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In order to identify the basic structural properties of a network such as connectedness, centrality, modularity, accessibility,
clustering, vulnerability, and robustness, we need distance-based parameters. A number of tools like these help computer and
chemical scientists to resolve the issues of informational and chemical structures. In this way, the related branches of afore-
mentioned sciences are also benefited with these tools as well. In this paper, we are going to study a symmetric class of networks
called convex polytopes for the upper and lower bounds of fractional metric dimension (FMD), where FMD is a latest developed
mathematical technique depending on the graph-theoretic parameter of distance. Apart from that, we also have improved the
lower bound of FMD from unity for all the arbitrary connected networks in its general form.

1. Introduction

A network ℵ � (V(ℵ), E(ℵ)) is a mathematical structure
consisting of two set of vertices V(ℵ) and set of edges
E(ℵ)⊆V(ℵ) × V(ℵ), where |V(ℵ)| � v and |E(ℵ)| � e are
called order and size of ℵ, respectively. In ℵ, the length of
the shortest path between any two vertices a, b ∈ V(ℵ) is
called distance which is usually denoted by d(a, b). For more
information regarding graph-theoretic terminologies, we
refer to [1–3].

With every passing day, technological boom is reshaping
our lives in such a way that the replacement of manpower is
being done by robots, devices, and machineries. At the same
instance, we cannot compromise on the constraints of
employing minimum number of these and their operational
cost. In order to overcome these constraints with ease, we
have to get the aid of distance-based parameters such as
metric dimension (MD). Consider M � m1, m2,

. . . , mk}⊆V(ℵ); then, M becomes an ordered set of vertices
bearing some ordering imposed by us. For any b ∈ V(ℵ), the
distance of b from all the elements of M in k-tuple metric
form is given by r(b|M) � (d(b, m1), d(b, m2),

d(b, m3), . . . , d(b, mk)). *e setM becomes a resolving set if,

for any pair of distinct vertices a, b ∈ V(ℵ) − M, we have
r(a|M)≠ r(b|ℵ). *e resolving set bearing minimum
number of vertices in ℵ forms the metric basis of ℵ, and its
cardinality represents the MD of ℵ denoted by λ(ℵ) [4, 5].

Slater gave the terminology of resolving sets by pro-
claiming them as the locating set for any connected network
[6, 7]. After studying these terminologies by themselves,
Harary and Melter gave them the name of MD of a network.
Afterwards, a large number of researchers computed theMD
of different families of networks. *e families of networks
having constant and boundedMD have been the topic of [8].
Chartrand et al., on the contrary, proved theMD of path and
cycle [4]. In the same manner, P(n, 2), Am, and C2

m have
been proved to be the networks with constant MD in [8].
Moreover, in [9], the MD of generalized Petersen network is
proved to be bounded.

Chartrand et al. utilized MD to present the solution of
integer programming problem (IPP) [4]. Later on, for the
sake of acquiring a higher accuracy solution of an IPP,
Currie and Oellermann [10] founded the concept of frac-
tional metric dimension (FMD). Fehr et al. employed FMD
to get the optimal solution of a certain linear programming
relaxation problem [11]. Arumugam and Mathew brought
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some undiscovered features of FMD to light [12]. After-
wards, a large number of results appeared related to the
FMD of several networks that are formed as an aftermath of
graph products, namely, Cartesian, hierarchial, corona,
lexicographic, and comb products, see [12], [13–15], and
[16]. Similarly, Liu et al. computed the FMD of generalized
Jahangir network [17]. In a recent time, Raza et al. evaluated
the FMD of metal organic networks [18].

Aisyah et al. pioneered the terminology of local frac-
tional metric dimension (LFMD) and calculated for the
corona product of two networks [19]. In the same manner,
Liu et al. calculated the LFMD of rotationally symmetric
and planar networks [20]. More recently, Javaid et al.
evaluated the sharp extremal values of LFMD of connected
networks [21]. In this paper, firstly, we improved the lower
bound of FMD from unity, and secondly, the FMD of a
family of network bearing rotational symmetry called
convex polytopes is computed in the form of bounds. *e
flux of this paper is in the following sequence. Section 1 is
introduction. Section 2 is related to the MD’s role in
Robotics and Chemistry. Section 3 is of preliminaries. In
Section 4, the theoretical development of improved lower
bound of FMD of a connected network is done. Section 5
contains the main results regarding the FMD of convex
polytopes. Section 6 winds up the paper with a hand full of
concluding remarks.

2. Applications

*e increasing demand of networking is nurturing the
development in distance-based dimensions. All such tools
help in the allocation of an interpolar to a suitable region
for employing it effectively [6, 22]. In the same way, al-
locating the robots in some production units and in public
health facilities have been discussed in [23]. Moreover, for
various techniques for the rectification of example and
picture handling and information handling, we refer to
[24]. Similarly, a chemical compound in the graph-theo-
retic form is regarded as a molecular graph having nodes as
atoms and links between them as bonds [4]. With the aid of
picturesque form of a compound and distance-based pa-
rameters, chemists are now able to not only remove dis-
crepancies in some chemical structure but also are able to
find the sites showing similar properties in them. All these
techniques are the topic of [5, 6, 24, 25]. More recently, the
same tools are found helpful in solving resolvability
problems in nanotechnology and polymer-based industries
[26, 27].

3. Preliminaries

In a network ℵ � (V(ℵ), E(ℵ)), for a, b{ }⊆V(ℵ), a vertex c

resolves a, b{ } inℵ if d(a, c)≠d(b, c). For any pair of vertices
a, b ∈ V(ℵ), the resolving neighbourhood set (RNs) of a, b{ }

is given by R a, b{ } � c ∈ V(ℵ)|d(a, c)≠ d(b, c){ }.
Suppose that, in a connected network,
ℵ � (V(ℵ), E(ℵ)), bearing v as its order. A function
ψ: V(ℵ)⟶ [0, 1] is called the upper resolving function

(URF) of ℵ if ψ(R a, b{ })≥ 1,∀R a, b{ } in ℵ, where
ψ(R a, b{ }) � c∈R a,b{ }ψ(c).

A URF ψ is called the minimal upper resolving function
(MURF) if ∃ is another URF η such that η≤ψ and
η(c)≠ψ(c) for at least one c ∈ V(ℵ). Similarly, a function
defined as κ: V(ℵ)⟶ [0, 1] is called lower resolving
function (LRF) if κ(R a, b{ })≤ 1,∀R a, b{ } in ℵ. An LRF κ is
called the maximal lower resolving function (MLRF) if ∃ is
another LRF μ such that μ≥ κ and μ(c)≠ κ(c) for at least one
c ∈ V(ℵ). *e FMD of a connected network is defined as
dimf(ℵ) � χ, where χ � min |ψ|: ψ

is the upperminimal resolving function} or χ � max |κ|: κ{

is the lowermaximal resolving function}.

3.1. Convex Polytopes. *e network ℵ � Bm of convex
polytope type I bearing 3m 3-sided faces, m 4-sided faces, n

5-sided faces, and a pair of n-sided faces is obtained by the
combination of the network of convex polytope Qn and
prism network Dn [28]. *e sets V(Bm) and E(Bm) are
V(Bm) � vr, wr, xr, yr, zr|1≤ r≤m  and E(Bm) � vrvr+1,

wrwr+1, xrxr+1, yryr+1, zrzr+1|1≤ r≤m} ∪ vrwr, wrxr,

wr+1xr, xryr, yrzr|1≤ r≤m}, respectively. In the same
manner, the cycles induced by vr|1≤ r≤m , wr|1≤ r≤m ,
xr|1≤ r≤m , yr|1≤ r≤m , and zr|1≤ r≤m  are called by
inner, interior, exterior, and outer cycle, respectively. Fig-
ure 1 illustrates Bm.

*e network of convex polytope type II ℵ � Cm is
created out of the network of Bm by adding new edges
yr+1zr. It comprises of 3m 3-sided faces, m 4-sided faces, m

5-sided faces, and a pair of m-sided faces. Similarly, the
cycles induced by vr|1≤ r≤m , wr|1≤ r≤m ,
xr|1≤ r≤m , yr|1≤ r≤m , and zr|1≤ r≤m  are called by
inner, interior, exterior, and outer cycle, respectively. Fig-
ure 2 illustrates Cm.

*e sets V(Cm) and E(Cm) are given by
V(Cm) � vr, wr, xr, yr, zr|1≤ r≤m  and E(Cm) � vrvr+1,

wrwr+1, xrxr+1, yryr+1, zrzr+1|1≤ r≤m}∪ vrwr, wrxr,

wr+1xr, xryr, yr+1zr|1≤ r≤m}, respectively.

4. Lower Bound of FMD of Connected Network

In this section, we develop criteria for the improved lower
bound of FMD of connected network. Before going further,
we give the following proposition.

Proposition 1. Suppose that ℵ is a connected network and
R � R a, b{ } is the resolving neighbourhood set for any
a, b{ } ⊂ V(ℵ). For κ � max |R|{ }, if Y � ∪ R: |R| �{

κ}⊆V(ℵ), then |R∩Y|≤ κ for each resolving neighbourhood
set of ℵ.

Lemma 1. Let ℵ be a connected network and R be the re-
solving neighbourhood set. 9en,

|V(ℵ)|

κ
≤ dimf(ℵ), (1)

where κ � max |R|{ } and 2≤ κ≤ |V(ℵ)|.
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Proof. Here, we define a mapping η: V(ℵ)⟶ [0, 1] such
that η(b) � (1/κ) for b ∈ V(ℵ). By Proposition 1, for
a, b{ } ⊂ V(ℵ), we have

η(R) � 
x∈R

η(x) � 
x∈R∩V(ℵ)

1
κ

� |R∩V(ℵ)|
1
κ
≤ 1. (2)

*is shows the fact that η is a lower resolving function
(LRF). In order to show that η is maximal LRF, suppose that
there exists another LRF ϕ such that ϕ(x)≥ η(x), where
ϕ(x)≠ η(x) for at least one x ∈ V(ℵ). For all x ∈ R such that
|R| � κ, we have

ϕ(R) � 
x∈R

ϕ(x)> 
x∈R

η(x) � 1. (3)

Hence, ϕ(R)> 1. *is shows that ϕ is not LRF, and
consequently, η is maximal LRF. Let η be another maximal
LRF of ℵ. *en,

|η| � 
x∈V(ℵ)

η(x). (4)

Now, we assume the following three cases: (a)
η(x)> (1/κ),∀x ∈ V(ℵ), (b) η(x)≤ (1/κ),∀x ∈ V(ℵ), and
(c) η(x)> (1/κ) for some x ∈ V(ℵ).

Case (a): if η(x)> (1/κ),∀x ∈ V(ℵ). For R⊆Y such that
|R| � κ, we have η(R)> 1. *is shows that η is not LRF.
Hence, this case does not hold.
Case (b): suppose that η(x)≤ (1/κ),∀x ∈ V(ℵ). *en,

|η| � 
x∈V(ℵ)

η(x)≤
|V(ℵ)|

κ
� |η|. (5)

Consequently,

dimf(ℵ) �
|V(ℵ)|

κ
. (6)

Case (c): if η(x)> (1/κ) for some x ∈ V(ℵ), suppose
that S � t ∈ V(ℵ)|η(t)> (1/κ)  and Y � ∪ R: |R|{

� κ}. We observe that S∩Y � Φ; otherwise, for κ � |R|,
η(x)> 1 which implies that η is not a LRF. Consider

|η| � 
x∈V(ℵ)

η(x) � 
x∈Y

η(x) + 
x∈V(ℵ)− Y

η(x). (7)

As x∈V(ℵ)− Yη(x)≥x∈V(ℵ)− Yη(x), hence,

|η| � 
x∈V(ℵ)

η(x) � 
x∈Y

η(x) + 
x∈V(ℵ)− Y

η(x)≥ 
x∈Y

η(x)

+ 
x∈V(ℵ)− Y

η(x) �
|V(ℵ)|

κ
� |η|.

(8)

Consequently,

dimf(ℵ) � |η|≥ |η| �
|V(ℵ)|

κ
. (9)

*erefore, from all the above case, we have

|V(ℵ)|

κ
≤ dimf(ℵ). (10)

*is completes the proof. □

5. Main Results

In this part of paper, we discuss the main results of our
findings regarding the networks under consideration.
Lemmas 2 and 3 concern with RNs of Bm and Cm, re-
spectively. Similarly, *eorems 1 and 2 give the upper and
lower bounds of FMD of the aforementioned networks.

Lemma 2. Let ℵ � Bm be a type I convex polytope, with
m≥ 6 and m ≡ 0(mod2). For 1≤ l, r≤m, p≥ 3, and s≥ 2,
s ≡ 0(mod2) and p ≡ 1(mod2); then,

(a) |Rl| � |R wl, xl | � |Rr| � |R wr, xr− 1 | � (7m/2)+ 1,
|∪m

l�1Rl| � 5m, |∪m
r�1Rr| � 5m, and |(∪m

r�1Rr)∪
(∪ m

r�1Rr)| � 5m

(b) |Rr|< |R′1| � |R vr, xr | � |R′2| � |R vr, xr− 1 | and
|R′u ∩ ∪m

r�1Rr|≥ |Rr|

(c) |Rt|< |R′3| � |R vr, vr+1 | � |R′4| � |R vr, vr+p | �

|R′5| � |R wr, wr+1 | � |R′6| � |R

wr, wr+p | � |R′7| �

|R xr, xr+s | � |R′8| � |R yr, yr+s | � |R′9| � |R zr,

zr+s}| � 5m − 6 and |R′u ∩ ∪ m
r�1Rr}|≥ |Rr| with

vm+1 � v1

(d) |Rr|< |R′10| � |R vr, vr+s | � |R′11| � |R

wr, wr+s | � |R′12| � |R xr, xr+1}| � |R′13| � |R xr,

xr+p}| � |R′14| � |R yr, yr+1 | �

|R′15| � |R yr, yr+p | � |R′16| � |R zr, zr+1 | �

|R′17| � |R zr, zr+p | � |R′18| � |R vr,
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Figure 1: Type I convex polytope Bm.
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Figure 2: Type II convex polytope Cm.
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wr+p}| � |R′19| � |R yr, zr+p | � 5m − 4, where p≥ 3
and |R′u ∩ ∪m

r�1Rr}|≥ |Rr|

(e) |Rt|< |R20| � |R wr, xr+p | � |R21| � |R wr, xr+s | �

|R′22| � |R vr, zr+p | � |R′23| � |R vr, yr+s | �

5m − 3, where |R′u ∩ ∪m
r�1Rr}|≥ |Rr|

(f ) |Rt|< |R′24| � |R vr, zr+s | � |R′25| � |R wr, zr+p | �

|R′26| � |R wr, zr+s | � |R′27| � |R vr, yr+p | �

|R′28| � |R xr, yr | � |R′29| � |R yr, zr |5m − 2 and
|R′u ∩ ∪ m

r�1Rr}|≥ |Rr|

(g) |Rt|< |R′30| � |R xr, zr | and |R′u ∩ ∪m
r�1Rr}|≥ |Rr|

(h) |Rt|< |R′24| � |R vr, zr+s | � |R′25| � |R wr, zr+p | �

|R′26| � |R wr, zr+s | � |R′27| � |R vr, yr+p | �

|R′28| � |R xr, yr | � |R′29| � |R yr, zr |5m − 2 and
|R′u ∩ ∪ m

r�1Rr}|≥ |Rr|

(i) |Rt|< |R′39| � |R vr, wr | � 5m and |R′u ∩
∪m

r�1Rr}|≥ |Rr|

Proof

(a) *e RNs of wl, xl and wr, xr− 1 are
R wl, xl  � V(Bm) − vh|h ≡ l + 1, l + 2, . . . , l + (m/

2) (modm)}∪ wh|h ≡ l + 1, l + 2, . . . , l + (m/2)

(modm)}∪ xh|h ≡ l + 1, l + 2, . . . , l+ (m/2)−

1(mod m)}and R wr, xr− 1  � V(Bm) − vh|h ≡ r −

1, r − 2, . . . , r − (m/2)(modm)} ∪ wh|h ≡ r − 1, r −

2, . . . , r − (m/2)(modm)}∪ xh|h ≡ r − 2, r − 3, . . . ,

r − (m/2) + 1(mod m)}. We note that
∪ m

l�1Rl � V(Bm), ∪m
r�1Rr � V(Bm) and

|∪ m
l�1Rl| � |∪ m

r�1Rr| � 5m, and |(∪m
l�1Rr)∪

(∪ m
r�1Rr)| � 5m,

(b) *e RNs of vr, xr  and vr, xr− 1  are
Ŕ1 � R vr, xr  � V(G) − wh|h ≡ r, r − 1, . . . , r−

(m/2) + 1(modm)}∪ xh|h ≡ r, r − 1, . . . , r − (m/2)

(modm)} and Ŕ2 � R vr, xr− 1  � V(G) − wh|h ≡ r+

1, r + 2, . . . , r + (m/2) (modm)}∪ xh|h ≡ r + 1, r +

2, . . . , r+ (m/2)(modm)}, respectively. It is clear
from the above that |Rr|< |Ŕu| and
|Ŕu ∩ ∪m

r�1Rr|≥ |Rr|.
(c) *e RNs of vr, vr+1 , vr, vr+p , wr, wr+1 ,

wr, wr+p , xr, xr+s , xr, xr+s , yr, yr+s , and
zr, zr+s  are R′3 � R vr, vr+1} � V(Bm)

− xh|h ≡ r, r + (m/2)

(modm)}∪ yh|h ≡ r, r + (m/2) (modm)} ∪
zh|h ≡ r, r + (m/2)(modm)  � R′5 � R wr, wr+p ,

R′4 � R vr, vr+p  � V(Bm)− xh|h ≡ r + ((p − 1)

/2), r + ((p + m − 1)/2)

(modm)}∪ yh|h ≡ r + ((p − 1)/2), r + ((p + m

− 1)/2) (modm)}∪ zh|h ≡

r + ((p − 1)/2), r + ((p + m − 1)/2)

(modm)} � R′6 � R wr, wr+p , R′7 � R xr,

xr+s} � V(Bm) − xh|h ≡ r + (s/2), r + ((m + s)/2)

(modm)}∪ yh|h ≡ r + (s/2), r + ((m + s)/2)

(modm)}∪ zh|h ≡ r + (s/2), r + ((m + s)/2)

(modm)} � R′8 � R yr, yr+s  � R′9 � R zr, zr+s ,

respectively. Clearly, |R′u| � 5m − 6. Since |Rr| �

(7m/2) + 1< |R′u|, then |R′u ∩ ∪ m
r�1Rr| � 5m − 6≥

|Rr|,
(d) *e RN’s of vr, vr+s , wr, wr+s , xr, xr+1 , xr,

xr+p}, yr, yr+1 , yr, yr+p , zr, zr+1 , zr, zr+p , vr,

wr+p}, and yr, zr+p  are given by
Ŕ10 � R vr, vr+s  � V(Bm) − vh |h ≡ r + (s/2), r+

((s + m)/2)(modm)} ∪ wh|h ≡ r + (s/2), r + ( (s +

m)/2)(modm)} � Ŕ11 � R wr, wr+s  �

Ŕ13 � R xr, xr+p  � Ŕ15 � R{

yr, yr+p} � Ŕ17 � R zr, zr+p , Ŕ18 � R vr, wr+p  � V(Bm)

− vh|h ≡ r + ((p + 1)/2), r + ((p + m + 1)/2)

(modm)}∪ wh|h ≡ r + ((p − 1)/2), r − ((p − 1)/2)

(modm)}, Ŕ19 � R yr, zr+p  � V(Bm) − xh|h ≡ r + ((p + 1)/ 2),

r + ((p + m + 1)/2)(modm)}∪ yh|h ≡ r +

((p + 1)/2), r + ((p + m + 1)/2)(modm)}, where
Ŕ12 � R xr, xr+1  � Ŕ14 � R yr, yr+1  � Ŕ16 �

R zr, zr+1  � R vr, vr+s . We can see that |Ŕu| � 5m −

4> |Rt| and |Ŕu ∩ ∪ 2t�1Rt|≥ |Rt|.
(e) *e RNs of wr, xr+p , wr, xr+s , vr, zr+p , and

vr, yr+s  are Ŕ20 � R wr, xr+p  � V(G) − vh|h ≡ r + ((p + 1)/2)

(modm)}∪ wh|h ≡ r + ((p + 1)/2)(modm) ∪
xh|h ≡ r + ((p + m + 1)/2)(modm) , Ŕ21 � R

wr, xr+s  � V(G) − vh|h ≡ r + ((m + s)/2)

(modm)}∪ wh|h ≡ r + ((m + s)/2)(modm) ∪
xh|h ≡ r + (s/ 2)(modm)}, Ŕ22 � R vr, yr+s  �

V(Bm) − wh|h ≡ r + ((s − 2)/2)

(modm)}∪ yh|h ≡ r + ((s − 2)/2)

(modm)}∪ zhh ≡ r + ((s + 2)/2)(modm)}, and
Ŕ23 � R vr, zr+p  � V(Bm)− wh|h ≡ r + ((p +

1)/2)(modm)}, and Ŕ28 � R xr, yr  � V(Bm)−

vh|h ≡ r − 1, r + 1(modm)  � Ŕ29 � R yr, zr , re-
spectively. We can see that |Ŕu| � 5m − 3> |Rt| and
|Ŕu ∩ ∪ 2t�1Rt|≥ |Rt|.

(g) *e resolving neighbourhood of xr, zr  is
Ŕ30 � R xr, zr  � V(Bm) − yh|1≤ h≤ 6 . We can
see that |Ŕu| � 4m> |Rt| and |Ŕu ∩ ∪m

t�1Rt|> |Rt|.
(h) *e resolving neighbourhoods of vr, wr+1  and

vr, zr+1  are Ŕ31 � R vr, wr+1  � V(Bm) −

vh|h ≡ r + 1, r + 2, . . . , r + (m/2)(modn)}, Ŕ32 �

R vr, zr+1  � V(Bm) − zh|h ≡ r + 1, r + 2, . . . , r +

(m/2)(modn)}, Ŕ33 � R vr, xr+1  � V(Bm) −

zh|h ≡ r + 2, r + 3, . . . , r + (m/2) (modm)}∪
xh|h ≡ r(modm) , Ŕ34 � R wr, zr+1  � V(Bm) −

wh|h ≡ r + 2, r + 3, . . . , r + (m/2) (modm)}∪
yh|h ≡ r(modm) , Ŕ35 � R vr, wr− 1  �

V(Bm) − vh|h ≡ r − 1, r − 2, . . . , r − (m/2)(modn)},
Ŕ36 � R vr, zr− 1  � V(Bm) − zh|h ≡ r − 1,

r − 2, . . . , r − (m/2)(modn)}, Ŕ37 � R vr, xr− 1  �

V(Bm) − zh|h ≡ r − 2, r − 3, . . . , r − (m/2)

(modm)}∪ xh|h ≡ r − 1(modm) , and Ŕ38 �

R wr, zr− 1  � V(Bm) − wh|h ≡ r − 2, r − 3, . . . ,

r − (m/2)(modm)}∪ yh|h ≡ r − 1(modm)},
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respectively. We can see that |Ŕu| � (9m/ 2)> |Rt|

and |Ŕu ∩ ∪ m
t�1Rt|> |Rt|.

(i) *e RN of vr, wr  is Ŕ39 � R vr, wr  � V(Bm).
Clearly, R wrxr | � (3m/2) + 1< |R vrwr | and
|R vrwr ∩ ∪ m

r�1Rr| � 3n≥ |Rr|. □

Theorem 1. If ℵ � Bm with m≥ 6 and m ≡ 0(mod2), then
dimf(Bm)< (10m/(7m + 2)).

Proof

Case I m � 6.
*e RNs are given as follows.
In the same way, from Lemma 2, we can see that
R xr, xr+s  � R yr, yr+s  � R zr, zr+s  �

R vr, vr+p− 1 .
Similarly, from Lemma 2, we can see that
R vr, vr+s  � R yr, yr+s  � R zr, zr+p .
Tables 1 and 2 represent the RNs having car-
dinality of 24, whereas Tables 3–6 show the RNs
with cardinalities of 26, 27, 28, and 30, respec-
tively. On the contrary, Table 7 bears RNs with
minimum cardinality of 22. Also, it is observed
that ∪ 12r�1Rr � V(B6); this implies |∪ 12r�1Rr| � 30
and |Rr ∩ ∪ 6r�1Rr|≥ |Rr|.
Now, we define a function μ: V(B6)⟶ [0, 1]

such that μ(vr) � μ(wr) � μ (xr) � μ(yr) �

μ(zr) � (1/22). As Rr for 1≤ t≤ 12 of B6 are
pairwise overlapping, hence, ∃ is another minimal
resolving function κ of B6 such that |μ|< |μ|. As a
result, dimf(B6)<

18
r�1(1/10)< (30/22).

Similarly, Table 7 shows the RNs with maximum
cardinality of 30 � κ; hence, by Lemma 1,
(|V(B6)|/κ) � (30/30) � 1< dimf(B6).
*erefore,

1< dimf B6( <
30
22

. (11)

Case II m≥ 8.
We have seen from Lemma 2 that the RNs with
minimum cardinality of (7m/2) + 1 are R wl, xl 

and R wr, xr− 1  and ∪ m
t�1Rt � V(Bm). Let λ �

(7m/2) + 1 and δ � |∪m
t�1Rt| � 5m. Now, we

define a mapping μ: V(Bm)⟶ [0, 1] such that

μ(a) �

1
λ
, for a ∈ ∪

m

t�1
Rt,

0, for a ∈ V(B) − ∪
m

t�1

Rt.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(12)

We can see that μ is a RF for Bm with m≥ 3
because μ(R u, v{ })≥ 1,∀u, v ∈ V(Bm). On the
contrary, assume that there is another re-
solving function ρ, such that ρ(u)≤ μ(u), for at
least one u ∈ V(Bm), ρ(u)≠ μ(u). As a

consequence, ρ(R u, v{ })< 1, where R u, v{ } is a
RN of Bm with minimum cardinality λ. *is
implies that ρ is not a resolving function which
is contradiction. *erefore, μ is a minimal
resolving function that attains minimum |μ|

for Bm. Since all Rr are having pairwise
nonempty intersection, so there is another
minimal resolving function of μ of Bm such
that |μ|≤ |μ|. Hence, assigning (1/λ) to the
vertices of Bm in ∪ 2m

t�1Rt and calculating the
summation of all the weights, we obtain

dimf Bm(  � 
δ

t�1

1
λ
≤

5m

(7m/2) + 1
�

10m

7m + 2
. (13)

Also, the RN with maximum cardinality of 5m is
R vr, wr . Let |V(Bm)| � ω and |R vr, wr | � κ;
thus, from Lemma 2, we have (|V(Bm)|/κ) �

(ω/κ) � (5m/5m) � 1< dimf(B).
*erefore, we conclude the following:

1< dimf Bm( <
10m

7m + 2
. (14)

□

Lemma 3. Let ℵ � Cm be a type II convex polytope, where
m≥ 6 and m ≡ 0(mod2). For 1≤ l, r≤m, p≥ 3, s≥ 2,
s ≡ 0(mod2), and p ≡ 1(mod2), then

(a) |Rl| � |R yl, zl | � |Rr| � |R yr, zr− 1 | � 3(m + 1),
|∪ m

l�1Rl| � 5m, |∪ m
r�1Rr| � 5m, and |(∪m

r�1Rr)∪
(∪m

r�1Rr)| � 5m

(b) |Rr|< |Ŕ1| � |R wr, xr | � |Ŕ2| � |R wr, xr− 1 | �

(7m/2) + 1 and |∪ m
r�1Rr| � 5m

(c) |Rr|< |R′3| � |R vr, vr+1 | � |R′4| � |R vr, vr+p | �

|R′5| � |R wr, wr+1 | � |R′6| � |R wr, wr+p | �

|R′7| � |R xr, xr+s | � |R′8| � |R xr, xr+1 | � |R′9| �

|R xr, xr+p}| � |R′10| � |R yr, yr+1 | � |R′11| �

|R yr, yr+p}| � |R′12| � |R zr, zr+s | � |R′13| �

|R vr, wr+p | � 5m − 6 and |R′u ∩ ∪m
r�1Rr}|≥ |Rr|,

(d) |Rr|< |R′14| � |R zr, zr+p | � |R′15| � |R vr, zr+s | �

|R′16| � |R wr, xr+p | � |R′17| � |R wr, yr+s | �

|R′18| � |R xr, yr+s | � |R′19| � |R xr, zr+s | � 5m −

4 and |R′u ∩ ∪ m
r�1Rr}|≥ |Rr|, where p≥ 3

(e) |Rr|< |R′20| � |R vr, xr+p | � |R′21| � |R vr, xr+s | �

|R′22| � |R vr, yr+s | � |R′23| � |R wr, yr+p | �

|R′24| � |R wr, zr+s | � |R′25| � |R yr, zr+s | �

|R′26| � |R xr, zr+p | � 5m − 3 and
|R′u ∩ ∪m

r�1Rr}|≥ |Rr| with vm+1 � v1, where p≥ 3
(f ) |Rr|< |Ŕ27 | � |R wr,yr | � |Ŕ28| � |R wr,zr | �

|Ŕ29| � |R vr,yr+p | � |Ŕ30| � |R xr,yr+p | � 5m − 2
and |Ŕu∩ ∪m

r�1Rr}|≥ |Rr|, where p≥3
(g) |Rr|< |Ŕ31| � |R yr, zr+p | � |Ŕ32| � |R yr, zr+p}| �

5(n − 1) and |Ŕu ∩ ∪m
r�1Rr}|≥ |Rr|, where p≥ 3
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Table 1: *e representation of R
′

u
for 1≤ u≤ 41.

RNs Elements Equality

R v1, v2  V(B6) − x1, x4 ∪ y1, y4 ∪ z1, z4 
R v4, v5 , R w1, w2 , R w3, w6 ,

R v3, v6 , R w4, w7 , R x4, x7 , R x3, x5 

R v2, v3  V(B6) − x2, x5 ∪ y2, y5 ∪ z2, z5 

R v5, v6 , R w2, w3 , R w5, w6 ,
R v1, v4 , R w1, w4 , R v5, v8 ,

R w5, w8 , R x1, x3 , R w5, w8 , R x1, x3 ,
R x4, x6 

R v3, v4  V(B6) − x3, x6 ∪ y3, y6 ∪ z3, z6 

R v1, v6 , R w1, w6 , R w1, w8 ,
R v2, v5 , R w2, w5 , R v1, v6 ,
R w1, w6 , R x2, x4 , R x1, x5 

R v1, x1  V(B6) − w1, w5, w6 ∪ x4, x5, x6 

R v2, x2  V(B6) − w1, w2, w6 ∪ x1, x5, x6 

R v3, x3  V(B6) − w1, w2, w3 ∪ x1, x2, x6 

R v4, x4  V(B6) − w2, w3, w4 ∪ x1, x2, x3 

R v5, x5  V(B6) − w3, w4, w5 ∪ x2, x3, x4 

R v6, x6  V(B6) − w4, w5, w6 ∪ x3, x4, x5 

R v2, x1  V(B6) − w2, w3, w4 ∪ x2, x3, x4 

R v3, x2  V(B6) − w3, w4, w5 ∪ x3, x4, x5 

R v4, x3  V(B6) − w4, w5, w6 ∪ x4, x5, x6 

R v5, x4  V(B6) − w1, w5, w6 ∪ x1, x5, x6 

R v6, x5  V(B6) − w1, w2, w6 ∪ x1, x2, x6 

Table 2: *e representation of R
′

u
for 42≤ u≤ 47.

RNs Elements
R x1, z1  R x2, z2 

V(B6) − yh|1≤ h≤ 6 R x3, z3  R x4, z4 

R x5, z5  R x5, z5 

Table 3: *e representation of R
′

u
for 48≤ u≤ 81.

RNs Elements Equality

R v1, v3  V(B6) − v2, v5 ∪ w2, w5 

R v5, v7 , R w1, w3 , R w5, w7 ,
R v4, v8 , R w4, w8 , R x1, x2 ,

R x4, x5 , R x5, x8 

R v2, v4  V(B6) − v3, v6 ∪ w3, w6 

R v6, v8 , R w2, w4 , R w6, w8 ,
R v1, v5 , R w1, w5 , R x2, x3 ,
R x5, x6 , R x1, x4 , R x1, x6 

R v3, v5  V(B6) − v4, v7 ∪ w4, w7 

R v1, v7 , R w3, w5 , R w1, w7 ,
R w2, w6 , R x3, x4 , R x6, x7 ,
R x2, x5 , R x2, x7 , R v2, v6 

R y1, z4  V(B6) − x3, x6 ∪ y3, y6 

R y2, z5  V(B6) − x1, x4 ∪ y1, y4 

R y3, z6  V(B6) − x2, x5 ∪ y2, y5 

R v1, w4  V(B6) − v3, v6 ∪ w2, w6 

R v2, w5  V(B6) − v1, v4 ∪ w1, y2 

R v3, w6  V(B6) − v2, v5 ∪ w2, w4 
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(h) |Rr|< |Ŕ33| � |R vr,xr | � |Ŕ34| � |R vr,xr− 1 | �

4m +1 and |Ŕu∩ ∪m
r�1Rr}|≥ |Rr|, where p≥3

(i) |Rr|< |Ŕ35| � |R xr, yr+1 | � 4m + 2 and |Ŕu ∩
∪ m

r�1Rr}|≥ |Rr|

(j) |Rr|< |Ŕ36| � |R xr, zr+1 | � 4m and |Ŕu ∩
∪ m

r�1Rr}|≥ |Rr|

(k) |Rr|< |Ŕ37 | � |R vr, wr+1 | � |Ŕ38| � |R vr, yr | �

(9m/2) and |Ŕu ∩ ∪m
r�1Rr}|≥ |Rr|

(l) |Rr|< |Ŕ39| � |R vr, xr+1 | � (9m/2) − 1 and
|Ŕu ∩ ∪ m

r�1Rr}|≥ |Rr|

(m) |Rr|< |Ŕ40| � |R vr, zr | � |Ŕ41| � |R xr, zr | �

(9m/ 2) + 1 and |Ŕu ∩ ∪ m
r�1Rr}|≥ |Rr|

(n) |Rr|< |Ŕ42| � |R vr, wr | � |Ŕ43| � |R xr, yr | � 5m

and |Ŕu ∩ ∪m
r�1Rr}|≥ |Rr|

Table 4: *e representation of R
′

u
for 82≤ u≤ 136.

RNs Elements Equality
R v1, y3  V(B6) − w1 ∪ y1 ∪ z3  R v4, y6 

R v2, y4  V(B6) − w2 ∪ y2 ∪ z4  R v1, y5 

R v3, y5  V(B6) − w3 ∪ y3 ∪ z5  R v2, y6 

R v1, z4  V(B6) − w5 ∪ x5 ∪ y6 

R v2, z5  V(B6) − w6 ∪ y6 ∪ y1 

R v3, z6  V(B6) − w1 ∪ y1 ∪ y2 

R v1, w2  V(B6) − v2, v3, v4  R v5, w4 

R v2, w3  V(B6) − v3, v4, v5  R v6, w5 

R v3, w4  V(B6) − v4, v5, v6 

R v4, w5  V(B6) − v1, v5, v6  R v2, w1 

R v5, w6  V(B6) − v1, v2, v6  R v3, w2 

R v1, w6  V(B6) − z1, v2, v3  R v4, w3 

R v1, z2  V(B6) − z2, z3, z4  R v5, z4 

R v2, z3  V(B6) − z3, z4, z5  R v6, z5 

R v3, z4  V(B6) − z4, z5, z6 

R v4, z5  V(B6) − z1, z5, z6  R v2, z1 

R v5, z6  V(B6) − z1, z2, z6  R v3, z2 

R v1, z6  V(B6) − z1, z2, z3  R v4, z3 

R v1, x2  V(B6) − z3, z4 ∪ x1 

R v2, x3  V(B6) − z4, z5 ∪ x2 

R v3, x4  V(B6) − z5, z6 ∪ x3 

R v4, x5  V(B6) − z1, z6 ∪ x4 

R v5, x6  V(B6) − z1, z2 ∪ x5 

R v1, x6  V(B6) − z2, z3 ∪ x6 

R v2, x1  V(B6) − z5, z6 ∪ x1 

R v3, x2  V(B6) − z1, z6 ∪ x2 

R v4, x3  V(B6) − z1, z2 ∪ x3 

R v5, x4  V(B6) − z2, z3 ∪ x4 

R v6, x5  V(B6) − z3, z4 ∪ x5 

R w1, z2  V(B6) − z3, z4 ∪ y1 

R w2, z3  V(B6) − w4, z5 ∪ y2 

R w3, z4  V(B6) − w5, w6 ∪ y3 

R w4, z5  V(B6) − w1, w6 ∪ y4 

R w5, z6  V(B6) − w1, w2 ∪ y5 

R w1, z6  V(B6) − w2, w3 ∪ y6 

R w2, z1  V(B6) − w5, w6 ∪ y1 

R w3, z2  V(B6) − w1, w6 ∪ y2 

R w4, z3  V(B6) − w1, w2 ∪ y3 

R w5, z4  V(B6) − w2, w3 ∪ y4 

R w6, z5  V(B6) − w3, w4 ∪ y5 

R w1, z6  V(B6) − w4, w5 ∪ y6 

Table 5: *e representation of R
′

u
for 137≤ u≤ 174.

RNs Elements Equality
R v1, z3  V(B6) − w3 ∪ y1  R v4, y6 

R v2, z4  V(B6) − w4 ∪ y2  R v1, y5 

R v3, z5  V(B6) − w5 ∪ y3 

R v4, z6  V(B6) − w6 ∪ y4 

R v1, z5  V(B6) − w2 ∪ y5 

R v2, z6  V(B6) − w1 ∪ y6 

R w1, z4  V(B6) − x3 ∪ y2 

R w2, z5  V(B6) − x4 ∪ y2 

R w3, z6  V(B6) − x5 ∪ y3 

R w1, z3  V(B6) − x4 ∪ y5 

R w2, z4  V(B6) − x4 ∪ y6 

R w3, z5  V(B6) − x5 ∪ y1 

R w4, z6  V(B6) − x6 ∪ y2 

R w1, z5  V(B6) − x1 ∪ y3 

R w2, z6  V(B6) − x2 ∪ y4 

R v1, y4  V(B6) − w3 ∪ y1 

R v2, y5  V(B6) − w4 ∪ y2 

R v3, y6  R v1, y4 

R v1, y3  V(B6) − v4 ∪ w5 

R v2, y4  V(B6) − v5 ∪ w6 

R v3, y5  V(B6) − v6 ∪ w1 

R v4, y6  V(B6) − v1 ∪ w2 

R v1, y5  V(B6) − v2 ∪ w3 

R v2, y6  V(B6) − v3 ∪ w4 

R x1, y1  V(B6) − v2, v6  R y1, z1 

R x2, y2  V(B6) − v1, v3  R y2, z2 

R x3, y3  V(B6) − v2, v4  R y3, z3 

R x4, y4  V(B6) − v3, v5  R y4, z4 

R x5, y5  V(B6) − v4, v6  R y5, z5 

R x6, y6  V(B6) − v1, v5  R y6, z6 

Table 6: *e representation of R
′

u
for 175≤ u≤ 180.

RNs Elements
R v1, w1  R v2, w2 

R v3, w3  R v4, w4  V(B6)

R v5, w5  R v5, w5 

Table 7: *e representation of Rr for 1≤ r≤ 12.

RNs Elements
R1 � R w1, x1  V(B6) − v2, v3, v4 ∪ w2, w3, w4 ∪ x2, x3 

R2 � R w2, x2  V(B6) − v3, v4, v5 ∪ w3, w4, w5 ∪ x3, x4 

R3 � R w3, x3  V(B6) − v4, v5, v6 ∪ w4, w5, w6 ∪ x4, x5 

R4 � R w4, x4  V(B6) − v1, v5, v6 ∪ w1, w5, w6 ∪ x5, x6 

R5 � R w5, x5  V(B6) − v1, v2, v6 ∪ w1, w2, w6 ∪ x1, x6 

R6 � R w6, x6  V(B6) − v1, v2, v3 ∪ w1, w2, w3 ∪ x1, x2 

R7 � R w2, x1  V(B6) − v1, v5, v6 ∪ w1, w5, w6 ∪ x5, x6 

R8 � R w3, x2  V(B6) − v1, v2, v6 ∪ w1, w2, w6 ∪ x1, x6 

R9 � R w4, x3  V(B6) − v1, v2, v3 ∪ w1, w2, w3 ∪ x1, x2 

R10 � R w5, x4  V(B6) − v2, v3, v4 ∪ w2, w3, w4 ∪ x2, x3 

R11 � R w6, x5  V(B6) − v3, v4, v5 ∪ w3, w4, w5 ∪ x3, x4 

R12 � R w1, x6  V(B6) − v4, v5, v6 ∪ w4, w5, w6 ∪ x4, x5 
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Proof

(a) *e RNs of yl, zl  and yr, zr− 1  are R yl, zl  �

V(Cm) − vh|h ≡ l + 2, l + 3, . . . , l + (m/, )2

(modm)}∪ wh|h ≡ l + 2, l + 3, . . . , l + (m/2)

(modm)}∪ yh|h ≡ l − 1, l − 2, . . . , l − (m/2) +

1(mod m)}∪ zh|h ≡ l − 1, l − 2, . . . , l − (m/2)

(mod m)} and R yr, zr− 1  � V(Cm) − vh|h ≡ r −

2, r − 3, . . . , r − (m/2)(modm)}∪ wh|h ≡ r − 2, r −

3, . . . , r − (m/2)(modm)}∪ yh|h ≡ r + 1, r +

2, . . . , r + (m/2) − 1(modm)}∪ zh|h ≡ r + 1, r +

2, . . . , r + (m/2)(mod m)}, respectively. We note
that |Rr| � |Rl| � 3(m + 1), ∪m

l�1Rl � V(Cm),

∪m
r�1Rr � V(Cm) and |(∪m

l�1Rl)∪ (∪ m
r�1Rr)| � 5m.

Also, |∪m
l�1Rl| � |∪ m

r�1Rr| � 5m.
(b) *e RNs of wr, xr  and wr, xr− 1  are

Ŕ1 � R wr, xr  � V(Cm) − vh|h ≡ r + 1, r + 2, . . . ,

r + (m/2) (modm)} ∪ wh|h ≡ r + 1, r + 2, . . . ,

r + (m/2) (modm)}∪ xh|h ≡ r + 1, r +

2, . . . , r + (m/2) − 1(mod m)}, Ŕ2 � R wr, xr− 1  �

V(Cm) − vh|h ≡ r − 1, r − 2, . . . , r − (m/2)

(modm)}∪ wh|h ≡ r − 1, r − 2, . . . , r − (m/2)

(modm)}∪
xh|h ≡ r − 2, r − 3, . . . , r − (m/2) + 1(mod m)},
and R yr, zr  � V(Cm) − xh|h ≡ r −

1, r − 2, . . . , r − (m/2) + 1(modm)}, respectively.
Clearly, |Ŕu| � (7m/2) + 1. Since
|Rr| � (7m/2) + 1< |Ŕu|, then |Ŕu ∩ ∪m

r�1Rr|≥ |Rr|,
|Rr|< |Ŕ3| � |R vr, vr+1 | � |Ŕ4| � |R vr, vr+p | � |Ŕ5| �

|R wr, wr + 1}| � |Ŕ6| � |R wr, wr+p | �

|Ŕ7| � |R xr, xr+s | �

|Ŕ8| � |R xr, xr+1 | � |Ŕ9| � |R xr, xr + p}| � |Ŕ10| �

|R yr, yr+1 | � |Ŕ11| � |R yr, yr+p | � |Ŕ12| �

|R zr, zr+s | � |Ŕ13| � |R vr, wr+p | � |Ŕ14| �

|R vr, wr+s | � |Ŕ15| � |R wr, zr+p | � 5m − 6.
(c) *e RNs of vr, vr+1 , vr, vr+p , wr, wr+1 , wr, wr +

p}, xr, xr+s , xr, xr+1 , xr, xr + p}, yr, yr+1 , yr,

yr+p}, zr, zr + s}and vr, wr+p  are Ŕ3 � R vr, vr+1  �

V(Cm) − xh|h ≡ r + ((p − 1)/2), r + ((p + m − 1)/
2)(modn}∪ yh|h ≡ r + ((p − 1)/2), r + ((p + m −

1)/2)(modn)}∪ zh|h ≡ r + ((p − 1)/ 2), r − ((p −

1)/2) (modn} � Ŕ5 � R wr, wr+1 R4 � R vr, vr+p  �

V(Cm) − xh|h ≡ r + ((p − 1)/2), r + ((p + m −

1)/2) (modn}∪ yh|h ≡ r + ((p − 1)/2), r + ((p +

m − 1)/2)(modn)}∪ zh|h ≡ r + ((p − 1)/2),

r − ((p − 1)/2)(modn} � Ŕ6 � R wr, wr+p , Ŕ7 �

R vr, vr+s  � V(Cm) − vh|r + (s/2), r +

((s + m)/2)(modm)} ∪ wh|r + (s/ 2), r + ((s + m)/
2)(modm)}∪ zh|r + ((s − 2)/2), r + ((s + m −

2)/2) (modm)} � Ŕ8 � R wr, wr+s  � Ŕ9 � R

xr, xr +p  � Ŕ11 � R yr, yr +

p} ,Ŕ12 � R zr, zr+s  � V(Cm) − vh|h ≡ r + ((s + 2)/2), r +

((s + m + 2)/2) (modm)}∪ wh|h ≡

r + ((s + 2)/2), r +

((s + m + 2)/2)(modm)}∪ zh|r +

(s/2), r + ((s + m)/2) (modm)}, Ŕ13 �

R vr, wr+p  � V(Cm)− vh|h ≡ r + ((p + 1)/2), r +

((p + m − 1)/2)(modm)}∪ wh|h ≡ r +

((p − 1)/2), r − ((p −

1)/2)(modm)}∪ zh|h ≡ r + ((p − 3)/2), r + ((p +

m − 1)/2)(modm)}, and Ŕ8 � R xr, xr+1  �

R vr, vr+2  � Ŕ10 � R yr, yr+1 . Clearly,
|Ŕu| � 5m − 6. Since |Rr| � (7m/2) + 1< |Ŕu|, then
|Ŕu ∩ ∪ r � 1mRr| � 5m − 6≥ |Rr|.

(d) *e RN’s of
zr, zr+p , vr, zr+s , wr, xr+p , wr, yr+s , xr, yr+s 

and xr, zr+s  are Ŕ14 � R zr, zr +

p} � V(Cm) − xh|h ≡ r + ((p + 1)/2), r + ((p +

1 + m)/2)(modn)} ∪ yh||h ≡ r +

((p + 1)/2), r + ((p + 1 + m)/2)(modn)},
Ŕ15 � R vr, zr+s  � V(Cm) − xh|h ≡ r + (s/2), r +

((s + m)/2)(modn)}∪ wh|h ≡ r +

((s + 2)/2), r + ((s + m)/2)(modn)}, Ŕ16 � R wr
, xr+p} � V(Cm) − wh|h ≡ r + ((p + 1)/2)

(modm)}∪ vh| h ≡ r + ((p + 1)/2)

(modm)}∪ yh|h ≡ r + ((p − 1)/ 2)(modm)}

∪ xh||h ≡ r + ((p + m − 1)/2)(modm) ,
Ŕ17 � R wr, yr+s} � V(Cm) − xh|h ≡ r + (s/2)

(modm)}∪ vh|h ≡ r + ((s + 2)/2)(modm)}∪
zh|h ≡ r − (s/2), r − ((s + 2)/2)(modm)},

Ŕ18 � R xr, yr+s  � V(Cm) − vh|h ≡ r + ((s + 2)/2), r + ((m + s)/2)

(modn)}∪ wh|h ≡ r + ((s + 2)/2), r + ((m + s)/2)

(modn)} and Ŕ19 � R xr, zr+s  � V(Cm) − vh|h ≡

r + ((s + 4)/2), r + ((m + s)/2)(modn)} ∪
wh|h ≡ r + ((s + 4)/2), r + ((m + s)/2)(modn)},
respectively. We can see that, for 9≤ u≤ 14, |Ŕu| �

5m − 4> |Rt| and |Ŕu ∩ ∪m
t�1Rt|≥ |Rt|,

(e) *e RNs of vr, xr + p}, vr, xr+s , vr, yr +

s}, wr, yr+p , wr, zr+s , yr, zr+s , and xr, zr+p 

are Ŕ20 � R vr, xr+p  � V(Cm) − vh|h ≡ r + ((m +

p − 1)/2)(modn)}∪ wh|h ≡ r + ((m +

p + 1)/2)(modn)}∪ xh|h ≡ r +

((p − 1)/2)(modn)}, Ŕ21 � R vr, xr+s  � V(Cm)−
vh|h ≡ r + ((s + 2)/2)(modn) ∪ wh|h ≡

r + (s/2)(modn)}∪ xh|h ≡ r +

((m + s)/2)(modn)}, Ŕ22 � R vr, yr+s  � V(Cm) −
vh|h ≡ r + ((s + m − 2)/2)(modn)}∪ xh|h ≡ r +

((s + m)/2)(modn)}∪ yh|h ≡ r + ((s − 2)/2)

Table 8: *e representation of R
′

u
for 1≤ u≤ 12.

RNs Elements
R w1, x1  V(C6) − v2, v3, v4 ∪ w2, w3, w4 ∪ x2, x3 

R w2, x2  V(C6) − v3, v4, v5 ∪ w3, w4, w5 ∪ x3, x4 

R w3, x3  V(C6) − v4, v5, v6 ∪ w4, w5, w6 ∪ x4, x5 

R w4, x4  V(C6) − v1, v5, v6 ∪ w1, w5, w6 ∪ x5, x6 

R w5, x5  V(C6) − v1, v2, v6 ∪ w1, w2, w6 ∪ x1, x6 

R w6, x6  V(C6) − v1, v2, v3 ∪ w1, w2, w3 ∪ x1, x2 

R w2, x1  V(C6) − v1, v5, v6 ∪ w1, w5, w6 ∪ x5, x6 

R w3, x2  V(C6) − v1, v2, v6 ∪ w1, w2, w6 ∪ x1, x6 

R w4, x3  V(C6) − v1, v2, v3 ∪ w1, w2, w3 ∪ x1, x2 

R w5, x4  V(C6) − v2, v3, v4 ∪ w2, w3, w4 ∪ x2, x3 

R w6, x5  V(C6) − v3, v4, v5 ∪ w3, w4, w5 ∪ x3, x4 

R w1, x6  V(C6) − v4, v5, v6 ∪ w4, w5, w6 ∪ x4, x5 
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(modn)}, Ŕ23 � R wr, yr+p  � V(Cm) − wh|h ≡ r +

((p + 1)/2)(modn)}∪ yh|h ≡ r − ((p − 1)/2)

(modn)}∪ zh|h ≡ r + ((p − 3)/2)(modn) , Ŕ24 �

R wr, zr+s  � V(Cm) − vh|h ≡ r + s + 1 (modn)}∪
wh|h ≡ r + s + 1(modn) ∪ zn , Ŕ25 � R yr, zr+s  �

V(Cm) − vh|h ≡ r + ((s + 2)/2)(modn) ∪ wh|

h ≡ r + ((s + 2)/2)(modn)}∪ xh|h ≡ r + (s/2)

(modn)}, and Ŕ26 �
R xr, zr+p  � V(Cm) − vh|h ≡ r + p(modn)} ∪
wh|h ≡ r + p(modn) ∪ xh|h ≡

r + p − 1(modn)}, respectively. We can see that, for

17≤ u≤ 23, |Ŕu| � 5m − 3> |Rt| and |Ŕu ∩ ∪m
t�1

Rt|≥ |Rt|.

