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In this study, for graph Γ with r connected components (also for connected nonbipartite and connected bipartite graphs) and
a real number ε(≠ 0, 1), we found generalized and improved bounds for the sum of ε-th powers of Laplacian and signless
Laplacian eigenvalues of Γ. Consequently, we also generalized and improved results on incidence energy (IE) and Laplacian
energy-like invariant (LEL).

1. Introduction

Let Γ denote a fnite, simple, and undirected graph of order
n. Te edge and vertex sets of Γ are denoted by E(Γ) �

e1, e2, . . . , em􏼈 􏼉 and V(Γ) � v1, v2, . . . , vn􏼈 􏼉, respectively. If
the vertex vi is neighbour to vj, then write vi ∼ vj. Te degree
of the vertex vi ∈ V(Γ), symbolized by di, is the number of
vertices adjacent to vi.

Te adjacency matrix and the degree matrix of graph Γ
are denoted by A(Γ) and D(Γ), respectively. Let
μ1(Γ)≥ μ2(Γ)≥ · · · ≥ μn(Γ) � 0 be the eigenvalues of the
Laplacian matrix L(Γ) of Γwhere L(Γ) � D(Γ) − A(Γ) [1, 2].
Letq1(Γ)≥ q2(Γ)≥ · · · ≥ qn(Γ) be the eigenvalues of the
signless Laplacian matrix Q(Γ) of Γ where Q(Γ) � D(Γ) +

A(Γ) [3]. Since the matrices A(Γ), L(Γ), and Q(Γ) are real
and symmetric matrices, thus they have real eigenvalues. So,
we can write their eigenvalues such that
λ1(Γ)≥ λ2(Γ)≥ · · · ≥ λn(Γ), μ1(Γ)≥ μ2(Γ)≥ · · · ≥ μn(Γ), and
q1(Γ)≥ q2(Γ)≥ · · · ≥ qn(Γ), respectively. L(Γ) and Q(Γ) are
semidefnite matrices, according to the Geršgorin disc
theorem. From here, all eigenvalues of Laplacian and
signless Laplacian matrices of Γ are non-negative integers. In
[3], it has been found that μi(Γ)> 0(i � 1, 2, . . . , n − 1) for
a connected nonbipartite graph Γ. Additionally, Γ is a bi-
partite graph if and only if qn � 0.

Te link between the eigenvalues of a graph and the
molecular orbital energy levels of π− electrons in conjugated
hydrocarbons is the most crucial chemical application of
graph theory. Te total π− electron energy in conjugated
hydrocarbons is calculated by the sum of absolute values of
the eigenvalues corresponding to the molecular graph Γ
which has a maximum of four degree generally for the
Hüchkel molecular orbital approximation. Te energy of Γ
given by Gutman in [4] is as follows:

E(Γ) � 􏽘
n

i�1
λi(Γ)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌. (1)

Nowadays, there is a lot of study on graph energy, as can
be seen from the recent papers [5].

Te square roots of the eigenvalues of the matrix MMT

are known as the singular values of some n × m matrix M

and its transpose MT. Recently, in [2], Nikiforov introduced
and explored the notion of graph energy. He defned the
energy E(Γ) of a graph to be the sum of singular values of
any matrix M. Clearly, E(Γ) � E(A(Γ)).

Assume that I(Γ) represents the vertex-edge incidence
matrix of the graph Γ. Ten, for Γ having vertex set V(Γ) and
edge set E(Γ), the (i, j)− entry of I(Γ) is 0 if vi is not incident
with ej and 1 if vi is incident with ej. Jooyandeh et al. [6]
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introduced the notion of incidence energy of a graph. Ac-
cordingly, the incidence energy IE of Γ is the sum of the
singular values of the incidence matrix of Γ. Te following
expression is given by Gutman et al. [7]:

IE � IE(Γ) � 􏽘
n

i�1

�����

qi(Γ)
􏽱

. (2)

Some basic information on IE may be seen in [6, 7].
As abovementioned, one can compute the incidence

energy of a graph Γ by calculating the eigenvalues of signless
Laplacian matrix of Γ. However, the problem is much more
complicated for some classes of graphs due to the compu-
tational complexity of fnding eigenvalues of signless Lap-
lacian matrix. Tus, to compute the invariant for some
classes of graphs, it is crucial to fnd their lower and upper
bounds. Zhou [8] found the upper bounds on the incidence
energy in terms of the frst Zagreb index. Diferent lower and
upper bounds on IE have been studied by various
researchers.

In [9], associated to the Laplacian eigenvalues, authors
introduced the invariant called the Laplacian energy-like
invariant (or Laplacian-like energy) which is defned as
follows:

LEL � LEL(Γ) � 􏽘
n− 1

i�1

��
μi

√
. (3)

Firstly, it was examined in [9] that LEL and Laplacian
energy have similar characteristics. It has also been shown
that it resembles to graph energy much more closely. For
detailed information, see [10].

For a graph Γ of order n and a real number ε not equal to
0 and 1 in [8], the sum of the εth powers of the nonzero
Laplacian eigenvalues is defned as follows:

σε � σε(Γ) � 􏽘
n− 1

i�1
μεi . (4)

If ε is 0 and 1, then the cases are trivial as σ0 � n − 1 and
σ1 � 2m, where m denotes the cardinality of the edge set of Γ.
It is clear that σ1/2 is equal to LEL. We should note that nσ − 1
is also equal to the Kirchhof index of Γ (for more detail (one
can see [11, 12]). Many studies on σε have recently been
published in the literature. For details, see [13, 14].

Similar to the defnitions of IE, LEL, and σε, Akbari et al.
[15] defned the sum of the εth powers of the signless
Laplacian eigenvalues of Γ as follows:

sε � sε(Γ) � 􏽘
n

i�1
q
ε
i , (5)

and they also gave some connections between σε and sε. If ε is
0 and 1, then the cases are trivial as s0 � n and s1 � 2m. Note
that s1/2 is equal to the incidence energy IE.We observed that
Laplacian eigenvalues and signless Laplacian eigenvalues of
bipartite graphs are equal [1, 3, 16]. Terefore, for bipartite
graphs, σε and sε are equal, and hence, LEL is equal to IE [17].
Recently, diferent properties, as well as diferent lower and
upper bounds of sε have been established in [15, 17, 18].

Lemma 1 (see [19]). Let a1, a2, . . . , an be nonnegative
numbers. Ten,

n
1
n

􏽘

n

i�1
ai − 􏽙

n

i�1
ai

⎛⎝ ⎞⎠

1/n
⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦≤ n 􏽘

n

i�1
ai − 􏽘

n

i�1

��
ai

√⎛⎝ ⎞⎠

2

≤ n(n − 1)
1
n

􏽘

n

i�1
ai − 􏽙

n

i�1
ai

⎛⎝ ⎞⎠

1/n
⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦.

(6)

Te equality among them holds if and only if
a1 � a2 � · · · � an.

We aim to obtain some strong bounds using the efcient
inequality technique in Lemma 1 for main results. Also, we
give some generalizations for sε, σε, indicence energy IE, and
the Laplacian energy-like invariant LEL of graphs (with r

connected components, connected nonbipartite, and con-
nected bipartite).

Te following main lemmas are required for our main
results.

Let t � t(Γ) denote the number of spanning trees of
a graph Γ. Let Γ1 × Γ2 be the Cartesian product of the graphs
Γ1 and Γ2. We defne the following number for a graph Γ.

t1 � t1(Γ) �
2t Γ × K2( 􏼁

t(Γ)
. (7)

Lemma 2 (see [20]). If Γ is a connected bipartite graph with n

vertices, then 􏽑
n− 1
i�1 μi � 􏽑

n− 1
i�1 qi � nt(Γ). If Γ is a connected

nonbipartite graph with n vertices, then 􏽑
n
i�1qi � t1.

Lemma 3 (see [21]). Let Γ be a connected graph with n≥ 3
vertices and maximum degree ∆. Ten, μ2 � · · · � μn− 1 if and
only if Γ � Kn or Γ � K1,n− 1 or Γ � K∆,∆.

Lemma 4 (see [21]). Let Γ be a connected graph of order n.
Ten, μ1 � · · · � μn− 1 if and only if Γ � Kn.
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Lemma 5 (see [3]). Te spectra of L(Γ) and Q(Γ) coincide if
and only if the graph Γ is bipartite.

2. Main Results

After above preliminary informations, we are ready to give
our main results.

It is well known that if a graph Γ has r connected
components, the spectrum of Γ is the union of the spectra of

Γi, 1≤ i≤ r (and multiplicities are added). Te same also
holds for the Laplacian and the signless Laplacian spectrum.

Firstly, we give lower and upper bounds on sε and σε for
a graph with r connected components.

Theorem 6. Let Γ be a graph of order n with r connected
components such that p of them are connected bipartite.Ten,

�������������������������

σ2ε +(n − r)(n − r − 1)R
2ε/(n− r)
n− r

􏽱

≤ σε ≤
�������������������������

σ2ε(n − r − 1) +(n − r)R
2ε/(n− r)
n− r

􏽱

,
��������������������������

s2ε +(n − p)(n − p − 1)∆2ε/(n− p)
n− p

􏽱

≤ sε ≤
��������������������������

s2ε(n − p − 1) +(n − p)∆2ε/(n− p)
n− p

􏽱

,

(8)

where Rn− r � 􏽑
n− r
i�1 μi and ∆n− p � 􏽑

n− p
i�1 qi. Equalities occur in

both bounds if and only if μ1 � μ2 � · · · � μn− r and
q1 � q2 � · · · � qn− p, respectively.

Proof. Note that 0 is an eigenvalue of Laplacian matrix with
multiplicity r. Taking ai � μ2εi , replacing n by n − r in Lemma
1, we obtain the following equation:

W≤ (n − r) 􏽘
n− r

i�1
μ2εi − 􏽘

n− r

i�1
μεi⎛⎝ ⎞⎠

2

≤ (n − r)W, (9)

where

W � (n − r)
1

n − r
􏽘

n− r

i�1
μ2εi − 􏽙

n− r

i�1
μ2εi

⎞⎠

1/(n− r)

⎛⎜⎝ ⎤⎥⎥⎥⎥⎥⎦.
⎡⎢⎢⎢⎢⎢⎣ (10)

Since 􏽐
n− r
i�1 μ

ε
i � σε, we have the following equation:

W≤ (n − r)σ2ε − σ2ε ≤ (n − r)W. (11)

Observe that

W � (n − r)
1

n − r
􏽘

n− r

i�1
μ2εi − 􏽙

n− r

i�1
μ2εi

⎛⎝ ⎞⎠

1/(n− r)

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦

� (n − r)
1

n − r
σ2ε − R

2ε/(n− r)
n− r􏼔 􏼕

� σ2ε − (n − r)R
2ε/(n− r)
n− r .

(12)

Hence, we get the result.
From Lemma 1, the equalities hold if and only if

μ1 � μ2 � · · · � μn− r.
It is known that 0 is an eigenvalues of signless Laplacian

matrix with multiplicity p. For sε, the proof is similar,
replacing n by n − p and taking ai � q2εi in Lemma 1.

As a special case, if we take ε � 1/2, we get the bounds for
the LEL and IE given as follows: □

Corollary  . Let Γ be a graph of order n with r connected
components such that p of them are connected bipartite.Ten,

�������������������������

2m +(n − r)(n − r − 1)R
1/(n− r)
n− r

􏽱

≤ LEL≤
�������������������������

2m(n − r − 1) +(n − r)R
1/(n− r)
n− r

􏽱

,
��������������������������

2m +(n − p)(n − p − 1)∆1/(n− p)
n− p

􏽱

≤ IE≤
��������������������������

2m(n − p − 1) +(n − p)∆1/(n− p)
n− p

􏽱

,

(13)

where Rn− r � 􏽑
n− r
i�1 μi and ∆n− p � 􏽑

n− p
i�1 qi. Equalities hold in

both bounds if and only if μ1 � μ2 � · · · � μn− r and
q1 � q2 � · · · � qn− p, respectively.

Note that, if we take r � 1 and p � 0 in Teorem 6, we
reach the following result.

Corollary 8. Let Γ be a nonbipartite connected graph of order
n. Let t and t1 be as given in Lemma 2. Ten,

�������������������������

σ2ε +(n − 1)(n − 2)(nt)
2ε/(n− 1)

􏽱

≤ σε ≤
�������������������������

σ2ε(n − 2) +(n − 1)(nt)
2ε/(n− 1)

􏽱

, (14)
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and
��������������

s2ε + n(n − 1)t
2ε/n
1

􏽱

≤ sε ≤
��������������

s2ε(n − 1) + nt
2ε/n
1

􏽱

. (15)

Inequalities (14) and (15) hold in both bounds if and only
if Γ � Kn and q1 � q2 � · · · � qn, respectively.

Taking ε � 1/2 in Corollary 7, we have the following
corollary.

Corollary 9. Let Γ be a nonbipartite connected graph of order
n and t and t1 be as given in Lemma 2. Ten,

������������������������

2m +(n − 1)(n − 2)(nt)
1/(n− 1)

􏽱

≤ LEL≤
������������������������

2m(n − 2) +(n − 1)(nt)
1/(n− 1)

􏽱

, (16)

and
��������������

2m + n(n − 1)t
1/n
1

􏽱

≤ IE≤
��������������

2m(n − 1) + nt
1/n
1

􏽱

. (17)

Equalities (16) and (17) hold in both bounds if and only if
Γ � Kn and q1 � q2 � · · · � qn, respectively.

Now, we consider the bipartite graph case of the above
theorem (Teorem 6). In the next corollary, we actually
improved the results which were obtained in [22].

Corollary 10. Let Γ be a connected bipartite graph with n

vertices. Let t be as given in Lemma 2. Ten,

������������������������

s2ε +(n − 1)(n − 2)(nt)
2ε/(n− 1)

􏽱

≤ sε � σε ≤
������������������������

s2ε(n − 2) +(n − 1)(nt)
2ε/(n− 1)

􏽱

, (18)

and

������������������������

2m +(n − 1)(n − 2)(nt)
1/(n− 1)

􏽱

≤ IE � LEL≤
������������������������

2m(n − 2) +(n − 1)(nt)
1/(n− 1)

􏽱

. (19)

Equalities (18) and (19) hold in both bounds if and only if
Γ � Kn, Γ � K1,n− 1, or Γ � K∆,∆, where ∆ is the maximum
degree.

As it is well known in graph theory, every tree is bi-
partite. In addition, for a tree T, m � n − 1 and t � 1. From
Corollary 10, we have the following.

Corollary 11. Let T be a tree of order n. Ten,

����������������������

σ2ε +(n − 1)(n − 2)n
2ε/(n− 1)

􏽱

≤ sε(T) � σε(T)≤
����������������������

σ2ε(n − 2) +(n − 1)n
2ε/(n− 1)

􏽱

,
����������������������

(n − 1) 2 +(n − 2)n
1/(n− 1)

􏽨 􏽩

􏽱

≤ IE(T) � LEL(T)≤
����������������������

(n − 1) 2(n − 2) + n
1/(n− 1)

􏽨 􏽩

􏽱

.

(20)

Equalities hold in both bounds if and only if T � K1,n− 1.

Remark 12. It is pertinent to mention here that in equations
(15) and (17), for connected nonbipartite graphs, we recover
the same lower bounds as in Teorem 2.6 (i) and Corollary
2.7 (i) in [22] through a diferent approach. For connected
bipartite graphs, it can be seen that lower bounds (18) and
(19) are better than lower bounds obtained in Teorem 2.6
(ii) and Corollary 2.7 (ii) in [22], respectively. Moreover, we

obtained extra upper bounds for the relevant parameters and
generalized them as diferent forms [22].

3. Accomplishment Remarks

In this paper, we have obtained new results for the graph
invariants sε and σε of a simple graph Γ with r connected
components (connected nonbipartite and connected bi-
partite), where ε(≠ 0, 1) is a real number. Also, as a result, we
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generalized and improved the results on incidence energy
(IE) and Laplacian energy-like invariant (LEL).
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In this study, from a tree with a quasi-spanning face, the algorithm will route Hamiltonian cycles. Goodey pioneered the idea of
holding facing 4 to 6 sides of a graph concurrently. Similarly, in the three connected cubic planar graphs with two-colored faces,
the vertex is incident to one blue and two red faces. As a result, all red-colored faces must gain 4 to 6 sides, while all obscure-
colored faces must consume 3 to 5 sides. �e proposed routing approach reduces the constriction of all vertex colors and the
suitable quasi-spanning tree of faces. �e presented algorithm demonstrates that the spanning tree parity will determine the
arbitrary face based on an even degree. As a result, when the Lemmas 1 and 2 theorems are compared, the greedy routing method
of Hamiltonian cycle faces generates valuable output from a quasi-spanning tree. In graph idea, a dominating set for a graph
S � (V, E) is a subset D of V. �e range of vertices in the smallest dominating set for S is the domination number (S). Vizing’s
conjecture from 1968 proves that the Cartesian fabricated from graphs domination variety is at least as big as their domination
numbers production. Proceeding this work, the Vizing’s conjecture states that for each pair of graphs S, L.

1. Introduction

Finite integral multipliers are used in the greedy routing
algorithm. For the maximal tree, subgraphs are used, in
which subgraph is denoted as S. If the edges are suitably
labeled, the two trees are distributed among them. Here the
variation of a tree’s maximum number is established on the
vertices n and it is known as the Cayley. In general, a graph S
is drawn from the spanning tree vertices. �e spanning tree
is evaluated by using a single edge S. To de�ne the system’s
vertex, a diagonal matrix is introduced. �e variation be-
tween the adjacency matrix and the incidence matrix is

determined by the spanning tree. �us, the subgraph S
contains all the vertices, and the diameter for any single tree
graph D is denoted as

diam(T(S))≤min n − 1, m − n + 1{ }. (1)

A spinning graph diameter is determined by one of the
two trees, T1 or T2, and is denoted as

d T1, T2( ) � n − 1 − E T1( )∩ ​ E T2( )
∣∣∣∣

∣∣∣∣ �
E T1( )ΔE T2( )
∣∣∣∣

∣∣∣∣
2

.

(2)
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,e graph tree operation is denoted as T: S⟶ S. ,e
subsequent matrix is to combine rows and columns. Next to
defining the spanning tree estimation, the product value is
obtained. Cauchy-Binet present the estimation. ,is entire
calculation is followed by vertices and adjacency calcula-
tions. ,e edges of the cycle are counted by the sign, and an
insertion form appears [1]. To classify subgraphs and es-
tablish paths from subgraphs, the edge is connected to the
spanning tree. ,e geometric cycle is not equal to the value
of the subgraph.

2. Hamiltonian Cycle from Quasi-Spanning
Tree of Faces

,ere is precisely one Hamiltonian cycle along with no cubic
graphs, which is a unique Hamiltonian graph because a
minimum of three Hamiltonian cycles are there in a
Hamiltonian cubic graph. In 1978,,omason showed that in
a graph with the vertices of the odd degree, in an even
number of Hamiltonian cycles, all edges are confined,
proving Smith’s result [2]. Hence, uniquely Hamiltonian
graphs unless even degree vertices and especially k regular
exclusively. Odd k does not have Hamiltonian graphs. What
is even k? ,omason showed that by Lovász local lemma,
k-regular exclusively even k≥ 300 does not have Hamilto-
nian graphs [3], by a cautious option of parameters, theirs
statements provide 73 rather of 300. ,at was modified by
Haxell, Seamone, and Verstraete to k≥ 23. No 4-regular
exclusively Hamiltonian graphs existed assumed by Shee-
han. ,e fact of this assumption would indicate that cycles
are the only regular exclusively Hamiltonian graphs, as
according to Petersen’s 2-factor theorem.

According to ,omason’s result, an exclusively Ham-
iltonian graph has a necessity of minimum of two even
degree vertices. ,is connection between the degree of the
graph and either or not it is exclusively Hamiltonian in-
creases several ordinary enquiries, such as either there are
any exclusively Hamiltonian graphs of degree 3. Swart and
Entringer gave a positive answer to that question by relating
in closely cubic graphs an infinite family, that is, graphs
along precisely two degrees 4 vertices and all of the other
cubic vertices. Fleischer lately demonstrated that there are
graphs with every vertex having a degree of 4 or 14 that are
uniquely Hamiltonian [4].

Jackson and Bondy examined that an individually
Hamiltonian graph of order n consumes minimum one-
degree vertex maximum clog 28n + 3, which means the
minimum degree is smaller than this number, here c ≈ 2.41.
Jamshed and Abbasi modified that to log 2n + 2, here
c ≈ 1.71. Jackson and Bondy were especially attentive to
planar exclusively Hamiltonian graphs in their article. A
graph necessity has a minimum of two vertices of degree 2 or
3 that are displayed by them and assumed that all planar
individually Hamiltonian graphs must have a minimum of
two vertices of degree 2.

Proposition 1. Given S consumes a Hamiltonian cycle
through the exterior red face outdoor, all blue face within, and
an edge is shared by no two red faces are together within, then

the reduced graph H consumes a face’s spanning tree through
in D does not contain the external face.

Proof. S consumes a Hamiltonian cycle through the exterior
red face external, every blue faces consistent to vertices in
within, and an edge is shared by no two red faces are together
insides, if and only if the reduced graph H consumes a face’s
quasi-spanning tree through in D does not contain the
external face. □

Theorem 1. Assume that all red faces have 6 sides or 4 sides,
whereas blue faces have 3 or 5 sides, and that blue faces
through 3 sides or 5 sides are adjacent to a minimum of one
red face along with 4 sides (no conjecture is created for blue
faces by 4, 6, 7, 8, 9, . . . sides). :e reduced graph H, which is
obtained by crumbling blue faces, then has a correct quasi-
spanning tree of faces, prove S a Hamiltonian cycle.

2.1. We Now Prove the Main Result of :is Section.
Assume that all of S’s red faces have 4 sides or 6 sides,
whereas the faces of blue are chance. Assume that the re-
duced graph H contains a triangle T with a minimum one
vertex within, and no triangle in T is none a face (i.e., in-
cludes minimum a vertex inside), and that no digon withinT

is not a face (i.e., includes minimum one vertex within). We
shall simplify the inside of the triangle T one step at a time
while preserving the property that which is no digon inside
of T that is not a face but authorizing the presence of tri-
angles inside of T that are not faced, subject to the suc-
ceeding conditions. Handle entire sets of parallel edges like a
single edge. Assume T1 and T2 are different triangles within
of T, along T1 including T2 and perhaps T1 like as T, where
T2 is not a face, and so that there is no triangle T3 differ from
T1 and T2 like that T1 includes T3 and T3 includes T2. ,en,
we assume that T2 is a child of T1. We will need that no
triangle T1 consumes three different children T2, T2′, and T2″,
any steps in explanation of the inside of the triangle T.

,e invariant property of T is that no digon within T is
not a face, and no triangle within T consumes three different
children.

Lemma 1. Assume T consumes a minimum of two vertices
within and fulfills the invariant property, proving that it is
feasible to choose a triangle T′ that is to say a face within T

and crimple T′ into an only vertex so that T even gratify the
invariant property [4].

Proof. Assume that triangle T1 within T includes a mini-
mum of two vertices and that not any triangle within T1 is
not a face. Take T1 = v1v2v3, in T1, we declare that v1
consumes a minimum of two different neighbors v4, v5. Else,
if v1 consumes no neighbors, so v1 goes to a triangle within
T1 with an edge v2v3 parallel to the side of T1, which is a
contradiction to the hypothesis that has no digon within of T

it is nonface, and while v1 has unique like a neighbor v4
within of T1, therefore v2v3v4 is a triangle within of T1 it is
not a face, which is also a contradiction to the hypothesis.
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,en we can select v4 and v5 to v2, v4, v5 are successive
neighbors of v1, and crumble the triangle v1v4v5. ,ere will
be no digons that are not faced as a result of this because like
a digon gets here before the crumpling from a triangle which
is not a face within T1, a contradiction to the hypothesis.
Inside T1, though, triangles that do not face may appear.
Similar triangles derived from quadrilaterals v1v4v6v7,
v1v5v8v9, and v4v5v10v11. ,e quadrilaterals v1v5v8v9 can be
one of two types: they can contain v4 or they cannot contain
v4, but they cannot have diagonal edges v1v8 or v5v9, because
then either a triangle this isn't a face was within the
quadrilateral, otherwise crumpling the side v1v5is does not
provide the quadrilateral a triangle which is non a face. Such
indicates that all like quadrilaterals including v4 are couple
included in all other, and every such quadrilateral that do not
comprise v4 are pairwise included together [9]. ,e analo-
gous properties prove that for the quadrilaterals v1v4v6v7,
However, there is only one kind of these, namely those that
contain v5. Else, v6 � v2 and we consume the diagonal edge
v2v4. ,e quadrilaterals v4v5v10v11 contain analogous
properties, but they are of a unique kind [10, 11], specifically
do not comprise v1, then they are included in the triangle
T1 = v1v2v3. A quadrilateral v1v4v6v7 including v5 essential
also include at all quadrilateral v1v5v8v9 that does not
contain v4 and any quadrilateral v4v5v10v11 that does not
contain v1, and any quadrilateral v4v5v10v11 that does not
contain v1 must also contain any quadrilateral v1v5v8v9 that
contains v4 [12]. ,ese assurances that these quadrilaterals
do not take a main, next crumpling v1v4v5, inside T1, three
triangles are not faces and do not conclude together,
therefore conserving the property that three children are not
taken by triangles [13-15].

For residual case in crumpling a triangle, here is a tri-
angle T1 which consumes any one child T2 or two children
T2 and T3, here together T2 and T3 consume precisely one
vertex within. Assume T2 shares no sides through any T1 or
T3. We must take the quadrilaterals v1v2v4v5, v1v3v6v7, and
v2v3v8v9 once more when writing T2 = v1v2v3. Quadrilaterals
v1v2v4v5 including v3, v3, v1v3v6v7 including v2, v2v3v8v9
including v1, and v1v2v4′v5′ not including v3 may not exist at
the same time. For if v6 � v5, then v1v5v7 is not a face and
therefore equals T1, thus v1 is a vertex of T1 and the
quadrilateral v2v3v8v9 cannot include v1; while v7 � v4,
v1v5v4 is T1, and the similar argument applies, and while
v6 � v4, then v8 � v5 and v9 � v7, so the triangle v5v4v7 is T1,
this is not possible because the quadrilateral v1v2v4′v5′ would
be inside the triangle v1v2v7, it is called a face. As a result of
symmetry, we can assume that after identifying v1 and v2,
there is either no quadrilateral v1v2v4v5 including v3, oth-
erwise no quadrilateral v1v2v4v5 not including v3, which will
provide an increase to a fresh triangle which is not a face.
Crumpling the triangle v1v2v0 identifies v1 and v2 and creates
unique triangles through pairwise confinement introduce
the new vertex v1 � v2, except the triangle T3, so conserving
the property that three children are not taken by triangles.
AssumeT1 = v1v2v3 shares a single side byT1, it is a side v2v3,
then one of the other two sides is not shared by T3, say the
side v1v2, and the quadrilaterals v1v2v4v5 unable to include
v3, thus repeatedly we were able to crumple the triangle

v1v2v0 by v0 within T2, producing unique triangles through
pairwise confinement introducing the new vertex v1 � v2,
except the triangle T3, so conserving the property that no
triangle consumes three children. While T2 and T3 share
aside v1v3, then every quadrilateral v1v2v4v5 that includes
v3v3 also includes T3 [16]. As a result, crumpling v1v2v0 with
v0 inside T2 provides two families of triangles through
pairwise confinements concerning v1 � v2, one including v3
and the another includingv3, conserving the property that
three children are not taken by triangles.

,e succeeding proposition incorporates Herbert
Fleischner’s result [17]. □

Proposition 2. Let us consider blue faces remain random
and G’s red faces get 4 to 6 sides. :e reduced graph H has
only one triangle which is in the outer layer and it does not
have any faces, other than that the H graph has no triangles.
H also incorporated no diagonal direction which is not even
considered to face. H has a spanning tree face which is tri-
angles and S is said to be Hamiltonian when H contains odd
number vertices.

Proof. While saving the invariant property, collaborate
triangle faces into single vertices and redo Lemma 1. ,e
total of vertices stays odd until the outer face remains by
reducing the vertices by two. Eventually, a spanning tree is
formed by the collaborated triangle. ,e main observation
that results to this result is as follows: □

Lemma 2. .In :eorem 1, take S as same. If the graph H has
triangle T with only one vertex, there is no other triangle
inside T, which is not considered to be a face also as it does not
have any digons. To find out the acceptable quasi-spanning
tree of faces for the graph H′, identifying the appropriate
quasi-spanning tree face is reduced. By separating all inside
vertices (T) and incident edges, it tends to incorporate the
look-alike edge inside T to every edge of T, H′ obtained from
the reduction graph H.

Proof. As shown in the previous Lemma, by collapsing the
triangle faces repeatedly we can wind up a v inT or else make
nothing inside T. In a quasi-spanning tree of faces, choose
one of the three triangles which imply v, which corresponds
to the one in three diagonal directions for the sides of H′ in
T. And we might either choose triangle T in H′ in a face of
quasi-spanning trees. When the time T holds an off vertex
and which is inside of T, in this scenario the vertex v which is
in the T is obtained, and then when the moment T has an
even number of vertices and which is in T, in this case, we
reached T which has no vertices.

,e parity inside the T is represented by the two cases.
Initially, if there is a digon named v1, v2 has one endpoint
which is in T, and to frame a triangle we need to collaborate
v1v2, the framed triangle does not have any faces out of the
quadrilaterals such as v1,v2,v4,v5, again there are a family of
two quadrilaterals, consisting of two triangles as v1,v2,v3, and
v1,v2,v3′. Quadrilaterals have v3, and v3′. ,e quadrilaterals
provide triangles with pairwise boundaries of each family,
which assures the property invariant that does not have T1,
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which is equivalent to T or them have no children. ,eorem
allows S as connected cubic bipartite planar graph of three
nodes. Let us assume, H′ be the subgraph of H and reduced
graph S is H,

Here we got the results by removing all the possible edges
with successive side by side edges. If the graph has one and
two and three connected elements since H′ has face’s
spanning trees, then S contains a Hamiltonian cycle. In the
occurrence of a single element for H′, all faces among three
colors of classes are considered.

We demonstrate vertex v inside of t only when there are
no digons of v1, v2. Which pertained to one of four triangles
that share with side T. After that, an appropriate quasi-
spanning tree is built, two triangles v1, v2, v3 and v, v3, v4 are
included in the suitable spanning tree of faces and it does not
share its edge. ,e collaborated triangles which are to
remove v, identify v1 upon v2 also identifies v3 with v4 and
convert 5 vertices to only 2 vertices, also change the number
of vertices. Hence the complete proof of Lemma is derived.

We can write T= v1, v2, v3 when there are no digons
inside T initially. ,ere need to be 2 vertices inside of T is
present, if not the single vertex which inside T have a degree
and it does not have any digons, assuming that the blue face
with 3 sides is needed to be adjacent to one red face with at
least 4 sides. ,is indicates v1 need to have at least two
distinct neighbors insideT, if not the case, v0 is considered to
be only one vertex of T, since there are no such triangles as
faces. If we calculate v1, v2 and v2, v3, then v1 contains a
degree of 4. Similarly, edges v2, v3 holds at least a degree of 4.
Further, there is no such vertex of T that has degree 3 or 5, as
all of the blue faces with 3 to 5 sides are close to one red face
with 4 sides, as a result, a vertex is considered to be incident
to digon. As per Euler’s formula, there must be three vertices
of degree 4 in T, on the other hand, there are 6 vertices of
degree 4, T is present. Let us assume v0 which is inside T

contains four consecutive neighbors: v4v5v6v7. ,e quadri-
lateral share one edge with T= v1v2v3, as we know T in-
dicates triangle. As v1, v3 and v1, v2 are getting shared, v1 has
only one adjacent neighbor which is v0 in T and it has degree
3 and not 4. Let us say v4, v7 might be shared with T. In this
scenario, make v0 to an appropriate vertex of quasi and
choose the two triangles such as v0v6v7 and v0v4v5. Here,
recognizing v4 and v5 detaching v0 identifying v6, v7 and
lessens the total number of vertices by 3. ,e quadrilaterals
v4, v5, v8, v9 have the edge of v6 , v7 which produces fresh
triangles that contain v6, v7, v10, v11 of quadrilaterals which
also gives new triangles that contain v4 and v5 of edges. ,e
quadrilaterals v6, v7, v10′, v11′ have edges v4,v5 which gives
triangles that are newly created and those triangles having
quadrilaterals of v4, v5′, v8′ does not have the edge v6&v7. By
recognizing v4, v5 and v6, v7, we tend to attain two families of
newly created triangles with every family giving containment
which is considered as pairwise that occurs among its
triangles.

,is gives that the property does not have T1 triangle and
equal to T or else inside of T having three children. Before
proceeding to minimize the number of vertices by T, which
increases to two till a single vertex is not inside of T and thus
finishes off the proof with variation in parity of numbers

inside of T. As recently expressed, this decreases the issue of
tracking down an appropriate semitraversing the tree of
countenances for H to the assignment of erasing the vertices
inside H and interfacing equal edges to the sides of T to
acquire H′.

,eorem 1 produces Lemma as a digon is considered as
the outer face or else a triangle which has vertices inside of it.
,ere is a triangle that has vertices inside and it does not
have any triangles or two vertices of diagon inside or else the
diagon contains vertices inside and in the same manner it
does not have any triangles or diagons vertices inside. By
removing the vertices and adding the same parallel edges to
the side of T, this T has vertices inside and it does not have
any triangle either. It can be clarified as per Lemma 1. ,e
digon v1, v2 have a triangle with vertices inside, when a digon
v1, v2 has vertices inside but it does not have any triangle and
it has a v0 of a single vertex. Among v0, v1 and v0, v2, either
one considered as a digon; only v0 had the degree. For
instance, it happens when v0, v1 is a digon. After removing
the vertex v0, we can moreover choose the digon v0, v1
otherwise the triangle v0, v1, v2, that represent also not
selecting or choosing the digon v1, v2 which has developed a
face. When the outer face has no vertices in it and that the
graph H is simplified. In such a case, what is considered to
complete this process is while selecting the face involved all
the vertices in the quasi-spanning tree faces of H and hence
,eorem 1 is proved.

Coming up next is a rundown of corollary is an un-
common instance of ,eorem 1 that sums up Goodey’s
outcome to diagrams S with just 4 sides or 6 sides. □

Corollary 1. Assume S be a 3-connected cubic planar bi-
partite graph, while the S faces are three colored, through all S

vertex incident to a face of all color, since two of the three color
classes include only that have 4 sides or 6 sides. :e reduced
graph H, which is acquired by crumpling the class of the third
color, thus includes a correct face’s quasi-spanning tree, and
hence S is a Hamiltonian cycle.

2.2. NP Complete and Polynomial Problems. ,e following
result is for a face’s spanning tree where the majority of the
faces are digons.

Theorem 2. Consider S stay a 3-connected cubic planar
bipartite graph. Assume the reduced graph H for S, and H′
the subgraph of H found by eliminating each edge with
consecutive parallel edges. H′ has a face’s spanning tree if it
includes one or two or three connected components, and S

contains a Hamiltonian cycle. In one of the three color classes,
all the faces are squares in the case of a single component for
H′.

Proof. We can take H′ be a spanning tree that corresponds
to a spanning tree of digons in H, while H′ is a single linked
component.

We can take a f face of H which takes vertices from
together components if H′ has two connected components.
For the two components of H′, we assume two spanning

4 Journal of Mathematics



trees of digons, starting with this face f, and enhance that
digons are unique at the same time show they do not create a
cycle including f. ,e single face f and the added digons
desire eventually span H.

Although H′ consumes three connected components, it
is possible thatH has a facef that touches each three, and we
can move from f to two components by examining for the
two components, the three spanning trees of digons. Oth-
erwise, we consider the first component, which has faces that
contact it, as well as the second and third components, which
also contain faces that contact it and the third component.
We can select a face f contact the first component and
second component, and a face f′ contact the first compo-
nent and third component, so that those two faces do not
divide each vertex, thus a cut of H has a minimum of four
edges because of 3-connectivity and the reality that at all cut
consumes an edge’s even number. Initial through those two
faces from the three spanning trees we can enhance digons
for the three components thus far, a face’s spanning tree for
H is found since they do not form a cycle.

,e result for three connected components applies to
four connected components as well, but the result is not
valid for five connected components.

Following that, we show how to decide in polynomial
time that the reduced graph H consumes a face’s spanning
tree that is digons or triangles. Simply expands of the result,
the case of a face’s spanning tree where all but a face’s
constant number are digons or triangles. □

3. Domination in Graphs

Consider S � (V, E) be a graph through the vertex set V and
the boundary set E. If each vertex in s is adjacent to the
vertex in s, it is a dominant set of S.,e domain number of S,
mentioned by c (S) that is called the minimum cardinality of
a dominant set of S.

In the investigated branch of the diagram concept, su-
premacy in diagrams was used. ,e superiority of the dia-
grams was utilized in the examined division of the diagram
idea. Blending problems with optimal problems, classical
problems, and combinatorial problems is a growing principle.
It has several applications in a range of fields, including body
sciences, engineering, life sciences and society, and so on. ,e
research interest in the graph concept these days is centered
on dominance. ,is is essentially a list of new parameters that
may be improved from basic dominance definitions. ,e NP
completeness of elementary domination problems and in-
vestigate the relation to another NP completeness by them and
action growth in the domination principle.

When in a graph S every vertex is incident on at least one
edge ing, the set of edgesg is said to cover S.,e edge covering
a set of a graph S is said to be an edge covering or a cover
subgraph or simply a S cover (e.g., a spanning tree in a linked
graph is a cover).,e example of a computer network over the
relation minimum vertex coverage is shown in Figure 1 [5].

3.1. Applications of Domination in Graph. ,e graph ap-
plications of domination have been applied in a variety of

fields. ,e dominion comes from structural challenges in
which there is a constant type of centers (e.g., hearth sta-
tions, hospitals) and space must be kept to a minimum. To
diminish the number of locations where a surveyor needs to
commit to taking peak measurements for a whole area,
surveyors use standards of domination.

3.2. Domination Path. A graph containing a dominating
path is one where each vertex exterior of P includes a
neighbor on P. Let V(S) represents the vertex and E(S)

represents a S graph’s edge set. NS (v) represents a vertex’s
neighborhood v in S and dS (v) denotes its degree. For
D, T⊆V(S)D, represented by letting NS (T) �

Uv∈TNS (v) − T and letting ND (T) � NS (T)∩ ​ D and
dD(T) � ∣ND (T)∣. Likewise, δ(S) represents the minimum
vertex degree and Δ(S) represents the maximum vertex
degree.

Theorem 3. Since n≥ 2, each connected n-vertex graph S

along δ(S)> (n − 1/3) − 1 contains a dominating path and
proves the inequality is acute.

Proof. ,e sharpness structure is declared for n ≡ 1mod3.
In general, assume Qi for k � 1 the structure be a clique
over ⌊(n + 2 − i)/3⌋ vertices, i ∈ 1, 2, 3{ }. ,en the three
cliques jointly moreover include n − 1 vertices, δ(G) �

⌊n − 1/3⌋ − 1. Now presume that S is a connected graph of
n-vertex over δ(S)≥ (n − 1)/3 which include no dominating
path; find that n≤ 3t + 3, here t � δ(S). Assume first that S is
2-connected. Dirac showed that S essential since containing
a cycle over at least min n, 2δ(S){ } vertices. A path over
minimum n − t is a dominating path vertex, so we can
connect t< (n/2). Once S is 2-connected, we consume t≥ 2,
and S contain a cycle C of length minimum 2t. While V(C)

dominating path does not have the vertex set, further few
vertex u and on C its neighbors are not. Since S is connected,
here is the shortest path Pu start at V(C) and end at u.
Summing to a path Pu along with C at one end and u’s
alternative neighbor at the other end (existing then t≥ 2)
gains a path P along minimum 2t + 3 vertices. While P it is
not that a dominating path, therefore V(P) neglects its

5

12

3 4

6

Figure 1: ,e set of vertices g � {1,3,4} in S all vertices are cover.
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neighborhood and some other vertex, it needs n≥ 3k + 4, an
inconsistency. ,erefore, S must include a cut-vertex v.
Every component of S − v has minimum t vertices, so S − v

has a maximum of three components. Since S − v has
maximum 3t + 2 vertices, consuming three components
along minimum t vertices needs one through precisely t

vertices. So, a S − v component shall be a complete graph
through all vertices adjacent to v. Further two components
take order maximum k + 2, therefore a vertex w in like a
component H is nonadjacent to maximum one other vertex
of H, while w is nonadjacent to v. As a result, S contains a
dominating path that include v and in this case two vertices
each from the two majors S − v components. In the leftover
case, S − v consumes two components, though also contains
a cut-vertex w, therefore S − v − w include three closely
complete components flexible in a dominating path as
shown in the above section. While every component of S − v

is 2-connected, since all contain a cycle which is spanning or
consumes minimum 2t − 2 vertices, then removing v depart
a minimum degree at least t − 1. All component contains at
most 2t + 2 vertices because it includes minimum t vertices.
We get a path across v that is dominating and neglects very
few vertices. On other hand provides a brief proof of nearly
the optimal threshold for 2-connected graphs. Dirac’s the-
orem proves too that suppose δ(H)> |V(H)|/2, therefore H

is Hamiltonian-connected, sense that some two vertices are a
spanning path’s terminus. In a P path start at u and end at v

and R⊆V(P), consider R+ represent the instant successors
set vertices of R with P, and consider R− represents the set of
instant predecessors. We know that |R+| � |R− | � |R| once R

includes no terminus of P. □

3.3. Vizing’s Conjecture in Domination. ,e comparison of
the dimensions of minimal dominant sets and Vizing
conjectures in the S and L graphs, in the Cartesian product
graph that is called a dominant set. ,e proof of the Vizing
theorem with the use of some colors, every simple non-
oriented graph can be multicolored.

Let S � [V(S), E(S)] be determinate. In vertex subsets, P

dominates K though K⊆N[P], that is, while each K vertex is
in P, otherwise is adjacent to a P vertex. P dominates
outwardly K, when K, P are separate and P dominate K. ,e
S domain number is the lowest represented cardinal c(S)

dominating V(S). Although D dominates V(S), further, D

dominates S and this D is a S’s dominant set.
Each closed quarter in S must span any dominant set of

S. Hence, the domain number of S is minimum similar to the
cardinality of whatever set X⊆V(S) consuming the char-
acteristics that for different x1, x2 in X, and
N[x1]∩ ​ N[x2] � θ. So, a set X is known as 2-packing and
σ(S) is represented the maximum cardinality of a 2-packing
in S and is named the 2-packing number of S. ,e inde-
pendence number of a vertex in S is the maximum cardi-
nality σ(S) of an independent set of vertices in S, and the
smallest cardinality of a dominant set that is likewise in-
dependent is represented I(S).

Assume S is not a complete graph prove for every vertex
pair v1 and v2 which are not adjacent to S, it is proved that

c(S) − 1≤ c(S + v1v2)≤ c(S). While S has the property that
c(S) − 1 � c(S + v1v2) for that pair of nonadjacent vertices,
since S is critical concerning the domain (or critical for
brevity).

,e graph S, which has the domain number u. S is known
as a separable graph if all of its vertices can be enclosed by all
of its subgraphs.

Theorem 4. Suppose a decomposable graph S′ have a
spanning subgraph S, so that c(S) � c(S′), then L holds for
each graph L, c(S × L) � c(S)c(L)

Proof. Undirected, finite graphs, coherent, and simple are all
considered. Specific, let S denote a graph have the edge set
E � E(S) and the vertex set V � V(S). m, n ∈ V are two
vertices and its neighbors, otherwise in case mn ∈ E. ,e m’s
open neighborhood belongs to V and it is the m’s neighbor
set, denoted as Ns(m), whereas the closed neighborhood
Ns[m] � Ns(m)⋃ ​ m{ }. ,e D′ s open neighborhood con-
tained in V and it is the set of all neighbors of vertices in D,
denoted as Ns(D), whereas the D′ s closed neighborhood is
Ns[D] � Ns(D)⋃ ​ D. But S is detached from the context, it
perhaps represented by N(D) and N[D] or Ns(D) and
Ns[D] correspondingly. ,e space among two vertices
m, n ∈ V is in S the shortest length (m, n) path and is
represented by ds(m, n). In two graphs, the Cartesian
products are S(V1, E1) and L(V2, E2) represented by S × L, is
a vertex-set graph V1 × V2 and edge set E(S × L) � ((u1,v1),􏽮

(u2,v2)): v1 � v2and(u1,u2) ∈ E1,oru1 � u2and(v1,v2) ∈ E2}.
A subset of vertices D⊆V(S) is known as a dominant set

of half sum, if N[D] � V(S), and every vertex u ∈ D a vertex
v ∈ D occurs, thus d(u, v)≤ 2. When D is a dominant set of
half-sums in the induced subgraph D∪T of S, a vertex set D

semidominates a vertex set T. ,e semitotal dominance
number of S, denoted as ct2(S), is known as aminimum half-
sum dominating set size of S. A 2-pack is a subset of S

vertices T in which each pair of T′ s vertices are a minimum
of 3 separate. ,e maximum 2-pack size of S is known as the
2-pack number [6–8]. □

Theorem 5. To S, L are all isolate-free graphs. :en,

ct2(S × L)≥ ρ(S)ct2(L). (3)

Proof. Let us take v1, . . . , vp(S)􏽮 􏽯 be a max of 2 packages of
graph. Consider without restrictions as ρ(S) � c(S). Every
vertex in the graph is at least three far from the packing of
vertices. ,e closed adjacent Ns[vi] are represented as
pairwise disjoint and for i � 1, ρ(S). Consider
v1, . . . , vp(S)􏽮 􏽯 is said to be a partition of V(S) just like for
1≤ ρ(S), Ns[Vi]. Let B be an ct2(S × L)S-set. For i � 1, ρ(S).
Let Bi � B∩ ​ (Vi × V(L)). Moreover, consider a minimum
set Ci of vertices S × L that Li dominate completely and
include as several vertices as feasible in Li. Further
Ci⊆vi × V(L). Next x is not present in Li when Ci has a
vertex, and x is considered to be the uniquely determined
vertex that entirely dominates x′ for x′ ∈ Li. Since x′
contains neighbors that pertain to Li, vertices in Ci dominate
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that all neighbors, even now Ci is a semisumerally dominant
set once x is changed to x′ in Ci. Hence, vertices set that
almost fully dominate Li and have further vertices in Li,
therefore, called Ci, is an inconsistency. Since Ci⊆Li are
subsets, and thus Ci is a partial dominance of L in S × L

persuaded by Li. ,en Bi partially dominance vi􏼈 􏼉 × (L),
|Bi|≥ |Ci|. ,erefore, ct2(S × L)≥ ρ(S) 􏽐 i � 1|Ci|≥ ρ
(S) 􏽐 i � 1ct2(S × L) � ρ(S)ct2(L).

,e subtotal must be calculated of the domination
number and the results of Vizing’s type based on it. Sepa-
rating minimum half dominating sets into partially domi-
nating sets which is considered as completely dominate.
U � u1, . . . , uk􏼈 􏼉 is considered to be a minimum of a
semidominant set of graphs S, note that it is suitable for each
graph. It might be partitioned into two sets of X&Y. Here X

represents vertices set of U that are nearer to anyone vertex
of U, on the other hand, Y represented as U on X. Take
U1, . . . , Uk􏼈 􏼉 as the minimum dominating set of vertices for
every graph S, also take Xi&1≤ i≤ k, and Xi&Yi represents
partitions in allied and free sets considerably. ,erefore, it
represents Ui, so as a result, |Xi| is considered to be the max
extent for 1≤ i≤ k, a maximum relayed semitotal dominant
set of S. Maximum of allied partition of the graph S is
represented as Xi, Yi􏼈 􏼉. ,e set Xi denote a maximum re-
lated set of S, and the set Yi a minimum free set of S. Each
maximal related partition of S X, Y{ } assume x(S) � |X| and
y(s) � |Y|. □

4. Conclusion

Hamiltonian cycle’s quasi-spanning tree of faces is exe-
cuted in this research. In a cubic bipartite planer graph, a
polynomial time technique is utilized to reduce the issues in
the minimum quasi spanning tree. For another graph-like
products and other domination, numerous researchers
have conducted Vizing’s conjecture. But still, this con-
jecture is not yet demonstrated. To prove Vizing’s con-
jecture, a graph theory described one or two conjectures
which are still considered as wider problems. To separate
free graphs, Vizing types are based on the subtotal of
domination number and it proved as well. Vizing’s con-
jecture is said to be true when the polynomial time was
positive concerning the particularly build ideal. And here
Vizing’s conjecture is designed by the graph theory as an
appropriate pair.
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Performing comparative tests, some possibilities of constructing novel degree- and distance-based graph irregularity indices are
investigated. Evaluating the discrimination ability of di�erent irregularity indices, it is demonstrated (using examples) that in
certain cases two newly constructed irregularity indices, namely IRDEA and IRDEB, are more selective.

1. Introduction

Only connected graphs without loops and parallel edges are
considered in this study. For a graph G with n vertices andm
edges, V(G) and E(G) denote the sets of vertices and edges,
respectively. Let d(u) be the degree of vertex u ofG. Let uv be
an edge of G connecting the vertices u and v. Let Δ � Δ(G)
and δ � δ(G) be the maximum and the minimum degrees,
respectively, of G. In what follows, we use the standard
terminology in graph theory; for notations not de�ned here,
we refer the readers to the books [1, 2].

For a connected graph G, the set of numbers nj of
vertices with degree j is denoted by nj � nj(G): nj > 0, 1{
≤ j≤Δ}. For simplicity, the numbers nj(G) are called the
vertex-parameters of graph G. For two vertices u, v ∈ V(G),
the distance d(u, v) between u and v is the number of edges
in a shortest path connecting them.

Two connected graphs G1 and G2 are said to be vertex-
degree equivalent if they have an identical vertex-degree
sequence. Certainly, if G1 and G2 are vertex-degree equiv-
alent, then their vertex-parameters sets satisfy the equation
nj(G1) � nj(G2) for every j. A graph is called k-regular if all
its vertices have the same degree k. A graph which is not
regular is called a nonregular graph. A connected graph G is
said to be bidegreed if its degree set consists of only two

elements, where a degree set of G is the set of all distinct
elements of its degree sequence.

2. Preliminary Considerations

A topological indexTI of a graphG is any number associated
with G (in some way) provided that the equation TI(G) �
TI(G′) holds for every graph G′ isomorphic to G. A lot of
existing topological indices are degree- and distance-based
ones [3–5]. Graph irregularity indices form a notable sub-
class of the class of traditional topological indices; where a
topological index TI of a (connected) graph G is called a
graph irregularity index if TI(G)≥ 0, and TI(G) � 0 if and
only if graph G is a regular graph. Details about the existing
graph irregularity indices can be found in [6, 7]. �e readers
interested in the general concept of irregularity in graphs
may consult the book [8].

In several situations, it is crucial to know how much
irregular a given graph is; for example, see [9, 10] where
irregularity measures are used to predict physicochemical
properties of chemical compounds, and see [11–14] for some
applications of irregularity measures in network theory.

Most of the existing irregularity indices used in math-
ematical chemistry are degree-based irregularity indices.
�ere exist irregularity indices which form a particular
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subset Φ of the set of degree-based irregularity indices; we
say that an irregularity index ϕ belongs to the set Φ if for
every pair of vertex-degree equivalent graphs G1 and G2, the
equation ϕ(G1) � ϕ(G2) holds.

)e most popular topological indices that are used in
defining degree-based irregularity indices, are the first and
second Zagreb indices (see for example [15]), denoted by M1
and M2, respectively, and the so-called forgotten topological
index [15], denoted by F.)e first and second Zagreb indices
of a graph G are defined as

M1(G) � 􏽘
u∈V(G)

d
2
u,

M2(G) � 􏽘
uv∈E(G)

dudv,
(1)

and the forgotten topological index is defined as

F(G) � 􏽘
u∈V(G)

d
3
u. (2)

)ere exist numerous degree-based graph irregularity
indices in literature, some of them are listed below.

)e variance Var is a degree-based graph irregularity
index introduced by Bell [16]. )e variance Var of a graph G

of order n and size m is defined as

Var(G) �
1
n

􏽘
u∈V(G)

du −
2m

n
􏼒 􏼓

2
�

M1(G)

n
−
4m

2

n
2 . (3)

We also consider the following four irregularity indices:

IRV(G) � n
2Var(G) � nM1(G) − 4m

2
, (4)

IR1(G) �

������

M1(G)

n

􏽳

−
2m

n
, (5)

IR2(G) �

������

M2(G)

m

􏽳

−
2m

n
, (6)

IR3(G) � F(G) −
2m

n
M1(G). (7)

It is remarked here that, except IR2, all the irregularity
indices formulated above belong to the set Φ.

3. Weighted Irregularity Indices Defined on the
Vertex Set of a Graph

In this section, we consider irregularity indices defined on
the set of vertices of a graph G. )e majority of these indices
are weighted degree- and distance-based topological indices.
Most of them may be considered as extended versions of the
Wiener index; for example, see [17]. Let us consider the
weighted vertex-based topological index of a graph G for-
mulated as

ZW(G) �
1
2

􏽘
u,v∈V(G)

Z(u, v)W(u, v), (8)

where Z(u, v) and W(u, v) are appropriately selected non-
negative 2-variable symmetric functions; both of them are
defined on the vertex set V(G) of G. For simplicity, we call
the function W(u, v) as the weight function of G. By taking

Z(u, v) � du − dv

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p
. (9)

in Equation (8), we get the following graph irregularity index

IRRp(G) �
1
2

􏽘
u,v∈V(G)

du − dv

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p
W(u, v), (10)

where p is a positive real number. Depending on the choice
of the parameter p and the weight function W(u, v), various
types of irregularity indices can be deduced. For instance, the
choices p � 1 and W(u, v) � 1 lead to the so-called total
irregularity of a graph G defined by

Irrt1(G) �
1
2

􏽘
u,v∈V(G)

du − dv

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌. (11)

It was introduced by Abdo et al. in [18]. Also, assuming
that p � 2 and W(u, v) � 1, we have the irregularity index
Irrt2(G), introduced in Ref. [19]:

Irrt2(G) �
1
2

􏽘
u,v∈V(G)

du − dv( 􏼁
2
. (12)

At this point, the following known proposition [19]
concerning Irrt2 needs to be stated.

Proposition 1. For every graph G with n vertices and m

edges, it holds that

Irrt2(G) �
1
2

􏽘
u,v∈V(G)

du − dv( 􏼁
2

� nM1(G) − 4m
2

� n
2Var(G) � IRV(G).

(13)

In Equation (9), by taking Z(u, v) � (du − dv)2 and
W(u, v) � d(u, v), we obtain the following irregularity index:

IR D(G) �
1
2

􏽘
u,v∈V(G)

du − dv( 􏼁
2
d(u, v). (14)

Note that IR D is a weighted degree- and distance-based
irregularity index. Although IR D is a new irregularity index
which is not known in the literature, but we prove in the next
proposition that this irregularity index can be written in the
linear combination of the following two topological indices

DG(G) � 􏽘
u∈V(G)

d
2
uDG(u), (15)

and

Gut(G) �
1
2

􏽘
u,v∈V(G)

dudv( 􏼁d(u, v), (16)

where DG(u) is identical to the transmission Tr(u) of the
vertex u ∈ V(G) and Gut(G) is the so-called Gutman index;
for example, see [20].
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Proposition 2. For a (connected) graph G, it holds that

IR D(G) �
1
2

􏽘
u,v∈V(G)

du − dv( 􏼁
2
d(u, v) � DG(G) − 2Gut(G).

(17)

Proof. Note that
1
2

􏽘
u,v∈V(G)

du − dv( 􏼁
2
d(u, v) �

1
2

􏽘
u,v∈V(G)

d
2
u + d

2
v􏼐 􏼑d(u, v) − 2Gut(G).

(18)

For the graph G, it holds [21] that
1
2

􏽘
u,v∈V(G)

(ω(u) + ω(v))d(u, v) � 􏽘
u∈V(G)

ω(u)DG(u), (19)

where ω(u) is any quantity associated with the vertex u of G.
By taking ω(u) � d2

u in (19) and using the obtained identity
in (18), we get
1
2

􏽘
u,v∈V(G)

du − dv( 􏼁
2
d(u, v) � 􏽘

u∈V(G)

d
2
uDG(u) − 2Gut(G)

� DG(G) − 2Gut(G).

(20)

□

Remark 1. From Proposition 2, it follows that the inequality

DG(G)≥ 2Gut(G) (21)

holds for every (connected) graph G, with equality if and
only if G is regular.

Remark 2. Because IR D is a weighted version of the ir-
regularity index Irrt2, it is expected that its discrimination
power is better than that of Irrt2.

Remark 3. Based on identity Equation (20), one can es-
tablish another irregularity index IRQ defined by

IRQ(G) �
DG(G) − 2Gut(G)

2Gut(G)
�

DG(G)

2Gut(G)
− 1. (22)

As Gut(G)> 1/2 for every (connected) graph of order at
least 3, one has

IRQ(G) �
DG(G)

2Gut(G)
− 1<DG(G) − 2Gut(G) � IR D(G).

(23)

4. Discriminating Ability of Novel Weighted
Irregularity Indices

For comparing the discrimination ability of the irregularity
indices IR D and IRQ with the traditional degree-based
irregularity indices Var, IR1, IR2, and IR3, we use the 6-
vertex graphs Gi (i � 1, 2, 3, 4) depicted in Figure 1. It is
remarked here that the graphs shown in Figure 1 belong to

the family of connected threshold graphs, and graph G1 is
isomorphic to the connected 6-vertex antiregular graph (for
example, see [22, 23]).

For the four graphs depicted in Figure 1, computed
values of preselected topological indices M1, M2, F, and
corresponding irregularity indices are summarized in Ta-
bles 1 and 2.

Comparing irregularity indices listed in Tables 1 and 2,
the following conclusions can be drawn. Among the four
tested graphs, the index G1 achieves the maximum value
(that is, 249) of IR3. )e irregularity indices IR1 and IR2 are
maximum for the graph G2 (namely, IR1(G2) ≈ 0.375 and
IR2(G2) ≈ 0.5202). As it can be seen that Var(G1) ≈ 1.667,
while Var(G2) � Var(G3) � Var(G3) ≈ 1.889 and that all
the four graphs have the same value of Irrt1, which is 26.
Also, the relation Irrt2(G) � n2Var(G) is confirmed for the
considered graphs: Irrt2(G1) � 60 and Irrt2(G2) �

Irrt2(G3) � Irrt2(G4) � 68. Moreover, we have IR D(G1) �

IR D(G2) � IR D(G3) � 80 and IR D(G4) � 92, while the
computed values of the irregularity index IRQ are different
for all four graphs. From these observations, one can con-
clude that the degree variance Var, the total irregularity
index Irr1, together with the irregularity indices Irr2, and
IR D have a limited discrimination ability for the considered
four graphs.

5. Novel Irregularity Indices Constructed by
Using the External Weight Concept

)e weight function W(u, v) included in (9) can be con-
sidered as an “internal” weight function. Introducing the
external weight concept, one can construct novel irregularity
indices. By using them, the original sequence of previously
determined irregularity values can be appropriately modi-
fied for a given set of graphs considered.

By definition, an external weight EW(G) for a graph G is
a positive-valued topological index computed as a function
of one or more traditional topological indices. By means of
an external weight EW(G) a novel irregularity index
IRE(G) can be created as defined below:

IRE(G) � EW(G) × IR(G), (24)

where IR(G) is an arbitrary irregularity index. By appro-
priately selected external weights EW(G), one can establish
several different versions of irregularity indices IRE(G)

satisfying some restrictions or desired expectations. As an

G1 G4G2 G3

Figure 1: Four 6-vertex nonregular graphs selected for tests.
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example, consider the three external weights defined for a
graph G of order n and size m as follows:

EWA(G) �
m

2

100n
, (25)

EWB(G) �
M2(G) + F(G)

n
2 , (26)

EWC(G) �
1

2 × Gut(G)
. (27)

Using the three external weights listed above, the fol-
lowing irregularity indices of new type are obtained:

IR DEA(G) � EWA(G) × IR D(G), (28)

IR DEB(G) � EWB(G) × IR D(G), (29)

IR DEC(G) � EWC(G) × IR D(G). (30)
For graphs shown in Figure 1, the computed external
weights and the corresponding irregularity indices are
summarized in Table 3.

Comparing the computed irregularity indices men-
tioned in Table 3, one can conclude that the graph G1 has
the maximum irregularity indices IR DEA(G1) � 10.8 and
IR DEB(G1) � 795.6, while the maximum value of the ir-
regularity index IR DEC is attained by the graph G2 where
IR DEC(G2) � 0.4211 (it should be emphasized here that
the graph G1 is identical to the 6-vertex connected anti-
regular graph, and it is usually desired that the connected
antiregular graph attains the maximum value of an ir-
regularity index among all connected graphs of a fixed
order.)

It is remarked here that the irregularity indices IRQ and
IR DEC are identical to each other because

IRQ(G) �
DG(G)

2Gut(G)
− 1 �

DG(G) − 2Gut(G)

2Gut(G)

� EWC(G) × IR D(G) � IR DEC(G).

(31)

6. Additional Considerations

An interesting open problem can be formulated as follows:
find a deterministic relationship between the following
weighted bond-additive indices (see [24]).

BAp(G) � 􏽘
uv∈E(G)

du − dv

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p
W(u, v) (32)

and weighted atoms-pair-additive indices

IRRp(G) �
1
2

􏽘
u,v∈V(G)

du − dv

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p
W(u, v). (33)

Depending on the definitions of the above irregularity
indices, we observe that there exist graphs for which the
mentioned relationship is perfect. As an example, when p �

1 and W(u, v) � d(u, v) then for the wheel graph Wn of
order n with n≥ 5, one has
1
2

􏽘

u,v∈V Wn( )

du − dv

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌d(u, v) � 􏽘

uv∈E Wn( )

du − dv

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 � AL Wn( 􏼁, (34)

where AL is the Albertson irregularity index [25].
)e sigma index σ(G) of a graph G is defined (for ex-

ample, see [26]) as

􏽘
uv∈E(G)

du − dv( 􏼁
2
. (35)

)is irregularity index is a natural generalization of the
Albertson irregularity index. For the wheel graph Wn of
order n with n≥ 5, the following identity holds:

IR D Wn( 􏼁 �
1
2

􏽘

u,v∈V Wn( )

du − dv( 􏼁
2
d(u, v)

� 􏽘

uv∈E Wn( )

du − dv( 􏼁
2

� σ Wn( 􏼁.

(36)

It is possible to construct a particular graph family for
which the concept outlined above can be extended. For two
graphs J1 and J2 with disjoint vertex sets, J1 ∪ J2 denotes the
disjoint union of J1 and J2.)e join J1 + J2 of J1 and J2 is the
graph obtained from J1 ∪ J2 by adding edges between every
vertex of J1 and every vertex of J2.

Proposition 3. Define the bidegreed graph Hn of order n as
follows:

H � H0 + ∪ j≥1Hj􏼐 􏼑, (37)

Table 3: Computed topological indices of the four graphs shown in
Figure 1.

Graph m EWA IR DEA EWB IR DEB EWC IR DEC

G1 9 0.1350 10.800 9.944 795.6 0.0032 0.2597
G2 7 0.0817 6.533 6.306 504.4 0.0053 0.4211
G3 8 0.1067 8.533 8.139 651.1 0.0041 0.3252
G4 8 0.1067 9.813 8.056 741.1 0.0042 0.3833

Table 1: Computed topological indices of the four graphs shown in
Figure 1.

Graph m M1 M2 F Var IR1 IR2 IR3

G1 9 64 106 252 5/3 0.266 0.4319 249.0
G2 7 44 57 170 17/9 0.375 0.5202 167.7
G3 8 54 79 214 17/9 0.333 0.4758 211.3
G4 8 54 82 208 17/9 0.333 0.5349 205.3

Table 2: Computed topological indices of the four graphs shown in
Figure 1.

Graph m Irrt1 Irrt2 DG Gut IR D IRQ

G1 9 26 60 388 154 80 0.2597
G2 7 26 68 270 95 80 0.4211
G3 8 26 68 326 123 80 0.3252
G4 8 26 68 332 120 92 0.3833
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where H0 is an r-regular graph and each Hj is an r′-regular
graph. It holds that

BADp Hn( 􏼁 �
1
2

􏽘

u,v∈V Hn( )

du − dv

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p
d(u, v)

� 􏽘

uv∈E Hn( )

du − dv

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p

� ALp Hn( 􏼁,

(38)

where ALpG is a modified version of the generalized Albertson
irregularity index (see [27]).

Proof. We note that

BADp Hn( 􏼁 � 􏽘

uv∈E Hn( )

du − dv

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p

+ 􏽘

uv ∉ E Hn( )

du − dv

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p
d(u, v).

(39)

Observe that dx � dy for every pair of nonadjacent
vertices x, y ∈ V(Hn), which implies that

􏽘

uv ∉ E Hn( )

du − dv

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p
d(u, v) � 0.

(40)

and hence Equation (39) yields the desired result.
As an example concerning Proposition 3, consider the

bidegreed graph H14 of order 14 and size 59 constructed as
follows:

H14 � C4 + K3,3 ∪K4􏼐 􏼑, (41)

where C4 is the (2-regular) cycle graph with 4 vertices, K3,3 is
the (3-regular) complete bipartite graph of order 6, and K4 is
the (3-regular) complete graph on 4 vertices (see Figure 2.
)e graph H14 contains ten vertices of degree 7 and four
vertices of degree 12. Note that if uv ∉ E(H14), then
u ∈ V(J) and v ∈ V(K), where J, K ∈ K3,3, K4􏽮 􏽯, and both
the vertices u, v have the degree 7 in H14. )us,

􏽘

uv ∉ E H14( )

du − dv

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p
d(u, v) � 0

(42)

and the desired conclusion holds. □
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A radio labeling of a simple connected graphG � (V, E) is a function h : V⟶ N such that |h(x) − h(y)|≥ diam(G) + 1 − d(x, y),
where diam (G) is the diameter of graph and d(x, y) is the distance between the two vertices.  e radio number of G, denoted
by rn (G), is the minimum span of a radio labeling for G. In this study, the upper bounds for radio number of the tri-
angular snake and the double triangular snake graphs are introduced.  e computational results indicate that the presented
upper bounds are better than the results of the mathematical model provided by Badr and Moussa in 2020. On the
contrary, these proposed upper bounds are better than the results of algorithms presented by Saha and Panigrahi in 2012
and 2018.

1. Introduction

 e �eld of graph theory assumes a crucial part in di�erent
�elds. One of the signi�cant regions in graph theory is graph
labeling which is used in many applications such as coding
theory, x-ray crystallography, radar, astronomy, circuit
design, communication network addressing, data base
management, and channel assignment problem. e channel
assignment problem is the problem of assigning channels
(nonnegative integers) to the stations in an optimal way such
as the interference is avoided. In [1], Badr and Moussa
proposed a work on upper bound of radio k-chromatic
number for a given graph against the other which is due to
Saha and Panigrahi [2]. Badr and Moussa proposed a new
mathematical model for �nding the upper bound of a graph
[1]. In [3], Saha and Panigrahi introduced another algorithm
(with time complexity O(n4)) for determining the upper
bound of a graph. Ali et al. gave the upper bound for the
radio number of generalized gear graph [4]. Fernandez et al.

proved that the radio number of the n-gear is 4n+ 2 [5]. Yao
et al. were de�ned as a new graph radio labeling on trees, and
the properties of trees labeling were shown [6]. Smitha and
 irusangu determined the radio mean number of double
triangular snake graph and alternate double triangular snake
graph [7]. If p&q is prime numbers, the radio numbers of
zero divisor graphs Γ(ZP2 × Zq) were investigated by
Ahmad and Haider [8].

For more details about how to formulate a problem to
a mathematical model, the reader can refer to [9–11]. On
the contrary, for more details about other labeling that are
related to radio labeling such as radio mean, radio mean
square, and radio geometric.  e reader is referred to
[10, 11].

In this current work, the upper bounds for radio number
of the triangular snake and the double triangular snake
graphs are introduced.  e computational results indicate
that the presented upper bounds are better than the results of
the mathematical model provided by Badr and Moussa [1].
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On the contrary, these proposed upper bounds are better
than the results of algorithms presented by Saha and Pan-
igrahi [2, 3].

2. Materials and Methods

In this section, we introduce some basic definitions before
we prove the theorems that determine the upper bounds’
radio of the number for triangular snake and double tri-
angular snake. On the contrary, we introduce the previous
works which are related to the determining of the upper
bound of radio number of a graph.

Definition 1 (see [12], diameter of graph).*e diameter of G

is the greatest eccentricity among all vertices of G and it is
denoted by diam (G).

Definition 2 (see [13], triangular snake). A triangular snake
(or Δ-snake) is a connected graph in which all blocks are
triangles and the block-cut-point graph is a path.

