time. In circumstances of nonarbitrage and infor-
mation transparency, the default rate and interest rate have a
linear correspondence relationship, and thus, default levels
can be reflected by only using interest rates. We construct
the single-factor heteroskedasticity Probit model by taking
the default rate as an explained variable and the interest rate
as an explanatory variable, and the heteroskedasticity is in
the form of [30]

Pdi
= P di = 1 ∣ rð Þ =Φ rið Þ + εi, εi ∼N 0, σi

2� �
,

σi
2 = e2f rið Þ:

ð5Þ

Parameters can be estimated by the maximum likelihood
function [30]:

log L = n
2 log 2π −

1
2〠

n

i=1
2f rið Þ − 1

2〠
n

i=1
e−2f rið Þ Pdi

−Φ rið Þ� �2
:

ð6Þ
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The statistics for heteroskedasticity obey the chi-square
distribution [30]:

n log 〠
n

i=1

Pdi
−Φ rið Þ� �2
n

− 〠
n

i=1
2 f̂ rið Þ ∼ χ2 1ð Þ: ð7Þ

According to Table 2, first, there is the heteroskedasticity
effect. Heteroskedasticity testing shows that the null hypoth-
esis there does not exist and heteroskedasticity is denied, and
this illustrates that the traditional Probit model cannot
reflect effectively the heteroskedasticity effect that existed
in the model, and the heteroskedasticity Probit model needs
to be used. Second, interest rates have a significant positive
role on default rates. The higher interest rate corresponds
to the higher default rate, and this indicates that online loan
investors cannot purely choose the item with the high inter-
est rate but must balance default rates and interest rates.
Third, the default rate level reflected by the interest rate
can be calculated based on formula (3) and the parameters
given in Table 2.

If in a complete market-oriented interest rate circum-
stance as mentioned above, then the interest rate can reflect
completely the default risk. In fact, the Chinese online loan
interest rate is incomplete market-oriented, it is decided by
the borrower unilaterally, and the investor can only take
the passive decision mode of “voting with feet.” Thus, we
add other variables into the default rate estimating model
and construct the following multiple-factor heteroskedasti-
city Probit model, and the heteroskedasticity takes the form
of [30]

Pdi
= P di = 1 ∣ ri, xið Þ =Φ ri, xið Þ + εi, εi ∼N 0, σi

2� �
,

σi
2 = e2f ri ,xið Þ:

ð8Þ

Parameters can be estimated by the maximum likelihood
function [30]:

log L = n
2 log 2π −

1
2〠

n

i=1
2f ri, xið Þ − 1

2〠
n

i=1
e−2f ri ,xið Þ Pdi

−Φ ri, xið Þ� �2
:

ð9Þ

The statistics for heteroskedasticity obey the chi-square
distribution [30]:

n log 〠
n

i=1

Pdi
−Φ ir, xið Þ� �2

n
− 〠

n

i=1
2 f̂ ri, xið Þ ∼ χ2 mð Þ: ð10Þ

According to Table 3, first, there is a heteroskedasticity
effect in the driving factor model of the default rate. The het-
eroskedasticity existing test shows that the null hypothesis
that heteroskedasticity does not exist is denied, and this
illustrates that the traditional Probit model cannot reflect
effectively the heteroskedasticity effect existing in the model,
and thus, the heteroskedasticity Probit model needs to be
used. Second, total loan amount, deadline, age, and historical
overdue times have a significant positive relationship with
default rates. The bigger the loan amounts, the bigger the
stress for repaying principal and interest in a timely manner,
and thus, the bigger the corresponding default rate. The lon-
ger the deadline, the larger the uncertainty factor and the
bigger the risk for lenders regaining their principal and
interest at maturity and thus the corresponding bigger
default rate. The older borrowers correspond to the higher
default rate possibly because older borrowers in the online
loan market have been given the restricted employment
chance and reduced ability to repay principal and interest
in a timely manner, and thus a corresponding higher default
rate. The bigger historical overdue times indicate the

Table 1: Samples of statistical characteristics.

Variables Sample number Mean Standard deviation Minimum Maximum

d 99492 0.0562 0.2304 0.0000 1.0000

r 99492 12.6786 1.3382 3.0000 24.4000

ft 99492 0.6076 2.0330 0.0000 36.9083

n 99492 42.6097 59.8358 1.0000 1840.0000

ta 99492 56242.8200 57495.49 3000.0000 3000000.0000

dd 99492 25.1656 10.8038 1.0000 36.0000

cl 99492 5.4630 1.4584 1.0000 7.0000

hb 99492 2.1502 6.9564 1.0000 148.0000

ho 99492 0.5926 2.8495 0.0000 54.0000

y 99492 39.2862 8.2369 22.0000 60.0000

e 99492 0.9819 0.7374 0.0000 3.0000

m 99492 0.7193 0.4493 0.0000 1.0000

h 99492 0.4789 0.4996 0.0000 1.0000

c 99492 0.2716 0.4448 0.0000 1.0000

i 99492 15677.0400 14727.5000 1000.0000 50000.0000
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borrowers having a relatively poor historical performance
record, and the significant positive effect of historical over-
due times on default rates indicates that the borrowers’
repaying behaviors have inertial characteristics and the bor-
rowers’ past performance record has a significant forecasting
effect on his future repaying behavior. Total loan amount,
deadline, age, and historical overdue times that have a signif-
icant positive effect on default rates is not only in accordance
with theories but also actual situations. Third, credit level,
education, historical borrowing times, income, housing,
and car have significant negative effects on default rates.
Credit level is a comprehensive valuing index given by the
online loan platform according to borrowers’ various
indexes, and the borrower’s higher credit level means the
borrower’s better credibility and the stronger ability and
willingness for borrowers to repay principal and interest in
a timely manner. Generally, the higher the education degree
means the better the skill, employment, and development
opportunities, and the stronger the ability to repay the prin-
cipal and interest in a timely manner, and thus, the higher
borrower’s education degree corresponds to the lower
default rate. Historical borrowing times represent the suc-
cess times of the fundraiser in the online loan market in
the past, and the more times mean the fundraiser’s more
successful experience and have a positive feedback on the
borrower repaying the principal and interest in a timely
manner and thus corresponds to the lower default rate.
The higher the fundraiser’s income, the better his ability to
repay the principal and interest in a timely manner in the
future, and thus, the income level has a reverse relationship
with the default rate. Housing and car are one kind of capi-
tal; on the one hand, owners have had some capital accumu-
lation, and on the other hand, owners’ future rigid
expenditures on housing and car are lower than those of
nonholders, and thus, both housing and car have a signifi-
cant negative influence on the default rate. Credit level, edu-
cation, historical borrowing times, income, housing, and car
have significant negative influences on default rates which
coincide not only on theory requirements but also in actual
situations.

In addition, by integrating Tables 2 and 3, seeing from
the size and significance of r’s coefficient, introducing other
variables reduces greatly r’s role, and not only does other
information have a relatively strong role on the default rate

but also the role of the interest rate on the default rate can
be embodied by other information, namely, the role of the
interest rate on the default rate is partly through indirect
credit level indexes. Default rates which synthesize various
information, and which utilize only the interest rate, can
be deduced by the models corresponding to Tables 2 and
3. The difference between the two is the default rate, which
is not reflected by the interest rate, namely, extra default risk,
and it has been excluded in the interest rates’ role, and this
kind of default rate does not have an interest rate return
and can be discriminated and avoided by rational investors.

5.2. Measuring Interest Rate Eliminating Time Value and
Default Factor. We have measured different risks behind
the same interest rate and obtained the default rate not fully
reflected by the interest rate. Next, we apply the term struc-
ture theory of interest rate to the online loan interest rate
and measure the interest rate that excluded the default risk
according to the relationship between interest rates and
default risk, and it is the pure yield not corresponding to
the default risk, and then, we further test whether online
loan investors can discriminate the kind of pure yield and
make rational choices.

Interest rates published in the online loan website have
different maturities, and interest rates with different matu-
rities are different according to the term structure theory of
the interest rate. In order to strengthen the comparability
and analyze more specifically the investors’ yield discrimi-
nating ability, we transfer the interest rate into a continuous
compound form according to the formula ½Lnð1 + t ∗ rtÞ�/t,
and thus, heterogeneity effect of different maturities is
eliminated.

Since the default rate is ex post variable and cannot be
determined completely beforehand, namely, the default rate
cannot be measured directly, thus, we apply indirect
methods: method 1 only using credit factor and method 2
using various factors. Generally, the default risk is mainly
decided by borrowers’ credit risk level, and thus, borrowers
enact the item’s interest rate level according to their own
credit risk level, and investors decide whether to accept the
interest rate level published by borrowers according to the
borrowers’ credit level. The Renrendai website publishes a
credit level (cl) index according comprehensively to bor-
rowers’ various information, and the two indexes are directly

Table 2: Single factor estimated results of heteroskedasticity Probit model of default.

Variables
Explained variable: whether default

dy/dx z-statistics and p value

r 0.0145 28.0700 (≤0.001)∗∗∗

Testing whether existing heteroskedasticity

Null hypothesis Lr-statistics and p value Conclusions

Homoskedasticity 104.48 (≤0.001)∗∗∗ Rejecting null hypothesis, namely, existing heteroskedasticity

Variance equation

Variables Coefficient estimated values z-statistics and p value

r -0.0367 -11.51 (≤0.001)∗∗∗

Note: ∗∗∗ means that the corresponding coefficient is significant at 1% significance level.
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related borrowers’ credit level: historical borrowing times
(hb) and historical overdue times (ho). Historical borrowing
times (hb) reflect the times which borrowers have issued
items and succeeded to be full in the Renrendai website.
The more historical borrowing times mean borrowers hav-
ing better historical records and being accepted by online
loan investors in the past, and this shows indirectly bor-
rowers having a higher credit level and more probability to
repay the principal and interest rate in a timely manner. His-
torical overdue times (ho) reflect the times borrowers raise
funds successfully in Renrendai platform but cannot repay

the principal or interest timely in the end; the more histori-
cal overdue times indicate borrowers having the worse
records previously, and this indirectly shows that the bor-
rower’s credit level is not high, and there is relatively bigger
probability to being overdue. To reflecting the impact of the
credit risk on the interest rate fully, besides the credit level,
historical borrowing times and historical overdue times are
also introduced as supplementary variables.

According to Table 4, credit factors have important deci-
sive effects on interest rates, and the credit level and interest
rate level are in a significant negative relationship. This is in

Table 3: Multifactor estimated results of heteroskedasticity Probit model of default.

(a)

Variables
Explained variable: whether default

dy/dx z-statistics and p value

r 0.0002 1.56 (0.119)

cl -0.0019 -8.29 (≤0.001)∗∗∗

lnta 0.0021 5.41 (≤0.001)∗∗∗

dd 0.0002∗∗∗ 6.61 (≤0.001)∗∗∗

y 0.0001 2.58 (0.010)∗∗∗

e -0.0008 -2.32 (0.020)∗∗

m 0.0002 0.27 (0.785)

hb -0.0030 -18.22 (≤0.001)∗∗∗

ho 0.0177 26.60 (≤0.001)∗∗∗

lni -0.0014 -3.82 (≤0.001)∗∗∗

Housing (h) -0.0016 -2.81 (0.005)∗∗∗

c -0.0013 -1.99 (0.047)∗∗

Testing whether existing heteroskedasticity

Null hypothesis Lr-statistics and p value Conclusions

Homoskedasticity 8971.15 (≤0.001) Rejecting null hypothesis, namely, existing heteroskedasticity

(b)

Variance equation
Variables Coefficient estimated values z-statistics and p value

r 0.0323 4.1500 (≤0.001)∗∗∗

cl 0.0326 2.3100 (0.0210)∗∗

lnta -0.0805 -3.6600 (≤0.001)∗∗∗

dd -0.0335 -14.3000 (≤0.001)∗∗∗

y -0.0071 -2.5300 (0.0110)∗∗

e 0.0109 0.5000 (0.6180)

m -0.0046 -0.1100 (0.9130)

hb 0.0413 10.8300 (≤0.001)∗∗∗

ho 0.5852 30.8900 (≤0.001)∗∗∗

lni 0.0908 4.0400 (≤0.001)∗∗∗

h 0.1730 4.4800 (≤0.001)∗∗∗

c 0.0603 1.4900 (0.1350)

Note: ∗∗∗means that the corresponding coefficient is significant at 1% significance level, and ∗∗means that the corresponding coefficient is significant at 5%
significance level.
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accordance with economic theories, and the higher the
credit level indicates the lower the borrower’s credit risk
and thus corresponds necessarily to the smaller interest rate
level. Investors select the interest rate according to not only
the credit level but also other credit factors, and the signifi-
cant positive effect of historical overdue times on the interest
rate indicates that maybe the higher historical overdue times
correspond to the higher default rate and need the higher
yield compensation, and thus items with higher historical
overdue times generally correspond to a higher interest rate.
This indirectly indicates that market investors are clever and
can discriminate credit risk and have the willingness to take
part in items with higher risk only when are given higher
yield compensation.

The influence of the item credit risk on interest rate is
mainly indirectly measured using factors which have direct
relationship with credit in Table 4. Although default risks
behave mostly as credit risks, other factors also have certain
influence on default rate. To measure fully the impact of
default risks on interest rates, we further consider more fac-
tors and indirectly measure the impact using various factors,
and the econometric results are seen in Table 5.

Table 5 reflects the driving effects of borrower’s informa-
tion published by the online loan platform on the item’s
interest rate, and these factors indirectly embody the bor-
rower’s default risk. Testing results in Table 5 are also in
accordance with economic theories and actual situations:
credit level, education, historical borrowing times, and hous-
ing have significant negative effects on interest rates, and this
goes along with empirical results of Table 3, and these fac-
tors also have significant negative effects on default risks,
and all these embody low default risks which correspond
to low interest rates. Deadline for repayment, year, and his-
torical overdue times have significant positive effects on the
interest rate, and this also goes along with the empirical
results of Table 3, and these factors also have significant pos-
itive effects on default risks, and all these embody high
default risks which correspond to high interest rates.

Term structure theory of the interest rate is applied to
decide the interest rate level, and the continuous compound
interest is calculated. To further eliminate the credit level’s
impact, the interest rates, corresponding to a certain default
risk, are calculated according to the models corresponding to
Tables 4 and 5, respectively. The differences between contin-

uous compound interests and the two former interest rates
represent pure yields deducted by default risks and are
expressed by Δr1 and Δr2, and thus, extra yields after the
deduced term structure and default risk factor are obtained.

5.3. Research on Participant Numbers and Time for Being
Full. Although online loan interest rates are decided volun-
tarily by the fundraiser at the government-given range, the
investors can also determine the final bargaining interest
rate level by the mode of “vote with feet.” After the interest
rate level is decided by the fundraiser, the investor will make
the decision whether to invest comprehensively according to
the deadline and risk level, and generally, investors make the
decision from the two angles of yield and risk, and they
chase the minimal risk at the same yield or the maximal
yield at the same risk.

As to the default risk, Liao et al. [7] get the default risk
which has no interest rate return by excluding the default
risk reflected by the interest rate factor, and thus, the impact
of the interest rate can be eliminated when measuring the
impact of the default risk on the investor’s behavior. But as
to the interest rate factor, they have not considered the term
structure and default risk level, and thus, the item’s interest
rate may contain the corresponding term and default risk
factors. We first apply the term structure theory of the inter-
est rate in the macroeconomic field to online loan interest
rates and get the continuous compound interest to eliminate
the influences of different deadlines and then compare it
with the continuous compound interest corresponding to
the default factors and further get the pure yield deducted
the impacts of different maturities and default risk. We mea-
sure investors’ weighing behaviors, respectively, based on the
default risk not reflected by the interest rate and pure yield
after deducting the impacts of maturity and default risk.

Table 4: The influencing results of credit factors on continuous
compound interest.

Variables
Explained variable: continuous compound interest

Coefficient estimated
values

z-statistics and p
value

cl -0.2894 -103.58 (≤0.001)∗∗∗

hb -0.0007 -1.29 (0.197)

ho 0.0559 37.78 (≤0.001)∗∗∗

Constant
term

12.7960 795.30 (≤0.001)∗∗∗

Note: ∗∗∗ means that the corresponding coefficient is significant at 1%
significance level.

Table 5: Influencing factors of continuous compound interests.

Variables
Explained variable: continuous compound interest

Coefficient estimated
values

t statistics and p
value

cl -0.2203 -63.87(≤0.001)∗∗∗

lnta -0.2729 -44.83 (≤0.001)∗∗∗

dd 0.0022 5.03 (≤0.001)∗∗∗

y 0.0050 11.37 (≤0.001)∗∗∗

e -0.0599 -12.83 (≤0.001)∗∗∗

m -0.0265 -3.34 (0.001)∗∗∗

hb -0.0088 -15.63 (≤0.001)∗∗∗

ho 0.0588 40.19 (≤0.001)∗∗∗

lni 0.0058 1.35 (0.175)

h -0.0304 -3.91 (≤0.001)∗∗∗

c 0.1021 12.40 (≤0.001)∗∗∗

Constant
term

15.1065 268.56 (≤0.001)∗∗∗

Note: ∗∗∗ means that the corresponding coefficient is significant at 1%
significance level.
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As to the explained variables time and participant num-
ber for being full, Liao et al. [7] apply directly the value cor-
responding to each item and take the raising amount as the
explaining variable.

Considering that time and participant number for being
full will certainly be affected by the amount being raised, and
to measure better the investors’ risk and yield discrimination
abilities, we use time and participant number corresponding
to unit financing, namely, time and participant number of
each item divided by the amount being raised by each item.
Empirical results are seen in Tables 6 and 7, and they mea-
sure, respectively, online loan investors’ weighing behaviors
between risk and yield through time and participant number
for being full.

According to Table 6, first, it is necessary to consider the
model heteroskedasticity. On the one hand, coefficients of
AR and GARCH terms in the variance equation are signifi-
cant, and this illustrates that it is necessary to consider het-
eroskedasticity; on the other hand, residual testing results
show that there no longer exists heteroskedasticity in models
after considering the first-order GARCH effect, and at the
same time, models’ residuals are stationary, and all these
explain that the models are effective. Second, the default rate
not reflected by the interest rate has a significant positive
relationship with time for being full, and the bigger default
risk corresponds to the longer time for being full, and thus,
hypothesis 1 is verified. The pure yield after deducting the
effects of different terms and credit risk levels has a signifi-

cant negative relationship with time for being full, and the
higher yield corresponds to the shorter time, and thus,
hypothesis 2 is verified. The front empirical tests are about
the time for being full, but the preference of the investor
for the item appears in not only time but also participant
number for being full. Next, we research how the default risk
not reflected by the interest rate and the pure yield after
deducting the effects of different terms and credit risk levels
influence the participant number for being full.

According to Table 7, the model heteroskedasticity effect
can be measured effectively by the GARCH(1,1) model. On
the one hand, the equation coefficients are significant, and
this indicates that it is necessary to use the GARCH(1,1)
model; on the other hand, it is not necessary to use the
higher-order GARCH model by model residual tests, and
in addition, model residuals also pass the stationarity test,
and all these indicate the models’ effectiveness.

Results in Table 7 show that the default rate not reflected
by the interest rate has a significant positive relationship
with the participant number, and this indicates that the
investor can discriminate the default risk not compensated
by the yield and make prudent measures and generally
reduce the item’s investing amount, and thus, more partici-
pants are needed to complete the full bid, and hypothesis 3
is fulfilled. The pure yield after deducting the term and credit
risk has a significant negative relationship with the partici-
pant number for being full, and this indicates that the inves-
tor prefers more the item with the higher pure yield, and

Table 6: Regression results to time for being full.

Explanatory variables

Explained variable: unit financing’s time for being full
Equation (1) Equation (2) Equation (3) Equation (4) Equation (5)

Estimated values
and p value

Estimated values
and p value

Estimated values
and p value

Estimated values
and p value

Estimated values
and p value

Mean equation

Constant term 0.1037 (≤0.001)∗∗∗ 0.1006 (≤0.001)∗∗∗ 0.1189 (≤0.001)∗∗∗ 0.0864 (≤0.001)∗∗∗ 0.0865 (≤0.001)∗∗∗

Δr1 -0.0610 (≤0.001)∗∗∗ -0.0077 (≤0.001)∗∗∗

Δr2 -0.0856 (≤0.001)∗∗∗ -0.0106 (≤0.001)∗∗∗

ΔPd 1.0305 (≤0.001)∗∗∗ 0.0375 (≤0.001)∗∗∗ 0.0346 (≤0.001)∗∗∗

ar 1ð Þ 0.8505 (≤0.001)∗∗∗ 0.8588 (≤0.001)∗∗∗ 0.9682 (≤0.001)∗∗∗ 0.9688 (≤0.001)∗∗∗

ma 1ð Þ -0.6445 (≤0.001)∗∗∗ -0.6537 (≤0.001)∗∗∗ -0.0014 (≤0.001)∗∗∗ -0.7945 (≤0.001)∗∗∗ -0.7952 (≤0.001)∗∗∗

Variance equation

Constant term 0.0161 (≤0.001)∗∗∗ 0.0161 (≤0.001)∗∗∗ 0.0001 (≤0.001)∗∗∗ 0.0001 (≤0.001)∗∗∗

RESID(-1)2 0.0779 (≤0.001)∗∗∗ 0.0824 (≤0.001∗∗∗) 0.2176 (≤0.001)∗∗∗ 0.1010 (≤0.001)∗∗∗ 0.1000 (≤0.001)∗∗∗

GARCH(-1) 0.8912 (≤0.001)∗∗∗ 0.8886 (≤0.001)∗∗∗ 0.7824 (≤0.001)∗∗∗ 0.8974 (≤0.001)∗∗∗ 0.8984 (≤0.001)∗∗∗

Residual test

F-statistics of
heteroskedasticity test

0.0549 (0.8147) 0.0357 (0.8501) 0.1607 (0.6885) 0.6629 (0.4155) 0.7008 (0.4025)

DW value of
autocorrelation test

2.1004 2.0994 1.7299 1.9312 1.9290

Root inverse of ar and ma Within unit circle Within unit circle Within unit circle Within unit circle Within unit circle

ADF statistics of
stationarity test

-36.7565
(≤0.001)∗∗∗

-36.3303
(≤0.001)∗∗∗

-30.7849
(≤0.001)∗∗∗

-31.2582
(≤0.001)∗∗∗

-31.2583
(≤0.001)∗∗∗

Note: ∗∗∗ means that the corresponding coefficient is significant at 1% significance level.
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thus, less participants are needed to complete the full bid
and hypothesis 4 is fulfilled.

The front hypotheses are verified by empirical tests, and
the following results can be obtained: First, interest rates and
risks mingle with each other, online platform interest rates
embody default risks, investors can give trade-offs, and
incomplete market-oriented online interest rates reflect the
matching result well between the investor and the fundrai-
ser. Second, it is necessary to consider model heteroskedasti-
city in econometric methods and the blending effect of the
interest rate and the default risk in index measurements
the impacts of different terms and credit risk levels on inter-
est rates, and the impacts that have been reflected by the
interest rate as well as the default rate. Third, the investor’s
preference for the item embodies directly the time and indi-
rectly the participant number for being full, and generally, if
the investor prefers the item more, the shorter the time and
the less the participant number needed to be full. Fourth, the
investor can discriminate not only default risk not reflected
by the interest rate but also pure yield after deducting
impacts of different terms and credit risks.

Empirical tests have fulfilled the four hypotheses in the
paper’s front and verified whether the investor who prefers
the item directly embodies the time and specifically shows
that the more the preference for the item, the shorter the
time for being full, and indirectly embodies the participant
number and specifically shows that the more preference for
the item, the less the participant number for being full. Com-

pared with the results of Liao et al. [7], both the influencing
direction and the significance of different default risks
behind the same interest rate on time and participant num-
ber for being full are consistent, but either the influencing
direction or the significance of the interest rate on time
and participant number for being full is inconsistent. It
may be due that Liao et al. [7] directly use interest rates
without deducting default risks, and thus, the empirical tests
show that interest rates have no significant impact on time
for being full. On the one hand, our empirical results’ cred-
ibility is verified; on the other hand, not only should default
risks deduct the parts reflected by interest rates but also
interest rates should deduct the parts used to compensate
the default risk.

5.4. Robustness Test. In the front, we only consider the two
factors, the interest rate and the default rate, when research-
ing the time and participant number for being full, and to
test robustly, we further consider family income and test
adding other variables whether they have some impacts on
the conclusions.

According to Table 8, after introducing the income fac-
tor, although the coefficient’s sizes change slightly, signifi-
cance and signs of coefficients are the same with the
former without considering the income factor, and effective-
ness and robustness of our empirical testing results are ver-
ified. Additionally, the income level has a significant
negative effect on time and participant number for being

Table 7: Regression results to participant number for being full.

Explanatory variables

Explained variable: unit financing’s participant number for being full
Equation (6) Equation (7) Equation (8) Equation (9) Equation (10)

Estimated values
and p value

Estimated values
and p value

Estimated values
and p value

Estimated values
and p value

Estimated values
and p value

Mean equation

Constant term 0.0872 (≤0.001)∗∗∗ 0.0873 (≤0.001)∗∗∗ 0.0864 (≤0.001)∗∗∗ 0.0864 (≤0.001)∗∗∗ 0.0865 (≤0.001)∗∗∗

Δr1 -0.0096 (≤0.001)∗∗∗ -0.0077 (≤0.001)∗∗∗

Δr2 -0.0121 (≤0.001)∗∗∗ -0.0106 (≤0.001)∗∗∗

ΔPd 0.0465 (≤0.001)∗∗∗ 0.0375 (≤0.001)∗∗∗ 0.0346 (≤0.001)∗∗∗

ar 1ð Þ 0.9696 (≤0.001)∗∗∗ 0.9700 (≤0.001)∗∗∗ 0.9665 (≤0.001)∗∗∗ 0.9682 (≤0.001)∗∗∗ 0.9688 (≤0.001)∗∗∗

ma 1ð Þ -0.7920 (≤0.001)∗∗∗ -0.7928 (≤0.001)∗∗∗ -0.7919 (≤0.001)∗∗∗ -0.7945 (≤0.001)∗∗∗ -0.7952 (≤0.001)∗∗∗

Variance equation

Constant term 0.0001 (≤0.001)∗∗∗ 0.0001 (≤0.001)∗∗∗ 0.0001 (≤0.001)∗∗∗ 0.0001 (≤0.001)∗∗∗ 0.0001 (≤0.001)∗∗∗

RESID(-1)2 0.0990 (≤0.001)∗∗∗ 0.0981 (≤0.001)∗∗∗ 0.1023 (≤0.001)∗∗∗ 0.1010 (≤0.001)∗∗∗ 0.1000 (≤0.001)∗∗∗

GARCH(-1) 0.8978 (≤0.001)∗∗∗ 0.8988 (≤0.001)∗∗∗ 0.8957 (≤0.001)∗∗∗ 0.8974 (≤0.001)∗∗∗ 0.8984 (≤0.001)∗∗∗

Residual test

F-statistics of
heteroskedasticity test

0.7385 (0.3901) 0.7781 (0.3777) 0.6376 (0.4246) 0.6629 (0.4155) 0.7008 (0.4025)

DW value of
autocorrelation test

1.9312 1.9289 1.9374 1.9312 1.9290

Root inverse of ar and ma Within unit circle Within unit circle Within unit circle Within unit circle Within unit circle

ADF statistics of
stationarity test

-31.2087
(≤0.001)∗∗∗

-31.2277
(≤0.001)∗∗∗

-31.7400
(≤0.001)∗∗∗

-31.2582
(≤0.001)∗∗∗

-31.2583
(≤0.001)∗∗∗

Note: ∗∗∗ means that the corresponding coefficient is significant at 1% significance level.
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full, and the investor prefers the item corresponding to the
higher income level; thus, the full bid needs a relatively
shorter time and fewer participants. Our previous basic
hypotheses are verified further, namely, investors’ prefer-
ences for items directly embody the time and express a
shorter time needed and indirectly embody the participant
number and are expressed as a less participant number
needed. Term structure of the interest rate is applied to the
online loan interest rate, and the impact of different dead-
lines is eliminated using continuous compound interest.
Further, the annual compound interest is applied (to save
space, the testing results are omitted), and the results indi-
cate that signs and significance of coefficients are the same
with continuous compound interest except slight changes
of coefficient sizes, and effectiveness and robustness of
empirical testing results are ensured.

6. Conclusions

Risk levels not reflected by interest rates and pure yields after
deducting the term and risk factors are applied to measure

investors’ discrimination abilities on risks and yields, and
online loan investors’ discrimination abilities and matching
consciousness on risks and yields are researched from the
angles of the time and participant number for being full,
and the main conclusions and suggestions are obtained as
follows.

First, investors have relatively strong matching con-
sciousness, and investors have not blindly selected the item
with the high interest rate. Although the higher interest rate
corresponds to the higher default risk, the interest rate can-
not completely reflect the default risk, and other information
are also helpful for reflecting default risk, and investors as
passive receivers of online loan rate cannot directly decide
the interest rate level, but they can take part in the final
interest rate decision by the mode of “vote with feet.”

Second, investors’ preferences to items embody directly
the time and indirectly the participant number for being full.
Generally, if the investor prefers the item more, the shorter
the time and the less participant number needed for being
full. Yield, default rate, and borrower’s income are all in
accordance with the characteristics.

Table 8: Regression results to time and participant number for being full.

Explained variable: time for being full
Explained variable: participant number for being

full

Explanatory variables
Equation (11) Equation (12) Equation (13) Equation (14)

Estimated values and p
value

Estimated values and p
value

Estimated values and p
value

Estimated values and p
value

Mean equation

Constant term 0.6105 (≤0.001)∗∗∗ 0.4612 (≤0.001)∗∗∗ 0.1266 (≤0.001)∗∗∗ 0.1228 (≤0.001)∗∗∗

Δr1 -0.0472 (≤0.001)∗∗∗ -0.0080 (≤0.001)∗∗∗

Δr2 -0.0361 (≤0.001)∗∗∗ -0.0104 (≤0.001)∗∗∗

ΔPd 1.1429 (≤0.001)∗∗∗ 1.3552 (≤0.001)∗∗∗ 0.0364 (≤0.001)∗∗∗ 0.0340 (≤0.001)∗∗∗

lni -0.0538 (≤0.001)∗∗∗ -0.0401 (≤0.001)∗∗∗ -0.0043 (≤0.001)∗∗∗ -0.0039 (≤0.001)∗∗∗

ar 1ð Þ 0.0233 (≤0.001)∗∗∗ 0.9949 (≤0.001)∗∗∗ 0.9686 (≤0.001)∗∗∗ 0.9691 (≤0.001)∗∗∗

ma 1ð Þ -0.9917 (≤0.001)∗∗∗ -0.7951 (≤0.001)∗∗∗ -0.7958 (≤0.001)∗∗∗

ar 2ð Þ 0.8968 (≤0.001)∗∗∗

ma(2) -0.8721 (≤0.001)∗∗∗

Variance equation

Constant term 0.0001 (≤0.001)∗∗∗ 0.0001 (≤0.001)∗∗∗

RESID(-1)2 0.0615 (≤0.001)∗∗∗ 0.2222 (≤0.001)∗∗∗ 0.0993 (≤0.001)∗∗∗ 0.0984 (≤0.001)∗∗∗

GARCH(-1) -0.0614 (≤0.001)∗∗∗ -0.2219 (≤0.001)∗∗∗ 0.8983 (≤0.001)∗∗∗ 0.8992 (≤0.001)∗∗∗

RESID(-2)2 1.7409 (≤0.001)∗∗∗ 1.4562 (≤0.001)∗∗∗

GARCH(-2) -0.7410 (≤0.001)∗∗∗ -0.4565 (≤0.001)∗∗∗

Residual test

F-statistics of
heteroskedasticity test

0.0718 (0.7888) 0.1073 (0.7432) 0.6906 (0.406) 0.7312 (0.3925)

DW value of autocorrelation
test

1.8636 1.8412 1.9292 1.9271

Root inverse of ar and ma Within unit circle Within unit circle Within unit circle Within unit circle

ADF statistics of stationarity
test

-34.3592 (≤0.001)∗∗∗ -42.9152 (≤0.001)∗∗∗ -31.3891 (≤0.001)∗∗∗ -31.4052 (≤0.001)∗∗∗

Note: ∗∗∗ means that the corresponding coefficient is significant at 1% significance level.
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Third, investors have relatively strong risk discrimina-
tion abilities and can identify default risks not reflected by
interest rates. If interest rates have been completely mar-
ket-oriented, then default risks can be reflected entirely by
interest rates, and Chinese interest rates are incompletely
market-oriented and the same interest rate may correspond
to the different default risks, and investors identify this kind
of default risk using other information besides interest rates.
Investors’ discrimination consciousness on this kind of
default risk embody directly the time and indirectly the par-
ticipant number, and items with the bigger kind of default
risk need longer time and more participant number for
being full.

Fourth, investors have relatively strong yield discrimina-
tion abilities and can identify pure yields after deducting
deadline and credit risk factors. Investors’ discrimination
on pure yields embody directly the time and indirectly the
participant number, and items with the bigger pure yields
need the shorter time and the less participant number for
being full.

Fifth, the online loan platform has a relatively strong
self-purification function, and historical information (bor-
rowing times and overdue times) have significant forecasting
effect on the default risk. The self-purification function of
the online loan platform guarantees its sustainable develop-
ment, but there is further subdivided space in credit valuing,
and it is necessary to strengthen the discrimination function
of credit valuing to the default risk.

In short, although the online loan interest rate is incom-
pletely market-oriented, it embodies demands of borrowers
and lenders and is the weighing result of borrowers and
lenders. Investors can identify the different default risks
behind the same interest rate and the different yield level
behind the same credit risk. Our empirical results show the
following: the completely market-oriented online loan interest
rate has both actual basis and necessity. Investors having rela-
tively strong rational consciousness can identify not only the
different credit risk behind the same interest rate but also the
pure yield after deducting the different deadline and credit
risk’s effects, and these offer feasible actual basis for marketiza-
tion of online loan interest rates. Additionally, when the
default risk has not been compensated by the interest rate or
the pure yield, after deducting deadline and credit risk effects,
is too low, the item being full bid needs more participants and
a longer time. If investors’ number is limited in the online loan
market, many itemsmay be un-full bid, and the effective funds
neededmay be suppressed. Complete market-oriented interest
rates can make the item be full bid by use of shortening time
and reducing participant number for being full, thus satisfying
better borrowers’ financing needs. ,Next interest rate marketi-
zation reform should be strengthened further, and interest rate
marketization and competing mechanism should be loosened
and introduced in online loan markets, and thus, the price
decision mechanism of the interest rate is played better, and
investors’ behavior is guided better by the interest rate.

In addition, the online loan platform as a shared infor-
mation platform can exert the roles of information interme-
diary, transaction cost reduction, and fund allocation
effectiveness improvement, but compared with the tradi-

tional financial market, the network information asymmetry
is serious. And thus, in the next, information disclosure
especially borrowers’ historical information should be per-
fected and strengthened further, and online loan investors’
information collection ability and yield and risk identifica-
tion abilities using existed information should be enhanced.

The paper has researched investors’ recognition abilities
on default and yield using big financial data but the mathe-
matics deduction has not been offered, and in the future, we
will give a rigorous mathematical proof.
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In this paper, we consider the existence and multiplicity of solutions for a discrete Dirichlet boundary value problem involving the
ðp, qÞ-Laplacian. By using the critical point theory, we obtain the existence of infinitely many solutions under some suitable
assumptions on the nonlinear term. Also, by our strong maximum principle, we can obtain the existence of infinitely many
positive solutions.

1. Introduction

Let N be a positive integer and denote with ½1,N� the discrete
set f1,⋯,Ng. In this paper, we consider the existence of infi-
nitely many solutions for the following discrete Dirichlet
boundary value problem

−Δpu j − 1ð Þ − Δqu j − 1ð Þ + α jð Þϕp u jð Þð Þ + β jð Þϕq u jð Þð Þ = λg j, u jð Þð Þ,∀j ∈ 1,N½ �,
u 0ð Þ = u N + 1ð Þ = 0,

 

ð1Þ

where ΔruðjÞ≔ ΔðϕrðΔuðjÞÞÞ is the discrete r-Laplacian,
ϕrðuÞ = jujr−2u with u ∈ℝ, ΔuðjÞ = uðj + 1Þ − uðjÞ is the for-
ward difference operator, gðj, ·Þ: ℝ⟶ℝ is continuous for
each j ∈ ½1,N�, 1 < q ≤ p < +∞, λ is a positive parameter,
and αðjÞ, βðjÞ ≥ 0 for all j ∈ ½1,N�:

In the past decades, there has been tremendous interest
in the study of difference equations, with the development
of engineering, physics, economy, and so on (see [1–4]).
Most results about the boundary value problems of differ-
ence equations are obtained by using the method of upper
and lower solutions and fixed point methods (see [5–7]).
In 2003, Guo and Yu [8] first applied the critical point the-
ory to study the existence of periodic and subharmonic solu-
tions for a second-order difference equation. Since then, the
critical point theory has been employed to study difference

equations, and many meaningful results have been obtained,
concerning periodic solutions [9, 10], homoclinic solutions
[11–13], heteroclinic solutions [14], and especially in bound-
ary value problems [15–20]. For example, Candito and Gio-
vannelli [21] established the existence of multiple solutions
of the following problem

−Δpu j − 1ð Þ = λf j, u jð Þð Þ, j ∈ 1,N½ �,
u 0ð Þ = u N + 1ð Þ = 0:

 
ð2Þ

Later, Bonanno and Candito [22] established the exis-
tence of infinitely many solutions of the following problem

−Δpu j − 1ð Þ + q kð Þϕp u jð Þð Þ = λf j, u jð Þð Þ, j ∈ 1,N½ �,
u 0ð Þ = u N + 1ð Þ = 0,

 

ð3Þ

where qðjÞ ≥ 0 for all j ∈ ½1,N�: Obviously, (2) is a special
case (qðjÞ = 0) of (3). After that, under different conditions,
D’Aguì et al. [23] established the existence of at least two
positive solutions of (3).
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In [24], Li and Zhou considered the following discrete
mixed boundary value problem

−Δpu j − 1ð Þ + s jð Þϕq u jð Þð Þ = λf k, u kð Þð Þ, j ∈ 1,N½ �,
u 0ð Þ = Δu Nð Þ = 0,

 

ð4Þ

where sðjÞ ≥ 0 for all j ∈ ½1,N�: By using the critical point
theory, the authors obtained the existence of at least two
positive solutions for (4).

The boundary value problems involving the sum of a p-
Laplacian operator and of a q-Laplacian operator is more
common, because this arises in the study of stationary solu-
tions of reaction-diffusion systems (see [25]). For example,
Mugnai and Papageorgiou [26] and Marano et al. [27] inves-
tigated the following Dirichlet problem

−Δpu − μΔqu = f x, uð Þ, in Ω,
u = 0, on ∂Ω,

 
ð5Þ

where f : Ω ×ℝ⟶ℝ satisfies Carathéodory’s condi-
tions, and they obtained the existence of multiple solutions
of (5).

In [28], Nastasi et al. proved the existence of at least two
positive solutions for problem (1). Compared with the dis-
crete boundary value problem involving p-Laplacian opera-
tor, there are few results on the discrete boundary value
problem with ðp, qÞ-Laplacian operator except [28]. Inspired
by the above results, we want to investigate the multiplicity
of solutions for problem (1).

In this paper, under suitable assumptions, we use the
critical point theory obtained in [29] to establish the exis-
tence of infinitely many solutions for discrete ðp, qÞ-Lapla-
cian equations with Dirichlet type boundary conditions.
Moreover, by our strong maximum principle, we can obtain
the existence of infinitely many positive solutions of (1).

The rest of this paper is organized as follows. In Section
2, we recall the critical point theory and show some basic
lemmas. In Section 3, our main results and proofs are pre-
sented. After that, we have two examples to explain our main
results. We conclude our results in the last section.

2. Preliminaries

Let X be a reflexive real Banach space and let Iλ : X⟶ℝ be
a function satisfying the following structure hypothesis:

(H) IλðuÞ =ΦðuÞ − λΨðuÞ for all u ∈ X, where Φ,Ψ : X
⟶ℝ are two functions of class C1 on X with Φ coercive,
i.e., lim

∥u∥⟶∞
ΦðuÞ = +∞, and λ is a real positive parameter

Provided that infXΦ < r, put

φ rð Þ = inf
u∈Φ−1ð�−∞,r½Þ

sup
v∈Φ−1ð�−∞,r½Þ

Ψ vð Þ
 !

−Ψ uð Þ

r −Φ uð Þ , ð6Þ

and

γ = liminf
r⟶+∞

φ rð Þ, δ = liminf
r⟶ inf

X
Φ

� �+
φ rð Þ: ð7Þ

There is no doubt that γ ≥ 0 and δ ≥ 0. When γ = 0 (or
δ = 0), in the sequel, we agree to regard 1/γ (or 1/δ) as +∞.

Now, we recall Theorem 2.1 of [29], which is our main
tool for investigating problem (1).

Lemma 1. Assume that the condition (H) holds. We have
ðaÞ For every r > infXΦ and every λ ∈ �0, 1/φðrÞ½, the

restriction of the functional Iλ =Φ − λΨ to Φ−1ð�−∞,r½Þ
admits a global minimum, which is a critical point (local
minimum) of Iλ in X.

ðbÞ If γ < +∞ then, for each λ ∈ �0, 1/γ½, the following
alternative holds: either

ðb1ÞIλ possesses a global minimum, or
ðb2Þ There is a sequence fung of critical points (local min-

imum) of Iλ such that lim
n⟶+∞

ΦðunÞ = +∞
ðcÞ If δ < +∞ then, for each λ ∈ �0, 1/δ½, the following

alternative holds: either
ðc1Þ There is a global minimum of Φ which is a local min-

imum of Iλ, or
ðc2Þ There is a sequence fung of pairwise distinct critical

points (local minima) of Iλ, with lim
n⟶+∞

ΦðunÞ = infXΦ,
which weakly converges to a global minimum of Φ

Here, we consider the N-dimensional Banach space

Xd = u : 0,N + 1½ �⟶ℝ such that u 0ð Þ = u N + 1ð Þ = 0f g,
ð8Þ

and define the norm

∥u∥r,h ≔ 〠
N

j=0
Δu jð Þj jr + 〠

N

j=1
h jð Þ u jð Þj jr

 !1/r

, ð9Þ

where h : ½1,N�⟶ℝ, with hðjÞ ≥ 0 for all j ∈ ½1,N�, and r
∈ �1,+∞½. Then, let Xd be endowed with the norm ∥u∥ = ∥
u∥p,α + ∥u∥q,β: We denote the usual sup-norm by ∥u∥∞ =
max
j∈½1,N�

∣ uðjÞ ∣ , and then we consider the inequality (see

([30], Lemma 2.2)):

uk k∞ ≤
N + 1ð Þ r−1ð Þ/r

2 uk kr,h for all u ∈ Xd: ð10Þ

Lemma 2. Let h =∑N
j=1 hðjÞ. The following inequalities hold

2

N + 1ð Þ r−1ð Þ/r uk k∞ ≤ uk kr,h ≤ 2rN + hð Þ1/r uk k∞: ð11Þ

Proof. The left-hand side of (11) follows by [30]. Consider
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the right-hand inequality,

∥u∥rr,h = 〠
N

j=0
Δu jð Þj jr + 〠

N

j=1
h jð Þ u jð Þj jr

= Δu 0ð Þj jr + Δu Nð Þj jr + 〠
N−1

j=1
Δu jð Þj jr + 〠

N

j=1
h jð Þ u jð Þj jr

≤ 2∥u∥r∞ + 〠
N−1

j=1
2∥u∥∞ð Þr + 〠

N

j=1
h jð Þ∥u∥r∞

≤ 2rN + hð Þ∥u∥r∞:

ð12Þ

Put

A1 uð Þ = 1
p
∥u∥pp,α, A2 uð Þ = 1

q
∥u∥qq,β and 

Ψ uð Þ = 〠
N

j=1
G j, u jð Þð Þ, for all u ∈ Xd ,

ð13Þ

where the function G : ½1,N� ×ℝ⟶ℝ is given by Gðj, tÞ
= Ð t0 gðj, sÞds, for all t ∈ℝ, j ∈ ½1,N�.

Clearly, A1, A2,Ψ ∈ C1ðXd ,ℝÞ and we have the following
Gâteaux derivatives at the point u ∈ Xd :

A1′ uð Þ, v
D E

= 〠
N

j=0
ϕp Δu jð Þð ÞΔv jð Þ + 〠

N

j=1
α jð Þϕp u jð Þð Þv jð Þ,

ð14Þ

A2′ uð Þ, v
D E

= 〠
N

j=0
ϕq Δu jð Þð ÞΔv jð Þ + 〠

N

j=1
β jð Þϕq u jð Þð Þv jð Þ,

ð15Þ

Ψ′ uð Þ, v
D E

= 〠
N

j=1
g j, u jð Þð Þv jð Þ, ð16Þ

for all v ∈ Xd: Now, for r ∈ �1,+∞½,

〠
N

j=0
ϕr Δu jð Þð ÞΔv jð Þ

= 〠
N

j=0
ϕr Δu jð Þð Þv j + 1ð Þ − ϕr Δu jð Þð Þv jð Þ½ �

= 〠
N

j=1
ϕr Δu j − 1ð Þð Þv jð Þ − 〠

N

j=1
ϕr Δu jð Þð Þv jð Þ

= −〠
N

j=1
Δϕr Δu j − 1ð Þð Þv jð Þ:

ð17Þ

If we plug this result back into the calculation of Gâteaux

derivatives above, then

A1′ uð Þ, v
D E

= 〠
N

j=1
−Δϕp Δu j − 1ð Þð Þ + α jð Þϕp u jð Þð Þ
h i

v jð Þ,

ð18Þ

A2′ uð Þ, v
D E

= 〠
N

j=1
−Δϕq Δu j − 1ð Þð Þ + β jð Þϕq u jð Þð Þ
h i

v jð Þ,

ð19Þ
for all u, v ∈ Xd: Let

Φ uð Þ = A1 uð Þ + A2 uð Þ: ð20Þ

Consider the functional Iλ : Xd ⟶ℝ given as

Iλ uð Þ =Φ uð Þ − λΨ uð Þ, for all u ∈ Xd: ð21Þ

We have

Iλ′ uð Þ, v
D E

= 〠
N

j=1
−Δpu j − 1ð Þ − Δqu j − 1ð Þ + α jð Þϕp u jð Þð Þ + β jð Þϕq u jð Þð Þ − λg j, u jð Þð Þ
h i

v jð Þ,

ð22Þ

for all u, v ∈ Xd: Thus, u ∈ Xd is a solution of problem (1) if
and only if u is a critical point of Iλ.

Lemma 3. Fix u ∈ Xd such that either

u jð Þ > 0or − Δpu j − 1ð Þ − Δqu j − 1ð Þ
+ α jð Þϕp u jð Þð Þ + β jð Þϕq u jð Þð Þ ≥ 0,

ð23Þ

for all j ∈ ½1,N�. Then, either u > 0 in ½1,N� or u ≡ 0.

Proof. Fix u ∈ Xd \ f0g and Z = fj ∈ ½1,N�: uðjÞ ≤ 0g: If Z =
∅, then, u > 0. Now, if min Z = 1, we can get

−Δpu 0ð Þ − Δqu 0ð Þ + α 1ð Þϕp u 1ð Þð Þ + β 1ð Þϕq u 1ð Þð Þ ≥ 0,
ð24Þ

which implies that

Δ ϕp Δu 0ð Þð Þ
� �

+ Δ ϕq Δu 0ð Þð Þ
� �

≤ α 1ð Þϕp u 1ð Þð Þ + β 1ð Þϕq u 1ð Þð Þ ≤ 0:
ð25Þ

Thus,

ϕp Δu 1ð Þð Þ + ϕq Δu 1ð Þð Þ ≤ ϕp Δu 0ð Þð Þ + ϕq Δu 0ð Þð Þ: ð26Þ

Since ϕp and ϕq are both strictly increasing, we have Δ

uð1Þ ≤ Δuð0Þ, which implies uð2Þ − uð1Þ ≤ uð1Þ − 0 ≤ 0. It
follows that uð2Þ ≤ 0, then ΔðϕpðΔuð1ÞÞÞ + ΔðϕqðΔuð1ÞÞÞ ≤
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αð2Þϕpðuð2ÞÞ + βð2Þϕqðuð2ÞÞ ≤ 0: An easy induction gives

0 = u N + 1ð Þ ≤ u Nð Þ ≤⋯ ≤ u 1ð Þ ≤ 0: ð27Þ

That is u ≡ 0, and this is absurd. Next, we assume that
min Z = z ∈ ½2,N�,

Δ ϕp Δu z − 1ð Þð Þ
� �

+ Δ ϕq Δu z − 1ð Þð Þ
� �

≤ α zð Þϕp u zð Þð Þ + β zð Þϕq u zð Þð Þ ≤ 0:
ð28Þ

Due to the monotonicity of ϕp and ϕq, ΔuðzÞ ≤ Δuðz − 1Þ
, which means uðz + 1Þ − uðzÞ ≤ uðzÞ − uðz − 1Þ. Because uð
z − 1Þ > 0, we have uðz + 1Þ < uðzÞ ≤ 0. By repeating this
argument, it is easy to see

0 = u N + 1ð Þ < u Nð Þ <⋯ < u zð Þ ≤ 0, ð29Þ

which leads to a contradiction.

Now, consider the function G+ : ½1,N� ×ℝ⟶ℝ given
as

G+ j, tð Þ =
ðt
0
g j, s+ð Þds, for all t ∈ℝ, j ∈ 1,N½ �, ð30Þ

where s+ = max fs, 0g. Now, we define I+λðuÞ =ΦðuÞ − λΨ+ð
uÞ, for all u ∈ Xd , where Ψ+ðuÞ =∑N

j=1 G
+ðj, uðjÞÞ: Similarly,

the critical points of I+λ are the solutions of the following

problem

−Δpu j − 1ð Þ − Δqu j − 1ð Þ + α jð Þϕp u jð Þð Þ + β jð Þϕq u jð Þð Þ = λg j, u+ jð Þð Þ,∀j ∈ 1,N½ �,
u 0ð Þ = u N + 1ð Þ = 0:

 

ð31Þ

Lemma 4. If gðj, 0Þ ≥ 0 for all j ∈ ½1,N�, then each nonzero
critical point of I+λ is a positive solution of (1).

Proof. We note that each positive solution u ∈ Xd of (31) is a
positive solution of (1). By an application of Lemma 3, we
conclude that u > 0. It follows that the nonzero solutions of
(31) are positive and hence are positive solutions of (1).

