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Osteoporotic fracture, a major complication which is known as the outcome postmenopausal osteoporosis, seriously threatens the
health of postmenopausal women. At present, the traditional osteoporotic fracture prediction methods are characterized by
inconvenient application and time-consuming statistical results, while predictive serum biomarkers can make up for this
shortcoming. Accurate and advanced risk prediction of osteoporotic fracture is meaningful to early prevention and
intervention, effectively avoiding the risk of this disease and the secondary fracture in the surgical treatment. In this study,
based on the BEYOND cohort, a 2-year follow-up study was conducted after subjects participated to survey if OF occurred.
Independent sample t -test and Mann–Whitney U-test were used to analyze the differences of bone metabolism biomarkers
between the OF and non-OF group. Cox proportional hazard model was used to screen the potential biomarkers might be
used to predict OF risk. ROC curves and AUCs were used to analyze the predictive accuracy, and the Delong’s test was used to
compare the differences between the AUCs. 15 postmenopausal women with low bone mass and OF were found, and other 60
subjects without OF were matched with 1 : 4, age, and BMI classification as control group. The serum IL-6 (OR = 1:139, 95%CI
= 1:058 − 1:226) and leptin (OR = 0:921, 95%CI = 0:848 − 1:000) were found as OF risk predictive biomarkers for
postmenopausal women with low bone mass with high accuracy (IL − 6 = 0:871) (leptin = 0:813) and accuracy enhanced when
they were combined (AUC = 0:898). The results of Delong’s test showed that the difference of AUC between leptin and IL-
6&Leptin was meaningful (P = 0:024) but meaningless between IL-6 and leptin (P = 0:436), IL-6 and IL-6&Leptin (P = 0:606).
To sum up, IL-6 and leptin are the predictive biomarkers of OF for postmenopausal women with low bone mass. The IL-6 can
improve the prediction accuracy of leptin (P = 0:024), but not vice versa (P = 0:606). Trial Information. Registered on the
Chinese Clinical Trial Registry already. (Registration Number: ChiCTR-SOC-17013090).

1. Introduction

Postmenopausal osteoporosis (PMOP) [1], a serious public
health problem, is the major type of osteoporosis (OP) char-
acterized by bone tissue microstructure damaged and bone
fragility increased, resulting in a higher fracture risk [2] for

postmenopausal women. The prevalence of this condition
has been reported to be 29.0% in women over 50, equating
to 49 million people in China [3], which is one of the most
prevalent metabolic bone diseases of Chinese elderly women.
OF, being the final outcome and the most serious complica-
tion of PMOP, seriously threatens the health of
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postmenopausal women. Due to many difficulties in the
treatment of the disease such as high risk of secondary frac-
tures [4], it is necessary to accurately predict the risk of OF
and prevent it in advance. Early prediction of the disease
prior to the occurrence of OF followed by effective preven-
tion of appropriate treatment can reduce fracture risk.

Currently, dual-energy X-ray absorptiometry (DEXA)
[5] is the normal approach of obtaining bone mineral den-
sity (BMD) to assess the risk of OF. Meanwhile, some estab-
lished risk factors like T-scores [6] and prior fracture [7] also
took part in predicting imminent risk of fracture, as falls [8],
physical functioning [9], lifestyle [10, 11], and general health
[12]. Nevertheless, the radiation, high cost of imaging equip-
ment and the time-consuming, recall bias of questionnaire
survey cannot be ignored when these methods are used to
collect the prediction information. A faster and more effi-
cient predictive method that is easier to screen on a large
scale should be found, which is beneficial to the prevention
of this high-risk disease. Serum biomarkers detection is an
effective way to solve the abovementioned urgent problems.

At present, various pathogenesis of POMP and OF has
been proposed, such as oxidative stress [13], inflammatory
response [14], lipid metabolism [15], and angiogenesis
[16]. Meanwhile, many relevant biomarkers have shown
the correlation between osteoporosis and already been used
to auxiliary diagnose OP and assess bone metabolism, such
as leptin, Interleukin-6 (IL-6), insulin-like growth factor 1
(IGF-1), and vascular endothelial growth factor (VEGF)
[17–19]. However, whether these biomarkers could be used
to predict the risk of OF have no explicit evidence. There-
fore, based on the BEYOND cohort [20] conducted by our
team from 2017 to 2018 and its follow-up work on October,
2019, 15 patients with OF and 60 participants with low bone
mass matched by age and BMI classification were selected to
screen for predictive serum biomarkers of OF.

2. Materials and Methods

In this study, based on a cross-sectional and prospective follow-
up study, we used Cox proportional hazards model to examine
the relationships between the serum biomarkers and risk for
OF among postmenopausal women with low bone mass. We
focused on a 2-year period to evaluate the OF risk in this study.

The Ethics Committee of Wangjing Hospital of China
Academy of Chinese Medical Sciences (approval number:
WJEC-KT-2017-020-P001) approved this research.

This study had been registered on the Chinese Clinical
Trial Registry already. (website: http://www.chictr.org.cn)
(Registration Number: ChiCTR-SOC-17013090).

2.1. Data Source. This study used data from the study of
BEYOND cohort, a cross-sectional and prospective study
established from December 2017 to July 2018. It included
1540 participants from 10 communities in Chaoyang Dis-
trict and Fengtai District of Beijing as prospective data that
had served as the basis for studies of OP and OF. Partici-
pants accepted examinations and questionnaire survey when
they joined in this cohort and they were accepted a tele-
phone interview on October 2019. Data on BMD, serum bio-

markers, body mass index (BMI), lifestyle, medical history,
medication use, and physical function were collected at the
first examination visit. Participants reported on fractures
and time, causes, locations, and treatments during the
follow-up study.

Among 1,540 participants of BEYOND cohort, we included
postmenopausal women with low bone mass (including osteo-
penia and osteoporosis) who were not diagnosed with diabetes,
thyroid disease, kidney disease, and rheumatoid disease (disease
cause secondary OP) as our follow-up interviewees (n = 712).
Among these individuals, we selected participants suffered OF
in these two years (n = 15) as OF group.

Then, the OF group was matched 1 : 4 with participants
in the 712 who had no suffered OF in these two years. The
non-OF group was selected from the postmenopausal
women with low bone mass who were interviewed. Match-
ing was performed based on their age (±2 year) and BMI
classification (low weight: BMI < 18:5, normal: 18:5 ≤ BMI
< 24, overweight: 24 ≤ BMI < 28, obesity: BMI ≥ 28). Finally,
1 : 4 matching resulted in the inclusion of 15 OF patients and
60 non-OF participants (Figure 1).

2.2. Diagnostic Criteria. Dual-energy X-ray absorptiometry
device (Hologic, WI, USA) was used to assess the value of
BMD (g/cm2). The diagnosis of OP was based on the criteria
outlined by the WHO and Chinese guidelines [21], T value
> -1.0 was common; −2:5 ≤ T value ≤ −1:0 was osteopenia;
T value < -2.5 was osteoporosis.

2.3. Study Outcomes. The primary outcome was OF. Accord-
ing to the definition of OF in Primary Osteoporosis Diagno-
sis and Treatment Guidelines published by Chinese Journal
of Osteoporosis and Bone Mineral Research in 2017 [22],
low bone mass (T ≤ −1:0) combined with low energy frac-
tures of the proximal humerus, pelvis, and distal forearm
all belong to OF. Therefore, low-energy fractures in patients
with osteoporosis and osteopenia in the BEYOND cohort
will be included in this study.

2.4. Biomarker Detection. Fasting blood samples of the par-
ticipants were collected between 8 a.m. and 9 a.m. in sitting
position. The measurements were conducted through auto-
mated electrochemiluminescence immunoassay system
(Roche, Cobas E601, Germany). In addition, the serum seg-
regated for detection was stored at -80°C. Detected biomark-
ers include serum calcium, serum phosphorus, serum
magnesium, 25-hydroxy-vitamin D [25(OH)VitD3], β iso-
mer of C-terminal telopeptide of type I collagen (β-CTx),
osteocalcin (OST), parathyroid hormone (PTH), alkaline
phosphatase (ALP), type I procollagen amino-terminal pep-
tide (P1NP), IGF-1, IL-6, leptin, and VEGF.

2.5. Statistical Analysis and Accuracy Assessment. Kolmogo-
rov-Smirnov test was used to test continuous variables for a
normal distribution and was presented as the median with
an interquartile range. t-test or Mann–Whitney U-test was
used to analyze continuous detection indexes and the vari-
ables which P < 0:2 were included in the model [23].
Furtherly, the Cox proportional hazards model was used to
explore the predictive biomarkers associated with OF. Based
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on the principle of modeling and variable selection, ROC
curve and area under curve (AUC) were used to verify the
accuracy of the model. P < 0:05 indicated that the difference
between the two groups was statistically significant.

All statistical analysis was carried out with SPSS Statistics
22.0 software. ROC curves were obtained by Medclac 21.0
software. Figures were created in GraphPad Prism 8.0
(GraphPad Software, CA, USA).

3. Results

3.1. Study Population and Participant Characteristics. 15 OF
patients and 60 non-OF participants were selected in this
study. Among the 15 patients with OF, 7 participants were
osteopenia, and the others were osteoporosis; 14 were due
to fall, and one person was due to cough. There were 8 limb
fractures, 5 spine fractures, and 2 hip fracture (Table 1). The

oldest participant was 74 years old, the youngest was 51,
median age of 15 patients was 61.00 (55.00, 70.00) years.
Among the 15 patients, 5 were of normal weight, 6 were
overweight, and 4 were obesity.

The median years of non-OF group were 61.50 (55.00,
69.75) years, the oldest was 75 years old, and the youngest
was 50 years old. Meanwhile, their BMI classification was
consistent with 15 patients completely.

3.2. Normality Test. According to the results of Kolmogorov-
Smirnov and Shapiro-Wilk test, the ages, menopausal age,
pregnancies times, delivery times, serum 25(OH)VitD3, β-
CTx, ALP, P1NP, IL-6, and VEGF did not obey the normal
distribution; the serum phosphorus, serum calcium, serum
magnesium, OST, PTH, IGF-1, and leptin obeyed the normal
distribution. The results of the normality test were shown in
Table 2. Mann–Whitney U test was used to analysis the date

BEYOND cohort: 1540 participants

Males (n = 415)

With diabetes,
thyroid disease

kidney disease and
rheumatoid disease

(n = 252)

15
participants

with OF

100
participants
no response

Premenopausal
females (n = 70)

597
participants

without
fracture

Follow-up interview
in october 2019

60
participants

without
OF

Matched with 1:4
age ( ± 2 year)

low bone mass (T ≤ – 1)
same BMI classification

75 participants of this study

1125 females participants

1055 postmenopausal
females participants

712 participants

from December 2017
to July 2018

October 2019

Without serum
biomarkers

data (n = 91)

Figure 1: Participants screening process.
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did not obey the normal distribution, and t-test was used to
analysis the date obey the normal distribution.

3.3. Univariate Analysis of Population Information and
Biomarkers. Mann–Whitney U test was used to analyze the
nonnormally distributed data, and t-test was used to analyze
the normally distributed data. According to the results of
univariate analysis, the differences of age, menopause age,
and delivery times between the two groups have no statisti-
cally significant. Meanwhile, the differences of serum IGF-

1(P = 0:004), IL-6 (P < 0:001), and leptin (P < 0:001)
between the OF group and the non-OF group are statistically
significant (Table 3). In addition, six markers are found that
the P value was less than 0.2, including serum calcium, OST,
IGF-1, IL-6, leptin, and VEGF.

3.4. OF Risk Factor Analysis. Cox proportional hazard model
was established to find the biomarkers could be used to pre-
dict OF. The variables whose P value was less than 0.2
(serum calcium, OST, IGF-1, IL-6, leptin, and VEGF) were

Table 1: The characteristics of 15 OF patients.

Number Ages BMI Classification Recruited time Fracture time Reason Location

1 55 26.839 Overweight June, 2018 August, 2019 Fall down Ankle

2 52 21.484 Normal weight June, 2018 December, 2018 Fall down Ankle

3 58 28.444 Obesity June, 2018 June, 2019 Fall down Wrist

4 55 27.142 Overweight May, 2018 December, 2018 Fall down Hip

5 74 25.781 Overweight May, 2018 February, 2019 Fall down Wrist

6 61 25.631 Overweight May, 2018 November, 2018 Fall down Hip

7 58 23.225 Normal weight May, 2018 September, 2018 Fall down Lumbar spine

8 66 29.997 Obesity May, 2018 October, 2018 Fall down Lumbar spine

9 71 20.937 Normal weight April, 2018 December, 2018 Fall down Wrist

10 59 28.134 Obesity April, 2018 February, 2019 Fall down Wrist

11 70 25.537 Overweight April, 2018 September, 2019 Cough Lumbar spine

12 71 28.228 Obesity March, 2018 November, 2018 Fall down Ankle

13 51 21.414 Normal weight December, 2017 October, 2019 Fall down Lumbar spine

14 68 23.335 Normal weight December, 2017 August, 2018 Fall down Thoracic spine

15 65 27.392 Overweight December, 2017 October, 2018 Fall down Elbow

Table 2: Normality test of population information and biomarkers.

Group
Kolmogorov-Smirnova Shapiro-Wilk

Statistic df Sig. Statistic df Sig.

Ages 0.117 75 0.013 0.947 75 0.003

Menopause age 0.219 75 <0.001 0.890 75 <0.001
Delivery times 0.289 75 <0.001 0.777 75 <0.001
Pausimenia age 0.138 75 0.001 0.949 75 0.004

Serum phosphorus 0.094 75 0.097 0.929 75 <0.001
Serum calcium 0.080 75 0.200∗ 0.973 75 0.104

Serum magnesium 0.095 75 0.093 0.980 75 0.284∗

25(OH)VitD3 0.145 75 0.001 0.898 75 <0.001
β-CTx 0.155 75 <0.001 0.936 75 0.001

OST 0.070 75 0.200∗ 0.975 75 0.136

PTH 0.090 75 0.200∗ 0.953 75 0.007

ALP 0.124 75 0.006 0.913 75 <0.001
P1NP 0.111 75 0.023 0.962 75 0.024

IGF-1 0.055 75 0.200∗ 0.994 75 0.987∗

IL-6 0.344 75 <0.001 0.500 75 <0.001
Leptin 0.101 75 0.056 0.955 75 <0.001
VEGF 0.243 75 <0.001 0.659 75 <0.001
∗P > 0:05, the simple is normally distributed.
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included in the Cox proportional hazards model, and the
time was set as the number of month from they joined the
cohort to follow-up study visited. The results showed that
the differences between IL-6 and leptin were statistically sig-
nificant. IL-6 was predictive risk biomarkers for OF in this

population (P < 0:001, OR = 1:139), while leptin was a pro-
tective factor for OF (P < 0:049, OR = 0:921) (Table 4).

3.5. Serum IL-6, Leptin between OF and Non-OF Group.
According to the results of Cox proportional hazards model,

Table 3: Univariate analysis of population information and biomarkers.

Characteristics Total (n = 75) OF group (n = 15) Non-OF group (n = 60) t/Z P

Age 61.00 (55.00, 70.00) 61.00 (55.00, 70.00) 61.50 (55.00, 69.75) -0.073 0.942

Menopause age 50.00 (48.00, 52.00) 50.00 (48.00, 52.00) 50.00 (47.00, 52.00) 0.481 0.631

Pregnancies times 2.00 (1.00, 3.00) 2.00 (2.00, 3.00) 2.00 (1.00, 3.00) 0.414 0.679

Delivery times 1.00 (1.00, 2.00) 1.00 (2.00, 2.00) 1.00 (1.00, 2.00) 0.903 0.367

Serum phosphorus (mmol/L) 1:47 ± 0:26 1:50 ± 0:24 1:46 ± 0:28 -0.502 0.617

Serum magnesium (mmol/L) 0:95 ± 0:07 0:94 ± 0:05 0:96 ± 0:07 1.067 0.294

Serum calcium (mmol/L) 2:35 ± 0:07 2:38 ± 0:07 2:35 ± 0:07 -1.815 0.074

25(OH)VitD3 (pg/ml) 15.00 (11.50, 17.20) 16.60 (13.40, 18.60) 14.65 (10.85, 17.05) 1.020 0.308

β-CTx (ng/ml) 0.29 (0.21, 0.39) 0.30(0.25, 0.34) 0.29 (0.21, 0.39) -0.020 0.984

OST (ng/ml) 16:14 ± 5:05 15:51 ± 3:52 16:29 ± 5:38 -0.384 0.192

PTH (pmol/L) 3:25 ± 1:07 3:05 ± 1:09 3:30 ± 1:07 -0.874 0.538

ALP (U/L) 83.00 (72.00, 98.00) 83.00 (70.00, 100.00) 83.00 (70.00, 97.75) -0.388 0.735

P1NP (ng/ml) 56.87 (46.13, 77.17) 62.55 (53.41, 77.94) 56.03 (45.94, 76.87) 0.748 0.454

IGF-1 (ng/ml) 57:46 ± 21:06 73:38 ± 28:34 52:48 ± 16:88 -3.517 0.004∗

IL-6 (pg/ml) 1.74 (1.02, 2.70) 2.90 (2.18, 21.74) 0.82 (1.46, 2.18) 4.426 <0.001∗∗

Leptin (ng/ml) 22:35 ± 11:35 12:94 ± 7:83 24:71 ± 10:90 3.861 <0.001∗∗

VEGF (pg/ml) 123.55 (73.66, 147.72) 137.53 (110.88, 178.20) 119.46 (65.93, 143.46) 1.497 0.134

Data are presented as Mean ± S:D: or Median (q25, q75).
∗P < 0:05, ∗∗P < 0:001.

Table 4: The result of Cox proportional hazards model.

