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The current radio spectrum regulations assign specific bands
to particular services and grant licensed bands access to only
licensed users. This results in the inefficient use of the fre-
quency spectrum, a problem for which cognitive radio (CR)
[1] is thought to provide a suitable solution. CR implements
dynamic spectrum allocation policies by allowing unlicensed
or secondary users (SUs) to access spectrum bands licensed
to primary users (PUs) while avoiding interference with
them. This could happen, for example, when an SU’s device
searches for an unoccupied band, called a white space, and
uses it for its transmission. As a result of this mode of
operation, significant challenges have to be dealt with when
designing the RF components of a CR transceiver, such as
the antennas, the filters, the mixers and oscillators, the power
amplifiers (PAs), and the analog-to-digital and digital-to-
analog converters (ADCs/DACs). This comes in addition
to the necessary algorithms for sensing the surrounding
environment and adapting to particular situations through a
cognitive engine [2].

In CR, ultrawideband (UWB) antennas are usually
required for channel sensing and frequency reconfigurable
antennas for communicating. The two antennas can be
designed in a single- or dual-port configuration. In the dual-
port case, one port has UWB frequency response and is used
for channel sensing, and the second port, which is frequency
reconfigurable/tunable, is used for communicating. In the
more challenging single-port design, the same port can have

UWB response for sensing and can be reconfigured for
tunable narrowband operation when required to commu-
nicate over a white space. In a distinct spectrum sharing
approach, the SU device sends its transmission as UWB
pulses with nulls in the bands used by PUs. In this case, the
antenna should have a UWB response but with the ability
to selectively induce frequency notches in the bands used
by PUs. The design of UWB antennas normally requires the
proper selection of the patch shape, with preferred round
shapes and edges, the use of partial or slotted ground planes,
the good matching between the feed and the patch, or the
employment of fractals. For frequency band notching, the use
of split-ring resonators (SRRs) and complementary split-ring
resonators (CSRRs) is famous [3]. Frequency reconfiguration
in antennas is usually attained by the use of RF and optical
switches or varactors that change the paths or electrical
lengths seen by the current on the radiator surface [4].

In addition to the CR antenna design challenges, the
constraints on the RF front-end design pertain to the
ADC/DAC sampling rate, especially when working with
wideband signals, to the sensitivity of the circuitry, since
the CR system has to deal with very high to very low PU
signal strength, to the linearity and bandwidth of amplifiers
(LNAs), and to the frequency agility of the mixer and filters
[5]. Designs that guarantee the good performance of the RF
components in both wideband and narrowband operation
modes are required for CR.
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Some of the well-known spectrum sensing algorithms
are energy detection and cyclostationarity-based detection.
However, blind techniques, which detect the presence of a
signal without any knowledge of signal or noise parameters,
are more robust [6].The spectrum sensing algorithms should
be devised to overcome main sensing challenges such as RF
impairments.

We hope that readers of this special issue will find up-to-
date information, comprehensive reviews, and robust designs
for antennas and RF blocks for use in CR transceivers. We
also hope that they gain a good insight into themost practical
channel estimation, spectrum sensing, and decision making
algorithms for cognitive radio.

Mohammed Al-Husseini
Ali El-Hajj

Mario Bkassiny
Said El-Khamy
Amor Nafkha
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This paper explores passive switched capacitor based RF receiver front ends for spectrum sensing. Wideband spectrum sensors
remain the most challenging block in the software defined radio hardware design.The use of passive switched capacitors provides a
very low power signal conditioning front end that enables parallel digitization and software control and cognitive capabilities in the
digital domain. In this paper, existing architectures are reviewed followed by a discussion of high speed passive switched capacitor
designs. A passive analog FFT front end design is presented as an example analog conditioning circuit. Design methodology,
modeling, and optimization techniques are outlined. Measurements are presented demonstrating a 5GHz broadband front end
that consumes only 4mW power.

1. Introduction

With the growth of the wireless industry, the spectral conges-
tion caused by wireless user traffic has become a significant
concern that threatens further growth of the technology
[1, 2]. However, this congestion is a result of suboptimal
frequency usage arising from the inflexibility of the spectrum
licensing process.This inefficiency in spectrumallocation can
be solved by allowing spectrum sharing using the concept
of a cognitive radio (CR), an intelligent device that is able
to dynamically adapt and negotiate wireless frequencies and
communication protocols for efficient communications. For
this, each participating device needs to have many capa-
bilities such as determining location, analysing the external
communications environment, sensing the spectrum used by
its neighboring devices, dynamically changing the frequency
and bandwidth of transmission, adjusting the output power
level, and even altering transmission parameters and proto-
cols [3].

Figure 1 provides an indication of the growth of cognitive
radios as a research area in the recent past. The figure

shows results for the number of publications with different
keywords per year in the IEEE. Many of the keywords
represent growing research areas in wireless, whereas other
popular keywords such as “VLSI” and “DSP” have also been
included for comparison. The first cognitive radio paper was
published in 1999; however, research in this areawas relatively
dormant till 2004. Since then, with maturing technology and
rising needs, cognitive radios have seen a tremendous growth
in research activity and are now one of the most researched
areas in wireless.

A cognitive radio can be structurally and functionally
separated into (1) a software defined radio (SDR) unit that
includes the hardware of the cognitive radio and (2) an
intelligence unit, that provides the required software based
intelligence (cognition) to the radio. In this paper, the SDR
unit and, more specifically, the spectrum sensing receiver
front end of the SDR will be discussed.

The driving force behind the cognitive radio concept has
been the use of dynamic spectrum access [4, 5]. Dynamic
spectrum access relies on dynamic spectrum monitoring
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Figure 1: Number of publications in different research areas in the
last decade.

using a spectrum sensor. Combined with spatial and tempo-
ral information, it can be used to perform dynamic spatial
[6] or spatio-spectral beamforming [7] to exploit temporal,
spatial, and spectral degrees of freedom. In this paper, we
focus on the spectrum sensing aspect of the cognitive radio.

Among other features, this continuous monitoring of the
spectral environment makes the cognitive radio unique in
its hardware. From the hardware perspective, the spectrum
sensor remains a challenging aspect of cognitive radio design.
Even for narrowband (small frequency range, <100MHz)
spectrum sensors, limiting the power consumption is a
challenge. The cognitive radio spectrum sensor needs to
detect signals at all frequencies of interest instantaneously. In
addition, very high detection sensitivity is desired (perhaps
100 times better than a conventional narrowband radio) to
overcome the hidden-terminal problem, shadowing, channel
fading, multipath, and so forth lest it causes interference to
other users due to incorrect sensing [4].

In this paper, we demonstrate the suitability of passive
switched capacitor signal processing techniques for spectrum
sensing applications. We present various techniques in pas-
sive switched capacitors that allow them to be used in high
speed, low power RF applications. As an example, we present
a prototype passive charge based FFT design, first presented
in [8], that can instantaneously analyze wideband signals
(5GHz bandwidth) with very low power consumption using
these techniques. We present previously unpublished details
on the FFT design methodology, architecture choice, and
optimization techniques. We derive a linear time invariant
(LTI) model of the system for use in system level designs.
New measurement results are presented to corroborate the
suitability of this design for spectrum sensing applications.

2. Review of SDR Spectrum Sensors

Thearchitecture design for the SDR analog/RF is significantly
different from that of traditional narrowband radios. In

the original software radio proposal by Joseph Mitola in
1992, he envisioned an architecture that digitized the RF
bandwidth (no downconversion) and performed spectrum
analysis and demodulation in the digital domain. While pro-
viding the maximum amount of flexibility through increased
software capability in the digital domain, this architecture
imposes impractical requirements on the analog-to-digital
and digital-to-analog converters. For example, as discussed in
[9], a 12GHz, 12-bit ADC that might be used for this purpose
would dissipate 500W of power! As a result, the ideal goal
of being able to communicate at any desirable frequency,
bandwidth,modulation, and data rate by simply digitizing the
input and invoking the appropriate software remains far from
realizable.

Subsequent proposals for spectrum sensing architectures
can be divided into two fundamental categories: a scanner
type and a wide bandwidth instantaneous digitizer type.

2.1. Scanner Architecture. In this scheme, a narrowband,
wide-tuning receiver scans and digitizes the entire bandwidth
(similar to a bench-top spectrum analyzer) for analysis. The
digital back end processes each band sequentially and stitches
the frequency domain outputs to obtain a spectral map of
the environment. An example of architecture is shown in
Figure 2. Note, however, that, in order to overcome issues
such as multipath, fading, hidden nodes, and interference
problems [4], the sensitivity and dynamic range requirements
of the architecture are more challenging than a traditional
communications receiver. Moreover, sensing may be a blind
detection problem, as opposed to traditional reception where
a priori knowledge of the transmitted signal is available.

Although the scanning architecture is able to reuse some
features of a traditional receiver architecture, this detection
technique suffers frommultiple shortcomings.These systems
lack the agility to be able to detect any fast-hopping signals.
Frequency domain stitching is power hungry in the digital
domain due to the need to correct phase distortion intro-
duced by the analog filters. Moreover, stitching the frequency
domain information from several scans is imperfect in the
face of multipath; consequently, signals spanning across
multiple scan bandwidths are imperfectly reconstructed. Due
to these and other reasons, it is desirable to construct a real-
time instantaneous bandwidth digitizer (similar to J. Mitola’s
original software radio idea) in the spectrum sensor.

2.2. Wideband Digitizer Architecture. Unlike the scanning
type architecture, a wideband instantaneous digitizer is
expected to digitize the entire RF bandwidth simultaneously.
Understandably, the wideband digitizer has widely been
considered as the bottleneck to the realization of the SDR
based cognitive radio. A number of efforts in recent years
have focused on wider bandwidths, broadband matching,
higher front end linearity, and, most importantly, wideband
analog to digital converters.

Several architectures have been proposed for the RF front
end. Of these, the most popular is the extension of the
traditional receiver architecture as shown in Figure 3 effec-
tively performing an RF to digital (R-to-D) conversion [10].
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Typically, the front end also requires a wideband low noise
amplifier (LNA) prior to the digitizer (not shown). Moreover
the front end needs to handle a very large dynamic range due
to the generally large peak-to-average power ratio (PAPR) of
wideband signals.The increase in PAPR for wide bandwidths
is described in Figure 4. As shown, the PAPR for the nar-
rowband signals is only 2, while that for the wideband signal
(5 times the bandwidth) with multiple signals, all having
similar powers, is 10. As a result of the large PAPR of the
wideband inputs, a very linear front end is required. The
linearity requirements of the LNA have been addressed in
[11]. Another approach using a low noise transconductance
amplifier (LNTA) followed by mixers is discussed in [12].
Moreover, passive mixer-first topologies have been proposed
for high 𝐼𝐼𝑃

3
performance [13].

The digitizer block shown in the figure is essentially an
ADC with performance specifications beyond the capability
of using state-of-the-art converters. This wideband digitizer
can be implemented in multiple ways, all based on some
form of multiplexing in order to ease the requirements on
the ADCs. A multiplexed broadband approach using time
interleaving can be utilized as shown in Figure 5 [10]. This
scheme reduces the sampling rate of ADCs. However, all the
ADCs still see the full bandwidth and, therefore, still require
high dynamic range capability.

In order to reduce the dynamic range requirements on
the ADCs, it is possible to transform the signal to a different
domain prior to digitization. Specifically, a frequency domain
transform is particularly attractive [10]. A frequency domain
transform can be approximated in practice using band-pass
filters for channelization. This reduces the dynamic range
requirements on the ADCs but introduces the problem of
designing impractically sharp band-pass filters. Replacing
sharp band-pass filters by frequency downconverters fol-
lowed by sharp low-pass filters eliminates this problem as
shown in Figure 6 [10]. However, these are based on PLLs,
mixers, and low-pass filters [14] or on injection locked
oscillators [15] (note that injection locked oscillators have the
advantage of a larger noise suppression bandwidth (≈lock
range) [16] and provide better reciprocal mixing robustness
compared to PLLs (assuming that the reference phase noise
is better than the VCO phase noise)), and can be power
hungry. Moreover, harmonic mixing of signals within the
SDR input bandwidth severely corrupts the channelized
baseband signals. Additionally, due to overlap between bands
and phase issues, signal reconstruction from the digitized
filter bank outputs is challenging.

In this paper, we propose a digitizer approach based on
analog signal processing using passive switched capacitors to
condition the signal prior to digitization by ADCs (Figure 7).
The RF discrete time (DT) signal processing, as shown
in the second block in Figure 7, eases the dynamic range
requirements on the ADCs by prefiltering the signal.

For RF sampled processors, anRF sampler has historically
been an inherent bottleneck. However, with the scaling of
technology and subsequent improvement in switch perfor-
mance, RF sampling has become feasible in modern silicon
processes. Moreover, it is possible to use charge domain
sampling to leverage the inherent benefits of including of a
built-in antialias filter into the sampler, robustness to jitter,
and the ability to vary the resulting filter notches by simply
varying the integration period. This use of RF samplers
and subsequent discrete time processing provide a number
of advantages in deep submicron CMOS processes [17].
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Recently, other discrete time radio receivers using RF sam-
pling have been demonstrated using CMOS technology for
Bluetooth [18], GSM/GPRS [19], WLAN [20], and SDR type
applications [9, 21].

3. Passive Analog Signal Processing

In this section, we show how signal sampling and variable-
rate analog signal processing can be performed in the charge

domain for spectrum sensing applications. Many of the
benefits of the discrete time FFT architecture are based on
the use of passive discrete time charge based computations.
This is best illustrated with the help of an example design.
The passive switched capacitor shown in Figure 8 is able to
operate at RF sampling speeds [22].

In this circuit the input signal is sampled progressively
in time (𝜙

1
− 𝜙
𝑛
). After𝑁 clock periods the averaged output

is sampled onto the capacitor 𝐶
𝑠
, which has previously been
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discharged. The complete circuit implements an 𝑁-tap FIR
filter that is decimated by 𝑁. Interestingly, if the capacitor
𝐶
𝑠
is not discharged between each rotation then the circuit

implements an 𝑁-tap FIR filter combined with a first-order
IIR filter that is decimated by 𝑁. Note there is no active
element (i.e., amplifier) in this circuit. The circuit consists
only of switches and capacitors, so the maximum sampling
rate is only dependent on the 𝑅𝐶 settling times. Additionally,
the only power dissipation, other than that required for
sampling the signal from the input, is due to the charging
and discharging of the switch-transistor gate capacitors in a
very digital-like way. As a result, a variety of functions on the
sampled signal can be computed very fast and using minimal
power.

3.1. Passive Computations. For performing any linear func-
tion, addition and multiplication operations need to be per-
formed. Note that all passive switched capacitor operations
are destructive in nature. Therefore, once an operation is
performed, the input values are lost. For performingmultiple
operations on a single input, multiple copies of the input need
to be maintained. Here we present techniques to perform
these operations using passive switched capacitor circuits.
In order to select a suitable technique for implementation,
it is necessary to compare these techniques based on their
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Figure 8: Switched capacitor implementation of a passive𝑁-tap FIR
with a decimation by𝑁.
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Figure 9: Techniques for charge domain addition and multiplica-
tion operations.

robustness to nonidealities, ease of implementation, power
consumption, speed, and so forth.

3.1.1. Addition Operation

(1) Parallel Connection. Using passive switched capacitors,
voltages may be added by sharing the charges on two
participating capacitors by connecting them in parallel as
shown in Figure 9.The result of this operation (for capacitors
with equal capacitances) is the average value (𝑉

1
+ 𝑉
2
)/2

of the input voltages 𝑉
1
and 𝑉

2
, which is a scaled version

of their sum operation. Also note that two copies of the
output are obtained and these can be used for two subsequent
independent operations as desired. However, the operation
inherently attenuates the output by half. From an imple-
mentation perspective, use of parallel capacitors allows the
sharing of one plate (ground plate) for all the capacitors. This
can greatly reduce the parasitic capacitance and resistance of
the capacitor and the area of the overall implementation.

(2) Series Connection. An alternative technique is to connect
the capacitors in series.The result of this operation is the sum
(𝑉
1
+ 𝑉
2
) of the input voltages 𝑉

1
and 𝑉

2
. In this scheme,

it is possible to use slightly delayed clock phases for the
top and bottom plate switches in order to make the charge
injection independent of the input voltage [23]. However, in
the latter technique, switches are required both on the top
and bottom plate, thereby increasing the power consumption
in this circuit. The two switches placed in series halve the
speed of this circuit for identical switch sizes. Moreover, only
one output (which can be used for exactly one subsequent
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operation) is obtained. Also, both the top and bottom plate
parasitics are problematic.

3.1.2. Multiplication

(1) Charge Stealing. Multiplication in the charge domain can
be performed by scaling the voltage on a capacitor using
a share operation with another known capacitor (stealing
capacitor).The charge on the stealing capacitor is not utilized
later on. The overall operation causes a subunity scaling on
the original value.The scaling factor for a capacitor of value𝐶
and a stealing capacitor of value𝐶

𝑠
is given by𝑚 = 𝐶/(𝐶+𝐶

𝑠
).

Figure 9(b) shows a scaling operation using a stealing
capacitor of size 𝐶

𝑠
with no initial voltage on it. After the

sharing operation, the final value on the capacitor with initial
value𝑉

0
becomes𝑉

0
⋅ 𝐶/(𝐶+𝐶

𝑠
). 𝐶
𝑠
can be chosen appropri-

ately to obtain a particular scaling factor. Note that, although
this technique is capable of performing both subunity scaling
and multiplication with a known attenuation, at least one of
the operands needs to be known in advance for this imple-
mentation. In case voltage dependent variable capacitors (i.e.,
capacitor DACs) are utilized, dynamic operands can also be
used.

(2) Pulse-Width Modulation (PWM). Another technique to
perform multiplication using passive switched capacitors is
to modulate the turn on time of the switch and perform an
incomplete share operation with a fixed stealing capacitor.
The duration of the operation determines the multiplication
factor. It is possible to multiply two unknown operands using
this technique. Unfortunately, considering the nonlinearity
in the resistance and the share operation, the errors caused
by this technique make it unusable. However, the concept
can be used to devise another PWM scheme which allows
complete settling, thereby making it more reliable. In this
modified technique, the switch can be turned on using a
sequence of randomly placed pulses and sharing the capacitor
charge using a small stealing capacitor for each clock cycle.
The stealing capacitor is discharged at the end of each cycle.
Complete settling is allowed in each cycle. The total number
of on-pulses determines the amount of scaling. Maximum
scaling is obtained when all the clock cycles have on-pulses,
while no scaling is obtained when all the clock cycles have
off pulses. Although this technique is relatively accurate
and is able to handle dynamic operands, it is slow and
consumes more power than the charge stealing technique.
Also, depending on the accuracy required, the attenuation is
considerable.

(3) Current Domain. If the charge is converted to the current
domain, a single variable-duration PWM scheme can be used
to perform multiplication. Also, multiplication would not
entail an inherent attenuation. However, the technique is very
power hungry, and the accuracy of the transconductance
amplifier that translates from charge to current domain needs
to be very high.

Due to their low power, high speed characteristics, we
have focused on the parallel connection scheme for addition
and the charge stealing scheme for multiplications in our

designs. For many relevant linear algebra problems, multipli-
cation using fixed coefficients is sufficient, and this technique
lends itself easily to such applications.

3.2. Switching Schemes. To implement these addition and
multiplication schemes, a variety of switched capacitor
topologies can be used. Note that complex multiplication
can be performed using a combination of scalar multipli-
cation operations as discussed in [24]. In this subsection,
we discuss the various topologies and their trade-offs. For
the addition operation, two capacitors can be shared as
shown in Figure 9(a) and represented by Figure 10(a).We can
combine a share followed by scaling into a single operation
by connecting 3 capacitors (2 with input samples and 1
empty) and sharing their charges. This can be performed in
differentways using 2 or 3 switches as shown in Figures 10(b)–
10(d). It can be shown that 3 appropriately sized switches in
the scheme of Figure 10(d) minimize the settling error [25].
Multiplication by a factor 𝑐 + 𝑐 ⋅ 𝑗 is a special case scaling
operation that can be performed using a single step operation
[25]. Depending on the normalization of the scaling factor,
this may be performed using 4 capacitors (Figures 10(e)–
10(h)) or using 5 capacitors (Figures 10(i)–10(l)).Moreover, in
the case of four input operations (radix-4 operations), these
schemes (Figures 10(e)–10(l)) are useful.

While many schemes (Figures 10(a)-10(b), 10(d), 10(e),
10(h), 10(i), and 10(l)) ensure settling symmetry, others
(Figures 10(c), 10(f), 10(g), 10(j), and 10(k)) use fewer switches
for lower power at the expense of settling performance and
mismatch. Some variants (Figures 10(d), 10(h), and 10(l)
with equal size switches) provide both settling speed and
symmetry at the cost of larger power. When the switches
between the operand capacitors are sized differently from
those connecting to the stealing capacitor, in (d) and (l),
these same configurations can be optimized for an enhanced
settling-per-power performance. Finally, when comparing
the different schemes, with their appropriate switch sizes,
different trade-offs with regard to charge injection, clock
feed-through error, and so forth should be considered.

For our design, we chose to use (a) and (d) to perform
radix-2 scalar operations, while complex operations are
performed by cascading to sets of operations. Configurations
(h) and (l) were used to perform single-phase complex
multiplication in special cases. In the case of (d) and (l),
optimized switch sizing was used to mitigate their extra
power demands while still realizing their enhanced settling
performance for a net settling-per-power gain versus (b, c)
and (i–k), respectively.

3.3. Nonidealities. Several nonidealities haunt passive
switched capacitor circuits. The problem of nonidealities is
aggravated by the absence of a virtual ground node unlike in
op-amp based active switched capacitor circuits. The effect
of sampling clock jitter in passive switched capacitor circuits
has been analyzed [26]. Two important nonidealities, clock
feed-through and charge injection, become a nuisance in the
absence of a virtual ground node. Consequently, traditional
circuit techniques such as bottom plate sampling are difficult
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Figure 10: Different switching topologies for charge domain operations.

to implement. Also, poor matching between nMOS and
pMOS switches and the reducing difference between 𝑉dd
and 𝑉th in scaled technologies make the use of transmission
gate switches less effective for mitigating these nonidealities.
The noise in the system is dominated by the 𝑘𝑇/𝐶 noise of
the 𝑅𝐶 filter formed by the switch-capacitor combination.
Moreover, for a multistage switched capacitor operation,
the sampled noise voltages from one stage recombine in the
later stages. These combining noise samples in a particular
stage are correlated, and, therefore, the final noise becomes a
complicated function of the noise sampled at each stage of the
switched capacitor operation. The switch resistance (along
with the capacitance of the capacitor) determines the settling
time constant. However, the switch resistance is inherently
nonlinear and input signal dependent. Consequently, in the
case of high speeds of operation, incomplete settling can
cause significant signal dependent errors in computations.

Since switched capacitor circuits utilize a clock signal, the
accuracy of the clock is critical to performance. Specifically,
jitter in clocks reduces the accuracy of the switched capacitor
computations by translating timing uncertainty to charge
and voltage uncertainty. Fortunately, new techniques based
on transconductance linearization can be used to achieve
low phase noise clocks in SiGe bipolar [27] and even in
scaled CMOS circuits [28]. For increased frequency flexibil-
ity, highly optimized switched inductor [29] and switched
capacitor [30] based LCVCOs can be utilized to obtain awide
range of frequencies without sacrificing noise performance.
Moreover, on-chip self-healing techniques [31] utilizing a
digital back end can be used for healing the switched
capacitor circuits as well as improving the clock jitter [32].

For high speed designs, it is necessary to accuratelymodel
these nonidealities in the circuit simulator. It is also useful
to have the ability to individually turn off these nonidealities
to trace the effect of each nonideality on the output error.
For our designs, we model the nonidealities in MATLAB
and include them in system level simulations usingMATLAB
or Simulink [25]. This allows us to effectively capture the
nonidealities and optimize the designs in their presence.

4. An Analog FFT-Based Front End

In this section, as an example of a passive switched capac-
itor spectrum sensing front end, we introduce a frequency
domain divide and conquer approach that can enable wide-
band digitization. The architecture comprises an analog
domain Fourier transform signal processor (see previous
implementations by [33, 34]) that can be followed bymultiple
ADCs that digitize the input in the frequency domain.
In our design, we utilize an RF sampler followed by an
analog domain, discrete time, passive switched capacitor FFT
engine to perform channelization of the wideband RF input.
The circuits are based on the addition and multiplication
techniques discussed and selected in Section 3. A description
of the design of this charge reuse analog Fourier transform
(CRAFT) was presented in [25]. In this paper, we use the
CRAFT design as an example of a passive switched capacitor
spectrum sensing front end, provide more details on the
design methodology and optimization, and develop high
level models for system simulations. Although the discus-
sions here pertain to the CRAFT design, the underlying
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principles are general and can be easily extended to other
passive switched capacitor front end circuits for similar
high speed applications, including linear filtering and other
transforms.

For spectrum sensing, we use CRAFT as a function-
ally equivalent linear phase 𝑁-path filter (see Figure 11) to
perform channelization [35]. This scheme reduces both the
required speed and dynamic range of theADCs and, by virtue
of being minimal phase, allows for simple reconstruction
in the digital domain using an IFFT without any loss of
information.

For dynamic range calculations, signals are assumed to
be distributed evenly in frequency. Breaking the input up
into equal frequency channels reduces the PAPR as explained
earlier in Figure 4. In general, an 𝑁-path channelization of
spread signals reduces the dynamic range by𝑁 times (even in
the more general case with multiple signals arbitrarily placed
in frequency, this approximation typically holds), causing an
𝑁 times dynamic range reduction for the ADCs.

The DFT computation to be performed is a time-to-
frequency transform defined as

DFT : 𝑋 (𝑘) =

𝑁−1

∑

𝑛=0

𝑥 (𝑛)𝑊
𝑘𝑛
, (1)

where𝑊 is defined as𝑊 = 𝑒
−2𝜋𝑗/16.The desired 16-pointDFT

(𝑁 = 16) can also be represented as a linear matrix operation
on a vector of length 16 given by

X = Fx, (2)

where the scaling factor due to attenuation inherent in the
charge domain operations is absorbed within F. Expanding
(2) for the length 16 case we get

[
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𝑋
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𝑋
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𝑋
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...
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15

]
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]
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...
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[
[
[
[
[
[
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𝑥
0

𝑥
1

𝑥
2

...
𝑥
15

]
]
]
]
]
]

]

, (3)

where 𝑥
𝑖
are the DFT inputs 𝑥(𝑖), 𝑋

𝑗
are outputs 𝑋(𝑗),

and 𝑘 is the scaling factor. The equation can be further
simplified by noting the symmetry and periodicity of the
powers of 𝑊. These properties are utilized to formulate the
FFT algorithm as an efficient implementation to calculate the
DFT outputs in𝑁 log

2
𝑁 operational complexity rather than

the𝑁2 complexity of multiplication by F.
Figure 12(a) shows the flowchart representation of the

radix-2 decimation-in-time FFT algorithm used in CRAFT.
As seen in Figure 12(a) and by its definition as a linear
operation, the FFTuses only two types of operations: addition
(and subtraction) andmultiplication by fixed twiddle factors.
The twiddle factors are shown as powers of𝑊 in Figure 12(a),
where 𝑊 = 𝑒

−2𝜋𝑗/16 are equally spaced points on the unit
circle in the complex plane as shown in Figure 12(b). As a
result, for every scaling factor 𝑊

𝑘, R{𝑊
𝑘
} ≤ 1, ∀𝑘 and

I{𝑊
𝑘
} ≤ 1, ∀𝑘. Since passive computations discussed above

in Section 3 inherently attenuate the signal, these operations
are suitable for subunity scaling.

The CRAFT design is implemented using a number of
blocks shown in Figure 13. A brief description of the circuits
utilized in the CRAFT design follows.The timing diagram for
the various clock phases used to operate the system is shown
in Figure 14.

4.1. RF Sampler. An RF nMOS switch based voltage sampler
operating at 5GS/s for both 𝐼 and 𝑄 paths effectively pro-
viding 10GS/s was implemented. An array of 256 samplers
was used for providing inputs to CRAFT as shown in
Figure 13. The timing of the sampling clock phases is shown
in Figure 14. The noise contribution of the sampler is given
by 𝑘𝑇/𝐶. Therefore, a larger capacitor reduces the noise.
However, increasing the size of the capacitor warrants a larger
switch transistor to maintain the same sampling bandwidth,
increasing the power consumption in the sampler. In CRAFT,
the sampling capacitor was selected to be 200 fF so that the
noise from the sampler was below −63 dBFS. The switch size
was selected to allow sufficient settling such that the output-
referred settling error is below−65 dBFS for 5GS/s operation.

4.2. CRAFT Core Design. The CRAFT core follows the
RF sampler and performs an FFT operation as shown in
Figure 13.The CRAFT operation, represented in matrix form
as shown in (2), can be further broken down into 4 share
and 4 multiply operations in the 4 constituent stages leading
to F = (1/16) ⋅ S

4
S
3
S
2
S
1
Ibitrevx, where each of the 4 stages

is denoted by S
𝑖
and 𝑖 is the stage number. The matrices

for each stage are detailed in the appendix. Each stage is
implemented using parallel addition and charge stealing
techniques outlined in Section 3. Switching schemes are
selected to reduce power and improve settling time. Details
of the design methodology, circuit design principles, and
circuit optimization are discussed in Section 5. Using the
optimized designmethodologies, only 5 clock phases are used
for the entire CRAFT processing operations. These phases
have unequal durations to optimize settling and are shown
in Figure 14. The total processing time is chosen to be equal
to the sampling time in anticipation of an interleave-by-two
implementation.

As shown in Figure 12(a), after each operation, half the
wires return to their bus while the rest continues on the
other buses. Note that the wires in the CRAFT core are
permanently connected to the sampling capacitors and their
parasitics directly add to the sampling capacitance.Therefore,
to equalize the sampler wiring parasitics, the switches are
always placed midway between two operand buses. Two
example wires, one always returning to its own bus while
the other always shifting onto the other operand bus, are
highlighted in the layout screenshot in Figure 15. As seen,
the two wire lengths (and their associated parasitics) are
nominally matched.

4.3. Output Latch. On the far end of the core, CRAFT
connects through switches to operational transconductance
amplifier (OTA) based analog latches that store the outputs
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Figure 11: The functional equivalence of the DFT with frequency domain outputs and a time-domain𝑁-path complex-bandpass filter bank.
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Figure 12: A 16-point radix-2 decimation-in-time FFT (a) and DFT twiddle factors coefficients on the unit circle (b).

temporarily prior to being read out (Figure 13). The read-out
rate is limited by the speed of the OTA as well as the external
amplifiers and ADCs. The OTAs are based on a two-stage,
folded cascode, differential architecture and provide 70 dB
gain with a 900MHz unity gain bandwidth (UGB).The OTA
is utilized in a differential switched capacitor analog latch
configuration. As shown in the timing diagram in Figure 14,
the latch performs offset cancelation and OTA common
mode feedback during the sampling and processing phases
(𝜙
𝐴𝑍

) and latches the output with a 10𝜏 settling accuracy (𝜏
is the 𝑅𝐶 constant of the error settling which is ∝ 𝑒

−𝑡/𝜏
=

𝑒
−10) during the next 32 clock phases (𝜙

𝐿
). The output is then

held (𝜙
𝐻
) for the external measurement system to read out

using an analog multiplexer. As shown in Figure 13, thirty-
two latches capture the complex valued FFT output.

