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Recent research shows that the brittleness of rock is closely related to the initiation and propagation of internal microcracks, but
there are few brittleness evaluation indices considering the characteristics of rock initiation. Based on the theoretical analysis of
brittleness and the characteristics of rock initiation, this study proposes an evaluation method of rock brittleness based on the
prepeak crack initiation and postpeak stress drop characteristics. First, based on the description and definition of brittleness by
George Tarasov and Potvin et al., the feasibility of an evaluation method based on the prepeak crack initiation and postpeak stress
drop is theoretically analyzed. Second, the component Bi representing the prepeak brittleness of rock and component Bii
representing the prepeak brittleness of rock are constructed, and the product of the two is the brittleness index BI, representing the
prepeak crack initiation and postpeak stress drop. Finally, experimental tests of granite and marble were conducted to evaluate the
new index, and the brittleness indices of different methods are calculated and compared. )e results show that, like other
brittleness indices (B1∼B5), the brittleness index BI can effectively reflect the effects of different confining pressures and loading
modes on rock brittleness. )e brittleness of marble decreases with increasing confining pressure from 5MPa to 35MPa. At a
confining pressure of 5MPa, the brittleness of granite during a triaxial unloading test is greater than that during a triaxial
compression test.)e calculated results are consistent with the experimental results. By tests and comparison results, the reliability
of this evaluation method was verified, which provides a way to evaluate rock brittleness from the perspective of crack initiation
and is helpful to enrich the analysis and evaluation of rock brittleness in the laboratory.

1. Introduction

Rock brittleness, as one of the basic properties of rock, is a
key index to evaluate rock properties. Accurate evaluation of
rock brittleness is of great significance for guiding the ef-
fective development and utilization of coal, oil, and gas
resources, underground engineering, construction, and
geological disaster prevention and mitigation [1–11]. Brit-
tleness is the comprehensive performance of rock under
different stress and different environments. Although an
internationally accepted definition of brittleness has not yet
been established [12], various researchers have defined rock
brittleness to suit different purposes. From the perspective of
strain, Morley and Hetenyi defined brittleness as the loss of

material plasticity. From the perspective of strength [13, 14],
Ramsay argued that brittle failure occurred when the co-
hesion of rock was destroyed [15]. Obert and Duvall sug-
gested that brittleness is a feature describing the failure
behavior of rock materials when the yield strength of the
rock is reached or exceeded [16]. From the perspective of
energy, Tarasov and Potvin argued that rock brittleness is the
ability to self-maintain macroscopic damage through the
energy balance in the postpeak stage [17]. In addition, Li
et al. believed that brittleness was a comprehensive property
of rock materials: the ability to generate local damage and
develop spatial fractures under an internal nonuniform
stress distribution caused by the inherent heterogeneity of
the rock [18].
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Over the past 50 years, according to brittleness char-
acteristics, many quantitative evaluation methods for rock
brittleness have been proposed, and the influencing factors
have been analyzed. )ese brittleness indices generally fall
into three categories: brittleness index based on physical
tests [4, 19, 20], brittleness index based on rock mechanical
tests [3, 17, 21–23], and brittleness indices based on other
methods [24, 25]. For example, Rickman et al. suggested that
brittleness increases with the increase in quartz minerals,
based on which they proposed a brittleness index to quantify
rock brittleness as a function of the amounts of quartz,
carbonate, and clay minerals in rocks [26]. However, this
method fails to evaluate the same rock under different stress
states [22]. Porosity also affects rock brittleness. Jin et al.
claimed that there is a global correlation between miner-
alogy-derived brittle indices and neutron porosity [20].
Based on rock compression and splitting tests, various
brittleness indices were built considering stress, strain, and
energy, such as the ratio of the compressive strength to
tensile strength [21], the ratio of the difference between the
peak strength and residual strength to the peak strength, and
the ratio of peak strength to the crack initiation stress [9].
Meanwhile, Coates determined the brittleness by the ratio of
the recoverable strain to the total strain [27]. Hajiabdolmajid
and Kaiser introduced a plastic strain-dependent brittleness
index that considers cohesion weakening and frictional
strengthening [28]. Tarasov and Potvin proposed a brittle-
ness index based on the complete stress-strain curve of the
energy balance [17]. However, for brittleness indices based
on stress, many scholars criticized that those indices have
yielded contradictory results to those calculated from the
perspective of strain or energy; furthermore, the results are
not monotonic and continuous. In addition to the above
limitations, rock brittleness can be affected by the stress
state, and rocks may be less brittle and more ductile under
high confining pressure conditions, so those indices are not
suitable for complex stress environments [22]. Indices based
on strain do not consider the postpeak characteristic, which
is critical to characterize the brittle features [28, 29]. Other
indices were derived based on penetration testing [24], point
load testing [25], and Mohr’s circle analysis [30]. )ese
approaches also have some limitations, such as the specific
equipment required for the sampling and testing of rock via
penetration testing, leading to its limited use. )ere is a lack
of sufficient evidence that the point load testing method is
reasonable for determining the values of Kb for various
rocks.

In recent years, with the further study of rock fractures, it
has been found that the failure symptoms and fracture
energy of brittle rock materials are closely related to internal
crack initiation fractures [9, 21]. For example, George
pointed out that rock brittleness refers to the ability of
microcracks in rock to produce and cause nonpermanent
deformation and continuous deformation [31]. )e rock
brittleness is related to microcracks, including the charac-
teristics of stress and strain when the crack initiates. In
addition, Tarasov and Potvin considered brittleness under
compression as the ability of the rock to self-sustain mac-
roscopic failure in the postpeak region due to the elastic

