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In the mathematical modeling of many problems, including,
but not limited to, physical sciences, biological sciences,
engineering, image processing, computer graphics, medical
imaging, and even social sciences lately, solution methods
most frequently involve matrix equations. In conjunction
with powerful computing machines, complex numerical
calculations employing matrix methods could be performed
sometimes even in real time. It is well known that infinite
matrices arise more naturally than finite matrices and have
a colorful history in development from sequences, series
and quadratic forms. Modern viewpoint considers infinite
matrices more as operators defined between certain spe-
cific infinite-dimensional normed spaces, Banach spaces,
or Hilbert spaces. Giant and rapid advancements in the
theory and applications of finite matrices have been made
over the past several decades. These developments have
been well documented in many books, monographs, and
research journals. The present topics of research include
diagonally dominantmatrices, theirmany extensions, inverse
of matrices, their recursive computation, singular matrices,
generalized inverses, inverse positive matrices with specific
emphasis on their applications to economics like the Leon-
tief input-output models, and use of finite difference and
finite element methods in the solution of partial differential
equations, perturbationmethods, and eigenvalue problems of
interest and importance to numerical analysts, statisticians,
physical scientists, and engineers, to name a few.

The aim of this special issue is to announce certain
recent advancements in matrices, finite and infinite, and
their applications. For a review of infinite matrices and
applications, see P. N. Shivakumar, and K. C. Sivakumar

(Linear Algebra Appl., 2009). Specifically, an example of an
application can be found in the classical problem “shape
of a drum,” in P. N. Shivakumar, W. Yan, and Y. Zhang
(WSES transactions in Mathematics, 2011). The focal themes
of this special issue are inverse positivematrices including𝑀-
matrices, applications of operator theory,matrix perturbation
theory, and pseudospectra, matrix functions and generalized
eigenvalue problems and inverse problems including scat-
tering and matrices over quaternions. In the following, we
present a brief overview of a few of the central topics of this
special issue.

For𝑀-matrices, let us start by mentioning the most cited
books byR. Berman andR. J. Plemmons (SIAM, 1994), and by
R. A. Horn and C. R. Johnson (Cambridge, 1994), as excellent
sources. One of the most important properties of invertible
𝑀-matrices is that their inverses are nonnegative. There are
several works that have considered generalizations of some
of the important properties of 𝑀-matrices. We only point
out a few of them here. The article by D. Mishra and K. C.
Sivakumar (Oper. Matrices, 2012), considers generalizations
of inverse nonnegativity to the Moore-Penrose inverse, while
more general classes of matrices are the objects of discussion
in D. Mishra and K. C. Sivakumar (Linear Algebra Appl.,
2012), and A. N. Sushama, K. Premakumari and K. C.
Sivakumar (Electron. J. Linear Algebra 2012).

A brief description of the papers in the issue is as follows.
In the work of Z. Zhang, the problem of solving cer-

tain optimization problems on Hermitian matrix functions
is studied. Specifically, the author considers the extremal
inertias and ranks of a given function 𝑓(𝑋, 𝑌) : C𝑚×𝑛 →

C𝑚×𝑛 (which is defined in terms of matrices 𝐴, 𝐵, 𝐶, and 𝐷
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inC𝑚×𝑛), subject to𝑋, 𝑌 satisfying certain matrix equations.
As applications, the author presents necessary and sufficient
conditions for 𝑓 to be positive definite, positive semidefinite,
and so forth. As another application, the author presents a
characterization for 𝑓(𝑋, 𝑌) = 0, again, subject to 𝑋, 𝑌
satisfying certain matrix equations.

The task of determining parametrized splitting precon-
ditioners for certain generalized saddle point problems is
undertaken byW.-H. Luo and T.-Z. Huang in their work.The
well-known and very widely applicable Sherman-Morrison-
Woodbury formula for the sum of matrices is used in
determining a preconditioner for linear equations where
the coefficient matrix may be singular and nonsymmetric.
Illustrations of the procedure are provided for Stokes and
Oseen problems.

The work reported by A. González, A. Suarez and D.
Garcia deals with the problem of estimating the Frobenius
condition of the matrix 𝐴𝑁, given a matrix 𝐴 ∈ R𝑛×𝑛, where
𝑁 satisfies the condition that 𝑁 = argmin

𝑋∈𝑆
‖𝐼 − 𝐴𝑋‖

𝐹
.

Here, 𝑆 is a certain subspace of R𝑛 and ‖ ⋅ ‖
𝐹
denotes the

Frobenius norm. The authors derive certain spectral and
geometrical properties of the preconditioner𝑁 as above.

Let 𝐵, 𝐶, 𝐷 and 𝐸 be (not necessarily square) matrices
with quaternion entries so that the matrix 𝑀 = (

𝐴 𝐵

𝐶 𝐷
)

is square. Y. Lin and Q.-W. Wang present necessary and
sufficient conditions so that the top left block 𝐴 of𝑀 exists
satisfying the conditions that𝑀 is nonsingular and thematrix
𝐸 is the top left block of𝑀−1. A general expression for such
an 𝐴, when it exists, is obtained. A numerical illustration is
presented.

For a complex hermitian 𝐴 of order 𝑛 with eigenvalues
𝜆
1
≤ 𝜆
2
≤ ⋅ ⋅ ⋅ ≤ 𝜆

𝑛
, the celebrated Kantorovich inequality is

1 ≤ 𝑥
∗

𝐴𝑥𝑥
∗

𝐴
−1

𝑥 ≤ (𝜆
𝑛
+𝜆
1
)
2

/4𝜆
1
𝜆
𝑛
, for all unit vectors 𝑥 ∈

C𝑛. Equivalently 0 ≤ 𝑥∗𝐴𝑥𝑥∗𝐴−1𝑥−1 ≤ (𝜆
𝑛
−𝜆
1
)
2

/4𝜆
1
𝜆
𝑛
, for

all unit vectors 𝑥 ∈ C𝑛. F. Chen, in his work on refinements of
Kantorovich inequality for hermitian matrices, obtains some
refinements of the second inequality, where the proofs use
only elementary ideas (http://www.math.ntua.gr/∼ppsarr/).

It is pertinent to point out that, among other things, an
interesting generalization of 𝑀-matrices is obtained by S.
Jose and K. C. Sivakumar. The authors consider the prob-
lem of nonnegativity of the Moore-Penrose inverse of a
perturbation of the form 𝐴−𝑋𝐺𝑌

𝑇 given that 𝐴† ≥ 0. Using
a generalized version of the Sherman-Morrison-Woodbury
formula, conditions for (𝐴 − 𝑋𝐺𝑌

𝑇

)
† to be nonnegative

are derived. Applications of the results are presented briefly.
Iterative versions of the results are also studied.

It is well known that the concept of quaternions was
introduced by Hamilton in 1843 and has played an important
role in contemporary mathematics such as noncommuta-
tive algebra, analysis, and topology. Nowadays, quaternion
matrices are widely and heavily used in computer science,
quantum physics, altitude control, robotics, signal and colour
image processing, and so on. Many questions can be reduced
to quaternion matrices and solving quaternion matrix equa-
tions.This special issue has provided an excellent opportunity
for researchers to report their recent results.

Let H𝑛×𝑛 denote the space of all 𝑛 × 𝑛 matrices whose
entries are quaternions. Let 𝑄 ∈ H𝑛×𝑛 be Hermitian and self-
invertible. 𝑋 ∈ H𝑛×𝑛 is called reflexive (relative to 𝑄) if 𝑋 =

𝑄𝑋𝑄. The authors F.-L. Li, X.-Y. Hu, and L. Zhang present
an efficient algorithm for finding the reflexive solution of the
quaternion matrix equation: 𝐴𝑋𝐵 + 𝐶𝑋

∗

𝐷 = 𝐹. They also
show that, given an appropriate initialmatrix, their procedure
yields the least reflexive solutionwith respect to the Frobenius
norm.

In the work on the ranks of a constrained hermitian
matrix expression, S. W. Yu gives formulas for the maximal
and minimal ranks of the quaternion Hermitian matrix
expression 𝐶

4
− 𝐴
4
𝑋𝐴
∗

4
, where 𝑋 is a Hermitian solution

to quaternion matrix equations 𝐴
1
𝑋 = 𝐶

1
, 𝑋𝐵
1
= 𝐶
2
, and

𝐴
3
𝑋𝐴
∗

3
= 𝐶
3
, and also applies this result to some special

system of quaternion matrix equations.
Y. Yao reports his findings on the optimization on ranks

and inertias of a quadratic hermitian matrix function. He
presents one solution for optimization problems on the ranks
and inertias of the quadratic Hermitian matrix function 𝑄 −
𝑋𝑃𝑋
∗ subject to a consistent system of matrix equations

𝐴𝑋 = 𝐶 and 𝑋𝐵 = 𝐷. As applications, he derives necessary
and sufficient conditions for the solvability to the systems of
matrix equations and matrix inequalities 𝐴𝑋 = 𝐶, 𝑋𝐵 = 𝐷,
and𝑋𝑃𝑋∗ = (>, <, ≥, ≤)𝑄.

Let 𝑅 be a nontrivial real symmetric involution matrix.
A complex matrix 𝐴 is called 𝑅-conjugate if 𝐴 = 𝑅𝐴𝑅.
In the work on the hermitian 𝑅-conjugate solution of a
system of matrix equations, C.-Z. Dong, Q.-W. Wang, and
Y.-P. Zhang present necessary and sufficient conditions for
the existence of the hermitian 𝑅-conjugate solution to the
system of complex matrix equations 𝐴𝑋 = 𝐶 and 𝑋𝐵 = 𝐷.
An expression of the Hermitian 𝑅-conjugate solution is also
presented.

A perturbation analysis for the matrix equation 𝑋 −

∑
𝑚

𝑖=1
𝐴
∗

𝑖
𝑋𝐴
𝑖
+ ∑
𝑛

𝑗=1
𝐵
∗

𝑗
𝑋𝐵
𝑗
= 𝐼 is undertaken by X.-F. Duan

and Q.-W. Wang. They give a precise perturbation bound for
a positive definite solution. A numerical example is presented
to illustrate the sharpness of the perturbation bound.

Linear matrix equations and their optimal approxima-
tion problems have great applications in structural design,
biology, statistics, control theory, and linear optimal control,
and as a consequence, they have attracted the attention of
several researchers for many decades. In the work of Q.-W.
Wang and J. Yu, necessary and sufficient conditions of and the
expressions for orthogonal solutions, symmetric orthogonal
solutions, and skew-symmetric orthogonal solutions of the
system of matrix equations 𝐴𝑋 = 𝐵 and 𝑋𝐶 = 𝐷 are
derived. When the solvability conditions are not satisfied, the
least squares symmetric orthogonal solutions and the least
squares skew-symmetric orthogonal solutions are obtained.
A methodology is provided to compute the least squares
symmetric orthogonal solutions, and an illustrative example
is given to illustrate the proposed algorithm.

Many real-world engineering systems are too complex to
be defined in precise terms, and, in many matrix equations,
some or all of the system parameters are vague or imprecise.
Thus, solving a fuzzy matrix equation becomes important. In
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the work reported by X. Guo and D. Shang, the fuzzy matrix
equation 𝐴 ⊗ 𝑋 ⊗ 𝐵 = 𝐶 in which 𝐴, 𝐵, and 𝐶 are 𝑚 × 𝑚,
𝑛 × 𝑛, and 𝑚 × 𝑛 nonnegative LR fuzzy numbers matrices,
respectively, is investigated. This fuzzy matrix system, which
has a wide use in control theory and control engineering, is
extended into three crisp systems of linear matrix equations
according to the arithmetic operations of LR fuzzy numbers.
Based on the pseudoinversematrix, a computingmodel to the
positive fully fuzzy linear matrix equation is provided, and
the fuzzy approximate solution of original fuzzy systems is
obtained by solving the crisp linear matrix systems. In addi-
tion, the existence condition of nonnegative fuzzy solution
is discussed, and numerical examples are given to illustrate
the proposed method. Overall, the technique of LR fuzzy
numbers and their operations appears to be a strong tool in
investigating fully fuzzy matrix equations.

Left and right inverse eigenpairs problem arises in a
natural way, when studying spectral perturbations ofmatrices
and relative recursive problems. F.-L. Li, X.-Y. Hu, and L.
Zhang consider in their work left and right inverse eigenpairs
problem for 𝑘-hermitian matrices and its optimal approx-
imate problem. The class of 𝑘-hermitian matrices contains
hermitian and perhermitian matrices and has numerous
applications in engineering and statistics. Based on the
special properties of 𝑘-hermitian matrices and their left and
right eigenpairs, an equivalent problem is obtained. Then,
combining a new inner product of matrices, necessary and
sufficient conditions for the solvability of the problem are
given, and its general solutions are derived. Furthermore,
the optimal approximate solution, a calculation procedure to
compute the unique optimal approximation, and numerical
experiments are provided.

Finally, let us point out a work on algebraic coding theory.
Recall that a communication system, in which a receiver
can verify the authenticity of a message sent by a group of
senders, is referred to as a multisender authentication code.
In the work reported by X. Wang, the author constructs
multi-sender authentication codes using polynomials over
finite fields. Here, certain important parameters and the
probabilities of deceptions of these codes are also computed.
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Nonnegativity of theMoore-Penrose inverse of a perturbation of the form𝐴−𝑋𝐺𝑌𝑇 is consideredwhen𝐴† ≥ 0. Using a generalized
version of the Sherman-Morrison-Woodbury formula, conditions for (𝐴 − 𝑋𝐺𝑌𝑇)† to be nonnegative are derived. Applications of
the results are presented briefly. Iterative versions of the results are also studied.

1. Introduction

We consider the problem of characterizing nonnegativity
of the Moore-Penrose inverse for matrix perturbations of
the type 𝐴 − 𝑋𝐺𝑌

𝑇, when the Moore-Penrose inverse of
𝐴 is nonnegative. Here, we say that a matrix 𝐵 = (𝑏

𝑖𝑗
) is

nonnegative and denote it by 𝐵 ≥ 0 if 𝑏
𝑖𝑗
≥ 0, ∀𝑖, 𝑗. This

problemwasmotivated by the results in [1], where the authors
consider an 𝑀-matrix 𝐴 and find sufficient conditions for
the perturbed matrix (𝐴 − 𝑋𝑌𝑇) to be an𝑀-matrix. Let us
recall that a matrix 𝐵 = (𝑏

𝑖𝑗
) is said to 𝑍-matrix if 𝑏

𝑖𝑗
≤ 0

for all 𝑖, 𝑗, 𝑖 ̸= 𝑗. An𝑀-matrix is a nonsingular 𝑍-matrix with
nonnegative inverse. The authors in [1] use the well-known
Sherman-Morrison-Woodbury (SMW) formula as one of the
important tools to prove their main result.The SMW formula
gives an expression for the inverse of (𝐴−𝑋𝑌𝑇) in terms of the
inverse of𝐴, when it exists. When𝐴 is nonsingular,𝐴−𝑋𝑌𝑇

is nonsingular if and only 𝐼 − 𝑌𝑇𝐴−1𝑋 is nonsingular. In that
case,

(𝐴 − 𝑋𝑌
𝑇

)
−1

= 𝐴
−1

− 𝐴
−1

𝑋(𝐼 − 𝑌
𝑇

𝐴
−1

𝑋)
−1

𝑌
𝑇

𝐴
−1

. (1)

Themain objective of the present work is to study certain
structured perturbations 𝐴 − 𝑋𝑌𝑇 of matrices 𝐴 such that
theMoore-Penrose inverse of the perturbation is nonnegative
whenever the Moore-Penrose inverse of 𝐴 is nonnegative.
Clearly, this class of matrices includes the class of matrices
that have nonnegative inverses, especially𝑀-matrices. In our
approach, extensions of SMW formula for singular matrices

play a crucial role. Let us mention that this problem has been
studied in the literature. (See, for instance [2] formatrices and
[3] for operators over Hilbert spaces). We refer the reader to
the references in the latter for other recent extensions.

In this paper, first we present alternative proofs of
generalizations of the SMW formula for the cases of the
Moore-Penrose inverse (Theorem 5) and the group inverse
(Theorem 6) in Section 3. In Section 4, we characterize the
nonnegativity of (𝐴 − 𝑋𝐺𝑌𝑇)†. This is done in Theorem 9
and is one of the main results of the present work. As a
consequence, we present a result for𝑀-matrices which seems
new. We present a couple of applications of the main result
in Theorems 13 and 15. In the concluding section, we study
iterative versions of the results of the second section. We
prove two characterizations for (𝐴−𝑋𝑌𝑇)† to be nonnegative
in Theorems 18 and 21.

Before concluding this introductory section, let us give
a motivation for the work that we have undertaken here.
It is a well-documented fact that 𝑀-matrices arise quite
often in solving sparse systems of linear equations. An
extensive theory of𝑀-matrices has been developed relative
to their role in numerical analysis involving the notion of
splitting in iterativemethods and discretization of differential
equations, in the mathematical modeling of an economy,
optimization, and Markov chains [4, 5]. Specifically, the
inspiration for the present study comes from the work of [1],
where the authors consider a system of linear inequalities
arising out of a problem in third generation wireless commu-
nication systems.Thematrix defining the inequalities there is
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an 𝑀-matrix. In the likelihood that the matrix of this
problem is singular (due to truncation or round-off errors),
the earlier method becomes inapplicable. Our endeavour is
to extend the applicability of these results to more general
matrices, for instance, matrices with nonnegative Moore-
Penrose inverses. Finally, as mentioned earlier, sincematrices
with nonnegative generalized inverses include in particular
𝑀-matrices, it is apparent that our results are expected to
enlarge the applicability of themethods presently available for
𝑀-matrices, even in a very general framework, including the
specific problem mentioned above.

2. Preliminaries

Let R, R𝑛, and R𝑚×𝑛 denote the set of all real numbers, the
𝑛-dimensional real Euclidean space, and the set of all 𝑚 × 𝑛
matrices over R. For 𝐴 ∈ R𝑚×𝑛, let 𝑅(𝐴), 𝑁(𝐴), 𝑅(𝐴)⊥, and
𝐴
𝑇 denote the range space, the null space, the orthogonal

complement of the range space, and the transpose of the
matrix 𝐴, respectively. For x = (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
)
𝑇

∈ R𝑛, we
say that x is nonnegative, that is, x ≥ 0 if and only if x

𝑖
≥ 0

for all 𝑖 = 1, 2, . . . , 𝑛. As mentioned earlier, for a matrix 𝐵 we
use 𝐵 ≥ 0 to denote that all the entries of 𝐵 are nonnegative.
Also, we write 𝐴 ≤ 𝐵 if 𝐵 − 𝐴 ≥ 0.

Let 𝜌(𝐴) denote the spectral radius of the matrix 𝐴. If
𝜌(𝐴) < 1 for 𝐴 ∈ R𝑛×𝑛, then 𝐼 − 𝐴 is invertible. The
next result gives a necessary and sufficient condition for the
nonnegativity of (𝐼 − 𝐴)−1. This will be one of the results that
will be used in proving the first main result.

Lemma 1 (see [5, Lemma 2.1, Chapter 6]). Let 𝐴 ∈ R𝑛×𝑛 be
nonnegative. Then, 𝜌(𝐴) < 1 if and only if (𝐼 − 𝐴)−1 exists and

(𝐼 − 𝐴)
−1

=

∞

∑

𝑘=0

𝐴
𝑘

≥ 0. (2)

More generally, matrices having nonnegative inverses
are characterized using a property called monotonicity. The
notion of monotonicity was introduced by Collatz [6]. A real
𝑛 × 𝑛matrix 𝐴 is called monotone if 𝐴x ≥ 0 ⇒ x ≥ 0. It was
proved by Collatz [6] that 𝐴 is monotone if and only if 𝐴−1
exists and 𝐴−1 ≥ 0.

One of the frequently used tools in studying monotone
matrices is the notion of a regular splitting. We only refer the
reader to the book [5] for more details on the relationship
between these concepts.

The notion of monotonicity has been extended in a vari-
ety of ways to singular matrices using generalized inverses.
First, let us briefly review the notion of two important
generalized inverses.

For 𝐴 ∈ R𝑚×𝑛, the Moore-Penrose inverse is the unique
𝑍 ∈ R𝑛×𝑚 satisfying the Penrose equations: 𝐴𝑍𝐴 = 𝐴,
𝑍𝐴𝑍 = 𝑍, (𝐴𝑍)𝑇 = 𝐴𝑍, and (𝑍𝐴)𝑇 = 𝑍𝐴. The unique
Moore-Penrose inverse of𝐴 is denoted by𝐴†, and it coincides
with 𝐴−1 when 𝐴 is invertible.

The following theorem by Desoer and Whalen, which
is used in the sequel, gives an equivalent definition for the
Moore-Penrose inverse. Let us mention that this result was
proved for operators between Hilbert spaces.

Theorem 2 (see [7]). Let 𝐴 ∈ R𝑚×𝑛. Then 𝐴† ∈ R𝑛×𝑚 is the
unique matrix𝑋 ∈ R𝑛×𝑚 satisfying

(i) 𝑍𝐴𝑥 = 𝑥, ∀𝑥 ∈ 𝑅(𝐴𝑇),
(ii) 𝑍𝑦 = 0, ∀𝑦 ∈ 𝑁(𝐴𝑇).

Now, for𝐴 ∈ R𝑛×𝑛, any𝑍 ∈ R𝑛×𝑛 satisfying the equations
𝐴𝑍𝐴 = 𝐴, 𝑍𝐴𝑍 = 𝑍, and 𝐴𝑍 = 𝑍𝐴 is called the group
inverse of 𝐴. The group inverse does not exist for every
matrix. But whenever it exists, it is unique. A necessary and
sufficient condition for the existence of the group inverse of
𝐴 is that the index of𝐴 is 1, where the index of a matrix is the
smallest positive integer 𝑘 such that rank (𝐴𝑘+1) = rank (𝐴𝑘).

Some of the well-known properties of theMoore-Penrose
inverse and the group inverse are given as follows: 𝑅(𝐴𝑇) =
𝑅(𝐴
†

),𝑁(𝐴𝑇) = 𝑁(𝐴†), 𝐴†𝐴 = 𝑃
𝑅(𝐴
𝑇
)
, and 𝐴𝐴† = 𝑃

𝑅(𝐴)
. In

particular, x ∈ 𝑅(𝐴𝑇) if and only if x = 𝐴†𝐴x. Also, 𝑅(𝐴) =
𝑅(𝐴

#
), 𝑁(𝐴) = 𝑁(𝐴#

), and 𝐴#
𝐴 = 𝐴𝐴

#
= 𝑃
𝑅(𝐴),𝑁(𝐴)

. Here,
for complementary subspaces 𝐿 and𝑀 of R𝑘, 𝑃

𝐿,𝑀
denotes

the projection ofR𝑘 onto 𝐿 along𝑀. 𝑃
𝐿
denotes 𝑃

𝐿,𝑀
if𝑀 =

𝐿
⊥. For details, we refer the reader to the book [8].
Inmatrix analysis, a decomposition (splitting) of amatrix

is considered in order to study the convergence of iterative
schemes that are used in the solution of linear systems of alge-
braic equations. As mentioned earlier, regular splittings are
useful in characterizing matrices with nonnegative inverses,
whereas, proper splittings are used for studying singular
systems of linear equations. Let us next recall this notion.
For a matrix 𝐴 ∈ R𝑚×𝑛, a decomposition 𝐴 = 𝑈 − 𝑉 is
called a proper splitting [9] if 𝑅(𝐴) = 𝑅(𝑈) and 𝑁(𝐴) =
𝑁(𝑈). It is rather well-known that a proper splitting exists
for every matrix and that it can be obtained using a full-
rank factorization of the matrix. For details, we refer to [10].
Certain properties of a proper splitting are collected in the
next result.

Theorem 3 (see [9, Theorem 1]). Let 𝐴 = 𝑈 − 𝑉 be a proper
splitting of 𝐴 ∈ R𝑚×𝑛. Then,

(a) 𝐴 = 𝑈(𝐼 − 𝑈†𝑉),
(b) 𝐼 − 𝑈†𝑉 is nonsingular and,
(c) 𝐴† = (𝐼 − 𝑈†𝑉)−1𝑈†.

The following result by Berman and Plemmons [9] gives
a characterization for 𝐴† to be nonnegative when 𝐴 has a
proper splitting. This result will be used in proving our first
main result.

Theorem 4 (see [9, Corollary 4]). Let 𝐴 = 𝑈 − 𝑉 be a proper
splitting of 𝐴 ∈ R𝑚×𝑛, where 𝑈† ≥ 0 and 𝑈†𝑉 ≥ 0. Then
𝐴
†

≥ 0 if and only if 𝜌(𝑈†𝑉) < 1.

3. Extensions of the SMW Formula for
Generalized Inverses

The primary objects of consideration in this paper are gen-
eralized inverses of perturbations of certain types of a matrix
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𝐴. Naturally, extensions of the SMW formula for generalized
inverses are relevant in the proofs. Inwhat follows, we present
two generalizations of the SMW formula for matrices. We
would like to emphasize that our proofs also carry over
to infinite dimensional spaces (the proof of the first result
is verbatim and the proof of the second result with slight
modifications applicable to range spaces instead of ranks of
the operators concerned). However, we are confining our
attention to the case of matrices. Let us also add that these
results have been proved in [3] for operators over infinite
dimensional spaces. We have chosen to include these results
here as our proofs are different from the ones in [3] and that
our intention is to provide a self-contained treatment.

Theorem 5 (see [3, Theorem 2.1]). Let 𝐴 ∈ R𝑚×𝑛, 𝑋 ∈ R𝑚×𝑘,
and 𝑌 ∈ R𝑛×𝑘 be such that

𝑅 (𝑋) ⊆ 𝑅 (𝐴) , 𝑅 (𝑌) ⊆ 𝑅 (𝐴
𝑇

) . (3)

Let 𝐺 ∈ R𝑘×𝑘, and Ω = 𝐴 − 𝑋𝐺𝑌𝑇. If

𝑅 (𝑋
𝑇

) ⊆ 𝑅 ((𝐺
†

− 𝑌
𝑇

𝐴
†

𝑋)
𝑇

) ,

𝑅 (𝑌
𝑇

) ⊆ 𝑅 (𝐺
†

− 𝑌
𝑇

𝐴
†

𝑋) , 𝑅 (𝑋
𝑇

) ⊆ 𝑅 (𝐺) ,

𝑅 (𝑌
𝑇

) ⊆ 𝑅 (𝐺
𝑇

)

(4)

then

Ω
†

= 𝐴
†

+ 𝐴
†

𝑋(𝐺
†

− 𝑌
𝑇

𝐴
†

𝑋)
†

𝑌
𝑇

𝐴
†

. (5)

Proof. Set 𝑍 = 𝐴† + 𝐴†𝑋𝐻†𝑌𝑇𝐴†, where𝐻 = 𝐺
†

− 𝑌
𝑇

𝐴
†

𝑋.
From the conditions (3) and (4), it follows that 𝐴𝐴†𝑋 = 𝑋,
𝐴
†

𝐴𝑌 = 𝑌,𝐻†𝐻𝑋𝑇 = 𝑋𝑇,𝐻𝐻†𝑌𝑇 = 𝑌𝑇,𝐺𝐺†𝑋𝑇 = 𝑋𝑇, and
𝐺
†

𝐺𝑌
𝑇

= 𝑌
𝑇.

Now,

𝐴
†

𝑋𝐻
†

𝑌
𝑇

− 𝐴
†

𝑋𝐻
†

𝑌
𝑇

𝐴
†

𝑋𝐺𝑌
𝑇

= 𝐴
†

𝑋𝐻
†

(𝐺
†

𝐺𝑌
𝑇

− 𝑌
𝑇

𝐴
†

𝑋𝐺𝑌
𝑇

)

= 𝐴
†

𝑋𝐻
†

𝐻𝐺𝑌
𝑇

= 𝐴
†

𝑋𝐺𝑌
𝑇

.

(6)

Thus, 𝑍Ω = 𝐴
†

𝐴. Since 𝑅(Ω𝑇) ⊆ 𝑅(𝐴
𝑇

), it follows that
𝑍Ω(x) = 𝑥, ∀x ∈ 𝑅(Ω𝑇).

Let y ∈ 𝑁(Ω
𝑇

). Then, 𝐴𝑇y − 𝑌𝐺𝑇𝑋𝑇y = 0 so that
𝑋
𝑇

𝐴
†
𝑇

(𝐴
𝑇

− 𝑌𝐺
𝑇

𝑋
𝑇

)y = 0. Substituting 𝑋𝑇 = 𝐺𝐺†𝑋𝑇 and
simplifying it, we get𝐻𝑇𝐺𝑇𝑋𝑇y = 0. Also,𝐴𝑇y = 𝑌𝐺𝑇𝑋𝑇y =
𝑌𝐻𝐻
†

𝐺
𝑇

𝑋
𝑇y = 0 and so 𝐴†y = 0. Thus, 𝑍y = 0 for

y ∈ 𝑁(Ω𝑇). Hence, by Theorem 2, 𝑍 = Ω†.

The result for the group inverse follows.

Theorem 6. Let 𝐴 ∈ R𝑛×𝑛 be such that 𝐴# exists. Let 𝑋,
𝑌 ∈ R𝑛×𝑘 and 𝐺 be nonsingular. Assume that 𝑅(𝑋) ⊆ 𝑅(𝐴),
𝑅(𝑌) ⊆ 𝑅(𝐴

𝑇

) and 𝐺−1 − 𝑌𝑇𝐴#
𝑋 is nonsingular. Suppose that

rank (𝐴 − 𝑋𝐺𝑌𝑇) = rank (𝐴). Then, (𝐴 − 𝑋𝐺𝑌𝑇)# exists and
the following formula holds:

(𝐴 − 𝑋𝐺𝑌
𝑇

)
#
= 𝐴

#
+ 𝐴

#
𝑋(𝐺
−1

− 𝑌
𝑇

𝐴
#
𝑋)
−1

𝑌
𝑇

𝐴
#
. (7)

Conversely, if (𝐴−𝑋𝐺𝑌𝑇)# exists, then the formula above holds,
and we have rank (𝐴 − 𝑋𝐺𝑌𝑇) = rank (𝐴).

Proof. Since 𝐴# exists, 𝑅(𝐴) and 𝑁(𝐴) are complementary
subspaces of R𝑛×𝑛.

Suppose that rank (𝐴 − 𝑋𝐺𝑌𝑇) = rank (𝐴). As 𝑅(𝑋) ⊆
𝑅(𝐴), it follows that 𝑅(𝐴 − 𝑋𝐺𝑌𝑇) ⊆ 𝑅(𝐴). Thus 𝑅(𝐴 −
𝑋𝐺𝑌
𝑇

) = 𝑅(𝐴). By the rank-nullity theorem, the nullity of
both 𝐴 − 𝑋𝐺𝑌𝑇 and 𝐴 are the same. Again, since 𝑅(𝑌) ⊆
𝑅(𝐴
𝑇

), it follows that 𝑁(𝐴 − 𝑋𝐺𝑌
𝑇

) = 𝑁(𝐴). Thus,
𝑅(𝐴 − 𝑋𝐺𝑌

𝑇

) and 𝑁(𝐴 − 𝑋𝐺𝑌𝑇) are complementary sub-
spaces. This guarantees the existence of the group inverse of
𝐴 − 𝑋𝐺𝑌

𝑇.
Conversely, suppose that (𝐴 − 𝑋𝐺𝑌𝑇)# exists. It can be

verified by direct computation that 𝑍 = 𝐴
#
+ 𝐴

#
𝑋(𝐺
−1

−

𝑌
𝑇

𝐴
#
𝑋)
−1

𝑌
𝑇

𝐴
# is the group inverse of 𝐴 − 𝑋𝐺𝑌𝑇. Also, we

have (𝐴−𝑋𝐺𝑌𝑇)(𝐴−𝑋𝐺𝑌𝑇)# = 𝐴𝐴#, so that𝑅(𝐴−𝑋𝐺𝑌𝑇) =
𝑅(𝐴), and hence the rank (𝐴 − 𝑋𝐺𝑌𝑇) = rank (𝐴).

We conclude this section with a fairly old result [2] as a
consequence of Theorem 5.

Theorem 7 (see [2, Theorem 15]). Let 𝐴 ∈ R𝑚×𝑛 of rank 𝑟,
𝑋 ∈ R𝑚×𝑟 and 𝑌 ∈ R𝑛×𝑟. Let𝐺 be an 𝑟×𝑟 nonsingular matrix.
Assume that 𝑅(𝑋) ⊆ 𝑅(𝐴), 𝑅(𝑌) ⊆ 𝑅(𝐴𝑇), and 𝐺−1 − 𝑌𝑇𝐴†𝑋
is nonsingular. Let Ω = 𝐴 − 𝑋𝐺𝑌𝑇. Then

(𝐴 − 𝑋𝐺𝑌
𝑇

)
†

= 𝐴
†

+ 𝐴
†

𝑋(𝐺
−1

− 𝑌
𝑇

𝐴
†

𝑋)
−1

𝑌
𝑇

𝐴
†

. (8)

4. Nonnegativity of (𝐴−𝑋𝐺𝑌𝑇)†

In this section, we consider perturbations of the form 𝐴 −

𝑋𝐺𝑌
𝑇 and derive characterizations for (𝐴 − 𝑋𝐺𝑌𝑇)† to be

nonnegative when 𝐴† ≥ 0, 𝑋 ≥ 0, 𝑌 ≥ 0 and 𝐺 ≥ 0. In order
to motivate the first main result of this paper, let us recall the
following well known characterization of𝑀-matrices [5].

Theorem 8. Let 𝐴 be a 𝑍-matrix with the representation 𝐴 =
𝑠𝐼 − 𝐵, where 𝐵 ≥ 0 and 𝑠 ≥ 0. Then the following statements
are equivalent:

(a) 𝐴−1 exists and 𝐴−1 ≥ 0.

(b) There exists 𝑥 > 0 such that 𝐴𝑥 > 0.

(c) 𝜌(𝐵) < 𝑠.

Let us prove the first result of this article. This extends
Theorem 8 to singular matrices. We will be interested in
extensions of conditions (a) and (c) only.

Theorem 9. Let 𝐴 = 𝑈 − 𝑉 be a proper splitting of 𝐴 ∈ R𝑚×𝑛

with 𝑈† ≥ 0, 𝑈†𝑉 ≥ 0 and 𝜌(𝑈†𝑉) < 1. Let 𝐺 ∈ R𝑘×𝑘 be
nonsingular and nonnegative, 𝑋 ∈ R𝑚×𝑘, and 𝑌 ∈ R𝑛×𝑘 be
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nonnegative such that 𝑅(𝑋) ⊆ 𝑅(𝐴), 𝑅(𝑌) ⊆ 𝑅(𝐴𝑇) and𝐺−1 −
𝑌
𝑇

𝐴
†

𝑋 is nonsingular. LetΩ = 𝐴−𝑋𝐺𝑌𝑇.Then, the following
are equivalent

(a) Ω† ≥ 0.
(b) (𝐺−1 − 𝑌𝑇𝐴†𝑋)−1 ≥ 0.
(c) 𝜌(𝑈†𝑊) < 1 where𝑊 = 𝑉 + 𝑋𝐺𝑌

𝑇.

Proof. First, we observe that since 𝑅(𝑋) ⊆ 𝑅(𝐴), 𝑅(𝑌) ⊆
𝑅(𝐴
𝑇

), and 𝐺−1 − 𝑌𝑇𝐴†𝑋 is nonsingular, by Theorem 7, we
have

Ω
†

= 𝐴
†

+ 𝐴
†

𝑋(𝐺
−1

− 𝑌
𝑇

𝐴
†

𝑋)
−1

𝑌
𝑇

𝐴
†

. (9)

We thus haveΩΩ† = 𝐴𝐴† andΩ†Ω = 𝐴†𝐴. Therefore,

𝑅 (Ω) = 𝑅 (𝐴) , 𝑁 (Ω) = 𝑁 (𝐴) . (10)

Note that the first statement also implies that 𝐴† ≥ 0, by
Theorem 4.

(a) ⇒ (b): By taking 𝐸 = 𝐴 and 𝐹 = 𝑋𝐺𝑌
𝑇, we get

Ω = 𝐸 − 𝐹 as a proper splitting for Ω such that 𝐸† = 𝐴† ≥ 0
and 𝐸†𝐹 = 𝐴†𝑋𝐺𝑌𝑇 ≥ 0 (since 𝑋𝐺𝑌𝑇 ≥ 0). Since Ω† ≥ 0,
by Theorem 4, we have 𝜌(𝐴†𝑋𝐺𝑌𝑇) = 𝜌(𝐸

†

𝐹) < 1. This
implies that 𝜌(𝑌𝑇𝐴†𝑋𝐺) < 1. We also have 𝑌𝑇𝐴†𝑋𝐺 ≥ 0.
Thus, by Lemma 1, (𝐼−𝑌𝑇𝐴†𝑋𝐺)−1 exists and is nonnegative.
But, we have 𝐼 − 𝑌𝑇𝐴†𝑋𝐺 = (𝐺

−1

− 𝑌
𝑇

𝐴
†

𝑋)𝐺. Now, 0 ≤
(𝐼 − 𝑌

𝑇

𝐴
†

𝑋𝐺)
−1

= 𝐺
−1

(𝐺
−1

− 𝑌
𝑇

𝐴
†

𝑋)
−1. This implies that

(𝐺
−1

− 𝑌
𝑇

𝐴
†

𝑋)
−1

≥ 0 since 𝐺 ≥ 0. This proves (b).
(b) ⇒ (c): We have𝑈−𝑊 = 𝑈−𝑉−𝑋𝐺𝑌

𝑇

= 𝐴−𝑋𝑌
𝑇

=

Ω. Also 𝑅(Ω) = 𝑅(𝐴) = 𝑅(𝑈) and 𝑁(Ω) = 𝑁(𝐴) = 𝑁(𝑈).
So, Ω = 𝑈 − 𝑊 is a proper splitting. Also 𝑈† ≥ 0 and
𝑈
†

𝑊 = 𝑈
†

(𝑉+𝑋𝐺𝑌
𝑇

) ≥ 𝑈
†

𝑉 ≥ 0. Since (𝐺−1−𝑌𝑇𝐴†𝑋)−1 ≥
0, it follows from (9) that Ω† ≥ 0. (c) now follows from
Theorem 4.

(c) ⇒ (a): Since𝐴 = 𝑈−𝑉, we haveΩ = 𝑈−𝑉−𝑋𝐺𝑌𝑇 =
𝑈−𝑊. Also we have𝑈† ≥ 0,𝑈†𝑉 ≥ 0. Thus,𝑈†𝑊 ≥ 0, since
𝑋𝐺𝑌
𝑇

≥ 0. Now, by Theorem 4, we are done if the splitting
Ω = 𝑈 −𝑊 is a proper splitting. Since 𝐴 = 𝑈 − 𝑉 is a proper
splitting, we have 𝑅(𝑈) = 𝑅(𝐴) and 𝑁(𝑈) = 𝑁(𝐴). Now,
from the conditions in (10), we get that 𝑅(𝑈) = 𝑅(Ω) and
𝑁(𝑈) = 𝑁(Ω). Hence Ω = 𝑈 − 𝑊 is a proper splitting, and
this completes the proof.

The following result is a special case of Theorem 9.

Theorem 10. Let𝐴 = 𝑈−𝑉 be a proper splitting of𝐴 ∈ R𝑚×𝑛

with 𝑈† ≥ 0, 𝑈†𝑉 ≥ 0 and 𝜌(𝑈†𝑉) < 1. Let 𝑋 ∈ R𝑚×𝑘 and
𝑌 ∈ R𝑛×𝑘 be nonnegative such that 𝑅(𝑋) ⊆ 𝑅(𝐴), 𝑅(𝑌) ⊆
𝑅(𝐴
𝑇

), and 𝐼−𝑌𝑇𝐴†𝑋 is nonsingular. LetΩ = 𝐴−𝑋𝑌𝑇. Then
the following are equivalent:

(a) Ω† ≥ 0.
(b) (𝐼 − 𝑌𝑇𝐴†𝑋)−1 ≥ 0.
(c) 𝜌(𝑈†𝑊) < 1, where𝑊 = 𝑉 + 𝑋𝑌

𝑇.

The following consequence of Theorem 10 appears to be
new. This gives two characterizations for a perturbed 𝑀-
matrix to be an𝑀-matrix.

Corollary 11. Let𝐴 = 𝑠𝐼−𝐵where,𝐵 ≥ 0 and 𝜌(𝐵) < 𝑠 (i.e.,𝐴
is an𝑀-matrix). Let 𝑋 ∈ R𝑚×𝑘 and 𝑌 ∈ R𝑛×𝑘 be nonnegative
such that 𝐼 − 𝑌𝑇𝐴†𝑋 is nonsingular. Let Ω = 𝐴 − 𝑋𝑌𝑇. Then
the following are equivalent:

(a) Ω−1 ≥ 0.
(b) (𝐼 − 𝑌𝑇𝐴†𝑋)−1 ≥ 0.
(c) 𝜌(𝐵(𝐼 + 𝑋𝑌𝑇)) < 𝑠.

Proof. From the proof ofTheorem 10, since 𝐴 is nonsingular,
it follows that ΩΩ† = 𝐼 and Ω†Ω = 𝐼. This shows that Ω
is invertible. The rest of the proof is omitted, as it is an easy
consequence of the previous result.

In the rest of this section, we discuss two applications
of Theorem 10. First, we characterize the least element in
a polyhedral set defined by a perturbed matrix. Next, we
consider the following Suppose that the “endpoints” of an
interval matrix satisfy a certain positivity property. Then all
matrices of a particular subset of the interval also satisfy
that positivity condition. The problem now is if that we are
given a specific structured perturbation of these endpoints,
what conditions guarantee that the positivity property for the
corresponding subset remains valid.

The first result is motivated by Theorem 12 below. Let us
recall that with respect to the usual order, an element x∗ ∈
X ⊆ R𝑛 is called a least element ofX if it satisfies x∗ ≤ x for
all x ∈ X. Note that a nonempty set may not have the least
element, and if it exists, then it is unique. In this connection,
the following result is known.

Theorem 12 (see [11, Theorem 3.2]). For 𝐴 ∈ R𝑚×𝑛 and b ∈
R𝑚, let

Xb = {x ∈ R
𝑛

: 𝐴x + y ≥ b, 𝑃
𝑁(𝐴)

x = 0,

𝑃
𝑅(𝐴)

y = 0, 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 y ∈ R𝑚} .
(11)

Then, a vector x∗ is the least element ofXb if and only if x∗ =
𝐴
†b ∈ Xb with 𝐴† ≥ 0.

Now, we obtain the nonnegative least element of a
polyhedral set defined by a perturbed matrix. This is an
immediate application of Theorem 10.

Theorem 13. Let 𝐴 ∈ R𝑚×𝑛 be such that 𝐴† ≥ 0. Let 𝑋 ∈

R𝑚×𝑘, and let 𝑌 ∈ R𝑛×𝑘 be nonnegative, such that 𝑅(𝑋) ⊆
𝑅(𝐴), 𝑅(𝑌) ⊆ 𝑅(𝐴𝑇), and 𝐼 − 𝑌𝑇𝐴†𝑋 is nonsingular. Suppose
that (𝐼 − 𝑌𝑇𝐴†𝑋)−1 ≥ 0. For b ∈ R𝑚, 𝑏 ≥ 0, let

Sb = {x ∈ R
𝑛

: Ωx + y ≥ b, 𝑃
𝑁(Ω)

x = 0,

𝑃
𝑅(Ω)

y = 0, 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 y ∈ R𝑚} ,
(12)

where Ω = 𝐴 − 𝑋𝑌
𝑇. Then, x∗ = (𝐴 − 𝑋𝑌𝑇)†b is the least

element of S
𝑏
.

Proof. From the assumptions, using Theorem 10, it fol-
lows that Ω† ≥ 0. The conclusion now follows from
Theorem 12.
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To state and prove the result for interval matrices, let us
first recall the notion of interval matrices. For𝐴, 𝐵 ∈ R𝑚 × 𝑛,
an interval (matrix) 𝐽 = [𝐴, 𝐵] is defined as 𝐽 = [𝐴, 𝐵] = {𝐶 :
𝐴 ≤ 𝐶 ≤ 𝐵}. The interval 𝐽 = [𝐴, 𝐵] is said to be range-kernel
regular if 𝑅(𝐴) = 𝑅(𝐵) and 𝑁(𝐴) = 𝑁(𝐵). The following
result [12] provides necessary and sufficient conditions for
𝐶
†

≥ 0 for 𝐶 ∈ 𝐾, where 𝐾 = {𝐶 ∈ 𝐽 : 𝑅(𝐶) = 𝑅(𝐴) =

𝑅(𝐵),𝑁(𝐶) = 𝑁(𝐴) = 𝑁(𝐵)}.

Theorem 14. Let 𝐽 = [𝐴, 𝐵] be range-kernel regular. Then, the
following are equivalent:

(a) 𝐶† ≥ 0 whenever 𝐶 ∈ 𝐾,
(b) 𝐴† ≥ 0 and 𝐵† ≥ 0.

In such a case, we have 𝐶† = ∑∞
𝑗=0
(𝐵
†

(𝐵 − 𝐶))
𝑗

𝐵
†.

Now, we present a result for the perturbation.

Theorem 15. Let 𝐽 = [𝐴, 𝐵] be range-kernel regular with𝐴† ≥
0 and 𝐵† ≥ 0. Let 𝑋

1
, 𝑋
2
, 𝑌
1
, and 𝑌

2
be nonnegative matrices

such that 𝑅(𝑋
1
) ⊆ 𝑅(𝐴), 𝑅(𝑌

1
) ⊆ 𝑅(𝐴

𝑇

), 𝑅(𝑋
2
) ⊆ 𝑅(𝐵), and

𝑅(𝑌
2
) ⊆ 𝑅(𝐵

𝑇

). Suppose that 𝐼−𝑌𝑇
1
𝐴
†

𝑋
1
and 𝐼−𝑌𝑇

2
𝐴
†

𝑋
2
are

nonsingular with nonnegative inverses. Suppose further that
𝑋
2
𝑌
𝑇

2
≤ 𝑋
1
𝑌
𝑇

1
. Let 𝐽 = [𝐸, 𝐹], where 𝐸 = 𝐴 − 𝑋

1
𝑌
𝑇

1
and

𝐹 = 𝐵 − 𝑋
2
𝑌
𝑇

2
. Finally, let �̃� = {𝑍 ∈ 𝐽 : 𝑅(𝑍) = 𝑅(𝐸) =

𝑅(𝐹) 𝑎𝑛𝑑 𝑁(𝑍) = 𝑁(𝐸) = 𝑁(𝐹)}. Then,

(a) 𝐸† ≥ 0 and 𝐹† ≥ 0.
(b) 𝑍† ≥ 0 whenever 𝑍 ∈ �̃�.

In that case, 𝑍† = ∑∞
𝑗=0
(𝐵
†

𝐵 − 𝐹
†

𝑍)
𝑗

𝐹
†.

Proof. It follows fromTheorem 7 that

𝐸
†

= 𝐴
†

+ 𝐴
†

𝑋
1
(𝐼 − 𝑌

𝑇

1
𝐴
†

𝑋
1
)
−1

𝑌
𝑇

1
𝐴
†

,

𝐹
†

= 𝐵
†

+ 𝐵
†

𝑋
2
(𝐼 − 𝑌

𝑇

2
𝐵
†

𝑋
2
)
−1

𝑌
𝑇

2
𝐵
†

.

(13)

Also, we have 𝐸𝐸† = 𝐴𝐴
†, 𝐸†𝐸 = 𝐴

†

𝐴, 𝐹†𝐹 = 𝐵
†

𝐵,
and 𝐹𝐹† = 𝐵𝐵

†. Hence, 𝑅(𝐸) = 𝑅(𝐴), 𝑁(𝐸) = 𝑁(𝐴),
𝑅(𝐹) = 𝑅(𝐵), and 𝑁(𝐹) = 𝑁(𝐵). This implies that the
interval 𝐽 is range-kernel regular. Now, since 𝐸 and 𝐹 satisfy
the conditions of Theorem 10, we have 𝐸† ≥ 0 and 𝐹† ≥ 0
proving (a). Hence, by Theorem 14, 𝑍† ≥ 0 whenever 𝑍 ∈ �̃�.
Again, by Theorem 14, we have 𝑍† = ∑∞

𝑗=0
(𝐹
†

(𝐹 − 𝑍))
𝑗

𝐹
†

=

∑
∞

𝑗=0
(𝐵
†

𝐵 − 𝐹
†

𝑍)
𝑗

𝐹
†.

5. Iterations That Preserve Nonnegativity of
the Moore-Penrose Inverse

In this section, we present results that typically provide
conditions for iteratively defined matrices to have nonneg-
ative Moore-Penrose inverses given that the matrices that
we start with have this property. We start with the following
result about the rank-one perturbation case, which is a direct
consequence of Theorem 10.

Theorem 16. Let 𝐴 ∈ R𝑛×𝑛 be such that 𝐴† ≥ 0. Let x ∈ R𝑚

and y ∈ R𝑛 be nonnegative vectors such that x ∈ 𝑅(𝐴), y ∈
𝑅(𝐴
𝑇

), and 1 − y𝑇𝐴†x ̸= 0. Then (𝐴 − xy𝑇)† ≥ 0 if and only if
y𝑇𝐴†x < 1.

Example 17. Let us consider 𝐴 = (1/3) (
1 −1 1

−1 4 −1

1 −1 1

). It can be

verified that 𝐴 can be written in the form 𝐴 = (
𝐼2

𝑒
𝑇

1

) (𝐼
2
+

e
1
𝑒
𝑇

1
)
−1

𝐶
−1

(𝐼
2
+ e
1
𝑒
𝑇

1
)
−1

(𝐼
2
e
1
) where e

1
= (1, 0)

𝑇 and 𝐶 is
the 2 × 2 circulant matrix generated by the row (1, 1/2). We
have 𝐴† = (1/2) ( 2 1 21 2 1

2 1 2

) ≥ 0. Also, the decomposition 𝐴 =

𝑈−𝑉, where𝑈 = (1/3) ( 1 −1 2−1 4 −2

1 −1 2

), and𝑉 = (1/3) ( 0 0 10 2 −1
0 0 1

) is
a proper splitting of 𝐴 with 𝑈† ≥ 0, 𝑈†𝑉 ≥ 0, and 𝜌(𝑈†𝑉) <
1.

Let x = y = (1/3, 1/6, 1/3)
𝑇. Then, x and let y are

nonnegative, x ∈ 𝑅(𝐴) and y ∈ 𝑅(𝐴𝑇). We have 1 − y𝑇𝐴†x =
5/12 > 0 and 𝜌(𝑈†𝑊) < 1 for𝑊 = 𝑉 + xy𝑇. Also, it can be
seen that (𝐴 − xy𝑇)† = (1/20) ( 47 28 4728 32 28

47 28 47

) ≥ 0. This illustrates
Theorem 10.

Let x
1
, x
2
, . . . , x

𝑘
∈ R𝑚 and y

1
, y
2
, . . . , y

𝑘
∈ R𝑛 be nonneg-

ative. Denote 𝑋
𝑖
= (x
1
, x
2
, . . . , x

𝑖
) and 𝑌

𝑖
= (y
1
, y
2
, . . . , y

𝑖
) for

𝑖 = 1, 2, . . . , 𝑘. Then𝐴−𝑋
𝑘
𝑌
𝑇

𝑘
= 𝐴−∑

𝑘

𝑖=1
x
𝑖
y𝑇
𝑖
. The following

theorem is obtained by a recurring application of the rank-
one result of Theorem 16.

Theorem 18. Let𝐴 ∈ R𝑚×𝑛 and let𝑋
𝑖
, 𝑌
𝑖
be as above. Further,

suppose that x
𝑖
∈ 𝑅(𝐴 − 𝑋

𝑖−1
𝑌
𝑇

𝑖−1
), y
𝑖
∈ 𝑅(𝐴 − 𝑋

𝑖−1
𝑌
𝑇

𝑖−1
)
𝑇 and

1 − y𝑇
𝑖
(𝐴 − 𝑋

𝑖−1
𝑌
𝑇

𝑖−1
)
†x
𝑖
be nonzero. Let (𝐴 − 𝑋

𝑖−1
𝑌
𝑇

𝑖−1
)
†

≥ 0,
for all 𝑖 = 1, 2, . . . , 𝑘. Then (𝐴 − 𝑋

𝑘
𝑌
𝑇

𝑘
)
†

≥ 0 if and only if
y𝑇
𝑖
(𝐴 − 𝑋

𝑖−1
𝑌
𝑇

𝑖−1
)
†x
𝑖
< 1, where 𝐴 − 𝑋

0
𝑌
𝑇

0
is taken as 𝐴.

Proof. Set 𝐵
𝑖
= 𝐴 − 𝑋

𝑖
𝑌
𝑇

𝑖
for 𝑖 = 0, 1, . . . , 𝑘, where 𝐵

0
is

identified as 𝐴. The conditions in the theorem can be written
as:

x
𝑖
∈ 𝑅 (𝐵

𝑖−1
) , y

𝑖
∈ 𝑅 (𝐵

𝑇

𝑖−1
) ,

1 − y𝑇
𝑖
𝐵
†

𝑖−1
x
𝑖
̸= 0,

∀𝑖 = 1, 2 . . . , 𝑘.

(14)

Also, we have 𝐵†
𝑖
≥ 0, for all 𝑖 = 0, 1, . . . , 𝑘 − 1.

Now, assume that 𝐵†
𝑘
≥ 0. Then by Theorem 16 and the

conditions in (14) for 𝑖 = 𝑘, we have y
𝑘
𝐵
†

𝑘−1
x
𝑘
< 1. Also

since by assumption 𝐵†
𝑖
≥ 0 for all 𝑖 = 0, 1 . . . , 𝑘 − 1, we have

y𝑇
𝑖
𝐵
†

𝑖−1
x
𝑖
< 1 for all 𝑖 = 1, 2 . . . , 𝑘.

The converse part can be proved iteratively. Then condi-
tion y𝑇

1
𝐵
0

†x
1
< 1 and the conditions in (14) for 𝑖 = 1 imply

that 𝐵
1

†

≥ 0. Repeating the argument for 𝑖 = 2 to 𝑘 proves the
result.

The following result is an extension of Lemma 2.3 in [1],
which is in turn obtained as a corollary.This corollary will be
used in proving another characterization for (𝐴−𝑋

𝑘
𝑌
𝑇

𝑘
)
†

≥ 0.
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Theorem 19. Let 𝐴 ∈ R𝑛×𝑛, b,c ∈ R𝑛 be such that −b ≥ 0,
−c ≥ 0 and 𝛼(∈ R) > 0. Further, suppose that b ∈ 𝑅(𝐴) and
c ∈ 𝑅(𝐴𝑇). Let 𝐴 = ( 𝐴 b

c𝑇 𝛼 ) ∈ R(𝑛+1)×(𝑛+1). Then, 𝐴† ≥ 0 if and
only if 𝐴† ≥ 0 and c𝑇𝐴†b < 𝛼.

Proof. Let us first observe that 𝐴𝐴†b = b and c𝑇𝐴†𝐴 = c𝑇.
Set

𝑋 =(

𝐴
†

+
𝐴
†bc𝑇𝐴†

𝛼 − c𝑇𝐴†b
−𝐴
†b

𝛼 − c𝑇𝐴†b
−

c𝑇𝐴†

𝛼 − c𝑇𝐴†b
1

𝛼 − c𝑇𝐴†b
). (15)

It then follows that 𝐴𝑋 = ( 𝐴𝐴† 00𝑇 1 ) and 𝑋𝐴 = (
𝐴
†
𝐴 0

0𝑇 1 ). Using
these two equations, it can easily be shown that𝑋 = 𝐴†.

Suppose that 𝐴† ≥ 0 and 𝛽 = 𝛼 − c𝑇𝐴†b > 0. Then,
𝐴
†

≥ 0. Conversely suppose that 𝐴† ≥ 0. Then, we must
have 𝛽 > 0. Let {e

1
, e
2
, . . . , e

𝑛+1
} denote the standard basis

of R𝑛+1. Then, for 𝑖 = 1, 2, . . . , 𝑛, we have 0 ≤ 𝐴
†

(e
𝑖
) =

(𝐴
†e
𝑖
+(𝐴
†bc𝑇𝐴†e

𝑖
/𝛽), −(c𝑇𝐴†e

𝑖
/𝛽))
𝑇. Since c ≤ 0, it follows

that 𝐴†e
𝑖
≥ 0 for 𝑖 = 1, 2, . . . , 𝑛. Thus, 𝐴† ≥ 0.

Corollary 20 (see [1, Lemma 2.3]). Let 𝐴 ∈ R𝑛×𝑛 be
nonsingular. Let b, c ∈ R𝑛 be such that −b ≥ 0, −c ≥ 0

and 𝛼(∈ R) > 0. Let 𝐴 = (
𝐴 b
c𝑇 𝛼 ). Then, 𝐴−1 ∈ R(𝑛+1)×(𝑛+1)

is nonsingular with 𝐴−1 ≥ 0 if and only if 𝐴−1 ≥ 0 and
c𝑇𝐴−1b < 𝛼.

Now, we obtain another necessary and sufficient condi-
tion for (𝐴 − 𝑋

𝑘
𝑌
𝑇

𝑘
)
† to be nonnegative.

Theorem 21. Let 𝐴 ∈ R𝑚×𝑛 be such that 𝐴† ≥ 0. Let x
𝑖
, y
𝑖

be nonnegative vectors inR𝑛 andR𝑚 respectively, for every 𝑖 =
1, . . . , 𝑘, such that

x
𝑖
∈ 𝑅 (𝐴 − 𝑋

𝑖−1
𝑌
𝑇

𝑖−1
) , y

𝑖
∈ 𝑅(𝐴 − 𝑋

𝑖−1
𝑌
𝑇

𝑖−1
)
𝑇

, (16)

where 𝑋
𝑖
= (x
1
, . . . , x

𝑖
), 𝑌
𝑖
= (y
1
, . . . , y

𝑖
) and 𝐴 − 𝑋

0
𝑌
𝑇

0
is

taken as𝐴. If𝐻
𝑖
= 𝐼
𝑖
−𝑌
𝑇

𝑖
𝐴
†

𝑋
𝑖
is nonsingular and 1− y𝑇

𝑖
𝐴
†x
𝑖

is positive for all 𝑖 = 1, 2, . . . , 𝑘, then (𝐴 − 𝑋
𝑘
𝑌
𝑇

𝑘
)
†

≥ 0 if and
only if

y𝑇
𝑖
𝐴
†x
𝑖
< 1 − y𝑇

𝑖
𝐴
†

𝑋
𝑖−1
𝐻
−1

𝑖−1
𝑌
𝑇

𝑖−1
𝐴
†x
𝑖
, ∀𝑖 = 1, . . . , 𝑘. (17)

Proof. The range conditions in (16) imply that 𝑅(𝑋
𝑘
) ⊆ 𝑅(𝐴)

and 𝑅(𝑌
𝑘
) ⊆ 𝑅(𝐴

𝑇

). Also, from the assumptions, it follows
that 𝐻

𝑘
is nonsingular. By Theorem 10, (𝐴 − 𝑋

𝑘
𝑌
𝑇

𝑘
)
†

≥ 0 if
and only if𝐻−1

𝑘
≥ 0. Now,

𝐻
𝑘
= (

𝐻
𝑘−1

−𝑌
𝑇

𝑘−1
𝐴
†x
𝑘

−y𝑇
𝑘
𝐴
†

𝑋
𝑘−1

1 − y𝑇
𝑘
𝐴
†x
𝑘

) . (18)

Since 1−y𝑇
𝑘
𝐴
†x
𝑘
> 0, usingCorollary 20, it follows that𝐻−1

𝑘
≥

0 if and only if y𝑇
𝑘
𝐴
†

𝑋
𝑘−1
𝐻
−1

𝑘−1
𝑌
𝑇

𝑘−1
𝐴
†x
𝑘
< 1 − y𝑇

𝑘
𝐴
†x
𝑘
and

𝐻
−1

𝑘−1
≥ 0.

Now, applying the above argument to the matrix 𝐻
𝑘−1

,
we have that 𝐻−1

𝑘−1
≥ 0 holds if and only if 𝐻−1

𝑘−2
≥ 0

holds and y𝑇
𝑘−1
𝐴
†

𝑋
𝑘−2
(𝐼
𝑘−2

− 𝑌
𝑇

𝑘−2
𝐴
†

𝑋
𝑘−2
)
−1

𝑌
𝑇

𝑘−2
𝐴
†x
𝑘−1 <

1− y𝑇
𝑘−1
𝐴
†x
𝑘−1. Continuing the above argument, we get, (𝐴−

𝑋
𝑘
y𝑇
𝑘
)
†

≥ 0 if and only if y𝑇
𝑖
𝐴
†

𝑋
𝑖−1
𝐻
−1

𝑖−1
𝑌
𝑇

𝑖−1
𝐴
†x
𝑖
< 1−y𝑇

𝑖
𝐴
†x
𝑖
,

∀𝑖 = 1, . . . , 𝑘. This is condition (17).

We conclude the paper by considering an extension of
Example 17.

Example 22. For a fixed 𝑛, let 𝐶 be the circulant matrix
generated by the row vector (1, (1/2), (1/3), . . . (1/(𝑛 − 1))).
Consider

𝐴 = (
𝐼

𝑒
𝑇

1

) (𝐼 + e
1
𝑒
𝑇

1
)
−1

𝐶
−1

(𝐼 + e
1
𝑒
𝑇

1
)
−1

(𝐼 e
1
) , (19)

where 𝐼 is the identity matrix of order 𝑛 − 1, e
1
is (𝑛 − 1) × 1

vector with 1 as the first entry and 0 elsewhere. Then, 𝐴 ∈

R𝑛×𝑛. 𝐴† is the 𝑛 × 𝑛 nonnegative Toeplitz matrix

𝐴
†

=

(
(
(
(
(
(

(

1
1

𝑛 − 1

1

𝑛 − 2
. . .

1

2
1

1

2
1

1

𝑛 − 1
. . .

1

3

1

2
...

...
...

...
...

...
1

𝑛 − 1

1

𝑛 − 2

1

𝑛 − 3
. . . 1

1

𝑛 − 1

1
1

𝑛 − 1

1

𝑛 − 2
. . .

1

2
1

)
)
)
)
)
)

)

. (20)

Let 𝑥
𝑖
be the first row of 𝐵†

𝑖−1
written as a column vector

multiplied by 1/𝑛𝑖 and let 𝑦
𝑖
be the first column of 𝐵†

𝑖−1

multiplied by 1/𝑛𝑖, where 𝐵
𝑖
= 𝐴 − 𝑋

𝑖
𝑌
𝑇

𝑖
, with 𝐵

0
being

identified with 𝐴, 𝑖 = 0, 2, . . . , 𝑘. We then have x
𝑖
≥ 0,

y
𝑖
≥ 0, 𝑥

1
∈ 𝑅(𝐴) and 𝑦

1
∈ 𝑅(𝐴

𝑇

). Now, if 𝐵†
𝑖−1

≥ 0 for
each iteration, then the vectors 𝑥

𝑖
and 𝑦

𝑖
will be nonnegative.

Hence, it is enough to check that 1 − 𝑦𝑇
𝑖
𝐵
†

𝑖−1
𝑥
𝑖
> 0 in order

to get 𝐵†
𝑖
≥ 0. Experimentally, it has been observed that for

𝑛 > 3, the condition 1 − 𝑦𝑇
𝑖
𝐵
†

𝑖−1
𝑥
𝑖
> 0 holds true for any

iteration. However, for 𝑛 = 3, it is observed that 𝐵†
1
≥ 0, 𝐵†

2
≥

0, 1 − 𝑦𝑇
1
𝐴
†

𝑥
1
> 0, and 1 − 𝑦†

2
𝐵
†

1
𝑥
2
> 0. But, 1 − 𝑦𝑇

3
𝐵
†

2
𝑥
3
< 0,

and in that case, we observe that 𝐵†
3
is not nonnegative.
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Multisender authentication codes allow a group of senders to construct an authenticated message for a receiver such that the
receiver can verify the authenticity of the received message. In this paper, we construct one multisender authentication code from
polynomials over finite fields. Some parameters and the probabilities of deceptions of this code are also computed.

1. Introduction

Multisender authentication code was firstly constructed by
Gilbert et al. [1] in 1974. Multisender authentication system
refers towho a groupof senders, cooperatively send amessage
to a receiver; then the receiver should be able to ascertain
that the message is authentic. About this case, many scholars
and researchers had made great contributions to multisender
authentication codes, such as [2–6].

In the actual computer network communications, mul-
tisender authentication codes include sequential model and
simultaneous model. Sequential model is that each sender
uses his own encoding rules to encode a source state orderly,
the last sender sends the encoded message to the receiver,
and the receiver receives themessage and verifies whether the
message is legal or not. Simultaneousmodel is that all senders
use their own encoding rules to encode a source state, and
each sender sends the encoded message to the synthesizer,
respectively; then the synthesizer forms an authenticated
message and verifies whether the message is legal or not. In
this paper, we will adopt the second model.

In a simultaneous model, there are four participants: a
group of senders 𝑈 = {𝑈

1
, 𝑈
2
, . . . , 𝑈

𝑛
}, the key distribution

center, he is responsible for the key distribution to senders
and receiver, including solving the disputes between them, a
receiver 𝑅, and a synthesizer, where he only runs the trusted
synthesis algorithm. The code works as follows: each sender
and receiver has their own Cartesian authentication code,

respectively. Let (𝑆, 𝐸
𝑖
, 𝑇
𝑖
; 𝑓
𝑖
) (𝑖 = 1, 2, . . . , 𝑛) be the senders’

Cartesian authentication code, (𝑆, 𝐸
𝑅
, 𝑇; 𝑔) be the receiver’s

Cartesian authentication code, ℎ : 𝑇
1
× 𝑇
2
× ⋅ ⋅ ⋅ × 𝑇

𝑛
→

𝑇 be the synthesis algorithm, and 𝜋
𝑖

: 𝐸 → 𝐸
𝑖
be a

subkey generation algorithm, where 𝐸 is the key set of the
key distribution center. When authenticating a message, the
senders and the receiver should comply with the protocol.
The key distribution center randomly selects an encoding
rule 𝑒 ∈ 𝐸 and sends 𝑒

𝑖
= 𝜋
𝑖
(𝑒) to the 𝑖th sender 𝑈

𝑖
(𝑖 =

1, 2, . . . , 𝑛), secretly; then he calculates 𝑒
𝑅
by 𝑒 according to

an effective algorithm and secretly sends 𝑒
𝑅
to the receiver

𝑅. If the senders would like to send a source state 𝑠 to the
receiver 𝑅, 𝑈

𝑖
computes 𝑡

𝑖
= 𝑓
𝑖
(𝑠, 𝑒
𝑖
) (𝑖 = 1, 2, . . . , 𝑛) and

sends 𝑚
𝑖
= (𝑠, 𝑡

𝑖
) (𝑖 = 1, 2, . . . , 𝑛) to the synthesizer through

an open channel. The synthesizer receives the message 𝑚
𝑖
=

(𝑠, 𝑡
𝑖
) (𝑖 = 1, 2, . . . , 𝑛) and calculates 𝑡 = ℎ(𝑡

1
, 𝑡
2
, . . . , 𝑡

𝑛
) by the

synthesis algorithm ℎ and then sends message 𝑚 = (𝑠, 𝑡) to
the receiver; he checks the authenticity by verifying whether
𝑡 = 𝑔(𝑠, 𝑒

𝑅
) or not. If the equality holds, the message is

authentic and is accepted. Otherwise, the message is rejected.
We assume that the key distribution center is credible, and

though he know the senders’ and receiver’s encoding rules, he
will not participate in any communication activities. When
transmitters and receiver are disputing, the key distribution
center settles it. At the same time, we assume that the system
follows the Kerckhoff principle in which, except the actual
used keys, the other information of the whole system is
public.
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In a multisender authentication system, we assume that
the whole senders are cooperative to form a valid message;
that is, all senders as a whole and receiver are reliable. But
there are some malicious senders who together cheat the
receiver; the part of senders and receiver are not credible, and
they can take impersonation attack and substitution attack.
In the whole system, we assume that {𝑈

1
, 𝑈
2
, . . . , 𝑈

𝑛
} are

senders, 𝑅 is a receiver, 𝐸
𝑖
is the encoding rules set of the

sender 𝑈
𝑖
, and 𝐸

𝑅
is the decoding rules set of the receiver

𝑅. If the source state space 𝑆 and the key space 𝐸
𝑅
of receiver

𝑅 are according to a uniform distribution, then the message
space𝑀 and the tag space𝑇 are determined by the probability
distribution of 𝑆 and 𝐸

𝑅
. 𝐿 = {𝑖

1
, 𝑖
2
, . . . , 𝑖

𝑙
} ⊂ {1, 2, . . . , 𝑛},

𝑙 < 𝑛, 𝑈
𝐿

= {𝑈
𝑖1
, 𝑈
𝑖2
, . . . , 𝑈

𝑖𝑙
}, 𝐸
𝐿

= {𝐸
𝑈𝑖1

, 𝐸
𝑈𝑖2

, . . . , 𝐸
𝑈𝑖
𝑙

}.
Now consider that let us consider the attacks from malicious
groups of senders. Here, there are two kinds of attack.

The opponent’s impersonation attack to receiver:𝑈
𝐿
, after

receiving their secret keys, encode a message and send it to
the receiver. 𝑈

𝐿
are successful if the receiver accepts it as

legitimate message. Denote by 𝑃
𝐼
the largest probability of

some opponent’s successful impersonation attack to receiver;
it can be expressed as

𝑃
𝐼
= max
𝑚∈𝑀

{

{𝑒𝑅 ∈ 𝐸
𝑅
| 𝑒
𝑅
⊂ 𝑚}


𝐸𝑅



} . (1)

The opponent’s substitution attack to the receiver: 𝑈
𝐿

replace 𝑚 with another message 𝑚
, after they observe a

legitimatemessage𝑚.𝑈
𝐿
are successful if the receiver accepts

it as legitimate message; it can be expressed as

𝑃
𝑆
= max
𝑚∈𝑀

{

max
𝑚

̸=𝑚∈𝑀


{𝑒
𝑅
∈ 𝐸
𝑅
| 𝑒
𝑅
⊂ 𝑚,𝑚



}


{𝑒𝑅 ∈ 𝐸
𝑅
| 𝑒
𝑅
⊂ 𝑚}



} . (2)

There might be 𝑙 malicious senders who together cheat
the receiver; that is, the part of senders and the receiver
are not credible, and they can take impersonation attack.
Let 𝐿 = {𝑖

1
, 𝑖
2
, . . . , 𝑖

𝑙
} ⊂ {1, 2, . . . , 𝑛}, 𝑙 < 𝑛 and 𝐸

𝐿
=

{𝐸
𝑈𝑖1

, 𝐸
𝑈𝑖2

, . . . , 𝐸
𝑈𝑖𝑙

}. Assume that 𝑈
𝐿

= {𝑈
𝑖1
, 𝑈
𝑖2
, . . . , 𝑈

𝑖𝑙
},

after receiving their secret keys, send a message 𝑚 to the
receiver 𝑅;𝑈

𝐿
are successful if the receiver accepts it as legiti-

mate message. Denote by 𝑃
𝑈
(𝐿) the maximum probability of

success of the impersonation attack to the receiver. It can be
expressed as

𝑃
𝑈
(𝐿)

=max
𝑒𝐿∈𝐸𝐿

max
𝑒𝐿∈𝑒𝑈

{
max
𝑚∈𝑀

{𝑒𝑅∈𝐸𝑅 | 𝑒𝑅⊂𝑚, 𝑝 (𝑒
𝑅
, 𝑒
𝑃
) ̸=0}


{𝑒𝑅 ∈ 𝐸

𝑅
| 𝑝 (𝑒
𝑅
, 𝑒
𝑃
) ̸=0}



} .

(3)

Notes.𝑝(𝑒
𝑅
, 𝑒
𝑃
) ̸= 0 implies that any information 𝑠 encoded by

𝑒
𝑇
can be authenticated by 𝑒

𝑅
.

In [2], Desmedt et al. gave two constructions for MRA-
codes based on polynomials and finite geometries, respec-
tively. To construct multisender or multireceiver authenti-
cation by polynomials over finite fields, many researchers
have done much work, for example, [7–9]. There are other

constructions of multisender authentication codes that are
given in [3–6]. The construction of authentication codes
is combinational design in its nature. We know that the
polynomial over finite fields can provide a better algebra
structure and is easy to count. In this paper, we construct
one multisender authentication code from the polynomial
over finite fields. Some parameters and the probabilities of
deceptions of this code are also computed. We realize the
generalization and the application of the similar idea and
method of the paper [7–9].

2. Some Results about Finite Field

Let 𝐹
𝑞
be the finite field with 𝑞 elements, where 𝑞 is a power

of a prime 𝑝 and 𝐹 is a field containing 𝐹
𝑞
; denote by 𝐹

∗

𝑞
be

the nonzero elements set of 𝐹
𝑞
. In this paper, we will use the

following conclusions over finite fields.

Conclusion 1. A generator 𝛼 of 𝐹
∗

𝑞
is called a primitive

element of 𝐹
𝑞
.

Conclusion 2. Let 𝛼 ∈ 𝐹
𝑞
; if some polynomials contain 𝛼 as

their root and their leading coefficient are 1 over 𝐹
𝑞
, then the

polynomial having least degree among all such polynomials
is called a minimal polynomial over 𝐹

𝑞
.

Conclusion 3. Let |𝐹| = 𝑞
𝑛, then 𝐹 is an 𝑛-dimensional

vector space over 𝐹
𝑞
. Let 𝛼 be a primitive element of 𝐹

𝑞

and 𝑔(𝑥) the minimal polynomial about 𝛼 over 𝐹
𝑞
; then

dim𝑔(𝑥) = 𝑛 and 1, 𝛼, 𝛼
2

, . . . , 𝛼
𝑛−1 is a basis of 𝐹. Further-

more, 1, 𝛼, 𝛼2, . . . , 𝛼𝑛−1 is linear independent, and it is equal
to 𝛼, 𝛼

2

, . . . , 𝛼
𝑛−1

, 𝛼
𝑛 (𝛼 is a primitive element, 𝛼 ̸= 0) is also

linear independent; moreover, 𝛼𝑝, 𝛼𝑝
2

, . . . , 𝛼
𝑝
𝑛−1

, 𝛼
𝑝
𝑛

is also
linear independent.

Conclusion 4. Consider (𝑥
1
+ 𝑥
2
+ ⋅ ⋅ ⋅ + 𝑥

𝑛
)
𝑚

= (𝑥
1
)
𝑚

+

(𝑥
2
)
𝑚

+ ⋅ ⋅ ⋅ + (𝑥
𝑛
)
𝑚, where 𝑥

𝑖
∈ 𝐹
𝑞
, (1 ≤ 𝑖 ≤ 𝑛) and 𝑚 is a

nonnegative power of character 𝑝 of 𝐹
𝑞
.

Conclusion 5. Let𝑚 ≤ 𝑛. Then, the number of𝑚×𝑛matrices
of rank𝑚 over 𝐹

𝑞
is 𝑞𝑚(𝑚−1)/2∏𝑛

𝑖=𝑛−𝑚+1
(𝑞
𝑖

− 1).

More results about finite fields can be found in [10–12].

3. Construction

Let the polynomial 𝑝
𝑗
(𝑥) = 𝑎

𝑗1
𝑥
𝑝
𝑛

+ 𝑎
𝑗2
𝑥
𝑝
(𝑛−1)

+ ⋅ ⋅ ⋅ +

𝑎
𝑗𝑛
𝑥
𝑝

(1 ≤ 𝑗 ≤ 𝑘), where the coefficient 𝑎
𝑖𝑙

∈ 𝐹
𝑞
,

(1 ≤ 𝑙 ≤ 𝑛), and these vectors by the composition of their
coefficient are linearly independent. The set of source states
𝑆 = 𝐹

𝑞
; the set of 𝑖th transmitter’s encoding rules 𝐸

𝑈𝑖
=

{𝑝
1
(𝑥
𝑖
), 𝑝
2
(𝑥
𝑖
), . . . , 𝑝

𝑘
(𝑥
𝑖
), 𝑥
𝑖

∈ 𝐹
∗

𝑞
} (1 ≤ 𝑖 ≤ 𝑛); the set

of receiver’s encoding rules 𝐸
𝑅

= {𝑝
1
(𝛼), 𝑝
2
(𝛼), . . . , 𝑝

𝑘
(𝛼),

where 𝛼 is a primitive element of 𝐹
𝑞
}; the set of 𝑖th transmit-

ter’s tags 𝑇
𝑖
= {𝑡
𝑖
| 𝑡
𝑖
∈ 𝐹
𝑞
} (1 ≤ 𝑖 ≤ 𝑛); the set of receiver’s

tags 𝑇 = {𝑡 | 𝑡 ∈ 𝐹
𝑞
}.
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Define the encoding map 𝑓
𝑖
: 𝑆 × 𝐸

𝑈𝑖
→ 𝑇
𝑖
, 𝑓
𝑖
(𝑠, 𝑒
𝑈𝑖
) =

𝑠𝑝
1
(𝑥
𝑖
) + 𝑠
2

𝑝
2
(𝑥
𝑖
) + ⋅ ⋅ ⋅ + 𝑠

𝑘

𝑝
𝑘
(𝑥
𝑖
), 1 ≤ 𝑖 ≤ 𝑛.

The decoding map 𝑓 : 𝑆 × 𝐸
𝑅

→ 𝑇, 𝑓(𝑠, 𝑒
𝑅
) = 𝑠𝑝

1
(𝛼) +

𝑠
2

𝑝
2
(𝛼) + ⋅ ⋅ ⋅ + 𝑠

𝑘

𝑝
𝑘
(𝛼).