(f ) *e RNs of wr, yr , vr, yr+p , wr, zr  and
xr, yr+p  are Ŕ27 � R wr, yr  � V(C) − xh|h ≡

r(modm)}∪ yh|h ≡ r − 1(modm) , Ŕ28 � R wr,

zr} � V(C) − xh|h ≡ r + 1, r + 2(modm) ,
Ŕ29 � R vr, yr+p  � V(C) − wh|h ≡ r + ((p + 1)/
2)(modm)}∪ xh|h ≡ r + ((p − 1)/2)(modm)  and
Ŕ30 � R xr, yr+p  � V(C) − xh|h ≡ r + ((p +

1)/2), r − ((p + 1)/2)(modm)}, respectively.
Clearly, |Ŕu| � 5m − 2 for 27≤ u≤ 30 and
|Ŕu ∩ ∪ m

r�1Rr}|≥ |Rr|.
(g) *e RNs of wr, zr+p  and yr, zr+p  is

Ŕ31 � V(Cm) − vh|r ≡ r + ((p + 3)/2),
r + ((p + m + 1)/2)(modm)}∪
wh|r ≡ r + ((p + 3)/2), r + ((p + m + 1)/2)

(modm)}∪ zh|r ≡ r + ((p − 1)/2)(modm)  and
Ŕ32 � R wr, zr+p  � V(Cm) − xh|h ≡ r +

((p + 1)/2), r + ((p + m +

1)/2)(modm)}∪ yh|h ≡ r + ((p − 1)/ 2), r − ((p −

1)/2)(modm)}∪ wh|h ≡ r + ((p + 3)/ 2)(modm)},
respectively. Clearly, |Ŕ29|> |Rt| and
|Ŕu ∩ ∪ m

r�1Rr}|≥ |Rr|.
(h) *e RNs of vr, xr  and vr, xr− 1  are Ŕ33 � R vr, xr  �

V(Cm) − wh|h ≡ r, r − 1, r − 2, . . . , r − (n/2) +

Table 9: *e representation of R
′

u
for 13≤ u≤ 67.

RNs Elements Equality
R v1, v2  V(C6) − x1, x4 ∪ y1, y4 ∪ z1, z6  R v1, v2 , R w1, w2 , R w1, w2 ,
R v2, v3  V(C6) − x2, x5 ∪ y2, y5 ∪ z1, z2  v1, v4 , R w2, w3 , R w1, w4 ,

R v3, v4  V(C6) − x3, x6 ∪ y3, y6 ∪ z2, z3 
R v2, v5 , R w3, w4 , R w2, w5 ,

R v4, v7 , R w4, w7 

R v4, v5  V(C6) − x1, x4 ∪ y1, y4 ∪ z3, z4  R v3, v6 , R w4, w5 , R w3, w6 ,
R v5, v6  V(C6) − x2, x5 ∪ y2, y5 ∪ z4, z5  R w5, w6 ,
R v1, v6  V(C6) − x3, x6 ∪ y3, y6 ∪ z5, z6  R w1, w6 , R v1, v4 ,

R v1, v3  V(C6) − v2, v5 ∪ w2, w5 ∪ z1, z4 
R w1, w6 , R v4, v6 , R y1, y2 

R y4, y5 , R y3, y6 , R z2, z6 , R z4, z6 

R v2, v4  V(C6) − v3, v6 ∪ w3, w6 ∪ z2, z5 
R w1, w6 , R v1, v5 , R y2, y3 

R y5, y6 , R y1, y4 , R z1, z3 

R v3, v5  V(C6) − v1, v4 ∪ w1, w4 ∪ z3, z6 
R w1, w6 , R v2, v6 , R y3, y4 

R y1, y6 , R y2, y5 , R z2, z4 

R v1, w4  V(C6) − v1, v4 ∪ w1, w4 ∪ z3, z6 
R w1, w6 , R v2, v6 , R y3, y4 

R y1, y6 , R y2, y5 , R z2, z4 

R v1, w4  V(C6) − v3, v5 ∪ w2, w6 ∪ z1, z5 

R v2, w5  V(C6) − v2, v6 ∪ w1, w3 ∪ z2, z6 

R v3, w6  V(C6) − v1, v5 ∪ w2, w4 ∪ z1, z3 

R v1, x1  V(C6) − w1, w5, w6 ∪ x4, x5, x6 

R v2, x2  V(C6) − w1, w2, w6 ∪ x1, x5, x6 

R v3, x3  V(C6) − w1, w2, w3 ∪ x1, x2, x6 

R v4, x4  V(C6) − w2, w3, w4 ∪ x1, x2, x3 

R v5, x5  V(C6) − w3, w4, w5 ∪ x2, x3, x4 

R v6, x6  V(C6) − w4, w5, w6 ∪ x3, x4, x5 

R v2, x1  V(C6) − w2, w3, w4 ∪ x3, x4, x5 

R v3, x2  V(C6) − w3, w4, w4 ∪ x4, x5, x6 

R v4, x3  V(C6) − w4, w5, w6 ∪ x1, x5, x6 

R v5, x4  V(C6) − w1, w5, w6 ∪ x1, x2, x6 

R v6, x5  V(C6) − w1, w2, w6 ∪ x1, x2, x3 

R v1, x6  V(C6) − w1, w2, w3 ∪ x2, x3, x4 

Table 10: *e representation of R
′

u
for 68≤ u≤ 79.

RNs Elements
R y1, z4  V(C6) − v3, v6 ∪ w3, w6 ∪ z2 

R y2, z5  V(C6) − v1, v4 ∪ w1, w4 ∪ z3 

R y3, z6  V(C6) − v2, v5 ∪ w2, w5 ∪ z4 

R w1, z4  V(C6) − x3, x6 ∪ y2, y6 ∪ w4 

R w2, z5  V(C6) − x1, x4 ∪ y1, y3 ∪ w5 

R w3, z6  V(C6) − x2, x5 ∪ y1, y2 ∪ w6 

R v1, x2  V(C6) − v2, v3, v4 ∪ x1 ∪ w5 

R v2, x3  V(C6) − v3, v4, v5 ∪ x2 ∪ w6 

R v3, x4  V(C6) − v4, v5, v6 ∪ x3 ∪ w1 

R v4, x5  V(C6) − v1, v5, v6 ∪ x4 ∪ w2 

R v5, x6  V(C6) − v1, v2, v3 ∪ x5 ∪ w3 

R v1, x6  V(C6) − v2, v3, v4 ∪ x6 ∪ w4 
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Table 11: *e representation of R
′

u
for 80≤ u≤ 127.

RNs Elements Equality
R z1, z2  V(C6) − x2, x5 ∪ y2, y5  R z4, z5 , R z3, z6 

R z2, z3  V(C6) − x3, x6 ∪ y3, y6  R z5, z6 , R z1, z4 

R z3, z4  V(C6) − x1, x4 ∪ y3, y6  R z1, z6 , R z2, z5 

R v1, z3  V(C6) − x2, x5 ∪ w3, w5  R w4, z6 

R v2, z4  V(C6) − x3, x6 ∪ w4, w6  R w1, z5 

R v3, z5  V(C6) − x1, x4 ∪ w1, w5  R w2, z6 

R w1, x4  V(C6) − w3 ∪ v3 ∪ y2 ∪ x5 

R w2, x5  V(C6) − w4 ∪ v4 ∪ y3 ∪ x6 

R w3, x6  V(C6) − w5 ∪ v5 ∪ y4 ∪ x1 

R w1, x3  V(C6) − x2 ∪ v3 ∪ z5, z6 

R w2, x4  V(C6) − x3 ∪ v4 ∪ z1, z6 

R w3, x5  V(C6) − x4 ∪ v5 ∪ z1, z2 

R w4, x6  V(C6) − x5 ∪ v6 ∪ z2, z3 

R w1, x5  V(C6) − x6 ∪ v1 ∪ z3, z4 

R w2, x6  V(C6) − x1 ∪ v2 ∪ z4, z5 

R x1, y3  V(C6) − v3, v5 ∪ w3, w5 

R x2, y4  V(C6) − v4, v6 ∪ w4, w6 

R x3, y5  V(C6) − v1, v5 ∪ w1, w5 

R x4, y6  V(C6) − v2, v6 ∪ w2, w6 

R x1, y5  V(C6) − v1, v3 ∪ w1, w3 

R x2, y6  V(C6) − v2, v4 ∪ w2, w4 

R x1, z3  V(C6) − v4, v5 ∪ w4, w5 

R x2, z4  V(C6) − v5, v6 ∪ w6, w6 

R x3, z5  V(C6) − v1, v6 ∪ w1, w6 

R x4, z6  V(C6) − v1, v2 ∪ w1, w2 

R x1, z5  V(C6) − v2, v3 ∪ w2, w3 

R x2, z6  V(C6) − v3, v4 ∪ w3, w4 

R x1, y2  V(C6) − y5, y6 ∪ z5, z6 

R x2, y3  V(C6) − y1, y6 ∪ z1, z6 

R x3, y4  V(C6) − y1, y2 ∪ z1, z2 

R x4, y5  V(C6) − y2, y3 ∪ z2, z3 

R x5, y6  V(C6) − y3, y4 ∪ z3, z4 

R x1, y6  V(C6) − y4, y5 ∪ z4, z5 

R v1, z1  V(C6) − w3, w4 ∪ x1, x4 

R v2, z2  V(C6) − w4, w5 ∪ x2, x5 

R v3, z3  V(C6) − w5, w6 ∪ x3, x6 

R v4, z4  V(C6) − w1, w6 ∪ x1, x4 

R v5, z5  V(C6) − w1, w2 ∪ x2, x5 

R v6, z6  V(C6) − w2, w3 ∪ x3, x6 

Table 12: *e representation of R
′

u
for 128≤ u≤ 163.

RNs Elements
R v1, x4  V(C6) − v5 ∪ x2 ∪ w6 

R v2, x5  V(C6) − v6 ∪ x3 ∪ w1 

R v1, w3  V(C6) − v3 ∪ x5 ∪ w2 

R v2, w4  V(C6) − v4 ∪ x6 ∪ w3 

R v3, w5  V(C6) − v5 ∪ x1 ∪ w4 

R v4, w6  V(C6) − v6 ∪ x2 ∪ w5 

R v1, w5  V(C6) − v1 ∪ x3 ∪ w6 

R v2, w6  V(C6) − v2 ∪ x4 ∪ w1 

R v1, y3  V(C6) − v4 ∪ w5 ∪ y1 

R v2, y4  V(C6) − v5 ∪ w6 ∪ y2 

R v3, y5  V(C6) − v6 ∪ w1 ∪ y3 

R v4, y6  (C6) − v1 ∪ w2 ∪ y4 

R v1, y5  V(C6) − v2 ∪ w3 ∪ y5 

R v2, y6  V(C6) − v3 ∪ w4 ∪ y6 

R x1, z4  V(C6) − v4 ∪ w4 ∪ x3 

R x2, z5  V(C6) − v5 ∪ w5 ∪ x4 
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1(modm)}∪ xh|h ≡ r − 1, r − 2 . . . , r − (n/2)

(modm)} and Ŕ34 � R vr, xr− 1  � V(Cm) −
wh|h ≡ r, r + 1, r + 2, . . . , r + (n/2) −

1(modm)}∪ xh|h ≡ r + 1, r + 2 . . . , r + (n/
2)(modm)}, respectively. Clearly, |Ŕu| � 4m> |Rt|

and |Ŕu ∩ ∪ m
r�1Rr}|≥ |Rr|.

(i) *e RN of xr, yr+1  is Ŕ35 � R xr, yr+1  � V(Cm) −

yh|h ≡ r − 1, r − 2, . . . , r − (m/2) + 1(modm)}∪

zh|h ≡ r − 1, r − 2, . . . , r − (m/2) + 1(modm)}.
Clearly, |Ŕ35| � 4m + 2> |Rt| and |Ŕu ∩ ∪m

r�1
Rr}|≥ |Rr|.

Table 12: Continued.

RNs Elements
R x3, z6  V(C6) − v6 ∪ w6 ∪ x5 

R x1, z4  V(C6) − v1 ∪ w1 ∪ x6 

R v1, w2  V(C6) − v2, v3, v4 

R v2, w3  V(C6) − v3, v4, v5 

R v3, w4  V(C6) − v4, v5, v6 

R v4, w5  V(C6) − v1, v5, v6 

R v5, w6  V(C6) − v1, v2, v3 

R v1, w6  V(C6) − v2, v3, v4 

R v1, y1  V(C6) − w2, w3, w4 

R v2, y2  V(C6) − w3, w4, w5 

R v3, y3  V(C6) − w4, w5, w6 

R v4, y4  V(C6) − w1, w5, w6 

R v5, y5  V(C6) − w1, w2, w3 

R v6, y6  V(C6) − w2, w3, w4 

R x1, z1  V(C6) − x3, x4 ∪ y1 

R x2, z2  V(C6) − x4, x5 ∪ y2 

R x3, z3  V(C6) − x5, x6 ∪ y3 

R x4, z4  V(C6) − x1, x6 ∪ y4 

R x5, z5  V(C6) − x1, x2 ∪ y5 

R x6, z6  V(C6) − x2, x3 ∪ y6 

Table 13: *e representation of R
′

u
for 164≤ u≤ 186.

RNs Elements
R w1, y1  V(Cm) − x1 ∪ y6 

R w2, y2  V(Cm) − x2 ∪ y1 

R w3, y3  V(Cm) − x3 ∪ y2 

R w4, y4  V(Cm) − x4 ∪ y3 

R w5, y5  V(Cm) − x5 ∪ y4 

R w6, y6  V(Cm) − x6 ∪ y5 

R v1, y4  V(Cm) − x2 ∪ w3 

R v2, y5  V(Cm) − x3 ∪ w4 

R v3, y6  V(Cm) − x4 ∪ w5 

R w1, z1  V(Cm) − x2, x3 

R w2, z2  V(Cm) − x3, x4 

R w3, z3  V(Cm) − x4, x5 

R w4, z4  V(Cm) − x5, x6 

R w5, z5  V(Cm) − x1, x6 

R w6, z6  V(Cm) − x1, x2 

R x1, y4  V(Cm) − x3, x5 

R x2, y5  V(Cm) − x4, x6 

R x3, y6  V(Cm) − x1, x5 

R x1, z2  V(C6) − v4 ∪ w4 

R x2, z3  V(C5) − v5 ∪ w5 

R x3, z4  V(C6) − v6 ∪ w6 

R x4, z5  V(C6) − v1 ∪ w1 

R x5, z6  V(C6) − v2 ∪ w2 

R x1, z6  V(C6) − v3 ∪ w3 

Table 14: *e representation of R
′

u
for 187≤ u≤ 198.

RNs Elements
R v1, w1  R v2, w2 

R v3, w3  R v4, w4 

R v5, w5  R v5, w5 

R x1, y1  R x2, y2  V(C6)

R x3, y3  R x4, y4 

R x5, y5  R x5, y5 

Table 15: *e representation of Rr for 1≤ r≤ 12.

RNs Elements
R1 � R y1, z1  V(C6) − v3, v4 ∪ w3, w4 ∪ y5, y6 ∪ z4, z5, z6 

R2 � R y2, z2  V(C6) − v4, v5 ∪ w4, w5 ∪ y1, y6 ∪ z1, z5, z6 

R3 � R y3, z3  V(C6) − v5, v6 ∪ w5, w6 ∪ y1, y2 ∪ z1, z2, z6 

R4 � R y4, z4  V(C6) − v1, v6 ∪ w1, w6 ∪ y2, y3 ∪ z1, z2, z3 

R5 � R y5, z5  V(C6) − v1, v2 ∪ w1, w2 ∪ y3, y4 ∪ z2, z3, z4 

R6 � R y6, z6  V(C6) − v2, v3 ∪ w2, w3 ∪ y4, y5 ∪ z3, z4, z5 

R7 � R y2, z1  V(C6) − v5, v6 ∪ w5, w6 ∪ y3, y4 ∪ z3, z4, z5 

R8 � R y3, z2  V(C6) − v1, v6 ∪ w1, w6 ∪ y4, y5 ∪ z4, z5, z6 

R9 � R y4, z3  V(C6) − v1, v2 ∪ w1, w2 ∪ y5, y6 ∪ z1, z5, z6 

R11 � R y6, z5  V(C6) − v3, v4 ∪ w3, w4 ∪ y1, y2 ∪ z1, z2, z3 

R12 � R y1, z6  V(C6) − v4, v5 ∪ w4, w5 ∪ y2, y3 ∪ z2, z3, z4 

Table 16: FMD of convex polytopes for m≥ 6.

Network Lower bound of
dimf

Upper bound of dimf Comment

Bm 1 (10m/(7m + 2)) Bounded
Cm 1 (5m/(3(m + 1))) Bounded
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(j) *e RN of xr, zr+1  is Ŕ36 � R xr, zr+1  �

V(Cm) − vh|h ≡ r + 3, r + 4, . . . , r + (m/2)

(modm)}∪ wh|h ≡ r + 3, r + 4, . . . , r + (m/2)

(modm)} as we can see that |Ŕ36|> |Rt| and
|Ŕu ∩ ∪m

r�1Rr}|≥ |Rr|.

(k) *e RNs of vr, wr+1  and vr, yr  are
Ŕ37 � R vr, wr+1  � V(Cm) − vh|h ≡ r + 1, r +

2, . . . , r + (m/2)(modm)} and Ŕ38 �

R vr, yr  � V(Cm) −

wh|h ≡ r + 1, r + 2, . . . , r + (m/2)(modm) , as we
can see that |Ru| � (9m/2)> |Rt| and
|Ŕu ∩ ∪m

r�1Rr}|≥ |Rr|.

(l) *e RN of vr, xr+1  is Ŕ39 � R vr, xr+1  � V(Cm) −

vh|h ≡ r + 1, r + 2, . . . , r + (n/2)(modm)} ∪
xh|h ≡ r(modm)  ∪ wh|h ≡ r +

((m + 2)/2)(modm)}. Clearly, |Ŕ39| � (9m/
2) − 1> |Rt| and |Ŕu ∩ ∪m

r�1Rr}|≥ |Rr|.
(m) *e RNs of vr, zr  and xr, zr  are Ŕ40 � R vr, zr  �

V(Cm) − xh|h ≡ r, r + (n/2)(modm) ∪
wh|r + 2, r + 3, . . . , r + (n/2)(modm)} and Ŕ41 �

R xr, zr  � V(Cm) − xh|h ≡ r + 2, r + 3, . . . ,

r + (n/2)(modm)} yr , respectively. Clearly, |Ru| �

(9m/2) + 1> |Rt| and |Ŕu ∩ ∪m
r�1Rr}|≥ |Rr|.

(n) *e RNs of vr, wr  and xr, yr  are
Ŕ42 � R vr, wr  � Ŕ43 � R xr, yr  � V(C), as both
are equal to V(Cm); therefore,
|Ŕu ∩ ∪m

r�1Rr}|≥ |Rr|. □

Theorem 2. If ℵ � Cm with m≥ 6 and m ≡ 0(mod2), then
dimf(Cm)< (5m/(3(m + 1))).

Proof

Case I m � 6.
*e RNs are given as follows.
From Lemma 3, we see that R yr, yr+p  �

R xr, xr+p .
In Tables 8–14, the RNs have cardinalities of 22,
24, 25, 26, 27, 28, and 30, respectively. On the
contrary, Table 15 represents RNs with mini-
mum cardinality of 21. We can see that
∪ 12r�1Rr � V(C6) this implies |∪ 12r�1Rr| � 30 and
|Rr ∩ ∪ 12r�1Rr|≥ |Rr|, where 1≤ u≤ 198.

Now, we define a function μ: V(B6)⟶ [0, 1]

such that μ(vr) � μ(wr) � μ(xr) � μ(yr) �

μ(zr) � (1/22), as Rr for 1≤ r≤ 12 of C6 are
pairwise overlapping; hence, ∃ is another min-
imal resolving function κ of C6 such that
|μ|< |μ|. As a result, dimf(C6)<

12
r�1(1/

10)< (30/21).
On the contrary, Table 4 shows the RNs with
maximum cardinality of 30 � κ; hence, by
Lemma 1, (|V(C6)|/κ) � (30/30) �

1< dimf(C6). *erefore,

1< dimf C6( <
30
21

. (15)

Case II m≥ 8.
We have seen from Lemma 3 that the RNs with
minimum cardinality of 3(m + 1) are R yl, zl 

and R yr, zr− 1  and ∪ m
r�1Rt � V(Cm). Let λ �

3(m + 1) and δ � |∪ m
t�1Rt| � 5m. Now, we de-

fine a mapping μ: V(Cm)⟶ [0, 1] such that

μ(a) �

1
λ
, for a ∈ ∪

m

t�1
Rt,

0, for a ∈ V(C) − ∪
m

t�1
Rt.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(16)

We can see that μ is a RF for Cm with m≥ 3
because μ(R u, v{ })≥ 1,∀u, v ∈ V(Cm). On the
contrary, assume that there is another resolving
function ρ, such that ρ(u)≤ μ(u), for at least one
u ∈ V(Cm), ρ(u)≠ μ(u). As a consequence,
ρ(R u, v{ })< 1, where R u, v{ } is a RN of Cm with
minimum cardinality λ. *is implies that ρ is not a
resolving function which is contradiction. *ere-
fore, μ is a minimal resolving function that attains
minimum |μ| for Cm. Since all Rr are having
pairwise nonempty intersection, so there is another
minimal resolving function of μ of Cm such that
|μ|≤ |μ|. Hence, assigning (1/λ) to the vertices of
Cm in ∪m

r�1Rr and calculating the summation of all
the weights, we obtain

dimf Cm(  � 
δ

r�1

1
λ
≤

5m

(7m/2) + 1
�

10m

7m + 2
. (17)

Also, the RNs with maximum cardinality of 5m

areR vr, wr  andR xr, yr . Let |V(Cm)| � ω and
|R vr, wr | � |R xr, yr | � κ; thus, from Lemma
1, we have (|V(Cm)|/κ) � (ω/κ) � (5m/5m) �

1< dimf(C).
*erefore, we conclude the following:

Table 17: Upper bounds of FMD as they tend to ∞, where
m≥ 6∧m ≡ 0(mod2).

Network Values of FMD as they tend to ∞
Bm limm⟶∞(10m/(7m + 2)) (10/7)

Cm limm⟶∞(5m/(3(m + 1))) (5/3)
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1< dimf Cm( <
5m

3(m + 1)
. (18)

□

6. Conclusion

In this paper,

(i) We have found the improved lower bound of FMD
of connected networks

(ii) Apart from that, we have calculated the lower and
upper bounds of FMD of symmetric networks called
by covex polytopes’ Type I and Type II Bm and Cm

(iii) Table 16 shows the summary of main results and
Table 17 gives the values of FMDs as they tend to∞

6.1. Open Problem. To characterize the networks with lower
bound of FMD greater than 1 is still an open problem.

Data Availability

*e data used to support the findings of the study are in-
cluded within the article. However, more details of the data
can be obtained from the corresponding author upon
request.

Conflicts of Interest

*e authors have no conflicts of interest.

References

[1] G. Chartrand and L. Lesniak,Graphs & Digraphs, Chapman &
Hall, CRC, Boca Raton, FL, USA, 4th edition, 2005.

[2] J. L. Gross and J. Yellen, Graph 9eory and its Applications,
Chapman and Hall/CRC, Boca Raton, FL, USA, 2nd edition,
2005.

[3] D. B. West, Introduction to Graph 9eory, Prentice-Hall,
Hoboken, NJ, USA, 2001.

[4] G. Chartrand, L. Eroh, M. A. Johnson, and O. R. Oellermann,
“Resolvability in graphs and the metric dimension of a graph,”
Discrete Applied Mathematics, vol. 105, no. 1-3, pp. 99–113,
2000.

[5] P. S. Buczkowski, G. Chartrand, C. Poisson, and P. Zhang,
“On k-dimensional graphs and their bases,” Periodica
Mathematica Hungarica, vol. 46, no. 1, pp. 9–15, 2003.

[6] P. J. Slater, “Abstracts,” Stroke, vol. 6, no. 5, pp. 549–559, 1975.
[7] P. J. Slater, “Domination and location in acyclic graphs,”

Networks, vol. 17, no. 1, pp. 55–64, 1987.
[8] I. Javaid, M. T. Rahim, and K. Ali, “Families of regular graphs

with constant metric dimension,” Utilitas Mathematica,
vol. 75, pp. 21–33, 2008.

[9] M. Imran, A. Q. Baig, M. K. Shafiq, and I. Tomescu, “On
metric dimension of generalized Petersen graphs P(n, 3),” Ars
Combinatoria, vol. 117, pp. 113–130, 2014.

[10] J. Currie and O. R. Oellermann, “*e metric dimension and
metric independence of a graph,” Journal of Combinatorial
Mathematics and Combinatorial Computing, vol. 39,
pp. 157–167, 2001.

[11] M. Fehr, S. Gosselin, and O. R. Oellermann, “*e metric
dimension of Cayley digraphs,” Discrete Mathematics,
vol. 306, no. 1, pp. 31–41, 2006.

[12] S. Arumugam and V. Mathew, “*e fractional metric di-
mension of graphs,” Discrete Mathematics, vol. 312, no. 9,
pp. 1584–1590, 2012.

[13] M. Feng, B. Lv, and K. Wang, “On the fractional metric di-
mension of graphs,” Discrete Applied Mathematics, vol. 170,
no. 19, pp. 55–63, 2014.

[14] M. Feng and K. Wang, “On the metric dimension and
fractional metric dimension for hierarchical product of
graphs,” Applicable Analysis and Discrete Mathematics, vol. 7,
no. 2, pp. 302–313, 2013.

[15] M. Feng and K.Wang, “On the fractional metric dimension of
corona product graphs and lexicographic product graphs,”
https://arxiv.org/abs/1206.1906.

[16] S. W. Saputro, A. Semanicova Fenovcikova, M. Baca, and
M. Lascsakova, “On fractional metric dimension of comb
product graphs,” Stat., Optim. Inf. Comput.vol. 6, pp. 150–158,
2018.

[17] B. Jia, A. Kashif, T. Rasheed, andM. Javaid, “Fractional metric
dimension of generalized Jahangir graph,” Mathematics,
vol. 4, pp. 371–376, 2019.

[18] M. Raza, M. Javaid, and N. Saleem, “Fractional metric di-
mension of metal-organic frameworks,” Main Group Metal
Chemistry, vol. 44, no. 1, pp. 92–102, 2021.

[19] S. Aisyah, M. I. Utoyo, and L. Susilowati, “On the local
fractional metric dimension of corona product graphs,” IOP
Conference Series: Earth and Environmental Science, Hun-
garica, vol. 243, 2019.

[20] J.-B. Liu, M. K. Aslam, and M. Javaid, “Local fractional metric
dimensions of rotationally symmetric and planar networks,”
IEEE Access, vol. 8, no. 1, pp. 82404–82420, 2020.

[21] M. Javaid, M. Raza, P. Kumam, and J.-B. Liu, “Sharp bounds
of local fractional metric dimensions of connected networks,”
IEEE Access, vol. 8, no. 2, pp. 172329–172342, 2020.

[22] F. Harary and R. A. Melter, “On the metric dimension of a
graph,” Ars Combinatoria, vol. 2, pp. 191–195, 1976.

[23] S. Khuller, B. Raghavachari, and A. Rosenfeld, “Landmarks in
graphs,” Discrete Applied Mathematics, vol. 70, no. 3,
pp. 217–229, 1996.

[24] R. A. Melter and I. Tomescu, “Metric bases in digital ge-
ometry,” Computer Vision, Graphics, and Image Processing,
vol. 25, no. 1, pp. 113–121, 1984.

[25] P. J. Slater, “Dominating and reference sets in graphs,” Journal
of Mathematical and Physical Sciences, vol. 22, pp. 445–455,
1998.

[26] A. Shabbir and M. Azeem, “On the partition dimension of tri-
hexagonal α-boron nanotubeα,” IEEE Access, vol. 9, no. 1,
pp. 55644–55653, 2021.

[27] M. F. Nadeem, M. Hassan, M. Azeem et al., “Application of
resolvability technique to investigate the different polyphenyl
structures for polymer industry,” Journal of Chemistry,
vol. 2021, Article ID 6633227, 8 pages, 2021.

[28] M. Bac̆a, “Onmagic labellings of convex polytopes,” Annals of
Discrete Mathematics, vol. 51, pp. 13–16, 1992.

Mathematical Problems in Engineering 13

https://arxiv.org/abs/1206.1906


Research Article
On Hamilton-Connectivity and Detour Index of Certain
Families of Convex Polytopes

Sakander Hayat ,1 Muhammad Yasir Hayat Malik ,2 Ali Ahmad ,3 Suliman Khan ,1

Faisal Yousafzai ,4 and Roslan Hasni 5

1Faculty of Engineering Sciences, GIK Institute of Engineering Sciences and Technology, Topi,
Khyber Pakhtunkhwa 23460, Pakistan
2Department of Mathematics, Government College University, Faisalabad 38000, Pakistan
3College of Computer Science and Information Technology, Jazan University, Jazan 45142, Saudi Arabia
4Military College of Engineering, National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
5School of Informatics and Applied Mathematics, University Malaysia Terengganu, Kuala Terengganu,
Terengganu 21030, Malaysia

Correspondence should be addressed to Sakander Hayat; sakander1566@gmail.com

Received 11 February 2021; Revised 21 June 2021; Accepted 8 July 2021; Published 19 July 2021

Academic Editor: Abdul Qadeer Khan

Copyright © 2021 Sakander Hayat et al. *is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

A convex polytope is the convex hull of a finite set of points in the Euclidean space Rn. By preserving the adjacency-incidence
relation between vertices of a polytope, its structural graph is constructed. A graph is called Hamilton-connected if there exists at
least one Hamiltonian path between any of its two vertices. *e detour index is defined to be the sum of the lengths of longest
distances, i.e., detours between vertices in a graph. Hamiltonian and Hamilton-connected graphs have diverse applications in
computer science and electrical engineering, whereas the detour index has important applications in chemistry. Checking whether
a graph is Hamilton-connected and computing the detour index of an arbitrary graph are both NP-complete problems. In this
paper, we study these problems simultaneously for certain families of convex polytopes. We construct two infinite families of
Hamilton-connected convex polytopes. Hamilton-connectivity is shown by constructing Hamiltonian paths between any pair of
vertices. We then use the Hamilton-connectivity to compute the detour index of these families. A family of non-Hamilton-
connected convex polytopes has also been constructed to show that not all convex polytope families are Hamilton-connected.

1. Introduction and Preliminaries

All graphs in this paper are simple, loopless, finite, and
connected.

A graph G is an ordered pair G � (V(G), E(G)) with
V(G) as its vertex set (i.e., set of points called vertices) and

E(G)⊆ V(G)

2  as its edge set (i.e., set of lines connecting

points called edges). *e number of vertices, say
n: � |V(G)|, is called the order of G and the number of
edges, say m: � |E(G)|, is called the size of G. For two
vertices x, y ∈ V(G), we write x ∼ y if both x and y are
adjacent, i.e., they are connected by an edge. For U⊆V(G)

and x, y ∈ V(G), if U � ui: 1≤ i≤p , then x ∘
ui: 1≤ i≤p  ∘y means that x ∼ u1 and up ∼ y and adja-
cency in the rest of ui’s (2≤ i≤p) stays the same. For a
positive integer ] ∈ Z+, we write ]|2 (resp. ]∤2) if ] is even
(resp. odd).

A Hamiltonian cycle CH(x) in a connected graph G

starting and finishing at the vertex x is a cycle traversing all
the vertices of G. Similarly, a Hamiltonian path PH(x, y)

between vertices x and y is the one covering the entire graph
without missing any vertex. A graph comprising a Hamil-
tonian path (resp. Hamiltonian cycle) is called traceable
(resp. Hamiltonian). Every Hamiltonian graph, by defini-
tion, is traceable, whereas the converse is not true in general.
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For instance, the so-called Petersen graph does not contain
any Hamiltonian cycle and, thus, is not Hamiltonian.
However, you can easily find a Hamiltonian path between
two of its vertices, which makes it traceable but not Ham-
iltonian. Graphs comprising Hamiltonian paths between
every pair of its vertices are called Hamilton-connected.
*ey were introduced and studied in 1963 by Ore [1].
Trivalent Hamiltonian graphs and their canonical repre-
sentation were studied by Frucht [2]. Hamilton-connectivity
and Hamiltoniancity possess some extensive available lit-
erature. See, for example, [3–7].

By preserving the vertex-edge incidence relation in
convex polytopes, their graphs are constructed. Bača [8–10]
was among the first researchers to consider these families of
geometric graphs. In [10] (resp. [9]), Bača studied the
problem of magic (resp. graceful and antigraceful) labeling
of convex polytopes, whereas in [8], the problem of face
antimagic labeling of convex polytopes was studied. Miller
et al. [11] studied the vertex-magic total labeling of convex
polytopes. Imran et al. [12–15] computed the minimum
metric dimension of various infinite families of convex
polytopes. In particular, they showed that these infinite
families of convex polytopes have constant metric dimen-
sion. Malik and Sarwar [16] also constructed two infinite
families of convex polytopes having constant metric di-
mension. Other closely related infinite families of graphs
with constant metric dimension are studied in [17]. Kratica
et al. [18] studied the strong metric dimension of certain
infinite families of convex polytopes by constructing their
doubly resolving sets. *e fault-tolerant metric dimension
(resp. mixed metric dimension) of convex polytopes was
studied by Raza et al. [19] (resp. Raza et al. [20]). *e binary
locating-dominating number of convex polytopes is studied
by Simić et al. [21] and Raza et al. [22]. *e open-locating-
dominating number of certain convex polytopes has recently
been studied by Savić et al. [23]. Hayat et al. [24] studied
Hamilton-connectivity and detour index in convex
polytopes.

For a graphG, let ℓ(x, y) be the length of the longest path
(i.e., detour) between vertices x and y of G. *e detour index
[25] is defined to be the sum of the lengths of the detour
between unordered pairs of vertices in G. *e detour index
of a graph G is usually denoted by ω(G).

ω(G) � 

x,y{ }⊂V(G)

ℓ(x, y).
(1)

In chemistry, the detour index has diverse applications.
Lukovits [26] put forward its QSAR/QSPR applications.
Trinajstić et al. [27] presented some more of its chemical
applications and compared its predictive potential in cor-
relating the normal boiling points of benzenoid hydrocar-
bons with the performance of Wiener index. Rücker and
Rücker [28] presented more of its rigorous applications for
correlating the boiling points of acyclic and cyclic alkanes.
*e calculation of the detour index for a given graph has
been shown an NP-complete problem in [29].

Mahmiani et al. [30] proposed the edge versions of the
detour index and studied their mathematical properties.

Zhou and Cai [31] proved some upper and lower bounds on
the detour index of graphs. Qi and Zhou [32] studied
minimum uncyclic graphs with respect to the detour index.
Du [33] studied the minimum detour index of bicyclic
graphs. Fang et al. [34] characterized the minimum detour
index of some families of tricyclic graphs. Karbasioun et al.
[35] studied the applications of the detour index in infinite
families of nanostar dendrimers. Wu and Deng [36] com-
puted the detour index for a chain of C20 fullerenes.
Kaladevi and Abinayaa [37] studied spectral properties of
the detour index in relation with the Laplacian energy of
graphs. Recently, Abdullah and Omar [38] introduced the
restricted edge version of the detour index and studied it for
some families of graphs. Tang et al. [39] studied Zagreb
connection indices of some operation of graphs.

Let S] denote the ]-dimensional star graph on ] + 1
vertices. We end this section with an important and well-
known result bounding the detour index in terms of its
order.

Theorem 1 [40]. Let G be an ]-vertex graph with ]≥ 3 and
ω(G) be its detour index. 9en,

(] − 1)
2 ≤ω(G)≤

](] − 1)
2

2
, (2)

with left equality if and only if G � S], and right inequality
holds if and only if G is Hamilton-connected.

2. A Family of Non-Hamilton-Connected
Convex Polytopes

Bača [10] introduced the graph of convex polytope D] for
]≥ 4. It is a family of convex polytopes comprising 2]
pentagonal faces. See Figure 1 for the ]-dimensional family
of convex polytopes D].

Mathematically, the vertex set of D] consists of four
layers of vertices, i.e., wp, xp, yp, and zp. *at is to say that
V(D]) � wp, xp, yp, zp: 1≤p≤ ] . Accordingly, the edge
set of D] is as follows:

E D](  � wpwp+1, zpzp+1, wpxp, xpyp, xp+1yp, ypzp: 1

≤p≤ ].

(3)

*e subscripts are to be considered modulo ]. *e layer
of vertices comprising wp is called the inner layer, whereas
the layer comprising zp is called the outer layer of D]. *e
vertices xp and yp, 1≤p≤ ] form the middle layers.

*e following result shows that the infinite family D] of
convex polytopes is not Hamilton-connected.

Proposition 1. 9e ]-dimensional convex polytope D], with
]≥ 4, is non-Hamilton-connected.

Proof. It is enough to show that there exist two vertices in
the ]-dimensional convex polytope D] such that no Ham-
iltonian path exists between them.
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It is easy to see that, between every pair of vertices at
distance two on the outer layer, i.e., between zp and
zp+2(1≤p≤ ] − 1), there exists no Hamiltonian path be-
cause of the two pentagonal layers of faces. *is shows that
the ]-dimensional convex polytope D] is non-Hamilton-
connected. □

3. Hamilton-Connectivity and the Detour
Index of Hν

In this section, we show that the graph of ]-dimensional
convex polytope H] is Hamilton-connected.*en, we use its
Hamilton-connectivity to find a formula for its detour index.
*is family of convex polytopes was introduced by Imran
and Siddiqui [14].

Mathematically, the vertex set of H] consists of four
layers of vertices, i.e., vp, wp, xp, yp, and zp. *at is to say

that V(H]) � vp, wp, xp, yp, zp: 1≤p≤ ] . Accordingly,
the edge set of H] is as follows:

E H](  � vpvp+1, vpwp, wpvp+1, wpwp+1, wpxp, xpxp+1,

xpyp, ypxp+1, ypyp+1, ypzp, zpzp+1: 1≤p≤ ].

(4)

*e subscripts are to be considered modulo ]. See
Figure 2 to view the ]-dimensional convex polytope graph
H].

*e following is the main result of this section.

Theorem 2. 9e graph of ]-dimensional convex polytope H],
with ]≥ 5, is Hamilton-connected.

Proof. We prove this result by definition. For this, we have
to show that there exist Hamiltonian paths between any pair
of vertices of H].

Let PH(u, v) be a Hamiltonian path between vertices u

and v in H]. Let V(H]) � Z∪Y∪X∪W∪V such that
Z � z1, z2, . . . , z] , Y � y1, y2, . . . , y] , X � x1, x2, . . . ,

x]}, W � w1, w2, . . . , w] , and V � v1, v2, . . . , v]  (see
Figure 2).

Case 1: u′ � z1 and v′ � zp, 2≤p≤ ]

Subcase 1.1: 2≤p≤ ] − 2:

PH u′, v′( : u′ � z1 ∘ z]−q: 0≤ q≤ ] − p − 1  ∘ yp−q+1: 0≤ q≤p − 2  ∘ xq: 3≤ q≤p + 1  ∘

xqyq: p + 2≤ q≤ ]  ∘y1x1w1 ∘ vq: 1≤ q≤ ]  ∘ w]−q: 0≤ q≤ ] − 2  ∘ x2y2 ∘ zq: 2≤ q≤p  � v′.

(5)

Subcase 1.2: p � ] − 1:

PH u′, v′( : u′ � z1z]y]y1x1w1 ∘ yq: 1≤ q≤ ]  ∘ w]−q: 0≤ q≤ ] − 2  ∘

xq: 2≤ q≤ ]  ∘ y]−q: 1≤ q≤ ] − 2  ∘ zq: 2≤ q≤ ] − 1  � v′.
(6)

Subcase 1.3: p � ]:

PH u′, v′( : u′ � z1y1x1w1 ∘ vq: 1≤ q≤ ]  ∘ w]−q: 0≤ q≤ ] − 2  ∘

xq: 2≤ q≤ ]  ∘ y]−q: 0≤ q≤ ] − 2  ∘ zq: 2≤ q≤ ]  � v′.
(7)

Case 2: u′ � z1 and v′ � yp, 1≤p≤ ]

Subcase 2.1: 1≤p≤ ] − 1:

z2

z1 zn

zn–1

xnx2
y2

y1 yn

yn–1

x1

w1 wnw2

Figure 1: *e graph of convex polytope D].
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PH u′, v′( : u′ � zq: 1≤ q≤ ]  ∘ y]−q: 0≤ q≤ ] − p − 1  ∘ xq: p + 1≤ q≤ ]  ∘

w]−q: 0≤ q≤ ] − 2  ∘ vq: 2≤ q≤ ]  ∘ v1w1 ∘ xqyq: 1≤ q≤p  � v′.
(8)

Subcase 2.2: p � ]:

PH u′, v′( : u′ � z1 ∘ z]−q: 0≤ q≤ ] − 2  ∘ yq: 2≤ q≤ ] − 1  ∘

x]−q: 0≤ q≤ ] − 2  ∘ wq: 2≤ q≤ ]  ∘ v]−q: 0≤ q≤ ] − 1  ∘w1x1y1y] � v′.
(9)

Case 3: u′ � z1 and v′ � xp, 1≤p≤ ] Subcase 3.1: 1≤p≤ ] − 1:

PH u′, v′( : u′ � zq: 1≤ q≤ ]  ∘ y]−q: 0≤ q≤ ] − p  ∘ xq: p + 1≤ q≤ ]  ∘

w]−q: 0≤ q≤ ] − 2  ∘ vq: 2≤ q≤ ]  ∘ v1w1 ∘ xqyq: 1≤ q≤p − 1  ∘ xp � v′.
(10)

Subcase 3.2: p � ]:

PH u′, v′( : u′ � zq: 1≤ q≤ ]  ∘ y]−q: 0≤ q≤ ] − 1  ∘

xq: 1≤ q≤ ] − 1  ∘ w]−q: 1≤ q≤ ] − 1  ∘ vq: 1≤ q≤ ]  ∘w]x] � v′.
(11)

Case 4: u′ � z1 and v′ � wp, 1≤p≤ ] Subcase 4.1: 1≤p≤ ] − 1:

PH u′, v′( : u′ � zq: 1≤ q≤ ]  ∘ y]−q: 0≤ q≤ ] − 1  ∘ xq: 1≤ q≤ ]  ∘

w]−q: 0≤ q≤ ] − p − 1  ∘ vq: p + 1≤ q≤ ]  ∘ vqwq: 1≤ q≤p  � v′.
(12)

Subcase 4.2: p � ]:

z1

z2

zn

zn–1

yn–1

yny1

y2

x3

x2

x1

xn

xn–1
wn–1

wn

w1
w2

w3

v3

v2
v1 vn

vn–1

Figure 2: *e ]-dimensional convex polytope H].
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PH u′, v′( : u′ � zq: 1≤ q≤ ]  ∘ y]−q: 0≤ q≤ ] − 1  ∘x1 ∘

x]−q: 0≤ q≤ ] − 2  ∘ wq: 2≤ q≤ ] − 1  ∘ v]−q: 0≤ q≤ ] − 1  ∘ v1w] � v′.
(13)

Case 5: u′ � z1 and v′ � vp, 1≤p≤ ]

PH u′, v′( : u′ � zq: 1≤ q≤ ]  ∘ y]−q: 0≤ q≤ ] − 1  ∘ xq: 1≤ q≤ ]  ∘

w]−q: 0≤ q≤ ] − p  ∘ vq: p + 1≤ q≤ ]  ∘ vqwq: 1≤ q≤p − 1  ∘ vp � v′.
(14)

Case 6: u′ � y1 and v′ � zp, 1≤p≤ ] Subcase 6.1: 1≤p≤ ] − 1:

PH u′, v′( : u′ � y1x1w1 ∘ vq: 1≤ q≤ ]  ∘ w]−q: 0≤ q≤ ] − 2  ∘ xqyq: 2≤ q≤p  ∘

xq: p + 1≤ q≤ ]  ∘ y]−q: 0≤ q≤ ] − p − 1  ∘ zq: p + 1≤ q≤ ]  ∘ zq: 1≤ q≤p  � v′.
(15)

Subcase 6.2: p � ]:

PH u′, v′( : u′ � y1 ∘ zq: 1≤ q≤ ] − 1  ∘ y]−q: 1≤ q≤ ] − 2  ∘

xq: 2≤ q≤ ]  ∘ w]−q: 0≤ q≤ ] − 2  ∘ vq: 2≤ q≤ ]  ∘ v1w1x1y]z] � v′.
(16)

Case 7: u′ � y1 and v′ � yp, 2≤p≤ ] Subcase 8.1: 2≤p≤ ] − 1:

PH u′, v′( : u′ � y1 ∘ zq: 1≤ q≤ ]  ∘ y]−q: 0≤ q≤ ] − p − 1  ∘ xq: p + 1≤ q≤ ]  ∘

w]−q: 0≤ q≤ ] − 2  ∘ vq: 2≤ q≤ ]  ∘ v1w1x1 ∘ xqyq: 2≤ q≤p  � v′.
(17)

Subcase 8.2: p � ]:

PH u′, v′( : u′ � y1z1 ∘ z]−q: 0≤ q≤ ] − 2  ∘ yq: 2≤ q≤ ] − 1  ∘

x]−q: 1≤ q≤ ] − 1  ∘ wq: 1≤ q≤ ] − 1  ∘ v]−q: 1≤ q≤ ] − 1  ∘ v]w]x]y] � v′.
(18)

Case 8: u′ � y1 and v′ � xp, 1≤p≤ ] Subcase 8.1: p � 1:

PH u′, v′( : u′ � y1z1 ∘ z]−q: 0≤ q≤ ] − 2  ∘ yq: 2≤ q≤ ]  ∘

x]−q: 0≤ q≤ ] − 2  ∘ wq: 2≤ q≤ ]  ∘ v]−q: 0≤ q≤ ] − 2  ∘ v1w1x1 � v′.
(19)

Subcase 8.2: 2≤p≤ ] − 1:
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PH u′, v′( : u′ � y1 ∘ zq: 1≤ q≤ ]  ∘ y]−q: 0≤ q≤ ] − p  ∘ xq: p + 1≤ q≤ ]  ∘

w]−q: 0≤ q≤ ] − 2  ∘ vq: 2≤ q≤ ]  ∘ v1w1x1 ∘ xqyq: 2≤ q≤p − 1  ∘xp � v′.
(20)

Subcase 8.3: p � ]:

PH u′, v′( : u′ � y1z1 ∘ z]−q: 0≤ q≤ ] − 2  ∘ yq: 2≤ q≤ ]  ∘

xq: 1≤ q≤ ] − 1  ∘ w]−q: 1≤ q≤ ] − 1  ∘ vq: 1≤ q≤ ]  ∘w]x] � v′.
(21)

Case 9: u′ � y1 and v′ � wp, 1≤p≤ ] Subcase 9.1: 1≤p≤ ] − 1:

PH u′, v′( : u′ � y1z1 ∘ z]−q: 0≤ q≤ ] − 2  ∘ yq: 2≤ q≤ ]  ∘ xq: 1≤ q≤ ]  ∘

w]−q: 0≤ q≤ ] − p − 1  ∘ vq: p + 1≤ q≤ ]  ∘ vqwq: 1≤ q≤p  � v′.
(22)

Subcase 9.2: p � ]:

PH u′, v′( : u′ � y1z1 ∘ z]−q: 0≤ q≤ ] − 2  ∘ yq: 2≤ q≤ ]  ∘ x]−q: 0≤ q≤ ] − 1  ∘

wq: 1≤ q≤ ] − 1  ∘ v]−q: 1≤ q≤ ] − 1  ∘ v]w] � v′.
(23)

Case 10: u′ � y1 and v′ � vp, 1≤p≤ ] Subcase 10.1: 1≤p≤ ] − 1:

PH u′, v′( : u′ � y1z1 ∘ z]−q: 0≤ q≤ ] − 2  ∘ yq: 2≤ q≤ ]  ∘ xq: 1≤ q≤ ]  ∘

w]−q: 0≤ q≤ ] − p  ∘ vq: p + 1≤ q≤ ]  ∘ v1 ∘ wqvq+1: 1≤ q≤p − 1  � v′.
(24)

Subcase 10.2: p � ]:

PH u′, v′( : u′ � y1z1 ∘ z]−q: 0≤ q≤ ] − 2  ∘ yq: 2≤ q≤ ]  ∘ xq: 1≤ q≤ ]  ∘

w]−q: 0≤ q≤ ] − 1  ∘ vq: 1≤ q≤ ]  � v′.
(25)

Case 11: u′ � x1 and v′ � zp, 1≤p≤ ] Subcase 11.1: 1≤p≤ ] − 1:

PH u′, v′( : u′ � x1w1v1 ∘ v]−q: 0≤ q≤ ] − 2  ∘ wq: 2≤ q≤ ]  ∘ x]−q: 0≤ q≤ ] − p − 1  ∘

yp−qxp−q: 0≤ q≤p − 2  ∘y1 ∘ y]−q: 0≤ q≤ ] − p − 1  ∘ zq: p + 1≤ q≤ ]  ∘ zq: 1≤ q≤p  � v′.