3. Main Results

Let

α = 〠
N

j=1
α jð Þ, β = 〠

N

j=1
β jð Þ, L∞ jð Þ = liminf

t⟶+∞
G j, tð Þ
tp

andL∞

= min
j∈ 1,N½ �

L∞ jð Þ:

ð32Þ

The main results are as follows.

Theorem 5. Assume that L∞ > 0, and there are two real
sequences fang and fbng, with lim

n⟶+∞
an = +∞, such that

Then for each λ ∈ �½ð2p + 2qÞN + α + β�/qL∞, 1/A∞½,
problem (1) admits an unbounded sequence of solutions.

Proof. Fixλin�½ð2p + 2qÞN + α + β�/qL∞, 1/A∞½, then, we can
take the real Banach space Xd as defined in Section 2, and
the definitions of Φ,Ψ, Iλ are the same as before. We will
prove Theorem 5 by applying Lemma 1 part (b) to function
Iλ. Since (H) is trivial to prove, it suffices to prove γ < +∞
and Iλ turns out to be unbounded from below. To this
end, let

ρn ≔
2anð Þp

p N + 1ð Þp−1  and σn ≔
2anð Þq

q N + 1ð Þq−1 , for every n ∈ℕ:

ð35Þ

Since, owing to (10), if ∥u∥p,α ≤ ðpρnÞ1/p then ∥u∥∞ ≤ an,

and if ∥u∥q,β ≤ ðqσnÞ1/q then ∥u∥∞ ≤ an. So, let rn = ρn + σn.
From ΦðuÞ ≤ rn, we have ∥u∥∞ ≤ an.

We obtain

φ rnð Þ ≤ inf
Φ uð Þ≤rn

∑N
j=1 max

∣t∣≤an
G j, tð Þ − ∑N

j=1 G j, u jð Þð Þ
rn −Φ uð Þ : ð36Þ

Then, we define wðjÞ such that wnðjÞ = bn for every j ∈
½1,N�, wnð0Þ =wnðN + 1Þ = 0: Clearly wnðjÞ ∈ Xd and Φðwn
Þ < rn owing to (33). One has

bnj j <min 2an
α + 2ð Þ1/p N + 1ð Þ p−1ð Þ/p ,

2an
β + 2ð Þ1/q N + 1ð Þ q−1ð Þ/q

( )
, for every n ∈ℕ, ð33Þ

A∞ ≔ liminf
n⟶+∞

∑N
j=1 max

∣t∣≤an
G j, tð Þ −∑N

j=1 G j, bnð Þ
2anð Þp/p N + 1ð Þp−1� �

+ 2anð Þq/q N + 1ð Þq−1� �
− 2 + αð Þ/p½ � bnj jp − 2 + βð Þ/q½ � bnj jq < qL∞

2p + 2qð ÞN + α + β
:

ð34Þ
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φ rnð Þ ≤
∑N

j=1 max
∣t∣≤an

G j, tð Þ − ∑N
j=1 G j, cð Þ

2anð Þp/p N + 1ð Þp−1� �
+ 2anð Þq/q N + 1ð Þq−1� �

− 2 + αð Þ/p½ � bnj jp − 2 + βð Þ/q½ � bnj jq :

ð37Þ

Therefore, γ ≤ liminf
n⟶+∞

φðrnÞ ≤ A∞ < +∞. It remains to

show that Iλ is unbounded from below.
Let fung ⊂ Xd be a sequence with unðjÞ ≥ 1 for j ∈ ½1,N�

such that lim
n⟶∞

∥un∥ = +∞. Because L∞ > 0, fix L such that

L∞ > L > ½ð2p + 2qÞN + α + β�/qλ, and we deduce that there
is δj > 0 such that Gðj, tÞ > Ltp for all t > δj. Moreover, since
Gðj, tÞ is a continuous function, there exists a constant Cðj
Þ ≥ 0 such that Gðj, tÞ ≥ Ltp − CðjÞ for all t ∈ ½0, δj�. Thus, G
ðj, tÞ ≥ Ltp − CðjÞ for all t ≥ 0 and j ∈ ½1,N�. It follows that

Ψ unð Þ = 〠
N

j=1
G j, un jð Þð Þ ≥ 〠

N

j=1
L un jð Þð Þp − C jð Þ� �

≥ L∥un∥
p
∞ − C, for all n ∈ℕ,

ð38Þ

where C =∑N
j=1 CðjÞ. Since ∥un∥∞ ≥ 1, one has

Iλ unð Þ = ∥un∥
p
p,α

p
+
∥un∥

q
q,β

q
− λ〠

N

j=1
G j, un jð Þð Þ

≤
2pN + α

p
∥un∥

p
∞ + 2qN + β

q
∥un∥

q
∞ − λL∥un∥

p
∞ + λC

≤
2p + 2qð ÞN + α + β

q
− λL

� 	
∥un∥

p
∞ + λC:

ð39Þ

As ½ð2p + 2qÞN + α + β�/q − λL < 0, it is obvious that
lim

n⟶+∞
IλðunÞ = −∞. Hence, Iλ is unbounded from below

and the proof is complete.

Let

B∞ = limsup
t⟶+∞

∑N
j=1 G j, tð Þ

tp
: ð40Þ

The following theorem can be obtained if we change
some of the conditions.

Theorem 6. Assume that there are two real sequences fang
and fbng, with lim

n⟶+∞
an = +∞, such that (33) holds and

A∞ ≔ liminf
n⟶+∞

∑N
j=1 max

∣t∣≤an
G j, tð Þ −∑N

j=1 G j, bnð Þ
2anð Þp/p N + 1ð Þp−1� �

+ 2anð Þq/q N + 1ð Þq−1� �
− 2 + αð Þ/p½ � bnj jp − 2 + βð Þ/q½ � bnj jq

< B∞

4 + α + β
:

ð41Þ

Then, for each λ ∈ �ð4 + α + βÞ/qB∞, 1/A∞½, problem (1)
admits an unbounded sequence of solutions.

Proof. The first half of the argument is analogous to that in
Theorem 5, and put Φ,Ψ, Iλ, rn as above. So, we have γ ≤
liminf
n⟶+∞

φðrnÞ ≤ A∞ < +∞.

Our task now is to verify that Iλ is unbounded from
below. First, we assume that B∞ = +∞: Fix M such that
B∞ >M > ð4 + α + βÞ/qλ, and let ftng be a sequence with
tn ≥ 1 and lim

n⟶+∞
tn = +∞, such that

〠
N

j=1
G j, tnð Þ >Mtpn, for all n ∈ℕ: ð42Þ

Taking the sequence xn in Xd defined by xnðjÞ = tn for
every j ∈ ½1,N�, xnð0Þ = xnðN + 1Þ = 0, we have

Iλ xnð Þ = ∥xn∥
p
p,α

p
+
∥xn∥

q
q,β

q
− λ〠

N

j=1
G j, xn jð Þð Þ

= 2 + α

p
tpn +

2 + β

q
tqn − λ〠

N

j=1
G j, tnð Þ

< 2 + α

p
tpn +

2 + β

q
tqn − λMtpn

< α + β + 4
q

− λM

 �

tpn:

ð43Þ

It is easy to see lim
n⟶+∞

IλðxnÞ = −∞.

Then, we assume that B∞ < +∞ and fix ε > 0 such that
ε < B∞ − ð4 + α + βÞ/qλ. Let ftng be a sequence with tn ≥ 1,
such that lim

n⟶+∞
tn = +∞ and

B∞ + εð Þtpn > 〠
N

j=1
G j, tnð Þ > B∞ − εð Þtpn,∀n ∈ℕ: ð44Þ

Let the sequence fxng in Xd be the same as the case
where B∞ = +∞, such that

Iλ xnð Þ < 4 + α + β

q
− λ B∞ − εð Þ

� 	
bpn, ð45Þ

which implies that lim
n⟶+∞

IλðxnÞ = −∞.

So, in both cases, Iλ is unbounded from below, which
completes the proof of Theorem 6.

Let

B0 ≔ limsup
t⟶0+

∑N
j=1 G j, tð Þ

tq
: ð46Þ

Applying part (c) of Lemma 1, we get the following the-
orem.
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Theorem 7. Assume that there exist two real sequences fcn
g and fdng, with lim

n⟶+∞
dn = 0, such that

cnj j <min 2dn
α + 2ð Þ1/p N + 1ð Þ p−1ð Þ/p ,

2dn
β + 2ð Þ1/q N + 1ð Þ q−1ð Þ/q

( )
, for every n ∈ℕ,

ð47Þ

A0 ≔ liminf
n⟶+∞

∑N
j=1 max

∣t∣≤dn
G j, tð Þ −∑N

j=1 G j, cnð Þ
2dnð Þp/p N + 1ð Þp−1� �

+ 2dnð Þq/q N + 1ð Þq−1� �
− 2 + αð Þ/p½ � cnj jp − 2 + βð Þ/q½ � cnj jq

< B0

4 + α + β
:

ð48Þ
Then, for each λ ∈ �ð4 + α + βÞ/qB0, 1/A0½, problem (1)

admits a sequence of nonzero solutions which converges to
zero.

Proof. Fix λ in �ð4 + α + βÞ/qB0, 1/A0½, and we can take the
real Banach space Xd and functional Φ,Ψ, Iλ as defined in
Section 2. Our aim is to apply Lemma 1 part (c) to function
Iλ. To this end, let

ρn ≔
2dnð Þp

p N + 1ð Þp−1  and σn ≔
2dnð Þq

q N + 1ð Þq−1 , for every n ∈ℕ:

ð49Þ

Owing to (10), if ∥u∥p,α ≤ ðpρnÞ1/p then ∥u∥∞ ≤ dn, and if

∥u∥q,β ≤ ðqσnÞ1/q then ∥u∥∞ ≤ dn. So, let rn = ρn + σn. It fol-
lows that if ΦðuÞ ≤ rn, then ∥u∥∞ ≤ dn. We obtain

φ rnð Þ ≤ inf
Φ uð Þ≤rn

∑N
j=1 max

∣t∣≤dn
G j, tð Þ −∑N

j=1 G j, u jð Þð Þ
rn−∥u∥

p
p,α/p−∥u∥

q
q,β/q

: ð50Þ

Now, for each n ∈ℕ, let vnðjÞ be defined by vnðjÞ = cn for
every j ∈ ½1,N�, vnð0Þ = vnðN + 1Þ = 0: Clearly vnðjÞ ∈ Xd ,
and ΦðvnÞ ≤ rn from (47). We have

φ rnð Þ ≤
∑N

j=1 max
tj j≤dn

G j, tð Þ −∑N
j=1 G j, cnð Þ

2dnð Þp/p N + 1ð Þp−1� �
+ 2dnð Þq/q N + 1ð Þq−1� �

− 2 + αð Þ/p½ � cnj jp − 2 + βð Þ/q½ � cnj jq :

ð51Þ

Hence, δ ≤ liminf
n⟶+∞

φðrnÞ ≤ A0 < +∞ follows.

In fact, infXd
Φ = 0, so our task now is to verify that the 0

is not a local minimum of Iλ. First, assume that B0 = +∞:
Fix M such that B0 >M > ð4 + α + βÞ/qλ, and let fsng be a
sequence of positive numbers, with sn ≤ 1 and lim

n⟶+∞
sn = 0,

such that

〠
N

j=1
G j, snð Þ >Msqn, for all n ∈ℕ: ð52Þ

Thus, taking the sequence fyng in Xd , let ynðjÞ = sn for
every j ∈ ½1,N�, ynð0Þ = ynðN + 1Þ = 0. Some tedious manipu-

lation yields

Iλ ynð Þ < 4 + α + β

q
− λM


 �
sqn, ð53Þ

which implies that IλðynÞ < 0.
Then, we assume that B0 < +∞ and fix ε > 0 such that

ε < B0 − ð4 + α + βÞ/qλ. Let fsng be a sequence of positive
numbers, with sn ≤ 1, such that lim

n⟶+∞
sn = 0 and

B0 + ε
� �

sqn > 〠
N

j=1
G j, snð Þ > B0 − ε

� �
sqn,∀n ∈ℕ: ð54Þ

Choosing the same fyng in Xd as the case B
0 = +∞, one

has

Iλ ynð Þ < 4 + α + β

q
− λ B0 − ε
� �� 	

sqn: ð55Þ

That is IλðynÞ < 0. Since 0 is the global minimum of Φ, in
both cases, u = 0 is not a local minimum of Iλ and the proof
is complete.

By setting

A∗ ≔ liminf
n⟶+∞

∑N
j=1 max

∣t∣≤an
G j, tð Þ

2anð Þp/p N + 1ð Þp−1� �
+ 2anð Þq/q N + 1ð Þq−1� � , �A∞

≔ liminf
t⟶+∞

∑N
j=1 max

∣ξ∣≤t
G j, ξð Þ

tq + tp
,

ð56Þ

we get the following consequences.

Corollary 8. Assume that

�A∞ < 2q

p N + 1ð Þp−1 4 + α + βð ÞB
∞: ð57Þ

Then, for each λ ∈ �ð4 + α + βÞ/qB∞, 2q/pðN + 1Þp−1�A∞½,
problem (1) admits an unbounded sequence of solutions.

Proof. Let fang be a sequence of positive numbers with
lim

n⟶∞
an = +∞, such that

�A∞ = liminf
n⟶+∞

∑N
j=1 max

∣ξ∣≤an
G j, ξð Þ

aqn + apn
: ð58Þ

After simple scaling and calculation, we have

A∗ ≤
p N + 1ð Þp−1

2q
�A∞: ð59Þ

Taking bn = 0 for each n ∈ℕ, from Theorem 6, the con-
clusion follows.
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If gðj, 0Þ satisfies the nonnegative condition, we have the
following conclusion.

Corollary 9. Assume that gðj, 0Þ ≥ 0 for all j ∈ ½1,N�, and

�A∞ < 2q

p N + 1ð Þp−1 4 + α + βð ÞB
∞: ð60Þ

Then, for each λ ∈ �ð4 + α + βÞ/qB∞, 2q/pðN + 1Þp−1�A∞½,
problem (1) admits an unbounded sequence of positive
solutions.

Proof. Let

g+ j, tð Þ =
g j, tð Þ, if t > 0,
g j, 0ð Þ, if t ≤ 0:

 
ð61Þ

Since gðj, 0Þ ≥ 0,

max
0≤s≤t

ðs
0
g+ j, ξð Þdξ =max

0≤s≤t

ðs
0
g j, ξð Þdξ, ð62Þ

for all t ≥ 0. From Corollary 8, we know that problem (1)
with g replaced by g+ admits an unbounded sequence of
solutions for each λ ∈ �ð4 + α + βÞ/qB∞, 2q/pðN + 1Þp−1�A∞½.
Then, all these solutions are positive solutions of problem
(1) by Lemma 4.

Let

�A0 ≔ liminf
t⟶0+

∑N
j=1 max

∣ξ∣≤t
G j, ξð Þ

tq + tp
: ð63Þ

Arguing as in the proof of Corollary 8 and taking cn = 0
for each n ∈ ½1,N�, by Theorem 7, we have the following cor-
ollary.

Corollary 10. Assume that

�A0 <
2q

p N + 1ð Þp−1 4 + α + βð ÞB
0: ð64Þ

Then, for each λ ∈ �ð4 + α + βÞ/qB0, 2q/pðN + 1Þp−1�A0½,
problem (1) admits a sequence of nonzero solutions which
converges to zero.

Arguing as in Corollary 9, we have the following result.

Corollary 11. Assume that gðj, 0Þ ≥ 0 for all j ∈ ½1,N�, and

�A0 <
2q

p N + 1ð Þp−1 4 + α + βð ÞB
0: ð65Þ

Then, for each λ ∈ �ð4 + α + βÞ/qB0, 2q/pðN + 1Þp−1�A0½,
problem (1) admits a sequence of positive solutions which
converges to zero.

Finally, we give two easy examples to illustrate our
results.

Example 1. Let α = β = 0, q = 2, p = 3,

g j, xð Þ = g xð Þ

=
3x2 sin 1

2 ln ∣ x ∣

 �

+ 1
2 x

2 cos 1
2 ln ∣ x ∣

 �

+ 25
8 x2, if x ≠ 0,

0, if x = 0:

0
B@

ð66Þ

for each j ∈ ½1,N�. Then,

liminf
t⟶+∞

max
ξj j≤t
Ð ξ
0 3x2 sin ln x/2ð Þ + x2 cos ln x/2ð Þ/2 + 25x2/8
� �

dx

t2 + t3

= liminf
t⟶+∞

t3 sin ln t/2ð Þ + 25t3/24
t2 + t3

= 1
24 ,

ð67Þ

and

lim sup
t⟶+∞

Ð t
0 3x2 sin ln x/2ð Þ + x2 cos ln x/2ð Þ/2 + 25x2/8
� �

dx

t3

= limsup
t⟶+∞

t3 sin ln t/2ð Þ + 25t3/24
t3

= 49
24 :

ð68Þ

By choosing N = 3, we have

2q
p N + 1ð Þp−1 4 + α + βð Þ = 1

48 : ð69Þ

From the above calculation, we obtain

�A∞ = lim inf
t⟶+∞

∑3
j=1 max

ξj j≤t
Ð ξ
0x

2 3 sin ln x/2ð Þ + cos ln x/2ð Þ/2 + 25/8½ �dx
t2 + t3

= 1
8 ,

ð70Þ

B∞ = lim sup
t⟶+∞

∑3
j=1
Ð t
0 x

2 3 sin ln x/2ð Þ + cos ln x/2ð Þ/2 + 25/8½ �dx
t3

= 49
8 :

ð71Þ

It is clear that �A∞ < 2qB∞/pðN + 1Þp−1ð4 + α + βÞ, by
Corollary 9, the problem

− ∣Δu jð Þ∣+1ð ÞΔu jð Þ + ∣Δu j − 1ð Þ∣+1ð ÞΔu j − 1ð Þ = 1
2g u jð Þð Þ,∀j ∈ 1, 3½ �,

u 0ð Þ = u 4ð Þ = 0,

0
@

ð72Þ

admits an unbounded sequence of positive solutions.
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Example 2. Let q = 2, p > 2 and

g j, xð Þ = g xð Þ =
x 2 + 2ε + 2 cos ε ln ∣ x ∣ð Þ − ε sin ε ln ∣ x ∣ð Þð Þ, if x ≠ 0,
0, if x = 0,

 

ð73Þ

for each j ∈ ½1,N�. Then,

G j, xð Þ =G xð Þ =
ðx
0
g sð Þds = x2 1 + ε + cos ε ln xð Þ½ �, ð74Þ

for x > 0. Since gðxÞ ≥ 0 for x ≥ 0, GðxÞ is increasing. We
have

�A0 = liminf
t⟶0+

∑N
j=1 max

0≤ξ≤t
G j, ξð Þ

tq + tp
=N liminf

t⟶0+
t2 1 + ε + cos ε ln tð Þ½ �

t2 + tp
=Nε,

ð75Þ

B0 = limsup
t⟶0+

∑N
j=1 G j, tð Þ

tq
=Nlimsup

t⟶0+

t2 1 + ε + cos ε ln tð Þ½ �
t2

=N 2 + εð Þ:

ð76Þ
Let ε be a sufficiently small constant, such that

Nε < 2q
p N + 1ð Þp−1 4 + α + βð ÞN 2 + εð Þ: ð77Þ

Then, by Corollary 11, for each λ ∈ �ð4 + α + βÞ/qB0, 2q/
pðN + 1Þp−1�A0½, problem (1) admits a sequence of positive
solutions which converges to zero.

4. Conclusions

In this paper, we consider a discrete Dirichlet boundary
value problem involving the ðp, qÞ-Laplacian. Unlike the
existing result in [28], which is the existence of at least two
positive solutions, we consider the existence of infinitely
many solutions for problem (1) for the first time. In fact,
by using Theorem 2.1 of [29], we show that problem (1)
admits a sequence of pairwise distinct solutions under some
appropriate assumptions on the nonlinear term near at
infinity and at the origin. Moreover, we prove the existence
of infinitely many positive solutions through our strong
maximum principle. It seems that we can use the method
in this paper to study other similar problems, such as the
existence and multiplicity of solutions for difference equa-
tions with different boundary value conditions. This will be
left as our future work.
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It has been found that the surface of implied volatility has appeared in financial market embrace volatility “Smile” and volatility
“Smirk” through the long-term observation. Compared to the conventional Black-Scholes option pricing models, it has been
proved to provide more accurate results by stochastic volatility model in terms of the implied volatility, while the classic
stochastic volatility model fails to capture the term structure phenomenon of volatility “Smirk.” More attempts have been
made to correct for American put option price with incorporating a fast-scale stochastic volatility and a slow-scale stochastic
volatility in this paper. Given that the combination in the process of multiscale volatility may lead to a high-dimensional
differential equation, an asymptotic approximation method is employed to reduce the dimension in this paper. The numerical
results of finite difference show that the multiscale volatility model can offer accurate explanations of the behavior of American
put option price.

1. Introduction

Compared to the European option, the biggest difference is
that American option can be exercised any time before its
maturity date. Due to the early exercise feature, the pricing
of American option has long been the most challenging
research topic in finance (see Karatzas [1], Rogers [2], and
Haugh and Kogan [3]). The American option can be valued
using an analytic approximation approach called the
Barone-Adesi and Whaley method (BAW method) when
the underlying asset is driven by a stochastic process with
constant volatility [4]. However, the significant leptokurtic
feature of the underlying asset process found from lots of
empirical evidences indicates that the volatility should be
randomly distributed rather than a constant, and thus, the
BAW model can hardly be applied if a stochastic process

drives the volatility. To solve this problem, many researchers
currently resort for the stochastic volatility models. In partic-
ular, the multiscale stochastic volatility model has been pro-
posed to deal with the fast data and slow data frequency of
the underlying asset.

1.1. Multiscale Stochastic Volatility Modelling. Most of the
early studies on the American option always assume that a
stochastic process with constant volatility drives the under-
lying asset. This assumption can simplify the problem but
fails to capture the real market feature of the volatility
(Giesecke et al. [5]). Numerous extensions have been made
for relaxing the overstrict assumption, namely, the stochastic
volatility models. The most popular stochastic volatility
models are Heston’s model (see [6]) and Stein and Stein’s
model (see [7]), which assume that the volatility is driven
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by a single-factor stochastic process. However, currently,
empirical study shows that the volatility can be rescaled
according to the frequency of the observed data. Besides,
multifactor stochastic models can be used to improve the
accuracy of the option pricing (see Fouque and Zhou [8]
and Christoffersen et al. [9]).

The studies by Clarke and Parrott [10] and Muzy et al.
[11] defined the time scale as the frequency of the observed
data in different time periods. Further study of the time scale
divided into fast scale and slow scale has been carried out by
Chacko and Viceira [12]. The fast scale describes the short
period fluctuation with high frequency, while the slow scale
describes the long-term variations with low frequency. A
comprehensive empirical analysis was presented by Fouque
and Zhou [8]. They proposed the slow-scale volatility model
to price the European option and investigated the long run
time correction effect on the option pricing. A multiscale
volatility model was developed to price option by Fouque
et al. [13], from which the authors combined both the fast-
scale volatility and slow-scale volatility into the volatility
processes. In Fouque et al.’s research, the analysis of the
fast-scale volatility is connected with the singular perturba-
tion theory, while the study of the slow-scale volatility is
associated with the regular perturbation theory. Therefore,
the asymptotic approach can be applied to approximate
the volatility correction terms.

Despite the popularity of the classic European option
pricing, the multiscale model has also been widely used to
price other more complicated financial derivatives, such as
the Asian option and the VIX future (see Fouque and Han
[14] and Fouque and Saporito [15]). The multiscale volatility
model is studied in Liu et al. [16], from which the authors
incorporated the jump-diffusion terms in pricing European
option and the variance swap and applied the finite element
method to approximate the generated high-dimension par-
tial integral differential equation (PIDE). Recently, a perpet-
ual American option is investigated under the stochastic
elasticity of variance (CEV) model, and the fast-scale correc-
tion of the variance elasticities derived by the multiscale
asymptotic method [17–19]. Apart from the derivative pric-
ing, the multi-scale model can also be applied in studying
portfolio selection (see Fouque and Hu [20, 21]).

1.2. Pricing Methodologies for American Option. It is well
known that American-type option featured by early exercise
can be formulated as a free boundary PDE problem, whereas
the analytical solution is not available. Hence, numerous
studies have been conducted to find an approximation of the
American option price including the semianalytical approach,
the numerical approach, and the Monte Carlo simulations
(see Fouque et al. [22], Longstaff and Schwartz [23], and
Stentoft [24]).

The semianalytical approach can be divided into three
groups, including an analytical method of lines, the integral
equation approach, and capped option approximation
approach. A semianalytic valuation method for American
option is developed by randomizing the maturity date, from
which the maturity date is viewed as several jumps driven by
standard Poisson processes [25]. The integral equation

approach is built by valuing and hedging American options
based on a recursive integration of the early exercise bound-
ary [26]. Instead of approximating the early exercise bound-
ary, the capped method is inclined to impose the lower and
upper bounds on American option value [27]. Although the
semianalytical methods are supposed to be more efficient, it
is hardly applicable if more factors are included. Regarding
the simulation approximation, various methods are applied
to undertake an analysis of the field. The simplest one is
the binomial tree method introduced by Cox et al. [28].
LSM method has been introduced by Longstaff and Schwartz
[23], who claimed that the simulation method is favourable
for multifactor models. The LSM method approximates
and simulates the conditionally expected pay-off function
from the cross-sectional information using the least square
method. However, the method is proved to be less efficient
compared to other numerical and semianalytic approaches.

According to Feynman-Kac theorem, American option
pricing problems essentially described by a nonlinear PDE
can be solved numerically by the finite difference method
and the finite element method [29]. For the time-dependent
American option, a free and moving boundary is considered
due to the early exercise feature. Two approaches, namely,
the fixed-point approach and the penalty approach, are com-
monly used to deal with the moving boundary. Merton et al.
[29] applied the front-fixing transformation to incorporate
the unknown boundary into the PDE and solved it numeri-
cally as a fixed boundary nonlinear PDE problem. The front-
fixing method is highly efficient because it does not have to
embed iteration at each time step of evolution. A detailed com-
parison between the front-fixing method and the penalty
method has been carried out by Nielsen et al. [30]. Different
from the front-fixing method, the penalty method removes
the free boundary by adding a small and continuous penalty
term which accurately captures the boundary properties.
Nielsen et al. [31] derived a penalty method for solving the
American multiasset option pricing problem, and they have
proved that the semi-implicit FDM method performs better
than the implicit method by avoiding the nonlinear term.
However, even though the numerical method is beneficial to
dealing with the PDE problem with free boundaries, the
method is not perfect for a high-dimensional problem con-
cerning the issue of computation efficiency.

This paper is aimed at expanding current research on the
subject of American option pricing problem with stochastic
volatilities. In our research, a multiscale stochastic volatility
model is incorporated to investigate the value of American
option. We compare the fast-scale and slow-scale effects of
the volatility, which helps to explain the investors’ different
behaviors when facing the short-run and long-run volatility
risks. Since more factors have been taken into account in the
model, it will result in a high-dimensional problem subject
to moving boundaries, which is hard to solve analytically.
Even though many of the numerical methods are useful in
solving the higher-dimensional PDE, such as the finite ele-
ment method in Liu et al. [16], it is highly time-consuming.
In our research, we propose an efficient approach to deal with
the problem by combining the asymptotic method with the
front-fixing method. Besides, as the valuation of the Greeks
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is closely related to hedging and the risk exposure of the port-
folio selection, in this paper, we study the Greeks numerically
to test the sensitivities of model parameters. Last but not least,
we apply the real financial market data to calibrate the correc-
tion terms, which makes our research more reliable and realis-
tic. Instead of using SPX 500 option quotes to calculate the
likelihood of the underlying distribution, we follow Fouque
et al.’s calibration framework as an alternative approach to
analyse the linear relationship between the implied volatility
and the Log-Moneyness in Fouque et al. [13]. The idea of
the calibration is straightforward andmore efficient with fewer
calibrated parameters.

The rest of the paper is organized as follows. Model Setup
describes the modelling of the underlying asset price, where its
volatility is driven by multiscale stochastic processes. Pricing
Approximation presents the asymptotic approximation
algorithm which is applied to reduce the dimension of the
resulting PDE for option pricing. Numerical Analysis is the
numerical approach of finite difference for the solution of
the PDE problem with free boundary. Numerical illustrations
are presented in Empirical Results and followed by a conclu-
sion with future work in light of the empirical findings.

2. Model Setup

We assume that the price of the underlying asset S is driven
by the following stochastic process in the form of stochastic
differential equation,

dS = μSdt + f y, zð ÞSdW 0ð Þ
t , ð1Þ

where μ is the constant drift term, Wð0Þ
t is a standard Brow-

nian motion, and f ðy, zÞ is a function of two factors y and z,
which represent “fast-” and “slow-”scale volatility, respec-
tively. The fast- and slow-scale volatilities y and z are driven
by the following two stochastic processes:

dy = 1
ξ
α yð Þ − 1ffiffiffi

ξ
p Γ1 1ð Þ

 !
dt + 1ffiffiffi

ξ
p β yð ÞdW 1ð Þ

t ,

z = σc zð Þ − ffiffiffi
σ

p
Γ2 zð Þ� �

dt +
ffiffiffi
σ

p
g zð ÞdW 2ð Þ

t ,

ð2Þ

where 1/ξ and σ denote, respectively, the fast-scale rate and
slow-scale rate of volatility; Γ1ðyÞ and Γ2ðzÞ denote the risk
premium of the volatility risk under the risk-neutral assump-
tion; and the functions αðyÞ, βðyÞ, cðzÞ, gðzÞ are smooth and
at most linearly grow as y⟶∞ and z⟶∞.

Here, we assume that the Brownian motion ðWð0Þ
t ,Wð1Þ

t ,
Wð2Þ

t Þ is correlated with the following correlations: CovðWð0Þ
t

,Wð1Þ
t Þ = ρ1, CovðWð0Þ

t ,Wð2Þ
t Þ = ρ2, and CovðWð1Þ

t ,Wð2Þ
t Þ =

ρ12.
The American option provides the contract holder with

the right of early exercise before the expiration date T, which
is the key difference from European options. Hence, there
exists an optimal exercise boundary fBðτÞ, t ≤ Tg, which
divides the area into the holding region and the exercise
region. It is optimal to exercise the American put option with

strike priceK when S ≤ BðτÞ subject to the following boundary
conditions:

∂P B tð Þ, y, z, tð Þ
∂S

= −1,

P B tð Þ, y, z, tð Þ = K − B tð Þ:
ð3Þ

On the other hand, if S > BðτÞ, it is the holding region, and
the investors choose to hold the contract until the maturity
time. The resulting boundary condition in this region becomes

P S, y, z, tð Þ = K − Sð Þ+, ð4Þ

and the terminal condition of the free boundary at expiration
date is defined as

B y, z, Tð Þ = K: ð5Þ

3. Pricing Approximation

The asymptotic approximation method for American option
pricing can refer to the perturbation theorem, which aims at
correcting solutions of a PDE with respect to the small
variation of the coefficient. We generate the perturbation
theorem by introducing fast-scale correction and low-scale
correction at the same time into the process of approxima-
tion. The perturbation theorem can be grouped into the sin-
gular perturbation and the regular perturbation. The PDE
degenerates at the singularity point for the singular pertur-
bation, whereas the regular perturbation will not change
the nature of the PDE. In order to approximate the altering
of the solution under perturbation theorem, the asymptotic
approximation is adapted in the series expansion. In our
research, the correction of fast-scale stochastic volatility is
regarded as a singular perturbation, while the correction of
slow-scale stochastic volatility is considered to be a regular
perturbation similar to Fouque et al. [13].

Therefore, American option price Pξ,σ can be decom-
posed into the leading term and two correction terms, i.e.,

Pξ,σ = P0,0 + Pξ
1,0 + Pσ

1,0 + Error, ð6Þ

where P0,0 denotes the option price without the volatility

correction, Pξ
1,0 =

ffiffiffi
ξ

p
P1,0 the fast-scale volatility correction,

and Pσ
0,1 =

ffiffiffi
σ

p
P1,0 the slow-scale volatility correction. The

error term Error is oðξ
ffiffiffi
ξ

p
+ ffiffiffi

σ
p +

ffiffiffiffiffi
ξσ

p
Þ with reference to

Fouque et al. [32].
Under the proposed fast-scale and slow-scale stochastic

volatility model, the price of an American put option PðS, y,
z, tÞ satisfies the following PDE problem with free boundary
conditions:
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Lξ,σPξ,σ = 0,
Pξ,σ S, y, z, Tð Þ = K − Sð Þ+,
Bξ,σ y, z, tð Þ < S<+∞

Pξ,σ Bξ,σ y, z, tð Þ, y, z, t
� �

= K − Bξ,σ y, z, tð Þ,

Pξ,σ
S Bξ,σ y, z, tð Þ, y, z, t
� �

= −1,

Pξ,σ
y Bξ,σ y, z, tð Þ, y, z, t
� �

= 0,

Pξ,σ
z Bξ,σ y, z, tð Þ, y, z, t
� �

= 0,

Pξ,σ +∞,y, z, tð Þ = 0,

8>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>:

ð7Þ

where t ∈ ½0, T�. The operator Lξ,σ is given by

Lξ,σ =L0 +
1ffiffiffi
ξ

p L1 +
1
ξ
L2 +

ffiffiffi
σ

p
M1 + σM2 +

ffiffiffi
σ

p ffiffiffi
ξ

p M12 = 0,

ð8Þ

with

L0 =
∂
∂t

+ 1
2 f

2 y, zð ÞS2 ∂2

∂S2
+ rS

∂
∂S

− r,

L1 = ρ1β yð Þf y, zð ÞS ∂2

∂S∂y
− Γ1β yð Þ ∂

∂y
,

L2 =
1
2β

2 yð Þ ∂2

∂y2
+ α yð Þ ∂

∂y
,

M1 = ρ2g zð Þf y, zð ÞS ∂2

∂S∂z
− Γ2g zð Þ ∂

∂z
,

M2 =
1
2g

2 zð Þ ∂2

∂z2
+ c zð Þ ∂

∂z
,

M12 = ρ12β yð Þg zð Þ ∂2

∂y∂z
:

8>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>:

ð9Þ

To construct a singular perturbation expansion, the asymp-
totic price Pξ,σ is expanded in the form of

Pξ,σ = 〠
n

i

ξi/2Pσ
i S, y, z, tð Þ: ð10Þ

To construct a regular perturbation expansion, the asymp-
totic price Pσ is expanded in the form of

Pσ = 〠
n

j

σ j/2Pi,j S, y, z, tð Þ: ð11Þ

Similarly, the asymptotic price of free boundary Bðy, z, tÞ is
of the form

Bξ,σ = 〠
n

i

ξi/2Bσ
i y, z, tð Þ, ð12Þ

Bσ = 〠
n

i

σi/2Bi,j y, z, tð Þ: ð13Þ

We substitute (10) and (11) intoLξ,σPξ,σ = 0 from (7) and
collect the similar terms up to order1/2; the results are shown as
below:

O
1
ξ

� �
: L2P0,0 = 0,

O
1ffiffiffi
ξ

p
 !

: L2P1,0 +L1P0,0 = 0,

O

ffiffiffi
σ

p
ξ

� �
: L2P0,1 = 0,

O

ffiffiffi
σ

p ffiffiffi
ξ

p
 !

: L2P1,1 +L1P0,1 +M12P0,0 = 0,

ð14Þ

O 1ð Þ: L2P2,0 +L1P1,0 +L0P0,0 = 0,

O
ffiffiffi
ξ

p� �
: L2P3,0 +L1P2,0 +L0P1,0 = 0,

O
ffiffiffi
σ

p� �
: L2P2,1 +L1P1,1 +L0P0,1 +M1P0,0 +M12P1,0 = 0:

ð15Þ
From (9), since the operatorsL0 andL1 only contain the

derivatives with respect to y, it can be concluded that P0,0, P1,0,
P0,1, and P1,1 are independent of y according to (14). As a result
of the fact thatL1P1,0 = 0, equation (15) is a Poisson equation
of the form

L2P + Gh i = 0, ð16Þ

with hGi≔ Ð
gðyÞΠðdyÞ = 0 according to the centring resol-

vability of Poisson equation, where Π is an invariant distribu-
tion to y. Thus, we obtain

L0h iP0,0 = 0, ð17Þ

L1P2,0
	 


+ L0h iP1,0 = 0, ð18Þ

M1h iP0,0 + L0h iP0,1 = 0: ð19Þ
Correspondingly, the free boundary conditions are neces-

sary to be expanded in terms of
ffiffiffi
ξ

p
and

ffiffiffi
σ

p
. By combining

(12) and (13) into (7) and applying Taylor expansion, we
obtain

P0,0 B0,0, z, tð Þ +
ffiffiffi
ξ

p ∂P0,0 B0,0, z, tð Þ
∂S

B1,0 + P1,0 B0,0, z, tð Þ + B1,0

� �

+
ffiffiffi
σ

p ∂P0,0 B0,0, z, tð Þ
∂S

B0,1 + P0,1 B0,0, z, tð Þ + B0,1

� �
= K − B0,0,

ð20Þ
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∂P0,0 B0,0, z, tð Þ
∂S

+
ffiffiffi
ξ

p ∂P2
0,0 B0,0, z, tð Þ

∂S2
B1,0 +

∂P0,0 B0,0, z, tð Þ
∂S

� �

+
ffiffiffi
σ

p ∂P2
0,0 B0,0, z, tð Þ

∂S2
B0,1 +

∂P0,0 B0,0, z, tð Þ
∂S

� �
= −1,

ð21Þ
∂P0,0 B0,0, z, tð Þ

∂z
+

ffiffiffi
ξ

p ∂P2
0,0 B0,0, z, tð Þ
∂S∂z

B1,0 +
∂P0,0 B0,0, z, tð Þ

∂z

� �

+
ffiffiffi
σ

p ∂P2
0,0 B0,0, z, tð Þ
∂S∂z

B0,1 +
∂P0,0 B0,0, z, tð Þ

∂z

� �
= 0:

ð22Þ
The boundary conditions can be derived from (20), (21),

and (22). The terminal condition can be rewritten as follows:

P0,0 S, z, Tð Þ = K − Sð Þ+,
P1,0 S, z, Tð Þ = P0,1 S, z, Tð Þ = 0:

ð23Þ

Here, we propose a series of theorems correspondingly
based on the assumptions above to assist for the pricing of
American option.

Theorem 1. Assume p = P0,0 to be the leading term without
the volatility correction; p can be determined by solving
PDE (24):

L0h ip = 0,

L0h i = ∂
∂t

+ 1
2
�δ
2
S2

∂2

∂S2
+ rS

∂
∂S

− r,
ð24Þ

where �δ
2 = h f 2ðy, zÞi≔ Ð

f 2ðy, zÞQðdyÞ = 0 denotes the mean
historical volatility of stock and is subject to the terminal and
boundary conditions:

p S, Tð Þ = K − Sð Þ+,
p Smin, tð Þ = K − Sminð Þe−r T−tð Þ,

p Smax, tð Þ = 0,
p B0, tð Þ = K − B0,
∂p B0, tð Þ

∂x
= −1,

ð25Þ

where B0 = B0,0 denotes the moving boundary of the leading
term.

Proof. The boundary conditions are easily derived from
(20).☐

From Theorem 1, the leading term p can be obtained by
solving a one-dimensional PDE with free boundary condi-
tions. The analytical solution is impossible to obtain; thus,
we resort to the numerical solution presented in the next sec-
tion. Apart from the leading term, the fast-scale volatility and
slow-scale volatility terms can be determined by Theorem 2
and Theorem 3.

Theorem 2. Let Pξ = P1,0 denote the fast-scale volatility
correction term which can be solved by

L0h iPξ =Vξ
1S

3 ∂
3p

∂S3
+Vξ

0S
2 ∂

2p

∂S2
: ð26Þ

h·i denotes the integral with respect to y, subject to the
terminal and boundary conditions

Pξ S, Tð Þ = 0, Pξ B0, tð Þ = 0, ð27Þ

where Vξ
1 = ρ1 ⋅ �δ ⋅ hβðyÞi ⋅ hΦyi, Vξ

0 = −Γ1 ⋅ hβðyÞi:

Proof. From (9) and (17), we obtain

L0h i −L0 =
1
2

�δ
2 − f 2 y, zð Þ

� �
S2

∂2

∂S2
: ð28Þ

Subtracting the first equation of (15) by (17) and setting

L2ϕ = −
1
2

�δ
2 − f 2 y, zð Þ

� �
, ð29Þ

we obtain

L1P2,0
	 


= L1L
−1
2 L0h i −L0ð Þp	 


= L1ϕS
2 ∂

2p

∂S2

* +
,

ð30Þ

where ϕ = ϕðt, S, y, zÞ.
According to the chain rule and PDE (18), we get

L0h iP1,0 = − L1P2,0
	 


=Vξ
1S

3 ∂
3p

∂S3
+Vξ

0S
2 ∂

2p

∂S2
, ð31Þ

where Vξ
1 = ρ1

�δhβðyÞihΦyi and Vξ
0 = −Γ1hβðyÞi.

From Theorem 2, the fast-scale volatility term can be
determined by solving the PDE problem subject to the fixed
boundary condition, or it can be approximated by

P1,0 = − T − tð ÞV p, ð32Þ

where V = V0S
3ð∂3/∂S3Þ + 2V0S

2ð∂2/∂S2Þ:
Substituting (32) into (26), we obtain

L0h iP1,0 = −V p + T − tð ÞV L0h ip = −V p: ð33Þ

☐

Theorem 3. Let Pσ = P0,1 denote the slow correction term
which can be solved from the PIDE:

L0h iPσ =Vσ
1 S

∂2p
∂S∂z

+Vσ
0
∂p
∂z

ð34Þ
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subject to the terminal and boundary conditions

Pσ S, Tð Þ = 0,
Pσ B0, tð Þ = 0,

ð35Þ

where Vσ
0 = Γ2gðzÞ and Vσ

1 = −ρ2gðzÞh f ðy, zÞi.

Proof. According to (19), we obtain

L0h iP0,1 = − M1h iP0,0, ð36Þ

with

M1h i − Vσ
1S

2 ∂2

∂S∂z
−Vσ

0S
∂
∂z

: ð37Þ

Similarly,

P0,1 = − T − tð Þ M1h iP0,0 = − T − tð Þ Vσ
1S

∂2p
∂S∂z

+Vσ
0
∂p
∂z

 !
:

ð38Þ

where Vσ
0 = Γ2gðzÞ, and VΣ

1 = ρ2gðzÞh f ðy, zÞi.☐

4. Numerical Analysis

For the convenience of numerical computation, both fast-
scale stochastic volatility and slow-scale stochastic volatility
processes are assumed to be mean-reverting Ornstein-
Uhlenbeck (OU) processes. Thus, the stochastic volatility
models under the risk-neutral adjustment are

dS = rSdt + f y, zð ÞSdW∗ 0ð Þ
t ,

dy = 1
ξ

m∗ − yð Þdt + 1ffiffiffi
ξ

p v1
ffiffiffi
y

p
dW∗ 1ð Þ

t ,

dz = σ k∗ − zð Þdt + ffiffiffi
σ

p
v2

ffiffiffi
z

p
dW∗ 2ð Þ

t ,

ð39Þ

where r is the risk-free interest rate; m∗ and k∗ are mean
reversion level; y and z are the fast-scale stochastic volatility
and slow-scale stochastic volatility, respectively; v1 and v2 are

the volatility of volatility, i.e., vol of vol; and W∗ðiÞ
t , i = 0, 1, 2,

are the standard Brownian motions under the risk neutral
measure.

As described in the previous section, the option price
could be approximated by the summation of the leading
term, the fast-scale correction, and the slow-scale correction
terms. In this section, the leading term is approximated
numerically by applying the front fixing method (FDM) in
the following work.

4.1. The Sensitivity Study of the Leading Term. Generally, to
obtain the leading term of the original American put option
p = P0,0ðS, tÞ, we first have to solve the following problem
numerically:

∂p
∂t

+ 1
2 S

2�δ
2 ∂2p
∂S2

+ rS
∂p
∂S

− rp = 0: ð40Þ

By applying the front fixing method (FDM) and letting
x = S/BðtÞ, equation (40) becomes

∂p
∂t

+ 1
2
�δ
2
x2

∂2p
∂x2

+ r −
B′ tð Þ
B tð Þ

 !
x
∂p
∂x

− rp = 0, x ≥ 1,

ð41Þ

subject to the terminal and the boundary conditions:

p x, Tð Þ = 0, x ≥ 0,
B Tð Þ = K ,

p 1, tð Þ = K − B tð Þ,
∂p 1, tð Þ
∂x

= −B tð Þ,
p xmax, tð Þ = 0:

ð42Þ

Discretizing (41) gives

pn+1i − pni
dt

+ 1
2
�δ
2
x2i

pni+1 − 2pni + pni−1
dx2

+ r −
Bn+1 − Bn

Bndt

� �
xi
pni+1 + pni−1

2dx − rpni = 0,
ð43Þ

which can be simplified to

pn+1i = aip
n
i+1 + bip

n
i + cip

n
i−1, i = 2,⋯,M, ð44Þ

where for simplification, let l = dt/2dx and k = dt/dx2:

ai = −
1
2
�δ
2
kx2i − xil r −

Bn+1 − Bn

Bn+1dt

� �
,

bi = 1 + �δ
2
kx2i + rdt,

ci = −
1
2
�δ
2
kx2i + xil r −

Bn+1 − Bn

Bn+1dt

� �
:

8>>>>>>><
>>>>>>>:

ð45Þ

The terminal and the boundary conditions (42) have
been reduced to

pn0 = K − Bn,
pn1 = K − Bn 1 + dxð Þ,

pnM = 0,
BN = K:

ð46Þ

Now, let

F Bnð Þ = a1 Bnð Þpn2 + b1 K − Bnð Þ + c1 Bnð Þ K − Bn 1 + dxð Þð Þ,
ð47Þ
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then the moving boundary can be approximated by applying
Newton’s method:

Bn,r+1 = Bn,r −
F Bn,rð Þ
F ′ Bn,rð Þ

, ð48Þ

where r denotes the rth iteration at time n, and the iteration
stops once the solution converges.

Option Greeks are of great importance because Greeks
measure the evolution of the option price along with the
change of the model parameters, such as volatility and stock
price. Also, Greeks are useful tools for hedging purpose and
estimation of the risk exposure in portfolio selection. Here,
we study the Greeks including Delta, Gamma, and Vega of
the leading term, and the derived results will be used later
in the approximation of the first-order correction terms.

4.2. The Study of Delta. Let D = ∂p/∂S denote the Delta,
which measures the rate of change of the option value for
the stock price. It then can be determined by solving the
following PDE:

∂D
∂t

+ 1
2 S

2�δ
2 ∂2D
∂S2

+ rS
∂D
∂S

− rD = −S�δ2
∂2p
∂S2

− r
∂p
∂S

ð49Þ

subject to the terminal and the boundary conditions:

D S, Tð Þ =
−1, if K ≤ S,
0, if K > S,

(

D Smin, tð Þ = −e−r T−tð Þ,
D Smax, tð Þ = 0,
D B0, tð Þ = 0,
∂D B0, tð Þ

∂S
= 0:

ð50Þ

Using a similar approach as described in (41) and letting
x = S/BðtÞ, equation (49) subject to the terminal and the
boundary conditions (50) becomes

∂D
∂t

+ 1
2
�δ
2
x2

∂2D
∂x2

+ r −
B′ tð Þ
B tð Þ

 !
x
∂D
∂x

− rD = −
1
2
�δ
2 x
B
∂2p
∂x2

−
r
B
∂p
∂x

, x ≥ 1:

ð51Þ

The terminal and the boundary conditions have been
rewritten as follows:

D x, Tð Þ = 0,
B Tð Þ = K ,
1, tð Þ = −1,

∂D 1, tð Þ
∂x

= 0,

D xmax, tð Þ = 0:

ð52Þ

Discretizing (51) gives

Dn+1
i −Dn

i

dt
+ 1
2
�δ
2
x2i

Dn
i+1 − 2Dn

i +Dn
i−1

dx2
+ r −

Bn+1 − Bn

Bndt

� �
xi
Dn
i+1 −Dn

i−1
2dx − rDn

i

= −
1
2

�δ
2
xi

Bndx2
+ 1
2

r
Bndx

 !
pni−1 +

�δ
2
xip

n
i

Bndx2

+ −
1
2

�δ
2
xi

Bndx2
−
1
2

r
Bndx

 !
pni+1,

ð53Þ

which can be simplified to

Dn+1
i = aiD

n
i+1 + biD

n
i + ciD

n
i−1 + f ni , i = 2,⋯,M, ð54Þ

where ai, bi, and ci are the same as described in (45) and the
force term is

f ni = −
1
2 δ

2xik + rl
� �

pni−1 + δ2xikp
n
i −

1
2 δ

2xik + rl
� �

pni+1, i = 2,⋯,M:

ð55Þ

Formula (54) is an implicit scheme given the terminal
condition. It has been approved that the implicit scheme is
unconditionally stable, and for a parabolic type of PDE,
the convergence of the FDM requires that dt < <dx is
satisfied.