The synthesizing map ℎ : 𝑇
1
× 𝑇
2
× ⋅ ⋅ ⋅ × 𝑇

𝑛
→ 𝑇,

ℎ(𝑡
1
, 𝑡
2
, . . . , 𝑡

𝑛
) = 𝑡
1
+ 𝑡
2
+ ⋅ ⋅ ⋅ + 𝑡

𝑛
.

The code works as follows.
Assume that 𝑞 is larger than, or equal to, the number of

the possible message and 𝑛 ≤ 𝑞.

3.1. Key Distribution. The key distribution center randomly
generates 𝑘 (𝑘 ≤ 𝑛) polynomials 𝑝

1
(𝑥), 𝑝
2
(𝑥), . . . , 𝑝

𝑘
(𝑥),

where 𝑝
𝑗
(𝑥) = 𝑎

𝑗1
𝑥
𝑝
𝑛

+ 𝑎
𝑗2
𝑥
𝑝
(𝑛−1)

+ ⋅ ⋅ ⋅ + 𝑎
𝑗𝑛
𝑥
𝑝

(1 ≤ 𝑗 ≤ 𝑘),
and make these vectors by composed of their coefficient is
linearly independent, it is equivalent to the column vectors

of the matrix (

𝑎11 𝑎21 ⋅⋅⋅ 𝑎𝑘1

𝑎12 𝑎22 ⋅⋅⋅ 𝑎𝑘2

...
...
...
...

𝑎1𝑛 𝑎2𝑛 ⋅⋅⋅ 𝑎𝑘𝑛

) is linearly independent. He

selects 𝑛 distinct nonzero elements 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
∈ 𝐹
𝑞
again

and makes 𝑥
𝑖
(1 ≤ 𝑖 ≤ 𝑛) secret; then he sends privately

𝑝
1
(𝑥
𝑖
), 𝑝
2
(𝑥
𝑖
), . . . , 𝑝

𝑘
(𝑥
𝑖
) to the sender 𝑈

𝑖
(1 ≤ 𝑖 ≤ 𝑛). The

key distribution center also randomly chooses a primitive
element 𝛼 of 𝐹

𝑞
satisfying 𝑥

1
+ 𝑥
2
+ ⋅ ⋅ ⋅ + 𝑥

𝑛
= 𝛼 and sends

𝑝
1
(𝛼), 𝑝
2
(𝛼), . . . , 𝑝

𝑘
(𝛼) to the receiver 𝑅.

3.2. Broadcast. If the senderswant to send a source state 𝑠 ∈ 𝑆

to the receiver 𝑅, the sender 𝑈
𝑖
calculates 𝑡

𝑖
= 𝑓
𝑖
(𝑠, 𝑒
𝑈𝑖
) =

𝐴
𝑠
(𝑥
𝑖
) = 𝑠𝑝

1
(𝑥
𝑖
)+𝑠
2

𝑝
2
(𝑥
𝑖
)+ ⋅ ⋅ ⋅+𝑠

𝑘

𝑝
𝑘
(𝑥
𝑖
), 1 ≤ 𝑖 ≤ 𝑛 and then

sends 𝐴
𝑠
(𝑥
𝑖
) = 𝑡
𝑖
to the synthesizer.

3.3. Synthesis. After the synthesizer receives 𝑡
1
, 𝑡
2
, . . . , 𝑡

𝑛
, he

calculates ℎ(𝑡
1
, 𝑡
2
, . . . , 𝑡

𝑛
) = 𝑡
1
+ 𝑡
2
+ ⋅ ⋅ ⋅ + 𝑡

𝑛
and then sends

𝑚 = (𝑠, 𝑡) to the receiver 𝑅.

3.4. Verification. When the receiver 𝑅 receives 𝑚 = (𝑠, 𝑡), he
calculates 𝑡 = 𝑔(𝑠, 𝑒

𝑅
) = 𝐴

𝑠
(𝛼) = 𝑠𝑝

1
(𝛼) + 𝑠

2

𝑝
2
(𝛼) + ⋅ ⋅ ⋅ +

𝑠
𝑘

𝑝
𝑘
(𝛼). If 𝑡 = 𝑡

, he accepts 𝑡; otherwise, he rejects it.
Next, we will show that the above construction is a well

defined multisender authentication code with arbitration.

Lemma 1. Let 𝐶
𝑖
= (𝑆, 𝐸

𝑃𝑖
, 𝑇
𝑖
, 𝑓
𝑖
); then the code is an A-code,

1 ≤ 𝑖 ≤ 𝑛.

Proof. (1) For any 𝑒
𝑈𝑖

∈ 𝐸
𝑈𝑖
, 𝑠 ∈ 𝑆, because 𝐸

𝑈𝑖
= {𝑝
1
(𝑥
𝑖
),

𝑝
2
(𝑥
𝑖
), . . . , 𝑝

𝑘
(𝑥
𝑖
), 𝑥
𝑖
∈ 𝐹
∗

𝑞
}, so 𝑡

𝑖
= 𝑠𝑝
1
(𝑥
𝑖
) + 𝑠
2

𝑝
2
(𝑥
𝑖
) + ⋅ ⋅ ⋅ +

𝑠
𝑘

𝑝
𝑘
(𝑥
𝑖
) ∈ 𝑇
𝑖
= 𝐹
𝑞
. Conversely, for any 𝑡

𝑖
∈ 𝑇
𝑖
, choose 𝑒

𝑈𝑖
=

{𝑝
1
(𝑥
𝑖
), 𝑝
2
(𝑥
𝑖
), . . . , 𝑝

𝑘
(𝑥
𝑖
), 𝑥
𝑖
∈ 𝐹
∗

𝑞
}, where 𝑝

𝑗
(𝑥) = 𝑎

𝑗1
𝑥
𝑝
𝑛

+

𝑎
𝑗2
𝑥
𝑝
(𝑛−1)

+ ⋅ ⋅ ⋅ + 𝑎
𝑗𝑛
𝑥
𝑝

(1 ≤ 𝑗 ≤ 𝑘), and let 𝑡
𝑖
= 𝑓
𝑖
(𝑠, 𝑒
𝑈𝑖
) =

𝑠𝑝
1
(𝑥
𝑖
) + 𝑠
2

𝑝
2
(𝑥
𝑖
) + ⋅ ⋅ ⋅ + 𝑠

𝑘

𝑝
𝑘
(𝑥
𝑖
); it is equivalent to

(𝑥
𝑝
𝑛

𝑖
, 𝑥
𝑝
𝑛−1

𝑖
, . . . , 𝑥

𝑝

𝑖
)(

𝑎
11

𝑎
21

⋅ ⋅ ⋅ 𝑎
𝑘1

𝑎
12

𝑎
22

⋅ ⋅ ⋅ 𝑎
𝑘2

...
...

...
...

𝑎
1𝑛

𝑎
2𝑛

⋅ ⋅ ⋅ 𝑎
𝑘𝑛

)(

𝑠

𝑠
2

...
𝑠
𝑘

) = 𝑡
𝑖
.

(4)

It follows that

(

(

𝑥
𝑝
𝑛

1
𝑥
𝑝
𝑛−1

1
⋅ ⋅ ⋅ 𝑥
𝑝

1

𝑥
𝑝
n

2
𝑥
𝑝
𝑛−1

2
⋅ ⋅ ⋅ 𝑥
𝑝

2

...
...

...
...

𝑥
𝑝
𝑛

𝑛
𝑥
𝑝
𝑛−1

𝑛
⋅ ⋅ ⋅ 𝑥
𝑝

𝑛

)

)

× (

𝑎
11

𝑎
21

⋅ ⋅ ⋅ 𝑎
𝑘1

𝑎
12

𝑎
22

⋅ ⋅ ⋅ 𝑎
𝑘2

...
...

...
...

𝑎
1𝑛

𝑎
2𝑛

⋅ ⋅ ⋅ 𝑎
𝑘𝑛

)(

𝑠

𝑠
2

...
𝑠
𝑘

) = (

𝑡
1

𝑡
2

...
𝑡
𝑛

).

(5)

Denote

𝐴 = (

𝑎
11

𝑎
21

⋅ ⋅ ⋅ 𝑎
𝑘1

𝑎
12

𝑎
22

⋅ ⋅ ⋅ 𝑎
𝑘2

...
...

...
...

𝑎
1𝑛

𝑎
2𝑛

⋅ ⋅ ⋅ 𝑎
𝑘𝑛

),

𝑋 = (

𝑥
𝑝
𝑛

1
𝑥
𝑝
𝑛−1

1
⋅ ⋅ ⋅ 𝑥
𝑝

1

𝑥
𝑝
𝑛

2
𝑥
𝑝
𝑛−1

2
⋅ ⋅ ⋅ 𝑥
𝑝

2

...
...

...
...

𝑥
𝑝
𝑛

𝑛
𝑥
𝑝
𝑛−1

𝑛
⋅ ⋅ ⋅ 𝑥
𝑝

𝑛

),

𝑆 = (

𝑠

𝑠
2

...
𝑠
𝑘

), 𝑡 = (

𝑡
1

𝑡
2

...
𝑡
𝑛

).

(6)

The above linear equation is equivalent to 𝑋𝐴𝑆 = 𝑡,
because the column vectors of 𝐴 are linearly independent,
𝑋 is equivalent to a Vandermonde matrix, and 𝑋 is inverse;
therefore, the above linear equation has a unique solution, so
𝑠 is only defined; that is, 𝑓

𝑖
(1 ≤ 𝑖 ≤ 𝑛) is a surjection.

(2) If 𝑠 ∈ 𝑆 is another source state satisfying 𝑠𝑝
1
(𝑥
𝑖
) +

𝑠
2

𝑝
2
(𝑥
𝑖
)+⋅ ⋅ ⋅+𝑠

𝑘

𝑝
𝑘
(𝑥
𝑖
) = 𝑠


𝑝
1
(𝑥
𝑖
)+𝑠
2

𝑝
2
(𝑥
𝑖
)+⋅ ⋅ ⋅+𝑠

𝑘

𝑝
𝑘
(𝑥
𝑖
) =

𝑡
𝑖
, and it is equivalent to (𝑠 − 𝑠



)𝑝
1
(𝑥
𝑖
) + (𝑠
2

− 𝑠
2

)𝑝
2
(𝑥
𝑖
) + ⋅ ⋅ ⋅ +

(𝑠
𝑘

− 𝑠
𝑘

)𝑝
𝑘
(𝑥
𝑖
) = 0, then

(𝑥
𝑝
𝑛

𝑖
, 𝑥
𝑝
𝑛−1

𝑖
, . . . , 𝑥

𝑝

𝑖
)

× (

𝑎
11

𝑎
21

⋅ ⋅ ⋅ 𝑎
𝑘1

𝑎
12

𝑎
22

⋅ ⋅ ⋅ 𝑎
𝑘2

...
...

...
...

𝑎
1𝑛

𝑎
2𝑛

⋅ ⋅ ⋅ 𝑎
𝑘𝑛

)(

𝑠 − 𝑠


𝑠
2

− 𝑠
2

...
𝑠
𝑘

− 𝑠
𝑘

) = 0.

(7)
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Thus

(

(

𝑥
𝑝
𝑛

1
𝑥
𝑝
𝑛−1

1
⋅ ⋅ ⋅ 𝑥
𝑝

1

𝑥
𝑝
n

2
𝑥
𝑝
𝑛−1

2
⋅ ⋅ ⋅ 𝑥
𝑝

2

...
...

...
...

𝑥
𝑝
𝑛

𝑛
𝑥
𝑝
𝑛−1

𝑛
⋅ ⋅ ⋅ 𝑥
𝑝

𝑛

)

)

× (

𝑎
11

𝑎
21

⋅ ⋅ ⋅ 𝑎
𝑘1

𝑎
12

𝑎
22

⋅ ⋅ ⋅ 𝑎
𝑘2

...
...

...
...

𝑎
1𝑛

𝑎
2𝑛

⋅ ⋅ ⋅ 𝑎
𝑘𝑛

)(

𝑠 − 𝑠


𝑠
2

− 𝑠
2

...
𝑠
𝑘

− 𝑠
𝑘

) = (

0

0

...
0

).

(8)

Similar to (1), we know that the homogeneous linear equation
𝑋𝐴𝑆 = 0 has a unique solution; that is, there is only zero
solution, so 𝑠 = 𝑠

. So, 𝑠 is the unique source state determined
by 𝑒
𝑈𝑖
and 𝑡
𝑖
; thus, 𝐶

𝑖
(1 ≤ 𝑖 ≤ 𝑛) is an A-code.

Lemma 2. Let 𝐶 = (𝑆, 𝐸
𝑅
, 𝑇, 𝑔); then the code is an A-code.

Proof. (1) For any 𝑠 ∈ 𝑆, 𝑒
𝑅
∈ 𝐸
𝑅
, from the definition of 𝑒

𝑅
,

we assume that 𝐸
𝑅

= {𝑝
1
(𝛼), 𝑝
2
(𝛼), . . . , 𝑝

𝑘
(𝛼), where 𝛼 is a

primitive element of 𝐹
𝑞
}, 𝑔(𝑠, 𝑒

𝑅
) = 𝑠𝑝

1
(𝛼) + 𝑠

2

𝑝
2
(𝛼) + ⋅ ⋅ ⋅ +

𝑠
𝑘

𝑝
𝑘
(𝛼) ∈ 𝑇 = 𝐹

𝑞
; on the other hand, for any 𝑡 ∈ 𝑇, choose

𝑒
𝑅
= {𝑝
1
(𝛼), 𝑝
2
(𝛼), . . . , 𝑝

𝑘
(𝛼), where 𝛼 is a primitive element

of 𝐹
𝑞
}, 𝑔(𝑠, 𝑒

𝑅
) = 𝑠𝑝

1
(𝛼) + 𝑠

2

𝑝
2
(𝛼) + ⋅ ⋅ ⋅ + 𝑠

𝑘

𝑝
𝑘
(𝛼) = 𝑡; it is

equivalent to

(𝛼
𝑝
𝑛

, 𝛼
𝑝
𝑛−1

, ⋅ ⋅ ⋅ , 𝛼
𝑝

)

× (

𝑎
11

𝑎
21

⋅ ⋅ ⋅ 𝑎
𝑘1

𝑎
12

𝑎
22

⋅ ⋅ ⋅ 𝑎
𝑘2

...
...

...
...

𝑎
1𝑛

𝑎
2𝑛

⋅ ⋅ ⋅ 𝑎
𝑘𝑛

)(

𝑠

𝑠
2

...
𝑠
𝑘

) = 𝑡,

𝐴 = (

𝑎
11

𝑎
21

⋅ ⋅ ⋅ 𝑎
𝑘1

𝑎
12

𝑎
22

⋅ ⋅ ⋅ 𝑎
𝑘2

...
...

...
...

𝑎
1𝑛

𝑎
2𝑛

⋅ ⋅ ⋅ 𝑎
𝑘𝑛

);

(9)

that is, (𝛼𝑝
𝑛

, 𝛼
𝑝
𝑛−1

, . . . , 𝛼
𝑝

)𝐴(

𝑠

𝑠
2

...
𝑠
𝑘

) = 𝑡. From Conclusion

3, we know that (𝛼𝑝
𝑛

, 𝛼
𝑝
𝑛−1

, . . . , 𝛼
𝑝

) is linearly independent
and the column vectors of 𝐴 are also linearly independent;
therefore, the above linear equation has unique solution, so 𝑠

is only defined; that is, 𝑔 is a surjection.

(2) If 𝑠 is another source state satisfying 𝑡 = 𝑔(𝑠


, 𝑒
𝑅
), then

(𝛼
𝑝
𝑛

, 𝛼
𝑝
𝑛−1

, . . . , 𝛼
𝑝

)𝐴(

𝑠


𝑠
2

...
𝑠
𝑘

)

= (𝛼
𝑝
𝑛

, 𝛼
𝑝
𝑛−1

, . . . , 𝛼
𝑝

)𝐴(

𝑠

𝑠
2

...
𝑠
𝑘

);

(10)

that is, (𝛼𝑝
𝑛

, 𝛼
𝑝
𝑛−1

, . . . , 𝛼
𝑝

)𝐴(
[
[

[

𝑠


𝑠
2

...
𝑠
𝑘

]
]

]

− [

[

𝑠

𝑠
2

...
𝑠
𝑘

]

]

) = 0. Sim-

ilar to (1), we get that the homogeneous linear equation
(𝛼
𝑝
𝑛

, 𝛼
𝑝
𝑛−1

, . . . , 𝛼
𝑝

)𝐴(𝑆


− 𝑆) = 0 has a unique solution; that
is, there is only zero solution, so 𝑆 = 𝑆

; that is, 𝑠 = 𝑠
. So,

𝑠 is the unique source state determined by 𝑒
𝑅
and 𝑡; thus,

𝐶 = (𝑆, 𝐸
𝑅
, 𝑇, 𝑔) is an A-code.

At the same time, for any valid𝑚 = (𝑠, 𝑡), we have known
that 𝛼 = 𝑥

1
+ 𝑥
2
+ ⋅ ⋅ ⋅ + 𝑥

𝑛
, and it follows that 𝑡 = 𝑠𝑝

1
(𝛼) +

𝑠
2

𝑝
2
(𝛼)+⋅ ⋅ ⋅+𝑠

𝑘

𝑝
𝑘
(𝛼) = 𝑠𝑝

1
(𝑥
1
+𝑥
2
+⋅ ⋅ ⋅+𝑥

𝑛
)+𝑠
2

𝑝
2
(𝑥
1
+𝑥
2
+

⋅ ⋅ ⋅ + 𝑥
𝑛
) + ⋅ ⋅ ⋅ + 𝑠

𝑘

𝑝
𝑘
(𝑥
1
+ 𝑥
2
+ ⋅ ⋅ ⋅ + 𝑥

𝑛
). We also have known

that 𝑝
𝑗
(𝑥) = 𝑎

𝑗1
𝑥
𝑝
𝑛

+𝑎
𝑗2
𝑥
𝑝
(𝑛−1)

+ ⋅ ⋅ ⋅ + 𝑎
𝑗𝑛
𝑥
𝑝

(1 ≤ 𝑗 ≤ 𝑘); from
Conclusion 4, (𝑥

1
+ 𝑥
2
+ ⋅ ⋅ ⋅ + 𝑥

𝑛
)
𝑝
𝑚

= (𝑥
1
)
𝑝
𝑚

+ (𝑥
2
)
𝑝
𝑚

+ ⋅ ⋅ ⋅ +

(𝑥
𝑛
)
𝑝
𝑚

, where𝑚 is a nonnegative power of character 𝑝 of 𝐹
𝑞
,

andwe get𝑝
𝑗
(𝑥
1
+𝑥
2
+⋅ ⋅ ⋅+𝑥

𝑛
) = 𝑝
𝑗
(𝑥
1
)+𝑝
𝑗
(𝑥
2
)+⋅ ⋅ ⋅+𝑝

𝑗
(𝑥
𝑛
);

therefore, 𝑡 = 𝑠𝑝
1
(𝛼) + 𝑠

2

𝑝
2
(𝛼) + ⋅ ⋅ ⋅ + 𝑠

𝑘

𝑝
𝑘
(𝛼) = (𝑠𝑝

1
(𝑥
1
) +

𝑠
2

𝑝
2
(𝑥
1
)+⋅ ⋅ ⋅+𝑠

𝑘

𝑝
𝑘
(𝑥
1
))+(𝑠𝑝

1
(𝑥
2
)+𝑠
2

𝑝
2
(𝑥
2
)+⋅ ⋅ ⋅+𝑠

𝑘

𝑝
𝑘
(𝑥
2
))+

⋅ ⋅ ⋅+(𝑠𝑝
1
(𝑥
𝑛
)+𝑠
2

𝑝
2
(𝑥
𝑛
)+ ⋅ ⋅ ⋅+𝑠

𝑘

𝑝
𝑘
(𝑥
𝑛
)) = 𝑡
1
+𝑡
2
+⋅ ⋅ ⋅+𝑡

𝑛
= 𝑡,

and the receiver 𝑅 accepts𝑚.

From Lemmas 1 and 2, we know that such construction of
multisender authentication codes is reasonable and there are
𝑛 senders in this system. Next, we compute the parameters
of this code and the maximum probability of success in
impersonation attack and substitution attack by the group of
senders.

Theorem 3. Some parameters of this construction are
|𝑆| = 𝑞, |𝐸

𝑈𝑖
| = [𝑞

𝑘(𝑘−1)/2

∏
𝑛

𝑖=𝑛−𝑘+1
(𝑞
𝑖

− 1)] (
𝑞−1

1
) =

[𝑞
𝑘(𝑘−1)/2

∏
𝑛

𝑖=𝑛−𝑘+1
(𝑞
𝑖

− 1)](𝑞 − 1) (1 ≤ 𝑖 ≤ 𝑛), |𝑇
𝑖
| = 𝑞 (1 ≤

𝑖 ≤ 𝑛), |𝐸
𝑅
| = [𝑞

𝑘(𝑘−1)/2

∏
𝑛

𝑖=𝑛−𝑘+1
(𝑞
𝑖

− 1)]𝜑(𝑞 − 1), |𝑇| = 𝑞.
Where 𝜑(𝑞 − 1) is the 𝐸𝑢𝑙𝑒𝑟 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 of 𝑞 − 1, it represents
the number of primitive element of 𝐹

𝑞
here.

Proof. For |𝑆| = 𝑞, |𝑇
𝑖
| = 𝑞, and |𝑇| = 𝑞, the results

are straightforward. For𝐸
𝑈𝑖
, because𝐸

𝑈𝑖
={𝑝
1
(𝑥
𝑖
), 𝑝
2
(𝑥
𝑖
), . . . ,

𝑝
𝑘
(𝑥
𝑖
), 𝑥
𝑖
∈ 𝐹
∗

𝑞
}, where 𝑝

𝑗
(𝑥) = 𝑎

𝑗1
𝑥
𝑝
𝑛

+ 𝑎
𝑗2
𝑥
𝑝
(𝑛−1)

+ ⋅ ⋅ ⋅ +

𝑎
𝑗𝑛
𝑥
𝑝

(1 ≤ 𝑗 ≤ 𝑘), and these vectors by the composition of
their coefficient are linearly independent, it is equivalent to

the columns of 𝐴 = (

𝑎11 𝑎21 ⋅⋅⋅ 𝑎𝑘1

𝑎12 𝑎22 ⋅⋅⋅ 𝑎𝑘2

...
...
...
...

𝑎1𝑛 𝑎2𝑛 ⋅⋅⋅ 𝑎𝑘𝑛

) is linear independent.
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From Conclusion 5, we can conclude that the number of 𝐴
satisfying the condition is 𝑞

𝑘(𝑘−1)/2

∏
𝑛

𝑖=𝑛−𝑘+1
(𝑞
𝑖

− 1). On the
other hand, the number of distinct nonzero elements 𝑥

𝑖
(1 ≤

𝑖 ≤ 𝑛) in 𝐹
𝑞
is ( 𝑞−1
1

) = 𝑞 − 1, so |𝐸
𝑈𝑖
| = [𝑞

𝑘(𝑘−1)/2

∏
𝑛

𝑖=𝑛−𝑘+1
(𝑞
𝑖

−

1)](𝑞 − 1). For 𝐸
𝑅
, 𝐸
𝑅

= {𝑝
1
(𝛼), 𝑝
2
(𝛼), . . . , 𝑝

𝑘
(𝛼), where 𝛼

is a primitive element of 𝐹
𝑞
}. For 𝛼, from Conclusion 1, a

generator of𝐹∗
𝑞
is called a primitive element of𝐹

𝑞
, |𝐹∗
𝑞
| = 𝑞−1;

by the theory of the group, we know that the number of
generator of 𝐹∗

𝑞
is 𝜑(𝑞−1); that is, the number of 𝛼 is 𝜑(𝑞−1).

For 𝑝
1
(𝑥), 𝑝
2
(𝑥), . . . , 𝑝

𝑘
(𝑥). From above, we have confirmed

that the number of these polynomials is 𝑞𝑘(𝑘−1)/2∏𝑛
𝑖=𝑛−𝑘+1

(𝑞
𝑖

−

1); therefore, |𝐸
𝑅
| = [𝑞

𝑘(𝑘−1)/2

∏
𝑛

𝑖=𝑛−𝑘+1
(𝑞
𝑖

− 1)]𝜑(𝑞 − 1).

Lemma 4. For any 𝑚 ∈ 𝑀, the number of 𝑒
𝑅
contained 𝑚 is

𝜑(𝑞 − 1).

Proof. Let 𝑚 = (𝑠, 𝑡) ∈ 𝑀, 𝑒
𝑅

= {𝑝
1
(𝛼), 𝑝
2
(𝛼), . . . , 𝑝

𝑘
(𝛼),

where 𝛼 is a primitive element of 𝐹
𝑞
} ∈ 𝐸

𝑅
. If 𝑒
𝑅

⊂ 𝑚,
then 𝑠𝑝

1
(𝛼) + 𝑠

2

𝑝
2
(𝛼) + ⋅ ⋅ ⋅ + 𝑠

𝑘

𝑝
𝑘
(𝛼) = 𝑡 ⇔ (𝛼

𝑝
𝑛

, 𝛼
𝑝
𝑛−1

,

. . . , 𝛼
𝑝

)𝐴(

𝑠

𝑠
2

...
𝑠
𝑘

) = 𝑡. For any 𝛼, suppose that there is

another 𝐴
 such that (𝛼

𝑝
𝑛

, 𝛼
𝑝
𝑛−1

, . . . , 𝛼
𝑝

)𝐴


(

𝑠

𝑠
2

...
𝑠
𝑘

) = 𝑡,

then (𝛼
𝑝
𝑛

, 𝛼
𝑝
𝑛−1

, . . . , 𝛼
𝑝

)(𝐴 − 𝐴


)(

𝑠

𝑠
2

...
𝑠
𝑘

) = 0, because

𝛼
𝑝
𝑛

, 𝛼
𝑝
𝑛−1

, . . . , 𝛼
𝑝 is linearly independent, so (𝐴−𝐴



)(

𝑠

𝑠
2

...
𝑠
𝑘

) =

0, but (

𝑠

𝑠
2

...
𝑠
𝑘

) is arbitrarily; therefore, 𝐴 − 𝐴


= 0; that is,

𝐴 = 𝐴
, and it follows that 𝐴 is only determined by 𝛼.

Therefore, as 𝛼 ∈ 𝐸
𝑅
, for any given 𝑠 and 𝑡, the number of

𝑒
𝑅
contained in𝑚 is 𝜑(𝑞 − 1).

Lemma 5. For any𝑚 = (𝑠, 𝑡) ∈ 𝑀 and𝑚


= (𝑠


, 𝑡


) ∈ 𝑀 with
𝑠 ̸= 𝑠
, the number of 𝑒

𝑅
contained𝑚 and𝑚

 is 1.

Proof. Assume that 𝑒
𝑅

= {𝑝
1
(𝛼), 𝑝
2
(𝛼), . . . , 𝑝

𝑘
(𝛼), where

𝛼 is a primitive element of 𝐹
𝑞
} ∈ 𝐸

𝑅
. If 𝑒
𝑅

⊂ 𝑚 and
𝑒
𝑅

⊂ 𝑚
, then 𝑠𝑝

1
(𝛼) + 𝑠

2

𝑝
2
(𝛼) + ⋅ ⋅ ⋅ + 𝑠

𝑘

𝑝
𝑘
(𝛼) = 𝑡 ⇔

(𝛼
𝑝
𝑛

, 𝛼
𝑝
𝑛−1

, . . . , 𝛼
𝑝

)𝐴(

𝑠

𝑠
2

...
𝑠
𝑘

) = 𝑡, 𝑠𝑝
1
(𝛼) + 𝑠

2

𝑝
2
(𝛼) + ⋅ ⋅ ⋅ +

𝑠
𝑘

𝑝
𝑘
(𝛼) = 𝑡 ⇔ (𝛼

𝑝
𝑛

, 𝛼
𝑝
𝑛−1

, . . . , 𝛼
𝑝

)𝐴(

𝑠


𝑠
2

...
𝑠
𝑘

) = 𝑡. It is

equivalent to (𝛼
𝑝
𝑛

, 𝛼
𝑝
𝑛−1

, . . . , 𝛼
𝑝

)𝐴(

𝑠−𝑠


𝑠
2
−𝑠
2

...
𝑠
𝑘
−𝑠
𝑘

) = 𝑡 − 𝑡
 because

𝑠 ̸= 𝑠
, so 𝑡 ̸= 𝑡

; otherwise, we assume that 𝑡 = 𝑡
 and

since 𝛼
𝑝
𝑛

, 𝛼
𝑝
𝑛−1

, . . . , 𝛼
𝑝 and the column vectors of 𝐴 both

are linearly independent, it forces that 𝑠 = 𝑠
; this is a

contradiction. Therefore, we get

(𝑡 − 𝑡


)
−1

[
[
[
[

[

(𝛼
𝑝
𝑛

, 𝛼
𝑝
𝑛−1

, . . . , 𝛼
𝑝

)𝐴 (

𝑠 − 𝑠


𝑠
2

− 𝑠
2

...
𝑠
𝑘

− 𝑠
𝑘

)

]
]
]
]

]

= 1,

(∗)

since 𝑡, 𝑡
 is given, (𝑡 − 𝑡



)
−1 is unique, by equation (∗), for

any given 𝑠, 𝑠
 and 𝑡, 𝑡

, we obtain that (𝛼𝑝
𝑛

, 𝛼
𝑝
𝑛−1

, . . . , 𝛼
𝑝

)𝐴 is
only determined; thus, the number of 𝑒

𝑅
contained𝑚 and𝑚



is 1.

Lemma6. For any fixed 𝑒
𝑈
= {𝑝
1
(𝑥
𝑖
), 𝑝
2
(𝑥
𝑖
), . . . , 𝑝

𝑘
(𝑥
𝑖
), 𝑥
𝑖
∈

𝐹
∗

𝑞
} (1 ≤ 𝑖 ≤ 𝑛) containing a given 𝑒

𝐿
, then the number of 𝑒

𝑅

which is incidence with 𝑒
𝑈
is 𝜑(𝑞 − 1).

Proof. For any fixed 𝑒
𝑈

= {𝑝
1
(𝑥
𝑖
), 𝑝
2
(𝑥
𝑖
), . . . , 𝑝

𝑘
(𝑥
𝑖
), 𝑥
𝑖
∈

𝐹
∗

𝑞
} (1 ≤ 𝑖 ≤ 𝑛) containing a given 𝑒

𝐿
, we assume that

𝑝
𝑗
(𝑥
𝑖
) = 𝑎
𝑗1
𝑥
𝑝
𝑛

𝑖
+𝑎
𝑗2
𝑥
𝑝
(𝑛−1)

𝑖
+⋅ ⋅ ⋅+𝑎

𝑗𝑛
𝑥
𝑝

𝑖
(1 ≤ 𝑗 ≤ 𝑘, 1 ≤ 𝑖 ≤ 𝑛),

𝑒
𝑅
= {𝑝
1
(𝛼), 𝑝
2
(𝛼), . . . , 𝑝

𝑘
(𝛼), where 𝛼 is a primitive element

of 𝐹
𝑞
}. From the definitions of 𝑒

𝑅
and 𝑒
𝑈
and Conclusion 4,

we can conclude that 𝑒
𝑅
is incidence with 𝑒

𝑈
if and only if

𝑥
1
+ 𝑥
2
+ ⋅ ⋅ ⋅ + 𝑥

𝑛
= 𝛼. For any 𝛼, since Rank(1, 1, . . . , 1) =

Rank(1, 1, . . . , 1, 𝛼) = 1 < 𝑛, so the equation𝑥
1
+𝑥
2
+⋅ ⋅ ⋅+𝑥

𝑛
=

𝛼 always has a solution. From the proof of Theorem 3, we
know the number of 𝑒

𝑅
which is incident with 𝑒

𝑈
(i.e., the

number of all 𝐸
𝑅
) is [𝑞𝑘(𝑘−1)/2∏𝑛

𝑖=𝑛−𝑘+1
(𝑞
𝑖

− 1)] 𝜑(𝑞 − 1).

Lemma 7. For any fixed 𝑒
𝑈
= {𝑝
1
(𝑥
𝑖
), 𝑝
2
(𝑥
𝑖
), . . . , 𝑝

𝑘
(𝑥
𝑖
), 𝑥
𝑖
∈

𝐹
∗

𝑞
} (1 ≤ 𝑖 ≤ 𝑛) containing a given 𝑒

𝐿
and𝑚 = (𝑠, 𝑡), the num-

ber of 𝑒
𝑅
which is incidence with 𝑒

𝑈
and contained in𝑚 is 1.

Proof. For any 𝑠 ∈ 𝑆, 𝑒
𝑅

∈ 𝐸
𝑅
, we assume that 𝑒

𝑅
=

{𝑝
1
(𝛼), 𝑝
2
(𝛼), . . . , 𝑝

𝑘
(𝛼), where 𝛼 is a primitive element

of 𝐹
𝑞
}. Similar to Lemma 6, for any fixed 𝑒

𝑈
=

{𝑝
1
(𝑥
𝑖
), 𝑝
2
(𝑥
𝑖
), . . . , 𝑝

𝑘
(𝑥
𝑖
), 𝑥
𝑖
∈ 𝐹
∗

𝑞
}, (1 ≤ 𝑖 ≤ 𝑛) containing

a given 𝑒
𝐿
, we have known that 𝑒

𝑅
is incident with 𝑒

𝑈
if and

only if

𝑥
1
+ 𝑥
2
+ ⋅ ⋅ ⋅ + 𝑥

𝑛
= 𝛼. (11)

Again, with 𝑒
𝑅
⊂ 𝑚, we can get

𝑠𝑝
1
(𝛼) + 𝑠

2

𝑝
2
(𝛼) + ⋅ ⋅ ⋅ + 𝑠

𝑘

𝑝
𝑘
(𝛼) = 𝑡. (12)

By (11) and (12) and the property of 𝑝
𝑗
(𝑥) (1 ≤ 𝑗 ≤ 𝑘), we

have the following conclusion:

𝑠𝑝
1
(

𝑛

∑

𝑖=1

𝑥
𝑖
) + 𝑠
2

𝑝
2
(

𝑛

∑

𝑖=1

𝑥
𝑖
) + ⋅ ⋅ ⋅ + 𝑠

𝑘

𝑝
𝑘
(

𝑛

∑

𝑖=1

𝑥
𝑖
)

= 𝑡 ⇐⇒ (𝑝
1
(

𝑛

∑

𝑖=1

𝑥
𝑖
) , 𝑝
2
(

𝑛

∑

𝑖=1

𝑥
𝑖
) , . . . , 𝑝

𝑘
(

𝑛

∑

𝑖=1

𝑥
𝑖
))
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× (

𝑠

𝑠
2

...
𝑠
𝑘

)

= 𝑡 ⇐⇒ (

𝑛

∑

𝑖=1

𝑝
1
(𝑥
𝑖
) ,

𝑛

∑

𝑖=1

𝑝
2
(𝑥
𝑖
) , . . . ,

𝑛

∑

𝑖=1

𝑝
𝑘
(𝑥
𝑖
))(

𝑠

s2
...
𝑠
𝑘

)

=𝑡⇐⇒( (

𝑛

∑

𝑖=1

𝑥
𝑖
)

𝑛

, (

𝑛

∑

𝑖=1

𝑥
𝑖
)

𝑛−1

, . . . , (

𝑛

∑

𝑖=1

𝑥
𝑖
))𝐴(

𝑠

𝑠
2

...
𝑠
𝑘

)

= 𝑡 ⇐⇒ [(

𝑛

∑

𝑖=1

𝑝
1
(𝑥
𝑖
) ,

𝑛

∑

𝑖=1

𝑝
2
(𝑥
𝑖
) , . . . ,

𝑛

∑

𝑖=1

𝑝
𝑘
(𝑥
𝑖
))

−((

𝑛

∑

𝑖=1

𝑥
𝑖
)

𝑛

, (

𝑛

∑

𝑖=1

𝑥
𝑖
)

𝑛−1

, . . . , (

𝑛

∑

𝑖=1

𝑥
𝑖
))𝐴]

× (

𝑠

𝑠
2

...
𝑠
𝑘

) = 0,

(13)

because 𝑠 is any given. Similar to the proof of Lemma 4,
we can get (∑

𝑛

𝑖=1
𝑝
1
(𝑥
𝑖
), ∑
𝑛

𝑖=1
𝑝
2
(𝑥
𝑖
), . . . , ∑

𝑛

𝑖=1
𝑝
𝑘
(𝑥
𝑖
)) −

((∑
𝑛

𝑖=1
𝑥
𝑖
)
𝑛,(∑𝑛
𝑖=1

𝑥
𝑖
)
𝑛−1

, . . . ,(∑
𝑛

𝑖=1
𝑥
𝑖
))𝐴=0; that is, ((∑𝑛

𝑖=1
𝑥
𝑖
)
𝑛

,

(∑
𝑛

𝑖=1
𝑥
𝑖
)
𝑛−1

, . . . , (∑
𝑛

𝑖=1
𝑥
𝑖
))𝐴 = (∑

𝑛

𝑖=1
𝑝
1
(𝑥
𝑖
), ∑
𝑛

𝑖=1
𝑝
2
(𝑥
𝑖
), . . . ,

∑
𝑛

𝑖=1
𝑝
𝑘
(𝑥
𝑖
)), but 𝑝

1
(𝑥
𝑖
), 𝑝
2
(𝑥
𝑖
), . . . , 𝑝

𝑘
(𝑥
𝑖
) and 𝑥

𝑖
(1 ≤ 𝑖 ≤ 𝑛)

also are fixed; thus, 𝛼 and 𝐴are only determined, so the
number of 𝑒

𝑅
which is incident with 𝑒

𝑈
and contained in 𝑚

is 1.

Theorem 8. In the constructed multisender authentication
codes, if the senders’ encoding rules and the receiver’s decoding
rules are chosen according to a uniform probability distribu-
tion, then the largest probabilities of success for different types
of deceptions, respectively, are

𝑃
𝐼
=

1

𝑞𝑘(𝑘−1)/2∏
𝑛

𝑖=𝑛−𝑘+1
(𝑞𝑖 − 1)

,

𝑃
𝑆
=

1

𝜑 (𝑞 − 1)
,

𝑃
𝑈
(𝐿) =

1

[𝑞𝑘(𝑘−1)/2∏
𝑛

𝑖=𝑛−𝑘+1
(𝑞𝑖 − 1)] 𝜑 (𝑞 − 1)

.

(14)

Proof. By Theorem 3 and Lemma 4, we get

𝑃
𝐼
= max
𝑚∈𝑀

{

{𝑒𝑅 ∈ 𝐸
𝑅
| 𝑒
𝑅
⊂ 𝑚}


𝐸𝑅



}

=
𝜑 (𝑞 − 1)

[𝑞𝑘(𝑘−1)/2∏
𝑛

𝑖=𝑛−𝑘+1
(𝑞𝑖 − 1)] 𝜑 (𝑞 − 1)

=
1

𝑞𝑘(𝑘−1)/2∏
𝑛

𝑖=𝑛−𝑘+1
(𝑞𝑖 − 1)

.

(15)

By Lemmas 4 and 5, we get

𝑃
𝑆
= max
𝑚∈𝑀

{

max
𝑚

̸=𝑚∈𝑀


{𝑒
𝑅
∈ 𝐸
𝑅
| 𝑒
𝑅
⊂ 𝑚,𝑚



}


{𝑒𝑅 ∈ 𝐸
𝑅
| 𝑒
𝑅
⊂ 𝑚}



}

=
1

𝜑 (𝑞 − 1)
.

(16)

By Lemmas 6 and 7, we get

𝑃
𝑈
(𝐿)

=max
𝑒𝐿∈𝐸𝐿

max
𝑒𝐿∈𝑒𝑈

{
max
𝑚∈𝑀

{𝑒𝑅 ∈ 𝐸
𝑅
| 𝑒
𝑅
⊂𝑚, 𝑝 (𝑒

𝑅
, 𝑒
𝑃
) ̸=0}


{𝑒𝑅 ∈ 𝐸

𝑅
| 𝑝 (𝑒
𝑅
, 𝑒
𝑃
) ̸=0}



}

=
1

[𝑞𝑘(𝑘−1)/2∏
𝑛

𝑖=𝑛−𝑘+1
(𝑞𝑖 − 1)] 𝜑 (𝑞 − 1)

.

(17)
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We analyze the best approximation𝐴𝑁 (in the Frobenius sense) to the identitymatrix in an arbitrarymatrix subspace𝐴𝑆 (𝐴 ∈ R𝑛×𝑛

nonsingular, 𝑆 being any fixed subspace of R𝑛×𝑛). Some new geometrical and spectral properties of the orthogonal projection 𝐴𝑁
are derived. In particular, new inequalities for the trace and for the eigenvalues of matrix𝐴𝑁 are presented for the special case that
𝐴𝑁 is symmetric and positive definite.

1. Introduction

The set of all 𝑛 × 𝑛 real matrices is denoted by R𝑛×𝑛, and
𝐼 denotes the identity matrix of order 𝑛. In the following,
𝐴
𝑇 and tr(𝐴) denote, as usual, the transpose and the trace

of matrix 𝐴 ∈ R𝑛×𝑛. The notations ⟨⋅, ⋅⟩
𝐹
and ‖ ⋅ ‖

𝐹
stand

for the Frobenius inner product and matrix norm, defined
on the matrix space R𝑛×𝑛. Throughout this paper, the terms
orthogonality, angle, and cosine will be used in the sense of
the Frobenius inner product.

Our starting point is the linear system

𝐴𝑥 = 𝑏, 𝐴 ∈ R
𝑛×𝑛

, 𝑥, 𝑏 ∈ R
𝑛

, (1)

where 𝐴 is a large, nonsingular, and sparse matrix. The
resolution of this system is usually performed by iterative
methods based on Krylov subspaces (see, e.g., [1, 2]). The
coefficient matrix 𝐴 of the system (1) is often extremely
ill-conditioned and highly indefinite, so that in this case,
Krylov subspace methods are not competitive without a
good preconditioner (see, e.g., [2, 3]). Then, to improve the
convergence of these Krylov methods, the system (1) can
be preconditioned with an adequate nonsingular precondi-
tioning matrix 𝑁, transforming it into any of the equivalent
systems

𝑁𝐴𝑥 = 𝑁𝑏,

𝐴𝑁𝑦 = 𝑏, 𝑥 = 𝑁𝑦,

(2)

the so-called left and right preconditioned systems, respec-
tively. In this paper, we address only the case of the right-hand
side preconditioned matrices 𝐴𝑁, but analogous results can
be obtained for the left-hand side preconditioned matrices
𝑁𝐴.

The preconditioning of the system (1) is often performed
in order to get a preconditioned matrix 𝐴𝑁 as close as
possible to the identity in some sense, and the preconditioner
𝑁 is called an approximate inverse of𝐴. The closeness of𝐴𝑁
to 𝐼may bemeasured by using a suitablematrix norm like, for
instance, the Frobenius norm [4]. In this way, the problem
of obtaining the best preconditioner 𝑁 (with respect to the
Frobenius norm) of the system (1) in an arbitrary subspace
𝑆 of R𝑛×𝑛 is equivalent to the minimization problem; see, for
example, [5]

min
𝑀∈𝑆

‖𝐴𝑀 − 𝐼‖
𝐹
= ‖𝐴𝑁 − 𝐼‖

𝐹
. (3)

The solution 𝑁 to the problem (3) will be referred to as
the “optimal” or the “best” approximate inverse of matrix 𝐴
in the subspace 𝑆. Since matrix𝐴𝑁 is the best approximation
to the identity in subspace 𝐴𝑆, it will be also referred to
as the orthogonal projection of the identity matrix onto the
subspace 𝐴𝑆. Although many of the results presented in this
paper are also valid for the case thatmatrix𝑁 is singular, from
now on, we assume that the optimal approximate inverse 𝑁
(and thus also the orthogonal projection𝐴𝑁) is a nonsingular
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matrix. The solution 𝑁 to the problem (3) has been studied
as a natural generalization of the classical Moore-Penrose
inverse in [6], where it has been referred to as the 𝑆-Moore-
Penrose inverse of matrix 𝐴.

The main goal of this paper is to derive new geometrical
and spectral properties of the best approximations𝐴𝑁 (in the
sense of formula (3)) to the identity matrix. Such properties
could be used to analyze the quality and theoretical effective-
ness of the optimal approximate inverse𝑁 as preconditioner
of the system (1). However, it is important to highlight
that the purpose of this paper is purely theoretical, and we
are not looking for immediate numerical or computational
approaches (although our theoretical results could be poten-
tially applied to the preconditioning problem). In particular,
the term “optimal (or best) approximate inverse” is used in
the sense of formula (3) and not in any other sense of this
expression.

Among the many different works dealing with practical
algorithms that can be used to compute approximate inverses,
we refer the reader to for example, [4, 7–9] and to the
references therein. In [4], the author presents an exhaustive
survey of preconditioning techniques and, in particular,
describes several algorithms for computing sparse approxi-
mate inverses based on Frobenius norm minimization like,
for instance, the well-known SPAI and FSAI algorithms. A
different approach (which is also focused on approximate
inverses based on minimizing ‖𝐴𝑀 − 𝐼‖

𝐹
) can be found

in [7], where an iterative descent-type method is used to
approximate each column of the inverse, and the iteration
is done with “sparse matrix by sparse vector” operations.
When the system matrix is expressed in block-partitioned
form, some preconditioning options are explored in [8]. In
[9], the idea of “target” matrix is introduced, in the context
of sparse approximate inverse preconditioners, and the gen-
eralized Frobenius norms ‖𝐵‖2

𝐹,𝐻
= tr(𝐵𝐻𝐵𝑇) (𝐻 symmetric

positive definite) are used, for minimization purposes, as an
alternative to the classical Frobenius norm.

The last results of our work are devoted to the special case
that matrix 𝐴𝑁 is symmetric and positive definite. In this
sense, let us recall that the cone of symmetric and positive
definite matrices has a rich geometrical structure and, in this
context, the angle that any symmetric and positive definite
matrix forms with the identity plays a very important role
[10]. In this paper, the authors extend this geometrical point
of view and analyze the geometrical structure of the subspace
of symmetric matrices of order 𝑛, including the location of all
orthogonal matrices not only the identity matrix.

This paper has been organized as follows. In Section 2,
we present some preliminary results required to make the
paper self-contained. Sections 3 and 4 are devoted to obtain
new geometrical and spectral relations, respectively, for the
orthogonal projections 𝐴𝑁 of the identity matrix. Finally,
Section 5 closes the paper with its main conclusions.

2. Some Preliminaries

Now, we present some preliminary results concerning the
orthogonal projection 𝐴𝑁 of the identity onto the matrix

subspace𝐴𝑆 ⊂ R𝑛×𝑛. For more details about these results and
for their proofs, we refer the reader to [5, 6, 11].

Taking advantage of the prehilbertian character of the
matrix Frobenius norm, the solution 𝑁 to the problem (3)
can be obtained using the orthogonal projection theorem.
More precisely, the matrix product 𝐴𝑁 is the orthogonal
projection of the identity onto the subspace𝐴𝑆, and it satisfies
the conditions stated by the following lemmas; see [5, 11].

Lemma 1. Let 𝐴 ∈ R𝑛×𝑛 be nonsingular and let 𝑆 be a linear
subspace of R𝑛×𝑛. Let 𝑁 be the solution to the problem (3).
Then,

0 ≤ ‖𝐴𝑁‖
2

𝐹
= tr (𝐴𝑁) ≤ 𝑛, (4)

0 ≤ ‖𝐴𝑁 − 𝐼‖
2

𝐹
= 𝑛 − tr (𝐴𝑁) ≤ 𝑛. (5)

An explicit formula for matrix𝑁 can be obtained by ex-
pressing the orthogonal projection𝐴𝑁 of the identity matrix
onto the subspace 𝐴𝑆 by its expansion with respect to an
orthonormal basis of 𝐴𝑆 [5]. This is the idea of the following
lemma.

Lemma 2. Let 𝐴 ∈ R𝑛×𝑛 be nonsingular. Let 𝑆 be a linear
subspace of R𝑛×𝑛 of dimension 𝑑 and {𝑀

1
, . . . ,𝑀

𝑑
} a basis of 𝑆

such that {𝐴𝑀
1
, . . . , 𝐴𝑀

𝑑
} is an orthogonal basis of 𝐴𝑆. Then,

the solution𝑁 to the problem (3) is

𝑁 =

𝑑

∑

𝑖=1

tr (𝐴𝑀
𝑖
)

𝐴𝑀𝑖


2

𝐹

𝑀
𝑖
, (6)

and the minimum (residual) Frobenius norm is

‖𝐴𝑁 − 𝐼‖
2

𝐹
= 𝑛 −

𝑑

∑

𝑖=1

[tr (𝐴𝑀
𝑖
)]
2

𝐴𝑀𝑖


2

𝐹

. (7)

Let us mention two possible options, both taken from [5],
for choosing in practice the subspace 𝑆 and its corresponding
basis {𝑀

𝑖
}
𝑑

𝑖=1
. The first example consists of considering the

subspace 𝑆 of 𝑛×𝑛matrices with a prescribed sparsity pattern,
that is,

𝑆 = {𝑀 ∈ R
𝑛×𝑛

: 𝑚
𝑖𝑗
= 0 ∀ (𝑖, 𝑗) ∉ 𝐾} ,

𝐾 ⊂ {1, 2, . . . , 𝑛} × {1, 2, . . . , 𝑛} .

(8)

Then, denoting by𝑀
𝑖,𝑗
, the 𝑛 × 𝑛matrix whose only nonzero

entry is 𝑚
𝑖𝑗

= 1, a basis of subspace 𝑆 is clearly {𝑀
𝑖,𝑗

:

(𝑖, 𝑗) ∈ 𝐾}, and then {𝐴𝑀
𝑖,𝑗

: (𝑖, 𝑗) ∈ 𝐾} will be a basis
of subspace 𝐴𝑆 (since we have assumed that matrix 𝐴 is
nonsingular). In general, this basis of 𝐴𝑆 is not orthogonal,
so that we only need to use the Gram-Schmidt procedure
to obtain an orthogonal basis of 𝐴𝑆, in order to apply the
orthogonal expansion (6).

For the second example, consider a linearly independent
set of 𝑛 × 𝑛 real symmetric matrices {𝑃

1
, . . . , 𝑃

𝑑
} and the

corresponding subspace

𝑆


= span {𝑃
1
𝐴
𝑇

, . . . , 𝑃
𝑑
𝐴
𝑇

} , (9)
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which clearly satisfies

𝑆


⊆ {𝑀 = 𝑃𝐴
𝑇

: 𝑃 ∈ R𝑛×𝑛 𝑃𝑇 = 𝑃}

= {𝑀 ∈ R𝑛×𝑛 : (𝐴𝑀)
𝑇

= 𝐴𝑀} .

(10)

Hence, we can explicitly obtain the solution 𝑁 to the
problem (3) for subspace 𝑆, from its basis {𝑃

1
𝐴
𝑇

, . . . , 𝑃
𝑑
𝐴
𝑇

},
as follows. If {𝐴𝑃

1
𝐴
𝑇

, . . . , 𝐴𝑃
𝑑
𝐴
𝑇

} is an orthogonal basis of
subspace 𝐴𝑆, then we just use the orthogonal expansion (6)
for obtaining𝑁. Otherwise, we use again the Gram-Schmidt
procedure to obtain an orthogonal basis of subspace𝐴𝑆, and
thenwe apply formula (6).The interest of this second example
stands in the possibility of using the conjugate gradient
method for solving the preconditioned linear system, when
the symmetric matrix 𝐴𝑁 is positive definite. For a more
detailed exposition of the computational aspects related to
these two examples, we refer the reader to [5].

Now, we present some spectral properties of the orthog-
onal projection 𝐴𝑁. From now on, we denote by {𝜆

𝑖
}
𝑛

𝑖=1
and

{𝜎
𝑖
}
𝑛

𝑖=1
the sets of eigenvalues and singular values, respectively,

of matrix𝐴𝑁 arranged, as usual, in nonincreasing order, that
is,

𝜆1
 ≥

𝜆2
 ≥ ⋅ ⋅ ⋅ ≥

𝜆𝑛
 > 0,

𝜎
1
≥ 𝜎
2
≥ ⋅ ⋅ ⋅ ≥ 𝜎

𝑛
> 0.

(11)

The following lemma [11] provides some inequalities
involving the eigenvalues and singular values of the precon-
ditioned matrix 𝐴𝑁.

Lemma 3. Let 𝐴 ∈ R𝑛×𝑛 be nonsingular and let 𝑆 be a linear
subspace of R𝑛×𝑛. Then,

𝑛

∑

𝑖=1

𝜆
2

𝑖
≤

𝑛

∑

𝑖=1

𝜆𝑖


2

≤

𝑛

∑

𝑖=1

𝜎
2

𝑖
= ‖𝐴𝑁‖

2

𝐹

= tr (𝐴𝑁) =

𝑛

∑

𝑖=1

𝜆
𝑖
≤

𝑛

∑

𝑖=1

𝜆𝑖
 ≤

𝑛

∑

𝑖=1

𝜎
𝑖
.

(12)

The following fact [11] is a direct consequence of
Lemma 3.

Lemma 4. Let 𝐴 ∈ R𝑛×𝑛 be nonsingular and let 𝑆 be a linear
subspace of R𝑛×𝑛. Then, the smallest singular value and the
smallest eigenvalue’s modulus of the orthogonal projection 𝐴𝑁
of the identity onto the subspace 𝐴𝑆 are never greater than 1.
That is,

0 < 𝜎
𝑛
≤
𝜆𝑛

 ≤ 1. (13)

The following theorem [11] establishes a tight connection
between the closeness of matrix 𝐴𝑁 to the identity matrix
and the closeness of 𝜎

𝑛
(|𝜆
𝑛
|) to the unity.

Theorem 5. Let 𝐴 ∈ R𝑛×𝑛 be nonsingular and let 𝑆 be a linear
subspace of R𝑛×𝑛. Let 𝑁 be the solution to the problem (3).
Then,

(1 −
𝜆𝑛

)
2

≤ (1 − 𝜎
𝑛
)
2

≤ ‖𝐴𝑁 − 𝐼‖
2

𝐹

≤ 𝑛 (1 −
𝜆𝑛



2

) ≤ 𝑛 (1 − 𝜎
2

𝑛
) .

(14)

Remark 6. Theorem 5 states that the closer the smallest
singular value 𝜎

𝑛
of matrix 𝐴𝑁 is to the unity, the closer

matrix 𝐴𝑁 will be to the identity, that is, the smaller
‖𝐴𝑁 − 𝐼‖

𝐹
will be, and conversely. The same happens with

the smallest eigenvalue’s modulus |𝜆
𝑛
| of matrix𝐴𝑁. In other

words, we get a good approximate inverse 𝑁 of 𝐴 when 𝜎
𝑛

(|𝜆
𝑛
|) is sufficiently close to 1.

To finish this section, let us mention that, recently, lower
and upper bounds on the normalized Frobenius condition
number of the orthogonal projection 𝐴𝑁 of the identity
onto the subspace 𝐴𝑆 have been derived in [12]. In addition,
this work proposes a natural generalization (related to an
arbitrary matrix subspace 𝑆 of R𝑛×𝑛) of the normalized
Frobenius condition number of the nonsingular matrix 𝐴.

3. Geometrical Properties

In this section, we present some new geometrical properties
for matrix 𝐴𝑁, 𝑁 being the optimal approximate inverse of
matrix 𝐴, defined by (3). Our first lemma states some basic
properties involving the cosine of the angle between matrix
𝐴𝑁 and the identity, that is,

cos (𝐴𝑁, 𝐼) =
⟨𝐴𝑁, 𝐼⟩

𝐹

‖𝐴𝑁‖
𝐹
‖𝐼‖
𝐹

=
tr (𝐴𝑁)

‖𝐴𝑁‖
𝐹
√𝑛

. (15)

Lemma 7. Let 𝐴 ∈ R𝑛×𝑛 be nonsingular and let 𝑆 be a linear
subspace of R𝑛×𝑛. Let 𝑁 be the solution to the problem (3).
Then,

cos (𝐴𝑁, 𝐼) =
tr (𝐴𝑁)

‖𝐴𝑁‖
𝐹
√𝑛

=
‖𝐴𝑁‖

𝐹

√𝑛
=
√tr (𝐴𝑁)

√𝑛
, (16)

0 ≤ cos (𝐴𝑁, 𝐼) ≤ 1, (17)

‖𝐴𝑁 − 𝐼‖
2

𝐹
= 𝑛 (1 − cos2 (𝐴𝑁, 𝐼)) . (18)

Proof. First, using (15) and (4) we immediately obtain (16).
As a direct consequence of (16), we derive that cos(𝐴𝑁, 𝐼) is
always nonnegative. Finally, using (5) and (16), we get

‖𝐴𝑁 − 𝐼‖
2

𝐹
= 𝑛 − tr (𝐴𝑁) = 𝑛 (1 − cos2 (𝐴𝑁, 𝐼)) (19)

and the proof is concluded.

Remark 8. In [13], the authors consider an arbitrary approxi-
mate inverse𝑄 of matrix𝐴 and derive the following equality:

‖𝐴𝑄 − 𝐼‖
2

𝐹
= (‖𝐴𝑄‖

𝐹
− ‖𝐼‖
𝐹
)
2

+ 2 (1 − cos (𝐴𝑄, 𝐼)) ‖𝐴𝑄‖
𝐹
‖𝐼‖
𝐹
,

(20)
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that is, the typical decomposition (valid in any inner product
space) of the strong convergence into the convergence of
the norms (‖𝐴𝑄‖

𝐹
− ‖𝐼‖
𝐹
)
2 and the weak convergence (1 −

cos(𝐴𝑄, 𝐼))‖𝐴𝑄‖
𝐹
‖𝐼‖
𝐹
. Note that for the special case that 𝑄

is the optimal approximate inverse𝑁 defined by (3), formula
(18) has stated that the strong convergence is reduced just
to the weak convergence and, indeed, just to the cosine
cos(𝐴𝑁, 𝐼).

Remark 9. More precisely, formula (18) states that the closer
cos(𝐴𝑁, 𝐼) is to the unity (i.e., the smaller the angle ∠(𝐴𝑁, 𝐼)

is), the smaller ‖𝐴𝑁 − 𝐼‖
𝐹
will be, and conversely. This gives

us a new measure of the quality (in the Frobenius sense) of
the approximate inverse 𝑁 of matrix 𝐴, by comparing the
minimum residual norm ‖𝐴𝑁 − 𝐼‖

𝐹
with the cosine of the

angle between 𝐴𝑁 and the identity, instead of with tr(𝐴𝑁),
‖𝐴𝑁‖

𝐹
(Lemma 1), or 𝜎

𝑛
, |𝜆
𝑛
| (Theorem 5). So for a fixed

nonsingular matrix 𝐴 ∈ R𝑛×𝑛 and for different subspaces
𝑆 ⊂ R𝑛×𝑛, we have

tr (𝐴𝑁) ↗ 𝑛 ⇐⇒ ‖𝐴𝑁‖
𝐹
↗ √𝑛 ⇐⇒ 𝜎

𝑛
↗ 1 ⇐⇒

𝜆𝑛
 ↗ 1

⇐⇒ cos (𝐴𝑁, 𝐼) ↗ 1 ⇐⇒ ‖𝐴𝑁 − 𝐼‖
𝐹
↘ 0.

(21)

Obviously, the optimal theoretical situation corresponds to
the case

tr (𝐴𝑁) = 𝑛 ⇐⇒ ‖𝐴𝑁‖
𝐹
= √𝑛 ⇐⇒ 𝜎

𝑛
= 1 ⇐⇒ 𝜆

𝑛
= 1

⇐⇒ cos (𝐴𝑁, 𝐼) = 1 ⇐⇒ ‖𝐴𝑁 − 𝐼‖
𝐹
= 0

⇐⇒ 𝑁 = 𝐴
−1

⇐⇒ 𝐴
−1

∈ 𝑆.

(22)

Remark 10. Note that the ratio between cos(𝐴𝑁, 𝐼) and
cos(𝐴, 𝐼) is independent of the order 𝑛 of matrix 𝐴. Indeed,
assuming that tr(𝐴) ̸= 0 andusing (16), we immediately obtain

cos (𝐴𝑁, 𝐼)

cos (𝐴, 𝐼)
=

‖𝐴𝑁‖
𝐹
: √𝑛

tr (𝐴) : ‖𝐴‖
𝐹
√𝑛

= ‖𝐴𝑁‖
𝐹

‖𝐴‖
𝐹

tr (𝐴)
. (23)

The following lemma compares the trace and the Frobe-
nius norm of the orthogonal projection 𝐴𝑁.

Lemma 11. Let 𝐴 ∈ R𝑛×𝑛 be nonsingular and let 𝑆 be a linear
subspace of R𝑛×𝑛. Let 𝑁 be the solution to the problem (3).
Then,

tr (𝐴𝑁) ≤ ‖𝐴𝑁‖
𝐹
⇐⇒ ‖𝐴𝑁‖

𝐹
≤ 1 ⇐⇒ tr (𝐴𝑁) ≤ 1

⇐⇒ cos (𝐴𝑁, 𝐼) ≤
1

√𝑛
,

(24)

tr (𝐴𝑁) ≥ ‖𝐴𝑁‖
𝐹
⇐⇒ ‖𝐴𝑁‖

𝐹
≥ 1 ⇐⇒ tr (𝐴𝑁) ≥ 1

⇐⇒ cos (𝐴𝑁, 𝐼) ≥
1

√𝑛
.

(25)

Proof. Using (4), we immediately obtain the four leftmost
equivalences. Using (16), we immediately obtain the two
rightmost equivalences.

The next lemma provides us with a relationship between
the Frobenius norms of the inverses of matrices𝐴 and its best
approximate inverse𝑁 in subspace 𝑆.

Lemma 12. Let 𝐴 ∈ R𝑛×𝑛 be nonsingular and let 𝑆 be a linear
subspace of R𝑛×𝑛. Let 𝑁 be the solution to the problem (3).
Then,


𝐴
−1
𝐹


𝑁
−1
𝐹

≥ 1. (26)

Proof. Using (4), we get

‖𝐴𝑁‖
𝐹
≤ √𝑛 = ‖𝐼‖

𝐹
=

(𝐴𝑁) (𝐴𝑁)

−1
𝐹

≤ ‖𝐴𝑁‖
𝐹


(𝐴𝑁)
−1
𝐹

⇒

(𝐴𝑁)
−1
𝐹

≥ 1,

(27)

and hence

𝐴
−1
𝐹


𝑁
−1
𝐹

≥

𝑁
−1

𝐴
−1
𝐹

=

(𝐴𝑁)
−1
𝐹

≥ 1, (28)

and the proof is concluded.

The following lemma compares the minimum residual
norm ‖𝐴𝑁 − 𝐼‖

𝐹
with the distance (with respect to the

Frobenius norm) ‖𝐴−1 − 𝑁‖
𝐹
between the inverse of 𝐴 and

the optimal approximate inverse 𝑁 of 𝐴 in any subspace
𝑆 ⊂ R𝑛×𝑛. First, note that for any two matrices 𝐴, 𝐵 ∈ R𝑛×𝑛

(𝐴 nonsingular), from the submultiplicative property of the
Frobenius norm, we immediately get

‖𝐴𝐵 − 𝐼‖
2

𝐹
=

𝐴 (𝐵 − 𝐴

−1

)


2

𝐹

≤ ‖𝐴‖
2

𝐹


𝐵 − 𝐴

−1


2

𝐹

.

(29)

However, for the special case that 𝐵 = 𝑁 (the solution to
the problem (3)), we also get the following inequality.

Lemma 13. Let 𝐴 ∈ R𝑛×𝑛 be nonsingular and let 𝑆 be a linear
subspace of R𝑛×𝑛. Let 𝑁 be the solution to the problem (3).
Then,

‖𝐴𝑁 − 𝐼‖
2

𝐹
≤ ‖𝐴‖

𝐹


𝑁 − 𝐴

−1
𝐹
. (30)

Proof. Using the Cauchy-Schwarz inequality and (5), we get

⟨𝐴
−1

− 𝑁,𝐴
𝑇

⟩
𝐹


≤

𝐴
−1

− 𝑁
𝐹


𝐴
𝑇
𝐹

⇒

tr ((𝐴−1 − 𝑁)𝐴)


≤

𝐴
−1

− 𝑁
𝐹


𝐴
𝑇
𝐹

⇒

tr (𝐴 (𝐴

−1

− 𝑁))

≤

𝑁 − A−1𝐹‖𝐴‖𝐹

⇒ |tr (𝐼 − 𝐴𝑁)| ≤

𝑁 − 𝐴

−1
𝐹
‖𝐴‖
𝐹

⇒ 𝑛 − tr (𝐴𝑁) ≤

𝑁 − 𝐴

−1
𝐹
‖𝐴‖
𝐹

⇒ ‖𝐴𝑁 − 𝐼‖
2

𝐹
≤ ‖𝐴‖

𝐹


𝑁 − 𝐴

−1
𝐹
.

(31)
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The following extension of the Cauchy-Schwarz inequal-
ity, in a real or complex inner product space (𝐻, ⟨⋅, ⋅⟩), was
obtained by Buzano [14]. For all 𝑎, 𝑥, 𝑏 ∈ 𝐻, we have

|⟨𝑎, 𝑥⟩ ⋅ ⟨𝑥, 𝑏⟩| ≤
1

2
(‖𝑎‖ ‖𝑏‖ + |⟨𝑎, 𝑏⟩|) ‖𝑥‖

2

. (32)

Thenext lemmaprovides uswith lower and upper bounds
on the inner product ⟨𝐴𝑁, 𝐵⟩

𝐹
, for any 𝑛 × 𝑛 real matrix 𝐵.

Lemma 14. Let 𝐴 ∈ R𝑛×𝑛 be nonsingular and let 𝑆 be a linear
subspace of R𝑛×𝑛. Let 𝑁 be the solution to the problem (3).
Then, for every 𝐵 ∈ R𝑛×𝑛, we have

⟨𝐴𝑁, 𝐵⟩
𝐹

 ≤
1

2
(√𝑛‖𝐵‖

𝐹
+ |tr (𝐵)|) . (33)

Proof. Using (32) for 𝑎 = 𝐼, 𝑥 = 𝐴𝑁, 𝑏 = 𝐵, and (4), we get

⟨𝐼, 𝐴𝑁⟩
𝐹
⋅ ⟨𝐴𝑁, 𝐵⟩

𝐹

 ≤
1

2
(‖𝐼‖
𝐹
‖𝐵‖
𝐹
+
⟨𝐼, 𝐵⟩𝐹

) ‖𝐴𝑁‖
2

𝐹

⇒
tr (𝐴𝑁) ⋅ ⟨𝐴𝑁, 𝐵⟩

𝐹



≤
1

2
(√𝑛‖𝐵‖

𝐹
+ |tr (𝐵)|) ‖𝐴𝑁‖

2

𝐹

⇒
⟨𝐴𝑁, 𝐵⟩

𝐹

 ≤
1

2
(√𝑛‖𝐵‖

𝐹
+ |tr (𝐵)|) .

(34)

The next lemma provides an upper bound on the arith-
metic mean of the squares of the 𝑛2 terms in the orthogonal
projection 𝐴𝑁. By the way, it also provides us with an upper
bound on the arithmetic mean of the 𝑛 diagonal terms in
the orthogonal projection 𝐴𝑁. These upper bounds (valid
for any matrix subspace 𝑆) are independent of the optimal
approximate inverse𝑁, and thus they are independent of the
subspace 𝑆 and only depend on matrix 𝐴.

Lemma 15. Let 𝐴 ∈ R𝑛×𝑛 be nonsingular with tr(𝐴) ̸= 0 and
let 𝑆 be a linear subspace of R𝑛×𝑛. Let𝑁 be the solution to the
problem (3). Then,

‖𝐴𝑁‖
2

𝐹

𝑛2
≤

‖𝐴‖
2

𝐹

[tr (𝐴)]2
,

tr (𝐴𝑁)

𝑛
≤

𝑛‖𝐴‖
2

𝐹

[tr (𝐴)]2
.

(35)

Proof. Using (32) for 𝑎 = 𝐴
𝑇, 𝑥 = 𝐼, and 𝑏 = 𝐴𝑁, and the

Cauchy-Schwarz inequality for ⟨𝐴𝑇, 𝐴𝑁⟩
𝐹
and (4), we get


⟨𝐴
𝑇

, 𝐼⟩
𝐹

⋅ ⟨𝐼, 𝐴𝑁⟩
𝐹



≤
1

2
(

𝐴
𝑇
𝐹
‖𝐴𝑁‖

𝐹
+

⟨𝐴
𝑇

, 𝐴𝑁⟩
𝐹


) ‖𝐼‖
2

𝐹

⇒ |tr (𝐴) ⋅ tr (𝐴𝑁)|

≤
𝑛

2
(‖𝐴‖
𝐹
‖𝐴𝑁‖

𝐹
+

⟨𝐴
𝑇

, 𝐴𝑁⟩
𝐹


)

≤
𝑛

2
(‖𝐴‖
𝐹
‖𝐴𝑁‖

𝐹
+

𝐴
𝑇
𝐹
‖𝐴𝑁‖

𝐹
)

= 𝑛‖𝐴‖
𝐹
‖𝐴𝑁‖

𝐹

⇒ |tr (𝐴)| ‖𝐴𝑁‖
2

𝐹
≤ 𝑛‖𝐴‖

𝐹
‖𝐴𝑁‖

𝐹

⇒
‖𝐴𝑁‖

𝐹

𝑛
≤

‖𝐴‖
𝐹

|tr (𝐴)|

⇒
‖𝐴𝑁‖

2

𝐹

𝑛2
≤

‖𝐴‖
2

𝐹

[tr (𝐴)]2
⇒

tr (𝐴𝑁)

𝑛
≤

𝑛‖𝐴‖
2

𝐹

[tr (𝐴)]2
.

(36)

Remark 16. Lemma 15 has the following interpretation in
terms of the quality of the optimal approximate inverse𝑁 of
matrix 𝐴 in subspace 𝑆. The closer the ratio 𝑛‖𝐴‖

𝐹
/| tr(𝐴)|

is to zero, the smaller tr(𝐴𝑁) will be, and thus, due to (5),
the larger ‖𝐴𝑁 − 𝐼‖

𝐹
will be, and this happens for any matrix

subspace 𝑆.

Remark 17. By the way, from Lemma 15, we obtain the
following inequality for any nonsingular matrix 𝐴 ∈ R𝑛×𝑛.
Consider any matrix subspace 𝑆 s.t. 𝐴−1 ∈ 𝑆. Then,𝑁 = 𝐴

−1,
and using Lemma 15, we get

‖𝐴𝑁‖
2

𝐹

𝑛2
=
‖𝐼‖
2

𝐹

𝑛2
=
1

n
≤

‖𝐴‖
2

𝐹

[tr (𝐴)]2

⇒ |tr (𝐴)| ≤ √𝑛‖𝐴‖
𝐹
.

(37)

4. Spectral Properties

In this section, we present some new spectral properties
for matrix 𝐴𝑁, 𝑁 being the optimal approximate inverse
of matrix 𝐴, defined by (3). Mainly, we focus on the case
that matrix 𝐴𝑁 is symmetric and positive definite. This has
beenmotivated by the following reason.When solving a large
nonsymmetric linear system (1) by using Krylov methods,
a possible strategy consists of searching for an adequate
optimal preconditioner 𝑁 such that the preconditioned
matrix𝐴𝑁 is symmetric positive definite [5].This enables one
to use the conjugate gradientmethod (CG-method), which is,
in general, a computationally efficient method for solving the
new preconditioned system [2, 15].

Our starting point is Lemma 3, which has established that
the sets of eigenvalues and singular values of any orthogonal
projection 𝐴𝑁 satisfy

𝑛

∑

𝑖=1

𝜆
2

𝑖
≤

𝑛

∑

𝑖=1

𝜆𝑖


2

≤

𝑛

∑

𝑖=1

𝜎
2

𝑖

=

𝑛

∑

𝑖=1

𝜆
𝑖
≤

𝑛

∑

𝑖=1

𝜆𝑖
 ≤

𝑛

∑

𝑖=1

𝜎
𝑖
.

(38)

Let us particularize (38) for some special cases.
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First, note that if 𝐴𝑁 is normal (i.e., for all 1 ≤ 𝑖 ≤ 𝑛:
𝜎
𝑖
= |𝜆
𝑖
| [16]), then (38) becomes

𝑛

∑

𝑖=1

𝜆
2

𝑖
≤

𝑛

∑

𝑖=1

𝜆𝑖


2

=

𝑛

∑

𝑖=1

𝜎
2

𝑖

=

𝑛

∑

𝑖=1

𝜆
𝑖
≤

𝑛

∑

𝑖=1

𝜆𝑖
 =

𝑛

∑

𝑖=1

𝜎
𝑖
.

(39)

In particular, if 𝐴𝑁 is symmetric (𝜎
𝑖
= |𝜆
𝑖
| = ±𝜆

𝑖
∈ R), then

(38) becomes
𝑛

∑

𝑖=1

𝜆
2

𝑖
=

𝑛

∑

𝑖=1

𝜆𝑖


2

=

𝑛

∑

𝑖=1

𝜎
2

𝑖

=

𝑛

∑

𝑖=1

𝜆
𝑖
≤

𝑛

∑

𝑖=1

𝜆𝑖
 =

𝑛

∑

𝑖=1

𝜎
𝑖
.

(40)

In particular, if 𝐴𝑁 is symmetric and positive definite (𝜎
𝑖
=

|𝜆
𝑖
| = 𝜆
𝑖
∈ R+), then the equality holds in all (38), that is,

𝑛

∑

𝑖=1

𝜆
2

𝑖
=

𝑛

∑

𝑖=1

𝜆𝑖


2

=

𝑛

∑

𝑖=1

𝜎
2

𝑖

=

𝑛

∑

𝑖=1

𝜆
𝑖
=

𝑛

∑

𝑖=1

𝜆𝑖
 =

𝑛

∑

𝑖=1

𝜎
𝑖
.

(41)

The next lemma compares the traces of matrices 𝐴𝑁 and
(𝐴𝑁)
2.

Lemma 18. Let 𝐴 ∈ R𝑛×𝑛 be nonsingular and let 𝑆 be a linear
subspace of R𝑛×𝑛. Let 𝑁 be the solution to the problem (3).
Then,

(i) for any orthogonal projection 𝐴𝑁

tr ((𝐴𝑁)
2

) ≤ ‖𝐴𝑁‖
2

𝐹
= tr (𝐴𝑁) , (42)

(ii) for any symmetric orthogonal projection 𝐴𝑁

(𝐴𝑁)
2
𝐹

≤ tr ((𝐴𝑁)
2

) = ‖𝐴𝑁‖
2

𝐹
= tr (𝐴𝑁) , (43)

(iii) for any symmetric positive definite orthogonal projec-
tion 𝐴𝑁


(𝐴𝑁)
2
𝐹

≤ tr ((𝐴𝑁)
2

) = ‖𝐴𝑁‖
2

𝐹
= tr (𝐴𝑁) ≤ [tr (𝐴𝑁)]

2

.

(44)

Proof. (i) Using (38), we get
𝑛

∑

𝑖=1

𝜆
2

𝑖
≤

𝑛

∑

𝑖=1

𝜎
2

𝑖
=

𝑛

∑

𝑖=1

𝜆
𝑖
. (45)

(ii) It suffices to use the obvious fact that ‖(𝐴𝑁)
2

‖
𝐹

≤

‖𝐴𝑁‖
2

𝐹
and the following equalities taken from (40):

𝑛

∑

𝑖=1

𝜆
2

𝑖
=

𝑛

∑

𝑖=1

𝜎
2

𝑖
=

𝑛

∑

𝑖=1

𝜆
𝑖
. (46)

(iii) It suffices to use (43) and the fact that (see, e.g., [17,
18]) if 𝑃 and 𝑄 are symmetric positive definite matrices then
tr(𝑃𝑄) ≤ tr(𝑃) tr(𝑄) for 𝑃 = 𝑄 = 𝐴𝑁.

The rest of the paper is devoted to obtain new properties
about the eigenvalues of the orthogonal projection𝐴𝑁 for the
special case that this matrix is symmetric positive definite.

First, let us recall that the smallest singular value and the
smallest eigenvalue’s modulus of the orthogonal projection
𝐴𝑁 are never greater than 1 (see Lemma 4). The following
theorem establishes the dual result for the largest eigenvalue
of matrix 𝐴𝑁 (symmetric positive definite).

Theorem 19. Let 𝐴 ∈ R𝑛×𝑛 be nonsingular and let 𝑆 be a
linear subspace of R𝑛×𝑛. Let 𝑁 be the solution to the problem
(3). Suppose thatmatrix𝐴𝑁 is symmetric and positive definite.
Then, the largest eigenvalue of the orthogonal projection𝐴𝑁 of
the identity onto the subspace 𝐴𝑆 is never less than 1. That is,

𝜎
1
= 𝜆
1
≥ 1. (47)

Proof. Using (41), we get

𝑛

∑

𝑖=1

𝜆
2

𝑖
=

𝑛

∑

𝑖=1

𝜆
𝑖
⇒ 𝜆
2

𝑛
− 𝜆
𝑛
=

𝑛−1

∑

𝑖=1

(𝜆
𝑖
− 𝜆
2

𝑖
) . (48)

Now, since 𝜆
𝑛
≤ 1 (Lemma 4), then 𝜆2

𝑛
− 𝜆
𝑛
≤ 0. This implies

that at least one summand in the rightmost sum in (48) must
be less than or equal to zero. Suppose that such summand is
the 𝑘th one (1 ≤ 𝑘 ≤ 𝑛 − 1). Since 𝐴𝑁 is positive definite,
then 𝜆

𝑘
> 0, and thus

𝜆
𝑘
− 𝜆
2

𝑘
≤ 0 ⇒ 𝜆

𝑘
≤ 𝜆
2

𝑘
⇒ 𝜆

𝑘
≥ 1 ⇒ 𝜆

1
≥ 1 (49)

and the proof is concluded.