energy accumulated within the loaded material [17]. From
this definition, it can be seen that the brittleness of rock is
related to the accumulation of elastic energy. )e whole
process of rock failure can be regarded as the occurrence of
the following processes: microcrack compaction, initiation,
development, convergence and penetration, and energy
accumulation and consumption. Before microcracks initiate
or before the stress level is lower than the initiation stress
level, the microcracks in the rock do not propagate, which
correspond to the process of elastic accumulation. When the
stress level is higher than the crack initiation, stress
microcracks in the rock initiate and develop. After crack
initiation, the work performed by the external load will be
transformed into compression elastic energy and consumed
energy to maintain crack propagation. )e elastic energy of
the rock will continue to increase, but the growth rate of the
crack will decrease. When the stress level reaches the yield
strength, the internal cracks of the rock propagate rapidly,
and the work performed by the external load is mainly
transformed into consumable energy. When the rock falls,
the total energy of the external work performed is consumed
by rock failure, and there is no excess elastic energy. It can be
considered that before the microcrack initiates, the micro-
crack is closed and the external work is purely transformed
into elastic energy; after that, the microcracks initiate and
expand, and part of the loading work is converted into
consumed energy until the final failure when the loading
work is completely converted into consumed energy.
Combining the definition of brittleness, following [17, 31],
the microcrack development, and the energy conversion
process during rock failure, it is considered that the rock
brittleness can be evaluated from prepeak crack initiation
and postpeak stress drop characteristics. For example, some
scholars have established new indices from the perspective of
crack initiation stress [9, 21]. However, it is rarely reported
that an evaluation index of rock brittleness is established
from the viewpoint of crack initiation strain. In this study,
the evaluation of the prepeak brittleness of rock is estab-
lished from the viewpoint of crack initiation strain, and then,
the evaluation component of postpeak brittleness is estab-
lished according to the postpeak stress drop characteristics.
)en, the rock brittleness evaluation index based on prepeak
crack initiation and postpeak stress drop characteristics are
established by synthesizing the prepeak and postpeak brit-
tleness evaluation components.

2. Methods

2.1. Analysis Method for the Characteristics of Prepeak Crack
Initiation in Rock. At present, the main analysis methods of
rock crack initiation characteristics are the observation
method, crack volumetric strain method, and acoustic
emission method. Among them, the crack volumetric strain
method is the most widely used. In this study, the crack
initiation characteristics of rock will be determined by the
crack volumetric strain method.

)e crack volumetric strain method was first proposed
by Martin in his doctoral thesis [32]. )e key to determining
the crack initiation stress by this method is that the crack
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volumetric strain (εVcrack) is subtracted from the volumetric
strain (εV) by the elastic volumetric strain (εVelastic). Among
them, the volumetric strain (εV) is calculated by the axial
(εaxial) and lateral strain (εlateral) measured in the test. )e
elastic volumetric strain is calculated by the stress state (σ1, s
σ3) and elastic parameters (E, μ) in the corresponding stage
of the test, and the formulas for calculating each strain are as
follows:

εV � εaxial + 2εlateral,

εV elastic �
(1 − 2μ) σ1 + σ3( 

E
,

εV crack � εV − εV elastic.

(1)

Figure 1 shows the volumetric strain characteristics of a
crack. Under pressure, the internal microcracks and voids in
the rock are continuously compressed. At the stage of linear
elastic deformation, the crack volume is compressed to the
limit state, and the rock is similar to an isotropic material,
with only elastic volumetric strain and no crack volumetric
strain. After that, with the increase in stress, when the
loading stress reaches the crack initiation stress, the internal
crack begins to initiate and propagate, and the crack volume
increases gradually.

2.2. Proposed Method Based on Prepeak Crack Initiation and
Postpeak Stress Drop Characteristics. A reasonable brittle-
ness index should fully consider the entire scope of rock
behavior and as many of the effects of the mechanical pa-
rameters of the rock and external loading conditions as
possible [6, 33]. For example, Xia et al. proposed a new
brittleness definition based on the postpeak stress drop rate
and the ratio of prepeak released elastic energy to total
energy [33]. In this study, we propose a brittleness index
considering prepeak crack initiation and postpeak stress
drop characteristics.

2.2.1. 4eoretical Analysis. In the process of rock com-
pression, the crack initiation stress is the boundary point of
crack compression and propagation. If rock brittleness
represents the ability of the rock to maintain the accumu-
lation of elastic energy in the crack compaction state [32],
the elastic energy growth rate reaches the peak when the
crack initiates; then, the microcrack propagates, and the
growth rate decreases. If the crack initiation strain εci (the
strain corresponding to the crack initiation stress) is used to
characterize the ability of a rock to be compacted and the
difference (△ ε� εc−εci) between the peak strain εc (the strain
corresponding to peak stress) and the crack initiation strain
εci represents the ability of a crack in the rock to propagate,
then the strain ratio (εci/Δε) can be used to characterize the
ability of the rock to maintain the compaction state. )e
larger the initiation strain εci is, the more compression work
consumed by the rock, the greater the elastic energy accu-
mulation, and the stronger the compaction of the cracks.)e
smaller △ ε is, the faster the crack growth. )e larger the

εci/Δε is, the greater the ability of the rock to maintain the
crack compaction state. )en, the prepeak brittleness
characteristics of rocks can be characterized by εci/Δε
(Figure 2).

In general, there are two failure forms (I and II, as shown
in Figure 3(a)) for rocks due to compression testing [34].
Type II failure is commonly considered unstable and brittle,
and brittle hard rock often follows this deformation and
failure model. )erefore, combined with the postpeak
characteristics of the stress-strain curve, the greater the
brittleness of the rock is, the greater the stress drop after the
peak. As shown in Figure 3(b), the steeper the drop in the
postpeak curve, the larger the area S is. )e postpeak
brittleness characteristics of the rock can be characterized by
S/S△ (S△ is the red triangle area in Figure 3(b)). Points M
and N represent the peak point and the beginning point of
residual stress.

2.2.2. Brittleness Evaluation Method. )e brittleness eval-
uation method based on prepeak crack initiation and
postpeak stress drop characteristics is as follows:

(a) According to the characteristics reflected by the
stress-strain curve of rock, the brittleness charac-
teristics of the rock can be judged qualitatively

(b) Considering the experimental data, it can be used to
identify the crack initiation strain εci

(c) Considering the peak strain εc, the prepeak brittle-
ness component Bi � εci/Δε can be calculated

(d) Considering the postpeak characteristics, the areas of
S and S△ can be calculated, and then, the postpeak
brittleness component Bii � S/S△ can be calculated;
the value of Bii is between 0 and 1.