4.4. State Machines. The sampling array, CRAFT processing
engine, and output latches require multiple clocks to operate
and interface with test equipment. These clock phases are
shown in Figure 14. The input clock is used to generate all
internal signals. The input state machine (labeled state m/c 1
in Figure 13) is externally triggered to initiate a conversion. It

generates 16 sampling clock phases followed by the processing
clocks to operate the CRAFT core switches. A second state
machine (labeled state m/c 2 in Figure 13) uses handshaking
with the first and an external trigger to determine when
CRAFT outputs are valid. It subsequently generates the
clocks for the analog latch array to save the first CRAFT
conversion after being triggered.The latched outputs are then
observed sequentially using the integrated low-resistance
analog multiplexer (16 × 4 to 1 × 4 for differential real and
imaginary outputs from one FFT bin). This setup allows
asynchronous operation between the conversion and latch
triggering.

5. Design Methodology and Optimization

Within the CRAFT processing engine, computational speed,
dynamic range, and operating power trade-off with each
other. The analysis of design non idealities, discussed in
Section 3.3, represents a complex design space with different
trade-offs associatedwith each error source and the particular
mitigation techniques utilized. This section outlines a design
and optimization methodology used in the CRAFT design to
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Figure 13: Layout of the CRAFT implementation and on-chip test
structures.

achieve superior performance. For this implementation, the
following specifications and constraints were assumed:

(1) a 5GS/s input rate (𝐼 and 𝑄) with an interleave-
by-two CRAFT engine for processing contiguous
windows (this provides a total processing time of 16×
1/5GHz = 3.2 ns);

(2) a 60 dB (10 bit) dynamic range design goal.

Using these goals, the CRAFT engine is optimized for
processing power.The designmethodology is divided into an
architecture choice based on the constraints listed, followed
by an energy optimization procedure.

5.1. Design Parameters. To specify the architectural param-
eters, we initially assume the processing time to be shared
equally among the 5 clock phases (unlike in Figure 14).
This assumption is revisited during the energy optimization
procedure described later on. Also, a nominal 𝑉dd for all the
stages is assumed as an initial choice and is optimized later
on. Based on these assumptions, the following design choices
are made.

(1) Input Swing. The maximum input swing, 𝑉sig,max, for
the sampler is chosen to achieve −60 dBFS nonlinear-
ity while running at 5GS/s.This determines the peak-
to-peak input swing to be used as the input full scale.
For usewith a nMOS switch based processing core the
common mode voltage, 𝑉cm, is set at (1/2)𝑉sig,max.

(2) Capacitor Size.The sampling capacitor size is selected
such that the noise floor from the sampling operation

is lower than required for the target SNDR of 60 dB.
This dictates a sampling capacitor size of at least
200 fF.

(3) Attenuation.Attenuation degrades FFT performance.
Consequently, all techniques thatmitigate attenuation
are incorporated for improved performance.

(4) DummySwitches.Theeffect of clock feed-through and
charge injection for each stage on the overall SNDR
is simulated. Dummy switches are selected for stages
where the overall SNDR is otherwise not met.

(5) Additional Settling Switches. The overall computa-
tional settling error is simulated, and additional set-
tling switches are used for stages where their effect is
overtly beneficial to SNDR performance.

(6) Sampler Switch Size. The minimum switch size that
provides adequate sampler settling and nonlinearity
for the required SNDR is determined.

(7) Settling. The minimum per-stage computation set-
tling accuracy required for the overall SNDR is
selected. For CRAFT, the following amounts of nomi-
nal computational settling were chosen for stages 1–4:
7𝜏, 4𝜏, 5𝜏, and 4𝜏, respectively.

5.2. Energy Optimization. The exact switch sizing in each
stage, as well as the 𝑉dd employed, trade-off with the total
energy consumption per processing operation. The energy
optimization algorithm is outlined below.

5.2.1. Supply Voltage. In short channel devices velocity sat-
uration affects nMOS switches. The triode resistance of a
switch in deep triode ((𝑉gs − 𝑉tn) = 𝑉ov ≫ 𝑉ds) varies
proportionally as below and is empirically fit as shown:

𝑅triode ∝ (

1 + 𝑈
0
𝑉ov

𝑉ov
) ≈ (

1

𝑉ov
)

𝑝

. (4)

For the devices in CRAFT, 𝑝 = 0.50 provided an accurate
empirical fit. Using this approximation, the switch resistance
is 𝑅sw ∝ 𝑊

−1
(𝑉ov)
−𝑝. For a constant 𝑅sw, 𝑊 ∝ (𝑉ov)

−𝑝
=

(𝑉dd − (𝑉tn + 𝑉cm))
−𝑝. In order to calculate the energy per

switch operation, we compute (1/2)𝐶gs𝑉
2

dd ∝ 𝑊 ⋅ 𝑉
2

dd. Using
these equations, we compute the energy per switch operation
for a constant switch “on” resistance:

𝐸sw
󵄨
󵄨
󵄨
󵄨const.𝑅sw

∝

𝑉
2

dd

(𝑉dd − (𝑉tn + 𝑉cm))
𝑝
. (5)

This is plotted in Figure 16. As seen, this curve has a unique
minimum energy that occurs at 𝑉dd,opt = (2/(2 − 𝑝))(𝑉tn +

𝑉cm). Naturally, this minimum coincides with the typical
supply voltage in this technology to optimize digital energy
per speed (e.g., consider this nMOS switch as part of an
inverter). This optimum 𝑉dd is then customized per stage
depending on the varying operand voltage swings as a result
of attenuation. Note that for the optimization described, it
is assumed that 2 different supply domains are available for
optimization to cover the general case. The optimization
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Table 1: Summary of variables in LTI model.

Variable Description Expression
x Input (16 samples) 𝑥(𝑖), ∀𝑖 = [0, 15], 𝑖 ∈ Z

ns Sampler noise 𝜎
2

𝑛
𝑠,𝑖

= 2𝑘T/𝐶
𝐶 = capacitance per copy

F Ideal FFT
1

16

S
4
S
3
S
2
S
1

(see the appendix)
ΔF Linear FFT error See Section 6
F󸀠 FFT approximation F + ΔF
N󸀠p Processing noise at 𝑜/𝑝 See Section 6

Nq
Quantization noise at ADC

𝑖/𝑝
See Section 6

Ĥ Correction matrix F(F̂󸀠)−1; see Section 6
and [25]

Y󸀠 Digitized 𝑜/𝑝
(F + ΔF) (x+ns) +N󸀠p +Nq;

see Section 6

Z󸀠 Digitized and corrected 𝑜/𝑝
Ĥ Y󸀠 = X̂+N̂s+N̂p+Ĥ Nq;

see Section 6

algorithm can be easily modified for the specific case using
single or multiple voltage domains, based on availability.
Additionally, if alternate sample rates or time allocations may
be used, different𝑉dd settings allow separate optimization for
those modes as implemented switch sizes remain fixed.

5.2.2. Switch Size. For calculating the optimal switch width,
note that each 𝑉dd corresponds to a particular switch width
(for a given resistance) on the constant-resistance plot. The
maximum allowable nominal resistance can be calculated
based on the required settling and allocated time chosen in
Section 5.1. Therefore, from the 𝑉dd chosen above and the
maximum allowable resistance, the optimal switch width 𝑊

for each stage is calculated.

5.2.3. Time Allocation. The energy per stage is dependent
on the required switch resistance and, consequently, the

time allocated per stage. The per-stage time allocated is now
considered as the last optimization variable and is redis-
tributed (instead of the equal distribution assumed earlier)
to optimize the total energy further. For the new allocated
times (as shown in Figure 14), new optimal switch widths are
determined.

6. LTI Model

For the purposes of system level simulations to test com-
munication link performance, it is desirable to model the
system using a simple but accurate linear model. For this
purpose, we have devised an LTI approximation of the entire
CRAFT-ADC digitization operation, along with the twiddle
factor inaccuracies and noise. Noise disturbances as well as
mismatch based nonidealities and digital correction are also
included in the LTI model for performance evaluation. The
simulated SNDR performance using the LTI model matches
the performance obtained through circuit simulations. This
makes the LTImodel suitable for fast and reliable system level
simulationswithout the need for circuit levelmodeling. It also
allows the simulation of the CRAFT circuitry for a variety of
other architectures and applications.

Note that the measurement results (discussed later in
Section 7) include the nonidealities of the 8-bit resolution
arbitrary waveform generator (AWG) inputs and the output
test equipment (these are among the state-of-the-art test
equipment available for measuring an RF front end signal
processing DUT) that severely limit the observable nonide-
alities in the CRAFT circuitry. The additional nonidealities
due to the test setup are not part of the model (or circuit
simulation), so that the model predicts a somewhat better
performance (roughly 10 dB) than is measured.

A brief description of the components shown in Figure 17
is tabulated in Table 1. Note that nonlinear effects such as
settling error, charge injection and absorption, and clock
feed-through have not been included in this model. As
discussed earlier, the 16-point FFT (X = Fx) is implemented
asX = (1/𝐷)S

4
S
3
S
2
S
1
x, where𝐷 = 16 is the inherent scaling

due to charge based operations.
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6.1. Systematic Twiddle Factor Error. The linear errors in the
FFT matrix due to systematic capacitor mismatch can be
represented using matrix F󸀠 instead of the ideal matrix F,
producing X󸀠 at the output, where

X󸀠 = F󸀠x =

1
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Figure 17: AnLTImodel of the nonideal CRAFToperation followed
by digitization and correction.
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Figure 18: Monte Carlo simulations of the settling error in a 2-point
share operation with voltage dependent switch resistance.
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6.2. Noise. Given that the DFT is a linear operation, the noise
in the system can be analyzed using linear superposition of
the individual noise sources: noise in the sampler, noise per
processing stage, and ADC noise, as shown below.

6.2.1. Sampler Noise

Consider the following:

X󸀠 = F󸀠 (x + ns) = F󸀠x + N󸀠s,

where, N󸀠s = (F + ΔF)ns.
(9)

Note that the outputs of the CRAFT operation are inter-
preted in the frequency domain. Therefore, any inequality in
the gains to the individual outputs will cause the output noise
to be colored. This results in (10), where the sampler noise
appears at the FFT output as expected white noise terms plus
additional colored noise terms due to the unequal gains ofΔF
to the different bin outputs. Consider the following:

X󸀠 = F (x + ns)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

white

+ ΔF (x + ns)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

colored

. (10)

6.2.2. Processing Noise. Each stage of processing adds noise
in the charge domain and can be expanded as shown:

X󸀠 = 1
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(11)

where
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6.2.3. ADC Noise. The ADC quantizers add noise (Nq) to
the outputs of the CRAFT operation and are interpreted as
frequency domain noise perturbations, given by

X󸀠 = F󸀠x + Nq. (13)

In case all the ADCs have equal gains and the white quantiza-
tion noise approximation holds, Nq can be approximated to
be white.

6.2.4. All Superposed Noise Sources. Assuming that the noise
terms are independent, the total error can be expressed as

Y󸀠 = (F + ΔF) x + N󸀠s + N󸀠p + Nq. (14)

6.3. Digital Correction. Next we consider a linear correction
step that can be implemented in the digital domain. The
correction matrix is given by Ĥ = F(F̂󸀠)−1 = Fx̂(X󸀠)−1,
where x̂ is the estimated set of independent input vectors
giving uncorrected output responses X󸀠. Note that x̂ and X󸀠
are matrices comprising𝑁 vectors of size𝑁. The output, Z󸀠,
after digital correction, is given by

Z󸀠 = ĤY󸀠 = X̂ + N̂s + N̂p + ĤNq, (15)

where

N̂s = ĤN󸀠s = F(F̂󸀠)
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(16)

This assumes that the correction uses an accurate estimate
of the implementation, as represented by the relationships
F̂󸀠 ≈ F󸀠 and Ŝ󸀠

𝑖
≈ S󸀠
𝑖
.

If the implementation has small error with regard to the
ideal transform (so that S󸀠

𝑖
≈ S
𝑖
), the approximation below
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shows that the processing noise is ideally reduced so that the
additive white noise model holds:
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In summary, (15) shows that, with small error, digital
correction correctly leads to an estimate, X̂, of the desired
ideal noiseless transform X = Fx. Additionally, the colored
sampling and processing noise terms are restored to their
ideal output-referred values: N̂s ≈ Fns and N̂p ≈ Np. Quan-
tization noise, ĤNq, is slightly modified after correction.
Rather than being completely independent between output
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Figure 22:Measured energy required per conversion versusCRAFT
core supply voltages.

bins, the correction matrix causes some weighted combining
of outputs. However, since the implementation is designed to
match the desired ideal transform to many bits of accuracy,
this effect is minimal.

6.4. Application of the Model. In order to incorporate the
nonidealities arising from CRAFT as well as from the rest
of the signal path, the appropriate error terms need to be
computed and input to the LTImodel. For the signal indepen-
dent computation errors, such as those from uncompensated
parasitics or mismatched capacitors, the S

𝑖
matrices can

be appropriately modified (i.e., E
𝑖

̸=0). This information is
directly available from simulations, chip measurement, or
foundry data and can be incorporated as the bit resolution of
the matching and the resolution of the parasitic estimation.

In order to model signal dependent nonidealities, the
error terms E

𝑖
are computed as a function of the input

amplitude. For example, for nonlinear incomplete settling
errors, the error is proportional to the input amplitude (by
the factor 𝑒

−𝑡/𝜏), and the individual errors are made input
signal dependent. Note that, in reality, each addition and
multiplication operation is dependent on its specific inputs.



International Journal of Antennas and Propagation 15

Single-tone SNDR versus supply voltage

SN
D

R 
(d

B)

10

15

20

25

30

35

40

45

50

0.5 0.50.7 0.7
0.9 0.9

1.1 1.1
1.3 1.3

1.5
1.5

Nominal supply

Power optimized supply

VCore34 VCore12

Figure 23: Measured SNDR as a function of CRAFT core supply
voltages.

In our model, we effectively average out this dependence
linearly across all computations such that the resulting error is
an approximate function of the input amplitude distribution.
For example, Monte Carlo simulations for the effective set-
tling in a 2-point share operation with uniformly distributed
input amplitudes are shown in Figure 18. A histogram of the
effective settling time is shown on the top, while a histogram
of the resulting error with respect to the full-scale signal is
shown at the bottom. In this case, the average setting time
is 6.5𝜏 while the average error is −62.9 dBFS. The nonlinear
settling error can therefore be averaged and incorporated into
the LTI system. Note that this average is a strong function of
the input amplitude distribution and should be recalculated
for the appropriate distribution.

7. Measurement Results

In this section, we present some additional previously unpub-
lishedmeasurements of the CRAFT engine to demonstrate its
spectrum sensing capabilities. The test setup for measuring
the CRAFT system is shown in Figure 19. As shown in the
figure, 𝐼 and𝑄 inputs from a Tektronix AWG-7122B arbitrary
waveform generator are input to the CRAFT sampler. The
latched outputs are externally buffered and digitized by exter-
nal ADCs controlled by an FPGA (NI-7811R) programmed
using LabVIEW.

The time-domain input and output characteristics,
as observed by the oscilloscope (Agilent DSO7104B, see
Figure 19), for a single frequency sinusoidal signal on the
first bin are shown in Figure 20. A combination of sine and
cosine signals is used to obtain an 𝐼/𝑄 input signal. For this
measurement, the system is set up such that the input signal
is sampled using a progressively shifting phase (2𝜋/16) upon
every FFT conversion causing the bin 1 output to rotate
periodically as shown in the figure. Note that this differential
peak-to-peak measurement allows us to cancel the fixed DC
offset and directly provides the on-bin output magnitude of
the CRAFT operation.

Table 2: Table of SNDR and SFDR with 1-tone, on-bin, 0 dBFS
inputs.

One-tone bin 1GS/s 3GS/s 5GS/s
SNDR SFDR SNDR SFDR SNDR SFDR

1 46.6 37.7 45.8 35.8 48.1 42.6
2 50.9 42.8 50.7 43.8 48.4 39.7
3 51.5 44.7 49.8 44.8 45.8 41.8
4 48.9 37.9 51.4 40.2 51.1 41.1
5 50.2 44.4 47.7 40.7 46.2 42.5
6 51.4 44.8 48.0 40.1 45.0 36.3
7 48.1 40.2 48.2 42.6 45.1 40.1
8 56.5 51.2 61.2 57.2 49.9 42.8
9 48.5 41.3 47.5 41.2 45.2 39.6
10 53.7 47.8 46.6 39.6 44.5 35.6
11 50.3 44.9 47.6 40.0 46.6 43.3
12 49.2 37.9 52.2 41.4 50.9 41.6
13 52.0 46.2 50.0 45.5 45.0 39.9
14 53.8 46.6 50.9 43.0 48.5 38.8
15 47.1 39.0 45.4 35.9 48.9 42.3
Minimum 46.6 37.7 45.4 35.8 44.5 35.6
Maximum 56.5 47.8 61.2 45.5 51.1 43.3
𝜇 50.6 43.2 49.5 42.1 47.3 40.5
𝜎 2.7 4.1 3.8 5.0 2.3 2.3

For a signal with frequency exactly aligned with the
first DFT bin, the output is expected only at the first bin
output for a rectangular window. All other bin outputs are
expected to be zero [36]. However, due to nonidealities in the
CRAFT operation, outlined earlier in Section 3.3, the other
bin outputs contain leaked outputs that rotate similarly over
time.

To measure the FFT performance across bins with high
resolution, the outputs were digitized using off-chip ADCs
and recorded by an FPGA (NI-7811R) programmed using
LabVIEW. In order to reduce the output noise so as to observe
the design nonlinearities, a large number of outputs were
recorded and averaged. Offline calibration was used to cancel
the static error due to parasitics as discussed in Section 6.3.
For a single-tone input of varying amplitude at a frequency
corresponding to bin 1, the outputs across all 16 bins are
shown in Figure 21.

As shown in the figure, for low input amplitudes (thin,
blue curves), bin 1 shows an output amplitude proportional
to the input signal as expected. Noise appears on other
bins in a random way as shown in the blue curves. As the
amplitude increases (thick, red curves), we see that the bin
1 output increases as expected. However, the leakage onto
the other bins now follows a particular nonrandom pattern
that also rises with the rising input. This pattern signifies
nonlinearity, as opposed to noise in the other bins at lower
input amplitudes. It is also noticeable that this leakage rises
faster than the rise of the bin 1 output amplitude (in dB scale).
This is expected since the higher-order harmonics due to the
sampler nonlinearity increase faster with an increase in input
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amplitude (as the 𝑛th power of the input amplitude for the
𝑛th harmonic) as compared to the first harmonic.

Table 2 tabulates the performance of CRAFT for 1-tone
inputs in different bins for three representative speeds: 1 GS/s,
3 GS/s, and 5GS/s. In the table, SFDR for a 1-tone test
is calculated as the difference between a full-scale on-bin
signal and the largest off-bin output from CRAFT nonlinear-
ity/calibration errors. SNDR is calculated as follows:

SNDR = 20 log
10
(

√∑
𝑁

𝑘=1
𝑉
2

ideal (𝑘)

√(1/𝑁)∑
𝑁

𝑘=1
{𝑉meas (𝑘) − 𝑉ideal (𝑘)}

2

).

(18)

As shown in the table, an average SNDR of about 50 dB is
obtained at 1 GS/s and 3GS/s, while, at 5GS/s, an SNDR of
47 dB is obtained. This achieves an 8-bit resolution spectrum
detection across a 5GHz bandwidth.

The four stages in the CRAFT processing engine have two
power supplies: one for stages 1 and 2, 𝑉Core12, and one for
stages 3 and 4,𝑉Core34.This separation allows us to potentially
optimize the supplies independently for power. Figure 22
shows the measured variation of energy consumed per
conversion with the supply voltages. This trend is expected
from the square dependence of energy on supply voltage:
𝐸 ∝ 𝐶𝑉

2 for dynamic digital power. Supply voltages of
𝑉Core12 = 1.35V and 𝑉Core34 = 1.15V were used as nominal
supplies as marked by the black bold line in the figure. The
energy consumption at this nominal supply voltage is only
12.2 pJ/conversion translating into a power consumption of
3.8mW at 5GS/s operation.

Figure 23 plots the measured output SNDR versus the
varying supply voltages for the different stages. The nominal
supply voltages are marked using black bold lines, and their
intersection (nominal operating point) is labeled. As can be
seen from the plot, for larger voltages, a high output SNDR
is obtained. Higher supply voltages ensure that the switch
“on” resistance is low allowing a higher settling accuracy.
As expected, lowering the supply voltages reduces 𝑉gs, in

turn increasing switch “on” resistance and lowering settling
accuracy.

The impact of processing switch supply voltage on SNDR
is dependent on the signal swing at intermediate processing
stages and the effects it has on the settling variation, as well as
the differing severity certain computation errors have upon
the final result. Also, as labeled in the figure, power can be
optimized by lowering the voltage till the SNDR performance
is at the edge of the waterfall. This corner corresponds to a
power optimized supply for this design with a 37% reduction
in energy consumption, while the SNDR is degraded by
3.8 dB compared to the nominal design point.

8. Conclusion

This paper discusses the use of passive switched capacitor
circuits to design the RF front end for spectrum sensing
in cognitive radios. Switched capacitor techniques suitable
for wideband RF operation were presented. An example
architecture based on a passive switched capacitor FFT
front end was described. Design choices, methodology, and
optimizationwere discussed followed by systemmodeling for
high level simulations. Measurement results are presented to
prove the efficacy of the design solution.

Appendix

CRAFT Matrices

The linear operation performed by the DFT is written as
in (2). When the computation is performed in a stage-wise
manner, as is done by an FFT (radix-2, 16-point), it can be
decomposed into a sequence of operations as shown below:

FFT : X = F
4
F
3
F
2
F
1
Ibitrevx. (A.1)

These four stages, F
1
through F

4
, are shown below and are

represented graphically in Figure 12(a). Ibitrev is an identity
matrix modified to perform bit-reverse ordering of the
input vector, x, for the decimation-in-time (DIT) algorithm.
Consider the following:
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(A.2)

The radix-2, 16-point, DIT FFT is implemented by CRAFT as
a cascade of four stages of in-place processing operations:

CRAFT : X =

1

16

⋅ S
4
S
3
S
2
S
1
Ibitrevx, (A.3)

where Ibitrev was shown previously and S
1
, S
2
, S
3
, and S

4
are

shown below. They differ from the FFT matrices due to the
attenuation, charge-averaging, and stage scaling factor effects
of the implementation.They are rewritten below in a manner
that matches the implementation:
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Thiswork proposes the concept and reports the implementation of an adaptive and cognitive radio over fiber architecture. It is aimed
at dealing with the new demands for convergent networks by means of simultaneously providing the functionalities of multiband
radiofrequency spectrum sensing, dynamic resource allocation, and centralized processing capability, as well as the use of optically
controlled reconfigurable antennas and radio over fiber technology. The performance of this novel and innovative architecture
has been evaluated in a geographically distributed optical-wireless network under real conditions and for different fiber lengths.
Experimental results demonstrate reach extension of more than 40 times and an enhancement of more than 30 dB in the carrier to
interference plus noise ratio parameter.

1. Introduction

The development of telecommunications systems and net-
works has increasingly influenced the people’s life style and
vice versa. People desire to be connected anywhere, anytime,
and at high data rate and quality. Social networks, real time
video, and photo share applications have been demanding
new and tough requirements. While the research in wireless
communication systems is mainly focused on providing fast,
energy-efficient, and reliable connections to the final users,
studies have been developed and applied in all network
layers. Among various research areas, two of them have been
particularly successful in the last years: radio over fiber (RoF)
systems [1] and cognitive radio (CR) [2].

The next generation of telecom systems will require
extremely high capacity and reliable mobility. Enabling the
convergence of wired and wireless services can satisfy these

two requirements. In this way, it would be practicable to
simultaneous delivery voice and data and video services
in order to serve the fixed and mobile users in a unified
networking platform. The radio over fiber (RoF) technology
represents a key solution for taking advantage of both systems
in a unique way. In other words, it enables making use of the
huge bandwidth offered by optical communications systems
with themobility and flexibility provided by wireless systems.

RoF systems play an important role in the convergence
of optical and wireless networks and, additionally, can take
advantage of photonics technology in order to efficiently
enable the generation and detection of microwave signals in
the optical domain [3, 4].These systems have been considered
a key solution to connect base stations to the antenna units
not only for the current cellular systems but also forWi-Fi and
4G networks [5–7]. Other applications include hybrid passive
optical network (PON) implementations [8] and transport
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sensorial information in wireless sensor networks (WSNs)
[9].

Cognitive radio technology is the target of a large number
of researches focused on a better frequency spectrum usage,
as well as network self-management, self-optimization, and
machine learning [10]. Spectrum sensing (SS) techniques and
algorithms for multiple access are also being developed for
opportunistic spectrum management [11]. CR can be seen
as a self-aware, environment-aware, and regulation-aware
device. It can estimate the spectrum occupancy by using a SS
technique and, consequently, determining opportunities in a
frequency range of interest, based on the occupation or not of
the channels by licensed users (also known as primary users)
[12].

Some researchers have been working on the synergy of
cognitive radio and different photonics technologies in the
last years. Different applications and system architectures
have been proposed in literature, such as cognitive radio over
fiber (CRoF) for microcell applications [13], cognitive wire-
less LAN over fiber (CWLANoF) [14], cognitive front ends
using optically pumped reconfigurable antennas (OPRAS)
[15], and photonic analog-to-digital converter (Ph-ADC)
[16, 17]. The CRoF architecture is based on RoF technology
for connecting CRs. Al-Dulaimi et al. have numerically
demonstrated that CRoF is able to use local spectrum holes
efficiently and provide higher throughput to secondary users
if compared to the traditional CR functioning [13]. On the
other hand, Attar et al. have reported a WLANoF based on
a multiuser MAC with CR capability for multiple cooper-
ating receivers with distributed antennas [14]. It consists of
a number of access points without processing capabilities
connected via RoF links to a cognitive access point (CogAp).
The latter one is responsible for all processing functions and
the spectrum sensing is performed based on MAC layer
information. In [15], the development of a cognitive front-
end based on a UWB antenna and an optically pumped
reconfigurable antenna is presented. The latter one is acti-
vated by local laser diodes, which had been incorporated
to its structure for illuminating a photoconductive switch.
The main drawback of this approach is that the laser is only
locally controlled, since it is integrated to the antenna rather
than using an optical fiber to control the antenna properties.
Finally, Llorente et al. have published some articles on the
experimental demonstration of a time-stretched photonic
analog-to-digital converter with optical amplification applied
to sense ultralow power signals for cognitive radio applica-
tions [16, 17]. They have indeed demonstrated the feasibility
of a Ph-ADC and a bidirectional UWB radio over fiber
transmission in a dispersion compensating fiber (DCF). The
experiment has confirmed that the proposed Ph-ADC can be
used for UWB signal distribution at DCF dispersion values
𝐷
2
≈ −2500 ps/nm for in-building communications. Higher

dispersion values distort severely UWB carrier constellation
[16].

This work proposes the concept and reports the imple-
mentation of an innovative architecture called ACRoF, which
stands for adaptive and cognitive radio over fiber. It is based
on a central office with multiband SS and dynamic resource
allocation functionalities and simple remote antenna units

composed of previous developed optically controlled recon-
figurable antennas for data transmission and a broadband
antenna for continuously sensing the frequency spectrum.
There are six main contributions of the current work when
compared to others previously published in literature. First,
ACRoF can be considered innovative and unique, since
it takes advantage of RoF and CR technologies in an
adaptive way, since the antenna electromagnetic properties
are constantly reconfigured as a function of SS informa-
tion. Secondly, this work presents an implementation in a
real optical-wireless network, whereas CRoF has been only
analyzed numerically [13]. If compared to [14], our main
contribution concerns the cognition in the physical layer and
not in medium access control, as well as the possibility of
performing multiband SS.

The OPRAS antenna reported in [16] is locally manipu-
lated by a diode laser differently to our optically controlled
antenna that is remotely reconfigured by using a dedicated
optical link from the central office to the remote antenna unit.
Moreover, the current paper presents experimental results
on the network performance parameters based on online
SS. Finally, [16, 17] report the development and laboratory
experiments of a Ph-ADC, whereas this work proposes
the use a spectrum analyzer as ADC and RoF links for
enabling centralized processing capability in a geographically
distributed optical-wireless network.

2. Cognitive Radio and Spectrum Sensing

Software-defined radio (SDR) and cognitive radio (CR)
represent two remarkable concepts on the wireless com-
munications evolution, which are frequently attributed to
Mitola III [18, 19]. A SDR is a radio in which the phys-
ical layer signal processing is software-controlled rather
than using a dedicated hardware to handle radio frequency
(RF) signals. It is capable of reconfiguring its parame-
ters and even functionalities according to the software
controls. On the other hand, a CR is a software-defined
wireless communication that provides the functionalities
of self-organization, self-management, and self-adaptation
as a function of the radio environment, spectrum occu-
pancy and regulation, user requirements, internal capa-
bilities, and operational constraints. Several technologies
inspired on human biology have been suggested to achieve
these complex objectives. The inspirations typically come
from our sensory system (spectrum sensing), somatic ner-
vous system (controllers and actuators), autonomic ner-
vous system (self-management, situation-awareness, and self-
management) [20], and human brains (analyzing, corre-
lating, decision making, learning, planning, and experi-
menting) [10]. A CR must be aware of many aspects,
namely, the radio frequency spectrum and channels situa-
tion (environment-awareness), its own devices and systems
(self-awareness), regulations (regulation-awareness), service
requirements (service-awareness), business plans (business-
awareness), and etiquettes/policies [21, 22]. It can experi-
ment new configurations and functionalities, correlating the
applied plans to the obtained results. Therefore, it can learn
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Figure 1: RoF system block diagram.

from previous experiences in order to optimize its func-
tionalities. A CR must perform spectrum sensing constantly
for finding out new bandwidth opportunities that could be
explored by its radio capabilities. Furthermore, it needs to
sense and monitor the radio channels to detect primary
users’ transmissions, aswell as secondary users’ transmissions
(coexistence). If a primary signal is detected, the secondary
transmission should immediately stop to avoid interference.

The increasing demand for high data rates in wireless
communications has motivated the emergence of CR as
a key solution for the limited and underutilized wireless
electromagnetic spectrum resources. The licensed spectrum
is allocated during long time periods exclusively to licensed
users, that is, the primary users. Many studies on spectrum
utilization have demonstrated the unused frequency time and
space resources of this strategy [23, 24]. CR aims to exploit
these opportunities without causing significant interference
to primary users [10]. It is aimed at reusing the unused spec-
trum in an opportunistic way. In order to avoid interference
with the primary users, CR must monitor constantly the
spectrum usage and determine the possibilities for spectrum
occupancy. Transceivers based on this technology are able to
sense the frequency spectrum and determine its occupancy
by one or more primary users [25].

The spectrum sensing can be simply modeled in deciding
whether a slice of spectrum is available or not. It can be
discriminated in two hypotheses:

𝐻
0
: y [𝑛] = w [𝑛] , 𝑛 = 1, 2, . . . , 𝑁

𝐻
1
: y [𝑛] = x [𝑛] + w [𝑛] , 𝑛 = 1, 2, . . . , 𝑁,

(1)

where x[𝑛] represents a primary user,w[𝑛] is the noise, and n
represents time.The sensed signal y[𝑛] is a vector with length
𝐿.

First, CR needs to perform a test statistic Λ(𝑦) using
the received data y[𝑛] and compare it with predetermined
values of the threshold 𝜆. If Λ(𝑦) > 𝜆, CR decides the 𝐻

1

hypothesis. Otherwise, if Λ(𝑦) < 𝜆, CR decides 𝐻
0
. The

detector performance is quantified by a receiver operating
characteristics (ROC) curve, which gives the probability of
detection 𝑃

𝐷
as function of the probability of false alarm 𝑃FA

by varying the threshold [26].The parameters 𝑃
𝐷
and 𝑃FA are

defined by the following expressions:

𝑃
𝐷
= Pr (𝐻

1
| 𝐻
1
)

𝑃FA = Pr (𝐻1 | 𝐻0) .
(2)

The choices of the optimum number of required samples
and threshold 𝜆 are very crucial, since they strongly affect
the detection performance [27]. Recently, some SS tech-
niques have been proposed and investigated, such as energy
detection (ED) [28], cyclostationary detection [29], feature
detection, covariance matrix [30, 31], and blind detection
[32]. The ED technique has been chosen for the optical-
wireless network implementation, whichwill be subsequently
described. In this approach, a CR measures the energy of the
received signal over a finite time interval and compares it to
a predetermined decision threshold. The test statistic Λ(𝑦) is
given by

Λ (𝑦) =

1

𝑁

𝑁⋅𝐿

∑

𝑖=1

[y (𝑛)]2. (3)

Note that higher values of the 𝑁 ⋅ 𝐿 product lead to a
more precise estimate of Λ(𝑦). However, this is not typically
used in practical cases due to the dynamic variations of the
spectrum occupancy during long periods of time. Therefore,
the parameters𝑁 and 𝐿 need to be properly chosen in order
to enable a good and fast sensing performance.

3. Radio over Fiber Technology

The radio over fiber technology consists of a heteroge-
neous network formed by optical and wireless links. Unlike
traditional optical communications networks, in which a
baseband signal is transmitted into the optical fibers, in RoF
systems one or multiple analogous carriers are transported
into the fibers [9], as presented in Figure 1. The signal
transmission is realized by directly or externally modulating
lasers with the analogous radio frequency signals. On the
receiver side, the transmitted signal is recuperated by using
a photodetector. Moreover, RF amplifiers can be built in
the RoF system to further increase its reach. In this way,
using fiber-optic links ensures the transmission of RF signals
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Figure 2: Adaptive and cognitive radio over fiber architecture.

between a central office (CO) and a given number of RAUs.
The final users are commonly mobile devices, which are
connected to RAUs via a wireless link.

The integration of optical and wireless broadband infras-
tructures into the same backhaul network leads to a sig-
nificant systemic simplification and cost reduction, since all
routing, switching, and processing are performed at CO [33].
The signal processing centralization makes possible equip-
ment sharing and dynamic resource allocation. Ideally, a RoF
system can be entirely transparent to all signals transmitted
in the optical channel, because the transmission is ensured
by modulating the optical carrier with the RF signal. RoF
links can simultaneously transport several wireless standards,
such as Wi-Fi, GSM, UMTS, WiMAX, LTE, and UWB [14].
Furthermore, low attenuation, electromagnetic interference
immunity, low energy consumption, and large bandwidth are
other advantages of this technology.

4. ACRoF-Adaptive and Cognitive
Radio over Fiber

The proposed architecture for the implementation of an
optical-wireless network and spectrum sensing allocation is
called ACRoF (adaptive and cognitive radio over fiber) and

is illustrated in Figure 2. It consists of a CO and several
RAUs. The CO concentrates the following elements: (i)
remote radio unit (RRU), which consists of a radio capable
of transmitting and receiving data to/from different RAUs;
(ii) optically controlled reconfigurable antenna processing
(OCRAP), which is responsible for optically reconfiguring
the antenna electromagnetic properties; (iii) spectrum and
spatial sensing processing (SSSP), responsible for collecting
the spectrum samples of the radio environment and process-
ing and making them available to DRA; and (iv) dynamic
resource allocation (DRA), which dynamically performs
spectrum resource allocation based on the SSSP information.
On the other side, RAU is based on a previously developed
optically controlled reconfigurable antenna (OCRA) [34] for
data transmission and a broadband antenna for performing
SS.

The proposed ACRoF architecture has been implemented
in an optical-wireless network under real conditions, as
reported in Figure 3.Themain blocks of our testbed are a CO,
a RAU, a bidirectional RoF link, and an optical control link.
The RoF modules perform the electrical-optical and optical-
electrical signal conversion. The RF signal distribution is
carried out using bidirectional RoF links.The antenna control
link enables the transmission of an additional optical signal
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responsible for reconfiguring its electromagnetic character-
istics. Finally, an optically reconfigurable antenna and a
commercial broadband log-periodic antenna (680MHz to
10GHz) compose RAU and are used for data transmission
and spectrum sensing, respectively.

The ACRoF operational principle is described as follows:
(i) the frequency spectrum is sensed by RAUs and raw
samples are transmitted to CO through the optical links;
(ii) the information is extracted and processed using an
ED algorithm, with the purpose of choosing the frequency
channel and/or band at a lower level of energy; (iii) DRA
is conducted by setting the RF parameters (number of the
selected channels and the antenna operation bands: 2.4GHz
or 5GHz); (iv) the system operates at the new allocated
channel until the next estimation is performed.

CO integrates a spectrum analyzer, a dual-band access
point (AP), and a notebook, as illustrated in Figure 4. It
receives the RF signal composed of the uplink and sensed
spectrum data. AP processes the uplink data, whereas sensed
data is forwarded to a portable spectrum analyzer, which
is directly connected to the notebook by using a USB port.
The ED algorithm is then online processed by the notebook
in order to define the channel and/or band which is going
to be used. After taking this decision, it sends a command
to AP for setting the best channel, as well as an optical
control signal to reconfigure the antenna electromagnetic
characteristics. Note that data communication is performed
by using a bidirectional optical link and the control signal

RF interfacesOptical interfaces

Figure 5: RoF transceiver used in the experiments.

uses a dedicated link to adapt the antenna properties, such
as bandwidth and radiation pattern.

The broadband RoF modules operate from 30MHz up
to 6GHz using direct modulation. Figure 5 displays a pho-
tograph of a RoF module, including some indications of its
optical and electrical interfaces. It operates at different wave-
lengths for downlink and uplink. Therefore, a unique optical
fiber is required to enable bidirectional communication.

Figure 6 shows the antennas used in the RAU. The
optically controlled reconfigurable antenna is based on an
“E”-shape slot, previously developed by our research group
[34]. Its operational bandwidth and radiation pattern can be
reconfigured through 2.4 or 5GHz bands by controlling the
optical power launched on its photoconductive switch.
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Figure 6: “E”-shape and Hyperlog antennas.

5. Optically Controlled
Reconfigurable Antenna

Patch antennas have been intensely exploited in the last
decades due to their low-profile structure and facility to
be embedded in handheld wireless devices. Furthermore,
they provide other advantages, such as good radiation effi-
ciency, simple manufacturing, low cost, easy integration
with microwave integrated circuits (MIC), light weight, low
volume, and the possibility to be made conformal to the host
surface.

Khidre et al. have recently reported some results on a
circular polarization reconfigurable E-shaped patch antenna
using 2 PIN diodes [35]. Our proposed patch antenna is
based on E-shape printed slot, as presented in Figure 7(a).
It has been fabricated using a low-cost fiberglass dielectric
substrate. It is elevated from the ground plane with a
sizable air gap to achieve wide bandwidth. Therefore, the
electromagnetic coupling is ensured by a printed probe
located in the bottom plane of the antenna structure, as
shown in Figure 7(b). Its main advantages compared to
traditional electrically controlled reconfigurable antennas are
easy integration to optical systems, absence of bias lines,
linear behavior, and activation without producing harmonics
and intermodulation. An intrinsic silicon photoconductive
switch has been fixed to the printed probe for enabling us to
reconfigure the antenna frequency response as a function of
the incident optical power. A fiber has been used to illuminate
a silicon dice, as shown in Figure 7(b). Table 1 presents the
typical antenna electromagnetic properties for the central
frequencies from 2.4 and 5GHz ISM bands. It operates in the
2.4GHz band if the photoconductive switch is illuminated
(“ON” state), since its reflection coefficient is very low. On the
other hand, in the absence of light (“OFF” state), the antenna
operation is reconfigured to the 5GHz band, giving rise to
a gain of 5.22 dBi. Therefore, it provides two operational and
reconfigurable frequency bands: one from 2.407 to 2.524GHz
and the other from 5.033GHz up to 6GHz. Some examples
of its radiation pattern are reported in Figures 7(a) and 7(c).

6. Implementation of ACRoF Architecture

The proposed ACRoF architecture has been implemented
in a real geographically distributed optical-wireless network

Table 1: Typical reconfigurable antenna parameters for the central
frequencies of 2.4 and 5GHz bands.

Frequency
(GHz) Switch state Reflection coefficient

(dB)
Gain
(dBi)

2.47GHz “OFF” −2.18 1.42
“ON” −14.37 3.28

5.41 GHz “OFF” −17.42 5.22
“ON” −9.51 3.21

Table 2: System reach in meters.

Network type/frequency band 2.4GHz 5GHz
Pure wireless 45 25
ACRoF 1,045 1,035

located in the campus of the Brazilian National Institute of
Telecommunications (Inatel). Figure 8 shows a Google Earth
image with indications of the implemented network compo-
nents.The optical links are composed of two pieces of 1,020m
single-mode fibers, under real conditions of temperature,
humidity, and pressure. CO is located in the second floor
of the main building and RAU is placed at the Laboratory
WOCA (Wireless and Optical Convergent Access), which
allows covering an internal square from the campus.

Initially, an experiment has been carried out at 2.4GHz
to systemically evaluate the antenna performance. Figure 9
reports RSSI (received signal strength indicator) and PER
(packet error rate) measurements as a function of the laser
current by means of combining a 1 km fiber with a 2m
wireless link. The higher the laser current is, the higher the
RSSI is. By increasing the current from 0A (“OFF” state) to
2.5 A (“ON” state), equivalent to approximately 2Wof optical
power, RSSI is significantly enhanced from −66 to −57 dBm.
Moreover, PER is improved from 32 to 18%.

The maximum fiber-optic length that could be used
in the optical network has been evaluated considering the
maximum allowed delay established by the IEEE 802.11n
MAC layer standard for each particular frequency band (2.4
and 5GHz). It requires a shorter delay for the 5GHz band
when compared to the 2.4GHz band [36–38]. Figures 10 and
11 present the obtained RSSI and throughput as a function
of the fiber length for the two frequency bands, respectively.
In both cases, a back-to-back measurement had been first
conducted for comparison purposes. The fiber links have
been varied from 370m to 1.37 km.These results demonstrate
that the ACRoF concept has been successfully implemented,
since they are in accordance with the nominal value for the
802.11n standard, in which the minimum value to establish
a connection is around −90 dBm. The throughput numbers
are also in agreement with the back-to-back case with 370m
and 1,020m fiber lengths. On the other side, there was no
data transmission at 5GHz for the 1.37 km link because of
the time delay. It is important to highlight the proposed
architecture implied in a significant reach enhancement: from
45 to 1,045m at 2.4GHz (23 times longer) and from 25 to
1,035m (41 times longer) at 5GHz, in both cases using 1,020m
of fiber. Table 2 reports the system reach comparison between
a pure wireless network and the ACRoF architecture.
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Figure 7: “E”-shaped optically controlled reconfigurable antenna.

The proposed dynamic spectrum allocation algorithm
consists of selecting the best channel for data transmission
according to the following steps: (i) the spectrum samples
are processed at CO and the average power of each channel
is estimated; (ii) the algorithm defines the channel with the
lowest energy level at each band; (iii) the signal to noise
ratio (SNR) is estimated considering the average noise level
of each channel, which had been previously experimentally
obtained for our portable spectrum analyzer; (iv) the ED
algorithm chooses the channel that has the lowest estimated
SNR between the best ones from each ISM band; (v) the
notebook fromCO sets the chosen channel in the AP and the

antenna optical signal control to ensure data transmission at
the most appropriate channel.

The SS algorithm performed data collection considering
the following system parameters: number of samples over
time (𝑁 = 50) and samples frequency spacing 𝑑

𝑠
= 1MHz.

Therefore, the total number of samples over frequency was
𝐿 = 101. All experiments have been carried out considering a
22MHz channel. Therefore, the total number of samples for
each channel status estimation was 𝑁 ⋅ 𝐿 = 1,100. Figure 12
displays an example of the measurement spectrum in the
2.4GHz band, from 2400 to 2500MHz, which is extremely
crowded as expected. Figure 13 reports an example of the



8 International Journal of Antennas and Propagation

En
vi

ro
nm

en
t o

f s
en

sin
gCO

ERA
U

Figure 8: Google Earth image of the implemented real optical-
wireless network.

0 0.5 2
−70

−65

−60

−55

Current (A)

RS
SI

 (d
Bm

)

1 1.5 2.5
10

20

30

40

PE
R 

(%
)

PER
RSSI

Figure 9: Measurements of RSSI and PER parameters as a function
of the laser current.

measured SS in the 5GHz band, from 5100 up to 5900MHz
for𝐿 = 801. It is clear that thereweremuchmorewhite spaces
over this frequency band.

According to the IEEE 802.11 standard, different mod-
ulation and coding schemes (MCS) can be adopted by
network devices depending on the communication channel
conditions [39]. Therefore, the network throughput can be
significantly increased if the interference caused by other
networks is reduced. In order to evaluate the impacts caused
by cochannel interference in Wi-Fi networks based on
ACRoF architecture, a wireless scenario has been created
with other Wi-Fi networks. Three other Wi-Fi access points
have been used to carry out performance measurements.The
network performance has been evaluated using the following
parameters: carrier to interference plus noise ratio (CINR),
throughput, and PER. Moreover, four different conditions
have been considered: (i) cochannel interferences originating
from three other radio transmitters, (ii) cochannel interfer-
ences originating from two other radio transmitters, (iii)
cochannel interferences originating from only one radio
transmitter, and (iv) no cochannel interference. Tables 3 and 4
present the experiment results for 2.4GHz and 5GHz bands,
respectively. As shown in Table 3, the CINR, throughput, and
PER could be improved up to 39 dB, 29.6Mbps, and 11%,
respectively, by proper selecting of a channel over the 2.4GHz
band. They could also be enhanced to 30 dB, 22.7Mbps, and
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Table 3: Performance evaluation considering different levels of
cochannel interference in the 2.4GHz band.

Test conditions CINR (dB) Throughput
(Mbps) PER (%)

3 cochannel interferences 0.5 20.5 25
2 cochannel interferences 10 23.3 23
1 cochannel interference 20 25.5 18
The best channel 39.6 29.6 11

Table 4: Performance evaluation considering different levels of
cochannel interference in the 5GHz band.

Test conditions CINR (dB) Throughput
(Mbps) PER (%)

3 cochannel interferences −3 0.252 23
2 cochannel interferences 7 1.087 22
1 cochannel interference 17 2.28 18
The best channel 30 22.7 7

7%, respectively, using the same strategy in the 5GHz band,
as shown in Table 4.
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Figure 13: Sensed spectrum in the 5GHz band.

Finally, the entire ACRoF architecture has been experi-
mentally analyzed and its performance has been optimized
under two different contexts: using the most appropriate
channel from the 2.4GHz band and using the most appro-
priate channel from 2.4 and 5GHz bands. Initially, the data
communication had been conducted by using the Wi-Fi
channel 6 (2,437MHz), which is the default channel for
the most commercial APs, and then new channels have
been used in accordance with the methodology previously
described in the previous sections. Figure 14 reports a signif-
icant enhancement on the network performance parameters
obtained by using ACRoF. CINR can be further improved to
40 dB by using the best channel from 2.4 and 5GHz bands.
It is important to remark that the maximum MCS index
for this particular system is MCS 7, which has the following
configurations: (i) SISO (single input single output), (ii) 1
spatial stream, (iii) 20MHz channel bandwidth, and (iv)
800 ns of guard interval. Theoretically, for this scenario, the
maximum throughput that can be achieved is 65Mbps [40].
However, the previous experiments have shown that the
maximum downlink throughput for this system is 32Mbps.

7. Conclusions

Thiswork has proposed the concept and reported a successful
implementation of an adaptive and cognitive radio over fiber
architecture in a geographically distributed optical-wireless
network. It consists of a central office that centralizes all
network functionalities and simple remote antenna units
based on optically controlled reconfigurable antennas for
data transmission and broadband antennas for performing
spectrum sensing. Experimental results have demonstrated
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Figure 14: Significant enhancement on the network performance
parameters using ACRoF.

that the network performance can be significantly improved
in terms of CINR, throughput, and PER by using multiband
spectrum sensing and dynamic resource allocation. Partic-
ularly, it has reported a reach extension of more than 40
times and an enhancement of more than 30 dB in the CINR
parameter. Futureworkswill regard the integration ofACRoF
with the NovaGenesis “Future Internet” architecture [41].

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The authors are grateful for the financial support from
CNPq, MCTI, CAPES, FAPEMIG, FINATEL, ESSS-ANSYS,
Prysmian-Draka, and Huber-Suhner and the technical sup-
port from TIM.

References

[1] D. Wake, A. Nkansah, and N. J. Gomes, “Radio over fiber
link design for next generation wireless systems,” Journal of
Lightwave Technology, vol. 28, no. 16, pp. 2456–2464, 2010.

[2] P. Pawelczak, K. Nolan, L. Doyle, S. Oh, and D. Cabric, “Cogni-
tive radio: ten years of experimentation and development,” IEEE
Communications Magazine, vol. 49, no. 3, pp. 90–100, 2011.

[3] A. J. Seeds and K. J. Williams, “Microwave photonics,” Journal
of Lightwave Technology, vol. 24, no. 12, pp. 4628–4641, 2006.

[4] T. P. Villena, S. Arismar Cerqueira Jr., M. L. F. Abbade, H.
E. Hernandez Figueroa, and H. L. Fragnito, “Generation of
quaternary-amplitude microwave signals by using a new opti-
cal heterodyne technique,” Microwave and Optical Technology
Letters, vol. 54, pp. 2738–2743, 2012.



10 International Journal of Antennas and Propagation

[5] S. Deronne, V. Moeyaert, and S. Bette, “WiFi transmission
in radio-over-fiber systems: performance of the IEEE 802.11n
aggregation mechanism,” in Proceedings of the International
Conference on Optical Network Design and Modeling (ONDM
’13), pp. 167–172, Brest, France, 2013.

[6] C.-H. Yeh, C.-W. Chow, Y.-L. Liu et al., “Theory and technology
for standard WiMAX over fiber in high speed train systems,”
Journal of Lightwave Technology, vol. 28, no. 16, pp. 2327–2336,
2010.

[7] D. G. Lona, H. E. Hernández-Figueroa, S. A. Cerqueira Jr.,
R. M. Assumpção, O. C. Branquinho, and M. L. F. Abbade,
“Investigation of noise sources in radio-over-fiber systems for
Wi-Fi applications,” in Proceedings of the SBMO/IEEE MTT-S
InternationalMicrowave andOptoelectronics Conference (IMOC
’11), pp. 97–101, Natal, Brazil, November 2011.

[8] T. Shao, F. Paresys, Y. le Guennec, G. Maury, N. Corrao, and B.
Cabon, “Convergence of 60GHz radio over fiber and WDM-
PON using parallel phase modulation with a single Mach-
Zehnder modulator,” Journal of Lightwave Technology, vol. 30,
pp. 2824–22831, 2012.

[9] D. G. Lona, R. M. Assumpção, O. C. Branquinho, M. L. F.
Abbade, H. E. Hernandez Figueroa, and S. Arismar Cerqueira
Jr., “Implementation and performance investigation of radio
over fiber systems in wireless sensor networks,”Microwave and
Optical Technology Letters, vol. 54, pp. 2669–2675, 2012.

[10] S. Haykin, “Cognitive radio: brain-empowered wireless com-
munications,” IEEE Journal on Selected Areas in Communica-
tions, vol. 23, no. 2, pp. 201–220, 2005.

[11] E. Axell, G. Leus, E. G. Larsson, andH. V. Poor, “Spectrum sens-
ing for cognitive radio : state-of-the-art and recent advances,”
IEEE Signal ProcessingMagazine, vol. 29, no. 3, pp. 101–116, 2012.

[12] J. Unnikrishnan and V. V. Veeravalli, “Algorithms for dynamic
spectrum access with learning for cognitive radio,” IEEE Trans-
actions on Signal Processing, vol. 58, no. 2, pp. 750–760, 2010.

[13] A. Al-Dulaimi, H. Al-Raweshidy, J. Cosmas, and J. Loo, “Cog-
nitive mesh networks: cognitive radio over fiber for microcells
applications,” IEEE Vehicular TechnologyMagazine, vol. 5, no. 3,
pp. 54–60, 2010.

[14] A. Attar, H. Li, V. C.M. Leung, andQ. Pang, “Cognitive wireless
local area network over fibers: architecture, research issues and
testbed implementation,” IEEE Communications Magazine, vol.
50, no. 6, pp. 107–113, 2012.

[15] Y. Tawk, J. Costantine, S. Hemmady, G. Balakrishnan, K.
Avery, and C. G. Christodoulou, “Demonstration of a cognitive
radio front end using an optically pumped reconfigurable
antenna system (OPRAS),” IEEE Transactions on Antennas and
Propagation, vol. 60, no. 2, pp. 1075–1083, 2012.

[16] R. Llorente, M. Morant, T. Tokle, T. Quinlan, M. Thakur, and
S. Walker, “UWB radio-over-fiber and photonic sensing for
cognitive optical access networks,” in Proceedings of the IEEE
LEOS Annual Meeting Conference (LEOS ’09), pp. 733–734,
October 2009.

[17] R. Llorente, M. Morant, J. Puche, J. Romme, and T. Alves,
“Sensing ultra-low-power radio signals by photonic analog-
to-digital conversion,” in Proceedings of the 35th European
Conference on Optical Communication (ECOC ’09), September
2009.

[18] J. Mitola III, “Software radios: survey, critical evaluation and
future directions,” IEEE Aerospace and Electronic Systems Mag-
azine, vol. 8, no. 4, pp. 25–36, 1993.

[19] J. Mitola III and G. Q. Maguire Jr., “Cognitive radio: making
software radios more personal,” IEEE Personal Communica-
tions, vol. 6, no. 4, pp. 13–18, 1999.

[20] P. Demestichas, G. Dimitrakopoulos, J. Strassner, and D.
Bourse, “Introducing reconfigurability and cognitive networks
concepts in the wireless world,” IEEE Vehicular Technology
Magazine, vol. 1, no. 2, pp. 32–39, 2006.

[21] D. Jiang, S. Li, Y. Wang, and J. Chen, “A channel allocation
strategy for multi-hop cognitive radio networks,” in Proceedings
of theWireless Telecommunications Symposium (WTS ’13), pp. 1–
6, Phoenix, Ariz, USA, April 2013.

[22] P. Jun, J. Mingyang, J. Fu, and L. Weirong, “Active cooperation-
aware spectrum resource allocation in cognitive radio network,”
in Proceedings of the 32nd Chinese Control Conference (CCC ’13),
pp. 6409–6414, Xi’an, China, July 2013.

[23] M.McHenry, “NSF spectrum occupancymeasurements project
summary,” Shared Spectrum Co., August 2005.

[24] Federal Communications Commission, Technical Spectrum
Policy Task Force Report, November 2012.

[25] Y. Zeng, Y.-C. Liang, A. T. Hoang, and R. Zhang, “A review on
spectrumsensing for cognitive radio: challenges and solutions,”
EURASIP Journal on Advances in Signal Processing, vol. 2010,
Article ID 381465, pp. 1–15, 2010.

[26] S. Atapattu, C. Tellambura, and H. Jiang, “Analysis of area
under the ROC curve of energy detection,” IEEE Transactions
on Wireless Communications, vol. 9, no. 3, pp. 1216–1225, 2010.

[27] H. V. Poor, An Introduction to Signal Detection and Estimation,
Springer, New York, NY, USA, 1994.

[28] H. Urkowitz, “Energy detection of unknown deterministic
signals,” Proceedings of the IEEE, vol. 55, pp. 523–531, 1967.

[29] J. Lundén, V. Koivunen, A. Huttunen, and H. V. Poor, “Col-
laborative cyclostationary spectrum sensing for cognitive radio
systems,” IEEE Transactions on Signal Processing, vol. 57, no. 11,
pp. 4182–4195, 2009.

[30] P. Bianchi,M.Debbah,M.Maida, and J. Najim, “Performance of
statistical tests for single-source detection using randommatrix
theory,” IEEE Transactions on InformationTheory, vol. 57, no. 4,
pp. 2400–2419, 2011.

[31] E. Axell and E. G. Larsson, “A unified framework for GLRT-
based spectrum sensing of signals with covariance matrices
with known eigenvaluemultiplicities,” in Proceedings of the 36th
IEEE International Conference on Acoustics, Speech, and Signal
Processing (ICASSP ’11), pp. 2956–2959, Prague, Czech Republic,
May 2011.

[32] R. Wang and M. Tao, “Blind spectrum sensing by information
theoretic criteria for cognitive radios,” IEEE Transactions on
Vehicular Technology, vol. 59, no. 8, pp. 3806–3817, 2010.

[33] J. Guillory, S. Meyer, I. Sianud et al., “Radio-over-fiber archi-
tectures: future multigigabit wireless systems in the home-area
network,” IEEE Vehicular Technology Magazine, vol. 5, no. 3, pp.
30–38, 2010.

[34] S. Arismar Cerqueira Jr., I. F. da Costa, L. T. Manera, and J.
A. Diniz, “Optically controlled E-antenna for cognitive and
adaptive radio over fiber systems,” in Proceedings of the IEEE
Wireless Day, Valencia, Spain, November 2013.

[35] A. Khidre, K.-F. Lee, F. Yang, and A. Z. Elsherbeni, “Circular
polarization reconfigurable wideband E-shaped patch antenna
for wireless applications,” IEEE Transactions on Antennas and
Propagation, vol. 61, no. 2, pp. 960–964, 2013.

[36] B. L. Dang and I. Niemegeers, “Analysis of IEEE 802.11 in radio
over fiber home networks,” in Proceedings of the 30th IEEE



International Journal of Antennas and Propagation 11

Conference on Local Computer Networks (LCN ’05), pp. 744–747,
Sydney, Australia, November 2005.

[37] H. Kim, J. H. Cho, S. Kim et al., “Radio-over-fiber system
for TDD-based OFDMA wireless communication systems,”
Journal of Lightwave Technology, vol. 25, no. 11, pp. 3419–3427,
2007.

[38] A. Das, M. Mjeku, A. Nkansah, and N. J. Gomes, “Effects
on IEEE 802.11 MAC throughput in wireless LAN over fiber
systems,” Journal of Lightwave Technology, vol. 25, no. 11, pp.
3321–3328, 2007.

[39] M. S. Gast, 802.11n: A Survival Guide, O’Reilly Media, Inc.,
Sebastopol, Calif, USA, 1st edition, 2012.

[40] E. Parahia and R. Stacey, Next Generation Wireless Lans,
Throughput, Robustness, and Reliability in 802.11n, Cambridge
University Press, New York, NY, USA, 1st edition, 2008.

[41] NovaGenesis, http://www.inatel.br/novagenesis/.



Research Article
Optically Controlled Reconfigurable Antenna Array Based on
E-Shaped Elements

Arismar Cerqueira Sodré Junior,1 Igor Feliciano da Costa,1,2

Leandro Tiago Manera,3 and José Alexandre Diniz3

1 Laboratory WOCA (Wireless and Optical Convergent Access), National Institute of Telecommunications (INATEL),
João de Camargo Avenue 510, P.O. Box 05-37540-000, Santa Rita do Sapucaı́, MG, Brazil
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This work presents the development of optically controlled reconfigurable antenna arrays. They are based on two patch elements
with E-shaped slots, a printed probe, and a photoconductive switch made from an intrinsic silicon die. Numerical simulations and
experiments have been shown to be in agreement, and both demonstrate that the frequency response of the antenna arrays can
be efficiently reconfigured over two different frequency ISM bands, namely, 2.4 and 5GHz. A measured gain of 12.5 dBi has been
obtained through the use of two radiating elements printed in a low-cost substrate and a dihedral corner reflector.

1. Introduction

Current telecommunications networks require an efficient
use of the available spectrum to meet the increasing capacity
demand in the optical and wireless sectors as well as the need
for energy consumption reduction. Cognitive radio (CR),
radio over fiber (RoF), and reconfigurable antenna technolo-
gies have independently been utilized to fulfill the changing
requirements of modern telecommunications networks. CR
is able to automatically detect available frequency channels
in a wireless spectrum and adapt transmission parameters,
enabling different systems to operate concurrently [1]. CR
uses a number of technologies, including adaptive radio, in
which the communication system monitors and modifies
its own performance, and software defined radio (SDR), in
which traditional hardware components, including mixers,
modulators, and amplifiers, are configured using advanced
pieces of software [2].

RoF technology plays an important role in the integration
of wireless and fiber-optic networks [3, 4]. Taking advan-
tage of the benefits of optical fibers in conjunction with

the mobility and ubiquity of wireless networks, RoF systems
connect a central office (CO) to a base station (BS) by using
optical links to transmit one ormultiple analogous RF signals
without using optical-electronic (O/E) and electronic-optical
(E/O) converters. On the BS side, the signals are recovered by
photodetectors and then routed to the remote antenna unit
(RAU), which is simple and cost effective because most of
the processing components are centralized in the CO. RoF
is an essential technology for the provision of untethered
access to broadband wireless communications in a range
of applications including last mile solutions, extension of
existing radio coverage and capacity, backhaul, in-building
coverage, outdoor cellular systems, and fixed or mobile
broadband wireless access.