Factor β SE Wald P OR (95% CI)

OST -0.085 .084 1.024 0.311 0.919 (0.780-1.083)

Serum calcium 10.511 5.551 3.585 0.058 36733.088 (0.691-1951531307.714)

IGF-1 0.009 0.014 0.403 0.525 1.009 (0.981-1.038)

IL-6 0.130 0.038 11.834 0.001∗ 1.139 (1.058-1.226)

Leptin -0.082 0.042 3.860 0.049∗ 0.921 (0.848-1.000)

VEGF 0.000 0.002 0.004 0.950 1.000 (0.996-1.004)
∗P < 0:05, ∗∗P < 0:001.
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Figure 2: The comparison of IL-6 and leptin between OF and non-OF group. The blue points are the data of OF group participants, and the
orange points are the data of non-OF group participants.
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IL-6 and leptin were found as a OF risk prediction model. All
serum concentration of these biomarkers is shown in Figure 2.
We could find that the serum IL-6 level of OF group was sig-
nificantly higher than that in the non-OF group (P < 0:001),
while the result of leptin was opposite (P < 0:001).

3.6. ROC Curve and AUC Analysis. The ROC curves showed
an accurate discrimination performance for these two bio-
markers. Herein, we showed the OF prediction accuracy of
IL-6 (Figure 3(a)), leptin (Figure 3(b)), and IL-6&Leptin
(Figure 3(c)). The AUCs for different types were shown in
Figure 3 and Table 5. The AUC value of IL-6
(AUC = 0:871) was close to leptin (AUC = 0:813). And the
OF predictive accuracy increased when they were applied
together (AUC = 0:898).

Furthermore, the Delong’s test was used to analyze the
differences of AUCs between every biomarkers group. We
found that the difference of AUC between leptin and IL-
6&Leptin was meaningful (P = 0:024), which showed the
OF prediction accuracy of IL-6&Leptin group was higher
than leptin. However, the difference of AUC between IL-6
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Figure 3: ROC curves of IL-6 and leptin. (a) ROC curve of IL-6 (AUC = 0:871, P < 0:001). (b) ROC curve of leptin (AUC = 0:813, P < 0:001
). (c) ROC curve of IL-6&Leptin (AUC = 0:898, P < 0:001).

Table 5: Predictive characteristics of IL-6 and leptin.

Biomarkers Cutoff Specificity Sensitivity AUC
95% CI for

AUC

IL-6 0.633 63.33 100.00 0.871 (0.774-0.937)

Leptin 0.567 90.00 66.67 0.813 (0.707-0.894)

IL-
6&Leptin

0.750 95.00 80.00 0.898 (0.806-0.956)
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and leptin (P = 0:436) and IL-6 and IL-6&Leptin (P = 0:606)
was all meaningless (Table 6).

4. Discussion

OF is the most serious complication of postmenopausal
osteoporosis [24] and active prevention of it can be benefi-
cial to prolong life expectancy and improve quality of life
for the elderly [25]. Based on the characteristics of OF, early
prevention is particularly more important than treatment
[26]. In this study, based on the information and data from
follow-up study and the results of Cox proportional hazards
model, we focused on the predictive effect of IL-6 and leptin.
These two biomarkers are associated with inflammatory
response, oxidative stress, lipid metabolism, and bone tissue
formation and destruction.

Inflammatory microenvironment mediated by the
immune system in vivo is considered to be a major reason
of abnormal bone metabolism. It may lead to osteoclast acti-
vation to accelerate bone loss [27, 28], increase the risk of
fracture [29, 30], and slow down the healing rate of fracture
[31, 32]. Many medicines are used to treat osteoporosis and
repair the bone tissue by alleviating the expression of tissue
inflammatory factors [33–35]. Meanwhile, inflammatory
factors infiltration caused by many inflammatory diseases
can also lead to abnormal bone metabolism, resulting in
increased fracture probability, such as chronic pancreatitis
[36, 37], chronic enteritis [38], hepatitis [39], and chronic
obstructive pulmonary disease [40]. IL-6 is a common
inflammatory factor whose effect on bone metabolism has
been confirmed already [41]. A randomized controlled clini-
cal trial led by Saribal et al. [42] included 40 patients with hip
fractures due to osteoporosis and 40 age-matched nonosteo-
porotic healthy controls and found that the difference of IL-
6 levels between this two group was statistically significant,
which considered the relevance of IL-6 and OF. In 2014, based
on a cohort with a total of 9704 Caucasian women, Barbour
et al. [43] found that women in the highest quartile of IL-6
had a significantly higher risk of hip fractures compared to
women in the lowest quartiles, which suggested that IL-6 can
predict fractures of women. However, the association between
IL-6 and OF still needs more evidence.

Leptin is a hormone with multiple functions that can act
locally and systemically. It not only involved in lipidmetabolism
but also associated with inflammatory response [44] and oxida-
tive stress [45]. In recent years, the relationship between leptin
and bone metabolism has been confirmed gradually. Leptin
stimulates the differentiation of stromal cells to osteoblasts
[46], increases proliferation of osteoblasts [47], and inhibits
osteoclastogenesis. Deficiency in leptin signaling, through

knockout of the Leptin receptor gene, decreases bone volume
and BMD [48], indicating the important role of leptin in bone
homeostasis. However, there is no consensus on whether leptin
can be used to predict OF. Based on a cohort of 1167 postmen-
opausal women and a 25-year follow-up interview, an epidemi-
ological survey [49] conducted in Japan showed that leptin
levels and postmenopausal women were significantly indepen-
dent risk factors for long bone fractures and vertebral fractures.
However, another research [50] found that there was no signif-
icant difference in serum leptin between osteoporosis patients
and nonosteoporosis patients. In fact, the effect of leptin on
bone metabolism is related to factors such as weight and obesity
[51]. Some scholars believe that the high expression of leptin in
obese patients (BMI > 28) may have a lower effect on bone
metabolism than those with normal weight [52]. Therefore,
when using leptin to predict fracture risk, it cannot be discussed
separately from weight or obesity. In this study, we match sub-
jects by same BMI classification, so it can be considered that the
relationship between fracture and leptin is reliable.

In addition, IL-6 and leptin interact with each other too.
Both these two biomarkers can be produced by adipose tis-
sue [53] and mediated many pathological reaction together.
Hoffmann et al. [54] found that leptin administration within
the subphysiological to physiological range diminished cir-
culating proinflammatory IL-6 in female mice and reduction
of IL-6 gene expression in adipose tissue, as well as
decreased adipose tissue macrophage infiltration might con-
tribute. However, Wueest and Konrad [55] found that IL-6
could induce the release of leptin from adipocytes, which
was contrary to the conclusion of the previous article. In
fact, there are few studies on the relationship between IL-6,
leptin, and OF, but it cannot be ignored.

Meanwhile, according to the results of Delong’s test, IL-6
can improve the prediction accuracy of leptin (P = 0:024),
but not vice versa. It can be considered that the prediction
accuracy of IL-6&Leptin is not better than IL-6, and we should
use IL-6 to predict OF separately due to economical. However,
prediction accuracy of leptin is reliable (AUCs = 0:813), and
these two biomarkers have different predictive directionalities
to OF, which may have implications for accurate prediction of
different populations in the future. Therefore, we preserve the
role of leptin in the predictive model.

This study has the following advantages: based on the
BEYOND cohort, all 15 patients of OF group suffered this
disease after entry into the cohort and before follow-up
study, ensuring the reliability of the results. Then, a Cox dis-
ease risk prediction method was used to construct a predic-
tion model of OF risk with IL-6 and leptin as the main risk
prediction indicators.

This study also has certain limitations. First, only Beijing
community subjects were included in our study, which limited
the extrapolation of the results of our study. In addition, only
two-year follow-up interview had been developed, and the inci-
dence of outcome indicators was low (15/612, 2.45% in 2 years).
So as to solve the problem, we matched these 15 patients in a
ratio of 1 : 4 with ages and BMI classification. Meanwhile, a lat-
est prevalence study [56] in China found that the clinical frac-
ture prevalence of women over 40 years old in 5 years is 4.3%,
as well as the prevalence in 5 years of women in urban is

Table 6: The results of Delong’s test.

Biomarkers group Delong’s test P 95% CI

IL-6 vs. leptin 0.779 0.436 -0.0877 - 0.203

IL-6 vs. IL-6&Leptin 0.516 0.606 -0.0747 - 0.128

Leptin vs. IL-6&Leptin 2.260 0.024∗ 0.0112 - 0.158
∗P < 0:05, ∗∗P < 0:001.
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4.4%. Due to the similar participants and research design, we
believe that the OF prevalence of our study is similar to the
results of the latest prevalence study in China. Notwithstanding
these limitations, the main progress of our study was the follow
up interview for a relatively large sample size and established a
fracture risk prediction model suitable for the clinical character-
istics of Chinese postmenopausal women with low bone mass.

5. Conclusion

Overall, evidence based on current findings suggests that
serum IL-6 and leptin can be the predictive factors of OF risk
for postmenopausal women with low bone mass, but it needs
to be proved by long-term follow-up studies with large sample.
We will continue to improve the relevant programs and
increase the sample size, so as to find higher quality evidences.
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Cytoplasmic lipid droplets (LDs) can store neutral lipids as an energy source when needed and also regulate the key metabolic
processes of intracellular lipid accumulation, which is associated with several metabolic diseases. The perilipins (Plins) are a
family of proteins that associate with the surface of LDs. As a member of Plins superfamily, perilipin 5 (Plin5) coats LDs in
cardiomyocytes, which is significantly related to reactive oxygen species (ROS) production originated from mitochondria in the
heart, consequently determining the progression of diabetic cardiomyopathy. Plin5 may play a bidirectional function in lipid
metabolism which is in a state of dynamic balance. In the basic state, Plin5 inhibited the binding of comparative gene
identification-58 (CGI-58) to adipose triglyceride lipase (ATGL) by binding CGI-58, thus inhibiting lipolysis. However, when
the body is under stress (such as cold, fasting, exercise, and other stimuli), protein kinase A (PKA) phosphorylates and
activates Plin5, which then causes Plin5 to release the binding site of CGI-58 and ATGL, prompting CGI-58 to bind to ATGL
and activate ATGL activity, thus accelerating the lipolysis process, revealing the indispensable role of Plin5 in lipid turnover.
Here, the purpose of this review is to summarize the present understanding of the bidirectional regulation role of Plin5 in
oxidative tissues and to reveal its potential role in diabetic cardiomyopathy protection.

1. Introduction

Obesity, diabetes mellitus, dyslipidemia, and hypertension
often cluster together as the most significant risk factors
for cardiovascular diseases [1]. Excess accumulation of intra-
cellular lipid is believed to cause several metabolic diseases
like obesity cardiomyopathy, inducing irreversible damage
to cardiovascular systems [2, 3]. The rising trend in the
lipid-associated metabolic diseases has drawn people’s atten-
tion to the pathobiological functions of cytosolic LDs which
are subcellular structures to store neutral lipid [4, 5]. Medi-
cal treatment to prevent against excess accumulation of

intracellular lipid alleviated the adverse development of car-
diovascular diseases [6], which appeared to be controlled by
LDs-associated proteins. Cytosolic LDs are comprised of a
core of neutral lipids, triacylglycerols (TAG), and/or choles-
teryl ester (CE) and surrounded by a phospholipid mono-
layer [7]. The contrasting chemical natures of hydrophilic
lipid metabolic enzymes and their hydrophobic substrates
have directed people’s attention to LDs surface which was
viewed as regulatory interface between the aqueous cytosol
and the hydrophobic lipid core [8]. Thus, LDs may have
essential protective roles in the sequestration of cytotoxic
fatty acids (FAs) in nonadipose tissues. Specifically, perilipin
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proteins (Plins) are the definitive abundant proteomic
markers of LDs surfaces in both adipose and non-adipose
cells and function as primary mediators for neutral lipid
storage/hydrolysis [9]. LDs are coated by several proteins,
including Plins and other structural proteins, membrane-
trafficking proteins, lipases, and lipogenic enzymes [10].
Especially, Plins are known as representation of LDs and
necessarily associated with LDs formation [11]. The mam-
malian genome has encoded five Plins genes, with unique
tissue-dependent patterns of transcription and splice varia-
tion [12]. Perilipin 1 (Plin1) is abundant in white adipose
tissue (WAT) and brown adipose tissue (BAT). Perilipin 2
(Plin2) and perilipin 3 (Plin3) are widely distributed, with
Plin2 highly expressing in hepatocytes. Perilipin 4 (Plin4)
is observed in adipocytes, cardiomyocytes, and myocytes.
However, Plin5 is highly expressed in oxidative tissues and
generally restricted to tissues/cells that utilize lipids for
energy through mitochondrial β-oxidation. [13, 14]. Overall,
Plins take important roles in the formation and degradation
of LDs.

As a member of the perilipin superfamily, Plin5 is central
to lipid homeostasis in these tissues by promoting association
of LDs with mitochondria [15]. Besides the expression on
surface of LDs, Plin5 also appears in nucleus, cytoplasm,
and mitochondria. Plin5 is closely related to the generation
of ROS originated from mitochondria, consequently deter-
mining the progression of oxidative stress [16]. Recently,
the data from in vivo and in vitro indicate an important role
of Plin5 in the regulation of cardiac lipid storage and func-
tion. Previous studies have suggested that lipolysis was
mainly due to PKA -mediated phosphorylation of
hormone-sensitive lipase (HSL), but recent studies have
shown that it is mainly regulated by the translocation of
lipase from the cytosol to the surface of LDs. And Plin5 phos-
phorylation is necessary for HSL translocation and has
become a hot topic in recent years due to the important role
of Plins in lipolysis. Under basal conditions in cardiac tissues,
Plin5 coats on the surface of LDs as a physical barrier to
inhibit enzymatic activity, inhibiting the binding of CGI-58
to ATGL by binding CGI-58, thus inhibiting lipolysis, as well
as a guarder to prevent excessive β-oxidation of free fatty
acids. When phosphorylated in lipolysis following activation
of PKA under β-adrenoceptor-stimulated condition or when
energy demand is increased, Plin5 serves as a platform to
facilitate lipolysis on LDs surface by promoting the interac-
tion of ATGL with CGI-58, thus accelerating the lipolysis
process [17]. Moreover, besides the promotion of β-oxida-
tion, phosphorylated Plin5 can migrate to nucleus to pro-
mote peroxisome proliferator-activated receptor gamma
coactivator 1-α (PGC-1α) function by disinhibiting sirtuin
1 (SIRT1) deacetylase activity, enhancing transcription of
mitochondrial function, and reinforcing fatty acid metabo-
lism. Therefore, Plin5 may serve as a bidirectional regulator
for lipid turn over by phosphorylation modification and con-
tent variation in cardiomyocytes and act as a potential molec-
ular target for the treatment of dyslipidemia in diabetic
cardiomyopathy. However, in skeletal muscle, the phosphor-
ylation level of Plin5 remains unchanged when facing with
either contractile or adrenergic stimulation, revealing that

Plin5 may share different functions in different tissues
(Figure 1). The focus of this review was to summarize the
reported roles of Plin5 in oxidative tissues.

2. Special Function of Plin5 in
Oxidative Tissues

2.1. Cardiac Tissues. In contrast to other perilipins, Plin5 has
unique ability to store lipid droplet in O2 abundant organ-
elles. Studies have shown that free fatty acid (FFA) can be
used as ligand to activate peroxisome proliferator-activated
receptors (PPARs) and induce the expression of Plin5. For
example, exogenous FFA can stimulate the expression of
Plin5 in cultured rat cardiomyocytes [18]. Conversely, Plin5
can also affect the metabolic process of FFA. It is found that
the FFA uptake decreased and glucose uptake increased after
the knockout of Plin5 in myocardium, which thus main-
tained the normal energy requirement of the heart [19],
and that the expression of FFA uptake-related enzymes such
as lipoprotein lipase (LPL) and CD36 was decreased in myo-
cardial overexpressing Plin5 [20]. This result suggested that
the increase in TAG during Plin5 overexpression is not likely
due to increased FFA uptake. Besides, Plin5 could regulate
the β-oxidation of FFA by acting on the spatial action of
mitochondria and affecting FFA-related enzymes. Research
found that the expression of mitochondrial oxidation-
related genes and Plin5 were negatively correlated in myo-
cardium [20, 21]. And Plin5 ablation could enhance the oxi-
dation of FFA in the myocardium [22]. Further research
found that the mRNA expression of mitochondrial cyto-
chrome C and cytochrome C oxidase subunit IV (COX IV)
in myocardium of Plin5-/- mice increased significantly com-
pared with WT mice, indicating that mitochondrial function
was enhanced [19]. On the other hand, overexpression of
Plin5 decreased the expression of PPARs target gene in myo-
cardium [20], and the gene expressions of mitochondrial
energy metabolism, oxidative phosphorylation, and utiliza-
tion of FFA were all downregulated, which had been
reported as PPAR target genes [23]. In another report, myo-
cardial overexpression of Plin5 reduced the expression and
activity of carnitine palmitoyltransferase 1 (CPT-1), a key
enzyme that regulates FFA entry into mitochondria, show-
ing that mitochondrial uptake of FFA was decreased [21].
In summary, recent studies have shown that Plin5 deletion
could increase myocardial FFA absorption and enhance
mitochondrial oxidation of FFA; in contrast, overexpression
of Plin5 could limit mitochondrial oxidation of FFA.