(e) )e brittleness index based on prepeak crack initi-
ation and postpeak stress drop characteristics can be
calculated as follows:

BI � Bi · Bii. (2)

Bi and Bii characterize the prepeak and postpeak brit-
tleness characteristics of rock, respectively. )ere may be
many combination modes that can be used to characterize
the brittleness characteristics of rock by using these two
components, such as in a sum form (Ba +Bb), a product
form (Ba·Bb), or other forms. Some scholars, such as [18, 21],
take the sum of the two components as the brittleness index.
Some scholars, such as [22, 35], take the product of the two
components as the brittleness index. In this study, the
brittleness evaluation index in the form of a product is
mainly considered based on the following factors. As the
prepeak brittleness evaluation component of Bi � εci/Δε is
based on its ability to maintain the crack in the compacted
state, generally, after yielding, the stress of brittle rock falls
rapidly under a small strain, resulting in △ ε being smaller
than the early crack initiation strain εci; thus, the ratio Bi is
usually greater than 1. )e postpeak brittleness evaluation
component of Bii is less than 1. If taking the sum of the two
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(Bi+Bii) as the brittleness evaluation index, it mainly reflects
the prepeak brittleness characteristic because the value of the
prepeak brittleness component Bi may be much larger than

that of the postpeak brittle component Bii, which is un-
reasonable. If taking the product of the two (Bi·Bii) as the
brittleness evaluation index, according to the theoretical
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Figure 1: Crack volumetric strain characteristics.
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Figure 3: Schematic diagram of postpeak rock brittleness. (a) Rock failure mode [34]. (b) Postpeak brittleness characteristics.
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analysis, the greater the brittleness of the rock is, the greater
the Bi and Bii values, and the greater the product of the two,
which can eliminate the adverse effects of the obvious dif-
ference between the two components (Bi and Bii). For ex-
ample, if Bi � 3 and Bii � 0.1 or 1, their sum is 3.1 or 4, but
their product is 0.3 or 3. From the example, we can see that
taking the product of the two components as the brittleness
evaluation index has the advantage of clearly categorizing
the brittleness.

3. Verification of the Proposed Method

3.1. Verification of BI under Different Confining Pressures.
)e triaxial compression test data of marble under different
confining pressures were selected to verify the feasibility of
this method. )e test was carried out at Rock Mechanics
Laboratory, State Key Laboratory of Geohazard Prevention
and Geoenvironment Protection, Chengdu University of
Technology. According to Figure 4, with increasing con-
fining pressure, the plasticity of marble increases. At 5MPa,
the stress drops after the peak: first quickly and then more
slowly, showing brittle failure. From 15MPa to 35MPa, with
increasing confining pressure, the plastic deformation in-
terval increases, and the plasticity increases. From a quali-
tative perspective, with increasing confining pressure, the
plasticity of marble increases, which is consistent with
previous research results [21, 22, 33, 35]. )e calculation
results of the brittleness index BI under the corresponding
conditions are given in Table 1. )e values of the brittleness
index BI are 0.152, 0.110, 0.082, and 0.078 under 5∼35MPa.
)e calculated results are in good agreement with the ex-
perimental curve, which effectively reflects the variation in
the brittleness index with confining pressure.

3.2. Verification of BI under Different Loading Modes. In
general, it is considered that rock brittleness is more
obvious under unloading conditions than that under

conventional compressive loading conditions. )erefore,
comparison analyses were conducted on the granite
samples from the triaxial unloading test (5MPa) and
compressive test (5MPa). According to Figure 5, for the
unloading test under 5MPa, the stress of the blue curve
drops considerably after the peak point, indicating that
the brittleness characteristic is prominent. For the com-
pression test under 5MPa, the stress of the green curve
drops gradually after the peak point, showing strain-
softening characteristics. )e test results show that the
brittleness of these granite samples under unloading
conditions is larger than that under compressive loading
conditions. )e calculation results of the brittleness index
BI under different loading modes are given in Table 2. )e
BI values are 0.94 and 0.40 for the unloading and com-
pression tests, respectively. )e calculated results are in
good agreement with the experimental results. )ese re-
sults also effectively reflect the fact that the brittleness of
rock under unloading conditions is stronger than that
under loading conditions.

4. Discussion

At present, there are various rock brittleness indices. In this
section, a comparison was made between the proposed
brittleness index (BI) and 5 commonly used brittleness
indices. Because of the heterogeneity and anisotropy of
rock materials, it is advisable to select the brittleness indices
established based on the same sample or stress-strain curve
as the object for comparative discussion and analysis. )e
formulas of the selected brittleness indices are given in
Table 3. Figure 6 shows schematic diagrams for brittleness
indices B1, B2, and B5.

In addition, a classification of rock brittleness has
been established based on the research of brittleness
index B1. )ere are 6 grades for rock brittleness, as given
in Table 4.
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Figure 4: Marble test curves under different confining pressures.
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)e brittleness evaluation results of BI and B1∼B5 are
compared and analyzed for different confining pressure
loading modes.

)e results for marble from the different brittleness
evaluation methods are given in Table 5 for each confining
pressure. According to Table 5, BI and B1 decrease with

Table 1: Calculation results of the brittleness index for marble under different confining pressures.

Confining pressure (MPa) Peak strain Crack initiation strain Strain difference Bi Bii BI Qualitative analysis of the test
curveεc/% εci/% △ε � εc−εci εci/△ε S/S△ Bi·Bii

5 0.003980 0.001250 0.00273 0.46 0.33 0.152 Brittleness
15 0.007170 0.002170 0.00500 0.43 0.25 0.110 Elasticity-plasticity
25 0.007570 0.002440 0.00513 0.48 0.17 0.082 Elasticity-plasticity
35 0.011820 0.002730 0.00909 0.30 0.26 0.078 Elasticity-plasticity
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Figure 5: Granite test curves under different loading modes.

Table 2: Calculation results of the brittleness index of granite under different loading modes.

Loading modes Peak strain Crack initiation strain Strain difference Bi Bii BI Qualitative analysis of the test curveεc/% εci/% △ε � εc−εci εci/△ε S/S△ Bi·Bii

Unloading 0.003249 0.001828 0.001421 1.29 0.73 0.94 Brittleness
Compression 0.003746 0.001810 0.001936 0.93 0.43 0.40 Strain softening

Table 3: Brittleness indices for comparative analysis.

Brittleness Calculation formula Parameter specification
B1 B1 � 1− exp (M/E) [36] E is the prepeak elasticity modulus; M is the postpeak elasticity modulus

B2
B2 � (τp − τr/τp)(lg|kac(AC)|/10)

[35]
τp is the peak compressive strength; τr is the residual compressive strength; kac(AC) is the

slope of ac (AC).
B3 B3 � (τp − τr)/τp [12] τp is the peak compressive strength; τr is the residual compressive strength.
B4 B4 � (εp − εr)/εp [12] εp is peak strain; εr is the residual strain

B5 B5 � (εB − εP)/(εP − εM) [37] εp is peak strain; εB is the residual strain; εM is the prepeak strain when the stress reaches
the residual stress.
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increasing confining pressure, and from 5MPa to 15MPa,
they decrease considerably more than they do from 25MPa
to 35MPa. For B2 and B3 tend to decrease with increasing
confining pressure, while their values increase at 35MPa. B4

increases with the confining pressure except at 35MPa. B5
decreases with confining pressure except at 25MPa, and
there are only small differences among the three decreasing
values, which are not advantageous for the quantitative
identification of rock brittleness. Above all, by comparative
analysis, it is considered that BI and B2∼B5 can all be used to
evaluate the change in rock brittleness with confining
pressure, and the results of BI and B1 are good, while there
are small differences in the results of B2∼B5.