(26)

Subcase 11.2: p � ]:
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PH u′, v′( : u′ � xq: 1≤ q≤ ] − 1  ∘ w]−q: 1≤ q≤ ] − 1  ∘ vq: 1≤ q≤ ]  ∘

w]x] ∘ y]−q: 0≤ q≤ ] − 1  ∘ zq: 1≤ q≤ ]  � v′.
(27)

Case 12: u′ � x1 and v′ � yp, 2≤p≤ ] Subcase 12.1: 1≤p≤ ] − 1:

PH u′, v′( : u′ � x1w1v1 ∘ vqwq: 1≤ q≤ ]  ∘ x]−q: 0≤ q≤ ] − p − 1  ∘ yq: p + 1≤ q≤ ]  ∘

z]−q: 0≤ q≤ ] − 1  ∘y1 ∘ xqvq: 2≤ q≤p  � v′.
(28)

Subcase 12.2: p � ]:

PH u′, v′( : u′ � x1w1v1 ∘ vqwq: 2≤ q≤ ]  ∘ x]−q: 0≤ q≤ ] − 2  ∘ yq: 1≤ q≤ ] − 1  ∘

z]−q: 1≤ q≤ ] − 1  ∘ z]y] � v′.
(29)

Case 13: u′ � x1 and v′ � xp, 2≤p≤ ] Subcase 13.1: 2≤p≤ ] − 1:

PH u′, v′( : u′ � x1y1 ∘ zq: 1≤ q≤ ]  ∘ y]−q: 0≤ q≤ ] − p  ∘ yp−qxp−q: 1≤ q≤p − 1  ∘

x]−q: 0≤ q≤ ] − p − 1  ∘ wq: p + 1≤ q≤ ]  ∘ v]−q: 0≤ q≤ ] − 1  ∘ wq: 1≤ q≤p  ∘ xp � v′.
(30)

Subcase 13.2: p � ]:

PH u′, v′( : u′ � x1y1 ∘ zq: 1≤ q≤ ]  ∘ y]−q: 0≤ q≤ ] − 2  ∘ xq: 2≤ q≤ ] − 1  ∘

w]−q: 1≤ q≤ ] − 1  ∘ wq: 1≤ q≤ ]  ∘w]x] � v′.
(31)

Case 14: u′ � x1 and v′ � wp, 1≤p≤ ] Subcase 14.1: 1≤p≤ ] − 1:

PH u′, v′( : u′ � x1y1 ∘ zq: 1≤ q≤ ]  ∘ y]−q: 0≤ q≤ ] − 2  ∘ xq: 2≤ q≤ ]  ∘

w]−q: 0≤ q≤ ] − p − 1  ∘ vq: p + 1≤ q≤ ]  ∘ vqwq: 1≤ q≤p  � v′.
(32)

Subcase 14.2: p � ]:

PH u′, v′( : u′ � x1y1z1 ∘ z]−q: 0≤ q≤ ] − 2  ∘ yq: 2≤ q≤ ]  ∘ x]−q: 0≤ q≤ ] − 2  ∘

wq: 2≤ q≤ ] − 1  ∘ v]−q: 0≤ q≤ ] − 1  ∘w1w] � v′.
(33)

Case 15: u′ � x1 and v′ � vp, 1≤p≤ ] Subcase 15.1: 1≤p≤ ] − 1:
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PH u′, v′( : u′ � x1y1 ∘ zq: 1≤ q≤ ]  ∘ y]−q: 0≤ q≤ ] − 2  ∘ xq: 2≤ q≤ ]  ∘

w]−q: 0≤ q≤ ] − p  ∘ vq: p + 1≤ q≤ ]  ∘ vqwq: 1≤ q≤p − 1  ∘ vp � v′.
(34)

Subcase 15.2: p � ]:

PH u′, v′( : u′ � x1y1 ∘ zq: 1≤ q≤ ]  ∘ y]−q: 0≤ q≤ ] − 2  ∘ xq: 2≤ q≤ ]  ∘

w]−q: 0≤ q≤ ] − 1  ∘ vq: 1≤ q≤ ]  � v′.
(35)

Case 16: u′ � w1 and v′ � zp, 1≤p≤ ] Subcase 16.1: 1≤p≤ ] − 1:

PH u′, v′( : u′ � w1v1 ∘ v]−q: 0≤ q≤ ] − 2  ∘ wq: 2≤ q≤ ]  ∘ x]−q: 0≤ q≤ ] − p  ∘

yq: p≤ q≤ ]  ∘ xqyq: 1≤ q≤p − 1  ∘ zp−q: 1≤ q≤p − 1  ∘ z]−q: 0≤ q≤ ] − p  � v′.
(36)

Subcase 16.2: p � ]:

PH u′, v′( : u′ � w1 ∘ vq: 1≤ q≤ ]  ∘ w]−q: 0≤ q≤ ] − 2  ∘ xq: 2≤ q≤ ]  ∘

x1 ∘ y]−q: 0≤ q≤ ] − 1  ∘ zq: 1≤ q≤ ]  � v′.
(37)

Case 17: u′ � w1 and v′ � yp, 1≤p≤ ] Subcase 17.1: 1≤p≤ ] − 1:

PH u′, v′( : u′ � w1v1 ∘ v]−q: 0≤ q≤ ] − 2  ∘ wq: 2≤ q≤ ]  ∘ x]−q: 0≤ q≤ ] − p  ∘

yp−qxp−q: 1≤ q≤p − 1  ∘ y]−q: 0≤ q≤ ] − p − 1  ∘ zq: p + 1≤ q≤ ]  ∘ zq: 1≤ q≤p  ∘yp � v′.

(38)

Subcase 17.2: p � ]:

PH u′, v′( : u′ � w1v1 ∘ v]−q: 0≤ q≤ ] − 2  ∘ wq: 2≤ q≤ ]  ∘ x]−q: 0≤ q≤ ] − 1  ∘

y]−q: 0≤ q≤ ] − 1  ∘ zq: 1≤ q≤ ]  � v′.
(39)

Case 18: u′ � w1 and v′ � xp, 1≤p≤ ] Subcase 18.1: 1≤p≤ ] − 1:

PH u′, v′( : u′ � w1v1 ∘ v]−q: 0≤ q≤ ] − 2  ∘ wq: 2≤ q≤ ]  ∘ x]−q: 0≤ q≤ ] − p − 1  ∘

yq: p + 1≤ q≤ ] − 1  ∘ z]−q: 1≤ q≤ ] − 1  ∘ z]y] ∘ xqyq: 1≤ q≤p − 1  ∘xp � v′.
(40)

Subcase 18.2: p � ]:
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PH u′, v′( : u′ � w1 ∘ vq: 1≤ q≤ ]  ∘ w]−q: 0≤ q≤ ] − 2  ∘ xq: 2≤ q≤ ] − 1  ∘

y]−q: 1≤ q≤ ] − 1  ∘ zq: 1≤ q≤ ]  ∘y]x1x] � v′.
(41)

Case 19: u′ � w1 and v′ � wp, 2≤p≤ ] Subcase 19.1: 2≤p≤ ] − 1:

PH u′, v′( : u′ � w1x1y1 ∘ zq: 1≤ q≤ ]  ∘ y]−q: 0≤ q≤ ] − 2  ∘ xq: 2≤ q≤ ]  ∘

w]−q: 0≤ q≤ ] − p − 1  ∘ vq: p + 1≤ q≤ ]  ∘ vqwq: 1≤ q≤p  � v′.
(42)

Subcase 19.2: p � ]:

PH u′, v′( : u′ � w1x1y1z1 ∘ z]−q: 0≤ q≤ ] − 2  ∘ yq: 2≤ q≤ ]  ∘ x]−q: 0≤ q≤ ] − 2  ∘

wq: 2≤ q≤ ] − 1  ∘ v]−q: 0≤ q≤ ] − 1  ∘ v]w] � v′.
(43)

Case 20: u′ � w1 and v′ � vp, 1≤p≤ ] Subcase 20.1: p � 1:

PH u′, v′( : u′ � w1x1y1 ∘ zq: 1≤ q≤ ]  ∘ y]−q: 0≤ q≤ ] − 2  ∘ xq: 2≤ q≤ ]  ∘

w]−q: 0≤ q≤ ] − 2  ∘ vq: 2≤ q≤ ]  ∘ v1 � v′.
(44)

Subcase 20.2: 2≤p≤ ] − 1:

PH u′, v′( : u′ � w1x1y1 ∘ zq: 1≤ q≤ ]  ∘ y]−q: 0≤ q≤ ] − 2  ∘ xq: 2≤ q≤ ]  ∘

w]−q: 0≤ q≤ ] − p  ∘ vq: p + 1≤ q≤ ]  ∘ vqwq: 1≤ q≤p − 1  ∘ vp � v′.
(45)

Subcase 20.3: p � ]:

PH u′, v′( : u′ � w1 ∘ vq: 1≤ q≤ ] − 1  ∘ w]−q: 0≤ q≤ ] − 2  ∘ xq: 2≤ q≤ ] − 1  ∘

y]−q: 1≤ q≤ ] − 1  ∘ zq: 1≤ q≤ ]  ∘y]x1x]w]v] � v′.
(46)

Case 21: u′ � v1 and v′ � zp, 1≤p≤ ] Subcase 21.1: p � 1:

PH u′, v′( : u′ � vq: 1≤ q≤ ]  ∘ w]−q: 0≤ q≤ ] − 1  ∘x1 ∘ x]−q: 0≤ q≤ ] − 2  ∘

wq: 1≤ q≤ ]  ∘ z]−q: 0≤ q≤ ] − 1  � v′.
(47)

Subcase 21.2: 2≤p≤ ] − 1:
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PH u′, v′( : u′ � vq: 1≤ q≤ ]  ∘ w]−q: 0≤ q≤ ] − 1  ∘ xqyq: 1≤ q≤p − 2  ∘ xq: p − 1≤ q≤ ]  ∘

y]−q: 0≤ q≤ ] − p + 1  ∘ zp−q: 1≤ q≤p − 1  ∘ z]−q: 0≤ q≤ ] − p  � v′.
(48)

Subcase 21.3: p � ]:

PH u′, v′( : u′ � vq: 1≤ q≤ ]  ∘ w]−q: 0≤ q≤ ] − 1  ∘ xq: 1≤ q≤ ]  ∘

y]−q: 0≤ q≤ ] − 1  ∘ zq: 1≤ q≤ ]  � v′.
(49)

Case 22: u′ � v1 and v′ � yp, 1≤p≤ ] Subcase 22.1: 1≤p≤ ] − 1:

PH u′, v′( : u′ � vq: 1≤ q≤ ]  ∘ w]−q: 0≤ q≤ ] − 1  ∘ xqyq: 1≤ q≤p − 1  ∘ xq: p≤ q≤ ]  ∘

y]−q: 0≤ q≤ ] − p − 1  ∘ zq: p + 1≤ q≤ ]  ∘ zq: 1≤ q≤p  � v′.
(50)

Subcase 22.2: p � ]:

PH u′, v′( : u′ � vq: 1≤ q≤ ]  ∘ w]−q: 0≤ q≤ ] − 1  ∘ x]−q: 0≤ q≤ ] − 1  ∘

yq: 1≤ q≤ ] − 1  ∘ z]−q: 1≤ q≤ ] − 1  ∘ z]y] � v′.
(51)

Case 23: u′ � v1 and v′ � xp, 1≤p≤ ] Subcase 23.1: 1≤p≤ ] − 1:

PH u′, v′( : u′ � v1 ∘ v]−q: 0≤ q≤ ] − 2  ∘ wq: 1≤ q≤ ]  ∘ x]−q: 0≤ q≤ ] − p − 1  ∘

yq: p≤ q≤ ] − 1  ∘ z]−q: 1≤ q≤ ] − 1  ∘ z]y] ∘ xqyq: 1≤ q≤p − 1  ∘ xp � v′.
(52)

Subcase 23.2: p � ]:

PH u′, v′( : u′ � vq: 1≤ q≤ ]  ∘ w]−q: 0≤ q≤ ] − 1  ∘ xq: 1≤ q≤ ] − 1  ∘

y]−q: 1≤ q≤ ] − 1  ∘ zq: 1≤ q≤ ]  ∘y]x] � v′.
(53)

Case 24: u′ � v1 and v′ � wp, 1≤p≤ ] Subcase 24.1: 1≤p≤ ] − 1:

PH u′, v′( : u′ � vqwq: 1≤ q≤p − 1  ∘ vq: p≤ q≤ ]  ∘ w]−q: 0≤ q≤ ] − p − 1  ∘

xq: p + 1≤ q≤ ]  ∘ y]−q: 0≤ q≤ ] − 2  ∘ zq: 2≤ q≤ ]  ∘ z1y1 ∘ xq: 1≤ q≤p  ∘wp � v′.
(54)

Subcase 24.2: p � ]:

10 Mathematical Problems in Engineering



PH u′, v′( : u′ � v1 ∘ v]−q: 0≤ q≤ ] − 2  ∘ wq: 1≤ q≤ ] − 1  ∘ x]−q: 0≤ q≤ ] − 1  ∘

yq: 1≤ q≤ ] − 1  ∘ z]−q: 1≤ q≤ ] − 1  ∘ z]y]x]w] � v′.
(55)

Case 25: u′ � v1 and v′ � vp, 2≤p≤ ] Subcase 25.1: 2≤p≤ ] − 1:

PH u′, v′( : u′ � v1w1x1y1 ∘ zq: 1≤ q≤ ]  ∘ y]−q: 0≤ q≤ ] − 2  ∘ xq: 2≤ q≤ ]  ∘

w]−qv]−q: 0≤ q≤ ] − p − 1  ∘ wp−q: 0≤ q≤p − 2  ∘ vq: 2≤ q≤p  � v′.
(56)

Subcase 25.2: p � ]:

PH u′, v′( : u′ � v1w1x1y1 ∘ zq: 1≤ q≤ ]  ∘ y]−q: 0≤ q≤ ] − 2  ∘ xq: 2≤ q≤ ]  ∘

w]−q: 0≤ q≤ ] − 2  ∘ vq: 2≤ q≤ ]  � v′.
(57)

*e existence of the Hamiltonian path between every
pair of vertices of the H] completes the proof.

Using *eorems 1 and 2, the following proposition
computes the detour index of H]. □

Corollary 1. Let G � H], where ]≥ 4. 9en, the detour index
of G is

ω(G) �
5](5] − 1)

2

2
. (58)

Proof. *e number of vertices in the graph G is 5].
Replacing 5] with n in*eorem 1 gives the proposition. □

4. Hamilton-Connectivity and the Detour
Index of Gν

In this section, we show that the graph G] is Hamilton-
connected. Afterwards, we use the Hamilton-connectivity to
find the analytical exact expression of the detour index of the
graph G].

*e vertex set of G] consists of four layers of vertices, i.e.,
wp, xp, yp, and zp. *at is to say that V(G]) �

wp, xp, yp, zp: 1≤p≤ ] . Accordingly, the edge set of G] is
as follows:

E G](  � wpwp+1, xpxp+1, ypyp+1, zpzp+1, wpxp, xpyp,

ypxp+1, ypzp: 1≤p≤ ] − 1.

(59)

*e subscripts are to be considered modulo ]. Figure 3
presents the ]-dimensional convex polytope G] with proper
labeling of vertices which will be used to show its Hamilton-
connectivity.

*e following is the main result of this section.

Theorem 3. 9e graph ]-dimensional convex polytope G],
with ]≥ 5, is Hamilton-connected.

Proof. We prove this result by definition. For this, we have
to show that there exist Hamiltonian paths between any pair
of vertices of G].

Let PH(u, v) be a Hamiltonian path between vertices u

and v in G]. Let G] � Z∪Y∪X∪W such that
Z � z1, z2, . . . , z] , Y � y1, y2, . . . , y] , X � x1, x2, . . . ,

x]}, and W � w1, w2, . . . , w]  (see Figure 3).

Case 1: u � z1 and v � zp, 2≤p≤ ]

Subcase 1.1: 2≤p≤ ] − 2:

PH(u, v): u � z1 ∘ z]−q: 0≤ q≤ ] − p − 1  ∘ yp−q+1: 0≤ q≤p − 2  ∘ xq: 3≤ q≤p + 1  ∘

xqyq: p + 2≤ q≤ ]  ∘y1x1w1 ∘ w]−q: 0≤ q≤ ] − 2  ∘x2y2 ∘ zq: 2≤ q≤p  � v.
(60)

Subcase 1.2: p � ] − 1:
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PH(u, v): u � z1z] ∘ y]−q: 0≤ q≤ ] − 3  ∘ xq: 3≤ q≤ ]  ∘ w]−q: 0≤ q≤ ] − 1  ∘

x1y1x2y2 ∘ zq: 2≤ q≤ ] − 1  � v.
(61)

Subcase 1.3: p � ]:

PH(u, v): u � z1y1x1w1 ∘ w]−q: 0≤ q≤ ] − 2  ∘ xq: 2≤ q≤ ]  ∘

y]−q: 0≤ q≤ ] − 2  ∘ zq: 2≤ q≤ ]  � v.
(62)

Case 2: u � z1 and v � yp, 1≤p≤ ] Subcase 2.1: 1≤p≤ ] − 1:

PH(u, v): u � zq: 1≤ q≤ ]  ∘ y]−q: 0≤ q≤ ] − p − 1  ∘ xq: p + 1≤ q≤ ]  ∘

w]−q: 0≤ q≤ ] − 1  ∘ xqyq: 1≤ q≤p  � v.
(63)

Subcase 2.2: p � ]:

PH(u, v): u � z1 ∘ z]−q: 0≤ q≤ ] − 2  ∘ yq: 2≤ q≤ ] − 1  ∘ x]−q: 1≤ q≤ ] − 2  ∘

y1x1 ∘ wq: 1≤ q≤ ]  ∘x]y] � v.
(64)

Case 3: u � z1 and v � xp, 1≤p≤ ] Subcase 3.1: 1≤p≤ ] − 1:

PH(u, v): u � z1 ∘ zq: 2≤ q≤ ]  ∘ y]−q: 0≤ q≤ ] − p  ∘ xq: p + 1≤ q≤ ]  ∘

w]−q: 0≤ q≤ ] − 1  ∘ xqyq: 2≤ q≤p − 1  ∘xp � v.
(65)

Subcase 3.2: p � ]:

PH(u, v): u � zq: 1≤ q≤ ]  ∘ y]−q: 0≤ q≤ ] − 1  ∘ xq: 1≤ q≤ ] − 1  ∘

w]−q: 1≤ q≤ ] − 1  ∘w]x] � v.
(66)

z2

z1 zn

zn–1

yn–1

yny1

y2 x2

x1
xn

w2
w1 wn

Figure 3: *e ]-dimensional convex polytope G].
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Case 4: u � z1 and v � wp, 1≤p≤ ]

Subcase 4.1: p � 1:

PH(u, v): u � zq: 1≤ q≤ ]  ∘ y]−q: 0≤ q≤ ] − 1 

∘ xq: 1≤ q≤ ]  ∘

w]−q: 0≤ q≤ ] − 1  � v.

(67)

Subcase 4.2: 2≤p≤ ]:

PH(u, v): u � zq: 1≤ q≤ ]  ∘ y]−q: 0≤ q≤ ] − p + 1  ∘ xq: p≤ q≤ ]  ∘

xqyq: 1≤ q≤p − 2  ∘ xp−1 ∘ wp−q: 1≤ q≤p − 1  ∘ w]−q: 0≤ q≤ ] − p  � v.
(68)

Case 5: u � y1 and v � zp, 1≤p≤ ] Subcase 5.1: 1≤p≤ ] − 1:

PH(u, v): u � y1x1w1 ∘ w]−q: 0≤ q≤ ] − 2  ∘ xqyq: 2≤ q≤p  ∘ xq: p + 1≤ q≤ ]  ∘

y]−q: 0≤ q≤ ] − p − 1  ∘ zq: p + 1≤ q≤ ]  ∘ zq: 1≤ q≤p  � v.
(69)

Subcase 5.2: p � ]:

PH(u, v): u � y1 ∘ zq: 1≤ q≤ ] − 1  ∘ y]−q: 1≤ q≤ ] − 2  ∘ xq: 2≤ q≤ ] − 1  ∘

w]−q: 1≤ q≤ ] − 1  ∘w]x]x1y]z] � v.
(70)

Case 6: u � y1 and v � yp, 2≤p≤ ] Subcase 6.1: 2≤p≤ ] − 1:

PH(u, v): u � y1 ∘ zq: 1≤ q≤ ]  ∘ y]−q: 0≤ q≤ ] − p − 1  ∘ xq: p + 1≤ q≤ ]  ∘

w]−q: 0≤ q≤ ] − 1  ∘ x1 ∘ xqyq: 2≤ q≤p  � v.
(71)

Subcase 6.2: p � ]:

PH(u, v): u � y1z1 ∘ z]−q: 0≤ q≤ ] − 2  ∘ yq: 2≤ q≤ ] − 1  ∘ x]−q: 1≤ q≤ ] − 1  ∘

wq: 1≤ q≤ ]  ∘x]y] � v.
(72)

Case 7: u � y1 and v � xp, 1≤p≤ ] Subcase 7.1: p � 1:

PH(u, v): u � y1 ∘ zq: 1≤ q≤ ]  ∘ y]−q: 0≤ q≤ ] − 2  ∘ xq: 2≤ q≤ ]  ∘

w]−q: 0≤ q≤ ] − 1  ∘ x1 � v.
(73)
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Subcase 7.2: 2≤p≤ ] − 1:

PH(u, v): u � y1 ∘ zq: 1≤ q≤ ]  ∘ y]−q: 0≤ q≤ ] − p  ∘ xq: p + 1≤ q≤ ]  ∘

w]−q: 0≤ q≤ ] − 1  ∘x1 ∘ xqyq: 2≤ q≤p − 1  ∘ xp � v.
(74)

Subcase 7.3: p � ]:

PH(u, v): u � y1z1 ∘ z]−q: 0≤ q≤ ] − 2  ∘ yq: 2≤ q≤ ]  ∘ xq: 1≤ q≤ ] − 1  ∘

w]−q: 1≤ q≤ ] − 1  ∘w]x] � v.
(75)

Case 8: u � y1 and v � wp, 1≤p≤ ] Subcase 8.1: p � 1:

PH(u, v): u � y1z1 ∘ z]−q: 0≤ q≤ ] − 2  ∘ yq: 2≤ q≤ ]  ∘ xq: 1≤ q≤ ]  ∘

w]−q: 0≤ q≤ ] − 1  � v.
(76)

Subcase 8.2: 2≤p≤ ] − 1:

PH(u, v): u � y1x1 ∘ xqyq: 2≤ q≤p  ∘ zp−q: 0≤ q≤p − 1  ∘ z]−q: 0≤ q≤ ] − p − 1  ∘

yq: p + 1≤ q≤ ]  ∘ x]−q: 0≤ q≤ ] − p − 1  ∘ wq: p + 1≤ q≤ ]  ∘

wq: 1≤ q≤p  � v.

(77)

Subcase 8.3: p � ]:

PH(u, v): u � y1 ∘ zq: 1≤ q≤ ]  ∘ y]−q: 0≤ q≤ ] − 2  ∘ xq: 2≤ q≤ ]  ∘

x1 ∘ wq: 1≤ q≤ ]  � v.
(78)

Case 9: u � x1 and v � zp, 1≤p≤ ]

Subcase 9.1: 1≤p≤ ] − 1:

PH(u, v): u � x1 ∘ wq: 1≤ q≤ ]  ∘ x]−q: 0≤ q≤ ] − p − 1  ∘

yp−qxp−q: 0≤ q≤p − 2  ∘y1

∘ y]−q: 0≤ q≤ ] − p − 1  ∘

zq: p + 1≤ q≤ ]  ∘ zq: 1≤ q≤p  � v.

(79)

Subcase 9.2: p � ]:

PH(u, v): u � x1 ∘ wq: 1≤ q≤ ]  ∘ x]−q: 0≤ q≤ ] − 2  ∘

yq: 2≤ q≤ ]  ∘y1 ∘ zq: 1≤ q≤ ]  � v.

(80)

Case 10: u � x1 and v � yp, 1≤p≤ ]

Subcase 10.1: 1≤p≤ ] − 1:
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PH(u, v): u � x1 ∘ wq: 1≤ q≤ ]  ∘ x]−q: 0≤ q≤ ] − p − 1  ∘ yq: p + 1≤ q≤ ]  ∘

z]−q: 0≤ q≤ ] − 1  ∘y1 ∘ xqyq: 2≤ q≤p  � v.
(81)

Subcase 10.2: p � ]:

PH(u, v): u � x1 ∘ wq: 1≤ q≤ ]  ∘ x]−q: 0≤ q≤ ] − 2  ∘ yq: 1≤ q≤ ] − 1  ∘

z]−q: 1≤ q≤ ] − 1  ∘ z]y] � v.
(82)

Case 11: u � x1 and v � xp, 2≤p≤ ] Subcase 11.1: 2≤p≤ ] − 1:

PH(u, v): u � x1 ∘ wq: 1≤ q≤ ]  ∘ x]−q: 0≤ q≤ ] − p − 1  ∘ yq: p≤ q≤ ]  ∘

z]−q: 0≤ q≤ ] − 1  ∘ yq−1xq: 2≤ q≤p  � v.
(83)

Subcase 11.2: p � ]:

PH(u, v): u � x1w1 ∘ w]−q: 0≤ q≤ ] − 2  ∘ xq: 2≤ q≤ ] − 1  ∘ y]−q: 1≤ q≤ ] − 1  ∘

zq: 1≤ q≤ ]  ∘y]x] � v.
(84)

Case 12: u � x1 and v � wp, 1≤p≤ ]

Subcase 12.1: p � 1:

PH(u, v): u � x1y1 ∘ zq: 1≤ q≤ ]  ∘ y]−q: 0≤ q≤ ] − 2  ∘

xq: 2≤ q≤ ]  ∘ w]−q: 0≤ q≤ ] − 1  � v.

(85)

Subcase 12.2: 2≤p≤ ] − 1:

PH(u, v): u � x1 ∘ yq−1xq: 2≤ q≤p − 1  ∘ wp−q: 1≤ q≤p − 1  ∘ w]−q: 0≤ q≤ ] − p − 1  ∘

xq: p + 1≤ q≤ ]  ∘ y]−q: 0≤ q≤ ] − p  ∘ zq: p≤ q≤ ]  ∘

zq: 1≤ q≤p − 1  ∘yp−1xpwp � v.

(86)

Subcase 12.3: p � ]:

PH(u, v): u � x1 ∘ wq: 1≤ q≤ ] − 1  ∘ x]−q: 1≤ q≤ ] − 2  ∘ yq: 1≤ q≤ ] − 1  ∘

z]−q: 1≤ q≤ ] − 1  ∘ z]y]x]w] � v.
(87)

Case 13: u � w1 and v � zp, 1≤p≤ ]

Subcase 13.1: 1≤p≤ ] − 1:
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PH(u, v): u � wq: 1≤ q≤ ]  ∘ x]−q: 0≤ q≤ ] − p − 1  ∘ yp−qxp−q: 0≤ q≤p − 1  ∘

y]−q: 0≤ q≤ ] − p − 1  ∘ zq: p + 1≤ q≤ ]  ∘ zq: 1≤ q≤p  � v.
(88)

Subcase 13.2: p � ]:

PH(u, v): u � wq: 1≤ q≤ ]  ∘ x]−q: 0≤ q≤ ] − 1 

∘ y]−q: 0≤ q≤ ] − 1  ∘

zq: 1≤ q≤ ]  � v.

(89)

Case 14: u � w1 and v � yp, 1≤p≤ ]

Subcase 14.1: 1≤p≤ ] − 1:

PH(u, v): u � wq: 1≤ q≤ ]  ∘ x]−q: 0≤ q≤ ] − p  ∘ yp−qxp−q: 1≤ q≤p − 1  ∘

y]−q: 0≤ q≤ ] − p − 1  ∘ zq: p + 1≤ q≤ ]  ∘ zq: 1≤ q≤p  ∘yp � v.
(90)

Subcase 14.2: p � ]:

PH(u, v): u � wq: 1≤ q≤ ]  ∘ x]−q: 0≤ q≤ ] − 1 

∘ yq: 1≤ q≤ ] − 1  ∘

z]−q: 1≤ q≤ ] − 1  ∘ z]y] � v.

(91)

Case 15: u � w1 and v � xp, 1≤p≤ ]

Subcase 15.1: p � 1:

PH(u, v): u � wq: 1≤ q≤ ]  ∘ x]−q: 0≤ q≤ ] − 2 

∘ yq: 2≤ q≤ ]  ∘

z]−q: 0≤ q≤ ] − 1  ∘y1x1 � v.

(92)

Subcase 15.2: 2≤p≤ ] − 1:

PH(u, v): u � wq: 1≤ q≤ ]  ∘ x]−q: 0≤ q≤ ] − p − 1  ∘ yq: p≤ q≤ ]  ∘

z]−q: 0≤ q≤ ] − 1  ∘y1x1 ∘ xqyq: 2≤ q≤p − 1  ∘xp � v.
(93)

Subcase 15.3: p � ]:

PH(u, v): u � w1 ∘ w]−q: 0≤ q≤ ] − 2 

∘ xq: 2≤ q≤ ] − 1  ∘ y]−q: 1≤ q≤ ] − 1  ∘

zq: 1≤ q≤ ]  ∘y]x1x] � v.

(94)

Case 16: u � w1 and v � wp, 2≤p≤ ]

Subcase 16.1: 2≤p≤ ] − 1:

PH(u, v): u � w1 ∘ w]−q: 0≤ q≤ ] − p − 1  ∘ xqyq: p + 1≤ q≤ ]  ∘x1y1z1 ∘

z]−q: 0≤ q≤ ] − 2  ∘ yq: 2≤ q≤p  ∘ xp−q: 0≤ q≤p − 2  ∘

wq: 2≤ q≤p  � v.

(95)

Subcase 16.2: p � ]:
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PH(u, v): u � wq: 1≤ q≤ ] − 1  ∘ x]−q: 1≤ q≤ ] − 1 

∘ yq: 1≤ q≤ ] − 1  ∘

z]−q: 1≤ q≤ ] − 1  ∘ z]y]x]w] � v.

(96)

*e existence of the Hamiltonian path between every
pair of vertices of the G] completes the proof.

Using *eorems 1 and 3, the following proposition
computes the detour index of G]. □

Corollary 2. Let G � G], where ]≥ 4. 9en, the detour index
of G is

ω(G) �
4](4] − 1)

2

2
. (97)

Proof. *e number of vertices in the graph G is 4].
Replacing 4] with n in*eorem 1 gives the proposition. □

5. Conclusions and Future Work

Computing the detour index of a graph is NP-complete and
checking if a graph is Hamilton-connected is also NP-
complete. In this paper, we construct three infinite families
of Hamilton-connected convex polytope networks. Fur-
thermore, we construct an infinite family of non-Hamilton-
connected convex polytope networks. *e later construction
shows that not all convex polytope networks are Hamilton-
connected. More importantly, we compute exact analytical
expressions for the detour index of the families of Hamilton-
connected convex polytope networks.

In view of the work by Alspach and Liu [41], we propose
the following conjectures [41]:

Conjecture 1.

(i) 9e generalized Petersen graph GP(], 4) ]≥ 9 is
nonbipartite Hamilton-connected

(ii) 9e generalized Petersen graph GP(], 5) ]≥ 11 is
nonbipartite Hamilton-connected if ]|2 and bipartite
Hamilton-laceable if ]∤2

Data Availability

*ere are no data associated with the manuscript.

Conflicts of Interest

*e authors declare that there are no conflicts of interest.

References

[1] O. Ore, “Hamilton-connected graphs,” Journal of Pure and
Applied Algebra, vol. 42, pp. 21–27, 1963.

[2] R. Frucht, “A canonical representation of trivalent Hamil-
tonian graphs,” Journal of Graph 9eory, vol. 1, pp. 45–60,
1976.

[3] V. S. Gordon, Y. L. Orlovich, and F. Werner, “Hamiltonian
properties of triangular grid graphs,” Discrete Mathematics,
vol. 308, no. 24, pp. 6166–6188, 2008.

[4] S. Qiang, Z. Qain, and A. Yahui, “*e Hamiltonicity of
generalized honeycomb torus networks,” Information Pro-
cessing Letters, vol. 115, no. 2, pp. 104–111, 2005.

[5] I. A. Stewart, “Sufficient conditions for Hamiltonicity in
multiswapped networks,” Journal of Parallel and Distributed
Computing, vol. 101, pp. 17–26, 2017.

[6] B. Wei, “Hamiltonian paths and Hamiltonian connectivity in
graphs,” Discrete Mathematics, vol. 121, no. 1–3, pp. 223–228,
1993.

[7] X. Yang, D. J. Evans, H. Lai, and G. M. Megson, “Generalized
honeycomb torus is Hamiltonian,” Information Processing
Letters, vol. 92, no. 1, pp. 31–37, 2004.
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M. Stojanović, “Minimal doubly resolving sets and the strong
metric dimension of some convex polytopes,” Applied
Mathematics and Computation, vol. 218, no. 19, pp. 9790–
9801, 2012.

[19] H. Raza, S. Hayat, and X.-F. Pan, “On the fault-tolerant metric
dimension of convex polytopes,” Applied Mathematics and
Computation, vol. 339, pp. 172–185, 2018.

[20] H. Raza, J.-B. Liu, and S. Qu, “On mixed metric dimension of
rotationally symmetric graphs,” IEEE Access, vol. 8,
pp. 11560–11569, 2020.
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Topological indices or coindices are one of the graph-theoretic tools which are widely used to study the different structural and
chemical properties of the under study networks or graphs in the subject of computer science and chemistry, respectively. For
these investigations, the operations of graphs always played an important role for the study of the complex networks under the
various topological indices or coindices. In this paper, we determine bounds for the second Zagreb coindex of a well-known family
of graphs called F-sum (S-sum, R-sum, Q-sum, and T-sum) graphs in the form of Zagreb indices and coindices of their factor
graphs, where these graphs are obtained by using four subdivision-related operations and Cartesian product of graphs. At the end,
we illustrate the obtained results by providing the exact and bonded values of some specific F-sum graphs.

1. Introduction

A topological index (TI) is a function from the set of graphs
to the set of real numbers that assigns the different numerical
values to the different graphs unless the graphs are iso-
morphic. Moreover, TIs are essential tools to discuss various
physical and chemical properties of the graphs such as
volume, density, connectivity, boiling point, freezing point,
and heat of formation and evaporation [1, 2]. TIs are also
used to study the quantitative structure property relation-
ships (QSPRs), quantitative structure activity relationships
(QSARs), and clinical practices of various medications in
the subject of cheminformatics and pharmaceutical in-
dustries, respectively (see [3–5]). Mainly TIs have three types
such as degree, distance, and polynomial based but the
degree-based TIs are more studied than others (see the most
recent review [6]).

Firstly, an American Chemist Harry Wiener (1947) used
a distance-based TI to calculate the boiling point of paraffin
(see [7]). First and second Zagreb indices are introduced by
Gutman and Trinajsti in 1972; these indices are used to

calculate total π-electron energy of alternant hydrocarbons
[8]. Kinkar and Gutman calculated different relations be-
tween the second Zagreb index of a graph and its com-
plement (see [9]). Yan et al. computed sharp bounds for the
second Zagreb index of different unicyclic graphs [10].
Carlos et al. calculated the second Zagreb index of the graphs
with minimum and maximum vertex degrees. 'ey also
investigated trees with the maximum value of the second
Zagreb index among all trees with maximum vertex degree
[11].

Recently, Zagreb coindices are introduced by Ashrafi
et al., and they studied them for the derived graphs obtained
by the operations of joining, union, disjunction, Cartesian
product, and corona product (see [12, 13]). Kinkar et al.
calculated the first Zagreb index and multiplicative Zagreb
coindices of tree (see [14]). Gutman obtained coindices of
graphs and their complements (see [15]). Nilanjan et al.
calculated F-coindex of some graph operations (see [16]).
Javaid et al. calculated the first Zagreb connection index and
coindex of some derived graphs [17]. Ramane et al. calcu-
lated coindices for the transmission and reciprocal
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transmission-based graphs (see [18]). Mansour and Song
computed a and (a, b)-analogs of Zagreb indices and
coindices of graphs [19]. For further studies of Zagreb in-
dices, see [20].

'ere are various operations on graphs such as union,
intersection, complement, product, and subdivision. 'ese
operations on graphs are useful to obtain the new graphs
from the old ones. Yan et al. listed five new graphs L(G),
S(G), Q(G), R(G), and T(G) with the help of five operations
L, S, Q, R, and T on a graph G, respectively, and studied the
behavior ofWiener index of these graphs (see [4]). Eliasi and
Taeri computed the Wiener indices of the F-sum graphs
obtained by the Cartesian product of F(G1) and G2, where
F ∈ S, R, Q, T{ } [21]. Later on, many researchers worked on
these F-sum graphs such as Deng et al. [22] computed first
and second Zagreb indices, Akhtar and Imran calculated the
forgotten index [23], Liu et al. computed first general Zagreb
index [24], Ahmad et al. calculated sharp bounds of general
sum-connectivity index [11], and Alanazi et al. calculated
Gutman indices [25].

In this paper, we compute the bounds for the second
Zagreb coindex of F-sum graphs in the form of Zagreb
indices and coindices of their factor graphs. At the end, the
obtained results are additionally illustrated with the assis-
tance of examples of the exact and bonded values for some
specific F-sum graphs. 'e rest of the paper is settled as
follows: Section 2 contains the basic definitions and notions,
Section 3 covers the main results, and Section 4 presents
conclusion with specific examples related to the derived
results.

2. Preliminaries

A graph denoted by G � (V(G), E(G)) is formed by set of
vertices V(G) and edges E(G), where edge set is subset of the
Cartesian product of set of vertices, i.e., E(G)⊆V(G) × V(G).
In a simple connected graph G � (V(G), E(G)), total
number of vertices is called its order (denoted by |V(G)|) and
total number of edges is called its size (presented by |E(G)|).
'e degree of a vertex u ∈ V(G) is number of its neigh-
borhood vertices that is denoted by d(u). 'e complement of
G is denoted by G and defined as V(G) � V(G), and any two
vertices (say u and v) imply that uv ∈ G iff uv ∉ G. Gutman
and Trinajsti in 1972 [8] introduced the first and second
Zagreb indices (denoted by M1 and M2) as follows:

M1(G) � 
p1p2∈E(G)

dG p1(  + dG p2(  ,

M2(G) � 
p1p2∈E(G)

dG p1( dG p2(  .
(1)

'e second Zagreb coindex M2(G) is defined in [13] as
follows:

M2(G) � 
p1p2∉E(G)

dG p1( dG p2(  .
(2)

It is important to note that the above defined coindex
uses degrees of G but run over E(G).

Let G be a graph, then

(i) S(G) is a graph obtained by inserting one vertex in
every edge of G

(ii) R(G) is a graph obtained from S(G) by joining the
adjacent vertices of G

(iii) Q(G) is a graph formed from S(G) by joining the
pairs of new vertices which are on the adjacent edges
(the edges with one common vertex) of G

(iv) T(G) is obtained by performing both operations of
R(G) and Q(G) on S(G), respectively

Let G1 and G2 be two simple connected graphs, then
their F-sum graphs are denoted by G1+FG2 having vertex set
|V(G1+FG2)| � V(G1)∪E(G1) × V(G2) and (u1, u2)(v1, v2)

∈ E(G1+FG2) iff

(i) u1 � v1 ∈ V(G1) and u2∽v2 ∈ G2

(ii) u2 � v2 ∈ V(G2) and u1∽v1 ∈ F(G1), where
F ∈ S, R, Q, T{ }

For details, see Figures 1–3.

3. Main Results

In this section, main results of the second Zagreb coindex for
the F-sum graphs are discussed.

Theorem 1. Let G1 and G2 be two simple connected graphs,
then second Zagreb coindex of G1+SG2 is given as follows:

α1 ≤M2 G1+SG2( ≤ α2, (3)

where

α1 � 2n2e
2
1 n1 − 2(  + n1 n2 − 1( (  + 2 n

2
2e

2
1 − n2e1  + 4e2e1 n1 − 2(  + n1 n2 − 1(   + 2 e2 + e2( M1 G1(  + 2e2M1 G1( 

+ n2 + 2 e2 + e2( ( M2 G1( M2 G1(  + e1 + e1( M1 G2(  + 2e1M1 G2(  + 2 e1 + e1( M2 G2( 

+ n1 + 2 e1 + e1( ( M2 G2(  + M1 G2(  + M1 G2( (  M1 G1(  + M1 G1( ( ,

α2 � 4n2e1E S G1( (  n2 − 1 + n2 n1 − 2( (  + 2 n
2
2e

2
1 − n2e1  + 4e2e1 n1 − 2(  + n1 n2 − 1(   + 2 e2 + e2( M1 G1( 

+ 2e2M1 G1(  + n2 + 2 e2 + e2( ( M2 G1( M2 G1(  + e1 + e1( M1 G2(  + 2e1M1 G2(  + 2 e1 + e1( M2 G2( 

+ n1 + 2 e1 + e1( ( M2 G2(  + M1 G2(  + M1 G2( (  M1 G1(  + M1 G1( ( .

(4)
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Proof. Using equation (2), we have

M2 G1+SG2(  � 

p1 ,p2( ) q1 ,q2( )∉E G1+SG2( )

d p1, q1( d p2, q2(  ,

M2 G1+SG2(  � 

p1 ,p2( ) q1 ,q2( )∉E G1+SG2( )

d p1, q1( d p2, q2(   �  A +  B +  C,
(5)

 A � 

p1 ,p2∈V S G1( )−V G1( )( )


q1 ,q2∈VG2

d p1, q1(  p2, q2(  

� 

p1 ,p2∈V S G1( )−V G1( )( )


q1 ,q2∈VG2

dS G1( ) p1( dS G1( ) p2(   � 

p1 ,p2∈V S G1( )−V G1( )( )


q1 ,q2∈VG2

(2 × 2),

 A � 2 n
2
2e

2
1 − n2e1 ,

(6)

1

32

(a)

1

e

g

f

32

(b)

1

e

g

f

32

(c)

1

e

g

f

32

(d)

1

e

g

f

32

(e)

Figure 1: (a) G � C3; (b) S(G) � S(C3); (c) Q(G) � Q(C3); (d) R(G) � R(C3); (e) T(G) � T(C3).

32 G

1

ba H

(a)

(1,a)

(e,a)

(f,b)

(g,b)

(g,a)

(f,a)

(3,b)(2,b)

(3,a)(2,a)

(e,b)

(1,b)

(G + SH)

(b)

(1,a)

(e,a)

(f,b)

(g,b)

(g,a)

(f,a)

(3,b)(2,b)

(3,a)(2,a)

(e,b)

(1,b)

(G + RH)

(c)

Figure 2: G � C3; H � P2; C3+SP2; C3+RP2.

(1,a)

(e,a)

(g,a)

(f,a)

(3,a)(2,a)

(1,a)

(e,a)

(g,a)

(f,a)

(3,a)(2,a)

(f,b)

(g,b)
(3,b)(2,b)

(e,b)

(1,b)

(f,b)

(g,b)
(3,b)(2,b)

(e,b)

(1,b)

(G + QH) (G + TH)

Figure 3: C3+QP2 and C3+TP2.
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 B �  B1 +  B2 +  B3 +  B4 +  B5 +  B6,

 B1 � 
p∈VG1


q1q2∉EG2

d t, q1( d t, q2(  

� 
p∈VG1


q1q2∉EG2

dG1
(p) + dG2

q1( dG1
(p) + dG2

q2(   

� 
p∈VG1


q1q2∉EG2

dG1
(p)dG1

(p) + dG1
(p)dG2

q2(  + dG1
(p)dG2

q1(  + dG2
q1( dG2

q2(  

� M1 G1( e2 + 2e1M1 G2(  + n1M2 G2( ,

 B2 � 
p1 ,p2∈VG1


q∈VG2

d p1, q( d p2, q(  

� 
q∈VG2


p1p2∈EG1

d p1, q( d p2, q(   + 
q∈VG2


p1p2∉EG1

d p1, q( d p2, q(  

� 
q∈VG2


p1p2∈EG1

dG1
p1(  + dG2

(q)  dG1
p2(  + dG2

(q)   + 
q∈VG2


p1p2∉EG1

dG1
p1(  + dG2

(q)  dG1
p2(  + dG2

(q)  

� 
q∈VG2


p1p2∈EG1

dG1
p1( dG1

t2(  + dG1
p1( dG2

(q) + dG1
p2( dG2

(q) + dG2
(q)

2
 

+ 
q∈VG2


p1p2∉EG1

dG1
p1( dG1

p2(  + dG1
p1( dG2

(q) + dG1
p2( dG2

(q) + dG2
(q)

2
 

� n2M2 G1(  + 2e2M1 G1(  + e1M1 G2(  + n2M2 G1(  + 2e2M1 G1(  + e1M1 G2( ,

 B3 � 
p1p2∈EG1


q1q2∈EG2

d p1, q1( d p2, q2(  

� 
p1p2∈EG1


q1q2∈EG2

dG1
p1(  + dG2

q1(   dG1
p2(  + dG2

q2(   

� 
p1p2∈EG1


q1q2∈EG2

dG1
p1( dG1

p2(  + dG1
p1( dG2

q2(  + dG1
p2( dG2

q1(  + dG2
q1( dG2

q2(  

� 2e2M2 G1(  + M1 G1( M1 G2(  + 2e1M2 G2( ,

 B4 � 
p1p2∉EG1


q1q2∈EG2

d p1, q1( d p2, q2(  

� 
p1p2∉EG1


q1q2∈EG2

dG1
p1(  + dG2

q1(   dG1
p2(  + dG2

q2(   

� 
p1p2∉EG1


q1q2∈EG2

dG1
p1( dG1

p2(  + dG1
p1( dG2

q2(  + dG1
p2( dG2

q1(  + dG2
q1( dG2

q2(  

� 2e2M2 G1(  + M1 G1( M1 G2(  + 2e1M2 G2( ,

(7)

 B5 � 
p1p2∉EG1


q1q2∉EG2

d p1, q1( d p2, q2(  

� 
p1p2∉EG1


q1q2∉EG2

dG1
p1(  + dG2

q1(   dG1
p2(  + dG2

q2(   

� 
p1p2∉EG1


q1q2∉EG2

dG1
p1( dG1

p2(  + dG1
p1( dG2

q2(  + dG1
p2( dG2

q1(  + dG2
q1( dG2

q2(  

� 2e2M2 G1(  + M1 G1( M1 G2(  + 2e1M2 G2( ,

 B6 � 
p1p2∈EG1


q1q2∉EG2

d p1, q1( d p2, q2(  

� 
p1p2∈EG1


q1q2∉EG2

dG1
p1(  + dG2

q1(   dG1
p2(  + dG2

q2(   

� 
p1p2∈EG1


q1q2∉EG2

dG1
p1( dG1

p2(  + dG1
p1( dG2

q2(  + dG1
p2( dG2

q1(  + dG2
q1( dG2

q2(  
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� 2e2M2 G1(  + M1 G1( M1 G2(  + 2e1M2 G2( ,

 B � 2 e2 + e2( M1 G1(  + e2M1 G1(   + n2 + 2 e2 + e2( ( M2 G1( M2 G1(  + e1 + e1( M1 G2( 

+ 2 e1M1 G2(  + e1 + e1( M2 G2(   + n1 + 2 e1 + e1( ( M2 G2(  + M1 G2(  + M1 G2( (  M1 G1(  + M1 G1( ( ,

 C �  C1 +  C2 +  C3,

 C1 � 

p1p2∉E S G1( )( )

p1∈V G1( )

p2∈V S G1( )−V G1( )( )


q∈VG2

d p1, q( d p2, q(   � 

p1p2∉E S G1( )( )

p1∈V G1( )

p2∈V S G1( )−V G1( )( )


q∈VG2

dG1
p1(  + dG2

(q)  dG1
p2(   

� 

p1p2∉E S G1( )( )

p1∈V G1( )

p2∈V S G1( )−V G1( )( )


q∈VG2

dG1
p1(  + dG2

(q) 2  + 

p1p2∉E S G1( )( )

p1∈V G1( )

p2∈V S G1( )−V G1( )( )


q∈VG2

2 dG1
p1(  + 2dG2

(q)  

� 2n2 

p1p2∉E S G1( )( )

p1∈V G1( )

p2∈V S G1( )−V G1( )( )

d p1(  + 4e2e1 n1 − 2( .

(8)

Note that

e1 ≤ 

p1p2∉E S G1( )( )
p1∈V G1( )
p2∈V S G1( )−V G1( )( )

d p1(  ≤ 2e1 n1 − 2( E S G1( ( ,

2n2e1 + 4e2e1 n1 − 2( ≤  C1 ≤ 4n2e1 n1 − 2( E S G1( (  + 4e2e1 n1 − 2( ,

 C2 � 

p1p2∉E S G1( )( )
p1∈V G1( )
p2∈V S G1( )−V G1( )( )


q1 ,q2∈VG2

d p1, q1( d p2, q2(   � 

p1p2∉E S G1( )( )
p1∈V G1( )
p2∈V S G1( )−V G1( )( )

· 
q1 ,q2∈VG2

dG1
p1(  + d q1(   dS G1( ) p2(   

� 

p1p2∉E S G1( )( )
p1∈V G1( )
p2∈V S G1( )−V G1( )( )


q1 ,q2∈VG2

dG1
p1(  + d q1(  2  � 

p1p2∉E S G1( )( )
p1∈V G1( )
p2∈V S G1( )−V G1( )( )


q1 ,q2∈VG2

2dG1
p1(  + 2 d q1(  

� 2n2 n2 − 1(  

p1p2∉E S G1( )( )
p1∈V G1( )
p2∈V S G1( )−V G1( )( )

dG1
p1(   + 2 2e2( e1 n1 − 2(  n2 − 1( .

(9)
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Note that

e1 ≤ 

p1p2∉E S G1( )( )
p1∈V G1( )
p2∈V S G1( )−V G1( )( )

d p1( ≤ 2e1 n1 − 2( E S G1( ( ,

2n2 n2 − 1( e1 + 4e2e1 n1 − 2(  n2 − 1( ≤  C2 ≤ 4n2 n2 − 1( e1 n1 − 2( E S G1( (  + 4e2e1 n1 − 2(  n2 − 1( ,

 C3 � 

p1p2∉E S G1( )( )
p1∈V G1( )
p2∈V S G1( )−V G1( )( )


q1 ,q2∈VG2

d p1, q1(  + d p2, q2(  

� 

p1p2∉E S G1( )( )
p1∈V G1( )
p2∈V S G1( )−V G1( )( )


q1 ,q2∈VG2

dG1
p1(  + d q1(  dS G1( ) p2(  

� 

p1p2∉E S G1( )( )
p1∈V G1( )
p2∈V S G1( )−V G1( )( )


q1 ,q2∈VG2

dG1
p1(  + d q1(  2 

� 

p1p2∉E S G1( )( )
p1∈V G1( )
p2∈V S G1( )−V G1( )( )


q1 ,q2∈VG2

2dG1
p1(  + 2 d q1(  

� 2n2 n2 − 1(  

p1p2∉E S G1( )( )
p1∈V G1( )
p2∈V S G1( )−V G1( )( )

d p1(   + 2 2e2(  n2 − 1( 2e1.

(10)

Note that

2e1 ≤ 

p1p2∉E S G1( )( )
p1∈V G1( )
p2∈V S G1( )−V G1( )( )

d p1( ≤ 2e1E S G1( ( ,

4e1n2 n2 − 1(  + 8e1e2 n2 − 1( ≤  C3 ≤ 4e1n2 n2 − 1( E S G1( (  + 8e1e2 n2 − 1( .

(11)

Consequently,

2n2e1 + 4e2e1 n1 − 2(  + 2n2 n2 − 1( e1 + 4e2e1 n1 − 2(  n2 − 1(  + 4e1n2 n2 − 1(  + 8e1e2 n2 − 1( 

≤  C≤ 4n2e1 n1 − 2( E S G1( (  + 4e2e1 n1 − 2(  + 4n2 n2 − 1( e1 n1 − 2( E S G1( ( 

+ 4e2e1 n1 − 2(  n2 − 1(  + 4e1n2 n2 − 1( E S G1( (  + 8e1e2 n2 − 1( .