InTheorem 19, the assumption that matrix𝐴𝑁 is positive
definite is essential for assuring that |𝜆

1
| ≥ 1, as the following

simple counterexample shows. Moreover, from Lemma 4 and
Theorem 19, respectively, we have that the smallest and largest
eigenvalues of 𝐴𝑁 (symmetric positive definite) satisfy 𝜆

𝑛
≤

1 and 𝜆
1
≥ 1, respectively. Nothing can be asserted about

the remaining eigenvalues of the symmetric positive definite
matrix 𝐴𝑁, which can be greater than, equal to, or less than
the unity, as the same counterexample also shows.

Example 20. For 𝑛 = 3, let

𝐴
𝑘
= (

3 0 0

0 𝑘 0

0 0 1

) , 𝑘 ∈ R, (50)

let 𝐼
3
be identitymatrix of order 3, and let 𝑆 be the subspace of

all 3×3 scalarmatrices; that is, 𝑆 = span{𝐼
3
}.Then the solution

𝑁
𝑘
to the problem (3) for subspace 𝑆 can be immediately

obtained by using formula (6) as follows:

𝑁
𝑘
=
tr (𝐴
𝑘
)

𝐴𝑘


2

𝐹

𝐼
3
=

𝑘 + 4

𝑘2 + 10
𝐼
3 (51)

and then we get

𝐴
𝑘
𝑁
𝑘
=

𝑘 + 4

𝑘2 + 10
𝐴
𝑘
=

𝑘 + 4

𝑘2 + 10
(

3 0 0

0 𝑘 0

0 0 1

) . (52)
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Let us arrange the eigenvalues and singular values of
matrix 𝐴

𝑘
𝑁
𝑘
, as usual, in nonincreasing order (as shown in

(11)).
On one hand, for 𝑘 = −2, we have

𝐴
−2
𝑁
−2

=
1

7
(

3 0 0

0 −2 0

0 0 1

) , (53)

and then

𝜎
1
=
𝜆1

 =
3

7

≥ 𝜎
2
=
𝜆2

 =
2

7

≥ 𝜎
3
=
𝜆3

 =
1

7
.

(54)

Hence, 𝐴
−2
𝑁
−2

is indefinite and 𝜎
1
= |𝜆
1
| = 3/7 < 1.

On the other hand, for 1 < 𝑘 < 3, we have (see matrix
(52))

𝜎
1
= 𝜆
1
= 3

𝑘 + 4

𝑘2 + 10

≥ 𝜎
2
= 𝜆
2
= 𝑘

𝑘 + 4

𝑘2 + 10

≥ 𝜎
3
= 𝜆
3
=

𝑘 + 4

𝑘2 + 10
,

(55)

and then

𝑘 = 2: 𝜎
1
= 𝜆
1
=
9

7
> 1,

𝜎
2
= 𝜆
2
=
6

7
< 1,

𝜎
3
= 𝜆
3
=
3

7
< 1,

𝑘 =
5

2
: 𝜎
1
= 𝜆
1
=
6

5
> 1,

𝜎
2
= 𝜆
2
= 1,

𝜎
3
= 𝜆
3
=
2

5
< 1,

𝑘 =
8

3
: 𝜎
1
= 𝜆
1
=
90

77
> 1,

𝜎
2
= 𝜆
2
=
80

77
> 1,

𝜎
3
= 𝜆
3
=
30

77
< 1.

(56)

Hence, for 𝐴
𝑘
𝑁
𝑘
positive definite, we have (depending on 𝑘)

𝜆
2
< 1, 𝜆

2
= 1, or 𝜆

2
> 1.

The following corollary improves the lower bound zero
on both tr(𝐴𝑁), given in (4), and cos(𝐴𝑁, 𝐼), given in (17).

Corollary 21. Let 𝐴 ∈ R𝑛×𝑛 be nonsingular and let 𝑆

be a linear subspace of R𝑛×𝑛. Let 𝑁 be the solution to the

problem (3). Suppose thatmatrix𝐴𝑁 is symmetric and positive
definite. Then,

1 ≤ ‖𝐴𝑁‖
𝐹
≤ tr (𝐴𝑁) = ‖𝐴𝑁‖

2

𝐹
≤ 𝑛, (57)

cos (𝐴𝑁, 𝐼) ≥
1

√𝑛
. (58)

Proof. Denote by ‖ ⋅ ‖
2
the spectral norm. Using the well-

known inequality ‖ ⋅ ‖
2
≤ ‖ ⋅ ‖

𝐹
[19], Theorem 19, and (4), we

get

‖𝐴𝑁‖
𝐹
≥ ‖𝐴𝑁‖

2
= 𝜎
1
= 𝜆
1
≥ 1

⇒ 1 ≤ ‖𝐴𝑁‖
𝐹
≤ tr (𝐴𝑁) = ‖𝐴𝑁‖

2

𝐹
≤ 𝑛.

(59)

Finally, (58) follows immediately from (57) and (25).

Let usmention that an upper bound on all the eigenvalues
moduli and on all singular values of any orthogonal projec-
tion 𝐴𝑁 can be immediately obtained from (38) and (4) as
follows:

𝑛

∑

𝑖=1

𝜆𝑖


2

≤

𝑛

∑

𝑖=1

𝜎
2

𝑖
= ‖𝐴𝑁‖

2

𝐹
≤ 𝑛

⇒
𝜆𝑖

 , 𝜎
𝑖
≤ √𝑛, ∀𝑖 = 1, 2, . . . , 𝑛.

(60)

Our last theorem improves the upper bound given in
(60) for the special case that the orthogonal projection 𝐴𝑁

is symmetric positive definite.

Theorem 22. Let 𝐴 ∈ R𝑛×𝑛 be nonsingular and let 𝑆 be a
linear subspace of R𝑛×𝑛. Let 𝑁 be the solution to the problem
(3). Suppose thatmatrix𝐴𝑁 is symmetric and positive definite.
Then, all the eigenvalues of matrix 𝐴𝑁 satisfy

𝜎
𝑖
= 𝜆
𝑖
≤
1 + √𝑛

2
∀𝑖 = 1, 2, . . . , 𝑛. (61)

Proof. First, note that the assertion is obvious for the smallest
singular value since |𝜆

𝑛
| ≤ 1 for any orthogonal projection

𝐴𝑁 (Lemma 4). For any eigenvalue of 𝐴𝑁, we use the fact
that 𝑥 − 𝑥

2

≤ 1/4 for all 𝑥 > 0. Then from (41), we get
𝑛

∑

𝑖=1

𝜆
2

𝑖
=

𝑛

∑

𝑖=1

𝜆
𝑖

⇒ 𝜆
2

1
− 𝜆
1
=

𝑛

∑

𝑖=2

(𝜆
𝑖
− 𝜆
2

𝑖
) ≤

𝑛 − 1

4

⇒ 𝜆
1
≤
1 + √𝑛

2
⇒ 𝜆

𝑖
≤
1 + √𝑛

2

∀𝑖 = 1, 2, . . . , 𝑛.

(62)

5. Conclusion

In this paper, we have considered the orthogonal projection
𝐴𝑁 (in the Frobenius sense) of the identity matrix onto an
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arbitrary matrix subspace 𝐴𝑆 (𝐴 ∈ R𝑛×𝑛 nonsingular, 𝑆 ⊂

R𝑛×𝑛). Among other geometrical properties of matrix 𝐴𝑁,
we have established a strong relation between the quality
of the approximation 𝐴𝑁 ≈ 𝐼 and the cosine of the angle
∠(𝐴𝑁, 𝐼). Also, the distance between𝐴𝑁 and the identity has
been related to the ratio 𝑛‖𝐴‖

𝐹
/| tr(𝐴)| (which is independent

of the subspace 𝑆). The spectral analysis has provided lower
and upper bounds on the largest eigenvalue of the symmetric
positive definite orthogonal projections of the identity.
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Suárez, “Approximate inverse computation using Frobenius in-
ner product,”Numerical Linear Algebra with Applications, vol. 9,
no. 3, pp. 239–247, 2002.
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e Politecnico di Torino, vol. 31, pp. 405–409, 1974 (Italian).

[15] M. R. Hestenes and E. Stiefel, “Methods of conjugate gradients
for solving linear systems,” Journal of Research of the National
Bureau of Standards, vol. 49, no. 6, pp. 409–436, 1952.

[16] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cam-
bridge University Press, Cambridge, UK, 1991.

[17] E. H. Lieb andW.Thirring, “Inequalities for themoments of the
eigenvalues of the Schrödinger Hamiltonian and their relation
to Sobolev inequalities,” in Studies in Mathematical Physics:
Essays in Honor of Valentine Bargmann, E. Lieb, B. Simon, and
A. Wightman, Eds., pp. 269–303, Princeton University Press,
Princeton, NJ, USA, 1976.

[18] Z. Ulukök and R. Türkmen, “On some matrix trace inequali-
ties,” Journal of Inequalities and Applications, vol. 2010, Article
ID 201486, 8 pages, 2010.

[19] R. A. Horn andC. R. Johnson,Matrix Analysis, CambridgeUni-
versity Press, Cambridge, UK, 1985.



Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2013, Article ID 489295, 6 pages
http://dx.doi.org/10.1155/2013/489295

Research Article
A Parameterized Splitting Preconditioner for Generalized
Saddle Point Problems

Wei-Hua Luo1,2 and Ting-Zhu Huang1

1 School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
2 Key Laboratory of Numerical Simulation of Sichuan Province University, Neijiang Normal University, Neijiang, Sichuan 641112, China

Correspondence should be addressed to Ting-Zhu Huang; tingzhuhuang@126.com

Received 4 January 2013; Revised 31 March 2013; Accepted 1 April 2013

Academic Editor: P. N. Shivakumar

Copyright © 2013 W.-H. Luo and T.-Z. Huang. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

By using Sherman-Morrison-Woodbury formula, we introduce a preconditioner based on parameterized splitting idea for
generalized saddle point problems which may be singular and nonsymmetric. By analyzing the eigenvalues of the preconditioned
matrix, we find that when 𝛼 is big enough, it has an eigenvalue at 1 with multiplicity at least n, and the remaining eigenvalues are all
located in a unit circle centered at 1. Particularly, when the preconditioner is used in general saddle point problems, it guarantees
eigenvalue at 1 with the same multiplicity, and the remaining eigenvalues will tend to 1 as the parameter 𝛼 → 0. Consequently, this
can lead to a good convergence when some GMRES iterative methods are used in Krylov subspace. Numerical results of Stokes
problems and Oseen problems are presented to illustrate the behavior of the preconditioner.

1. Introduction

In some scientific and engineering applications, such as finite
element methods for solving partial differential equations [1,
2], and computational fluid dynamics [3, 4], we often consider
solutions of the generalized saddle point problems of the form

(
𝐴 𝐵
𝑇

−𝐵 𝐶
)(

𝑥

𝑦
) = (

𝑓

𝑔
) , (1)

where 𝐴 ∈ R𝑛×𝑛, 𝐵 ∈ R𝑚×𝑛 (𝑚 ≤ 𝑛), and 𝐶 ∈ R𝑚×𝑚

are positive semidefinite, 𝑥, 𝑓 ∈ R𝑛, and 𝑦, 𝑔 ∈ R𝑚. When
𝐶 = 0, (1) is a general saddle point problem which is also a
researching object for many authors.

It is well known that when the matrices 𝐴, 𝐵, and 𝐶

are large and sparse, the iterative methods are more efficient
and attractive than direct methods assuming that (1) has a
good preconditioner. In recent years, a lot of preconditioning
techniques have arisen for solving linear system; for example,
Saad [5] and Chen [6] have comprehensively surveyed some
classical preconditioning techniques, including ILU pre-
conditioner, triangular preconditioner, SPAI preconditioner,
multilevel recursive Schur complements preconditioner, and

sparse wavelet preconditioner. Particularly, many precondi-
tioning methods for saddle problems have been presented
recently, such as dimensional splitting (DS) [7], relaxed
dimensional factorization (RDF) [8], splitting preconditioner
[9], and Hermitian and skew-Hermitian splitting precondi-
tioner [10].

Among these results, Cao et al. [9] have used splitting idea
to give a preconditioner for saddle point problems where the
matrix 𝐴 is symmetric and positive definite and 𝐵 is of full
row rank. According to his preconditioner, the eigenvalues
of the preconditioned matrix would tend to 1 when the
parameter 𝑡 → ∞. Consequently, just as we have seen from
those examples of [9], preconditioner has guaranteed a good
convergence when some iterative methods were used.

In this paper, being motivated by [9], we use the splitting
idea to present a preconditioner for the system (1), where 𝐴
may be nonsymmetric and singular (when rank(𝐵) < 𝑚). We
find that, when the parameter is big enough, the precondi-
tioned matrix has the eigenvalue at 1 with multiplicity at least
𝑛, and the remaining eigenvalues are all located in a unit circle
centered at 1. Particularly, when the precondidtioner is used
in some general saddle point problems (namely, 𝐶 = 0), we
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see that the multiplicity of the eigenvalue at 1 is also at least 𝑛,
but the remaining eigenvalues will tend to 1 as the parameter
𝛼 → 0.

The remainder of the paper is organized as follows.
In Section 2, we present our preconditioner based on the
splitting idea and analyze the bound of eigenvalues of the
preconditioned matrix. In Section 3, we use some numerical
examples to show the behavior of the new preconditioner.
Finally, we draw some conclusions and outline our future
work in Section 4.

2. A Parameterized Splitting Preconditioner

Now we consider using splitting idea with a variable param-
eter to present a preconditioner for the system (1).

Firstly, it is evident that when 𝛼 ̸= 0, the system (1) is
equivalent to

(

𝐴 𝐵
𝑇

−𝐵

𝛼

𝐶

𝛼

)(
𝑥

𝑦
) = (

𝑓

𝑔

𝛼

) . (2)

Let

𝑀 = (

𝐴 𝐵
𝑇

−𝐵

𝛼
𝐼

) , 𝑁 = (

0 0

0 𝐼 −
𝐶

𝛼

) ,

𝑋 = (
𝑥

𝑦
) , 𝐹 = (

𝑓

𝑔

𝛼

) .

(3)

Then the coefficient matrix of (2) can be expressed by𝑀−𝑁.
Multiplying both sides of system (2) from the left with matrix
𝑀
−1, we have

(𝐼 −𝑀
−1

𝑁)𝑋 = 𝑀
−1

𝐹. (4)

Hence, we obtain a preconditioned linear system from (1)
using the idea of splitting and the corresponding precondi-
tioner is

𝐻 = (

𝐴 𝐵
𝑇

−𝐵

𝛼
𝐼

)

−1

(

𝐼 0

0
𝐼

𝛼

) . (5)

Nowwe analyze the eigenvalues of the preconditioned system
(4).

Theorem 1. The preconditioned matrix 𝐼 − 𝑀
−1

𝑁 has an
eigenvalue at 1 with multiplicity at least 𝑛. The remaining
eigenvalues 𝜆 satisfy

𝜆 =
𝑠
1
+ 𝑠
2

𝑠
1
+ 𝛼

, (6)

where 𝑠
1
= 𝜔
𝑇

𝐵𝐴
−1

𝐵
𝑇

𝜔, 𝑠
2
= 𝜔
𝑇

𝐶𝜔, and 𝜔 ∈ C𝑚 satisfies

(
𝐵𝐴
−1

𝐵
𝑇

𝛼
+
𝐶

𝛼
)𝜔 = 𝜆(𝐼 +

𝐵𝐴
−1

𝐵
𝑇

𝛼
)𝜔, ‖𝜔‖ = 1. (7)

Proof. Because

𝑀
−1

=(

(𝐴 +
𝐵
𝑇

𝐵

𝛼
)

−1

−𝐴
−1

𝐵
𝑇

(𝐼 +
𝐵𝐴
−1

𝐵
𝑇

𝛼
)

−1

𝐵

𝛼
(𝐴 +

𝐵
𝑇

𝐵

𝛼
)

−1

(𝐼 +
𝐵𝐴
−1

𝐵
𝑇

𝛼
)

−1
),

(8)

we can easily get

𝐼 −𝑀
−1

𝑁 =(

𝐼 𝐴
−1

𝐵
𝑇

(𝐼 +
𝐵𝐴
−1

𝐵
𝑇

𝛼
)

−1

(𝐼 −
𝐶

𝛼
)

0 (𝐼 +
𝐵𝐴
−1

𝐵
𝑇

𝛼
)

−1

(
𝐵𝐴
−1

𝐵
𝑇

𝛼
+
𝐶

𝛼
)

),

(9)

which implies the preconditioned matrix 𝐼 − 𝑀−1𝑁 has an
eigenvalue at 1 with multiplicity at least 𝑛.

For the remaining eigenvalues, let

(𝐼 +
𝐵𝐴
−1

𝐵
𝑇

𝛼
)

−1

(
𝐵𝐴
−1

𝐵
𝑇

𝛼
+
𝐶

𝛼
)𝜔 = 𝜆𝜔 (10)

with ‖𝜔‖ = 1; then we have

(
𝐵𝐴
−1

𝐵
𝑇

𝛼
+
𝐶

𝛼
)𝜔 = 𝜆(𝐼 +

𝐵𝐴
−1

𝐵
𝑇

𝛼
)𝜔. (11)

By multiplying both sides of this equality from the left with
𝜔
𝑇, we can get

𝜆 =
𝑠
1
+ 𝑠
2

𝑠
1
+ 𝛼

. (12)

This completes the proof of Theorem 1.

Remark 2. FromTheorem 1, we can get that when parameter
𝛼 is big enough, the modulus of nonnil eigenvalues 𝜆 will be
located in interval (0, 1).

Remark 3. InTheorem 1, if the matrix 𝐶 = 0, then for nonnil
eigenvalues we have

lim
𝛼→0

𝜆 = 1. (13)

Figures 1, 2, and 3 are the eigenvalues plots of the pre-
conditioned matrices obtained with our preconditioner. As
we can see in the following numerical experiments, this
good phenomenon is useful for accelerating convergence of
iterative methods in Krylov subspace.

Additionally, for the purpose of practically executing our
preconditioner

𝐻 =(

(𝐴 +
𝐵
𝑇

𝐵

𝛼
)

−1

−𝐴
−1

𝐵
𝑇

𝛼
(𝐼 +

𝐵𝐴
−1

𝐵
𝑇

𝛼
)

−1

𝐵

𝛼
(𝐴 +

𝐵
𝑇

𝐵

𝛼
)

−1

1

𝛼
(𝐼 +

𝐵𝐴
−1

𝐵
𝑇

𝛼
)

−1
),

(14)
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Figure 1: Spectrum of the preconditioned steady Oseen matrix with viscosity coefficient V = 0.1, 32 × 32 grid. (a) Q2-Q1 FEM, 𝐶 = 0; (b)
Q1-P0 FEM, 𝐶 ̸= 0.
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Figure 2: Spectrum of the preconditioned steady Oseen matrix with viscosity coefficient V = 0.01, 32 × 32 grid. (a) Q2-Q1 FEM, 𝐶 = 0; (b)
Q1-P0 FEM, 𝐶 ̸= 0.

0

2

4

6

8

0 0.2 0.4 0.6 0.8 1.2 1.41

×10
−4

−8

−6

−4

−2

� = 0.001, 𝛼 = 0.0001

(a)

0

0.02

0.04

0.06

0.08

−0.08

−0.06

−0.04

−0.02

0 0.2 0.4 0.6 0.8 1.21−0.2

� = 0.001, 𝛼 = norm(𝐶, fro)/20

(b)

Figure 3: Spectrum of the preconditioned steady Oseen matrix with viscosity coefficient V = 0.001, 32 × 32 grid. (a) Q2-Q1 FEM, 𝐶 = 0; (b)
Q1-P0 FEM, 𝐶 ̸= 0.
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Table 1: Preconditioned GMRES(20) on Stokes problems with
different grid sizes (uniform grids).

Grid 𝛼 its LU time its time Total time
16 × 16 0.0001 4 0.0457 0.0267 0.0724
32 × 32 0.0001 6 0.3912 0.0813 0.4725
64 × 64 0.0001 9 5.4472 0.5519 5.9991
128 × 128 0.0001 14 91.4698 5.7732 97.2430

Table 2: Preconditioned GMRES(20) on steady Oseen problems
with different grid sizes (uniform grids), viscosity V = 0.1.

Grid 𝛼 its LU time its time Total time
16 × 16 0.0001 3 0.0479 0.0244 0.0723
32 × 32 0.0001 3 0.6312 0.0696 0.7009
64 × 64 0.0001 4 13.2959 0.3811 13.6770
128 × 128 0.0001 6 130.5463 3.7727 134.3190

Table 3: Preconditioned GMRES(20) on steady Oseen problems
with different grid sizes (uniform grids), viscosity V = 0.01.

Grid 𝛼 its LU time its time Total time
16 × 16 0.0001 2 0.0442 0.0236 0.0678
32 × 32 0.0001 3 0.4160 0.0557 0.4717
64 × 64 0.0001 3 7.3645 0.2623 7.6268
128 × 128 0.0001 4 169.4009 3.1709 172.5718

Table 4: Preconditioned GMRES(20) on steady Oseen problems
with different grid sizes (uniform grids), viscosity V = 0.001.

Grid 𝛼 its LU time its time Total time
16 × 16 0.0001 2 0.0481 0.0206 0.0687
32 × 32 0.0001 3 0.4661 0.0585 0.5246
64 × 64 0.0001 3 6.6240 0.2728 6.8969
128 × 128 0.0001 4 177.3130 2.9814 180.2944

Table 5: Preconditioned GMRES(20) on Stokes problems with
different grid sizes (uniform grids).

Grid 𝛼 its LU time its time Total time
16 × 16 10000 5 0.0471 0.0272 0.0743
32 × 32 10000 7 0.3914 0.0906 0.4820
64 × 64 10000 9 5.6107 0.4145 6.0252
128 × 128 10000 14 92.7154 4.8908 97.6062

Table 6: Preconditioned GMRES(20) on steady Oseen problems
with different grid sizes (uniform grids), viscosity V = 0.1.

Grid 𝛼 its LU time its time Total time
16 × 16 10000 4 0.0458 0.0223 0.0681
32 × 32 10000 4 0.5748 0.0670 0.6418
64 × 64 10000 5 12.2642 0.4179 12.6821
128 × 128 10000 7 128.2758 1.6275 129.9033

Table 7: Preconditioned GMRES(20) on steady Oseen problems
with different grid sizes (uniform grids), viscosity V = 0.01.

Grid 𝛼 its LU time its time Total time
16 × 16 10000 3 0.0458 0.0224 0.0682
32 × 32 10000 3 0.4309 0.0451 0.4760
64 × 64 10000 4 7.6537 0.1712 7.8249
128 × 128 10000 5 175.1587 3.4554 178.6141

Table 8: Preconditioned GMRES(20) on steady Oseen problems
with different grid sizes (uniform grids), viscosity V = 0.001.

Grid 𝛼 its LU time its time Total time
16 × 16 10000 3 0.0507 0.0212 0.0719
32 × 32 10000 3 0.4735 0.0449 0.5184
64 × 64 10000 4 6.6482 0.1645 6.8127
128 × 128 10000 4 172.0516 2.1216 174.1732

Table 9: Preconditioned GMRES(20) on Stokes problems with
different grid sizes (uniform grids).

Grid 𝛼 its LU time its time Total time
16 × 16 norm(𝐶, fro) 21 0.0240 0.0473 0.0713
32 × 32 norm(𝐶, fro) 20 0.0890 0.1497 0.2387
64 × 64 norm(𝐶, fro) 20 0.8387 0.6191 1.4578
128 × 128 norm(𝐶, fro) 20 6.8917 3.0866 9.9783

Table 10: Preconditioned GMRES(20) on steady Oseen problems
with different grid sizes (uniform grids), viscosity V = 0.1.

Grid 𝛼 its LU time its time Total time
16 × 16 norm(𝐶, fro)/20 10 0.0250 0.0302 0.0552
32 × 32 norm(𝐶, fro)/20 10 0.0816 0.0832 0.1648
64 × 64 norm(𝐶, fro)/20 12 0.8466 0.3648 1.2114
128 × 128 norm(𝐶, fro)/20 14 6.9019 2.0398 8.9417

Table 11: Preconditioned GMRES(20) on steady Oseen problems
with different grid sizes (uniform grids), viscosity V = 0.01.

Grid 𝛼 its LU time its time Total time
16 × 16 norm(𝐶, fro)/20 7 0.0238 0.0286 0.0524
32 × 32 norm(𝐶, fro)/20 7 0.0850 0.0552 0.1402
64 × 64 norm(𝐶, fro)/20 11 0.8400 0.3177 1.1577
128 × 128 norm(𝐶, fro)/20 16 6.9537 2.2306 9.1844

Table 12: Preconditioned GMRES(20) on steady Oseen problems
with different grid sizes (uniform grids), viscosity V = 0.001.

Grid 𝛼 its LU time its time Total time
16 × 16 norm(𝐶, fro)/20 5 0.0245 0.0250 0.0495
32 × 32 norm(𝐶, fro)/20 5 0.0905 0.0587 0.1492
64 × 64 norm(𝐶, fro)/20 8 1.2916 0.3200 1.6116
128 × 128 norm(𝐶, fro)/20 15 10.4399 2.7468 13.1867
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Table 13: Size and number of non-nil elements of the coefficient matrix generalized by using Q2-Q1 FEM in steady Stokes problems.

Grid dim(𝐴) nnz(𝐴) dim(𝐵) nnz(𝐵) nnz(𝐴 + (1/𝛼)𝐵𝑇𝐵)
16 × 16 578 × 578 6178 81 × 578 2318 36904
32 × 32 2178 × 2178 28418 289 × 2178 10460 193220
64 × 64 8450 × 8450 122206 1089 × 8450 44314 875966
128 × 128 33282 × 33282 506376 4225 × 33282 184316 3741110

we should efficiently deal with the computation of (𝐼 +
(𝐵𝐴
−1

𝐵
𝑇

/𝛼))
−1. This can been tackled by the well-known

Sherman-Morrison-Woodbury formula:

(𝐴
1
+ 𝑋
1
𝐴
2
𝑋
𝑇

2
)
−1

= 𝐴
−1

1
− 𝐴
−1

1
𝑋
1
(𝐴
−1

2
+ 𝑋
𝑇

2
𝐴
−1

1
𝑋
1
)
−1

𝑋
𝑇

2
𝐴
−1

1
,

(15)

where 𝐴
1
∈ R𝑛×𝑛, and 𝐴

2
∈ R𝑟1×𝑟1 are invertible matrices,

𝑋
1
∈ R𝑛×𝑟1 , and 𝑋

2
∈ R𝑛×𝑟1 are any matrices, and 𝑛, 𝑟

1
are

any positive integers.
From (15) we immediately get

(𝐼 +
𝐵𝐴
−1

𝐵
𝑇

𝛼
)

−1

= 𝐼 − 𝐵(𝛼𝐴 + 𝐵
𝑇

𝐵)
−1

𝐵
𝑇

. (16)

In the following numerical examples we will always use (16)
to compute (𝐼 + (𝐵𝐴−1𝐵𝑇/𝛼))−1 in (14).

3. Numerical Examples

In this section,we give numerical experiments to illustrate the
behavior of our preconditioner. The numerical experiments
are done by using MATLAB 7.1. The linear systems are
obtained by using finite element methods in the Stokes prob-
lems and steady Oseen problems, and they are respectively
the cases of

(1) 𝐶 = 0, which is caused by using Q2-Q1 FEM;
(2) 𝐶 ̸= 0, which is caused by using Q1-P0 FEM.

Furthermore, we compare our preconditionerwith that of
[9] in the case of general saddle point problems (namely, 𝐶 =
0). For the general saddle point problem, [9] has presented
the preconditioner

�̂� = (

𝐴 + 𝑡𝐵
𝑇

𝐵 0

−2𝐵
𝐼

𝑡

)

−1

(17)

with 𝑡 as a parameter and has proved that when 𝐴 is
symmetric positive definite, the preconditioned matrix has
an eigenvalue 1 with multiplicity at 𝑛, and the remaining
eigenvalues satisfy

𝜆 =
𝑡𝜎
2

𝑖

1 + 𝑡𝜎
2

𝑖

, (18)

lim
𝑡→∞

𝜆 = 1, (19)

where 𝜎
𝑖
, 𝑖 = 1, 2, . . . , 𝑚, are𝑚 positive singular values of the

matrix 𝐵𝐴−1/2.
All these systems can be generalized by

using IFISS software package [11] (this is a free
package that can be downloaded from the site
http://www.maths.manchester.ac.uk/∼djs/ifiss/). We use
restarted GMRES(20) as the Krylov subspace method, and
we always take a zero initial guess. The stopping criterion is

𝑟𝑘
2

𝑟0
2

≤ 10
−6

, (20)

where 𝑟
𝑘
is the residual vector at the 𝑘th iteration.

In the whole course of computation, we always replace
(𝐼 + (𝐵𝐴

−1

𝐵
𝑇

/𝛼))
−1 in (14) with (16) and use the 𝐿𝑈 factor-

ization of 𝐴 + (𝐵
𝑇

𝐵/𝛼) to tackle (𝐴 + (𝐵
𝑇

𝐵/𝛼))
−1V, where

V is a corresponding vector in the iteration. Concretely, let
𝐴 + (𝐵

𝑇

𝐵/𝛼) = 𝐿𝑈; then we complete the matrix-vector
product (𝐴 + (𝐵

𝑇

𝐵/𝛼))
−1V by 𝑈 \ 𝐿 \ V in MATLAB term.

In the following tables, the denotation norm (𝐶, fro) means
the Frobenius form of the matrix 𝐶. The total time is the sum
of LU time and iterative time, and the LU time is the time to
compute LU factorization of 𝐴 + (𝐵𝑇𝐵/𝛼).

Case 1 (for our preconditioner). 𝐶 = 0 (using Q2-Q1 FEM in
Stokes problems and steady Oseen problems with different
viscosity coefficients. The results are in Tables 1, 2, 3, 4 ).

Case 1’ (for preconditioner of [9]). 𝐶 = 0 (using Q2-Q1 FEM
in Stokes problems and steady Oseen problems with different
viscosity coefficients The results are in Tables 5, 6, 7, 8).

Case 2. 𝐶 ̸= 0 (using Q1-P0 FEM in Stokes problems and
steady Oseen problems with different viscosity coefficients
The results are in Tables 9, 10, 11, 12).

From Tables 1, 2, 3, 4, 5, 6, 7, and 8 we can see that these
results are in agreement with the theoretical analyses (13) and
(19), respectively. Additionally, comparing with the results in
Tables 9, 10, 11, and 12, we find that, although the iterations
used in Case 1 (either for the preconditioner of [9] or our
preconditioner) are less than those in Case 2, the time spent
by Case 1 ismuchmore than that of Case 2.This is because the
density of the coefficient matrix generalized by Q2-Q1 FEM
is much larger than that generalized by Q1-P0 FEM.This can
be partly illustrated by Tables 13 and 14, and the others can be
illustrated similarly.



6 Journal of Applied Mathematics

Table 14: Size and number of non-nil elements of the coefficient matrix generalized by using Q1-P0 FEM in steady Stokes problems.

Grid dim(𝐴) nnz(𝐴) dim(𝐵) nnz(𝐵) nnz(𝐴 + (1/𝛼)𝐵𝑇𝐵)
16 × 16 578 × 578 3826 256 × 578 1800 7076
32 × 32 2178 × 2178 16818 1024 × 2178 7688 31874
64 × 64 8450 × 8450 70450 4096 × 8450 31752 136582
128 × 128 33282 × 33282 288306 16384 × 33282 129032 567192

4. Conclusions

In this paper, we have introduced a splitting preconditioner
for solving generalized saddle point systems. Theoretical
analysis showed the modulus of eigenvalues of the precon-
ditioned matrix would be located in interval (0, 1) when the
parameter is big enough. Particularly when the submatrix
𝐶 = 0, the eigenvalues will tend to 1 as the parameter 𝛼 → 0.
These performances are tested by some examples, and the
results are in agreement with the theoretical analysis.

There are still some future works to be done: how to prop-
erly choose a parameter 𝛼 so that the preconditioned matrix
has better properties?How to further precondition submatrix
(𝐼 + (𝐵𝐴

−1

𝐵
𝑇

/𝛼))
−1

((𝐵𝐴
−1

𝐵
𝑇

/𝛼) + (𝐶/𝛼)) to improve our
preconditioner?
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We consider the extremal inertias and ranks of the matrix expressions 𝑓(𝑋, 𝑌) = 𝐴
3
− 𝐵

3
𝑋 − (𝐵

3
𝑋)

∗

− 𝐶
3
𝑌𝐷

3
− (𝐶

3
𝑌𝐷

3
)
∗, where

𝐴
3
= 𝐴

∗

3
, 𝐵

3
, 𝐶

3
, and 𝐷

3
are known matrices and 𝑌 and 𝑋 are the solutions to the matrix equations 𝐴

1
𝑌 = 𝐶

1
, 𝑌𝐵

1
= 𝐷

1
, and

𝐴
2
𝑋 = 𝐶

2
, respectively. As applications, we present necessary and sufficient condition for the previous matrix function 𝑓(𝑋, 𝑌)

to be positive (negative), non-negative (positive) definite or nonsingular. We also characterize the relations between the Hermitian
part of the solutions of the above-mentioned matrix equations. Furthermore, we establish necessary and sufficient conditions for
the solvability of the system of matrix equations 𝐴

1
𝑌 = 𝐶

1
, 𝑌𝐵

1
= 𝐷

1
, 𝐴

2
𝑋 = 𝐶

2
, and 𝐵

3
𝑋 + (𝐵

3
𝑋)

∗

+ 𝐶
3
𝑌𝐷

3
+ (𝐶

3
𝑌𝐷

3
)
∗

= 𝐴
3
,

and give an expression of the general solution to the above-mentioned system when it is solvable.

1. Introduction

Throughout, we denote the field of complex numbers by C,
the set of all 𝑚 × 𝑛 matrices over C by C𝑚×𝑛, and the set of
all𝑚 ×𝑚Hermitian matrices by C𝑚×𝑚

ℎ
. The symbols 𝐴∗ and

R(𝐴) stand for the conjugate transpose, the column space of
a complex matrix𝐴 respectively. 𝐼

𝑛
denotes the 𝑛 × 𝑛 identity

matrix. TheMoore-Penrose inverse [1] 𝐴† of 𝐴, is the unique
solution𝑋 to the four matrix equations:

(i) 𝐴𝑋𝐴 = 𝐴,

(ii) 𝑋𝐴𝑋 = 𝑋,

(iii) (𝐴𝑋)∗ = 𝐴𝑋,

(iv) (𝑋𝐴)∗ = 𝑋𝐴.

(1)

Moreover, 𝐿
𝐴
and 𝑅

𝐴
stand for the projectors 𝐿

𝐴
= 𝐼 −

𝐴
†

𝐴, 𝑅
𝐴
= 𝐼 − 𝐴𝐴

† induced by 𝐴. It is well known that the
eigenvalues of a Hermitian matrix 𝐴 ∈ C𝑛×𝑛 are real, and the
inertia of 𝐴 is defined to be the triplet

I
𝑛
(𝐴) = {𝑖

+
(𝐴) , 𝑖

−
(𝐴) , 𝑖

0
(𝐴)} , (2)

where 𝑖
+
(𝐴), 𝑖

−
(𝐴), and 𝑖

0
(𝐴) stand for the numbers of

positive, negative, and zero eigenvalues of𝐴, respectively.The

symbols 𝑖
+
(𝐴) and 𝑖

−
(𝐴) are called the positive index and

the negative index of inertia, respectively. For two Hermitian
matrices 𝐴 and 𝐵 of the same sizes, we say 𝐴 ≥ 𝐵 (𝐴 ≤ 𝐵)
in the Löwner partial ordering if 𝐴 − 𝐵 is positive (negative)
semidefinite. The Hermitian part of 𝑋 is defined as 𝐻(𝑋) =
𝑋 + 𝑋

∗. We will say that 𝑋 is Re-nnd (Re-nonnegative
semidefinite) if 𝐻(𝑋) ≥ 0, 𝑋 is Re-pd (Re-positive definite)
if𝐻(𝑋) > 0, and𝑋 is Re-ns if𝐻(𝑋) is nonsingular.

It is well known that investigation on the solvability
conditions and the general solution to linearmatrix equations
is very active (e.g., [2–9]). In 1999, Braden [10] gave the
general solution to

𝐵𝑋 + (𝐵𝑋)
∗

= 𝐴. (3)

In 2007, Djordjević [11] considered the explicit solution to (3)
for linear bounded operators on Hilbert spaces. Moreover,
Cao [12] investigated the general explicit solution to

𝐵𝑋𝐶 + (𝐵𝑋𝐶)
∗

= 𝐴. (4)

Xu et al. [13] obtained the general expression of the solution
of operator equation (4). In 2012, Wang and He [14] studied
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some necessary and sufficient conditions for the consistence
of the matrix equation

𝐴
1
𝑋 + (𝐴

1
𝑋)

∗

+ 𝐵
1
𝑌𝐶

1
+ (𝐵

1
𝑌𝐶

1
)
∗

= 𝐸
1

(5)

and presented an expression of the general solution to (5).
Note that (5) is a special case of the following system:

𝐴
1
𝑌 = 𝐶

1
, 𝑌𝐵

1
= 𝐷

1
, 𝐴

2
𝑋 = 𝐶

2
,

𝐵
3
𝑋 + (𝐵

3
𝑋)

∗

+ 𝐶
3
𝑌𝐷

3
+ (𝐶

3
𝑌𝐷

3
)
∗

= 𝐴
3
.

(6)

To our knowledge, there has been little information about (6).
One goal of this paper is to give some necessary and sufficient
conditions for the solvability of the system of matrix (6) and
present an expression of the general solution to system (6)
when it is solvable.

In order to find necessary and sufficient conditions for the
solvability of the system of matrix equations (6), we need to
consider the extremal ranks and inertias of (10) subject to (13)
and (11).

There have been many papers to discuss the extremal
ranks and inertias of the following Hermitian expressions:

𝑝 (𝑋) = 𝐴
3
− 𝐵

3
𝑋 − (𝐵

3
𝑋)

∗

, (7)

𝑔 (𝑌) = 𝐴 − 𝐵𝑌𝐶 − (𝐵𝑌𝐶)
∗

, (8)

ℎ (𝑋, 𝑌) = 𝐴
1
− 𝐵

1
𝑋𝐵

∗

1
− 𝐶

1
𝑌𝐶

∗

1
, (9)

𝑓 (𝑋, 𝑌) = 𝐴
3
− 𝐵

3
𝑋 − (𝐵

3
𝑋)

∗

− 𝐶
3
𝑌𝐷

3
− (𝐶

3
𝑌𝐷

3
)
∗

.

(10)

Tian has contributed much in this field. One of his works
[15] considered the extremal ranks and inertias of (7). He
and Wang [16] derived the extremal ranks and inertias of (7)
subject to𝐴

1
𝑋 = 𝐶

1
,𝐴

2
𝑋𝐵

2
= 𝐶

2
. Liu and Tian [17] studied

the extremal ranks and inertias of (8). Chu et al. [18] and Liu
and Tian [19] derived the extremal ranks and inertias of (9).
Zhang et al. [20] presented the extremal ranks and inertias of
(9), where𝑋 and 𝑌 are Hermitian solutions of

𝐴
2
𝑋 = 𝐶

2
, (11)

𝑌𝐵
2
= 𝐷

2
, (12)

respectively. He and Wang [16] derived the extremal ranks
and inertias of (10).We consider the extremal ranks and iner-
tias of (10) subject to (11) and

𝐴
1
𝑌 = 𝐶

1
, 𝑌𝐵

1
= 𝐷

1
, (13)

which is not only the generalization of the abovematrix func-
tions, but also can be used to investigate the solvability con-
ditions for the existence of the general solution to the system
(6). Moreover, it can be applied to characterize the relations
between Hermitian part of the solutions of (11) and (13).

The remainder of this paper is organized as follows. In
Section 2, we consider the extremal ranks and inertias of
(10) subject to (11) and (13). In Section 3, we characterize the
relations between the Hermitian part of the solution to (11)
and (13). In Section 4, we establish the solvability conditions
for the existence of a solution to (6) and obtain an expression
of the general solution to (6).

2. Extremal Ranks and Inertias of Hermitian
Matrix Function (10) with Some Restrictions

In this section, we consider formulas for the extremal ranks
and inertias of (10) subject to (11) and (13). We begin with the
following Lemmas.

Lemma 1 (see [21]). (a) Let𝐴
1
,𝐶

1
, 𝐵

1
, and𝐷

1
be given.Then

the following statements are equivalent:

(1) system (13) is consistent,
(2)

𝑅
𝐴1
𝐶

1
= 0, 𝐷

1
𝐿

𝐵1
= 0, 𝐴

1
𝐷

1
= 𝐶

1
𝐵
1
. (14)

(3)

𝑟 [𝐴
1
𝐶

1
] = 𝑟 (𝐴

1
) ,

[
𝐷

1

𝐵
1

] = 𝑟 (𝐵
1
) ,

𝐴
1
𝐷

1
= 𝐶

1
𝐵
1
.

(15)

In this case, the general solution can be written as

𝑌 = 𝐴
†

1
𝐶

1
+ 𝐿

𝐴1
𝐷

1
𝐵
†

1
+ 𝐿

𝐴1
𝑉𝑅

𝐵1
, (16)

where 𝑉 is arbitrary.
(b) Let 𝐴

2
and 𝐶

2
be given. Then the following statements

are equivalent:

(1) equation (11) is consistent,
(2)

𝑅
𝐴2
𝐶

2
= 0, (17)

(3)

𝑟 [𝐴
2
𝐶

2
] = 𝑟 (𝐴

2
) . (18)

In this case, the general solution can be written as

𝑋 = 𝐴
†

𝐶 + 𝐿
𝐴
𝑊, (19)

where𝑊 is arbitrary.

Lemma 2 ([22, Lemma 1.5, Theorem 2.3]). Let 𝐴 ∈ C𝑚×𝑚

ℎ
,

𝐵 ∈ C𝑚×𝑛, and𝐷 ∈ C𝑛×𝑛

ℎ
, and denote that

𝑀 = [
𝐴 𝐵

𝐵
∗

0
] ,

𝑁 = [
0 𝑄

𝑄
∗

0
] ,

𝐿 = [
𝐴 𝐵

𝐵
∗

𝐷
] ,

𝐺 = [
𝑃 𝑀𝐿

𝑁

𝐿
𝑁
𝑀

∗

0
] .

(20)
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Then one has the following

(a) the following equalities hold

𝑖
±
(𝑀) = 𝑟 (𝐵) + 𝑖

±
(𝑅

𝐵
𝐴𝑅

𝐵
) , (21)

𝑖
±
(𝑁) = 𝑟 (𝑄) , (22)

(b) if R(𝐵) ⊆ R(𝐴), then 𝑖
±
(𝐿) = 𝑖

±
(𝐴) + 𝑖

±
(𝐷 −

𝐵
∗

𝐴
†

𝐵)). Thus 𝑖
±
(𝐿) = 𝑖

±
(𝐴) if and only if R(𝐵) ⊆

R(𝐴) and 𝑖
±
(𝐷 − 𝐵

∗

𝐴
†

𝐵) = 0,
(c)

𝑖
±
(𝐺) = [

[

𝑃 𝑀 0

𝑀
∗

0 𝑁
∗

0 𝑁 0

]

]

− 𝑟 (𝑁) . (23)

Lemma 3 (see [23]). Let 𝐴 ∈ C𝑚×𝑛, 𝐵 ∈ C𝑚×𝑘, and 𝐶 ∈ C𝑙×𝑛.
Then they satisfy the following rank equalities:

(a) 𝑟[𝐴 𝐵] = 𝑟(𝐴) + 𝑟(𝐸
𝐴
𝐵) = 𝑟(𝐵) + 𝑟(𝐸

𝐵
𝐴),

(b) 𝑟 [ 𝐴
𝐶
] = 𝑟(𝐴) + 𝑟(𝐶𝐹

𝐴
) = 𝑟(𝐶) + 𝑟(𝐴𝐹

𝐶
),

(c) 𝑟 [ 𝐴 𝐵

𝐶 0
] = 𝑟(𝐵) + 𝑟(𝐶) + 𝑟(𝐸

𝐵
𝐴𝐹

𝐶
),

(d) 𝑟[𝐵 𝐴𝐹
𝐶
] = 𝑟 [

𝐵 𝐴

0 𝐶
] − 𝑟(𝐶),

(e) 𝑟 [ 𝐶

𝐸𝐵𝐴
] = 𝑟 [

𝐶 0

𝐴 𝐵
] − 𝑟(𝐵),

(f) 𝑟 [ 𝐴 𝐵𝐹𝐷

𝐸𝐸𝐶 0
] = 𝑟 [

𝐴 𝐵 0

𝐶 0 𝐸

0 𝐷 0

] − 𝑟(𝐷) − 𝑟(𝐸),

Lemma 4 (see [15]). Let𝐴 ∈ C𝑚×𝑚

ℎ
, 𝐵 ∈ C𝑚×𝑛,𝐶 ∈ C𝑛×𝑛

ℎ
,𝑄 ∈

C𝑚×𝑛, and 𝑃 ∈ C𝑝×𝑛 be given, and 𝑇 ∈ C𝑚×𝑚 be nonsingular.
Then one has the following

(1) 𝑖
±
(𝑇𝐴𝑇

∗

) = 𝑖
±
(𝐴),

(2) 𝑖
±
[
𝐴 0

0 𝐶
] = 𝑖

±
(𝐴) + 𝑖

±
(𝐶),

(3) 𝑖
±
[

0 𝑄

𝑄
∗

0
] = 𝑟(𝑄),

(4) 𝑖
±
[

𝐴 𝐵𝐿𝑃

𝐿𝑃𝐵
∗

0
] + 𝑟(𝑃) = 𝑖

±
[

𝐴 𝐵 0

𝐵
∗

0 𝑃
∗

0 𝑃 0

].

Lemma 5 (see [22, Lemma 1.4]). Let 𝑆 be a set consisting of
(square) matrices over C𝑚×𝑚, and let 𝐻 be a set consisting of
(square) matrices overC𝑚×𝑚

ℎ
. ThenThen one has the following

(a) 𝑆 has a nonsingularmatrix if and only ifmax
𝑋∈𝑆
𝑟(𝑋) =

𝑚;
(b) any 𝑋 ∈ 𝑆 is nonsingular if and only if min

𝑋∈𝑆
𝑟(𝑋) =

𝑚;
(c) {0} ∈ 𝑆 if and only ifmin

𝑋∈𝑆
𝑟(𝑋) = 0;

(d) 𝑆 = {0} if and only ifmax
𝑋∈𝑆
𝑟(𝑋) = 0;

(e) 𝐻 has a matrix 𝑋 > 0 (𝑋 < 0) if and only if
max

𝑋∈𝐻
𝑖
+
(𝑋) = 𝑚(max

𝑋∈𝐻
𝑖
−
(𝑋) = 𝑚);

(f) any 𝑋 ∈ 𝐻 satisfies 𝑋 > 0 (𝑋 < 0) if and only if
min

𝑋∈𝐻
𝑖
+
(𝑋) = 𝑚 (min

𝑋∈𝐻
𝑖
−
(𝑋) = 𝑚);

(g) 𝐻 has a matrix 𝑋 ≥ 0 (𝑋 ≤ 0) if and only if
min

𝑋∈𝐻
𝑖
−
(𝑋) = 0 (min

𝑋∈𝐻
𝑖
+
(𝑋) = 0);

(h) any 𝑋 ∈ 𝐻 satisfies 𝑋 ≥ 0 (𝑋 ≤ 0) if and only if
max

𝑋∈𝐻
𝑖
−
(𝑋) = 0 (max

𝑋∈𝐻
𝑖
+
(𝑋) = 0).

Lemma 6 (see [16]). Let 𝑝(𝑋, 𝑌) = 𝐴−𝐵𝑋− (𝐵𝑋)∗ −𝐶𝑌𝐷−
(𝐶𝑌𝐷)

∗, where𝐴,𝐵,𝐶, and𝐷 are givenwith appropriate sizes,
and denote that

𝑀
1
= [

[

𝐴 𝐵 𝐶

𝐵
∗

0 0

𝐶
∗

0 0

]

]

,

𝑀
2
= [

[

𝐴 𝐵 𝐷
∗

𝐵
∗

0 0

𝐷 0 0

]

]

,

𝑀
3
= [

𝐴 𝐵 𝐶 𝐷
∗

𝐵
∗

0 0 0
] ,

𝑀
4
= [

[

𝐴 𝐵 𝐶 𝐷
∗

𝐵
∗

0 0 0

𝐶
∗

0 0 0

]

]

,

𝑀
5
= [

[

𝐴 𝐵 𝐶 𝐷
∗

𝐵
∗

0 0 0

𝐷 0 0 0

]

]

.

(24)

Then one has the following:

(1) the maximal rank of 𝑝(𝑋, 𝑌) is

max
𝑋∈C𝑛×𝑚 ,𝑌

𝑟 [𝑝 (𝑋, 𝑌)] = min {𝑚, 𝑟 (𝑀
1
) , 𝑟 (𝑀

2
) , 𝑟 (𝑀

3
)} ,

(25)

(2) the minimal rank of 𝑝(𝑋, 𝑌) is

min
𝑋∈C𝑛×𝑚 ,𝑌

𝑟 [𝑝 (𝑋, 𝑌)]

= 2𝑟 (𝑀
3
) − 2𝑟 (𝐵)

+max {𝑢
+
+ 𝑢

−
, V

+
+ V

−
, 𝑢

+
+ V

−
, 𝑢

−
+ V

+
} ,

(26)

(3) the maximal inertia of 𝑝(𝑋, 𝑌) is

max
𝑋∈C𝑛×𝑚,𝑌

𝑖
±
[𝑝 (𝑋, 𝑌)] = min {𝑖

±
(𝑀

1
) , 𝑖

±
(𝑀

2
)} , (27)

(4) the minimal inertias of 𝑝(𝑋, 𝑌) is

min
𝑋∈C𝑛×𝑚,𝑌

𝑖
±
[𝑝 (𝑋, 𝑌)] = 𝑟 (𝑀

3
) − 𝑟 (𝐵)

+max {𝑖
±
(𝑀

1
) − 𝑟 (𝑀

4
) ,

𝑖
±
(𝑀

2
) − 𝑟 (𝑀

5
)} ,

(28)

where

𝑢
±
= 𝑖

±
(𝑀

1
) − 𝑟 (𝑀

4
) , V

±
= 𝑖

±
(𝑀

2
) − 𝑟 (𝑀

5
) . (29)

Now we present the main theorem of this section.
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Theorem7. Let𝐴
1
∈ C𝑚×𝑛,𝐶

1
∈ C𝑚×𝑘,𝐵

1
∈ C𝑘×𝑙,𝐷

1
∈ C𝑛×𝑙,

𝐴
2
∈ C𝑡×𝑞, 𝐶

2
∈ C𝑡×𝑝,𝐴

3
∈ C

𝑝×𝑝

ℎ
, 𝐵

3
∈ C𝑝×𝑞, 𝐶

3
∈ C𝑝×𝑛,

and𝐷
3
∈ C𝑝×𝑛 be given, and suppose that the system of matrix

equations (13) and (11) is consistent, respectively. Denote the set
of all solutions to (13) by 𝑆 and (11) by 𝐺. Put

𝐸
1
=

[
[
[
[
[

[

𝐴
3

𝐶
3
𝐷

∗

3
𝐶

∗

1
𝐵
3
𝐶

∗

2

𝐶
∗

3
0 𝐴

∗

1
0 0

𝐶
1
𝐷

3
𝐴

1
0 0 0

𝐵
∗

3
0 0 0 𝐴

∗

2

𝐶
2

0 0 𝐴
2
0

]
]
]
]
]

]

,

𝐸
2
= 𝑟

[
[
[
[
[

[

𝐴
3

𝐷
∗

3
𝐶

3
𝐷

1
𝐵
3
𝐶

∗

2

𝐷
3

0 𝐵
1

0 0

𝐷
∗

1
𝐶

∗

3
𝐵
∗

1
0 0 0

𝐵
∗

3
0 0 0 𝐴

∗

2

𝐶
2

0 0 𝐴
2
0

]
]
]
]
]

]

,

𝐸
3
=

[
[
[
[
[

[

𝐴
3

𝐵
3
𝐶

∗

3
𝐷

∗

3
𝐶

∗

2

𝐵
∗

3
0 0 0 𝐴

∗

2

𝐷
∗

1
𝐶

∗

3
0 0 𝐵

∗

1
0

𝐶
1
𝐷

3
0 𝐴

1
0 0

𝐶
2

𝐴
2
0 0 0

]
]
]
]
]

]

,

𝐸
4
=

[
[
[
[
[
[
[

[

𝐴
3

𝐵
3
𝐶

3
𝐷

∗

3
𝐶

∗

2
𝐷

∗

3
𝐶

∗

1

𝐵
∗

3
0 0 0 𝐴

∗

2
0

𝐶
∗

3
0 0 0 0 𝐴

∗

1

0 0 0 𝐵
∗

1
0 0

𝐶
1
𝐷

3
0 𝐴

1
0 0 0

𝐶
2

𝐴
2
0 0 0 0

]
]
]
]
]
]
]

]

,

𝐸
5
=

[
[
[
[
[
[
[

[

𝐴
3

𝐵
3
𝐶

3
𝐷

∗

3
𝐶

∗

2
𝐶

3
𝐷

1

𝐵
∗

3
0 0 0 𝐴

∗

2
0

𝐷
3

0 0 0 0 𝐵
1

𝐷
∗

1
𝐶

∗

3
0 0 𝐴

∗

1
0 0

0 0 𝐴
1
0 0 0

𝐶
2

𝐴
2
0 0 0 0

]
]
]
]
]
]
]

]

.

(30)

Then one has the following:
(a) the maximal rank of (10) subject to (13) and (11) is

max
𝑋∈𝐺,𝑌∈𝑆

𝑟 [𝑓 (𝑋, 𝑌)]

= min {𝑝, 𝑟 (𝐸
1
) − 2𝑟 (𝐴

1
) − 2𝑟 (𝐴

2
) ,

𝑟 (𝐸
2
) − 2𝑟 (𝐵

1
) − 2𝑟 (𝐴

2
) ,

𝑟 (𝐸
3
) − 2𝑟 (𝐴

2
) − 𝑟 (𝐴

1
) − 𝑟 (𝐵

1
)} ,

(31)

(b) the minimal rank of (10) subject to (13) and (11) is

min
𝑋∈𝐺,𝑌∈𝑆

𝑟 [𝑓 (𝑋, 𝑌)]

= 2𝑟 (𝐸
3
) − 2𝑟 [

𝐵
3

𝐴
2

]

+max {𝑟 (𝐸
1
) − 2𝑟 (𝐸

4
) , 𝑟 (𝐸

2
) − 2𝑟 (𝐸

5
) ,

𝑖
+
(𝐸

1
) + 𝑖

−
(𝐸

2
) − 𝑟 (𝐸

4
) − 𝑟 (𝐸

5
) ,

𝑖
−
(𝐸

1
) + 𝑖

+
(𝐸

2
) − 𝑟 (𝐸

4
) − 𝑟 (𝐸

5
)} ,

(32)

(c) the maximal inertia of (10) subject to (13) and (11) is

max
𝑋∈𝐺,𝑌∈𝑆𝑥

𝑖
±
[𝑓 (𝑋, 𝑌)] = min {𝑖

±
(𝐸

1
) − 𝑟 (𝐴

1
) − 𝑟 (𝐴

2
) ,

𝑖
±
(𝐸

2
) − 𝑟 (𝐵

1
) − 𝑟 (𝐴

2
)} ,

(33)

(d) the minimal inertia of (10) subject to (13) and (11) is

min
𝑋∈𝐺,𝑌∈𝑆

𝑖
±
[𝑓 (𝑋, 𝑌)] = 𝑟 (𝐸

3
) − 𝑟 [

𝐵
3

𝐴
2

]

+max {𝑖
±
(𝐸

1
) − 𝑟 (𝐸

4
) ,

𝑖
±
(𝐸

2
) − 𝑟 (𝐸

5
)} .

(34)

Proof. By Lemma 1, the general solutions to (13) and (11) can
be written as

𝑋 = 𝐴
†

2
𝐶

2
+ 𝐿

𝐴2
𝑊,

𝑌 = 𝐴
†

1
𝐶

1
+ 𝐿

𝐴1
𝐷

1
𝐵
†

1
+ 𝐿

𝐴1
𝑍𝑅

𝐵1
,

(35)

where𝑊 and 𝑍 are arbitrary matrices with appropriate sizes.
Put

𝑄 = 𝐵
3
𝐿

𝐴2
, 𝑇 = 𝐶

3
𝐿

𝐴1
, 𝐽 = 𝑅

𝐵1
𝐷

3
,

𝑃 = 𝐴
3
− 𝐵

3
𝐴

†

2
𝐶

2
− (𝐵

3
𝐴

†

2
𝐶

2
)
∗

− 𝐶
3
(𝐴

†

1
𝐶

1
+ 𝐿

𝐴1
𝐷

1
𝐵
†

1
)𝐷

3

− (𝐶
3
(𝐴

†

1
𝐶

1
+ 𝐿

𝐴1
𝐷

1
𝐵
†

1
)𝐷

3
)
∗

.

(36)

Substituting (36) into (10) yields

𝑓 (𝑋, 𝑌) = 𝑃 − 𝑄𝑊 − (𝑄𝑊)
∗

− 𝑇𝑍𝐽 − (𝑇𝑍𝐽)
∗

. (37)

Clearly 𝑃 is Hermitian. It follows from Lemma 6 that

max
𝑋∈𝐺,𝑌∈𝑆

𝑟 [𝑓 (𝑋, 𝑌)]

= max
𝑊,𝑍

𝑟 (𝑃 − 𝑄𝑊 − (𝑄𝑊)
∗

− 𝑇𝑍𝐽 − (𝑇𝑍𝐽)
∗

)

= min {𝑚, 𝑟 (𝑁
1
) , 𝑟 (𝑁

2
) , 𝑟 (𝑁

3
)} ,

(38)

min
𝑋∈𝐺,𝑌∈𝑆

𝑟 [𝑓 (𝑋, 𝑌)]

= max
𝑊,𝑍

𝑟 (𝑃 − 𝑄𝑊 − (𝑄𝑊)
∗

− 𝑇𝑍𝐽 − (𝑇𝑍𝐽)
∗

)

= 2𝑟 (𝑁
3
) − 2𝑟 (𝑄)

+max {𝑠
+
+ 𝑠

−
, 𝑡

+
+ 𝑡

−
, 𝑠

+
+ 𝑡

−
, 𝑠

−
+ 𝑡

+
} ,

(39)
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max
𝑋∈𝐺,𝑌∈𝑆

𝑖
±
[𝑓 (𝑋, 𝑌)]

= max
𝑊,𝑍

𝑟 (𝑃 − 𝑄𝑊 − (𝑄𝑊)
∗

− 𝑇𝑍𝐽 − (𝑇𝑍𝐽)
∗

)

= min {𝑖
±
(𝑁

1
) , 𝑖

±
(𝑁

2
)} ,

(40)

min
𝑋∈𝐺,𝑌∈𝑆

𝑖
±
[𝑓 (𝑋, 𝑌)]

= max
𝑊,𝑍

𝑟 (𝑃 − 𝑄𝑊 − (𝑄𝑊)
∗

− 𝑇𝑍𝐽 − (𝑇𝑍𝐽)
∗

)

= 𝑟 (𝑁
3
) − 𝑟 (𝑄) +max {𝑠

±
, 𝑡

±
} ,

(41)

where

𝑁
1
= [

[

𝑃 𝑄 𝑇

𝑄
∗

0 0

𝑇
∗

0 0

]

]

,

𝑁
2
= [

[

𝑃 𝑄 𝐽
∗

𝑄
∗

0 0

𝐽 0 0

]

]

,

𝑁
3
= [

𝑃 𝑄 𝑇 𝐽
∗

𝑄
∗

0 0 0
] ,

𝑁
4
= [

[

𝑃 𝑄 𝑇 𝐽
∗

𝑄
∗

0 0 0

𝑇
∗

0 0 0

]

]

,

𝑁
5
= [

[

𝑃 𝑄 𝑇 𝐽
∗

𝑄
∗

0 0 0

𝐽 0 0 0

]

]

,

𝑠
±
= 𝑖

±
(𝑁

1
) − 𝑟 (𝑁

4
) , 𝑡

±
= 𝑖

±
(𝑁

2
) − 𝑟 (𝑁

5
) .

(42)

Now, we simplify the ranks and inertias of block matrices in
(38)–(41).

By Lemma 4, blockGaussian elimination, and noting that

𝐿
∗

𝑆
= (𝐼 − 𝑆

†

𝑆)
∗

= 𝐼 − 𝑆
∗

(𝑆
∗

)
†

= 𝑅
𝑆
∗ , (43)

we have the following:

𝑟 (𝑁
1
) = 𝑟[

[

𝑃 𝑄 𝑇

𝑄
∗

0 0

𝑇
∗

0 0

]

]

= 𝑟

[
[
[
[
[

[

𝐴
3

𝐶
3
𝐷

∗

3
𝐶

∗

1
𝐵
3
𝐶

∗

2

𝐶
∗

3
0 𝐴

∗

1
0 0

𝐶
1
𝐷

3
𝐴

1
0 0 0

𝐵
∗

3
0 0 0 𝐴

∗

2

𝐶
2

0 0 𝐴
2
0

]
]
]
]
]

]

− 2𝑟 (𝐴
1
) − 2𝑟 (𝐴

2
) .

(44)

By 𝐶
1
𝐵
1
= 𝐴

1
𝐷

1
, we obtain

𝑟 (𝑁
2
) = 𝑟

[
[

[

𝑃 𝑄 𝐽
∗

𝑄
∗

0 0

𝐽 0 0

]
]

]

= 𝑟

[
[
[
[
[
[
[
[

[

𝐴
3

𝐷
∗

3
𝐶

3
𝐷

1
𝐵
3
𝐶

∗

2

𝐷
3

0 𝐵
1

0 0

𝐷
∗

1
𝐶

∗

3
𝐵
∗

1
0 0 0

𝐵
∗

3
0 0 0 𝐴

∗

2

𝐶
2

0 0 𝐴
2
0

]
]
]
]
]
]
]
]

]

− 2𝑟 (𝐵
1
) − 2𝑟 (𝐴

2
) ,

𝑟 (𝑁
3
) = 𝑟 [

𝑃 𝑄 𝑇 𝐽
∗

𝑄
∗

0 0 0
]

= 𝑟

[
[
[
[
[
[
[
[

[

𝐴
3

𝐵
3
𝐶

∗

3
𝐷

∗

3
𝐶

∗

2

𝐵
∗

3
0 0 0 𝐴

∗

2

𝐷
∗

1
𝐶

∗

3
0 0 𝐵

∗

1
0

𝐶
1
𝐷

3
0 𝐴

1
0 0

𝐶
2

𝐴
2
0 0 0

]
]
]
]
]
]
]
]

]

− 𝑟 (𝐵
1
) − 2𝑟 (𝐴

2
) − 𝑟 (𝐴

1
) ,

𝑟 (𝑁
4
) = 𝑟

[
[

[

𝑃 𝑄 𝑇 𝐽
∗

𝑄
∗

0 0 0

𝑇
∗

0 0 0

]
]

]

= 𝑟

[
[
[
[
[
[
[

[

𝐴
3

𝐵
3
𝐶

3
𝐷

∗

3
𝐶

∗

2
𝐷

∗

3
𝐶

∗

1

𝐵
∗

3
0 0 0 𝐴

∗

2
0

𝐶
∗

3
0 0 0 0 𝐴

∗

1

0 0 0 𝐵
∗

1
0 0

𝐶
1
𝐷

3
0 𝐴

1
0 0 0

𝐶
2

𝐴
2
0 0 0 0

]
]
]
]
]
]
]

]

− 𝑟 (𝐵
1
) − 2𝑟 (𝐴

2
) − 2𝑟 (𝐴

1
) ,

𝑟 (𝑁
5
) = 𝑟[

[

𝑃 𝑄 𝑇 𝐽
∗

𝑄
∗

0 0 0

𝑇
∗

0 0 0

]

]

= 𝑟

[
[
[
[
[
[
[

[

𝐴
3

𝐵
3
𝐶

3
𝐷

∗

3
𝐶

∗

2
𝐶

3
𝐷

1

𝐵
∗

3
0 0 0 𝐴

∗

2
0

𝐷
3

0 0 0 0 𝐵
1

𝐷
∗

1
𝐶

∗

3
0 0 𝐴

∗

1
0 0

0 0 𝐴
1
0 0 0

𝐶
2

𝐴
2
0 0 0 0

]
]
]
]
]
]
]

]

− 2𝑟 (𝐵
1
) − 2𝑟 (𝐴

2
) − 𝑟 (𝐴

1
) .

(45)

By Lemma 2, we can get the following:

𝑖
±
(𝑁

1
) = 𝑖

±

[

[

𝑃 𝑄 𝑇

𝑄
∗

0 0

𝑇
∗

0 0

]

]
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= 𝑖
±

[
[
[
[
[

[

𝐴
3

𝐶
3
𝐷

∗

3
𝐶

∗

1
𝐵
3
𝐶

∗

2

𝐶
∗

3
0 𝐴

∗

1
0 0

𝐶
1
𝐷

3
𝐴

1
0 0 0

𝐵
∗

3
0 0 0 𝐴

∗

2

𝐶
2

0 0 𝐴
2
0

]
]
]
]
]

]

− 𝑟 (𝐴
1
) − 𝑟 (𝐴

2
) ,

(46)

𝑖
±
(𝑁

2
) = 𝑖

±

[

[

𝑃 𝑄 𝐽
∗

𝑄
∗

0 0

𝐽 0 0

]

]

= 𝑖
±

[
[
[
[
[

[

𝐴
3

𝐷
∗

3
𝐶

3
𝐷

1
𝐵
3
𝐶

∗

2

𝐷
3

0 𝐵
1

0 0

𝐷
∗

1
𝐶

∗

3
𝐵
∗

1
0 0 0

𝐵
∗

3
0 0 0 𝐴

∗

2

𝐶
2

0 0 𝐴
2
0

]
]
]
]
]

]

− 𝑟 (𝐵
1
) − 𝑟 (𝐴

2
) .

(47)

Substituting (44)-(47) into (38) and (41) yields (31)–(34),
respectively.

Corollary 8. Let 𝐴
1
, 𝐶

1
, 𝐵

1
, 𝐷

1
, 𝐴

2
, 𝐶

2
, 𝐴

3
, 𝐵

3
, 𝐶

3
, 𝐷

3
,

and 𝐸
𝑖
, (𝑖 = 1, 2, . . . , 5) be as in Theorem 7, and suppose

that the system of matrix equations (13) and (11) is consistent,
respectively. Denote the set of all solutions to (13) by 𝑆 and (11)
by 𝐺. Then, one has the following:

(a) there exist 𝑋 ∈ 𝐺 and 𝑌 ∈ 𝑆 such that 𝐴
3
− 𝐵

3
𝑋 −

(𝐵
3
𝑋)

∗

− 𝐶
3
𝑌𝐷

3
− (𝐶

3
𝑌𝐷

3
)
∗

> 0 if and only if

𝑖
+
(𝐸

1
) − 𝑟 (𝐴

1
) − 𝑟 (𝐴

2
) ≥ 𝑝,

𝑖
+
(𝐸

2
) − 𝑟 (𝐵

1
) − 𝑟 (𝐴

2
) ≥ 𝑝.

(48)

(b) there exist 𝑋 ∈ 𝐺 and 𝑌 ∈ 𝑆 such that 𝐴
3
− 𝐵

3
𝑋 −

(𝐵
3
𝑋)

∗

− 𝐶
3
𝑌𝐷

3
− (𝐶

3
𝑌𝐷

3
)
∗

< 0 if and only if

𝑖
−
(𝐸

1
) − 𝑟 (𝐴

1
) − 𝑟 (𝐴

2
) ≥ 𝑝,

𝑖
−
(𝐸

2
) − 𝑟 (𝐵

1
) − 𝑟 (𝐴

2
) ≥ 𝑝,

(49)

(c) there exist 𝑋 ∈ 𝐺 and 𝑌 ∈ 𝑆 such that 𝐴
3
− 𝐵

3
𝑋 −

(𝐵
3
𝑋)

∗

− 𝐶
3
𝑌𝐷

3
− (𝐶

3
𝑌𝐷

3
)
∗

≥ 0 if and only if

𝑟 (𝐸
3
) − 𝑟 [

𝐵
3

𝐴
2

] + 𝑖
−
(𝐸

1
) − 𝑟 (𝐸

4
) ≤ 0,

𝑟 (𝐸
3
) − 𝑟 [

𝐵
3

𝐴
2

] + 𝑖
−
(𝐸

2
) − 𝑟 (𝐸

5
) ≤ 0.

(50)

(d) there exist 𝑋 ∈ 𝐺 and 𝑌 ∈ 𝑆 such that 𝐴
3
− 𝐵

3
𝑋 −

(𝐵
3
𝑋)

∗

− 𝐶
3
𝑌𝐷

3
− (𝐶

3
𝑌𝐷

3
)
∗

≤ 0 if and only if

𝑟 (𝐸
3
) − 𝑟 [

𝐵
3

𝐴
2

] + 𝑖
+
(𝐸

1
) − 𝑟 (𝐸

4
) ≤ 0,

𝑟 (𝐸
3
) − 𝑟 [

𝐵
3

𝐴
2

] + 𝑖
+
(𝐸

2
) − 𝑟 (𝐸

5
) ≤ 0,

(51)

(e) 𝐴
3
− 𝐵

3
𝑋 − (𝐵

3
𝑋)

∗

− 𝐶
3
𝑌𝐷

3
− (𝐶

3
𝑌𝐷

3
)
∗

> 0 for all
𝑋 ∈ 𝐺 and 𝑌 ∈ 𝑆 if and only if

𝑟 (𝐸
3
) − 𝑟 [

𝐵
3

𝐴
2

] + 𝑖
+
(𝐸

1
) − 𝑟 (𝐸

4
) = 𝑝

𝑜𝑟 𝑟 (𝐸
3
) − 𝑟 [

𝐵
3

𝐴
2

] + 𝑖
+
(𝐸

2
) − 𝑟 (𝐸

5
) = 𝑝,

(52)

(f) 𝐴
3
− 𝐵

3
𝑋 − (𝐵

3
𝑋)

∗

− 𝐶
3
𝑌𝐷

3
− (𝐶

3
𝑌𝐷

3
)
∗

< 0 for all
𝑋 ∈ 𝐺 and 𝑌 ∈ 𝑆 if and only if

𝑟 (𝐸
3
) − 𝑟 [

𝐵
3

𝐴
2

] + 𝑖
−
(𝐸

1
) − 𝑟 (𝐸

4
) = 𝑝

𝑜𝑟 𝑟 (𝐸
3
) − 𝑟 [

𝐵
3

𝐴
2

] + 𝑖
−
(𝐸

2
) − 𝑟 (𝐸

5
) = 𝑝,

(53)

(g) 𝐴
3
− 𝐵

3
𝑋 − (𝐵

3
𝑋)

∗

− 𝐶
3
𝑌𝐷

3
− (𝐶

3
𝑌𝐷

3
)
∗

≥ 0 for all
𝑋 ∈ 𝐺 and 𝑌 ∈ 𝑆 if and only if

𝑖
−
(𝐸

1
) − 𝑟 (𝐴

1
) − 𝑟 (𝐴

2
) ≤ 0

𝑜𝑟 𝑖
−
(𝐸

2
) − 𝑟 (𝐵

1
) − 𝑟 (𝐴

2
) ≤ 0,

(54)

(h) 𝐴
3
− 𝐵

3
𝑋 − (𝐵

3
𝑋)

∗

− 𝐶
3
𝑌𝐷

3
− (𝐶

3
𝑌𝐷

3
)
∗

≤ 0 for all
𝑋 ∈ 𝐺 and 𝑌 ∈ 𝑆 if and only if

𝑖
+
(𝐸

1
) − 𝑟 (𝐴

1
) − 𝑟 (𝐴

2
) ≤ 0

𝑜𝑟 𝑖
+
(𝐸

2
) − 𝑟 (𝐵

1
) − 𝑟 (𝐴

2
) ≤ 0,

(55)

(i) there exist 𝑋 ∈ 𝐺 and 𝑌 ∈ 𝑆 such that 𝐴
3
− 𝐵

3
𝑋 −

(𝐵
3
𝑋)

∗

−𝐶
3
𝑌𝐷

3
−(𝐶

3
𝑌𝐷

3
)
∗ is nonsingular if and only

if

𝑟 (𝐸
1
) − 2𝑟 (𝐴

1
) − 2𝑟 (𝐴

2
) ≥ 𝑝,

𝑟 (𝐸
2
) − 2𝑟 (𝐵

1
) − 2𝑟 (𝐴

2
) ≥ 𝑝,

𝑟 (𝐸
3
) − 2𝑟 (𝐴

2
) − 𝑟 (𝐴

1
) − 𝑟 (𝐵

1
) ≥ 𝑝.

(56)

3. Relations between the Hermitian Part of
the Solutions to (13) and (11)

Now we consider the extremal ranks and inertias of the
difference between the Hermitian part of the solutions to (13)
and (11).

Theorem 9. Let 𝐴
1
∈ C𝑚×𝑝, 𝐶

1
∈ C𝑚×𝑝, 𝐵

1
∈ C𝑝×𝑙, 𝐷

1
∈

C𝑝×𝑙, 𝐴
2
∈ C𝑡×𝑝, and 𝐶

2
∈ C𝑡×𝑝, be given. Suppose that

the system of matrix equations (13) and (11) is consistent,
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respectively. Denote the set of all solutions to (13) by 𝑆 and (11)
by 𝐺. Put

𝐻
1
=

[
[
[
[
[

[

0 𝐼 𝐶
∗

1
−𝐼 𝐶

∗

2

𝐼 0 𝐴
∗

1
0 0

𝐶
1
𝐴

1
0 0 0

−𝐼 0 0 0 𝐴
∗

2

𝐶
2
0 0 𝐴

2
0

]
]
]
]
]

]

,

𝐻
2
= 𝑟

[
[
[
[
[

[

0 𝐼 𝐷
1
−𝐼 𝐶

∗

2

𝐼 0 𝐵
1

0 0

𝐷
∗

1
𝐵
∗

1
0 0 0

−𝐼 0 0 0 𝐴
∗

2

𝐶
2
0 0 𝐴

2
0

]
]
]
]
]

]

,

𝐻
3
=

[
[
[
[
[

[

0 −𝐼 𝐼 𝐼 𝐶
∗

2

−𝐼 0 0 0 𝐴
∗

2

𝐷
∗

1
0 0 𝐵

∗

1
0

𝐶
1

0 𝐴
1
0 0

𝐶
2
𝐴

2
0 0 0

]
]
]
]
]

]

,

𝐻
4
=

[
[
[
[
[
[
[

[

0 −𝐼 𝐼 𝐼 𝐶
∗

2
𝐶

∗

1

−𝐼 0 0 0 𝐴
∗

2
0

𝐼 0 0 0 0 𝐴
∗

1

0 0 0 𝐵
∗

1
0 0

𝐶
1
0 𝐴

1
0 0 0

𝐶
2
𝐴

2
0 0 0 0

]
]
]
]
]
]
]

]

,

𝐻
5
=

[
[
[
[
[
[
[

[

0 −𝐼 𝐼 𝐼 𝐶
∗

2
𝐷

1

−𝐼 0 0 0 𝐴
∗

2
0

𝐼 0 0 0 0 𝐵
1

𝐷
∗

1
0 0 𝐴

∗

1
0 0

0 0 𝐴
1
0 0 0

𝐶
2
𝐴

2
0 0 0 0

]
]
]
]
]
]
]

]

.

(57)

Then one has the following:

max
𝑋∈𝐺,𝑌∈𝑆

𝑟 [(𝑋 + 𝑋
∗

) − (𝑌 + 𝑌
∗

)]

= min {𝑝, 𝑟 (𝐻
1
) − 2𝑟 (𝐴

1
) − 2𝑟 (𝐴

2
) , 𝑟 (𝐻

2
) − 2𝑟 (𝐵

1
)

−2𝑟 (𝐴
2
) , 𝑟 (𝐻

3
) − 2𝑟 (𝐴

2
) − 𝑟 (𝐴

1
) − 𝑟 (𝐵

1
)} ,

min
𝑋∈𝐺,𝑌∈𝑆

𝑟 [(𝑋 + 𝑋
∗

) − (𝑌 + 𝑌
∗

)]

= 2𝑟 (𝐻
3
) − 2𝑝

+max {𝑟 (𝐻
1
) − 2𝑟 (𝐻

4
) , 𝑟 (𝐻

2
) − 2𝑟 (𝐻

5
) ,

𝑖
+
(𝐻

1
) + 𝑖

−
(𝐻

2
) − 𝑟 (𝐻

4
) − 𝑟 (𝐻

5
) ,

𝑖
−
(𝐻

1
) + 𝑖

+
(𝐻

2
) − 𝑟 (𝐻

4
) − 𝑟 (𝐻

5
)} ,

max
𝑋∈𝐺,𝑌∈𝑆

𝑖
±
[(𝑋 + 𝑋

∗

) − (𝑌 + 𝑌
∗

)]

= min {𝑖
±
(𝐻

1
) − 𝑟 (𝐴

1
) − 𝑟 (𝐴

2
) ,

𝑖
±
(𝐻

2
) − 𝑟 (𝐵

1
) − 𝑟 (𝐴

2
)} ,

min
𝑋∈𝐺,𝑌∈𝑆

𝑖
±
[(𝑋 + 𝑋

∗

) − (𝑌 + 𝑌
∗

)]

= 𝑟 (𝐸
3
) − 𝑝 +max {𝑖

±
(𝐻

1
) − 𝑟 (𝐻

4
) , 𝑖

±
(𝐻

2
) − 𝑟 (𝐻

5
)} .