4.3. The Study of Gamma. Let G = ∂2p/∂x2 = ∂D/∂x denote
the Gamma, which measures the rate of change of Delta,
and it can be approximated numerically by solving the
following PDE:

∂G
∂t

+ 1
2 S

2�δ
2 ∂2G
∂S2

+ r + 2�δ2
� �

S
∂G
∂S

− rG = − �δ
2 + r

� � 1
B
∂D
∂x
ð56Þ

subject to the terminal and the boundary conditions:

G S, Tð Þ = 0,
G Smin, tð Þ = 0,
G Smax, tð Þ = 0,
G B0, tð Þ = 0,
∂G B0, tð Þ

∂S
= 0:

ð57Þ

By using the similar approach as in (41), we let x = S/B
ðtÞ, and then, equation (56) subject to the terminal and the
boundary conditions (57) becomes

∂G
∂t

+ 1
2
�δ
2
x2

∂2G
∂x2

+ r −
B′ tð Þ
B tð Þ

 !
x
∂G
∂x

− rG = − �δ
2 + r

� � 1
B
∂D
∂x

, x ≥ 1,

ð58Þ
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subject to the terminal and the boundary conditions:

G 1, tð Þ = 0,
∂G 1, tð Þ

∂x
= 0,

G x, Tð Þ = 0,
G xmax, tð Þ = 0,
G Tð Þ = K:

ð59Þ

Discretizing (58) gives

Gn+1
i −Gn

i

dt
+ 1
2
�δ
2
x2i

Gn
i+1 − 2Gn

i + Gn
i−1

dx2

+ r −
Bn+1 − Bn

Bndt

� �
xi
Gn
i+1 −Gn

i−1
2dx − rGn

i

= − �δ
2 + r

� � 1
Bn

Dn
i+1 −Dn

i−1
2dx ,

ð60Þ

which can be simplified to

Gn+1
i = aiG

n
i+1 + biG

n
i + ciG

n
i−1 + f ni , i = 2,⋯,M, ð61Þ

where ai,bi, and ci are the same as defined in (45) and the
force term is

f ni = − �δ
2 + r

� � 1
Bn l D

n
i+1 −Dn

i−1ð Þ, i = 2,⋯,M: ð62Þ

4.4. The Study of Vega. The Vega measures the sensitivity of
the option value for the volatility, which can be obtained by
solving the following PDE:

∂V
∂t

+ 1
2 S

2�δ
2 ∂2V
∂S2

+ rS
∂V
∂S

− rV = −�δS2
∂2p
∂S2

ð63Þ

subject to the terminal and the boundary conditions:

V S, Tð Þ = 0,
V Smin, tð Þ = 0,
V Smax, tð Þ = 0,
V B0, tð Þ = 0,
∂V B0, tð Þ

∂S
= 0,

ð64Þ

where V = ∂p/∂�δ denotes the Vega. Applying the approach
as used in (41), letting x = S/BðtÞ, equation (63) subject to
the terminal and the boundary conditions (64) becomes

∂V
∂t

+ 1
2
�δ
2
x2

∂2V
∂x2

+ r −
B′ tð Þ
B tð Þ

 !
x
∂V
∂x

− rV = −�δx2
∂2p
∂x2

, x ≥ 1,

ð65Þ

subject to the terminal and the boundary conditions:

V x, Tð Þ = 0,
B Tð Þ = K ,
V 1, tð Þ = 0,
∂V 1, tð Þ

∂x
= 0,

V xmax, tð Þ = 0:

ð66Þ

Discretizing (65) gives

Vn+1
i −Vn

i

dt
+ 1
2
�δ
2
x2i

Vn
i+1 − 2Vn

i +Vn
i−1

dx2

+ r −
Bn+1 − Bn

Bndt

� �
xi
Vn

i+1 −Vn
i−1

2dx − rVn
i

= −
�δ pni+1 − 2pni + pni−1ð Þ

dx2
,

ð67Þ

which can be simplified to

Vn+1
i = aiV

n
i+1 + biV

n
i + ciV

n
i−1 + f ni , i = 2,⋯,M, ð68Þ

where ai,bi, and ci are the same as defined in (45) and the
force term is

f ni = −�δk pni+1 − 2pni + pni−1ð Þ, i = 2,⋯,M: ð69Þ

5. Empirical Results

In order to study our model effectively and efficiently, we
firstly calibrate the proposed model and fit it to the financial
market data. The source of the calibrated data in this section
is from the Chicago Board Options Exchange (see website
[33]), and the method we applied here is the least square
method.

5.1. Model Calibration. Instead of estimating the model
parameters ðm∗, v1, k∗, v2, ρ1, ρ2Þ in (39), Fouque et al. [32]

suggested that ðVξ
0, Vξ

1, Vσ
0 , Vσ

1Þ could be expressed as

Vξ
0 = −�δ3 �δ − d

� �
− a�δ r −

�δ
2

2

 !
,

Vξ
1 = −�δ3 ∗ a,

Vσ
0 = −�δ3c − b�δ r −

�δ
2

2

 !
,

Vσ
1 = −�δ3 ∗ b,

ð70Þ

wherea, b, c, andd are calibrated by the following linear
relationship:

I ≈ d + a ∗ LMMR + b ∗ LM + c ∗ τ, ð71Þ
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where I denotes the implied volatility, LM= log ðX/KÞ
denotes the Log-Moneyness, LMMR = ðlog ðX/KÞÞ/τ denotes
the Log-Moneyness to maturity ratio, and τ = T − t is the time
to maturity.

Table 1 is calculated by fitting the SPX500 implied vola-
tility as a linear function of LMMR, LM, and τ. Tables 1–3
present the calibrated results of three different days:
13/02/2017, 14/03/2017, and 26/05/2017. The calibrated
results will be used later in the approximation of the first-
order correction terms.

5.2. Numerical Analysis of the Leading Term. Figure 1(a) is
the profile of the American option value without volatility
correction with different interest rates. Figure 1(b) is the
profile of the moving boundary with different interest rates.
The region to the left of the free boundary is the holding
region, at which the investor will continue to hold the Amer-
ican put option instead of executing the option. The region
to the right of the free boundary is the exercising region.
The investor will exercise the American put option as soon
as the stock price reaches the optimal exercising boundary.

Interest rates play a key role in determining the optimal
exercising boundary. The opportunity cost of holding the
stock increases with the growth of the interest rate. When
r increases, holding stock becomes less attractive, and the
investors intend to hold the put option longer. As a result,
the put option price intends to decline. The leading term p
= P0,0, which can be solved numerically from (40), is shown
in Figures 2(a) and 2(b) with different interest rates.

To ensure the convergence of FDM scheme, we let the
time step size dt = 10−4 and the space step size dx = 0:128.
The trajectories of moving boundaries are compared in
Figures 3(a) and 3(b). As shown in Figure 3(a), the value
of American put option is increasing along with the volatil-
ity, which means that the put option has more chance to be
profitable as the volatility grows.

5.3. Sensitivity Analysis. The approximation of Greeks of the
leading term is studied in this subsection. Also, the option
valuation is intimately related to hedging and the risk expo-
sure of the portfolio selection, and it is interesting to see the
evolution of the most critical sensitivities. Here, Delta,
Gamma, and Vega will be studied numerically by using the
front-fixing method to be applied later in the formation of
the first-order correction terms.

Figures 4(a) and 4(b) show the evolution of Delta gov-
erned by (49). Delta, the sensitivity of option price to the
change of stock price, ranges from −1 to 0. However, the
results of Delta in Figures 4(a) and 4(b) are very steep due
to the discontinuity of the moving boundary.

A similar result can be viewed from Figures 5(a) and
5(b). The Gamma described by (56) is growing steeply
before reaching the peak; Figures 6(a) and 6(b) show the
Vega solved by (63), which represents the sensitivity of
volatility. The Greeks will be applied subsequently to solve
the first-order correction terms.

5.4. Numerical Analysis of Correction Terms. In this subsec-
tion, more details on the numerical analysis of the correction

terms are provided. According to Theorem 2, the fast-scale
correction term can be obtained by solving the following.

PDE:

∂Pξ

∂t
+ 1
2 S

2�δ
2 ∂2Pξ

∂S2
+ rS

∂Pξ

∂S
− rPξ =Vξ

0S
3 ∂

2D

∂S2
+Vξ

0S
2 ∂D
∂S
ð72Þ

subject to the initial and the boundary conditions:

Pξ S, Tð Þ = 0,
B0 = K ,

Pξ B0, tð Þ = 0,

Pξ Smax, tð Þ = 0,

ð73Þ

where V0 = ρ1�σhβðyÞihΦyi.
According to Theorem 3, the slow-scale correction term

can be solved from the following PDE:

∂Pσ

∂t
+ 1
2 S

2�δ
2 ∂2Pσ

∂S2
+ rS

∂Pσ

∂S
− rPσ =Vσ

1S
∂V
∂S

� �2
+Vσ

0V

ð74Þ

subject to the initial and the boundary conditions

Table 1: Calibrated parameters of 13/02/2017.

a b c d

-0.1955046 -7.857835 -0.1233350 -0.0249121

Vξ
0 Vξ

1 Vσ
0 Vσ

1

-0.069767 0.003055 -0.010911 0.122779

Table 2: Calibrated parameters of 14/03/2017.

a b c d

-0.1291801 -11.2623374 -0.1975740 -0.0361232

Vξ
0 Vξ

1 Vσ
0 Vσ

1

-0.072217 0.002018 -0.010438 0.175974

Table 3: Calibrated parameters of 26/05/2017.

a b c d

-0.2610624 -4.2253650 -0.0694265 -0.0119128

Vξ
0 Vξ

1 Vσ
0 Vσ

1

-0.066865 0.004079 -0.005091 0.066021

9Journal of Function Spaces



Pσ S, Tð Þ = 0,
B0 = K ,

Pσ B0, tð Þ = 0,
Pσ Smax, tð Þ = 0:

ð75Þ

The discretizing scheme is the same as (49) with differ-
ent force terms. Similarly, the front-fixing method is applied
to solve the fast-scale volatility and the slow-scale volatility
terms Pξ and Pδ. From Figures 7(a) and 7(b), they conclude
that the inclusion of the fast-scale volatility will result in the
increasing of the option price. Figures 8(a) and 8(b) show
that the inclusion of the slow-scale volatility also corrects
the leading term of American option price positively.

Moreover, it can be summarized from Figures 7(a) and
7(b) that volatility correction terms grow rapidly when the
underlying asset price is close to the strike price, and start
to decrease quickly when it is close to maturity. Table 4 pro-
vides the comparison of the American option price with and
without scale correction at the point where the underlying
asset price is close to the strike price (at the money). Assum-
ing S = 13:0216 when the strike price K equals to 14 and ϵ
= σ = 0:1, we can conclude that the short-term fast-scale
volatility has more significant effects on American option
pricing than the long-term slow-scale volatility. The possible
explanation behind this phenomenon is that the investors
are normally sensitive to the price change in the short run
than in the long run. In the long run, investors care more
about the quality of the investment rather than the short-
term economic indicators.
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6. Conclusions

This paper has investigated the correction of multiscale
stochastic volatility to American put option pricing. The
application of the fast-scale volatility and slow-scale volatil-
ity is more practical to capture the behavior of the volatility
in a different time periods. The fast-scale volatility is mod-
elled to describe the highly oscillated fluctuation of the
return process in the short run. In contrast, the slow-scale
volatility makes a description of the slow-varied oscillation
fluctuation of long-run return process. The empirical study
conducted by Christoffersen et al. [9] offers a better explana-
tion of the leptokurtosis feature of implied volatility surface.
In fact, the effects of the multiscale volatility and the early
exercising feature of American option can be transferred to
a high-dimensional nonlinear partial differential equation
subject to a moving boundary.

However, this model is impossible to solve analytically.
In this paper, we reduce the high-dimensional PDE to three
one-dimensional PDEs with moving boundary by applying
the asymptotic approximation method. The asymptotic
approximation can be applied because the scales of the
fast-scale volatility and slow-scale volatility can be viewed
as a singular perturbation and a regular perturbation,
respectively. The resulted moving boundary problem has
been solved numerically by using the front-fixing method.
Moreover, the coefficients in the numerical study are cali-
brated by the implied volatility derived from S&P 500
options. The numerical results of finite difference show that
multiscale volatilities have a significant influence on the
American option pricing. The incorporation of the fast-
scale volatility and the slow-scale volatility will increase the
value of American option pricing, and the effects are more
evident in the long run than in the short run. In addition,
Greeks are also studied in this paper to show the sensitivity
of the model parameters. The first-order correction terms
are proved to be related to the sharpness of the leading term.
Even though we have successfully applied the multiscale
model in studying the pricing problem of the American
option, the application of the multiscale volatility model on
other path-dependent financial derivatives is also worth to
be evaluated in the future research.
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Fixed points of monotone α-nonexpansive and generalized β-nonexpansive mappings have been approximated in Banach space.
Our purpose is to approximate the fixed points for the above mappings in hyperbolic space. We prove the existence and
convergence results using some iteration processes.

1. Introduction

In 1965, Browder [1], Göhde [2], and Kirk [3] started work-
ing in the approximation of fixed point for nonexpansive
mappings. Firstly, Browder obtained fixed point theorem
for nonexpansive mapping on a subset of a Hilbert space that
is closed bounded and convex. Soon after, Browder [1] and
Göhde [2] generalized the same result from a Hilbert space
to a uniformly convex Banach space. Kirk [3] utilized normal
structure property in a reflexive Banach space to sum up the
similar results. Recently, Dehici and Najeh [4] and Tan and
Cho [5] approximated fixed point result for nonexpansive
mappings in Banach space and Hilbert space.

Fixed point theory in partially ordered metric spaces has
been initiated by Ran and Reurings [6] for finding applica-
tion to matrix equation. Nieto and Lopez [7] extended their
result for nondecreasing mapping and presented an applica-
tion to differential equations. Recently, Song et al. [8]
extended the notion of α-nonexpansive mapping to mono-
tone α-nonexpansive mapping in order Banach spaces and
obtained some existence and convergence theorem for the
Mann iteration (see also [9] and the reference therein). Moti-
vated by the work of Suzuki [10], Aoyama and Kohsaka [11],

Dehaish and Khamsi [9], and Song et al. [8], Pant and Shukla
obtained existence results in ordered Banach space for a
wider class of nonexpansive mappings [12, 13]. There are
many mathematicians who worked on weak and strong con-
vergence of nonexpansive mappings and its generalizations
by using one step, two step, and multistep iteration process
([8, 14, 15]). We obtain existence results in partial ordered
hyperbolic space for monotone generalized α-nonexpansive
and monotone generalized β-nonexpansive map. Particu-
larly, in Section 3, some auxiliary results and existence theo-
rems for monotone α-nonexpansive mappings in ordered
hyperbolic spaces are presented. In Section 4, we presented
numerical examples and graphical representation. In Section
5, we obtained some existence results for monotone general-
ized β-nonexpansive mappings in ordered hyperbolic spaces.

2. Preliminaries

In 1976, the concept of Δ -convergence was given by Lim [14].
Lim [14] initiated the idea that in a metric space, Δ

-convergence is possible. This concept is adapted for
CAT(0) spaces by Kirk and Panyanak [16], and they have
indicated that in numerous Banach space, outcomes
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comprising weak convergence were having exactly accurate
analogs in this manner.

Definition 1. A self map T on W is known as Lipschitz, if
there exists k ≥ 0 such that

σ T ξ,T ηð Þ ≤ kσ ξ, ηð Þ, for all ξ, η ∈W: ð1Þ

T is called to be contractive if k ∈ ð0, 1�, and T is called
nonexpansive mapping, if k = 1, that is,

σ T ξ,T ηð Þ ≤ σ ξ, ηð Þ, for all ξ, η ∈W: ð2Þ

Suzuki [10] introduced an interesting generalized nonex-
pansive mapping as follows.

Definition 2. A self map T on W is said to satisfy condition
(3), if for all ξ, η ∈W,

1
2
σ ξ,T ξð Þ ≤ σ ξ, ηð Þ⇒ σ T ξ,T ηð Þ ≤ σ ξ, ηð Þ: ð3Þ

Suzuki type generalized nonexpansive mapping is
another name of self map T holding condition (3).

Many generalizations of nonexpansive mapping have
been introduced in the literature (see [17–19]). Aoyama
and Kohsaka [11] defined a new type of nonexpansive map-
ping that satisfies the condition (3) known as α-nonexpan-
sive mapping as follows.

Definition 3. Let W be a nonempty subset of a Banach space
H. A self mapT onW can be referred α -nonexpansive map-
ping, if for all ξ, η ∈W and α < 1,

T ξ −T ηk k2 ≤ α T ξ − ηk k2 + α ξ −T ηk k2 + 1 − 2αð Þ ξ − ηk k2:
ð4Þ

The concept of monotone nonexpansive mappings was
introduced in 2015 by Bachar and Khamsi [20], and they
studied common approximate fixed point of monotone non-
expansive semigroup. To determine some order fixed points,
Dehaish and Khamsi [9] proposed weak convergence theo-
rems of the Mann iteration process for monotone nonexpan-
sive mappings in uniformly convex ordered Banach spaces.

Definition 4. Let T be a self map on W; then, T is said to be

(1) monotone [20] if Tξ⪯Tη for all ξ, η ∈W with ξ⪯η;

(2) monotone nonexpansive [20] if T is monotone and

σ Tξ, Tηð Þ ≤ σ ξ, ηð Þ, ð5Þ

for all ξ, η ∈W with ξ⪯η;

(3) monotone quasi-nonexpansive [8] if T is monotone
and

σ Tξ, ηð Þ ≤ σ ξ, ηð Þ, ð6Þ

where ξ ∈W and η ∈ FðTÞ, and FðTÞ is the set of fixed points.

Definition 5 [21]. ðH, σ, SÞ is called a hyperbolic space, if ð
H, σÞ is a metric space and S : H ×H × ½0, 1�⟶H is a func-
tion holding

(i) σðζ, Sðξ, η, λÞÞ ≤ ð1 − λÞσðζ, ξÞ + λσðζ, ηÞ;
(ii) σðSðξ, η, λ1Þ, Sðξ, η, λ2ÞÞ ≤ jλ1 − λ2jσðξ, ηÞ;
(iii) Sðξ, η, λÞ = Sðη, ξ, 1 − λÞ;
(iv) σðSðξ, ζ, λÞ, Sðη, ν, λÞÞ ≤ ð1 − λÞσðξ, ηÞ + λσðζ, νÞ,
for all ξ, η, ζ, ν ∈H and λ, λ1, λ2 ∈ ½0, 1�:

Here, (i) defines the convexity in metric space ðH, σÞ that
was first considered by Takahashi [22], (ii) provides a unique
geodesic between any two elements ξ and η ofH by convexity
map S that is the space of hyperbolic type in the sense of Goe-
bel and Kirk [23], (iii) provides symmetry along the direction
of geodesic, and (iv) defines negative curvature or hyperboli-
city of metric space was first considered by Itoh [24].

Theorem 6 [11]. LetW be a nonempty closed convex subset of
a uniformly convex Banach space H and T : W ⟶W be an
α -nonexpansive mapping. Then, F ðT Þ is nonempty iff there
exists ξ ∈W such that fTnðξÞg is bounded.

Since the hyperbolic spaces contain all normed linear
spaces and their convex subsets, so uniformly convex Banach
space is contained in hyperbolic metric space so it is natural
to generalize the above result to hyperbolic metric space.

Definition 7 [16]. A bounded sequence ðξnÞ in H is known as
Δ-converge to an element ξ ∈H, if ξ is a unique asymptotic
centre of each subsequence fξnkg of fξng:

In this section, following definitions and lemma are
stated in [9].

Definition 8. LetW be a nonempty set of a hyperbolic metric
space ðH, σÞ. A map τ : W ⟶ ½0,∞Þ is said to be a type
function, if there exists a bounded sequence fung in H such
that

τ uð Þ = limsup
n⟶∞

σ un, uð Þ, for all u ∈W: ð7Þ

It is known that each bounded sequence generates a
unique type function.

Lemma 9. Let ðH, σ,⪯Þ be a uniformly convex hyperbolic met-
ric space and W a nonempty closed convex subset of H. Let
τ : W ⟶ ½0,∞Þ be a type function. Then, τ is continuous.
Furthermore, there exists a unique minimum point ξ ∈W
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such that

τ ξð Þ = inf τ uð Þ: u ∈Wf g: ð8Þ

Definition 10. A hyperbolic space ðH, σÞ known as uniformly
convex, if for every r > 0 and ε > 0,

δ r, εð Þ = inf 1 −
1
r
σ

1
2
ξ ⊕

1
2
η, a

� �
; σ ξ, að Þ

�
≤ r, σ η, að Þ ≤ r, σ ξ, ηð Þ ≥ rεg > 0,

ð9Þ

for any a ∈H:

Definition 11. Let W be a nonempty subset of a hyperbolic
space H and fξυg be a bounded sequence in H: Then, for
every ξ ∈H, define

(i) Asymptotic radius of fξυg at ξ by

r ξ, ξυf gð Þ = limsup
υ⟶∞

σ ξυ, ξð Þ: ð10Þ

(ii) Asymptotic radius of the sequence fξυg relative to
the above supposed set W by

r ξ, ξυf gð Þ = inf r ξ, ξυð Þ: ξ ∈Wf g: ð11Þ

(iii) Asymptotic centre of the sequence fξυg relative to
the above supposed set W by

A W, ξυf gð Þ = r ξ, ξυf gð Þ = r W, ξυf gð Þ: ξ ∈Wf g: ð12Þ

Note that AðW, fξυgÞ ≠∅. Further, AðW, fξυgÞ has
exactly one point if H is uniformly convex.

From now to onward, we will suppose that the ordered
intervals are convex and closed, and they are also contained
in ordered hyperbolic space ðH,⪯,FÞ; these are described as
follows:

a,⟶½ Þ≔ ξ ∈H : a⪯ξf g and ⟵,bð �≔ ξ ∈H : ξ⪯bf g for any a, b ∈H:

ð13Þ

3. Monotone α-Nonexpansive Mappings

In this section, we will use the following iteration introduced
by Kalsoom et al. [25].

ξ ∈W,

ξυ+1 = T 1 − αυð ÞTξυ + αυTηυð Þ,
ηυ = 1 − βυð Þzυ + βυTzυ,

zυ = 1 − γυð Þξυ + γυTξυ, υ ∈ℕ,

8>>>>><
>>>>>:

ð14Þ

where fαυg, fβυg and fγυg are in ð0, 1Þ.
Now we define monotone α-nonexpansive mappings in

partially ordered hyperbolic metric space ðH, σ,⪯Þ as follows.

Definition 12. Let W be a nonempty closed convex subset of
an ordered hyperbolic metric spaceH. A self map T onW is
monotone α-nonexpansive mapping, if T is monotone and
for some α < 1,

σ2 T ξ,T ηð Þ ≤ ασ2 T ξ, ηð Þ + ασ2 ξ,T ηð Þ + 1 − 2αð Þσ2 ξ, ηð Þ,
ð15Þ

for all ξ, η ∈W with ξ⪯η:

Lemma 13. Let W be a nonempty closed convex subset of an
ordered hyperbolic metric space H. A self map T on W is
monotone α-nonexpansive mapping; then,

(i) T is monotone quasi.

(ii) For all ξ, η ∈W with ξ⪯η

σ2 T ξ,T ηð Þ ≤ σ2 ξ, ηð Þ + 2α
1 − α

σ2 T ξ, ξð Þ

+
2α
1 − α

σ T ξ, ξð Þ σ ξ, ηð Þ + σ T ξ,T ηð Þ½ �:
ð16Þ

Proof. To prove (i), it is followed by definition of monotone α
-nonexpansive mappings that

σ2 T ξ, ηð Þ ≤ ασ2 T ξ, ηð Þ + ασ2 ξ, ηð Þ + 1 − 2αð Þσ2 ξ, ηð Þ,
ð17Þ

implies σðT ξ, ηÞ ≤ σðξ, ηÞ:
Hence, T is monotone quasi for ξ ∈W and η ∈ FðT Þ:
Now we will prove (ii), and if 0 < α < 1 then we have

σ2 T ξ,T ηð Þ ≤ ασ2 T ξ, ηð Þ + ασ2 ξ,T ηð Þ + 1 − 2αð Þσ2 ξ, ηð Þ
≤ ασ2 T ξ, ξð Þ + 2ασ T ξ, ξð Þσ ξ, ηð Þ + ασ2 ξ, ηð Þ

+ ασ2 T ξ,T ηð Þ + 2ασ T ξ,T ηð Þσ T ξ, ξð Þ
+ ασ2 T ξ, ξð Þ + 1 − 2αð Þσ2 ξ, ηð Þ,
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σ2 T ξ,T ηð Þ ≤ σ2 ξ, ηð Þ + 2α
1 − α

σ2 T ξ, ξð Þ

+
2α
1 − α

σ T ξ, ξð Þ σ ξ, ηð Þ + σ T ξ,T ηð Þ½ �:
ð18Þ

This completes the proof. ☐ ☐

Definition 14. An ordered hyperbolic metric space ðH, σ,⪯Þ is
said to be uniformly convex, if for an arbitrary h ∈H,r > 0
and ε > 0,

δ r, εð Þ = inf 1 −
1
2
σ

1
2
ξ ⊕

1
2
η, h

� �
; σ ξ, hð Þ

�
≤ r ; σ η, hð Þ ≤ r ; σ ξ, ηð Þ ≥ rε� > 0:

ð19Þ

Now, we utilize iteration processes for monotone α
-nonexpansive mappings.

Lemma 15. Let ðH, σ,⪯Þ be a uniformly convex partially
ordered hyperbolic metric space (in short, UCPOHMS) and
W a nonempty closed convex subset of H: Let T : W ⟶W
be a monotone mapping and ξ1 ∈W be such that ξ1⪯T ξ1 ½
or Tξ1⪯ξ1�: Then, for sequence fξυg defined by (14), we have

(a) ξυ⪯T ξυ⪯ξυ+1 (or ξυ+1⪯T ξυ⪯ξυ);

(b) ξυ⪯pðorp⪯ξυÞ provided fξυgΔ-converges to a point p
∈W,∀υ ∈ℕ.

Theorem 16. Let W be a nonempty closed convex subset of a
UCPOHMS ðH, σ,⪯Þ and T : W ⟶W be a monotone α
-nonexpansive mapping. Assume that there exists ξ1 ∈W such
that ξ1⪯T ξ1 and fξυg defined in (14) is a bounded sequence
with ξυ ≤ η for all η ∈W such that

liminf
υ⟶∞

σ ξυ,T ξυð Þ = 0: ð20Þ

Then, FðT Þ ≠∅:

Proof. Let fξυg defined by (14) be a bounded sequence such
that

lim inf
υ⟶∞

σ ξυ,T ξυð Þ = 0: ð21Þ

Then, there exists a subsequence fξυqg such that

lim
k⟶∞

σ ξυq ,T ξυq

� �
= 0: ð22Þ

By Lemma 15, we have

ξ1⪯ξυq⪯ξυq+1 : ð23Þ

Define

Wq = u ∈W : ξ1⪯uf g, ð24Þ

for all q ∈ℕ:Clearly, for every q ∈ℕ,Wq is closed convex. As
u ∈Wq, it shows that Wq ≠∅: Define

W∞ =
\∞
q=1

Wq ≠∅: ð25Þ

Then, W∞ is a closed convex subset of W: Let u ∈W∞:
Then,

ξυq⪯u,∀q ∈ℕ: ð26Þ

As we know, T is a mapping which is monotone; then,
for q ∈ℕ,

ξυq⪯T ξυq⪯T u, ð27Þ

which implies that T ðW∞Þ ⊂W∞: Let a type function τ
: W∞ ⟶ ½0,∞Þ generated by fξυqg such that

τ uð Þ = limsup
q⟶∞

σ ξυq , u
� �

: ð28Þ

Then, there exists a unique point z ∈W∞ such that

τ zð Þ = inf τ uð Þ: u ∈W∞f g: ð29Þ

By definition of type function,

τ T zð Þ = limsup
q⟶∞

σ ξυq ,T z
� �

: ð30Þ

By using Lemma 13, we get

σ2 T ξυq ,T z
� �

≤ σ2 ξυq , z
� �

+
2α
1 − α

σ2 T ξυq , ξυq
� �

+
2α
1 − α

σ T ξυq , ξυq
� �

σ ξυq , z
� �h

+ σ T ξυq ,T z
� �i

:

ð31Þ

From the boundedness of the sequence fξυqg and

limq⟶∞σðξυq ,T ξυqÞ = 0, we have

lim sup
q⟶∞

σ2 T ξυq ,T z
� �

≤ lim sup
q⟶∞

σ2 ξυq , z
� �

, ð32Þ

implies τðTzÞ = τðzÞ: It shows that T z = z, and hence, FðT
Þ ≠∅: ☐ ☐

Theorem 17. Let W be a nonempty closed convex subset of a
UCPOHMS ðH, σ,⪯Þ and T : W ⟶W a monotone α
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-nonexpansive mapping. Assume that there exists ξ1 ∈W such
that T ξ1⪯ξ1 and fξυg defined by (14) is a bounded sequence
with ξυ ≤ η for all η ∈W such that

lim inf
υ⟶∞

σ ξυ,T ξυð Þ = 0: ð33Þ

Then, FðT Þ ≠∅:

Theorem 18. Let ðH, σ,⪯Þ be a UCPOHMS, C a closed convex
cone, andT : C⟶ C a monotone α-nonexpansive mapping.
Assume that ξ1 = 0 and fξυg defined by (14) is a bounded
sequence with ξυ ≤ η for all η ∈W such that

lim inf
υ⟶∞

σ ξυ,T ξυð Þ = 0: ð34Þ

Then, FðT Þ ≠∅:

Proof.With the help of definition of partial order ⪯, we know
that ξ1 = 0⪯T 0 =T ξ1; then, the proof is directly from Theo-
rem 16. ☐ ☐

We now prove some convergence results for monotone α
-nonexpansive mappings.

Lemma 19 [9]. Suppose ðH, σÞ be a UC hyperbolic space and
also monotone modulus of uniform convexity δ, and suppose
z ∈H and a sequence fαυg such that 0 < a ≤ αυ ≤ b < 1. If
the sequences fuυg and fvυg are in H, in such a way that
lim supυ⟶∞σðuυ, zÞ ≤ r, lim supυ⟶∞σðvυ, zÞ ≤ r, and
limυ⟶∞σðαυuυ ⊕ ð1 − αυÞvυ, zÞ = r, then limυ⟶∞σðuυ, vυÞ
= 0.

Theorem 20. Let W be a nonempty closed convex subset of a
UCPOHMS ðH, σ,⪯Þ and T : W ⟶W a monotone α-non-
expansive mapping. Suppose there exists a sequence fξυg
defined by (14) with ξ1⪯T ξ1ðorT ξ1⪯ξ1Þ and FðT Þ ≠∅:
Then,

(1) fξυg is bounded

(2) σðξυ+1, zÞ ≤ σðξυ, zÞ and limυ⟶∞σðξυ, zÞ exists for all
z ∈ FðT Þ

(3) limυ⟶∞σðT ξυ, ξυÞ = 0:

Proof. Suppose that ξ1⪯z and z ∈ FðT Þ, and as we know that
T is monotone, then T ξ1⪯T z, and so

ξ1⪯T ξ1⪯z: ð35Þ

It follows from Lemma 15.

ξυ⪯ξυ+1⪯T ξυ⪯z, ð36Þ

which gives that

ξυ+1⪯z,∀υ ∈ℕ: ð37Þ

It shows that fξυg is bounded. On the other hand, by
using Lemma 13, we get

σ ξυ+1, zð Þ ≤ σ ξυ, zð Þ, ð38Þ

and so

σ ξυ+1, zð Þ ≤ βυσ ξυ, zð Þ + 1 − βυð Þσ T ξυ, zð Þ
≤βυσ ξυ, zð Þ + 1 − βυð Þσ ξυ, zð Þ

= σ ξυ, zð Þ
⋮

≤σ ξ1, zð Þ:

ð39Þ

Then, the sequence fσðξυ, zÞg is nonincreasing and
bounded sequence; hence, (i) and (ii) proved. So limυ⟶∞σ
ðξυ, zÞ exists for all z ∈ FðT Þ and υ ∈ℕ. Suppose that

lim
υ⟶∞

σ ξυ, zð Þ ≤ s: ð40Þ

As T is monotone quasi,

lim sup
υ⟶∞

σ T ξυ, zð Þ ≤ s, ð41Þ

and hence,

lim sup
υ⟶∞

σ ξυ+1, zð Þ ≤ s,

s = lim sup
υ⟶∞

βυσ ξυ, zð Þ + 1 − βυð Þσ T ξυ, zð Þf g

= lim sup
υ⟶∞

σ ξυ, zð Þ:
ð42Þ

It concludes from Lemma 19 that

lim sup
υ⟶∞

σ ξυ, zð Þ = 0: ð43Þ

☐ ☐

Theorem 21. Let W be a nonempty closed convex subset of a
UCPOHMS ðH, σ,⪯Þ and T : W ⟶W a monotone α-non-
expansive mapping. Suppose there exists a sequence fξυg
defined by (14) with ξ1⪯T ξ1ðorT ξ1⪯ξ1Þ and FðT Þ ≠∅:
Then, fξυgΔ-converges to a fixed point of T .

Proof. By the Theorem 18, we have fξυg is bounded. So, there
exists a subsequence fξυqg of fξυgΔ-converges to some p ∈
W such that

ξ1⪯ξυq⪯p,∀q ∈ℕ: ð44Þ

In the next step, we prove there exists a unique Δ-limit in
FðT Þ corresponding to each Δ-convergent subsequence of
fξυg. Consider fξυg has two subsequences fξυqg and fξυrg
which are Δ-convergent to l and m, respectively. Then, fξυg
is bounded and
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lim
q⟶∞

σ T ξυq , ξυq
� �

= 0, ð45Þ

which concludes that l ∈ FðT Þ: Let τ : W ⟶ ½0,∞Þ is a type
function which is generated by fξυqg: Then,

τ lð Þ = lim sup
υ⟶∞

σ ξυq , l
� �

,

τ T lð Þ = lim sup
υ⟶∞

σ ξυq ,T l
� �

:
ð46Þ

By Lemma 13, we infer

σ2 T ξυq ,T l
� �

≤ σ2 ξυq , l
� �

+
2α
1 − α

σ2 T ξυq , ξυq
� �

+
2α
1 − α

σ T ξυq , ξυq
� �

σ ξυq , l
� �h

+ σ T ξυq ,T l
� �

�,

ð47Þ

as

lim
q⟶∞

σ T ξυq , ξυq
� �

= 0,

lim sup
q⟶∞

σ T ξυq ,T l
� �

≤ lim sup
q⟶∞

σ ξυq , l
� �

:
ð48Þ

By uniqueness of element l and definition of Δ-conver-
gence, we conclude that

T l = l: ð49Þ

Similarly, one can easily show that

Tm =m: ð50Þ

By continuity of τ and definition of Δ-convergence, we
get

lim sup
υ⟶∞

σ ξυ, lð Þ ≤ lim sup
q⟶∞

σ ξυq , l
� �

≤ lim sup
q⟶∞

σ ξυq ,m
� �

= lim sup
υ⟶∞

σ ξυ,mð Þ = lim sup
r⟶∞

σ ξυr ,m
� 	

≤ lim sup
r⟶∞

σ ξυr , l
� 	

,

ð51Þ

which shows that l =m: ☐ ☐

Theorem 22. Let W be a nonempty closed convex subset of a
UCPOHMS ðH, σ,⪯Þ and T : W ⟶W a monotone α-non-
expansive mapping. Suppose there exists a sequence fξυg
defined by (14) with ξ1⪯T ξ1ðorT ξ1⪯ξ1Þ and

lim sup
υ⟶∞

βυ 1 − βυð Þ > 0: ð52Þ

Then, fξυg converges strongly to a fixed point of T .

Proof. By Theorem 18, there exists a subsequence fξυqg of f
ξυg which converges strongly to a point η ∈W: From Lemma
15, we get

ξ1⪯ξυq⪯η,∀ q ∈ℕ: ð53Þ

By Theorem 17, FðT Þ ≠∅ and fξυg is bounded, and

lim inf
υ⟶∞

σ T ξυ, ξυð Þ = 0: ð54Þ

Without loss of generality, we get

lim
q⟶∞

σ T ξυq , ξυq
� �

= 0: ð55Þ

On the other hand, by Lemma 13, we derive

σ2 T ξυq ,T η
� �

≤ σ2 ξυq , η
� �

+
2α
1 − α

σ2 T ξυq , ξυq
� �

+
2α
1 − α

σ T ξυq , ξυq
� �

σ ξυq , η
� �h

+ σ T ξυq ,T η
� �i

,

ð56Þ

as

lim
q⟶∞

σ T ξυq , ξυq
� �

= 0,

lim sup
q⟶∞

σ T ξυq ,T η
� �

≤ lim sup
q⟶∞

σ ξυq , η
� �

:
ð57Þ

By boundedness of fξυqg, we have

lim sup
q⟶∞

σ ξυq , η
� �

= 0,

lim sup
q⟶∞

σ T ξυq ,T η
� �

= 0,
ð58Þ

and hence,

lim
q⟶∞

σ T ξυq ,T η
� �

= 0: ð59Þ

Therefore,

lim
q⟶∞

σ ξυq ,T η
� �

= lim
q⟶∞

σ ξυq ,T ξυq

� �
+ lim

q⟶∞
σ T ξυq ,T η
� �

= 0,

ð60Þ

which shows that η ∈ FðT Þ: By Theorem 18, limυ⟶∞σðξυ,
ηÞ exists, so

lim
υ⟶∞

σ ξυ, ηð Þ = 0: ð61Þ

This completes the proof. ☐ ☐
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Example 1. Let W = ½1, 4� be a nonempty closed convex sub-
set of a UCPOHMS ðℝ, σ,≤Þ and T : W ⟶W defined by
Tx = ð2x + 4Þ1/3 be a monotone α-nonexpansive mapping.
Then, for the sequences αn = 3n/ð2n + 1Þ4, βn = 2n + 1/
ð7n + 3Þ2, and γn = 5n + 2/ð3n + 2Þ3, there exists a sequence
fξυg for which all the conditions of Theorem 22 are satisfied
by T , and hence, x = 2 is the required fixed point.

4. Comparison of Iteration Processes

In this section, we are presenting some iterations [25–31]
which we will be used in the numerical example.

Mann iteration process
In 1953, Mann proposed an iteration, namely,Mann iter-

ation, for calculation of a fixed point for a nonexpansive
mapping T , defined as

ξυ+1 = βυξυ + 1 − βυð ÞT ξυ, ð62Þ

for each υ ≥ 1 and fβυg ⊂ ð0, 1Þ.
Ishikawa iteration process
In 1974, Ishikawa proposed the two-step iteration pro-

cess as follows:

ξ1 = ξ ∈W,

ξυ+1 = 1 − αυð Þξυ + αυT ηυ,

ηυ = 1 − βυð Þξυ + βυT ξυ, υ ∈ℕ,

8>><
>>: ð63Þ

where fαυg and fβυg are in ð0, 1Þ.
Noor iteration process
In 2000, Noor proposed the three-step iteration as fol-

lows:

ξ1 = ξ ∈W,

ξυ+1 = 1 − αυð Þξυ + αυT ηυ,

ηυ = 1 − βυð Þξυ + βυT zυ,

zυ = 1 − γυð Þξυ + γυT ξυ, υ ∈ℕ,

8>>>>><
>>>>>:

ð64Þ

where fαυg, fβυg, and fγυg are in ð0, 1Þ.
Agarwal iteration process
In 2007, Agarwal et al. introduced the three-step iteration

as follows:

ξ1 = ξ ∈W,

ξυ+1 = 1 − αυð ÞT ξυ + αυT ηυ,

ηυ = 1 − βυð Þξυ + βυT ξυ, υ ∈ℕ,

8>><
>>: ð65Þ

where fαυg and fβυg are in ð0, 1Þ.
Abbas and Nazir iteration process

In 2014, Abbas and Nazir introduced the three-step iter-
ation as follows:

ξ1 = ξ ∈W,

ξυ+1 = 1 − αυð ÞT zυ + αυT ηυ,

ηυ = 1 − βυð ÞT ξυ + βυT zυ,

zυ = 1 − γυð Þξυ + γυT ξυ, υ ∈ℕ,

8>>>>><
>>>>>:

ð66Þ

where fαυg, fβυg, and fγυg are in ð0, 1Þ.
Thakur iteration process
In 2016, Thakur et al. proposed the three-step iteration as

follows:

ξ1 = ξ ∈W,

ξυ+1 =T ηυ,

ηυ =T 1 − αυð Þξυ + αυzυð Þ,
zυ = 1 − βυð Þξυ + βυT ξυ, υ ∈ℕ,

8>>>>><
>>>>>:

ð67Þ

where fαυg and fβυg are in ð0, 1Þ.
Two qualities fastness and stability play a vital role in iter-

ation process to be performed. In [32], Rhoades mentioned
that for the increasing functions, Ishikawa [27] iteration pro-
cess is faster than Mann iteration process [26] but in the case
of decreasing function, condition is reverse. In [29], Agarwal
et al. proved that their iteration process was more stable than
the previous ones. In [31], Thakur iteration process was con-
sidered faster convergent than all the abovementioned itera-
tion processes.

Recently, Kalsoom et al. [25] introduced a new iteration
process and proved it to be the fastest convergent than all.
The following example is given to support this claim.

Example 2. Define

T ξ = sin ξ − 1 + cos ξ, ð68Þ

for ξ ∈ ½0, 2Þ: Then, T is monotone nonexpansive mapping
as well as T is monotone α-nonexpansive mapping.

Table 1: Convergence behavior of Mann, Ishikawa, Noor, Agarwal,
Abbas, Thakur, and Kalsoom et al. iterations towards fixed point.

Initial points 0.5 0.7 1.3 1.8

Mann 3978 3980 3981 3981

Ishikawa 2656 2657 2659 2600

Noor 2279 2280 2282 2283

Agarwal 1590 1590 1590 1576

Abbas 1000 1000 1000 1001

Thakur 883 883 883 882

Kalsoom 795 795 795 786
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Now we will compare abovementioned iteration pro-
cesses to check the convergence of mapping T : By using
MATLAB, we present graphs and table.

In Table 1, we discussed the convergence behavior of
some iteration processes. It is clear that all iterations
approach to 0 which is the fixed point of mapping T : In this
case, Figures 1–3 show that Kalsoom et al. iteration process
converges faster to the fixed point as compared the other
iterations.

5. Monotone Generalized β-Nonexpansive
Mappings

In this section, we define monotone generalized β-nonex-
pansive mapping which generalizes the results of Pandey
and Shukla [13] in hyperbolic spaces.

Now we will define monotone generalized β-nonexpan-
sive mappings in hyperbolic space with nontrivial example.

Definition 23. Let W be a nonempty subset of an ordered
hyperbolic metric space ðH, σ,⪯Þ. A mapping T : W ⟶
W is said to be monotone generalized β-nonexpansive map-
ping, if T is monotone and there exists β ∈ ½0, 1Þ such that

1
2
σ ξ,T ξð Þ ≤ σ ξ, ηð Þ⇒ σ T ξ,T ηð Þ

≤ σ ξ, ηð Þ + β σ ξ, ηð Þ − σ T ξ,T ηð Þf g,
ð69Þ

for all ξ, η ∈W with ξ⪯η.

Proposition 24. Every monotone nonexpansive mapping is
monotone generalized β-nonexpansive mapping, but converse
is not true.

Proof. By putting β = 0 in ð69Þ, we have

1
2
σ ξ,T ξð Þ ≤ σ ξ, ηð Þ⇒ σ T ξ,T ηð Þ ≤ σ ξ, ηð Þ, ð70Þ

which shows that monotone generalized β-nonexpansive
mapping reduces to monotone nonexpansive mapping satis-
fying the condition (3). The following example will prove the
converse statement does not hold. ☐ ☐
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Figure 1: Convergence behavior of Mann, Ishikawa, and Kalsoom
et al. iterations towards fixed point.
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Figure 2: Convergence behavior of Noor, Agarwal, and Kalsoom
et al. iterations towards fixed point.
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Figure 3: Convergence behavior of Abbas, Thakur, and Kalsoom
et al. iterations towards fixed point.
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Example 3. Let W = ½0, 4� be a subset of H endowed with
usual order. Define T : W ⟶W by

T ξ =
0, ξ ≠ 4,

2, ξ = 4:

(
ð71Þ

Then, for ξ ∈ ð2, 8/3� and η = 4,

1
2
σ ξ,T ξð Þ ≤ σ ξ, ηð Þ, ð72Þ

implies

σ T ξ,T ηð Þ = 2 > σ ξ, ηð Þ, ð73Þ

and so T does not hold condition (3). Again, ξ ∈ ð2, 3� and
η = 4,

1
2
σ η,T ηð Þ ≤ σ ξ, ηð Þ⇒ σ T ξ,T ηð Þ > σ ξ, ηð Þ, ð74Þ

and T does not satisfy condition (3). Nevertheless, T is
generalized β-nonexpansive mapping with β ≥ 1/3:

Proposition 25. Let W be a nonempty subset of an ordered
hyperbolic metric space ðH, σ,⪯Þ and T : W ⟶W a mono-
tone generalized β-nonexpansive mapping which has a fixed
point η ∈W with ξ⪯η: Then, T can be referred as a monotone
quasi-nonexpansive mapping.

Proof. Let η ∈ FðT Þ and ξ ∈W; then, by ð69Þ,

1
2
σ ξ,T ξð Þ ≤ σ ξ, ηð Þ⇒ σ T ξ,T ηð Þ

≤ σ ξ, ηð Þ + β σ ξ, ηð Þ − σ T ξ,T ηð Þf g,

σ T ξ, ηð Þ ≤ σ ξ, ηð Þ + βσ ξ, ηð Þ − βσ T ξ, ηð Þ,

1 + βð Þσ T ξ, ηð Þ ≤ 1 + βð Þσ ξ, ηð Þ, ð75Þ

where ð1 + βÞ > 0 as β ∈ ½0, 1Þ which shows that T is
monotone quasi-nonexpansive mapping. ☐ ☐

Proposition 26. Let W be a nonempty subset of an ordered
hyperbolic metric space ðH, σ,⪯Þ. If T : W ⟶W is mono-
tone generalized β-nonexpansive mapping, then FðT Þ is
closed. Furthermore, if H is strictly convex, then W is convex
and FðT Þ is also convex.

Proof. Let fzυg be a sequence in FðT Þ which converges to z
∈W. Since

1
2
σ zυ,T zυð Þ ≤ σ zυ, zð Þ, ð76Þ

with the help of continuity of metric, we have

lim
υ⟶∞

σ T zυ,T zð Þ ≤ lim
υ⟶∞

σ zυ,T zð Þ,

lim
υ⟶∞

σ zυ,T zð Þ ≤ lim
υ⟶∞

σ zυ, zð Þ + β σ zυ, zð Þ − σ T zυ,T zð Þf g½ �,

lim
υ⟶∞

σ zυ,T zð Þ ≤ lim
υ⟶∞

σ zυ, zð Þ + β lim
υ⟶∞

σ zυ, zð Þ − β lim
υ⟶∞

σ zυ,T zð Þ,

1 + βð Þ lim
υ⟶∞

σ zυ,T zð Þ ≤ 1 + βð Þ lim
υ⟶∞

σ zυ, zð Þ,

1 + βð Þ > 0 as β ∈ 0, 1½ Þ,

lim
υ⟶∞

σ zυ,T zð Þ ≤ lim
υ⟶∞

σ zυ, zð Þ,T z = z: ð77Þ

Hence, FðT Þ is closed. Now, we assume that H is strictly
convex andW is convex. Let λ ∈ ½0, 1Þ, ξ, η ∈ FðT Þ with ξ ≠ η
; then, put z = λξ ⊕ ð1 − λÞη ∈W.