(12)

We obtained the required result by putting the values of
 A +  B +  C in equation (5). □

Theorem 2. Let G1 and G2 be two simple connected graphs,
then second Zagreb coindex of G1+RG2 is given as follows:
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α1 ≤M2 G1+RG2( ≤ α2, (13) where

α1 � 4n2e1 3n2 − 2(  + 2 n
2
2e

2
1 − n2e1  + 4e2e1 n2 n1 − 2(  + 2 n2 − 1(   + 4e2M1 G1(  + 4e2M1 G1( +

8 e2 + e2( M2 G1(  + 4n2 + 2 e2 + e2( M2 G1(  + e1M1 G2(  + 4e1M1 G2(  + 2 e1 + e1( M2 G2( 

+ n1 + 2 e1 + e1( ( M2 G2(  + 2 M1 G2(  + M1 G2( (  M1 G1(  + M1 G1( ( ,

α2 � 8n2e1E R G1( (  n1 − 2 + n2 − 1(  n1 − 1( (  + 2 n
2
2e

2
1 − n2e1  + 4e2e1 n2 n1 − 2(  + 2 n2 − 1(  

+ 4e2M1 G1(  + 4e2M1 G1(  + 8 e2 + e2( M2 G1(  + 4n2 + 2 e2 + e2( M2 G1(  + e1M1 G2(  + 4e1M1 G2( 

+ 2 e1 + e1( M2 G2(  + n1 + 2 e1 + e1( ( M2 G2(  + 2 M1 G2(  + M1 G2( (  M1 G1(  + M1 G1( ( .

(14)

Proof. Using equation (2), we have

M2 G1+RG2(  � 

p1 ,p2( ) q1 ,q2( )∉E G1+RG2( )

d p1, q1( d p2, q2(  

�  A +  B +  C.

(15)

Using equation (6), we directly have

 A � 2 n
2
2e

2
1 − n2e1 ,

 B �  B1 +  B2 +  B3 +  B4 +  B5 +  B6,

 B1 � 
p∈VG1


q1q2∉EG2

d p, q1( d p, q2(   � 
p∈VG1


q1q2∉EG2

dR(p) + dG2
q1( dR(p) + dG2

q2(   

� 
p∈VG1


q1q2∉EG2

dR(p)dR(p) + dR(p)dG2
q2(  + dR(p)dG2

q1(  + dG2
q1( dG2

q2(  

� 
p∈VG1


q1q2∉EG2

4dG1
(p)

2
+ 2dG1

(p) dG2
q2(  + dG2

q1(   + dG2
q1( dG2

q2(  

� 4e2M1 G1(  + 2 2e1( M1 G2(  + n1M2 G2( ,

 B2 � 
q∈VG2


p1 ,p2∈VG1

d p1, q( d p2, q(  

� 
q∈VG2


p1p2∉EG1

d p1, q( d p2, q(   � 
q∈VG2


p1p2∉EG1

dR p1(  + dG2
(q)  dR p2(  + dG2

(q)  

� 
q∈VG2


p1p2∉EG1

2dG1
p1(  + dG2

(q)  2dG1
p2(  + dG2

(q)  

� 
q∈VG2


p1p2∉EG1

4dG1
p1( dG1

p2(  + 2dG1
p1( dG2

(q) + 2dG1
p2( dG2

(q) + dG2
(q)

2
  

� 4n2M2 G1(  + 2 2e2( M1 G1(  + e1M1 G2( ,

 B3 � 
p1p2∈EG1


q1q2∈EG2

d p1, q1(  + d p2, q2(  

� 
p1p2∈EG1


q1q2∈EG2

dR(p)dR(p) + dR(p)dG2
q2(  + dR(p)dG2

q1(  + dG2
q1( dG2

q2(   

� 
p1p2∈EG1


q1q2∈EG2

dR(p)dR(p) + dR(p)dG2
q2(  + dR(p)dG2

q1(  + dG2
q1( dG2

q2(   
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� 2 
p1p2∈EG1


q1q2∈EG2

4dG1
(p)

2
+ 2dG1

(p) dG2
q2(  + dG2

q1(   + dG2
q1( dG2

q2(  

� 2 4e2M2 G1(  + e1M2 G2(   + 2M1 G1( M1 G2( ,

 B4 � 
p1p2∉EG1


q1q2∈EG2

d p1, q1( d p2, q2(  

� 
p1p2∉EG1


q1q2∈EG2

dR p1(  + dG2
q1(   dR p2(  + dG2

q2(   

� 
p1p2∉EG1


q1q2∈EG2

2dG1
p1(  + dG2

q1(   2dG1
p2(  + dG2

q2(   

� 
p1p2∉EG1


q1q2∈EG2

4dG1
p1( dG1

p2(  + 2 dG1
p1( dG2

q2(  + dG1
p2( dG2

q1(   + dG2
q1( dG2

q2(  

� 2 4e2M2 G1(  + e1M2 G2(   + 2M1 G1( M1 G2( ,
(16)

 B5 � 
p1p2∉EG1


q1q2∉EG2

d p1, q1( d p2, q2(  

� 
p1p2∉EG1


q1q2∉EG2

dR p1(  + dG2
q1(   dR p2(  + dG2

q2(   

� 
p1p2∉EG1


q1q2∉EG2

2dG1
p1(  + dG2

q1(   2dG1
p2(  + dG2

q2(   

� 
p1p2∉EG1


q1q2∉EG2

4dG1
p1( dG1

p2(  + 2 dG1
p1( dG2

q2(  + dG1
p2( dG2

q1(   + dG2
q1( dG2

q2(  

� 2 4e2M2 G1(  + e1M2 G2(   + 2M1 G1( M1 G2( ,

 B6 � 
p1p2∈EG1


q1q2∉EG2

d p1, q1( d p2, q2(  

� 
p1p2∈EG1


q1q2∉EG2

dR p1(  + dG2
q1(   dR p2(  + dG2

q2(   

� 
p1p2∈EG1


q1q2∉EG2

2dG1
p1(  + dG2

q1(   2dG1
p2(  + dG2

q2(   

� 
p1p2∈EG1


q1q2∉EG2

4dG1
p1( dG1

p2(  + 2 dG1
p1( dG2

q2(  + dG1
p2( dG2

q1(   + dG2
q1( dG2

q2(  

� 2 4e2M2 G1(  + e1M2 G2(   + 2M1 G1( M1 G2( ,

 B � 4e2M1 G1(  + 4e2M1 G1(  + 8 e2 + e2( M2 G1(  + 4n2 + 2 e2 + e2( M2 G1(  + e1M1 G2( 

+ 4e1M1 G2(  + 2 e1 + e1( M2 G2(  + n1 + +2 e1 + e1( ( 

M2 G2(  + 2 M1 G2(  + M1 G2( (  M1 G1(  + M1 G1( ( ,

 C �  C1 +  C2 +  C3,

 C1 � 

p1p2∉E R G1( )( )
p1∈V G1( )

p2∈V R G1( )−V G1( )( )


q∈VG2

dp1, qdp2, q � 

p1p2∉E R G1( )( )
p1∈V G1( )

p2∈V R G1( )−V G1( )( )


q∈VG2

dR p1(  + dG2
(q)  dR p2( (  ,

·  C1 

p1p2∉E R G1( )( )
p1∈V G1( )

p2∈V R G1( )−V G1( )( )


q∈VG2

2dG1
p1(  + dG2

(q) 2 

� 

p1p2∉E R G1( )( )
p1∈V G1( )

p2∈V S G1( )−V G1( )( )


q∈VG2

4 dG1
p1(  + 2dG2

(q)   � 4n2 

p1p2∉E R G1( )( )
p1∈V G1( )

p2∈V S G1( )−V G1( )( )

d p1(   + 4e2e1 n1 − 2( .

(17)
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Note that
e1 ≤ 

p1p2∉E R G1( )( )
p1∈V G1( )

p2∈V S G1( )−V G1( )( )

d p1(  ≤ 2e1 n1 − 2( E S G1( ( ,

(18)

so

4n2e1 + 4e2e1 n1 − 2( ≤  C1 ≤ 8n2e1 n1 − 2( E R G1( (  + 4e2e1 n1 − 2( ,

 C2 � 

p1p2∉E R G1( )( )
p1∈V G1( )

p2∈V R G1( )−V G1( )( )


q1 ,q2∈VG2

d p1, q1( d p2, q2(  

� 

p1p2∉E R G1( )( )
p1∈V G1( )

p2∈V R G1( )−V G1( )( )


q1 ,q2∈VG2

dR p1(  + d q1( ( dR G1( ) p2(  

� 

p1p2∉E R G1( )( )

p1∈V G1( )

p2∈V R G1( )−V G1( )( )


q1 ,q2∈VG2

2dG1
p1(  + d q1(  2 

� 

p1p2∉E R G1( )( )

p1∈V G1( )

p2∈V R G1( )−V G1( )( )


q1 ,q2∈VG2

4dG1
p1(  + 2 d q1(  

� 4n2 n2 − 1(  

p1p2∉E R G1( )( )

p1∈V G1( )

p2∈V R G1( )−V G1( )( )

dG1
p1(   + 2 2e2( e1 n1 − 2(  n2 − 1( .

(19)

Note that

e1 ≤ 

p1p2∉E R G1( )( )
p1∈V G1( )
p2∈V R G1( )−V G1( )( )

d p1( ≤ 2e1 n1 − 2( E R G1( ( ,

(20)
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so

4n2 n2 − 1( e1 + 4e2e1 n1 − 2(  n2 − 1( ≤  C2 ≤ 8n2 n2 − 1( e1 n1 − 2( E R G1( (  + 4e2e1 n1 − 2(  n2 − 1( ,

 C3 � 

p1p2∉E R G1( )( )
p1∈V G1( )
p2∈V R G1( )−V G1( )( )


q1 ,q2∈VG2

d p1, q1(  d p2, q2( (  

� 

p1p2∉E R G1( )( )
p1∈V G1( )
p2∈V R G1( )−V G1( )( )


q1 ,q2∈VG2

dR p1(  + d q1( (  dR G1( ) p2(   

� 

p1p2∉E R G1( )( )
p1∈V G1( )
p2∈V R G1( )−V G1( )( )


q1 ,q2∈VG2

2dG1
p1(  + d q1(  2 

� 

p1p2∉E R G1( )( )
p1∈V G1( )
p2∈V R G1( )−V G1( )( )


q1 ,q2∈VG2

4dG1
p1(  + 2 d q1(  

� 4n2 n2 − 1(  

p1p2∉E R G1( )( )
p1∈V G1( )
p2∈V R G1( )−V G1( )( )

d p1(   + 2 2e2(  n2 − 1( 2e1.

(21)

Note that

2e1 ≤ 

p1p2∉E R G1( )( )
p1∈V G1( )
p2∈V R G1( )−V G1( )( )

d p1( ≤ 2e1E R G1( ( ,

(22)

so

8e1n2 n2 − 1(  + 8e1e2 n2 − 1( 

≤  C3 ≤ 8e1n2 n2 − 1( E R G1( (  + 8e1e2 n2 − 1( .
(23)

Consequently,

8e1n2 n2 − 1(  + 8e1e2 n2 − 1(  + 4n2 n2 − 1( e1 + 4e2e1 n1 − 2(  n2 − 1(  + 4n2e1 + 4e2e1 n1 − 2( 

≤  C

≤ 8n2e1 n1 − 2( E R G1( (  + 4e2e1 n1 − 2(  + 8n2 n2 − 1( e1 n1 − 2( E R G1( (  + 4e2e1 n1 − 2(  n2 − 1( 

+ 8e1n2 n2 − 1( E R G1( (  + 8e1e2 n2 − 1( .

(24)

We obtained the required proof by putting the values of
 A +  B +  C in equation (14). □

Theorem 3. Let G1 and G2 be two simple connected graphs,
then second Zagreb coindex of G1+QG2 is given as follows:
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α1 ≤M2 G1+QG2 ≤ α2, (25) where

α1 � 4e2 e1 + n2 − 1(  e1 + e1(   + n
2
2M2 G1(  + n2 n2 − 1( M2 G1(  + n2 − 1 + e2(  M1 G1(  + 2M2 G1( ( 

+ 2e2 + e2( M1 G1(  + 2e2M1 G1(  + n2 + 2 e2 + e2( ( M2 G1( M2 G1(  + e1 + e1( M1 G2(  + 2e1M1 G2( 

+ 2 e1 + e1( M2 G2(  + n1 + 2 e1 + e1( ( M2 G2(  + M1 G2(  + M1 G2( (  M1 G1(  + M1 G1( ( ,

α2 � 4e2 eQ G1( ) + n2 − 1(  eQ G1( ) + eQ G1( )   + n
2
2M2 Q G1( (  + n2 n2 − 1( M2 Q G1( ( 

+ n2 + 2 n2 − 1 + e2( ( M2 Q G1( (  + n2 − 1 + e2( M1 Q G1( (  + 2 n2 − 1 + e2( M2 Q G1( (  + 2e2 + e2( M1 G1( 

+ 2e2M1 G1(  + n2 + 2 e2 + e2( ( M2 G1( M2 G1(  + e1 + e1( M1 G2(  + 2e1M1 G2(  + 2 e1 + e1( M2 G2( 

+ n1 + 2 e1 + e1( ( M2 G2(  + M1 G2(  + M1 G2( (  M1 G1(  + M1 G1( ( .

(26)

Proof. Using equation (2), we have

M2 G1+QG2  � 

p1 ,p2( ) x1 ,x2( )∉E G1+QG2( )

d p1, x1( d p2, x2(   �  A +  B +  C,

 A �  A1 +  A2 +  A3 +  A4 +  A5 +  A6 +  A7,

 A1 � 

p1p2∉E Q G1( )( )

p1 ,p2∈V Q G1( )− G1( )( )


x∈VG2

dp1, xdp2, x  � n2 

p1p2∉E Q G1( )( )

p1 ,p2∈V Q G1( )− G1( )( )

dQG1
p1dQG1

p2 .

(27)

Note that

0≤ 

p1p2∉E Q G1( )( )
p1 ,p2∈V Q G1( )− G1( )( )

dQ G1( ) p1( dQ G1( ) p2(  ≤M2 Q G1( ( ,

(28)

so

0≤  A1 ≤ n2M2 Q G1( ( ,

 A2 � 

p∈V Q G1( )− G1( )( )


x1x2∈EG2

d p, x1( d p, x2(  

� 

p∈V Q G1( )− G1( )( )


x1x2∈EG2

dQ G1( )(p)dQ G1( )(p)  � n2 − 1(  

p∈V Q G1( )− G1( )( )

dQ G1( )(p)
2

 .

(29)
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Note that

M1 G1( ≤ 

p∈V Q G1( )− G1( )( )

dQ G1( )(p)
2

 ≤M1 Q G1( ( ,

(30)

so

n2 − 1( M1 G1( ≤  A2 ≤ n2 − 1( M1 Q G1( ( ,

 A3 � 

p∈V Q G1( )− G1( )( )


x1x2∉EG2

d p, x1( d p, x2(  

� 

p∈V Q G1( )−V G1( )( )


x1x2∉EG2

dQ G1( )(p)dQ G1( )(p)  � e2 

t∈V Q G1( )−V G1( )( )

dQ G1( )(p)
2

 .

(31)

Note that

M1 G1( ≤ 

p∈V Q G1( )−V G1( )( )

dQ G1( )(p)
2

 ≤M1 Q G1( ( ,

(32)

so

e2M1 G1( ≤  A3 ≤ e2M1 Q G1( ( ,

 A4 � 

p1p2∈E Q G1( )( )
p1 ,p2∈V Q G1( )−V G1( )( )


x1x2∈EG2

d p1, x1( d p2, x2(  

� 

p1p2∈E Q G1( )( )
p1 ,p2∈V Q G1( )−V G1( )( )


x1x2∈EG2

dp1, x1dp2, x2  � 2n2 − 1 

p1p2∈E Q G1( )( )
p1 ,p2∈V Q G1( )−V G1( )( )

dQG1
p1dQG1

p2 .

(33)

Note that

M2 G1( ≤ 

p1p2∈E Q G1( )( )
p1 ,p2∈V Q G1( )−V G1( )( )

dQ G1( ) p1(  + dQ G1( ) p2(  ≤M2 Q G1( ( ,
(34)
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so

2 n2 − 1( M2 G1( ≤  A4 ≤ 2 n2 − 1( M2 Q G1( ( ,

 A5 � 

p1p2∈E Q G1( )( )
p1 ,p2∈V Q G1( )−V G1( )( )


x1x2∈EG2

d p1, x1( d p2, x2(  

� 

p1p2∈E Q G1( )( )
p1 ,p2∈V Q G1( )−V G1( )( )


x1x2∈EG2

d p1, x1( d p2, x2(   � 2e2 

p1p2∈E Q G1( )( )
p1 ,p2∈V Q G1( )−V G1( )( )

dQ G1( ) p1( dQ G1( ) p2(  .

(35)

Note that

M2 G1( ≤ 

p1p2∈E Q G1( )( )
p1 ,p2∈V Q G1( )−V G1( )( )

dQ G1( ) p1(  + dQ G1( ) p2(  ≤M2 Q G1( ( ,
(36)

so

2e2M2 G1( ≤  A5 ≤ 2e2M2 Q G1( ( ,

 A6 � 

p1p2∈E Q G1( )( )
p1 ,p2∈V Q G1( )−V G1( )( )


x1x2∈EG2

d p1, x1( d p2, x2(  

� 

p1p2∈E Q G1( )( )
p1 ,p2∈V Q G1( )−V G1( )( )


x1x2∈EG2

d p1, x1( d p2, x2(   � 2 n2 − 1(  

p1p2∈E Q G1( )( )
p1 ,p2∈V Q G1( )−V G1( )( )

dQ G1( ) p1( dQ G1( ) p2(  .

(37)

Note that

0≤ 

p1p2∈E Q G1( )( )
p1 ,p2∈V Q G1( )−V G1( )( )

dQ G1( ) p1( dQ G1( ) p2(  ≤M2 Q G1( ( ,

(38)

so

0≤  A6 ≤ 2 n2 − 1( M2 Q G1( ( ,

 A7 � 

p1p2∉E Q G1( )( )
p1 ,p2∉V Q G1( )−V G1( )( )


x1x2∈EG2

d p1, x1( d p2, x2(  

� 

p1p2∉E Q G1( )( )
p1 ,p2∉V Q G1( )−V G1( )( )


x1x2∈EG2

d p1, x1( d p2, x2(   � 2e2 

p1p2∉E Q G1( )( )
p1 ,p2∈V Q G1( )−V G1( )( )

dQ G1( ) p1( dQ G1( ) p2(  .

(39)
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Note that

0≤ 

p1p2∉E Q G1( )( )
p1 ,p2∈V Q G1( )−V G1( )( )

dQ G1( ) p1( dQ G1( ) p2(  ≤M2 Q G1( ( ,

(40)

so

0≤  A7 ≤ 2e2M2 Q G1( ( . (41)

Consequently,

2e2M2 G1(  + 2 n2 − 1( M2 G1(  + n2 − 1( M1 G1(  + e2M1 G1( 

≤  A

≤ n2M2 Q G1( (  + n2 − 1( M1 Q G1( (  + e2M1 Q G1( (  + 2 n2 − 1( M2 Q G1( (  + 2e2M2 Q G1( ( 

+ 2 n2 − 1( M2 Q G1( (  + 2e2M2 Q G1( ( .

(42)

Using equation (7), we directly have

 B � 2 e2 + e2( M1 G1(  + e2M1 G1(   + n2 + 2 e2 + e2( ( M2 G1( M2 G1(  + e1 + e1( M1 G2( 

+ 2 e1M1 G2(  + e1 + e1( M2 G2(   + n1 + 2 e1 + e1( ( M2 G2( 

+ M1 G2(  + M1 G2( (  M1 G1(  + M1 G1( ( ,

 C �  C1 +  C2 +  C3,

 C1 � 

p1p2∉E Q G1( )( )
p1∈V G1( )
p2∈V Q G1( )−V G1( )( )


x∈VG2

dp1, xdp2, x � 

p1p2∉E Q G1( )( )
p1∈V G1( )
p2∈V Q G1( )−V G1( )( )


x∈VG2

dG1
p1(  + d(x) dQ G1( ) p2(  

� n2 

p1p2∉E Q G1( )( )
p1∈V G1( )
p2∈V Q G1( )−V G1( )( )

dG1
p1( dQ G1( ) p2(  + 2e2dQ G1( ) p2(  

� n2 

p1p2∉E Q G1( )( )
p1∈V G1( )
p2∈V Q G1( )−V G1( )( )

dG1
p1( dQ G1( ) p2(  + d(x) 

p1p2∉E Q G1( )( )
p1∈V G1( )
p2∈V Q G1( )−V G1( )( )

dQ G1( ) p2( .

(43)
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Note that

M2 G1( ≤ 

p1p2∉E Q G1( )( )
p1∈V G1( )
p2∈V Q G1( )−V G1( )( )

dQ G1( ) p1( ≤M2Q G1( ,

2e1 ≤ 

p1p2∉E Q G1( )( )
p1∈V G1( )
p2∈V Q G1( )−V G1( )( )

dQ G1( ) p2( ≤ 2eQ G1( ),

n2M2 G1(  + 4e2e1 ≤  C1 ≤ n2M2 Q G1( (  + 4e2eQ G1( ),

 C2 � 

p1p2∉E Q G1( )( )
p1∈V G1( )
p2∈V Q G1( )−V G1( )( )


x1 ,x2∈VG2

d p1, x1( d p2, x2(  

� 

p1p2∉E Q G1( )( )
p1∈V G1( )
p2∈V Q G1( )−V G1( )( )


x1 ,x2∈VG2

dG1
p1(  + d x1(  dQ G1( ) p2(  

� 

p1p2∉E Q G1( )( )
p1∈V G1( )
p2∈V Q G1( )−V G1( )( )


x1 ,x2∈VG2

dG1
p1( dQ G1( ) p2(  + d x1( dQ G1( ) p2(  

� 
x1 ,x2∈VG2



p1p2∉E Q G1( )( )
p1∈V G1( )
p2∈V Q G1( )−V G1( )( )

dG1
p1( dQ G1( ) p2(  + d x1(  

p1p2∉E Q G1( )( )
p1∈V G1( )
p2∈V Q G1( )−V G1( )( )

dQ G1( ) p2( .

(44)
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Note that

M2 G1( ≤ 

p1p2∉E Q G1( )( )
p1∈V G1( )
p2∈V Q G1( )−V G1( )( )

dQ G1( ) p1( ≤M2Q G1( ,

2e1 ≤ 

p1p2∉E Q G1( )( )
p1∈V G1( )
p2∈V Q G1( )−V G1( )( )

 dQ G1( ) p2( ≤ 2eQ G1( ),

n2 n2 − 1( M2 G1(  + 4e2 n2 − 1( e1 ≤  C2 ≤ n2 n2 − 1( M2 Q G1( (  + 4e2 n2 − 1( eQ G1( ),

 C3 � 

p1p2∉E Q G1( )( )
p1∈V G1( )
p2∈V Q G1( )−V G1( )( )


x1 ,x2∈VG2

d p1, x1( d p2, x2(  

� 

p1p2∉E Q G1( )( )
p1∈V G1( )
p2∈V Q G1( )−V G1( )( )


x1 ,x2∈VG2

dG1
p1(  + d x1(  dQ G1( ) p2(  

� 

p1p2∉E Q G1( )( )
p1∈V G1( )
p2∈V Q G1( )−V G1( )( )


x1 ,x2∈VG2

dG1
p1( dQ G1( ) p2(  + d x1( dQ G1( ) p2(  

� 
x1 ,x2∈VG2



p1p2∉E Q G1( )( )
p1∈V G1( )
p2∈V Q G1( )−V G1( )( )

dG1
p1( dQ G1( ) p2(  + d x1(  

p1p2∉E Q G1( )( )
p1∈V G1( )
p2∈V Q G1( )−V G1( )( )

dQ G1( ) p2( .

(45)
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Note that

M2 G1( ≤ 

p1p2∉E Q G1( )( )
p1∈V G1( )
p2∈V Q G1( )−V G1( )( )

dQ G1( ) p1( ≤M2Q G1( ,

2e1 ≤ 

p1p2∉E Q G1( )( )
p1∈V G1( )
p2∈V Q G1( )−V G1( )( )

dQ G1( ) p2( ≤ 2eQ G1( ),

n2 n2 − 1( M2 G1(  + 4e2 n2 − 1( e1 ≤  C3 ≤ n2 n2 − 1( M2 Q G1( (  + 4e2 n2 − 1( eQ G1( ).

(46)

Consequently,

n2M2 G1(  + 4e2e1 + n2 n2 − 1( M2 G1(  + 4e2 n2 − 1( e1 + n2 n2 − 1( M2 G1(  + 4e2 n2 − 1( e1

≤  C

≤ n2M2 Q G1( (  + 4e2eQ G1( ) + n2 n2 − 1( M2 Q G1( (  + 4e2 n2 − 1( eQ G1( ) + n2 n2 − 1( M2 Q G1( (  + 4e2 n2 − 1( eQ G1( ).

(47)

We obtained the required proof by putting the values of
 A +  B +  C in equation (25). □

Theorem 4. Let G1 and G2 be two graphs, then second
Zagreb coindex of G1+TG2 is given as follows:

α1 ≤M2 G1+TG2( ≤ α2, (48)

where

α1 � 4e2 e1 + n2 − 1(  e1 + e1(   + 2n2 M2 G1(  + n2 − 1(  M2 G1(  + M2 G1( (   + n2 − 1 + e2(  M1 G1(  + 2M2 G1( ( 

+ 4e2M1 G1(  + 4e2M1 G1(  + 8 e2 + e2( M2 G1(  + 4 n2 + 2 e2 + e2( ( M2 G1(  + e1M1 G2( 

+ 4e1M1 G2(  + 2 e1 + e1( M2 G2(  + n1 + 2 e1 + e1( ( M2 G2(  + 2 M1 G2(  + M1 G2( (  M1 G1(  + M1 G1( ( ,

α2 � 4e2 eT G1( ) + n2 − 1(  eT G1( ) + eT G1( )   + 2n2 M2 T G1( ( (  + n2 − 1(  M2 T G1( (  + M2 T G1( ( ( ,

α2 � 4e2 eT G1( ) + n2 − 1(  eT G1( ) + eT G1( )   + 2n2 M2 T G1( ( (  + n2 − 1(  M2 T G1( (  + M2 T G1( ( ( 

+ 8 e2 + e2( M2 G1(  + 4 n2 + 2 e2 + e2( ( M2 G1(  + e1M1 G2(  + 4e1M1 G2(  + 2 e1 + e1( M2 G2( 

+ n1 + 2 e1 + e1( ( M2 G2(  + 2 M1 G2(  + M1 G2( (  M1 G1(  + M1 G1( ( .

(49)

Proof. Using equation (2), we have

M2 G1+TG2(  � 

p1 ,p2( ) q1 ,q2( )∉E G1+TG2( )

d p1, q1( d p2, q2(   �  A +  B +  C.
(50)
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Using equation (40), we directly have

2e2M2 G1(  + 2 n2 − 1( M2 G1(  + n2 − 1( M1 G1(  + e2M1 G1( 

≤  A≤ n2M2 T G1( (  + n2 − 1( M1 T G1( ( 

+ e2M1 T G1( (  + 2 n2 − 1( M2 T G1( (  + 2e2M2 T G1( (  + 2 n2 − 1( M2 T G1( (  + 2e2M2 T G1( ( .

(51)

Using equation (15), we directly have

 B � 4e2M1 G1(  + 4e2M1 G1(  + 8 e2 + e2( M2 G1(  + 4n2 + 2 e2 + e2( M2 G1( 

+ e1M1 G2(  + 4e1M1 G2( 

+ 2 e1 + e1( M2 G2(  + n1 + 2 e1 + e1( ( M2 G2(  + 2 M1 G2( (

+ M1 G2(  M1 G1(  + M1 G1( ( ,

 C �  C1 +  C2 +  C3,

 C1 � 

t1t2∉E T G1( )( )

p1∈V G1( )

p2∈V T G1( )−G1( )


q∈VG2

d p1, q( d p2, q(  

2n2M2 G1(  + 4e2e1 ≤  C1 ≤ 2n2M2 T G1( (  + 4e2eT G1( ),

 C2 � 

p1p2∉E T G1( )( )

p1∈V G1( )

p2∈V T G1( )−V G1( )( )


q1 ,q2∈VG2

d p1, q1( d p2, q2(  

2n2 n2 − 1( M2 G1(  + 4e2 n2 − 1( e1 ≤  C2 ≤ 2n2 n2 − 1( M2 T G1( (  + 4e2 n2 − 1( eT G1( ),

 C3 � 

p1p2∈E T G1( )( )

p1∈V G1( )

p2∈V T G1( )−V G1( )( )


q1 ,q2∈VG2

d p1, q1( d p2, q2(  

2n2 n2 − 1( M2 G1(  + 4e2 n2 − 1( e1 ≤  C3 ≤ 2n2 n2 − 1( M2 T G1( (  + 4e2 n2 − 1( eT G1( ).

(52)

Consequently,

2n2M2 G1(  + 4e2e1 + 2n2 n2 − 1( M2 G1(  + 4e2 n2 − 1( e1 + 2n2 n2 − 1( M2 G1(  + 4e2 n2 − 1( e1

≤  C

≤ 2n2M2 T G1( (  + 4e2eT G1( ) + 2n2 n2 − 1( M2 T G1( (  + 4e2 n2 − 1( eT G1( ) + 2n2 n2 − 1( M2 T G1( (  + 4e2 n2 − 1( eT G1( ).

(53)
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We obtained required results by putting the values of
 A +  B +  C in equation (48). □

4. Conclusion

In this paper, we have computed second Zagreb coindex of
F-sum graphs such as M2(G1+SG2), M2(G1+RG2),
M2(G1+QG2), and M2(G1+TG2). 'e obtained results are
illustrated with the help of specific class graphs of F-sum
graphs. Let G1 � P3 and G2 � P2, then the lower and upper
bounds of first Zagreb coindex for their F-sum graph are
given in Table 1.

Now, we close our discussion that the problem is still
open to compute the other generalized coindices (first
general Zagreb and general Randic coindices) for the F-sum
graphs.
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Let G � G1 × G2 × · · · × Gm be the strong product of simple, finite connected graphs, and let ϕ: N⟶ (0,∞) be an increasing
function. We consider the action of generalized maximal operator M

ϕ
G on ℓp spaces. We determine the exact value of ℓp-quasi-

norm of M
ϕ
G for the case when G is strong product of complete graphs, where 0<p≤ 1. However, lower and upper bounds of

ℓp-norm have been determined when 1<p<∞. Finally, we computed the lower and upper bounds of ‖M
ϕ
G‖p when G is strong

product of arbitrary graphs, where 0<p≤ 1.

1. Introduction

We review some of the standard facts on graphs and metric
on the graphs. All the graphs considered in this paper are
simple, finite, and connected. Let G(V(G), E(G)) be a graph,
where V(G) is the set of vertices and E(G) is the set of edges
of G. (e vertices which are at distance one from any vertex
x ∈ V(G) are called neighbors of x. (e set of neighbors of
x ∈ V(G) is denoted by NG(x). (e degree of any vertex
x ∈ V(G) is the cardinality of the set NG(x) and is denoted
by dG(x). (e distance between two vertices x and y

denoted by d(x, y) is the length of the shortest path between
x and y. For more details on graph theory, we refer the
readers to [1–3]. (e metric (graph metric)
dG: V(G) × V(G)⟶ R on graph G is defined as

dG(x, y) � distance betweenx andy, (1)

where x, y ∈ V(G). (is metric space (G, dG) is called
geodesic metric space. For any function f: V(G)⟶ R, the

Hardy–Littlewood maximal operator Mx
G: ℓp⟶ ℓp [4–7]

is defined as

M
x
Gf(q) � sup

r≥0

1
|B(q, r)|


w∈B(q,r)

|f(w)|, (2)

where B(q, r) � s ∈ V(G): dG(q, s)≤ r  is the ball with
center q ∈ V(G) and radius r on a graph G. It contains all the
vertices ofG which are at distance atmost r from the vertex q.
It is clear from the definition that if r � 0, then |B(q, r)| � 1,
and if r≥ 1, then |B(q, r)|≥ 2. (e values of metric function
dG are natural numbers and radius r≥ 0; therefore, equation
(2) can be written as

M
x
Gf(q) � max

r∈N

1
|B(q, r)|


w∈B(q,r)

|f(w)|. (3)

(e fractional maximal operator [8] on graphs is defined
as

Hindawi
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M
1− (t/n)
G f(q) � max

r∈N

1
|B(q, r)|

1− (t/n)


w∈B(q,r)

|f(w)|, (4)

where 0≤ t≤ n. If t � 0, then equation (4) reduces to
equation (3). For 0<p<∞, the ℓp norm of the Har-
dy–Littlewood maximal operator is defined as

M
x
G

����
����ℓp ≔ sup

f≠0

M
x
Gf

����
����ℓp

‖f‖ℓp

, (5)

where ‖f‖ℓp � (s∈V(G)|f(s)|p)(1/p).
For every function f: V(G)⟶ R, the generalized

maximal operator M
ϕ
G: ℓp⟶ ℓp [9, 10] is defined as

M
ϕ
Gf(q) � max

r∈N

1
ϕ(|B(q, r)|)


w∈B(q,r)

|f(w)|, (6)

where ϕ: N⟶ (0,∞) is an increasing function. Note that
if we take ϕ(x) � x in equation (6), then we get the classical
Hardy–Littlewood maximal operator Mx

G, and if we take
ϕ(x) � x1− (t/n) in equation (5), then we get equation (4).

Let Kn be complete graph on n vertices. For any vertex
q ∈ V(Kn), the ball B(q, r) with center q and radius r is
defined as

B(q, r) �
q , for r � 0,

V Kn( , for r≥ 1.
 (7)

(erefore, the generalized maximal operator on com-
plete graph Kn takes the form

M
ϕ
Kn

f(q) � max
1

ϕ(1)
|f(q)|,

1
ϕ(n)



v∈V Kn( )

|f(v)|
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
.

(8)

For any vertex i ∈ V(G), the Kronecker delta function is
defined as

δq(i) �
1, q � i,

0, q≠ i.
 (9)

Soria and Tradacete [6] estimated the norm of maximal
operator Mx

G in the following form.

Proposition 1 (see [6])

(i) If 0<P≤ 1, then

MKn

�����

�����p
� 1 +

n − 1
np

 
(1/p)

. (10)

(ii) If 1<p<∞, then

1 +
n − 1

np
 

(1/p)

≤ MKn

�����

�����p
≤ 1 +

n − 1
n

 
(1/p)

. (11)

For more details on this topic of research, see
[4, 8, 10–13]. (e main motivation of this paper is from
[4–7, 10].

(e paper is structured as follows. Section 2 contains the
definitions which are helpful to prove the main results.
Section 3 contains the main results; we find the exact value of
‖M

ϕ
K‖p for the case 0<p≤ 1 and give lower and upper bound

when 1<p<∞. An example is given to show that these
bounds are not optimal. Finally, Section 4 concludes the
study.

2. Preliminaries

Let G1, G2, . . . , Gm be m graphs; then, their strong product
G � G1 × G2 × · · · × Gm is a graph having vertex set,

V(G) � u1, u2, . . . , um( : ui ∈ Gi ∀i � 1, 2, . . . , m , (12)

and the edge set, which is defined in the following manner;
there will be an edge between (u1, u2, . . . , um) and
(v1, v2, . . . , vm) in G if

(a) ui � vi and (uj, vj) ∈ E(Gj), j≠ i

(b) ui ≠ vi and (ui, vi) ∈ E(Gi), ∀i

Example 1. Let K2 be complete graph on two vertices. (e
strong product K � K2 × K2 × K2 of three K2 graphs is
shown in Figure 1.

Let G be the strong product of m graphs. (en, for every
function f: V(G)⟶ R, we can consider the generalized
maximal operator M

ϕ
G: ℓp⟶ ℓp as

M
ϕ
Gf u1, u2, . . . , um(  � max

r∈N

v1∈G1
v2∈G2

. . . vm∈Gm
f v1, v2, . . . , vm( 




ϕ BG1



 × BG2



 × · · · × BGm



 

, (13)

where BGi
� B(ui, r), i � 1, 2, . . . , m.(e norm ‖M

ϕ
G‖p of the

generalized maximal operator is defined as

M
ϕ
G

�����

�����p
� sup

f≠0

M
ϕ
Gf

�����

�����p

‖f‖p

, (14)

where ‖f‖p � (v1 ∈ G1
v2 ∈ G2

. . . vm ∈ Gm
|f(v1, v2, . . . ,

vm)|p)(1/p).
Let K � Kn1

× Kn2
× · · · × Knm

be the strong product of m

complete graphs with n1, n2, . . . , nm vertices, respectively;
then,
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B u1, r(  × B u2, r(  × · · · × B um, r(  �
u1, u2, . . . , um(  , for r � 0,

V(K), for r≥ 1.
 (15)

For every function f: V(K)⟶ R, the generalized
maximal operator takes the form

M
ϕ
Kf u1, u2, . . . , um(  � max

1
ϕ(1)

f u1, u2, . . . , um( 


,

1
ϕ n1 × n2 × · · · × nm( 


v1∈Kn1


v2∈Kn2

. . . 
vm∈Knm

f v1, v2, . . . , vm( 




⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

. (16)

Note that the operator M
ϕ
K is the smallest in the

pointwise ordering among all M
ϕ
G�G1×G2×···×Gm

, where each Gi

is a graph with ni vertices for i � 1, 2, . . . , m.(at is, for every
nonnegative function f and every vertex
(u1, u2, . . . , um) ∈ G, we have that

M
ϕ
Kf u1, u2, . . . , um( ≤M

ϕ
Gf u1, u2, . . . , um( . (17)

In particular, if 0<p<∞, then

M
ϕ
K

�����

�����
p

p
≤ M

ϕ
G

�����

�����
p

p
. (18)

For any vertex (u1, u2, . . . , um) ∈ V(K), the m Dirac
delta function is defined as

Γ u1 ,u2 ,...,um( ) v1, v2, . . . , vm(  � δu1
v1( .δu2

v2(  . . . δum
vm( .

(19)

It is easy to check that

Γ u1 ,u2 ,...,um( ) v1, v2, . . . , vm(  �
0, for uj ≠ vj, for some j,

1, for ui � vi, ∀i � 1, 2, . . . , m.


(20)

3. Main Results

(is section details the steps to find the quasi-norm of M
ϕ
K,

for the case 0<p≤ 1, and to find bounds of ‖M
ϕ
K‖p, for the

case of 1<p<∞. Also, we estimate the bounds of ‖M
ϕ
G‖p for

0<p≤ 1. Moreover, some examples are presented to support
the results.

Lemma 1. Let G be the strong product of m graphs, and
Ω: ℓp⟶ ℓp be a sublinear operator, with 0<p≤ 1. =en,

‖Ω‖p � max
u1 ,u2 ,...,um( )∈V(G)

ΩΓ u1 ,u2 ,...,um( )

�����

�����
p
. (21)

Proof. Since ‖Γ(u1 ,u2 ,...,um)‖p � 1, therefore ‖Ω‖p ≥
max(u1 ,u2 ,...,um)∈V(G)‖ΩΓ(u1 ,u2 ,...,um)‖p. To prove the other in-
equality, let h: V(G)⟶ R, with ‖h‖p ≤ 1, that is,

h � 
u1∈G1


u2∈G2

. . . 
um∈Gm

a u1 ,u2 ,...,um( )Γ u1 ,u2 ,...,um( ), (22)

with u1∈G1
u2∈G2

. . . um∈Gm
|a(u1 ,u2 ,...,um)|

p ≤ 1. Using
Hӧlder’s inequality for 0<p≤ 1, it follows that

‖Ωh‖
p
p � 

v1∈G1


v2∈G2

. . . 
vm∈Gm

Ωh v1, v2, . . . , vm( 



p

� 
v1∈G1


v2∈G2

. . . 
vm∈Gm

Ω 
u1 ∈ G1


u2 ∈ G2

. . . 
um ∈ Gm

a u1 ,u2 ,...,um( )Γ u1 ,u2 ,...,um( ) v1, v2, . . . , vm( ⎛⎝ ⎞⎠





p

≤ 
v1∈G1


v2∈G2

. . . 
vm∈Gm


u1 ∈ G1


u2 ∈ G2

. . . 
um ∈ Gm

a u1 ,u2 ,...,um( )



ΩΓ u1 ,u2 ,...,um( ) v1, v2, . . . , vm( 





p

≤ 
v1∈G1


v2∈G2

. . . 
vm∈Gm


u1∈G1


u2∈G2

. . . 
um∈Gm

a u1 ,u2 ,...,um( )ΩΓ u1 ,u2 ,...,um( ) v1, v2, . . . , vm( 



p

� 
u1∈G1


u2∈G2

. . . 
um∈Gm

a u1 ,u2 ,...,um( )




p


v1∈G1


v2∈G2

. . . 
vm∈Gm

ΩΓ u1 ,u2 ,...,um( ) v1, v2, . . . , vm( 



p

� 
u1∈G1


u2∈G2

. . . 
um∈Gm

a u1 ,u2 ,...,um( )




p
ΩΓ u1 ,u2 ,...,um( )

�����

�����
p

p

≤ max
u1 ,u2 ,...,um( )∈V(G)

ΩΓ u1 ,u2 ,...,um( )

�����

�����
p

p
.

(23)
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It completes the proof. □

Theorem 1. If 0<p≤ 1, then

M
ϕ
K

�����

�����p
�

1
ϕp(1)

+
n1 × n2 × · · · × nm(  − 1
ϕp n1 × n2 × · · · × nm( 

 

(1/p)

, (24)

and if 1<p<∞, then

1
ϕp(1)

+
n1 × n2 × · · · × nm(  − 1
ϕp n1 × n2 × · · · × nm( 

 

(1/p)

≤ M
ϕ
K

�����

�����p
≤max

n1 × n2 × · · · × nm( 
p

ϕp
n1 × n2 × · · · × nm( 

,

1
ϕp

(1)
+

n1 × n2 × · · · × nm(  − 1(  n1 × n2 × · · · × nm( 
(p− 1)

ϕp n1 × n2 × · · · × nm( 

⎫⎬

⎭
⎞⎠

(1/p)

.

(25)

Proof. Letf: V(K)⟶ R be a function such that ‖f‖p � 1.
Define m Dirac delta function Γ(u1 ,u2 ,...,um), where

u1 ∈ V(Kn1
), u2 ∈ V(Kn2

), . . ., um ∈ V(Knm
). (en, for

0<p<∞, we have

M
ϕ
KΓ u1 ,u2 ,...,um( )

�����

�����
p

� M
ϕ
KΓ u1 ,u2 ,...,um( ) u1, u2, . . . , um(  

P

+ 
v1≠u1


v2≠u2

. . . 
vm≠um

M
ϕ
KΓ u1 ,u2 ,...,um( ) v1, v2, . . . , vm(  

p
⎛⎝ ⎞⎠

(1/p)

�
1

ϕp(1)
+

n1 × n2 × · · · × nm(  − 1
ϕp n1 × n2 × · · · × nm( 

 

(1/p)

.

(26)

As ‖Γ‖p � 1, so we have, for 0<p<∞,

1
ϕp(1)

+
n1 × n2 × · · · × nm(  − 1
ϕp n1 × n2 × · · · × nm( 

 

(1/p)

≤ M
ϕ
K

�����

�����p
. (27)

For 0<p≤ 1, using Lemma 1, we have

1
ϕp(1)

+
n1 × n2 × · · · × nm(  − 1
ϕp n1 × n2 × · · · × nm( 

 

(1/p)

� M
ϕ
K

�����

�����p
. (28)

× ×

1 3 5

2 4 6

K2 K2 K2

=

1, 3, 5 1, 4, 5

1, 3, 6

1, 4, 6

2, 4, 6

2, 3, 6

2, 4, 5 2, 3, 5

K8

Figure 1: Strong product of three K2 graphs.
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Now, we will prove upper bound for 1<p<∞:

M
ϕ
Kf

�����

�����p
� 

u1∈BG1


u2∈BG2

· · · 
um∈BGm

max
1

ϕ(1)
f u1, u2, . . . , um( 


,⎛⎜⎝

·
1

ϕ n1 × n2 × · · · × nm( 


v1∈BG1


v2∈BG2

· · · 
vm∈BGm

f v1, v2, . . . , vm( 



p
⎫⎪⎬

⎪⎭
⎞⎟⎠

(1/p)

.

(29)

After applying Hölder’s inequality, we have

M
ϕ
K

�����

�����p
≤ sup 

u1∈BG1


u2∈BG2

· · · 
um∈BGm

max
1

ϕp(1)
f u1, u2, . . . , um( 



p
,

1
ϕp n1 × n2 × · · · × nm( 

n1 × n2 × · · · × nm( 
(p− 1)

 ⎛⎜⎝ ⎞⎟⎠

(1/p)

.

(30)

If (|f(u1, u2, . . . , um)|p/ϕp(1))≤ ((n1 × n2 ×

· · · × nm)(p− 1)/ϕp(n1 × n2 × · · · × nm)) for all vertices, then
we have

M
ϕ
K

�����

�����p
≤

n1 × n2 × · · · × nm( 
p

ϕp n1 × n2 × · · · × nm( 
 

(1/p)

. (31)

If (|f(u1′,u2′, . . . ,um
′ )|p/ϕp(1))>((n1 × n2 × · · ·× nm)(p− 1)/

ϕp(n1 × n2 × · · · × nm)) for some (u1′,u2′, . . . , um
′ ) ∈V(K), then

we have

M
ϕ
K

�����

�����p
≤

1
ϕp(1)

f u1′, u2′, . . . , um
′( 



p

+
n1 × n2 × · · · × nm(  − 1(  n1 × n2 × · · · × nm( 

p− 1

ϕp n1 × n2 × · · · × nm( 
 

(1/p)

≤
1

ϕp(1)
+

n1 × n2 × · · · × nm(  − 1(  n1 × n2 × · · · × nm( 
(p− 1)

ϕp n1 × n2 × · · · × nm( 
⎛⎝ ⎞⎠

(1/p)

,

(32)

which completes our arguments.
(e graph of the result of (eorem 1 is shown in Fig-

ure 2, where ϕ(x) � x, n1 × n2 × · · · × nm is from 4 to 10, and
p � 2 and p � 3.

3D solution region for (eorem 1 is shown in Figure 3,
where ϕ(x) � x, n1 × n2 × · · · × nm is from 4 to 12, and p is
from 1 to 10.

(e graph presented in Figure 3 shows the results of
(eorem 1 that are not optimal. It is quite difficult task to
calculate the exact value of ‖M

ϕ
K‖p for the case 1<p<∞.

(e following example explains the situation. □

Example 2. (e estimates we obtained in (eorem 1 for 1<
p<∞ is not optimal in general. For example, if we take graph
K2 × K2 and ϕ(x) � x. Consider the function f: (1, 3),{

(1, 4), (2, 3), (2, 4)}⟶ R. We suppose that |f(1,3)| � |f

(1,2)| � |f(2,3)|, Mx
K2×K2

f(1,3) � Mx
K2×K2

f(1,4) � Mx
K2×K2

f(2,3) � (3|f(1,3)| + |f(1,4)|/4), and Mx
K2×K2

f(2,4) � |f

(2,4)|. (en, |f(2,4)|≥ |f(1,3)|. If we denote (|f(1,3)|/|f
(2,4)|) by λ, then, for every 0<p<∞, we have

M
x
K2×K2

f
�����

�����p

‖f‖p

�
3(3|f(1, 3)| +|f(1, 4)|/4)p +|f(1, 4)|p

3|f(1, 3)|p +|f(1, 4)|p
 

(1/p)

�
1
4

3(3λ + 1)p + 4p

3λp + 1
 

(1/p)

,

(33)

which leads to

M
x
K2×K2

�����

�����p
�
1
4

sup
0≤λ≤1

3(3λ + 1)p + 4p

3λp + 1
 

(1/p)

. (34)

It is easy to see that, for 1<p<∞, the supremum is
attained at the unique root λp ∈ (0, 1) of the equation
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(1 + 3λ)
p− 1

�
3λp− 1

(3λ + 1)
p

+ 4pλp− 1

9λp
+ 3

. (35)

In particular, if we take p � 2, then we get λ � 0.246, and
from equation (34), we get ‖Mx

K2×K2
‖2 � 1.151. If we cal-

culate it from (eorem 1, we get 1.090≤ ‖Mx
K2×K2

‖2≤ 1.323.
(is shows that the estimation in (eorem 1 is not optimal
in general for 1<p<∞. Now, in the next theorem, we find
the estimates of G.

Theorem 2. Let G be the strong product of m graphs and
0<p≤ 1; then, we have

1
ϕp(1)

+
n1 × n2 × · · · × nm(  − 1
ϕp n1 × n2 × · · · × nm( 

 

(1/p)

≤ M
ϕ
G

�����

�����p
≤

1
ϕp(1)

+
n1 × n2 × · · · × nm(  − 1

ϕp 2m( )
 

(1/p)

.

(36)

Proof. Lower bound is trivial. For the upper bound, let
(u1, u2, . . . , um) ∈ V(G) and consider the m Dirac delta
function Γ(u1,u2 ,...,um). (en, we have
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Figure 3: 3D view of estimation for n � 4 . . . 12 and p � 1 . . . 10.
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M
ϕ
GΓ u1,u2,...,um( )

�����

�����p
� M

ϕ
GΓ u1,u2 ,...,um( ) u1, u2, . . . , um(  

p

+ 
v1≠u1


v2≠u2

. . . 
vm≠um

M
ϕ
GΓ u1,u2,...,um( ) v1, v2, . . . , vm(  

p
⎛⎝ ⎞⎠

(1/p)

�
1

ϕp(1)
+ 

v1≠u1


v2≠u2

. . . 
vm≠um

1

ϕ BG1



 × BG2



 × · · · × BGm



 


w1


w2

. . . 
wm

Γ u1,u2 ,...,um( ) w1, w2, . . . , wm( 

⎫⎪⎬

⎪⎭

p⎧⎪⎪⎨

⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1/p)

.

(37)

As each Gi is connected, |BGi
|≥ 2 for each i and radius

r≥ 1. Hence,

M
ϕ
GΓ u1 ,u2 ,...,um( )

�����

�����
p
≤

1
ϕp(1)

+
n1 × n2 × · · · × nm(  − 1

ϕp 2m( )
 

(1/p)

.

(38)

By using Lemma 1, we obtain

M
ϕ
G

�����

�����p
≤

1
ϕp(1)

+
n1 × n2 × · · · nm(  − 1

ϕp 2m( )
 

(1/p)

. (39)

If we take ϕ(x) � x and m � 1, then (eorems 1 and 2,
respectively, yields the same results obtained in [9]. (is
shows that the results presented in this paper are the gen-
eralized form of the results in [6].