(58)

Proof. By letting 𝐴
3
= 0, 𝐵

3
= −𝐼, 𝐶

3
= 𝐼, and 𝐷

3
= 𝐼 in

Theorem 7, we can get the results.

Corollary 10. Let 𝐴
1
, 𝐶

1
, 𝐵

1
, 𝐷

1
, 𝐴

2
, 𝐶

2
, and 𝐻

𝑖
, (𝑖 =

1, 2, . . . , 5) be as in Theorem 9, and suppose that the system of
matrix equations (13) and (11) is consistent, respectively. Denote
the set of all solutions to (13) by 𝑆 and (11) by 𝐺. Then, one has
the following:

(a) there exist 𝑋 ∈ 𝐺 and 𝑌 ∈ 𝑆 such that (𝑋 + 𝑋∗

) >

(𝑌 + 𝑌
∗

) if and only if

𝑖
+
(𝐻

1
) − 𝑟 (𝐴

1
) − 𝑟 (𝐴

2
) ≥ 𝑝,

𝑖
+
(𝐻

2
) − 𝑟 (𝐵

1
) − 𝑟 (𝐴

2
) ≥ 𝑝.

(59)

(b) there exist 𝑋 ∈ 𝐺 and 𝑌 ∈ 𝑆 such that (𝑋 + 𝑋∗

) <

(𝑌 + 𝑌
∗

) if and only if

𝑖
−
(𝐻

1
) − 𝑟 (𝐴

1
) − 𝑟 (𝐴

2
) ≥ 𝑝,

𝑖
−
(𝐻

2
) − 𝑟 (𝐵

1
) − 𝑟 (𝐴

2
) ≥ 𝑝,

(60)

(c) there exist 𝑋 ∈ 𝐺 and 𝑌 ∈ 𝑆 such that (𝑋 + 𝑋∗

) ≥

(𝑌 + 𝑌
∗

) if and only if

𝑟 (𝐻
3
) − 𝑝 + 𝑖

−
(𝐻

1
) − 𝑟 (𝐻

4
) ≤ 0,

𝑟 (𝐻
3
) − 𝑝 + 𝑖

−
(𝐻

1
) − 𝑟 (𝐻

4
) ≤ 0,

(61)

(d) there exist 𝑋 ∈ 𝐺 and 𝑌 ∈ 𝑆 such that (𝑋 + 𝑋∗

) ≤

(𝑌 + 𝑌
∗

) if and only if

𝑟 (𝐻
3
) − 𝑝 + 𝑖

+
(𝐻

1
) − 𝑟 (𝐻

4
) ≤ 0,

𝑟 (𝐻
3
) − 𝑝 + 𝑖

+
(𝐻

2
) − 𝑟 (𝐻

5
) ≤ 0,

(62)

(e) (𝑋 + 𝑋∗

) > (𝑌 + 𝑌
∗

) for all 𝑋 ∈ 𝐺 and 𝑌 ∈ 𝑆 if and
only if

𝑟 (𝐻
3
) − 𝑝 + 𝑖

+
(𝐻

1
) − 𝑟 (𝐻

4
) = 𝑝

𝑜𝑟 𝑟 (𝐻
3
) − 𝑝 + 𝑖

+
(𝐻

2
) − 𝑟 (𝐻

5
) = 𝑝,

(63)

(f) (𝑋 + 𝑋∗

) < (𝑌 + 𝑌
∗

) for all 𝑋 ∈ 𝐺 and 𝑌 ∈ 𝑆 if and
only if

𝑟 (𝐻
3
) − 𝑝 + 𝑖

−
(𝐻

1
) − 𝑟 (𝐻

4
) = 𝑝

𝑜𝑟 𝑟 (𝐻
3
) − 𝑝 + 𝑖

−
(𝐻

2
) − 𝑟 (𝐻

5
) = 𝑝,

(64)

(g) (𝑋 + 𝑋∗

) ≥ (𝑌 + 𝑌
∗

) for all 𝑋 ∈ 𝐺 and 𝑌 ∈ 𝑆 if and
only if

𝑖
−
(𝐻

1
) − 𝑟 (𝐴

1
) − 𝑟 (𝐴

2
) ≤ 0

𝑜𝑟 𝑖
−
(𝐻

2
) − 𝑟 (𝐵

1
) − 𝑟 (𝐴

2
) ≤ 0,

(65)
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(h) (𝑋 + 𝑋∗

) ≤ (𝑌 + 𝑌
∗

) for all 𝑋 ∈ 𝐺 and 𝑌 ∈ 𝑆 if and
only if

𝑖
+
(𝐻

1
) − 𝑟 (𝐴

1
) − 𝑟 (𝐴

2
) ≤ 0

𝑜𝑟 𝑖
+
(𝐻

2
) − 𝑟 (𝐵

1
) − 𝑟 (𝐴

2
) ≤ 0,

(66)

(i) there exist𝑋 ∈ 𝐺 and 𝑌 ∈ 𝑆 such that (𝑋 +𝑋∗

) − (𝑌 +

𝑌
∗

) is nonsingular if and only if
𝑟 (𝐻

1
) − 2𝑟 (𝐴

1
) − 2𝑟 (𝐴

2
) ≥ 𝑝,

𝑟 (𝐻
2
) − 2𝑟 (𝐵

1
) − 2𝑟 (𝐴

2
) ≥ 𝑝,

𝑟 (𝐻
3
) − 2𝑟 (𝐴

2
) − 𝑟 (𝐴

1
) − 𝑟 (𝐵

1
) ≥ 𝑝.

(67)

4. The Solvability Conditions and the General
Solution to System (6)

We now turn our attention to (6). We in this section use
Theorem 9 to give some necessary and sufficient conditions
for the existence of a solution to (6) and present an expression
of the general solution to (6). We begin with a lemma which
is used in the latter part of this section.

Lemma 11 (see [14]). Let 𝐴
1
∈ C𝑚×𝑛1 , 𝐵

1
∈ C𝑚×𝑛2 , 𝐶

1
∈

C𝑞×𝑚, and 𝐸
1
∈ C𝑚×𝑚

ℎ
be given. Let 𝐴 = 𝑅

𝐴1
𝐵
1
, 𝐵 = 𝐶

1
𝑅

𝐴1
,

𝐸 = 𝑅
𝐴1
𝐸

1
𝑅

𝐴1
,𝑀 = 𝑅

𝐴
𝐵
∗,𝑁 = 𝐴

∗

𝐿
𝐵
, and 𝑆 = 𝐵∗

𝐿
𝑀
. Then

the following statements are equivalent:
(1) equation (5) is consistent,
(2)
𝑅

𝑀
𝑅

𝐴
𝐸 = 0, 𝑅

𝐴
𝐸𝑅

𝐴
= 0, 𝐿

𝐵
𝐸𝐿

𝐵
= 0, (68)

(3)

𝑟 [
𝐸

1
𝐵
1
𝐶

∗

1
𝐴

1

𝐴
∗

1
0 0 0

] = 𝑟 [𝐵
1
𝐶

∗

1
𝐴

1
] + 𝑟 (𝐴

1
) ,

𝑟 [

[

𝐸
1
𝐵
1
𝐴

1

𝐴
∗

1
0 0

𝐵
∗

1
0 0

]

]

= 2𝑟 [𝐵
1
𝐴

1
] ,

𝑟 [

[

𝐸
1
𝐶

∗

1
𝐴

1

𝐴
∗

1
0 0

𝐶
1
0 0

]

]

= 2𝑟 [𝐶
∗

1
𝐴

1
] .

(69)

In this case, the general solution of (5) can be expressed as

𝑌 =
1

2
[𝐴

†

𝐸𝐵
†

− 𝐴
†

𝐵
∗

𝑀
†

𝐸𝐵
†

− 𝐴
†

𝑆(𝐵
†

)
∗

𝐸𝑁
†

𝐴
∗

𝐵
†

+𝐴
†

𝐸(𝑀
†

)
∗

+ (𝑁
†

)
∗

𝐸𝐵
†

𝑆
†

𝑆] + 𝐿
𝐴
𝑉
1
+ 𝑉

2
𝑅

𝐵

+ 𝑈
1
𝐿

𝑆
𝐿

𝑀
+ 𝑅

𝑁
𝑈

∗

2
𝐿

𝑀
− 𝐴

†

𝑆𝑈
2
𝑅

𝑁
𝐴

∗

𝐵
†

,

𝑋 = 𝐴
†

1
[𝐸

1
− 𝐵

1
𝑌𝐶

1
− (𝐵

1
𝑌𝐶

1
)
∗

]

−
1

2
𝐴

†

1
[𝐸

1
− 𝐵

1
𝑌𝐶

1
− (𝐵

1
𝑌𝐶

1
)
∗

] 𝐴
1
𝐴

†

1

− 𝐴
†

1
𝑊

1
𝐴

∗

1
+𝑊

∗

1
𝐴

1
𝐴

†

1
+ 𝐿

𝐴1
𝑊

2
,

(70)

where 𝑈
1
, 𝑈

2
, 𝑉

1
, 𝑉

2
,𝑊

1
, and𝑊

2
are arbitrary matrices over

C with appropriate sizes.

Now we give the main theorem of this section.

Theorem 12. Let 𝐴
𝑖
, 𝐶

𝑖
, (𝑖 = 1, 2, 3), 𝐵

𝑗
, and 𝐷

𝑗
, (𝑗 = 1, 3) be

given. Set

𝐴 = 𝐵
3
𝐿

𝐴2
, 𝐵 = 𝐶

3
𝐿

𝐴1
,

𝐶 = 𝑅
𝐵1
𝐷

3
, 𝐹 = 𝑅

𝐴
𝐵,

𝐺 = 𝐶𝑅
𝐴
, 𝑀 = 𝑅

𝐹
𝐺

∗

,

𝑁 = 𝐹
∗

𝐿
𝐺
, 𝑆 = 𝐺

∗

𝐿
𝑀
,

(71)

𝐷 = 𝐴
3
− 𝐵

3
𝐴

†

2
𝐶

2
− (𝐵

3
𝐴

†

2
𝐶

2
)
∗

− 𝐶
3
(𝐴

†

1
𝐶

1
+ 𝐿

𝐴1
𝐷

1
𝐵
†

1
)𝐷

3

− 𝐷
∗

3
(𝐴

†

1
𝐶

1
+ 𝐿

𝐴1
𝐷

1
𝐵
†

1
)
∗

𝐶
∗

3
,

(72)

𝐸 = 𝑅
𝐴
𝐷𝑅

𝐴
. (73)

Then the following statements are equivalent:

(1) system (6) is consistent,

(2) the equalities in (14) and (17) hold, and

𝑅
𝑀
𝑅

𝐹
𝐸 = 0, 𝑅

𝐹
𝐸𝑅

𝐹
= 0, 𝐿

𝐺
𝐸𝐿

𝐺
= 0, (74)

(3) the equalities in (15) and (18) hold, and

𝑟

[
[
[
[
[

[

𝐴
3

𝐶
3
𝐷

∗

3
𝐵
3
𝐶

∗

2

𝐵
∗

3
0 0 0 𝐴

∗

2

𝐶
1
𝐷

3
𝐴

1
0 0 0

𝐷
∗

1
𝐶

∗

3
0 𝐵

∗

1
0 0

𝐶
2

0 0 𝐴
2
0

]
]
]
]
]

]

= 𝑟

[
[
[

[

𝐶
3
𝐷

∗

3
𝐵
3

𝐴
1
0 0

0 𝐵
∗

1
0

0 0 𝐴
2

]
]
]

]

+ 𝑟 [
𝐴

2

𝐵
3

] ,

𝑟

[
[
[
[
[

[

𝐴
3

𝐶
3
𝐵
3
𝐷

∗

3
𝐶

∗

1
𝐶

∗

2

𝐶
∗

3
0 0 𝐴

∗

1
0

𝐵
∗

3
0 0 0 𝐴

∗

2

𝐶
1
𝐷

3
𝐴

1
0 0 0

𝐶
2

0 𝐴
2

0 0

]
]
]
]
]

]

= 2𝑟[

[

𝐶
3
𝐵
3

𝐴
1
0

0 𝐴
2

]

]

,

𝑟

[
[
[
[
[

[

𝐴
3

𝐷
∗

3
𝐵
3
𝐶

3
𝐷

1
𝐶

∗

2

𝐷
3

0 0 𝐵
1

0

𝐵
∗

3
0 0 0 𝐴

∗

2

𝐷
∗

1
𝐶

∗

3
𝐵
∗

1
0 0 0

𝐶
2

0 𝐴
2

0 0

]
]
]
]
]

]

= 2𝑟[

[

𝐷
∗

3
𝐵
3

𝐵
∗

1
0

0 𝐴
2

]

]

.

(75)

In this case, the general solution of system (6) can be expressed
as

𝑋 = 𝐴
†

2
𝐶

2
+ 𝐿

𝐴2
𝑈,

𝑌 = 𝐴
†

1
𝐶

1
+ 𝐿

𝐴1
𝐷

1
𝐵
†

1
+ 𝐿

𝐴1
𝑉𝑅

𝐵1
,

(76)
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where

𝑉 =
1

2
[𝐹

†

𝐸𝐺
†

− 𝐹
†

𝐺
∗

𝑀
†

𝐸𝐺
†

− 𝐹
†

𝑆(𝐺
†

)
∗

𝐸𝑁
†

𝐹
∗

𝐺
†

+𝐹
†

𝐸(𝑀
†

)
∗

+ (𝑁
†

)
∗

𝐸𝐺
†

𝑆
†

𝑆] + 𝐿
𝐹
𝑉
1

+ 𝑉
2
𝑅

𝐺
+ 𝑈

1
𝐿

𝑆
𝐿

𝑀
+ 𝑅

𝑁
𝑈

∗

2
𝐿

𝑀
− 𝐹

†

𝑆𝑈
2
𝑅

𝑁
𝐹

∗

𝐺
†

,

𝑈 = 𝐴
†

[𝐷 − 𝐵𝑉𝐶 − (𝐵𝑉𝐶)
∗

]

−
1

2
𝐴

†

[𝐷 − 𝐵𝑉𝐶 − (𝐵𝑉𝐶)
∗

] 𝐴𝐴
†

− 𝐴
†

𝑊
1
𝐴

∗

+𝑊
∗

1
𝐴𝐴

†

+ 𝐿
𝐴
𝑊

2
,

(77)

where 𝑈
1
, 𝑈

2
, 𝑉

1
, 𝑉

2
,𝑊

1
, and𝑊

2
are arbitrary matrices over

C with appropriate sizes.

Proof. (2)⇔ (3): Applying Lemma 3 and Lemma 11 gives

𝑅
𝑀
𝑅

𝐹
𝐸 = 0 ⇐⇒ 𝑟 (𝑅

𝑀
𝑅

𝐹
𝐸)

= 0 ⇐⇒ 𝑟[
𝐷 𝐵 𝐶

∗

𝐴

𝐴
∗

0 0 0
]

= 𝑟 [𝐵 𝐶
∗

𝐴] + 𝑟 (𝐴)

⇐⇒ 𝑟

[
[
[
[
[

[

𝐷 𝐶
3
𝐷

∗

3
𝐵
3

0

𝐵
∗

3
0 0 0 𝐴

∗

2

0 𝐴
1
0 0 0

0 0 𝐵
∗

1
0 0

0 0 0 𝐴
2
0

]
]
]
]
]

]

= 𝑟

[
[
[

[

𝐶
3
𝐷

∗

3
𝐵
3

𝐴
1
0 0

0 𝐵
∗

1
0

0 0 𝐴
2

]
]
]

]

+ 𝑟 [
𝐴

2

𝐵
3

]

⇐⇒ 𝑟

[
[
[
[
[

[

𝐴
3

𝐶
3
𝐷

∗

3
𝐵
3
𝐶

∗

2

𝐵
∗

3
0 0 0 𝐴

∗

2

𝐶
1
𝐷

3
𝐴

1
0 0 0

𝐷
∗

1
𝐶

∗

3
0 𝐵

∗

1
0 0

𝐶
2

0 0 𝐴
2
0

]
]
]
]
]

]

= 𝑟

[
[
[

[

𝐶
3
𝐷

∗

3
𝐵
3

𝐴
1
0 0

0 𝐵
∗

1
0

0 0 𝐴
2

]
]
]

]

+ 𝑟 [
𝐴

2

𝐵
3

] .

(78)

By a similar approach, we can obtain that

𝑅
𝐹
𝐸𝑅

𝐹
= 0 ⇐⇒ 𝑟

[
[
[
[
[

[

𝐴
3

𝐶
3
𝐵
3
𝐷

∗

3
𝐶

∗

1
𝐶

∗

2

𝐶
∗

3
0 0 𝐴

∗

1
0

𝐵
∗

3
0 0 0 𝐴

∗

2

𝐶
1
𝐷

3
𝐴

1
0 0 0

𝐶
2

0 𝐴
2

0 0

]
]
]
]
]

]

= 2𝑟[

[

𝐶
3
𝐵
3

𝐴
1
0

0 𝐴
2

]

]

,

𝐿
𝐺
𝐸𝐿

𝐺
= 0 ⇐⇒ 𝑟

[
[
[
[
[
[
[
[

[

𝐴
3

𝐷
∗

3
𝐵
3
𝐶

3
𝐷

1
𝐶

∗

2

𝐷
3

0 0 𝐵
1

0

𝐵
∗

3
0 0 0 𝐴

∗

2

𝐷
∗

1
𝐶

∗

3
𝐵
∗

1
0 0 0

𝐶
2

0 𝐴
2

0 0

]
]
]
]
]
]
]
]

]

= 2𝑟
[
[

[

𝐷
∗

3
𝐵
3

𝐵
∗

1
0

0 𝐴
2

]
]

]

.

(79)

(1)⇔ (2): We separate the four equations in system (6) into
three groups:

𝐴
1
𝑌 = 𝐶

1
, 𝑌𝐵

1
= 𝐷

1
, (80)

𝐴
2
𝑋 = 𝐶

2
, (81)

𝐵
3
𝑋 + (𝐵

3
𝑋)

∗

+ 𝐶
3
𝑌𝐷

3
+ (𝐶

3
𝑌𝐷

3
)
∗

= 𝐴
3
. (82)

By Lemma 1, we obtain that system (80) is solvable if and
only if (14), (81) is consistent if and only if (17). The general
solutions to system (80) and (81) can be expressed as (16) and
(19), respectively. Substituting (16) and (19) into (82) yields

𝐴𝑈 + (𝐴𝑈)
∗

+ 𝐵𝑉𝐶 + (𝐵𝑉𝐶)
∗

= 𝐷. (83)

Hence, the system (5) is consistent if and only if (80), (81), and
(83) are consistent, respectively. It follows fromLemma 11 that
(83) is solvable if and only if

𝑅
𝑀
𝑅

𝐹
𝐸 = 0, 𝑅

𝐹
𝐸𝑅

𝐹
= 0, 𝐿

𝐺
𝐸𝐿

𝐺
= 0. (84)

We know by Lemma 11 that the general solution of (83) can
be expressed as (77).

InTheorem 12, let 𝐴
1
and𝐷

1
vanish.Then we can obtain

the general solution to the following system:

𝐴
2
𝑋 = 𝐶

2
, 𝑌𝐵

1
= 𝐷

1
,

𝐵
3
𝑋 + (𝐵

3
𝑋)

∗

+ 𝐶
3
𝑌𝐷

3
+ (𝐶

3
𝑌𝐷

3
)
∗

= 𝐴
3
.

(85)

Corollary 13. Let 𝐴
2
, 𝐶

2
, 𝐵

1
, 𝐷

1
, 𝐵

3
, 𝐶

3
, 𝐷

3
, and 𝐴

3
= 𝐴

∗

3

be given. Set

𝐴 = 𝐵
3
𝐿

𝐴2
, 𝐶 = 𝑅

𝐵1
𝐷

3
,

𝐹 = 𝑅
𝐴
𝐶

3
, 𝐺 = 𝐶𝑅

𝐴
,

𝑀 = 𝑅
𝐹
𝐺

∗

, 𝑁 = 𝐹
∗

𝐿
𝐺
,

𝑆 = 𝐺
∗

𝐿
𝑀
,

𝐷 = 𝐴
3
− 𝐵

3
𝐴

†

2
𝐶

2
− (𝐵

3
𝐴

†

2
𝐶

2
)
∗

− 𝐶
3
𝐷

1
𝐵
†

1
𝐷

3
− (𝐶

3
𝐷

1
𝐵
†

1
𝐷

3
)
∗

,

𝐸 = 𝑅
𝐴
𝐷𝑅

𝐴
.

(86)
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Then the following statements are equivalent:

(1) system (85) is consistent
(2)

𝑅
𝐴2
𝐶

2
= 0, 𝐷

1
𝐿

𝐵1
= 0, 𝑅

𝑀
𝑅

𝐹
𝐸 = 0, (87)

𝑅
𝐹
𝐸𝑅

𝐹
= 0, 𝐿

𝐺
𝐸𝐿

𝐺
= 0, (88)

(3)

𝑟 [𝐴
2
𝐶

2
] = 𝑟 (𝐴

2
) , [

𝐷
1

𝐵
1

] = 𝑟 (𝐵
1
) ,

𝑟

[
[
[

[

𝐴
3

𝐶
3
𝐷

∗

3
𝐵
3
𝐶

∗

2

𝐵
∗

3
0 0 0 𝐴

∗

2

𝐷
∗

1
𝐶

∗

3
0 𝐵

∗

1
0 0

𝐶
2

0 0 𝐴
2
0

]
]
]

]

= 𝑟[

[

𝐶
3
𝐷

∗

3
𝐵
3

0 𝐵
∗

1
0

0 0 𝐴
2

]

]

+ 𝑟 [
𝐴

2

𝐵
3

] ,

𝑟

[
[
[

[

𝐴
3
𝐶

3
𝐵
3
𝐶

∗

2

𝐶
∗

3
0 0 0

𝐵
∗

3
0 0 𝐴

∗

2

𝐶
2
0 𝐴

2
0

]
]
]

]

= 2𝑟 [
𝐶

3
𝐵
3

0 𝐴
2

] ,

𝑟

[
[
[
[
[

[

𝐴
3

𝐷
∗

3
𝐵
3
𝐶

3
𝐷

1
𝐶

∗

2

𝐷
3

0 0 𝐵
1

0

𝐵
∗

3
0 0 0 𝐴

∗

2

𝐷
∗

1
𝐶

∗

3
𝐵
∗

1
0 0 0

𝐶
2

0 𝐴
2

0 0

]
]
]
]
]

]

= 2𝑟[

[

𝐷
∗

3
𝐵
3

𝐵
∗

1
0

0 𝐴
2

]

]

.

(89)

In this case, the general solution of system (6) can be expressed
as

𝑋 = 𝐴
†

2
𝐶

2
+ 𝐿

𝐴2
𝑈,

𝑌 = 𝐷
1
𝐵
†

1
+ 𝑉𝑅

𝐵1
,

(90)

where

𝑉 =
1

2
[𝐹

†

𝐸𝐺
†

− 𝐹
†

𝐺
∗

𝑀
†

𝐸𝐺
†

− 𝐹
†

𝑆(𝐺
†

)
∗

𝐸𝑁
†

𝐹
∗

𝐺
†

+𝐹
†

𝐸(𝑀
†

)
∗

+ (𝑁
†

)
∗

𝐸𝐺
†

𝑆
†

𝑆] + 𝐿
𝐹
𝑉
1

+ 𝑉
2
𝑅

𝐺
+ 𝑈

1
𝐿

𝑆
𝐿

𝑀
+ 𝑅

𝑁
𝑈

∗

2
𝐿

𝑀
− 𝐹

†

𝑆𝑈
2
𝑅

𝑁
𝐹

∗

𝐺
†

,

𝑈 = 𝐴
†

[𝐷 − 𝐶
3
𝑉𝐶 − (𝐶

3
𝑉𝐶)

∗

]

−
1

2
𝐴

†

[𝐷 − 𝐶
3
𝑉𝐶 − (𝐶

3
𝑉𝐶)

∗

] 𝐴𝐴
†

− 𝐴
†

𝑊
1
𝐴

∗

+𝑊
∗

1
𝐴𝐴

†

+ 𝐿
𝐴
𝑊

2
,

(91)

where 𝑈
1
, 𝑈

2
, 𝑉

1
, 𝑉

2
,𝑊

1
, and𝑊

2
are arbitrary matrices over

C with appropriate sizes.
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Left and right inverse eigenpairs problem for 𝜅-hermitian matrices and its optimal approximate problem are considered. Based on
the special properties of 𝜅-hermitian matrices, the equivalent problem is obtained. Combining a new inner product of matrices,
the necessary and sufficient conditions for the solvability of the problem and its general solutions are derived. Furthermore, the
optimal approximate solution and a calculation procedure to obtain the optimal approximate solution are provided.

1. Introduction

Throughout this paper we use some notations as follows. Let
𝐶
𝑛×𝑚 be the set of all 𝑛×𝑚 complex matrices,𝑈𝐶

𝑛×𝑛,𝐻𝐶
𝑛×𝑛,

𝑆𝐻𝐶
𝑛×𝑛 denote the set of all 𝑛×𝑛 unitary matrices, hermitian

matrices, skew-hermitian matrices, respectively. Let 𝐴, 𝐴𝐻,
and𝐴

+ be the conjugate, conjugate transpose, and theMoore-
Penrose generalized inverse of 𝐴, respectively. For 𝐴, 𝐵 ∈

𝐶
𝑛×𝑚, ⟨𝐴, 𝐵⟩ = re(tr(𝐵𝐻𝐴)), where re(tr(𝐵𝐻𝐴)) denotes the

real part of tr(𝐵𝐻𝐴), the inner product of matrices 𝐴 and 𝐵.
The induced matrix norm is called Frobenius norm. That is,
‖𝐴‖ = ⟨𝐴, 𝐴⟩

1/2

= (tr(𝐴𝐻𝐴))
1/2.

Left and right inverse eigenpairs problem is a special
inverse eigenvalue problem. That is, giving partial left and
right eigenpairs (eigenvalue and corresponding eigenvector),
(𝜆
𝑖
, 𝑥
𝑖
), 𝑖 = 1, . . . , ℎ; (𝜇

𝑗
, 𝑦
𝑗
), 𝑗 = 1, . . . , 𝑙, a special matrix set

𝑆, finding a matrix 𝐴 ∈ 𝑆 such that

𝐴𝑥
𝑖
= 𝜆
𝑖
𝑥
𝑖
, 𝑖 = 1, . . . , ℎ,

𝑦
𝑇

𝑗
𝐴 = 𝜇

𝑗
𝑦
𝑇

𝑗
, 𝑗 = 1, . . . , 𝑙.

(1)

This problem, which usually arises in perturbation analysis
of matrix eigenvalues and in recursive matters, has profound
application background [1–6]. When the matrix set 𝑆 is
different, it is easy to obtain different left and right inverse

eigenpairs problem. For example, we studied the left and
right inverse eigenpairs problem of skew-centrosymmetric
matrices and generalized centrosymmetric matrices, respec-
tively [5, 6]. Based on the special properties of left and right
eigenpairs of these matrices, we derived the solvability condi-
tions of the problem and its general solutions. In this paper,
combining the special properties of 𝜅-hermitianmatrices and
a new inner product ofmatrices, we first obtain the equivalent
problem, then derive the necessary and sufficient conditions
for the solvability of the problem and its general solutions.

Hill and Waters [7] introduced the following matrices.

Definition 1. Let 𝜅 be a fixed product of disjoint transposi-
tions, and let𝐾 be the associated permutation matrix, that is,
𝐾 = 𝐾

𝐻

= 𝐾, 𝐾2 = 𝐼
𝑛
, a matrix 𝐴 ∈ 𝐶

𝑛×𝑛 is said to be 𝜅-
hermitian matrices (skew 𝜅-hermitian matrices) if and only
if 𝑎
𝑖𝑗
= 𝑎
𝑘(𝑗)𝑘(𝑖)

(𝑎
𝑖𝑗
= −𝑎
𝑘(𝑗)𝑘(𝑖)

), 𝑖, 𝑗 = 1, . . . , 𝑛. We denote the
set of 𝜅-hermitian matrices (skew 𝜅-hermitian matrices) by
𝐾𝐻𝐶
𝑛×𝑛

(𝑆𝐾𝐻𝐶
𝑛×𝑛

).

FromDefinition 1, it is easy to see that hermitianmatrices
and perhermitian matrices are special cases of 𝜅-hermitian
matrices, with 𝑘(𝑖) = 𝑖 and 𝑘(𝑖) = 𝑛 − 𝑖 + 1, respectively.
Hermitian matrices and perhermitian matrices, which are
one of twelve symmetry patterns of matrices [8], are applied
in engineering, statistics, and so on [9, 10].
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From Definition 1, it is also easy to prove the following
conclusions.

(1) 𝐴 ∈ 𝐾𝐻𝐶
𝑛×𝑛 if and only if 𝐴 = 𝐾𝐴

𝐻

𝐾.
(2) 𝐴 ∈ 𝑆𝐾𝐻𝐶

𝑛×𝑛 if and only if 𝐴 = −𝐾𝐴
𝐻

𝐾.
(3) If 𝐾 is a fixed permutation matrix, then 𝐾𝐻𝐶

𝑛×𝑛 and
𝑆𝐾𝐻𝐶

𝑛×𝑛 are the closed linear subspaces of 𝐶𝑛×𝑛 and
satisfy

𝐶
𝑛×𝑛

= 𝐾𝐻𝐶
𝑛×𝑛

⨁𝑆𝐾𝐻𝐶
𝑛×𝑛

. (2)

The notation 𝑉
1
⊕ 𝑉
2
stands for the orthogonal direct sum of

linear subspace 𝑉
1
and 𝑉

2
.

(4) 𝐴 ∈ 𝐾𝐻𝐶
𝑛×𝑛 if and only if there is a matrix �̃� ∈

𝐻𝐶
𝑛×𝑛 such that �̃� = 𝐾𝐴.

(5) 𝐴 ∈ 𝑆𝐾𝐻𝐶
𝑛×𝑛 if and only if there is a matrix �̃� ∈

𝑆𝐻𝐶
𝑛×𝑛 such that �̃� = 𝐾𝐴.

Proof. (1) From Definition 1, if 𝐴 = (𝑎
𝑖𝑗
) ∈ 𝐾𝐻𝐶

𝑛×𝑛, then
𝑎
𝑖𝑗
= 𝑎
𝑘(𝑗)𝑘(𝑖)

, this implies𝐴 = 𝐾𝐴
𝐻

𝐾, for𝐾𝐴
𝐻

𝐾 = (𝑎
𝑘(𝑗)𝑘(𝑖)

).
(2)With the samemethod, we can prove (2). So, the proof

is omitted.

(3) (a) For any 𝐴 ∈ 𝐶
𝑛×𝑛, there exist 𝐴

1
∈ 𝐾𝐻𝐶

𝑛×𝑛,
𝐴
2
∈ 𝑆𝐾𝐻𝐶

𝑛×𝑛 such that

𝐴 = 𝐴
1
+ 𝐴
2
, (3)

where 𝐴
1
= (1/2)(A + 𝐾𝐴

𝐻

𝐾), 𝐴
2
= (1/2)(𝐴 −

𝐾𝐴
𝐻

𝐾).
(b) If there exist another 𝐴

1
∈ 𝐾𝐻𝐶

𝑛×𝑛, 𝐴
2

∈

𝑆𝐾𝐻𝐶
𝑛×𝑛 such that

𝐴 = 𝐴
1
+ 𝐴
2
, (4)

(3)-(4) yields

𝐴
1
− 𝐴
1
= − (𝐴

2
− 𝐴
2
) . (5)

Multiplying (5) on the left and on the right by
𝐾, respectively, and according to (1) and (2), we
obtain

𝐴
1
− 𝐴
1
= 𝐴
2
− 𝐴
2
. (6)

Combining (5) and (6) gives𝐴
1
= 𝐴
1
,𝐴
2
= 𝐴
2
.

(c) For any𝐴
1
∈ 𝐾𝐻𝐶

𝑛×𝑛,𝐴
2
∈ 𝑆𝐾𝐻𝐶

𝑛×𝑛, we have

⟨𝐴
1
, 𝐴
2
⟩ = re (tr (𝐴𝐻

2
𝐴
1
)) = re (tr (𝐾𝐴

𝐻

2
𝐾𝐾𝐴
1
𝐾))

= re (tr (−𝐴𝐻
2
𝐴
1
)) = − ⟨𝐴

1
, 𝐴
2
⟩ .

(7)

This implies ⟨𝐴
1
, 𝐴
2
⟩ = 0. Combining (a), (b),

and (c) gives (3).

(4) Let �̃� = 𝐾𝐴, if 𝐴 ∈ 𝐾𝐻𝐶
𝑛×𝑛, then �̃�

𝐻

= �̃� ∈ 𝐻𝐶
𝑛×𝑛.

If �̃�𝐻 = �̃� ∈ 𝐻𝐶
𝑛×n, then 𝐴 = 𝐾�̃� and 𝐾𝐴

𝐻

𝐾 = 𝐾�̃�
𝐻

𝐾𝐾 =

𝐾�̃� = 𝐴 ∈ 𝐾𝐻𝐶
𝑛×𝑛.

(5)With the samemethod, we can prove (5). So, the proof
is omitted.

In this paper, we suppose that 𝐾 is a fixed permutation
matrix and assume (𝜆

𝑖
, 𝑥
𝑖
), 𝑖 = 1, . . . , ℎ, be right eigenpairs

of 𝐴; (𝜇
𝑗
, 𝑦
𝑗
), 𝑗 = 1, . . . , 𝑙, be left eigenpairs of 𝐴. If we let

𝑋 = (𝑥
1
, . . . , 𝑥

ℎ
) ∈ 𝐶

𝑛×ℎ, Λ = diag (𝜆
1
, . . . , 𝜆

ℎ
) ∈ 𝐶

ℎ×ℎ;
𝑌 = (𝑦

1
, . . . , 𝑦

𝑙
) ∈ 𝐶
𝑛×𝑙, Γ = diag(𝜇

1
, . . . , 𝜇

𝑙
) ∈ 𝐶
𝑙×𝑙, then the

problems studied in this paper can be described as follows.

Problem 2. Giving 𝑋 ∈ 𝐶
𝑛×ℎ, Λ = diag(𝜆

1
, . . . , 𝜆

ℎ
) ∈ 𝐶

ℎ×ℎ;
𝑌 ∈ 𝐶

𝑛×𝑙, Γ = diag(𝜇
1
, . . . , 𝜇

𝑙
) ∈ 𝐶
𝑙×𝑙, find 𝐴 ∈ 𝐾𝐻𝐶

𝑛×𝑛 such
that

𝐴𝑋 = 𝑋Λ,

𝑌
𝑇

𝐴 = Γ𝑌
𝑇

.

(8)

Problem 3. Giving 𝐵 ∈ 𝐶
𝑛×𝑛, find �̂� ∈ 𝑆

𝐸
such that


𝐵 − �̂�


= min
∀𝐴∈𝑆𝐸

‖𝐵 − 𝐴‖ , (9)

where 𝑆
𝐸
is the solution set of Problem 2.

This paper is organized as follows. In Section 2, we first
obtain the equivalent problemwith the properties of𝐾𝐻𝐶

𝑛×𝑛

and then derive the solvability conditions of Problem 2 and its
general solution’s expression. In Section 3, we first attest the
existence and uniqueness theorem of Problem 3 then present
the unique approximation solution. Finally, we provide a
calculation procedure to compute the unique approximation
solution and numerical experiment to illustrate the results
obtained in this paper correction.

2. Solvability Conditions of Problem 2

We first discuss the properties of𝐾𝐻𝐶
𝑛×𝑛

Lemma 4. Denoting 𝑀 = 𝐾𝐸𝐾𝐺𝐸, and 𝐸 ∈ 𝐻𝐶
𝑛×𝑛, one has

the following conclusions.
(1) If 𝐺 ∈ 𝐾𝐻𝐶

𝑛×𝑛, then𝑀 ∈ 𝐾𝐻𝐶
𝑛×𝑛.

(2) If 𝐺 ∈ 𝑆𝐾𝐻𝐶
𝑛×𝑛, then𝑀 ∈ 𝑆𝐾𝐻𝐶

𝑛×𝑛.
(3) If 𝐺 = 𝐺

1
+ 𝐺
2
, where 𝐺

1
∈ 𝐾𝐻𝐶

𝑛×𝑛, 𝐺
2
∈ 𝑆𝐾𝐻𝐶

𝑛×𝑛,
then 𝑀 ∈ 𝐾𝐻𝐶

𝑛×𝑛 if and only if 𝐾𝐸𝐾𝐺
2
𝐸 = 0. In

addition, one has𝑀 = 𝐾𝐸𝐾𝐺
1
𝐸.

Proof. (1) 𝐾𝑀
𝐻

𝐾 = 𝐾𝐸𝐺
𝐻

𝐾𝐸𝐾𝐾 = 𝐾𝐸(𝐾𝐺𝐾)𝐾𝐸 =

𝐾𝐸𝐾𝐺𝐸 = 𝑀.
Hence, we have𝑀 ∈ 𝐾𝐻𝐶

𝑛×𝑛.
(2) 𝐾𝑀

𝐻

𝐾 = 𝐾𝐸𝐺
𝐻

𝐾𝐸𝐾𝐾 = 𝐾𝐸(−𝐾𝐺𝐾)𝐾𝐸 =

−𝐾𝐸𝐾𝐺𝐸 = −𝑀.
Hence, we have𝑀 ∈ 𝑆𝐾𝐻𝐶

𝑛×𝑛.
(3) 𝑀 = 𝐾𝐸𝐾(𝐺

1
+ 𝐺
2
)𝐸 = 𝐾𝐸𝐾𝐺

1
𝐸 + 𝐾𝐸𝐾𝐺

2
𝐸, we

have 𝐾𝐸𝐾𝐺
1
𝐸 ∈ 𝐾𝐻𝐶

𝑛×𝑛, 𝐾𝐸𝐾𝐺
2
𝐸 ∈ 𝑆𝐾𝐻𝐶

𝑛×𝑛 from (1)
and (2). If 𝑀 ∈ 𝐾𝐻𝐶

𝑛×𝑛, then 𝑀 − 𝐾𝐸𝐾𝐺
1
𝐸 ∈ 𝐾𝐻𝐶

𝑛×𝑛,
while𝑀−𝐾𝐸𝐾𝐺

1
𝐸 = 𝐾𝐸𝐾𝐺

2
𝐸 ∈ 𝑆𝐾𝐻𝐶

𝑛×𝑛.Therefore from
the conclusion (3) of Definition 1, we have𝐾𝐸𝐾𝐺

2
𝐸 = 0, that

is,𝑀 = 𝐾𝐸𝐾𝐺
1
𝐸. On the contrary, if𝐾𝐸𝐾𝐺

2
𝐸 = 0, it is clear

that𝑀 = 𝐾𝐸𝐾𝐺
1
𝐸 ∈ 𝐾𝐻𝐶

𝑛×𝑛. The proof is completed.

Lemma 5. Let 𝐴 ∈ 𝐾𝐻𝐶
𝑛×𝑛, if (𝜆, 𝑥) is a right eigenpair of 𝐴,

then (𝜆, 𝐾𝑥) is a left eigenpair of 𝐴.
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Proof. If (𝜆, 𝑥) is a right eigenpair of 𝐴, then we have

𝐴𝑥 = 𝜆𝑥. (10)

From the conclusion (1) of Definition 1, it follows that

𝐾𝐴
𝐻

𝐾𝑥 = 𝜆𝑥. (11)

This implies

(𝐾𝑥)
𝑇

𝐴 = 𝜆(𝐾𝑥)
𝑇

. (12)

So (𝜆, 𝐾𝑥) is a left eigenpair of 𝐴.

From Lemma 5, without loss of the generality, we may
assume that Problem 2 is as follows.

𝑋 ∈ 𝐶
𝑛×ℎ

, Λ = diag (𝜆
1
, . . . , 𝜆

ℎ
) ∈ 𝐶
ℎ×ℎ

,

𝑌 = 𝐾𝑋 ∈ 𝐶
𝑛×ℎ

, Γ = Λ ∈ 𝐶
ℎ×ℎ

.

(13)

Combining (13) and the conclusion (4) of Definition 1, it
is easy to derive the following lemma.

Lemma 6. If 𝑋, Λ, 𝑌, Γ are given by (13), then Problem 2 is
equivalent to the following problem. If 𝑋, Λ, 𝑌, Γ are given by
(13), find 𝐾𝐴 ∈ 𝐻𝐶

𝑛×𝑛 such that

𝐾𝐴𝑋 = 𝐾𝑋Λ. (14)

Lemma 7 (see [11]). If giving𝑋 ∈ 𝐶
𝑛×ℎ,𝐵 ∈ 𝐶

𝑛×ℎ, thenmatrix
equation �̃�𝑋 = 𝐵 has solution �̃� ∈ 𝐻𝐶

𝑛×𝑛 if and only if

𝐵 = 𝐵𝑋
+

𝑋, 𝐵
𝐻

𝑋 = 𝑋
𝐻

𝐵. (15)

Moreover, the general solution �̃� can be expressed as

�̃� = 𝐵𝑋
+

+ (𝐵𝑋
+

)
𝐻

(𝐼
𝑛
− 𝑋𝑋

+

)

+ (𝐼
𝑛
− 𝑋𝑋

+

) �̃� (𝐼
𝑛
− 𝑋𝑋

+

) , ∀�̃� ∈ 𝐻𝐶
𝑛×𝑛

.

(16)

Theorem 8. If𝑋,Λ,𝑌, Γ are given by (13), then Problem 2 has
a solution in 𝐾𝐻𝐶

𝑛×𝑛 if and only if

𝑋
𝐻

𝐾𝑋Λ = Λ𝑋
𝐻

𝐾𝑋, 𝑋Λ = 𝑋Λ𝑋
+

𝑋. (17)

Moreover, the general solution can be expressed as

𝐴 = 𝐴
0
+ 𝐾𝐸𝐾𝐺𝐸, ∀𝐺 ∈ 𝐾𝐻𝐶

𝑛×𝑛

, (18)

where

𝐴
0
= 𝑋Λ𝑋

+

+ 𝐾(𝑋Λ𝑋
+

)
𝐻

𝐾𝐸, 𝐸 = 𝐼
𝑛
− 𝑋𝑋

+

. (19)

Proof. Necessity: If there is a matrix 𝐴 ∈ 𝐾𝐻𝐶
𝑛×𝑛 such that

(𝐴𝑋 = 𝑋Λ, 𝑌𝑇𝐴 = Γ𝑌
𝑇

), then from Lemma 6, there exists a
matrix 𝐾𝐴 ∈ 𝐻𝐶

𝑛×𝑛 such that 𝐾𝐴𝑋 = 𝐾𝑋Λ, and according
to Lemma 7, we have

𝐾𝑋Λ = 𝐾𝑋Λ𝑋
+

𝑋, (𝐾𝑋Λ)
𝐻

𝑋 = 𝑋
𝐻

(𝐾𝑋Λ) . (20)

It is easy to see that (20) is equivalent to (17).

Sufficiency: If (17) holds, then (20) holds. Hence, matrix
equation𝐾𝐴𝑋 = 𝐾𝑋Λ has solution𝐾𝐴 ∈ 𝐻𝐶

𝑛×𝑛. Moreover,
the general solution can be expressed as follows:

𝐾𝐴 = 𝐾𝑋Λ𝑋
+

+ (𝐾𝑋Λ𝑋
+

)
𝐻

(𝐼
𝑛
− 𝑋𝑋

+

)

+ (𝐼
𝑛
− 𝑋𝑋

+

) �̃� (𝐼
𝑛
− 𝑋𝑋

+

) , ∀�̃� ∈ 𝐻𝐶
𝑛×𝑛

.

(21)

Let

𝐴
0
= 𝑋Λ𝑋

+

+ 𝐾(𝑋Λ𝑋
+

)
𝐻

𝐾𝐸, 𝐸 = 𝐼
𝑛
− 𝑋𝑋

+

. (22)

This implies 𝐴 = 𝐴
0
+ 𝐾𝐸�̃�𝐸. Combining the definition of

𝐾, 𝐸 and the first equation of (17), we have

𝐾𝐴
𝐻

0
𝐾 = 𝐾(𝑋Λ𝑋

+

)
𝐻

𝐾 + 𝑋Λ𝑋
+

− 𝐾(𝑋𝑋
+

)
𝐻

𝐾(𝑋Λ𝑋
+

)

= 𝑋Λ𝑋
+

+ 𝐾(𝑋Λ𝑋
+

)
𝐻

𝐾 − 𝐾(𝑋Λ𝑋
+

)
𝑇

𝐾𝑋𝑋
+

= 𝐴
0
.

(23)

Hence,𝐴
0
∈ 𝐾𝐻𝐶

𝑛×𝑛. Combining the definition of𝐾, 𝐸, (13)
and (17), we have

𝐴
0
𝑋 = 𝑋Λ𝑋

+

𝑋 + 𝐾(𝑋Λ𝑋
+

)
𝐻

𝐾(𝐼
𝑛
− 𝑋𝑋

+

)𝑋 = 𝑋Λ,

𝑌
𝑇

𝐴
0
= 𝑋
𝐻

𝐾𝑋Λ𝑋
+

+ 𝑋
𝐻

𝐾𝐾(𝑋Λ𝑋
+

)
𝐻

𝐾𝐸

= Λ𝑋
𝐻

𝐾𝑋𝑋
+

+ (𝐾𝑋Λ𝑋
+

𝑋)
𝐻

(𝐼
𝑛
− 𝑋𝑋

+

)

= Λ𝑋
𝐻

𝐾𝑋𝑋
+

+ Λ𝑋
𝐻

𝐾(𝐼
𝑛
− 𝑋𝑋

+

)

= Λ𝑋
𝐻

𝐾 = Γ𝑌
𝑇

.

(24)

Therefore, 𝐴
0
is a special solution of Problem 2. Combining

the conclusion (4) of Definition 1, Lemma 4, and 𝐸 = 𝐼
𝑛
−

𝑋𝑋
+

∈ 𝐻𝐶
𝑛×𝑛, it is easy to prove that 𝐴 = 𝐴

0
+ 𝐾𝐸𝐾𝐺𝐸 ∈

𝐾𝐻𝐶
𝑛×𝑛 if and only if 𝐺 ∈ 𝐾𝐻𝐶

𝑛×𝑛. Hence, the solution set
of Problem 2 can be expressed as (18).

3. An Expression of the Solution of Problem 3

From (18), it is easy to prove that the solution set 𝑆
𝐸
of

Problem 2 is a nonempty closed convex set if Problem 2 has
a solution in 𝐾𝐻𝐶

𝑛×𝑛. We claim that for any given 𝐵 ∈ 𝑅
𝑛×𝑛,

there exists a unique optimal approximation for Problem 3.

Theorem9. Giving𝐵 ∈ 𝐶
𝑛×𝑛, if the conditions of𝑋,𝑌,Λ, Γ are

the same as those in Theorem 8, then Problem 3 has a unique
solution �̂� ∈ 𝑆

𝐸
. Moreover, �̂� can be expressed as

�̂� = 𝐴
0
+ 𝐾𝐸𝐾𝐵

1
𝐸, (25)

where 𝐴
0
, 𝐸 are given by (19) and 𝐵

1
= (1/2)(𝐵 + 𝐾𝐵

𝐻

𝐾).

Proof. Denoting𝐸
1
= 𝐼
𝑛
−𝐸, it is easy to prove thatmatrices𝐸

and𝐸
1
are orthogonal projectionmatrices satisfying𝐸𝐸

1
= 0.

It is clear that matrices 𝐾𝐸𝐾 and 𝐾𝐸
1
𝐾 are also orthogonal
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projection matrices satisfying (𝐾𝐸𝐾)(𝐾𝐸
1
𝐾) = 0. According

to the conclusion (3) of Definition 1, for any 𝐵 ∈ 𝐶
𝑛×𝑛, there

exists unique

𝐵
1
∈ 𝐾𝐻𝐶

𝑛×𝑛

, 𝐵
2
∈ 𝑆𝐾𝐻𝐶

𝑛×𝑛 (26)

such that

𝐵 = 𝐵
1
+ 𝐵
2
, ⟨𝐵

1
, 𝐵
2
⟩ = 0, (27)

where

𝐵
1
=

1

2
(𝐵 + 𝐾𝐵

𝐻

𝐾) , 𝐵
2
=

1

2
(𝐵 − 𝐾𝐵

𝐻

𝐾) . (28)

CombiningTheorem 8, for any 𝐴 ∈ 𝑆
𝐸
, we have

‖𝐵 − 𝐴‖
2

=
𝐵 − 𝐴

0
− 𝐾𝐸𝐾𝐺𝐸



2

=
𝐵1 + 𝐵

2
− 𝐴
0
− 𝐾𝐸𝐾𝐺𝐸



2

=
𝐵1 − 𝐴

0
− 𝐾𝐸𝐾𝐺𝐸



2

+
𝐵2



2

=
(𝐵1 − 𝐴

0
) (𝐸 + 𝐸

1
) − 𝐾𝐸𝐾𝐺𝐸



2

+
𝐵2



2

=
(𝐵1 − 𝐴

0
) 𝐸 − 𝐾𝐸𝐾𝐺𝐸



2

+
(𝐵1 − 𝐴

0
) 𝐸
1



2

+
𝐵2



2

=
𝐾 (𝐸 + 𝐸

1
)𝐾 (𝐵

1
− 𝐴
0
) 𝐸 − 𝐾𝐸𝐾𝐺𝐸



2

+
(𝐵1 − 𝐴

0
) 𝐸
1



2

+
𝐵2



2

=
𝐾𝐸𝐾 (𝐵

1
− 𝐴
0
) 𝐸 − 𝐾𝐸𝐾𝐺𝐸



2

+
𝐾𝐸
1
𝐾(𝐵
1
− 𝐴
0
) 𝐸



2

+
(𝐵1 − 𝐴

0
)𝐸
1



2

+
𝐵2



2

.

(29)

It is easy to prove that 𝐾𝐸𝐾𝐴
0
𝐸 = 0 according to the

definitions of 𝐴
0
, 𝐸. So we have

‖𝐵 − 𝐴‖
2

=
𝐾𝐸𝐾𝐵

1
𝐸 − 𝐾𝐸𝐾𝐺𝐸



2

+
𝐾𝐸
1
𝐾(𝐵
1
− 𝐴
0
) 𝐸



2

+
(𝐵1 − 𝐴

0
)𝐸
1



2

+
𝐵2



2

.

(30)

Obviously, min
𝐴∈𝑆𝐸

‖𝐵 − 𝐴‖ is equivalent to

min
𝐺∈𝐾𝐻𝐶

𝑛×𝑛

𝐾𝐸𝐾𝐵
1
𝐸 − 𝐾𝐸𝐾𝐺𝐸

 . (31)

Since 𝐸𝐸
1

= 0, (𝐾𝐸𝐾)(𝐾𝐸
1
𝐾) = 0, it is clear that 𝐺 =

𝐵
1
+ 𝐾𝐸
1
𝐾�̂�𝐸
1
, for any �̂� ∈ 𝐾𝐻𝐶

𝑛×𝑛, is a solution of (31).
Substituting this result to (18), we can obtain (25).

Algorithm 10. (1) Input 𝑋, Λ, 𝑌, Γ according to (13). (2)
Compute 𝑋

𝐻

𝐾𝑋Λ, Λ𝑋
𝐻

𝐾𝑋, 𝑋Λ𝑋
+

𝑋, 𝑋Λ, if (17) holds,
then continue; otherwise stop. (3) Compute 𝐴

0
according to

(19), and compute 𝐵
1
according to (28). (4) According to (25)

calculate �̂�.

Example 11 (𝑛 = 8, ℎ = 𝑙 = 4).

𝑋 =

(
(
(
(

(

0.5661 −0.2014 − 0.1422𝑖 0.1446 + 0.2138𝑖 0.524

−0.2627 + 0.1875𝑖 0.5336 −0.2110 − 0.4370𝑖 −0.0897 + 0.3467𝑖

−0.4132 + 0.2409𝑖 0.0226 − 0.0271𝑖 −0.1095 + 0.2115𝑖 −0.3531 − 0.0642𝑖

−0.0306 + 0.2109𝑖 −0.3887 − 0.0425𝑖 0.2531 + 0.2542𝑖 0.0094 + 0.2991𝑖

0.0842 − 0.1778𝑖 −0.0004 − 0.3733𝑖 0.3228 − 0.1113𝑖 0.1669 + 0.1952𝑖

0.0139 − 0.3757𝑖 −0.2363 + 0.3856𝑖 0.2583 + 0.0721𝑖 0.1841 − 0.2202𝑖

0.0460 + 0.3276𝑖 −0.1114 + 0.0654𝑖 −0.0521 − 0.2556𝑖 −0.2351 + 0.3002𝑖

0.0085 − 0.1079𝑖 0.0974 + 0.3610𝑖 0.5060 −0.2901 − 0.0268𝑖

)
)
)
)

)

,

Λ = (

−0.3967 − 0.4050𝑖 0 0 0

0 −0.3967 + 0.4050𝑖 0 0

0 0 0.0001 0

0 0 0 −0.0001𝑖

) ,

𝐾 =

(
(
(
(

(

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

)
)
)
)

)

,

𝑌 = 𝐾𝑋, Γ = Λ

(32)
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𝐵 =

From the first column to the fourth column

(
(
(
(

(

−0.5218 + 0.0406𝑖 0.2267 − 0.0560𝑖 −0.1202 + 0.0820𝑖 −0.0072 − 0.3362𝑖

0.3909 − 0.3288𝑖 0.2823 − 0.2064𝑖 −0.0438 − 0.0403𝑖 0.2707 + 0.0547𝑖

0.2162 − 0.1144𝑖 −0.4307 + 0.2474𝑖 −0.0010 − 0.0412𝑖 0.2164 − 0.1314𝑖

−0.1872 − 0.0599𝑖 −0.0061 + 0.4698𝑖 0.3605 − 0.0247𝑖 0.4251 + 0.1869𝑖

−0.1227 − 0.0194𝑖 0.2477 − 0.0606𝑖 0.3918 + 0.6340𝑖 0.1226 + 0.0636𝑖

−0.0893 + 0.4335𝑖 0.0662 + 0.0199𝑖 −0.0177 − 0.1412𝑖 0.4047 + 0.2288𝑖

0.1040 − 0.2015𝑖 0.1840 + 0.2276𝑖 0.2681 − 0.3526𝑖 −0.5252 + 0.1022𝑖

0.1808 + 0.2669𝑖 0.2264 + 0.3860𝑖 −0.1791 + 0.1976𝑖 −0.0961 − 0.0117𝑖

(33)

From the fifth column to the eighth column

−0.2638 − 0.4952𝑖 −0.0863 − 0.1664𝑖 0.2687 + 0.1958𝑖 −0.2544 − 0.1099𝑖

−0.2741 − 0.1656𝑖 −0.0227 + 0.2684𝑖 0.1846 + 0.2456𝑖 −0.0298 + 0.5163𝑖

−0.1495 − 0.3205𝑖 0.1391 + 0.2434𝑖 0.1942 − 0.5211𝑖 −0.3052 − 0.1468𝑖

−0.2554 + 0.2690𝑖 −0.4222 − 0.1080𝑖 0.2232 + 0.0774𝑖 0.0965 − 0.0421𝑖

0.3856 − 0.0619𝑖 0.1217 − 0.0270𝑖 0.1106 − 0.3090𝑖 −0.1122 + 0.2379𝑖

−0.1130 + 0.0766𝑖 0.7102 − 0.0901𝑖 0.1017 + 0.1397𝑖 −0.0445 + 0.0038𝑖

0.1216 + 0.0076𝑖 0.2343 − 0.1772𝑖 0.5242 − 0.0089𝑖 −0.0613 + 0.0258𝑖

−0.0750 − 0.3581𝑖 0.0125 + 0.0964𝑖 0.0779 − 0.1074𝑖 0.6735 − 0.0266𝑖

)
)
)
)

)

. (34)

It is easy to see that matrices 𝑋, Λ, 𝑌, Γ satisfy (17). Hence,
there exists the unique solution for Problem 3. Using the

software “MATLAB”, we obtain the unique solution �̂� of
Problem 3.

From the first column to the fourth column

(
(
(
(

(

−0.1983 + 0.0491𝑖 0.1648 + 0.0032𝑖 0.0002 + 0.1065𝑖 0.1308 + 0.2690𝑖

0.1071 − 0.2992𝑖 0.2106 + 0.2381𝑖 −0.0533 − 0.3856𝑖 −0.0946 + 0.0488𝑖

0.1935 − 0.1724𝑖 −0.0855 − 0.0370𝑖 0.0200 − 0.0665𝑖 −0.2155 − 0.0636𝑖

0.0085 − 0.2373𝑖 −0.0843 − 0.1920𝑖 0.0136 + 0.0382𝑖 −0.0328 − 0.0000𝑖

−0.0529 + 0.1703𝑖 0.1948 − 0.0719𝑖 0.1266 + 0.1752𝑖 0.0232 − 0.2351𝑖

0.0855 + 0.1065𝑖 0.0325 − 0.2068𝑖 0.2624 + 0.0000𝑖 0.0136 − 0.0382𝑖

0.1283 − 0.1463𝑖 −0.0467 + 0.0000𝑖 0.0325 + 0.2067𝑖 −0.0843 + 0.1920𝑖

0.2498 + 0.0000𝑖 0.1283 + 0.1463𝑖 0.0855 − 0.1065𝑖 0.0086 + 0.2373𝑖

(35)

From the fifth column to the eighth column

0.2399 − 0.1019𝑖 0.1928 − 0.1488𝑖 −0.3480 − 0.2574𝑖 0.1017 − 0.0000𝑖

−0.1955 + 0.0644𝑖 0.2925 + 0.1872𝑖 0.3869 + 0.0000𝑖 −0.3481 + 0.2574𝑖

0.0074 + 0.0339𝑖 −0.3132 − 0.0000𝑖 0.2926 − 0.1872𝑖 0.1928 + 0.1488𝑖

0.0232 + 0.2351𝑖 −0.2154 + 0.0636𝑖 −0.0946 − 0.0489𝑖 0.1309 − 0.2691𝑖

−0.0545 − 0.0000𝑖 0.0074 − 0.0339𝑖 −0.1955 − 0.0643𝑖 0.2399 + 0.1019𝑖

0.1266 − 0.1752𝑖 0.0200 + 0.0665𝑖 −0.0533 + 0.3857𝑖 0.0002 − 0.1065𝑖

0.1949 + 0.0719𝑖 −0.0855 + 0.0370𝑖 0.2106 − 0.2381𝑖 0.1648 − 0.0032𝑖

−0.0529 − 0.1703𝑖 0.1935 + 0.1724𝑖 0.1071 + 0.2992𝑖 −0.1983 − 0.0491𝑖

)
)
)
)

)

. (36)



6 Journal of Applied Mathematics

Conflict of Interests

There is no conflict of interests between the authors.

Acknowledgments

This research was supported by National Natural Science
Foundation of China (31170532).The authors are very grateful
to the referees for their valuable comments and also thank the
editor for his helpful suggestions.

References

[1] J. H. Wilkinson, The Algebraic Eigenvalue Problem, Oxford
University Press, Oxford, UK, 1965.

[2] A. Berman and R. J. Plemmons, Nonnegative Matrices in the
Mathematical Sciences, vol. 9 ofClassics in AppliedMathematics,
SIAM, Philadelphia, Pa, USA, 1994.

[3] M.Arav,D.Hershkowitz, V.Mehrmann, andH. Schneider, “The
recursive inverse eigenvalue problem,” SIAM Journal on Matrix
Analysis and Applications, vol. 22, no. 2, pp. 392–412, 2000.

[4] R. Loewy and V. Mehrmann, “A note on the symmetric
recursive inverse eigenvalue problem,” SIAM Journal on Matrix
Analysis and Applications, vol. 25, no. 1, pp. 180–187, 2003.

[5] F. L. Li, X. Y.Hu, and L. Zhang, “Left and right inverse eigenpairs
problem of skew-centrosymmetric matrices,” Applied Mathe-
matics and Computation, vol. 177, no. 1, pp. 105–110, 2006.

[6] F. L. Li, X. Y. Hu, and L. Zhang, “Left and right inverse
eigenpairs problem of generalized centrosymmetric matrices
and its optimal approximation problem,” Applied Mathematics
and Computation, vol. 212, no. 2, pp. 481–487, 2009.

[7] R. D. Hill and S. R. Waters, “On 𝜅-real and 𝜅-Hermitian
matrices,” Linear Algebra and its Applications, vol. 169, pp. 17–
29, 1992.

[8] S. P. Irwin, “Matrices with multiple symmetry properties:
applications of centro-Hermitian and per-Hermitian matrices,”
Linear Algebra and its Applications, vol. 284, no. 1–3, pp. 239–
258, 1998.

[9] L. C. Biedenharn and J. D. Louck, Angular Momentum in
Quantum Physics, vol. 8 of Encyclopedia of Mathematics and its
Applications, Addison-Wesley, Reading, Mass, USA, 1981.

[10] W.M. Gibson and B. R. Pollard, Symmetry Principles in Elemen-
tary Particle Physics, Cambridge University Press, Cambridge,
UK, 1976.

[11] W. F. Trench, “Hermitian, Hermitian R-symmetric, and Her-
mitian R-skew symmetric Procrustes problems,” Linear Algebra
and its Applications, vol. 387, pp. 83–98, 2004.



Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2013, Article ID 271978, 5 pages
http://dx.doi.org/10.1155/2013/271978

Research Article
Completing a 2 × 2 Block Matrix of Real Quaternions with
a Partial Specified Inverse

Yong Lin1,2 and Qing-Wen Wang1

1 Department of Mathematics, Shanghai University, Shanghai 200444, China
2 School of Mathematics and Statistics, Suzhou University, Suzhou 234000, China

Correspondence should be addressed to Qing-Wen Wang; wqw858@yahoo.com.cn

Received 4 December 2012; Revised 23 February 2013; Accepted 20 March 2013

Academic Editor: K. Sivakumar

Copyright © 2013 Y. Lin and Q.-W. Wang. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

This paper considers a completion problem of a nonsingular 2 × 2 block matrix over the real quaternion algebra H: Let
𝑚
1
, 𝑚
2
, 𝑛
1
, 𝑛
2
be nonnegative integers,𝑚

1
+ 𝑚
2
= 𝑛
1
+ 𝑛
2
= 𝑛 > 0, and 𝐴

12
∈ H𝑚1×𝑛2 , 𝐴

21
∈ H𝑚2×𝑛1 , 𝐴

22
∈ H𝑚2×𝑛2 , 𝐵

11
∈ H𝑛1×𝑚1

be given. We determine necessary and sufficient conditions so that there exists a variant block entry matrix𝐴
11
∈ H𝑚1×𝑛1 such that

𝐴 = (
𝐴11 𝐴12

𝐴21 𝐴22
) ∈ H𝑛×𝑛 is nonsingular, and 𝐵

11
is the upper left block of a partitioning of 𝐴−1. The general expression for 𝐴

11
is also

obtained. Finally, a numerical example is presented to verify the theoretical findings.

1. Introduction

The problem of completing a block-partitioned matrix of a
specified type with some of its blocks given has been studied
by many authors. Fiedler and Markham [1] considered the
following completion problem over the real number field R.
Suppose𝑚

1
, 𝑚
2
, 𝑛
1
, 𝑛
2
are nonnegative integers,𝑚

1
+𝑚
2
=

𝑛
1
+𝑛
2
= 𝑛 > 0, 𝐴

11
∈ R𝑚1×𝑛1 , 𝐴

12
∈ R𝑚1×𝑛2 , 𝐴

21
∈ R𝑚2×𝑛1 ,

and 𝐵
22
∈ R𝑛2×𝑚2 . Determine a matrix 𝐴

22
∈ R𝑚2×𝑛2 such

that

𝐴 = (
𝐴
11

𝐴
12

𝐴
21

𝐴
22

) (1)

is nonsingular and 𝐵
22
is the lower right block of a partition-

ing of 𝐴−1. This problem has the form of

(
𝐴
11

𝐴
12

𝐴
21

?
)

−1

= (
? ?

? 𝐵
22

) , (2)

and the solution and the expression for 𝐴
22
were obtained in

[1]. Dai [2] considered this form of completion problemswith
symmetric and symmetric positive definite matrices over R.

Some other particular forms for 2×2 block matrices over
R have also been examined (see, e.g., [3]), such as

(
𝐴
11

𝐴
12

𝐴
21

?
)

−1

= (
𝐵
11

?

? ?
) ,

(
𝐴
11

?

? ?
)

−1

= (
? ?

? 𝐵
22

) ,

(
𝐴
11

?

? 𝐴
22

)

−1

= (
? 𝐵
12

𝐵
21

?
) .

(3)

The real quaternion matrices play a role in computer
science, quantum physics, and so on (e.g., [4–6]). Quaternion
matrices are receiving much attention as witnessed recently
(e.g., [7–9]). Motivated by the work of [1, 10] and keeping
such applications of quaternionmatrices in view, in this paper
we consider the following completion problem over the real
quaternion algebra:

H = {𝑎
0
+ 𝑎
1
𝑖 + 𝑎
2
𝑗 + 𝑎
3
𝑘 |

𝑖
2

= 𝑗
2

= 𝑘
2

= 𝑖𝑗𝑘 = −1 and 𝑎
0
, 𝑎
1
, 𝑎
2
, 𝑎
3
∈ R} .

(4)

Problem 1. Suppose 𝑚
1
, 𝑚
2
, 𝑛
1
, 𝑛
2
are nonnegative inte-

gers, 𝑚
1
+ 𝑚
2
= 𝑛
1
+ 𝑛
2
= 𝑛 > 0, and 𝐴

12
∈ H𝑚1×𝑛2 ,
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𝐴
21
∈ H𝑚2×𝑛1 , 𝐴

22
∈ 𝑅
𝑚2×𝑛2 , 𝐵

11
∈ H𝑛1×𝑚1 . Find a matrix

𝐴
11
∈ H𝑚1×𝑛1 such that

𝐴 = (
𝐴
11

𝐴
12

𝐴
21

𝐴
22

) ∈ H
𝑛×𝑛 (5)

is nonsingular, and𝐵
11
is the upper left block of a partitioning

of 𝐴−1. That is

(
? 𝐴

12

𝐴
21

𝐴
22

)

−1

= (
𝐵
11

?

? ?
) , (6)

where H𝑚×𝑛 denotes the set of all 𝑚 × 𝑛matrices over H and
𝐴
−1 denotes the inverse matrix of 𝐴.

Throughout, over the real quaternion algebra H, we
denote the identity matrix with the appropriate size by 𝐼, the
transpose of 𝐴 by 𝐴𝑇, the rank of 𝐴 by 𝑟(𝐴), the conjugate
transpose of𝐴 by𝐴∗ = (𝐴)𝑇, a reflexive inverse of a matrix𝐴
over H by 𝐴+ which satisfies simultaneously 𝐴𝐴+𝐴 = 𝐴 and
𝐴
+

𝐴𝐴
+

= 𝐴
+.Moreover,𝐿

𝐴
= 𝐼−𝐴

+

𝐴, 𝑅
𝐴
= 𝐼−𝐴𝐴

+, where
𝐴
+ is an arbitrary but fixed reflexive inverse of 𝐴. Clearly, 𝐿

𝐴

and𝑅
𝐴
are idempotent, and each is a reflexive inverse of itself.

R(𝐴) denotes the right column space of the matrix 𝐴.
The rest of this paper is organized as follows. In Section 2,

we establish some necessary and sufficient conditions to solve
Problem 1 over H, and the general expression for 𝐴

11
is also

obtained. In Section 3, we present a numerical example to
illustrate the developed theory.

2. Main Results

In this section, we begin with the following lemmas.

Lemma 1 (singular-value decomposition [9]). Let 𝐴 ∈ H𝑚×𝑛

be of rank 𝑟. Then there exist unitary quaternion matrices 𝑈 ∈

H𝑚×𝑚 and 𝑉 ∈ H𝑛×𝑛 such that

𝑈𝐴𝑉 = (
𝐷
𝑟
0

0 0
) , (7)

where 𝐷
𝑟
= diag(𝑑

1
, . . . , 𝑑

𝑟
) and the 𝑑

𝑗
’s are the positive

singular values of 𝐴.

Let H𝑛
𝑐
denote the collection of column vectors with 𝑛

components of quaternions and 𝐴 be an 𝑚 × 𝑛 quaternion
matrix. Then the solutions of 𝐴𝑥 = 0 form a subspace of H𝑛

𝑐

of dimension 𝑛(𝐴). We have the following lemma.

Lemma 2. Let

(
𝐴
11

𝐴
12

𝐴
21

𝐴
22

) (8)

be a partitioning of a nonsingular matrix 𝐴 ∈ H𝑛×𝑛, and let

(
𝐵
11

𝐵
12

𝐵
21

𝐵
22

) (9)

be the corresponding (i.e., transpose) partitioning of 𝐴−1. Then
𝑛(𝐴
11
) = 𝑛(𝐵

22
).

Proof. It is readily seen that

(
𝐵
22

𝐵
21

𝐵
12

𝐵
11

) ,

(
𝐴
22

𝐴
21

𝐴
12

𝐴
11

)

(10)

are inverse to each other, so we may suppose that 𝑛(𝐴
11
) <

𝑛(𝐵
22
).

If 𝑛(𝐵
22
) = 0, necessarily 𝑛(𝐴

11
) = 0 and we are finished.

Let 𝑛(𝐵
22
) = 𝑐 > 0, then there exists a matrix 𝐹 with 𝑐 right

linearly independent columns, such that 𝐵
22
𝐹 = 0. Then,

using

𝐴
11
𝐵
12
+ 𝐴
12
𝐵
22
= 0, (11)

we have

𝐴
11
𝐵
12
𝐹 = 0. (12)

From

𝐴
21
𝐵
12
+ 𝐴
22
𝐵
22
= 𝐼, (13)

we have

𝐴
21
𝐵
12
𝐹 = 𝐹. (14)

It follows that the rank 𝑟(𝐵
12
𝐹) ≥ 𝑐. In view of (12), this

implies

𝑛 (𝐴
11
) ≥ 𝑟 (𝐵

12
𝐹) ≥ 𝑐 = 𝑛 (𝐵

22
) . (15)

Thus

𝑛 (𝐴
11
) = 𝑛 (𝐵

22
) . (16)

Lemma 3 (see [10]). Let 𝐴 ∈ H𝑚×𝑛, 𝐵 ∈ H𝑝×𝑞, 𝐷 ∈ H𝑚×𝑞 be
known and 𝑋 ∈ H𝑛×𝑝 unknown. Then the matrix equation

𝐴𝑋𝐵 = 𝐷 (17)

is consistent if and only if

𝐴𝐴
+

𝐷𝐵
+

𝐵 = 𝐷. (18)

In that case, the general solution is

𝑋 = 𝐴
+

𝐷𝐵
+

+ 𝐿
𝐴
𝑌
1
+ 𝑌
2
𝑅
𝐵
, (19)

where𝑌
1
,𝑌
2
are any matrices with compatible dimensions over

H.

By Lemma 1, let the singular value decomposition of the
matrix 𝐴

22
and 𝐵

11
in Problem 1 be

𝐴
22
= 𝑄(

Λ 0

0 0
)𝑅
∗

, (20)

𝐵
11
= 𝑈(

Σ 0

0 0
)𝑉
∗

, (21)
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where Λ = diag(𝜆
1
, 𝜆
2
, . . . , 𝜆

𝑠
) is a positive diagonal matrix,

𝜆
𝑖
̸= 0 (𝑖 = 1, . . . , 𝑠) are the singular values of 𝐴

22
, 𝑠 =

𝑟(𝐴
22
), Σ = diag(𝜎

1
, 𝜎
2
, . . . , 𝜎

𝑟
) is a positive diagonal matrix,

𝜎
𝑖
̸= 0 (𝑖 = 1, . . . , 𝑟) are the singular values of 𝐵

11
and 𝑟 =

𝑟(𝐵
11
).
𝑄 = (𝑄

1
𝑄
2
) ∈ H𝑚2×𝑚2 , 𝑅 = (𝑅

1
𝑅
2
) ∈ H𝑛2×𝑛2 ,

𝑈 = (𝑈
1
𝑈
2
) ∈ H𝑛1×𝑛1 , 𝑉 = (𝑉

1
𝑉
2
) ∈ H𝑚1×𝑚1 are unitary

quaternion matrices, where 𝑄
1
∈ H𝑚2×𝑠, 𝑅

1
∈ H𝑛2×𝑠, 𝑈

1
∈

H𝑛1×𝑟, and 𝑉
1
∈ H𝑚1×𝑟.

Theorem 4. Problem 1 has a solution if and only if the
following conditions are satisfied:

(a) 𝑟 ( 𝐴12
𝐴22

) = 𝑛
2
,

(b) 𝑛
2
− 𝑟(𝐴

22
) = 𝑚

1
− 𝑟(𝐵
11
), that is 𝑛

2
− 𝑠 = 𝑚

1
− 𝑟,

(c) R(𝐴
21
𝐵
11
) ⊂R(𝐴

22
),

(d) R(𝐴
∗

12
𝐵
∗

11
) ⊂R(𝐴

∗

22
).

In that case, the general solution has the form of

𝐴
11
= 𝐵
+

11
+ 𝐴
12
𝑅(

Λ
−1

𝑄
∗

1
𝐴
21
𝑈
1
Σ 0

𝐻 −(𝑉
∗

2
𝐴
12
𝑅
2
)
−1)

× 𝑉
∗

𝐵
+

11
+ 𝑌 − 𝑌𝐵

11
𝐵
+

11
,

(22)

where 𝐻 is an arbitrary matrix in H(𝑛2−𝑠)×𝑟 and 𝑌 is an
arbitrary matrix in H𝑚1×𝑛1 .

Proof. If there exists an 𝑚
1
× 𝑛
1
matrix 𝐴

11
such that 𝐴 is

nonsingular and 𝐵
11
is the corresponding block of 𝐴−1, then

(a) is satisfied. From 𝐴𝐵 = 𝐵𝐴 = 𝐼, we have that

𝐴
21
𝐵
11
+ 𝐴
22
𝐵
21
= 0,

𝐵
11
𝐴
12
+ 𝐵
12
𝐴
22
= 0,

(23)

so that (c) and (d) are satisfied.
By (11), we have

𝑟 (𝐴
22
) + 𝑛 (𝐴

22
) = 𝑛
2
, 𝑟 (𝐵

11
) + 𝑛 (𝐵

11
) = 𝑚

1
. (24)

From Lemma 2, Notice that ( 𝐴11 𝐴12
𝐴21 𝐴22

) is the corresponding
partitioning of 𝐵−1, we have

𝑛 (𝐵
11
) = 𝑛 (𝐴

22
) , (25)

implying that (b) is satisfied.
Conversely, from (c), we know that there exists a matrix

𝐾 ∈ H𝑛2×𝑚1 such that

𝐴
21
𝐵
11
= 𝐴
22
𝐾. (26)

Let

𝐵
21
= −𝐾. (27)

From (20), (21), and (26), we have

𝐴
21
𝑈(

Σ 0

0 0
)𝑉
∗

= 𝑄(
Λ 0

0 0
)𝑅
∗

𝐾. (28)

It follows that

𝑄
∗

𝐴
21
𝑈(

Σ 0

0 0
)𝑉
∗

𝑉 = 𝑄
∗

𝑄(
Λ 0

0 0
)𝑅
∗

𝐾𝑉. (29)

This implies that

(

𝑄
∗

1
𝐴
21
𝑈
1
𝑄
∗

1
𝐴
21
𝑈
2

𝑄
∗

2
𝐴
21
𝑈
1
𝑄
∗

2
𝐴
21
𝑈
2

)(
Σ 0

0 0
)

= (
Λ 0

0 0
)(

𝑅
∗

1
𝐾𝑉
1
𝑅
∗

1
𝐾𝑉
2

𝑅
∗

2
𝐾𝑉
1
𝑅
∗

2
𝐾𝑉
2

) .

(30)

Comparing corresponding blocks in (30), we obtain

𝑄
∗

2
𝐴
21
𝑈
1
= 0. (31)

Let 𝑅∗𝐾𝑉 = �̂�. From (29), (30), we have

�̂� = (
Λ
−1

𝑄
∗

1
𝐴
21
𝑈
1
Σ 0

𝐻 𝐾
22

) ,

𝐻 ∈ H
(𝑛2−𝑠)×𝑟, 𝐾

22
∈ H
(𝑛2−𝑠)×(𝑚1−𝑟).

(32)

In the same way, from (d), we can obtain

𝑉
∗

1
𝐴
12
𝑅
2
= 0. (33)

Notice that ( 𝐴12
𝐴22

) in (a) is a full column rank matrix. By (20),
(21), and (33), we have

(
0 𝑄
∗

𝑉
∗

0
)(

𝐴
12

𝐴
22

)𝑅 = (

Λ 0

0 0

𝑉
∗

1
𝐴
12
𝑅
1
𝑉
∗

1
𝐴
12
𝑅
2

𝑉
∗

2
𝐴
12
𝑅
1
𝑉
∗

2
𝐴
12
𝑅
2

), (34)

so that

𝑛
2
= 𝑟(

𝐴
12

𝐴
22

) = 𝑟((
0 𝑄
∗

𝑉
∗

0
)(

𝐴
12

𝐴
22

)𝑅)

= 𝑟(

Λ 0

0 0

𝑉
∗

1
𝐴
12
𝑅
1
𝑉
∗

1
𝐴
12
𝑅
2

𝑉
∗

2
𝐴
12
𝑅
1
𝑉
∗

2
𝐴
12
𝑅
2

)

= 𝑟 (Λ) + 𝑟 (𝑉
∗

2
𝐴
12
𝑅
2
)

= 𝑠 + 𝑟 (𝑉
∗

2
𝐴
12
𝑅
2
) .