Definition 3 (see [7], double triangular snake). A double
triangular snake D(Tn) is obtained from two triangular
snakes with a common path.

In 2013, Algorithm 1 was introduced by Saha and
Panigrahi [2] for determining the upper bound of the radio
number of a given graph. Algorithm 1 has O(n3) time
complexity such that n is the number of the vertices of G. In
2018, Saha and Panigrahi [2] proposed a new algorithm
(Algorithm 2) for determining the upper bound of the radio
number of a given graph. Algorithm 2 has O(n4) time
complexity. On the contrary, in 2020, Badr and Moussa [1]
proposed a novel mathematical model which finds the upper
bound of the radio number of a given graph.

3. Results and Discussion

Here, we introduce two theorems which determine the
upper bounds for radio number of triangular snake and
double triangular snake. *e presented upper bounds (by
*eorems 1 and 2) are better than the results of the
mathematical model provided by Badr and Moussa [1]. On
the contrary, these proposed upper bounds are better than
the results of algorithms presented by Saha and Panigrahi
[2, 3].

Theorem 1. Let G be a triangular snake graph (Δk − snake)
with k blocks and n vertices, where d(x, y)≥ 1; then, the upper
bound of the radio number of Δk − snake is defined as follows:

rn Δk − snake( 􏼁≤

k
2

+
k

2
, if k is even,

k
2

+ k −
k

2
, if k is odd,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1)

Proof. To prove this theorem, its suffices to give a distance
labeling h of Δk − snake.

Let x1, x2, x3, . . . , xn be a Δk − snake of length k, i.e.,
diameter of (Δk − snake) � k.

Define a function h: V(Δk − snake)⟶ N as the fol-
lowing cases. □

Case 1. k is odd:

h xi( 􏼁 �

h xk+1( 􏼁 � 0,

h xk+1− i( 􏼁 � ki, 1≤ i≤ k,

h xk+2+j􏼐 􏼑 � k
2

+
k

2
− jk, 0≤ j≤ k − 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

Now, we are in a position to prove that the function h(x)
is the distance labeling of Δk − snake.

For each (i, i + 1),

|ki − k(i + 1)|≥ diam + 1 − d(x, y),

|ki − k(i + 1)|≥ k + 1 − d(x, y),

k≥ k + 1 − d(x, y).

(3)

Also, for each (j, j + 1),

k
2

+
k

2
− jk − k

2
+

k

2
− (j + 1)k

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≥ diam + 1 − d(x, y),

k
2

+
k

2
− jk − k

2
+

k

2
− jk − k􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≥ k + 1 − d(x, y),

|k|≥ k + 1 − d(x, y),

k≥ k + 1 − d(x, y).

(4)

Suppose that 1≤ i≤ k, 0 ≤ j≤ k − 1.
If i� j,

ki − k
2

+
k

2
− jk􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≥ k + 1 − d(x, y),

k
2

− 2k +
k

2
≥ k + 1 − d(x, y),

(5)

otherwise,

k
2

−
k

2
− k􏼠 􏼡≥ k + 1 − d(x, y). (6)

Case 2. k is even is similarly proved:

h xi( 􏼁 �

h xk+1( 􏼁 � 0,

h xk+1− i( 􏼁 � ki, 1≤ i≤ k,

h xk+2+j􏼐 􏼑 � k
2

+
k

2
− kj, 0≤ j≤ k − 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

We show that the function h(x) is the distance labeling of
Δk − snake.
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For each ( i, i + 1),

|ki − k(i + 1)|≥ diam + 1 − d(x, y),

|ki − k(i + 1)|≥ k + 1 − d(x, y),

k≥ k + 1 − d(x, y).

(8)

Also, for each (j, j + 1),

k
2

+
k

2
− kj − k

2
+

k

2
− k(j + 1)􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≥ diam + 1 − d(x, y),

k
2

+
k

2
− kj − k

2
+

k

2
− kj − k􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≥ k + 1 − d(x, y),

|k|≥ k + 1 − d(x, y),

k≥ k + 1 − d(x, y).

(9)

Suppose that 1≤ i≤ k, 0 ≤ j≤ k − 1.
If i� j,

ki − k
2

+
k

2
− jk􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≥ k + 1 − d(x, y),

k
2

−
3k

2
≥ k + 1 − d(x, y),

(10)

otherwise,

k
2

−
1
2

k􏼒 􏼓≥ k + 1 − d(x, y). (11)

Example 1. Figure 1 presents the labeling Δ3(snake)
according to *eorem 1.

Theorem 2. Let G be a double triangular snake graph with k
blocks and n vertices; then, the upper bound of the radio
number of double Δk − snake is defined as follows:

rn Δk(snake)( ≤

3, if k � 1,

7, if k � 2,

2k
2

− k + 3, if k is odd,

2k
2

− k + 2, if k is even.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(12)

Proof. To prove this theorem, it suffices to give a distance
labeling h of double Δk − snake. Notice that the diameter of
double triangular snake is the same as the diameter of tri-
angular snake graph. Let x1, x2, x3, . . . , xn be a 2Δk − snake
of length k, where the diameter of 2(Δk − snake) �

k and n � 3k + 1.
Define a function h: V(doubleΔk − snake)⟶ N as the

following cases:

For k� 1, let the sufficed labeling
h(x1) � 0, h(x2) � 2 , h(x3) � 5, and h(x4) � 3
For k� 2, let h(x1) � 4, h(x2) � 2 , h(x3) � 0,

h(x4) � 5, h(x5) � 3, h(x6) � 6, and h(x7) � 7 □

Case 3. k is even and k> 2,

h xi( 􏼁 �

h xk+1( 􏼁 � 0,

h xk− i+1( 􏼁 � ki, 1≤ i≤ k,

h xk+i+2( 􏼁 � k
2

+
k

2
− ki, 0≤ i≤ k − 1,

x2k+2+i( 􏼁 � k
2

+ k + 1 +(k − 1)i, 0≤ i≤ k − 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(13)

We are in a position to prove that the function h(xi) are
the distance labeling of double Δk − snake.

For each (i, i + 1),

|ki − (k(i + 1))|≥ diam + 1 − d(x, y),

k≥ k + 1 − d(x, y).
(14)

For each (i, i + 1),

k
2

+
k

2
− ki − k

2
+

k

2
− k(i + 1)􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≥ diam + 1 − d(x, y),

k≥ k + 1 − d(x, y).

(15)

Also, for each (i, i + 1),

k
2

+ k + 1 +(k − 1)i − k
2

+ k + 1 +(k − 1)(i + 1)􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

≥ diam + 1 − d(x, y),

k − 1≥ k + 1 − d(x, y).

(16)

Now, suppose that 1≤ i≤ k and 0≤ j≤ k − 1 :

ki − k
2

+
k

2
− kj􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≥ diam + 1 − d(x, y),

k
2

+
3k

2
≥ k + 1 − d(x, y).

(17)

Suppose that 1≤ i≤ k and 0≤ j≤ k − 1:

ki − k
2

+ k + 1 +(k − 1)j􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≥ diam + 1 − d(x, y),

k
2

− k + 2≥ k + 1 − d(x, y).
(18)

If i� 1 and j� 0,

k
2

+ 1≥ k + 1 − d(x, y), (19)

9 3

0

11

86

5

Figure 1: *e radio number of Δ3(snake).

Journal of Mathematics 3



otherwise,

k + 1≥ k + 1 − d(x, y),

1≤ i≤ k − 1 and 0≤ j≤ k − 1,

k
2

+
k

2
− ki − k

2
+ k + 1 +(k − 1)j􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≥ diam + 1 − d(x, y),

2k
2

−
5
2

k + 2≥ k + 1 − d(x, y).

(20)

If i� 0 and j� k − 1,

2k
2

− k + 2≥ k + 1 − d(x, y), (21)

otherwise,

k
2

−
k

2
+ 1≥ k + 1 − d(x, y). (22)

Case 4. k is odd and k> 1:

h xi( 􏼁 �

h xk+1( 􏼁 � 0,

h xk− i+1( 􏼁 � ki, 1≤ i≤ k,

h xk+i+2( 􏼁 � k
2

+
k + 1
2

− ki, 0≤ i≤ k − 1,

x2k+2+i( 􏼁 � k
2

+ k + 2 − (k − 1)i, 0≤ i≤ k − 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(23)

For each (i, i + 1),

|ki − (k(i + 1))|≥ diam + 1 − d(x, y),

k≥ k + 1 − d(x, y).
(24)

For each (i, i + 1),

k
2

+
k + 1
2

− ki − k
2

+
k + 1
2

− k(i + 1)􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≥ diam + 1 − d(x, y),

k≥ k + 1 − d(x, y).

(25)

Also, for each (i, i + 1),

k
2

+ k + 2 − (k − 1)i − k
2

+ k + 2 − (k − 1)(i + 1)􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

≥ diam + 1 − d(x, y),

k − 1≥ k + 1 − d(x, y).

(26)

Now, suppose that 1≤ i≤ k and 0≤ j≤ k − 1 :

ki − k
2

+
k + 1
2

− kj􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≥ diam + 1 − d(x, y),

k
2

−
3k

2
−
1
2
≥ k + 1 − d(x, y),

(27)

otherwise,

ki − k
2

+
k + 1
2

− kj􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≥ diam + 1 − d(x, y),

k

2
+
1
2
≥ diam + 1 − d(x, y).

(28)

Suppose that 1≤ i≤ k and 0≤ j≤ k − 1:

ki − k
2

+ k + 2 − (k − 1)j􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≥ diam + 1 − d(x, y),

k
2

− 3k − 1≥ k + 1 − d(x, y).

(29)

If i� 1 and j� k − 1,

2k − 1≥ k + 1 − d(x, y), (30)

otherwise,

ki − k
2

+ k + 2 − (k − 1)j􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≥ diam + 1 − d(x, y),

k + 2≥ k + 1 − d(x, y).

(31)

Suppose that 0≤ i≤ k − 1 and 0≤ j≤ k − 1:

k
2

+
k + 1
2

− ki − k
2

+ k + 2 − (k − 1)j􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≥ diam + 1 − d(x, y),

3
2

k +
1
2
≥ k + 1 − d(x, y).

(32)

If i� 0 and j� k − 1,
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Figure 2: *e radio number of double triangular Δ3(snake).
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Input: G be an n-vertex simple connected graph, k be a positive integer, and the adjacency matrix A[n][n] of G

Output: A radio k-coloring of G.
Begin

Compute the distance matrix D[n][n] of G using Floyed–Warshall’s algorithm and the adjacency matrix A[n][n] of G.
RadioNumber�∞;
for l� 1 to n do
for i� 1 to n do
labeling [i]� 0;

end
for i� 1 to n do

for j� 1 to n do
c[i][j]� diam+ 1 − D[i][j];

end
c[i][j]�∞;

end
for i� 2 to n do

/∗find the minimum value m of the column with position p∗/
[m, p]�min [c(l, :)];
for j� 1 to n

c[p][j]� c[p][j] +m
if c[p][j]< c[l][j]
c[p][j]� c[l][j]

end
end
labeling [p]�m
l� p

end
/∗ find the max value of the labeling ∗/

Max_Value�max (labeling))
if RadioNumber>Max_Value
RadioNumber�Max_Value

end
end

End

ALGORITHM 1: [2] Finding a radio k-coloring of a graph.

Input: G be an n-vertex graph, simple connected graph, and the diameter of (diam).
Output: an upper bound of radio number of G.
Begin
Step 1: choose a vertex u and col(u) � floor(

�����
diam

√
).

Step 2: S � u{ }.
Step 3: for all v ∈ V(G) − S, compute

temp(v) � max
t∈s

col(t) + max
���������������
(D + 1 − d(u, v), 1

􏽰
􏽮 􏽯􏽮 􏽯.

Step 4: let min � min
v∈V(G)− S

temp(v)􏼈 􏼉.
Step 5: choose a vertex v ∈ V(G) − S, such that temp(v) � min.
Step 6: give col(v) � min.
Step 7: S � S∪ v{ }

Step 8: repeat Step 3 to Step 6 until all vertices are labeled.
Step 9: repeat Step 1 to Step 7 for every vertex x ∈ V(G).

End

ALGORITHM 2: [3] Finding an upper bound of the radio number of a graph G.
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Figure 3: Comparison among UB0, Ub1, UB2, and UB3 for the
radio number of triangular snake.
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Figure 4: Comparison among UB0, Ub1, UB2, and UB3 for the
radio number of double triangular snake.

Table 1: Comparison between standard radio number and the upper bound of radio number for the triangular snake graph.

k n
UB0 [2] UB1 [3] UB2 [1] UB3

rn CPU time rn CPU time rn CPU time rn CPU time
1 3 2 0.007704 2 0.0040755 2 0.0017378 2 O(1)
2 5 6 0.004364 5 0.004255 6 0.002382 5 O(1)
3 7 12 0.00612 12 0.00555 14 0.005265 11 O(1)
4 9 20 0.024677 18 0.012055 26 0.005364 18 O(1)
5 11 30 0.051972 30 0.013155 42 0.005659 28 O(1)
6 13 42 0.230102 39 0.013621 62 0.005799 39 O(1)
7 15 56 0.307545 56 0.013755 86 0.006905 53 O(1)
8 17 72 0.308318 68 0.014298 114 0.007153 68 O(1)
9 19 90 0.468408 90 0.014749 146 0.007203 86 O(1)
10 21 110 0.751755 105 0.01493 182 0.00743 105 O(1)
11 23 132 0.924785 132 0.015201 222 0.007672 127 O(1)
12 25 156 1.219799 150 0.015988 266 0.008343 150 O(1)
13 27 182 1.674918 182 0.016105 314 0.008354 176 O(1)
14 29 210 2.689564 203 0.016197 366 0.008496 203 O(1)
15 31 240 3.224403 240 0.016201 422 0.008661 233 O(1)
16 33 272 3.567201 264 0.01711 482 0.009033 264 O(1)
17 35 306 4.447875 306 0.017625 546 0.009587 298 O(1)
18 37 342 5.561139 333 0.018556 614 0.009701 333 O(1)
19 39 380 6.933108 380 0.019099 686 0.009929 371 O(1)
20 41 420 8.345423 410 0.020327 762 0.010011 410 O(1)
21 43 462 12.868485 462 0.021287 842 0.010364 452 O(1)
22 45 506 13.787422 495 0.021983 926 0.011044 495 O(1)
23 47 552 15.946642 552 0.022126 1014 0.011472 541 O(1)
24 49 600 20.145523 588 0.029388 1106 0.011726 588 O(1)
25 51 650 22.931427 650 0.049946 1202 0.012145 638 O(1)
26 53 702 26.792638 689 0.053599 1302 0.013162 689 O(1)
27 55 756 30.007477 756 0.058895 1406 0.013417 743 O(1)
28 57 812 33.778689 798 0.060056 1514 0.013437 798 O(1)
29 59 870 39.570408 870 0.089137 1626 0.017043 856 O(1)
30 61 930 45.216577 915 0.148602 1742 0.026953 915 O(1)
50 101 2550 342.011401 2525 0.282964 1862 0.259496 2525 O(1)
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k −
1
2
≥ k + 1 − d(x, y),

(33)

otherwise,

k
2

−
1
2

k +
3
2
≥ k + 1 − d(x, y). (34)

Example 2. Figure 2 presents the labeling double triangular
Δ3(snake) according to *eorem 2.

4. Computational Study

In order to evaluate the proposed upper bounds presented
by *eorems 1 and 2, we make a numerical experiment
between the proposed results and the results of [1–3]. *is
experiment applies on two graphs (triangular snake and
double triangular snake). *e description of the environ-
ment is as follows: MATLAB R2016a with default options
and all runs were carried out under MS Windows 7

Professional system, having Intel® Core™ i3-3217U CPU@
1.80GHz and 4Gb RAM.

In Tables 1 and 2, the abbreviations Ub0, Ub1, Ub2, and
Ub3 are used to denote upper bounds are due to the works of
Saha and Panigrahi [2], Saha and Panigrahi [3], Badr and
Moussa [1], and the proposed algorithm, respectively.

Table 1 and Figure 3 show that the proposed upper
bound Ub3 overcomes the upper bound UB0 and UB2
which is due to the works of Saha and Panigrahi [2] and Badr
and Moussa [1], respectively. On the contrary, the proposed
upper bound Ub3 overcomes the upper bound UB1 (for k is
odd only) which is due to the works of Saha and Panigrahi
[2]. *e upper bound (for k is even) of the UB3 and UB1 are
equal.

Table 1 and Figure 4 explain that the proposed upper
bounds outperform all results of UB0, UB1, and UB2
according to CPU time. On the contrary, the mathematical
model UB2 [1] overcomes UB0 and UB1.

5. Conclusions

In this study, the upper bounds for the radio number of the
triangular snake and the double triangular snake graphs are
introduced. *e computational results indicate that the
presented upper bounds are better than the results of the

Table 2: Comparison between standard radio number and for the upper bound of the radio number for the double triangular snake graph.

k n
UB0 [2] UB1 [3] UB2 [1] UB3

rn CPU time rn CPU time rn CPU time rn CPU time
1 4 2 0.008905 3 0.013994 2 0.007179 3 O(1)
2 7 7 0.009302 8 0.014494 8 0.008093 7 O(1)
3 10 15 0.012654 17 0.015187 19 0.010171 18 O(1)
4 13 26 0.01432 29 0.016028 36 0.011224 30 O(1)
5 16 41 0.022551 44 0.026618 59 0.012734 48 O(1)
6 19 57 0.022565 62 0.031761 88 0.014698 68 O(1)
7 22 78 0.024324 83 0.097335 123 0.017663 94 O(1)
8 25 100 0.026327 107 0.099599 164 0.025045 122 O(1)
9 28 127 0.030762 134 0.168036 211 0.025465 156 O(1)
10 31 155 0.038029 164 0.217785 264 0.031522 192 O(1)
11 34 188 0.048976 197 0.312401 323 0.032649 234 O(1)
12 37 222 0.058516 233 0.476330 388 0.033239 278 O(1)
13 40 262 0.067316 272 0.648300 459 0.039245 328 O(1)
14 43 301 0.092605 314 0.831050 536 0.043670 380 O(1)
15 46 347 0.101886 359 1.087081 619 0.045682 438 O(1)
16 49 392 0.157635 407 1.389141 708 0.052569 498 O(1)
17 52 444 0.163901 458 1.740725 803 0.065006 564 O(1)
18 55 495 0.270554 512 2.151552 904 0.131148 632 O(1)
19 58 553 0.287547 569 2.625657 1011 0.156826 706 O(1)
20 61 610 0.325028 629 3.229021 1124 2.637903 782 O(1)
21 64 675 0.350093 692 3.867577 1243 2.655901 864 O(1)
22 67 737 0.355919 758 4.619990 1368 2.676703 948 O(1)
23 70 808 0.369294 827 5.625904 1499 2.698903 1038 O(1)
24 73 876 0.460056 899 6.570240 1636 3.174321 1130 O(1)
25 76 953 0.512382 974 7.552782 1779 3.321324 1228 O(1)
26 79 1027 0.553158 1052 9.093392 1928 3.592834 1328 O(1)
27 82 1110 0.625059 1133 10.404067 2083 3.720172 1434 O(1)
28 85 1190 0.740484 1217 12.811142 2244 4.019234 1542 O(1)
29 88 1280 0.77942 1304 13.942115 2411 4.892321 1656 O(1)
30 91 1365 0.974537 1394 16.356469 2584 5.109283 1772 O(1)
50 151 3775 4.497669 3824 130.59526 2763 9.981278 4952 O(1)
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mathematical model provided by Badr and Moussa [1]. On
the contrary, these proposed upper bounds are better than
the results of algorithms presented by Saha and Panigrahi
[2, 3].
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COVID-19, which has spread all over the world and was declared as a pandemic, is a new disease caused by the coronavirus family.
 ere is no medicine yet to prevent or end this pandemic. Even if existing drugs are used to alleviate the pandemic, this is not
enough. erefore, combinations of existing drugs and their analogs are being studied. Vaccines produced for COVID-19may not
be e�ective for new variants of this virus. erefore, it is necessary to �nd the drugs for this disease as soon as possible. Topological
indices are the numerical descriptors of a molecular structure obtained by the molecular graph. Topological indices can provide
information about the physicochemical properties and biological properties of molecules in the quantitative structure-property
relationship (QSPR) and quantitative structure-activity relationship (QSAR) studies. In this paper, some analogs of lopinavir,
favipiravir, and ritonavir drugs that have the property of being potential drugs against COVID-19 are studied. QSPR models are
studied using linear and quadratic regression analysis with topological indices for enthalpy of vaporization, �ash point, molar
refractivity, polarizability, surface tension, and molar volume properties of these analogs.

1. Introduction

COVID-19, which emerged in 2019, is a disease caused by
severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) which is a new coronavirus. Coronavirus family
refers to enveloped, positive-sense, and single-stranded
RNA viruses [1]. SARS-CoV-2 is a positive single-stranded
RNA virus containing proteins. COVID-19 is a respiratory
disease transmitted from person to person. COVID-19
patients may present symptoms ranging from mild to severe
diseases, such as fever, cough, sore throat, rhinorrhea, severe
pneumonia, and septic shock [2]. With the rapid spread of
this disease all over the world, the World Health Organi-
zation (WHO) declared COVID-19 as a pandemic in March
2020.  e WHO reported that nearly 3 million people have
died since the outbreak of the pandemic [3].  ere is no
medicine yet to alleviate or end this pandemic. Existing
drugs are being used to alleviate the pandemic.  ese drugs
are chloroquine, hydroxychloroquine, azithromycin,
remdesivir, lopinavir, ritonavir, Arbidol, favipiravir,

thea�avin, thalidomide, ribavirin, etc. [4]. Studies showed
that some of these drugs are not suitable for the treatment of
COVID-19 [5]. For example, FDA warns against the use of
hydroxychloroquine or chloroquine for COVID-19 outside
the hospital setting or a clinical trial due to the risk of heart
rhythm problems [6]. Among these drugs, there are opinions
that the use of remdesivir, favipiravir, and lopinavir is
suitable for the treatment of COVID-19 disease [7]. Since the
drugs used for HIV, SARS-CoV, and Mers-CoV do not have
su¥cient e�ect for SARS-CoV-2, many countries have fo-
cused on combinations of these drugs. In the United
Kingdom, studies are being conducted on favipiravir and
lopinavir/ritonavir or combination therapy [8]. In Egypt,
studies are being conducted on favipiravir [9], lopinavir/
ritonavir, and remdesivir combination [10], and in the
United States, studies are being conducted on favipiravir,
lopinavir/ritonavir [11, 12], and so on (see details in [4]).

New variants of the SARS-CoV-2 virus are emerging,
and these variants are thought to be resistant to some
vaccines produced for COVID-19. For this reason, it is
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necessary to find a drug that will prevent and end this disease
as soon as possible. Drug discovery takes effort and time and
is a costly process. Recently, computer-aided drug design
(CADD) has been used successfully to significantly alleviate
this process. +is includes the prediction of electronic, drug-
like, pharmacokinetic, 3D-QSAR, and physicochemical
properties of target candidates.

+e graph theory, which was first introduced by Euler in
1736, is a branch of discrete mathematics. It has been studied
in physics, biology, computer sciences, chemistry, and so
forth [13]. Chemical graph theory combines mathematical
modeling of chemical phenomena with graph theory. It is
focused on topological indices that are well correlated with
the properties of a molecule or molecular compounds.
Topological indices are widely used to predict the physi-
cochemical and bioactivity properties of a molecule or
molecular compound in the quantitative structure-property/
structure-activity relationship (QSPR/QSAR)modeling [14].
+e topological index is a real descriptor of the topological
structure of a molecule or molecular compounds [15]. +e
first known topological index was the Wiener index in 1947,
which was used to determine the physical properties of
paraffin [16].

+e molecular graph, G, is represented by unsaturated
hydrocarbon skeletons of the molecule and molecular
compounds. +e vertices of the molecular graph correspond
to non-hydrogen atoms and their set is defined by V(G). +e
edges of molecular graph correspond to covalent bonds
between the corresponding atoms and their set is defined by
E(G) [17]. +e degree of a vertex v is defined by d(v) (see
[13] for basic definitions and notations on graph theory).

Omar et al. designed eight derivatives based on the core
of hydroxychloroquine to use them in the treatment of
COVID-19 and calculated the biological activity of designed
molecules by QSAR [18]. Kirmani et al. established QSPR
models with linear regression between physicochemical
properties of potential antiviral drugs and some topological
indices for various antiviral drugs used in the treatment of
COVID-19 patients [19]. Havare obtained curvilinear re-
gression models for boiling point of potential drugs against
COVID-19 using various topological indices [20, 21]. Zhong
et al. established QSPR between the ev-degree and ve-de-
gree-based topological indices and measured the physico-
chemical parameters of the photochemical screened against
SARS-CoV-2 [22]. Chaluvaraju and Shaikh established a
multilinear regression model with the atom-bond connec-
tivity (ABC) indices for the IC50 values of some drugs used in
the treatment of COVID-19 [23]. Various topological in-
dices were calculated to be used in QSPR and QSAR models
of drugs used for the treatment of COVID-19 [24–27].

Rafi et al. studied analogs of lopinavir and favipiravir as
potential drug candidates against COVID-19. +ey saw that
all structurally modified analogs have been less toxic than the
selected candidates and contain highly remediable proper-
ties [28].

In this paper, CID10009410, CID44271905, CID3010243,
and CID271958 structures which are structural analogs of
lopinavir, CID89869520 structure which is favipiravir an-
alog, and lopinavir-d8 (CID71749833) which is ritonavir

analog are considered. +ese structures have the property of
being potential drugs against COVID-19. QSPR models are
obtained by linear and quadratic regression analysis using
topological indices for enthalpy of vaporization, flash point,
molar refractivity, polarizability, surface tension, and molar
volume properties of these structures.

2. Material and Method

Small molecules such as lopinavir and favipiravir signifi-
cantly inhibit the activity of Mpro (main protease) and RdRp
(viral RNA-dependent RNA polymerase) in vitro [4]. +e
structure of all selected compounds was downloaded from
the PubChem database [29].

Lopinavir (see Figure 1) and ritonavir (see Figure 2) are
inhibitors of human immunodeficiency virus-1 (HIV-1)
aspartate protease. Since the previous SARS-CoV major
protease has 96.1% similarity to the SARS-CoV-2 major
protease, these two drugs can be used as a homologous target
[30].

Favipiravir is a pyrazine carboxamide derivative with
activity against RNA viruses (see Figure 2). It is an antiviral
drug developed against influenza (flu virus). It was approved
for the treatment of pandemic influenza emerging in Japan
in 2014. It is used to treat moderate to mild COVID-19
patients. It is being studied for the treatment of COVID-19
[4, 31].

+e structure of CID10009410 is a lopinavir analog and
is generated by adding –F groups at the end of their two-
dimensional (2D) structure [28]. CID44271905 structure
which is lopinavir analog is generated by removing tri-
methyl-benzene fragment into the 2D structure of lopinavir
[28]. CID44271958 structure is generated by adding 1,3,5-
trimethyl-benzene and benzene fragments into the 2D
structure of lopinavir [28]. +e structure of CID3010243 is
generated by removing tetrahydro-pyrimidionepropylene
urea fragment and adding 2-imidazolinone fragments into
lopinavir [28]. Figure 1 shows lopinavir and its analogs.
CID89869520 structure which is the favipiravir analog is
generated by adding –CH3 groups at the end of its 2D
structure (see Figure 2) [28]. Lopinavir-d8 is a labeled se-
lective HIV-1 protease inhibiting drug which is an analog of
ritonavir, and this drug may act against COVID-19 (see
Figure 2) [28].

In this study, the vertex-degree-based topological indices
which are the first Zagreb index (M1) [32], the second
Zagreb index (M2) [32], hyper-Zagreb index [33], max-min
rodeg index [34], min-max rodeg index, Albertson index
[35], sigma index [36], inverse symmetric deg index [37],
atom-bond connectivity index [38], and inverse sum indeg
index [34] are studied.

+e selected bond additive and degree-based topological
indices are the most studied indices and can well predict the
physicochemical and bioactivity properties of chemical
structures. +e first and second Zagreb indices are topo-
logical indices that best predict the molar reaction and
polarity of some new drugs used in cancer treatment [39].
+e max-min rodeg index gives very good prediction in the
linear model for enthalpy of vaporization and standard
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enthalpy of vaporization in the set of octane isomers and also
for log water activity coefficient in the set of poly-
chlorobiphenyles [40]. Atom-bond connectivity index has a
good prediction ability when it comes to the enthalpy of
formation of alkanes [38].+e first hyper-Zagreb index gives
the best predictor model in the linear model for the boiling
point of benzenoid hydrocarbons [41]. +e inverse sum
indeg index is the best predictor for the total surface area of
octane isomers [34]. In addition, the ISI index is very good at
predicting the vaporization enthalpy and sublimation en-
thalpy of monocarboxylic acids [42]. Various degree-based
irregularity indices such as Albertson index and sigma index
give a good prediction for physicochemical properties of
octane isomers [43]. Table 1 shows the mathematical ex-
pressions of these indices.

+e values of enthalpy of vaporization (E), flash point
(FP), molar refractivity (MR), polarizability (P), surface
tension (T), andmolar volume (MV) of these potential drugs
against COVID-19 are taken from ChemSpider [44]. Table 2
shows some of the physicochemical properties of potential
drugs that can be used in the treatment of COVID-19.

Curvilinear regression analysis can be used to fit curves
instead of straight lines. In this study, the following equa-
tions are tested:

Y � a + b1X; n, R
2
, F(linear equation),

Y � a + b1X + b2X
2
; n, R

2
, F(quadratic equation),

(1)

where Y is the response or dependent variable, a is the
regressionmodel constant, bi(i � 1, 2) are the coefficients for
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Figure 1: +e chemical structures of lopinavir and lopinavir analogs [29].
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Figure 2: +e chemical structures of favipiravir, ritonavir, and their analogs [29].

Table 1: Topological indices and their mathematical expressions.

Vertex-degree-based topological indices Mathematical expressions
First Zagreb index M1(G) � 􏽐uv∈E(G)(d(u) + d(v))

Second Zagreb index M2(G) � 􏽐uv∈E(G)(d(u)d(v))

Hyper-Zagreb index HM(G) � 􏽐uv∈E(G)(d(u) + d(v))2

Max-min rodeg index mMs de(G) � 􏽐uv∈E(G)

���������������������������
max d(u), d(v){ }/min d(u), d(v){ }

􏽰

Min-max rodeg index mMs de(G) � 􏽐uv∈E(G)

���������������������������
min d(u), d(v){ }/max d(u), d(v){ }

􏽰

Albertson index irr(G) � 􏽐uv∈E(G)|d(u) − d(v)|

Sigma index σ(G) � 􏽐uv∈E(G)(d(u) − d(v))2

Inverse symmetric deg index IS DD(G) � 􏽐uv∈E(G)d(u)d(v)/d(u)2 + d(v)2

Atom-bond connectivity index ABC(G) � 􏽐uv∈E(G)d(u) + d(v) − 2/d(u)d(v)

Inverse sum indeg index ISI(G) � 􏽐uv∈E(G)d(u)d(v)/d(u) + d(v)
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the individual descriptor, X, X are independent variables, n

is the number of samples used for building the regression
equation, R2 is the square of the correlation coefficient, R is
the correlation coefficient, and F is the calculated value of the
F-ration test. For more detailed information, see [45]. Note
that when the experimental and theoretical results are close
to each other, the correlation coefficient is close to 1. +e
observed values and model predictions must be compared to
measure the predictive quality of the model (see details in
[46, 47]). +erefore, it is necessary to consider the RMSE
(root mean square error) metric for the predictive power of
the model. It is clear that the best predictive model is the
minimum error, i.e., the minimum RMSE is defined as

RMSE �

������������

􏽐
n
i�1 yi − 􏽢yi( 􏼁

2

n

􏽳

, (2)

where yi is the observed value of the independent variable in
the test set, 􏽢yi is the predicted value of the independent
variables in the test set, and n is the number of samples in the
test [47]. R2,R, F, and RMSE are considered for the goodness
of fit of the model, i.e., max(R2), max (R), max(F), and
min(RMSE). +e curvilinear regression analyses are ob-
tained by using the SPSS statistical software. +e indepen-
dent variables in the curvilinear regression models are the
values of the topological indices, which are described above,
of various drugs used in the treatment of COVID-19.

3. Main Results

From Figures 1 and 2, the edge and vertex numbers of
molecular graphs of chemical structures are seen. Let
Ei,j � i � du, j � dv|uv ∈ E(G)􏼈 􏼉. +e molecular graph of
CID71749833 has 54 vertices and 57 edges. Its edges can be
partitioned as |E1,3| � 6, |E1,4| � 8, |E2,2| � 14, |E2,3| � 22,
|E3,3| � 2, |E3,4| � 2, |E4,4| � 3. +e molecular graph of
CID10009410 has 47 vertices and 50 edges. Its edges can be
partitioned as |E1,3| � 9, |E2,2| � 12, |E2,3| � 22, |E3,3| � 7.

+e molecular graph of CID44271905 has 46 vertices and 49
edges. Its edges can be partitioned as |E1,3| � 8, |E2,2| � 12,
|E2,3| � 24, |E3,3| � 5. +e molecular graph of CID3010243
has 45 vertices and 48 edges. Its edges can be partitioned as
|E1,3| � 8, |E2,2| � 13, |E2,3| � 20, |E3,3| � 7. +e molecular
graph of CID44271958 has 44 vertices and 47 edges. Its edges
can be partitioned as |E1,3| � 6 |E2,2| � 16, |E2,3| � 20,
|E3,3| � 5. +e molecular graph of CID89869520 has 12
vertices and 12 edges. Its edges can be partitioned as
|E1,3| � 5, |E2,3| � 4, |E3,3| � 3. +e values in Table 3 are
obtained from Table 1 and the above values using combi-
natorial computation and edge partition technique. +e
values of these indices were also obtained [21].

+e linear and quadratic models are obtained by using
the data in Table 2 and 3 with the SPSS program. Table 4
shows the correlation coefficient (R) obtained by the linear
regression model between various topological indices and
physicochemical properties of potential drugs against
COVID-19. +ese physicochemical properties are the en-
thalpy of vaporization (E), the flash point (FP), the molar
refractivity (MR), the polarizability (P), the surface tension
(T), and the molar volume (MV). Among the correlation
coefficients obtained for a physicochemical property, the
model with max(R) is the best predictor of the regression
model for that physicochemical property. +erefore, max(R)
for each physicochemical property is marked in bold in
Table 4.

From Table 4, the mMsde index is the best estimator
index for molar refraction, polarity, surface tension, and
molar volume in linear regression models.+e linear models
obtained with these topological indices are as follows. Table 5
shows linear regressionmodels that give the best estimate for
physicochemical properties.

Table 6 shows the correlation coefficient (R) obtained by the
quadratic regression model between various topological indices
and physicochemical properties of potential drugs against
COVID-19. max (R) for each physicochemical property is
marked in bold in Table 6.

Table 3: +e values of topological indices of the molecular structures of potential drugs to be used in the treatment of COVID-19.

PubChem ID M1 M2 HM Mmsde mMsde irr σ ISDD ABC ISI

71749833 282 328 1432 74,646 46,159 60 120 24,296 24,916 63,72
10009410 236 270 1138 61,532 42,159 40 58 22,353 36,056 55,65
44271905 230 261 1100 60,250 41,214 40 56 21,976 35,321 54,3
3010243 226 259 1088 58,351 40,948 36 52 15,130 34,533 58,75
44271958 218 247 1032 55,887 40,794 32 44 19,030 33,688 52
89869520 58 66 288 16,559 9,152 14 24 4,846 8,910 13,05

Table 2: +e physicochemical properties of potential drugs to be used in the treatment of COVID-19.

PubChem ID Formula E FP MR P T MV
CID71749833 C37H40D8N4O5 140.8 512.7 179,2 71 49,5 540,5
CID10009410 C37H47FN4O5 141,1 513,7 179,2 71 49 544,7
CID44271905 C37H48N4O5 140,8 512,7 179,2 71 49,5 540,5
CID3010243 C36H46N4O5 140 509,5 174,6 69,2 50,5 522,7
CID44271958 C35H44N4O5 138,9 505,1 169,5 67,2 50,9 507,9
CID89869520 C6H6FN3O2 63,2 185,5 41,3 16,4 72,9 110
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Table 5: Linear regression models that give the best estimate for physicochemical properties.

E � 44.913 + 1.514mMsde R2 � 0.898 F� 35,387 SE� 11.221 RMSE� 9.161
FB � 108.463 + 6.382mMsde R2 � 0.898 F� 35,242 SE� 47.409 RMSE� 38.709
MR � 7.814 + 2.677mMsde R2 � 0.913 F� 41.906 SE� 18.239 RMSE� 14.891
P � 3.148 + 1.060mMsde R2 � 0.913 F� 41.798 SE� 7.231 RMSE� 5.904
T � 78.578 − 0.456mMsde R2 � 0.910 F� 40.444 SE� 3.161 RMSE� 2.580
MV � 4.834 + 8.365mMsde R2 � 0.914 F� 42.607 SE� 56.514 RMSE� 46.143

Table 7: +e quadratic regression models that give the best estimate for the enthalpy of vaporization (E).

Regression models R2 F SE RMSE
E � 10.610 + 1.022M1 − 0.002M2

1 1 100473.208 0.157 0.111
E � 11.244 + 0.886M2 − 0.001M2

2 1 30536.699 0.285 0.201
E � 9.401 + 0.211HM − (8.320E + 5)HM2 1 11702.730 0.460 0.325
E � 18.477 + 5.438mMsde − 0.060mMsde

2 1 3994.438 0.788 0.557
E � 2.903 + 4.154Mmsde − 0.031Mmsde

2 1 23347.231 0.326 0.230
E � 13.056 + 4.318ISI − 0.036ISI2 1 3667.709 0.822 0.581

Table 8: +e quadratic regression models that give the best estimate for the flashpoint.

Regression models R2 F SE RMSE
FB � − 36.499 + 4.314M1 − 0.008M2

1, 1 109749.28 0.634 0.448
FB � − 33.789 + 3.741M2 − 0.006M2

2, 1 25599.895 1.312 0.928
FB � − 41.520 + 0.890HM − 0.000HM2 1 9442.841 2.161 1.527
FB � − 3.511 + 22.989mMsde − 0.255mMsde

2 1 4653.265 3.078 2.176
FB � − 69.004 + 17.537Mmsde − 0.131Mmsde

2 1 16434.89 1.638 1.158
FB � − 26.202 + 18.231ISI − 0.154ISI2, 1 4051.916 3.298 2.332

Table 4: +e correlation coefficient (R) obtained by linear regression model between topological indices and physicochemical properties of
various drugs used in treatment of COVID-19.

E FB MR P T MV
M1 0.960 0.960 0.965 0.966 0.964 0.966
M2 0.952 0.951 0.958 0.958 0.957 0.959
HM 0.934 0.934 0.941 0.942 0.940 0.942
Mmsde 0.948 0.948 0.955 0.955 0.955 0.956
mMsde 0.991 0.991 0.992 0.992 0.991 0.992
irr 0.768 0.768 0.785 0.789 0.783 0.788
σ 0.540 0.540 0.559 0.560 0.555 0.562
ISDD 0.902 0.901 0.913 0.913 0.918 0.917
ABC 0.922 0.922 0.917 0.916 0.919 0.916
ISI 0.977 0.977 0.980 0.980 0.978 0.980

Table 6:+e correlation coefficient (R) obtained by quadratic regression model between topological indices and physicochemical properties
of various drugs used in treatment of COVID-19.

E FB MR P T MV
M1 1 1 0.999 0.999 0.999 0.999
M2 1 1 0.999 0.999 0.999 0.999
HM 1 1 0.999 0.999 0.999 0.999
Mmsde 1 1 1 1 0.999 0.999
mMsde 1 1 0.998 0.998 0.998 0.998
irr 0.990 0.989 0.994 0.994 0.994 0.995
σ 0.962 0.962 0.973 0.972 0.973 0.975
ISDD 0.994 0.994 0.992 0.992 0.994 0.992
ABC 0.998 0.998 0.994 0.994 0.993 0.992
ISI 1 1 0.998 0.998 0.998 0.998
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+e regression models of the best predictive indices
are given below for molar refraction, polarity, surface
tension, and molar volume in quadratic regression
models from Table 6. Table 7 shows quadratic regression
models that give the best estimate for the enthalpy of
vaporization.

From the above equations, M1 is the best predictor index
for the enthalpy of vaporization in quadratic regression
models from min(RMSE), max(R2), and max(F). Table 8
shows quadratic regression models that give the best esti-
mate for the flash point (FP). +e model that predicts the
best is marked in bold (Table 8).

From the above equations, M1 is the best predictor index
for the flash point in quadratic regression models from
min(RMSE), max(R2), and max(F) (Table 8). Table 9 shows
quadratic regression models that give the best estimate for
the molar refractivity (MR), the polarizability (P), and the
surface tension (T).

From the above equations, Mmsde is the best predictor
index for the polarizability, the surface tension, and the
molar refractivity (MR) in quadratic regression models from
min(RMSE), max(R2), and max(F) (Table 9). Table 10 shows
quadratic regression models that give the best estimate for
the molar volume.

Table 9:+e quadratic regression models that give the best estimation for the molar refractivity (MR), the polarizability (P), and the surface
tension (T).

Regression models R2 F SE RMSE
MR � − 60.153 + 6.950Mmsde − 0.050Mmsde

2 0.999 1743.03 2.092 1.479
P � − 23.805 + 2.754Mmsde − 0.020Mmsde

2 0.999 1819.3 0.811 0.573
T � 88.026 − 0.292M1 + 0.001M2

1 0.998 637.521 0.589 0.416
T � 87.825 − 0.255M2 + 0.000M2

2 0.998 667.918 0.576 0.407
T � 88.573 − 0.061HM + (2.360E − 5)HM2 0.998 862.918 0.518 0.366
T � 90.313 − 1.193Mmsde + 0.009Mmsde

2 0.998 956.122 0.482 0.340

Table 10: +e quadratic regression models that give the best estimate for the molar volume.

Regression models R2 F SE RMSE
MV � − 163.089 + 5.271M1 − 0.010M2

1 0.997 592.767 11.191 7.913
MV � − 161.643 + 4.605M2 − 0.007M2

2 0.998 633.566 10.826 7.654
MV − 173.989 + 1.107HM + 0.000HM2 0.998 808.010 9.589 6.780
MV � − 204.851 + 21.546Mmsde − 0.154Mmsde

2 0.998 946.143 8.862 6.266
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Figure 3: +e plots of the linear and quadratic regression equations of the molar volume with the min-max rodeg index and the max-min
rodeg index, respectively.
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From the above equations, Mmsde is the best predictor
index for the molar volume in quadratic regression models
from min(RMSE), max(R2), and max(F) (Table 10).

Figure 3 shows plots of the linear and quadratic re-
gression equations of the molar volume with the min-max
rodeg index and the max-min rodeg index, respectively.

4. Conclusions

New variants may be emerging that are resistant to some
vaccines produced for COVID-19. +erefore, it is necessary
to produce medicine as soon as possible against COVID-19.
+ere is no medicine yet to alleviate or end this pandemic.
Existing drugs are being used to alleviate the pandemic. +is
study’s aim is to obtain information about the topology of
some chemical structures with minimum cost andminimum
time with topological indices.

Four structural analogs of lopinavir, one structural an-
alog of favipiravir, and one structural analog of ritonavir are
studied. Rafi et al. [28] conducted a QSAR study for some
properties of these analogs and found that their drug
properties were higher and stressed that there could be
potential drugs against COVID-19. In this study, QSPR
modeling for some physicochemical properties of these
structures is performed using the topological indices of the
molecular graphs of these structures. +ese types of mod-
eling are done by linear and quadratic regression analysis.
Models were studied with 6 descriptors and 10 topological
indices.

QSPR modeling shows that the best predictive topo-
logical index is the min-max rodeg index for enthalpy of
vaporization, flash point, molar refractivity, polarizability,
surface tension, and molar volume in linear regression. Also,
in quadratic regression models, the best predictive topo-
logical indices are the first Zagreb index for enthalpy of
vaporization and flash point and the max-min rodeg index
for molar refractivity, polarizability, surface tension, and
molar volume. Correlation coefficients obtained in QSPR
modeling are very close to 1 and 1 in some models. +e
experimental and theoretical results of the models obtained
are very close to each other. +e predictive strength is tested
for these degree-based topological indices by using some
physicochemical properties of these structures. Moreover,
models that are the best predictive among linear and qua-
dratic regression models are quadratic models.+e results of
this study will shed light on new drug discoveries, most
importantly in the treatment of COVID-19, chemistry, and
pharmacy science.

+e physicochemical properties of a drug are important
for its use. +e study is based on the idea that these drugs,
which are tried and thought for the treatment of COVID-19,
are used together and/or their analogs are used. By using the
results of the study, if a single drug is obtained from these
drugs, information about that drug can be obtained without
experimenting. +us, it can provide information about the
properties of drugs that are similar to these structures or that
will be obtained from the combination of these structures,
saving time and money without experimenting.
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�is study introduces the Cexp average assignments and investigates its properties using various ladder graphs. �e ladder graphs
can be found in every communication networks. Ladder networks are increasingly being used in everyday life for monitoring and
environmental applications such as domestic, military, surveillance, industrial, medical applications, and tra�c management.
�ese datasets are a�icted by the average representation of the graph structure. It aids in the visualisation and comprehension of
data analysis. �e Cexp labeling is used in sensor networks, adhoc networks, and other applications. It also e�ciently creates a
communication network after using noise reduction methods to remove salt and pepper noise.

1. Introduction

A graph labeling is the assignment of labels, conventionally
indicated by integers, to edges and/or vertices of a graph in the
mathematical domain of graph theory. �e concept of labeling
may be applied to many areas of graph theory, for example, in
automata theory and formal language theory. We use [1–5] for
notations and nomenclature. We recommend [6] for a thor-
ough examination of graph labeling. Let Pn be a path on n
nodes denoted by u1,μ, where 1≤ μ≤ n, and with n − 1 lines
denoted by e1,δ, where 1≤ δ ≤ n − 1, where eμ is the line joining
the vertices u1,μ and u1,μ+1. On each edge eδ, erect a ladder with
n − (μ − 1) steps including the edge eμ, for
μ � 1, 2, 3, . . . , n − 1. �e resulting graph is called the one-
sided step graph, and it is denoted by STn. LetG1 andG2 be any
two graphs with p1 and p2 vertices, respectively.�en,G1 × G2
is the Cartesian product of two graphs. A ladder graph Ln is the
graph P2 × Pn. �e graph G°Sm is obtained from G by

attachingm pendant vertices to each vertex ofG.�e triangular
ladder TLn, for n≥ 2, is a graph obtained from two paths by
u1, u2, . . . un and v1, v2, . . . vn by adding the edges
uμvμ, 1≤ μ≤ n and uμvμ+1, 1≤ μ≤ n − 1. �e slanting ladder
SLn is a graph obtained from two paths u1, u2, . . . un and
v1, v2, . . . vn by joining each vμ, with uμ+1, 1≤ μ≤ n − 1. �e
graphD∗n having the vertices aμ,δ: 1≤ μ≤ n, δ � 1, 2, 3, 4{ } and
its edge set is aμ,1aμ+1,1, aμ,3aμ+1,3: 1≤ μ≤ n − 1{ }∪ aμ,1aμ,2,{
aμ,2aμ,3, aμ,3 aμ,4, aμ,4aμ,1: 1≤ μ≤ n}.

2. Literature Survey

In [7], the authors talked about theF-root squaremean labeling
for line graph of the path, cycle, star, Pn°S1, Pn°S2,
[Pn; S1], S(Pn°S1), ladder, slanting ladder, the crown graph
Cn°S1, and the arbitrary subdivision of S3. �e authors in [8]
discussed (1, 1, 0)F-face mean labeling some planar graphs
and, in [9], face labelings of type (1, 1, 1) for generalized prism.
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Alanazi et al. explained the classicalmeanness of the graphs, the
one-sided step graph STn, double-sided step graph 2ST2n,
planar grid Pm × Pn, ladder graph Ln, graph Ln°Sm for m≤ 2,
triangular ladder graph TLn, graph TLn°Sm for m≤ 2, graph
SLn°Sm for m≤ 2, slanting ladder graph SLn, graph SLn°Sm for
m≤ 2, graph D∗n , diamond ladder graph Dln, and latitude
ladder graph LLn in [10–12]. Dafik slamin et al. highlighted the
super (a, d)-edge-antimagic total properties of triangular book
and diamond ladder graphs in [13].Moussa and Badr discussed
the odd gracefulness of few ladder graphs and proved that
ladder and subdivision of ladder graphs with pendent edges are
odd graceful in [14]. In [15], the authors emphasized the
significance of exponential mean labeling of graphs, and they
examined the exponential mean labeling of some graphs ob-
tained from duplicating operations. Inspired by such tre-
mendous works of researchers in the region of graph
assignments in [16–25], we defined Cexp average assignment of
graphs. A Cexp average of two integers is not always an integer.
Consequently, Cexp average assignment must be an integer; we
may get ceiling function by considering the integral part. In this
study, our conversation and attempt is to examine the various
assignment techniques on Cexp average assignment for few
ladder graphs.

3. Methodology

A function Ψ is known as an Cexp average assignment of G if
Ψ: V(G)⟶ N − q + 2, q + 3, . . . ,∞􏼈 􏼉 is one to one and
the instigated bijective function Ψ∗: E(G)⟶
N − 1, q + 2, q + 3, . . . ,∞􏼈 􏼉 characterized by

Ψ∗(uv) � ⌈
1
e

X(v)

X(u)
􏼠 􏼡

1/Y

⌉, (1)

where X(w) � Ψ(w)Ψ(w), Y � Ψ(v) − Ψ(u), q is the number
of edges, andN is the set of all natural numbers. A graph that
concedes an Cexp average assignment is known as a Cexp
average assignment graph.

Figure 1 shows the Cexp average assignment of the graph
SL2°S1.

4. Main Results

Theorem 1. 5e one-sided step graph STn is an Cexp average
assignment graph, for n≥ 2.

Proof. Make the vertex assignment Ψ: V(STn)⟶ N−

n2 + n, n2 + n + 1, . . . ,∞􏼈 􏼉, Ψ(u1,μ) � n2 − 1 + μ, for 2≤
μ≤ n, and Ψ(uλ,μ) � (1 + n − λ)2 + μ − 1, for 2≤ λ≤ n and
1≤ μ≤ n + 2 − λ.

Consequently, the instigated edge assignment Ψ∗ is
acquired as follows:

Ψ∗ uλ,μuλ+1,μ􏼐 􏼑 � − 2nλ + n − λ + λ2 + n
2

+ μ, for n − 1≥ λ≥ 1 and 1 − λ + n≥ μ≥ 1,

Ψ∗ u1,μu1,μ+1􏼐 􏼑 � n
2

+ μ, for 1≤ μ≤ n − 1, and

Ψ∗ uλ,μuλ,μ+1􏼐 􏼑 � (1 + n − λ)
2

+ μ, for 2≤ λ≤ n and 1≤ μ≤ n + 1 − λ.

(2)

As a result, for n≥ 2,Ψ is an Cexp average assignment and
the one-sided step graph STn is an Cexp average assignment
graph. □

Theorem 2. 5e graph Pm × Pn is an Cexp average assign-
ment graph, for m≤ 4 and n≥ 2.

Proof

Case (i): m � 2.
Make the vertex assignment, Ψ: V(P2 × Pn)⟶ N−

3n, 3n + 1, . . . ,∞{ }.
Ψ(vλμ) � λ − 3 + 3μ, for 1≤ λ≤ 2 and 1≤ μ≤ n.
Consequently, the instigated edge assignment Ψ∗ is
acquired as follows.
Ψ∗(vλμ vλ(μ+1)) � λ − 1 + 3μ, for 1≤ λ≤ 2 and 1≤ μ≤
n − 1.

Ψ∗(v1μv2μ) � − 13μ, for 1≤ μ≤ n.
Case (ii): m � 3.
Make the vertex assignment, Ψ: V(P3 × Pn)⟶
N − 5n − 1, 5n + 1, . . . ,∞{ }.
Ψ(vλμ) � λ − 5 + 5 μ, for 1≤ λ≤ 3 and 2≤ μ≤ n.

Ψ(vλ1) �
λ, 1≤ λ≤ 2,

4, λ � 3 .
􏼨

Consequently, the instigated edge assignment Ψ∗ is
acquired as follows:
Ψ∗(vλμvλ(μ+1)) � λ − 2 + 5μ, for 1≤ λ≤ 3 and 2≤
μ≤ n − 1
Ψ∗(vλμv(λ+1)μ) � λ − 4 + 5μ, for 1≤ λ≤ 2 and 2≤ μ≤ n

Ψ∗(vλ1vλ2) � λ + 3, for 1≤ λ≤ 3,

Ψ∗(vλ1v(λ+1)1) � 1 + λ, for 1≤ λ≤ 2,

Case (iii): m � 4 and n≥ 3.

1 2 4 3

5 6 8 7

2 3 4

5

6 7 8

Figure 1: An Cexp average assignment of the graph, SL2°S1.
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Make the vertex assignment:
Ψ: V(P4 × Pn)⟶ N − 7n − 2, 7n − 1, . . . ,∞{ }

Ψ(vλμ) � λ − 7 + 7μ, for 1≤ λ≤ 4 and 3≤ μ≤ n

Ψ(vλ2) � λ + 7, for 1≤ λ≤ 4

Ψ(vλ1) �
λ, 1≤ λ≤ 2
λ + 1, 3≤ λ≤ 4􏼨

Consequently, the instigated edge assignment Ψ∗ is
acquired as follows:

Ψ∗ vλμv(λ+1)μ􏼐 􏼑 � λ − 6 + 7μ, for 1≤ λ≤ 3 and 3≤ μ≤ n,

Ψ∗ vλ2v(λ+1)2􏼐 􏼑 � 8 + λ, for 1≤ λ≤ 3,

Ψ∗ vλ1v(λ+1)1􏼐 􏼑 �
λ + 1, 1≤ λ≤ 2,

5, λ � 3,
􏼨

Ψ∗ vλμvλ(μ+1)􏼐 􏼑 � λ − 3 + 7μ for 2≤ λ≤ 4 and 1≤ μ≤ n − 1, and

Ψ∗ v1μv1(μ+1)􏼐 􏼑 �
8μ − 4, 1≤ μ≤ 2,

7μ − 2, 3≤ μ≤ n − 1.
􏼨

(3)

As a result, Ψ is an Cexp average assignment and the
graph Pm × Pn is an Cexp average assignment graph, for
m≤ 4. □

Corollary 1. Every Ladder graph Ln � P2 × Pn is an Cexp
average assignment graph.

Theorem 3. 5e graph Ln°Sm is an Cexp average assignment
graph, for n≥ 2 and m≤ 2.

Proof

Case (i): m � 1.
Make the vertex assignment: Ψ: V(Ln°S1)⟶ N−

5n, 5n + 1, . . . ,∞{ },

Ψ x
(λ)
1􏼐 􏼑 �

2, λ � 1,

− 1 + 5λ, 2≤ λ≤ n,
􏼨

Ψ u
(λ)
1􏼐 􏼑 � − 4 + 5λ, for 1≤ λ≤ n,

Ψ vλ( 􏼁 �
4, λ � 1,

− 2 + 5λ, 2≤ λ≤ n and,
􏼨

Ψ uλ( 􏼁 �
3, λ � 1,

− 3 + 5λ, 2≤ λ≤ n.
􏼨

(4)

Consequently, the instigated edge assignment Ψ∗ is
acquired as follows:

Ψ∗ vλx
(λ)
1􏼐 􏼑 �

3, λ � 1,

− 1 + 5λ, 2≤ λ≤ n.
􏼨

Ψ∗ uλw
(λ)
1􏼐 􏼑 � 5λ − 3, for 1≤ λ≤ n,

Ψ∗ uλvλ( 􏼁 �
4, λ � 1,

− 2 + 5λ, 2≤ λ≤ n,
􏼨

Ψ∗ vλvλ+1( 􏼁 � 1 + 5λ, for 1≤ λ≤ n − 1 and

Ψ∗ uλuλ+1( 􏼁 � 5λ, for 1≤ λ≤ n − 1.

(5)

Case (ii): m � 2.
Make the vertex assignment: Ψ: V(Ln°S2)⟶ N−

7n, 7n + 1, . . . ,∞{ },

Ψ x
(λ)
2􏼐 􏼑 �

8, λ � 1,

− 5 + 7λ, 2≤ λ≤ n, λ � 2k, k ∈ N,

− 2 + 7λ, 2≤ λ≤ n, λ � 2k + 1, k ∈ N,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

Ψ x
(λ)
1􏼐 􏼑 �

2λ + 3, 1≤ λ≤ 2,

− 6 + 7λ, 3≤ λ≤ n, λ � 2k + 2, k ∈ N,

− 3 + 7λ, 2≤ λ≤ n, λ � 2k + 1 k ∈ N,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

Ψ w
(λ)
2􏼐 􏼑 �

2, λ � 1,

− 1 + 7λ, 2≤ λ≤ n, λ � 2k, k ∈ N,

− 4 + 7λ, 2≤ λ≤ n, λ � 2k + 1, k ∈ N,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

Ψ w
(λ)
1􏼐 􏼑 �

1, λ � 1,

− 3 + 7λ, 2≤ λ≤ n, λ � 2k, k ∈ N,

− 6 + 7λ, 2≤ λ≤ n, λ � 2k + 1, k ∈ N,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

Ψ vλ( 􏼁 �

4, λ � 1,

− 4 + 7λ, 2≤ λ≤ n, λ � 2k, k ∈ N,

− 1 + 7λ, 2≤ λ≤ n, λ � 2k + 1, k ∈ N,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

Ψ uλ( 􏼁 �

3, λ � 1,

− 2 + 7λ, 2≤ λ≤ n, λ � 2k, k ∈ N,

− 5 + 7λ, 2≤ λ≤ n, λ � 2k + 1, k ∈ N.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(6)

Consequently, the instigated edge assignment Ψ∗ is
acquired as follows:

Ψ∗ vλx
(λ)
2􏼐 􏼑 �

7λ − 4, 2≤ λ≤ n, λ � 2k, k ∈ N,

− 1 + 7λ, 1≤ λ≤ n, λ � 2k + 1, k ∈ N,

⎧⎨

⎩

Ψ∗ vλx
(λ)
1􏼐 􏼑 �

7λ − 5, 1≤ λ≤ n, λ � 2k, k ∈ N,

− 2 + 7λ, 4≤ λ≤ n, λ � 2k + 1, k ∈ N,

⎧⎨

⎩

Ψ∗ uλw
(λ)
2􏼐 􏼑 �

7λ − 1, 1≤ λ≤ n, λ � 2k, k ∈ N,

− 4 + 7λ, 1≤ λ≤ n, λ � 2k + 1, k ∈ N,

⎧⎨

⎩

Ψ∗ uλw
(λ)
1􏼐 􏼑 �

2, λ � 1,

− 2 + 7λ, 2≤ λ≤ n, λ � 2k, k ∈ N,

− 5 + 7λ, 1≤ λ≤ n, λ � 2k + 1, k ∈ N,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

Ψ∗ uλvλ( 􏼁 � 7λ − 3, for 1≤ λ≤ n,

Ψ∗ vλvλ+1( 􏼁 � 7λ + 1, for 1≤ λ≤ n − 1, and

Ψ∗ uλuλ+1( 􏼁 �
8, λ � 1,

7λ, 2≤ λ≤ n − 1.

⎧⎨

⎩

(7)

As a result, Ψ is an Cexp average assignment and the
graph Ln°Sm is an Cexp average assignment graph, for
n≥ 2 and m≤ 2. □
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Theorem 4. 5e triangular ladder graph TLn is an Cexp
average assignment graph, for n≥ 2.

Proof. Make the vertex assignment; Ψ: V(TLn)⟶ N−

4n − 1, 4n + 1, . . . ,∞{ },

Ψ vλ( 􏼁 �
4λ − 1, 1≤ λ≤ n − 1,

4n − 2, λ � n, and,
􏼨

Ψ uλ( 􏼁 � 4λ − 3, for 1≤ λ≤ n.

(8)

Consequently, the instigated edge assignment Ψ∗ is
acquired as follows:

Ψ∗ vλuλ+1( 􏼁 � 4λ, for 1≤ λ≤ n − 1,

Ψ∗ uλvλ+1( 􏼁 � 1 + 4λ, for 1≤ λ≤ n − 1,

Ψ∗ uλvλ( 􏼁 � − 2 + 4λ, for 1≤ λ≤ n, and

Ψ∗ uλuλ+1( 􏼁 � − 1 + 4λ, for 1≤ λ≤ n − 1.

(9)

As a result, Ψ is an Cexp average assignment and the
triangular ladder graph TLn is an Cexp average assignment
graph, for n≥ 2. □

Theorem 5. 5e graphTLn°Sm is anCexp average assignment
graph, for n≥ 2 and m≤ 2.

Proof

Case (i): m � 1.
Make the vertex assignment; Ψ: V(TLn°S1)⟶ N −

6n − 1, 6n, . . . ,∞{ },

Ψ x
(λ)
1􏼐 􏼑 �

3, λ � 1,

− 3 + 6λ, 2≤ λ≤ n,
􏼨

Ψ u
(λ)
1􏼐 􏼑 �

− 6 + 7λ, 1≤ λ≤ 2,

− 5 + 6λ, 3≤ λ≤ n,
􏼨

Ψ vλ( 􏼁 � 6λ − 2, for 1≤ λ≤ n, and

Ψ uλ( 􏼁 �
− 3 + 5λ, 1≤ λ≤ 2,

− 4 + 6λ, 3≤ λ≤ n.
􏼨

(10)

Consequently, the instigated edge assignment Ψ∗ is
acquired as follows:

Ψ∗ vλx
(λ)
1􏼐 􏼑 �

3, λ � 1,

− 2 + 6λ, 2≤ λ≤ n.
􏼨

Ψ∗ uλw
(λ)
1􏼐 􏼑 � − 4 + 6i, for 1≤ λ≤ n and

Ψ∗ uλvλ( 􏼁 �
4, λ � 1,

− 3 + 6λ, 2≤ λ≤ n,
􏼨

Ψ∗ vλuλ+1( 􏼁 � 6λ, for 1≤ λ≤ n − 1,

Ψ∗ vλvλ+1( 􏼁 � 1 + 6λ, for 1≤ λ≤ n − 1, and

Ψ∗ uλuλ+1( 􏼁 � − 1 + 6λ, for 1≤ λ≤ n − 1.

(11)

Case (ii): m � 2.

Make the vertex assignment; Ψ: V(TLn°S2)⟶ N −

8n − 1, 8n, . . . ,∞{ },

Ψ x
(λ)
2􏼐 􏼑 �

9, λ � 1,

− 6 + 8λ, 2≤ λ≤ n,
􏼨

Ψ x
(λ)
1􏼐 􏼑 �

4, λ � 1,

− 7 + 8λ, 2≤ λ≤ n,
􏼨

Ψ w
(λ)
2􏼐 􏼑 �

3, λ � 1,

− 2 + 8λ, 2≤ λ≤ n,
􏼨

Ψ w
(λ)
1􏼐 􏼑 �

1, λ � 1,

− 4 + 8λ, 2≤ λ≤ n,
􏼨

Ψ vλ( 􏼁 �
6, λ � 1,

− 5 + 8λ, 2≤ λ≤ n, and
􏼨

Ψ uλ( 􏼁 �
2, λ � 1,

− 3 + 8λ, 2≤ λ≤ n.
􏼨

(12)

Consequently, the instigated edge assignment Ψ∗ is
acquired as follows:

Ψ∗ vλx
(λ)
2􏼐 􏼑 �

8, λ � 1,

− 5 + 8λ, 2≤ λ≤ n,
􏼨

Ψ∗ vλx
(λ)
1􏼐 􏼑 �

5, λ � 1,

− 6 + 8λ, 2≤ λ≤ n
􏼨

Ψ∗ uλw
(λ)
2􏼐 􏼑 �

3, λ � 1,

− 2 + 8λ, 2≤ λ≤ n,
􏼨

Ψ∗ uλw
(λ)
1􏼐 􏼑 �

2, λ � 1,

− 3 + 8λ, 2≤ λ≤ n,
􏼨

Ψ∗ vλuλ+1( 􏼁 �
6, λ � 1,

8λ, 2≤ λ≤ n − 1,
􏼨

Ψ∗ uλvλ( 􏼁 � 8λ − 4, for 1≤ λ≤ n,

Ψ∗ vλvλ+1( 􏼁 �
9, λ � 1,

− 1 + 8λ, 2≤ λ≤ n − 1, and
􏼨

Ψ∗ uλuλ+1( 􏼁 �
7, λ � 1,

1 + 8λ, 2≤ λ≤ n − 1.
􏼨

(13)

As a result, Ψ is an Cexp average assignment and the
graph TLn°Sm is an Cexp average assignment graph, for n≥ 2
and m≤ 2. □

Theorem 6. 5e slanting ladder graph SLn is an Cexp average
assignment graph, for n≥ 2.

Proof. Make the vertex assignment; Ψ: V(SLn)⟶ N −

3n − 1, 3n, . . . ,∞{ },

Ψ vn( 􏼁 � 3n − 2,

Ψ vλ( 􏼁 � 3λ, for 1≤ λ≤ n − 1,

Ψ uλ( 􏼁 � 3λ − 4, for 2≤ λ≤ n, and

Ψ u1( 􏼁 � 1.

(14)
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Consequently, the instigated edge assignment Ψ∗ is
acquired as follows:

Ψ∗ vλuλ+1( 􏼁 � 3λ, for 1≤ λ≤ n − 1,

Ψ∗ vn− 1vn( 􏼁 � − 2 + 3n,

Ψ∗ vλvλ+1( 􏼁 � 3λ + 2, for 1≤ λ≤ n − 2, and

Ψ∗ uλuλ+1( 􏼁 �
2, λ � 1,

3λ − 2, 2≤ λ≤ n − 1.
􏼨

(15)

As a result, Ψ is an Cexp average assignment and the
graph SLn is an Cexp average assignment graph. □

Theorem 7. 5e graph SLn°Sm is an Cexp average assignment
graph, for n≥ 2 and m≤ 2.

Proof

Case i: m � 1 and n≥ 3.
Make the vertex assignment, Ψ: V(SLn°S1)⟶ N −

5n − 1, 5n, . . . ,∞{ }.

Ψ x
(λ)
1􏼐 􏼑 �

7, λ � 1,

1 + 5λ, 2≤ λ≤ n − 1,

− 3 + 5n, λ � n,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

Ψ w
(λ)
1􏼐 􏼑 �

3λ − 2, 1≤ λ≤ 2,

− 7 + 5λ, 3≤ λ≤ n,

⎧⎨

⎩

Ψ vλ( 􏼁 �

6, λ � 1,

5λ, 2≤ λ≤ n − 1,

5n − 2, λ � n, and

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

Ψ uλ( 􏼁 �
1 + λ, 1≤ λ≤ 2,

− 6 + 5λ, 3≤ λ≤ n.

⎧⎨

⎩

(16)

Consequently, the instigated edge assignment Ψ∗ is
acquired as follows:

Ψ∗ vλx
(λ)
1􏼐 􏼑 �

7, λ � 1,

1 + 5λ, 2≤ λ≤ n − 1,

− 2 + 5n, λ � n,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

Ψ∗ uλw
(λ)
1􏼐 􏼑 �

2, λ � 1,

− 6 + 5λ, 2≤ λ≤ n,

⎧⎨

⎩

Ψ∗ vλuλ+1( 􏼁 � 5λ, for 1≤ λ≤ n − 1,

Ψ∗ vλvλ+1( 􏼁 �
5λ + 3, 1≤ λ≤ n − 2,

− 3 + 5n, λ � n − 1,

⎧⎨

⎩

Ψ∗ uλuλ+1( 􏼁 �
3λ, 1≤ λ≤ 2,

5λ − 3, 3≤ λ≤ n − 1.

⎧⎨

⎩

(17)

Case (ii): m � 2 and n≥ 3.