We have graph for the result of (eorem 2 in Figure 4,
where p � 0.5, ϕ(x) � x, and n1 × n2 × · · · × nm is from 4 to
10.

Some particular examples to support the result of
(eorem 2 are given below. □

Example 3. Let W5 be a wheel graph on five vertices and
consider the strong product K2 × W5 of K2 with W5. Take
ϕ(x) � x, f � Γ, and p � 1. (en, ‖Mx

K2×W5‖ � 2.100.
Let V(K2) � 1, 2{ } and V(W5) � 3, 4, 5, 6, 7{ }, where 7 is

the central vertex of W5. Now, 6 ∉ NW5
(3) and 5 ∉ NW5

(4).
(en, the strong product K2 × W5 has a vertex set

V K2 × W5(  � (1, 3), (1, 4), (1, 5), (1, 6), (1, 7), (2, 3),{

(2, 4), (2, 5), (2, 6), (2, 7)}.

(40)

Note that K2 × W5 has 37 edges and d(1,7)(K2 × W5) �

d(2,7)(K2 × W5) � 9, while all other vertices of this graph
have degree 7. Hence,

M
x
K2×W5
Γ(1,3) �

1, for (1, 3){ },

1
10

, for (1, 6), (1, 7), (2, 6), (2, 7){ },

1
8
, otherwise,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(41)

with ‖Mx
K2×W5
Γ(1,3)‖ � 2.025. It is easy to see that ‖Mx

K2×W5

Γ(1,4)‖ � ‖Mx
K2×W5
Γ(1,5)‖ � ‖Mx

K2×W5
Γ(1,6)‖ � ‖Mx

K2×W5
Γ(2,3)‖ �

‖Mx
K2×W5
Γ(2,4)‖ � ‖Mx

K2×W5
Γ(2,5)‖ � ‖Mx

K2×W5
Γ(2,6)‖ � 2.025.

Also,

M
x
K2×W5
Γ(1,7) �

1, for (1, 7){ },

1
10

, for (2, 7){ },

1
8
, otherwise,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(42)

with ‖Mx
K2×W5
Γ(1,7)‖ � 2.100, ‖Mx

K2×W5
Γ(2,7)‖ � 2.100, and

‖Mx
K2×W5

‖ � 2.100.

Example 4. Consider the graph used in Example 3. Take
ϕ(x) � x2, f � Γ, and p � 1. (en, ‖Mx2

K2×W5‖ � 1.135. We
have

M
x2

K2×W5
Γ(1,3) �

1, for (1, 3){ },

1
100

, for (1, 6), (1, 7), (2, 6), (2, 7){ },

1
64

, otherwise,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(43)

with ‖Mx2

K2×W5
Γ(1,3)‖ � 1.118 and ‖M

x2

K2×W5
Γ(1,4)‖ � ‖M

x2

K2×W5

Γ(1,5)‖ � ‖M
x2

K2×W5
Γ(1,6)‖ � ‖M

x2

K2×W5
Γ(2,3)‖ � ‖M

x2

K2×W5
Γ(2,4)‖ �

‖M
x2

K2×W5
Γ(2,5)‖ � ‖M

x2

K2×W5
Γ(2,6)‖ � 1.118.

In a similar way, we have

M
x2

K2×W5
Γ(1,7) �

1, for (1, 7){ },

1
100

, for (2, 7){ },

1
64

, otherwise,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(44)

with ‖Mx2

K2×W5
Γ(1,7)‖ � 1.135 and ‖Mx2

K2×W5
Γ(2,7)‖ � 1.135.

(is implies that ‖Mx2

K2×W5
‖ � 1.135.

Example 5. Let S3 be star graph on three vertices and
consider the strong product K2 × K2 × S3. Take ϕ(x) � x,
f � Γ, and p � 1. (en, ‖Mx

K2×K2×S3
‖ � 2.250.

Let V(K2) � 1, 2{ }, V(K2) � 3, 4{ }, and V(S3) � 5, 6, 7{ }

with 7 as a central vertex of S3. (en, the strong product
K2 × K2 × S3 is a graph with vertex set
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V K2 × K2 × S3(  � (1, 3, 5), (1, 3, 6), (1, 3, 7), (1, 4, 5), (1, 4, 6), (1, 4, 7), (2, 3, 5), (2, 3, 6), (2, 3, 7), (2, 4, 5), (2, 4, 6), (2, 4, 7){ }.

(45)

Note that there are 50 edges in this graph and
d(1,3,7)(K2× K2 × S3) � d(1,4,7)(K2 × K2 × S3) � d(2,3,7)(K2 ×

K2 × S3) � d(2,4,7)(K2 × K2 × S3) � 11, while all the other
vertices of the graph have degree 7. We have

M
x
K2×K2×S3
Γ(1,3,5) �

1, for (1, 3, 5){ },

1
8
, for (1, 4, 5), (2, 3, 5), (2, 4, 5){ },

1
12

, otherwise,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(46)

with ‖Mx
K2×K2×S3
Γ(1,3,5)‖ � 2.042. It is easy to see that

‖Mx
K2×K2×S3
Γ(1,3,6)‖ � ‖Mx

K2×K2×S3
Γ(1,4,5)‖ � ‖Mx

K2×K2×S3
Γ(1,4,6)‖

� ‖Mx
K2×K2×S3
Γ(2,3,5)‖�‖Mx

K2×K2×S3
Γ(2,3,6)‖�‖Mx

K2×K2×S3
Γ(2,4,5)

‖ � ‖Mx
K2×K2×S3
Γ(2,4,6)‖ � 2.042.

Also,

M
x
K2×K2×S3
Γ(1,3,7) �

1, for (1, 3, 7){ },

1
12

, for (1, 4, 7), (2, 3, 7), (2, 4, 7){ },

1
8
, otherwise,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(47)

with ‖Mx
K2×K2×S3
Γ(1,3,7)‖ � 2.250. Similarly, ‖Mx

K2×K2×S3

Γ(1,4,7)‖ � ‖Mx
K2×K2×S3
Γ(2,3,7)‖ � ‖Mx

K2×K2×S3
Γ(2,4,7)‖ � 2.250.

(is implies that ‖Mx
K2×K2×S3

‖ � 2.250.

Example 6. Consider the graph used in example 4,
ϕ(x) � 1 + ln(x), f � Γ, and p � 1; then, ‖M

1+ln(x)
K2×K2×S3

‖ �

4.459.
Here, we have

M
1+ln(x)
K2×K2×S3
Γ(1,3,5) �

1, for (1, 3, 5){ },

1
1 + ln(8)

, for (1, 4, 5), (2, 3, 5), (2, 4, 5){ },

1
1 + ln(12)

, otherwise,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(48)

with ‖M
1+ln(x)
K2×K2×S3
Γ(1,3,5)‖ � 4.271. Similarly, ‖M

1+ln(x)
K2×K2×S3

Γ(1,3,6)‖ � ‖M
1+ln(x)
K2×K2×S3

Γ(1,4,5)‖ � ‖M
1+ln(x)
K2×K2×S3

Γ(1,4,6)‖ �

‖M
1+ln(x)
K2×K2×S3
Γ(2,3,5)‖�‖M

1+ln(x)
K2×K2×S3
Γ(2,3,6)‖ � ‖M

1+ln(x)
K2×K2×S3
Γ(2,4,5)‖

� ‖M
1+ln(x)
K2×K2×S3
Γ(2,4,6)‖ � 4.271.

Now,

M
1+ln(x)
K2×K2×S3
Γ(1,3,7) �

1, for (1, 3, 7){ },

1
1 + ln(12)

, for (1, 4, 7), (2, 3, 7), (2, 4, 7){ },

1
1 + ln(8)

, otherwise.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(49)

So, ‖M
1+ln(x)
K2×K2×S3
Γ(1,3,7)‖ � 4.459. Similarly, ‖M

1+ln(x)
K2×K2×S3

Γ(1,4,7)‖ � ‖M
1+ln(x)
K2×K2×S3
Γ(2,3,7)‖ � ‖M

1+ln(x)
K2×K2×S3
Γ(2,4,7)‖ � 4.459. ⇒

‖M
1+ln(x)
K2×K2×S3

‖ � 4.459.
If we take the same conditions which we used in ex-

amples 3–6 in the result of (eorem 2, then we get
1.900≤ ‖Mx

G1×G2
‖≤ 3.250, 1.090≤ ‖Mx2

G1×G2
‖≤ 1.563, 1.917≤

‖Mx
G1×G2×G3

‖≤ 2.375, and 4.156≤ ‖M
1+ln(x)
G1×G2×G3

‖≤ 4.572. (is
implies that the examples 3–6 verify the result of (eorem 2.

4. Conclusion

In this paper, we have considered the action of generalized
maximal operator on ℓp spaces and calculated the quasi-
norm ‖M

ϕ
K‖p for 0<p≤ 1. We gave the lower bound and
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Figure 4: Estimation for p � 0.5.
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upper bound for the quasi-norm ‖M
ϕ
K‖p, where 1<p<∞.

Finally, we have proved that ((1/ϕp (1)) + ((n1 × n2 × · · · ×

nm) − 1/ϕp(n1 × n2 × · · · × nm)))(1/p) and ((1/ϕp(1))+ ((n1×

n2 × · · · × nm) − 1/ϕp(2m)))(1/p) are the lower bound and
upper bound, respectively.
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)e Seq2Seq model and its variants (ConvSeq2Seq and Transformer) emerge as a promising novel solution to the machine
translation problem. However, these models only focus on exploiting knowledge from bilingual sentences without paying much
attention to utilizing external linguistic knowledge sources such as semantic representations. Not only do semantic represen-
tations can help preserve meaning but they also minimize the data sparsity problem. However, to date, semantic information
remains rarely integrated into machine translation models. In this study, we examine the effect of abstract meaning representation
(AMR) semantic graphs in different machine translation models. Experimental results on the IWSLT15 English-Vietnamese
dataset have proven the efficiency of the proposed model, expanding the use of external language knowledge sources to sig-
nificantly improve the performance of machine translation models, especially in the application of low-resource language pairs.

1. Introduction

Neural machine translation (NMT) [1–4] has proven its
effectiveness and thus has gained researchers’ attention in
recent years. In practical applications, the typical inputs to
NMT systems are sentences in which words are represented
as individual vectors in a word embedding space. )is word
embedding space does not show any connection among
words within a sentence such as dependency or semantic
role relationships. Recent studies [5–8] found that semantic
information is essential to generate concise and appropriate
translations in machine translation. Although these models
have made a significant progress, their design and functions
are limited to statistical machine translation systems only.
Consequently, the tasks of surveying, analyzing, and ap-
plying additional semantic information to NMT systems
have not received comprehensive attention.

In this study, we present the method of integrating
abstract meaning representation (AMR) graphs (https://
amr.isi.edu) as additional semantic information into the
current popular NMT systems such as Seq2Seq,

ConvSeq2Seq, and Transformer. AMR graphs are rooted,
labeled, directed, and acyclical graphs representing the entire
content of a sentence. )ey are also abstracted from related
syntactic representations in the sense that sentences with
similar meanings will have the same AMR graph, even if the
words used in these sentences are different. Figure 1 il-
lustrates an AMR graph in which the nodes (e.g., want-01,
girl) symbolize concepts, while the edges (e.g., ARG0 and
ARG1) represent the relationship between the concepts
that they connect. Compared to semantic role graphs, AMR
graphs contain more relationships (e.g., between boy and
girl). Besides, AMR graphs directly hold entity relations
while excluding the alternating variables (i.e., using lemma)
and the function words. )erefore, AMR graphs can be
combined with the input text to generate better contextual
representations. Moreover, the structured information
from AMR graphs can help minimize the problem of data
sparsity in resource-poor settings. First, the AMR graph
representations are combined with the word embedding
to create a better context representation for a sentence.
)en, multihead attention can focus on all positions of
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contextual features with the outputs of the AMR graph
representations.

Integrating AMR graphs into NMT yields several ben-
efits. First, this addresses the problems of data sparsity and
semantic ambiguity. Second, structured semantic informa-
tion constructed from AMR graphs could help complement
the input text by providing high-level abstract information,
thereby improving the encoding of the input word em-
bedding. Last, multihead attention can also take advantage of
semantic information to improve the dependency among
words within a sentence.

Recent studies have applied semantic representation to
NMTmodels. For instance, Marcheggiani et al. [9] exploited
the semantic role labeling (SRL) information for NMT,
indicating that the predicate-argument structure from SRL
can help increase the quality of an attention-based sequence-
to-sequence model. Meanwhile, Song et al. [10] proved that
semantic information structured from AMR graphs can
complement input text by incorporating high-level abstract
information. In this approach, the graph recurrent network
(GRN) was utilized to encode AMR graphs without breaking
the original graph structure, and a sequential long short-
term memory (LSTM) was used to encode the source input.
)e decoder was a doubly attentive LSTM, taking the
encoding results of both the graph encoder and the se-
quential encoder as attention memories. Song et al. had also
argued that the results of an AMR integration is significantly
greater than those of a sole SRL integration because AMR
graphs include both SRL and the relationships between the
nodes (i.e., words). However, Song’s approach has en-
countered some drawbacks such as failed to address the
problem of the correlation between nodes in AMR graphs
and investigated only on the machine translation system
using the recurrent neural network (RNN).

)e contributions of our work are as follows:

(i) First, instead of adding a node to represent an edge
in the graph and assigning properties of the edge as
those of the documents, we extend the node em-
bedding algorithm [11] to use direct edge
information

(ii) Second, instead of using the graph recurrent net-
work in [10], we propose an architecture that binds
an inductive graph encoder

(iii) Finally, we examined and analyzed the results on the
English-Vietnamese bilingual set, which is consid-
ered a low-resource language pair. )rough

experiments, we demonstrate the effectiveness of
integrating AMR into neural network machine
translation and draw insightful conclusions for
future studies.

)e organization for the remaining of the article is as
follows. Section 2 introduces current popular machine
translation architectures such as Seq2Seq, ConvSeq2Seq, and
Transformer. Next, Section 3 presents the method of rep-
resenting AMR graphs in the vector form as well as pro-
posing a method to integrate AMR graphs into different
NMTmodels.)en, Sections 4 and 5 discuss the corpus used
in the experiment and the experimental configuration for the
model, respectively. Afterward, Section 6 presents the ex-
perimental results of the machine translation model with an
integrated AMR and analyzes the effect of an AMR on the
model along with some translation errors generated by the
model. Section 7 summarizes our work.

2. Neural Machine Translation

In this section, we provide a brief introduction about the
Seq2Seq model and its variants such as ConvSeq2Seq and
Transformer.

2.1. Seq2Seq. We take the attention-based sequence-to-se-
quence model of [1] as the baseline model, but we use LSTM
[12] in both encoder and decoder.

2.1.1. Encoder. Given a sentence, x � (x1, x2, . . . , xn).

(i) Uni-LSTM. As usual, the RNN reads an input sequence x

in order starting from the first token x1 to xn and computes a
sequence of hidden state [ h

→
1, h

→
2, . . . , h

→
n] to generate input

representation from left to right.

H � h
→

1, h
→

2, . . . , h
→

n . (1)

(ii) Bi-LSTM. Consists of forward and backward LSTM’s.
)e forward LSTM works similar to Uni-LSTM and the
backward LSTM reads the sequence in the reverse order
from the last token xn to x1, resulting a sequence of
backward hidden states [h

←

1, h
←

2, . . . , h
←

n]. We obtain the
word embedding xi by concatenating the forward h

→
i and

backward h
←

i hidden state, hi � [ h
→

i, h
←

i].

w/want-01

b/boy b/believe-01

g/girl b

:ARG1:ARG0

:ARG0 :ARG1

:ARG1

The boy desires the girl to believe him.
The boy wants the girl to believe him.
The boy has a desire to be believed by the girl.
The boy is desirous of the girl believing him.

Figure 1: )e AMR graph for the multiple sentences.
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H � h1, h2, . . . , hn . (2)

2.1.2. Decoder. )e decoder predicts the next word yt, given
the context vector c and all previously predicted words
(y0, y1, . . . , yt − 1). We used an attention-based LSTM
decoder [1], with attention memory as the concatenation of
the attention vectors among all source tokens.

For each decoding step t, the decoder feeds the con-
catenation of the embedding of current input eyt

and pre-
vious context vector ct− 1 into LSTM to update the hidden
state:

st � LSTM st− 1, eyt
, ct− 1  . (3)

)en, the new context vector is computed as

ϵt,i � a st, hi( ,

αti �
exp ϵt,i 


V
k�1 exp ϵt,k 

,

ci � 
n

i�1
αt,ihi,

(4)

where a is the alignment model which is a feed forward
network, scores how well the inputs surround position i, and
the input at position t match.

)e output probability over target vocabulary is
calculated:

Pvocab � softmax Wo st; ci  + bo( , (5)

where Wo and bo are the model parameters.

2.2. ConvSeq2Seq

2.2.1. ConvSeq2Seq. )is architecture is proposed by
Gehring et al. [2] to completely replace the RNN with the
CNN with the following components:

)e ConvS2S model followed the encoder-decoder ar-
chitecture. Both encoder and decoder blocks share an
identical structure that computes hidden states based on a
fixed number of input elements. To enlarge the context
size, we stack several blocks over each other. Each block
comprises a one-dimensional convolution and a nonline-
arity. In each convolution kernel, parameters are
W ∈R2 d×k d and bw ∈R

2 d. )e input is represented as
∈∈Rk d, which is a concatenation of k input elements with
dimension of d and maps them to get the single output
Y ∈R2 d with dimension twice of that of the input.)en, the
k output elements will be fed into subsequent layers. We
leverage the gated linear unit (GLU) as nonlinearity which
applied on the output of the convolution Y � [AB] ∈R2 d:

v([AB]) � A⊗ σ(B), (6)

where A, B ∈Rd are the inputs to the nonlinearity, ⊗
denotes the element-wise multiplication, the output
Y � [AB] ∈R2 d has a half of size compared to Y, and σB is

the gate that control which inputs A of the current contexts
are relevant.

In order to enable deep convolutional blocks, we adopt
the residual connections which connect the input of each
convolutional layer with the output:

h
l
i � v W

l
h

l− 1
i− (k/2), . . . , h

l− 1
i+(k/2)  + B

l
w  + h

l− 1
i , (7)

where hl is the hidden state of lth layer.

2.2.2. LightConvSeq2Seq. As a variant of a CNN called
lightweight convolution [13] which allows computation with
linear complexity, O(n), with n being the length of the input
string.

)e structure of LightConvSeq2Seq consists of the ele-
ments similar to Conv2Seq but using lightweight convo-
lution operation rather than convolution operation.

Depthwise Convolution (DConv). Perform a convolution
operation independently over every channel; thereby, the
number of parameters reduce significantly from d2k to dk,
where k is the kernel width. In general, at position i and
direction c, the output Oi,c is calculated as follows:

Oi,c � 
k

j�1
Wc,j · X

x+j− ⌈
k + 1
2
⌉ ,c

.
(8)

2.3. Transformer. Transformer [4] also includes an encoder
and a decoder. )e encoder generates a vector representa-
tion of the input sentence. Assuming an input of the form
x � (x1, x2, . . . , xn) and a representation of x of the form
z � (z1, z2, . . . , zn), the decoder produces sequentially for a
translation of y � (y1, y2, . . . , ym) based on z and the
previous outputs.

2.3.1. 0e Encoder. )ere are N stacked similar blocks. Each
of these blocks consists of 2 subblocks: a self-attention
mechanism and a feed forward network. A residual con-
nection surrounds each subblock, followed by layer nor-
malization. )e general representation formula for the
encoder is as follows:

z � LayerNorm(x + self − attention(x)),

z � LayerNorm(z + feed forward(z)).
(9)

2.3.2. 0e Decoder. )ere are also N blocks. However, each
block consists of 3 subblocks: a self-attention block, a feed
forward block, and an encoder-decoder attention block
inserted between them. )e residual connection and layer
normalization are used similarly to the encoder.)e encoder
generates outputs step by step. )e self-attention block only
pays attention to the positions generated in the previous
steps by using a mask. )e mask prevents the decoder from
paying attention to locations that have not been generated,
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so outputs can only be predicted based on the result z of the
encoder and previous outputs.

2.3.3. Self-Attention. )ere are 3 components as follows:
query (Q), key (K), and value (V), defined as follows:

Attention(Q, K, V) � softmax
QK

T

��
dk

 V , (10)

where Q, K, andV are the parameters with the number of
dimensions dk, dk, anddv respectively.

3. The Proposed Method

In this section, we present the graph embedding algorithm
and propose our method to integrate the AMR graph em-
bedding representation to various well-known NMTsystems
such as Seq2Seq, ConvSeq2Seq, and Transformer.

3.1. Graph-Level Information Representation. Figure 2 de-
picts the graph encoder architecture based on the model of
Xu et al. [11], with some enhancements to integrate more
information about the edge of the graph.

)e directional graph G � (V,E) with the label on the
edge eu,v ∈ E presents the relationship between the nodes u

and v to which it connects. )e process of learning to
represent the node v ∈ V is as follows:

(1) We first transform the text attribute of node v into a
feature vector av by looking up the embedding
matrix WE

(2) Next, we categorize the neighbors of v into two
subsets: forward neighbors, N⟶(v) and backward
neighbors,N←(v). Particularly,N⟶(v) returns the
nodes that v directs to and vice versa. )e infor-
mation about the edge eu,v associated between the
node v and the adjacent node u is combined as
follows:

u← � u← + eu,v,∀u ∈N←(v),

u⟶ � u⟶ + eu,v, ∀u ∈N⟶(v).
(11)

(3) We aggregate the forward information of v’s forward
neighbors hk− 1

u⟶ , ∀u ∈N⟶(v)  into a single
vector, hk

N⟶(v), where k ∈ 1, . . . , K{ } is the iteration
index. We do this by using one of three AGG⟶

mentioned.
(4) )en, we concatenate v’s current forward repre-

sentation, hk− 1
v⟶ , with the new neighborhood vector,

hk
N⟶(v). )e result is passed to a feed forward layer,

followed by a nonlinearity activation function σ,
which updates the forward representation of v, to be
used in the next iteration.

(5) Update the backward representation of v, hk
v←, using

similar procedure in steps (3) and (4), but this time,
we utilize backward representations rather than the
forward representations and use AGG← to aggregate
neighbor information.

(6) Repeat steps (3) ∼ (5) K times, and the concate-
nation of the final forward and backward repre-
sentation is used as the final bidirectional
representation of v.

zv � CONCAT hK
v⟶ ,hK

v← , ∀v ∈V. (12)

As mentioned in steps (3) and (5), the representation
association operation of node v is performed with one of the
following aggregation functions:

(i) Mean aggregator: performs the average calculation
on each element of hk− 1

u⟶ , ∀u ∈N⟶(v)  và
hk− 1

u← , ∀u ∈N←(v) 

(ii) GCN aggregator: it is quite similar to mean
aggregator, except that the result is fed into a fully
connected layer and a nonlinear activation function
[14].

AGG
⟶

k � σ WMEAN hk
u⟶  + b , u ∈N⟶(v),

AGG
←
k � σ WMEAN hk

u←  + b , u ∈N←(v),

(13)

with MEAN as the function returning the average
value, and σ as the nonlinear activation function.

(iii) Pooling aggregator: each node embedding vector is
passed through a feed forward layer followed by the
pooling operation (which can be max, min, and
average):

AGG
⟶

k � max σ Wph
k
u⟶ + b , u ∈N⟶(v)  ,

AGG
←
k � max σ Wph

k
u← + b , u ∈N←(v)  ,

(14)

with max as the maximum operation, and σ as the
nonlinear activation function.

3.1.1. Graph Embedding. Graph embedding Z contains all
the information on the graph and is calculated by one of the
following two methods:

(i) Pooling based: the node embeddings zv, v ∈ V are
passed through a linear transform network and
performs pooling.

Z � pooling zv, ∀v ∈V ( . (15)

(ii) Adding a super node: node vs is pointed by all nodes
in the graph. Using the algorithm in Section 3.1, the
representation of vs is zvs

. )e representation of vs

contains all information of the nodes that should be
considered as representations of the graph or graph
embedding.

3.2. Dual Attention Mechanism. )e architecture of an in-
tegrated AMR machine translation model is illustrated in
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Figure 3 with an English sentence input and a corresponding
AMR graph. )e proposed architecture consists of an en-
coder for the input sentence and a decoder with the input
value resulting from the encoder. )e main difference from
the traditional decoder-encoder model is that there is an
additional graph encoder to process information on graphs
and to represent this information in a vector format. )is
vector is then combined with the hidden states of the en-
coder and fed into the decoder to find the corresponding
representation in Vietnamese.

We propose a specific integration method for the Seq2Seq
model with sequential processing in Section 3.2.1 and focus
on models with parallel processing such as ConvSeq2Seq,
LightConvSeq2Seq, and Transformer in Section 3.2.2.

3.2.1. Seq2Seq Model with the Sequential Processing
Mechanism. )e model (Figure 4(a)) consists of two at-
tention mechanisms operating independently: the original
attention (left) learns the alignment between the result yi− 1
and the hidden states hj, j ∈ [1, n] of the encoder and the
graph attention learns to align between the output and the
nodes in the AMR graph, yielding a context vector ci− 1. In
particular, the computation of ci− 1 is as follows:

eij � a si− 1, zj ,

αij �
exp eij 


V
k�1 exp eik( 

ci � 
V

j�1
αijzj,

(16)

where a is a feed forward network, evaluating the matching
between the nodes surrounding the position j and the input
i.

)ese two context vectors are then combined with the
decoder’s state si and the embedding vector of yi− 1 to cal-
culate a probability distribution that determines yi.

Pvocab � Softmax Wo si, yi− 1, ci, ci  + bo( . (17)

p/person

p/person p/person

:Domain:ARG0-OF
I am a student

Tôi là học sinh

Encoder Graph encoder

Decoder

Figure 3: Recommended architecture for AMR integration.
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Figure 2: )e graph encoder architecture.
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3.2.2. Models with a Parallel Processing Mechanism. On the
contrary, with parallel processing, the model has no in-
formation about the state si− 1 of the decoder. In other words,
except zv, no information about the graph is included in the

calculation of attention. Besides, using only the states
zv, v ∈V along with the parallel computation leaves the
model with no information about the association between
the output and the AMR graph in step i − 1. Consequently,

He gave me a gi�

Embedding Graph encoder

món

Attention Graph attention

quà

G
ra

ph
 h

id
de

ns

LS
TM

 h
id
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n 

sta
te

s

give-01

he
gi�-01

i

:ARG2:ARG0
:ARG1

si–1

ci–1 ci–1
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(c)

Multihead
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Self-attention

Add and norm Multihead
attention
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Output
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Softmax
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Embedding Embedding

PE PE

PE Positional embedding
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Figure 4: Integrating AMR to models with a parallel processing mechanism. (a) Seq2Seq (LSTM) model with the AMR. (b) ConvSeq2Seq-
AMR model. (c) LightConvSeq2Seq-AMR model. (d) Transformer-AMR model.
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the model cannot effectively learn the connection between
the input sentence, the output sentence, and AMR graph,
with a small increase of about 0.2 (experiments with
LightConvSeq2Seq and Transformer). )erefore, the use of
the graph embedding of Z should help the model obtain
more information about the graph before the attention
calculation. )is has been proven with experimental results,
which show an increase of the BLUE score by 0.6.

Figures 4(b)–4(d) describe the proposed model that
integrates AMRwith a dual attentionmechanism. Regarding
the LightConvSeq2Seq-AMR and Transformer-AMR
models, the self-attentionmechanism for the graph is similar
to the description of the self-attention mechanism in Section
2.3 with the input being representations of nodes zv, ∀v ∈V
instead of the state hi, ∀i ∈ n. Regarding the ConvSeq2Seq-
AMR model, experimental results show that utilizing
Luong’s attention mechanism to learn the alignment be-
tween the graph and the output produced better results than
the multistep attention.

4. The Corpus

)e corpus used to evaluate the model is IWSLT15 [15],
which includes approximately 130, 000 English-Vietnamese
bilingual sentences taken from TED Talks presentations for
the training set. For fine-tuning, we use the set called tst2012,
which includes 1553 parallel pairs language. Besides, the test
sets consist of tst2013 and tst2015, which include 1268 and
1080 English-Vietnamese bilingual pairs, respectively. )e
statistical information is given in Table 1.

For the preprocessing phase, byte-pair encoding (BPE)
(https://github.com/rsennrich/subword-nmt) [16] with
8000 operations is utilized to deal with rare words and
compound words for both English and Vietnamese, thereby
significantly reducing the vocabulary size in English from
54111 to 5208 and in Vietnamese from 25335 to 3336.

For AMR parsing, we use NeuralAmr toolkit (https://
github.com/sinantie/NeuralAmr) [17] which implements
the sequence-to-sequence models to the tasks of AMR
parsing and AMR generation. )eir model achieves com-
petitive results of 62.1 SMATCH [18], the current best score
(at the time doing this work, Jan 2020) reported without
the significant use of external semantic resources. )is
tool produces AMR graphs represented in the PENMAN
notation (https://www.isi.edu/natural-language/penman/
penman.html) and in a linear form, as demonstrated in
the AMR preprocessing example.

5. Experimental Configuration

)emodels are implemented in Python 3 and use the library
Fairseq (https://fairseq.readthedocs.io/en/latest/#) [19].

)e configuration of the base models is as follows:

(i) Seq2Seq: we investigate the MT model with two
types of LSTM which are uni-LSTM (one-direc-
tional) and bi-LSTM (two-directional). )ere are
512-word embedding dimensions, which utilize 512
LSTM hidden units in both the encoder and the
decoder.

(ii) ConvSeq2Seq: it comprises 4 convolutional blocks
and 512 hidden units for both the encoder and the
decoder. )e kernel size is 3.

(iii) LightConvSeq2Seq: it consists of 4 convolutional
blocks with the kernel size of 3, 7, 15, and 31 for each
block and applies to both the encoder and the
decoder. Self-attention is adopted with H � 8 heads.

(iv) Transformer: it has N � 6 blocks for both the en-
coder and the decoder. )e word embedding dim is
set to 512 and 2048 for the feed forward network.
Self-attention used with the number of heads was 8.

)e proposed models have the same configuration as the
base model. Besides, the graph encoder used 128-dimensional
embedding for the representation of both edge and node. We
stacked 2 layers of the graph encoder and aggregating in-
formation from neighboring nodes with the mean aggregator
for LSTM and max pooling with the rest of the models.

During training, Adam optimizer [20] is used with a
fixed learning rate of 0.001 for LSTM and ConvSeq2Seq,
0.0002 for LightConvSeq2Seq, and 0.0005 for Transformer.

Besides the basic models presented above, the results of
the proposed model are also compared with the method of
Song et al. [10]. To make a fair comparison, we have
retrained Song’s model with the same preprocessed dataset
and tuned hyperparameters.

After the models are trained, the BLEU score [21] was used
to evaluate the translation quality. We also apply the bootstrap
resampling method [22] to measure the statistical significance
(p< 0.05) of BLEU score differences between translation
outputs of proposed models compared to the baseline.

6. Results and Discussion

In this section, we present our experimental results and our
analyzes on the results.

6.1. Results. Once the models have been trained, a beam
search with the size of 5 is utilized to find a translation that
maximizes the conditional probabilities.

With both the test sets tst2013 and tst2015, the proposed
models are proven to be superior to the corresponding base
model. In particular, as given in Table 2, with uni-LSTM-
AMR-F and bi-LSTM-AMR, the BLEU scores are 27.21 and
29.29, respectively, which are 1.09 and 3.17 higher than
Song’s method [10]. Similarly, with the set tst2015, bi-LSTM-
AMR improved BLEU by 2.83, compared to Song’s method.
)is shows that despite using the double attention mech-
anism, bi-LSTM-AMR and uni-LSTM-AMR can integrate
the information from AMR more effectively, thereby pro-
ducing better translation results.

Meanwhile, when LightConvSeq2Seq is run on tst2013
and tst 2015, the BLEU scores are only 27.47 and 25.09,
respectively. However, when integrating the AMR into the
system, the BLEU score increased significantly by 1.0 and
0.58 on tst2013 and tst2015, respectively. Besides, Light-
ConvSeq2Seq-AMR-F and LightConvSeq2Seq-AMR-B,
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which were integrated graph information from one direc-
tion, also outperform LightConvSeq2Seq, as given in Table 3.

As given in Table 4, ConvSeq2Seq also shows an im-
provement in machine translation quality with an increase
in the BLEU score to about 0.3 for ConvSeq2Seq-AMR with
tst2013. However, there is a BLUE decrease of 0.08 with
tst2015. However, the ConvSeq2Seq-AMR-F model achieves
the best results when integrating information from the
forward neighbors. An increase of 0.1 in BLEU is observed
with tst2013 and 0.5 with tst2015. Similar to Transformer,
integrating information from the forward and backward
neighbors in Transformer-AMR is not effective, with only an
increase of 0.09 over the base model with tst2013. Only
combining information from the forward neighbors in
Transformer-AMR-F achieves a noticeable BLEU score of
28.88 and 26.28 with tst2013 and tst2015, respectively, which
signal an increase of 0.28 and 0.52 compared to Transformer.

6.2. 0e Effect of AMR on the NMTModel. According to the
results presented in Section 6.1, the bi-LSTM-AMR and
LightConvSeq2Seq-AMR models improve BLEU more than
the other two models, ConvSeq2Seq and Transformer.
)erefore, to analyze the impact of AMR on the machine
translation system, bi-LSTM-AMR and LightConvSeq2Seq-
AMR models are selected for further training to examine
graph elements such as information integration directions,
graph encoding layers, and aggregators.

6.2.1. Bi-LSTM-AMR

(i). Direction and Depth. Figure 5 depicts the change in
performance when adjusting the number of graph encoding
layers. )e mean aggregator is used to combine information
from neighbors. In general, bi-LSTM-AMR and uni-LSTM-
AMR-B show the highest translation quality throughout the
30 examined layers. However, an increase in the number of

layers does not always help the model achieve a higher
BLEU. A decrease in BLEU scores is also observed.)emore
stacked layers there are, the greater the amount of infor-
mation the model could learn, which ultimately leads to the
overfitting problem due to saturated information. All
models obtain the best results with only 2 or 3 graph coding
layers. As the number of layers increases, the BLEU scores
decrease. Nevertheless, the results seem more consistent and
less fluctuating with bi-LSTM than with uni-LSTM.

)ere are three aggregators used for aggregating infor-
mation from neighboring nodes: mean aggregator (MA),
max-pooling (MP) aggregator, and GCN aggregator (GCN-
A). )e strategy of using information from one direction
(forward or backward) is also considered to make more
accurate statements about the effect of the aggregator on the
effectiveness of the model.)e results in Table 5 show that Bi-
LSTM-AMR-MA achieved the highest result on the two test
sets with the BLEU scores of 29.29 and 26.41, respectively.
Meanwhile, uni-LSTM-AMR-MA, which uses information
from both sides, achieved lower BLEU scores than the var-
iants uni-LSTM-AMR-F and uni-LSTM-AMR-B, which only
combines information from the forward and the backward
neighbors, respectively. Moreover, bi-LSTM-AMR-MA out-
performs bi-LSTM-AMR-F and bi-LSTM-AMR-B due to its
ability to capture information from two directions during the
node embedding learning and combine with information

Table 2: Experimental results on Seq2Seq using one- and two-
directional LSTMs.

Model
BLEU

tst2013 tst2015
Song’s method 26.12 23.58
Uni-LSTM-AMR 26.97 24.80
Uni-LSTM-AMR-F 27.21 24.86
Uni-LSTM-AMR-B 26.61 24.66
Bi-LSTM-AMR 29.29 26.41
Bi-LSTM-AMR-F 28.67 26.20
Bi-LSTM-AMR-B 28.36 26.04
)e bold values are the highest results for each group of models.

Table 3: Experimental results on LightConvSeq2Seq.

Model
BLEU

tst2013 tst2015
LightConvSeq2Seq 27.47 25.09
LightConvSeq2Seq-AMR-F 27.71 25.05
LightConvSeq2Seq-AMR-B 27.84 25.27
LightConvSeq2Seq-AMR 28.46 25.67
)e bold values are the highest results when evaluating each model for the
“tst2013” and “tst2015” testsets.

Table 4: Experimental results on ConvSeq2Seq and Transformer.

Model
BLEU

tst2013 tst2015
ConvSeq2Seq 26.98 24.78
ConvSeq2Seq-AMR 27.30 24.70
ConvSeq2Seq-AMR-F 27.40 25.20
ConvSeq2Seq-AMR-B 26.73 24.53
Transformer 28.60 25.76
Transformer-AMR 28.69 25.91
Transformer-AMR-F 28.88 26.28
Transformer-AMR-B 28.69 26.01
)e bold values are the highest results for each group of models.

Table 1: Statistics on the corpus.

Corpus #Sentences #Tokens (English) #Tokens (Vietnamese)
Training 133K 2.44M 2.87M
Fine tuning (tst2012) 1553 28K 34K
Test 1 (tst2013) 1268 26.7 K 33.6 K
Test 2 (tst2015) 1080 21K 26.2 K
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from the bi-LSTM encoder.)erefore, the LSTM decoder can
leverage information from the graph more efficiently to
improve the machine translation quality. )is shows that
bidirectional aggregation is more useful when combined with
a bidirectional LSTM encoder. Accordingly, uni-LSTM-
AMR-F-MP and uni-LSTM-AMR-B-MP, which only com-
bine information from one direction, achieve good results
when used with a unidirectional LSTM encoder.

6.2.2. LightConvSeq2Seq-AMR. Similar to bi-LSTM-AMR,
the LightConvSeq2Seq-AMRmodel is also affected by different
aggregators. In particular, as given in Table 6, the mean
aggregator (MA) yields better results on average values than the
rest. )e results with tst2015 show that all the three modes with
MA both achieve much higher results than the rest of models.

On the contrary, the GCN-A results are the lowest, similar to
Seq2Seq. )is proves that the information combination of
GCN-A is not as efficient as those of MA and MP.

Figure 6 shows the change of BLEU when stacking con-
volutional blocks in the encoder and the decoder and the
effect of heads H in self-attention. On both sides, the
BLEU scores increase when the number of heads in-
creases. In particular, the figure on the left shows the
LightConvSeq2Seq-AMR model with the configuration
(4, 4), which stacked 4 convolutional blocks at the encoder
and 4 convolutional blocks at the decoder, and (6, 6)

yields the best results. )e BLEU scores are approximately
28 and 27.6 with just 1 head and then increases to 28.46
and 28.2 when H � 8. However, with an additional graph
encoding layer, the (4, 4) configuration is inferior to the
(6, 6) configuration. )is configuration yields the highest
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(b)

Figure 5: Experimental results on tst2013 with a change in the number of graph encoding layers.

Table 5: )e effect of aggregators on the machine translation quality.

Model
tst2013 tst2015

MA MP GCN-A MA MP GCN-A
Uni-LSTM-AMR 26.97 26.54 26.55 24.81 24.22 24.47
Uni-LSTM-AMR-F 26.85 27.21 26.76 24.59 24.86 24.48
Uni-LSTM-AMR-B 26.61 27.22 26.42 24.66 24.85 24.47
Bi-LSTM-AMR 29.29 28.94 28.38 26.41 26.24 25.59
Bi-LSTM-AMR-F 28.67 28.99 28.43 26.20 25.81 25.70
Bi-LSTM-AMR-B 28.36 28.40 28.41 26.04 25.90 25.81

Table 6: Experimental results of aggregators on LightConvSeq2Seq-AMR.

Model
tst2013 tst2015

MA MP GCN-A MA MP GCN-A
LightConvSeq2Seq-AMR 28.20 28.46 27.76 25.49 25.05 25.33
LightConvSeq2Seq-AMR-F 27.82 27.71 27.59 25.96 25.27 25.39
LightConvSeq2Seq-AMR-B 28.25 27.84 28.27 25.66 25.67 25.52
)e bold values are the highest results when evaluating each model on aggregators (i.e., MA, MP, and GCN-A) for testset (i.e., tst2013 or tst2015).
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results at H � 1 with BLEU approximately 28.4 and ob-
serves a slight decrease as H approaches 8. Meanwhile,
(5, 4) and (5, 5) configurations tend to decline sharply as
H increases from 1 to 2 ( ≈ − 0.3) and continues to

decline slightly until H � 8. Meanwhile, the two recon-
figurations tend to be the opposite when adding a graph
encoding layer, as shown on the right figure in Figure 6.
)e remaining (4, 3) configuration yields the lowest
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Figure 6: Experimental results on the effect of heads H of the graph attention and the depth of the LightConvSeq2Seq-AMR model.
(a) LightConvSeq2Seq-AMR with two graph coding layers. (b) )e model with three layers.

Table 7: Example 1.

SRC Here is me on the soccer team and in V Magazine.
REF Ðây là tôi với Cội bóng Cá trong tạp chı́ V.
Bi-LSTM-AMR Ðây là tôi trên Cội bóng Cá và V là Magazine.
ConvSeq2Seq-AMR Ðây là tôi trên Cội bóng Cá, và trong V.
LightConvSeq2Seq-AMR Ðây là tôi Cang ở trong Cội bóng Cá và V Magazine.
Transformer-AMR Ðây là tôi trong Cội bóng Cá và ở Magazine.

Table 8: Example 2.

SRC )e internal combustion engine is not sustainable.
REF Ðộng cơ Cốt trong không bền vững.
Bi-LSTM-AMR Ðộng cơ nội tạng không bền vững.
ConvSeq2Seq-AMR Loại Cộng cơ bên trong không bền vững.
LightConvSeq2Seq-AMR Ðộng cơ Cốt nội không bền vững.
Transformer-AMR Ðộng cơ Cốt trong không bền vững.

Table 9: Example 3.

SRC But it is not only about me.
REF Nhưng những thông tin Có không chỉ nói về tôi.
Bi-LSTM-AMR Nhưng nó không chỉ là về tôi.
ConvSeq2Seq-AMR Nhưng Có không chỉ là tôi.
LightConvSeq2Seq-AMR Nhưng nó không chỉ là tôi.
Transformer-AMR Nhưng nó không chỉ là tôi.

10 Mathematical Problems in Engineering



results for the 2 graph encoding layer options. )e results
also fluctuate more with 3 layers, as opposed to being
nearly constant at 2 layers.

7. Conclusions

We proposed a method to integrate the AMR graphs into
popular machine translation architectures such as Seq2-
Seq, ConvSeq2Seq, and Transformer. Structured semantic
information from AMR graphs can supplement the
context information in the translation model for a better
representation of abstract information. Experimental
results show that AMR graphs yield better results than
other representations such as dependency trees or se-
mantic roles.

For future studies, we plan to examine other methods to
integrate more complex semantic graphs, such as Prague
Semantic Dependencies, Elementary Dependency Struc-
tures, and Universal Conceptual Cognitive Annotation, and
investigate different encoding methods suitable for a range
of semantic graphs.

Appendix

A. Error Analysis

)is section presents some translation errors of the proposed
model.

In the first example in Table 7, with bi-LSTM-AMR,
the model incorrectly predicts the phrase “and in V
Magazine” to be “và V là Magazine.” Although the
translation is incorrect, the model still recognizes “V
Magazine” as a proper noun and that V is a magazine (“V
là Magazine”). Meanwhile, both ConvSeq2Seq-AMR and
Transformer-AMR cannot recognize this pattern and

omit the word “Magazine” when translating. Light-
ConvSeq2Seq-AMR is the only model that provides a
relatively complete translation.

Example 2 in Table 8 illustrates the case in which the
model still understands the meaning but selects the
wrong representation. )e English word “internal” is
meant to complement the phrase “combustion engine,”
which already entailed the meaning of “Cộng cơ Cốt
trong.” In this case, ConvSeq2Seq-AMR and bi-LSTM
-AMR has taken “internal” to mean “inside” as an ad-
jective that modifies the location information of the
engine and ignores the word “combustion” when
translated into Vietnamese. Meanwhile, Light-
ConvSeq2Seq-AMR and Transformer-AMR prove a
better performance in capturing information, as they
produce accurate translations.

Table 9 describes the case in which the model retains
the meaning correctly, but the reference data are incor-
rect. )e word “it” is translated to “những thông tin Có” in
the data. )is is an inaccurate translation because the word
“it” refers to a singular entity, while the translation is in the
plural form. Besides, there is only one sentence and no in-
formation about the surrounding context, so the results
obtained from the proposed models are similar to one an-
other. )e Vietnamese word “nó” can be used to refer to
previously mentioned things or events. It is thus highly
ambiguous, causing difficulty in interpreting even for
humans.

B. More Illustrative Results

Table 10 illustrates some sample translations of the models:
Song’s method, bi-LSTM (base model), and bi-LSTM-AMR
(proposed model).

Table 10: More example translation outputs.

AMR ’:arg we:arg (work:arg we:arg office:degree total)
SRC We do not work from offices.
REF Chúng tôi không làm việc từ những văn phòng.
Song’s method Chúng tôi không làm việc trong văn phòng.
Bi-LSTM Chúng tôi không làm việc.
Bi-LSTM-AMR Chúng tôi không làm việc từ các văn phòng.
AMR eat:arg they:arg tomatoes:condition (grow:arg they)
SRC If they grow tomatoes, they eat tomatoes.
REF Nếu chúng trồng cà chua, chúng s~e ăn cà chua.
Song’s method Nếu họ phát triển, họ s~e ăn.
Bi-LSTM Nếu họ trồng cà chua, họ ăn cà chua.
Bi-LSTM-AMR Nếu chúng trồng cà chua, chúng ăn cà chua.

AMR assure:arg i:arg i:arg (thing:arg-of (think:arg you:arg i:duration forever) ):
degree total:mod just

SRC I just totally transformed what you thought of me in six seconds.
REF Tôi vừa mới thay Cổi hoàn toàn những gı̀ bạn ngh~ı về tôi trong vòng 6 giây.
Song’s method Tôi không chỉ là những gı̀ bạn ngh~ı về tôi trong vòng 6 giây.
Bi-LSTM Tôi hoàn toàn thay Cổi những gı̀ bạn ngh~ı trong vòng sáu giây.
Bi-LSTM-AMR Tôi hoàn toàn thay Cổi những gı̀ bạn ngh~ı về tôi trong 6 giây.
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It is considered that there is a fascinating issue in theoretical chemistry to predict the physicochemical and structural properties of
the chemical compounds in the molecular graphs.*ese properties of chemical compounds (boiling points, melting points, molar
refraction, acentric factor, octanol-water partition coefficient, and motor octane number) are modeled by topological indices
which are more applicable and well-used graph-theoretic tools for the studies of quantitative structure-property relationships
(QSPRs) and quantitative structure-activity relationships (QSARs) in the subject of cheminformatics. *e π-electron energy of a
molecular graph was calculated by adding squares of degrees (valencies) of its vertices (nodes). *is computational result,
afterwards, was named the first Zagreb index, and in the field of molecular graph theory, it turned out to be a well-swotted
topological index. In 2011, Vukicevic introduced the variable sum exdeg index which is famous for predicting the octanol-water
partition coefficient of certain chemical compounds such as octane isomers, polyaromatic hydrocarbons (PAH), poly-
chlorobiphenyls (PCB), and phenethylamines (Phenet). In this paper, we characterized the conjugated trees and conjugated
unicyclic graphs for variable sum exdeg index in different intervals of real numbers. We also investigated the maximum value of
SEIa for bicyclic graphs depending on a> 1.

1. Introduction

In chemical graph theory, molecules and macromolecules
(such as organic compounds, nucleic acids, and proteins) are
represented by graphs wherein vertices correspond to the
atoms, whereas edges represent the bonds between atoms
[1, 2]. A topological index is a numerical value associated
with chemical constitution for correlation of chemical
structure with various physicochemical properties [3]. To-
pological indices play a significant role in organic chemistry
and particularly in pharmacology [4, 5]. Physicochemical
properties of chemical compounds such as relative enthalpy
of formation, biological activity, boiling points, melting
points, molar refraction, acentric factor, octanol-water
partition coefficient, and motor octane number are modeled

by topological indices in quantitative structure-property
relation (QSPR) and quantitative structure-activity relation
(QSAR) studies [4, 6–8].

In chemistry, the usage of topological index started in
1947 when the chemistWiener developed theWiener index (a
distance-based topological index) to predict boiling points of
paraffins [9]. Platt index (the oldest degree-based topological
index) was proposed in 1952 for predicting paraffin properties
[10]. *e π-electron energy of a molecular graph was cal-
culated by adding square of degrees (valencies) of its vertices
(nodes) in the year 1972. *e same computational result,
afterwards, was named the first Zagreb index, and in the field
of molecular graph theory, it turned out to be a well-swotted
topological index [11]. For more details about the topological
indices in the field of chemistry, we refer to [6, 8, 12–15].
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Many well-known topological indices such as hyper
Zagreb index [16], variable sum exdeg index [17], and
Zagreb indices [18, 19] have been used to find out sharp
bounds for unicyclic, bicyclic, and tricyclic graphs. Vuki-
cevic [15] propounded variable sum exdeg index for a graph
G and defined it as

SEIa(G) � 
uv∈E(G)

a
du + a

dv  � 
u∈V(G)

dua
du , (1)

where a is a positive integer other than 1. *is topological
index is correlated well with octane-water partition coeffi-
cient [15] and is employed to the study of octane isomers (see
[20–22]). *is topological index in the form of polynomial
was proposed by Yarahmadi and Ashrafi, and they find its
application in nanoscience [23]. Chemical application of this
index can be seen in the papers [12, 13, 15].

In this paper, we mainly targeted three main problems.
First of all, we find the extremal values of variable sum exdeg
index (SEIa) for conjugated trees. After that, we investigated
lower and upper bounds of unicyclic conjugated graphs with
respect to the length of this cycle in different intervals. At the
end of this paper, we find upper bounds of SEIa for bicyclic
graphs.*is paper contains seven sections. In the first section,
we have given introduction while in Section 2, we have given
the proofs of some lemmas and preliminary results. In Section
3, we discovered the bounds of a conjugated trees and this
section helps us to find out lower and upper bounds of
unicyclic conjugated graphs with respect to the length of this
cycle in Section 4. In Section 5, we discussed an important
theorem related with conjugated unicyclic graphs. In Section
6, we discovered the upper bounds of bicyclic graphs. In the
last section, we have drawn the conclusion.