1
2
σ ξ,T ξð Þ = 0 < σ ξ, zð Þ,

σ T ξ,T zð Þ ≤ σ ξ, zð Þ + β σ ξ, zð Þ − σ T ξ,T zð Þf g,
1 + βð Þσ T ξ,T zð Þ ≤ 1 + βð Þσ ξ, zð Þ,

1 + βð Þ > 0 asβ ∈ 0, 1½ Þ,
⇒σ T ξ,T zð Þ ≤ σ ξ, zð Þ:

ð78Þ

By similar argument, we get

1
2
σ η,T ηð Þ = 0 < σ η, zð Þ,

σ T η,T zð Þ ≤ σ η, zð Þ + β σ η, zð Þ − σ T η,T zð Þf g,
1 + βð Þσ T η,T zð Þ ≤ 1 + βð Þσ η, zð Þ,

1 + βð Þ > 0 asβ ∈ 0, 1½ Þ,
⇒σ T η,T zð Þ ≤ σ η, zð Þ:

ð79Þ

Therefore,

σ ξ, ηð Þ ≤ σ ξ,T zð Þ + σ T z, ηð Þ
= σ T ξ,T zð Þ + σ T z,T ηð Þ
≤ σ ξ, zð Þ + σ z, ηð Þ ≤ σ ξ, ηð Þ:

ð80Þ

From strict convexity of H, there exists μ ∈ ½0, 1Þ such
that

T z = μξ ⊕ 1 − μð Þ,
σ ξ,T ξð Þ ≤ σ ξ, zð Þ,

σ ξ, μξ ⊕ 1 − μð Þηð Þ ≤ σ ξ, zð Þ,
1 − μð Þσ ξ, ηð Þ ≤ σ ξ, zð Þη:

ð81Þ

By using value of ξ, it gives

1 − μð Þσ ξ, ηð Þ ≤ 1 − λð Þσ ξ, ηð Þ, ð82Þ
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and similarly,

σ η,T zð Þ ≤ σ η, zð Þ: ð83Þ

By putting values of z and T z, we infer

μσ ξ, ηð Þ ≤ λσ ξ, ηð Þ: ð84Þ

From the above two inequalities, it is concluded that

1 − μð Þ ≤ 1 − λð Þ, μ ≤ λ,

μ = λ,

z =T z⇒ z ∈ F Tð Þ:
ð85Þ

Hence, FðT Þ is convex. ☐ ☐

Lemma 27. LetW be a nonempty subset of an ordered hyper-
bolic metric space ðH, σ,⪯Þ and T : W ⟶W a monotone
generalized β-nonexpansive mapping. Then, for each ξ, η ∈
W with ξ⪯η,

(a) σðTξ, T2ξÞ ≤ σðξ, TξÞ:
(b) Either 1/2σðξ, TξÞ ≤ σðξ, ηÞ or 1/2σðTξ, T2ξÞ ≤ σðTξ

, ηÞ:
(c) Either σðTξ, TηÞ ≤ σðξ, ηÞ + βfσðξ, ηÞσðTξ, TηÞg or

σðT2ξ, T2ηÞ ≤ σðTξ, ηÞ + βf−σðTξ, ηÞ − σðT2ξ, T2ηÞ
g:

Proof. Since

1
2
σ ξ,T ξð Þ ≤ σ ξ,T ξð Þ, ð86Þ

implies

σ T ξ,T 2ξ
� 	

≤ σ ξ,T ξð Þ + β σ ξ,T ξð Þ − σ T ξ,T 2ξ
� 	
 �

,

1 + βð Þσ T ξ,T 2ξ
� 	

≤ 1 + βð Þσ ξ,T ξð Þ,
1 + βð Þ > 0, β ∈ 0, 1½ Þ,

σ T ξ,T 2ξ
� 	

≤ σ ξ,T ξð Þ:
ð87Þ

Hence, part (a) is satisfied. Now, we will prove part (b);
we argue with contradiction, and suppose

1
2
σ ξ,T ξð Þ > σ ξ, ηð Þ,

1
2
σ T ξ,T 2ξ
� 	

> σ T ξ, ηð Þ:
ð88Þ

By (a) and triangular inequality,

σ ξ,T ξð Þ ≤ σ ξ, ηð Þ + σ T ξ, ηð Þ < 1
2
σ ξ,T ξð Þ + 1

2
σ T ξ,T 2ξ
� 	

≤
1
2
σ ξ,T ξð Þ + 1

2
σ ξ,T ξð Þ ≤ σ ξ,T ξð Þ,

ð89Þ

which is contradiction to our supposition, hence proved. The
proof of (c) is in a similar way, so we omit that. ☐ ☐

Lemma 28. LetW be a nonempty subset of an ordered hyper-
bolic metric space ðH, σ,⪯Þ and T : W ⟶W a monotone
generalized β-nonexpansive mapping. Then, for each ξ, η ∈
W with ξ⪯η,

σ ξ,T ηð Þ ≤ 2 + β

1 − β

� �
σ ξ,T ξð Þ + 1 + β

1 − β

� �
σ ξ, ηð Þ: ð90Þ

Proof. By the help of Lemma 27, we infer either

σ T ξ,T ηð Þ ≤ σ ξ, ηð Þ + β σ ξ, ηð Þ − σ T ξ,T ηð Þf g, ð91Þ

or

σ T 2ξ,T 2η
� 	

≤ σ T ξ, ηð Þ + β σ T ξ, ηð Þ − σ T 2ξ,T 2η
� 	
 �

:

ð92Þ

In the first case, we have

σ ξ,T ηð Þ ≤ σ ξ,T ξð Þ + σ ξ, ηð Þ + β σ ξ, ηð Þ − σ T ξ,T ηð Þf g
≤ σ ξ,T ξð Þ + σ ξ, ηð Þ + β σ ξ,T ξð Þ + σ T ξ, ηð Þ − σ T ξ,T ηð Þf g
≤ σ ξ,T ξð Þ + σ ξ, ηð Þ + β σ ξ,T ξð Þ + σ ξ, ηð Þ − σ ξ,T ηð Þf g
≤ σ ξ,T ξð Þ + σ ξ, ηð Þ + β σ ξ,T ξð Þ + σ η,T ηð Þf g
≤ σ ξ,T ξð Þ + σ ξ, ηð Þ + βσ ξ,T ξð Þ + βσ ξ, ηð Þ + βσ ξ,T ηð Þ,

ð93Þ

and so

σ ξ,T ηð Þ ≤ 1 + β

1 − β

� �
σ ξ,T ξð Þ + 1 + β

1 − β

� �
σ ξ, ηð Þ: ð94Þ

In second case,

σ ξ,T ηð Þ ≤ σ ξ,T ξð Þ + σ T ξ,T 2ξ
� 	

+ σ T 2ξ,T η
� 	

≤ σ ξ,T ξð Þ + σ ξ,T ξð Þ + σ T 2ξ,T η
� 	

≤ 2σ ξ,T ξð Þ + σ T ξ, ηð Þ + β σ T ξ, ηð Þ + σ T 2ξ,T η
� 	
 �

≤ 2σ ξ,T ξð Þ + σ T ξ, ηð Þ + β σ ξ,T ξð Þ + σ η,T ηð Þf g
≤ 2σ ξ,T ξð Þ + σ ξ, ηð Þ + βσ ξ,T ξð Þ + βσ ξ, ηð Þ + βσ ξ,T ηð Þ,

ð95Þ
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and hence,

σ ξ,T ηð Þ ≤ 2 + β

1 − β

� �
σ ξ,T ξð Þ + 1 + β

1 − β

� �
σ ξ, ηð Þ: ð96Þ

Hence, we get the desired result. ☐ ☐

Theorem 29. Let W be a nonempty convex and closed subset
of an ordered hyperbolic metric space ðH, σ,⪯Þ and T : W
⟶W a monotone generalized β-nonexpansive mapping.
Then, FðT Þ ≠∅ iff fTυξg is a sequence which is also bounded
for some ξ ∈W provides that T υξ⪯z for some z ∈W and ξ⪯
T ξ:

Proof. Let fT υξg be a bounded sequence for some ξ ∈W. As
we know that T is monotone and ξ⪯T ξ, so we get

T ξ⪯T 2ξ: ð97Þ

In the same manner, we get

T 2ξ⪯T 3ξ⪯T 4ξ⪯⋯⪯T υξ⪯T υ+1ξ⪯⋯: ð98Þ

Define ξυ =T ξυ−1 =T υξ, ∀υ ∈ℕ: Then, the asymptotic
centre of fξυg w.r.tW is AðW, fξυgÞ = fzg where z is unique

and ξυ⪯z for all υ ∈ℕ:Now, we claim that fσðξυ+1, ξυ+2Þg is a
nonincreasing sequence, that is,

σ ξυ+1, ξυ+2ð Þ ≤ σ ξυ, ξυ+1ð Þ: ð99Þ

Since

1
2
σ ξυ,T ξυð Þ ≤ σ ξυ, ξυ+1ð Þ, ð100Þ

which gives that

σ ξυ+1, ξυ+2ð Þ = σ T ξυ,T ξυ+1ð Þ
≤ σ ξυ, ξυ+1ð Þ + β σ ξυ, ξυ+1ð Þ − σ T ξυ,T ξυ+1ð Þf g
= σ ξυ, ξυ+1ð Þ + β σ ξυ, ξυ+1ð Þ − σ ξυ+1, ξυ+2ð Þf g
⟹ 1 + βð Þσ ξυ+1, ξυ+2ð Þ ≤ 1 + βð Þσ ξυ, ξυ+1ð Þ
⟹ σ ξυ+1, ξυ+2ð Þ ≤ σ ξυ, ξυ+1ð Þ:

ð101Þ

Now, we claim that

σ ξυ, ξυ+1ð Þ ≤ 2σ ξυ, zð Þ or
σ ξυ+1, ξυ+2ð Þ ≤ 2σ ξυ+1, zð Þ:

ð102Þ

Table 2: Convergence behavior of Mann, Ishikawa, Noor, Agarwal, Abbas, Thakur and Kalsoom et al. iterations towards fixed point.

Steps Mann Ishikawa Noor Agarwal Abbas Thakur Kalsoom

1 4.807669 4.457118 4.440406 4.264788 4.183261 4.098255 4.080140

2 4.653029 4.210612 4.195196 4.072351 4.034941 4.010133 4.006740

3 4.528465 4.097407 4.086770 4.019942 4.006713 4.001050 4.000569

4 4.427974 4.045132 4.038623 4.005510 4.001291 4.000108 4.000048

5 4.346800 4.020928 4.017202 4.001523 4.000248 4.000011 4.000000

6 4.281160 4.009708 4.007663 4.000421 4.000047 4.000001 4.000000

7 4.228036 4.004504 4.003414 4.000116 4.000009 4.000000 4.000000

8 4.185011 4.002090 4.001521 4.000032 4.000001 4.000000 4

9 4.150144 4.000970 4.000677 4.000008 4.000000 4.000000 4

10 4.121875 4.000450 4.000302 4.000002 4.000000 4.000000 4

11 4.098946 4.000208 4.000134 4.000000 4.000000 4.000000 4

12 4.080342 4.000096 4.000059 4.000000 4.000000 4 4

13 4.065244 4.000044 4.000026 4.000000 4 4 4

14 4.052988 4.000020 4.000011 4.000000 4 4 4

15 4.043038 4.000009 4.000005 4.000000 4 4 4

16 4.034959 4.000004 4.000002 4.000000 4 4 4

17 4.028397 4.000002 4.000001 4 4 4 4

18 4.023069 4.000000 4.000000 4 4 4 4

19 4.018740 4.000000 4.000000 4 4 4 4

20 4.015225 4.000000 4.000000 4 4 4 4

21 4.012369 4 4 4 4 4 4

22 4.010049 4 4 4 4 4 4

23 4.008164 4 4 4 4 4 4

24 4.006633 4 4 4 4 4 4

25 4.006633 4 4 4 4 4 4
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To prove this, we consider the contradiction

2σ ξυ, zð Þ < σ ξυ, ξυ+1ð Þ and
2σ ξυ+1, zð Þ < σ ξυ+1, ξυ+2ð Þ:

ð103Þ

By using triangular inequality,

σ ξυ, ξυ+1ð Þ ≤ σ ξυ, zð Þ + σ ξυ+1, zð Þ
<
1
2
σ ξυ, ξυ+1ð Þ + 1

2
σ ξυ+1, ξυ+2ð Þ

< σ ξυ, ξυ+1ð Þ,
ð104Þ

which is not possible, so (102) is satisfied.
In the first case of (102),

1
2
σ ξυ, ξυ+1ð Þ ≤ σ ξυ, zð Þ

1
2
σ ξυ,T ξυð Þ ≤ σ ξυ, zð Þ

σ T ξυ,T zð Þ ≤ σ ξυ, zð Þ + β σ ξυ, zð Þ − σ T ξυ,T zð Þf g
1 + βð Þσ T ξυ,T zð Þ ≤ 1 + βð Þσ ξυ, zð Þ

σ T ξυ,T zð Þ ≤ σ ξυ, zð Þ:
ð105Þ

Putting lim sup on both sides,

lim sup
υ⟶∞

σ T ξυ,T zð Þ ≤ lim sup
υ⟶∞

σ ξυ, zð Þ,

T z = z:
ð106Þ

Similarly, in the second case,

1
2
σ ξυ+1, ξυ+2ð Þ ≤ σ ξυ+1, zð Þ

1
2
σ ξυ+1,T ξυ+1ð Þ ≤ σ ξυ+1, zð Þ

σ T ξυ+1,T zð Þ ≤ σ ξυ+1, zð Þ + β σ ξυ+1, zð Þ − σ T ξυ+1,T zð Þf g
1 + βð Þσ T ξυ+1,T zð Þ ≤ 1 + βð Þσ ξυ+1, zð Þ

σ T ξυ+1,T zð Þ ≤ σ ξυ+1, zð Þ:
ð107Þ
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Figure 4: Convergence behavior of Mann, Ishikawa, and Kalsoom
et al. iterations towards fixed point.
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Figure 5: Convergence behavior of Noor, Agarwal, and Kalsoom
et al. iterations towards fixed point.
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Figure 6: Convergence behavior of Abbas, Thakur, and Kalsoom
et al. iterations towards fixed point.
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Putting lim sup on both sides,

lim sup
υ⟶∞

σ T ξυ+1,T zð Þ ≤ lim sup
υ⟶∞

σ ξυ+1, zð Þ,

T z = z:
ð108Þ

Conversely, FðT Þ ≠∅; then, there exists some w ∈ FðT Þ
and T υðwÞ =w∀υ ∈ℕ; then, fTυðwÞg is a constant
sequence, and hence, it is bounded and this completes the
proof. ☐ ☐

Example 4. Let T : W ⟶W where W = ½3, 6�; then, T is
defined as

T ξ =
ffiffiffiffiffiffiffiffiffiffiffiffi
3ξ + 4

p
, ð109Þ

for any ξ ∈W; take αυ = 0:7, βυ = 0:6, and γυ = 0:5: The fixed
point of T is 4, and take initial point as ξ0 = 5: Then, T is
monotone generalized β-nonexpansive mapping.

In Table 2, we discussed the convergence behavior of
some iteration processes. It is clear that all iterations
approach to 4 which is the fixed point of T . In this case,
Figures 4–6 show that Kalsoom et al. iteration process con-
verges faster to the fixed point as compared the other
iterations.

6. Conclusion

It concludes that we have approximated fixed point results of
monotone α and generalized β-nonexpansive mappings in
hyperbolic spaces. Moreover, we proved some numerical
applications and presented the graphical representations by
using different iteration processes.
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In this paper, we will apply some fixed-point theorems to discuss the existence of solutions for fractional m-point boundary value
problems Dq

0+ðu″ðtÞÞ = hðtÞf ðuðtÞÞ, t ∈ ½0, 1�, 1 < q ≤ 2, u′ð0Þ = u″ð0Þ = uð1Þ = 0, u″ð1Þ −∑m−2
i=1 αiu

‴ðξiÞ = 0: In addition, we also
present Lyapunov’s inequality and Ulam-Hyers stability results for the given m-point boundary value problems.

1. Introduction

Mathematical models due to fractional differential equations
can describe the natural phenomenon in physics, population
dynamics, chemical technology, biotechnology, aerodynam-
ics, electrodynamics of complex medium, polymer rheology,
and control of dynamical systems (see [1–4]). Due to the
nonlocal characteristics and the rapid development of the
theory of fractional operators, some authors have investi-
gated different aspects of fractional differential equations
including existence of solutions, Lyapunov’s inequality, and
Hyers-Ulam stability for fractional differential equations by
different mathematical techniques. For example, first, many
authors have discussed the existence of nontrivial solutions
of fractional differential equations in nonsingular case as well
as singular case. Usually, the proof is based on either the
method of upper and lower solutions, fixed-point theorems,
alternative principle of Leray-Schauder, topological degree
theory, or critical point theory. We refer the readers to [5–
20]. Second, Lyapunov, during his study of general theory
of stability of motion in 1892, introduced the stability crite-
rion for second-order differential equations, which yielded
a counter inequality be called Lyapunov inequality (see [21,
22]). Since then, we can find considerable modifications of
Lyapunov-type inequality of differential equations, such as
linear differential-algebraic equations, fractional differential

equations, extreme Pucci equations, and dynamic equations,
which are applied to study the stability and disconjugacy or
oscillatory criterion for the mentioned problems, and we
refer the readers to [23–32]. Finally, the stability of functional
equations was originally raised by Hyers in 1941 (see [33,
34]). Thereafter, the stability properties of all kinds of
equations have attracted the attention of many mathema-
ticians. To see more details on the Ulam-Hyers stability
and Ulam-Hyers-Rassias of differential equations, we refer
the readers to [35–38].

Inspired by the references, this paper is mainly concerned
with the existence, Lyapunov’s inequality, and Ulam-Hyers
stability results for the m-point boundary value problems.

Dq
0+ u″ tð Þ
� �

= h tð Þf u tð Þð Þ, t ∈ 0, 1½ �, 1 < q ≤ 2,

u′ 0ð Þ = u″ 0ð Þ = u 1ð Þ = 0, u″ 1ð Þ − 〠
m−2

i=1
αiu

‴ ξið Þ = 0,

8>>><
>>>:

ð1Þ

where αi, ξi, h, and f satisfy the following assumptions:
(H1) ∑m−2

i=1 αiξ
q−2
i > 1/q − 1 and ∑m−2

i=2 αi ≤ ð1 − ξm−2Þq−1/
ðq − 1Þξq−2m−2ðð1 − ξm−2Þq−1/ðq − 1Þξq−2m−2Þ

(H2) h : ½0, 1�⟶ℝ is Lebesgue integral
(H3) f : ℝ⟶ℝ is continuous
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For these goals, we first convert problem (1) into an inte-
gral equation via Green function. Furthermore, we study the
properties and estimates of the Green function. Then, on the
basis of these properties, we apply some fixed-point theorems
to establish some existence results of problem (1) under some
suitable conditions. In addition, the Lyapunov inequality and
Hyers-Ulam stability of the proposed problem are also
considered.

2. Preliminaries

Before beginning the main results, we state some classic and
modified definitions and lemmas from fractional calculus.

Definition 1 [4]. The fractional integral of order q > 0 of a
function u : ð0,+∞Þ⟶ R is given by

Iq0+u tð Þ = 1
Γ qð Þ

ðt
0
t − sð Þq−1u sð Þds, ð2Þ

provided the right-hand side is pointwise defined on ð0, +∞Þ
.

Definition 2 [4]. The fractional derivative of order q > 0 of a
continuous function u : ð0,+∞Þ⟶ R is given by

Dq
0+u tð Þ = 1

Γ n − qð Þ
d
dt

� �nðt
0

u sð Þ
t − sð Þq−n−1 ds, ð3Þ

where n = ½q� + 1, provided that the right-hand side is point-
wise defined on ð0, +∞Þ.

Definition 3 [21]. Assume that q > 0, then

Iq0+D
q
0+u tð Þ = u tð Þ + 〠

n

i=1
Cit

q−i, ð4Þ

for some Ci ∈ R, i = 1, 2,⋯, n, where n is the smallest integer
greater than or equal to q.

Lemma 4. Assume that (H1) holds. Then, for any yðtÞ ∈
L1½0, 1�, the boundary value problem

Dq
0+ u″ tð Þ
� �

= y tð Þ, t ∈ 0, 1½ �, 1 < q ≤ 2,

u′ 0ð Þ = u″ 0ð Þ = u 1ð Þ = 0, u″ 1ð Þ − 〠
m−2

i=1
αiu

‴ ξið Þ = 0,

8>>><
>>>:

ð5Þ

has a unique solution uðtÞ = Ð 10Gðt, sÞyðsÞds. Let p = 1 − ðq
− 1Þ∑m−2

i=1 αiξ
q−2
i < 0,, and we have

(i) for s ≤ t, s ≤ ξ1

G t, sð Þ = 1
Γ q + 2ð Þ

"
t − sð Þq+1 − 1 − sð Þq+1

+ 1 − tq+1 −
1 − tq+1
� �

1 − 1 − sð Þq−1� 	
p

# ð6Þ

(ii) for t ≤ s ≤ ξ1

G t, sð Þ = 1
Γ q + 2ð Þ

"
− 1 − sð Þq+1 + 1 − tq+1

−
1 − tq+1
� �

1 − 1 − sð Þq−1� 	
p

# ð7Þ

(iii) for s ≤ t, ξj ≤ s ≤ ξj+1, j = 1, 2,⋯,m − 3

G t, sð Þ = 1
Γ q + 2ð Þ

"
1 − tq+1

p

"
1 − sð Þq−1 − q − 1ð Þ

� 〠
m−2

i=j+1
αi ξi − sð Þq−2

#
+ t − sð Þq+1 − 1 − sð Þq+1

# ð8Þ

(iv) for t ≤ s, ξj ≤ s ≤ ξj+1, j = 1, 2,⋯,m − 3

G t, sð Þ = 1
Γ q + 2ð Þ

"
1 + tq+1

p

"
1 − sð Þq−1 − q − 1ð Þ

� 〠
m−2

i=j+1
αi ξi − sð Þq−2

#
− 1 − sð Þq+1

#
ð9Þ

(v) for ξm−2 ≤ s ≤ t

G t, sð Þ = 1
Γ q + 2ð Þ t − sð Þq+1 − 1 − sð Þq+1 + 1 − tq+1

p
1 − sð Þq−1


 �
ð10Þ

(vi) for ξm−2 ≤ s, t ≤ s

G t, sð Þ = 1
Γ q + 2ð Þ − 1 − sð Þq+1 + 1 − tq+1

p
1 − sð Þq−1


 �
ð11Þ

Proof. From Definition 3, it follows that

u″ tð Þ = Iq0+y tð Þ − C1t
q−1 − C2t

q−2: ð12Þ
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Since u″ð0Þ = 0, it is clear that C2 = 0. Then,

u″ tð Þ = Iq0+y tð Þ − C1t
q−1 = 1

Γ qð Þ
ðt
0
t − sð Þq−1y sð Þds − C1t

q−1:

ð13Þ

On one hand, taking the derivative of u′′ðtÞ, we can get

u‴ tð Þ = q − 1
Γ qð Þ

ðt
0
t − sð Þq−2y sð Þds − q − 1ð ÞC1t

q−2: ð14Þ

On the other hand, combining the boundary conditions
uð1Þ = u′ð0Þ = 0, we have

u′ tð Þ = 1
Γ qð Þ

ðt
0

ðτ
0
τ − sð Þq−1y sð Þdτ − C1

q
tq

= 1
Γ q + 1ð Þ

ðt
0
t − sð Þqy sð Þds − C1

q
tq:

ð15Þ

Furthermore, we have

u tð Þ = −
1

Γ q + 1ð Þ
ð1
t

ðτ
0
τ − sð Þqy sð Þdsdτ + C1

q

ð1
t
τqdτ

= −
1

Γ q + 2ð Þ
ðt
0
1 − sð Þq+1y sð Þds −

ðt
0
t − sð Þq+1y sð Þds


 �

+ C1 1 − tq+1
� �
q q + 1ð Þ :

ð16Þ

According to these above expressions, we have

u″ 1ð Þ = 1
Γ qð Þ

ð1
0
1 − sð Þq−1y sð Þds − C1,

〠
m−2

i=1
αiu

‴ ξið Þ = q − 1
Γ qð Þ 〠

m−2

i=1
αi

ðξi
0
ξi − sð Þq−2y sð Þds

− q − 1ð ÞC1 〠
m−2

i=1
αiξ

q−2
i :

ð17Þ

Then, from u″ð1Þ −∑m−2
i=1 αiu

‴ðξ1Þ = 0, it follows that

C1 =
1

pΓ qð Þ

"ð1
0
1 − sð Þq−1y sð Þds

− q − 1ð Þ 〠
m−2

i=1
αi

ðξi
0
ξi − sð Þq−2y sð Þds

#
,

ð18Þ

which yields

u tð Þ = 1
Γ q + 2ð Þ

"ðt
0
t − sð Þq+1y sð Þds −

ð1
0
1 − sð Þq+1y sð Þds

+ 1 − tq+1

p

 ð1
0
1 − sð Þq−1y sð Þds

− q − 1ð Þ 〠
m−2

i=1
αi

ðξi
0
ξi − sð Þq−2y sð Þds

!#
:

ð19Þ

If s ≤ t, s ≤ ξ1, we have

G t, sð Þ = 1
Γ q + 2ð Þ

"
t − sð Þq+1 − 1 − sð Þq+1 + 1 − tq+1

p

� 1 − sð Þq−1�
− q − 1ð Þ 〠

m−2

i=1
αi ξi − sð Þq−2

#

= 1
Γ q + 2ð Þ



t − sð Þq+1 − 1 − sð Þq+1 + 1

− tq+1 −
1 − tq+1

p
1 − 1 − sð Þq−1� �#

:

ð20Þ

☐

In the similar way, we also can get the expression of
Gðt, sÞ on other intervals.

Lemma 5. Assume that (H1) holds. Then, Gðt, sÞ satisfies the
following properties:

(I) Sign of Gðt, sÞ

(i) Gðt, sÞ ≥ 0, for 0 ≤ s ≤ ξ1

(ii) Gðt, sÞ ≤ 0, for ξ1 < s ≤ 1

(II) The range of Gðt, sÞ

(1) For 0 ≤ s ≤ ξ1

0 ≤ G t, sð Þ < 1
Γ q + 2ð Þ 1 − 1 − sð Þq+1 − 1 − 1 − sð Þq−1

p

" #
ð21Þ

(2) For ξj ≤ s ≤ ξj+1, j = 1, 2,⋯,m − 3

1
Γ q + 2ð Þ

"
1
p

1 − sð Þq−1 − q − 1ð Þ 〠
m−2

i=j+1
αi ξi − sð Þq−2

 !

− 1 − sð Þq+1
#
≤G t, sð Þ ≤ 0

ð22Þ
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(3) For ξm−2 ≤ s ≤ 1

1
Γ q + 2ð Þ

1 − sð Þq−1
p

− 1 − sð Þq+1
" #

≤G t, sð Þ ≤ 0 ð23Þ

Proof. For 0 ≤ s ≤ ξ1, by the definition ofGðt, sÞ, it is clear that
Gðt, sÞ is continuous and derivativable with respect to t at
½0, 1�. On one hand, if s ≤ t ≤ 1, we have

∂G
∂t

= 1
Γ q + 1ð Þ t − sð Þq − tq + tq 1 − 1 − sð Þq−1� 	

p

 !
≤ 0:

ð24Þ

On the other hand, if 0 ≤ t < s, we have

∂G
∂t

= tq

Γ q + 1ð Þ −1 + 1 − 1 − sð Þq−1
p

 !
≤ 0: ð25Þ

Then, Gðt, sÞ is nonincreasing on t, which yields that

min G t, sð Þ: t ∈ 0, 1½ �f g =G 1, sð Þ = 0,
max G t, sð Þ: t ∈ 0, 1½ �f g

=G 0, sð Þ = 1
Γ q + 2ð Þ 1 − 1 − sð Þq+1 − 1 − 1 − sð Þq−1

p

" #
:

ð26Þ

So for 0 ≤ s < ξ1, 0 ≤ t ≤ 1, it concludes that

0 ≤ G t, sð Þ < 1
Γ q + 2ð Þ 1 − 1 − sð Þq+1 − 1 − 1 − sð Þq−1

p

" #
: ð27Þ

For ξj ≤ s ≤ ξj+1ðj = 1, 2,⋯,m − 3Þ, we have

min G t, sð Þ: t ∈ 0, 1½ �f g

=G 0, sð Þ = 1
Γ q + 2ð Þ

"
1
p

 
1 − sð Þq−1

− q − 1ð Þ 〠
m−2

i=j+1
αi ξi − sð Þq−2

!
− 1 − sð Þq+1

#
,

max G t, sð Þ: t ∈ 0, 1½ �f g = G 1, sð Þ = 0:

ð28Þ

For ξm−2 ≤ s ≤ 1, we have

min G t, sð Þ: t ∈ 0, 1½ �f g

=G 0, sð Þ = 1
Γ q + 2ð Þ

1 − sð Þq−1
p

− 1 − sð Þq+1
" #

,

max G t, sð Þ: t ∈ 0, 1½ �f g =G 1, sð Þ = 0:

ð29Þ

☐

Let

G1 = max
s∈ 0,ξ1½ �

1
Γ q + 2ð Þ 1 − 1 − sð Þq+1 − 1 − 1 − sð Þq−1

p

" #( )

= 1
Γ q + 2ð Þ 1 − 1 − ξ1ð Þq+1 − 1 − 1 − ξ1ð Þq−1

p

" #
,

G2 = max
s∈ ξm−2,1½ �

1
Γ q + 2ð Þ

1 − sð Þq−1
p

− 1 − sð Þq+1
����

����
( )

= 1
Γ q + 2ð Þ 1 − ξm−2ð Þq+1 − 1 − ξm−2ð Þq−1

p

" #
,

G3 = max
1≤j≤m−3

G3
j

n o
,

ð30Þ

where

G3
j = max

s∈ ξ j,ξ j+1½ �

(
1

Γ q + 2ð Þ
1
p

"
1 − sð Þq−1

�����
− q − 1ð Þ 〠

m−2

i=j+1
αi ξi − sð Þq−2

#
− 1 − sð Þq+1

�����
)
:

ð31Þ

From Lemma 5, it is clear that jGðt, sÞj ≤ �G, where �G =
max fG1,G2,G3g.

Lemma 6. Assume that (H1) holds and ξ1 > 1 − ð1/2Þ1/q−1.
Then, �G =G1.

Proof. Let

Gj sð Þ =
1

Γ q + 2ð Þ
1
p

1 − sð Þq−1 − q − 1ð Þ 〠
m−2

i=j+1
αi ξi − sð Þq−2

" #�����
− 1 − sð Þq+1

�����, s ∈ ξj, ξj+1
� 	

, j = 1, 2,⋯,m − 3:

ð32Þ

From (H1) and ξ1 > 1 − ð1/2Þ1/q−1, we can verify that

G1 − Gj sð Þ
�� ��

= 1
Γ q + 2ð Þ

"
1 − 1 − ξ1ð Þq+1 − 1

p
1 − 1 − ξ1ð Þq−1
� �

− 1 − sð Þq+1 + 1
p

 
1 − sð Þq−1

− q − 1ð Þ 〠
m−2

i=j+1
αi ξi − sð Þq−2

!#
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≥
1

Γ q + 2ð Þ

"
1 − 1 − ξ1ð Þq+1 − 1 − ξj

� �q+1
−
1
p

�
1 − 1 − ξ1ð Þq−1 − 1 − ξ1ð Þq−1

�

−
q − 1
p

〠
m−2

i=j+1
αi ξi − ξj
� �q−2#

≥
1

Γ q + 2ð Þ

"
1 − 2 1 − ξ1ð Þq+1 − 1

p
1 − 2 1 − ξ1ð Þq−1
� �

−
q − 1
p

〠
m−2

i=j+1
αi ξi − ξj
� �q−2#

≥
1

Γ q + 2ð Þ 1 − 1
22/q−1 −

q − 1
p

〠
m−2

i=j+1
αi ξi − ξj
� �" #

> 0:

ð33Þ

Also, we can verify that

G1 −G2 = 1
Γ q + 2ð Þ



1 − 1 − ξ1ð Þq+1 − 1

p
1 − 1 − ξ1ð Þq−1
� �

− 1 − ξm−2ð Þq+1 + 1
p

1 − ξm−2ð Þq−1
�

≥
1

Γ q + 2ð Þ


1 − 2 1 − ξ1ð Þq+1 − 1

p
1 − 2 1 − ξ1ð Þq−1
� ��

≥
1

Γ q + 2ð Þ 1 − 1
22/q−1

� �
> 0:

ð34Þ

So, it concludes thatG1 >G2,G1 >G3, namely, �G =G1. ☐

3. Main Results

3.1. Existence Results

Theorem 7. Assume that (H1)-(H3) hold. In addition, there
exists a positive constant L > 0 such that

f uð Þ − f vð Þj j ≤ L u − vj j,∀u, v ∈ℝ: ð35Þ

Then, problem (1) has a unique solution if L�GjhjL1 < 1.

Proof. Let C½0, 1� = fxðtÞ: xðtÞ is continuous on ½0, 1�g is a
Banach space with the norm kxk = max

0≤t≤1
jxðtÞj. From Lemma

4, it is clear that solutions of (1) can be rewritten as fixed
points of operator T , which is defined by

Tu tð Þ =
ð1
0
G t, sð Þh sð Þf u sð Þð Þds: ð36Þ

Now, we show that T : Br ⟶ Br and T is a contraction
map, where Br = fu ∈ E : kuk < rg with

r >
�G hj jL1 f 0ð Þj j
1 − �GL hj jL1

: ð37Þ

On one hand, for any u ∈ Br , we have

T uð Þ tð Þk k =
ð1
0
G t, sð Þh sð Þf u sð Þð Þds












≤ �G
ð1
0
h sð Þf u sð Þð Þj jds

≤ �G
ð1
0
h sð Þj j f uð Þ − f 0ð Þj j + f 0ð Þj j½ �ds

≤ �G
ð1
0
h sð Þj j Lr + f 0ð Þj j½ �ds

≤ �G hj jL1 Lr + f 0ð Þj j½ � ≤ r,

ð38Þ

which implies that TðBrÞ ⊂ Br .
On the other hand, for any u, v ∈ E, we have

T uð Þ − T vð Þk k =
ð1
0
G t, sð Þh sð Þ f u sð Þð Þð Þds












≤ �G
ð1
0
h sð Þj j f u sð Þð Þ − f v sð Þð Þj jds

≤ �GL
ð1
0
h sð Þj j u sð Þ − v sð Þj jds

≤ L�G hj jL1 u tð Þ − v tð Þk k,

ð39Þ

which implies that T is a contraction map. ☐

Therefore, by the Banach contraction mapping principle,
it follows that the operator T has a unique fixed point, which
is the unique solution for problem (1).

Theorem 8. Assume that (H1)-(H3) hold. In addition, there
exists a positive constant K such that j f ðuÞj ≤ K for u ∈ R.
Then, problem (1) has at least one solution.

The proof is based on the following fixed-point theorem.

Lemma 9 [39]. Let E be a Banach space, E1 is a closed, convex
subset of E, Ω an open subset of E1, and 0 ∈Ω. Suppose that
T : Ω⟶ E1 is completely continuous. Then, either

(i) T has a fixed point in Ω, or

(ii) there are u ∈ ∂Ω (the boundary of Ω in E1) and ρ ∈
ð0, 1Þ with u = ρTu

Proof of Theorem 8. First, we show that the operator T is uni-
formly bounded.
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For any u ∈ �Ωδ = fu ∈ C½0, 1�: kuk ≤ δg, we have

T uð Þ tð Þk k =
ð1
0
G t, sð Þh sð Þf u sð Þð Þds










 ≤ �GK hj jL1 , ð40Þ

which implies that TðΩδÞ is uniformly bounded.
Second, for 0 ≤ s ≤ ξ1, from Lemma 4, we have

(i) if s ≤ t ≤ 1

∂G t, sð Þ
∂t

����
���� = 1

Γ q + 1ð Þ t − sð Þq − tq + tq 1 − 1 − sð Þq−1� 	
p

�����
�����

≤
1

Γ q + 1ð Þ t − sð Þq + tq −
tq 1 − 1 − sð Þq−1� 	

p

 !

≤
1

Γ q + 1ð Þ 2 − 1
p

� �
:

ð41Þ

(ii) if 0 ≤ t < s

∂G t, sð Þ
∂t

����
���� = 1

Γ q + 1ð Þ −tq + tq 1 − 1 − sð Þq−1� 	
p

�����
�����

≤
1

Γ q + 1ð Þ tq −
tq 1 − 1 − sð Þq−1� 	

p

 !

≤
1

Γ q + 1ð Þ 1 − 1
p

� �
,

ð42Þ

which implies that j∂Gðt, sÞ/∂tj is bounded for 0 ≤ s
< ξ1, 0 ≤ t ≤ 1. In the similar way, we know that there
exists a S > 0 such that j∂Gðt, sÞ/∂tj ≤ S for 0 ≤ s, t ≤ 1.

Furthermore, for t1, t2 ∈ ½0, 1�, we have

Tu t2ð Þ − Tu t1ð Þj j

=
ð1
0
G t2, sð Þh sð Þf u sð Þð Þds −

ð1
0
G t1, sð Þh sð Þf u sð Þð Þds

����
����

=
ð1
0
G t2, sð Þ −G t1, sð Þ½ �h sð Þf u sð Þð Þds

����
����

≤ SK hj jL1 t2 − t1j j:
ð43Þ

Therefore, applying the Arzela-Ascoli theorem [39], we
can find that TðΩδÞ is relatively compact.

Third, we claim that T : �Ωδ ⟶ℝ is continuous. Assume
that fung∞n=1 ⊂ �Ωδ, which converges to u0 uniformly on [0,1].
Since fðTunÞðtÞg∞n=1 is uniformly bounded and equicontinu-
ous on [0,1], from the Arzela-Ascoli theorem, it follows that
there exists a uniformly convergent subsequence in
fðTunÞðtÞg∞n=1. Let fðTunðmÞÞðtÞg∞m=1 be a subsequence which
converges to vðtÞ uniformly on [0,1]. Observe that

Tun mð Þ tð Þ =
ð1
0
G t, sð Þh sð Þf un mð Þ sð Þ

� ��
ds: ð44Þ

Furthermore, by Lebesgue’s dominated convergence the-
orem and letting m⟶∞, we have

v tð Þ =
ð1
0
G t, sð Þh sð Þf u0 sð Þð ÞÞds, ð45Þ

namely, vðtÞ = Tu0ðtÞ. This shows that each subsequence of
fðTunÞðtÞg∞n=1 uniformly converges to vðtÞ. Therefore, the
sequence fðTunÞðtÞg∞n=1 uniformly converges to Tu0ðtÞ. This
means that T is continuous at u0 ∈Ωδ. So, T is continuous on
�Ωδ. Thus, T is completely continuous.

Finally, let Ωδ = fu ∈ C½0, 1�: kuk < δg with δ = �GKjhjL1
+ 1. If u is a solution of problem (1), then, for ρ ∈ ð0, 1Þ, u
∈ ∂Ωδ, we have

uk k = ρ Tu tð Þk k = ρ
ð1
0
G t, sð Þh sð Þf u sð Þð Þds












≤ ρ�G
ð1
0
h sð Þf u sð Þð Þj jds ≤ �GK hj jL1 ,

ð46Þ

which yields a contradiction. Therefore, by Lemma 9, the
operator T has a fixed point in Ωδ.

Theorem 10. Assume that (H1)-(H3) hold. In addition, f sat-
isfies the following assumptions:

(H4) There exists a nondecreasing function ψ : ℝ+ ⟶
ℝ+ such that

f uð Þj j ≤ ψ uk kð Þ,∀u ∈ℝ: ð47Þ

(H5) There exists a constant R > 0 such that R/�GjhjL1ψð
RÞ > 1. Then, problem (1) has at least one solution.

Proof. Now we show that (ii) of Lemma 9 does not hold. If u
is a solution of problem (1), then for ρ ∈ ð0, 1Þ, we obtain

uk k = ρ T u tð Þð Þk k ≤ ρ
ð1
0
G t, sð Þh sð Þf u sð Þð Þj jds

≤ ρ�G
ð1
0
h sð Þf u sð Þð Þj jds ≤ �G hj jL1ψ uk kð Þ:

ð48Þ

Let BR = fu ∈ C½0, 1�: kuk < Rg. From the above inequal-
ity and (H5), it yields a contradiction. Therefore, by Lemma
9, the operator T has a fixed point in BR. ☐

3.2. Lyapunov’s Inequality

Theorem 11. Assume that (H1)-(H3) hold. In addition, f ðuÞ
is a concave function on ℝ. Then, for any nontrivial solution
of problem (1), we have

ð1
0
h tð Þj jdt > uk k

�G maxu∈ u∗ ,u∗½ � f uð Þj j , ð49Þ
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where

u∗ = min
t∈ 0,1½ �

u tð Þ, u∗ = max
t∈ 0,1½ �

u tð Þ: ð50Þ

Proof. If uðtÞ is a nontrivial solution of problem (1), then by
Lemma 4, we have

u tð Þ =
ð1
0
G t, sð Þh sð Þf u sð Þð Þds: ð51Þ

Furthermore, by Lemma 6, we have

u tð Þj j ≤
ð1
0
G t, sð Þh sð Þf u sð Þð Þj jds: ð52Þ

Since f is continuous and concave, then from Jensen’s
inequality, it follows that

u tð Þk k ≤ max
t∈ 0,1½ �

ð1
0
G t, sð Þj j h sð Þf u sð Þð Þj jds

≤
ð1
0
max
t∈ 0,1½ �

G t, sð Þj j

 �

h sð Þf u sð Þð Þj jds

≤ �G h tð Þj jL1
ð1
0

h sð Þj j
Λ tð Þj jL1

f u sð Þð Þj jds

≤ �G max
u∈ u∗ ,u∗½ �

f uð Þj j hj jL1 ,

ð53Þ

namely,

ð1
0
h tð Þdtj j > uk k

�G maxu∈ u∗ ,u∗½ � f uð Þj j : ð54Þ

☐

3.3. Stability Analysis

Definition 12 [34]. Equation (1) is said to be Ulam-Hyers-
Rassias stability with respect to Ψ ∈ C½0, 1� if there exists a
nonzero positive real number μ such that for every ε > 0
and each solution v ∈ C½0, 1� of the inequality

Dq
0+v″ tð Þ − h tð Þf v tð Þð Þ�� �� ≤ εΨ tð Þ, t ∈ 0, 1½ �, ð55Þ

there exists a solution u ∈ C½0, 1� of problem (1) such that j
uðtÞ − vðtÞj ≤ μεΨðtÞ, t ∈ ½0, 1�.

Theorem 13. Assume that (H1)-(H3) hold. In addition, there
exists a positive constant L > 0 such that

f uð Þ − f vð Þj j ≤ L u − vj j,∀u, v ∈ C 0, 1½ �: ð56Þ

Then, problem (1) is Ulam-Hyers-Rassias stability if LG
jhjL1 < 1.

Proof. Let v ∈ C½0, 1� be the solution of the inequality (55);
then,

D1
0+v″ tð Þ − h tð Þf v tð Þð Þ�� �� ≤ εΨ tð Þ, t ∈ 0, 1½ �: ð57Þ

Thus, for ε > 0, we get

v tð Þ −
ð1
0
G t, sð Þh sð Þf v sð Þð Þds

����
���� ≤ εΨ tð Þ, t ∈ 0, 1½ �: ð58Þ

By Theorem 7, problem (1) has a solution uðtÞ satisfies

u tð Þ =
ð1
0
G t, sð Þh sð Þf u sð Þð Þds: ð59Þ

Then, for t ∈ ½0, 1�, we have

v tð Þ − u tð Þj j = v tð Þ −
ð1
0
G t, sð Þh sð Þf u sð Þð Þds

����
����

≤ v tð Þ −
ð1
0
G t, sð Þh sð Þf v sð Þð Þds

����
����

+
ð1
0
G t, sð Þh sð Þ f u sð Þð Þ − f v sð Þð Þð Þds

����
����

≤ εΨ tð Þ + L
ð1
0
G t, sð Þh sð Þ u sð Þ − v sð Þð Þj jds

≤ εΨ tð Þ + L�G
ð1
0
h sð Þj j u sð Þ − v sð Þj jds

≤ εΨ tð Þ + L�G hj jL1 u tð Þ − v tð Þj j,

ð60Þ

which yields

v tð Þ − u tð Þj j ≤ εΨ tð Þ
1 − L�G hj jL1

= μεΨ tð Þ, tε 0, 1½ �: ð61Þ

Therefore, problem (1) is Ulam-Hyers-Rassias stability.
☐

4. Examples

Now we give some examples to illustrate our main results.

Example 1. We consider the following problem:

D3/2
0+ u″ tð Þ = 6t arctan u, t ∈ 0, 1½ �,

u′ 0ð Þ = u″ 0ð Þ = u 1ð Þ = 0, u″ 1ð Þ − 2u‴ 4
5

� �
−
1
8 u

‴ 6
7

� �
= 0,

8><
>:

ð62Þ
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where hðtÞ = 12t and f ðuÞ = 1/2 arctan u. It is obvious that
(H1)-(H3) hold. Via some computations, we have

ξ1 =
4
5 > 1 − 1

21/q−1 = 3
4 ,

p = 1 −
ffiffiffi
5

p

2 −
ffiffiffi
7

p

16
ffiffiffi
6

p ,

�G = 8
105 ffiffiffi

π
p 1 − 1ffiffiffiffiffi

55
p −

ffiffiffi
5

p
− 1ffiffiffi

5
p

− 5/2 − 35/16
ffiffiffi
6

p
" #

≈ 0:170285:

ð63Þ

Since

f ′ uð Þ = 1
2 arctan u
� �

′ = 1
2 1 + u2ð Þ ≤

1
2 = L, ð64Þ

the function f satisfies the condition

f uð Þ − f vð Þj j ≤ L u − vj j,∀u, v ∈ C 0, 1½ �: ð65Þ

Furthermore, we can verify that GLjhjL1 ≈ 0:510855 < 1.
Therefore, by Theorem 7 and Theorem 13, problem (62)
has a solution uðtÞ, which is Ulam-Hyers-Rassias stability.

Example 2. Let us consider the following problem:

D3/2
0+ u″ tð Þ = 6t 2 arctan u1/2 + sin u

� �
, t ∈ 0, 1½ �,

u′ 0ð Þ = u″ 0ð Þ = u 1ð Þ = 0, u″ 1ð Þ − 2u‴ 4
5

� �
−
1
8 u

‴ 6
7

� �
= 0,

8><
>:

ð66Þ

where hðtÞ = 6t and

f uð Þj j = 2 arctan u1/2 + sin u
�� �� ≤ 2 uk k1/2 + uk k = ψ uk kð Þ:

ð67Þ

It is obvious that (H1)-(H4) hold. By computations of Exam-
ple 2, we have

�G ≈ 0:170285: ð68Þ

Furthermore, for R > 4:362954, the inequality R/�GjhjL1ψ
ðRÞ > 1 holds, Therefore, by Theorem 10, problem (66) has
at least one solution.
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This paper presents an analysis based on a mixture of the Laplace transform and the new iteration method to obtain new
approximate results of the fractional-order Klein-Gordon equations in the Caputo-Fabrizio sense. So, a general system to
investigate the approximate results of the fractional-order Klein-Gordon equations is obtained. This technique’s effectiveness is
demonstrated by comparing the actual results of the fractional-order equations suggested with the results achieved.

1. Introduction

Fractional partial differential equations (FPDEs) are critical
tools for analyzing and simulating numerous narrative
models in physics and mathematical models, such as electri-
cal circuits, fluid dynamics, damping, induction, mathemati-
cal biology, ad relaxation, (Klimek, 2005; Baleanu et al., 2009;
Kilbas et al., 2010; Jumarie, 2009; Mainardi, 2010; Ortigueira,
2010). Fractional derivatives provide more precise represen-
tations of real-world problems than integer-order derivatives;
they are regarded as an effective technique for describing
such physical problems. The subject of fractional calculus is
an important and valuable branch of mathematics that plays
a critical and severe role in explaining complex dynamic
behavior in a wide range of application areas, helps to under-
stand the essence of the matter as well as simplify the control
design without any lack of inherited behavior, and describes
even more complex structures [1, 2].

The Klein-Gordon equations (KGEs) play an important
role in physics, nonlinear optics, quantum field theory and
solid state physics, plasma physics, kinematics, mathematical
biology, and the recurrence of the initial state. The modeling
of many phenomena, including the behavior of elementary
particles and dislocation of crystals propagation, is the
important applications of KGEs. To study solitons [3], exam-

ining nonlinear wave equations [4] and condensed matter
physics equations gained the attention of scholars. In the
previous few years, mathematicians have made many consid-
erable efforts to find the solutions to these equations. There
are many methods introduced to find the solution of these
equations such as the radial basis functions [5], B-spline
collocation method [5], auxiliary approach [6], and
exponential-type potential, and there are some more methods
mentioned in [7–11] for the solution of these equations. To
solve the KGEs of a nonlinear type got tremendous attention
of scholar, and a verity of methods were developed as men-
tioned in [12–14]. Some other methods are the stationary
solution [15], the Homotopy perturbation technique [16],
the tanh technique [17], the variation iteration technique
[18], the traveling wave solutions, and so on.

In the recent paper, we are applying new iterative trans-
form method to KGEs of both linear and nonlinear orders
of the following form:

∂ϱμ
∂τϱ

−
∂2μ
∂ζ2

+Ψ = g ζð Þ, 1 < ρ ≤ 2, ð1Þ

with the boundary conditions
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μ ζ, 0ð Þ = 0 μτ ζ, 0ð Þ = k ζð Þ: ð2Þ

Daftardar-Gejji and Jafari developed a new iterative
approach for solving nonlinear equations in 2006 [19, 20]. Jafari
et al. first applied the Laplace transformation in the iterative
technique. They proposed a new straightforward technique
called the iterative Laplace transform method (ILTM) [21] to
look for the numerical solution of the FPDE system. The itera-
tive Laplace transformmethodwasused to solve linear andnon-
linear partial differential equations such as the time-fractional
Fokker-Planck equation [22], Zakharov-Kuznetsov equation
[23], and Fornberg-Whitham equation [24]. The Elzaki trans-
form was used to modify the iterative technique, known as the
new iterative transform method.

The new iterative transform method is implemented to
investigate the fractional-order of the Klein-Gordon equa-
tions. The solution of the fractional-order problems and
integral-order models is calculated applying the current tech-
niques. The proposed approach is also helpful for dealing
with other fractional-orders of linear and nonlinear PDEs.

2. Fractional Calculus

This section provides some fundamental concepts of
fractional calculus.

Definition 1. TheLiouville-Caputooperator (C) is given as [25]

Dϱ
Iu ζ,Ið Þ = 1

Γ n − βð Þ
ðI
0

I − θð Þn−1un ζ, θð Þdθ, n − 1 < ρ < n,

ð3Þ

where unðζ, θÞ is the derivative of integer nth order of uðζ,IÞ,
n = 1, 2,⋯∈N and n − 1 < ϱ ≤ n. If 0 < ϱ ≤ 1; then, we defined
the Laplace transformation for the Caputo fractional derivative
as follows:

L Dϱ
Iu ζ,Ið Þ� �

sð Þ = sϱL u ζ,Ið Þ½ � sð Þ − sϱ−1 u ζ, 0ð Þ½ �: ð4Þ

Definition 2. The Caputo-Fabrizio operator (CF) is define as
given [25]:

Dϱ
Iu ζ,Ið Þ = 2 − ϱð ÞM ϱð Þ

2 n − ϱð Þ
ðI
0

exp −ϱ
I − θð Þ
n − ϱ

� �
u nð Þ ζ, θð Þdθ, n < ϱ ≤ n + 1:

ð5Þ

MðϱÞ is a normalization form, andMð0Þ =Mð1Þ = 1. The
exponential law is used as the nonsingular kernel in this
fractional operator.

If 0 < ρ ≤ 1, then we define the Caputo-Fabrizio of the
Laplace transformation for the fractional derivative is
given as

L Dϱ
Iu ζ,Ið Þ� �

sð Þ = sL u ζ,Ið Þ½ � sð Þ − u ζ, 0ð Þ
s + ϱ 1 − sð Þ

� �
: ð6Þ

3. The Iterative Transform Method
Basic Procedure

Consider a particular type of a FPDE.

Dϱ
τυ ζ, τð Þ +Mυ ζ, τð Þ +Nυ ζ, τð Þ = h ζ, τð Þ, n ∈N , n − 1 < ϱ ≤ n,

ð7Þ

where the functions of linear and nonlinear are M and N ,
respectively.

With the initial condition

υk ζ, 0ð Þ = gk ζð Þ, k = 0, 1, 2⋯ n − 1, ð8Þ

implementing the Laplace transformation of Equation (7),
we have

L Dϱ
τυ ζ, τð Þ½ � + L Mυ ζ, τð Þ +Nυ ζ, τð Þ½ � = L h ζ, τð Þ½ �: ð9Þ

Applying the Laplace differentiation is given to

L υ ζ, τð Þ½ � = 1
s
υ ζ, 0ð Þ + s + ϱ 1 − sð Þ

s2
L h ζ, τð Þ½ �

−
s + ϱ 1 − sð Þ

s2
L Mυ ζ, τð Þ +Nυ ζ, τð Þ½ �,

ð10Þ

using the inverse Laplace transformation of Equation (10) into

υ ζ, τð Þ = L−1
1
s
υ ζ, 0ð Þ + s + ϱ 1 − sð Þ

s2
L h ζ, τð Þ½ �

� �� �

− L−1
s + ϱ 1 − sð Þ

s2
L Mυ ζ, τð Þ +Nυ ζ, τð Þ½ �

� �
:

ð11Þ

As through the iterative technique, we have

υ ζ, τð Þ = 〠
∞

m=0
υm ζ, τð Þ: ð12Þ

Further, the operator M is linear; therefore

M 〠
∞

m=0
υm ζ, τð Þ

 !
= 〠

∞

m=0
M υm ζ, τð Þ½ �, ð13Þ

and the operator N is nonlinear; we have the following

N 〠
∞

m=0
υm ζ, τð Þ

 !
= υ0 ζ, τð Þ +M 〠

m

k=0
υk ζ, τð Þ

 !