Make the vertex assignment; Ψ: V(SLn°S2)⟶ N −

7n − 1, 7n, . . . ,∞{ },

Ψ x
(λ)
2􏼐 􏼑 �

11, λ � 1,

1+ 7λ, 2≤λ≤n − 3, λ � 2k, k ∈ N,

− 2 + 7λ, 2≤λ≤n − 3,λ � 2k + 1, k ∈ N,

− 9 + 7n, λ � n − 2, n � 2k, k ∈ N,

− 16 + 7n, λ � n − 2, n � 2k + 1, k ∈ N,

− 6 + 7n, λ � n − 1, and

− 2 + 7n, λ � n,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ψ x
(λ)
1􏼐 􏼑 �

9, λ � 1,

7λ, 2≤λ≤n − 3,λ � 2k, k ∈ N,

− 3 + 7λ, 2≤λ≤n − 3,λ � 2k + 1, k ∈ N,

− 12 + 7n, λ � n − 2, n � 2k, k ∈ N,

− 17 + 7n, λ � n − 2, n � 2k + 1, k ∈ N,

− 8 + 7n, λ � n − 1, n � 2k, k ∈ N,

− 7 + 7n, λ � n − 1, n � 2k + 1, k ∈ N,

− 4 + 7n, λ � n,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ψ w
(λ)
(2)􏼐 􏼑 �

7λ − 5, 1≤λ≤2,

− 5 + 7λ, 3≤λ≤n − 1,λ � 2k + 2, k ∈ N,

− 8 + 7λ, 3≤λ≤n − 1,λ � 2k + 1, k ∈ N,

− 7 + 7n, λ � n, n � 2k, k ∈ N,

− 8 + 7n, λ � n, n � 2k + 1, k ∈ N,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ψ w
(λ)
1􏼐 􏼑 �

1, λ � 1,

− 5 + 5λ, 2≤λ≤3,

− 7 + 7λ, 4≤λ≤n − 1,λ � 2k + 2, k ∈ N,

− 10 + 7λ, 4≤λ≤n − 1,λ � 2k + 3, k ∈ N,

− 11 + 7n, λ � n and λ � n − 1,

− 10 + 7n, λ � n and λ � n,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ψ vλ( 􏼁 �

8, λ � 1,

2+ 7λ, 2≤λ≤n − 3,λ � 2k, k ∈ N,

− 1 + 7λ, 2≤λ≤n − 3,λ � 2k + 1, k ∈ N,

− 13 + 7n, λ � n − 2, n � 2k, k ∈ N,

− 15 + 7n, λ � n − 2, n � 2k + 1, k ∈ N,

− 5 + 7n, λ � n − 1,

− 3 + 7n, λ � n,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ψ uλ( 􏼁 �

λ+ 2, 1≤λ≤2,

− 6 + 7λ, 3≤λ≤n − 1, n � 2k + 2, k ∈ N,

− 9 + 7λ, 3≤λ≤n − 1, n � 2k + 1, k ∈ N,

− 10 + 7n, λ � n, k ∈ N,

− 9 + 7n, λ � n, n � 2k + 1, k ∈ N.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(18)

Consequently, the instigated edge assignment Ψ∗ is
acquired as follows:
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Ψ∗ vλx
(λ)
2􏼐 􏼑 �

10, λ � 1,

2 + 7λ, 2≤ λ≤ n − 3, λ � 2k, k ∈ N,

− 1 + 7λ, 2≤ λ≤ n − 3, λ � 2k + 1, k ∈ N,

− 11 + 7n, λ � n − 2, n � 2k, k ∈ N,

− 15 + 7n, λ � n − 2, n � 2k + 1, k ∈ N,

− 5 + 7λ, λ � n − 1,

− 2 + 7n, λ � n,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ψ∗ vλx
(λ)
2􏼐 􏼑 �

10, λ � 1,

2 + 7λ, 2≤ λ≤ n − 3, λ � 2k, k ∈ N,

− 1 + 7λ, 2≤ λ≤ n − 3, λ � 2k + 1, k ∈ N,

− 11 + 7n, λ � n − 2, n � 2k, k ∈ N,

− 15 + 7n, λ � n − 2, n � 2k + 1, k ∈ N,

− 5 + 7λ, λ � n − 1,

− 2 + 7n, λ � n,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ψ∗ vλx
(λ)
1􏼐 􏼑 �

9, λ � 1,

1 + 7λ, 2≤ λ≤ n − 3, λ � 2k, k ∈ N,

− 2 + 7λ, 2≤ λ≤ n − 3, λ � 2k + 1, k ∈ N,

− 12 + 7n, λ � n − 2, n � 2k, k ∈ N,

− 16 + 7n, λ � n − 2, n � 2k + 1, k ∈ N,

− 6 + 7n, λ � n − 1,

− 6 + 7n, λ � n,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ψ∗ uλw
(λ)
2􏼐 􏼑 �

4λ − 1, 1≤ λ≤ 2,

− 5 + 7λ, 3≤ λ≤ n − 1, λ � 2k + 2, k ∈ N,

− 8 + 7λ, 3≤ λ≤ n − 1, λ � 2k + 1, k ∈ N,

− 8 + 7n, λ � n,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Ψ∗ uλw
(λ)
1􏼐 􏼑 �

2, λ � 1,

− 7 + 6λ, 2≤ λ≤ 3,

− 6 + 7λ, 4≤ λ≤ n − 1, λ � 2k + 2, k ∈ N,

− 9 + 7λ, 4≤ λ≤ n − 1, λ � 2k + 3, k ∈ N,

− 10 + 7n, λ � n, n � 2k, k ∈ N,

− 9 + 7n, λ � n, n � 2k, k ∈ N,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ψ∗ vλvλ+1( 􏼁 �

12, λ � 1,

7λ + 4, 2≤ λ≤ n − 3,

7n − 9, λ � n − 2, n � 2k, k ∈ N,

7n − 10, λ � n − 2, n � 2k + 1, k ∈ N,

7n − 4, λ � n − 1,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Ψ∗ vλuλ+1( 􏼁 �
6, λ � 1,

7λ, 2≤ λ≤ n − 1,
􏼨

Ψ∗ uλuλ+1( 􏼁 �

4λ, 1≤ λ≤ 2,

7λ − 4, 3≤ λ≤ n − 2,

7n − 13, λ � n − 1, n � 2k, k ∈ N,

7n − 11, λ � n − 1, n � 2k, k ∈ N.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(19)

Case (iii): m � 1, 2 and n � 2. An Cexp average as-
signment of the graphs SL2°S1 and SL2°S2 are shown in
Figures 1 and 2.

As a result, Ψ is an Cexp average assignment and the
graph SLn°Sm is an Cexp average assignment graph, for n≥ 2
and m≤ 2. □
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Theorem 8. 5e graph D∗n is an Cexp average assignment
graph, for n≥ 2.

Proof. Make the vertex assignment; Ψ: V(D∗n )⟶ N−

6n, 6n + 1, . . . ,∞{ },

Ψ aλ,4􏼐 􏼑 � − 1 + 6λ, for 1≤ λ≤ n,

Ψ aλ,3􏼐 􏼑 � − 3 + 6λ, for 1≤ λ≤ n,

Ψ aλ,2􏼐 􏼑 � − 5 + 6λ, for 1≤ λ≤ n, and

Ψ aλ,1􏼐 􏼑 � − 2 + 6λ, for 1≤ λ≤ n.

(20)

Consequently, the instigated edge assignment Ψ∗ is
acquired as follows:

Ψ∗ aλ,4aλ,1􏼐 􏼑 � − 1 + 6λ, for 1≤ λ≤ n,

Ψ∗ aλ,3aλ,4􏼐 􏼑 � − 2 + 6λ, for 1≤ λ≤ n,

Ψ∗ aλ,2aλ,3􏼐 􏼑 � − 4 + 6λ, for 1≤ λ≤ n,

Ψ∗ aλ,1aλ,2􏼐 􏼑 � − 3 + 6λ, for 1≤ λ≤ n,

Ψ∗ aλ,3aλ+1,3􏼐 􏼑 � 6λ, for 1≤ λ≤ n − 1, and

Ψ∗ aλ,1aλ+1,1􏼐 􏼑 � 1 + 6λ, for 1≤ λ≤ n − 1.

(21)

As a result, Ψ is an Cexp average assignment and the
graph D∗n is an Cexp average assignment graph, for n≥ 2. □

Theorem 9. 5e diamond ladder graph Dln is an Cexp av-
erage assignment graph, for n≥ 1.

Proof. Make the vertex assignment; Ψ: V(Dln)⟶ N −

8n − 1, 8n, . . . ,∞{ },

Ψ zλ( 􏼁 �

1, λ � 1,

− 2 + 4λ −
(− 1)

λ+1
+ 1

2
􏼠 􏼡, 2≤ λ≤ 2n and λ is even,

− 2 + 4λ −
(− 1)

λ+1
+ 1

2
􏼠 􏼡, 3≤ λ≤ 2n and λ is odd,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ψ yλ( 􏼁 � − 3 + 8λ, for 1≤ λ≤ n, and

Ψ xλ( 􏼁 � − 5 + 8λ, for 1≤ λ≤ n.

(22)

Consequently, the instigated edge assignment Ψ∗ is
acquired as follows:

Ψ∗ yλz2λ( 􏼁 � − 2 + 8λ, for 1≤ λ≤ n,

Ψ∗ yλz2λ− 1( 􏼁 � − 5 + 8λ, for 1≤ λ≤ n, and

Ψ∗ xλz2λ( 􏼁 � − 3 + 8λ, for 1≤ λ≤ n,

Ψ∗ xλz2λ− 1( 􏼁 � − 6 + 8λ, for 1≤ λ≤ n,

Ψ∗ z2λz2λ+1( 􏼁 � 8λ, for 1≤ λ≤ n − 1,

Ψ∗ xλyλ( 􏼁 � − 4 + 8λ, for 1≤ λ≤ n,

Ψ∗ yλyλ+1( 􏼁 � 1 + 8λ, for 1≤ λ≤ n − 1, and

Ψ∗ xλxλ+1( 􏼁 � − 1 + 8λ, for 1≤ λ≤ n − 1.

(23)

As a result, Ψ is an Cexp average assignment and the
diamond ladder graph Dln is an Cexp average assignment
graph, for n≥ 1. □

Theorem 10. 5e latitude graph is an Cexp average as-
signment graph.

Proof. Make the vertex assignment; Ψ: V(G)⟶ N −

3n/2 + 1, 3n/2 + 2, . . . ,∞{ },

Ψ uλ( 􏼁 �

− 2 + 3λ, 1≤ λ≤
n

2
,

− 1 + 3λ1, λ �
n

2
,

3n

2
, λ �

n

2
+ 1,

3 + 3n − 3λ,
n

2
+ 2≤ λ≤ n − 1,

3, λ � n.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(24)

Consequently, the instigated edge assignment Ψ∗ is
acquired as follows:

1 2 5 6

4

7 8 11 12

9 10

2 4 6

3 5

218

9 11

10

7

3

Figure 2: An Cexp average assignment of the graph SL2°S2.
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Ψ∗ uλun+2− λ( 􏼁 � − 2 + 3λ, for 2≤ λ≤
n

2
,

Ψ∗ unu1( 􏼁 � 2, and

Ψ∗ uλuλ+1( 􏼁 �

3λ, 1≤ λ≤
n

2
,

− 1 +
3n

2
, λ �

n

2
+ 1,

2 + 3n − 3λ,
n

2
+ 2≤ λ≤ n − 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(25)

As a result, Ψ is an Cexp average assignment and the
latitude graph is an Cexp average assignment graph. □

5. Conclusion

,e significant properties on Cexp average assignment of
several ladder networks are discovered in this work. Analysis
of the Cexp average assignment of other networks can be
discussed further.
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Many problems of practical interest can bemodeled and solved by using vague graph (VG) algorithms. Vague graphs, belonging to
the fuzzy graphs (FGs) family, have good capabilities when faced with problems that cannot be expressed by FGs. Hence, in this
paper, we introduce the notion of (η, c)- HMs of VGs and classify homomorphisms (HMs), weak isomorphisms (WIs), and
coweak isomorphisms (CWIs) of VGs by (η, c)- HMs. Hospitals are very important organizations whose existence is directly
related to the general health of the community. Hence, since the management in each ward of the hospital is very important, we
have tried to determine the most e�ective person in a hospital based on the performance of its sta�.

1. Introduction

Graphs, from ancient times to the present day, have played a
very important role in various �elds, including computer
science and social networks, so that with the help of the
vertices and edges of a graph, the relationships between
objects and elements in a social group can be easily intro-
duced. But there are some phenomena in our lives that have
a wide range of complexities that make it impossible for us to
express certainty. ­ese complexities and ambiguities were
reduced with the introduction of FSs by Zadeh [1]. Since
then, the theory of FSs has become a vigorous area of re-
search in di�erent disciplines including logic, topology,
algebra, analysis, information theory, arti�cial intelligence,
operations research, and neural networks and planning
[2–6].­e FS focuses on the membership degree of an object
in a particular set. But membership alone could not solve the
complexities in di�erent cases, so the need for a degree of
membership was felt. To solve this problem, Gau and
Buehrer [7] introduced false-membership degrees and de-
�ned a VS as the sum of degrees not greater than 1. ­e �rst
de�nition of FGs was proposed by Kafmann [8] in 1993,
from Zade’s fuzzy relations [9, 10]. But Rosenfeld [11]

introduced another elaborated de�nition including fuzzy
vertex and fuzzy edges and several fuzzy analogs of graph
theoretic concepts such as paths, cycles, and connectedness.
Ramakrishna [12] introduced the concept of VGs and
studied some of their properties. Akram et al. [13–16] de-
�ned the vague hypergraphs, Cayley-VGs, and regularity in
vague intersection graphs and vague line graphs. Rash-
manlou et al. [17] investigated categorical properties in
intuitionistic fuzzy graphs. Bhattacharya [18] gave some
remarks on FGs, and some operations of FGs were intro-
duced by Mordeson and Peng [19]. ­e concepts of weak
isomorphism, coweak isomorphism, and isomorphism be-
tween FGs were introduced by Bhutani in [2]. Khan et al.
[20] studied vague relations. Talebi [21, 22] investigated
Cayley-FGs and some results in bipolar fuzzy graphs.
Borzooei [23] introduced domination in VGs. Ghorai and
Pal studied some isomorphic properties of m-polar FGs [24].
Jiang et al. [25] de�ned vertex covering in cubic graphs.
Krishna et al. [26] presented a new concept in cubic graphs.
Rao et al. [27–29] investigated dominating set, equitable
dominating set, and isolated vertex in VGs. Hoseini et al.
[30] given maximal product of graphs under vague envi-
ronment. Jan et al. [31] introduced some root-level
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modifications in interval-valued fuzzy graphs. Amanathulla
et al. [32] defined new concepts of paths and interval graphs.
Muhiuddin et al. [33, 34] presented the reinforcement
number of a graph and new results in cubic graphs.

A VG is a generalized structure of an FG that provides
more exactness, adaptability, and compatibility to a sys-
tem when matched with systems run on FGs. Also, a VG is
able to concentrate on determining the uncertainty
coupled with the inconsistent and indeterminate infor-
mation of any real-world problems, where FGs may not
lead to adequate results. VGs have a wide range of ap-
plications in the field of psychological sciences as well as
in the identification of individuals based on oncological
behaviors. ,us, in this paper, we studied level graphs of
VGs and investigated HMs, WIs, and CWIs of VGs by
HMs of level graphs. Likewise, we characterized some VGs
by their level graphs.

2. Preliminaries

In this section, we review some concepts of graph theory and
VGs.

Definition 1. Let V be a finite nonempty set. A graph G �

(V, E) on V consist of a vertex set V and an edge set E, where
an edge is an unordered pair of distinct nodes of G. We will
use pq rather than p, q􏼈 􏼉 to denote an edge. If pq is an edge,
then we say that p and q are neighbor. A graph is called
complete graph if each pair of nodes are neighbor.

Definition 2. LetG1 � (V1, E1) andG2 � (V2, E2) be graphs.
Amapping h: V1⟶ V2 is a homomorphism from G1 to G2
if h(p) and h(q) are neighbor whenever p and q are
neighbor.

Definition 3. Two graphs G1 and G2 are isomorphic if there
is a bijective mapping φ: V1⟶ V2 so that p and q are
neighbor in G1 if and only if φ(p) and φ(q) are neighbor in
G2, φ is named isomorphism from G1 to G2. An isomor-
phism from a graph G to itself is named an automorphism of
G. ,e set of all automorphisms of G forms a group, which is
named the automorphism group of G and shown by Aut(G).

Definition 4. AVS A is a pair (tA, fA) on set X where tA and
fA are taken as real valued functions which can be defined
on V⟶ [0, 1] so that tA(p) + fA(p)≤ 1, ∀p ∈ X.

Definition 5. Let A, B ∈ VS(V). We say that A is contained
in B and write A⊆B, if for any p ∈ V,

tA(p)≤ tB(p),

fA(p)≥fB(p).
(1)

Let K∗ � (η, c)|η, c ∈ [0, 1], η + c≤ 1􏼈 􏼉. For any
(η1, c1), (η2, c2) ∈ L∗, the orders ≤ and < on K∗ are de-
fined as

η1, c1( 􏼁≤ η2, c2( 􏼁⇔η1 ≤ η2,

c1 ≥ α2,

η1, c1( 􏼁< η2, c2( 􏼁⇔ η1, c1( 􏼁≤ η2, c2( 􏼁,

η1 < η2,

or c1 > c2.

(2)

It is easy to see that, (K∗, ≤ ) constitutes a complete
lattice with maximum element (1, 0) and minimum element
(0, 1).

Definition 6. Let A ∈ VS(V). For each (η, c) ∈ K∗, we de-
fine A(η,c) � p ∈ V: tA(p)≥ η, fA(p)≤ c􏼈 􏼉.

,en, A(η,c) is named (η, c)-level set of A. ,e set
p|p ∈ V, tA(p)> 0 orfA(p)< 1􏼈 􏼉 is called the support A and
is denoted by A∗.

Let V be a finite nonempty set. Denote by 􏽥V
2 the set of all

2-element subsets of V. A graph on V is a pair (V, E) where
E⊆􏽥V2, V and E are named vertex set and edge set,
respectively.

Definition 7. Let V be a finite nonempty set, A ∈ VS(V) and
B ∈ VFS( 􏽥V

2
). ,e triple X � (V, A, B) is named a VG on V,

if for each (p, q) ∈ 􏽥V
2,

tB(p, q)≤ tA(p)∧tA(q),

fB(p, q)≥fA(p)∨fA(q).
(3)

If X � (V, A, B) is a VG, then, it is easy to see that X∗ �

(A∗, B∗) is a graph and it is called underlying graph of X.
,e set of all VG on V is denoted by VG(V). For given
X � (V, A, B) ∈ VG(V), in this study suppose that A∗ � V.

Definition 8. Let X1 � (V1, A1, B1) and X2 � (V2, A2, B2) be
two VGs. ,en,

(1) A mapping φ: V1⟶ V2 is a homomorphism from
X1 to X2, if

(i) tA1
(p)≤

tA2
(φ(p)), fA1

(p)≥fA2
(φ(p)), for all p ∈ V1

(ii) tB1
(pq)≤ tB2

(φ(p)φ(q)) , fB1
(pq)≥fB2

(φ(p)

φ(q)), for allpq ∈ 􏽥V
2

(2) A mapping φ: V1⟶ V2 is a weak isomorphism
from X1 to X2, if φ is a BH from X1 to X2 and tA1

(p)

� tA2
(φ(p)), fA1

(p) � fA2
(φ(p)), for allp ∈ V1.

(3) A mapping φ: V1⟶ V2 is a coweak isomorphism
from X1 to X2, if φ is a BH from X1 to X2 and
tB1

(pq) � tB2
(φ(p)φ(q)), fB1

(pq) �

fB2
(φ(p)φ(q)), for allpq ∈ 􏽥V

2
.

(4) An isomorphism from X1 to X2 is a bijective
mapping φ: V1⟶ V2 so that

(i) tA1
(p) � tA2

(φ(p)), fA1
(p) �

fA2
(φ(p)), for allp ∈ V1

(ii) tB1
(pq) � tB2

(φ(p)φ(q)), fB1
(pq) �

fB2
(φ(p)φ(q)), for allpq ∈ 􏽥V

2
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Definition 9. VG X � (V, A, B) is called strong vague graph
(SVG) if tB(pq) � tA(p)∧tA(q), fB(pq) � fA(p)∨fA(q),

for allpq ∈ 􏽥V
2
, (tB(pq), fB(pq))≠ (0, 1) and is called

complete vague graph (CVG), if tB(pq) � tA(p)∧tA(q),
fB(pq) � fA(p)∨fA(q), for allpq ∈ 􏽥V

2. A CVG
X � (V, A, B) with n nodes is denoted by Kn,A.

Definition 10. Suppose that X � (V, A, B) and
Y � (V, A′, B′) be two VGs. ,en, X is VSG of Y, if A⊆A′
and B⊆B′.

Definition 11. Let X � (V, A, B) be VG and W⊆V. ,en, the
VG Y � (W, A′, B′) so that tA′

(p) � tA(p), fA′
(p)

� fA(p), for allp ∈W, tB′
(pq) � tB(pq), fB′

(pq)

� fB(pq), for allpq ∈ 􏽥W
2, is named the induced VSG by W

and shown by X[W].

Definition 12. A family Γ � λ1, λ2, . . . , λk􏼈 􏼉 of VSs on V is
named a k-coloring of VG X � (V, A, B) if

(i) ∨Γ � A.
(ii) λi∧λj � 0 for 1≤ i, j≤ k.
(iii) For each strong edge pq of X, min λi(p), λi(q)􏼈 􏼉 � 0

for 1≤ i≤ k. We say that a graph is k-colorable if it
can be colored with k colors.

All the basic notations are shown in Table 1.

3. Homomorphisms and Isomorphisms of
Vague Graphs

In this section, we discuss the homomorphism and iso-
morphism of VGs by the homomorphism of level graphs in
VGs.

Theorem 1. Let V be a finite nonempty set, A ∈ VS(V) and
B ∈ VS(􏽥V

2
). 5en, X � (V, A, B) ∈ VFG(V) if and only if

X(η,c) � (A(η,c), B(η,c)) is a graph for all (η, c) ∈ L∗,
A(η,c) ≠∅.

Proof. Let X � (V, A, B) be VG. For each (η, c) ∈ L∗,
A(η,c) ≠∅, assume that pq ∈ B(η,c). ,en, tB(pq)≥ η and
fB(pq)≤ c. Because X is VG,

λ≤ tB(pq)≤ tA(p)∧tA(q),

c≥fB(pq)≥fA(p)∨fA(q).
(4)

It follows that p, q ∈ A(η,c). ,erefore, (A(η,c), B(η,c)) is a
graph.

Conversely, let X(η,c) � (A(η,c), B(η,c)) is a graph,
∀(η, c) ∈ L∗, A(η,c) ≠∅. For each pq ∈ 􏽥V

2, let
tB(pq) � η, fB(pq) � c. ,en, pq ∈ B(η,c). Hence,
p, q ∈ A(η,c). ,us, tA(p)≥ η, tA(q)≥ η, fA(p)

≤ c, and, fA(q)≤ α,. ,is implies that
tA(p)∧tA(q)≥ η � tB(pq) and fA(p)∨fA(q)≤ c � fB(pq).
,erefore, X � (V, A, B) is VG. □

Definition 13. Let X � (V, A, B) andY � (W, A′, B′) be two
VGs, h: V⟶W a mapping. For any (η, c) ∈ L∗,

A(η,c) ≠∅, if h is a homomorphism from
X(η,c) � (A(η,c), B(η,c)) to Y(η,c) � (A(η,c)

′, B(η,c)
′), then, h is

called (η, c)− homomorphism mapping from X to Y.

Theorem 2. Let X � (V, A, B) and Y � (W, A′, B′) be two
VGs. 5en, h: X⟶ Y is a homomorphism from X to Y if
and only if h is (η, c)- homomorphism from X to Y.

Proof. Assume that h: X⟶ Y is a homomorphism from X

to Y. Let, A(η,c) ≠∅, (η, c) ∈ L∗. If p ∈ A(η,c), then

tA′
(h(p))≥ tA(p)≥ η,

fA′
(h(p))≤fA(p)≤ c.

(5)

Hence, h(p) ∈ A(η,c)
′ implying h is a mapping from A(η,c)

to A(η,c)
′. For p, q ∈ A(η,c), let pq ∈ B(η,c). ,en,

tB(pq)≥ η,

fB(pq)≤ c.
(6)

Hence,

tB′
(h(p)h(q)) ≥ tB(pq)≥ η,

fB′
(h(p)h(q)) ≤fB(pq)≤ c,

(7)

which implies h(p)h(q) ∈ B(η,c)
′. ,erefore, h is a ho-

momorphism from X(η,c) to Y(η,c).
Conversely, let h: V⟶W be a (η, c)- homomorphism

from X to Y. For arbitrary element p ∈ X, let tA(p) � c,
fA(p) � d. ,en, p ∈ A(c,d), hence, h(p) ∈ A(c,d)

′, because h

is a homomorphism from (A(c,d), B(c,d)) to (A(c,d)
′, B(c,d)
′). It

follows that

tA′
(h(p))≥ c,

fA′
(h(p))≤d,

(8)

Table 1: Some basic notations.

Notation Meaning
FG Fuzzy graph
VS Vague set
FS Fuzzy set
VG Vague graph
CVG Complete vague graph
SVG Strong vague graph
BM Bijective mapping
HM Homomorphism
WI Weak isomorphism
IH Injective homomorphism
CWI Coweak isomorphism
BH Bijective homomorphism
SG Subgraph
IV Isolated vertex
CG Complete graph
VSG Vague subgraph
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that is,

tA′
(h(p))≥ tA(p),

fA′
(h(p))≤fA(x).

(9)

Now for arbitraries p, q ∈ V, let tB(pq) � e, fB(pq) � t.
,en,

e � tB(pq)≤ tA(p)∧tA(q),

t � fB(pq)≥fAp∨fA(q).
(10)

Hence, p, q ∈ A(e,t) and pq ∈ B(e,t). Because h is a ho-
momorphism from X(e,t) � (A(e,t), B(e,t)) to
Y(e,t) � (A(e,t)

′, B(e,t)
′), we conclude that h(p), h(q) ∈ A(e,t)

′
and h(p)g(q) ∈ B(e,t)

′. ,erefore,

tB′
(h(p)h(q)) ≥ e � tB(pq),

fB′
(h(p)h(q)) ≤ t � fB(pq).

(11)

□

Theorem 3. Let X � (V, A, B) and Y � (W, A′, B′) be two
VGs.5en, h: V⟶W is a WI from X to Y if and only if h is
a bijective (η, c)- homomorphism from X to Y and

tA(p) � tA′(h(p)),

fA(p) � fA′(h(p)),

for allp ∈ V.

(12)

Proof. Let h be a WI from X to Y. From the definition
of homomorphism h is a bijective homomorphism from
X to Y. By ,eorem 2 h is a bijective (η, c)- homomor-
phism from X to Y and also by the definition of WI we
have

tA(p) � tA′(h(p)),

fA(p) � fA′(h(p)),

for allp ∈ V.

(13)

Conversely, from hypothesis, h: A(0,1) � V⟶ A(0,1)
′ �

W is a bijective mapping and

tA(p) � tA′(h(p)),

fA(p) � fA′(h(p)),

for allp ∈ V.

(14)

For p, q ∈ V, let tB(pq) � e, fB(pq) � t. ,en,

e � tB(pq)≤ tA(p)∧tA(q),

t � fB(pq)≥fA(p)∨fA(q),
(15)

which implies p, q ∈ A(e,t) and pq ∈ B(e,t). Because h is a
homomorphism from (A(e,t), B(e,t)) to (A(e,t)

′, B(e,t)
′), we have

h(p), h(q) ∈ A(e,t)
′ and h(p)h(q) ∈ B(e,t)

′. Hence,

tB′(h(p)h(q)) ≥ e � tB(pq),

fB′(h(p)h(q)) ≤ t � fB(pq),
(16)

which complete the proof. □

Theorem 4. Let X � (V, A, B) and Y � (W, A′, B′) be two
VGs. 5en, h: V⟶W is a CWI from X to Y if and only if h

is a bijective (η, c)- homomorphism from X to Y and

tB(pq) � tB′(h(p)h(q)),

fB(pq) � fB′(h(p)h(q)),

for allpq ∈ 􏽥V
2
.

(17)

Proof. Let h: V⟶W be a CWI from X to Y. ,en, h is a
bijective homomorphism from X to Y. By ,eorem 2 h is a
bijective (η, c)- homomorphism from X to Y. Also by the
definition of CWI

tB(pq) � tB′(h(p)h(q)),

fB(pq) � fB′(h(p)h(q)),

for allpq ∈ 􏽥V
2
.

(18)

Conversely, from hypothesis, we know that h: A(0,1) �

V⟶ A(0,1)
′ � W is a bijective mapping and

tB(pq) � tB′(h(p)h(q)),

fB(pq) � fB′(h(p)h(q)).
(19)

For arbitrary element p ∈ V, suppose that tA(p) � c,
fA(p) � d. ,en, we have p ∈ A(c,d). Now because h is a
homomorphism from (A(c,d), B(c,d)) to (A(c,d)

′, B(c,d)
′),

h(p) ∈ A(c,d)
′. ,us, tA′

(h(p))≥ c � tA(p),
fA′

(h(p))≤ d � fA(p), which implies h is a CWI from X to
Y. □

Corollary 1. Let X � (V, A, B) ∈ VG(V),
Y � (W, A′, B′) ∈ VG(W). If h: V⟶W is a CWI from X

to Y, then, h is an IH from X(η,c) to Y(η,c), ∀(η, c) ∈ K∗,
A(η,c) ≠∅.

From the following example, we conclude that the
converse of Corollary 1 do not need to be true.

Example 1. Let X � (V, A, B) and Y � (W, A′, B′) be two
VGs, as shown in Figure 1. Consider the mapping
h: V⟶W, defined by h(vi) � wi, 1≤ i≤ 5. In view of the
(η, c)- level graphs of X and Y in Figure 1, if A(η,c) ≠∅ then,
h is an IH from X(η,c) to Y(η,c), but h is not a CWI.

Theorem 5. Let X � (V, A, B) ∈ VG(V),
Y � (W, A′, B′) ∈ VG(W), and h: V⟶W be a mapping.
For each (η, c) ∈ K∗, A(η,c) ≠∅, if h is an isomorphism from
X(η,c) to a SG of Y(η,c), then, h is a CWI from X to an induced
VSG of Y.
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Proof. ,e mapping h is an isomorphism from
X(0,1) � (V, B(0,1)) to a SG Y(0,1) � (W, B(0,1)

′), so
h: V⟶W is an IM. For arbitrary p ∈ V, suppose that
tA(p) � η, fA(p) � c. ,en, p ∈ A(η,c), and so h(p) ∈ A(η,c)

′.
Hence, tA′(h(p))≥ η � tA(p) and fA′(h(p))≤ c � fA(p).
For p, q ∈ V, let tB(pq) � η and fB(pq) � c. ,en,
η≤ tA(p), η≤ tA(q), c≥fA(p), c≥fA(q) and pq ∈ B(η,c).
Hence, p, q ∈ A(η,c) and pq ∈ B(η,c). Since h isomorphism
from X(η,c) to Y(η,c), we get h(p), h(q) ∈ A(η,c)

′ and
h(p)h(q) ∈ B(η,c)

′. ,erefore,

tB′(h(p)h(q)) ≥ η � tB(pq),

fB′(h(p)h(q)) ≤ c � fB(pq).
(20)

Now, let tB′(h(p)h(q)) � k, fB′(h(p)h(q)) � s. ,en,
h(p)h(q) ∈ A(k,s)

′. Because h is injective and an isomorphism
from X(k,s) to a SG of Y(k,s), we have p, q ∈ A(k,s) and
pq ∈ B(k,s). ,erefore,

tB(pq)≥ k � tB′
(h(p)h(q)),

fB(pq)≤ s � fB′
(h(p)h(q)).

(21)

Now by (20) and (21), we conclude that

tB′(h(p)h(q)) � tB(pq),

fB′(h(p)h(q)) � fB(pq).
(22)

□

Corollary 2. Let X � (V, A, B) and Y � (W, A′, B′) be two
VGs with |V| � |W|, and h: V< display>W a mapping. For
(η, c) ∈ KL∗, A(η,c) ≠∅, if h is an isomorphism from X(η,c) to
a SG of Y(η,c), then, h is a CWI from X to Y.

Theorem 6. Let X � (V, A, B) and Y � (W, A′, B′) be two
VGs, h: V⟶W be a bijective mapping. If for each
(η, c) ∈ K∗, h is an isomorphism from X(η,c) to Y(η,c), then, h

is an isomorphism from X to Y.

Proof. From hypothesis, h− 1: W⟶ V is a bijective
mapping and an isomorphism from Y(η,c) to X(η,c).
By ,eorem 5 h is a CWI from X to Y and h− 1 is a CWI
from Y to X. ,erefore, h is an isomorphism from X to
Y. □

Corollary 3. Let X � (V, A, B) be VG and h: V⟶ V a
bijective mapping. 5en, h is an automorphism of X if and
only if h|A(η,c)

is an automorphism of X(η,c), from an
(η, c) ∈ K∗, A(η,c) ≠∅.

Theorem 7. Let X � (V, A, B) be VG. 5en, X is a CVG
if and only if X(η,c) � (A(η,c), B(η,c)) is a CG for (η, c) ∈ K∗.

Proof. If X � (V, A, B) is a CVG and for (η, c) ∈ K∗,
A(η,c) ≠∅, p, q ∈ A(η,c), then, tA(p)≥ η, tA(q)≥ η,
fA(p)≤ c, fA(q)≤ c, and so

tB(pq) � tA(p)∧tA(q)≥ η,

fB(pq) � fA(p)∨fA(q)≤ c.
(23)

Hence, pq ∈ B(η,c). It follows that X(η,c) is a CG.
Conversely, suppose that X � (V, A, B) is not a CVG.
,en, there are p, q ∈ V so that tB(pq)< tA(p)∧tA(q) or
fB(pq)>fA(p)∨fA(q). Let tB(pq)< tA(p)∧tA(q), and
tA(p)∧tA(q) � η, for η ∈ (0, 1]. ,en, tA(p)≥ η and
tA(q)≥ η. Hence, x, y ∈ A(η,c), for a c ∈ [0, 1], but

(0.3,0.1)

(0.2,0.1)
(0.2,0.1)

(0.2,0.1)

v1 (0.2,0.1) v1

v2

v4

w1

w4
w2

w3

w6

v4

v2

v3
v5

v2 (0.3,0.1)v4 (0.3,0.1)

v3 (0.2,0.1)
v5 (0.2,0.1)

X = (V, A, B)

(0.2,0.1)
(0.2,0.1)

(0.2,0.1)

(0.2,0.1)

(0.3,0.1)

(0.2,0.1)

w1 (0.3,0.1)

w4 (0.3,0.1)

w3 (0.3,0.1)
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w2 (0.3,0.1)

w5 (0.2,0.1)

Y = (W, A´, B´)

w1 w5

w6

w2

w4

w3

X(η,γ), (0,1) < (η,γ) ≤ (0.2,0.1)

Y(η,γ), (0,1) < (η,γ) ≤ (0.2,0.1)

X(η,γ), (0.2,0.1) < (η,γ) ≤ (0.3,0.1)

Y(η,γ), (0.2,0.1) < (η,γ) ≤ (0.3,0.1)

Figure 1: VGs X, Y and the mapping h: Vi⟶Wi which is not a CWI.
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pq ∉ B(η,c). ,is implies that X(η,c) is not a CG. For the
case fB(pq)>fA(p)∨fA(q), it follows similarly. □

Theorem 8. Let X � (V, A, B) ∈ VG(V). 5en, X(η,c) has
not IV, for each (η, c) ∈ K∗, A(η,c) ≠∅ if and only if for each
p ∈ V, ∃ q ∈ V so that tB(pq) � tA(p), fB(pq) � fA(p).

Proof. Suppose that for each (η, c) ∈ K∗, A(η,c) ≠∅, graph
X(η,c) has not IV and there is a node p ∈ V so that for each
q ∈ V, tB(pq)< tA(p) or fB(pq)>fA(p). Let tB(pq)<
tA(p) and tA(p) � η, fA(p) � c, for (η, c) ∈ K∗. ,en,
p ∈ A(η,c) and for each q ∈ V, q≠p, pqinB(η,c).,erefore, p is
an IV in the graph X(η,c) � (A(η,c), B(η,c)), which is a
contradiction.

Now suppose that for (η, c) ∈ K∗, A(η,c) ≠∅, node
p ∈ A(η,c) is an IV in X(η,c). If qinA(η,c), then,
tB(pq)≤ tA(q)< η≤ tA(p) or fB(pq)≥fA(q)> c≥fA(q),
and if q ∈ A(η,c), it is trivial that pginB(η,c), hence,
tB(pq)< η≤ tA(p) or fB(pq)> c≥fA(p). ,erefore, for
each q ∈ V, tB(pq)≠ tA(p), fB(pq)≠fA(p).

Here, we describe the relationship between coloring
graph and homomorphism of graph. □

Theorem 9. A VG X � (V, A, B) is r-colorable ⇔ there
exists a homomorphism from X to the Kr,A′

.

Proof. Assume that X be r-colorable with r colors labeled
Γ � λ1, λ2, . . . , λr􏼈 􏼉. Let Vi � v ∈ V|λi(v)≠ 0􏼈 􏼉. We define
CVG Kr,A′ with vertices set 1, 2, . . . , r{ }, so that the degree
of membership vertex i is tA′(i) � max tA(v) | v ∈ Vi􏼈 􏼉 and
the degree of non-membership vertex i is
fA′(i) � min fA(v )| v ∈ Vi􏼈 􏼉. Now the mapping
h: X⟶ Kr,A′ defined by h(v) � i is a graph homomor-
phism, because

tA(v)≤max tA(w)|w ∈ Vi􏼈 􏼉 � tA′(i) � tA′(h(v)),

fA(v)≥min fA(w)|w ∈ Vi􏼈 􏼉 � fA′(i) � fA′(h(v)).
(24)

According to the definition of CVG, for u ∈ Vi and
v ∈ Vj we have

tB(uv)≤ tA(u)∧tA(v)≤ tA′(i)∧tA′
(j) � tA′(h(u))∧tA′(h(v)),

fB(uv)≥fA(u)∨tA(v)≤ tA′(i)∨tA′(j) � tA′(h(u))∨tA′(h(v)).
(25)

,en, tB(uv) ≤ tB′
(h(u)h(v)), fB(uv)≥fB′(h(u)h(v)),

for all uv ∈ 􏽥V
2.

Conversely, let g: X⟶ Kr,A′ be a homomorphism. For
a given k ∈ V(Kr,A′

), define the set h− 1(k)⊆V to be

h
−1

(k) � x ∈ V| h(x) � k{ }. (26)

If v ∈ h−1(k), let
λk(v) � (tλk

(v), fλk
(v)) � (tA(v), fA(v)), otherwise

λk(v) � 0. ,erefore, the VG X is r-colorable with coloring
set λ1, λ2, . . . , λr􏼈 􏼉. □

4. Application

Nowadays, the issue of coloring is very important in the
theory of fuzzy graphs because it has many applications in
controlling intercity traffic, coloring geographical maps,
as well as finding areas with high population density.
,erefore, in this section, we have tried to present an
application of the coloring of vertices in a VG.

Example 2. Let X � (V, A1, B1) be a VG (See Figure 2). We
modeled a FG by considering countries A, B, C, D as
vertices of graph. ,e membership and nonmembership
value of the vertices are the good and bad activity of a
country with respect technology so that are
(tA1

(A), fA1
(A)) � (0.1, 0.2), (tA1

(B), fA1
(B)) � (0.4, 0.5),

(tA1
(C), fA1

(C)) � (0.2, 0.5), (tA1
(D), fA1

(D)) � (0.2, 0.8),
respectively. ,ere is an edge if they share a boundary. Let
AB, BC, AC, C D, and B D are edges of graph X. ,e
membership and nonmembership value of the edges are
the political relationship in a good and bad attitude such

that (tB1
(AB), fB1

(AB)) � (0.1, 0.5), (tB1
(BC), fB1

(BC))

� (0.2, 0.8), (tB1
(AC), fB1

(AC)) � (0.1, 0.5), (tB1
(C D),

fB1
(C D)) � (0.2, 0.8), (tB1

(B D), fB1
(B D)) � (0.2, 0.8),

respectively. We now want to see how many days we will
need to hold a conference between these countries. Let S

be a set of countries; S � A, B, C, D{ } and
P � AB BC AC C D B D􏼈 􏼉 Suppose that S(p) be
countries have boundary for p ∈ P. Now, form FG G with
vertices set P, where a, b ∈ P are neighbor if and only if
S(a)∩ S(b)≠∅. For instance, S(AB) � A, B{ } and
S(BC) � C, B{ }. So S(AB)∩ S(BC) � B{ }≠∅ and hence
AB, BC are neighbor. By ,eorem 9 there is a homo-
morphism from G to complete graph with n � 3. ,en, 3
days are required to hold a conference between these
countries, AB, C D{ }, BC{ }, AC, B D{ }{ }. ,e colored
graph of the example 2 is shown in Figure 3.

In the next example, we want to identify the most ef-
fective employee of a hospital with the help of a vague in-
fluence digraph.

Example 3. Hospitals are very important organizations
whose existence is directly related to the general health of
the community. Researchers in each country examine
factors that contribute to the success of strategic planning
to improve the management status of these health orga-
nizations. ,e lives and health of many people are in the
hands of health systems. From the safe delivery of a
healthy baby to the respectful care of an elderly person, the
health department has a vital and ongoing responsibility
to individuals throughout their lives. ,e health industry
has undergone many political, social, economic,
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environmental, and technological changes since the early
1980s. ­ese changes have created challenges for man-
agers of healthcare organizations, especially hospitals that
cannot be managed with operational plans. ­us, hospital
managers have resorted to strategic planning since the
1980s to achieve excellence. Since the management in each
ward of the hospital is very important, so in this section,
we have tried to determine the most e�ective person in a
hospital based on the performance of its sta�. ­erefore,
we consider the vertices of the VIG as the heads of each
ward of the hospital, and the edges of the graph as the
degree of interaction and in§uence of each other. For this
hospital, the set of sta� is
F � Taheri,Ameri,Talebi,Taleshi,Najafi,Kamali,Badri{ }.

(i) Ameri has been working with Taleshi for 14 years
and values his views on issues.

(ii) Taheri has been responsible for audiovisual a�airs
for a long time, and not only Ameri, but also Taleshi,
are very satis�ed with Taheri’s performance.

(iii) In a hospital, the preservation of medical records is a
very important task. Kamali is the most suitable
person for this responsibility.

(iv) Talebi and Kamali have a long history of con§ict.
(v) Talebi has an important role in the radiology de-

partment of the laboratory.

Given the abovementioned, we consider this a VIG.
­e vertices represent each of the hospital sta�. Note that
each sta� member has the desired ability as well as
shortcomings in the performance of their duties.
­erefore, we use of VS to express the weight of the
vertices. ­e true membership indicates the e©ciency of
the employee and the false membership shows the lack of
management and shortcomings of each sta�. But the
edges describe the level of relationships and friendships
between employees such that the true membership shows
a friendly relationship between both employees and the
false membership shows the degree of con§ict between
the two o©cials. Names of employees and levels of sta�
capability are shown in Tables 2 and 3. ­e adjacency
matrix corresponding to Figure 4 is shown in Table 4.

Figure 4 shows that Naja� has 90% of the power needed
to do the hospital work as the medical equipment expert, but
does not have the 10% knowledge needed to be the boss. ­e
directional edge of Taleshi–Ameri shows that there is 30%
friendship among these two employees, and unfortunately,
they have 40% con§ict. Clearly, Badri has dominion over
both Kamali and Naja�, and his dominance over both is
60%. It is clear that Badri is the most in§uential employee of
the hospital because he controls both the head of the medical
equipment and the medical records archive expert, who have
90% of the power in the hospital.

Table 3: ­e level of sta� capability.

Taheri Ameri Talebi Taleshi Naja� Kamali Badri
tA 0.4 0.5 0.6 0.7 0.9 0.9 0.8
fA 0.4 0.3 0.3 0.2 0.1 0.1 0.2

Badri (0.8,0.2)

(0.7,0.2)

(0.5,0.3)

(0.4,0.4)

(0.5,0.4)

(0.4,0.5)

Kamali (0.9,0.1)

(0
.6,

0.4
)

(0.6,0.4)

(0
.6,

0.2
)

(0.3,0.4)

(0.3,0.5)

Najafi (0.9,0.1) Ameri (0.5,0.3) Taheri (0.4,0.4)

Taleshi (0.7,0.2) Talebi (0.6,0.3)

Figure 4: Vague in§uence digraph.

A
(0.1, 0.2)

(0.2, 0.8)
D

C
B

(0.4, 0.5)

(0.2, 0.5)

(0.2, 0.5)

(0.2, 0.8)

(0.1, 0.5)

(0.1, 0.5)

(0.2, 0.8)

Figure 2: Vague graph X � (V,A1, B1).

AB

AC

CD
BD

BC

Figure 3: ­e colored graph of the example 2.

Table 2: Names of employees in a hospital and their services.

Name Services
Taheri Head of audiovisual department
Ameri Environment health expert
Talebi Head of radiology department
Taleshi Network expert
Naja� Medical equipment expert
Kamali Medical records archive expert
Badri Head of hospital
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5. Conclusion

VGs have a wide range of applications in the field of psy-
chological sciences as well as the identification of individuals
based on oncological behaviors. With the help of VGs, the
most efficient person in an organization can be identified
according to the important factors that can be useful for an
institution. Hence, in this paper, we introduced the notion of
(η, c)- homomorphism of VGs and classify HMs, WIs, and
CWIs of VGs by (η, c)- homomorphisms. We also inves-
tigated the level graphs of VGs to characterize some VGs.
Finally, we presented two applications of VGs in coloring
problem and also finding effective person in a hospital. In
our future work, we will introduce new concepts of con-
nectivity in VGs and investigate some of their properties.
Also, we will study the new results of connected perfect
dominating set, regular perfect dominating set, and inde-
pendent perfect dominating set on VGs.
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Topological indices are graph-theoretic parameters which are widely used in the subject of chemistry and computer science to
predict the various chemical and structural properties of the graphs respectively. Let G be a graph; then, by performing sub-
division-related operations S, Q, R, and T on G, the four new graphs S(G) (subdivision graph), Q(G) (edge-semitotal), R(G)
(vertex-semitotal), and T(G) (total graph) are obtained, respectively. Furthermore, for two simple connected graphs G andH, we
de�ne F-sum graphs (denoted by G+FH) which are obtained by Cartesian product of F(G) andH, where F ∈ S, R, Q, T{ }. In this
study, we determine �rst general Zagreb co-index of graphs under operations in the form of Zagreb indices and co-indices of their
basic graphs.

1. Introduction

Graph theory has given di�erent valuable tools in which
likely the best tool is known as topological index (TI) that is
used to predict structural and chemical properties of graphs
such as connectivity, solubility, freezing point, boiling point,
critical temperature, and molecular mass, see [1]. �e
medical behaviors and drugs’ particles of the di�erent
compounds are discussed with the help of various TIs in the
pharmaceutical industries, see[2]. In addition, for the study
of molecules, the quantitative structures’ activity relation-
ships (QSAR) and quantitative structures’ property re-
lationships (QSPR) are very useful techniques which are
mostly performed with the help of TIs [3].

�ere are three basic types of TIs depending on the
parameters of degree, distance, and polynomial. According
to recent review [4], the degree-based TIs are mostly studied.
First of all, Wiener calculated the boiling point of para�n
with the help of a degree-based TI, see [5]. Gutman and

Trinajsti introduced Zagreb indices and used them to
compute the di�erent structure-based characteristics of the
molecular graphs [6].

Later on, Shenggui and Huiling characterized the graphs
for the �rst general Zagreb index [7]. Bedratyuk and Savenko
calculated the ordinary generating function and linear re-
currence relation for the sequence of the general �rst Zagreb
index [8].

Recently, Ashra� et al. de�ned Zagreb co-index and
computed it for graphs which are formed using various
operations, see [9, 10]. Kinkar et al. computed the �rst
Zagreb co-indices of trees under di�erent conditions, see
[11]. Mansour and Song established relationship between
Zagreb indices and co-indices of graphs [12]. Huaa and
Zhang computed sharp bounds on the �rst Zagreb co-index
in terms of Wiener, eccentric distance sum, eccentric
connectivity, and degree distance indices [13]. Gutman et al.
calculated relations between the Zagreb indices and co-in-
dices of a graph G and of its complement G [14, 15].
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In graph theory, the operations (union, intersection,
complement, product, and subdivision) play an important
role to develop new structure of graphs. Yan et al. computed
the Wiener index for new graphs using five different op-
erations L, S, Q, R, and T on a graph G such as line graph
L(G), subdivided graph S(G), line superposition graph
Q(G), triangle parallel graph R(G), and total graph T(G),
respectively, see [16]. After that, Eliasi and Taeri computed
Wiener indices of newly defined F-sum graphs represented
as (G1+FG2), where F ∈ S, R, Q, T{ } [17]. Furthermore, Deng
et al. calculated Zagreb indices [18], Ibraheem et al. [19]
forgot co-index, Liu et al. obtained first general Zagreb
(FGZ) index [20], and Javaid et al. [21] computed the bounds
of first Zagreb co-index; furthermore, they also studied the
connection-based Zagreb index and co-index [22] of these
graphs.

In this study, we computed FGZ co-index of graphs
under operations such as M1(G+SH), M1(G+RH),
M1(G+QH), and M1(G+TH). 'e reset of the study is settled
as follows. Section 2 contains preliminaries. In Section 3, the
main results of our work are discussed, and Section 4 has the
conclusion of work.

2. Preliminaries

Let G be a simple and connected graph with vertex and edge
set denoted by V(G) and E(G), respectively. 'e degree of
vertex any vertex v in G is the number of edges incident on it
and denoted by d(v). Let G be a graph; then, its complement
is defined as |V(G)| � |V(G)| and uv∉G iff uv ∈ G denoted
as G. Gutman and Trinajsti introduced the first and second
Zagreb indices as [6]

M1(G) � 􏽘
p1p2∈E(G)

dG p1( 􏼁 + dG p2( 􏼁􏼂 􏼃,

M2(G) � 􏽘
p1p2∈E(G)

dG p1( 􏼁dG p2( 􏼁􏼂 􏼃.
(1)

Ashrafi ȇt al. defined first Zagreb co-index M1(G) as
follows, see [10]:

M1(G) � 􏽘
y1y2 ∉E(G)

dG y1( 􏼁 + dG y2( 􏼁􏼂 􏼃. (2)

Let G be a graph; then, S(G) is obtained by adding one
vertex in every edge of G.

(i) R(G) is obtained from S(G) by inserting an edge
between the vertices that are adjacent in G

(ii) Q(G) is obtained from S(G) by inserting an edge
between new vertices that adjacent edges of G

(iii) Apply both R(G) and Q(G) on S(G); then, T(G) is
obtained

Suppose two connected graphs G and H; then, their F −

sum graph is represented by G+FH having vertex set
|V(G+FH)| � V(G)∪E(G) × V(H) and (y1, y2) (z1, z2)

∈ E(G+FH) iff y1 � z1 ∈ V(G) and y2∽z2 ∈ H y2 � z2
∈ V(H) and y1∽z1 ∈ F(G), where F ∈ S, R, Q, T{ }.

For details, see Figure 1 and 2.

3. Main Results

'is section contains results about FGZ co-index of graphs
under operations.

Theorem 1. Let G+SH be S-sum graph; then, its first general
Zagreb co-index is given as

M
c

1 G+SH( 􏼁 � 2θ n
2
2e

2
1 − n2e1􏼐 􏼑 + +2θe1 2n1 e2 + e2( 􏼁 + n2 n1 − 2( 􏼁􏼂 􏼃

+ 􏽘
θ

i�0

θ

i
􏼠 􏼡 M

θ−i
1 (G)M1

i+1
(H) + M

c−i
1 (G)M

i
1(H) + M

i+1
1 (H) M

c−i
1 (G) + M1

c− i
(G)􏼐 􏼑 + M1

i+1
(H)􏼔

M
c−i
1 (G) + M1

c− i
(G)􏼐 􏼑 + M

i
1(H) M1

θ− i
(G) + M

c−i
1 (G)􏼒 􏼓 + M

c−i
1 (G)M1

i
(H) + M1

c− i
(G) M

i
1(H) + M1

i
(H)􏼐 􏼑􏼕,

(3)
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where θ � c − 1. Proof. Using equation (2), we have

M G+SH( ) � ∑
y1 ,y2( ) z1 ,z2( )∉EG+SH

d y1, z1( ) + d y2, z2( )[ ],

M
c
1 G+SH( ) � ∑

z1 ,z2∈H
∑

y1 ,y2∈V(S(G)−G)
dθG+SH y1, z1( ) + dθG+SH y2, z2( )[ ] + ∑

y1 ,y2∈VG

dθG+SH y1, z1( ) + dθG+SH y2, z2( )[ ]

+ ∑
y1 ,y2∈V(S(G))y1∈V(G)y2∈V(S(G)−G)

dθG+SH y1, z1( ) + dθG+SH y2, z2( )[ ]

�∑A +∑B +∑C,

The graph P4 The graph C3

The graph P4 + S C3

The graph P4 + Q C3

The graph P4 + R C3

The graph P4 + T C3

Figure 2: F-sum graphs for P5 and P6.

The graph S (C6)

The graph
Q (C6)

The graph
T (C6)

The graph R (C6)

The graph C6

Figure 1: Subdivision of C5.
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􏽘 A � 􏽘
y1 ,y2∈V(S(G)−G)

􏽘
z1 ,z2∈VG2

d
θ
G+SH y1, z1( 􏼁 + d

θ
G+SH y2, z2( 􏼁􏽨 􏽩,

􏽘 A � 2θ n
2
2e

2
1 − n2e1􏼐 􏼑,

􏽘 B � 􏽘 B1 + 􏽘 B2 + 􏽘 B3 + 􏽘 B4 + 􏽘 B5 + 􏽘 B6,

􏽘 B1 � 􏽘
y∈V(G)

􏽘
z1z2 ∉E(H)

d
θ
G+SH y, z1( 􏼁 + d

θ
G+SH y, z2( 􏼁􏽨 􏽩

� 􏽘
y∈V(G)

􏽘
z1z2 ∉E(H)

􏽘

θ

i�0

θ

i

⎛⎝ ⎞⎠ d
θ−i
G (y)d

i
H z1( 􏼁 + d

θ−i
G (y)d

i
H z2( 􏼁􏽨 􏽩

� 􏽘
y∈V(G)

􏽘
z1z2 ∉E(H)

􏽘

θ

i�0

θ

i

⎛⎝ ⎞⎠d
θ−i
G (y) d

i
H z1( 􏼁 + d

i
H z2( 􏼁􏽨 􏽩,

􏽘 B2 � 􏽘
y1y2∈E(G)

􏽘
z∈V(H)

d
θ
G+SH y1, z( 􏼁 + d

θ
G+SH y2, z( 􏼁􏽨 􏽩

� 􏽘
y1y2∈E(G)

􏽘
z∈V(H)

􏽘

θ

i�0

θ

i

⎛⎝ ⎞⎠ d
θ−i
G y1( 􏼁d

i
H(z) + d

θ−i
G y2( 􏼁d

i
H(z)􏽨 􏽩

� 􏽘
y1 ,y2∈VG

􏽘
z∈H

􏽘

θ

i�0

θ

i

⎛⎝ ⎞⎠d
i
H(z) d

θ−i
G y1( 􏼁d

θ−i
G y2( 􏼁􏽨 􏽩,

􏽘 B3 � 􏽘
y1y2∈E(G)

􏽘
z1z2∈E(H)

d
θ
G+SH y1, z1( 􏼁 + d

θ
G+SH y2, z2( 􏼁􏽨 􏽩

� 􏽘
y1y2∈E(G)

􏽘
z1z2∈E(H)

􏽘

θ

i�0

θ

i

⎛⎝ ⎞⎠ d
θ−i
G y1( 􏼁d

i
H z1( 􏼁 + d

θ−i
G y2( 􏼁d

i
H z2( 􏼁􏽨 􏽩,

􏽘 B4 � 􏽘
y1y2 ∉E(G)

􏽘
z1z2∈E(H)

d
θ
G+SH y1, z1( 􏼁 + d

θ
G+SH y2, z2( 􏼁􏽨 􏽩

� 􏽘
y1y2 ∉E(G)

􏽘
z1z2∈E(H)

􏽘

θ

i�0

θ

i

⎛⎝ ⎞⎠ d
θ−i
G y1( 􏼁d

i
H z1( 􏼁 + d

θ−i
G y2( 􏼁d

i
H z2( 􏼁􏽨 􏽩,

􏽘 B5 � 􏽘
y1y2∈E(G)

􏽘
z1z2 ∉E(H)

d
θ
G+SH y1, z1( 􏼁 + d

θ
G+SH y2, z2( 􏼁􏽨 􏽩

� 􏽘
y1y2∈E(G)

􏽘
z1z2 ∉E(H)

􏽘

θ

i�0

θ

i

⎛⎝ ⎞⎠ d
θ−i
G y1( 􏼁d

i
H z1( 􏼁 + d

θ−i
G y2( 􏼁d

i
H z2( 􏼁􏽨 􏽩,

􏽘 B6 � 􏽘
y1y2 ∉E(G)

􏽘
z1z2 ∉E(H)

d
θ
G+SH y1, z1( 􏼁 + d

θ
G+SH y2, z2( 􏼁􏽨 􏽩

� 􏽘
y1y2∉E(G)

􏽘
z1z2 ∉E(H)

􏽘

θ

i�0

θ

i

⎛⎝ ⎞⎠ d
θ−i
G y1( 􏼁d

i
H z1( 􏼁 + d

θ−i
G y2( 􏼁d

i
H z2( 􏼁􏽨 􏽩,
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􏽘 B � 􏽘

θ

i�0

θ

i

⎛⎝ ⎞⎠ M
θ−i
1 (G)M1

i+1
(H) + M

c−i
1 (G)M

i
1(H)􏼔

+ M
i+1
1 (H) M

c−i
1 (G) + M1

c− i
(G)􏼐 􏼑 + M1

i+1
(H) M

c−i
1 (G) + M1

c− i
(G)􏼐 􏼑􏼕,

􏽘 C � 􏽘 C1 + 􏽘 C2 + 􏽘 C3 + 􏽘 C4 + 􏽘 C5,

􏽘 C1 � 􏽘

y1y2 ∉E S(G)y1∈V(G)y2∈V(S(G)−G)(

􏽘
z∈H

d
θ
G+SH y1, z( 􏼁 + d

θ
G+SH y2, z( 􏼁􏽨 􏽩

� 􏽘

y1y2 ∉E S(G)y1∈V(G)y2∈V(S(G)−G)(

􏽘
z∈H

􏽘

θ

i�0

θ

i

⎛⎝ ⎞⎠ d
θ−i
G y1( 􏼁d

i
H(z) + 2θ􏽨 􏽩

� 􏽘
θ

i�0

θ

i

⎛⎝ ⎞⎠M1
θ− i

(G)M
i
1(H) + 2θn2e1 n1 − 2( 􏼁,

􏽘 C2 � 􏽘

y1y2∈E S(G)y1∈V(G)y2∈V(S(G)−G)(

􏽘
z1z2∈E(H)

d
θ
G+SH y1, z1( 􏼁 + d

θ
G+SH y2, z2( 􏼁􏽨 􏽩

� 􏽘

y1y2∈E S(G)y1∈V(G)y2∈V(S(G)−G)(

􏽘
z1z2∈E(H)

􏽘

θ

i�0

θ

i

⎛⎝ ⎞⎠ d
θ−i
G y1( 􏼁d

i
H z1( 􏼁 + 2θ􏽨 􏽩,

􏽘 C3 � 􏽘

y1y2∈E S(G)y1∈V(G)y2∈V(S(G)−G)(

􏽘
z1z2 ∉E(H)

d
θ
G+SH y1, z1( 􏼁 + d

θ
G+SH y2, z2( 􏼁􏽨 􏽩

� 􏽘

y1y2∈E S(G)y1∈V(G)y2∈V(S(G)−G)(

􏽘
z1z2 ∉E(H)

􏽘

θ

i�0

θ

i

⎛⎝ ⎞⎠ d
θ−i
G y1( 􏼁d

i
H z1( 􏼁 + 2θ􏽨 􏽩,

􏽘 C4 � 􏽘

y1y2 ∉E S(G)y1∈V(G)y2∈V(S(G)−G)(

􏽘
z1z2∈E(H)

d
θ
G+SH y1, z1( 􏼁 + d

θ
G+SH y2, z2( 􏼁􏽨 􏽩

� 􏽘

y1y2 ∉E S(G)y1∈V(G)y2∈V(S(G)−G)(

􏽘
z1z2∈E(H)

􏽘

θ

i�0

θ

i

⎛⎝ ⎞⎠ d
θ−i
G y1( 􏼁d

i
H z1( 􏼁 + 2θ􏽨 􏽩,

􏽘 C5 � 􏽘

y1y2 ∉E S(G)y1∈V(G)y2∈V(S(G)−G)(

􏽘
z1z2 ∉E(H)

d
θ
G+SH y1, z1( 􏼁 + d

θ
G+SH y2, z2( 􏼁􏽨 􏽩

� 􏽘

y1y2 ∉E S(G)y1∈V(G)y2∈V(S(G)−G)(

􏽘
z1z2 ∉E(H)

􏽘

θ

i�0

θ

i

⎛⎝ ⎞⎠ d
θ−i
G y1( 􏼁d

i
H z1( 􏼁 + 2θ􏽨 􏽩,

􏽘 C � 􏽘

θ

i�0

θ

i

⎛⎝ ⎞⎠ M
i
1(H) M1

θ− i
(G) + M

c−i
1 (G)􏼒 􏼓 + M

c−i
1 (G)M1

i
(H) + M1

c− i
(G) M

i
1(H) + M1

i
(H)􏼐 􏼑􏼔 􏼕

+ 2θ+1
e1n1 e2 + e2( 􏼁. (4)

We arrived at desired result by putting the values in
equation (4). □

Theorem 2. Let G+RH be R-sum graph; then, its first general
Zagreb co-index is given as

Journal of Mathematics 5



M
c

1 G+RH( 􏼁 � 2θ n
2
2e

2
1 − n2e1􏼐 􏼑 + 2θe1 2n1 e2 + e2( 􏼁 + n2 n1 − 2( 􏼁􏼂 􏼃2􏽘

θ

i�0

θ

i
􏼠 􏼡

M
θ−i
1 (G)M1

i+1
(H) + M

c−i
1 (G) + M1

c− i
(G)􏼐 􏼑 + M1

i+1
(H) M1

c− i
(G) + M1

c− i
(G)􏼐 􏼑􏼔 􏼕

+ M1
θ− i

(G)M
i
1(H) + M

c−i
1 (G) M

i
1(H) + M1

i
(H)􏼐 􏼑 + M1

c− i
(G) M

i
1(H) + M1

i
(H)􏼐 􏼑,

(5)

where c � θ − 1. Proof. Using equation (2), we have

M
c

G+RH � 􏽐
y1 ,y2( ) z1 ,z2( )∉EG+RH

d
θ

y1, z1( 􏼁 + d
θ

y2, z2( 􏼁􏽨 􏽩,

M
c

1 G+RH( 􏼁 � 􏽘
z1 ,z2∈H

􏽘
y1 ,y2∈(V(R(G)−G)

d
θ
G+RH y1, z1( 􏼁 + d

θ
G+RH y2, z2( 􏼁􏽨 􏽩 + 􏽘

y1 ,y2∈VG

d
θ
G+RH y1, z1( 􏼁 + d

θ
G+RH y2, z2( 􏼁􏽨 􏽩⎡⎢⎢⎢⎣

+ 􏽘

y1 ,y2∈V R G1( )( )y1∈V G1( )y2∈V(R(G)−G)

d
θ
G+RH y1, z1( 􏼁 + d

θ
G+RH y2, z2( 􏼁􏽨 􏽩

⎤⎥⎥⎥⎥⎥⎥⎥⎦

� 􏽘 A + 􏽘 B + 􏽘 C.

(6)

Using equation 4, we directly have

􏽘 A � 2θ n
2
2e

2
1 − n2e1􏼐 􏼑,

􏽘 B � 􏽘 B1 + 􏽘 B2 + 􏽘 B3 + 􏽘 B4 + 􏽘 B5,

􏽘 B1 � 􏽘
y∈V(G)

􏽘
z1z2 ∉E(H)

d
θ
G+RH y, z1( 􏼁 + d

θ
G+RH y, z2( 􏼁􏽨 􏽩

� 􏽘
y∈V(G)

􏽘
z1z2 ∉E(H)

􏽘

θ

i�0

θ

i
􏼠 􏼡 2d

θ−i
G (y)d

i
H z1( 􏼁 + 2d

θ−i
G (y)d

i
H z2( 􏼁􏽨 􏽩

� 2 􏽘
y∈V(G)

􏽘
z1z2 ∉E(H)

􏽘

θ

i�0

θ

i
􏼠 􏼡d

θ−i
G (y) d

i
H z1( 􏼁 + d

i
H z2( 􏼁􏽨 􏽩 � 2􏽘

θ

i�0

θ

i
􏼠 􏼡M

θ−i
1 (G)M1

i+1
(H),

􏽘 B2 � 􏽘
y1y2∈E(G)

􏽘
z1z2∈E(H)

d
θ
G+RH y1, z1( 􏼁 + d

θ
G+RH y2, z2( 􏼁􏽨 􏽩

� 􏽘
y1y2∈E(G)

􏽘
z1z2∈E(H)

􏽘

θ

i�0

θ

i
􏼠 􏼡 2d

θ−i
G y1( 􏼁d

i
H z1( 􏼁 + 2d

θ−i
G y2( 􏼁d

i
H z2( 􏼁􏽨 􏽩 � 2􏽘

θ

i�0

θ

i
􏼠 􏼡M

c−i
1 (G)M

i+1
1 (H),

􏽘 B3 � 􏽘
y1y2 ∉E(G)

􏽘
z1z2∈E(H)

d
θ
G+RH y1, z1( 􏼁 + d

θ
G+RH y2, z2( 􏼁􏽨 􏽩

� 􏽘
y1y2 ∉E(G)

􏽘
z1z2∈E(H)

􏽘

θ

i�0

θ

i
􏼠 􏼡 2d

θ−i
G y1( 􏼁d

i
H z1( 􏼁 + 2d

θ−i
G y2( 􏼁d

i
H z2( 􏼁􏽨 􏽩 � 2􏽘

θ

i�0

θ

i
􏼠 􏼡M1

c− i
(G)M

i+1
1 (H),

􏽘 B4 � 􏽘
y1y2∈E(G)

􏽘
z1z2 ∉E(H)

d
θ
G+RH y1, z1( 􏼁 + d

θ
G+RH y2, z2( 􏼁􏽨 􏽩

� 􏽘
y1y2∈E(G)

􏽘
z1z2 ∉E(H)

􏽘

θ

i�0

θ

i
􏼠 􏼡 2d

θ−i
G y1( 􏼁d

i
H z1( 􏼁 + 2d

θ−i
G y2( 􏼁d

i
H z2( 􏼁􏽨 􏽩 � 2􏽘

θ

i�0

θ

i
􏼠 􏼡M

c−i
1 (G)M1

i+1
(H),
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􏽘 B5 � 􏽘
y1y2 ∉E(G)

􏽘
z1z2 ∉E(H)

d
θ
G+RH y1, z1( 􏼁 + d

θ
G+RH y2, z2( 􏼁􏽨 􏽩

� 􏽘
y1y2 ∉E(G)

􏽘
z1z2 ∉E(H)

􏽘

θ

i�0

θ

i
􏼠 􏼡 2d

θ−i
G y1( 􏼁d

i
H z1( 􏼁 + 2d

θ−i
G y2( 􏼁d

i
H z2( 􏼁􏽨 􏽩 � 2􏽘

θ

i�0

θ

i
􏼠 􏼡M1

c− i
(G)M1

i+1
(H),

􏽘 B � 2􏽘

θ

i�0

θ

i
􏼠 􏼡 M

θ−i
1 (G)M1

i+1
(H) + M

c−i
1 (G) + M1

c− i
(G)􏼐 􏼑 +M1

i+1
(H) M

c−i
1 (G) + M1

c− i
(G)􏼐 􏼑􏼕􏼔 ,

􏽘 C � 􏽘 C1 + 􏽘 C2 + 􏽘 C3 + 􏽘 C4 + 􏽘 C5,

􏽘 C1 � 􏽘

y1y2 ∉E R(G)y1∈V(G)y2∈V(R(G)−G)(

􏽘
z∈H

d
θ
G+RH y1, z( 􏼁 + d

θ
G+RH y2, z( 􏼁􏽨 􏽩

� 􏽘

y1y2 ∉E R(G)y1∈V(G)y2∈V(R(G)−G)(

􏽘
z∈H

􏽘

θ

i�0

θ

i
􏼠 􏼡 2d

θ−i
G y1( 􏼁d

i
H(z) + 2θ􏽨 􏽩

� 2􏽘
θ

i�0

θ

i
􏼠 􏼡M1

θ− i
(G)M

i
1(H) + 2θn2e1 n1 − 2( 􏼁,

􏽘 C2 � 􏽘

y1y2∈E R(G)y1∈V(G)y2∈V(R(G)−G)(

􏽘
z1z2∈E(H)

d
θ
G+RH y1, z1( 􏼁 + d

θ
G+RH y2, z2( 􏼁􏽨 􏽩

� 􏽘

y1y2∈E R(G)y1∈V(G)y2∈V(R(G)−G)(

􏽘
z1z2∈E(H)

􏽘

θ

i�0

θ

i
􏼠 􏼡 2d

θ−i
G y1( 􏼁d

i
H z1( 􏼁 + 2θ􏽨 􏽩

􏽘 C3 � 􏽘

y1y2∈E R(G)y1∈V(G)y2∈V(R(G)−G)(

􏽘
z1z2 ∉E(H)

d
θ
G+RH y1, z1( 􏼁 + d

θ
G+RH y2, z2( 􏼁􏽨 􏽩

� 􏽘

y1y2∈E R(G)y1∈V(G)y2∈V(R(G)−G)(

􏽘
z1z2 ∉E(H)

􏽘

θ

i�0

θ

i
􏼠 􏼡 2d

θ−i
G y1( 􏼁d

i
H z1( 􏼁 + 2θ􏽨 􏽩

􏽘 C4 � 􏽘

y1y2 ∉E R(G)y1∈V(G)y2∈V(R(G)−G)(

􏽘
z1z2∈E(H)

d
θ
G+RH y1, z1( 􏼁 + d

θ
G+RH y2, z2( 􏼁􏽨 􏽩

� 􏽘

y1y2 ∉E R(G)y1∈V(G)y2∈V(R(G)−G)(

􏽘
z1z2∈E(H)

􏽘

θ

i�0

θ

i
􏼠 􏼡 2d

θ−i
G y1( 􏼁d

i
H z1( 􏼁 + 2θ􏽨 􏽩

􏽘 C5 � 􏽘

y1y2 ∉E R(G)y1∈V(G)y2∈V(R(G)−G)(

􏽘
z1z2 ∉E(H)

d
θ
G+RH y1, z1( 􏼁 + d

θ
G+RH y2, z2( 􏼁􏽨 􏽩

� 􏽘
y1y2 ∉ER(G)y1∈V(G)y2∈V(R(G)−G)

􏽘
z1z2 ∉E(H)

􏽘

θ

i�0

θ

i
􏼠 􏼡 2d

θ−i
G y1( 􏼁d

i
H z1( 􏼁 + 2θ􏽨 􏽩

􏽘 C � 2􏽘

θ

i�0

θ

i
􏼠 􏼡 M1

θ− i
(G)M

i
1(H) + M

c−i
1 (G) M

i
1(H) + M1

i
(H)􏼐 􏼑 + M1

c− i
(G) M

i
1(H) + M1

i
(H)􏼐 􏼑􏼔 􏼕

+ 2θe1 2n1 e2 + e2( 􏼁 + n2 n1 − 2( 􏼁􏼂 􏼃. (7)

We arrived at desired result by putting the values in
equation (6). □

Theorem 3. Let G+QH be Q-sum graph; then, its first general
Zagreb co-index is given as
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1 G+QH􏼐 􏼑 � +4θn2e1 n1 − 2( 􏼁 + 4e1 n1 + 2( 􏼁 e2 + e2( 􏼁

· 􏽘
θ

i�0

θ

i
􏼠 􏼡 M

θ−i
1 (G)M1

i+1
(H) + M

c−i
1 (G)M

i
1(H) + M

i+1
1 (H) M

c−i
1 (G) + M1

c− i
(G)􏼐 􏼑􏼔

+ M1
i+1

(H) M
c−i
1 (G) + M1

c− i
(G)􏼐 􏼑 + M

i
1(H) M1

θ− i
(G) + M

c−i
1 (G)􏼒 􏼓

+ M
c−i
1 (G)M1

i
(H) + M1

c− i
(G) M

i
1(H) + M1

i
(H)􏼐 􏼑] + α1,

(8)

where c � θ − 1. Proof. Using equation (2), we have

M
c

G+QH􏼐 􏼑 � 􏽘

y1 ,y2( ) z1 ,z2( )∉E G+QH(

d
θ

y1, z1( 􏼁 + d
θ

y2, z2( 􏼁􏽨 􏽩,

M
c

1 G+QH􏼐 􏼑 � 􏽘
z1 ,z2∈H

􏽘
y1 ,y2∈(V(Q(G)−G)

d
θ
G+SH y1, z1( 􏼁 + d

θ
G+QH y2, z2( 􏼁􏼔 􏼕 + 􏽘

y1 ,y2∈VG

d
θ
G+QH y1, z1( 􏼁 + d

θ
G+QH y2, z2( 􏼁􏼔 􏼕⎡⎢⎢⎢⎣

+ 􏽘
y1 ,y2∈V(S(G))y1∈V(G)y2∈V(Q(G)−G)

d
θ
G+QH y1, z1( 􏼁 + d

θ
G+QH y2, z2( 􏼁􏼔 􏼕⎤⎥⎥⎥⎦

� 􏽘 A + 􏽘 B + 􏽘 C,

􏽘 A � 􏽘
y1 ,y2∈V(Q(G)−G)

􏽘
z1 ,z2∈VG2

d
θ
G+QH y1, z1( 􏼁 + d

θ
G+QH y2, z2( 􏼁􏼔 􏼕 � α1.