Reconfigurable antennas have exhibited great promise
for the next generation of wireless systems [5]. This new
class of antennas enables reconfigurability for not only the
bandwidth but also the radiation pattern and polarization;
this reconfiguration is accomplished by using frequency-
agile, software-defined, and cognitive radios to cope with
extendable and reconfigurable multiservice, multistandard,
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Figure 1: Schematic of OCRA implementation.

and multiband operation, and with efficient spectrum and
power utilization. These new functionalities can efficiently
reduce the number of components, hardware complexity, and
cost compared with current radio technology, which relies
on incompatible communications systems with inflexible
hardware. There are many methods and mechanisms for
reconfiguring the antenna structure and/or function [5]. The
methods can be based on the integration of radiofrequency
microelectromechanical systems (RF-MEMS), PIN diodes,
varactors, and photoconductive elements, the physical alter-
ation of the antenna radiating structure, or the use of smart
materials such as ferrites and liquid crystal. Particularly,
optically controlled reconfigurable antennas (OCRAs) have
been proposed and exploited in recent years due to their
unique advantages, such as [6–8] easy integration into optical
systems; absence of bias lines; elimination of unwanted
interference; losses and radiation pattern distortion; reliable
reconfiguration mechanisms, especially compared with RF-
MEMS; linear behavior and activation without producing
harmonics; and intermodulation.

This work presents the development of OCRA arrays
based on E-shaped elements and an example application that
utilizes them, as described in Figure 1. Different wavelengths
(𝜆) are used for simultaneously enabling data transmis-
sion, monitoring frequency spectrum, and antenna control.
Initially, broadband and/or multiband antennas perform
spectrum sensing (SS) to discover possible spectrum oppor-
tunities. This information is transmitted using RoF links and
processed in the CO, which remotely decides how to pro-
ceed and optically controls the antenna characteristics. This
technique aims to jointly apply CR, RoF, and reconfigurable
antenna technologies to harmonically integrate high capacity
optical backhaulwith energy- and spectrum-efficientwireless
access networks by exploiting new spectral resources.

In this way, the proposed OCRA array can be easily
integrated into optical networks by using RoF technology
to provide multiband and/or multitechnology broadband
operation for last mile applications. We have very recently
reported a successful implementation of an innovative and
cognitive optical wireless network using an OCRA [9]. The
proposed architecture allowed performing spectrum sens-
ing and dynamic resource allocation to dynamically adapt
the frequency band and/or antenna radiation pattern as a
function of the wireless environment. Experimental results
have demonstrated the use of the OCRA, and implementing

CW laser

Fiber pigtail
Probe

Photoconductive switch

Figure 2: Fabricated E-antenna.

the proposed architecture can significantly improve the net-
work performance.

The paper is organized as follows. The E-antenna design
is described in Section 2, and its main numerical and exper-
imental results are presented in Section 3. Section 4 reports
the fabrication of antenna arrays based onE-shaped elements.
Finally, the conclusions and final remarks are presented in
Section 5.

2. E-Antenna Design

Patch antennas have been significantly exploited in the past
due to their low-profile structure and compatibility with
being embedded in handheld wireless devices. They also
provide other advantages, such as good radiation efficiency,
simple manufacturing, low cost, ease of integration with
microwave integrated circuits, light weight, low volume,
and the possibility of being conformed to the host surface.
Particularly, Khidre et al. recently reported results on a
circular polarization reconfigurable E-shaped patch antenna
using two PIN diodes [10]. Our proposed patch antenna
is based on an E-shaped printed slot fabricated in a low-
cost fiberglass dielectric substrate, as presented in Figure 2.
It is based on electromagnetic coupling ensured by a printed
probe located in the bottom plane of the antenna structure, as
shown in the bottom part of Figure 2.This figure also displays
the other components used in the experiments, namely, a
photoconductive switch made from a 2 × 1mm intrinsic
silicon die, a 2W CW laser at 808 nm, and a fiber pigtail
for coupling light from the CW laser to the photoconductive
switch.
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The E-antenna has been designed to provide two fre-
quency bands (2.4GHz and 5GHz). Its entire structure, as
detailed in Figure 3, has been optimized by manipulating
the trapezoidal dimensions, 𝑊 and 𝐿, and varying the E-
shaped parameters, 𝑊

𝑠
, 𝑊
𝑠2
, and 𝑃. The highest frequency

band is determined by the “C-structure,” the white region
in Figure 3(b), which is approximately equal to its guided
wavelength. The two gray arms from Figure 3(b), the “L-
structures,” individually correspond to the guidedwavelength
of the central frequency from the lower band.

The prototype parameters are as follows:𝑊 = 20.48mm,
𝐿 = 17.65mm, 𝑊

𝑠
= 𝑊
𝑠2

= 4.1mm, 𝐿
𝑠
= 12mm, 𝐿

𝑠2
=

5.65mm, 𝐿
𝑡
= 9.5mm, 𝑇

𝑎
= 3mm, and 𝑇

𝑏
= 4.31mm. An

intrinsic silicon photoconductive switch has been fixed to the
printed probe, which enables reconfiguring of the antenna
electromagnetic properties as a function of optical power. A
fiber pigtail has been used to illuminate the silicon die with
light from the CW laser.

The antenna optical control can be explained as follows.
The probe is extremely important for antenna impedance
matching, and the photoconductive switch, which has been
fixed to the antenna, can manage its length. For the off-state,
the die assumes the highest resistance, which is approximately
6000Ω [11]; therefore, the probe length is limited to the
printed metallic line. As soon as the photoconductive switch
is illuminated, the silicon changes from an insulator state to
a near conducting state by creating electron-hole pairs. In
this way, the current starts to increase because the switch
resistance is reduced and, consequently, the silicon wafer

becomes able to conduct. Its minimum value for the on-
state is approximately 118Ω [6]. The incident photons must
have enough energy to move electrons from the valence to
the conduction band. Light in the near-infrared region is
adequate for this process as it strikes a balance between the
absorption coefficient and the light penetration depths [12],
which are inversely proportional to each other and related to
the light wavelength. Therefore, the switch conductivity can
be managed by controlling the optical incident power. In this
way, the probe length can bemodified, and, consequently, the
antenna frequency response can be reconfigured as a function
of the laser current. In the proposed antenna, the CW laser is
used to transpose the 1.12 eV bandgap between the valence
and conduction bands from the intrinsic silicon die.

3. E-Antenna Results

ANSYS HFSS numerical simulations and experimental char-
acterization are used to analyze the antenna. Initially, the
reflection coefficient (𝑆

11
) was evaluated for the two main

states of the photoconductive switch: the off-state (when there
is an absence of light on it) and the on-state (when it is
illuminated by the 808 nm laser). Figure 4 reports compar-
isons between the numerical and experimental results for
the off- and on-states, which present good agreement. When
the switch is in the off-state, the antenna frequency response
is much better for the 5GHz band, with the reflection
coefficient reaching a minimum of −22 and −40 dB in the
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simulation and experiment, respectively. For the 2.4GHz
band, it is −6 and −10 dB, respectively. As soon as the
photoconductive switch is illuminated by the 808 nm CW
laser, an incident power into the switch of approximately
300mW, the antenna reconfigures its frequency response
to significantly improve the reflection coefficient in the
2.4GHz band. In this state, the 2.4GHz band has a measured
bandwidth of 8.3% anddip of−27 dB; the 5GHzband also has
good performance, with a measured bandwidth of 8.7% and
dip of −19 dB. It is clear that the antenna frequency response
can be efficiently reconfigured through the two ISM bands in
accordance with the system requirements.

The antenna frequency response of the OCRA can also
be evaluated by impedance matching. An enhancement of
the antenna input impedance (𝑍in) at 2.4GHz, [41.31 −
26.37𝑗]Ω and [49.57 − 3.47𝑗]Ω for the off- and on-states,
respectively, was obtained. Its imaginary part is significantly
reduced, and the real part becomes very close to the ideal
value (50Ω). For these two reasons, the impedance matching
improves significantly for this frequency. For 5.8GHz, the
𝑆
11

measurements for both switch states are very close to
the central point of the Smith chart because their input
impedances are [56.87 − 0.41𝑗]Ω and [68.25 + 8.24𝑗]Ω for
the off- and on-states, respectively. These results reaffirm the
successful implementation of the OCRA.

The switch conductivity strongly depends on the number
of generated electron-hole pairs and, consequently, the level
of incident optical power. In accordance with [6], its conduc-
tivity is only 52 S/m for the off-state and can be increased to
622 S/m by illuminating it at 212mW. An experimental anal-
ysis of the 𝑆

11
dips (minimum points) has been performed to

illustrate this effect; the obtained results for the twomain ISM
bands are presented in Figure 5. The higher the laser current,
the better the dip at 2.4GHz, which improves from −12 to
−27 dB. The physical mechanism behind this phenomenon
is the increase in the probe length. Alternatively, the dip at
5.8 GHz becomes worse as the optical power is increased due
to the same reason. Additionally, it is important to highlight
that there is a trade-off point approximately 1.5 A.

The software ANSYS HFSS has also been used to numer-
ically analyze the E-shaped antenna radiation pattern. The
simulated tridimensional patterns at 2.4 and 5.8GHz for
the off-state are shown in Figure 6. As expected, the gain
for the 5.8GHz band (𝐺 = 5.30 dBi) is higher than that
for the 2.4GHz band (𝐺 = 3.29 dBi) because the E-antenna
operates differently for the two frequency bands. The lower
band is determined by the trapezoidal dimensions, which
approximately correspond to the guided wavelength for this
band. For the higher band, the E-shaped antenna operates
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Figure 6: Simulation of the E-shaped antenna radiation patterns for the off-state.
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Figure 7: Photograph of antenna array with a corner reflector.

based on two arms that are as long as its guided wavelength.
For this reason, its gain is higher than the previous one.

4. Antenna Arrays

Three different configurations of antenna arrays based on E-
shaped elements have been constructed to increase the direc-
tivity. The following configurations have been numerically
and experimentally evaluated:

configuration I: one E-shaped antenna;
configuration II: array with two E-shaped elements;
configuration III: array with two E-shaped elements
and a bottom ground plane;
configuration IV: array with two E-shaped elements
and a dihedral corner reflector based on the bottom
and side ground planes.

A photograph of configuration IV is displayed in Figure 7.
For this case, two photoconductive switches were used, one
for each E-shaped element. The angle between the 10 × 10 cm
metallic reflector plates is 90 degrees. The radiation pattern
of all configurations has been measured in the semianechoic
chamber of our institute and compared with the results of the
numerical simulations.

Figure 8 presents a comparison of the simulated andmea-
sured radiation patterns from configuration III at 5.8 GHz
for the off-state. There is an excellent agreement between
simulations andmeasurements.The azimuth pattern is omni-
directional, whereas the elevation pattern presents two lobes,
as in the pattern of one E-shaped element (configuration
I) presented in the previous section. The main difference
between configurations I and III is the gainmagnitude, which
increased from 5.30 to 10 dBi, respectively. As expected, the
radiation pattern and gain from configuration III at 5.8 GHz
for the off- and on-states are very similar. On the other
hand, the gain from configuration III at 2.4GHz can be
improved when the photoconductive switch is illuminated by
the 808 nm laser, as reported in Figure 9. The simulated and
measured gain for the on-state is approximately 5.3 dBi in this
case. Furthermore, the elevation pattern from configuration
IV for both switch states was also measured and is displayed
in Figure 10.The effect of the antenna optical control is similar
to that from configuration III, that is, a gain improvement for
2.4GHz and no changes for 5.8GHz.

Finally, an analysis of the gain improvement was per-
formed for all configurations at 2.4 and 5.8GHz, as shown
in Figure 11. It is clear that the directivity can be significantly
improved by using the proposed configurations. The spacing
between the array elements has been numerically optimized
for 5.8GHz. For this reason, the gain increase is higher for
this frequency than that for 2.4GHz. The gain at 2.4GHz
increased from 2.7 dBi from configuration I to 6.8 dBi by
using configuration IV. The measured gains at 5.8 GHz were
5.1, 7.5, 10, and 12.5 dBi for configurations I, II, III, and IV,
respectively. As in the previous sections, there is excellent
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Figure 8: Simulated and measured radiation patterns from configuration III at 5.8 GHz.
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Figure 9: Elevation patterns from configuration III at 2.4GHz.

agreement between HFSS simulations and experimental
results.

5. Conclusions

Low-cost, frequency-agile, and high-gain optically controlled
reconfigurable arrays based on E-shaped elements have been

successfully proposed and fabricated. Reconfigurable band-
widths over two ISMbands have been reported. Comparisons
between the simulations and measurements of the reflection
coefficient and radiation patterns have been shown to be in
excellent agreement. The array composed of two E-shaped
elements and a dihedral corner reflector provides measured
gains of 6.8 and 12.5 dBi at 2.4 and 5.8GHz, respectively.
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Figure 10: Measured elevation patterns from configuration IV.
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Experimental results have demonstrated that a laser at
the mid-infrared region can remotely control the antenna
frequency response. This outstanding feature allows for the
creation of smart, cognitive, and agile RF devices that can
both sense the surrounding RF environment and communi-
cate at the same time using different frequency bands.
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This paper deals with spectrum sensing in an orthogonal frequency division multiplexing (OFDM) context, allowing an
opportunistic user to detect a vacant spectrum resource in a licensed band.The proposedmethod is based on an iterative algorithm
used for the joint estimation of noise variance and frequency selective channel. It can be seen as a second-order detector, since it is
performed bymeans of theminimummean square error criterion.Themain advantage of the proposed algorithm is its capability to
perform spectrum sensing, noise variance estimation, and channel estimation in the presence of a signal. Furthermore, the sensing
duration is limited to only one OFDM symbol. We theoretically show the convergence of the algorithm, and we derive its analytical
detection and false alarm probabilities. Furthermore, we show that the detector is very efficient, even for low SNR values, and is
robust against a channel uncertainty.

1. Introduction

Wireless communications are facing a constant increase of
data-rate-consuming transmissions, due to the multiplica-
tions of the applications and services, while the available
spectrum resource is naturally limited. Furthermore, most of
the frequency bands are already allocated to specific licenses.
However, some of these licensed bands are not used at their
full capacity, which results in spectrum holes along the time
and frequency axes [1], whereas they could be exploited in
order to achieve the requirements of data rate. Away from the
usual paradigm in which the channels are allocated only for
licensed users, Mitola and Maguire Jr. defined the cognitive
radio [2], allowing an opportunistic access by unlicensed
users to the unused frequency bands. In such network, the
opportunistic users, called secondary users (SUs), can use
licensed bands when primary users (PUs) are not active. The
main condition for the SUs to use the licensed bands is to
minimize the interferences with PUs. Thus, they must be
able to sense the presence of the PUs, even if the PU’s signal
is attenuated compared to the noise level. Figure 1 depicts

the concept of spectrum sensing: a PU transmitter (PU-Tx) is
transmitting to a PU receiver (PU-Rx) while a SU transmitter
intends to transmit in the same band. In order to avoid the
interferences with the PU, the SU has to perform spectrum
sensing. In order to lighten the drawing, only one PU-Rx and
two SU-Rxs are depicted, but the network can obviously be
more complex. The process set up by the SUs to sense the
presence of the PUs is called spectrum sensing.The authors of
[3–5] propose detailed reviews of the different techniques of
spectrum sensing.Thedifferentmethods are usually classified
into two main categories: the cooperative detection and the
noncooperative detection. In this paper, we take an interest
in the latter.

The noncooperative detection concerns a sole SU who
tries to detect the presence of the PU alone. Among the wide
range of methods [3–6], one can describe the main ones: the
energy detector measures the energy of the received signal
and compares it to a threshold. It has a low complexity of
implementation and does not require any knowledge on the
PU’s signal features. However, the choice of the threshold
value depends on the noise variance, and the uncertainties
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Figure 1: Illustration of the principle of the spectrum sensing.

on the noise level may cause important degradations of the
detector performance [7, 8]. The matched-filter correlates
the received signal with the one transmitted by the PU,
which is supposed to be known at the receiver [9, 10]. This
is the optimal detector when the signal is transmitted with
AWGN only and supposed to be known at the receiver. Due
to these hypotheses, this method is generally not applicable
in practice, and its performance is degraded when the
knowledge of the signal is erroneous [11]. Less binding than
the matched-filter, the feature detectors only use several
characteristics of the signal to detect the PU. Thus, the
waveform-based sensing uses the preamble of the PU’s signal
(used for the synchronization, the estimation, etc.) to perform
a correlation with the received signal [12]. However, the
performance of the waveform-based sensing is degraded in
the presence of selective channels. In the same way, when a
CP is used in an OFDM signal, its autocorrelation function
becomes time-varying, so a second-order-based method
consists of detecting the peaks in the autocorrelation function
at time-lag 𝑇

𝑠
. More generally, the cyclostationarity detector

exploits the periodic redundancy of all telecommunications
signals to differentiate it from a pure Gaussian noise [13,
14]. As indicated in [5], the redundancy can occur due to
periodic patterns such as the CP, the symbol rate, or the
channel code. However, these second-order detectors require
large sensing time, that is, a large number of symbols to be
performed. In [15], a hybrid architecture composed of both
energy and cyclostationarity is proposed. It allows the energy
detector to compensate its limitation due to the noise uncer-
tainty thanks to a cyclostationarity detection stage whose
computation time is reduced. Another attractive technique
called eigenvalue-based detection uses the characteristics of
the covariance matrix of large-sized random matrices (e.g.,
containing noise samples only) [16–18]. Indeed, the random
matrix theory proved that the distribution of the eigenvalues
of such matrix tends to a deterministic function. In [16], if
the noise variance is known, the signal is detected if a peak
appears outside of the domain of the function.Using the same
theory, the authors of [17] propose the maximum-minimum
eigenvalue (MME) detection, whose principle consists of
comparing the ratio between the maximum and minimum
eigenvalues with a threshold to take the decision. Based on
the same theory, both techniques have the same asymptotic
performance, but the latter does not require the noise level to
be performed. However, these two methods require matrices
with very large sizes, hence, a large number of sensors and
a long sensing time. In order to use MME detection with a
single sensor, the authors of [19] propose to artificially create

a large matrix by stacking the shifted vectors of the received
sampled signal. However, this method is limited since the
rows of the created matrix are correlated.

In this paper, we propose to perform spectrum sensing
by means of a minimum mean square error (MMSE-)based
iterative algorithm developed in [20] for the joint estimation
of noise variance and frequency selective channel. Since we
consider a sole receiver, the context of the next sections will
be the noncooperative detection of a PU transmitting an
OFDM signal by a single SU in a given narrow band. In the
presence or absence of signal, the algorithm converges after
a few iterations and performs the estimation of the noise
variance. We then add a metric to the method presented in
[20] in order to turn it into a spectrum sensing algorithm.
The metric is defined by the difference between the second-
order moment 𝑀

2
of the received signal and the estimated

noise variance. If the PU is present (resp. absent), the metric
is equal to the power of the transmitted signal (resp. equal
to zero). As the algorithm is based on MMSE criterion, it
requires the estimation of the channel covariance matrix,
so the detector can be classified as a second-order statistics
detector. Compared to usual second-order statistics detectors
such asMME, the proposed one only needs the time duration
of one OFDM symbol to be performed. It is also robust
in frequency selective channels context. Furthermore, when
the PU’s signal is present, it achieves a joint estimation of
noise variance and channel. When the PU is absent, it also
performs the noise variance estimation, and it is proved
that it reaches the exact noise power value. In this paper, a
theoretical expression of the detection and the false alarm
probabilities are derived, andwe show that they are very close
to the simulations.

In this paper, the normal font𝑥 is used for scalar variables,
the boldface x is used for vectors, and the underlined boldface
x is used for matrices. Furthermore, small letters 𝑥 point out
the variables in the time domain and capital letters 𝑋 in the
frequency domain.

This paper is organized as follows: Section 2 presents
the system model and the algorithm developed in [20]. In
Section 3, we prove the convergence of the algorithm in the
absence of the signal, and we characterize the detector in
Section 4. In Section 5, we give the theoretical expressions
of the false alarm and detection probabilities. Simulations
results are depicted in Section 6, and finally we draw our
conclusions in Section 7.

2. Background

2.1. System Model. We consider the problem of the detection
of an OFDM pilot preamble over a Rayleigh fading channel
with additive white Gaussian noise (AWGN) in a given band.
After the 𝑀-points discrete Fourier transform (DFT), the
received signal is noted U. According to the presence or the
absence of the primary user (PU) in the band, the usual
hypothesis test is given by

H
0
: U = W,

H
1
: U = CH +W,

(1)



International Journal of Antennas and Propagation 3

Initialization
e𝜎, 𝜎

2
(i=0), ̃

LS
HR

̃ LMMSE
HR

Estimation of

(̂(i𝑓)
, 𝜎̂2(i𝑓))H

LMMSE
channel
estimation

MMSE noise
estimation

No
No

Yes

Yes

|𝜎2(i) − 𝜎2(i−1)|i = 1?
> e𝜎?

i ← i + 1

Figure 2: Block diagram of the iterative algorithm in the realistic scenario.

where H
0
and H

1
denote the absence and the presence of

the PU hypotheses, respectively. According to the model
given in [20], the variable H is the 𝑀 × 1 complex vector
of the frequency response of the channel, composed of the
frequency response samples𝐻

𝑚
,𝑚 = 0, 1, . . . ,𝑀 − 1:

𝐻
𝑚
=

𝐿−1

∑

𝑙=0

ℎ
𝑙
exp(−2𝑗𝜋

𝑚𝜏
𝑙

𝑀

) , (2)

where 𝐿 is the number of paths of the channel and ℎ
𝑙
and

𝜏
𝑙
are the zero-mean Gaussian path coefficients and the

sampled path delays, respectively.We assume that the channel
H follows a wide sense stationary uncorrelated scattering
(WSSUS) model [21]. Consequently, |𝐻

𝑚
| follows a Rayleigh

distribution. The variable C is the 𝑀 × 𝑀 diagonal matrix
composed of the pilots𝐶

𝑚
such that |𝐶

𝑚
| = 1, without loss of

generality, andW is the𝑀×1 vector of AWGNwith variance
𝜎
2. Let us assume that, under hypothesis H

1
, the receiver is

synchronized on the position of the preamble C.

2.2. Iterative Algorithm for the Channel and Noise Variance
Estimation. We now briefly recall the steps of the algorithm
for the joint and iterative estimation of the channel and the
noise variance as given in [20], that is, under the hypothesis
H
1
. Basically, it is an MMSE-based iterative algorithm in

which, at each step, the noise variance estimation feeds the
channel estimation and vice versa. In addition to the noise
variance, the linear-MMSE (LMMSE) channel estimation
[22] requires the channel covariance matrix that has to be
estimated at the receiver. This estimated channel covariance
matrix is noted R̃

𝐻
. The algorithm from [20] is described by

Figure 2 and its steps are detailed in the following.
(1) At the beginning, only the LS channel estimation ĤLS

performed on a pilot preamble is available at the receiver, so
the only way to estimate the covariance matrix denoted by
R̃LS
𝐻
is

R̃LS
𝐻

= ĤLS
(ĤLS

)

𝐻

, (3)

where (⋅)
𝐻 is the Hermitian transposition. Furthermore, a

stopping criterion 𝑒
𝜎
is fixed. Let us denote 𝑖 to be the index

of the iteration.
(2) At the first step (𝑖 = 1) of the algorithm, the LMMSE

channel estimation [22, 23] is performed with R̃LS
𝐻
:

ĤLMMSE
(𝑖=1)

= R̃LS
𝐻
(R̃LS
𝐻
+ 𝜎̂
2

(𝑖=0)
CC𝐻)

−1

ĤLS
, (4)

where 𝜎̂
2

(𝑖=0)
points out the initialization value of the noise

variance and CC𝐻 is equal to the identity matrix I.
(3)Thenoise variance is estimated bymeans of theMMSE

criterion [24] 𝜎̂
2

(𝑖=1)
= (1/𝑀)𝐸{‖ĤLS

− Ĥ‖

2

}, with Ĥ =

ĤLMMSE
(𝑖=1)

:

𝜎̂
2

(𝑖=1)
=

1

𝑀

𝐸{

󵄩
󵄩
󵄩
󵄩
󵄩
ĤLS

− ĤLMMSE
(𝑖=1)

󵄩
󵄩
󵄩
󵄩
󵄩

2

} , (5)

with ‖ ⋅ ‖ being the Frobenius matrix norm, defined by ‖A‖ =
√tr(AA𝐻). If the algorithm keeps on computing with R̃LS

𝐻
,

it is proved in [20] that (𝜎̂2
(𝑖)
) converges to zero. Under this

condition, the algorithm enters into an endless loop. This is
due to the fact that R̃LS

𝐻
is sensitive to the noise and then it

is a rough approximation of the exact covariance matrix. In
order to obtain a more accurate channel covariance matrix, it
is now possible to use ĤLMMSE

(𝑖=1)
, such that

R̃LMMSE
𝐻

= ĤLMMSE
(𝑖=1)

(ĤLMMSE
(𝑖=1)

)

𝐻

. (6)

(4) For 𝑖 ≥ 2, the iterative estimation steps (4) and (6) are
performed by using (6):

ĤLMMSE
(𝑖)

= R̃LMMSE
𝐻

(R̃LMMSE
𝐻

+ 𝜎̂
2

(𝑖−1)
I)
−1

ĤLS
, (7)

𝜎̂
2

(𝑖)
=

1

𝑀

𝐸{

󵄩
󵄩
󵄩
󵄩
󵄩
ĤLS

− ĤLMMSE
(𝑖)

󵄩
󵄩
󵄩
󵄩
󵄩

2

} . (8)

It will be shown afterwards that the characterization of
the initialization 𝜎̂

2

(𝑖=0)
remains the same in the presence or

absence of the PU. However, it is already obvious that 𝜎̂2
(𝑖=0)

must be strictly positive; otherwise, ĤLMMSE
(𝑖)

= ĤLS in (7). In
that case, 𝜎̂2

(𝑖)
= 0, and the algorithm enters into an endless

loop.
(5)While |𝜎̂2

(𝑖)
−𝜎̂
2

(𝑖−1)
| > 𝑒
𝜎
, go back to Step 4with 𝑖 ← 𝑖+1;

otherwise, go to Step 6.
(6) End of the algorithm.We note 𝑖

𝑓
to be the index of the

last iteration.
It is proved in [20] that this algorithm converges if

the initialization value of the noise variance is chosen
such that 𝜎̂

2

(𝑖=0)
≫ 𝑀

2
, where 𝑀

2
is the second-order

moment of the received signal U. Moreover, the algorithm
converges to limits (Ĥ

(𝑖
𝑓
)
, 𝜎̂
2

(𝑖
𝑓
)
) that are close to the exact

values (H, 𝜎
2
). From (4) and (7) we can deduce the com-

plexity of the algorithm. The LMMSE channel estimation
requires 𝑀3 scalar multiplications for the matrix inversion
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andmultiplication and the noise variance𝑀2.The covariance
matrices estimation also requires 𝑀2 operations. Finally, we
then evaluate the complexity of the proposed algorithm by
O(𝑖
𝑓
𝑀
3
).

Unlike the presented model, the next section investigates
the behavior of the algorithm when the PU is absent, that is,
under hypothesis H

0
.

3. Convergence of the Iterative Algorithm
under Hypothesis H

0

The signal C is now supposed to be absent, so the received
signal is U = W. The convergence of the proposed algorithm
in the case of absence of signal is going to be proved.
Furthermore, it will be proved afterwards that the nonnull
solution allows to turn the MMSE-based algorithm into a
free band detector. To this end, the first four steps of the
iterative algorithm presented in Section 2.2 are expressed
under hypothesis H

0
.

3.1. Expression of theAlgorithmunderH
0
. Let us consider that

the receiver does not know if the signal is present or absent,
so the same formalism as in Section 2.2 is used, and the steps
of the algorithm are recalled by considering noise only. At the
beginning of the process, the LS channel estimation has been
performed, ĤLS

= C−1U = C−1W. The following steps are as
follows.

(1) From ĤLS, the channel covariance matrix is estimated
by

R̃LS
𝐻

= ĤLS
(ĤLS

)

𝐻

= WW𝐻. (9)

Additionally, a stopping criterion 𝑒
𝜎
and an initialization

𝜎̂
2

(𝑖=0)
are set.

(2) At iteration 𝑖 = 1 of the algorithm, the LMMSE
channel estimation ĤLMMSE

(𝑖=1)
is performed by using R̃LS

𝐻
:

ĤLMMSE
(𝑖=1)

= RLS
𝐻
(RLS
𝐻
+ 𝜎̂
2

(𝑖=0)
I)
−1

ĤLS
. (10)

(3) The MMSE noise variance estimation 𝜎̂
2

(𝑖=1)
is per-

formed with Ĥ = ĤLMMSE
(𝑖=1)

:

𝜎̂
2

(𝑖=1)
=

1

𝑀

𝐸{

󵄩
󵄩
󵄩
󵄩
󵄩
ĤLS

− ĤLMMSE
(𝑖=1)

󵄩
󵄩
󵄩
󵄩
󵄩

2

} , (11)

and a new covariance matrix is computed by

R̃LMMSE
𝐻

= ĤLMMSE
(𝑖=1)

(ĤLMMSE
(𝑖=1)

)

𝐻

. (12)

Indeed, it is proved in the Appendix that if the algorithm
keeps on computing with R̃LS

𝐻
= WW𝐻, then the sequence

𝜎̂
2

(𝑖)
necessarily converges to zero. When R̃LS

𝐻
is used, and in

spite of its inputs being different, the algorithm has exactly
the same response whatever the hypothesis, H

0
or H
1
.

(4) Then, for 𝑖 ≥ 2, iteratively perform the channel and
the noise variance estimation:

ĤLMMSE
(𝑖)

= R̃LMMSE
𝐻

(R̃LMMSE
𝐻

+ 𝜎̂
2

(𝑖−1)
I)
−1

ĤLS
, (13)

𝜎̂
2

(𝑖)
=

1

𝑀

𝐸{

󵄩
󵄩
󵄩
󵄩
󵄩
ĤLS

− ĤLMMSE
(𝑖)

󵄩
󵄩
󵄩
󵄩
󵄩

2

} . (14)

From these first four steps of the algorithm, it is now
possible to prove that the algorithm converges to a nonnull
solution under H

0
.