−N 〠
m

k=0
υk ζ, τð Þ

 !
:

ð14Þ
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Putting Equations (12)–(14) in Equation (11), we obtain

〠
∞

m=0
υm ζ, τð Þ = L−1

1
s
υ ζ, 0ð Þ + s + ϱ 1 − sð Þ

s2
L h ζ, τð Þ½ �

� �� �

− L−1
s + ϱ 1 − sð Þ

s2
E M 〠

m

k=0
υk ζ, τð Þ

 !
−N 〠

m

k=0
υk ζ, τð Þ

 !" #" #
:

ð15Þ

The new iterative transform method is defined as

υ0 ζ, τð Þ = L−1
1
s
υ ζ, 0ð Þ + s + ϱ 1 − sð Þ

s2
L g ζ, τð Þð Þ

� �� �
,

υ1 ζ, τð Þ = −L−1
s + ϱ 1 − sð Þ

s2
L M½ υ0 ζ, τð Þ½ � +N υ0 ζ, τð Þ½ �

� �
,

υm+1 ζ, τð Þ = −L−1
s + ϱ 1 − sð Þ

s2
L −M 〠

m

k=0
υk ζ, τð Þ

 !
−N 〠

m

k=0
υk ζ, τð Þ

 !" #" #
,m ≥ 1:

ð16Þ

Finally, Equations (7) and (8) provide the m-terms
solution in a series form given as

υ ζ, τð Þ ≅ υ0 ζ, τð Þ + υ1 ζ, τð Þ + υ2 ζ, τð Þ+⋯+υm ζ, τð Þ,m = 1, 2,⋯:

ð17Þ

4. Applications of the Proposed Method

4.1. Example. Consider the fractional-order Klein-Gordon
equation [18]

CF∂ϱ+1μ ζ, τð Þ
∂τϱ+1

−
∂2μ ζ, τð Þ

∂ζ2
+ μ ζ, τð Þ = 0 0 < ζ τ < 0 0 < ϱ ≤ 1,

ð18Þ

with the initial conditions

μ ζ, 0ð Þ = 0, μτ ζ, 0ð Þ = ζ: ð19Þ

Applying the Laplace transform to Equation (18), we have

sϱL μ ζ, τð Þ½ � = μ 0ð Þ ζ, 0ð Þs−1 + μ τð Þ ζ, 0ð Þs−2 + L
∂2μ ζ, τð Þ

∂ζ2
− μ ζ, τð Þ

" #
,

ð20Þ

L μ ζ, τð Þ½ � = s−1μ ζ, 0ð Þ + s−2μ τð Þ ζ, 0ð Þ + s + ϱ 1 − sð Þ
s2

L
∂2μ ζ, τð Þ

∂ζ2
− μ ζ, τð Þ

" #
:

ð21Þ
Applying the inverse Laplace transform of Equation (21),

we have

μ ζ, τð Þ = L−1 s−1μ ζ, 0ð Þ + s−2μ τð Þ ζ, 0ð Þ
h i

+ L−1
s + ϱ 1 − sð Þ

s2
L

∂2μ ζ, τð Þ
∂ζ2

− μ ζ, τð Þ
 !" #

:

ð22Þ

Now, by using the suggested analytical method, we get

μ0 ζ, τð Þ = ζτ,

μ1 ζ, τð Þ = L−1
s + ρ 1 − sð Þ

s2
L

∂2μ0 ζ, τð Þ
∂ζ2

− μ0 ζ, τð Þ
 !" #

= −
ζτ2

6 τρ + 3 − 3ρð Þ,

μ2 ζ, τð Þ = L−1
s + ϱ 1 − sð Þ

s2
L

∂2μ1 ζ, τð Þ
∂ζ2

− μ1 ζ, τð Þ
 !" #

= ζτ3

120 10τϱ − 10τϱ2 − 40ϱ + 20 + 20ϱ2 + τ2ϱ2
� 	

,

μ3 ζ, τð Þ = L−1
s + ϱ 1 − sð Þ

s2
L

∂2μ2 ζ, τð Þ
∂ζ2

− μ2 ζ, τð Þ
 !" #

,

μ3 ζ, τð Þ = −
ζτ4

5040 630ϱ2 − 630ϱ + 210 − 210ϱ3 + τ3ϱ3
�

+ 21τ2ϱ2 − 21τ2ϱ3 − 252τϱ2 + 126τϱ + 126τϱ3
	
,

μ4 ζ, τð Þ = L−1
s + ϱ 1 − sð Þ

s2
L

∂2μ3 ζ, τð Þ
∂ζ2

− μ3 ζ, τð Þ
 !" #

,

μ4 ζ, τð Þ = ζτ5

362880 τϱ + 6 − 6ϱð Þ ∗ τ3ϱ3 − 30τ2ϱ3 + 30τ2ϱ2
�

+ 252τϱ3 − 504τϱ2 + 252τϱ,−504ϱ3

+ 1512ϱ2 − 1512ϱ + 504Þ,
⋮

μn + 1 ζ, τð Þ = L−1
s + ϱ 1 − sð Þð Þn

s2n+2
L

∂2μn ζ, τð Þ
∂ζ2

− μn ζ, τð Þ
 !" #

:

ð23Þ

The series form result is

μ ζ, τð Þ = μ0 ζ, τð Þ + μ1 ζ, τð Þ + μ2 ζ, τð Þ + μ3 ζ, τð Þ+⋯μn ζ, τð Þ,

μ ζ, τð Þ = ζτ −
ζτ2

6 τϱ + 3 − 3ϱð Þ + ζτ3

120 10τϱ − 10τϱ2 − 40ϱ
�

+ 20 + 20ϱ2 + τ2ϱ2
	
−

ζτ4

5040 630ϱ2 − 630ϱ + 210
�

− 210ϱ3 + τ3ϱ3 + 21τ2ϱ2 − 21τ2ϱ3 − 252τϱ2

+ 126τϱ + 126τϱ3
	
+ ζτ5

362880 τϱ + 6 − 6ϱð Þ
� τ3ϱ3 − 30τ2ϱ3 + 30τ2ϱ2 + 252τϱ3 − 504τϱ2
�
+ 252τϱ − 504ϱ3 + 1512ϱ2 − 1512ϱ + 504

	
−⋯:

ð24Þ

The problem has the exact solution at ϱ = 1:

μ ζ, τð Þ = ζ sin τð Þ: ð25Þ

In Figure 1, the exact and the approximate solutions of
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example 1 at ϱ = 1 are shown, and the second graph shows the
3D graph of different fractional-order ρ, respectively. From
the given graphs, it can be shown that both the approximate
and exact solutions are in close relation with each other. Also,
in Figure 2, the 2D figure of the approximate solutions of
problem 1 is analysis at different fractional-order ρ for ζ and
τ. It is demonstrated that the outcomes of time-fractional
problems converge to an integer-order effect as the time-
fractional evaluation to integer-order.

4.2. Example. Consider the fractional-order Klein-Gordon
equation [18]:

CF∂ϱ+1μ ζ, τð Þ
∂τϱ+1

−
∂2μ ζ, τð Þ

∂ζ2
+ μ ζ, τð Þ = 2 sin ζð Þ 0 < ζ τ < 0 0 < ϱ ≤ 1,

ð26Þ

with the initial conditions

μ ζ, 0ð Þ = sin ζð Þ, μτ ζ, 0ð Þ = 1: ð27Þ

We apply the Laplace transformation to Equation (26),
and we get

s2

s + ϱ 1 − sð Þ L μ ζ, τð Þ½ � = μ 0ð Þ ζ, 0ð Þs−1 + μ τð Þ ζ, 0ð Þs−2

+ L
∂2μ ζ, τð Þ

∂ζ2
− μ ζ, τð Þ + 2 sin ζð Þ

" #
,

ð28Þ

L μ ζ, τð Þ½ � = s−1μ ζ, 0ð Þ + s−2μ τð Þ ζ, 0ð Þ + s + ϱ 1 − sð Þ
s2

L

� ∂2μ ζ, τð Þ
∂ζ2

− μ ζ, τð Þ + 2 sin ζð Þ
" #

:

ð29Þ

Now, using the inverse Laplace transformation of Equa-
tion (29), we have

μ ζ, τð Þ = L−1 s−1μ ζ, 0ð Þ + s−2μ τð Þ ζ, 0ð Þ
h i

+ L−1
s + ϱ 1 − sð Þ

s2
L

∂2μ ζ, τð Þ
∂ζ2

− μ ζ, τð Þ + 2 sin ζð Þ
 !" #

:

ð30Þ

Now, by using the suggested analytical method, we get

μ0 ζ, τð Þ = sin ζð Þ + τ,

μ1 ζ, τð Þ = L−1
s + ϱ 1 − sð Þ

s2
L

∂2μ0 ζ, τð Þ
∂ζ2

− μ0 ζ, τð Þ + 2 sin ζð Þ
 !" #

= −
τ2

6 τϱ + 3 − 3ϱð Þ,

μ2 ζ, τð Þ = L−1
s + ϱ 1 − sð Þ

s2
L

∂2μ1 ζ, τð Þ
∂ζ2

− μ1 ζ, τð Þ + 2 sin ζð Þ
 !" #

,

μ2 ζ, τð Þ = τ2

120 20τ − 60τϱ + 20τϱ2 + τ3ϱ2 − 60
�

+ 60ϱ + 10τ2ϱ − 10τ2ϱ2
	
,

μ3 ζ, τð Þ = L−1
s + ϱ 1 − sð Þ

s2
L

∂2μ2 ζ, τð Þ
∂ζ2

− μ2 ζ, τð Þ + 2 sin ζð Þ
 !" #

,

μ3 ζ, τð Þ = −
τ2

5040 4200τϱ − 1680τ − 1680τϱ2 − 336τ3ϱ2
�

+ 126ϱτ3 + 126τ3ϱ3 + ϱ3τ5 + 2520 − 2520ϱ
+ 1470τ2ϱ2 − 1470τ2ϱ + 210τ2 − 210τ2ϱ3

+ 21ϱ2τ4 − 21τ4ϱ3Þ,

0
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Figure 1: (a) Exact and an approximate graph of problem 1 and (b) different fractional-order graphs of problem 1.
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μ4 ζ, τð Þ = L−1
s + ϱ 1 − sð Þ

s2
L

∂2μ3 ζ, τð Þ
∂ζ2

− μ3 ζ, τð Þ + 2 sin ζð Þ
 !" #

,

μ4 ζ, τð Þ = τ2

362880 181440τϱ2 + 181440τ − 423360τϱ
�

+ 81648τ3ϱ2 − 39312τ3ϱ3 − 39312ϱτ3 + 3024τ3

+ 3024τ3ϱ4 + 36ϱ3τ6 − 36ϱ4τ6 − 1080ϱ3τ5

+ 432ϱ2τ5 + 432τ5ϱ4 + τ7ϱ4 − 181440 + 11440ϱ
+ 226800τ2ϱ + 45360τ2ϱ3 − 226800τ2ϱ2

− 45360τ2 − 10584ϱ2τ4 + 10584τ4ϱ3

− 2016τ4ϱ4 + 2016ϱτ4
	
,

⋮

μn ζ, τð Þ = L−1
s + ϱ 1 − sð Þð Þn

s2n+2
L

∂2μn ζ, τð Þ
∂ζ2

− μn ζ, τð Þ + 2 sin ζð Þ
 !" #

:

ð31Þ

The series form result is

μ ζ, τð Þ = μ0 ζ, τð Þ + μ1 ζ, τð Þ + μ2 ζ, τð Þ + μ3 ζ, τð Þ+⋯μn ζ, τð Þ,

μ ζ, τð Þ == sin ζð Þ + τ −
τ2

6 τϱ + 3 − 3ϱð Þ

+ τ2

120 20τ − 60τϱ + 20τϱ2 + τ3ϱ2 − 60
�

+ 60ϱ + 10τ2ϱ − 10τ2ϱ2
	
+− τ2

5040
� 4200τϱ − 1680τ − 1680τϱ2 − 336τ3ϱ2
�
+ 126ϱτ3 + 126τ3ϱ3 + ϱ3τ5 + 2520 − 2520ϱ
+ 1470τ2ϱ2 − 1470τ2ϱ + 210τ2 − 210τ2ϱ3

+ 21ϱ2τ4 − 21τ4ϱ3
	
+ τ2

362880
� 181440τϱ2 + 181440τ − 423360τϱ + 81648τ3ϱ2
�
− 39312τ3ϱ3 − 39312ϱτ3 + 3024τ3 + 3024τ3ϱ4

+ 36ϱ3τ6 − 36ϱ4τ6 − 1080ϱ3τ5 + 432ϱ2τ5 + 432τ5ϱ4

+ τ7ϱ4 − 181440 + 11440ρ + 226800τ2ϱ + 45360τ2ϱ3

− 226800τ2ϱ2 − 45360τ2 − 10584ϱ2τ4 + 10584τ4ϱ3

− 2016τ4ϱ4 + 2016ϱτ4
	
+⋯:

ð32Þ

The problem has the exact solution at ϱ = 1:

μ ζ, τð Þ = sin ζð Þ + sin τð Þ: ð33Þ

In Figure 3, the exact and the approximate solutions of
example 2 at ϱ = 1 are shown. From the given figures, it can
be seen that both the approximate and exact solutions are
in close contact with each other. Also, in Figure 4, the 2D
graph of the approximate results of problem 2 is investigated
at different fractional-order ρ for ζ and τ. It is demonstrated
that the outcomes of time-fractional problems converge to an
integer-order effect as the time-fractional evaluation to
integer-order.

4.3. Example. Consider the fractional-order nonlinear
Klein-Gordon equation [18]:

CF∂ϱ+1μ ζ, τð Þ
∂τϱ+1

−
∂2μ ζ, τð Þ

∂ζ2
+ μ2 ζ, τð Þ = ζ2τ2 0 < ζ τ < 0 0 < ϱ ≤ 1,

ð34Þ

with the initial conditions

μ ζ, 0ð Þ = 0, μτ ζ, 0ð Þ = ζ: ð35Þ

Using the Laplace transform to Equation (34), we get

s2

s + ϱ 1 − sð Þ L μ ζ, τð Þ½ � = μ 0ð Þ ζ, 0ð Þs−1 + μ τð Þ ζ, 0ð Þs−2

+ L
∂2μ ζ, τð Þ

∂ζ2
− μ2 ζ, τð Þ + ζ2τ2

" #
,

ð36Þ

L μ ζ, τð Þ½ � = s−1μ ζ, 0ð Þ + s−2μ τð Þ ζ, 0ð Þ + s + ϱ 1 − sð Þ
s2

L

� ∂2μ ζ, τð Þ
∂ζ2

− μ2 ζ, τð Þ + ζ2τ2
" #

:

ð37Þ
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Figure 2: The different fractional-orders with respect to ζ and τ of problem 1.
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Applying the inverse Laplace transform of Equation
(37), we have

μ ζ, τð Þ = L−1 s−1μ ζ, 0ð Þ + s−2μ τð Þ ζ, 0ð Þ
h i

+ L−1

� s + ϱ 1 − sð Þ
s2

L
∂2μ2 ζ, τð Þ

∂ζ2
− μ2 ζ, τð Þ + ζ2τ2

 !" #
:

ð38Þ

Now, byusing the suggested an approximatemethod,we get

μ0 ζ, τð Þ = ζτ,

μ1 ζ, τð Þ = L−1
s + ϱ 1 − sð Þ

s2
L

∂2μ0 ζ, τð Þ
∂ζ2

− μ20 ζ, τð Þ + ζ2τ2
 !" #

= 0,

⋮

μn ζ, τð Þ = L−1
s + ϱ 1 − sð Þ

s2
L

∂2μn ζ, τð Þ
∂ζ2

− μ2n ζ, τð Þ + ζ2τ2
 !" #

:

ð39Þ

The series form result is

μ ζ, τð Þ = μ0 ζ, τð Þ + μ1 ζ, τð Þ + μ2 ζ, τð Þ + μ3 ζ, τð Þ+⋯μn ζ, τð Þ,
μ ζ, τð Þ = ζτ + 0+⋯:

ð40Þ

The problem has the exact solution at ϱ = 2:

μ ζ, τð Þ = ζτ: ð41Þ

Figure 5 compares the exact solution and approximate solu-
tion of example 3 for the nonlinear fractional-order Klein-
Gordon equation at ϱ = 1. The figure shows the close relation-
ship between the exact and an approximate solution.

4.4. Example. Consider the fractional-order nonlinear Klein-
Gordon equation [18]:

CF∂ϱ+1μ ζ, τð Þ
∂τϱ+1

−
∂2μ ζ, τð Þ

∂ζ2
+ μ2 ζ, τð Þ = 2ζ2 − 2τ2 + ζ4τ4 0 < ζ τ < 0 0 < ϱ ≤ 1,

ð42Þ
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Figure 3: The exact and an approximate graph of problem 2.
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Figure 4: The different fractional-orders with respect to ζ and τ of problem 2.
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with the initial conditions

μ ζ, 0ð Þ = μτ ζ, 0ð Þ = 0: ð43Þ

Using the Laplace transform to Equation (42), we get

s2

s + ϱ 1 − sð Þ L μ ζ, τð Þ½ � = μ 0ð Þ ζ, 0ð Þs−1 + μ τð Þ ζ, 0ð Þs−2

+ L
∂2μ ζ, τð Þ

∂ζ2
− μ2 ζ, τð Þ + 2ζ2 − 2τ2 + ζ4τ4

" #
,

ð44Þ

L μ ζ, τð Þ½ � = s−1μ ζ, 0ð Þ + s−2μ τð Þ ζ, 0ð Þ + s + ϱ 1 − sð Þ
s2

L

� ∂2μ ζ, τð Þ
∂ζ2

− μ2 ζ, τð Þ + 2ζ2 − 2τ2 + ζ4τ4
" #

:

ð45Þ
Applying the inverse Laplace transform of Equation (45),

we have

μ ζ, τð Þ = L−1 s−1μ ζ, 0ð Þ + s−2μ τð Þ ζ, 0ð Þ
h i

+ L−1

� s + ϱ 1 − sð Þ
s2

L
∂2μ2 ζ, τð Þ

∂ζ2
− μ2 ζ, τð Þ + 2ζ2 − 2τ2 + ζ4τ4

 !" #
:

ð46Þ

Now, by using the suggested analytical method, we get

μ0 ζ, τð Þ = 0,

μ1 ζ, τð Þ = L−1
s + ϱ 1 − sð Þ

s2
L

∂2μ0 ζ, τð Þ
∂ζ2

− μ20 ζ, τð Þ + 2ζ2 − 2τ2 + ζ4τ4
 !" #

,

μ1 ζ, τð Þ = τ

30 −5ϱτ3 + 20τ2ϱζ4τ5ϱ + 60ζ2 − 60ϱζ2 + 30ζ2τϱ + 6τ4ζ4 − 6τ4ζ4ϱ

 �

,

μ2 ζ, τð Þ = L−1
s + ϱ 1 − sð Þ

s2
L

∂2μ1 ζ, τð Þ
∂ζ2

− μ21 ζ, τð Þ + 2ζ2 − 2τ2 + ζ4τ4
 !" #

,

μ2 ζ, τð Þ = −
τ

162116200 −32432400τϱ2 − 2702700τ3ϱ2
�

− 32432400τ2ϱ + 21621600τ2ϱ2 − 228228τ9ϱ3ζ4

+ 456456τ9ϱ2ζ4 − 228228τ9ϱζ4 + 12012τ9ζ6ϱ3

− 32760ϱ2τ10ζ4 + 32760ϱ3τ10ζ4 − 1365τ11ϱ3ζ4

+ 22932τ11ζ8ϱ3 + 22932τ11ζ8ϱ + 5005τ9ϱ3

+ 100100ϱ2τ8 − 100100ϱ3τ8 − 1158300τ7ϱ2

+ 579150τ7ϱ − 480480τ8ζ4 + 58968τ10ζ8

+ 1853280τ6ζ6 + 3088800τ6ϱ2 − 3088800τ6ϱ
+ 21621600τ2ζ4 + 579150ϱ3τ7 − 8648640τ4ζ2

− 6486480ζ2τ5 + 1029600τ6 + 240240ϱ2τ8ζ6

− 240240ϱ3τ8ζ6 + 1312740τ7ζ6ϱ3 − 2625480τ7ζ6ϱ2

− 96525τ7ϱ3ζ2 + 1312740τ7ζ6ϱ − 115830τ7ϱ2ζ2

− 6486480ϱ3τ4ζ4 + 6486480ϱ2τ4ζ4 − 43243200τ3ϱ2ζ4

+ 21621600τ3ϱ3ζ4 + 21621600τ3ϱζ4 + 99ζ8ϱ3τ13

− 1853280τ6ϱζ2 + 308880τ6ϱ2ζ2 + 1544400τ6ϱ3ζ2

+ 540540τ5ϱ3ζ4 − 6846840τ5ϱ3ζ2 + 6126120τ5ϱζ2

+ 7207200τ5ϱ2ζ2 + 2772ϱ2τ12ζ8 − 2772ϱ3τ12ζ8

+ 480480τ8ϱ3ζ4 − 1441440τ8ϱ2ζ4 + 1441440τ8ϱζ4

− 58968τ10ζ8ϱ3 − 176904τ10ζ8ϱ − 1853280τ6ζ6ϱ3

+ 5559840τ6ζ6ϱ2 − 5559840τ6ζ6ϱ + 64864800τ2ϱ2ζ4

− 21621600τ2ϱ3ζ4 − 64864800τ2ϱζ4 + 8648640τ4ϱ3ζ2

− 25945920τ4ϱ2ζ2 + 176904τ10ζ8ϱ2 + 25945920ζ2ϱτ4

− 45864τ11ζ8ϱ2 + 2702700ϱτ3 − 32432400ζ2

− 540540ζ4τ5ϱ − 16216200ζ2τϱ + 3243240τ4ζ4ρ
− 1029600ρ3τ6 − 3243240τ4ζ4 − 32432400τ
+ 32432400ρζ2 + 64864800τϱ + 10810800τ2

	
,⋮

μn ζ, τð Þ = L−1
s + ϱ 1 − sð Þ

s2
L

∂2μn ζ, τð Þ
∂ζ2

− μ2n ζ, τð Þ + 2ζ2 − 2τ2 + ζ4τ4
 !" #

:

ð47Þ
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Figure 5: The exact and an approximate graph of problem 3.
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The series form result is

μ ζ, τð Þ = μ0 ζ, τð Þ + μ1 ζ, τð Þ + μ2 ζ, τð Þ + μ3 ζ, τð Þ+⋯μn ζ, τð Þ,

μ ζ, τð Þ = τ

30 −5ϱτ3 + 20τ2ϱζ4τ5ϱ + 60ζ2 − 60ϱζ2



+ 30ζ2τϱ + 6τ4ζ4 − 6τ4ζ4ϱ
�
−

τ

162116200
� −32432400τϱ2 − 2702700τ3ϱ2 − 32432400τ2ϱ
�
+ 21621600τ2ϱ2 − 228228τ9ϱ3ζ4 + 456456τ9ϱ2ζ4

− 228228τ9ϱζ4 + 12012τ9ζ6ϱ3 − 32760ϱ2τ10ζ4

+ 32760ϱ3τ10ζ4 − 1365τ11ϱ3ζ4 + 22932τ11ζ8ϱ3

+ 22932τ11ζ8ϱ + 5005τ9ϱ3 + 100100ϱ2τ8

− 100100ϱ3τ8 − 1158300τ7ϱ2 + 579150τ7ϱ
− 480480τ8ζ4 + 58968τ10ζ8 + 1853280τ6ζ6

+ 3088800τ6ϱ2 − 3088800τ6ϱ + 21621600τ2ζ4

+ 579150ϱ3τ7 − 8648640τ4ζ2 − 6486480ζ2τ5

+ 1029600τ6 + 240240ϱ2τ8ζ6 − 240240ϱ3τ8ζ6

+ 1312740τ7ζ6ϱ3 − 2625480τ7ζ6ϱ2 − 96525τ7ϱ3ζ2

+ 1312740τ7ζ6ϱ − 115830τ7ϱ2ζ2 − 6486480ϱ3τ4ζ4

+ 6486480ϱ2τ4ζ4 − 43243200τ3ϱ2ζ4 + 21621600τ3ϱ3ζ4

+ 21621600τ3ϱζ4 + 99ζ8ϱ3τ13 − 1853280τ6ϱζ2

+ 308880τ6ϱ2ζ2 + 1544400τ6ϱ3ζ2 + 540540τ5ϱ3ζ4

− 6846840τ5ϱ3ζ2 + 6126120τ5ϱζ2 + 7207200τ5ϱ2ζ2

+ 2772ϱ2τ12ζ8 − 2772ϱ3τ12ζ8 + 480480τ8ϱ3ζ4

− 1441440τ8ϱ2ζ4 + 1441440τ8ϱζ4 − 58968τ10ζ8ϱ3

− 176904τ10ζ8ϱ − 1853280τ6ζ6ϱ3 + 5559840τ6ζ6ϱ2

− 5559840τ6ζ6ϱ + 64864800τ2ϱ2ζ4 − 21621600τ2ϱ3ζ4

− 64864800τ2ϱζ4 + 8648640τ4ϱ3ζ2 − 25945920τ4ϱ2ζ2

+ 176904τ10ζ8ϱ2 + 25945920ζ2ϱτ4 − 45864τ11ζ8ϱ2

+ 2702700ϱτ3 − 32432400ζ2 − 540540ζ4τ5ϱ
− 16216200ζ2τϱ + 3243240τ4ζ4ϱ − 1029600ϱ3τ6

− 3243240τ4ζ4 − 32432400τ + 32432400ϱζ2

+ 64864800τϱ + 10810800τ2Þ+⋯:

ð48Þ

The problem has the exact solution at ϱ = 1:

μ ζ, τð Þ = ζ2τ2: ð49Þ

In Figure 6, the exact and the approximate solutions of
example 4 at ϱ = 1 are shown, and the second graph shows
the 3D graph of different fractional-order ρ, respectively.
From the given figures, it can be seen that both the approxi-
mate and exact solutions are in close contact with each other.
It is demonstrated that the outcomes of time-fractional prob-
lems converge to an integer-order effect as the time-
fractional evaluation to integer-order.

5. Conclusion

In this paper, the iterative transformation method is imple-
mented to achieve approximate analytical results of the
fractional-order Klein-Gordon equations, which is widely
applied in problems for spatial effects in applied sciences.
In physical models, the technique yields series form results
that converge very quickly. The obtained results in this
article are expected to be important for further analysis
of the sophisticated nonlinear models. The calculations of
this method are very simple and straightforward. As a
result, we conclude that this technique can be used to solve
a variety of nonlinear fractional-order partial differential
equation systems.

Data Availability

The numerical data used to support the findings of this study
are included within the article.
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We study the asymptotic behavior of solutions of the anisotropic heterogeneous linearized elasticity system in thin domain of ℝ3

which has a fixed cross-section in theℝ2 plane with Tresca friction condition. The novelty here is that stress tensor has given by the
most general form of Hooke’s law for anisotropic materials. We prove the convergence theorems for the transition 3D-2Dwhen one
dimension of the domain tends to zero. The necessary mathematical framework and (2D) equation model with a specific weak form
of the Reynolds equation are determined. Finally, the properties of solution of the limit problem are given, in which it is confirmed
that the limit problem is well defined.

1. Introduction

In this paper, we are interested of the asymptotic behavior of
the linear elasticity system in a domain of ℝ3 with a Tresca
friction condition where the boundary of this domain has a
fixed cross-section in dimension 2 and a small thickness.
One of the objectives of this study is to obtain two-
dimensional equation that allows a reasonable description
of the phenomenon occurring in the three-dimensional
domain by passing the limit to 0 on the small thickness of
the domain (3D). Let us mention for example [1–8] in which
the authors worked on the asymptotic behavior for the line-
arized elasticity system with different boundary conditions.
Some problems of Newtonian or non-Newtonian fluids are
considered in [9–11] where the authors proved a limit prob-
lem that gives a distribution of velocity and pressure through
the weak form of the Reynolds equation. In [6, 7], the authors
demonstrate the transition 3D-1D in anisotropic heteroge-
neous linearized elasticity; so, we mention here that this phe-
nomenon has been studied only about strong solutions,
without friction law. Benseridi in [2] investigated the asymp-
totic analysis of a dynamical problem of linear elasticity with

Tresca’s friction. The static case with a nonlinear term for lin-
ear elastic materials has been considered in [3]. See another
situation in [4] where the paper concerns asymptotic deriva-
tion of frictionless contact models for elastic rods on a foun-
dation with normal compliance. Recently, the authors in [5,
12] have proved the asymptotic behavior of a frictionless
contact problem between two elastic bodies, when the verti-
cal dimension of the two domain reaches zero. However, all
these papers have been only restricted in a homogeneous
and isotropic case of elastic materials.

The present work is a follow-up of [2, 3, 5] to study the
heterogeneous and anisotropic situation with Tresca’s friction.
Here, the stress tensor with its components is given by the gen-
eralizedHooke’s law (see [13]): σε = AεeðuεÞ, where uε denotes
the displacement vector, eðuεÞ is the linearized strain tensor,
and Aε is the fourth order tensor which describes the elastic
properties of the material. Many materials that follow the lin-
ear elastic model, although they are well made, are not subject
to the assumptions of isotropy, for example, wood, reinforced
concrete, composite materials, and many biological materials,
where the mechanical properties of these materials differ
according to the directions of space; in that case, the elasticity
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operator depends on the location of the point (see [14, 15]).
Necas in [7] and Sofonea in [16] established the existence of
a weak solution for the static frictional contact problem
involving linearly elastic and viscoelastic materials, by using
a results of convex optimization [17], and numerical approxi-
mation of this problem was studied in [18]. For the variational
analysis of various contact problems, wemention excellent ref-
erences in [14, 15]. Mathematically, the asymptotic analysis is
more difficult since in general, the limit problem involves an
equation that takes into account the anisotropy of the
medium, and it is thus important to identify the elastic com-
ponents of Aε that appear in the (2D) equation model.

The paper is organized as follows; in section 2, the strong
and weak formulation of the problem is given in terms of uε

and also the related existence and uniqueness of the weak solu-
tion. In section 3, we introduce a scaling, and we find some
estimates on the displacement which are independent of the
parameter ε. In section 4, we state the main results concerning
the existence of a weak limit u∗ of uε, the (2D) equation model
with a specific weak form of the Reynolds equation is proved,
the limit form of the Tresca boundary conditions is formu-
lated, and finally, the uniqueness of u∗ is given.

2. Mathematical Formulation

Let ω be an open set in ℝ with Lipschitz boundary, and we
consider a smooth function h : ω⟶ℝ be a class C1 such
that 0 < hmin ≤ hðxÞ ≤ hmax, for all x ∈ ω, where hmin and
hmax are constants. We define the smooth bounded domain
Ω whose boundary has a flat part ω,

Ω = x, zð Þ ∈ℝ3, x ∈ ω, 0 < z < h xð Þ� �
: ð1Þ

We denote by Γ1 is the upper boundary of the equation
z = hðxÞ, and ΓL is the lateral boundary.

Let ε > 0 be a small parameter, and we define Ωε be the
change of scale z = x3/ε and the points of Ω,

Ωε = x, x3ð Þ ∈ℝ3, x ∈ ω, 0 < x3 < εh xð Þ� �
: ð2Þ

We have Γε = �ω ∪ Γ
ε
1 ∪ Γ

ε
L which its boundary of Ωε and

where Γε
1 is the upper surface defined by x3 = εhðxÞ, and Γε

L
is the lateral boundary. The unit outward normal to Γε is
denoted by ν. It follows that there is correspondence between
the functions ϕ : Ωε ⟶ℝn and bϕ : Ω⟶ℝnðn = 1, 2, 3Þ
given by bϕðx, zÞ = ϕðx, x3Þ.

Let H1/2ðΓÞ3 be the space of traces of functions on Γ of
functions from H1ðΩÞ3, and we use the vector function g ∈
H1/2ðΓÞ3 such that

ð
Γ

g:νds = 0: ð3Þ

We denote by Sn the space of symmetric tensors on ℝn

and j:j the Euclidean norm on ℝn and Sn. Here and below,
the indices i, j, k, l run between 1 and 3, and the summation
convention overrepeated indices is adopted.

The basic equations of frictionless contact problem for
the anisotropic heterogeneous elastic body occupy the
domain Ωε as follows:

The equations of equilibrium are as follows:

∂σεij
∂xj

+ f εi = 0inΩε, ð4Þ

σε
ij u

εð Þ = Aε
ijkl ekl u

εð ÞinΩε, ð5Þ
where the vector f ε = ð f ε1, f ε2, f ε3Þ represents the forces of
density, uε = ðuε1, uε2, uε3Þ is the displacement field, the ele-
ments Aε

ijkl denote the components of elasticity tensor Aε,
and eijðuεÞ is the rate of deformation operator,

eij u
εð Þ = e uεð Þð Þij =

1
2

∂uεi
∂xj

+
∂uεj
∂xi

 !
: ð6Þ

On Γε
L, the displacement is known:

uε = gεonΓε
L: ð7Þ

On Γε
1, we assume that the elastic body is held fixed:

uε = gε = 0onΓε
1: ð8Þ

On the surface ω, we assume that the contact is bilateral:

uε:ν = gε:ν = 0 ð9Þ

and satisfies the Tresca boundary condition [7] with friction
function kε;

σε
τj j < kεuετ = s, 

σε
τj j = kε∃λ ≥ 0suchthatuετ = s − λσε

τ,

(
ð10Þ

where s = gε on ω. uετ, σ
ε
τ, and σεν are the tangential displace-

ment, the tangential, and the normal stress tensor, respec-
tively, with

uετi = uεi − uεjνjνi, σετi = σε
ij:νj − σενð Þ:νi, σεν = σε:νð Þ:ν: ð11Þ

Consider now the following closed convex subset of H1

ðΩεÞ3 given by

Kε = ϕ ∈H1 Ωεð Þ3 : ϕ = gεonΓε
1 ∪ Γε

L, ϕ:ν = 0onω
n o

: ð12Þ

Let us introduce the form a : Kε × Kε ⟶ℝ and the
functional Jε : Kε ⟶ℝ+ defined by

a uε, ϕð Þ =
ð
Ωε

Aε
ijklekl u

εð Þeij ϕð Þdxdx3,

Jε ϕð Þ =
ð
ω

kε ϕ − sj j dx:
ð13Þ

2 Journal of Function Spaces



In the study of the mechanical problem (3)–(10), we
assume that all components Aε

ijkl belong to L∞ðΩεÞ and sat-
isfy the usual properties of symmetry and ellipticity [19], i.e.,

Aε
ijkl = Aε

jikl = Aε
klij ∈ L

∞ Ωεð Þ, ð14Þ

and there exists a constant μ > 0 such that

 Aε
ijkl yð Þξklξij ≥ μ ξj j2∀ξ ∈ S3, a:e:y ∈Ωε: ð15Þ

Remark 1. It follows from previous properties and by Korn’ s
inequality (see [16], pp. 79), that the bilinear form a is coer-
cive and continuous, i.e.,

a ϕ, ϕð Þ ≥ μCK ∇ϕk k2L2 Ωεð Þ ∀ϕ ∈ Kε, ð16Þ

a φ, ψð Þj j ≤M ∇ϕk kL2 Ωεð Þ ∇ψk kL2 Ωεð Þ∀ϕ, ψ ∈ Kε, ð17Þ

where M = max
1≤i,j,k,l≤3

kAε
ijklkL∞ðΩεÞ and CK denoting a positive

constant depends on Ωε,Γε
1, and Γε

L.

Lemma 2. Assuming that f ε ∈ L2ðΩεÞ3 and kε ∈ L∞ðωÞ, the
variational formulation of problem (3)–(10) is equivalent to

Find uε ∈ Kε satisfying

a uε, ϕ − uεð Þ + Jε ϕð Þ − Jε uεð Þ ≥
ð
Ωε

f ε: ϕ − uεð Þdxdx3∀ϕ ∈ Kε,

ð18Þ

for every ε small fixed.

Moreover, if the assumptions of (14) and (15) hold, then
the variational inequality (18) has a unique solution uε ∈ Kε.

Remark 3.A problem of the form (18) is called an elliptic var-
iational inequality of the second kind ([17]). The following
theorem (see [19], Theorem 6) allows us to replace the vari-
ational inequality (18) by a minimization problem. Thus,
we will not repeat the proof, but our goal is to study the
asymptotic behavior.

3. Some Estimates in Fixed Domain

To be able to study the asymptotic behavior of the solutions
of (18), we use the change of variable z = x3/ε, to return to
the fixed domain Ω, and then we define the following func-
tions in Ω:

ûεi x, zð Þ = uεi x, x3ð Þ fori = 1, 2, 3: ð19Þ

For the data Âijkl , f̂ i, and k̂, we have the following rela-
tions:

Âijkl x, zð Þ = Aε
ijkl x, x3ð Þ,  f̂ i x, zð Þ = ε2 f εi x, x3ð Þ and k̂ = εkε,

ð20Þ

(for 1 ≤ i, j, k, l ≤ 3).
Let

K = v ∈H1 Ωð Þ3 : v = gonΓL ∪ Γ1, v:ν = 0onω
� �

,

Vz =
�
v = v1, v2, v3ð Þ ∈ L2 Ωð Þ3 : ∂vi∂z

∈ L2 Ωð Þ, i = 1, 2, 3 ; v = 0onΓ1

�
:

ð21Þ

Vz is a Banach space for the following norm:

vk kVz
= 〠

3

i=1
vik k2L2 Ωð Þ +

∂vi
∂z

����
����
2

L2 Ωð Þ

 !" #1/2
: ð22Þ

Everywhere in the sequel, the indexes α, β, γ and δ run
from 1 to 2, and summation over repeated indices is implied.
Follow the same steps as in ½6, 12�, passing to the fixed
domainΩ, and using the symmetry of σεij and A

ε
ijkl , after mul-

tiplication by ε, we have (18) that is equivalent to
Find ûε ∈ K , such that

â ûε, bϕ − ûε
� �

+
ð
ω

k̂ bϕ − s
			 			dx − ð

ω

k̂ ûε − sj jdx

≥ 〠
3

i=1

ð
Ω

f̂ i bϕ i − ûεi
� �

dxdz,∀bϕ ∈ K ,
ð23Þ

where

â ûε, bϕ� �
= ε2

ð
Ω

Âαβγθêγθ ûεð Þ ∂
bϕα

∂xβ
dxdz

+ 2ε
ð
Ω

Âα3γθêγθ ûεð Þ ∂
bϕα

∂z
dxdz

+ 2ε2
ð
Ω

Âαβγ3êγ3 ûεð Þ ∂
bϕα

∂xβ
dxdz

+ 4ε
ð
Ω

Âα3γ3êγ3 ûεð Þ ∂
bϕα

∂z
dxdz

+ ε2
ð
Ω

Âαβ33ê33 ûεð Þ ∂
bϕα

∂xβ
dxdz

+ ε
ð
Ω

Â33αβêαβ ûεð Þ ∂
bϕ3
∂z

dxdz

+ 2ε
ð
Ω

Âα333ê33 ûεð Þ ∂
bϕα

∂z
dxdz

+ 2ε
ð
Ω

Â33α3êα3 ûεð Þ ∂
bϕ3
∂z

dxdz

+ ε
ð
Ω

Â3333ê33 ûεð Þ ∂
bϕ3
∂z

dxdz,

ð24Þ
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and êðûεÞ = ðêijðûεÞÞij is given by the relations

êij û
εð Þ = 1

2
∂ûεi
∂xj

+
∂ûεj
∂xi

 !
, i, j = 1, 2,

êi3 ûεð Þ = ê3i û
εð Þ = 1

2
1
ε

∂ûεi
∂z

+ ∂ûε3
∂xi


 �
, i = 1, 2:

ê33 ûεð Þ = 1
ε

∂ûε3
∂z

,

ð25Þ

Lemma 4. Under the assumptions of Lemma 2, there exists a
constant C > 0 independent of ε, such that

〠
3

i=1

∂ûεi
∂z

����
����
2

L2 Ωð Þ
+ ε2 〠

2

i,j=1

∂ûεi
∂xj

�����
�����
2

L2 Ωð Þ
+ ε2 〠

2

j=1

∂ûε3
∂xj

�����
�����
2

L2 Ωð Þ
≤ C:

ð26Þ

Proof. Assume that uε is a solution of ð2:12Þ. As JεðuεÞ ≥ 0,
then

a uε, uεð Þ ≤ a uε, ϕð Þ + Jε ϕð Þ +
ð
Ωε

f ε:uεdxdx3

−
ð
Ωε

f ε:ϕdxdx3, ∀ϕ ∈ Kε:

ð27Þ

Using the Young’s inequality

ab ≤ η2
a2

2 + η−2
b2

2 ð28Þ

in (17) for η =
ffiffiffiffiffiffiffiffiffiffiffiffiffi
μCK /2

p
, we find

a uε, ϕð Þj j ≤ μCK

4 ∇uεk k2L2 Ωεð Þ +
M
μCK

∇ϕk k2L2 Ωεð Þ: ð29Þ

Also, by the Cauchy-Schwarz and Poincaré’s inequalities,
we get

ð
Ωε

f ε:ϕdxdx3

				
				 ≤ εhmax f εk kL2 Ωεð Þ ∇ϕk kL2 Ωεð Þ, ð30Þ

then using Young’s inequality for η =
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1/μCK

p
to obtain

ð
Ωε

f ε:uεdxdx3

				
				 ≤ εhmaxð Þ2

2μCK
f εk k2L2 Ωεð Þ +

μCK

2 ∇ϕk k2L2 Ωεð Þ:

ð31Þ

Using (16), (29), and (31) in (27), we get

μCK

4 ∇uεk k2L2 Ωεð Þ ≤
M
μCK

∇ϕk k2L2 Ωεð Þ +
εhmaxð Þ2
μCK

f εk k2L2 Ωεð Þ

+ μCK

2 ∇ϕk k2L2 Ωεð Þ +
ð
ω

kε ϕ − sj jdx:

ð32Þ

Taking into account the g function introduced in (5) and
using [20] (lemma 2 pp.24), there exists a function ~g ∈H1

ðΩÞ3 such that

~g = gonΓLand ~g:ν = 0onω ∪ Γ1: ð33Þ

Thus, choosing bϕ = ~g in ð3:6Þ, then multiplying product
inequality by ε, and the fact that g = s on ω, we obtain

μCK

4 ε ∇uεk k2L2 Ωεð Þ ≤
hmaxð Þ2
μCK

f̂
��� ���2

L2 Ωð Þ

+ M
μCK

+ μCK

2


 �
∇~gk k2L2 Ωð Þ:

ð34Þ

From ½6�, we can see the constant Korn CK contained in
Remark 1 does not depend on ε and ϕ, for ε ∈ �0, 1�; more-
over, by changing the data of Aε, remark that μ and M are
independent of ε. Therefore, passing to the fixed domain Ω,
we get

ε ∇uεk k2L2 Ωεð Þ = 〠
3

i=1

∂ûεi
∂z

����
����
2

L2 Ωð Þ
+ ε2 〠

2

i,j=1

∂ûεi
∂xj

�����
�����
2

L2 Ωð Þ

0
@

+ 〠
2

j=1

∂ûε3
∂xj

�����
�����
2

L2 Ωð Þ

1
A ≤ C,

ð35Þ

with

C = 4
μCK

hmaxð Þ2
μCK

f̂
��� ���2

L2 Ωð Þ
+ M

μCK
+ μCK

2


 �
∇~gk k2L2 Ωð Þ

" #
:

ð36Þ

☐

Lemma 5. Under the assumptions of Lemma 4, there exists
u∗ = ðu∗1 , u∗2 , u∗3 Þ ∈ Vz such that

ûε ⇀ u∗weaklyinVz , ð37Þ

ε
∂ûεi
∂xα

⇀ 0weaklyinL2 Ωð Þ i = 1, 2, 3andα = 1, 2ð Þ, ð38Þ

εêαβ ûεð Þ⇀ 0,weaklyinL2 Ωð Þ α, β = 1, 2ð Þ, ð39Þ

εêγ3 ûεð Þ⇀ 1
2

∂u∗γ
∂z

weaklyinL2 Ωð Þ γ = 1, 2ð Þ, ð40Þ

εê33 ûεð Þ⇀ ∂u∗3
∂z

weaklyinL2 Ωð Þ: ð41Þ

Proof. From (26), there exists a fixed constant C > 0 such that

∂ûεi
∂z

����
����
2

L2 Ωð Þ
≤ C, fori = 1, 2, 3: ð42Þ
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Using Poincaré’s inequality in the domain Ω

ûεik kL2 Ωð Þ ≤ hmax
∂ûεi
∂z

����
����
L2 Ωð Þ

, fori = 1, 2, 3, ð43Þ

we deduce that ûε is bounded in Vz . From the last two esti-
mates, there exists u∗ = ðu∗1 , u∗2 , u∗3 Þ ∈ Vz and satisfies (37).
From (26), we can extract a subsequence such that εð∂ûεi /∂
xαÞ⇀ η in L2ðΩÞ; on the other hand, from (37), we deduce
(38). Also, (39)–(41) follow from (37) and (38). ☐

4. Limit Problem and Main Result

At the limit ε = 0, we give the satisfactory equations of u∗ and
the properties of solution of the limit problem for the system
(3)-(10).

Theorem 6.With the same assumptions as Lemma 5, u∗ sat-
isfies

A∗ ∂u∗

∂z
, ∂
∂z

bϕ − u∗
� �
 �

L2 Ωð Þ
+
ð
ω

k̂ bϕ − s
			 			 − u∗ − sj j
� �

dx

≥
ð
Ω

f̂ : bϕ − u∗
� �

dxdz, ∀bϕ ∈ K ,

ð44Þ

where the symmetric matrix A∗ is given by

A∗ =
4Â1313 4Â1323 2Â1333

4Â2313 4Â2323 2Â2333

2Â3313 2Â3323 Â3333

0
BB@

1
CCA: ð45Þ

Moreover, we have

−
∂
∂z

4Âα3γ3

∂u∗γ
∂z

+ 2Âα333
∂u∗3
∂z

� �
= f̂ α, α = 1, 2ð Þ

−
∂
∂z

2Â33α3
∂u∗α
∂z

+ Â3333
∂u∗3
∂z

� �
= f̂ 3

9>>>=
>>>;
inL2 Ωð Þ:

ð46Þ

Proof. As (23) can be written,

â ûε, bϕ� �
+
ð
ω

k̂ bϕ − s
			 			dx − 〠

3

i=1

ð
Ω

f̂ i bϕ i − ûεi
� �

dxdz

≥ â ûε, ûεð Þ +
ð
ω

k̂ ûε − sj jdx:
ð47Þ

Since the form âð:, :Þ is a symmetry and K-elliptic, and
the fact that bϕ ⟶

Ð
ω
k̂jbϕ − sjdx is convex and lower semi-

continuous, we deduce

liminf ε⟶0 â ûε, ûεð Þ +
ð
ω

k̂ ûε − sj jdx
� �

≥ â u∗, u∗ð Þ +
ð
ω

k̂ u∗ − sj jdx:
ð48Þ

Using Lemma 5, we let ε tend to 0 in (47), to obtain

4
ð
Ω

Âα3γ3
∂u∗γ
∂z

∂
∂z

bϕα − u∗α
� �

dxdz

+ 2
ð
Ω

Âα333
∂u∗3
∂z

∂
∂z

bϕα − u∗α
� �

dxdz

+ 2
ð
Ω

Â33α3
∂u∗α
∂z

∂
∂z

bϕ3 − u∗3
� �

dxdz

+
ð
Ω

Â3333
∂u∗3
∂z

∂
∂z

bϕ3 − u∗3
� �

dxdz

+
ð
ω

k̂ bϕ − s
			 			 − u∗ − sj j
� �

dx

≥ 〠
3

i=1

ð
Ω

f̂ i bϕ i − u∗i
� �

dxdz:

ð49Þ

This completes the proof of (44) if we cross (49) in the
matrix form A∗: We choose in the variational inequation
(49) bϕ i = u∗i ± ψi, where ψi ∈H

1
0ðΩÞ (for i = 1, 2, 3), and

using Green’s formula, we find

−
ð
Ω

∂
∂z

4Âα3γ3
∂u∗γ
∂z

+ 2Âα333
∂u∗3
∂z

� �
ψαdxdz

−
ð
Ω

∂
∂z

2Â33α3
∂u∗α
∂z

+ Â3333
∂u∗3
∂z

� �
ψ3dxdz

= 〠
3

i=1

ð
Ω

f̂ iψidxdz,

ð50Þ

choosing ψ3 = 0 and ψα ∈H
1
0ðΩÞ; then, ψα = 0 and ψ3 ∈

H1
0ðΩÞ, we get (59). ☐

Theorem 7. Under the assumptions of Theorem 6 then, the
solution of the limit problem (44)–(46) is unique in Vz .

Proof. Suppose that there exists two solutions u∗ and v∗ of the
variational inequality (44), and taking bϕ = v∗ in (44), thenbϕ = u∗ in the inequality relating to v∗: By subtracting the
two obtained inequalities, we have

A∗:
∂
∂z

v∗ − u∗ð Þ, ∂
∂z

v∗ − u∗ð Þ

 �

L2 Ωð Þ
≤ 0: ð51Þ

Wemust now check that A∗ is ellipticity. So, we return to
the properties of Âmentioned in (14) and (15); in particular,
we choose symmetric tensors ζ that are given by ξαβ = 0 (for
α, β = 1, 2); otherwise, the rest of the components ðξi3Þ let it
be whatever. Putting ηi = ξi3, for i = 1, 2, 3, we will get
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Âijklξklξij = 4Âα3β3ηβηα + 2Âα333η3ηα

+ 2Â33α3ηαη3 + Â3333η3η3 = A∗
ijηjηi:

ð52Þ

Consequently, and as jξj2 ≥ jηj2, there exists a positive
constant μ, and for all vectors η in ℝ3, we have

A∗
ijηjηi ≥ μ ηj j2: ð53Þ

So, A∗ is ellipticity. Thus, the relation (44) implies that

μ
∂
∂z

v∗ − u∗ð Þ
����

����
2

L2 Ωð Þ
≤ 0: ð54Þ

Using Poincaré’s inequality, we obtain

v∗ − u∗k k2L2 Ωð Þ ≤ hmaxð Þ2 ∂
∂z

v∗ − u∗ð Þ
����

����
2

L2 Ωð Þ
= 0, ð55Þ

and the proof of uniqueness of u∗ is complete. ☐

Theorem 8. Under the assumptions of Theorem 7, the traces
ðs∗, π∗Þ with s∗ = ðs∗i Þ1≤i≤3 and π∗ = ðπ∗

i Þ1≤i≤3 defined by

s∗i xð Þ = u∗i x, 0ð Þ,

π∗
α xð Þ = 4Âα3γ3

∂u∗γ
∂z

+ 2Âα333
∂u∗3
∂z

� �
x, 0ð Þ ; π∗

3 xð Þ

= 2Â33γ3

∂u∗γ
∂z

+ Â3333
∂u∗3
∂z

� �
x, 0ð Þ,

ð56Þ

satisfy the following limit form of the Tresca boundary condi-
tions:ð
ω

k̂ ψ + s∗ − sj j − s∗ − sj jdx −
ð
ω

π∗:ψdx ≥ 0 ∀ψ ∈ L2 ωð Þ3, ð57Þ

π∗j j < k̂⇒ s∗ = s

π∗j j = k̂⇒∃λ > 0suchthat s∗ = s + λπ∗

)
a:e:inω: ð58Þ

Moreover, if the coefficients Âi3j3 for 1 ≤ i, j ≤ 3, depending
only on the variable x, we have the following weak form of the
Reynolds equation:

ð
ω

~F −
h
2
s∗ +

ðh
0
u∗ x, zð Þdz


 �
:∇ψ xð Þdx = 0, ∀ψ ∈H1 ωð Þ,

ð59Þ

where InvA∗ðxÞ denotes the inverse of A∗ðxÞ and

~F xð Þ =
ðh
0

~F x, ρð Þdρ − h
2
~F x, hð Þ, ð60Þ

~F x, ρð Þ = InvA∗ xð Þ:
ðρ
0

ðθ
0
f̂ x, yð Þdydθ: ð61Þ

Proof. We now choose in the variational inequality (49) bϕ i
= u∗i + ψi, where ψi ∈H

1
Γ1∪ΓL

ðΩÞ for i = 1, 2, 3, and then
using Green’s formula, we obtain

−
ð
Ω

∂
∂z

4Âα3γ3
∂u∗γ
∂z

+ 2Âα333
∂u∗3
∂z

� �
ψαdxdz

−
ð
ω

4Âα3γ3
∂u∗γ
∂z

+ 2Âα333
∂u∗3
∂z


 �
ψα x, 0ð Þdx

−
ð
Ω

∂
∂z

2Â33γ3
∂u∗γ
∂z

+ Â3333
∂u∗3
∂z

� �
ψ3dxdz

−
ð
ω

2Â33γ3
∂u∗γ
∂z

+ Â3333
∂u∗3
∂z


 �
ψ3 x, 0ð Þdx

+
ð
ω

k̂ ψ + s∗ − sj j − u∗ − sj jð Þdx

≥ 〠
3

i=1

ð
Ω

f̂ iψidxdz:

ð62Þ

On the other hand, from (46), we have

ð
ω

k̂ ψ + s∗ − sj j − s∗ − sj jð Þdx −
ð
ω

〠
α

π∗
αψα + π∗

3ψ3

 !
dx ≥ 0:

ð63Þ

By density theorems, we find (57). For (58), we use the ana-
logue of [10].