(9)

Using equation 4, we directly have

􏽘 B � 􏽘

θ

i�0

θ

i
􏼠 􏼡 M

θ−i
1 (G)M1

i+1
(H) + M

c−i
1 (G)M

i
1(H) + M

i+1
1 (H) M

c−i
1 (G) + M1

c− i
(G)􏼐 􏼑􏼔

+ M1
i+1

(H) M
c−i
1 (G) + M1

c− i
(G)􏼐 􏼑􏼕,

􏽘 C � 􏽘 C1 + 􏽘 C2 + 􏽘 C3 + 􏽘 C4 + 􏽘 C5,

􏽘 C1 � 􏽘
y1y2 ∉E(Q(G)y1∈V(G)y2∈V(Q(G)−G)

􏽘
z∈H

d
θ
G+QH y1, z( 􏼁 + d

θ
G+QH y2, z( 􏼁􏼔 􏼕

� 􏽘
y1y2 ∉E(Q(G)y1∈V(G)y2∈V(Q(G)−G)

􏽘
z∈H

􏽘

θ

i�0

θ

i
􏼠 􏼡 d

θ−i
G y1( 􏼁d

i
H(z) + 4θ􏽨 􏽩

� 􏽘

θ

i�0

θ

i
􏼠 􏼡M1

θ− i
(G)M

i
1(H) + 4θn2e1 n1 − 2( 􏼁,

􏽘 C2 � 􏽘
y1y2∈E(Q(G)y1∈V(G)y2∈V(Q(G)−G)

􏽘
z1z2∈E(H)

d
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G+QH y1, z1( 􏼁 + d

θ
G+QH y2, z2( 􏼁􏼔 􏼕

� 􏽘
y1y2∈E(Q(G)y1∈V(G)y2∈V(Q(G)−G)

􏽘
z1z2∈E(H)

􏽘

θ

i�0

θ
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􏼠 􏼡 d
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G y1( 􏼁d
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H z1( 􏼁 + 2θ􏽨 􏽩 � 􏽘

θ

i�0

θ

i
􏼠 􏼡M

c−i
1 (G)M

i
1(H) + 4θ+2

e1e2,
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􏽘 C3 � 􏽘
y1y2∈E(Q(G)y1∈V(G)y2∈V(Q(G)−G)

􏽘
z1z2 ∉E(H)

d
θ
G+QH y1, z1( 􏼁 + d
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θ
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i
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θ

i�0

θ

i
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c− i

(G)M
i
1(H) + 4θ+1
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􏽘
z1z2 ∉E(H)

d
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y1y2 ∉E(Q(G)y1∈V(G)y2∈V(Q(G)−G)

􏽘
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􏽘

θ

i�0

θ

i

⎛⎝ ⎞⎠ d
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G y1( 􏼁d

i
H z1( 􏼁 + 4θ􏽨 􏽩 � 􏽘

θ

i�0

θ

i

⎛⎝ ⎞⎠M1
c− i

(G)M1
i
(H) + 4θ+1

e1e2 n1 − 2( 􏼁,

􏽘 C � 􏽘

θ

i�0

θ

i

⎛⎝ ⎞⎠ M
i
1(H) M1

θ− i
(G) + M

c−i
1 (G)􏼒 􏼓 + M

c−i
1 (G)M1

i
(H) + M1

c− i
(G) M

i
1(H) + M1

i
(H)􏼐 􏼑􏼔 􏼕

+ 4θ n2e1 n1 − 2( 􏼁 + 4e1 n1 + 2( 􏼁 e2 + e2( 􏼁􏼂 􏼃.

(10)

We arrived at desired result by putting the values in
equation (9). □

Theorem 4. Let G+TH be T-sum graph; then, its first general
Zagreb co-index is given as

M
c

1 G+TH( 􏼁 � 4θ n
2
2e

2
1 − n2e1􏼐 􏼑 + 2

􏽘

θ

i�0

θ

i
􏼠 􏼡 M

θ−i
1 (G)M1

i+1
(H) + M

c−i
1 (G) + M1

c− i
(G)􏼐 􏼑􏼔

+ M1
i+1

(H) M
c−i
1 (G) + M1

c− i
(G)􏼐 􏼑M1

θ− i
(G)M

i
1(H) + M

c−i
1 (G) M

i
1(H) + M1

i
(H)􏼐 􏼑

+ M1
c− i

(G) M
i
1(H) + M1

i
(H)􏼐 􏼑] + 4θ n2e1 n1 − 2( 􏼁 + 4e1 n1 + 2( 􏼁 e2 + e2( 􏼁􏼂 􏼃,

(11)

where c � θ − 1. Proof. Using equation (2), we have

M
c

1 G+TH( 􏼁 � 􏽘

y1 ,y2( ) z1 ,z2( )∉E G+TH(

d
θ

y1, z1( 􏼁 + d
θ

y2, z2( 􏼁􏽨 􏽩,

M
c

1 G+TH( 􏼁 � 􏽘
z1 ,z2∈H

􏽘
y1 ,y2∈(V(T(G)−V(G))

d
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G+SH y1, z1( 􏼁 + d

θ
G+TH y2, z2( 􏼁􏽨 􏽩 + 􏽘

y1 ,y2∈VG

d
θ
G+TH y1, z1( 􏼁 + d

θ
G+TH y2, z2( 􏼁􏽨 􏽩⎡⎢⎢⎢⎣

+ 􏽘
y1 ,y2∈V(S(G))y1∈V(G)y2∈V(T(G)−G)

d
θ
G+TH y1, z1( 􏼁 + d

θ
G+TH y2, z2( 􏼁􏽨 􏽩⎤⎥⎥⎥⎦

� 􏽘 A + 􏽘 B + 􏽘 C.

(12)
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Using equation 9, we directly have

􏽘 A � 4θ n
2
2e

2
1 − n2e1􏼐 􏼑. (13)

'e value 􏽐 A and 􏽐 B are by equations (7) and (9)
asfollows:

􏽘 C � 􏽘 C1 + 􏽘 C2 + 􏽘 C3 + 􏽘 C4 + 􏽘 C5,

􏽘 C1 � 􏽘
y1y2 ∉E(T(G)y1∈V(G)y2∈V(T(G)−G)
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i
H z1( 􏼁 + 4θ􏽨 􏽩,

􏽘 C3 � 􏽘
y1y2∈E(T(G)y1∈V(G)y2∈V(T(G)−G)

􏽘
z1z2 ∉E(H)

d
θ
G+TH y1, z1( 􏼁 + d
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(14)

By substituting the values of 􏽐 A, 􏽐 b, and 􏽐 C in
equation (12), we obtained required proof. □

4. Conclusion

'e study of the basic or factor graphs is an interesting
problem in the theory of graphs where the original graphs
becomes complex. In this study, we have computed FGZ co-

index of graphs under operations such as M1(G+SH),
M1(G+RH), M1(G+QH), and M1(G+TH) in the terms of
indices and co-indices of their basic or factor graphs.
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[1] G. Rücker and C. Rücker, “On topological indices, boiling
points, and cycloalkanes,” Journal of Chemical Information
and Computer Sciences, vol. 39, no. 5, pp. 788–802, 1999.
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A simple graph is called cordial if it admits 0-1 labeling that satis�es certain conditions. ­e second order of lemniscate graph is a
graph of two second order of circles that have one vertex in common. In this paper, we introduce some new results on cordial
labeling, total cordial, and present necessary and su�cient conditions of cordial and total cordial for corona product of paths and
second order of lemniscate graphs.

1. Introduction

Labelling methods are used for a wide range of applications
in di�erent subjects including coding theory, computer
science, and communication networks. Graph labeling is an
assignment of positive integers on vertices or edges or both
of them which ful�lled certain conditions. Hundreds of
research studies have been working with di�erent types of
labeling graphs [1–11], and a reference for this purpose is the
survey written by Gallian [7]. All graphs considered, in this
theme, are �nite, simple, and undirected. ­e original
concept of cordial graphs is due to Cahit [2]. He proved the
following: each tree is cordial; a complete graphKn is cordial
if and only if n≤ 3 and a complete bipartite graph Kn,m is
cordial for all positive integers n andm [3]. LetG � (V, E) be
a graph, and let f: V⟶ 0, 1{ } be a labeling of its vertices,
and let the induced edge labeling f∗E⟶ 0, 1{ } be given by
f∗(uv) � (f(u) + f(v))(mod2), where e � uv(∈ E) and
u, v ∈ V. Let v0 and v1 be the numbers of vertices that are
labeled by 0 and 1, respectively, and let e0 and e1 be the
corresponding numbers of edges. Such a labeling is called
cordial if both |v0 − v1|≤ 1 and |e0 − e1|≤ 1 hold. A graph is
called cordial if it admits a cordial labeling. As an extension

of the cordial labeling, we de�ne a total cordial labeling of a
graph G with vertex set and edge set as an cordial labeling
such that number of vertices and edges labeled with 0 and
the number of vertices and edges labeled with 1 di�er by at
most 1, i.e., |(v0 + e0) − (e1 +v1)| ≤ 1. A graph with a total
cordial labeling is called a total cordial graph. If the vertices
of the graph are assigned values subject to certain conditions,
it is known as graph labeling. Following three are the
common features of any graph labeling problem: (1) a set of
numbers from which vertex labels are assigned; (2) a rule
that assigns a value to each edge; and (3) a condition that
these values must satisfy.

A path with n vertices and n − 1 edges is denoted by Pn,
and a cycle with n vertices and n edges is denoted by Cn [12].
­e second power of a lemniscate graph is de�ned as the
union of two second power of cycles where both have a
common vertex; it is denoted by L2n,m ≡ C2

n♯C2
m [13]. Ob-

viously, L2n,m has n +m − 1 vertices and 2n + 2m − 4 edges.
­e corona product G1 ⊙G2 of two graphs Gi (with ni
vertices and mi edges), i � 1, 2, is the graph obtained by
taking one copy of G1 and n1 copies of G2 and then joining
the ith vertex ofG1 with an edge to every vertex in the ith copy
of G2. It is easy to show that G1 ⊙G2 has n1(1 + n2) vertices
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and m1 + n1m2 + n1n2 edges [7, 14–18]. In this paper, we study
the cordial and total cordial of the corona product Pk ⊙L2

n,m of
paths and second power of lemniscate graphs and show that
this is cordial and total cordial for all positive integers k, n, m.
,e rest of the paper is organized as follows. In Section 1, brief
summary of definitions that are useful for the present inves-
tigations is presented. Terminologies and notations are in-
troduced in Section 2.,emain result is presented in Section 3.
Finally, the conclusion of this paper is introduced.

2. Terminology and Notation

Given a path or a cycle with 4r vertices, let L4r denote the
labeling 0011. . . 0011 (repeated r-times) and let L’

4r denote
the labeling 1100. . . 1100 (repeated r times). ,e labeling
1001 1001. . . 1001 (repeated r times) and 0110. . . 0110
(repeated r times) is denoted by S4r and S’4r. Let M2r denote
the labeling 0101 . . . 01, zero-one repeated r− times if r is
even and 0101...010 if r is odd. Sometimes, we modify la-
beling by adding symbols at one end or the other (or both). If
G and H are two graphs, where G has n vertices, the labeling
of the corona G⊙H is often denoted by [A: B1, B2, B3,

..., Bn], where A is the labeling of the n vertices of G, and Bi,
1≤ i≤ n, is the labeling of the vertices of the copy of H that is
connected to the ith vertex of G. For a given labeling of the
corona G⊙H, we denote vi and ei (i � 0, 1) to represent the
numbers of vertices and edges, respectively, labeled by i. Let
us denote xi and ai to be the numbers of vertices and edges
labeled by i for the graph G. Also, we let yi and bi be those for
H, which are connected to the vertices labeled 0 of G.
Likewise, let yi

′ and bi
′ be those for H, which are connected to

the vertices labeled 1 of G. It is easily to verify that
v0 � x0 + x0y0 + x1y0′, v1 � x1 + x0y1 + x1y1′, e0 � a0 +x0b0
+x1b0′ + x0y1 + x1y0′, and e1 � a1 + x0b1 +x1b1′ + x0y0
+x1y1′. ,us, v0 − v1 � (x0 − x1) + x0(y0 − y1) + x1(y0′− y1′)
and e0 − e1 � (a0 − a1) +x0(b0 − b1) +x1(b0′ − b1′) + x0(y0−

y1) − x1(y0′ − y1′). In particular, if we have only one labeling
for all copies of H, i.e., yi � yi

′ and bi � bi
′, then

v0 � x0 + ny0, v1 � x1 + ny1, e0 � a0 + nb0 +x0y1 +x1y0,
and e1 � a1 + nb1 + x0y0 + x1y1. ,us, v0 − v1 � (x0 − x1) +

n(y0 − y1) and e0 − e1 � (a0 − a1) + n(b0 − b1)+ (x1 − x0)

(y0 − y1), where n is the order of G. Figure 1 illustrates the
condition cordial and total cordial labeling of P3 ⊙ L3,7.

3. Results and Discussion

In this section, we show that the corona product of paths and
second power of lemniscate graphs, Pk ⊙L2

n,m, is cordial and
also total cordial for all k≥ 1, n, m≥ 3.

,roughout our proofs, the way of labeling L2
n,m starts

always from a vertex that next the common vertex and go
further opposite to this common vertex. Before considering
the general form of the final result, let us first prove it in the
following specific case. Our main theorem is as follows.

Theorem 1. (e corona product of paths and second power
of lemniscate graphs, Pk ⊙L2

n,m, is cordial and also total
cordial for all k≥ 1, n, m≥ 3.

In order to prove this theorem, we will introduce a
number of lemmas as follows.

Lemma 1. Pk ⊙L2
3,m is cordial and total cordial for all k≥ 1

and m≥ 3.

Proof
Case 1. When m≥ 3 and k � 2r, r≥ 1, one can choose
the labeling [M2r; 00100, 11011, . . . , (r − times)] for
P2r ⊙ L2

3,3. ,erefore, x0 � x1 � r, a0 � 0, a1 � 2r − 1,

y0 � 4, y1 � 1, b0 � 2, b1 � 4, y0′ � 1, y1′ � 4, b0′ � 2, and
b1′ � 4. Hence, |v0 − v1| � 0, |e0 − e1| � 1 and
|(v0 + e0) − (e1 + v1)| � 1. ,us, P2r ⊙ L2

3,3, r≥ 1, is
cordial and total cordial.

Case 2. When m≥ 3 and k � 2r + 1, r≥ 0, one can
choose the labeling [M2r+1; 00100, 11011, 00100, 11011,

. . . , (r − times), 11100] for P2r+1 ⊙ L2
3,3. ,erefore, x0 �

r + 1, x1 � r, a0 � 0, a1 � 2r, y0 � 4, y1 � 1, b0 � 2, b1 �

4, y0′ � 1, y1′ � 4, b0′ � 2, b1′ � 4, y∗0 � 2, y∗1 � 3, b∗0 � 4,

and b∗1 � 2, where y∗i and b∗i are the numbers of vertices
and edges labeled i in L2

3,3 that are connected to the last
zero in P4r+3. Consequently, it is easy to show that
|v0 − v1| � 0, |e0 − e1| � 1, and |(v0 + e0) − (e1 + v1)| �

1. ,us, P2r+1 ⊙L2
3,3, r≥ 0, is cordial and total cordial.

Case 3. When m ≡ 0(mod4) and k ≡ 0(mod4), that
means, k � 4r, r≥ 1 and m � 4t, t> 1, then the labeling
[L4r; 0313M4t− 4, 0313M4t− 4, 01L4M

’
4t− 4, 01L4M

’
4t− 4, ...,

(r − times)] for P4r ⊙ L2
3,4t can be applied. ,erefore,

x0 � x1 � 2r, a0 � 2r, a1 � 2r − 1, y0 � y1 � 2t + 1, b0
� 4t + 1, b1 � 4t, y0′ � y1′ � 2t + 1, b0′ � 4t, and
b1′ � 4t + 1. So, |v0 − v1| � 0, |e0 − e1| � 1, and
|(v0 + e0) − (e1 + v1)| � 1. For the case P4r ⊙ L2

3,4, the
labeling [L4r; 0313, 0313, 01L4, 01L4, ..., (r − times)] is
sufficient and thus P4r ⊙ L2

3,4t is cordial and also total
cordial.
Case 4. When m ≡ 0(mod4) and k ≡ 1(mod4) that
meansk � 4r + 1, r≥ 0 and m � 4t, t> 1, then the la-
beling [L4r0; 0313M4t− 4, 03 13M4t− 4, 01L4M

’
4t− 4,

01L4M
’
4t− 4, . . . , (r − times), 03L3M4t− 4] for P4r+1 ⊙ L2

3,4t

is considered. ,erefore, x0 � 2r + 1, x1 � 2r, a0 � a

1 � 2r, y0 � y1 � 2t + 1, b0 � 4t + 1, b1 � 4t, y0′ � y1′ �
2t + 1, b0′ � 4t, and b1′ � 4t + 1. Hence, |v0 − v1| � 1,
|e0 − e1| � 1, and |(v0 + e0) − (e1 + v1)| � 0. For the case
P4r+1 ⊙ L2

3,4, the labeling [L4r0; 0313, 0313, 01L4,

01L4, ..., (r − times), 1303] is sufficient and thus
P4r+1 ⊙ L2

3,4t is cordial and total cordial.
Case 5. When m ≡ 0(mod4) and k ≡ 2(mod4) that
means k � 4r + 2, r≥ 0, and m � 4t, t> 1, then the la-
beling [L4r10; 0313M4t− 4, 0313 M4t− 4, 01L4M

’
4t− 4,

01L4M
’
4t− 4, ..., (r − times), 01L4M

’
4t− 4, 0313M4t− 4] for

P4r+2 ⊙ L2
3,4t is applied. ,erefore, x0 � x1 � 2r+ 1, a0 �

2r+ 1, a1 � 2r, y0 � y1 � 2t + 1, b0 � 4t + 1, b 1 � 4t,

y0′ � y1′ � 2t + 1, b0′ � 4t, and b1′ � 4t + 1. So,
|v0 − v1| � 0, |e0 − e1| � 1, and |(v0 + e0) − (e1 + v1)| �

1. For the case P4r+2 ⊙ L2
3,4, the labeling [L4r10; 0313,

0313, 01L4, 01L4, ..., (r − times), 01L4, 0313] is sufficient
and thus P4r+2 ⊙L2

3,4t is cordial and total cordial.
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Case 6. When m ≡ 0(mod4) and k ≡ 3(mod4) that
means k � 4r + 3, r≥ 0 and m � 4t, t> 1, then one can
select the labeling [L4r001; 0313M4t− 4, 0313 M4t− 4,

01L4M
’
4t− 4, 01L4M

’
4t− 4, . . . , (r − times), 0313M4t− 4,

0313M4t− 4, 01L4M
’
4t− 4] for P4r+3 ⊙L2

3,4t.
,erefore, x0 � 2r + 2, x1 � 2r + 1, a0 � a1 � 2r + 1,

y0 � y1 � 2t + 1, b0 � 4t + 1, b1 � 4t, y0′ � y1′ � 2t + 1,

b0′ � 4t, and b1′ � 4t + 1. Hence, one can easily show
that |v0 − v1| � 1, |e0 − e1| � 1 and |(v0 + e0) − (e1+

v1)| � 0. For the case P4r+3 ⊙ L2
3,4, the labeling

[L4r001; 0313, 0313, 01L4, 01L4..., (r − times)] is suffi-
cient and thus P4r+3 ⊙L2

3,4t is cordial and total cordial.
Case 7. When m ≡ 1(mod4) and k ≡ 0(mod4) that
means k � 4r, r≥ 1 and m � 4t + 1, t> 1, then one can
choose the labeling [L4r; 101L4′0M’

4t− 60, 101
L4′0M’

4t− 60, 010L41M4t− 61, 010L41M4t− 61, ..., (r −

times)] for P4r ⊙L2
3,4t+1. ,erefore, x0 � x1 � 2r, a0 �

2r, a1 � 2r − 1, y0 � 2t + 1, y1 � 2t + 2, b0 � 4t + 2,

b1 � 4t + 1, y0′ � 2t + 2, y1′ � 2t + 1, b0′ � 4t + 2, and
b1′ � 4t + 1. Hence, one can easily show that
|v0 − v1| � 0, |e0 − e1| � 1 and |(v0 + e0) − (e1 + v1)| � 1.
For the special case P4r ⊙L2

3,5, the labeling
[L4r; 01L4′0, 01L4′0, 10L41, 10L41, ..., (r − times)] is suf-
ficient and thus P4r ⊙L2

3,4t+1 is cordial and total cordial.
Case 8. When m ≡ 1(mod4) and k ≡ 1(mod4) that
means k � 4r + 1, r≥ 0 and m � 4t + 1, t> 1, then one
can select the labeling [L4r0; 101L4′0M’

4t− 60, 101L4′0
M’

4t− 60, 010L41M4t− 61, 010L41M4t− 61, ..., (r − times),
101L4′1M’

4t− 61] for P4r+1 ⊙ L2
3,4t+1. ,erefore, x0 � 2r +

1, x1 � 2r, a0 � a1 � 2r, y 0 � 2t + 1, y1 � 2t + 2,

b0 � 4t+ 2, b1 � 4t + 1, y0′ � 2t + 2, y1′ � 2t + 1, b0′ �
4t + 2, and b1′ � 4t + 1. So, |v0 − v1| � 0, |e0 − e1| � 0
and |(v0 + e0) − (e1 + v1)| � 0. For the special case
P4r+1 ⊙L2

3,5, the labeling [L’
4r0; 01L4′0, 01

L4′0, 10L41, 10L41, ..., (r − times), 10L41] is sufficient
and thus P4r+1 ⊙ L2

3,4t+1 is cordial and total cordial.

Case 9. When m ≡ 1(mod4) and k ≡ 2(mod4) that
means k � 4r + 2, r≥ 0 and m � 4t + 1, t> 1, then the
labeling [L4r10; 101L4′0M’

4t− 60, 101 L4′0M’
4t− 6 0, 010

L41M 4t− 61, 010L41M4t− 61, ..., (r− times), 010 L41
M4t− 60, 101L4′0M’

4t− 61] for P4r+2 ⊙ L2
3,4t+1 can be ap-

plied. ,erefore, x0 � 2r + 1, x1 � 2r + 1, a0 �

2r + 1, a1 � 2r, y 0 � 2t + 1, y1 � 2t + 2, b0 � 4t+

2, b1 � 4t + 1, y0′ � 2t + 2, y1′ � 2t + 1, b0′ � 4t + 2, and
b1′ � 4t + 1. Hence, |v0 − v1| � 0, |e0 − e1| � 1 and

|(v0 + e0) − (e1 + v1)| � 1. For the special case
P4r+2 ⊙ L2

3,5, the labeling [L4r10; 01L4′0, 01L4′
0, 10L41, 10L41, ..., (r − times), 10L41, 01L4′0] is suffi-
cient and thus P4r+2 ⊙L2

3,4t+1 is cordial and also total
cordial.
Case 10. When m ≡ 1(mod4) and k ≡ 3(mod4) that
means k � 4r + 3, r≥ 0 and m � 4t + 1, t> 1, then take
the labeling [L4r021; 101L4′0M’

4t− 60, 101 L4′0M’
4t− 6

0, 010L4 1M4t− 61, 010L41M4t− 61, ..., (r− times),
101L4′0M’

4t− 61, 101L4′0M’
4t− 61, , 010L41M4t− 60] for

P4r+3L
2
3,4t+1. ,erefore, x0 � 2r + 2, x1 � 2r + 1, a0 �

a1 � 2r + 1, y0 � 2t + 1, y1 � 2t + 2, b0 � 4t+ 2, b1 �

4t + 1, y0′ � 2t + 2, y1′ � 2t + 1, b0′ � 4t + 2, and
b1′ � 4t + 1. Hence, |v0 − v1| � 0, |e0 − e1| � 0, and
|(v0 + e0) − (e1 + v1)| � 0. For the special case
P4r+3 ⊙ L2

3,5, the labeling [L4r021; 01L4′0, 01L4′0, 10
L41, 10L41, ..., (r − times), 01L4′0, 10L41, 10L41] is suf-
ficient and thus P4r+3 ⊙ L2

3,4t+1 is cordial and total
cordial.
Case 11. When m ≡ 2(mod4) and k even that means
m � 4t + 2, t> 1, and k � 2r, r≥ 1, then by taking the
labeling [M2r; 021L4′0M’

4t− 4, 120 L41M4t− 4, ...,

(r − times)] for P2r ⊙L2
3,4t+2, therefore x0 � x1 � r, a0 �

0, a1 � 2r − 1, y0 � 2t + 3, y1 � 2t + 1, b0 � 4t + 2, b1 �

4t + 3, y0′ � 2t + 1, y1′ � 2t + 3, b0′ � 4t + 2, and
b1′ � 4t + 3. Hence, |v0 − v1| � 0, |e0 − e1| � 1 and
|(v0 + e0) − (e1 + v1)| � 1. For the case P2r ⊙ L2

3,6, the
labeling [M2r; 02L4′01, 12L410, ..., (r − times)] is suffi-
cient and thus P2r ⊙ L2

3,6 is cordial and total cordial.

Case 12.When m ≡ 2(mod4) and k odd that means
m � 4t + 2, t> 1, and k � 2r + 1, r≥ 1, then the labeling
[M2r+1; 021L4′0M’

4t− 4, 120L41M4t− 4, ..., (r − times), 010
L41M4t− 4] for P2r+1 ⊙ L2

3,4t+2 is considered. ,erefore,
x0 � r + 1, x1 � r, a0 � 0, a1 � 2r, y0 � 2t + 3, y1 �

2t + 1, b0 � 4t + 2, b1 � 4t + 3, y0′ � 2t + 1, y1′ � 2t + 3,

b0′ � 4t + 2 and b1′ � 4t + 3. So, |v0 − v1| � 1,
|e0 − e1| � 1, and |(v0 + e0) − (e1 + v1)| � 0. For the case
P2r+1 ⊙ L2

3,6, the labeling [M2r+1; 02L4′01, 12L410, ..., (r −

times), 01L410] is sufficient and thus P2r+1 ⊙L2
3,6 is

cordial and total cordial.

Case 13. When m ≡ 3(mod4) and k ≡ 0(mod4) that
means m � 4t + 3, t≥ 1, and k � 4r, r≥ 1, then the la-
beling [L4r; 02M’

4t+3, 02M’
4t+3, 12M4t+3, 12M4t+3, ...,

(r − times)] for P4r ⊙L2
3,4t+3 can be applied. ,erefore,

x0 � x1 � 2r, a0 � 2r, a1 � 2r − 1, y0 � 2t + 3, y

0 0 1 1 0 0 1 1 1 0 0 1 1 0 0 1 1 11 1 0 0 1 1 0 0 0

0 1 0

v0 – v1 = 0 v0 – v1 + e0 – e1 = 1e0 – e1 = 1

P3 L3,7

&

Figure 1: Cordial and total cordial labeling of P3 ⊙L3,7.
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1 � 2t + 2, b0 � 4t + 3, b1 � 4t + 4, y0′ � 2t + 2, y1′ � 2t+

3, b0 ′ � 4t + 3, and b1′ � 4t + 4. Hence, |v0 − v1| � 0,
|e0 − e1| � 1, and |(v0 + e0) − (e1 + v1)| � 1. ,us,
P4r ⊙L2

3,4t+3 is cordial and total cordial.

Case 14. When m ≡ 3(mod4) and k ≡ 1(mod4) that
means m � 4t + 3, t≥ 1, and k � 4r + 1, r≥ 0, then one
can select the labeling [L’

4r0; 12M4t+3 , 12M4t+3,

02M’
4t+3, 02M’

4t+3, ..., (r − times), 12M4t+3] for P4r+1 ⊙
L2
3,4t+3.,erefore, x0 � 2r + 1, x1 � 2r, a0 � 2r + 1, a1 �

2r − 1, y0 � 2t + 3, y1 � 2t + 2, b0 � 4t + 3, b1 � 4t+

4, y0′ � 2t + 2, y1′ � 2t + 3, b0′ � 4t + 3, b1′ � 4t + 4, y∗0 �

2t + 2, y∗1 � 2t + 3, b∗0 � 4t + 3, and b∗1 � 4t + 4. So,
|v0 − v1| � 0, |e0 − e1| � 0, and |(v0 + e0) − (e1 + v1)| �

0. ,us, P4r+1 ⊙L2
3,4t+3 is cordial and total cordial.

Case 15. When m ≡ 3(mod4) and k ≡ 2(mod4) that
means m � 4t + 3, t> 1, and k � 4r + 2, r≥ 0, then one
can take the labeling [L4r10; 0313M4t− 4, 0313M4t− 4, 01L

4M
’
4t− 4, 01L4M

’
4t− 4, ..., (r − times), 01L4M

’
4t− 4, 0313

M4t − 4] for P4r+2 ⊙ L2
3,4t. ,erefore, x0 � x1 �

2r + 1, a0 � 2r + 1, a1 � 2r, y0 � 2t + 3, y 1 � 2t + 2,

b0 � 4t + 3, b1 � 4t + 4, y0′ � 2t + 2, y1′ � 2t + 3, b0′
� 4t + 3, and b1′ � 4t + 4. Hence, |v0 − v1| � 0,
|e0 − e1| � 1, and |(v0 + e0) − (e1 + v1)| � 1. ,us,
P4r+2 ⊙L2

3,4t+3 is cordial and total cordial.
Case 16. When m ≡ 3(mod4) and k ≡ 3(mod4) that
meansm � 4t + 3, t≥ 1, and k � 4r + 1, r≥ 0, then one
can choose the labeling [L4r100; 02M’

4t+3,

02M’
4t+3, 12M4t+3, 12M4t+3, . . . , (r − times), 12 M4t+3,

02M’
4t+3, 12M4t+3] for P4r+3 ⊙ L2

3,4t+3.

,erefore, x0 � 2r + 2, x1 � 2r + 1, a0 � 2r + 2, a1 � 2r,

y0 � 2t + 3, y1 � 2t + 2, b0 � 4t + 3, b1 � 4t + 4, y0′ � 2t + 2,

y1′ � 2t + 3, b0′ � 4t + 3, b1′ � 4t + 4, y∗0 � 2t + 2, y∗1 � 2t + 3,

b∗0 � 4t + 3, and b∗1 � 4t + 4. Hence, |v0 − v1| � 0,
|e0 − e1| � 0, and |(v0 + e0) − (e1 + v1)| � 0. ,us,
P4r+3 ⊙L2

3,4t+3 is cordial and total cordial. □

Lemma 2. Pk ⊙L2
n,m is cordial and total cordial for all k≥ 1

and m> 6.

Proof. Let k � 4r + i’ (i’ � 0, 1, 2, 3 and r≥ 1) or k � 2r + j’

(j’ � 0, 1 and r≥ 1), n � 4s + i and m � 4t + j (i, j � 1, 2, 3
and s, t≥ 2), then we may use the labeling Ai’ or Aj’ for
Pk as given in Table 1. For a given value of j with
1≤ i, j≤ 3, we may use one of the labeling in the set {Bij,
B’

ij} for Ln,m, where Bij and B
’

ij are the labeling of L2
n,m

which are connected to the vertices labeled 0 in Pk, while
Bij and B’

ij are the labeling of Pm which are connected to
the vertices labeled 1 in Pk as given in Table 2. Using
Table 3 and the formulas v0 − v1 � (x0 − x1)+

x0.(y0 − y1) + x1.(y0′ − y1′), e0− e1 � (a0 − a1) + x0.(b0−

b1) + x1.(b0′ − b1′) + x0.(y0 − y1)− x1.(y0′ − y1′), and
(v0 + e0) − (e1 + v1) � (x0 − x1) + 2x0. (y0 − y1)+

(a0 − a1) + x0.(b0 − b1) + x1.(b0′ − b1′), we can compute the
values shown in the last two columns of Table 3. We see
that Pk ⊙L2

n.m is isomorphic to Pk ⊙ L2
m,n. Since all of these

values are 1 or 0, the lemma follows. □

Lemma 3. Pk ⊙L2
4,m is cordial and total cordial for all k≥ 1

and m> 3.

Proof
Case 1. When m ≡ 0(mod4) and k � r, r≥ 1 that means
m � 4t, t> 1, and k � r, r≥ 1. ,en, take the labeling
[1r; 100L4M

’
4t− 4, ..., (r − times)] for Pr ⊙ L2

4,4t. ,ere-
fore, x0 � 0, x1 � r, a0 � r − 1, a1 � 0, y0′ � 2t + 2, y1′ �
2t + 1, b0′ � 4t + 2, and b1′ � 4t + 2. Hence, |v0 − v1| � 0,
|e0 − e1| � 1, and |(v0 + e0) − (e1 + v1)| � 1. For the case
Pr ⊙ L2

4,4, the labeling [1r; 03130, ..., (r − times)] is
sufficient and thus Pr ⊙ L2

4,4t, r≥ 1, is cordial and total
cordial.
Case 2. When m ≡ 1(mod4) and k ≡ 0(mod4) that
means m � 4t + 1, t> 1, and k � 4r, r≥ 1, then the la-
beling [S4r; 103L41M4t− 61, 103L41M4t− 61, 103L4
1M4t− 61, 103L41M4t− 61, ..., (r − times)] for P4r ⊙ L2

4,4t+1
is applied. ,erefore, x0 � x1 � 2r, a0 � 2r − 1, a1 �

2r, y0 � 2t + 2, y1 � 2t + 2, b0 � b1 � 4t + 3, y0′ �
2t + 2, y1′ � 2t + 2, b0′ � 4t + 3, and b1′ � 4t + 3. So,
|v0 − v1| � 0, |e0 − e1| � 1, and |(v0 + e0) − (e1 + v1)|

� 1. For the case P4r ⊙ L2
4,5, the labeling

[S4r; 102L41, 102L41, 102L41, 102L41, ..., (r − times)] is
sufficient and thus P4r ⊙L2

4,4t+1 is cordial and total
cordial.
Case 3. When m ≡ 1(mod4) and k ≡ 1(mod4) that
means m � 4t + 1, t> 1, and k � 4r + 1, r≥ 0, then one
can select the labeling [S4r0; 103L41M4t− 61,

103L41M4t− 61, 10 3L41M4t− 61, 103L41M4t− 61, ...,

(r − times), 103L41M4t− 61] for P4r+1 ⊙L2
4,4t+1. ,ere-

fore, x0 � 2r + 1, x1 � 2r, a0 � a1 � 2r, y0 � 2t + 2,

y1 � 2t + 2, b0 � b1 � 4t + 3, y0′ � 2t + 2, y1′ � 2t+

2, b0′ � 4t + 3, and b1′ � 4t + 3. So, |v0 − v1| � 1.
|e0 − e1| � 0, and |(v0 + e0) − (e1 + v1)| � 1. For the case
P4r+1 ⊙ L2

4,5, the labeling [S4r0; 102L41, 102L41,

102L41, 102L41, ..., (r − times), 102L41] is sufficient and
thus P4r+1 ⊙ L2

4,4t+1 is cordial and total cordial.
Case 4. When m ≡ 1(mod4) and k ≡ 2(mod4) that
means m � 4t + 1, t> 1, and k � 4r + 2, r≥ 0, then the
labeling [S4r01; 103L41M4t− 61, 103L41M4t− 61,

103L41M4t− 61, 103L41M4t− 61, . . . , (r − times), 103L4
1M4t− 61, 103L41M4t− 61] for P4r+2 ⊙L2

4,4t+1 is applied.
,erefore, x0 � x1 � 2r + 1, a0 � 2r, a1 � 2r + 1,

y0 � 2t + 2, y1 � 2t + 2, b0 � b1 � 4t + 3, y0′ � 2t + 2, y1′
� 2t + 2, b0′ � 4t + 3, and b1′ � 4t + 3. Hence,
|v0 − v1| � 0, |e0 − e1| � 1, and |(v0 + e0)–(e1 + v1)| � 1.
For the case P4r+2 ⊙L2

4,5, the labeling [S4r01;

102L41, 102L41, 102L41, 102L41, . . . , (r − times), 102
L41, 102L41] is sufficient and thus P4r+2 ⊙L2

4,4t+1 is
cordial and total cordial.
Case 5. When m ≡ 1(mod4) and k ≡ 3(mod4) that
means and m � 4t + 1, t> 1, and k � 4r + 3, r≥ 0, then
one can take the labeling [S4r001; 103L41
M4t− 61, 103L41M4t− 61, 103 L41M4t− 61, 103L41
M4t− 61, . . . , (r − times), 103L41M4t− 61, 103L41M4t− 61,

103L41M4t− 61] for P4r+3 ⊙ L2
4,4t+1. ,erefore, x0 � 2r +

2, x1 � 2r + 1, a0 � a1 � 2r + 1, y0 � 2t + 2, y1 �
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2t + 2, b0 � b1 � 4t + 3, y0′ � 2t + 2, y1′ � 2t + 2, b0′ �
4t+ 3, and b1′ � 4t + 3. So, |v0 − v1| � 1, |e0 − e1| � 0,
and |(v0 + e0)–(e1 + v1)| � 1. For the case P4r+3 ⊙ L2

4,5,
the labeling [S4r01; 102L41, 102L41, 102L41, 10

2L41, . . . , (r − times), 102L41, 102L41, 102L41] is suffi-
cient and thus P4r+3 ⊙L2

4,4t+1 is cordial and total cordial.
Case 6. When m ≡ 2(mod4) and k is even that means
m � 4t + 2, t> 1, and k � 2r, r≥ 1. ,en, one can

Table 2: Labelling of L2
n,m.

n � 4s + i,

m � 4t + j,

i, j � 0, 1, 2, 3

Labelling of L2
n,m y0 y1 y0 y1

i � 0
j � 0

B00 � L4′
M4s− 5L4′L

’
4t− 4

2s + 2t

+1
2s + 2t

− 1
4s + 4t

+2
4s + 4t

+2
i � 0
j � 0

B
’
00 � L4

M
’
4s− 5L4M

’
4t− 4

2s + 2t

− 1
2s + 2t

+1
4s + 4t

+2
4s + 4t

+2
i � 0
j � 1

B01 � L4M
’
4s− 5

M
’
4t− 61L4′0

2s + 2t 2s + 2t
4s + 4t

− 1
4s + 4t

− 1
i � 0
j � 2

B02 � L4′M4s− 5
1L4′0M

’
4t− 4

2s + 2t

+1 2s + 2t 4s + 4t 4s + 4t

i � 0
j � 2

B
’
02 � L4M

’
4s− 5

0L41M4t− 4
2s + 2t

2s + 2t

+1 4s + 4t 4s + 4t

i � 0
j � 3

B03 � L4
M

’
4s− 5M4t+3

2s + 2t

+1
2s + 2t

+1
4s + 2t

+2
4s + 4t

+2
i � 1
j � 1

B11 � 1L4′0M
’
4s− 6

02M4t− 60L41
2s + 2t

+1 2s + 2t 4s + 4t 4s + 4t

i � 1
j � 1

B
’
11 � 0L41M4s− 6

12M
’
4t− 61L4′0

2s + 2t
2s + 2t

+1 4s + 4t 4s + 4t

i � 1
j � 2

B12 � 0L41M4s− 6
M

’
4t− 61L4′0

2s + 2t

+1
2s + 2t

+1
4s + 4t

+1
4s + 4t

+1
i � 1
j � 3

B13 � 1L4′0
M

’
4s− 6M4t+3

2s + 2t

+2
2s + 2t

+1
4s + 4t

+2
4s + 4t

+2
i � 1
j � 3

B
’
13 � 0L41

M4s− 6M
’
4t+3

2s + 2t

+1
2s + 2t

+2
4s + 4t

+2
4s + 4t

+2
i � 2
j � 2

B22 � M4s− 40L41
L4′0M

’
4t− 4

2s + 2t

+2
2s + 2t

+1
4s + 4t

+2
4s + 4t

+2
i � 2
j � 2

B
’
22 � M

’
4s− 41L4′0

L41M4t− 4

2s + 2t

+1
2s + 2t

+2
4s + 4t

+2
4s + 4t

+2
i � 2
j � 3

B23 � 0L41
M4s− 5M

’
4t+3

2s + 2t

+2
2s + 2t

+2
4s + 4t

+3
4s + 4t

+3
i � 3
j � 3

B33 � M4s+2
M4t+3

2s + 2t

+2
2s + 2t

+3
4s + 4t

+3
4s + 4t

+3
i � 3
j � 3

B
’
33 � M4s+2

M4t+3

2s + 2t

+3
2s + 2t

+2
4s + 4t

+3
4s + 4t

+3

Table 1: Labelling of Pk.

K � 4r + i′,
i′ � 0, 1, 2, 3 Labelling of Pk x0 x1 a0 a1

i′ � 0 A0 � L4r 2r 2r 2r 2r − 1
i′ � 1 A1 � L4r0 2r + 1 2r 2r 2r

i′ � 2 A2 � L4r10 2r + 1 2r + 1 2r + 1 2r

i′ � 3 A3 � L4r001 2r + 2 2r + 1 2r + 1 2r + 1
k � 2r + j′,
i′ � 0, 1
i′ � 0 A4 � M2r r r 0 2r − 1
i′ � 1 A5 � M2r+1 r + 1 r 0 2r
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choose the labeling [M2r; 103L41M4t− 4,

013L4′0M’
4t− 4, ..., (r − times)] for P2r ⊙ L2

4,4t+2. ,ere-
fore, x0 � x1 � r, a0 � 0, a1 � 2r − 1, y0 � 2t + 3, y1 �

2t + 2, b 0 � b1 � 4t + 3, y0′ � 2t + 2, y1′ � 2t + 3, and
b0′ � b1′ � 4t + 4. Hence, one can easily show that
|v0 − v1| � 0. |e0 − e1| � 1 and |(v0 + e0) − (e1+ v1)| � 1.
For the special case P2r ⊙L2

4,6, the labeling
[M2r; 102L401, 012L4′10, ..., (r − times)] is sufficient,
and thus P2r ⊙ L2

4,4t+2, r≥ 1, is cordial and total cordial.

Case 7. When m ≡ 2(mod4) and k is odd that means
m � 4t + 2, t> 1, and k � 2r + 1 where r≥ 0, then one
can choose the labeling [M2r+1; 103L41M4t− 4,

013L4′0M4t− 4′, ..., (r − times), 013L4′0M’
4t− 4] for

P2r+1 ⊙L2
4,4t+2.,erefore, x0 � r + 1, x1 � r, a0 � 0, a1 �

2r, y0 � 2t + 3, y1 � 2t + 2, b0 � b1 � 4t + 3, y0′ � 2t +

2, y1′ � 2t + 3, b0′ � b1′ � 4t + 4, y∗0 � 2 t + 2, y∗1 � 2t+ 3,
and b∗0 � b∗1 � 4t + 3, where y∗i and b∗i are the numbers
of vertices and edges labeled i in L2

4,4t+2 that are con-
nected to the last zero in P4r+3. Consequently, it is easy
to show that |v0 − v1| � 0, |e0 − e1| � 1 and
|(v0 + e0) − (e1 + v1)| � 1. For the special case
P2r+1 ⊙L2

4,6, the labeling [M2r; 102L401, 012L4′10, ...,

(r − times), 012L4′10] is sufficient and thus
P2r+1 ⊙L2

4,4t+2, r≥ 0, is cordial and total cordial.
Case 8. When m ≡ 3(mod4) and k ≡ 0(mod4) that
means m � 4t + 3, t> 1, and k � 4r, r≥ 1, then one can
choose the labeling [L4r; 103M4t11,

103M4t11, 103M4t11, 103M4t11, ..., (r − times)] for

P4r ⊙ L2
4,4t+3. ,erefore, x0 � x1 � 2r, a0 � 2r − 1, a1 �

2r, y0 � y1 � 2t + 3, b0 � b1 � 4t + 5, y0′ � y1′ � 2t + 3,
and b0′ � b1′ � 4t + 5. Hence, one can easily show that
|v0 − v1| � 0, |e0 − e1| � 1, and |(v0 + e0) − (e1 + v1)| �

1. ,us, P4r ⊙L2
4,4t+3 is cordial and total cordial.

Case 9. When m ≡ 3(mod4) and k ≡ 1(mod4) that
means m � 4t + 3, t> 1, and k � 4r + 1, r≥ 0. ,en, the
labeling [L4r0; 103M4t11, 103M4t11, 103M4t11,

103M4t11, ..., (r − times), 103M4t11] for P4r+1 ⊙ L2
4,4t+3

is considered.,erefore, x0 � 2r + 1, x1 � 2r, a0 � a1 �

2r, y0 � y1 � 2t + 3, b0 � b1 � 4t + 5, y0′ � y1′ � 2t + 3,
and b0′ � b1′ � 4t + 5. So, |v0 − v1| � 1, |e0 − e1| � 0, and
|(v0 + e0) − (e1 + v1)| � 1.,us, P4r+1 ⊙ L2

4,4t+3 is cordial
and total cordial.
Case 10. When m ≡ 3(mod4) and k ≡ 2(mod4) that
means m � 4t + 3, t> 1, and k � 4r + 2, r≥ 0, then one
can select the labeling [L4r01; 103M4t11,

103M4t11, 103M4t11, 103M4t11, ..., (r − times),

103M4t11, 103M4t11] for P4r+2 ⊙L2
4,4t+3.,erefore, x0 �

x1 � 2r + 1, a0 � 2r, a1 � 2r + 1, y0 � y1 � 2t + 3, b0 �

b1 � 4t + 5, y0′ � y1′ � 2t + 3, and b0′ � b1′ � 4t + 5.
Hence, |v0 − v1| � 0, |e0 − e1| � 1, and |(v0 + e0)−

(e1 + v1)| � 1. ,us, P4r+2 ⊙L2
4,4t+3 is cordial and total

cordial.
Case 11. When m ≡ 3(mod4) and k ≡ 3(mod4) that
means m � 4t + 3, t> 1, and k � 4r + 3, r≥ 0, then one
can take the labeling [L4r001; 103M4t11,

103M4t11, 103M4t11, 103M4t11, ..., (r − times),

Table 3: Labelling of Pk ⊙L2
n,m.

i′/j′ ij Pk L2
n,m |v0 − v1| |e0 − e1| |(v0 + e0) − (e1 + v1)|

0 00 A4 B00, B00′ 0 1 1
1 00 A5 B00, B00′, .., B00, B00′, B00′ 0 1 1
0 01 A0 B01, B01, B01, B01 0 1 1
1 01 A1 B01, B01, B01, B01, ..., B01 1 0 1
2 01 A2 B01, B01, B01, B01, ..., B01, B01 0 1 1
3 01 A3 B01, B01, B01B01, ..., B01, B01, B01 1 0 1
0 02 A4 B02, B02′ 0 1 1
1 02 A5 B02, B02′, .., B02, B02′, B02′ 0 1 1
0 01 A0 B03, B03, B03, B03 0 1 1
1 01 A1 B03, B03, B03, B03, ..., B03 1 0 1
2 01 A2 B03, B03, B03, B03, ..., B03, B03 0 1 1
3 01 A3 B03, B03, B03, B03, ..., B03, B03, B03 1 0 1
0 11 A4 B11, B11′ 0 1 1
1 11 A5 B11, B11′, .., B11, B11′, B11′ 0 1 1
0 12 A0 B12, B12, B12, B12 0 1 1
1 12 A1 B12, B12, B12, B12, .., B12 1 0 1
2 12 A2 B12, B12, B12, B12, .., B12, B12 0 1 1
3 12 A3 B12, B12, B12, B12, .., B12, B12, B12 1 0 1
0 13 A4 B13, B13′ 0 1 1
1 13 A5 B13, B13′, .., B13, B13′, B13′ 0 1 1
0 22 A4 B22, B22′ 0 1 1
1 22 A5 B22, B22′, .., B22, B22′, B22′ 0 1 1
0 23 A0 B23, B23, B23, B23 0 1 1
1 23 A1 B23, B23, B23, B23, .., B23 1 0 1
2 23 A2 B23, B23, B23, B23, .., B23, B23 0 1 1
3 23 A3 B23, B23, B23, B23, .., B23, B23, B23 1 0 1
0 33 A4 B33, B33′ 0 1 1
1 33 A5 B33, B33′, .., B33, B33′, B33′ 0 1 1
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103M4t11, 103M4t11, 103M4t11] for P4r+3 ⊙L2
4,4t+1.

,erefore, x0 � 2r + 2, x1 � 2r + 1, a0 � a1 � 2r + 1,

y0 � y1 � 2t + 3, b0 � b1 � 4t + 5, y0′ � y1′ � 2t + 3,
and b0′ � b1′ � 4t + 5. Hence, |v0 − v1| � 1, |e0 − e1| � 0,
and |(v0 + e0) − (e1 + v1)| � 1. ,us, P4r+3 ⊙L2

4,4t+3 is
cordial and also total cordial; by this, the lemma was
proved. □

Lemma 4. Pk ⊙ L2
5,m is cordial and also total cordial for all

k≥ 1 and m≥ 3.

Proof
Case 1. When m ≡ 0(mod4) that means m � 4t, t≥ 1,
since Pk ⊙L2

5,4 isomorphic to Pk ⊙L2
4,5, by Lemma 3,

Pk ⊙L2
4,5 is cordial and total cordial and then Pk ⊙L2

5,4 is
cordial and total cordial. Also, since Pk ⊙ L2

5,4t, t≥ 1
isomorphic to Pk ⊙ L2

4t,5, by Lemma 3, Pk ⊙ L2
4t,5 is

cordial and total cordial and then Pk ⊙L2
5,4t is cordial

and total cordial.
Case 2. When m ≡ 1(mod4) and k is even that means
m � 4t +1, t≥ 1, and k � 2r, r≥ 1, then one can take the
labeling [M2r; L4′1L4′0M’

4t− 60, L40L41M4t− 61, ...,

(r − times)] for P2r ⊙ L2
5,4t+1. ,erefore,

x0 � r, x1 � r, a0 � 0, a1 � 2r − 1, y0 � 2t + 3, y1 � 2t

+2, b0 � b1 � 4t + 4, y0′ � 2t + 2, y1′ � 2t + 3, and
b0′ � b1′ � 4t + 4. So, |v0 − v1| � 0, |e0 − e1| � 1, and
|(v0 + e0) − (e1 + v1)| � 1. For the special case
P2r ⊙L2

5,5, the labeling [M2r; L4L4′0, L4′L41, ...,

(r − times)] is sufficient and thus P2r ⊙L2
5,4t+1, r≥ 1, is

cordial and total cordial.
Case 3.When m ≡ 1(mod4) and k is odd that means
m � 4t +1, t≥ 1, and k � 2r + 1, r≥ 1, then the labeling
[M2r+1; L4′1L4′0M’

4t− 60, L40L41M4t− 61, ..., (r − times),

L40L41M4t− 61] for P2r+1 ⊙ L2
5,4t+1 can be applied.

,erefore, x0 � r + 1, x1 � r, a0 � 0, a1 � 2r, y0 � 2t +

3, y1 � 2t + 2, b0 � b1 � 4t + 4, y0′ � 2t + 2, y1′ �
2t + 3b0′ � b1′ � 4t + 4, y∗0 � 2t + 2, y∗1 � 2t + 3, and
b∗0 � b∗1 � 4t + 4, where y∗i and b∗i are the numbers of
vertices and edges labeled i in L5,4t+1 that are connected
to the last zero in P2r+1. Consequently, it is easy to show
that |v0 − v1| � 0, |e0 − e1| � 1, and |(v0 + e0)−

(e1 + v1)| � 1. For the special case P2r+1 ⊙ L2
5,5, the la-

beling [M2r+1; L4L4′0, L4′L41, ..., (r − times), L4′L41] is
sufficient and thus P2r+1 ⊙L2

5,4t+1, r≥ 1, is cordial and
total cordial.
Case 4. When m ≡ 2(mod4) and k ≡ 0(mod4) that
means m � 4t +2, t≥ 1, and k � 4r, r≥ 1, then one can
choose the labeling [L4r; L40L41M’

4t− 4, L40L41M’
4t− 4,

L40L41M’
4t− 4, L40L41M’

4t− 4, . . . , (r − time)] for
P4r ⊙L2

5,4t+2. ,erefore, x0 � x1 � 2r, a0 � 2r, a1 � 2r −

1, y0 � y1 � 2t + 3, b0 � b1 � 4t + 5, y0′ � y1′ � 2t + 3,
and b0′ � b1′ � 4t + 5. Consequently, it is easy to show
that |v0 − v1| � 0, |e0 − e1| � 1, and |(v0 + e0) − (e1+

v1)| � 1. For the special case P4r ⊙ L2
5,6, the labeling

[L4r; L4′L410, L4′L410, L4′L410, L4′L410, ..., (r − time)] is
sufficient and thus P4r ⊙ L2

5,4t+2 is cordial and total
cordial.

Case 5. When m ≡ 2(mod4) and k ≡ 1(mod4) that
means m � 4t +2, t≥ 1, and k � 4r + 1, r≥ 0, then one
can take the labeling [L4r0; L40L41M’

4t− 4, L40L41M’
4t− 4,

L40L41M’
4t− 4, L40L41M’

4t− 4, . . . , (r − time), L40L41
M’

4t− 4] for P4r+1 ⊙ L2
5,4t+2. ,erefore, x0 � 2r + 1, x1 �

2r, a0 � a1 � 2r, y0 � y1 � 2t + 3, b0 � b 1 � 4t + 5,

y0′ � y1′ � 2t + 3, and b0′ � b1′ � 4t + 5. So, |v0 − v1| � 1,
|e0 − e1| � 0, and |(v0 + e0) − (e1 + v1)| � 1. For the
special case P4r+1 ⊙L2

5,6, the labeling
[L4r0; L4′L410, L4′L410, L4′L410, L4′L410, ..., (r − time),

L4′L410] is sufficient and thus P4r+1 ⊙L2
5,4t+2 is cordial

and total cordial.

Case 6. When m ≡ 2(mod4) and k ≡ 2(mod4) that
means m � 4t +2, t≥ 1, and k � 4r + 2, r≥ 0, then one
can select the labeling [L4r10; L40L41 M’

4t− 4,

L40L41M’
4t− 4, L40L41M’

4t− 4, L40L41 M’
4t− 4, ..., (r−

time), L40L41M’
4t− 4, L40L41M’

4t− 4] for P4r+2 ⊙ L2
5,4t+2.

,erefore, x0 � x1 � 2r + 1, a0 � 2r + 1, a1 �

2r, y0 � y1 � 2t + 3, b0 � b1 � 4t + 5, y0′ � y1′ � 2t + 3,
and b0′ � b1′ � 4t + 5. Hence, |v0 − v1| � 0, |e0 − e1| � 1,
and |(v0 + e0) − (e1 + v1)| � 1. For the special case
P4r+2 ⊙ L2

5,6, the labeling [L4r10; L4′L410, L4′L410,

L4′L410, L4′L410, ..., (r − time), L4′L410, L4′L410] is suffi-
cient and thus P4r+2 ⊙L2

5,4t+2 is cordial and total cordial.

Case 7. When m ≡ 2(mod4) and k ≡ 3(mod4) that
means m � 4t +2, t≥ 1, and k � 4r + 3, r≥ 0, then the
labeling [[L4r001; L40L41M’

4t− 4, L40L41M’
4t− 4,

L40L41M’
4t− 4, L40L41M’

4t− 4, ..., (r − time), L40L41
M’

4t− 4, L40L41M’
4t− 4, L40L41M’

4t− 4] for P4r+3 ⊙L2
5,4t+2 is

considered. ,erefore, x0 � 2r + 2, x1 � 2r + 1,

a0 � a1 � 2r + 1, y0 � y1 � 2t + 3, b0 � b1 � 4t + 5,

y0′ � y1′ � 2t + 3, and b0′ � b1′ � 4t + 5. Consequently, it
is easy to show that |v0 − v1| � 1, |e0 − e1| � 0, and
|(v0 + e0) − (e1 + v1)| � 1. For the special case
P4r+3 ⊙ L2

5,6, the labeling [L4r001; L4′L410, L4′L410,

L4′L410, L4′L410, ..., (r − time), L4′L410, L4′L410, L4′L410]

is sufficient and thus P4r+3 ⊙L2
5,4t+2 is cordial and also

total cordial.

Case 8. When m ≡ 3(mod4) and k is even that means
m � 4t +3, t≥ 1, and k � 2r where r≥ 1, then the la-
beling [M2r; 031M4t+3, 130M4t+3..., (r − times)] for
P2r ⊙ L2

5,4t+3 can be applied. ,erefore, x0 � r, x1 �

r, a0 � 0, a1 � 2r − 1, y0 � 2t + 4, y1 � 2t + 3, b0 � b1
� 4t + 6, y0′ � 2t + 3, y1′ � 2t + 4, and b0′ � b1′ � 4t + 6.
Consequently, it is easy to show that |v0 − v1| � 0,
|e0 − e1| � 1, and |(v0 + e0) − (e1 + v1)| � 1. ,us,
P2r ⊙ L2

5,4t+3, r≥ 1, is cordial and total cordial.
Case 9. When m ≡ 3(mod4) and k is odd that means
m � 4t +3, t≥ 1, and k � 2r + 1 where r≥ 0, then one
can take the labeling [M2r+1; 031M4t+3,

130M4t+3, ..., (r − times), 130M4t+3] for P2r+1 ⊙ L2
5,4t+3.

,erefore, x0 � r + 1, x1 � r, a0 � 0, a1 � 2r, y0 � 2t +

3, y1 � 2t + 2, b0 � b1 � 4t + 4, y0′ � 2t + 2, y1′ �
2t + 3b0′ � b1′ � 4t + 4, y∗0 � 2t + 3, y∗1 � 2t + 4, and
b∗0 � b∗1 � 4t + 6, where y∗i and b∗i are the numbers of
vertices and edges labeled i in L5,4t+3 that are connected
to the last zero in P2r+1. So, |v0 − v1| � 0, |e0 − e1| � 1,
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and |(v0 + e0) − (e1 + v1)| � 1. ,us, P2r+1 ⊙L2
5,4t+3,

r≥ 1, is cordial and total cordial, and by this, the lemma
was proved. □

Lemma 5. Pk ⊙L2
6,m is cordial and total cordial for all m, k.

Proof
Case 1. When m ≡ 0(mod4), since Pk ⊙L2

6,4 is iso-
morphic to Pk ⊙ L2

4,6 and Pk ⊙L2
4,6 is cordial and total

cordial, then Pk ⊙L2
6,4 cordial and total cordial. Also,

since Pk ⊙L2
6,4t is isomorphic to Pk ⊙ L2

4t,6 and Pk ⊙L2
4t,6

is cordial and total cordial, then Pk ⊙ L2
6,4t is cordial and

total cordial.

Case 2. When m ≡ 1(mod4), i.e., m � 4t + 1, t≥ 1 ,
since Pk ⊙L2

6,5 is isomorphic to Pk ⊙L2
5,6 and Pk ⊙L2

4,6 is
cordial and total cordial, then Pk ⊙L2

5,6 is cordial and
total cordial. Also, since Pk ⊙L2

6,4t+1 is isomorphic to
Pk ⊙L2

4t+1,6 and Pk ⊙L2
4t+1,6 is cordial and total cordial,

then Pk ⊙L2
6,4t+1 is cordial and total cordial.

Case 3. When m ≡ 2(mod4) and k is even that means
m � 4t + 2, t≥ 1, and k � 2r, r≥ 1, then one can choose
the labeling
[M2r; L4′01L4′0M’

4t− 4, L410L41M4t− 4, ..., (r − times)] for
P2r ⊙L2

6,4t+2. ,erefore, x0 � r, x1 � r, a0 � 0, a1 � 2r −

1, y0 � 2t + 4, y1
� 2t + 3, b0 � b1 � 4t + 6, y0′ � 2t + 3, y1′ � 2t + 4, and
b0′ � b1′ � 4t + 6. Consequently, it is easy to show that
|v0 − v1| � 0 and |e0 − e1| � 1. For the special case
P2r ⊙L2

6,6, the labeling [M2r; L4′0L4′01, L41L410, ..., (r −

times)] is sufficient and thus P2r ⊙L2
6,4t+2, r≥ 1, is

cordial and also total cordial.
Case 4. When m ≡ 2(mod4) and k is odd that means
m � 4t + 2, t≥ 1, and k � 2r + 1, r≥ 0, then one can
choose the labeling
[M2r+1; L4′01L4′0M’

4t− 4, L410L41M4t− 4, . . . , (r −

times), L410L41M4t− 4] for P2r+1 ⊙ L2
6,4t+2. ,erefore,

x0 � r + 1, x1 � r, a0 � 0, a1 � 2r, y0 � 2t + 2t +

1, y1 � 2s + 2t, b0 � b1 � 4s + 4t, y0 � 2t + 4, y1 � 2t +

3, b0 � b1 � 4t + 6,

y0′ � 2t + 3, y1′ � 2t + 4, b0′ � b1′ � 4t + 6, y∗0 � 2t + 3,

y∗1 � 2t + 4, and b∗0 � b∗1 � 4t + 6, where y∗i and b∗i are
the numbers of vertices and edges labeled i in L2

6,4t+2
that are connected to the last zero in P2r+1. So,
|v0 − v1| � 0, |e0 − e1| � 1, and
|(v0 + e0) − (e1 + v1)| � 1. For the special case
P2r+1 ⊙L2

6,6, the labeling
[M2r+1; L4′0L4′01, L41L410, . . . , (r − times), L41L410] is
sufficient and thus P2r+1 ⊙L2

6,4t+2, r≥ 1, is cordial and
total cordial.
Case 5. When m ≡ 3(mod4) and k ≡ 0(mod4) that
means m � 4t + 3, t≥ 1, and k � 4r, r≥ 1, then the
labeling
[L4r; L41M4t+3, L41M4t+3, L41M4t+3, L41M4t+3, ..., (r −

time)] for P4r ⊙L2
6,4t+3 is applied. ,erefore x0 � x1 �

2r, a0 � 2r, a1 � 2r − 1, y0 � y1 � 2t + 3, b0 � b1 �

4t + 7, y0′ � y1′ � 2t + 4 and b0′ � b1′ � 4t + 7.

Consequently, it is easy to show that |v0 − v1| � 0,
|e0 − e1| � 1, and |(v0 + e0) − (e1 + v1)| � 1. ,us,
P4r ⊙ L2

6,4t+3 is cordial and total cordial.
Case 6. When m ≡ 3(mod4) and k ≡ 1(mod4) that
means m � 4t + 3, t≥ 1, and k � 4r + 1, r≥ 0, then one
can choose the labeling
[L4r0; L41M4t+3, L41M4t+3, L41M4t+3, L

41M4t+3, ..., (r − time), L41M4t+3] for P4r+1 ⊙ L2
6,4t+3.