)e evaluation results of granite samples under 5MPa
with different loading modes are listed in Table 6. According
to Table 6, BI and B1∼B5 all decrease during the com-
pression tests. For BI and B2∼B4, their values during the
unloading test are nearly 2 times those during the
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Figure 6: Schematic diagram of the calculation model of the partial brittleness evaluation index.

Table 4: Classification and description of brittleness index B1.

Grade B1 Description
1 1 M⟶−∞, ideal brittleness
2 0.6321∼1 −∞<M<− E, high brittleness
3 0.6321 M� −E
4 0∼0.6321 −E<M< 0, low brittleness
5 0 M� 0, ideal plasticity
6 <0 M> 0, strain hardening
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compression test, while there is only a small difference in B1
and B5 under the two loading modes. Based on the above
analysis, BI and B1∼B5 all reflect the change in rock brit-
tleness with the loading mode.

5. Conclusions

(1) Taking the crack initiation strain εci to characterize
the ability of the rock to be compacted and the
difference between the peak strain εc and crack
initiation strain εci (△ ε� εc−εci) to characterize the
ability of crack propagation, the prepeak brittleness
component (Bi � εci/△ε) considering the crack ini-
tiation is established. If εci/△ ε is larger, the ability of
the rock to maintain the crack compaction state is
greater, and the prepeak brittleness is greater.

(2) Based on the postpeak characteristic of a greater
stress drop, the postpeak brittleness of rock is
greater, and the postpeak brittleness component (Bii)
is established by the ratio of S/S△. If S/S△ is larger,
the stress drops faster after the peak, and the post-
peak brittleness is greater.

(3) A brittleness evaluation index based on the prepeak
crack initiation and postpeak stress drop charac-
teristics of the rock is established, and its expression
is BI =Bi·Bii.

(4) )e brittleness index BI can effectively reflect the
effects of different confining pressures and loading
modes on rock brittleness. Under the same condi-
tions, the brittleness of rock during an unloading test
is greater than that during a compressive loading
test, and the brittleness of rock under low confining
pressure is greater than that under a high confining
pressure.
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Cryogenic liquid nitrogen fracturing is expected to provide an effective stimulation method for hot dry rock reservoirs to increase
heat production. )is paper establishes a three-dimensional model to calculate the distributions of temperature and stress of the
reservoir rock when liquid nitrogen is injected into the wellbore.)e sensitivity of different parameters and water fracturing to the
stress state is studied.)e results indicate that when liquid nitrogen is injected into the bottom of well, a huge heat exchange occurs
on the rock surface, which generates great thermal stress on the fluid-solid interface, and the value of thermal stress exceeds the
tensile strength of rock. For the effect of parameters, the primitive temperature of the rock has a significant impact on the value of
maximum principal stress. )e pressure drop and ambient pressure affect the thermal stress slightly. At the same time, a series of
experiments are conducted to validate the effect of thermal stress induced by liquid nitrogen injection on the rock fracture. As the
temperature rises, the shale samples are broken more severely at the action of thermal stress. )us, the study of liquid nitrogen
fracturing provides a scientific and effective method for geothermal exploitation.

1. Introduction

)e hot dry rock (HDR) is green, low-carbon renewable
energy in the reservoirs, which is regarded as an important
alternative for conventional energy [1, 2]. HDR is defined as
the high-temperature rock between 150 and 650°C in the deep
subsurface. )e common HDR includes granite, diorite, and
gneiss [3]. )e progress of geothermal mining from HDR is
injecting cold water into reservoir and then returns to the
ground through the production well. )e cold water is heated
by contacting the hot rock to achieve the purpose of extracting
thermal energy. However, it is difficult to rely on the con-
ductivity of natural fractures and the seepage ability of rocks
to obtain economical heat flow due to the extremely low
permeability of HDR reservoirs [4]. Because of extracting
thermal energy, it not only needs to increase the permeability

of the reservoir, but also needs to increase the surface area of
the fracture as much as possible. )erefore, stimulation
methods should be adapted to increase the permeability [5–7].

At present, the main stimulation method of HDR re-
sources is hydraulic fracturing, which has been widely used
in increasing production of unconventional oil and gas
[8–11]. However, the traditional hydraulic fracturing has
some problems, such as the high fracture pressure, pore
blockage caused by water sensitivity damage, and large water
consumption [12–14]. In order to solve these problems,
waterless stimulation methods are proposed. Compared to
traditional hydraulic fracturing techniques, waterless frac-
turing is mainly unconstrained by water resources, which
not only increases the fracturing fluid backdraft rate and
reduces the damage of fracturing fluid to high-temperature
reservoirs, but also reduces the waste of water resources.
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As a method of waterless fracturing, cryogenic liquid
nitrogen (LN) fracturing has its unique advantages in the
process of fracturing HDR because of its extremely cryo-
genic property [15]. Cryogenic fracturing is defined as
follows: huge temperature gradient causes local tensile stress
to break rock, which is generated by the contact between
cryogenic fluid and high-temperature rock [16]. )e rock
breakage due to thermal stress results from two aspects:
thermal stress generated by the temperature gradient and
adjacent minerals with different thermal expansion [17].
)ermal stress will cause microscopic damage inside the
rock and increase the permeability, which is beneficial to
extract heat from reservoir [18]. At the twentieth century,
LN fracturing stimulation technology was used to increase
production in the low-permeability Devonian shale, and
favorable stimulation effects have been obtained [19]. For
this technology, LN is injected into the target reservoir as a
fracturing fluid instead of water-based fracturing fluid. In
this case, thermal stress is generated to fracture rock due to
cryogenic LN contact with high-temperature rock [20, 21].
During the LN fracturing, not only the macrofracture occurs
in the rock, but also the intergranular breakage is generated
in the microstructure, which promotes the appearance of
complex fracture networks [22, 23].