To prove (59), we use those similar steps as in [2, 5, 9–
11], by integrating (46) from 0 to z, and taking into account
Âi3j3 depending only on x, we obtain

− 4Âα3γ3 xð Þ ∂u
∗
γ

∂z
x, zð Þ + 2Âα333 xð Þ ∂u

∗
3

∂z
x, zð Þ

� �
+ π∗

α xð Þ =
ðz
0
f̂ α x, yð Þdy,

− 2Â33γ3 xð Þ ∂u
∗
γ

∂z
x, zð Þ + Â3333 xð Þ ∂u

∗
3

∂z
x, zð Þ

� �
+ π∗

3 xð Þ =
ðz
0
f̂ 3 x, yð Þdy,

8>>><
>>>:

ð64Þ

−A∗ xð Þ: ∂u
∗

∂z
+ π∗ xð Þ =

ðz
0
f̂ x, yð Þdy: ð65Þ
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It follows from (51) that it is a invertible matrix A∗ðxÞ, for
almost every x ∈ ω. Therefore,

−
∂u∗

∂z
+ InvA∗ xð Þ:π∗ xð Þ = InvA∗ xð Þ:

ðz
0
f̂ x, yð Þdy: ð66Þ

By integrating between 0 and z, we obtain

−u∗ x, zð Þ + s∗ xð Þ + zInvA∗ xð Þ:π∗ xð Þ = ~F x, zð Þ: ð67Þ

As u∗i ðx, hðxÞÞ = 0, we have

s∗ xð Þ + h xð ÞInvA∗ xð Þ:π∗ xð Þ =
ðh xð Þ

0
~F x, yð Þdy: ð68Þ

We integrate (67) from 0 to hðxÞ, and we obtain

−
ðh xð Þ

0
u∗ x, zð Þdz + hs∗ xð Þ + h xð Þ2

2 InvA∗ xð Þ:π∗ xð Þ

=
ðh xð Þ

0
~F x, yð Þdy,

ð69Þ

and by (68), we deduce that

−
ðh xð Þ

0
u∗ x, zð Þdz + h xð Þ

2 s∗ xð Þ − ~F xð Þ = 0, ð70Þ

such that ~F is already defined in (61), and let us finally get the
weak form (59) after multiplying (70) by ∇ψðxÞ and integrate
it in ω. ☐

5. Conclusions

We were able to find a framework to conclude that solving
our original problem leads to solving a well-defined problem
as in (44),(46) and (57)–(59) for the “small” parameter ε.

The key of the problem lies in the relation between the
matrices Aε and A∗. Note that they have the same properties
despite the difference in dimensions, therefore it played a key
role in the transition from uε to u∗.

Indeed, the special case

Aε
ijkl = με δikδjl + δilδjk

� �
+ λεδijδkl ð71Þ

where λε, με > 0 are the Lamé coefficients (see [13] pp. 102-
103) corresponds to the homogeneous and isotropic case of
elastic materials, and has been studied in [2, 3, 5]. Thus also,
the Stokes flow in [11] can be recovered when λε tends to 0.

Data Availability

No data were used.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

The authors would like to thank Professor A. Sili for suggest-
ing the problem addressed in this work.

References

[1] G. Bayada and K. Lhalouani, “Asymptotic and numerical anal-
ysis for unilateral contact problem with Coulomb's friction
between an elastic body and a thin elastic soft layer,” Asymp-
totic Analysis, vol. 25, pp. 329–362, 2001.

[2] H. Benseridi and M. Dilmi, “Some inequalities and asymptotic
behavior of a dynamic problem of linear elasticity,” Georgian
Mathematical Journal, vol. 20, no. 1, pp. 25–41, 2013.

[3] D. Benterki, H. Benseridi, and M. Dilmi, “Asymptotic study of
a boundary value problem governed by the elasticity operator
with nonlinear term,” Adv. Appl. Math. Mech., vol. 6, no. 2,
pp. 191–202, 2014.

[4] H. Irago, J. M. Viaño, and Á. Rodríguez-Arós, “Asymptotic
derivation of frictionless contact models for elastic rods on a
foundation with normal compliance,”Nonlinear Analysis: Real
World Applications, vol. 14, no. 1, pp. 852–866, 2013.

[5] Y. Letoufa, H. Benseridi, and M. Dilmi, “Asymptotic study of a
frictionless contact problem between two elastic bodies,” Jour-
nal of Mathematics and Computer Science, vol. 16, no. 3,
pp. 336–350, 2016.

[6] R. Monneau, F. Murat, and A. Sili, Error Estimate for the Tran-
sition 3d-1d in Anisotropic Heterogeneous Linearized Elasticity,
2002, Preprint.

[7] F. Murat and A. Sili, “Asymptotic behavior of solutions of the
anisotropic heterogeneous linearized elasticity system in thin
cylinders,” Comptes Rendus de l'Académie des Sciences - Series
I - Mathematics, vol. 328, no. 2, pp. 179–184, 1999.

[8] J. M. Viaño, Á. Rodríguez-Arós, and M. Sofonea, “Asymptotic
derivation of quasistatic frictional contact models with wear
for elastic rods,” Journal of Mathematical Analysis and Appli-
cations, vol. 401, no. 2, pp. 641–653, 2013.

[9] H. Benseridi, Y. Letoufa, and M. Dilmi, “On the asymptotic
behavior of an interface problem in a thin domain,” M. Proc.
Natl. Acad. Sci., India, Sect. A Phys. Sci., vol. 89, no. 2, pp. 1–
10, 2019.

[10] M. Boukrouche and R. el Mir, “Asymptotic analysis of a non-
Newtonian fluid in a thin domain with Tresca law,” Nonlinear
Analysis: Theory Methods & Applications, vol. 59, no. 1-2,
pp. 85–105, 2004.

[11] D. Benterki, H. Benseridi, andM. Dilmi, “Asymptotic behavior
of solutions to a boundary value problem with mixed bound-
ary conditions and friction law,” Boundary Value Problems,
vol. 2017, no. 1, 2017.

[12] S. Manaa, H. Benseridi, and M. Dilmi, “3D–2D asymptotic
analysis of an interface problem with a dissipative term in a
dynamic regime,” Boletín de la Sociedad Matemática Mexi-
cana, vol. 27, no. 1, p. 10, 2021.

[13] G. Duvant and J. L. Lions, Les Inéquations en Mécanique et en
physique, Dunod, Paris, 1972.

[14] C. Baiocchi and A. Capelo, “Variational and quasivariational
inequalities,” in Applications to Free-Boundary Problems, John
Wiley, Chichester, 1984.

[15] N. Bellomo and L. de Socio, “Initial/boundary value problems
for the semidiscrete Boltzmann equation: Analysis by

7Journal of Function Spaces



Adomian's decomposition method,” Journal of Mathematical
Analysis and Applications, vol. 128, no. 1, pp. 112–124, 1987.

[16] J. Necas and I. Hlavacek, Mathematical theory of elastic and
elastico plastic bodies: an introduction, Elsevier Scientific Pub-
lishing Company, Amsterdam, Oxford, New York, 1981.

[17] I. Ekeland and R. Temam, Analyse Convexe et Problèmes Var-
iationnels, Dunod, Paris, 1974.

[18] N. Kikuchi and J. T. Oden, Contact problems in elasticity, a
study of variational inequalities and finite element methods,
SIAM, Philadelphia, 1988.

[19] M. Sofonea and A. Matei, Mathematical Models in Contact
Mechanics, London Math. Soc, Lecture Note Ser., Cambridge
University Press, Cambridge, 2012.

[20] V. Girault and P. A. Raviart, Finite element approximation of
the NavierStokes equations, Springer-Verlag, 1979.

8 Journal of Function Spaces



Research Article
A Note on the Generalized Nonlinear Vector Variational-Like
Inequality Problem

Ankit Gupta ,1 Satish Kumar,2 Ratna Dev Sarma,3 Pankaj Kumar Garg,3

and Reny George 4

1Department of Mathematics, Bharati College (University of Delhi), Delhi 110058, India
2Department of Mathematics, University of Delhi, Delhi 110007, India
3Department of Mathematics, Rajdhani College (University of Delhi), Delhi 110015, India
4Department of Mathematics, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University,
Al-Kharj 11942, Saudi Arabia

Correspondence should be addressed to Reny George; renygeorge02@yahoo.com

Received 30 April 2021; Revised 1 July 2021; Accepted 7 July 2021; Published 28 July 2021

Academic Editor: Yuanfang Ru

Copyright © 2021 Ankit Gupta et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, we discuss two variants of the generalized nonlinear vector variational-like inequality problem. We provide their
solutions by adopting topological approach. Topological properties such as compactness, closedness, and net theory are used in
the proof. The admissibility of the function space topology and KKM-Theorem have played important role in proving the results.

1. Introduction

Variational inequalities have appeared as a working and
important tool to investigate various fields of mathematics
as well as of sciences including elasticity, vector equilibrium
problems, and optimization problems [1–4]. In mid-sixties,
Browder [5] formulated and proved the basic existence
results for the solutions to a class of nonlinear variational
inequality problems. He used a reflexive Banach space X
and a monotone nonlinear map T from the space X to
its dual space X∗, to set up the nonlinear variational
inequality problem. Browder used the property of hemi-
continuity and monotonicity of mapping T along with
the lower semicontinuity of f , for providing the existence
of the solution of nonlinear variational inequality problem.
After that, this problem has been generalized and extended
in various directions under different set-ups using different
techniques. Liu et al. [6], Zhao et al. [7], and Ahmad and
Irfan [8] are a few, who extended Browder’s results to
more generalized nonlinear variational inequalities. In
2009, Farajzadeh et al. [9] considered new kinds of
generalized variational-like inequality problems under the
frame work of topological vector spaces.

In the subsequent period, generalized quasi-variational
inequalities were studied by Hung and others [10–12]. In
2017, Irfan et al. introduced a new generalized variational-
like inclusion problem involving relaxed monotone operators
[13]. A class of η-generalized operator variational-like
inequalities were introduced by Kim et al. in 2018 [14]. In
the same year, Tavakoli et al. studied the C-pseudomono-
tone property for the set-valued mappings in order to solve
a generalized variational inequality problems [15]. On the
other hand, vector equilibrium problems for the set-valued
mappings were studied by Farajzadeh et al. and Chen et al.
during this period [16, 17]. This wide range of literature is a
clear indication of the importance that variational inequality
problems have gained in the recent years. In this paper, we
further add to this literature by providing solutions to a gen-
eralized nonlinear vector variational-like inequality problem,
using topological methods.

Variational-like inequalities have number of applications
which make it an interesting discipline for research. Vector
variational inequality on flow equilibrium problem on a net-
work has been discussed in [18]. Application of variational-
like inequality in fuzzy optimization problem is discussed in
[19]. More such studies are available in the literature [20–22].
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Motivated by these studies, here, we investigate a general-
ized nonlinear variational like inequality problem, which was
proposed by Farajzadeh et al. [9] as follows:

Generalized nonlinear variational-like inequality prob-
lem: let hX, X∗i be a dual system of Hausdorff topological
vector spaces and K be a nonempty convex subset of X.
Given the mappings f , g, p : X∗ ⟶ X∗ and η : K × K ⟶
X, set-valued map M, S, T : K ⟶ X∗, and a map h : K × K
⟶ℝ, consider the following generalized nonlinear
variational-like inequality problem (GNVLIP)

Find x ∈ K such that for each y ∈ K ,
∃u ∈M xð Þ, v ∈ S xð Þ, w ∈ T xð Þ satisfying
p uð Þ − f vð Þ − g wð Þð Þ, η y, xð Þh i ≥ h x, yð Þ

8
>><
>>:

ð1Þ

In this paper, we consider two variants of nonlinear vec-
tor variational-like inequality problems in a more general set-
up as follows:

Let X and Y be two topological vector spaces, and let K be
a nonempty, closed, and convex subset of X and CLðX, YÞ be
the space of all continuous linear mappings from the space X
to the space Y . Clearly, CLðX, YÞ is nonempty as the zero
mapping, that is, k : X ⟶ Y defined as kðxÞ = 0 for all
x ∈ X is always linear and continuous, hence belongs to
CLðX, YÞ.

Further, letM, S, T : K ⟶ CLðX, YÞ be set-valued map-
pings and f , g, p : CLðX, YÞ⟶ CLðX, YÞ be single-valued
mappings. Suppose the maps η : K × K ⟶ X and h : K ×
K ⟶ Y are two bifunctions.

Problem 1. Suppose C ⊆ Y is a closed, convex, pointed cone
with int C ≠∅. Then, the generalized nonlinear vector
variational-like inequality problem (I) (GNVVLIP (I)) is to
find x0 ∈ K , such that for each y ∈ K , there exist u ∈Mðx0Þ,
v ∈ Sðx0Þ, and w ∈ Tðx0Þ such that

p uð Þ − f vð Þ − g wð Þð Þð Þð Þ η y, x0ð Þð Þ − h x0, yð Þ ∉ −int C: ð2Þ

Problem 2. Suppose C : K ⟶ Y is a set-valued map such
that for every x ∈ K , CðxÞ is a proper, closed, convex, pointed
cone with nonempty interior. Then, the generalized nonlin-
ear vector variational-like inequality problem (II) (GNVVLI
(II)) is to find x0 ∈ K such that for each y ∈ K , ∃u ∈Mðx0Þ,
v ∈ Sðx0Þ, and w ∈ Tðx0Þ such that

p uð Þ − f vð Þ − g wð Þð Þð Þð Þ η y, x0ð Þð Þ − h x0, yð Þ ∉ −int C x0ð Þ:
ð3Þ

Here, we are trying to provide solutions to the above stated
generalized nonlinear vector variational-like inequality prob-
lems (I and II) from a topological point of view. We consider
X and Y to be any topological vector spaces and use the con-
cept of admissibility of the function space topology along with
net theory to prove the existence of solutions of these general-
ized nonlinear vector variational-like inequality problems.

2. Preliminaries

Below, we provide some definitions and results related
mainly to set-valued maps between topological spaces.

Definition 3 [23]. Suppose ðX, τ1Þ and ðY , τ2Þ are two
topological spaces and F : X⟶ Y is a set-valued map.

(i) F is called upper semicontinuous (in short, u.s.c.) at a
point x ∈ X, if for every open set V in Y such that
FðxÞ ⊆ V , there exists an open set U in X with x ∈
U such that FðUÞ ⊆V ;

(ii) F is called lower semicontinuous (in short, l.s.c.) at a
point x ∈ X, if for every open set V in Y such that
FðxÞ ∩ V ≠∅, there exists an open set U in X with
x ∈U such that for each u ∈U , FðuÞ ∩V ≠∅;

(iii) F is said to be continuous at x ∈ X if it is both upper
semicontinuous and lower semicontinuous at x;

(iv) F is said to be continuous (resp. u.s.c. and l.s.c.) if it is
so at each point of X.

Lemma 4 [24]. Suppose ðX, τ1Þ and ðY , τ2Þ are topological
spaces and F : X⟶ Y is a set-valued map. Then,

(i) if F is upper semicontinuous at x ∈ X and FðxÞ is com-
pact then for every net fxαgα∈D and yα ∈ FðxαÞ with
xα ⟶ x and yα ⟶ y, we have y ∈ FðxÞ;

(ii) F is lower semicontinuous at x ∈ X if and only if for
every y ∈ FðxÞ and every net fxαgα∈D with xα ⟶ x,
there exists a subnet fxβgβ∈Ω, where Ω is a directed

subset of D and a net fyβgβ∈Ω such that yβ ∈ FðxβÞ
with yβ ⟶ y.

Theorem 5 [23]. Let ðX, τÞ and ðY , μÞ be two topological
spaces. Let F : X ⟶ Y be a set-valued map. Then, F is lower
semicontinuous at x ∈ X if for any net fxngn∈Δ in X converg-
ing to x ∈ X, the image net fFðxnÞgn∈Δ converges to FðxÞ.

Lemma 6 [25]. Suppose X and Y are topological spaces and
F : X⟶ Y is a set-valued upper semicontinuous function.
If FðxÞ is compact for each x ∈ X, then image of every compact
subset of X under F is compact.

Definition 7 [23, 26]. Let ðY , μ1Þ and ðZ, μ2Þ be two topolog-
ical spaces. Let CðY , ZÞ be the space of all continuous map-
pings from Y to Z. A topology τ on CðY , ZÞ is called
admissible, if the evaluation map e : CðY , ZÞ × Y ⟶ Z,
defined by eð f , yÞ = f ðyÞ, is continuous.

Definition 8 [26]. Let f f ngn∈Δ be a net in CðY , ZÞ. Then,
f f ngn∈Δ is said to continuously converge to f if for each net
fymgm∈σ in Y converging to y, f f nðymÞgðn,mÞ∈Δ×σ converges

to f ðyÞ in Z.
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Theorem 9 [23]. Let ðY , τÞ and ðZ, μÞ be two topological
spaces. A topology T on CðY , ZÞ, the family of continuous
mappings from Y to Z, is admissible if and only if for any
net f f ngn∈Δ in CðY , ZÞ, f f ngn∈Δ converges to f in T implies
continuous convergence of f f ngn∈Δ to f .

Definition 10 [27]. Suppose F : X ⟶ Y is a set-valued map
from X to Y . The graph of F, denoted by GðFÞ, is

G Fð Þ = x, yð Þ ∈ X × Y xj ∈ X, y ∈ F xð Þf g: ð4Þ

Definition 11 [28]. Suppose S is a nonempty subset of some
topological vector space X. A set-valued map F : S⟶ X is
called a KKM-mapping if for every nonempty finite set fx1,
x2,⋯, xng of S, we have

conv x1, x2,⋯, xnf g ⊆
[n

j=1
F xj
� �

: ð5Þ

The following result is taken from [28].

Lemma 12 (KKM-Theorem). Suppose S is a nonempty subset
of some topological vector space X and F:S⟶ X is a KKM-
mapping such that for every x ∈ S, FðxÞ is a closed subset of
X. If there exists a point x0 ∈ S such that Fðx0Þ is compact,
then

T
x∈SFðxÞ ≠∅.

3. Main Results

Theorem 13. Suppose X and Y are two topological vector
spaces and CLðX, YÞ is the space of all continuous linear map-
pings from the space X to the space Y equipped with an admis-
sible topology. Let K be a nonempty, compact, closed, and
convex subset of X. Suppose C ⊆ Y is a closed, convex, pointed
cone with int C ≠∅. Further, letM, S, T : K ⟶ CLðX, YÞ be
set-valued lower semicontinuous mappings and f , g, p : CL
ðX, YÞ⟶ CLðX, YÞ be continuous mappings. Suppose the
maps η : K × K ⟶ X and h : K × K ⟶ Y are affine map-
pings such that η is continuous in the second argument and
h is continuous in the first argument, respectively, with
ηðx, xÞ = hðx, xÞ = 0 for all x ∈ K . Then, the generalized
nonlinear vector variational-like inequality problem (I) has a
solution. That is, there exists x0 ∈ K such that for each y ∈ K,
there exist u ∈Mðx0Þ, v ∈ Sðx0Þ, and w ∈ Tðx0Þ such that

p uð Þ − f vð Þ − g wð Þð Þð Þð Þ η y, x0ð Þð Þ − h x0, yð Þ ∉ −int C: ð6Þ

Proof. We define a set-valued map F : K ⟶ K by

F yð Þ = x ∈ K ∃j u ∈M xð Þ, v ∈ S xð Þ,w ∈ T xð Þ such thatf
� p uð Þ − f vð Þ − g wð Þð Þð Þð Þ η y, xð Þð Þ − h x, yð Þ ∉ −intCg:

ð7Þ

Clearly, FðyÞ is nonempty as y ∈ FðyÞ. As y ∈ K, we have
ηðy, yÞ = hðy, yÞ = 0. Thus, for each u ∈MðyÞ, v ∈ SðyÞ, and
w ∈ TðxÞ, we have ðpðuÞ − ð f ðvÞ − gðwÞÞÞðηðy, yÞÞ − hðy, yÞ

= ðpðuÞ − ð f ðvÞ − gðwÞÞÞð0Þ − 0 = 0. Since C is a closed con-
vex and pointed cone, thus 0 ∉ −int C.

The proof of the theorem is divided into two parts:

(i) F is a KKM-mapping on K :

Let A = fx1, x2,⋯, xng ⊆ K be any finite subset of K .
We show that convfx1, x2,⋯, xng ⊆

Sn
i=1FðxiÞ. Let, if

possible, x′ ∉Sn
i=1FðxiÞ for some x′ ∈ convfx1, x2,⋯, xng.

Then, we have x′ =∑n
i=1μixi for some μi ≥ 0 and ∑n

i=1μi = 1.
Also, as x′ ∉ FðxiÞ, for all u ∈Mðx′Þ, v ∈ Sðx′Þ, and
w ∈ Tðx′Þ, we have ððpðuÞ − ð f ðvÞ − gðwÞÞÞÞðηðxi, x′ÞÞ − hð
x′, xiÞ ∈ −int C, for each i = 1, 2,⋯, n. Since −int C is convex
and μi ≥ 0 with ∑n

i=1μi = 1, therefore ∑n
i=1μi½ðpðuÞ − ð f ðvÞ −

gðwÞÞÞðηðxi, x′ÞÞ − hðx′, xiÞ� ∈ −int C. As pðuÞ, f ðvÞ, and
gðwÞ belong to CLðX, YÞ, they are linear. Therefore, we have
∑n

i=1μi½ðpðuÞ − ð f ðvÞ − gðwÞÞÞðηðxi, x′ÞÞ − hðx′, xiÞ� = ðpðuÞ
− ð f ðvÞ − gðwÞÞÞð∑n

i=1μiηðxi, x′ÞÞ −∑n
i=1μihðx′, xiÞ:Again, η

and h are affine; hence, ∑n
i=1μiðηðxi, x′ÞÞ − ∑n

i=1μiðhðx′, xiÞÞ
= ηð∑n

i=1μixi,∑
n
i=1μix′Þ − hð∑n

i=1μix′,∑
n
i=1μixiÞ = ηðx′, x′Þ −

hðx′, x′Þ = 0 as ηðx′, x′Þ = 0 = hðx′, x′Þ by the given hypoth-
esis. Therefore, ∑n

i=1μi½pðuÞ − ð f ðvÞ − gðwÞÞðηðxi, x′ÞÞ − hðx′
, xiÞ� = 0. Thus, we have 0 ∈ −int C, where 0 is the zero vector
in Y . Thus, 0 = −0 ∈ int C, which is a contradiction. Therefore,
we have convfx1, x2,⋯, xng ⊆

Sn
i=1FðxiÞ. Hence, F is a KKM-

mapping on K.

(ii) FðyÞ is closed for each y ∈ K :

Let fxαgα∈D be a net in FðyÞ, converging to some z0 in X.
As K is closed, z0 ∈ K . We have to show that z0 ∈ FðyÞ, that is,
there exist u0 ∈Mðz0Þ, v0 ∈ Sðz0Þ, and w0 ∈ Tðz0Þ such that
ðpðu0Þ − ð f ðv0Þ − gðw0ÞÞÞðηðy, z0ÞÞ − hðz0, yÞ ∉ −int C. Since
xα ∈ FðyÞ, therefore there exist some uα ∈MðxαÞ, vα ∈ SðxαÞ,
and wα ∈ TðxαÞ such that ðpðuαÞ − ð f ðvαÞ − gðwαÞÞÞðηðy, xα
ÞÞ − hðxα, yÞ ∉ −int C. Now, the maps M, S, and T are set-
valued lower semicontinuous functions; therefore, for each
u0 ∈Mðz0Þ and fxαg converging to z0, there exists a subnet
fxαkg of fxαg with uαk ∈MðxαkÞ such that uαk converges to
u0, in view of Lemma 4. Now, fxαkg is a net in itself converg-
ing to z0 and w0 ∈ Tðz0Þ; therefore, there exists a subnet
fxαkl g of fxαkg with vαkl

∈ Sðxαkl Þ. Similarly, we have a subnet

fxαklmg of fxαkl g with wαklm
∈ Tðxαklm Þ such that the subnets

fuαkg, fvαkl g, and fwαklm
g converge to u0, v0, and w0, respec-

tively, in view of Lemma 4. As these nets are subnets of uαk ,
vαk , and wαk

, respectively, thus without loss of generality,
we denote the subnets fuαkg, fvαkl g, and fwαklm

g by fuαkg,
fvαkg, and fwαk

g, respectively, which converge to u0, v0,
and w0, respectively.

Since the single-valued map p, f , and g are continuous,
therefore we have pðuαkÞ, f ðvαkÞ, and gðwαk

Þ converge to
pðu0Þ, f ðv0Þ, and gðw0Þ, respectively.

By the given hypothesis, that is, η is continuous in the
second argument, we have ηðy, xαkÞ converges to ηðy, z0Þ.
Since the space CLðX, YÞ is given to be admissible, thus we
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have ðpðuαkÞ − ð f ðvαkÞ − gðwαk
ÞÞÞðηðy, xαkÞÞ converges to

ðpðu0Þ − ð f ðv0Þ − gðw0ÞÞÞðηðy, z0ÞÞ, by Theorem 9. As the
map h is continuous in the first component, therefore
hðxαk , yÞ converges to hðz0, yÞ. Hence, ððpðuαkÞ − ð f ðvαkÞ − g
ðwαk

ÞÞÞðηðy, xαkÞÞ − hðxαk , yÞÞ converges to ðpðu0Þ − ð f ðv0Þ
− gðw0ÞÞÞðηðy, z0ÞÞ − hðz0, yÞ, in view of the fact that CLðX,
YÞ is admissible.

Now, we will show that ðpðu0Þ − ð f ðv0Þ − gðw0ÞÞÞðηðy,
z0ÞÞ − hðz0, yÞ ∉ −int C.

Let, if possible, ðpðu0Þ − ð f ðv0Þ − gðw0ÞÞÞðηðy, z0ÞÞ − hð
z0, yÞ ∈ −int C. Then, by the convergence of net, we have ðp
ðuαkÞ − ð f ðvαkÞ − gðwαk

ÞÞÞðηðy, xαkÞÞ − hðxαk , yÞ ∈ −int C
eventually, which leads to contradiction. Hence, ðpðu0Þ − ð f
ðv0Þ − gðw0ÞÞÞðηðy, z0ÞÞ − hðz0, yÞ ∉ −int C. Thus, we have
z0 ∈ FðyÞ.

Now FðyÞ is closed, and K is compact. This implies that
FðyÞ is a compact subset of K . Therefore, by KKM-Theorem,T

y∈K FðyÞ ≠∅. Hence, there exists some x0 ∈ K such that x0
∈
T

y∈K FðyÞ. That is, for each y ∈ K , there exist u0 ∈Mðx0Þ,
v0 ∈ Sðx0Þ, and w0 ∈ Tðx0Þ such that ðpðu0Þ − ð f ðv0Þ − gð
w0ÞÞÞðηðy, x0ÞÞ − hðx0, yÞ ∉ −int C, hence the result. ☐

In the above theorem, we have proved that, along with other
conditions, lower semicontinuity ofM, S, T ensures existence
of solutions for GNVVLIP (I).

In the next theorem, we are providing another set of condi-
tions for the existence of solutions for these class of problems.

Theorem 14. Suppose X and Y are two topological vector
spaces and CLðX, YÞ is the space of all continuous linear map-
pings from the space X to the space Y equipped with an admis-
sible topology. Let K be a nonempty, closed, compact, and
convex subset of X. Suppose C ⊆ Y is a closed, convex, pointed
cone with int C ≠∅. Further, letM, S, T : K ⟶ CLðX, YÞ be
set-valued upper semicontinuous functions with nonempty
compact values, that is, MðxÞ, SðxÞ, and TðxÞ are compact
for every x ∈ K . Let f , g, p : CLðX, YÞ⟶ CLðX, YÞ be con-
tinuous mappings. Suppose the maps η : K × K ⟶ X and
h : K × K ⟶ Y are affine mappings such that η is continuous
in the second argument and h is continuous in the first argu-
ment, respectively, with ηðx, xÞ = hðx, xÞ = 0 for all x ∈ K .
Then, there exists a solution to the generalized nonlinear vec-
tor variational inequality problem. That is, there exists x0 ∈ K
such that for each y ∈ K , there exist u ∈Mðx0Þ, v ∈ Sðx0Þ, and
w ∈ Tðx0Þ such that

p uð Þ − f vð Þ − g wð Þð Þð Þð Þ η y, x0ð Þð Þ − h x0, yð Þ ∉ −int C: ð8Þ

Proof. Consider a set-valued map F : K ⟶ K defined as

F yð Þ = x ∈ K ∃j u ∈M xð Þ, v ∈ S xð Þ,w ∈ T xð Þ such thatf
� p uð Þ − f vð Þ − g wð Þð Þð Þð Þ η y, xð Þð Þ − h x, yð Þ ∉ −intCg:

ð9Þ

The proof of the theorem is divided into two parts:

(i) F is a KKM-mapping on K ;

(ii) FðyÞ is closed for each y ∈ K .

Proof of part (i) is similar to that of Theorem 13. There-
fore, we are providing the proof of part (ii) only.

Let fxαgα∈D be a net in FðyÞ, converging to some z0 ∈ X.
As K is closed, z0 ∈ K . We have to show that z0 ∈ FðyÞ, that is,
there exist u0 ∈Mðz0Þ, v0 ∈ Sðz0Þ, and w0 ∈ Tðz0Þ such that
ðpðu0Þ − ð f ðv0Þ − gðw0ÞÞÞðηðy, z0ÞÞ − hðz0, yÞ ∉ −int C. Since
xα ∈ FðyÞ, therefore there exist some uα ∈MðxαÞ, wα ∈ TðxαÞ,
and vα ∈ SðxαÞ such that ðpðuαÞ − ð f ðvαÞ − gðwαÞÞÞðηðy, xαÞÞ
− hðxα, yÞ ∉ −int C. Now, K is a compact subset of X, and M
, S, and T are set-valued upper semicontinuous functions such
that MðxÞ, SðxÞ, and TðxÞ are compact. Therefore, MðKÞ,
SðKÞ, and TðKÞ are also compact by Lemma 6. As fuαg,
fvαg, and fwαg are nets in MðKÞ, SðKÞ, and TðKÞ, respec-
tively, there exist subnets fuαkgαk∈D1

, fvαlgαl∈D2
, and

fwαm
g
αm∈D3

such that fuαkg, fvαlg, and fwαm
g converge to

some u0 ∈MðKÞ, v0 ∈ SðKÞ, and w0 ∈ TðKÞ, respectively.
Now, we construct a directed set D4 ⊂D, defined in the

following way:
By the order property of the directed set D, for each trip-

let αk, αl, αm ∈D, there exists some αδ ∈D such that αδ ≥ αk,
αδ ≥ αl, and αδ ≥ αm. We denote the collection of such αδ

’s
by D4. It can be easily verified that D4 is a directed set under
the induced ordering of D.

Thus, we have subnets fuδgδ∈D4
, fvδgδ∈D4

, and fwδgδ∈D4
of fuαkg, fvαlg, and fwαm

g, respectively, such that fuδg, fvδg,
and fwδg converge to u0 ∈MðKÞ, v0 ∈ SðKÞ, and w0 ∈ TðKÞ,
respectively.

Then, proceeding as in Theorem 13, we have z0 ∈ FðyÞ.
Thus, FðyÞ is closed, and K is compact. This implies that F
ðyÞ is a compact subset of K . Therefore, by KKM-Theorem,
there exists some x0 ∈ FðyÞ for each y ∈ K . That is, for each
y ∈ K , there exist u0 ∈Mðx0Þ, v0 ∈ Sðx0Þ, and w0 ∈ Tðx0Þ such
that ðpðu0Þ − ð f ðv0Þ − gðw0ÞÞÞðηðy, x0ÞÞ − hðx0, yÞ ∉ −int C,
hence the result. ☐

In the next theorem, we investigate the properties of solu-
tion sets of GNVVLIP (I).

Theorem 15. Let S ⊆ K be the set of all solutions of a general-
ized nonlinear vector variational-like inequality problem as
obtained in Theorem 13 (respectively, Theorem 14). Then, S
is closed and compact in K .

Proof. Suppose S ⊆ K is the solution set of the generalized
nonlinear vector variational-like inequality problem. Then,
by Theorem 13, we have S =T

y∈K FðyÞ, where

F yð Þ = x ∈ K ∃j u ∈M xð Þ, v ∈ S xð Þ,w ∈ T xð Þ such thatf
� p uð Þ − f vð Þ − g wð Þð Þð Þð Þ η y, xð Þð Þ − h x, yð Þ ∉ −intCg:

ð10Þ

It has been proved in Theorem 13 that each FðyÞ is
closed. Therefore, S is a closed set and hence a closed subset
of K . Since K is compact, S is compact as well. ☐
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In the next set of theorems, we consider the other variant
of the generalized nonlinear vector variational-like inequality
problem and provide the conditions for the solution.

Theorem 16. Suppose X and Y are two topological vector
spaces and CLðX, YÞ is the space of all continuous linear map-
pings from the space X to the space Y equipped with an admis-
sible topology. Let K be a nonempty, closed, compact, and
convex subset of X. Suppose C : K ⟶ Y is a set-valued map
such that for every x ∈ K , CðxÞ is a proper closed, convex,
pointed cone with int CðxÞ ≠∅. Further, suppose that G : K
⟶ Y is also a set-valued map defined by GðxÞ = Y \ ð−int
CðxÞÞ such that the graph of G, GðGÞ, is a closed set in X ×
Y . Further, let M, S, T : K ⟶ CLðX, YÞ be set-valued lower
semicontinuous mappings and f , g, p : CLðX, YÞ⟶ CLðX,
YÞ be continuous mappings. Suppose the maps η : K × K
⟶ X and h : K × K ⟶ Y are affine mappings such that η
is continuous in the second argument and h is continuous in
the first argument, respectively, with ηðx, xÞ = hðx, xÞ = 0 for
all x ∈ K . Then, the generalized nonlinear vector variational-
like inequality problem (II) has a solution. That is, there exists
x0 ∈ K such that for each y ∈ K , ∃u ∈Mðx0Þ, v ∈ Sðx0Þ, and
w ∈ Tðx0Þ such that

p uð Þ − f vð Þ − g wð Þð Þð Þð Þ η y, x0ð Þð Þ − h x0, yð Þ ∉ −int C x0ð Þ:
ð11Þ

Proof. Consider a set-valued map F : K ⟶ K defined as

F yð Þ = x ∈ K∣∃u ∈M xð Þ, v ∈ S xð Þ,w ∈ T xð Þ such thatf
� p uð Þ − f vð Þ − g wð Þð Þð Þð Þ η y, xð Þð Þ − h x, yð Þ ∉ −intC x0ð Þg:

ð12Þ

Likewise in Theorem 13, the proof of this theorem is also
divided into two parts:

(i) F is a KKM-mapping on K ;

(ii) FðyÞ is closed for each y ∈ K .

Proof of part (i) is similar to that of Theorem 13. There-
fore, we are providing the proof of part (ii) only.

As in Theorem 13, it follows that the net fðpðuαkÞ − ð f ð
vαkÞ − gðwαk

ÞÞÞðηðy, xαkÞÞ − hðxαk , yÞg converges to ðpðu0Þ −
ð f ðv0Þ − gðw0ÞÞÞðηðy, z0ÞÞ − hðz0, yÞ, in view of admissibility
of CLðX, YÞ, lower semicontinuity of T , and the other given
conditions of the hypothesis.

Now, we will show that ðpðu0Þ − ð f ðv0Þ − gðw0ÞÞÞðηðy,
z0ÞÞ − hðz0, yÞ ∉ −int Cðz0Þ. As in Theorem 13, we have the
net fxα, ðpðuαkÞ − ð f ðvαkÞ − gðwαk

ÞÞÞðηðy, xαkÞÞ − hðxαk , yÞg
is convergent and converges to fz0, ðpðu0Þ − ð f ðv0Þ − gð
w0ÞÞÞðηðy, z0ÞÞ − hðz0, yÞg. Also, the net is contained in
GðGÞ, and the graph GðGÞ is closed; therefore, ðz0, ðpðu0Þ
− ð f ðv0Þ − gðw0ÞÞÞðηðy, z0ÞÞ − hðz0, yÞÞ ∈ GðGÞ. Hence, we
have pðu0Þ − ð f ðv0Þ − gðw0ÞÞÞðηðy, z0ÞÞ − hðz0, yÞ ∉ −int Cð
z0Þ. Thus, we have z0 ∈ FðyÞ. Therefore, FðyÞ is closed.

Now FðyÞ is closed, and K is compact. This implies that
FðyÞ is a compact subset of K . Therefore, by KKM-Theorem,T

y∈K FðyÞ ≠∅. Hence, there exists some x0 ∈ K such that x0
∈
T

y∈K FðyÞ. That is, for each y ∈ K , there exist u0 ∈Mðx0Þ,
v0 ∈ Sðx0Þ, and w0 ∈ Tðx0Þ such that ðpðu0Þ − ð f ðv0Þ − gð
w0ÞÞÞðηðy, x0ÞÞ − hðx0, yÞ ∉ −int Cðx0Þ, hence the result. ☐

Another solution of the generalized nonlinear vector
variational-like inequality problem (II) is provided below.

Theorem 17. Suppose X and Y are two topological vector
spaces and CLðX, YÞ is the space of all continuous linear map-
pings from the space X to the space Y equipped with an admis-
sible topology. Let K be a nonempty, closed, compact, and
convex subset of X. Suppose C : K ⟶ Y is a set-valued map
such that for every x ∈ K , CðxÞ is a proper, closed, convex,
pointed cone with int CðxÞ ≠∅. Further, suppose that G : K
⟶ Y is also a set-valued map defined by GðxÞ = Y \ ð−int
CðxÞÞ such that graph ofG,GðGÞ, is a closed set in X × Y . Fur-
ther, let M, S, T : K ⟶ CLðX, YÞ be set-valued upper semi-
continuous functions with nonempty compact values, that is,
MðxÞ, SðxÞ, and TðxÞ are compact for every x ∈ K and let f ,
g, p : CLðX, YÞ⟶ CLðX, YÞ be continuous mappings.
Suppose the maps η : K × K ⟶ X and h : K × K ⟶ Y are
affine mappings such that η is continuous in the second argu-
ment and h is continuous in the first argument with ηðx, xÞ
= hðx, xÞ = 0, respectively, for all x ∈ K . Then, the generalized
nonlinear vector variational-like inequality problem (II) has a
solution. That is, there exists x0 ∈ K such that for each y ∈ K ,
∃u ∈Mðx0Þ, v ∈ Sðx0Þ, and w ∈ Tðx0Þ such that

p uð Þ − f vð Þ − g wð Þð Þð Þð Þ η y, x0ð Þð Þ − h x0, yð Þ ∉ −int C x0ð Þ:
ð13Þ

Proof. The result can be proved on the similar lines as that of
Theorem 14 and Theorem 16. ☐

We can draw the following conclusions from the results
obtained so far:

(i) Suppose h : K × K ⟶ Y is defined as the constant
map with hðx, yÞ = 0 for all ðx, yÞ ∈ K × K and η : K
× K ⟶ Y is defined as ηðx, yÞ = x − y, and M and S
are taken as zero functions. If f , p : CLðX, YÞ⟶ CL
ðX, YÞ are also defined as zero functions, that if f ðxÞ
= pðxÞ = 0 for all x ∈ CLðX, YÞ and g : CLðX, YÞ
⟶ CLðX, YÞ is taken as an identity map, that is,
gðxÞ = x for all x ∈ CLðX, YÞ. Then, Theorem 16
ensures solution to the generalized vector variational
inequality problem discussed in [29]. Also, we have

(a) Theorem 16 reduces to Theorem 3.6 of [29];

(b) Theorem 17 reduces to Theorem 3.1 of [29].

Further, if T is single-valued, then Theorem 13 reduces to
Theorem 3.1 and Theorem 17 reduces to Theorem 3.2 of
[30], respectively.
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4. Conclusion

In this paper, we have provided solutions to two variants of
the generalized vector variational-like inequality problem.
Our approach and the result obtained here differ significantly
from those of the existing literature. To be precise,

(i) The spaces X and Y considered in this paper are
topological vector spaces. In [15], the space Y is taken
to be ℝ, whereas [13] deals with real Hilbert spaces;

(ii) We have used conditions of upper semicontinuity as
well as lower semicontinuity on the set-valued map-
pings to obtain our results. In [15], the concepts of
transfer closed and intersectionally closed are used
along with an assumption milder than C-pseudo-
monotonicity on the set-valued mappings. On the
other hand, relaxed monotonicity and relaxed
Lipschitz’s continuity are used in [13] and general-
ized C-quasi-convexity is used in [17] for the set-
valued mappings.

The approach adopted in our paper is topological and
varies significantly from the rest literature. Net theory is
extensively used in all the main results. We have used admis-
sibility of the function space topology to obtain our results.
The authors are not aware of any such results in the literature
of variational inequality which are proved adopting similar
techniques.
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In the recent progress, different iterative procedures have been constructed in order to find the fixed point for a given self-map in an
effective way. Among the other things, an effective iterative procedure called the JK iterative scheme was recently constructed and
its strong and weak convergence was established for the class of Suzuki mappings in the setting of Banach spaces. The first purpose
of this research is to obtain the strong and weak convergence of this scheme in the wider setting of generalized α-nonexpansive
mappings. Secondly, by constructing an example of generalized α-nonexpansive maps which is not a Suzuki map, we show that
the JK iterative scheme converges faster as compared the other iterative schemes. The presented results of this paper properly
extend and improve the corresponding results of the literature.

1. Introduction

A mapping S on a subset U of a Banach space is called con-
traction provided that for all z, z′ ∈U follows that

Sz − Sz′
�� �� ≤ δ z − z′

�� ��, ð1Þ

where δ ∈ ½0, 1Þ is fixed. A point v0 is called a fixed point for S
if v0 = Sv0. Normally, we denote the set of all fixed points of
S by FS , that is, FS = fv0 ∈U : Sv0 = v0g. The Banach–Cac-
cioppoli fixed point theorem (BCFPT) [1, 2] provides the
existence of a unique fixed point for every self-contraction
of a complete metric space.

We say that a self-map S : U ⟶U is nonexpansive on
the set U provided that

Sz − Sz′
�� �� ≤ z − z′

�� ��, for all z, z′ ∈U: ð2Þ

We may observe that every contraction of a subset U of a
Banach space is nonexpansive but the converse may not hold
in general. Unlike contractions, every self-nonexpansive map-
ping of a complete metric space does not admit a fixed point.
After many years of BCFPT, Browder [3], Gohde [4] and
Kirk [5] independently obtained that a self-nonexpansive
mapping of a closed bounded convex subset of a uniformly
convex Banach space (UCBS, for short) always has a fixed
point.

In 2008, Suzuki [6] provided a new type of generalization
of nonexpansive mappings and proved some related fixed
point results for this class of mappings in Banach spaces.
Notice that a self-map S : U ⟶U is mapping with the
ðCÞ property (also called Suzuki mapping) if any z, z′ ∈U
follows that

1
2 z − Szk k ≤ z − z′

�� ��⇒ Sz − Sz′
�� �� ≤ z − z′

�� ��: ð3Þ
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In 2011, Aoyama and Kohsaka [7] provided the idea of
α-nonexpansive mappings. A self-map S : U ⟶U is called
α-nonexpansive if any z, z′ ∈U follows that

Sz − Sz′
�� ��2 ≤ α z − Sz′

�� ��2 + α z′ − Sz
�� ��2

+ 1 − 2αð Þ z − z′
�� ��2, ð4Þ

where α ∈ ½0, 1Þ.
In 2017, Pant and Shukla [8] defined a very general class

of nonexpansive mappings which properly contains the class
of Suzuki mappings and partially extends the class of α
-nonexpansive mappings. A self-map S : U ⟶U is called
generalized α-nonexpansive if any z, z′ ∈U follows that

1
2 z − Szk k ≤ z − z′

�� ��⇒ Sz − Sz′
�� ��

≤ α z − Sz′
�� �� + α z′ − Sz

�� ��
+ 1 − 2αð Þ z − z′

�� ��,
ð5Þ

where α ∈ ½0, 1Þ.
Fixed point approximation for nonexpansive mappings

under a suitable iterative method is a very active field of
research and provides many interesting and important appli-
cations in applied sciences (cf. [9–12] and others). Finding
the fixed points for nonexpansive and generalized nonexpan-
sive under Picard iteration is not possible in general. A simple
situation of such a case which is the rotation of the unit disk
about the origin in a plane is a best example of a nonexpan-
sive mapping which has a unique fixed point but Picard iter-
ation does not converge to this point. In order to find fixed
points of nonexpansive and hence generalized nonexpansive
mappings and secondly to obtain relatively high accuracy,
some authors introduced different types of iterative proce-
dures (cf. Mann [13], Ishikawa [14], Noor [15], Agarwal
et al. [16], Abbas and Nazir [17], Thakur et al. [18] and refer-
ences therein). Suppose that U is a closed nonempty convex
subset of a given Banach space, and assume further that ξk,
ηk, μk ∈ ð0, 1Þ, k ∈ℕ, and S is a self-map of U .

The Mann [13] iteration process is stated as follows:

p1 = p ∈U ,
pk+1 = 1 − ξkð Þpk + ξkSpk:

ð6Þ

The Ishikawa [14] iterative process may be viewed as a
two-step Mann iteration, which is given by

p1 = p ∈U ,
qk = 1 − ηkð Þpk + ηkSpk,

pk+1 = 1 − ξkð Þpk + ξkSqk:

ð7Þ

In 2000, Noor [15] suggested a three-step iterative pro-
cess which is more general than the Mann and Ishikawa iter-
ation processes as follows:

p1 = p ∈U ,
rk = 1 − μkð Þpk + μkSpk,
qk = 1 − ηkð Þpk + ηkSrk,

pk+1 = 1 − ξkð Þpk + ξkSqk:

ð8Þ

In 2007, Agarwal et al. [16] suggested a new iteration pro-
cess, which converges faster than the Mann iteration for con-
traction mappings in Banach spaces:

p1 = p ∈U ,
qk = 1 − ηkð Þpk + ηkSpk,

pk+1 = 1 − ξkð ÞSpk + ξkSqk:

ð9Þ

In 2014, Abbas and Nazir [17] proposed a new three-step
iteration which converges faster than all of the Picard, Mann,
Ishikawa, and Agarwal iterative processes for nonexpansive
mappings, as follows:

p1 = p ∈U ,
rk = 1 − μkð Þpk + μkSpk,
qk = 1 − ηkð ÞSpk + ηkSrk,

pk+1 = 1 − ξkð ÞSqk + ξkSrk:

ð10Þ

In 2016, Thakur et al. [18] suggested the following itera-
tion process, which converges faster than all of the above iter-
ative processes for Suzuki mappings:

p1 = p ∈U ,
rk = 1 − ηkð Þpk + ηkSpk,
qk = S 1 − ξkð Þpk + ξkrkð Þ,

pk+1 = Sqk:

ð11Þ

Very recently, Ahmad et al. [19] introduced a new itera-
tive process named JK iteration, as follows:

p1 = p ∈U ,
rk = 1 − ηkð Þpk + ηkSpk,
qk = Srk,

pk+1 = S 1 − ξkð ÞSrk + ξkSqkð Þ:

ð12Þ

They observed that JK iteration (12) can be used for fixed
points of Suzuki mappings. Moreover, they proved by pro-
viding a novel example of Suzuki mappings that the JK itera-
tion process converges faster than all of the above iterative
processes including the leading Thakur iteration (11). In this
paper, firstly, we improve and extend the main results of
Ahmad et al. [19] from the context of Suzuki mappings to
the more general framework of generalized α-nonexpansive
mappings. We then provide a novel example of generalized
α-nonexpansive mappings and show that its JK iterative pro-
cess is better than the mentioned iterative processes. Our
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results can be used for finding the solutions of split feasibility
problems, solutions of differential and integral equations
provided that the operator is generalized α-nonexpansive.

2. Preliminaries

We now provide some definitions.

Definition 1 [20]. A Banach space W is said to be endowed
with Opial’s property if every weakly convergence sequence
fpkg ⊆W having a weak limit v0 ∈W follows that

limsup
k⟶∞

pk − v0k k < limsup
k⟶∞

pk − u0k k,

 for every choice of u0 ≠ v0:
ð13Þ

Definition 2 [21]. A self-mapping S of a subset U of a Banach
space is said to be endowed with condition I if one has a
nondecreasing function η : ½0,∞Þ⟶ ½0,∞Þ having ηð0Þ
= 0 and ηðνÞ > 0 for every ν ∈ ð0,∞Þ and kz − Szk ≥ ηðd
ðz, FSÞÞ for every z ∈U ; here, dðz, FSÞ stands for the dis-
tance of z from FS .