,erefore, x0 � 2r + 1, x1 � 2r, a0 � a1 � 2r, y0 � y1 �

2t + 3, b0 � b1 � 4t + 7, y0′ � y1′ � 2t + 4, and
b0′ � b1′ � 4t + 7. So, |v0 − v1| � 1, |e0 − e1| � 0, and
|(v0 + e0) − (e1 + v1)| � 1.,us, P4r+1 ⊙ L2

6,4t+3 is cordial
and total cordial.
Case 7. When m ≡ 3(mod4) and k ≡ 2(mod4) that
means m � 4t + 3, t≥ 1, and k � 4r + 2, r≥ 0, then one
can take the labeling
[L4r10; L41M4t+3, L41M4t+3, L41M4t+3, L4
1M4t+3, ..., (r − time), L41M4t+3, L41M4t+3] for
P4r+2 ⊙ L2

6,4t+3. ,erefore,
x0 � x1 � 2r + 1, a0 � 2r + 1, a1 � 2r, y0 � y1 �

2t + 3, b0 � b 1 � 4t + 7, y0′ � y1′ � 2t + 4, and
b0′ � b1′ � 4t + 7. Hence, |v0 − v1| � 0, |e0 − e1| � 1, and
|(v0 + e0) − (e1 + v1)| � 1.,us, P4r+2 ⊙ L2

6,4t+3 is cordial
and total cordial.
Case 8. When m ≡ 3(mod4) and k ≡ 3(mod4) that
means m � 4t + 3, t≥ 1, and k � 4r + 3, r≥ 0, then one
can select the labeling
[L4r001; L41M4t+3, L41M4t+3, L41M4t+3, L41M4t+3,

. . . , (r − time), L41M4t+3, L41M4t+3, L41M4t+3] for
P4r+3 ⊙ L2

6,4t+3. ,erefore, x0 � 2r + 2, x1 � 2r + 1, a0 �

a1 � 2r + 1, y0 � y1 � 2t + 3,

b0 � b1 � 4t + 7, y0′ � y1′ � 2t + 4, and b0′ � b1′ � 4t + 7.
Consequently, it is easy to show that |v0 − v1| � 1,
|e0 − e1| � 0, and |(v0 + e0) − (e1 + v1)| � 1. ,us,
P4r+3 ⊙ L2

6,4t+3 is cordial and total cordial; by this, the
lemma was proved, and through the proofs of these
lemmas, we have completed the proof of our main
theorem. □

4. Conclusions

In this paper, we test the cordial and total cordial labeling of
corona product of paths and second power of lemniscate
graphs. We found that Pk ⊙ L2

n,m is cordial and also total
cordial for all k≥ 1, n, m≥ 3. In future work, we can improve
this work by using the different graphs with other mathe-
matical operations to prove the cordial and total cordial
labeling.

Data Availability

,e data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

,e authors declare that they have no conflicts of interest.

8 Journal of Mathematics



Acknowledgments

,e authors extend their appreciation to the Deanship of
Scientific Research at King Khalid University for funding
this work through General Research Project under grant
number R.G.P.1/258/43.

References

[1] R. H. Azaizeh, A. Ahmad, and G. C. Lau, “3-total edge product
cordial labelings of graphs,” Far East Journal of Mathematical
Sciences, vol. 96, no. 2, pp. 193–209, 2015.

[2] I. Cahit, “Cordial graphs: a weaker version of graceful and
harmonious Graphs,” Ars Combinatoria, vol. 23, pp. 201–207,
1987.

[3] I. Cahit, “On cordial and 3-eqtitable labeling of graphs,”
Utiliuies Math, vol. 37, 1990.

[4] A. T. Diab, “On cordial labeling of the second power of paths
with other graphs,” ARS Combinatoria, vol. 97A, pp. 327–343,
2010.

[5] R. L. Graham and N. J. A. Sloane, “On additive bases and
harmonious graphs,” SIAM Journal on Discrete Mathematics,
vol. 1, pp. 382–404, 1980.

[6] S. W. Golomb, How to Number a Graph in Graph (eory and
Computing, R. C. Read, Ed., pp. 23–37, Academic Press, New
York, NY, USA, 1972.

[7] J. A. Gallian, “A dynamic survey of graph labeling,” (e
electronic Journal of Combinatorics, vol. 9, p. DS6, 2021.

[8] A. Rosa, On Certain Valuations of the Vertices of a Graph,
(eory of Graphs (Internat Symposium, Rome, July 1966),
Gordon and Breach, N.Y. and Dunod Paris, 1967.

[9] E. Badr, S. Almotairi, A. Elrokh, A. Abdel-Hay, and
B. Almutairi, “An integer linear programming model for
solving radio mean labeling problem,” IEEE Access, vol. 8,
pp. 162343–162349, 2020.

[10] E. Badr, A. A. El-hay, H. Ahmed, and M. Moussa, “Poly-
nomial, exponential and approximate algorithms for metric
dimension problem,” International Journal of Mathematical
Combinatorics, vol. 2, pp. 50–66, 2021.

[11] A. I. H. Elrokh, S. I. M. Nada, and E. M. E. S. El-Shafey,
“Cordial labeling of corona product of path graph and second
power of fan graph,” Open Journal of Discrete Mathematics,
vol. 11, no. 2, p. 31, 2021.

[12] E. Badr, S. Nada, M. Mohammed, A. Al-Shamiri, A. Abdel-
Hay, and A. ELrokh, “A novel mathematical model for radio
mean square labeling problem,” Journal of Mathematics,
vol. 2022, Article ID 3303433, 9 pages, 2022.

[13] S. Nada, A. ELrokh, and A. Abdel-Hay, “,e cordiality of the
second power of some graphs,” Advances and Applications in
Discrete Mathematics, 2021.

[14] S. Klavzar and M. Tavakoli, “Dominated and dominator
colorings over (edge) corona and hierarchical products,”
Applied Mathematics and Computation, vol. 390, Article ID
125647, 2021.

[15] M. Tavakoli, F. Rahbarnia, and A. R. Ashrafi, “Studying the
corona product of graphs under some graph invariants,”
Transactions on Combinatorics, vol. 3, no. 3, pp. 43–49,
2014.

[16] M. M. A. Al-Shamiri, A. Elrokh, Y. El–Mashtawye, and
S. E. Tallah, “,e cordial labeling for the cartesian
product between paths and cycles,” International Journal
of Regulation and Governance, vol. 8, no. 3, pp. 331–341,
2020.

[17] A. Hefnawy and Y. Elmshtaye, “Cordial labeling of corona
product of paths and lemniscate graphs,” ARS Combinatoria,
vol. 149, pp. 69–82, 2020.

[18] S. Nada, A. Elrokh, E. A. Elsakhawi, and D. E. Sabra,
“,e corona between cycles and paths,” Journal of the
Egyptian Mathematical Society, vol. 25, no. 2, pp. 111–118,
2017.

Journal of Mathematics 9



Research Article
GeneralizedCut Functions and n-AryBlockCodes onUP-Algebras

Ali N. A. Koam , Azeem Haider , and Moin A. Ansari

Department of Mathematics, College of Science, Jazan University, Post Box 2097 New Campus, Jazan, Saudi Arabia

Correspondence should be addressed to Moin A. Ansari; maansari@jazanu.edu.sa

Received 8 October 2021; Accepted 8 April 2022; Published 29 April 2022

Academic Editor: M. T. Rahim

Copyright © 2022Ali N. A. Koam et al.�is is an open access article distributed under the Creative CommonsAttribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, the work is comprised of n-ary block codes for UP-algebras and their interrelated properties. n-ary block codes for a
known UP-algebra is constructed and further it is shown that for each n-ary block codeU, it is easy to associate a UP-algebraU in
such a way that the newly constructed n-ary block codes generated by U, i.e., Ux, contain the code U as a subset. We de�ne a UP-
algebra valued function on a set say X, then we prove that for every n-ary block-code U, a generalized UP-valued cut function
exists that determines U. We have also proved that the UP-algebras associated to an n-ary block code are not unique up
to isomorphism.

1. Introduction

Logical algebras like BCI/BCK, BE, KU-algebras, and many
others with their fuzzy, intuitionistic, and more related
concepts have been interesting topics of study for re-
searchers in recent years and have been widely considered as
a strong tool for information systems and many other
branches of computer sciences including fuzzy informatics
with rough and soft concepts. Imai and Iseki [1] introduced
BCK/BCI algebras as a generalization of the concept of set-
theoretic di�erence and proportional calculi. BCI/BCK al-
gebras form an important class of logical algebras.�ey have
numerous applications to di�erent domains of mathematics,
e.g., sets theory, semigroup theory, group theory, deriva-
tional algebras, etc. As per the requirement to establish
certain rational logic systems as a logical foundation for
uncertain information processing, di�erent types of logical
systems are felt to be established. For this reason, researchers
introduced and studied many types of logical algebras by
using the concepts of BCI/BCK algebras.

A block code is related to channel coding that is one of
the main types of it. Block code adds redundancy to a
message so that, at the receiver end, one can easily decode
the message with a minimum number of errors, where it is
already provided that the information rate would not exceed
the channel capacity. �e task of a block code is to encode

the strings that are formed by an alphabet set sayC into code
words by encoding each letter of C separately. As per the
importance block of codes, they can be source codes used in
data compression or channel codes used for detection and
correction of channel errors [2]. Codes based on a family of
algorithms were constructed by Lempel and Ziv [3], which
are applicable for real-world problems and sequences. A
detailed terminology based on codes and decoding through
graphs is discussed in [4]. Ali et al. introduced the concept of
n-ary block codes related to KU-algebras in [5].

Many researchers have made their studies based on
block codes in the past few years considering di�erent
branches and di�erent directions. One of them is logical
algebra. Surdive et al. studied coding theory in hyper BCK-
algebras [6]. Jun and Song [7] de�ned and studied codes
based on BCK-algebras. Further Fu and Xin [8] introduced
the concept of block codes in lattices.

Iampan introduced the concept of UP-algebras [9].
Iampan contributed on di�erent aspects related to UP-al-
gebras in [10]. Senapati et al. [11] represented UP-algebras in
an intervalued intuitionistic fuzzy environment. Moin et al.
[12] introduced graphs of UP-algebras and studied related
results. �e binary block codes associated to UP-algebras
were discussed by Moin et al. [13]. Wajsberg algebras arising
from binary block codes were studied by Flaut and Vasile
[14].
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In this paper, we have introduced and investigated
generalized UP-valued cut functions and their several
properties. Also, we have established n-ary block-codes for
UP-algebras by using the notion of generalized UP-valued
cut functions. We show that every finite UP-algebra de-
termines a block-code.

Section 2 contains preliminaries and related defini-
tions with some examples. Section 3 is based on the main
results.

2. Preliminaries

(is section is comprises with the concepts of UP-algebras,
UP-subalgebras, UP-ideals, UP-valued function (cut func-
tion), and other important terminologies with examples and
some related results.

Definition 1 (see [9]). A UP-algebra is a structure (U, ∗ ,∅)

of type (2, 0) with a single binary operation ∗ that satisfies
the following identities: for any x, y, z ∈ U,

(UP-1): (y∗ z)∗ [(x∗y)∗ (x∗ z)] � ∅
(UP-2): ∅∗x � x

(UP-3): x∗∅ � ∅
(UP-4): x∗y � y∗ x � ∅ implies x � y

For a commutative UP-algebras U we have the condition
for commutativity as x∗ (x∗y) � y∗ (y∗x).

We define a partial order relation in a UP-algebra U as
y≤x if and only if x∗y � ∅. If (U, ∗ ,∅) and (V, ∘ ,∅) are
two UP-algebras, then a map f: U⟶ V with the property
f(x∗y) � f(x) ∘f(y), for all x, y ∈ U, is called a UP-al-
gebra morphism. If f is one-one and onto map, then f is
simply called isomorphism of U.

Example 1. Let U � ∅, a, b, c{ } be a set in which ∗ is defined
by the following Cayley table

a b c

a b c

a

b a c

c a





   





b





*

We observe here that U � ∅, a, b, c{ } is a UP-algebra.

Example 2. Let U � an|n � 1, 2, 3, . . . , 9􏼈 􏼉 and define a bi-
nary operation ∗ on U as ai ∗ aj � ak,∀ai, aj, ak ∈ U where
k � (lcm(i, j)/j). (en (U, ∗ , a1) is a UP-algebra. (e
following table represents this operation:

*

a1

a1

a1

a1

a1

a1

a1

a1

a1

a1 a1

a1

a1

a1

a1

a1

a2

a2

a2

a2

a2

a2

a2

a2

a3

a3

a3

a3

a3

a3

a3

a3

a4

a4

a4

a4

a4

a5

a5

a5

a5

a5

a5

a5

a6

a6

a6

a6

Lemma 1 (see [10]). In a UP-algebra U the following
properties hold for any a, b, c ∈ U:

(UP-5) a∗ a � ∅
(UP-6) a∗ b � ∅ and b∗ c � ∅⇒ a∗ c � ∅
(UP-7) a∗ b � ∅⇒ (c∗ a)∗ (c∗ b) � ∅
(UP-8) a∗ b � ∅⇒ (b∗ c)∗ (a∗ c) � ∅
(UP-9) a∗ (b∗ a) � ∅
(UP-10) (b∗ a)∗ a � ∅⇔a � b∗ a

(UP-11) a∗ (b∗ b) � ∅

Lemma 2. Let U � (A, ∗ ,∅) be UP-algebras, then define a
binary relation ≤ on U as follows: for all a, b, c ∈ A

(UP-12) a≤ a

(UP-13) ∅≤ a

(UP-14) b∗ a≤ a

(UP-15) a≤ b and b≤ a ⇒ a � b

(UP-16) b≤ a and c≤ b⇒ c≤ a

(UP-17) b≤ a⇒ c∗ b≤ c∗ a

(UP-18) b≤ a⇒ a∗ c≤ b∗ c

(UP-19) (a∗ b)∗ (a∗ c)≤ b∗ c

Definition 2 (see [9]). A nonempty subset A of a UP-algebra
U is called a UP-ideal of U if it satisfies the following
conditions:

(1) ∅∈ A

(2) a∗ (b∗ c) ∈ A, b ∈ A implies a∗ c ∈ A, for all
a, b, c ∈ U

Proposition 1. An algebra (U, ∗ ,∅) of type (2, 0) is a UP-
algebra if and only if the given conditions are satisfied:

(1) (c∗ a)∗ ((b∗ c)∗ (b∗ a)) � ∅ for all a, b, c ∈ U

(2) (b∗∅)∗ a � a for all a, b ∈ U

(3) For all a, b, c ∈ U such that a∗ b � ∅, b∗ a �

∅⇒ a � b
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Proof. If (U, ∗ ,∅) is a UP-algebra. (en, (1) follows from
(UP-1).

Next, (3) follows from (UP-4).
By using (UP-2) and (UP-3) we get (2) as (b∗ 1)∗ a �

1∗ a � a.
Indirectly we consider (U, ∗ ,∅) satisfies given condi-

tions, then (UP-1) and (UP-4) follows from (1) and (2),
respectively. Next, replace b by a, a by 1 and c by 1 in (1) and
using (3) we get, (∅∗∅)∗ [(a∗∅)∗ (a∗∅)] � ∅⇒
(a∗∅)∗ (a∗∅) � ∅⇒ a∗∅ � ∅ which shows (UP-3).
Further, using a∗∅ � ∅ in (2) we get, ∅∗ a � a for all
a ∈ U. Hence (U, ∗ ,∅) is a UP-algebra.

Let (U, ∗ ,∅) be a finite UP-algebra with n elements and
U be a finite nonempty set. A map f: U⟶ U is called a
UP-function. Let Un � 0, 1, 2, . . . , n − 1{ } be a finite set. In
the following, we will consider UP-algebra U and the set U,
where U � l0, l1, . . . , ln−1􏼈 􏼉, U � u0, u1, . . . , um−1􏼈 􏼉m≤ n. A
generalized cut function of f is a map flj

: U⟶ Un, lj ∈ U,
such that flj

(ui) � u if and only if lj ∗f(ui) � lu, for all
lj, lk ∈ U, ui ∈ U, and i, j, u ∈ 0, 1, 2, . . . , n − 1{ }.

For such each UP-function f: U⟶ U, it is easy to
define an n-ary block code with codewords having length m.
For this purpose, we suppose that for each element l ∈ U the
generalized cut function fl: U⟶ Un. For every such
function, there will be corresponding a codeword wr, having
symbols taken from the set Un. So, we get
wl � w0, w1, . . . , wm−1, with wi � j, j ∈ Kn, if and only if
fl(xi) � j, that means l∗f(xi) � lj. We denote this new
code by UX. Hence, it is easy to associate an n-ary block code
for every such UP-algebra. □

Example 3. We take the UP-algebra U � 1, 2, 3, 4{ } having ∘
where ∘ is defined by the following table:

a b c

a b c

a

b 1 c

c a

1

11

1 1 a c

1

1

b

1

1



We can easily show that U � U4 � 1, 2, 3, 4{ }. We con-
sider the generalized cut function f: U⟶ U, f(1) � 2,

f(2) � a, f(3) � b, f(4) � c and fl: U4⟶ U4, l ∈ U. In
this way r � 1, returns the codeword w1 � 0000. For l � a,
we get the codeword 1001. In fact, fa(1) � 2, since
a ∘f(1) � a ∘ 1 � a � f(1); fa(a) � 1 since a ∘f(2) � a ∘
a � 1 � f(0); fa(b) � 1 and a ∘f(2) � a ∘ b � 1 � f(1);

fa(c) � 1, also a ∘f(4) � a ∘ c � a � f(2).
(e following result investigates about the existence of

the converse part whether it is true or not.

3. Main Results

We consider a finite set Un
′ � 1, 2, . . . , n − 1{ } and its n-ary

codewords U � v1, v2, . . . , vm􏼈 􏼉, of length h, h≥ n − 2, as-
cending ordered after lexicographic order. We consider
vi � vi1vi2, . . . , vih, vij ∈ Un

′, j ∈ 1, 2, . . . , h{ }, with vij

descending ordered such that vivik

≤ u, i ∈ 1, 2, . . . , m{ },

u ∈ 1, 2, . . . , min n − 1, h{ }{ } and vij � 1 in the rest.

Definition 3. Let U � v1, v2, . . . , vm􏼈 􏼉 be an n-ary code.
Further we suppose that vi � vi1, vi2 . . . , vih, vij ∈ Un

′.
j ∈ 1, 2, . . . , h{ }, q≥ n − 2, as above. We now associate a
matrix A � (αst)s,t∈ 0,1,...,l−1{ }, A ∈ Al(Un), to this code where
l � m + h + 1. Let l � m + h + 1. We define αss � 0,

αs0 � s, α0s � 0, s ∈ 0, 1, 2, . . . , l − 1{ }. For 1≤ s≤ h, let
αst � 1, if t< s, and αst � 0, if t≥ s. For s> h, we put αst � vit,
for t ∈ 1, 2, . . . , h{ } and αs(h+j) � 1, for h + j< s. We suppose
that αst � 0, for t≥ s.

Here, A is the lower triangular matrix, and it is known as
the matrix associated with the n-ary block code
U � v1, v2, . . . , vm􏼈 􏼉.

Definition 4. Consider A ∈ Ai(Un) is associated to the n-ary
block code U � k1, k2, . . . , km􏼈 􏼉 defined onUn

′. Suppose that
Ul � 0, 1, . . . , l − 1{ } is a nonempty set. (e multiplication
i ∘ j � αij is defined on Ul.

Theorem 1. 9e set (U∅, ∘ , 0) is a UP-algebra.

Proof. We see here that Proposition 1 (2), (3) are well
defined. From Definition 1, we need to show that
(b∗ c)∗ ((c∗ a)∗ (c∗ a)) � 1, for all a, b, c ∈ 0, 1, . . . ,{

l − 1}. For the elements a, b, c we have 3 situations here that
are given as follows:

Case 1: c � 0, b≠ 0. We get b∗ a≤ a, which implies
a∗ (b∗ a) � 0.
Case 2: b � 0, c≠ 0. We need to show that
c∗ ((c∗ a)∗ a) � 0.(us for a � 0, it is obvious and for
c � 0, we obtain (0∗ a)∗ (0∗ a) � 0∗ (a∗ a) � 0. For
c≠ 0, a≥ l − m, c ∈ 1, 2, . . . , h{ }, we have ((a∗ c)∗ a) �

wxwac ≤ c, therefore c∗ (c∗ a)∗ a � 0. For c≠ 0, a≥ l −

m, c≥ h + 1, we obtain c∗ ((c∗ a)∗ a)∗ c � 0. Next, if
c∗ a � 1, since 1∗ a≤ n − 1< h + 1≤ c, in returns we
get c∗ ((c∗ a)∗ a) � c∗ (1∗ a) � 0. If c∗ a � 0, then
c∗ ((c∗ a)∗ a) � c∗ (0∗ a) � c∗ a � 0. For a< l − m,

c≤ h + 1, we have c∗ ((c∗ a)∗ a) � 0, since c∗ a � 1,

1∗ a � 1 and c∗ 1 � 0. For a< l − m, c> h + 1, it results
c∗ ((c∗ a)∗ a) � 0, since c∗ a � 0, it yield
c∗ (0∗ a) � c∗ a � 0.
Case 3: c≠ 0, b≠ 0. Here, we have to prove that
(c∗ a)∗ ((b∗ k)∗ (b∗ a)) � 0. Hence, it is shown for
a � 0. Furthermore, let a≠ 0. For a≥ l − m and
b, c< l − m, b< k, we get n − 1≥ (b∗ a)≥ (c∗ a), hence
((c∗ a)∗ (b∗ a)) � 1. We also get b∗ c � 1, hence
(c∗ a)∗ ((c∗ b)∗ (b∗ a)) � 1∗ 1 � 0. For a≥ l − m

and b, c< l − m, c< b, we get n − 1≥ (c∗ a)≥ (b∗ a),
then ((c∗ a)∗ (b∗ a)) � 0. It results that (c∗ a)∗
((b∗ c)∗ (b∗ a)) � 0. For a≥ l − m and b, c≥ l − m,

b< c, we can get that b∗ a � 1 and c∗ a � 1, so
(c∗ a)∗ (b∗ a) � 0. We also obtain b∗ a � 1,

c∗ a � 0, and b∗ c � 1, since b< c. It yield
(c∗ a)∗ ((b∗ k)∗ (b∗ a)) � 1∗ (0∗ 1) � 1∗ 1 � 0.
Or, we can have b∗ a � 0, c∗ a � 0,; hence (c∗ a)∗
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((b∗ k)∗ (b∗ a)) � 0. For a≥ l − m and b, k≥ l − m,

c< b, we can have b∗ a � 1 and c∗ a � 1, hence
(c∗ a)∗ (b∗ a) � 0. Or, we have c∗ a � 1, b∗ a � 0,
and b∗ c � 0, as a result we get zero. We also can have
b∗ a � 0, c∗ a � 0,; hence the relation is 0. For a≤ l −

m and c< l − m< b, if b∗ a � 0, it shows that the asked
relation is 0. If b∗ a � 1, then (c∗ a)∗
((b∗ k)∗ (b∗ a)) � 0∗ ((c∗ a)∗ 1) � β∗ 1, with β≥ 1,
and c< a.

For a≥ l − m and b< l − m< c, we have that b∗ a � 1. If
c∗ a � 1, we obtain 0. If c∗ a � 0, hence we find (c∗ a)∗
((b∗ c)∗ (b∗ a)) � (b∗ c)∗ (0∗ 1) � (b∗ c)∗ 1 � 0, since
b∗ c≥ 1.

For a< l − m and b, c< l − m, b< c, we have
b∗ a � 1, c∗ a � 1,; therefore, we obtain the result as zero.
For a< l − m and b, c< l − m, c≤ b, we can obtain
(c∗ a)∗ ((b∗ c)∗ (b∗ a)) � 1∗ (0∗ 1) � 0. Or, we find
(b∗ a) � 0; thus, we can say that obtained result is 0. For
a< l − m and b, c< l − m, b< c, since b< c, it returns
b∗ c � 1. We can get b∗ a � 1, c∗ a � 0 and b∗ c � 1,
therefore (c∗ a)∗ ((b∗ c)∗ (b∗ a)) � 0∗ (1∗ 1) � 1∗
1 � 0. For a< l − m and c< l − m≤ b, we can get
(c∗ a)∗ ((b∗ k)∗ (b∗ a)) � 1∗ (0∗ 1) � 0. Or, if
(b∗ a) � 0; thus we obtain 0 and that is required. For a< l −

m and b, c≥ l − m, b< c, we have (b∗ a) � 0; then, we get
zero. For a< l − m and b, c≥ l − m, b> c, it results
(b∗ a) � 0, hence the asked relation is 0. □

Note.

(1) We find that a UP-algebra (Ul, ∗ , 0) from (eorem
1 is extracted by using the matrix A, which is
uniquely determined by an n-ary code, say U, given
as per Definition 1; thus, we can say that (Ur, ∗ , 0) is
a uniquely determined algebra.

(2) By (eorem 1, we suppose that (Cl, ∗ , 0) is the
resulted UP-algebra, with Ul � 0, 1, 2, . . . , l − 1{ }. If
U � a0 � 1, a1, a2, . . . al−1􏼈 􏼉 with multiplication “∗ ”
given by the relation ai ∗ aj � ac if and only if
a∗ b � c, for a, b, c ∈ 0, 1, 2, . . . , l − 1{ }, then
(U, ∗ , 1) is a UP-algebra.

(3) If we suppose that Ch � 0, 1, 2, . . . h − 1{ }, the map
f: Ch⟶ U, f(a) � ai, returns a code UX, that can
be associated to the above UP-algebra (U, ∗ , 1), that
contains the code U as a subset.

We consider U as an n-ary block code. (en, from
(eorem 1 and above Note, we can have a UP-algebra U in
such a way that the obtained n-ary block code UX contains
the n-ary block code U as of its subset. Suppose that U is a
binary block code with m code words of length h. By using
the abovementioned notations, consider X is the associated
UP-algebra and W � 1, w1, . . . , wr􏼈 􏼉 is the associated n-ary
block codes that contains the code U. Next consider wa �

a1a2, . . . , ah and wb � b1b2, . . . , bh are two codewords that
belong to W. Here, we define an order relation ≤ c on W by
the following logic wa ≤wb if and only if bi ≤ ai, for all
i ∈ 1, 2, . . . , h{ }. On U � W, with the order relation ≤ c, we
define the following multiplication:

(1) a ∘ 1 � 1 and a ∘ a � 1,∀a ∈ U

(2) b ∘ a � 1 if a≤ cb,∀a, b ∈ U

(3) b ∘ a � a if b≤ ca,∀a, b ∈ U

(is order relations give UP-algebra structure. It is clear
that wl ≤ c · · · ≤ cw1 ≤ c1. □

Proposition 2. V � 1, wl−m, wl−m+1, . . . , wl􏼈 􏼉 gives an UP-
algebra ideal in the U.

Proof. Considering V � 1, wl−m, wl−m+1, . . . , wl􏼈 􏼉. We will
show that b ∈ V, a ∈ U, and b ∘ a ∈ V, implies a ∈ V. By
using multiplication rule in the UP-algebra U and chosen
n-ary codes, we get for a ∈ U − V, b ∘ a � a ∈ U − V. If
a, b ∈ V, then b ∘ a � a ∈ V or b ∘ a � 1 ∈ V. □

Example 4. Consider K5 � 0, 1, 2, 3, 4{ }, n � 5, q � 4, m � 3,

l � 8, V � w1, w2, w3􏼈 􏼉, with
w1 � 3211, w2 � 4221, w3 � 4321.

Entries of the matrixA associated with the n-ary code U,
are aij � 0,∀i≤ j, ai1 � i − 1, a62 � 3, a63 � 2, a72 � 4, a73 �

2, a74 � 2, a82 � 4, a83 � 3, a84 � 2 and aij � 1 for the rest of i

and j.
(e corresponding UP-algebra, (U, ∘ , 1), where

U � a0 � 1, a1, a2, a3, a4, a5, a6, a7􏼈 􏼉, is shown with the fol-
lowing multiplication table.

1

1 1

1 1

1 1 1

1 1 1 1

1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

a1

a1
a1 a1

a2 a2
a2 a2

a2

a2

a2

a1 a1
a1a1

a3

a3

a3
a3

a3
a4
a5
a6
a7

a7

a7

a6

a6

a5

a5

a4

a4

a4 a4

a1 a1
a1 a1 a1

a1a1
a1

Considering U � 1, 2, 3, 4{ }. (e map f: U⟶ U,

f(1) � a1, f(2) � a2, f(3) � a3, f(4) � a4 gives us the
following block code U′ � 0000, 1000, 1100, 1110, 1111,{

3211, 4221, 4321}, that contains U as a subset.

0000 − 1000 − 1100 − 1110 − 1111 − 3211 − 4221 − 4321.

(1)

Clearly it is a noncommutative UP-algebra as
(a6 ∘ a7) ∘ a7 � a1 ∘ a7 � a4 and (a7 ∘ a6) ∘ a6 � 1 ∘ a6 � a6.
(is clarifies that U is not an implicative UP-algebra. Also
we note that it is not a positive implicative UP-algebra. Since
(a6 ∘ a7) ∘ a6 � a1 ∘ a6 � a3 ≠ a6 and
a3 ∘ (a6 ∘ a7) � a3 ∘ a1 � 1≠ (a3 ∘ a6)(a3 ∘ a7) � a1 ∘ a2 � a1.

Example 5. Consider K4 � 0, 1, 2, 3{ }, n � 4, q � 5, m � 3,

l � 9, U � w1, w2, w3􏼈 􏼉, with w1 � 21111, w2 � 32111, w3
� 33111.
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Entries of the matrixA associated with the n-ary code U,
are aij � 0∀, i≤ j, ai1 � i − 1, a72 � 2, a82 � 3, a92 � 3, a83 �

2, a93 � 3 and aij � 1 for the rest of i and j.
(e corresponding UP-algebra (X, ∘ , 1), where

X � a0 � 1, a1, a2, a3, a4, a5, a6, a7􏼈 􏼉 is shown with the fol-
lowing multiplication table.

1

1 1
1 1
1 1 1
1 1 1 1
1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1

a1
a1

a1

a2

a2

a2
a2

a3 a3
a3

a3

a3

a2

a1

a3
a4
a5

a5 a6

a6

a6

a7

a7

a8

a8

a8a7

a5
a4

a4

a2

a1 a1
a1a1

a1

a1

a1
a1

a1
a1

a1 a1 a1

a1
a1

a1a1
a1
a1 a1

a1

a1



Let K � 1, 2, 3, 4, 5{ }. (en, f: K⟶ X, f(1) � a1,

f(2) � a2, f(3) � a3, f(4) � a4, f(5) � a5 returns the
given block code U′ � 00000, 10000, 11000, 11100, 11110,{

21111, 32211, 33111}, where U is contained in it as a subset.
(e diagram of this generated code is given as

00000 10000 11000 11100 11110

32211

33111

21111
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We have studied the extended algebraic operations between two fuzzy numbers and calculated Zadeh’s max-min composition
operator for two generalized triangular fuzzy sets in R2. And we generalized the triangular fuzzy numbers from R2 to R3. We
prove that the result of the three-dimensional case is an extension of two-dimensional case and presented it in a graph. �e
extension is proved by showing that the result obtained by restricting the three-dimensional result to two-dimensional result is
consistent with the existing two-dimensional result.

1. Introduction

Fuzzy theory has been increasingly applied to humanities
including logics and sociology as well as natural sciences
from engineering to medicine. In mathematics, triangular
fuzzy sets have been extensively studied, which resulted in
numerous fuzzy theories. In applications of the fuzzy set
theories, many operators between two fuzzy sets have been
de�ned and calculated. In particular, Zadeh’s operators
have been widely applied and developed [1–3]. Recently,
the application expands to fuzzy control theory [4, 5] and
fuzzy logic [6–8]. �e theories of triangular fuzzy numbers
have been extended to generalized triangular fuzzy sets that
do not have the maximum value of 1. And as the number of
ambiguous fuzzy variables increases, the theories have been
extended to the studies of two-dimensional and three-di-
mensional fuzzy sets. In that respect, the study that ex-
tended Zadeh’s operator theory to two or three dimensions
is meaningful. We have studied the extended algebraic
operations between two fuzzy numbers [9–12] and cal-
culated Zadeh’s max-min composition operator for two
generalized triangular fuzzy sets in R2 [13–15]. In [16], we
generalized the triangular fuzzy numbers fromR2 toR3. By
de�ning a parametric operator between two α-cuts with

ellipsoidal values containing the interior, we de�ned a
parametric operator for the two triangular fuzzy numbers
de�ned inR3. We proved that the results for the parametric
operator are the generalization of Zadeh’s extended alge-
braic operator on R [9]. In addition, we calculated the
parametric operators for two generalized three-dimen-
sional triangular fuzzy sets and presented the calculation in
three-dimensional graphs [17].

In this paper, we prove that the result of the three-di-
mensional case is an extension of two dimensions and
presented it in a graph. �e extension is proved by showing
that the result obtained by restricting the three-dimensional
result to two dimensions is consistent with the existing two-
dimensional result. �e graph of the fuzzy set de�ned in
three dimensions expresses the function value by color
density. When the graph is cut with a vertical plane passing
through the vertex of a generalized three-dimensional tri-
angular fuzzy set, the function value is shown through color
density on the cross section of the graph. �e value of the
membership function de�ned on the cross section can be
expressed in a graph of the function de�ned in two di-
mensions. We show that this graph is consistent with the
three-dimensional representation of the results in two
dimensions.
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2. Zadeh’s Max-Min Composition
Operations for Generalized Triangular Fuzzy
Sets on R2

We define α-cut and α-set of the fuzzy set A on R with the
membership function μA(x).

Definition 1. An α-cut of the fuzzy number A is defined by
Aα � x ∈ R ∣ μA(x)≥ α􏼈 􏼉 if α ∈ (0, 1] and A0 � cl x ∈ R ∣{

μA(x)> α}, where cl(B) is the closure of B ⊂ R. For
α ∈ (0, 1), the set Aα � x ∈ X ∣ μA(x) � α􏼈 􏼉 is said to be the
α-set of the fuzzy set A, A0 is the boundary of
x ∈ R ∣ μA(x)> α􏼈 􏼉, and A1 � A1.

We define the generalized two-dimensional triangular
fuzzy numbers on R2 as a generalization of generalized
triangular fuzzy sets on R and the parametric operations
between two generalized two-dimensional triangular fuzzy
sets. For that, we have to calculate operations between α-cuts
in R. &e α-cuts are intervals in R, but in R2, the α-cuts are
regions, which makes the existing method of calculations
between α-cuts unusable. We interpret the existing method
from a different perspective and apply the method to the
region valued α-cuts on R2.

Definition 2. A fuzzy set A with a membership function:

μA(x, y) �

h −

������������������

x − x1( 􏼁
2

a
2 +

y − y1( 􏼁
2

b
2

􏽳

, b
2

x − x1( 􏼁
2

+ a
2

y − y1( 􏼁
2 ≤ a

2
b
2
h
2
,

0, otherwise,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1)

where a, b> 0 and 0< h< 1 is called the generalized two-
dimensional triangular fuzzy set and denoted by
(a, x1, h, b, y1)

2.

&e intersections of μA(x, y) and the vertical planes y −

y1 � k(x − x1) (k ∈ R) are symmetric triangular fuzzy
numbers in those planes. If a � b, ellipses become circles.
&e α-cut Aα of a generalized two-dimensional triangular
fuzzy number A � (a, x1, h, b, y1)

2 is an interior of ellipse in
an xy-plane including the boundary

Aα � (x, y) ∈ R2
|

x − x1

a(h − α)
􏼠 􏼡

2

+
y − y1

b(h − α)
􏼠 􏼡

2

≤ 1
⎧⎨

⎩

⎫⎬

⎭. (2)

Definition 3. A two-dimensional fuzzy number A defined
on R2 is called convex fuzzy number if for all α ∈ (0, 1), the
α-cuts,

Aα � (x, y) ∈ R2
|μA(x, y)≥ α􏽮 􏽯, (3)

are convex subsets in R2.

Theorem 1 (see [9]). Let A be a continuous convex fuzzy
number defined on R2 and Aα � (x, y) ∈ R2|μA(x, y) � α􏼈 􏼉

be the α-set of A. +en, for all α ∈ (0, 1), there exist con-
tinuous functions fα

1(t) and fα
2(t) defined on [0, 2π] such

that

A
α

� f
α
1(t), f

α
2(t)( 􏼁 ∈ R2

|0≤ t≤ 2π􏽮 􏽯. (4)

Definition 5. Let A and B be convex fuzzy sets defined onR2

and

A
α

� f
α
1(t), f

α
2(t)( 􏼁 ∈ R2

|0≤ t≤ 2π􏽮 􏽯,

B
α

� g
α
1(t), g

α
2(t)( 􏼁 ∈ R2

|0≤ t≤ 2π􏽮 􏽯,
(5)

be the α-sets of A and B, respectively. For α ∈ (0, 1), the
parametric addition, parametric subtraction, parametric
multiplication, and parametric division are fuzzy sets that
have their α-sets as follows.

2.1.ParametricAdditionA(+)pB. &eparametric addition is
given by the following:

A(+)pB􏼐 􏼑
α

� f
α
1(t) + g

α
1(t), f

α
2(t) + g

α
2(t)( 􏼁 ∈ R2

|0≤ t≤ 2π􏽮 􏽯 (6)

2.2. Parametric Subtraction A(− )pB. &e parametric sub-
traction is given by the following:

A(− )pB􏼐 􏼑
α

� xα(t), yα(t)( 􏼁 ∈ R2
|0≤ t≤ 2π􏽮 􏽯, (7)

where

xα(t) �
f
α
1(t) − g

α
1(t + π), if 0≤ t≤ π,

f
α
1(t) − g

α
1(t − π), if π ≤ t≤ 2π,

⎧⎨

⎩

yα(t) �
f
α
2(t) − g

α
2(t + π), if 0≤ t≤ π,

f
α
2(t) − g

α
2(t − π), if π ≤ t≤ 2π.

⎧⎨

⎩

(8)

2.3. Parametric Multiplication A(·)pB. &e parametric
multiplication is given by the following:

A(·)pB􏼐 􏼑
α

� f
α
1(t) · g

α
1(t), f

α
2(t) · g

α
2(t)( 􏼁 ∈ R2

|0≤ t≤ 2π􏽮 􏽯. (9)
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2.4. Parametric Division A(/)pB. &e parametric division is
given by the following:

A(/)pB􏼐 􏼑
α

� xα(t), yα(t)( 􏼁 ∈ R2
|0≤ t≤ 2π􏽮 􏽯, (10)

where

xα(t) �
f
α
1(t)

g
α
1(t + π)

, (0≤ t≤ π),

xα(t) �
f
α
1(t)

g
α
1(t − π)

, (π ≤ t≤ 2π),

yα(t) �
f
α
2(t)

g
α
2(t + π)

, (0≤ t≤ π),

yα(t) �
f
α
2(t)

g
α
2(t − π)

, (π ≤ t≤ 2π).

(11)

For α � 0 and α � 1, (A(∗ )pB)0 � limα⟶0+ (A(∗ )pB)α

and (A(∗ )pB)1 � limα⟶1− (A(∗ )pB)α, where
∗ � +, − , ·, /.

Theorem 2 (see [10]). Let A � (a1, x1, h1, b1, y1)
2 and B �

(a2, x2, h2, b2, y2)
2 be two generalized two-dimensional tri-

angular fuzzy sets. If 0< h1 < h2 < 1, then we have the
following:

(1) For 0< α< h1, the α-set of A(+)pB is

A(+)pB􏼐 􏼑
α

� (x, y) ∈ R2
|

x − x1 − x2

a1 h1 − α( 􏼁 + a2 h2 − α( 􏼁
􏼠 􏼡 +

y − y1 − y2

b1 h1 − α( 􏼁 + b2 h2 − α( 􏼁
􏼠 􏼡

2

� 1
⎧⎨

⎩

⎫⎬

⎭. (12)

(2) For 0< α< h1, the α-set of A(− )pB is

A(− )pB􏼐 􏼑
α

� (x, y) ∈ R2
|

x − x1 + x2

a1 h1 − α( 􏼁 + a2 h2 − α( 􏼁
􏼠 􏼡

2

+
y − y1 + y2

b1 h1 − α( 􏼁 + b2 h2 − α( 􏼁
􏼠 􏼡

2

� 1
⎧⎨

⎩

⎫⎬

⎭. (13)

(3) (A(·)pB)α � (xα(t), yα(t))|0≤ t≤ 2π􏼈 􏼉, where

xα(t) � x1x2 + x1a2 h2 − α( 􏼁 + x2a1 h1 − α( 􏼁( 􏼁cos t + a1a2 h1 − α( 􏼁 h2 − α( 􏼁cos2t, 0< α< h1,

yα(t) � y1y2 + y1b2 h2 − α( 􏼁 + y2b1 h1 − α( 􏼁( 􏼁sin t + b1b2 h1 − α( 􏼁 h2 − α( 􏼁sin2t, 0< α< h1.
(14)

(4) (A(/)pB)α � (xα(t), yα(t))|0≤ t≤ 2π􏼈 􏼉, where

xα(t) �
x1 + a1 h1 − α( 􏼁cos t

x2 − a2 h2 − α( 􏼁cos t
,

yα(t) �
y1 + b1 h1 − α( 􏼁sin t

y2 − b2 h2 − α( 􏼁sin t
,

0< α< h1.

(15)

Furthermore, we have

A(∗ )pB􏼐 􏼑
0

� lim
α⟶0+

A(∗ )pB􏼐 􏼑
α
, ∗ � +, − , ·, /,

A(∗ )pB􏼐 􏼑
h1

� lim
α⟶h−

1

A(∗ )pB􏼐 􏼑
α
, ∗ � +, − , ·, /.

(16)

If h1 < α≤ h2, by the Zadeh’s max-min principle oper-
ations, we obtain

A(∗ )pB􏼐 􏼑
α

� ∅, ∗ � +, − , ·, /. (17)

Example 1. (see [10]). Let A � (6, 3, (1/2), 8, 5)2 and
B � (4, 2, (2/3), 5, 3)2. &en, by &eorem 2, we have the
following:

(1) For 0< α< (1/2), the α-set of A(+)pB is

A(+)pB􏼐 􏼑
α

� (x, y) ∈ R2
|

3x − 15
17 − 30α

􏼒 􏼓
2

+
3y − 24
22 − 39α

􏼒 􏼓
2

� 1􏼨 􏼩. (18)

(2) For 0< α< (1/2), the α-set of A(− )pB is

A(− )pB􏼐 􏼑
α

� (x, y) ∈ R2
|

3x − 3
17 − 30α

􏼒 􏼓
2

+
3y − 6

22 − 39α
􏼒 􏼓

2
� 1􏼨 􏼩. (19)
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(3) (A(·)pB)α � (xα(t), yα(t))|0≤ t≤ 2π􏼈 􏼉, where

xα(t) � 6 +(14 − 24α)cos t + 4(1 − 2α)(2 − 3α)cos2t, 0< α<
1
2
,

yα(t) � 15 +
86
3

− 49α􏼒 􏼓sin t + 20(1 − 2α)
2
3

− α􏼒 􏼓sin2t, 0< α<
1
2
.

(20)

(4) (A(/)pB)α � (xα(t), yα(t))|0≤ t≤ 2π􏼈 􏼉, where

xα(t) �
9 + 9(1 − 2α)cos t

6 − 4(2 − 3α)cos t
,

yα(t) �
15 + 12(1 − 2α)sin t

9 − 15(2 − 3α)sin t
,

0< α<
1
2
.

(21)

3. Parametric Operations for Generalized
Three-Dimensional Triangular Fuzzy
Sets on R3

We define the generalized three-dimensional triangular
fuzzy sets onR3 as a generalization of generalized triangular

fuzzy sets on R2. &en, we define the parametric operations
between two generalized three-dimensional triangular fuzzy
sets. For that, we have to calculate operations between α-sets
in R3. &e α-sets are regions in R2, but in R3, the α-sets are
ellipsoids including interior, which makes the existing
method of calculations between α-sets unusable. We in-
terpret the existing method from a different perspective and
apply the method to the ellipsoids including interior-valued
α-sets on R3.

Definition 6. A fuzzy set A with a membership function
μA(x, y, z) such that

h −

���������������������������

x − x1( 􏼁
2

a
2 +

y − y1( 􏼁
2

b
2 +

z − z1( 􏼁
2

c
2

􏽳

, if b
2
c
2

x − x1( 􏼁
2

+ c
2
a
2

y − y1( 􏼁
2

+ a
2
b
2

z − z1( 􏼁
2 ≤ a

2
b
2
c
2
h
2
,

0, otherwise,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(22)

where a, b, c> 0 and 0< h< 1 is called the generalized three-
dimensional triangular fuzzy set and denoted by
(h, a, x1, b, y1, c, z1)

3.

Note that μA(x, y) is a cone in R2, but we cannot know
the shape of μA(x, y, z) in R3. &e α-cut Aα of a generalized
three-dimensional triangular fuzzy number
A � (h, a, x1, b, y1, c, z1)

3 is the following set:

Aα � (x, y, z) ∈ R3
|

x − x1

a(h − α)
􏼠 􏼡

2

+
y − y1

b(h − α)
􏼠 􏼡

2

+
z − z1

c(h − α)
􏼠 􏼡

2

≤ 1
⎧⎨

⎩

⎫⎬

⎭. (23)

Definition 7. A three-dimensional fuzzy number A defined
on R3 is called convex fuzzy number if for all α ∈ (0, 1), the
α-cuts,

Aα � (x, y, z) ∈ R3
|μA(x, y, z)≥ α􏽮 􏽯, (24)

are convex subsets in R3.

Theorem 3 (see [17]). Let A be a continuous convex fuzzy
number defined on R3 and
Aα � (x, y, z) ∈ R3|μA(x, y, z) � α􏼈 􏼉 be the α-set of A. +en,

for all α ∈ (0, 1), there exist continuous functions
fα
1(s), fα

2(s, t), and fα
3(s, t)(0≤ s≤ 2π, − (π/2)≤ t≤ (π/2))

such that

A
α

� f
α
1(s), f

α
2(s, t), f

α
3(s, t)( 􏼁 ∈ R3

|0≤ s≤ 2π, −
π
2
≤ t≤

π
2

􏼚 􏼛. (25)

Definition 8 (see [17]). Let A and B are two continuous
convex fuzzy sets defined on R3 and
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A
α

� f
α
1(s), f

α
2(s, t), f

α
3(s, t)( 􏼁 ∈ R3

|0≤ s≤ 2π, −
π
2
≤ t≤

π
2

􏼚 􏼛,

B
α

� g
α
1(s), g

α
2(s, t), g

α
3(s, t)( 􏼁 ∈ R3

|0≤ s≤ 2π, −
π
2
≤ t≤

π
2

􏼚 􏼛,

(26)

be the α-set of A and B, respectively. For α ∈ (0, 1), we define
that the parametric addition, parametric subtraction,
parametric multiplication, and parametric division of two
fuzzy setsA and B are fuzzy numbers that have their α-sets as
follows:

(1) Parametric addition A(+)pB:

A(+)pB􏼐 􏼑
α

� f
α
1(s) + g

α
1(s), f

α
2(s, t) + g

α
2(s, t), f

α
3(s, t) + g

α
3(s, t)( 􏼁 ∈ R3

|0≤ s≤ 2π, −
π
2
≤ t≤

π
2

􏼚 􏼛. (27)

(2) Parametric subtraction A(− )pB:

A(− )pB􏼐 􏼑
α

� f
α
1 s( ) − g

α
1(s + π), f

α
2(s, t) − g

α
2(s + π, t), f

α
3(s, t) − g

α
3(s + π, t)( 􏼁 ∈ R3

|0≤ s≤ π, −
π
2
≤ t≤

π
2

􏼚 ,

A(− )pB􏼐 􏼑
α

� f
α
1 s( ) − g

α
1(s − π)f

α
2(s, t) − g

α
2(s − π, t), f

α
3(s, t) − g

α
3(s − π, t)( 􏼁 ∈ R3

|π ≤ s≤ 2π, −
π
2
≤ t≤

π
2

􏼚 􏼛.

(28)

(3) Parametric multiplication A(·)pB:

A(·)pB􏼐 􏼑
α

� f
α
1(s) · g

α
1(s), f

α
2(s, t) · g

α
2(s, t), f

α
3(s, t) · g

α
3(s, t)( 􏼁 ∈ R3

|0≤ s≤ 2π, −
π
2
≤ t≤

π
2

􏼚 􏼛. (29)

(4) Parametric division A(/)pB:

A(/)pB􏼐 􏼑
α

�
f
α
1(s)

g
α
1(s + π)

,
f
α
2(s, t)

g
α
2(s + π, t)

,
f
α
3(s, t)

g
α
3(s + π, t)

􏼠 􏼡 ∈ R3
|0≤ s≤ π, −

π
2
≤ t≤

π
2

􏼨 􏼩,

A(/)pB􏼐 􏼑
α

�
f
α
1(s)

g
α
1(s − π)

,
f
α
2(s, t)

g
α
2(s − π, t)

,
f
α
3(s, t)

g
α
3(s − π, t)

􏼠 􏼡 ∈ R3
|π ≤ s≤ 2π, −

π
2
≤ t≤

π
2

􏼨 􏼩.

(30)

For α � 0 and α � 1, (A(∗ )pB)0 � limα⟶0+ (A(∗ )pB)α

and (A(∗ )pB)1 � limα⟶1− (A(∗ )pB)α, where
∗ � +, − , ·, /.

Theorem 4 (see [17]). Let A � (h1, a1, x1, b1, y1, c1, z1)
3 and

B � (h2, a2, x2, b2, y2, c2, z2)
3 be two generalized three-

dimensional triangular fuzzy sets. If 0< h1 < h2 < 1, then we
have the following:

(1) For 0< α< h1, the α-set of A(+)pB is

A(+)pB􏼐 􏼑
α

� (x, y, z) ∈ R3
|

x − x1 − x2

a1 h1 − α( 􏼁 + a2 h2 − α( 􏼁
􏼠 􏼡

2

+
y − y1 − y2

b1 h1 − α( 􏼁 + b2 h2 − α( 􏼁
􏼠 􏼡

2

+
z − z1 − z2

c1 h1 − α( 􏼁 + c2 h2 − α( 􏼁
􏼠 􏼡

2

� 1
⎧⎨

⎩

⎫⎬

⎭.

(31)
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(2) For 0< α< h1, the α-set of A(− )pB is

A(− )pB􏼐 􏼑
α

� (x, y, z) ∈ R3
|

x − x1 + x2

a1 h1 − α( 􏼁 + a2 h2 − α( 􏼁
􏼠 􏼡

2

+
y − y1 + y2

b1 h1 − α( 􏼁 + b2 h2 − α( 􏼁
􏼠 􏼡

2

+
z − z1 + z2

c1 h1 − α( 􏼁 + c2 h2 − α( 􏼁
􏼠 􏼡

2

� 1
⎧⎨

⎩

⎫⎬

⎭.

(32)

(3) For 0< α< h1,
(A(·)pB)α �

(xα(s), yα(s, t), zα(s, t))|0≤ s≤ 2π, − (π/2)≤ t≤ (􏼈

π/2)}, where

xα(s) � x1x2 + x1a2 h2 − α( 􏼁 + x2a1 h1 − α( 􏼁( 􏼁cos s + a1a2 h1 − α( 􏼁 h2 − α( 􏼁cos2s,

yα(s, t) � y1y2 + y1b2 h2 − α( 􏼁 + y2b1 h1 − α( 􏼁( 􏼁sin s cos t + b1b2 h1 − α( 􏼁 h2 − α( 􏼁sin2scos2t,

zα(s, t) � z1z2 + z1c2 h2 − α( 􏼁 + z2c1 h1 − α( 􏼁( 􏼁sin s sin t + c1c2 h1 − α( 􏼁 h2 − α( 􏼁sin2ssin2t.

(33)

(4) For 0< α< h1, (A(/)pB)α � (xα(s), yα(s, t), zα(s, t))􏼈

|0≤ s≤ 2π, − (π/2)≤ t≤ (π/2)}, where

xα(s) �
x1 + a1 h1 − α( 􏼁cos s

x2 − a2 h2 − α( 􏼁cos s
,

yα(s.t) �
y1 + b1 h1 − α( 􏼁sin s cos t

y2 − b2 h2 − α( 􏼁sin s cos t
,

zα(s.t) �
z1 + c1 h1 − α( 􏼁sin s sin t

z2 − c2 h2 − α( 􏼁sin s sin t
.

(34)

Furthermore, we have

A(∗ )pB􏼐 􏼑
0

� lim
α⟶0+

A(∗ )pB􏼐 􏼑
α
, ∗ � +, − , ·, /,

A(∗ )pB􏼐 􏼑
h1

� lim
α⟶h−

1

A(∗ )pB􏼐 􏼑
α
, ∗ � +, − , ·, /,

(35)

If h1 < α≤ h2, by the Zadeh’s max-min principle opera-
tions, we obtain

A(∗ )pB􏼐 􏼑
α

� ∅, ∗ � +, − , ·, /, (36)

4. AGeneralizationfromR2 toR3 ofGeneralized
Triangular Fuzzy Sets

In this section, we show that the parametric operations for
two generalized triangular fuzzy sets defined on R3 are a
generalization of parametric operations for two generalized
triangular fuzzy sets defined on R2. For that, we have to
prove that the intersections of the results onR3 and z � 0 are
the same as those on R2.

Theorem 5. For ∗ � +, − , ·, /, let μA(∗)B(x, y, z) and
μA(∗)B(x, y) are the results in +eorem 3 and +eorem 2,
respectively. +en, we have μA(∗)B(x, y, 0) � μA(∗)B(x, y).

Proof. Consider A � (h1, a1, x1, b1, y1, 0, 0)3 and
B � (h2, a2, x2, b2, y2, 0, 0)3, where 0< h1 < h2 < 1.

(1) For 0< α< h1, the α-set of μA(+)B(x, y, 0) is

(x, y) ∈ R2
|

x − x1 − x2

a1 h1 − α( 􏼁 + a2 h2 − α( 􏼁
􏼠 􏼡

2

+
y − y1 − y2

b1 h1 − α( 􏼁 + b2 h2 − α( 􏼁
􏼠 􏼡

2

� 1
⎧⎨

⎩

⎫⎬

⎭. (37)

Similarly, we can prove that the 0− set and h1− set of
μA(+)B(x, y, 0) are the same as those of μA(+)B(x, y).

(2) For 0< α< h1, the α-set of μA(− )B(x, y, 0) is

(x, y) ∈ R2
|

x − x1 + x2

a1 h1 − α( 􏼁 + a2 h2 − α( 􏼁
􏼠 􏼡

2

+
y − y1 + y2

b1 h1 − α( 􏼁 + b2 h2 − α( 􏼁
􏼠 􏼡

2

� 1
⎧⎨

⎩

⎫⎬

⎭. (38)
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Similarly, we can prove that the 0− set and h1− set of
μA(− )B(x, y, 0) are the same as those of μA(− )B(x, y).

(3) For 0< α< h1, the α-set of μA(·)B(x, y, 0) is

S1 � xα(s), yα(s, t)( 􏼁 ∈ R2
|0≤ s≤ 2π, −

π
2
≤ t≤

π
2

􏼚 􏼛, (39)

where

xα(s) � x1x2 + x1a2 h2 − α( 􏼁 + x2a1 h1 − α( 􏼁( 􏼁cos s + a1a2 h1 − α( 􏼁 h2 − α( 􏼁cos2s,

yα(s, t) � y1y2 + y1b2 h2 − α( 􏼁 + y2b1 h1 − α( 􏼁( 􏼁sin s cos t + b1b2 h1 − α( 􏼁 h2 − α( 􏼁sin2scos2t.
(40)

In &eorem 2, the α-set of μA(·)B(x, y) is

S2 � xα(t), yα(t)( 􏼁 ∈ R2
|0≤ t≤ 2π􏽮 􏽯, (41)

where

xα(t) � x1x2 + x1a2 h2 − α( 􏼁 + x2a1 h1 − α( 􏼁( 􏼁cos t + a1a2 h1 − α( 􏼁 h2 − α( 􏼁cos2t,

yα(t) � y1y2 + y1b2 h2 − α( 􏼁 + y2b1 h1 − α( 􏼁( 􏼁sin t + b1b2 h1 − α( 􏼁 h2 − α( 􏼁sin2t.
(42)

In three-dimensional case, the α− set becomes a
convex set in R2. &e boundary of S1 is S2. Clearly,
x0(s) � x0(t), xh1

(s) � yh1
(t), and we can prove that

y0(s, t) � y0(t),

yh1
(s, t) � yh1

(t).
(43)

(4) For 0< α< h1, the α-set of μA(/)B(x, y, 0) is

S3 � xα(s), yα(s, t)( 􏼁 ∈ R2
|0≤ s≤ 2π, −

π
2
≤ t≤

π
2

􏼚 􏼛, (44)

where
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xα(s) �
x1 + a1 h1 − α( 􏼁cos s

x2 − a2 h2 − α( 􏼁cos s
,

yα(s.t) �
y1 + b1 h1 − α( 􏼁sin s cos t

y2 − b2 h2 − α( 􏼁sin s cos t
.

(45)

In &eorem 2, the α-set of μA(/)B(x, y) is

S4 � xα(t), yα(t)( 􏼁 ∈ R2
|0≤ t≤ 2π􏽮 􏽯, (46)

where

xα(t) �
x1 + a1 h1 − α( 􏼁cos t

x2 − a2 h2 − α( 􏼁cos t
,

yα(t) �
y1 + b1 h1 − α( 􏼁sin t

y2 − b2 h2 − α( 􏼁sin t
.

(47)

In a three-dimensional case, the α-set becomes a convex
set in R2. &e boundary of S3 is S4. Clearly,
x0(s) � x0(t), xh1

(s) � yh1
(t), and we can prove that

y0(s, t) � y0(t),

yh1
(s, t) � yh1

(t).
(48)

&us, μA(∗)B(x, y, 0) � μA(∗)B(x, y). □

5. Conclusion

Extensive use of fuzzy theory in many different fields has
facilitated active research on operators between fuzzy sets
[18–20]. Operators of various concepts have been defined
and studied, but Zadeh’s operator concept is commonly
studied and utilized. A correct understanding of the gen-
eralized triangular fuzzy set will be helpful in interpreting
Zadeh’s operators [21–24].

&e conclusion of a general triangular fuzzy set in two-
dimensional space is a function defined on a plane and can
be expressed in a graph in three-dimensional space
(Figures 1–6). &erefore, the graph in the form of an el-
liptical cone in two dimensions, the result of Section 2, is not
difficult to understand (Figures 7–10).

However, if it is expanded to three dimensions, the do-
main becomes a three-dimensional set, making visual ex-
pression difficult. To help easier understanding, graphs were
expressed in color density (Figures 11–14).

Each point on the cross section has a different color
density, noting that each has a specific function value. In
Section 4, we proved that the three-dimensional result is an
extended concept of the two-dimensional result, which is
indicated in graphs in Figures 15–18. When the three-di-
mensional result is cut with a vertical plane passing through
the vertex, the cross section of the graph is two-dimensional.
Function values in two-dimensional were represented in
graphs with the z-axis value. Visualization of the results will
lead to more application and utilization.

In Section 1, we discussed the theoretical flow and ap-
plication of fuzzy sets. &e study that extended Zadeh’s op-
erator theory to two or three dimensions is important in
application. We have studied the extended algebraic opera-
tions between two fuzzy numbers and calculated Zadeh’s
max-min composition operator for two generalized triangular
fuzzy sets inR2 and generalized the triangular fuzzy numbers
from R2 to R3. &e purpose of the paper is also presented.

In Section 2, we defined the generalized two-dimensional
triangular fuzzy numbers on R2 as a generalization of
generalized triangular fuzzy sets on R and the parametric
operations between two generalized two-dimensional tri-
angular fuzzy sets. In &eorem 2, we calculated the para-
metric operations between two generalized two-dimensional
triangular fuzzy sets and gave an example.

In Section 3, we defined the generalized three-dimen-
sional triangular fuzzy sets on R3 as a generalization of
generalized triangular fuzzy sets onR2. &en, we defined the
parametric operations between two generalized three-di-
mensional triangular fuzzy sets. We calculated the para-
metric operations between two generalized three-
dimensional triangular fuzzy sets in &eorem 3.

In Section 4, we showed that the parametric operations
for two generalized triangular fuzzy sets defined on R3 are a
generalization of parametric operations for two generalized
triangular fuzzy sets defined onR2. What has been proven is
presented as an example. And the examples are expressed in
various types of graphs for easier understanding.
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Among the various ideas that appear while studying graph theory, which has gained much attraction especially in graph labeling,
labeling of graphs gives mathematical models which value for a vast range of applications in high technology (data security,
cryptography, various problems of coding theory, astronomy, data security, telecommunication networks, etc.). A graph label is a
designation of graph elements, i.e., the edges and/or vertex of a group of numbers (natural numbers), and is called assignment or
labeling. 'e vertex or edge labeling is related to their domain asset of vertices or edges. Likewise, for total labeling, we take the
domain as vertices and edges both at the same time.'e reflexive edge irregularity strength (res) is total labeling in which weights
of edges are not the same for all edges and the weight of an edge is taken as the sum of the edge labels and the vertices associated
with that edge. In the res, the vertices are labeled with nonnegative even integers while the edges are labeled with positive integers.
We have to make the labels minimum, whether they are associated with vertices or edges. If such labeling exists, then it is called the
res of H and is represented as s res(H). In this paper, we have computed the res for the Cartesian product of path and cycle graph
which is also known as generalizing prism.

1. Introduction

Any graph H is the combination of vertices V(H) along with
a possibly nonempty edge set E(H) of 2− element subsets of
V(H). In this paper, all the chosen graphs are finite, without
direction, nontrivial, connected, and simple (without loops
and multiedges). For details about notations, see [1, 2].
Nonnegative integers are used in this research. In 1988,
Chartrand et al. [3] proposed the labeling problems in graph
theory. Assign the edges positive integer to all connected
simple graphs such as the graph became irregular. 'e ir-
regular labeling is defined as ψ: E(H)⟶ 1, 2, 3, . . . , m{ }

and is called irregular m− labeling for graph H if all the
separate nodes u and u′ have distinctly weights, that is,

􏽘
x∈V

ψ(ux)≠ 􏽘
y∈V

ψ u′y( 􏼁. (1)

Lahel, in [4], studied, in detail, for the irregularity
strength. For more results, see the works of Nierhoff in [5],
Dimitz et al. in [6], Amar and Togni in [7], and Gyarfas in
[8].

In [9], A. Ahmad et al. defined on edge irregularity
strength (es(H)) for any two edges u1u2 and u1′u2′ that the
weights wϕ(u1u2) and wϕ(u1′u2′) are distinct, as weight for an
edge u1u2 ∈ E(H) is wϕ(u1u2) � ϕ(u1) + ϕ(u2).

In [10], Bača et al. defined the parameter of total labeling
for edge as well as vertex of graph and found the weights of
an edge as sum of three integers which include the edge label
and the labels of two vertices associated with that edge, and
finally, every edge has distinct weight. For detailed studies on
total edge irregularity strength, see [10, 11].

'e concept of total edge irregularity strength has been
generalized by Zhang et al. in [12] for graph will be reflexive
edge irregularity strength m− labeling.
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If, for any graph H, the total m− labeling defined the
mapping ψe′ : E(H)⟶ 1, 2, 3 . . . , me′􏼈 􏼉 and ψv′ : V(H)

⟶ 0, 2, 4, . . . , 2mv′􏼈 􏼉, the mapping ψ is a total m− mapping
of H such that ψ(a) � ψv(a) if a ∈ V(H) and ψ(a) � ψe(a)

if a ∈ E(H), where k � max me′ , 2mv′􏼈 􏼉.
'e total p− labeling ψ will be edge irregular reflexive

p− labeling of the graph H if, for all the different edges say
u1u2 and u1′u2′, the weights wϕ(u1u2) and wϕ(u1′u2′) are not
the same for every choice of edges where the weight for any
edge suppose u1u2 ∈ E(H) is wϕ(u1u2) � ϕ(u1)

+ϕ(u1u2) + ϕ(u2).
'e smallest value of p for which such mapping exists is

said to be res of the graph H and is represented by res(H).
For details in reflexive edge irregularity strength, see [13–17].

For res(H), Nierhoff [5] proposed that for any graph
H(s, t) with maximum degree Δ(H) satisfies

res(H) � max ⌈
|t|

3
+ r⌉, ⌊
Δ
2

+ 1⌋􏼨 􏼩, (2)

where r will be 1 for |t| ≡ 2, 3(mod 6); it will be 0, otherwise.
In [12], the lemma is proven.

Lemma 1. For all graph say H,

res(H)≥

⌈
|t|

3
⌉ + 1, if |t| ≡ 2, 3(mod 6),

⌈
|t|

3
⌉, if |t| ≡ 1, 4, 5(mod 6).

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(3)

In the present research paper, we have investigated the
res for the Cartesian product of paths and cycles.

1.1. Definition. 'e Cartesian product P and Q graphs is
represented as P□Q and is the graph with vertices set
V(P) × V(Q), with vertices (u1, u1′) and (w1, w1′) will be
adjacent if and only if u1 � w1 and u1′w1′ ∈ E(Q) or u1′ � w1′
and u1w1 ∈ E(P).

Theorem 1. Let Pd and Cc be path and cycle, respectively;
then, for edge irregular reflexive strength of Pd□Cc with d≥ 3
and c≥ 2. We have

res Pd□Cc( 􏼁 �

⌈
(2d − 1)c

3
⌉ + 1, if |(2d − 1)c| ≡ 2, 3(mod6),

⌈
(2d − 1)c

3
⌉, if |(2d − 1)c| ≡ 1, 4, 5, 6(mod6).

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(4)

Proof. As Pd□Cc has (2d − 1)c edges, therefore, from
Lemma 1, we obtain

res Pd□Cc( 􏼁≥

⌈
(2d − 1)c

3
⌉ + 1, if |(2d − 1)c| ≡ 2, 3(mod6),

⌈
(2d − 1)c

3
⌉, if |(2d − 1)c| ≡ 1, 4, 5, 6(mod6).

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(5)

Next, we will show that

res Pd□Cc( 􏼁≤

⌈
(2d − 1)c

3
⌉ + 1, if |(2d − 1)c| ≡ 2, 3(mod6),

⌈
(2d − 1)c

3
⌉, if |(2d − 1)c| ≡ 1, 4, 5, 6(mod6).

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(6)

We defined a f− labeling for this on (Pd□Cc) as follows:
∀ 1≤ j≤ c.

Let e � xi,j, h � xi+1,j, and k � xi,j+1 □

Case 1. When d ≡ 0(mod 3), c is odd:

f(e) �

c(i − 1), for 1≤ i≤
2d − 3

3
(i is odd),

c(i − 1) − 1, for 2≤ i≤
2d

3
(i is even),

k, for
2d + 3

3
≤ i≤d.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

When c ≡ 1(mod 6),

f((e)(k)) �

j, for 1≤ i≤
2d − 3

3
,

j + 2, for 2≤ i≤
2d

3
,

6ci − 2(2cd − c − 1)

3
+ j, for

2d + 3
3
≤ i≤ d,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f((e)(h)) �

j + 1, for 1≤ i≤
2d − 3

3
,

c − 1
3

+ 1 + j for i �
2d

3
,

6ci − (4cd + c + 2)

3
+ j, for

2d + 3
3
≤ i≤ d − 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(8)

When c ≡ 3(mod 6),

f((e)(k)) �

j, for 1≤ i≤
2d − 3

3
,

j + 2, for 2≤ i≤
2d

3
,

6ci − 2(2cd + 2c + 3)

3
+ j for

2d

3
+ 1≤ i≤ d,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f((e)(h)) �

j + 1, for 1≤ i≤
2d − 3

3
,

2(c − 1)

3
+ 1 + j for i �

2d

3
,

6ci − 4c(d + 1)

3
+ j, for

2d + 3
3
≤ i≤ d − 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9)

When c ≡ 5(mod 6),

2 Journal of Mathematics



f((e)(k)) �

j, for 1≤ i≤
2d − 3

3
(i is odd),

j + 1, for 2≤ i≤
2d

3
(i is even),

6ci − 2(2cd + 2d − 1)

3
+ j, for

2d + 3
3
≤ i≤ d,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f((e)(h)) �

j + 1, for 1≤ i≤
2d

3
− 1,

c − 5
3

􏼒 􏼓 + 3 + j for i �
2d

3
,

6ci − (4cd + c − 2)

3
+ j, for

2d

3
+ 1≤ i≤ d − 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(10)

Case 2. When d ≡ 0(mod 3), c is even:

f(e) �

d(i − 1), for 1≤ i≤
2d

3
,

k, for
2d + 3

3
≤ i≤d.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(11)

When d ≡ 0(mod 6),

f((e)(k)) �

j, for 1≤ i≤
2d

3
,

(6i − 4d − 4)
c

3
+ j, for

2d + 3
3
≤ i≤ d,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f((e)(h)) �

j, for 1≤ i≤
2d

3
− 1,

c

3
+ j for i �

2d

3
,

(6i − 4d − 1)
c

3
+ j, for

2d

3
+ 1≤ i≤ d − 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(12)

When c ≡ 2(mod 6),

f((e)(k)) �

j, for 1≤ i≤
2d

3
,

6ci − 4(cd + c + 1)

3
+ j, for

2d + 3
3
≤ i≤ d,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f((e)(h)) �

j, for 1≤ i≤
2d − 3

3
,

c − 2
3

􏼒 􏼓 + j for i �
2d

3
,

6ci − (4cd + c + 4)

3
+ j, for

2d

3
+ 1≤ i≤ d − 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(13)

When c ≡ 4(mod 6),

f((e)(k)) �

j, for 1≤ i≤
2d

3
,

6ci − 4(cd + c + 2)

3
+ j, for

2d

3
+ 1≤ i≤d,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f((e)(h)) �

j, for 1≤ i≤
2d

3
− 1,

2(c − 4)

3
+ j for i �

2d

3
,

6ci − (4cd + c + 8)

3
+ j, for

2d

3
+ 1≤ i≤ d − 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(14)

Case 3. When d ≡ 1(mod 3), c is even:

f(e) �

c(i − 1), for 1≤ i≤
2d + 1

3
,

k, for 2
d + 2
3

􏼠 􏼡≤ i≤d.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(15)

When d ≡ 1(mod 3) and c ≡ 0(mod 6),

f((e)(k)) �

j, for 1≤ i≤
2d + 1

3
,

c(6i − 4d − 4)

3
+ j, for

2(d + 2)

3
≤ i≤ d,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f((e)(h)) �

j, for 1≤ i≤ 2
d − 1
3

􏼠 􏼡,

2c

3
+ j, for i �

2d + 1
3

,

c(6i − 4d − 1)

3
+ j, for

2d + 4
3
≤ i≤ d − 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(16)

When d ≡ 1(mod 3) and c ≡ 2(mod 6),

f((e)(k)) �

j, for 1≤ i≤
2d + 1

3
,

6ci − 4(cd + c + 2)

3
+ j, for 2

d + 2
3

􏼠 􏼡≤ i≤ d,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

f((e)(h)) �

j, for 1≤ i≤ 2
d − 1
3

􏼠 􏼡,

2(c − 2)

3
+ j, for i �

2d + 1
3

,

6ci − (4cd + c + 8)

3
+ j, for 2

d + 2
3

􏼠 􏼡≤ i≤ d − 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(17)

When d ≡ 1(mod 3) and c ≡ 4(mod 6),
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f((e)(k)) �

j, for 1≤ i≤
2d + 1

3
,

6ci − 4(cd + c + 1)

3
+ j for 2

d + 2
3

􏼠 􏼡≤ i≤ d,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

f((e)(h)) �

j, for 1≤ i≤ 2
d − 1
3

􏼠 􏼡,

2(c − 4)

3
+ 2 + j, for i �

2d + 1
3

,

6ci − (4cd + c + 4)

3
+ j, for 2

d + 2
3

􏼠 􏼡≤ i≤ d − 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(18)

Case 4. When d ≡ 1(mod 3), c is odd:

f(e) �

c(i − 1), for 1≤ i≤
2d + 1

3
(i is odd).

c(i − 1) − 1, for 2≤ i≤
2(d − 1)

3
(i is even).

k, for
2(d + 2)

3
≤ i≤ d.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(19)

An illustration of this reflexive labeling is shown in
Figures 1 and 2.

When d ≡ 1(mod 3) and c ≡ 1(mod 6),

f((e)(k)) �

j, for 1≤ i≤
2d + 1

3
(i is odd),

j + 2, for 2≤ i≤
2(n − 1)

3
(i is even),

6ci − (4cd + 4c − 2)

3
+ j for

2(d + 2)

3
≤ i≤ d,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f((e)(h)) �

j + 1, for 1≤ i≤
2(d − 1)

3
,

2c + 1
3

+ j, for i �
2d + 1

3
,

6ci − (4cd + 5)

3
+ j, for

2(n + 2)

3
≤ i≤d − 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(20)

When d ≡ 1(mod 3) and c ≡ 3(mod 6),

f((e)(k)) �

j, for 1≤ i≤
2d + 1

3
(i is odd),

j + 2, for 2≤ i≤
2(d − 1)

3
(i is even),

c(6i − 4d − 4)

3
− 2 + j for

2(d + 2)

3
≤ i≤d,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f((e)(h)) �

j + 1, for 1≤ i≤
2(d − 1)

3
,

2c

3
− 1 + j, for i �

2d + 1
3

,

c(6i − 4d − 1)

3
− 2 + j, for

2(d + 2)

3
≤ i≤d − 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(21)

When d ≡ 1(mod 3) and c ≡ 5(mod 6),
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f((e)(k)) �

j, for 1≤ i≤
2d + 1

3
(i is odd),

j + 2, for 1≤ i≤
2(d − 1)

3
(i is even),

6ci − 4c(d + 1) − 2
3

+ j for
2(d + 2)

3
≤ i≤d,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f((e)(h)) �

j + 1, for 1≤ i≤ 2
d − 1
3

􏼠 􏼡,

2(c − 5)

3
+ 3 + j, for i �

2d + 1
3

,

6ci − (4cd + c + 2)

3
+ j, for

2(d + 2)

3
≤ i≤ d − 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(22)

Case 5. When d ≡ 2(mod 3), c is even and c≥ 4:

f(e) �

c(i − 1), for 1≤ i≤
2d − 1

3
,

k, for
2d + 2

3
≤ i≤d,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f((e)(k)) �

j, for 1≤ i≤
2d + 2

3
,

6ci − 4(cd − 2c + 3)

3
+ j for

2d + 5
3

+ 3≤ i≤ d,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩
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Figure 1: Twenty four labeling of P4□C10.
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f((e)(h)) �

j, for 1≤ i≤
2d − 1

3
,

6ci − 4(d − 2)c − 9
3

+ j, for
2d + 2

3
≤ i≤d − 1.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(23)

Case 6. When d ≡ 2(mod 3), c is odd and c≥ 3:

f(e) �

c(i − 1), for 1≤ i≤
2d − 1

3
(i is odd),

c(i − 1) − 1, for 2≤ i≤
2d + 2

3
(i is even),

k, for
2d + 5

3
≤ i≤d,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f((e)(k)) �

j, for 1≤ i≤
2d − 1

3
(i is odd),

j + 2, for 2≤ i≤
2d + 2

3
(i is even),

6ci − 4(d + 1)c

3
− 2 + j for

2d + 5
3
≤ i≤ d,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f((e)(h)) �

j + 1, for 1≤ i≤
2d − 1

3
,

(2c − 2)i −
(4d + 1)(c − 1)

3
− 1 + j, for

2d + 2
3
≤ i≤ d − 1.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩
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Figure 2: Edge weights of P4□C10.
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Weights for reflexive edges is given as follows:
for 1≤ i≤d − 1 1, ≤ i≤ c, weight of edge ((xi,j)(xi+1,j)) is
(2i − 1)c + j and weight of the edge ((xi,j)(xi,j+1)) is
2c(i − 1) + j,

None of the two edges are of the same weight. So, we get
the required result, for c≥ 2 andd≥ 3, which completes the
proof.

2. Conclusion

In the present paper, we found the reflexive edge irregularity
strength for generalized prism graph (Pd□Cc), for d≥ 3 and
c≥ 2.
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Spectrum analysis and computing have expanded in popularity in recent years as a critical tool for studying and describing the
structural properties of molecular graphs. Let O2

n be the strong prism of an octagonal network On. In this study, using the
normalized Laplacian decomposition theorem, we determine the normalized Laplacian spectrum of O2

n which consists of the
eigenvalues of matrices LA and LS of order 3n + 1. As applications of the obtained results, the explicit formulae of the degree-
Kirchhoff index and the number of spanning trees for O2

n are on the basis of the relationship between the roots and coefficients.

1. Introduction

Graphs are a convenient way to depict chemical structures,
where atoms are associated with vertices, while chemical
bonds are associated with edges. +is manifestation carries a
wealth of knowledge about the molecule’s chemical char-
acteristics. In quantitative structure-activity/property rela-
tionship (QSAR/QSPR) studies, one may see that many
chemical and physical properties of molecules are closely
correlated with graph-theoretical parameters known as to-
pological indices. One such graph-theoretical parameter is
the multiplicative degree-Kirchhoff index (see [1]). In sta-
tistical physics (see [2]), the enumeration of spanning trees
in a graph is a crucial problem. It is interesting to note that
themultiplicative degree-Kirchhoff index is closely related to
the number of spanning trees in a graph. +e normalized
Laplacian acts as a link between them.

Let G be an n-vertex simple, undirected, and connected
graph with the vertex set of V(G) and an edge set of E(G).

For standard notation and terminology, one may refer to the
recent papers (see [3, 4]). +e (combinatorial) Laplacian
matrix of graph G is specified as LG � DG − AG, where DG is
the vertex degree diagonal matrix of order n and A(G) is an
adjacency matrix of order n.

+e normalized Laplacian is defined by

LG( 􏼁ij �

1, if i � j,

−
1

�����
dvi

dvj

􏽱 , if i≠ j, vi ∼ vj,

0, otherwise.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

Evidently, L(G) � D(G) − A(G) and L(G) � D(G)− 1/2

L(G)D(G)− 1/2. As we all know, the normalized Laplacian
technique is useful for analyzing the structural features of
nonregular graphs. In reality, the interaction between a
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graph’s structural features and its eigenvalues is the focus of
spectral graph theory. For more information, see recent
articles [5–8] or the book [9].

Many parameters were used to characterize and describe
the structural features of graphs in chemical graph theory.
+e Wiener index [10, 11] was a well-known distance-based
index, as it is known as W(G) � 􏽐i<jdij. Eventually, Gutman
[12] defined the Gutman index as follows:

Gut(G) � 􏽘
i< j

didjdij. (2)

In accordance with electrical network theory, Klein and
Randić [13] presented a new distance function called re-
sistance distance that is denoted as rij. +e resistance dis-
tance in electrical networks is between two arbitrary vertices
i and j when every edge is replaced by a unit resistor. Klein
and Ivanciuc [14] called it the Kirchhoff index, the total sum
of resistance distances between each pair of vertices of G,
which is Kf(G) � 􏽐i<jrij. Later, the degree-Kirchhoff index
was established by Chen and Zhang [1] and denoted by
Kf∗(G) � 􏽐i<jdidjrij.

Because of their practical uses in physics, chemistry, and
other sciences, the Kirchhoff index and the degree-Kirchhoff
index have gained a lot of attention. Klein and Lovász
[15, 16] separately established that

Kf(G) � n 􏽘
n

k�2

1
]k

, (3)

where 0 � ]1 < ]2 ≤ · · · ≤ ]n are the eigenvalues of L(G).
According to Chen [17], the degree-Kirchhoff index is,

Kf
∗
(G) � 2m 􏽘

n

k�1

1
]k

, (4)

where ]1 ≤ ]2 ≤ · · · ≤ ]n are the eigenvalues of L(G).
Since the Kirchhoff index and multiplicative degree-

Kirchhoff index have been widely used in the domains of
physics, chemistry, and network science. During the pre-
vious few decades, many scientists have been working on
explicit formulae for the Kirchhoff and degree-Kirchhoff
indices of graphs with particular structures, such as cycles
[18], complete multipartite graphs [19], generalized phe-
nylene [20], crossed octagonal [21], hexagonal chains [22],
pentagonal-quadrilateral network [23], and so on. Other
research on the Kirchhoff index and the multiplicative de-
gree-Kirchhoff index of a graph has been published (see
[24–31]). In organic chemistry, polyomino systems have
received a lot of attention, especially in polycyclic aromatic
compounds. Tree-like octagonal networks are condensed
into octagonal networks that belong to the polycyclic
conjugated hydrocarbons’ family. +e octagonal system
without any branches is known as a linear octagonal network
[32]. As shown in Figure 1, a linear octagonal network could
also be created from a linear polyomino network by adding
additional points to the line according to specified rules.

+e strong product between the graphs G and H is
denoted by G⊠H, where the vertex set V(G⊠H) is VG × VH

and (a, x)(b, y) is an edge of G⊠H if a � b and x is adjacent

to y in H or x � y and a is adjacent to b in G or xy ∈ E(H)

and ab ∈ EG. In particular, the strong product of K2 and G is
known as the strong prism of G. Recently, Li [33] and Ali
[34] calculated the resistance distance-based parameters of
the strong prism of unique graphs, such as strong prism of Sn

and Ln⊠K2, respectively. Let O2
n be the strong prism of K2

and On, denoted by O2
n � K2⊠On, as shown in Figure 2.

Obviously, |E(O2
n)| � 34n + 6 and |V(O2

n)| � 12n + 4.
In this paper, motivated by [34–36], we derive an explicit

analytical expression for the multiplicative degree-Kirchhoff
index and also spanning trees of O2

n.

2. Preliminaries

In this section, we start by going over some basic notation
and then introduce a suitable technique. Given the square
matrix R having order n, we refer to R[i1, i2, . . . , ik] as the
submatrix of R that results from deleting the i1th, i2th, . . ., ikth
columns and rows. Let Φ(R) � det(xIn − R) be the charac-
teristic polynomial of the squarematrixR.+e labeled vertices of
O2

n are as depicted in Figure 2 and V1 � u1, . . . , u3n+1,􏼈

v1, . . . , v3n+1} and V2 � u1′, . . . , u3n+1′, v1′, . . . , v3n+1′􏼈 􏼉. +e
normalized Laplacian matrixL(O2

n) could be represented as a
block matrix below:

L O
2
n􏼐 􏼑 �

LV11
O

2
n􏼐 􏼑 LV12

O
2
n􏼐 􏼑

LV21
O

2
n􏼐 􏼑 LV22

O
2
n􏼐 􏼑

⎛⎝ ⎞⎠. (5)

It is simple to verify that LV12
(O2

n) � LV21
(O2

n) and
LV11

(O2
n) � LV22

(O2
n).

Let

T �

1
�
2

√ I6n+2
1
�
2

√ I6n+2

1
�
2

√ I6n+2 −
1
�
2

√ I6n+2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (6)

+en,

TL O
2
n􏼐 􏼑T′ �

LA O
2
n􏼐 􏼑 0

0 LS O
2
n􏼐 􏼑

⎛⎝ ⎞⎠, (7)

where

LA O
2
n􏼐 􏼑 � LV11

+ LV12
,

LS O
2
n􏼐 􏼑 � LV11

− LV12
.

(8)

Huang et al. obtained the following lemma.

v2
v1

u1

v3
v4

v5 v6 v3n−1
v3n+1

u3n+1

v3n

u3n−1 u3nu2 u3

u4
u5 u6

Figure 1: Graph On with labeled vertices.
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Lemma 1 (see [8]). Let G be a graph and let LA(O2
n) and

LS(O2
n) be as described above. *en, we have

Φ(L(O2
n)) � Φ(LA) · Φ(LS).

Lemma 2 (see [1]). Let ρ1 ≤ ρ2 ≤ · · · ≤ ρn be the eigenvalues
ofL(G); then, the degree-Kirchhoff index can also be written
as Kf∗(G) � 2m 􏽐

n
i�2 1/ρi.

Lemma 3 (see [17]). Let G be n-vertex connected graph of
size m; then, the spanning trees is
τ(G) � 1/2m 􏽑

n
i�1 di 􏽑

n
k�2 ρk.

3. Main Results

In this section, we are committed to the explicit analytical
solution for the multiplicative degree-Kirchhoff index, as
well as the spanning tree of O2

n. In terms of the role of
normalized Laplacian L, the following block matrices of
LV11

(O2
n) andLV12

(O2
n) are obtained according to equation

(8).

LV11
O

2
n􏼐 􏼑 �

1 −
1
5

0 0 · · · 0 0 −
1
5

0 0 0 · · · 0 0

−
1
5

1 −
1
5

0 · · · 0 0 0 0 0 0 · · · 0 0

0 −
1
5

1 −
1
��
35

√ · · · 0 0 0 0 0 0 · · · 0 0

0 0 −
1
��
35

√ 1 · · · 0 0 0 0 0 −
1
7

· · · 0 0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0 0 0 0 · · · 1 −
1
5

0 0 0 0 · · · 0 0

0 0 0 0 · · · −
1
5

1 0 0 0 0 · · · 0 −
1
5

−
1
5

0 0 0 · · · 0 0 1 −
1
5

0 0 · · · 0 0

0 0 0 0 · · · 0 0 −
1
5

1 −
1
5

0 · · · 0 0

0 0 0 0 · · · 0 0 0 −
1
5

1 −
1
��
35

√ · · · 0 0

0 0 0 −
1
7

· · · 0 0 0 0 −
1
��
35

√ 1 · · · 0 0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0 0 0 0 · · · 0 0 0 0 0 0 · · · 1 −
1
5

0 0 0 0 · · · 0 −
1
5

0 0 0 0 · · · −
1
5

1
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.
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v′3
v,4

v′5 v′6 v′3n−1

v3n−1
v3n

v′3n+1

v3n+1

v′3n
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u3n+1
u3nu2

u′2 u′3
u′4 v4

v5 v6

u′5 u′6

u3

u4
u5 u6

u′3n u′3n+1

Figure 2: Graph O2
n with labeled vertices.
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LV12
O

2
n􏼐 􏼑 �

−
1
5

−
1
5

0 0 · · · 0 0 −
1
5

0 0 0 · · · 0 0

−
1
5

−
1
5

−
1
5

0 · · · 0 0 0 0 0 0 · · · 0 0

0 −
1
5

−
1
5

−
1
��
35

√ · · · 0 0 0 0 0 0 · · · 0 0

0 0 −
1
��
35

√ −
1
7

· · · 0 0 0 0 0 −
1
7

· · · 0 0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0 0 0 0 · · · −
1
5

−
1
5

0 0 0 0 · · · 0 0

0 0 0 0 · · · −
1
5

−
1
5

0 0 0 0 · · · 0 −
1
5

−
1
5

0 0 0 · · · 0 0 −
1
5

−
1
5

0 0 · · · 0 0

0 0 0 0 · · · 0 0 −
1
5

−
1
5

−
1
5

0 · · · 0 0

0 0 0 0 · · · 0 0 0 −
1
5

−
1
5

−
1
��
35

√ · · · 0 0

0 0 0 −
1
7

· · · 0 0 0 0 −
1
��
35

√ −
1
7

· · · 0 0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0 0 0 0 · · · 0 0 0 0 0 0 · · · −
1
7

−
1
5

0 0 0 0 · · · 0 −
1
5

0 0 0 0 · · · −
1
5

−
1
5
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(6n+2)×(6n+2)

. (9)

By equation (8), we have a matrix of order 6n + 2:
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5

−
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5
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1
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0 0 0 · · · 0 0

−
1
5

2
5

−
1
5

0 · · · 0 0 0 0 0 0 · · · 0 0

0 −
1
5

2
5

−
1
��
35

√ · · · 0 0 0 0 0 0 · · · 0 0

0 0 −
1
��
35

√
3
7

· · · 0 0 0 0 0 −
1
7

· · · 0 0

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮

0 0 0 0 · · ·
2
5

−
1
5

0 0 0 0 · · · 0 0

0 0 0 0 · · · −
1
5

2
5

0 0 0 0 · · · 0 −
1
5

−
1
5

0 0 0 · · · 0 0
2
5

−
1
5

0 0 · · · 0 0

0 0 0 0 · · · 0 0 −
1
5

2
5

−
1
5

0 · · · 0 0

0 0 0 0 · · · 0 0 0 −
1
5

2
5

−
1
��
35

√ · · · 0 0

0 0 0 −
1
7

· · · 0 0 0 0 −
1
��
35

√
3
7

· · · 0 0

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0 0 0 0 · · · 0 0 0 0 0 0 · · ·
2
5

−
1
5

0 0 0 0 · · · 0 −
1
5

0 0 0 0 · · · −
1
5

2
5
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, (10)

and L
S(O2

n) � diag(6/5, 6/5, 6/5, 8/7, . . . , 6/5, 6/5, 8/7,

6/5, 6/5, 8/7, . . . , 8/7, 6/5, 6/5, 6/5)Q, a diagonal matrix with
order 6n + 2.

+e normalized Laplacian spectrum of O2
n is constructed

by the eigenvalues of LA(O2
n) and LS(O2

n), according to

Lemma 1. Given the fact that LS(O2
n) is just a diagonal

matrix of order 6n + 2, it is obvious that 6/5 with multiplicity
4n + 4 and 8/7 with multiplicity 2n − 2 are the eigenvalues of
LS(O2

n).
Let
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A �

2
5

−
1
5

0 0 · · · 0 0

−
1
5

2
5

−
1
5

0 · · · 0 0

0 −
1
5

2
5

−
1
��
35

√ · · · 0 0

0 0 −
1
��
35

√
3
7

· · · 0 0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0 0 0 0 · · ·
1
5

−
1
5

0 0 0 0 · · · −
1
5

2
5
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(3n+1)×(3n+1),

C �

−
1
5

0 0 0 · · · 0 0

0 0 0 0 · · · 0 0

0 0 0 0 · · · 0 0

0 0 0 −
1
7

· · · 0 0

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮

0 0 0 0 · · · 0 0

0 0 0 0 · · · 0 −
1
5
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(3n+1)×(3n+1).

(11)

+us, (1/2)LA could be represented by the block matrix
below:

1
2
LA �

A C

C A

⎛⎝ ⎞⎠. (12)

Let

T �

1
�
2

√ I3n+1
1
�
2

√ I3n+1

1
�
2

√ I3n+1 −
1
�
2

√ I3n+1
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. (13)

+en,

T
1
2
LA􏼒 􏼓T′ �

A + C 0

0 A − C

⎛⎝ ⎞⎠, (14)

where T′ indicates the transposition of T. Let P � A + C and
Q � A − C. +en,

P �

1
5

−
1
5

0 0 · · · 0 0 0

−
1
5

2
5

−
1
5

0 · · · 0 0 0

0 −
1
5

2
5

−
1
��
35

√ · · · 0 0 0

0 0 −
1
��
35

√
2
7

· · · 0 0 0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮

0 0 0 0 · · ·
2
5

−
1
5

0

0 0 0 0 · · · −
1
5

2
5

−
1
5

0 0 0 0 · · · 0 −
1
5

1
5
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(3n+1)×(3n+1),

Q �

3
5

−
1
5

0 0 · · · 0 0 0

−
1
5

2
5

−
1
5

0 · · · 0 0 0

0 −
1
5

2
5

−
1
��
35

√ · · · 0 0 0

0 0 −
1
��
35

√
4
7

· · · 0 0 0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮

0 0 0 0 · · ·
2
5

−
1
5

0

0 0 0 0 · · · −
1
5

2
5

−
1
5

0 0 0 0 · · · 0 −
1
5

3
5
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(3n+1)×(3n+1).

(15)

By Lemma 1, it is simple to verify that the eigenvalues of
(1/2)LA consist of those of P and Q. Suppose that the
eigenvalues of P and Q are denoted by ci and
ξj(i, j � 1, 2, . . . , 3n + 1) with c1 ≤ c2 ≤ · · · ≤ c3n+1 and
ξ1 ≤ ξ2 ≤ · · · ≤ ξ3n+1, respectively. +en, the eigenvalues of
LA are 2c1, 2c2, . . . , 2c3n+1 and 2ξ1, 2ξ2, . . . , 2ξ3n+1.where
0 � c1 < c2 ≤ · · · ≤ c3n+1 and 0< ξ1 ≤ ξ2 ≤ · · · ≤ ξ3n+1 are ei-
genvalues of P and Q, respectively.
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Lemma 4. Suppose that O2
n is the strong product of octagonal

network. *en,

Kf
∗

O
2
n􏼐 􏼑 � 2(34n + 6) (4n + 4)

5
6

+(2n − 2)
7
8

+
1
2

􏽘

3n+1

i�2

1
ci

+
1
2

􏽘

3n+1

j�1

1
ξj

⎡⎢⎢⎣ ⎤⎥⎥⎦,

(16)

On the basis of the relation between the coefficients and
roots of Φ(P) (resp. Φ(Q)), the formulae of 􏽐

3n+1
i�2 1/ci (resp.

􏽐
3n+1
j�1 1/ξj) are obtained in the next lemmas.

Lemma 5. Suppose that 0 � c1 < c2 ≤ · · · ≤ c3n+1 are de-
scribed as above. *en,

􏽘

3n+1

i�2

1
ci

�
1359n

3
+ 1115n

2
+ 434n

14(17n + 3)
. (17)

Suppose that Φ(P) � x3n+1 + a1x
3n + · · · + a3n−1x

2

+a3nx � x(x3n + a1x
3n− 1 + · · · + a3n−1x + a3n). +en,

c2, c3, . . . , c3n+1 satisfy the equation below:
x
3n

+ a1x
3n− 1

+ · · · + a3n−1x + a3n � 0, (18)

so 1/c2, 1/c3, . . . , 1/c3n+1 satisfy the equation below:
a3nx

3n
+ a3n−1x

3n− 1
+ · · · + a1x + 1 � 0. (19)

Hence, by Vieta’s theorem, we obtain

􏽘

3n+1

i�2

1
ci

�
(−1)

3n− 1
a3n−1

(− 1)
3n

a3n

. (20)

For the sake of convenience, consider Wi of P, which is
the ith order principal submatrix generated by the first i

columns and rows, i � 1, 2, . . . , 3n. Let wi � detWi. +en,

w1 �
1
5
,

w2 �
1
25

,

w3 �
1
125

,

w4 �
1
875

,

w5 �
1

4375
,

w6 �
1

21875
,

w3i �
2
5
w3i−1 −

1
25

w3i−2, for 1≤ i≤ n,

w3i+1 �
2
7
w3i −

1
35

w3i−1, for 1≤ i≤ n − 1,

w3i+2 �
2
5
w3i+1 −

1
35

w3i, for 1≤ i≤ n − 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(21)

By explicit calculation, these general formulae can be
obtained as follows:

w3i �
7
5

1
175

􏼒 􏼓
i

, for 1≤ i≤ n,

w3i+1 �
1
5

1
175

􏼒 􏼓
i

, for 0≤ i≤ n − 1,

w3i+2 �
1
25

1
175

􏼒 􏼓
i

, for 0≤ i≤ n − 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(22)

+e structure and determinant of matrix LA are pre-
served by a permutation similarity transformation of a
square matrix, and one gets detU3n+1−i � detW3n+1−i. We
have

(−1)
3n

a3n � 􏽘
3n+1

i�1
detP[i] � 􏽘

3n

i�2
detP[i] + 2w3n

� 􏽘
n

k�1
detP[3k] + 􏽘

n−1

k�1
detP[3k + 1] + 􏽘

n−1

k�0
detP[3k + 2] + 2w3n

� 􏽘
n

k�1
w3(k−1)+2 · w3(n−k)+1 + 􏽘

n−1

k�1
w3k · w3(n−k) + 􏽘

n−1

k�0
w3k+1 · w3(n−k−1)+2 + 2w3n

�
17n + 3
625

1
175

􏼒 􏼓
n− 1

,

(23)

as desired.
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Claim 1. (−1)3n− 1a3n−1 � 1359n3 + 1115n2 + 434n/8750
(1/175)n− 1.

Proof of Claim 1. Noticing that (−1)3n− 1a3n−1 is equal to the
sum of all principal minors of P with 3n − 1 columns and
rows, we have

(−1)
3n− 1

a3n−1 � 􏽘
3n+1

1≤ i< j

Wi−1 0 0

0 Z 0

0 0 U

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

, 1≤ i< j≤ 3n + 1,

(24)

where

Z �

ki+1,i+1 −
1
��
35

√ · · · 0

−
1
��
35

√ ki+2,i+2 · · · 0

⋮ ⋮ ⋱ ⋮

0 0 · · · kj−1,j−1
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⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

U �

kj+1,j+1 · · · 0 0

⋮ ⋱ ⋮ ⋮

0 · · · k3n,3n −
1
5

0 · · · −
1
5

k3n+1,3n+1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (25)

Note that

(−1)
3n− 1

a3n−1 � 􏽘
3n+1

1≤ i< j

detP[i, j] � 􏽘
3n+1

1≤ i< j

wi−1 · w3n+1−j · detZ.

(26)□

Remark 1. If 1≤ i< i + 1 � j≤ 3n + 1, then Z is an empty
matrix and let detZ � 1. By equation (26), there are different
possibilities which can be selected for i and j. +erefore, all
these cases are classified as follows.

Case 1. Let i � 3p and j � 3q, for 1≤ i< j≤ 3n + 1. So,
1≤p< q≤ n:

detZ �

2
7

−
1
��
35

√ 0 0 · · · 0 0

−
1
��
35

√
2
5

−
1
5

0 · · · 0 0

0 −
1
5

2
5

−
1
��
35

√ · · · 0 0

0 0 −
1
��
35

√
2
7

· · · 0 0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0 0 0 0 · · ·
2
7

−
1
��
35

√

0 0 0 0 · · · −
1
��
35

√
2
5

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
(3q−3p−1)

� (3q − 3p + 1)
1
175

􏼒 􏼓
q− p

. (27)

Case 2. Let i � 3p and j � 3q + 1, for
1≤ i< i + 1< j≤ 3n + 1. So, 1≤p≤ q≤ n − 1:
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2
7

−
1
��
35

√ 0 0 · · · 0 0

−
1
��
35

√
2
5

−
1
5

0 · · · 0 0

0 −
1
5

2
5

−
1
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35

√ · · · 0 0

0 0 −
1
��
35

√
2
7

· · · 0 0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0 0 0 0 · · ·
2
5

−
1
5

0 0 0 0 · · · −
1
5

2
5
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􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
(3q−3p)

�
(3q − 3p + 2)

7
1
175

􏼒 􏼓
q− p

. (28)

Case 3. Let i � 3p and j � 3q + 2, for 1≤ i< j≤ 3n + 1. So,
1≤p≤ q≤ n − 1:

detZ �
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7

−
1
��
35

√ 0 0 · · · 0 0

−
1
��
35

√
2
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−
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5

0 · · · 0 0
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5

2
5

−
1
��
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√ · · · 0 0

0 0 −
1
��
35

√
2
7

· · · 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0 0 0 0 · · ·
2
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−
1
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35

√

0 0 0 0 · · · −
1
��
35

√
2
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􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
(3q−3p+1)

�
(3q − 3p + 3)

35
1
175

􏼒 􏼓
q− p

. (29)

Case 4. Let i � 3p + 1 and j � 3q, for 1≤ i< j≤ 3n + 1. So,
0≤p< q≤ n:
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2
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��
35
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√
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� 35(3q − 3p − 1)
1
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􏼒 􏼓
q− p

. (30)

Case 5. Let i � 3p + 1 and j � 3q + 1, for 1≤ i< j≤ 3n + 1.
So, 0≤p< q≤ n − 1:
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􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
(3q−3p−1)

� 7(3q − 3p)
1
175

􏼒 􏼓
q− p

. (31)

Case 6. Let i � 3p + 1 and j � 3q + 2, for
1≤ i< i + 1< j≤ 3n + 1. So, 0≤p≤ q≤ n − 1:
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� (3q − 3p + 1)
1
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􏼒 􏼓
q− p

. (32)

Case 7. Let i � 3p + 2 and j � 3q, for
1≤ i< i + 1< j≤ 3n + 1. So, 0≤p<p + 1< q≤ n:
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(3q−3p−3)

� (3q − 3p + 1)
1
175

􏼒 􏼓
q− p

. (33)

Case 8. Let i � 3p + 2 and j � 3q + 1, for 1≤ i< j≤ 3n + 1.
So, 0≤p< q≤ n − 1:
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. (34)

Case 9. Let i � 3p + 2 and j � 3q + 2, for 1≤ i< j≤ 3n + 1.
So, 0≤p< q≤ n − 1:
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(3q−3p−1)
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1
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􏼒 􏼓
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. (35)

Combining these results with equation (26) and Cases
1–9 yields
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(−1)
3n− 1

a3n−1 � 􏽘
1≤ i< j≤ 3n+1

wi−1 · w3n+1−j · detZj−1−i

� E1 + E2 + E3,

(36)

where

E1 � 􏽘
1≤p< q≤ n

detP[3p, 3q] + 􏽘
1≤p≤ q≤ n−1

detP[3p, 3q + 1] + 􏽘
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(37)
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Substituting E1, E2, and E3 in Equation (36), we get
Claim 2.

Also, we can get Lemma 5 by combining Claims 1 and 2.

Lemma 6. Let 0< ξ1 < ξ2 ≤ · · · ≤ ξ3n+1 be the eigenvalues of Q

as above. *en,

􏽘

3n+1

j�1

1
ξj

�
5 η1 + η2( 􏼁

(45 + 13
��
15

√
)(4 +

��
15

√
)
n−1

+(45 − 13
��
15

√
)(4 −

��
15

√
)
n−1, (38)

where
η1 � (1500 + 401

��
15

√
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��
15

√
))(4 +

��
15

√
)n− 1

and
η2 � (1500 − 401

��
15

√
+ n(1605 − 397

��
15

√
))(4 −

��
15

√
)n− 1.

Proof . Suppose that Φ(Q) � x3n+1 + b1x
3n + · · · +

b3nx + b3n+1.
So, 1/ξ1, 1/ξ2, . . . , 1/ξ3n+1 satisfy the equation below:

b3n+1x
3n+1

+ b3nx
3n

+ · · · + b1x + 1 � 0. (39)

By Vieta’s theorem, we obtain

􏽘
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j�1

1
ξj

�
􏽐

3n+1
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�
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(− 1)
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�
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3n

b3n

detQ
.

(40)

In order to find (−1)3nb3n and detQ in (40), consider Ri

of Q, which is the ith order principal submatrix generated by
the first i columns and rows, 1≤ i≤ 3n. Let ri � detRi. +en,
r1 � 3/5, r2 � 1/5, r3 � 7/125, r4 � 23/875, r5 � 39/4375,
r6 � 11/4375, and

r3i �
2
5
r3i−1 −

1
25

r3i−2, for 1≤ i≤ n,

r3i+1 �
4
7
r3i −

1
35

r3i−1, for 1≤ i≤ n − 1,

r3i+2 �
2
5
r3i+1 −

1
35

r3i, for 1≤ i≤ n − 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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Similar to the method used as described above, we have
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√

175
􏼠 􏼡

i

, for 0≤ i≤ n − 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(42)

□
Fact 1. detQ � 45 + 13

��
15

√
/9375 (4 +

��
15

√
/175)n− 1 + 45−

13
��
15

√
/9375(4 −

��
15

√
/175)n− 1.

Proof . Fact 1. Expanding detQ along the last row, we have

detQ �
3
5
det r3n −

1
25

det r3n−1 �
3
5

35 + 7
��
15

√

50
4 +

��
15

√

175
􏼠 􏼡

n

+
35 − 7

��
15

√

50
4 −

��
15

√

175
􏼠 􏼡

n

􏼢 􏼣

−
1
25

45 + 11
��
15

√

150
4 +

��
15

√

175
􏼠 􏼡

n− 1

+
45 − 11

��
15

√

150
4 −

��
15

√

175
􏼠 􏼡

n− 1
⎡⎣ ⎤⎦

�
45 + 13

��
15

√

9375
4 +

��
15

√

175
􏼠 􏼡

n− 1

+
45 − 13

��
15

√

9375
4 −

��
15

√

175
􏼠 􏼡

n− 1

.

(43)

□
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Fact 2.

(−1)
3n

b3n �
1500 + 401

��
15

√
+ n(1605 + 397

��
15

√
)

1875
4 +

��
15

√

175
􏼠 􏼡

n− 1

+
1500 − 401

��
15

√
+ n(1605 − 397

��
15

√
)

1875
4 −

��
15

√

175
􏼠 􏼡

n− 1

.

(44)

Proof of Fact 2. Noting that (−1)3nb3n is the summation of
all principal minors of Q with 3n columns and rows, we have

(−1)
3n

b3n � 􏽘
3n+1

i�1
detQ[i] � 􏽘

3n+1

i�1
det

Ri−1 0

0 S3n+1−i

􏼠 􏼡

� 􏽘
3n+1

i�1
det ri−1 · det s3n+1−i,

(45)

where

S3n+1−i �

li+1,i+1 · · · 0 0

⋮ ⋱ ⋮ ⋮

0 · · · l3n,3n −
1
��
35

√

0 · · · −
1
��
35

√ l3n+1,3n+1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (46)

+e structure and determinant of matrix LA are pre-
served by a permutation similarity transformation of a
square matrix, and one gets detS3n+1−i � detR3n+1−i. In line
with Equation (45), we have

(−1)
3n

b3n � 􏽘
3n+1

i�1
detQ[i] � 􏽘

n

p�1
detQ[3p] + 􏽘

n−1

p�0
detQ[3p + 1] + 􏽘

n−1

p�0
detQ[3p + 2] + r3n

� 􏽘

n

p�1
r3(p−1)+2 · r3(n−p)+1 + 􏽘

n−1

p�1
r3p · r3(n−p) + 􏽘

n−1

p�0
r3p+1 · r3(n−p−1)+2 + 2r3n.

(47)

+e following forms can also be generated by using the
above equations:

􏽘

n

p�1
r3(p−1)+2 · r3(n−p)+1 � n

150 + 37
��
15

√

375
4 +

��
15

√

175
􏼠 􏼡

n− 1

+
150 − 37

��
15

√

375
4 −

��
15

√

175
􏼠 􏼡

n− 1
⎡⎣ ⎤⎦

+
14

��
15

√

3
4 +

��
15

√

175
􏼠 􏼡

n

−
14

��
15

√

3
4 −

��
15

√

175
􏼠 􏼡

n

,

(48)

􏽘

n−1

p�1
r3p · r3(n−p) � (n − 1)

35 + 7
��
15

√

25
4 +

��
15

√

175
􏼠 􏼡

n

+
35 − 7

��
15

√

25
4 −

��
15

√

175
􏼠 􏼡

n

􏼢 􏼣

+

��
15

√

1875
4 +

��
15

√

175
􏼠 􏼡

n− 1

−

��
15

√

1875
4 −

��
15

√

175
􏼠 􏼡

n− 1

,

(49)

􏽘

n−1

p�0
r3p+1 · r3(n−p−1)+2 � n

150 + 37
��
15

√

375
4 +

��
15

√

175
􏼠 􏼡

n− 1

+
150 − 37

��
15

√

375
4 −

��
15

√

175
􏼠 􏼡

n− 1
⎡⎣ ⎤⎦

+
14

��
15

√

3
4 +

��
15

√

175
􏼠 􏼡

n

−
14

��
15

√

3
4 −

��
15

√

175
􏼠 􏼡

n

,

(50)

2r3n �
35 + 7

��
15

√

25
4 +

��
15

√

175
􏼠 􏼡

n

+
35 − 7

��
15

√

25
4 −

��
15

√

175
􏼠 􏼡

n

. (51)

We can obtain the desired result of Fact 2 by substituting
equations (48)–(51) into (47).

In view of (40), Facts 1 and 2 and Lemma 6 hold
immediately. □

Journal of Mathematics 15



+e following theorem is derived from Lemmas 4–6.

Theorem 1. Let O2
n � K2⊠On. *en,

Kf
∗

O
2
n􏼐 􏼑 �

4077n
3

+ 10604n
2

+ 4844n + 399
21

+(34n + 6)
(−1)

3n
b3n

detQ
􏼢 􏼣,

(52)

where

(−1)
3n

b3n �
1500 + 401

��
15

√
+ n(1605 + 397

��
15

√
)

1875
4 +

��
15

√

175
􏼠 􏼡

n− 1

+
1500 − 401

��
15

√
+ n(1605 − 397

��
15

√
)

1875
4 −

��
15

√

175
􏼠 􏼡

n− 1

detQ �
45 + 13

��
15

√

9375
4 +

��
15

√

175
􏼠 􏼡

n− 1

+
45 − 13

��
15

√

9375
4 −

��
15

√

175
􏼠 􏼡

n− 1

.

(53)

+e explicit formulae of the spanning trees of O2
n are

given below.
Theorem 2. Let O2

n � K2⊠On. *en,

τ O
2
n􏼐 􏼑 �

2(16n− 3)
· 3(4n+3)

35
(45 + 13

��
15

√
)(4 +

��
15

√
)
n− 1

+(45 − 13
��
15

√
)(4 −

��
15

√
)
n− 1

􏽨 􏽩. (54)

Proof . By Lemma 2, we have (6/5)(4n+4) · (8/7)(2n− 2)

􏽑
3n+1
i�2 2ci 􏽑

3n+1
i�1 2ξi 􏽑v∈V

O2
n

dO2
n

� 2|EO2
n
|τ(O2

n). Note that

􏽙
v∈V

O2
n

dO2
n

� 58n+8
· 74n− 4

,

EO2
n

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � 34n + 6,

􏽙

3n+1

i�2
ci �

17n + 3
625

1
175

􏼒 􏼓
n− 1

,

􏽙

3n+1

i�1
ξi � detQ �

45 + 13
��
15

√

9375
4 +

��
15

√

175
􏼠 􏼡

n− 1

+
45 − 13

��
15

√

9375
4 −

��
15

√

175
􏼠 􏼡

n− 1

.

(55)

Hence, +eorem 2 immediately follows, along with
Lemma 2. □
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4. Conclusion

In this study, we consider O2
n, which is the strong prism of

the octagonal network. Using the normalized Laplacian
theorems, we have determined the multiplicative degree-
Kirchhoff index and the spanning tree of O2

n. New discov-
eries, developments, and advancements in research are still
required. In the near future, we will be exploring a more
complex chemistry network.
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It is well known that many topological indices have widespread use in lots of fields about scientific research, and the Kirchhoff
index plays a major role in many different sectors over the years. Recently, Li et al. (Appl. Math. Comput. 382 (2020) 125335)
proposed the problem of determining the Kirchhoff index and multiplicative degree-Kirchhoff index of graphs derived from
Sn × K2, the Cartesian product of the star Sn, and the complete graph K2. In the present study, we completely solve this problem,
that is, the explicit closed-form formulae of the Kirchhoff index, multiplicative degree-Kirchhoff index, and number of spanning
trees are obtained for some graphs derived from Sn × K2.

1. Introduction

In this study, we suppose that G � (V, E) is a nontrivial
simple and connected graph, where V � v1, v2, . . . , vn􏼈 􏼉 and
E are the vertex set and edge set of G, respectively. Let
A(G) � (aij)n×n be the adjacency matrix, and
D(G) � diag(d1, d2, . . . , dn) the degree matrix, where di is
the degree of vertex vi. *en, L(G) � D(G) − A(G) is
termed as the Laplacian matrix, and
L(G) � D(G)− 1/2L(G)D(G)− 1/2 the normalized Laplacian
matrix of graph G. It is easily seen that

(L(G))ij �

1, if i � j;

−
1

����
didj

􏽱 , if i≠ j and vivj ∈ E;

0, otherwise.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

Let 0 � μ1 < μ2 ≤ · · · ≤ μn be the eigenvalues of L(G) and
0 � ]1 < ]2 ≤ · · · ≤ ]n the eigenvalues of L(G). *e sets
Sp(L(G)) � μ1, μ2, . . . , μn􏼈 􏼉 and Sp(L(G)) � ]1, ]2,􏼈

. . . , ]n} are called the Laplacian spectrum and normalized
Laplacian spectrum of G, respectively.

For two vertices vi and vj, the distance between them
written as dij is the length of the shortest path linking them.
*eWiener index [1] and Gutman index [2] of G are defined
as W(G) � 􏽐i<jdij and Gut(G) � 􏽐i<jdidjdij. For these two
famous topological indices, one can refer to [3–10] and the
references therein.

If regard each edge in E(G) as an unit resistor, then for
two vertices vi and vj, rij is represented as the effective
resistance between them [11]. In the field of chemistry,
resistance distance has been studied extensively and many
profound results have been obtained. One of the most fa-
mous results is the Kirchhoff index, which is used to
characterize the structure of a compound. *e Kirchhoff
index of G is written as Kf(G) � 􏽐i<jrij. It is derived from
molecular diagrams and is also a form used to numerically
characterize molecules. Hitherto, the Kirchhoff index has
been widely applied to mathematic, chemistry, physics, and
so on. Later, the following relation between Kf(G) and
Sp(L(G)) was established by Zhu et al. [12] and Gutman and
Mohar [13] independently.
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Lemma 1 (See [12, 13]). Let G be a simple graph of order
n≥ 2. +en,

Kf(G) � 􏽘
n

i�2

1
μi

. (2)

Similarly, Chen and Zhang [14] defined the multipli-
cative degree-Kirchhoff index of G as Kf∗(G) � 􏽐i<jdidjrij.
Moreover, the following relation between Kf∗(G) and
Sp(L(G)) was confirmed.

Lemma 2 (See [14]). Let G be a simple connected graph of
order n≥ 2 and size m. +en,

Kf
∗
(G) � 2m 􏽘

n

i�2

1
]i

. (3)

Nowadays, the (multiplicative degree-) Kirchhoff index has
attracted a lot of attention from researchers over the few years.
Furthermore, its closed-form formulae have been established
depending on many kinds of graphs. For examples, the for-
mulae of Kirchhoff index for cycles, circulant graphs, and
composite graphs were obtained in [15, 16] and [17], re-
spectively, and those of both indices for complete multipartite
graphs were obtained in [18]. Besides, quite a few literature
concerned the (multiplicative degree-) Kirchhoff index of
polygon chains and their variants. Explicit expressions of the
above index have been derived for linear polyomino chain [19],
linear crossed polyomino chain [20], linear pentagonal chain
[21], linear phenylenes [22, 23], cyclic phenylenes [24], Möbius
phenylenes chain and cylinder phenylenes chain [25, 26], linear
(n) phenylenes [27], generalized phenylenes [28, 29], linear
hexagonal chain [30, 31], linear crossed hexagonal chain [32],
Möbius hexagonal chain [33], periodic linear chains [34], linear
octagonal chain [35], linear octagonal-quadrilateral chain [36],
and linear crossed octagonal chain [37].

For two disjoint graphs G and H, the strong product of
them is written as G⊗H, that is, V(G⊗H) � V(G) × V(H),
and two distinct vertices (u1, v1) and (u2, v2) are contiguous.
*e Cartesian product of G and H, written as G × H, is the
graph with vertex set V(G) × V(H), and two vertices
(u1, v1) and (u2, v2) are adjacent whenever u1 � u2 and
v1v2 ∈ E(H) or v1 � v2 and u1u2 ∈ E(G). Figure 1 shows the
graphs Sn ⊗K2 and Sn × K2, where Sn and Kn denote the star
and complete graph of order n, severally. Recently, Li et al.
[38] determined the expressions of Kf(Sr), Kf∗(Sr), and
τ(Sr), where Sr is a graph derived from Sn ⊗K2 by randomly
removing r vertical edges, and τ(G) denotes the number of
spanning trees of a connected graph G. Finally, they pro-
posed the problem of determining these three invariants for
graphs derived from Sn × K2. In the present study, we
completely solve this problem.

For convenience, we denote S2n � Sn × K2. *en,
|V(S2n)| � 2n and |E(S2n)| � 3n − 2. Let
E′ � ii′|i � 1, 2, . . . , n􏼈 􏼉. S2

n,r will denote the set of graphs
derived from S2n by discretionarily deleting r edges in E′.
Obviously, the unique graph in S2

n,n is disconnected; hence,

we considerS2
n,r for 0≤ r≤ n − 1 only. Note also,S2

n,0 � S2n􏼈 􏼉.
In Section 2, some notations and known results are intro-
duced, which will be applied to get our main results. In
Section 3, explicit expressions of Kf(S2n), Kf∗(S2n), and
τ(S2n) are obtained. Finally, Kf(S2n,r) and τ(S2n,r) are de-
termined in Section 4, where S2n,r is an arbitrary graph inS

2
n,r.

Moreover, it is shown that limn⟶+∞Kf

(S2n)/W(S2n) � limn⟶+∞Kf(S2n,r)/W(S2n,r) � 8/15 and
limn⟶+∞Kf∗(S2n)/Gut(S2n) � 16/33.

2. Preliminaries

In this section, we will introduce some basic concepts. *ese
following celebrated definitions and fundamental lemmas
can play a vital role in proving our consequences.

First, we mark the vertices of S2n as in Figure 1; then, set
V1 � 1, 2, . . . , n{ } and V2 � 1′, 2′, . . . , n′􏼈 􏼉. *erefore, we
have

L S
2
n􏼐 􏼑 �

L11 S
2
n􏼐 􏼑 L12 S

2
n􏼐 􏼑

L21 S
2
n􏼐 􏼑 L22 S

2
n􏼐 􏼑

⎛⎝ ⎞⎠,

L S
2
n􏼐 􏼑 �

L11 S
2
n􏼐 􏼑 L12 S

2
n􏼐 􏼑

L21 S
2
n􏼐 􏼑 L22 S

2
n􏼐 􏼑

⎛⎝ ⎞⎠,

(4)

where Lij(S2n) (Lij(S2n)) is the submatrix of L(S2n) (re-
spectively,L(S2n)) whose rows (columns) correspond to the
vertices in Vi (respectively Vj). It is easily seen that
L11(S2n) � L22(S2n), L12(S2n) � L21(S2n), L11(S2n) � L22(S2n),
and L12(S2n) � L21(S2n).

Let

T �

1
�
2

√ In

1
�
2

√ In

1
�
2

√ In −
1
�
2

√ In

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (5)

and then, we have

TL S
2
n􏼐 􏼑T �

LA S
2
n􏼐 􏼑 0

0 LS S
2
n􏼐 􏼑

⎛⎝ ⎞⎠,

TL S
2
n􏼐 􏼑T �

LA S
2
n􏼐 􏼑 0

0 LS S
2
n􏼐 􏼑

⎛⎝ ⎞⎠,

(6)

where LA(S2n) � L11(S2n) + L12(S2n), LS(S2n) � L11(S2n)

− L12(S2n), LA(S2n) � L11(S2n) + L12(S2n), and
LS(S2n) � L11(S2n) − L12(S2n).

Based on the above arguments, by applying the tech-
nique used in [32, 39], we immediately have the following
decomposition theorem, whereΦ(B, λ) � |λI − B| stands for
the characteristic polynomial of B.

Lemma 3 Let LA(S2n), LS(S2n), LA(S2n), and LS(S2n) be
written as above. +us, we obtain that
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Φ L S
2
n􏼐 􏼑, λ􏼐 􏼑 � Φ LA S

2
n􏼐 􏼑, λ􏼐 􏼑Φ LS S

2
n􏼐 􏼑, λ􏼐 􏼑,

Φ L S
2
n􏼐 􏼑, λ􏼐 􏼑 � Φ LA S

2
n􏼐 􏼑, λ􏼐 􏼑Φ LS S

2
n􏼐 􏼑, λ􏼐 􏼑.

(7)

Lemma 4 (See [40]). Assume that G is a connected graph
with n≥ 2 vertices; then,

τ(G) �
1
n

􏽙

n

i�2
μi. (8)

3. Results for S2n

In this section, we will derive explicit expressions of Kf(S2n),
Kf∗(S2n), and τ(S2n) as follows.

3.1. On Kf(S2n) and τ(S2n). Obviously,

L11 S
2
n􏼐 􏼑 �

n − 1 − 1 . . . − 1

− 1 2 0 . . . 0

− 1 0 2 . . . 0

. . . . . . . . . . . . . . .

− 1 0 0 . . . 2
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n×n

,

L12 S
2
n􏼐 􏼑 �

− 1 0 0 . . . 0

0 − 1 0 . . . 0

0 0 − 1 . . . 0

. . . . . . . . . . . . . . .

0 0 0 . . . − 1
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⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

n×n

.

(9)

Hence,

LA S
2
n􏼐 􏼑 � L11 S

2
n􏼐 􏼑 + L12 S

2
n􏼐 􏼑 �

n − 1 − 1 − 1 . . . − 1

− 1 1 0 . . . 0

− 1 0 1 . . . 0

. . . . . . . . . . . . . . .

− 1 0 0 . . . 1
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⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

n×n

,

(10)

and we easily have Sp(LA(S2n)) � 0, 1n− 2, n􏼈 􏼉, where ak de-
notes the k successive a’s.

Similarly, we have

LS S
2
n􏼐 􏼑 � L11 S

2
n􏼐 􏼑 − L12 S

2
n􏼐 􏼑 �

n + 1 − 1 − 1 . . . − 1

− 1 3 0 . . . 0

− 1 0 3 . . . 0

. . . . . . . . . . . . . . .

− 1 0 0 . . . 3
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⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

n×n

,

(11)

and get Sp(LS(S2n)) � 2, 3n− 2, n + 2􏼈 􏼉.
Hence, Sp(L(S2n)) � 0, 1n− 2, 2, 3n− 2, n, n + 2􏼈 􏼉 from

Lemma 3, and we get the following result.

Theorem 1. Let S2n � Sn × K2. +en,

(1) Kf(S2n) � 8n3 + 3n2 − 14n + 12/3n + 6
(2) τ(S2n) � (n + 2) · 3n− 2

(3) limn⟶+∞Kf(S2n)/W(S2n) � 8/15

Proof. From Lemma 1, we have

Kf S
2
n􏼐 􏼑 � 2n (n − 2) +

1
2

+
n − 2
3

+
1
n

+
1

n + 2
􏼔 􏼕 �

8n
3

+ 3n
2

− 14n + 12
3(n + 2)

. (12)

From Lemma 4, we immediately have

τ S
2
n􏼐 􏼑 �

1
2n

· 2 · 3n− 2
· n · (n + 2) � (n + 2) · 3n− 2

. (13)

Finally, we end the proof by confirming that W(S2n) �

5n2 − 8n + 4. Let wi � 􏽐j∈V(S2n)dij. Obviously, wi � 1·

n + 2(n − 1) � 3n − 2 if i � 1, 1′, and wi � 1 + 1 + 2(n − 1) +

3(n − 2) � 5n − 6 otherwise. Hence,

1 2 3 n
1 2 3 n

1′ 2′ 3′ n′
1′ 2′ 3′ n′

Sn K2 Sn × K2

Figure 1: *e graphs Sn ⊗K2 and Sn × K2.
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W S
2
n􏼐 􏼑 �

1
2

􏽘

i∈V S2n( )

wi �
1
2

[2(3n − 2) +(2n − 2)(5n − 6)] � 5n
2

− 8n + 4. (14)
□

3.2. On Kf∗(S2n). Consequently, we will determine
Kf∗(S2n). Obviously,

L11 S
2
n􏼐 􏼑 �

1 −
1
��
2n

√ −
1
��
2n

√ . . . −
1
��
2n

√

−
1
��
2n

√ 1 0 . . . 0

−
1
��
2n

√ 0 1 . . . 0

. . . . . . . . . . . . . . .

−
1
��
2n

√ 0 0 . . . 1
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n×n

,

L12 S
2
n􏼐 􏼑 �

−
1
n

0 0 . . . 0

0 −
1
2

0 . . . 0

0 0 −
1
2

. . . 0

. . . . . . . . . . . . . . .

0 0 0 . . . −
1
2
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n×n

.

(15)

Hence,

LA S
2
n􏼐 􏼑 � L11 S

2
n􏼐 􏼑 + L12 S

2
n􏼐 􏼑

�

n − 1
n

−
1
��
2n

√ −
1
��
2n

√ . . . −
1
��
2n

√

−
1
��
2n

√
1
2

0 . . . 0

−
1
��
2n

√ 0
1
2

. . . 0

. . . . . . . . . . . . . . .

−
1
��
2n

√ 0 0 . . .
1
2
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n×n

,

(16)

and we easily have Sp(LA(S2n)) � 0, (1/2)n− 2, 3n − 2/2n􏽮 􏽯.
Similarly, we have

LS S
2
n􏼐 􏼑 � L11 S

2
n􏼐 􏼑 − L12 S

2
n􏼐 􏼑 �

n + 1
n

−
1
��
2n

√ −
1
��
2n

√ . . . −
1
��
2n

√

−
1
��
2n

√
3
2

0 . . . 0

−
1
��
2n

√ 0
3
2

. . . 0

. . . . . . . . . . . . . . .

−
1
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2n

√ 0 0 . . .
3
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

n×n

, (17)

and get Sp(LS(S2n)) � 2, (3/2)n− 2, n + 2/2n􏽮 􏽯.
Hence, Sp(L(S2n)) � 0, (1/2)n− 2, n + 2/2n, 3n − 2/2n,􏽮

(3/2)n− 2, 2} from Lemma 3, and we immediately have the
following result.

Theorem 2. Let S2n � Sn × K2. +en,

(1) Kf∗(S2n) � 48n3 + 25n2 − 180n + 116/3n + 6
(2) limn⟶+∞Kf∗(S2n)/Gut(S2n) � 16/33
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Proof. From Lemma 2, it is easily confirmed that

Kf
∗

S
2
n􏼐 􏼑 � 2(3n − 2) 2n − 4 +

2n

n + 2
+

2n

3n − 2
+
2(n − 2)

3
+
1
2

􏼢 􏼣,

�
48n

3
+ 25n

2
− 180n + 116

3n + 6
.

(18)

Now, let gi � 􏽐j∈V(S2n)didjdij. Obviously, if i � 1, 1′, then

gi � n · 2 · 1 + n · 2 · 1 · (n − 1) + n · 2 · 2 · (n − 1) � 7n
2

− 6n,

(19)

and otherwise,

gi � 2 · n · 1 + 2 · 2 · 1 + 2 · n · 2 + 2 · 2 · 2 · (n − 2) + 2 · 2 · 3 · (n − 2) � 26n − 36. (20)

Hence,

Gut S
2
n􏼐 􏼑 �

1
2

􏽘

i∈V S2n( )

gi �
1
2

2 7n
2

− 6n􏼐 􏼑 +(26n − 36)(2n − 2)􏽨 􏽩 � 33n
2

− 68n + 36, (21)

and it follows that

lim
n⟶+∞

Kf
∗

S
2
n􏼐 􏼑

Gut S
2
n􏼐 􏼑

� lim
n⟶+∞

48n
3

+ 25n
2

− 180n + 116
(3n + 6) 33n

2
− 68n + 36􏼐 􏼑

�
16
33

,

(22)

which completes the proof. □

4. Results for Graphs in S2
n,r

Assume that S2n,r is any graph in S2
n,r, 1≤ r≤ n − 1. We will

carry out a computational study on Kf(S2n,r) and τ(S2n,r) in
this section.

We suppose that di is the degree of i in S2n,r. *erefore,
di � n or n − 1 if i � 1, 1′, and di � 1 or 2 otherwise. We will
compute Sp(S2n,r) in the following.

Case 1. Edge 11′ ∉ (E2
n,r). *en,

L11 S
2
n,r􏼐 􏼑 �

n − 1 − 1 − 1 . . . − 1

− 1 d2 0 . . . 0

− 1 0 d3 . . . 0

. . . . . . . . . . . . . . .

− 1 0 0 . . . dn

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

L12 S
2
n,r􏼐 􏼑 �

0 0 0 . . . 0

0 t2 0 . . . 0

0 0 t3 . . . 0

. . . . . . . . . . . . . . .

0 0 0 . . . tn

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(23)

where ti � 0 if di � 1 and ti � 1 if di � 2, 2≤ i≤ n.
Hence,

LA S
2
n,r􏼐 􏼑 � L11 S

2
n,r􏼐 􏼑 + L12 S

2
n,r􏼐 􏼑 �

n − 1 − 1 − 1 . . . − 1

− 1 1 0 . . . 0

− 1 0 1 . . . 0

. . . . . . . . . . . . . . .

− 1 0 0 . . . 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

n×n

, (24)

and Sp(LA(S2n,r)) � 0, 1n− 2, n􏼈 􏼉. On the other hand,
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LS S
2
n,r􏼐 􏼑 � L11 S

2
n,r􏼐 􏼑 − L12 S

2
n,r􏼐 􏼑 �

n − 1 − 1 − 1 . . . − 1

− 1 d2 − t2 0 . . . 0

− 1 0 d3 − t3 . . . 0

. . . . . . . . . . . . . . .

− 1 0 0 . . . dn − tn

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (25)

where di − ti � 1 if di � 1 and di − ti � 3 if di � 2,
2≤ i≤ n. We will compute Sp(LS(S2n,r)) in the following
cases.

Case 1.1. r � 1. *en, di − ti � 3, 2≤ i≤ n, and we
easily have

Sp LS S
2
n,r􏼐 􏼑􏼐 􏼑 � 3n− 2

,
n + 2 +

����������
n
2

− 4n + 12
􏽰

2
,
n + 2 −

����������
n
2

− 4n + 12
􏽰

2
⎧⎨

⎩

⎫⎬

⎭. (26)

Case 1.2. r≥ 2. By direct calculations, we have

Φ LS S
2
n,r􏼐 􏼑, λ􏼐 􏼑 � λ3 − (n + 3)λ2 + 3nλ + 2r − 2n􏽨 􏽩(λ − 1)

r− 2
(λ − 3)

n− r− 1
. (27)

Let λ1, λ2, λ3 be the three roots of λ3 − (n + 3)λ2+
3nλ + 2r − 2n � 0. *en, Sp(LS(S2n,r)) � 1r− 2, 3n− r− 1,􏼈

λ1, λ2, λ3}, and it holds that λ1λ2λ3 � 2n − 2r and

1
λ1

+
1
λ2

+
1
λ3

�
λ1λ2 + λ1λ3 + λ2λ3

λ1λ2λ3
�

3n

2n − 2r
, (28)

Case 2. 11′ ∈ (E2
n,r). *en,

L11 S
2
n,r􏼐 􏼑 �

n − 1 − 1 . . . − 1
− 1 d2 0 . . . 0
− 1 0 d3 . . . 0
. . . . . . . . . . . . . . .

− 1 0 0 . . . dn

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

L12 S
2
n,r􏼐 􏼑 �

− 1 0 0 . . . 0
0 t2 0 . . . 0
0 0 t3 . . . 0

. . . . . . . . . . . . . . .

0 0 0 . . . tn

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(29)

where ti � 0 if di � 1 and ti � − 1 if di � 2, 2≤ i≤ n.
Hence,

LA S
2
n,r􏼐 􏼑 � L11 S

2
n,r􏼐 􏼑 + L12 S

2
n,r􏼐 􏼑 �

n − 1 − 1 − 1 . . . − 1

− 1 1 0 . . . 0

− 1 0 1 . . . 0

. . . . . . . . . . . . . . .

− 1 0 0 . . . 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

n×n

, (30)

and Sp(LA(S2n,r)) � 0, 1n− 2, n􏼈 􏼉. On the other hand,

6 Journal of Mathematics



LS S
2
n,r􏼐 􏼑 � L11 S

2
n,r􏼐 􏼑 − L12 S

2
n,r􏼐 􏼑 �

n + 1 − 1 − 1 . . . − 1

− 1 d2 − t2 0 . . . 0

− 1 0 d3 − t3 . . . 0

. . . . . . . . . . . . . . .

− 1 0 0 . . . dn − tn

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (31)

where di − ti � 1 if di � 1 and di − ti � 3 if di � 2,
2≤ i≤ n. By direct calculations, we have

Φ LS S
2
n,r􏼐 􏼑, λ􏼐 􏼑 � λ3 − (n + 5)λ2 +(3n + 8)λ + 2r − 2n − 4􏽨 􏽩(λ − 1)

r− 1
(λ − 3)

n− r− 2
. (32)

Let λ1, λ2, λ3 be the three roots of
λ3 − (n + 5)λ2 + (3n + 8)λ + 2r − 2n − 4 � 0. *en,
Sp(LS(S2n,r)) � 1r− 1, 3n− r− 2, λ1, λ2, λ3􏼈 􏼉, and it holds
that λ1λ2λ3 � 2n − 2r + 4 and

1
λ1

+
1
λ2

+
1
λ3

�
λ1λ2 + λ1λ3 + λ2λ3

λ1λ2λ3
�

3n + 8
2n − 2r + 4

, (33)

from Vieta’s theorem.

Now, we are able to give the main result of this section.

Theorem 3. If S2n,r ∈ S
2
n,r, 0≤ r≤ n − 1, then

(1) Kf(S2n,r) � (8n
3

− (4r + 17)n
2
−􏽮 (4r

2
− 26r− 6)n−

6r)/3(n − r), if 11′ ∉ E(S
2
n,r),

8n
3

− (4r − 3)n
2

− (4r
2
− 30r + 14)n + 12 − 6r/3

(n − r − 2), if 11′ ∈ E(S
2
n,r).

(2) τ(S2n,r) �
(n − r) · 3n− r− 1

, if 11′ ∉ E(S
2
n,r),

(n − r + 2) · 3n− r+2
, if 11′ ∈ E(S

2
n,r),

􏼨

(3) limn⟶+∞Kf(S2n,r)/W(S2n,r) � 8/15

Proof. If r � 0, then S2n,r � S2n, and the conclusion holds from
*eorem 1. Hence, assume r≥ 1. We distinguish the fol-
lowing two cases.

Case 1. Edge 11′ ∉ (E2
n,r).

Case 1.1. r � 1. *en,

Sp L S
2
n,r􏼐 􏼑􏼐 􏼑 � 0, 1n− 2

, n, 3n− 2
,
n + 2 −

����������
n
2

− 4n + 12
􏽰

2
,
n + 2 +

����������
n
2

− 4n + 12
􏽰

2
⎧⎨

⎩

⎫⎬

⎭. (34)

From Lemma 1, we have

Kf S
2
n,r􏼐 􏼑 � 2n n − 2 +

1
n

+
n − 2
3

+
2

n + 2 −
����������
n
2

− 4n + 12
􏽰 +

2

n + 2 +
����������
n
2

− 4n + 12
􏽰􏼢 􏼣,

�
8n

3
− 21n

2
+ 28n − 6

3(n − 1)

�
8n

3
− (4r + 17)n

2
− 4r

2
− 26r − 6􏼐 􏼑n − 6r

3(n − r)
.

(35)

*en, from Lemma 2, we have
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τ S
2
n,r􏼐 􏼑 �

1
2n

n · 3n− 2
·
n + 2 −

����������
n
2

− 4n + 12
􏽰

2
·
n + 2 +

����������
n
2

− 4n + 12
􏽰

2
⎡⎣ ⎤⎦,

� (n − 1) · 3n− 2

� (n − r) · 3n− r− 1
.

(36)

Case 1.2. r≥ 2. *en, Sp(L(S2n,r)) � 0, 1n+r− 4,􏼈

n, 3n− r− 1, λ1, λ2, λ3}, where λ1λ2λ3 � 2n − 2r and
1/λ1 + 1/λ2 + 1/λ3 � 3n/(2n − 2r). From Lemma 1, we
have

Kf S
2
n,r􏼐 􏼑 � 2n n + r − 4 +

1
n

+
n − r − 1

3
+

3n

2n − 2r
􏼔 􏼕,

�
8n

3
− (4r + 17)n

2
− 4r

2
− 26r − 6􏼐 􏼑n − 6r

3(n − r)
.

(37)

*en, from Lemma 2, we have

τ S
2
n,r􏼐 􏼑 �

n · 3n− r− 1
· λ1 · λ2 · λ3
2n

�
n · 3n− r− 1

· (2n − 2r)

2n

� (n − r) · 3n− r− 1
.

(38)

Case 2. Edge 11′∈ (E2
n,r). *en, Sp(L(S2n,r)) �

0, 1n+r− 3, n, 3n− r− 2, λ1, λ2, λ3􏼈 􏼉, where λ1λ2λ3 � 2n− 2r +

4 and 1/λ1 + 1/λ2 + 1/λ3 � (3n + 8)/ (2n − 2r + 4).
From Lemma 1, we have

Kf S
2
n,r􏼐 􏼑 � 2n n + r − 3 +

1
n

+
n − r − 2

3
+

3n + 8
2n − 2r + 4

􏼔 􏼕,

�
8n

3
− (4r − 3)n

2
− 4r

2
− 30r + 14􏼐 􏼑n + 12 − 6r

3(n − r + 2)
.

(39)

*en, from Lemma 2, we have

τ S
2
n,r􏼐 􏼑 �

n · 3n− r− 2
· λ1 · λ2 · λ3
2n

�
n · 3n− r− 2

· (2n − 2r + 4)

2n
� (n − r + 2) · 3n− r− 2

. (40)

Finally, it is straightforward to have W(S2n,r) � W(S2n) +

r � 5n2 − 8n + r + 4. Hence, in both cases, it holds that

lim
n⟶+∞

Kf S
2
n,r􏼐 􏼑

W S
2
n,r􏼐 􏼑

�
8
15

. (41)

□
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Let F be the forgotten topological index of a graph G. *e exponential of the forgotten topological index is defined as
eF(G) � 􏽐(x,y)∈Stx,y(G)e(x2+y2), where tx,y(G) is the number of edges joining vertices of degree x and y. Let Tn be the set of trees
with n vertices; then, in this paper, we will show that the path Pn has the minimum value for eF over Tn.

1. Introduction

In this paper, let V � V(G) and E(G) be the vertex set and
edge set, respectively. Let dv � dG(v) be the degree of a
vertex v in graph G. A vertex of degree one is a pendant
vertex or a leaf. A branching vertex v of a tree T is a vertex of
degree dv ≥ 3.

Let P � w0w1, . . . , wq− 1wq be the path graph with length
of r(P) � q; if dT(w0)≥ 3, dT(w1) � . . . � dT(wq− 1) � 2 and
dT(wq) � 1, then we called P is a pendant path.

Recently, topological indices have been considered by
many researchers due to their many applications in various
sciences. *e forgotten topological index is defined in [1] as
follows:

F(G) � 􏽘
uv∈E(G)

d
2
u + d

2
v. (1)

For applications of the forgotten topological index, see
[2–4].