2. Preliminary Results

All graphs under consideration in this paper will be con-
nected, simple, and finite. Suppose G � (V(G), E(G)) is a
simple and finite graph, whereas set of vertices is denoted by
V(G) and the set of edges is denoted by E(G). Let v ∈ V(G)

for which dv is defined as the cardinality of edges incident
with the vertex v. Suppose NG(v) denotes the set of all
vertices which are adjacent with the vertex v and
NG[v] � NG(v)⋃ v{ }. Note that Δ(G) and δ(G) represent
the maximum and minimum degree of a graph G,

respectively. A pendent vertex is a vertex of degree one. An
edge whose one end is a pendent vertex is called pendent
edge. Let B⊆V(G) and B′ ⊆E(G); then, G − B and G − B′
are subgraphs of G which are obtained by deleting the
vertices and edges fromG, respectively. An edge between the
vertices x and y is denoted by e � xy. If B � v{ } and
B′ � xy , then G − B and G − B′ can be expressed as G − v

and G − xy, respectively.
In a graphG, if the vertices x and y are nonadjacent, then

G + xy means there is an addition of an edge between the
vertices x and y in a graph G. We use Sn , Cn, and Pn to
denote the star graph, cycle graph, and path graph on n

vertices, respectively. We assume that graphs (G∗, w1) and
(G∗∗, w2) be rooted at w1 and w2, respectively. *en,
(G∗, w1)⋓ (G∗∗, w2) is obtained by identifying w1 and w2 as
the same vertex. A graph which has no cycle is called a tree. A
graph G is said to be unicyclic graph if it has a unique cycle.
A graph G is said to be bicyclic graph if G has exactly n + 1
edges. Let Ul(n) represent the collection of all those graphs
which have order n and a unique cycle of length l. We denote
Ul(2m, m) the collection of all conjugated unicyclic graphs
of order n in which length of its cycle is l, whereas m is the
matching number of G. Let G ∈ Ul(2m, m) be a unicyclic
graph of length l and it is denoted by Cl. Let G ∈ Ul(2m, m);
if n � 2m � l or n � 2m � l + 1, then its SEIa(G) is unique.
*at is why in this paper we will assume n � 2m≥ l + 2. One
can find terminologies and expressions “indefinito” in
[24–26].

Suppose that G′ is a graph acquired from another graph
G by using some graph alteration such that V(G) � V(G′).
In all sections of this paper, whenever such two graphs are
under debate, we always mean the vertex degree dx the
degree of the vertex x in G.

Lemma 1. Let G be a graph of order n if G contains the
vertices u, v ∈ V(G) such that du � s> 1, dv � t> 1 and s≥ t;
then, there exists a graph G′ such that SEIa(G′)> SEIa(G) for
a> 1.

Proof. Let u, v ∈ V(G) and v1, v2, v3, . . .vk be the pendent
vertices adjacent to the vertex v. We define a new graph G′,
i.e., G′ � G − v1v, v2v, . . . , vkv  + v1u, v2u, . . . , vku  as in
Figure 1. By the definition of SEIa(G), we have

SEIa(G) − SEIa G′(  � du.a
du + dv.a

dv  − du + k( .a
du+k

+ dv − k( .a
dv − k

 

� dv.a
dv − dv − k( .a

dv− k
  − du + k( .a

du+k
− du.a

du 

� k a
μ1 1 + μ1 ln a(  − a

μ2 1 + μ2 ln a(  < 0,

(2)

where μ1 ∈ (t − k, t), μ2 ∈ (s, s + k), μ2 > μ1 for a> 1. *us,
the proof of the above lemma is accomplished. □

Lemma 2. Let G be a graph having two components G1and
T1, where G1 is a cycle graph and T1 is a star graph with
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central vertex v. Let u ∈ V(G1) and du � p, such that uv is an
edge in G. Let v1, v2, v3, . . .vk be the pendent vertices adjacent
with the vertex v, i.e., NG(v) − u{ } � v1, v2, v3, . . . , vk . We
define G′ � G − v1v, v2v, . . . , vkv  + v1u, v2u, . . . , vku  such
that SEIa(G′)> SEIa(G).

Proof. Let G be a graph having two components G1and T1
where G1 is a cycle graph and T1 is a star graph with central
vertex v. Let u ∈ V(G1), du � p, such that uv is an edge in G.
Let v1, v2, v3, . . .vk be the pendent vertices adjacent with the
vertex v, i.e., NG(v) − u{ } � v1, v2, v3, . . .vk . We define
G′ � G − v1v, v2v, . . . , vkv  + v1u, v2u, . . . , vku  as in
Figure 2. By the definition of SEIa, we have

SEIa(G) − SEIa G′(  � du.a
du + dv.a

dv  − du + k( .a
du+k

+ dv − k( .a
dv − k

 

� dv.a
dv − dv − k( .a

dv− k
− du + k( .a

du+k
− du.a

du
 .

(3)

If p≥ k + 1, then

SEIa(G) − SEIa G′(  � dv.a
dv − dv − k( .a

dv− k
 

− du + k( .a
du+k

− du.a
du

 

� k a
μ1 1 + μ1 ln a(  − a

μ2 1 + μ2 ln a(  < 0,

(4)

where μ1 ∈ (1, k + 1), μ2 ∈ (p, p + k), μ2 > μ1, and
a> 1SEIa(G′)> SEIa(G).

If p≤ k + 1, then

SEIa(G) − SEIa G′(  � du.a
du

− dv − k( .a
dv− k

 

− du + k( .a
du+k

− dv.a
dv 

� z. a
μ1 1 + μ1 ln a(  − a

μ2 1 + μ2 ln a(  < 0,

(5)

where μ1 ∈ (1, p), μ2 ∈ (k + 1, k + p), μ2 > μ1, z � p − 1
and a> 1. *us, we have SEIa(G′)> SEIa(G). □

3. Extremal Values of Variable Sum Exdeg
Index for Conjugated Trees

First we introduce some notations which will be used in the
following lemmas and theorems. Suppose that T(n, m) be
the collection of all trees with n vertices and m-matching
number with n≥ 2m. When m − 1 pendent vertices are at-
tached with each certain non-central vertices of Sn− m+1, then

the resulting graph is denoted by T0(n, m). If we choose
n � 2m, then it means every tree from T(n, m) and T0(n, m)

contains perfect matching.

Lemma 3 (see [26]). If an n-vertex tree T has perfect
matching, then there must exist at least two vertices of degree
one with neighbouring vertices of degree two, where n≥ 3.

Lemma 4 (see [26]). If an n-vertex tree T has an m-matching
with n> 2m, then there must exist a pendent vertex u which is
not saturated by m-matching.

In the following, we will find two theorems which will
give extreme values of SEIa for all trees T in T(2m, m).

Theorem 1. Let m≥ 1, n≥ 4, and a> 1 be integers and
T ∈ T(2m, m); then, SEIa(T)≤m.am + 2(m − 1)a2 + am,
where equality meets when T � T0(2m, m).

Proof. Suppose T ∈ T(2m, m). If the tree T is isomorphic to
T0(2m, m), then SEIa(T) � SEIa(T0(2m, m)). On the other
hand, if T is not isomorphic to T0(2m, m), then we assume
that the vertex u ∈ V(T), i.e., du � Δ(T) where du ≥ 2.
Lemma 3 assures that there exist vertices u1 and v1 adjacent
by an edge with du1

� 2 and dv1
� 1. Let N(u1) − v1  � w1.

We define T(1) � T − u1w1 + u1u. It is clear that
T(1) ∈ T(2m, m). By the definition of SEIa, we have

u

G

v

v1
v2

vk

(a)

u

v1
v2

vk

G′

v

(b)

Figure 1: (a) G and (b) G′ is constructed from G.
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SEIa(T) − SEIa T
(1)

  � du.a
du + dw1

.a
dw1 

− du + 1( .a
du+1

+ dw1− 1 .a
dw1 − 1 

 

� dw1
.a

dw1 − dw1− 1 .a
dw1 − 1 

 

− du + 1( .a
du+1

− du.a
du 

� a
μ1 1 + μ1 ln a(  − a

μ2 1 + μ2 ln a( < 0,

(6)

where μ1 ∈ (dw1
− 1, dw1

), μ2 ∈ (du, du + 1), and μ2 > μ1 for
a> 1.

Note that T∗ � T1 − u1, v1 ; then, obviously
T∗ ∈ T(2(m − 1), m − 1). *en, by the construction of T∗

and keeping Lemma 3 in our mind, we can choose u2 and v2
in T∗ where du2

� 2 and dv2
� 1. It is clear that

du(T∗) � Δ(T) � Δ(T∗). Let N(u2) − v2  � w2. We set
T∗∗ � T∗ − u2w2 + u2u. Similarly, SEIa(T∗∗)> SEIa(T∗).
We define T2 � T1 − u2w2 + u2u; then,

SEIa T
(2)

  − SEIa T
(1)

  � du + 2( .a
du+2

+ dw2
− 1 .a

dw2− 1
 

− du + 1( .a
du+1

+ dw2
.a

dw2 

� du + 2( .a
du+2

− du + 1( .a
du+1

 

− dw2
.a

dw2 − dw2
− 1 .a

dw2− 1
 

� a
μ4 1 + μ4 ln a(  − a

μ3 1 + μ3 ln a( > 0,

(7)

where μ3 ∈ (dw2
− 1, dw2

), μ4 ∈ (du + 1, du + 2), and μ4 > μ3
for a> 1.

*is implies that SEIa(T(2)) − SEIa(T(1))> 0. We repeat
the above process on the graph T again and again and we
obtain a sequence of graphs T1, T2, . . . , T(s), . . . with the
relation SEIa(T(1)) < SEIa(T(2))< . . . SEIa(T(s))< . . .

For some positive integerp, we have T(p) � T(p+1) and
T(p) � (T0(2m, m)).

Hence, SEIa(T)< SEIa(T0(2m, m)). □

Theorem 2. Suppose that m≥ 1, n≥ 4, and a> 1 be integers.
If T ∈ T(2m, m), then SEIa(T)≥ 2a + 2(2m − 2)a2, where
equality meets when T � P2m.

Proof. We claim that T � P2m; then, SEIa(T) � SEIa(P2m).
If we apply the above-defined process (in previous *eorem

1) on T, then we will obtain the expression
SEIa(T(1))< SEIa(T(2))< . . . SEIa(T(s))< . . . for some
positive integer p≥ 1SEIa(T)p > SEIa(P2m). Hence,
SEIa(T)≥ SEIa(P2m) � 2a + 2(2m − 2)a2 equality meets
when T � P2m. □

4. Extremal Values of Variable Sum Exdeg
Index for Conjugated Unicyclic Graphs

In this portion of the paper, we will find extreme values for
SEIa(G) among all the conjugated unicyclic graphs in
Ul(2m, m) for a> 1. In this concern, we will prove some
lemmas which will support our main theorems.

Lemma 5 (see [26]). For any tree T from T(2m + 1, m), we
find at least one vertex of degree 1 which will be adjacent with
a vertex v of degree 2, i.e., dv � 2.

Lemma 6. Suppose that m≥ 1, a> 1 and T ∈ T(2m + 1, m);
then, SEIa(T)≥ SEIa(P2m+1), where sign of equality meets
when T � P2m+1.

Proof. Let T ∈ T(2m + 1, m); then, by Lemma 4, we find a
pendent vertex u in T which is not saturated by an
m-matching of T. Obviously, the vertices in T − u{ } are
saturated by the maximal m− matching. *is implies that
T − u{ } ∈ T(2m, m). Assume that N(u) � w{ }; then,
SEIa(T) � SEIa(T − u{ }) + dwadw + duadu − (dw − 1)adw− 1.
According to *eorem 2, we have

SEIa(T)≥ SEIa P2m(  + dwa
dw + a − dw − 1( a

dw− 1

� 2a + 2(2m − 2)a
2

+ dwa
dw + a − dw − 1( a

dw− 1

� 2a + 2(2m − 1)a
2

− 2a
2

+ dwa
dw + a − dw − 1( a

dw− 1

≥ 2a + 2(2m − 1)a
2

� SEIa P2m+1( .

(8)

*e above inequality holds if dwadw

− (dw − 1)adw− 1 − (2a2 − a)≥ 0.
If dw � 2, then

dwa
dw − dw − 1( a

dw− 1
− 2a

2
− a  � 0. (9)

If dw ≥ 3, then we have

G1 T1

G: u

vk

v2

v1

v

(a)

vk

v2

v1

uG′:
v

(b)

Figure 2: (a) Graph G; (b) the graph G′ is obtained from G.
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a
μ2 1 + μ2 ln a(  − a

μ1 1 + μ1 ln a( > 0, (10)

where μ1 ∈ (1, 2), μ2 ∈ (dw − 1, dw), and μ2 > μ1 for a> 1.
Finally, we have SEIa(T)≥ SEIa(P2m+1). □

Lemma 7. Let T ∈ T(2m + 1, m); then, SEIa(T)≤ SEIa

(T0(2m + 1, m)) equality meets when T � T0(2m + 1, m)

where m≥ 1, a> 1.

Proof. Let T ∈ T(2m + 1, m); then, by Lemma 4, we find a
pendent vertex u in T which is not saturated by a maximal
m′-matching of T. Suppose that N(u) � z1 . Suppose v is a
vertex in T, i.e., dv � Δ(T). Define T′ � T − uz1 + uv; then,
clearly T′ − u{ } ∈ T(2m, m). With the help of*eorem 1, we
have SEIa(T′) − u{ }≤ SEIa(T0(2m, m)), so we have

SEIa T′(  � SEIa T′ − u(  + dua
du + dv + 1( a

dv+1
− dva

dv

≤ a + SEIa T
0
(2m, m)  + dv + 1( a

dv+1
− dva

dv

∗∗∗ < a + SEIa T
0
(2m, m)  +(m + 1)a

m+1
− ma

m

� a + ma
m

+ 2a
2
(m − 1) + a.m +(m + 1)a

m+1
− ma

m

� a + ma
m

+ 2a
2
(m − 1) + a.m +(m + 1)a

m+1
− ma

m

� 2a
2
(m − 1) +(1 + m)a +(m + 1)a

m+1

� SEIa T
0
(2m + 1, m) .

(11)

If we show that (dv + 1)adv+1 − dvadv <
(m + 1)am+1 − mam, then it will be enough for the existence
of the expression ∗∗ ∗ . Since we know that
Δ(T0(2m, m)) � m, T is not isomorphic to T0(2m + 1, m)

and dv ≤m. If we assume dv � m, then
(dv + 1)adv+1 − dvadv − (m + 1)am+1 + mam � 0. If we as-
sume dv <m, then

� dv + 1( a
dv+1

− dva
dv  − (m + 1)a

m+1
− ma

m
 

� a
μ1 1 + μ1 ln a(  − a

μ2 1 + μ2 ln a( < 0,
(12)

where μ1 ∈ (dv, dv + 1), μ2 ∈ (m, m + 1), μ2 > μ1 and a> 1.
Hence, SEIa(T)< SEIa(T′)< SEIa(T0(2m + 1, m)). So,

we conclude that SEIa(T)≤ SEIa(T0(2m + 1, m)), and sign
of equality meets when T � T0(2m + 1, m).

We define a set B � xi ∈ V(Cl): dxi
≥ 3 . Remember

that T(xi) represents the connected component having the
vertex xi of the graph G − xi− 1xi, xixi+1 . □

Lemma 8 (see [26]). Let G ∈ Ul(2m, m); then, for every
xi ∈ B, T(xi) ∈ T(ni, ni/2) or T(xi) ∈ T(ni, ni − 1/2).

Lemma 9. Let G ∈ Ul(2m, m) such that SEIa(G) is mini-
mum if T(xi) � Pni

where xi ∈ B, ni � n(T(xi)), a> 1 and xi

is one of the pendent vertices of Pni
.

Proof. SupposeG ∈ Ul(2m, m) withminimum variable sum
exdeg index.We also assume that xi ∈ B and the vertices xi− 1
and xi+1 are the neighbouring vertices of the vertex xi along
Cl. Here we consider the expression

Q � dxi
a

dxi − dxi
− 2 a

dxi
− 2

  + dxi− 1
a

dxi− 1 − dxi− 1
− 1 a

dxi− 1− 1
 

+ dxi+1
a

dxi+1 − dxi+1
− 1 a

dxi+1 − 1
 .

(13)

We assume that G∗ is the connected component of G −

xixi− 1, xixi+1  which does not contain the vertex xi. We
can write the expression, SEIa(G) � SEIa (G∗) +

Q + SEIa(Txi
). According to Lemma 8, T(xi) ∈ T(ni, ni/2)

or T(xi) ∈ T(ni, ni − 1/2). In either situation, there exists
the following relation: SEIa(G)≥ SEIa(G∗) + Q + SEIa(Pni

)

according to *eorem 2 and Lemma 6. Furthermore, the
sign of equality meets iff T(xi) � Pni

. Next we will prove
that the vertex xi is one of the pendent vertices of Pni

such
that dxi

� 3. We suppose that dxi
≥ 4, so there must exist

two vertices u and v, i.e., N(xi) − xi− 1, xi+1  � u, v{ }. *en,
there must be one edge of xiu, or xiv which is not included
in m-matching. Without loss of generality, suppose
that xiu does not belong to the m-matching. Let P(v) �

v1, v2, . . . vq where q≥ 2 represents the path with v � v1 as a
pendent vertex of P(v). Define G′ � G − xiu + uvq; it is
clear that G′ ∈ Ul(2m, m). By the definition of SEIa, we
have

SEIa G′(  − SEIa(G) � dxi
− 1 a

dxi
− 1

+ dvq
+ 1 a

dvq
+1

 

− dxi
 a

dxi + dvq
a

dvq 

� dvq
+ 1 a

dvq
+1

− dvq
 a

dvq 

− dxi
a

dxi − dxi
− 1 a

dxi
− 1

 

� a
μ1 1 + μ1 ln a(  − a

μ2 1 + μ2 ln a( < 0,

(14)

where μ1 ∈ (dvq
, dvq

+ 1), μ2 ∈ (dxi
− 1, dxi

), μ2 > μ1 and
a> 1.

SEIa(G′)< SEIa(G) which contradicts our choice of
G. □

Lemma 10. If G ∈ Ul(2m, m), a> 1 with maximum
SEIa(G); then, for every vertex xi ∈ B, there exist T(xi) which
will be isomorphic to T0(ni, ni/2) or T0(ni, ni − 1/2). If T(xi)

is isomorphic to T0(ni, ni/2), then dxi
− 2 will be equal to

Δ(T0(ni, ni/2)). If T(xi) is isomorphic to T0(ni, ni − 1/2),
then the vertex xi will be the one end vertex of T0(ni, ni − 1/2)

and (xi) will be adjacent to some maximum degree vertex of
T0(ni, ni − 1/2).

Proof. Let G ∈ Ul(2m, m) with maximum variable sum
exdeg index.We also assume that xi ∈ B and the vertices xi− 1
and xi+1 are the neighbouring vertices of the vertex xi along
Cl. Here we consider the expression

Q � dxi
a

dxi − dxi
− 2 a

dxi
− 2

  + dxi− 1
a

dxi− 1 − dxi− 1
− 1 a

dxi− 1− 1
 

+ dxi+1
a

dxi+1 − dxi+1
− 1 a

dxi+1
− 1

 .

(15)

We assume that G∗ is the connected component of G −

xixi− 1, xixi+1  which does not contain the vertex xi. We
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can write the expression SEIa(G) � SEIa(G∗)+ Q + SEIa
(T(xi)).

According to *eorem 1, Lemma 7, and Lemma 8, we
have

SEIa(G)≤ SEIa G
∗

(  + Q + SEIa T
0

ni,
ni

2
  , (16)

or

SEIa(G)≤ SEIa G
∗

(  + Q + SEIa T
0

ni,
ni − 1
2

  , (17)

for ni being even or odd, respectively. Above two inequalities
hold iff T(xi) � T0(ni, ni/2) and T(xi) � T0(ni, ni − 1/2),
respectively. Next we will prove that

(1) If T(xi) � T0(ni, ni/2), then dxi
− 2 � Δ

(T0(ni, ni/2)).
(2) If T(xi) � T0(ni, ni − 1/2), then (T0(ni, ni − 1/2))

has the vertex xi as a pendent vertex that is adjacent
to the vertex of maximum degree in T0(ni, ni − 1/2).

For the proof of (i), we assume that dxi
− 2<

Δ(T0(ni, ni/2)). Let y ∈ V(T), i.e., dy � Δ(T0(ni, ni/2)). We
define G′ � G − xixi− 1− xixi+1 + xi− 1y + xi+1y. By the defi-
nition of SEIa(G),

SEIa(G) − SEIa G′(  � dxi
a

dxi + dya
dy 

− dxi
− 2 a

dxi
− 2

+ dy + 2 a
dy+2

 

� dxi
a

dxi − dxi
− 2 a

dxi
− 2

 

− dy + 2 a
dy+2

− dya
dy .

(18)

If dxi
≥ dy, then

SEIa(G) − SEIa G′(  � dya
dy − dxi

− 2 a
dxi

− 2
 

− dy + 2 a
dy+2

− dxi
a

dxi 

� z. a
μ1 1 + μ1 ln a(  − a

μ2 1 + μ2 ln a(  < 0,

(19)

where μ1 ∈ (dx − 2, dy), μ2 ∈ (dxi
, dy + 2), μ2 > μ1 , a> 1,

and z � dy − dxi
+ 2.

SEIa(G′)> SEIa(G) which contradicts our choice of G.
If dxi
< dy, then

SEIa(G) − SEIa G′(  � dxi
a

dxi − dxi
− 2 a

dxi
− 2

 

− dy + 2 a
dy+2

− dy a
dy 

� 2. a
μ1 1 + μ1 ln a(  − a

μ2 1 + μ2 ln a(  < 0,

(20)

where μ1 ∈ (dxi
− 2, dxi

), μ2 ∈ (dy, dy + 2), μ2 > μ1, and
a> 1.

SEIa(G′)> SEIa(G) which contradicts our choice of G.
For the proof of (ii), we will just show that dxi

� 3 and
dw1

� Δ(T(vi)) where w1 � N(xi) − xi+1, xi− 1 .
Since G ∈ Ul(2m, m) and T(xi) is isomorphic to

T0(ni, ni − 1/2), dxi
− 2<Δ(T0(ni, ni − 1/2)).

Note that any vertex w2 other than the vertex of max-
imum degree in T0(ni, ni − 1/2) has the degree 2 or 1. If
dxi

− 2 � 2, this implies that in T0(ni, ni − 1/2), there will be
a vertex which is not saturated by the maximal matching of
G. Here a contradiction arises for dxi

− 2 � 1. *is implies
dxi

� 3. If we assume dw1
<Δ(T0(ni, ni − 1/2)), then once

again we find a vertex in T0(ni, ni − 1/2) which is not sat-
urated by the maximal matching in G and again we will find
a contradiction. From the above discussion, the proof is
accomplished. □

Theorem 3. Suppose G ∈ Ul(2m, m); then, SEIa ≥ 1 + 3a3 +

2(2m − 2)a2 for a> 1 and the sign of equality meets when
G � (Cl, xi)⋓(P2m− k+1, xi) where xi ∈ Cl is a pendent vertex
of P2m− k+1.

Proof. Suppose G ∈ Ul(2m, m) having minimum SEIa.
According to Lemma 9, for the minimum SEIa(G), T(xst

)

will be isomorphic to Pnst
for every xst

∈ B where
nst

� n(T(xst
)). For |B| � 1, the above result holds. Now we

discuss the above result for |B|≥ 2. We have
T(xst

) � Pnst
(t � 1, 2, . . . , |B|). So, we denote T(xst

)

� yt
0y

t
1 . . . yt

bt
(bt ≥ 1), where yt

0 � xst
(t � 1, 2 . . . .|B|). We

define G∗ � G − y2
0 y2

1 − y3
0y

3
1 . . . − y

|B|
0 y

|B|
1 + y1

b1
y2
1 +y2

b2
y3
1 + · · · + y

|B|− 1
b|B|− 1

y
|B|
1 . It is clear that G∗ ∈ Ul(2m, m); then, by

the definition of SEIa,

SEIa G
∗

(  − SEIa(G) � (|B| − 1) 2a
2

− a  − 3a
3

− 2a
2

  

� (|B|− 1) a
μ1 1 + μ1 ln a(  − a

μ2 1 + μ2 ln a(  <0,

(21)
where μ1 ∈ (1, 2), μ2 ∈ (2, 3), μ2 > μ1, and a> 1.

SEIa(G∗)< SEIa(G) which contradicts our choice of G.
Hence, the proof of above theorem is finished. □

5. Main Result

Theorem 4. Let G ∈ Ul(2m, m) and a> 1; then, the fol-
lowing results must hold:

(1) If 2m � l + 2, then SEIa ≤ 2a + 2(l − 2)a2 + 3a3 and
the sign of equality meets when G is not isomorphic to
(Cl, P3).

(2) If 2m≥ l + 3 and l is odd, then SEIa

(G)≤ (m − l − 1/2)a + 2(m + l − 3/2)a2 + (m − l − 5
/2)am− l− 5/2 sign of equality meets iff G �

(Cl, xi)⋓(T0(2m − l + 1, 2m − l + 1/2), xi).
(3) If 2m≥ l + 3 and l is even, then SEIa(G)≤

(m − l/2)a + 2(m + l/2 − 2)a2 + 3a3 + (m − l/2 + 1)

am− l/2+1 sign of equality meets iff G � (Cl,

xi)⋓(T0(2m − l + 1, 2m − l/2), xi), where dxi
� 3,

N(xi) − xi− 1, xi+1  � y, and y � Δ(T0

(2m − l + 1, 2m − l/2), xi).

Proof. Let G ∈ Ul(2m, m), a> 1 with maximum SEIa(G).
According to Lemma 8, we are sure that T(xi) is isomorphic
to T0(ni, ni − 1/2) or T0(ni, ni/2) where xi ∈ B.
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For |B| � 1, we have no graph G≇(Cl, P3) for which
2m � l + 2. Whenever 2m � l + 2, then G must be isomor-
phic to (Cl, P3) where G ∈ Ul(2m, m). According to *e-
orem 3, we can find a graph G′ such that
SEIa(G′)> SEIa(Cl, P3) � SEIa(G) for G′ ≠ (Cl, P3) which
contradicts the choice of G. With the help of Lemma 10, the
proof of (2) or (3) is satisfied. For |B|≥2, we may have the
below cases.

Case 1. Let 2m � l + 2; then, for any two graphs G∗and
G∗∗, both graphs are not isomorphic to (Cl, P3) and
SEIa(G∗) � SEIa(G∗∗). According to *eorem 3, we
have SEIa(G)> SEIa((Cl, P3)) where G≇ (Cl, P3), and
hence (1) satisfies.
Case 2. For 2m≥ l + 3, we make the following subcases.
Let xst
∈ B, t � 1, 2, . . . , |B| and n(T(xst

)) � nt.

Subcase 2.1. Let nt � 2 for every xst
∈ B; then, we have

the following set of vertices: V(G)− V(Cl) � y1,

y2, . . . , y|B|} and N(yt) � xst
, t � 1, 2, . . . , |B|. Let

N(xst
) − yt  � xst

− 1, xst
+ 1 , t � 1, 2, . . . , |B|.

Choose |B|≥ 3. If |B| � 3, we define G∗ � G − xs2
y2 −

xs3
y3 + xs1

y2 + y2y3. If |B|≥ 4, we define G∗ � G −

xs2
y2 − xs3

y3 − xs2− 1xs2
− xs2

xs2+1 − xs3
xs3+1 + xs2− 1

xs2+1 + xs2
xs3

+ xs2
xs3+1 + xs1

y2 + y2y3
In both above G∗, we have G∗ ∈ Ul(2m, m) and we
have the expression

SEIa G
∗

(  − SEIa(G) � 4a
4

− 3a
3

  + 2a
2

− a 

− 2 3a
3

− 2a
2

  � 4a
4

− 3.3a
3

 

+ 3.2a
2

− a > 0,

(22)

which contradicts our choice of G.
Subcase 2.2. Let xs

l′
∈ B, i.e., nl′ � 3; here we have

|B|≥ 2; there must exist a vertex xs
t′
in B − xs

l′
 . We

define G∗ � G − xs
l′
yl′ + xs

t′
yl′ ; then, clearly

G∗ ∈ Ul(2m, m). By the definition of SEIa(G), we
have

SEIa G
∗

(  − SEIa(G) � dxs
t′

+ 1 a
dxs

t′
+1

+ 2a
2

 

− dxs
t′
a

dxs
t′ + 3a

3
 

� dxs
t′

+ 1 a
dxs

t′
+1

− dxs
t′
a

dxs
t′  

− 3a
3

− 2a
2

 .

(23)

Since dxs
t′
≥ 3 and a> 1, this implies that SEIa(G∗) −

SEIa(G)> 0 which is a contradiction to the choice of
G.
Subcase 2.3. Let xst

∈ B and nt ≥ 4. In this concern, two
subcases arise.
Subcase 2.3.1. Suppose that dxsl

� Δ(G) for some
xsl
∈ B; since we have |B|≥ 2, there exists a vertex xsr

in B − xsl
 . According to Lemma 8, Lemma 3, and

Lemma 5, there must exist some adjacent vertices say
us and vs in T(xsr

), i.e., dus
� 2 and dvs

� 1. Let
N(us) − vs  � ws . We define G∗ � G − wsus+ xsl

us;
then, clearly G∗ ∈ Ul(2m, m) and

SEIa G
∗

(  − SEIa(G) � dxsl

+ 1 a
dxsl

+1
− dws

− 1 a
dws

− 1
  − dxsl

a
dxsl + dws

a
dws 

� dxsl

+ 1 a
dxsl

+1
− dxsl

a
dxsl  − dws

a
dws − dws

− 1 a
dws

− 1
 

� a
μ2 1 + μ2 ln a(  − a

μ1 1 + μ1 ln a(  > 0,

(24)

where μ1 ∈ (dws
− 1, dws

), μ2 ∈ (dxsl

, dxsl

+ 1), μ2 > μ1,
and a> 1.
SEIa(G∗)> SEIa(G) which contradicts our choice of
G.
Subcase 2.3.2. Suppose that dxsl

<Δ(G) for some
xsl
∈ B. Let y be a vertex in G with dy � Δ(G), so this

implies that y ∈ T(xsl
) where l is a positive integer.

Since we have |B|≥ 2, then there exists some vertex xsr

in B − xsl
 . According to Lemma 8, Lemma 3, and

Lemma 5, there must exist some adjacent vertices say
us and vs in T(xsr

), i.e., dus
� 2 and dvs

� 1. Let
N(us) − vs  � ws .

Remaining portion of the under discussion subcase is
similar to subcase 2.3.1 and once again we find the

contradiction. According to all above discussion and ar-
gument, we follow the desired result. □

Theorem 5. Let G ∈ Ul(2m, m), a> 1, and n(T(xi))≥ 3 for
every xi ∈ B; then,

(1) If 2m≥ l + 3 and l is odd, then
SEIa(G)≤ (m − l − 1/2)a + 2(m + l − 3/2)a2 + (m −

l − 5/2)am− l− 5/2 sign of equality meets iff
G � (Cl, xi)⋓(T0(2m − l + 1, 2m − l + 1/2), xi).

(2) If 2m≥ l + 3 and l is even, then SEIa(G)≤
(m − l/2)a + 2(m + l/2 − 2)a2 + 3a3 + (m− l/2 + 1)

am− l/2+1 sign of equality meets iff G �

(Cl, xi)⋓(T0(2m − l + 1, 2m − l + 1/2), xi), where
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dxi
� 3, N(xi) − xi− 1, xi+1  � y, and

y � Δ(T0(2m − l + 1, 2m − l/2), xi).

6. Extremal Values of Variable Sum Exdeg
Index for Bicyclic Graphs

Here we are going to define some notations. Let G(n, n + 1)

be the collection of bicyclic graphs or all those graphs which
have n vertices and n + 1 number of edges. Note that if
G ∈ G(n, n + 1), then there exist two cycles say Ci and Cj in
G.

(i) A(i, j) is the collection of graphs G ∈ G(n, n + 1) in
which cycles Ci and Cj share a single vertex only.

(ii) B(i, j) is the collection of graphs G ∈ G(n, n + 1) in
which cycles Ci and Cj share no common vertex.

(iii) C(i, j, l) is the collection of graphs G ∈ G(n, n + 1)

in which cycles Ci and Cj share a common path of
length l.

6.1. Extremal Graphs in A(i, j). Suppose Sn(i, j) is a graph
from the collection A(i, j), i.e., there are k � n − i − j + 1
pendent vertices adjacent to a common vertex of Ci and Cj

as shown in Figure 3.

Lemma 11. Let G ∈ A(i, j); if G≇Sn(i, j), then
SEIa(G)< SEIa(Sn(i, j)) for a> 1.

Proof. Let G ∈ A(i, j); then, by Lemma 2, we obtain another
graph say G′ for which SEIa(G′)> SEIa(G). Further by
Lemma 1, the graph G′ can be changed into another graph
say G″ in which pendent vertices will be attached with some
common vertex u, of Ci andCj. If u is a not a common vertex
of Ci and Cj, then G″≇Sn(i, j). By the definition of SEIa(G),
we have

SEIa Sn(i, j)(  − SEIa G″(  � (k + 4).a
k+4

+ 2a
2

 

− (k + 2).a
k+2

+ 4a
4

 .
(25)

Case − 1: for k � n + 1 − i − j � 1, a> 1, we have

SEIa Sn(i, j)(  − SEIa G″(  � (k + 4).a
k+4

− 4a
4

  − (k + 2).a
k+2

− 2a
2

 

� a
μ2 1 + μ2 ln a(  − a

μ1 1 + μ1 ln a(  > 0,

(26)

where μ1 ∈ (2, k + 2), μ2 ∈ (4, k + 4), μ2 > μ1, a> 1.
Case − 2: for k � n + 1 − i − j≥ 2, a> 1, we have

SEIa Sn(i, j)(  − SEIa G″(  � (k + 4).a
k+4

− (k + 2).a
k+2

  − 4a
4

− 2a
2

 

� k. a
μ2 1 + μ2 ln a(  − a

μ1 1 + μ1 ln a(  > 0,

(27)

where μ1 ∈ (2, 4), μ2 ∈ (k + 2, k + 4), μ2 > μ1, a> 1.
From the above two cases, we conclude that

SEIa(Sn(i, j))> SEIa(G″). □

Lemma 12. Let Sn(i, j) ∈ A(i, j); then,

(a) SEIa(Sn(i, j))< SEIa(Sn(i − 1, j)), a> 1, i> 3.
(b) SEIa(Sn(i, j))< SEIa(Sn(i, j − 1)), a> 1, j> 3.

Proof. By the definition of SEIa(G), we have

SEIa Sn(i, j)(  − SEIa Sn(i − 1, j)(  � 2a
2

− a  − (k + 5)a
k+5

− (k + 4)a
k+4

 

� a
μ1 1 + μ1 ln a(  − a

μ2 1 + μ2 ln a( < 0,
(28)

where μ1 ∈ (1, 2), μ2 ∈ (k + 4, k + 5), μ2 > μ1 and
a> 1SEIa(G′)> SEIa(G).

Proof of (ii) is the same as proof of (i). □

Theorem 6. If G ∈ A(i, j), then SEIa(G) will be maximal if
G � Sn(i, j) and for all i≥ 3, j≥ 3, the graph from A(i, j)

with maximum SEIa is Sn(3, 3).

Proof. Proof of this theorem can be obtained by Lemma 11
and Lemma 12. □

6.2. Extremal Graphs in B(i, j). Here we define that T r
n(i, j)

is a graph which is obtained by joining Ci and Cj by a path P

of length r and the remaining number of vertices k � n −

i − j − r + 1 are attached to the same end vertex of P as
shown in Figure 4.

Lemma 13. Let G ∈ B(i, j); if G≇ T r
n(i, j), then

SEIa(G)< SEIa(T r
n(i, j)) for a> 1.

Proof. Let G ∈ B(i, j); then, by Lemma 2, we obtain another
graph say G′ for which SEIa(G′)> SEIa(G). Further by

Cj

Ci

Figure 3: Sn (i, j) graphs.
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Lemma 1, the graph G′ can be changed into another graph
say G″ in which pendent edges are attached with same vertex
u, i.e., SEIa(G″)> SEIa(G′). If u is not end vertex of path P,
then we will show SEIa(T r

n)> SEIa(G″). By the definition of
SEIa, we have

SEIa T
r
n(  − SEIa G″(  � (k + 3)a

k+3
− (k + 2)a

k+2
  − 3a

3
− 2a

2
 

� a
μ2 1 + μ2 ln a(  − a

μ1 1 + μ1 ln a( > 0,

(29)

where μ1 ∈ (2, 3), μ2 ∈ (k + 2, k + 3), μ2 > μ1, a> 1, and
k � n + 1 − i − j − r. □

Lemma 14. Let T r
n ∈ B(i, j); then,

(a) SEIa(T r
n(i − 1, j))> SEIa(T r

n(i, j)), a> 1, i> 3.
(b) SEIa(T r

n(i, j − 1))> SEIa(T r
n(i, j)), a> 1, j> 3.

(c) SEIa(T r− 1
n (i, j))> SEIa(T r

n(i, j)), a> 1, r> 1.

Proof. By the definition of SEIa(G),

θ � SEIa T
r
n(i − 1, j)(  − SEIa T

r
n(i, j)( 

� (k + 4)a
k+4

− (k + 3)a
k+3

  − 2a
2

− a 

� a
μ2 1 + μ2 ln a(  − a

μ1 1 + μ1 ln a( > 0,

(30)

where μ1 ∈ (1, 2), μ2 ∈ (k + 3, k + 4), μ2 > μ1, a> 1, and
k � n + 1 − i − j − r. *is implies that θ> 0.

Proof of (ii) is the same as proof of (i). □

Proof. By the definition of SEIa(G),

θ � SEIa T
r− 1
n (i, j)  − SEIa T

r
n(i, j)( 

� (k + 4)a
k+4

− (k + 3)a
k+3

  − 2a
2

− a 

� a
μ2 1 + μ2 ln a(  − a

μ1 1 + μ1 ln a( > 0,

(31)

where μ1 ∈ (1, 2), μ2 ∈ (k + 3, k + 4), μ2 > μ1, a> 1. *is
implies that θ> 0.

SEIa(T r− 1
n (i, j))> SEIa(T r

n(i, j)). After proving Lemma
13 and Lemma 14, we are able to present the following
theorem. □

Theorem 7. If G ∈ B(i, j), then SEIa(G) will be maximal if
G � Tn(i, j) and for all i≥ 3, j≥ 3, the graph from B(i, j)

with maximum SEIa is Tn(3, 3).

6.3.ExtremalGraphs inC(i, j, l). Here we define thatΛl
n(i, j)

is a graph which is obtained by attaching n + l + 1 − i − j

edges to one of the vertices of degree 3 in G ∈ C(i, j, l) (see
Figure 5). Here we define some lemmas but skip their proofs.
We refer Lemma 13 and Lemma 14 for the proof of following
lemmas.

Lemma 15. Let G ∈ C(i, j, l); if G≇Λl
n(i, j), then

SEIa(G)< SEIa(Λl
n(i, j)) for a> 1.

Lemma 16. Let Λl
n(i, j) ∈ C(i, j, l); then,

(a) SEIa(Λl
n(i − 1, j)> SEIa(Λl

n(i, j)), i> 3.
(b) SEIa(Λl

n(i, j − 1)> SEIa(Λl
n(i, j)), j> 3.

(c) SEIa(Λl− 1
n (i, j)> SEIa(Λl

n(i, j)), l> 1.

Theorem 8. For a> 1 and the graph from the collection
C(i, j, l) with maximum SEIa(G) for all i≥ 3, j≥ 3 and l> 1 is
Λ1n(3, 3).

Theorem 9. A graph G ∈ G(n, n + 1) has maximum variable
sum exdeg index if and only if G � Λ1n(3, 3) for a> 1.

Proof. Since Sn(3, 3), T1
n(3, 3), and Λ1n(3, 3) belong to

G(n, n + 1). All the previous lemmas and theorems make it
very clear and easy to understand that Sn(3, 3), T1

n(3, 3), and
Λ1n(3, 3) havemaximum SEIa(G), andSn(3, 3), T1

n(3, 3), and
Λ1n(3, 3) belong toA(i, j), B(i, j), and C(i, j, l), respectively,
for n≥ 6. Now we just need to compare the SEIa of Sn(3, 3),
T1

n(3, 3), and Λ1n(3, 3).

θ1 � SEIa Λ
1
n(3, 3)  − SEIa Sn(3, 3)( 

� (n − 1).a
n− 1

+ 3.a
3

+ 2.2a
2

+(n − 4)a 

− (n − 1).a
n− 1

+ 4.2a
2

+(n − 5)a 

� 3a
3

− 2.2a
2

+(n − 5)a> 0.

(32)

*is implies that θ1 > 0.

Ci

Cj

Figure 4: Tr (i, j) graphs.

Ci Cj

Figure 5: Λl
n(i, j) graphs.
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θ2 � SEIa Sn(3, 3)(  − SEIa T
1
n(3, 3) 

� (n − 1).a
n− 1

+ 4.2a
2

+(n − 5)a 

− (n − 3).a
n− 3

+ 4.2a
2

+ 3.a
3

+(n − 6)a 

� (n − 1)a
n− 1

− (n − 3)a
n− 3

  − 3a
3

− a 

� 2 a
μ2 1 + μ2 ln a(  − a

μ1 1 + μ1 ln a(  > 0,

(33)

where μ1 ∈ (1, 3), μ2 ∈ (n − 3, n − 1), μ2 > μ1, a> 1. *is im-
plies that θ2 > 0. From the above discussion, we conclude
that Λ1n(3, 3)>Sn(3, 3)> T1

n(3, 3). □

7. Conclusion

Ascertaining the upper and lower bounds on any molecular
structure descriptor with regard to various graph parameters
is a significant job. We have sought the maximum value of
SEIa for unicyclic graphs. Sharp bounds have also been
investigated for conjugated trees and conjugated unicyclic
graphs. We also investigated the extremal graphs for each
upper and lower bounds. Following are the main points of
conclusion.

(i) We have provided maximum and minimum values
of SEIa for conjugated trees.

(ii) We have also provided lower and upper bounds of
SEIa for unicyclic conjugated graphs with respect to
the length of this cycle.

(iii) At the end of this paper, we have determined the
maximum value of SEIa for bicyclic graphs or
(n, n + 1) − graphs.
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In recent years, the study of topological indices associated to different molecular tubes and structures gained a lot of attention of
the researchers—working in Chemistry and Mathematics. (ese descriptors play an important role in describing different
properties associated to the objects of study. Moreover, Shannon’s entropy concept—a slightly different but more effective
approach—provides structural information related to the molecular graphs. In this article, we have computed and analyzed
different entropy measures associated to different crystallographic structures. In particular, we have worked on the Zagreb
entropies, hyper and augmented Zagreb entropies, and forgotten and Balaban entropies for the crystallographic structures of the
cuprite Cu2O and titanium difluoride TiF2.

1. Introduction

(e role of Graph (eory has been significantly improvised
as applications in other areas of sciences, particularly in the
direction of Chemical Graph(eory. Many researchers have
been able to explore many new directions during last few
years. However, there are plenty of gaps which need to be
fixed in. (e study of topological indices plays an important
role in identifying many physical and chemical properties of
the molecular structures of study. In recent time, another
approach which is a bit different—but more effective—has
been introduced in the literature, namely, using the concept
of Shannon’s entropy [1, 2]. Concoction graph hypothesis is
a part of numerical science wherein devices of graph hy-
pothesis are applied to demonstrate the compound wonder
scientifically. In addition, it has been identified with the
insignificant uses of graph postulate for subatomic disputes.
(is hypothesis contributes a noticeable job in the field of
compound sciences; for details, see [3–5].

(e graph entropy gauges that partner likelihood dis-
seminations with components (vertices, edges, and so forth)
of a diagram can be delegated inherent and outward mea-
sures. (ere are a few distinct kinds of such chart entropy
measures [6]. (e degree powers are very critical invariants
and concentrated broadly in chart hypothesis and system
science, and they are utilized as the data functionals to
investigate the systems [7, 8]. Dehmer presented chart en-
tropies dependent on data functionals, which catch auxiliary
data and contemplate their properties [9, 10]. For increas-
ingly broad exploration, Estrada and Hatano recommended
a truly solid entropy ration for systems/charts [11] and
considered the walk-based diagram entropies [12].

(e idea of entropy was presented first in Shannon’s
celebrated paper [13] as “the entropy of a likelihood dis-
semination is known as a proportion of the unusualness of
data content or a proportion of the liability of a framework.”
Afterward, entropy was started to be applied to diagrams and
substance systems. It was created for estimating the auxiliary
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data of diagrams and substance systems. In 1955, Rashevsky
[14] presented the idea of graph entropy dependent on the
orders of vertex circles. As of late, diagram entropies have
been broadly applied in a wide range of fields, for example,
science, biology, and humanism [15, 16].

(e entropy measures for diagrams have been generally
applied in art, chemical engineering, and basic science (see [17]).
(is issue ismind boggling as it is not sure about which diagram
class the ration ought to be assessed. We guess that the pre-
sented degree-based entropy can be utilized to quantify organize
heterogeneity. It is important to note that the mentioned ap-
plications have been identified by taking into account the
hidden information investigation issue [18, 19]. Be that as it
may, the purported auxiliary translation should be examined
too. Comprehensively, the applications for entopic organize
measures extend from assessable erection portrayal in basic
science or programming innovation to investigate natural or
synthetic properties of subatomic charts [20]. (is calls to look
at what sort of basic multifaceted nature does the measure
identify. Comparable entropy measures which depend on
vertex-degrees to identify arrange heterogeneity have been
presented by Solé and Valverde [21] and Tan and Wu [22].

Shannon’s fundamental work [13] in the late nineteen-
forties denotes the beginning stage of present day data
hypothesis. Succeeding primary solicitations in semantics

and electrical building, data hypothesis was applied broadly
in science (see [23, 24]). Subsequently, this strategy has been
utilized for investigating living frameworks, e.g., natural and
concoction frameworks by methods for charts. (ese ap-
plications have been discussed by both Rashevsky [14] and
Trucco [25]. Here, the fundamental oddity was thinking
about a structure as a result of a subjective correspondence
[26]. With the guide of this knowledge, Shannon’s entropy
equations [13] were utilized to decide the basic data sub-
stance of a system [21]. In what follows, we survey in se-
quential request diagram entropy quantifies that have been
utilized for considering organic and compound complexes
[27–29].

In 2014, Chen et al. [30] presented the meaning of the
entropy of edge prejudiced graph. At that point, the entropy
of edge slanted graph is given as follows:

ENTI(G) � − 

r′s′∈E(G)

I r′s′( 

rs∈E(G)I(rs)
log

I r′s′( 

rs∈E(G)I(rs)
 .

(1)

(i) /e First Zagreb Entropy. If I(rs) � Θ(r) + Θ(s),
then equation (1) is reduced and is called the first
Zagreb entropy:

ENTM1
(G) � log M1(G)(  −

1
M1(G)( 

log 
rs∈E(G)

[Θ(r) + Θ(s)]
[Θ(r)+Θ(s)]⎡⎢⎢⎣ ⎤⎥⎥⎦. (2)

(ii) /e Second Zagreb Entropy. If I(rs) � Θ(r)×

Θ(s), then equation (1) is reduced and is called the
second Zagreb entropy:

ENTM2
(G) � log M2(G)(  −

1
M2(G)( 

log 
rs∈E(G)

[Θ(r) × Θ(s)]
[Θ(r)×Θ(s)]⎡⎢⎢⎣ ⎤⎥⎥⎦. (3)

(iii) /e Hyper Zagreb Entropy. If I(rs) �

[Θ(r) +Θ(s)]2, then equation (1) is reduced and is
called the hyper Zagreb entropy:

ENTHM(G) � log(HM(G)) −
1

(HM(G))
log 

rs∈E(G)

(Θ(r) + Θ(s))
2

 
(Θ(r)+Θ(s))2[ ]⎡⎢⎢⎣ ⎤⎥⎥⎦. (4)

(iv) /e Forgotten Entropy. If I(rs) � [(Θ(r))2 + (Θ
(s))2], then equation (1) is reduced and is called the
forgotten entropy:

ENTF(G) � log(F(G)) −
1

(F(G))
log 

rs∈E(G)

(Θ(r))
2

+(Θ(s))
2

 
(Θ(r))2+(Θ(s))2[ ]⎡⎢⎢⎣ ⎤⎥⎥⎦. (5)
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(v) /e Augmented Zagreb Entropy. If I(rs) �

(Θ(r)Θ(s)/Θ(r) + Θ(s) − 2)3, then equation (1)
is reduced and is called the augmented Zagreb
entropy:

ENTAZI(G) � log(AZI(G)) −
1

(AZI(G))
log 

rs∈E(G)

Θ(r)Θ(s)

Θ(r) +Θ(s) − 2
 

3
⎡⎣ ⎤⎦

(Θ(r)Θ(s)/Θ(r)+Θ(s)−2)3[ ]
⎡⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎦. (6)

(vi) /e Balaban Entropy. If I(rs) � (q/q − p + 2) ×

(1/
��������
Θ(r)Θ(s)


), then equation (1) is reduced and

is called the Balaban entropy:

ENTJ(G) � log(J(G)) −
1

(J(G))
log 

rs∈E(G)

q

q − p + 2
×

1
��������
Θ(r)Θ(s)

 

[(q/q−p+2)×(1/
������
Θ(r)Θ(s)

√
)]

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦. (7)

For further details about these entropy measures, see
[31–34].

2. Crystallographic Structure of Cu2O[m, n, t]

Among different progress metal oxides, Cu2O has pulled in
huge consideration as of late attributable to its predictable
assets and nonpoisonous nature and rudimentary estab-
lishment progression [35]. (ese days, the promising uti-
lizations of Cu2O are particularly seen nearby mixture
beams, sunlight-based cells, and catalysis [36].(e invention

graph of crystallographic erection of Cu2O is depicted in
Figures 1 and 2; see subtleties in [37].

(e vertex partition and edge partition are depicted in
Tables 1 and 2, respectively.

2.1. Results for Crystallographic Structure of Cu2O[m, n, t]

(i) /e First Zagreb Entropy. We computed the first
Zagreb index and first Zagreb entropy as follows:

M1(G) � (48mnt − 8(mn + mt + nt) + 4m + 4n + 4t),

ENTM1
Cu2O(  � log M1(  −

1
M1( 

log 
rs∈E1(G)

[Θ(r) +Θ(s)]
[Θ(r)+Θ(s)]

× 
rs∈E2(G)

[Θ(r) + Θ(s)]
[Θ(r)+Θ(s)]⎡⎢⎢⎢⎣

× 
rs∈E3(G)

[Θ(r) + Θ(s)]
[Θ(r)+Θ(s)]⎤⎥⎥⎥⎦

� log M1(  −
1

M1( 
log[[(4n + 4m + 4t − 8) ×(27)]

×[(4nt + 4nm − 8m + 4mt − 8t − 8n + 12) ×(256)]

×[(8nmt − 4nm + 4n + 4m − 4nt − 4mt + 4t − 4) ×(46656)]],

ENTM1
Cu2O(  � log((48mnt − 8mn − 8mt − 8nt + 4m + 4n + 4t))

−
log[[(4n + 4m + 4t − 8) ×(27)]]

((48mnt − 8mn − 8mt − 8nt + 4m + 4n + 4t))

−
log[(4nt + 4nm − 8m + 4mt − 8t − 8n + 12) ×(256)]

((48mnt − 8mn − 8mt − 8nt + 4m + 4n + 4t))

−
log[[(8nmt − 4nm + 4n + 4m − 4nt − 4mt + 4t − 4) ×(46656)]]

((48mnt − 8mn − 8mt − 8nt + 4m + 4n + 4t))
.