Definition 3. Suppose that W is any given Banach space and
fpkg ⊆W is bounded. Assume that ∅≠U ⊆W is closed and
convex. Then, the asymptotic radius of the sequence fpkg rel-
ative to the set U is given by rðU , fpkgÞ = inf flimsupk⟶∞
kpk − zk : z ∈Ug. Moreover, the asymptotic center of fpkg
with respect to U is given by AðU , pkgÞ = fz ∈U :
limsupk⟶∞kpk − zk = rðU , pkÞg.

Remark 4. The most well-known fact about the set AðU ,
fpkgÞ is that it is always singleton whenever W is UCBS
[22]. The fact that the set AðU , fpkgÞ is convex and non-
empty also known in the case when U is weakly compact
and convex [23, 24].

Now, we combine some elementary properties of gener-
alized α-nonexpansive mappings, which can be found in [8].

Proposition 5. Suppose that U is any nonempty subset of a
Banach space W and S : U ⟶U .

(a) If S is Suzuki mapping, then, S is generalized α
-nonexpansive

(b) If S is generalized α-nonexpansive having nonempty
fixed point set, then, for any v0 ∈ FS , kSz − Sv0k ≤ k
z − v0k for all z ∈U

(c) If S is generalized α-nonexpansive, then, the set FS is
closed in U . Also, FS is convex in the case when W is
strictly convex and U is convex

(d) If S is a generalized α-nonexpansive mapping, then,
for every choice of z, z′ ∈U , the following holds:

z − Sz′
�� �� ≤ 3 + αð Þ

1 − αð Þ z − Szk k + z − z′
�� �� ð14Þ

(e) Suppose that S is generalized α-nonexpansive and W
is endowed with the Opial property. If fpkg is weakly
convergent to l0 and limk⟶∞kpk − Spkk = 0, it fol-
lows that l0 ∈ FS

The following useful lemma can be found in [25].

Lemma 6. Suppose that 0 < i ≤ yk ≤ j < 1 for each k ∈ℕ and
λ ≥ 0. If fpkg and fqkgare any sequences in a UCBSW endowed
with limsupk⟶∞kpkk ≤ λ, limsupk⟶∞kqkk ≤ λ, and
limk⟶∞kykpk + ð1 − ykÞqkk = λ, then limk⟶∞kpk − qkk = 0.

3. Main Results

The aim of this section is at giving some important weak
and strong convergence of JK (12) for the class of general-
ized α-nonexpansive mappings. We start the section with
a key lemma.

Lemma 7. Suppose thatW is UCBS,∅≠U ⊆W is closed con-
vex, and S : U ⟶U is a generalized α-nonexpansive having
FS ≠∅. If fpkg is a JK iteration sequence as provided in (12).
Then, limk⟶∞kpk − v0k exists for each v0 ∈ FS .

Proof. If we choose v0 ∈ FS , then, using (12) along with Prop-
osition 5 (b), we have

rk − v0k k = 1 − ηkð Þpk + ηkSpk − v0k k
≤ 1 − ηkð Þ pk − v0k k + ηk Spk − v0k k
≤ 1 − ηkð Þ pk − v0k k + ηk pk − v0k k
≤ pk − v0k k:

ð15Þ

Hence,

pk+1 − v0k k = S 1 − ξkð ÞSrk + ξkSqkð Þ − v0k k
≤ 1 − ξkð ÞSrk + ξkSqk − v0k k
≤ 1 − ξkð Þ Srk − v0k k + ξk Sqk − v0k k
≤ 1 − ξkð Þ rk − v0k k + ξk qk − v0k k
= 1 − ξkð Þ rk − v0k k + ξk Srk − v0k k
≤ 1 − ξkð Þ rk − v0k k + ξk rk − v0k k
= rk − v0k k ≤ pk − v0k k:

ð16Þ

Consequently, we conclude that fkpk − v0kg is nonin-
creasing and bounded; accordingly, we must have that
limk⟶∞kpk − v0k exists for every element v0 of FS . ☐

Theorem 8. Suppose that W is UCBS, ∅≠U ⊆W is closed
convex, and S : U ⟶U is a generalized α-nonexpansive.
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If fpkg is a JK iteration sequence as provided in (12). Then,
FS ≠∅ if and only if fpkg is bounded and limk⟶∞kpk
− Spkk = 0.

Proof. Firstly, we may take FS ≠∅. According to Lemma 7,
one concludes that fpkg is bounded and limk⟶∞kpk − v0k
exists for every element v0 of FS . We now suppose

lim
k⟶∞

pk − v0k k = λ: ð17Þ

We need to obtain that limk⟶∞kpk − Spkk = 0. Then,
using Lemma 7, we have

rk − v0k k ≤ pk − v0k k⇒ limsup
k⟶∞

rk − v0k k

≤ limsup
k⟶∞

pk − v0k k = λ:
ð18Þ

Since v0 ∈ FS , so by Proposition 5 (b), we infer

Spk − v0k k ≤ pk − v0k k⇒ limsup
k⟶∞

Spk − v0k k

≤ limsup
k⟶∞

pk − v0k k = λ:
ð19Þ

Now from (16), we get

pk+1 − v0k k ≤ rk − v0k k: ð20Þ

Using this together with (17), we obtain

λ ≤ liminf
k⟶∞

rk − v0k k: ð21Þ

From (18) and (21), we deduce

λ = lim
k⟶∞

rk − v0k k: ð22Þ

Using (22), we get

λ = lim
k⟶∞

rk − v0k k = lim
k⟶∞

1 − ηkð Þpk + ηkSpk − v0k k
= lim

k⟶∞
1 − ηkð Þ pk − v0ð Þ + ηk Spk − v0ð Þk k:

ð23Þ

Thus,

λ = lim
k⟶∞

1 − ηkð Þ pk − v0ð Þ + ηk Spk − v0ð Þk k: ð24Þ

Using (17), (19), and (24) and keeping Lemma 6 in mind,
one concludes that

lim
k⟶∞

pk − Spkk k = 0: ð25Þ

Conversely, we may suppose that fpkg is bounded in U
such that limk⟶∞kpk − Spkk = 0. The aim is to prove that
FS ≠∅. If we take any v0 ∈ AðU , fpkgÞ, then, using Proposi-
tion 5 (d), it follows that

A Sv0, pkf gð Þ = limsup
k⟶∞

pk − Sv0k k ≤ 3 + αð Þ
1 − αð Þ limsup

k⟶∞
pk − Spkk k

+ limsup
k⟶∞

pk − v0k k = limsup
k⟶∞

pk − v0k k

= A v0, pkf gð Þ:
ð26Þ

It follows that Sv0 ∈ AðU , fpkg. Since W is UCBS, A
ðU , fpkg contains only one element, that is, we must have
Sv0 = v0. Hence, v0 ∈ FS , that is, the fixed point FS is
nonempty. ☐

Now, we are in the position to prove our weak conver-
gence result.

Theorem 9. Suppose that W is UCBS, ∅≠U ⊆W is closed
convex, and S : U ⟶U is a generalized α-nonexpansive
having FS ≠∅. If fpkg is a JK iteration sequence as provided
in (12) and W has Opial’s property, then, fpkg converges
weakly to a point of FS :

Proof. By Theorem 8, fpkg is bounded. The uniform convex-
ity of W follows reflexivity of W, that is, fpkg has a weakly
convergent subsequence fpktg with a weak limit, namely, l0.
According to Theorem 8, limm⟶∞kpkm − Spkmk = 0. Hence,
using Proposition 5 (e), we get l0 ∈ FS . We claim that l0 is the
weak limit of fpkg. We may suppose on the contrary that l0 is
not the weak limit of fpkg, that is, fpkg has another weakly
convergent subsequence fpksg with a weak limit, namely, l0
′ ≠ l0. According to Theorem 8, lims⟶∞kpks − Spksk = 0.
Hence, using Proposition 5 (e), we get l0′ ∈ FS . Now using
Lemma 7 and Opial’s property, we have

limsup
k⟶∞

pk − l0k k = limsup
m⟶∞

pkm − l0
��� ��� < limsup

m⟶∞
pkm − l0′
��� ���

= limsup
k⟶∞

pk − l0′
�� �� = limsup

s⟶∞
pks − l0′
��� ���

< limsup
s⟶∞

pks − l0
��� ��� = limsup

k⟶∞
pk − l0k k:

ð27Þ

Consequently, we obtained limsupk⟶∞kpk − l0k <
limsupk⟶∞kpk − l0k, which suggests a contradiction. There-
fore, we conclude that l0 is the weak limit of the sequence
fpkg. ☐

Now, we prove the following strong convergence result.

Theorem 10. Suppose thatW is UCBS,∅≠U ⊆W is compact
convex, and S : U ⟶U is a generalized α-nonexpansive
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having FS ≠∅. If fpkg is a JK iteration sequence as provided
in (12), then, fpkg converges strongly to a point of FS .

Proof. Since fpkg ⊆U andU is compact, so we can find a sub-
sequence, namely, fpkmg of fpkg such that limm⟶∞kpkm −
u0k = 0 for some element u0 ∈U . Moreover, since FS ≠∅,
so according to the Theorem 8, limm⟶∞kpkm − Spkmk = 0.
Applying Proposition 5 (d), we get

pkm − Su0
��� ��� ≤ 3 + αð Þ

1 − αð Þ pkm − Spkm

��� ��� + pkm − u0
��� ���: ð28Þ

Consequently, pkm ⟶ Su0 provided that m⟶∞. But
W is a Banach space, and so, the limit of a convergent
sequence is always unique. Thus, Su0 = u0. Lemma 7 pro-
vides us that limk⟶∞kpk − u0k exists. Hence, u0 is the strong
limit of fpkg. ☐

We now state and then prove another strong convergence
theorem as follows.

Theorem 11. Suppose that W is UCBS, ∅≠U ⊆W is closed
convex, and S : U ⟶U is a generalized α-nonexpansive
having FS ≠∅. If fpkg is a JK iteration sequence as provided
in (12), then, fpkg converges strongly to a point FS whenever
liminf k⟶∞dðpk, FSÞ = 0

Proof. According to Lemma 7, limk⟶∞kpk − v0k exists, for
every choice of fixed point v0 of S . It follows that limk⟶∞
dðpk, FSÞ exists. Accordingly, we have

lim
k⟶∞

d pk, FSð Þ = 0: ð29Þ

The above strong limit suggests the existence of two sub-
sequences fpksg, fvsg in fpkg and FS , respectively, with the
property kpks − vsk ≤ ð1/2sÞ for every natural constant s.
According to the proof of Lemma 7, the iterative sequence
fpkg is nonincreasing. Accordingly, we have

pks+1 − vs
��� ��� ≤ pks − vs

��� ��� ≤ 1
2s : ð30Þ

Using the above and triangle inequality, one has

vs+1 − vsk k ≤ vs+1 − pks+1

��� ��� + pks+1 − vs
��� ��� ≤ 1

2s+1 + 1
2s

≤
1

2s−1 ⟶ 0, provided that s⟶∞:

ð31Þ

Accordingly, we obtained lims⟶∞kvs+1 − vsk = 0, that is,
fvsg form the Cauchy sequence in the closed set FS ⊆U . It
follows that lims⟶∞vs = u0 for some u0 ∈ FS . Cosequently,
u0 ∈ FS . By Lemma 7, limk⟶∞kpk − v0k exists, that is, u0 is
also the strong limit of fpkg. ☐

We finish this section with a strong convergence theorem
under the condition I.

Theorem 12. Suppose that W is UCBS, ∅≠U ⊆W is closed
convex, and S : U ⟶U is a generalized α-nonexpansive
having FS ≠∅. If fpkg is a JK iteration sequence as provided
in (12). Then, fpkg converges strongly to a point of FS when-
ever S is endowed with condition I.

Proof. According to Theorem 8, one can conclude that
liminf k⟶∞kpk − Spkk = 0. Applying the condition I of S
, one obtain liminf k⟶∞dðpk, FSÞ = 0. It now follows from
Theorem 11 that fpkg is strongly convergent in the set FS .

☐

4. Numerical Example

The aim of this section is to provide a new example of gener-
alized α-nonexpansive mappings that exceeds the class of
Suzuki mappings. We connect the mentioned iterative
schemes with this example to show the effectiveness of our
obtained results.

Table 1: Strong convergence comparison of JK (12), Thakur (11),
Abbas (10), Agarwal (9), Noor (8), Ishikawa (7), and Mann (6)
iterates for the self-map S in Example 13.

k JK Thakur Abbas Agarwal Noor Ishikawa Mann

1 6.5000 6.5000 6.5000 6.5000 6.5000 6.5000 6.5000

2 5.1645 5.2897 5.3983 5.5794 5.7361 5.8044 5.9750

3 5.0180 5.0559 5.1057 5.2238 5.3613 5.4313 5.6338

4 5.0020 5.0108 5.0281 5.0864 5.1773 5.2313 5.4119

5 5.0002 5.0021 5.0075 5.0334 5.0870 5.1240 5.2678

6 5.0000 5.0004 5.0020 5.0129 5.0427 5.0665 5.1740

7 5.0000 5.0001 5.0005 5.0050 5.0210 5.0357 5.1131

8 5.0000 5.0000 5.0001 5.0019 5.0103 5.0191 5.0735

9 5.0000 5.0000 5.0000 5.0007 5.0050 5.0103 5.0478

10 5.0000 5.0000 5.0000 5.0003 5.0025 5.0055 5.0311

11 5.0000 5.0000 5.0000 5.0001 5.0012 5.0029 5.0202

12 5.0000 5.0000 5.0000 5.0000 5.0006 5.0016 5.0131

13 5.0000 5.0000 5.0000 5.0000 5.0003 5.0008 5.0085

14 5.0000 5.0000 5.0000 5.0000 5.0001 5.0005 5.0055

15 5.0000 5.0000 5.0000 5.0000 5.0001 5.0002 5.0036

16 5.0000 5.0000 5.0000 5.0000 5.0000 5.0001 5.0023

17 5.0000 5.0000 5.0000 5.0000 5.0000 5.0001 5.0015

18 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0010

19 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0006

20 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0004

21 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0003

22 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0002

23 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0001

24 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0001

25 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000
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Example 13.We take a set U = ½5, 10� and set a self-map onU
by the following rule:

Sz =
z + 5
2 , if z < 10,

5, if z = 10:

8<
: ð32Þ

We show that S is generalized α-nonexpansive having
α = ð1/2Þ, but not Suzuki mapping. This example thus
exceeds the class of Suzuki mappings.

Case 1. When z, z′ ∈ f10g, we have

1
2 z − Sz′
�� �� + 1

2 z′ − Sz
�� ��

+ 1 − 2 1
2

� �
z − z′
�� �� ≥ 0 = Sz − Sz′

�� ���
:

ð33Þ

Case 2. When z, z′ ∈ ½5, 10Þ, we have

1
2 z − Sz′
�� �� + 1

2 z′ − Sz
�� �� + 1 − 2 1

2

� ��
z − z′
�� ��

= 1
2 z′ − z + 5

2

� �����
���� + 1

2 z −
z′ + 5
2

 !�����
�����

≥
1
2 z′ − z + 5

2

� �� �
− z −

z′ + 5
2

 ! !�����
�����

= 1
2
2z′ − z − 5 − 2z + z′ + 5

2

�����
����� = 1

2
3z′ − 3z

2

�����
�����

= 3
4 z − z′
�� �� ≥ 1

2 z − z′
�� �� = Sz − Sz′

�� ��:

ð34Þ

Case 3. When z′ ∈ f10g and z ∈ ½5, 10Þ, we have

1
2 z − Sz′
�� �� + 1

2 z′ − Sz
�� �� + 1 − 2 1

2

� ��
z − z′
�� ��

= 1
2 z − 5j j + 1

2 z′ − z + 5
2

� �����
���� ≥ 1

2 z − 5j j

= z − 5
2

����
���� = Sz − Sz′
�� ��:

ð35Þ

The above cases clearly suggest that S is generalized 1/2
nonexpansive mapping having FS = f5g. Choose z = 8:8
and z′ = 10; then, jz − z′j = 1:2, jSz − Sz′j = 1:9, and ð1/2Þj
z − Szj = 0:95. Thus, it is seen that, ð1/2Þjz − Szj < jz − z′j
but jSz − Sz′j > jz − z′j. Thus, S exceeds the class of Suzuki
mappings.

Now, we by choosing ξk = 0:70, ηk = 0:65, and μk = 0:80,
we may observe in Table 1 and Figure 1 that JK (12) iterative
process converges faster to 5 ∈ FS as compared the other
processes.

Now we show the further effectiveness of the JK iteration
(12) in the class of generalized α-nonexpansive mappings.
Using S defined in Example 13, we suggest some different
values for the parameters and p1. To do this, we set the stop-
ping criteria kpk − 5k < 10−15. The obtained results are pro-
vided in Table 2. The bold numbers show that JK iteration
(12) requires less iteration numbers as compared to the lead-
ing three-step Thakur (11) and leading two-step Agarwal (9).

Remark 14. The main outcome of this paper extended the
corresponding results of Ahmad et al. [19] from the class of
Suzuki maps to the setting of generalized α-nonexpansive
maps. We have observed in Tables 1 and 2 as well as in
Figure 1 that the JK iterative scheme (12) is still more effec-
tive than the other iterative schemes even in the general set-
ting of generalized α-nonexpansive maps.

(Number of iterations)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

(V
al

ue
 o

f p
k)

4.8

5.3

5.8

6.3

6.5

Mann
Ishikawa
Noor
Agarwal

Abbas
Thakur
JK

Figure 1: Convergence behavior of the sequences developed by remarkable iterative processes.
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In this work, we consider a quasilinear system of viscoelastic equations with degenerate damping, dispersion, and source terms
under Dirichlet boundary condition. Under some restrictions on the initial datum and standard conditions on relaxation
functions, we study global existence and general decay of solutions. The results obtained here are generalization of the previous
recent work.

1. Introduction

Let Ω be a bounded domain with a sufficiently smooth
boundary in Rnðn ≥ 1Þ: We investigate a quasilinear system

of two viscoelastic equations in the presence of degenerate
damping, dispersion, and source terms, namely,

where, s ≥ 1, η > 0,k, l, θ, ϱ ≥ 0, and hið:Þ: R+ ⟶ R+ði = 1, 2Þ
are positive relaxation functions which will be specified later.
ðjð:Þja + jð:ÞjbÞjð:Þtjτ−1ð:Þt and −Δð:Þtt are the degenerate
damping term and the dispersion term, respectively.

By taking

f1 u, vð Þ = a u + vj j2 κ+1ð Þ u + vð Þ + b uj jκu vj jκ+2,
f2 u, vð Þ = a u + vj j2 κ+1ð Þ u + vð Þ + b vj jκv uj jκ+2,

ð2Þ

utj jηutt − Δu +
ðt
0
h1 t − sð ÞΔu sð Þds − Δutt + uj jk + vj jl

� �
utj jj−1ut = f1 u, vð Þ, x, tð Þ ∈Ω × 0, Tð Þ,

vtj jηvtt − Δv+t
0h2 t − sð ÞΔv sð Þds − Δvtt + vj jθ + uj jϱ

� �
vtj js−1vt = f2 u, vð Þ, x, tð Þ ∈Ω × 0, Tð Þ,

u x, tð Þ = v x, tð Þ = 0, x, tð Þ ∈ ∂Ω × 0, Tð Þ,
u x, 0ð Þ = u0 xð Þ, ut x, 0ð Þ = u1 xð Þ, x ∈Ω,
v x, 0ð Þ = v0 xð Þ, vt x, 0ð Þ = v1 xð Þ, x ∈Ω,

8>>>>>>>>>>><
>>>>>>>>>>>:

ð1Þ
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in which a > 0,b > 0, and

1 < κ < +∞if n = 1, 2 and 1 < κ ≤
3 − n
n − 2 if n ≥ 3: ð3Þ

It is simple to show that

uf1 u, vð Þ + vf2 u, vð Þ = 2 κ + 2ð ÞF u, vð Þ,∀ u, vð Þ ∈ R2, ð4Þ

where

F u, vð Þ = 1
2 κ + 2ð Þ a u + vj j2 κ+2ð Þ + 2b uvj jκ+2

h i
: ð5Þ

To motivate our problem (1), it can trace back to the ini-
tial boundary value problem for the single viscoelastic equa-
tion of the form

utj jηutt − Δu +
ðt
0
h t − sð ÞΔu sð Þds − Δutt + g u, utð Þ = f uð Þ:

ð6Þ

This type problem appears a variety of mathematical
models in applied science. For instance, in the theory of vis-
coelasticity, physics, and material science, problem (5) has
been studied by various authors, and several results concern-
ing blow-up and energy decay have been studied case (η ≥ 0).
For example, Liu [1] studied a general decay of solutions case
ðgðu, utÞ = 0Þ. Messaoudi and Tatar [2] applied the potential
well method to indicate the global existence and uniform
decay of solutions (gðu, utÞ = 0 instead of Δut). Furthermore,
the authors obtained a blow-up result for positive initial
energy. Wu [3] studied a general decay of solution case
(gðu, utÞ = jutjmut). Later, Wu [4] studied the same problem
case ðgðu, utÞ = utÞ and discussed the decay rate of solution
energy. Recently, Yang et al. [5] proved the existence of
global solution and asymptotic stability result without
restrictive conditions on the relaxation function at infinity
case (f ðuÞ = σðx, tÞWtðt, xÞ).

In case gðu, utÞ = 0 and without dispersion term, prob-
lem (5) has been investigated by Song [6], and the blow-up
result for positive initial energy has been proved.

For a coupled system, He [7] investigated the following
problem

utj jηutt − Δu +
ðt
0
h1 t − sð ÞΔu sð Þds − Δutt + utj jj−2ut = f1 u, vð Þ,

vtj jηvtt − Δv +
ðt
0
h2 t − sð ÞΔv sð Þds − Δvtt + vtj js−2vt = f2 u, vð Þ,

8>>><
>>>:

ð7Þ

where η > 0,j, s ≥ 2: The author proved general and optimal
decay of solutions. Then, in [8], the author investigated the
same problem without damping term and established a gen-
eral decay of solutions. Furthermore, the author obtained a
blow-up of solutions for negative initial energy. In addition,
problem (1) with in case η = 0 and without dispersion term,

Wu [9] proved a general decay of solutions. Later, Pișkin
and Ekinci [10] studied a general decay and blow-up of solu-
tions with nonpositive initial energy for problem (1) case
(Kirchhoff-type instead of Δu and without dispersion term).
In recent years, some other authors investigate the hyperbolic
type system with degenerate damping term (see [11–14]).

The rest of the paper is arranged as follows: in Section 2,
as preliminaries, we give necessary assumptions and lemmas
that will be used later and local existence theorem without
proof. In Section 3, we prove the global existence of solution.
In the last section, we studied the general decay of solutions.

2. Preliminaries

We begin this section with some assumptions, notations,
lemmas, and theorems. Denote the standart L2ðΩÞ norm by
k:k = k:kL2ðΩÞ and LpðΩÞ norm by k:kp = k:kLpðΩÞ:

To state and prove our result, we need some assumptions:
(A1) Regarding hi : ½0,∞Þ⟶ ð0,∞Þ,ði = 1, 2Þ is C1

functions and satisfies

hi αð Þ > 0, hi′ αð Þ ≤ 0, 1−∞
0 hi αð Þdα = li > 0, α ≥ 0 ð8Þ

and nonincreasing differentiable positive C1 functions ς1 and
ς2 such that

hi′ tð Þ ≤ −ςi tð Þhi tð Þ, t ≥ 0, i = 1, 2: ð9Þ

(A2) For the nonlinearity, we assume that

1 ≤ j, s if n = 1, 2,

1 ≤ j, s ≤ n + 2
n − 2 if n ≥ 3:

8<
: ð10Þ

(A3) Assume that η satisfies

0 < η if n = 1, 2,

0 < η ≤
2

n − 2 if n ≥ 3:

8<
: ð11Þ

In addition, we present some notations:

α⋄∇wð Þ tð Þ =
ðt
0
α t − sð Þ ∇w tð Þ−∇w sð Þk k2ds,

l =min l1, l2f g:
ð12Þ

Lemma 1 (Sobolev-Poincare inequality) [15]. Let q be a num-
ber with 2 ≤ q <∞ðn = 1, 2Þ or 2 ≤ q ≤ 2n/ðn − 2Þðn ≥ 3Þ, and
then there is a constant C∗ = C∗ðΩ, qÞ such that

uk kq ≤ C∗ ∇uk k for u ∈H1
0 Ωð Þ: ð13Þ

Now, we state the local existence theorem that can be
established by combining arguments of [7, 10].

Theorem 2. Assume that (A1)-(A3) and (2) hold. Let u0, v0
∈H1

0ðΩÞ and u1, v1 ∈ L2ðΩÞ be given. Then, for some T > 0,
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problem (1) has a unique local weak solution in the following
class:

u, v ∈ C 0, T½ � ;H2 Ωð Þ ∩H1
0 Ωð Þ� �

,

ut ∈ C 0, T½ � ;H1
0 Ωð Þ� �

∩ Lj+1 Ωð Þ,
vt ∈ C 0, T½ � ;H1

0 Ωð Þ� �
∩ Ls+1 Ωð Þ:

ð14Þ

We define the energy function as follows:

E tð Þ = 1
η + 2 utk kη+2η+2 + vtk kη+2η+2

� �
+ 1
2 h1⋄∇uð Þ tð Þ½

+ h2⋄∇vð Þ tð Þ + ∇utk k2 + ∇vtk k2�
+ 1
2

�
1 −
ðt
0
h1 sð Þds

� 	
∇u tð Þk k2

+ 1 −
ðt
0
h2 sð Þds

� 	
∇v tð Þk k2



−
ð
Ω

F u, vð Þdx:

ð15Þ

Also, we define

I tð Þ = ∇utk k2 + ∇vtk k2 + 1 −
ðt
0
h1 sð Þds

� 	
∇u tð Þk k2

+ 1 −
ðt
0
h2 sð Þds

� 	
∇v tð Þk k2 + h1⋄∇uð Þ tð Þ

+ h2⋄∇vð Þ tð Þ − 2 κ + 2ð Þ
ð
Ω

F u, vð Þdx,

J tð Þ = 1
2

�
1 −
ðt
0
h1 sð Þds

� 	
∇u tð Þk k2 + 1

ðt
0
h2 sð Þds

� 	

� ∇v tð Þk k2


+ 1
2
�
h1⋄∇uð Þ tð Þ + h2⋄∇vð Þ tð Þ

+ ∇utk k2 + ∇vtk k2� − ð
Ω

F u, vð Þdx:

ð16Þ

By computation, we get

d
dt

E tð Þ ≤ 1
2 h1′⋄∇u
� �

tð Þ + h2′⋄∇v
� �

tð Þ
h i

−
1
2 h1 tð Þ ∇uk k2 + h2 tð Þ ∇vk k2� �

−
ð
Ω

uj jk + vj jl
� �

utj jj+1dx

−
ð
Ω

vj jθ + uj jϱ
� �

vtj js+1dx ≤ 0:

ð17Þ

3. Global Existence

In this part, in order to state and prove the global existence of
solution (1), we firstly give two lemmas.

Lemma 3 [16]. Assume that (4) holds. Then, there exist ρ > 0
such that for the solution ðu, vÞ,

u + vk k2 κ+2ð Þ
2 κ+2ð Þ + 2 uvk kκ+2κ+2 ≤ ρ l1 ∇uk k2 + l2 ∇vk k2� �κ+2

: ð18Þ

Lemma 4. Let u0, v0 ∈H1
0ðΩÞ, u1, v1 ∈ L2ðΩÞ: Suppose that

(A1)-(A3) hold. If

I 0ð Þ > 0 and β = ρ
2 κ + 2ð Þ
κ + 1

E 0ð Þ
� 	κ+1

< 1, ð19Þ

then

I tð Þ > 0,∀t > 0: ð20Þ

Proof. We have Ið0Þ > 0 and by continuity of IðtÞ about t,
there exist a maximal time tm > 0 such that

I tð Þ ≥ 0, on t ∈ 0, tm½ �: ð21Þ

Let t0 be as follows:

I t0ð Þ = 0 and I tð Þ > 0, for all 0 ≤ t < t0f g: ð22Þ

By using (8), (9), and (A1), we get

J tð Þ = κ + 1
2 κ + 2ð Þ

�
1 −
ðt
0
h1 sð Þds

� 	
∇u tð Þk k2

+ 1 −
ðt
0
h2 sð Þds

� 	
∇v tð Þk k2 + h1⋄∇uð Þ tð Þ

+ h2⋄∇vð Þ tð Þ + ∇utk k2 + ∇vtk k2


+ 1
2 κ + 2ð Þ I tð Þ

≥
κ + 1

2 κ + 2ð Þ l1 ∇u tð Þk k2 + l2 ∇v tð Þk k2 + h1⋄∇uð Þ tð Þ�
+ h2⋄∇vð Þ tð Þ + ∇utk k2 + ∇vtk k2�:

ð23Þ

From (7) and (10), we have

l1 ∇u tð Þk k2 + l2 ∇v tð Þk k2

≤
2 κ + 2ð Þ
κ + 1 J tð Þ ≤ 2 κ + 2ð Þ

κ + 1 E tð Þ

≤
2 κ + 2ð Þ
κ + 1 E 0ð Þ,∀t ∈ 0, t0½ �:

ð24Þ

By (11) and (12), we infer that

2 κ + 2ð Þ
ð
Ω

F u t0ð Þ, v t0ð Þð Þdx

≤ ρ l1 ∇u t0ð Þk k2 + l2 ∇v t0ð Þk k2� �κ+2
≤ ρ

2 κ + 2ð Þ
κ + 1 E 0ð Þ

� 	κ+1
l1 ∇u t0ð Þk k2 + l2 ∇v t0ð Þk k2� �

≤ ρ l1 ∇u t0ð Þk k2 + l2 ∇v t0ð Þk k2� �
≤ 1 −

ðt
0
h1 sð Þds

� 	
∇u tð Þk k2 + 1 −

ðt
0
h2 sð Þds

� 	
� ∇v tð Þk k2:

ð25Þ
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Thus, from (8), we obtain

I t0ð Þ > 0, ð26Þ

which contradicts to (13). Thus, IðtÞ > 0 on ½0, T�.

Theorem 5. Suppose that the conditions of Lemma 4 hold,
then the solution (1) is bounded and global in time.

Proof. We have

E 0ð Þ ≥ E tð Þ = J tð Þ + 1
η + 2 utk kη+2η+2 + vtk kη+2η+2

� �
≥

κ + 1
2 κ + 2ð Þ l1 ∇u tð Þk k2 + l2 ∇v tð Þk k2�
+ ∇utk k2 + ∇vtk k2 + h1⋄∇uð Þ tð Þ
+ h2⋄∇vð Þ tð ÞÞ + 1

η + 2 utk kη+2η+2 + vtk kη+2η+2
� �

:

ð27Þ

Thus,

∇u tð Þk k2 + ∇v tð Þk k2 + ∇utk k2 + ∇vtk k2 ≤ CE 0ð Þ, ð28Þ

where positive constant C depends only on κ, l1, l2: This
implies that the solution of problem (1) is global in time.

4. General Decay of Solutions

This section is devoted to show the decay of solution (1). Set

Γ tð Þ≔ME tð Þ + εΦ tð Þ + Ϝ tð Þ, ð29Þ

where M and ε are positive constants and

Φ tð Þ = δ1 tð Þ 1
η + 1

ð
Ω

utj jηutudx +
ð
Ω

∇ut∇udx
� 


+ δ2 tð Þ 1
η + 1

ð
Ω

vtj jηvtvdx +
ð
Ω

∇vt∇vdx
� 


,

Ϝ tð Þ = δ1 tð Þ
�ð

Ω

Δut −
utj jηut
η + 1

� 	ðt
0
h1 t − sð Þ

� u tð Þ − u sð Þð Þdsdx


+ δ2 tð Þ

�ð
Ω

Δvt −
vtj jηvt
η + 1

� 	

�
ðt
0
h2 t − sð Þ v tð Þ − v sð Þð Þdsdx



:

ð30Þ

Lemma 6. For ε which is small enough while M is large
enough, the relation

α1Γ tð Þ ≤ E tð Þ ≤ α2Γ tð Þ,∀t ≥ 0 ð31Þ

holds for two positive constants α1 and α2:

Proof. As references [1, 10], it can be show easily that ΓðtÞ
and EðtÞ are equivalent in the sense that α1 and α2 are posi-
tive constants, depending on ε and M:

Lemma 7 [3]. Assume that (12) holds. Let ðu, vÞ be the solu-
tion of problem (1). Then, for σ ≥ 0, we get

Lemma 8 [16]. Let (A1)-(A3) hold. Assume that u0, v0 ∈H1
0ð

ΩÞ, u1, v1 ∈ L2ðΩÞ, be given and satisfying (12). Then,
throughout the solution ðu, vÞ of (1), there exist two positive
constants β1 and β2 such that for any δ > 0 and for all t ≥ 0,

ð
Ω

f1 u, vð Þ
ðt
0
h1 t − sð Þ u tð Þ − u sð Þð Þdsdx

≤ β1δ l1 ∇uk k2 + l2 ∇vk k2� �
+ 1 − l1ð Þc2∗ h1⋄∇uð Þ tð Þ

4δ
,

ð
Ω

f2 u, vð Þ
ðt
0
h2 t − sð Þ v tð Þ − v sð Þð Þdsdx

≤ β2δ l1 ∇uk k2 + l2 ∇vk k2� �
+ 1 − l2ð Þc2∗ h2⋄∇uð Þ tð Þ

4δ
:

ð33Þ

Lemma 9. Let u0, v0 ∈H1
0ðΩÞ, u1, v1 ∈ L2ðΩÞ, be given and

satisfying (12). Suppose that (A1)-(A3) hold. Then, for each t0
> 0, the functional ΓðtÞ verifies, throughout the solution of (1)

Γ′ tð Þ ≤ −ξ1E tð Þ + ξ2 h1⋄∇uð Þ tð Þ + h2⋄∇vð Þ tð Þ½ �, t ≥ t0, ð34Þ

where ξi > 0, ði = 1, 2Þ:

Proof. By applying (18) and Eq.(1) and getting δi ≡ 1ði = 1, 2Þ
in (18), we have

Φ′ tð Þ ≤ 1
η + 1 utk kη+2η+2 + vtk kη+2η+2

� �
− ∇uk k2 − ∇vk k2

ð
Ω

ðt
0
h1 t − sð Þ u tð Þ − u sð Þð Þds

� 	σ+2
dx ≤ 1 − l1ð Þσ+1cσ+2∗

2 κ + 2ð ÞE 0ð Þ
l1 κ + 1ð Þ

� 	σ/2
h1⋄∇uð Þ tð Þ,

ð
Ω

ðt
0
h2 t − sð Þ v tð Þ − v sð Þð Þds

� 	σ+2
dx ≤ 1 − l1ð Þσ+1cσ+2∗

2 κ + 2ð ÞE 0ð Þ
l2 κ + 1ð Þ

� 	σ/2
h2⋄∇vð Þ tð Þ:

8>>>><
>>>>:

ð32Þ
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+ ∇utk k2 + ∇vtk k2
ð
Ω

∇u tð Þ
ðt
0
h1 t − sð Þ∇u sð Þdsdx

+
ð
Ω

∇v tð Þ
ðt
0
h2 t − sð Þ∇v sð Þdsdx + 2 κ + 2ð Þ

�
ð
Ω

F u, vð Þdx −
ð
Ω

u uj jk + vj jl
� �

ut utj jj−1dx

−
ð
Ω

v vj jθ + uj jρ
� �

vt vtj js−1dx:

ð35Þ

For estimating the seventh term in the right side of (22) as
follows (see [17]):

ð
Ω

∇u tð Þ
ðt
0
h1 t − sð Þ∇u sð Þdsdx

≤
1
2 ∇uk k2 + 1

2

ð
Ω

�ðt
0
h1 t − sð Þ ∇u sð Þjð

−∇u tð Þj + ∇u tð Þj jÞds
	2

dx:

ð36Þ

By exploiting Young’s inequality and the assumption thatÐ t
0h1ðsÞds ≤

Ð∞
0 h1ðsÞds ≤ 1 − l1, for γ1 > 0,

ð
Ω

∇u tð Þ
ðt
0
h1 t − sð Þ∇u sð Þdsdx

≤
1
2 ∇uk k2 + 1

2 1 + γ1ð Þ
ð
Ω

ðt
0
h1 t − sð Þ ∇u sð Þj jds

� 	2
dx

+ 1
2 1 + 1

γ1

� 	ð
Ω

ðt
0
h1 t − sð Þ ∇u sð Þ−∇u tð Þj jds

� 	2
dx

≤
1
2 ∇uk k2 + 1

2 1 + γ1ð Þ
ðt
0
h1 sð Þds

� 	2
∇uk k2

+ 1
2 1 + 1

γ1

� 	 ðt
0
h1 sð Þds

� 	
h1⋄∇uð Þ tð Þ

≤
1 + 1 + γ1ð Þ 1 − l1ð Þ2

2 ∇uk k2

+ 1 + 1/γ1ð Þð Þ 1 − l1ð Þ
2 h1⋄∇uð Þ tð Þ:

ð37Þ

Similarly with γ2 > 0,

ð
Ω

∇v tð Þ
ðt
0
h2 t − sð Þ∇v sð Þdsdx

≤
1 + 1 + γ2ð Þ 1 − l2ð Þ2

2 ∇vk k2

+ 1 + 1/γ2ð Þð Þ 1 − l2ð Þ
2 h2⋄∇vð Þ tð Þ:

ð38Þ

By estimating the following terms in (22), we have

ð
Ω

u uj jk + vj jl
� �

ut utj jj−1dx

≤ Ω uj jk+1 utj jjdx +
ð
Ω

uj j vj jl utj jjdx:
ð39Þ

Exploiting Young’s inequality, Hölder’s inequality,
Sobolev-Poincare inequality, (A3), and (15) for β1 > 0, one
has

ð
Ω

uj jk+1 utj jjdx

≤
ð
Ω

uj jk utj jj+1dx
� 	j/j+1 ð

Ω

uj jk+j+1dx
� 	j/j+1

≤
jβ−j+1/j

1
j + 1

ð
Ω

uj jk utj jj+1dx + βj+1
1 Ck+j+1

∗
j + 1 ∇uk kk+j+1

≤
jβ−j+1/j

1
j + 1

ð
Ω

uj jk + vj jl
� �

utj jj+1dx

+ βj+1
1 Ck+j+1

∗ χk+j−1/2
1

j + 1 ∇uk k2,
ð
Ω

uj j vj jl utj jjdx
����

����
≤
ð
Ω

vj jl utj jj+1dx
� 	j/j+1 ð

Ω

vj jl uj jj+1dx
� 	j/j+1

≤
jβ−j+1/j

1
j + 1

ð
Ω

uj jk + vj jl
� �

utj jj+1dx

+ βj+1
1

2 j + 1ð Þ vk k2l2l + uk k2 j+1ð Þ
2 j+1ð Þ

� �

≤
jβ−j+1/j

1
j + 1

ð
Ω

uj jk + vj jl
� �

utj jj+1dx + βj+1
1 C2l

∗χ
l−1
2

2 j + 1ð Þ

� ∇vk k2� �
+ βj+1

1 C2j+2
∗ χj

1
2 j + 1ð Þ ∇uk k2� �

,

ð40Þ

where

χ1 =
2 κ + 2ð ÞE 0ð Þ
l1 κ + 1ð Þ andχ2 =

2 κ + 2ð ÞE 0ð Þ
l2 κ + 1ð Þ : ð41Þ

By inserting (27) and (28) into (26), we have

ð
Ω

u uj jk + vj jl
� �

ut utj jj−1dx

≤
2jβ−j+1/j

1
j + 1

ð
Ω

uj jk + vj jl
� �

utj jj+1dx

+ βj+1
1 C2l

∗χ
l−1
2

2 j + 1ð Þ ∇vk k2� �
+ βj+1

1
j + 1

� Ck+j+1
∗ χ

k+j−1ð Þ/2
1 + C2j+2

∗ χj
1

2

 !
∇uk k2:

ð42Þ

5Journal of Function Spaces



Similarly, for β2 > 0, we have

ð
Ω

v vj jθ + uj jρ
� �

vt vtj js−1dx

≤
2sβ−s+1/s

2
s + 1

ð
Ω

vj jθ + uj jρ
� �

vtj js+1dx

+ βs+1
2 C2ρ

∗ χ
ρ−1
1

2 s + 1ð Þ ∇uk k2� �
+ βs+1

2
s + 1

� Cθ+s+1
∗ χ

θ+s−1ð Þ/2
2 + C2s+2

∗ χs
2

2

� 	
∇vk k2:

ð43Þ

Thus, inserting (24) and (25) and (29) and (30) into (22),
we obtain

Φ′ tð Þ ≤ 1
η + 1 utk kη+2η+2 + vtk kη+2η+2

� �
− a1 ∇uk k2

− a2 ∇vk k2 + 2 κ + 2ð Þ
ð
Ω

F u, vð Þdx + ∇utk k2

+ ∇vtk k2 + 1 + 1/γ1ð Þð Þ 1 − l1ð Þ
2 h1⋄∇uð Þ tð Þ

+ 1 + 1/γ2ð Þð Þ 1 − l2ð Þ
2 h2⋄∇vð Þ tð Þ

+ 2jβ−j+1/j
1

j + 1

ð
Ω

uj jk + vj jl
� �

utj jj+1dx

+ 2sβ−s+1/s
2

s + 1

ð
Ω

vj jθ + uj jρ
� �

vtj js+1dx,

ð44Þ

where

a1 =
1 − 1 + γ1ð Þ 1 − l1ð Þ2

2 −
βj+1
1

j + 1

� Ck+j+1
∗ χ

k+j−1ð Þ/2
1 + C2j+2

∗ χj
1

2

 !
−
βs+1
2 C2ρ

∗ χ
ρ−1
1

2 s + 1ð Þ ,

a2 =
1 − 1 + γ2ð Þ 1 − l2ð Þ2

2 −
βs+1
2

s + 1

� Cθ+s+1
∗ χ

θ+s−1ð Þ/2
2 + C2s+2

∗ χs
2

2

� 	
−
βj+1
1 C2l

∗χ
l−1
2

2 j + 1ð Þ :

ð45Þ

At this moment, choosing γ1 = l1/1 − l1,γ2 = l2/1 − l2, and
picking β1 and β2 small enough such that

βj+1
1

j + 1 Ck+j+1
∗ χ

k+j−1ð Þ/2
1 + C2j+2

∗ χj
1

2

 !
+ βs+1

2 C2ρ
∗ χ

ρ−1
1

2 s + 1ð Þ ≤
l1
4 ,

βs+1
2

s + 1 Cθ+s+1
∗ χ

θ+s−1ð Þ/2
2 + C2s+2

∗ χs
2

2

� 	
+ βj+1

1 C2l
∗χ

l−1
2

2 j + 1ð Þ ≤
l2
4 :

ð46Þ

Consequently, (31) yields

Φ′ tð Þ ≤ 1
η + 1 utk kη+2η+2 + vtk kη+2η+2

� �
−
l1
4 ∇uk k2

−
l2
4 ∇vk k2 + 2 κ + 2ð Þ

ð
Ω

F u, vð Þdx

+ 1 − l1
2l1

h1⋄∇uð Þ tð Þ + 1 − l2
2l2

h2⋄∇vð Þ tð Þ + ∇utk k2

+ ∇vtk k2 + 2jβ−j+1/j
1

j + 1

ð
Ω

uj jk + vj jl
� �

utj jj+1dx

+ 2sβ−s+1/s
2

s + 1

ð
Ω

vj jθ + uj jρ
� �

vtj js+1dx:

ð47Þ

In order to estimate the Ϝ ′ðtÞ, we set

Ϝ1 tð Þ =
ð
Ω

Δut −
1

η + 1 utj jηut
� 	t

0
h1 t − sð Þ u tð Þ − u sð Þð Þdsdx,

ð48Þ

Then, by using equations (1), we have

Ϝ1′ tð Þ = −
ð
Ω

ðt
0
h1 t − sð Þ∇u sð Þds

� 	

�
ðt
0
h1 t − sð Þ ∇u tð Þ−∇u sð Þð Þds

� 	
dx

+
ð
Ω

uj jk + vj jl
� �

utj jj−1ut
ðt
0
h1 t − sð Þ

� u tð Þ − u sð Þð Þdsdx +
ð
Ω

∇u tð Þ
ðt
0
h1 t − sð Þ

� ∇u tð Þ−∇u sð Þð Þdsdx −
ð
Ω

∇ut tð Þ
ðt
0
h1′ t − sð Þ

� ∇u tð Þ−∇u sð Þð Þdsdx − 1
η + 1

ð
Ω

utj jηut

�
ðt
0
h1′ t − sð Þ u tð Þ − u sð Þð Þdsdx

−
ð
Ω

f1 u, vð Þ
ðt
0
h1 t − sð Þ u tð Þ − u sð Þð Þdsdx

−
1

η + 1

ðt
0
h1 sð Þ

� 	
utk kη+2η+2 −

ðt
0
h1 sð Þ

� 	
∇utk k2:

ð49Þ

For the first term of (33), by applying (A1), Hölder’s
inequality, and Young’s inequality, we deduce
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−
ð
Ω

ðt
0
h1 t − sð Þ∇u sð Þds

� 	 ðt
0
h1 t − sð Þ ∇u tð Þ−∇u sð Þð Þds

� 	
dx

����
����

≤ δ
ð
Ω

t
0h1 t − sð Þ∇u sð Þds� �2dx

+ 1
4δ

ð
Ω

ðt
0
h1 t − sð Þ ∇u tð Þ−∇u sð Þð Þds

� 	2
dx

≤ δ
ð
Ω

ðt
0
h1 t − sð Þ ∇u sð Þ−∇u tð Þj j + ∇u tð Þj jð Þds

� 
2
dx

+ 1
4δ

ðt
0
h1 sð Þds

� 	
h1⋄∇uð Þ tð Þ ≤ 2δ 1 − l1ð Þ2 ∇uk k2

+ 2δ + 1
4δ

� 	
1 − l1ð Þ h1⋄∇uð Þ tð Þ,∀δ > 0:

ð50Þ

Then, in order to estimate the following term, we seperate
such that

ð
Ω

uj jk + vj jl
� �

utj jj−1ut
ðt
0
h1 t − sð Þ u tð Þ − u sð Þð Þdsdx

����
����

= I1 + I2,
ð51Þ

where

I1 =
ð
Ω

uj jk utj jj−1ut
ðt
0
h1 t − sð Þ u tð Þ − u sð Þð Þdsdx,

I2 =
ð
Ω

vj jl utj jj−1ut
ðt
0
h1 t − sð Þ u tð Þ − u sð Þð Þdsdx:

ð52Þ

By Hölder’s inequality, Young’s inequality, (15), and
(21), we get

I1j j ≤
ð
Ω

uj jk utj jj+1dx
� 	j/j+1

 ð
Ω

uj jk
�ðt

0
h1 t − sð Þ

� u tð Þ − u sð Þð Þds
	j+1

dx

!1/ j+1

≤
jδ−j+1/j

j + 1

ð
Ω

uj jk + vj jl
� �

utj jj+1dx + δj+1

j + 1

 
1
2 uk k2k2k

+ 1
2

ð
Ω

ðt
0
h1 t − sð Þ u tð Þ − u sð Þð Þds

� 	2 j+1ð Þ
dx

!

≤
jδ−j+1/j

j + 1

ð
Ω

uj jk + vj jl
� �

utj jj+1dx + δj+1

j + 1

 
c2k∗
2 χk−1

1 ∇uk k2

+ c2j+2∗ 2χ1ð Þj 1 − l1ð Þ2j+1
2 h1⋄∇uð Þ tð Þ

!

I2j j ≤ jδ−j+1/j

j + 1

ð
Ω

uj jk + vj jl
� �

utj jj+1dx + δj+1

j + 1

 
c2l∗
2 χl−1

2 ∇vk k2

+ c2j+2∗ 2χ1ð Þj 1 − l1ð Þ2j+1
2 h1⋄∇uð Þ tð Þ

!
:

ð53Þ

From (A1) assumption, Hölder’s inequality, and Young’s
inequality, we get

ð
Ω

∇u tð Þ
ðt
0
h1 t − sð Þ ∇u tð Þ−∇u sð Þð Þdsdx

����
����

≤ δ ∇uk k2 + 1 − l1
4δ h1⋄∇uð Þ tð Þ:

ð54Þ

In order to estimate the forth term, we use Young’s
inequality, Sobolev-Poincare inequality, Hölder’s inequality,
and (A1) assumption

−
ð
Ω

∇ut tð Þ
ðt
0
h1′ t − sð Þ ∇u tð Þ−∇u sð Þð Þdsdx

����
����

≤ δ ∇utk k2 − h1 0ð Þ
4δ h1′⋄∇u

� �
tð Þ:

−
1

η + 1

ð
Ω

utj jηut
ðt
0
h1′ t − sð Þ u tð Þ − u sð Þð Þdsdx

����
����

≤
1

η + 1 δ utk k2 η+1ð Þ
2 η+1ð Þ +

1
4δ

ð
Ω

ðt
0
h1′ t − sð Þ u tð Þ − u sð Þð Þds

� 	2
dx

" #

≤
1

η + 1 δ utk k2 η+1ð Þ
2 η+1ð Þ −

h1 0ð Þc2∗
4δ

ð
Ω

ðt
0
h1′ t − sð Þ ∇u tð Þ−∇u sð Þj j2dsdx

� 


≤
δc2 η+1ð Þ

∗

η + 1
2 κ + 2ð ÞE 0ð Þ

κ + 1

� 	η

∇utk k2 − h1 0ð Þc2∗
4δ η + 1ð Þ h1′⋄∇u

� �
tð Þ:

ð55Þ

Combining these estimates (34)-(40) and (33) becomes

Ϝ1′ tð Þ ≤ 2δ + 1
2δ

� 	
1 − l1ð Þ + δj+1c2j+2∗ 2χ1ð Þj 1 − l1ð Þ2j+1

j + 1

" #

� h1⋄∇uð Þ tð Þ + δ + 2δ 1 − l1ð Þ2 + δj+1

j + 1
c2k∗
2 χk−1

1

 !