Before starting a new definition, we consider the set
S � (x, y) ∈ N × N: 1≤ x≤y≤ n − 1􏼈 􏼉, and let tx,y(G) be
the number of edges joining vertices of degree x and y in a
graph G. *erefore, the new definition will be as follows:

F � F(G) � 􏽘
(x,y)∈S

tx,y(G) x
2

+ y
2

􏼐 􏼑.
(2)

*e exponential of the forgotten topological index F,
denoted by eF, is defined as

e
F

� e
F
(G) � 􏽘

(x,y)∈S
tx,y(G)e

x2+y2( ). (3)

Recently, the exponential topological indices have
attracted the attention of many researchers. In [5], the ex-
ponential Randić index is characterized. In [6], the authors
have characterized the exponential atom bond connectivity
and the exponential augmented Zagreb index. In [7], the
problem maximal value of trees for the exponential second
Zagreb index is solved. *en, in this paper, we solve the
problem with finding the minimal value of eF among trees.

2. Trees with Minimum Exponential of the
Forgotten Topological Index

In this section, we will show that the path Pn has the minimal
value of the exponential forgotten topological index among
all trees.

Lemma 1. Let T and T1 be the trees in Figure 1 and A be a
subtree of T. If s≥ 3, then eF(T)> eF(T1).

Proof. By setting k � dT(u), hence, we can write
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e
F
(T) − e

F
T1( 􏼁 � e

s2+k2
+(s − 1)e

1+s2
􏼒 􏼓

− e
4+k2

+(s − 2)e
8

+ e
5

􏼒 􏼓

� e
s2+k2

− e
4+k2

􏼒 􏼓 +(s − 2)

e
1+s2

− e
8

􏼒 􏼓 + e
1+s2

− e
5

􏼒 􏼓

≥ e
9+k2

− e
4+k2

􏼒 􏼓 + e
10

− e
8

􏼐 􏼑 + e
10

− e
5

􏼐 􏼑

> e
9+k2

− e
4+k2

􏼒 􏼓> 0.

(4)

□

Lemma 2. Let T be a tree with minimum value of eF in Tn

and let u be a pendant vertex T, v ∈ T. If uv ∈ E(T), then
dT(v) � 2.

Proof. Suppose dT(v) � g and P be the largest path of T and
contains v. Let t be an end vertex of P and o a vertex in P,
where ot ∈ E(T); hence, by applying Lemma 1, we have
dT(o) � 2.

We continue the proof with the following two cases. □

Case 1. If dT(v) � g≥ 4.
Assuming that T1 be the tree in Figure 2 and

Av � 􏽐
g− 1
i�1 eg2+y2

i , where y1, . . . , yg− 1 are the degrees of the
adjacent vertices to v different from u. Hence, we can write

e
F
(T) − e

F
T1( 􏼁 � Av + e

1+g2
+ e

5
− 􏽘

g− 1

i�1
e

(g− 1)2+y2
i − e

8
− e

5

� Av − 􏽘

g− 1

i�1
e

(g− 1)2+y2
i⎛⎝ ⎞⎠ + e

1+g2
− e

8
􏼒 􏼓

≥ Av − 􏽘

g− 1

i�1
e

(g− 1)2+y2
i⎛⎝ ⎞⎠ + e

17
− e

8
􏼐 􏼑

> Av − 􏽘

g− 1

i�1
e

(g− 1)2+y2
i⎛⎝ ⎞⎠> 0.

(5)

*is contradicts the minimality of T.

Case 2. If dT(v) � 3.
Suppose h, e ∈ V(T) and hv, ev ∈ E(T), where h, e≠ u,

dT(h) � a, and dT(e) � b. By applying Lemma 1, we get a≥ 2
and b≥ 2. Let T2 be the tree described in Figure 3. *erefore,
we can write

e
F
(T) − e

F
T2( 􏼁 � e

9+a2
+ e

9+b2
+ e

10
− e

a2+b2
− 2e

8

� e
9+a2

+ e
9+b2

− e
a2+b2

+ e
10

− 2e
8
.

(6)

Here, we show

f(a, b) � e
9+a2

+ e
9+b2

+ e
10 > e

a2+b2
+ 2e

8
. (7)

Since

f(a, 2) � e
9+a2

+ e
13

+ e
10 > e

a2+4
+ 2e

8 (8)

and

f(a, 3) � e
9+a2

+ e
18

+ e
10 > e

a2+9
+ 2e

8
, (9)

the above inequality holds for a≥ 2. *erefore, for a, b≥ 2,
we have f(a, b)> 0. Hence, we get eF(T)> eF(T2). *at is a
contradiction; hence, we get dT(v) � 2.

Let v be a branching vertex of degree y of a tree T; hence,
T can be viewed as the coalescence of y subtrees of T at the
vertex v. We call T1, . . . , Ty are the y branches of T at v (see
Figure 4).

Definition 1 (see [5]). A branching vertex x of tree T is an
outer branching vertex of T if all branches of T at x except
for possibly one are paths.

Lemma 3 (see [5]). A tree T ∈ Tn has no outer branching
vertex if and only if T � Pn.

Lemma 4. Let T, T1 ∈ Tn be the trees in Figure 5 and R be a
subtree of T, z≥ 3 and x � dT(u)≥ 2. /en, eF(T)> eF(T1).

A A

υ1

υs−2

Ps+1

υs−1

u

υ

T T1

Figure 1: *e trees T and T1.

υu

e

eh

h

o

o

t

t

T

T1

Figure 2: *e trees T and T1.
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Proof. By direct calculation, it is not difficult to see 3≤ z≤ 8.
Here, we let z≥ 9; therefore, we have

e
F
(T) − e

F
T1( 􏼁 � e

(z+1)2+4
+(z − 1) e

(z+1)2+4
− e

z2+4
􏼒 􏼓

+ e
(z+1)2+x2

− e
z2+x2

􏼒 􏼓 + e
5

− 2e
8

􏼐 􏼑

> e
(z+1)2+4

+ e
5

− 2e
8

􏼐 􏼑≥ e
104

+ e
5

− 2e
8

􏼐 􏼑> 0.

(10)□

Lemma 5. Let T, T1 ∈ Tn be the trees in Figure 6 and t≥ 3.
/en, eF(T)> eF(T1), where s(Pu) � − 2 + 􏽐

t
i�1 s(Pi).

Proof. We describe the graph in Figure 7; let Pt be the path
of length s(Pt) � − 2t + 2 + 􏽐

t
i�1 s(Pi). It is not difficult to see

eF(T) � eF(T3). *en, by repeated of Lemma 4, we get
eF(T)> eF(T1). □

Corollary 1. Let T ∈ Tn be a tree with a unique outer
branching vertex and every pendant path has length at least 2.
/en, eF(T)> eF(Pn).

Proof. IfT has a unique outer branching vertex, hence, T has
the form trees in Figure 6. Let M be the tree in Figure 8. If

s � 2, then eF(T) � eF(M). If s≥ 3, then by using Lemma 5,
we have eF(T)> eF(M). Hence, we can write

e
F
(T) − e

F
Pn( 􏼁 � 3e

5
+ 3e

13
+(n − 7)e

8
− 2e

5
− (n − 3)e

8

� e
5

+ 3e
13

− 4e
8 > 0.

(11)□

Lemma 6. Let T, T1 ∈ Tn be the trees in Figure 9, such that
1≤dT(v)≤ 3; then, eF(T)> eF(T1).

Proof. By setting x � dT(v), we can write

e
F
(T) − e

F
T1( 􏼁 � 2e

5
+ 2e

13
+ e

9+x2
− e

5
− 3e

8
− e

4+x2

� e
5

+ 2e
13

− 3e
8

+ e
9+x2

− e
4+x2

􏼒 􏼓

> e
5

+ 2e
13

− 3e
8 > 0.

(12)

□

Lemma 7. Let T ∈ Tn be the tree in Figure 10, s≥ 1 and z≥ 0;
then, T is not minimal in Tn.

Proof. Set x � dT(u)≥ 2, and let T1 be tree in Figure 11.
Hence, we have eF(T)> eF(T1) if the following conditions
are hold:

(1) s≥ 1, z≥ 2.
(2) s≥ 4, z≥ 0.

It is not difficult to see that our result holds for
s + z≤ 11. *erefore, we let z + s≥ 12. *en,

T1 Ty

T

υ

Figure 4: Branches of the tree T at v.

υu

h

e

o

t

o

t

T

T2

e

h

Figure 3: *e trees T and T2.

R R

u u

z z − 1

T T1

Figure 5: *e trees T and T1.

Journal of Mathematics 3



υ

u υ
u

P1

T1

Pu
R

R

T

Ps

Figure 6: *e trees T and T1.

u

w
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Figure 7: *e tree T3.
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Pn−4

Figure 8: *e tree M.
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υ υ
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Figure 9: *e trees T and T1.
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e
F
(T) − e

F
T1( 􏼁 � 2e

5
+ 2e

13
− 5e

8
􏼐 􏼑 +(s − 1)

e
9+(s+z+1)2

− e
9+(s+z)2

􏼒 􏼓

+ z e
4+(s+z+1)2

− e
4+(s+z)2

􏼒 􏼓

+ e
x2+(s+z+1)2

− e
x2+(s+z)2

􏼒 􏼓 + e
9+(s+z+1)2

> 2e
5

+ 2e
13

− 5e
8

􏼐 􏼑> 0.

(13)

To continue the proof, we must consider the fol-
lowing conditions:

(3) s � 1 and z � 0.
(4) s � 1 and z � 1.
(5) s � 2 and z � 0.
(6) s � 3 and z � 1.

(7) s � 2 and z � 1.
(8) s � 3 and z � 0.

Note that, in (3), (4), and (5),, we have 2≤ dT(w)≤ 3;
therefore, by Lemma 6, we can obtain trees with the min-
imum value of eF.

Here, if (6) holds, then we consider graph T2 in Fig-
ure 12. Hence, we can write

e
F
(T) − e

F
T2( 􏼁 � e

5
− 2e

8
􏼐 􏼑 + 3 e

34
− e

25
􏼐 􏼑 + e

29
− e

20
􏼐 􏼑

+ e
x2+25

− e
x2+16

􏼒 􏼓 + e
20

> e
5

− 2e
8

􏼐 􏼑 + 3 e
34

− e
25

􏼐 􏼑 + e
29

− e
20

􏼐 􏼑

+ e
20 > e

5
− 2e

8
􏼐 􏼑 + e

20 > 0.

(14)

If (7) holds, then we consider graph B in Figure 13. So,
we have

T

S

u
R

w
z

Figure 10: *e tree T.

T1

s − 1

u
R

w
z

Figure 11: *e tree T1.
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e
F
(T) − e

F
(B) � 6e

5
+ 4e

13
+ 2e

25
+ e

20
+ e

x2+16
− 3e

5

− 2e
13

− 8e
8

− e
x2+9

� e
x2+16

− e
x2+9

􏼒 􏼓 + 3e
5

+ 2e
13

+ 2e
25

+ e
20

− 8e
8 > e

20
− 8e

8 > 0.

(15)

Finally, if (8) holds, then we consider graph C in Fig-
ure 14. Hence, we can write

e
F
(T) − e

F
(C) � 7e

5
+ 6e

13
+ 3e

25
+ e

x2+16
− 3e

5
− 2e

13

− 11e
8

− e
x2+9

� e
x2+16

− e
x2+9

􏼒 􏼓 + 4e
5

+ 4e
13

+ 3e
25

− 11e
8 > 4e

5
+ 4e

13
+ 3e

25
− 11e

8 > 0.

(16)

*erefore, T is not minimal in Tn. □

Theorem 1. Let T ∈ Tn and T≇Pn; then, T is not minimal for
eF.

Proof. By using Lemma 3, we know that T has an outer
branching vertexu. Using Lemmas 2, 5, and 6, we let all pendant
paths ofT have length at least 2 andT has the form in Figure 15,
such that dT(v)≥ 4, and otherwise, T is not minimal. If u is the
unique outer branching vertex of T, then the result obtained by
Corollary 1. Otherwise, among all outer branching vertices ofT,
choose u as the farthest from u. From Lemma 5, we let T is the
form in Figure 16, such that dT(v1)≥ 4. Note that u1 is the
farthest outer branching vertex from u; it is clear if Ti is not a
path; then, wi is an outer branching vertex of T, and by Lemma
5, we let Ti have the form in Figure 17. *erefore, we get
eF(T) � eF(E), where E is described in Figure 18 and
s + z � q + 1. *e result follows from Lemma 7. □

R

T

u

w

R

T2

P5

u

w

Figure 12: *e trees T and T2.

R
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uw

T B

P11

Figure 13: *e trees T and B.
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Figure 14: *e trees T and C.
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Figure 15: *e tree T.
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In this study, we propose a new kind of graph labeling which we call logic labeling and investigate the logically labeling of the
corona between paths Pn and cycles Cn, namely, Pn ⊙Cm. A graph is said to be logical labeling if it has a 0 − 1 labeling that satisfies
certain properties. ,e corona G1 ⊙G2 of two graphs G1 (with n1 vertices and m1 edges) and G2 (with n2 vertices and m2 edges) is
defined as the graph formed by taking one copy of G1 and n1 copies of G2 and then connecting the ith vertex of G1 with an edge to
every vertex in the ith copy of G2.

1. Introduction

Graphs can be used to model a wide range of relationships
and processes in physical, biological, social, and information
systems. Graphs can also be used to show a wide range of real
issues. ,e term “network” is frequently used to refer to a
graph in which attributes are associated with nodes and
edges, emphasising its relevance to real-world systems [1].

Graphs are used in computer science to illustrate
communication networks, data administration, computa-
tional devices, and computation flow. A directed graph, for
example, can represent a website’s link structure, with the
vertices representing web pages and the directed edges
representing links from one page to another. Problems in
social media, travel, biology, computer chip design, and a
variety of other industries can all benefit from a similar
approach. As a result, developing algorithms to manage
graphs is a major topic in computer science [1, 2]. Graph
rewrite systems are usually used to formalise and describe
graph transformations. Graph databases, which are designed
for transaction—safe, persistent storing and querying of
graph—structured data, are a complement to graph trans-
formation systems that focus on rule-based in-memory
graph manipulation.

Labeling methods are used for a wide range of appli-
cations in different subjects including coding theory,
computer science, and communication networks. Graph
labeling is an assignment of positive integers on vertices or
edges or both of them which fulfilled certain conditions. ,e
concept of graph labeling was introduced by Rosa in 1967
[3].

,e following three properties are shared by the majority
of graph labeling problems:

(i) A set of numbers from which to select vertex labels

(ii) A rule that gives each edge a labeling

(iii) Some rules that these labels must meet

A Dynamic Survey of Graph Labeling by Gallian [4] is a
complete survey of graph labeling. ,ere are several con-
tributions and various types of labeling [1, 3–15]. Graceful
labeling and harmonious labeling are two of the major styles
of labeling. Graceful labeling is one of the most well-known
graph labeling approaches; it was independently developed
by Rosa in 1966 [3] and Golomb in 1972 [5], whilst har-
monious labeling was initially investigated by Graham and
Sloane in 1980 [6]. Cahit proposed a third major style of
labeling, cordial, in 1987 [14], which combines elements of
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the previous two.,e cordiality of the corona between cycles
Cn and paths Pn was investigated by Nada S. et al. [8]. ,is
research focuses on graph labeling of this type. G is con-
sidered to be connected, finite, simple, and undirected
throughout.

Definition 1. A binary vertex labeling of G is a mapping
f: V⟶ 0, 1{ } in which f(u) is said to be the labeling of
u ∈ V. For an edge e � uv ∈ E, where u, v ∈ V, the induced
edge labeling f∗: E⟶ 0, 1{ } is defined by the formula
f∗(vw) � (f(v) + f(w) + 1) (mod 2). ,us, for any edge e,
f∗(e) � 1 if its two vertices have the same label and f∗(e) �

0 if they have different labels. Let us denote v0 and v1 be the
numbers of vertices labeled by 0 and 1 in V, respectively, and
let e0 and e1 be the corresponding numbers of edge in E

labeled by 0 and 1, respectively.

Definition 2. If |v0 − v1|≤ 1 and |e0 − e1|≤ 1 hold, a binary
vertex labeling f of G is said to be logical. A graph G is
logical if it can be labeled logically. Gallian’s survey [4] is a
good starting point for further research on this topic.

Definition 3. ,e corona G1 ⊙G2 of two graphs G1 (with n1
vertices and m1 edges) and G2 (with n2 vertices and m2
edges) is defined as the graph obtained by taking one copy of
G1 and n1 copies of G2 and then joining the ith vertex of G1
with an edge to every vertex in the ith copy of G2. According
to the definition of the corona, G1 ⊙G2 has n1 + n1n2 vertices
and m1 + n1m2 + n1n2 edges. It is clear that G1 ⊙G2 is not
often isomorphic to G2 ⊙G1 [7, 9–12].

In this paper, we show that Pn ⊙Cm logical labeling if and
only if (n, m)≠ (1, 3(mod4)).

2. Terminology and Notation

Pn denotes a path having n vertices and n − 1 edges, while Cn

denotes a cycle with n vertices and n edges [9, 10]. Let Mr

stand for the labeling 0101 · · · 01, zero-one repeated r− times
if r is even and 0101 · · · 010 if r is odd; for example, M6 �

010101 and M5 � 01010. ,e labeling 1010 · · · 10 is denoted
by M2r
′. We sometimes change the labeling Mr or Mr

′ by
inserting symbols at one end or the other (or both). L4r

denotes the labeling 0011 0011 . . . 0011 (repeated r-times)
with r≥ 1 and L4r

′ denotes the labeling 1100 1100 . . . 1100
(repeated r-times) with r≥ 1. S4r represents the labeling 1001
1001 . . . 1001 (repeated r times) and S4r represents the
labeling 0110 0110. . . 0110 (repeated r times). In most
situations, we change this by inserting symbols at one end or
the other (or both), so L4r101 represents the labeling 0011
0011 . . . 0011 101 (repeated r-times) when r≥ 1 and 101
when r � 0. Similarly, 1L4r

′ represents the labeling 1 1100
1100 . . . 1100 (repeated r-times) for r≥ 1 and 1 when r � 0.
Similarly, 0L4r

′1 denotes 0 1100 1100 . . . 1100 1 when r≥ 1
and 01 when r � 0.

For the corona labeling [9], let [L; M] indicate the special
labeling L and M of G⊙H where G is path and H is cycle.
,e following is an additional notation that we use. For a
given labeling of the corona G⊙H, we choose vi and ei (for
i � 0, 1) to be the numbers of labels that are i as before, we

select xi and ai to be the amounting value for G, and we let yi

and bi to be those for H. It is easy to verify that
v0 � x0 + x0y0 + x1y0′, v1 � x1 + x0y1 + x1y1′, e0 � a0 + x0b0
+x1b0′ + x0y1 + x1y0′, and e1 � a1 + x0b1 + x1b1′ + x0y0+

x1y1′. ,us, v0 − v1 � (x0 − x1) + x0(y0 − y1) + x1(y0′ − y1′)
and e0 − e1 � (a0 − a1) + x0(b0 − b1) +x1(b0′ − b1′) − x0
(y0 − y1) + x1(y0′ − y1′). (1) When it comes to the proof, we
only need to show that, for each specified combination of
labeling, |v0 − v1|≤ 1 and |e0 − e1|≤ 1.

3. Results and Discussion

In this section, we show that Pn ⊙Cm is logical labeling if and
only if (n, m)≠ (1, 3(mod4)).

Lemma 1. 'e corona Pn ⊙C3 is logical if and only if n≠ 1.

Proof. Obviously, P1 ⊙C3 isomorphic to the complete graph
K4. Since K4 is not logical, P1 ⊙C3 is not logical. Conversely,
for P2 ⊙C3, we choose the labeling [01: 010, 101]; hence,
v0 − v1 � 0 and e0 − e1 � 1. So, P2 ⊙C3 is logical, see Figure
1. For P3 ⊙C3, we choose the labeling [000: 011, 111, 010];
hence, v0 − v1 � 0 and e0 − e1 � 0. So, P3 ⊙C3 is logical, see
Figure 2. Now, we need to study the following four cases for
n≥ 4.

(i) Case (1) (n ≡ 0(mod4)): suppose that n � 4r, r≥ 1.
We select the labeling [L4r: 010, 010, 101, 101,

. . . , (r − times)] for P4r ⊙C3. ,erefore, x0 � x1
� 2r, a0 � 2r − 1, a1 � 2r, y0 � 2, y1 � 1, y0′ � 1,
y1′ � 2, b0 � 2, b0′ � 2, b1 � 1, and b1′ � 1. Hence,
v0 − v1 � (x0 − x1) + x0(y0 − y1) + x1(y0′ − y1′) �

0 and e0 − e1 � (a0 − a1) + x0 (b0 − b1) + x1(b0′−
b1′) − x0(y0 − y1) +x1(y0′ − y1′) � −1. As an exam-
ple, Figure 3 illustrates P4 ⊙C3. ,us, P4r ⊙C3 is
logical.

(ii) Case (2) (n ≡ 1(mod4)): suppose that n � 4r + 1, r

≥ 1. We select the labeling [L4r1: 010, 010, 101, 101,

. . . , (r − times), 010] for P4r+1 ⊙C3. ,erefore,
x0 � 2r, x1 � 2r + 1, a0 � 2r − 1, and a1 � 2r + 1,
and for the first 4r-vertices, y0 � 2, y1 � 1, y0′ � 1,
y1′ � 2, b0 � b0′ � 2, and b1 � b1′ � 1, and for the
cycle c3 which is connected to last vertex in P4r+1, we
have z0 � 2, z1 � 1, c0 � 2, and c1 � 1, where zi and
ci are the numbers of vertices and edges labeled by i

in c3 that is connected to the last vertex of P4r+1. It is
easy to verify that v0 � x0 + x0y0 + (x1 − 1)y0′+
z0 � 8r + 2, v1 � x1 + x0y1 + (x1 − 1)y1′ + z1 � 8r+

2, e0 � a0 + x0b0 + (x1 − 1)b0′ + x0y0 + (x1 − 1)y1′+
c0 + 1 � 14r + 3, and e1 � a1 + x0b1 + (x1 − 1)b1′
+x0y1+ (x1 − 1)y0′ + c1 + 2 � 14r + 3. It follows
that v0 − v1 � 0 and e0 − e1 � 0. As an example,
Figure 4 illustrates P5 ⊙C3. ,us, P4r+1 ⊙C3 is
logical.

(iii) Case (3) (n ≡ 2(mod4)): suppose that n � 4r + 2, r

≥ 1. We choose the labeling [L4r10:

010, 010, 101, 101, . . . , (r − times), 101, 010] for
P4r+2 ⊙C3. ,erefore, x0 � x1 � 2r + 1, a0 � 2r,
a1 � 2r + 1, y0 � 2, y1 � 1, y0′ � 1, y1′ � 2, b0 � 2,
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b0′ � 2, b1 � 1, and b1′ � 1. Hence, v0 − v1 � 0 and
e0 − e1 � −1. As an example, Figure 5 illustrates
P6 ⊙C3. ,us, P4r+2 ⊙C3 is logical.

(iv) Case (4) (n ≡ 3(mod4)): suppose that
n � 4r + 3, r≥ 1. We select the labeling
[L4r100: 010, 010, 101, 101 , . . . , (r − times), 101,

010, 101] for P4r+3 ⊙C3. ,erefore, x0 � 2r + 2,
x1 � 2r + 1, a0 � 2r + 2, and a1 � 2r, and for the
first 4r-vertices, y0 � 2, y1 � 1, y0′ � 1, y1′ � 2,
b0 � b0′ � 1, and b1 � b1′ � 2, and for the cycle c3
which is connected to last vertex of P4r+3, we have
z0 � 1, z1 � 2, c0 � 1, and c1 � 2, where zi and ci are
the numbers of vertices and edges labeled by i in c3
that is connected to the last vertex of P4r+3. Similar
to Case 2, we conclude that v0 − v1 � 0 and
e0 − e1 � 0. As an example, Figure 6 illustrates
P7 ⊙C3. Hence, P4r+3 ⊙C3 is logical. ,us, the
lemma is proved. □

Lemma 2. If m ≡ 0(mod4), then the corona Pn ⊙Cm be-
tween paths Pn and cycles Cm is logical for all n≥ 1.

Proof. Let m � 4s, where s≥ 1; then, we label the vertices of
all n copies of C4s as B0 � L4s, i.e., y0 � 2s, y1 � 2s, b0 � 2s,
and b1 � 2s. Suppose that n � 4r + i, where r≥ 1 and
i � 0, 1, 2, 3; then, for given values of i with 0≤ i≤ 3, we may
use the labeling Ai for Pn as shown in Table 1. Using the
formulas v0 − v1 � (x0 − x1) + n(y0 − y1) and
e0 − e1 � (a0 − a1) + n(b0 − b1) + (x1 − x0)(y0 − y1) and
Table 1, we can compute the values appeared in the last two
columns of Table 2. Since these values are 0, −1, or 1,
P4r+i ⊙C4s (0≤ i≤ 3 and r≥ 1) is logical. As examples, Fig-
ure 7 illustrates P4 ⊙C4, Figure 8 illustrates P9 ⊙C4, Figure 9
illustrates P6 ⊙C4, and Figure 10 illustrates P7 ⊙C4. It is
remaining to show that Pn ⊙C4s, 1≤ n≤ 3, is logical. We
choose the labeling [0: L4s] for P1 ⊙C4s. Figure 11 illustrates
P1 ⊙C8. So, v0 − v1 � 1 and e0 − e1 � 0, and hence, P1 ⊙C4s

P2

C3

0

0 0 0

1

1 1 1

Figure 1: Logical labeling of P2 ⊙C3.

P3

C3

0

0 1 1

0

1 1 1 1

0

0 0

Figure 2: Logical labeling of P3 ⊙C3.

P4

C3

0

0 0 1

0

1 0 0 0

1

1 1 0

1

1 1

Figure 3: Logical labeling of P4 ⊙C3.

P5

C3

0

0 0 1

0

1 0 0 0

1

1 1 0

1

1 1 1

1

0 0

Figure 4: Logical labeling of P5 ⊙C3.
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P6

C3

0

0 0 1

0

1 0 0 0

1

1 1 0

1

1 1 1

0

00

1

1 1 0

Figure 5: Logical labeling of P6 ⊙C3.

P7

C3

0

00 1

0

1 0 0 0

1

1 1 0

1

1 1 1

0

00

1

1 1 0

0

1 10

Figure 6: Logical labeling of P7 ⊙C3.

Table 1: Labeling of Pn.

n � 4r + i,
i � 0, 1, 2, 3 Labeling of Pn x0 x1 a0 a1

i � 0 A0 � L4r 2r 2r 2r − 1 2r

i � 1 A1 � L4r0 2r + 1 2r 2r 2r

i � 2 A2 � L4r01 2r + 1 2r + 1 2r + 1 2r

i � 3 A3 � L4r011 2r + 1 2r + 2 2r + 1 2r + 1

Table 2: Combinations of labeling.

n � 4r + i,
i � 0, 1, 2, 3

m � 4s + j,
j � 0 Pn Cm v0 − v1 e0 − e1

i � 0 0 A0 B0 0 −1
i � 1 0 A1 B0 1 0
i � 2 0 A2 B0 0 1
i � 3 0 A3 B0 −1 0

P4

C4
0 0 1 1

0

0 0 1 1

0

0 0 1 1

1

0 0 1 1

1

Figure 7: Logical labeling of P4 ⊙C4.

P9

C4
0 0 1 1

0 0

0 0 1 1

1 0

0 0 1 1

0 1 11

0 0 1 1

0

Figure 8: Logical labeling of P5 ⊙C4.
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is logical. We select the labeling [01: L4s, L4s] for P2 ⊙C4s. As
an example, Figure 12 illustrates P2 ⊙C4. So, v0 − v1 � 0 and
e0 − e1 � 1, and hence, P2 ⊙C4s is logical. Finally, we choose
the labeling [001: L4s, L4s, L4s] for P3 ⊙C4s. As an example,
Figure 13 illustrates P3 ⊙C4. So, v0 − v1 � 1 and e0 − e1 � 0,
and hence, P3 ⊙C4s is logical. ,us, the lemma is
proved. □

Lemma 3. If m is not congruent to 0(mod4), then the corona
S between paths Pn and cycles Cm is logical, for all n≥ 4 and
m≥ 4.

Proof. Let n � 4r + i (i � 0, 1, 2, 3 and r≥ 1) and m � 4s + j

(j � 1, 2, 3 and s≥ 1); then, for a given value of i with
0≤ i≤ 3, we use the labeling Ai or Ai

′ for Pn, as shown in
Table 3. For a given value of j with 1≤ j≤ 3, we used the
labeling Bj or Bj

′ for all the n copies of Cm, where Bj is the
labeling of all copies of Cm which are joined to the vertices of
Pn labeled 0 in Ai or Ai

′ and Bj
′ is the labeling of all copies of

Cm which are joined to the vertices of Pn labeled 1 in Ai or Ai
′

as given in Table 3. Figures 14–17 illustrate the examples
P4 ⊙C5, P5 ⊙C5, P6 ⊙C5, and P7 ⊙C5, respectively. Using
Table 3 and formulas v0 − v1 � (x0 − x1) + x0(y0 − y1)

+x1(y0′ − y1′) and e0 − e1 � (a0 − a1) + x0(b0 − b1)+ x1(b0′ −

b1′)− x0(y0 − y1) + x1(y0′ − y1′). ,e numbers shown in the
last two columns of Table 4 can be calculated. Because all of
these numbers are either −1, 0, or 1, the lemma is
proved. □

Lemma 4. 'e corona P1 ⊙Cm is logical for all m≥ 3 if and
only if m≠ 3(mod4).

Proof. If m ≡ 3(mod4), then it is easy to verify that every
vertex of P1 ⊙Cm has an odd degree; also, the sum of its size
and order is congruent to 2(mod4). Consequently, by [13],
the corona P1 ⊙C3 is not logical. Conversely, suppose that
m � 4s + j, where j � 0, 1, 2, the following labelings are
appreciated: [0: L4s] for P1 ⊙C4s, [0: L4s1] for P1 ⊙C4s+1,
and [0: L4s11] for P1 ⊙C4s+2. ,ese three cases are shown in
Figures 18–20. As a result, the lemma is established. □

P6

C4
0 0 1 1

0

0 0 1 1

0

0 0 1 1

1

0 0 1 1

0

0 0 1 1

1

0 0 1 1

1

Figure 9: Logical labeling of P6 ⊙C4.

P7

C4
0 0 1 1

0

0 0 1 1

0

0 0 1 1

1

0 0 1 1

0

0 0 1 1

1

0 0 1 1

1

0 0 1 1

1

Figure 10: Logical labeling of P7 ⊙C4.

P1

C8

0 0 1 0 101 1

0

Figure 11: Logical labeling of P1 ⊙C8.

P2

C4
0 0 1 1

0

0 0 1 1

1

Figure 12: Logical labeling of P2 ⊙C4.

P3

C4
0 0 1 1

0

0 0 1 1

0

0 0 1 1

1

Figure 13: Logical labeling of P3 ⊙C4.
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Table 3: Labeling of Pn and Cm.

n � 4r + i,
i � 0, 1, 2, 3 Labeling of Pn x0 x1 a0 a1

i � 0 A0 � L4r 2r 2r 2r − 1 2r

i � 1 A1 � L4r0 2r + 1 2r 2r 2r

A1′ � 0L4r 2r + 1 2r 2r − 1 2r + 1
i � 2 A2 � L4r01 2r + 1 2r + 1 2r + 1 2r

i � 3 A3 � L4r001 2r + 2 2r + 1 2r + 1 2r + 1
A3′ � L4r100 2r + 2 2r + 1 2r 2r + 2

m � 4s + j,
j � 1, 2, 3 Labeling of Cm y0 y1 b0 b1

j � 1 B1 � L4s1 2s 2s + 1 2s 2s + 1
j � 2 B2 � L4s01 2s + 1 2s + 1 2s + 2 2s

j � 3 B3 � L4s011 2s + 1 2s + 2 2s + 2 2s + 1
m � 4s + j,
j � 1, 2, 3 Labeling of Cm y0′ y1′ b0′ b1′

j � 1 B1′ � L4s0 2s + 1 2s 2s 2s + 1
j � 2 B2′ � L4s10 2s + 1 2s + 1 2s 2s + 2
j � 3 B3′ � L4s100 2s + 2 2s + 1 2s 2s + 3

P4

C5
0 0 1 1 1

0

0 0 11 1

0

0 0 11 0

1

0 0 1 1 0

1

Figure 14: Logical labeling of P4 ⊙C5.

P5

C5
0 0 1 1 1

0

0 0 11 1

0

0 0 11 1

0

0 0 11 0

1

0 0 11 0

1

Figure 15: Logical labeling of P5 ⊙C5.

P6

C5
1 0 0 1 1

0

1 0 10 1

0

1 0 10 1

0

0 0 11 0

1

0 0 11 0

1

0 0 11 0

1

Figure 16: Logical labeling of P6 ⊙C5.
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P7

C5
0 0 1 1 1

0

0 0 11 1

0

0 0 11 1

0

0 0 11 0

1

0 0 11 0

1

0 0 11 1

0

0 0 11 0

1

Figure 17: Logical labeling of P7 ⊙C5.

Table 4: Combinations of labeling.

n � 4r + i,
i � 0, 1, 2, 3

m � 4s + j,
j � 1, 2, 3 Pn Cm v0 − v1 e0 − e1

0 1 A0 B1, B1′ 0 −1
0 2 A0 B2, B2′ 0 −1
0 3 A0 B3, B3′ 0 −1
1 1 A1 B1, B1′ 0 0
1 2 A1′ B2, B2′ 1 0
1 3 A1′ B3, B3′ 0 0
2 1 A2 B1, B1′ 0 1
2 2 A2 B2, B2′ 0 1
2 3 A2 B3, B3′ 0 1
3 1 A3 B1, B1′ 0 0
3 2 A3′ B2, B2′ 1 0
3 3 A3′ B3, B3′ 0 0

P1

C4
0 0 1 1

0

Figure 18: Logical labeling of P1 ⊙C4.

P1

C5
0 0 11 1

0

Figure 19: Logical labeling of P1 ⊙C5.
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P1

C6

0 0 111 1

0

Figure 20: Logical labeling of P1 ⊙C6.

P2

C4
0 0 1 1

0

0 0 1 1

1

Figure 21: Logical labeling of P2 ⊙C4.

P2

C5
0 0 1 1 1

0

0 0 11 0

1

Figure 22: Logical labeling of P2 ⊙C5.

P2

C6
0 0 111 0

0

0 0 011 1

1

Figure 23: Logical labeling of P2 ⊙C6.
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P2

C7
0 0 1 111 0

0

0 0 1 001 1

1

Figure 24: Logical labeling of P2 ⊙C7.

P3

C4
0 0 1 1

0

0 0 1 1

0

0 0 1 1

1

Figure 25: Logical labeling of P3 ⊙C4.

P3

C5

0 0 1 1 1

0

0 0 11 1

0

0 0 11 0

1

Figure 26: Logical labeling of P3 ⊙C5.

P3

0 0 110 1

0

1 0 110 0

1

0 0 110 1

0

C6

Figure 27: Logical labeling of P3 ⊙C6.
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Lemma 5. 'e corona Pn ⊙Cm, where n � 2, 3, are logical for
all m≥ 4.

Proof. We have two cases:

(i) Case (1) (n � 2): suppose that m � 4s + j, where s≥ 1
and j � 0, 1, 2, 3. ,e four possible subcases should
be investigated for m.

(i) Subcase (1.1) (m � 4s): we select the labeling
[01: L4s, L4s] for P2 ⊙C4s. ,erefore, x0 � x1 �

1, a0 � 1, a1 � 0, y0 � 2s, y1 � 2s, b0 � 2s,
b1 � 2s, y0′ � 2s, y1′ � 2s, b0′ � 2s, and b1′ � 2s.
As an example, Figure 21 illustrates P2 ⊙C4.
Hence, v0 − v1 � 0 and e0 − e1 � 1. ,us,
P2 ⊙C4s is logical.

(ii) Subcase (1.2) (m � 4s + 1): we choose the la-
beling [01: L4s1, L4s0] for P2 ⊙C4s+1. ,erefore,
x0 � x1 � 1, a0 � 1, a1 � 0, y0 � 2s, y1 � 2s + 1,
b0 � 2s, b1 � 2s + 1, y0′ � 2s + 1, y1′ � 2s,
b0′ � 2s, and b1′ � 2s + 1. As an example, Fig-
ure 22 illustrates P2 ⊙C5. Hence, v0 − v1 � 0 and
e0 − e1 � 1. ,us, P2 ⊙C4s+1 is logical.

(iii) Subcase (1.3) (m � 4s + 2): we select the labeling
[01: L4s10, L4s01] for P2 ⊙C4s+2. ,erefore,
x0 � x1 � 1, a0 � 1, a1 � 0, y0 � 2s + 1,
y1 � 2s + 1, b0 � 2s, b1 � 2s + 2, y0′ � 2s + 1,
y1′ � 2s + 1, b0′ � 2s + 1, and b1′ � 2s. As an ex-
ample, Figure 23 illustrates P2 ⊙C6. Hence, v0 −

v1 � 0 and e0 − e1 � 1. ,us, P2 ⊙C4s+2 is
logical.

(iv) Subcase (1.4) (m � 4s + 3): we choose the la-
beling [01: L4s110, L4s001] for P2 ⊙C4s+3.
,erefore, x0 � x1 � 1, a0 � 1, a1 � 0,
y0 � 2s + 1, y1 � 2s + 2, b0 � 2s, b1 � 2s + 3,
y0′ � 2s + 2, y1′ � 2s + 1, b0′ � 2s + 2, and
b1′ � 2s + 1. As an example, Figure 24 illustrates
P2 ⊙C7. Hence, v0 − v1 � 0 and e0 − e1 � 1.
,us, P2 ⊙C4s+3 is logical.

(ii) Case (2) (n � 3): suppose that m � 4s + j, where s≥ 1
and j � 0, 1, 2, 3. For m, we should investigate the
four subcases indicated below.

(i) Subcase (2.1) (m � 4s): we select the labeling
[001: L4s, L4s, L4s] for P3 ⊙C4s. ,erefore,
x0 � 2, x1 � 1, a0 � 1, a1 � 1, y0 � 2s, y1 � 2s,

b0 � 2s, b1 � 2s, y0′ � 2s, y1′ � 2s, b0′ � 2s, and
b1′ � 2s. As an example, Figure 25 illustrates
P3 ⊙C4. Hence, v0 − v1 � 1 and e0 − e1 � 0.
,us, P3 ⊙C4s is logical.

(ii) Subcase (2.2) (m � 4s + 1): we choose the la-
beling [001: L4s1, L4s1, L4s0] for P3 ⊙C4s+1.
,erefore, x0 � 2, x1 � 1, a0 � 1, a1 � 1,
y0 � 2s, y1 � 2s + 1, b0 � 2s, b1 � 2s + 1,
y0′ � 2s + 1, y1′ � 2s, b0′ � 2s, and b1′ � 2s + 1. As
an example, Figure 26 illustrates P3 ⊙C5. Hence,
v0 − v1 � 0 and e0 − e1 � 0. ,us, P3 ⊙C4s+1 is
logical.

(iii) Subcase (2.3) (m � 4s + 2): we select the labeling
[010: 0L4s1, 1L4s0, 0L4s1] for P3 ⊙C4s+2. ,ere-
fore, x0 � 2, x1 � 1, a0 � 2, a1 � 0, y0 � 2s + 1,
y1 � 2s + 1, b0 � 2s, b1 � 2s + 2, y0′ � 2s + 1,
y1′ � 2s + 1, b0′ � 2s + 2, and b1′ � 2s. As an ex-
ample, Figure 27 illustrates P3 ⊙C6. Hence, v0 −

v1 � 1 and e0 − e1 � 0. ,us, P3 ⊙C4s+2 is
logical.

(iv) Subcase (2.4) (m � 4s + 3): we choose the la-
beling [010: L4s110, L4s001, L4s110] for
P3 ⊙C4s+3. ,erefore, x0 � 2, x1 � 1, a0 � 2,
a1 � 0, y0 � 2s + 1, y1 � 2s + 2, b0 � 2s,
b1 � 2s + 3, y0′ � 2s + 2, y1′ � 2s + 1, b0′ � 2s + 2,
and b1′ � 2s + 1. As an example, Figure 28 il-
lustrates P3 ⊙C7. Hence, v0 − v1 � 0 and
e0 − e1 � 0. So, P3 ⊙C4s+3 is logical. ,us, the
lemma is proved.

,e following theorem can be established as a result of all
previous lemmas. □

Theorem 1. 'e corona Pn ⊙Cm is logical for all n≥ 1 and
m≥ 3 if and only if (n · m)≠ (1, 3(mod4)).

4. Conclusions

In this paper, we test the logical labeling of corona product of
paths and cycle graphs. We found that Pk ⊙Cm is logical, for
all n≥ 1 and m≥ 3 if and only if (n · m)≠ (1, 3(mod4)). In
future work, we can extend this work by combining the
various graphs with other mathematical computations to
illustrate logical labeling.

P3

C7
0 0 1 111 0

0

0 0 1 001 1

1

0 0 1 111 0

0

Figure 28: Logical labeling of P3 ⊙C7.
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Topological indices are very useful to assume certain physiochemical properties of the chemical compound. A molecular de-
scriptor which changes the molecular structures into certain real numbers is said to be a topological index. In chemical graph
theory, to create quantitative structure activity relationships in which properties of molecule may be linked with their chemical
structures relies greatly on topological indices. *e benzene molecule is a common chemical shape in chemistry, physics, and
nanoscience. *is molecule could be very beneficial to synthesize fragrant compounds. *e circumcoronene collection of
benzenoidHm is one family that generates from benzenemolecules.*e purpose of this study is to calculate the topological indices
of the double and strong double graphs of the circumcoronene series of benzenoids (Hm). In addition, we also present a numerical
and graphical comparison of topological indices of the double and strong double graphs of the circumcoronene series of
benzenoid (Hm).

1. Introduction and Preliminaries

For undetermined notations and terminologies, we refer the
readers to read the book [1].

Let Ɠ(V, E) be a simple, finite connected graph, where
the set of vertices is V(Ɠ) and the set of edges is E(Ɠ). For
every vertex x ∈ V(Ɠ), the edge connecting x and z is
denoted by xz. In graph Ɠ, the total number of edges that
connects to each vertex is known as the degree of vertex. *e
number of connected vertices to a fixed vertex is known as
neighborhood. *e degree of a vertex is denoted by dx,
where x ∈ V(Ɠ ). Hand-shaking lemma is very productive
for calculating the size of a graph Ɠ.

Lemma 1. If a graph Ɠ is having size k, then

􏽘
x∈V(Ɠ)

deg(x) � 2k.
(1)

In chemical graph theory, topological indices show a
significant role in assisting chemists for modeling the mo-
lecular structure of chemical compounds and studying their
chemical and physical characteristics. In chemistry, dis-
covery of the drugs commonly relies on the topological
descriptors. Drugs are characterized as molecular graphs,
where graphs considered are simple with no multiple edges
and no cycle formation. *ese topological descriptors
provide information of a chemical compound based on the
arrangement of its atoms and their bonds. A wide range of
topological indices have been studied, and some of the more
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frequent forms of topological indices include degree-based,
distance-based topological indices, and counting-related
polynomials. In the topological indices, very famous and the
oldest index is the Wiener index W(Ɠ).

*e Wiener index [2] is defined as follows:

W(Ɠ) �
1
2

􏽘
(x,z)

d(x, z), (2)

where d(x, z) is the distance among vertices x and z of a
graph Ɠ.

A graph Ɠ’s geometric arithmetic index (GA) [3] is
defined as follows:

GA(Ɠ) � 􏽘
xz∈E(Ɠ)

2
����
dxdz

􏽰

dx + dz

. (3)

A graph Ɠ’ s atomic bond connectivity index (ABC) [4]
is defined as follows:

ABC(Ɠ) � 􏽘
xz∈E(Ɠ)

���������
dx + dz − 2

dxdz

􏽳

. (4)

A graphƓ’s forgotten index (F) [5] is defined as follows:

F(Ɠ) � 􏽘
xz∈E(Ɠ)

d
2
x + d

2
z􏼐 􏼑.

(5)

A graphƓ ’s inverse sum indeg index (ISI) [6] is defined
as follows:

ISI(Ɠ) � 􏽘
xz∈E(Ɠ)

1
1/dx( 􏼁 + 1/dz( 􏼁

. (6)

A graph Ɠ’s general inverse sum indeg index (ISI(α,β))

[7] is defined as follows:

ISI(α,β)(Ɠ) � 􏽘
xz∈E(Ɠ)

dxdz􏼂 􏼃
α

dx + dz􏼂 􏼃
β
, (7)

where α and β are the real numbers.
A graphƓ’s first multiplicative-Zagreb (PM1) and second

multiplicative-Zagreb indices (PM2) are defined [8] as follows:

PM1(Ɠ) � 􏽙
xz∈E(Ɠ)

dx( 􏼁
2
, (8)

PM2(Ɠ) � 􏽙
xz∈E(Ɠ)

dx · dz( 􏼁. (9)

It is also possible to write the first multiplicative-Zagreb
index (PM1) [9] for Ɠ as follows:

PM1(Ɠ) � 􏽙
xz∈E(Ɠ)

dx + dz( 􏼁.
(10)

Imran et al. [10–12] studied the edge Mostar index of
nanostructures and chemical structures by using graph oper-
ations and also computed the eccentric connectivity polyno-
mial of connected graphs and Mostar indices for melem chain
nanostructures. For more details about topological indices, we

refer the works of Xiong et al. [13], Hong et al. [14], Alaeiyan
et al. [15], Ch et al. [16], and Sardar et al. [17].

Definition 1. *e well-known family of the benzenoid
molecular graph is circumcoronene series of benzenoid
(Hm), where (m≥ 1) [18]. *is family of graph constructed
exclusively from benzeneC6 on circumference. Certainmain
members of circumcoronene series of benzenoid are ben-
zene (H1), coronene (H2), circumcoronene (H3), and
circumcircumcoronene (H4) [19]. Generally, circum-
coronene series of benzenoid (Hm) is shown in Figure 1.

Definition 2. In order to make a double graph D(Hm) of a
graphG, take two copies of the graphG and join the nodes in
each copy with their neighbors in the other copy [20]. For
example, the graph (H1) and its double graph D(H1) are
shown in Figure 2. In double graph of circumcoronene series
of benzenoid, there are 12m2 vertices and 4(9m2 − 3m)

edges, respectively. In D(Hm), we have 12m vertices of
degree 4 and 12(m2 − m) vertices of degree.

Definition 3. Consider the two copies of graph G, and by
joining the closed neighborhoods of one graph’s vertex to
the vertex in an adjacent graph, one can obtain the strong
double graph SD(G) of graph G [21]. For example, strong
double graph of graph H1 is shown in Figure 3.

*is study is laid out as follows. We will examine some
vertex-based topological indices of double and strong double
graphs of circumcoronene series of benzenoid (Hm) in
Sections 2 and 4, respectively. *e comparison is given in
Sections 3 and 5. In Section 6, we provide final remarks for
the whole study.

2. Degree-Based Topological Indices of Double
Graph of Circumcoronene Series of
Benzenoid Graph (Hm)

*is section contains a calculation of the degree-based in-
dices of the double graph of circumcoronene series of
benzenoid (Hm).

Theorem 1. Let D(Hm) be the double graph of circum-
coronene series of benzenoid graph (Hm); then, the geometric
arithmetic index of D(Hm) is

GA D Hm( 􏼁􏼂 􏼃 �
(96m − 96)

�
6

√

5
+ 36m

2
− 60m + 48. (11)

Proof. In the double graph of circumcoronene series of
benzenoid, there are 12m2 vertices and 4(9m2 − 3m) edges,
respectively. *ere are 12m vertices in D(Hm) of degree 4
and 12(m2 − m) of degree 6.

We separate the edges of D(Hm) into the edges of the
typeE[dx, dz], where xz is an edge. InD(Hm), we get edge of
types E(4,4) and E(4,6) and E(6,6). A list of their edges is given
in Table 1.

By using Table 1 and equation (1), the result that we
obtain is
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Figure 1: Circumcoronene series of benzenoid (H1, H2, H3, andHm).

Figure 2: Circumcoronene series of benzenoid (H1) and its double graph (D(H1)).

Figure 3: Circumcoronene series of benzenoid (H1) and its strong double graph (SD(H1)).

Table 1: Separation of edges.

E[dx, dz] E(4,4) E(4,6) E(6,6)

Number of edges 24 48(m − 1) 36m2 − 60m + 24

Journal of Mathematics 3



GA[Ɠ] � 􏽘
xz∈E(G)

2
����
dxdz

􏽰

dx + dz

.

GA D Hm( 􏼁􏼂 􏼃 � E(4,4)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽘

xz∈E D Hm( )[ ]

2
����
dxdz

􏽰

dx + dz

+ E(4,6)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽘

xz∈E D Hm( )[ ]

2
����
dxdz

􏽰

dx + dz

+ E(6,6)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽘

xz∈E D Hm( )[ ]

2
����
dxdz

􏽰

dx + dz

.

GA D Hm( 􏼁􏼂 􏼃 � 24
2

��
16

√

8
􏼢 􏼣 + 48(m − 1)

2
��
24

√

10
􏼢 􏼣 + 36m

2
− 60m + 24􏼐 􏼑

2
��
36

√

12
􏼢 􏼣.

GA D Hm( 􏼁􏼂 􏼃 � 24 + 48(m − 1)

��
24

√

5
􏼢 􏼣 + 36m

2
− 60m + 24.

GA D Hm( 􏼁􏼂 􏼃 �
(96m − 96)

�
6

√

5
+ 36m

2
− 60m + 48.

(12)

□
Theorem 2. Let D(Hm) be the double graph of circum-
coronene series of the benzenoid graph (Hm); then, the ABC
index of D(Hm) is

ABC D Hm( 􏼁􏼂 􏼃 � 6
�
3

√
+ 6m

2
− 10m + 4􏼐 􏼑

�
5

√
􏼐 􏼑

�
2

√

+ 16
�
3

√
(m − 1).

(13)

Proof. By using Table 1 and equation (4), the result that we
obtain is

ABC D Hm( 􏼁􏼂 􏼃 � E(4,4)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽘

xz∈E D Hm( )[ ]

���������
dx + dz − 2

dxdz

􏽳

+ E(4,6)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽘

xz∈E D Hm( )[ ]

���������
dx + dz − 2

dxdz

􏽳

+ E(6,6)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽘

xz∈E D Hm( )[ ]

���������
dx + dz − 2

dxdz

􏽳

.

� 24

�������
4 + 4 − 2
(4)(4)

􏽳

+ 48(m − 1)

�������
4 + 6 − 2
(4)(6)

􏽳

+ 36m
2

− 60m + 24􏼐 􏼑

�������
6 + 6 − 2
(6)(6)

􏽳

.

� 6
�
6

√
+ 48(m − 1)

�
1
3

􏽲

+ 36m
2

− 60m + 24􏼐 􏼑

��
5
18

􏽲

.

ABC D Hm( 􏼁􏼂 􏼃 � 6
�
3

√
+ 6m

2
− 10m + 4􏼐 􏼑

�
5

√
􏼐 􏼑

�
2

√
+ 16

�
3

√
(m − 1).

(14)

□
Theorem 3. Let D[Hm] be the double graph of circum-
coronene series of benzenoid graph (Hm); then, the
forgotten index of D(Hm) is

F D Hm( 􏼁􏼂 􏼃 � 2592m
2

− 1824m. (15)

Proof. By using Table 1 and equation (5), the result that we
obtain is

F D Hm( 􏼁􏼂 􏼃 � E(4,4)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽘

xz∈E D Hm( )[ ]

d
2
x + d

2
z􏼐 􏼑 + E(4,6)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽘

xz∈E D Hm( )[ ]

d
2
x + d

2
z􏼐 􏼑 + E(6,6)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽘

xz∈E D Hm( )[ ]

d
2
x + d

2
z􏼐 􏼑.

� 24 42 + 42􏼐 􏼑 + 48(m − 1) 42 +(6)
2

􏼐 􏼑 + 36m
2

− 60m + 24􏼐 􏼑 62 +(6)
2

􏼐 􏼑

� 768 + 2496(m − 1) + 36m
2

− 60m + 24􏼐 􏼑(72).

F D Hm( 􏼁􏼂 􏼃 � 2592m
2

− 1824m.

(16)

□
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Theorem 4. Let D[Hm] be the double graph of circum-
coronene series of the benzenoid graph (Hm); then, the in-
verse sum indeg index of D(Hm) is

ISI D Hm( 􏼁􏼂 􏼃 � 108m
2

−
324
5

m +
24
5

. (17)

Proof. By using Table 1 and equation (6), the result that we
obtain is

ISI D Hm( 􏼁􏼂 􏼃 � E(4,4)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽘

xz∈E D Hm( )[ ]

dxdz( 􏼁

dx + dz( 􏼁
+ E(4,6)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽘

xz∈E D Hm( )[ ]

dxdz( 􏼁

dx + dz( 􏼁
+ E(6,6)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽘

xz∈E D Hm( )[ ]

dxdz( 􏼁

dx + dz( 􏼁

� 24
(4)(4)

(4 + 4)
􏼢 􏼣 + 48(m − 1)

(4)(6)

(4 + 6)
􏼢 􏼣 + 36m

2
− 60m + 24􏼐 􏼑

(6)(6)

(6 + 6)
􏼢 􏼣

� 48 + 48(m − 1)
12
5

􏼔 􏼕 + 36m
2

− 60m + 24􏼐 􏼑[3],

ISI D Hm( 􏼁􏼂 􏼃 � 108m
2

−
324
5

m +
24
5

.

(18)

□
Theorem 5. Let D[Hm] be the double graph of circum-
coronene series of the benzenoid graph (Hm); then, the
general inverse sum indeg index (ISI(α,β) ) of D(Hm) is

ISI(α,β) D Hm( 􏼁􏼂 􏼃 � 4p[16]
α

[8]
β

+ 8p[16p]
α

[4(1 + p)]
β
.

(19)

Proof. By using Table 1 and equation (7), the result that we
obtain is

ISI(α,β) D Hm( 􏼁􏼂 􏼃 � E(4,4)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽘

xz∈E D Hm( )[ ]

dxdz􏼂 􏼃
α

dx + dz􏼂 􏼃
β

+ E(4,6)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽘

xz∈E D Hm( )[ ]

dxdz􏼂 􏼃
α

dx + dz􏼂 􏼃
β

+ E(6,6)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽘

xz∈E D Hm( )[ ]

dxdz􏼂 􏼃
α

dx + dz􏼂 􏼃
β

� 24[(4)(4)]
α

[4 + 4]
β

+ 48(m − 1)[(4)(6)]
α

[4 + 6]
β

+ 36m
2

− 60m + 24􏼐 􏼑[(6)(6)]
α

[6 + 6]
β

� 24[16]
α

[8]
β

+ 48(m − 1)[24]
α

[10]
β

+ 36m
2

− 60m + 24􏼐 􏼑[36]
α

[12]
β
,

(20)

where α and β are the real numbers. □

Theorem 6. Let D[HM] be the double graph of circum-
coronene series of the benzenoid graph (Hm); then, the first
multiplicative-Zagreb index of D(Hm) is

PM1 D Hm( 􏼁􏼂 􏼃 � (3m − 2) 13271040(m − 1)
2

􏽨 􏽩. (21)

Proof. By using Table 1 and equation (10), the result that we
obtain is

PM1 D Hm( 􏼁􏼂 􏼃 � E(4,4)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽙

xz∈E D Hm( )[ ]

dx + dz( 􏼁 × E(4,6)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽙

xz∈E D Hm( )[ ]

dx + dz( 􏼁 × E(6,6)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽙

xz∈E D Hm( )[ ]

dx + dz( 􏼁,

PM1 D Hm( 􏼁􏼂 􏼃 � 24(8) × 48(m − 1)(10) × 36m
2

− 60m + 24􏼐 􏼑(12),

PM1 D Hm( 􏼁􏼂 􏼃 � 192 ×(480m − 480) × 432m
2

− 720m + 288􏼐 􏼑,

PM1 D Hm( 􏼁􏼂 􏼃 � (3m − 2) 13271040(m − 1)
2

􏽨 􏽩.

(22)

□
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Theorem 7. Let D[Hm] be the double graph of circum-
coronene series of the benzenoid graph (Hm); then, the second
multiplicative-Zagreb index of D(Hm) is

PM2 D Hm( 􏼁􏼂 􏼃 � m −
2
3

􏼒 􏼓 573308928(m − 1)
2

􏽨 􏽩. (23)

Proof. By using Table 1 and equation (9), the result that we
obtain is

PM2 D Hm( 􏼁􏼂 􏼃 � E(4,4)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽙

xz∈E D Hm( )[ ]

dx · dz( 􏼁 × E(4,6)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽙

xz∈E D Hm( )[ ]

dx · dz( 􏼁 × E(6,6)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽙

xz∈E D Hm( )[ ]

dx · dz( 􏼁,

PM2 D Hm( 􏼁􏼂 􏼃 � 24(16) × 48(m − 1)(24) × 36m
2

− 60m + 24􏼐 􏼑(36),

PM2 D Hm( 􏼁􏼂 􏼃 � 442368(m − 1) × 1296m
2

− 2160m + 864􏼐 􏼑,

PM2 D Hm( 􏼁􏼂 􏼃 � m −
2
3

􏼒 􏼓 573308928(m − 1)
2

􏽨 􏽩.

(24)

□
3. Comparison

In this section, we present a numerical and graphical
comparison of topological indices that included the first
multiplicative-Zagreb index (PM1), general inverse sum
indeg index (ISI(α,β)), atom bond connectivity index (ABC),
forgotten index (F), geometric arithmetic index (GA),
second multiplicative-Zagreb index (PM2), and inverse sum
indeg index (ISI) for m� 1, 2, 3, 4, . . ., 10 for the double
graph of circumcoronene series of the benzenoid graph
(D(Hm)), as given in Table 2 and Figure 4.

4. Degree-Based Topological Indices of Strong
Double Graphs of Circumcoronene Series of
Benzenoid Graph (Hm)

*is section contains a calculation of the degree-based in-
dices of the strong double graph of circumcoronene series of
benzenoid (Hm). Figure 3 shows the strong double graph of
(H1).

Theorem 8. Let SD(HM) be the double graph of circum-
coronene series of the benzenoid graph (Hm); then, the
geometric arithmetic index of SD(Hm) is

GA SD Hm( 􏼁􏼂 􏼃 � (8m − 8)
��
35

√
+ 42m

2
− 60m + 48. (25)

Proof. In the strong double graph of circumcoronene series
of benzenoid, there are 12m2 vertices and 6(7m2 − 2m)

edges, respectively. *ere are 12m vertices in SD(Hm) of
degree 5 and 12m(m2 − 1) of degree 7.

We separate the edges of SD(Hm) into the edges of the
typeE(dx, dz), where xz is an edge. In SD(Hm), we get edge
of types E(5,5) and E(5,7) and E(7,7). A list of their edges is
given in Table 3.

By using Table 3 and equation (1), the result that we
obtain is

GA[Ɠ] � 􏽘
xz∈E(G)

2
����
dxdz

􏽰

dx + dz

,

GA SD Hm( 􏼁􏼂 􏼃 � E(5,5)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽘

xz∈E SD Hm( )[ ]

2
����
dxdz

􏽰

dx + dz

+ E(5,7)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽘

xz∈E SD Hm( )[ ]

2
����
dxdz

􏽰

dx + dz

+ E(7,7)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽘

xz∈E SD Hm( )[ ]

2
����
dxdz

􏽰

dx + dz

,

GA SD Hm( 􏼁􏼂 􏼃 � (6m + 24)
2

��
25

√

10
+ 48(m − 1)

2
��
35

√

12
+ 42m

2
− 66m + 24􏼐 􏼑

2
��
49

√

14
,

GA SD Hm( 􏼁􏼂 􏼃 � (6m + 24) + 48(m − 1)

��
35

√

6
􏼢 􏼣 + 42m

2
− 66m + 24,

GA SD Hm( 􏼁􏼂 􏼃 � (8m − 8)
��
35

√
+ 42m

2
− 60m + 48.

(26)

□
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Theorem 9. Let SD(Hm) be the strong double graph of
circumcoronene series of the benzenoid graph (Hm); then, the
ABC index of SD(Hm) is

ABC SD Hm( 􏼁􏼂 􏼃 �
((240m − 240)

�
7

√
+ 84m + 336)

�
2

√

35
+ 12m −

48
7

􏼒 􏼓
�
3

√
(m − 1). (27)

Proof. By using Table 3 and equation (4), the result that we
obtain is

Table 2: Computation of topological indices of double graph of circumcoronene series of benzenoid (D(Hm)).

m GA(D(Hm)) ABC(D(Hm)) F(D(Hm)) ISI(D(Hm)) PM1(D(Hm)) PM2(D(Hm))

1 24 14.697 768 48 0 0
2 119.03 67.710 6720 307.20 5.3084 ×107 7.6441 ×108
3 286.06 158.67 17856 782.40 3.7159 ×108 5.3509 ×109
4 525.09 287.58 34176 1473.6 1.1944 ×109 1.7199 ×1010
5 836.12 454.42 55680 2380.8 2.7604 ×109 3.9749 ×1010
6 1219.2 659.24 82360 3504 5.3084 ×109 7.6441 ×1010
7 1674.2 901.98 1.1424 ×105 4843.2 9.0774 ×109 1.3071 ×1011
8 2201.2 1182.7 1.5129 ×105 6398.4 1.4306 ×1010 2.0601 ×1011
9 2800.2 1501.3 1.9353 ×105 8169.6 2.1234 ×1010 3.0576 ×1011
10 3471.3 1857.9 2.4096 ×105 10156.8 3.0099 ×1010 4.3342 ×1011

4.0×1011

3.0×1011

2.0×1011

1.0×1011

0
1 2 3 4 5 6 7 8 9 10

m

GA [D (Hm)]
ABC [D (Hm)]
F [D (Hm)]

ISI [D (Hm)]
PM1 [D (Hm)]
PM2 [D (Hm)]

Figure 4: Graphical representation of topological indices of double graph of circumcoronene series of benzenoid (Hm).

Table 3: Separation of edges.

E(dx, dz) E(5,5) E(5,7) E(7,7)

Number of edges 6m + 24 48(m − 1) 42m2 − 66m + 24

Journal of Mathematics 7



ABC SD Hm( 􏼁􏼂 􏼃 � E(5,5)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽘

xz∈E SD Hm( )[ ]

���������
dx + dz − 2

dxdz

􏽳

+ E(5,7)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽘

xz∈E SD Hm( )[ ]

���������
dx + dz − 2

dxdz

􏽳

+ E(7,7)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽘

xz∈E SD Hm( )[ ]

���������
dx + dz − 2

dxdz

􏽳

� (6m + 24)

�������
5 + 5 − 2
(5)(5)

􏽳

+ 48(m − 1)

�������
5 + 7 − 2
(5)(7)

􏽳

+ 42m
2

− 66m + 24􏼐 􏼑

�������
7 + 7 − 2
(7)(7)

􏽳

� (6m + 24)

�
8

√

5
+ 48(m − 1)

�
2
7

􏽲

+ 42m
2

− 66m + 24􏼐 􏼑

��
12

√

7
,

ABC SD Hm( 􏼁􏼂 􏼃 �
((240m − 240)

�
7

√
+ 84m + 336)

�
2

√

35
+ 12m −

48
7

􏼒 􏼓
�
3

√
(m − 1).

(28)

□
Theorem 10. Let SD[Hm] be the strong double graph of
circumcoronene series of the benzenoid graph (Hm); then, the
forgotten index of SD(Hm) is

F SD Hm( 􏼁􏼂 􏼃 � 4116m
2

− 2616m. (29)

Proof. By using Table 3 and equation (5), the result that we
obtain is

F SD Hm( 􏼁􏼂 􏼃 � E(5,5)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽘

xz∈E SD Hm( )[ ]

d
2
x + d

2
z􏼐 􏼑 + E(5,7)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽘

xz∈E SD Hm( )[ ]

d
2
x + d

2
z􏼐 􏼑 + E(7,7)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽘

xz∈E SD Hm( )[ ]

d
2
x + d

2
z􏼐 􏼑

� (6m + 24) 52 + 52􏼐 􏼑 + 48(m − 1) 52 + 72􏼐 􏼑 + 42m
2

− 66m + 24􏼐 􏼑 72 + 72􏼐 􏼑

� (300m + 1200) + 3552(m − 1) + 42m
2

− 66m + 24􏼐 􏼑(98),

F SD Hm( 􏼁􏼂 􏼃 � 4116m
2

− 2616m.

(30)

□
Theorem 11. Let SD[Hm] be the strong double graph of
circumcoronene series of the benzenoid graph (Hm); then, the
inverse sum indeg index of SD(Hm) is

ISI SD Hm( 􏼁􏼂 􏼃 � 147m
2

− 76m + 4. (31)

Proof. By using Table 3 and equation (6), the result that we
obtain is

ISI SD Hm( 􏼁􏼂 􏼃 � E(5,5)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽘

xz∈E SD Hm( )[ ]

dxdz( 􏼁

dx + dz( 􏼁
+ E(5,7)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽘

xz∈E SD Hm( )[ ]

dxdz( 􏼁

dx + dz( 􏼁

+ E(7,7)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽘

xz∈E SD Hm( )[ ]

dxdz( 􏼁

dx + dz( 􏼁

� (6m + 24)
(5)(5)

(5 + 5)
􏼢 􏼣 + 48(m − 1)

(5)(7)

(5 + 7)
􏼢 􏼣 + 42m

2
− 66m + 24􏼐 􏼑

(7)(7)

(7 + 7)
􏼢 􏼣

� (15m + 60) + 140(m − 1) + 42m
2

− 66m + 24􏼐 􏼑
49
14

􏼔 􏼕,

ISI SD Hm( 􏼁􏼂 􏼃 � 147m
2

− 76m + 4.

(32)

□
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Theorem 12. Let SD(Hm) be the strong double graph of
circumcoronene series of the benzenoid graph (Hm); then, the
general inverse sum indeg index (ISI(α,β) ) of SD(Hm) is

ISI(α,β) SD Hm( 􏼁􏼂 􏼃 � (6m + 24)[25]
α

[10]
β

+ 48(m − 1)[35]
α

[12]
β

+ 42m
2

− 66m + 24􏼐 􏼑[49]
α

[14]
β
. (33)

Proof. By using Table 3 and equation (7), the result that we
obtain is

ISI(α,β) SD Hm( 􏼁􏼂 􏼃 � E(5,5)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽘

xz∈E SD Hm( )[ ]

dxdz􏼂 􏼃
α

dx + dz􏼂 􏼃
β

+ E(5,7)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽘

xz∈E SD Hm( )[ ]

dxdz􏼂 􏼃
α

dx + dz􏼂 􏼃
β

+ E(7,7)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

· 􏽘

xz∈E SD Hm( )[ ]

dxdz􏼂 􏼃
α

dx + dz􏼂 􏼃
β

� (6m + 24)[(5)(5)]
α

[5 + 5]
β

+ 48(m − 1)[(5)(7)]
α

[5 + 7]
β

+ 42m
2

− 66m + 24􏼐 􏼑[(7)(7)]
α

[7 + 7]
β

� (6m + 24)[25]
α

[10]
β

+ 48(m − 1)[35]
α

[12]
β

+ 42m
2

− 66m + 24􏼐 􏼑[49]
α

[14]
β
,

(34)

where α and β are the real numbers. □

Theorem 13. Let SD[Hm] be the strong double graph of
circumcoronene series of the benzenoid graph (Hm); then, the
first multiplicative-Zagreb index of SD(Hm) is

PM1 SD Hm( 􏼁􏼂 􏼃 � 20321280 m −
4
7

􏼒 􏼓(m + 4)(m − 1)
2
. (35)

Proof. By using Table 3 and equation (10), the result that we
obtain is

PM1 SD Hm( 􏼁􏼂 􏼃 � E(5,5)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽘

xz∈E SD Hm( )[ ]

dx + dz( 􏼁 × E(5,7)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽘

xz∈E SD Hm( )[ ]

dx + dz( 􏼁 × E(7,7)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽘

xz∈E SD Hm( )[ ]

dx + dz( 􏼁,

PM1 SD Hm( 􏼁􏼂 􏼃 � (6m + 24)(10) × 48(m − 1)(12) × 42m
2

− 66m + 24􏼐 􏼑(14),

PM1 SD Hm( 􏼁􏼂 􏼃 � (60m + 240) ×(576m − 576) × 588m
2

− 924m + 336􏼐 􏼑,

PM1 SD Hm( 􏼁􏼂 􏼃 � 20321280 m −
4
7

􏼒 􏼓(m + 4)(m − 1)
2
.

(36)

□
Theorem 14. Let SD[Hm] be the strong double graph of
circumcoronene series of the benzenoid graph (Hm); then, the
second multiplicative-Zagreb index of SD(Hm) is

PM2 SD Hm( 􏼁􏼂 􏼃 � 518616000 m −
4
7

􏼒 􏼓(m + 4)(m − 1)
2
.

(37)
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Proof. By using Table 3 and equation (9), the result that we
obtain is

PM2 SD Hm( 􏼁􏼂 􏼃 � E(5,5)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽙

xz∈E SD Hm( )[ ]

dx · dz( 􏼁 × E(5,7)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽙

xz∈E SD Hm( )[ ]

dx · dz( 􏼁 × E(7,7)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽙

xz∈E SD Hm( )[ ]

dx · dz( 􏼁,

PM2 SD Hm( 􏼁􏼂 􏼃 � (6m + 24)(25) × 48(m − 1)(35) × 42m
2

− 66m + 24􏼐 􏼑(49),

PM2 SD Hm( 􏼁􏼂 􏼃 � 252000(m + 3)(m − 1) × 2058m
2

− 3234m + 1176􏼐 􏼑,

PM2 SD Hm( 􏼁􏼂 􏼃 � 518616000 m −
4
7

􏼒 􏼓(m + 4)(m − 1)
2
.

(38)

□

Table 4: Computation of topological indices of strong double graph of circumcoronene series of benzenoid (SD(Hm)).

m GA(SD(Hm)) ABC(SD(Hm)) F(SD(Hm)) ISI(SD(Hm)) PM1(SD(Hm)) PM2(SD(Hm))

1 30 16.970 1500 75 0 0
2 143.33 75.715 11232 440 1.7418×108 4.4453×109

3 340.66 176.03 29196 1099 1.3818×109 3.5266×1010

4 621.99 317.91 55392 2052 5.0165×109 1.2802×1011

5 987.32 501.37 89820 3299 1.2959×1010 3.3073×1011

6 1436.6 726.39 132480 4840 2.7579×1010 7.0384×1011

7 9070.0 993.00 183372 6675 5.1732×1010 1.3202×1012

8 2587.3 1301.1 242496 8804 8.8763×1010 2.2653×1012

9 3288.6 1650.9 309852 11227 1.4250×1011 3.6368×1012

10 4074.0 2042.2 385440 13944 2.1728×1011 5.5450×1012

1 2 3 4 5 6 7 8 9 10
m

5.0×1012

4.0×1012

3.0×1012

2.0×1012

1.0×1012

0

GA [SD (Hm)]
ABC [SD (Hm)]
F [SD (Hm)]

ISI [SD (Hm)]
PM1 [SD (Hm)]
PM2 [SD (Hm)]

Figure 5: Graphical representation of topological indices of the strong double graph of circumcoronene series of benzenoid (Hm).
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5. Comparison

In this section, we present a numerical and graphical
comparison of topological indices that included the first
multiplicative-Zagreb index (PM1), general inverse sum
indeg index (ISI(α,β)), atom bond connectivity index (ABC),
forgotten index (F), geometric arithmetic index (GA),
second multiplicative-Zagreb index (PM2), and inverse sum
indeg index (ISI) for m� 1, 2, 3, 4, . . ., 10 for the strong
double graph of circumcoronene series of the benzenoid
graph (SD(Hm)), as given in Table 4 and Figure 5.

6. Conclusion

We have computed the closed formulae of topological in-
dices such as the first multiplicative-Zagreb index (PM1),
general inverse sum indeg index (ISI(α,β)), atom bond
connectivity index (ABC), forgotten index (F), geometric
arithmetic index (GA), second multiplicative-Zagreb index
(PM2), and inverse sum indeg index (ISI) of double and
strong double graphs of circumcoronene series of benzenoid
Hm(m≥ 1). Chemical compounds can be studied by these
indices in order to understand their diverse properties. *e
geometric structure and comparison of obtained results are
shown graphically and numerically. *ose results are con-
venient for further study as they do not include any
polynomial.
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A connected graph in which no edge lies on more than one cycle is called a cactus graph (also known as Husimi tree). A bond
incident degree (BID) index of a graph G is defined as 􏽐uv∈E(G)f(dG(u), dG(v)), where dG(w) denotes the degree of a vertex w of
G, E(G) is the edge set of G, and f is a real-valued symmetric function. *is study involves extremal results of cactus graphs
concerning the following type of the BID indices: Ifi

(G) � 􏽐uv∈E(G)[fi(dG(u))/dG(u) + fi(dG(v))/dG(v)], where i ∈ 1, 2{ }, f1 is
a strictly convex function, and f2 is a strictly concave function. More precisely, graphs attaining the minimum and maximum Ifi

values are studied in the class of all cactus graphs with a given number of vertices and cycles. *e obtained results cover several
well-known indices including the general zeroth-order Randić index, multiplicative first and second Zagreb indices, and variable
sum exdeg index.

1. Introduction

All the graphs considered in this study are connected. *e
notation and terminology that are used in this study but not
defined here can be found in some standard graph-theo-
retical books [6, 7].

Graph invariants of the following form are known as the
bond incident degree (BID) indices [5]:

BID(G) � 􏽘
uv∈E(G)

f dG(u), dG(v)( 􏼁, (1)

where dG(w) denotes the degree of a vertex w ∈ V(G) of the
graph G, E(G) is the edge set of G, and f is a real-valued
symmetric function. In this study, we are concerned with the
following type [2] of the BID indices:

Ifi
(G) � 􏽘

uv∈E(G)

fi dG(u)( 􏼁

dG(u)
+

fi dG(v)( 􏼁

dG(v)
􏼢 􏼣 � 􏽘

v∈V(G)

fi dG(v)( 􏼁

(2)

where i ∈ 1, 2{ }, f1 is a strictly convex function, and f2 is a
strictly concave function.

A connected graph in which no edge lies on more than
one cycle is called a cactus graph (also known as Husimi tree
[9]). In the present study, we study the graphs attaining the
minimum and maximum Ifi

values from the class of all
cactus graphs with a given number of vertices and cycles.
Our main results cover the general zeroth-order Randić
index 0Rα [3], variable sum exdeg index SEIa [13], multi-
plicative first Zagreb index Π1 [8], multiplicative second
Zagreb indexΠ2 [1, 8, 10], and sum lordeg index SL [12, 14],
where the aforementioned indices for a graph G are defined
as follows:

0
Rα(G) � 􏽘

v∈V(G)

dG(v)􏼂 􏼃
α
,

SEIa(G) � 􏽘
v∈V(G)

dG(v)a
dG(v)

,
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Π1(G) � 􏽙
v∈V(G)

dG(v)􏼂 􏼃
2
,

Π2(G) � 􏽙
uv∈E(G)

dG(u)dG(v) � 􏽙
v∈V(G)

dG(v)􏼂 􏼃
dG(v)

,

SL(G) � 􏽘
v∈V(G)

dG(v)

��������

ln dG(v)􏼂 􏼃

􏽱

� 􏽘
v∈V(G);dG(v)≥2

dG(v)

��������

ln dG(v)􏼂 􏼃

􏽱

. (3)

A graph in which every vertex has degree less than 5 is
known as a chemical graph.

Although we cannot apply our main result on the
Lanzhou index [15] for finding the extremal graphs from the
class of all cactus graphs, we still are able to utilize one of our
main results for finding the graphs having the minimum
Lanzhou index among all chemical cactus graphs, where the
Lanzhou index for a graph G is defined as

Lz(G) � 􏽘
v∈V(G)

n − dG(v) − 1( 􏼁 dG(v)􏼂 􏼃
2
. (4)

We end this section with the remark that the Lanzhou
index is same [11] as the graph invariant 0R3.

2. Main Results

By an n-vertex graph, wemean a graph of order n. In a graph,
a set of pairwise nonadjacent edges is called a matching. *e
elements of a matching are known as independent edges.

Theorem 1. 1e graph formed by adding r-independent
edges in the n-vertex star Sn (Figure 1) uniquely attains the
maximum If1

value and minimum If2
value in the class of all

n-vertex cactus graphs having r cycles, where n and r are the
fixed integers satisfying the inequalities n≥ 2r + 1, n≥ 4, and
r≥ 0.

Proof. We prove the result for the graph invariant If1
. *e

result regarding the other invariant can be proved in a fully
analogous way. Let G be a graph having the maximum If1
value in the given class of graphs. It is enough to show that G

has the maximum degree n − 1. Contrarily, we assume that
that the maximum degree of G is at most n − 2. Let v ∈ V(G)

be a vertex of maximum degree. *en, there exists at least
one neighbor, say w of v which has at least one neighbor not
adjacent to v. Let w1, w2, . . . , wk be those neighbors of w that
are not adjacent to v. If G′ is the graph formed by adding the
edges w1v, w2v, . . . , wkv in G and removing the edges
w1w, w2w, . . . , wkw from G (Figure 2), then we have

If1
(G) − If1

G′( 􏼁 � f1 dG(v)( 􏼁 − f1 dG(v) + k( 􏼁

+ f1 dG(w)( 􏼁 − f1 dG(w) − k( 􏼁.
(5)

Note that the cactus graphs G and G′ have the same
number of cycles as well as order. By using Lagrange’s mean

value theorem, we conclude that there exist real numbers a1
and a2, such that

a1 ∈ dG(w) − k, dG(w)( 􏼁,

a2 ∈ dG(v), dG(v) + k( 􏼁,

If1
(G) − If1

G′( 􏼁 � k f1′ a1( 􏼁 − f1′ a2( 􏼁􏼂 􏼃.

(6)

*e fact dG(w)≤ dG(v) implies that a1 < a2, which
further implies that the right hand side of equation (6) is
negative because f1 is a strictly convex function. *us, one
has If1

(G) − If1
(G′)< 0, a contradiction to the maximality

of If1
(G). □

…

…

Figure 1: *e extremal graph mentioned in *eorem 1.

v w

v w

wk

w2

w1

wk

w2

w1

G

G'

Figure 2: *e graph transformation used in the proof of *eorem
1. *e white vertices and doted edges may or may not exist pro-
vided that every edge lies on at most one cycle.
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Corollary 1. In the class of all n-vertex cactus graphs having r

cycles, the graph formed by adding r independent edges in the
n-vertex star Sn uniquely attains the maximum general ze-
roth-order Randić index 0Rα for α> 1 or α< 0, maximum
variable sum exdeg index SEIa for a> 1, maximum multi-
plicative second Zagreb indexΠ2, maximum sum lordeg index
SL, minimum general zeroth-order Randić index 0Rα for
0< α< 1, and minimum multiplicative first Zagreb index Π1,
where n and r are the fixed integers satisfying the inequalities
n≥ 2r + 1, n≥ 4, and r≥ 0.

Proof. We observe that a graph G attains its maximum Π2
value or minimumΠ1 value in a class of graphs if and only if
G attains its maximum lnΠ2 value or minimum lnΠ1 value,
respectively, in the considered class of graphs. We define
ϕ1(x) � xax with a> 1 and x≥ 1; ϕ2(x) � xα with x≥ 1 and
α> 1 or α< 0; ϕ3(x) � x lnx with x≥ 1; ϕ4(x) � x

����
lnx

√

with x≥ 2; ϕ5(x) � 2 lnx with x≥ 1; and ϕ6(x) � xα with
x≥ 1 and 0< α< 1. It can be easily verified that for each
i ∈ 1, 2, 3, 4{ }, ϕi is strictly convex and for each j ∈ 5, 6{ }, ϕj is
strictly concave. *us, the required conclusion follows from
*eorem 1.

A graph of order n and size m is called an
(n, m)-graph. □

Lemma 2 (see [4]). If G attains the minimum If1
value or

maximum If2
value among all connected (n, m)-graphs and

v ∈ V(G), then the minimum degree of G is at least 2, where n

and m are the fixed integers satisfying the conditions 3n≥ 2m,
n≥ 4, and m≥ n.

*e next result is a direct consequence of Lemma 2.

Corollary 3. If G is a graph attaining the minimum If1
value

or maximum If2
value in the class of all n-vertex cactus graphs

having r cycles, then the minimum degree of G is 2, where n

and r are the fixed integers satisfying the inequalities
n≥ 2r + 1, n≥ 6, and r≥ 2.

Denote by NG(v) the set of neighbors of a vertex
v ∈ V(G) of a graph G.

Theorem 2. If G is a graph attaining the minimum If1
value

or maximum If2
value in the class of all n-vertex cactus graphs

having r cycles and v ∈ V(G), then the minimum degree of G

is 2 and

dG(v)≤
4, if v lies on some cycle,

3, otherwise,
􏼨 (7)

where n and r are the fixed integers satisfying the inequalities
n≥ 2r + 1, n≥ 6, and r≥ 2.

Proof. We prove the result for the graph invariant If1
. *e

result regarding the other invariant can be proved in a fully
analogous way. Let G be a graph having the minimum If1
value in the given class of graphs.

From Corollary 3, it follows that the minimum degree of
G is 2. Next, we prove that

dG(v)≤
4, if v lies on some cycle,

3, otherwise,
􏼨 (8)

First, assume that v lies one some cycle C of G. Suppose
to the contrary that dG(v)≥ 5. Let NG(v)\V(C): �

v1, v2, . . . , vr􏼈 􏼉, where V(C) denotes the set of vertices of the
cycle C. For i � 1, 2, . . . , r, denote by Mi the component of
the graph G − v{ } containing the vertex vi. It is claimed that
no more than two vertices of NG(v)∖V(C) lie on the same
component of the graph G − v{ }; if vk, vl, and vm lie on the
same component of the graphG − v{ }, then the vertices vk, vl,
vm, and v lie on a cycle whose each edge belongs tomore than
one cycle of G, which contradicts the definition of G. □

Case 1. *ere exists at least one i, such that the component
Mi contains a unique vertex of NG(v)∖V(C).

Suppose, without loss of generality, that the component
M1 contains none of v2, v3, . . . , vr. We note that there exists
at least one component Mj with j≥ 2, such that Mj contains
at least one vertex u ∈ V(G) satisfying dG(u) � 2. Certainly,
both the graphs G and G′ � G − vv1􏼈 􏼉 + uv1􏼈 􏼉 have the same
number of cycles and vertices. On the other hand, we have

If1
(G) − If1

G′( 􏼁 � f1 dG(v)( 􏼁 − f1 dG(v) − 1( 􏼁

+ f1 dG(u)( 􏼁 − f1 dG(u) + 1( 􏼁

� f1 dG(v)( 􏼁 − f1 dG(v) − 1( 􏼁

− f1(3) − f1(2)􏼂 􏼃.

(9)

By using Lagrange’s mean value theorem, we conclude
that there exist real numbers a1 and a2, such that

a1 ∈ (2, 3),

a2 ∈ dG(v) − 1, dG(v)( 􏼁,

If1
(G) − If1

G′( 􏼁 � f1′ a2( 􏼁 − f1′ a1( 􏼁.

(10)

*e assumption dG(v)≥ 5 implies that a1 < a2, which
further implies that the right hand side of equation (2) is
positive because f1 is a strictly convex function. *us, one
has If1

(G) − If1
(G′)> 0, a contradiction to the minimality

of If1
(G).

Case 2. For each i ∈ 1, 2, . . . , r{ }, exactly two vertices of the
set NG(v)∖V(C) lie on the component Mi.

Suppose, without loss of generality, that M1 � M2. It is
clear that M1 ≠Mj for each j ∈ 3, . . . , r{ }, and there exists at
least one component Mj with j≥ 3, such that Mj contains at
least one vertex w ∈ V(G) satisfying dG(w) � 2. It is obvious
that both the graphs G and G″ � G − vv1, vv2􏼈 􏼉 + wv1, wv2􏼈 􏼉

have the same number of cycles and vertices. On the other
hand, we have

If1
(G) − If1

G″( 􏼁 � f1 dG(v)( 􏼁 − f1 dG(v) − 2( 􏼁

+ f1 dG(w)( 􏼁 − f1 dG(w) + 2( 􏼁

� f1 dG(v)( 􏼁 − f1 dG(v) − 2( 􏼁

− f1(4) − f1(2)􏼂 􏼃.

(11)
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By using Lagrange’s mean value theorem, we conclude
that there exist real numbers a3 and a4, such that

a3 ∈ (2, 4),

a4 ∈ dG(v) − 2, dG(v)( 􏼁,

If1
(G) − If1

G″( 􏼁 � 2 f1′ a4( 􏼁 − f1′ a3( 􏼁􏼂 􏼃.

(12)

We note, for the present case, that the degree of v is at
least 6, which implies that a3 < a4, which further implies that
the right hand side of (12) is positive because f1 is a strictly
convex function. *us, one has If1

(G) − If1
(G″)> 0, a

contradiction to the minimality of If1
(G).

*us, dG(v)≤ 4 when v lies on some cycle of G.
It is still left to prove that dG(v)≤ 3 when v does not

belong to any cycle of G. Suppose to the contrary that
dG(v) � r≥ 4 and that v does not belong to any cycle of G. As
before, we take NG(v) � v1, v2, . . . , vr􏼈 􏼉, and for
i ∈ 1, 2, . . . , r{ }, we denote by Mi the component of the
graph G − v containing the vertex vi. We observe that
Mi ≠Mj whenever i≠ j; if the components Mi and Mj are
the same for some i≠ j, then the path from vi to vj in G − v{ }

together with the path vivvj yields a cycle in G containing v,
which is a contradiction. We note that there exists at least
one component Mj with j≥ 2, such that Mj contains at least
one vertex x ∈ V(G) satisfying dG(x) � 2. It is obvious
that both the graphs G and G‴ � G − v1v􏼈 􏼉 + v1x􏼈 􏼉 have the
same number of cycles and vertices. On the other hand, we
have

If1
(G) − If1

G″( 􏼁 � f1 dG(v)( 􏼁 − f1 dG(v) − 1( 􏼁

+ f1 dG(x)( 􏼁 − f1 dG(x) + 1( 􏼁

� f1 dG(v)( 􏼁 − f1 dG(v) − 1( 􏼁

− f1(3) − f1(2)􏼂 􏼃.

(13)

By using Lagrange’s mean value theorem, we conclude
that there exist real numbers a5 and a6, such that

a5 ∈ (2, 3),

a6 ∈ dG(v) − 1, dG(v)( 􏼁,

If1
(G) − If1

G″( 􏼁 � f1′ a6( 􏼁 − f1′ a5( 􏼁.

(14)

*e assumption dG(v)≥ 4 implies that a3 < a4, which
further implies that the right hand side of equation (4) is
positive because f1 is a strictly convex function. *us, one
has If1

(G) − If1
(G″)> 0, a contradiction to the minimality

of If1
(G). *us, dG(v)≤ 3 when v does not belong to any

cycle of G.

Corollary 4. If G is a graph attaining the minimum
general zeroth-order Randić index 0Rα for α> 1 or α< 0,
minimum variable sum exdeg index SEIa for a> 1, min-
imum multiplicative second Zagreb index Π2, minimum
sum lordeg index SL, maximum general zeroth-order
Randić index 0Rα for 0< α< 1, and maximum multipli-
cative first Zagreb index Π1, in the class of all n-vertex
cactus graphs having r cycles and v ∈ V(G), then the
minimum degree of G is 2 and

dG(v)≤
4, if v lies on some cycle,

3, otherwise,
􏼨 (15)

where n and r are the fixed integers satisfying the inequalities
n≥ 2r + 1, n≥ 6, and r≥ 2.

Proof. We observe that a graph G attains its minimum Π2
value or maximumΠ1 value in a class of graphs if and only if
G attains its minimum lnΠ2 value or maximum lnΠ1 value,
respectively, in the considered class of graphs. We define
ϕ1(x) � xax with a> 1 and x≥ 1; ϕ2(x) � xα with x≥ 1 and
α> 1 or α< 0; ϕ3(x) � x lnx with x≥ 1; ϕ4(x) � x

����
lnx

√

with x≥ 2; ϕ5(x) � 2 lnx with x≥ 1; and ϕ6(x) � xα with
x≥ 1 and 0< α< 1. It can be easily verified that for each
i ∈ 1, 2, 3, 4{ }, ϕi is strictly convex, and for each j ∈ 5, 6{ }, ϕj

is strictly concave. *us, the required conclusion follows
from *eorem 2.

We observe that the function ψ(x) � (n − 1 − x)x2 is
strictly convex for x< (n − 1)/3. *us, we have the next
corollary regarding the Lanzhou index. □

Corollary 5. If G is a graph attaining the minimum Lanzhou
index in the class of all n-vertex chemical cactus graphs having
r cycles and v ∈ V(G), then the minimum degree of G is 2 and

dG(v)≤
4, if v lies on some cycle,

3, otherwise,
􏼨 (16)

where n and r are the fixed integers satisfying the inequalities
n≥ 2r + 1, n≥ 6, and r≥ 2.
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In this study, we investigate the Laplacian degree product spectrum and corresponding energy of four families of graphs, namely,
complete graphs, complete bipartite graphs, friendship graphs, and corona products of 3 and 4 cycles with a null graph.

1. Introduction

)e graph energy was firstly introduced by Ivan Gutman in
1978 [1]. His idea was motivated by the well-known Hückel
molecular orbital theory by Erich Hückel in 1930s, which
permits pharmacologists to imprecise energies associated
π-electron orbital of molecules called conjugated hydro-
carbons [2]. )e spectrum and the energy of a graph have
significant applications and connections in the branches of
Mathematics, such as linear algebra and combinatorial
optimization fields which have lot to do with graph spectrum
and energy. )e combinatorial and graph theoretical ap-
proaches have strong bonding to solve real-life problems.
Many results and methods from the spectral graph theory
can be applied for the practicalities and evolution of matrix
theory [3]. An ordered pair Γ � (V, E), called a graph with
vertex set of Γ, is denoted by V and its edge set by E. Two
vertices u, v are adjacent if they make an edge in Γ, and we
denote it by u ∼ v.)e number of edges incident to a vertex v

of Γ is the degree of v, and it is denoted by d(v) [4, 5]. )e
adjacencymatrix of Γ, of order n denoted byA(Γ), is a square
symmetric matrix of order n × n whose ijth element can be
found as [3]

aij �
0, if u≁v,

number of edges between u and v, if u ∼ v.
􏼨 (1)

For energy and spectrum of graph Γ, let A(Γ) be the
adjacency matrix, the summation of absolute values of its
eigenvalues compose energy of graph and these eigenvalues
related with their multiplicities forms the spectrum of graph
[4], i.e.,

Sp(Γ) �
λ1 λ2 . . . λn

n λ1( 􏼁 n λ2( 􏼁 . . . n λn( 􏼁
􏼠 􏼡, (2)

and

E(Γ) � 􏽘

n

i�1
λi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, (3)

where n(λ1), n(λ2), . . . , n(λn) are the multiplicities of the
eigenvalues λ1, λ2, . . . , λn of A(Γ). In [6], the degree product
adjacency matrix, for a simple connected graph Γ having n

vertices say v1, v2, . . . , vn, is a real symmetric matrix, denoted
by DP A(Γ) � [dij],1 with
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dij �
d vi( 􏼁d vj􏼐 􏼑, if vi ∼ vj,

0, otherwise.

⎧⎨

⎩ (4)

)e Laplacian degree product adjacency matrix of Γ is
defined as

LDP A(Γ) � DP A(Γ) − D(Γ), (5)

where D(Γ) is the degree matrix of Γ having diagonal entries
as the degree of each vertex and all other entries are zero.)e
spectrum (1) and energy (2) obtained correspond to the
eigenvalues of LDP A(Γ) and are called the Laplacian degree
product adjacency spectrum and energy, LSpDP A(Γ) and
LEDP A(Γ), respectively [7], as the degree sum concept was
conceived earlier in [8].

2. Main Results

In this module, we study the Laplacian degree product
adjacency spectrum and energy of some well-known families
of graphs, such as complete graphs, complete bipartite
graphs, friendship graphs, and corona products of 3 and 4

cycles with null graph.We also evaluate the correct spectrum
and the energy of degree product adjacency matrix of the
corona product of 4 cycle with null graphs (thorny 4-cycle
ring), which was found incorrect in [6].

2.1. CompleteGraphsKx. Let v1, v2 . . . , vx􏼈 􏼉 be the vertex set
of Kx; then, the following result provides the Laplacian
degree product adjacency spectrum and energy of Kx.

Theorem 1. For x≥ 2, let Kx be a complete graph. �en,

LSpDP A Kx( 􏼁 �
x x

2
− 3x + 2􏼐 􏼑 x(1 − x)

1 x − 1
⎛⎝ ⎞⎠, (6)

and Laplacian degree product adjacency energy of Kx is
2(2x − 3)-times the size of Kx.

Proof. First of all note that d(vi) � x − 1, for each 1≤ i≤x.
Accordingly, we have the following Laplacian degree
product adjacency matrix:

LDP A Kx( 􏼁 �

v1

v2

v3

. . .

vx

v1 v2 v3 . . . vx

(1 − x) (1 − x)
2

(1 − x)
2

. . . (1 − x)
2

(1 − x)
2

(1 − x) (1 − x)
2

. . . (1 − x)
2

(1 − x)
2

(1 − x)
2

(1 − x) . . . (1 − x)
2

⋮ ⋮ ⋮ ⋱ ⋮

(1 − x)
2

(1 − x)
2

(1 − x)
2

. . . (1 − x)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (7)

Eigenvalues of LDP A(Kx) are

x(1 − x), (x − 1) − times,

x x
2

− 3x + 2􏼐 􏼑, 1 − time.
(8)

)ese eigenvalues provide the required spectrum.
Moreover, by (3), we have

LEDP A Kx( 􏼁 � (x − 1)|x(1 − x)| + x x
2

− 3x + 2􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

� 2(2x − 3)
x

2
⎛⎝ ⎞⎠.

(9)

Since the size of Kx is x

2􏼠 􏼡, so the result is proved. □

2.2. Complete BipartiteGraphsKx,y. Let a complete bipartite
graph Kx,y with vertex sets Vx(Γ) � v1, v2, . . . , vx􏼈 􏼉 and
Vy(Γ) � vx+1, vx+2, . . . , vy􏽮 􏽯 be as partitions. )e order and
the size of Kx,y graph are x + y and xy, respectively. )en,
the Laplacian degree product adjacency spectrum and en-
ergy of Kx,y can be obtained from the following result.

Theorem 2. For x, y≥ 1, a complete bipartite graph Kx,y,
then
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LSpDP A Kx,y􏼐 􏼑 �

− (x + y)

2
±
1
2

��������

4y
3
x
3

+ 1
􏽱

− x − y

1 y − 1 x − 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

y � x + 1

withx≥ 1,

− (x + y)

2
±
1
2

��������������

4y
3
x
3

+(y − x)
2

􏽱

− x − y

1 y − 1 x − 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

y>x≥ 1

withy≠ x + 1,

x x
2

− 1􏼐 􏼑 − x x
2

+ 1􏼐 􏼑 − x

1 1 2(x − 1)

⎛⎜⎜⎝ ⎞⎟⎟⎠, x � y≥ 1,

− (1 + y)

2
±
1
2

������������

4y
3

+(1 − y)
2

􏽱

− 1

1 y − 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ x � 1 andy≥ 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(10)

Moreover,

LEDP A Kx,y􏼐 􏼑 �
2 x

3
+ x

2
− x􏼐 􏼑, wheneverx � y≥ 1,

2xy, otherwise.

⎧⎨

⎩

(11)

Proof. Note that d(vi) � y, for each 1≤ i≤x and d(vj) � x,
for each x + 1≤ j≤y. Accordingly, the Laplacian degree
product adjacency matrix of Kx,y is

LDP A Kx,y􏼐 􏼑 �

v1
v2
v3
⋮
vx

vx+1
vx+2
⋮
vx+y

v1 v2 v3 ⋮ vx vx+1 vx+2 . . . vx+y

− y 0 0 . . . 0 xy xy . . . xy

0 − y 0 . . . 0 xy xy . . . xy

0 0 − y . . . 0 xy xy . . . xy

⋮ . . . . . . ⋱ . . . . . . . . . . . . ⋮
0 0 0 . . . − y xy xy . . . xy

xy xy xy . . . xy − x 0 . . . 0
xy xy xy . . . xy 0 − x . . . 0
⋮ . . . . . . ⋱ . . . . . . . . . ⋱ ⋮
xy xy xy . . . xy 0 0 . . . − x

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (12)

Next, we have four cases to discuss.

Case I (y � x + 1 with x≥ 1): eigenvalues of
LDP A(Kx,y) are

− (y + x)

2
±
1
2

��������

4y
3
x
3

+ 1
􏽱

1 − time,

− x(y − 1) − times,

− y(x − 1) − times.

(13)

)e required spectrum can be obtained by these ei-
genvalues. Furthermore, by (3), we have

LEDP A Kx,y􏼐 􏼑 �
− (y + x)

2
+
1
2

��������

4y
3
x
3

+ 1
􏽱􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+

− (y + x)

2
−
1
2

��������

4y
3
x
3

+ 1
􏽱􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+(y − 1).| − x| +(x − 1).| − y|

� 2xy.

(14)
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Case II (y≠ x + 1 with y> x≥ 1): we get the following
eigenvalues of LDP A(Kx,y):

− (y + x)

2
±
1
2

��������������

4x
3
y
3

+(y − x)
2

􏽱

1 − time,

− x(y − 1) − times,

− y(x − 1) − times.

(15)

)e required spectrum can be obtained by these ei-
genvalues. Moreover, by (3), we have

LEDP A Kx,y􏼐 􏼑 �
− (y + x)

2
+
1
2

��������������

4x
3
y
3

+(y − x)
2

􏽱􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+

− (y + x)

2
−
1
2

��������������

4x
3
y
3

+(y − x)
2

􏽱􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+(y − 1).| − x| +(x − 1).| − y|

� 2xy.

(16)

Case III (x � y≥ 1): eigenvalues of LDP A(Kx,x) are as
follows:

x x
2

− 1􏼐 􏼑, 1 − time,

− x x
2

+ 1􏼐 􏼑, 1 − time,

− x, 2(x − 1) − times.

(17)

)ese eigenvalues provide the required spectrum.
Furthermore, by (3), we have

LEDP A Kx,x􏼐 􏼑 � x x
2

− 1􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + − x x
2

+ 1􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + 2(x − 1).| − x|

� 2 x
3

+ x
2

− x􏼐 􏼑.

(18)

Case IV (x � 1 and y≥ 1): we get eigenvalues of
LDP A(K1,y) as follows:

− (1 + y)

2
±
1
2

������������

4y
3

+(1 − y)
2

􏽱

, 1 − time,

− 1, (y − 1) − times.

(19)

)ese eigenvalues provide the required spectrum.
Using (3), we have the following energy of K1,y:

LEDP A K1,y􏼐 􏼑 �
− (1 + y)

2
+
1
2

������������

4y
3

+(1 − y)
2

􏽱􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+

− (1 + y)

2
−
1
2

������������

4y
3

+(1 − y)
2

􏽱􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+(y − 1).| − 1|

� 2y.

(20)

It completes the proof. □

2.3. Friendship GraphsFx. A friendship graph Fx has 2x + 1
vertices, and it can be assembled by connecting x clones of
the cycle C3 with a common vertex. Let the vertex set of ith
copy of C3 be vi

1, vi
2, vi

3􏼈 􏼉, where 1≤ i≤x. Let the common
vertex be v � v11 � v21 � . . . � vx

1 . )en, the vertex set of Fx is

v{ } ⋃
x

i�1
v

i
2, v

i
3􏽮 􏽯. (21)

Theorem 3. For x≥ 2, let a friendship graph Fx; then,

LSpDP A Fx( 􏼁 � 2 − 6 (1 − x) ±
�������������

32x
3

+(1 + x)
2

􏽱

x − 1 x 1
⎛⎝ ⎞⎠,

LEDP A Fx( 􏼁 � 10x − 4.

(22)

Proof. In Fx, d(v) � 2x and d(vi
2) � d(vi

3) � 2 for 1≤ i≤x.
)en, the Laplacian degree product adjacency matrix is as
follows:
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LDP A Fx( 􏼁 �

v

v
1
2

v
1
3

v
2
2

v
2
3

⋮

v
x
2

v
x
3

v v
1
2 v

1
3 v

2
2 v

2
3 . . . v

x
2 v

x
3

− 2x 4x 4x 4x 4x . . . 4x 4x

4x − 2 4 0 0 . . . 0 0

4x 4 − 2 0 0 . . . 0 0

4x 0 0 − 2 4 . . . 0 0

4x 0 0 4 − 2 . . . 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮

4x 0 0 0 0 . . . − 2 4

4x 0 0 0 0 . . . 4 − 2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(23)

)e eigenvalues of Laplacian degree product adjacency
matrix of Fx are

2, (x − 1) − times,

− 6, x − times,

(1 − x) ±
�������������

32x
3

+(1 + x)
2

􏽱

, 1 − time.

(24)

)e required spectrum can be obtained by these ei-
genvalues. )ese eigenvalues provide the following energy:

LEDP A Fx( 􏼁 � (x − 1).|2| + x.| − 6| + (1 − x) +

�������������

32x
3

+(1 + x)
2

􏽱􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+ (1 − x) −

�������������

32x
3

+(1 + x)
2

􏽱􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

� 10x − 4.

(25)

□
2.4. Corona Products of 3 and 4 Cycles with Null Graphs.
)e corona product of graphs Γ andΩ is expressed as Γ°Ω. It
can be made by drawing one copy of Γ and ∣V(Γ) ∣ copies of
Ω and connecting the ith vertex of Γ with each vertex of ith
copy of Ω [9–11]. Let Γ be an x-cycle Cx with vertices
v1, v2, . . . , vx and Ω be a null graph Nk. )en, the vertex set
of Cx

°Nk is

V Cx( 􏼁 ⋃
x

j�1
v

j
i ; 1≤ i≤ k􏽮 􏽯, (26)

where the set v
j

i ; 1≤ i≤ k􏽮 􏽯 is the vertex set of jth copy of Nk

in Cx
°Nk. In this portion, we evaluate the Laplacian degree

product spectrum and energy of Cx
°Nk for x � 3 and 4.

Theorem 4. For k≥ 1, let the corona product be Cx
°Nk; then,

LSpDP A C3
°Nk( 􏼁 �

1
2

2k
2

+ 7k + 5􏼐 􏼑􏼐 ±
�������������������������

4k
4

+ 32k
3

+ 93k
2

+ 114k + 49
􏽱

􏼡 −
1
2

k
2

+ 5k + 7􏼐 􏼑􏼐 ∓
�����������������������

k
4

+ 14k
3

+ 51k
2

+ 66k + 25
􏽱

􏼡 − 1

1 2 3(k − 1))

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

LEDP A C3
°Nk( 􏼁 � 4 k

2
+ 5k + 4􏼐 􏼑.

(27)

Proof. Note that d(vj) � k + 2, for each j � 1, 2, 3, and
d(v

j

i ) � 1, for each 1≤ j≤ 3 and 1≤ i≤ k. For the conve-
nience, we let k + 2 � α. )en, the Laplacian degree product
adjacency matrix of Cx

°Nk is

Journal of Mathematics 5



v1

v2

v3

v
1
1

⋮

v
1
k

v
2
1

⋮

v
2
k

v
3
1

⋮

v
3
k

v1 v2 v3 v
1
1 . . . v

1
k v

2
1 . . . v

2
k v

3
1 . . . v

3
k

− α α2 α2 α . . . α 0 . . . 0 0 . . . 0

α2 − α α2 0 . . . 0 α . . . α 0 . . . 0

α2 α2 − α 0 . . . 0 0 . . . 0 α . . . α

α 0 0 − 1 . . . 0 0 . . . 0 0 . . . 0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ . . . ⋮ ⋮ . . . ⋮

α 0 0 0 . . . − 1 0 . . . 0 0 . . . 0

0 α 0 0 . . . 0 − 1 . . . 0 0 . . . 0

⋮ ⋮ ⋮ ⋮ . . . ⋮ ⋮ ⋱ ⋮ ⋮ . . . ⋮

0 α 0 0 . . . 0 0 . . . − 1 0 . . . 0

0 0 α 0 . . . 0 0 . . . 0 − 1 . . . 0

⋮ ⋮ ⋮ ⋮ . . . ⋮ ⋮ . . . ⋮ ⋮ ⋱ ⋮

0 0 α 0 . . . 0 0 . . . 0 0 . . . − 1
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(28)

)e eigenvalues obtained from the above matrix of
Cx

°Nk are

2k
2

+ 7k + 5
2
±

�������������������������

4k
4

+ 32k
3

+ 93k
2

+ 114k + 49
4

,

􏽳

1 − times,

−
k
2

+ 5k + 7
2
±
1
2

�����������������������

k
4

+ 14k
3

+ 51k
2

+ 66k + 25
􏽱

, 2 − times,

− 1, 3(k − 1) − times.

(29)

)en, the required spectrum can be obtained by these
eigenvalues. Also, by (3), we have

LEDP A C3
°Nk( 􏼁 �

2k
2

+ 7k + 5
2

+

�������������������������

4k
4

+ 32k
3

+ 93k
2

+ 114k + 49
4

􏽳􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+
2k

2
+ 7k + 5
2

−

�������������������������

4k
4

+ 32k
3

+ 93k
2

+ 114k + 49
4

􏽳􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+

−
k
2

+ 5k + 7
2

􏼠 􏼡 +
1
2

�����������������������

k
4

+ 14k
3

+ 51k
2

+ 66k + 25
􏽱􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+ −

k
2

+ 5k + 7
2

􏼠 􏼡 −
1
2

�����������������������

k
4

+ 14k
3

+ 51k
2

+ 66k + 25
􏽱􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

+ 3(k − 1)| − 1|

� 4 k
2

+ 5k + 4􏼐 􏼑.

(30)

□
Theorem 5. For k≥ 1, let the corona product be Cx

°Nk; then,
LSpDP A(Cx

°Nk) is

−
1
2

2k
2

+ 9k + 11􏼐 􏼑􏼐 ∓
��������������������������

4k
4

+ 40k
3

+ 133k
2

+ 178k + 81
􏽱

􏼡 −
1
2

((k + 3)∓
�����������������

4k
3

+ 17k
2

+ 18k + 1
􏽱

1
2

2k
2

+ 7k + 5􏼐 􏼑􏼐 ±
�������������������������

4k
4

+ 32k
3

+ 93k
2

+ 114k + 49
􏽱

􏼡 − 1

1 2 1 4(k − 1))

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

LEDP A C4
°Nk( 􏼁 � 4k

2
+ 22k + 18.

(31)

Proof. Note that d(vj) � k + 2, for eachj � 1, 2, 3, 4, and
d(v

j
i ) � 1, for each 1≤ j≤ 4 and 1≤ i≤ k. For the conve-

nience, we let k + 2 � α. )en, the Laplacian degree product
adjacency matrix of C4

°Nk is as
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v1

v2

v3

v4

v
1
1

⋮

v
1
k

v
4
1

⋮

v
4
k

v1 v2 v3 v4 v
1
1 . . . v

1
k v

4
1 . . . v

4
k

− α α2 0 α2 α . . . α 0 . . . 0

α2 − α α2 0 0 . . . 0 0 . . . 0

0 α2 − α α2 0 . . . 0 0 . . . 0

α2 0 α2 − α 0 . . . 0 α . . . α

α 0 0 0 − 1 . . . 0 0 . . . 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ . . . ⋮

α 0 0 0 0 . . . − 1 0 . . . 0

0 0 0 α 0 . . . 0 − 1 . . . 0

⋮ ⋮ ⋮ ⋮ ⋮ . . . ⋮ ⋮ ⋱ ⋮

0 0 0 α 0 . . . 0 0 . . . − 1
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. (32)

)e eigenvalues of Laplacian degree product adjacency
matrix of C4

°Nk are

−
2k

2
+ 9k + 11
2
±

��������������������������

4k
4

+ 40k
3

+ 133k
2

+ 178k + 81
4

􏽳

, 1 − time,

−
k + 3
2
±

�����������������

4k
3

+ 17k
2

+ 18k + 1
4

􏽳

, 2 − times,

2k
2

+ 7k + 5
2
±

�������������������������

4k
4

+ 32k
3

+ 93k
2

+ 114k + 49
4

􏽳

, 1 − time,

− 14(k − 1) − times.

(33)

)en, the required spectrum can be obtained by these
eigenvalues. Furthermore, by (3), we have

LEDP A C4
°Nk( 􏼁 � −

2k
2

+ 9k + 11
2

+

��������������������������

4k
4

+ 40k
3

+ 133k
2

+ 178k + 81
4

􏽳􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

+ −
2k

2
+ 9k + 11
2

−

��������������������������

4k
4

+ 40k
3

+ 133k
2

+ 178k + 81
4

􏽳􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

+ 2. −
k + 3
2

+

�����������������

4k
3

+ 17k
2

+ 18k + 1
4

􏽳􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

+ 2. −
k + 3
2

−

�����������������

4k
3

+ 17k
2

+ 18k + 1
4

􏽳􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

+
2k

2
+ 7k + 5
2

+

�������������������������

4k
4

+ 32k
3

+ 93k
2

+ 114k + 49
4

􏽳􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

+
2k

2
+ 7k + 5
2

−

�������������������������

4k
4

+ 32k
3

+ 93k
2

+ 114k + 49
4

􏽳􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

+ 4(k − 1).| − 1|

� 2 2k
2

+ 11k + 9􏼐 􏼑.

(34)

□
3. Appendix

In [6], Mirajkar and Doddamani considered the corona
product C4

°Nk− 2 for k≥ 3 (also called thorny cycle rings
C4,k) and investigated its energy and spectrum on the base of

degree product adjacency matrix. During computations of
our results on C4

°Nk− 2, the eigenvalues investigated in [6]
were found incorrect. In this section, we provide the correct
energy and spectrum of C4

°Nk− 2. First of all, note that the
degree product adjacency matrix of C4

°Nk− 2 is
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DP A C4
°Nk− 2( 􏼁 �

v1

v2

v3

v4

v
1
1

v
1
2

⋮

v
4
1

v
4
2

v1 v2 v3 v4 v
1
1 v

1
2 . . . v

4
1 v

4
2

0 k
2 0 k

2
k k . . . 0 0

k
2 0 k

2 0 0 0 . . . 0 0

0 k
2 0 k

2 0 0 . . . 0 0

k
2 0 k

2 0 0 0 . . . k k

k 0 0 0 0 0 . . . 0 0

k 0 0 0 0 0 . . . 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0 0 0 k 0 0 . . . 0 0

0 0 0 k 0 0 . . . 0 0
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(35)

Mirajkar and Doddamani’s investigated eigenvalues are

k

�����

k2
+ 2

􏽱

± k􏼠 􏼡, 1 − time,

− k

�����

k
2

+ 2
􏽱

± k􏼠 􏼡, 1 − time,

± k
��
2,

√
2 − times,

0, 4(k − 3) − times.

(36)

Whereas, the correct eigenvalues of DP A(C4
°Nk− 2) are

± k
2

+ k

��������

k
2

+ k − 2
􏽱

, 1 − time,

∓ k
2

− k

��������

k
2

+ k − 2
􏽱

, 1 − time,

± k
�����
k − 2

√
, 2 − times,

0, 4(k − 3) − times.

(37)

Accordingly, we get the following energy and spectrum
of C4

°Nk− 2 in the corrected form:

EDP A C4
°Nk− 2( 􏼁 � k

2
+ k

��������

k
2

+ k − 2
􏽱􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+ − k

2
+ k

��������

k
2

+ k − 2
􏽱􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+ − k

2
− k

��������

k
2

+ k − 2
􏽱􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

+ k
2

− k

��������

k
2

+ k − 2
􏽱􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+ 2.| − k

�����
k − 2

√
| + 2.|k

�����
k − 2

√
|,

SpDP A C4
°Nk− 2( 􏼁 �

± k
2

+ k

��������

k
2

+ k − 2
􏽱

∓k2
− k

��������

k
2

+ k − 2
􏽱

± k
�����
k − 2

√
0

1 1 2 4(k − 3)

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠.

(38)

4. Accomplishment Remarks

In this study, we construct the general formulas for spec-
trums and energies of four different families of graphs, by
using Laplacian degree product adjacency matrix. We also
obtained faultless and correct eigenvalues of C4

°Nk− 2, which
were defined in [6].
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[3] D. M. Cvetković, M. Doob, and H. Sachs, Spectra of Graphs:
�eory and Applications 3rd Revised and Enlarged Edition,
Wiley, New York, USA, 1998.

[4] N. Biggs, Algebraic Graph �eory, Cambridge University
Press, Cambridge, UK, 1993.

[5] F. Harary, Graph �eory, Addison - Wesely, Boston, MA,
USA, 1969.

[6] K. G. Mirajkar and B. R. Doddamani, “On energy and
spectrum of degree product adjacency matrix for some class of
graphs,” International Journal of Applied Engineering Re-
search, vol. 14, no. 7, pp. 1546–1554, 2019.

[7] K. G. Mirajkar and B. R. Doddamani, “On the bounds of
Laplacian energy for degree product adjacency matrix of
regular graph,” Research Guru:Online Journal of Multidisci-
plinary Subjects, vol. 1, no. 13, pp. 10–17, 2019.

[8] H. S. Ramane, D. S. Revankar, and J. B. Patil, “Bounds for the
degree sum eigenvalues and degree sum energy of a graph,”
International Journal of Pure and Applied Mathematical
Sciences, vol. 6, pp. 161–167, 2013.

[9] D. Bonchev and D. J. Klein, “On the wiener number of thorn
trees, stars, rings and rods,” Croatica Chemica Acta, vol. 75,
no. 2, pp. 613–620, 2002.

[10] R. Frucht and F. Harary, “On the corona of two graphs,”
Aequationes Mathematicae, vol. 4, no. 1, p. 264, 1970.

[11] H. B. Walikar, H. S. Ramane, L. Sindagi, S. S. Shirakol, and
I. Gutman, “Hosoya polynomial of thorn trees, rods, rings and
trees,” Kragujevac Journal of Science, vol. 28, pp. 47–56, 2006.

Journal of Mathematics 9



Research Article
On Computation Degree-Based Topological Descriptors for
Planar Octahedron Networks

Wang Zhen,1 Parvez Ali,2 Haidar Ali ,3 Ghulam Dustigeer,4 and Jia-Bao Liu 5

1School of Computer Engineering, Anhui Wonder University of Information Engineering, Hefei 231201, China
2Department of Mechanical Engineering, College of Engineering, Qassim University, Unaizah, Saudi Arabia
3Department of Mathematics, Riphah International University, Faisalabad, Pakistan
4Department of Mathematics and Statistics, University of Agriculture, Faisalabad, Pakistan
5School of Mathematics and Physics, Anhui Jianzhu University, Hefei 230601, China

Correspondence should be addressed to Haidar Ali; haidar3830@gmail.com

Received 18 September 2021; Accepted 9 October 2021; Published 1 November 2021

Academic Editor: Ljubisa Kocinac

Copyright © 2021 Wang Zhen et al. +is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Amolecular graph is used to represent a chemical molecule in chemical graph theory, which is a branch of graph theory. A graph is
considered to be linked if there is at least one link between its vertices. A topological index is a number that describes a graph’s
topology. Cheminformatics is a relatively young discipline that brings together the field of sciences. Cheminformatics helps in
establishing QSAR and QSPR models to find the characteristics of the chemical compound. We compute the first and second
modified K-Banhatti indices, harmonic K-Banhatti index, symmetric division index, augmented Zagreb index, and inverse sum
index and also provide the numerical results.

1. Introduction

Graph theory provides topological indices, which are a
useful tool. Cheminformatics is a contemporary academic
discipline that brings together chemistry, mathematics, and
information science. It investigates the connections between
quantitative structure-activity relationship (QSAR) and
quantitative structure-property relationship (QSPR), which
are used to predict biological activities and chemical com-
pound characteristics.

+e silicate structures [1] formed from the POH net-
work, TP network, and hex POH network [2] are discussed
in this article.

+e following is the procedure for making POH net-
works .

Step 1: consider a m-dimensional silicate network.
Step 2: connect new vertices in the centre of each
triangular face to existing vertices in the adjacent tri-
angular face.

Step 3: all of the new centre vertices in the same silicate
cell must be connected.
Step 4: for the m dimension, the resultant graph is
known as the planar octahedron network as shown in
Figure 1. Remove all silicon vertices from the graph.
+e triangle prism network as shown in Figure 2 and
the hex POH network as shown in Figure 3 are also
possible.

Let ψ represent a graph. +en, modified first and second
K-Banhatti indices [3] can be defined as

MK1B(ψ) � 􏽘
ab∈E(ψ)

1
da + db( 􏼁

􏼠 􏼡, (1)

MK2B(ψ) � 􏽘
ab∈E(ψ)

1
da × db( 􏼁

􏼠 􏼡. (2)

Harmonic K-Banhatti index [4] of a graph ψ is defined as
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HKB(ψ) � 􏽘
ab∈E(ψ)

2
da + db( 􏼁

􏼠 􏼡. (3)

Symmetric division index of a graph [5] is defined as

SD(ψ) � 􏽘
ab∈E(ψ)

da

db

+
db

da

􏼠 􏼡. (4)

Augmented Zagreb index of a graph ψ [4] is defined as

AG(ψ) � 􏽘
ab∈E(ψ)

da × db

da + db − 2
􏼠 􏼡

3

. (5)

Inverse sum index of a graph ψ is defined as

I(ψ) � 􏽘
ab∈E(ψ)

da × db

da + db

􏼠 􏼡. (6)

2. Main Results

We research different indices on different kinds of planar
octahedron networks. Nowadays, extensive research studies
are being conducted in the field of chemical graph theory for
further studying topological indices of various graphs
[6–13]. For the basic notations and definitions, see [14, 15].

2.1. Results for Planar Octahedron Network POH (m). +e
planar octahedron network is the resulting graph for the m

dimension. All silicon vertices should be removed from the
scene. +ere are also the triangular prism network and the
hex POH network. Now, we calculate several key indices for
the POH network in the following theorems.

Theorem 1. Consider the planar octahedral network POH
(m); then, its first and second modified K-Banhatti indices are
equal to

MK1B ψ1( 􏼁 �
51
8

m
2

+
3
4

m,

MK2B ψ1( 􏼁 �
81
32

m
2

+
9
16

m.

(7)

Proof. Let ψ1 � POH(m). From equation (1), we have

Figure 1: Planar octahedral network POH(2).

Figure 2: Triangular prism network TP(2).

Figure 3: Hexagonal planar octahedral network HPOH(2).
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MK1B(ψ) � 􏽘
ab∈E(ψ)

1
da + db( 􏼁

􏼠 􏼡. (8)

Using Table 1, we have

MK1B ψ1( 􏼁 �
1

4 + 4
E1(POH(m))

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 +

1
4 + 8

E2(POH(m))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 +
1

8 + 8
E3(POH(m))

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

�
1
8

E1(POH(m))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 +
1
12

E2(POH(m))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 +
1
16

E3(POH(m))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

�
1
8

18m
2

+ 12m􏼐 􏼑 +
1
12

36m
2

− 48m + 12􏼐 􏼑 +
1
16

18m
2

− 36m + 18􏼐 􏼑.

(9)

We get the following value after calculations:

⇒MK1B ψ1( 􏼁 �
51
8

m
2

+
3
4

m. (10)

Let ψ1 � POH(m). From equation (2), we have

MK1B(ψ) � 􏽘
ab∈E(ψ)

1
da + db( 􏼁

􏼠 􏼡. (11)

Using Table 1, we have

MK2B ψ1( 􏼁 �
1

4 × 4
E1(POH(m))

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 +

1
4 × 8

E2(POH(m))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 +
1

8 × 8
E3(POH(m))

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

�
1
16

E1(POH(m))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 +
1
32

E2(POH(m))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 +
1
64

E3(POH(m))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

�
1
16

18m
2

+ 12m􏼐 􏼑 +
1
32

36m
2

− 48m + 12􏼐 􏼑 +
1
64

18m
2

− 36m + 18􏼐 􏼑.

(12)

We get the following value after calculations:

⇒MK2B ψ1( 􏼁 �
81
32

m
2

+
9
16

m. (13)
□

Theorem 2. ;e harmonic K-Banhatti and symmetric di-
vision indices are equal in the POH (m) network.

HKB(ψ) �
51
4

m
2

+
3
2

m,

SD(ψ) � 162m
2
.

(14)

Proof. Let φ1 � POH(m) network; from equation (3),

HKB(ψ) � 􏽘
ab∈E(ψ)

2
da + db( 􏼁

. (15)

Using Table 1, we have

HKB ψ1( 􏼁 �
2

4 + 4
E1(POH(m))

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 +

2
4 + 8

E2(POH(m))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 +
2

8 + 8
E3(POH(m))

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

�
2
8

E1(POH(m))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 +
2
12

E2(POH(m))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 +
2
16

E3(POH(m))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

�
1
4

18m
2

+ 12m􏼐 􏼑 +
1
6

36m
2

− 48m + 12􏼐 􏼑 +
1
8

18m
2

− 36m + 18􏼐 􏼑.

(16)

We get the following value after calculations: ⇒HKB ψ1( 􏼁 �
51
4

m
2

+
3
2

m. (17)

Table 1: Edge partition.

(da, db) Number of edges

E1 � (4, 4) 18m2 + 12m

E2 � (4, 8) 36m2 − 48m + 12
E3 � (8, 8) 18m2 − 36m + 18
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For the symmetric division index of a graph using
equation (3),

SD(ψ) � 􏽘
ab∈E(ψ)

da

db

+
db

da

􏼠 􏼡. (18)

Using Table 1, we have

SD ψ1( 􏼁 �
4
4

+
4
4

􏼒 􏼓 E1(POH(m))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 +
4
8

+
8
4

􏼒 􏼓 E2(POH(m))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 +
8
8

+
8
8

􏼒 􏼓 E3(POH(m))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

� 2 E1(POH(m))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 +
1
2

+
2
1

􏼒 􏼓 E2(POH(m))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + 2 E3(POH(m))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

� 2 18m
2

+ 12m􏼐 􏼑 +
5
2

36m
2

− 48m + 12􏼐 􏼑 + 2 18m
2

− 36m + 18􏼐 􏼑.

(19)

After calculations,

⇒ SD ψ1( 􏼁 � 162m
2
. (20)

□

Theorem 3. ;en, augmented Zagreb and inverse sum in-
dices are equal to the POH network.

AG ψ1( 􏼁 �
416820224
128625

m
2

−
2836480
3087

m,

I ψ1( 􏼁204m
2

− 24m.

(21)

Proof. Let φ1 � POH(m) network. For the augmented
Zagreb index, using equation (5),

AG(ψ) � 􏽘
ab∈E(ψ)

da × db

da + db − 2
􏼠 􏼡

3

. (22)

Using Table 1, we have

AG ψ1( 􏼁 �
16
6

􏼒 􏼓
3

E1(POH(m))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 +
32
10

􏼒 􏼓
3

E2(POH(m))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 +
64
14

􏼒 􏼓
3

E3(POH(m))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

�
16
6

􏼒 􏼓
3
18m

2
+ 12m􏼐 􏼑 +

32
10

􏼒 􏼓
3
36m

2
− 48m + 12􏼐 􏼑 +

64
14

􏼒 􏼓
3
18m

2
− 36m + 18􏼐 􏼑.

(23)

After some calculations, we get

⇒AG ψ1( 􏼁 �
416820224
128625

m
2

−
2836480
3087

m. (24)

For the inverse sum index and by using equation (6), we
have

I(ψ) � 􏽘
ab∈E(ψ)

da × db

da + db

􏼠 􏼡. (25)

Using Table 1, we have

I ψ1( 􏼁 �
16
8

􏼒 􏼓 E1(POH(m))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 +
32
12

􏼒 􏼓 E2(POH(m))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 +
64
16

􏼒 􏼓 E3(POH(m))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

� 2 18m
2

+ 12m􏼐 􏼑 +
32
12

􏼒 􏼓 36m
2

− 48m + 12􏼐 􏼑 + 4 18m
2

− 36m + 18􏼐 􏼑.

(26)

After calculations,
⇒ I ψ1( 􏼁 � 204m

2
− 24m. (27)

□
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2.2.Results forTriangularPrismNetworkTP(m). In this part,
we propose the theorem for the TP network.

Theorem 4. ;e first and second modified K-Banhatti in-
dices are equal to the TP network:

MK1B ψ2( 􏼁 �
13
2

m
2

+
2
3

m,

MK2B ψ2( 􏼁 �
7
2

m
2

+
2
3

m.

(28)

Proof. Let ψ2 � TP(m). From equation (1), we have

MK1B(ψ) � 􏽘
ab∈E(ψ)

1
da + db( 􏼁

􏼠 􏼡. (29)

Using Table 2, we have

MK1B ψ2( 􏼁 �
1

3 + 3
E1(TP(m))

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 +

1
3 + 6

E2(TP(m))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 +
1

6 + 6
E3(TP(m))

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

�
1
6

E1(TP(m))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 +
1
9

E2(TP(m))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 +
1
12

E3(TP(m))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

�
1
6

18m
2

+ 6m􏼐 􏼑 +
1
9

18m
2

+ 6m􏼐 􏼑 +
1
12

18m
2

− 36m + 18􏼐 􏼑.

(30)

After some calculations, we get

⇒MK1B ψ2( 􏼁 �
13
2

m
2

+
2
3

m. (31)

Let ψ2 � TP(m). From equation (2), we have

MK1B(ψ) � 􏽘
ab∈E(ψ)

1
da + db( 􏼁

􏼠 􏼡. (32)

Using Table 2, we have

MK2B ψ2( 􏼁 �
1

3 × 3
E1(TP(m))

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 +

1
3 × 6

E2(TP(m))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 +
1

6 × 6
E3(TP(m))

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

�
1
9

E1(TP(m))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 +
1
18

E2(TP(m))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 +
1
36

E3(TP(m))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

�
1
9

18m
2

+ 6m􏼐 􏼑 +
1
18

18m
2

+ 6m􏼐 􏼑 +
1
36

18m
2

− 36m + 18􏼐 􏼑.

(33)

After calculations,

⇒MK2B ψ2( 􏼁 �
7
2

m
2

+
2
3

m. (34)
□

Theorem 5. In the POH (m) network, the harmonic
K-Banhatti and symmetric division indices are equal to

HKB ψ2( 􏼁 � 13m
2

+
4
3

m,

SD ψ2( 􏼁 � 117m
2

+ 3m.

(35)

Proof. Let φ2 � TP(m) network, and by using equation (3),
we have

Table 2: Edge partition of TP network.

(da, db) Number of edges

E1 � (3, 3) 18m2 + 6m

E2 � (3, 6) 18m2 + 6m

E3 � (6, 6) 18m2 − 36m + 18
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HKB(ψ) � 􏽘
ab∈E(ψ)

2
da + db( 􏼁

. (36)
Using Table 2, we have

HKB ψ2( 􏼁 �
2

3 + 3
E1(TP(m))

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 +

2
3 + 6

E2(TP(m))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 +
2

6 + 6
E3(TP(m))

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

�
2
6

E1(TP(m))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 +
2
9

E2(TP(m))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 +
2
12

E3(TP(m))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

�
1
3

18m
2

+ 6m􏼐 􏼑 +
2
9

18m
2

+ 6m􏼐 􏼑 +
1
6

18m
2

− 36m + 18􏼐 􏼑.

(37)

After calculations,

⇒HKB ψ2( 􏼁 � 13m
2

+
4
3

m. (38)

For the symmetric division index of a graph using
equation (3), we have

SD(ψ) � 􏽘
ab∈E(ψ)

da

db

+
db

da

􏼠 􏼡. (39)

Using Table 2, we have

SD ψ2( 􏼁 �
3
3

+
3
3

􏼒 􏼓 E1(TP(m))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 +
3
6

+
6
3

􏼒 􏼓 E2(TP(m))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 +
6
6

+
6
6

􏼒 􏼓 E3(TP(m))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

� 2 E1(TP(m))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 +
1
2

+ 2􏼒 􏼓 E2(TP(m))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + 2 E3(TP(m))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

� 2 18m
2

+ 6m􏼐 􏼑 +
5
2

18m
2

+ 6m􏼐 􏼑 + 2 18m
2

− 36m + 18􏼐 􏼑.

(40)

After some calculations, we get

⇒ SD ψ2( 􏼁 � 117m
2

+ 3m. (41)
□

Theorem 6. ;e augmented Zagreb and inverse sum indices
are equal to the TP network.

AG ψ2( 􏼁 �
1853423451
1372000

m
2

−
534408759
1372000

m,

I ψ2( 􏼁 � 204m
2

− 24m.

(42)

Proof. Let φ2 � POH(m) network. Using equation (5) for
the augmented Zagreb index,

AG(ψ) � 􏽘
ab∈E(ψ)

da × db

da + db − 2
􏼠 􏼡

3

. (43)

Using Table 2, we have

AG ψ2( 􏼁 �
9
4

􏼒 􏼓
3

E1(TP(m))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 +
18
7

􏼒 􏼓
3

E2(TP(m))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 +
36
10

􏼒 􏼓
3

E3(TP(m))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

�
9
4

􏼒 􏼓
3
18m

2
+ 6m􏼐 􏼑 +

18
7

􏼒 􏼓
3
18m

2
+ 6m􏼐 􏼑 +

36
10

􏼒 􏼓
3
18m

2
− 36m + 18􏼐 􏼑.

(44)

We get the following value after calculations: ⇒AG ψ2( 􏼁 �
1853423451
1372000

m
2

−
534408759
1372000

m. (45)
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For the inverse sum index and by using equation (6), we
have

I(ψ) � 􏽘
ab∈E(ψ)

da × db

da + db

􏼠 􏼡. (46)

Using Table 2, we have

I ψ2( 􏼁 �
9
6

􏼒 􏼓 E1(TP(m))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + 2 E2(TP(m))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + 3 E3(TP(m))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

�
9
6

􏼒 􏼓 18m
2

+ 6m􏼐 􏼑 + 2 18m
2

+ 6m􏼐 􏼑 + 3 18m
2

− 36m + 18􏼐 􏼑.

(47)

After calculations,

⇒ I ψ2( 􏼁 � 117m
2

− 15m. (48)
□

2.3. Results for Hexagonal Planar Octahedron (HPOH)
Network. In this part, we propose the theorem for the
HPOH network.

Theorem 7. ;e first and second modified K-Banhatti in-
dices are equal to the hex POH network:

MK1B ψ3( 􏼁 �
51
8

m
2

− 4m −
13
8

,

MK2B ψ3( 􏼁 �
81
32

m
2

−
15
16

m −
39
32

.

(49)

Proof. Let ψ3 � HPOH(m). From equation (1), we have

MK1B(ψ) � 􏽘
ab∈E(ψ)

1
da + db( 􏼁

􏼠 􏼡. (50)

Using Table 3, we have

MK1B ψ3( 􏼁 �
1

4 + 4
E1(HPOH(m))

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 +

1
4 + 8

E2(HPOH(m))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 +
1

8 + 8
E3(HPOH(m))

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

�
1
8

E1(HPOH(m))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 +
1
12

E2(HPOH(m))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 +
1
16

E3(HPOH(m))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

�
1
8

18m
2

+ 18m − 30􏼐 􏼑 +
1
12

36m
2

− 48m + 12􏼐 􏼑 +
1
16

18m
2

− 36m + 18􏼐 􏼑.

(51)

We get the following value after calculations:

⇒MK1B ψ3( 􏼁 �
51
8

m
2

− 4m −
13
8

. (52)

Let ψ2 � HPOH(m). From equation (2), we have

MK1B(ψ) � 􏽘
ab∈E(ψ)

1
da + db( 􏼁

􏼠 􏼡. (53)

Using Table 3, we have

MK2B ψ3( 􏼁 �
1

4 × 4
E1(HPOH(m))

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 +

1
4 × 8

E2(HPOH(m))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 +
1

8 × 8
E3(HPOH(m))

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

�
1
16

E1(HPOH(m))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 +
1
32

E2(HPOH(m))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 +
1
64

E3(HPOH(m))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

�
1
16

18m
2

+ 18m − 30􏼐 􏼑 +
1
32

36m
2

− 48m + 12􏼐 􏼑 +
1
64

18m
2

− 36m + 18􏼐 􏼑.

(54)
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We get the following value after calculations:

⇒MK2B ψ3( 􏼁 �
81
32

m
2

−
15
16

m −
39
32

. (55)
□

Theorem 8. ;en, harmonic K-Banhatti and symmetric
division indices are equal to the hex POH network:

HKB ψ3( 􏼁 �
51
4

m
2

− 8m −
13
4

,

SD ψ3( 􏼁 � 162m
2

− 156m + 6.

(56)

Proof. Let φ1 � HPOH(m) network, and from equation (3),

HKB(ψ) � 􏽘
ab∈E(ψ)

2
da + db( 􏼁

. (57)

Using Table 3, we have

HKB ψ3( 􏼁 �
2

4 + 4
E1(HPOH(m))

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 +

2
4 + 8

E2(HPOH(m))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 +
2

8 + 8
E3(HPOH(m))

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

�
2
8

E1(HPOH(m))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 +
2
12

E2(HPOH(m))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 +
2
16

E3(HPOH(m))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

�
1
4

18m
2

+ 18m − 30􏼐 􏼑 +
1
6

36m
2

− 48m + 12􏼐 􏼑 +
1
8

18m
2

− 36m + 18􏼐 􏼑.

(58)

We get the following value after calculations:

⇒HKB ψ3( 􏼁 �
51
4

m
2

− 8m −
13
4

. (59)

For the symmetric division index of a graph using
equation (3), we have

SD(ψ) � 􏽘
ab∈E(ψ)

da

db

+
db

da

􏼠 􏼡. (60)

Using Table 3, we have

SD ψ3( 􏼁 �
4
4

+
4
4

􏼒 􏼓 E1(HPOH(m))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 +
4
8

+
8
4

􏼒 􏼓 E2(HPOH(m))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 +
8
8

+
8
8

􏼒 􏼓 E3(HPOH(m))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

� 2 E1(HPOH(m))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 +
1
2

+
2
1

􏼒 􏼓 E2(HPOH(m))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + 2 E3(HPOH(m))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

� 2 18m
2

+ 18m − 30􏼐 􏼑 +
5
2

36m
2

− 48m + 12􏼐 􏼑 + 2 18m
2

− 36m + 18􏼐 􏼑.

(61)

After calculations,

⇒SD ψ3( 􏼁 � 162m
2

− 156m + 6. (62)
□

Theorem 9. ;e augmented Zagreb and inverse sum indices
are equal to the hex POH network:

Table 3: Edge partition.

(da, db) Number of edges

E1 � (4, 4) 18m2 + 18m − 30
E2 � (4, 8) 36m2 − 48m + 12
E3 � (8, 8) 18m2 − 36m + 18
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AG ψ3( 􏼁 �
416820224
128625

m
2

−
600773632
128625

m +
595764224
385875

,

I ψ3( 􏼁 � 204m
2

− 236m + 44.

(63)

Proof. Let φ1 � HPOH(m) network. Using equation (5) for
the augmented Zagreb index,

AG(ψ) � 􏽘
ab∈E(ψ)

da × db

da + db − 2
􏼠 􏼡

3

. (64)

Using Table 3, we have

AG ψ3( 􏼁 �
16
6

􏼒 􏼓
3

E1(HPOH(m))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 +
32
10

􏼒 􏼓
3

E2(HPOH(m))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 +
64
14

􏼒 􏼓
3

E3(HPOH(m))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

�
16
6

􏼒 􏼓
3
18m

2
+ 18m − 30􏼐 􏼑 +

32
10

􏼒 􏼓
3
36m

2
− 48m + 12􏼐 􏼑 +

64
14

􏼒 􏼓
3
18m

2
− 36m + 18􏼐 􏼑.

(65)

We get the following value after calculations:

⇒AG ψ3( 􏼁 �
416820224
128625

m
2

−
600773632
128625

m +
595764224
385875

.

(66)

For the inverse sum index and by using equation (6), we
have

I(ψ) � 􏽘
ab∈E(ψ)

da × db

da + db

􏼠 􏼡. (67)
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Figure 4: For POH 1.
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Figure 6: For TP 1.
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Figure 7: For TP 2.
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Figure 8: For hex POH 1.
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Using Table 3, we have

I ψ3( 􏼁 �
16
8

􏼒 􏼓 E1(HPOH(m))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 +
32
12

􏼒 􏼓 E2(HPOH(m))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 +
64
16

􏼒 􏼓 E3(HPOH(m))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

� 2 18m
2

+ 18m − 30􏼐 􏼑 +
32
12

􏼒 􏼓 36m
2

− 48m + 12􏼐 􏼑 + 4 18m
2

− 36m + 18􏼐 􏼑.

(68)

After calculations,

⇒ I ψ3( 􏼁 � 204m
2

− 236m + 44. (69)
□

3. Comparison of Indices through Graphs

+e comparison of the first and second K-Banhatti,
harmonic K-Banhatti, symmetric division, augmented
Zagreb, and inverse sum indices for the POH network,
TP network, and HPOH network is conducted for dif-
ferent values. +e comparison graphs are shown in
Figures 4–9 .

4. Conclusion

In this paper, first and the second K-Banhatti, harmonic
K-Banhatti, symmetric division, augmented Zagreb, and
inverse sum indices have been computed for the planar
octahedron networks. From a chemical standpoint, these
findings might be useful for computer scientists and
chemists, who come across these networks. Additional
multiplicative degree-based indices should be computed
soon.
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[15] N. Trinajstić, Chemical Graph;eory, CRC Press, Boca Raton,
FL, USA, 1983.

12 Journal of Mathematics