Many previous investigations have been performed to
study the rock damage due to LN cooling. Ren et al. [24]
carried out experiments of LN thermal shock on coal sample
and found that both the wave velocity and amplitude re-
duced sharply after LN treatment. )e experimental results
indicated that the internal structure damage occurred in the
coal, which is beneficial for generating a fracture network to
increase the permeability of rock. Cha et al. [16, 25] con-
ducted cryogenic fracturing studies by injecting LN into
concrete and sandstone samples. In this study, numerous
microcracks were generated around the borehole due to the
effect of thermal stress. )is indicated that the LN entering
the borehole can change the rock structure and induce
fracture creation. Cai et al. [26, 27] investigated the change in
the mechanical properties of rock samples after LN treat-
ment. According to the experimental study, the obvious
thermal fracture appeared on the rock surface, and the
tensile strength and compressive strength of the rock were
obviously weakened. )is indicated that the treatment with
LN has a great influence on the strength of rock samples.
Yang et al. [28] conducted granite breakage experiment
under different rock temperature and confining pressure.
)e experimental results showed that the fracture initiation
pressure of granite was reduced and the microscopic pore
structure was expanded after LN treatment. For the study of
numerical simulation method, Yao et al. [29] simulated the
LN stimulation process by the TOUGH2-EGS. )e simu-
lation results were also compared with experimental data.
)ey found that the increase in reservoir seepage can be
achieved by the injection of cryogenic fluid with high
pressure. Cai et al. [30] simulated the transient fluid flow and
heat transfer in the process of LN being injected into the
downhole. )e influence factors were also analyzed in this
study. )e results indicated that cryogenic LN can be
generated in the downhole and has a great impact on

reservoir temperature. Kim et al. [21] studied the effect of
rapid cooling on granite samples and found that the crack
growth occurred in granite samples. Furthermore, the
thermal stress distribution of rapid cooling was illustrated by
a transient thermodynamic model. Zhang et al. [31] studied
the granite damage under the impact of cryogenic LN by
applying SEM methods. )ey found that the number of
cracks and complexity of fracture network increased with
the increase of temperature gradient. )is indicated that the
rock structure was damaged by LN and the temperature
gradient was an important factor. Wu et al. [32, 33] con-
ducted a set of experiments to investigate variations of
physical and mechanical properties of granite, including
density, wave velocity, strength, and elastic modulus.
According to the experimental results, they pointed out that
the destruction of granite is aggravated with the number of
heating and cooling cycles increasing. Xi et al. [34] per-
formed an experimental study into the effect of water cooling
on mechanical properties of granite samples. )e influence
factor of rock initial temperature was considered in this
study. )ey found that the thermal cracking occurred inside
the rock, leading to the degradation of mechanical properties
of granite samples. Huang et al. [22] conducted experiments
to investigate the characteristics and mechanism of granite
samples with LN jet. )e results showed the damage of
granite samples and the corresponding mechanical prop-
erties deteriorated obviously with the growth of primitive
temperature. )is suggested that the primitive rock tem-
perature is an important factor determining the perfor-
mances of rock breaking and cracking with cryogenic LN.

According to the literature review, most of studies fo-
cused on the mechanical properties deterioration of granite
caused by thermal stress after LN treatment. )e fracture
characteristic of granite attributed to LN was discussed in
laboratory investigation. However, the effect after injecting
LN into the bottom of reservoir is still not clear. Hence,
before the LN can be extensively implemented as a fracturing
fluid instead of water-based fracturing fluid, many funda-
mental problems should be addressed to provide guidance
on HDR stimulation. )ese problems included the heat
transfer and the distribution of stress at the bottom of well
during injecting LN into wellbore. )e heat transfer con-
tributes to the change of fracturing conditions, and the
distribution of stress is directly related to the effect of
fracturing.

)is paper conducted a numerical simulation study on
the heat transfer and the stress distributions of reservoir
when LN was injected into the HDR reservoir. During the
process of LN flowing into the wellbore, the tensile stress was
generated due to the thermal stress and fluid pressure. )e
maximum principal stress was selected for analyzing the
effect of thermal stress on rock failure, because the maxi-
mum principal stress can effectively determine the rock
fracture when the tensile failure was generated in rock. )e
computational fluid dynamics (CFD) was used in the fluid
region with standard k-ε turbulence model. )e fluid-solid
interface was adapted to conjugate heat transfer method. In
the simulation, granite was adopted in solid region, which is
common inHDR. Due to the large elastic modulus and small

2 Mathematical Problems in Engineering



deformation in granite, the thermoelastic mechanical model
was adapted to calculate the stress and strain in solid region.

2. Geometric Model and Parameters

2.1. Physical Model. A three-dimensional model is estab-
lished to study the heat transfer between LN and high-
temperature rock and the stress distributions of rock during
injecting LN into the reservoirs. )e schematic of model is
shown in Figure 1. )is model is carried out by the thermal-
hydraulic-mechanical coupling method in transient state.
)e geometric size of the model is shown in Table 1.

)e model mainly includes two regions, the fluid region
and the solid region. In the fluid region, the high-pressure
LN is injected into a pipe and then flows through the annulus
between the drill hole and pipe. )e inlet and outlet
boundary conditions of fluid region are set as pressure inlet
and pressure outlet boundary condition, respectively.
During LN flowing through the hole of rock, the heat of the
rock will be transferred to the cryogenic fluid quickly, which
results in rock temperature decreasing. Consequently, the
thermal stress is generated in reservoir rock, leading to the
variation of original stress distribution and even rock
damage.

Based on the present analysis, the following assumptions
are proposed: (1) the influence of seepage flow in rock is
ignored in the calculation. (2) No deformation of rock is
assumed in flow field computation. (3) )e rock is assumed
as a homogeneous, isotropic, and linearly elastic material. (4)
)e calculating process does not involve rock failure.

2.2.NumericalModel. For the progress of injecting fluid into
the wellbore, the standard k-ε model is adapted for the
simulation of turbulent flow because of the larger Reynolds
number. Besides, the intense heat transfer will also occur
between the cryogenic fluid and warm rock. )us, the
equations of mass conservation, momentum, and energy
should be solved in the flow field.

Continuity equation:

zρl

zt
+ ∇ ρlv(  � 0, (1)

where ρl is fluid density, kg/m3; t is time, s; and v is
velocity vector, m/s.
Momentum equation:

z

zt
ρlv(  + ∇ ρlv · v(  � −∇p + ∇(μ∇v) + ρlg, (2)

where p is pressure, Pa; μ is dynamic viscosity, N·s/m2;
and g is gravitational acceleration, m2/s.
Energy equation of fluid:

z

zt
ρlTl(  + ∇ ρlvTl(  � ∇

λl

cp

∇Tl , (3)

where Tl is fluid temperature, °C; λl is thermal con-
ductivity of fluid, W/m·K; and cp is specific heat at
constant pressure, J/kg·K.
Turbulent kinetic energy equation:

z

zt
ρlk(  +

z

zxi

ρlkvi(  �
z

zxj

μ +
μt

σk

 
zk

zxj

 

+ Gk − ρlε − YM,

(4)

where k is turbulent kinetic energy, m2/s2; v is the
velocity, m/s; μt is turbulent viscosity, N·s/m2; σk is the
turbulent Prandtl number for k; Gk is generation of
turbulence kinetic energy; ε is specific dissipation rate,
J/kg·s; and YM is the contribution of the fluctuating
dilatation.
Specific dissipation rate of turbulent kinetic energy:

z

zt
ρlε(  +

z

zxi

ρlεvi(  �
z

zxj

μ +
μt

σε
 

zε
zxj

 

+ C1ε
ε
k

Gk − C2ερl

ε2

k
,

(5)

where σε is the turbulent Prandtl number for ε, and C1ε
and C2ε are turbulent constant.