(35)

It follows from (b) and (35) that 𝑉𝑇
2
𝐴
12
𝑅
2
is a full column

rank matrix, so it is nonsingular.
From 𝐴𝐵 = 𝐼, we have the following matrix equation:

𝐴
11
𝐵
11
+ 𝐴
12
𝐵
21
= 𝐼, (36)

that is

𝐴
11
𝐵
11
= 𝐼 − 𝐴

12
𝐵
21
, 𝐼 ∈ H

𝑚1×𝑚1 , (37)
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where 𝐵
11
, 𝐴
12

were given, 𝐵
21

= −𝐾 (from (27)). By
Lemma 3, the matrix equation (37) has a solution if and only
if

(𝐼 − 𝐴
12
𝐵
21
) 𝐵
+

11
𝐵
11
= 𝐼 − 𝐴

12
𝐵
21
. (38)

By (21), (27), (32), and (33), we have that (38) is equivalent to:

(𝐼 + 𝐴
12
𝐾)𝑉(

Σ
−1

0

0 0
)𝑈
∗

𝑈(
Σ 0

0 0
)𝑉
∗

= 𝐼 + 𝐴
12
𝐾. (39)

We simplify the equation above.The left hand side reduces to
(𝐼 + 𝐴

12
𝐾)𝑉
1
𝑉
∗

1
and so we have

𝐴
12
𝐾𝑉
1
𝑉
∗

1
− 𝐴
12
𝐾 = 𝐼 − 𝑉

1
𝑉
∗

1
. (40)

So,

𝐴
12
𝑅�̂�𝑉
∗

𝑉
1
𝑉
∗

1
− 𝐴
12
𝑅�̂�𝑉
∗

= (𝑉
1
𝑉
2
) (
𝑉
∗

1

𝑉
∗

2

) − 𝑉
1
𝑉
∗

1
.

(41)

This implies that

𝐴
12
𝑅�̂�(

𝑉
∗

1
𝑉
1

𝑉
∗

2
𝑉
1

)𝑉
∗

1
− 𝐴
12
𝑅�̂�(

𝑉
∗

1

𝑉
∗

2

) = 𝑉
2
𝑉
∗

2
, (42)

so that

𝐴
12
𝑅�̂�(

𝐼

0
)𝑉
∗

1
− 𝐴
12
𝑅�̂�(

𝑉
∗

1

𝑉
∗

2

) = 𝑉
2
𝑉
∗

2
. (43)

So,

−𝐴
12
𝑅�̂�(

0

𝑉
∗

2

) = 𝑉
2
𝑉
∗

2
, (44)

and hence,

− (𝐴
12
𝑅
1
𝐴
12
𝑅
2
) (
Λ
−1

𝑄
∗

1
𝐴
21
𝑈
1
Σ 0

𝐻 𝐾
22

)(
0

𝑉
∗

2

) = 𝑉
2
𝑉
∗

2
.

(45)

Finally, we obtain

𝐴
12
𝑅
2
𝐾
22
𝑉
∗

2
= −𝑉
2
𝑉
∗

2
. (46)

Multiplying both sides of (46) by 𝑉∗ from the left, consider-
ing (33) and the fact that 𝑉∗

2
𝐴
12
𝑅
2
is nonsingular, we have

𝐾
22
= −(𝑉

∗

2
𝐴
12
𝑅
2
)
−1

. (47)

From Lemma 3, (38), (47), Problem 1 has a solution and the
general solution is

𝐴
11
= 𝐵
+

11
+ 𝐴
12
𝑅(

Λ
−1

𝑄
∗

1
𝐴
21
𝑈
1
Σ 0

𝐻 −(𝑉
∗

2
𝐴
12
𝑅
2
)
−1
)

× 𝑉
∗

𝐵
+

11
+ 𝑌 − 𝑌𝐵

11
𝐵
+

11
,

(48)

where 𝐻 is an arbitrary matrix in H(𝑛2−𝑠)×𝑟 and 𝑌 is an
arbitrary matrix in H𝑚1×𝑛1 .

3. An Example

In this section, we give a numerical example to illustrate the
theoretical results.

Example 5. Consider Problem 1 with the parameter matrices
as follows:

𝐴
12
= (

2 + 𝑗
1

2
𝑘

−𝑘 1 +
1

2
𝑗

) ,

𝐴
21
= (

3

2
+
1

2
𝑖 −

1

2
𝑗 −

1

2
𝑘

1

2
𝑗 +

1

2
𝑘

3

2
+
1

2
𝑖

) ,

𝐴
22
= (

2 𝑖

2𝑗 𝑘
) , 𝐵

11
= (

1 𝑖

𝑗 𝑘
) .

(49)

It is easy to show that (c), (d) are satisfied, and that

𝑛
2
= 𝑟(

𝐴
12

𝐴
22

) = 2,

𝑛
2
− 𝑟 (𝐴

22
) = 𝑚

1
− 𝑟 (𝐵

11
) = 0,

(50)

so (a), (b) are satisfied too. Therefore, we have

𝐵
+

11
= (

1

2
−
1

2
𝑗

−
1

2
𝑖 −

1

2
𝑘

) ,

𝐴
22
= 𝑄(

Λ 0

0 0
)𝑅
∗

, 𝐵
11
= 𝑈(

Σ 0

0 0
)𝑉
∗

,

(51)

where

𝑄 =
1

√2

(
1 𝑖

𝑗 𝑘
) , Λ = (

2√2 0

0 √2
) ,

𝑅 = (
1 0

0 1
) , 𝑈 =

1

√2

(
1 𝑖

𝑗 𝑘
) ,

Σ = (
√2 0

0 √2
) , 𝑉 = (

1 0

0 1
) .

(52)

We also have

𝑄
1
=

1

√2

(
1 𝑖

𝑗 𝑘
) , 𝑅

1
= (

1 0

0 1
) ,

𝑈
1
=

1

√2

(
1 𝑖

𝑗 𝑘
) , 𝑉

1
= (

1 0

0 1
) .

(53)
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By Theorem 4, for an arbitrary matrices 𝑌 ∈ H2×2, we
have

𝐴
11
= 𝐵
+

11
+ 𝐴
12
𝑅 (Λ
−1

𝑄
∗

1
𝐴
21
𝑈
1
Σ)𝑉
∗

𝐵
+

11
+ 𝑌 − 𝑌𝐵

11
𝐵
+

11

= (

3

2
+
1

4
𝑗 +

1

4
𝑘

3

4
+
1

4
𝑖 −

3

2
𝑗

1

2
− 𝑖 +

1

4
𝑗 −

1

4
𝑘
1

4
−
3

4
𝑖 −

1

2
𝑗 − 𝑘

) ,

(54)

it follows that

𝐴 =
(
(

(

3

2

+

1

4

𝑗 +

1

4

𝑘

3

4

+

1

4

𝑖 −

3

2

𝑗 2 + 𝑗

1

2

𝑘

1

2

− 𝑖 +

1

4

𝑗 −

1

4

𝑘

1

4

−

3

4

𝑖 −

1

2

𝑗 − 𝑘 −𝑘 1 +

1

2

𝑗

3

2

+

1

2

𝑖 −

1

2

𝑗 −

1

2

𝑘 2 𝑖

1

2

𝑗 +

1

2

𝑘

3

2

+

1

2

𝑖 2𝑗 𝑘

)
)

)

,

𝐴
−1

=(

1 𝑖 −1 −1

𝑗 𝑘 0 −1

−1 0
3

4

1

2
−
3

4
𝑗

−1 −1
1

2
− 𝑖

1

2
−
1

2
𝑖 −

1

2
𝑗 − 𝑘

).

(55)

The results verify the theoretical findings of Theorem 4.
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The fuzzy matrix equations �̃�⊗�̃�⊗�̃� = �̃� in which �̃�, �̃�, and �̃� are𝑚×𝑚, 𝑛×𝑛, and𝑚×𝑛 nonnegative LR fuzzy numbers matrices,
respectively, are investigated. The fuzzy matrix systems is extended into three crisp systems of linear matrix equations according
to arithmetic operations of LR fuzzy numbers. Based on pseudoinverse of matrix, the fuzzy approximate solution of original fuzzy
systems is obtained by solving the crisp linear matrix systems. In addition, the existence condition of nonnegative fuzzy solution is
discussed. Two examples are calculated to illustrate the proposed method.

1. Introduction

Since many real-world engineering systems are too com-
plex to be defined in precise terms, imprecision is often
involved in any engineering design process. Fuzzy systems
have an essential role in this fuzzy modeling, which can
formulate uncertainty in actual environment. Inmanymatrix
equations, some or all of the system parameters are vague
or imprecise, and fuzzy mathematics is a better tool than
crisp mathematics for modeling these problems, and hence
solving a fuzzy matrix equation is becomingmore important.
The concept of fuzzy numbers and arithmetic operations
with these numbers were first introduced and investigated
by Zadeh [1, 2], Dubois and Prade [3], and Nahmias [4].
A different approach to fuzzy numbers and the structure
of fuzzy number spaces was given by Puri and Ralescu [5],
Goetschel, Jr. and Voxman [6], and Wu and Ma [7, 8].

In the past decades, many researchers have studied the
fuzzy linear equations such as fuzzy linear systems (FLS), dual
fuzzy linear systems (DFLS), general fuzzy linear systems
(GFLS), fully fuzzy linear systems (FFLS), dual fully fuzzy
linear systems (DFFLS), and general dual fuzzy linear systems
(GDFLS). These works were performed mainly by Friedman
et al. [9, 10], Allahviranloo et al. [11–17], Abbasbandy et al.

[18–21],Wang andZheng [22, 23], andDehghan et al. [24, 25].
The general method they applied is the fuzzy linear equations
were converted to a crisp function system of linear equations
with high order according to the embedding principles
and algebraic operations of fuzzy numbers. Then the fuzzy
solution of the original fuzzy linear systems was derived from
solving the crisp function linear systems.However, for a fuzzy
matrix equationwhich always has awide use in control theory
and control engineering, few works have been done in the
past. In 2009, Allahviranloo et al. [26] discussed the fuzzy lin-
ear matrix equations (FLME) of the form 𝐴�̃�𝐵 = �̃� in which
thematrices𝐴 and𝐵 are known𝑚×𝑚 and 𝑛×𝑛 real matrices,
respectively; �̃� is a given 𝑚 × 𝑛 fuzzy matrix. By using the
parametric form of fuzzy number, they derived necessary
and sufficient conditions for the existence condition of fuzzy
solutions and designed a numerical procedure for calculating
the solutions of the fuzzy matrix equations. In 2011, Guo
et al. [27–29] investigated a class of fuzzy matrix equations
𝐴�̃� = �̃� by means of the block Gaussian elimination method
and studied the least squares solutions of the inconsistent
fuzzy matrix equation 𝐴�̃� = �̃� by using generalized inverses
of the matrix, and discussed fuzzy symmetric solutions of
fuzzy matrix equations 𝐴�̃� = �̃�. What is more, there are two
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shortcomings in the above fuzzy systems. The first is that in
these fuzzy linear systems and fuzzy matrix systems the fuzzy
elements were denoted by triangular fuzzy numbers, so the
extended model equations always contain parameter 𝑟, 0 ≤

𝑟 ≤ 1 which makes their computation especially numerical
implementation inconvenient in some sense. The other one
is that the weak fuzzy solution of fuzzy linear systems𝐴�̃� = �̃�

does not exist sometimes see; [30].
To make the multiplication of fuzzy numbers easy and

handle the fully fuzzy systems, Dubois and Prade [3] intro-
duced the LR fuzzy number in 1978. We know that triangular
fuzzy numbers and trapezoidal fuzzy numbers [31] are just
specious cases of LR fuzzy numbers. In 2006, Dehghan et
al. [25] discussed firstly computational methods for fully
fuzzy linear systems �̃��̃� = �̃� whose coefficient matrix and
the right-hand side vector are LR fuzzy numbers. In 2012,
Allahviranloo et al. studied LR fuzzy linear systems [32]
by the linear programming with equality constraints. Otadi
and Mosleh considered the nonnegative fuzzy solution [33]
of fully fuzzy matrix equations �̃��̃� = �̃� by employing
linear programming with equality constraints at the same
year. Recently, Guo and Shang [34] investigated the fuzzy
approximate solution of LR fuzzy Sylvester matrix equations
𝐴�̃� + �̃�𝐵 = �̃�. In this paper we propose a general model for
solving the fuzzy linearmatrix equation �̃�⊗�̃�⊗�̃� = �̃�, where
�̃�, �̃�, and �̃� are𝑚×𝑚, 𝑛×𝑛, and𝑚×𝑛 nonnegative LR fuzzy
numbersmatrices, respectively.Themodel is proposed in this
way; that is, we extend the fuzzy linear matrix system into
a system of linear matrix equations according to arithmetic
operations of LR fuzzy numbers. The LR fuzzy solution of
the original matrix equation is derived from solving crisp
systems of linearmatrix equations.The structure of this paper
is organized as follows.

In Section 2, we recall the LR fuzzy numbers and
present the concept of fully fuzzy linear matrix equation.The
computing model to the positive fully fuzzy linear matrix
equation is proposed in detail and the fuzzy approximate
solution of the fuzzy linear matrix equation is obtained by
using pseudo-inverse in Section 3. Some examples are given
to illustrate our method in Section 4 and the conclusion is
drawn in Section 5.

2. Preliminaries

2.1. The LR Fuzzy Number

Definition 1 (see [1]). A fuzzy number is a fuzzy set like 𝑢 :

𝑅 → 𝐼 = [0, 1] which satisfies the following.

(1) 𝑢 is upper semicontinuous,
(2) 𝑢 is fuzzy convex, that is, 𝑢(𝜆𝑥 + (1 − 𝜆)𝑦) ≥

min{𝑢(𝑥), 𝑢(𝑦)} for all 𝑥, 𝑦 ∈ 𝑅, 𝜆 ∈ [0, 1],
(3) 𝑢 is normal, that is, there exists 𝑥

0
∈ 𝑅 such that

𝑢(𝑥
0
) = 1,

(4) supp 𝑢 = {𝑥 ∈ 𝑅 | 𝑢(𝑥) > 0} is the support of the 𝑢,
and its closure cl(supp 𝑢) is compact.

Let 𝐸1 be the set of all fuzzy numbers on 𝑅.

Definition 2 (see [3]). A fuzzy number �̃� is said to be an LR
fuzzy number if

𝜇
�̃�
(𝑥) =

{{{

{{{

{

𝐿(
𝑚 − 𝑥

𝛼
) , 𝑥 ≤ 𝑚, 𝛼 > 0,

𝑅(
𝑥 − 𝑚

𝛽
) , 𝑥 ≥ 𝑚, 𝛽 > 0,

(1)

where 𝑚, 𝛼, and 𝛽 are called the mean value, left, and right
spreads of �̃�, respectively. The function 𝐿(⋅), which is called
left shape function satisfies

(1) 𝐿(𝑥) = 𝐿(−𝑥),
(2) 𝐿(0) = 1 and 𝐿(1) = 0,
(3) 𝐿(𝑥) is nonincreasing on [0,∞).

The definition of a right shape function 𝑅(⋅) is similar to
that of 𝐿(⋅).

Clearly, �̃� = (𝑚, 𝛼, 𝛽)LR is positive (negative) if and only
if𝑚 − 𝛼 > 0 (𝑚 + 𝛽 < 0).

Also, two LR fuzzy numbers �̃� = (𝑚, 𝛼, 𝛽)LR and �̃� =

(𝑛, 𝛾, 𝛿)LR are said to be equal, if and only if 𝑚 = 𝑛, 𝛼 = 𝛾,
and 𝛽 = 𝛿.

Definition 3 (see [5]). For arbitrary LR fuzzy numbers �̃� =

(𝑚, 𝛼, 𝛽)LR and �̃� = (𝑛, 𝛾, 𝛿)LR, we have the following.

(1) Addition:

�̃� ⊕ �̃� = (𝑚, 𝛼, 𝛽)LR ⊕ (𝑛, 𝛾, 𝛿)LR = (𝑚 + 𝑛, 𝛼 + 𝛾, 𝛽 + 𝛿)LR.

(2)

(2) Multiplication:
(i) If �̃� > 0 and �̃� > 0, then

�̃� ⊗ �̃� = (𝑚, 𝛼, 𝛽)LR ⊗ (𝑛, 𝛾, 𝛿)LR

≅ (𝑚𝑛,𝑚𝛾 + 𝑛𝛼,𝑚𝛿 + 𝑛𝛽)LR.
(3)

(ii) if �̃� < 0 and �̃� > 0, then

�̃� ⊗ �̃� = (𝑚, 𝛼, 𝛽)RL ⊗ (𝑛, 𝛾, 𝛿)LR

≅ (𝑚𝑛, 𝑛𝛼 − 𝑚𝛿, 𝑛𝛽 − 𝑚𝛾)RL,
(4)

(iii) if �̃� < 0 and �̃� < 0, then

�̃� ⊗ �̃� = (𝑚, 𝛼, 𝛽)RL ⊗ (𝑛, 𝛾, 𝛿)LR

≅ (𝑚𝑛, −𝑚𝛿 − 𝑛𝛽, −𝑚𝛾 − 𝑛𝛼)RL,
(5)

(3) Scalar multiplication:

𝜆 × �̃� = 𝜆 × (𝑚, 𝛼, 𝛽)LR

= {
(𝜆𝑚, 𝜆𝛼, 𝜆𝛽)LR, 𝜆 ≥ 0,

(𝜆𝑚, −𝜆𝛽, −𝜆𝛼)RL, 𝜆 < 0.

(6)
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2.2. The LR Fuzzy Matrix

Definition 4. Amatrix �̃� = (�̃�
𝑖𝑗
) is called an LR fuzzy matrix,

if each element �̃�
𝑖𝑗
of �̃� is an LR fuzzy number.

�̃� will be positive (negative) and denoted by �̃� > 0 (�̃� <

0) if each element �̃�
𝑖𝑗
of �̃� is positive (negative), where �̃�

𝑖𝑗
=

(𝑎
𝑖𝑗
, 𝑎
𝑙

𝑖𝑗
, 𝑎
𝑟

𝑖𝑗
)LR. Up to the rest of this paper, we use positive

LR fuzzy numbers and formulas given in Definition 3. For
example, we represent 𝑚 × 𝑛 LR fuzzy matrix �̃� = (�̃�

𝑖𝑗
), that

�̃�
𝑖𝑗
= (𝑎
𝑖𝑗
, 𝛼
𝑖𝑗
, 𝛽
𝑖𝑗
)LR with new notation �̃� = (𝐴,𝑀,𝑁), where

𝐴 = (𝑎
𝑖𝑗
), 𝑀 = (𝛼

𝑖𝑗
) and 𝑁 = (𝛽

𝑖𝑗
) are three 𝑚 × 𝑛 crisp

matrices. In particular, an 𝑛 dimensions LR fuzzy numbers
vector �̃� can be denoted by (𝑥, 𝑥𝑙, 𝑥𝑟), where 𝑥 = (𝑥

𝑖
), 𝑥𝑙 =

(𝑥
𝑙

𝑖
) and 𝑥𝑟 = (𝑥

𝑟

𝑖
) are three 𝑛 dimensions crisp vectors.

Definition 5. Let �̃� = (�̃�
𝑖𝑗
) and �̃� = (�̃�

𝑖𝑗
) be two 𝑚 × 𝑛 and

𝑛 × 𝑝 fuzzy matrices; we define �̃� ⊗ �̃� = �̃� = (�̃�
𝑖𝑗
) which is an

𝑚 × 𝑝 fuzzy matrix, where

�̃�
𝑖𝑗
=

⊕

∑

𝑘=1,2,...,𝑛

�̃�
𝑖𝑘
⊗ 𝑏
𝑘𝑗
. (7)

2.3. The Fully Fuzzy Linear Matrix Equation

Definition 6. Thematrix system:

(

�̃�
11

�̃�
12

⋅ ⋅ ⋅ �̃�
1𝑚

�̃�
21

�̃�
22

⋅ ⋅ ⋅ �̃�
2𝑚

...
...

...
...

�̃�
𝑚1

�̃�
𝑚2

⋅ ⋅ ⋅ �̃�
𝑚𝑚

)⊗(

�̃�
11

�̃�
12

⋅ ⋅ ⋅ �̃�
1𝑛

�̃�
21

�̃�
22

⋅ ⋅ ⋅ �̃�
2𝑛

...
...

...
...

�̃�
𝑚1

�̃�
𝑚2

⋅ ⋅ ⋅ �̃�
𝑚𝑛

)

⊗(

�̃�
11

𝑏
12

⋅ ⋅ ⋅ 𝑏
1𝑛

�̃�
21

𝑏
22

⋅ ⋅ ⋅ 𝑏
2𝑛

...
...

...
...

�̃�
𝑛1

�̃�
𝑛2

⋅ ⋅ ⋅ �̃�
𝑛𝑛

)

=(

�̃�
11

�̃�
12

⋅ ⋅ ⋅ �̃�
1𝑛

�̃�
21

�̃�
22

⋅ ⋅ ⋅ �̃�
2𝑛

...
...

...
...

�̃�
𝑚1

�̃�
𝑚2

⋅ ⋅ ⋅ �̃�
𝑚𝑛

),

(8)

where �̃�
𝑖𝑗
, 1 ≤ 𝑖, 𝑗 ≤ 𝑚, �̃�

𝑖𝑗
, 1 ≤ 𝑖, 𝑗 ≤ 𝑛, and �̃�

𝑖𝑗
, 1 ≤ 𝑖 ≤ 𝑚,

1 ≤ 𝑗 ≤ 𝑛 are LR fuzzy numbers, is called an LR fully fuzzy
linear matrix equation (FFLME).

Using matrix notation, we have

�̃� ⊗ �̃� ⊗ �̃� = �̃�. (9)

A fuzzy numbers matrix

�̃� = (𝑥
𝑖𝑗
, 𝑦
𝑖𝑗
, 𝑧
𝑖𝑗
)LR, 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛 (10)

is called an LR fuzzy approximate solution of fully fuzzy linear
matrix equation (8) if �̃� satisfies (9).

Up to the rest of this paper, we will discuss the nonnega-
tive solution �̃� = (𝑋, 𝑌, 𝑍) ≥ 0 of FFLME �̃� ⊗ �̃� ⊗ �̃� = �̃�,

where �̃� = (𝐴,𝑀,𝑁) ≥ 0, �̃� = (𝐵, 𝐸, 𝐹) ≥ 0, and �̃� =

(𝐶, 𝐺,𝐻) ≥ 0.

3. Method for Solving FFLME

First, we extend the fuzzy linear matrix system (9) into three
systems of linear matrix equations according to the LR fuzzy
number and its arithmetic operations.

Theorem 7. The fuzzy linear matrix system (9) can be
extended into the following model:

𝐴𝑋𝐵 = 𝐶,

𝐴𝑋𝐸 + 𝐴𝑌𝐵 +𝑀𝑋𝐵 = 𝐺,

𝐴𝑋𝐹 + 𝐴𝑍𝐵 + 𝑁𝑋𝐵 = 𝐻.

(11)

Proof. We denote �̃� = (𝐴,𝑀,𝑁), �̃� = (𝐵, 𝐸, 𝐹) and �̃� =

(𝐶, 𝐺,𝐻), and assume �̃� = (𝑋, 𝑌, 𝑍) ≥ 0, then

�̃��̃��̃� = (𝐴,𝑀,𝑁) ⊗ (𝑋, 𝑌, 𝑍) ⊗ (𝐵, 𝐸, 𝐹)

= (𝐴𝑋,𝐴𝑌 +𝑀𝑋,𝐴𝑍 + 𝑁𝑋) ⊗ (𝐵, 𝐸, 𝐹)

= (𝐴𝑋𝐵,𝐴𝑋𝐸 + 𝐴𝑌𝐵 +𝑀𝑋𝐵,𝐴𝑋𝐹 + 𝐴𝑍𝐵 + 𝑁𝑋𝐵)

= (𝐶, 𝐺,𝐻) ,

(12)

according tomultiplication of nonnegative LR fuzzy numbers
of Definition 2. Thus we obtain a model for solving FFLME
(9) as follows:

𝐴𝑋𝐵 = 𝐶,

𝐴𝑋𝐸 + 𝐴𝑌𝐵 +𝑀𝑋𝐵 = 𝐺,

𝐴𝑋𝐹 + 𝐴𝑍𝐵 + 𝑁𝑋𝐵 = 𝐻.

(13)

Secondly, in order to solve the fuzzy linear matrix equa-
tion (9), we need to consider the crisp systems of linear
matrix equation (11). Supposing𝐴 and𝐵 are nonsingular crisp
matrices, we have

𝑋 = 𝐴
−1

𝐶𝐵
−1

,

𝑌 = 𝐴
−1

𝐺 − 𝑋𝐸𝐵
−1

− 𝐴
−1

𝑀𝑋,

𝑍 = 𝐴
−1

𝐻 − 𝑋𝐹𝐵
−1

− 𝐴
−1

𝑁𝑋,

(14)

that is,

𝑋 = 𝐴
−1

𝐶𝐵
−1

,

𝑌 = 𝐴
−1

𝐺 − 𝐴
−1

𝐶𝐵
−1

𝐸𝐵
−1

− 𝐴
−1

𝑀𝐴
−1

𝐶𝐵
−1

,

𝑍 = 𝐴
−1

𝐻 − 𝐴
−1

𝐶𝐵
−1

𝐹𝐵
−1

− 𝐴
−1

𝑁𝐴
−1

𝐶𝐵
−1

.

(15)

Definition 8. Let �̃� = (𝑋, 𝑌, 𝑍) be an LR fuzzy matrix. If
(𝑋, 𝑌, 𝑍) is an exact solution of (11) such that 𝑋 ≥ 0, 𝑌 ≥ 0,
𝑍 ≥ 0, and 𝑋 − 𝑌 ≥ 0; we call �̃� = (𝑋, 𝑌, 𝑍) a nonnegative
LR fuzzy approximate solution of (9).
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Theorem 9. Let �̃� = (𝐴,𝑀,𝑁), �̃� = (𝐵, 𝐸, 𝐹), and �̃� =

(𝐶, 𝐺,𝐻) be three nonnegative fuzzymatrices, respectively, and
let 𝐴 and 𝐵 be the product of a permutation matrix by a
diagonal matrix with positive diagonal entries. Moreover, let
𝐺𝐵 ≥ 𝐶𝐵

−1

𝐸 + 𝑀𝐴
−1

𝐶, 𝐻𝐵 ≥ 𝐶𝐵
−1

𝐹 + 𝑁𝐴
−1

𝐶, and
𝐶 + 𝐶𝐵

−1

𝐸 +𝑀𝐴
−1

𝐶 ≥ 𝐺𝐵. Then the systems �̃� ⊗ �̃� ⊗ �̃� = �̃�

has nonnegative fuzzy solutions.

Proof. Our hypotheses on 𝐴 and 𝐵 imply that 𝐴−1 and
𝐵
−1 exist and they are nonnegative matrices. Thus 𝑋 =

𝐴
−1

𝐶𝐵
−1

≥ 0.
On the other hand, because 𝐺𝐵 ≥ 𝐶𝐵

−1

𝐸 + 𝑀𝐴
−1

𝐶 and
𝐻𝐵 ≥ 𝐶𝐵

−1

𝐹 + 𝑁𝐴
−1

𝐶, so with 𝑌 = 𝐴
−1

(𝐺𝐵 − 𝐶𝐵
−1

𝐸 −

𝑀𝐴
−1

𝐶)𝐵
−1 and 𝑍 = 𝐴

−1

(𝐻𝐵 − 𝐶𝐵
−1

𝐹 − 𝑁𝐴
−1

𝐶)𝐵
−1, we

have 𝑌 ≥ 0 and 𝑍 ≥ 0. Thus �̃� = (𝑋, 𝑌, 𝑍) is a fuzzy matrix
which satisfies �̃� ⊗ �̃� ⊗ �̃� = �̃�. Since𝑋 − 𝑌 = 𝐴

−1

(𝐶 − 𝐺𝐵 +

𝐶𝐵
−1

𝐸 + 𝑀𝐴
−1

𝐶)𝐵
−1, the positivity property of �̃� can be

obtained from the condition 𝐶+𝐶𝐵−1𝐸+𝑀𝐴
−1

𝐶 ≥ 𝐺𝐵.

When 𝐴 or 𝐵 is a singular crisp matrix, the following
result is obvious.

Theorem 10 (see [35]). For linearmatrix equations𝐴𝑋𝐵 = 𝐶,
where 𝐴 ∈ 𝑅

𝑚×𝑚, 𝐵 ∈ 𝑅
𝑛×𝑛, and 𝐶 ∈ 𝑅

𝑚×𝑛. Then

𝑋 = 𝐴
†

𝐶𝐵
† (16)

is its minimal norm least squares solution.
By the pseudoinverse of matrices, we solve model (11) and

obtain its minimal norm least squares solution as follows:

𝑋 = 𝐴
†

𝐶𝐵
†

,

𝑌 = 𝐴
†

𝐺 − 𝑋𝐸𝐵
†

− 𝐴
†

𝑀𝑋,

𝑍 = 𝐴
†

𝐻 − 𝑋𝐹𝐵
†

− 𝐴
†

𝑁𝑋,

(17)

that is,

𝑋 = 𝐴
†

𝐶𝐵
†

,

𝑌 = 𝐴
†

𝐺 − 𝐴
†

𝐶𝐵
†

𝐸𝐵
†

− 𝐴
†

𝑀𝐴
†

𝐶𝐵
†

,

𝑍 = 𝐴
†

𝐻 − 𝐴
†

𝐶𝐵
†

𝐹𝐵
†

− 𝐴
†

𝑁𝐴
†

𝐶𝐵
†

.

(18)

Definition 11. Let �̃� = (𝑋, 𝑌, 𝑍) be an LR fuzzy matrix. If
(𝑋, 𝑌, 𝑍) is a minimal norm least squares solution of (11) such
that𝑋 ≥ 0,𝑌 ≥ 0,𝑍 ≥ 0, and𝑋−𝑌 ≥ 0, we call �̃� = (𝑋, 𝑌, 𝑍)

a nonnegative LR fuzzy minimal norm least squares solution
of (9).

At last, we give a sufficient condition for nonnegative
fuzzy minimal norm least squares solution of FFLME (9) in
the same way.

Theorem 12. Let 𝐴† and 𝐵† be nonnegative matrices. More-
over, let 𝐺𝐵 ≥ 𝐶𝐵

†

𝐸 + 𝑀𝐴
†

𝐶, 𝐻𝐵 ≥ 𝐶𝐵
†

𝐹 + 𝑁𝐴
†

𝐶, and
𝐶+𝐶𝐵

†

𝐸+𝑀𝐴
†

𝐶 ≥ 𝐺𝐵. Then the systems �̃� ⊗ �̃�⊗ �̃� = �̃� has
nonnegative fuzzy minimal norm least squares solutions.

Proof. Since 𝐴† and 𝐵
† are nonnegative matrices, we have

𝑋 = 𝐴
†

𝐶𝐵
†

≥ 0.
Now that 𝐺𝐵 ≥ 𝐶𝐵

†

𝐸+𝑀𝐴
†

𝐶 and𝐻𝐵 ≥ 𝐶𝐵
†

𝐹+𝑁𝐴
†

𝐶,
therefore, with 𝑌 = 𝐴

†

(𝐺𝐵 − 𝐶𝐵
†

𝐸 − 𝑀𝐴
†

𝐶)𝐵
† and 𝑍 =

𝐴
†

(𝐻𝐵 − 𝐶𝐵
†

𝐹 − 𝑁𝐴
†

𝐶)𝐵
†, we have 𝑌 ≥ 0 and 𝑍 ≥ 0. Thus

�̃� = (𝑋, 𝑌, 𝑍) is a fuzzy matrix which satisfies �̃� ⊗ �̃� ⊗ �̃� =

�̃�. Since 𝑋 − 𝑌 = 𝐴
†

(𝐶 − 𝐺𝐵 + 𝐶𝐵
†

𝐸 + 𝑀𝐴
†

𝐶)𝐵
†,

the nonnegativity property of �̃� can be obtained from the
condition 𝐶 + 𝐶𝐵

†

𝐸 +𝑀𝐴
†

𝐶 ≥ 𝐺𝐵.

The following Theorems give some results for such 𝑆
−1

and 𝑆† to be nonnegative. As usual, (⋅)⊤ denotes the transpose
of a matrix (⋅).

Theorem 13 (see [36]). The inverse of a nonnegative matrix
𝐴 is nonnegative if and only if 𝐴 is a generalized permutation
matrix.

Theorem 14 (see [37]). Let𝐴 be an𝑚 ×𝑚 nonnegativematrix
with rank 𝑟. Then the following assertions are equivalent:

(a) 𝐴† ≥ 0.

(b) There exists a permutation matrix 𝑃, such that 𝑃𝐴 has
the form

𝑃𝐴 =(

𝑆
1

𝑆
2

...
𝑆
𝑟

𝑂

), (19)

where each 𝑆
𝑖
has rank 1 and the rows of 𝑆

𝑖
are

orthogonal to the rows of 𝑆
𝑗
, whenever 𝑖 /= 𝑗, the zero

matrix may be absent.

(c) 𝐴† = (
𝐾𝑃
⊤
𝐾𝑄
⊤

𝐾𝑃
⊤
𝐾𝑃
⊤ ) for some positive diagonal matrix 𝐾.

In this case,

(𝑃 + 𝑄)
†

= 𝐾(𝑃 + 𝑄)
⊤

, (𝑃 − 𝑄)
†

= 𝐾(𝑃 − 𝑄)
⊤

. (20)

4. Numerical Examples

Example 15. Consider the fully fuzzy linear matrix system

(
(2, 1, 1)LR (1, 0, 1)LR
(1, 0, 0)LR (2, 1, 0)LR

) ⊗ (
�̃�
11

�̃�
12

�̃�
13

�̃�
21

�̃�
22

�̃�
23

)

⊗ (

(1, 0, 1)LR (2, 1, 1)LR (1, 1, 0)LR
(2, 1, 0)LR (1, 0, 0)LR (2, 1, 1)LR
(1, 0, 0)LR (2, 1, 1)LR (1, 0, 1)LR

)

= (
(17, 12, 23)LR (22, 22, 29)LR (17, 16, 28)LR
(19, 15, 13)LR (23, 23, 16)LR (19, 16, 17)LR

) .

(21)
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ByTheorem 7, the model of the above fuzzy linear matrix
system is made of the following three crisp systems of linear
matrix equations

(
2 1

1 2
)(

𝑥
11

𝑥
12

𝑥
13

𝑥
21

𝑥
22

𝑥
23

)(

1 2 1

2 1 2

1 2 1

) = (
17 22 17

19 23 19
) ,

(
2 1

1 2
)(

𝑥
11

𝑥
12

𝑥
13

𝑥
21

𝑥
22

𝑥
23

)(

0 1 1

1 0 1

0 1 0

)

+ (
2 1

1 2
)(

𝑦
11

𝑦
12

𝑦
13

𝑦
21

𝑦
22

𝑦
23

)(

1 2 1

2 1 2

1 2 1

)

+ (
1 0

0 1
)(

𝑥
11

𝑥
12

𝑥
13

𝑥
21

𝑥
22

𝑥
23

)(

1 2 1

2 1 2

1 2 1

) = (
12 22 16

15 23 20
) ,

(
2 1

1 2
)(

𝑥
11

𝑥
12

𝑥
13

𝑥
21

𝑥
22

𝑥
23

)(

1 1 0

0 0 1

0 1 1

)

+ (
2 1

1 2
)(

𝑧
11

𝑧
12

𝑧
13

𝑧
21

𝑧
22

𝑧
23

)(

1 2 1

2 1 2

1 2 1

)

+ (
1 1

0 0
)(

𝑥
11

𝑥
12

𝑥
13

𝑥
21

𝑥
22

𝑥
23

)(

1 2 1

2 1 2

1 2 1

) = (
23 29 28

13 16 17
) .

(22)

Now that the matrix 𝐵 is singular, according to formula
(18), the solutions of the above three systems of linear matrix
equations are as follows:

𝑋 = 𝐴
†

𝐶𝐵
†

= (
2 1

1 2
)

†

(
17 22 17

19 23 19
)(

1 2 1

2 1 2

1 2 1

)

†

= (
1.5000 1.0000 1.5000

1.5000 2.0000 1.5000
) ,

𝑌 = 𝐴
†

𝐺 − 𝑋𝐸𝐵
†

− 𝐴
†

𝑀𝑋 = (
2 1

1 2
)

†

(
12 22 16

19 23 19
)

− 𝑋(

0 1 1

1 0 1

0 1 0

)(

1 2 1

2 1 2

1 2 1

)

†

− (
2 1

1 2
)

†

(
1 0

0 1
)𝑋

= (
1.0333 0.6667 0.8725

1.1250 1.6553 1.2578
) ,

𝑍 = 𝐴
†

𝐻 − 𝑋𝐹𝐵
†

− 𝐴
†

𝑁𝑋 = (
2 1

1 2
)

†

(
23 29 28

13 16 17
)

− 𝑋(

1 1 0

0 0 1

0 1 1

)(

1 2 1

2 1 2

1 2 1

)

†

− (
2 1

1 2
)

†

(
1 1

0 0
)𝑋

= (
8.3333 11.6667 9.3333

1.4167 1.3333 2.4167
) .

(23)

By Definition 11, we know that the original fuzzy linear
matrix equations have a nonnegative LR fuzzy solution

�̃� = (
�̃�
11

�̃�
12

�̃�
13

�̃�
21

�̃�
22

�̃�
23

) = (
(1.5000, 1.0333, 8.3333)LR (1.0000, 0.6667, 11.6667)LR (1.5000, 0.8725, 9.3333)LR
(1.5000, 1.1250, 1.4167)LR (2.0000, 1.6553, 1.3333)LR (1.5000, 1.2578, 2.4167)LR

) , (24)

since𝑋 ≥ 0, 𝑌 ≥ 0, 𝑍 ≥ 0, and𝑋 − 𝑌 ≥ 0.

Example 16. Consider the following fuzzy matrix system:

(
(1, 1, 0)LR (2, 0, 1)LR
(2, 0, 1)LR (1, 0, 0)LR

)(
�̃�
11

�̃�
12

�̃�
21

�̃�
22

)(
(1, 0, 1)LR (2, 1, 0)LR
(2, 1, 1)LR (3, 1, 2)LR

)

= (
(15, 14, 18)LR (25, 24, 24)LR
(12, 10, 12)LR (20, 17, 15)LR

) .

(25)

ByTheorem 7, the model of the above fuzzy linear matrix
system is made of following three crisp systems of linear

matrix equations:

(
2 1

1 2
)(

𝑥
11

𝑥
12

𝑥
21

𝑥
22

)(
1 2

2 3
) = (

15 25

10 20
) ,

(
2 1

1 2
)(

𝑥
11

𝑥
12

𝑥
21

𝑥
22

)(
0 1

1 1
) + (

2 1

1 2
)(

𝑦
11

𝑦
12

𝑦
21

𝑦
22

)(
1 2

2 3
)

+ (
1 0

0 0
)(

𝑥
11

𝑥
12

𝑥
21

𝑥
22

)(
1 2

2 3
) = (

14 24

10 17
) ,

(
2 1

1 2
)(

𝑥
11

𝑥
12

𝑥
21

𝑥
22

)(
1 0

1 2
) + (

2 1

1 2
)(

𝑧
11

𝑧
12

𝑧
21

𝑧
22

)(
1 2

2 3
)

+ (
0 1

1 0
)(

𝑥
11

𝑥
12

𝑥
21

𝑥
22

)(
1 2

2 3
) = (

18 24

12 15
) .

(26)
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By the same way, we obtain that the solutions of the above
three systems of linear matrix equations are as follows:

𝑋 = 𝐴
−1

𝐶𝐵
−1

= (
1 1

2 2
) ,

𝑌 = 𝐴
−1

𝐺 − 𝑋𝐸𝐵
−1

− 𝐴
−1

𝑀𝑋 = (
0 1

0 1
) ,

𝑍 = 𝐴
−1

𝐻 − 𝑋𝐹𝐵
−1

− 𝐴
−1

𝑁𝑋 = (
0 0

1 0
) .

(27)

Since 𝑋 ≥ 0, 𝑌 ≥ 0, 𝑍 ≥ 0, and 𝑋 − 𝑌 ≥ 0, we know that
the original fuzzy linear matrix equations have a nonnegative
LR fuzzy solution given by

�̃� = (
�̃�
11

�̃�
12

�̃�
21

�̃�
22

)

= (
(1.000, 1.000, 0.000)LR (1.000, 1.000, 0.000)LR
(2.000, 0.000, 1.000)LR (2.000, 1.000, 0.000)LR

) .

(28)

5. Conclusion

In this work we presented a model for solving fuzzy linear
matrix equations �̃� ⊗ �̃� ⊗ �̃� = �̃� in which �̃� and �̃� are
𝑚 × 𝑚 and 𝑛 × 𝑛 fuzzy matrices, respectively, and �̃� is
an 𝑚 × 𝑛 arbitrary LR fuzzy numbers matrix. The model
was made of three crisp systems of linear equations which
determined the mean value and the left and right spreads of
the solution. The LR fuzzy approximate solution of the fuzzy
linear matrix equation was derived from solving the crisp
systems of linear matrix equations. In addition, the existence
condition of strong LR fuzzy solution was studied. Numerical
examples showed that ourmethod is feasible to solve this type
of fuzzy matrix equations. Based on LR fuzzy numbers and
their operations, we can investigate all kinds of fully fuzzy
matrix equations in future.
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We establish the formulas of the maximal and minimal ranks of the quaternion Hermitian matrix expression 𝐶
4
− 𝐴
4
𝑋𝐴
∗

4
where

𝑋 is a Hermitian solution to quaternion matrix equations 𝐴
1
𝑋 = 𝐶

1
, 𝑋𝐵
1
= 𝐶
2
, and 𝐴

3
𝑋𝐴
∗

3
= 𝐶
3
. As applications, we give a new

necessary and sufficient condition for the existence of Hermitian solution to the system of matrix equations 𝐴
1
𝑋 = 𝐶

1
,𝑋𝐵
1
= 𝐶
2
,

𝐴
3
𝑋𝐴
∗

3
= 𝐶
3
, and 𝐴

4
𝑋𝐴
∗

4
= 𝐶
4
, which was investigated by Wang and Wu, 2010, by rank equalities. In addition, extremal ranks of

the generalized Hermitian Schur complement 𝐶
4
− 𝐴
4
𝐴
∼

3
𝐴
∗

4
with respect to a Hermitian g-inverse 𝐴∼

3
of 𝐴
3
, which is a common

solution to quaternion matrix equations 𝐴
1
𝑋 = 𝐶

1
and𝑋𝐵

1
= 𝐶
2
, are also considered.

1. Introduction

Throughout this paper, we denote the real number field byR,
the complex number field by C, the set of all 𝑚 × 𝑛 matrices
over the quaternion algebra

H = {𝑎
0
+ 𝑎
1
𝑖 + 𝑎
2
𝑗 + 𝑎
3
𝑘 | 𝑖
2

= 𝑗
2

= 𝑘
2

= 𝑖𝑗𝑘 = −1, 𝑎
0
, 𝑎
1
, 𝑎
2
, 𝑎
3
∈ R}

(1)

by H𝑚×𝑛, the identity matrix with the appropriate size by 𝐼,
the column right space, the row left space of a matrix 𝐴 over
H by R(𝐴), N(𝐴), respectively, the dimension of R(𝐴) by
dimR(𝐴), a Hermitian g-inverse of a matrix 𝐴 by 𝑋 = 𝐴

∽

which satisfies 𝐴𝐴∽𝐴 = 𝐴 and 𝑋 = 𝑋
∗, and the Moore-

Penrose inverse of matrix𝐴 overH by𝐴† which satisfies four
Penrose equations 𝐴𝐴†𝐴 = 𝐴, 𝐴

†

𝐴𝐴
†

= 𝐴
†

, (𝐴𝐴
†

)
∗

=

𝐴𝐴
†

, and (𝐴
†

𝐴)
∗

= 𝐴
†

𝐴. In this case 𝐴† is unique and
(𝐴
†

)
∗

= (𝐴
∗

)
†. Moreover, 𝑅

𝐴
and 𝐿

𝐴
stand for the two

projectors 𝐿
𝐴

= 𝐼 − 𝐴
†

𝐴, 𝑅
𝐴

= 𝐼 − 𝐴𝐴
† induced by 𝐴.

Clearly,𝑅
𝐴
and 𝐿

𝐴
are idempotent, Hermitian and𝑅

𝐴
= 𝐿
𝐴
∗ .

By [1], for a quaternion matrix 𝐴, dimR(𝐴) = dimN(𝐴).
dimR(𝐴) is called the rank of a quaternion matrix 𝐴 and
denoted by 𝑟(𝐴).

Mitra [2] investigated the system of matrix equations

𝐴
1
𝑋 = 𝐶

1
, 𝑋𝐵

1
= 𝐶
2
. (2)

Khatri and Mitra [3] gave necessary and sufficient con-
ditions for the existence of the common Hermitian solution
to (2) and presented an explicit expression for the general
Hermitian solution to (2) by generalized inverses. Using the
singular value decomposition (SVD), Yuan [4] investigated
the general symmetric solution of (2) over the real number
field R. By the SVD, Dai and Lancaster [5] considered the
symmetric solution of equation

𝐴𝑋𝐴
∗

= 𝐶 (3)

over R, which was motivated and illustrated with an inverse
problem of vibration theory. Groß [6], Tian and Liu [7]
gave the solvability conditions for Hermitian solution and its
expressions of (3) over C in terms of generalized inverses,
respectively. Liu, Tian and Takane [8] investigated ranks
of Hermitian and skew-Hermitian solutions to the matrix
equation (3). By using the generalized SVD, Chang andWang
[9] examined the symmetric solution to the matrix equations

𝐴
3
𝑋𝐴
∗

3
= 𝐶
3
, 𝐴

4
𝑋𝐴
∗

4
= 𝐶
4

(4)
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over R. Note that all the matrix equations mentioned above
are special cases of

𝐴
1
𝑋 = 𝐶

1
, 𝑋𝐵

1
= 𝐶
2
,

𝐴
3
𝑋𝐴
∗

3
= 𝐶
3
, 𝐴

4
𝑋𝐴
∗

4
= 𝐶
4
.

(5)

Wang and Wu [10] gave some necessary and sufficient
conditions for the existence of the common Hermitian
solution to (5) for operators between Hilbert C∗-modules
by generalized inverses and range inclusion of matrices. In
view of the complicated computations of the generalized
inverses of matrices, we naturally hope to establish a more
practical, necessary, and sufficient condition for system (5)
over quaternion algebra to have Hermitian solution by rank
equalities.

As is known to us, solutions tomatrix equations and ranks
of solutions to matrix equations have been considered previ-
ously by many authors [10–34], and extremal ranks of matrix
expressions can be used to characterize their rank invariance,
nonsingularity, range inclusion, and solvability conditions
of matrix equations. Tian and Cheng [35] investigated the
maximal and minimal ranks of 𝐴 − 𝐵𝑋𝐶 with respect to 𝑋
with applications; Tian [36] gave the maximal and minimal
ranks of 𝐴

1
− 𝐵
1
𝑋𝐶
1
subject to a consistent matrix equation

𝐵
2
𝑋𝐶
2
= 𝐴
2
. Tian and Liu [7] established the solvability

conditions for (4) to have a Hermitian solution over C by
the ranks of coefficientmatrices.Wang and Jiang [20] derived
extreme ranks of (skew)Hermitian solutions to a quaternion
matrix equation 𝐴𝑋𝐴

∗

+ 𝐵𝑌𝐵
∗

= 𝐶. Wang, Yu and Lin
[31] derived the extremal ranks of 𝐶

4
− 𝐴
4
𝑋𝐵
4
subject to a

consistent system of matrix equations

𝐴
1
𝑋 = 𝐶

1
, 𝑋𝐵

1
= 𝐶
2
, 𝐴

3
𝑋𝐵
3
= 𝐶
3

(6)

over H and gave a new solvability condition to system

𝐴
1
𝑋 = 𝐶

1
, 𝑋𝐵

1
= 𝐶
2
,

𝐴
3
𝑋𝐵
3
= 𝐶
3
, 𝐴

4
𝑋𝐵
4
= 𝐶
4
.

(7)

In matrix theory and its applications, there are many
matrix expressions that have symmetric patterns or involve
Hermitian (skew-Hermitian) matrices. For example,

𝐴 − 𝐵𝑋𝐵
∗

, 𝐴 − 𝐵𝑋 ± 𝑋
∗

𝐵
∗

,

𝐴 − 𝐵𝑋𝐵
∗

− 𝐶𝑌𝐶
∗

, 𝐴 − 𝐵𝑋𝐶 ± (𝐵𝑋𝐶)
∗

,

(8)

where 𝐴 = ±𝐴
∗

, 𝐵, and 𝐶 are given and 𝑋 and 𝑌 are
variable matrices. In recent papers [7, 8, 37, 38], Liu and Tian
considered some maximization and minimization problems
on the ranks of Hermitian matrix expressions (8).

Define a Hermitian matrix expression

𝑓 (𝑋) = 𝐶
4
− 𝐴
4
𝑋𝐴
∗

4
, (9)

where 𝐶
4
= 𝐶
∗

4
; we have an observation that by investigating

extremal ranks of (9), where 𝑋 is a Hermitian solution to a
system of matrix equations

𝐴
1
𝑋 = 𝐶

1
, 𝑋𝐵

1
= 𝐶
2
, 𝐴

3
𝑋𝐴
∗

3
= 𝐶
3
. (10)

A new necessary and sufficient condition for system (5) to
have Hermitian solution can be given by rank equalities,
which is more practical than one given by generalized
inverses and range inclusion of matrices.

It is well known that Schur complement is one of themost
important matrix expressions in matrix theory; there have
been many results in the literature on Schur complements
and their applications [39–41]. Tian [36, 42] has investigated
the maximal and minimal ranks of Schur complements with
applications.

Motivated by the workmentioned above, we in this paper
investigate the extremal ranks of the quaternion Hermitian
matrix expression (9) subject to the consistent system of
quaternion matrix equations (10) and its applications. In
Section 2, we derive the formulas of extremal ranks of (9)
with respect to Hermitian solution of (10). As applications, in
Section 3, we give a new, necessary, and sufficient condition
for the existence of Hermitian solution to system (5) by
rank equalities. In Section 4, we derive extremal ranks of
generalized Hermitian Schur complement subject to (2). We
also consider the rank invariance problem in Section 5.

2. Extremal Ranks of (9) Subject to System (10)
Corollary 8 in [10] over Hilbert C∗-modules can be changed
into the following lemma over H.

Lemma 1. Let 𝐴
1
, 𝐶
1

∈ H𝑚×𝑛, 𝐵
1
, 𝐶
2

∈ H𝑛×𝑠, 𝐴
3

∈

H𝑟×𝑛, 𝐶
3
∈ H𝑟×𝑟 be given, and 𝐹 = 𝐵

∗

1
𝐿
𝐴1
, 𝑀 = 𝑆𝐿

𝐹
, 𝑆 =

𝐴
3
𝐿
𝐴1
, 𝐷 = 𝐶

∗

2
−𝐵
∗

1
𝐴
†

1
𝐶
1
, 𝐽 = 𝐴

†

1
𝐶
1
+𝐹
†

𝐷, 𝐺 = 𝐶
3
−𝐴
3
(𝐽+

𝐿
𝐴1
𝐿
∗

𝐹
𝐽
∗

)𝐴
∗

3
; then the following statements are equivalent:

(1) the system (10) have a Hermitian solution,
(2) 𝐶
3
= 𝐶
∗

3
,

𝐴
1
𝐶
2
= 𝐶
1
𝐵
1
, 𝐴

1
𝐶
∗

1
= 𝐶
1
𝐴
∗

1
, 𝐵

∗

1
𝐶
2
= 𝐶
∗

2
𝐵
1
, (11)

𝑅
𝐴1
𝐶
1
= 0, 𝑅

𝐹
𝐷 = 0, 𝑅

𝑀
𝐺 = 0, (12)

(3) 𝐶
3
= 𝐶
∗

3
; the equalities in (11) hold and

𝑟 [𝐴
1
𝐶
1
] = 𝑟 (𝐴

1
) , 𝑟 [

𝐴
1
𝐶
1

𝐵
∗

1
𝐶
∗

2

] = 𝑟 [
𝐴
1

𝐵
∗

1

] ,

𝑟
[
[

[

𝐴
1
𝐶
1
𝐴
∗

3

𝐵
∗

1
𝐶
∗

2
𝐴
∗

3

𝐴
3

𝐶
3

]
]

]

= 𝑟[

[

𝐴
1

𝐵
∗

1

𝐴
3

]

]

.

(13)

In that case, the general Hermitian solution of (10) can be
expressed as

𝑋 = 𝐽 + 𝐿
𝐴1
𝐿
𝐹
𝐽
∗

+ 𝐿
𝐴1
𝐿
𝐹
𝑀
†

𝐺(𝑀
†

)
∗

𝐿
𝐹
𝐿
𝐴1

+ 𝐿
𝐴1
𝐿
𝐹
𝐿
𝑀
𝑉𝐿
𝐹
𝐿
𝐴1
+ 𝐿
𝐴1
𝐿
𝐹
𝑉
∗

𝐿
𝑀
𝐿
𝐹
𝐿
𝐴1
,

(14)

where 𝑉 is Hermitian matrix over H with compatible size.
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Lemma 2 (see Lemma 2.4 in [24]). Let 𝐴 ∈ H𝑚×𝑛, 𝐵 ∈

H𝑚×𝑘, 𝐶 ∈ H𝑙×𝑛, 𝐷 ∈ H𝑗×𝑘, and 𝐸 ∈ H𝑙×𝑖. Then the following
rank equalities hold:

(a) 𝑟(𝐶𝐿
𝐴
) = 𝑟 [

𝐴

𝐶
] − 𝑟(𝐴),

(b) 𝑟 [ 𝐵 𝐴𝐿𝐶 ] = 𝑟 [
𝐵 𝐴

0 𝐶
] − 𝑟(𝐶),

(c) 𝑟 [ 𝐶
𝑅𝐵𝐴

] = 𝑟 [
𝐶 0

𝐴 𝐵
] − 𝑟(𝐵),

(d) 𝑟 [ 𝐴 𝐵𝐿𝐷
𝑅𝐸𝐶 0

] = 𝑟 [
𝐴 𝐵 0

𝐶 0 𝐸

0 𝐷 0

] − 𝑟(𝐷) − 𝑟(𝐸).

Lemma 2 plays an important role in simplifying ranks of
various block matrices.

Liu and Tian [38] has given the following lemma over a
field. The result can be generalized to H.

Lemma 3. Let 𝐴 = ±𝐴
∗

∈ H𝑚×𝑚, 𝐵 ∈ H𝑚×𝑛, and 𝐶 ∈ H𝑝×𝑚

be given; then

max
𝑋∈H𝑛×𝑝

𝑟 [𝐴 − 𝐵𝑋𝐶 ∓ (𝐵𝑋𝐶)
∗

]

= min{𝑟 [𝐴 𝐵 𝐶
∗

] , 𝑟 [
𝐴 𝐵

𝐵
∗

0
] , 𝑟 [

𝐴 𝐶
∗

𝐶 0
]} ,

min
𝑋∈H𝑛×𝑝

𝑟 [𝐴 − 𝐵𝑋𝐶 ∓ (𝐵𝑋𝐶)
∗

]

= 2𝑟 [𝐴 𝐵 𝐶
∗

] +max {𝑠
1
, 𝑠
2
} ,

(15)

where

𝑠
1
= 𝑟 [

𝐴 𝐵

𝐵
∗

0
] − 2𝑟 [

𝐴 𝐵 𝐶
∗

𝐵
∗

0 0
] ,

𝑠
2
= 𝑟 [

𝐴 𝐶
∗

𝐶 0
] − 2𝑟 [

𝐴 𝐵 𝐶
∗

𝐶 0 0
] .

(16)

IfR(𝐵) ⊆ R(𝐶
∗

),

max
𝑋

𝑟 [𝐴 − 𝐵𝑋𝐶 − (𝐵𝑋𝐶)
∗

] = min{𝑟 [𝐴 𝐶
∗

] , 𝑟 [
𝐴 𝐵

𝐵
∗

0
]} ,

max
𝑋

𝑟 [𝐴 − 𝐵𝑋𝐶 − (𝐵𝑋𝐶)
∗

] = min{𝑟 [𝐴 𝐶
∗

] , 𝑟 [
𝐴 𝐵

𝐵
∗

0
]} .

(17)

Now we consider the extremal ranks of the matrix
expression (9) subject to the consistent system (10).

Theorem 4. Let 𝐴
1
, 𝐶
1
, 𝐵
1
, 𝐶
2
, 𝐴
3
, and 𝐶

3
be defined as

Lemma 1,𝐶
4
∈ H𝑡×𝑡, and 𝐴

4
∈ H𝑡×𝑛.Then the extremal ranks

of the quaternionmatrix expression𝑓(𝑋) defined as (9) subject
to system (10) are the following:

max 𝑟 [𝑓 (𝑋)] = min {𝑎, 𝑏} , (18)

where

𝑎 = 𝑟

[
[
[
[

[

𝐶
4

𝐴
4

𝐶
∗

2
𝐴
∗

4
𝐵
∗

1

𝐶
1
𝐴
∗

4
𝐴
1

]
]
]
]

]
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𝐵
∗

1

𝐴
1

] ,
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[
[
[
[
[
[

[

0 𝐴
∗

4
𝐴
∗

3
𝐵
1

𝐴
∗

1

𝐴
4
𝐶
4

0 0 0

𝐴
3

0 −𝐶
3
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3
𝐶
2
−𝐴
3
𝐶
∗

1

𝐵
∗
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∗

2
𝐴
∗

3
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∗

2
𝐵
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∗
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𝐴
∗

1

𝐴
1

0 −𝐶
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𝐴
∗

3
−𝐶
1
𝐵
1
−𝐶
1
𝐴
∗

1

]
]
]
]
]
]
]
]

]

− 2𝑟[

[

𝐴
3

𝐵
∗

1

𝐴
1

]

]

,

(19)

min 𝑟 [𝑓 (𝑋)] = 2𝑟

[
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[

𝐶
4

𝐴
4

𝐶
∗

2
𝐴
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4
𝐵
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𝐶
1
𝐴
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4
𝐴
1

]
]
]
]

]

+ 𝑟
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[
[
[
[
[
[

[

0 𝐴
∗

4
𝐴
∗

3
𝐵
1

𝐴
∗

1

𝐴
4
𝐶
4

0 0 0

𝐴
3

0 −𝐶
3

−𝐴
3
𝐶
2
−𝐴
3
𝐶
∗

1

𝐵
∗

1
0 −𝐶

∗

2
𝐴
∗

3
−𝐶
∗

2
𝐵
1
−𝐶
∗

2
𝐴
∗

1

𝐴
1

0 −𝐶
1
𝐴
∗

3
−𝐶
1
𝐵
1
−𝐶
1
𝐴
∗

1

]
]
]
]
]
]
]
]
]

]

− 2𝑟

[
[
[
[
[
[
[
[
[

[

0 𝐴
∗

4
𝐵
1

𝐴
∗

1

𝐴
4
𝐶
4

0 0

𝐴
3

0 −𝐴
3
𝐶
2
−𝐴
3
𝐶
∗

1

𝐵
∗

1
0 −𝐶

∗

2
𝐵
1
−𝐶
∗

2
𝐴
∗

1

𝐴
1

0 −𝐶
1
𝐵
1
−𝐶
1
𝐴
∗

1

]
]
]
]
]
]
]
]
]

]

.

(20)

Proof. By Lemma 1, the general Hermitian solution of the
system (10) can be expressed as

𝑋 = 𝐽 + 𝐿
𝐴1
𝐿
𝐹
𝐽
∗

+ 𝐿
𝐴1
𝐿
𝐹
𝑀
†

𝐺(𝑀
†

)
∗

𝐿
𝐹
𝐿
𝐴1

+ 𝐿
𝐴1
𝐿
𝐹
𝐿
𝑀
𝑉𝐿
𝐹
𝐿
𝐴1
+ 𝐿
𝐴1
𝐿
𝐹
𝑉
∗

𝐿
𝑀
𝐿
𝐹
𝐿
𝐴1
,

(21)

where 𝑉 is Hermitian matrix over H with appropriate size.
Substituting (21) into (9) yields

𝑓 (𝑋) = 𝐶
4
− 𝐴
4
(𝐽 + 𝐿

𝐴1
𝐿
𝐹
𝐽
∗

+ 𝐿
𝐴1
𝐿
𝐹
𝑀
†

𝐺(𝑀
†

)
∗

𝐿
𝐹
𝐿
𝐴1
)𝐴

∗

4

− 𝐴
4
𝐿
𝐴1
𝐿
𝐹
𝐿
𝑀
𝑉𝐿
𝐹
𝐿
𝐴1
𝐴
∗

4

− 𝐴
4
𝐿
𝐴1
𝐿
𝐹
𝑉
∗

𝐿
𝑀
𝐿
𝐹
𝐿
𝐴1
𝐴
∗

4
.

(22)
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Put

𝐶
4
− 𝐴
4
(𝐽 + 𝐿

𝐴1
𝐿
𝐹
𝐽
∗

+ 𝐿
𝐴1
𝐿
𝐹
𝑀
†

𝐺(𝑀
†

)
∗

𝐿
𝐹
𝐿
𝐴1
)𝐴
∗

4
= 𝐴,

𝐽 + 𝐿
𝐴1
𝐿
𝐹
𝐽
∗

+ 𝐿
𝐴1
𝐿
𝐹
𝑀
†

𝐺(𝑀
†

)
∗

𝐿
𝐹
𝐿
𝐴1

= 𝐽


,

𝐴
4
𝐿
𝐴1
𝐿
𝐹
𝐿
𝑀
= 𝑁,

𝐿
𝐹
𝐿
𝐴1
𝐴
∗

4
= 𝑃;

(23)

then

𝑓 (𝑋) = 𝐴 − 𝑁𝑉𝑃 − (𝑁𝑉𝑃)
∗

. (24)

Note that𝐴 = 𝐴
∗ andR(𝑁) ⊆ R(𝑃

∗

). Thus, applying (17) to
(24), we get the following:

max 𝑟 [𝑓 (𝑋)] = max
𝑉

𝑟 (𝐴 − 𝑁𝑉𝑃 − (𝑁𝑉𝑃)
∗

)

= min{𝑟 [𝐴 𝑃
∗

] , 𝑟 [
𝐴 𝑁

𝑁
∗

0
]} ,

min 𝑟 [𝑓 (𝑋)] = min
𝑉

𝑟 (𝐴 − 𝑁𝑉𝑃 − (𝑁𝑉𝑃)
∗

)

= 2𝑟 [𝐴 𝑃
∗

] + 𝑟 [
𝐴 𝑁

𝑁
∗

0
] − 2𝑟 [

𝐴 𝑁

𝑃 0
] .

(25)

Now we simplify the ranks of block matrices in (25).
In view of Lemma 2, block Gaussian elimination, (11),

(12), and (23), we have the following:

𝑟 (𝐹) = 𝑟 (𝐵
∗

1
𝐿
𝐴1
) = 𝑟 [

𝐵
∗

1

𝐴
1

] − 𝑟 (𝐴
1
) ,

𝑟 (𝑀) = 𝑟 (𝑆𝐿
𝐹
) = 𝑟 [

𝑆

𝐹
] − 𝑟 (𝐹)

= 𝑟 [

𝐴
3
𝐿
𝐴1

𝐵
∗

1
𝐿
𝐴1

] − 𝑟 (𝐹)

= 𝑟[

[

𝐴
3

𝐵
∗

1

𝐴
1

]

]

− 𝑟 (𝐴
1
) − 𝑟 (𝐹) ,

𝑟 [𝐴 𝑃
∗

] = 𝑟 [𝐶
4
− 𝐴
4
𝐽𝐴
∗

4
𝑃
∗

]

= 𝑟 [
𝐶
4
− 𝐴
4
𝐽𝐴
∗

4
𝐴
4
𝐿
𝐴1

0 𝐹
] − 𝑟 (𝐹)

= 𝑟[

[

𝐶
4
− 𝐴
4
𝐽𝐴
∗

4
𝐴
4

0 𝐵
∗

1

0 𝐴
1

]

]

− 𝑟 (𝐹) − 𝑟 (𝐴
1
)

= 𝑟

[
[
[

[

𝐶
4

𝐴
4

𝐶
∗

2
𝐴
∗

4
𝐵
∗

1

𝐶
1
𝐴
∗

4
𝐴
1

]
]
]

]

− 𝑟 [
𝐵
∗

1

𝐴
1

] ,

𝑟 [
𝐴 𝑁

𝑁
∗

0
] = 𝑟 [

𝐶
4
− 𝐴
4
𝐽


𝐴
∗

4
𝐴
4
𝐿
𝐴1
𝐿
𝐹
𝐿
𝑀

𝑅
𝑀
∗𝑅
𝐹
∗𝑅
𝐴
∗

1

𝐴
∗

4
0

]

= 𝑟

[
[
[
[
[
[

[

𝐶
4
− 𝐴
4
𝐽


𝐴
∗

4
𝐴
4

0 0 0

𝐴
∗

4
0 𝐴
∗

3
𝐵
1
𝐴
∗

1

0 𝐴
3

0 0 0

0 𝐵
∗

1
0 0 0

0 𝐴
1

0 0 0

]
]
]
]
]
]

]

− 2𝑟 (𝑀) − 2𝑟 (𝐹) − 2𝑟 (𝐴
1
)

= 𝑟

[
[
[
[
[
[
[
[
[
[
[
[

[

𝐶
4

𝐴
4

0 0 0

𝐴
∗

4
0 𝐴
∗

3
𝐵
1
𝐴
∗

1

𝐴
3
𝐽


𝐴
∗

4
𝐴
3

0 0 0

𝐵
∗

1
𝐽


𝐴
∗

4
𝐵
∗

1
0 0 0

𝐴
1
𝐽


𝐴
∗

4
𝐴
1

0 0 0

]
]
]
]
]
]
]
]
]
]
]
]

]

− 2𝑟[

[

𝐴
3

𝐵
∗

1

𝐴
1

]

]

= 𝑟

[
[
[
[
[
[
[
[
[

[

𝐶
4
𝐴
4

0 0 0

𝐴
∗

4
0 𝐴

∗

3
𝐵
1

𝐴
∗

1

0 𝐴
3

−𝐶
3

−𝐴
3
𝐶
2
−𝐴
3
𝐶
∗

1

0 𝐵
∗

1
−𝐶
∗

2
𝐴
∗

3
−𝐶
∗

2
𝐵
1
−𝐶
∗

2
𝐴
∗

1

0 𝐴
1
−𝐶
1
𝐴
∗

3
−𝐶
1
𝐵
1
−𝐶
1
𝐴
∗

1

]
]
]
]
]
]
]
]
]

]

− 2𝑟[

[

𝐴
3

𝐵
∗

1

𝐴
1

]

]

= 𝑟

[
[
[
[
[
[
[
[
[

[

0 𝐴
∗

4
𝐴
∗

3
𝐵
1

𝐴
∗

1

𝐴
4
𝐶
4

0 0 0

𝐴
3

0 −𝐶
3

−𝐴
3
𝐶
2
−𝐴
3
𝐶
∗

1

𝐵
∗

1
0 −𝐶

∗

2
𝐴
∗

3
−𝐶
∗

2
𝐵
1
−𝐶
∗

2
𝐴
∗

1

𝐴
1

0 −𝐶
1
𝐴
∗

3
−𝐶
1
𝐵
1
−𝐶
1
𝐴
∗

1

]
]
]
]
]
]
]
]
]

]

− 2𝑟[

[

𝐴
3

𝐵
∗

1

𝐴
1

]

]

,

𝑟 [
𝐴 𝑁

𝑃 0
] = 𝑟 [

𝐶
4
− 𝐴
4
𝐽


𝐴
∗

4
𝐴
4
𝐿
𝐴1
𝐿
𝐹
𝐿
𝑀

𝑅
𝐹
∗𝑅
𝐴
∗

1

𝐴
∗

4
0

]

= 𝑟

[
[
[
[
[
[
[
[
[
[

[

𝐶
4
𝐴
4

0 0

𝐴
∗

4
0 𝐵

1
𝐴
∗

1

0 𝐴
3
−𝐴
3
𝐶
2
−𝐴
3
𝐶
∗

1

0 𝐵
∗

1
−𝐶
∗

2
𝐵
1
−𝐶
∗

2
𝐴
∗

1

0 𝐴
1
−𝐶
1
𝐵
1
−𝐶
1
𝐴
∗

1

]
]
]
]
]
]
]
]
]
]

]

− 𝑟[

[

𝐴
3

𝐵
∗

1

𝐴
1

]

]

− 𝑟 [
𝐵
∗

1

𝐴
1

]
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= 𝑟

[
[
[
[
[
[
[
[
[
[

[

0 𝐴
∗

4
𝐵
1

𝐴
∗

1

𝐴
4
𝐶
4

0 0

𝐴
3

0 −𝐴
3
𝐶
2
−𝐴
3
𝐶
∗

1

𝐵
∗

1
0 −𝐶

∗

2
𝐵
1
−𝐶
∗

2
𝐴
∗

1

𝐴
1

0 −𝐶
1
𝐵
1
−𝐶
1
𝐴
∗

1

]
]
]
]
]
]
]
]
]
]

]

− 𝑟
[
[

[

𝐴
3

𝐵
∗

1

𝐴
1

]
]

]

− 𝑟 [

𝐵
∗

1

𝐴
1

] .

(26)

Substituting (26) into (25) yields (18) and (20).

In Theorem 4, letting 𝐶
4
vanish and 𝐴

4
be 𝐼 with

appropriate size, respectively, we have the following.

Corollary 5. Assume that 𝐴
1
, 𝐶
1

∈ H𝑚×𝑛, 𝐵
1
,𝐶
2

∈

H𝑛×𝑠, 𝐴
3
∈ H𝑟×𝑛, and 𝐶

3
∈ H𝑟×𝑟 are given; then the maximal

and minimal ranks of the Hermitian solution 𝑋 to the system
(10) can be expressed as

max 𝑟 (𝑋) = min {𝑎, 𝑏} , (27)

where

𝑎 = 𝑛 + 𝑟 [
𝐶
∗

2

𝐶
1

] − 𝑟 [
𝐵
∗

1

𝐴
1

] ,

𝑏 = 2𝑛 + 𝑟

[
[
[
[

[

𝐶
3

𝐴
3
𝐶
2
𝐴
3
𝐶
∗

1

𝐶
∗

2
𝐴
∗

3
𝐶
∗

2
𝐵
1
𝐶
∗

2
𝐴
∗

1

𝐶
1
𝐴
∗

3
𝐶
1
𝐵
1
𝐶
1
𝐴
∗

1

]
]
]
]

]

− 2𝑟[

[

𝐴
3

𝐵
∗

1

𝐴
1

]

]

,

min 𝑟 (𝑋) = 2𝑟 [

𝐶
∗

2

𝐶
1

]

+ 𝑟

[
[
[

[

𝐶
3

𝐴
3
𝐶
2
𝐴
3
𝐶
∗

1

𝐶
∗

2
𝐴
∗

3
𝐶
∗

2
𝐵
1
𝐶
∗

2
𝐴
∗

1

𝐶
1
𝐴
∗

3
𝐶
1
𝐵
1
𝐶
1
𝐴
∗

1

]
]
]

]

− 2𝑟

[
[
[
[

[

𝐴
3
𝐶
2
𝐴
3
𝐶
∗

1

𝐶
∗

2
𝐵
1
𝐶
∗

2
𝐴
∗

1

𝐶
1
𝐵
1
𝐶
1
𝐴
∗

1

]
]
]
]

]

.

(28)

InTheorem 4, assuming that 𝐴
1
, 𝐵
1
, 𝐶
1
, and 𝐶

2
vanish,

we have the following.

Corollary 6. Suppose that the matrix equation 𝐴
3
𝑋𝐴
∗

3
= 𝐶
3

is consistent; then the extremal ranks of the quaternion matrix
expression 𝑓(𝑋) defined as (9) subject to 𝐴

3
𝑋𝐴
∗

3
= 𝐶
3
are the

following:

max 𝑟 [𝑓 (𝑋)]

= min
{

{

{

𝑟 [𝐶
4
𝐴
4
] , 𝑟 [

[

0 𝐴
∗

4
𝐴
∗

3

𝐴
4
𝐶
4

0

𝐴
3

0 −𝐶
3

]

]

− 2𝑟 (𝐴
3
)

}

}

}

,

min 𝑟 [𝑓 (𝑋)] = 2𝑟 [𝐶
4
𝐴
4
]

+ 𝑟[

[

0 𝐴
∗

4
𝐴
∗

3

𝐴
4
𝐶
4

0

𝐴
3

0 −𝐶
3

]

]

− 2𝑟[

[

0 𝐴
∗

4

𝐴
4
𝐶
4

𝐴
3

0

]

]

.

(29)

3. A Practical Solvability Condition for
Hermitian Solution to System (5)

In this section, we use Theorem 4 to give a necessary and
sufficient condition for the existence of Hermitian solution
to system (5) by rank equalities.

Theorem 7. Let 𝐴
1
, 𝐶
1

∈ H𝑚×𝑛, 𝐵
1
,𝐶
2

∈ H𝑛×𝑠, 𝐴
3

∈

H𝑟×𝑛, 𝐶
3
∈ H𝑟×𝑟, 𝐴

4
∈ H𝑡×𝑛, and 𝐶

4
∈ H𝑡×𝑡be given; then

the system (5) have Hermitian solution if and only if 𝐶
3
= 𝐶
∗

3
,

(11), (13) hold, and the following equalities are all satisfied:

𝑟 [𝐴
4
𝐶
4
] = 𝑟 (𝐴

4
) , (30)

𝑟

[
[
[

[

𝐶
4

𝐴
4

𝐶
∗

2
𝐴
∗

4
𝐵
∗

1

𝐶
1
𝐴
∗

4
𝐴
1

]
]
]

]

= 𝑟[

[

𝐴
4

𝐵
∗

1

𝐴
1

]

]

, (31)

𝑟

[
[
[
[
[
[
[
[

[

0 𝐴
∗

4
𝐴
∗

3
𝐵
1

𝐴
∗

1

𝐴
4
𝐶
4

0 0 0

𝐴
3

0 −𝐶
3

−𝐴
3
𝐶
2
−𝐴
3
𝐶
∗

1

𝐵
∗

1
0 −𝐶

∗

2
𝐴
∗

3
−𝐶
∗

2
𝐵
1
−𝐶
∗

2
𝐴
∗

1

𝐴
1

0 −𝐶
1
𝐴
∗

3
−𝐶
1
𝐵
1
−𝐶
1
𝐴
∗

1

]
]
]
]
]
]
]
]

]

= 2𝑟

[
[
[
[

[

𝐴
4

𝐴
3

𝐵
∗

1

𝐴
1

]
]
]
]

]

.

(32)

Proof. It is obvious that the system (5) have Hermitian
solution if and only if the system (10) haveHermitian solution
and

min 𝑟 [𝑓 (𝑋)] = 0, (33)

where 𝑓(𝑋) is defined as (9) subject to system (10). Let𝑋
0
be

aHermitian solution to the system (5); then𝑋
0
is aHermitian

solution to system (10) and𝑋
0
satisfies𝐴

4
𝑋
0
𝐴
∗

4
= 𝐶
4
. Hence,

Lemma 1 yields 𝐶
3

= 𝐶
∗

3
, (11), (13), and (30). It follows
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from

[
[
[
[
[
[

[

𝐼 0 0 0 0

0 𝐼 0 0 0

𝐴
3
𝑋
0
0 𝐼 0 0

𝐵
∗

1
𝑋
0
0 0 𝐼 0

𝐴
1
𝑋
0
0 0 0 𝐼

]
]
]
]
]
]

]

×

[
[
[
[
[
[
[

[

0 𝐴
∗

4
𝐴
∗

3
𝐵
1

𝐴
∗

1

𝐴
4
𝐶
4

0 0 0

𝐴
3

0 −𝐶
3

−𝐴
3
𝐶
2
−𝐴
3
𝐶
∗

1

𝐵
∗

1
0 −𝐶

∗

2
𝐴
∗

3
−𝐶
∗

2
𝐵
1
−𝐶
∗

2
𝐴
∗

1

𝐴
1

0 −𝐶
1
𝐴
∗

3
−𝐶
1
𝐵
1
−𝐶
1
𝐴
∗

1

]
]
]
]
]
]
]

]

×

[
[
[
[
[

[

𝐼 −𝑋
0
𝐴
∗

4
0 0 0

0 𝐼 0 0 0

0 0 𝐼 0 0

0 0 0 𝐼 0

0 0 0 0 𝐼

]
]
]
]
]

]

=

[
[
[
[
[

[

0 𝐴
∗

4
𝐴
∗

3
𝐵
1
𝐴
∗

1

𝐴
4

0 0 0 0

𝐴
3

0 0 0 0

𝐵
∗

1
0 0 0 0

𝐴
1

0 0 0 0

]
]
]
]
]

]

(34)

that (32) holds. Similarly, we can obtain (31).
Conversely, assume that 𝐶

3
= 𝐶
∗

3
, (11), (13) hold; then by

Lemma 1, system (10) have Hermitian solution. By (20), (31)-
(32), and

𝑟

[
[
[
[
[
[
[

[

0 𝐴
∗

4
𝐵
1

𝐴
∗

1

𝐴
4
𝐶
4

0 0

𝐴
3

0 −𝐴
3
𝐶
2
−𝐴
3
𝐶
∗

1

𝐵
∗

1
0 −𝐶

∗

2
𝐵
1
−𝐶
∗

2
𝐴
∗

1

𝐴
1

0 −𝐶
1
𝐵
1
−𝐶
1
𝐴
∗

1

]
]
]
]
]
]
]

]

≥ 𝑟

[
[
[

[

𝐴
4

𝐴
3

𝐵
∗

1

𝐴
1

]
]
]

]

+ 𝑟[

[

𝐴
4

𝐵
∗

1

𝐴
1

]

]

(35)

we can get

min 𝑟 [𝑓 (𝑋)] ≤ 0. (36)

However,

min 𝑟 [𝑓 (𝑋)] ≥ 0. (37)

Hence (33) holds, implying that the system (5) have Hermi-
tian solution.