(8)
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Figure 1: (a) Cu2O lattice. (b) Unit cell of Cu2O.

(a) (b)

Figure 2: Crystallographic structure of Cu2O[3, 2, 3].

Table 1: Vertex partition of Cu2O[m, n, t].

Θ(r) Frequency Set of
vertices

1 4t + 4m + 4n − 8 V1
2 2mt − 4t + 2mn − 4n − 4mnt + 4m + 2nt + 6 V2
4 n + m + t + 2nmt − mt − nm − nt − 1 V3

Table 2: Edge partition of Cu2O[m, n, t].

(Θ(r),Θ(s)) Frequency Set of
edges

(1, 2) 4t + 4n + 4m − 8 E1
(2, 2) 4mt + 4nt + 4nm − 8m − 8t − 8n + 12 E2
(2, 4) 4m + 4n + 8nmt − 4nm − 4nt − 4mt + 4t − 4 E3

4 Mathematical Problems in Engineering



(ii) /e Second Zagreb Entropy. We computed the
second Zagreb index and second Zagreb entropy as
follows:

M2(G) � (64mnt − 16mn − 16mt − 16nt + 8m + 8n + 8t),

ENTM2
Cu2O(  � log M2(  −

1
M2( 

log 
rs∈E1(G)

[Θ(r) × Θ(s)]
[Θ(r)×Θ(s)]⎡⎢⎢⎢⎣

× 
rs∈E2(G)

[Θ(r) ×Θ(s)]
[Θ(r)×Θ(s)]

× 
rs∈E3(G)

[Θ(r) ×Θ(s)]
[Θ(r)×Θ(s)]⎤⎥⎥⎥⎦

� log M2(  −
1

M2( 
log[[(4n + 4m + 4t − 8) ×(4)]

×[(4nt + 4nm − 8m + 4mt − 8t − 8n + 12) ×(256)]

×[(8nmt − 4nm + 4n + 4m − 4nt − 4mt + 4t − 4) ×(16777216)]],

ENTM2
Cu2O(  � log((64mnt + 8m − 16mn − 16nt + 8n − 16mt + 8t)))

−
log[[(4n + 4m + 4t − 8) ×(4)]]

((64mnt + 8m − 16mn − 16nt + 8n − 16mt + 8t)))

−
log[(4nt + 4nm − 8m + 4mt − 8t − 8n + 12) ×(256)]

((64mnt + 8m − 16mn − 16nt + 8n − 16mt + 8t)))

−
log[[(8nmt − 4nm + 4n + 4m − 4nt − 4mt + 4t − 4) ×(16777216)]]

((64mnt + 8m − 16mn − 16nt + 8n − 16mt + 8t)))
.

(9)

(iii) /e Hyper Zagreb Entropy of Cu2O[m, n, t]. We
computed the hyper Zagreb index and hyper
Zagreb entropy as follows:

HM(G) � [8mnt − 80mn − 80mt − 80nt + 52m + 52n + 52t − 24],

ENTHM Cu2O(  � log(HM) −
1

(HM)
log 

rs∈E1(G)

(Θ(r) + Θ(s))
2

 
(Θ(r)+Θ(s))2[ ]⎡⎢⎢⎢⎣

× 
rs∈E2(G)

(Θ(r) + Θ(s))
2

 
(Θ(r)+Θ(s))2[ ]

× 
rs∈E3(G)

(Θ(r) + Θ(s))
2

 
(Θ(r)+Θ(s))2[ ]⎤⎥⎥⎥⎦

� log(HM) −
1

(HM)
log[[(4n + 4m + 4t − 8) ×(9)]

×[(4nt + 4nm − 8m + 4mt − 8t − 8n + 12) ×(16)]

×[(8nmt − 4nm + 4n + 4m − 4nt − 4mt + 4t − 4) ×(36)]],

ENTHM Cu2O(  � log(8mnt − 80mn − 80mt − 80nt + 52m + 52n + 52t − 24])

−
log[[(4n + 4m + 4t − 8) ×(9)]]

(8mnt − 80mn − 80mt − 80nt + 52m + 52n + 52t − 24])

−
log[(4nt + 4nm − 8m + 4mt − 8t − 8n + 12) ×(16)]

(8mnt − 80mn − 80mt − 80nt + 52m + 52n + 52t − 24])

−
log[[(8nmt − 4nm + 4n + 4m − 4nt − 4mt + 4t − 4) ×(36)]]

(8mnt − 80mn − 80mt − 80nt + 52m + 52n + 52t − 24])
.

(10)
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(iv) /e Forgotten Entropy of Cu2O[m, n, t]. We
computed the forgotten index and forgotten en-
tropy as follows:

F(G) � 36n + 36m + 36t − 24 − 48nm − 48nt − 48mt + 160nmt,

ENTF Cu2O(  � log(F(G)) −
1

(F(G))
log 

rs∈E1(G)

(Θ(r))
2

+(Θ(s))
2

 
(Θ(r))2+(Θ(s))2[ ]⎡⎢⎢⎢⎣

× 
rs∈E2(G)

(Θ(r))
2

+(Θ(s))
2

 
(Θ(r))2+(Θ(s))2[ ]

× 
rs∈E3(G)

(Θ(r))
2

+(Θ(s))
2

 
(Θ(r))2+(Θ(s))2[ ]⎤⎥⎥⎥⎦

� log(F(G)) −
1

(F(G))
log[[(4n + 4m + 4t − 8) ×(3125)]

×[(4nt + 4nm − 8m + 4mt − 8t − 8n + 12) ×(16777216)]

× (8nmt − 4nm + 4n + 4m − 4nt − 4mt + 4t − 4) × 1.048576 × 1026  ,

ENTF Cu2O(  � log(36n + 36m + 36t − 24 − 48nm − 48nt − 48mt + 160nmt)

−
log[[(4n + 4m + 4t − 8) ×(3125)]]

(36n + 36m + 36t − 24 − 48nm − 48nt − 48mt + 160nmt)

−
log[(4nt + 4nm − 8m + 4mt − 8t − 8n + 12) ×(16777216)]

(36n + 36m + 36t − 24 − 48nm − 48nt − 48mt + 160nmt)

−
log (8nmt − 4nm + 4n + 4m − 4nt − 4mt + 4t − 4) × 1.048576 × 1026   

(36n + 36m + 36t − 24 − 48nm − 48nt − 48mt + 160nmt)
.

(11)

(v) (e Augmented Zagreb Entropy of Cu2O[m, n, t].
We computed the augmented Zagreb index and

augmented Zagreb entropy as follows:
AZI(G) � 64nmt.

ENTAZI Cu2O(  � log(AZI(G)) −
1

(AZI(G))

· log 
rs∈E1(G)

Θ(r)Θ(s)

Θ(r) + Θ(s) − 2
 

3
⎡⎣ ⎤⎦

(Θ(r)Θ(s)/Θ(r)+Θ(s)−2)3[ ]

× 
rs∈E2(G)

Θ(r)Θ(s)

Θ(r) + Θ(s) − 2
 

3
⎡⎣ ⎤⎦

(Θ(r)Θ(s)/Θ(r)+Θ(s)−2)3[ ]
⎡⎢⎢⎢⎢⎢⎣

× 
rs∈E3(G)

Θ(r)Θ(s)

Θ(r) +Θ(s) − 2
 

3
⎡⎣ ⎤⎦

(Θ(r)Θ(s)/Θ(r)+Θ(s)−2)3[ ]
⎤⎥⎥⎥⎥⎥⎦

� log(AZI(G)) −
1

(AZI(G))
log[[(4n + 4m + 4t − 8) ×(16777216)]

×[(4nt + 4nm − 8m + 4mt − 8t − 8n + 12) ×(16777216)]

×[(8nmt − 4nm + 4n + 4m − 4nt − 4mt + 4t − 4) ×(16777216)]],

ENTAZI Cu2O(  � log(64nmt) −
log[[(4n + 4m + 4t − 8) ×(16777216)]]

(64nmt)

−
log[(4nt + 4nm − 8m + 4mt − 8t − 8n + 12) ×(16777216)]

(64nmt)

−
log[[(8nmt − 4nm + 4n + 4m − 4nt − 4mt + 4t − 4) ×(16777216)]]

(64nmt)
.

(12)
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(vi) /eBalabanEntropy ofCu2O[m, n, t].We computed
the Balaban index and Balaban entropy as follows:

J(G) �
8mnt

2mnt − mt − nt − t + 1 − mn − m − n

×
1
�
2

√ (4n + 4m + 4t − 8) +
1
2

(4nt + 4nm − 8m + 4mt − 8t − 8n + 12) 

+
8mnt

2mnt − mt − nt − t + 1 − mn − m − n
×

1
�
8

√ ((8nmt − 4nm + 4n + 4m − 4nt − 4mt + 4t − 4)) 

�
8mnt

2mnt − mt − nt − t + 1 − mn − m − n
×

�
2

√

2
(4n + 4m + 4t − 8) 

+
8mnt

2mnt − mt − nt − t + 1 − mn − m − n
×[2mn + 2nt + 2mt − 4n − 4m − 4t + 6]

+
8mnt

2mnt − mt − nt − t + 1 − mn − m − n
×

�
2

√

2
(2nmt − nm − nt − mt + n + m + t − 1) ,

ENTJ Cu2O(  � log(J(G))

−
1

(J(G))
log 

rs∈E1(G)

q

q − p + 2
×

1
��������
Θ(r)Θ(s)

 

[(q/q− p+2)×(1/
������
Θ(r)Θ(s)

√
)]

⎡⎢⎢⎢⎣

× 
rs∈E2(G)

q

q − p + 2
×

1
��������
Θ(r)Θ(s)

 

[(q/q− p+2)×(1/
������
Θ(r)Θ(s)

√
)]

× 
rs∈E3(G)

q

q − p + 2
×

1
��������
Θ(r)Θ(s)

 

[(q/q− p+2)×(1/
������
Θ(r)Θ(s)

√
)]

⎤⎥⎥⎥⎦,

ENTJ Cu2O(  � log(J(G)) −
1

(J(G))
log (4n + 4m + 4t − 8) ×

q
�
2

√
(q − p + 2)

 

[(q/
�
2

√
(q− p+2))]

⎡⎢⎣ ⎤⎥⎦⎡⎢⎣

× (4nt + 4nm − 8m + 4mt − 8t − 8n + 12) ×
q

2(q − p + 2)
 

[(q/2(q− p+2))]

⎡⎣ ⎤⎦

× (8nmt − 4nm + 4n + 4m − 4nt − 4mt + 4t − 4) ×
q

2
�
2

√
(q − p + 2)

 

[(q/2
�
2

√
(q− p+2))]

⎡⎢⎣ ⎤⎥⎦⎤⎥⎦,

ENTJ Cu2O(  � log(J(G)) −
log (4n + 4m + 4t − 8) ×[(q/

�
2

√
(q − p + 2))]

[(q/
�
2

√
(q− p+2))]

  

(J(G))

−
log (4nt + 4nm − 8m + 4mt − 8t − 8n + 12) ×[(q/2(q − p + 2))]

[(q/2(q− p+2))]
 

(J(G))

−
log (8nmt − 4nm + 4n + 4m − 4nt − 4mt + 4t − 4) ×[(q/2

�
2

√
(q − p + 2))]

[(q/2
�
2

√
(q− p+2))]

  

(J(G))
.

(13)

3. Crystallographic Structure of TiF2[m, n, t]

Titanium difluoride is a water inexplicable titanium cradle
for use in oxygen-sensitive solicitations, such as iron in-
vention. Fluoride mixtures have assorted solicitations in

existing machineries and science, from oil sanitizing and
engraving to unreal animate chemistry and the fabrication of
pharmaceuticals. (e substance graph of mineral erection of
titanium difluoride TiF2[m, n, t] is designated in Figure 3;
for more details, see [38].
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(e vertex partition and edge partition of TiF2[m, n, t]

are depicted in Tables 3 and 4.

3.1. Results for Crystallographic Structure of TiF2[m, n, t]

(i) /e First Zagreb Entropy of TiF2[m, n, t]. We
calculated the first Zagreb index and first Zagreb
entropy as follows:

M1(G) � [384mnt − 64mn − 64mt − 64nt + 16m + 16n + 16t − 8],

ENTM1
TiF2(  � log M1(  −

1
M1( 

log 
rs∈E1(G)

[Θ(r) + Θ(s)]
[Θ(r)+Θ(s)]⎡⎢⎢⎢⎣

× 
rs∈E2(G)

[Θ(r) + Θ(s)]
[Θ(r)+Θ(s)]

× 
rs∈E3(G)

[Θ(r) + Θ(s)]
[Θ(r)+Θ(s)]

× 
rs∈E4(G)

[Θ(r) + Θ(s)]
[Θ(r)+Θ(s)]⎤⎥⎥⎥⎦⎤⎥⎥⎥⎦

� log M1(  −
1

M1( 
log[[(8) ×(3125)] ×[((8m + 8t − 24 + 8n)) ×(46656)]

×[((16mn + 16mt + 16nt − 16m − 16n − 16t + 24)) ×(16777216)]

×[(32mnt − 16mt − 16mn − 16nt + 8m + 8n + 8t − 8) ×(8916100448456)]],

ENTM1
TiF2(  � log(384mnt − 64mn − 64mt − 64nt + 16m + 16n + 16t − 8))

−
log[[(8) ×(3125)]]

(384mnt − 64mn − 64mt − 64nt + 16m + 16n + 16t − 8)

−
log[((8m + 8n + 8t − 24)) ×(46656) ×(256)]

(384mnt − 64mn − 64mt − 64nt + 16m + 16n + 16t − 8)

−
log[[((16mn + 16nt − 16n − 16t + 24 + 16mt − 16m)) ×(16777216)]]

(384mnt − 64mn − 64mt − 64nt + 16m + 16n + 16t − 8

−
log[[(32mnt − 16mt − 16mn − 16nt + 8m + 8n + 8t − 8) ×(8916100448456)]]

(384mnt − 64mn − 64mt − 64nt + 16m + 16n + 16t − 8)
.

(14)

(a) (b)

Figure 3: Crystal structure titanium difluoride TiF2[m, n, t]: (a) unit cell of of TiF2[m, n, t]; (b) crystal structure of TiF2[4, 1, 2].
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(ii) /e Second Zagreb Entropy of TiF2[m, n, t]. We
computed the second Zagreb index and second
Zagreb entropy as follows:

M2(G) � [1024mnt − 256mn − 256mt − 256nt + 64m + 64n + 64t − 32],

ENTM2
TiF2(  � log M2( 

−
1

M2( 
log


rs∈E1(G)

[Θ(r) × Θ(s)]
[Θ(r)×Θ(s)]

× 
rs∈E2(G)

[Θ(r) × Θ(s)]
[Θ(r)×Θ(s)]

× 
rs∈E3(G)

[Θ(r) × Θ(s)]
[Θ(r)×Θ(s)]

× 
rs∈E4(G)

[Θ(r) × Θ(s)]
[Θ(r)×Θ(s)]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� log M2(  −
1

M2( 
log[[(8) ×(256)] ×[((8m + 8n + 8t − 24)) ×(16777216)]

× ((16mn + 16nt − 16n − 16t + 24 + 16mt − 16m)) ×(16)
(16)

 

× (32mnt − 16mt − 16mn − 16nt + 8m + 8n + 8t − 8) ×(32)
(32)

 ,

(15)

ENTM2
TiF2(  � log(1024mnt − 256mn − 256mt − 256nt + 64m + 64n + 64t − 32])

−
log[[(8) ×(256)]]

(1024mnt − 256mn − 256mt − 256nt + 64m + 64n + 64t − 32])

−
log[((8m + 8n + 8t − 24)) ×(16777216)]

(1024mnt − 256mn − 256mt − 256nt + 64m + 64n + 64t − 32])

−
log ((16mn + 16nt − 16m + 16mt − 16n − 16t + 24)) ×(16)

(16)
  

(1024mnt − 256mn − 256mt − 256nt + 64m + 64n + 64t − 32])

−
log (32mnt − 16mt − 16mn − 16nt + 8m + 8n + 8t − 8) ×(32)

(32)
  

(1024mnt − 256mn − 256mt − 256nt + 64m + 64n + 64t − 32])
.

(16)

Table 3: Vertex partition of TiF2[m, n, t].

Θ(r) Frequency Set of vertices
1 8 V1
2 4m + 4n + 4t − 12 V2
4 4mn + 4mt − 4m − 4t + 6 + 8mnt + 4nt − 4n V3
8 n + t − 2(mn + mt + nt) − 1 + 4mnt + m V4

Table 4: Edge partition of TiF2[m, n, t].

(Θ(r),Θ(s)) Frequency Set of edges
(1, 4) 8 E1
(2, 4) (8m + 8n + 8t − 24) E2
(4, 4) 16mn + 16mt − 16n − 16m + 16nt − 16t + 24 E3
(4, 8) 8m + 8n + 16mn − 16nt + 8t − 8 + 32mnt − 16mt E4

Mathematical Problems in Engineering 9



(iii) /e Hyper Zagreb Entropy of TiF2[m, n, t]. We
computed the hyper Zagreb index and hyper
Zagreb entropy as follows:

HM(G) � [4608mnt − 1280mn − 1280mt − 1280nt + 416m + 416n + 416t − 280],

ENTHM TiF2(  � log(HM) −
1

(HM)

· log 
rs∈E1(G)

(Θ(r) + Θ(s))
2

 
(Θ(r)+Θ(s))2[ ]

× 
rs∈E2(G)

(Θ(r) + Θ(s))
2

 
(Θ(r)+Θ(s))2[ ]⎡⎢⎢⎢⎣

× 
rs∈E3(G)

(Θ(r) +Θ(s))
2

 
(Θ(r)+Θ(s))2[ ]

× 
rs∈E4(G)

(Θ(r) + Θ(s))
2

 
(Θ(r)+Θ(s))2[ ]⎤⎥⎥⎥⎦,

ENTHM TiF2(  � log(HM) −
1

(HM)
log (8) ×(25)

(25)
  × ((8m + 8n + 8t − 24)) ×(36)

(36)
 

× ((16mn + 16nt − 16m + 16mt − 16n − 16t + 24)) ×(64)
(64)

 

× (32mnt − 16mt − 16mn − 16nt + 8m + 8n + 8t − 8) ×(144)
(144)

 ,

ENTHM TiF2(  � log(4608mnt − 1280mn − 1280mt − 1280nt + 416m + 416n + 416t − 280])

−
log (8) ×(25)

(25)
  

(4608mnt − 1280mn − 1280mt − 1280nt + 416m + 416n + 416t − 280])

−
log ((8m + 8n + 8t − 24)) ×(36)

(36)
 

(4608mnt − 1280mn − 1280mt − 1280nt + 416m + 416n + 416t − 280])

−
log ((16mn + 16nt − 16m + 16mt − 16n − 16t + 24)) ×(64)

(64)
  

(4608mnt − 1280mn − 1280mt − 1280nt + 416m + 416n + 416t − 280])

−
log (32mnt − 16mt − 16mn − 16nt + 8m + 8n + 8t − 8) ×(144)

(144)
  

(4608mnt − 1280mn − 1280mt − 1280nt + 416m + 416n + 416t − 280])
.

(17)
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(iv) /e Forgotten Entropy of TiF2[m, n, t]. We com-
puted the forgotten index and forgotten entropy as
follows:

F(G) � 2560mnt − 216 + 288m + 288n + 288t − 768mn − 768mt − 768nt,

ENTF TiF2(  � log(F(G)) −
1

(F(G))
log 

rs∈E1(G)

(Θ(r))
2

+(Θ(s))
2

 
(Θ(r))2+(Θ(s))2[ ]⎡⎢⎢⎢⎣

× 
rs∈E2(G)

(Θ(r))
2

+(Θ(s))
2

 
(Θ(r))2+(Θ(s))2[ ]

× 
rs∈E3(G)

(Θ(r))
2

+(Θ(s))
2

 
(Θ(r))2+(Θ(s))2[ ]

× 
rs∈E4(G)

(Θ(r))
2

+(Θ(s))
2

 
(Θ(r))2+(Θ(s))2[ ]⎤⎥⎥⎥⎦

� log(F(G)) −
1

(F(G))
log (8) ×(17)

(17)
  × ((8m + 8n + 8t − 24)) ×(20)

(20)
  

× ((16mn + 16nt − 16n − 16t + 24 + 16mt − 16m)) ×(32)
(32)

 

× (32mnt − 16mt − 16mn − 16nt + 8m + 8n + 8t − 8) ×(80)
(80)

 ,

ENTF TiF2(  � log(2560mnt − 216 + 288m + 288n + 288t − 768mn − 768mt − 768nt)

−
log (8) ×(17)

(17)
  

(2560mnt − 216 + 288m + 288n + 288t − 768mn − 768mt − 768nt)

−
log ((8m + 8n + 8t − 24)) ×(20)

(20)
 

(2560mnt − 216 + 288m + 288n + 288t − 768mn − 768mt − 768nt)

−
log ((16mn + 16nt − 16n − 16t + 24 + 16mt − 16m)) ×(32)

(32)
 

(2560mnt − 216 + 288m + 288n + 288t − 768mn − 768mt − 768nt)

−
log (32mnt − 16mt − 16mn − 16nt + 8m + 8n + 8t − 8) ×(80)

(80)
  

(2560mnt − 216 + 288m + 288n + 288t − 768mn − 768mt − 768nt)
.

(18)
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(v) /e Augmented Zagreb Entropy of TiF2[m, n, t].
We computed the augmented Zagreb index and
augmented Zagreb entropy as follows:

AZI TiF2(  �
67264
3375

+
76736
3375

m +
76736
3375

n +
76736
3375

t −
745472
3375

mn −
745472
3375

mt −
745472
3375

nt +
131072
125

mnt,

ENTAZI TiF2(  � log(AZI(G))

−
1

(AZI(G))
log 

rs∈E1(G)

Θ(r)Θ(s)

Θ(r) + Θ(s) − 2
 

3
⎡⎣ ⎤⎦

(Θ(r)Θ(s)/Θ(r)+Θ(s)−2)3[ ]
⎡⎢⎢⎢⎢⎢⎣

× 
rs∈E2(G)

Θ(r)Θ(s)

Θ(r) + Θ(s) − 2
 

3
⎡⎣ ⎤⎦

(Θ(r)Θ(s)/Θ(r)+Θ(s)−2)3[ ]

× 
rs∈E3(G)

Θ(r)Θ(s)

Θ(r) + Θ(s) − 2
 

3
⎡⎣ ⎤⎦

(Θ(r)Θ(s)/Θ(r)+Θ(s)−2)3[ ]

× 
rs∈E4(G)

Θ(r)Θ(s)

Θ(r) + Θ(s) − 2
 

3
⎡⎣ ⎤⎦

(Θ(r)Θ(s)/Θ(r)+Θ(s)−2)3[ ]
⎤⎥⎥⎥⎥⎥⎦

� log(AZI(G)) −
1

(AZI(G))
log (8) ×

64
27

 
(64/27)

  × ((8m + 8n + 8t − 24)) ×(8)
(8)

 

× ((16mn + 16nt − 16n − 16t + 24 + 16mt − 16m)) ×
512
27

 
(512/27)

 

× (32mnt − 16mt − 16mn − 16nt + 8m + 8n + 8t − 8) ×
4096
125

 
(4096/125)

 ,

ENTAZI TiF2(  � log AZI TiF2( (  −
log (8) ×(64/27)

(64/27)
  

AZI TiF2( ( 

−
log ((8m + 8n + 8t − 24)) ×(8)

(8)
 

AZI TiF2( ( 

−
log ((16mn + 16nt − 16n − 16t + 24 + 16mt − 16m)) ×(512/27)

(512/27)
 

AZI TiF2( ( 

−
log [(32mnt − 16mt − 16mn − 16nt + 8m + 8n + 8t − 8) ×(4096/125)

(4096/125)
 

AZI TiF2( ( 
.

(19)

4. Comparisons and
Discussion for Cu2O[m, n, t]

We develop Tables 5 and 6 for tiny estimations of m, n, t for
the structure of Cu2O[m, n, t]. (e graphical portrayals of
registered outcomes area unit are described in Figures 4–6 for
specific estimations of m, n, t.

5. Comparisons and
Discussion for TiF2[m, n, t]

Presently, from Tables 7 and 8, we are able to notice that while
there is not much of a stretch, we see that each one of the
estimations of entropy is in increasing request because the
estimations of m, n, t are increments. (e graphical portrayals
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Figure 5: (a) (e hyper Zagreb entropy. (b) (e forgotten entropy.

Table 6: Comparison of ENTHM, ENTF, ENTAZI, and ENTJ entropies for Cu2O[m, n, t].

[m, n, t] ENTHM ENTF ENTAZI ENTJ

[1, 1, 1] 2.12 2.41 2.22 2.42
[2, 2, 2] 3.65 3.52 3.52 3.41
[3, 3, 3] 4.54 4.65 4.42 4.81
[4, 4, 4] 5.25 5.74 5.32 5.51
[5, 5, 5] 6.43 6.68 6.21 6.72

Table 5: Comparison of ENTM1
and ENTM2

for Cu2O[m, n, t].

[m, n, t] ENTM1
ENTM2

[1, 1, 1] 1.12 1.21
[2, 2, 2] 1.42 1.61
[3, 3, 3] 1.82 1.91
[4, 4, 4] 2.12 2.51
[5, 5, 5] 3.41 3.32
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Table 7: Comparison of ENTM1
and ENTM2

for TiF2[m, n, t].

[m, n, t] ENTM1
ENTM2

[1, 1, 1] 1.22 1.31
[2, 2, 2] 1.62 1.81
[3, 3, 3] 1.92 2.31
[4, 4, 4] 2.32 2.91
[5, 5, 5] 3.61 3.42

Table 8: Comparison of ENTHM, ENTF, ENTAZI, and ENTJ entropies for TiF2[m, n, t].

[m, n, t] ENTHM ENTF ENTAZI ENTJ

[1, 1, 1] 2.02 2.21 2.12 2.32
[2, 2, 2] 3.45 3.32 3.42 3.51
[3, 3, 3] 4.34 4.45 4.52 4.71
[4, 4, 4] 5.55 5.54 5.62 5.41
[5, 5, 5] 6.63 6.88 6.31 6.22
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Figure 7: (a) (e first Zagreb entropy. (b) (e second Zagreb entropy.
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of registered outcomes are diagrammatic in Figures 7–9 for
specific estimations of m, n, t.

6. Conclusion

In this paper, in lightweight of applied scientist, s entropy,
we have a tendency to study the graph entropies known with
another information work.We have a tendency to present an
association between the gradation established topological
indices with gradation established entropies. We are par-
ticularly interested in forming the gradation that is based on
entropies for crystallographic erection of oxide Cu2O[m,

n, t] and metal difluoride TiF2[m, n, t]. In addition, the
arithmetic estimations of these entropies have been regis-
tered in tables that provide the correlation between the
gradation focused topological lists and gradation established

entropies that drives the United States of America to dif-
ferentiate the physio-substance possessions of those crys-
tallographic erection of Cu2O[m, n, t] and TiF2[m, n, t].
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orbitals., total π-electron energy of alternant hydrocarbons,”
Chemical Physics Letters, vol. 17, no. 4, pp. 535–538, 1972.

[28] I. Gutman and K. C. Das, “(e first zagreb index 30 years
after,” MATCH Communication in Mathematical Computer
Chemistry, vol. 50, pp. 83–92, 2004.

[29] G. H. Shirdel, H. RezaPour, and A. M. Sayadi, “(e hyper
zagreb index of graph operations,” Iranian Journal of
Mathematical Chemistry, vol. 4, no. 2, pp. 213–220, 2013.

[30] Z. Chen, M. Dehmer, and Y. Shi, “A note on distance based
graph entropies,” Entropy, vol. 16, no. 10, pp. 5416–5427, 2014.

[31] S. Manzoor, M. K. Siddiqui, and S. Ahmad, “On physical
analysis of degree-based entropy measures for metal-organic
superlattices,” /e European Physical Journal Plus, vol. 136,
no. 3, pp. 1–22, 2021.

[32] S. Manzoor, M. K. Siddiqui, and S. Ahmad, “Degree-based
entropy of molecular structure of hyaluronic acid-curcumin
conjugates,” /e European Physical Journal Plus, vol. 136,
no. 1, pp. 1–21, 2021.

[33] S. Manzoor, Y. M. Chu, M. K. Siddiqui, and S. Ahmad, “On
topological aspects of degree based entropy for two carbon
nanosheets,” Main Group Metal Chemistry, vol. 43, no. 1,
pp. 205–218, 2020.

[34] S. Manzoor, M. K. Siddiqui, and S. Ahmad, “On entropy
measures of molecular graphs using topological indices,”
Arabian Journal of Chemistry, vol. 13, no. 8, pp. 6285–6298,
2020.

[35] K. Chen, C. Sun, S. Song, and D. Xue, “Polymorphic crys-
tallization of Cu2O compound,” CrystEngComm, vol. 16,
pp. 52–57, 2014.

[36] B. D. Yuhas and P. Yang, “Nanowire-based all-oxide solar
cells,” Journal of the American Chemical Society, vol. 131,
no. 10, pp. 3756–3761, 2009.

[37] J. Zhang, J. Liu, Q. Peng, X. Wang, and Y. Li, “Nearly
monodisperse Cu2O and NCuO anospheres: preparation and
applications for sensitive gas sensors,” Chemistry of Materials,
vol. 18, no. 4, pp. 867–871, 2006.

[38] F. A. Cotton, G. Wilkinson, C. A. Murillo, and M. Bochmann,
Advanced Inorganic Chemistry, John Wiley and Sons,
Hoboken, NJ, USA, 1999.

16 Mathematical Problems in Engineering



Research Article
Hypergraphical Metric Spaces and Fixed Point Theorems

Xiaodong Li ,1 Farhan Khan,2 Gohar Ali ,3 Lubna Gul,3 and Muhammad Sarwar 2

1Huanghe Jiaotong University, Jiaozuo 454950, Henan, China
2Department of Mathematics, University of Malakand, Chakdara Dir (L), Khyber Pakhtunkhwa, Pakistan
3Department of Mathematics, Islamia College Peshawar, Khyber Pakhtunkhwa, Pakistan

Correspondence should be addressed to Xiaodong Li; li-xiaodong-li@outlook.com, Gohar Ali; gohar.ali@icp.edu.pk, and
Muhammad Sarwar; sarwarswati@gmail.com

Received 23 March 2021; Accepted 6 June 2021; Published 27 June 2021

Academic Editor: Ali Ahmad

Copyright © 2021 Xiaodong Li et al. -is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Hypergraph is a generalization of graph in which an edge can join any number of vertices. Hypergraph is used for combinatorial
structures which generalize graphs. In this research work, the notion of hypergraphical metric spaces is introduced, which
generalizes many existing spaces. Some fixed point theorems are studied in the corresponding spaces. To show the authenticity of
the established work, nontrivial examples and applications are also provided.

1. Introduction

Graph theory has been used to study the various concepts of
navigation in an arbitrary space. A work place can be
denoted as a vertex in the language of graph theory, and
edges denote the connections between these places (verti-
ces). Hypergraph is a generalization of graph in which an
edge can join any number of vertices. Hypergraph is used for
combinatorial structures which generalize graphs. -e ap-
plications of hypergraph can be found in Engineering sci-
ences, many areas of Computer Science, and almost all areas
of Mathematics.

Moreover, directed hypergraphs are used in computer
science, particularly in the development of data mining,
software testing, image segmentation and processing, in-
formation security, and communication networks.

2. Preliminaries

Frechet et al. initiated the concept of metric spaces in 1906,
which open the door for entering into a more waste and new
field in the world of mathematics. Upon this foundation,
different researchers introduced different generalized metric
spaces and studied various fixed point results with

applications. In this way, we refer some recent developments
in [1–3]. About basic notions of graph theory, we refer to the
readers [4–6] and references therein.

In 1736, Leonhard Euler put the framework of graph
theory by studying the historical problem of seven bridges of
Konigsberg and prefigured the concept of topology. Echi-
nique [7] deliberated fixed point theory by using graph.
Jachymsky [8] replaced the order structure with a graph
structure on a metric space and studied the well-known
Banach contraction principle. Aleomraninejad et al. [9] gave
the concept of some fixed point results on metric space with
a graph, in which they presented some iterative results for
G-contractive and G-nonexpansive mappings on graphs.
Samreen et al. [10] investigated some fixed point theorems in
b-metric space endowed with graph. Argoubi et al. [11]
presented some fixed point results and its applications by
considering self-mappings defined on a metric space
endowed with a finite number of graphs.

Shukhla et al. [12] gave the concept of graphical metric
space which is a generalized setting in fixed point theory and
established some fixed point results with applications. Abbas
et al. [13] presented some fixed point results for set con-
tractions on metric spaces with a directed graph. In 2017,
Debanath and Neog [14] initiated the concept of start point
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on a metric space endowed with a directed graph. -ey
offered the alternate concept of start point in a directed
graph and provided the characterizations which are nec-
essary for a directed graph having start point. Kumam et al.
[15] presented graphic contraction mapping in b-metric
space and established some fixed point results with
applications.

Motivated by the above results, combining the notion of
hypergraph and metric, we introduced hypergraphical
metric space which generalized the concept of graphical
metric space. In hypergraphical metric space, vertices of
graph are replaced by edges. Some conclusions, examples,
and an application to integral equation are also presented to
authenticate the acceptation and unifying power of obtained
generalizations. For iterative numerical schemes, the in-
teresting readers can refer the recent papers [16, 17].

3. Hypergraph and Hypergraphical Metrics

Definition 1. Hypergraph is real generalization of graph.-e
edges of hypergraph connect any number of nodes. Formally
it is a pair, i.e., GH � (ζ, ξ) in which ζ represents set of
vertices and ξ is a set of nonempty subsets of ζ called
hyperedges or simply edges.

Definition 2. Hypergraph GH is said to be directed hyper-
graph if GH � (V, ξ) where V≠∅ is a finite set and is known
as the set of nodes of GH and ξ is the set of directed
hyperedges, where a hyperedge or hyperarc e � (T

(e), H(e)) is a directed hyperedge with |T(e)|> 0 and
|H(e)|> 0 and both are disjoint. H(e) and T(e) represent
head and tail, respectively, where hyperedge ends and starts
and contains set of nodes.

Definition 3. -e size of directed hypergraph GH is defined
as the sum of the tail and head nodes of each hyperedge
together with the number of nodes of the hypergraph, i.e.,
|GH| � |V| + e∈ε(|T(e)| + |H(e)|).

Definition 4. A directed path in a directed hypergraph is a
sequence of nodes and hyperedges such that each edge
points from a node in the sequence to its successor in the
sequence.

Let GH � (v, ξ) be a directed hypergraph and (vi, vj ∈ v)

is a directed path from s to t in GH, which represent the
sequence (πs,t) of the form πs⟶t � (v1, e1, v2, e2, . . . ,

en−1, vn): n> 0 such that vi ∈ v, ∀i ∈ 1, 2, 3, . . . , n{ } and
ej ∈ ξ, ∀j ∈ 1, 2, 3, . . . , n − 1{ }. v1 ∈ s⇒v1 ∈ T(e1) and
vn � t⟹ vn ∈ H(ei−1)∩T(ei), ∀i ∈ 2, . . . , n − 1{ }.

Definition 5. -e edges which connect other edges are called
hyperdelta edges; that is, vertices of these edges are also
edges and denoted by Δ.

Definition 6. A hypergraph in which we assign numerical
value, i.e., nonnegative real numbers [0∞) to their edges is
called labeled graph.

Definition 7 (see [12]). Let ζ ≠∅ set endowed with graph Gm

and dGm
: ζ ∗ ζ⟶ R be a function satisfying the following

condition:

(GM1). dGm
(a, b) � 0, if a � b

(GM2). dGm
(a, b)> 0, if a≠ b

(GM3). dGm
(a, b) � dGm

(b, a), ∀a, b ∈ ζ
(GM4). (apb)Gm

,
c ∈ (apb)Gm

implies dGm
(a, b)≤dGm

(a, c) +

dGm
(c, b), ∀a, b, c ∈ ζ

-en, the mapping dGm
is called a graphical metric on ζ,

and the pair (ζ, dGm
) is called graphical metric space.

By combining the concept of hypergraph and graphical
metric space, we introduced the following notion of
hypergraphical metric spaces.

Definition 8. Suppose ζ be a nonempty set endowed with
hypergraph GH such that V(GH) � ζ and let ξ represent
hyperedges of GH such that each hyperedge e represents
nonempty subset of ζ. Suppose the mapping
dGH

: ξ ∗ ξ⟶ R satisfying the following condition:

(HGM1). dGH
(ei, ej) � 0, if ei � ej

(HGM2). dGH
(ei, ej)> 0, if ei ≠ ej

(HGM3). dGH
(ei, ej) � dGH

(ej, ei), ∀ei, ej ∈ ξ
(HGM4). (eipej)GH

ek ∈ (eipej)GH
implies dGH

(ei, ej)≤dGH
(ei, ek) +

dGH
(ek, ej), ∀ei, ej, ek ∈ ξ

-en, dGH
is called a hypergraphical metric on ξ, and

(ξ, dGH
) is said to be hypergraphical metric space.

Remark 1. We noted that hypergraphical metric space is the
real generalization of graphical metric space; that is, every
graphical metric space is hypergraphical metric but converse
is not true.

Example 1. Let ζ � v1, v2, v3, v4, v5, v6  be the set of vertices,
and let ξ � v1 , v2 , v3 , v4, v5, v6   which is composed
by edges of hypergraph GH. Now, let us define a function
dGH

: ξ ∗ ξ⟶ R+ by

dGH
ei, ej  �

0, if ei � ej,

5A, if ei, ej ∈ v1 , v2  ei ≠ ej,

3A, if ei, ej ∈ v1 , v3  ei ≠ ej,

A, if ei, ej ∈ v2 , v3  ei ≠ ej,

4A, if ei, ej ∈ v1 , v4, v5, v6  ei ≠ ej,

6A, if ei, ej ∈ v2 , v4, v5, v6  ei ≠ ej,

2A, if ei, ej ∈ v4, v5, v6 , v2  ei ≠ ej,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where A> 1 is the positive real number. Evidently dGH
is not

a graphical metric because

dGH
v1 , v2 ( ≰dGH

v1 , v3 (  + dGH
v3 , v2 ( , (2)
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since 5A> 3A + A.
On the other hand,

dGH
v1 , v2 ( ≤ dGH

v1 , v4, v5, v6 (  + dGH
v4, v5, v6 , v2 ( .

(3)

In this case, we have 5A≤ 4A + 6A. -erefore, dGH
is the

hypergraphical metric space.

Not every hypergraphical metric space is metric. Let us
provide an example as follows.

Example 2. Let X � [0, 1]; here, X interval means the weight
of edges of GH, where GH be the hypergraph such that its
edges can be defined as ξGH

� ΔU ei,

ej: ei, ej ∈ (1, 1)ei ≤ ej∧i, j ∈ N}. Define a mapping
dGH

: ξ ∗ ξ⟶ R+ by

dGH
ei, ej  �

0, if ei � ej;

ei ∗ ej, if ei, ej ∈ (0, 1]ei ≠ ej;

ei + ej, otherwise.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(4)

-en, dGH
is a hypergraphical metric on ξ and (ξ, dGH

) is
a hypergraphical metric space obviously where dGH

not a
metric on ξ.

Definition 9. Let (ξ, dGH
) be hypergraphical metric space.

An open ball BGH
(e, ε)with center e and radius ϵ is defined as

BGH
(e, ε) � e′: epe′( GH

, dGH
e, e′( < ε . (5)

Since ξ(GH)⊒Δ, therefore, we have e ∈ BGH
(e, ε). Hence,

BGH
(e, ε) is nonempty ∀e ∈ ξ and ε> 0. -e collection

B � BGH
(e, ε): e ∈ ξ, ε> 0 , (6)

which is the neighborhood system for the topology TGH
on ξ

induced by the hypergraphical metric dGH
. A subset S of ξ is

called open if for every e ∈ S there exist an ε> 0 such that
BGH

(e, ε) ⊂ S; of course, a subset T of ξ is called closed if its
complement Tc is open.

Lemma 1. Every open ball in ξ is an open set.

Proof. Let e′ ∈ BGH
(e, ε) for some e ∈ ξ and ε> 0. Let α �

ε − dGH
(e, e′)> 0 and e″ ∈ BGH

(e′, α); by definition, we have
(epe′)GH

and (e′pe″)GH
and so that (epe″)GH

. Now, from
Property (4) of hypergraphical metric space,
dGH

(e″, e)≤dGH
(e″ , e′) + dGH

(e′, e)< α + dGH
(e′, e) � ε−

dGH
(e′, e) + dGH

(e′, e) � ε. Hence, BGH
(e′, α) ⊂ BGH

(e, ε).
Hence, every open ball in ξ is an open set. □

Definition 10. Suppose (ξ, dGH
) is hypergraphical metric

space and en  be a sequence in ξ, then en  is called con-
vergent and converges to e ∈ ξ if for given ε> 0 there
∃n∘ ∈ N such that dGH

(en, e)≤ ε, ∀n> n∘. Obviously the
sequence en  is convergent and converges to e if and only if
limn⟶∞dGH

(en, e) � 0.

Remark 2. . -e limit of a sequence in hypergraphical metric
space may not be unique as clear from the following
example.

Example 3. let X be the set of vertices of hypergraph, and we
take ξ(GH) to be the set of subsets of X such that each subset
represents an edge of the hypergraph GH. Now, we labeled
some edges from the set 2A⋃ 0{ }, where 2A � 1/2n: n ∈ N{ }.
We define ξ(GH) � ei, ej: ei ≤ ej, i, j ∈ N . Define a map-
ping dGH

: ξ × ξ⟶ R+ by

dGH
ei, ej  �

0, if ei � ej;

ei × ej, if ei, ej ∈ 2Aei ≠ ej;

1
2
, otherwise.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

Clearly, dGH
is a hypergraphical metric on ξ. Now, let us

consider the sequence en  in ξ where en � 1/2n, ∀n ∈ N;
then, for any fixed k ∈ N, we have

dGH

1
2n,

1
2k

  �
1

2n+k
⟶ 0, n⟶∞. (8)

-erefore, the sequence 1/2n{ } converges to 1/2k for
every fixed k ∈ N.

Lemma 2. Let (ξ, dGH
) be a hypergraphical metric space with

induced hypergraphical topology TGH
. :en, TGH

is T1 but not
generally Hausdorff, i.e., T2.

Proof. We want to show that for every e ∈ ξ, the singleton
set e{ } is a closed subset of ξ or the set ξ − e{ } is an open
subset of ξ. For this, let us suppose e′ ∈ ξ − e{ }, then clearly
e′ ≠ e and dGH

(e, e′)> 0. Now, let us take
dGH

(e, e′) � 2ε> 0⟶ (∗). -en, clearly e does not belong
to BGH

(e′, ε). Suppose on contrary that e ∈ BGH
(e′, ε), then

dGH
(e, e′)< ε which is contradiction to (∗). Hence,

BGH
(e′, ε) ⊂ ξ − e{ } is open, and hence hypergraphical

metric space is not Hausdorff. □

Remark 3. Let (ξ, dGH
) be hypergraphical metric space in

previous remark, then 1/2 is limit point of the sequence
en � 1/2n{ } ∈ ξ, but for any k ∈ N, if k> 1, we have
limn⟶∞dGH

(1/2n, 1/2k) � 0≠dGH
(1/2, 1/2k). -erefore, a

hypergraphical metric does not need to be continuous.

Definition 11. Let (ξ, dGH
) be hypergraphical metric space,

and en  ∈ ξ is a sequence. -en, en  is called Cauchy if for
given ε> 0 there exist n∘ belong to N such that
dGH

(en, em)< ε, ∀n, m> n∘; obviously the sequence en  is
Cauchy sequence ⇔limn⟶∞dGH

(en, em) � 0.

Definition 12. A hypergraphical metric space (ξ, dGH
) is

called complete if each Cauchy sequence in ξ converges in ξ.
Suppose GH

′ is another hypergraph such that each e ∈ ξ(GH
′ )

is subset of V(GH
′ ), that is, e⊆V(GH

′ ), then (ξ, dGH
) is called

Mathematical Problems in Engineering 3



GH
′ -complete if every GH

′ termwise connected Cauchy se-
quence in ξ converges in ξ.

In this paper, we suppose that hypergraph GH is con-
sidered to be directed. We include directed path (p) between
edges and denote by [e]l

GH
� e′ ∈ ξ:

directed path from to of length l}.

4. Main Results

In this section, we provide fixed point results in hyper-
graphical metric space; for this, we need various definitions
to support our main results.

Definition 13. Suppose (ξ, dGH
) is hypergraphical metric

space and F: ξ⟶ ξ is a mapping and G∗H is subhypergraph
of GH such that ξ(G∗H)⊇Δ. -en, F is said
(GH, G∗H)-hypergraphical contraction on ξ if the conditions
given below are satisfied.

GHC1: F preserves edges in G∗H such that
e ∈ ξ(G∗H)⇒Fe ∈ ξ(G∗H)

GHC2: there exists α ∈ [0, 1), such that for eiej ∈ ξ(G∗H)

and Fei
, Fej
∈ ξ(G∗H), dGH

(Fei
, Fej

)≤ αdGH
(ei, ej) for all

eiej ∈ ξ(G∗H)

Here, we assign the hypergraphical distance between the
edges of G∗H, and hypergraphical contraction decreases the
distance by factor α ∈ [0, 1). -e sequence en  having earliest
value e0 ∈ ξ is called F-picard sequence if en � Fen−1

, ∀n ∈ N.
Further, we suppose that G∗H is a subhypergraph of GH such
that ξ(G∗H)⊇Δ. -e next theorem is the dominant outcome
which gives sufficient conditions for the convergence of picard
sequence yielded by (GH, GH

′ )-hypergraphical contraction on
GH
′ -complete hypergraphical metric space.

Theorem 1. Suppose (ξ, dGH
) is GH
′ -complete hypergraphical

metric space and F: ξ⟶ ξ be a (GH, GH
′ )-hypergraphical

contraction and also satisfies the following conditions. (1)

:ere exist e0 ∈ ξ such that Fe0
∈ [e0]

l
GH
′ , for some l ∈ N. (2) If

GH
′ -termwise connected F-picard sequence en  converges in

ξ, then a limit e′ ∈ ξ of en  exists and n0 ∈ N, such that
(en, e′) ∈ ξ(GH

′ ), ∀n> n0.

-en, there exist e∗ ∈ ξ such that the F-picard sequence
en  of initial value e0 is GH

′ -termwise connected and con-
verges to e∗ and Fe∗.

Proof. Suppose e0 ∈ ξ such that Fe0
∈ [e0]

l
GH
′ for some l ∈ N

and en  is F-picard sequence having initial value e0, then
[ ei
′ ]

l

i�0 is a path such that e0 � e0′, Fe0 � el
′, and

(ei−1′, ei
′) ∈ ξ(GH

′ ) for i � 1, 2, 3, . . . , l. As F is a
(GH, GH

′ )-hypergraphical contraction, we have

Fei−1′, Fei
′(  ∈ ξ GH

′( , for i � 1, 2, 3, . . . , l. (9)

-erefore, [ Tei
′ ]

l

i�0 represent a path from Fe0′ � Feo �

e1 to Tel
′ � F2e0 � e2 of length l and so e2 ∈ [e1]

l
GH
′ ; pro-

ceeding similarly, we get the path [ Tnei
′ ]

l

i�0 from Fne0′ �

Fne0 � en to Fnel
′ � FnFe0 � en+1 of length l. Hence,

en+1 ∈ [en]l
GH
′ , ∀n ∈ N; thus, en  is a GH

′ -termwise connected
sequence. Since (Fnei−1′ , Fnei

′) ∈ ξ(GH
′ ) for i � 1, 2, 3, . . . , l

and n ∈ N. Using condition (GHC2), we have

dGH
F

n
ei−1′ , F

n
ei
′( ≤ αn

dGH
ei−1′ , ei
′(  . (10)

Since GH
′ is a subgraph of GH, en  and is a termwise

connected sequence in GH
′ , by using (10), the following

relation holds ∀n ∈ N, m> n:

dGH
en, en+1(  � dGH

F
n
e0, F

n+1
e0 ≤ 

l

i�1
αn

dGH
ei−1′, ei
′(  � αn

Fl.

(11)

where Fl � 
l
i�1 dGH

(ei−1′, ei
′ ). Again as the sequence en  is

GH
′ -termwise connected, therefore, n, m ∈ N with m> n, we

have

dGH
en, em( ≤ 

m−1

i�n

dGH
ei, ei+1( ≤ 

m−1

i�n

αi
Fl � 

m−1

i�n

αi− n+n
Fl

� αn


m−1

i�n

αi− n
Fl

⎡⎣ ⎤⎦ �
αn

1 − α
.

(12)

Since α ∈ (0, 1], we obtain limn,m⟶∞dGH
(en, em) � 0.

-erefore, en  is a Cauchy sequence in ξ. From GH
′ -com-

pleteness of ξ, the sequence en  converges in ξ. And from
condition (2), there exist e∗ ∈ ξ and n0 ∈ N, such that
(en, e∗) ∈ ξ(GH

′ ), ∀n> n0 and limn⟶∞dGH
(en, e∗) � 0.

-us, the sequence en  converges to e∗ ∈ ξ. Now, if
(en, e∗) ∈ ξ(GH

′ ) for all n> n0 by using (GHC2), we obtain

dGH
en+1, Fe

∗
(  � dGH

Fen, Fe
∗

( ≤ αdGH
en, e
∗

( , for all n> n0,

(13)

since limn⟶∞dGH
(en, e∗) � 0.

-erefore,

lim
n⟶∞

dGH
en+1, Fe

∗
(  � 0. (14)

A similar result holds if (e∗, en) ∈ ξ(GH
′ ), and hence the

sequence en  converges to both e∗ and Fe∗. □

If we replace ξ by the set of vertices instead of edges, we
get the following corollary.

Corollary 1. Suppose (ξ, dGH
) is GH
′ − complete graphical

metric space and F: ξ⟶ ξ be a (GH, GH
′ )-graphical con-

traction and also satisfies the following conditions.

(1) -ere exist x0 ∈ ξ such that Fx0
∈ [x0]

l
GH
′ . For some

l ∈ N.
(2) If GH

′ -termwise connected, F-picard sequence xn 

converges in ξ. -en, a limit x′ ∈ ξ of xn  exists and
n0 ∈ N, such that (xn, x′) ∈ ξ(GH

′ ), ∀n> n0.

Then, there exist x∗ ∈ ξ such that the F-picard sequence
en  of earliest value x0 is GH

′ -termwise connected and
converges to x∗ and Fx∗.
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Remark 4
Corollary 1 is the result of Shukla [12].

Remark 5. -eorem 1 confirms only convergent of a picard
sequence yielded from a (GH, GH

′ )-hypergraphical con-
traction on a GH

′ -complete hypergraphical metric space.
Next example displays that no one should appreciate this
theorem as an existence theorem in GH

′ -complete hyper-
graphical metric space.