In cardiomyocytes, mitochondria comprise more than
30% of cell volume and generate about 90% of the ATP [24].
Accordingly, mitochondria are also the major source of ROS
in the cardiovascular diseases [24, 25]. ROS is known to be
implicated in the induction of cardiac hypertrophy in various
pathologic states. Overexpression of Plin5 in cardiomyocytes
can increase intracellular ROS levels and content of malonal-
dehyde (MDA) [21]. Meanwhile, overexpression of Plin5 trig-
gers an upregulation of the NF-E2-related factor 2 (Nrf2)
antioxidative pathway with specific increases in gene expres-
sion involved in glutathione metabolism [21]. Under the nor-
mal condition, Plin5 knockout had no significant effect on the
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contents of ROS, but in the ischemia-reperfusion injury, Plin5
knockout led to the increase of ROS [26]. Cultured cardio-
myocytes from Plin5-/- mice had more actively oxidized FFAs
and ROS production than those ofWTmice, which was, how-
ever, reduced by the administration of an antioxidant N-
acetylcysteine [22]. Other studies have found that Plin5 defi-
ciency in hypoxic cardiomyocytes exposed to LDL dramati-
cally increases the levels of unpacked FFA and ROS [27]. It
was hypothesized that cardiac ROS production in Plin5-/- mice
might result from a surplus flux of FA into the mitochondria.
In a study involving type I diabetes, the results were just the
opposite: compared with WT, Plin5-/- mice did not exhibit
excessive ROS generation or cardiac dysfunction but had an
improvement in heart function although LDs decomposition
increased [27]. The authors have found that diabetic Plin5-/-

mice are resistant to type 1 diabetes-induced heart malfunc-
tion due to the suppression of the diacylglycerol/ceramide-
PKC pathway and of excessive ROS generation by nicotin-
amide adenine dinucleotide phosphate (NADPH) oxidase
[28]. These seemingly contradictory findings may be due to
the specificity of the research models.

We find that excessive LDs are stored in nonfat tissues,
such as the liver, pancreas, and coronary arteries, which are
often associated with fatty liver, T2DM, and coronary athero-
sclerotic heart disease [29, 30]. Studies have shown that the
increase of intracellular LDs can activate oxidative stress
[31]. However, most of the data show that TGs mainly have
storage function, and the main toxicity is caused by FFA and
its metabolites, such as ceramide and diacylglycerol [32].
Therefore, LDs may improve cytotoxicity more than as a caus-
ative agent. In heart, LDs can isolate FFA in the form of TAG
to prevent lipid damage induced by FFA and its derivatives
[33]. Research shows that Plin5 plays an important role in
the regulation of lipid metabolism by LDs in cardiomyocytes.
In addition, it has been reported that Plin5 knockout has
almost no effect on cardiac function under the basal state
[19, 26, 28]. However, other studies have shown that Plin5-/-

may aggravate age-related cardiac dysfunction, and this heart
defect can be prevented by antioxidant therapy [22]. Mean-
while, in Plin5 overexpression mice, myocardial steatosis,
increased heart weight, left ventricular hypertrophy, and mild
cardiac function were observed [20, 21]. In the mouse model

of myocardial ischemia reperfusion injury, Plin5 deficiency
aggravates the heart dysfunction [34], and similar results also
were found in another myocardial ischemia model [19]. In a
study of Plin5 gene in patients with clinical myocardial infarc-
tion, Plin5 gene mutation is related to cardiac dysfunction
after myocardial infarction [19]. In a word, these studies sug-
gest that Plin5 plays an important role in maintaining normal
cardiac function under normal physiological conditions or
pathophysiological conditions.

In summary, the studies on various gene models of Plin5
indicate that Plin5 is required for normal cardiac metabo-
lism and function, but too much Plin5 may lead to cardio-
myopathy [17]. And both ablation and overexpression of
Plin5 have given rise to harmful results; its concrete function
may depend on the progression of cardiac diseases and dif-
ferent damage factors. Therefore, we need to further validate
the role of Plin5 in the heart on human diseases.

2.2. Hepatic Tissues. Hepatocytes are parenchymal cells of
the liver responsible for mobilizing lipids for energy and
storing excess lipids in the form of LDs. Excessive accumula-
tion of LDs is the cause of hepatic steatosis; meanwhile,
accumulative evidence has suggested that LDs proteins were
involved in the pathophysiology of liver diseases character-
ized by excessive lipid accumulation in hepatocytes, such
as alcoholic liver disease, nonalcoholic fatty liver disease
(NAFLD), and hepatitis C virus infection [11]. Plin5 is
closely related to lipid metabolism, since the abnormal lipid
metabolism plays an important role in the liver cell lesions.
Previous work has indicated that there was an increase of
Plin5 expression in mouse models of NAFLD [35]. Another
study shows that cells overexpressing Plin5 release lower
amounts of FFAs in basal conditions [36]. All those indicate
that Plin5 may contribute to the formation of liver steatosis
possibly through inhibition of the release of FFAs from LDs
[37]. In Plin5 deficient mice, TG content was found to
decrease both in primary mouse hepatocytes and in the liver,
implying the involvement of Plin5 in TG accumulation [38].
The above data suggest that Plin5 can prevent the FFA and
its metabolites over accumulation, thus preventing liver tox-
icity damage, but in other Plin5-/- mice did not show up liver
injury [39]. Therefore, Plin5 is likely to be critically involved
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Figure 1: The upstream and downstream regulating factors for plin5.
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in the development of pathologies associated with fatty liver.
However, whether it is in agreement with the situation in
human should be further explored.

2.3. Muscle Tissues. Skeletal muscle stores significant
amounts of TG within intracellular LDs, which are near
the mitochondria and endoplasmic reticulum [40]. Plin5
is highly expressed in skeletal muscle [41] and plays a crit-
ical role in coordinating skeletal muscle TG metabolism
and LDs accumulation [13], which impacts sphingolipid
metabolism, and is requisite for the maintenance of skele-
tal muscle insulin action [42, 43]. At present, there are
many studies to explore the role of Plin5 in human muscle
tissue. Although Plin5 expression is increased in the mus-
cle and liver of mice fed on high-fat diet (HFD) [35, 44,
45], there is no change of Plin5 expression in skeletal
muscle of humans fed on HFD for 12 weeks [46], and
most studies report normal Plin5 protein content in obese
humans [47, 48]. Consistent with these observations, the
expression or content of Plin5 in skeletal muscle does
not differ between T2DM patients and normal glycemic
individuals [48]. In rat muscle, Plin5 content is correlated
with mitochondrial respiration rates on a lipid-derived
substrate [49]. The overexpression of Plin5 in skeletal
muscle promoted expression of a cluster of genes under
control of PPAR-α and PGC-1α involved in FFAs catabo-
lism and mitochondrial oxidation [50], suggesting the role
of Plin5 in mediating the skeletal muscle oxidative gene
expression, either directly or indirectly.

2.4. Adipose Tissues. There are two kinds of adipose tissue
in the human body, including WAT and BAT. WAT acts
as an energy depot by storing lipids that are released into
circulation when required. In contrast, BAT uses its stored
fat to generate heat by oxidation of FFAs to maintain the
body temperature [51]. In published studies, Plin5 is
highly expressed in BAT but barely detectable in WAT
[13]. The changes in LDs-protein gene expression included
Plin1-5, suggesting that LDs experience a different adapta-
tion to cold exposure in WAT and BAT cells. Prolonged
cold exposure, which also induces the appearance of
brown-like adipocytes in mice WAT depot, was accompa-
nied with the enhancement in Plin5 expression [52]. How-
ever, arguing against an important role of Plin5 in BAT
thermogenesis is the finding that Plin5-/- and WT litter-
mates have similar tolerance to the cold [22]. In the
research of Tansey et al.., it consumed equal amounts of
food, but the adipose tissue mass in the null animals was
reduced to approximately 30% of that in WT. Meanwhile,
the Plin5-/- adipocyte showed higher basal lipolysis rate,
thus proving that the perilipin knockout reduced the pro-
tective effect on LDs [53]. The biochemical pathways
involved in obesity resistance in Plin5-/- mice may provide
a potential direction for obesity treatment.

3. The Concrete Role of Plin5 in Mitochondria

3.1. Pathophysiological Role of Plin5 in Mitochondria. Lipid
droplet and mitochondria are important organelles involved

in lipid metabolism and energy homeostasis. Cumulative
research has shown that physical contact between the two
organelles is important for their function, and Plin5 has been
found to mediate this contact [54]. Phosphorylated Plin5
can migrate to nucleus to promote PGC-1α co-activator
function by disinhibiting SIRT1 deacetylase activity, enhanc-
ing transcription of mitochondrial function, and reinforcing
fatty acid metabolism [55]. Furthermore, it is suggested that
Plin5 can recruit mitochondria to lipid droplets through a C-
terminal region in a variety of cell and tissue types, including
Chinese hamster ovary cells, AML12, HL-1 cells, primary
brown fat cells, INS1 cells, and mouse heart cells [56], and
Plin5 may mediate the interaction between lipid droplets
and mitochondrial oxidative tissue [42]. The contact site
between mitochondria and lipid droplet usually called peri-
droplet mitochondria (PDM) is an important location for
mitochondria to regulate lipid droplet storage and oxidation,
and it can promote expansion of lipid droplets [57]. Plin5
increased the number of PDM by recruiting mitochondria
to lipid droplets, which indirectly proved that Plin5 could
promote the expansion of lipid droplets through PDM. To
sum up, Plin5 can enhance mitochondrial function by
increasing the role of PGC-1α. Moreover, Plin5 can promote
the structural connection between lipid droplets and mito-
chondria, promoting the expansion of lipid droplets.

3.2. The Relationship of Plin5 and Mitophagy. Autophagy is a
process for degradation of long-lived or injured organelles and
proteins which involves vacuolar isolation of intracellular
components and their targeted lysosomal degradation, pro-
moting cellular responses to stress conditions including star-
vation and pathological stresses such as oxidative stress [58,
59]. There is growing evidence that autophagy, in addition to
being a massive nonselective degradation mechanism, can
selectively remove damaged mitochondria in order to pro-
mote mitochondrial turnover, a process known as “mitoph-
agy” [60, 61]. The term “mitophagy” was first coined in
2005, and it can be divided into three types: type 1 usually
involves phosphatidylinositide 3-kinases (PI3K) and is closely
related to mitochondrial division. Under starvation condi-
tions, preautophagic vesicles form cup-shaped phagocytic ves-
icles and then wrap mitochondria, resulting in depolarization
of mitochondrial outer membrane and hydrolysis of autopha-
gic vesicles in lysosomes. Type 2, in which damaged mito-
chondria bind to autophagosomes containing microtubule-
associated protein 1 light chain 3(LC3), depolarization occurs
without the involvement of PI3K and has nothing to do with
mitochondrial division. Type 3 is also called micromitochon-
drial autophagy; oxidized mitochondrial protein forms
mitochondria-derived vesicles (MDVs) through budding,
and the vesicles are gradually fused into poly-vesicles, which
are hydrolyzed by lysosomes into mitochondrial fragments
[62, 63]. Mitophagy is involved in the occurrence and develop-
ment of many diseases. Serine/threonine kinases, PTEN-
induced putative kinase 1(PINK1), and E3 ubiquitin ligases,
Parkin, are the most classical mechanisms in the study of
mitophagy; PINK1 and Parkin mutations can lead to the accu-
mulation of damaged mitochondria, which further promotes
the occurrence of neuronal degeneration and ultimately leads
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to Parkinson’s disease [64]. Expression of Parkin is also lost in
many types of cancer, and overexpression of Parkin in breast
and glioma cells inhibits cellular proliferation. Similar to Par-
kin, overexpression of PINK1 is thought to attenuate the
growth of glioblastoma [65]. Saito et al. showed that Rab9
gene-mediated mitophagy maintained mitochondrial homeo-
stasis through the Ulk1/Rab9/Rip1/Drp1 pathway in ischemic
environment. However, knockout of Rab9 gene can inhibit
mitophagy and aggravate myocardial injury caused by ische-
mia [66]. Mitophagy is involved in the occurrence of many
diseases, but its mechanism is still unclear and needs further
exploration. In a murine model under both fasting and refeed-
ing conditions, Plin5 was required for the induction of
autophagy during fasting, which contributed to its anti-
inflammatory effects. The ability of Plin5 to promote autoph-
agy and prevent inflammation was dependent upon signaling
through SIRT1, which is known to be activated in response to
nuclear Plin5 under fasting conditions [67]. Plin5 is a
chaperone-mediated autophagy (CMA) substrate; its degrada-
tion through CMA is required for LD breakdown. The
reduced activity of CMA failed to degrade Plin5 and other
perilipin proteins (which are substrates of CMA), inhibited
LD breakdown, and caused steatosis in hepatocytes [68].What
is more, mitochondrial autophagy can balance lipid genera-
tion by regulating lipid biosynthesis and decomposition to
prevent the development of fatty liver, so effective activation
of mitochondrial autophagy can be developed to treat fatty
liver disease [69].

4. Upstream Factors Regulating Plin5

Previous studies have shown that many factors can influence
the expression of Plin5 in the heart, liver, and skeletal muscle
(Table 1). First, many molecules play crucial roles in Plin5
expression, such as peroxisome proliferator-activated receptor
(PPAR)-α/δ [14], C/EBP-α [14], Curcumin, PGC-1α [42],
lipocalin-2 (LCN2) [70], SREBP2 [71], miR-370, and ROS.
PPAR-α agonist is able to increase the expression of Plin5
[16]. WY-14643, a PPAR-α agonist, can restore Plin5 expres-
sion in hypoxic cardiomyocytes [27]. C/EBP-α promotes the
transcription of Plin5 gene in porcine [72]. Recent findings
show that palmitate and PPAR agonists induced Plin5 expres-
sion in INS-1 cells in vitro [73]. Curcumin increases Plin5
gene expression to recover LD formation and lipid accumula-
tion in activated hepatic stellate cells [74]. Basal Plin5 expres-
sion was significantly reduced in LCN2−/− hepatocytes. Plin4
ablation also reduces Plin5 expression in mice, leading to
decreased cardiac TG accumulation [75]. Low-density lipo-
protein (LDL) strongly increases Plin5 expression in cardio-
myocytes. Nonesterified fatty acids (NEFAs) are strong
inducers of Plin5 transcription through PPAR activation
[44]. Estrogen receptor-associated receptor (ERR)-α increases
Plin5 expression by interacting with PPAR. Sulforaphane
(SFN) decreases LD-associated protein Plin 2 and Plin5
expression that may be achieved by downregulating PPARγ
[76]. Oleic acid (OA) can induce Plin5 expression in HepG2
cells and in a dose- and time-dependent manner [77]. Overex-
pression of leptin in transgenic mice decreased Plin5 expres-
sion [78]. TNF-α decreased Plin5 expression and promoted

lipolysis in the basal state. However, SREBP2 can inhibit the
expression of Plin5 [71]. MiR-370 can downregulate Plin5,
which in turn resulted in an increase in PPARα and Bcl-2
expression to promote cardiomyocyte proliferation and
inhibit cardiomyocyte cycle arrest and apoptosis [79]. ROS
via JNK-p38-ATF signaling upregulated Plin5 expression
and increased Plin5 to enhance lipid synthesis and to promote
LD contact with mitochondria, which help cells to modulate
stress response [80]. Second, many drugs can affect the expres-
sion of Plin5. Statins decrease the levels of Plin5 in the livers
and primary hepatocytes, paralleled by a significant reduction
in TG content. The transcription of Plin5 could be directly
inhibited by SREBP2, which was upregulated by the choles-
terol depletion of statins. One of the statins, atorvastatin, can
promote PKA-mediated phosphorylation of Plin5 to reduce
lipid accumulation in the liver [71]. PKA stimulation can
enhance Plin5 phosphorylation to increase TG hydrolysis
and direct FFAs to mitochondrial oxidation [81]. A function-
ally conserved PPRE site maps to the first intron of Plin5, and
Plin5 expression can be induced in myocardium, skeletal, and
liver by PPAR-α agonists, but also in WAT by pioglitazone, a
PPAR-γ agonist. Some agonists, however, are not exclusive
but can cross-activate different PPAR family members [16].
Third, some exogenous environmental stimuli can also affect
its expression. Such as hypoxia, it can aggravate intracellular
TG accumulation promoted by electro-negative LDL in car-
diomyocytes via impairing Plin5 pathway [27]. Cold condi-
tions also increase Plin5 expression [82]. And as LDs target
protein, Plin5 expression is enhanced under physiological or
pharmacological conditions that promote systemic FA eleva-
tion, e.g., fasting (liver and heart), endurance exercise (skeletal
muscle), and chronic β3-adrenergic stimulation (liver). Exog-
enous FAs can also stimulate Plin5 expression in cell culture.
One primary pathway involves the transcription factor family
of PPARs [16]. Recently, some experiments on pigs suggested
that variations in the Plin5 sequence might be linked to LIPE
expression through a still poorly known regulative molecular
process [83]. In an article by Yamada and Honma et al., they
identified that Plin5 was upregulated in mice force-fed with
fructose compared with those force-fed with glucose [84].

5. Downstream Factors Regulated by Plin5

The change of Plin5 expression can affect many physiological
processes and molecular expression. Early studies have shown
that Plin5 can prevent uncontrolled TG mobilization and
excessive release of FFA [20] (Table 2) and act as a barrier to
lipolysis. However, recent studies have found that PLIN pro-
teins do not serve as lipolytic barriers but rather are docking
sites for proteins facilitating selective lipase access under a
variety of lipolytic conditions [85]. First, Plin5 can affect the
genes correlated with lipid metabolism, such as SIRT1, CGI-
58, HSL, and ATGL/ABHD5. Monounsaturated fatty acids
(MUFAs) can bind to plin5 and activate its downstream target
gene SIRT1, thus becoming the first known endogenous allo-
steric regulator of SIRT1 [86]. It is reported that Plin2, 3,
and 5 all interact with HSL and ATGL [87]. Plin5 blocks
ATGL-mediated lipolysis by competitively binding to CGI-
58 and disrupting the interaction between CGI-58 and ATGL
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Table 1: Upstream factors regulating Plin5.

Upstream mediators Effect target Upstream regulation effect
First author, year, and

reference no.