Besides, μt is defined as

μt � ρlCμ
k
2

ε
, (6)

where Cμ is turbulent constant. )e empirical constants
appearing in the above equations are given by the following
values: C1ε � 1.44, C2ε �1.92, Cμ � 0.09, σk � 1.0, σε � 1.3.

In the solid region, the heat conduction equation will be
solved to calculate the temperature distribution. Further-
more, the stress state of rock owing to thermal stress is also
considered in our model. )e governing equations of the
thermoelastic model are considered in the calculation.

)e heat conduction of equation for rock:

∇ λs∇Ts(  − cρs

zTs

zt
� 0, (7)

where λs is thermal conductivity of rock, W/m·K; c is specific
heat of rock, J/kg·K; ρs is rock density, kg/m3; and Ts is rock
temperature, °C.

Physical equation:

τ �
1
2G

σ −
]

1 + ]
ΘΙ  + αΔTsI, (8)

where τ is the strain of rock;G is shear modulus; σ is the
total stress; v is Poisson’s ratio; Θ is the sum of the
normal stresses; I is the Kronecker delta; α is the co-
efficient thermal expansion, W/m·K; and ΔTs is rock
temperature difference, °C.
Equilibrium equation:
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∇σ + ρsg � 0, (9)

where ρs is rock density.

)e strain-displacement relation is

τ �
1
2

(∇u + u∇), (10)

where u is the displacement.

2.3. Boundary Conditions. To analyze the temperature and
stress distributions of the rock during the process of
injecting LN into the wellbore, the simulation parameters are
set as in Table 2. Besides, it is assumed that the fluid region is
initially filled with gaseous nitrogen (GN). During the
simulation, the GN and rock are set to the same initial
temperature.)e LN is injected from the pipe inlet (i.e., inlet
boundary condition), and its temperature is regarded as the
injection temperature. In the solid region, the geological
conditions of wellbore Newberry are referenced. It is as-
sumed that the wellbore is located at the subsurface of 1.5 km
depths, whose temperature is 150°C. )e maximum prin-
cipal stress is vertical with a gradient of 24.1MPa/km, and
theminimum principal stress is 14.9MPa/km.)erefore, the
front, left, and bottom surface of the model are set as dis-
placement boundary conditions, in which the normal dis-
placement is zero. Both the right and backside surfaces are

set as stress boundary conditions, and their value is
22.35MPa. )e upper surface is set as stress boundary
condition with the value of 36.15MPa [35, 36].

In addition, the surface contacted the fluid region, and
the solid region is set as the fluid-solid interface, which
causes a large amount of heat exchange. )e conjugate heat
transfer method is used to simulate the heat transfer in the
fluid-solid interface. Under conjugated boundary condi-
tions, the temperature and the heat flux of the fluid and solid
are equal, respectively. )e corresponding mathematical
expressions are as follows:

Tl|wall � Ts|wall,

λl

zTl

zn
|wall � λs

zTs

zn
|wall,

(11)

where the Tl and Ts are the fluid temperature and the solid
temperature at the solid-fluid interface, respectively; λl is the
thermal conductivity of fluid; λs is the solid’s thermal
conductivity; and n is the common normal direction of the
solid-fluid interface.

2.4. Material Parameters. In the progress of the simulation,
the detailed modeling parameters used are shown in Table 3.
It is assumed that the parameters, including density, specific
heat, thermal conductivity, and viscosity of LN, are

Path 1

Path 2

Symmetry surface

Fluid part

Rock part

Fluid-solid interface

Annulus

(a)

Pressure inlet
Pressure outlet

(b)

Figure 1: )e geometry model of computation zones.

Table 1: Geometric parameters of the model shown in Figure 1.

Pipe inner diameter
(mm)

Pipe outer diameter
(mm)

Pipe length
(mm)

Wellbore diameter
(mm)

Well depth
(mm) Model

25.4 31.8 270 50.8 300 400× 400× 400mm3
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unchanged in simulation progress. For injecting LN into the
wellbore, the injection temperature is set as -173°C. In ad-
dition, the granite properties in calculation are referred to in
the experimental data by Park [37]. Regarding the thermal-
physical properties of granite, the fitting equations of specific
heat, thermal conductivity, and thermal expansion with
temperature are adopted in the calculation based on pre-
vious studies [37, 38].

)e specific heat of granite:

Cs Ts(  � −3.319 × 10− 3
T
2
s + 1.889Ts

+ 699.4 −180°C≤Ts ≤ 300°C( ,
(12)

where Cs is rock specific heat, J/kg·K.
)e thermal conductivity coefficient of granite:

λs Ts(  � −2.691 × 10− 3
Ts + 2.6038 −180°C≤Ts ≤ 300°C( ,

(13)

where λs is thermal conductivity coefficient of rock, W/m·K.
)e thermal expansion coefficient of granite:

α Ts(  �
0.0448Ts + 2.294(  × 10− 6 0°C<Ts ≤ 300°C( ,

2.294 × 10− 6
−180°C≤Ts ≤ 0°C( ,

⎧⎨

⎩

(14)

where αs is thermal expansion coefficient of rock.

3. Results and Discussion

3.1. Mesh Independence and Time Step Selection. To ensure
the accuracy of the simulation, mesh independence is val-
idated with four different cell number cases (see Table 4), in
which the primitive rock temperature is set as 150°C, the
time step is set as 0.2 s, and other parameters remain un-
changed. )e point below the bottom surface of wellbore
1mm is employed as the monitoring point. Variation of
temperature against grid number is plotted in the loga-
rithmic coordinate shown in Figure 2(a). Temperature just
changes by 0.25% as the grid number increases from 2071302
to 2250028; thus, Case 3 is adopted in the following
calculation.