Example 4. Suppose ζ be the nonempty set of vertices of
hypergraph GH and ξ(GH) be the set of subset of ζ such that
each subset represents an edge of the hypergraph GH. Note
(here, GH means weighted hypergraph) that we labeled some
edges of GH from set 2A⋃ 0{ }. Here, 2A is the set, that is,
2A � 1/2n: n ∈ N{ } and ξ(GH) � ei, ej: ei ≤ ej and i, j ∈ N .
Define a mapping dGH

: ξ∗ξ⟶ R+ by

dGH
ei, ej  �

0, if ei � ej;

ei ∗ ej, if ei, ej ∈ 2Aei ≠ ej;

1
2
, otherwise.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(15)

-en, dGH
is hypergraphical metric on ξ and (ξ, dGH

) is
GH-complete hypergraphical metric space; now, here we
define a mapping.

F: ξ ⟶ ξ by

Fe �

e

2
, if e ∈ 2A;

1
2
, if e � 0;

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(16)

It should be noted that F is hypergraphical contraction
having α � 1/4, ∀e ∈ 2A, and we have (e, Fe) ∈ ξ(GH),
which implies that Fe ∈ [e]l

GH
′ . Also any GH-termwise

connected and convergent sequence in ξ is constant or
monotonic decreasing subsequence with respect to usual
order of the sequence 1/2n{ } and having at least one limit e′
such that property (2) of contraction theorem hold surely.
However, there is no fixed point in ξ of F. As mentioned, that
convergent sequence’s limit may not be unique in hyper-
graphical metric space GH. -erefore, we provide one more
definition that is as follows.

Definition 14. Suppose (ξ, dGH
) is hypergraphical metric

space and F: ξ⟶ ξ is a mapping, then property (P) holds
for the quadruple (x, dGH

, GH
′ , T), that is:

(P): whenever a GH
′ -termwise connected, F-picard se-

quence xn  having limits ei and ej where ei ∈ ξ and
ej ∈ F(ξ), then ei � ej.

We represent all fixed point of a set by Fix∗F, and
notation for this is ξF � e ∈ ξ: (e, Fe) ∈ ξ(GH

′ )  .

Remark 6. If we chose ξ(GH) � ξ∗ξ, then it is clear to check
that quadruple (ξ, dGH

, GH
′ , F) satisfies property (P) for

arbitrary subhypergraph GH
′ .

Example 5. Let X, GH, and dGH
be those which is used in

Example 1. And ξ(GH
′ ) � Δ∪ ei, ej: ei, ej ∈ (0, 1), ei ≤

ej ∧ i, j ∈ N}.

Fe �
e, if ∈ Q∩ [0, 1];

1, otherwise;
 (17)

-en, the quadruple (ξ, dGH
, GH
′ , F) has the property

(P). In the next theorem, we want to give enough condition
for the existence of fixed point of a (GH, GH

′ )-graphical
contraction.

Theorem 2. Suppose (ξ, dGH
) is GH

′ − complete hyper-
graphical metric space and F: ξ⟶ ξ is
(GH, GH

′ )−hypergraphical contraction, it holds the following:
(1) there exist e0 ∈ ξ such that Te0

∈ [e0]
l
GH
′ for some l ∈ N; (2)

if aGH
′ −termwise connected T−picard sequence en  converges

in ξ, then there ∃e′ ∈ ξ of en  which is limit point and n0 ∈ N

such that (en, e′) ∈ ξ(GH
′ ) for all n> n0; then, there exist

e∗ ∈ ξ such that the T-picard sequence en  having earliest
value e0 is GH

′ -termwise connected and converges to e∗ and
Te∗. Also, if the quadruple (ξ, dGH

, GH
′ , F) satisfies property

(P), then there must be fixed point of F in ξ.

Proof. From -eorem 3.2, F-picard sequence en  having
earliest value e0 converges to e∗ and Te∗. As e∗ ∈ ξ and
Fe∗ ∈ F(ξ), therefore, by property (P), it is essential that
Te∗ � e∗. Hence, F has fixed point e∗ which is a fixed point of
T. □

Remark 7. In the above result, fixed point of F exists due to
property (P); it is very important to note that in Example 5,
every condition of above result holds except property (P).
However, Fix (F) � Φ. -erefore, in the above theorem
property, (P) remains unused.

5. Applications

Let I> 0 and ζ � C([0, 1], R) represent set of weights of
edges which is in the form of real continuous function on
weighted interval [0, I]. We give a special application of fixed
point theory for examining integral equations of ζ; we show
that according to certain condition, the actuality of a lower
or upper solution of an integral equation ensures the so-
lution of integral equation. Let BH � e ∈ X: 0<{

infp∈[0,I]e(p) and e(p)≤ 1, t ∈ [0, I]}. Here, we have GH �

GH
′ and ξ(GH) � Δ ei, ej ei, ej ∈ BHei(p)≤ ej(p)∀p

Mathematical Problems in Engineering 5



∈ [0, I]}. Consider that hypergraphical metric space which
is given below, that is, dGH

: ξ ∗ ξ⟶ R is given by

dGH
eiej  �

0, if ei � ej,

supp∈[0,I] ln
1

ei(p) · ej(p)
  , if ei, ej ∈ BHei ≠ ej,

1, otherwise.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(18)

So, (ξ, dGH
) is GH
′ -complete hypergraphical metric space.

Here, we suppose following integral equation:

ei(p) � 
I

0
g(p, q)h q, ei(q)( dq, (19)

where g: [0, I]∗ [0, I]⟶ [0, +∞) and h: [0, I]∗R⟶ R

are continuous functions. Mapping β ∈ C([0, I], R) is called
lower solution of (19) if β(p)≤ 

I

0 g(p, q)h(q, β(q))dq,

p ∈ [0, I]. Here, we want to prove that the existence of lower
solution of (Z1) conforms the existence of solution of (19).
Let us suppose that the operator F: ξ⟶ ξ is defined by

Fei(p) � 
I

0
g(p, q)h q, ei(q)( dq, (20)

and sufficient conditions are provided for existence of fixed
point of (20) in ξ, and obviously that fixed point is solution
of (19).

Theorem 3. Consider that coming conditions hold the
following:

(a) . . . h(q, ∗ ): R⟶ R is increasing function on (0, 1]
for every q ∈ [0, I]. Moreover, infp∈[0,I]g(p, q)> 0
and g(p, q)h(q, 1)≤ I− 1.

(b) :ere exist α ∈ (0, 1) and ρ ∈ [1, +∞) such that for ei,
ej ∈ ξ and (ei, ej) ∈ ξ, ∀q, r ∈ [0, I].

h(q, e(q))h r, ej(r) ≥ ei(q)ej(r) 
α
,


I

0


I

0
g(p, q)g(p, r)dqdr≥ ρ, ∀p ∈ [0, I].

(21)

Then, existence of a lower solution of (19) in BH con-
firms the existence of solution of (19) in ξ.

Proof. By condition (b), for ei, ej ∈ ξ also (ei, ej) ∈ ξ, and
P ∈ [0, I], we derived

ln
1

F ei( (p) · F ej (p)
⎛⎝ ⎞⎠

� ln
1


I

0 
I

0 g(p, q)g(p, r)h q, ei(q)( h r, ej(r) dqdr

⎛⎝ ⎞⎠

≤ ln
1

infp∈[0,I] ei(p)ej(p) 
α


I

0 
I

0 g(p, q)g(p, r)dqdr

⎛⎝ ⎞⎠

� ln
1

F ei( (p) · F ej (p)
⎛⎝ ⎞⎠

� ln
1


I

0 
I

0 g(p, q)g(p, r)h q, ei(q)( h r, ej(r) dqdr

⎛⎝ ⎞⎠

≤ ln
1


I

0 
I

0 g(p, q)g(p, r) ei(q)ej(r) 
α
dqdr

⎛⎝ ⎞⎠

≤ ln
1

infp∈[0,I] ei(p)ej(p) 
α


I

0 
I

0 g(p, q)g(p, r)dqdr

⎛⎝ ⎞⎠

≤ ln
1

ρinfp∈[0,I] ei(p)ej(p) 
α⎛⎝ ⎞⎠

≤ αdGH
ei(p), ej(p) zz.

(22)

-en, we have

dGH
Fei, Fej  � supp∈[0,I] ln

1
F ei( (p)F ej (p)

⎛⎝ ⎞⎠

≤ αdGH
ei(P), ej(P) .

(23)

Further, for ei, ej ∈ BH, and ei(p)≤ ej(p), ∀p ∈ [0, I]

and from condition (a) we have infp∈[0,I]F(ei)(p)> 0 and

F ei( (p) � 
I

0
g(p, q)h q, ei(q)( dq

≤ 
I

0
g(p, q)h(1, 1)dq≤ 1,

F e1( (p) � 
I

0
g(p, q)f q, ei(q)( dq

≤ 
I

0
g(p, q)h q, ej(q) dq � F ej (p).

(24)
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Consequently, the existence of lower solution of equa-
tion (19), i.e., β ∈ BH implies that property of -eorem 3
holds. Also, the quadruple (ξ, dGH

, GH
′ , F) has property (p).

Hence, all conditions of -eorem 2.8 are satisfied. -us, the
operator F has a fixed point which is solution of integral
equation (19) in ξ. □
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Suppose G is a simple graph with edge set E(G). &e Randić index R(G) is defined as R(G) � uv∈E(G)(1/
��������������
degG(u)degG(v)


),

where degG(u) and degG(v) denote the vertex degrees of u and v in G, respectively. In this paper, the first and second maximum of
Randić index among all n− vertex c− cyclic graphs was computed. As a consequence, it is proved that the Randić index attains its
maximum and second maximum on two classes of chemical graphs. Finally, we will present new lower and upper bounds for the
Randić index of connected chemical graphs.

1. Mathematical Notions and Notations

In this section, we first describe some mathematical notions
that will be kept throughout. A pair G � (V, E) in which V is
a finite nonempty set and E is a subset of 2-elements subsets
of V is called a simple graph. &roughout this paper, the
term graph means simple graph and the sets V � V(G) and
E � E(G) in definition of G are called the vertex set and edge
set of G, respectively.

Suppose G is a graph. For simplicity of our argument, an
edge e � a, b{ } inG is simply written as e � ab. Choose a vertex
v in G. &e vertex degree of v, degG(v), is defined as the
number of edges in the form ax. A chemical graph is a graph in
which all vertices have degrees less than or equal to 4 [1]. &e
reason for this name is from quantum chemistry in which it is
convenient to model a molecule M in such a way that vertices
are used to denote atoms and edges are for chemical bonds.

&e set of all vertices adjacent to a vertex v is denoted by
N[v, G] and notations Δ � Δ(G), ni � ni(G), and εi � εi(G)

are used for the maximum degree, the number of vertices of
degree i, and the number of edges of degree i in G, re-
spectively. &e number of edges connecting a vertex of
degree i with a vertex of degree j in G is denoted by mi,j(G).
A connected n− vertex graph G is called to be c-cyclic if it has
n + c − 1 edges and the number c � c(G) is said to be the
cyclomatic number of G.

Suppose W is a nonempty subset of vertices in a graph G.
&e subgraph of G obtained by deleting the vertices of W is
denoted by G − W, and similarly, if F⊆E(G), then the
subgraph obtained by deleting all edges in F is denoted by
G − F. In the case that W � v{ } or F � xy , the subgraphs
G − W and G − F will shortly be written as G − v or G − xy,
respectively. Furthermore, if x and y are nonadjacent ver-
tices in G, then the notation G + xy is used for the graph
obtained from G by adding an edge xy.

&e Randić index of a graph G is defined as

R(G) � 
uv∈E(G)

1
��������������
degG(u)degG(v)

 . (1)

&is topological index was proposed byMilan Randić [2]
under the name “branching index.” &e Randić index is
suitable for measuring the extent of branching of the carbon-
atom skeleton of saturated hydrocarbons. We encourage the
interested readers to consult the books [3,4] for more in-
formation on this topic.

2. Background Materials

&is section aims to briefly review the literature on ordering
graphs concerning the Randić index. By referring to &e-
orems 2.2 and 2.3 in [5], among all n-vertex trees, the star Sn
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has the minimum Randić index and the path Pn attains the
maximum Randić index. Caporossi et al. [6] proved that
among all 1-cyclic graphs of order n, the cycle Cn attains the
maximum value, and the unicyclic graphs obtained by
attaching a pendant path to a vertex of a cycle attain the
second maximum Randić index. &ese are the starting point
of the following problem.

Question 1. Find n-vertex c-cyclic graphs with maximum
and minimum Randić index.

Shiu and Zhang [7] obtained the maximum value of
Randić index in the class of all n− vertex chemical trees with k

pendants such that n< 3k − 2. Shi [8] obtained some in-
teresting results for chemical trees with respect to two
generalizations of Randić index. Dehghan-Zadeh et al.
[9, 10] obtained the first and second maximum of Randić
index in the class of all n− vertex c-cyclic graphs when
c � 3, 4.

Deng et al. [11] considered various degree mean rates of
an edge and gave some tight bounds for the variation of the
Randić index of a graph G in terms of its maximum and
minimum degree mean rates over its edges. Gutman et al. in
a recent interesting paper [12] investigated the connection
between Randić index and the degree-based information
content of molecular and also general graphs. &is con-
nection is based on the linear correlation between Randić
index and the logarithm of the multiplicative version of the
Randić index.

&e aim of this paper is to proceed with Question 1. We
will obtain the first and second maximum of Randić index
among all c-cyclic graphs. &is extends some results in
[6, 9, 10].

3. Five Graph Transformations

In this section, five graph transformations will be presented
which are useful in computing Randić index of graphs. &e
transformations I and II were introduced in [13].

(1) Transformation I. Suppose that G is a graph with a
given vertex w. In addition, we assume that
P: v1, v2, . . . , vk and Q: u1u2 . . . ul are two paths of
lengths k − 1 and l − 1, respectively. Let G1 be the
graph obtained from G, P, and Q by attaching edges
v1w and wu1. Define G2 � G1 − v1w + ulv1. &e
above-referred graphs are illustrated in Figure 1.

(2) Transformation II. Suppose that G is a graph with
given vertices x and y such that degG(x),

degG(y)≥ 2 and for all v ∈ N[x, G], degG(x)≥ 2. In
addition, we assume that P: v1, v2, . . . , vl and
Q: u1, u2, . . . , uk are two paths of lengths l − 1 and
k − 1, respectively. Define G1 be the graph obtained
from G, P, and Q by attaching vertices yv1, u1x, and
G2 � G1 − u1x + vlu1. See Figure 2 for more details.

(3) Transformation III. Suppose that G is a graph with
vertices x, y, w, and z such that xy, wz ⊆E(G). In

addition, we assume that G′ is a trivial graph with
vertex set v{ }. Define G1 � G − xy  + xv, vy  and
G2 � G − wz{ } + wv, vz{ }. &e above-referred graphs
are illustrated in Figure 3.

(4) Transformation IV. Suppose that G is a graph with
given vertex w such that degG(w) � Δ(G)≥ 4,
N[w, G] � w1, . . . , wdegG(w)  and degG(w1) �

degG(w2) � 2. In addition, we assume that v ∈ V(G),
degG(v)≥ 2, and vw1 ∈ E(G). Define G′ � G −

ww2 + w1w2. See Figure 4 for more details.

(5) Transformation V. Suppose that G is a graph with
vertices x1, x2, x3, x4, x5, x6, and w such that
x1x2, x2x3, x2w, x4x5, x5x6 ⊆E(G), degG(x1) �

degG(x2) � degG(x3) � 3, degG(x4) � 4, degG(x5) �

2, and degG(x6) � 1 or 2. Define G′ � G −

x2w  + x5w . &e above-referred graphs are il-
lustrated in Figure 5.

It is well-known that if the derivative f′(x) of a con-
tinuous function f(x) satisfies f′(x)> 0 on an open interval
(a, b), then f(x) is increasing on (a, b).

Lemma 1. +e following hold:

(1) Let G1 and G2 be two graphs satisfying the conditions
of Transformation I. If degG(w)≥ 3 or degG(w) � 2
and minuw∈E(G)degG(u)≤ 168 or degG(w) � 1 and
minuw∈E(G)degG(u)≤ 30, then R(G2)>R(G1).

(2) Let G1 and G2 be two graphs satisfying the conditions
of Transformation II and let degG(x) � a,
N[x, G] � h1, . . . , ha , degG(hi) � di, degG(hi) �

di, 1≤ i≤ a, di ≤di+1, 1≤ i≤ a − 1. If a≥ 5 or a � 4
and d2 ≤ 20 or a � 3 and d2 ≤ 6 or a � 2 and d2 ≤ 5 ,
then R(G2)>R(G1).

(3) Let G1 and G2 be two graphs as shown in Transfor-
mation III.

(a) If degG(x), degG(y)≥ 3, and degG(z) ∈ 1, 2{ },
then R(G2)>R(G1)

(b) If degG(x) � 2, degG(w)≥ 3, and degG(z) � 1,
then R(G2)>R(G1)

(c) If degG(x) � 2 and degG(w) � 2, then
R(G2) � R(G1)

(4) Let G and G′ be two graphs satisfying the conditions of
Transformation IV. +en, R(G′)≥R(G).

(5) Let G and G′ be two graphs satisfying the conditions of
Transformation V. +en, R(G′)>R(G).

Proof

(1) Let x � degG(w), N[w, G] � l1, . . . , lx , dG(li) � di,
1≤ i≤ x, minx

i�1di � d1, and k, l≥ 2. &en, by
definition,
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R G2(  − R G1(  �
1

�������
2(x + 1)

 + 1 + 
x

i�1

1
��������
di(x + 1)

⎛⎝ ⎞⎠ −
2

�������
2(x + 2)

 +
1
�
2

√ + 
x

i�1

1
��������
di(x + 2)

⎛⎝ ⎞⎠

≥
1
�
2

√ +
1
��
d1

 
1

�����
x + 1

√ −
1

�����
x + 2

√  −
1
�
2

√
1

�����
x + 2

√ + 1 −
1
�
2

√ .

(2)

Now, by Equality (2),
R(G2) − R(G1)≥ (1/

�
2

√
)[(1/

�����
x + 1

√
) − (1/

�����
x + 2

√
)]

+(1/
�
2

√
)(1/

�����
x + 2

√
) + 1 − (1/

�
2

√
)> 0.013, for x≥ 3,

R(G2) − R(G1)≥ 0.0000024, for x � 2 and d1 ≤ 168,
and R(G2) − R(G1)≥ 0.000086, for x � 1 and

d1 ≤ 30. &e proof of other cases of k and l is similar,
and we omit them.

(2) Let degG(x) � a, N[x, G] � h1, . . . , ha , degG(hi) �

di, 1≤ i≤ a, di ≤di+1, 1≤ i≤ a − 1 and k, l≥ 2. &en,
by definition,

wv1vk u1 ul

G

(a)

w u1 ul v1 vk

G

(b)

Figure 1: &e graphs (a) G1 and (b) G2 in Transformation I.

x y
u1uk v1 vl

G

(a)

x y
v1 vl u1 uk

G

(b)

Figure 2: &e graph (a) G1 and (b) G2 in Transformation II.

x v y w z

(a)

x y w v z

(b)

Figure 3: &e graph (a) G1 and (b) G2 in Transformation III.

v w1 w w2

(a)

w1 w2v w

(b)

Figure 4: &e graph (a) G and (b) G′ in Transformation IV.

x1

w

x2 x3 x4 x5 x6

(a)

x1 x2 x3 x4 x5 x6

w

(b)

Figure 5: &e graph (a) G and (b) G′ in Transformation V.
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R G2(  − R G1(  � 1 + 

a

i�1

1
���
dia

⎛⎝ ⎞⎠ −
1

�������
2(a + 1)

 +
1
�
2

√ + 

a

i�1

1
��������
di(a + 1)

⎛⎝ ⎞⎠

≥ 1 −
1

�������
2(a + 1)

 −
1
�
2

√ +
1
��
d1

 +
1
��
d2

 
1
��
a

√ −
1

�����
a + 1

√ .

(3)

And, by last equality,
R(G2) − R(G1)> 0.0042 for a≥ 5, R(G2) − R(G1)

> 0.00027 for a � 4 and d2 ≤ 20, R(G2) − R(G1)>
0.0024 for a � 3 and d2 ≤ 6, and R(G2) − R(G1)>

0.0007 for a � 3 and d2 ≤ 5. &e proof of other cases
of k and l is similar, and we omit them.

(3) Suppose degG(x) � s, degG(y) � r, degG(w) � l, and
degG(z) � t. To prove (a), we note that

R G2(  − R G1(  �
1
��
sr

√ +
1
��
2l

√ +
1
��
2t

√  −
1
��
2s

√ +
1
��
2r

√ +
1
��
lt

√ 

�
1
��
sr

√ −
1
��
2s

√ −
1
��
2r

√  +
1
��
2l

√ −
1
��
2t

√ −
1
��
lt

√ > − 0.48 + 0.50> 0.

(4)

To prove (b), we first calculate the difference between
R(G2) and R(G1).

R G2(  − R G1(  �
1
�
2

√ +
1
��
2l

√  −
1
2

+
1
�
l

√ . (5)

Let h(x) � (1/
���
2x

√
) − (1/

��
x

√
), for x ∈ (0,∞).

&en, h is increasing on (0,∞), and hence by

equation (5), R(G2) − R(G1)> 0.038. For the proof
of (c), it is enough to notice that mi,j(G1) �

mi,j(G2), 1≤ i≤ j≤ n − 1. &us, R(G2) � R(G1), as
desired.

(4) Suppose that degG(v) � s, degG(w) � q, and
degG(wi) � di, 2≤ i≤ q. &en,

R G′(  − R(G) �
1
��
3s

√ +
1

�������
3(q − 1)

 +
1
�
6

√ + 

q

i�3

1
��������
(q − 1)di

⎛⎝ ⎞⎠ −
1
��
2s

√ +
2
��
2q

 + 

q

i�3

1
���
qdi

⎛⎝ ⎞⎠

≥
2
�
6

√ +
1

�������
3(q − 1)

 +
q − 2

�������
(q − 1)q

  −
1
�
4

√ +
2
��
2q

 −
q − 2

��

q
2

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠> 0.02,

(6)

as desired.
(5) Suppose that degG(x6) � r. &en, by definition,

R G′(  − R(G) �
2
�
9

√ +
1
�
8

√ +
1
��
2r

√  −
2
�
6

√ +
1
��
12

√ +
1
��
3r

√ > 0.0068. (7)

Hence, the result.
For a graph G, its first Zagreb index M1(G) is defined as

M1(G) � v∈V(G)degG(v)2. □

Lemma 2 (see [14]). If G is a connected graph with n vertices
and m edges, then

ε1(G) � 4m − M1(G) + 
2n− 4

i�3
εi(G)(i − 2),

ε2(G) � M1(G) − 3m − 
2n− 4

i�3
εi(G)(i − 1).

(8)
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Theorem 1. Let G be a connected graph with n≥ 3 vertices
and m edges.

(1) If Δ(G)≤ 3 or (Δ(G)≤ 11 and m1,4(G) � m2,3
(G) � 0), then R(G)≥ (4m − M1(G)/

�
2

√
) +

(M1(G) − 3m/2). +e equality holds if and only if
G � Pn.

(2) If Δ(G)≤ 3 and m2,2(G) � m1,4(G) � m2,3(G) � 0 or
(Δ(G)≤ 5 and m2,2(G) � m1,4(G) � m2,3(G) � m1,5
(G) � m2,4 (G) � m3,3(G) � 0), then R(G)≥
(4m − M1(G)/

�
2

√
) + (M1(G) − 3m/

�
3

√
), with

equality if and only if G � S4.

Proof. By definition,

R(G) � 
1≤i≤j≤n− 1

mi,j

1
��
ij

 ≥m1,2
1
�
2

√ + m1,3
1
�
3

√ + m2,2
1
2

+ 
2n− 4

i�3
εi(G)

1
Δ(G)

.

(9)

1. &e last equality for Δ(G)≤ 3 gives

R(G)≥m1,2
1
�
2

√ +
1
2

m1,3 + m2,2  + 

4

i�3
εi(G)

1
3

�
1
�
2

√ ε1(G) +
1
2
ε2(G) + 

4

i�3
εi(G)

1
3
,

(10)

and by Lemma 2,

R(G)≥
1
�
2

√ 4m − M1(G) + 
4

i�3
εi(G)(i − 2)⎡⎣ ⎤⎦

+
1
2

M1(G) − 3m − 
4

i�3
εi(G)(i − 1)⎡⎣ ⎤⎦ + 

4

i�3
εi(G)

1
3

�
4m − M1(G)

�
2

√ +
M1(G) − 3m

2
+

1
�
2

√ −
1
2

  

4

i�3
εi(G)(i − 1) −

1
�
2

√ −
1
3

  

4

i�3
εi(G)

≥
4m − M1(G)

�
2

√ +
M1(G) − 3m

2
+ 2

1
�
2

√ −
1
2

  

4

i�3
εi(G) −

1
�
2

√ −
1
3

  

4

i�3
εi(G)

�
4m − M1(G)

�
2

√ +
M1(G) − 3m

2
+

1
�
2

√ − 1 +
1
3

  

4

i�3
εi(G)

≥
4m − M1(G)

�
2

√ +
M1(G) − 3m

2
.

(11)

Equality holds if and only if G � Pn. Let Δ(G)≤ 11
and m1,4(G) � m2,3(G) � 0. &en, by Equality (9),
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R(G)≥m1,2
1
�
2

√ +
1
2

m1,3 + m2,2  + 
20

i�4
εi(G)

1
11

�
1
�
2

√ ε1(G) +
1
2
ε2(G) + 

20

i�4
εi(G)

1
11

,

(12)

and by Lemma 2 and some simple calculations,

R(G)≥
4m − M1(G)

�
2

√ +
M1(G) − 3m

2
+ 3

1
�
2

√ −
1
2

  

20

i�4
εi(G) −

1
�
2

√ −
1
11

  

20

i�4
εi(G)

�
4m − M1(G)

�
2

√ +
M1(G) − 3m

2
+

2
�
2

√ −
3
2

+
1
11

  

20

i�4
εi(G)

≥
4m − M1(G)

�
2

√ +
M1(G) − 3m

2
,

(13)

with equality if and only if G � Pn.
(2) A similar argument as the case 1, it can be proved

that for Δ(G)≤ 3 and m2,2(G) � m1,4(G) � m2,3
(G) � 0,

R(G)≥
4m − M1(G)

�
2

√ +
M1(G) − 3m

�
3

√ +
2
�
2

√ −
3
�
3

√ +
1
3

 ε4(G)

≥
4m − M1(G)

�
2

√ +
M1(G) − 3m

�
3

√ ,

(14)

with equality if and only if G � S4. For Δ(G)≤ 5 and
m2,2(G) � m1,4(G) � m2,3(G) � m1,5(G) � m2,4(G) � m3,3
(G) � 0,

R(G)≥
4m − M1(G)

�
2

√ +
M1(G) − 3m

�
3

√ +
3
�
2

√ −
4
�
3

√ +
1
5

  

8

i�5
εi(G)

≥
4m − M1(G)

�
2

√ +
M1(G) − 3m

�
3

√ ,

(15)

with equality if and only if G � S4. &is completes the
proof. □

Theorem 2 (see [6]). Let G be a graph with n vertices. +en,

R(G) �
n

2
−
1
2


uv∈E(G)

1
�������
degG(u)

 −
1

�������
degG(v)

 

2

. (16)

Lemma 3 (see [15]). If G is a connected graph with n vertices
and cyclomatic number c, then n1(G) � 2 − 2c + 

Δ(G)
i�3 (i −

2)ni and n2(G) � 2c + n − 2 − 
Δ(G)
i�3 (i − 1)ni.

Corollary 1. Let G be a connected graph with n vertices and
cyclomatic number c.

(1) If c � 5, then n1(G) � 
Δ(G)
i�3 (i − 2)ni − 8 and

n2(G) � n + 8 − 
Δ(G)
i�3 (i − 1)ni

(2) If c � 6, then n1(G) � 
Δ(G)
i�3 (i − 2)ni − 10 and

n2(G) � n + 10 − 
Δ(G)
i�3 (i − 1)ni

Define Υ1(n) � G|n3 � 8, n2 � n − 8 , Υ2(n) �

G|n1 � 1, n3 � 9, n2 � n − 10 , Υ3(n) � G|n3 � 10, n2 � n −

10}, and Υ4(n) � G|n1 � 1, n3 � 11, n2 � n − 12 .
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Lemma 4. Let G be a connected graph with n vertices, m

edges, and cyclomatic number c.

(1) Suppose n1 � 0 and 0< ni < n for some 3≤ i≤ n − 1.
+en, mi,i(G)≤ ni(G) − 2 + c.

(2) Suppose n1 ≥ 1 and 0< ni < n for some 3≤ i≤ n − 1.
+en, mi,i(G)≤ ni(G) − 1 + c.

Proof. Since n1 � 0, c(G − v)≤ c(G) − 1, for all v ∈ V(G).
Now, the proof follows from this fact that m � n − 1 + c. &e
part (2) is similar.

Let n be a positive integer. Define

Ω1(n) � G ∈ Υ1(n)|m3,3 � 11, m2,3 � 2, m2,2 � n − 9 ,

Ω2(n) � G ∈ Υ2(n)|m3,3 � 13, m2,3 � 1, m1,2 � 1, m2,2 � n − 11 ,

Ω3(n) � G ∈ Υ3(n)|m3,3 � 14, m2,3 � 2, m2,2 � n − 11 ,

Ω4(n) � G ∈ Υ4(n)|m3,3 � 16, m2,3 � 1, m1,2 � 1, m2,2 � n − 13 .

(17)

If Gi ∈ Ωi(n) for 1≤ i≤ 4, then R(G1) �

(1/2)n − (5 − 2
�
6

√
/6), R(G2) � (1/2)n − (7 − (

�
6

√
+ 3

�
2

√
)/

6), R(G3) � (1/2)n − (5 − 2
�
6

√
/6), and R(G4) � (1/2)n −

(7 − (
�
6

√
+ 3

�
2

√
)/6). □

Theorem 3. +e following hold:

(1) Let G be a connected graph with n≥ 9 vertices and
cyclomatic number 5. +en, R(G)≤ (1/2)n

− (5 − 2
�
6

√
/6), with equality if and only if

G ∈ Ω1(n).
(2) Let G be a connected graph with n≥ 11 vertices and

cyclomatic number 6. +en, R(G)≤ (1/2)n

− (5 − 2
�
6

√
/6), with equality if and only if G ∈ Ω3(n).

Proof

(1) If n1(G) � 0, then by Corollary 1 and &eorem 2,
R(G)≤ (1/2)n − (5 − 2

�
6

√
/6), with equality if and

only if G ∈ Ω1(n). For n1(G) � 1, R(G)≤ (1/2)n

− (7 − (
�
6

√
+ 3

�
2

√
)/6)< (1/2)n − (5 − 2

�
6

√
/6). Let

n1(G)≥ 2. &en, again by Corollary 1 and &eorem
2, R(G)≤ (1/2)n − (3 − 2

�
2

√
/2)< (1/2)n − (5 −

2
�
6

√
/6).

(2) Proof is similar to the last case, and we omit it. □

Remark 1

(1) Let G be a connected graph with n � 8 vertices and
cyclomatic number 5. &en, R(G)≤ 4, with equality
if and only if G is a 3-regular graph.

(2) Let G be a connected graph with n � 10 vertices and
cyclomatic number 6. &en, R(G)≤ 5, with equality
if and only if G is a 3-regular graph.

For a positive number c≥ 3, we define

Λ1c(n) � G|m3,3 � 3c − 4, m2,3 � 2, m2,2 � n − (2c − 1) ,

Γ1c(n) � G|m3,3 � 3c − 2, m2,3 � 1, m1,2 � 1, m2,2 � n − (2c + 1) .
(18)

If G1 ∈ Λ1c(n) and G2 ∈ Γ1c(n), then R(G1) � (1/2)n −

(5 − 2
�
6

√
/6) and R(G2) � (1/2)n − (7 − (

�
6

√
+ 3

�
2

√
)/6).

Proposition 1. Let G be a connected graph with n vertices, m

edges, and cyclomatic number c, where c≥ 3 is a positive
integer. If n≥ 2c − 1 and n1(G) � 0, then n2(G)≥ 1.

Proof. &ose are well-known that c � m − n + 1 and


n
i�1 ni(G)i � 2m. &erefore, 2c � 2n2(G) + 

n
i�3 ni(G)i

− 2n + 2. &us, 2c≥ 2n2(G) + 3(n − n2(G)) − 2n + 2 � n − n2
(G) + 2, and this implies that n2(G)≥ n − 2c + 2. Now, since
n≥ 2c − 1, n2(G)≥ 1.

By Proposition 1 and a similar argument as the proof of
&eorem 3, we will have the following general result. □

Theorem 4. Let G be a connected graph with n vertices and
cyclomatic number c, where c≥ 3 is a positive integer.

(1) If n≥ 2c − 1, then R(G)≤ (1/2)n − (5 − 2
�
6

√
/6), with

equality if and only if G ∈ Λ1c(n).
(2) If n � 2c − 2, then R(G)≤ (1/2)n, with equality if and

only if G is a 3-regular graph.

Let n be a positive number, Υ5(n) � G|n1 � 0,

n4 � 1, n3 � 6, n2 � n − 7} and Υ6(n) � G|n1 � 0, n4 � 1,

n3 � 8, n2 � n − 9}. Define
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Ω5(n) � G ∈ Υ5(n)|m4,3 � 4, m3,3 � 6, m2,3 � 2, m2,2 � n − 8 ,

Ω6(n) � G ∈ Υ1(n)|m3,3 � 10, m2,3 � 4, m2,2 � n − 10 ,

Ω7(n) � G ∈ Υ6(n)|m4,3 � 4, m3,3 � 9, m2,3 � 2, m2,2 � n − 10 ,

Ω8(n) � G ∈ Υ3(n)|m3,3 � 13, m2,3 � 4, m2,2 � n − 12 .

(19)

If Gi ∈ Ω5(n) for 1≤ i≤ 4, then R(G1) � (1/2)n − (6 −

(2
�
3

√
+

�
6

√
)/3), R(G2) � (1/2)n − (5 − 2

�
6

√
/3), R(G3) �

(1/2)n − (6 − (2
�
3

√
+

�
6

√
)/3) and R(G4) � (1/2)n − (5 − 2�

6
√

/3).

Theorem 5. +e following hold:

(1) Let G be a connected graph with n≥ 9 vertices and
cyclomatic number 5. If G ∉ Ω1(n), then
R(G)≤ (1/2)n − (6 − (2

�
3

√
+

�
6

√
)/3), with equality

if and only if G ∈ Ω5(n).
(2) Let G be a connected graph with n≥ 11 vertices and

cyclomatic number 6. If G ∉ Ω3(n), then
R(G)≤ (1/2)n − (6 − (2

�
3

√
+

�
6

√
)/3), with equality

if and only if G ∈ Ω7(n).

Proof

(1) Let n1(G) � 0 and G ∉ Ω1(n). For Δ(G) � 3, m2,3 ≥ 4
and Corollary 1 and&eorem 2 give R(G)≤ (1/2)n −

(5 − 2
�
6

√
/3)< (1/2)n − (6− (2

�
3

√
+

�
6

√
)/3). For

Δ(G)≥ 4, R(G)≤ (1/2)n − (6 − (2
�
3

√
+

�
6

√
)/3),

with equality if and only if G ∈ Ω5(n). If n1(G)≥ 1,

then R(G)≤ (1/2)n − (7 − (
�
6

√
+ 3

�
2

√
)/6)< (1/2)

n − (6 − (2
�
3

√
+

�
6

√
)/3).

(2) Proof is similar to Case 1, and we omit it.

By a simple calculation, one can easily see that&eorem 5
(1) holds for n � 8 and &eorem 5 (2) holds for n � 10. On
the other hand, &eorems 3 and 5 imply the following
result. □

Corollary 2. +e following hold:

(1) Suppose n≥ 9. +e connected graphs with cyclomatic
number 5 in the sets Ω1(n) and Ω5(n) have the first
and second maximum Randić index among all
n-vertex connected graphs with cyclomatic number 5,
respectively.

(2) Suppose n≥ 11. +e connected graphs with cyclomatic
number 6 in the sets Ω7(n) and Ω8(n) have the first
and second maximum Randić index among all
n-vertex connected graphs with cyclomatic number 6,
respectively.

Suppose c≥ 4 is a positive integer. Define

Λ2c(n) � G|m3,3 � 3c − 5, m2,3 � 4, m2,2 � n − 2c ,

Γ2c(n) � G|m4,3 � 4, m3,3 � 3c − 9, m2,3 � 2, m2,2 � n − (2c − 2) .
(20)

If H1 ∈ Λ2c(n) and H2 ∈ Γ2c(n), then R(H1) � (1/2)n −

(5 − 2
�
6

√
/3) and R(H2) � (1/2)n − (6 − (2

�
3

√
+

�
6

√
)/3).

Theorem 6. Let G be a connected graph with n vertices and
cyclomatic number c≥ 4.

(1) If n≥ 2c − 1 and G ∉ Λ1c(n), then R(G)≤
(1/2)n − (6 − (2

�
3

√
+

�
6

√
)/3), with equality if and

only if G ∈ Γ2c(n).
(2) If n � 2c − 2 and G is not a 3-regular graph, then

R(G)≤ (1/2)n − (6 − (2
�
3

√
+

�
6

√
)/3), with equality

if and only if G ∈ Γ2c(n).

Proof. &e result follows from Proposition 1 and a similar
argument as &eorem 3.

We end this section with the following result that follows
from &eorems 4 and 6. □

Theorem 7. Let G be a connected graph with n vertices and
cyclomatic number c≥ 4.

(1) If n≥ 2c − 1, then the connected graphs with cyclo-
matic number c in the sets Λ1c(n) and Γ2c(n) have the
first and second maximum Randić index among all
n-vertices connected graphs with cyclomatic number c,
respectively.

(2) If n � 2c − 2, then the 3-regular connected graphs and
the connected graphs in the set Γ2c(n) with cyclomatic
number c have the first and second maximum Randić
index among all n-vertices connected graphs with
cyclomatic number c, respectively.

4. Connected Chemical Graphs

Let G be a connected chemical graph with n vertices and m

edges. By Lemma 3,
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n1 � 2n − 2m + n3 + 2n4,

n2 � 2m − n − 2n3 − 3n4,
(21)

and by Lemma 2,

ε1(G) � 4m − n1 + 4n2 + 9n3 + 16n4  + ε3(G) + 2ε4(G) + 3ε5(G) + 4ε6(G),

ε2(G) � n1 + 4n2 + 9n3 + 16n4 − 3m − 2ε3(G) + 3ε4(G) + 4ε5(G) + 5ε6(G) .
(22)

Now, by some calculations, we have

ε1(G) � 2n − 2m − 2n3 − 6n4 + ε3(G) + 2ε4(G) + 3ε5(G) + 4ε6(G),

ε2(G) � 3m − 2n + 2n3 + 6n4 − 2ε3(G) + 3ε4(G) + 4ε5(G) + 5ε6(G) .
(23)

Suppose Mk � mi,j|1≤ i≤ j≤ 4 and i + j � k + 2 , 1≤
k≤ 4. Since εk � x∈Mk

x, 1≤ k≤ 4,

m1,2 � 2n − 2m − 2n3 − 6n4 + m1,4 + m2,3 + 2m2,4 + 2m3,3 + 3m3,4 + 4m4,4,

m2,2 � 3m − 2n + 2n3 + 6n4 − m1,3 + 2m1,4 + 2m2,3 + 3m2,4 + 3m3,3 + 4m3,4 + 5m4,4 ,
(24)

and since m1,3 � 3n3 − m2,3 − 2m3,3 − m3,4 and m1,4 � 4n4 −

m2,4 − m3,4 − 2m4,4,

m1,2 � 2n − 2m − 2n3 − 2n4 + m2,3 + m2,4 + 2m3,3

+ 2m3,4 + 2m4,4,
(25)

m2,2 � 3m − 2n − n3 − 2n4 − m2,3 − m2,4 − m3,3

− m3,4 − m4,4.
(26)

On the other hand,

R(G) �
1
�
2

√ m1,2 +
1
�
3

√ m1,3 +
1
2
m1,4 +

1
2
m2,2 +

1
�
6

√ m2,3 +
1
�
8

√ m2,4 +
1
3
m3,3 +

1
��
12

√ m3,4 +
1
4
m4,4. (27)

By equations (25)–(27), we have

R(G) �
1
2

(3 − 2
�
2

√
)(m + 2

�
2

√
n + 2n) −

1
2

(1 − 2
�
3

√
+ 2

�
2

√
)n3

− (
�
2

√
− 1)n4 +

1
6

(
�
3

√ �
2

√
+ 3

�
2

√
− 2

�
3

√
− 3)m2,3 +

1
4

(3
�
2

√
− 4)m2,4

+
1
6

(6
�
2

√
− 4

�
3

√
− 1)m3,3 +

1
6

(6
�
2

√
−

�
3

√
− 6)m3,4 +

1
4

(4
�
2

√
− 5)m4,4.

(28)

Theorem 8. Let G be a connected chemical graph with n> 5
vertices and m edges. +en,

(1) R(G)≤ (1/2)(3 − 2
�
2

√
)(m + 2

�
2

√
n + 2n), with

equality if and only if G � Pn or Cn
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(2) R(G)≥ (1/6)(2
�
2

√
− 3)((

�
3

√ �
2

√
+ 2

�
3

√
− 3

�
2

√
−

3)n −
�
3

√ �
2

√
− 2

�
3

√
+ 3

�
2

√
− 3m + 3)

Proof. It is easy to see that n3 ≥ (1/3)(m2,3 + 2m3,3 + m3,4)

and n4 ≥ (1/4)(m2,4 + m3,4 + 2m4,4). &erefore, by equation
(28), we have

R(G)≤
1
2

(3 − 2
�
2

√
)(m + 2

�
2

√
n + 2n) −

1
6

(4 −
�
3

√ �
2

√
−

�
2

√
)m2,3

−
1
4

(3 − 2
�
2

√
)m2,4 −

1
6

(3 − 2
�
2

√
)m3,3 −

1
12

(11 − 2
�
3

√
− 5

�
2

√
)m3,4

−
1
4

(3 − 2
�
2

√
)m4,4 ≤

1
2

(3 − 2
�
2

√
)(m + 2

�
2

√
n + 2n),

(29)

with equality if and only if G � Pn or Cn. On the other hand,
n3 + n4 ≤ n and m2,3 + m2,4 + m3,3 + m3,4 + m4,4 ≥ n3 + n4 − 1.
&erefore, by equation (28),

R(G)≥
1
2

(3 − 2
�
2

√
)(m + 2

�
2

√
n + 2n) − (

�
2

√
− 1) n3 + n4( 

+
1
6

(
�
3

√ �
2

√
+ 3

�
2

√
− 2

�
3

√
− 3) n3 + n4 − 1( 

≥
1
2

(3 − 2
�
2

√
)(m + 2

�
2

√
n + 2n) −

1
6

(3
�
2

√
+ 2

�
3

√
− 3 −

�
3

√ �
2

√
) n3 + n4 + 5 − 2

�
3

√ �
2

√
( 

≥
1
6

(2
�
2

√
− 3)((

�
3

√ �
2

√
+ 2

�
3

√
− 3

�
2

√
− 3)n −

�
3

√ �
2

√
− 2

�
3

√
+ 3

�
2

√
− 3m + 3).

(30)

&is completes the proof. □
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by Randić and sum-connectivity numbers,” Applied Mathe-
matics and Computation, vol. 331, pp. 160–168, 2018.

10 Mathematical Problems in Engineering



[14] A. Ghalavand and A. R. Ashrafi, “Bounds on the entire Zagreb
indices of graphs,” MATCH Communications in Mathemat-
ical and in Computer Chemistry, vol. 81, pp. 371–381, 2019.

[15] A. Ghalavand, A. R. Ashrafi, and I. Gutman, “Extremal graphs
for the second multiplicative Zagreb index,” Bulletin of the
International Mathematical Virtual Institute, vol. 8, no. 2,
pp. 369–383, 2018.

Mathematical Problems in Engineering 11



Research Article
Sharp Bounds for the Inverse Sum Indeg Index of
Graph Operations

Anam Rani,1 Muhammad Imran ,2 and Usman Ali 3,4

1Department of Basic Sciences, Deanship of Preparatory Year, King Faisal University, Al Hofuf, Al Ahsa, Saudi Arabia
2Department of Mathematical Sciences, United Arab Emirates University, P.O. Box 15551, Al Ain, UAE
3Institute de Mathematiques de Jussieu-Paris Rive Gauche, (Universite de Paris/Sorbonne Universite), Paris, France
4CASPAM, Bahauddin Zakariya University, Multan 66000, Pakistan

Correspondence should be addressed to Usman Ali; uali@bzu.edu.pk

Received 8 February 2021; Accepted 22 May 2021; Published 9 June 2021

Academic Editor: Toqeer Mahmood

Copyright © 2021 Anam Rani et al. (is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Vukičević and Gasperov introduced the concept of 148 discrete Adriatic indices in 2010. (ese indices showed good
predictive properties against the testing sets of the International Academy of Mathematical Chemistry. Among these
indices, twenty indices were taken as beneficial predictors of physicochemical properties. (e inverse sum indeg index
denoted by ISI(Gk) of Gk is a notable predictor of total surface area for octane isomers and is presented as ISI(Gk) �

gkgk
′∈E(Gk)(dGk

(gk)dGk
(gk
′)/dGk

(gk) + dGk
(gk
′)), where dGk

(gk) represents the degree of gk ∈ V(Gk). In this paper, we determine
sharp bounds for ISI index of graph operations, including the Cartesian product, tensor product, strong product, composition,
disjunction, symmetric difference, corona product, Indu–Bala product, union of graphs, double graph, and strong double graph.

1. Introduction

Let Gk be a connected and simple graph whose vertex and
edge sets are V(Gk) and E(Gk), respectively.(e order k and
size k′ of Gk are the cardinalities of |V(Gk)| and |E(Gk)|,
respectively. (e degree formula of gk ∈ V(Gk) is the car-
dinality of linked vertices to gk in Gk and represented by
dGk

(gk). (e largest (or smallest) degree of Gk is the degree
of a vertex of Gk with the greatest (or least) number of edges
incident to it and represented by Δ(Gk) (or δ(Gk)).

A molecular descriptor is a numerical parameter of a
graph that distinguished its topology. In organic chemistry,
topological descriptors have investigated many applications
in pharmaceutical drug design, QSAR/QSPR study, chem-
ical documentation, and isomer discrimination. Some of
these topological indices are Wiener index, Zagreb indices,
Szeged index, and Randić index. (e set of 148 discrete
Adriatic descriptors [1] have been defined in 2010. (ese
descriptors showed well predictive characteristics on the
testing sets given by International Academy ofMathematical
Chemistry. Twenty of these descriptors were taken as

noteworthy predictors of physicochemical properties. One
such index is inverse sum indeg index, denoted by ISI(Gk),
of Gk that was investigated in [1] as a noteworthy predictor
of total surface area for octane isomers and is presented as
follows:

ISI Gk(  � 

gkgk
′∈E Gk( )

dGk
gk( dGk

gk
′( 

dGk
gk(  + dGk

gk
′( 

. (1)

Sedlar et al. [2] investigated graph-theoretical charac-
teristics of ISI index. Falahati-Nezhad et al. [3] computed
some sharp bounds of inverse sum indeg (ISI) index.

(e Zagreb indices of Gk are presented by Gutman and
Trinajstić [4] as follows:

M1 Gk(  � 

gk∈V Gk( )

dGk
gk( 

2
,

M2 Gk(  � 

gkgk
′∈E Gk( )

dGk
gk( dGk

gk
′( .

(2)
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Let Gk be k-vertex and Hl be l-vertex graphs with size k′
and l′, respectively. (e Cartesian product Gk⊳Hl, whose
vertex set is V(Gk) × V(Hl) and (gk, hl) and (gk

′, hl
′) are

adjacent when gk � gk
′ and hlhl

′ ∈ E(Hl) or gkgk
′ ∈ E(Gk)

and hl � hl
′, is a graph. (e order and size of Gk⊳Hl are kl

and k′l + kl′, respectively. (e degree formula for
(gk, hl) ∈ V(Gk⊳Hl) is dGk

(gk) + dHl
(hl).

(e tensor product Gk × Hl, whose set of vertices is
V(Gk) × V(Hl) and (gk, hl) and (gk

′, hl
′) are linked when

gkgk
′ ∈ E(Gk) and hlhl

′ ∈ E(Hl), is a graph. (e order and
size of Gk × Hl are kl and 2k′l′, respectively. (e degree
formula for (gk, hl) in Gk × Hl is dGk

(gk)dHl
(hl).

(e strong product Gk ⊠Hl, whose vertex set and edge
set are V(Gk) × V(Hl) and E(Gk⊳Hl)∪E(Gk × Hl), re-
spectively, is a graph.(e order and size ofGk ⊠Hl are kl and
kl′ + lk′ + 2k′l′, respectively. (e degree formula for (gk, hl)

in Gk ⊠Hl is dGk
(gk) + dHl

(hl) + dGk
(gk)dHl

(hl).
(e composition Gk[Hl], whose vertex set

V(Gk) × V(Hl) and (gk, hl) and (gk
′, hl
′) are linked when

gkgk
′ ∈ E(Gk) or gk � gk

′ and hlhl
′ ∈ E(Hl), is a graph. (e

order and size of Gk[Hl] are kl and k′l2 + kl′, respectively.
(e degree formula for (gk, hl) in Gk[Hl] is ldGk

(gk)

+ dHl
(hl).

(e disjunction Gk ∨Hl, whose vertex set is V(Gk) ×

V(Hl) and (gk, hl) and (gk
′, hl
′) are linked when

gkgk
′ ∈ E(Gk) or hlh∈′E(Hl) is a graph. (e order and size of

Gk ∨Hl are kl and k′l
2 + l′k

2 − 2k′l′, respectively. (e de-
gree formula for (gk, hl) in Gk ∨Hl is ldGk

(gk) + kdHl
(hl) −

dGk
(gk)dHl

(hl).
(e symmetric difference Gk ⊕Hl is a graph with vertex

set V(Gk) × V(Hl) and (gk, hl)(gk
′, hl
′) ∈ E(Gk ⊕Hl)

whenever [gkgk
′ ∈ E(Gk)] or [hlhl

′ ∈ E(Hl)] but not both.
(e order and size of Gk ⊕Hl are kl and k′l

2 + l′k2 − 4kl,
respectively. (e degree formula for (gk, hl) ∈ V(Gk ⊕Hl) is
ldGk

(gk) + kdHl
(hl) − 2dGk

(gk)dHl
(hl).

Let Gk1
, Gk2

, . . . , Gkn
be all vertex disjoint graphs. (en,

their join is a graph whose vertex set is ∪ n
s�1V(Gks

) and edge
set is ∪ n

s�1E(Gks
) together with the edges linkingV(Gk1

) and
V(Gk2

), V(Gk2
) and V(Gk3

) so on V(Gkn−1
) and V(Gkn

). (e
degree formula of gk ