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Currently, most work on comparing differences between simplified and traditional Chinese only focuses on the character or lexical
level, without taking the global differences into consideration. In order to solve this problem, this paper proposes to use complex
network analysis of word co-occurrence networks, which have been successfully applied to the language analysis research and can
tackle global characters and explore the differences between simplified and traditional Chinese. Specially, we first constructed a
word co-occurrence network for simplified and traditional Chinese using selected news corpora. ,en, the complex network
analysis methods were performed, including network statistics analysis, kernel lexicon comparison, and motif analysis, to gain a
global understanding of these networks. After that, the networks were compared based on the properties obtained. ,rough
comparison, we can obtain three interesting results: first, the co-occurrence networks of simplified Chinese and traditional
Chinese are both small-world and scale-free networks. However, given the same corpus size, the co-occurrence networks of
traditional Chinese tend to have more nodes, whichmay be due to a large number of one-to-many character/wordmappings from
simplified Chinese to traditional Chinese; second, since traditional Chinese retains more ancient Chinese words and uses fewer
weak verbs, the traditional Chinese kernel lexicons have more entries than the simplified Chinese kernel lexicons; third, motif
analysis shows that there is no difference between the simplified Chinese network and the corresponding traditional Chinese
network, which means that simplified and traditional Chinese are semantically consistent.

1. Introduction

Chinese is usually written in two forms: simplified Chinese
(mainly used in Mainland China and Singapore) and tra-
ditional Chinese (mainly used in Hong Kong, Macao, and
Taiwan). Although simplified Chinese is derived from tra-
ditional Chinese, the two systems are quite different on
various levels, such as character set, encoding method, or-
thography, vocabulary, and semantics, which create barriers
to communication between different areas where Chinese is
spoken. ,is linguistic phenomenon is due to the inde-
pendent development of these two homologous systems in
the past half century, and they will continue to evolve in their

respective cultural environments. However, in the past few
decades, with the increase in exchange activities between
four cross-strait regions, the problem of conversion between
simplified Chinese and traditional Chinese as well as the
comparison of the differences between simplified Chinese
and traditional Chinese has attracted the attention of more
and more researchers [1–4]. In short, the comparison be-
tween Simplified Chinese and Traditional Chinese has im-
portant reference value for the study of language evolution.

So far, research on comparing differences between these
two forms of Chinese still focuses on the character or lexical
levels [1, 3, 5]. For example, Fei [6] made a systematic
comparison of the similarities and differences of the current
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Chinese characters in simplified and traditional Chinese
characters; Li [7] made an in-depth analysis of the reasons
for the differences in the form of simplified and traditional
Chinese characters from the aspects of politics, history and
culture, and the principles of character selection; Liu [8]
conducted a comprehensive analysis mainly from the per-
spective of eliminating the differences in form; Jiang [9]
mainly compared and analyzed simplified and traditional
Chinese vocabulary from two aspects: homographs with
different meanings and different forms with synonymous
meanings; Li and Qiu [10] discussed the causes, types, and
processing methods of differences in dictionaries across the
Taiwan Strait.

On the other hand, as an important methodology for
linguistic research, complex networks-based approaches
show their advantage in revealing the global features of
language which have been successfully applied to analyse
languages at various levels, e.g., lexical [11–13], word co-
occurrence [14–18], syntax [19–21], and semantic [22–24].
,is is because language is a typical hierarchical system
which has a highly complex network structure, and complex
network analysis methods have the advantage of revealing
the laws of language as a whole. Hence, in this paper, we
apply complex network analysis methods to explore the
differences between simplified and traditional Chinese
character systems from a holistic perspective. Specially,
according to the construction method of the word co-oc-
currence network, this paper proposed to construct sim-
plified Chinese and traditional Chinese word co-occurrence
networks with different numbers of nodes and different
corpus sizes and then make corresponding research on the
complex characteristics of these networks. ,rough the
obtained simplified and traditional Chinese core dictionary,
we explored the differences between the two languages. In
addition, this paper proposed to use primitives representing
language semantics to analyze the semantic differences
between simplified and traditional languages.

,e rest of this paper is organized as follows. Section 2
introduces the related work. Section 3 puts forward a brief
introduction to some basic concepts related to complex
network analysis. ,en, in Section 4, we constructed net-
works with different text scales and carried out corre-
sponding studies on the characteristics of complex networks,
e.g., cumulative degree distribution, clustering coefficient,
kernel lexicon, and motif analysis. Finally, Section 5 con-
cludes the paper.

2. Related Work

At present, the comparison and analysis of the differences
between simplified and traditional Chinese mainly remain at
the level of character shapes or words. ,e main reason why
readers find it difficult to read unfamiliar writtenmaterials in
simplified or traditional characters is due to the difference in
glyphs. Studies have shown that the actual number of
characters that can be compared in the simplified and
traditional Chinese character lists is 4,786 [6]. Among them,
41% of the simplified and traditional characters used in
mainland China and Taiwan have the same glyph, totaling

1,947 characters; 24% of the similar glyphs, totaling 1,170
characters; and 35% of different glyphs, totaling 1,669
characters. Simplified and traditional Chinese belong to the
same ancestor and developed from the same ancient Chi-
nese. ,erefore, the differences between simplified and
traditional Chinese need to be compared and analyzed
systematically and comprehensively from the perspective of
the language as a whole, which explores the differences
between the two written forms of Chinese development
status and law. However, the current comparative work of
simplified and traditional Chinese characters has only
achieved outstanding achievements on the level of character
form and word, while other language levels (such as se-
mantics and syntax) have not been involved.

As a typical hierarchical system, language exhibits a highly
complex network structure at all levels (phonetics, mor-
phology, syntax, and semantics) [25]. At present, a lot of
research studies have been carried out on the complex
characteristics of language networks on different levels, in-
cluding lexical or vocabulary networks, word or character co-
occurrence networks, and syntactic networks, the semantic
networks.,ese research studies are important for identifying
and understanding the topological structure of language.
Among them, the research studies of Chinese network mainly
include the following: in terms of morphology or vocabulary
network, Li et al. [13] used Chinese characters as nodes based
on the principle that two Chinese characters can form words
and constructed a Chinese phrase network and studied the
dynamic characteristics of the phrase network; in terms of
syntactic network, Liu [20] used the syntactic labeling tree
bank to connect the words with syntactic relations and finally
established the Chinese syntactic dependency network and
explored the complex network characteristics of the syntactic
network; in the semantic network (current research studies on
Chinese semantic networks are still relatively small), Liu et al.
[24] constructed a small semantic network to explore the
complex characteristics of the Chinese semantic network; and
Cancho and Solé [14] used the English-speaking country
corpus to construct an English word co-occurrence network
and found that the English language network has a small
world and scale-free features. Liu and Sun [15] used the same
construction method to construct a simplified Chinese word
co-occurrence network. ,e experiment proved that the
simplified Chinese word co-occurrence network has complex
network characteristics similar to the English word co-oc-
currence network. Other works [12, 26, 27] used different
construction strategies to construct a Chinese word, word co-
occurrence network, and English word co-occurrence net-
work based on different themes of Chinese and English
(prose, novels, popular science articles, and news reports)
corpora.

3. Foundations

In this section, some basic concepts are put forward. Section
3.1 describes the basic definitions of the complex network.
,en, Section 3.2 describes small-world networks and scale-
free networks. Finally, Section 3.3 gives a brief introduction
of motif analysis.
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3.1. Basic Definitions. In general, a network G can be
denoted as a two-tuples (V, E), where V is the set of vertices
and E is the set of edges. In a language network, a vertex
vi(1≤ i≤ |V|) may represent a radical, character, or word;
and an edge eij(1≤ i, j≤ |V|) can characterize the rela-
tionship between vi and vj.

Given a network, the conventional indicators, such as
average path length, clustering coefficient, degree distribu-
tion, and cumulative degree distribution, are used to specify
its statistical characteristics. ,ese indicators could be de-
fined, respectively, as follows:

Average Path Length (d): the average distance between
two reachable vertices:

d �
2

N(N − 2)
􏽘
i> j

dij, (1)

where N is the number of vertices in the network, dij is the
distance between vertex vi and vertex vj which also means
the number of edges in the shortest path linking them.

Clustering Coefficient (C): the percentage of the
neighbours that two vertices share. ,e clustering coefficient
of vertices i could be defined as follows [23]:

Ci �
2Ei

ki ki − 1( 􏼁
, ki ≠ 0, 1, (2)

where ki is the degree of vertex i and Ei is the number of
edges among the vertices in the nearest neighbourhood of
vertex i. Moreover, the clustering coefficient of the whole
network is the average of all individual Ci, as follows:

C �
1
N

􏽘
i�1

Ci. (3)

3.2. Small-World Networks and Scare-Free Networks. A
complex network is called a small-world network, in which
the average number of edges lying between any two vertices
is very small, while the clustering coefficient remains large.
Specifically, for an ER random network in a small-world
network, dER and CER represent the average shortest path
and clustering coefficient, respectively, and d is similar to
dER, but C≫CER [28].

,e degree distribution reveals the distribution of ver-
tices by degree:

P(k) � 􏽘

∞

k′�k

P k′( 􏼁, (4)

and the percentage of the vertices whose degrees are k is
represented as P (k):

P(k) � 􏽘
∞

k′�k

k′− c∝ k
− (c− 1)

. (5)

Under certain circumstances, a network is called scale-
free if it fits the power law well and lies between 2 and 3 [29].

3.3. Motif Analysis. Motif, a subgraph constructed by a few
edges and vertices, was first used in biological academic area
[30]. For a complex network, a motif represents a subnet-
work containing a small number of nodes and edges. Bie-
mann et al. [31] first applied motif analysis in linguistic
networks and semantic features to explore the difference
between natural language text and text generated by an N-
gram language model in terms of semantic characteristics.

Besides, motif analysis involves an intermediate level of a
network, which specifically means to count the motif con-
structed by n nodes to approach comparison among net-
works. As to undirected co-occurrence networks, n is usually
at least 3. A 3-node motif is a triple-contained completely in
calculating the clustering coefficient. ,erefore, we use 4-
node motif analysis to compare the semantic differences of
co-occurrence networks. All six kinds of undirected 4-node
motifs are shown in Figure 1.

4. Experimental Comparisons

,is section addresses the experimental comparisons be-
tween simplified and traditional Chinese based on methods
from complex network science. Section 4.1 describes the
dataset used as well as the construction of the word co-
occurrence networks. ,en, Sections 4.2–4.4 describe the
comparisons on small-world and scale-free, kernel lexicons,
and motif analysis, respectively.

4.1. Dataset and Network Construction. In this experiment,
texts from Chinese GigaWord 9ird Edition
(LDC2007T38)(https://catalog.ldc.upenn.edu/
LDC2007T38) are used as the experimental materials, of
which the simplified Chinese texts are from “Xinhua News
Agency” (hereinafter referred to as XIN) and the traditional
Chinese texts are from “Central News Agency” (hereinafter
referred to as CNA).

Based on the datasets, word co-occurrence networks are
built according to the method proposed by [32]. Concretely,
words in the texts are regarded as nodes in the networks, and
any two nodes are connected if the distance of the corre-
sponding words is not greater than 2.

After the networks are constructed, their statistical
properties are observed and compared. Please note that, only
the networks built from the similar text scales are compared
which avoids the influence of the text scales. In this ex-
periment, three text scales are used, and the statistics of all
the networks are shown in Table 1. For the co-occurrence
network of simplified and traditional Chinese words under
the same corpus scale, we designed three sets of experiments.
,e scales of the corpus used in these three sets increased
from initial 7 million words to 10 million words and then 15
million words.

4.2. Small-World and Scare-Free. Given the built networks,
we use a complex network analysis tool, Pajek2 to calculate
the statistical properties of the networks. Table 2 shows the
results.
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From Table 2, we can find that all the networks satisfy
d ≈ dER and C≫CER, which means that all the networks
are small-world networks. However, it could also be
observed that the average degrees of traditional networks
are about 5 points larger than those of the corresponding
simplified networks. ,e possible reason is the many-to-
one mappings between traditional Chinese and simplified

Chinese, i.e., different words in |traditional Chinese have
the same forms. For example, two traditional Chinese
words “編制 (bi�an zhı̀)” and “編製 (bi�an zhı̀)” have that
same form “编制 (bi�an zhı̀)” in simplified Chinese. It is the
many-to-one mappings between traditional Chinese and
simplified Chinese lead to larger numbers of nodes, edges,
and average degrees.

(a) (b) (c)

(d) (e) (f )

Figure 1: All undirected motifs of size 4. (a) Star; (b) chain; (c) 3-loop-out; (d) box; (e) semiclique; (f ) Clique.

Table 1: Statistics of the built word co-occurrence networks. XIN1, XIN2, and XIN3 are from different parts of the XIN dataset; CNA1,
CNA2, and CNA3 are from different parts of the CNA dataset.

,eme (name) Text scales (# of words) (M) Sources # of nodes

Group 1 XIN1 55.9 XIN (Jan., 2006–May., 2006) 1.06∗105
CNA1 55.3 CNA (Jan., 2006–Mar., 2006) 1.14∗105

Group 2 XIN2 79.8 XIN (Jan., 2006–Jun., 2006) 1.26∗105
CNA2 79 CNA (Jan., 2006–Apr., 2006) 1.38∗105

Group 3 XIN3 115 XIN (Jan., 2006–Sep., 2006) 1.52∗105
CNA3 114 CNA (Jan., 2006–May., 2006) 1.69∗105

Table 2: Properties of the built networks. N: number of nodes; E: number of edges; k: average degree of nodes; C: clustering coefficient; d:
average path length among reachable pairs of nodes; CER: clustering coefficient of an ER network with same numbers of nodes and edges;
dER: average path length among reachable pairs of nodes in an ER network with same numbers of nodes and edges; and c: power-law
exponent in equation (5).

Metric
Dataset theme

XIN1 CNA1 XIN2 CNA2 XIN3 CNA3

N 1.06∗105 1.14∗105 1.26∗105 1.38∗105 1.52∗105 1.69∗105
E 0.27∗107 0.32∗107 0.35∗107 0.41∗ 107 0.45∗107 0.53∗107
k 50.01 55.08 54.45 59.39 58.45 62.86
C 0.68 0.68 0.69 0.70 0.72 0.73
d 2.69 2.72 2.69 2.73 2.70 2.74
CER 4.69∗10− 4 4.80∗10− 4 4.28∗10− 4 4.30∗10− 4 3.90∗10− 4 3.70∗10− 4

dER 3.24 3.21 3.26 3.20 3.25 3.20
c 2.17 2.18 2.16 2.17 2.15 2.15
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Moreover, we plot the cumulative degree distributions of
all the networks, as well as their fitting curves in Figure 2. It is
clear that both traditional and simplified Chinese networks
fit the power law well. In addition, the power-law exponents
of all the networks belong to the range of 2 and 3, indicating
that all of the networks are scale-free.

4.3. Kernel Lexicons. By observing the cumulative degree
distribution curves in Figure 2, we can learn that the scat-
tered points can be fitted by two lines with different slopes.
And the whole data set is divided into two parts at the
crossover point. ,e more frequently a word is used in daily
life, the more semantic meanings it may contain [33]. And
the frequency f of a given word is relevant to its degree k, as
follows:

k∝f
α
, α> 0. (6)

Followed [15], we may obtain a kernel dictionary by
sorting words according to their degrees and selecting those
with more degrees. Concretely, the capacity of kernel lexi-
cons is calculated as follows:

NKL � N × P kcross( 􏼁, (7)

where N denotes the number of nodes, or specifically the
number of words, and kcross denotes the percentage of the
words whose degrees are not less than kcross, which is the
number at the crossover point.

Table 3 shows the sizes of the constructed kernel lexi-
cons. From Table 3, we can learn that the sizes are all about
103 levels and satisfy the claim proposed by [15, 34].
However, we observed the number of traditional Chinese
kernel lexicons is much greater than that of simplified
Chinese. Concretely, the traditional Chinese kernel lexicons
are about 900 words, which are more than simplified Chi-
nese in average.

To find out the possible reasons, we further analysis the
part-of-speech tags and the lengths for the words in the
kernel lexicons. ,e results are listed in Tables 4 and 5,
respectively.

From Table 4, we found that, both forms of Chinese have
a large proportion on entity words (noun and verb) whose
orders are roughly the same. ,e percentage of verb in
traditional Chinese is generally greater than that in sim-
plified Chinese, indicating that verb weakening is an im-
portant development process in simplified Chinese.

From Table 5, we learned that kernel lexicons extracted
from the traditional Chinese corpora contain more 1-
character words than the ones extracted from the simplified
Chinese corpora. ,is implies that traditional Chinese
maintains some features of classical Chinese, while sim-
plified Chinese does not.

4.4. Motif Verification. Followed [31], we performed the
motif analysis upon each networks constructed in Section
4.1. ,e results are shown in Table 6. ,ere is no dif-
ference between simplified Chinese networks and the
corresponding traditional Chinese networks, except that

the traditional Chinese complex networks tend to have
more motifs than the simplified Chinese ones which is
due to the larger number of nodes and edges of the
traditional Chinese networks. ,is shows that simplified
and traditional Chinese are consistent on the semantics
level.

4.5. Example Comparison. We found that parts of speech of
these different words are mainly reflected in nouns, verbs,
time words, gerunds, adverbs, numerals, and ground nouns,
as shown in Table 4. Among them, nouns, verbs, gerunds,
and adverbs vary with corpus. However, there are also some
words that are unique or frequently used in specific areas due
to regional and political reasons, such as “总统”, “中华民
国’”, “卫生署”, “社会主义”, and “农民工”; time words,
numerals, and geographical nouns also have different usage
habits or frequency of use due to different regional cultures,
such as “二零零五年”, “2005年”, “二十五”, “25”, “高雄县”,
and “长江”.

Furthermore, we found that nearly 25% of the dif-
ferent words in traditional Chinese are single-character
words, such as “逾/vg”, “採/v”, “恆/ag”, and “常/d”. ,e
number of single-character words in different words in
simplified Chinese is relatively small. ,ese single-
character words frequently appear in the traditional
corpus. Some words are function words or substantive
words with grammatical effect, and some words are
produced by the word segmentation tool incorrectly. But
most single-character words appear in sentences mainly
in the form of classical Chinese, “黃金/n 博物/n 園區/n
為/v將/p此/rz深/d具/vg教育/vn意義/n的/uj活動/vn
推廣/v 至/p瑞芳/ns 在地/b的/uj 學校/n 與/c社區/n 團
體/n ” and “他/rr一度/d懷疑/v自己/rr能否/v常/d保/v
早先/t 的/uj 成就/n”. ,is shows that many ancient
Chinese words still appear in the written language of the
traditional Chinese character system with a higher fre-
quency, i.e., the written language of the traditional
Chinese character system retains more classical Chinese
characteristics.

In summary, the core dictionaries of the simplified and
traditional Chinese character systems have a certain degree
of versatility. However, in the process of language devel-
opment, there have been some differences due to regional
usage habits, environment, politics, and the generation of
new words. In addition, in the development of the tradi-
tional Chinese character system, its written language still
retains certain characteristics of classical Chinese.

5. Conclusion

In this paper, we proposed complex network to explore
differences between simplified Chinese and traditional
Chinese. To the best of our knowledge, this is the first work
to use complex network-based approaches in comparing
differences between simplified and traditional Chinese.
,rough the comparisons, we achieve 3 interesting results.
Firstly, both co-occurrence networks for simplified and for
traditional Chinese are small-world and scale-free networks.
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Figure 2: Cumulative degree distributions of all the built networks. (a) XIN1. (b) CNA1. (c) XIN2. (d) CNA2. (e) XIN3. (f ) CNA3.
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However, given the same corpus scale, the co-occurrence
networks for traditional Chinese tend to have larger number
of nodes, which may be due to the numerous one-to-many
character/word mappings from simplified Chinese to tra-
ditional Chinese. Secondly, the kernel lexicons of traditional
Chinese have more entries than those of simplified Chinese,
which may be because that, in traditional Chinese, more
ancient Chinese words are kept while less weak verbs are
used. ,irdly, the motif analysis shows that there are no
differences between the simplified Chinese networks and the

corresponding traditional Chinese ones. In other words,
simplified Chinese and traditional Chinese are semantically
consistent.
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[25] R. V. Solé, B. Corominas-Murtra, S. Valverde, and L. Steels,
“Language networks: their structure, function, and evolution,”
Complexity, vol. 15, no. 6, pp. 20–26, 2010.

[26] M. Sigman and G. A. Cecchi, “Global organization of the
wordnet lexicon,” Proceedings of the National Academy of
Sciences, vol. 99, no. 3, pp. 1742–1747, 2002.

[27] Y. Li, L. Wei, Y. Niu, and J. Yin, “Structural organization and
scale-free properties in Chinese phrase networks,” Chinese
Science Bulletin, vol. 50, no. 13, pp. 1305–1309, 2005.

[28] D. J. Watts and S. H. Strogatz, “Collective dynamics of “small-
world”networks,” Nature, vol. 393, no. 6684, pp. 440–442,
1998.

[29] A.-L. Barabási and R. Albert, “Emergence of scaling in ran-
dom networks,” Science, vol. 286, no. 5439, pp. 509–512, 1999.

[30] S. S. Shen-Orr, R. Milo, S. Mangan, and U. Alon, “Network
motifs in the transcriptional regulation network of escherichia
coli,” Nature Genetics, vol. 31, no. 1, pp. 64–68, 2002.

[31] C. Biemann, S. Roos, and K. Weihe, “Quantifying semantics
using complex network analysis,” Proceedings of Coling 2012,
pp. 263–278, 2012.

[32] R. F. I. Cancho and R. V. Solé, “Two regimes in the frequency
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Considering the limitation of machine and technology, we study the stability for nonlinear impulsive control system with some
uncertainty factors, such as the bounded gain error and the parameter uncertainty. A new sufficient condition for this system is
established based on the generalized Cauchy–Schwarz inequality in this paper. Compared with some existing results, the proposed
method is more practically applicable. ,e effectiveness of the proposed method is shown by a numerical example.

1. Introduction

Impulse control is based on impulsive differential equation
and has many applications [1–6], such as digital commu-
nication system, artificial intelligence, and financial sector.
In comparison with other methods, impulse control is more
efficient in dealing with the stability of complex systems.,e
stability is an important property of the impulsive control
system. Mathematically, its goal is to stabilize an unstable
system by proper impulse. Up to now, a wide variety of
achievements of impulse control theory have been developed
in the literature [7–13].

Generally, there are at least one “impulsively” changeable
state variable appearing in a plant P, which could be de-
scribed as following control system:

_x(t) � Ax + ϕ(x), t≠ τk,

Δx � U(k, x), t � τk, k � 1, 2, . . . ,

x t0( 􏼁 � x0.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(1)

Here, x ∈ Rn denotes the state variable and U(k, x) the
impulse control law. We assume that the control instance
satisfies

t0 < τ1 < · · · · · · < τk < τk+1 · · · ,

limk⟶∞ τk �∞.
(2)

A continuous nonlinear function ϕ(x): Rn⟶ Rn

stratifies ϕ(t, 0) � 0 and ‖ϕ(x)‖≤L‖x‖, where L is a Lip-
schitz constant. Many researchers have paid more attention
on control system (1) and achieved many sufficient condi-
tions for the stability of these systems [14–20]. Feng et al.
consider single state-jumps impulsive systems with peri-
odically time windows and give stability criteria for the new
model [21]. To make the nonlinear impulse control system
more reasonable, parameter uncertainty and bounded gain
error are introduced into the corresponding impulsive
differential equations [22–25]. Considering the limitation of
machine and technology, Ma et al. investigate stabilization of
impulse control systems with gain error and obtain a suf-
ficient criterion for global exponential stability [26]. Zou
et al. study impulsive systems with bounded gain error and
form a sufficient criterion for the stability [27].

Cauchy–Schwarz inequality is an important tool to study
nonlinear systems [28–31]. Recently, Peng et al. generalize
the Cauchy–Schwarz inequality, which is used to deduce
asymptotic stability for a class of nonlinear control systems
[30]. Under the assumption U(k, x) � BCx, they study the
after nonlinear system:
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_x(t) � Ax + ϕ(x), t≠ τk,

Δx � BCx, t � τk, k � 1, 2, . . . ,

x t0( 􏼁 � x0,

⎧⎪⎪⎨

⎪⎪⎩
(3)

where B and C are constant matrixes. Based on the gen-
eralized Cauchy–Schwarz inequality, we consider a class of
nonlinear impulsive control systems with the parameter
uncertainty, which can be written as follows:

_x(t) � (A + ΔA)x + ϕ(x), t≠ τk,

Δx � BCx, t � τk, k � 1, 2, . . . ,

x t0( 􏼁 � x0.

⎧⎪⎪⎨

⎪⎪⎩
(4)

Generally, one can express the parameter uncertainty as
ΔA � GF(t)H with FT(t)F(t) ≤ I. Here, matrixes G and H

are given with appropriate dimensions. In this paper, we will
find some conditions for the stability of system (4). We
organize the paper as follows. In Section 2, we briefly in-
troduce some related lemmas. ,en, we show sufficient
conditions in Section 3. ,e simulation experiment is shown
in Section 4, and conclusion is listed in Section 4.

2. Related Lemmas

First of all, we introduce some lemmas to be used later.
,roughout this paper, λmax and λmin are denoted as the
largest eigenvalue and the smallest eigenvalue, respectively.
‖ · ‖ is denoted as the Euclidian norm of matric or vector.

Lemma 1 (see [30]). Suppose that P is positive definite. If
x, y ∈ Rn satisfy |xTy|≤ σ(xTx)(yTy) for a certain
σ ∈ [0, 1], then

x
T
Py􏼐 􏼑

2
≤

λmax(P) − g(
��
σ

√
)λmin(P)

λmax(P) + g(
��
σ

√
)λmin(P)

􏼠 􏼡

2

x
T
Px􏼐 􏼑 y

T
Py􏼐 􏼑,

(5)

where g(σ) � (1 − σ/1 + σ).

Lemma 2 (see [27]). Suppose that Q is symmetric and
positive definite; then, for any A, B ∈ Rn×n and μ> 0,

A
T
QB + B

T
QA≤ μA

T
QA +

1
μ

B
T
QB. (6)

Lemma 3 (see [32]). Suppose that H is a real symmetric
matrix; then,

λmin(H)x
T
x≤ x

T
Hx≤ λmax(H)x

T
x. (7)

3. The Proposed Results

We give the main results in this section. Specifically, we will
analyze the stabilization of impulsive control system (4) with
bounded gain error and parameter uncertainty and then list
some sufficient conditions which assure the origin of the
related systems is asymptotically stable.

Theorem 1. Suppose P ∈ Rn×n be a symmetric and positive
definite matrix, λ1 � λmin(P), λ2 � λmax(P), I be the identity
matrix, λ3 be the largest eigenvalue of P− 1(PA + ATP), and
λ4 be the largest eigenvalue of the matrix
P− 1(I + BC)TP(I + BC). If

x
T
(t)ϕ(x(t))

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ σ x
T

(t)x(t)􏼐 􏼑 ϕ(x(t))
Tϕ(x(t))􏼐 􏼑, (8)

for a certain σ ∈ [0, 1] and

λ3 + 2

������������������������

λ2λmax G
T
G􏼐 􏼑λmax H

T
H􏼐 􏼑

λ1
⎛⎝ ⎞⎠

􏽶
􏽴

+ 2L
λ2 − g(

��
σ

√
)λ1

λ2 + g(
��
σ

√
)λ1

��
λ2
λ1

􏽳

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠ τk+1 − τk( 􏼁≤ − ln cλ4( 􏼁, (9)

where

g(σ) �
1 − σ
1 + σ

, c> 1. (10)

then, we obtain that the origin of impulsive control
system (4) is asymptotically stable.

Proof. We choose the Lyapunov function as follows:

V(x(t)) � x
T
(t)Px(t). (11)

When t≠ τk, we obtain Dini’s derivative of V(x(t)) for
impulsive control system (4) as follows:

D
+
V(x(t)) � 2x

T
(t)P((A + ΔA)x(t) + ϕ(x(t))),

� 2x
T
(t)PAx(t) + 2x

T
(t)PΔAx(t) + 2x

T
(t)Pϕ(x(t)).

(12)
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Next, we will calculate the three parts of the above
formula (12), respectively.,ematrices P− 1(PA + ATP) and
P− 0.5(PA + ATP)P− 0.5 have the same eigenvalues. By
Lemma 3, we have

2x
T
(t)PAx(t) � x

T
(t) PA + A

T
P􏼐 􏼑x(t),

� x
T
(t)P

0.5
􏼐 􏼑 P

− 0.5
PA + A

T
P􏼐 􏼑P

− 0.5
􏼐 􏼑 P

0.5
x(t)􏼐 􏼑,

≤ λ3 x
T
(t)P

0.5
􏼐 􏼑 P

0.5
x(t)􏼐 􏼑,

� λ3V(x(t)).

(13)

According to the Cauchy–Schwarz inequality, we obtain

x
T
(t)PΔAx(t) ≤

����������������������������

x
T
(t)P

2
x(t)􏼐 􏼑 x

T
(t)ΔATΔAx(t)􏼐 􏼑

􏽱

.

(14)

Since parameter uncertainty ΔA � GF(t)H and
FT(t)F(t) ≤ I, inequality (14) can be rewritten as

2x
T
(t)PΔAx(t) ≤ 2

��������������������������������������

x
T
(t)P

2
x(t)􏼐 􏼑 x

T
(t)H

T
F

T
(t)G

T
GF(t)Hx(t)􏼐 􏼑

􏽱

,

≤ 2
�����������������������������������������������

x
T
(t)P

1/2
􏼐 􏼑P P

1/2
x(t)􏼐 􏼑􏼐 􏼑 x

T
(t)H

T
F

T
(t)G

T
GF(t)Hx(t)􏼐 􏼑

􏽱

,

≤ 2
������������������������������������

λ2V((x(t)))( 􏼁 λmax G
T
G􏼐 􏼑x

T
(t)H

T
IHx(t)􏼐 􏼑

􏽱

,

≤ 2
���������������������������������������

λ2V(x(t))( 􏼁 λmax G
T
G􏼐 􏼑λmax H

T
H􏼐 􏼑x

T
(t)x(t)􏼐 􏼑

􏽱

,

� 2
����������������������������������������������������

λ2V(x(t))) λmax G
T
G􏼐 􏼑λmax H

T
H􏼐 􏼑 x

T
(t)􏼐 P

1/2
􏼐 􏼑P

−1
P

(1/2)
x(t)􏼐 􏼑􏼐 􏼑

􏽱

,

≤ 2

������������������������

λ2λmax G
T
G􏼐 􏼑λmax H

T
H􏼐 􏼑

λ1
⎛⎝ ⎞⎠

􏽶
􏽴

V(x(t)).

(15)

According to Lemma 1, we obtain

2x
T
(t)Pϕ(x(t)) ≤ 2L

λ2 − g(
��
σ

√
)λ1

λ2 + g(
��
σ

√
)λ1

����������������������������

x
T
(t)Px(t)􏼐 􏼑 ϕ(x(t))

T
Pϕ(x(t))􏼐 􏼑

􏽱

,

≤ 2L
λ2 − g(

��
σ

√
)λ1

λ2 + g(
��
σ

√
)λ1

�����������������������������

λ2 x
T

(t)Px(t)􏼐 􏼑 ϕ(x(t))
Tϕ(x(t))􏼐 􏼑.

􏽱
(16)

Since ‖ϕ(x)‖≤L‖x‖, inequality (16) can be obtained as
follows:

2x
T

(t)Pϕ(x(t)) ≤ 2L
λ2 − g(

��
σ

√
)λ1

λ2 + g(
��
σ

√
)λ1

�����������������������

λ2 x
T
(t)Px(t)􏼐 􏼑 x(t)

T
x(t)􏼐 􏼑

􏽱

,

≤ 2L
λ2 − g(

��
σ

√
)λ1

λ2 + g(
��
σ

√
)λ1

�����������������������

λ2 x
T
(t)Px(t)􏼐 􏼑 x(t)

T
x(t)􏼐 􏼑

􏽱

,

≤ 2L
λ2 − g(

��
σ

√
)λ1

λ2 + g(
��
σ

√
)λ1

���������������������������
λ2
λ1

􏼠 􏼡 x
T
(t)Px(t)􏼐 􏼑 x(t)

T
Px(t)􏼐 􏼑

􏽳

,

� 2L
λ2 − g(

��
σ

√
)λ1

λ2 + g(
��
σ

√
)λ1

��
λ2
λ1

􏽳

V(x(t)).

(17)
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Combining inequalities (13), (15), and (17), we obtain

D
+
V(x(t)) ≤ λ3 + 2

�������������������������

λ2λmax G
T
G􏼐 􏼑λmax H

T
H􏼐 􏼑

λ1
⎛⎝ ⎞⎠

􏽶
􏽴

+ 2L
λ2 − g(

��
σ

√
)λ1

λ2 + g(
��
σ

√
)λ1

��
λ2
λ1

􏽳

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠V(x(t)). (18)

When t � τk, we compute the value of V as follows:

V(x(t) + BCx(t))|t�τk
� (x(t) + BCx(t))

T
P(x(t) + BCx(t))|t�τk

,

� x(t)
T
(I + BC)

T
P(I + BC)x(t)|t�τk

,

� x
T
(t)P

0.5
􏼐 􏼑 P

− 0.5
(I + BC)

T
P(I + BC)P

− 0.5
􏼐 􏼑 P

0.5
x(t)􏼐 􏼑|t�τk

.

(19)

It is known that the matrix
P− 0.5(I + BC)TP(I + BC)P− 0.5 has the same eigenvalues

with the matrix P− 1(I + BC)TP(I + BC). ,us, it follows
from (19) that

V(x(t) + BCx(t))|t�τk
≤ λ4 x

T
(t)P

0.5
􏼐 􏼑 P

0.5
x(t)􏼐 􏼑|t�τk

,

� λ4V(x(t))|t�τk
.

(20)

Now, we analyze the following comparison system:

_ω � λ3 + 2

������������������������

λ2λmax G
T
G􏼐 􏼑λmax H

T
H􏼐 􏼑

λ1
⎛⎝ ⎞⎠

􏽶
􏽴

+ 2L
λ2 − g(

��
σ

√
)λ1

λ2 + g(
��
σ

√
)λ1

��
λ2
λ1

􏽳

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠ω(t), t≠ τk,

ω τ+
k( 􏼁 � λ4ω τk( 􏼁,

ω τ+
0( 􏼁 � ω0 ≥ 0.

(21)

According to the related conclusion (see ,eorem 3 in
[29]), we obtain that if

􏽚
τk+1

τk

λ3 + 2

�������������������������

λ2λmax G
T
G􏼐 􏼑λmax H

T
H􏼐 􏼑

λ1
⎛⎝ ⎞⎠

􏽶
􏽴

+ 2L
λ2 − g(

��
σ

√
)λ1

λ2 + g(
��
σ

√
)λ1

��
λ2
λ1

􏽳

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠dt + ln cλ4( 􏼁≤ 0, c> 1. (22)

,e origin of impulsive control system (4) is asymp-
totically stable. □

Remark 1. If the parameter uncertainty ΔA � 0, the con-
dition of (9) became the result of ,eorem 3.1 in reference

[30].,us, the proposed method is a generalization of Peng’s
method.

In many practical applications, it is inevitable to put
impulses with errors due to the limitation of machine and
technology. So, we integrate the bounded gain error into the
impulsive system (4). For simplicity, let D � BC. We rewrite
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the corresponding system as

x(t) � (A + ΔA)x(t) + ϕ(x(t)), t≠ τk,

Δx(t) � (D + ΔD)x(t), t � τk, k � 1, 2, . . . ,

x t0( 􏼁 � x0,

⎧⎪⎪⎨

⎪⎪⎩
(23)

where ΔD denotes the bounded gain error and has the
following form: ΔD � mF(t)D with m> 0 and
FT(t)F(t) ≤ I. It is easy to obtain a similar analysis from
,eorem 1.

Theorem 2. Let P ∈ Rn×n be a symmetric and positive def-
inite matrix, λ1 � λmin(P), λ2 � λmax(P), I be the identity
matrix, and λ3 be the largest eigenvalue of P− 1(PA + ATP). If

x
T
(t)ϕ(x(t))

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ σ x
T
(t)x(t)􏼐 􏼑 ϕ(x(t))

Tϕ(x(t))􏼐 􏼑. (24)

for a certain σ ∈ [0, 1] and

λ3 + 2

������������������������

λ2λmax G
T
G􏼐 􏼑λmax H

T
H􏼐 􏼑

λ1
⎛⎝ ⎞⎠

􏽶
􏽴

+ 2L
λ2 − g(

��
σ

√
)λ1

λ2 + g(
��
σ

√
)λ1

��
λ2
λ1

􏽳

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠ τk+1 − τk( 􏼁≤ − ln cλ4( 􏼁, (25)

where

λ4 �
λ2
λ1

(1 + μ)λmax (I + D)
T
(I + D)􏼐 􏼑 + 1 +

1
μ

􏼠 􏼡m
2λmax D

T
D􏼐 􏼑􏼠 􏼡, (26)

g(σ) �
1 − σ
1 + σ

, c> 1. (27)

*en, the origin of impulsive control system (23) is as-
ymptotically stable.

Proof. We choose the following Lyapunov function as
follows:

V(x(t)) � x
T
(t)Px(t). (28)

According to inequality (18), Dini’s derivative of
V(x(t)) for impulsive control system (23) is acquired as
follows:

D
+
V(x(t)) ≤ λ3 + 2

�������������������������

λ2λmax G
T
G􏼐 􏼑λmax H

T
H􏼐 􏼑

λ1
⎛⎝ ⎞⎠

􏽶
􏽴

+ 2L
λ2 − g(

��
σ

√
)λ1

λ2 + g(
��
σ

√
)λ1

��
λ2
λ1

􏽳

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠V(x(t)). (29)

,en, we just need to compute
V(x(t) + (D + ΔD)x(t))|t�τk

.
We perform some calculations on

V(x(t) + (D + ΔD)x(t))|t�τk
and obtain

V(x(t) +(D + ΔD)x(t))|t�τk
� (x(t) +(D + ΔD)x(t))

T
P(x(t) +(D + ΔD)x(t))|t�τk

,

� x(t)
T
((I + D) + ΔD)

T
P((I + D) + ΔD)x(t)|t�τk

,

≤ λ2x(t)
T
((I + D) + ΔD)

T
((I + D) + ΔD)x(t)|t�τk

,

≤ λ2x(t)
T

(I + D)
T
(I + D) +(I + D)

TΔD + ΔDT
(I + D) + ΔDTΔD􏼐 􏼑x(t)|t�τk

.

(30)
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By using Lemma 2 and ΔD � mF(t)D, we rewrite in-
equality (30) as

V(x(t) +(D + ΔD)x(t))|t�τk
≤ λ2x

T
(t) (I + D)

T
(I + D) +(I + D)

TΔD + ΔDTΔD + ΔDT
(I + D)􏼐 􏼑x(t)|t�τk

,

≤ λ2x
T
(t) (1 + μ)(I + D)

T
(I + D) + 1 +

1
μ

􏼠 􏼡ΔDTΔD􏼠 􏼡x(t)|t�τk
,

� λ2x
T
(t) (1 + μ)(I + D)

T
(I + D) + 1 +

1
μ

􏼠 􏼡m
2
D

T
F

T
(t)F(t)D􏼠 􏼡x(t)|t�τk

.

(31)

It follows from (15) that

x
T
(t)x(t) � x

T
(t)P

1/2
􏼐 􏼑P

− 1
P
1/2

x(t)􏼐 􏼑≤
V(x(t))

λ1
. (32)

Combine inequalities (31) and (32) and FT(t)F(t) ≤ I,
we obtain

V(x(t) +(D + ΔD)x(t))|t�τk
� λ2x

T
(t) (1 + μ)(I + D)

T
(I + D) + 1 +

1
μ

􏼠 􏼡m
2
D

T
F

T
(t)F(t)D􏼠 􏼡x(t)|t�τk

,

≤ λ2x
T
(t) (1 + μ)(I + D)

T
(I + D) + 1 +

1
μ

􏼠 􏼡m
2
D

T
D􏼠 􏼡x(t)|t�τk

,

≤
λ2
λ1

(1 + μ)λmax (I + D)
T
(I + D)􏼐 􏼑 + 1 +

1
μ

􏼠 􏼡m
2λmax D

T
D􏼐 􏼑􏼠 􏼡V(x(t))|t�τk

,

� λ4V(x(t))|t�τk
.

(33)

Here, we emit the rest analysis process, which is similar
to,eorem 1. ,us, from equalities (29) and (33), we obtain
that if

λ3 + 2

������������������������

λ2λmax G
T
G􏼐 􏼑λmax H

T
H􏼐 􏼑

λ1
⎛⎝ ⎞⎠

􏽶
􏽴

+ 2L
λ2 − g(

��
σ

√
)λ1

λ2 + g(
��
σ

√
)λ1

��
λ2
λ1

􏽳

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠ τk+1 − τk( 􏼁≤ − ln cλ4( 􏼁,

λ4 �
λ2
λ1

(1 + μ)λmax (I + D)
T
(I + D)􏼐 􏼑 + 1 +

1
μ

􏼠 􏼡m
2λmax D

T
D􏼐 􏼑􏼠 􏼡,

(34)

the origin of impulsive control system (23) is asymptotically
stable. ,is completes the proof. □

4. A Numerical Example

In this section, we perform the proposed model on a nu-
merical example to display its effectiveness. ,e example is

produced by Qi and Chen [33]. Let x � [x1, x2, x3]
T,

ϕ(x) � [x2x3, −x1x3, x1x2]
T, and

A �

−a a 0

c −1 0

0 0 −b

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (35)
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,e corresponding state equation can be described as

_x � Ax + ϕ(x). (36)

According to the strategy of [33], some parameters of
this system are set as a � 35, b � (8/3), and c � 25. From
Figure 1, we can see that system (36) is chaotic for the initial
condition: x(0) � [3, 5, 10]T.

After simple calculation, we obtain that

‖ϕ(x)‖ �

�����������������������

x2x3( 􏼁
2

+ x1x3( 􏼁
2

+ x1x2( 􏼁
2

􏽱

,

≤max x1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, x2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, x3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏽮 􏽯

����������

x
2
1 + x

2
2 + x

2
3

􏽱

,

� max x1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, x2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, x3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏽮 􏽯‖x‖.

(37)

From Figure 1, we can intuitively find
max |x1|, |x2|, |x3|􏼈 􏼉≤ 45. Combining with inequality (37),
the parameter L can be set as 45. Since

45

40

35

30

25

20

15

10

5

0

x 3

20 10 0–10–40 –30 –20 –10 0 10 20 30 40x2 x1

Figure 1: ,e chaotic phenomenon of system (36) with the initial condition: x(0) � [3, 5, 10]T.

6

4

2

0

x1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
t

(a)

6
8

4
2
0

x2

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
t

(b)

5

0

x3

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
t

10

(c)

Figure 2: Time response curves for the controlled system (36) with the parameter uncertainty.
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x
Tϕ(x)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
≤
1
9

x
T
x􏼐 􏼑 ϕ(x)

Tϕ(x)􏼐 􏼑, (38)

the parameter σ is chosen as σ � (1/9). In this section, some
matrices are chosen as follows:

G � H �

0.5 0 0

0 0.5 0

0 0 0.5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

P � C �

1 0 0

0 1 0

0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

B �

−0.5 −0.01 0.02

−0.01 −0.5 0

0.02 0 −0.5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(39)

,us, the parameter uncertainty can be formed as

ΔA �

0.5 0 0

0 0.5 0

0 0 0.5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

0.1 sin(t) 0 0

0 0.1 sin(t) 0

0 0 0.1 sin(t)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

·

0.5 0 0

0 0.5 0

0 0 0.5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(40)

According to ,eorem 1, we calculate λ3 � 32.9638 and
λ4 � 0.2729. It follows from (8) that

τk+1 − τk ≤ −
ln cλ4( 􏼁

63.4638
. (41)

If c � 1.1, it yields τk+1 − τk ≤ 0.0190. We choose τk+1 −

τk � 0.0190 and show the simulation result in Figure 2. ,e
impulsive control system (36) is asymptotically stable.

4

2

0
x1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
t

(a)

6

4

2

0

x2

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
t

(b)

5

0

x3

10

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
t

(c)

Figure 3: Time response curves for the controlled system (36) with parameter uncertainty and gain error.
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Next, we consider the controlled system (36) with the
parameter uncertainty and the bounded gain error. ,e gain
error is detailed as ΔD � m sin(t)D in this section. We
perform some similar calculation on (25) and obtain
λ3 � 32.9638. We choose μ � 1 and then obtain
λ4 � 0.5458(1 + m2) from (26). Let c � 1.1 and m � 0.05;
then,

τk+1 − τk ≤ 0.0080. (42)

,us, we choose τk+1 − τk � 0.0080 and show the ex-
perimental result in Figure 3. From this figure, we can obtain
that the impulsive control system (36) is asymptotically
stable.

5. Conclusion

We study the asymptotic stability of impulsive control
systems with some uncertainty factors, such as the bounded
gain error and the parameter. ,e proposed sufficient
condition is established based on the generalized Cau-
chy–Schwarz inequality. We think the proposed issue is
more practically applicable than some existing ones.
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)e state observer for dynamic links in complex dynamical networks (CDNs) is investigated by using the adaptive method
whether the networks are undirected or directed. In this paper, a complete network model is proposed, which is composed of two
coupled subsystems called nodes subsystem and links subsystem, respectively. Especially, for the links subsystem, associated with
some assumptions, the state observer with parameter adaptive law is designed. Compared to the existing results about the state
observer design of CDNs, the advantage of this method is that a estimation problem of dynamic links is solved in directed
networks for the first time. Finally, the results obtained in this paper are demonstrated by performing a numerical example.

1. Introduction

In recent past decades, the research on CDNs has become a
hot topic in many fields [1–4]. From the perspective of large
system, a complete CDN contains many nodes and links
(weights of connections between nodes), which implies that
a complete CDN is composed of the nodes subsystem and
links subsystem, and the two subsystems are usually coupled
with each other [5–7]. It is worth noting that the existing
researches mainly focus on the nodes subsystem because
some behaviors are reflected by nodes such as synchroni-
zation [8, 9], stabilization [10, 11], and consensus [12, 13].

From the above results about the synchronization, sta-
bilization, consensus, or other problems of CDNs, it is easy
to see all states in CDNs, including the states of nodes and
links, are required to be measured accurately. However, this
assumption is too hard to be satisfied in practice because of
the influence of external environment, measurement costs,
and technical constraints [14]. )us, constructing state
observers for the CDNs to estimate the unknown states is
very necessary and important. Fortunately, some scholars
have discussed the state estimation problems of CDNs and

obtained some research results, including cases with the
coupling time delays [15, 16], packet loss [17, 18], stochastic
noisy disturbance [19], and uncertain coupling strength [20].

However, the above results only consider the estimation
problems of the states in nodes subsystem, and assume that
the links between nodes are known. It implies that the
measurement and state estimation problems of links in the
CDNs are ignored. In fact, due to the limitation of mea-
surement methods, the state values of links in CDNs are
more difficult to be measured accurately in practical situ-
ation, compared to the states of nodes. Hence, only a few
papers have studied and discussed the effective measurement
problem of the links between individuals (nodes), and the
measurement method mainly depends on the physical in-
teraction between individuals [21] or the adaptive weights of
links [22]. Similar to the state values of nodes, not all state
values of links’ weights can be measured and obtained.
)erefore, it is necessary to design observers to estimate the
unmeasured state values of links. As we know, there is only
one paper to have discussed the state estimation problem of
dynamic links in CDNs [23]. Unfortunately, the method
proposed in [23] is only effective for undirected networks

Hindawi
Computational Intelligence and Neuroscience
Volume 2020, Article ID 8846438, 8 pages
https://doi.org/10.1155/2020/8846438

mailto:gaozilin321@163.com
https://orcid.org/0000-0001-6214-3312
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/8846438


and cannot solve the estimation problem of dynamic links in
directed networks.

Inspired by the above discussions, this paper mainly
focuses on the state observer design for dynamic links in
directed networks. Specifically, a mathematical model for a
class of directed CDNs is proposed, which is described by
both the nodes subsystem and links subsystem with coupling
between the two subsystems, and we have designed a state
observer for the links subsystem by using the adaptive
method. )is means that a state estimation problem of
dynamic links in directed networks is solved for the first
time, which is also regarded as the biggest contribution of
this paper.

)e rest of this paper is organized as follows: in Section 2,
a complete CDN model is proposed, which is composed of
the nodes subsystem and links subsystem with outputs;
Section 3 introduces the design process of state observer for
the links subsystem; in Section 4, the simulation example is
presented and used to demonstrate the effectiveness of this
method; finally, the conclusions are given in Section 5.

1.1. Notations. )e n-dimensional Euclidean space is
denoted as Rn, the set of n × n real matrices is denoted as
Rn×n, the Euclidean norm of a vector or a matrix is denoted
as ‖ · ‖, and the transpose of matrix A and n-dimensional
identity matrix is denoted as AT and In, respectively.

2. Preliminaries and Model Description

If the states of nodes and links in CDNs evolve over time,
then the mathematical model of CDNs, including directed
and undirected networks, can be described by both the nodes
subsystem and links subsystem, where the two subsystems
are coupled with each other. In this paper, we only consider
the case that each node is n-dimensional continuous system
in CDNs with N nodes, then the nodes subsystem and links
subsystem can be described by vector differential equations
and matrix differential equation as follows, respectively:

_xi � Aixi + Bifi xi( 􏼁 + ci 􏽘

N

j�1
pij(t)Hj xj􏼐 􏼑,

i � 1, 2, . . . , N,

(1)

_P � Θ1P + PΘT2 + G(x),

Y1 � ΥP, Y2 � ΥPT
,

⎧⎨

⎩ (2)

where xi � [xi1, xi2, . . . , xin]T ∈ Rn is the state vector of node
i; the constant matrices Ai ∈ Rn×n and Bi ∈ Rn×m; the vector
functions fi(xi) � [fi1(xi), fi2(xi), . . . , fim(xi)]

T and
Hj(xj) � [Hj1(xj), Hj2(xj), . . . , Hjn(xj)]

T; ci > 0 is a
known constant, which denotes the common connection
strength of node i in the network; the constant matrices
Θ1 ∈ RN×N and Θ2 ∈ RN×N; the coupling matrix
G(x) ∈ RN×N, and x � [xT

1 , xT
2 , . . . , xT

N]T ∈ Λ⊆RNn, where Λ
is a bounded and closed set in RNn; the output matrix
Υ ∈ RN1×N is given; and the links matrix
P � P(t) � (pij(t))N×N, where the state variable pij(t)

denotes the weight of link from node j to node i. Especially,
pji � pij for undirected networks, and at least, one pair i, j

such that pji ≠pij for directed networks. In addition, if i � j,
then pij denotes the link strength of node i itself.

For the CDNs composed of subsystems (1) and (2), the
following instructions are given:

(1) )e background of dynamic links is given as follows.
For example, the biological neural networks consist
of neurons (nodes) and synapse (links), and Gamma
oscillations in neurons may cause the synaptic fa-
cilitation, which is regarded as a dynamic behavior of
the links [5, 6, 24]. Similarly, the web winding sys-
tems can be regarded to be composed of motors
(nodes) and the web (links), and the regulation
values of web tensions vary with the speed of the
motors, which is also regarded as a dynamic behavior
of links [25]. In the above examples, the state values
of links need to be measured by some sensors.

(2) )e existing research results show that the nodes in
networks can emerge synchronization or stabiliza-
tion phenomenon with the help of the links, which
mean that the nodes are the main body of syn-
chronization and stabilization [8–11]. In contrast,
the links as another part of networks can also emerge
some characteristic phenomena in many real net-
works, such as the structural balance in social net-
works [5, 6, 26]. It is worth noting that the paper [26]
has researched on structural balance by using the
Riccati matrix differential equation, and the reason is
that this type of equation is more easily to emerge the
phenomenon of structural balance. In view of this,
we choose linear Riccati matrix differential equation
to describe the links subsystem. Clearly, the model of
CDNs, composed of both nodes subsystem (1) and
links subsystem (2), can help us to understand and
explain the dynamic behaviors of networks in a
better way.

(3) )e subsystem (2) is used to describe dynamic
change of links’ weights in the CDNs, and in general,
the CDNs are directed. However, if Θ1 � Θ2 and
G(x) � (G(x))T, then we can obtain P � PT, while
the initial value of the state in subsystem (2) satisfies
P(0) � (P(0))T. Hence, the subsystems (1) and (2)
can be used to describe both undirected and directed
networks (the undirected networks can be regarded
as a special case of directed networks). To the best of
my knowledge, there is only one paper to have solved
the state estimation problem of links subsystem [23].
However, this method is only effective for undirected
networks, but not for directed networks. )is drives
us to study estimation problems of dynamic links in
directed networks.

(4) It is difficult to accurately measure all states of the
links between individuals (nodes) in practical ap-
plications, which imply that only partial states in (2)
can be measured accurately and made available
(N1 <N). It is worth noting that the precise
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measurement of the partial states is bidirectional;
that is, if pij(t) is measurable, then pji(t) must also
be measurable. )at is why the two outputs Y1 and
Y2 appear in (2).

Now, some useful definitions and operators involved in
this paper will be introduced as follows.

Definition 1 (see [27]). )e application vec: Rk×l⟶ Rkl is
defined by

vec(H) � h11, . . . , h1l, h21, . . . , h2l, . . . , hk1, . . . , hkl􏼂 􏼃
T
,

(3)

where the matrix H � (hij)k×l is called the vectorization
operator.

Definition 2 (see [27]). If there are two matrices H ∈ Rk×l

and Z ∈ Rc×d, then the Kronecker product of H and Z is
denoted as H⊗Z ∈ Rkc×ld and defined as follows:

H⊗Z �

h11Z h12Z · · · h1lZ

h21Z h22Z · · · h2lZ

· · · ·

· · · ·

hk1Z hk2Z · · · hklZ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4)

By using Definitions 1 and 2, the following basic
properties about Kronecker product and operator vec(·) can
be obtained and shown as follows [27]:

(1) (H⊗ S)(X⊗W) � (HX)⊗ (SW)

(2) (H⊗W)T � HT ⊗WT

(3) (S⊗X)− 1 � S− 1 ⊗X− 1

(4) vec(HSW) � (H⊗WT)vec(S)

(5) vec(HS + SW) � (H⊗ I + I⊗WT)vec(S)

S and X are the matrices with compatible dimensions, and I

represents the identity matrix with compatible dimensions.
Especially, it is assumed that both S and X are invertible in
property (3).

According to Definitions 1 and 2 and their corre-
sponding properties, the Riccati differential equation (2) can
be rewritten as

vec( _P) � Avec(P) + vec(G(x)),

vec Y1( 􏼁 � C1vec(P), vec Y2( 􏼁 � C1vec P
T

􏼐 􏼑,

⎧⎨

⎩ (5)

where A � Θ1 ⊗ IN + IN ⊗Θ2 and C1 � Υ⊗ IN.

Assumption 1. For the links subsystem (2), the double
matrices (Θ1,Υ) and (Θ2,Υ) are completely stable.

If Assumption 1 is true, then we can obtain matrices
K1 ∈ RN×N1 andK2 ∈ RN×N1 , which canmakeΘ1 + K1Υ and
Θ2 + K2Υ to be Hurwitz stable, respectively. )us, as long as
any matrices Q1 > 0 and Q2 > 0 are given, there must be
positive definite matrices M1 ∈ RN×N and M2 ∈ RN×N that
satisfy the following two Lyapunov equations, respectively:

Θ1 + K1Υ( 􏼁
T
M1 + M1 Θ1 + K1Υ( 􏼁 � −Q1, (6)

Θ2 + K2Υ( 􏼁
T
M2 + M2 Θ2 + K2Υ( 􏼁 � −Q2. (7)

Lemma 1. If Assumption 1 is true, then the following Lya-
punov equations

Θ1 ⊗ IN + 􏽥K1C1( 􏼁
T 􏽥M + 􏽥M Θ1 ⊗ IN + 􏽥K1C1( 􏼁 � − 􏽥Q1,

IN ⊗Θ2 + 􏽥K2C2( 􏼁
T 􏽥M + 􏽥M IN ⊗Θ2 + 􏽥K2C2( 􏼁 � − 􏽥Q2,

(8)

hold, where 􏽥M � M1 ⊗M2, 􏽥Q1 � Q1 ⊗M2, 􏽥Q2 � M1 ⊗Q2,
􏽥K1 � K1 ⊗ IN, 􏽥K2 � IN ⊗K2, and C2 � IN ⊗Υ. Clearly,
􏽥M> 0, 􏽥Q1 > 0, and 􏽥Q2 > 0.

Proof. If Assumption 1 holds, then the following
equations can be obtain from (6) and (7):

Θ1 + K1Υ( 􏼁
T
M1􏽨 􏽩⊗IN + M1 Θ1 + K1Υ( 􏼁􏼂 􏼃⊗IN � −Q1⊗IN,

(9)

IN⊗ Θ2 + K2Υ( 􏼁
T
M2􏽨 􏽩 + IN⊗ M2 Θ2 + K2Υ( 􏼁􏼂 􏼃 � −IN⊗Q2.

(10)

Using the properties of Kronecker product, (9) and (10)
can be rewritten as

Θ1 ⊗ IN + K1 ⊗ IN( 􏼁 Υ⊗ IN( 􏼁􏼂 􏼃
T

M1 ⊗ IN( 􏼁

+ M1 ⊗( IN􏼁 Θ1 ⊗ IN + K1 ⊗ IN( 􏼁 Υ⊗ IN( 􏼁􏼂 􏼃 � −Q1 ⊗ IN,

IN ⊗Θ2 + IN ⊗K2( 􏼁 IN ⊗Υ( 􏼁􏼂 􏼃
T

IN ⊗M2( 􏼁

+ IN ⊗( M2􏼁 IN ⊗Θ2 + IN ⊗K2( 􏼁 IN ⊗Υ( 􏼁􏼂 􏼃 � −IN ⊗Q2.

(11)

Thus, we can get

Θ1⊗IN + 􏽥K1C1􏼂 􏼃
T

M1⊗IN( 􏼁 + M1⊗IN( 􏼁 Θ1⊗IN + 􏽥K1C1􏼂 􏼃

� −Q1⊗IN,

(12)

IN⊗Θ2 + 􏽥K2C2􏼂 􏼃
T

IN⊗M2( 􏼁 + IN⊗M2( 􏼁 IN⊗Θ2 + 􏽥K2C2􏼂 􏼃

� −IN⊗Q2.

(13)

If we multiply both sides of the equalities (12) and (13) by
(IN ⊗M2) and (M1 ⊗ IN) from right, respectively, then we
get that

Θ1 ⊗ IN + 􏽥K1C1􏼂 􏼃
T

M1 ⊗ IN( 􏼁 IN ⊗M2( 􏼁

+ M1 ⊗ IN( 􏼁 Θ1 ⊗ IN + 􏽥K1C1􏼂 􏼃 IN ⊗M2( 􏼁

� − Q1 ⊗ IN( 􏼁 IN ⊗M2( 􏼁,

(14)

IN ⊗Θ2 + 􏽥K2C2􏼂 􏼃
T

IN ⊗M2( 􏼁 M1 ⊗ IN( 􏼁

+ IN ⊗M2( 􏼁 IN ⊗Θ2 + 􏽥K2C2􏼂 􏼃 M1 ⊗ IN( 􏼁

� − IN ⊗Q2( 􏼁 M1 ⊗ IN( 􏼁.

(15)
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It is noticed that (M1 ⊗ IN)(IN ⊗M2) � M1 ⊗M2 �

(INM1)⊗ (M2IN) � (IN ⊗M2)(M1 ⊗ IN). )erefore, the
equalities (14) and (15) can be rewritten as follows:

Θ1⊗IN + 􏽥K1C1􏼂 􏼃
T

M1⊗M2( 􏼁 + M1⊗M2( 􏼁 Θ1⊗IN + 􏽥K1C1􏼂 􏼃

� −Q1⊗M2,

IN⊗Θ2 + 􏽥K2C2􏼂 􏼃
T

M1⊗M2( 􏼁 + M1⊗M2( 􏼁 IN⊗Θ2 + 􏽥K2C2􏼂 􏼃

� −M1⊗Q2.

(16)

Thus, Lemma 1 is completely proved.

Assumption 2. For subsystem (2), in which the coupling
matrix G(x) satisfies that G(x) � M−1

1 Υ
TΨ(x)M−1

2 , where
Ψ(x) � (ψij)N1×N andψij � xT

i xj.
If Assumption 2 holds, then we can get that

‖Ψ(x)‖ �
���������������

􏽐
N1
i�1 􏽐

N
j�1 (xT

i xj)
2

􏽱
≤

�������������������

􏽐
N1
i�1 􏽐

N
j�1 (‖xi‖ · ‖xj‖)2

􏽱
≤ -

�����������������
􏽐

N
i�1 ‖xi‖

2 􏽐
N
j�1 ‖xj‖

2
􏽱

� ‖x‖2. Meanwhile, we note that Λ is
a bounded and closed set in RNn, and x ∈ Λ. )us, there
exists a positive constant L to satisfy the inequality ‖x‖2 ≤ L.

General speaking, L is unknown. However, we can use
the adaptive method to estimate it. In this paper, we use
􏽢L � 􏽢L(t) to denote the estimated value of L. Hence, the
estimation error is denoted as 􏽥L � 􏽢L − L.

3. Main Results

Definition 3. Designing a matrix differential system
_􏽢P � F(􏽢P, Y1, Y2,

􏽢L), if the state 􏽢P satisfies
limt⟶+∞(P − 􏽢P) � 0, then the matrix differential system
_􏽢P � F(􏽢P, Y1, Y2,

􏽢L) can be regarded as a state observer of the
links subsystem (2).

If Assumptions 1 and 2 hold, the state observer of the
links subsystem (2) can be designed and presented as
follows:

_􏽢P � Θ1 + K1Υ( 􏼁􏽢P + 􏽢P Θ2 + K2Υ( 􏼁
T

+ Γ 􏽢P, Y1, Y2,
􏽢L􏼐 􏼑 − K1Y1 − Y

T
2K

T
2 ,

(17)

with the following adaptive law

_􏽢L �
1
ρ

vec Y1( 􏼁 − C1vec(􏽢P)
����

����, (18)

where 􏽢P denotes the estimated value of the state P in (2); the

robust term Γ(􏽢P, Y1, Y2,
􏽢L) �
Ω,Υ􏽢P≠Y1
0,Υ􏽢P � Y1

􏼨 , where

Ω � 􏽢L((M−1
1 Υ

T(Y1 − Υ􏽢P)M−1
2 )/(‖Y1 − Υ􏽢P‖)), ρ is a given

positive constant, and the matrices K1, K2, M1, and M2 can
be obtained by solving the Lyapunov equations (6) and (7),
respectively.

According to (3) and (4), we can deduce from (17) that

vec( _􏽢P) � A + 􏽥K1C1 + 􏽥K2C2( 􏼁vec(􏽢P)

+ vec Γ 􏽢P, Y1, Y2,
􏽢L􏼐 􏼑􏼐 􏼑 − 􏽥K1vec Y1( 􏼁

− 􏽥K2vec Y
T
2􏼐 􏼑.

(19)

Clearly, ‖Y1 − Υ􏽢P‖ � ‖YT
1 − 􏽢P

TΥT‖ � ‖vec(Y1 − Υ􏽢P)‖ �

‖vec(YT
1 − 􏽢P

TΥT)‖; thus, we get vec(Ω) � 􏽢L(( 􏽥M
− 1

CT
1

[vec(Y1) − C1vec(􏽢P)])/(‖vec(Y1) − C1vec(􏽢P)‖)).
In this paper, the estimation error is denoted by

E � P − 􏽢P. By using (3), (4), and properties about Kronecker
product and vec(·) operator, we can get the following error
system:

vec( _E) � A + 􏽥K1C1 + 􏽥K2C2( 􏼁vec(E) + 􏽥M
− 1

C
T
1 vec(Ψ(x))

− vec Γ 􏽢P, Y1, Y2,
􏽢L􏼐 􏼑􏼐 􏼑 .

(20)

Theorem 1. If Assumptions 1 and 2 are true, then the matrix
differential system (17) with the parameter adaptive law (18)
is the state observer of the links subsystem (2).

Proof. Consider the following Lyapunov function:

V �
1
2
vec(E)

T 􏽥Mvec(E) +
1
2
ρ􏽥L

2
. (21)

Calculating the orbit derivative of V along (20) gives that

_V � vec(E)
T 􏽥Mvec( _E) + ρ􏽥L _􏽢L

� vec(E)
T 􏽥M A + 􏽥K1C1 + 􏽥K2C2( 􏼁vec(E)􏼈 + 􏽥M

− 1
C
T
1 vec(Ψ(x)) − vec Γ 􏽢P, Y1, Y2,

􏽢L􏼐 􏼑􏼐 􏼑􏽯 + ρ􏽥L
_􏽢L

� vec(E)
T 􏽥M Θ1 ⊗ IN + 􏽥K1C1( 􏼁vec(E) + vec(E)

T 􏽥M IN ⊗Θ2 + 􏽥K2C2( 􏼁vec(E)

+ vec(E)
T
C
T
1 vec(Ψ(x)) + ρ􏽥L _􏽢L −

􏽢L
vec(E)

T
C
T
1 C1vec(E)􏼂 􏼃

C1vec(E)
����

����
, C1vec(􏽢P)≠ vec Y1( 􏼁

0, C1vec(􏽢P) � vec Y1( 􏼁

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩
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≤
1
2
vec(E)

T Θ1 ⊗ IN + 􏽥K1C1( 􏼁
T 􏽥M􏼔 + 􏽥M Θ1 ⊗ IN + 􏽥K1C1( 􏼁􏼃vec(E)

+
1
2
vec(E)

T
IN ⊗Θ2 + 􏽥K2C2( 􏼁

T 􏽥M􏼔 + 􏽥M IN ⊗Θ2 + 􏽥K2C2( 􏼁􏼃vec(E)

+ vec(E)
T
C
T
1

����
����‖vec(Ψ(x))‖ + ρ􏽥L _􏽢L −

􏽢L vec(E)
T
C
T
1

����
����, C1vec(􏽢P)≠ vec Y1( 􏼁

0, C1vec(􏽢P) � vec Y1( 􏼁

⎧⎪⎨

⎪⎩

≤ −
1
2
vec(E)

T 􏽥Q1 + 􏽥Q2􏼐 􏼑vec(E) + L vec(E)
T
C
T
1

����
���� + ρ􏽥L _􏽢L

−

􏽢L vec(E)
T
C
T
1

����
����, C1vec(􏽢P)≠ vec Y1( 􏼁

0, C1vec(􏽢P) � vec Y1( 􏼁

⎧⎪⎨

⎪⎩

� −
1
2
vec(E)

T 􏽥Q1 + 􏽥Q2􏼐 􏼑vec(E) + ρ􏽥L _􏽢L + 􏽢L vec(E)
T
C
T
1

����
���� − 􏽥L vec Y1( 􏼁 − C1vec(􏽢P)

����
����

−

􏽢L vec(E)
T
C
T
1

����
����, C1vec(􏽢P)≠ vec Y1( 􏼁

0, C1vec(􏽢P) � vec Y1( 􏼁

⎧⎪⎨

⎪⎩

� −
1
2
vec(E)

T 􏽥Q1 + 􏽥Q2􏼐 􏼑vec(E) + 􏽥L ρ _􏽢L − vec Y1( 􏼁 − C1vec(􏽢P)
����

����􏼒 􏼓

� −
1
2
vec(E)

T 􏽥Q1 + 􏽥Q2􏼐 􏼑vec(E). (22)

From inequality (22), we can obtain that the estimation
error matrix E is bounded and E⟶t→ +∞0. )us, )eorem 1 is
completely proved.

4. Simulation Example

In this paper, we consider a continuous analog Hopfield
network with 10 neurons (N � 10) [23, 28], which is
composed of nodes subsystem and links subsystem, where
the nodes subsystem is described as follows:

_xi � Aixi + Bifi xi( 􏼁 + ci 􏽘

10

j�1
pijHj xj􏼐 􏼑, i � 1, 2, . . . , 10,

(23)

where Ai � Bi � −i, fi(xi) � −5 cos t, ci � i, and
Hj(xj) � (1 − e− xj )/(1 + e−xj ).

Meanwhile, we assume that the changes in the links’
weights pij(t) satisfy the Riccati differential equation (2). If
we choose N1 � 5 and ρ � 100 and randomly select matrices
Θ1 ∈ R10×10, Θ2 ∈ R10×10, and Υ ∈ R5×10 satisfying
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–40

–20
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40

60
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Figure 1: State trajectories of subsystem (1).
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Assumption 1, then the matrices K1, M1 and K2, M2 can be
obtained by solving the Lyapunov equations (6) and (7),
respectively. )us, we can get the coupling matrix G(x) �

M−1
1 Υ

TΨ(x)M−1
2 in (2) satisfying Assumption 2.

Finally, randomly select the initial values of states
xi(0), 􏽢L(0), and pij(0), i, j � 1, 2, . . . , 10 in the range
(−5, 5), and the numerical results are shown in Figures 1–5:

(i) From Figures 2–4, we can see that the estimation
error converges asymptotically to zero. According to
Definition 3, we know that the Riccati dynamical
equation (17) with the adaptive law (18) is a state
observer of the subsystem (2), and the state observer
is effective.

(ii) Compared to the results in [23], our advantage is that
the result about the state observer of the subsystem
(2) is true whatever the network is directed or un-
directed. Meanwhile, it is worth noting that, due to
the effect of the parameter adaptive law (18), the state
observer (17) does not contain the states of the
nodes. )is shows that the state observer is less
affected by the dynamic changes in the nodes and
thus improves the robustness of the state observer.

5. Conclusions

In this paper, a complete model of CDNs is proposed, which
is composed of two coupled subsystems, called nodes
subsystem and links subsystem, respectively. Contrary to the
existing results on the state estimation problem of nodes
subsystem, we mainly focus on the state estimation of the
links subsystem with outputs and have designed a state
observer with the parameter adaptive law to estimate the
state of the links subsystem in this paper. In particular, this
method solves the estimation problem of dynamic links in
directed networks for the first time. Meanwhile, it implies
that we can use the state estimation information of the links
to directly design a controller for the links subsystem; thus,
some control problems may be solved effectively. )erefore,
the design method of state observer for dynamic links
proposed in this paper can enrich the achievements about
the state estimation of CDNs.

Data Availability

In this paper, we submitted data mainly related to theoretical
proof and numerical simulation, in which the part of nu-
merical simulation is realized by Matlab software; if
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Figure 4: State trajectories of estimation error system (20).
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necessary, we can provide simulation source program and
relevant data at any time.
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Sign language translation (SLT) is an important application to bridge the communication gap between deaf and hearing people. In
recent years, the research on the SLT based on neural translation frameworks has attracted wide attention. Despite the progress,
current SLT research is still in the initial stage. In fact, current systems perform poorly in processing long sign sentences, which
often involve long-distance dependencies and require large resource consumption. To tackle this problem, we propose two
explainable adaptations to the traditional neural SLTmodels using optimized tokenization-related modules. First, we introduce a
frame stream density compression (FSDC) algorithm for detecting and reducing the redundant similar frames, which effectively
shortens the long sign sentences without losing information. 'en, we replace the traditional encoder in a neural machine
translation (NMT) module with an improved architecture, which incorporates a temporal convolution (T-Conv) unit and a
dynamic hierarchical bidirectional GRU (DH-BiGRU) unit sequentially. 'e improved component takes the temporal tokeni-
zation information into consideration to extract deeper information with reasonable resource consumption. Our experiments on
the RWTH-PHOENIX-Weather 2014Tdataset show that the proposedmodel outperforms the state-of-the-art baseline up to about
1.5+ BLEU-4 score gains.

1. Introduction

Sign languages are visual-based natural languages used by
the deaf people for their communication. Since most hearing
people cannot understand sign language, sign language
translation (SLT) has become an important application to
bridge the communication gap between deaf and hearing
people. In recent years, researchers have successively pro-
posed deep learning models for neural SLT (e.g., [1–6]).

'e existing SLT models basically follow a multimodal
architecture, where convolutional neural network (CNN)
and neural machine translation (NMT) are sequentially
connected. 'e CNN module is used to extract image-level
features, reduce the fine-grained input, and generate a
tokenization layer as the input to the NMT module; the

NMT module is the main translation module for encoding
and decoding to generate target sentences. 'e above basic
SLTarchitecture was first proposed by Camgoz et al. [1]. 'e
tokenization layer serves as a hub layer in this architecture.
Hence, optimizing it can improve the performance of both
CNN and NMT.

However, most of the current SLT works only improve
the CNN or NMT module separately, resulting in poor
connection between the two modules which causes two
serious problems:

(1) Poor interpretability: most of the improvements
focus on some common tricks, rather than consid-
ering the uniqueness of SLT. 'e characteristics of
SLTdetermine that it is a special NMT task, although
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the input form is different from conventional spoken
language. 'erefore, analyzing from the input form
may help us to find some interesting SLTphenomena
and get a better interpretability. For a spoken sen-
tence, the input is usually a series of words. Although
there are semantic connections between words, they
are expressed in a discrete form. As for a sign
sentence, the input is usually a video signal. In actual
application, the video needs to be framed into
continuous frame images. Intuitively, we can com-
pare each video frame to the basic word element of
sign language. Unlike spoken language, the video
frames of any sign sentence are continuous, and the
order is closely related. In other words, it is illegal to
reverse the order between any frames. Specifically,
we found that there are many similar frames in the
neighborhood, and these frames repeatedly express
some meanings, which will cause redundant infor-
mation and long sentence. However, no works use
this visual phenomenon to custom optimization
algorithms for sign language.

(2) Poor performance for long sentences: longer sen-
tences result in long-distance dependencies, large
resource consumption, and low evaluation scores.
'is shows that both CNN and NMTmodules need
to be improved. However, the visual CNN module is
obtained more attention, and the work of the in-
novative NMT module is obtained less attention.
Besides, the improvement from the perspective of
model interpretation is also a very important aspect.

Longer sentences mean more frames. 'e longer the
sentence is, the more complicated the relationship between
video frames will have, which leads to insufficient con-
nection between frames. In theory, the amount of calculation
may increase exponentially. Hence, the SLTmodel generally
specifies a maximum number of input frames for the CNN
module. For longer sentences, how to express more effective
information within a certain window size is a meaningful
research point. However, there is no work considering re-
ducing useless frames from understandable visual features.
Especially for longer sentences, CNN is more pressured and
less efficient. If we can reduce the number of sign language
frames according to the visual surface image features, then
we may still get the same sentence meaning with a fewer
frames (like turning long sentences into short sentences),
which can not only reduce the convolution pressure, but also
generate a higher quality tokenization layer. Moreover, the
tokenization layer is then input into the NMT module, so
optimizing it in the tokenization level will be a key role for
improving the subsequent NMT.

To solve the above mentioned issues, we propose a novel
SLTmodel with a better interpretability for longer sentences,
as shown in Figure 1. 'ere are two improvements with
tokenization-related units.

First, we propose a frame-level frame stream density
compression (FSDC) algorithm, which can compare pixels at
the image level in an unsupervised manner, reducing re-
dundant frames in temporal neighborhood. Intuitively, it

can be understood as retaining high-density information by
comparing the similarity of input image frames in the
neighborhood. 'e reduced convolution information can
generate tokenization with a smaller size, which allows more
information to be transmitted within the limited window
length. Besides, for the NMTmodule, reducing the number
of input frames means a shorter length of input. Overall, this
is a visually interpretable optimization of sign language that
converts long sentences into short sentences.

Second, we replace the traditional encoder in the NMT
module with an improved architecture to further strengthen
the association between long sentence video frames. Inspired
by the study of FairSeq [7], a hybrid model is proposed. 'e
model incorporates a temporal convolution (T-Conv) unit
and a dynamic hierarchical bidirectional GRU (DH-BiGRU)
unit sequentially. It first convolves the input in the time
domain and then encodes the semantic information in the
subsequent deep hierarchical RNNs. We can still treat the
tokenization layer as a vector representation layer of the
dimensionality-reduced frames. As an improvement,
3DCNN/C3D was used in the CNN module [8, 9] to
strengthen the association between frames in the time do-
main. However, it requires larger resource consumption and
does not always work well in the case of low sign language
resources. We observed that, if the NMTmodule convolves
the sign sentences at the tokenized level in the time domain
using 2DCNN, it can not only approach the function of
3DCNN/C3D, but also approach the speed of 2DCNN. All in
all, this also shortens long sentences in the time domain and
deepens the RNN structure in a hierarchical way. In this
case, the NMT structure can handle longer sentences as
easily as short sentences.

'e main contributions of this paper are as follows:

(1) We have proposed a novel SLT model with toke-
nization-related units, which can better handle
longer sentences in lower resource consumption,
and has a better interpretability.

(2) We have introduced for the first time an unsuper-
vised FSDC algorithm to compress the density of the
input frames without removing key information.
'is method is suitable for many similar video tasks.

(3) We have proposed a novel NMTmodule for SLTwith
optimized encoder-related units, temporal convolu-
tion and dynamic hierarchical bidirectional GRU
hybrid network (TC-DHBG-Net), which compresses
the effective information of the tokenization layer
from the time domain so that long sentences are
further shortened on the time domain to facilitate
hierarchical GRUs to find semantic information.

(4) Moreover, our improved neural SLTmodel has been
made publicly available (https://github.com/binbin
jiang/nslt_xmu).

2. Our Proposed Approaches

As a special language, sign language has its own specific
linguistic rules as well [10], so the SLT model follows the

2 Computational Intelligence and Neuroscience

https://github.com/binbinjiang/nslt_xmu
https://github.com/binbinjiang/nslt_xmu


NMT framework, as shown in Figure 1. Now suppose that
y � (y1, y2, . . . , yTy

) is an output sentence that corresponds
to the sign video frame sequence x � (x1, x2, . . . , xTx

) in the
training set. At the very beginning, we use the unsupervised
FSDC algorithm module to optimize the frame-level input
sentences. 'en, a spatial CNN is used to convolute frames
to gain tokenization layer which is then input into the NMT
module for encoding and decoding. In this section, we will
introduce the proposed approaches in detail.

2.1. Unsupervised FSDC Module. As shown in Figure 2(a),
the spatial CNN is mainly used to reduce the fine-grained
input of video frames. In SLT, the video frame is the most
basic input unit. 'e compression of video frames directly
affects the processing efficiency of CNN and the quality of
the tokenization layer. 'erefore, optimizing the number of
frames also means optimizing the tokenization layer.

For any video dataset, we must follow a fixed frames per
second (FPS) to frame all the videos, which leads to massive
similar redundant frames in the temporal neighborhood. As
an illustration, a signer signs the same sign language at fast
and slow speeds, respectively. Although the two express the
same meaning, they produce videos of different lengths.
Obviously, a video signed at a slower speed will get more
redundant similar frames in temporal neighborhood.

To reduce this effect, the FSDC algorithm is proposed.
We delete the less-important frames by comparing the
similarity index and to keep the sequence of the frames fixed
at the same time. In theory, it helps us to reduce the amount
of training data as well as errors caused on account of sign
speed and FPS.

We use the SSIM algorithm [11] to calculate the simi-
larity between two images, which is close to the intuitive
feeling of the human eye. When calculating the structural
similarity of frame fi and frame fj, the corresponding
calculation flow chart is shown in Figure 3. 'e formula of
the SSIM algorithm is as follows:

SSIM fi, fj􏼐 􏼑 � L fi, fj􏼐 􏼑􏽨 􏽩
x

· C fi, fj􏼐 􏼑􏽨 􏽩
y

· S fi, fj􏼐 􏼑􏽨 􏽩
z
, (1)

where L(∗) denotes the luminance comparison, C(∗ ) de-
notes the contrast comparison, and S(∗ ) denotes the
structure comparison. Note that x> 0, y> 0, and z> 0, we
initialize x � y � z � 1. SSIM(∗ ) is a decimal between 0 and
1. Extremely, SSIM � 1 means two images are completely
identical, while SSIM � 0 means completely different.

'e FSDC calculates the SSIM indexes for both each
frame and all frames in the neighborhood. If the SSIM index
is greater than a certain threshold δ(0< δ < 1), only one of
them will be retained, while the rest will be discarded as
redundant frames. A running example of Algorithm 1 is
shown in Figure 2(b).

Formally, we explore frame-level input tokenization as
shown in Figure 2(a) and map the feature vectors to the
tokenization layer as

Γ � SpatialCNN(FSDC(x)). (2)

2.2. TC-DHBG-Net for Encoding Stage. Figure 4 shows the
improved NMT module we proposed. Specifically, we im-
prove the encoder in two folds. 'e first is T-Conv unit for
the tokenization layer; and the second is DH-BiGRUs for
mining semantic information.

'e T-Conv unit is inspirited by the work of Bérard et al.
[12] on the end-end speech task. It takes as input a sequence
of features for tokenization layer. 'ese features are given as
input to two nonlinear (tanh) layers, which output new
features of size n. In order to enhance the optical flow feature
capture, we concatenate the positional encoding [13] to
obtain the feature vectors with position information. Like
[14], this new set of features is then passed to a stack of two
convolutional layers. Each layer applies 16 convolution
filters of shape (3, 3, depth) with a stride of (2, 2) w.r.t. time
and feature dimensions; depth is 1 for the first layer and 16
for the second layer. We get features of shape (Tx/2, n/2, 16)
after the 1st layer and (Tx/4, n/4, 16) after the 2nd layer. 'is
latter tensor is flattened with shape (Tx �Tx/4, 4n) before
being passed to a stack of three-levelDH-BiGRUs. 'is set of
features has 1/4th the time length of the initial features,
which speeds up the raining because the complexity of the
model is quadratic with respect to the source length.

'e DH-BiGRU unit computes a sequence of annota-
tions h � hi, . . . , hTx

, where each annotation hi is a con-
catenation of the corresponding forward and backward
states. 'e hidden state of the last GRU layer in each hi-
erarchy is inserted into the next hierarchy. Formally, first we
insert the tokenized vectors into a recurrent neural structure
to obtain the semantic information of the context sequence.
For recurrent unit type, we choose GRU [15] instead of
LSTM [16] because the former has fewer gate structures. 'e
hierarchical structure [2, 12, 17] and bidirectional structure
can extract deeper relevant information. Suppose that the
hierarchy of HGRU is n, then

ξencoder � φen rnnn,en rnnn−1 ,...,en rnn1
(Γ) � h1, h2, . . . , hn′( 􏼁,

(3)

where (h1, h2, . . . , hn′) are the hidden states of the last GRU
layer, and n′ is a variable, and φen rnn(

∗) indicates the
processing of RNN in the encoder.

2.3. Decoder and Attention Mechanism

2.3.1. Decoder. For the word embedding, we use a fully
connected layer that learns a linear projection from one-hot
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Figure 1: Overview of our proposed end-to-end SLT model with
improved tokenization-related units, which includes an FSDC
optimization algorithm and an improved NMT module.
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vectors of spoken language words to a denser space as
follows:

ωi � WordEmbedding yi( 􏼁, (4)

where ωi is the embedded version of the spoken word yi.
In the decoding stage, we aim at maximizing the

probability p(y | x). 'e decoder computes a probability of
the translation y by decomposing the joint probability into
the ordered conditional probabilities as follows:

p(y | x) � 􏽙

Ty

i�1
p yi

􏼌􏼌􏼌􏼌 y1, y2, . . . , yi−1, h1, h2, . . . , hn′( 􏼁􏼐 􏼑.

(5)

2.3.2. Attention Mechanism. Like other SLTmodels, we may
also suffer from long-term dependencies, vanishing gradi-
ents, and performance deterioration with many input
frames. To solve the issues, we utilize attention mechanisms
which have been proved useful in various tasks including but
not limited to machine translation. 'e most common at-
tention mechanisms are the mechanisms of Bahdanau et al.
[18] and Luong et al. [19]. Based on hyperparameter ex-
periments, we take Bahdanau as our attention mechanism.
Given the input x, we define each conditional probability at
time i depending on a dynamically computed context vector
ci as follows:

p yi

􏼌􏼌􏼌􏼌 y1, y2, . . . , yi−1, x􏼐 􏼑 � softmax g si( 􏼁( 􏼁, (6)

where si is the hidden state of the decoder at time i and g is a
linear transformation that outputs a vocabulary-sized vector.
Note that the hidden state si is computed as

si � φdernn
ωi−1, si−1,ωi( 􏼁, (7)

where φdernn
(∗) indicates the processing of RNN in the de-

coder and ωi−1 is the word embedding of the previously
predicted word yi−1, si−1 is the last hidden state of the de-
coder, and ci is computed as a weighted sum of the hidden
states from encoder as

ci � 􏽘

Ty

j�1
αijhj, (8)

where αij is the weight of each annotation hj.

3. Experiments

In this section, we conducted a series of experiments on the
RWTH-PHOENIX-Weather 2014Tdataset by employing our
improved SLT model with tokenization-related units com-
pared to the baseline.

3.1. Baseline. As described above, the baseline is an atten-
tion-based structure combined by 2DCNN and Seq2Seq
sequentially. 'e spatial 2DCNN is an AlexNet [20], and its
parameters are pretrained on Imagenet [21]. 'e encoder
and decoder of Seq2Seq are nonhierarchical GRUs. In order

to compare with the baseline fairly, all experiments run in
the same dataset and GPU environment. Except for the
differences mentioned in the paper, other configurations for
all models are consistent by default.

3.2. Dataset. 'e RWTH-PHOENIX-Weather 2014T is the
most popular continuous SLT dataset. It is collected by
extending the German sign language recognition (SLR)
dataset, RWTH-PHOENIX-Weather 2014 Corpus [22].
Compared with other SLT datasets, this dataset has larger
data and higher quality. It contains 4,839 vocabulary, 8,257
video clips, 947,756 frames, and 113,717 words in total, as
shown in Table 1. Each video corresponds to a translation
sentence. Although the dataset includes sign language gloss
corpus, our model is trained without gloss-level alignment,
where the glosses give the meaning and the order of signs
[1, 23, 24]. Nevertheless, the use of glosses is limited to a
prerequisite that word label in sentences is consistent with
the order of corresponding visual content. In the other
words, if the word is out of order, it is unsuitable to tackle
sequential frame-level classification under word labels in
disorder. In fact, most datasets do not include gloss anno-
tations. Although we do not consider it for this work, we
conducted NMT experiments using gloss to gain optimal
settings as [1].

3.3. Settings. Based on baseline conclusions and our expe-
rience, we preset some important hyperparameters. We use
GRU as the recursive module for both encoder and decoder,
where each recurrent layer contains 1,000 hidden units.
During the training, the optimizer used is Adam [25], and
the learning rate is 0.00001 with a decay factor of 0.98 and a
batch size of 1. During the decoding, we use beam search
with a width size of 3 to generate sentences.

3.4. Evaluation. We use BLEU [26] and ROUGE [27] as the
evaluation metrics, which are most used in machine
translation tasks. Note that the BLEU score is represented by
BLEU-1, 2, 3, 4 and the ROUGE score refers to ROUGE-L
F1-SCORE. In training, the BLEU-4 score on the develop-
ment set is used to select the best model.

3.5. Comparison to Existing Approaches. Table 2 shows the
performance comparison between our proposed systems
and the existing baseline systems.

'e existing baseline systems use different attention
mechanisms, of which the Bahdanau mechanism performs
best. It is worth mentioning that although the transformer
has good performance in many NMT tasks, it does not
achieve good results in the SLT dataset due to its small data
size.

Our proposed systems contain innovations in multiple
places, so we added different improved modules on the
baseline for comparison. We can see that after using the
unsupervised FSDC algorithm (#2h), the model achieves
better performance. As for the improvement of the encoder
in NMTmodule, either T-Conv or DH-BiGRUs units have a
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promoting effect as shown in Table 2 (#2e and #2f). 'e
complete improved encoder module which uses both T-
Conv and DH-BiGRUs units (i.e., TC-DHBG-Net) improves
more significantly as shown in Table 2 (#2g). From the
performance, we can see that the improved encoder in the
NMTmodule is the most important and the FSDC algorithm
can slightly improve the basis as shown in Table 2 (#2i).
Overall, the proposed tokenization-related units without
extra information improve significantly for the SLT.

3.6. Validation on TC-DHBG-Net. In order to validate the
role of the T-Conv} unit of the TC-DHBG-Net, we only add
T-Conv units to the encoder of the baseline, while the re-
cursive neural unit remains unchanged. In Table 2, #2e
exceeds the baseline moderately, which proves the positive
role of the T-Conv unit.

'e DH-BiGRUs unit is another important component
of the TC-DHBG-Net. We replace the original GRUs of the
baseline with our DH-BiGRUs unit in 3 levels by default. As
shown in Table 2 (#2f), the multilevel structure is introduced
and the performance is moderately improved, proving the
effect of the hierarchical structure.

Although T-Conv unit and DH-BiGRUs unit have been
proved by the above experiments, it does not mean that the
combination of the two will be better. 'erefore, it is nec-
essary to introduce Table 2 (#2g). Compared with baseline,
#2g improves significantly, which is better than any single
module (#2e or #2f).

3.7. Ablation on the Levels of DH-BiGRUs. 'e DH-BiGRU
has an important hyperparameter, the number of RNN
levels. To test the scores for different levels of DH-BiGRU
in the recurrent neural unit, we set the number Nlevel to 1,
2, 3, and 4, respectively. We conducted experiments based
on the previous experiment as shown in Table 2 (#2g).

Table 3 illustrates that the hierarchical structure has a
significant impact on the scores. When Nlevel is set to less
than 3, the scores increase as the number of levels in-
creases, and when Nlevel � 3, the score increases to peak;
but when Nlevel > 3, the score starts to drop. As a con-
clusion, a larger number of layers do not mean a higher
score. 'erefore, we set Nlevel � 3 to the optimal
hyperparameter.

3.8. Validation on FSDC Algorithm. At the very beginning,
we analyze the structural similarity of all frames in the
dataset. Figure 5(a) shows that the number or proportion of
the separable redundant frames varies with different
thresholds. Even if the threshold is set to 75%, we can see
that the number of frames for temporal neighborhood
exceeds 85%. Once the threshold is lower, the proportion of
frames will be greater. 'is indicates that the relationship
between the frames is tight. A reasonable initial threshold is
crucial to the model, but the threshold is an empirical and
experimental hyperparameter. If the threshold is set too
low, much more useful frame information may loss; on the
contrary, the optimization will not work at all. Analyzing
Figure 5(a), we think that the similarity threshold is set to at
least 94%.

To validate the FSDC algorithm, we set the thresholds
from 94% to 99%, to control the percentage of redundant
frames. We conducted the experiment on the baseline
(Table 4 (#4a)) and the structure we proposed (Table 4
(#4b)), respectively. Figure 5(b) shows that within a rea-
sonable range, the FSDC algorithm can be positive relative to
the improvement of the baseline, especially when the
threshold is set to 95%. But the relative value of negative
numbers in Table 4 (#4b) also shows that not all thresholds
can improve performance.

Moreover, it is worth mentioning that the size of the
training data is reduced by 9.28%when the threshold is set to
95%.'e optimized dataset not only saves storage space, but
also saves processing time (about 10% reduction).

3.9. About Length. Figure 6(a) shows the distribution of the
number of sentences with respect to the different lengths of
source sentences (frames) on the test set. Since the frame
number of most sentences is less than 100, we think that
more than 100 frames are considered as long sentences.

Input: input F; threshold δ (0≤ δ ≤1); number of video frames N.
Output: F′
Initialize x� 0, i� 1
for x + i≤N, do
if SSIM(fx, fx+i) > δ , then

Retain x + i, discard fx+i, update i � i + 1
else if SSIM(fx, fx+i) ≤ δ, then

Retain fx, fx+i, update x � x + i, i � 1
end if

end for

ALGORITHM 1: FSDC algorithm for temporal neighborhood.

Table 1: Key statistics of the German datasets.

Train Dev Test
Vocab. 2,887 951 1,001
Clips 7,096 519 642
Frames 827,354 55,775 64,627
Tot. words 99,081 6,820 7,816
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Figure 6(b) shows the BLEU scores of generated translations
on the test set with respect to the lengths of the source
sentences. In particular, we split the translations into dif-
ferent bins according to the length of source sentences
(frames), and then test the BLEU scores for translations in
each bin separately with the results reported in Figure 6(b).
Our approach can achieve big improvements over the
baseline system in almost all bins, especially in the long
sentences which have more than 117 frames. 'e perfor-
mance comparison intuitively shows that our model can
better adapt to the translation of long sentences, which
benefits the FSDC algorithm and the improved encoder.

3.10. Qualitative Comparison. As shown in Table 5, to help
readers understand our translations better, we qualitatively
analyze the results of the sentence-level experiments. 'e
sentences shown in the examples are both long sentences. 'e
frame numbers of examples (a) and (b) are 192 and 196 frames,
respectively. After using our FSDC optimization algorithm, the
frame numbers are reduced to 182 and 169 frames, respec-
tively. Since long sentences have serious long-distance de-
pendency problems, both examples show that the current SLT
models have poor translation ability to deal with long sen-
tences. Comparing the baseline and our model, our model is
relatively more accurate, and the meanings of the sentences are
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Figure 5: (a) Numbers and percentage of redundant frames with respect to different similarity thresholds. (b)'e increased absolute values
of BLEU compared to the baseline after using the FSDC algorithm. When the threshold is around 95%, both models reach the peak.

Table 3: BLEU scores on DH-BiGRU unit in different levels.

# Levels
Development set Test set

ROUGE BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE BLEU-1 BLEU-2 BLEU-3 BLEU-4
3a 1 31.34 30.94 18.26 12.71 9.76 32.18 31.60 18.52 12.43 9.52
3b 2 31.69 31.23 18.62 13.15 10.16 32.08 30.08 18.15 12.88 9.97
3c 3 33.02 32.37 19.49 13.44 10.21 32.25 32.19 19.38 13.71 10.66
3d 4 31.52 31.40 18.71 13.00 9.87 31.58 31.85 18.95 13.17 10.03

Table 2: Experiments on the existing baseline systems vs. variants of our novel model.

# Model
Development set Test set

ROUGE BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE BLEU-1 BLEU-2 BLEU-3 BLEU-4
Existing baseline systems
2a None 29.54 28.33 15.71 10.32 8.57 28.60 26.65 15.02 10.27 8.24
2b Transformer 30.28 29.82 16.98 11.89 8.93 29.89 29.45 16.72 11.78 8.82
2c Luong 31.67 32.18 18.56 12.38 9.46 30.71 30.01 17.43 12.11 9.02
2d Bahdanau 31.93 31.66 18.70 12.79 9.53 31.56 31.32 18.36 12.36 9.25
Our proposed systems
2e +T-Conv 32.08 30.08 18.15 12.88 9.97 31.34 30.94 18.26 12.71 9.76
2f +DH-BiGRUs 31.55 30.21 18.29 13.05 9.84 31.20 31.46 17.64 12.40 9.65

2g +TC-DHBG-Net (+T-
Conv +DH-BiGRUs) 31.69 31.23 18.62 13.15 10.16 32.25 32.19 19.38 13.71 10.66

2h +FSDC 32.13 31.72 18.84 12.98 9.79 31.52 31.72 19.04 13.01 9.71
2i +FSDC+TC-DHBG-Net 32.76 31.43 19.12 13.40 10.35 32.99 31.86 19.51 13.81 10.73
Bold indicates the best performance.
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closer to the ground true. Note that the translation results
closer to the target in Table 5 are marked in bold.

4. Related Work

According to a recent review [28], sign language is an on-
going research that began decades ago. 'e SLR system can
be classified into three based on the type: (1) fingerspelling
recognition; (2) isolated word recognition; (3) continuous
sign sentence recognition. As for SLT, it is a more advanced
task to further understand the semantic information of sign
language.

In earlier work, the SLR system employed traditional
recognition methods. For instance, Gao et al. [29] used
HMM to recognize SLR words; 'e authors of [30, 31] used
SVM to classify continuous sign language alphabets and
isolated words; Baccouche et al. [32] performed a trajectory
matching to classify the isolated words. Compared to the
above, deep learning-based models have been employed
recently. CNNs [33, 34], LSTMs [2, 35–37], or hybrid models
[3, 38] have been used for continuous sentence recognition.

When it comes to SLT, few research results are published
up to now. However, the development of SLR has laid a
foundation for SLT. Camgoz et al. [1] released the first
available continuous SLTdataset and proposed a neural SLT
model. 'ey combined CNN with the classic machine
translation model-Seq2Seq. 'eir work maintains state of
the art on the RWTH-PHOENIX-Weather 2014T dataset.
Later, Ko et al. [4] proposed a neural SLT model based on
human pose estimation, converting a video frame to key-
points, which simplifies the complexity of recognition, but
ignored much important semantic information, e.g., ex-
pressions. We believe that it is under consideration. Guo
et al. [2] proposed a hierarchical LSTM model that per-
formed both SLR and SLTexperiments on a Chinese dataset.
'ey used 3DCNN for features extraction and compared it
with the video captioning model S2VT [39]. 'e critical
problem about their dataset is that it only includes 100
sentences, which is inappropriate for translation tasks.
Overall, SLT achievement is still underperforming, limited
by a lack of large-scale datasets and better translation
models.
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Figure 6: (a) Numbers and percentage of redundant frames with respect to different similarity thresholds. (b)'e increased absolute values
of BLEU compared to the baseline after using the FSDC algorithm. When the threshold is around 95%, both models reach the peak.

Table 4: BLEU scores vary in different thresholds.

# 'resholds 94 95 96 97 98 99 100

4a
Baseline — — — — — — 9.25
+FSDC 9.39 9.71 9.51 9.44 9.39 9.35 —
△ +0.14 +0.46 +0.26 +0.19 +0.14 +0.10 —

4b
+Ours — — — — — — 10.66

+Ours + FSDC 10.06 10.73 10.68 10.23 10.36 10.50 —
△ +0.81(−0.60) +1.48 (+0.07) +1.43 (+0.02) +0.98 (−0.43) +1.11 (−0.30) +1.25 (−0.16) —

△ represents the increased absolute values of BLEU from the baseline, and the scores in parentheses represent the relative change value from +Ours. 'e
FSDC algorithm does not work when the threshold is 100%.
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5. Conclusion

In this work, we propose a novel weakly supervised SLT
model with improved tokenization-related modules to adapt
to longer sentences. We first propose an FSDC algorithm for

temporal neighborhood to optimize the limited training data
by removing the redundant frames and compress the sen-
tence length to get a better interpretability. 'en we in-
troduce a T-Conv and DH-BiGRU-mixed NMT, which can
consider the temporal information with reasonable resource

Table 5: Comparison of translations between our model and baseline.
Example (a)

Source

Target
der wind weht mäßig bis frisch mit starken bis stürmischen böen im bergland teilweise schwere sturmböen im südosten mitunter
nur schwacher wind. ('e wind blows moderately to fresh with strong to stormy gusts in the mountains, sometimes severe gusts in

the southeast, sometimes only weak winds.)

BASE der wind weht mäßig im norden frisch mit frisch mit stürmischen böen an der nordsee schwere sturmböen. ($e wind blows
moderately in the north fresh with fresh with stormy gusts at the north sea heavy gusts of wind.)

OURS der wind weht mäßig bis frisch bei schauern und gewittern kann es stürmische böen auf den bergen sturmböen. ($e wind blows
moderately to fresh during showers and thunderstorms, it can be stormy gusts on the mountains.)

Frames From 192 to 182
Example (b)

Source

Target und morgen wird es dann in der südosthälfte nochmal ähnlich werden wie heute allerdings im nordwesten bereits dichtere wolken.
(and tomorrow it will be similar again in the southeast half of the day as in the northwest, however, with thicker clouds.)

BASE morgen im süden und süden bleibt es allerdings schon wolkenlücken und gewitter das wird es schon schon werden werden aus den
westen. (Tomorrow in the south and south there will be cloud gaps and thunderstorms it will be from the west.)

OURS und morgen wird es dann in der südosthälfte nochmal ähnlich am alpenrand wieder mal südwestwind und gewitter. (and
tomorrow it will be similar in the south-east half again on the edge of the alps again south-west wind and thunderstorm.)

Frames From 196 to 169
BASE: baseline model;Ours: the optimal model mentioned above; and the texts in parentheses represent the English translation corresponding to German.
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consumption as well as succeed in extracting deeper in-
formation. To evaluate our approaches, we conducted ex-
periments on the public dataset-RWTH-PHOENIX-Weather
2014T. Compared with the existing state-of-the-art baseline,
our model can reduce the size of training data by 9.3% and
outperform the baseline up to about 1.5+ BLEU-4 score on
the sign-to-text translation task. Moreover, we conducted a
series of comparison and ablation experiments and analyzed
the translation performance qualitatively.

Despite the improved performance, SLT still has a lot of
room to be studied. In future work, we will explore better
interpretative methods to translate longer sentences.
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Visibility forecasting in offshore areas faces the problems of low observational data and complex weather. +is paper proposes an
intelligent prediction method of offshore visibility based on temporal convolutional network (TCN) and transfer learning to solve
the problem. First, preprocess the visibility data sets of the source and target domains to improve the quality of the data. +en,
build a model based on temporal convolutional network and transfer learning (TCN_TL) to learn the visibility data of the source
domain. Finally, after transferring the knowledge learned from a large amount of data in the source domain, the model learns the
small data set in the target domain. After completing the training, the model data of the European Mid-Range Weather Forecast
Center (ECMWF) meteorological field were selected to test the model performance. +e method proposed in this paper has
achieved relatively good results in the visibility forecast of Qiongzhou Strait. Taking Haikou Station in the spring and winter of
2018 as an example, the forecast error is significantly lower than that before the transfer learning, and the forecast score is
increased by 0.11 within the 0-1 km level and the 24 h forecast period. Compared with the CUACE forecast results, the forecast
error of TCN_TL is smaller than that of the former, and the TS score is improved by 0.16. +e results show that under the
condition of small data sets, transfer learning improves the prediction performance of the model, and TCN_TL performs better
than other deep learning methods and CUACE.

1. Introduction

Atmospheric visibility is an indicator used to judge the
transparency of the atmosphere. It refers to the maximum
horizontal distance that the person with normal vision can
distinguish the outline of the target from the background
when observing the black target with the sky as the back-
ground under the weather conditions at that time [1]. +ere
are many climatic factors that affect the visibility of offshore
waters, such as fog, haze, smoke, dust, precipitation, etc. +e
most important factor is fog [2, 3]. Low visibility often affects
the travel safety of offshore vessels and can easily cause
accidents at sea. +erefore, how to predict the occurrence of
low-visibility weather in offshore areas as much as possible is
a problem that researchers are concerned about. Here, the
offshore visibility prediction method based on transfer

learning proposed in this paper aims to improve the current
situation of offshore visibility prediction.

+e visibility forecast used to rely on traditional nu-
merical forecasting methods. +e weather conditions in the
future were calculated through numerical forecasting
methods based on the theoretical basis of fluid mechanics,
atmospheric dynamics, and thermodynamics. In recent
years, with the continuous development and improvement
of machine learning and deep learning, the application of
machine learning and deep learning to visibility prediction
has also become a hot spot for researchers [4–6].

As a commonly usedmeteorological forecasting method,
traditional numerical forecasting is widely used. +e Na-
tional Center for Atmospheric Research (NCAR) has jointly
developed a multiscale, multiprocess model system that is
online and fully coupled. It is a widely used
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meteorological–chemical coupled model named weather
research and forecast model coupled with chemistry (WRF-
Chem) [7, 8]. +e US Environmental Protection Agency
(EPA) has also developed a universal multiscale air quality
model named congestion mitigation and air quality
(CMAQ) [9, 10]. +ese two forecasting models have been
localized in various regions in China, and the WRF-Chem
model has been introduced in East China to establish a
numerical forecast model named Beijing regional environ-
mental meteorology prediction system (BREMPS) in East
China. It is applied to visibility prediction in East China
[11, 12]. +e introduction of the CMAQ model in the
southern region established the Southern China regional
environmental meteorological numerical forecasting model
named Guangdong Regional Assimilation Chemistry En-
vironmental System (GRACES), which was applied to the
operational forecasting of the Pearl River Delta [9]. At the
same time, the domestic environmental meteorological
numerical model is also continuously researched. +e
Chinese Academy of Meteorological Sciences has inde-
pendently developed a national-level numerical haze fore-
casting system named CMAUnified Atmosphere Chemistry
Environment (CUACE). CUACE online coupled with the
chemical weather model, which has been used in environ-
mental meteorological operations nationwide [13, 14].

In recent years, researchers have achieved a lot of results in
machine learning and deep learning [15–19] and have applied
them to various fields [20–24]. Among them,machine learning
and deep learning also show advantages in weather forecasting
such as visibility forecasting and air quality forecasting [25–28].
Machine learning algorithms have excellent performance in
visibility forecasting. +e Support Vector Machine (SVM)
method was used to select multiple kernel functions for the
forecasting modeling experiment of low-visibility weather in
Shuangliu Airport and study the impact of various meteoro-
logical elements on visibility [29]. Long short-term memory-
fully connected (LSTM-FC) neural networkwas used to predict
the pollutants in Beijing area and achieved good results [30]. Li
et al. used a hybrid CNN-LSTM model developed by com-
bining the convolutional neural network (CNN) with the long
short-termmemory (LSTM) neural network for forecasting the
next 24 h PM2.5 concentration in Beijing [31]. BP neural
network was used to construct the visibility forecast model of
the Bohai Rim city to reduce the visibility forecast error [32]. In
terms of visibility prediction for offshore waters, people used
classification and tree regression to establish a forecastmodel of
sea fog along the coast of Qingdao [33]. However, these
methods are not ideal for forecasting offshore visibility. +ey
can only predict the general trend of visibility. +e accuracy of
low-visibility forecasting and visibility-level forecasting needs
to be improved.

Both machine learning and deep learning network
models are inseparable from large amounts of data. Using
deep learning to predict visibility requires a large amount of
meteorological data to train the network. However, offshore
observation sites are scarce, so using deep learning to face
offshore visibility forecasting is faced with the problem of
insufficient data. +erefore, this article aims to use transfer
learning to solve this problem.

Transfer learning is a machine learning method and a
problem-solving idea [34]. In recent years, it has been widely
used in various research fields to solve the difficulties caused by
insufficient data and achieved excellent performance in building
energy prediction and text prediction [35–37]. It is a way to
achieve the knowledge transfer between the source and target
domains by modeling the distribution of data in the source and
target domains, thereby improving the performance of the
algorithm [38]. +e transfer learning method can better solve
the problem of poor forecast performance caused by less data.

In order to improve the forecast accuracy of offshore
visibility under the condition of a small data set, this paper
uses time convolutional network (TCN) and transfer learning
to establish a forecast model to achieve an objective forecast of
visibility in offshore areas such as Qiongzhou Strait. At the
same time, it improves the ability of forecasting and early
warning services for the haze and sea fog in the strait, provides
technical support for the low-visibility weather forecast in this
area, and ensures the safety of ships traveling.

2. Materials and Methods

2.1. Data Source and Data Preprocessing. +e climatic
conditions in the coastal area of South China are subtropical
monsoon climate, which belongs to the East Asian monsoon
region. +e meteorological background is greatly affected by
relative humidity, and sea fog occurs frequently in winter
and spring, so low-visibility weather occurs more frequently.
+e training data used in this article is divided into two parts.
+e first part is the meteorological data and environmental
data of the stations in Leizhou Peninsula and northern
Hainan, which is the source domain data. +e second part is
a small amount of meteorological data and environmental
protection data of the weather stations on both sides of the
Qiongzhou Strait, which is the target domain data. +e
specific data of the first part include routine ground ob-
servation data and high-altitude data of Leizhou Peninsula
area and northern Hainan area from 2016 to 2018, such as
data on wind speed, relative humidity, temperature, pol-
lutants, etc., and visibility observation data. +e specific data
of the second part include visibility observation data and
meteorological data and environmental protection data of
the offshore sites of the Qiongzhou Straits on both sides of
the north and south sides of the Qiongzhou Strait from
January to April 2016–2018.+e verification data used in this
paper is the European Meteorological Forecast Center
(ECMWF) meteorological field model data in 2018. In this
paper, four inland sites are selected as source domain site
data, namely, Haikang (59750), Danxian (59845), Chengmai
(59843), and Anding (59851). +e data of four stations on
the seashore were selected to conduct a forecast experiment
on the visibility of Qiongzhou Strait, namely, Xu Wen
(59754), Haikou (59758), Lingao (59842), and Qiongshan
(59757). Figure 1 shows the distribution of the eight sites.

Because the weather forecasting factors are composed of
different parts, it is necessary to compose the data for time
series analysis and time-space matching and then compose
the input data that meets the requirements. At the same
time, due to various factors in the real-time observation of
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the meteorological conditions by the meteorological station,
the meteorological observation data will often have some
observations missing and abnormal, so the data should be
cleaned. +is paper uses Lagrange interpolation to fill in
missing values. Lagrange interpolation formula is

y � a0 + a1x + a2x
2

+ · · · + an− 1x
n− 1

, (1)

L(x) � y1
x − x2( 􏼁 x − x3( 􏼁 · · · x − xn( 􏼁

x1 − x2( 􏼁 x1 − x3( 􏼁 · · · x1 − xn( 􏼁

+ y2
x − x2( 􏼁 x − x3( 􏼁 · · · x − xn( 􏼁

x2 − x1( 􏼁 x2 − x3( 􏼁 · · · x2 − xn( 􏼁

+ · · · yn

x − x2( 􏼁 x − x3( 􏼁 · · · x − xn( 􏼁

xn − x1( 􏼁 xn − x3( 􏼁 · · · xn − xn− 1( 􏼁
.

(2)

Equation (2) solves the Lagrange interpolation poly-
nomial L(x) and then substitutes the point corresponding to
the missing value x to obtain the approximate value of the
missing value.

+e visibility data sample is composed of two parts,
meteorological data and environmental protection data,
which have a large number of features. In order to improve
efficiency, the characteristics of the data samples need to be
screened. In this paper, the Pearson correlation coefficient
method is used to measure the degree of correlation between
two variables. +e Pearson correlation coefficient method is
used to calculate the correlation between the features that
affect visibility and the observation of visibility, and the
features are screened by comparing the correlations of the
various impact features. +e formula of the correlation
coefficient is shown in formula (3). In this paper, X rep-
resented the meteorological feature in the data, and Y
represented the value of visibility:

ρXY �
cov(X, Y)

σXσY

�
E[(X − μx)(Y − μy)]

σXσY

. (3)

+e forecast meteorological elements of visibility in the
data include 40 different forecast meteorological elements
such as temperature, relative humidity, wind shear, and wind
speed. +e meteorological elements of visibility forecast after
screening by the Pearson coefficient method are shown in
Table 1. +e visibility forecast meteorological elements
screened by the Pearson coefficient method are shown in
Table 1. In this paper, 12 meteorological elements are selected

and input into the network as forecast factors. Table 1 shows
the correlation coefficients between each forecasting factor
and the observation of visibility. It can be clearly observed that
the correlation coefficients of temperature and humidity are
relatively high. Visibility in Haikou area is highly correlated
with temperature, relative humidity, etc., which is a good
proof of the reliability of using the correlation coefficient
method to filter visibility prediction factors here [39]. +e
forecast feature data includes historical weather data and
historical environmental data, which are matched in time and
space to form the original visibility data. +e raw data are
cleaned to obtain the final visibility forecast data. +e pro-
cessing flow is shown in Figure 2.

2.2. Method

2.2.1. Temporal Convolutional Network. Because the Tem-
poral Convolutional Network (TCN) is a network structure
that can better handle time series data, this paper uses TCN
to build a prediction model of the visibility of the source
domain. TCN is the second architecture that can analyze
temporal data in addition to the Recurrent Neural Network
(RNN) architecture. +e structure of TCN is shown in
Figure 2. TCN has two main characteristics: First, there is a
causal relationship between the layers of the convolutional
network, which means that there will be no “bobble” his-
torical information or future data. Even if a long short-term
memory network (LSTM) with the same time series pro-
cessing function has a memory gate, it cannot completely
remember all the historical information, let alone if some
information is useless in the LSTM will gradually be for-
gotten [40]. Second, architecture of TCN can be flexibly
adjusted to any length, and it can be mapped to correspond
to several interfaces according to the output terminal. +is is
the same as the RNN framework, which is very convenient.
+e TCN network adopts the form of convolution, which is
mainly composed of causal convolution, hole convolution,
residual module, and full convolution network. Among
them, causal convolution is used to make the network
suitable for sequence models. +e output of the convolution
layer at time t is only convolved with the elements of the
current layer and the previous layer. +e causal convolution
calculation formula at xt is

(F∗X) xt( 􏼁 � 􏽘
K

k�1
fkxt− K+k. (4)

Among them, filter is F � (f1, f2, . . . , fk), and input
sequence is X � (x1, x2, . . . , xT). +e use of the hole con-
volution and residual modules allows the TCN network to
remember history. +e hole convolution kernel is

F(s) � (x∗ df)(s) � 􏽘
k− 1

i�0
f(i) · Xs− d·i, (5)

where d is the hole coefficient, k is the size of the filter, and
s − d · i is the past direction [40]. +e structure of the hollow
convolution is shown in Figure 3(a). When the filter is
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Figure 1: Distribution of representative sites of Qiongzhou Strait.
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F � (f1, f2, . . . , fk), input sequence is X � (x1, x2, . . . , xT),
and the convolution of the holes at xt is

(F∗ dX) xt( 􏼁 � 􏽘
K

k�1
fkxt− (K− k)d. (6)

In formula (6), dcan increase the receptive field, and the
size is (K − 1)d + 1. +e formula for the residual module is

o � activation(x + F(x)). (7)

In formula (7), Fis a part of a series of transformations,
and x is an input. +e structure diagrams are shown in
Figures 3(b) and 3(c).

Full convolutional networks make the output and input
dimensions consistent, simplifying the network. It is these
parts that make up TCN, which makes the network have the
advantages of good parallelism, flexible receptive fields,
small training memory, and adjustable input sequence
length compared with LSTM.

Table 1: Forecast factors and correlation coefficients.

Predictor Pearson’s correlation coefficient absolute value
Temperature 0.563
925 hPa temperature 0.511
900 hPa temperature 0.498
950 hPa horizontal wind speed 0.489
Atmospheric pressure 0.473
925 hPa horizontal wind speed 0.397
Vertical wind speed 0.390
925 hPa relative humidity 0.379
900 hPa horizontal wind speed 0.372
900 hPa relative humidity 0.338
Depression of the dew point 0.333
Relative humidity 0.328
950 hPa vertical wind speed 0.323

Historical
meteorological

data

Historical
environmental

data

Historical
visibility
predictor

Raw
data

Data
cleaning

Time
series

analysis

Spatiote
mporal

matching

Figure 2: Data preprocessing flowchart.
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2.2.2. Transfer Learning. Time convolutional networks be-
long to deep neural networks. During the training process of
deep neural networks, the network will generate a large
number of network parameters, so a large amount of data is
needed to train the parameters. However, there is a problem
of low data volume in offshore visibility, and the learning
effect is not good. +erefore, the method of transfer learning
is used to solve this problem.

However, there is a problem of low data volume in off-
shore visibility, and the learning effect is not good. +erefore,
the method of transfer learning is used to solve this problem.
Researcher defined the transfer learning in detail: given
source domain DS � (X

(S)
1 , Y

(S)
1 ), . . . , (X(S)

ns
,􏽮 Y(S)

ns
)} and

source domain learning tasks Ts, as well as target domain
Dt � X

(t)
1 , . . . , X(t)

nt
􏽮 􏽯 and target domain learning tasks Tt.

+e ultimate goal of transfer learning is to gradually improve
the performance of the prediction function in the target
domain DS and the target domain task Ts by learning the
knowledge in the source domain Dt and the source domain
task Ts [41]. In this paper, a prediction model is established in
the source domain task, and a large amount of source domain
data is used as the training data of the model, and the pre-
trained model is saved after training. Transfer learning is used
to make the target domain task network inherit the weights of
the pretrained model. When performing a new task, a small
amount of new visibility data is used as input, and the weight
of the pretrained model loaded into the source domain task is
used as the initial weight of the target domain network for
training. +e training process is shown in Figure 4.

2.3. Evaluation Method. From January to April 2018, there
was frequent sea fog in the Qiongzhou Strait area with low
visibility. +e classification of visibility observation data
during this period is relatively clear, and the selection of data
during this period can make the experiment comprehensive
effect better.

In this paper, there are two ways to evaluate the forecast
performance, which are numerical test and classification test.
+e numerical test uses two indicators: root mean square

error (RMSE) and mean absolute error (MAE). RMSE is used
to measure the deviation between the observed value and the
predicted value. It usually reflects the precision of the mea-
surement well. +e smaller the value of RMSE, the higher the
precision. MAE represents the average value of the absolute
error between the predicted value and the observed value.+e
smaller the value of MAE, the higher the accuracy of pre-
diction. MAE represents the average value of the absolute
error between the predicted value and the observed value.+e
smaller the value of MAE, the higher the accuracy of pre-
diction. +e calculation formula of the two is as follows:

RMSE(X, P, O) �

����������������

1
m

􏽘

m

i�1
p xi( 􏼁 − oi( 􏼁

2

􏽶
􏽴

, (8)

MAE(X, P, O) �
1
m

􏽘

m

i�1
p xi( 􏼁 − oi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌. (9)

In formulas (8) and (9), m represents the number of
samples, X represents the forecast factor of historical visi-
bility, P represents the predicted value of the model for
visibility, and O represents the observed value of historical
visibility.

In this paper, the visibility level is mainly divided into
four levels, namely, 0∼1 km, 1∼5 km, 5∼10 km, and above
10 km. Among them, improving the forecast accuracy of
the visibility level of 0 to 1 km has important practical
guiding significance.+e graded forecast test uses TS scoring
rules to test forecast performance of the model for
each visibility level. +e formula for the test method is as
follows:

TS �
NA

NA + NB + NC
. (10)

In the formula, NA represents the number of correct
forecasts, NB represents the number of empty forecasts, and
NC represents the number of missed forecasts. Correct
forecast means that the forecast level is the same as the live
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Figure 4: +e transfer process of the source domain model to the target domain model.
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level; empty forecast means that the forecast level is less than
the live level; and missed forecast means that the forecast
level is higher than the live level.

2.4. Forecasting Process. +e forecast technology flow used in
this paper is shown in Figure 5. +is forecast model uses the
TCN model and transfer learning method to forecast the
Qiongzhou Strait. In the first step, the source domain pre-
diction factor obtained after data preprocessing is used as the
input feature of the TCN network to train the network. Based
on the loss function result, adjust the parameters to optimize
the model performance iteratively and save the optimal
training model. In the second step, the transfer learning
method based on parameter transfer is used to transfer the
weight of the pretrained model in the source domain as the
initial weight of the network and start learning the data in the
target domain. Finally, input the EWMCF meteorological
field data of the forecast period to check the model perfor-
mance and output the forecast results.

3. Results and Discussion

3.1. Lab Environment. +e experiment in this paper is
implemented on TensorFlow 1.14.0 framework under Ubuntu
16.04 system and uses GPU to accelerate. +e hardware
configuration of the experimental platform is CPU: Intel Core
i5-8600k, GPU:NVIDIA GTX 1080Ti, and memory is 16G.

3.2.ExperimentalParameterSetting. Hyperparameters are the
parameters set by the network model before learning, not the
parameters obtained through training. Hyperparameter settings
are crucial to the efficiency of model learning. Under normal
circumstances, the model training should be selected before the
start of learning. After observing the value of the loss function
and the training status during the model learning process and
adjusting the hyperparameters, the model learning efficiency is
the highest. Among many hyperparameters, hyperparameters
such as learning rate and batch size have the greatest impact on
the efficiency and accuracy of learning. After repeated experi-
ments, the model performs best when the learning rate is 0.002,
the batch size is 60, and the hidden unit is 150.

3.3. Result Analysis

3.3.1. Comparison of Results before and after Transfer
Learning. After establishing the prediction model named
TCN_TL based onTCN and transfer learning, the networkwas
tested and evaluated by using the offshore visibility data from
January to April 2018. Figure 6 shows the MAE and RMSE of
the forecasted visibility values of Haikou Station before and
after the transfer learning in February 2018, including 24h,
48h, 72h, and 96h four-time error comparison. Figure 6 takes
the Haikou Observation Station in February 2018 as an ex-
ample and gives the visibility observation values and forecast
values that change daily. It is not difficult to find that in each
forecast period, the visibility before and after transfer learning
can better reflect the change trend of visibility, but there is a

deviation between the two in the forecast value andmagnitude.
Table 2 shows the graded forecast score of Haikou Station in
February 2018, named TS score. By comparing the RMSE and
MAE of different forecast aging and the grading forecast scores
of different aging, we can find that, regardless of migration, the
error of short-term forecast is always smaller than the error of
long-term forecast. And the TS score of short-term forecasts is
always higher than the longer time-sensitive TS score.
+erefore, it can be concluded that the performance of short-
term forecast is better than that of long-term forecast.

Taking the 24-hour time-effect forecast as an example, the
visibility forecast of theHaikou Station before and after transfer
learning in February 2018 is analyzed. Figure 7 shows the
forecast situation before and after transfer learning. +e
forecast value of TCN_TL for visibility is closer to the actual
value of visibility than the forecast value of TCN. After transfer
learning, both RMSE and MAE decreased significantly, RMSE
decreased from 9km to 6.2 km, and MAE decreased from
5.2 km to 2 km. As shown in Table 2, the accuracy of the
grading forecast has also improved. At the 0∼1km level, the TS
score increased from 0.23 to 0.35. At the 1∼5km level, the TS
score increased from 0.41 to 0.5, and at the 5∼10 km level, the
TS score was 0.52, increased to 0.67. And the accuracy rate
increased from 0.64 to 0.76 at the 10∼35km level. It is worth
noting that although the TS score has increased in all levels,
there is still room for improvement.+rough transfer learning,
the match between the predicted value of visibility and the
observed value has been significantly improved.

3.3.2. Comparison and Analysis of Different Model Results.
In order to better test the prediction performance of TCN_TL
for visibility in offshore areas, this paper compares its exper-
imental results with the experimental results of the other three
models without transfer learning. It should be noted that the
following experiments used historical visibility forecast data
from 2016 to 2018 to forecast the visibility from January to
April 2018 in the Qiongzhou Strait region. Figure 8 shows the
errors between the predicted and observed values for the next
24 h, 48h, 72 h, and 96h under different models. +e forecast
errors of each model are given in the figure, which are the
TCN_TL and CUACEmodels, the forecast model based on BP
neural network, the forecast model based on LSTM network,
and the forecast model based on TCN. Among them, the
TCN_TL model uses two parts of the historical visibility ob-
servation data of the source domain and the target domain
during training, while other models use the historical visibility
observation data of the target domain for training.

From the data shown in Figure 8, it can be found that no
matter what kind of forecast model, the longer the forecast
time, the greater the error between the model’s forecast and
the observed value. Among them, the performance of the
forecast model based on TCN_TL is significantly better than
other forecast models. Figure 8(a) shows the root-mean-
square error of the predicted and observed visibility of the
model. Taking the 24 hr forecast period of validity as an
example, the RMSE of the CUACEmodel is higher than other
models. +e LSTM network prediction model has a lower
RMSE than the BP neural network, while the TCN prediction
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Figure 6: Daily changes of the visibility observation and forecast results of (a) 24 h, (b) 48 h, (c) 72 h, and (d) 96 h at the Haikou Station in
February 2018.
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model has a slightly lower RMSE than LSTM. +e RMSE of
the TCN_TL prediction model using the transfer learning
method is significantly lower than the RMSE of the TCN
prediction model and other prediction models. +e RMSE of
the five forecastingmodels is 14.2 km, 14 km, 10.5 km, 9.4 km,
and 7.4 km, respectively. Figure 8(b) shows the average ab-
solute error between the predicted value and the observed
value of the model. +eMAE of the five forecasting models is
7 km, 6.7 km, 6 km, 5.6 km, and 3.1 km.

From the analysis in Figure 8, we can see that TCN_TL
using the transfer learning method performs better than the
other four models in both RMSE and MAE. Comparing
TCN with the CUACE model, the BP neural network
prediction model, and the LSTM prediction model, the
performance of TCN is relatively good. From the

comparison of the errors between the TCN and TCN_TL
models, the use of transfer learning to compensate for the
problem of small data volume significantly reduces the error
between the predicted visibility and the observed visibility
and improves the prediction performance of the model.

Generally speaking, the weather with low-visibility level,
especially the weather with a level of 0∼1 km, appears less
frequently than ordinary weather, and the opportunities for
model learning are also much less. It is relatively low, but
improving the accuracy of this level of forecasting has
practical guiding significance. As shown in Table 3, taking the
24 hr forecast as an example, when the visibility is less than
1 km, the BP neural network prediction model is only 0.18.
+e TS score of TCN is slightly higher than LSTM, reaching
0.25. TCN_TL has the highest score, reaching 0.36. In
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Figure 7: Statistical characteristics between the observed and forecasted visibility of February 2018 at Haikou Station. (a) RMSE. (b) MAE.
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Figure 8: Statistical characteristics between the observed and forecasted visibility from February to April 2018 at Haikou Station. (a) RMSE.
(b) MAE.

Table 2: TS scores of visibility forecast in February 2018 at Haikou Station.

Classification (km)
0∼24 h 24∼48 h 48∼72 h 72∼96 h

TCN TCN_TL TCN TCN_TL TCN TCN_TL TCN TCN_TL
[0, 1] 0.23 0.35 0.15 0.26 0.1 0.2 0.1 0.15
[1, 5] 0.41 0.5 0.36 0.54 0.3 0.45 0.23 0.31
[5, 10] 0.52 0.67 0.5 0.61 0.42 0.56 0.51 0.58
[10, 35] 0.64 0.76 0.6 0.7 0.56 0.7 0.63 0.63
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Table 3: 24 hr time-efficient grading forecast TS score.

Classification (km) CUACE BP LSTM TCN TCN_TL
[0, 1] 0.14 0.18 0.21 0.25 0.36
[1, 5] 0.33 0.35 0.4 0.45 0.52
[5, 10] 0.38 0.37 0.51 0.58 0.67
[10, 35] 0.47 0.48 0.62 0.68 0.78
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Figure 9: Visibility spatial distribution. (a) February 16th 8:00 measured map. (b) February 16th 8:00 CUACE model forecast map. (c)
February 16th 8:00 BP model forecast map. (d) February 16th 8:00 LSTM model forecast map. (e) February 16th 8:00 TCN model forecast
map. (f ) February 16th 8:00 TCN_TL model forecast map.
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addition, at the other three levels, the TS score of TCN_TL is
also higher than the other four forecast models.+erefore, the
results show that, compared with other traditional methods
and machine learning methods, TCN_TL has more advan-
tages in predicting the performance of offshore visibility.

3.4. Visibility Spatial Distribution Analysis. During the
Spring Festival of 2018, the Qiongzhou Strait experienced
persistent low-visibility weather. +is section takes this
event as an example and uses a 24 hr forecast model to
perform forecast analysis. Figure 9 shows the visibility
forecast of each model at 8 AM on February 16. Because
the Kriging interpolation method considers the variation
distribution of spatial attributes, it can effectively elim-
inate the errors caused by uneven sampling and make the
results more in line with the actual situation [42]. Here,
the Kriging interpolation method is used to interpolate
the visibility spatial results of the Qiongzhou Strait,
which better shows the spatial distribution of visibility.
According to the spatial distribution of actual observa-
tion results of medium visibility in Figure 9(a), the
Qiongzhou Strait is under low-visibility weather. Com-
paring the spatial distribution of visibility prediction
results in Figures 9(b)–9(f ), the overall spatial distri-
bution state is gradually tending towards the actual
spatial distribution state of visibility and the prediction
result space of TCN_TL. +e distribution is closest to the
spatial distribution of actual observations. Comparing
Figures 9(e) and 9(f ), it can be found that the prediction
result of TCN_TL is closer to the actual observation result
than the prediction result of TCN. +erefore, the use of
transfer learning improves the prediction accuracy of the
model. Figure 9(b) is the spatial distribution of the
CUACE forecast results. +e forecast results are higher
than the actual observation values, and the TCN_TL
forecast results are more in line with the actual situation.
+erefore, under the condition of small data set, the
prediction performance of TCN_TL is better than that of
CUACE.

4. Conclusions

+e offshore visibility prediction method based on transfer
learning proposed in this paper combines TCN and
transfer learning. +is paper uses TCN to establish a source
domain forecast model and learns the knowledge of the
source domain under the premise that the source domain
has a large amount of data. And TCN_TL was used to
forecast the visibility of the target domain offshore. +e
following conclusions can be obtained through experi-
mental analysis:

(1) +is paper compares the results of TCN and
TCN_TL for forecasting offshore visibility. +e ex-
perimental results show that the model of transfer
learning can be used to learn the visibility knowledge
of the source domain under the condition of a small
amount of offshore meteorological observation data

to improve the accuracy of the visibility forecast of
the target domain.

(2) In this paper, the TCN network is used to learn the
source domain data. Compared with LSTM and BP
neural networks, the RMSE and MAE between TCN
prediction and observation are smaller, and the TS
score is relatively higher than others’ in each visi-
bility forecast level. +erefore, TCN is more ad-
vantageous for learning and predicting time series
like visibility data than others.

(3) +e 24-hour forecast of offshore visibility of Haikou
Station from January to April 2018 was taken as an
example. Under the conditions of small data sets,
comparing the forecast results of TCN_TL and
CUACE, the forecast error of TCN_TL is lower than
that of CUACE, and the RMSE and the MAE are
6.8 km and 3.9 km. RMSE drops to 7.4 km, and MAE
drops to 3.1 km. TS score of TCN_TL has also im-
proved in each forecast level. At the level of 0∼1 km,
the TS score is 0.36, increased by 0.16. At the level of
1∼5 km, the TS score is 0.52, increased by 0.19. At the
level of 1∼5 km, the TS score is 0.52, increased by
0.19. At the level of 5∼10 km, the TS score is 0.67,
increased by 0.29. At the level of greater than 10 km,
the TS score is 0.78, increased by 0.39. +erefore,
under the condition of a small data set, TCN_TL has
an advantage in predicting the visibility of offshore
waters than CUACE.

(4) It is worth noting that, compared with the different
aging prediction of each model, no matter which
model, the prediction error of the short aging is
lower than that of the longer aging. +erefore, the
model method proposed in this paper is more
suitable for the short aging prediction of the offshore
visibility.
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Detection of lane-change behaviour is critical to driving safety, especially on highways. In this paper, we proposed a method and
designed a learning-based detection model of lane-change behaviour in highway environment, which only needs the vehicle to be
equipped with velocity and direction sensors or each section of the highway to have a video camera. First, based on the Next
Generation Simulation (NGSIM) Interstate 80 Freeway Dataset, we analyzed the relevant features of lane-changing behaviour and
preprocessed the data and then used machine learning algorithms to select the suitable features for lane-change detection.
According to the result of feature selection, we chose the lateral velocity of the vehicle as the lane-change feature and usedmachine
learning algorithms to learn the lane-change behaviour of the vehicle to detect it. From the dataset, continuous data of 14 vehicles
with frequent lane changes were selected for experimental analysis. ,e experimental results show that the designed KNN lane-
change detection model has the best performance with detection accuracy between 89.57% and 100% on the selected dataset,
which can well complete the vehicle lane-change detection task.

1. Introduction

Over the past few years, with the rapid development of
artificial intelligence and communication technology, in-
telligent vehicles based on intelligence and networking have
become a major trend in the development of the automotive
industry. From the perspective of technological develop-
ment, intelligent vehicles are divided into three development
directions: connected vehicle (CV), autonomous vehicle
(AV), and the integration of the former two, namely,
connected and automated vehicle (CAV) or intelligent and
connected vehicle (ICV) [1].

ICVs play an important role in improving driving safety
and reducing driver burden, contribute to energy

conservation and environmental protection, and improve
traffic efficiency. Research shows that, in the initial stage of
ICVs, advanced intelligent driving assistance technology can
help reduce traffic accidents by about 30%, improve traffic
efficiency by 10%, and reduce fuel consumption and
emissions by 5% [2]. Entering the ultimate stage of the ICVs,
that is, the fully automatic driving stage, it could avoid traffic
accidents, improve traffic efficiency, and finally liberate
people from boring driving tasks.

Driving behaviour detection plays a significant role in
ICVs’ decision-making system. During the driving of the
vehicle, due to the driver’s lack of attention or the ob-
struction of the surrounding large vehicles, it is likely that
the driver will not be able to fully understand the driving
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conditions of the surrounding vehicles, thus causing great
safety risks. Many methods of lane-change behaviour de-
tection have been proposed by researchers in recent years,
including hidden Markov model (HMM) [3–5], multi-view
convolutional neural network model (MV-CNN) [6], and
vision-based deep residual neural network (RNN) [7]. De-
tection of lane-changing behaviour in different scenarios,
including highways [8–12] and signalized intersections
[13–16], has also been studied by many researchers. Steering
behaviour recognition [17] and prediction [18] methods
have been proposed, too. Besides, some new deep learning
and machine learning methods have also been proposed in
recent years. Xie et al. comprehensively modeled lane-
change using deep learning approaches including deep belief
network and long short-term memory [19]. Xing et al.
proposed an ensemble bi-directional LSTMmodel for driver
intention inference [20]. Gao et al. proposed a data-driven
lane-change detection system using deep learning tech-
niques [21]. Zhang et al. modeled the car following and lane-
changing behaviours simultaneously using hybrid retraining
constrained long short-term memory neural networks [22].
Zhao et al. proposed a new quantitative discriminant model
based on deep belief networks algorithm and the classifi-
cation analysis method based on support vector machine
[23]. Dang and Dai established a lane-change model based
on improved Bayesian network [24]. ,ese methods,
however, need prior knowledge, or the structure is complex
and the real-time performance can be improved. In practical
application scenarios, there is usually lack of prior knowl-
edge of data distribution, and a simpler classificationmethod
is easier to implement.

In this paper, we proposed a method and designed a
learning-based detectionmodel of lane-change behaviour on
highways, which only needs the vehicle to be equipped with
velocity and direction sensors or each section of the highway
to have a video camera.,emain contributions of this paper
can be summarized as follows:

(1) Based on the NGSIM Interstate 80 Freeway
Dataset, the vehicle lane-change behaviour char-
acteristics were analyzed and selected, and the
data, including non-lane-change, single lane-
change, and sequential lane-change, was pre-
processed and reconstructed.

(2) Based on the analysis of the vehicle lane-change
process, and considering the real-time requirements
in the application of ICVs, the vehicle lane-change
detection model based on K-Nearest Neighbor
(KNN) is proposed and compared with extra tree
(ET) and random forest (RF).

(3) ,rough feature selection, the lateral speed, which is
combined with speed and driving direction and is
easy to be collected, is excavated as a feature for lane-
change detection. ,e continuous data of 14 vehicles
with frequent lane changes were tested and analyzed
experimentally and performed well with accuracy
between 89.57% and 100% on lane-change behaviour
detection.

,e rest of the paper is organized as follows. Section 2
explains the details of the dataset. Section 3 describes the
methodology of lane-change behaviour detection, including
feature selection and lane-change detection method. Section
4 presents the experiments and results of lane-change be-
haviour detection. Section 5 concludes this paper and dis-
cusses the future work.

2. Data Processing

In order to verify the lane-change detectionmethod, NGSIM
Interstate 80 Freeway Dataset initiated by the United States
Department of Transportation (US DOT) Federal Highway
Administration (FHWA), which is freely available at the
NGSIM web site at http://ngsim.fhwa.dot.gov, is used and
processed. ,e dataset contains 45 minutes, divided into
three periods: 4:00 p.m. to 4:15 p.m.; 5:00 p.m. to 5:15 p.m.;
and 5:15 p.m. to 5:30 p.m., which represent the buildup of
congestion, the transition between uncongested and con-
gested conditions, and full congestion during the peak pe-
riod, respectively [25]. As shown in Figure 1, the six-lane
study area with a length of 1650 feet is divided into seven
sub-areas. In each sub-area, a video detector is installed on
the high-rise building near the lane, and the traffic of the
sub-area is photographed and recorded.

,e original dataset contains many attributes, including
some attributes that are not highly relevant to the lane-
change detection. In order to establish a dataset suitable for
vehicle lane-change detection, the attributes in the dataset
that are not highly relevant to lane-change detection were
deleted, Vehicle_ID, Lane_ID, V_Length, and V_Width
remained the same as those in the original dataset, LX_m,
LY_m, Vel_m/s, and Acc_m/s2 changed the unit in the
original dataset from feet to meters (1 foot� 0.3048 meters),
the average lateral velocity of vehicle and instantaneous
lateral acceleration of vehicle were, respectively, calculated
by LX_m and Acc_m/s2 and added to the dataset, and the
lane-change behaviour of the vehicle was calculated by
Lane_ID, forming a new dataset. In the Lane_changing
attribute, 0 means to keep the current lane, 1 denotes a single
lane change to the right, −1 stands for a single lane change to
the left, 2 represents sequential lane change to the right, and
−2 represents sequential lane change to the left. ,e com-
position of processed data is shown in Table 1.

,e instantaneous lateral acceleration of vehicle Acc_X
can be calculated as

Acc_Xt � Acc_m/s2t ∗ sin acr tan
LX mt − LX mt−1

LY mt − LY mt−1
􏼠 􏼡􏼢 􏼣,

(1)

where Acc_Xt represents the value of Acc_X at time t,
Acc_m/s2t denotes the value of Acc_m/s2 at time t, LX_mt
and LX_mt−1, respectively, mean the value of LX_m at times
t and t− 1, while LY_mt and LY_mt−1 stand for the value of
LY_m at times t and t− 1, respectively.

,e average lateral velocity of vehicle Vel_X can be
calculated as
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Vel_Xt �
LX mt − LX mt−1( 􏼁

t
, (2)

where Vel_Xt represents the value of Vel_X at time t, LX_mt
means the value of LX_m at time t, LX_m(t−1) denotes the
value of LX_m at time t− 1, and t is the sampling period of
the dataset, which is 0.1 seconds.

Current lane-change behaviour of vehicle Lane_chang-
ing can be calculated as

Lane changingt � Lane IDt − Lane IDt−1, (3)

where Lane_changingt represents the value of Lane_-
changing at time t, Lane_IDt means the value of Lane_ID at
time t, and Lane_IDt denotes the value of Lane_ID at time
t− 1.

3. Methodology

3.1. Feature Selection. In order to accurately detect vehicle
lane changes, the relationship between various attributes and
vehicle lane changes was analyzed. By analyzing the
changing trends of various attributes when the vehicle
changes lanes in the dataset, we found that the vehicle’s
lateral velocity has the most obvious correlation with the
lane-change behaviour. ,e relationship between lateral
velocity and lane change is shown in Figure 2, fromwhich we
can see that when the vehicle changes lanes, there will be a
very obvious change in lateral velocity.

To further analyze and verify the relationship between
each attribute and the lane-change behaviour of the vehicle,
machine learning models, including KNN [26], extra trees

Offramp
Driving direction

Onramp

The study area: 503 meters (1650 feet)

6

5

4

3

2

1

Figure 1: ,e collection scene description of data. ,e six-lane study area, which is divided into seven sub-areas, is photographed and
recorded by digital video cameras.

Table 1: ,e composition of processed data.

Attribute label Attribute definition
Vehicle_ID Vehicle identification number.

LX_m Lateral (X) coordinate of the front center of the vehicle in meter with respect to the left-most edge of the section in the
direction of travel.

LY_m Longitudinal (Y) coordinate of the front center of the vehicle in meter with respect to the entry edge of the section in the
direction of travel.

V_Length Length of vehicle in feet.
V_Width Width of vehicle in feet.
Vel_m/s Instantaneous velocity of vehicle in m/s.
Acc_m/s2 Instantaneous acceleration of vehicle in m/s2.
Acc_X Instantaneous lateral acceleration of vehicle in m/s2.
Vel_X Average lateral velocity of vehicle in m/s.
Lane_ID Current lane position of vehicle.
Lane_change Current lane-change behaviour of vehicle.
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[27], and random forest [28], were performed on each at-
tribute. A total of 27287 lane-changing data were extracted
from the dataset. At the same time, in order to balance the
number of samples of lane-changing (the moment when the
vehicle changes lanes) and non-lane-changing (the moment
when the vehicle does not change lanes) data, 27287 non-
lane-changing data were selected to form a feature selection
dataset. ,e result of feature selection is shown in Table 2,
from which we can see that the detection accuracy with
Vel_X as the feature is significantly higher than other fea-
tures, which can reachmore than 90%. In the detection using
Vel_X, the accuracy of KNN, extra tree, and random forest is
94.85%, 91.73%, and 92.31%, respectively; KNN has the
highest accuracy.

In order to represent the contribution of each feature to
the lane-change behaviour detection more intuitively, fea-
ture importance analysis, which can be applied to random
forest and extra trees, was performed on the dataset. ,e
Gini index was used to measure the feature importance,
which can be defined as

Gm � 􏽘

|K|

k�1
􏽘

k′≠k

pmk pmk′ � 1 − 􏽘

|K|

k�1
p
2
mk, (4)

where K means that there are K categories and pmk denotes
the proportion of category k in node m. VIM is used to
represent the variable importance measures.,e importance
of feature Xj at node m, that is, the change in Gini index
before and after the branch of node m, can be defined as

VIM(Gini)
jm � Gm − Gl − Gr, (5)

whereGl andGr represent the Gini index of the left and right
nodes after the m branch. If the node where the feature Xj
appears in the decision tree i is in the set M, then the im-
portance of Xj in the i-th tree is

VIM(Gini)
ij � 􏽘

m∈M
VIM(Gini)

jm . (6)

Assuming there are n trees, then

VIM(Gini)
j � 􏽘

i�1
VIM(Gini)

ij . (7)

Finally, supposing there are c features, all the obtained
importance scores are normalized:

VIMj �
VIMj

􏽘

c

i�1
VIMi

.
(8)

,e feature ranking based on feature importance is
shown in Table 3, which illustrates that Vel_X has the highest
feature importance scores in both random forest and extra
tree and is significantly higher than the other six features.
,erefore, Vel_X can be selected as a feature of lane-change
detection for ICVs.

3.2. Lane-Change Detection

3.2.1. Lane-ChangeModel. ,edata used in feature selection
is discontinuous, so the learned features are relatively in-
dependent and have no relationship with the adjacent data.
In the actual driving process, the data of vehicle lane-
changing behaviour often only takes up a small part of the
entire dataset. ,erefore, in order to further analyze and
establish a lane-change detection model during vehicle
driving, we have selected continuous data from 14 vehicles
with frequent lane changes for analysis, training, and testing.

Lane-change behaviour includes single lane change and
sequential lane change. ,e single lane changes to the left
and right are denoted as −1 and 1, while the sequential lane
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Figure 2: ,e relationship between lateral velocity and lane change.
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changes to the left and right are denoted as −2 and 2, re-
spectively. ,e lateral velocity of single lane change inter-
cepted from selected data is shown in Figure 3, from which
we can see that there is a significant peak/valley when the
vehicle changes lanes, and the threshold of peak/valley can
be learned to determine if the vehicle is changing lanes. ,e
lateral velocity of sequential lane change intercepted from
selected data is shown in Figure 4; similar to single lane
change, there is also a significant peak/valley when the
vehicle changes lanes. Besides, there will be a continuous
peak/valley or a larger peak/valley of lateral velocity in the
sequential lane change, which also can be learned to de-
termine if the vehicle is changing lanes sequentially.

3.2.2. Detection Model. KNN is a simple classification
method that can perform effective classification in the ab-
sence of prior knowledge of data distribution, and the same
are the ET and RF.

RF is an algorithm that integrates multiple trees through
the idea of integrated learning and its basic unit is the
decision tree [29]. ,e construction process of the random
forest model is mainly divided into four steps:

(1) First, a tree needs to be constructed. If there are N
samples, there are randomly selectedN samples to be
replaced (randomly select one sample at a time, and
then return to continue selection). ,e selected N
samples are used to train a decision tree as the sample
at the root node of the decision tree.

(2) Each sample hasM attributes; when each node of the
decision tree needs to be split, m attributes are
randomly selected from the M attributes to satisfy
the condition m<<M. ,en use some strategy such
as information gain and Gini index from the m
attributes to select one attribute as the split attribute
of the node.

(3) Repeat step 2 until it can no longer split.

(4) Follow steps 1∼3 to build a large number of decision
trees to form a forest.

,e ET is very similar to RF; they are both composed of
many decision trees.,e difference is that the RF obtains the
best bifurcation attribute in a random subset, while ET
obtains the bifurcation value completely randomly, so as to
achieve the fork of the decision tree [30].

From the results of feature selection, we can see that
when lateral velocity is used as a feature for lane-change
detection, KNN has achieved good result, which is better
than ETand RF.,erefore, the KNNmodel is designed using
lateral velocity as feature for lane-change detection and the
result is compared with ET and RF.

KNN makes predictions using the training dataset di-
rectly. Predictions are made for a new data point by
searching through the entire training set for the K most
similar instances (the neighbors) and summarizing the
output variable for those K instances.

To determine which of the K instances in the training
dataset are most similar to a new input, a distance measure is
used. For real-valued input variables, the Euclidean distance
is used as a distance measure method. Euclidean distance is
calculated as the square root of the sum of the squared
differences between a point a and point b across all input
attributes i.

Euclidean distance(a, b) �

����������

􏽘
n

i�1
ai − bi( 􏼁

2

􏽶
􏽴

. (9)

When KNN is used for classification, the output can be
calculated as the class with the highest frequency from theK-
most similar instances. Each instance in essence votes for
their class and the class with the most votes is taken as the
prediction.

Class probabilities can be calculated as the normalized
frequency of samples that belong to each class in the set of K
most similar instances for a new data instance. For example,
in a binary classification problem (class is 0 or 1),

p(class � 0) �
count(class � 0)

count(class � 0) + count(class � 1)
. (10)

,e KNN algorithm can be described as follows:

(1) Initialize training sets and categories
(2) Calculate the Euclidean distance between the test set

sample and the training set sample
(3) Sort the training set samples in ascending order

according to the Euclidean distance
(4) Select the first K training samples with the smallest

Euclidean distance and count their frequency in each
category

(5) ,e category with the highest return frequency, that
is, the test set sample, belongs to this category

Table 4 shows the step of KNN algorithm, in which the
list Iz of its nearest neighbors is determined by calculating
the similarity distance between the training object (x, y)∈I

Table 2: Precision result of feature selection.

Selected features KNN Extra trees (%) Random forest (%)
LX_m; LY_m 60.28 70.63 74.28
V_Length; V_Width 62.38 65.26 65.29
Vel_m/s 49.14 50.26 50.67
Acc_m/s2 43.28 43.62 43.52
Vel_X 94.85 91.73 92.31

Table 3: Features ranked based on importance.

Random forest Extra trees
Rank Feature Importance Rank Feature Importance
1 Vel_X 0.712 1 Vel_X 0.788
2 Vel_m/s 0.094 2 Vel_m/s 0.061
3 Acc_m/s2 0.052 3 Acc_m/s2 0.042
4 LX_m 0.044 4 LX_m 0.032
5 LY_m 0.040 5 LY_m 0.030
6 V_Length 0.031 6 V_Length 0.024
7 V_Width 0.027 7 V_Width 0.022

Computational Intelligence and Neuroscience 5



and the test object z � (􏽢x, 􏽢y), where x represents the training
object, y represents the class to which it belongs, and 􏽢x and 􏽢y

represent the test object and the class to which it belongs.

4. Experimental Results

4.1. Evaluation Indicators. When performing machine
learning, the confusion matrix of prediction results can be
described as shown in Table 5.

,e number of pairs of samples divided by the number of
all samples is the accuracy (ACC), which can be defined as

ACC �
TP + FN

TP + TN + FP + FN
. (11)

Generally, the higher the accuracy, the better the clas-
sifier. However, in the case of imbalance between positive
and negative samples, the accuracy is a big flaw as an
evaluation indicator. It is not scientific and comprehensive
to evaluate a model based on accuracy alone.

To evaluate the performance of machine learning more
scientifically and comprehensively, precision (P), recall (R),
and F1 score can be used.
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Figure 3: ,e lateral velocity of single lane change.
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Figure 4: ,e lateral velocity of sequential lane change.

Table 4: Description of KNN algorithm.

Input:
Training object (x, y) ∈I and test object z � (􏽢x, 􏽢y)

Processing:
Compute distance d � (􏽢x, 􏽢y) between z and every object (x, y) ∈I. Select Iz⊆ I, the set of k closest training objects to z.

Output:
􏽢y � argv max􏽐(xi,yi)∈Iz

F(v � yi)
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,e precision, which represents the proportion of pos-
itive examples that are actually classified as positive exam-
ples, can be defined as

P �
TP

TP + FP
. (12)

,e recall, which measures how many positive examples
are classified as positive examples, can be defined as

R �
TP

TP + FN
. (13)

P and R indicators sometimes conflict, so they need to be
considered comprehensively. ,e most common method is
F-Measure, which is the weighted harmonic average of P and
R, and can be defined as

F �
α2 + 1􏼐 􏼑P∗R

α2(P + R)
. (14)

When the parameter α� 1, it is F1:

F1 �
2∗P∗R

P + R
. (15)

F1 combines the results of P and R. When F1 is higher, it
can indicate that the model is more effective.

In addition, receiver operating characteristic (ROC)
curve, in which the abscissa is False Positive Rate (FPR) and
the ordinate is True Positive Rate (TPR), is also an important
evaluation indicator. ,e definition of TPR is the same with
P, and the FPR can be defined as

FPR �
FP

TN + FN
. (16)

,e area under the ROC curve is called AUC. ,e
prediction effect of a classification model can be evaluated
based on the AUC value; the larger the AUC value, the better
the performance of the model.

4.2. Experiments and Analysis. ,e model is built on vscode
using python and uses the scikit-learn framework. ,e
experiments were performed on a server with a single-core
CPU, 2.6GHz, 2G memory, and Ubuntu 18.04.

KNN was performed on the selected dataset first. In
order to choose the most appropriate number of neighbors,
we trained and tested different numbers of neighbors on the
dataset consisting of the data of all 14 vehicles and obtained
their accuracy, respectively. ,e result of varying number of
KNN neighbors is shown in Figure 5, from which we can see
that the accuracy of the training set decreases as the number
of neighbors increases, and at the same time the accuracy of
the test set increases as the number of neighbors increases.

When the number of neighbors increases to 9, the accuracy
of both the training and test sets remains stable. ,erefore, 9
is appropriate to be determined as the number of neighbors.

After determining the number of neighbors, KNNmodel
was designed and performed on the dataset consisting of the
data of all 14 vehicles, compared with ET and RF. ,e ROC
of designed models including KNN, ET, and RF is shown in
Figure 6 and the AUC values of the three models are shown
in Table 6. Obviously, from the ROC curves, the perfor-
mance of KNN is better than RF and obviously better than
ET. It can be seen more clearly in Table 6 that the AUC value
of KNN is 97.73%, while the AUC values of ET and RF are
92.55% and 96.69%, respectively, showing that the perfor-
mance of KNN is the best in these three models.

After experimental testing on the dataset of all 14 ve-
hicles, in order to analyze the effect of continuous lane-
change detection of vehicles in real scenes, the designed
KNN model was used to perform experiments on the re-
spective datasets of the 14 vehicles and compared with ET
and RF.

,e detailed sample sizes of lane-change behaviour on
14 selected vehicles are shown in Table 7. In the dataset,
we can see that, in the real scene, the number of lane-keep
samples is generally larger than the number of left and
right lane-change samples. Among the 14 vehicles, only
the total number of the lane changes to left (LCL) and the
lane changes to right (LCR) of the vehicle numbered 2791
is greater than the number of lane-keep (LK), and the
number of each item is still less than the number of LK.
Besides, there are continuous lane changes in vehicles
numbered 2795 and 2825. A single lane change to the left
and right is recorded as LCL-1 and LCR-1, while a
continuous lane change to the left and right is recorded as
LCL-2 and LCR-2, respectively.

,e dataset combining all 14 selected vehicles is divided
into training and testing sets according to a ratio of 0.75 to 0.25.
,e confusion matrix of the detection results is shown in
Figure 7, which illustrates that the KNNmodel has the highest
detection accuracy, followed by RF, and ET has the lowest
detection accuracy. In addition, detection errors mainly occur
between the non-lane-change and the single lane-change be-
haviour, the probability of false detection between sequential
lane-change behaviour and other behaviours is small, and the
probability of false detection between left lane-change and right
lane-change behaviour is also small. It is worth noting that, in
the KNN and RF models, there is no misdetection between the
left lane-change, right lane-change, and non-lane-change
behaviour.

,e experimental results of lane-change detection
performed on 14 selected vehicles are shown in Table 8, in
which the evaluation indicator mACC denotes mean
accuracy of the detection model on all lane-change be-
haviours. From the experimental results, KNN performed
best in the lane-change detection results of all 14 vehicles,
while in the lane-change detection results of 14 vehicles,
ET performed better than RF in 4 vehicles, RF performed
better than ET in 7 vehicles, and ETand RF performed the
same in the remaining 3 vehicles. KNN’s lane-change
detection accuracy ranges from 89.57% to 100%, ET’s

Table 5: Confusion matrix of prediction results.

Prediction truth Positive Negative
True True positive (TP) True negative (TN)
False False positive (FP) False negative (FN)
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Table 6: AUC values of designed models.

KNN (%) ET (%) RF (%)
AUC values 97.73 92.55 96.69

Table 7: Sample size of lane-change behaviour on selected vehicles.

ID Behaviour Sample size

3365
LCL 131
LK 444
LCR 133

3362
LCL 79
LK 299
LCR 79

2826
LCL 39
LK 123
LCR 39

2804
LCL 45
LK 267
LCR 45

2795

LCL-2 36
LCL-1 46
LK 613

LCR-1 48
LCR-2 35

2782
LCL 152
LK 935
LCR 151

2778
LCL 91
LK 620
LCR 91

3363
LCL 127
LK 334
LCR 127

3063
LCL 23
LK 99
LCR 22

2791
LCL 207
LK 379
LCR 206

2800
LCL 100
LK 300
LCR 99

2825

LCL-2 12
LCL-1 13
LK 123

LCR-1 15
LCR-2 11

2779
LCL 134
LK 526
LCR 135

2774
LCL 100
LK 379
LCR 102

8 Computational Intelligence and Neuroscience



11 1 0 0 1

0 308 35 0 0

0

0

0000

0

0 241279

301

10

1 25

38

–2

–1

0

1

2

Pr
ed

ic
tio

n

–2 –1 0 1 2
Truth

Accuracy = 93.85%

(a)

11 2 0 0 0

0 312 25 0 0

0

1

1000

0

0 261289

298

10

0 25

34

–2

–1

0

1

2

Pr
ed

ic
tio

n

–2 –1 0 1 2
Truth

Accuracy = 94.40%

(b)

11 0 0 0 0

0 325 13 0 0

0

1

0000

0

0 111309

10

0 16

25

–2

–1

0

1

2

Pr
ed

ic
tio

n

–2 –1 0 1 2
Truth

Accuracy = 96.76%

313

(c)
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Table 8: Experimental results of lane-change detection on selected vehicles.

ID Model Behaviour P (%) R (%) F1 (%) mACC (%)

3365

ET
LCL 91 94 93

97.18LK 98 97 98
LCR 100 100 100

RF
LCL 91 94 93

96.61LK 97 97 97
LCR 100 97 99

KNN
LCL 97 97 97

98.87LK 99 99 99
LCR 100 100 100

3362

ET
LCL 68 89 77

84.35LK 89 84 86
LCR 88 82 85

RF
LCL 71 89 79

86.09LK 91 85 88
LCR 89 86 87

KNN
LCL 76 100 86

89.57LK 97 85 91
LCR 87 93 90

2826

ET
LCL 89 89 89

94.12LK 94 97 96
LCR 100 86 92

RF
LCL 80 89 84

90.20LK 92 94 93
LCR 100 71 83

KNN
LCL 89 89 89

96.08LK 97 97 97
LCR 100 100 100

2804

ET
LCL 73 80 76

93.33LK 97 94 96
LCR 90 100 95

RF
LCL 89 80 84

94.44LK 97 96 96
LCR 82 100 90

KNN
LCL 90 90 90

95.55LK 97 97 97
LCR 89 89 89

2795

ET

LCL-2 91 100 95

94.36
LCL-1 67 77 71
LK 99 95 97

LCR-1 81 100 90
LCR-2 100 83 91

RF

LCL-2 91 100 95

96.41
LCL-1 91 77 83
LK 99 98 98

LCR-1 81 100 90
LCR-2 100 83 91

KNN

LCL-2 100 100 100

98.46
LCL-1 100 77 87
LK 98 100 99

LCR-1 100 100 100
LCR-2 100 100 100
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Table 8: Continued.

ID Model Behaviour P (%) R (%) F1 (%) mACC (%)

2782

ET
LCL 100 98 99

99.03LK 99 100 99
LCR 100 95 97

RF
LCL 100 98 99

98.71LK 98 100 99
LCR 100 92 96

KNN
LCL 100 98 99

99.68LK 100 100 100
LCR 100 100 100

2778

ET
LCL 96 100 98

98.01LK 100 97 99
LCR 88 100 94

RF
LCL 96 100 98

98.01LK 100 97 99
LCR 88 100 94

KNN
LCL 100 100 100

99.00LK 99 100 99
LCR 100 91 95

3363

ET
LCL 87 77 82

87.07LK 87 90 89
LCR 86 89 88

RF
LCL 90 74 81

86.39LK 86 90 88
LCR 83 89 86

KNN
LCL 96 77 86

91.16LK 90 95 92
LCR 90 96 93

3063

ET
LCL 50 33 40

83.33LK 84 96 90
LCR 100 40 57

RF
LCL 50 33 40

86.11LK 87 96 92
LCR 100 60 75

KNN
LCL 100 67 80

97.22LK 97 100 98
LCR 100 100 100

2791

ET
LCL 100 77 87

88.89LK 82 98 89
LCR 95 87 91

RF
LCL 100 84 91

89.90LK 84 97 90
LCR 93 84 88

KNN
LCL 96 85 91

92.42LK 89 96 92
LCR 96 96 96

2800

ET
LCL 88 93 90

88.00LK 94 85 90
LCR 72 90 80

RF
LCL 91 97 94

92.00LK 96 91 93
LCR 82 90 86

KNN
LCL 97 97 97

95.20LK 97 95 96
LCR 86 95 90
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lane-change detection accuracy ranges from 83.33% to
99.50%, while RF’s lane-change detection accuracy ranges
from 86.09% to 99.50%. Besides, combined with the
sample sizes, in the vehicles with the numbers of 3063 and
2825, the number of samples of the lane-change left and
the lane-change right is small, and the detection results are
relatively poor, indicating that too few samples will affect
the accuracy of the lane-change detection.

5. Conclusions

,is paper proposed a lane-change detection method for in-
telligent and connected vehicles. Based on the feature selection
of vehicle lane-change behaviour, the detection model based on
machine learning was designed, and the effect verification and
comparisonwere performed on the selected dataset.,e dataset
based on NGSIM Interstate 80 Freeway Dataset was processed
for lane-change detection first. After that, feature selection for
lane-change detection was performed on the processed dataset,
and the lateral velocity was selected as the feature for lane-
change detection. ,en, the lane-change model was analyzed
based on the real data in the processed dataset and the detection
model was designed. Finally, the number of KNN neighbors
was determined based on experiment, and the performance of

KNN, ET, and RF was analyzed by the evaluation indicators.
From the experimental results, the designed KNN model
performed best in all datasets of the selected 14 vehicles, with
detection accuracy ranging from 89.57% to 100%, indicating
that it can well complete the task of lane-change behaviour
detection for ICVs.

As for futurework, the lane-changing scene can be extended
by the measured data from the vehicle sensors to establish a
more widely adaptable dataset, and the detection model can be
further optimized and then implemented on embedded
hardware to achieve a lane-change real-time detection system
for ICVs.
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Table 8: Continued.

ID Model Behaviour P (%) R (%) F1 (%) mACC (%)

2825

ET

LCL-2 50 100 67

90.91
LCL-1 50 67 57
LK 100 91 95

LCR-1 67 100 80
LCR-2 100 100 100

RF

LCL-2 50 100 67

90.91
LCL-1 67 67 67
LK 100 94 97

LCR-1 50 50 50
LCR-2 83 100 91

KNN

LCL-2 100 100 100

95.45
LCL-1 100 100 100
LK 100 97 98

LCR-1 50 100 67
LCR-2 100 80 89

2779

ET
LCL 98 100 99

99.50LK 100 99 100
LCR 100 100 100

RF
LCL 98 100 99

99.50LK 100 99 100
LCR 100 100 100

KNN
LCL 100 100 100

100LK 100 100 100
LCR 100 100 100

2774

ET
LCL 91 91 91

94.52LK 96 96 96
LCR 94 94 94

RF
LCL 95 91 93

95.21LK 96 97 96
LCR 94 94 94

KNN
LCL 100 100 100

97.26LK 98 98 98
LCR 94 94 94
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Collecting parallel sentences from nonparallel data is a long-standing natural language processing research problem. In particular,
parallel training sentences are very important for the quality of machine translation systems. While many existing methods have
shown encouraging results, they cannot learn various alignment weights in parallel sentences. To address this issue, we propose a
novel parallel hierarchical attention neural network which encodes monolingual sentences versus bilingual sentences and
construct a classifier to extract parallel sentences. In particular, our attention mechanism structure can learn different alignment
weights of words in parallel sentences. Experimental results show that our model can obtain state-of-the-art performance on the
English-French, English-German, and English-Chinese dataset of BUCC 2017 shared task about parallel sentences’ extraction.

1. Introduction

Parallel sentences are a very important linguistic resource which
comprises much text in the parallel translation of different
languages. A large parallel corpus is crucial to train machine
translation systems which can produce good quality transla-
tions. As is well known, the major bottleneck of statistical
machine translation (SMT) and neural machine translation
(NMT) is the scarceness of parallel sentences in many language
pairs [1–3]. With an increasing amount of comparable corpora
on theWorldWideWeb, a potential solution that alleviates the
parallel data sparsity is to extract parallel sentences from
comparable corpora. Previous research has shown that this
bottleneck can be relieved by extracting parallel sentences from
comparable corpora [4–11].

As collecting parallel sentences is important for im-
proving the quality of machine translation systems, many
works try to mine parallel sentences from comparable
corpora in the last two decades. +eir success has a great
contribution to the development of this research. Tradi-
tional systems developed to extract parallel sentences from
comparable corpora typically rely on multiple features or

metadata from comparable corpora structure. Bouamor and
Sajjad [12] proposed to use a hybrid approach pairing
multilingual sentence-level embedding and supervised clas-
sifier to identify parallel sentence pairs. +ey used features
such as source-target punctuation marks features and mor-
phosyntactic features to build a support vector machine bi-
nary classifier. Although feature engineering is an effective
strategy to filter parallel sentences, it usually suffers from the
language diversity issue. For example, the named entity is an
important feature to measure source-target candidate parallel
sentences. However, the named entity has various processes in
different languages. For English, CoreNLP (https://
stanfordnlp.github.io/CoreNLP/) can be implemented to
extract English persons, locations, and organizations, while
there are no open-source tools to deal with other lingual
named entities such as Uyghur. To address those issues, many
methods extracted parallel sentences without feature engi-
neering. More recent approaches used deep learning, such as
convolutional neural networks [13] and recurrent neural
networks based on long short-term memory (LSTM) [1, 14,
15] to learn an end-to-end network classifier to filter parallel
sentences.
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Although mining parallel sentences using neural-net-
work-based approaches has been quite effective, we use the
better representations that can be obtained by incorporating
knowledge of context information in the model of sentence
architecture in this paper. As we all know, not all parts of a
sentence are equally relevant for representing parallel sen-
tences (as an example in Figure 1, unmarked words do not
affect detecting parallel sentences). +at is, different words
have various important weights for detecting parallel
sentences.

To address those issues, this paper proposes a parallel
hierarchical attention network (PHAN) that learns
parallel sentence representations. +e PHAN first avoids
employing a lot of manual operation to carry out feature
engineering. At the same time, compared with current
neural networks, the PHAN can effectively learn lan-
guage differences and the various weights of alignments.
As illustrated in Figure 2, the process can be as follows:
(1) It first uses one-hot word representations as inputs
without feature engineering. (2) Since parallel sentence
pairs have different hierarchical components (words
form sentences, two monolingual sentences form a
parallel sentence pair), the model first encodes mono-
lingual contexts to learn language differences. (3) +en, it
inputs those monolingual encodings into a top network
to encode a parallel sentence representation. +e reason
for using this network is that different words in a sen-
tence are different. Moreover, the importance of words is
highly context-dependent; that is, the same word may be
differentially important in different contexts [2, 16, 17].
(4) Finally, we aggregate the outputs of the neural net-
work into the classification layer to identify parallel
sentences. +e classification layer adopts the softmax
function to implement a binary classification.

Our experimental results show that our method achieves
significant and consistent performance compared with all
baseline methods in filtering parallel sentences task. In our
work, we remove feature engineering and additional com-
puting resources. In particular, we extract parallel sentences
from Wikipedia articles. +en, we use the parallel sentences
to test the machine translation system and show that the
extracting parallel sentences can improve machine
translation.

+is paper first introduces the main research content.
Section 2 presents a detailed description of the model.
Section 3 presents experiments and settings. Section 4 gives
the detailed results of our experiment. Finally, it is the
conclusion of this paper.

2. Parallel Hierarchical Attention Network

In this section, we propose a parallel hierarchical attention
network (PHAN) to identify parallel sentence pairs. Figure 1
shows the structure of the PHAN. We consider a training
parallel dataset D � (Ss

i , St
i : li), i � 1, . . . , N􏼈 􏼉 made of N

pairs of sentences (Ss
i , St

i)􏼈 􏼉 with labels li ∈ 0, 1{ }. If a pair of
sentences is parallel, the label is marked as 1{ }, otherwise as
0{ }. For example, we set the label of two sentences
″I love themotherland″, ″wo ai zuguo″􏼈 􏼉 as 1{ }.

+e network takes a pair of sentences (Ss
i , St

i)􏼈 􏼉 as input
and output is a label of a pair of sentences li􏼈 􏼉. It has two
levels, monolingual sentences versus bilingual sentences.
+e level of monolingual sentences is made of source lan-
guage encoder and target language encoder. +e monolin-
gual encoder is made of two bidirectional GRU (Gated
Recurrent Unit) networks with parameters Hw and an at-
tention model with parameters aw, while the bilingual en-
coder level similarly includes a network and an attention
model. +e monolingual level mainly encodes monolingual
sentence context and dependency.+e bilingual level mainly
encodes parallel sentence pair interactive context and de-
pendency. +e classification layer uses the output p(s|t) to
determine a label li􏼈 􏼉.

2.1. Word Layers. In natural language processing, contin-
uous word embeddings [18] are often used as the input of the
neural network. However, in this task, we use the one-hot
vectors instead of continuous embeddings. +e reason for
using one-hot vectors is that one-hot vectors can help to
encode the context of a sentence. In the first step, to compare
source and target sentences in the mathematical sense, we
need to project them into one-hot n-dimensional space.
Each word is converted into a one-hot representation. Al-
though words are often converted into continuous word
embeddings, the one-hot representation is more suitable to
capture context information.

In order to get this one-hot vector, we define a lexicon
V � w1, w2, . . . , wm􏼈 􏼉, where m is the number of words of
source or target sentences. A one-hot of the word wi is an
array as [0, 0, . . . , 1, . . . , 0], and we set the number of the
word in the lexicon as 1. For example, for a sentence “she is
the king,” the lexicon is [’′she’′, ’′is’′, ’′the’′, ’′king’′]. +en,
the one-hot of “the” is [0, 0, 1, 0]. +e one-hot representation
of jth word in the ith sentence is defined as

ωs
i,j � Embedding w

s
i,j􏼐 􏼑, (1)

where ws
i,j is jth word in the ith sentence. ET is a pre-

trained embedding matrix, where Embedding( ) is a
linear transformational function to embed a word to a
one-hot vector. +e source language has the same
definition.

2.2. Encoder Layers. In the above section, we convert words
into one-hot word vectors that can be calculated in the
neural network. Next, we use a stream-dependent word
encoder to encode each word representation to learn the
near context information in a sentence.

6 7-8

Each year , millions of students sit the exam on june 7-8 in China.

°

Figure 1: Not all parts of a sentence are equally relevant for
representing parallel sentences.
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+e traditional recurrent neural network (RNN) is af-
fected by short-term memory. If a sequence is too long, it will
be difficult to transfer information into a long step.+erefore,
it will miss some important information when we process a
long text. For example, when we watch a movie, we may only
remember the words such as “amazing” and “excellent” and
do not care about the words such as “this,” “is,” and “a” in the
next day. +e GRU can effectively achieve the above process.
It can only keep some relevant information and forget useless
data when we obtain parallel sentences. At the monolingual
level, in order to learn the information from both directions of
words, this paper uses bidirectional GRU to learn the context
in a sentence. +e GRU used a gating mechanism to track the
state of sequences without using separate memory cells.+ere
are two types of gates: the reset gate rt and the update gate zt.
+ey together control how information is updated to the state.
At the time t, the GRU computes the new state as follows:

ht � 1 − zt( 􏼁Θht−1 + ztΘ 􏽢ht, (2)

which is the linear interpolation between the previous state
ht−1 and the state 􏽢ht computed with new sequence infor-
mation. We use the two states to learn the context
information in monolingual sentences. +e gate zt decides
how much past context information is kept and how much
new context information is added. +is operation can ef-
fectively learn longer context information. zt is updated as
follows:

zt � σ wtxt + utht−1 + bz( 􏼁, (3)

where xt is the input state sequence vector with time t. +e
other state 􏽢ht is computed in a similar way. 􏽢ht is a corre-
sponding weight that maintains a constant state.

􏽢ht � tanh whxt + rtΘ utht−1( 􏼁 + bh( 􏼁. (4)

In fact, rt is the reset gate which controls how much the
past state information contributes to the sentences. If rt is
zero, then it forgets the previous state. We use the following
equation to update the reset gate:

rt � σ wrxt + urht−1 + br( 􏼁. (5)

In the process, we use ws
i,j to represent a word in a source

sentence, tϵ[0, T]. In order to encode the context information
of a sentence, we use the following formula to calculate the
hidden representation state for the tth time in the source
language:

h
s
i,j

�→
� GRU

����→
w

s
i,j : θs

r,t􏼐 􏼑,

h
s
i,j

←
� GRU
←

w
s
i,j : θs

r,t􏼐 􏼑,

h
s
i,j � h

s
i,j

�→
, th

s
i,j

←
􏼢 􏼣

T

,

(6)

where h
s
i,j

�→
and hs

i,j

←
are forward GRU functions and backward

GRU functions and θs
r,t is the model parameter for word GRUs.
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Figure 2: Hierarchical attention neural networks for modeling and selecting parallel sentences.

Computational Intelligence and Neuroscience 3



We obtain the context information for a given word ws
i,j by

concatenating the forward hidden state h
s
i,j

�→
and hs

i,j

←
,

hs
i,j � [h

s
i,j

�→
, hs

i,j

←
]T, which summarizes information of the whole

sentence. Target sentences are encoded like source sentences
with an additional neural network layer, which helps the en-
coder to recognize the most relevant features by emphasizing
critical points of the target sentence given by each source
sentence.

From the example of Figure 2, we can observe that not all
words contribute equally to the representation of the sen-
tence meaning, especially when distinguishing whether two
sentences are parallel. +erefore, we introduce an attention
mechanism to learn this information that different words
have various weights in distinguishing parallel sentences.

u
s
i,j � tanh h

s
i,j: θs

w􏼐 􏼑 � tanh wwh
s
i,t + bw􏼐 􏼑

αs
i,t �

exp usT
i,t uw􏼐 􏼑

􏽐
t
i�1 exp usT

i,t uw􏼐 􏼑
,

u
s

� 􏽘
t

1αi,thi,t.

(7)

In the attention process, we first use a one-full-layer per-
ception to learn us

i,t as a hidden representation of hs
i,t. +en, in

order to learn the importance of a word in a sentence, we
calculate the similarity of hs

i,t with a level context vector uw.
Next, we use a softmax function to get a normalized importance
weight. Note that uw is a model parameter in the attention
mechanism. +e context vector uw can be seen as a high-level
representation that selects which word is more important for a
sentence. After that, we get a state us by a weighted sum of the
word annotations based on the weights. We can get a target
vector ut by the same method.

At the bilingual level, after combining the intermediate
vectors us and ut, the function networks encode sequence
vectors. We concatenate the forward GRU and the backward
GRU to obtain the hidden states for each input vector.

2.3. Classification Parallel Sentence. In this section, we should
detect whether a sentence pair is parallel or not from the top
neural network. In order to achieve this goal, we employ a
softmax layer to classify parallel sentences. +e basic process is
that it maps the multiple outputs of the encode layer into an
interval (0, 1). In this paper, we treat the classifying parallel
sentence as a binary classification problem.We input the source
and target sentences into the encode layer. +e encoder layer
outputs a state vector u into the classification layer. For the
classification layer, we use the following formula that maps the
input into the interval (0, 1). It is obvious that the output of the
classification layer is a probability.

li′ � P ti|si( 􏼁 �
1

1 + e− Wcu+bc( )
ϵ(0, 1), (8)

where Wc is a value matrix and bc is the bias term for the
classification layer. For the classification problem, we usually
use the cross-entropy as a loss.

l(θ) � −
1
N

􏽘

N

i�1
ϕ li, li′( 􏼁. (9)

We use ϕ to stand for the binary cross-entropy. +en, we
use the gold label li and predicted label li′ for a pair of a
sentence i to optimize the loss. +e final objective can be
minimized with stochastic gradient descent (SGD) or var-
iants such as Adam to maximize classification.

3. Experiments and Setup

In this section, we assess the effectiveness of our model. We
compare our method with multiple settings. As we want to
improve the performance of our model, we artificially
construct negative samples.

3.1. Negative Examples. Hangya and Fraser [19] showed that
a training model only using parallel sentences is not enough.
+ere are many sentence pairs where the overall meaning is
similar, but they are not parallel sentences. So, we need to
generate negative examples with similar words but different
meanings. +erefore, we generate synthetic noisy data from
good parallel sentences. We follow [20] to generate our
negative examples that have similar words but different
meanings.

Gregoire and Langlais [14] showed that obtaining par-
allel sentences from nonparallel corpora in practice is an
unbalanced classification task in which nonparallel sen-
tences represent the majority class. Although an unbalanced
training set is not desired since a classifier trained on such
data typically tends to predict the majority class and has a
poor precision, the overall impact on the performance of our
model is not clear. So, we train a total of 10 models with
kϵ 0, 1, . . . , 9{ }, such that with k � 0 and k � 9, a model is
respectively trained on the dataset with a positive to negative
sentence pairs ratio of 100% and 10%.

3.2. Data. To implement experiments, we use the BUCC’17
English-French, English-Chinese, and English-German
parallel datasets (https://comparable.limsi.fr/bucc2017/cgi-
bin/download-data.cgi) to train our model. For test sets, we
use the BUCC’17 English-French, English-Chinese, and
English-German datasets (https://comparable.limsi.fr/
bucc2017/cgi-bin/download-test-data.cgi). Each testing
dataset contains two monolingual corpora.+emonolingual
corpora contain about 100 k–550 k sentences and
2,000–14,000 sentences are parallel. For the convenience of
researchers, BUCC 2017 provided us with an evaluation
script and a gold standard data to calculate the precision,
recall, and F-score. For Chinese, we use OpenCC (https://
github.com/BYVoid/OpenCC) to normalize characters to be
simplified and then perform Chinese word segmentation
and POS tagging with THULAC (http://thulac.thunlp.org).
+e preprocessing of English, French, and German involves
tokenization, POS tagging, lemmatization, and lower casing
which we carry out with the NLTK (http://www.nltk.org)
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toolkit. +e statistics of the preprocessed corpora are given
in Table 1.

3.3. Training Settings. We use 256-dimensional GRUs for all
RNNs in our model. To prevent the neural network from
overfitting, we give the drop-out as 0.5 for the last layer in
each module. In order to enhance our model, we add some
new negative parallel sentences into training data by sam-
pling {0, 1, . . ., 9} negative sentence pairs for each parallel
sentence pair. For the system, we use TensorFlow to realize
our models. All those parameters introduced earlier are
based on manual analysis of the data and nonexhaustive
tuning on the development set.

3.4. Baselines. We compare our model to four baselines (the
parameters of the baselines follow their authors):

(1) Maximum entropy classifier (ME) [3]
(2) Multilingual sentence embeddings (MSE) [12]
(3) Dual conditional cross-entropy (DCCE) [21]
(4) An LSTM recurrent neural network (LSTM) [14]

+e first baseline (ME) is the traditional statistics-
based approach that is conventionally considered as
alignment features between two sentences. +e alignment
features mainly conclude the number of connected
words, the top three largest fertilities, and the length of
the longest connected substring. We use those features to
construct a maximum entropy classifier according to
Munteanu et al. +is method mainly relied on feature
engineering. Feature engineering usually suffers from the
language diversity issue.

+e second baseline (MSE) is an important contribution
of this type to approach that mentioned in [22]. First, they
used a continuous vector representation of each source-
target sentence pair which is learned using a bilingual
distributed representation model to reduce the size and
noise of the candidate sentence pairs. +en, they filtered
source-target sentence pairs by feature engineering and built
a support vector machine (SVM) binary classifier to identify
parallel sentences. +is method also relied on feature
engineering.

+e third baseline (DCCE): this work proposed dual
conditional cross-entropy to extract parallel sentences.
+is work used the computed cross-entropy scores based
on training two inverse translation models on parallel
sentences. +is method requires additional computa-
tional resources to train the translation model.

+e final baseline (LSTM) is based on bidirectional
recurrent neural networks that can learn sentence repre-
sentations in a shared vector space by explicitly maximizing
the similarity between parallel sentences. +is method does
not distinguish the various weights of words in detecting
parallel sentences. +ese end-to-end network models do not
add attention to encode and do not learn complex mappings
and alignments to quantify parallel information.

Compared to the baselines, the PHAN first is inde-
pendent of feature engineering. It makes the PHAN

universal and is easy to apply the PHAN into multiple
languages. Moreover, the PHAN uses a parallel hierarchical
attention mechanism to capture the deep representation of
monolingual and parallel bilingual sentences.

4. Results and Discussion

4.1. Model Evaluation. In this section, we first give the
overall performance of different models. Table 2 shows
precision, recall, and F1 scores of three language pairs.

From Table 2, we can observe that the two methods of
ME and MSE get very poor performance compared with
ours.+e performance is stable nomatter in English-French,
English-Chinese, and English-German. As the two methods
of ME and MSE rely on feature engineering, alignment and
bilingual words need a lot of manual annotation. However,
manual annotation only covers limited language informa-
tion and the high cost of manual annotation makes it dif-
ficult to obtain large-scale annotation corpus in many
languages or domains. +e work of [21] for the WMT18 task
performed sentence pairs’ extraction, was not feature-based,
and gave very good results. We also verify the performance
of our method by contrasting [21]. Junczys-Dowmunt [21]
trained a multilingual translation model to enforce the
agreement of cross-entropy scores. However, they need to
train a good machine translation system to improve per-
formance. +e trained machine translation system heavily
affects the performance of required parallel sentences. From
Table 2, we can observe that the results of English-Chinese
are not as good as English-French and English-German. As
we all know, English-Chinese machine translation is not
good as English-French and English-German on the same
scale corpus and translation method. +e reason is that
English-French and English-German are similar languages,
but English-Chinese is distant languages. In addition to
LSTM, which does not use a parallel attention mechanism,
we show a significant increase in our proposed method. Our
PHAN outperforms LSTM in three language pairs. We
analyze the performance of ours and LSTM; the main dif-
ference is that we treat the same words that may be dif-
ferentially important in different sentences. So, we use two
parallel networks and attentionmechanism to learn different
context information. However, LSTM does not learn this
context information as it does not add an effective attention
mechanism. Our model uses a parallel attention mechanism

Table 1: Training and test set statistics.

Type Language Number

Training data
English-French 229,000
English-Chinese 287,000
English-German 237,000

Test data

English-French English 38,069
French 21,497

English-Chinese English 88,860
Chinese 94,637

English-German English 40,354
German 32,594
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to mine more context information to improve performance.
In the next section, we will carry out two experiments to
further analyze our model.

4.2. Qualitative Analysis. We further analyze the perfor-
mance of PHAN to observe which model can make it
perform better than that without the attention mechanism.
Alignment is an important factor in identifying parallel
sentences. If the weights of alignment are not important, the
neural network without attention mechanism may also ef-
fectively detect parallel sentences since all alignments have
the same contribution. However, the alignment deeply de-
pends on linguistics and context [23–25]. For example, the
English word “bearing” means multiple Chinese words such
as “chengzhou,” “baochi,” and “zhoucheng” in a different
context.

We can visualize alignments for some sample sentences
and observed translation quality as an indication of an at-
tention model. In order to test that our model is able to mine

various informative alignments in parallel sentences, we use
this method to make the analysis. To test whether our model
can better capture alignments than LSTM without a parallel
attention mechanism, we plot the distribution of the at-
tention weights of the words in three language bilingual
sentences. +e results are shown in Figures 3 and 4. +e two
figures show that our attention model can obtain a better-
visualized alignment. From the two figures, we can find that
our model can obtain various alignment weights in three
language pairs. For example, our model can distinguish one-
to-many alignment in English-Chinese. We can find that
LSTM forces the alignment to one-to-one; if a word does not
capture alignment, it will not align any words. However, we
can observe the alignments of three language pairs; we find
that one-to-many occurs more in English-Chinese than
English-French and English-German. +is may be the main
factor that our model gets a bigger improvement in English-
Chinese than English-French and English-German. In order
to verify this hypothesis, we count the proportion of the
number of words in three language sentence pairs. +e
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Figure 3: Our results are three alignments in three language pairs.
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Figure 4: LSTM results are three alignments in three language pairs.

Table 2: +e precision (P), recall (R), and F1 scores of extracting parallel sentences.

Model
En-Fr En-De En-Zh

P(%) R(%) F1(%) P(%) R(%) F1(%) P(%) R(%) F1(%)
ME 88.37 83.12 86.72 87.83 82.25 86.02 83.58 80.61 83.90
MSE 93.75 88.43 91.28 92.89 88.05 91.17 90.36 86.93 89.52
DCCE 94.13 89.09 92.45 92.87 89.35 91.78 90.86 87.04 89.82
LSTM 93.89 88.71 92.03 93.05 87.93 91.67 91.83 87.16 90.06
PHAN 94.27 90.03 92.63 93.16 89.73 92.06 92.07 89.37 91.23
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results are shown in Figure 5. We can observe that English
sentences are often longer than Chinese sentences, and the
other language pairs have not this situation.+is makes one-
to-many often occur in English-Chinese. It makes semantic
confusion and affects the classification of parallel sentences.
+is is also an important reason why different language pairs
have various accuracies in the classification of parallel
sentences.

We further explore the language differences and their
impact on detecting parallel sentences. We manually extract
English-Chinese and English-French parallel sentences to
discuss language differences. Example 1 is extracted by the
PHAN, but the other baselines miss it. From Figure 6, we can
observe that the English phrase “caught my eye” and the
Chinese phrase “ying ru wo de yan lian” are not a suitable
translation regardless of context information. According to
the bilingual lexicon, “Zhua zhu wo de yan jing” is the right
translation of the English phrase. However, if we use the
translation “Zhua zhu wo de yan jing” to replace the phrase
“ying ru wo de yan lian” in the Chinese sentence, the new
sentence is wrong. Although the translation is right, it is a
wrong collocation in Chinese. +e ME, MSE, and DCCE
need the lexicon to learn the bilingual signal, which leads to
the fact that the word pairs that are not in bilingual lexicon
affect detecting parallel sentences. As LSTM has no parallel
attention mechanism to effectively encode monolingual
information, LSTM cannot encode a monolingual context to
distinguish alignments. In fact, language differences and
their impact are very important in machine translation. In
building machine translation systems, many works add
attention to improve machine translation [26]. Example 2 is
obtained by all systems. +e English phrase “caught my eye”
and the French phrase “attiré mon attention” are very right
translations in English-French lexicon. From the above, we
can conclude that our method can consider language dif-
ferences by encoding the monolingual context. It can lead to
a better result in detecting parallel sentences.

4.3. Performance in Machine Translation. In this paper, we
hope to obtain parallel sentences and improve the perfor-
mance of the machine translation system. In the training
machine translation system, we use the BUCC’17 English-
French, English-Chinese, and English-German parallel
datasets as baselines. We use our model to extract parallel
sentences from Wikipedia (https://linguatools.org/tools/
corpora/wikipedia-comparable-corpora/) corpus. +en, we
add the obtained parallel sentences into the three original
training data as the new training set for machine translation.
To evaluate the translation performance of machine trans-
lation, we use the well-known BLEU score. We use phrase-
based systems that are trained with Moses for the SMT
system. To train the NMT systems, we use OpenNMT
(https://github.com/OpenNMT/OpenNMT-py) system.

We trained 48 machine translation systems for each
SMT (http://www.statmt.org/moses/) and NMT (https://
opennmt.net/) approaches. +e baseline systems are
trained with BUCC’17 English-French, English-Chinese,
and English-German parallel sentences. For the remaining
compared systems, we sort the extracted parallel sentence
pairs by an extraction system in descending order according
to the threshold values and append the top of {20000, 50000,
. . ., 500000} and append the extracted parallel sentence pairs
to the original training dataset. We change different num-
bers of extracted parallel sentences to train the machine
translation system to test the stable performance of our
model.

Table 3 shows BLEU scores in machine translation
systems of SMT and NMT approaches. We can observe
that adding the parallel sentences extracted by our model
can lead to significant improvement compared to the
baseline systems. +erefore, we know that parallel
training sentences heavily affect the performance of the
machine translation system. +is improvement can be
observed in three language machine translation systems.
+e table shows different gains of BLEU scores compared
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Figure 5: +e ratio of the number of words in three language sentence pairs.

1. “�e Art of Eating Spaghetti ( )” caught my eye.
” Chinese

Chi yi da li mian de yi shu shi yi tiao ying ru wo de yan lian
2. “�e Art of Eating Spaghetti ( )” caught my eye. English

“L'art de manger des spaghettis (spaghettis)” a attiré mon attention. French

English

Figure 6: Different languages have different alignments for the same English sentence.
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to the baseline systems. When we get Top20K, we add
extracted parallel sentence pairs to improve the BLEU
score of SMTand NMTsystems by 1.13 and 3.1 in English-
French, and we also find this improvement in other
language pairs. +en, we observe that when we get
Top500K, the translation system trained on extracted
parallel sentences has better BLEU than Top20K. +is
means that our model can effectively extract parallel
sentences so that it can improve BLEU. We know that
adding parallel training sentences can improve the per-
formance of machine translation. +ese results confirm
the quality of extracted sentence pairs and the effec-
tiveness of our model. Hence, we can conclude that our
approach could be applied to extract parallel sentences
from comparable corpora and improve the performance
of machine translation.

5. Conclusions

In this paper, we explore a new parallel hierarchical attention
network to extract parallel sentences. Our system is able to
obtain state-of-the-art performance in filtering parallel
sentences while using less feature engineering and pre-
processing. Additionally, our model can make full use of
monolingual and bilingual sentences. Moreover, we propose
a parallel attention mechanism to learn various alignment
weights in parallel sentences. In the experiments, we show
that our model obtains a state-of-the-art result on the
BUCC2017 shared task. In particular, the effectiveness of our
model in using the obtained parallel sentences to implement
machine translation tasks is demonstrated.

In the future, we will explore the following directions:

(1) BPE and similar methods can effectively help us solve
the out-of-vocabulary issue. We will use BPE to
improve its performance

(2) Our model needs parallel sentences to be trained,
which can be problematic in low-resource language
pairs. In order to lessen the need for parallel sen-
tences, identifying parallel sentences via minimum
supervision is a promising avenue, especially in low-
resource language pairs
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In the increasingly complex electromagnetic environment of modern battlefields, how to quickly and accurately identify radar
signals is a hotspot in the field of electronic countermeasures. In this paper, USRP N210, USRP-LW N210, and other general
software radio peripherals are used to simulate the transmitting and receiving process of radar signals, and a total of 8 radar
signals, namely, Barker, Frank, chaotic, P1, P2, P3, P4, and OFDM, are produced.+e signal obtains time-frequency images (TFIs)
through the Choi–Williams distribution function (CWD). According to the characteristics of the radar signal TFI, a global feature
balance extraction module (GFBE) is designed.+en, a new IIF-Net convolutional neural network with fewer network parameters
and less computation cost has been proposed. +e signal-to-noise ratio (SNR) range is −10 to 6 dB in the experiments. +e
experiments show that when the SNR is higher than −2 dB, the signal recognition rate of IIF-Net is as high as 99.74%, and the
signal recognition accuracy is still 92.36% when the SNR is −10 dB. Compared with other methods, IIF-Net has higher recognition
rate and better robustness under low SNR.

1. Introduction

Radar signal recognition is a key technology in the field of
radar electronic countermeasures. When receiving a radar
signal, it is crucial to demodulate the signal to obtain useful
information, and how to identify the signal type is the key.
+e accuracy of signal recognition in a complex electro-
magnetic environment determines the pros and cons of
electronic reconnaissance systems. Due to the emergence of
complex electromagnetic environments and various new
system radars in modern warfare, electronic reconnaissance
and electronic countermeasure systems have brought serious
challenges. How to identify the type of radar signal more
quickly and accurately is the key and difficult point of radar
signal recognition technology.

Traditional radar signal recognition technologies include
support vector machine learning (SVM) and traditional five-
parameter feature matching algorithm. Li and Ying [1]
achieved the purpose of identifying and classifying radar
signals by extracting different entropy features. Ying and

Xing [2] proposed an improved semisupervised SVM al-
gorithm for radar signal recognition which has high accu-
racy. Li et al. [3] proposed a deep joint learning method,
including deep representation and low-dimensional dis-
crimination, to enhance feature stability and environmental
adaptability. +e approach achieved a high recognition rate
for multiple radar signals under low SNR. Li [4] proposed an
SKLEARN system based on automatic machine learning.
+rough the automatic solution algorithm of the SKLEARN
system and the optimization of hyperparameters, the ac-
curacy of radar signal recognition is improved and the
stability is more reliable. Feng B et al. [5] proposed a
manifold method to reduce dimensionality in high di-
mensions, extract features, and set an appropriate threshold
as a classifier. +is method had good accuracy, but did not
have good generalization performance. Guo et al. [6] pro-
posed a frequency domain analysis method and an identi-
fication method based on the Fast Correlation-based Filter
Solution (FCBF) and adaboosting (AdaBoost). Under low
SNR conditions, this method is more efficient than manually
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extracting features for classification. Zhang et al. [7] pro-
posed a machine learning method based on Tree-based
Pipeline Optimization Too (TPOT) and Local Interpretable
Model-agnostic Explanations (LIME) and used genetic al-
gorithms to optimize the pipeline structure and related
parameters. +is method can not only optimize the machine
learning process for different data sets but also determine the
type of radar signal according to the interpretability of the
radar signal when there are indistinguishable radar signals in
the dataset.

However, traditional radar signal recognition tech-
nology requires artificial design of more complex features
extraction algorithms and classifiers, which are more dif-
ficult to implement and have poor generalization perfor-
mance. With the development of artificial intelligence (AI),
the application fields of deep learning are getting wider and
wider. In the field of image recognition, Convolutional
Neural Networks (CNNs) is a hotspot in many researches.
Its network has ability to represent learning, that is, it can
extract high-order features from input information, and
can respond to the translation of input features. Dena-
turation, which can identify similar features in different
positions in space, is widely used in computer visualization,
natural language processing, and other fields. Qu et al. [8]
proposed a multilabel classification network based on the
Deep Q-learning Network (DQN), which can be recognized
under low SNR. +rough the radar signal preprocessing
and feature extraction of the convolutional neural network,
the network can identify random overlapping radar signals
under low SNR. Cai et al. [9] proposed a radar signal
modulation and recognition algorithm based on an im-
proved CNN model. In this model, a dense connection
block layer and a global pooling layer were added to identify
8 radar signals. Limin et al. [10] proposed a radar signal
recognition method based on an improved AlexNet model.
At low SNR, they performed smooth pseudo-Wingner
time-frequency analysis on a variety of signals using an
improved AlexNet model, resulting in a high overall rec-
ognition rate.

In this paper, USRP N210 and USRP-LW N210 Uni-
versal Software Radio Peripheral (Universal Software Radio
Peripheral) are used to simulate the radar signal transmis-
sion and reception process, and a total of 8 classes of radar
signals, namely, Barker, Frank, chaotic, P1, P2, P3, P4, and
OFDM, are produced with the SNR between −10∼6 dB.
+en, all classes of signals were distributed through the
Choi–Williams distribution function (CWD) transforma-
tion to generate two-dimensional time-frequency images
(TFIs). As the TFI information location distribution of
different radar signals is quite different, some signal infor-
mation is concentrated in the central area, and some signal
information is distributed at the edge. Aiming at the
abovementioned problems, this paper designed a global
feature balance extraction module (GFBE) and a new IIF-
Net convolutional neural network structure which has
strong recognition ability for radar signals. By improving the
classifier, IIF-Net has reduced the number of parameters and
computation and has better identification accuracy and
reliability.

2. GFBE Module and IIF-Nets

2.1. GFBE Module. +e traditional radar signal recognition
method is based on the conventional 5 parameters: carrier
frequency (RF), angle of arrival (DOA), pulse arrival time
(TOA), pulse amplitude (PA), and pulse width (PW).
However, most of the signal parameters are external features,
which are easy to be interfered by the external environment.
+e external interference will cause the distortion and loss of
the signal and reduce the recognition accuracy. CNNs can
adaptively learn image features for recognition, which can
improve the accuracy of radar signal recognition.

With the development of computer hardware, CNN is
widely used in various fields. In the article of the develop-
ment of convolutional neural network and its application in
image classification, Wang et al. [11] analyzed the appli-
cation and development of CNN in detail. In 2012, Hinton
and Alex Krizhevsky proposed AlexNet [12] and successfully
applied ReLU [13], Dropout [14], and LRN [13] in CNN for
the first time. Visual geometry group networks (VGG-Nets)
[15] proposed a 3× 3 small convolution filter, which
deepened the network to 19 layers. With the increase of the
network depth, the problem of network degradation
appeared. After enough training times, the accuracy rate on
the training set will be saturated or even decreased, and the
problem of gradient and information disappearance also
hinders the increase of the network depth. Residual net
(ResNet) [16] solved this problem by using short skip
connection and continued to increase the network depth. In
image recognition, in order to extract features better, the
image can be reconstructed with super resolution [17]. +e
improved lightweight network [18] also achieves a good
classification effect.

Different convolutional layers of CNN can extract dif-
ferent features of the target. +e shallow convolutional layer
extracts the features of the target such as texture and con-
tour, while the deep convolutional layer extracts the abstract
features of the target and contains richer semantic infor-
mation. However, with the deepening of the network layers,
there will be problems such as information loss, gradient
disappearance, and degradation.+e location distribution of
TFI information for different classes of radar signals is
different, so this paper designed a global feature balance
extractionmodule (GFBE), as shown in Figure 1. In Figure 1,
“Conv1,” “Conv3,” and “Conv5” represent 1× 1, 3× 3, and
5× 5 convolution kernels, respectively, and “Maxpool (3)”
represents a 3× 3 pooling layer with a stride of 1.+emodule
contains multiple sizes of convolution kernels. +e short
skip connection layer of the module is composed of two
“Conv1” and “Conv3”.+rough the short skip connection, it
can prevent information loss, increase the network depth,
and solve the problem of network degradation to a certain
extent. +e first Conv1 is used to reduce the dimension, and
the second Conv1 is used to increase the dimension. +e
main purpose is to reduce the number of parameters and
increase the nonlinear learning ability of the network. +e
next is the parallel convolution structure and point con-
volution layer, which contains convolution kernels of var-
ious sizes: “Conv5,” “Conv3,” “Conv1” and 3× 3 MaxPool.
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For TFI of different radar signals, larger convolution kernel
are used for images with more dispersed information dis-
tribution, while a smaller convolution kernel is used for
images with more local information distribution, which can
ensure balanced extraction of image features.

2.2. IIF-Nets Structures. Based on the GFBE module, 3 IIF-
Net deep CNN structures are proposed: IIF-Net56, IIF-
Net107, and IIF-Net Net158. In these networks, a GFBE
structure has 5 layers, where a “Conv” is a composite
structure containing “convolution,” “batch standardization,”
and “activation function”.+e network structure is shown in
Table 1.

Radar signal recognition technology requires high real-
time performance, and recognition must be made imme-
diately when the signal is captured. +e network is required
to have less parameters and low calculation cost to reduce
the consumption of hardware, so the global average pooling
(GAP) [19] is used as the classifier of IIF-Net. +is classi-
fication method does not require a fully connected layer,
which can greatly reduce the number of parameters and can
avoid overfitting under certain conditions.

2.3. NetworkComplexity. When different classifiers are used
to identify 8 classes of radar signals, the network parameters
and calculations are different. Suppose the size of the output
feature map of the last layer is H × W × D, when using three
fully connected layers, the number of parameters in the
classifier is 16, 818, 184 + 4096 × H × W × D. When a single-
layer fully connected layer is used, the parameters in the
classifier areH × W × D × 8 + 8. When using GAP, since the
pooling layer has no parameters, the number of parameters
can be further reduced toD × 8 + 8.

+e number of parameters for different networks is
shown in Figure 2, and the number of calculation is shown in
Figure 3.

It can be seen from Figure 2 that IIF-Net slowly increases
the parameter amount with the increase of the network
depth, and the network depth has little effect on the pa-
rameter amount.+eVGG16 network has only 16 layers, but
the amount of parameters is 5.44 times that of IIF-Net56,
3.11 times that of IIF-Net107, and 2.30 times that of IIF-
Net158. IIF-Net has 6 more layers than ResNet, but the
number of parameters is reduced by about 110,000. +e
radar system requires high real-time performance, but the
small equipment, such as bombs, has insufficient memory,
and its hardware is hard to support too many parameter
quantities. IIF-Net is relatively small in parameter quantity,
which is a kind of a better choice.

According to Figure 3, the calculation of the VGG
network is very huge. +e floating-point operations per
second (FLOPs) of VGG16 is as high as 15.583 billion, which
is 2.94 times that of the 56-layer IIF-Net. Network structure
and network depth have a great impact on the amount of
computation. IIF-Net is deeper than ResNet, so the amount
of calculation is increased. +e number of layers of IIF-
Net107 is 1.80 times that of IIF-Net56, so the amount of
calculation is 1.71 times that of IIF-Net56. +e amount of
IIF-Net158 is 2.42 times that of Net56, which is very huge.
+erefore, when the difference in the signal recognition rate
is not large, IIF-Net56 has the highest cost performance.

3. Experimental Results

3.1. Dataset. +e dataset is generated by USRP N210, USRP-
LW N210 simulating the process of real radar signal trans-
mission and reception.+e generated signal is transformed by
CWD to obtain TFI. Unlike SAR images [20] in radar target
recognition and high-resolution radar target images [21], TFI
is a digital image with low image information loss, which is
convenient for computer processing and analysis.

+ere are many methods of time-frequency analysis,
including short-time Fourier transform (STFT), continuous
wavelet transform (CWT), bilinear models including
Wigner–ville distribution, pseudosmooth (WVD), CWD,
adaptive parameter models (such as the ARMAmodel, time-
frequency rearrangement model (RS), and synchronous
extraction model SET). But, they have some shortcomings.
For example, the time-frequency resolution of STFT and
CWT is insufficient. +e effect of WVD on multicomponent
signal interference is poor. +e RS complexity is too high;
SST and SET are very advantageous for instantaneous fre-
quency extraction and signal reconstruction, but the signal
energy is too compressed, resulting in only one line at the
frequency point. In this paper, high definition CWD
transform is adopted, and an appropriate mask function is
selected to avoid the cross-term problem, which improves
the recognition performance of the radar signal.

+e Choi–Williams distribution function is one of a
series of Cohen’s class distribution functions. +e distri-
bution uses an exponential core function to filter out cross
terms. +e core function of the Choi–Williams distribution
does not increase with the increase of μ and τ, so it can filter
out the cross terms with different frequencies and time
centers.
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Figure 1: GFBE structure.
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Cx(t, f) � 􏽚
∞

−∞
􏽚
∞

−∞
Ax(μ, τ)φ(μ, τ)exp(j2π(μt − τf))dμdτ,

(1)

where Ax(μ, τ) � 􏽒
∞
−∞ x((t + τ)/2)x∗((t − τ)/2)e−j2πtμdt is

the fuzzy function, μ and τ are, respectively, the frequency
offset and delay, and x(t) is the received signal.

+e core function φ(μ, τ) � exp[−α(μτ)2] is a Gaussian
function, where α is an adjustable parameter.

In the radar signal dataset, there are 8 types of signals.
Each class of signal generates 2592 TFIs, and the SNR is
−10∼6 dB. Each class of signal has a total of 20,736 samples,
and every 2 dB contains 288 samples. Figure 4 shows the TFI
of the signal after passing through CWD.

It can be seen from the images that the distribution of
different signal information is different: the distribution of
chaotic code information is relatively concentrated, the
distribution of OFDM signal information is relatively
scattered, and the information distributions of P1–P4,
Barker, and Frank are below the center, with irregular signal
characteristics.

3.2. Preprocessing. In the experiments, we downsample the
samples of the training set and the test set to a fixed reso-
lution of 224× 224 and, then, expand the data: randomly flip
the image horizontally, randomly flip vertically, and ran-
domly rotate 90°. +e data set is expanded by 3 times to
prevent the network from overfitting.

In order to maintain the unity of the experiments, the
experiments are conducted on the same platform. +e
platform of signal generation is shown in Table 2.

During the experiment, the parameters were set up, the
learning rate is 0.001, the momentum is 0.9, the weight decay
is 5e− 4, and the batch size is 10. +e experimental platform
configuration is shown in Table 3.

3.3. Experimental Results. In order to make the radar signal
recognition more authentic and simulate the interference of
a complex external environment, noises with an SNR of
−10∼6 dB are added to the signal. +e real radar signal
transmission and reception process is simulated by USRP
N210 and USRP-LW N210. +e generated signals are
transformed by CWD to obtain TFI for radar signal

Table 1: IIF-Net configuration.

IIF-Net56 IIF-Net107 IIF-Net158
Conv7-64, stride: 2, padding: 3× 3 Maxpool, stride: 2, padding: 1
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Conv1-256
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identification. Under the same training set and test set, we
use different depths of IIF-Net to identify radar signals
under different SNRs. +e experimental results are shown in
Table 4.

According to Table 4, the signal recognition rate of IIF-
Net56 is 99.36% and in the case of SNR is −4 dB. When the
SNR is −10 dB, the noise causes a lot of interference, but the
recognition rate is still higher than 92%. +e results indicate
that the IIF-Net networks are robust. +e recognition rate of
IIF-Net56 is about 1% lower than that of the other 2 net-
works. It shows that, with the deepening of network depth,
there is no obvious difference in the extraction of signal
features. +e parameter amount of IIF-Net158 and IIF-
Net107 is 2.36 times and 1.75 times of that of IIF-Net56, and
the calculation amount is 2.42 times and 1.71 times of that of
IIF-Net56. Based on the experimental results, we found that

IIF-Net158 had the best recognition performance, but the
network parameters and calculation amount increased
greatly. +erefore, based on the abovementioned analysis,
IIF-Net56 has the highest cost-performance ratio.

Under the same training set and test set, we also compare
IIF-Net56 with other networks. Experimental results of
other CNN networks are shown in Table 5.

According to Table 5, various classic CNNs have a good
recognition rate for radar signals when the SNR is above
0 dB. However, when the SNR is between −10 dB and 0 dB,
IIF-Net has the highest recognition performance. Compared
with IIF-Net, the signal recognition rate of VGG-Net is
about 6% lower than that of IIF-Net. Because of VGG-Net’s
shallow network, it cannot fully extract the features of the
image, resulting in low signal recognition rate. Moreover,
VGG-Net has too large parameters and calculation and
requires too much hardware equipment and more calcu-
lation time. +erefore, VGG-Net is not suitable for the radar
electronic countermeasure field which needs high real-time
performance.

+e signal recognition rate of ResNet is close to IIF-Net,
which is about 2% lower. Because ResNet uses short skip
connection, it can deepen the network and solve the problem
of “network degradation” to a certain extent. It can also
prevent information loss during network transmission.

(a) (b) (c) (d)

(e) (f ) (g) (h)

Figure 4: TFI of various radar signals. (a) Barker, (b) Frank, (c) chaotic, (d) OFDM, (e) P1, (f ) P2, (g) P3, and (h) P4.

Table 2: Signal generation platform configuration.

Parameter USRP N210/USRP-LW N210
REF IN 15 dBm
PPS IN 5V
Power 6V, 3A
ADC sampling rate 100MS/s
DAC sampling rate 400MS/s
LO accuracy 2.5 ppm

Table 3: Experimental platform configuration.

Attributes Configuration information
Operating system Ubuntu 14.04.5 LTS

CPU Intel (R) Xeon (R) CPU E5-
2670 v3 @ 2.30GHz

GPU GeForce GTX TITAN X
CUDNN CUDNN 6.0.21
CUDA CUDA 8.0.61
Frame PyTorch

Table 4: IIF-Net recognition accuracies at different depths (%).

SNR (dB) IIF-Net56 IIF-Net107 IIF-Net158
−10 92.36 92.54 92.85
−8 94.55 95.56 95.64
−6 96.53 96.73 97.52
−4 99.36 99.48 99.53
−2 99.74 100 100
0 100 100 100
2 100 100 100
4 100 100 100
6 100 100 100
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However, the distribution of TFI feature information of a
radar signal is irregular, and ResNet mostly uses small
convolution kernel of 3× 3, which has good recognition
effect for images with concentrated information distribution
and has low recognition effect for TFI features of radar
signal. +e GFBE module proposed in this paper solves this
problem to a certain extent. For images with different in-
formation distribution, it can extract image features in a
global and balanced way, improve signal recognition rate,
and enhance generalization.

We further compare IIF-Net56 with other radar signal
recognition methods, and the results are shown in Table 6.

According to Table 6, the signal recognition rate of the
DQN network at −6 dB is higher than that of IIF-Net56,
which is 1.05% higher, but at −10 dB, the recognition rate is
much lower than that of IIF-Net56, which is reduced by
4.81%. +is indicates that high-intensity noise has little
influence on IIF-Net, and IIF-Net can still fully extract image
information, obtain high signal recognition rate, and have
good robustness. It can also be seen from the table that when
the SNR is above −6 dB, the signal recognition rate obtained
by I-CNN has little difference from that of IIF-Net, and both
of them have good recognition effect. When the SNR is
−10 dB and −8 dB, the signal recognition rate of IIF-Net is
much higher than that of I-CNN, which shows that IIF-Net
has strong anti-interference ability and can extract image
features in a balanced and sufficient way. Fusion Image uses
transfer learning and a cascaded automatic encoder based on
self-learning to extract the effective information of the fused
image, thereby ensuring the recognition performance.
Meanwhile, Fusion Image adopts multifeature Fusion al-
gorithm to fuse features, which reduces redundant infor-
mation of features, but its recognition rate is 1.03% lower
than that of IIF-Net56 at −6 dB. FCBF-AdaBoost and En-
tropy are traditional image classification methods, which are
mostly designed for certain classes of image features. +eir
recognition rates are relatively poor in multitask and low
SNR environments.

Under the same training set and test set, the recognition
rates of IIF-Nets proposed in this paper under different
SNRs are shown in Table 7.

It can be seen from Table 7 that, under the environment
of low SNR (−10 dB), 3 IIF-Net networks have little dif-
ference in the recognition effect of different radar signals.
+e deepening of the network depth has a significant effect
on the recognition rate of various radar signals. +e

influence range of network depth on the recognition rate of
various radar signals is between 1% and 2%. +is indicates
that when the network depth reaches a certain degree, the
signal feature information can be fully extracted. Further
deepening of the network has little impact on the recog-
nition effect of signals, but the recognition effects of different
classes of radar signals under the same network are greatly
different. Among them, Barker has the best recognition
effect, over 97%. chaotic, Frank, OFDM, P2, and P3 receive
the next highest recognition rates, with accuracy rates of
over 94 percent, while P1 and P4 have relatively poor rec-
ognition effects, at about 80 percent. According to the TFI of
the radar signal, P1 and P4 are very similar. Under the
environment of −10 dB, the energy of noise is much greater
than that of the signal, and the information features of the
signal are drowned by the noise, which makes P1 and P4
more similar and greatly increases the difficulty of identi-
fication. However, IIF-Net56 has a comprehensive recog-
nition rate of 92.36% under −10 dB, and its recognition
performance is higher than that of other methods.

+e IIF-Net proposed in this paper can extract infor-
mation globally for images with irregular information dis-
tribution, which has a good recognition effect. Other
traditional methods are mostly designed for specific classes
of images. When the image changes greatly, their recogni-
tion effects are poor. +e artificially designed feature ex-
traction algorithm is also relatively complex, and its
generalization performance is low. Compared with other
CNNs, IIF-Net still has a recognition rate of 92.36% under
−10 dB, which is higher than that of those other CNNs.

3.4. Experiments Analysis. +is paper proposes 3 IIF-Net
structures, namely, IIF-Net56, IIF-Net107, and IIF-Net158.
According to the experimental results, their signal recog-
nition rates are above 99.74% when the SNR is higher than
−2 dB. At −10 dB, the recognition rates are as high as 92.36%.
When deepening the networks, the differences between the
recognition rates of the three networks are within 1%, but
the parameters and calculations have increased significantly.
+erefore, IIF-Net56 has the best overall performance.

+e information characteristic distribution of the radar
TFI signal is irregular. +erefore, the distribution charac-
teristics and irregularity of image information should be
taken into account when extracting image features. A par-
allel convolutional layer can be used to extract different types

Table 5: Recognition accuracy rates of other CNNs (%).

SNR (dB) ResNet50 ResNet101 ResNet152 VGG16 VGG19 IIF-Net56
−10 90.49 90.85 91.24 86.85 88.59 92.36
−8 92.68 93.79 94.46 89.26 90.27 94.55
−6 94.65 95.15 96.31 92.57 94.16 96.53
−4 97.47 97.83 98.52 95.61 96.54 99.36
−2 98.87 99.26 99.49 98.42 99.62 99.74
0 99.51 100 100 99.53 99.75 100
2 100 100 100 100 100 100
4 100 100 100 100 100 100
6 100 100 100 100 100 100
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of image information. +e network depth should be kept
moderate. It is difficult to fully extract image features when
the network is too shallow, but the recognition rate cannot
be significantly improved when the network is too deep. If
the network is too deep, the degradation problemmay occur,
and the amount of parameters and calculation will increase
greatly. To a certain extent, the problem of network deg-
radation can be solved by using a short skip connection
mode, while the integrity of image information can be
maintained. +e classifier can choose GAP to reduce the
number of network parameters and calculations. +e GFBE
module includes Conv1, Conv3, Conv5, and MaxPoo(3) to
deepen the network through short skip connection to
prevent the loss of image information and uses Conv3,
Conv5, and the MaxPool(3) parallel convolutional layer to
extract global information. At the same time, it controls the
dimensions of the network through Conv1 and improves the
nonlinear learning ability of the network.

4. Conclusions

In this paper, USRP N210 and USRP-LW N210 are used to
simulate the transmitting and receiving process of radar
signals to generate near-real radar signals. +en, CWD is
used to get the radar TFI. According to the irregular in-
formation distribution characteristics of radar signal TFI, we
designed a GFBE module. Based on this module, three
network structures, IIF-Net56, IIF-Net107, and IIF-Net158,
are proposed. +rough analysis, we conclude that IIF-Net56
has the best comprehensive performance. +e network has a
recognition rate of 92.36% at a low SNR of −10 dB. GAP is
added into the network, and the number of parameters and
calculation amount are relatively less, which reduces the
requirement for hardware equipment. IIF-Net56 uses a GAP
layer to reduce the amount of parameters and calculation
and reduces the requirements of hardware equipment.

+erefore, the network proposed in this paper has a good
application prospect in the field of high real-time radar
electronic countermeasures. In the field of radar electronic
countermeasures, transmitting jamming signals for elec-
tronic countermeasures is a common method. In the future,
we will do further research on radar jamming signal
recognition.
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An image target recognition approach based on mixed features and adaptive weighted joint sparse representation is proposed in
this paper. +is method is robust to the illumination variation, deformation, and rotation of the target image. It is a data-
lightweight classification framework, which can recognize targets well with few training samples. First, Gabor wavelet transform
and convolutional neural network (CNN) are used to extract the Gabor wavelet features and deep features of training samples and
test samples, respectively. +en, the contribution weights of the Gabor wavelet feature vector and the deep feature vector are
calculated. After adaptive weighted reconstruction, we can form the mixed features and obtain the training sample feature set and
test sample feature set. Aiming at the high-dimensional problem of mixed features, we use principal component analysis (PCA) to
reduce the dimensions. Lastly, the public features and private features of images are extracted from the training sample feature set
so as to construct the joint feature dictionary. Based on joint feature dictionary, the sparse representation based classifier (SRC) is
used to recognize the targets. +e experiments on different datasets show that this approach is superior to some other
advanced methods.

1. Introduction

In recent years, sparse representation classification (SRC)
approach has successfully been used in the field of image
recognition. Compared with other methods, SRC is robust to
illumination, occlusion, and noise. In the feature extraction
stage, the traditional image recognition methods based on
sparse representation usually use the original samples di-
rectly or the low-dimensional samples after dimensionality
reduction as the atoms to construct the dictionary. However,
the dictionary constructed in this way cannot effectively
represent the test samples, and it is difficult to make full use
of the information hidden between the training samples. So,
many scholars began to study the use of various features in
the construction of dictionaries.

Gabor transform is a windowed Fourier transform, first
proposed by Lee [1]. Later, Gabor wavelet transform was put
forward by combining Gabor transform with wavelet
transform. Different from the traditional Fourier transform,

Gabor wavelet transform can easily adjust the frequency and
direction of the filter, so the signal features obtained by
Gabor wavelet transform have good discrimination in the
time-space domain and the frequency domain. Using Gabor
wavelet transform to extract the features of the original
samples for sparse representation classification can avoid the
problems caused by the direct construction of dictionaries
from the original samples to some extent. Lu and Zhang
proposed a face recognition method based on discriminant
dictionary learning, which obtained the Gabor amplitude
images of the faces through Gabor filter. +en, they used the
Gabor amplitude images to construct a new dictionary for
sparse representation classification, which improved the
recognition rate of the face images in the uncontrolled
environment [2].

As a popular image classification and recognition
framework, convolutional neural network (CNN) has
attracted a great deal of scholarly attention. However, CNN
needs a large number of samples for training. In reality,
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many samples are not easily obtained, and the cost of CNN
parameters adjustment is also large. CNN can extract a
variety of features, such as texture, shape, color, and to-
pology at the same time, so it is also very suitable to be used
as a tool to extract image features [3, 4]. Zhang et al. pro-
posed a CNN-GRNN model for image classification and
recognition [5]. +e model used CNN to extract image
features and then used general regression neural network
(GRNN) for classification and recognition.+e deep features
extracted by CNN enabled the method to have a good
recognition effect. In order to better extract the features, the
image superresolution can be applied for the image re-
construction first [6].

When Gabor wavelet transform is used to extract fea-
tures for target recognition, the impact of light condition
transformation on recognition can be reduced. At the same
time, it has better robustness for image deformation and
rotation to some extent. +erefore, this paper proposes an
image target recognition method based on mixed features
and joint sparse representation (M-JSR). +e Gabor wavelet
feature extracted by Gabor wavelet transform and the deep
feature extracted by CNNwere combined to form the hybrid
feature and carry out adaptive weighting and PCA di-
mensionally reduction for mixed features and finally com-
bined with the joint sparse model for classification
recognition. +e problem of poor representation ability of
the original dictionary is avoided by building the dictionary
with mixed features instead of the original sample. Com-
pared with using CNN for classification recognition, M-JSR
does not require a large number of training samples nor does
it need a lot of time to adjust parameters. Moreover, the joint
sparsity model divides the dictionary into the public features
part and the private features part, so that the dictionary has
better discrimination ability, and thus improves the rec-
ognition accuracy.

2. Feature Extraction

2.1. Gabor Wavelet Feature Extraction. Gabor wavelet
transform has unique advantages in the representation, and
analysis of image signals for images can be processed in
different scales and directions. In simple terms, Gabor
wavelet transform is used to convolve a set of Gabor filter
functions with a given image signal.

In general, the two-dimensional Gabor function can be
expressed as [1]

ψu,v(m, n) �
k2

σ2
exp −

k2(m + n)2

2σ2
􏼠 􏼡

· exp ik ·
m

n
􏼒 􏼓􏼒 􏼓 − exp −

σ2

2
􏼠 􏼡􏼢 􏼣,

(1)

where k � kv(cos θ, sin θ)T,θ � πu/8 represents the direc-
tion of the filter, kv � kmax/fv, kmaxrepresents the maximum
frequency, f is the interval factor of the kernel function in the
frequency domain, and u and v represent the direction and
scale of Gabor wavelet, respectively. Researches show that
using 5 scales (v � 0, 1, 2, 3, and 4) and 8 directions (u �

0, 1, 2, 3, 4, 5, 6, and 7) can get the best effect [7]. m and n
represent the spatial coordinates of the image, σis the radius
of the Gaussian function (which is the size of the two-di-
mensional Gabor wavelet) and i is a complex number
operator.

Assume the input image is I � (m, n), then

Fu,v(m, n) � I(m, n)⊗ψu,v(m, n), (2)

where Fu,v(m, n) represents the Gabor wavelet features of
the image I � (m, n).

2.2. Deep Feature Extraction. Convolutional neural network
(CNN) [8] is a feedforward neural network, which is es-
sentially a multilayer perceptron. A complete convolutional
neural network consists of the input layer, the convolutional
layer, the subsampling layer (pooling layer), and the fully
connected layer. +e convolution layer is used to extract the
features of the input data, and it generally contains multiple
convolution kernels. +e pooling layer mainly compresses
the features which are extracted by the convolution layer to
decrease the complexity of network computing and improve
the robustness. +e full connection layer combines the
previously extracted features nonlinearly and sends the
output value to the classifier, such as softmax classifier.
+erefore, in addition to image classification, CNN can also
be used as a tool to extract image features.

For extracting sparse features, we draw on the viewpoint
of the literature [9–11] about network design. Visual ge-
ometry group networks (VGGNets) proposed by Simonyan
and Zisserman have significantly improved image recog-
nition performance by deepening the network to 19 layers.
VGG19 network is used to extract deep features, and its
structure is shown in Figure 1. In VGG19, the convolution
filters are set to 3×3, and themax pooling is 2×2 with stride 2.
VGG19 has better performance than other convolutional
network models in extracting target features. As shown in
Figure 1, the number of convolution kernels at the next layer
is doubled when the size of the feature map is reduced by half
through the max pooling layer. VGG19 ends with three fully
connected layers and softmax function.

+e convolution kernel of CNN convolutional layer can
automatically extract complex global and local features from
the image. +e convolution kernels of shallow layers in the
CNN network extract mostly texture and detail features.
Relatively speaking, the deeper the layers are, the more
representative the extracted features will be, while the res-
olution of the feature maps will become lower. As shown in
Figure 2, the middle part is the original figure, the left side is
the feature extracted by the convolution layer of the first part
of VGG19 network, and the right side is the feature extracted
by the convolution layer of the second part of VGG19
network.

3. Joint Sparsity Model

3.1. Joint SparsityModel. +e joint sparsity model (JSM) was
originally used for the coding of multiple related signals in
distributed compressed sensing scenes [12]. In JSM,
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according to the intrasignal and the intersignal correlation, a
group of related signals can be regarded as a signal set. +en,
each signal in the signal set can be jointly represented by the
public feature of this type of signal and its own private
feature, such as formula (3). Both public and private features
can be sparsely represented on the same sparse basis.

yj � zc + zj, j ∈ 1, 2, 3, . . . , J{ }, (3)

whereyjis the jth signal in a certain type of signal,
zcrepresents the public feature of this type of signal, and
zjrepresents the private feature of the jth signal.

If all the samples can be classified into K categories, and
each containing J samples, the jth sample of class i can be
represented asyi,j. After putting all the samples of class i into
one set, we can represent it asyi � [yi,1, yi,2, . . . , yi,J]T. +en,
as shown in formula (4), the jth sample of class i can be
represented by a combination of public and private features,
thus greatly reducing the required storage space:

yi,j � z
c
i + z

i
i,j, (4)

where zc
i is the public feature of all samples in class i andzi

i,jis
the private feature of the jth sample of class i [13]. Assuming
that the samples can be sparsely represented on the or-
thogonal basisΨ ∈ RN×N, formula (4) can be expressed as

θi,j � Ψyi,j � Ψz
c
i + Ψz

i
i,j � θc

i + θi
i,j, (5)

where θc
i � Ψzc

i represents the sparse representation of the
public part onΨ and θi

i,j � Ψzi
i,jrepresents the sparse rep-

resentation of the private part onΨ. +rough left multi-
plyingΨT, ΨTθi,j � ΨTθc

i + ΨTθi
i,j � zc

i + zi
i,j � yi,j, the

images of class i can be represented as
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⋮
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. (6)

After simplifying, formula (6) can be expressed as

yi � 􏽥ΨWi, (7)

where yi � [yi,1, yi,2, . . . , yi,j]
T, Wi � θc

i θi
i,1 θi

i,2􏽨 . . .θi
i,j]

T,
and 􏽥Ψ � [A, B] represents an overcomplete dictionary that
contains two parts:A � ΨT ΨT · · · ΨT􏽨 􏽩 and B �

diag(A).Wican be obtained by solving the l1 minimization
problem as follows:

Wi � argmin Wi

����
����1,

s.t. yi � 􏽥ΨWi.
(8)

After obtainingWi, according to the inverse transfor-
mation, the public features of all images of class i and the
private features of each image in the Ψ domain can be
obtained as

zc
i � ΨTθc

i ,

zi
i,j � ΨTθi

i,j.
(9)

Combining all public and private features can get the
joint feature dictionary D:
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Figure 1: Structure of VGG19.

Figure 2: Samples of deep features.
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D � z
c
1, z

c
2, . . . , z

c
K, z

1
1,1, . . . , z

1
1,J, z

2
2,1, . . . , z

2
2,J, . . . , . . . , z

K
K,1, . . . z

K
K,J􏽨 􏽩.

(10)

Finally, according to the sparse representation classifi-
cation method, the target can be classified by the following
formula:

class(i) � argmin
i

y − Dδi x′( 􏼁
����

����2, (11)

where x′represents the sparse coefficient vector that can be
reconstructed from y with the dictionary.

3.2. Adaptive Weighted Reconstruction. When using SRC,
the information carried by atoms in different dictionaries is
mainly used to sparse reconstruction. +erefore, in order to
improve the recognition accuracy, the atoms with more
target information can be screened out by calculating the
variance or standard deviation. And, the contribution ability
of these atoms can be artificially improved to make the
dictionary more discriminant [14].

Suppose F � [F1, F2, . . . , Fn]T is a vector which
extracted from an image, and then it can be modified by the
following formula:

F′ � F1′ �
F1 − F

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

F
F1, F2′ �

F2 − F
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

F
F2, · · · , Fn

′ �
Fn − F

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

F
Fn􏼢 􏼣,

(12)

where F � (F1 + F2 + · · · + Fn)/n, Fi
′represents the ith fea-

ture after weighted reconstruction. After the above pro-
cessing, the variance between the feature vectors will
increase to a certain extent. +e feature dictionary contains
more recognition information, which can improve the
discrimination ability of the dictionary.

4. Framework of Mixed Feature-Based Joint
Sparse Representation (M-JCR)

+e algorithm framework is shown in Figure 3. First, Gabor
wavelet features and deep features are combined into mixed
features. +en, the joint sparsity model is used to extract
public feature and private feature to build joint dictionary,
and the test samples are sparse reconstructed. Finally, the
target can be identified on the basis of the minimum re-
construction error criterion.

+e specific steps of M-JSR are as follows:

(1) Gabor wavelet transform is used to extract Gabor
wavelet features of training images and test images,
and CNN is used to extract deep features of training
images and test images.

(2) +e Gabor wavelet feature and deep feature are
adaptively weighted to form the mixed feature set,
and the mixed feature is dimensionally reduced by
PCA.

(3) +e public feature of each class and the private feature
of each image are extracted from the training image
feature set.+e public features are formed into amatrix
M, and all private features are arranged into a matrixN

to form a joint feature dictionaryD � [M, N], as
shown in Formula (10).

(4) +e mixed feature vector of the test image is sparsely
represented on the joint feature dictionary to get the
sparse coefficientx′, and the mixed feature vector of
the test image is reconstructed.

(5) Finally, the recognition result is obtained through
Formula (11).

5. Experiments and Analysis

In this paper, M-JSR is verified on face images, AR data set,
and remote sensing images, respectively. +e platform used
in the experiment is Matlab R2017a. +e computer is
configured as Intel Core i5-3210M@2.5GHz, and the
memory is 4GB. +e experimental results are the average
values of 10 experiments.

5.1. Face Image Recognition. In this part, two face datasets of
AR [15] and Extended YaleB [16] are selected, and our
experiment results are compared with SRC [17], extended
SRC (ESRC) [18], low-rank matrix recovery method (LR)
[19], discriminative low-rank representation method
(DLRR) [20], sparse dictionary decomposition method
(SDD) [21], adaptive weighting joint sparse representation
method (AJSR) [14], and deep feature-based adaptive joint
sparse representation(D-AJSR) [22], respectively.

5.1.1. AR Dataset. +e AR dataset contains more than 4000
positive images, belonging to 126 individuals, with the image
size of 120×165. In the experiments, we use a subset of 100
people, 50 men and 50 women, and there are 26 positive
images of each person. Among them, 14 images are no
blocking images with only changes in expression or light. 6
people wear sunglasses, and 6 people wear scarves. +erefore,
the dataset can be divided into two separate parts, and each
part contains 13 pictures (7 positive pictures with no blocking
and only changes in expression or light, 3 facial pictures with
sunglasses, and 3 positive pictures with scarves). Figure 4
shows some sample images in the AR dataset. We randomly
select one part for training and the other for testing. +e
Gabor wavelet features used in the experiments include 5
scales and 40 features in 8 directions. +e deep features used
are from the convolution layer in the second part of VGG19,
and the number is 128. After PCA dimension reduction, the
feature dimensions are 25, 50, 75, 100, and 150.

+e experimental results are shown in Table 1. +e bold
number in each column represents the highest recognition
rate under the same condition. Although the recognition
rate of M-JSR is not the highest when the dimension is 25, it
also remains at the average level. When the dimension is
above 50, the recognition rate of M-JSR is higher than that of
other methods.

5.1.2. Extended YaleB Dataset. +e Extended YaleB dataset
consists of 2,414 positive images of size 168×192, in which
there are 38 people under different lighting conditions.
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Figure 5 shows some sample images from the Extended
YaleB dataset. In the experiments, we randomly selected 16
images of each person for training and the rest for testing.
+e Gabor wavelet features used in the experiment include 5
scales and 40 features in 8 directions. +e deep features used
are from the convolution layer in the second part of VGG19,

and the number is 128. After PCA dimension reduction, the
feature dimensions are also 25, 50, 75, 100, and 150.

+e experimental results are shown in Table 2. +e bold
number in each column represents the highest recognition
rate under the same condition. +e M-JSR method main-
tains high accuracy rates in all dimensions, only slightly
lower than D-AJSR in 50 and 75 dimensions. Compared
with the AR dataset, the recognition rates are relatively
higher because there is no image with sunglasses and scarf.

5.2. Remote Sensing Image Recognition Experiments. In this
part, we download the remote sensing aircraft images of
different shooting times and locations on Google Earth 7.1.8
as the experimental dataset. In the dataset, 375 remote
sensing images are classified to 15 aircraft types, as shown in
Figure 6. 10 images in each aircraft type are randomly

Training data

Gabor wavelet
features

Adaptive
weighting

Test data

Deep features

Mixed features

PCA dimensionality
reduction

Adaptive
weighting

Gabor wavelet
features Deep features

Joint dictionary
constructed

Adaptive
weighting

Adaptive
weighting

Mixed features

PCA dimensionality
reduction

Joint sparse
representation

Reconstruction error
minimum criterion 

Identify results

Figure 3: +e algorithm framework of M-JSR.

Figure 4: Samples in the AR dataset.

Table 1: Recognition rates (%) on the AR dataset.

Dimensions 25 50 75 100 150
SRC [17] 64.29 81.29 88.43 89.29 90.29
ESRC [18] 63.14 80.43 85.43 86.14 87.29
LR [19] 68.57 84.14 86.00 88.71 88.00
DLRR [20] 75.71 88.14 89.43 91.00 91.86
SDD [21] 75.86 87.29 89.71 91.71 93.00
D-AJSR [22] 67.10 86.00 90.70 94.10 95.10
M-JSR 71.00 88.20 94.60 96.00 96.80
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selected for training and 15 for testing. +e image size is
170×170. +e Gabor wavelet features used in the experiment
include 5 scales and 40 features in 8 directions. +e deep
features used are from the first part of VGG19, and the
number is 64. After PCA dimension reduction, the feature
dimensions are also 25, 50, 75, and 100. +e experiment
results are shown in Table 3. +e bold number in each
column represents the highest recognition rate under the
same condition.

It can be seen from Table 3 that M-JSR has better effect
than other methods. +is is because the addition of Gabor
wavelet feature can provide more information in different
directions. However, compared with the recognition rates of
face images, the recognition rates are relatively lower. It is
mainly because many planes leave shadows on the side due
to the slanting sun. As a result, the contour of two planes will

appear on the feature map when the image feature is
extracted, which has great interference to the subsequent
recognition.

5.3. Comprehensive Analysis of Experiments. In the experi-
ment, when PCA was used in dimensionality reduction, the
cumulative variance contribution rates of the 3 datasets were

Figure 5: Samples in extended YaleB dataset.

Table 2: Recognition rates (%) on extended YaleB dataset.

Dimensions 25 50 75 100 150
SRC [17] 72.98 85.22 88.43 90.48 92.30
ESRC [18] 73.86 85.33 88.37 90.20 91.20
LR [19] 75.97 84.39 88.21 89.09 91.14
DLRR [20] 85.44 89.81 89.92 92.25 93.05
SDD [21] 89.70 92.03 92.41 92.69 92.75
D-AJSR [22] 93.16 96.05 96.84 96.58 97.37
M-JSR 93.42 95.00 96.E68 97.36 97.63

Figure 6: Examples of remote sensing aircraft images.

Table 3: Recognition rate (%) of remote sensing aircraft images.

Dimensions 25 50 75 100
SRC [17] 62.00 63.56 65.33 66.00
AJRC [14] 70.62 72.00 76.67 78.67
D-AJSR [22] 71.33 75.53 77.33 80.65
M-JSR 74.25 78.67 82.00 82.67
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also different, as shown in Table 4. It can be seen that the
cumulative variance contribution rates of M-JSR on all
datasets is low. +e reason is M-JSR uses the mixed features
which composed of Gabor wavelet features and deep fea-
tures, so the energy of feature vectors would not be con-
centrated during PCA dimensionality reduction. Relatively
speaking, the fewer principal components are selected, the
lower the cumulative variance contribution rate will be. At
the same time, the recognition rates of M-JSR are also low
when the feature dimension is low.

In addition to the contribution rates of the cumulative
variance, the time efficiency of M-JSR is also calculated on 3
datasets, respectively. +e training efficiency results of AR
dataset and Extended YaleB dataset are shown in Table 5,
and the test efficiency results are shown in Table 6. +e unit
of time is seconds (s). In these experiments, the images of the
AR dataset is more than those of the YaleB dataset, so that
the training time and test time required for the AR dataset
are more than that of the Extended YaleB dataset.

On the remote sensing dataset, the time efficiency of
M-JSR is compared with that of SRC, AJRC, and D-AJSR.
+e training efficiency results are shown in Table 7, and the
test efficiency results are shown in Table 8.+e unit of time is
seconds (s). As can be seen from Table 7 and Table 8, since
M-JSR needs to extract two types of features, it takes more
training time and more testing time than the other methods.
However, considering the recognition rate, we still think the
M-JSR method has its own advantages.

It can be seen from the previous experiments that M-JSR
has a good robustness for the illumination change and
rotation of the image because of the combination of Gabor
wavelet features and deep features. Moreover, when the
dataset is small, satisfactory recognition results can also be
obtained. In many cases, it is difficult to obtain a large
number of target images, and the image quality is generally

poor due to the influence of dim light, distortion, and other
factors. In this case, M-JSR can also provide accurate
identification results.

6. Conclusions

For the application requirements of image target recogni-
tion, Gabor wavelet features and deep features are intro-
duced into JSR in this paper. +e classification framework
(M-JSR) has good robustness for deformation, rotation, and
light and shade change and can get relatively accurate
recognition results with only a few training samples. In
M-JSR, two kinds of features are composed into mixed
features, in which the weights can be adjusted adaptively.
+e joint sparse model divides the feature dictionary into
public part and private part, which reduces the required
storage space and improves the recognition accuracy of the
image target. However, because M-JSR needs to extract two
characteristics, it takes more time than other methods.
+erefore, in the future research, how to take into account
the feature expressiveness and extraction speed is a problem
that needs to be paid attention. Using lightweight networks
[23] for feature extraction is an effective approach.
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Table 5: Training efficiency (s)of different datasets.

Dimensions 25 50 75 100 150
AR [15] 609.150 689.515 813.090 1077.03 1420.16
Extended YaleB
[16] 326.109 366.662 409.921 519.172 645.442

Table 4: Cumulative variance contribution rates (%) on different
datasets.

Dimensions 25 50 75 100 150
AR [15] 45.32 55.16 57.42 61.20 69.04
Extended YaleB [16] 42.90 59.58 67.91 73.84 82.37
Remote sensing data set 43.42 61.80 75.03 85.45 —

Table 6: Test efficiency (s) of different datasets.

Dimensions 25 50 75 100 150
AR [15] 1105.84 1273.50 1497.33 1817.91 2899.68
Extended YaleB
[16] 642.385 674.836 694.840 749.198 850.541

Table 7: Training efficiency (s) of different methods on remote
sensing dataset.

Dimensions 25 50 75 100
SRC [17] 1.2649 1.2901 1.2758 1.2833
AJRC [14] 49.734 58.775 78.598 115.08
D-AJSR [22] 63.104 72.078 94.864 128.94
M-JSR 74.053 82.471 101.49 136.11

Table 8: Test efficiency (s)of different methods on remote sensing
dataset.

Dimensions 25 50 75 100
SRC [17] 4.1456 7.4306 8.1706 9.4669
AJRC [14] 105.14 108.93 113.11 117.32
D-AJSR [22] 121.00 131.29 132.51 134.70
M-JSR 135.62 138.54 142.97 146.77
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Text classification plays an important role in various applications of big data by automatically classifying massive text documents.
However, high dimensionality and sparsity of text features have presented a challenge to efficient classification. In this paper, we propose
a compressive sensing- (CS-) based model to speed up text classification. Using CS to reduce the size of feature space, our model has a
low time and space complexity while training a text classifier, and the restricted isometry property (RIP) of CS ensures that pairwise
distances between text features can be well preserved in the process of dimensionality reduction. In particular, by structural random
matrices (SRMs), CS is free from computation andmemory limitations in the construction of random projections. Experimental results
demonstrate that CS effectively accelerates the text classification while hardly causing any accuracy loss.

1. Introduction

With the advancement of information technology over the
last decade, digital resources have penetrated into all fields in
our society, generating big data, which present a new
challenge to data mining and information retrieval [1]. Texts
are very common in daily life, and, with their large numbers,
it remains an open question to organize and manage them
[2]. As one of the fundamental techniques in natural lan-
guage processing (NLP), text classification means assigning
labels or categories to texts according to the content, and it is
key to solving the problem of text overloads [3]. In its broad
applications such as sentiment analysis, topic labeling, spam
detection, and intent detection, text classification provides
support for the efficient query and search of texts, attracting
a lot of attention from both academia and industry [4, 5].

Word matching (WM), the simplest method in text
classification, determines the category of a text by the cat-
egories of most words in the text [6]. But, due to the am-
biguity of word meaning, WM fails to provide satisfying
accuracy. By representing words as vectors, the vector space
model (VSM) [7] improves the accuracy of text classifica-
tion, thus replacing WM as the popular method, but the

model requires many rules and great efforts from profes-
sionals in labeling texts, which would be a lot of cost. As
machine learning (ML) [8] continues to develop, the ac-
curacy of text classification has been further improved. By
extracting features from a text to train a classifier, ML re-
forms VSM and avoids the rule-based inference. Recently,
the rapidly developing deep learning (DL) [9], which is a
branch of ML, has made text classification more efficient.
However, high dimensionality and sparsity of text features
pose a challenge to ML, restricting the practical use of ML-
based text classification.

In ML, many classifiers can be used to classify texts, such
as support vector machine (SVM) [10], decision tree [11],
adaptive boosting (AdaBoost) [12], K-nearest neighbor
(KNN) [13], and Näıve Bayes [14]. To train these classifiers,
texts must be represented as feature vectors by some feature
extraction models, among which the commonest is Bag of
Words (BOW) [15]. BOW uses the term frequencies of
n-grams in the vocabulary constructed by N-Gram [16] to
encode every text. Because vocabulary may potentially run
into millions, BOW faces the curse of dimensionality; that is,
it produces a sparse representation with a huge dimen-
sionality, resulting in the impracticality of training
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classifiers. *erefore, dimensionality reduction (DR) is used
to reduce the size of feature space. In DR, the most common
techniques still introduce some time and memory com-
plexity due to their nature of supervised learning, including
principal component analysis (PCA) [17], independent
component analysis (ICA) [18], and nonnegative matrix
factorization (NMF) [19]. Many DL networks use autoen-
coder to compress the size of parameters. An autoencoder is
a neural network that is trained to attempt to copy its input.
Some popular architectures include sparse autoencoder [20],
denoising autoencoder [21], and variational autoencoder
[22]. Internally, they have a hidden layer that describes a
code used to represent the input. By being embedded into
the neural network, the autoencoder can end up learning a
low-dimensional representation very similar to PCAs.

Compared with the above-mentioned DR techniques,
random projection [23, 24] is a better choice, since it avoids the
model training, but it is still a challenge to store random
projections due to the huge dimensionality of text feature.
Compressive sensing (CS) [25–27], which has recently been
rapidly developing, can be regarded as a random projection
technique specially for sparse vectors, and it proves that the
perfect recovery of sparse vector can be realized by several
random projections. CS retains the advantages of random
projection in DR and further overcomes the problem of
memory with the help of structural random matrices (SRMs)
[28, 29], which makes CS a potential DR technique for text
classification. In view of the merits of CS, we use it to speed up
the training of text classifiers in this paper. For a low time and
memory complexity, SRMs are selected as CS measurement
matrices to reduce the size of sparse feature vector. Experi-
mental results demonstrate that CS effectively accelerates the
text classification while hardly causing any accuracy loss.

*e rest of this paper is organized as follows. Section 2
briefly reviews text classification and CS theory. Section 3
describes the CS model for text classification in detail.
Section 4 presents experimental results, and finally Section 5
concludes this paper.

2. Background

2.1. Text Classification. Given a text dataset D� {d1, d2, . . .,
dL} of L documents and a set C� {c1, c2, . . ., cJ} of J pre-
defined categories, the goal of text classification is to learn a
mapping f from inputs di ∈D to outputs cj ∈C. If J� 2, it is
called binary classification; if J> 2, it is called multiclass
classification. *e mapping f is called the classifier, and it is
trained by being fed with a labeled dataset, where each
document in D has been assigned a category from C by
professionals in advance. *e trained classifier f is used to
make predictions on new documents which are not included
inD. Because of the subjectivity of text labeling, a test dataset
is still needed to evaluate the prediction accuracy of f.

A typical flow of text classification is illustrated in Figure 1.
In text preprocessing, we tokenize each document in D, erase
punctuations, and remove unnecessary words such as stop
words, misspelling, and slang. To reduce the size of vocabulary
from D, some operations, e.g., capitalization, lemmatization,
and stemming, can also be added. After text preprocessing,

feature extraction is performed to represent documents inD as
feature vectors, which is a crucial step for the accuracy and
complexity of text classification. By N-Gram, we collect
n-grams from D as the vocabulary of BOW model. It is very
common to use unigram and bigram, where unigram is a single
word and bigram is a word pair. Each document in D is
encoded as a feature vector based on the frequency distribution
of its n-grams on the BOW vocabulary. *e size of feature
vector is the same as that of BOW vocabulary, resulting in the
huge dimensionality of feature space. By using DR techniques,
dimensionality can be significantly decreased, reducing the
time complexity and memory consumption when training the
classifier.*e feature vector of a document is also highly sparse
because the number of its n-grams is far smaller than the size of
BOW vocabulary.*e high sparsity makes it possible to realize
DR byCS without the loss of classification accuracy. Compared
with the traditional DR methods, CS not only avoids the
computations invested in supervised learning but also reduces
the memory burden for constructing random projections. In
this paper, we use CS to reduce the feature dimensionality and
try to prove its efficiency of speeding up text classification.

2.2. Compressive Sensing. CS is a novel sampling paradigm
that goes against the traditional Nyquist/Shannon theorem,
and it shows that a signal can be recovered precisely from
only a small set of samples. *e success of CS relies on two
principles: sparsity and incoherence, where the former de-
fines an S-sparse signal s in RNwith all but the S entries set to
be zero, and the latter highlights the incoherent measure
vectors ϕi ∈ RN􏼈 􏼉

M

i�1with s. *e following briefly describes
the CS framework.

By ordering these measure vectors in column, a mea-
surement matrix Φ ∈RM×N is constructed as follows:

Φ �

— φ1 —

⋮

— φi —

⋮

— φM —

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (1)

Training
dataset

Testing
dataset

Text preprocessing Dimensionality
reduction (DR)

Evaluation
metrics

Feature extraction Classifier Prediction

Training path
Testing path
Evaluating path

Training Testing

Figure 1: A typical flow of text classification.
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By using Φ to linearly measure s, we obtain the sampled
vector y ∈RM by

y � Φ · s. (2)

We define the ratio of M/N as the subrate R; that is,
R�M/N, and DR is realized by setting R to be less than 1, but
it also becomes an ill-posed problem to find s from y. Based
on the sparsity property of s, this problem can be solved by
an optimizing model:

􏽢s � argmin
s

‖s‖0

s.t.y � Φ · s,
(3)

where ||·||0 represents l0 norm to count the number of
nonzero entries in s, and the solution􏽢s is an estimate of s.*e
incoherence between φi and s has an effect on the conver-
gence of the solution 􏽢s to the original s, which presents a
challenge for CS, that is, how to construct incoherence
measurement vectors. Fortunately, it is found that random
vectors are largely incoherent with any fixed signal, soΦ can
be produced by some random distributions, for example,
Gaussian, Bernoulli, and uniform.

By performing incoherent measuring with random
matrices, CS can be categorized as the random projection
technology in DR. In particular, in order to enhance the
robustness of recovery, CS requires Φ to further hold the
restricted isometry property (RIP) for S-sparse signals.
When RIP holds, Φ preserves the approximate Euclidean
length of S-sparse signals, which implies that all pairwise
distances between S-sparse signals can be well preserved
in the measurement space. In text classification, the
feature vectors of documents in text dataset are highly
sparse, so RIP of CS can significantly reduce feature
dimensionality while preserving pairwise distances be-
tween feature vectors. Superior to traditional DR
methods, CS ensures less memory consumption and
faster computing by SRMs. In view of the merits of CS,
we explore CS features extracted by SRMs to speed up
text classification.

3. Proposed CS-Based Text Classification

3.1. Framework Description. Figure 2 presents the frame-
work of the proposed CS-based text classification. After
text preprocessing, the text dataset is divided into training
dataset P and testing datasetQ, where the former is used to
train classifiers, and the latter is used to evaluate the
classification accuracy. *e core of our work is to extract
CS features to represent documents in text dataset. In CS
feature extraction, we represent each document pi in the
training dataset P as the highly sparse vector xi by BOW
and construct an SRM Φ ∈RM×N to linearly measure xi,
producing the CS feature vector yi of xi. CS feature is a
low-dimensional and dense vector, which can shorten the
time of training classifier, especially for a large-scale text
dataset. In the following parts, we describe, respectively,
CS feature extraction, SRMs construction, and classifiers
in detail.

3.2.CSFeatureExtraction. We collect unigrams and bigrams
from the training dataset P to create the vocabulary of BOW
model. Unigrams are single words from P, and most of them
occur very few times to impact classification, so we only add
top N1 words from these unigrams to the BOW vocabulary.
Bigrams are word pairs from P, and they are a good way to
model negation like “not good.”*e total amount of bigrams
is very big, but most of them are noise at the end of frequency
spectrum, so we use top N2 word pairs from these bigrams,
adding them to the BOW vocabulary. In the experiment
part, we set suitable N1 and N2 for different classification
tasks.

After collecting unigrams and bigrams, we convert each
document pi in P into the feature vector xi in sparse rep-
resentation. *e BOW feature xi is the frequency distribu-
tion of pi on the BOW vocabulary, and its size is N, which is
the sum of N1 and N2. All BOW features consist of a feature
matrix X as follows:

X �

| | |

x1 · · · xi · · · xL1

| | |

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (4)

where L1 is the amount of P. In the ordinary classification, X
is input into the classifier to train it. Being a large size, X
results in the curse of dimensionality; for example, when N
and L1 are set to be 25000 and 800000, respectively, the size
of X is 25000× 800000, and it needs a memory of
8×1010 bytes (≈75GB) assuming that 4 bytes encode each
entry in X. *at would lead to a heavy computational
burden, so we reduce the size of X by CS measuring as
follows:

Y �

| | |

y1 · · · yi · · · yL1

| | |

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

| | |

Φx1 · · · Φxi · · · ΦxL1

| | |

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� Φ · X,

(5)

where Φ ∈RM×N is a CS measurement matrix and Y ∈RM×L1

is the CS feature matrix, of which the i-th column yi is the CS
feature vector of the i-th document pi in the training dataset
P.

To precisely recover signals, the CS measurement matrix
is required to hold RIP. In practice, a random matrix, e.g.,
produced by Gaussian or Bernoulli distribution, obeys RIP
for S-sparse signal provided that

M≥ 4 · S, (6)

is satisfied [30]. M can be set to be far smaller than N since
BOW features are highly sparse, so the size of Y can be
significantly reduced. Importantly, RIP can be enforced or
degraded by widening or reducing the gap betweenM and S;
that is, when M is far larger than 4·S, the pairwise distances
between S-sparse signals are well preserved in the CS feature
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space, and these pairwise distances can be destroyed when
gradually reducingM, so the subrate R becomes a key factor
impacting the accuracy of text classification. In the exper-
iment part, we will evaluate the effects of different R values
on pairwise distances between features and the accuracy of
classification. In general, these random projections are
dense, and a common computer does not have sufficient
memory to store them, so CS-based DR is not applicable to a
large-scale dataset if traditional method is used to produce
the random projections. However, CS offers some mea-
surement matrices for large-scale and real-time applications,
among which the most famous is SRMs. *e following
describes how to construct SRMs, so as to make CS-based
DR feasible for a large-scale dataset.

3.3. SRMs Construction. SRM, proposed by Do et al. [28], is
a known sensing framework in the field of CS. With its fast
and efficient implementation, it brings some benefits to CS-
based DR, for example, low complexity, fast computation,
block-based processing support, and optimal incoherence.
By using SRMs, with less memory consumption, the length
of BOW feature can be fast and greatly reduced while
holding RIP.

SRM is defined as a product of three matrices; that is,

Φ �

��
N

M

􏽲

D · F · E, (7)

where E ∈RN×N is a random permutation matrix that
uniformly permutes the locations of vector entries
globally, F ∈RN×N is an orthonormal matrix constructed
by popular fast computable transform, e.g., Fast Fourier
Transform (FFT), Discrete Cosine Transform (DCT),
Walsh-Hadamard Transform (WHT), or their block

diagonal versions, D ∈RM×N is a random subset ofM rows
of the identity matrix of N ×N in size to subsample the
input vector, and

�����
N/M

√
is a scale to normalize the

transform so that the energy of the subsampled vector is
almost similar to that of the input vector. By plugging (7)
into (5), the matrix product Φ·X can be performed
according to a sensing algorithm as shown in Algorithm 1.
*e SRM sensing algorithm can be computed fast; that is,
the computational complexity is typically in the order of
O(N) to O(NlogN). Suppose that F is FFT or DCTmatrix;
the implementation of SRM takes O(NlogN) operations.
SRM is used to measure L1 BOW features one by one,
which takes O(L1NlogN) operations; that is, the total
computational complexity of the proposed CS model is
O(L1NlogN). Compared with existing random projection
techniques, SRMs not only cost less time and space
complexity, but they also convert the sampled vector into
a white noise-like one by scrambling the vector structure
to achieve universal incoherence. *erefore, SRMs can
make CS-based text classification more efficient.

3.4. Classifiers. Many popular classifiers can be used in our
model, e.g., SVM, decision tree, AdaBoost, KNN, and Näıve
Bayes. In the experiment part, these classifiers are applied
and their classification accuracy is evaluated to verify the
efficiency of our model. *is section reviews these popular
classifiers in text classification.

SVM [10] is a nonprobabilistic linear binary classifier.
For a training set of points (yi, li), where yi is the CS feature
vector and li is the category of the document di, we try to find
the maximum-margin hyperplane that divides the points
with li � 1 and li � -1. *e equation of the hyperplane is as
follows:

Testing data Training data Partition Text data

Text preprocessing

CS feature extraction

Classifier

SRMs construction

SRMs: structural random matrices

yi Ф xi

CS feature
(low-dimensional

and dense)

Original feature
(highly sparse)

Training path
Testing path

Figure 2: Framework of CS-based text classification.
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wTy + b � 0. (8)

We maximize the margin, denoted by c, as

max
w,γ

γ

s.t.∀i, γ≤ li wTyi + b􏼐 􏼑,

(9)

to separate the points well. By error-correcting output codes
(ECOC) model [31], SVM can also undertake multiclass
classification tasks.

Decision tree [11] is a classifier model in which each
node of the tree represents a test on the attribute of the data
set, its children represent the outcomes, and the leaf nodes
represent the final categories of the data points. *e training
dataset is used to form the decision tree, and the best de-
cision has to be made for each node in the tree. *e decision
tree can be fast trained, but it is also extremely sensitive to
small perturbations in the dataset and can be easily overfit.
By cross validation and pruning, these effects can be
suppressed.

AdaBoost [12] extracts a classifier from the set of weak
classifiers at each iteration and assigns a weight to the
classifier according to its relevance. *e weight in AdaBoost
for each sample is measured according to how difficult
previous classifiers have found it to get it correct. At each
iteration, a new classifier is trained on the training dataset,
and the weights are modified based on how successfully the
training sample has been classified before. Training termi-
nates after several iterations or when all training samples are
classified correctly.

KNN [13] is a nonparametric technique used for clas-
sification. Given the CS feature yi, KNN finds the K-nearest
neighbors of yi among all CS features in the training dataset
and gives the category candidate a score based on the labels
of the K neighbors. *e similarity between yi and its
neighbor can be the score of the category of the neighbor
features. After sorting the score values, KNN decides which
category the candidate falls into with the highest score from
yi. KNN is easy to implement and adapts to any kind of
feature space. It can also handle multiclass cases. *e per-
formance of KNN depends on finding some meaningful
distance functions, and it is limited by data storage when
finding the nearest neighbors for large search problems.

Naı̈ve Bayes [14] has been widely used for text classi-
fication, and it is a generative model based on Bayes the-
orem. *is model assumes that the value of a particular

feature is independent of the value of any other feature. *e
proposed CS model is on the assumption that any entry in a
CS feature vector is independent of other entries. Given a to-
be-tested CS feature y, its category is predicted as follows:

􏽢l � argmax
l

p(l | y). (10)

According to Bayes inference, we see that

p(l | y)∝p(l) 􏽙
M

m�1
p ym

􏼌􏼌􏼌􏼌 l􏼐 􏼑, (11)

where ym is the m-th entry in the CS feature y. *e prob-
abilities p(l) and p(ym|l) can be estimated by maximum
likelihood on the training dataset.

4. Experimental Results

4.1. Dataset and Setting. We conduct experiments on two
datasets, one for a binary classification task and the other for
a multiclass classification task. For the binary classification
task, we use the Twitter sentiment dataset, which was
crawled and labeled positive or negative. For the multiclass
classification task, we use the weather report dataset that
contains a text description and category labels for each event
including thunderstorm wind, hail, flash flood, high wind,
and winter weather. *e classes of two datasets are imbal-
anced, especially for weather report dataset. To avoid the
effects of imbalance on classification accuracy, the two
datasets are preprocessed to make their classes balanced; i.e.,
for Twitter sentiment dataset, we randomly remove some
positive and negative observations and make each class
having 10000 observations; for weather report dataset, we
delete the classes with few observations, and 9 classes re-
main: thunderstorm wind, hail, flash flood, high wind,
winter weather, Marine*understormWind,Winter Storm,
Heavy Rain, and Flood, among which one has 1000 ob-
servations. Figure 3 presents the statistics of Twitter senti-
ment dataset and weather report dataset after balancing. For
any dataset, 20% of observations in each class are set aside at
random for testing. In feature extraction, we first do some
preprocessing on documents in two datasets including the
following: (1) tokenize the documents; (2) lemmatize the
words; (3) erase punctuation; (4) remove a list of stop words
such as “and,” “of,”, and “the”; (5) remove words with 2 or
fewer characters; (6) remove words with 15 or more char-
acters. *en, for both datasets, we, respectively, collect the

Task : Perform Φ·X in which Φ is one of SRMs
Input: *e BOW feature matrix X� [x1,. . .,xi,. . .,xL1], the measurement number M, and a fast transform operator F(·).
Main iteration: Iterate on i until i> L1 is satisfied.
(1) Pre-randomization: randomize xi by uniformly permuting its sample locations. *is step corresponds to multiplying xi with E.
(2) Transform: apply a fast transform F(·) to the randomized vector, e.g, FFT, DCT, etc.
(3) Subsampling: randomly pick up M samples out of N transform coefficients. *is step corresponds to multiplying the

transform coefficients with D.
Output: *e CS feature matrix Y� [y1,. . .,yi,. . .,yL1].

ALGORITHM 1: Flow of SRM sensing algorithm.
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top 8000 unigrams and 10000 bigrams from the training set
to construct the BOW vocabulary, i.e., N1 � 8000 and
N2 �10000, and represent each training observation as the
BOW feature vector with length ofN being 18000. Finally, by
setting different subrates, the SRMs are used to measure the
BOW feature vectors, and the corresponding CS feature
vectors are produced. We train different classifiers on the
BOW-based and CS-based training sets, respectively, tune
parameters by cross validation, and evaluate these classifiers
on the test sets. Due to the random partition of dataset, the
training and testing are repeated five times, and the mean
testing accuracy is used as the evaluation metrics.

*e experimental settings are as follows. To evaluate the
effects of different SRMs on feature distance and classifi-
cation accuracy, we construct five SRMs by using transform
matrices F including DCT, FFT, Block DCT, Block WHT,
and Block Gaussian, in which the latter three are block
diagonal matrices, of which the diagonal elements are DCT
andWHTandGaussianmatrices with the size of 32× 32.We
use six classifiers including SVM, decision tree, AdaBoost,
KNN, and Naı̈ve Bayes to evaluate the classification accuracy
of our model and compare the proposed CS model with the
three DR methods: PCA [17], ICA [18], and NMF [19]. *e
subrate R is set to be between 0.1 and 0.6, and it is preset
parameter, which is used to decide the length of CS feature
vector. All of the experiments are conducted under the
following computer configuration: Intel(R) Core (TM) i7
@3.30GHz CPU, 8GB, RAM, Microsoft Windows 7 64 bits,
and MATLAB Version 9.6.0. (R2019a). *e datasets and
experimental codes have been downloaded from SIGMULL
Team Website: http://www.scholat.com/showTeamScholar.
html?id�1234&changeTo�Ch&nav�4.

4.2. Effects of SRMs. Feature distance measures the similarity
between any two documents, which has a significant impact
on training accuracy. If the features output by DR can well
preserve their pairwise distances in original space, DR
suppresses the loss of training accuracy; therefore, we
evaluate the effects of SRMs on pairwise distances between
text features. In the training set P, the average distance
between the i-th BOW or CS feature and others is computed
as follows:

distBOWi �
1
L1

􏽘

L1

j�1
xi − xj

�����

�����2
, (12)

distCSi �
1
L1

􏽘

L1

j�1
yi − yj

�����

�����2
, (13)

where xi and yi are, respectively, the i-th BOW and CS
feature vector in P and L1 is the amount of P. We select Block
DCTas the core of SRM and use (12) and (13) to compute the
average distance of each BOW and CS feature as shown in
Figure 4.We can see that the tendencies of all distance curves
are similar, and the curve of CS features trends closer to that
of BOW features as the subrate increases, which indicates
that the pairwise distances between BOW features corre-
spond to those between CS features. To measure the distance
differences between BOW and CS features, we compute the
Mean Square Error (MSE) between the average distances of
BOW and CS features as follows:

MSEdist �
1
L1

􏽘

L1

i�1
distBOWi − distCSi􏼐 􏼑

2
. (14)
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Figure 3: Statistics of the Twitter sentiment and weather report datasets after balancing. (a) Twitter sentiment dataset. (b) Weather report
dataset.
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Table 1 presents the MSEs on multiclass classification
dataset when using different subrates and SRMs. It can be
seen from Table 1 that all SRMs provide similar MSEs at any
subrate; e.g., the average MSE of each SRM at all subrates is
about 11.00, and the MSEs of SRMs decrease as the subrate
increases; e.g., the MSE of DCT is 18.78 at the subrate of 0.1,
and it is reduced to 5.92 at the subrate of 0.6. *ese MSE
results indicate that SRMs can preserve the approximate
pairwise distances between BOW features in the CS feature
space.

*en, we select SVM as the classifier in our model and
evaluate the effects of SRMs on classification accuracy. With
different SRMs, the accuracies of SVM classifier on binary
and multiclass classification datasets are presented in Ta-
ble 2. It can be seen that all SRMs provide similar accuracies
in most cases at any subrate; e.g., with all subrates con-
sidered, the average accuracies of SRMs range from 0.7121 to
0.7203 on binary classification dataset, and similar results are
obtained onmulticlass classification dataset. We also see that
the accuracy is gradually improved for any SRM as the
subrate increases. *e above results indicate that the se-
lection of SRMs has little impact on classification accuracy,
and the subrate is a key factor in controlling the accuracy.
*erefore, any SRM can be used in our model, and we need
to consider the balance between accuracy and subrate in
practice.

4.3. Evaluation onClassifiers. To verify the validity of CS, we
have compared CS features and BOW features in terms of
the accuracies and training time of different classifiers driven

by them. *e Block DCT is selected as SRM, and the ac-
curacy results are presented in Table 3. It can be seen that, for
binary classification, the accuracies of classifiers driven by
the CS features go up with the increase of subrate. *ough
lower than those with BOW feature when the subrate is
small, they quickly catch up; e.g., for SVM, the CS feature
overtakes the BOW feature when the subrate is 0.3 and
outperforms it thereafter. All the classifiers considered, the
average accuracy by the CS features is also comparable with
that by BOW feature. *e same result can be obtained for
multiclass classification. As for the training time in Figure 5,
whether it is binary or multiclass classification, the CS
feature costs far less than the BOW feature, especially when
the subrate is small. Table 4 presents average accuracy,
precision, recall, and F1 on all classifiers for binary classi-
fication dataset. It can be seen that the precision, recall, and
F1 by CS features at any subrate are similar to those by BOW
features, which indicates that the classification accuracy is
reliable for CS features. From the above results, it can be
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Figure 4: Average distances between any BOW or CS feature and
others onmulticlass classification dataset at different subrates when
using Block DCTmatrix. BOW denotes average distances between
any BOW feature and others. *ese average distances are sorted in
a descending order.

Table 1: MSEs between average distances of CS and BOW features
on multiclass classification dataset when using different subrates
and SRMs.

Subrate R
SRMs

DCT FFT Block DCT Block WHT Block
Gaussian

0.1 18.78 18.81 18.38 18.48 18.62
0.2 14.37 14.40 14.38 14.08 14.51
0.3 11.39 11.39 11.17 11.11 11.78
0.4 9.14 9.12 9.018 9.01 9.33
0.5 7.36 7.34 7.19 7.21 7.33
0.6 5.92 5.91 5.96 5.90 6.03
Avg. 11.16 11.16 11.02 10.96 11.27

Table 2: Accuracies of SVM classifier associated with different
SRMs on binary and multiclass classification datasets at different
subrates.

Subrate R
SRMs

DCT FFT Block DCT Block WHT Block
Gaussian

Binary classification
0.1 0.6955 0.7220 0.6975 0.6880 0.6930
0.2 0.7185 0.7135 0.7135 0.7200 0.7055
0.3 0.7195 0.7140 0.7285 0.7215 0.7125
0.4 0.7285 0.7190 0.7265 0.7170 0.7185
0.5 0.7235 0.7195 0.7290 0.7270 0.7145
0.6 0.7255 0.7290 0.7265 0.7280 0.7285
Avg. 0.7185 0.7195 0.7203 0.7169 0.7121
Multiclass classification
0.1 0.8590 0.8575 0.8358 0.8444 0.8227
0.2 0.8616 0.8606 0.8651 0.8636 0.8585
0.3 0.8651 0.8737 0.8666 0.8737 0.8606
0.4 0.8686 0.8702 0.8712 0.8747 0.8712
0.5 0.8712 0.8732 0.8767 0.8691 0.8757
0.6 0.8747 0.8782 0.8803 0.8732 0.8762
Avg. 0.8668 0.8689 0.8660 0.8665 0.8609
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concluded that CS speeds up the training of classifiers while
providing the accuracies that can match the BOW feature.

4.4. Comparisons on DR Methods. We compare the per-
formance of the proposed CS model with that of some
popular DR methods including PCA, ICA, and NMF. PCA
learns all principal components from the training set, and,
according to the preset subrate, selects part of principal

components to construct the transform matrix. ICA and
NMF learn their transform matrices at different subrates by
numerical iterative algorithms, and their maximum num-
bers of iterations are both set to be 20 in order to keep the
execution time at a moderate level. We use each of the above
transform matrices to project all training and testing ob-
servations onto a low-dimension space. *e proposed CS
model uses Block DCT to reduce the dimensionalities of
observations at different subrates. Table 5 presents the

Table 3: Accuracies of different classifiers driven by BOW and CS features on binary and multiclass classification datasets when SRM is
Block DCT.

Classifier BOW feature
Subrate R for CS feature

0.1 0.2 0.3 0.4 0.5 0.6
Binary classification
SVM 0.7220 0.6975 0.7135 0.7285 0.7265 0.7290 0.7265
Decision tree 0.6235 0.6365 0.6395 0.6460 0.6355 0.6465 0.6485
AdaBoost 0.7060 0.7020 0.6975 0.7075 0.7035 0.7020 0.7110
KNN 0.6040 0.5955 0.6120 0.6200 0.6140 0.6145 0.6125
Naı̈ve Bayes 0.7275 0.7035 0.7130 0.7125 0.7170 0.7200 0.7150
Avg. 0.6766 0.6670 0.6751 0.6829 0.6793 0.6824 0.6827
Multiclass classification
SVM 0.8732 0.8358 0.8651 0.8666 0.8712 0.8767 0.8803
Decision tree 0.8560 0.8454 0.8434 0.8510 0.8520 0.8525 0.8530
AdaBoost 0.7777 0.7535 0.7737 0.7732 0.7813 0.7808 0.7818
KNN 0.8252 0.8080 0.8146 0.8207 0.8242 0.8257 0.8252
Naı̈ve Bayes 0.7737 0.7373 0.7404 0.7464 0.7429 0.7424 0.7454
Avg. 0.8212 0.7960 0.8074 0.8116 0.8143 0.8156 0.8171

Table 4: Average accuracy, precision, recall, and F1 on all classifiers for binary classification dataset when SRM is Block DCT.

Metrics BOW feature
Subrate R for CS feature

0.1 0.2 0.3 0.4 0.5 0.6
Accuracy 0.6766 0.6670 0.6751 0.6829 0.6793 0.6824 0.6827
Precision 0.6564 0.6658 0.6674 0.6722 0.6694 0.6670 0.6694
Recall 0.6817 0.6671 0.6775 0.6866 0.6824 0.6871 0.6864
F1 0.6679 0.6664 0.6723 0.6790 0.6756 0.6766 0.6774
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Figure 5: Average training time (s) on all classifiers driven by BOW and CS features for binary and multiclass classification tasks when SRM
is Block DCT. (a) Binary classification. (b) Multiclass classification.
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average accuracies of all classifiers for binary and multiclass
classification datasets when using different DR methods. We
can see that the proposed CS model obtains higher accu-
racies than PCA, ICA, and NMF at any subrate for both
binary and multiclass classification tasks. *e proposed CS
model is more stable, and its accuracy increases gradually as
the subrate increases, but the accuracies of PCA, ICA, and
NMF float up and down as the subrate increases; for ex-
ample, for binary classification, the accuracy of PCA is
0.6221 at the subrate of 0.1. However, when the subrate is
raised to 0.6, the accuracy drops to 0.6091. Table 6 presents
the execution time of different DR methods on binary and
multiclass classification datasets when using different sub-
rates. PCA learns all principal components, so its execution
time does not vary as the subrate increases, and it costs
387.75 s and 275.49 s for binary classification and multiclass
classification, respectively. At the preset subrate, ICA and
NMF determine the final dimensionalities of observations
and learn the corresponding transform matrices, so their
execution time increases as the subrate increases; e.g., for
binary classification, NMF costs 187.33 s at the subrate of 0.1
and costs 2201.12 at the subrate of 0.6. *e accuracies of ICA
and NMF can be improved by increasing iteration times, but
their execution time can also increase dramatically. Com-
pared with PCA, ICA, and NMF, the proposed CS model

costs less execution time; e.g., for binary classification, CS
costs only 3.32 s and 4.63 s at the subrates of 0.1 and 0.6,
respectively. From the above results, it can be concluded that
the proposed CS model obtains higher accuracy with less
execution time when compared with PCA, ICA, and NMF.
*erefore, the proposed CS model is a reliable DR method.

5. Conclusion

In this paper, we develop a CS-based model for text clas-
sification tasks. Traditionally, the BOW features are
extracted from the text dataset, and they are the highly sparse
representations with a huge dimensionality. It costs a lot to
train classifiers by using BOW features. By using the in-
coherent measuring of CS, we greatly reduce the dimen-
sionality of BOW features, and, at the same time, the RIP of
CS ensures that the pairwise distances between BOW fea-
tures are well preserved in a low-dimensional CS feature
space. CS also provides the SRMs that are fast computable
with low memory consumption. In the proposed model,
different SRMs are constructed to linearly measure BOW
features at a preset subrate, generating the CS features that
are used to train the classifiers. Experimental results show
that the proposed CS model provides a comparable classi-
fication accuracy with the traditional BOW model and

Table 5: Average accuracies of all classifiers for binary and multiclass classification datasets when using different DR methods.

DR method
Subrate R

0.1 0.2 0.3 0.4 0.5 0.6
Binary classification
PCA 0.6221 0.6236 0.6206 0.6154 0.6222 0.6091
ICA 0.5754 0.5830 0.5862 0.5974 0.5903 0.6009
NMF 0.5926 0.6127 0.6193 0.6067 0.6157 0.6000
CS 0.6670 0.6751 0.6829 0.6793 0.6824 0.6827
Multiclass classification
PCA 0.7253 0.7213 0.7019 0.6845 0.6822 0.6726
ICA 0.4938 0.5170 0.5305 0.5448 0.5455 0.5479
NMF 0.7112 0.7080 0.7123 0.7123 0.7096 0.7063
CS 0.7960 0.8074 0.8116 0.8143 0.8156 0.8171
Note that SRM in CS is Block DCT.

Table 6: Execution time (s) of different DR methods on binary and multiclass classification datasets when using different subrates.

DR method
Subrate R

0.1 0.2 0.3 0.4 0.5 0.6
Binary classification
PCA 384.75 384.75 384.75 384.75 384.75 384.75
ICA 369.72 3094.00 17259.27 34511.16 35281.73 50355.25
NMF 187.33 456.67 1169.65 1873.32 2481.44 2201.12
CS 3.32 3.64 3.92 4.19 4.58 4.63
Multiclass classification
PCA 275.49 275.49 275.49 275.49 275.49 275.49
ICA 188.77 382.82 990.19 6592.11 10829.64 20559.64
NMF 159.21 327.14 652.83 1239.35 1529.07 2358.88
CS 3.10 3.77 3.94 4.03 4.25 4.41
Note that SRM in CS is Block DCT.
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significantly reduces the space and time complexity required
by a large-scale dataset training.
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Because deep neural networks (DNNs) are both memory-intensive and computation-intensive, they are difficult to apply to
embedded systems with limited hardware resources. -erefore, DNNmodels need to be compressed and accelerated. By applying
depthwise separable convolutions, MobileNet can decrease the number of parameters and computational complexity with less loss
of classification precision. Based on MobileNet, 3 improved MobileNet models with local receptive field expansion in shallow
layers, also called Dilated-MobileNet (Dilated Convolution MobileNet) models, are proposed, in which dilated convolutions are
introduced into a specific convolutional layer of the MobileNet model. Without increasing the number of parameters, dilated
convolutions are used to increase the receptive field of the convolution filters to obtain better classification accuracy. -e
experiments were performed on the Caltech-101, Caltech-256, and Tubingen animals with attribute datasets, respectively. -e
results show that Dilated-MobileNets can obtain up to 2% higher classification accuracy than MobileNet.

1. Introduction

Computer image classification is one of the research hot-
spots in the field of computer vision. It can replace human
visual interpretation to some extent by analyzing the image
and classifying it into one of several categories. Image
classification research mainly focuses on image feature ex-
traction and classification algorithm. -e features are very
critical to the image classification, but traditional image
features such as SIFT [1], HOG [2], and NSCT [3] are usually
manually designed. So, the traditional methods are difficult
to meet the requirements of the designer. On the contrary,
convolutional neural network (CNN) can automatically
extract features by using the prior knowledge of known
image samples. It can avoid the complex feature extraction
process in traditional image classification methods, and the
extracted features have strong expression ability and high
classification efficiency.

Deep learning technologies [4, 5] have been in-
creasingly applied in image classification [6], target
tracking [7], object detection [8], image segmentation
[9, 10], and so on, all of which have achieved good results.
Russakovsky et al. [11] used AlexNet of approximately 60
million parameters with 5 convolutional layers and 3 fully
connected layers to win the 2012 champion of ImageNet
Large-scale Visual Recognition Challenge. -en, in order
to achieve higher classification accuracy, the deep neural
network (DNN) structures have become deeper and more
complex. For example, VGG [12] deepened the network
to 19 layers, GoogleNet [13] used inception as the basic
structure (the network reaches 22 layers), and ResNet
[14] introduced residual network structure to solve the
gradient vanishing problem. However, the complex
DNNs have a large number of parameters and a large
amount of computation, which requires a lot of memory
access and CPU/GPU resources. Some real-time
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applications and low-memory portable devices still
cannot fully meet the resource requirements of the DNN
models.

To solve the above problems, more and more researches
have focused on lightweight networks, which have fewer
parameters and less computation while maintaining high
accuracy. When analyzing the number of network param-
eters, Denil et al. [15] found that the parameters in the deep
network have a lot of redundancy. In the process of pro-
cessing, these parameters were useless to improve the
classification accuracy but affected the processing efficiency.
Hinton et al. [16] significantly improved the compressed
model by distilling the models’ ensemble knowledge. -e
classification accuracy of this simple network was almost as
same as that of complex network. In terms of network
compression, Iandola et al. [17] proposed a small CNN
structure called SqueezeNet in 2016, which greatly reduced
the number of network parameters. By using depthwise
Separable Filters, Howard et al. [18] designed a streamlined
architecture called MobileNet, based on depthwise convo-
lution filters and pointwise convolution filters. MobileNet
used two global hyperparameters to keep a balance between
efficiency and accuracy. As an extremely computation-ef-
ficient CNN architecture, ShuffleNet [19] adopted two new
operations, pointwise group convolution and channel
shuffle. -is network can be applied to mobile devices with
very limited computing power.

Although the parameters or computation of lightweight
network is reduced, the accuracy of classification also de-
creases correspondingly. -erefore, by introducing the di-
lated convolution filter intoMobileNet, a Dilated-MobileNet
approach is proposed based on local receptive field ex-
pansion. Without increasing the parameters, the dilated
convolution filter can make the network obtain larger local
receptive field and improve the classification accuracy.

2. Fundamental Frameworks

2.1. CNN Structure. Convolutional neural network usually
consists of convolutional layer, pooling layer, and full
connection layer [20], as shown in Figure 1. First, the fea-
tures are extracted by one or more convolution layers and
pooling layers. -en, all the feature maps from the last
convolution layer are transformed into one-dimensional
vectors for full connection. Finally, the output layer classifies
the input images.-e network adjusts the weight parameters
by back propagation and minimizing the square difference
between the classification results and the expected outputs.
-e neurons in each layer are arranged in three dimensions:
width, height, and depth, in which width and height are the
size of neurons, and depth refers to the channels number of
the input picture or the number of input feature maps.

-e convolutional layer, which contains several con-
volution filters, extracts different features from the image by
convolution operation.-e convolution filters of the current
layer convolute the input feature maps to extract local
features and get the output feature maps. -en, the non-
linear feature maps can be obtained by using activation
function.

-e pooling layer, also known as the subsampling layer,
is behind the convolutional layer. It performs downsampling
operation, using a specific value as output in a certain
subregion. By removing the unimportant sample points
from the feature map, the size of input feature map of the
subsequent layer is reduced, and the computational com-
plexity is also diminished. At the same time, the adaptability
of the network to the changes of image translation and
rotation is increased. -e most common pooling operations
are maximum pooling and average pooling.

-e structure based on convolutional layer and pooling
layer can improve the robustness of the network model. -e
convolutional neural network can get deeper through
multilayer convolutions. With the number of layers in-
creasing, the features achieved through learning become
more global. -e global feature map learned at last is
transformed into a vector to connect the full connection
layer. Most of the parameters in the networkmodel are at the
full connection layer.

2.2. MobileNet Structure. MobileNet, as shown in Figure 2,
has smaller structure, less computation, and higher preci-
sion, which can be used for mobile terminals and embedded
devices. Based on depthwise separable convolutions,
MobileNets use two global hyperparameters to keep a bal-
ance between efficiency and accuracy.

-e core idea of MobileNet is the decomposition of
convolution kernels. By using depthwise separable convo-
lution, the standard convolution can be decomposed into a
depthwise convolution and a pointwise convolution with 1 ×

1 convolution kernel, as shown in Figure 3. -e depthwise
convolution filters perform convolution to each channel,
and the 1 × 1 convolution is used to combine the outputs of
the depthwise convolution layers. In this way, N standard
convolution kernels (Figure 3(a)) can be replaced by M
depthwise convolution kernels (Figure 3(b)) and N point-
wise convolution kernels (Figure 3(c)). A standard convolu-
tional filter combines the inputs into a new set of outputs,
while the depthwise separable convolution divides the inputs
into two layers, one for filtering and the other for merging.

3. Dilated-MobileNet (Dilated Convolution
MobileNet) Structure

MobileNet (Figure 2) mostly uses 3 × 3 convolution filters.
Although this network can reduce the computation cost, the
local receptive fields of small convolution filter are too small
to capture better features in the case of higher resolution of
the feature maps. However, using large convolution filters
will increase the number of parameters and the computation
load. -erefore, in some first shallow convolutional layers,
we use the dilated convolution with the expansion rate of 2
instead of the standard convolution. We call this network
Dilated Convolution MobileNet (Dilated-MobileNet).

3.1. Dilated Convolution. Dilated convolution filter [22],
which was first applied in image segmentation, is a kind of
convolution filter which inserts 0 values between the adjacent
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nonzero values in feature maps. Image segmentation needs
the same size image as the original input image, but the
pooling layer in traditional DNN will reduce the spatial
resolution of the feature map. In order to generate an effective
dense feature map and obtain the same size of receptive field,
Chen et al. [10] removed the maximum pooling layer in last
layers of the full CNN and added dilated convolution. -is
method not only avoids the reduction of the spatial resolution
of the feature map in the pooling layer but also increases
receptive field as same as the pooling layer does.

-e dilated convolution filter expands the receptive field
by inserting 0 values between the nonzero values, as shown
in Figure 4. Figure 4(a) represents the receptive field of a
3 × 3 convolution filter. Figure 4(b) indicates the receptive
field, while the 3 × 3 convolution kernel changed to 5 × 5
when the expansion rate is 2. Figure 4(c) shows the receptive
field, while the 3 × 3 convolution kernel changed to 7 × 7
when the expansion rate was 3. -erefore, the dilated
convolution can expand the receptive field of convolution
filter without increasing the parameters of convolution filter.

3.2. Dilated-MobileNet. Receptive field refers to the size of
each element in the feature map of every layer’s output
mapped on the input image, so the layer will have larger
receptive field when closer to the bottom of the network, and
its receptive field is approximately equal to the global re-
ceptive field. In our research, expanding local receptive field
is to improve the classification accuracy of MobileNet, so the
layers which need increasing receptive field are near the
input of the MobileNet. According to the location of the
dilated convolution filter, we propose 3 new network models
named D1-MobileNet, D2-MobileNet, and D3-MobileNet.

3.2.1. Dilated1-MobileNet. D1-MobileNet sets convolu-
tional stride as 1 in the first layer and replaces the standard
convolution filters with dilated convolution filters with an
expansion rate of 2. At the same time, in order to restrain the
increase of calculation cost, the stride of the 2nd depthwise
separable convolution is set as 2, and the other layers remain
unchanged. Compared with MobileNet, the first
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convolutional layer with stride 1, the size of the output
feature map of the first convolutional layer changes from
112 × 112 to 224 × 224, as shown in Figure 5.

3.2.2. Dilated2-MobileNet. In DWD2 (depthwise separable)
layer, the depthwise convolution filters is expanded by di-
lated convolution filters with an expansion rate of 2, while
the other layers remain unchanged. -is approach does not
increase the amount of computation and parameters nor
does it change the size of the output feature map of any layer,
as shown in Figure 6.

3.2.3. Dilated3-MobileNet. D3-MobileNet sets the con-
volutional stride in first convolutional layer as 1 and replaces
the standard convolution filters with dilated convolution
filters by using an expansion rate of 2. After the convolution
operation in the first convolution layer, it is normalized
through batch normalization layer [23]. -en, a maximum
pooling layer with a stride of 2 is behind the batch nor-
malization layer, and the other layers are unchanged, as
shown in Figure 7.

In terms of receptive field expansion, there are also
different ways of expansion. For example, Sun W combined
dilated convolution and depthwise separable convolution to
form standard blocks for network construction [21]. -eir
approach is to add a dilated convolution layer before each
depthwise separable convolution. Unlike their approach, in
the Dilated1-MobileNet, we use dilated convolution instead
of the standard convolution in the first layer of MobileNet,
without adding dilated convolution in front of all subse-
quent depthwise separable convolution blocks because that
would increase the number of parameters. -e difference in
Dilated2-MobileNet is greater because we extend the re-
ceptive field in depthwise convolution layer rather than
adding a dilated convolution layer in front of the depthwise
separable convolution layer. Similarly, Dilated3-MobileNet
replaces standard convolution with a dilated convolution at
the first level and add a pooling layer after it, rather than
adding a dilated convolution in front of all depthwise
separable convolution blocks.

3.3. Computation Analysis. In the standard convolutional
layer, assuming the height, width, and input channel number
of the input feature maps I are h, w, and m, the convolution
filter K is s × s, the output channel number is n, and the
output feature maps O � K × I can be obtained by the
convolution of I and K with no padding zeros and stride 1,
as shown in the following formula:

O(y, x, j) � 􏽘
m

i�1
􏽘

s

u,v�1
K(u, v, i, j)I(y + u − 1, x + v − 1, i),

(1)

where O(y, x, j) represents the value of point (y, x) in jth
output feature map, K(u, v, i, j) represents the value of point
(u, v) on channel i in jth convolution filter, and I(y, x, i)

represents the value of point (y, x) on ith input feature map.
From Formula (1), it is known that an output value needs
s × s × m times multiplication, so the total amount of cal-
culations is s × s × m × (h − s + 1) × (w − s + 1) × n and the
number of parameters is s × s × m × n.

When Dilated-MobileNet introduces the dilated
convolution in the standard convolution layer, with
feature map I, the dilated convolution is performed with
no padding zeros by using convolution kernel K of the
same size and expansion rate of 2. So, we can get the
output feature map Od by the following formula:

Od(y, x, j) � 􏽘
m

i�1
􏽘

s

u,v�1
K(u, v, i, j)I(y + u +(u − 1)(r − 1)

− 1, x + v +(v − 1)(r − 1) − 1, i).

(2)

So, the total computational amount of the dilated
convolution layer is (s × s × m) × (h − s − (s − 1)(r − 1) +

1) × (w − s − (s − 1)(r − 1) + 1) × n, and the number of
parameters is s × s × m × n. With no padding zeros, the
computation of dilated convolution with expansion rate r> 1
is less than that of standard convolution, and the number of
parameters is the same, but the receptive field of dilated
convolution is larger than that of standard convolution.
Under the convolution operation with padding zeros, the
map size of the dilated convolution is the same as that of the

(a) (b) (c)

Figure 4: Schematic diagram of dilated convolution kernel.
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standard convolution, both of which are h × w × n, and the
computation and the number of parameters are the same
too.

When introducing dilated convolution filters to the
depthwise convolution, the above feature maps I is firstly
convoluted with the depthwise convolution filter K, and the
output feature graph Odc is obtained through the following
formula:

Odc(y, x, j) � 􏽘

s

u,v�1
K(u, v, j)I(y + u +(u − 1)(r − 1)

− 1, x + v +(v − 1)(r − 1) − 1, j),

(3)

where Odc(y, x, j) represents the value of point (y, x) in jth
feature map. Since the depthwise convolution filter has only
one channel,K(u, v, j) represents the value of point (u, v) on
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jth convolution filter and I(y, x, j) represents the value of
point (y, x) on jth input channel.

-e total computation of the depthwise separable con-
volution is (s × s × n) × (h − s − (s − 1) (r − 1) + 1) × (w −

s − (s − 1)(r − 1)+ 1) × m, and the total number of pa-
rameters is s × s × m + m × n. It can be seen that the

parameter of the depthwise separable convolution are re-
duced compared with the standard convolution:

s × s × m + m × n

s × s × m × n
�
1
n

+
1
s2

. (4)

-e ratio of computation is

(s × s + n) ×(h − s − (s − 1)(r − 1) + 1) ×(w − s − (s − 1)(r − 1) + 1) × m

s × s × m × n ×(h − s + 1) ×(w − s + 1)
�
1
n

+
1
s2

. (5)

Similarly, when carrying out the depthwise convolution
with padding zeros, the reduction ratio of parameters is

(s × s + n) × m × h × w

s × s × m × n × h × w
�
1
n

+
1
s2

. (6)

From the above analysis, it can be seen that the receptive
field of the deep convolution kernel with expansion rate r
and convolution kernel size s × s is equivalent to that of the
convolution kernel (r × s − r + 1) × (w × s − r + 1), thus can
expand the receptive field without increasing the number of
parameters and calculation amount.

3.4. Receptive Field. In many tasks, especially intensive
prediction tasks such as semantic image segmentation and
optical flow estimation, it is necessary to predict each pixel’s
value of the input image, and each output pixel’s value needs
a large receptive field to retain important information. Local
receptive field refers to the size of the region in the input
feature map of the upper layer, and the region is mapped by the
pixel in the output feature map. In this paper, dilated convo-
lution is used to enlarge the local receptive field of a certain layer
to capture better features and further influence the receptive
field size of the convoluted layer behind. -e size of receptive
field of each layer is shown in in the following formula:

rk �

fk, k � 1,

rk− 1 + fk − 1( 􏼁 × 􏽙
k− 1

i�1
si

⎛⎝ ⎞⎠, k> 1,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(7)

where rk denotes the receptive field size of the kth layer, fk
denotes the size of filter, and si denotes the stride of the ith
layer. -e receptive field of the first layer equals to the size of
the filter. By using Formula (7), we can get the receptive field
size of each layer of MobileNet and Dilated-MobileNet, as
shown in Table 1.

-e “ds” in Table 1 shows the depthwise separable
convolution, and the pointwise convolution has the same
receptive field as the depthwise convolution in depthwise
separable convolution, so the receptive field is given
uniformly. -e receptive field sizes of the first convolution
layers in D1-MobileNet and Dilated3-MobileNet show
that the receptive field of the 3 × 3 convolution kernel
changed to 5 × 5 when the expansion rate is 2. In sum-
mary, dilated convolution is able to enlarge the size of
local receptive field. Moreover, Dilated1-MobileNet and

Dilated2-MobileNet also slightly increase the receptive
field size of the underlying layers. It can be seen from
Table 1 that, for Dilated-MobileNet networks, although
the expansion ratio of the receptive fields of the latter
convolution layers becomes smaller, their receptive fields
of the first few layers are larger than those of MobileNet. In
this way, it is easier to extract more detailed information,
which is conducive to the improvement of classification
accuracy.

4. Experiments and Result Analysis

In the experiments, we compare the classification results of 6
networks: SqueezeNet [17], MobileNet [18], Dense1-
MobileNet [24], Dense2-MobileNet [24], D1-MobileNet,
D2-MobileNet, and D3-MobileNet on Caltech-101 [25] and
Catech-256 [26] datasets and Tubingen Animals with At-
tributes [27].

-e Caltech-101 dataset is an image object recognition
dataset, which consists of a total of 9146 images, split be-
tween 101 different object classes and an additional back-
ground/clutter class. Each object class contains between 40
and 800 images on average. After labeling the pictures in the
dataset, 1500 pictures are randomly selected as the test
pictures and the rest as the training pictures. Some samples
are shown in Figure 8.

-e Caltech-256 dataset is based on the Caltech-101
dataset, adding image classes and the number of images in
each class. -e dataset contains 30607 images in 257 classes,
including 256 object classes and one background class. Each
class has at least 80 pictures and a maximum of 827 in
background class. Figure 9 shows the image examples in the
Caltech-256 dataset. Each picture in the dataset is labeled
and shuffled. 3060 pictures are randomly selected as test
images, and the remaining pictures are used as training
images.

We also verify our method on the Animals with Attri-
butes (AwA) dataset, as shown in Figure 10. -ere are a total
of 50 animal classes in the database with a total of 30475
pictures. In experiments, we select 21 animal categories,
which are the largest classes and have almost the same
number of pictures, as the experimental dataset. -ere are
22742 pictures in these 21 animal classes, and the number of
pictures in each class is between 850 and 1600. After labeling
the pictures in the dataset, 2000 pictures are randomly se-
lected as the test pictures and the rest as the training pictures.
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-e experiments are under TensorFlow framework and
the programming language is Python. -e experimental
server is equipped with an NVIDIA TITAN GPU.
RMSprop optimization algorithm is used in the experi-
ments. RMSprop is an adaptive learning rate method,
which can adjust the learning rate. In the experiments, the
initial learning rate is 0.1. Since the Xavier initialization
method can determine the random initialization distri-
bution range of parameters according to the number of

inputs and outputs of each layer, we use it to initialize the
weight coefficients. ReLU is used as the activation function
in the experiments, and a total of 50,000 batches are trained,
with 64 samples per batch.

In the following experiments, all the results are the
averages of 10 times experiments, and the best classification
accuracy rates are in bold in the tables. Table 2 shows the
classification accuracies of 7 network models on the Caltech-
101 dataset.

Table 1: -e receptive field size of each layer.

MobileNet Dilated1-MobileNet Dilated2-MobileNet Dilated3-MobileNet
Conv1 3 5 3 5
Pool — 6 — —
Conv2 ds 7 10 11 7
Conv3 ds 11 14 15 11
Conv4 ds 19 22 23 19
Conv5 ds 27 30 31 27
Conv6 ds 43 46 47 43
Conv7 ds 59 62 63 59
Conv8 ds 91 94 95 91
Conv9 ds 123 126 127 123
Conv10 ds 155 158 159 155
Conv11 ds 187 190 191 187
Conv12 ds 219 222 223 219
Conv13 ds 251 254 255 251
Conv14 ds 315 318 319 315

Figure 8: Picture instances in the Caltech-101 dataset.

Figure 9: Picture instances in the Caltech-256 dataset.
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As seen from Table 2, the accuracy rates of the 7 network
models have reached a balance after 30000 iterations, and the
accuracy rates of our 3 improved Dilated-MobileNets
models are about 0.8%∼2% higher than those of the
MobileNet model. Among of them, the classification ac-
curacy rate of Dilated1-MobileNet model is improved by
0.87% and that of Dilated2-MobileNet model is improved by
1.13%.-eDilated3-MobileNet model has the best effect, the
accuracy rate is increased by 2.13%, and the final classifi-
cation accuracy rate is 78.73%.

Table 3 is a comparison of the classification accuracy
rates of the 7 network models on the Caltech-256 dataset. As
shown in Table 3, the accuracy rates of the 7 network models
also have reached a balance after 30000 iterations, and the
accuracy rates of our 3 improved models are improved by
0.5%∼1.5% than that of MobileNet model. Among of them,
the accuracy rate of Dilated1-MobileNet model is improved
by 1.35%, the accuracy rate of Dilated3-MobileNet model is
improved by 0.64% and that of Dilated2-MobileNet model is
the highest, which is improved by 1.42% and final reaches to
65.94%.

It can be seen from Table 4 that the accuracy rates of
MobileNets and Dilated-MobileNet models have reached a

balance after 30000 iterations, but the accuracy rate of
SqueezeNet still increases and finally reaches a balance at the
accuracy rate of 73.85% after 50000 iterations. As in the
previous 2 experiments, the accuracy rates of MobileNet,
Dense-MobileNets, and our 3 improved models are much
higher than those of SqueezeNet. -e accuracy rates of the 3
improved Dilated-MobileNet models are about 0.5%∼1.2%
higher than those of MobileNet. Among them, the classi-
fication accuracy rate of Dilated1-MobileNet model is finally
improved by 0.8%, the classification accuracy rate of Di-
lated2-MobileNet is finally improved by 0.4%, and the

Table 2: Classification accuracy rates (%) on Caltech-101 dataset.

Number of iterations 30000 35000 40000 45000 50000
SqueezeNet 53.60 53.60 53.47 53.40 53.47
MobileNets 76.73 76.60 76.60 76.80 76.60
Dense1-MobileNet 76.60 76.53 76.47 76.40 76.47
Dense2-MobileNet 77.60 77.67 77.87 77.80 77.80
Dilated1-MobileNet 77.40 77.47 77.53 77.40 77.47
Dilated2-MobileNet 77.67 77.80 77.73 77.67 77.73
Dilated3-MobileNet 78.60 78.60 78.53 78.53 78.73

Figure 10: Picture instances in Tuebingen Animals (21) dataset.

Table 3: Classification accuracy rates (%) on Caltech-256 dataset.

Number of iterations 30000 35000 40000 45000 50000
SqueezeNet 41.48 43.06 43.39 43.58 44.03
MobileNets 64.48 64.58 64.55 64.67 64.52
Dense1-MobileNet 64.61 64.53 64.45 64.44 64.47
Dense2-MobileNet 65.62 65.67 65.84 65.78 65.79
Dilated1-MobileNet 65.77 65.74 65.87 65.90 65.87
Dilated2-MobileNet 66.10 66.06 65.94 65.84 65.94
Dilated3-MobileNet 64.97 64.9 64.87 65.19 65.16
We also validate our method on the Animals with Attributes (AwA) dataset [28]. -e classification accuracy rates are shown in Table 4.

Table 4: Classification accuracy rates (%) on AwA (21) dataset.

Number of iterations 30000 35000 40000 45000 50000
SqueezeNet 72.65 72.10 73.30 73.40 73.85
MobileNets 91.60 91.60 91.60 91.55 91.60
Dense1-MobileNet 90.65 90.60 90.60 90.60 90.65
Dense2-MobileNet 92.10 92.05 92.10 92.05 92.05
Dilated1-MobileNet 92.45 92.45 92.50 92.35 92.40
Dilated2-MobileNet 92.00 92.05 92.05 92.00 92.00
Dilated3-MobileNet 92.85 92.75 92.80 92.70 92.80
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classification accuracy rate of Dilated3-MobileNet is the
highest, reaching 92.8%.

In the above 3 kinds of experiments, the Dense1-
MobileNet and Dense1-MobileNet based on dense con-
nection also achieved good classification effect.-e results of
the experiments on caltech-256 dataset are slightly better
than those of Dilated3-MobileNet and a little worse than
those of Dilated1-MobileNet and Dilated2-MobileNet. -e
design idea of Dense-MobileNets is different from that of the
Dilated-MobileNets, and the network structures are also
different, so the two approaches can be used together in the
practical application.3

5. Conclusions

-e memory-intensive and highly computation-intensive
properties of deep learning approaches restrict their
applications in portable devices. At the same time, the
compression and acceleration of network models will
reduce the classification accuracy. So, this paper uses the
dilated convolution in the lightweight neural network
(MobileNet) to improve the classification accuracy
without increasing the network parameters and proposes
three Dilated-MobileNet models. -e experimental re-
sults show that Dilated-MobileNets have better classifi-
cation accuracies on Caltech-101, Catech-256, and AWA
datasets.

In recent years, new lightweight networks, such as
mobilenetv2 [29] and mobilenetv3 [28], have emerged.
How to reduce the parameters and improve the classi-
fication effect is still one of the research hotspots.
Meanwhile, some deep learning methods combined with
traditional methods have achieved good results in target
recognition and classification [30]. On the other hand,
designing specific deep learning networks based on the
characteristics of classification targets is a very effective
classification approach [31, 32]. -erefore, how to give
full use of the advantages of different methods is also
worth further studying.
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Density peaks clustering algorithm (DPC) has attracted the attention of many scholars because of its multiple advantages,
including efficiently determining cluster centers, a lower number of parameters, no iterations, and no border noise. However, DPC
does not provide a reliable and specific selection method of threshold (cutoff distance) and an automatic selection strategy of
cluster centers. In this paper, we propose density peaks clustering by zero-pointed samples (DPC-ZPSs) of regional group borders.
DPC-ZPS finds the subclusters and the cluster borders by zero-pointed samples (ZPSs). And then, subclusters are merged into
individuals by comparing the density of edge samples. By iteration of the merger, the suitable dc and cluster centers are ensured.
Finally, we compared state-of-the-art methods with our proposal in public datasets. Experiments show that our algorithm
automatically determines cutoff distance and centers accurately.

1. Introduction

Clustering algorithm [1], as the unsupervised learning
method, divides the objectives that also are called elements,
samples, and items, into several groups according to the
similarity of objectives. Compared with supervised learning
[2–16], it can carry out the grouping task even though the
category labels are pending. Hence, it is widely used in image
segmentation [17], bioinformatics [18], pattern recognition
[19], data mining [20], and other fields [21, 22]. Repre-
sentative clustering algorithms cover K-means [23, 24] and
fuzzy c-means [25, 26] based on partitioning; AGNES [27],
BIRCH [28, 29], and CURE [30, 31] based on hierarchy;
DBSCAN [32] and OPTICS [33] based on density; STING
[34] based on grids; and statistical clustering CMM [35] and
spectral clustering [36] based on graph theory [37]. K-means
is extremely sensitive to noise and the selection of the initial
clustering centers, and the number of clusters needs to be set
a priori. Similarly, fuzzy c-means suffers from initial par-
tition dependence, noise, and outliers. )e hierarchical

clustering requires to determine the number of clusters a
priori, and its effect depends on the choice of distance
measurement of groups. Density-based DBSCAN, OPTICS,
and grid-based clustering algorithms determine the number
of clusters without artificial intervention. Still, all require
preset parameters epsilon and minpts, and a mass of ar-
gument adjustments were taken to obtain optimal clustering
results. )ese two types of algorithms generate noises
around the cluster boundaries. Statistics-based CMM needs
to select one or more suitable probability models to fit a
dataset.

Clustering by fast search and find of density peaks [38]
was published in Science, by the preset threshold (cutoff
distance, dc), manually selecting the cluster centers from
the decision graph proposed by DPC. Compared with
traditional clustering algorithms, it has many advantages,
such as higher efficiency in finding cluster centers, fewer
parameters, no iteration, no noise around the cluster
border, and others. However, the algorithm still has the
following defects:
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(1) )e original DPC does not provide a reliable and
specific selection method of dc. Hence, the cutoff
distance is computed in different ways depending on
the size of datasets, in which the inappropriate dc
leads to performance degradation [39]. Moreover, the
dc is generally challenging to determine since the
range of each attribute is unknown in most cases [40].

(2) It is hard to manually select the cluster centers from a
dataset with a large number of clusters. And the
artificial option for cluster centers cannot meet the
system with high timeliness.

To overcome the above defects, many scholars proposed
improvements in the original DPC algorithm. Xie et al.
proposed a local density metric based on fuzzy weighted k-
nearest neighbors to solve the problem of difficult to de-
termine dc in the DPC algorithm [39]. Liu et al. proposed
shared-nearest-neighbor-based clustering by fast search and
find of density peaks clustering (SNN-DPC), which converts
cutoff distance to the number of nearest neighbors [40].
Mehmood presented a nonparametric method for DPC via
heat diffusion for estimating the probability distribution of a
given dataset [41]. Guo et al. used linear regression to fit the
decision values with a given dc and selected the elements
above the fitting function as the central elements [42]. Ding
et al. proposed an algorithm based on the generalized ex-
treme value distribution (GEV) to fit the decision values in
descending order [43]. In order to reduce the time com-
plexity, an alternative method based on density peaks de-
tection using Chebyshev inequality (DPC-CI) was also
given. Ni et al. presented the concepts of density path and
density gap, as well as a new threshold called dc percentage
in [44]. )e density gaps are used to draw the summary
graph of density gaps calculated by several dc percentages.
Instead of the decision graph, the appropriate threshold
value is determined by manually observing the summary
graph.)e algorithm is able to reduce the negative impact of
inappropriate dc on the clustering result.

However, in [39–41, 44–47], it is necessary to select the
centers or observe the summary graph of density gaps, with
the human operation. Gu et al. [42] and Ding et al. [43]
proposed the strategies of automatic center selection for the
original DPC, but they depend on the given appropriate dc.
However, Xie et al. [39] and Liu et al. [40] showed that it was
challenging to select the proper dc.

In this paper, we propose the density peaks clustering by
zero-pointed samples (DPC-ZPSs) of regional group bor-
ders. Our method not only determines the suitable range of
dc and the center of each cluster but also reduces the
negative impact caused by manual participation in the
clustering process. )e main innovations and contributions
in our algorithm are as follows:

(1) To merge the local clusters into individuals, we
present a cluster merging strategy based on com-
paring density among elements of two cluster borders.

(2) In order to find the border of each cluster, we
propose two conceptions: neighboring cluster border
(NCB) and pure cluster border (PCB).

(3) For the determination of the correct number of
clusters, we provide an iterative procedure, which
can converge dc to a suitable value.

)e remainder of this paper comprises four sections:
Section 2 describes the details of the original DPC and our
proposal; Section 3 presents the clustering results on our
method and related works and discusses the impact and
value range of the parameter of DPC-ZPS; in the final
section, we have a summary of the contributions and fea-
tures of this paper and put forward to future work.

2. Materials and Methods

2.1. .e Original DPC Algorithm. For a given dataset
X � x1, x2, . . . , xn􏼈 􏼉, where xi � xi1, xi2, . . . , xim􏼈 􏼉,

i � 1, 2, . . . , n.
DPC is based on an assumption where each cluster

center has a higher local density than other elements and is
far from each other. Centers are manually selected using a
decision graph with the local density as the abscissa and δi as
the ordinate. DPC algorithm provides two methods for
calculating the local density for each element of the given
dataset and is expressed in equations (1) and (2). δi is cal-
culated by equation (3):

ρi � 􏽘
j

ℵ dij − dc􏼐 􏼑,

ℵ(·) �

1, ·< 0,

0, ·≥ 0,

⎧⎪⎨

⎪⎩

(1)

ρi � 􏽘
j

exp −
dij

dc
􏼠 􏼡

2
⎛⎝ ⎞⎠, (2)

δi �

min
j:ρi<ρj

dij􏼐 􏼑, if∃j s.t. ρi < ρj,

max
j

dij􏼐 􏼑, otherwise,

⎧⎪⎪⎨

⎪⎪⎩
(3)

where dij is the Euclidean distance between elements i and j

and dc is the cutoff distance. As shown in equation (3), δi is
the minimum distance between elements i and j whose
density is higher than i. Moreover, for i with the highest
density, its δi is the maximum distance between i and j.

Meanwhile, to simplify the selection of centers, DPC
provides the decision value ci as follows:

ci � ρi × δi. (4)

After the cluster centers are determined, each of the
remaining samples is assigned to the nearest denser one. And
the assignment is recorded in the process of calculating δi.

2.2. Our Method. )e main process of DPC-ZPS is to select
multiple distances as dc at equal intervals and calculate the
corresponding decision values. )en, among the decision
values of each group, the elements greater than the sum of
the mean and standard deviation of the decision values are
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selected as the potential centers. In the range of multiple
groups of dc, the iterative merging process makes the
number of clusters close to the real value gradually.

2.2.1. Related Concepts

Definition 1 (zero-pointed sample). in the assignment, each
sample is assigned to the nearest denser one. And the zero-
pointed sample (ZPS) is the one without any subordinates.

When dc is fixed, we use an array that consists of n zero
units to store the assignment process. And the indexes of the
array represent the sequence number of objectives. Let
array(i) � j, in which sample j is the nearest and has
density more significant than sample i. And cluster centers
and potential cluster centers are not assigned. Subsequently,
the array is broken at the zero units; then, |C| trees can be
obtained, and each tree is a cluster.

Definition 2 (initial border). in a cluster tree, the initial
border (IB) consists of all leaf nodes and their father nodes.

As shown in Figure 1, elements 1, 7, and 8 are zero-
pointed and leaf nodes because they are less dense than
neighboring elements. Elements 3 and 32 are inner, but they
are still the zero-pointed elements since they have no ad-
jacent samples. And there are assignment paths of items
10⟶11⟶ 13 and 12⟶11⟶ 13.

Definition 3 (neighboring cluster border). clusters in a
dataset X are denoted as C � Cv | v � 1, 2, . . . , |C|􏼈 􏼉,
where |C| is the number of clusters in C and
Cv � cvl | l � 1, 2, . . . , |Cv|􏼈 􏼉∀ cvl, cv′l′ , where v≠ v′,
l′ � 1, 2, . . . , |Cv′ |􏼈 􏼉, satisfies the following equation, and
then cvl, cv′l′ ∈ NCB(Cv, Cv′):

d cvl, cv′l′( 􏼁< dc floor DF ·
nvv′ · nvv′ − 1( 􏼁

2
􏼠 􏼡􏼢 􏼣, (5)

nvv′ � Cv

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + Cv′

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, (6)

where d( cvl, cv′l′) is the distance between cvl and cv′l′ , dc is an
array storing all d( cvl, cv′l′) of cluster pair Cv and Cv′ in
descending order, dc[a] represents the ath distance, DF is the
depth factor of the neighboring cluster-border, its range is
(0, 1], and floor(b) is the integer part of b.

Neighboring cluster border (NCB) consists of all
NCB(Cv, Cv′), and it is expressed as follows, where v< v′ is
to delete the symmetrical cluster pairs:

NCB � %∪v<v′NCB Cv, Cv′( 􏼁. (7)

It is necessary that two clusters are far from each other
with an enormous DF to attain a nonblank NCB. And the
bigger the required DF value of the nonblank NCB is, the
further distance the two clusters are. While for neighboring
subclusters, DF is relatively minute. In the fourth chapter,
the DF will be compared with parameters of DPC and is
discussed to show the impact on the clustering result.

As shown in Figure 1, there are two clusters A and B in a
dataset, and cluster B is misclassified into B1, B2, and B3.)e
elements I, 7 and 8, and II, 16, 17, 18, 19, 20, and 21, are
marked with red wireframes. )ey belong to NCB.

Definition 4 (pure cluster border). in a cluster, the pure
cluster border (PCB) is defined by the following equation:

PCB � initial border − initial border∩ ​ NCB( ),

PCBv � PCB∩​ Cv.
(8)

Correspondingly, elements 1, 2, 4, 5, 6, 9, 10, 11, 12, 22,
23, 24, 29, 30, and 31 belong to pure cluster border (PCB) of
respective clusters. However, as shown in Figure 2, elements
3 and 32 are zero-pointed since they are relatively isolated,
but their density is much larger than other ZPS.

To filter out interior and isolated ZPS, we use the three-
point method in fuzzy math to measure the three mem-
berships of the elements in the PCBv, including “low den-
sity,” “medium density,” and “high density.” In order to
prevent the extreme value of elements density from affecting
the membership value, we select the normal distribution
function as the membership function, and three functions
are expressed as follows:

D1(x) � exp −
x − minf∈PCBv

ρf􏼐 􏼑

σ
⎛⎝ ⎞⎠

2

⎛⎝ ⎞⎠, (9)

D3(x) � exp −
x − maxf∈PCBv

ρf􏼐 􏼑

σ
⎛⎝ ⎞⎠

2

⎛⎝ ⎞⎠, (10)

D2(x) � 1 − D1(x) − D3(x), (11)

where σ is the standard deviation of the density values of all
elements in PCBv.

In Figure 3, when ρ ∈(0, M), the membership of the el-
ement is smaller acute-angle border element than a higher
density. For example, element 1 is an acute-angular border
element, and elements 2, 12, and 23 belong to obtuse-angular
border elements. When ρ � L, the degrees of two member-
ships are equal.When ρ ∈ (M,maxf∈PCBv

(ρf)], the higher the
element density is, the smaller the membership degree of the
element is, which is an obtuse-border element, and the higher
themembership degree of the independent objective within the
cluster. When ρ � R, the two memberships are equal.

2.2.2. Merger Strategy. If a real cluster is mistakenly divided
into several subclusters, there are some zero-pointed ele-
ments in the NCB since the NCB is not only the inner part of
the actual group but also the border of subclusters. Due to
the aggregation of zero-pointed objectives in the NCB, the
density of NCB elements is smaller than other inner parts,
which corresponds to ρ ∈(M, R) in Figure 3. Meanwhile, the
density of PCB is in ρ ∈ (0, M). We propose a merging
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strategy based on the comparison of element density values
of NCB and PCB.

If ∃ cv􏽢l′
, cv′􏽢l′
∈ NCB (Cv, Cv′

)satisfies
ρcv

􏽢l
>maxcvl

∈PCBv
ρcvl

and ρc
v
􏽢l′
′
>maxc

v′ l′ ∈PCBv′
ρc

v′ l′
, where

maxcvl
∈PCBv

ρcvl

and maxc
v′l
′
∈PCBv′

ρc
v′l
′
are equal to respective M,

then Cv andCv’ are merged; namely, if the density of the
elements of the NCB is not more prominent than R but more
significant than M, they must be the inner elements of the
real cluster.

2.2.3. .e Iteration Strategy. )e δ value of each center
depends on the minimum distance between the central
objectives and the more significant density objectives. But
when the dc is small and far from its suitable range, the

algorithm does not measure the density of each sample
accurately and precisely. )e inexact measurement shows
that, in some clusters, local center elements with more
prominent local density and far from the suitable center of
each group are selected, and their δ values are much larger
than noncenter items. With the increase in dc, the density
measurement capability gradually strengthens. )e DPC-
ZPS algorithm sequentially filters out fake centers with the
weakest central attributes until dc ∈ suitable range. When dc
is bigger than the most significant value of the suitable range,
the clusters with smaller distribution areas will be filtered
out; namely, there is not the center selected by the threshold.
When dc continues to increase, in the groups with a larger
distribution area, the fake centers will appear again. Es-
sentially, the process of dc increase is a gradual transition of
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the density metric to measure the universal density of ele-
ments from their local density. )is change process is
generally shown in Figure 4.

Based on the above analysis, we propose an automatic
iteration strategy as follows:

Step 1: as shown in Figure 4, after counting cluster center
combination and centers quantity of each dc, the algo-
rithm determines the min-range and divides the rest into
L-range and R-range. If the min-range is not only one, the
DPC-ZPS chooses the biggest one to separate the dc range.

Step 2: let the algorithm find themax L-num and record
its center combination as well as the sequence number
of its dc.

Step 3: according to the center combination and dc, the
noncenter elements are assigned to the closest element
among the denser elements.
Step 4: execute merge() with clusters of clustering result
from step 3.
Step 5: if the number of clusters after merge() does not
change, the clustering result and the number of clusters
are stores; if the number of groups reduces to merged
num(r+1) from merged num(r), the third to fifth steps
are repeated with the center combination corre-
sponding to the merged num(r+1).
Step 6: the second to fifth steps are performed in the
R-range after finding the max R-num.
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Step 7: the final result is the maximum value of the final
number of clusters in two subranges and its clustering
results stored by step 5.

2.2.4. Time Complexity Analysis. Suppose that the number
of samples in a dataset is n, the max center-num is N, the
number of pairwise points in SNB is ns, the max center-
num in dc domain is Nt, and the number of zero-pointed
samples is n0. Just like DPC, our method needs time
complexity O(n2) to calculate the distance matrix D. We
search the nearest denser neighbor for each sample via a
K-D tree. And the complexity of building the K-D tree is
O(n log n). Searching nearest neighbor queries has an av-
erage running time of O(log n), and hence, for n groups of
dc, the complexity of searching nearest neighbor of each
sample queries is O(n2 log n). For the determination of
NCB, we need a matrix M, and the rows and columns
represent the samples of two clusters. In the matrixM, each
cell stores the distance from matrix D, and then, all dis-
tances in theM are sort in ascending order to find the NCB
by equation (5). )erefore, the time complexity of NCB
depends on the assignment toM, the times of assignment of
the matrix M are 0.5(Nt)(Nt − 1), the average cost is
O(2n/Nt), and the total time complexity is O((Nt − 1)n).
How many times the operation for PCB is to be done
depends on the number of zero-pointed samples, so
the time complexity is less than O(n). In the merger
process, the density of each pairwise points is compared,
and hence, the complexity of the merger depends on the
number of pairwise points in SNB and is O(0.5ns(ns − 1)),
where ns ∈ [0, 0.5n(n − 1)], and only when DF � 1,
ns � 0.5n(n − 1). However, the reasonable range of DF is (0,
0.05], which will be discussed in Section 3.3. )erefore, the
time complexity of the merger is far less than
O(0.5n(n − 1)). And iteration is based on the max center-
num, and n≫N. We can conclude that the time complexity
of the entire algorithm is O(n2 log n).

3. Results and Discussion

We tested our algorithm and several related works, including
PPC [44], DPC [38], DBSCAN [32], OPTICS [33], and AP [54],
on several datasets. )ese datasets have different numbers of
samples and stimulate different element distributions. )e
detailed information is shown in Table 1. Like DPC, AP (affinity
propagation) is another advanced clustering algorithm pub-
lished in Science.)e basic idea of the AP algorithm is to treat all
data points as potential cluster centers (called exemplar), then
connect the data points in pairs to form a network (similarity
matrix), and finally transmit the information (responsibility and
availability) of each edge in the network to calculate the cluster
center of each sample.

3.1. Evaluation Criteria, Parameters of Each Algorithm, and
Code Sources and Preprocessing

3.1.1. Evaluation Criteria. For intuitive comparison, we
chose the adjusted Rand index (ARI) [55] and adjusted

mutual information (AMI) [55] to evaluate the clustering
results.

)e ARI formula is shown as follows:

ARI �
RI − E[RI]

MAX RI{ } − E[RI]
, (12)

where E [RI] represents the expectations of RI. RI is cal-
culated as follows:

RI �
TP + TN

C2
n

, (13)

where TP indicates the true positive, TN indicates the real
negative, and C2

n is the total number of sample pairs in a
dataset containing n samples.

)e AMI formula is shown as follows:

AMI �
MI(U, V) − E[MI(U, V)]

MAX H(U), H(V){ } − E[MI(U, V)]
, (14)

where H(U) � 􏽐
|U|
i�1 P(i)log2 P(i), H(V) �

􏽐
|V|
i�1 P′(i)log2P′(i), and E[MI(U, V)] represents the ex-

pectations of MI(U, V); MI(U, V) is expressed as follows:

MI(U, V) � 􏽘

|U|

i�1
􏽘

|V|

j�1
P(i, j)log2

P(i, j)

P(i)P′(j)
, (15)

where P(i) � |Ui|/n, P′(j) � |Vj|/n, P(i, j) � |Ui∩ ​ Vj|/n,
U � Ui | i � 1, 2, . . . , |U|􏼈 􏼉, and V � Vj | j � 1, 2, . . . , |V|􏽮 􏽯.
U and V represent two allocation methods for a dataset
containing n elements, and Ui and Vj are clusters. In ex-
perimental verification, let U and V be the original labels and
the clustering results of an algorithm, respectively. )e value
ranges of the two evaluation criteria are [−1, 1], and “1”
denotes the best experimental result.

3.1.2. Parameters of Each Algorithm. DF, the parameter of
our proposal, was set from 0.01 to 0.05, in which 0.005 is the
interval. And by an equal interval, we choose n dc from all dij in
ascending order, where n is the number of samples of a given
dataset.When performingDBSACN andOPTICS experiments,
we took “(min(dij)− max(dij))/100” as the step and min(dij)

as the initial value to attain 100 epsilons, let theminpts be from1
to 50, and choose the best result among five thousand clustering
results. During the AP experiment, we set the initial value of the
unique parameter “performance” of the AP algorithm to 1.5
times the maximum value of the similarity matrix, and each
cycle is reduced by 0.03%; the optimal result is selected. )e
specific situation is shown in Table 2, where the DPC algorithm

Table 1: Detailed information on tested datasets.

Dataset No. of
records

No. of
attributes

No. of
clusters Source

Aggregation 788 2 7 [48]
Flame 240 2 2 [49]
Spiral 312 2 3 [50]
D31 3100 2 31 [51]
R15 600 2 15 [51]
DIM512 1024 512 16 [52]
Olivetti faces 400 92×112 40 [53]
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Table 2: Parameters setting.

Dataset DPC-ZPS PPC DPC DBSCAN OPTICS AP
Aggregation 0.02 0.012 0.034 0.0643/14 0.06/10 −0.96
Flame 0.03 0.027 0.028 0.1177/14 0.10/8 −2.19
Spiral 0.02 0.01 0.018 0.0418/1 0.04/1 −1.73
R15 0.02 0.015 0.006 0.0508/30 0.004/11 −0.17
D31 0.02 0.006 0.006 0.0377/37 0.03/23 −0.08
DIM512 0.02 0.039 0.006 0.36/2 0.19/1 −1
Olivetti face 0.02 0.001 0.004 0.0294/2 0.59/2 −0.247

Table 3: Clustering results.

Dataset Evaluation criteria DPC-ZPS PPC DPC DBSCAN OPTICS AP

Aggregation AMI 1.0000 0.9922 1.0000 0.9785 0.9368 0.7352
ARI 1.0000 0.9956 1.0000 0.9888 0.9747 0.6427

Flame AMI 1.0000 1.0000 1.0000 0.8844 0.7385 0.3239
ARI 1.0000 1.0000 1.0000 0.9550 0.8965 0.3950

Spiral AMI 1.0000 1.0000 1.0000 1.0000 1.0000 −0.0014
ARI 1.0000 1.0000 1.0000 1.0000 1.0000 −0.0016

D31 AMI 0.9556 0.9554 0.9554 0.9087 0.7901 0.8563
ARI 0.9367 0.9365 0.9365 0.8450 0.5814 0.7991

R15 AMI 0.9938 0.9938 0.9938 0.9916 0.9734 0.9907
ARI 0.9928 0.9928 0.9928 0.9893 0.9785 0.9891

DIM512 AMI 1.0000 1.0000 1.0000 1.0000 0.9029 1.0000
ARI 1.0000 1.0000 1.0000 1.0000 0.9432 1.0000

Olivetti face AMI 0.8086 0.8447 0.8259 0.7106 0.4286 0.7297
ARI 0.7385 0.7155 0.6863 0.4668 0.5036 0.6260
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Figure 5: )e analysis result of DPC-ZPS on the aggregation dataset: (a) relationship between dc and the number of centers; (b) DPC-ZPS
on aggregation; (c) aggregation-ground truth.
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parameter is a suitable dc, and the PPC algorithm parameter is
dc_percent. )e results and arguments of DPC and PPC are
obtained from [44].

3.1.3. Code Sources and Preprocessing. To ensure that the
experimental comparison is valid, we processed each
dataset according to the method described in [25] and
normalized the low-dimensional dataset and the DIM512
dataset. For preparing the Olivetti faces dataset, we first
scaled each image (originally 92 ×112) to a smaller size of
15 ×15 and then performed principal component analysis
(PCA) to filter out attributes of cumulative contribution
rates greater than 90%. )e normalization formula is as
follows:

xij
′ �

xij − min xj􏼐 􏼑

max xj􏼐 􏼑 − min xj􏼐 􏼑
, (16)

where xij represents the jth value of the ith data in the dataset
X and max(xj) and min(xj) represent the maximum and
minimum values of the jth feature in the dataset X,
respectively.

)e DBSCAN codes are all built-in functions of
Matlab 2019a. )e OPTICS code is from the pyclustering
library, the AP code is from the sklearn library, and we
provide the DPC-ZPS codes. We executed all methods on
a personal computer with Windows 10, Intel(R) Core
(TM) i7-8750H, 16 GB memory, and Matlab 2019a or
Python 3.0.

3.2. Experimental Results andAnalyses. As shown in Table 3,
the performance of DPC-ZPS is better than other control

groups. Next, we will analyze the specific iterative process of
our proposal from Figures 5–9. And each of the Figures 5–8
consist of three subgraphs. )e left subgraphs represent the
cutoff distance and the number of cluster centers determined
by the DPC-ZPS algorithm, and the red line marks the
suitable range of dc. )e middle subgraph represents the
clustering results of DPC-ZPS, and the right subgraph
represents the category labels. Figure 9 shows the clustering
results of our method and the original DPC on the Olivetti
face dataset.

As shown in Figure 5, our algorithm selects seven
appropriate centers and successfully converges dc to the
appropriate value interval through iteration. In the it-
erative processes, the change of center-num in the L-
range is “14-8-7-7.” )e number of centers remains
unchanged, which means the seven clusters are relatively
dependent. )e final center-num of the R-range is “4,” so
the clustering result of the L-range is selected as the final
result.

In Figure 10(a), there is a min-range, and center-num is
one. And in the L-range, the process of iteration is “6-2-2,”
and that of the R-range is “2-1-1.” )erefore, the final
clustering result lies in the L-range.

In the spiral dataset, three spiral clusters are far from each
other. So in Figure 6(a), in most of the dc range, there are three
suitable cluster centers. )ere is no R-range. And our method
successfullymerges all subclusters to three correct groups, which
is consonant with Figure 6(c).

In the L-range of R15, the biggest center-num is 15,
and the merge does not happen, while the last center-
num of the R-range is 14. Hence, the actual clustering
result is determined and is shown in Figure 7(b). )e
change process of D31 L-range is from 33 to 31. )e
ultima center number of the R-range is approximate to
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Figure 6: )e analysis result of DPC-ZPS on the spiral dataset: (a) relationship between dc and the number of centers; (b) DPC-ZPS on
spiral; (c) spiral-ground truth.
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the minimum in Figure 8(a). Hence, the final cluster
number is thirty-one.

)e Olivetti faces dataset contains 40 (person) × 10
(photo) photos and is widely used in machine learning to
test various algorithms. As shown in Table 3, the evaluation
results of the DPC-ZPS on ARI are better than other al-
gorithms. Figure 9 shows the clustering results of the DPC-
ZPS and DPC. )e image marked with a white dot in the
upper right corner is the cluster center, and the gray photos
indicate that there are less than three elements in the
cluster.

In Figure 9(b), there are no centers in the 4th, 6th, 8th,
10th, 11st 18th, and 35th group photos, which suggest that the
traditional DPC algorithm may also incorrectly merge
multiple clusters into one cluster. However, as shown in
Figure 9, there are only the 16th and 18th group photos
without centers. It demonstrates that DPC-ZPS is less likely
to merge clusters incorrectly.

3.3. Discussion. Xie et al. [39, 40, 44] manifest that the se-
lection rule of dc provided in [38] cannot meet various
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Figure 7: )e analysis result of DPC-ZPS on the D31 dataset: (a) relationship between dc and the number of centers; (b) DPC-ZPS on R15;
(c) R15 ground truth.
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datasets. Table 2 shows that the values of dc and dc_per-
centage are diverse in diverse datasets, which increases the
tuning cost and magnitude of difficulty, while in the six of
the seven tested datasets, our argument is equal to 0.02.

)e depth factor, the only parameter of the DPC-ZPS
algorithm, is used in equation (6) to control the depth of
the border between two adjacent clusters. When DF � 1,
the neighboring cluster borders will contain all the ele-
ments in the two clusters. However, the edge should be
composed of the elements with a shallow depth, so there

are minimal parameter values in different datasets.
)erefore, [0.005, 0.05] is a reasonable range for all of the
tested datasets. As shown in Figure 11, most datasets
severely fluctuate before DF � 0.015, which is just a small
part of the whole; after that, our algorithm is not sensitive
to the parameter changes. In addition, compared with the
DPC and PPC algorithms, the DPC-ZPS algorithm does
not require human intervention in the entire clustering
process, which can overcome many defects caused by
manual operation.
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(a) (b)

Figure 9: )e clustering results on Olivetti faces by (a) DPC-ZPS and (b) DPC.
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4. Conclusions

In this paper, to overcome the defects of human operation
and the difficulty in determination of the suitable dc, we
proposed the density peaks clustering by zero-pointed
samples (DPC-ZPSs) of regional group borders. DPC-
ZPS is based on the in-depth analyses of not only the
changing rule between the dc and centers but also the
relationship between the density of NCB and PCB. Our
proposal covers two main parts: the merger strategy of

subclusters based on the cluster borders and the iteration
strategy. )e merger strategy adaptively determines the
threshold of merge for each pairwise local cluster. And
the iterative process is to find a suitable range of dc
automatically. And experimental results indicate our
method is more accurate without artificial operation and
has a more reasonable and less sensitive threshold value
range. Additionally, we will use the natural nearest
neighbors to optimize the local density measurement and
assignment process.
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Figure 10: )e analysis result of DPC-ZPS on the flame dataset: (a) relationship between dc and the number of centers; (b) DPC-ZPS on
flame; (c) flame-ground truth.
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Aiming at high-resolution radar target recognition, new convolutional neural networks, namely, Inception-based VGG (IVGG)
networks, are proposed to classify and recognize different targets in high range resolution profile (HRRP) and synthetic aperture
radar (SAR) signals. +e IVGG networks have been improved in two aspects. One is to adjust the connection mode of the full
connection layer. +e other is to introduce the Inception module into the visual geometry group (VGG) network to make the
network structure more suik / for radar target recognition. After the Inception module, we also add a point convolutional layer to
strengthen the nonlinearity of the network. Compared with the VGG network, IVGG networks are simpler and have fewer
parameters. +e experiments are compared with GoogLeNet, ResNet18, DenseNet121, and VGG on 4 datasets. +e experimental
results show that the IVGG networks have better accuracies than the existing convolutional neural networks.

1. Introduction

Radar automatic target recognition (RATR) technology can
provide inherent characteristics of the target, such as the
attributes, categories, and models, and these characteristics
can provide richer information for battlefield command
decisions. +e high-resolution radar echo signal obtained
from the wide bandwidth signal transmitted by the broad-
band radar provides more detailed features of the target,
which makes it possible to identify the target type. +erefore,
more and more research studies focus on RATR technology.

Traditional methods of radar target automatic recognition
include k-nearest neighbor classifier (KNN) and support vector
machine learning (SVM) and so on. Zhao and Principe [1]
applied support vectormachine to automatic target recognition
of SAR image. Obozinski et al. [2] proposed the Trace-norm
Regularized multitask learning method (TRACE) to solve the
problem of recovering a set of common covariates related to
several classification problems at the same time. It assumes that
all models share a common low-dimensional subspace, but the
method cannot be extended to the nonlinear field well.

Regularized multitask learning (RMTL) proposed by Evgeniou
and Pontil [3] extends the existing kernel-based learning
methods of single-task learning, such as SVM. Zhou et al. [4]
proposed the clustered multitask learning (CMTL) method to
replace multitask learning (MTL). It assumes that multiple
tasks follow the cluster structure and achieves high recognition
accuracy of SAR image. Zhang and Yeung [5] proposed the
multitask relationship learning (MTRL) method, which can
learn the correlation between positive and negative tasks au-
tonomously, and the recognition accuracy is higher than that of
CMTL. Cong et al. [6] proposed a new classificationmethod by
improving MTRL, which can autonomously learn multitask
relationship and cluster information of different tasks and be
easily expanded to the nonlinear domain. He et al. [7] used the
principal component analysis (PCA) method to realize the fast
target recognition of SAR image.

With the development of artificial intelligence, more and
more applications based on neural networks are used for
target recognition [8]. In the field of image target recog-
nition, convolutional neural network (CNN) has achieved
great success, which is widely used in object detection and
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localization, semantic segmentation, target recognition, and
so on [9]. Visual geometry group networks (VGGNets) [10]
proposed by Simonyan and Zisserman have significantly
improved image recognition accuracy by deepening the
network depth to 19 layers. In the same year, GoogLeNet
[11] proposed by Christian Szegedy used the Inception
module to have several parallel convolution routes for
extracting input features, which widened the network
structure horizontally and deepened the network depth to a
certain extent while the network parameters are reduced.
Studies have shown that deeper networks have better per-
formance, but deepening the network is faced with the
problem of gradient disappearance, and the complex net-
works also have the risk of overfitting. Residual networks
(ResNets) [12] and dense convolutional network (DenseNet)
[13, 14] solve the above problems by using skip connections
and significantly increase the depth of the network. Recently
proposed highway networks, ResNets, and DenseNet have
deepened the network structure to more than 100 layers and
demonstrated outstanding performance in the field of image
recognition.

Different from image data, radar data are sparse and
have a little amount. +erefore, the network should be able
to extract multidimensional features, and the depth could
not be too deep. So, we considered using the Inception
module and VGG network for training. VGG networks have
limited depth and been proven to have excellent feature
extraction capabilities. +e Inception module has multipath
convolution, which can extract radar multidimensional
information for learning, and its internal large-scale con-
volution kernels are also more effective to extract the in-
formation with sparse characteristics. +erefore, we
proposed a method to fuse the Inception module with the
VGG network.

+is paper focuses on target recognition based on 1D
HRRP and SAR images and proposes the IVGG convolu-
tional neural network structure which is most suitable for
high-resolution radar target recognition. +e parameters of
IVGG can also be greatly reduced.

2. Target Recognition Model: IVGG Networks

2.1. VGGNets. VGGNets [10] adopted the convolution fil-
ters with a small local receptive field and proposed 6 different
network configurations. In VGGNets, the convolution filters
are set to 3× 3 and the max-pooling is 2× 2, with stride 2.

+e contribution of the VGGNet is the application of the
3× 3 small convolution filters. By stacking small convolution
filters, the depth of the network is increased, and the
nonlinearity of the convolutional layers is strengthened too
[15]. +erefore, the nonlinear function can be better fitted
(but the overfitting phenomenon needs to be prevented) and
the parameters of the network are reduced.

Before the VGG network was proposed, An et al. also
used small convolution filters, but the network was not as
deep as VGGNet [16]. +e VGGNet has better performance
than other convolutional networks in extracting target
features.

In the structure of VGGNet, the convolutional layers and
pooling layers alternately appear. After two to four con-
volutional layers, a max-pooling layer is followed. In order to
keep the computational complexity of the constituent
structures at each feature layer roughly consistent, the
number of convolution kernels at the next layer is doubled
when the size of the feature map is reduced by half through
the max-pooling layer. VGGNet ends with three fully
connected layers, which are also the classifier for the system.

2.2. *e Improved Model: IVGG Network. Because SAR
images and HRRP data are sparse, it is difficult to fully
represent all the feature information of the targets by using
all 3× 3 convolution filters. GoogLeNet, proposed by
Christian Szegedy [11], uses the Inception modules with
larger convolution filters, which can extract radar multidi-
mensional information for learning. As shown in Figure 1,
there are several parallel convolutional lines in the Inception
module, and the large convolution filters in parallel lines
increase the width and the depth of the network structure.
So, the Inception module is used to modify the VGG
module.+e new network is specially designed for radar data
analysis and has a high recognition rate of radar target
models. +e principle of improvement will be introduced in
the next section.

In this paper, the “Conv” module includes convolution,
batch standardization, and activation functions, as shown in
Figure 2.

Based on the above structures, we propose 4 new IVGG
networks. In this structure, a certain number of Inception
modules are used to replace “Conv3” module in the original
VGGNets. Note that we add a very deep point convolutional
layer after the Inception module, and it is important. Many
traditional algorithms show poor performance for radar
target recognition is because they cannot effectively fit the
nonlinear structure in the radar signal [6]. Drawing on this
point of view, we have strengthened the nonlinear capa-
bilities of IVGG by adding a point convolutional layer.
Immediately following the Inception module, the layer
contains activation function, which increases the nonline-
arity of the network. Further, we set the input number of
channels is same with output. In other words, the point
convolutional layer does not compress the output feature
maps. It also strengthens the nonlinearity of the network.
Table 1 shows the specific configuration of the IVGG net-
works, where the Inception module and Conv1 module
which are used to replace Conv3 modules in the original
network are identified in italics.

+e fully connected layers of VGGNets are shown in
Table 2. Since there have 3 layers, we use “3FC” to refer to the
structure in Table 2.

+e classifier of the VGG networks is fully connected
layers, containing most of the parameters of the whole
network. In order to reduce the parameters, we improved the
FC layers, reducing the 3-layer FC to a single-layer “FC-4/
10”, which is represented by “1FC”.

In the experiment, the network we proposed relates to
the above two classifiers, which can be represented by
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“IVGGx-1FC” and “IVGGx-3FC,” respectively, where x is
the network depth.

+e IVGG11 network is shown in Figure 3, the structure
shows how conv3 modules are replaced, and the other
networks with different depths (IVGG13/16/19) in Table 1
also follow this rule.

3. Characteristic Analysis of IVGG Networks

3.1. Relationship between Data Sparsity and Network
Structure. In this section, we perform theoretical analysis to
demonstrate the sparse characteristics of 3 × 3 filters and 5 ×

5 filters. It can further explain that the IVGG network can
overcome the target recognition difficulties caused by sparse
radar data to some extent.

Assume that in the convolution layers, the weight tensor
is s W ∈ RCin×Cout×(k1k2), where Cin is the number of input
channels, Cout is the number of output channels, and
k1 and k2 are the convolutional kernel size. Considering the
calculation process of convolution filters and feature map in
each channel, the weight matrix of the filter is
Wfilter ∈ Rk1×k2 . We unfold the weight matrix into a vector
w ∈ Rk1k2 . Each local receptive field in the input (considering
a certain channel) is expanded into a vector x, and then wTX
represents the output, where the matrix
X � (x1, x2, . . . , xN), and the number of elements in the
output feature map is represented by N.

If the kernel size of a convolution layer is (k1, k2), weight
tensor wT � (w1, w2, . . . , wk1×k2

)T, the output feature map
can be represented as follows:

wTX � wTx1,w
Tx2, . . . ,wTxN􏼐 􏼑 � 􏽘

k1×k2

i�1
wixi,1, 􏽘

k1×k2

i�1
wixi,2, . . . , 􏽘

k1×k2

i�1
wixi,N

⎛⎝ ⎞⎠,

wTX0 � # n � (1, 2, . . . , N) | 􏽘

k1×k2

i�1
wixi,n ≠ 0⎛⎝ ⎞⎠,

wTX1 � 􏽘
N

n�1
􏽘
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􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
.

(1)

Assume the elements in matrix X are set to zero in
probability P1(P1 < 1), the weight vector w element values
wi are set to zero in probability P2, that is, P wi􏼈 􏼉 � P2. When
P1⟶ 1, X0⟶ 0,∀n � (1, 2, . . . , N), the probability
when the neuron is activated is as follows:

lim
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Base

Conv1

Conv5

Conv1

Conv3

MaxPool(3)

Conv1

Depth concat

Conv1

Figure 1: +e Inception module, where Conv1 means the con-
volutional filter is 1× 1, Conv3 means the convolutional filter is
3× 3, and Conv5 means the convolutional filter is 5× 5.

Convolution

Batch
normalization

ReLU/Tanh

Figure 2: “Conv” module.

Table 1: IVGG network configuration.

IVGG11 IVGG13 IVGG16 IVGG19
11 weight
layers

13 weight
layers

16 weight
layers

19 weight
layers

Input (HRRP OR SAR)

conv3-64 conv3-64 conv3-64 conv3-64
conv3-64 conv3-64 conv3-64

MaxPool

conv3-128 conv3-128 conv3-128 conv3-128
conv3-128 conv3-128 conv3-128

MaxPool
Inception-256 conv3-256 conv3-256 conv3-256
conv1-256 Inception-256 Inception-256 Inception-256
conv3-256 conv1-256 conv1-256 conv1-256

conv3-256 conv3-256
conv3-256

MaxPool
Inception-512 conv3-512 conv3-512 Inception-512
conv1-512 conv3-512 Inception-512 conv1-512
Inception-512 conv1-512 conv3-512
conv1-512 Inception-512 conv3-512

conv1-512 Inception-512
conv1-512

MaxPool
conv3-512 Inception-512 conv3-512 conv3-512
conv3-512 conv1-512 conv3-512 conv3-512

Inception-512 conv3-512 conv3-512
conv1-512 conv3-512

MaxPool
Fully connected layers
Soft-max

Table 2: +ree fully connected layers (3FC).
FC-4096
FC-4096
FC-4/10
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Input

MaxPool

MaxPool
Base

Conv1–16

Conv5–32

Conv1–96

Conv3–128

MaxPool(3)

Conv1–32

Conv1–64

Depth concat

ReplaceDelete

MaxPool Base

Conv1–24

Conv5–64

Conv1–112

Conv3–224

MaxPool(3)

Conv1–64

Conv1–160

Depth concat

MaxPool

MaxPool Fully connected 
layers Soft-max

ReplaceDelete

Inception

Deep point conv.

Inception

Deep point conv.

×2

Conv3–
64

Conv3–
128

Conv3–
256

Conv3–
256

Conv1–
256

Conv3–
512

Conv1–
512

Conv3–
512

Conv3–
512

Conv3–
512

Figure 3: IVGG11 network architecture.
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Similarly, we can get the following expression:
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So, we can get the following inequality:
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When k1 � 3, k2 � 3, we use a0 and a1 to denote wTX0
and wTX1. When k1 � 5, k2 � 5, we use b0 and b1 to denote
wTX0 and wTX1. +en,

a0 � N 1 − P
9
1􏼐 􏼑,

b0 � N 1 − P
25
1􏼐 􏼑,

a0 < b0.

(5)

For the convenience of calculations, we assume that
input feature vector/tensor does zero padding. Because
P1⟶ 1, this does not affect the calculation result. +en, we
have
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(6)

It is easy to prove a1 < b1. +erefore, the large-scale
convolution kernel can effectively extract the target features
if the input data are too sparse.

+e sparsity of the convolutional layer can bring many
benefits, such as better robustness and higher feature ex-
traction efficiency. However, if the input data are excessive
sparse, feature extraction will become more difficult.
+erefore, after repeated experiments, we finally chose the
Inception module instead of the larger convolution kernel.
We just added an appropriate number of Inception module
to the network, and they are not all composed of Inception
modules like GoogLeNet. In order to improve the network’s
ability to fit nonlinear structures in radar data (such as SAR
images), we add a very deep point convolutional layer be-
hind the Inception module. It should be noted that the point
convolutional layer introduces an activation function, and
the channels of input and output channels are the same,
which improves the nonlinearity of the new network.

3.2. *e Parameter Number of the Networks. As shown in
Figure 4, our method has about 3 million parameters less
than the VGG network at the same depth. +e number of
parameters of networks connected to the above two clas-
sifiers is shown in Table 3. By improving the classifier, our
network can further reduce the parameter amount by 86%–
92%.

+e comparisons of floating points of operations
(FLOPs) are shown in Figure 5. According to Figure 5, the
computation cost is most affected by the network depth.

IVGG16 and IVGG19 are very computation-intensive. It can
be seen from Figure 4 that at the same number of network
layers, the FLOPs of IVGG are significantly less than those of
the VGG networks. For example, IVGG16-3FC saves 23.61%
FLOPs compared to VGG19. So, our methods not only save
parameter storage space, but also reduce computation cost.

4. Experiment and Results Analysis

4.1. Dataset. +e SAR image dataset used in this paper is a
public dataset released by MSTAR. +ere are many research
studies on radar automatic target recognition based on the
MATAR SAR dataset, such as references [1–4, 17–20]. +e
experimental results in this paper are compared with the
above methods. +e MSTAR dataset and the HRRP dataset
are used for experiments. Published by MSTAR [6, 21], the
SAR dataset includes ground-based military targets. +e
acquisition conditions of the MSTAR dataset are classified
into standard operating condition (SOC) and extended
operating condition (EOC). +ere are 10 kinds of targets
under SOC conditions, each of which contains omnidi-
rectional SAR image data at 15° and 17° pitch angles. In the
experiments, observation data at 17° were used for training,
and the observation data at 15° pitch angle were used for
testing. +e optical image of the targets in the MSTAR SAR
dataset collected under SOC conditions is shown in Figure 6.
In the EOC-1 dataset, there are 4 kinds of ground targets, in
which the targets with a side view angle of 17° are used for
the training set and the targets with a side view angle of 30°
are used for the test set.

+e test set and training set are the samemodel targets in
different pitch angles. In fact, this is one of the differences
between high-resolution radar target recognition and image
recognition. +e purpose of this paper is to accurately
recognize the target model through high-resolution radar
data. In academia, there is only a difference in pitch angle
between the test set and the training set, which is feasible and
in line with reality [6, 21–23].

Because SAR images are extremely sensitive to changes
in pitch angle, it is more difficult to identify the targets under
EOC-1 conditions. +e pitch angle difference between the
SOC training set and the test set is 2°, while the difference
under the EOC-1 is increased to 13°. +is may lead to a big
deviation of the same target in SAR images under the same
posture, which increases the difficulty of recognition.
+erefore, the experimental conclusions based on the SAR-
EOC dataset are more valuable.

As shown in Table 4, the two vectors are two samples in
the dataset HRRP-1, which reflects the scattering charac-
teristics of the armored transport vehicle and the heavy
transport vehicle, respectively.

+e HRRP-1 dataset [22] is target electromagnetic
scattering data obtained by high-frequency electromagnetic
calculation software. HRRP provides the distribution of
target scattering points along the distance and is an im-
portant structural feature of the target. HRRP has the
characteristics of stable resolution, easy acquisition and
realization, and short imaging period. +e simulation da-
tabase contains 4 kinds of ground vehicle targets: armored
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transport vehicles, heavy transport vehicles, heavy trucks,
and vans. Acting on the stepped frequency echo signal at the
same observation angle of the target, Inverse fast Fourier
transform (IFFT) is used to synthesize the HRRP. Since the
electromagnetic simulation data are turntable-like data, it is
not necessary to translate and align. In the experiment, the
target electromagnetic scattering echo under the HH po-
larization mode is selected as the basic dataset. +e targets
with a pitch angle of 27° are used for training, and the targets
with a pitch angle of 30° are used for test. Both the training
set and the test set have 14400 samples, each of which is a
128×1 array with complex data type. +e training set is the
same as the test set except for the pitch angle. In addition, the
HRRP data generated by inversion of the MSTAR SAR
dataset are used as the second HRRP dataset (HRRP-2).

4.2. Preprocessing and Experimental Setup. For the MSTAR
SAR images, each sample is resized to 128×128, and then,
the center cut and random horizontal rotation are

performed. After this preprocessing, the number of SAR
images has been expanded by 3 times, which compensates
for the shortage of SAR images and alleviates the overfitting
problem of the network to some extent.

+e phase profile of the complex high-resolution echo of
the target can be divided into two parts: the initial phase that
is sensitive to the distance and the remaining phase reflecting
the scattering characteristics of the target. +erefore, like the
amplitude profiles (real HRRP), phase profiles in the
complex HRRP also represent a certain information of the
scattering point distribution of the target, and it should be
valuable in recognition. +e complex HRRP contains all the
phase information of the target scatter point subecho, in-
cluding the initial phase and the remaining phase of the
scatter point subecho. +erefore, although the complex
HRRP has a sensitivity to the initial phase, which is not
conducive to HRRP target recognition, it retains other
phases information that is helpful for recognition [24]. +e
traditional RATR uses the amplitude image of HRRP and
loses the phase information. Phase information is especially
useful for target recognition, but most convolution network
models cannot deal with complex data types. At present, the
main processing method of complex HRRP is modulus
operation, which can keep the amplitude information of
range profile and get relatively high recognition accuracy.

Unlike images that can use superresolution method to
improve recognition accuracy [25], HRRP is made up of
one-dimensional data points, so we propose a new way to
preprocess HRRP data. +e real part and the imaginary part
of each data are extracted and arranged in an orderly way, so
that the length of each sample is expanded from 128 to 256.
In this way, the differential phase information between the
distance units in each HRRP sample can be preserved, and
the amount of data in each sample can be expanded.

To compare the test results of different models, the
experiments are carried out on the same platform and en-
vironment, as shown in Table 5.

Considering that the radar data are sparse, the activation
function Rectified Linear Unit (ReLU) [26] will undoubtedly
increase this sparseness and reduce the useful information of
the target, which is unfavorable for recognition. So, we
introduce another activation function, Hyperbolic Tangent
function (Tanh). +e resulting impact will be further ana-
lyzed in the experiments.

+e learning rate attenuation method is also introduced
in the training processing. As the number of iterations in-
creases, the learning rate gradually decreases. +is can en-
sure that the model does not fluctuate greatly in the later
period of training and closer to the optimal solution.

We adjust the parameters according to the results of
many experiments and get the final parameters. We use
VGGNet pretrained by ImageNet in PyTorch to initialize the
parameters of IVGG networks. In the training stage, the
batch size of the training set is set to 16 and that of the test set
is set to 32. For MSTAR SAR dataset recognition, the initial
learning rate is set as 0.01, and 200 epochs are used for
training.+e learning rate decreases by 2 times since the first
50 epochs and then decreases by 2 times every 20 epochs.+e
average recognition accuracy of the last 100 epochs was
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Figure 4: +e number of parameters (in millions) of VGG net-
works and our methods.

Table 3: +e number of parameters (in millions) of our networks
with different classifiers.

Network 1FC 3FC
IVGG11 7.19 125
IVGG13 5.96 125
IVGG16 11.27 130.6
IVGG19 17.67 136

11 13 16 19
IVGG-1FC 1805.74 3094.09 3809.84 5447.95
IVGG-3FC 1925.19 3213.55 3929.3 5567.4
VGG 2571.08 3783.76 5143.99 6504.23
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Figure 5: Comparison of floating points of operations (FLOPs).
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calculated as the final results. For HRRP dataset recognition,
the initial learning rate is set as 0.1 and 100 epochs are used
for training. +e learning rate decreases by 2 times since the
first 50 epochs and then decreases by 2 times every 10
epochs. +e average recognition accuracy of the last 10
epochs was calculated as the final results.

4.3. Recognition Results of the MSTAR SAR Dataset. +e
recognition accuracy on the MSTAR SAR dataset is shown
in Table 6. On SAR-SOC, the results of IVGG networks and
VGG networks are better than those of GoogLeNet,
ResNet18, and DenseNet121. It can be seen from Table 6 that
on the SAR-SOC, IVGG networks with both 1FC and 3FC
have good recognition performance. It shows that our
methods have better robustness. +e recognition rates of
IVGG networks are similar to those of VGGNets, but each of

them reduces about 3 million parameters compared with the
latter.

GoogLeNet achieves high recognition accuracies on
SAR-SOC, but its recognition accuracies on SAR-EOC-1 are
poor, which are only 90.62% and 90.19%. +is shows that its
generalization ability is not so ideal. Based on the horizontal
comparison of the recognition accuracies of the activation
functions, Tanh and ReLU in Table 6, we can see the per-
formance of Tanh on SAR-EOC-1 is generally stronger,
indicating that Tanh has a better effect on sparse data
processing.

On SAR-SOC, IVGG16-3FC with “Tanh” achieves a
maximum accuracy of 99.51%. On SAR-EOC-1, IVGG19-
3FC achieves the highest accuracy of 99.27%, and IVGG13-
3/1FC also achieves the accuracy of 99.22%. +e classifi-
cation on SAR-EOC is more difficult, and it requires that
CNNs have higher performance. So, we especially focus on
analyzing the experimental results on SAR-EOC.

+e accuracy rate of IVGG13 on SAR-EOC is signifi-
cantly higher than those of GoogLeNet, ResNet18, Dense-
Net121, VGG11, and VGG13. It is still 0.12% higher than
VGG16 and VGG19. But the parameter number of IVGG13
is only 4.45% of VGG16 and 4.29% of VGG19, and the
FLOPs are significantly lower than those of VGG16 and
VGG19. Specifically, IVGG13-1FC saves 39.85% FLOPs
than VGG16 and 52.43% than VGG19. +e accuracy rate of
IVGG13-1/3FC is only 0.05% lower than that of IVGG19-

Table 4: +e samples of complex HRRP vector.

Sample 1 of HRRP Sample 2 of HRRP
5.947548139439314e− 04–7.029982346588466e− 04i −0.001741710511154 + 0.005854695561424i
5.973508449729275e− 04–7.301167648045039e− 04i −0.001602329272711 + 0.005996485005943i
5.998884995750467e− 04–7.586149497061626e− 04i −0.001459788439038 + 0.006143776077643i
6.023640017197894e− 04–7.885879483632503e− 04i −0.001313674253423 + 0.006297298858010i
6.047727981516010e− 04–8.201413412111810e− 04i −0.001163535049426 + 0.006457875798999i
. . . . . .

(a) (b) (c) (d) (e)

(f ) (g) (h) (i) (j)

Figure 6: Images of the MSTAR SAR dataset under SOC.

Table 5: Experimental platform configuration.

Attribute Configuration information
OS Ubuntu 14.04.5 LTS
CPU Intel (R) Xeon (R) CPU E5-2670 v3 @ 2.30GHz
GPU GeForce GTX TITAN X
CUDNN CUDNN 6.0.21
CUDA CUDA 8.0.61
Framework PyTorch
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3FC, but the parameter of IVGG13-1FC is only 4.77% of that
of IVGG19-3FC and the FLOPs of IVGG13-1/3FC are only
about 56% of those of IVGG19-3FC.

+e experiments show that the IVGG networks can
work well on the SAR image public dataset and have good
robustness and recognition performance. +e important
point is that IVGG uses a significantly shallower network
to achieve better accuracy than other CNNs. It greatly
improves the computational efficiency and can save great
parameter space. In fact, IVGG13-1FC relies on relatively
less parameters and FLPOs to achieve quite good results.
In contrast, although IVGG16 and IVGG19 networks can
slightly improve the recognition accuracy, they have paid
a high price (increase in parameters and computational
cost). We further compare the experimental results of the
IVGG13-1FC network with other deep learning methods,
proposed by Wang et al. [17], Pei et al. [18], and Chen
et al. [19], as shown in Table 7. +ese literature studies use
the same SAR image dataset with this paper. Wang et al.
[17] proposed a method for SAR images target recog-
nition by combining two-dimensional principal com-
ponent analysis (2DPCA) and L2 regularization
constraint stochastic configuration network (SCN). +ey
applied the 2DPCA method to extract the features of SAR
images. By combining 2DPCA and SCN (random
learning model with a single hidden layer), the 2DPCA-
SCN algorithm achieved good performance. Due to the
limited original SAR images, it is difficult to effectively
train the neural networks. To solve this problem, Pei et al.
[18] proposed a multiview deep neural network.+is deep
neural network includes a parallel network topology with
multiple inputs, which can learn the features of SAR
images with different views layer by layer. Chen et al. [19]
used all convolutional neural networks (A-CNNs) [27] to
the target recognition of SAR images. Under the standard
operating condition, the recognition accuracy on the
SAR-SOC image dataset is remarkably high, but the
recognition accuracy has declined under extended op-
erating condition.

Although some methods such as A-CNN can achieve
accuracy of 99.41% on the SAR-SOC, it is difficult to
achieve satisfactory results on SAR-EOC-1 data which
have a greater difference in pitch angles. +e 2DPCA-
SCN method achieves 98.49% accuracy on SAR-EOC-1,
but only 95.80% on SAR-SOC. Other methods on the
SAR-EOC-1 also achieve lower recognition accuracies
than our methods. It can be found from Table 6 that
IVGG networks achieve exceedingly high accuracies on
both SAR-SOC and SAR-EOC-1 datasets. In particular,
on the SAR-EOC-1 dataset, IVGG13 can achieve higher
accuracy and more stable performance, which shows that
our network has stronger generalization ability and better
robustness.

IVGG13-1FC is also compared with traditional rec-
ognition methods such as KNN, SVM, and SRC [6, 23],
and the results are shown in Table 8. +e method pro-
posed in reference [6] is a new classification approach of
clustering multitask learning theory (I-CMTL), and SRC
is a recognition method based on sparse representation-
based classifier (SRC) proposed in 2016 [23]. From Ta-
ble 8, we can see that our network is better than those of
all the traditional recognition methods.

Table 8 shows that some traditional approaches are not
so effective, such as KNN and SVM methods. Although
many complex classifiers have been designed, they cannot
fully utilize the potential correlation between multiple radar
categories. On the other hand, large-scale and complete SAR
datasets are difficult to collect, so the samples obtained are
usually limited or unbalanced.

+e classification algorithm approaches under the
multitask framework have higher recognition accuracies,
such as CMTL, MTRL, and I-MTRL. +e multitask re-
lational learning (MTRL) method proposed in [6] can
autonomously learn the correlation between positive and
negative tasks, and it can be easily extended to the
nonlinear field. +e MTRL is further improved by adding
a projection regularization term to the objective function
[7], which can independently learn multitask relation-
ships and cluster information of different tasks and can
also be easily extended to the nonlinear field. However,
the Trace-norm Regularized multitask learning (TRACE),
which is also under the multitask framework, has the
lowest recognition accuracy because the TRACE method
learns the linear prediction function and cannot accu-
rately describe the nonlinear structure of SAR image,
which also proves the importance of extending the
multitask learning method to the nonlinear field.

+e IVGG networks proposed in this paper can
adaptively learn the nonlinear structure of SAR images
and reduce the difficulty in redesigning the classifier
when the SAR image conditions change. In contrast, the
artificially designed feature extraction approach is
complex, and sometimes, it can only be effective for
certain fixed problems. Its generalization ability is not so
ideal. +erefore, our networks enhance the feature ex-
traction capability of sparse data.

Table 6: Accuracy rates (%) on the MSTAR SAR dataset.

Method
SAR-SOC SAR-EOC-1

Tanh ReLU Tanh ReLU
GoogLeNet 98.87 98.65 90.62 90.19
ResNet18 97.20 97.90 78.45 82.25
DenseNet121 (k� 32) 98.66 98.93 96.41 98.66
VGG11 99.31 99.32 98.61 97.60
VGG13 99.22 99.48 98.22 97.54
VGG16 99.14 99.50 99.10 96.75
VGG19 99.26 99.21 99.10 97.91
IVGG11-3FC 99.21 98.98 97.97 98.05
IVGG11-1FC 99.23 99.13 97.02 97.73
IVGG13-3FC 99.04 99.31 99.22 98.04
IVGG13-1FC 99.34 99.14 99.22 98.24
IVGG16-3FC 99.51 99.34 98.84 98.70
IVGG16-1FC 99.42 99.19 97.62 97.68
IVGG19-3FC 99.42 99.23 99.27 97.71
IVGG19-1FC 99.23 99.37 97.15 98.47
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4.4. Recognition Result of theHRRPDataset. +e recognition
accuracy rates on the HRRP dataset are shown in Table 9

On the HRRP-1 dataset, the optimal recognition accu-
racies of GoogLeNet, ResNet18, and DenseNet121 are
98.7132%, 98.5234%, and 98.7299%, respectively, and the
performance of the activation function Tanh is slightly better
than that of ReLU. +e best recognition results (accu-
racy> 99.05%) are all obtained by the activation function
Tanh. +e networks with recognition rate higher than
99.05% are VGG13 (Tanh), IVGG16-3FC (Tanh), and
IVGG19-3FC (Tanh). Among them, the recognition rate of
IVGG16-3FC (Tanh) is the highest, reaching 99.24%.

In the identification of the HRRP-1 dataset, the networks
which are deeper have better recognition results. IVGG16
and IVGG19 can achieve better recognition effects.

+e network with the best recognition accuracy on the
HRRP-2 dataset is IVGG19-3FC (ReLU). +e VGGNet and
IVGG-3FC have higher recognition accuracies. +e recog-
nition results of IVGG networks and VGGNets have no
obvious difference, among which IVGG19-3FC (ReLU)
achieves the best recognition accuracy of 98.98%.

On the HRRP-1 dataset, our method is also compared
with other methods such as SVM, Maximum Correlation
Criterion-Template Matching Method (MCC-TMM) [28],
Bayesian Compressive Sensing (BCS) [29], Joint Sparse
Representation (JSR) [30], and a CNN method with SVM as
its classifier [20], as shown in Table 10.

4.5. Comprehensive Analysis of Results. In conclusion, we
find that DenseNet121 also has high performance in the SAR
dataset (still slightly inferior to our method), but its rec-
ognition performance for HRRP is obviously reduced. In

HRRP recognition, ResNet18 has a high performance (still
slightly inferior to our method), but the performance of SAR
image recognition is exceptionally low (only 80%). Different
from the above two methods, our method has high recog-
nition performance for SAR andHRRP signals, whichmeans
that the method in this paper is efficient and stable. VGG
network achieves good performance for radar target rec-
ognition, but IVGG reduces the parameters significantly and
improves the computation and recognition efficiency.

+e performances of IVGG networks are better than
those of VGGNets on the HRRP-1 dataset and SAR-EOC-1
dataset and better than those of other neural networks and
traditional algorithms on all the experimental datasets.

In fact, the SAR image dataset used in this paper is a
public dataset published by MSTAR, and the HRRP
dataset also has been published in other papers. +e radar is
sensitive to the pitch angles, and the radar echo data of the
same target at different pitch angles are quite different. +is
is also the difficulty of radar target recognition. On the SAR-
EOC dataset, the difference of pitch angles between the test
set and the training set is greater than that on SAR-SOC, and
the recognition accuracy on the SAR-EOC test set is slightly
lower than that on SAR-SOC.

In addition, we also found a problem in the experiment.
When the network comes very deep, the recognition algo-
rithmmay be invalid. For example, when we use ResNet50, it
will cause themethod loss efficacy.+e reason is that the data
amount of each sample is small (especially HRRP is one-
dimensional data), and the downsampling layers in the
ResNet50 are too many for HRRP. +is problem may also
occur in SAR images. But overall, SAR images will be slightly
better. Solving this problem has two points, one feasible
method is to reduce the downsampling layers, but it will
undoubtedly weaken the robustness of the network, which
may lead to insufficient results and waste in computing costs.
Another effective solution is to design shallow convolutional
neural networks for radar target recognition, such as the
IVGG networks proposed in this paper.

For target recognition in radar signals, the IVGG net-
works and VGGNets perform better than several convolu-
tional neural networks recently proposed. +e main reasons
are as follows.

+e noise of the optical image is usually additive noise,
while the noise of the SAR image is mostly speckled mul-
tiplicative noise. HRRP data are a one-dimensional array,
which is the vector sum of projection of the target scattering
point echoes in the radar ray direction. Neither of them has
obvious edge features and texture information like the
traditional optical image. SAR image is sensitive to the
azimuth of the target when it is imaged.When the azimuth is
different, even for the same target, there are still excessively
big differences in SAR images.

+e data amount of HRRP and SAR images is less than
that of traditional optical images. In this paper, only 256 data
per HRRP target and 128×128�16384 data per SAR image
are sent into the networks. However, a slightly larger optical
image can often reach 256 × 256 � 65536 pixels. For this
reason, the CNN models for radar target recognition cannot
be too deep. Otherwise, they may fall into overfitting. So,

Table 7: Accuracy rates (%) on theMSTAR SAR dataset of different
CNNs.

Method SAR-SOC SAR-EOC-1
2DPCA-SCN [17] 95.80 98.49
2-view DCNNs [18] 97.81 93.29
3-view DCNNs [18] 98.17 94.34
4-view DCNNs [18] 98.52 94.61
A-CNN [19] 99.41 97.13
IVGG13-1FC 99.34 99.22

Table 8: Accuracy rates (%) of different methods on the SAR
dataset.

Method SAR-SOC SAR-EOC-1
KNN [1] 92.71 91.42
SVM [1] 90.17 86.73
SRC [23] 89.76 —
TRACE [2] 75.04 67.42
RMTL [3] 92.09 92.03
CMTL [4] 93.91 94.72
MTRL [5] 95.84 95.46
I-CMTL [6] 97.34 98.24
IVGG13-1FC 99.34 99.22
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compared with ResNet and DenseNet, IVGG networks and
VGGNets with fewer network layers have better recognition
ability.

In the experiment, the activation function Tanh has
excellent performance on the SAR-EOC-1 and HRRP
datasets. +e radar data itself have sparsity, which is en-
hanced by the activation function ReLU, while too sparse
data will weaken the ability of the convolution layer to
extract target features. Activation function Tanh has better
nonlinearity and works better when the feature difference is
obvious.

5. Conclusion

In this paper, we propose the IVGG networks and use
them for target recognition on HRRP data and SAR
images. +e first improvement in this paper is to propose
the IVGG networks. +en we simplify the fully connected
layers which can significantly reduce parameters. Ex-
periments show that our methods have the best recog-
nition effect. At the same time, with the improvement of
the networks, there are fewer parameters in the networks,
which can improve the processing efficiency of target
recognition and make the method more suitable for the
real-time requirements.

In addition, we also find that for radar target recognition,
Tanh’s performance is generally better than that of ReLU,
which is different from image recognition.
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In this paper, we want to find out whether gender bias will affect the success and whether there are some common laws driving the
success in show business. We design an experiment, set the gender and productivity of an actor or actress in a certain period as the
independent variables, and introduce deep learning techniques to do the prediction of success, extract the latent features, and
understand the data we use. *ree models have been trained: the first one is trained by the data of an actor, the second one is
trained by the data of an actress, and the third one is trained by the mixed data.*ree benchmark models are constructed with the
same conditions. *e experiment results show that our models are more general and accurate than benchmarks. An interesting
finding is that the models trained by the data of an actor/actress only achieve similar performance on the data of another gender
without performance loss. It shows that the gender bias is weakly related to success. *rough the visualization of the feature maps
in the embedding space, we see that prediction models have learned some common laws although they are trained by different
data. Using the above findings, a more general and accurate model to predict the success in show business can be built.

1. Introduction

“Do I need to change a job?” is one of the major concerns to
most actors and actresses since the show business is really
competitive [1]. Matthew effect [2] or the so-called “rich-get-
richer” phenomenon is proved to exist in the show business
which demonstrates the scarcity of the resources [1]. Luck is
proved to be a key element in driving the success [3]. It is
well known that the effect of rich-get-richer is quite arbitrary
and unpredictable [4]. Hence, most actors and actresses will
meet a problem of avoiding the famine and building a
sustainable career in acting [1]. Some studies have found that
boosting productivity is a key metric to evaluate the success
of an actor or actress, and it can be more of a network effect
[5, 6] than a consequence of acting skills; in other words,
success is not highly related to the acting skills [1]. And,
some studies show the relationship between the dynamic
collaboration network and success [7]: success is a collective
phenomenon [8]. Startup network is proved to have pre-
dictive power in show business [9]. And, future success can
be predicted by monitoring the behavior of a small set of

individuals [10]. To study the law of success, a great deal of
work has been done [11–19].

Recently, a study shows that the success in show business
is predictable and uses a heuristic threshold-based binary
classifier to achieve an accuracy up to 85% [1]. In their study,
they find a strong gender bias in the waiting time statistics,
the location of annus mirabilis, and the career length dis-
tribution of these data. However, we have some questions
here: Whether gender bias is one of the key elements driving
the success? Can we find some common laws driving the
success in show business? Since we want to build a general
prediction model, the common laws which determine the
growth and the shape of the series are more important than
the differences.

To solve our questions, we design this study. *e data we
use are collected from the International Movie Database
(IMDb), http://www.imdb.com in [1]. It consists of millions
of profile sequences of actors and actresses from the birth of
the film in 1888 up to the present day [1]. Each sequence
records the yearly time series of credited jobs over the entire
working life of the actor or actress [1]. We just consider the
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number of credited jobs regardless of the impact of the work,
the screen time, and so on, which is the same as in [1]. *e
original feature space is a non-Euclidean space. We must to
do the representation learning to map these features to a
Euclidean space. To do this, we construct a deep model
which consists of an encoder and a classifier. Since gender is
an independent variable in our experiment, we train three
models: (1) MAO, (2) MAE, and (3) MM. *ey all have the
same structure but are trained by different datasets (MAO is
trained by the data of an actor, MAE is trained by the data of
an actress, and MM is trained by the mixed data). Our
problem can be reconstructed like follows: (1) if MAO can
achieve nondegradation performance on the data of an
actress like MAE and MAE can achieve nondegradation
performance on the data of an actor like MAO, then it can be
proved that there are common features in the series which
are unrelated to the gender. (2) If MM can achieve similar
and nonsuperior performance against MAO and MAE, then
these features which have gender bias are not dominative
features in this prediction problem; that is to say, gender bias
may cause some differences into the resource allocation, but
it is weakly related to success.*e contributions of this paper
can be concluded as follows:

(1) We found that there are some common laws/features
driving the success in show business by extracting
and understanding the data.

(2) Using these common features, a more general pre-
diction model with an accuracy up to 90% can be
built.

(3) Our experiment shows that gender bias is weakly
related to success despite a recent study which shows
that it affects strongly the waiting time statistics, the
location of annus mirabilis, the career length dis-
tribution, etc.

2. Materials and Methods

2.1.Data. *e data we use consist of the careers of 1,512,472
actors and 896,029 actresses from 1888 up to 2016 and are
collected from the International Movie Database (IMDb)
http://www.imdb.com. Each career is viewed as a profile
sequence: the yearly time series of acting jobs in films or TV
series over the entire working life of the actor or actress [1].
We refer to [1] and relax their selection constraint to select
the sequences of actors and actresses with working lives L≥ 5
years, and the number of credited jobs in the annus mirabilis
(AM) is≥ 5. *e sequences obtained by some more relaxed
cutoffs are too short to be analyzed, and they are considered
as the outliers and not included in the experiment. *en, the
subset we use consists of 37896 (2.51%) sequences of actors
and 22025 (2.46%) sequences of actresses which is larger
than the data used in the prediction model in [1]. We divide
this subset into several groups for experiment: (1) Group 1:
the data of an actor with AM≥ 5 and L≥ 20, including 21994
sequences; (2) Group 2: the data of an actress with AM≥ 5
and L≥ 20, including 9034 sequences; (3) Group 3: the data
of an actor with AM≥ 5.5≤ L< 20, including 15902 se-
quences; (4) Group 4: the data of an actress with

AM≥ 5.5≤ L< 20, including 12991 sequences. Group 1 and
Group 2 can be considered as some very successful actors
which are used to train the prediction model mainly. Group
3 and Group 4 can be considered as some actors who are not
very successful, and they might need a prediction model
more than previous groups, and these data will be used to
test the prediction model.

2.2. Data Preprocessing. To do an early prediction, we need
to do some preprocessing on the data before training the
model. At first, we refer to [1] to truncate each sequence into
several subsequences or called subcareer series. For each
sequence, we randomly sample several subsequences with a
sampling rate n. *e subsequences which are sampled before
the annus mirabilis are regarded as class 1.*e subsequences
which are sampled after the annus mirabilis are regarded as
class 2. Hence, it is a binary classification problem. *e aim
of this sampling is to get some samples of class 1 since we
only have the entire working life of the actor or actress. An
example of the sampling process with a sampling rate r � 4
is shown in Figure 1. NatComm19 uses the following
function [1] to transfer these subsequences to scalars for the
training:

D wT( 􏼁 � − 􏽘
T− 1

y�1
min 0, wy+1 − wy􏼐 􏼑, (1)

where wT is the number of credited jobs at year T and T is
the length of the subsequence.

*e above transformation will lose some information
like the increasing or decreasing trend. In this paper, we
revise equation (1) as follows to get a new sequence and not a
scalar which will protect these information:

D wT( 􏼁 � − 􏽘
k− 1

y�1
min 0, wy+1 − wy􏼐 􏼑. (2)

*en, we use the new sequence D to train the model.
Since gender is an independent variable, we construct

three prediction models which will be trained by different
subsets of the whole data. *e details of separation of
training data and test data for each model are shown in
Table 1.

2.3. Prediction Model. Recurrent neural network (RNN) or
long short-term memory (LSTM) [20, 21] is powerful to
solve the time series prediction problem with sequential
data. Compared to the standard feedforward neural net-
work, RNN is a kind of neural networks which is as the
feedback connections (memory), as shown in Figure 2. It can
process not only single data points, but also the entire se-
quences of data. For example, LSTM is applied in some tasks
such as speech recognition [22], sign language translation
[23], object cosegmentation [24, 25], and airport passenger
management [26]. Hence, here, we use RNN with LSTM
units to build an end-to-end prediction model, where the
LSTM unit is composed of a cell, an input gate, an output
gate, and a forget gate. Figure 3 shows the structure of our
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model. Sequentially, our model can be divided into two
parts: (1) encoder; (2) binary classifier. *e encoder consists
of an LSTM layer with 30 hidden units and outputs at the last
time step. And, the classifier consists of a fully connected
layer, a softmax layer, and a classification layer with the cross
entropy as the loss function. Our model is trained in a
supervised fashion, on a set of training sequences, using an
optimization algorithm, gradient descent. Since sequences
have different lengths as shown in Figure 4, the feature space
of these sequences is a non-Euclidean space. It is difficult to
train a classifier in this feature space. Hence, each input
sequence will be embedded by the encoder to a Euclidean
space using the following transformation:

f: D⟶ H, (3)

where H is an n-dim sequence. *rough the encoder, the
dimension of the feature is also reduced. *en, the following
loss function is minimized to get the optimized parameters:

L(C, 􏽢C) � − C log(􏽢C ) − (1 − C)log(1 − 􏽢C ), (4)

where C is the real label and 􏽢C is the label predicted by the
classifier.

In the process of forward propagation, LSTM does not
simply compute a weighted sum of the input signal. It
applies a nonlinear function. For each j-th LSTM unit, it
maintains a memory c

j
i at time j and an output gate weight

o
j
i . *en, the output h

j
i is

h
j

i � o
j

i tanh c
j

i􏼐 􏼑. (5)

*e memory cell c
j
t is updated by partially forgetting the

existing memory and adding a new memory content c
j′
t :

c
j
t � f

j
t c

j
t− 1 + p

j
t c

j′
t , (6)

where f
j
t is the weight of the forget gate and p

j
t is the weight

of the input gate.
*e details of each layer’s configuration are shown in

Table 2. *e training settings for the prediction model: max
epoch is set to 15, size of the minibatch is set to 100, op-
timizer is Adam, and gradient threshold is set to 1. More
complex models like the models with deep layers and the
models with complex structures (biLSTM) have also been
tested, but there is no obvious performance improvement.
*at is to say, these are all fairly “off the shelf ” classifiers.
Since simpler is better, we just use the simplest model to
show the results.

3. Results

Table 3–5 show the comparison between our model and a
recent study NatComm19 [1] on the test data. MM_ours
denotes the predictionmodel trained by themixed data of an
actor and actress, MAO_ours denotes the prediction model
trained by the data of an actor only, and MAE_ours denotes
the prediction model trained by the data of an actress only.
MM_NatComm19 denotes the model of NatComm19 [1]
trained by the mixed data of an actor and actress, and the
learned threshold d� 6.1523; MAO_NatComm19 denotes
the model of NatComm19 [1] trained by the data of an actor
only, and the learned threshold d� 6.9580; and MAE_-
NatComm19 denotes the model of NatComm19 [1] trained
by the data of an actress only, and the learned threshold
d� 5.6640. All models are trained on the training data with a
cutoff value (AM≥ 5, L≥ 20). We can see that our models
outperform NatComm19 in terms of all quantity metrics in
all subsets of the test data. Our models are more general than
NatComm19 and can still maintain the performance on the

Original sequence

Length L

AM

Sampling process

Length L

AM

Subsequence 1

Subsequence 2

Subsequence 3

Subsequence 4

Figure 1: *e process of subsequence generation.

Computational Intelligence and Neuroscience 3



Ta
bl

e
1:

*
e
de
ta
ils

of
tr
ai
ni
ng

da
ta

an
d
te
st

da
ta

fo
r
ea
ch

m
od

el
.

Tr
ai
ni
ng

da
ta

in
cl
ud

in
g
va
lid

at
io
n
da
ta

Te
st

da
ta

M
od

el
1:

M
A
O
_o

ur
s

70
%

da
ta

of
an

ac
to
r(
A
M
≥
5,
L
≥
20
),
th
e
sa
m
pl
in
g
ra
te
of

su
bs
eq
ue
nc
e
ge
ne
ra
tio

n:
n

�
6;

th
e
to
ta
ln

um
be
r
of

su
bs
eq
ue
nc
es

in
th
e
tr
ai
ni
ng

se
t:
6∗
0.
7∗
21
99
4

�
92
37
4

30
%
da
ta
of

an
ac
to
r(
A
M
≥
5,
L
≥
20
),
th
e
sa
m
pl
in
g
ra
te
of

su
bs
eq
ue
nc
e
ge
ne
ra
tio

n:
n

�
6;
10
0%

da
ta
of

an
ac
to
r(
A
M
≥
5,
5

�
<
L
<
20
),
th
es

am
pl
in
g
ra
te
of

su
bs
eq
ue
nc
eg

en
er
at
io
n:
n

�
5;
10
0%

da
ta

of
an

ac
tr
es
s
(A

M
≥
5,
L
≥
20
),
th
e
sa
m
pl
in
g
ra
te

of
su
bs
eq
ue
nc
e
ge
ne
ra
tio

n:
n

�
12
;1
00
%

da
ta
of

an
ac
tr
es
s(
A
M
≥
5,
5

�
<
L
<
20
),
th
e
sa
m
pl
in
g
ra
te
of

su
bs
eq
ue
nc
e
ge
ne
ra
tio

n:
n

�
5;
th
e

to
ta
ln

um
be
r
of

su
bs
eq
ue
nc
es

in
th
e
te
st

se
t:

6∗
0.
3∗

21
99
4
+
5∗

1∗
15
90
2
+
12
∗
1∗

90
34

+
5∗

1∗
12
99
1

�
29
24
62

M
od

el
2:

M
A
E_

ou
rs

70
%
da
ta
of

an
ac
tr
es
s(
A
M
≥
5,
L
≥
20
),
th
es
am

pl
in
g
ra
te
of

su
bs
eq
ue
nc
eg

en
er
at
io
n:

n
�
12
;t
he

to
ta
ln

um
be
r
of

su
bs
eq
ue
nc
es

in
th
e
tr
ai
ni
ng

se
t:
12
∗
0.
7∗
90
34

�
75
88
5

30
%

da
ta

of
an

ac
tr
es
s
(A

M
≥
5,

L
≥
20
),
th
e
sa
m
pl
in
g
ra
te

of
su
bs
eq
ue
nc
e
ge
ne
ra
tio

n:
n

�
12
;

10
0%

da
ta

of
an

ac
tr
es
s
(A

M
≥
5,

5
�
<
L
<
20
),
th
e
sa
m
pl
in
g
ra
te

of
su
bs
eq
ue
nc
e
ge
ne
ra
tio

n:
n

�
5;
10
0%

da
ta
of
an

ac
to
r(
A
M
≥
5,
L
≥
20
),
th
es
am

pl
in
g
ra
te
of
su
bs
eq
ue
nc
eg

en
er
at
io
n:
n

�
6;

10
0%

da
ta
of

an
ac
to
r(
A
M
≥
5,
5

�
<
L
<
20
),
th
es

am
pl
in
g
ra
te
of

su
bs
eq
ue
nc
eg

en
er
at
io
n:
n

�
5;

th
e
to
ta
ln

um
be
r
of

su
bs
eq
ue
nc
es

in
th
e
te
st

se
t:

12
∗
0.
3∗

90
34

+
5∗

1∗
12
99
1
+
6∗

1∗
21
99
4
+
5∗

1∗
15
90
2

�
30
89
51

M
od

el
3:

M
M
_o

ur
s

70
%

m
ix
ed

da
ta

of
an

ac
to
r
an
d
ac
tr
es
s
(A

M
≥
5,

L
≥
20
),
th
e
sa
m
pl
in
g
ra
te

of
su
bs
eq
ue
nc
e
ge
ne
ra
tio

n:
n

�
3
fo
rt
he

da
ta
of

an
ac
to
ri
n
th
e
m
ix
ed

da
ta
,n

�
6
fo
rt
he

da
ta
of

an
ac
tr
es
si
n
th
e
m
ix
ed

da
ta
;t
he

to
ta
ln

um
be
ro

fs
ub

se
qu

en
ce
si
n
th
e
tr
ai
ni
ng

se
t:
3∗
0.
7∗
21
99
4
+
6∗
0.
7∗
90
34

�
46
18
7
+
37
94
2

�
84
12
9

30
%

m
ix
ed

da
ta

of
an

ac
to
r
an
d
ac
tr
es
s
(A

M
≥
5,

L
≥
20
),
th
e
sa
m
pl
in
g
ra
te

of
su
bs
eq
ue
nc
e

ge
ne
ra
tio

n:
n

�
3
fo
rt
he

da
ta
of

an
ac
to
ri
n
th
e
m
ix
ed

da
ta
,n

�
6
fo
rt
he

da
ta
of

an
ac
tr
es
si
n
th
e

m
ix
ed

da
ta
;1

00
%

da
ta

of
an

ac
tr
es
s
(A

M
≥
5,

5
�
<
L
<
20
),
th
e
sa
m
pl
in
g
ra
te

of
su
bs
eq
ue
nc
e

ge
ne
ra
tio

n:
n

�
5;
10
0%

da
ta
of

an
ac
to
r(
A
M
≥
5,
5

�
<
L
<
20
),
th
es
am

pl
in
g
ra
te
of

su
bs
eq
ue
nc
e

ge
ne
ra
tio

n:
n

�
5;

th
e
to
ta
ln

um
be
r
of

su
bs
eq
ue
nc
es

in
th
e
te
st

se
t:

3
∗
0.
3∗

21
99
4
+
6∗

0.
3∗

90
34

+
5∗

1∗
12
99
1
+
5∗

1∗
15
90
2

�
18
05
20

*
ev

al
id
at
io
n
da
ta
ar
ei
nc
lu
de
d
in

th
et
ra
in
in
g
da
ta
.N

ot
e.
M
M
_o

ur
sd

en
ot
es
th
ep

re
di
ct
io
n
m
od

el
tr
ai
ne
d
by

th
em

ix
ed

da
ta
of

an
ac
to
ra

nd
ac
tr
es
s,
M
A
O
_o

ur
sd

en
ot
es
th
ep

re
di
ct
io
n
m
od

el
tr
ai
ne
d
by

th
ed

at
ao

f
an

ac
to
r
on

ly
,a

nd
M
A
E_

ou
rs

de
no

te
s
th
e
pr
ed
ic
tio

n
m
od

el
tr
ai
ne
d
by

th
e
da
ta

of
an

ac
tr
es
s
on

ly
.

4 Computational Intelligence and Neuroscience



new data (AM≥ 5, 5≥ L< 20 and AM≥ 10, 5≥ L< 20 and
AM≥ 15, 5≥ L< 20), whereas the performance of three
models of NatComm19 degrades to near the baseline. *e
details of the baseline model can be found in [1]. *ere is
almost no difference between the performance of our three
models. And, interestingly, the difference between the

performance of the three models of NatComm19 can also be
ignored.

4. Discussion

Two MAE models (MAE_ours and MAE_NatComm19)
can achieve similar results compared to two MAO models
(MAO_ours andMAO_NatComm19) on the test data of an
actor. Similarly, two MAO models (MAO_ours and
MAO_NatComm19) can also achieve similar results
compared to two MAE models (MAE_oursandMAE_-
NatComm19) on the test data of an actress. *e case of
MAE_ours and MAO_ours shows that our models can
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Figure 2: *e structure of RNN and details of the LSTM unit.
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Figure 3:*e workflow of our model. It has an end-to-end structure and can be divided into two parts: (1) encoder; (2) binary classifier.*e
encoder of ourmodel is a single LSTM layer which is used to embed different sequences to an n-dim embedding space.*e binary classifier is
a fully connected neural network.
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Figure 4: Sequences sorted by the sequence length.

Table 2: *e details of each layer’s configuration in our model.

Layer’s name Input
size

Output
size

No. of hidden
units

Sequence input 1 1

30

LSTM 1 —
Fully connected
layer 30 2

Softmax layer 2 2
Classification layer 2 2
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Table 3: Performance comparison of our methods and a recent study NatComm19 [1] in the prediction of the AM on the subset (AM≥ 5) of
the test data.

Actor Actress Actor Actress
L≥ 20, AM≥ 5 L≥ 20, AM≥ 5 5�< L< 20, AM≥ 5 5�< L< 20, AM≥ 5

C1 :C2 0.8074 0.6136 0.7888 0.5655
Baseline accuracy 0.6702 0.7221 0.7034 0.7487

MM_ours
F1 score 0.9102 0.9262 0.8891 0.9173
Precision 0.8866 0.9079 0.8570 0.9037
Recall 0.9350 0.9452 0.9237 0.9313
Accuracy 0.8978 0.9067 0.8702 0.8917

MAO_ours
F1 score 0.9082 0.9254 0.9045 0.9272
Precision 0.9010 0.9267 0.8845 0.9203
Recall 0.9156 0.9241 0.9254 0.9341
Accuracy 0.8992 0.9077 0.8897 0.9048

MAE_ours
F1 score 0.9104 0.9268 0.9021 0.9265
Precision 0.8958 0.9203 0.8537 0.8966
Recall 0.9255 0.9334 0.9564 0.9584
Accuracy 0.8992 0.9087 0.8828 0.9020

NatComm19MM
F1 score 0.7956 0.7878 0.7442 0.7436
Precision 0.8930 0.8346 0.6092 0.6074
Recall 0.7174 0.7459 0.9562 0.9585
Accuracy 0.8338 0.8453 0.7100 0.7099

NatComm19MAO
F1 score 0.7942 0.7872 0.7457 0.7438
Precision 0.8902 0.8347 0.6103 0.6075
Recall 0.7169 0.7448 0.9582 0.9588
Accuracy 0.8332 0.8464 0.7116 0.7111

NatComm19MAE
F1 score 0.7707 0.7770 0.7766 0.7409
Precision 0.9176 0.8803 0.6630 0.6057
Recall 0.6643 0.6954 0.9371 0.9540
Accuracy 0.8238 0.8474 0.7622 0.7591
MM_ours denotes the prediction model trained by the mixed data of an actor and actress; MAO_ours denotes the prediction model trained by the data of an actor
only; MAE_ours denotes the prediction model trained by the data of an actress only; MM_NatComm19 denotes the model of NatComm19 [1] trained by the mixed
data of an actor and actress, and the learned threshold d� 6.1523; MAO_NatComm19 denotes the model of NatComm19 [1] trained by the data of an actor, and the
learned threshold d� 6.9580; MAE_NatComm19 denotes the model of NatComm19 [1] trained by the data of an actress, and the learned threshold d� 5.6640.

Table 4: Performance comparison of our methods and a recent study NatComm19 [1] in the prediction of the AM on the subset (AM≥ 10)
of the test data.

Actor Actress Actor Actress
L≥ 20, AM≥ 10 L≥ 20, AM≥ 10 5�< L< 20, AM≥ 10 5�< L< 20, AM≥ 10

C1 :C2 0.6481 0.4169 0.6053 0.3348
Baseline accuracy 0.7275 0.7968 0.7668 0.8173

MM_ours
F1 score 0.9409 0.9591 0.9202 0.9530
Precision 0.9355 0.9612 0.9418 0.9780
Recall 0.9463 0.9571 0.8995 0.9293
Accuracy 0.9279 0.9422 0.9024 0.9313

MAO_ours
F1 score 0.9389 0.9557 0.9276 0.9563
Precision 0.9551 0.9729 0.9538 0.9836
Recall 0.9232 0.9391 0.9029 0.9306
Accuracy 0.9270 0.9387 0.9118 0.9359

MAE_ours
F1 score 0.9396 0.9559 0.9377 0.9643
Precision 0.9414 0.9664 0.9338 0.9761
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Table 4: Continued.

Actor Actress Actor Actress
L≥ 20, AM≥ 10 L≥ 20, AM≥ 10 5�< L< 20, AM≥ 10 5�< L< 20, AM≥ 10

Recall 0.9378 0.9457 0.9415 0.9528
Accuracy 0.9264 0.9386 0.9217 0.9467

NatComm19MM
F1 score 0.7688 0.8008 0.8114 0.7607
Precision 0.9299 0.8879 0.7321 0.6371
Recall 0.6552 0.7292 0.9101 0.9439
Accuracy 0.8460 0.8916 0.8367 0.8478

NatComm19MAO
F1 score 0.7681 0.7989 0.8085 0.7559
Precision 0.9280 0.8841 0.7250 0.6297
Recall 0.6552 0.7287 0.9137 0.9453
Accuracy 0.8453 0.8909 0.8371 0.8449

NatComm19MAE
F1 score 0.7377 0.7790 0.8127 0.7616
Precision 0.9373 0.8956 0.7518 0.6431
Recall 0.6082 0.6892 0.8843 0.9337
Accuracy 0.8330 0.8823 0.8429 0.8502
MM_ours denotes the prediction model trained by the mixed data of an actor and actress; MAO_ours denotes the prediction model trained by the data of an
actor only; MAE_ours denotes the prediction model trained by the data of an actress only; MM_NatComm19 denotes the model of NatComm19 [1] trained
by the mixed data of an actor and actress, and the learned threshold d� 6.1523; MAO_NatComm19 denotes the model of NatComm19 [1] trained by the data
of an actor, and the learned threshold d� 6.9580; MAE_NatComm19 denotes the model of NatComm19 [1] trained by the data of an actress, and the learned
threshold d� 5.6640.

Table 5: Performance comparison of our methods and a recent study NatComm19 [1] in the prediction of the AM on the subset (AM≥ 15)
of the test data.

Actor Actress Actor Actress
L≥ 20, AM≥ 15 L≥ 20, AM≥ 15 5�< L< 20, AM≥ 15 5�< L< 20, AM≥ 15

C1 :C2 0.5271 0.3253 0.6292 0.3429
Baseline accuracy 0.7683 0.8439 0.7940 0.8467

MM_ours
F1 score 0.9563 0.9725 0.9236 0.9583
Precision 0.9600 0.9756 0.9548 0.9883
Recall 0.9527 0.9694 0.8945 0.9301
Accuracy 0.9434 0.9584 0.9021 0.9358

MAO_ours
F1 score 0.9533 0.9697 0.9336 0.9618
Precision 0.9750 0.9832 0.9692 0.9934
Recall 0.9326 0.9566 0.9005 0.9322
Accuracy 0.9401 0.9548 0.9159 0.9414

MAE_ours
F1 score 0.9560 0.9710 0.9340 0.9638
Precision 0.9632 0.9794 0.9306 0.9758
Recall 0.9489 0.9627 0.9375 0.9520
Accuracy 0.9425 0.9562 0.9179 0.9458

NatComm19MM
F1 score 0.7647 0.7990 0.8161 0.7425
Precision 0.9303 0.8555 0.7581 0.6161
Recall 0.6492 0.7495 0.8837 0.9340
Accuracy 0.8600 0.9099 0.8593 0.8614

NatComm19MAO
F1 score 0.7608 0.8043 0.7978 0.7588
Precision 0.9230 0.8660 0.7282 0.6345
Recall 0.6470 0.7508 0.8822 0.9437
Accuracy 0.8610 0.9096 0.8491 0.8639
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learn some common features that are used to classify. Since
the model of NatComm19 uses a learnable threshold to
classify the original feature space as shown in Figure 5, the
case of MAE_NatComm19 and MAO_NatComm19 shows
that the distribution and the shape of the original feature
space of the data of an actor and the data of an actress are
similar just as shown in Figure 6. MM_ours achieves
similar and nonsuperior results compared to MAE_ours
and MAO_ours, and MM_NatComm19 also achieves
similar and nonsuperior results compared to MAE_-
NatComm19 and MAO_NatComm19. It shows that these
features which have gender bias are not dominative fea-
tures in this prediction problem; that is to say, gender bias
may cause some differences in some aspects like resource

allocation, but it is weakly related to success. To further
validate our conclusion, we visualize the embedding space
in Figure 7. It seems that three models learn some different
features. But, it was caused by the randomness of the neural
network, and the order of these features has no meaning
because it is like the eigen decomposition. From the weight
of each embedding feature which is obtained in the fully
connected layer, we can see that most of these embedding
features are unimportant. And interestingly, all three
models have only one dominative feature. *e floating
range of the corresponding feature in three models is also
similar [− 1, s], where s is a positive scalar. We can believe
that they have learned a similar feature that is used to
classify.

Table 5: Continued.

Actor Actress Actor Actress
L≥ 20, AM≥ 15 L≥ 20, AM≥ 15 5�< L< 20, AM≥ 15 5�< L< 20, AM≥ 15

NatComm19MAE
F1 score 0.7361 0.7883 0.7954 0.7552
Precision 0.9268 0.8586 0.7455 0.6391
Recall 0.6105 0.7286 0.8525 0.9230
Accuracy 0.8530 0.9059 0.8489 0.8671
MM_ours denotes the prediction model trained by the mixed data of an actor and actress; MAO_ours denotes the prediction model trained by the data of an
actor only; MAE_ours denotes the prediction model trained by the data of an actress only; MM_NatComm19 denotes the model of NatComm19 [1] trained
by the mixed data of an actor and actress, and the learned threshold d� 6.1523; MAO_NatComm19 denotes the model of NatComm19 [1] trained by the data
of an actor, and the learned threshold d� 6.9580; MAE_NatComm19 denotes the model of NatComm19 [1] trained by the data of an actress, and the learned
threshold d� 5.6640.
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Figure 5: *e workflow of the model in NatComm19 [1]. d is a scalar threshold which is learnable. *e target of this model is to get an
optimal d to separate two classes in the original feature space.
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Figure 6: Feature maps of the original feature space. Note. *ere are a few outliers (sequences with a length over 100). It is caused by a few
films that in some sense exist but have not been released. Since they are so rare and are the correct data, they are also considered as in [1]: (a)
actor, AM≥ 5, L≥ 20; (b) actress, AM≥ 5, L≥ 20; (c) actor, AM≥ 5.5≤ L< 20; (d) actress, AM≥ 5.5≤ L< 20.
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5. Conclusion

In this paper, we design a data-driven research to find out
whether the gender bias is a key element and try to find
some common laws/features driving the success in show
business. *e experiment results show that there are
some common features between the success of an actor
and the success of an actress. And, gender bias is weakly
related to the success. We use this property to build a
general model to predict the success in show business.
Compared to the benchmark, the improvement of the
model is obvious. In the future, we plan to do a further

research on whether gender bias is a key element and try
to find some common laws driving the success in other
fields.

Data Availability

*e data used in this study can be accessed at https://doi.org/
10.17605/OSF.IO/NDTA3.
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Figure 7: Feature maps of the testing data of an actor and actress in the embedding space obtained by different models. Blue line denotes
class 1, and red line denotes class 2. It can be seen that the curves of different datasets show the same distribution and shape in the same
embedding space. And, the boundary between two classes is clearer than the original feature space. Although it seems that the embedding
spaces of different models are different, they are actually equivalent because they are different approximations of the global optimum
obtained by the neural network. And, the curves of each feature’s weight show that there is one feature dominating the classification. Note
that it is like the eigen decomposition. Hence, the order of these weights has nomeaning. And, the dominative feature of each model shows a
similar floating range, and there is a clear boundary between two classes in this feature. It further proves that three models have learned a
similar feature.
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With the wide application of high-resolution radar, the application of Radar Automatic Target Recognition (RATR) is increasingly
focused on how to quickly and accurately distinguish high-resolution radar targets. +erefore, Synthetic Aperture Radar (SAR)
image recognition technology has become one of the research hotspots in this field. Based on the characteristics of SAR images, a
Sparse Data Feature Extraction module (SDFE) has been designed, and a new convolutional neural network SSF-Net has been
further proposed based on the SDFE module. Meanwhile, in order to improve processing efficiency, the network adopts three
methods to classify targets: three Fully Connected (FC) layers, one Fully Connected (FC) layer, and Global Average Pooling
(GAP). Among them, the latter two methods have less parameters and computational cost, and they have better real-time
performance.+emethods were tested on public datasets SAR-SOC and SAR-EOC-1.+e experimental results show that the SSF-
Net has relatively better robustness and achieves the highest recognition accuracy of 99.55% and 99.50% on SAR-SOC and SAR-
EOC-1, respectively, which is 1% higher than the comparison methods on SAR-EOC-1.

1. Introduction

Radar Automatic Target Recognition (RATR) technology
can achieve the target’s attributes, categories, models, and
other key characteristics. It can work around the clock and is
robust to the environment changes. In order to obtain richer
target information from radar signals, RATR technology is
increasingly focused on the research of high-resolution
radar. Synthetic Aperture Radar (SAR) image is a kind of
high-resolution radar image. Compared with High Range
Resolution Profile (HRRP), it can provide two-dimensional
resolution information of targets and contain more detailed
features. However, SAR images are sensitive to the changes
of target attitude and speckle noise, which makes it difficult
to recognize the SAR targets accurately. So, how to accu-
rately judge the target category of SAR images has become
the research focus of RATR technology.

+ere are two main difficulties existing in SAR image
recognition: First, the scattering characteristics between
different targets within the same angle may be very similar,

which makes it difficult to cluster radar targets.+e second is
that the geometric structure information hidden in radar
images, such as target size and scatter distribution, are
complex and nonlinear, which leads to difficulty in infor-
mation extraction.

Traditional RATR methods include K-nearest neighbor
classifier (KNN) and support vector machine learning
(SVM). +e Principal Component Analysis (PCA) adopted
by He et al. [1] has realized the rapid recognition of SAR
image targets. Zhao et al. [2] applied SVM to automatic
target recognition of SAR images. Trace-norm Regularized
multitask learning (Trace), proposed by Obozinskiet et al.
[3], assumed that all models share a common low-dimen-
sional subspace, but its method cannot be extended to the
nonlinear domain. Evgeniou and Pontil et al. [4] proposed
regularized multitask learning (RMTL), which extended the
existing kernel based on learning methods for single-task
learning, such as SVM. Clustered Multitask Learning
(CMTL) approach proposed by Zhou et al. [5] was used to
replace Multitask Learning (MTL), which assumed that
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multiple tasks followed a clustered structure, and it achieved
a high accuracy of SAR image recognition. Zhang et al. [6]
proposed the Multitask relationship learning (MTRL) ap-
proach, which can autonomously learn the positive and
negative task correlation, and its recognition accuracy was
higher than that of CMTL. Cong et al. [7] proposed a new
classification method for clustered multitask learning the-
ory. +e method improved MTRL and learned multitask
relationships autonomously. It can cluster information of
different tasks and easily extended to nonlinear domain.

However, traditional SAR image target recognition
technologies often require artificially designing complex
feature extraction algorithms, which is difficult to implement
and has poor generalization ability.+e performance of target
recognition algorithm is unstable when the generating en-
vironment of radar signal is different. With the development
of artificial intelligence, there are more and more applications
of target recognition based on deep learning [8]. In the field of
optical image recognition, Convolutional Neural Networks
(CNNs) have achieved great success. +ey are widely used in
object detection and localization, semantic segmentation,
speech recognition, natural language processing, image
classification, and target recognition. Compared with other
classification algorithms, convolutional neural networks have
better robustness for translational changes [9]. Wang et al.
[10] proposed amethod for SAR image target recognition that
combines two-dimensional principal component analysis
(2DPCA) and L2 regularization constraint stochastic con-
figuration network (SCN). +ey applied the 2DPCA method
to extract the features of SAR images. Combining 2DPCA and
SCN (random learning model with a single hidden layer), the
2DPCA-SCN algorithm have achieved good performance.
Due to the limited original SAR images, it is difficult to ef-
fectively train the neural networks. In order to solve this
problem, multiview deep neural network is proposed by Pei
et al. [11]. +e framework of this deep neural network in-
cludes a parallel network topology with multiple inputs,
which can learn the features of SAR images with different
views layer by layer. Chen [12] used All Convolutional Neural
Network (A-CNN) [13] to the target recognition of SAR
images and achieved very high recognition accuracy on the
SAR image dataset under standard operating condition, but
the recognition performance on SAR image dataset under
extended operating condition has declined. Zou et al. [14]
proposed another convolutional neural network structure for
SAR image target recognition, which uses multiazimuth SAR
images to improve the recognition accuracy.

Both the sparsity of SAR images and the limited SAR
datasets increase the difficulty of recognition tasks. In
response to the above problems, a Sparse Data Feature
Extraction (SDFE) module is first designed in this paper.
Based on the SDFE module, a small sample sparse data
feature extraction network (SSF-Net) is proposed. In
order to minimize the network parameters and improve
the recognition efficiency, the network has further made
improvements of the classifier. +e approach in this paper
is compared with those in [3–7, 10–12] and achieves
higher recognition accuracy and stronger generalization
ability.

2. SSF-Net Based on SDFE Module

2.1. CNNs. In recent years, CNN has been widely used in
computer vision recognition tasks, and the basis structure of
CNN is shown in Figure 1. In 2012, Hinton and Alex
Krizhevsky proposed AlexNet [16], which successfully ap-
plied ReLU [17], Dropout [18], and LRN [17] in CNN for the
first time. Visual geometry group networks (VGGNets)
proposed by Simonyan and Zisserman [19] have signifi-
cantly improved image recognition performance by deep-
ening the network to 19 layers. +e application of 3× 3 small
convolution filters is the main contribution of VGGNets. By
stacking small convolutional filters, VGGNets not only in-
creases the depth of the network but also enhances the
nonlinearity of the convolution layers. Compared with large
convolution filters, small filters can also effectively reduce
the amount of parameters [20]. Before the VGG network was
proposed, An et al. [21] also used small convolution filters,
but the network was not as deep as VGGNets. In extracting
target features, VGG network has very excellent
performance.

Deepening the network will lead to the degradation
problems. +at is, after sufficient number of training, the
accuracy of the training set is saturated or even decreased. In
addition, the problems of gradient and information loss also
hinder the increase of network depth. Residual net (ResNet)
[22] solved this problem to some extent by using skip
connections.

Inspired by the ResNet, Dense Convolutional Network
(DenseNet) was proposed by Huang et al. [23]. By con-
structing dense blocks which adopt dense connections,
DenseNet can deepen to more than 200 layers. Each layer in
a dense block can directly access the gradient value from the
loss function and the original input signal. By changing the
growth rate, DenseNet can reduce the amount of parame-
ters, but increase the computational cost [24].

2.2. SDFE Module and SSF-Nets. SAR images contain many
different features from optical images. +e traditional fea-
ture extraction methods need to consider the geometric
features, statistical gray scale features, electromagnetic
scattering features, transform domain features, local in-
variant features [25, 26], and so on. CNNs can adaptively
learn the features of SAR images for recognition, which
reduces the complexity of the recognition algorithm.

Although many studies have proved that, in the field of
optical image recognition, deeper networks have better
performance [22, 23]. However, the amount of SAR image
data is relatively less. An overly complex network cannot
significantly improve the recognition performance, and it
may also carry the risk of overfitting. +erefore, the depth of
the network proposed for SAR image recognition is not as
deep as those of the ResNet and the DenseNet, so as to avoid
the gradient disappearance problem that may appear in the
late stage of training. +e convolutional layer and pooling
layer alternately and linearly propagate in our network. So, it
can avoid skip connections to simplify the network com-
plexity as much as possible. Due to the sparse feature of SAR
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images, when all the features are extracted by using small
convolution filters, it may not be able to fully represent all
the characteristics information of the target. +erefore, a
Sparse Data Feature Extraction (SDFE) module is proposed
in this paper, which contains a parallel convolution layer and
a point convolution layer. Convolution filters with different
sizes are introduced into the parallel convolutional layer to
improve the ability of the network to extract sparse features
in SAR images. +e SDFE structure is shown in Figure 2,
where “Conv7,” “Conv5,” “Conv3,” and “Conv1” represent
convolutional layers with the filters size of 7× 7, 5× 5, 3× 3,
and 1× 1, respectively. “MaxPool (3)” is the 3× 3 max
pooling layer with stride of 1.

+e parallel convolutional layer of SDFE module utilizes 4
different filters with size of 7× 7, 5× 5, 3× 3, and 1× 1. +e
largest “7× 7” convolutional filter in SDFE is crucial to improve
the network’s ability to extract feature from sparse data. +e
parallel convolutional layer in SDFE widens the network
structure and further increases the depth of the network. +e
parallel convolutional layer is different from the Inception [27]
module. In the Inception module, the largest convolutional
filter size is 5× 5, and following a point convolution layer, so its
ability of sparse features extraction is limited.+e SDFE parallel
convolutional layer involves 7× 7 convolution filters, and its
input does not need to go through the point convolution layer
to compress depth, which can directly extract features from the
output of the upper network layer. +e output of the parallel
convolution module is followed by a point convolution layer
after “depth concat”.+e output depth of the point convolution
layer is consistent with the input depth to increase the non-
linearity of the network and ensure that the SDFEmodule does
not lose the feature information generated by the parallel
convolution layer.

+e large-scale convolution kernel can effectively extract
the target features if the input data is sparse. +e sparsity of
the convolutional layer would bring many benefits, such as
better robustness and higher feature extraction efficiency.
However, if the input data is excessive sparse, feature ex-
traction will become more difficult. +erefore, after repeated
experiments, instead of the larger convolution kernel, the
7× 7, 5× 5, 3× 3, and 1× 1 filters are used in the parallel
convolutional layer to alleviate this problem.

Based on the SDFE module, we propose 4 small sample
sparse data feature extraction networks (SSF-Nets), as shown in
Table 1. InTable 1, a SDFE structure is counted as two layers.+e

depth of the classifier in SSF-Net is set as 1.+e “Conv” module
in Figure 2 and Table 1 is a composite function containing
“convolution,” “batch normalization,” and “activation function”.

AlexNet, VGGNets, and some other networks’ classifiers
are three Fully Connected layers (3-FC), which contain more
than 80% of the parameters in the whole networks [16, 19]
and need high memory requirements. RATR puts forward
high requirements for real-time computing, and the rec-
ognition system should minimize the consumption of
hardware. In order to reduce the amount of parameters and
simplify the network, our network introduces one Fully
Connected layers (1-FC) as classifier to concentrate the
learning tasks into the convolutional layer and lighten the
burden of the fully connected layer.

In addition, we introduce the Global Average Pooling
(GAP) proposed by Lin et al. [28] to replace the FC layer as the
classifier. +is classifier does not require fully connected layers,
which can greatly reduce the number of parameters and avoid
overfitting problems in the SSF-Net under certain conditions.
+e SSF-Nets combined with the above three classifiers are
represented by “SSF-NetX-GAP,” “SSF-NetX-1FC,” and “SSF-
NetX-3FC,” where “X” indicates network’s depth.

2.3.NetworkComplexity. If there are 4 types of targets, when
using “3-FC” as the classifier, the size of output feature map
generated by the last pooling (or convolution) layer of the

Convolutions Convolutions Full connection
Subsampling

Subsampling Full connection

Gaussian
connections

Input
C1: feature maps

S2: f. maps

C3: f. maps
S4: f. maps

C5: layer
F6: layer Output

Figure 1: +e basic structure of convolution neural network [15].
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Figure 2: Structure of SDFE.
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network is H×W×D. +e parameters in the classifier are
calculated as follows:

3 − FC: Parameters � H × W × D × 4096

+ 4096 + 4096 × 4096 + 4096 + 4096

× 4 + 4

� 16, 801, 796 + 4096 × H × W × D.

(1)

When using the single layer fully connected layer “1-FC”,
the parameters in the classifier is calculated as follows:

1 − FC: Parameters � H × W × D × 4 + 4. (2)

When using “GAP” as the classifier, the global average
pooling is used to replace the fully connected layer. Since the
pooling layer has no parameters, it can further reduce the
amount of parameters. +e calculation formula is as follows:

GAP: Parameters � D × 4 + 4. (3)

+rough the above calculation, using the “1-FC” and
“GAP” classifiers can save about 86%–92% of the parameters
compared to that of the networks with “3-FC”, and the
networks with “GAP” can further save about 100,000 pa-
rameters than the “1-FC” networks. +e parameters of the
SSF-Nets with different depths and different classifiers are
shown in Figure 3.

It can be seen from Figure 3 that the type of the classifier
has the greatest influence on the number of network pa-
rameters, followed by the network depth. As the network
depth increases gradually, the amount of network param-
eters only increases slowly. If the RATR system hardware
conditions are poor and the memory is insufficient, using “3-
FC” as the network classifier would be a bad choice.

Figure 4 shows the comparison of floating points of
operations (FLOPs) of SSF-Net12, SSF-Net14, SSF-Net17,
and SSF-Net20. According to Figure 4, the computation cost
is most affected by the network depth. SSF-Net17 and SSF-
Net20 are very computation-intensive. Compared to that of
SSF-Net12, the FLOPs of SSF-Net14 has an increase of
19.82%. +e FLOPs of SSF-Net17 has an increase of 53.31%
compared to that of SSF-Net14, and the FLOPs of SSF-Net20
has an increase of 15.13% compared to that of SSF-Net17. So,
if there is no significant difference in recognition accuracy,
SSF-Net14 has the highest cost performance.

In addition, when the network depth is the same, the “3-
FC” classifier has the highest computational cost, which is a
fixed increase of 238.9×106 compared to the other two
classifiers. +e calculation cost of the “1-FC” is the lowest,
but it is not much different from “GAP”.

3. Experimental Results

3.1. Dataset. +e Moving and Stationary target acquisition
and recognition (MSTAR) dataset are used for the experi-
ments. +ere are many research studies on radar automatic
target recognition based on the MATAR SAR data set, such
as [2–7, 10–12, 29].+e experimental results in this paper are
compared with the above methods. +e MSTAR dataset are
classified into two datasets: Standard Operating Condition
(SOC) dataset and Extended Operating Condition (EOC)
dataset. In EOC-1 dataset, there are 4 kinds of ground
targets, in which the targets with side view angle of 17° are
used for training and the targets with side view angle of 30°
are used for test.+ere are 10 kinds of targets in SOC dataset,
each of which contains Omni-directional SAR image data at
15° and 17° pitch angles. In the experiments, observation
data at 17° are used for training, and the observation data at
15° pitch angle are used for testing. +e SAR images of
MSTAR SAR-SOC dataset are shown in Figure 5.

SAR images are extremely sensitive to changes in pitch
angle, so it is more difficult to identify the targets under
EOC-1 conditions. +e pitch angle difference between the
SOC training set and test set is 2°, while the difference under
the EOC-1 is increased to 13°. +ere is a big deviation of the
same target in SAR images under the same posture, which
increases the difficulty of recognition. +e method in this
paper has especially better recognition accuracy for SAR
EOC-1 dataset and therefore has greater practical signifi-
cance [7, 10, 30].

3.2. Preprocessing andExperiment Setup. In the experiments,
each sample in the test set or the training set is resized to a
fixed resolution of 128×128, and then the center cut and
random horizontal rotation are performed. After this pre-
processing, the number of SAR images has been expanded by
3 times, which compensates for the shortage of SAR images
and alleviates the overfitting problem of the network to some
extent.

In order to verify the validity of our approach, the ex-
periments are completed on the same platform and envi-
ronment, as shown in Table 2. +e “batchsize” should be set

Table 1: SSF-Net configuration.

SSF-Net12 SSF-Net14 SSF-Net17 SSF-Net20
conv3-64 conv3-64 conv3-64 conv3-64

conv3-64 conv3-64 conv3-64
2× 2 MaxPool, stride:2
conv3-128 conv3-128 conv3-128 conv3-128

conv3-128 conv3-128 conv3-128
2× 2 MaxPool, stride:2
SDFE-256 conv3-256 conv3-256 conv3-256
Conv3-256 SDFE-256 SDFE-256 SDFE-256

conv3-256 conv3-256
conv3-256

2× 2 MaxPool, stride:2
SDFE-512 conv3-512 conv3-512 SDFE-512
SDFE-512 conv3-512 SDFE-512 conv3-512

SDFE-512 conv3-512
SDFE-512

2× 2 MaxPool, stride:2
conv3-512 SDFE-512 conv3-512 conv3-512
conv3-512 SDFE-512 conv3-512 conv3-512

conv3-512 conv3-512
conv3-512

2× 2 MaxPool, stride:2
Classifier, soft-max

4 Computational Intelligence and Neuroscience



SSF-Net12 SSF-Net14 SSF-Net17 SSF-Net20
GAP 3723.73 4461.48 6839.11 7874.09
1-FC 3723.66 4461.41 6839.04 7874.02
3-FC 3962.57 4700.31 7077.95 8112.93
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Figure 4: Comparison of floating points of operations (FLOPs).

Figure 5: SAR images of MSTAR SAR-SOC dataset.

SSF-Net12 SSF-Net14 SSF-Net17 SSF-Net20
GAP 13.25 15.16 20.48 24.51
1-FC 13.33 15.24 20.56 24.60
3-FC 132.79 134.71 140.02 144.06
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Figure 3: +e parameters comparison of SSF-Net.
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to an appropriate value. Our original intention is to set the
“batchsize” as large as possible within a suitable range to
make the gradient calculation of the network more accurate.
However, too large “batchsize” will make the model con-
verge to the local optimum easily. Secondly, the “batchsize”
is limited to the graphics card memory. After repeated
experiments, we set the “batchsize” of the training set to 16
and that of the test set to 32.

Considering that the radar data is sparse, activation
function Rectified Linear Unit (ReLU) [24] will undoubtedly
increase this sparseness and reduce the useful information of
the target, which is unfavorable for recognition. So, we use
another activation function, Hyperbolic Tangent function
(Tanh), as the activation function. +e resulting impact will
be further analyzed in the experiments.

+e learning rate attenuation method is also introduced
in the training processing. As the number of iterations in-
creases, the learning rate gradually decreases. +is can en-
sure that the model does not fluctuate greatly in the later
period of training and closer to the optimal solution. After
repeated experiments, the parameters are finally adjusted as
follows: the initial learning rate is set as 0.01, and 200 epochs
are used for training. +e learning rate decreases by 2 times
since the first 50 epochs and then decreased by 2 times every
20 epochs. +e average recognition accuracy of the last 100
epochs is calculated as the final results.

3.3. ExperimentalResults. To focus on the impact of SSF-Net
depth on recognition performance, we conducted experi-
ments on the two MSTAR SAR datasets with the 4 depth
SSF-Nets in Table 1 and the results are shown in Table 3.

According to Table 3, the recognition performance of
SSF-Net12 is lower than that of the other 3 deeper networks.
Because its structure is too simple to fully learn SAR image
features for recognition, on SAR-EOC-1, SSF-Net14-3FC
achieves the highest accuracy of 99.50%. +e accuracies of
SSF-Net14 with three different classifiers are 99.50%,
99.24%, and 99.05%, respectively, which are better than
those of SSF-Net17 and SSF-Net20. On the SAR-SOC
dataset, although SSF-Net17-GAP achieves the highest ac-
curacy of 99.55%, most of the networks (except SSF-Net12)
also achieve the accuracies higher than 99.3%. Because the
difference of pitch angle between training set and test set of
SAR-EOC-1 dataset is far greater than that of SAR-SOC
dataset, the identification difficulty is greater, which requires
the network to have strong generalization ability. +erefore,
simply increasing the network depth does not significantly
improve the networks’ recognition performance, which also
verifies that the excessively deep convolutional neural net-
work is not conducive to SAR image recognition.

Based on the experimental results of SAR-EOC-1 in
Table 3, we believe that SSF-Net14 has the best overall
performance. SSF-Net14-1FC achieves 99.37% accuracy
rates on SOC, only 0.18% lower than the highest accuracy
achieved by SSF-Net14-3FC. On EOC-1, SSF-Net14-1FC
also achieves 99.24% accuracy rates, only 0.26% lower than
the highest accuracy achieved by SSF-Net17-GAP. “3-Fc”
classifier has a large number of parameters and calculation,

while “1-FC” classifier has a small number of parameters and
calculation. Although “1-FC” has slightly more parameters
than “GAP”, the computational cost is less. Next, we will
compare the results of the SSF-Net14-1FC with GoogLeNet
[27], ResNet-18 [18], and DenseNet-121 [19]. +e results are
shown in Table 4.

GoogLeNet achieves high recognition accuracies on
SAR-SOC, but its recognition accuracies on SAR-EOC-1 are
poor, which only 90.62% and 90.19%. +is shows that its
generalization ability is not so ideal. ResNet-18 and Den-
seNet-121 further deepen the network and apply skip
connections to alleviate the gradient disappearance problem.
However, the accuracy rates on SAR image recognition are
still lower than that of our proposed network. Shallow
networks have good capabilities of feature extraction and
learning, so the networks with complex structures such as
DenseNet-121 and ResNet-18 may bring overfitting prob-
lems to a certain extent. Based on horizontal comparison of
the recognition accuracies of the activation functions, Tanh
and ReLU in Tables 3 and 4, we can see the performance of
Tanh on SAR-EOC-1 is generally stronger, indicating that
Tanh has better effect on sparse data processing.

We further compare SSF-Net14-1FC with the methods
proposed by Wang [10], Pei [11], and Chen [12], et al., and
the results are shown in Table 5.

Although some methods such as A-CNN can achieve
accuracy of 99.41% on the SAR-SOC, it is difficult to achieve
satisfactory results on SAR-EOC-1 data which have greater
difference in pitch angles. +e 2DPCA-SCN method ach-
ieves 98.49% accuracy on SAR-EOC-1, but only 95.80% on
SAR-SOC. Other methods on the SAR-EOC-1 also achieve

Table 3: Recognition accuracy rates of different depth SSF-Nets
(%).

Method
SAR-SOC SAR-EOC-1

Tanh ReLU Tanh ReLU
SSF-Net12-3FC 98.49 99.19 95.32 97.55
SSF-Net12-1FC 97.47 99.09 97.02 96.58
SSF-Net12-GAP 99.33 98.99 97.17 97.02
SSF-Net14-3FC 99.27 99.34 99.50 98.59
SSF-Net14-1FC 99.37 99.20 99.24 97.96
SSF-Net14-GAP 99.18 99.43 99.05 97.55
SSF-Net17-3FC 99.39 99.37 99.36 98.92
SSF-Net17-1FC 99.31 99.35 98.81 98.02
SSF-Net17-GAP 99.55 99.45 98.78 95.67
SSF-Net20-3FC 99.43 99.35 98.47 99.16
SSF-Net20-1FC 99.54 99.34 98.69 98.63
SSF-Net20-GAP 99.42 99.30 99.33 98.11

Table 2: Experimental platform configuration.

Attribute Configuration information
OS Ubuntu 14.04.5 LTS
CPU Intel(R) Xeon(R) CPU E5-2670 v3 @ 2.30GHz
GPU GeForce GTX TITAN X
CUDNN CUDNN 6.0.21
CUDA CUDA 8.0.61
Framework PyTorch
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lower recognition accuracies than SSF-Net. It can be found
from Table 3 that SSF-Net achieves very high accuracy on
both SAR-SOC and SAR-EOC-1 dataset. Especially on SAR-
EOC-1 dataset, SSF-Net can achieve higher accuracy and
more stable performance, which shows that our network has
stronger generalization ability and better robustness.

SSF-Net is also compared with nondeep learning ap-
proaches (such as KNN, SVM, and SRC [7, 29]), and the
results are shown in Table 6. Among them, “I-MTRL” is a
new classification approach of clustering multitask learning
theory. SRC [29] is a recognition approach based on Sparse
Representation-based Classifier proposed in 2016.

Table 6 shows that some traditional approaches are not
so effective, such as KNN and SVM methods. Although
many complex classifiers have been designed, they cannot
fully utilize the potential correlation between multiple radar
categories. On the contrary, large-scale and complete SAR
datasets are difficult to collect, so the samples obtained are
usually limited or unbalanced. Traditional approaches are
not able to share all the information, making it difficult to get
good training results. Dong et al. [31] proposed a joint sparse
representation model to take advantage of the correlation
between multiple tasks of SAR ATR, and comparative ex-
periments have demonstrated the superiority of multitask
learning.

+e classification algorithm approaches under the
multitask framework has higher recognition accuracies, such
as CMTL, MTRL, and I-MTRL. +e multitask relational
learning (MTRL) method proposed in [6] can autonomously
learn the correlation between positive and negative tasks,
and it can be easily extended to the nonlinear field. +e
MTRL is further improved by adding a projection regula-
rization term to the objective function [7], which can in-
dependently learn multitask relationships, cluster
information of different tasks, and can also be easily ex-
tended to nonlinear field. However, the Trace-norm Reg-
ularized multitask learning (TRACE), which is also under
the multitask framework, has the lowest recognition accu-
racy. Because the TRACE method learns the linear

prediction function and cannot accurately describe the
nonlinear structure of SAR image, it also proves the im-
portance of extending the multitask learning method to the
nonlinear field.

+e SSF-Net proposed in this paper can adaptively learn
the nonlinear structure of SAR images and reduce the
difficulty of redesigning the classifier when the SAR image
conditions change. In contrast, the artificially designed
feature extraction approach is complex, and sometimes it
can only be effective for certain fixed problems. Its gener-
alization ability is not so ideal. +erefore, our networks
enhance the feature extraction capability of sparse data.

3.4. Experiments Analysis. SSF-Net17-GAP and SSF-Net14-
3FC achieved the highest accuracy rates, 99.55% and 99.50%,
on SAR-SOC and SAR-EOC-1 dataset, respectively. After a
comprehensive selection, we compare the SSF-Net14-1FC
with a variety of methods. It has achieved recognition ac-
curacies, 99.37% and 99.24%, on SAR-SOC and SAR-EOC-1
dataset, which are higher than most of the accuracies
achieved by other approaches.

By analyzing the different network structures and
comparing the experimental results, the following conclu-
sions are obtained:

(1) +e networks should not be too deep, and the
structure should be as concise as possible. Due to the
small amount of data in radar signal, some complex
and deep networks, such as ResNets and DenseNets,
may face the problem of overfitting.

(2) Due to the sparsity of SAR images, large convolu-
tional filters can be considered for feature extraction
in the network. Different from the traditional sparse
signal processing method [32], the SDFE module is
designed to improve the network’s ability to extract
features from sparse data. However, the convolution
filters in the first layer should not be too large. In this
paper, we adopt 3× 3 filters in the first convolution
layer. Different from traditional optical images, SAR
images do not have obvious edge features and texture
information, so in the first layer, large-scale con-
volution filters cannot be used at quickly capture
SAR image target edges and other features. On the
contrary, the use of large-scale convolution filters at
the first layer may cause excessive loss of detail in-
formation, which is not conducive to identification.

Table 5: Recognition accuracy rates of other CNNs (%).

Method SAR-SOC SAR-EOC-1
2DPCA-SCN [10] 95.80 98.49
2-Views DCNNs [11] 97.81 93.29
3-Views DCNNs [11] 98.17 94.34
4-Views DCNNs [11] 98.52 94.61
A-CNN [12] 99.41 97.13
SSF-Net14-1FC 99.37 99.24

Table 6: Recognition accuracies rate of traditional approaches (%).

Method SAR-SOC SAR-EOC-1
KNN [2] 92.71 91.42
SVM [2] 90.17 86.73
SRC [29] 89.76 —
TRACE [3] 75.04 67.42
RMTL [4] 92.09 92.03
CMTL [5] 93.91 94.72
MTRL [6] 95.84 95.46
I-MTRL [7] 97.34 98.24
SSF-Net14-1FC 99.37 99.24

Table 4: Recognition accuracy rates of other CNNs (%).

Method
SAR-SOC SAR-EOC-1

Tanh ReLU Tanh ReLU
GoogLeNet 98.87 98.65 90.62 90.19
ResNet-18 97.20 97.90 78.45 82.25
DenseNet-121(k� 32) 98.66 98.93 96.41 98.66
SSF-Net14-1FC 99.37 99.20 99.24 97.96
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(3) +e network for SAR image targets recognition
should increase the ability to learn nonlinear
structures. Drawing on the view that the multitask
learning method should be extended to the field of
nonlinearity, the SDFE module increases the non-
linearity of the network with a point convolution
layer that has no compression depth.

On SAR-EOC-1, Tanh has generally better perfor-
mance. +e main reason is that the SAR images have
sparsity and the activation function ReLU may over-
enhance this nature. Excessively sparse data will weaken the
ability of the convolutional layer to extract target features.
And Tanh has a slightly better nonlinearity, so its per-
formance is better when the original data features are
significantly different. Overall, Tanh has better activation
for radar signals.

4. Conclusions

In this paper, a feature extraction SDFEmodule and SSF-Net
for sparse data is designed, which has good performance for
radar targets recognition.

One of the advantages of SSF-Net is that it can achieve
high accuracy on both SAR-SOC and SAR-EOC-1. On SAR-
SOC, the accuracy rate of SSF-Net14-1FC has only 0.18%
lower than the highest accuracy rate achieved by the SSF-
Net17-GAP. However, it saves 25.84% parameters and
34.77% FLOPs than SSF-Net17-GAP. On SAR-EOC-1, the
accuracy rate of SSF-Net14-1FC is only 0.26% lower than the
highest accuracy rate, but it saves more than 88.6% of the
parameters. SSF-Net14-1FC saves at least 36.97% FLOPs
than SSF-Net17-3FC and SSF-Net20-GAP. +erefore, SSF-
Net can achieve better recognition performance for SAR
images with a shallow network, improves the computational
efficiency, and saves parameter space.

+e SDFE module, as the most important part in SSF-
Net, has three advantages. Firstly, the SDFE module can
effectively extract the target features when the input data is
sparse. Secondly, the SDFE module improves the nonline-
arity of SSF-Net, which can strengthen the SSF-Net’s ability
to fit the nonlinear structure of SAR images. Lastly, the SDFE
module increases the robustness and computational effi-
ciency of SSF-Net, so the SSF-Nets can achieve high accu-
racies on SAR-EOC-1 with fewer layers.

When deepening the network, the recognition algorithm
may be invalid. It is because the down-sampling layers in the
deep neural network are too many for SAR images. To solve
this problem, one feasible method is to reduce the down-
sampling layers of the deep neural network, but it will
weaken the robustness of the network and increase the
computational cost. Another solution is to design shallow
convolutional neural networks, such as our SSF-Nets pro-
posed in this paper.

According to the imaging characteristics of SAR images,
another feasible method to improve the target recognition
rate is target classification and recognition based on image
superresolution reconstruction [33], which is also a key
research direction at present.
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