In the meantime, time step is also an important influ-
encing parameter in transient calculation. Different time
steps, including 0.05 s, 0.1 s, 0.2 s, 0.5 s, and 1 s, are computed
to verify that the time step is independent of simulation
results. As shown in Figure 2(b), when time step is less than
0.1 s, the temperature of the monitoring point changes
slightly; however, it increases sharply when time step is
beyond 0.1 s. Considering computational precision and ef-
ficiency, 0.1 s is selected as the optimal time step for the
computation in later simulation.

3.2. Flow Field Analysis. )e fluid flow numerical solution is
performed based on the CFD code of Fluent with coupled
algorithm. It can simulate flow field and heat transfer by
coupling mass conservation, momentum, energy, and heat
conductivity equations. )e computation results indicate
that the parameters of pressure and velocity change slightly
with time during the process of computation. )us, the
steady state flow is analyzed in this section. Figure 3 shows
the contours of velocity and static pressure in flow field.

As shown in Figure 3(a), the velocity of LN increases
near the outlet of tube and then decreases sharply at the
bottom of the wellbore. Besides, at the center point of the
bottom of well, the velocity of the LN drops to zero due to
the boundary effect, and the hydrostatic pressure increases
greatly at the same time as shown in Figure 3(b). )en, the
LN flows diffusively around the stagnation point at the
action of hydrostatic pressure. Moreover, there is a low
velocity area near the pipe outlet due to the effect of fluid
turbulence, which results in a lower pressure in the near area.

3.3. Rock Temperature Distribution. )e temperature con-
tours in the symmetry plane of model at different times are
shown in Figure 4. )e primitive rock temperature is set as
150°C in this case. At the action of pressure, the LN flows
into the bottom of well through the pipe, which results in a
lower temperature in fluid-solid interface at 0.1 s. )e
cooled-region of rock constantly increases with time going
by. Because the cooled-region is circular in rock, the radius
of cooled-region is chosen to compare the effect of heat
transfer at different conditions. Specifically, it is expressed by
the distance along path 1 and path 2 (see Figure 1). Path 1 is
the line along the axial direction of rock center at the bottom
of well, and path 2 is 100mm above the bottom of well along
the radial direction in rock. )e temperature distribution at
different times along path 1 and path 2 is shown in Figure 5.
It is noted that the initial point temperature of path 1 and
path 2 quickly drops to −156.3°C and −136.6°C, respectively,
as soon as LN connects to rock for 0.1 s. However, both the
cooling distances of path 1 and path 2 are about 24mm at
20 s. During the process of injecting LN into wellbore, the
fluid comes into contact with the rock of wellbore bottom

Table 2: Simulation parameters of fluid region.

Inlet pressure
(MPa)

Outlet
pressure
(MPa)

Initial temperature
(°C)

Injection
temperature

25 20 150 −173°C

Table 3: Material parameters.

LN Granite
Density 806.08 kg m3 Density 2700 kg/m3

Specific heat 2041.50 J (kg·K) Elastic
model 43.20GPa

)ermal
conductivity 0.15W (m·K) Poisson’s

ratio 0.22

Viscosity 1.61× 10−4 kg (m·s)

Table 4: Mesh scheme.

Mesh study case Case 1 Case 2 Case 3 Case 4
Grid number 1452566 1757972 2071302 2250028
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first, which results in a low temperature region at the bottom
rather than the side area at 0.1 s. However, with the high-
speed flow of the LN, the temperature of solid-fluid interface
will remain the same, and the distance of cooled-region
perpendicular to the solid-fluid interface will also be similar.

For the inner region of rock, its cooled-region is con-
stantly increasing, but the growth trend in cooled-region
becomes slower and slower. Based on (10) and (11), we could
conclude that, with rock temperature rising, the thermal
conductivity drops, while the specific heat increases. In this
case, more heat is required to be carried away to cool the
rock. As a result, the growth of cooled-region in inner rock
will be slowed down.

3.4. Maximum Principal Stress Analysis. )e thermal stress
will be generated due to the rock temperature decreasing.
)erefore, the stress state in rock would be changed with
the effects of thermal stress and fluid pressure. A vertical
plane 1 which is 100mm above the downhole is chosen to
show the maximum principal stress contour of rock at
different times (see Figure 6). Here, the positive and
negative values represent the tensile and compressive
stresses, respectively. )e thermal stress is generated by the
temperature gradient inside the rock with cryogenic LN
flowing along the surface of the rock. In addition, it can be
found that tensile stress zone increases with time going by
due to the inside rock cooling down. )is shows that
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Figure 2: Sensitivity of mesh and time step: (a) the monitoring point temperature at 1 s with different grid number; (b) the monitoring point
temperature at 1 s with different time step.
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Figure 3: )e contours of velocity and pressure in flow field of LN under steady state.
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Figure 4: )e temperature contours in the symmetry plane of model at different times: (a) 0.1 s; (b) 20 s; (c) 40 s; (d) 60 s; (e) 80 s; (f ) 100 s.
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Figure 5: Temperature distribution at different times along path 1 and path 2, respectively: (a) path 1; (b) path 2.
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injecting LN can change the original stress state and the
fracturing environment.

Figure 7 illustrates the maximum principal stress dis-
tributions at different times along path 2. )ere are small
changes for maximum principal stress values at different
times except 0.1 s. )is is because the surface temperature
of rock is in unsteady state at 0.1 s. )is also indicates that
the maximum principal stress is gradually increasing
during the period of LN contact with rock surface. )e
value of tensile stress generated at 100 s is much greater

than the tensile strength of granite, which shows that it
is feasible to break rock by injecting LN. Besides, the
tensile stress zone gradually increases with time going by.
)is is favorable for the rock to form complex fracture
networks [18].

3.5. Parameter Analysis. Figure 8 shows the maximum
principal stress along path 2 with different primitive rock
temperature at 20 s. )e results indicate that, with primitive
rock temperature rising, the value of maximum principal
stress also increases along path 2. )e maximum principal
value of stress is about 154.55MPa for the rock with the
primitive temperature of 300°C, which is much greater than
the value with the primitive temperature of 150°C. )e
reason is that larger temperature difference is generated on
rock surface with the primitive rock temperature rising, and
it also leads to much larger deformation correspondingly. In
addition, when the primitive temperature increases from
150°C to 300°C, the zone of tensile stress zone increases due
to the larger maximum principal stress being generated on
the rock surface, which is beneficial to the cracking and
breaking of rock.