Molecules

PPAR-α/δ Muscle
Activation of PPAR-α/δ can increase the expression of

Plin5
Bindesbøll C et al., 2012

[44]

C/EBPα
Adipocyte tissue,

liver
C/EBPα promotes transcription of the porcine Plin5 gene Zhou L et al., 2013 [72]

SREBP2 Liver SREBP2 can inhibition the expression of Plin5
Asimakopoulou A et al.,

2014 [70]

LCN2 Liver
Basal expression of Plin5 was significantly reduced in

Lcn2-/- cells
Gao X et al., 2017 [93]

Plin4 Heart
Plin4 ablation can reduce Plin5 expression at both mRNA

and protein levels
Chen W et al., 2013 [75]

PKA Heart, liver
Protein kinase A (PKA)-stimulation can enhance Plin5

phosphorylation
Pollak NM et al., 2015 [81]

LDL Cardiomyocytes
LDL (-) strongly induces Plin5 mRNA expression and

protein levels
Bindesbøll C et al., 2012

[44]

Environmental

Hypoxia Cardiomyocytes Hypoxia can impair Plin5 upregulation
Revuelta-López E et al.,

2015 [27]

Fasting Liver, heart Plin5 expression is enhanced
Kimmel AR et al., 2014

[16]

Chronic β3-adrenergic
stimulation

Liver Plin5 expression is enhanced
Kimmel AR et al., 2014

[16]

Endurance exercise Skeletal muscle Plin5 expression is enhanced
Kimmel AR et al., 2014

[16]

Table 2: Downstream factors regulated by Plin5.

Downstream
mediators

Effect target Downstream regulation effect First author, year, and reference no.

CGI-58/
ATGL

Cardiomyocyte,
liver, adipocyte
tissue, muscle

Plin5 competitively binds to CGI-58 and disrupting
the interaction between CGI-58 and ATGL

Wang C et al.. 2015 [35] Pollak NM et al.,
2013 [20] Sanders MA et al., 2015 [88]

Mason RR et al., 2014 [39]

HSL Adipocyte tissue Plin5 interacts with HSL Macpherson RE et al., 2013 [87]

PPARα/
PGC1-α

Muscle
Overexpression of Plin5 promotes expression of genes

under control of PPARα and PGC-1α
Bosma M et al., 2013 [50]

Liver, heart Plin5 decreases expression of PPARα target genes
Trevino MB et al., 2015 [94] Wang H,

et al.,2013 [21]

NF-E2-
related factor
2

Heart
Plin5 increases expression of oxidative-induced genes
via NF-E2-related factor 2 antioxidative pathway

Wang H et al., 2013 [21]

FGF21 Muscle
Upregulating the Plin5 level drives expression of the

FGF21 gene
Harris LA et al., 2015 [41]

cAMP/
GPR40

Islet
Ad-Plin5 enhanced glucose-stimulated insulin

secretion in GPR40- and cAMP-activated protein
kinase- dependent manners

Trevino MB et al., 2015 [90]

PKC/
NAPDH

Heart
Plin5-KO suppresses diacylglycerol/ceramide-PKC

pathway and NADPH oxidase
Kuramoto K et al., 2014 [28]

NF-κB Artery IκBα/NF-κB pathway was activated in Plin5-/- Zhou PL et al., 2017 [34]

MAPK Aortic tissue Plin5-/- activates PI3K/AKT and MAPKs pathways Zhou PL et al., 2017 [34]

PI3K/AKT Cardiomyocytes Plin5-null decreases phosphorylation of PI3K/AKT Zheng P et al., 2017 [26]
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in the liver, thus inhibiting lipolysis and improving hepatic
lipotoxicity [87]. Plin5 also expresses in myocardium and
has been shown to interact with ATGL and its coactivator
CGI-58 [20]. ATGL and its protein activator, α-β-hydrolase
domain-containing 5 (ABHD5), each can bind to Plin5.
ABHD5 potently activates ATGL, but this lipase-promoting
activity is suppressed when ABHD5 is bound to Plin proteins
on LDs [88]. The association of Plin5-ABDH5 complexes on
lipid droplet surfaces was more stable than Plin5-ATGL com-
plexes [89]. Second, Plin5 can influence the expression of anti-
oxidant genes, such as PPAR-α, PGC1-α, Nrf2, and NAPDH.
Plin5 deficiency can reduce myocardial lipid accumulation
and upregulate PPAR-α and PGC1-α levels. The genes they
control are involved in FA catabolism and mitochondrial oxi-
dation [50]. Therefore, Plin5 deficiency increases the mobili-
zation of stored lipids [34]. Moreover, Plin5 regulates the
formation and stabilization of cardiac LDs, and it promotes
cardiac steatosis without major heart function impairment,
which may have been prevented by a strongly increased
expression of oxidative-induced genes via Nrf2 antioxidative
pathway [20]. Specially, membrane translocation of protein
kinase C (PKC) and the assembly of NADPH oxidase 2 com-
plex on the membrane were also suppressed. Diabetic Plin5-
ablation mice are resistant to type 1 diabetes-induced heart
malfunction due to the suppression of diacylglycerol/cer-
amide-PKC pathway and excessive ROS generated by
NADPH oxidase [28]. Third, Plin5 plays a vital role in some
signal paths, such as cAMP/GPR40, NF-κb, phos-
phatidylinositol 3-kinase/protein kinase B (PI3K/AKT), phos-
pho-Akt/phospho-glycogen synthase kinase-3β/nuclear factor
erythroid 2-related factor 2Akt/GSK-3β/Nrf2, and MAPK.
Upregulation of Plin5 in islets enhanced the augmentation of
glucose-stimulated insulin secretion by FA and 8-Br-cAMP
in G-protein-coupled receptor 40 (GPR40) and cAMP-
activated protein kinase-dependent manners, respectively,
implicating its role in the postprandial insulin secretion [90].
Interestingly, Plin5 deficiency promotes atherosclerosis pro-
gression through accelerating inflammation, apoptosis, and
oxidative stress, which was linked with the activation of
PI3K/AKT and mitogen-activated protein kinases (MAPKs)

pathways [34]. In accordance with this, Plin5 plays an impor-
tant role in protecting against HG-induced apoptosis, oxida-
tive stress, and inflammation in podocytes via modulation of
Akt/GSK-3β/Nrf2 signaling [91]. Moreover, Plin5 alleviates
myocardial ischemia/reperfusion (MI/R) injury by reducing
oxidative stress through increasing phosphorylation of PI3K/
Akt to inhibit the lipolysis of LDs [26]. What is more, Plin5
can affect the fibroblast growth factor 21 (FGF21) expression.
Plin5-driven LD accumulation in skeletal muscle stimulates
the expression of FGF21. Upregulation of Plin5 drives the
FGF21 gene expression in fast-twitch fibers and exhibits meta-
bolically protective roles in skeletal muscle [91]. However, the
detailed roles and mechanisms of Plin5 to regulate lipid turn
over are far from clear yet. In particularly, we should pay more
attention to the different modifications of Plin5 and the fol-
lowing changes in lipid homeostasis.

6. Prospect

Abnormal lipid metabolism plays an important role in the
pathophysiology of diabetes, cardiovascular disease, liver
disease, and its complications. Lipid metabolism and glucose
metabolism disorders affect each other and together become
the culprit of diabetic cardiovascular complications. Active
lipid-lowering treatment in diabetic patients can signifi-
cantly reduce the incidence of cardiac dysfunction and mor-
tality. We proposed a hypothesis to connect all the pathways
and to simulate the probable process of Plin5-related cardio-
protection in diabetes. As one of the lipid-associated protein
family members, Plin5 plays an important regulatory role in
lipid deposition and orderly arrangement. In the basal state,
perilipin anchored to the lipid droplet surface as a physio-
logical barrier prevented soluble lipase from reaching the
lipid droplet, rendering the TG unhydrolyzed by lipase,
whereas phospholipidated by PKA upon lipolysis stimula-
tion, leaving soluble lipase phosphoric acid translocated to
the surface of LDs, at which point it colocalized with the
phosphorylated perilipin on the surface of the LDs to stimu-
late lipolysis. It has been shown that ATGL plays a major
role in basal lipolysis. Therefore, ATGL is speculated to be

FFAs β-oxidationLDs

Plin 5
CGI-58

Plin 5
ATGL

Plin 5

ATGL
CGI-58

P
Plin 5

P

PKA

Figure 2: Plin5 serves as a bidirectional switch for FFAs metabolism.
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related to lipofuscin. There may be some unknown interac-
tion between the proteins which could be another starting
point to study perilipin and lipid metabolism. Plin5 can be
seen as a connecting bridge between the mitochondrion
and FFAs metabolism. Further studies are needed to clarify
the role of Plin5 in recruiting and attaching mitochondria
to the surface of LD and to determine which signaling path-
ways are involved in the regulation of mitochondrial local-
ization of Plin5. In particular, the relationship between
Plin5 and mitophagy may provide new ideas for the treat-
ment of many diseases. As residual products of excessive
FFA β-oxidation, ROS contribute to the development of dia-
betic cardiomyopathy and diabetic vascular complications.
Recent findings have supported that Plin5 reduces ROS by
sequestering FFAs from excessive oxidation and even is a
critical regulator of lipid uptake and lipolysis. Therefore,
we suppose that Plin5 may therefore represent a novel ther-
apeutic drug target for the treatment of those diseases related
to elevated fat accumulation and steatosis, for further under-
standing of abnormal body fat distribution, insulin resis-
tance, consequently, opening up a new direction, providing
new ideas to explore the development of this kind of drugs.
We think that most of the studies on Plin5 were undertaken
in cell systems and transgenic mice, but some cell systems
lack other lipid metabolism proteins which may be necessary
to faithfully replicate the protein-protein interactions
required for in vivo lipolysis and other metabolic functions.
The role of Plin5 in metabolic disease remains perplexing,
owing to the lack of concordance between studies using sim-
ilar experimental designs and interspecies differences. We
are only beginning to delineate Plin5 responses to environ-
mental/physiological situations, and further studies will pro-
vide a clearer picture of Plin5’s functions in physiological
and pathophysiological states in vivo.

Overall, Plin5 serves as a bidirectional switch in oxida-
tive tissues, and this knowledge could lead to new avenues
of therapy and prevention of diabetic cardiomyopathy. At
present, the data indicates that a complex network of signal-
ing mechanisms is involved in Plin5 mediation (Figure 2).
Its numerous regulators and signaling pathways provide
researchers with many chances to explore its mechanism.
However, there are many unsolved issues regarding the
function of Plin5 in the heart. Undoubtedly, more work is
needed to understand the role of Plin5 in cardiomyocyte
biology before it can be considered as a valuable therapeutic
target for translational studies of diabetic cardiomyopathy.
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Introduction. Many Asian cohort studies have shown that nonalcoholic fatty liver disease (NAFLD), now renamed as metabolic
dysfunction-associated fatty liver disease (MAFLD), increases the risk of osteoporosis, yet the effect of MAFLD on elderly
patients with osteopenia (OPe) has not been reported. Objective. This study aimed to explore the influence of MAFLD on the
function of macrophages in patients with OPe. Methods. A total of 107 elderly OPe patients with or without MAFLD who
visited the Huadong Hospital Affiliated to Fudan University (Shanghai, China) between January 1st, 2021, and September 30th,
2021, were evaluated for an interviewer-assisted questionnaire, as well as clinical and biological assessments. Results.
Comparing two groups of elderly patients with the same bone mass level, we found that the six-minute walking distance
(P = 0:012) and short physical performance battery (SPPB) score (P = 0:0029) of the elderly OPe patients with MAFLD are
worse than those in OPe patients without MAFLD. Our results confirmed that the mitochondrial reactive oxygen species
(mtROS) in peripheral blood of OPe patients with MAFLD was significantly higher than those without. We also observed the
mitochondrial metabolism level of peripheral blood-derived macrophages in the included patients and peripheral blood
macrophages in patients with MAFLD with more unbalanced mitochondrial dynamics of macrophages, more weakened
mitochondrial respiratory capacity, and greater mitochondrial microstructure damage, when compared with the elderly
patients without MAFLD. Conclusions. To conclude, our data revealed that MAFLD itself may aggravate the inflammatory
state in elderly OPe people due to mitochondrial homeostasis imbalance of peripheral blood macrophages. Damaged
monocyte-macrophages might trigger attenuation of the walking ability of OPe patients.

1. Introduction

Metabolic dysfunction-associated fatty liver disease
(MAFLD), formerly known as nonalcoholic fatty liver dis-
ease (NAFLD), due to its high global prevalence, causes a
huge economic burden to society [1]. Unhealthy habits such
as sedentary and less active lifestyles and unhealthy dietary
patterns are closely related to a high incidence rate of

MAFLD [2], which can be diagnosed accurately by certain
evaluating criteria like obesity, type 2 diabetes mellitus
(T2DM), or metabolic disorders [3]. The prevalence of fatty
liver disease (FLD) and osteoporosis is increasing in elderly
people [4, 5]. Therefore, it has also been studied in various
Asian cohorts reporting that FLD increases the risk of oste-
oporosis in the elderly [6, 7], though the association between
FLD and osteoporosis remains ambiguous [8, 9].
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Osteopenia (OPe) refers to the decrease in bone mass per
unit volume of bone, which can manifest into osteoporosis
on further aggravation. In the elderly population, fractures
can occur as a primary clinical endpoint for both osteoporo-
sis and persistent history of falls [10] due to a gradual
decrease of lower limb muscle strength, which directly
affects the balancing function and the walking ability [11].
Fatty liver can increase the risk of fractures in osteoporotic
patients [12] and may interact through complex pathways
such as inflammatory mediators, hormones, substance
metabolism, and intestinal flora imbalance in conjunction
with osteoporosis [8]; however, it has not been clarified yet.

The excessive triglycerides accumulation in the liver dur-
ing MAFLD might lead to pro-inflammatory and anti-
inflammatory factor imbalance, affecting the function of
immune cells whose homeostasis is largely influenced by
their metabolic activities [13]. Thus, specific metabolic
adaptability should be acquired to support their diverse
immune functions [14]. As an important member of innate
immunity, the function of macrophages is strictly regulated
by metabolic pathways and metabolic intermediates [15,
16], which sometimes get altered by innate and acquired
immunity changes, known as “inflammatory aging” due to
chronic low-level systemic inflammation that can affect
macrophage polarization [17, 18]. This study attempts to
investigate whether MAFLD will affect the function of mac-
rophages in patients with OPe, resulting in the decrease of
walking and balance ability to aggravate the risk of fracture
or fall in elderly patients.

2. Methods

2.1. Data Extract and Bioinformatics Analysis. The transcrip-
tion and expression profiles by an array of 28 elderly patients
with osteoporosis and 73 females with low or high bone mass
were downloaded from the ArrayExpress and Gene Expres-
sion Omnibus (GEO) databases, which included 28 bone tis-
sue (E-MEXP-1618) and 73 circulating monocytes (Query
DataSets for GSE56816). The disease-associated targets were
based on Gene disease database (DisGeNET) (http://www
.disgenet.org) and ImmPort (The Immunology Database and
Analysis Portal). By using the DAVID 6.8 database [19], the
Kyoto Encyclopedia of Genes and Genomes (KEGG) signal
pathway enrichment of the important target was analyzed.
Gene Oncology (GO) annotation was carried out using clus-
terProfiler, and R Package was used for comparing biological
themes among gene clusters [20].

2.2. Subjects and Study Design. The study protocol was
reviewed and approved by the Institutional Ethics Commit-
tee of Shanghai Huadong Hospital (2019K111, 2021K073).
All patients included in this study signed informed consent,
and they were enrolled at Huadong Hospital in Shanghai,
China, from January 1st, 2021, to September 30th, 2021. In
total, 107 participants completed an interviewer-assisted
questionnaire and muscle strength evaluation of the research
center. At the same time, their biological information was
collected. Patient exclusion criteria are given in the flowchart
(Supplement 1).

2.3. Biochemical Determination. Blood samples were col-
lected from each participant in the morning after 12 h of
fasting, and assayed at the Huadong Hospital Laboratory.
The Chronic Kidney Disease Epidemiology Collaboration
equation was used to determine glomerular filtration rate
(Estimated Glomerular Filtration Rate (eGFR); mL/min/
1.73m2) to assess renal function. In addition, triglycerides
(TG), total cholesterol (TC), serum creatinine (Scr), serum
uric acid (SUA), blood urea nitrogen (BUN), alanine amino-
transferase (ALT), aspartate transaminase (AST), blood
phosphorus and calcium (P and Ca), N-Propeptide of Type
I Procollagen (P1NP), β-Crosslaps (CROSSL), parathyroid
hormone (PTH), osteocalcin (OSTEOC), C reactive protein
(CRP), and high- and low-density lipoprotein (HDL and
LDL) levels in serum were measured.

2.4. Criteria for MAFLD and Human Liver Samples.MAFLD
was diagnosed based on blood biomarkers and imaging evi-
dence for hepatic fat deposition, besides the three other cri-
teria, which included metabolic dysregulation, T2DM, and
overweight [3]. The hepatic samples were collected from
patients undergoing liver biopsies after approval from the
Institutional Ethics Committee of Shanghai Huadong Hos-
pital (2021K073). Liver tissue samples were collected from
six participants whose age was above 60 years old.

2.5. Bone Mineral Density (BMD) Measurement. According
to specific instructions, we determined BMD of the total
hip, femoral neck, and lumbar spine through single X-ray
absorptiometry (HOLOGIC, Discovery W, USA). As per
the guidelines of the World Health Organization (WHO),
we considered a patient to be suffering from OPe when the
BMD T-score ranged from −1.0 to −2.5 and osteoporosis
when the T-score was <−2.5. Severe osteoporosis was indi-
cated by BMD < –2:5, or brittle fractures [21].