ByTheorem 7, we can also get the following.

Corollary 8. Suppose that 𝐴
3
, 𝐶
3
, 𝐴
4
, and 𝐶

4
are those in

Theorem 7; then the quaternion matrix equations 𝐴
3
𝑋𝐴
∗

3
=

𝐶
3
and 𝐴

4
𝑋𝐴
∗

4
= 𝐶
4
have common Hermitian solution if and

only if (30) hold and the following equalities are satisfied:

𝑟 [𝐴
3
𝐶
3
] = 𝑟 (𝐴

3
) ,

𝑟 [

[

0 𝐴
∗

4
𝐴
∗

3

𝐴
4
𝐶
4

0

𝐴
3

0 −𝐶
3

]

]

= 2𝑟 [
𝐴
3

𝐴
4

] .

(38)

Corollary 9. Suppose that𝐴
1
,𝐶
1
∈ H𝑚×𝑛,𝐵

1
,𝐶
2
∈ H𝑛×𝑠, and

𝐴, 𝐵 ∈ H𝑛×𝑛 are Hermitian. Then 𝐴 and 𝐵 have a common

Hermitian g-inverse which is a solution to the system (2) if and
only if (11) holds and the following equalities are all satisfied:

𝑟
[
[

[

𝐴
1
𝐶
1
𝐴

𝐵
∗

1
𝐶
∗

2
𝐴

𝐴 𝐴

]
]

]

= 𝑟[

[

𝐴
1

𝐵
∗

1

𝐴

]

]

,

𝑟
[
[

[

𝐴
1
𝐶
1
𝐵

𝐵
∗

1
𝐶
∗

2
𝐵

𝐵 𝐵

]
]

]

= 𝑟[

[

𝐴
1

𝐵
∗

1

𝐵

]

]

,

(39)

𝑟

[
[
[
[
[
[
[

[

0 𝐵 𝐴 𝐵
1

𝐴
∗

1

𝐵 𝐵 0 0 0

𝐴 0 −𝐴 −𝐴𝐶
2

−𝐴𝐶
∗

1

𝐵
∗

1
0 −𝐶

∗

2
𝐴 −𝐶

∗

2
𝐵
1
−𝐶
∗

2
𝐴
∗

1

𝐴
1
0 −𝐶

1
𝐴 −𝐶

1
𝐵
1
−𝐶
1
𝐴
∗

1

]
]
]
]
]
]
]

]

= 2𝑟

[
[
[
[

[

𝐵

𝐴

𝐵
∗

1

𝐴
1

]
]
]
]

]

. (40)

4. Extremal Ranks of Schur Complement
Subject to (2)

As is well known, for a given block matrix

𝑀 = [
𝐴 𝐵

𝐵
∗

𝐷
] , (41)

where 𝐴 and 𝐷 are Hermitian quaternion matrices with
appropriate sizes, then the Hermitian Schur complement of
𝐴 in𝑀 is defined as

𝑆
𝐴
= 𝐷 − 𝐵

∗

𝐴
∼

𝐵, (42)

where 𝐴∼ is a Hermitian g-inverse of 𝐴, that is, 𝐴∼ ∈ {𝑋 |

𝐴𝑋𝐴 = 𝐴,𝑋 = 𝑋
∗

}.
Now we use Theorem 4 to establish the extremal ranks

of 𝑆
𝐴
given by (42) with respect to 𝐴∼ which is a solution to

system (2).

Theorem 10. Suppose 𝐴
1
, 𝐶
1
∈ H𝑚×𝑛, 𝐵

1
, 𝐶
2
∈ H𝑛×𝑠, 𝐷 ∈

H𝑡×𝑡, 𝐵 ∈ H𝑛×𝑡, and 𝐴 ∈ H𝑛×𝑛 are given and system (2)
is consistent; then the extreme ranks of 𝑆

𝐴
given by (42) with

respect to 𝐴∼ which is a solution of (2) are the following:

max
𝐴1𝐴
∼
=𝐶1

𝐴
∼
𝐵1=𝐶2

𝑟 (𝑆
𝐴
) = min {𝑎, 𝑏} ,

(43)
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where

𝑎 = 𝑟[

[

𝐷 𝐵
∗

𝐶
∗

2
𝐵 𝐵
∗

1

𝐶
1
𝐵 𝐴
1

]

]

− 𝑟 [
𝐵
∗

1

𝐴
1

] ,

𝑏 = 𝑟

[
[
[
[
[
[

[

0 𝐵 𝐴 𝐵
1

𝐴
∗

1

𝐵
∗

𝐷 0 0 0

𝐴 0 −𝐴 −𝐴𝐶
2

−𝐴𝐶
∗

1

𝐵
∗

1
0 −𝐶

∗

2
𝐴 −𝐶

∗

2
𝐵
1
−𝐶
∗

2
𝐴
∗

1

𝐴
1
0 −𝐶

1
𝐴 −𝐶

1
𝐵
1
−𝐶
1
𝐴
∗

1

]
]
]
]
]
]

]

− 2𝑟[

[

𝐴

𝐵
∗

1

𝐴
1

]

]

,

min
𝐴1𝐴
∼
=𝐶1

𝐴
∼
𝐵1=𝐶2

𝑟 (𝑆
𝐴
) = 2𝑟[

[

𝐷 𝐵
∗

𝐶
∗

2
𝐵 𝐵
∗

1

𝐶
1
𝐵 𝐴
1

]

]

+ 𝑟

[
[
[
[
[
[
[
[

[

0 𝐵 𝐴 𝐵
1

𝐴
∗

1

𝐵
∗

𝐷 0 0 0

𝐴 0 −𝐴 −𝐴𝐶
2

−𝐴𝐶
∗

1

𝐵
∗

1
0 −𝐶

∗

2
𝐴 −𝐶

∗

2
𝐵
1
−𝐶
∗

2
𝐴
∗

1

𝐴
1
0 −𝐶

1
𝐴 −𝐶

1
𝐵
1
−𝐶
1
𝐴
∗

1

]
]
]
]
]
]
]
]

]

− 2𝑟

[
[
[
[
[
[
[
[

[

0 𝐵 𝐵
1

𝐴
∗

1

𝐵
∗

𝐷 0 0

𝐴 0 −𝐴𝐶
2

−𝐴𝐶
∗

1

𝐵
∗

1
0 −𝐶

∗

2
𝐵
1
−𝐶
∗

2
𝐴
∗

1

𝐴
1
0 −𝐶

1
𝐵
1
−𝐶
1
𝐴
∗

1

]
]
]
]
]
]
]
]

]

.

(44)

Proof. It is obvious that

max
𝐴1𝐴
∼
=𝐶1 ,𝐴

∼
𝐵1=𝐶2

𝑟 (𝐷 − 𝐵
∗

𝐴
∼

𝐵)

= max
𝐴1𝑋=𝐶1 ,𝑋𝐵1=𝐶2 ,𝐴𝑋𝐴=𝐴

𝑟 (𝐷 − 𝐵
∗

𝑋𝐵) ,

min
𝐴1𝐴
∼
=𝐶1 ,𝐴

∼
𝐵1=𝐶2

𝑟 (𝐷 − 𝐵
∗

𝐴
∼

𝐵)

= min
𝐴1𝑋=𝐶1 ,𝑋𝐵1=𝐶2 ,𝐴𝑋𝐴=𝐴

𝑟 (𝐷 − 𝐵
∗

𝑋𝐵) .

(45)

Thus in Theorem 4 and its proof, letting 𝐴
3
= 𝐴
∗

3
= 𝐶
3
= 𝐴,

𝐴
4
= 𝐵
∗

, and 𝐶
4
= 𝐷, we can easily get the proof.

In Theorem 10, let 𝐴
1
, 𝐶
1
, 𝐵
1
, and 𝐶

2
vanish. Then we

can easily get the following.

Corollary 11. The extreme ranks of 𝑆
𝐴
given by (42) with

respect to 𝐴∼ are the following:

max
𝐴
∼
𝑟 (𝑆
𝐴
) = min

{

{

{

𝑟 [𝐷 𝐵
∗

] , 𝑟 [

[

0 𝐵 𝐴

𝐵
∗

𝐷 0

𝐴 0 −𝐴

]

]

− 2𝑟 (𝐴)

}

}

}

,

min
𝐴
∼
𝑟 (𝑆
𝐴
) = 2𝑟 [𝐷 𝐵

∗

] + 𝑟[

[

0 𝐵 𝐴

𝐵
∗

𝐷 0

𝐴 0 −𝐴

]

]

− 2𝑟[

[

0 𝐵

𝐵
∗

𝐷

𝐴 0

]

]

.

(46)

5. The Rank Invariance of (9)
As another application of Theorem 4, we in this section
consider the rank invariance of thematrix expression (9) with
respect to the Hermitian solution of system (10).

Theorem 12. Suppose that (10) have Hermitian solution; then
the rank of 𝑓(𝑋) defined by (9) with respect to the Hermitian
solution of (10) is invariant if and only if

𝑟

[
[
[
[
[
[
[
[

[

0 𝐴
∗

4
𝐵
1

𝐴
∗

1

𝐴
4
𝐶
4

0 0

𝐴
3

0 −𝐴
3
𝐶
2
−𝐴
3
𝐶
∗

1

𝐵
∗

1
0 −𝐶

∗

2
𝐵
1
−𝐶
∗

2
𝐴
∗

1

𝐴
1

0 −𝐶
1
𝐵
1
−𝐶
1
𝐴
∗

1

]
]
]
]
]
]
]
]

]

= 𝑟
[
[

[

𝐶
4

𝐴
4

𝐶
∗

2
𝐴
∗

4
𝐵
∗

1

𝐶
1
𝐴
∗

4
𝐴
1

]
]

]

+ 𝑟[

[

𝐴
3

𝐵
∗

1

𝐴
1

]

]

,

𝑟

[
[
[
[
[
[
[
[

[

0 𝐴
∗

4
𝐴
∗

3
𝐵
1

𝐴
∗

1

𝐴
4
𝐶
4

0 0 0

𝐴
3

0 −𝐶
3

−𝐴
3
𝐶
2
−𝐴
3
𝐶
∗

1

𝐵
∗

1
0 −𝐶

∗

2
𝐴
∗

3
−𝐶
∗

2
𝐵
1
−𝐶
∗

2
𝐴
∗

1

𝐴
1

0 −𝐶
1
𝐴
∗

3
−𝐶
1
𝐵
1
−𝐶
1
𝐴
∗

1

]
]
]
]
]
]
]
]

]

+ 𝑟 [
𝐵
∗

1

𝐴
1

]

= 𝑟

[
[
[
[
[
[

[

0 𝐴
∗

4
𝐵
1

𝐴
∗

1

𝐴
4
𝐶
4

0 0

𝐴
3

0 −𝐴
3
𝐶
2
−𝐴
3
𝐶
∗

1

𝐵
∗

1
0 −𝐶

∗

2
𝐵
1
−𝐶
∗

2
𝐴
∗

1

𝐴
1

0 −𝐶
1
𝐵
1
−𝐶
1
𝐴
∗

1

]
]
]
]
]
]

]

+ 𝑟[

[

𝐴
3

𝐵
∗

1

𝐴
1

]

]

,

(47)

or

𝑟

[
[
[
[
[
[
[

[

0 𝐴
∗

4
𝐵
1

𝐴
∗

1

𝐴
4
𝐶
4

0 0

𝐴
3

0 −𝐴
3
𝐶
2
−𝐴
3
𝐶
∗

1

𝐵
∗

1
0 −𝐶

∗

2
𝐵
1
−𝐶
∗

2
𝐴
∗

1

𝐴
1

0 −𝐶
1
𝐵
1
−𝐶
1
𝐴
∗

1

]
]
]
]
]
]
]

]

= 𝑟
[
[

[

𝐶
4

𝐴
4

𝐶
∗

2
𝐴
∗

4
𝐵
∗

1

𝐶
1
𝐴
∗

4
𝐴
1

]
]

]

+ 𝑟
[
[

[

𝐴
3

𝐵
∗

1

𝐴
1

]
]

]

.

(48)

Proof. It is obvious that the rank of 𝑓(𝑋) with respect to
Hermitian solution of system (10) is invariant if and only if

max 𝑟 [𝑓 (𝑋)] −min 𝑟 [𝑓 (𝑋)] = 0. (49)

By (49), Theorem 4, and simplifications, we can get (47)
and (48).



8 Journal of Applied Mathematics

Corollary 13. The rank of 𝑆
𝐴
defined by (42) with respect to

𝐴
∼ which is a solution to system (2) is invariant if and only if

𝑟

[
[
[
[
[
[

[

0 𝐵 𝐵
1

𝐴
∗

1

𝐵
∗

𝐷 0 0

𝐴 0 −𝐴𝐶
2

−𝐴𝐶
∗

1

𝐵
∗

1
0 −𝐶

∗

2
𝐵
1
−𝐶
∗

2
𝐴
∗

1

𝐴
1
0 −𝐶

1
𝐵
1
−𝐶
1
𝐴
∗

1

]
]
]
]
]
]

]

= 𝑟[

[

𝐷 𝐵
∗

𝐶
∗

2
𝐵 𝐵
∗

1

𝐶
1
𝐵 𝐴
1

]

]

+ 𝑟[

[

𝐴

𝐵
∗

1

𝐴
1

]

]

,

𝑟

[
[
[
[
[
[
[
[

[

0 𝐵 𝐴 𝐵
1

𝐴
∗

1

𝐵
∗

𝐷 0 0 0

𝐴 0 −𝐴 −𝐴𝐶
2

−𝐴𝐶
∗

1

𝐵
∗

1
0 −𝐶

∗

2
𝐴 −𝐶

∗

2
𝐵
1
−𝐶
∗

2
𝐴
∗

1

𝐴
1
0 −𝐶

1
𝐴 −𝐶

1
𝐵
1
−𝐶
1
𝐴
∗

1

]
]
]
]
]
]
]
]

]

+ 𝑟 [
𝐵
∗

1

𝐴
1

]

= 𝑟

[
[
[
[
[
[

[

0 𝐵 𝐵
1

𝐴
∗

1

𝐵
∗

𝐷 0 0

𝐴 0 −𝐴𝐶
2

−𝐴𝐶
∗

1

𝐵
∗

1
0 −𝐶

∗

2
𝐵
1
−𝐶
∗

2
𝐴
∗

1

𝐴
1
0 −𝐶

1
𝐵
1
−𝐶
1
𝐴
∗

1

]
]
]
]
]
]

]

+ 𝑟[

[

𝐴

𝐵
∗

1

𝐴
1

]

]

,

(50)

or

𝑟

[
[
[
[
[
[

[

0 𝐵 𝐵
1

𝐴
∗

1

𝐵
∗

𝐷 0 0

𝐴 0 −𝐴𝐶
2

−𝐴𝐶
∗

1

𝐵
∗

1
0 −𝐶

∗

2
𝐵
1
−𝐶
∗

2
𝐴
∗

1

𝐴
1
0 −𝐶

1
𝐵
1
−𝐶
1
𝐴
∗

1

]
]
]
]
]
]

]

= 𝑟[

[

𝐷 𝐵
∗

𝐶
∗

2
𝐵 𝐵
∗

1

𝐶
1
𝐵 𝐴
1

]

]

+ 𝑟[

[

𝐴

𝐵
∗

1

𝐴
1

]

]

.

(51)
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We propose an iterative algorithm for solving the reflexive solution of the quaternion matrix equation 𝐴𝑋𝐵 + 𝐶𝑋
𝐻

𝐷 = 𝐹. When
the matrix equation is consistent over reflexive matrix X, a reflexive solution can be obtained within finite iteration steps in the
absence of roundoff errors. By the proposed iterative algorithm, the least Frobenius norm reflexive solution of the matrix equation
can be derived when an appropriate initial iterative matrix is chosen. Furthermore, the optimal approximate reflexive solution to a
given reflexive matrix𝑋

0
can be derived by finding the least Frobenius norm reflexive solution of a new corresponding quaternion

matrix equation. Finally, two numerical examples are given to illustrate the efficiency of the proposed methods.

1. Introduction

Throughout the paper, the notations R𝑚×𝑛 and H𝑚×𝑛 repre-
sent the set of all 𝑚 × 𝑛 real matrices and the set of all 𝑚 × 𝑛

matrices over the quaternion algebraH = {𝑎
1
+ 𝑎

2
𝑖+ 𝑎

3
𝑗+ 𝑎

4
𝑘 |

𝑖
2

= 𝑗
2

= 𝑘
2

= 𝑖𝑗𝑘 = −1, 𝑎
1
, 𝑎

2
, 𝑎

3
, 𝑎

4
∈ R}. We denote the

identity matrix with the appropriate size by 𝐼. We denote the
conjugate transpose, the transpose, the conjugate, the trace,
the column space, the real part, the 𝑚𝑛 × 1 vector formed
by the vertical concatenation of the respective columns
of a matrix 𝐴 by 𝐴

𝐻

, 𝐴
𝑇

, 𝐴, tr(𝐴), 𝑅(𝐴),Re(𝐴), and vec(𝐴),
respectively.The Frobenius norm of𝐴 is denoted by ‖𝐴‖, that
is, ‖𝐴‖ = √tr(𝐴𝐻𝐴). Moreover,𝐴⊗𝐵 and𝐴⊙𝐵 stand for the
Kronecker matrix product and Hadmard matrix product of
the matrices 𝐴 and 𝐵.

Let 𝑄 ∈ H𝑛×𝑛 be a generalized reflection matrix, that is,
𝑄

2

= 𝐼 and 𝑄
𝐻

= 𝑄. A matrix 𝐴 is called reflexive with
respect to the generalized reflection matrix 𝑄, if 𝐴 = 𝑄𝐴𝑄.
It is obvious that any matrix is reflexive with respect to 𝐼.
Let RH𝑛×𝑛

(𝑄) denote the set of order 𝑛 reflexive matrices
with respect to 𝑄. The reflexive matrices with respect to a
generalized reflection matrix 𝑄 have been widely used in
engineering and scientific computations [1, 2].

In the field of matrix algebra, quaternion matrix equa-
tions have received much attention. Wang et al. [3] gave
necessary and sufficient conditions for the existence and
the representations of P-symmetric and P-skew-symmetric
solutions of quaternion matrix equations 𝐴

𝑎
𝑋 = 𝐶

𝑎
and

𝐴
𝑏
𝑋𝐵

𝑏
= 𝐶

𝑏
. Yuan and Wang [4] derived the expressions of

the least squares 𝜂-Hermitian solution with the least norm
and the expressions of the least squares anti-𝜂-Hermitian
solution with the least norm for the quaternion matrix
equation 𝐴𝑋𝐵 + 𝐶𝑋𝐷 = 𝐸. Jiang and Wei [5] derived
the explicit solution of the quaternion matrix equation 𝑋 −

𝐴𝑋𝐵 = 𝐶. Li and Wu [6] gave the expressions of symmetric
and skew-antisymmetric solutions of the quaternion matrix
equations 𝐴

1
𝑋 = 𝐶

1
and 𝑋𝐵

3
= 𝐶

3
. Feng and Cheng [7]

gave a clear description of the solution set of the quaternion
matrix equation 𝐴𝑋 − 𝑋𝐵 = 0.

The iterative method is a very important method to
solve matrix equations. Peng [8] constructed a finite iteration
method to solve the least squares symmetric solutions of
linear matrix equation 𝐴𝑋𝐵 = 𝐶. Also Peng [9–11] presented
several efficient iteration methods to solve the constrained
least squares solutions of linear matrix equations 𝐴𝑋𝐵 =

𝐶 and 𝐴𝑋𝐵 + 𝐶𝑌𝐷 = 𝐸, by using Paige’s algorithm [12]
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as the frame method. Duan et al. [13–17] proposed iterative
algorithms for the (Hermitian) positive definite solutions
of some nonlinear matrix equations. Ding et al. proposed
the hierarchical gradient-based iterative algorithms [18] and
hierarchical least squares iterative algorithms [19] for solving
general (coupled) matrix equations, based on the hierarchi-
cal identification principle [20]. Wang et al. [21] proposed
an iterative method for the least squares minimum-norm
symmetric solution of 𝐴X𝐵 = 𝐸. Dehghan and Hajarian
constructed finite iterative algorithms to solve several linear
matrix equations over (anti)reflexive [22–24], generalized
centrosymmetric [25, 26], and generalized bisymmetric [27,
28] matrices. Recently, Wu et al. [29–31] proposed iterative
algorithms for solving various complex matrix equations.

However, to the best of our knowledge, there has been
little information on iterative methods for finding a solution
of a quaternionmatrix equation. Due to the noncommutative
multiplication of quaternions, the study of quaternionmatrix
equations is more complex than that of real and complex
equations. Motivated by the work mentioned above and
keeping the interests and wide applications of quaternion
matrices in view (e.g., [32–45]), we, in this paper, consider
an iterative algorithm for the following two problems.

Problem 1. For given matrices 𝐴,𝐶 ∈ H𝑚×𝑛

, 𝐵, 𝐷 ∈

H𝑛×𝑝

, 𝐹 ∈ H𝑚×𝑝 and the generalized reflectionmatrix𝑄, find
𝑋 ∈ RH𝑛×𝑛

(𝑄), such that

𝐴𝑋𝐵 + 𝐶𝑋
𝐻

𝐷 = 𝐹. (1)

Problem 2. When Problem 1 is consistent, let its solution
set be denoted by 𝑆

𝐻
. For a given reflexive matrix 𝑋

0
∈

RH𝑛×𝑛

(𝑄), find𝑋 ∈ RH𝑛×𝑛

(𝑄), such that

𝑋 − 𝑋

0


= min

𝑋∈𝑆𝐻

𝑋 − 𝑋
0

 . (2)

The remainder of this paper is organized as follows.
In Section 2, we give some preliminaries. In Section 3, we
introduce an iterative algorithm for solving Problem 1. Then
we prove that the given algorithm can be used to obtain a
reflexive solution for any initial matrix within finite steps
in the absence of roundoff errors. Also we prove that the
least Frobenius norm reflexive solution can be obtained by
choosing a special kind of initial matrix. In addition, the
optimal reflexive solution of Problem 2 by finding the least
Frobenius norm reflexive solution of a new matrix equation
is given. In Section 4, we give two numerical examples to
illustrate our results. In Section 5, we give some conclusions
to end this paper.

2. Preliminary

In this section, we provide some results which will play
important roles in this paper. First, we give a real inner
product for the space H𝑚×𝑛 over the real field R.

Theorem 3. In the space H𝑚×𝑛 over the field R, a real inner
product can be defined as

⟨𝐴, 𝐵⟩ = Re [tr (𝐵𝐻

𝐴)] (3)

for 𝐴, 𝐵 ∈ H𝑚×𝑛. This real inner product space is denoted as
(H𝑚×𝑛

,R, ⟨⋅, ⋅⟩).

Proof. (1) For 𝐴 ∈ H𝑚×𝑛, let 𝐴 = 𝐴
1
+ 𝐴

2
𝑖 + 𝐴

3
𝑗 + 𝐴

4
𝑘, then

⟨𝐴, 𝐴⟩ = Re [tr (𝐴𝐻

𝐴)]

= tr (𝐴𝑇

1
𝐴

1
+ 𝐴

𝑇

2
𝐴

2
+ 𝐴

𝑇

3
𝐴

3
+ 𝐴

𝑇

4
𝐴

4
) .

(4)

It is obvious that ⟨𝐴, 𝐴⟩ > 0 and ⟨𝐴, 𝐴⟩ = 0 ⇔ 𝐴 = 0.
(2) For 𝐴, 𝐵 ∈ H𝑚×𝑛, let 𝐴 = 𝐴

1
+ 𝐴

2
𝑖 + 𝐴

3
𝑗 + 𝐴

4
𝑘 and

𝐵 = 𝐵
1
+ 𝐵

2
𝑖 + 𝐵

3
𝑗 + 𝐵

4
𝑘, then we have

⟨𝐴, 𝐵⟩ = Re [tr (𝐵𝐻

𝐴)]

= tr (𝐵𝑇

1
𝐴

1
+ 𝐵

𝑇

2
𝐴

2
+ 𝐵

𝑇

3
𝐴

3
+ 𝐵

𝑇

4
𝐴

4
)

= tr (𝐴𝑇

1
𝐵

1
+ 𝐴

𝑇

2
𝐵

2
+ 𝐴

𝑇

3
𝐵

3
+ 𝐴

𝑇

4
𝐵

4
)

= Re [tr (𝐴𝐻

𝐵)] = ⟨𝐵, 𝐴⟩ .

(5)

(3) For 𝐴, 𝐵, 𝐶 ∈ H𝑚×𝑛

⟨𝐴 + 𝐵, 𝐶⟩ = Re {tr [𝐶𝐻

(𝐴 + 𝐵)]}

= Re [tr (𝐶𝐻

𝐴 + 𝐶
𝐻

𝐵)]

= Re [tr (𝐶𝐻

𝐴)] + Re [tr (𝐶𝐻

𝐵)]

= ⟨𝐴, 𝐶⟩ + ⟨𝐵, 𝐶⟩ .

(6)

(4) For 𝐴, 𝐵 ∈ H𝑚×𝑛 and 𝑎 ∈ R,

⟨𝑎𝐴, 𝐵⟩ = Re {tr [𝐵𝐻

(𝑎𝐴)]} = Re [tr (𝑎𝐵𝐻

𝐴)]

= 𝑎Re [tr (𝐵𝐻

𝐴)] = 𝑎 ⟨𝐴, 𝐵⟩ .

(7)

All the above arguments reveal that the space H𝑚×𝑛 over
field R with the inner product defined in (3) is an inner
product space.

Let ‖ ⋅ ‖
Δ
represent the matrix norm induced by the inner

product ⟨⋅, ⋅⟩. For an arbitrary quaternion matrix 𝐴 ∈ H𝑚×𝑛,
it is obvious that the following equalities hold:

‖𝐴‖
Δ
= √⟨𝐴,𝐴⟩ = √Re [tr (𝐴𝐻𝐴)] = √tr (𝐴𝐻𝐴) = ‖𝐴‖ ,

(8)

which reveals that the induced matrix norm is exactly the
Frobenius norm. For convenience, we still use ‖ ⋅ ‖ to denote
the induced matrix norm.

Let 𝐸
𝑖𝑗

denote the 𝑚 × 𝑛 quaternion matrix whose
(𝑖, 𝑗) entry is 1, and the other elements are zeros. In inner
product space (H𝑚×𝑛

,R, ⟨⋅, ⋅⟩), it is easy to verify that 𝐸
𝑖𝑗
, 𝐸

𝑖𝑗
𝑖,

𝐸
𝑖𝑗
𝑗, 𝐸

𝑖𝑗
𝑘, 𝑖 = 1, 2, . . . , 𝑚, 𝑗 = 1, 2, . . . , 𝑛, is an orthonormal

basis, which reveals that the dimension of the inner product
space (H𝑚×𝑛

,R, ⟨⋅, ⋅⟩) is 4𝑚𝑛.
Next, we introduce a real representation of a quaternion

matrix.
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For an arbitrary quaternion matrix 𝑀 = 𝑀
1
+ 𝑀

2
𝑖 +

𝑀
3
𝑗+ 𝑀

4
𝑘, a map 𝜙(⋅), fromH𝑚×𝑛 toR4𝑚×4𝑛, can be defined

as

𝜙 (𝑀) =

[
[
[

[

𝑀
1

−𝑀
2

−𝑀
3

−𝑀
4

𝑀
2

𝑀
1

−𝑀
4

𝑀
3

𝑀
3

𝑀
4

𝑀
1

−𝑀
2

𝑀
4

−𝑀
3

𝑀
2

𝑀
1

]
]
]

]

. (9)

Lemma4 (see [41]). Let𝑀 and𝑁 be two arbitrary quaternion
matrices with appropriate size. The map 𝜙(⋅) defined by (9)
satisfies the following properties.

(a) 𝑀 = 𝑁 ⇔ 𝜙(𝑀) = 𝜙(𝑁).

(b) 𝜙(𝑀 + 𝑁) = 𝜙(𝑀) + 𝜙(𝑁), 𝜙(𝑀𝑁) = 𝜙(𝑀)𝜙(𝑁),

𝜙(𝑘𝑀) = 𝑘𝜙(𝑀), 𝑘 ∈ R.

(c) 𝜙(𝑀
𝐻

) = 𝜙
𝑇

(𝑀).

(d) 𝜙(𝑀) = 𝑇
−1

𝑚
𝜙(𝑀)𝑇

𝑛
= 𝑅

−1

𝑚
𝜙(𝑀)𝑅

𝑛
= 𝑆

−1

𝑚
𝜙(𝑀)𝑆

𝑛
,

where

𝑇
𝑡
=

[
[
[

[

0 −𝐼
𝑡

0 0

𝐼
𝑡

0 0 0

0 0 0 𝐼
𝑡

0 0 −𝐼
𝑡

0

]
]
]

]

, 𝑅
𝑡
= [

0 −𝐼
2𝑡

𝐼
2𝑡

0
] ,

𝑆
𝑡
=

[
[
[

[

0 0 0 −𝐼
𝑡

0 0 𝐼
𝑡

0

0 −𝐼
𝑡

0 0

𝐼
𝑡

0 0 0

]
]
]

]

, 𝑡 = 𝑚, 𝑛.

(10)

By (9), it is easy to verify that

𝜙 (𝑀)
 = 2 ‖𝑀‖ . (11)

Finally, we introduce the commutation matrix.
A commutation matrix 𝑃(𝑚, 𝑛) is a 𝑚𝑛 × 𝑚𝑛 matrix

which has the following explicit form:

𝑃 (𝑚, 𝑛) =

𝑚

∑

𝑖=1

𝑛

∑

𝑗=1

𝐸
𝑖𝑗
⊗ 𝐸

𝑇

𝑖𝑗
= [𝐸

𝑇

𝑖𝑗
] 𝑖=1,...,𝑚

𝑗=1,...,𝑛

. (12)

Moreover, 𝑃(𝑚, 𝑛) is a permutation matrix and 𝑃(𝑚, 𝑛) =

𝑃
𝑇

(𝑛,𝑚) = 𝑃
−1

(𝑛,𝑚). We have the following lemmas on the
commutation matrix.

Lemma 5 (see [46]). Let 𝐴 be a 𝑚 × 𝑛 matrix. There is a
commutation matrix 𝑃(𝑚, 𝑛) such that

vec (𝐴𝑇

) = 𝑃 (𝑚, 𝑛) vec (𝐴) . (13)

Lemma 6 (see [46]). Let 𝐴 be a 𝑚 × 𝑛 matrix and 𝐵 a 𝑝 ×

𝑞 matrix. There exist two commutation matrices 𝑃(𝑚, 𝑝) and
𝑃(𝑛, 𝑞) such that

𝐵 ⊗ 𝐴 = 𝑃
𝑇

(𝑚, 𝑝) (𝐴 ⊗ 𝐵) 𝑃 (𝑛, 𝑞) . (14)

3. Main Results

3.1. The Solution of Problem 1. In this subsection, we will
construct an algorithm for solving Problem 1. Then some
lemmaswill be given to analyse the properties of the proposed
algorithm. Using these lemmas, we prove that the proposed
algorithm is convergent.

Algorithm 7 (Iterative algorithm for Problem 1).

(1) Choose an initial matrix𝑋(1) ∈ RH𝑛×𝑛

(𝑄).
(2) Calculate

𝑅 (1) = 𝐹 − 𝐴𝑋 (1) 𝐵 − 𝐶𝑋
𝐻

(1)𝐷;

𝑃 (1) =
1

2
(𝐴

𝐻

𝑅 (1) 𝐵
𝐻

+ 𝐷𝑅
𝐻

(1) 𝐶

+ 𝑄𝐴
𝐻

𝑅 (1) 𝐵
𝐻

𝑄 + 𝑄𝐷𝑅
𝐻

(1) 𝐶𝑄) ;

𝑘 := 1.

(15)

(3) If 𝑅(𝑘) = 0, then stop and 𝑋(𝑘) is the solution of
Problem 1; else if 𝑅(𝑘) ̸=0 and 𝑃(𝑘) = 0, then stop
and Problem 1 is not consistent; else 𝑘 := 𝑘 + 1.

(4) Calculate

𝑋 (𝑘) = 𝑋 (𝑘 − 1) +
‖𝑅 (𝑘 − 1)‖

2

‖𝑃 (𝑘 − 1)‖
2
𝑃 (𝑘 − 1) ;

𝑅 (𝑘) = 𝑅 (𝑘 − 1) −
‖𝑅 (𝑘 − 1)‖

2

‖𝑃 (𝑘 − 1)‖
2

× (𝐴𝑃 (𝑘 − 1) 𝐵 + 𝐶𝑃
𝐻

(𝑘 − 1)𝐷) ;

𝑃 (𝑘) =
1

2
(𝐴

𝐻

𝑅 (𝑘) 𝐵
𝐻

+ 𝐷𝑅
𝐻

(𝑘) 𝐶

+ 𝑄𝐴
𝐻

𝑅 (𝑘) 𝐵
𝐻

𝑄 +𝑄𝐷𝑅
𝐻

(𝑘) 𝐶𝑄)

+
‖𝑅 (𝑘)‖

2

‖𝑅 (𝑘 − 1)‖
2
𝑃 (𝑘 − 1) .

(16)

(5) Go to Step (3).

Lemma 8. Assume that the sequences {𝑅(𝑖)} and {𝑃(𝑖)}

are generated by Algorithm 7, then ⟨𝑅(𝑖), 𝑅(𝑗)⟩ =

0 and ⟨𝑃(𝑖), 𝑃(𝑗)⟩ = 0 for 𝑖, 𝑗 = 1, 2, . . . ,

𝑖 ̸=𝑗.

Proof. Since ⟨𝑅(𝑖), 𝑅(𝑗)⟩ = ⟨𝑅(𝑗), 𝑅(𝑖)⟩ and
⟨𝑃(𝑖), 𝑃(𝑗)⟩ = ⟨𝑃(𝑗), 𝑃(𝑖)⟩ for 𝑖, 𝑗 = 1,

2, . . ., we only need to prove that ⟨𝑅(𝑖),

𝑅(𝑗)⟩ = 0 and ⟨𝑃(𝑖), 𝑃(𝑗)⟩ = 0 for 1 ≤ 𝑖 < 𝑗.
Now we prove this conclusion by induction.

Step 1. We show that

⟨𝑅 (𝑖) , 𝑅 (𝑖 + 1)⟩ = 0,

⟨𝑃 (𝑖) , 𝑃 (𝑖 + 1)⟩ = 0 for 𝑖 = 1, 2, . . . .

(17)
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We also prove (17) by induction. When 𝑖 = 1, we have

⟨𝑅 (1) , 𝑅 (2)⟩

= Re {tr [𝑅𝐻

(2) 𝑅 (1)]}

= Re{tr[(𝑅 (1) −
‖𝑅 (1)‖

2

‖𝑃 (1)‖
2
(𝐴𝑃 (1) 𝐵 + 𝐶𝑃

𝐻

(1)𝐷))

𝐻

× 𝑅 (1) ]}

= ‖𝑅 (1)‖
2

−
‖𝑅 (1)‖

2

‖𝑃 (1)‖
2

× Re {tr [𝑃𝐻

(1) (𝐴
𝐻

𝑅 (1) 𝐵
𝐻

+ 𝐷𝑅
𝐻

(1) 𝐶)]}

= ‖𝑅(1)‖
2

−
‖𝑅(1)‖

2

‖𝑃(1)‖
2

×Re{tr [𝑃𝐻

(1) ((𝐴
𝐻

𝑅 (1) 𝐵
𝐻

+𝐷𝑅
𝐻

(1) 𝐶+𝑄𝐴
𝐻

𝑅 (1)

× 𝐵
𝐻

𝑄 + 𝑄𝐷𝑅
𝐻

(1) 𝐶𝑄) × (2)
−1

)]}

= ‖𝑅 (1)‖
2

−
‖𝑅 (1)‖

2

‖𝑃 (1)‖
2
‖𝑃 (1)‖

2

= 0.

(18)

Also we can write

⟨𝑃 (1) , 𝑃 (2)⟩

= Re {tr [𝑃𝐻

(2) 𝑃 (1)]}

= Re{tr[(1

2
(𝐴

𝐻

𝑅 (2) 𝐵
𝐻

+ 𝐷𝑅
𝐻

(2) 𝐶

+ 𝑄𝐴
𝐻

𝑅 (2) 𝐵
𝐻

𝑄 + 𝑄𝐷𝑅
𝐻

(2) 𝐶𝑄)

+
‖𝑅 (2)‖

2

‖𝑅 (1)‖
2
𝑃 (1))

𝐻

𝑃 (1)]}

=
‖𝑅 (2)‖

2

‖𝑅 (1)‖
2
‖𝑃 (1)‖

2

+ Re {tr [𝑃𝐻

(1) × ((𝐴
𝐻

𝑅 (2) 𝐵
𝐻

+ 𝐷𝑅
𝐻

(2) 𝐶

+ 𝑄𝐴
𝐻

𝑅 (2) 𝐵
𝐻

𝑄

+𝑄𝐷𝑅
𝐻

(2) 𝐶𝑄) × (2)
−1

)]}

=
‖𝑅 (2)‖

2

‖𝑅 (1)‖
2
‖𝑃 (1)‖

2

+ Re {tr [𝑃𝐻

(1) (𝐴
𝐻

𝑅 (2) 𝐵
𝐻

+ 𝐷𝑅
𝐻

(2) 𝐶)]}

=
‖𝑅 (2)‖

2

‖𝑅 (1)‖
2
‖𝑃 (1)‖

2

+ Re {tr [𝑅𝐻

(2) (𝐴𝑃 (1) 𝐵 + 𝐶𝑃
𝐻

(1)𝐷)]}

=
‖𝑅 (2)‖

2

‖𝑅 (1)‖
2
‖𝑃 (1)‖

2

+
‖𝑃 (1)‖

2

‖𝑅 (1)‖
2
Re {tr [𝑅𝐻

(2) (𝑅 (1) − 𝑅 (2))]}

=
‖𝑅 (2)‖

2

‖𝑅 (1)‖
2
‖𝑃 (1)‖

2

−
‖𝑃 (1)‖

2

‖𝑅 (1)‖
2
‖𝑅 (2)‖

2

= 0.

(19)

Now assume that conclusion (17) holds for 1 ≤ 𝑖 ≤ 𝑠 − 1, then

⟨𝑅 (𝑠) , 𝑅 (𝑠 + 1)⟩

= Re {tr [𝑅𝐻

(𝑠 + 1) 𝑅 (𝑠)]}

= Re{tr[(𝑅 (𝑠) −
‖𝑅 (𝑠)‖

2

‖𝑃 (𝑠)‖
2
(𝐴𝑃 (𝑠) 𝐵 + 𝐶𝑃

𝐻

(𝑠)𝐷))

𝐻

× 𝑅 (𝑠) ]}

= ‖𝑅 (s)‖2 −
‖𝑅 (𝑠)‖

2

‖𝑃 (𝑠)‖
2

× Re {tr [𝑃𝐻

(𝑠) (𝐴
𝐻

𝑅 (𝑠) 𝐵
𝐻

+ 𝐷𝑅
𝐻

(𝑠) 𝐶)]}

= ‖𝑅 (𝑠)‖
2

−
‖𝑅 (𝑠)‖

2

‖𝑃 (𝑠)‖
2

× Re {tr [𝑃𝐻

(𝑠) × ((𝐴
𝐻

𝑅 (𝑠) 𝐵
𝐻

+ 𝐷𝑅
𝐻

(𝑠) 𝐶

+ 𝑄𝐴
𝐻

𝑅 (𝑠) 𝐵
𝐻

𝑄

+ 𝑄𝐷𝑅
𝐻

(𝑠) 𝐶𝑄) × (2)
−1

)]}

= ‖𝑅 (𝑠)‖
2

−
‖𝑅 (𝑠)‖

2

‖𝑃 (𝑠)‖
2

× Re{tr[𝑃𝐻

(𝑠) (𝑃 (𝑠) −
‖𝑅 (𝑠)‖

2

‖𝑅 (𝑠 − 1)‖
2
𝑃 (𝑠 − 1))]}

= 0.

(20)
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And it can also be obtained that

⟨𝑃 (𝑠) , 𝑃 (𝑠 + 1)⟩

= Re {tr [𝑃𝐻

(𝑠 + 1) 𝑃 (𝑠)]}

= Re{tr[(((𝐴𝐻

𝑅 (𝑠 + 1) 𝐵
𝐻

+ 𝐷𝑅
𝐻

(𝑠 + 1) 𝐶

+ 𝑄𝐴
𝐻

𝑅 (𝑠 + 1) 𝐵
𝐻

𝑄

+ 𝑄𝐷𝑅
𝐻

(𝑠 + 1) 𝐶𝑄) × (2)
−1

)

+
‖𝑅 (𝑠 + 1)‖

2

‖𝑅 (𝑠)‖
2

𝑃(𝑠))

𝐻

𝑃 (𝑠)]}

=
‖𝑅 (𝑠 + 1)‖

2

‖𝑅 (𝑠)‖
2

‖𝑃 (𝑠)‖
2

+ Re {tr [𝑃𝐻

(𝑠) (𝐴
𝐻

𝑅 (𝑠 + 1) 𝐵
𝐻

+ 𝐷𝑅
𝐻

(𝑠 + 1) 𝐶)]}

=
‖𝑅 (𝑠 + 1)‖

2

‖𝑅 (𝑠)‖
2

‖𝑃 (𝑠)‖
2

+ Re {tr [𝑅𝐻

(𝑠 + 1) (𝐴𝑃 (𝑠) 𝐵 + 𝐶𝑃
𝐻

(𝑠)𝐷)]}

=
‖𝑅 (𝑠 + 1)‖

2

‖𝑅 (𝑠)‖
2

‖𝑃 (𝑠)‖
2

+
‖𝑃 (𝑠)‖

2

‖𝑅 (𝑠)‖
2
Re {tr [𝑅𝐻

(𝑠 + 1) (𝑅 (𝑠) − 𝑅 (𝑠 + 1))]}

= 0.

(21)

Therefore, the conclusion (17) holds for 𝑖 = 1, 2, . . ..
Step 2. Assume that ⟨𝑅(𝑖), 𝑅(𝑖+𝑟)⟩ = 0 and ⟨𝑃(𝑖), 𝑃(𝑖+𝑟)⟩ = 0

for 𝑖 ≥ 1 and 𝑟 ≥ 1. We will show that

⟨𝑅 (𝑖) , 𝑅 (𝑖 + 𝑟 + 1)⟩ = 0, ⟨𝑃 (𝑖) , 𝑃 (𝑖 + 𝑟 + 1)⟩ = 0.

(22)

We prove the conclusion (22) in two substeps.
Substep 2.1. In this substep, we show that

⟨𝑅 (1) , 𝑅 (𝑟 + 2)⟩ = 0, ⟨𝑃 (1) , 𝑃 (𝑟 + 2)⟩ = 0. (23)

It follows from Algorithm 7 that

⟨𝑅 (1) , 𝑅 (𝑟 + 2)⟩

= Re {tr [𝑅𝐻

(𝑟 + 2) 𝑅 (1)]}

= Re{tr[(𝑅 (𝑟 + 1) −
‖𝑅 (𝑟 + 1)‖

2

‖𝑃 (𝑟 + 1)‖
2

× (𝐴𝑃 (𝑟 + 1) 𝐵+𝐶𝑃
𝐻

(𝑟 + 1)𝐷))

𝐻

𝑅 (1)]}

= Re {tr [𝑅𝐻

(𝑟 + 1) 𝑅 (1)]} −
‖𝑅 (𝑟 + 1)‖

2

‖𝑃 (𝑟 + 1)‖
2

× Re {tr [𝑃𝐻

(𝑟 + 1) (𝐴
𝐻

𝑅 (1) 𝐵
𝐻

+ 𝐷𝑅
𝐻

(1) 𝐶)]}

= Re {tr [𝑅𝐻

(𝑟 + 1) 𝑅 (1)]} −
‖𝑅 (𝑟 + 1)‖

2

‖𝑃 (𝑟 + 1)‖
2

× Re {tr [𝑃𝐻

(𝑟 + 1) ((𝐴
𝐻

𝑅 (1) 𝐵
𝐻

+ 𝐷𝑅
𝐻

(1) 𝐶

+ 𝑄𝐴
𝐻

𝑅 (1) 𝐵
𝐻

𝑄

+ 𝑄𝐷𝑅
𝐻

(1) 𝐶𝑄) × (2)
−1

)]}

= Re {tr [𝑅𝐻

(𝑟 + 1) 𝑅 (1)]}

−
‖𝑅 (𝑟 + 1)‖

2

‖𝑃 (𝑟 + 1)‖
2
Re {tr [𝑃𝐻

(𝑟 + 1) 𝑃 (1)]}

= 0.

(24)

Also we can write

⟨𝑃 (1) , 𝑃 (𝑟 + 2)⟩

= Re {tr [𝑃𝐻

(𝑟 + 2) 𝑃 (1)]}

= Re{tr[( ((𝐴
𝐻

𝑅 (𝑟 + 2) 𝐵
𝐻

+ 𝐷𝑅
𝐻

(𝑟 + 2) 𝐶

+𝑄𝐴
𝐻

𝑅 (𝑟 + 2) 𝐵
𝐻

𝑄 + 𝑄𝐷𝑅
𝐻

(𝑟 + 2) 𝐶𝑄)

× (2)
−1

) +
‖𝑅(𝑟 + 2)‖

2

‖𝑅(𝑟 + 1)‖
2
𝑃(𝑟 + 1))

𝐻

𝑃 (1)]}

= Re {tr [(𝐴𝐻

𝑅 (𝑟 + 2) 𝐵
𝐻

+ 𝐷𝑅
𝐻

(𝑟 + 2) 𝐶)
𝐻

𝑃 (1)]}

+
‖𝑅 (𝑟 + 2)‖

2

‖𝑅 (𝑟 + 1)‖
2
Re {tr [𝑃𝐻

(𝑟 + 1) 𝑃 (1)]}

= Re {tr [𝑅𝐻

(𝑟 + 2) (𝐴𝑃 (1) 𝐵 + 𝐶𝑃
𝐻

(1)𝐷)]}

+
‖𝑅 (𝑟 + 2)‖

2

‖𝑅 (𝑟 + 1)‖
2
Re {tr [𝑃𝐻

(𝑟 + 1) 𝑃 (1)]}
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=
‖𝑃 (1)‖

2

‖𝑅 (1)‖
2
Re {tr [𝑅𝐻

(𝑟 + 2) (𝑅 (1) − 𝑅 (2))]}

+
‖𝑅 (𝑟 + 2)‖

2

‖𝑅 (𝑟 + 1)‖
2
Re {tr [𝑃𝐻

(𝑟 + 1) 𝑃 (1)]}

= 0.

(25)

Substep 2.2. In this substep, we prove the conclusion (22) in
Step 2. It follows from Algorithm 7 that

⟨𝑅 (𝑖) , 𝑅 (𝑖 + 𝑟 + 1)⟩

= Re {tr [𝑅𝐻

(𝑖 + 𝑟 + 1) 𝑅 (𝑖)]}

= Re{tr[(𝑅 (𝑖 + 𝑟) −
‖𝑅 (𝑖 + 𝑟)‖

2

‖𝑃 (𝑖 + 𝑟)‖
2

× (𝐴𝑃 (𝑖 + 𝑟) 𝐵 + 𝐶𝑃
𝐻

(𝑖 + 𝑟)𝐷))

𝐻

𝑅 (𝑖) ]}

= Re {tr [𝑅𝐻

(𝑖 + 𝑟) 𝑅 (𝑖)]} −
‖𝑅 (𝑖 + 𝑟)‖

2

‖𝑃 (𝑖 + 𝑟)‖
2

× Re {tr [𝑃𝐻

(𝑖 + 𝑟) (𝐴
𝐻

𝑅 (𝑖) 𝐵
𝐻

+ 𝐷𝑅
𝐻

(𝑖) 𝐶)]}

= −
‖𝑅 (𝑖 + 𝑟)‖

2

‖𝑃 (𝑖 + 𝑟)‖
2

× Re {tr [𝑃𝐻

(𝑖 + 𝑟) ((𝐴
𝐻

𝑅 (𝑖) 𝐵
𝐻

+ 𝐷𝑅
𝐻

(𝑖) 𝐶

+ 𝑄𝐴
𝐻

𝑅 (𝑖) 𝐵
𝐻

𝑄

+ 𝑄𝐷𝑅
𝐻

(𝑖) 𝐶𝑄) × (2)
−1

)]}

= −
‖𝑅 (𝑖 + 𝑟)‖

2

‖𝑃 (𝑖 + 𝑟)‖
2

× Re{tr[𝑃𝐻

(𝑖 + 𝑟) (𝑃 (𝑖) −
‖𝑅 (𝑖)‖

2

‖𝑅 (𝑖 − 1)‖
2
𝑃 (𝑖 − 1))]}

=
‖𝑅 (𝑖 + 𝑟)‖

2

‖𝑅 (𝑖)‖
2

‖𝑃 (𝑖 + 𝑟)‖
2

‖𝑅 (𝑖 − 1)‖
2
Re {tr [𝑃𝐻

(𝑖 + 𝑟) 𝑃 (𝑖 − 1)]} ,

⟨𝑃 (𝑖) , 𝑃 (𝑖 + 𝑟 + 1)⟩

= Re {tr [𝑃𝐻

(𝑖 + 𝑟 + 1) 𝑃 (𝑖)]}

= Re{tr[(1

2
(𝐴

𝐻

𝑅 (𝑖 + 𝑟 + 1) 𝐵
𝐻

+ 𝐷𝑅
𝐻

(𝑖 + 𝑟 + 1) 𝐶

+ 𝑄𝐴
𝐻

𝑅 (𝑖 + 𝑟 + 1) 𝐵
𝐻

𝑄

+ 𝑄𝐷𝑅
𝐻

(𝑖 + 𝑟 + 1) 𝐶𝑄)

+
‖𝑅(𝑖 + 𝑟 + 1)‖

2

‖𝑅(𝑖 + 𝑟)‖
2

𝑃(𝑖 + 𝑟))

𝐻

𝑃 (𝑖)]}

= Re {tr [(𝐴𝐻

𝑅 (𝑖 + 𝑟 + 1) 𝐵
𝐻

+𝐷𝑅
𝐻

(𝑖+𝑟+1) 𝐶)
𝐻

𝑃 (𝑖)]}

= Re {tr [𝑅𝐻

(𝑖 + 𝑟 + 1) (𝐴𝑃 (𝑖)B + 𝐶𝑃
𝐻

(𝑖) 𝐷)]}

=
‖𝑃 (𝑖)‖

2

‖𝑅 (𝑖)‖
2
Re {tr [𝑅𝐻

(𝑖 + 𝑟 + 1) (𝑅 (𝑖) − 𝑅 (𝑖 + 1))]}

=
‖𝑃 (𝑖)‖

2

‖𝑅 (𝑖)‖
2
Re {tr [𝑅𝐻

(𝑖 + 𝑟 + 1) 𝑅 (𝑖)]}

−
‖𝑃 (𝑖)‖

2

‖𝑅 (𝑖)‖
2
Re {tr [𝑅𝐻

(𝑖 + 𝑟 + 1) 𝑅 (𝑖 + 1)]}

=
‖𝑃 (𝑖)‖

2

‖𝑅 (𝑖 + 𝑟)‖
2

‖𝑅 (𝑖)‖
2

‖𝑅 (𝑖)‖
2

‖𝑃 (𝑖 + 𝑟)‖
2

‖𝑅 (𝑖 − 1)‖
2

× Re {tr [𝑃𝐻

(𝑖 + 𝑟) 𝑃 (𝑖 − 1)]} .

(26)

Repeating the above process (26), we can obtain

⟨𝑅 (𝑖) , 𝑅 (𝑖 + 𝑟 + 1)⟩ = ⋅ ⋅ ⋅ = 𝛼Re {tr [𝑃𝐻

(𝑟 + 2) 𝑃 (1)]} ;

⟨𝑃 (𝑖) , 𝑃 (𝑖 + 𝑟 + 1)⟩ = ⋅ ⋅ ⋅ = 𝛽Re {tr [𝑃𝐻

(𝑟 + 2) 𝑃 (1)]} .

(27)

Combining these two relations with (24) and (25), it implies
that (22) holds. So, by the principle of induction, we know
that Lemma 8 holds.

Lemma 9. Assume that Problem 1 is consistent, and let 𝑋 ∈

RH𝑛×𝑛

(𝑄) be its solution. Then, for any initial matrix 𝑋(1) ∈

RH𝑛×𝑛

(𝑄), the sequences {𝑅(𝑖)}, {𝑃(𝑖)}, and {𝑋(𝑖)} generated
by Algorithm 7 satisfy

⟨𝑃 (𝑖) , 𝑋 − 𝑋 (𝑖)⟩ = ‖𝑅 (𝑖)‖
2

, 𝑖 = 1, 2, . . . . (28)

Proof. We also prove this conclusion by induction.
When 𝑖 = 1, it follows from Algorithm 7 that

⟨𝑃 (1) , 𝑋 − 𝑋 (1)⟩

= Re {tr [(𝑋 − 𝑋 (1))
𝐻

𝑃 (1)]}

= Re {tr [(𝑋 − 𝑋 (1))
𝐻

× ((𝐴
𝐻

𝑅 (1) 𝐵
𝐻

+ 𝐷𝑅
𝐻

(1) 𝐶+𝑄𝐴
𝐻

𝑅 (1) 𝐵
𝐻

𝑄

+ 𝑄𝐷𝑅
𝐻

(1) 𝐶𝑄) × (2)
−1

) ]}
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= Re {tr [(𝑋 − 𝑋 (1))
𝐻

(𝐴
𝐻

𝑅 (1) 𝐵
𝐻

+ 𝐷𝑅
𝐻

(1) 𝐶)]}

= Re{tr[𝑅𝐻

(1) (𝐴 (𝑋 − 𝑋 (1)) 𝐵+𝐶 (𝑋 − 𝑋 (1))
𝐻

𝐷)]}

= Re {tr [𝑅𝐻

(1) 𝑅 (1)]}

= ‖𝑅 (1)‖
2

.

(29)

This implies that (28) holds for 𝑖 = 1.
Now it is assumed that (28) holds for 𝑖 = 𝑠, that is

⟨𝑃 (𝑠) , 𝑋 − 𝑋 (𝑠)⟩ = ‖𝑅 (𝑠)‖
2

. (30)

Then, when 𝑖 = 𝑠 + 1

⟨𝑃 (𝑠 + 1) , 𝑋 − 𝑋 (𝑠 + 1)⟩

= Re {tr [(𝑋 − 𝑋 (𝑠 + 1))
𝐻

𝑃 (𝑠 + 1)]}

= Re{tr[(𝑋 − 𝑋 (𝑠 + 1))
𝐻

× (
1

2
(𝐴

𝐻

𝑅 (𝑠 + 1) 𝐵
𝐻

+ 𝐷𝑅
𝐻

(𝑠 + 1) 𝐶

+ 𝑄𝐴
𝐻

𝑅 (𝑠 + 1) 𝐵
𝐻

𝑄

+ 𝑄𝐷𝑅
𝐻

(𝑠 + 1) 𝐶𝑄)

+
‖𝑅(𝑠 + 1)‖

2

‖𝑅(𝑠)‖
2

𝑃 (𝑠))]}

= Re {tr [(𝑋 − 𝑋 (𝑠 + 1))
𝐻

× (𝐴
𝐻

𝑅 (𝑠 + 1) 𝐵
𝐻

+ 𝐷𝑅
𝐻

(𝑠 + 1) 𝐶) ]}

+
‖𝑅 (𝑠 + 1)‖

2

‖𝑅 (𝑠)‖
2

Re {tr [(𝑋 − 𝑋 (𝑠 + 1))
𝐻

𝑃 (𝑠)]}

= Re {tr [𝑅𝐻

(𝑠 + 1)

× (𝐴 (𝑋 − 𝑋 (𝑠 + 1)) 𝐵

+ 𝐶 (𝑋 − 𝑋 (𝑠 + 1))
𝐻

𝐷)]}

+
‖𝑅 (𝑠 + 1)‖

2

‖𝑅 (𝑠)‖
2

{Re {tr [(𝑋 − 𝑋 (𝑠))
𝐻

𝑃 (𝑠)]}

− Re {tr [(𝑋 (𝑠 + 1) − 𝑋 (𝑠))
𝐻

𝑃 (𝑠)]} }

= ‖𝑅 (𝑠 + 1)‖
2

+
‖𝑅 (𝑠 + 1)‖

2

‖𝑅 (𝑠)‖
2

× {‖𝑅 (𝑠)‖
2

−
‖𝑅 (𝑠)‖

2

‖𝑃 (𝑠)‖
2
Re {tr [𝑃𝐻

(𝑠) 𝑃 (𝑠)]}}

= ‖𝑅 (𝑠 + 1)‖
2

.

(31)

Therefore, Lemma 9 holds by the principle of induction.

From the above two lemmas, we have the following
conclusions.

Remark 10. If there exists a positive number 𝑖 such that
𝑅(𝑖) ̸=0 and 𝑃(𝑖) = 0, then we can get from Lemma 9 that
Problem 1 is not consistent. Hence, the solvability of Problem
1 can be determined by Algorithm 7 automatically in the
absence of roundoff errors.

Theorem 11. Suppose that Problem 1 is consistent.Then for any
initial matrix𝑋(1) ∈ RH𝑛×𝑛

(𝑄), a solution of Problem 1 can be
obtained within finite iteration steps in the absence of roundoff
errors.

Proof. In Section 2, it is known that the inner product
space (H𝑚×𝑝

, 𝑅, ⟨⋅, ⋅⟩) is 4𝑚𝑝-dimensional. According to
Lemma 9, if 𝑅(𝑖) ̸=0, 𝑖 = 1, 2, . . . , 4𝑚𝑝, then we have
𝑃(𝑖) ̸=0, 𝑖 = 1, 2, . . . , 4𝑚𝑝. Hence 𝑅(4𝑚𝑝+1) and 𝑃(4𝑚𝑝+1)

can be computed. From Lemma 8, it is not difficult to get

⟨𝑅 (𝑖) , 𝑅 (𝑗)⟩ = 0 for 𝑖, 𝑗 = 1, 2, . . . , 4𝑚𝑝, 𝑖 ̸=𝑗. (32)

Then 𝑅(1), 𝑅(2), . . . , 𝑅(4𝑚𝑝) is an orthogonal basis of the
inner product space (H𝑚×𝑝

, 𝑅, ⟨⋅, ⋅⟩). In addition, we can get
from Lemma 8 that

⟨𝑅 (𝑖) , 𝑅 (4𝑚𝑝 + 1)⟩ = 0 for 𝑖 = 1, 2, . . . , 4𝑚𝑝. (33)

It follows that 𝑅(4𝑚𝑝+1) = 0, which implies that𝑋(4𝑚𝑝+1)

is a solution of Problem 1.

3.2. The Solution of Problem 2. In this subsection, firstly we
introduce some lemmas. Then, we will prove that the least
Frobenius norm reflexive solution of (1) can be derived by
choosing a suitable initial iterative matrix. Finally, we solve
Problem 2 by finding the least Frobenius norm reflexive
solution of a new-constructed quaternion matrix equation.

Lemma 12 (see [47]). Assume that the consistent system of
linear equations𝑀𝑦 = 𝑏 has a solution 𝑦

0
∈ 𝑅(𝑀

𝑇

) then 𝑦
0
is

the unique least Frobenius norm solution of the system of linear
equations.

Lemma 13. Problem 1 is consistent if and only if the system of
quaternion matrix equations

𝐴𝑋𝐵 + 𝐶𝑋
𝐻

𝐷 = 𝐹,

𝐴𝑄𝑋𝑄𝐵 + 𝐶𝑄𝑋
𝐻

𝑄𝐷 = 𝐹

(34)
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is consistent. Furthermore, if the solution sets of Problem 1 and
(34) are denoted by 𝑆

𝐻
and 𝑆

1

𝐻
, respectively, then, we have 𝑆

𝐻
⊆

𝑆
1

𝐻
.

Proof. First, we assume that Problem 1 has a solution 𝑋. By
𝐴𝑋𝐵 + 𝐶𝑋

𝐻

𝐷 = 𝐹 and 𝑄𝑋𝑄 = 𝑋, we can obtain 𝐴𝑋𝐵 +

𝐶𝑋
𝐻

𝐷 = 𝐹 and 𝐴𝑄𝑋𝑄𝐵 + 𝐶𝑄𝑋
𝐻

𝑄𝐷 = 𝐹, which implies
that 𝑋 is a solution of quaternion matrix equations (34), and
𝑆
𝐻

⊆ 𝑆
1

𝐻
.

Conversely, suppose (34) is consistent. Let𝑋 be a solution
of (34). Set 𝑋

𝑎
= (𝑋 + 𝑄𝑋𝑄)/2. It is obvious that 𝑋

𝑎
∈

RH𝑛×𝑛

(𝑄). Now we can write

𝐴𝑋
𝑎
𝐵 + 𝐶𝑋

𝐻

𝑎
𝐷

=
1

2
[𝐴 (𝑋 + 𝑄𝑋𝑄)𝐵 + 𝐶(𝑋 + 𝑄𝑋𝑄)

𝐻

𝐷]

=
1

2
[𝐴𝑋𝐵 + 𝐶𝑋

𝐻

𝐷 + 𝐴𝑄𝑋𝑄𝐵 + 𝐶𝑄𝑋
𝐻

𝑄𝐷]

=
1

2
[𝐹 + 𝐹]

= 𝐹.

(35)

Hence 𝑋
𝑎
is a solution of Problem 1. The proof is completed.

Lemma 14. The system of quaternion matrix equations (34) is
consistent if and only if the system of real matrix equations

𝜙 (𝐴) [𝑋
𝑖𝑗
]
4 × 4

𝜙 (𝐵) + 𝜙 (𝐶) [𝑋
𝑖𝑗
]
𝑇

4 × 4

𝜙 (𝐷) = 𝜙 (𝐹) ,

𝜙 (𝐴) 𝜙 (𝑄) [𝑋
𝑖𝑗
]
4 × 4

𝜙 (𝑄) 𝜙 (𝐵)

+ 𝜙 (𝐶) 𝜙 (𝑄) [𝑋
𝑖𝑗
]
𝑇

4 × 4

𝜙 (𝑄) 𝜙 (𝐷) = 𝜙 (𝐹)

(36)

is consistent, where 𝑋
𝑖𝑗

∈ H𝑛×𝑛

, 𝑖, 𝑗 = 1, 2, 3, 4, are submatri-
ces of the unknown matrix. Furthermore, if the solution sets of
(34) and (36) are denoted by 𝑆

1

𝐻
and 𝑆

2

𝑅
, respectively, then, we

have 𝜙(𝑆1

𝐻
) ⊆ 𝑆

2

𝑅
.

Proof. Suppose that (34) has a solution

𝑋 = 𝑋
1
+ 𝑋

2
𝑖 + 𝑋

3
𝑗 + 𝑋

4
𝑘. (37)

Applying (𝑎), (𝑏), and (𝑐) in Lemma 4 to (34) yields

𝜙 (𝐴) 𝜙 (𝑋) 𝜙 (𝐵) + 𝜙 (𝐶) 𝜙
𝑇

(𝑋) 𝜙 (𝐷) = 𝜙 (𝐹) ,

𝜙 (𝐴) 𝜙 (𝑄) 𝜙 (𝑋) 𝜙 (𝑄) 𝜙 (𝐵)

+ 𝜙 (𝐶) 𝜙 (𝑄) 𝜙
𝑇

(𝑋) 𝜙 (𝑄) 𝜙 (𝐷) = 𝜙 (𝐹) ,

(38)

which implies that 𝜙(𝑋) is a solution of (36) and 𝜙(𝑆
1

𝐻
) ⊆ 𝑆

2

𝑅
.

Conversely, suppose that (36) has a solution

𝑋 = [𝑋
𝑖𝑗
]
4 × 4

. (39)

By (𝑑) in Lemma 4, we have that

𝑇
−1

𝑚
𝜙 (𝐴) 𝑇

𝑛
𝑋𝑇

−1

𝑛
𝜙 (𝐵) 𝑇

𝑝

+ 𝑇
−1

𝑚
𝜙 (𝐶) 𝑇

𝑛
𝑋

𝑇

𝑇
−1

𝑛
𝜙 (𝐷)𝑇

𝑝
= 𝑇

−1

𝑚
𝜙 (𝐹) 𝑇

𝑝
,

𝑅
−1

𝑚
𝜙 (𝐴) 𝑅

𝑛
𝑋𝑅

−1

𝑛
𝜙 (𝐵) 𝑅

𝑝

+ 𝑅
−1

𝑚
𝜙 (𝐶) 𝑅

𝑛
𝑋

𝑇

𝑅
−1

𝑛
𝜙 (𝐷) 𝑅

𝑝
= 𝑅

−1

𝑚
𝜙 (𝐹) 𝑅

𝑝
,

𝑆
−1

𝑚
𝜙 (𝐴) 𝑆

𝑛
𝑋𝑆

−1

𝑛
𝜙 (𝐵) 𝑆

𝑝

+ S−1

𝑚
𝜙 (𝐶) 𝑆

𝑛
𝑋

𝑇

𝑆
−1

𝑛
𝜙 (𝐷) 𝑆

𝑝
= 𝑆

−1

𝑚
𝜙 (𝐹) 𝑆

𝑝
,

𝑇
−1

𝑚
𝜙 (𝐴) 𝜙 (𝑄) 𝑇

𝑛
𝑋𝑇

−1

𝑛
𝜙 (𝑄) 𝜙 (𝐵) 𝑇

𝑝

+ 𝑇
−1

𝑚
𝜙 (𝐶) 𝜙 (𝑄) 𝑇

𝑛
𝑋

𝑇

𝑇
−1

𝑛
𝜙 (𝑄) 𝜙 (𝐷) 𝑇

𝑝
= 𝑇

−1

𝑚
𝜙 (𝐹) 𝑇

𝑝
,

𝑅
−1

𝑚
𝜙 (𝐴) 𝜙 (𝑄) 𝑅

𝑛
𝑋𝑅

−1

𝑛
𝜙 (𝑄) 𝜙 (𝐵) 𝑅

𝑝

+ 𝑅
−1

𝑚
𝜙 (𝐶) 𝜙 (𝑄) 𝑅

𝑛
𝑋

𝑇

𝑅
−1

𝑛
𝜙 (𝑄) 𝜙 (𝐷) 𝑅

𝑝
= 𝑅

−1

𝑚
𝜙 (𝐹) 𝑅

𝑝
,

𝑆
−1

𝑚
𝜙 (𝐴) 𝜙 (𝑄) 𝑆

𝑛
𝑋𝑆

−1

𝑛
𝜙 (𝑄) 𝜙 (𝐵) 𝑆

𝑝

+ 𝑆
−1

𝑚
𝜙 (𝐶) 𝜙 (𝑄) 𝑆

𝑛
𝑋

𝑇

𝑆
−1

𝑛
𝜙 (𝑄) 𝜙 (𝐷) 𝑆

𝑝
= 𝑆

−1

𝑚
𝜙 (𝐹) 𝑆

𝑝
.

(40)

Hence

𝜙 (𝐴) 𝑇
𝑛
𝑋𝑇

−1

𝑛
𝜙 (𝐵) + 𝜙 (𝐶) (𝑇

𝑛
𝑋𝑇

−1

𝑛
)
𝑇

𝜙 (𝐷) = 𝜙 (𝐹) ,

𝜙 (𝐴) 𝑅
𝑛
𝑋𝑅

−1

𝑛
𝜙 (𝐵) + 𝜙 (𝐶) (R

𝑛
𝑋𝑅

−1

𝑛
)
𝑇

𝜙 (𝐷) = 𝜙 (𝐹) ,

𝜙 (𝐴) 𝑆
𝑛
𝑋𝑆

−1

𝑛
𝜙 (𝐵) + 𝜙 (𝐶) (𝑆

𝑛
𝑋𝑆

−1

𝑛
)
𝑇

𝜙 (𝐷) = 𝜙 (𝐹) ,

𝜙 (𝐴) 𝜙 (𝑄) 𝑇
𝑛
𝑋𝑇

−1

𝑛
𝜙 (𝑄) 𝜙 (𝐵)

+ 𝜙 (𝐶) 𝜙 (𝑄) (𝑇
𝑛
𝑋𝑇

−1

𝑛
)
𝑇

𝜙 (𝑄) 𝜙 (𝐷) = 𝜙 (𝐹) ,

𝜙 (𝐴) 𝜙 (𝑄) 𝑅
𝑛
𝑋𝑅

−1

𝑛
𝜙 (𝑄) 𝜙 (𝐵)

+ 𝜙 (𝐶) 𝜙 (𝑄) (𝑅
𝑛
𝑋𝑅

−1

𝑛
)
𝑇

𝜙 (𝑄) 𝜙 (𝐷) = 𝜙 (𝐹) ,

𝜙 (𝐴) 𝜙 (𝑄) 𝑆
𝑛
𝑋𝑆

−1

𝑛
𝜙 (𝑄) 𝜙 (𝐵)

+ 𝜙 (𝐶) 𝜙 (𝑄) (𝑆
𝑛
𝑋𝑆

−1

𝑛
)
𝑇

𝜙 (𝑄) 𝜙 (𝐷) = 𝜙 (𝐹) ,

(41)

which implies that 𝑇
𝑛
𝑋𝑇

−1

𝑛
, 𝑅

𝑛
𝑋𝑅

−1

𝑛
, and 𝑆

𝑛
𝑋𝑆

−1

𝑛
are also

solutions of (36). Thus,

1

4
(𝑋 + 𝑇

𝑛
𝑋𝑇

−1

𝑛
+ 𝑅

𝑛
𝑋𝑅

−1

𝑛
+ 𝑆

𝑛
𝑋𝑆

−1

𝑛
) (42)
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is also a solution of (36), where

𝑋 + 𝑇
𝑛
𝑋𝑇

−1

𝑛
+ 𝑅

𝑛
𝑋𝑅

−1

𝑛
+ 𝑆

𝑛
𝑋𝑆

−1

𝑛

= [𝑋
𝑖𝑗
]
4 × 4

, 𝑖, 𝑗 = 1, 2, 3, 4,

𝑋
11

= 𝑋
11

+ 𝑋
22

+ 𝑋
33

+ 𝑋
44
,

𝑋
12

= 𝑋
12

− 𝑋
21

+ 𝑋
34

− 𝑋
43
,

𝑋
13

= 𝑋
13

− 𝑋
24

− 𝑋
31

+ 𝑋
42
,

𝑋
14

= 𝑋
14

+ 𝑋
23

− 𝑋
32

− 𝑋
41
,

𝑋
21

= −𝑋
12

+ 𝑋
21

− 𝑋
34

+ 𝑋
43
,

𝑋
22

= 𝑋
11

+ 𝑋
22

+ 𝑋
33

+ 𝑋
44
,

𝑋
23

= 𝑋
14

+ 𝑋
23

− 𝑋
32

− 𝑋
41
,

𝑋
24

= −𝑋
13

+ 𝑋
24

+ 𝑋
31

− 𝑋
42
,

𝑋
31

= −𝑋
13

+ 𝑋
24

+ 𝑋
31

− 𝑋
42
,

𝑋
32

= −𝑋
14

− 𝑋
23

+ 𝑋
32

+ 𝑋
41
,

𝑋
33

= 𝑋
11

+ 𝑋
22

+ 𝑋
33

+ 𝑋
44
,

𝑋
34

= 𝑋
12

− 𝑋
21

+ 𝑋
34

− 𝑋
43
,

𝑋
41

= −𝑋
14

− 𝑋
23

+ 𝑋
32

+ 𝑋
41
,

𝑋
42

= 𝑋
13

− 𝑋
24

− 𝑋
31

+ 𝑋
42
,

𝑋
43

= −𝑋
12

+ 𝑋
21

− 𝑋
34

+ 𝑋
43
,

𝑋
44

= 𝑋
11

+ 𝑋
22

+ 𝑋
33

+ 𝑋
44
.

(43)

Let

𝑋 =
1

4
(𝑋

11
+ 𝑋

22
+ 𝑋

33
+ 𝑋

44
)

+
1

4
(−𝑋

12
+ 𝑋

21
− 𝑋

34
+ 𝑋

43
) 𝑖

+
1

4
(−𝑋

13
+ 𝑋

24
+ 𝑋

31
− 𝑋

42
) 𝑗

+
1

4
(−𝑋

14
− 𝑋

23
+ 𝑋

32
+ 𝑋

41
) 𝑘.

(44)

Then it is not difficult to verify that

𝜙 (𝑋) =
1

4
(𝑋 + 𝑇

𝑛
𝑋𝑇

−1

𝑛
+ 𝑅

𝑛
𝑋𝑅

−1

𝑛
+ 𝑆

𝑛
𝑋𝑆

−1

𝑛
) . (45)

We have that 𝑋 is a solution of (34) by (𝑎) in Lemma 4. The
proof is completed.
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Figure 1: The convergence curve for the Frobenius norm of the
residuals from Example 18.

0 5 10 15 20

0

2

4

Iteration number k

−12

−10

−8

−6

−4

−2

log10r (k)

Figure 2: The convergence curve for the Frobenius norm of the
residuals from Example 19.

Lemma 15. There exists a permutation matrix P(4n,4n) such
that (36) is equivalent to

[
𝜙

𝑇

(𝐵) ⊗ 𝜙 (𝐴) + (𝜙
𝑇

(𝐷) ⊗ 𝜙 (𝐶)) 𝑃 (4𝑛, 4𝑛)

𝜙
𝑇

(𝐵) 𝜙 (𝑄) ⊗ 𝜙 (𝐴) 𝜙 (𝑄) + (𝜙
𝑇

(𝐷) 𝜙 (𝑄) ⊗ 𝜙 (𝐶) 𝜙 (𝑄)) 𝑃 (4𝑛, 4𝑛)

]

× vec ([𝑋
𝑖𝑗
]
4 × 4

) = [
vec (𝜙 (𝐹))

vec (𝜙 (𝐹))
] .

(46)

Lemma 15 is easily proven through Lemma 5. So we omit
it here.
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Theorem 16. When Problem 1 is consistent, let its solution set
be denoted by 𝑆

𝐻
. If

∘

𝑋 ∈ 𝑆
𝐻
, and

∘

𝑋 can be expressed as

∘

𝑋 = 𝐴
𝐻

𝐺𝐵
𝐻

+ 𝐷𝐺
𝐻

𝐶 + 𝑄𝐴
𝐻

𝐺𝐵
𝐻

𝑄

+ 𝑄𝐷𝐺
𝐻

𝐶𝑄, 𝐺 ∈ H
𝑚×𝑝

,

(47)

then,
∘

𝑋 is the least Frobenius norm solution of Problem 1.

Proof. By (𝑎), (𝑏), and (𝑐) in Lemmas 4, 5, and 6, we have that

vec(𝜙(

∘

𝑋))

= vec (𝜙𝑇

(𝐴) 𝜙 (𝐺) 𝜙
𝑇

(𝐵) + 𝜙 (𝐷) 𝜙
𝑇

(𝐺) 𝜙 (𝐶)

+ 𝜙 (𝑄) 𝜙
𝑇

(𝐴) 𝜙 (𝐺) 𝜙
𝑇

(𝐵) 𝜙 (𝑄)

+ 𝜙 (𝑄) 𝜙 (𝐷) 𝜙
𝑇

(𝐺) 𝜙 (𝐶) 𝜙 (𝑄))

= [𝜙 (𝐵) ⊗ 𝜙
𝑇

(𝐴) + (𝜙
𝑇

(𝐶) ⊗ 𝜙 (𝐷)) 𝑃 (4𝑚, 4𝑝) ,

𝜙 (𝑄) 𝜙 (𝐵) ⊗ 𝜙 (𝑄) 𝜙
𝑇

(𝐴)

+ (𝜙 (𝑄) 𝜙
𝑇

(𝐶) ⊗ 𝜙 (𝑄) 𝜙 (𝐷)) 𝑃 (4𝑚, 4𝑝)]

× [
vec (𝜙 (𝐺))

vec (𝜙 (𝐺))
]

= [
𝜙

𝑇

(𝐵) ⊗ 𝜙(𝐴) + (𝜙
𝑇

(𝐷) ⊗ 𝜙(𝐶))𝑃(4𝑛, 4𝑛)

𝜙
𝑇

(𝐵)𝜙(𝑄) ⊗ 𝜙(𝐴)𝜙(𝑄) + (𝜙
𝑇

(𝐷)𝜙(𝑄) ⊗ 𝜙(𝐶)𝜙(𝑄))𝑃(4𝑛, 4𝑛)

]

𝑇

× [
vec (𝜙 (𝐺))

vec (𝜙 (𝐺))
]

∈ 𝑅 [
𝜙

𝑇

(𝐵) ⊗ 𝜙 (𝐴)

𝜙
𝑇

(𝐵) 𝜙 (𝑄) ⊗ 𝜙 (𝐴) 𝜙 (𝑄)

+ (𝜙
𝑇

(𝐷) ⊗ 𝜙 (𝐶)) 𝑃 (4𝑛, 4𝑛)

+ (𝜙
𝑇

(𝐷) 𝜙 (𝑄) ⊗ 𝜙 (𝐶) 𝜙 (𝑄)) 𝑃 (4𝑛, 4𝑛)
]

𝑇

.

(48)

By Lemma 12, 𝜙(
∘

𝑋) is the least Frobenius norm solution of
matrix equations (46).

Noting (11), we derive from Lemmas 13, 14, and 15 that
∘

𝑋

is the least Frobenius norm solution of Problem 1.

From Algorithm 7, it is obvious that, if we consider

𝑋(1) = 𝐴
𝐻

𝐺𝐵
𝐻

+ 𝐷𝐺
𝐻

𝐶 + 𝑄𝐴
𝐻

𝐺𝐵
𝐻

𝑄

+ 𝑄𝐷𝐺
𝐻

𝐶𝑄, 𝐺 ∈ H
𝑚×𝑝

,

(49)

then all𝑋(𝑘) generated by Algorithm 7 can be expressed as

𝑋 (𝑘) = 𝐴
𝐻

𝐺
𝑘
𝐵

𝐻

+ 𝐷𝐺
𝐻

𝑘
𝐶 + 𝑄𝐴

𝐻

𝐺
𝑘
𝐵

𝐻

𝑄

+ 𝑄𝐷𝐺
𝐻

𝑘
𝐶𝑄, 𝐺

𝑘
∈ H

𝑚×𝑝

.

(50)

Using the above conclusion and consideringTheorem 16,
we propose the following theorem.

Theorem 17. Suppose that Problem 1 is consistent. Let the
initial iteration matrix be

𝑋 (1) = 𝐴
𝐻

𝐺𝐵
H
+ 𝐷𝐺

𝐻

𝐶 + 𝑄𝐴
𝐻

𝐺𝐵
𝐻

𝑄 + 𝑄𝐷𝐺
𝐻

𝐶𝑄, (51)

where 𝐺 is an arbitrary quaternion matrix, or especially,
𝑋(1) = 0, then the solution 𝑋

∗, generated by Algorithm 7, is
the least Frobenius norm solution of Problem 1.

Now we study Problem 2. When Problem 1 is consistent,
the solution set of Problem 1 denoted by 𝑆

𝐻
is not empty.

Then, For a given reflexive matrix𝑋
0
∈ RH𝑛×𝑛

(𝑄),

𝐴𝑋𝐵 + 𝐶𝑋
𝐻

𝐷 = 𝐹 ⇐⇒ 𝐴(𝑋 − 𝑋
0
) 𝐵 + 𝐶(𝑋 − 𝑋

0
)
𝐻

𝐷

= 𝐹 − 𝐴𝑋
0
𝐵 − 𝐶𝑋

𝐻

0
𝐷.

(52)

Let 𝑋 = 𝑋 − 𝑋
0
and ̇𝐹 = 𝐹 − 𝐴𝑋

0
𝐵 − 𝐶𝑋

𝐻

0
𝐷, then Problem

2 is equivalent to finding the least Frobenius norm reflexive
solution of the quaternion matrix equation

𝐴𝑋𝐵 + 𝐶𝑋
𝐻

𝐷 = ̇𝐹. (53)

By using Algorithm 7, let the initial iteration matrix 𝑋(1) =

𝐴
𝐻

𝐺𝐵
𝐻

+ 𝐷𝐺
𝐻

𝐶 + 𝑄𝐴
𝐻

𝐺𝐵
𝐻

𝑄 + 𝑄𝐷𝐺
𝐻

𝐶Q, where 𝐺 is an
arbitrary quaternion matrix in H𝑚×𝑝, or especially, 𝑋(1) = 0,
we can obtain the least Frobenius norm reflexive solution𝑋

∗

of (53). Then we can obtain the solution of Problem 2, which
is

𝑋 = 𝑋
∗

+ 𝑋
0
. (54)
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4. Examples

In this section, we give two examples to illustrate the effi-
ciency of the theoretical results.

Example 18. Consider the quaternion matrix equation

𝐴𝑋𝐵 + 𝐶𝑋
𝐻

𝐷 = 𝐹, (55)
with

𝐴 = [
1 + 𝑖 + 𝑗 + 𝑘 2 + 2𝑗 + 2𝑘 𝑖 + 3𝑗 + 3𝑘 2 + 𝑖 + 4𝑗 + 4𝑘

3 + 2 𝑖 + 2 𝑗 + 𝑘 3 + 3𝑖 + 𝑗 1 + 7𝑖 + 3𝑗 + 𝑘 6 − 7𝑖 + 2𝑗 − 4𝑘
] ,

𝐵 =

[
[
[

[

−2 + 𝑖 + 3𝑗 + 𝑘 3 + 3𝑖 + 4𝑗 + 𝑘

5 − 4𝑖 − 6𝑗 − 5𝑘 −1 − 5𝑖 + 4𝑗 + 3𝑘

−1 + 2𝑖 + 𝑗 + 𝑘 2 + 2𝑗 + 6𝑘

3 − 2𝑖 + 𝑗 + 𝑘 4 + 𝑖 − 2𝑗 − 4𝑘

]
]
]

]

,

𝐶 = [
1 + 𝑖 + 𝑗 + 𝑘 2 + 2𝑖 + 2𝑗 𝑘 2 + 2𝑖 + 2𝑗 + 𝑘

−1 + 𝑖 + 3𝑗 + 3𝑘 −2 + 3𝑖 + 4𝑗 + 2𝑘 6 − 2𝑖 + 6𝑗 + 4𝑘 3 + 𝑖 + 𝑗 + 5𝑘
] ,

𝐷 =

[
[
[

[

−1 + 4𝑗 + 2𝑘 1 + 2𝑖 + 3𝑗 + 3𝑘

7 + 6𝑖 + 5𝑗 + 6𝑘 3 + 7𝑖 − 𝑗 + 9𝑘

4 + 𝑖 + 6𝑗 + 𝑘 7 + 2𝑖 + 9𝑗 + 𝑘

1 + 𝑖 + 3𝑗 − 3𝑘 1 + 3𝑖 + 2𝑗 + 2𝑘

]
]
]

]

,

𝐹 = [
1 + 3𝑖 + 2𝑗 + 𝑘 2 − 2𝑖 + 3𝑗 + 3𝑘

−1 + 4𝑖 + 2𝑗 + 𝑘 −2 + 2𝑖 − 1𝑗
] .

(56)

We apply Algorithm 7 to find the reflexive solution with res-
pect to the generalized reflection matrix.

𝑄 =

[
[
[

[

0.28 0 0.96𝑘 0

0 −1 0.0 0

−0.96𝑘 0 −0.28 0

0 0 0 −1

]
]
]

]

. (57)

For the initial matrix𝑋(1) = 𝑄, we obtain a solution, that is

𝑋
∗

= 𝑋 (20)

=
[
[

[

0.27257 − 0.23500𝑖 + 0.034789𝑗 + 0.054677𝑘 0.085841 − 0.064349𝑖 + 0.10387𝑗 − 0.26871𝑘

0.028151 − 0.013246𝑖 − 0.091097𝑗 + 0.073137𝑘 −0.46775 + 0.048363𝑖 − 0.015746𝑗 + 0.21642𝑘

0.043349 + 0.079178𝑖 + 0.085167𝑗 − 0.84221𝑘 0.35828 − 0.13849𝑖 − 0.085799𝑗 + 0.11446𝑘

0.13454 − 0.028417𝑖 − 0.063010𝑗 − 0.10574𝑘 0.10491 − 0.039417𝑖 + 0.18066𝑗 − 0.066963𝑘

−0.043349 + 0.079178𝑖 + 0.085167𝑗 + 0.84221𝑘 −0.014337 − 0.14868𝑖 − 0.011146𝑗 − 0.00036397𝑘

0.097516 + 0.12146𝑖 − 0.017662𝑗 − 0.037534𝑘 −0.064483 + 0.070885𝑖 − 0.089331𝑗 + 0.074969𝑘

−0.21872 + 0.18532𝑖 + 0.011399𝑗 + 0.029390𝑘 0.00048529 + 0.014861𝑖 − 0.19824𝑗 − 0.019117𝑘

−0.14099 + 0.084013𝑖 − 0.037890𝑗 − 0.17938𝑘 −0.63928 − 0.067488𝑖 + 0.042030𝑗 + 0.10106𝑘

]
]

]

,

(58)

with corresponding residual ‖𝑅(20)‖ = 2.2775 × 10
−11. The

convergence curve for the Frobenius norm of the residuals
𝑅(𝑘) is given in Figure 1, where 𝑟(𝑘) = ‖𝑅(𝑘)‖.

Example 19. In this example, we choose the matrices
𝐴, 𝐵, 𝐶, 𝐷, 𝐹, and 𝑄 as same as in Example 18. Let

𝑋
0
= [

[

1 −0.36𝑖 − 0.75𝑘 0 −0.5625𝑖 − 0.48𝑘

0.36𝑖 1.28 0.48𝑗 −0.96𝑗

0 1 − 0.48𝑗 1 0.64 − 0.75𝑗

0.48𝑘 0.96𝑗 0.64 0.72

]

]

∈ RH
𝑛×𝑛

(𝑄) .

(59)

In order to find the optimal approximation reflexive solution
to the given matrix 𝑋

0
, let 𝑋 = 𝑋 − 𝑋

0
and ̇𝐹 = 𝐹 −

𝐴𝑋
0
𝐵 − 𝐶𝑋

𝐻

0
𝐷. Now we can obtain the least Frobenius

norm reflexive solution𝑋
∗ of the quaternionmatrix equation

𝐴𝑋𝐵 + 𝐶 ̇𝑋
𝐻

𝐷 = ̇𝐹, by choosing the initial matrix 𝑋(1) = 0,
that is
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𝑋
∗

= 𝑋 (20)

=

[
[
[

[

−0.47933 + 0.021111𝑖 + 0.11703𝑗 − 0.066934𝑘 −0.52020 − 0.19377𝑖 + 0.17420𝑗 − 0.59403𝑘

−0.31132 − 0.11705𝑖 − 0.33980𝑗 + 0.11991𝑘 −0.86390 − 0.21715𝑖 − 0.037089𝑗 + 0.40609𝑘

−0.24134 − 0.025941𝑖 − 0.31930𝑗 − 0.26961𝑘 −0.44552 + 0.13065𝑖 + 0.14533𝑗 + 0.39015𝑘

−0.11693 − 0.27043𝑖 + 0.22718𝑗 − 0.0000012004𝑘 −0.44790 − 0.31260𝑖 − 1.0271𝑗 + 0.27275𝑘

0.24134 − 0.025941𝑖 − 0.31930𝑗 + 0.26961𝑘 0.089010 − 0.67960𝑖 + 0.43044𝑗 − 0.045772𝑘

−0.089933 − 0.25485𝑖 + 0.087788𝑗 − 0.23349𝑘 −0.17004 − 0.37655𝑖 + 0.80481𝑗 + 0.37636𝑘

−0.63660 + 0.16515𝑖 − 0.13216𝑗 + 0.073845𝑘 −0.034329 + 0.32283𝑖 + 0.50970𝑗 − 0.066757𝑘

0.00000090029 + 0.17038𝑖 + 0.20282𝑗 − 0.087697𝑘 −0.44735 + 0.21846𝑖 − 0.21469𝑗 − 0.15347𝑘

]
]
]

]

,

(60)

with corresponding residual ‖ ̇𝑅(20)‖ = 4.3455 × 10
−11. The

convergence curve for the Frobenius norm of the residuals
̇𝑅(𝑘) is given in Figure 2, where 𝑟(𝑘) = ‖ ̇𝑅(𝑘)‖.

Therefore, the optimal approximation reflexive solution
to the given matrix𝑋

0
is

𝑋 = 𝑋
∗

+ 𝑋
0

=

[
[
[

[

0.52067 + 0.021111𝑖 + 0.11703𝑗 − 0.066934𝑘 −0.52020 − 0.55377𝑖 + 0.17420𝑗 − 1.3440𝑘

−0.31132 + 0.24295𝑖 − 0.33980𝑗 + 0.11991𝑘 0.41610 − 0.21715𝑖 − 0.037089𝑗 + 0.40609𝑘

−0.24134 − 0.025941𝑖 − 0.31930𝑗 − 0.26961𝑘 0.55448 + 0.13065𝑖 − 0.33467𝑗 + 0.39015𝑘

−0.11693 − 0.27043𝑖 + 0.22718𝑗 + 0.48000𝑘 −0.44790 − 0.31260𝑖 − 0.067117𝑗 + 0.27275𝑘

0.24134 − 0.025941𝑖 − 0.31930𝑗 + 0.26961𝑘 0.089010 − 1.2421𝑖 + 0.43044𝑗 − 0.52577𝑘

−0.089933 − 0.25485𝑖 + 0.56779𝑗 − 0.23349𝑘 −0.17004 − 0.37655𝑖 − 0.15519𝑗 + 0.37636𝑘

0.36340 + 0.16515𝑖 − 0.13216𝑗 + 0.073845𝑘 0.60567 + 0.32283𝑖 − 0.24030𝑗 − 0.066757𝑘

0.64000 + 0.17038𝑖 + 0.20282𝑗 − 0.087697𝑘 0.27265 + 0.21846𝑖 − 0.21469𝑗 − 0.15347𝑘

]
]
]

]

.

(61)

The results show that Algorithm 7 is quite efficient.

5. Conclusions

In this paper, an algorithm has been presented for solving the
reflexive solution of the quaternion matrix equation 𝐴𝑋𝐵 +

𝐶𝑋
𝐻

𝐷 = 𝐹. By this algorithm, the solvability of the problem
can be determined automatically. Also, when the quaternion
matrix equation 𝐴𝑋𝐵 + 𝐶𝑋

𝐻

𝐷 = 𝐹 is consistent over
reflexive matrix 𝑋, for any reflexive initial iterative matrix,
a reflexive solution can be obtained within finite iteration
steps in the absence of roundoff errors. It has been proven
that by choosing a suitable initial iterative matrix, we can
derive the least Frobenius norm reflexive solution of the
quaternion matrix equation 𝐴𝑋𝐵 + 𝐶𝑋

𝐻

𝐷 = 𝐹 through
Algorithm 7. Furthermore, by using Algorithm 7, we solved
Problem 2. Finally, two numerical examples were given to
show the efficiency of the presented algorithm.
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We solve optimization problems on the ranks and inertias of the quadratic Hermitian matrix function 𝑄 − 𝑋𝑃𝑋
∗ subject to a

consistent system of matrix equations 𝐴𝑋 = 𝐶 and 𝑋𝐵 = 𝐷. As applications, we derive necessary and sufficient conditions for the
solvability to the systems of matrix equations and matrix inequalities 𝐴𝑋 = 𝐶,𝑋𝐵 = 𝐷, and 𝑋𝑃𝑋∗ = (>, <, ≥, ≤)𝑄 in the Löwner
partial ordering to be feasible, respectively. The findings of this paper widely extend the known results in the literature.

1. Introduction

Throughout this paper, we denote the complex number field
by C. The notations C𝑚×𝑛 and C𝑚×𝑚

ℎ
stand for the sets

of all 𝑚 × 𝑛 complex matrices and all 𝑚 × 𝑚 complex
Hermitian matrices, respectively.The identity matrix with an
appropriate size is denoted by 𝐼. For a complex matrix 𝐴,
the symbols 𝐴∗ and 𝑟(𝐴) stand for the conjugate transpose
and the rank of𝐴, respectively.TheMoore-Penrose inverse of
𝐴 ∈ C𝑚×𝑛, denoted by𝐴†, is defined to be the unique solution
𝑋 to the following four matrix equations

(1) 𝐴𝑋𝐴 = 𝐴, (2) 𝑋𝐴𝑋 = 𝑋,

(3) (𝐴𝑋)
∗

= 𝐴𝑋, (4) (𝑋𝐴)
∗

= 𝑋𝐴.

(1)

Furthermore, 𝐿
𝐴
and 𝑅

𝐴
stand for the two projectors 𝐿

𝐴
=

𝐼 − 𝐴
†

𝐴 and 𝑅
𝐴
= 𝐼 − 𝐴𝐴

† induced by 𝐴, respectively. It is
known that 𝐿

𝐴
= 𝐿
∗

𝐴
and 𝑅

𝐴
= 𝑅
∗

𝐴
. For 𝐴 ∈ C𝑚×𝑚

ℎ
, its inertia

I
𝑛
(𝐴) = (𝑖

+
(𝐴) , 𝑖
−
(𝐴) , 𝑖
0
(𝐴)) (2)

is the triple consisting of the numbers of the positive, nega-
tive, and zero eigenvalues of 𝐴, counted with multiplicities,
respectively. It is easy to see that 𝑖

+
(𝐴) + 𝑖

−
(𝐴) = 𝑟(𝐴). For

two Hermitian matrices 𝐴 and 𝐵 of the same sizes, we say
𝐴 > 𝐵 (𝐴 ≥ 𝐵) in the Löwner partial ordering if 𝐴 − 𝐵 is
positive (nonnegative) definite.

The investigation on maximal and minimal ranks and
inertias of linear and quadratic matrix function is active
in recent years (see, e.g., [1–24]). Tian [21] considered the
maximal and minimal ranks and inertias of the Hermitian
quadratic matrix function

ℎ (𝑋) = 𝐴𝑋𝐵𝑋
∗

𝐴
∗

+ 𝐴𝑋𝐶 + 𝐶
∗

𝑋
∗

𝐴
∗

+ 𝐷, (3)

where 𝐵 and 𝐷 are Hermitian matrices. Moreover, Tian [22]
investigated the maximal and minimal ranks and inertias of
the quadratic Hermitian matrix function

𝑓 (𝑋) = 𝑄 − 𝑋𝑃𝑋
∗ (4)

such that 𝐴𝑋 = 𝐶.
The goal of this paper is to give the maximal andminimal

ranks and inertias of the matrix function (4) subject to the
consistent system of matrix equations

𝐴𝑋 = 𝐶, 𝑋𝐵 = 𝐷, (5)

where 𝑄 ∈ C𝑛×𝑛
ℎ

, 𝑃 ∈ C
𝑝×𝑝

ℎ
are given complex matrices.

As applications, we consider the necessary and sufficient
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conditions for the solvability to the systems of matrix equa-
tions and inequality

𝐴𝑋 = 𝐶, 𝑋𝐵 = 𝐷, 𝑋𝑃𝑋
∗

= 𝑄,

𝐴𝑋 = 𝐶, 𝑋𝐵 = 𝐷, 𝑋𝑃𝑋
∗

> 𝑄,

𝐴𝑋 = 𝐶, 𝑋𝐵 = 𝐷, 𝑋𝑃𝑋
∗

< 𝑄,

𝐴𝑋 = 𝐶, 𝑋𝐵 = 𝐷, 𝑋𝑃𝑋
∗

≥ 𝑄,

𝐴𝑋 = 𝐶, 𝑋𝐵 = 𝐷, 𝑋𝑃𝑋
∗

≤ 𝑄,

(6)

in the Löwner partial ordering to be feasible, respectively.

2. The Optimization on Ranks and Inertias
of (4) Subject to (5)

In this section, we consider the maximal and minimal ranks
and inertias of the quadratic Hermitian matrix function (4)
subject to (5). We begin with the following lemmas.

Lemma 1 (see [3]). Let 𝐴 ∈ C𝑚×𝑚
ℎ

, 𝐵 ∈ C𝑚×𝑝, and 𝐶 ∈ C𝑞×𝑚

be given and denote

𝑃
1
= [

𝐴 𝐵

𝐵
∗

0
] , 𝑃

2
= [

𝐴 𝐶
∗

𝐶 0
] ,

𝑃
3
= [

𝐴 𝐵 𝐶
∗

𝐵
∗

0 0
] , 𝑃

4
= [

𝐴 𝐵 𝐶
∗

𝐶 0 0
] .

(7)

Then

max
𝑌∈C𝑝×𝑞

𝑟 [𝐴 − 𝐵𝑌𝐶 − (𝐵𝑌𝐶)
∗

]

= min {𝑟 [𝐴 𝐵 𝐶
∗

] , 𝑟 (𝑃
1
) , 𝑟 (𝑃

2
)} ,

min
𝑌∈C𝑝×𝑞

𝑟 [𝐴 − 𝐵𝑌𝐶 − (𝐵𝑌𝐶)
∗

]

= 2𝑟 [𝐴 𝐵 𝐶
∗

]

+max {𝑤
+
+ 𝑤
−
, 𝑔
+
+ 𝑔
−
, 𝑤
+
+ 𝑔
−
, 𝑤
−
+ 𝑔
+
} ,

max
𝑌∈C𝑝×𝑞

𝑖
±
[𝐴 − 𝐵𝑌𝐶 − (𝐵𝑌𝐶)

∗

] = min {𝑖
±
(𝑃
1
) , 𝑖
±
(𝑃
2
)} ,

min
𝑌∈C𝑝×𝑞

𝑖
±
[𝐴 − 𝐵𝑌𝐶 − (𝐵𝑌𝐶)

∗

]

= 𝑟 [𝐴 𝐵 𝐶
∗

] +max {𝑖
±
(𝑃
1
) − 𝑟 (𝑃

3
) , 𝑖
±
(𝑃
2
) − 𝑟 (𝑃

4
)} ,

(8)

where

𝑤
±
= 𝑖
±
(𝑃
1
) − 𝑟 (𝑃

3
) , 𝑔

±
= 𝑖
±
(𝑃
2
) − 𝑟 (𝑃

4
) . (9)

Lemma 2 (see [4]). Let 𝐴 ∈ C𝑚×𝑛, 𝐵 ∈ C𝑚×𝑘, 𝐶 ∈ C𝑙×𝑛, 𝐷 ∈

C𝑚×𝑝, 𝐸 ∈ C𝑞×𝑛, 𝑄 ∈ C𝑚1×𝑘, and 𝑃 ∈ C𝑙×𝑛1 be given. Then

(1) 𝑟 (𝐴) + 𝑟 (𝑅
𝐴
𝐵) = 𝑟 (𝐵) + 𝑟 (𝑅

𝐵
𝐴) = 𝑟 [𝐴 𝐵] ,

(2) 𝑟 (𝐴) + 𝑟 (𝐶𝐿
𝐴
) = 𝑟 (𝐶) + 𝑟 (𝐴𝐿

𝐶
) = 𝑟 [

𝐴

𝐶
] ,

(3) 𝑟 (𝐵) + 𝑟 (𝐶) + 𝑟 (𝑅
𝐵
𝐴𝐿
𝐶
) = 𝑟 [

𝐴 𝐵

𝐶 0
] ,

(4) 𝑟 (𝑃) + 𝑟 (𝑄) + 𝑟 [
𝐴 𝐵𝐿

𝑄

𝑅
𝑃
𝐶 0

] = 𝑟[

[

𝐴 𝐵 0

𝐶 0 𝑃

0 𝑄 0

]

]

,

(5) 𝑟 [
𝑅
𝐵
𝐴𝐿
𝐶
𝑅
𝐵
𝐷

𝐸𝐿
𝐶

0
] + 𝑟 (𝐵) + 𝑟 (𝐶) = 𝑟[

[

𝐴 𝐷 𝐵

𝐸 0 0

𝐶 0 0

]

]

.

(10)

Lemma 3 (see [23]). Let 𝐴 ∈ C𝑚×𝑚
ℎ

, 𝐵 ∈ C𝑚×𝑛, 𝐶 ∈ C𝑛×𝑛
ℎ

,
𝑄 ∈ C𝑚×𝑛, and 𝑃 ∈ C𝑝×𝑛 be given, and, 𝑇 ∈ C𝑚×𝑚 be
nonsingular. Then

(1) 𝑖
±
(𝑇𝐴𝑇

∗

) = 𝑖
±
(𝐴) ,

(2) 𝑖
±
[
𝐴 0

0 𝐶
] = 𝑖
±
(𝐴) + 𝑖

±
(𝐶) ,

(3) 𝑖
±
[
0 𝑄

𝑄
∗

0
] = 𝑟 (𝑄) ,

(4) 𝑖
±
[

𝐴 𝐵𝐿
𝑃

𝐿
𝑃
𝐵
∗

0
] + 𝑟 (𝑃) = 𝑖

±

[

[

𝐴 𝐵 0

𝐵
∗

0 𝑃
∗

0 𝑃 0

]

]

.

(11)

Lemma 4. Let 𝐴, 𝐶, 𝐵, and 𝐷 be given. Then the following
statements are equivalent.

(1) System (5) is consistent.

(2) Let

𝑟 [𝐴 𝐶] = 𝑟 (𝐴) , [
𝐷

𝐵
] = 𝑟 (𝐵) , 𝐴𝐷 = 𝐶𝐵. (12)

In this case, the general solution can be written as

𝑋 = 𝐴
†

𝐶 + 𝐿
𝐴
𝐷𝐵
†

+ 𝐿
𝐴
𝑉𝑅
𝐵
, (13)

where 𝑉 is an arbitrary matrix over C with appropriate size.

Now we give the fundamental theorem of this paper.
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Theorem5. Let𝑓(𝑋) be as given in (4) and assume that𝐴𝑋 =

𝐶 and 𝑋𝐵 = 𝐷 in (5) is consistent. Then

max
𝐴𝑋=𝐶,𝑋𝐵=𝐷

𝑟 (𝑄 − 𝑋𝑃𝑋
∗

)

= min
{

{

{

𝑛 + 𝑟[

[

0 𝑃 𝑃

𝐴𝑄 𝐶𝑃 0

−𝐷
∗

0 𝐵
∗

]

]

− 𝑟 (𝐴) − 𝑟 (𝐵)

− 𝑟 (𝑃) , 2𝑛 + 𝑟 (𝐴𝑄𝐴
∗

− 𝐶𝑃𝐶
∗

)

−2𝑟 (𝐴) , 𝑟 [

[

𝑄 0 𝐷

0 −𝑃 𝐵

𝐷
∗

𝐵
∗

0

]

]

− 2𝑟 (𝐵)

}

}

}

,

min
𝐴𝑋=𝐶,𝑋𝐵=𝐷

𝑟 (𝑄 − 𝑋𝑃𝑋
∗

)

= 2𝑛 + 2𝑟[

[

0 𝑃 𝑃

𝐴𝑄 𝐶𝑃 0

−𝐷
∗

0 𝐵
∗

]

]

− 2𝑟 (𝐴) − 2𝑟 (𝐵) − 𝑟 (𝑃)

+max {𝑠
+
+ 𝑠
−
, 𝑡
+
+ 𝑡
−
, 𝑠
+
+ 𝑡
−
, 𝑠
−
+ 𝑡
+
} ,

max
𝐴𝑋=𝐶,𝑋𝐵=𝐷

𝑖
±
(𝑄 − 𝑋𝑃𝑋

∗

)

= min
{

{

{

𝑛 + 𝑖
±
(𝐴𝑄𝐴

∗

− 𝐶𝑃𝐶
∗

)

−𝑟 (𝐴) , 𝑖
±

[

[

𝑄 0 𝐷

0 −𝑃 𝐵

𝐷
∗

𝐵
∗

0

]

]

− 𝑟 (𝐵)

}

}

}

,

(14)

min
𝐴𝑋=𝐶,𝑋𝐵=𝐷

𝑖
±
(𝑄 − 𝑋𝑃𝑋

∗

)

= 𝑛 + 𝑟[

[

0 𝑃 𝑃

𝐴𝑄 𝐶𝑃 0

−𝐷
∗

0 𝐵
∗

]

]

− 𝑟 (𝐴) − 𝑟 (𝐵)

− 𝑖
±
(𝑃) +max {𝑠

±
, 𝑡
±
} ,

(15)

where

𝑠
±
=−𝑛+𝑟 (𝐴)−𝑖

∓
(𝑃)+𝑖

±
(𝐴𝑄𝐴

∗

−𝐶𝑃𝐶
∗

)−𝑟 [
𝐶𝑃 𝐴𝑄𝐴

∗

𝐵
∗

𝐷
∗

𝐴
∗] ,

𝑡
±
=−𝑛+𝑟 (𝐴)−𝑖

∓
(𝑃)+𝑖

±

[

[

𝑄 0 𝐷

0 −𝑃 𝐵

𝐷
∗

𝐵
∗

0

]

]

−[

[

0 𝑃 𝐵

𝐴𝑄 𝐶𝑃 0

𝐷
∗

𝐵
∗

0

]

]

.

(16)

Proof. It follows from Lemma 4 that the general solution of
(4) can be expressed as

𝑋 = 𝑋
0
+ 𝐿
𝐴
𝑉𝑅
𝐵
, (17)

where 𝑉 is an arbitrary matrix over C and 𝑋
0
is a special

solution of (5). Then

𝑄 − 𝑋𝑃𝑋
∗

= 𝑄 − (𝑋
0
+ 𝐿
𝐴
𝑉𝑅
𝐵
) 𝑃(𝑋

0
+ 𝐿
𝐴
𝑉𝑅
𝐵
)
∗

. (18)

Note that

𝑟 [𝑄 − (𝑋
0
+ 𝐿
𝐴
𝑉𝑅
𝐵
) 𝑃(𝑋

0
+ 𝐿
𝐴
𝑉𝑅
𝐵
)
∗

]

= 𝑟 [
𝑄 (𝑋

0
+ 𝐿
𝐴
𝑉𝑅
𝐵
) 𝑃

𝑃(𝑋
0
+ 𝐿
𝐴
𝑉𝑅
𝐵
)
∗

𝑃
] − 𝑟 (𝑃)

= 𝑟 [[
𝑄 𝑋

0
𝑃

𝑃𝑋
∗

0
𝑃
] + [

𝐿
𝐴

0
]𝑉 [0 𝑅

𝐵
𝑃]

+([
𝐿
𝐴

0
]𝑉 [0 𝑅

𝐵
𝑃])

∗

] − 𝑟 (𝑃) ,

(19)

𝑖
±
[𝑄 − (𝑋

0
+ 𝐿
𝐴
𝑉𝑅
𝐵
) 𝑃(𝑋

0
+ 𝐿
𝐴
𝑉𝑅
𝐵
)
∗

]

= 𝑖
±
[

𝑄 (𝑋
0
+ 𝐿
𝐴
𝑉𝑅
𝐵
) 𝑃

𝑃(𝑋
0
+ 𝐿
𝐴
𝑉𝑅
𝐵
)
∗

𝑃
] − 𝑖
±
(𝑃)

= 𝑖
±
[[

𝑄 𝑋
0
𝑃

𝑃𝑋
∗

0
𝑃
] + [

𝐿
𝐴

0
]𝑉 [0 𝑅

𝐵
𝑃]

+([
𝐿
𝐴

0
]𝑉 [0 𝑅

𝐵
𝑃])

∗

] − 𝑖
±
(𝑃) .

(20)

Let

𝑞 (𝑉) = [
𝑄 𝑋

0
𝑃

𝑃𝑋
∗

0
𝑃
] + [

𝐿
𝐴

0
]𝑉 [0 𝑅

𝐵
𝑃]

+ ([
𝐿
𝐴

0
]𝑉 [0 𝑅

𝐵
𝑃])

∗

.

(21)

Applying Lemma 1 to (19) and (20) yields

max
𝑉

𝑟 [𝑞 (𝑉)] = min {𝑟 (𝑀) , 𝑟 (𝑀
1
) , 𝑟 (𝑀

2
)} ,

min
𝑉

𝑟 [𝑞 (𝑉)]

= 2𝑟 (𝑀) +max {𝑠
+
+ 𝑠
−
, 𝑡
+
+ 𝑡
−
, 𝑠
+
+ 𝑡
−
, 𝑠
−
+ 𝑡
+
} ,

max
𝑉

𝑖
±
[𝑞 (𝑉)] = min {𝑖

±
(𝑀
1
) , 𝑖
±
(𝑀
2
)} ,

min
𝑉

𝑖
±
[𝑞 (𝑉)] = 𝑟 (𝑀) +max {𝑠

±
, 𝑡
±
} ,

(22)

where

𝑀=[
𝑄 𝑋

0
𝑃 𝐿
𝐴

0

𝑃𝑋
∗

0
𝑃 0 𝑃𝑅

𝐵

] , 𝑀
1
=[

[

𝑄 𝑋
0
𝑃 𝐿
𝐴

𝑃𝑋
∗

0
𝑃 0

𝐿
𝐴

0 0

]

]

,

𝑀
2
=[

[

𝑄 𝑋
0
𝑃 0

𝑃𝑋
∗

0
𝑃 𝑃𝑅

𝐵

0 𝑅
𝐵
𝑃 0

]

]

, 𝑀
3
=[

[

𝑄 𝑋
0
𝑃 𝐿
𝐴

0

𝑃𝑋
∗

0
𝑃 0 𝑃𝑅

𝐵

𝐿
𝐴

0 0 0

]

]

,

𝑀
4
= [

[

𝑄 𝑋
0
𝑃 𝐿
𝐴

0

𝑃𝑋
∗

0
𝑃 0 𝑃𝑅

𝐵

0 𝑅
𝐵
𝑃 0 0

]

]

,

𝑠
±
= 𝑖
±
(𝑀
1
) − 𝑟 (𝑀

3
) , 𝑡

±
= 𝑖
±
(𝑀
2
) − 𝑟 (𝑀

4
) .

(23)
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Applying Lemmas 2 and 3, elementary matrix operations and
congruence matrix operations, we obtain

𝑟 (𝑀) = 𝑛 + 𝑟[

[

0 𝑃 𝑃

𝐴𝑄 𝐶𝑃 0

−𝐷
∗

0 𝐵
∗

]

]

− 𝑟 (𝐴) − 𝑟 (𝐵) ,

𝑟 (𝑀
1
) = 2𝑛 + 𝑟 (𝐴𝑄𝐴

∗

− 𝐶𝑃𝐶
∗

) − 2𝑟 (𝐴) + 𝑟 (𝑃) ,

𝑖
±
(𝑀
1
) = 𝑛 + 𝑖

±
(𝐴𝑄𝐴

∗

− 𝐶𝑃𝐶
∗

) − 𝑟 (𝐴) + 𝑖
±
(𝑃) ,

𝑟 (𝑀
2
) = 𝑟[

[

𝑄 0 𝐷

0 −𝑃 𝐵

𝐷
∗

𝐵
∗

0

]

]

− 2𝑟 (𝐵) + 𝑟 (𝑃) ,

𝑖
±
(𝑀
2
) = 𝑖
±

[

[

𝑄 0 𝐷

0 −𝑃 𝐵

𝐷
∗

𝐵
∗

0

]

]

− 𝑟 (𝐵) + 𝑖
±
(𝑃) ,

𝑟 (𝑀
3
) = 2𝑛 + 𝑟 (𝑃) − 2𝑟 (𝐴) − 𝑟 (𝐵) + 𝑟 [

𝐶𝑃 𝐴𝑄𝐴
∗

𝐵
∗

𝐷
∗

𝐴
∗] ,

𝑟 (𝑀
4
) = 𝑛 + 𝑟 (𝑃) + 𝑟[

[

0 𝑃 𝐵

𝐴𝑄 𝐶𝑃 0

𝐷
∗

𝐵
∗

0

]

]

− 2𝑟 (𝐵) − 𝑟 (𝐴) .

(24)

Substituting (24) into (22), we obtain the results.

Using immediately Theorem 5, we can easily get the
following.

Theorem 6. Let 𝑓(𝑋) be as given in (4), 𝑠
±
and let 𝑡

±
be as

given in Theorem 5 and assume that 𝐴𝑋 = 𝐶 and 𝑋𝐵 = 𝐷 in
(5) are consistent. Then we have the following.

(a) 𝐴𝑋 = 𝐶 and 𝑋𝐵 = 𝐷 have a common solution such
that 𝑄 − 𝑋𝑃𝑋

∗

≥ 0 if and only if

𝑛 + 𝑟[

[

0 𝑃 𝑃

𝐴𝑄 𝐶𝑃 0

−𝐷
∗

0 𝐵
∗

]

]

− 𝑟 (𝐴) − 𝑟 (𝐵) − 𝑖
−
(𝑃) + 𝑠

−
≤ 0,

𝑛 + 𝑟[

[

0 𝑃 𝑃

𝐴𝑄 𝐶𝑃 0

−𝐷
∗

0 𝐵
∗

]

]

− 𝑟 (𝐴) − 𝑟 (𝐵) − 𝑖
−
(𝑃) + 𝑡

−
≤ 0.

(25)

(b) 𝐴𝑋 = 𝐶 and 𝑋𝐵 = 𝐷 have a common solution such
that 𝑄 − 𝑋𝑃𝑋

∗

≤ 0 if and only if

𝑛 + 𝑟[

[

0 𝑃 𝑃

𝐴𝑄 𝐶𝑃 0

−𝐷
∗

0 𝐵
∗

]

]

− 𝑟 (𝐴) − 𝑟 (𝐵) − 𝑖
+
(𝑃) + 𝑠

+
≤ 0,

𝑛 + 𝑟[

[

0 𝑃 𝑃

𝐴𝑄 𝐶𝑃 0

−𝐷
∗

0 𝐵
∗

]

]

− 𝑟 (𝐴) − 𝑟 (𝐵) − 𝑖
+
(𝑃) + 𝑡

+
≤ 0.

(26)

(c) 𝐴𝑋 = 𝐶 and 𝑋𝐵 = 𝐷 have a common solution such
that 𝑄 − 𝑋𝑃𝑋

∗

> 0 if and only if

𝑖
+
(𝐴𝑄𝐴

∗

− 𝐶𝑃𝐶
∗

) − 𝑟 (𝐴) ≥ 0,

𝑖
+

[

[

𝑄 0 𝐷

0 −𝑃 𝐵

𝐷
∗

𝐵
∗

0

]

]

− 𝑟 (𝐵) ≥ 𝑛.

(27)

(d) 𝐴𝑋 = 𝐶 and 𝑋𝐵 = 𝐷 have a common solution such
that 𝑄 − 𝑋𝑃𝑋

∗

< 0 if and only if

𝑖
−
(𝐴𝑄𝐴

∗

− 𝐶𝑃𝐶
∗

) − 𝑟 (𝐴) ≥ 0,

𝑖
−

[

[

𝑄 0 𝐷

0 −𝑃 𝐵

𝐷
∗

𝐵
∗

0

]

]

− 𝑟 (𝐵) ≥ 𝑛.

(28)

(e) All common solutions of 𝐴𝑋 = 𝐶 and 𝑋𝐵 = 𝐷 satisfy
𝑄 − 𝑋𝑃𝑋

∗

≥ 0 if and only if

𝑛 + 𝑖
−
(𝐴𝑄𝐴

∗

− 𝐶𝑃𝐶
∗

) − 𝑟 (𝐴) = 0,

or, 𝑖
−

[

[

𝑄 0 𝐷

0 −𝑃 𝐵

𝐷
∗

𝐵
∗

0

]

]

− 𝑟 (𝐵) = 0.

(29)

(f) All common solutions of 𝐴𝑋 = 𝐶 and 𝑋𝐵 = 𝐷 satisfy
𝑄 − 𝑋𝑃𝑋

∗

≤ 0 if and only if

𝑛 + 𝑖
+
(𝐴𝑄𝐴

∗

− 𝐶𝑃𝐶
∗

) − 𝑟 (𝐴) = 0,

or, 𝑖
+

[

[

𝑄 0 𝐷

0 −𝑃 𝐵

𝐷
∗

𝐵
∗

0

]

]

− 𝑟 (𝐵) = 0.

(30)

(g) All common solutions of 𝐴𝑋 = 𝐶 and 𝑋𝐵 = 𝐷 satisfy
𝑄 − 𝑋𝑃𝑋

∗

> 0 if and only if

𝑛 + 𝑟[

[

0 𝑃 𝑃

𝐴𝑄 𝐶𝑃 0

−𝐷
∗

0 𝐵
∗

]

]

− 𝑟 (𝐴) − 𝑟 (𝐵) − 𝑖
+
(𝑃) + 𝑠

+
= 𝑛,

(31)
or

𝑛 + 𝑟[

[

0 𝑃 𝑃

𝐴𝑄 𝐶𝑃 0

−𝐷
∗

0 𝐵
∗

]

]

− 𝑟 (𝐴) − 𝑟 (𝐵) − 𝑖
+
(𝑃) + 𝑡

+
= 𝑛.

(32)

(h) All common solutions of 𝐴𝑋 = 𝐶 and 𝑋𝐵 = 𝐷 satisfy
𝑄 − 𝑋𝑃𝑋

∗

< 0 if and only if

𝑛 + 𝑟[

[

0 𝑃 𝑃

𝐴𝑄 𝐶𝑃 0

−𝐷
∗

0 𝐵
∗

]

]

− 𝑟 (𝐴) − 𝑟 (𝐵) − 𝑖
−
(𝑃) + 𝑠

−
= 𝑛,

(33)
or

𝑛 + 𝑟[

[

0 𝑃 𝑃

𝐴𝑄 𝐶𝑃 0

−𝐷
∗

0 𝐵
∗

]

]

− 𝑟 (𝐴) − 𝑟 (𝐵) − 𝑖
−
(𝑃) + 𝑡

−
= 𝑛.

(34)
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(i) 𝐴𝑋 = 𝐶, 𝑋𝐵 = 𝐷, and 𝑄 = 𝑋𝑃𝑋
∗ have a common

solution if and only if

2𝑛+2𝑟[

[

0 𝑃 𝑃

𝐴𝑄 𝐶𝑃 0

−𝐷
∗

0 𝐵
∗

]

]

−2𝑟 (𝐴)−2𝑟 (𝐵)−𝑟 (𝑃)+𝑠
+
+𝑠
−
≤0,

2𝑛+2𝑟[

[

0 𝑃 𝑃

𝐴𝑄 𝐶𝑃 0

−𝐷
∗

0 𝐵
∗

]

]

−2𝑟 (𝐴)−2𝑟 (𝐵)−𝑟 (𝑃)+𝑡
+
+𝑡
−
≤0,

2𝑛+2𝑟[

[

0 𝑃 𝑃

𝐴𝑄 𝐶𝑃 0

−𝐷
∗

0 𝐵
∗

]

]

−2𝑟 (𝐴)−2𝑟 (𝐵)−𝑟 (𝑃) + 𝑠
+
+𝑡
−
≤0,

2𝑛+2𝑟[

[

0 𝑃 𝑃

𝐴𝑄 𝐶𝑃 0

−𝐷
∗

0 𝐵
∗

]

]

−2𝑟 (𝐴)−2𝑟 (𝐵)−𝑟 (𝑃) + 𝑠
−
+𝑡
+
≤0.

(35)

Let 𝑃 = 𝐼 in Theorem 5, we get the following corollary.

Corollary 7. Let 𝑄 ∈ C𝑛×𝑛, 𝐴, 𝐵, 𝐶, and𝐷 be given. Assume
that (5) is consistent. Denote

𝑇
1
= [

𝐶 𝐴𝑄

𝐵
∗

𝐷
∗] , 𝑇

2
= 𝐴𝑄𝐴

∗

− 𝐶𝐶
∗

,

𝑇
3
= [

𝑄 𝐷

𝐷
∗

𝐵
∗

𝐵
] , 𝑇

4
= [

𝐶 𝐴𝑄𝐴
∗

𝐵
∗

𝐷
∗

𝐴
∗] ,

𝑇
5
= [

𝐶𝐵 𝐴𝑄

𝐵
∗

𝐵 𝐷
∗] .

(36)

Then,

max
𝐴𝑋=𝐶,𝑋𝐵=𝐷

𝑟 (𝑄 − 𝑋𝑋
∗

)

= min {𝑛 + 𝑟 (𝑇
1
) − 𝑟 (𝐴) − 𝑟 (𝐵) , 2𝑛 + 𝑟 (𝑇

2
)

−2𝑟 (𝐴) , 𝑛 + 𝑟 (𝑇
3
) − 2𝑟 (𝐵)} ,

min
𝐴𝑋=𝐶,𝑋𝐵=𝐷

𝑟 (𝑄 − 𝑋𝑋
∗

)

= 2𝑟 (𝑇
1
) +max {𝑟 (𝑇

2
) − 2𝑟 (𝑇

4
) , −𝑛 + 𝑟 (𝑇

3
)

− 2𝑟 (𝑇
5
) , 𝑖
+
(𝑇
2
) + 𝑖
−
(𝑇
3
)

− 𝑟 (𝑇
4
) − 𝑟 (𝑇

5
) , −𝑛 + 𝑖

−
(𝑇
2
)

+𝑖
+
(𝑇
3
) − 𝑟 (𝑇

4
) − 𝑟 (𝑇

5
)}

max
𝐴𝑋=𝐶,𝑋𝐵=𝐷

𝑖
+
(𝑄 − 𝑋𝑋

∗

)

= min {𝑛 + 𝑖
+
(𝑇
2
) − 𝑟 (𝐴) , 𝑖

+
(𝑇
3
) − 𝑟 (𝐵)} ,

max
𝐴𝑋=𝐶,𝑋𝐵=𝐷

𝑖
−
(𝑄 − 𝑋𝑋

∗

)

= min {𝑛 + 𝑖
−
(𝑇
2
) − 𝑟 (𝐴) , 𝑛 + 𝑖

−
(𝑇
3
) − 𝑟 (𝐵)} ,

min
𝐴𝑋=𝐶,𝑋𝐵=𝐷

𝑖
+
(𝑄 − 𝑋𝑋

∗

)

= 𝑟 (𝑇
1
) +max {𝑖

+
(𝑇
2
) − 𝑟 (𝑇

4
) , 𝑖
+
(𝑇
3
) − 𝑛 − 𝑟 (𝑇

5
)} ,

min
𝐴𝑋=𝐶,𝑋𝐵=𝐷

𝑖
−
(𝑄 − 𝑋𝑋

∗

)

= 𝑟 (𝑇
1
) +max {𝑖

−
(𝑇
2
) − 𝑟 (𝑇

4
) , 𝑖
−
(𝑇
3
) − 𝑟 (𝑇

5
)} .

(37)

Remark 8. Corollary 7 is one of the results in [24].

Let 𝐵 and 𝐷 vanish in Theorem 5, then we can obtain
the maximal and minimal ranks and inertias of (4) subject
to 𝐴𝑋 = 𝐶.

Corollary 9. Let 𝑓(𝑋) be as given in (4) and assume that
𝐴𝑋 = 𝐶 is consistent. Then

max
𝐴𝑋=𝐶

𝑟 (𝑄 − 𝑋𝑃𝑋
∗

)

= min {𝑛 + 𝑟 [𝐴𝑄 𝐶𝑃] − 𝑟 (𝐴) − 𝑟 (𝐵) ,

2𝑛 + 𝑟 (𝐴𝑄𝐴
∗

− 𝐶𝑃𝐶
∗

) − 2𝑟 (𝐴) , 𝑟 (𝑄) + 𝑟 (𝑃)}

min
𝐴𝑋=𝐶

𝑟 (𝑄 − 𝑋𝑃𝑋
∗

)

= 2𝑛 + 2𝑟 [𝐴𝑄 𝐶𝑃] − 2𝑟 (𝐴)

+max {𝑠
+
+ 𝑠
−
, 𝑡
+
+ 𝑡
−
, 𝑠
+
+ 𝑡
−
, 𝑠
−
+ 𝑡
+
} ,

max
𝐴𝑋=𝐶

𝑖
±
(𝑄 − 𝑋𝑃𝑋

∗

)

= min {𝑛 + 𝑖
±
(𝐴𝑄𝐴

∗

− 𝐶𝑃𝐶
∗

) − 𝑟 (𝐴) , 𝑖
±
(𝑄) + 𝑖

∓
(𝑃)} ,

min
𝐴𝑋=𝐶

𝑖
±
(𝑄 − 𝑋𝑃𝑋

∗

)

= 𝑛 + 𝑟 [𝐴𝑄 𝐶𝑃] − 𝑟 (𝐴) + 𝑖
∓
(𝑃) +max {𝑠

±
, 𝑡
±
} ,

(38)

where

𝑠
±
= − 𝑛 + 𝑟 (𝐴) − 𝑖

∓
(𝑃)

+ 𝑖
±
(𝐴𝑄𝐴

∗

− 𝐶𝑃𝐶
∗

) − 𝑟 [𝐶𝑃 𝐴𝑄𝐴
∗

] ,

𝑡
±
= −𝑛 + 𝑟 (𝐴) + 𝑖

±
(𝑄) − 𝑟 (𝑃) − [𝐴𝑄 𝐶𝑃] .

(39)

Remark 10. Corollary 9 is one of the results in [22].
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We derive the necessary and sufficient conditions of and the expressions for the orthogonal
solutions, the symmetric orthogonal solutions, and the skew-symmetric orthogonal solutions of
the system of matrix equations AX = B and XC = D, respectively. When the matrix equations
are not consistent, the least squares symmetric orthogonal solutions and the least squares skew-
symmetric orthogonal solutions are respectively given. As an auxiliary, an algorithm is provided
to compute the least squares symmetric orthogonal solutions, and meanwhile an example is
presented to show that it is reasonable.

1. Introduction

Throughout this paper, the following notations will be used. R
m×n, OR

n×n, SR
n×n, and ASR

n×n

denote the set of all m × n real matrices, the set of all n × n orthogonal matrices, the set of all
n × n symmetric matrices, and the set of all n × n skew-symmetric matrices, respectively. In is
the identity matrix of order n. (·)T and tr(·) represent the transpose and the trace of the real
matrix, respectively. ‖ · ‖ stands for the Frobenius norm induced by the inner product. The
following two definitions will also be used.

Definition 1.1 (see [1]). A real matrix X ∈ R
n×n is said to be a symmetric orthogonal matrix if

XT = X and XTX = In.

Definition 1.2 (see [2]). A real matrix X ∈ R
2m×2m is called a skew-symmetric orthogonal

matrix if XT = −X and XTX = In.

The set of all n × n symmetric orthogonal matrices and the set of all 2m × 2m skew-
symmetric orthogonal matrices are, respectively, denoted by SOR

n×n and SSOR
2m×2m. Since
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the linear matrix equation(s) and its optimal approximation problem have great applications
in structural design, biology, control theory, and linear optimal control, and so forth, see,
for example, [3–5], there has been much attention paid to the linear matrix equation(s). The
well-known system of matrix equations

AX = B, XC = D, (1.1)

as one kind of linear matrix equations, has been investigated by many authors, and a series
of important and useful results have been obtained. For instance, the system (1.1) with
unknown matrix X being bisymmetric, centrosymmetric, bisymmetric nonnegative definite,
Hermitian and nonnegative definite, and (P,Q)-(skew) symmetric has been, respectively,
investigated by Wang et al. [6, 7], Khatri and Mitra [8], and Zhang and Wang [9]. Of course,
if the solvability conditions of system (1.1) are not satisfied, we may consider its least squares
solution. For example, Li et al. [10] presented the least squares mirrorsymmetric solution.
Yuan [11] got the least-squares solution. Some results concerning the system (1.1) can also be
found in [12–18].

Symmetric orthogonal matrices and skew-symmetric orthogonal matrices play impor-
tant roles in numerical analysis and numerical solutions of partial differential equations.
Papers [1, 2], respectively, derived the symmetric orthogonal solution X of the matrix
equation XC = D and the skew-symmetric orthogonal solution X of the matrix equation
AX = B. Motivated by the work mentioned above, we in this paper will, respectively, study
the orthogonal solutions, symmetric orthogonal solutions, and skew-symmetric orthogonal
solutions of the system (1.1). Furthermore, if the solvability conditions are not satisfied,
the least squares skew-symmetric orthogonal solutions and the least squares symmetric
orthogonal solutions of the system (1.1) will be also given.

The remainder of this paper is arranged as follows. In Section 2, some lemmas are
provided to give the main results of this paper. In Sections 3, 4, and 5, the necessary and
sufficient conditions of and the expression for the orthogonal, the symmetric orthogonal,
and the skew-symmetric orthogonal solutions of the system (1.1) are, respectively, obtained.
In Section 6, the least squares skew-symmetric orthogonal solutions and the least squares
symmetric orthogonal solutions of the system (1.1) are presented, respectively. In addition,
an algorithm is provided to compute the least squares symmetric orthogonal solutions, and
meanwhile an example is presented to show that it is reasonable. Finally, in Section 7, some
concluding remarks are given.

2. Preliminaries

In this section, we will recall some lemmas and the special C-S decomposition which will be
used to get the main results of this paper.

Lemma 2.1 (see [1, Lemmas 1 and 2]). Given C ∈ R
2m×n, D ∈ R

2m×n. The matrix equation YC =
D has a solution Y ∈ OR

2m×2m if and only if DTD = CTC. Let the singular value decompositions of
C and D be, respectively,

C = U

(
Π 0
0 0

)
V T , D = W

(
Π 0
0 0

)
V T , (2.1)
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where

Π = diag(σ1, . . . , σk) > 0, k = rank(C) = rank(D),

U =
(
U1 U2

) ∈ OR
2m×2m, U1 ∈ R

2m×k,

W =
(
W1 W2

) ∈ OR
2m×2m, W1 ∈ R

2m×k, V =
(
V1 V2

) ∈ OR
n×n, V1 ∈ R

n×k.

(2.2)

Then the orthogonal solutions of YC = D can be described as

Y = W

(
Ik 0
0 P

)
UT, (2.3)

where P ∈ OR
(2m−k)×(2m−k) is arbitrary.

Lemma 2.2 (see [2, Lemmas 1 and 2]). GivenA ∈ R
n×m, B ∈ R

n×m. The matrix equationAX = B
has a solution X ∈ OR

m×m if and only if AAT = BBT . Let the singular value decompositions of A
and B be, respectively,

A = U

(
Σ 0
0 0

)
V T , B = U

(
Σ 0
0 0

)
QT, (2.4)

where

Σ = diag(δ1, . . . , δl) > 0, l = rank(A) = rank(B), U =
(
U1 U2

) ∈ OR
n×n, U1 ∈ R

n×l,

V =
(
V1 V2

) ∈ OR
m×m, V1 ∈ R

m×l, Q =
(
Q1 Q2

) ∈ OR
m×m, Q1 ∈ R

m×l.
(2.5)

Then the orthogonal solutions of AX = B can be described as

X = V

(
Il 0
0 W

)
QT, (2.6)

whereW ∈ OR
(m−l)×(m−l) is arbitrary.

Lemma 2.3 (see [2, Theorem 1]). If

X =
(
X11 X12

X21 X22

)
∈ OR

2m×2m, X11 ∈ ASR
k×k, (2.7)

then the C-S decomposition of X can be expressed as

(
D1 0
0 D2

)T(
X11 X12

X21 X22

)(
D1 0
0 R2

)
=
(
Σ11 Σ12

Σ21 Σ22

)
, (2.8)



4 Journal of Applied Mathematics

where D1 ∈ OR
k×k, D2, R2 ∈ OR

(2m−k)×(2m−k),

Σ11 =

⎛
⎜⎝

Ĩ 0 0
0 C̃ 0
0 0 0

⎞
⎟⎠, Σ12 =

⎛
⎝0 0 0

0 S 0
0 0 I

⎞
⎠,

Σ21 =

⎛
⎝0 0 0

0 S 0
0 0 I

⎞
⎠, Σ22 =

⎛
⎜⎝

I 0 0
0 −C̃T 0
0 0 0

⎞
⎟⎠,

Ĩ = diag
(
Ĩ1, . . . , Ĩr1

)
, Ĩ1 = · · · = Ĩr1 =

(
0 1
−1 0

)
, C̃ = diag(C1, . . . , Cl1),

Ci =
(

0 ci
−ci 0

)
, i = 1, . . . , l1; S = diag(S1, . . . , Sl1),

Si =
(
si 0
0 si

)
, ST

i Si + CT
i Ci = I2, i = 1, . . . , l1;

2r1 + 2l1 = rank(X11), Σ21 = ΣT
12, k − 2r1 = rank(X21).

(2.9)

Lemma 2.4 (see [1, Theorem 1]). If

K =
(
K11 K12

K21 K22

)
∈ OR

m×m, K11 ∈ SR
l×l, (2.10)

then the C-S decomposition of K can be described as

(
D1 0
0 D2

)T(
K11 K12

K21 K22

)(
D1 0
0 R2

)
=
(
Π11 Π12

Π21 Π22

)
, (2.11)

where D1 ∈ OR
l×l, D2, R2 ∈ OR

(m−l)×(m−l),

Π11 =

⎛
⎜⎝

Ĩ 0 0
0 C̃ 0
0 0 0

⎞
⎟⎠, Π12 =

⎛
⎝0 0 0

0 S 0
0 0 I

⎞
⎠,

Π21 =

⎛
⎝0 0 0

0 S 0
0 0 I

⎞
⎠, Π22 =

⎛
⎜⎝

I 0 0
0 −C̃ 0
0 0 0

⎞
⎟⎠,

Ĩ = diag(i1, . . . , ir), ij = ±1, j = 1, . . . , r;

S = diag(s1′ , . . . , sl′), C̃ = diag(c1′ , . . . , cl′),

s2
i′ =
√

1 − c2
i′ , i = 1′, . . . , l′; r + l′ = rank(K11), Π21 = ΠT

12.

(2.12)
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Remarks 2.5. In order to know the C-S decomposition of an orthogonal matrix with a
k × k leading (skew-) symmetric submatrix for details, one can deeply study the proof of
Theorem 1 in [1] and [2].

Lemma 2.6. Given A ∈ R
n×m, B ∈ R

n×m. Then the matrix equation AX = B has a solution X ∈
SOR

m×m if and only ifAAT = BBT andABT = BAT . When these conditions are satisfied, the general
symmetric orthogonal solutions can be expressed as

X = Ṽ

(
I2l−r 0

0 G

)
Q̃T , (2.13)

where

Q̃ = JQdiag(I,D2) ∈ OR
m×m, Ṽ = JV diag(I, R2) ∈ OR

m×m,

J =

⎛
⎝I 0 0

0 0 I
0 I 0

⎞
⎠,

(2.14)

and G ∈ SOR
(m−2l+r)×(m−2l+r) is arbitrary.

Proof. The Necessity. Assume X ∈ SOR
m×m is a solution of the matrix equation AX = B, then

we have

BBT = AXXTAT = AAT,

BAT = AXAT = AXTAT = ABT.
(2.15)

The Sufficiency. Since the equality AAT = BBT holds, then by Lemma 2.2, the singular
value decompositions of A and B can be, respectively, expressed as (2.4). Moreover, the
condition ABT = BAT means

U

(
Σ 0
0 0

)
V TQ

(
Σ 0
0 0

)
UT = U

(
Σ 0
0 0

)
QTV

(
Σ 0
0 0

)
UT, (2.16)

which can be written as

V T
1 Q1 = QT

1V1. (2.17)

From Lemma 2.2, the orthogonal solutions of the matrix equation AX = B can be described
as (2.6). Now we aim to find that X in (2.6) is also symmetric. Suppose that X is symmetric,
then we have

(
Il 0
0 WT

)
V TQ = QTV

(
Il 0
0 W

)
, (2.18)
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together with the partitions of the matrices Q and V in Lemma 2.2, we get

V T
1 Q1 = QT

1V1, (2.19)

QT
1V2W = V T

1 Q2, (2.20)

QT
2 V2W = WTV T

2 Q2. (2.21)

By (2.17), we can get (2.19). Now we aim to find the orthogonal solutions of the system
of matrix equations (2.20) and (2.21). Firstly, we obtain from (2.20) that QT

1V2(QT
1V2)

T =
V T

1 Q2(V T
1 Q2)

T , then by Lemma 2.2, (2.20) has an orthogonal solution W . By (2.17), the l × l
leading principal submatrix of the orthogonal matrix V TQ is symmetric. Then we have, from
Lemma 2.4,

V T
1 Q2 = D1Π12R

T
2 , (2.22)

QT
1V2 = D1Π12D

T
2 , (2.23)

V T
2 Q2 = D2Π22R

T
2 . (2.24)

From (2.20), (2.22), and (2.23), the orthogonal solution W of (2.20) is

W = D2

⎛
⎝G 0 0

0 I 0
0 0 I

⎞
⎠RT

2 , (2.25)

where G ∈ OR
(m−2l+r)×(m−2l+r) is arbitrary. Combining (2.21), (2.24), and (2.25) yields GT =

G, that is, G is a symmetric orthogonal matrix. Denote

V̂ = V diag(I,D2), Q̂ = Qdiag(I, R2), (2.26)

then the symmetric orthogonal solutions of the matrix equation AX = B can be expressed as

X = V̂

⎛
⎝I 0 0

0 G 0
0 0 I

⎞
⎠Q̂T . (2.27)

Let the partition matrix J be

J =

⎛
⎝I 0 0

0 0 I
0 I 0

⎞
⎠, (2.28)
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compatible with the block matrix

⎛
⎝I 0 0

0 G 0
0 0 I

⎞
⎠. (2.29)

Put

Ṽ = JV̂ , Q̃ = JQ̂, (2.30)

then the symmetric orthogonal solutions of the matrix equation AX = B can be described as
(2.13).

Setting A = CT , B = DT , and X = YT in [2, Theorem 2], and then by Lemmas 2.1 and
2.3, we can have the following result.

Lemma 2.7. Given C ∈ R
2m×n, D ∈ R

2m×n. Then the equation has a solution Y ∈ SSOR
2m×2m if

and only ifDTD = CTC andDTC = −CTD. When these conditions are satisfied, the skew-symmetric
orthogonal solutions of the matrix equation YC = D can be described as

Y = W̃

(
I 0
0 H

)
ŨT , (2.31)

where

W̃ = J ′W diag(I,−D2) ∈ OR
2m×2m, Ũ = J ′Udiag(I, R2) ∈ OR

2m×2m,

J ′ =

⎛
⎝I 0 0

0 0 I
0 I 0

⎞
⎠,

(2.32)

and H ∈ SSOR
2r×2r is arbitrary.

3. The Orthogonal Solutions of the System (1.1)

The following theorems give the orthogonal solutions of the system (1.1).

Theorem 3.1. Given A, B ∈ R
n×m and C, D ∈ R

m×n, suppose the singular value decompositions of
A and B are, respectively, as (2.4). Denote

QTC =
(
C1

C2

)
, V TD =

(
D1

D2

)
, (3.1)
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where C1, D1 ∈ R
l×n, and C2, D2 ∈ R

(m−l)×n. Let the singular value decompositions of C2 and D2 be,
respectively,

C2 = Ũ

(
Π 0
0 0

)
Ṽ T , D2 = W̃

(
Π 0
0 0

)
Ṽ T , (3.2)

where Ũ, W̃ ∈ OR
(m−l)×(m−l), Ṽ ∈ OR

n×n, Π ∈ R
k×k is diagonal, whose diagonal elements are

nonzero singular values of C2 or D2. Then the system (1.1) has orthogonal solutions if and only if

AAT = BBT , C1 = D1, DT
2 D2 = CT

2 C2. (3.3)

In which case, the orthogonal solutions can be expressed as

X = V̂

(
Ik+l 0
0 G′

)
Q̂T , (3.4)

where

V̂ = V

(
Il 0
0 W̃

)
∈ OR

m×m, Q̂ = Q

(
Il 0
0 Ũ

)
∈ OR

m×m, (3.5)

and G′ ∈ OR
(m−k−l)×(m−k−l) is arbitrary.

Proof. Let the singular value decompositions of A and B be, respectively, as (2.4). Since the
matrix equation AX = B has orthogonal solutions if and only if

AAT = BBT , (3.6)

then by Lemma 2.2, its orthogonal solutions can be expressed as (2.6). Substituting (2.6) and
(3.1) into the matrix equation XC = D, we have C1 = D1 and WC2 = D2. By Lemma 2.1, the
matrix equation WC2 = D2 has orthogonal solution W if and only if

DT
2 D2 = CT

2C2. (3.7)

Let the singular value decompositions of C2 and D2 be, respectively,

C2 = Ũ

(
Π 0
0 0

)
Ṽ T , D2 = W̃

(
Π 0
0 0

)
Ṽ T , (3.8)

where Ũ, W̃ ∈ OR
(m−l)×(m−l), Ṽ ∈ OR

n×n, Π ∈ R
k×k is diagonal, whose diagonal elements are

nonzero singular values of C2 or D2. Then the orthogonal solutions can be described as

W = W̃

(
Ik 0
0 G′

)
ŨT , (3.9)
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where G′ ∈ OR
(m−k−l)×(m−k−l) is arbitrary. Therefore, the common orthogonal solutions of the

system (1.1) can be expressed as

X = V

(
Il 0
0 W

)
QT = V

(
Il 0
0 W̃

)⎛
⎝Il 0 0

0 Ik 0
0 0 G′

⎞
⎠
(
Il 0
0 ŨT

)
QT = V̂

(
Ik+l 0
0 G′

)
Q̂T , (3.10)

where

V̂ = V

(
Il 0
0 W̃

)
∈ OR

m×m, Q̂ = Q

(
Il 0
0 Ũ

)
∈ OR

m×m, (3.11)

and G′ ∈ OR
(m−k−l)×(m−k−l) is arbitrary.

The following theorem can be shown similarly.

Theorem 3.2. GivenA, B ∈ R
n×m and C, D ∈ R

m×n, let the singular value decompositions of C and
D be, respectively, as (2.1). Partition

AW =
(
A1 A2

)
, BU =

(
B1 B2

)
, (3.12)

where A1, B1 ∈ R
n×k, A2, B2 ∈ R

n×(m−k). Assume the singular value decompositions of A2 and B2

are, respectively,

A2 = Ũ

(
Σ 0
0 0

)
Ṽ T , B2 = Ũ

(
Σ 0
0 0

)
Q̃T , (3.13)

where Ṽ , Q̃ ∈ OR
(m−k)×(m−k), Ũ ∈ OR

n×n, Σ ∈ R
l′×l′ is diagonal, whose diagonal elements are

nonzero singular values of A2 or B2. Then the system (1.1) has orthogonal solutions if and only
if

DTD = CTC, A1 = B1, A2A
T
2 = B2B

T
2 . (3.14)

In which case, the orthogonal solutions can be expressed as

X = Ŵ

(
Ik+l′ 0

0 H ′

)
ÛT , (3.15)

where

Ŵ = W

(
Ik 0
0 W̃

)
∈ OR

m×m, Û = U

(
Ik 0
0 Ũ

)
∈ OR

m×m, (3.16)

and H ′ ∈ OR
(m−k−l′)×(m−k−l′) is arbitrary.
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4. The Symmetric Orthogonal Solutions of the System (1.1)

We now present the symmetric orthogonal solutions of the system (1.1).

Theorem 4.1. Given A,B ∈ R
n×m, C,D ∈ R

m×n. Let the symmetric orthogonal solutions of the
matrix equation AX = B be described as in Lemma 2.6. Partition

Q̃TC =
(
C′

1
C′

2

)
, Ṽ TD =

(
D′

1
D′

2

)
, (4.1)

where C′
1, D

′
1 ∈ R

(2l−r)×n, C′
2, D

′
2 ∈ R

(m−2l+r)×n. Then the system (1.1) has symmetric orthogonal
solutions if and only if

AAT = BBT , ABT = BAT , C′
1 = D′

1, D′T
2 D′

2 = C′T
2 C′

2, D′T
2 C′

2 = C′T
2 D′

2. (4.2)

In which case, the solutions can be expressed as

X = V̂

(
I 0
0 G′′

)
Q̂T , (4.3)

where

V̂ = V

(
I2l−r 0

0 W̃

)
∈ OR

m×m, Q̂ = Q

(
I2l−r 0

0 Ũ

)
∈ OR

m×m, (4.4)

and G′′ ∈ SOR
(m−2l+r−2l′+r ′)×(m−2l+r−2l′+r ′) is arbitrary.

Proof. From Lemma 2.6, we obtain that the matrix equation AX = B has symmetric
orthogonal solutions if and only if AAT = BBT and ABT = BAT . When these conditions
are satisfied, the general symmetric orthogonal solutions can be expressed as

X = Ṽ

(
I2l−r 0

0 G

)
Q̃T , (4.5)

where G ∈ SOR
(m−2l+r)×(m−2l+r) is arbitrary, Q̃ ∈ OR

m×m, Ṽ ∈ OR
m×m. Inserting (4.1) and (4.5)

into the matrix equation XC = D, we get C′
1 = D′

1 and GC′
2 = D′

2. By [1, Theorem 2], the
matrix equation GC′

2 = D′
2 has a symmetric orthogonal solution if and only if

D′T
2 D′

2 = C′T
2 C′

2, D′T
2 C′

2 = C′T
2 D′

2. (4.6)

In which case, the solutions can be described as

G = W̃

(
I2l′−r ′ 0

0 G′′

)
ŨT , (4.7)
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where G′′ ∈ SOR
(m−2l+r−2l′+r ′)×(m−2l+r−2l′+r ′) is arbitrary, W̃ ∈ OR

(m−2l+r)×(m−2l+r), and Ũ ∈
OR

(m−2l+r)×(m−2l+r). Hence the system (1.1) has symmetric orthogonal solutions if and only
if all equalities in (4.2) hold. In which case, the solutions can be expressed as

X = Ṽ

(
I2l−r 0

0 G

)
Q̃T = Ṽ

(
I2l−r 0

0 W̃

)⎛
⎝I2l−r 0

0
(
I 0
0 G′′

)
⎞
⎠
(
I2l−r 0

0 ŨT

)
Q̃T , (4.8)

that is, the expression in (4.3).

The following theorem can also be obtained by the method used in the proof of
Theorem 4.1.

Theorem 4.2. Given A,B ∈ R
n×m, C,D ∈ R

m×n. Let the symmetric orthogonal solutions of the
matrix equation XC = D be described as

X = M̃

(
I2k−r 0

0 G

)
ÑT , (4.9)

where M̃, Ñ ∈ OR
m×m, G ∈ SOR

(m−2k+r)×(m−2k+r). Partition

AM̃ =
(
M1 M2

)
, BÑ =

(
N1 N2

)
, M1,N1 ∈ R

n×(2k−r), M2,N2 ∈ R
n×(m−2k+r). (4.10)

Then the system (1.1) has symmetric orthogonal solutions if and only if

DTD = CTC, DTC = CTD, M1 = N1, M2M
T
2 = N2N

T
2 , M2N

T
2 = N2M

T
2 .

(4.11)

In which case, the solutions can be expressed as

X = M̂

(
I 0
0 H ′′

)
N̂T , (4.12)

where

M̂ = M̃

(
I2k−r 0

0 W̃1

)
∈ OR

m×m, N̂ = Ñ

(
I2k−r 0

0 Ũ1

)
∈ OR

m×m, (4.13)

and H ′′ ∈ SOR
(m−2k+r−2k′+r ′)×(m−2k+r−2k′+r ′) is arbitrary.
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5. The Skew-Symmetric Orthogonal Solutions of the System (1.1)

In this section, we show the skew-symmetric orthogonal solutions of the system (1.1).

Theorem 5.1. Given A,B ∈ R
n×2m, C,D ∈ R

2m×n. Suppose the matrix equation AX = B has skew-
symmetric orthogonal solutions with the form

X = Ṽ1

(
I 0
0 H

)
Q̃T

1 , (5.1)

whereH ∈ SSOR
2r×2r is arbitrary, Ṽ1, Q̃1 ∈ OR

2m×2m. Partition

Q̃T
1C =

(
Q1

Q2

)
, Ṽ T

1 D =
(
V1

V2

)
, (5.2)

where Q1, V1 ∈ R
(2m−2r)×n, Q2, V2 ∈ R

2r×n. Then the system (1.1) has skew-symmetric orthogonal
solutions if and only if

AAT = BBT , ABT = −BAT, Q1 = V1, QT
2 Q2 = V T

2 V2, QT
2V2 = −V T

2 Q2. (5.3)

In which case, the solutions can be expressed as

X = V̂1

(
I 0
0 J ′

)
Q̂T

1 , (5.4)

where

V̂ = Ṽ1

(
I2m−2r 0

0 W̃

)
∈ OR

2m×2m, Q̂ = Q̃1

(
I2m−2r 0

0 Ũ

)
∈ OR

2m×2m, (5.5)

and J ′ ∈ SSOR
2k′×2k′

is arbitrary.

Proof. By [2, Theorem 2], the matrix equation AX = B has the skew-symmetric orthogonal
solutions if and only if AAT = BBT and ABT = −BAT . When these conditions are satisfied,
the general skew-symmetric orthogonal solutions can be expressed as (5.1). Substituting (5.1)
and (5.2) into the matrix equation XC = D, we get Q1 = V1 and HQ2 = V2. From Lemma 2.7,
equation HQ2 = V2 has a skew-symmetric orthogonal solution H if and only if

QT
2 Q2 = V T

2 V2, QT
2V2 = −V T

2 Q2. (5.6)

When these conditions are satisfied, the solution can be described as

H = W̃

(
I 0
0 J ′

)
ŨT , (5.7)
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where J ′ ∈ SSOR
2k′×2k′

is arbitrary, W̃ , Ũ ∈ OR
2r×2r . Inserting (5.7) into (5.1) yields that the

system (1.1) has skew-symmetric orthogonal solutions if and only if all equalities in (5.3)
hold. In which case, the solutions can be expressed as (5.4).

Similarly, the following theorem holds.

Theorem 5.2. Given A,B ∈ R
n×2m, C,D ∈ R

2m×n. Suppose the matrix equation XC = D has
skew-symmetric orthogonal solutions with the form

X = W̃

(
I 0
0 K

)
ŨT , (5.8)

where K ∈ SSOR
2p×2p is arbitrary, W̃ , Ũ ∈ OR

2m×2m. Partition

AW̃ =
(
W1 W2

)
, BŨ =

(
U1 U2

)
, (5.9)

where W1, U1 ∈ R
n×(2m−2p), W2, U2 ∈ R

n×2p. Then the system (1.1) has skew-symmetric orthogonal
solutions if and only if

DTD = CTC, DTC = −CTD, W1 = U1, W2W
T
2 = U2U

T
2 , U2W

T
2 = −W2U

T
2 .

(5.10)

In which case, the solutions can be expressed as

X = Ŵ1

(
I 0
0 J ′′

)
ÛT

1 , (5.11)

where

Ŵ1 = W̃

(
I2m−2p 0

0 W̃1

)
∈ OR

2m×2m, Û1 =

(
I2m−2p 0

0 ŨT
1

)
Ũ ∈ OR

2m×2m, (5.12)

and J ′′ ∈ SSOR
2q×2q is arbitrary.

6. The Least Squares (Skew-) Symmetric Orthogonal Solutions of
the System (1.1)

If the solvability conditions of a system of matrix equations are not satisfied, it is natural to
consider its least squares solution. In this section, we get the least squares (skew-) symmetric
orthogonal solutions of the system (1.1), that is, seek X ∈ SSOR

2m×2m(SOR
n×n) such that

min
X∈SSOR2m×2m(SORn×n)

‖AX − B‖2 + ‖XC −D‖2. (6.1)
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With the help of the definition of the Frobenius norm and the properties of the skew-
symmetric orthogonal matrix, we get that

‖AX − B‖2 + ‖XC −D‖2 = ‖A‖2 + ‖B‖2 + ‖C‖2 + ‖D‖2 − 2 tr
(
XT
(
ATB +DCT

))
. (6.2)

Let

ATB +DCT = K,

KT −K

2
= T.

(6.3)

Then, it follows from the skew-symmetric matrix X that

tr
(
XT
(
ATB +DCT

))
= tr
(
XTK

)
= tr(−XK) = tr

(
X

(
KT −K

2

))
= tr(XT). (6.4)

Therefore, (6.1) holds if and only if (6.4) reaches its maximum. Now, we pay our attention to
find the maximum value of (6.4). Assume the eigenvalue decomposition of T is

T = E

(
Λ 0
0 0

)
ET (6.5)

with

Λ = diag(Λ1, . . . ,Λl), Λi =
(

0 αi

−αi 0

)
, αi > 0, i = 1, . . . , l; 2l = rank(T). (6.6)

Denote

ETXE =
(
X11 X12

X21 X22

)
, (6.7)

partitioned according to

(
Λ 0
0 0

)
, (6.8)

then (6.4) has the following form:

tr(XT) = tr
(
ETXE

(
Λ 0
0 0

))
= tr(X11Λ). (6.9)



Journal of Applied Mathematics 15

Thus, by

X11 = Ĩ = diag
(
Ĩ1, . . . , Ĩl

)
, (6.10)

where

Ĩi =
(

0 −1
1 0

)
, i = 1, . . . , l. (6.11)

Equation (6.9) gets its maximum. Since ETXE is skew-symmetric, it follows from

X = E

(
Ĩ 0
0 G

)
ET , (6.12)

where G ∈ SSOR
(2m−2l)×(2m−2l) is arbitrary, that (6.1) obtains its minimum. Hence we have the

following theorem.

Theorem 6.1. Given A,B ∈ R
n×2m and C,D ∈ R

2m×n, denote

ATB +DCT = K,
KT −K

2
= T, (6.13)

and let the spectral decomposition of T be (6.5). Then the least squares skew-symmetric orthogonal
solutions of the system (1.1) can be expressed as (6.12).

If X in (6.1) is a symmetric orthogonal matrix, then by the definition of the Frobenius
norm and the properties of the symmetric orthogonal matrix, (6.2) holds. Let

ATB +DCT = H,
HT +H

2
= N. (6.14)

Then we get that

min
X∈SORn×n

‖AX − B‖2 + ‖XC −D‖2 = min
X∈SORn×n

[
‖A‖2 + ‖B‖2 + ‖C‖2 + ‖D‖2 − 2 tr(XN)

]
. (6.15)

Thus (6.15) reaches its minimum if and only if tr(XN) obtains its maximum. Now, we focus
on finding the maximum value of tr(XN). Let the spectral decomposition of the symmetric
matrix N be

N = M

(
Σ 0
0 0

)
MT, (6.16)
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where

Σ =
(
Σ+ 0
0 Σ−

)
, Σ+ = diag(λ1, . . . , λs),

λ1 ≥ λ2 ≥ · · · ≥ λs > 0, Σ− = diag(λs+1, . . . , λt),

λt ≤ λt−1 ≤ · · · ≤ λs+1 < 0, t = rank(N).

(6.17)

Denote

MTXM =

(
X11 X12

X21 X22

)
(6.18)

being compatible with

(
Σ 0
0 0

)
. (6.19)

Then

tr(XN) = tr
(
MTXM

(
Σ 0
0 0

))
= tr

((
X11 X12

X21 X22

)(
Σ 0
0 0

))
= tr
(
X11Σ

)
. (6.20)

Therefore, it follows from

X11 = Î =
(
Is 0
0 −It−s

)
(6.21)

that (6.20) reaches its maximum. Since MTXM is a symmetric orthogonal matrix, then when
X has the form

X = M

(
Î 0
0 L

)
MT, (6.22)

where L ∈ SOR
(n−t)×(n−t) is arbitrary, (6.15) gets its minimum. Thus we obtain the following

theorem.

Theorem 6.2. Given A,B ∈ R
n×m, C,D ∈ R

m×n, denote

ATB +DCT = H,
HT +H

2
= N, (6.23)

and let the eigenvalue decomposition of N be (6.16). Then the least squares symmetric orthogonal
solutions of the system (1.1) can be described as (6.22).



Journal of Applied Mathematics 17

Algorithm 6.3. Consider the following.

Step 1. Input A,B ∈ R
n×m and C,D ∈ R

m×n.

Step 2. Compute

ATB +DCT = H,

N =
HT +H

2
.

(6.24)

Step 3. Compute the spectral decomposition of N with the form (6.16).

Step 4. Compute the least squares symmetric orthogonal solutions of (1.1) according to
(6.22).

Example 6.4. Assume

A =

⎛
⎜⎜⎜⎜⎜⎝

12.2 8.4 −5.6 6.3 9.4 10.7
11.8 2.9 8.5 6.9 9.6 −7.8
10.6 2.3 11.5 7.8 6.7 8.9
3.6 7.8 4.9 11.9 9.4 5.9
4.5 6.7 7.8 3.1 5.6 11.6

⎞
⎟⎟⎟⎟⎟⎠

, B =

⎛
⎜⎜⎜⎜⎜⎝

8.5 9.4 3.6 7.8 6.3 4.7
2.7 3.6 7.9 9.4 5.6 7.8
3.7 6.7 8.6 9.8 3.4 2.9
−4.3 6.2 5.7 7.4 5.4 9.5
2.9 3.9 −5.2 6.3 7.8 4.6

⎞
⎟⎟⎟⎟⎟⎠

,

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

5.4 6.4 3.7 5.6 9.7
3.6 4.2 7.8 −6.3 7.8
6.7 3.5 −4.6 2.9 2.8
−2.7 7.2 10.8 3.7 3.8
1.9 3.9 8.2 5.6 11.2
8.9 7.8 9.4 7.9 5.6

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

7.9 9.5 5.4 2.8 8.6
8.7 2.6 6.7 8.4 8.1
5.7 3.9 −2.9 5.2 1.9
4.8 5.8 1.8 −7.2 5.8
2.8 7.9 4.5 6.7 9.6
9.5 4.1 3.4 9.8 3.9

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

(6.25)

It can be verified that the given matrices A,B,C, and D do not satisfy the solvability
conditions in Theorem 4.1 or Theorem 4.2. So we intend to derive the least squares symmetric
orthogonal solutions of the system (1.1). By Algorithm 6.3, we have the following results:

(1) the least squares symmetric orthogonal solution

X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0.01200 0.06621 −0.24978 0.27047 0.91302 −0.16218
0.06621 0.65601 0.22702 −0.55769 0.24587 0.37715
−0.24978 0.22702 0.80661 0.40254 0.04066 −0.26784
0.27047 −0.55769 0.40254 0.06853 0.23799 0.62645
0.91302 0.24587 0.04066 0.23799 −0.12142 −0.18135
−0.16218 0.37715 −0.26784 0.62645 −0.181354 0.57825

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (6.26)

(2)

min
X∈SORm×m

‖AX − B‖2 + ‖XC −D‖2 = 1.98366,

∥∥∥XTX − I6

∥∥∥ = 2.84882 × 10−15,
∥∥∥XT −X

∥∥∥ = 0.00000.
(6.27)
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Remark 6.5. (1) There exists a unique symmetric orthogonal solution such that (6.1) holds if
and only if the matrix

N =
HT +H

2
, (6.28)

where

H = ATB +DCT, (6.29)

is invertible. Example 6.4 just illustrates it.
(2) The algorithm about computing the least squares skew-symmetric orthogonal

solutions of the system (1.1) can be shown similarly; we omit it here.

7. Conclusions

This paper is devoted to giving the solvability conditions of and the expressions of
the orthogonal solutions, the symmetric orthogonal solutions, and the skew-symmetric
orthogonal solutions to the system (1.1), respectively, and meanwhile obtaining the least
squares symmetric orthogonal and skew-symmetric orthogonal solutions of the system (1.1).
In addition, an algorithm and an example have been provided to compute its least squares
symmetric orthogonal solutions.
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Let R be an n by n nontrivial real symmetric involution matrix, that is, R = R−1 = RT /= In. An n × n

complex matrix A is termed R-conjugate if A = RAR, where A denotes the conjugate of A. We
give necessary and sufficient conditions for the existence of the Hermitian R-conjugate solution
to the system of complex matrix equations AX = C andXB = D and present an expression of
the Hermitian R-conjugate solution to this system when the solvability conditions are satisfied.
In addition, the solution to an optimal approximation problem is obtained. Furthermore, the least
squares Hermitian R-conjugate solution with the least norm to this system mentioned above is
considered. The representation of such solution is also derived. Finally, an algorithm and numerical
examples are given.

1. Introduction

Throughout, we denote the complex m × n matrix space by C
m×n, the real m × n matrix space

by R
m×n, and the set of all matrices in R

m×n with rank r by R
m×n
r . The symbols I,A,AT ,A∗, A†,

and ‖A‖ stand for the identity matrix with the appropriate size, the conjugate, the transpose,
the conjugate transpose, the Moore-Penrose generalized inverse, and the Frobenius norm of
A ∈ C

m×n, respectively. We use Vn to denote the n× n backward matrix having the elements 1
along the southwest diagonal and with the remaining elements being zeros.

Recall that an n × n complex matrix A is centrohermitian if A = VnAVn. Centro-
hermitian matrices and related matrices, such as k-Hermitian matrices, Hermitian Toeplitz
matrices, and generalized centrohermitian matrices, appear in digital signal processing and
others areas (see, [1–4]). As a generalization of a centrohermitian matrix and related matrices,
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Trench [5] gave the definition of R-conjugate matrix. A matrix A ∈ C
n×n is R-conjugate if

A = RAR, where R is a nontrivial real symmetric involution matrix, that is, R = R−1 = RT and
R/= In. At the same time, Trench studied the linear equation Az = w for R-conjugate matrices
in [5], where z,w are known column vectors.

Investigating the matrix equation

AX = B (1.1)

with the unknown matrix X being symmetric, reflexive, Hermitian-generalized Hamiltonian,
and repositive definite is a very active research topic [6–14]. As a generalization of (1.1), the
classical system of matrix equations

AX = C, XB = D (1.2)

has attracted many author’s attention. For instance, [15] gave the necessary and sufficient
conditions for the consistency of (1.2), [16, 17] derived an expression for the general solution
by using singular value decomposition of a matrix and generalized inverses of matrices,
respectively. Moreover, many results have been obtained about the system (1.2) with various
constraints, such as bisymmetric, Hermitian, positive semidefinite, reflexive, and generalized
reflexive solutions (see, [18–28]). To our knowledge, so far there has been little investigation
of the Hermitian R-conjugate solution to (1.2).

Motivated by the work mentioned above, we investigate Hermitian R-conjugate
solutions to (1.2). We also consider the optimal approximation problem

∥∥∥X̂ − E
∥∥∥ = min

X∈SX

‖X − E‖, (1.3)

where E is a given matrix in C
n×n and SX the set of all Hermitian R-conjugate solutions to

(1.2). In many cases the system (1.2) has not Hermitian R-conjugate solution. Hence, we need
to further study its least squares solution, which can be described as follows: Let RHC

n×n

denote the set of all Hermitian R-conjugate matrices in C
n×n:

SL =
{
X | min

X∈RHCn×n

(
‖AX − C‖2 + ‖XB −D‖2

)}
. (1.4)

Find X̃ ∈ C
n×n such that

∥∥∥X̃∥∥∥ = min
X∈SL

‖X‖. (1.5)

In Section 2, we present necessary and sufficient conditions for the existence of the
Hermitian R-conjugate solution to (1.2) and give an expression of this solution when the
solvability conditions are met. In Section 3, we derive an optimal approximation solution to
(1.3). In Section 4, we provide the least squares Hermitian R-conjugate solution to (1.5). In
Section 5, we give an algorithm and a numerical example to illustrate our results.
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2. R-Conjugate Hermitian Solution to (1.2)

In this section, we establish the solvability conditions and the general expression for the
Hermitian R-conjugate solution to (1.2).

We denote RC
n×n and RHC

n×n the set of all R-conjugate matrices and Hermitian R-
conjugate matrices, respectively, that is,

RC
n×n =

{
A | A = RAR

}
,

HRC
n×n =

{
A | A = RAR,A = A∗

}
,

(2.1)

where R is n × n nontrivial real symmetric involution matrix.
Chang et al. in [29] mentioned that for nontrivial symmetric involution matrix R ∈

R
n×n, there exist positive integer r and n × n real orthogonal matrix [P, Q] such that

R =
[
P, Q

]
⎡
⎣Ir 0

0 −In−r

⎤
⎦
⎡
⎣P

T

QT

⎤
⎦, (2.2)

where P ∈ R
n×r , Q ∈ R

n×(n−r). By (2.2),

RP = P, RQ = −Q, PTP = Ir , QTQ = In−r , PTQ = 0, QTP = 0. (2.3)

Throughout this paper, we always assume that the nontrivial symmetric involution
matrix R is fixed which is given by (2.2) and (2.3). Now, we give a criterion of judging a
matrix is R-conjugate Hermitian matrix.

Theorem 2.1. A matrix K ∈ HRC
n×n if and only if there exists a symmetric matrix H ∈ R

n×n such
that K = ΓHΓ∗, where

Γ =
[
P, iQ

]
, (2.4)

with P,Q being the same as (2.2).

Proof. If K ∈ HRC
n×n, then K = RKR. By (2.2),

K = RKR =
[
P, Q

]
⎡
⎣Ir 0

0 −In−r

⎤
⎦
⎡
⎣P

T

QT

⎤
⎦K[P, Q

]
⎡
⎣Ir 0

0 −In−r

⎤
⎦
⎡
⎣P

T

QT

⎤
⎦, (2.5)
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which is equivalent to

⎡
⎣P

T

QT

⎤
⎦K[P, Q

]

=

⎡
⎣Ir 0

0 −In−r

⎤
⎦
⎡
⎣P

T

QT

⎤
⎦K[P, Q

]
⎡
⎣Ir 0

0 −In−r

⎤
⎦.

(2.6)

Suppose that

⎡
⎣P

T

QT

⎤
⎦K[P, Q

]
=

⎡
⎣K11 K12

K21 K22

⎤
⎦. (2.7)

Substituting (2.7) into (2.6), we obtain

⎡
⎣K11 K12

K21 K22

⎤
⎦ =

⎡
⎣Ir 0

0 −In−r

⎤
⎦
⎡
⎣K11 K12

K21 K22

⎤
⎦
⎡
⎣Ir 0

0 −In−r

⎤
⎦ =

⎡
⎣ K11 −K12

−K21 K22

⎤
⎦. (2.8)

Hence, K11 = K11, K12 = −K12, K21 = −K21, K22 = K22, that is, K11, iK12, iK21, K22 are real
matrices. If we denote M = iK12, N = −iK21, then by (2.7)

K =
[
P, Q

]
⎡
⎣K11 K12

K21 K22

⎤
⎦
⎡
⎣P

T

QT

⎤
⎦ =

[
P, iQ

]
⎡
⎣K11 M

N K22

⎤
⎦
⎡
⎣ PT

−iQT

⎤
⎦. (2.9)

Let Γ = [P, iQ], and

H =

⎡
⎣K11 M

N K22

⎤
⎦. (2.10)

Then, K can be expressed as ΓHΓ∗, where Γ is unitary matrix and H is a real matrix. By
K = K∗

ΓHTΓ∗ = K∗ = K = ΓHΓ∗, (2.11)

we obtain H = HT .
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Conversely, if there exists a symmetric matrix H ∈ R
n×n such that K = ΓHΓ∗, then it

follows from (2.3) that

RKR = RΓHΓ∗R = R
[
P, iQ

]
H

⎡
⎣ PT

−iQT

⎤
⎦R =

[
P, −iQ]H

⎡
⎣ PT

iQT

⎤
⎦ = ΓHΓ∗ = K,

K∗ = ΓHTΓ∗ = ΓHΓ∗ = K,

(2.12)

that is, K ∈ HRC
n×n.

Theorem 2.1 implies that an arbitrary complex Hermitian R-conjugate matrix is equiv-
alent to a real symmetric matrix.

Lemma 2.2. For any matrix A ∈ C
m×n, A = A1 + iA2, where

A1 =
A +A

2
, A2 =

A −A

2i
. (2.13)

Proof. For any matrix A ∈ C
m×n, it is obvious that A = A1 + iA2, where A1, A2 are defined

as (2.13). Now, we prove that the decomposition A = A1 + iA2 is unique. If there exist B1, B2

such that A = B1 + iB2, then

A1 − B1 + i(B2 −A2) = 0. (2.14)

It follows from A1, A2, B1, andB2 are real matrix that

A1 = B1, A2 = B2. (2.15)

Hence, A = A1 + iA2 holds, where A1, A2 are defined as (2.13).

By Theorem 2.1, for X ∈ HRC
n×n, we may assume that

X = ΓYΓ∗, (2.16)

where Γ is defined as (2.4) and Y ∈ R
n×n is a symmetric matrix.

Suppose that AΓ = A1 + iA2 ∈ C
m×n, CΓ = C1 + iC2 ∈ C

m×n, Γ∗B = B1 + iB2 ∈ C
n×l, and

Γ∗D = D1 + iD2 ∈ C
n×l, where

A1 =
AΓ +AΓ

2
, A2 =

AΓ −AΓ
2i

, C1 =
CΓ + CΓ

2
, C2 =

CΓ − CΓ
2i

,

B1 =
Γ∗B + Γ∗B

2
, B2 =

Γ∗B − Γ∗B
2i

, D1 =
Γ∗D + Γ∗D

2
, D2 =

Γ∗D − Γ∗D
2i

.

(2.17)
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Then, system (1.2) can be reduced into

(A1 + iA2)Y = C1 + iC2, Y (B1 + iB2) = D1 + iD2, (2.18)

which implies that

⎡
⎣A1

A2

⎤
⎦Y =

⎡
⎣C1

C2

⎤
⎦, Y

[
B1, B2

]
=
[
D1, D2

]
. (2.19)

Let

F =

⎡
⎣A1

A2

⎤
⎦, G =

⎡
⎣C1

C2

⎤
⎦, K =

[
B1, B2

]
,

L =
[
D1, D2

]
, M =

⎡
⎣ F

KT

⎤
⎦, N =

⎡
⎣G

LT

⎤
⎦.

(2.20)

Then, system (1.2) has a solution X in HRC
n×n if and only if the real system

MY = N (2.21)

has a symmetric solution Y in R
n×n.

Lemma 2.3 (Theorem 1 in [7]). Let A ∈ R
m×n. The SVD of matrix A is as follows

A = U

⎡
⎣Σ 0

0 0

⎤
⎦V T , (2.22)

where U = [U1, U2] ∈ R
m×m and V = [V1, V2] ∈ R

n×n are orthogonal matrices, Σ = diag(σ1, . . . ,
σr), σi > 0 (i = 1, . . . , r), r = rank(A), U1 ∈ R

m×r , V1 ∈ R
n×r . Then, (1.1) has a symmetric

solution if and only if

ABT = BAT, UT
2 B = 0. (2.23)

In that case, it has the general solution

X = V1Σ−1UT
1 B + V2V

T
2 B

TU1Σ−1V T
1 + V2GVT

2 , (2.24)

where G is an arbitrary (n − r) × (n − r) symmetric matrix.

By Lemma 2.3, we have the following theorem.
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Theorem 2.4. Given A ∈ C
m×n, C ∈ C

m×n, B ∈ C
n×l, and D ∈ C

n×l. Let A1, A2, C1,
C2,B1, B2, D1, D2, F, G, K, L, M, andN be defined in (2.17), (2.20), respectively. Assume that
the SVD of M ∈ R

(2m+2l)×n is as follows

M = U

⎡
⎣M1 0

0 0

⎤
⎦V T , (2.25)

where U = [U1, U2] ∈ R
(2m+2l)×(2m+2l) and V = [V1, V2] ∈ R

n×n are orthogonal matrices, M1 =
diag(σ1, . . . , σr), σi > 0 (i = 1, . . . , r), r = rank(M), U1 ∈ R

(2m+2l)×r , V1 ∈ R
n×r . Then, system

(1.2) has a solution in HRC
n×n if and only if

MNT = NMT, UT
2 N = 0. (2.26)

In that case, it has the general solution

X = Γ
(
V1M

−1
1 UT

1 N + V2V
T
2 N

TU1M
−1
1 V T

1 + V2GVT
2

)
Γ∗, (2.27)

where G is an arbitrary (n − r) × (n − r) symmetric matrix.

3. The Solution of Optimal Approximation Problem (1.3)

When the set SX of all Hermitian R-conjugate solution to (1.2) is nonempty, it is easy to verify
SX is a closed set. Therefore, the optimal approximation problem (1.3) has a unique solution
by [30].

Theorem 3.1. GivenA ∈ C
m×n, C ∈ C

m×n, B ∈ C
n×l, D ∈ C

n×l, E ∈ C
n×n, and E1 = (1/2)(Γ∗EΓ+

Γ∗EΓ). Assume SX is nonempty, then the optimal approximation problem (1.3) has a unique solution
X̂ and

X̂ = Γ
(
V1M

−1
1 UT

1 N + V2V
T
2 N

TU1M
−1
1 V T

1 + V2V
T
2 E1V2V

T
2

)
Γ∗. (3.1)

Proof. Since SX is nonempty, X ∈ SX has the form of (2.27). By Lemma 2.2, Γ∗EΓ can be written
as

Γ∗EΓ = E1 + iE2, (3.2)

where

E1 =
1
2

(
Γ∗EΓ + Γ∗EΓ

)
, E2 =

1
2i

(
Γ∗EΓ − Γ∗EΓ

)
. (3.3)
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According to (3.2) and the unitary invariance of Frobenius norm

‖X − E‖ =
∥∥∥Γ(V1M

−1UT
1N + V2V

T
2 N

TU1M
−1V T

1 + V2GVT
2

)
Γ∗ − E

∥∥∥
=
∥∥∥(E1 − V1M

−1UT
1N − V2V

T
2 N

TU1M
−1V T

1 − V2GVT
2

)
+ iE2

∥∥∥.
(3.4)

We get

‖X − E‖2 =
∥∥∥E1 − V1M

−1UT
1 N − V2V

T
2 N

TU1M
−1V T

1 − V2GVT
2

∥∥∥2
+ ‖E2‖2. (3.5)

Then, minX∈SX‖X − E‖ is consistent if and only if there exists G ∈ R
(n−r)×(n−r) such that

min
∥∥∥E1 − V1M

−1UT
1 N − V2V

T
2 N

TU1M
−1V T

1 − V2GVT
2

∥∥∥. (3.6)

For the orthogonal matrix V

∥∥∥E1 − V1M
−1UT

1N − V2V
T
2 N

TU1M
−1V T

1 − V2GVT
2

∥∥∥2

=
∥∥∥V T (E1 − V1M

−1UT
1 N − V2V

T
2 N

TU1M
−1V T

1 − V2GVT
2 )V

∥∥∥2

=
∥∥∥V T

1

(
E1 − V1M

−1UT
1 N
)
V1

∥∥∥2
+
∥∥∥V T

1 (E1 − V1M
−1UT

1 N)V2

∥∥∥2

+
∥∥∥V T

2

(
E1 − V2V

T
2 N

TU1M
−1V T

1

)
V1

∥∥∥2
+
∥∥∥V T

2

(
E1 − V2GVT

2

)
V2

∥∥∥.

(3.7)

Therefore,

min
∥∥∥E1 − V1M

−1UT
1 N − V2V

T
2 N

TU1M
−1V T

1 − V2GVT
2

∥∥∥ (3.8)

is equivalent to

G = V T
2 E1V2. (3.9)

Substituting (3.9) into (2.27), we obtain (3.1).

4. The Solution of Problem (1.5)

In this section, we give the explicit expression of the solution to (1.5).

Theorem 4.1. Given A ∈ C
m×n, C ∈ C

m×n, B ∈ C
n×l, and D ∈ C

n×l. Let A1, A2, C1, C2,
B1, B2, D1, D2, F, G, K, L, M, and N be defined in (2.17), (2.20), respectively. Assume that the



Journal of Applied Mathematics 9

SVD of M ∈ R
(2m+2l)×n is as (2.25) and system (1.2) has not a solution in HRC

n×n. Then, X ∈ SL

can be expressed as

X = ΓV

⎡
⎣M−1

1 UT
1NV1 M−1

1 UT
1NV2

V T
2 N

TU1M
−1
1 Y22

⎤
⎦V TΓ∗, (4.1)

where Y22 ∈ R
(n−r)×(n−r) is an arbitrary symmetric matrix.

Proof. It yields from (2.17)–(2.21) and (2.25) that

‖AX − C‖2 + ‖XB −D‖2 = ‖MY −N‖2

=

∥∥∥∥∥∥U
⎡
⎣M1 0

0 0

⎤
⎦V TY −N

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
⎡
⎣M1 0

0 0

⎤
⎦V TYV −UTNV

∥∥∥∥∥∥
2

.

(4.2)

Assume that

V TYV =

⎡
⎣Y11 Y12

Y21 Y22

⎤
⎦, Y11 ∈ R

r×r , Y22 ∈ R
(n−r)×(n−r). (4.3)

Then, we have

‖AX − C‖2 + ‖XB −D‖2

=
∥∥∥M1Y11 −UT

1 NV1

∥∥∥2
+
∥∥∥M1Y12 −UT

1NV2

∥∥∥2

+
∥∥∥UT

2NV1

∥∥∥2
+
∥∥∥UT

2 NV2

∥∥∥2
.

(4.4)

Hence,

min
(
‖AX − C‖2 + ‖XB −D‖2

)
(4.5)

is solvable if and only if there exist Y11, Y12 such that

∥∥∥M1Y11 −UT
1 NV1

∥∥∥2
= min,

∥∥∥M1Y12 −UT
1NV2

∥∥∥2
= min .

(4.6)
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It follows from (4.6) that

Y11 = M−1
1 UT

1 NV1,

Y12 = M−1
1 UT

1 NV2.
(4.7)

Substituting (4.7) into (4.3) and then into (2.16), we can get that the form of elements in SL is
(4.1).

Theorem 4.2. Assume that the notations and conditions are the same as Theorem 4.1. Then,

∥∥∥X̃∥∥∥ = min
X∈SL

‖X‖ (4.8)

if and only if

X̃ = ΓV

⎡
⎣M−1

1 UT
1NV1 M−1

1 UT
1NV2

V T
2 N

TU1M
−1
1 0

⎤
⎦V TΓ∗. (4.9)

Proof. In Theorem 4.1, it implies from (4.1) that minX∈SL‖X‖ is equivalent to X has the
expression (4.1) with Y22 = 0. Hence, (4.9) holds.

5. An Algorithm and Numerical Example

Base on the main results of this paper, we in this section propose an algorithm for finding the
solution of the approximation problem (1.3) and the least squares problem with least norm
(1.5). All the tests are performed by MATLAB 6.5 which has a machine precision of around
10−16.

Algorithm 5.1. (1) Input A ∈ C
m×n, C ∈ C

m×n, B ∈ C
n×l, D ∈ C

n×l.
(2) Compute A1, A2, C1, C2, B1, B2, D1, D2, F, G, K, L, M, andN by (2.17) and

(2.20).
(3) Compute the singular value decomposition of M with the form of (2.25).
(4) If (2.26) holds, then input E ∈ C

n×n and compute the solution X̂ of problem (1.3)
according (3.1), else compute the solution X̃ to problem (1.5) by (4.9).

To show our algorithm is feasible, we give two numerical example. Let an nontrivial
symmetric involution be

R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5.1)
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We obtain [P, Q] in (2.2) by using the spectral decomposition of R, then by (2.4)

Γ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

0 0 i 0

0 1 0 0

0 0 0 i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5.2)

Example 5.2. Suppose A ∈ C
2×4, C ∈ C

2×4, B ∈ C
4×3, D ∈ C

4×3, and

A =

⎡
⎣3.33 − 5.987i 45i 7.21 −i

0 −0.66i 7.694 1.123i

⎤
⎦,

C =

⎡
⎣0.2679 − 0.0934i 0.0012 + 4.0762i −0.0777 − 0.1718i −1.2801i

0.2207 −0.1197i 0.0877 0.7058i

⎤
⎦,

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 + 12i 2.369i 4.256 − 5.111i

4i 4.66i 8.21 − 5i

0 4.83i 56 + i

2.22i −4.666 7i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0616 + 0.1872i −0.0009 + 0.1756i 1.6746 − 0.0494i

0.0024 + 0.2704i 0.1775 + 0.4194i 0.7359 − 0.6189i

−0.0548 + 0.3444i 0.0093 − 0.3075i −0.4731 − 0.1636i

0.0337i 0.1209 − 0.1864i −0.2484 − 3.8817i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(5.3)

We can verify that (2.26) holds. Hence, system (1.2) has an Hermitian R-conjugate solution.
Given

E =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

7.35i 8.389i 99.256 − 6.51i −4.6i

1.55 4.56i 7.71 − 7.5i i

5i 0 −4.556i −7.99

4.22i 0 5.1i 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5.4)
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Applying Algorithm 5.1, we obtain the following:

X̂ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.5597 0.0194i 2.8705 0.0002i

−0.0194i 9.0001 0.2005i −3.9997

2.8705 −0.2005i −0.0452 7.9993i

−0.0002i −3.9997 −7.9993i 5.6846

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5.5)

Example 5.2 illustrates that we can solve the optimal approximation problem with
Algorithm 5.1 when system (1.2) have Hermitian R-conjugate solutions.

Example 5.3. Let A, B, andC be the same as Example 5.2, and let D in Example 5.2 be changed
into

D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0616 + 0.1872i −0.0009 + 0.1756i 1.6746 + 0.0494i

0.0024 + 0.2704i 0.1775 + 0.4194i 0.7359 − 0.6189i

−0.0548 + 0.3444i 0.0093 − 0.3075i −0.4731 − 0.1636i

0.0337i 0.1209 − 0.1864i −0.2484 − 3.8817i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5.6)

We can verify that (2.26) does not hold. By Algorithm 5.1, we get

X̃ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.52 2.2417i 0.4914 0.3991i

−2.2417i 8.6634 0.1921i −2.8232

0.4914 −0.1921i 0.1406 1.3154i

−0.3991i −2.8232 −1.3154i 6.3974

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5.7)

Example 5.3 demonstrates that we can get the least squares solution with Algo-
rithm 5.1 when system (1.2) has not Hermitian R-conjugate solutions.
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We consider the perturbation analysis of the matrix equation X −∑m
i=1 A

∗
i XAi +

∑n
j=1 B

∗
j XBj = I.

Based on the matrix differentiation, we first give a precise perturbation bound for the positive
definite solution. A numerical example is presented to illustrate the sharpness of the perturbation
bound.

1. Introduction

In this paper, we consider the matrix equation

X −
m∑
i=1

A∗
i XAi +

n∑
j=1

B∗
j XBj = I, (1.1)

where A1, A2, . . . , Am, B1, B2, . . . , Bn are n × n complex matrices, I is an n × n identity matrix,
m, n are nonnegative integers and the positive definite solution X is practical interest.
Here, A∗

i and B∗
i denote the conjugate transpose of the matrices Ai and Bi, respectively.

Equation (1.1) arises in solving some nonlinear matrix equations with Newton method. See,
for example, the nonlinear matrix equation which appears in Sakhnovich [1]. Solving these
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nonlinear matrix equations gives rise to (1.1). On the other hand, (1.1) is the general case of
the generalized Lyapunov equation

MYS∗ + SYM∗ +
t∑

k=1

NkYN
∗
k + CC∗ = 0, (1.2)

whose positive definite solution is the controllability Gramian of the bilinear control system
(see [2, 3] for more details)

Mẋ(t) = Sx(t) +
t∑

k=1

Nkx(t)uk(t) + Cu(t). (1.3)

Set

E =
1√
2
(M − S + I), F =

1√
2
(M + S + I), G = S − I, Q = CC∗,

X = Q−1/2YQ−1/2, Ai = Q−1/2NiQ
1/2, i = 1, 2, . . . , t,

At+1 = Q−1/2FQ1/2, At+2 = Q−1/2GQ1/2,

B1 = Q−1/2EQ1/2, B2 = Q−1/2CQ1/2,

(1.4)

then (1.2) can be equivalently written as (1.1) with m = t + 2 and n = 2.
Some special cases of (1.1) have been studied. Based on the kronecker product and

fixed point theorem in partially ordered sets, Reurings [4] and Ran and Reurings [5, 6] gave
some sufficient conditions for the existence of a unique positive definite solution of the linear
matrix equations X −∑m

i=1 A
∗
i XAi = I and X +

∑n
j=1 B

∗
i XBi = I. And the expressions for these

unique positive definite solutions were also derived under some constraint conditions. For
the general linear matrix equation (1.1), Reurings [[4], Page 61] pointed out that it is hard to
find sufficient conditions for the existence of a positive definite solution, because the map

G(X) = I +
m∑
i=1

A∗
i XAi −

n∑
j=1

B∗
j XBj (1.5)

is not monotone and does not map the set of n × n positive definite matrices into itself.
Recently, Berzig [7] overcame these difficulties by making use of Bhaskar-Lakshmikantham
coupled fixed point theorem and gave a sufficient condition for (1.1) existing a unique
positive definite solution. An iterative method was constructed to compute the unique
positive definite solution, and the error estimation was given too.

Recently, the matrix equations of the form (1.1) have been studied by many authors
(see [8–14]). Some numerical methods for solving the well-known Lyapunov equation
X + ATXA = Q, such as Bartels-Stewart method and Hessenberg-Schur method, have been
proposed in [12]. Based on the fixed point theorem, the sufficient and necessary conditions for
the existence of a positive definite solution of the matrix equation Xs ±A∗X−tA = Q, s, t ∈ N
have been given in [8, 9]. The fixed point iterative method and inversion-free iterative method
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were developed for solving the matrix equations X ± A∗X−αA = Q, α > 0 in [13, 14]. By
making use of the fixed point theorem of mixed monotone operator, the matrix equation
X −∑m

i=1 A
∗
i X

δiAi = Q, 0 < |δi| < 1 was studied in [10], and derived a sufficient condition for
the existence of a positive definite solution. Assume that F maps positive definite matrices
either into positive definite matrices or into negative definite matrices, the general nonlinear
matrix equation X +A∗F(X)A = Q was studied in [11], and the fixed point iterative method
was constructed to compute the positive definite solution under some additional conditions.

Motivated by the works and applications in [2–6], we continue to study the matrix
equation (1.1). Based on a new mathematical tool (i.e., the matrix differentiation), we firstly
give a differential bound for the unique positive definite solution of (1.1), and then use it to
derive a precise perturbation bound for the unique positive definite solution. A numerical
example is used to show that the perturbation bound is very sharp.

Throughout this paper, we write B > 0 (B ≥ 0) if the matrix B is positive definite
(semidefinite). If B − C is positive definite (semidefinite), then we write B > C (B ≥ C). If
a positive definite matrix X satisfies B ≤ X ≤ C, we denote that X ∈ [B,C]. The symbols
λ1(B) and λn(B) denote the maximal and minimal eigenvalues of an n × n Hermitian matrix
B, respectively. The symbol Hn×n stands for the set of n × n Hermitian matrices. The symbol
‖B‖ denotes the spectral norm of the matrix B.

2. Perturbation Analysis for the Matrix Equation (1.1)

Based on the matrix differentiation, we firstly give a differential bound for the unique positive
definite solution XU of (1.1), and then use it to derive a precise perturbation bound for XU in
this section.

Definition 2.1 ([15], Definition 3.6). Let F = (fij)m×n, then the matrix differentiation of F is
dF = (dfij)m×n. For example, let

F =
(

s + t s2 − 2t
2s + t3 t2

)
. (2.1)

Then

dF =
(

ds + dt 2sds − 2dt
2ds + 3t2dt 2tdt

)
. (2.2)

Lemma 2.2 ([15], Theorem 3.2). The matrix differentiation has the following properties:

(1) d(F1 ± F2) = dF1 ± dF2;

(2) d(kF) = k(dF), where k is a complex number;

(3) d(F∗) = (dF)∗;

(4) d(F1F2F3) = (dF1)F2F3 + F1(dF2)F3 + F1F2(dF3);

(5) dF−1 = −F−1(dF)F−1;

(6) dF = 0, where F is a constant matrix.
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Lemma 2.3 ([7], Theorem 3.1). If

m∑
i=1

A∗
i Ai <

1
2
I,

n∑
j=1

B∗
j Bj <

1
2
I, (2.3)

then (1.1) has a unique positive definite solution XU and

XU ∈
⎡
⎣I − 2

n∑
j=1

B∗
j Bj , I + 2

m∑
i=1

A∗
i Ai

⎤
⎦. (2.4)

Theorem 2.4. If

m∑
i=1

‖Ai‖2 <
1
2
,

n∑
j=1

∥∥Bj

∥∥2
<

1
2
, (2.5)

then (1.1) has a unique positive definite solution XU, and it satisfies

‖dXU‖ ≤
2
(

1 + 2
∑m

i=1 ‖Ai‖2
)[∑m

i=1(‖Ai‖‖dAi‖) +
∑n

j=1
(∥∥Bj

∥∥∥∥dBj

∥∥)]

1 −∑m
i=1 ‖Ai‖2 −∑n

j=1

∥∥Bj

∥∥2
. (2.6)

Proof. Since

λ1
(
A∗

i Ai

) ≤ ∥∥A∗
i Ai

∥∥ ≤ ‖Ai‖2, i = 1, 2, . . . , m,

λ1

(
B∗
j Bj

)
≤
∥∥∥B∗

j Bj

∥∥∥ ≤ ∥∥Bj

∥∥2
, j = 1, 2, . . . , n,

(2.7)

then

A∗
i Ai ≤ λ1

(
A∗

i Ai

)
I ≤ ∥∥A∗

i Ai

∥∥I ≤ ‖Ai‖2I, i = 1, 2, . . . , m,

B∗
j Bj ≤ λ1

(
B∗
j Bj

)
I ≤
∥∥∥B∗

j Bj

∥∥∥ ≤ ∥∥Bj

∥∥2
I, j = 1, 2, . . . , n,

(2.8)

consequently,

m∑
i=1

A∗
i Ai ≤

m∑
i=1

‖Ai‖2I,

n∑
j=1

B∗
j Bj ≤

n∑
j=1

∥∥Bj

∥∥2
I.

(2.9)
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Combining (2.5)–(2.9) we have

m∑
i=1

A∗
i Ai ≤

m∑
i=1

‖Ai‖2I <
1
2
I,

n∑
j=1

B∗
j Bj ≤

n∑
j=1

∥∥Bj

∥∥2
I <

1
2
I.

(2.10)

Then by Lemma 2.3 we obtain that (1.1) has a unique positive definite solution XU, which
satisfies

XU ∈
⎡
⎣I − 2

n∑
j=1

B∗
j Bj , I + 2

m∑
i=1

A∗
i Ai

⎤
⎦. (2.11)

Noting that XU is the unique positive definite solution of (1.1), then

XU −
m∑
i=1

A∗
i XUAi +

n∑
j=1

B∗
j XUBj = I. (2.12)

It is known that the elements of XU are differentiable functions of the elements of Ai and Bi.
Differentiating (2.12), and by Lemma 2.2, we have

dXU −
m∑
i=1

[(
dA∗

i

)
XUAi +A∗

i (dXU)Ai +A∗
i XU(dAi)

]

+
n∑
j=1

[(
dB∗

j

)
XUBj + B∗

j (dXU)Bj + B∗
j XU

(
dBj

)]
= 0,

(2.13)

which implies that

dXU −
m∑
i=1

A∗
i (dXU)Ai +

n∑
j=1

B∗
j (dXU)Bj

=
m∑
i=1

(
dA∗

i

)
XUAi +

m∑
i=1

A∗
i XU(dAi) −

n∑
j=1

(
dB∗

j

)
XUBj −

n∑
j=1

B∗
j XU

(
dBj

)
.

(2.14)
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By taking spectral norm for both sides of (2.14), we obtain that

∥∥∥∥∥∥dXU −
m∑
i=1

A∗
i (dXU)Ai +

n∑
j=1

B∗
j (dXU)Bj

∥∥∥∥∥∥

=

∥∥∥∥∥∥
m∑
i=1

(
dA∗

i

)
XUAi +

m∑
i=1

A∗
i XU(dAi) −

n∑
j=1

(
dB∗

j

)
XUBj −

n∑
j=1

B∗
j XU

(
dBj

)
∥∥∥∥∥∥

≤
∥∥∥∥∥

m∑
i=1

(
dA∗

i

)
XUAi

∥∥∥∥∥ +
∥∥∥∥∥

m∑
i=1

A∗
i XU(dAi)

∥∥∥∥∥ +
∥∥∥∥∥∥

n∑
j=1

(
dB∗

j

)
XUBj

∥∥∥∥∥∥ +
∥∥∥∥∥∥

n∑
j=1

B∗
j XU

(
dBj

)
∥∥∥∥∥∥

≤
m∑
i=1

∥∥(dA∗
i

)
XUAi

∥∥ + m∑
i=1

∥∥A∗
i XU(dAi)

∥∥ + n∑
j=1

∥∥∥(dB∗
j

)
XUBj

∥∥∥ +
n∑
j=1

∥∥∥B∗
j XU

(
dBj

)∥∥∥

≤
m∑
i=1

∥∥dA∗
i

∥∥‖XU‖‖Ai‖ +
m∑
i=1

∥∥A∗
i

∥∥‖XU‖‖dAi‖ +
n∑
j=1

∥∥∥dB∗
j

∥∥∥‖XU‖
∥∥Bj

∥∥ + n∑
j=1

∥∥∥B∗
j

∥∥∥‖XU‖
∥∥dBj

∥∥

= 2
m∑
i=1

(‖Ai‖‖XU‖‖dAi‖) + 2
n∑
j=1

(∥∥Bj

∥∥‖XU‖
∥∥dBj

∥∥)

= 2

⎡
⎣ m∑

i=1

(‖Ai‖‖dAi‖) +
n∑
j=1

(∥∥Bj

∥∥∥∥dBj

∥∥)
⎤
⎦‖XU‖,

(2.15)

and noting (2.11) we obtain that

‖XU‖ ≤
∥∥∥∥∥I + 2

m∑
i=1

A∗
i Ai

∥∥∥∥∥ ≤ 1 + 2
m∑
i=1

‖Ai‖2. (2.16)

Then

∥∥∥∥∥∥dXU −
m∑
i=1

A∗
i (dXU)Ai +

n∑
j=1

B∗
j (dXU)Bj

∥∥∥∥∥∥

≤ 2

⎡
⎣ m∑

i=1

(‖Ai‖‖dAi‖) +
n∑
j=1

(∥∥Bj

∥∥∥∥dBj

∥∥)
⎤
⎦‖XU‖

≤ 2

(
1 + 2

m∑
i=1

‖Ai‖2

)⎡
⎣ m∑

i=1

(‖Ai‖‖dAi‖) +
n∑
j=1

(∥∥Bj

∥∥∥∥dBj

∥∥)
⎤
⎦,

(2.17)
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∥∥∥∥∥∥dXU −

m∑
i=1

A∗
i (dXU)Ai +

n∑
j=1

B∗
j (dXU)Bj

∥∥∥∥∥∥

≥ ‖dXU‖ −
∥∥∥∥∥

m∑
i=1

A∗
i (dXU)Ai

∥∥∥∥∥ −
∥∥∥∥∥∥

n∑
j=1

B∗
j (dXU)Bj

∥∥∥∥∥∥

≥ ‖dXU‖ −
m∑
i=1

∥∥A∗
i (dXU)Ai

∥∥ − n∑
j=1

∥∥∥B∗
j (dXU)Bj

∥∥∥

≥ ‖dXU‖ −
m∑
i=1

∥∥A∗
i

∥∥‖dXU‖‖Ai‖ −
n∑
j=1

∥∥∥B∗
j

∥∥∥‖dXU‖
∥∥Bj

∥∥

=

⎛
⎝1 −

m∑
i=1

‖Ai‖2 −
n∑
j=1

∥∥Bj

∥∥2

⎞
⎠‖dXU‖.

(2.18)

Due to (2.5) we have

1 −
m∑
i=1

‖Ai‖2 −
n∑
j=1

∥∥Bj

∥∥2
> 0. (2.19)

Combining (2.17), (2.18) and noting (2.19), we have

⎛
⎝1 −

m∑
i=1

‖Ai‖2 −
n∑
j=1

∥∥Bj

∥∥2

⎞
⎠‖dXU‖

≤
∥∥∥∥∥∥dXU −

m∑
i=1

A∗
i (dXU)Ai +

n∑
j=1

B∗
j (dXU)Bj

∥∥∥∥∥∥

≤ 2

(
1 + 2

m∑
i=1

‖Ai‖2

)⎡
⎣ m∑

i=1

(‖Ai‖‖dAi‖) +
n∑
j=1

(∥∥Bj

∥∥∥∥dBj

∥∥)
⎤
⎦,

(2.20)

which implies that

‖dXU‖ ≤
2
(

1 + 2
∑m

i=1 ‖Ai‖2
)[∑m

i=1(‖Ai‖‖dAi‖) +
∑n

j=1
(∥∥Bj

∥∥∥∥dBj

∥∥)]

1 −∑m
i=1 ‖Ai‖2 −∑n

j=1

∥∥Bj

∥∥2
. (2.21)
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Theorem 2.5. Let Ã1, Ã2, . . . , Ãm, B̃1, B̃2, . . . , B̃n be perturbed matrices of A1, A2, . . . , Am,
B1, B2, . . . , Bn in (1.1) and Δi = Ãi −Ai, i = 1, 2, . . . , m, Δj = B̃j − Bj, j = 1, 2, . . . , n. If

m∑
i=1

‖Ai‖2 <
1
2
,

n∑
j=1

∥∥Bj

∥∥2
<

1
2
, (2.22)

2
m∑
i=1

(‖Ai‖‖Δi‖) +
m∑
i=1

‖Ai‖2 <
1
2
−

m∑
i=1

‖Ai‖2, (2.23)

2
n∑
j=1

(∥∥Bj

∥∥∥∥Δj

∥∥) + n∑
j=1

∥∥Δj

∥∥2
<

1
2
−

n∑
j=1

∥∥Bj

∥∥2
, (2.24)

then (1.1) and its perturbed equation

X̃ −
m∑
i=1

Ã∗
i X̃Ãi +

n∑
j=1

B̃∗
j X̃B̃j = I (2.25)

have unique positive definite solutions XU and X̃U, respectively, which satisfy

∥∥∥X̃U −XU

∥∥∥ ≤ Serr, (2.26)

where

Serr =
2
[
1 + 2

∑m
i=1 (‖Ai‖ + ‖Δi‖)2

][∑m
i=1 (‖Ai‖ + ‖Δi‖)2‖Δi‖ +

∑n
j=1
(∥∥Bj

∥∥ + ∥∥Δj

∥∥)2∥∥Δj

∥∥]

1 −∑m
i=1 (‖Ai‖ + ‖Δi‖)2 −∑n

j=1
(∥∥Bj

∥∥ + ∥∥Δj

∥∥)2
.

(2.27)

Proof. By (2.22) and Theorem 2.4, we know that (1.1) has a unique positive definite solution
XU. And by (2.23) we have

m∑
i=1

∥∥∥Ãi

∥∥∥2
=

m∑
i=1

‖Ai + Δi‖2 ≤
m∑
i=1

(‖Ai‖ + ‖Δi‖)2

=
m∑
i=1

(
‖Ai‖2 + 2‖Ai‖‖Δi‖ + ‖Δi‖2

)

=
m∑
i=1

‖Ai‖2 + 2
m∑
i=1

(‖Ai‖‖Δi‖) +
m∑
i=1

‖Δi‖2

<
m∑
i=1

‖Ai‖2 +
1
2
−

m∑
i=1

‖Ai‖2 =
1
2
,

(2.28)



Journal of Applied Mathematics 9

similarly, by (2.24) we have

n∑
j=1

∥∥∥B̃j

∥∥∥2
<

1
2
. (2.29)

By (2.28), (2.29), and Theorem 2.4 we obtain that the perturbed equation (2.25) has a unique
positive definite solution X̃U.

Set

Ai(t) = Ai + tΔi, Bj(t) = Bj + tΔj , t ∈ [0, 1], (2.30)

then by (2.23) we have

m∑
i=1

‖Ai(t)‖2 =
m∑
i=1

‖Ai + tΔi‖2 ≤
m∑
i=1

(‖Ai‖ + t‖Δi‖)2

=
m∑
i=1

(
‖Ai‖2 + 2t‖Ai‖‖Δi‖ + t2‖Δi‖2

)

≤
m∑
i=1

(
‖Ai‖2 + 2‖Ai‖‖Δi‖ + ‖Δi‖2

)

=
m∑
i=1

‖Ai‖2 + 2
m∑
i=1

(‖Ai‖‖Δi‖) +
m∑
i=1

‖Δi‖2

<
m∑
i=1

‖Ai‖2 +
1
2
−

m∑
i=1

‖Ai‖2 =
1
2
,

(2.31)

similarly, by (2.24) we have

n∑
j=1

∥∥Bj(t)
∥∥2 =

m∑
i=1

∥∥Bj + tΔj

∥∥2
<

1
2
. (2.32)

Therefore, by (2.31), (2.32), and Theorem 2.4 we derive that for arbitrary t ∈ [0, 1], the
matrix equation

X −
m∑
i=1

A∗
i (t)XAi(t) +

n∑
j=1

B∗
j (t)XBj(t) = I (2.33)

has a unique positive definite solution XU(t), especially,

XU(0) = XU, XU(1) = X̃U. (2.34)
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From Theorem 2.4 it follows that

∥∥∥X̃U −XU

∥∥∥ = ‖XU(1) −XU(0)‖ =

∥∥∥∥∥
∫1

0
dXU(t)

∥∥∥∥∥ ≤
∫1

0
‖dXU(t)‖

≤
∫1

0

2
(

1 + 2
∑m

i=1 ‖Ai(t)‖2
)[∑m

i=1(‖Ai(t)‖‖dAi(t)‖) +
∑n

j=1
(∥∥Bj(t)

∥∥∥∥dBj(t)
∥∥)]

1 −∑m
i=1 ‖Ai(t)‖2 −∑n

j=1

∥∥Bj(t)
∥∥2

≤
∫1

0

2
(

1 + 2
∑m

i=1 ‖Ai(t)‖2
)[∑m

i=1(‖Ai(t)‖‖Δi‖dt) +
∑n

j=1
(∥∥Bj(t)

∥∥∥∥Δj

∥∥dt)]

1 −∑m
i=1 ‖Ai(t)‖2 −∑n

j=1

∥∥Bj(t)
∥∥2

=
∫1

0

2
(

1 + 2
∑m

i=1 ‖Ai(t)‖2
)[∑m

i=1(‖Ai(t)‖‖Δi‖) +
∑n

j=1
(∥∥Bj(t)

∥∥∥∥Δj

∥∥)]

1 −∑m
i=1 ‖Ai(t)‖2 −∑n

j=1

∥∥Bj(t)
∥∥2

dt.

(2.35)

Noting that

‖Ai(t)‖ = ‖Ai + tΔi‖ ≤ ‖Ai‖ + t‖Δi‖, i = 1, 2, . . . , m,
∥∥Bj(t)

∥∥ =
∥∥Bj + tΔi

∥∥ ≤ ∥∥Bj

∥∥ + t‖Δi‖, j = 1, 2, . . . , n,
(2.36)

and combining Mean Value Theorem of Integration, we have

∥∥∥X̃U −XU

∥∥∥

≤
∫1

0

2
(

1 + 2
∑m

i=1 ‖Ai(t)‖2
)[∑m

i=1(‖Ai(t)‖‖Δi‖) +
∑n

j=1
(∥∥Bj(t)

∥∥∥∥Δj

∥∥)]

1 −∑m
i=1 ‖Ai(t)‖2 −∑n

j=1

∥∥Bj(t)
∥∥2

dt

≤
∫1

0

2
[
1 + 2

∑m
i=1 (‖Ai‖ + t‖Δi‖)2

][∑m
i=1 (‖Ai‖ + t‖Δi‖)2‖Δi‖ +

∑n
j=1
(∥∥Bj

∥∥ + t
∥∥Δj

∥∥)2∥∥Δj

∥∥]

1 −∑m
i=1 (‖Ai‖ + t‖Δi‖)2 −∑n

j=1
(∥∥Bj

∥∥ + t
∥∥Δj

∥∥)2
dt

=
2
[
1 + 2

∑m
i=1 (‖Ai‖ + ξ‖Δi‖)2

][∑m
i=1 (‖Ai‖ + ξ‖Δi‖)2‖Δi‖ +

∑n
j=1
(∥∥Bj

∥∥ + ξ
∥∥Δj

∥∥)2∥∥Δj

∥∥]

1 −∑m
i=1 (‖Ai‖ + ξ‖Δi‖)2 −∑n

j=1
(∥∥Bj

∥∥ + ξ
∥∥Δj

∥∥)2

× (1 − 0), ξ ∈ [0, 1]

≤
2
[
1 + 2

∑m
i=1 (‖Ai‖ + ‖Δi‖)2

][∑m
i=1 (‖Ai‖ + ‖Δi‖)2‖Δi‖ +

∑n
j=1
(∥∥Bj

∥∥ + ∥∥Δj

∥∥)2∥∥Δj

∥∥]

1 −∑m
i=1 (‖Ai‖ + ‖Δi‖)2 −∑n

j=1
(∥∥Bj

∥∥ + ∥∥Δj

∥∥)2
= Serr.

(2.37)
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3. Numerical Experiments

In this section, we use a numerical example to confirm the correctness of Theorem 2.5 and the
precision of the perturbation bound for the unique positive definite solution XU of (1.1).

Example 3.1. Consider the symmetric linear matrix equation

X −A∗
1XA1 −A∗

2XA2 + B∗
1XB1 + B∗

2XB2 = I, (3.1)

and its perturbed equation

X̃ − Ã∗
1X̃Ã1 − Ã∗

2X̃Ã2 + B̃∗
1X̃B̃1 + B̃∗

2X̃B̃2 = I, (3.2)

where

A1 =

⎛
⎝ 0.02 −0.10 −0.02

0.08 −0.10 0.02
−0.06 −0.12 0.14

⎞
⎠, A2 =

⎛
⎝ 0.08 −0.10 −0.02

0.08 −0.10 0.02
−0.06 −0.12 0.14

⎞
⎠,

B1 =

⎛
⎝ 0.47 0.02 0.04

−0.10 0.36 −0.02
−0.04 0.01 0.47

⎞
⎠, B2 =

⎛
⎝0.10 0.10 0.05

0.15 0.275 0.075
0.05 0.05 0.175

⎞
⎠,

Ã1 = A1 +

⎛
⎝ 0.5 0.1 −0.2

−0.4 0.2 0.6
−0.2 0.1 −0.1

⎞
⎠ × 10−j , Ã2 = A2 +

⎛
⎝−0.4 0.1 −0.2

0.5 0.7 −1.3
1.1 0.9 0.6

⎞
⎠ × 10−j ,

B̃1 = B1 +

⎛
⎝ 0.8 0.2 0.05

−0.2 0.12 0.14
−0.25 −0.2 0.26

⎞
⎠ × 10−j , B̃2 = B2 +

⎛
⎝ 0.2 0.2 0.1

−0.3 0.15 −0.15
0.1 −0.1 0.25

⎞
⎠ × 10−j , j ∈ N.

(3.3)

It is easy to verify that the conditions (2.22)–(2.24) are satisfied, then (3.1) and its
perturbed equation (3.2) have unique positive definite solutions XU and X̃U, respectively.
From Berzig [7] it follows that the sequences {Xk} and {Yk} generated by the iterative method

X0 = 0, Y0 = 2I,

Xk+1 = I +A∗
1XkA1 +A∗

2XkA2 − B∗
1YkB1 − B∗

2YkB2,

Yk+1 = I +A∗
1YkA1 +A∗

2YkA2 − B∗
1XkB1 − B∗

2XkB2, k = 0, 1, 2, . . .

(3.4)

both converge to XU. Choose τ = 1.0 × 10−15 as the termination scalar, that is,

R(X) =
∥∥X −A∗

1XA1 −A∗
2XA2 + B∗

1XB1 + B∗
2XB2 − I

∥∥ ≤ τ = 1.0 × 10−15. (3.5)

By using the iterative method (3.4) we can get the computed solution Xk of (3.1). Since
R(Xk) < 1.0 × 10−15, then the computed solution Xk has a very high precision. For simplicity,
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Table 1: Numerical results for the different values of j.

j 2 3 4 5 6

‖X̃U −XU‖/‖XU‖ 2.13 × 10−4 6.16 × 10−6 5.23 × 10−8 4.37 × 10−10 8.45 × 10−12

Serr/‖XU‖ 3.42 × 10−4 7.13 × 10−6 6.63 × 10−8 5.12 × 10−10 9.77 × 10−12

we write the computed solution as the unique positive definite solution XU. Similarly, we can
also get the unique positive definite solution X̃U of the perturbed equation (3.2).

Some numerical results on the perturbation bounds for the unique positive definite
solution XU are listed in Table 1.

From Table 1, we see that Theorem 2.5 gives a precise perturbation bound for the
unique positive definite solution of (3.1).

4. Conclusion

In this paper, we study the matrix equation (1.1) which arises in solving some nonlinear
matrix equations and the bilinear control system. A new method of perturbation analysis
is developed for the matrix equation (1.1). By making use of the matrix differentiation
and its elegant properties, we derive a precise perturbation bound for the unique positive
definite solution of (1.1). A numerical example is presented to illustrate the sharpness of the
perturbation bound.
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Some new Kantorovich-type inequalities for Hermitian matrix are proposed in this paper. We
consider what happens to these inequalities when the positive definite matrix is allowed to be
invertible and provides refinements of the classical results.

1. Introduction and Preliminaries

We first state the well-known Kantorovich inequality for a positive definite Hermite matrix
(see [1, 2]), let A ∈ Mn be a positive definite Hermitian matrix with real eigenvalues λ1 ≤
λ2 ≤ · · · ≤ λn. Then

1 ≤ x∗Axx∗A−1x ≤ (λ1 + λn)
2

4λ1λn
, (1.1)

for any x ∈ C
n, ‖x‖ = 1, where A∗ denotes the conjugate transpose of matrix A. A matrix

A ∈ Mn is Hermitian if A = A∗. An equivalent form of this result is incorporated in

0 ≤ x∗Axx∗A−1x − 1 ≤ (λn − λ1)
2

4λ1λn
, (1.2)

for any x ∈ C
n, ‖x‖ = 1.

Attributed to Kantorovich, the inequality has built up a considerable literature.
This typically comprises generalizations. Examples are [3–5] for matrix versions. Operator
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versions are developed in [6, 7]. Multivariate versions have been useful in statistics to assess
the robustness of least squares, see [8, 9] and the references therein.

Due to the important applications of the original Kantorovich inequality for matrices
[10] in Statistics [8, 11, 12] and Numerical Analysis [13, 14], any new inequality of this type
will have a flow of consequences in the areas of applications.

Motivated by the interest in both pure and applied mathematics outlined above
we establish in this paper some improvements of Kantorovich inequalities. The classical
Kantorovich-type inequalities are modified to apply not only to positive definite but also to
invertible Hermitian matrices. As natural tools in deriving the new results, the recent Grüss-
type inequalities for vectors in inner product in [6, 15–19] are utilized.

To simplify the proof, we first introduce some lemmas.

2. Lemmas

Let B be a Hermitian matrix with real eigenvalues μ1 ≤ μ2 ≤ · · · ≤ μn, if A − B is positive
semidefinite, we write

A ≥ B, (2.1)

that is, λi ≥ μi, i = 1, 2, . . . , n. On C
n, we have the standard inner product defined by 〈x, y〉 =∑n

i=1 xiyi, where x = (x1, . . . , xn)
∗ ∈ C

n and y = (y1, . . . , yn)
∗ ∈ C

n.

Lemma 2.1. Let a, b, c, and d be real numbers, then one has the following inequality:

(
a2 − b2

)(
c2 − d2

)
≤ (ac − bd)2. (2.2)

Lemma 2.2. Let A and B be Hermitian matrices, if AB = BA, then

AB ≤ (A + B)2

4
. (2.3)

Lemma 2.3. Let A ≥ 0, B ≥ 0, if AB = BA, then

AB ≥ 0. (2.4)

3. Some Results

The following lemmas can be obtained from [16–19] by replacing Hilbert space (H, 〈·, ·〉) with
inner product spaces C

n, so we omit the details.

Lemma 3.1. Let u, v, and e be vectors in C
n, and ‖e‖ = 1. If α, β, δ, and γ are real or complex

numbers such that

Re
〈
βe − u, u − αe

〉 ≥ 0, Re
〈
δe − v, v − γe

〉 ≥ 0, (3.1)
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then

|〈u, v〉 − 〈u, e〉〈e, v〉| ≤ 1
4
(
β − α

)(
δ − γ

) − [
Re

〈
βe − u, u − αe

〉
Re

〈
δe − v, v − γe

〉]1/2
. (3.2)

Lemma 3.2. With the assumptions in Lemma 3.1, one has

|〈u, v〉 − 〈u, e〉〈e, v〉| ≤ 1
4
(
β − α

)(
γ − δ

) −
∣∣∣∣〈u, e〉 − α + β

2

∣∣∣∣
∣∣∣∣〈v, e〉 − γ + δ

2

∣∣∣∣. (3.3)

Lemma 3.3. With the assumptions in Lemma 3.1, if Re(βα) ≥ 0, Re(δγ) ≥ 0, one has

|〈u, v〉 − 〈u, e〉〈e, v〉| ≤
∣∣β − α

∣∣∣∣δ − γ
∣∣

4
[
Re

(
βα

)
Re

(
δγ

)]1/2
|〈u, e〉〈e, v〉|. (3.4)

Lemma 3.4. With the assumptions in Lemma 3.3, one has

|〈u, v〉 − 〈u, e〉〈e, v〉|

≤
{(∣∣α + β

∣∣ − 2
[
Re

(
βα

)]1/2
)(∣∣δ + γ

∣∣ − 2
[
Re

(
δγ

)]1/2
)}1/2

[|〈u, e〉〈e, v〉|]1/2.
(3.5)

4. New Kantorovich Inequalities for Hermitian Matrices

For a Hermitian matrix A, as in [6], we define the following transform:

C(A) = (λnI −A)(A − λ1I). (4.1)

When A is invertible, if λ1λn > 0, then,

C
(
A−1

)
=
(

1
λ1

I −A−1
)(

A−1 − 1
λn

I

)
. (4.2)

Otherwise, λ1λn < 0, then,

C
(
A−1

)
=
(

1
λk+1

I −A−1
)(

A−1 − 1
λk

I

)
, (4.3)

where

λ1 ≤ · · · ≤ λk < 0 < λk+1 ≤ · · · ≤ λn. (4.4)

From Lemma 2.3 we can conclude that C(A) ≥ 0 and C(A−1) ≥ 0.
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For two Hermitian matrices A and B, and x ∈ C
n, ‖x‖ = 1, we define the following

functional:

G(A,B;x) = 〈Ax,Bx〉 − 〈Ax, x〉〈x, Bx〉. (4.5)

When A = B, we denote

G(A;x) = ‖Ax‖2 − 〈Ax, x〉2, (4.6)

for x ∈ C
n, ‖x‖ = 1.

Lemma 4.1. With notations above, and for x ∈ C
n, ‖x‖ = 1, then

0 ≤ 〈C(A)x, x〉 ≤ (λn − λ1)
2

4
, (4.7)

if λnλ1 > 0,

0 ≤
〈
C
(
A−1

)
x, x

〉
≤ (λn − λ1)

2

4(λnλ1)
2
, (4.8)

if λnλ1 < 0,

0 ≤
〈
C
(
A−1

)
x, x

〉
≤ (λk+1 − λk)

2

4(λk+1λk)
2
. (4.9)

Proof. From C(A) ≥ 0, then

〈C(A)x, x〉 ≥ 0. (4.10)

While, from Lemma 2.2, we can get

C(A) = (λnI −A)(A − λ1I) ≤ (λn − λ1)
2

4
I. (4.11)

Then 〈C(A)x, x〉 ≤ (λn − λ1)
2/4 is straightforward. The proof for C(A−1) is similar.

Lemma 4.2. With notations above, and for x ∈ C
n, ‖x‖ = 1, then

∣∣∣x∗Axx∗A−1x − 1
∣∣∣2 ≤ G(A;x)G

(
A−1;x

)
. (4.12)
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Proof. Thus,

∣∣∣x∗Axx∗A−1x − 1
∣∣∣2

=
∣∣∣x∗

((
x∗A−1x

)
I −A−1

)
((x∗Ax)I −A)x

∣∣∣2

≤
∥∥∥((x∗A−1x

)
I −A−1

)
x
∥∥∥2

‖((x∗Ax)I −A)x‖2,

(4.13)

while

‖((x∗Ax)I −A)x‖2 = x∗
(
(x∗Ax)2I − 2(x∗Ax)A +A2

)
x

= x∗A2x − (x∗Ax)2

= ‖Ax‖2 − 〈Ax, x〉2

= G(A;x).

(4.14)

Similarly, we can get ‖((x∗A−1x)I −A−1)x‖2 = G(A−1;x), then we complete the proof.

Theorem 4.3. Let A, B be two Hermitian matrices, and C(A) ≥ 0, C(B) ≥ 0 are defined as above,
then

|G(A,B;x)| ≤ 1
4
(λn − λ1)

(
μn − μ1

) − [〈C(A)x, x〉〈C(B)x, x〉]1/2,

|G(A,B;x)| ≤ 1
4
(λn − λ1)

(
μn − μ1

) −
∣∣∣∣
〈(

A − λ1 + λn
2

)
x, x

〉∣∣∣∣
∣∣∣∣
〈(

B − μ1 + μn

2

)
x, x

〉∣∣∣∣,
(4.15)

for any x ∈ C
n, ‖x‖ = 1.

If λ1λn > 0, μ1μn > 0, then

|G(A,B;x)| ≤ (λn − λ1)
(
μn − μ1

)
4
[
(λnλ1)

(
μnμ1

)]1/2
|〈Ax, x〉〈Bx, x〉|,

|G(A,B;x)| ≤
{(

|λ1 + λn| − 2(λ1λn)
1/2

)(∣∣μ1 + μn

∣∣ − 2
(
μ1μn

)1/2
)}1/2

[|〈Ax, x〉〈Bx, x〉|]1/2,

(4.16)

for any x ∈ C
n, ‖x‖ = 1.

Proof. The proof follows by Lemmas 3.1, 3.2, 3.3, and 3.4 on choosing u = Ax, v = Bx, and
e = x, β = λn, α = λ1, δ = μn, and γ = μ1, x ∈ C

n, ‖x‖ = 1, respectively.
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Corollary 4.4. Let A be a Hermitian matrices, and C(A) ≥ 0 is defined as above, then

|G(A;x)| ≤ 1
4
(λn − λ1)

2 − 〈C(A)x, x〉, (4.17)

|G(A;x)| ≤ 1
4
(λn − λ1)

2 −
∣∣∣∣
〈(

A − λ1 + λn
2

I

)
x, x

〉∣∣∣∣
2

, (4.18)

for any x ∈ C
n, ‖x‖ = 1.

If λ1λn > 0, then

|G(A;x)| ≤ (λn − λ1)
2

4(λnλ1)
|〈Ax, x〉|2, (4.19)

|G(A;x)| ≤
(
|λ1 + λn| − 2

√
λ1λn

)
|〈Ax, x〉|, (4.20)

for any x ∈ C
n, ‖x‖ = 1.

Proof. The proof follows by Theorem 4.3 on choosing A = B, respectively.

Corollary 4.5. Let A be a Hermitian matrices and C(A−1) ≥ 0 is defined as above, then one has the
following.

If λ1λn > 0, then

∣∣∣G(
A−1;x

)∣∣∣ ≤ (λn − λ1)
2

4(λnλ1)
2

−
〈
C
(
A−1

)
x, x

〉
, (4.21)

∣∣∣G(
A−1;x

)∣∣∣ ≤ (λn − λ1)
2

4(λnλ1)
2

−
∣∣∣∣
〈(

A−1 − λ1 + λn
2λnλ1

I

)
x, x

〉∣∣∣∣
2

, (4.22)

∣∣∣G(
A−1;x

)∣∣∣ ≤ (λn − λ1)
2

4λnλ1

∣∣∣〈A−1x, x
〉∣∣∣2

, (4.23)

∣∣∣G(
A−1;x

)∣∣∣ ≤
(

|λ1 + λn|
λ1λn

− 2
1√
λ1λn

)∣∣∣〈A−1x, x
〉∣∣∣, (4.24)

for any x ∈ C
n, ‖x‖ = 1.

If λ1λn < 0, then

∣∣∣G(
A−1;x

)∣∣∣ ≤ (λk − λk+1)
2

4(λkλk+1)
2

−
〈
C
(
A−1

)
x, x

〉
, (4.25)
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where C(A−1) = ((1/λk+1)I −A−1)(A−1 − (1/λk)I), and

∣∣∣G(
A−1;x

)∣∣∣ ≤ (λk − λk+1)
2

4(λkλk+1)
2

−
∣∣∣∣
〈(

A−1 − λk+1 + λk
2λkλk+1

I

)
x, x

〉∣∣∣∣
2

, (4.26)

for any x ∈ C
n, ‖x‖ = 1.

Proof. The proof follows by Corollary 4.4 by replacing A with A−1, respectively.

Theorem 4.6. LetA be an n×n invertible Hermitian matrix with real eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn,
then one has the following.

If λ1λn > 0, then

∣∣∣x∗Axx∗A−1x − 1
∣∣∣ ≤ (λn − λ1)

2

4(λnλ1)
−
√
〈C(A)x, x〉〈C(A−1

)
x, x

〉
, (4.27)

∣∣∣x∗Axx∗A−1x − 1
∣∣∣ ≤ (λn − λ1)

2

4(λnλ1)
−
∣∣∣∣
〈(

A − λ1 + λn
2

I

)
x, x

〉∣∣∣∣
∣∣∣∣
〈(

A−1 − λ1 + λn
2λnλ1

I

)
x, x

〉∣∣∣∣,
(4.28)

∣∣∣x∗Axx∗A−1x − 1
∣∣∣ ≤ (λn − λ1)

2

4(λnλ1)
2 〈Ax, x〉

〈
A−1x, x

〉
, (4.29)

∣∣∣x∗Axx∗A−1x − 1
∣∣∣ ≤

(√
|λn| −

√
|λ1|

)2

√
λnλ1

√
〈Ax, x〉〈A−1x, x〉, (4.30)

for any x ∈ C
n, ‖x‖ = 1.

If λ1λn < 0, then

∣∣∣x∗Axx∗A−1x − 1
∣∣∣ ≤ (λn − λ1)(λk+1 − λk)

4|λkλk+1| −
√
〈C(A)x, x〉〈C(A−1

)
x, x

〉
, (4.31)

where C(A−1) = ((1/λk+1)I −A−1)(A−1 − (1/λk)I),

∣∣∣x∗Axx∗A−1x − 1
∣∣∣ ≤ (λn − λ1)(λk+1 − λk)

4|λkλk+1|

−
∣∣∣∣
〈(

A − λ1 + λn
2

I

)
x, x

〉∣∣∣∣
∣∣∣∣
〈(

A−1 − λk + λk+1

2λ1λk+1
I

)
x, x

〉∣∣∣∣.
(4.32)

Proof. Considering

∣∣∣x∗Axx∗A−1x − 1
∣∣∣2 ≤ G(A;x)G

(
A−1;x

)
. (4.33)
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When λ1λn > 0, from (4.17) and (4.21), we get

∣∣∣x∗Axx∗A−1x − 1
∣∣∣2 ≤

{
1
4
(λn − λ1)

2 − 〈C(A)x, x〉
}{

(λn − λ1)
2

4(λnλ1)
2

−
〈
C
(
A−1

)
x, x

〉}
. (4.34)

From (a2 − b2)(c2 − d2) ≤ (ac − bd)2, we have

∣∣∣x∗Axx∗A−1x − 1
∣∣∣2 ≤

{
(λn − λ1)

2

4(λnλ1)
−
√[〈C(A)x, x〉〈C(A−1

)
x, x

〉]}2

, (4.35)

then, the conclusion (4.27) holds.
Similarly, from (4.18) and (4.22), we get

∣∣∣x∗Axx∗A−1x − 1
∣∣∣2 ≤

{
1
4
(λn − λ1)

2 −
∣∣∣∣
〈(

A − λ1 + λn
2

I

)
x, x

〉∣∣∣∣
2
}

×
{
(λn − λ1)

2

4(λnλ1)
2

−
∣∣∣∣
〈(

A−1 − λ1 + λn
2λnλ1

I

)
x, x

〉∣∣∣∣
2
}

≤
{
(λn − λ1)

2

4(λnλ1)
−
∣∣∣∣
〈(

A − λ1 + λn
2

I

)
x, x

〉∣∣∣∣
∣∣∣∣
〈(

A−1 − λ1 + λn
2λnλ1

I

)
x, x

〉∣∣∣∣
}2

,

(4.36)

then, the conclusion (4.28) holds.
From (4.19) and (4.23), we get

∣∣∣x∗Axx∗A−1x − 1
∣∣∣2 ≤ (λn − λ1)

2

4(λnλ1)
|〈Ax, x〉|2 (λn − λ1)

2

4(λnλ1)

∣∣∣〈A−1x, x
〉∣∣∣2

, (4.37)

then, the conclusion (4.29) holds.
From (4.20) and (4.24), we get

∣∣∣x∗Axx∗A−1x − 1
∣∣∣2 ≤

(
|λ1 + λn| − 2

√
λ1λn

)
|〈Ax, x〉|

(
|λ1 + λn|
λ1λn

− 2
1√
λ1λn

)∣∣∣〈A−1x, x
〉∣∣∣,
(4.38)

then, the conclusion (4.30) holds.
When λ1λn < 0, from (4.17) and (4.25), we get

∣∣∣x∗Axx∗A−1x − 1
∣∣∣2≤

{
1
4
(λn − λ1)

2 − 〈C(A)x, x〉
}{

(λk − λk+1)
2

4(λkλk+1)
2

−
〈
C
(
A−1

)
x, x

〉}
, (4.39)

then, the conclusion (4.31) holds.
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From (4.18) and (4.26), we get

∣∣∣x∗Axx∗A−1x − 1
∣∣∣2 ≤

{
1
4
(λn − λ1)

2 −
∣∣∣∣
〈(

A − λ1 + λn
2

I

)
x, x

〉∣∣∣∣
2
}

×
{
(λk − λk+1)

2

4(λkλk+1)
2

−
∣∣∣∣
〈(

A−1 − λk+1 + λk
2λkλk+1

I

)
x, x

〉∣∣∣∣
2
}

≤
{
(λn − λ1)(λk+1 − λk)

4|λkλk+1|

−
∣∣∣∣
〈(

A − λ1 + λn
2

I

)
x, x

〉∣∣∣∣
∣∣∣∣
〈(

A−1 − λk + λk+1

2λ1λk+1
I

)
x, x

〉∣∣∣∣
}2

,

(4.40)

then, the conclusion (4.32) holds.

Corollary 4.7. With the notations above, for any x ∈ C
n, ‖x‖ = 1, one lets

|G1(A;x)| = 1
4
(λn − λ1)

2 − 〈C(A)x, x〉,

|G2(A;x)| = 1
4
(λn − λ1)

2 −
∣∣∣∣
〈(

A − λ1 + λn
2

I

)
x, x

〉∣∣∣∣
2

.

(4.41)

If λ1λn > 0, one lets

|G3(A;x)| = (λn − λ1)
2

4(λnλ1)
|〈Ax, x〉|2,

|G4(A;x)| =
(
|λ1 + λn| − 2

√
λ1λn

)
|〈Ax, x〉|.

(4.42)

If λ1λn > 0

∣∣∣G1
(
A−1;x

)∣∣∣ = (λn − λ1)
2

4(λnλ1)
2

−
〈
C
(
A−1

)
x, x

〉
,

∣∣∣G2
(
A−1;x

)∣∣∣ = (λn − λ1)
2

4(λnλ1)
2

−
∣∣∣∣
〈(

A−1 − λ1 + λn
2λnλ1

I

)
x, x

〉∣∣∣∣
2

,

∣∣∣G3
(
A−1;x

)∣∣∣ = (λn − λ1)
2

4λnλ1

∣∣∣〈A−1x, x
〉∣∣∣2

,

∣∣∣G4
(
A−1;x

)∣∣∣ =
(

|λ1 + λn|
λ1λn

− 2
1√
λ1λn

)∣∣∣〈A−1x, x
〉∣∣∣.

(4.43)
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If λ1λn < 0, then

∣∣∣G5
(
A−1;x

)∣∣∣ = (λk − λk+1)
2

4(λkλk+1)
2

−
〈
C
(
A−1

)
x, x

〉
, (4.44)

where C(A−1) = ((1/λk+1)I −A−1)(A−1 − (1/λk)I), and

∣∣∣G6
(
A−1;x

)∣∣∣ = (λk − λk+1)
2

4(λkλk+1)
2

−
∣∣∣∣
〈(

A−1 − λk+1 + λk
2λkλk+1

I

)
x, x

〉∣∣∣∣
2

. (4.45)

Then, one has the following.
If λ1λn > 0,

∣∣∣x∗Axx∗A−1x − 1
∣∣∣ ≤

√
G∗(A;x)G∗̇(A−1;x

)
, (4.46)

where

G∗(A;x) = min{G1(A;x), G2(A;x), G3(A;x), G4(A;x)},

G∗(A;x) = min
{
G1

(
A−11;x

)
, G2

(
A−1;x

)
, G3

(
A−1;x

)
, G4

(
A−1;x

)}
.

(4.47)

If λ1λn < 0

∣∣∣x∗Axx∗A−1x − 1
∣∣∣ ≤

√
G◦(A;x)G•(A−1;x

)
, (4.48)

where

G◦(A;x) = min{G1(A;x), G2(A;x)},

G•(A;x) = min
{
G5

(
A−1;x

)
, G6

(
A−1;x

)}
.

(4.49)

Proof. The proof follows from that the conclusions in Corollaries 4.4 and 4.5 are independent.

Remark 4.8. It is easy to see that if λ1 > 0, λn > 0, our result coincides with the inequality
of operator versions in [6]. So we conclude that our results give an improvement of the
Kantorovich inequality [6] that applies to all invertible Hermite matrices.

5. Conclusion

In this paper, we introduce some new Kantorovich-type inequalities for the invertible
Hermitian matrices. Inequalities (4.27) and (4.31) are the same as [4], but our proof is simple.
In Theorem 4.6, if λ1 > 0, λn > 0, the results are similar to the well-known Kantorovich-type
inequalities for operators in [6]. Moreover, for any invertible Hermitian matrix, there exists a
similar inequality.
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[10] L. V. Kantorovič, “Functional analysis and applied mathematics,” Uspekhi Matematicheskikh Nauk, vol.

3, no. 6(28), pp. 89–185, 1948 (Russian).
[11] C. G. Khatri and C. R. Rao, “Some extensions of the Kantorovich inequality and statistical

applications,” Journal of Multivariate Analysis, vol. 11, no. 4, pp. 498–505, 1981.
[12] C. T. Lin, “Extrema of quadratic forms and statistical applications,” Communications in Statistics A,

vol. 13, no. 12, pp. 1517–1520, 1984.
[13] A. Galántai, “A study of Auchmuty’s error estimate,” Computers & Mathematics with Applications, vol.

42, no. 8-9, pp. 1093–1102, 2001.
[14] P. D. Robinson and A. J. Wathen, “Variational bounds on the entries of the inverse of a matrix,” IMA

Journal of Numerical Analysis, vol. 12, no. 4, pp. 463–486, 1992.
[15] S. S. Dragomir, “A generalization of Grüss’s inequality in inner product spaces and applications,”

Journal of Mathematical Analysis and Applications, vol. 237, no. 1, pp. 74–82, 1999.
[16] S. S. Dragomir, “Some Grüss type inequalities in inner product spaces,” Journal of Inequalities in Pure

and Applied Mathematics, vol. 4, no. 2, article 42, 2003.
[17] S. S. Dragomir, “On Bessel and Grüss inequalities for orthonormal families in inner product spaces,”

Bulletin of the Australian Mathematical Society, vol. 69, no. 2, pp. 327–340, 2004.
[18] S. S. Dragomir, “Reverses of Schwarz, triangle and Bessel inequalities in inner product spaces,” Journal

of Inequalities in Pure and Applied Mathematics, vol. 5, no. 3, article 76, 2004.
[19] S. S. Dragomir, “Reverses of the Schwarz inequality generalising a Klamkin-McLenaghan result,”

Bulletin of the Australian Mathematical Society, vol. 73, no. 1, pp. 69–78, 2006.
[20] Z. Liu, L. Lu, and K. Wang, “On several matrix Kantorovich-type inequalities,” Journal of Inequalities

and Applications, vol. 2010, Article ID 571629, 5 pages, 2010.