3.2. Scalar Expression of the Sequence (𝜎̂
2

(𝑖)
) under H

0
. The

convergence of the algorithm is now going to be proved,
and its limit characterized. To this end, we will first obtain a
scalar expression of the sequence (𝜎̂2

(𝑖)
).We use theHermitian

property of R̃LS
𝐻

= (R̃LS
𝐻
)

𝐻

, and we develop (12) with (10) to get

R̃LMMSE
𝐻

= ĤLMMSE
(𝑖=1)

(ĤLMMSE
(𝑖=1)

)

𝐻

= R̃LS
𝐻
(R̃LS
𝐻
+ 𝜎̂
2

(𝑖=0)
I)
−1

ĤLS

× (R̃LS
𝐻
(R̃LS
𝐻
+ 𝜎̂
2

(𝑖=0)
I)
−1

ĤLS
)

𝐻

= R̃LS
𝐻
(R̃LS
𝐻
+ 𝜎̂
2

(𝑖=0)
I)
−1

ĤLS
(ĤLS

)

𝐻

× (R̃LS
𝐻
(R̃LS
𝐻
+ 𝜎̂
2

(𝑖=0)
I)
−1

) .

(15)

Let us assume that 𝑀 is large enough to justify the
approximation tr(WW𝐻) = tr(𝜎2I). Since the estimation
of the noise variance is calculated by means of the trace in
(14), we make the assumption that as a first approximation
R̃LS
𝐻

≈ 𝜎
2I, and then it is possible to replace RLMMSE

𝐻
by

R̃LMMSE
𝐻

= 𝜎
2I(𝜎2I + 𝜎̂

2

(𝑖=0)
I)
−1

R̃LS
𝐻
(𝜎
2I(𝜎2I + 𝜎̂

2

(𝑖=0)
I)
−1

)

=

𝜎
6

(𝜎
2
+ 𝜎̂
2

(𝑖=0)
)

2
I

(16)
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in (14). Thus, by reinjecting (16) in (13) and (14), it yields

𝜎̂
2

(𝑖+1)
=

1

𝑀

𝐸{

󵄩
󵄩
󵄩
󵄩
󵄩
ĤLS

− ĤLMMSE
(𝑖+1)

󵄩
󵄩
󵄩
󵄩
󵄩

2

}

=

1

𝑀

𝐸{

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

ĤLS
− R̃LMMSE
𝐻

× (R̃LMMSE
𝐻

+ 𝜎̂
2

(𝑖)
I)
−1

ĤLS
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

}

=

1

𝑀

𝐸

{
{

{
{

{

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

W −

𝜎
6

(𝜎
2
+ 𝜎̂
2

(𝑖=0)
)

2
I

×(

𝜎
6

(𝜎
2
+ 𝜎̂
2

(𝑖=0)
)

2
I + 𝜎̂
2

(𝑖)
I)
−1

W

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

}
}

}
}

}

=

1

𝑀

𝐸

{
{

{
{

{

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

(𝜎̂
2

(𝑖)
I((

𝜎
6

(𝜎
2
+ 𝜎̂
2

(𝑖=0)
)

2

+ 𝜎̂
2

(𝑖)
) I)

−1

)W

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

}
}

}
}

}

=

𝜎
2
𝜎̂
4

(𝑖)
(𝜎
2
+ 𝜎̂
2

(𝑖=0)
)

4

(𝜎
6
+ 𝜎̂
2

(𝑖)
(𝜎
2
+ 𝜎̂
2

(𝑖=0)
)

2

)

2
.

(17)

For a better readability, we note the following mathemat-
ical developments:

𝐴 = 𝜎
2
+ 𝜎̂
2

(𝑖=0)
. (18)

3.3. Convergence of the Sequence (𝜎̂2
(𝑖)
) to a Nonnull Solution.

One can observe that the sequence (𝜎̂
2

(𝑖+1)
) is built from a

function 𝑓
𝑠1
such that if we note 𝑥 = 𝜎̂

2

(𝑖)
, we have

𝑓
𝑠1 (𝑥) =

𝜎
2
𝐴
4
𝑥
2

(𝜎
6
+ 𝐴
2
𝑥)
2
. (19)

The sequence converges if 𝑓
𝑠1
has at least one fixed point.

Zero is an obvious fixed point, but it has been proved in the
Appendix that the algorithm enters into an endless loop if
(𝜎̂
2

(𝑖)
) converges to zero.We then solve the equation𝑓

𝑠1
(𝑥) = 𝑥

to find the other fixed points:

𝑓
𝑠1 (𝑥) = 𝑥

⇐⇒

𝜎
2
𝐴
4
𝑥
2

(𝜎
6
+ 𝐴
2
𝑥)
2
= 𝑥

⇐⇒ 𝜎
2
𝐴
4
𝑥
2
= 𝑥(𝜎

6
+ 𝐴
2
𝑥)

2

.

(20)

Since we exclude zero as a solution, the previous expres-
sions can be simplified by𝑥, and the problem amounts to look

for real roots of the polynomial𝐴4𝑥2+𝑥(2𝐴2𝜎6−𝜎2𝐴4)+𝜎12.
Since it is a second order polynomial, in order to find real
solutions, the first condition on the initialization 𝜎̂

2

(𝑖=0)
is

to obtain the discriminant Δ = (2𝐴
2
𝜎
6
− 𝜎
2
𝐴
4
)
2

− 4𝐴
4
𝜎
12

positive; that is,

Δ ≥ 0 ⇐⇒ (2𝐴
2
𝜎
6
− 𝜎
2
𝐴
4
)

2

≥ 4𝐴
4
𝜎
12

⇐⇒ 𝐴
2
≥ 4𝜎
4

⇐⇒ (𝜎
2
+ 𝜎̂
2

(𝑖=0)
)

2

≥ 4𝜎
4

⇐⇒ 𝜎̂
2

(𝑖=0)
≥ 3𝜎
2
.

(21)

As 𝜎
2 is absolutely unknown, one can find a stronger

condition on 𝜎̂
2

(𝑖=0)
, conditionally to Δ > 0. We then find the

roots 𝑟+
𝑠
and 𝑟
𝑠−
of the polynomial under the conditionΔ > 0:

𝑟
+

𝑠−
=

(𝜎
2
𝐴
4
− 2𝐴
2
𝜎
6
)

±
√(2𝐴

2
𝜎
6
− 𝜎
2
𝐴
4
)
2
− 4𝐴
4
𝜎
12

2𝐴
4

⇐⇒ 𝑟
+

𝑠−
=

(𝜎
2
𝐴
2
− 2𝜎
6
)

±
√𝜎
4
𝐴
4
− 4𝜎
8
𝐴
2

2𝐴
2

.

(22)

If we notice that when 𝜎̂
2

(𝑖=0)
tends to +∞, then 𝐴 = 𝜎

2
+

𝜎̂
2

(𝑖=0)
also tends to +∞, we get

lim
𝐴→∞

𝑟
+

𝑠
=

𝜎
2
𝐴
2
+ 𝜎
2
𝐴
2

2𝐴
2

= 𝜎
2
,

lim
𝐴→∞

𝑟
𝑠−

=

𝜎
2
𝐴
2
− 𝜎
2
𝐴
2

2𝐴
2

= 0.

(23)

It can be seen that by choosing a sufficiently large
initialization value 𝜎̂

2

(𝑖=0)
, the sequence (𝜎̂

2

(𝑖)
) converges to a

value as close as possible to the exact value of the noise
variance 𝜎2. This characterization of the initialization value
𝜎̂
2

(𝑖=0)
perfectly tallies with the one made for the sufficient

condition in [20]; that is, 𝜎̂2
(𝑖=0)

≫ 𝑀
2
. Moreover, it will

be further shown that this condition allows to differentiate
H
0
from H

1
. Thus, choosing 𝜎̂

2

(𝑖=0)
with a large value is

the condition for the algorithm to converge to a nonnull
solution for both hypotheses H

0
and H

1
. Besides that, since

it converges, the stopping criterion |𝜎̂
2

(𝑖)
− 𝜎̂
2

(𝑖−1)
| < 𝑒
𝜎
can also

be the same under H
0
. Finally, the MMSE-based algorithm

can be used as a free band detector.
Figure 3 displays the function 𝑓

𝑠1
for different values of

(𝜎̂
2

(𝑖=0)
), compared with 𝑦 = 𝑥 and for a fixed value 𝜎2 = 1. By

comparing the curves of𝑓
𝑠1
for different initializations values,

we verify that the larger the value of 𝜎̂2
(𝑖=0)

, the closer 𝜎̂2
(𝑖
𝑓
)
to

the real value of 𝜎2.

4. Proposed Detector

4.1. Decision Rule for the Proposed Detector. In this section,
a decision rule for the detector is proposed. To this end,
whatever H

0
or H
1
, it is supposed that the algorithm has
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Figure 3: Aspect of 𝑓
𝑠1
for different values of 𝜎2

(0)
, 𝜎2 = 1 compared

with 𝑦 = 𝑥.

converged; that is, the condition |𝜎̂
2

(𝑖)
− 𝜎̂
2

(𝑖−1)
| < 𝑒

𝜎
is

reached and then 𝑖 = 𝑖
𝑓
. The second-order moment 𝑀

2
=

(1/𝑀)∑
𝑀−1

𝑚=0
|𝑈
𝑚
|
2 of the received signal is expressed under

the hypotheses H
0
and H

1
:

𝑀
2
=

{
{
{
{
{

{
{
{
{
{

{

1

𝑀

𝑀−1

∑

𝑚=0

󵄨
󵄨
󵄨
󵄨
𝑊
𝑚

󵄨
󵄨
󵄨
󵄨

2
, if H

0

1

𝑀

𝑀−1

∑

𝑚=0

󵄨
󵄨
󵄨
󵄨
𝐶
𝑚
𝐻
𝑚
+𝑊
𝑚

󵄨
󵄨
󵄨
󵄨

2
, if H

1
.

(24)

The second-order moment 𝑀
2
is the decision metric used

for the energy detector. Here, a different metric noted M is
proposed and defined by

M =

󵄨
󵄨
󵄨
󵄨
󵄨
𝑀
2
− 𝜎̂
2󵄨󵄨
󵄨
󵄨
󵄨
, (25)

where 𝜎̂2 = 𝜎̂
2

(𝑖
𝑓
)
is the noise variance estimation performed

by the proposed iterative algorithm. From (24), the metric
(25) is rewritten according to the hypotheses H

0
and H

1
:

M =

{
{
{
{
{

{
{
{
{
{

{

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

1

𝑀

𝑀−1

∑

𝑚=0

󵄨
󵄨
󵄨
󵄨
𝑊
𝑚

󵄨
󵄨
󵄨
󵄨

2
− 𝜎̂
2

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

, under H
0

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

1

𝑀

𝑀−1

∑

𝑚=0

󵄨
󵄨
󵄨
󵄨
𝐶
𝑚
𝐻
𝑚
+𝑊
𝑚

󵄨
󵄨
󵄨
󵄨

2
− 𝜎̂
2

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

, under H
1
.

(26)

By fixing a threshold 𝜍, the decision criterion is now

H
0
, if M < 𝜍,

H
1
, else.

(27)

The detection and false alarm probabilities are defined by

𝑃
𝑑
= 𝑃 (M > 𝜍 | H

1
) ,

𝑃fa = 𝑃 (M > 𝜍 | H
0
) .

(28)

The detection probability 𝑃
𝑑
is the probability to decide

H
1
while the PU is present, and the false alarm probability

𝑃fa is the probability to decide H
1
while the PU is absent.

As mentioned in [6, 25], the sensibility of the detector (the
expected value of 𝑃fa and 𝑃

𝑑
) depends on the application.

In a cognitive radio context, the SU has to minimize the
interference with the PU, so the probability of detection has
to be maximized, whereas if the false alarm probability is not
optimized, it only implies that the SUmisses white spaces. On
the contrary, in a radar application, a false alarm could have
serious consequences, especially in a military context.

4.2. Expression of the Proposed Detector. By taking into
account the previous decision rule, it is possible to extend
the practical algorithm proposed in the scenario of the
joint estimation of the SNR and the channel for free band
detections, as it is summed up in Algorithm 1.

It can be seen that the structure of Algorithm 1 is similar
to the one of [20] and summarized in Section 2.2, but with
a detection part. Thus, compared to the methods of the
literature, the proposed one not only returns the decision H

0

and H
1
but also provides

(i) the noise variance estimation, if H
0
;

(ii) the channel and SNR estimations, if H
1
.

An a priori qualitative analysis of the detector can be
done. Indeed, from (26), one can deduce that by supposing
a good estimation of 𝜎̂2, M tends to a value close to zero
under H

0
and to a value close to 𝑃

𝑠
under H

1
. By supposing

a normalized signal power, one can suppose that choosing a
value 𝜍 between zero and one allows getting a viable detector.
Concerning the value of the threshold 𝑒

𝜎
, since it ensures the

convergence of the algorithm, it has no effect on the detector
performance. This property will be shown by simulations
afterward.

In the context of cognitive radio, the SUs have to target
a given detection probability, noted 𝑃

𝑡

𝑑
. Thus, according to

the Neyman-Pearson criterion [26], the best value of the
threshold 𝜍 can be analytically derived (when it is possible)
by solving 𝑃(M > 𝜍 | H

1
) ≥ 𝑃

𝑡

𝑑
and by maximizing the

likelihood ratio test (LRT)

Λ (𝑥) =

𝑝 (𝑥 | H
1
)

𝑝 (𝑥 | H
0
)

≷
H
1

H
0

𝜍. (29)

To this end, the probability density functions (pdfs) of M
have to be expressed, which is proposed in the next section.
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begin
Initialization: R̃LS

𝐻
, 𝑒
𝜎
> 0, 𝜎̂2

(𝑖=0)
and 𝜍;

𝑖 ← 1;
while 󵄨󵄨󵄨󵄨

󵄨
𝜎̂
2

(𝑖)
− 𝜎̂
2

(𝑖−1)

󵄨
󵄨
󵄨
󵄨
󵄨
> 𝑒
𝜎
do

if 𝑖 = 1 then
Perform LMMSE channel estimation;
Perform the noise variance estimation;
Calculate the matrix R̃LMMSE

𝐻
;

else
Perform an LMMSE channel estimation with R̃LMMSE

𝐻
;

Perform the noise variance estimation;
end
𝑖 ← 𝑖 + 1;

end
Calculate the metricM;
if M < 𝜍 then

return H
0
;

else
return H

1
;

end
end

Algorithm 1: Application of the MMSE-based algorithm to free band detection.

5. Detection and False Alarm Probabilities

5.1. Probability Density Function of M under H
1
. Under the

hypothesisH
1
, since it is proved in [20] that the noise variance

estimation is very accurate, it is reasonable to suppose that
the noise variance estimation is good enough to consider that
𝜎̂
2

≈ (1/𝑀)∑
𝑀−1

𝑚=0
|𝑊
𝑚
|
2, so the contribution of 𝐶

𝑚
𝐻
𝑚
is

prevailing inM (26) so that

M =

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

1

𝑀

𝑀−1

∑

𝑚=0

(
󵄨
󵄨
󵄨
󵄨
𝐶
𝑚
𝐻
𝑚
+𝑊
𝑚

󵄨
󵄨
󵄨
󵄨

2
) − 𝜎̂
2

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

1

𝑀

𝑀−1

∑

𝑚=0

(
󵄨
󵄨
󵄨
󵄨
𝐶
𝑚
𝐻
𝑚

󵄨
󵄨
󵄨
󵄨

2
+
󵄨
󵄨
󵄨
󵄨
𝑊
𝑚

󵄨
󵄨
󵄨
󵄨

2
+ CF
𝑚
) − 𝜎̂
2

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

,

(30)

where ∀𝑚 = 0, . . . ,𝑀 − 1, CF
𝑚

are the cross-factors
(𝐶
𝑚
𝐻
𝑚
𝑊
∗

𝑚
) + (𝐶

𝑚
𝐻
𝑚
𝑊
∗

𝑚
)
∗, whose means (for a sufficiently

large value of𝑀) are equal to zero, since𝐻
𝑚
and𝑊

𝑚
are zero-

mean uncorrelated Gaussian processes. The development of
(30) then simply yields

M =

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

1

𝑀

𝑀−1

∑

𝑚=0

󵄨
󵄨
󵄨
󵄨
𝐶
𝑚
𝐻
𝑚

󵄨
󵄨
󵄨
󵄨

2
+
󵄨
󵄨
󵄨
󵄨
𝑊
𝑚

󵄨
󵄨
󵄨
󵄨

2
− 𝜎̂
2

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

=

1

𝑀

𝑀−1

∑

𝑚=0

󵄨
󵄨
󵄨
󵄨
𝐻
𝑚
𝐶
𝑚

󵄨
󵄨
󵄨
󵄨

2
.

(31)

The result in (31) obtained with the approximation 𝜎̂
2
≈

(1/𝑀)∑
𝑀−1

𝑚=0
|𝑊
𝑚
|
2 may be debated, since it has been proved

in [20] that the noise estimation under hypothesis H
1
is

slightly biased. However, it will be shown in Section 6 that
this approximation is accurate for low values of 𝜎2. From

the channel frequency response expression (2) and remem-
bering that 𝐶

𝑚
𝐶
∗

𝑚
= 1, the metric (31) can be rewritten by

M =

1

𝑀

𝑀−1

∑

𝑚=0

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝐿−1

∑

𝑙=0

ℎ
𝑙
exp(−2𝑗𝜋

𝑚𝛽
𝑙

𝑀

)𝐶
𝑚

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

=

1

𝑀

𝑀−1

∑

𝑚=0

(

𝐿−1

∑

𝑙
1
=0

ℎ
𝑙
1

exp(−2𝑗𝜋
𝑚𝛽
𝑙
1

𝑀

)𝐶
𝑚
)

× (

𝐿−1

∑

𝑙
2
=0

ℎ
𝑙
2

exp(−2𝑗𝜋
𝑚𝛽
𝑙
2

𝑀

)𝐶
𝑚
)

∗

=

𝐿−1

∑

𝑙=0

󵄨
󵄨
󵄨
󵄨
ℎ
𝑙

󵄨
󵄨
󵄨
󵄨

2

+

1

𝑀

𝑀−1

∑

𝑚=0

𝐿−1

∑

𝑙
1
=0

𝐿−1

∑

𝑙
2
=0

𝑙
2
̸=𝑙
1

ℎ
𝑙
1

ℎ
∗

𝑙
2

exp(−2𝑗𝜋
𝑚 (𝛽
𝑙
1

− 𝛽
𝑙
2

)

𝑀

) .

(32)

According to the Rayleigh distributed WSSUS channel
model, whatever 𝑙 = 0, . . . , 𝐿−1, the gains ℎ

𝑙
are uncorrelated

zero-mean Gaussian processes. For a large enough value 𝑀,
let us assume that the mean of the cross-factors of the right
side in (32) are equal to zero. Finally, the metricM is simply
written as follows:

M =

𝐿−1

∑

𝑙=0

󵄨
󵄨
󵄨
󵄨
ℎ
𝑙

󵄨
󵄨
󵄨
󵄨

2
, under H

1
. (33)
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M then follows a chi-square distribution with 2𝐿 degrees of
freedom.The probability density function (pdf) noted 𝑝M(𝑥)

of the decision statistic under H
1
is then expressed by

𝑝M (𝑥) =

1

2
𝐿
𝑃
𝐿

𝑠
Γ (𝐿)

𝑥
𝐿−1 exp(− 𝑥

2𝑃
𝑠

) , under H
1
, (34)

where Γ(⋅) is the gamma function [27].

5.2. Probability Density Function of M under H
0
. The the-

oretical probability density function (pdf) expression of the
metric under the hypothesis H

0

M =

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

1

𝑀

𝑀−1

∑

𝑚=0

󵄨
󵄨
󵄨
󵄨
𝑊
𝑚

󵄨
󵄨
󵄨
󵄨

2
− 𝜎̂
2

(𝑖)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

(35)

is now developed. To this end, let us assume that the
initialization value of the algorithm is chosen large enough to
state 𝜎̂2 ≈ 𝜎

2, in accordance with the previously formulated
hypotheses in Section 3.3. Whatever 𝑚 = 0, . . . ,𝑀 − 1,
each sample 𝑊

𝑚
follows a zero-mean Gaussian process with

variance 𝜎
2; |𝑊
𝑚
|
2 has a chi-square distribution 𝜒

2

2
with a

degree of liberty equal to 2:

𝜒
2

2
(𝑥) =

1

𝜎
2
𝑒
−𝑥/𝜎
2

. (36)

Themean and the variance of this distribution are equal to
𝜎
2 and 𝜎

4, respectively. In an OFDM context, we reasonably
suppose that 𝑀 is large enough (e.g., 𝑀 > 100) to con-
sider that from the central limit theorem (1/𝑀)∑

𝑀−1

𝑚=0
|𝑊
𝑚
|
2

follows a normal distribution N ∼ (𝜎
2
, 𝜎
4
/𝑀), and then

(1/𝑀)∑
𝑀−1

𝑚=0
|𝑊
𝑚
|
2
− 𝜎̂
2 follows a centered normal distri-

bution N ∼ (0, 𝜎
4
/𝑀). Consequently, the metric M =

|(1/𝑀)∑
𝑀−1

𝑚=0
|𝑊
𝑚
|
2
− 𝜎̂
2

(𝑖)
| has a chi distribution 𝜒

1
with one

degree of liberty:

𝑝M (𝑥) =

√2

Γ (1/2)√𝜎
4
/𝑀

exp(−1
2

(

𝑥

√𝜎
4
/𝑀

)

2

) ,

under H
0
.

(37)

As a conclusion, the probability density functions of the
metricM, according to H

0
and H

1
, are given by

𝑝M (𝑥)

=

{
{
{
{

{
{
{
{

{

√2

Γ (1/2)√𝜎
4
/𝑀

exp(−1
2

(

𝑥

√𝜎
4
/𝑀

)

2

) , under H
0

1

2
𝐿
𝑃
𝐿

𝑠
Γ (𝐿)

𝑥
𝐿−1 exp(− 𝑥

2𝑃
𝑠

) , under H
1
.

(38)

5.3. Analytical Expressions of 𝑃
𝑑

and 𝑃fa. The detection
and false alarm probabilities 𝑃

𝑑
and 𝑃fa are obtained by

Table 1: Table of parameters of the channel model.

Channel model
Path 1 Path 2 Path 3 Path 4

Delay 0ms 0.7ms 1.5ms 2.2ms
Gain 0.7448 0.5214 0.3724 0.1862

integrating (38) between the fixed threshold 𝜍 and +∞. For
the calculation of 𝑃

𝑑
, the solution is derived in [28, 29]:

𝑃
𝑑
= 𝑃 (M > 𝜍 | H

1
)

= ∫

+∞

𝜍

𝑥
𝐿−1

2
𝐿
𝑃
𝐿

𝑠
Γ (𝐿)

exp(− 𝑥

2𝑃
𝑠

)𝑑𝑥

=

Γ (𝐿, 𝜍/2𝑃
𝑠
)

Γ (𝐿)

,

(39)

where Γ(⋅, ⋅) is the incomplete gamma function [27]. In the
case H

0
, we have

𝑃fa = ∫

+∞

𝜍

𝑝M (𝑥) 𝑑𝑥

= ∫

+∞

𝜍

√2

Γ (1/2)√𝜎
4
/𝑀

𝑒
−(1/2)(𝑥/√𝜎

4
/𝑀)
2

𝑑𝑥.

(40)

By using the variable change𝑋 = 𝑥/√2𝜎
4
/𝑀 and know-

ing that Γ(1/2) = √𝜋, one can recognize the complementary
error function 𝑒𝑟𝑓𝑐(𝑥) = 1 − 𝑒𝑟𝑓(𝑥):

𝑃fa = ∫

+∞

𝜍/√2𝜎
4
/𝑀

2

√𝜋

𝑒
−𝑋
2

𝑑𝑋 = 𝑒𝑟𝑓𝑐(

𝜍√𝑀

√2𝜎
2
) . (41)

Since the incomplete gamma function is not directly
invertible in (39), it is not possible to derive an analytical
expression of the threshold 𝜍 in function of the targeted
detection probability 𝑃

𝑡

𝑑
. However, an approximation by

means of a computer calculation or a series expansion of
the invert of (39) or a simple characterization of 𝜍 by
simulations can be done. We will consider this third solution
thereafter. Furthermore, the next section aims to characterize
the performance of the proposed detection algorithm and the
validity of the proposed analytical developments.

6. Simulations Results

6.1. Simulations Parameters. The signal parameters used for
the simulations are based on those of the digital radio mon-
diale (DRM/DRM+) standard [30]. This standard designs
the digital radio broadcasting over the current AM/FM
bands. When it is transmitted, the signal is composed of
148 independent carriers. The symbol and the cyclic prefix
durations are 14.66ms and 5.33ms, respectively. Although the
DRM standard recommends a pilot distribution in staggered
rows, we consider a block-type pilot arrangement, according
to the model used in [20]. The channel used in the presence
of a PU is based on the 𝑈𝑆 𝐶𝑜𝑛𝑠𝑜𝑟𝑡𝑖𝑢𝑚 model of the
DRM/DRM+ standard, whose path gains are normalized.The
channel parameters are summed up in Table 1.
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Figure 4: |𝑀
2
− 𝜎̂
2
| versus the iteration number under H

0
and H

1
,

for SNR = 0 dB.

6.2. Choice of the Threshold 𝜍. Figure 4 depicts the metric
M = |𝑀

2
− 𝜎̂
2
| versus the number of iterations, under the

hypotheses H
0
and H

1
. The SNR is fixed equal to 0 dB. In

presence of signal, the average signal power 𝑃
𝑠
is equal to 1.

The simulation is performed by means of 4000 simulation
runs.

It can be seen that the a priori qualitative analysis is ver-
ified. Indeed, for a sufficient number of iterations (according
to the value 𝑒

𝜎
, as shown thereafter),M converges to𝑃

𝑠
under

H
1
and converges toward zero under H

0
. It has been noticed

that it is not possible to find an exact value of 𝜍 according to
𝑃(M > 𝜍 | H

1
) = 𝑃

𝑡

𝑑
. However, it is observable on Figure 4

that the choice of the threshold is not restrictive. Indeed,
choosing 𝜍 as small as expected ensures a probability 𝑃

𝑑

close to one, and, for a sufficient number of iterations, it also
ensures a low value for 𝑃fa. Nevertheless, reducing the value
of 𝑒
𝜎
increases the number of required iterations, as shown in

the following. Hence, for an expected detection probability,
a tradeoff between the complexity and the acceptable level
of false alarm probability has to be taken into account, since
each iteration requires O(𝑖

𝑓
𝑀
3
) operations.

6.3. Effect of the Choice of 𝑒
𝜎
on the Detector Performance. It is

shown in this section that the choice of the threshold 𝑒
𝜎
value

does not have any effect on the detection performance of the
proposed method but only impacts the convergence speed
of the algorithm. Figure 5 depicts the curves of detection
and false alarm probabilities 𝑃

𝑑
and 𝑃fa versus the SNR from

−15 dB to 10 dB. In order to ensure the convergence of the
algorithm, 𝑒

𝜎
must have a low value. The subfigures (a)

and (b) then depict the curves 𝑃
𝑑
and 𝑃fa for 𝑒

𝜎
= 0.01

and 𝑒
𝜎

= 0.0001, respectively. According to the previous
recommendations, the initialization 𝜎2

(𝑖=0)
is equal to 40×𝑀

2
.

We also arbitrarily fix the threshold 𝜍 = 0.01, its effect on
the detection performance being further studied. The figure
is obtained thanks to 2000 simulation runs.

We observe that the curves of 𝑃
𝑑
and 𝑃fa match from

Figures 5(a) to 5(b). 𝑃fa is equal to zero or nearly for all SNR
values and 𝑃

𝑑
reaches one from SNR = −5 dB. The detector

can then reach the perfect one from SNR ≥ −5 dB, that
is, in low SNR environment. We conclude that, assuming
a value of 𝑒

𝜎
low enough to ensure the convergence of the

algorithm, this threshold does not have any effect on the
detection performance of the proposed method.

Figure 6 displays the iterations number the algorithm
needs before it stops versus the SNR from −10 to 10 dB. We
consider three different values for the threshold: 𝑒

𝜎
= 0.01,

0.001, and 0.0001. The simulations conditions remain the
same.

Although Figures 5(a) and 5(b) display almost the same
probabilities whatever the threshold 𝑒

𝜎
, they differ from each

other according to the number of iterations the algorithm
requires before stopping. Indeed, remembering that we com-
pare |𝜎̂2

(𝑖)
− 𝜎̂
2

(𝑖−1)
| with 𝑒

𝜎
, the lower 𝑒

𝜎
, the larger the number

𝑖 of iterations needed to reach 𝑒
𝜎
. However, Figure 6 shows

that the maximum mean of iterations is less than 7 for SNR
= −10 dB and shows the maximum mean of iterations is
less than 5 for SNR = −10 dB and 𝑒

𝜎
= 0.0001, which is a

reasonable number of iterations. We conclude that the choice
of 𝑒
𝜎
has no effect on the detector efficiency, while it allows the

convergence of the algorithm. Besides this result, the number
of required iterations reasonably increases when 𝑒

𝜎
and the

SNR have low values. The detector then remains usable in
practice under these conditions.

6.4. Detector Performance with Channel Uncertainty. In this
part, we study the behavior of the proposed detector when
a non-WSS channel is considered. To this end, we artificially
correlate the different paths by inserting the gain ℎ

0
into the

other path gains. Thus, from the originally created channel
impulse response [ℎ

0
, . . . , ℎ

𝐿−1
] with independent paths, we

build a new correlated vector [ℎ
0
, . . . ,

̃
ℎ
𝑙
, . . . ,

̃
ℎ
𝐿−1

] such that,
for 𝑙 = 1, . . . , 𝐿 − 1, we define a correlation coefficient 𝜌

ℎ
by

𝜌
ℎ
=

𝐸 {ℎ
0
̃
ℎ
∗

𝑙
}

𝜎
0
𝜎̃
𝑙

, (42)

where ̃ℎ
𝑙
= ℎ
𝑙
+𝛼
𝑙
ℎ
0
, 𝛼
𝑙
being a coefficient that is calculated in

function of the expected 𝜌
ℎ
, and 𝜎

2

0
and 𝜎̃

2

𝑙
are the variances

of ℎ
0
and ̃

ℎ
𝑙
, respectively. Figure 7 displays the detection

probability 𝑃
𝑑
versus the SNR for the proposed detection

under a channel correlation condition. Three curves are
considered: the reference (𝜌

ℎ
= 0) and two correlated

channels with 𝜌
ℎ
= 0.1 and 𝜌

ℎ
= 0.5. We observe a limited

gap of 1 dB between the reference curve and the two others.
We conclude that the proposed detector is robust against the
channel uncertainty.

6.5. Receiver Operating Characteristic of the Detector. The
performance of a detector is usually evaluated by means of
the receiver operating characteristic (ROC) curves, depicting
the detection probability 𝑃

𝑑
in function of the false alarm

probability 𝑃fa. The optimal detector is logically reached at
the point (𝑃fa = 0, 𝑃

𝑑
= 1). The curve 𝑃fa = 𝑃

𝑑
is called line
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Figure 5: Detection and false alarm probabilities versus SNR, for two values 𝑒
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of chance and corresponds to a detector that makes as much
good decisions as false alarms. If the ROC curve is above the
first bisector, the detector is efficient, since 𝑃

𝑑
> 𝑃fa.

Figure 8 shows the ROC curves of the proposed detector
for low SNR values (−10 dB and SNR = 0 dB). It is compared
to the energy detector and the second-order moment-based
MME [31]. The simulations conditions remain the same,
and we fix the threshold 𝑒

𝜎
= 0.01. In Figure 8(a), the

proposed detector is compared to the usual energy detector,
whose metric M is equal to the second order-moment of
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Figure 7: Detection probability versus SNR for a non-WSSUS
channel.

the received signal𝑀
2
.Thismetric is compared to a threshold

𝜍
𝑒
to obtain the following decision rule:

H
0
, if M < 𝜍

𝑒

H
1
, else.

(43)

In Figure 8(b), the proposed detector is also compared
to the usual MME detector, whose metric M is equal
to the ratio of the maximum and the nonzero minimum
eigenvalues of the received signal covariance matrix R̆; that
is, M = 𝜆max/𝜆min. The same aforementioned decision rule
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Figure 8: Receiver operating characteristic (ROC) curves of the proposed method compared to the energy and MME detectors.

is used. Since a SISO system is assumed, R̆ is obtained by
concatenating 𝑁 consecutive OFDM symbols so that U

𝑁
=

[U
1
, . . . ,U

𝑁
] and then R̆ = U

𝑁
U𝑇
𝑁
. In that way, U

𝑁
is

equivalent to a system with 𝑁 sensors. However, due to the
nature of the channel, the different received OFDM symbols
are correlated. In Figure 8(b), the ROC curves of MME are
obtained for𝑁 = 4, 10, and 20 symbols, and the SNR is equal
to −10 dB. Each point of the curves is obtained by means of
2000 simulation runs.

We observe in Figure 8(a) that the proposed detector
outperforms the energy detector, whatever the SNR. Indeed,
as we consider the detection of a preamble transmitted over
a Rayleigh channel, the power of the received signal 𝑃

𝑆
in

(30) is not constant and follows a chi-square distribution.
Consequently, for simulations made at a fixed SNR, the
noise variance is also a varying process, which deteriorates
the detector performance. For additional details about the
theoretical development of the energy detection of signals
with random amplitude, please refer to [28, 29]. We also
may explain the performance of our detector by the fact
that we use the same sensing time to compare the energy
detector and the proposed algorithm, that is, only oneOFDM
symbol length.The 148 samples of one OFDM symbol are not
enough to obtain an accurate energy detector. Figure 8(a) also
confirms that the proposed detector is very efficient, since it
is able to reach the perfect detector for 𝜍 = 0.01. Indeed, for
SNR = 0 dB, we observe that the ROC curve reaches the point
(𝑃fa = 0, 𝑃

𝑑
= 1), as we remarked in Figures 5(a) and 5(b) for

SNR ≥ −5 dB. In Figure 8(b), we observe that MME requires
𝑁 = 20 symbols to reach the performance of the proposed
method, because MME is efficient for a very large size ofU

𝑁
,

and the vectors of the latter matrix are correlated. Thus, for

a given performance, the complexity ofMME isO(𝑁𝑀
2
) (for

the computation and the diagonalization of R̆) and the one
of the proposed algorithm is O(𝑖

𝑓
𝑀
3
). Since we reasonably

have 𝑁 < 𝑖
𝑓
𝑀, we conclude that the iterative method

is more complex than usual second-order moment-based
techniques. However, the proposed algorithm also performs
the noise variance estimation if H

0
and the SNR and channel

estimation if H
1
, which is an advantage by comparison with

the techniques of the literature.
Figure 9 compares the ROC curves of the proposed

detector given by simulation with the theoretical ones 𝑃
𝑑

and 𝑃fa given by (39) and (41), respectively. We notice that
the theoretical curve for SNR = 0 dB is very close to the
one obtained by simulation, whereas for SNR = −10 dB, the
difference is more noticeable. This observation tallies with
the discussion on the approximation 𝜎̂2 ≈ (1/𝑀)∑

𝑀−1

𝑚=0
|𝑊
𝑚
|
2

in the calculation of the metric M under the hypothesis H
1
.

Indeed, this approximation is justified for high values of SNR
but becomeswrong for the very low SNRvalues.However, the
theoretical curves give an idea of the detector performance
for a given SNR, even for low SNR values.

7. Conclusion

In this paper, an iterative algorithm for spectrum sensing
in a cognitive radio context has been presented. Originally
proposed in [20] for the joint estimation of the noise and the
channel, this method is based on the second-order moment
of the received signal. In the presence of a primary user
(PU), the algorithm estimates the channel and the noise
variance. If the PU is not active, the algorithm returns a
very accurate estimation of the noise level. By comparing
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the noise variance to the second moment of the received
signal estimation (useful signal with noise or only noise),
it is then possible to determine if the PU is present or
absent. From that an analytical expression of the detection
and false alarm probabilities have been proposed, and it is
shown that they are very close to the simulations. It is also
shown that the detector reaches the perfect one from very low
SNR values. The algorithm offers numerous advantages as it
performs a PU detection, the noise variance, and the channel
estimation if the PU is active and it returns the noise level in

the frequency band when the PU is absent, without changing
the structure proposed in [20]. The future work concerning
the detector will focus on the synchronization of the SU on
the PU’s signal.

Appendix

If the algorithm keeps on computing at each iteration 𝑖 with
the covariance matrix R̃LS

𝐻
under hypothesis H

0
, then we

deduce the following for Step 4.
Perform the LMMSE channel estimation

ĤLMMSE
(𝑖+1)

= R̃LS
𝐻
(R̃LS
𝐻
+ 𝜎̂
2

(𝑖)
I)
−1

ĤLS
. (A.1)

Perform the MMSE noise variance estimation

𝜎̂
2

(𝑖+1)
=

1

𝑀

𝐸{

󵄩
󵄩
󵄩
󵄩
󵄩
ĤLS

− ĤLMMSE
(𝑖+1)

󵄩
󵄩
󵄩
󵄩
󵄩

2

𝐹
} . (A.2)

It is assumed that 𝑀 is large enough to get tr(WW𝐻) =

tr(𝜎2I). We make in first approximation R̃LS
𝐻

≈ 𝜎
2I, so the

development of (A.2) yields

𝜎̂
2

(𝑖+1)
=

1

𝑀

𝐸{

󵄩
󵄩
󵄩
󵄩
󵄩
ĤLS

− ĤLMMSE
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𝐹
}
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𝑀

𝐸{
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󵄩
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+ 𝜎̂
2

(𝑖)
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𝐹

} ,

(A.3)

and by factorizing by C−1:

=

1

𝑀

𝐸{
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The sequence (𝜎̂2
(𝑖)
) is built from a function 𝑓

𝑠
such that if

we note 𝑥 = 𝜎̂
2

(𝑖)
, we obtain

𝑓
𝑠
(𝑥) =

𝑥
2
𝜎
2

(𝜎
2
+ 𝑥)
2
, (A.5)

with 𝑥 ∈ R+. Figure 10 displays the curve of 𝑓
𝑠
for different

values of 𝜎2 and compares them with 𝑦 = 𝑥.
It is trivial that from the expression of 𝑓

𝑠
in (A.5) that the

only solution of 𝑓
𝑠
(𝑥) = 𝑥 is zero. We find the same results

as in the case of a received pilot preamble under hypothesis
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H
1
; that is, if the algorithm is exclusively performed with

R̃LS
𝐻
, then the sole limit of 𝜎̂2

(𝑖+1)
is zero and the algorithm

enters into an endless loop. It justifies the change of channel
covariance matrix from R̃LS

𝐻
to R̃LMMSE
𝐻

under hypothesis H
1

as well as under hypothesis H
0
.
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A cognitive transceiver is required to opportunistically use vacant spectrum resources licensed to primary users.Thus, it relies on a
complete adaptive behavior composed of: reconfigurable radio frequency (RF) parts, enhanced spectrum sensing algorithms, and
sophisticated machine learning techniques. In this paper, we present a review of the recent advances in CR transceivers hardware
design and algorithms. For the RF part, three types of antennas are presented: UWB antennas, frequency-reconfigurable/tunable
antennas, and UWB antennas with reconfigurable band notches. The main challenges faced by the design of the other RF blocks
are also discussed. Sophisticated spectrum sensing algorithms that overcome main sensing challenges such as model uncertainty,
hardware impairments, and wideband sensing are highlighted. The cognitive engine features are discussed. Moreover, we study
unsupervised classification algorithms and a reinforcement learning (RL) algorithm that has been proposed to perform decision-
making in CR networks.

1. Introduction

Cognitive radio (CR) provides a solution to the inefficient use
of the frequency spectrum [1–3]. This inefficiency is due to
the current radio spectrum regulations which assign specific
bands to particular services and grant licensed bands access
to only licensed users. CR implements dynamic spectrum
allocation policies by allowing unlicensed users (secondary
users) to access spectrum bands licensed to primary users
while avoiding interference with them [2, 3].This necessitates
at the RF front end more constraints on the antenna design,
the development of algorithms for sensing the surrounding
environment, and autonomously adapting to particular situ-
ations through a cognitive engine [1, 4–9].These three design
elements are introduced in this section and presented inmore
detail in the rest of this paper.

Spectrum underlay and spectrum overlay represent the
two main approaches of sharing spectrum between pri-
mary users (PUs) and secondary users (SUs). The underlay
approach imposes constraints on the transmission power,
which can be satisfied using ultrawideband antennas (UWB).

UWB antennas are also used for channel sensing in overlay
CR but must be frequency reconfigurable or tunable. In
this case, a single-port antenna can have UWB response for
sensing and can be reconfigured for tunable narrowband
operation when needed to communicate over a white space.
It is also possible to use dual-port antennas for overlay CR,
in which one port has UWB frequency response and is
used for channel sensing, and the second port is frequency-
reconfigurable/tunable and used for communicating. In a
third possible spectrum sharing approach, the antennas could
be UWB antennas but should have the ability to selectively
induce frequency notches in the bands used by PUs, thus
avoiding any interference to them and giving the UWB
transmitters of the SUs the chance to achieve long-distance
communication.

Aside from the antenna, the design of the other RF blocks
faces main challenges related to the ADC/DAC, the dynamic
range or range of signal strengths to deal with, to the linearity
of low-noise amplifiers (LNAs), and to the frequency agility
of the duplexer and filters.
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In CR, smart transceivers scan the spectrum in order
to find white spaces and transmit adaptive signals. This
functionality requires sophisticated algorithms to overcome
practical imperfections such as model uncertainty and hard-
ware nonideality. Some of the well-known spectrum sensing
algorithms are energy detection [10–12], matched filter-
based detection [11, 13], cyclostationarity-based detection
[14–18], covariance-based sensing [19, 20], and eigenvalue-
based sensing [21–23]. Blind detectors were also introduced
to elude the model uncertainty problem. Spectrum sensing
algorithms could be affected by RF impairments by inducing
unwanted frequency components in the collected signal spec-
trum. The effects of such impairments are reduced through
a postprocessing of the signal [24–26]. In addition, a robust
detector based on smart digital signal processing lowers the
effects of RF impairments and guarantees a high sensing
accuracy.

The concept of cognitive radios (CRs) goes beyond
dynamic spectrum access (DSA) applications and aims to
improve the quality of information (QoI) of users [5]. This
requires an intelligent radio that uses spectrum sensing
techniques to observe the RF activities and is able to
autonomously adapt to particular situations [9]. This is
achieved through a reasoning engine which executes actions
based on certain hard-coded rules and strategies [27]. Hard-
codedpolicies are completely specified by the systemdesigner
and may result in the desired performance as long as
the operating conditions do not deviate from the original
assumed model. However, due to unexpected changes in
the RF environment, the hard-coded rules may not lead to
optimal performance, making them inefficient in this case.
Cognitive radios, however, can overcome this problem by
updating or augmenting their own sets of policies and rules
based on past experience [27], which may lead to a more
reliable communication performance [9, 27]. This makes the
learning ability a fundamental building block of any CR to
achieve autonomous intelligent behavior [9, 27–29].

In this paper, Section 2 presents the antenna designs
for CR: ultrawideband (UWB) antennas, antennas with
reconfigurable band rejection, and frequency-reconfigurable
or tunable antennas. It also briefly discusses the challenges
faced by the design of RF blocks for CR devices. Section 3
discusses spectrum sensing by presenting challenges, novel
solutions, and spectrum sensing algorithms. RF imperfec-
tions and wideband sensing are also studied and recent blind
detectors, robust algorithms, and wideband techniques are
presented. Section 4 presents a cognitive engine and several
unsupervised classification algorithms for autonomous signal
classification in CRs, and a reinforcement learning (RL)
algorithm that performs decision-making in CR networks.
Conclusive remarks are given in Section 6.

2. RF Frontends for Cognitive Radio

CR transceivers are required to look for and operate in
white spaces, which could exist anywhere inside a wide
frequency range. This comes different from conventional
wireless transceivers which are bound to certain preallocated

frequency bands. As a result, significant challenges have to
be dealt with when designing the RF components of a CR
transceiver, such as the antennas, the power amplifiers (PAs),
the filters/duplexers, and the analog-to-digital and digital-to-
analog converters (ADCs/DACs).

2.1. Antennas for Cognitive Radio. Two main approaches of
sharing spectrum between primary users (PUs) and sec-
ondary users (SUs) exist: spectrum underlay and spectrum
overlay. In the underlay approach, SUs should operate below
the noise floor of PUs, and thus contingent constraints are
imposed on their transmission power.Ultrawideband (UWB)
technology is very suitable as the enabling technology for this
approach. In spectrum overlay CR, SUs search for unused
frequency bands, called white spaces, and use them for
communication.

UWB antennas are used for underlay CR and also
for channel sensing in overlay CR. For communication in
overlay CR, the antenna must be frequency reconfigurable
or tunable. Single- and dual-port antennas for overlay CR
can be designed. In the dual-port case, one port has UWB
frequency response and is used for channel sensing, and the
second port, which is frequency reconfigurable/tunable, is
used for communicating. In themore challenging single-port
design, the sameport can haveUWBresponse for sensing and
can be reconfigured for tunable narrowband operation when
required to communicate over a white space.

A third possible spectrum sharing approach results from
the use of the UWB technology in an overlay scheme. Here,
the antennas could basically be UWB antennas but should
have the ability to selectively induce frequency notches in
the bands used by PUs, thus avoiding any interference to
them and giving the UWB transmitters of the SUs the chance
to increase their output power and hence to achieve long-
distance communication.

A concise review of antenna designs for cognitive radio,
covering the above three antenna types, is given in [30].

2.1.1. UWB Antennas. UWB antennas were originally meant
to radiate very short pulses over short distances. They have
been used in medical applications, GPRs, and other short-
range communications requiring high throughputs. The lit-
erature is rich with articles pertaining to the design of UWB
antennas [31–41]. For example, the authors in [31] present a
unidirectional UWB antenna based on a full-ground plane.
To keep this full-ground plane, they sequentially employ a
list of broadbanding techniques: (1) resonance overlapping,
(2) slot, (3) parasitic patch, (4) Vivaldi blending, (5) stepped
notch, and (6) rectangular and T-shape slits. The resulting
antenna has an impedance bandwidth from 3.6GHz to
10.3 GHz while keeping the unidirectionality of the radiation
pattern.

In general, the guidelines to design UWB antennas
include the following.

(i) Theproper selection of the patch shape. Round shapes
and round edges lead to smoother current flow and,as
a result, to better wideband characteristics.
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Figure 1: Configuration and photo of the UWB antenna in [42]. The antenna combines several bandwidth enhancement techniques.
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Figure 2: Reflection coefficient of the UWB antenna in Figure 1.

(ii) The good design of the ground plane. Partial ground
planes, and ground planes with specially designed
slots, play a major role in obtaining UWB response.
Keeping a full-ground plane is possible, but in that
case an elaborate work has to be done on the patch
design.

(iii) The matching between the feed line and the patch.
This is achieved using either tapered connections,
inset feed, or slits under the feed in the ground plane.

(iv) The use of fractal shapes, which are known for their
self-repetitive characteristic, used to obtain multi-
andwideband operation, and their space-filling prop-
erty, which leads to increasing the electrical length
of the antenna without tampering with its overall
physical size.

Combinations of these guidelines were used in the fol-
lowing two examples. The UWB design presented in [42]
features a microstrip feed line with two 45∘ bends and a
tapered section for size reduction andmatching, respectively.
The ground plane is partial and comprises a rectangular part
and a trapezoidal part. The patch is a half ellipse with the cut
made along theminor axis. Four slots whose location and size
relate to a modified Sierpinski carpet, with the ellipse as the
basic shape, are incorporated into the patch.The geometry of
this antenna is shown in Figure 1. Four techniques are applied
for good impedance matching over the UWB range: (1) the
specially selected patch shape, (2) the tapered connection
between the patch and the feed line, (3) the optimized partial
ground plane, and (4) the slots whose design is based on
the knowledge of fractal shapes. As a result, this antenna
has an impedance bandwidth over the 2–11 GHz range, as
shown in Figure 2, and thus can operate in the bands used
for UMTS, WLAN, WiMAX, and UWB applications. It has
omnidirectional radiation patterns due to the partial ground
plane.

The effect of the ground plane on the performance of
UWB antennas is studied in [43]. Herein, it is proven that
it is possible to obtain an ultrawide impedance bandwidth
using either a partial ground plane or a ground plane with
an optimized large slot, where in both cases the same exact
patch is used.This design has a coplanar-waveguide feed that
connects to an egg-shaped radiator. A photo of both versions
is given in Figure 3.

2.1.2. Antennas with Reconfigurable Band Rejection. As pre-
viously stated, UWB technology is usually associated with
the CR underlay mode. It can, however, be implemented in
the overlay mode. The difference between the two modes
is the amount of transmitted power. In the underlay mode,
UWB has a considerably restricted power, which is spread
over a wide frequency band. In the overlay mode, however,
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Figure 3: Two UWB antennas with optimized ground planes [43].
One has a partial ground plane and the other has a ground plane
with a large slot.

the transmitted power can be much higher. It actually can
be increased to a level that is comparable to the power
of licensed systems, which allows for communication over
medium to long distances. But this mode is only applicable if
two conditions are met: (1) if the UWB transmitter ensures
that the targeted spectrum is completely free of signals of
other systems, or if it shapes its pulse to have nulls in
the bands used by these systems, and (2) if the regulations
are revised to allow for this mode of operation [44]. Pulse
adaptation for overlay UWB CR has been discussed in [45].
UWB can also operate in both underlay and overlay modes
simultaneously. This can happen by shaping the transmitted
signal so as to make part of the spectrum occupied in an
underlay mode and some other parts occupied in an overlay
mode. In the overlay UWB scenario, the antenna at the front
end of the CR device should be capable of operating over the
whole UWB range, for sensing and determining the bands
that are being used by primary users, and should also be able
to induce band notches in its frequency response to prevent
interference to these users. Even if the UWB power is not
increased having these band notches prevent raising the noise
floor of primary users.

Antennas that allow the use of UWB in overlay CR should
have reconfigurable band notches. Several band-notching
techniques are used in such antennas, the most famous of
which is the use of split-ring resonators (SRRs) [46] and
the complementary split-ring resnators (CSRRs) [47]. SRRs
have attracted great interest among electromagneticians and
microwave engineers due to their applications to the synthesis
of artificial materials (metamaterials) with negative effective
permeability. From duality arguments, CSRRs, which are the
negative image of SRRs and roughly behave as their dual
counterparts, can generate a negative permittivity media.

Some recent UWB antenna designs with fixed band
notches are reported in [48–55].The works in [56–59] are for
UWB antennas with reconfigurable band notches.

A UWB design with a single reconfigurable band notch is
proposed in [60].The configuration of this design and a photo
of its fabricated prototype are shown in Figure 4. Originally,
the antenna is a UWB monopole based on a microstrip line
feed and a partial ground plane.The patch is rectangular with
rounded corners. A slit is etched in the ground below the

feed, for better matching. As a result, this antenna has an
impedance bandwidth that covers the whole UWB frequency
range. Four nested CSRRs are incorporated in the patch.
Three electronic switches are mounted across the slots. The
sequential activation (deactivation) of the switches leads to
the functioning of a larger (smaller) CSRR and thus results in
a notch at a lower (higher) frequency.The following switching
cases are considered: Case 1 when all three switches are ON,
Case 2 when only S3 is deactivated, Case 3 when only S1
is ON, and finally Case 4 when all switches are OFF. The
resulting reflection coefficient plots, corresponding to the
different switching states, are shown in Figure 5. The plots
show one notch, which can occur in one of 3 bands or can
completely disappear. In the latter case, the antenna retrieves
its UWB response, which enables it to sense the whole UWB
range.

The antenna reported in [61] is capable of concurrently
inducing three band notches, which are independently con-
trollable, using only three RF switches. This is done using
three CSRRs etched on the patch. There are eight switching
cases for this design, with one of them being the original
UWB no-notch case. A UWB antenna with reconfigurable
band notches can also be designed by incorporating a
bandstop filter in the feed line of a UWB antenna. With this
structure, the switching elements will be mounted on the
feed line, away from the radiating patch, which makes the
bias circuit of the switches simpler to design. Such a filter
antenna (filtenna) with two reconfigurable rejection bands is
presented in [62]. Its structure is shown in Figure 6.TheUWB
antenna is based on a rounded patch and a partial rectangular
ground plane. A reconfigurable filter with two stop bands
is incorporated along its microstrip feed line. The filter is
based on one rectangular single-ring CSRR etched on the
line and two identical rectangular single-ring SRRs placed in
close proximity to it.The resonance of the CSRR is controlled
via a switch and that of the two SRRs via two switches
that are operated in parallel. As a result, there are four
switching scenarios. The resulting reflection coefficient plots
are shown in Figure 7. Case 1, where no band notches exist,
allows the antenna to sense the UWB range to determine
the narrowband primary services that are transmitting inside
the range. In the other three cases, the notches block the
UWB pulse components in the 3.5 GHz band, the 5.5 GHz
band, or both. It should be noted that notches due to the
SRRs and the CSRR around the feed are stronger than those
due to CSRRs or any notching structures implemented in the
patch. This is because energy is concentrated in a smaller
area in the feed and coupling with the SRRs/CSRR is higher.
Due to the location of the switches, connecting the DC bias
lines, especially to the SRRs, which are DC-separated from
anything else, is an easy task. A wire can be used to drive the
switch on the CSRR. A note is that extra band notches can be
obtained by placing more SRRs around the feed line. Tunable
versions of these notches can be obtained by replacing the RF
switches with varactors.

2.1.3. Frequency-Reconfigurable/Tunable Antennas. Anten-
nas designed for overlay CR should have the capability to
sense the channel and communicate over a small portion
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of it. These antennas can be implemented as dual port,
where one port is UWB and the other is narrowband and
frequency reconfigurable.They can also be designed as single
port, where the same port is used for both sensing and
communicating, and thus should switch between wideband
and narrowband operations. For the dual-port designs, the
isolation between the two ports is an issue. More elaborate
work is required for single-port designs.

A dual-port antenna for overlay was proposed in [63]. Its
structure consists of two printed antennas, namely, wide- and
narrowband antennas.The design in [64] also combines wide
and narrow band antennas, where the wideband one covers
the 2.6–11 GHz range and the narrowband one is tunable,
using a varactor, between 6.85GHz and 7.20GHz. A simple
dual-port design is presented in [65]. The configuration
of this design, which comprises two microstrip-line-fed
monopoles sharing a common partial ground, is shown in
Figure 8. The sensing UWB antenna is based on an egg-
shaped patch. The UWB response of the sensing antenna is
guaranteed by the design of the patch, the partial ground

plane, and a feed matching section. The communicating
antenna is a simple microstrip line matched to the 50 − Ω

feed line. Two electronic switches are incorporated along this
line. Controlling these switches leads to various resonance
frequencies within the UWB range, as shown in Figure 9 for
three considered switching cases.

Dual-port antennas enable simultaneous sensing and
communicating over the channel, but have limitations in
terms of their relatively large size, the coupling between
the two ports, and the degraded radiation patterns. These
limitations are solved by the use of single-port antennas, but
these are only suitable when the channel does not change
very fast, and thus sensing and communication are possible,
sequentially.

Single-port reconfigurable wideband/narrowband anten-
nas are reported in [66–68]. The design in [66] has a wide
bandwidth mode covering the 1.0–3.2 GHz range and three
narrowband modes within this range. In [67], fifteen PIN
diode switches are used on a single-port Vivaldi antenna,
leading to a wideband operation over the 1–3GHz band and
six narrowband states inside this range. GaAs field-effect
transistor (FET) switches are used in [68] to connect multiple
stubs of different lengths to the main feed line of a UWB
circular-disc monopole. The result is an antenna that can be
operated in a UWBmode or in a reconfigurable narrowband
mode over one of three frequency subbands: the first covers
2.1–2.6GHz, the second covers 3.6–4.6GHz, and finally the
third covers a dual band of 2.8–3.4GHz and 4.9–5.8GHz.The
design in [69] is a filtenna based on a reconfigurable bandpass
filter embedded in the feed line of a UWB monopole. A
UWBand five narrowband operationmodes characterize this
design.

A printed Yagi-Uda antenna tunable over the 478–
741MHz UHF TV band is presented in [70], where the
narrowband frequency tunability is obtained by loading the
driver dipole arms and four directors with varactor diodes.
A miniaturized tunable antenna for TV white spaces is
reported in [71]. In [72], two PIN diodes and two varactors
are employed for narrow band tuning between 1.39 and
2.36GHz. A Vivaldi-based filtenna with frequency tunability
over the 6.1–6.5GHz range is presented in [73]. The single-
port designs in [70, 72, 73] are only capable of narrowband
operation, which means that wideband spectrum sensing has
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Figure 6: Geometry and photo of a filter antenna with two reconfigurable band notches [62].
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Figure 7: Reflection coefficient for the different switching cases of
the antenna in Figure 6.

to be done progressively, a narrow chunk of frequencies at a
time. This is also the case with the filtenna design shown in
Figure 10. Here, a tunable bandpass filter is embedded along
the microstrip feed line of a UWBmonopole antenna, where
the filter is based on a T-shaped slot incorporated in the
microstrip line between a pair of gaps. For the purpose of
achieving frequency tunability, a varactor is included in the
design, as indicated. Changing the capacitance of the varactor
changes the notch band, caused by the T-shaped slot, and as a
result the narrow passband of the overall filter. The DC lines
of the varactors are connected with ease. Due to the presence
of the two gaps, DC is separated from both the antenna port
and the patch. Two surface-mount inductors are used over the
DC lines as RF chokes. The computed reflection coefficient
plots are given in Figure 11.They show narrowband tunability

over the 4.5–7GHz frequency range, for capacitance values
between 0.3 and 7 pF.

2.2. RF Design Challenges. The design challenges for the RF
section of a CR transceiver are well reviewed in [74–76].
Diagrams of a CR transceiver architecture appear in [74].
For wideband operation, such as that required for sensing,
the main challenges relate to the ADC/DAC, the dynamic
range, or range of signal strengths to deal with, which could
be as wide as 100 dB, to the linearity of low-noise amplifiers
(LNAs), which has to be high, and to achieve impedance
matching over a wide frequency range. For tunable narrow-
band operation, the key issues are the frequency agility of the
duplexer and filters.

2.2.1. ADCs and DACs. In many situations, the desired signal
received bywireless device could sometimes be 100 dBweaker
than other in-band signals generated by nearby transmitters
of the same communication standard or some out-of-band
blockers caused by any transmitter. This would demand a
dynamic range of about 100 dB on the ADC. Ideally, the RF
signals received by a CR system should be digitized as close
to the antenna as possible, so that all the processing is done
at the level of the digital signal processor (DSP). In this case,
the ADC and DAC should have the 100 dB dynamic range,
explained earlier, be operable over a UWB frequency range
and handle significant levels of power. These requirements
are still far beyond the limits of available technology, that is
why the more realistic CR receivers reduce both the required
dynamic range and the conversion bandwidth by having
downconversion and filtering functions implemented before
ADC.

On the path towards ideal CR receivers, several ADCs can
be used in parallel to widen the conversion bandwidth. In
[77], a parallel continuous time ΔΣ ADC is presented, which
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Figure 11: Reflection coefficient of the filtenna in Figure 10 for the
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requires very complex digital synthesis filters. The hybrid
filter bank-basedADCpresented in [78] could be a promising
solution for CR applications, but its use necessitates high
resource calibration since it is sensitive to analog filter errors
and imperfections. A solution that provides good perfor-
mance in terms of speed employs time interleaving [79],
but it lacks the resolution and dynamic range. To suppress
low order nonlinearities of parallel ADCs and nonlinearities
caused by pre-ADCanalog components, gigital postlineariza-
tion is desired. The technique in [80, 81] combines time
multiplexing and frequency multiplexing by using bandpass
charge sampling filters as analysis filters in hybrid filter banks

architecture. This leads to reduced complexity of analog
analysis filters and simultaneously of the sensitivity to analog
errors and imperfections. Yet, the practical implementation
with the aim of widening the bandwidth and sensitivity still
requires a deeper investigation.

RF DACs are utilized in the fully digital RF transmitters
presented in [82, 83]. The design of these DACs is less
challenging than that of ADCs, althoughmore improvements
are still necessary.

2.2.2. Low-Noise Amplifier. A receiver’s performance is pri-
marily determined by the linearity and adequate matching
over a wide frequency range of the broadband or tunable
LNA. A broadband LNA topology achieving a frequency
range of 50MHz to 10GHz was proposed in [76]. The
input capacitance is canceled by the LNA using inductive
behavior provided by negative feedback. Advanced CMOS
technologies make it easier to design such high-frequency
LNAs without any large inductors. On the other hand, the
linearity issue becomes crucial because the supply voltage
for core transistors decreases to around 1V in 90 nm or
more advanced processes, which results in a limited voltage
swing. LNAs using thick-oxide transistors may prevent this
problem [84]. The mixer-first RF front ends [85, 86] are
another approach for improving linearity performance. An
impedance translation technique, which uses passive mixers
followed by capacitive loads, can provide low impedance for
out-of-band blockers [87, 88], which makes it attractive.

The even-order nonlinearity of the LNA also should be
considered in wideband CR systems. This is because second-
order intermodulation (IM2) products generated by an LNA
can fall within theCRband, thus corrupting the desired signal
even before downconversion. A differential LNA topology
seems attractive here, but a balun is necessary if the antenna
is single ended. Design of low-loss baluns operating across
two or three decades of bandwidth is challenging. A useful
balun-LNA topology is proposed in [89].
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2.2.3. DownconversionMixer. Another issue in thewideband
operation of a CR device is harmonicmixing.TheRF signal is
often downconverted using square-wave local-oscillator (LO)
signals that contain large odd-order harmonic components.
This is done to obtain flat performances of noise and gain
across a wide frequency range. The use of a harmonic-
rejection mixer (HRM) is one way to remove odd-order
LO harmonics. The authors in [90, 91] propose techniques
to improve harmonic rejection ratios (HRRs). However, if
seventh- and higher-order LO harmonics are to be rejected,
the HRMs become much more complex.

2.2.4. Wideband Frequency Synthesizer. Multiple oscillators
could be used to cover a wide frequency range. This solves
the issue of the trade-off between tuning range and phase
noises. For acceptable phase noise figures, the tuning range of
inductor-capacitor (LC-) type oscillators is typically limited
to about ±15% at frequencies of tens of gigahertz. Frequency
synthesizers for CR having two oscillators to support a wider
frequency range are reported in [84, 92].

3. Spectrum Sensing in Cognitive Radios

In a CR scenario, secondary users are allowed to detect,
exploit, and use underutilized spectral resources licensed
to primary users. Such opportunistic behavior urges CR
transceivers to scan the spectrum in order to findwhite spaces
and transmit adaptive signals. Thus, spectrum sensing is the
key function of smart receivers since it enables the cognitive
cycle proposed byMitola in [4, 93].This functionality creates
unique signal processing challenges and requires sophisti-
cated algorithms to overcome practical imperfections such as
model uncertainty and hardware imperfections.

To address these challenges, CR researchers proposed in
the last decade various detectors that have different complex-
ity levels, performance results, and requirements for imple-
mentation.Well-known spectrum sensing algorithms, sorted
in an ascending order of complexity are energy detection
(ED) [10–12], matched filter (MF-) based detection [11, 13],
cyclostationarity-based detection (CSD) [14–18], covariance-
based sensing [19, 20], and eigenvalue-based sensing [21–
23]. Some of these methods require a priori knowledge of
noise and/or signal power information; these include MF,
CSD (relying on the full or partial knowledge of signal and
noise levels), and ED (having a threshold dependent on the
estimated noise power level). Blind detectors were recently
proposed to elude the model uncertainty problem relying on
advanced digital signal processing techniques.

In a cognitive receiver, RF impairments could harm the
performance of the spectrum sensing algorithm by inducing
unwanted frequency components in the collected signal
spectrum. Tomitigate the effects of such impairments, “Dirty
RF” is applied on the SU receiver inducing a postprocessing of
the signal, thus compensating analog imperfections [24–26].
A robust detector, based on smart digital signal processing,
should be able to digitally lower the effects of RF impairments
and guarantee a high sensing accuracy.

The early-designed spectrum sensing algorithms aimed
to detect a white space from narrow frequency bands where
many emerging wireless applications require an opportunis-
tic usage of a wideband spectrum [94–97]. Consequently, SUs
are forced to scan a wide range of potential spectra and detect
available holes to be able to transmit. One of the main con-
cerns of theCR community is to conceivewideband spectrum
sensing methods to replace the complicated implementation
of high sampling rate ADCs, capable of downconverting
wideband signals.

The selection of signal processing algorithms and their
parameters reflects the speed and sensing time of the
cognitive receiver. A complex signal processing algorithm
should respect an optimum sensing value depending on the
capabilities of the radio and its temporal characteristics in the
environment. On the other hand, the ADC is considered as
the primary bottleneck of the DSP architecture since it forces
the clock speed of the system. Moreover, the selection of the
digital signal processing platformaffects the speed of the front
end.All these parameters influence the sensing frequency and
speed of cognitive radio receivers. For that, researchers focus
on implementing sensing algorithms with low complexity,
high speed, and flexibility in order to conceive an adaptive
CR terminal.

In the following sections, we will describe three main
practical spectrum sensing challenges and novel solutions.
Model uncertainty, RF imperfections, and wideband sensing
are studied and recent blind detectors, robust algorithms, and
wideband techniques are presented. Accordingly, in the rest
of this paper, we provide an overview of the state of the art of
spectrum sensing algorithms that were proposed to answer
these three major and hot research challenges.

3.1. Blind Detectors. As per regulation specifications, sec-
ondary users are required to detect very weak licensed
users in order to protect primary transmissions [98, 99].
Any missed detection will enable an unlicensed transmis-
sion on a busy channel harming the incumbent primary
signal. Unfortunately, many detectors reveal performance
degradation at low SNR due to inappropriate estimation
of the signal or noise models. This phenomenon is known
as SNR wall [10, 100]. For the ED, an estimation of the
noise variance is required to select a suitable threshold.
Imperfect knowledge of the noise model, especially in low
SNR scenarios, will consequently deteriorate the efficiency of
this algorithm. The SNR wall phenomenon also harms any
detector based on the received signal’s moments. Using coop-
erative spectrum sensing techniques or relying on calibration
and compensation algorithms are possible solutions to the
model uncertainty problem [100, 101]. However, using totally
blind detectors, which detect the presence of a signal without
any knowledge of signal or noise parameters, is considered
the ideal alternative. Two recently proposed blind detectors
are described below.

3.1.1. Blind Eigenvalue-Based Detector. Zeng et al. devised a
blind detector based on the computation of the minimum
and maximum eigenvalues 𝜆min and 𝜆max of the sample
covariance matrix R(𝑁

𝑆
) defined in [22]. The test statistics
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Initialize: Acquire 𝐿 consecutive data samples and assume that there are (𝑀 ≥ 1) receivers (antennas),
and (𝑁

𝑆
) is the total number of collected samples.

(a) Define the received vector 𝑥
𝑛
given by:

x(𝑛) = [𝑥
1

(𝑛) , 𝑥
2

(𝑛) , . . . , 𝑥
𝑀

(𝑛)]
𝑇

(b) The collection of 𝐿 consecutive outputs x̂
𝑛
is defined as:

x̂
𝑛

= [x𝑇 (𝑛) , x𝑇 (𝑛 − 1) , . . . , x𝑇 (𝑛 − 𝐿 + 1)]

𝑇

(c) Compute the sample covariance matrix R(𝑁
𝑆
):

R (𝑁
𝑆
) =

1

𝑁
𝑆

𝐿−1+𝑁
𝑆

∑

𝑛=𝐿

x̂
𝑛
x̂𝐻
𝑛

(d) Compute 𝜆max and 𝜆min the maximum and minimum eigenvalues of the matrix R(𝑁
𝑆
).

(e) Compute the threshold ] for the test statistics:

] =

(√𝑁
𝑆

+ √𝑀𝐿)

2

(√𝑁
𝑆

− √𝑀𝐿)

2
(1 +

(√𝑁
𝑆

+ √𝑀𝐿)

−2/3

(𝑁
𝑆
𝑀𝐿)
1/6

𝐹
−1

1
(1 − 𝑃

𝐹𝐴
)),

where 𝐹
1
is the Tracy-Widom distribution of order 1 [102].

The decision test:
(f) Decide on 𝐻

0
or 𝐻
1
by computing the ratio between 𝜆max and 𝜆min:

𝜆max
𝜆min

≷
𝐻
1

𝐻
0

]

Algorithm 1: Steps of the MME detector.

of this maximum-minimum eigenvalue (MME) detection is
simply given by

𝜆max
𝜆min

≷
𝐻
1

𝐻
0

], (1)

where ] is the threshold calculated by using the number
of acquired samples, the smoothing factor used for the
calculation ofR(𝑁

𝑆
), and a selected probability of false alarm.

It is expected that noise produces small eigenvalues, whereas
the correlation inherited in modulated signals increases the
eigenvalues. The proposed test statistic does not depend on
any knowledge of noise, signal, or channel models; thus
it is not sensitive to the model uncertainty problem. The
detailed computational steps of this scheme are described in
Algorithm 1.

3.1.2. The CAF Symmetry-Based Detector. This blind spec-
trum sensing detector is based on the symmetry property of
the cyclic autocorrelation function (CAF). Benefiting from
the sparsity property of CAF, the compressed sensing tool
is adopted in this algorithm. A test statistic is defined,
without the computation of any threshold, by checking if the
estimated CAF exhibits symmetry or not. As demonstrated
in [103], a positive symmetry check affirms the presence
of a primary signal. The estimation of the cyclic autocor-
relation vector is computed using an iterative optimization
technique, called the orthogonal matching pursuit (OMP)
[104]. The computational complexity of this algorithm is
reduced by limiting the number of acquired samples and the
number of needed iterations to ensure its practical feasibility.
Algorithm 2 summarizes the main steps of this detector.

3.2. Robust Sensing Algorithms. In practice, CR receivers
are composed of several sources of hardware imperfections

such as low noise amplifiers (LNA), mixers, local oscillators
(LO), and analog-to-digital converters (ADC). The most
critical result of such impairments is the appearance of
new frequency components in the received signal, classi-
fied in intermodulation distortions (IM), cross modulation
(XM), and phase distortion (AM/PM). Consequently, strong
primary users could harm the performance of traditional
spectrum sensing techniques by adding unwanted spectrum
components via front-end’s nonlinearity.When these compo-
nents overlapwithweak secondary users, a degradation in the
reliability of SU transmissions occurs. They can also virtually
occupy the whole spectrum, thus decreasing the opportunity
to find a vacant transmission band. In both scenarios, the
accuracy of any proposed algorithm will be deteriorated. To
mitigate these effects, a robust detector algorithm should
be equipped with a compensation functionality to digitally
reduce the effects of nonlinearities. Possible compensation
algorithms could be based on feed-forward techniques with
reference nonlinearity, feed-back equalization, and train-
ing symbol-based equalization. A well-known feed-forward
technique to alleviate phase noise, carrier frequency off-
set, nonlinearities, 𝐼/𝑄 imbalance, or ADC impairments is
described below.

3.2.1. The AIC Algorithm. In [25], Valkama et al. devised the
adaptive interference cancellation (AIC) algorithm, which
is a feed-forward algorithm for the mitigation of second,
third, and fifth order intermodulation distortion. The idea
is to model the distortion caused by the interferer and then
subtract them from the received signal. A mathematical
formulation of the distortion model and order is studied
before implementing the algorithm. Then, an imitation of
the distortion products and an adaptive adjustment of their
levels are performed to compensate the distorted signal.
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Initialize: Acquire 𝑛 data samples from the spectrum sensing interval formed by 𝑁

samples and set (𝑙 + 1) the number of OMP iterations, and (𝑀) the number of delays 𝜏s
For 𝑀 different values of 𝜏,
(a) Calculate the autocorrelation vector f

𝜏
0

given by:
f
𝜏

= [𝑓
𝜏
(0), 𝑓
𝜏
(1), ..., 𝑓

𝜏
(𝑁 − 1)]

𝑇,
where 𝑓

𝜏
(𝑡) = 𝑦(𝑡)𝑦(𝑡 + 𝜏).

(b) Calculate the elements of the matrix 𝐴 performing the IDFT transform:
𝑎
(𝑝,𝑞)

𝑒
2𝑖𝜋(𝑝−1)(𝑞−1)/𝑁

TheOMP algorithm
(c) Estimate the cyclic autocorrelation vector by solving the following system of
equations: 𝐴r

𝜏
= f
𝜏
by using an iterative optimization technique called

Orthogonal Matching Pursuit (OMP) that delivers an approximated solution r̂
𝜏
.

Symmetry check
(d) Calculate the symmetry index for this value of 𝜏, by ignoring the first amplitude that
corresponds to the first iteration of OMP, and measuring the mean value of the abscissa
of the remaining (𝑙 − 1) non zero elements in r̂

𝜏
. The symmetry index is given by:

IND(𝜏)sym =

1

𝑙

𝑙

∑

𝑖=1

r̂
𝜏
𝑖

.

End For
Equivalent symmetry check:

IND(equ)sym =

1

𝑀

𝑀

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
󵄨
IND(𝜏𝑖)sym

󵄨
󵄨
󵄨
󵄨
󵄨

< 0.

Algorithm 2: Steps of the CAF symmetry-based detector.

The algorithm, illustrated in Figure 12, starts by splitting the
band of the received signal in order to differentiate between
the strong PU and other frequency components (SUs +
distortions). The band splitting is accompanied by a coarse
energy detector used to locate the strong interferer. Then a
parallel block of reference nonlinearities is used to extract
potential distortion products from the strong interferer. An
adaptive filter, the least mean square (LMS), is used to adjust
digitally created distortions levels. The adaptive filter utilizes
the distorted signal resulted from the band splitter as an
input parameter and minimizes the common error signal
𝑒(𝑡). The adjusted nonlinearities are finally subtracted from
the received signal to cleanse the band from nonlinearity
distortions. It is shown in [26] that the application of the
AIC algorithm before the detector increases the detection
reliability in CR devices.

3.3. Wideband Spectrum Sensing. Several emerging wireless
applications and regulation encourage cognitive receivers
to scan a wideband spectrum to find potential spectrum
holes. In contrast to the narrowband techniques mentioned
above, wideband spectrum sensing methods aim to sense a
frequency bandwidth exceeding the coherence bandwidth of
the channel. A frequent example deals with the design of an
algorithm capable of sensing the whole ultra-high-frequency
(UHF) TV band (between 300MHz and 3GHz). Practically,
wideband scanning could be performed via the following two
different methods.

(1) By using a filter bank formed by preset multiple nar-
rowband pass filters BPFs [105]. This hardware-based
solution requires more hardware components, thus
increasing the cost and the RF impairments harmful

SDR RF front
end 

 
band splitter 

Reference
nonlinearity 

Adaptive
filter 

Baseband 
processing 

PU 

SU 

Coarse ED +
+

Figure 12: The AIC algorithm.

effect, and limiting the flexibility of the radio by fixing
the number of filters. After each filter, a narrowband
state-of-the-art technique is implemented.

(2) By using sophisticated signal processing techniques.
In fact, narrowband sensing techniques cannot be
directly applied to scan a wideband since they
are based on single binary decision for the whole
spectrum. Thus, they cannot simultaneously identify
vacant channels that lie within the wideband spec-
trum. Recently proposed wideband spectrum sensing
can be broadly categorized into two types:

(i) Nyquist wideband sensing processes digital sig-
nals taken at or above theNyquist rate, for exam-
ple, the wavelet transform-based technique;

(ii) sub-Nyquist wideband sensing acquires signals
using a sampling rate lower than the Nyquist
rate, for example, the compressive sensing tech-
nique.



12 International Journal of Antennas and Propagation

Wideband of interest

Partitioned narrow band

f0 f1 f2 fn−1 fn fN f

Figure 13: A wideband spectrum seen as a train of narrowband
signals and presenting frequency irregularities.

In the following sections, two approaches to perform
wideband spectrum sensing are discussed.

3.3.1. Wavelet Transform-Based Technique. In this method,
the SU transceiver scans a wideband without using a bank
of narrow BPFs. Alternatively, a wideband receiver will be
based on high-speed digital signal processing to search
over multiple frequency bands in an adaptive manner. The
obtained digital signal will be modeled as a train of consec-
utive narrow frequency bands as illustrated in Figure 13. To
identify these bands and search for potential spectrum holes,
the wavelet transform will be used to locate edges between
different narrow subbands [106]. The corresponding block
diagram is depicted in Figure 14. Wavelet transform is used
in mathematics to locate irregularities [95]. Consequently,
it will be a good candidate to differentiate between the
narrow subbands of wideband signal [97, 107]. Awavelet edge
detector is able to identify the average power level within each
identified subband which will lead to the localization of the
spectrum holes.

The analysis using wavelet transform is based on a
function known as the principal wavelet 𝜓 which has a
finite energy. Wavelets are used to transform a given signal
into another representation that models the information
related to the signal in a more utile way. Wavelets could
be manipulated in two different ways: moved along the
frequency axis or stretched with a variable energy. AWavelet
transform, obtained by summing the product of the signal
multiplied by the wavelet, is calculated at different spots of
the signal and for different combinations of the wavelet. This
calculation could be monitored to detect the irregularities of
the signal by observing the different values of the wavelet
transform.

3.3.2. Compressive Sensing Technique. Amajor implementa-
tion challenge lies in the very high sampling rates required
by conventional spectral estimation methods which have to
operate at or above the Nyquist rate. However, to solve this
issue, the compressive sampling CS technique is used for the
acquisition of sparse signals at rates significantly lower than
the Nyquist rate. Signal reconstruction is no more based on
old reconstruction techniques but will be a solution to an
optimization problem. Several schemes were suggested in the
literature for the reconstruction of the signal, by usingwavelet
transforms [97], the autocorrelation of the signal [108], or
advanced algorithms for sparse approximationmethods [104,
109]. It is shown that such methods could preserve the

adaptive response of the algorithm by offering a relatively
small processing time.

Sparse approximation consists of finding a signal or a
vector with sparseness property; that is, it has a small number
of nonzero elements that satisfies (approximately) a system of
equations. For example, consider a linear system of equations
𝑦 = A𝑥, where A is an 𝑛 − by − 𝑀 matrix with 𝑛 < 𝑀. Since
A is overcomplete (𝑛 < 𝑀), this problem does not have a
unique solution. Among all the possible solutions, if the true
one is known a priori to be sparse then it happens that the
sparsest, that is, the solution𝑥, containing asmany as possible
zero components and satisfying 𝑦 ≅ 𝐴𝑥, is close to the true
solution. Reducing the problem complexity to 𝑛 instead of 𝑀

increases the adaptation time of the reconstruction algorithm
and thus provides better processing time.

4. Machine Learning in Cognitive Radios

Cognitive radios (CRs) are considered as intelligent radio
devices that use the methodology of understanding-by-
building to learn and adapt to their radio frequency (RF)
environment [1]. Several CR architectures have been pro-
posed over the past years in order to achieve dynamic
spectrum access (DSA) [1–3]. However, as initially proposed
by [4], the concept of CRs goes beyond DSA applications and
aims to improve the quality of information (QoI) of wireless
users [5]. This functionality requires an intelligent radio that
is aware of its RF environment and is able to autonomously
adapt to the variations in the wireless medium [9].

Cognitive radios are assumed to use spectrum sensing
techniques to identify the RF activities in their surrounding
environment [6]. Based on their observations, CRs apply
their reasoning abilities to modify their behavior and adapt
to particular situations. This is achieved through a reasoning
engine which executes actions based on certain rules and
strategies [27]. Similar reasoning engines could be identified
in conventional radios that behave according to a set of
hard-coded rules [27]. For example, according to the IEEE
802.11 specifications, such hard-coded rules determine the
switching of a radio device among different modulation
schemes depending on the signal-to-noise ratio (SNR) [27].
Hard-coded policies are completely specified by the system
designer and may result in the desired performance as
long as the operating conditions do not deviate from the
original assumed model. However, in situations where the
RF environment changes due to unexpected agents or factors
(e.g., jammers, interferers, extreme fading conditions, etc.),
the hard-coded rules may not lead to optimal performance,
making them inefficient in this case. Cognitive radios, how-
ever, can overcome this limitation by updating their own
sets of policies and rules based on past experience [27].
For example, if a CR is subject to jamming or significant
interference on a certain channel, it could come up with
new actions to switch to a new frequency band, instead of
simply modifying its modulation scheme, in contrast with
the IEEE 802.11 case. Hence, based on its learning ability, a
CR can update or augment its set of rules and policies based
on its own experience, which may lead to a more reliable
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Figure 14: Block diagram of Wavelet transform-based technique.

communication performance [9, 27].Thismakes the learning
ability a fundamental building block in any CR to achieve
autonomous intelligent behavior [9, 27–29].

Machine learning techniques are gaining more impor-
tance in the current and future wireless networks due to the
increase in system complexity and the heterogeneous nature
of the wireless medium [29, 110–117]. In particular, significant
research efforts are being focused on developing link aggrega-
tion techniques usingmultiple radio access networks (RANs)
[111]. For example, the authors in [111] have demonstrated
a CR system that is able to access a heterogeneous RAN
aggregation system including HSDPA, Wi-Max, and W-
CDMAsystems. In order to ensure efficient systemoperation,
the system parameters need to be optimized to maximize the
overall performance. However, due to the dynamic nature
of the wireless network and the large number of system
parameters, the operating parameters cannot be optimized
manually, but require intelligent algorithms that are able to
autonomously adjust the system parameters, leading to opti-
mal performance. In [111], the support vector regressor (SVR-
)-based learning algorithm has been proposed for parameter
optimization. This algorithm requires a set of training data
to estimate the system model. Other learning approaches
may be considered in the future to optimize various system
parameters under different operating environments [111].
In this paper, however, we focus on unsupervised learning
methods to ensure autonomous CR operation, as we will
discuss next.

5. The Cognitive Engine

Cognitive radios extend software-defined radios (SDRs) by
adding a cognitive engine (CE) to the radio platform [27].
According to [27], a CE can be composed of three main
components: (1) a knowledge base, (2) a reasoning engine,
and (3) a learning engine, as illustrated in Figure 15 [27].
The reasoning engine executes the actions and policies that
are stored in the knowledge base, while the learning engine
updates these policies based on past experience [9, 27]. By
applying learning algorithms, the learning engine can trans-
form the observed data into knowledge, thus allowing the
CR to be aware of certain characteristics of its environment
[4, 29].

The machine learning literature is rich with learning
algorithms that can be used in various contexts [29, 110–117].
These learning algorithms can be categorized under either
supervised or unsupervisedmethods. In supervised learning,
a set of labeled training data is available for the learning
agent to specify whether a certain action is correct or wrong
[29, 118]. In unsupervised learning, however, the learning
agent is supposed to identify the correct and wrong actions
based on its own experience and interactions with the envi-
ronment [118]. This makes unsupervised learning algorithms

Knowledge base

Reasoning
engine

Learning
engine

Cognitive engine

Figure 15: The cognitive engine (CE).

more appealing for CR applications, compared to supervised
learning, since they lead to autonomous cognitive behavior in
the absence of instructors [9]. Hence, unsupervised learning
has been the focus of recent autonomous CRs formulations
[7, 9, 119–123].

Several unsupervised learning algorithms have been pro-
posed for CRs to perform either feature classification or
decision-making [29]. Classification algorithms can be used
to infer hidden information about a set of noisy data. They
allow, for example, inferring both number and types of
wireless systems that are active in a certain environment [120,
124]. In addition, classification algorithmswere also proposed
for modulation classification based on Bayesian networks, as
in [125]. On the other hand, decision-making algorithms can
be used to update or modify the policies and rules that are
stored in the knowledge base of a CR. Thus, the learning
process may result in a new set of actions, allowing the CR
to adapt to completely new RF environments [27].

In the followings, we present several unsupervised classi-
fication algorithms that have been proposed for autonomous
signal classification in CRs. We also present a reinforcement
learning (RL) algorithm that has been proposed to perform
decision-making in CR networks.

5.1. Unsupervised Classification Algorithms. Classification
algorithms have been proposed for CRs to extract knowledge
from noisy data [120, 121, 124]. As we have mentioned above,
the classification algorithms based onmachine learning tech-
niques can be divided into two main categories: upervised
and unsupervised classifiers [29, 120]. Supervised classifiers
require an “instructor” that specifies whether a certain
classification decision is “correct” or not. These supervised
classifiers require a set of labeled training data (or expert-
annotated data [120]) that specify the correct classes (or
clusters). Supervised classifiers can be applied in certain con-
ditions when prior knowledge (e.g., labeled data) is available
to the learning agent. However, in situations where no such
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prior information is available, unsupervised classifiers can be
used instead. Unsupervised classifiers do not require labeled
data and process the detected data to determine the class or
cluster of each data element. Hence, unsupervised classifiers
can be considered more suitable for autonomous CRs when
operating in unknown RF environments [9, 124].

In the followings, we present three examples of unsu-
pervised classifiers that have been proposed for CRs: (1) the
𝐾-means, (2)𝑋-means, and (3) Dirichlet process mixture
model (DPMM) classifiers.We give a brief description of each
algorithm and show their different applications in CRs.

5.1.1. The 𝐾-Means Classifier. The 𝐾-means algorithm has
been proposed for robust signal classification in CRs [120].
It is considered as an unsupervised classifier since it does
not require labeled training data [29, 120]. However, the 𝐾-
means algorithm requires prior knowledge about the number
of clusters 𝐾, making it a unsupervised parametric classifier.

Given a set of 𝑁 feature points {y
𝑖
}
𝑁

𝑖=1
, the 𝐾-means

algorithm classifies these data points into 𝐾 clusters, where
𝐾 is determined a priori. The algorithm starts with a set
of 𝐾 arbitrary centroids {c

1
, . . . , c

𝐾
}, defining the centers

of 𝐾 initial clusters. Each feature point y
𝑖
is then selected

sequentially and assigned to the closest centroid (in terms
of Euclidean distance). Once a feature point is assigned to a
particular cluster, the corresponding centroid is updated and
computed as the mean of the feature points belonging to that
cluster. Eventually, the means converge to the clusters centers
[120].

In CR applications, the 𝐾-means algorithm was applied
to classify different types of RF signals based on their spectral
or modulation characteristics. For example, in [120], the
𝐾-means were allowed to classify primary and secondary
signals transmitting within the TV band. The authors in
[120] demonstrated the robustness of this classifier against
fluctuations in the signal parameters, such as the signal-
to-noise ratio (SNR). In general, such fluctuations lead to
larger variance in the extracted features, which may cause

poor classification performance. Nevertheless, the 𝐾-means
algorithm was shown to be robust against such variations
and achieved good performance in classifying both 8-level
vestigial sideband (8VSB) modulated signals (primary TV
transmission) and BPSK modulated signals (cognitive sec-
ondary transmission) [120].

The 𝐾-means algorithm is characterized by its low com-
plexity and fast convergence. However, it requires accurate
knowledge about the number of signal classes, which may
not be practical in many cases [9, 120, 124]. For example, in
many CR applications, it may be required to classify signals
belonging to an unknown number of systems, which requires
nonparametric approaches, as we will describe next [9, 119,
120].

5.1.2. The 𝑋-Means Classifier. The 𝑋-means algorithm has
been proposed as an extension of the 𝐾-means algorithm,
allowing the classifier to estimate the number of clusters from
the data itself [126]. The 𝑋-means algorithm is formulated as
an iterative 𝐾-means algorithm which computes the optimal
number of clusters that maximizes either the Bayesian infor-
mation criterion (BIC) orAkaike information criterion (AIC)
[126]. In contrast with the 𝐾-means, the 𝑋-means algorithm
assumes an unknown number of clusters, making it suitable
for nonparametric classification.

This algorithmic approach was successful in detecting
primary user emulation (PUE) attacks in CR applications,
as discussed in [120]. In this case, the signal detector can
first estimate the number of clusters 𝑋 and then obtain
the different classification regions for each cluster, similar
to the 𝐾-means algorithm. Both 𝐾-means and 𝑋-means
algorithms can be implemented at low complexity. However,
they are suitable only for spherical Gaussian mixture models
[124]. In CRs, however, feature vectors can be extracted
from complex observation models which are not necessarily
Gaussian [124]. This situation can thus be addressed using
the DPMM classifier which assumes an arbitrary distribution
of the observation model but requires higher computational
complexity, compared to both 𝑋-means and 𝐾-means algo-
rithms, as we will discuss next [124]:

𝜃
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(2)

5.1.3. The DPMM Classifier. The DPMM classifier has been
proposed for unsupervised signal classification in CRs [29,
121, 124]. It is considered a Bayesian nonparametric unsuper-
vised classifier in the sense of allowing the number of clusters
(or classes) to increase with the data size [29, 121, 124]. This
model allows classifying a set of feature vectors {y

𝑖
}
𝑁

𝑖=1
into 𝐾

clusters, where𝐾 is to be estimated from the data (in contrast
with the 𝐾-means which require prior knowledge about 𝐾).

The DPMM is based on the Chinese restaurant process
(CRP) which models the feature vectors as customers joining
specific tables [127]. The CRP has been previously proposed
for both feature classification and decision-making [124, 128].
In particular, [128] proposed a strategic game model based
on the CRP, which is referred to as the Chinese restaurant
game. This framework has been applied for channel access
in CR networks [128]. In this paper, on the other hand,



International Journal of Antennas and Propagation 15

we will present the CRP as an underlying framework for
nonparametric signal classification in CRs, as in [124]. This
model is formulated based on the DPMM, as discussed next.

The DPMM assumes that the feature vectors are drawn
from a mixture model such that [29, 124, 127]

𝐺 ∼ 𝐷𝑃 (𝛼
0
, 𝐺
0
)

𝜃
𝑖
| 𝐺 ∼ 𝐺

y
𝑖
| 𝜃
𝑖
∼ 𝑓
𝜃
𝑖

(y
𝑖
) ,

(3)

where 𝐺 is a realization of the Dirichlet process 𝐷𝑃(𝛼
0
, 𝐺
0
)

with parameters 𝛼
0

> 0 and a prior distribution 𝐺
0
[29, 124,

127].The nonparametric nature of the DPMM stems from the
support distribution𝐺 which is drawn from a nonparametric
set of distributions according to the Dirichlet process. The
realization 𝐺 ∼ 𝐷𝑃(𝛼

0
, 𝐺
0
) is discrete and defined over an

infinite set, thus allowing for infinitely many clusters. Based
on this model, a feature vector y

𝑖
is assumed to be drawn

from a distribution𝑓
𝜃
𝑖

(y
𝑖
), where 𝜃

𝑖
is drawn from𝐺 [29, 124].

According to this formulation, a cluster is defined as a set of
feature vectors y

𝑖
’s having identical parameters 𝜃

𝑖
’s. Thus, we

define the clusters parameters𝜙
𝑘
’s to denote the unique values

of 𝜃
𝑖
’s [29, 124, 127].
By assuming the above DPMM framework, the prob-

lem of feature classification can be formulated following a
Bayesian approach which estimates the parameters 𝜃

𝑖
’s for a

set of feature vectors {y
𝑖
}
𝑁

𝑖=1
, assuming a nonparametric prior

𝐺 ∼ 𝐷𝑃(𝛼
0
, 𝐺
0
) for 𝜃

𝑖
’s [129, 130].The optimal parameters 𝜃

𝑖
’s

can thus be estimated based on the maximum a posteriori
probability (MAP) criterion, which finds the parameters
𝜃
𝑖
’s maximizing the posterior distribution of 𝑓(𝜃

1
, . . . , 𝜃

𝑁
|

y
1
, . . . , y

𝑁
) [124, 129]. However, this posterior distribution

cannot be obtained in closed form under the above DPMM
construction. Thus, stochastic simulation approaches have
been proposed to estimate 𝜃

𝑖
’s by using the Gibbs sampling

method [124, 129]. By following theGibbs sampling approach,
the DPMM-based classifier can be obtained by sampling 𝜃

𝑖
’s

from the posterior distribution 𝜃
𝑖

| {𝜃
𝑗
}
𝑗 ̸= 𝑖

, y
1
, . . . , y

𝑁
in (2)

[29, 124, 127, 129, 130].
This classification algorithm has been used for signal

classification in CRs to determine the number of wireless
systems in a certain RF environment [121, 124]. It was shown
to accurately estimate the number of existingwireless systems
without any prior information about the environment. How-
ever, this algorithm requires extensive computational efforts
since it relies on an iterative Gibbs sampling process.

5.2. Reinforcement Learning Algorithms. In addition to its
ability of classifying wireless signals, a CR is assumed to
use machine learning techniques for decision-making [4, 9,
27, 29, 131–133]. This includes the ability to develop and
adapt new strategies allowing us to maximize certain perfor-
mance measures. In particular, the RL algorithms have been
proposed to achieve such unsupervised decision-making in
CRs [7, 29, 122, 123, 133–135]. The concept of RL is based
on learning from experience by trial and error [29, 118].
After executing a certain action, the learning agent receives
a certain reward showing how good it is to take a particular

action in a certain environment state [29, 118, 122]. As a
result, the learning agent (the CR, in this case) will select
certain actions that lead to the highest rewards in a particular
state.The corresponding action selection method is based on
an exploration-exploitation strategy that selects the highest
reward action with a higher probability, compared to the
other available actions [118].This can be usually implemented
using the 𝜖-greedy approach which selects a greedy action
with a probability 1 − 𝜖 and a random action with small
probability 𝜖, thus allowing us to avoid local optima [7, 118].

The𝑄-learning algorithm is one of the RL algorithms that
has been proposed for CR applications [7, 118, 122]. Under a
Markov decision process (MDP) framework, the 𝑄-learning
can lead to optimal policy, yet without knowledge of the state
transition probabilities [136, 137]. An MDP is characterized
by the following elements [7, 29, 122, 133, 137]:

(i) a finite set S of states for the agent (i.e., secondary
user);

(ii) a finite setA of actions that are available to the agent;
(iii) a nonnegative function 𝑝

𝑡
(𝑠
󸀠

| 𝑠, 𝑎) denoting the
probability that the system is in state 𝑠

󸀠 at time epoch
𝑡 + 1, when the decision-maker chooses action 𝑎 ∈ A
in state 𝑠 ∈ S at time 𝑡;

(iv) a real-valued function 𝑟
MDP
𝑡

(𝑠, 𝑎) defined for state 𝑠 ∈

S and action 𝑎 ∈ A to denote the value at time 𝑡 of
the reward received in period 𝑡 [137].

At each time epoch 𝑡, the agent observes the current state
𝑠 and chooses an action 𝑎. The objective is to find the optimal
policy𝜋 thatmaximizes the expected discounted return [118]:

𝑅 (𝑡) =

∞

∑

𝑘=0

𝛾
𝑘
𝑟
𝑡+𝑘+1

(𝑠
𝑡+𝑘

, 𝑎
𝑡+𝑘

) , (4)

where 𝑠
𝑡
and 𝑎
𝑡
are, respectively, the state and action at time

𝑡 ∈ 𝑍.
The optimal policy of the MDP can be based on the 𝑄-

function (or action-value function) which determines how
good it is to take a particular action 𝑎 in a given state 𝑠.
Formally, the 𝑄-function is defined as the value of taking
action 𝑎 in state 𝑠 under a policy 𝜋 [118]:

𝑄
𝜋

(𝑠, 𝑎) = E
𝜋

{𝑅 (𝑡) | 𝑠
𝑡

= 𝑠, 𝑎
𝑡

= 𝑎} . (5)

This function can be computed using an iterative proce-
dure as follows [7, 29, 122, 133, 136]:

𝑄 (𝑠
𝑡
, 𝑎
𝑡
) ←󳨀 (1 − 𝛼) 𝑄 (𝑠

𝑡
, 𝑎
𝑡
)

+ 𝛼 [𝑟
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𝑡
, 𝑎
𝑡
) + 𝛾max

𝑎
𝑄 (𝑠
𝑡+1

, 𝑎)] .

(6)

TheRL algorithmcan be represented in the block diagram
of Figure 16 in which the learning agent receives the state
observation 𝑜

𝑡
and the reward function 𝑟

𝑡
at each instant

𝑡 [29, 118]. It then updates its 𝑄-function at the learning
stage and selects an appropriate action 𝑎

𝑡
. Under the MDP

assumption, the𝑄-learning can guarantee convergence of the
𝑄-function to its optimal value [136].Thus, the optimal policy
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Figure 16: The RL cycle.

𝜋 can be obtained in function of the 𝑄-function such that
[29, 118]

𝑎
∗

(𝑠) = {

argmax
𝑎∈A

𝑄 (𝑠, 𝑎) , with Pr = 1 − 𝜀

∼ 𝑈 (A) , with Pr = 𝜀,

(7)

where 𝑈(A) is the discrete uniform probability distribution
over the set of actions A and 𝑎

∗
(𝑠) is the optimal action

selected in state 𝑠 and corresponding to the optimal policy
𝜋.

The 𝑄-learning algorithm has been proposed for two
main CR applications:

(1) aggregate interference control [8, 122];
(2) spectrum sensing policy [7, 123].

In aggregate interference control, the 𝑄-learning was
proposed to optimize the power transmission of secondary
CRs in a WRAN IEEE 802.22 CR network (CRN) [122]. The
objective is tomaintain the aggregated interference caused by
the secondary networks to the DTV network below a certain
threshold. In this scenario, the CRs constitute a distributed
network and each radio tries to determine how much power
it can transmit so that the aggregated interference on the
primary receivers does not exceed a certain threshold level
[122]. Simulation results have shown that the 𝑄-learning
algorithm can successfully control the aggregate interference
in a WRAN scenario [122].

On the other hand, the 𝑄-learning algorithm has been
proposed for opportunistic spectrum access (OSA) appli-
cations to coordinate the actions of CRs in a distributed
CRN [7]. Given a set of CRs, the 𝑄-learning can determine
the channel that should be sensed by each CR at each
time instant in order to maximize the average utilization
of idle primary channels while limiting collision among
secondary cognitive users [7]. The 𝑄-learning algorithm was
shown to achieve near-optimal performance in such OSA
applications [7]. However, it cannot guarantee optimal policy

for the decentralized partially observable decision-making
problem, which is considered one of the most challenging
problems for MDPs, in general [137, 138]. However, given the
limited amount of information, the𝑄-learning algorithm can
be considered as one of the most effective low-complexity
approaches for distributed partially observable decision-
making scenarios [7, 122, 133].

6. Conclusion

This paper presented a review of three major front-end CR
elements: the RF part, spectrum sensing, and machine learn-
ing. For the RF part, three types of antennas were presented:
UWB antennas, used for spectrum sensing, frequency-
reconfigurable/tunable antennas for communicating over
white spaces (also for sequential channel sensing), and UWB
antennas with reconfigurable band notches for overlay UWB
CR. Also for the RF part, it was shown that the main design
challenges are those pertaining to the ADCs/DACs, dynamic
range, LNAs, filters, mixers, and synthesizers. Sophisticated
spectrum sensing algorithms that overcome the challenges
resulting from the adaptive behavior of CR transceivers need
to be developed to relax RF designs and provide accurate
decisions. A CE executes actions based on certain rules
and policies that are learnt from past experience. With
the growing complexity of the current wireless networks,
more sophisticated learning algorithms should be developed,
taking into account the heterogeneous structure of existing
and future communication networks.
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Frequency-tunable microstrip antennas, for cognitive radio applications, are proposed herein.The approach is based on tuning the
operating frequency of a bandpass filter that is incorporated into a wideband antenna. The integration of an open loop resonator-
(OLR-) based adjustable bandpass filter into a wideband antenna to transform it into a tunable filter-antenna is presented.The same
technique is employed to design a cognitive radio pattern diversity tunable filter-antenna. A good agreement between the simulated
andmeasured results for the fabricated prototypes is obtained.The radiation characteristics of each designed tunable filter-antenna
are included herein.

1. Introduction

The broad frequency allocation with the variety of the
existing standards calls for reconfigurable and frequency agile
microwave circuits to pave the way toward reconfigurable
radio front-end architectures [1]. The “spectrum overcrowd-
ing” arising issue, which is due to the coexisting telecom-
munication standards in overlapping frequency bands, calls
for flexible receiver architectures to efficiently share wireless
resources [2]. Cognitive radios are expected to sense the
occupancy or target any available channel in the entire
spectrum and tolerate interferers at any frequency as well.
These requirements put constraints on the antenna design to
efficiently sense the frequency spectrum [3].

A wideband front-end may not necessarily be the opti-
mum solution for software-defined/cognitive radio as it leads
to a compromise in the transceiver performance, caused
by limitations in the front-end components. Therefore,
techniques of introducing flexible frequency discrimination,
which include tunable bandpass, tunable bandstop filters,

and tunable narrowband antennas, help reduce spurious
spectral content in the transmitter and limit out-of-band
interference in the receiver [4]. Besides the inherent gain-
bandwidth product limitations and fluctuations of wideband
antennas, their outputs can be heavily corrupted bywideband
noise and thus result in a low signal-to-noise (SNR) ratio.
Wideband antennas require high-speed ADCs, which are
power intensive and have higher quantization errors. Finally,
the design for wideband operation leads to compromise in
the transceiver performance, caused by limitations in the
RF front-end components such as amplifiers, oscillators, and
mixers. All the above issues bring in narrowband frequency-
tunable antennas, or tunable filter-antennas, as good candi-
dates for use to sense the frequency spectrum.This is because
tunable bandpass filtering provides flexible frequency dis-
crimination, wideband suppression of unwanted interfer-
ence, gain flatness over the operating frequency band, less
disruption of the antenna’s radiation characteristics, better
processing of down-converted signals, ease of implementa-
tion, and good performance. Hence, the new cognitive radio
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antenna, for overlay spectrum operation, may be a single-
port antenna system, which can be appropriately controlled
to efficiently sense the frequency spectrum.

In [5], the concept of multidimensional spectrum sensing
is introduced. Herein, the spectrum sensing term involves
obtaining spectrum usage characteristics across multiple
dimensions such as time, space, frequency, and code. It
is not simply based on measuring the spectral content or
measuring the radio frequency energy over the spectrum, as
traditionally understood. The conventional definition of the
spectrum opportunity, which is often defined as a band of
frequencies that are not being used by the primary user of
that band at a particular time in a particular geographic area,
only exploits the frequency, time, and space dimensions of
the spectrum. However, other dimensions, such as location,
angle of arrival, and code need to be explored. For the
angle of arrival dimension, secondary users can alter their
transmission direction without creating any interference
if they know the location or direction of primary users.
The potential of dynamical beam-forming and simultaneous
frequency/polarization reconfiguration of reflectarray struc-
tures for use in cognitive radio application to achieve mul-
tiplexing in frequency, angular, and polarization domains is
reported in [6].Therefore, frequency tuning is one dimension
to exploit in cognitive radio antennas. However, tunable
filter-antennas with a pattern diversity attribute add on the
efficiency of spectrum sensing in cognitive radio networks.
For instance, pattern diversity tunable filter-antennas help
combat multipath fading and cochannel interference, while
sensing the frequency spectrum.

In this paper, tunable filter-antennas for overlay cognitive
radio applications are presented. A design approach, which is
based on converting the wideband operation of an antenna
into a tunable narrowband one via preselect filtering is
discussed. A varactor-tuned bandpass filter is integrated into
a wideband antenna to achieve frequency tunability without
disturbing the radiation pattern. The SMV1405 varactor is
utilized in this work [7]. The same technique is employed
to design a pattern diversity tunable filter-antenna for cog-
nitive radio applications. The paper is organized as follows.
Section 2 discusses the integration of anOLR-based bandpass
filter, with a tuning capability, into a wideband antenna. The
proposed tunable filter-antenna for cognitive radio applica-
tions is presented in Section 3. Section 4 discusses the design
of a cognitive radio pattern diversity tunable filter-antenna.
Conclusions are presented in Section 5.

2. Integration of an OLR-Based Bandpass
Filter into a Wideband Antenna

According to [8], a microstrip transmission line loaded with
rectangular-shaped half-wavelength open loop resonators
results in an overall structure that behaves as an effective
medium with negative-valued permeability. Therefore, a
bandstop operation will appear in the vicinity of the OLR’s
resonant frequency. This bandstop behavior is because of
the nonsimultaneous change in the sign of the permeability
(𝜇) and permittivity (𝜀) of the medium. This nonparallel
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Figure 1: An OLR-based bandpass filter.

Figure 2: A photo of the fabricated bandpass filter prototype.

change affects the squared refractive index (𝜂2) and yields no
wave propagation. A bandpass transformation of the above
scenario is obtained by etching a series capacitive gap in the
microstrip transmission line, as shown in Figure 1. This com-
bination is considered as a right-handed OLR/gap section
and provides forward signal propagation in the frequency
band where both the permeability and the permittivity are
positive. The series capacitance loaded in the line precludes
transmission outside of the OLR’s resonant frequency band.

The illustrated OLR-based bandpass filter, which is based
on a 1.6mm thick Taconic TLY substrate, is designed and
simulated using Ansoft HFSS [9]. A fabricated prototype
of the filter is given in Figure 2. A comparison between
the simulated and measured 𝑆-parameters is depicted in
Figure 3, where a good agreement is attained.The integration
of an OLR-based bandpass filter, into a wideband antenna, is
discussed herein. A 3.41 GHz-operable OLR-based bandpass
filter is firstly designed on a 1.6mm thick Taconic TLY
substrate. The dimensions of the proposed filter are given
in Figure 4(a). A 60× 60× 1.6mm3 Taconic TLY based
wideband antenna is then designed as shown in Figure 4(b).

The antenna has a 30mm long partial ground plane
flushed with the feed line. A tapered matching section is
incorporated between the rectangular patch of the antenna
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Figure 10: A fabricated prototype of the proposed tunable filter-
antenna.
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Figure 11: Measured reflection coefficient of the proposed tunable
filter-antenna.

and its feed line in order to achieve better impedance match-
ing. The computed 𝑆-parameters of the bandpass filter and
the wideband antenna, in the 2–9GHz frequency range, are
shown in Figure 5.The reflection coefficient of the antenna is
≤ −10 dB in the 2.24–7.86GHz frequency range. Finally, both
the OLR-based bandpass filter and the wideband antenna are
assembled in a single structure, as illustrated in Figure 6.
The proposed filter-antenna is found to resonate, as shown
in Figure 7, at the same operating frequency of the contained
bandpass filter.

3. A Narrowband Frequency-Tunable Antenna
for Cognitive Radio Applications

In order to achieve narrowband frequency tuning for the pro-
posed 1.6mm thick Taconic based filter-antenna, given that
its radiation characteristics are not distracted, an SMV1405
varactor is mounted on the OLR contained in the band-
pass filter to adjust its resonant frequency. According to
[10], varactor-loaded half-wavelength OLRs witness longer
electrical lengths and thus resonate at lower frequencies, as
the loading capacitance is increased. In other words, the
adjustment of the reverse voltage across the bridging varactor
will result in tuning the resonant frequency of the filter-
antenna. The configuration of the proposed tunable filter-
antenna, along with its biasing network, is given in Figure 8.
A 47 nH RF choke is incorporated to prevent any RF leakage
to the DC supply. The other terminal of the tunable OLR is
grounded through a via-hole. Accordingly, the Vcc and GND
pads are used to adjust the reverse voltage across themounted
varactor.

The computed reflection coefficient for different reverse
voltages is shown in Figure 9. It is worth mentioning that
as the reverse voltage increases, the tunable filter-antenna
resonates at higher frequencies. This is because the value
of the loading capacitance is inversely proportional to the
applied reverse voltage, and this yields a resonance at
higher frequencies. A prototype of the designed tunable
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Figure 13: Configuration of the proposed pattern diversity tunable filter-antenna.

filter-antenna, as illustrated in Figure 10, is fabricated and
measured. A good analogy between simulated and measured
plots, as given in Figure 11, is revealed. However, a slight shift
is witnessed due to Ansoft-HFSS varactor modeling issues
and milling effects. The normalized radiation patterns, of the
wideband antenna and the proposed tunable filter-antenna,
at 4.18GHz are depicted in Figure 12. It is pretty obvious that
the radiation pattern of the tunable filter-antenna, in the X-
Z plane, is still omnidirectional and minimally distracted.

Moreover, the gain of the tunable filter-antenna at 4.18 GHz
is 4 dB, which is 1.86 dB higher than that of the wideband
antenna at the same frequency.

4. A Frequency-Tunable Pattern Diversity
Antenna for Cognitive Radio Applications

In a communication system implementing diversity, the same
data is sent over independent fading paths. The signals
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Figure 15: A fabricated prototype of the proposed pattern diversity
tunable filter-antenna.
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Figure 16:Measured 𝑆-parameters of the proposed pattern diversity
tunable filter-antenna.
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solid/dotted line).

received over the independent paths are then combined in
such a way that the fading of the resultant signal is reduced.
A wireless communication system equipped with diversity
antennas leads to improved capacity and quality of the
wireless channel. In this section, a pattern diversity antenna
with a frequency tuning feature is presented. This will help
combat multipath fading and cochannel interference, while
sensing the frequency spectrum.

The proposed 1.6mm thick Taconic TLY based pattern
diversity tunable filter-antenna comprises two microstrip-
line fed monopoles that are based on the same circular patch.
Two symmetrically curved slots are etched in the ground
plane. First, a circular slot with a radius of 8mm is introduced
below each patch, and then a 10× 18mm2 rectangular slot
is made at each of two corners. The etched curved slots
direct the beams of the two monopoles in opposite azimuth
directions, leading to pattern diversity. A 2× 20mm2 rect-
angular slot placed halfway between the monopoles is used
to increase the isolation and adjust the antenna’s operating
frequency range. Two varactor-tuned half-wavelength OLR-
based bandpass filters are then integrated into the pattern
diversity antenna to achieve frequency tuning. The detailed
structure of the proposed pattern diversity tunable filter-
antenna is illustrated in Figure 13.

The computed 𝑆-parameters for each reverse voltage of
the bridging varactor are shown in Figure 14.The simulations
results reveal a narrowband frequency tuning and a better
than 18 dB isolation. A fabricated prototype of the proposed
design is depicted in Figure 15. The measured results are
shown in Figure 16. A slight shift between the simulated
and measured data is found due to SMV1405 modeling and
milling issues. Figure 17 shows the normalized radiation
patterns of the presented tunable filter-antenna at 3.72GHz.
It is seen that the patterns in the X-Z plane are symmetric
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Table 1: Diversity parameters of the proposed tunable filter-
antenna.

Frequency (GHz) 𝜌
𝑒
≪ 0.5 MEG1/MEG2 ≈ 1

3.72 6214 × 10−7 0.9952
3.765 101 × 10−4 1.0066
3.8 7489 × 10−7 0.9915
3.86 3144 × 10−6 0.9899

and tend to cover complementary space region. With these
patterns, the proposed design can provide pattern diversity
over the operating frequencies. At 3.72GHz, each monopole
provides a peak gain of approximately 5 dB.

The diversity performance of an antenna system, as
reported in [11], can be assessed by calculating the enve-
lope correlation coefficient (𝜌

𝑒
) and the mean effective gain

(MEG).The correlation coefficient shows the influence of the
different propagation paths on the RF signals reaching the
antenna elements. In a diversity system, a good gain can be
obtained when 𝜌

𝑒
< 0.5. 𝜌

𝑒
relates to the mutual coupling

between the antennas’ ports as follows:
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The mean effective gain is a parameter that includes
antenna radiation power pattern, antenna efficiency, and
the propagation effects. Equal power branches mean better
condition for achieving high diversity gain. To guarantee that
the signal strengths of the two monopoles are approximately
equal, the ratio MEG1/MEG2 should be close to unity. For
the proposed tunable filter-antenna, the conditions 𝜌

𝑒
< 0.5

and MEG1/MEG2 ≈ 1 are both met, per operating frequency,
as given in Table 1. As a result, a high diversity gain for the
presented tunable filter-antenna is achieved:

MEG = 1
2𝜋

⋅ ∫

2𝜋

0

[

Γ ⋅ 𝐺
𝜃
((𝜋/2) , 𝜑) + 𝐺𝜑 ((𝜋/2) , 𝜑)

1 + Γ

] 𝑑𝜑.

(2)

5. Conclusion

In this paper, tunable filter-antennas for overlay cogni-
tive radio applications are presented. The exploitation of
OLR to design a bandpass filter and its integration into a
wideband antenna are discussed. The proposed approach is
based on integrating varactor-tuned half-wavelength OLR-
based bandpass filter(s) to electronically adjust the resonant
frequency of the reported filter-antennas. Accordingly, a
narrowband frequency-tunable microstrip antenna is firstly
designed and tested. The same methodology is employed to
design a pattern diversity tunable filter-antenna for overlay
cognitive radio applications.
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A miniaturized bandpass filter with harmonics suppression is presented. The proposed filter consists of two quarter-wavelength
microstrip resonators, which are meandered for circuit size reduction. An interdigital capacitor, loading at zero-voltage point, is
employed to provide the desired coupling between the resonators at operating frequency, whereas the coupling coefficient at the
third harmonic is realized to be zero. Besides, the second and fourth harmonics are suppressed since 𝜆/4 resonators are adopted.
Benefiting from these properties, a miniaturized bandpass filter with the second, third, and fourth harmonics suppression was
designed and implemented. The final measured and simulated results show good consistence with the theoretical counterparts.

1. Introduction

The bandpass filter is one of the most important components
inmodern RF/microwave systems [1–3]. Unfortunately, with-
out special measures, most of the filters exhibit harmonic
responses, which degrade the system performance [4–9].
On the other hand, most mobile devices become smaller
and leave limited space for the placement of filters. It is
also of importance to miniaturize the required filter size.
Therefore, bandpass filters with miniaturized size and har-
monics suppression become more and more attractive [10–
16]. To reduce the circuit size, the designed filters with lower
orders are preferred once the passband selectivity and out-
of-band rejection can reach the design requirements. One
important method to improve the selectivity of the filters is
to realize transmission zeros at finite frequencies. Moreover,
the additional transmission zeros at harmonics can reject
unwanted signals without sacrificing the performance of the
passband [17, 18]. Therefore, a low-order filter with the help
of transmission zeros may meet the stopband requirement
that is usually achieved by higher-order filters. It still has
challenges to design a lower order miniature bandpass filter
with harmonic suppression. Various structures are proposed

in [19–31], such as meandered parallel coupled-line struc-
ture [19–26], coupled/slot spur lines [27, 28], fractal-shaped
coupled lines [29], and triple-mode stub-loaded resonator
[30, 31]. Recently, a novel coupling schematic is proposed in
[32–34] that exhibits one transmission zero at a harmonic
frequency. Thus, with this coupling scheme, one more trans-
mission zero is added to the filter, which helps to improve
the upper stopband performance. However, most of the filters
mentioned above still occupy a fairly large space.

In this letter, a miniature two-order harmonic-
suppressed microstrip bandpass filter using meandered
quarter-wavelength resonators is presented. An interdigital
coupling capacitor is placed on the zero-voltage point
of the third harmonic along the resonators. With this
benefit, a transmission zero appears at the third harmonic
frequency. Besides, two additional transmission zeros
located at the lower and upper skirts of the passband are
obtained to enhance the selectivity.The circuit size reduction
is realized by using two meandered quarter-wavelength
resonators. With this structure, the proposed filter not only
miniaturizes the circuit size but also extends the rejection
band. To verify the performance, the proposed filter is
implemented and measured. The active area of the filter is
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Table 1: Dimensions of the proposed filter (unit: mm).

𝐿
1
= 8.9mm 𝐿

2
= 5.3mm 𝐿

3
= 3.8mm

𝐿
4
= 4mm 𝐿

5
= 3mm 𝐿

6
= 3.55mm

𝐿
7
= 2.85mm 𝐿

8
= 1.45mm 𝐿

9
= 1.5mm

𝐿
10
= 5.4mm 𝐿

11
= 1.2mm 𝑊

1
= 0.5mm

𝑊
2
= 1.8mm 𝑔 = 0.6mm 𝑔

1
= 2.2mm

𝑑 = 0.6mm 𝐿
𝑖
= 1mm 𝑊

𝑖
= 0.2mm

𝑔
𝑖
= 0.2mm 𝑔

2
=1.1mm 𝑠 = 1.4mm

L3

L1

L10

L7

L5

L4

s

L2

g

W1

g1

d Via

Port 1 Port 2
Parallel shorted

W2

L11

L6

L8
L9

coupled-line structure

Figure 1: Schematic of the proposed miniaturized bandpass filter.

only 8.9mm × 12.2mm (0.052𝜆
𝑔
× 0.071𝜆

𝑔
; 𝜆
𝑔
is the guided

wavelength at operating frequency), and the rejection band
is extended to 4.2𝑓

0
.

2. Filter Design and Analysis

Figure 1 depicts the geometrical schematic of the proposed
miniature harmonic-suppressed microstrip bandpass filter,
which is operating at 𝑓

0
= 1.13GHz. This is a two-

order bandpass filter. The quarter-wavelength resonators are
meandered and separated enough, as shown in Figure 1. The
substrate in this design is the Rogers4350 substrate with a rel-
ative dielectric constant of 3.48 and a thickness of 0.762mm.
The physical dimensions are shown in Table 1. The coupling
of the proposed bandpass filter is achieved only by the
interdigital coupling capacitor, and the coupling coefficient
is mainly determined by the location and value of interdigital
coupling capacitor. With the meandered quarter-wavelength
resonators, the circuit size can be reduced effectively. The
input and output ports are connected with the resonators
directly. The relation between the external quality and tapper
position of input/output port has been investigated in [35].

The interdigital coupling capacitor and its equivalent
circuit are shown in Figure 2. 𝐶

𝑠
and 𝐶

𝑝
represent the

series and shunt capacitors of interdigital coupling capacitor,
respectively [36]. The value of interdigital coupling capacitor

Cs

Cp Cp

gi

Wi
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Figure 2: Interdigital coupling capacitor and its equivalent circuit.
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Figure 3: Voltage wave functions along the quarter-wavelength
resonators.

𝐶int can be adjusted by changing the parameters𝑊
𝑖
, 𝐿
𝑖
, and

𝑔
𝑖
. As the resonators separate away from each other, the

coupling between them can be ignored when the interdigital
coupling capacitor does not exist. Thus, the coupling is
mainly realized by the interdigital capacitor, and the coupling
coefficients can be calculated by [37]

|𝑘| = 𝑝 × 𝐶int ×
󵄨
󵄨
󵄨
󵄨
V
1
(𝑥) × V

2
(𝑥)
󵄨
󵄨
󵄨
󵄨
, (1)

where V
1
(𝑥) and V

2
(𝑥) are normalized voltage wave functions

along the two quarter-wavelength resonators and p represents
a constant. As we know, the even-mode harmonics cannot be
excited at the quarter-wavelength resonators. And thus, only
the odd-mode harmonics existed, as shown in Figure 3.

When the center of coupling region is at the zero-voltage
point of the third harmonic, V

1
(𝑥) and V

2
(𝑥) are nearly to

zero for the third harmonic. With the very small length of
coupling region 𝑔

1
, the coupling coefficient 𝑘 is close to 0. As

a result, the third harmonic signals cannot pass through the
coupling region and thus is suppressed.Therefore, combining
the quarter-wavelength resonators and proper position of
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Figure 4: Current distribution: (a) fundamental frequency and (b) the third harmonic.
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Figure 6: (a) Transmission characteristics and (b) location of transmission zeros.

Figure 7: Photograph of the fabricated filter.
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Figure 8: Simulated and measured S-parameters.

the interdigital coupling capacitor, the rejection band can be
extended to the fifth harmonic.

The proposed filter is simulated by the commercially
available electromagnetic (EM) simulator of Ansoft HFSS.

Current distributions of the fundamental and third harmonic
of the proposed filter are shown in Figure 4. It clearly shows
how the fundamental frequency current is coupled from the
input port to the output port, whereas the third harmonic is
suppressed.This verifies the theoretical analysis stated above.

A parallel shorted coupled-line structure, shown in Fig-
ure 1, is adopted to enhance the selectivity. As shown in
Figure 5, two additional transmission zeros are realized by
the parallel shorted coupled-line structure. This structure is
similar to the source-load coupling. Meanwhile, the location
of transmission zeros is determined by the gap 𝑠. The higher
selectivity is achieved with the smaller gap s, which is shown
in Figure 6.

3. Experiments

The proposed microstrip bandpass filter is fabricated using
printed circuited-board (PCB) process and the photograph is
given in Figure 7.The active area of the proposed filter is only
8.9mm × 12.2mm, which is about 0.052𝜆

𝑔
× 0.071𝜆

𝑔
, where

𝜆
𝑔
is the guided wavelength at operating frequency. Agilent

network analyzer 8358E is used to test the performance. The
simulated and measured results are illustrated in Figure 8
and show good agreements. The centre frequency of the
passband ismeasured at 1.17GHz against that of the simulated
results at 1.13 GHz. Furthermore, the measured passband has
a 3 dB bandwidth of 111MHz or 10.6%. The insertion loss,
including the loss from subminiature A (SMA) connectors, is
only 1.3 dB compared to the simulated loss of 0.59 dB. From
Figure 8, it is noted that there are two transmission zeros
on the lower and upper skirts of the passband at 0.9GHz
and 1.61 GHz. Besides, another transmission zero is located
at 3.1 GHz.Thus, the third harmonic is efficiently suppressed.
It agrees with the theoretical analysis. Therefore, the 20 dB
rejection band is extended to 4.96GHz, which is about 4.2𝑓

0
.
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Table 2: Comparison with some previously published designs.

IL @ 𝑓
0

3 dB FBW Harmonic suppression∗ Size (𝜆
𝑔

2)
[26] 2.0 dB 26.5% 3.9𝑓

0
0.189 ∗ 0.438

[27] 3.3 dB 12.5% >3.75𝑓
0

0.166 ∗ 0.141

[28] 1.93 dB 4% — 0.175 ∗ 0.175

[29] 2.1 dB 5.1% >2𝑓
0

1.03 ∗ 0.171

[30] 1.2 dB 13.2% >2𝑓
0

0.21 ∗ 0.15

[31] 0.78 dB 15.8% 4𝑓
0

0.23 ∗ 0.17

[32] 2.2 dB 6.0% 2.5𝑓
0

0.557 ∗ 0.124

This work 1.3 dB 10.6% 4.2𝑓
0

0.052 ∗ 0.071

∗20 dB rejection bandwidth.

The proposed filter is compared with some previously
published designs [26–32] in Table 2. Obviously from the
table, the proposed filter has identical or even improved
in-band performances. In addition, this work exhibits the
smallest circuit size.

4. Conclusion

A miniature microstrip bandpass filter with harmonic sup-
pression is presented in this paper. By utilizing the quarter-
wavelength and position of interdigital coupling capacitor,
the second, third, and fourth harmonics are suppressed.
The miniaturization characteristic is achieved based on the
meandered quarter-wavelength resonator. Compared with
the conventional approaches on designing miniature band-
pass filter with harmonic suppression, the work in this paper
exhibits a smaller circuit size and wider rejection band.
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