� ∇uk k2 + δj+1

j + 1
c2l∗
2 χl−1

2 ∇vk k2 − h1 0ð Þ
4δ

c2∗
η + 1 + 1
� 	

� h1′⋄∇u
� �

tð Þ +
 
δ + δc2 η+1ð Þ

∗

η + 1
2 κ + 2ð ÞE 0ð Þ

κ + 1

� 	η

−
ðt
0
h1 sð Þds

!
∇utk k2 + 2jδ−j+1/j

j + 1

ð
Ω

uj jk + vj jl
� �

� utj jj+1dx − 1
η + 1

ðt
0
h1 sð Þds

� 	
utk kη+2η+2

−
ð
Ω

f1 u, vð Þ
ðt
0
h1 t − sð Þ u tð Þ − u sð Þð Þdsdx:

ð56Þ

Similarly, let

Ϝ2 tð Þ= Ω Δvt −
1

η + 1 vtj jηvt
� 	t

0
h2 t − sð Þ v tð Þ − v sð Þð Þdsdx,

ð57Þ
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then

Ϝ2′ tð Þ ≤ 2δ + 1
2δ

� 	
1 − l2ð Þ + δs+1c2s+2∗ 2χ2ð Þs 1 − l2ð Þ2s+1

s + 1

" #

� h2⋄∇vð Þ tð Þ + δ + 2δ 1 − l2ð Þ2 + δs+1

s + 1
c2θ∗
2 δθ−12

 !

� ∇vk k2 + δs+1

s + 1
c2ϱ∗
2 χϱ−1

1 ∇uk k2 − h2 0ð Þ
4δ 1 + c2∗

η + 1

� 	

� h2′⋄∇v
� �

tð Þ +
 
δ + δc2 η+1ð Þ

∗

η + 1
2 κ + 2ð ÞE 0ð Þ

κ + 1

� 	η

−
ðt
0
h2 sð Þds

!
∇vtk k2 + 2sδ−s+1/s

s + 1

ð
Ω

vj jθ + uj jϱ
� �

� vtj js+1dx −
ð
Ω

f2 u, vð Þ
ðt
0
h2 t − sð Þ v tð Þ − v sð Þð Þdsdx

−
1

η + 1

ðt
0
h2 sð Þds

� 	
vtk kη+2η+2:

ð58Þ

Since the function hi ði = 1, 2Þ is positive, then for any t0
> 0,

ðt
0
hi sð Þds ≥

ðt0
0
hi sð Þds = hi 0ð Þ ≥ h3 > 0,∀t ≥ t0: ð59Þ

Hence, we conclude from (17), (10), (32), (41), and (42)
that

Γ′ tð Þ ≤ −
1

η + 1 h3 − εð Þ utk kη+2η+2 + vtk kη+2η+2
� �

−

 
h3 − ε − δ

−
δc2 η+1ð Þ

∗

η + 1
2 κ + 2ð ÞE 0ð Þ

κ + 1

� 	η
!

∇utk k2 + ∇vtk k2� �

−
εl1
4 − c2

� 	
∇uk k2 − εl2

4 − c3

� 	
∇vk k2

+ ε 1 − l1ð Þ
2l1

+ c4

� 	
h1⋄∇uð Þ tð Þ + ε 1 − l2ð Þ

2l2
+ c5

� 	

� h2⋄∇vð Þ tð Þ + 2ε κ + 2ð Þ
ð
Ω

F u, vð Þdx

+ M
2 −

h1 0ð Þ
4δ

c2∗
η + 1 + 1
� 	� 


h1′⋄∇u
� �

tð Þ

+ M
2 −

h2 0ð Þ
4δ

c2∗
η + 1 + 1
� 	� 


h2′⋄∇v
� �

tð Þ

+ 2jβ−j+1/j
1

j + 1 ε + 1ð Þ −M

 !ð
Ω

uj jk + vj jl
� �

utj jj+1dx

+ 2sβ−s+1/s
2

s + 1 ε + 1ð Þ −M

 !ð
Ω

vj jθ + uj jρ
� �

vtj js+1dx

−
ð
Ω

f1 u, vð Þ
ðt
0
h1 t − sð Þ u tð Þ − u sð Þð Þdsdx

−
ð
Ω

f2 u, vð Þ
ðt
0
h2 t − sð Þ v tð Þ − v sð Þð Þdsdx,

ð60Þ

where

c2 = 2δ 1 − l1ð Þ2 + δj+1c2k∗ χ
k−1
1

2 j + 1ð Þ + δs+1c2ρ∗ χρ−1
1

2 s + 1ð Þ ,

c3 = 2δ 1 − l2ð Þ2 + δs+1c2θ∗ χθ−1
2

2 s + 1ð Þ + δj+1c2l∗χ
l−1
2

2 j + 1ð Þ ,

c4 = 2δ + 1
2δ

� 	
1 − l1ð Þ + δj+1c2j+2∗ 2χ1ð Þj 1 − l1ð Þ2j+1

j + 1 ,

c5 = 2δ + 1
2δ

� 	
1 − l2ð Þ + δs+1c2s+2∗ 2χ2ð Þs 1 − l2ð Þ2s+1

s + 1 :

ð61Þ

By using Lemma 8 and (15) for the last two terms of (43),
we obtain

Γ′ tð Þ ≤ −
1

η + 1 ε − h3ð Þ utk kη+2η+2 + vtk kη+2η+2
� �

− ε + δ + δc2 η+1ð Þ
∗

η + 1
2 κ + 2ð ÞE 0ð Þ

κ + 1

� 	η

− h3

 !

� ∇utk k2 + ∇vtk k2� �
−

εl1
4 − c2 + β1 + β2ð Þδl1ð Þ

� 	

� ∇uk k2 − εl2
4 − ε c3 + β1 + β2ð Þδl2ð Þ

� 	
∇vk k2

+ ε

2l1
+ c2∗
4δ

� 	
1 − l1ð Þ + c4

� 

h1⋄∇uð Þ tð Þ

+ ε

2l2
+ c2∗
4δ

� 	
1 − l2ð Þ + c5

� 

h2⋄∇vð Þ tð Þ

+ M
2 −

h1 0ð Þ
4δ

c2∗
η + 1 + 1
� 	� 


h1′⋄∇u
� �

tð Þ

+ M
2 −

h2 0ð Þ
4δ

c2∗
η + 1 + 1
� 	� 


h2′⋄∇u
� �

tð Þ

+ 2ε κ + 2ð Þ
ð
Ω

F u, vð Þdx + 2jβ−j+1/j
1

j + 1 ε + 1ð Þ −M

 !

�
ð
Ω

uj jk + vj jl
� �

utj jj+1dx + 2sβ−s+1/s
2

s + 1 ε + 1ð Þ −M

 !

�
ð
Ω

vj jθ + uj jρ
� �

vtj js+1dx:

ð62Þ

At this point, we choose ε and δ which are small enough,
and we have

1
η + 1 h3 − εð Þ > 0,

h3 − ε − δ −
δc2 η+1ð Þ

∗

η + 1
2 κ + 2ð ÞE 0ð Þ

κ + 1

� 	η

> 0,

εl1
4 − c2 + β1 + β2ð Þδl1ð Þ > 0,

εl2
4 − c2 + β1 + β2ð Þδl2ð Þ > 0:

ð63Þ
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Further, we pick ε so small and

2jβ−j+1/j
1

j + 1 ε + 1ð Þ −M < 0, 2sβ
−s+1/s
2

s + 1 ε + 1ð Þ −M < 0: ð64Þ

Once δ is fixed, we choose M that is sufficently large so
that

M
2 −

h1 0ð Þ
4δ

c2∗
η + 1 + 1
� 	

≥ 0, M2 −
h2 0ð Þ
4δ

c2∗
η + 1 + 1
� 	

≥ 0:

ð65Þ

Consequently, for all t ≥ t0, we reach at

Γ′ tð Þ ≤ −ξ1E tð Þ + ξ2 h1⋄∇uð Þ tð Þ + h2⋄∇vð Þ tð Þð Þ, ð66Þ

where there are positive constants ξi, i = 1, 2.

Now, we are ready to state our stability result.

Theorem 10. Suppose that (4) and (A1)-(A3) hold, and that
ðu0, u1Þ ∈H1

0ðΩÞ × L2ðΩÞ and ðv0, v1Þ ∈H1
0ðΩÞ × L2ðΩÞ sat-

isfy Eð0Þ < E1 and

l1 ∇u0k k2 + l2 ∇v0k k2� �1/2 < α∗: ð67Þ

Then for each, the energy of (1) satisfies

E tð Þ ≤ Ke−k
t
t0
δ sð Þds, t ≥ t0, ð68Þ

where δðtÞ≔min fδ1ðtÞ, δ2ðtÞg and K and k are positive con-
stants:

Proof. Multiplying (46) by δðtÞ, we get

δ tð ÞΓ′ tð Þ ≤ −ξ1δ tð ÞE tð Þ + ξ2δ tð Þ h1⋄∇uð Þ tð Þ + h2⋄∇vð Þ tð Þ½ �:
ð69Þ

Applying (A2) and δðtÞ≔min fδ1ðtÞ, δ2ðtÞg and since
−½ðh1′⋄∇uÞðtÞ + ðh2′⋄∇vÞðtÞ� ≤ −2E′ðtÞ by (10), we obtain

δ tð ÞΓ′ tð Þ ≤ −ξ1δ tð ÞE tð Þ − ξ2δ tð Þ h1′⋄∇u
� �

tð Þ + h2′⋄∇v
� �

tð Þ
h i

≤ −ξ1δ tð ÞE tð Þ − 2ξ2E′ tð Þ,∀t ≥ t0:

ð70Þ

That is

G′ tð Þ ≤ −c∗δ tð ÞE tð Þ ≤ −kδ tð ÞG tð Þ,∀t ≥ t0: ð71Þ

And here, GðtÞ = δðtÞΓðtÞ + CEðtÞ is equivalent to EðtÞ due
to (20), and k is a positive constant. A simple integration of
(50) leads to

G tð Þ ≤G t0ð Þe−ktt0δ sð Þds,∀t ≥ t0: ð72Þ

This completes the proof.

5. Conclusion

As far as we know, there have not been any global existences
and general decay results in the literature known for quasi-
linear viscoelastic equations with degenerate damping terms.
Our work extends the works for some quasilinear viscoelastic
equations treated in the literature to the quasilinear viscoelas-
tic equation with degenerate damping terms.
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This paper systematically investigates a class of fourth-order differential equation with p-Laplacian on infinite interval in Banach
space. By means of the monotone iterative technique, we establish not only the existence of positive solutions but also iterative
schemes under the suitable conditions. At last, we give an example to demonstrate the application of the main result.

1. Introduction

The partial differential equation with the p-Laplacian operator

−div ∇u xð Þj jp−2∇u xð Þ� �
+ b xð Þφ u xð Þð Þ = 0, ð1Þ

which is often used to describe, for example, diffusion process
[1], with a spatial symmetric potential b, can be reduced to
ðrðtÞφpðy′ðtÞÞÞ′ + cðtÞφpðyðtÞÞ = 0, where φpðxÞ = jxjp−2x, p
> 1. This fact leads us to study the following p-Laplacian
boundary value problem (BVP):

φp u″ tð Þ
� �� �

″ − k2φp u″ tð Þ
� �

= a tð Þf t, u tð Þð Þ, ∈ 0, +∞ð Þ,

u 0ð Þ =
ð∞
0
g tð Þu tð Þdt, lim

t⟶+∞
u′ tð Þ = ξ, u″ 0ð Þ = lim

t⟶+∞
u″ tð Þ = 0,

8>><
>>:

ð2Þ

where φpðxÞ = jxjp−2x, p > 1, φq = φ−1
p , ð1/pÞ + ð1/qÞ = 1, k > 0

, ξ ≥ 0 are real constants, g : ½0, +∞Þ⟶ ½0, +∞Þ is a Lebes-
gue integrable function with

Ð∞
0 gðtÞdt < 1, Ð∞0 tgðtÞdt < +∞

, a : ð0, +∞Þ⟶ ½0, +∞Þ is continuous and may be singular
at t = 0, and f : ½0, +∞Þ × ½0, +∞Þ⟶ ½0, +∞Þ is a continu-
ous function.

The p-Laplacian equation arises quite naturally in the
modeling of different physical and natural phenomena. For
instance, in fluid mechanics, the shear stress τ

!
and the veloc-

ity gradient ∇pu of certain fluids obey a relation of the form

τ
! = aðxÞ∇pu, where ∇pu = j∇ujp−2∇u. Here, the real number
p > 1 and p = 2 (respectively, p < 2, p > 2) designate a Newto-
nian (respectively, pseudoplastic, dilatant) fluid. Given a is a
constant, the resulting equations of motion then involve
div ða∇puÞ, which reduces to aΔpu = a div ∇pu. Over the
last couple of decades, many important results including
integral and fractional equations with p-Laplacian on cer-
tain boundary value conditions had been obtained. We
refer the reader to [2–17] and the references cited therein.
Liang and Zhang [18] considered the m-point BVP with a
p-Laplacian operator

φp u′ tð Þ
� �� �

′ + h tð Þf u tð Þð Þ = 0, t ∈ 0, +∞ð Þ,

u 0ð Þ = 〠
m−2

i=1
αiu ξið Þ, lim

t⟶+∞
u′ tð Þ = 0,

8>>><
>>>:

ð3Þ

where ξi ∈ ð0, +∞Þ, with 0 < ξ1 < ξ2 <⋯ < ξm−2 < +∞, and αi
satisfies αi ∈ ½0, +∞Þ, 0 ≤ ∑m−2

i=1 αi < 1, h : ½0, +∞Þ⟶ ½0,
+∞Þ and has countably many singularities in ½1, +∞Þ, f : ½
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0, +∞Þ⟶ ½0, +∞Þ is a continuous function. The existence
of positive solutions is obtained by applying the fixed-point
theorem of Leggett-Williams.

Using the fixed point index theory, Xu and Yang in [19]
researched the existence of positive solutions for the fourth
order p-Laplacian BVP

u″
�� ��p−1u″� �

″ = f t, uð Þ, t ∈ 0, 1ð Þ,

u 2ið Þ 0ð Þ = u 2ið Þ 1ð Þ = 0, i = 0, 1,

8<
: ð4Þ

where p > 0, f : ½0, 1� × ½0, +∞Þ⟶ ½0, +∞Þ is a continuous
function.

The motivation for the present work stems from both
practical and theoretical aspects. In fact, many mathematical
problems in science and engineering are set in unbounded
domains, such as unsteady flow of gas through a semi-
infinite porous media, the theory of drain flows, plasma
physics, in determining the electrical potential in an isolated
neutral atom. In all these applications, it is frequent that only
positive solutions are useful. In this paper, we study the dif-
ferential equation with p-Laplacian operator as BVP (2);
when p = 2, BVP (2) becomes the ordinary fourth-order dif-
ferential equation. The results for the existence of the maxi-
mal and minimal solutions to the BVP (2) are established.
In addition, we establish iterative schemes for approximating
the solutions, which start from the known simple linear func-
tions. However, to the best knowledge of the authors, there
are few works in the literature dealing with the existence of
positive solutions to boundary value problems of differential
equation on infinite intervals with p-Laplacian operator by
using iterative technique up to now. The goal of the present
paper is to fill the gap in this area, so it is interesting and
important to study the existence of positive solutions for
BVP (2).

2. Preliminaries and Lemmas

The basic space used in this paper is E, where E is denoted by

E = u ∈ C 0, +∞½ Þ: sup
t∈ 0,+∞½ Þ

∣u tð Þ ∣
1 + t

<+∞
( )

: ð5Þ

Then, E is a Banach space equipped with the norm ∥u∥
= supt∈½0,+∞Þð∣uðtÞ∣/ð1 + tÞÞ. Define a cone K in the Banach
space E by K = fu ∈ E : uðtÞ ≥ 0, t ∈ ½0, +∞Þg:

Lemma 1 (see [20]). Let y ∈ C½0, +∞Þ ∩ L1ð0, +∞Þ, then x is
a solution of

x″ tð Þ − k2x tð Þ + y tð Þ = 0, t ∈ 0, +∞ð Þ,
x 0ð Þ = lim

t⟶+∞
x tð Þ = 0,

8<
: ð6Þ

if and only if x is a solution of

x tð Þ =
ð∞
0
G t, sð Þy sð Þds, ð7Þ

where

G t, sð Þ = 1
2k

e−ks ekt − e−kt
� �

, 0 ≤ t ≤ s < +∞,

e−kt eks − e−ks
� �

, 0 ≤ s ≤ t < +∞:

8><
>: ð8Þ

Lemma 2. Green’s function Gðt, sÞ satisfies

(1) Gðt, sÞ ≥ 0, for any t, s ∈ ½0, +∞Þ
(2) Gðt, sÞ ≤Gðs, sÞ ≤ 1/2k, for any t, s ∈ ½0, +∞Þ
In what follows, we list some conditions for convenience.
ðH0Þ g : ½0, +∞Þ⟶ ½0, +∞Þ is a Lebesgue integrable

function with
Ð∞
0 gðtÞdt < 1,

Ð∞
0 tgðtÞdt < +∞.

ðH1Þ f : ½0, +∞Þ × ½0, +∞Þ⟶ ½0, +∞Þ is a continuous
function, f ðt, 0Þ≡0 on ½0, +∞Þ and f ðt, ð1 + tÞxÞ is bounded,
for t ∈ ½0, +∞Þ, x ∈D, D ⊂ ½0, +∞Þ is a closed subinterval.

ðH2Þ a : ð0, +∞Þ⟶ ½0, +∞Þ is continuous, aðtÞ≡0 on
½0, +∞Þ and

0 <
ð∞
0
G s, sð Þa sð Þds

< +∞,
ð∞
0
sφq

ð∞
0
G s, ςð Þa ςð Þdς

� �
ds < +∞:

ð9Þ

By routine discussion, Lemma 3 is valid.

Lemma 3. Assume that ðH0Þ holds and φqðxÞ ∈ C½0, +∞Þ ∩
L1ð0, +∞Þ; then, u is a solution of

u″ tð Þ + φq x tð Þð Þ = 0, t ∈ 0, +∞ð Þ,

u 0ð Þ =
ð∞
0
g tð Þu tð Þdt, lim

t⟶+∞
u′ tð Þ = ξ,

8><
>: ð10Þ

if and only if u is a solution of

u tð Þ = 1

1 −
Ð∞
0 g tð Þdt

�
ξ
ð∞
0
tg tð Þdt

+
ð∞
0
g tð Þ

ðt
0

ð∞
s
φq x τð Þð Þdτdsdt

�

+
ðt
0

ð∞
s
φq x τð Þð Þdτds + ξt:

ð11Þ

Let xðtÞ = −φpðu″ðtÞÞ, then BVP (2) is divided into the
following two parts:
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x″ tð Þ − k2x tð Þ + a tð Þf t, u tð Þð Þ = 0, t ∈ 0, +∞ð Þ,
x 0ð Þ = lim

t⟶+∞
x tð Þ = 0,

8<
:

u″ tð Þ + φq x tð Þð Þ = 0, t ∈ 0, +∞ð Þ,

u 0ð Þ =
ð∞
0
g tð Þu tð Þdt, lim

t⟶+∞
u′ tð Þ = ξ:

8>><
>>:

ð12Þ

From Lemmas 1 and 3, under the above assumptions
ðH0Þ – ðH2Þ, denote the operator A : K ⟶ E as follows:

Au tð Þ = 1
1 − Ð∞0 g tð Þdt

�
ξ
ð∞
0
tg tð Þdt +

ð∞
0
g tð Þ

ðt
0

ð∞
s
φq

�
ð∞
0
G τ, ςð Þa ςð Þf ς, u ςð Þð Þdς

� �
dτdsdt

�

+
ðt
0

ð∞
s
φq

ð∞
0
G τ, ςð Þa ςð Þf ς, u ςð Þð Þdς

� �
dτds

+ ξt, t ∈ 0, +∞½ Þ:
ð13Þ

Now, we claim that Au is well defined for u ∈ K . In
fact, for any u ∈ K , there exists r > 0, such that jðuðtÞÞ/ð1
+ tÞj ≤ r, t ∈ ½0, +∞Þ. From ðH1Þ and the definition of ∥·∥,
we have

Srf ≔ sup f t, 1 + tð Þxð Þ: t, xð Þ ∈ 0½ , +∞Þ × 0, r½ �f g < +∞:

ð14Þ

Thus, by ðH1ÞðH2Þ, we know

ðt
0

ð∞
s
φq

ð∞
0
G τ, ςð Þa ςð Þf ς, u ςð Þð Þdς

� �
dτds

≤ φq Srf
� �ð∞

0
sφq

ð∞
0
G s, ςð Þa ςð Þdς

� �
ds < +∞:

ð15Þ

Since

ð∞
0
g tð Þdt < 1,

ð∞
0
tg tð Þdt < +∞: ð16Þ

Together with (15), for any t ∈ ½0, +∞Þ, we can see
that

∣Au tð Þ ∣
1 + t

≤
1

1 −
Ð∞
0 g tð Þdt

�
ξ
ð∞
0
tg tð Þdt +

ð∞
0
g tð Þ

ðt
0

ð∞
s
φq

�
ð∞
0
G τ, ςð Þa ςð Þf ς, u ςð Þð Þdς

� �
dτdsdt

�

+
ðt
0

ð∞
s
φq

ð∞
0
G τ, ςð Þa ςð Þf ς, u ςð Þð Þdς

� �
dτds + ξ

≤
1

1 − Ð∞0 g tð Þdt
�
ξ
ð∞
0
tg tð Þdt + φq Srf

� �ð∞
0
sφq

�
ð∞
0
G s, ςð Þa ςð Þdς

� �
ds
ð∞
0
g tð Þdt

�

+ φq Srf
� �ð∞

0
sφq

ð∞
0
G s, ςð Þa ςð Þdς

� �
ds + ξ:

ð17Þ

So, by (15) and (17), we obtain

sup
t∈ 0,+∞½ Þ

∣Au tð Þ ∣
1 + t

< +∞: ð18Þ

On the other hand, for any t1, t2 ∈ ½0, +∞Þ, by (13), we
have

Au t1ð Þ − Au t2ð Þj j

≤
ðt2
t1

ð∞
s
φq

ð∞
0
G τ, ςð Þa ςð Þf ς, u ςð Þð Þdς

� �
dτds

�����
�����

+ ξ t1 − t2j j⟶ 0, as t1 ⟶ t2:

ð19Þ

Therefore, Au ∈ C½0, +∞Þ, for any u ∈ K . Hence, A
: K ⟶ E is well defined. Obviously, u is a positive solu-
tion of BVP (2) if and only if u is a fixed point of A in
K .

The Arzela-Ascoli theorem fails to work in the Banach
space E due to the fact that the infinite interval ½0, +∞Þ is
noncompact. The following compactness criterion will help
us to resolve this problem.

Lemma 4 (see [21, 22]). Let E be defined as (5) andM be any
bounded subset of E. Then, M is relatively compact in E if
fxðtÞ/ð1 + tÞ: x ∈Mg is equicontinuous on any finite subin-
terval of ½0, +∞Þ, and for any given ε > 0, there exists N > 0,
such that jðxðt1Þ/ð1 + t1ÞÞ − ðxðt2Þ/ð1 + t2ÞÞj < ε uniformly
with respect to x ∈M, as t1, t2 >N .

3. Main Results

Lemma 5. Assume that ðH0Þ − ðH2Þ hold. Then, A : K ⟶ K
is completely continuous.

Proof. It is clear that AuðtÞ ≥ 0 for any u ∈ K , t ∈ ½0, +∞Þ.
Thus, AðKÞ ⊆ K . Now, we prove that A is continuous and
compact, respectively. LetM ⊂ K be a bounded subset. Then,
there exists R > 0, such that kxk < R, for any x ∈M. So, for
any x ∈M, we have
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∥Au∥ = sup
t∈ 0,+∞½ Þ

1
1 + t

1
1 −
Ð∞
0 g tð Þdt

�
ξ
ð∞
0
tg tð Þdt +

ð∞
0
g tð Þ

�����
�
ðt
0

ð∞
s
φq

ð∞
0
G τ, ςð Þa ςð Þf ς, u ςð Þð Þdς

� �
dτdsdt

�

+
ðt
0

ð∞
s
φq

ð∞
0
G τ, ςð Þa ςð Þf ς, u ςð Þð Þdς

� �
dτds + ξt

�����
≤

1
1 −
Ð∞
0 g tð Þdt

�
ξ
ð∞
0
tg tð Þdt + φq SRf

� �ð∞
0
sφq

�
ð∞
0
G s, ςð Þa ςð Þdς

� �
ds
ð∞
0
g tð Þdt

�

+ φq SRf
� �ð∞

0
sφq

ð∞
0
G s, ςð Þa ςð Þdς

� �
ds + ξ < +∞,

ð20Þ

where

SRf ≔ sup f t, 1 + tð Þxð Þ: t, xð Þ ∈ 0½ , +∞Þ × 0, R½ �f g < +∞:

ð21Þ

So, AM is bounded in E. Moreover, given T ∈ ð0, +∞Þ,
for any x ∈M and t1, t2 ∈ ½0, T�, without loss of generality,
we may assume that t1 < t2. In fact,

Au t1ð Þ
1 + t1

−
Au t2ð Þ
1 + t2

����
����

≤
1

1 + t1
−

1
1 + t2

����
���� 1
1 −
Ð∞
0 g tð Þdt

�
ξ
ð∞
0
tg tð Þdt +

ð∞
0
g tð Þ

�
ðt
0

ð∞
s
φq

ð∞
0
G τ, ςð Þa ςð Þf ς, u ςð Þð Þdς

� �
dτdsdt

�

+ 1
1 + t1

ðt1
0

ð∞
s
φq

ð∞
0
G τ, ςð Þa ςð Þf ς, u ςð Þð Þdς

� �
dτds

����
−

1
1 + t2

ðt2
0

ð∞
s
φq

ð∞
0
G τ, ςð Þa ςð Þf ς, u ςð Þð Þdς

� �
dτds

����
+ ξ

t1
1 + t1

−
t2

1 + t2

����
���� ≤ 1

1 + t1
−

1
1 + t2

����
���� 1
1 − Ð∞0 g tð Þdt

�
�
ξ
ð∞
0
tg tð Þdt + φq SRf

� �ð∞
0
g tð Þdt

ð∞
0
sφq

�
ð∞
0
G s, ςð Þa ςð Þdς

� �
ds
�
+ 1

1 + t1
−

1
1 + t2

����
����φq SRf
� �

�
ðt1
0

ð∞
s
φq

ð∞
0
G τ, ςð Þa ςð Þdς

� �
dτds

+ φq SRf
� �ðt2

t1

ð∞
s
φq

ð∞
0
G τ, ςð Þa ςð Þdς

� �
dτds

+ ξ
t1

1 + t1
−

t2
1 + t2

����
����:

ð22Þ

So, for any ε > 0, there exists δ > 0, such that for any t1,
t2 ∈ ½0, T� with jt1 − t2j < δ, and for any x ∈M, we have

Auð Þ t1ð Þ
1 + t1

−
Auð Þ t2ð Þ
1 + t2

<
����

����δ: ð23Þ

Hence, fðAuÞðtÞ/ð1 + tÞ: u ∈Mg is equicontinuous on
½0, T�. Since T > 0 is arbitrary, fðAuÞðtÞ/ð1 + tÞ: u ∈Mg is
locally equicontinuous on ½0, +∞Þ.

Next, we prove that we show thatA : K ⟶ K is equicon-
vergent at +∞. For any u ∈M, we have

lim
t⟶+∞

Au tð Þ
1 + t

����
����

= lim
t⟶+∞

1
1 + t

1
1 −
Ð∞
0 g tð Þdt

�
ξ
ð∞
0
tg tð Þdt +

ð∞
0
g tð Þ

�����
�
ðt
0

ð∞
s
φq

ð∞
0
G τ, ςð Þa ςð Þf ς, u ςð Þð Þdς

� �
dτdsdt

�

+
ðt
0

ð∞
s
φq

ð∞
0
G τ, ςð Þa ςð Þf ς, u ςð Þð Þdς

� �
dτds + ξt

�����
= lim

t⟶+∞

ð∞
t
φq

ð∞
0
G τ, ςð Þa ςð Þf ς, u ςð Þð Þdς

� �
dτ + ξ = ξ:

ð24Þ

So, for any u ∈M, we have

Au tð Þ
1 + t

− ξ

����
����

= 1
1 + t

 
1

1 −
Ð∞
0 g tð Þdt

�
ξ
ð∞
0
tg tð Þdt +

ð∞
0
g tð Þ

�����
�
ðt
0

ð∞
s
φq

ð∞
0
G τ, ςð Þa ςð Þf ς, u ςð Þð Þdς

� �
dτdsdt

�

+
ðt
0

ð∞
s
φq

ð∞
0
G τ, ςð Þa ςð Þf ς, u ςð Þð Þdς

� �
dτds + ξt

!
− ξ

�����
≤

1
1 + t

 
1

1 − Ð∞0 g tð Þdt
�
ξ
ð∞
0
tg tð Þdt + φq SRf

� ������
�
ð∞
0
sφq

ð∞
0
G s, ςð Þa ςð Þdς

� �
ds
ð∞
0
g tð Þdt

�

+ φq SRf
� �ð∞

0
sφq

ð∞
0
G s, ςð Þa ςð Þdς

� �
ds

!

−
ξ

1 + t

�����⟶ 0, t⟶ +∞:

ð25Þ

Thus, for any ε > 0, there exists N > 0, for any t >N and
for any x ∈M, such that

Au tð Þ
1 + t

− ξ

����
���� < ε

2 : ð26Þ
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Consequently, for any t1, t2 >N and for any x ∈M, we
have

Au t1ð Þ
1 + t1

− ξ

����
���� < ε

2 ,

Au t2ð Þ
1 + t2

− ξ

����
���� < ε

2 ,

 t1, t2 >N:

ð27Þ

Therefore, for any t1, t2 >N and for any x ∈M, we have

Au t1ð Þ
1 + t1

−
Au t2ð Þ
1 + t2

����
���� = Au t1ð Þ

1 + t1
− ξ

� �
−

Au t2ð Þ
1 + t2

− ξ

� �����
����

≤
Au t1ð Þ
1 + t1

− ξ

����
���� + Au t2ð Þ

1 + t2
− ξ

����
����

< ε,  t1, t2 >N:

ð28Þ

This implies that AM is equiconvergent at +∞.
Let un ⟶ u as n⟶ +∞; then, there exists r0 such that

maxn∈ℕ\f0gf∥un∥, ∥u∥g < r0, ℕ is a natural number set. By
ðH2Þ, we haveð∞

0
G τ, ςð Þa ςð Þf ς, un ςð Þð Þdς −

ð∞
0
G τ, ςð Þa ςð Þf ς, u ςð Þð Þdς

����
����

≤
ð∞
0
G τ, ςð Þa ςð Þ f ς, un ςð Þð Þ − f ς, u ςð Þð Þj jdς

≤ 2Sr0f
ð∞
0
G τ, ςð Þa ςð Þdς < +∞,

ð29Þ

where

Sr0f ≔ sup f t, 1 + tð Þxð Þ: t, xð Þ ∈ 0½ , +∞Þ × 0, r0½ �f g < +∞:

ð30Þ

So, for any ε > 0, we can find a sufficiently large H0 > 0,
such that

Sr0f

ð∞
H0

G τ, ςð Þa ςð Þdς < ε

4 : ð31Þ

It follows from the Lebesgue dominated convergence
theorem and continuity of f , we can get

ðH0

0
G τ, ςð Þa ςð Þf ς, un ςð Þð Þdς −

ðH0

0
G τ, ςð Þa ςð Þf ς, u ςð Þð Þdς

����
����

≤
ðH0

0
G τ, ςð Þa ςð Þ f ς, un ςð Þð Þ − f ς, u ςð Þð Þj jdς

⟶ 0, n⟶ +∞, τ ∈ 0, +∞½ Þ:
ð32Þ

So, for the above ε > 0, there exists N > 0, when n >N0,
we have

ðH0

0
G τ, ςð Þa ςð Þ f ς, un ςð Þð Þ − f ς, u ςð Þð Þj jdς < ε

2 : ð33Þ

Therefore, when n >N0,ð∞
0
G τ, ςð Þa ςð Þf ς, un ςð Þð Þdς −

ð∞
0
G τ, ςð Þa ςð Þf ς, u ςð Þð Þdς

����
����

≤
ð∞
0
G τ, ςð Þa ςð Þ f ς, un ςð Þ − f ς, un ςð Þð Þj jdς

≤
ðH0

0
G τ, ςð Þa ςð Þ f ς, un ςð Þ − f ς, un ςð Þð Þj jdς

+
ð∞
H0

G τ, ςð Þa ςð Þ f ς, un ςð Þ − f ς, un ςð Þð Þj jdς

≤
ε

2 + 2Sr0f
ð∞
H0

G τ, ςð Þa ςð Þdς < ε,

ð34Þ

which implied that

τφq

ð∞
0
G τ, ςð Þa ςð Þf ς, un ςð Þð Þdς

� �����
− τφq

ð∞
0
G τ, ςð Þa ςð Þf ς, u ςð Þð Þdς

� �����⟶ 0,
ð35Þ

as n⟶ +∞, τ ∈ ½0, +∞Þ. Since
ðt
0

ð∞
s
φq

ð∞
0
G τ, ςð Þa ςð Þf ς, un ςð Þð Þdς

� �
dτds

����
−
ðt
0

ð∞
s
φq

ð∞
0
G τ, ςð Þa ςð Þf ς, u ςð Þð Þdς

� �
dτds

����
≤ 2φq Sr0f

� �ð∞
0
sφq

ð∞
0
G s, ςð Þa ςð Þdς

� �
ds < +∞:

ð36Þ

Then, by the Lebesgue dominated convergence theorem,
we get

Aun − Auk k

= sup
t⟶+∞

1
1 + t

1
1 − Ð∞0 g tð Þdt

ð∞
0
g tð Þ

�����
�
ðt
0

ð∞
s

�
φq

ð∞
0
G τ, ςð Þa ςð Þf ς, un ςð Þð Þdς

� �

− φq

ð∞
0
G τ, ςð Þa ςð Þf ς, u ςð Þð Þdς

� ��
dτdsdt

+
ðt
0

ð∞
s

�
φq

ð∞
0
G τ, ςð Þa ςð Þf ς, un ςð Þð Þdς

� �

− φq

ð∞
0
G τ, ςð Þa ςð Þf ς, u ςð Þð Þdς

� ��
dτds

�����
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≤
1

1 − Ð∞0 g tð Þdt
ð∞
0
g tð Þ

ðt
0

ð∞
s

� φq

ð∞
0
G τ, ςð Þa ςð Þf ς, un ςð Þð Þdς

� �����
− φq

ð∞
0
G τ, ςð Þa ςð Þf ς, u ςð Þð Þdς

� �����dτdsdt
+
ðt
0

ð∞
s

φq

ð∞
0
G τ, ςð Þa ςð Þf ς, un ςð Þð Þdς

� �����
− φq

ð∞
0
G τ, ςð Þa ςð Þf ς, u ςð Þð Þdς

� �����dτds
≤

Ð∞
0 g tð Þdt

1 − Ð∞0 g tð Þdt + 1
 !ð∞

0
s

� φq

ð∞
0
G s, ςð Þa ςð Þf ς, un ςð Þð Þdς

� �����
− φq

ð∞
0
G s, ςð Þa ςð Þf ς, u ςð Þð Þdς

� �����ds
⟶ 0,n⟶ +∞:

ð37Þ

Therefore, A : K ⟶ K is continuous. In conclusion, by
Lemma 4, we know that A : K ⟶ K is completely continu-
ous. The proof is completed. ☐

Theorem 6. Assume that ðH0Þ – ðH2Þ hold and there exists
d > 2m which satisfies the following condition:

ðH3Þf ðt, x1Þ ≤ f ðt, x2Þ, t ∈ ½0, +∞Þ, 0 ≤ x1 ≤ x2.
ðH4Þf ðt, ð1 + tÞxÞ ≤ φpðd/2lÞ, ðt, xÞ ∈ ½0, +∞Þ × ½0, d�,
where

m = ξ 1 +
Ð∞
0 tg tð Þdt

1 −
Ð∞
0 g tð Þdt

 !
,

l = 1

1 −
Ð∞
0 g tð Þdt

ð∞
0
sφq

ð∞
0
G s, ςð Þa ςð Þdς

� �
ds:

ð38Þ

Then, BVP (2) has the maximal and minimal positive
solutions μ∗ and �μ∗ on ½0, +∞Þ, such that

0 < sup
t∈ 0,+∞½ Þ

∣μ∗ tð Þ ∣
1 + t

≤ d,

0 < sup
t∈ 0,+∞½ Þ

∣�μ∗ tð Þ ∣
1 + t

≤ d:

ð39Þ

Moreover, for initial values

μ0 tð Þ = d
2
+ ξ t +

Ð∞
0 tg tð Þdt

1 −
Ð∞
0 g tð Þdt

 !
,

�μ0 tð Þ = 0,
 t ∈ 0, +∞½ Þ,

ð40Þ

define the iterative sequences fμng and f�μng by

μn =
1

1 −
Ð∞
0 g tð Þdt

�
ξ
ð∞
0
tg tð Þdt +

ð∞
0
g tð Þ

�
ðt
0

ð∞
s
φq

ð∞
0
G τ, ςð Þa ςð Þf ς, μn−1 ςð Þð Þdς

� �
dτdsdt

�

+
ðt
0

ð∞
s
φq

ð∞
0
G τ, ςð Þa ςð Þf ς, μn−1 ςð Þð Þdς

� �
dτds + ξt,

�μn =
1

1 −
Ð∞
0 g tð Þdt

�
ξ
ð∞
0
tg tð Þdt +

ð∞
0
g tð Þ

�
ðt
0

ð∞
s
φq

ð∞
0
G τ, ςð Þa ςð Þf ς, �μn−1 ςð Þð Þdς

� �
dτdsdt

�

+
ðt
0

ð∞
s
φq

ð∞
0
G τ, ςð Þa ςð Þf ς, �μn−1 ςð Þð Þdς

� �
dτds + ξt:

ð41Þ

Then,

lim
n⟶+∞

sup
t∈ 0,+∞½ Þ

∣μn tð Þ − μ∗ tð Þ ∣
1 + t

= 0,

lim
n⟶+∞

sup
t∈ 0,+∞½ Þ

∣�μn tð Þ − �μ∗ tð Þ ∣
1 + t

= 0:

ð42Þ

Proof. From Lemma 5, we know that A : K ⟶ K is
completely continuous. For any u1, u2 ∈ K with u1 ≤ u2, from
the definition of A and ðH3Þ, we know that Au1 ≤ Au2. Let
Kd = fu ∈ K : ∥u∥≤dg. In what follows, we firstly prove A
: Kd ⟶ Kd . In fact, for any u ∈ Kd , we have 0 ≤ uðtÞ/ð1 + tÞ
≤ d, t ∈ ½0, +∞Þ. By ðH4Þ, we know that f ðt, xÞ ≤ φpðd/2lÞ,
ðt, xÞ ∈ ½0, +∞Þ × ½0, d�. Also, by ðH4Þ, we have

μn+1 tð Þ ≤ μn tð Þ, t ∈ 0, +∞½ Þ, n = 0, 1, 2,⋯: ð43Þ

Thus, we have proved that A : Kd ⟶ Kd . Let μ0ðtÞ
= ðd/2Þ + ξðt + ððÐ∞0 tgðtÞdtÞ/ð1 − Ð∞0 gðtÞdtÞÞÞ, t ∈ ½0, +∞Þ,
and then, μ0ðtÞ ∈ Kd . Let μ1 = Aμ0, μ2 = Aμ1 = A2μ0; by
Theorem 6, we have μ1, μ2 ∈ Kd . Denote μn+1 = Aμn = An

μ0, n = 1, 2,⋯: Since A : Kd ⟶ Kd , we have μn ∈ AðKdÞ
⊂ Kd . It follows from the complete continuity of A that
fμng∞n=1 is a sequentially compact set. By ðH4Þ, we have

μ1 tð Þ = Aμ0 tð Þ = 1
1 −
Ð∞
0 g tð Þdt

�
ξ
ð∞
0
tg tð Þdt +

ð∞
0
g tð Þ

�
ðt
0

ð∞
s
φq

ð∞
0
G τ, ςð Þa ςð Þf ς, μ0 ςð Þð Þdς

� �
dτdsdt

�

+
ðt
0

ð∞
s
φq

ð∞
0
G τ, ςð Þa ςð Þf ς, μ0 ςð Þð Þddς

� �
dτds + ξt
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≤
1

1 − Ð∞0 g tð Þdt
ð∞
0
g tð Þdt

ð∞
0
sφq

�
ð∞
0
G s, ςð Þa ςð Þf ς, μ0 ςð Þð Þdς

� �
ds

+
ð∞
0
sφq

ð∞
0
G s, ςð Þa ςð Þf ς, μ0 ςð Þð Þddς

� �
ds

+ ξ

Ð∞
0 tg tð Þdt

1 −
Ð∞
0 g tð Þdt

 !
+ ξt ≤

d

2l 1 −
Ð∞
0 g tð Þdt� �

�
ð∞
0
sφq

ð∞
0
G s, ςð Þa ςð Þdς

� �
ds

+ ξ t +
Ð∞
0 tg tð Þdt

1 −
Ð∞
0 g tð Þdt

 !

≤
d
2 + ξ t +

Ð∞
0 tg tð Þdt

1 − Ð∞0 g tð Þdt

 !
= μ0 tð Þ:

ð44Þ

Together with ðH4Þ, we also have μ2ðtÞ = Aμ1ðtÞ ≤ A
μ0ðtÞ = μ1ðtÞ, t ∈ ½0, +∞Þ. By induction, we obtain

μn+1 tð Þ ≤ μn tð Þ, t ∈ 0, +∞½ Þ, n = 0, 1, 2,⋯: ð45Þ

Therefore, there exists μ∗ ∈ Kd such that μn ⟶ μ∗ as
n⟶ +∞. Applying the continuity of A and μn+1 = Aμn,
we get that Aμ∗ = μ∗.

On the other hand, let �μ0ðtÞ = 0, t ∈ ½0, +∞Þ, and then
�μ0ðtÞ ∈ Kd . Let �μ1 = A�μ0, �μ2 = A�μ1 = A2�μ0; then, by Theorem
6, we have �μ1, �μ2 ∈ Kd . Denote �μn+1 = A�μn = An�μ0, = 1, 2,⋯.
Since A : Kd ⟶ Kd , we have �μn ∈ AðKdÞ ⊂ Kd . It follows
from the complete continuity of A that f�μng∞n=1 is a sequen-
tially compact set. Since �μ1 = A�μ0 ∈ Kd , we have

�μ2 tð Þ = A�μ1 tð Þ = A0 tð Þ ≥ 0, t ∈ 0, +∞½ Þ: ð46Þ

By induction, we get

�μn+1 tð Þ ≥ �μn tð Þ, ∈ 0, +∞½ Þ, n = 1, 2,⋯: ð47Þ

Thus, there exists �μ∗ ∈ K such that �μn ⟶ �μ∗ as n⟶ +
∞. Applying the continuity of A and �μn+1 = A�μn, we get that
A�μ∗ = �μ∗.

Now, we are in a position to show that μ∗ and �μ∗ are
the maximal and minimal positive solutions of BVP (2) in
ð0, ðd/2Þ + ξðt + ððÐ∞0 tgðtÞdtÞ/ð1 − Ð∞0 gðtÞdtÞÞÞ�. Let u ∈ ½0,
ðd/2Þ + ξðt + ððÐ∞0 tgðtÞdtÞ/ð1 − Ð∞0 gðtÞdtÞÞÞ� be any solu-
tion of BVP (2), that is, Au = u. Noting that A is nonde-
creasing and �μ0ðtÞ = 0 ≤ uðtÞ ≤ ðd/2Þ + ξðt + ððÐ∞0 tgðtÞdtÞ/
ð1 − Ð∞0 gðtÞdtÞÞÞ = μ0ðtÞ, then we have �μ1ðtÞ = A�μ0ðtÞ ≤ u
ðtÞ ≤ Aμ0ðtÞ = μ1ðtÞ, for all t ∈ ½0, +∞Þ. By induction, we
have

�μn tð Þ ≤ u tð Þ ≤ μn tð Þ, n = 1, 2, 3,⋯: ð48Þ

Since μ∗ = limn⟶+∞μn, �μ∗ = limn⟶+∞�μn, it follows
from (42)–(45) that

�μ0 ≤ �μ1 ≤⋯�μn ≤⋯≤ �μ∗ ≤ u ≤ μ∗ ≤⋯ ≤ μn ≤⋯≤ μ1 ≤ μ0:

ð49Þ

In virtue of f ðt, 0Þ, t ∈ ½0, +∞Þ, then the zero function is
not the solution of BVP (2). Therefore, by (46), we know
that μ∗ and �μ∗ are the maximal and minimal positive solu-
tions of BVP (2) in ð0, ðd/2Þ + ξðt + ððÐ∞0 tgðtÞdtÞ/ð1 − Ð∞0
gðtÞdtÞÞÞ�, which can be obtained by the corresponding
iterative sequences μn = Aμn−1, �μn = A�μn−1. The proof is
completed. ☐

Remark 1. The iterative schemes in Theorem 6 start with a
known simple linear function and the zero function, respec-
tively. This is very convenient in application. So Theorem 6
is very interesting and importance. Similarly, we can obtain
Theorem 7.

Theorem 7. Assume that ðH0Þ – ðH3Þ hold and there exist
dn > dn−1 >⋯ > d2 > d1 > 2m satisfying the following
condition:

ðH′4Þf ðt, ð1 + tÞxÞ ≤ φpðdj/2lÞ, ðt, xÞ ∈ ½0, +∞Þ × ½0, dj�, j
= 1, 2,⋯, n.m, l are defined as Theorem 6. Then, BVP (2)
has the maximal and minimal positive solutions μ∗j and �μ∗j ,
on ½0, +∞Þ, such that

0 < sup
t∈ 0,+∞½ Þ

∣μ∗j tð Þ ∣
1 + t

≤ d,

0 < sup
t∈ 0,+∞½ Þ

∣�μ∗j tð Þ ∣
1 + t

≤ d:

ð50Þ

Moreover, for initial values

μj0 tð Þ = dj

2
+ ξ t +

Ð∞
0 tg tð Þdt

1 −
Ð∞
0 g tð Þdt

 !
,

�μj0 tð Þ = 0,
 t ∈ 0, +∞½ Þ,

ð51Þ

define the iterative sequences fμjng and f�μ jng by

μjn =
1

1 −
Ð∞
0 g tð Þdt

�
ξ
ð∞
0
tg tð Þdt +

ð∞
0
g tð Þ

�
ðt
0

ð∞
s
φq

ð∞
0
G τ, ςð Þa ςð Þf ς, μj n−1ð Þ ςð Þ

� �
dς

� �
dτdsdt

�

+
ðt
0

ð∞
s
φq

ð∞
0
G τ, ςð Þa ςð Þf ς, μj n−1ð Þ ςð Þ

� �
dς

� �
� dτds + ξt,
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�μjn =
1

1 −
Ð∞
0 g tð Þdt

�
ξ
ð∞
0
tg tð Þdt +

ð∞
0
g tð Þ

�
ðt
0

ð∞
s
φq

ð∞
0
G τ, ςð Þa ςð Þf ς, μj n−1ð Þ ςð Þ

� �
dς

� �
dτdsdt

�

+
ðt
0

ð∞
s
φq

ð∞
0
G τ, ςð Þa ςð Þf ς, μj n−1ð Þ ςð Þ

� �
dς

� �
� dτds + ξt:

ð52Þ

Then,

lim
n⟶+∞

sup
t∈ 0,+∞½ Þ

∣μjn tð Þ − μ∗j tð Þ ∣
1 + t

= 0,

lim
n⟶+∞

sup
t∈ 0,+∞½ Þ

∣�μjn tð Þ − �μ∗j tð Þ ∣
1 + t

= 0:

ð53Þ

Remark 2. We note that μ∗ and �μ∗ in Theorem 6 may coin-
cide; then, BVP (2) has only one solution in Kd . Similarly,
positive solutions μ∗j and �μ∗j in Theorem 7 may also coincide.

4. Example

Consider the following BVP

u″ tð Þ�� ��−1/2u″ tð Þ
� �

″ − u″ tð Þ�� ��−1/2u″ tð Þ = a tð Þf t, u tð Þð Þ, t ∈ 0, +∞ð Þ,

u 0ð Þ =
ð∞
0

1
1 + tð Þ3 u tð Þdt, lim

t⟶+∞
u′ tð Þ =

ffiffiffi
3

p

4 , ″ 0ð Þ = lim
t⟶+∞

u″ tð Þ = 0:

8>><
>>:

ð54Þ

Obviously, we know that p = 3/2, k = 1, ξ =
ffiffiffi
3

p
/4, gðtÞ =

1/ð1 + tÞ3, so we can get

ð∞
0
g tð Þdt =

ð∞
0

1
1 + tð Þ3 dt =

1
2 < 1,

ð∞
0
tg tð Þdt

=
ð∞
0

t

1 + tð Þ3 dt =
1
2 < +∞,

G t, sð Þ = 1
2

e−s et − e−t
� �

, 0 ≤ t ≤ s < +∞,

e−t es − e−sð Þ, 0 ≤ s ≤ t < +∞:

( ð55Þ

Let

a tð Þ = e−2t , f t, xð Þ

=
∣ sin 55t + 21ð Þ∣ + 1

144
x

1 + t

� �3
, x ≤ 2,

∣ sin 55t + 21ð Þ∣ + 1
144

2
1 + t

� �3
, x ≥ 2:

8>>><
>>>:

ð56Þ

By computation, we get

ð∞
0
G s, sð Þa sð Þds ≤ 1

2

ð∞
0
e−2sds = 1

4 < +∞,
ð∞
0
sφq

ð∞
0
G s, ςð Þa ςð Þdς

� �
ds

=
ð∞
0
sφq

�ðs
0
G s, ςð Þa ςð Þdς

+
ð∞
s
G s, ςð Þa ςð Þdς

�
ds = 13

432 < +∞:

ð57Þ

So, the conditions ðH0Þ – ðH3Þ hold. For m =
ffiffiffi
3

p
/2, l =

13/216. Take d = 10, it follows that

f1 t, 1 + tð Þxð Þ ≤ 10
9 < φp

d
2l

� �
= φp

10
2 · 13/216ð Þ
� �

=
ffiffiffiffiffiffiffiffiffiffi
1080
13

r
,  t, xð Þ ∈ 0, +∞½ Þ × 0, 10½ �:

ð58Þ

Hence, condition ðH4Þ holds, that is, all conditions of
Theorem 6 are satisfied. Therefore, BVP (51) has the minimal
and maximal positive solutions in ð0, 5 + ð ffiffiffi

3
p

/4Þðt + 1Þ�,
which can be obtained by two explicit monotone iterative
sequences.
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