2.6. Muscle Strength Measurement. To evaluate muscle
strength, grip strength was measured by using an electronic
hand dynamometer (CAMRY, MODEL: EH101, CHINA).
We considered the highest value from three measurements
on bilateral sides as the maximal grip strength. The five-
time sit-to-stand test (FTSST) and six-minute walking dis-
tance were conducted to determine the strength of the lower
extremity muscle. Typically, in the FTSST, the subjects were
instructed to sit at the edge of a chair, fold their arms, and
hit the chair with their buttocks in every repetition. The par-
ticipants were given standardized instructions in a six-
minute walking test and asked to walk “as far as possible
in a 6-min period” along a 90m course. The subjects were
verbally encouraged at intervals of 30 s by standardized
phrases and allowed to sit on chairs throughout the experi-
mental period. Six minutes later, we determined the distance
walked (to the nearest meter).

The short physical performance battery (SPPB) score,
which consisted of 3 components, gait speed, repeated chair
stands, and standing balance, is a subjective approach to
determine the alteration of physical performance and bal-
ance ability among the elderly population as well as a stan-
dard measure both for research and clinical practice [22].
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Additionally, an inextensible tape was used to flex the knees
at 90°; then, we determined the average calf circumference at
the broadest level of the bilateral calves in the relaxed and
seated position.

2.7. Study Questionnaires and Clinical Assessments. The
Pittsburgh Sleep Quality Index (PSQI) provided data regard-
ing subjective sleep quality in the previous month. The
nurses or assistant nurses were invited to assess the Mini
Nutritional Assessment-Short Form (MNA-SF). We also
determined the body weight (BW) and body height (BH)
(with no shoes on), and then, the body weight (kg) was
divided by the square of the body height (m2) to determine
body mass index (BMI). We collected baseline data from
all subjects, including age, gender, drinking history, smoking
history, medical history, and the usual amount of exercise,
by distributing the self-administered questionnaires. We
measured the waistline, BH, and BW during the interview,
and subjects were instructed to wear light clothing and no
shoes. Blood samples were collected from participants who
had fasted for 8 h in the morning and analyzed at the Hua-
dong Hospital laboratory.

2.8. Isolation of Peripheral Blood Mononuclear Cells
(PBMCs) and Magnetic Bead Sorting. Blood samples were
collected from 20 OPe cases with MAFLD, 20 OPe patients
without MAFLD, and 20 patients with severe osteoporosis.
Then, we extracted total blood by Ficoll density gradient
centrifugation to obtain PBMCs. CD14+ monocytes were
magnetically sorted by the MojoSort™ Human Pan Mono-
cyte Isolation kit (Biolegend, San Diego, CA, USA).

2.9. Cell Culture and Treatment. We cultured the isolated
PBMCs and human myeloid leukemia mononuclear (THP-
1) cells in Dulbecco’s modified eagle medium (DMEM) with
20% fetal bovine serum (FBS; Millipore, USA) at 5% CO2
and 37°C. Additionally, we cultivated human hepatocellular
carcinoma (HepG2) cells in DMEM low sugar medium that
contained 5% FBS. To induce overloading of free fatty acids
(FFAs), we cultured cells till they reached 70~80% conflu-
ence and exposed them to a mixture of 1mM long-chain
FFAs (palmitic acid and oleic acid (PAOA)) (oleic acid: pal-
mitic acid =1 : 2) for 24h [23].

2.10. Flow Cytometry (FCM) and Enzyme-Linked
Immunosorbent Assay (ELISA). FCM was used to examine
the cells (FACS Aria ™ II, BD Bioscience, NJ, China). The
Flowjo™ 10 software was used to analyze the data. Peripheral
blood macrophages were defined as CD14+ and CD16+ cells,
from which M1 and M2 macrophages were identified as
CD86+HLR-DR+ or CD163+CD206+ cells, respectively,
and monocytes were derived from the patients. All antibodies
were obtained from Biolegend (San Diego, CA, USA). ELISA
was used to determine interleukin-6 (IL-6) and IL-8 levels in
the plasma (X-Y Biotechnology, Shanghai, China).

2.11. Reverse Transcription-Polymerase Chain Reaction (RT-
PCR). We used TRIzol reagent (Invitrogen, USA) to extract
total cellular RNA, which was later used to prepare cDNA
through reverse transcription using a kit (Vazyme Biotech,

Nanjing, China). The prepared cDNA served as the template
for RT-PCR that was performed using a Roche Light Cycler
96 system (Roche, Switzerland) with the 2X SYBR-Green-
based qPCR reagent. The 2-ΔΔCt method was used to deter-
mine the relative gene expression [24], and GAPDH was
used as the endogenous control. Each assay was performed
three times. Supplement 3 lists the sequences of all the
primers used.

2.12. Oxygen Consumption Rate (OCR) and Extracellular
Acidification Rate (ECAR) Measurements. Glycolysis and
mitochondrial respiration were quantified using the Sea-
horse XF Analyzer (Seahorse XF96, Agilent, USA). To mea-
sure OCR, we incubated cells (5 × 103/well) in 96-well XF96
plates overnight. The Seahorse Assay medium was used to
substitute the original medium in the XF96 plates 1 h before
measurement. We determined OCR under three conditions,
which included baseline, 0.5μM antimycin and 0.5μM rote-
none, and 0.3μM carbonyl cyanide p-(trifluoromethoxy)
phenylhydrazone (FCCP) and 1μM oligomycin. To quantify
ECAR, we injected the glycolysis inhibitor 2-deoxy-D-glu-
cose (2-DG) to stop glycolytic acidification.

2.13. Mitochondrial Isolation and Reactive Oxygen Species
(ROS), Mitochondrial Reactive Oxygen Species (mtROS)
Quantification. The mitochondria were isolated from PBMCs
using a Mitochondria Isolation Kit (Thermo Fisher Scientific).
MitoSOX™ Red (Yeasen, China) and DCFH-DA (Beyotime,
China) were used to determine mtROS and intracellular
ROS contents according to certain protocols. The average
fluorescence intensities of mtROS and intracellular ROS were
determined using FCM (FACS Aria TM II, BD Bioscience, NJ,
China). Transmission electron microscopy (TEM) (suht7700,
Hitachi, Japan) was used to examine mitochondrial morphol-
ogy which was used to examine mitochondrial ultrastructural
damage by other researchers [25, 26].

2.14. Mitochondrial Membrane Potential (MMP) and
Mitochondrial Permeability Transition Pore (MPTP) Assay.
We determined MMP using the mitochondrial membrane
potential detection kit (JC1, Beyotime Biotech, China) fol-
lowing specific protocols. Later, we tested the opening
degree of the MPTP using the MPTP Detection Kit (Beyo-
time Biotech, China), following specific instructions (http://
www.beyotime.com/index.htm). Flow cytometry was used
to analyze the MMP and MPTP opened of the macrophages
derived from peripheral blood [27–29].

2.15. Immunofluorescence (IF) and Nile Red Staining. The
cells were fixed with paraformaldehyde (PFA) at room tem-
perature (RT). Next, 10% BSA (Sangon Biotech, Shanghai,
China) was used to block the cells, followed by incubation
using primary antibodies (1 : 100, ab113748, Abcam) for
2 h at 37°C; the cells were then washed thrice with PBS.
The cells were incubated with a secondary antibody
(1 : 100, A-21244, Thermo Fisher Scientific) for 1 h at 37°C.
Supplement 4 lists the antibodies used in this study. The
instructions for the use of all antibodies can be found on
the website (https://abclonal.com.cn,https://www.ptgcn
.com/).

3Oxidative Medicine and Cellular Longevity

http://www.beyotime.com/index.htm
http://www.beyotime.com/index.htm
https://abclonal.com.cn
https://www.ptgcn.com/
https://www.ptgcn.com/


797 261 584

NAFLD Osteopenia

(a) (b)

TNF signaling pathway

Toll-like receptor signaling pathway

NOD-like receptor signaling pathway

Estrogen signaling pathway

MTOR signaling pathway

Sphingolipid signaling pathway

Thyroid hormone signaling pathway

ErbB signaling pathway

TGF-beta signaling pathway

Prolactin signaling pathway

Adipocytokine signaling pathway

Fc epsilon RI signaling pathway

P13K-Akt signaling pathway

T cell receptor signaling pathway

HIF-1 signaling pathway

Jak-STAT signaling pathway

FoxO signaling pathway

MAPK signaling pathway

0 5 10

Count

–Log10 ()

30

35

15
20

25

Ratio

11

9

7

5

3

(c)

0 5 10 15

SO

OPe

OPe with
MAFLD

IL-6 (pg/ml)

⁎
⁎
⁎
⁎

⁎
⁎
⁎
⁎

SO

OPe

OPe with
MAFLD

IL-8 (pg/ml)

⁎
⁎

0 20 40 60 80 100

(d)

Figure 1: Potential ways of interaction between NAFLD and osteopenia. (a) Venn diagram of the overlap genes between 1058 NAFLD-
related genes and 845 osteopenia-related genes from DisGeNET. (b) The hub gene was determined by the construction of PPI network.
(c) Top 18 KEGG enrichment pathways of 261overlap genes. (d) The levels of IL-6 and IL-8 in plasma of the patients from SO, OPe,
and OPe with MAFLD group were determined by ELISA. Bars, means SE; ∗, P < 0:05 ; ∗∗, P < 0:01 ; ∗∗∗, ∗∗∗∗, P < 0:0001.
Abbreviations: NAFLD: nonalcoholic fatty liver disease; PPI: protein-protein interaction; KEGG: Kyoto Encyclopedia of Genes and
Genomes; ELISA: enzyme-linked immunosorbent assay; IL-6: interleukin-6; SO: severe osteoporosis; OPe: osteopenia; MAFLD: metabolic
dysfunction-associated fatty liver disease.
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Figure 2: Continued.
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Nile Red (Sangon Biotech, Shanghai, China) (1mM) was
used to observe the intracellular lipid droplets. We mounted
the cells with DAPI (abs9235, Absin) using a laser confocal
cell culture dish (Thermo Fisher Scientific, NY, USA). A
confocal imaging system (LSM 780) (Carl Zeiss, Jena, Ger-
many) was used to take images.

2.16. Western Blotting (WB) Assay. We extracted total cellu-
lar or hepatic tissue proteins for the WB assay using the
RIPA lysis buffer. Then, the bicinchoninic acid (BCA) Pro-
tein Assay Kit (Beyotime, China) was used to determine
the protein content. Supplement 4 lists the antibodies used
in this study. The instructions for the use of all antibodies
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Figure 2: NAFLD and osteopenia may interact through immune pathways. (a) Top 10 GO enrichment items of DEGs between OPe and SO
patients from Array Express. (b) Venn diagram of the overlap between immune-related genes and DEGs. (c) The heat map shows the
expression of the overlap genes of bone biopsy between OPe and SO patients. (d and e) GO enrichment analysis and KEGG pathway
analysis of these 81 overlap genes. (f) Venn plot indicated the overlap between NAFLD-related genes and DEGs. DEGs are derived from
the monocytes samples of low and high BMD subjects in GEO database. (g) The heat map indicates the expression level of genes
between low and high BMD samples. Abbreviations: SO: severe osteoporosis; OPe: osteopenia; DEG: differentially expressed genes; GO:
Gene Oncology; DEGs: differentially expressed genes; KEGG: Kyoto Encyclopedia of Genes and Genomes; BMD: Bone Mineral Density;
NAFLD: nonalcoholic fatty liver disease.
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can be found on the website (https://abclonal.com.cn,https://
www.ptgcn.com/).

2.17. Oil-Red O Staining and Immunohistochemistry (IHC).
We used the Oil-Red O staining kit (Abcam, USA) for Oil-
Red O staining as per specific protocols. The sections were
also incubated with the silent mating type information regu-
lation 1 (SIRT1) primary antibody (1 : 100, Abcam). Each
tissue section was mixed with the reaction enhancer (Record
Biological, Shanghai, China). The sections were then incu-
bated with the enhanced enzyme-conjugated goat anti-
rabbit IgG polymer (Record Biological, Shanghai, China).
Images were captured using a light microscope (Nikon
ECLIPSE 80i, Nikon, Japan).

2.18. Transfection with Small Interfering RNA (siRNA).
According to specific protocols, the siRNA was transfected
into CD14+ PBMCs using the Lipofectamine RNAiMax
reagent (100nM, Thermo Fisher Scientific, USA). The siRNA
sequence for SIRT1 was 5′ −GGCTGGTGATCGCAGATTT
− 3′ (RiboBio, Guangzhou, China).

2.19. Statistical Analysis and Art Work. Differentially
expressed genes are displayed in a heat map in R. All statis-
tics were performed using Prism (version 8.0.2 for Mac;
GraphPad Software, San Diego, CA). The use of 1-way
ANOVA established statistical comparisons between the dif-
ferent groups. All values are presented as the mean± SD P
values were specified as follows: ∗P < 0:05; ∗∗P < 0:01; ∗∗
∗ P < 0:005; ∗∗∗ ∗P < 0:0001.

3. Results

3.1. Potential Ways of Interaction between Fatty Liver and
OPe. DisGeNET screened out a total of 1058 NAFLD genes
and 845 OPe genes which later led to an overlap of 261 tar-

gets between NAFLD and OPe by the VENN map
(Figure 1(a)). After the construction of the protein-protein
interaction (PPI) network, key modules and pivotal hub
genes were determined using the STRING and Cytoscape
software. This finding suggested that tumor necrosis fac-
tor-α (TNF-α), IL-8, IL-6, IL-4, IL-1β, and chemokine (C-
C motif) ligand 2 (CCL2) were important pathogenic targets
(Figure 1(b)). After that, KEGG pathway annotation showed
enrichment of overlapping genes and identification of a total
of 111 enriched pathways along with 18 enriched signaling
pathways with the highest p-adjust values. These pathways
included the TNF signal pathway, Toll-like receptor signal
pathway, Nod-like receptor signal pathway, hypoxia-
inducible factor 1 (HIF-1) signal pathway, and T cell recep-
tor signal pathway (Figure 1(c)). In order to test this hypoth-
esis, the patient’s peripheral blood was extracted, and the
expression of IL-6 and IL-8 was detected in the elderly
OPe patients’ plasma with MAFLD, which was remarkably
elevated when compared to OPe patients without MAFLD
(Figure 1(d)).

The ArrayExpress database extracted one dataset, E-
MEXP-1618, which was subsequently made a cohort. The
elderly patients over 60 years old were selected as per the
received BMD data and divided into the OPe group and
the severe osteoporosis (SO) group based on the osteoporo-
sis diagnostic criteria. A total of 13 OPe and 15 SO group
samples were analyzed for differentially expressed genes
(DEGs) and were subsequently subjected to GO annotations
to identify the potential biological functions, as well as differ-
ential genes enrichment pathways such as intermembrane
lipid transfer and macrophage-derived foam cell differentia-
tion (Figure 2(a)). Additionally, 81 overlapped genes were
obtained from 1332 and 1793 genes acquired from DEGs
and the Immunology Database and Analysis Portal (Imm-
Port), respectively (Figure 2(b)), followed by differential
gene expression and heat map analysis to determine the gene
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Figure 3: Clinical indicators of all included patients. (a) Flowchart shows the process of subject enrollment and subgroups (OPe grouping
=34 subjects, OPe with MAFLD grouping =37 subjects, SO grouping =36 subjects). (b) The correlation matrix of various clinical indicators is
presented. (c) Comparison of limb muscle strength in patients between OPe group and OPe with MAFLD group. Abbreviations: SO: severe
osteoporosis; OPe: osteopenia; MAFLD: metabolic dysfunction-associated fatty liver disease; SPPB: Short Physical Performance Battery;
BMD: bone mineral density; TG: triglycerides; TC: total cholesterol; HDL: high-density lipoprotein; LDL: low-density lipoprotein; P:
blood phosphorus; Ca: blood calcium; P1NP: N-Propeptide of Type I Procollagen; CROSSL: β-Crosslaps; PTH: parathyroid hormone;
OSTEOC: osteocalcin; CRP: C reactive protein.
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Table 1: Baseline characteristics and clinical features.

OPe OPe with MAFLD SO P-value

Gender 12/22 12/25 3/33 0.016

Age 67:88 ± 5:05 67:32 ± 6:15 70:69 ± 7:54 0.070

BMI 24:42 ± 2:05 25:42 ± 2:29 22:28 ± 2:40 0.648

Smoke 26/4 32/5 29/7 0.724

Alcohol 25/5 32/5 30/6 0.914

Hypertension 18/11 22/15 26/10 0.490

Diabetes 28/1 31/6 30/6 0.207

Exercise (yes or no) 9/17 23/11 18/13 0.035

MNA 12:66 ± 1:60 12:86 ± 1:78 10:89 ± 2:27 0.116

PSQI 6:55 ± 4:95 8:03 ± 4:56 9:69 ± 5:23 0.733

Calf girth 33:44 ± 2:87 33:73 ± 3:67 30:47 ± 3:01 0.293

Waist line 84:03 ± 8:12 87:38 ± 8:10 80:47 ± 7:95 0.991

FTSST 9:59 ± 3:04 10:62 ± 3:91 14:62 ± 7:70 <0:001

Six-minute walking 470:73 ± 98:44 405:51 ± 107:34 326:41 ± 112:62 0.755

SPPB 11:56 ± 1:24 10:06 ± 2:50 8:06 ± 3:05 <0:001

Grip 22:08 ± 7:55 19:68 ± 5:25 17:73 ± 5:03 0.034

Ca 2:29 ± 0:11 2:29 ± 0:087 2:25 ± 0:08 0.309

P 1:11 ± 0:13 1:11 ± 0:16 1:14 ± 0:15 0.542

P1NP/CROSSL 0:10 ± 0:03 0:11 ± 0:06 0:14 ± 0:17 <0:001

CROSSL 500:71 ± 227:88 499:88 ± 248:11 610:19 ± 322:61 0.146

PTH 43:09 ± 15:21 47:43 ± 13:42 42:51 ± 17:57 0.338

VITAMIN D 21:90 ± 9:60 17:82 ± 5:91 16:86 ± 7:29 0.036

OSTEOC 19:01 ± 7:68 17:15 ± 5:91 19:58 ± 6:50 0.360

P1NP 46:44 ± 14:25 46:48 ± 19:58 60:93 ± 34:67 <0:001

Lumbar BMD 0:90 ± 0:15 0:92 ± 0:16 0:74 ± 0:15 0.889

Neck BMD 0:67 ± 0:08 0:65 ± 0:08 0:47 ± 0:19 <0.001
Total BMD 0:81 ± 0:10 0:82 ± 0:10 0:61 ± 0:12 0.711

ALT 16:56 ± 7:63 20:52 ± 11:13 15:43 ± 8:85 0.096

AST 18:77 ± 4:88 20:79 ± 7:77 18:18 ± 5:65 0.023

TC 4:76 ± 0:98 4:74 ± 0:99 4:48 ± 0:90 0.824

TG 1:37 ± 0:41 2:09 ± 1:38 1:53 ± 0:94 <0:001

LDL 2:87 ± 0:90 2:71 ± 0:85 2:52 ± 0:80 0.849

HDL 1:48 ± 0:28 1:37 ± 0:38 1:48 ± 0:29 0.209

BUN 5:58 ± 1:34 5:30 ± 1:28 5:67 ± 1:41 0.840

Scr 70:64 ± 14:72 69:87 ± 15:62 68:71 ± 18:38 0.010

SUA 311:55 ± 63:42 338:03 ± 60:47 276:41 ± 76:99 0.324

eGFR 84:12 ± 12:23 83:89 ± 11:12 83:86 ± 16:93 0.037

Lumbar-t value −1:18 ± 1:08 -1.05± 1.24 -2.51± 1.28 0.564

Neck of femur-t value −1:64 ± 0:59 −1:87 ± 0:66 −3:24 ± 0:87 0.064

Total-t value −1:38 ± 0:75 −1:23 ± 0:82 −2:91 ± 1:04 0.153

Abbreviations: OPe: osteopenia; OPe with MAFLD: osteopenia combined with MAFLD; SO: severe osteoporosis; BMI: body mass index; FTSST: five times sit
to stand test; PSQI: Pittsburgh Sleep Quality Index; MNA-SF: Mini Nutritional Assessment-Short Form; SPPB: Short Physical Performance Battery; BMD:
bone mineral density; eGFR: Estimated Glomerular Filtration Rate; TG: triglycerides; TC: total cholesterol; Scr: serum creatinine; SUA: serum uric acid;
BUN: blood urea nitrogen; HDL: high-density lipoprotein; LDL: low-density lipoprotein; ALT: alanine aminotransferase; AST: aspartate transaminase; P:
blood phosphorus; Ca: blood calcium; P1NP: N-Propeptide of Type I Procollagen; CROSSL: β-Crosslaps; PTH: parathyroid hormone; OSTEOC:
osteocalcin. The P value in red means that the P value <0:05 and is considered to be significantly important.
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variation and patterning in bone biopsy between the OPe
and SO patients (Figure 2(c)). A subsequent GO and KEGG
pathway enrichment analysis on 81 overlapped genes
revealed that they were primarily enriched in the lipid
metabolism-related pathways (Figures 2(d) and 2(e)). Fur-
thermore, the expression profiling of 73 circulating mono-
cytes by array from 73 pre and postmenopausal females
with low or high bone mineral density was downloaded from
the GEO database, including 32 low and 41 high BMD group
samples, which were analyzed for DEGs, resulting in 25 and
1058 overlapped genes from DEGs and NAFLD from Dis-
GeNET (CUI number: C0400966), respectively (Figure 2(f
)). The heat map analysis was also used to ascertain the gene
variation in monocytes between the low and high BMD
group patients (Figure 2(g)).

3.2. Clinical Features, Including the Indicators Related to
Muscle Strength and Exercise Performance, Differed between
OPe Patients with or without MAFLD. A flowchart of subject
recruitment is shown in Figure 3(a). A total of 107 partici-
pants were used in a subsequent analysis, consisting of
Group 1: OPe, including osteoporosis patients without
MAFLD; Group 2: OPe, including osteoporosis with
MAFLD; Group 3: severe osteoporosis without MAFLD
(patients with a history of fracture). There was no statisti-
cally significant difference in BMI index, blood glucose,
comorbidity, smoking and drinking history, sleeping, and
nutritional status between Groups 1, 2, and 3 (Table 1).

In order to further observe the effect of MAFLD on mus-
cle strength of elderly patients with OPe, we analyzed the
limb muscle strength of Group 1 and Group 2, which was
measured by following parameters such as the upper
extremities strength was represented by the grip. In contrast,
the lower limbs strength was defined by the FTSST and six-

minute walking distance, along with the evaluation of lower
limb balance by SPPB score. We found that the six-minute
walking distance (P = 0:012) and SPPB score (P = 0:0029)
of the elderly OPe patients with MAFLD are worse than
those in OPe patients without MAFLD, which suggested that
the walking ability and balance ability of the elderly patients
with MAFLD are worse (Table 1, Figure 3(c)). Furthermore,
after adjusting the confounders, it was observed that the six-
minute walking distance reduction was still markedly associ-
ated with the prevalence of MAFLD among patients with
OPe or osteoporosis (P = 0:024) (Table 2).

3.3. The Proportion of Peripheral Blood-Derived
Macrophages in OPe Patients with or without MAFLD. In
order to investigate the potential role of peripheral blood-
derived macrophages in elderly OPe patients with or without
MAFLD and SO patients without MAFLD, we first evaluated
the levels of macrophages in the peripheral blood of patients
using flow cytometric analysis using the gating strategies of
macrophage M1-like and M2-like as follows: M1-like
(CD14+CD16+CD86+HLA-DR+) and M2-like (CD14+-

CD16+CD163+CD206+) (Supplement 1). Our study results
demonstrated that the absolute cell counts of M2-like mac-
rophages in PBMCs were significantly increased while M1/
M2% was decreased in PBMCs of OPe patients when com-
pared with those with MAFLD and SO patients
(Figure 4(a)). Further, an analysis of the correlation between
M1/M2% and BMD (neck BMD, lumbar BMD, and total
BMD) in all patients revealed that M1/M2% was associated
with neck BMD and total BMD, both in OPe with MAFLD
group and the SO group patients, thereby suggesting the
importance of M1/M2% in the pathogenesis and the pro-
gression of OPe in the elderly population (Figure 4(b)).
The negative results of the correlation between M1/M2%
and BMD are recorded in Supplement 2.

In order to verify the above-mentioned results, a few
in vitro experiments were carried out. Firstly, the fatty liver cell
model was successfully established by inducing HepG2 cells
in vitro with a mixture of FFAs like palmitic and oleic acid
(Figure 4(c)), followed by extricating the CD14+ PBMCs
extracted from peripheral blood of OPe patients and inducing
them to differentiate into M0 macrophages with the fatty liver
cell supernatant. The flow cytometry results revealed that the
decrease in M2% and the increase in M1/M2% proportion
suggested that the intervention of fatty liver cell supernatant
can promote differentiation of M0 macrophages into M1-
like macrophages (Figure 4(d)). The WB results also revealed
that the protein expression levels of toll-like receptor 4
(TLR4) and myeloid differentiation factor 88 (MyD88), a class
of important protein molecules involved in innate immunity,
increased significantly following the intervention in both
THP-1 cells and CD14+ PBMCs (Figure 4(e)).

3.4. MAFLD Impairs CD14+ Mononuclear Cellular Aerobic
Respiration and Mitochondrial Homeostasis in Elderly OPe
Patients. WB results displayed that the BCL2-associated X
protein (BAX) and Cytochrome C (CYCS) genes expression
levels increased with THP-1 and PBMCs extracted from
OPe patients after the HepG2 supernatant PAOA

Table 2: Multiple logistic regression analysis of muscle strength
related indexes in elderly patients with osteopenia (including
osteoporosis) with or without MAFLD.

OR 95% CI P-value

Exercise 1.64 0:20 – 13:67 0.648

FTSST 1.44 –0:96 – 2:16 0.082

Six-minute walking 1.02 1:00 – 1:04 0.024

Grip 1.19 0:94 – 1:51 0.140

P1NP/CROSSL 714.54 8:90e − 10 – 5:74e + 14 0.638

VITMIN D 1.10 0:98 – 1:23 0.122

P1NP 1.03 0:97 – 1:09 0.380

AST 0.96 0:82 – 1:12 0.590

TG 0.13 0:02 – 1:09 0.059

Scr 0.88 0:75 – 1:03 0.121

eGFR 0.93 0:78 – 1:10 0.375

Abbreviations: OPe: osteopenia; OPe with MAFLD: osteopenia combined
with MAFLD; SO: severe osteoporosis; FTSST: five times sit to stand test;
eGFR: Estimated Glomerular Filtration Rate; Scr: serum creatinine; TG:
triglycerides; AST: aspartate transaminase; P1NP: N-Propeptide of Type I
Procollagen; CROSSL: β-Crosslaps. The P value in red means that the P
value <0:05 and is considered to be significantly important.
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intervention, while the expression of B-cell lymphoma-2
(BCL-2) was decreased (Figure 5(a)). Furthermore, the heat
map analysis revealed that the relative BAX/BCL-2, CYCS,
TLR4, and MyD88 mRNA expressions in PBMCs from
OPe patients with MAFLD group and SO group patients
were elevated as compared to OPe patients (Figure 5(b)),
which were further confirmed by IF staining that observed
CYCS upregulation in THP-1 cells after the intervention
(Figure 5(c)).

Owing to the fact that mitochondria, as highly dynamic
organelles, can adjust their morphology depending on the
energy demand and metabolic conditions in the majority of
cells, the CD14+ PBMCs bioenergetics analysis used the Sea-
horse XF Extracellular Flux Analyzer, which simultaneously
quantifies two energetic pathways-glycolysis denoted by
ECAR and oxidative phosphorylation measured by OCR, sug-
gesting that CD14+ PBMCs from OPe patients with MAFLD
group consumed oxygen at a lower basal level and produced
less adenosine 5-triphosphate (ATP), when compared to
patients in OPe and SO groups, and showed the least OCR
increase in response to FCCP, resulting in a significant
decrease in maximum respiratory capacity (Figure 5(d))
followed by the analysis of the mitochondria’s state in CD14
+monocytes by TEM that indicated severemitochondrial dys-
function developed in the CD14+ monocytes in MAFLD
patients along with swelling up of mitochondrial cristae
(Figure 5(e)). The oxidative stress was assessed by intracellular
ROS quantification, especially mtROS (Figure 5(f)), exhibiting
that the mtROS level in CD14+ PBMCs in OPe patients with
the MAFLD group was the highest among all.

Mitochondrial function was also assessed by the MMP
and MPTP using flow cytometry detection analysis, which
revealed that the mitochondrial membrane potential of
PBMCs in OPe patients with MAFLD was lower while the
membrane permeability was higher than the OPe group
without MAFLD (Figures 6(a)–6(c)). The protein and gene

expressions of fission proteins like dynamin-related protein
1 (DRP1), mitochondrial fission 1 protein (FIS1), mitochon-
drial fission factor (MFF), a mitochondrial dynamic fusion
protein, and mitochondrial elongation factor 1 (MIEF1)
were evaluated by RT-PCR and WB. The data revealed
decreased DRP1 and MIEF1 levels, with a concurrent
increase in MFF and FIS1 levels in CD14+ PBMCs in OPe
patients with MAFLD and SO patients compared to the
OPe group (Figures 6(d) and 6(e)). A subsequent WB test
on extracted mitochondria from CD14+ PBMCs from all
groups revealed that, while there was no difference in FIS1
expression in PBMC mitochondria in both OPe and OPe
with MAFLD patients, DRP1 and mitofusin 2 (MFN2)
expression levels decreased significantly (Figure 6(f)).

3.5. SIRT1 Defects Accentuate Impaired Mitochondrial
Monocytes in the Elderly Osteopenia Patients. The SIRT1
expression level in OPe patients with MAFLD and without
MAFLD was evaluated by IHC and WB to investigate the
role of SIRT1 (Figure 7(a)). It was observed that SIRT1
expression level was reduced in liver tissue from MAFLD
patients (Figure 7(b)). An RT-PCR assessment of mRNA
expression profile in PBMCs obtained from all included
patients showed that patients in OPe with MAFLD and
SO group were clustered into one group according to the
system cluster and hierarchical cluster analysis. The rela-
tive SIRT1 mRNA expression in PBMCs from OPe
patients was significantly higher than that in OPe with
MAFLD group and SO group (Figure 7(c)). The heat
map was also utilized to exhibit the associations between
the SIRT1 expression and various clinical indices such as
BMD, limb muscle strength assessment, waistline, calf
girth in three group patients, which suggested that the
SIRT1 level was highly correlated with neck BMD
(r = 0:5), total BMD (r = 0:5) and six-minute walking dis-
tance (r = 0:68) (Figure 7(d)).
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THP1 +
 PAOA

PBMC +
 PAOAPBMC

TLR4

Myd88

GAPDH

(e)

Figure 4: The proportion of peripheral blood-derived macrophages differed between OPe and OPe with MAFLD patients. (a) FCA is
performed to compare the M1-like and M2-like monocytes in PBMCs among SO, OPe with MAFLD, and OPe patients. (b) Linear
regression analysis showing the relationship between M1-like/M2-like monocytes ratio and bone density-related parameters (neck BMD
and total BMD). (c) The validation of fatty liver cell model based on HepG2 cells by Nile red. (d) The proportion of M1 and M2 and
M1-M2 ratio is detected by FCA after inducing M0 by conditional media and the supernatant of HepG2 fatty liver model. (e) The
protein level of TLR4 and Myd88 in THP-1 induced by PMA and CD14+momocytes in human peripheral blood are detected by WB.
Bars, means SE; ∗, P < 0:05; ∗∗, P < 0:01; ∗∗∗, P < 0:005, ∗∗∗∗, P < 0:0001. Abbreviations: FCA: flow cytometric analysis; PBMC:
peripheral blood monocytes cell; SO: severe osteoporosis; OPe: osteopenia; MAFLD: metabolic dysfunction-associated fatty liver disease;
BMD: bone mineral density; THP-1: human myeloid leukemia mononuclear cells; HepG2: human hepatocellular carcinoma cells; TLR4:
toll-like receptor 4; PMA: phorbol 12-myristate 13-acetate; PA+OA: palmitic acid and oleic acid.
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To investigate the role of SIRT1 in macrophage mito-
chondrial function further, CD14+ PBMCs extracted from
OPe patients were treated with the supernatant from HepG2
cells treated in vitro with PAOA. Meanwhile, a decreased
SIRT1 expression in CD14+ PBMCs by siRNA was used
before the stimulation of PAOA, which observed that the
DRP1, MIEF1, MFN1, MFN2 (mitochondrial fusion pro-
teins), and BCL-2 (mitochondrial anti-apoptotic protein)
levels were decreased after the intervention, whereas the
MFF, FIS1 (mitochondrial fission proteins) along with CYCS
and BAX (mitochondrial apoptosis-related proteins) levels
were upregulated in WB results (Figure 7(e)) and were fur-
ther substantiated by IF that DRP1 downregulation and
CYCS upregulation after the intervention that might be
due to downregulation of SIRT1 expression by siRNA
(Figure 7(f)). Moreover, TLR4 and MyD88 protein levels
also increased after intervention, thereby indicating that
SIRT1 expression is crucial for modulating the mitochon-
drial function of peripheral blood-derived macrophages in
OPe patients (Figure 7(e)).

4. Discussion

Metabolic diseases have always been thought to be a signifi-
cant risk factor for osteoporosis, whereas fatty liver disease is
usually associated with metabolic dysfunction and is a major
predisposing factor in obesity and diabetes, leading to
chronic inflammation [30, 31]. Our study results revealed
weaker walking ability in OPe patients with MAFLD than
those without MAFLD. Several studies have proposed that

pro-inflammatory cytokines secreted after macrophage
polarization might contribute to skeletal muscle aging [32].
Oxidative stress is an important mechanism of osteoporosis.
Free radicals affect the differentiation, function, and apopto-
sis of osteoblasts and osteoclasts by regulating signal path-
ways or inducing inflammatory reactions. Antioxidants can
effectively prevent and treat osteoporosis [33]. Initial
research, led by Narayan Avadhani of the University of
Pennsylvania, concluded that when mitochondrial function
is affected, it will not only affect energy production, but also
trigger a stress signal that induces excessive production of
osteoclasts. In the future, they will study how to prevent
osteoporosis by protecting mitochondrial function [34]. Fur-
thermore, recent studies indicate that mitochondrial regula-
tors/nutrients from natural products can remedy
mitochondrial dysfunction mediated by MAFLD [35, 36].
Meanwhile, a number of researches nowadays are develop-
ing innovative drugs for the prevention and treatment of
fatty liver diseases based on mitochondrial dysfunction
[37]. The role of mitochondria as the metabolic center of
cells in regulating macrophage function has been gradually
revealed [38]. This study attempts to clarify whether
MAFLD reduces the walking ability of patients by affecting
the mitochondrial function of peripheral blood-derived
macrophages in the elderly OPe patients.

Fragility fracture is a complete fracture caused by a spon-
taneous or slight external force, which is the most serious
consequence of osteoporosis [39]. In our study, all partici-
pants were divided into three groups: OPe (including osteo-
porosis) patients with MAFLD (OPe with MAFLD), OPe
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Figure 5: MAFLD impaired aerobic respiration and mitochondrial morphology of CD14+ monocytes in peripheral blood of patients with
osteopenia. (a) The protein level of BAX, BLC2, and CYCS in Thp-1 induced by PMA and CD14+momocytes in human peripheral blood is
detected by WB. (b) In the heat map, the relative mRNA level of TLR4, BAX/BCL-2, CYCS, and Myd88 in PBMCs from OPe, OPe with
MAFLD, and SO patients is determined by RT-PCR. (c) Representative image from immunofluorescence staining assay of COXIV and
CYCS in THP-1 induced by PMA and the supernatant of HepG2 fatty liver model. COXIV (green), CYCS (red). (d) The OCR and
ECAR in CD14+ PBMCs from the patients among OPe, OPe with MAFLD, and SO are detected by Seahorse XF. The bar plots indicate
the quantitation of non-mitochondrial respiration, basal respiration, respiration capacity, and fatty acid oxidation among OPe, OPe with
MAFLD, and SO. (e) The mitochondrial microstructure and morphology of CD14+ PBMCs from OPe and OPe with MAFLD patients
are observed via transmission electron microscopy. (f) The level of mitochondrial ROS and intracellular ROS is assessed by FCA among
OPe, OPe with MAFLD, and SO. The quantitative results showed right. Bars, means SE; ∗, P < 0:05; ∗∗, P < 0:01; ∗∗∗, P < 0:005; ∗∗∗∗,
P < 0:0001. Abbreviations: TLR4: toll-like receptor 4; MyD88: myeloid differentiation factor 88; BCL-2: B-cell lymphoma-2; BAX: BCL2-
associated X protein; CYCS: Cytochrome C; COXIV: Cytochrome c oxidase subunit IV; ROS: reactive oxygen species; PBMC: peripheral
blood monocytes cell; SO: severe osteoporosis; OPe: osteopenia; OPe with MAFLD: osteopenia with metabolic dysfunction-associated
fatty liver disease.
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patients (including osteoporosis) without MAFLD, and SO
patients without MAFLD who experienced fragility frac-
tures. Activation of the monocyte-macrophage system is an
important feature of chronic inflammation, which was
found by the flow cytometry that the M1/M2 ratio in
PBMCs in SO patients was the highest among the three
groups. Further analysis of the OPe patients with and with-
out MAFLD denoted that the M1/M2 ratio in the MAFLD
group was higher than that in the group without MAFLD,
although it was not statistically significant. TLR4 is mainly
expressed in cells involved in host defense function, such
as monocyte-macrophages, dendritic cells, and lymphocytes,
which mediate chronic inflammation [12], along with an
essential adapter protein, MyD88, which is crucial for all
TLRs except TLR3 in the innate immunity system [40];
our results displayed that the TLR4 and MyD88 expressions
in PBMCs obtained from MAFLD patients were significantly
higher than those without MAFLD.

The cells of the innate immune system, including macro-
phages and antigen-presenting cells, play a vital role in pro-
viding host resistance to infection and promoting
inflammatory response [41], which were also corroborated
by various studies that the mitochondrial morphological
changes were involved in the regulation of cellular metabo-
lism, which may indirectly affect the activation and response

of immune cells [42, 43] along with the presence of mtROS,
produced by electron transport chain (ETC) can trigger
innate immune signals or cause immune cell damage in
accordance with the measure and timing of their production
[44]. Chronic inflammation results in the release of a sub-
stantial number of cellular mtROS into the blood, thereby
interfering with their functions and disrupting intercellular
communication [45]. Although ROS levels were comparable
in patients with and without MAFLD, mtROS levels in
peripheral blood of OPe patients with MAFLD were signifi-
cantly higher than those without MAFLD. It was also evi-
dent that JC-1, mitochondrial permeability test, TEM, and
WB tests also stated that peripheral blood macrophages in
OPe patients with MAFLD possessed more damaged mito-
chondria than other groups.

Mitochondrial oxidative phosphorylation (OXPHOS)
provides sufficient energy to perform all cellular tasks
through aerobic metabolism, which converts energy sub-
strate into energy stored in the ATP. Although OXPHOS
carries out electron transfer in the mitochondrial membrane
respiratory chain to produce ATP [46], inflammatory mac-
rophages sometimes enhance glycolytic metabolism and
inhibit mitochondrial OXPHOS [47]. The present study
employed seahorse XF Analyzer to detect oxidative phos-
phorylation and glycolysis of CD14+ PBMCs obtained from
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Figure 6: MAFLD impairs the function of CD14 +mononuclear mitochondria in peripheral blood of osteopenia patients. (a, b) MMP and
MPTP of PBMCs from the patients among OPe, OPe with MAFLD, and SO based on FCA. (c) The quantitative results of MMP and MPTP
are, respectively, presented in bar plots. (d) In the heat map, the relative mRNA level of FIS1, MFF, DRP1, and MIEF1 in PBMCs from the
patients among OPe, OPe with MAFLD, and SO group is determined by RT-PCR. (e) The protein level of mitochondrial fusion and
division-related protein in the PBMCs from patients among OPe, OPe with MAFLD, and SO group detected by WB. (f) The protein
level of mitochondrial fusion and division-related protein in the mitochondrial of PBMCs from patients among OPe, OPe with MAFLD,
and SO group detected by WB. Bars, means SE; ∗, P < 0:05; ∗∗, P < 0:01; ∗∗∗, P < 0:005; ∗∗∗∗, P < 0:0001. Abbreviations: MMP:
mitochondrial membrane potential; MPTP: mitochondrial permeability transition pore; PBMC: peripheral blood monocytes cell; SO:
severe osteoporosis; OPe: osteopenia; OPe with MAFLD: osteopenia with metabolic dysfunction-associated fatty liver disease; DRP1:
dynamin-related protein 1; FIS1: mitochondrial fission 1 protein; MFF: mitochondrial fission factor; MIEF1: mitochondrial elongation
factor 1; MFN1: mitofusin 1; MFN2: mitofusin 2; COXIV: Cytochrome c oxidase subunit IV.
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all three groups and suggested that the monocyte respiratory
capacity in patients with OPe with MAFLD is the lowest
among all, even when compared to SO patients.

Mitochondria are complex dynamic organelles that per-
form many functions related to cell metabolism and homo-
geneous stability [48] and bear a close association with the
process of aging [49] that might reduce mitochondrial integ-
rity as well as dysfunction of the fusion-fission cycle, result-
ing in the accumulation of a large number of abnormal
mitochondria, leading to an increase in oxidative stress and
resulting in defective autophagy [50]. As the center of cell
energy metabolism, the mitochondrial shape constantly
changes through different fusion and fission cycles to adapt
to the varied energy needs of the different environments
[51]. Mitochondrial key proteins that induce fusion and fis-
sion and dynamic proteins play critical regulatory roles in
the process of constitutive fission and fusion reactions,
which maintain steady-state mitochondrial morphology
[52]. The present study assessed the relative mRNA expres-
sion and protein level of genes related to mitochondrial
fusion-fission cycle in PBMCs of all the three group patients
by RT-PCR and WB, and proved that the expression levels
of mitochondrial fusion and division-related proteins was

abnormal in PBMCs obtained from patients with MAFLD
and SO patients when compared with patients without
MAFLD.

As a regulator of various cellular and body processes,
including metabolism, immune response, and aging, SIRT1
remains the most studied member of this class of proteins
engaging in gene regulation [53]. SIRT1, a NAD-
dependent histone deacetylase, plays a vital role in hepatic
steatosis and inflammation [54], along with active participa-
tion in other cellular events like metabolism, inflammatory
response, cell aging, and apoptosis through a variety of sig-
naling pathways. In our study, it was reflected that the SIR-
T1expression was lesser in the liver tissue of OPe patients
with MAFLD than patients without MAFLD. In order to
further clarify the role of SIRT1, we observed the effects of
SIRT1 siRNA on PBMCs obtained from OPe patients on cell
signaling and the mitochondrial function of cells by WB and
IF, which suggested that SIRT1 knockdown aggravated the
mitochondrial damage of induced monocytes in vitro, which
might be related to the TLR4 signal activation.

“Inflammatory aging” is the most common manifesta-
tion of abnormal intercellular communication. Age-related
dysfunction and immune system decline can stimulate a
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Figure 7: SIRT1 defects accentuated impaired monocyte mitochondria in osteopenia patients. (a) The accumulation of lipid droplets of liver
from OPe and OPe with MAFLD patients is assessed by Red Oil O staining. (b) Immunohistochemical detection of SIRT1 in the liver from
OPe and OPe with MAFLD patients. The protein level of SIRT1 in liver tissue is assessed by WB. (c) The relative mRNA level of SIRT1 and
TLR4 in PBMCs from the patients among OPe, OPe with MAFLD, and SO group is detected by RT-PCR. (d) The correlation matrix shows
the relationship between the expression of SIRT1 and clinical indicators of patients. (e) The protein level of mitochondrial apoptosis, fusion
and division-related protein is detected using WB. (f) Representative image for immunofluorescence staining shows the expression and
distribution of COXIV and CYCS in PBMCs intervened by various conditioned medium. Abbreviations: SIRT1: the silent mating type
information regulation 1; TLR4: toll-like receptor 4; MyD88: myeloid differentiation factor 88; BCL-2: B-cell lymphoma-2; BAX: BCL2-
associated X protein; CYCS: Cytochrome C; DRP1: dynamin-related protein 1; FIS1: mitochondrial fission 1 protein; MFF:
mitochondrial fission factor; MIEF1: mitochondrial elongation factor 1; MFN1: mitofusin 1; MFN2: mitofusin 2; COXIV: Cytochrome c
oxidase subunit IV; PAOA: palmitic acid and oleic acid; BMI: body mass index; BMD: bone mineral density; SO: severe osteoporosis;
OPe: osteopenia; OPe with MAFLD: osteopenia with metabolic dysfunction-associated fatty liver disease.
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large number of immune cells to produce numerous inflam-
matory factors and cause chronic inflammation, potentially
accelerating the aging process. Our study revealed that OPe
patients with MAFLD had increased levels of plasma pro-
inflammatory factors like IL-6 and IL-8 and higher M1/
M2% as compared to the OPe patients without MAFLD.
To conclude, our results suggest that MAFLD itself may
aggravate the inflammatory state of the elderly OPe patients,
which may be related to the mitochondrial homeostasis
imbalance in peripheral blood-derived macrophages that
might lead to the decreased walking ability of patients.
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With the development of the times, cardiovascular diseases have become the biggest cause of death in the global aging society,
causing a serious social burden. Atherosclerosis is a chronic inflammatory disease, which can occur in large and medium-sized
blood vessels in the whole body. It takes atherosclerotic plaque as the typical pathological change and endothelial injury as the
core pathophysiological mechanism. It is the pathological basis of coronary heart disease, peripheral artery disease,
cerebrovascular disease, and other diseases. Recent studies have shown that chronic stress plays an important role in the
occurrence and development of atherosclerosis, endothelial injury, lipid metabolism, and chronic inflammation. This process
involves a large number of molecular targets. It is usually the cause of atherosclerotic cardiovascular and cerebrovascular
diseases. If chronic stress factors exist for a long time, patients have genetic susceptibility, and the combination of
environmental factors triggers the pathogenesis, which may eventually lead to complete blockage of the blood vessels, unstable
rupture of plaques, and serious adverse cardiovascular events. This paper reviews the role of chronic stress in the occurrence
and development of atherosclerosis, focusing on the pathophysiological mechanism.

1. Introduction

With the development of economy, the total prevalence of
cardiovascular disease in the world is increasing year by year.
At present, the total number of cardiovascular diseases
exceeds 587 million. In 2019 alone, 18.6 million people died
and 34.4 million were disabled, with an upward trend year

by year [1]. Among them, atherosclerosis is the pathological
basis of a variety of cardiovascular and cerebrovascular dis-
eases, which is easy to appear in various diameter arteries,
common in the coronary artery, aorta, carotid artery, etc.
[2]. It is generally believed that atherosclerosis originates
from various stimulating factors, including mechanical fac-
tors, LDL particle deposition, toxins, and viruses, which lead
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to the destruction of endothelial cells on the arterial intima.
The damaged endothelial cells secrete cytokines and growth
factors, attract monocytes gathering, migrate to endothelial
cells, and transform into macrophages, These macrophages
swallow cholesterol-rich oxidized low-density lipoprotein
(ox LDL) through TLRs to form foam cells [3]. The persis-
tence of proinflammatory factors leads to the accumulation
of more macrophages, mast cells, and activated T cells and
B cells into foam cells, showing a lipid streak [4]. At the same
time, growth factor activates smooth muscle cells in the arte-
rial membrane, enters the intima and secretes extracellular
matrix, makes the endothelium thickening, fibrosis, and
hardening, and absorbs lipids through LPL receptors to form
foam cells [5, 6]. The two types of foam cells are progressed
and eventually become atherosclerotic.

Chronic stress refers to the nonspecific pathophysiologi-
cal response caused by the change of the body’s steady state
under the long-term stimulation of various adverse factors
in vivo and abroad. Generally speaking, it is the emotional
experience of people under the pressure that they are difficult
to adapt [7, 8]. The source of this stress is often psychological
stress. It is generally believed that there will be feelings of ten-
sion, depression, and sadness under psychological stress; the
sources of this stress are often four categories: work, family,
finance, and major life events. A large cohort study of more
than 10000 people found that one or more levels of psycho-
logical stress in patients with myocardial infarction were sig-
nificantly elevated [9]. For the animal model of chronic
stress, the commonly used chronic stressors include fasting,
closed environment, long-term forced swimming, or electri-
cal stimulation. Chronic stress is one of the promoting fac-
tors of many peripheral vascular diseases. Studies have
shown that chronic stress can cause a variety of cardiovascu-
lar diseases, such as dysfunction of vascular smooth muscle
cells, even leading to rupture of aortic aneurysm [10, 11].
The most important thing is that chronic stress can cause
the occurrence and development of atherosclerosis. Studies
have shown that chronic stress is an independent risk factor
for carotid atherosclerosis in Mexican women [12]. For the
rat model of atherosclerotic intimal hyperplasia, most carotid
arteries are blocked by atherosclerotic lesions after two weeks
under chronic stress [13]. The possible pathophysiological
mechanism of promoting the progression of atherosclerosis
involves many aspects. Chronic stress reduces the activity
of hypothalamic pituitary adrenal axis, leads to the decline
of anti-inflammatory ability, stimulates the sympathetic
adrenal medulla, and increases the content of blood catechol-
amine. Catecholamine binds to the β-adrenal receptor on the
surface of macrophages, stimulates macrophages to produce
more cytokine catecholamine, induces the expression of
related inflammatory cytokines, and promotes the progress
of inflammation [14–16]. Chronic stress can also promote
oxidative stress and vascular sensitivity by increasing blood
triglycerides and low-density lipoprotein. It can also reduce
the content of NO synthase and NO, which can produce con-
tractile effect on the aortic vessels and promote the develop-
ment of atherosclerosis [17, 18]. Chronic stress can also lead
to changes in plaque stability and poor prognosis of
atherosclerosis.

The purpose of this paper is to comprehensively review
the effects of chronic stress on the occurrence and develop-
ment of atherosclerosis, pay special attention to the patho-
physiological mechanism of chronic stress in the
occurrence and development of atherosclerosis, and espe-
cially explore how chronic stress accelerates the progress of
atherosclerosis from the aspects of chronic inflammation,
hemodynamics, lipid metabolism, adipose tissue interaction,
and the progress of atherosclerotic plaque, so as to provide
some ideas for clinical intervention and basic research
(Figure 1).

1.1. Inflammation: The Core Cause Induced by Chronic
Stress. It has been elucidated that atherosclerosis is essen-
tially a chronic inflammatory disease. Inflammation plays a
role in all stages of atherosclerosis, including accumulation
of foam cells, formation of fatty streaks and fibrous plaques,
rupture of acute plaques, and formation of thrombus
[19–23], eventually leading to atherosclerosis and throm-
botic complications. A large number of studies have con-
firmed that for chronic stress, it is currently considered
that it may lead to chronic low-grade inflammation through
a variety of ways and is related to atherosclerosis. Inflamma-
tion is even further developed by activating platelets and
endothelial dysfunction, which is reviewed in detail in the
part of endothelial dysfunction.

Clinical and animal experiments have shown that for
inflammatory factors, long-term chronic stress can increase
the concentration of blood cortisol through HPA axis on
the one hand and change the steady-state balance of auto-
nomic nervous system and increase the content of catechol-
amine by stimulating sympathetic adrenal system and
reducing the vagus nerve tension on the other hand. Both
cause the decrease of anti-inflammatory ability; the continu-
ous progress of inflammation; the increase of the concentra-
tion of inflammatory cytokines, serum IL-6, and TNF; the
increase of the expression of IL-6 and TNF in the liver and
spleen; and the increase of CRP can also cause the change
of inflammatory cytokines [24–26]. In addition, norepineph-
rine (NE) and neuropeptide Y (NPY) released by activated
sympathetic activity can also promote the phosphorylation
of mitogen-activated protein kinase (MAPK) or the release
of high-mobility group protein B1 (HMGB1), thus inducing
systemic inflammation and accelerating the development of
cardiovascular diseases [27]. In addition, chronic stress can
also enhance the activity of dipeptidyl peptidase-4 (DPP4)
in plasma and reduce the concentration of plasma
glucagon-like peptide (GLP-1) and adiponectin (APN), so
as to promote the development of inflammation [28, 29].
However, it is still unclear whether it is possible to reduce
the promoting effect of chronic stress on atherosclerosis by
targeted inhibition of cellular inflammatory factors. For
inflammatory cells, chronic stress can cause bone marrow
cells to enter a highly reactive inflammatory state, cause leu-
kocyte proliferation, and increase the number of circulating
inflammatory monocytes [30, 31]. In addition, inflammatory
cells and inflammatory cytokines are not isolated from each
other. The activated sympathetic adrenal system can
increase the number of immune response cells expressing
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M receptor and inflammatory cytokines [32, 33] and pro-
duce a large number of cytokines. After HPA axis changes
caused by chronic stress, TLR4/NF-κB pathway activates
proinflammatory cytokines such as MCP-1 and IL-1αand
IL-6 and, at the same time, leads to the increase of intimal
macrophage/monocyte ratio [17, 34], so that under the
interaction of inflammatory factors and cells, endothelial
homeostasis changes and inflammation further progresses
and forms a vicious circle [35]. Interestingly, recent studies
have also demonstrated that TLR4/NF-κB pathway also
downregulates HMGB1 protein-mediated PPARγ/LXRα.
The expression of ABCA1 pathway reduces the antiathero-
sclerotic effect of ATP binding cassette transporter 1
(ABCA-1) [36]. Therefore, the progression of atherosclerotic
inflammation caused by chronic stress is a complex system,
and the specific mechanism needs to be further studied.