)e difference between the inlet and ambient pressure is
defined as the pressure drop. Figure 9 shows the maximum
principal stress along path 2 with different pressure drop at
20 s. )e results indicate that the distributions of maximum
principal stress are hardly affected by the inlet pressure with
the same ambient pressure. )e reason is that the thermal
conductivity and the heat transfer rate of rock are limited; the
rock cooling performance cannot be enhanced efficiently by
improving the inlet pressure. When the ambient pressure of
reservoir has not been changed, the thermal stress induced by
rock cooling is the main factor on the rock stress distribution.
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Figure 6: )e maximum principal stress contours of rock plane 1 at different times: (a) 0.1 s; (b) 20 s; (c) 40 s; (d) 60 s; (e) 80 s; (f ) 100 s.
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)e ambient pressure is also a significant factor on rock
fracturing. )e maximum principal stress along path 2 with
different ambient pressure is shown in Figure 10. Similarly,
there is a small change in the distribution of stress along path
2. Because the inlet pressure also hardly affects the rock
cooling performance during the LN flowing along wellbore,
the thermal stress of rock almost remains unchanged. )e
value of maximum principal stress is slightly increased due
to the effect of fluid pressure.

To study the influence of different stress boundary on
stress distribution, we calculate the maximum principal stress
with different stress boundary as shown in Figure 11. It

indicates that tensile stress will appear on the coupled surface
when stresses on both sides of the plane are equal, and the
maximum principal stresses along the circumference are
similar. When the stresses on both sides are unequal, the
maximum principal stress on the coupled surface of wellbore
will change. With the increasing of σH, the maximum
principal stress area in the axial direction will decrease
gradually, and the maximum principal stress near wellbore
along the radial direction also decreases at the same time.)e
greater the difference is, the more obvious the trend will be.
Figure 12 illustrates the value of maximum principal stress in
rock along path 3 under different stress boundary. It could be
clearly seen that maximum principal stress near coupled
interface decreases with σH improving. )us, it could be
reasonably predicted that the rock will be fractured toward the
direction of larger in situ stress when LN flows into wellbore.

To analyze the effect of thermal stress induced by LN
cooling, the water cooling is also considered under the same
conditions. )e physical properties of water are set as fol-
lows: density is 998.2 kg/m3, specific heat is 4182 J/(kg·K),
thermal conductivity is 0.6W/(m·K), and viscosity is
0.001003 kg/(m·s). When the stress caused by injecting water
into the reservoirs is calculated, the inlet temperature is set as
25°C. Figure 13 shows the maximum principal stress along
path 2 with LN and water flowing into wellbore at 100 s,
respectively. In this case, the maximum principal stress in
the side surface of rock is about 21.02MPa at 100 s with the
water flowing into wellbore, which is about 39.90% caused
by LN under the same conditions. )is indicated that, due to
the extremely cryogenic characteristic, LN will generate
greater tensile stress on the rock surface during the progress
of flowing into wellbore compared with water. It is beneficial
to reduce the injection pressure.

In order to study the effect of inlet pressure on stress
distribution around wellbore as water flows into the bottom
of the wellbore, the maximum principal stress of wellbore
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surface at 100 s under the same pressure drop is calculated.
Figure 14 shows the maximum principal stress in rock with
different inlet pressure at 100 s. It is noted that there is an
obvious linear relationship between the water inlet pressure
and the maximum principal stress. )e fitting expression is

σ � P − 3.69, (15)

Where P is inlet pressure and σ is maximum principal stress.
In addition, the value of maximum principal stress is

about 50.65MPa with the inlet pressure of 55MPa, which is
similar to the value caused by LN flowing at 25MPa under
the same conditions. )is shows that LN injection into the
wellbore for fracturing operations can effectively reduce the
inlet pressure due to its cryogenic properties compared with
fracturing by water.

)e variation of stress values due to water injection under
different in situ stress conditions was analyzed. Figure 15
shows the values of maximumprincipal stress at the surface of
wellbore with the relationship of σH. It indicated that as σH
increases, the value of maximum principal stress decreases at
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Figure 11: Maximum principal stress contours of hot rock plane 1 with different stress boundary at 100 s: (a) σH � 22.35MPa,
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the surface of wellbore in the direction of minimum hori-
zontal in situ stress, which is the same trend as the effect of LN
injection on the values of maximum principal stress. How-
ever, when σH is 32.35MPa, the maximum principal stress in
the direction of maximum horizontal in situ stress is about
31.04MPa generated by the water injection, which is lower
than the stress value of 35.04MPa at the direction of mini-
mum horizontal in situ stress by the injected LN. It can be
concluded that the tensile damage could be generated in the
direction of minimum horizontal in situ stress by the LN
injection during the fracture process by injecting water and
LN at the same inlet pressure. )is is mainly due to the fact
that the LN injection process generates a huge thermal stress
in the surface of wellbore. )e value of thermal stress is not
affected by the in situ stress distribution, so the thermal cracks
are formed under the thermal stress, which is beneficial to the
cracks expansion. Based on this, a more complex fracture
network is formed in the reservoir. It has been demonstrated
that the main fracture direction of rock samples after LN
fracturing does not extend exactly in the direction of the
maximum principal stress [39].

4. Conclusion

In this paper, the heat transfer and stress state during
injecting LN into HDR reservoirs are analyzed based on a 3D
thermal-hydraulic-mechanical coupling numerical model.
)e parameters’ sensitivity is analyzed in detail, and the
injection of water under the same conditions is also con-
sidered. Finally, a set of experiments is conducted to validate
the effect of thermal stress on the rock.)emain conclusions
of this paper are as follows:

(1) )e LN injected into the wellbore causes the rocks
around the wellbore to cool down. As time passes by,

the increasing amplitude of cooled-region is weak-
ened. During this progress, the great tensile stress
that exceeds the tensile strength of granite is gen-
erated around the wellbore due to the action of
thermal stress and fluid pressure.

(2) )e primitive temperature of the reservoir has a
significant impact on the stress distributions around
the wellbore during LN injecting. With the growth of
the primitive temperature, the thermal stress value
around wellbore becomes larger. )e inlet pressure
and the ambient pressure have little effect on the
thermal stress generated by LN cooling.

(3) )e in situ stresses affect the stress distribution
during LN fracturing. Under the unequal in situ
stress in different directions, the value of maximum
principal stress is larger in the direction with larger
in situ stress; i.e., the rock has a tendency to break in
the direction of the larger in situ stress value.

(4) Compared with the injection of LN, the value of
thermal stress around the wellbore caused by water
injection is reduced under the same conditions. )e
thermal stress value around the wellbore during LN
injecting with injection pressure of 25MPa is similar
to that during water injecting with injection pressure
of 55MPa. )is means that LN fracturing can reduce
the injection pressure effectively and achieve a better
fracturing effect.
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