2. Results and Discussion

2.1. Dyslipidemia: An Important Risk Factor of Chronic Stress
Promoting the Progression of AS. Dyslipidemia is the first
recognized independent risk factor for intima and media
thickening of atherosclerosis [4]. Higher levels of serum
low-density lipoprotein and total cholesterol can induce ath-
erosclerotic precipitation, while low-density lipoprotein oxi-
dation modified product (ox LDL) can be recognized and
ingested by monocyte macrophage TLR and finally form
lipid plaque [37]. However, simple dyslipidemia cannot fully
explain the progress of atherosclerosis. Some studies have
conducted large-scale clinical trials with statins that can
reduce low-density lipoprotein, and cardiovascular events
have been significantly reduced. However, even with inten-
sive statin therapy, the ability to prevent cardiovascular
events is still limited to 30% to 40% of treated patients
[38], indicating that hyperlipidemia is not the only cause
of atherosclerosis. Therefore, chronic stress comes into our
sight. It has been reported that it can induce hyperlipidemia
and lipid oxidation, cause lipid deposition to form plaque,
may also lead to hypercoagulable state of arterial thrombo-
sis, accelerate the progress of atherosclerosis, and produce
adverse results [39, 40].On the one hand, it has been
reported that in the control study of stressed mice and ordi-
nary mice, high concentrations of serum total cholesterol,
triglycerides, low-density lipoprotein, and very low-density
lipoprotein can increase the atherosclerosis index of the
chronic stress group, while the change of mice in the control
group is not obvious [37]. In turn, chronic stress will change
the blood lipid profile. In the study of hyperlipidemia rabbit
model, with the extension of chronic stress exposure, the cir-
culating concentrations of cholesterol, LDL, VLDL, and TG
will significantly increase with time, while high-density lipo-
protein will remain unchanged or decrease, and the athero-
sclerosis index will increase [18, 40, 41].

Hyperlipidemia and chronic stress interact to form a
vicious circle, which together leads to the progress of athero-
sclerosis. Some researchers stimulated mice with chronic
mild unpredictable stress (CMS), which also proved that
CMS can increase the plasma concentration of corticoste-
rone and lipids, increase the atherosclerosis index, and lead

to the impairment of thoracic aortic function [42]. In addi-
tion, some studies stimulated atherosclerotic mice with cold
stress, and the blood lipid of stressed rats was significantly
higher than that of the control mice. Pathologically, it was
found that cardiac oxidative stress was aggravated, macro-
phage infiltration and proinflammatory gene expression
were found in the left ventricle and visceral adipose tissue,
and the incidence of cardiac-related adverse events was fur-
ther increased [43]. From the perspective of mechanism,
chronic stress for more than 4 weeks can cause adrenal cor-
tical stress hyperplasia; increase GC synthase, citrate syn-
thase, and ketoglutarate dehydrogenase; increase
glucocorticoid; promote ATP synthesis and energy metabo-
lism [40, 44]; appear insulin resistant; promote hepatic tri-
glyceride synthesis; and delay the binding and degradation
of LDL by hepatocytes. Finally, it promotes circulating
hyperlipidemia, which will continue after the removal of
chronic stressors [45–47]. Chronic stress can also induce
adrenoceptor desensitization and receptor downregulation
in adipocytes, resulting in reduced catecholamine-induced
lipolysis capacity and lipid accumulation [48]. In addition,
it has been studied that the fatty acids released by lipolysis
of adipose tissue under chronic stress can be used as sub-
strates for cholesterol synthesis, causing the increase of
blood cholesterol and aggravating the progress of atheroscle-
rosis [49]. In addition, chronic stress beyond the threshold
will stimulate the sympathetic nerve to directly upregulate
the expression of neuropeptide Y or indirectly upregulate
the expression of neuropeptide Y and its receptor Y2R by
increasing glucocorticoid, resulting in abnormal lipid metab-
olism [50]. It can also regulate ABCG1 gene by upregulating
TLR4, mediating inflammation and intracellular lipid accu-
mulation are also necessary ways for macrophages to trans-
form into foam cells [51–53]. In addition, the expression of
aortic matrix metalloproteinase -9 (MMP-9) and MMP-2
gene will also increase, reduce the expression of adiponectin
in preadipocytes, promote LDL-induced monocyte uptake of
lipids, and promote the formation of foam cells [28].

2.2. NO: The Core Molecule Causing Endothelial Dysfunction
Under Chronic Stress. Normal endothelium maintains vascu-
lar tension and structure by regulating the balance between
vasodilators (such as NO and prostacyclin) and vasocon-
strictors (such as endothelin-1 and norepinephrine)
[54].The result of endothelial dysfunction is to cause the
progress of atherosclerosis, hypertension, and other changes.
Among them, NO is an important vasodilator molecule,
which cooperates with other endothelial-derived factors to
participate in endothelium-dependent relaxation [55, 56].
NO is produced by the precursor L-arginine, which is
affected by NO synthase, and at least three functional forms
of NO synthase (endothelial (eNOS), neuronal (nNOS), and
inducible (iNOS)) are known [57]. In terms of function, NO
is related to various endothelial functions, including regulat-
ing vascular tension, platelet aggregation, and vascular
smooth muscle cell proliferation [58].

The response of vascular endothelium to chronic stress is
the adaptation to its harmful effects. This adaptation is NO
dependent [59, 60]. In early chronic stress, chronic stress
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hormone reduces endothelial injury by stimulating the
release of ET-1 and maintaining a high level of NO [61].
In the study of different types of chronic stress mouse
models, it was found that the level of NOx increased signif-
icantly and the time-dependent iNOS activity increased [57].
This increased activity of NO system will weaken the vaso-
constrictive effect of catecholamine and ANGII [62, 63]
and platelet aggregation caused by increased sympathetic
activity and resist the vascular system disorder caused by
chronic stress [64, 65].It was also confirmed in another
study. Early chronic stress will have vascular relaxation
changes and reach the peak eight weeks after the administra-
tion of chronic stressor and decrease twelve weeks. However,
the analysis of blood components found that this is related
to the reduction of relaxation components independent of
NO, and NO will not decrease in the early stage [28]. At
the same time, early chronic stress can also improve the
response of endothelium to NO, weaken the vasoconstric-
tion caused by calcium ion, and play a certain role in vasodi-
lation [66].

However, long-term chronic stress may lead to endothe-
lial dysfunction, vascular remodeling, and systolic hyperten-
sion through vascular oxidative stress. The decrease of
endothelium-dependent relaxation was observed in this pro-
cess, which may be related to the decrease of endothelial NO
synthase activity and the decrease of NO bioavailability [67,
68]. In terms of mechanism, excessive ROS is produced
under chronic stress, which changes the balance of oxidants
and antioxidants and leads to the development of various
pathological states, dysfunction of intracellular mitochon-
dria, interruption of energy pathway, and induction of apo-

ptosis [69]. More importantly, it causes the reduction of NO
production and disorder of vasoconstriction and relaxation
and induces MMP-2 and MMP-9 to decompose fiber caps
containing collagen, elastin, and proteoglycan. The removal
of ROS can reduce blood pressure, which can also explain
the harm of chronic stress [69–72], and these injuries are
controlled by the differential regulation of NO [73]. Studies
have shown that Salvia miltiorrhiza can restore endothelial
function to a certain extent by increasing the amount of
NO and the level of eNOS [72]. Similarly, the role of chronic
stress may also involve NO-dependent endothelial dysfunc-
tion [28]. Studies have shown that there is a compensatory
vasodilation mechanism in chronic stress mice with
impaired NO bioavailability. This mechanism may be
related to hydrogen peroxide as a compensatory dilation
metabolite, which ensures vascular reactivity to a certain
extent [68]. Similarly, after long-term chronic stress, the
effect of related hormones can no longer be antagonized by
vasodilators such as NO. For example, glucocorticoid and
proinflammatory cytokines, norepinephrine, and
endothelin-1 may aggravate endothelial dysfunction by
reducing eNOS expression, increasing eNOS inactivation,
and promoting NO degradation and antagonism of NO-
induced vasodilation [74]. On the other hand, the elevation
of aldosterone and sodium and water retention of glucocor-
ticoid can hardly get NO against [75–77]. Therefore, many
factors work together to cause hemodynamic decompensa-
tion after long-term chronic stress.

2.3. Adipose Tissue: Correlates under Chronic Stress. Obesity
is associated with chronic stress and atherosclerosis. Chronic
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stress can cause excessive fat accumulation to a certain
extent [43]. Studies have shown that obesity can increase
the incidence rate of cardiovascular and cerebrovascular dis-
eases. Obesity may cause inflammation and atherosclerosis
by secreting a large number of adipokines and proinflamma-
tory cytokines [78, 79]. But interestingly, through big data
analysis, it can be found that there is no nonlinear relation-
ship between the degree of obesity and atherosclerosis. Stud-
ies have shown that when CPC is used as an index of
endogenous vascular proliferation to study this paradox,
the number of good outcomes of high regenerative capacity
(i.e., high CPC count) in obese people is more [80]. On the
other hand, the degree of visceral obesity and BMI index is
not linear [81]. Chronic stress promotes the accumulation
of visceral fat. Therefore, there are some deficiencies in using
BMI as a link between obesity, cardiovascular and cerebro-
vascular adverse events and chronic stress. Moreover, the
expansion of aorta, slowing down the shear force of blood
flow and playing the role of endothelial protection is also
one of the reasons for the obesity paradox [82].

At present, chronic stress is more closely related to
abdominal obesity. One view is that excessive glucocorticoid
secretion caused by chronic stress will affect fat distribution
and promote the selective accumulation of visceral fat [78],
accompanied by a series of metabolic disorders, including
dyslipidemia, impaired glucose tolerance and insulin resis-
tance, and unstable or elevated blood pressure [83–86]. In
addition, these factors are harmful to arteries and promote
the development of atherosclerosis. However, the current
research suggests that chronic stress has little to do with
aggravating the inflammatory response of abdominal obesity
and may increase the secretion of proinflammatory cyto-
kines to a certain extent [87, 88].Some research evidence
suggests that peripheral neuropeptide Y induced by chronic
stress may play an important role [89]. It may also promote
fat accumulation through a variety of stress behavior reac-
tions, resulting in stronger cardiac sympathetic tension after
obesity, exacerbate abnormal heart rate and metabolism, and
increase the risk of cardiovascular disease [90]. Interestingly,
the simultaneous occurrence of chronic stress and obesity is
not necessarily a vicious circle. Some studies on mice have
shown that high-fat diet can alleviate the anxiety caused by
chronic stress and improve the activity intensity of anxious
animals [91]. At the same time, the high-fat diet under
chronic stress may also reduce the level of corticosterone
and reduce the incidence of obesity to a certain extent [91,
92], but some studies have shown that various types of deli-
cious food can also increase body weight [93].Therefore,
understanding the lipid metabolism under stress is of great
significance to study the relationship between chronic stress
and atherosclerosis. In addition, a special type of adipose tis-
sue, perivascular adipose tissue, plays an important role in
the maintenance of vascular function. It secretes a large
number of paracrine signal molecules, which affect the func-
tion of vascular wall through direct diffusion, trophoblast, or
catheter [94]. However, chronic stress causes perivascular
adipose tissue to become an inflammatory phenotype, which
is characterized by changes in the spectrum of adipokines,
cytokines, and chemokines, resulting in activation of arterial

oxidative stress, reduction of NO bioavailability, reduction
of EDD, and increase of aortic stiffness. From the perspec-
tive of mechanism, it may be related to the overactivation
of sympathetic nervous system and the increase of aldoste-
rone production [95, 96].

2.4. Plaque Progression: The Culprit of Adverse Events
Caused by Chronic Stress. The latest research shows that
chronic stress can not only cause the progression of athero-
sclerotic plaque but also accelerate the change of plaque
instability. On the one hand, after 12 weeks of mild chronic
stress exposure, the area of main atherosclerotic plaque in
the ApoE-/-mice doubled compared with the unexposed
mice [97]. On the other hand, in many studies on coronary
artery, ascending aorta and abdominal aorta, histopathology
shows that in the animal model of atherosclerosis, chronic
stress can cause acute thrombosis and plaque instability. It
is characterized by accelerated apoptosis, thinning of fiber
cap, lipid deposition, increased macrophages and neovascu-
larization, and increased degree of perivascular fibrosis, but
the reduction of smooth muscle cells and intimal mediators
such as type I collagen and elastic fibers especially signifi-
cantly promotes the degeneration of the inner side of the
plaque, which generally aggravates the inflammatory pheno-
type of atherosclerosis and makes the plaque easy to fall off
from the vascular wall. Large-scale clinical cohort studies
have shown that there is a causal relationship between men-
tal changes caused by chronic stress and the progression of
atherosclerosis and the decrease of plaque stability in people
with coronary heart disease [98–101]. The reason can be
found that chronic stress can aggravate the level of inflam-
mation and oxidative stress through inflammatory cyto-
kines, oxidized low-density lipoprotein, mechanical damage
caused by elevated blood pressure and enhanced HPA axis
function, resulting in the imbalance of vascular smooth mus-
cle cell proliferation and apoptosis, and reduce the stability
of plaque [98, 102]. Some studies used a multisystem 18F-
FDG-PET/CT imaging. The results show that long-term ele-
vated stress-related neurobiological activities will promote
leukocyte production and inflammatory progression and
then increase the plaque load of ARI and noncalcified coro-
nary artery, resulting in reduced plaque stability [103]. Some
studies have studied the proapoptotic effect of chronic stress
at the molecular level. Chronic stress can increase the activ-
ity of DPP4 and decrease the expression of GLP-1 and cause
the progression of plaque inflammation and aggravation of
oxidative stress. At the same time, DPP4 inhibitor has cer-
tain therapeutic significance on endothelial injury and vas-
cular aging, while exenatide, a GLP-1 analogue, decreased
the expression of MMP-9 and MMP-2 genes in (ApoE-/-)
mice. Stimulation of adiponectin expression in preadipo-
cytes inhibited the formation of monocyte-derived foam
cells induced by LDL, thereby slowing plaque progression
[28, 29, 104]. High levels of cortisol induced by chronic
stress can induce low levels of miRNA 25, increase proapop-
totic proteins, induce apoptosis of smooth muscle cells, and
reduce plaque stability. This effect is significantly related to
the inhibition of targeting moap1 and P70S6K pathways
[105]. In addition, chronic stress can promote the expression
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of cysteinyl cathepsin S (Cat-S), directly affect TLR2/4, cause
the progression of inflammation and oxidative stress, prolif-
erate vascular smooth muscle cells, lead to neointimal hyper-
plasia, and reduce plaque stability [106]. The absence of
cysteinyl cathepsin K (Cat-K) prevents the development of
experimental neointimal hyperplasia by weakening the
excessive effect of inflammation, the production of oxidative
stress, and the proliferation of VSMC, which has a synergis-
tic effect with Cat-S [107]. It has been reported that chronic
stress induces rapid intimal hyperplasia in angioplasty
injured rats (i.e., animal model of intimal injury) through
neuropeptide Y (NPY), which may be related to intimal
hyperplasia and plaque progression of atherosclerotic nature
[108]. The unstable progression of atherosclerotic plaque is
also related to the immune environment. It has been
reported that chronic stress can significantly affect the local
immune environment of mouse aorta, cause the accumula-
tion of inflammatory cells in plaque, and reduce its stabil-
ity [109].

3. Conclusion and Prospect

With the change of life rhythm, the impact of chronic
stress on human health has attracted more and more
attention. We reviewed the effects of chronic stress on
the occurrence and development of atherosclerosis, focus-
ing on the pathophysiological mechanisms, including
chronic inflammation, hemodynamic changes, lipid metab-
olism changes, adipose tissue interaction, plaque progres-
sion, and so on. The related changes will eventually lead
to abnormal vascular structure and atherosclerotic cardio-
vascular disease. But due to a perfect self-regulation mech-
anism in the body, acute internal environment disorder
has a relatively weak impact on program genes. However,
under the condition of chronic stress, abnormal gene
expression can be induced continuously. Since chronic
stressors cannot be removed, gene-induced changes in
abnormal cell function are irreversible. At present, it has
been confirmed that atherosclerosis is a pathological state
in which the apoptosis of endothelial cells is excessive
and apoptosis of smooth muscle cells is insufficient. The
abnormal expression of these cells is closely related to
the disturbance of internal environment and endocrine
function under chronic stress. The anti-inflammatory
effect of statins is based on lipid regulation to reduce the
decline of inflammatory factors caused by chronic stress
in the body. Chronic diseases such as diabetes and hyper-
tension can be used as chronic stressors to increase the
corresponding inflammatory factors and promote the for-
mation of atherosclerosis. Drugs (including betas,
angiotensin-converting enzyme inhibitors, angiotensin
receptor antagonists, β-blockers, and antiplatelet drugs)
are essential in the treatment of these diseases and control
the presence of corresponding chronic stress factors. In
future studies, we will pay more attention to the influence
mechanism of chronic stress on atherosclerosis, and it is a
novel insight to develop targeted drugs for the prevention
and treatment of atherosclerosis against chronic stress in
the future.
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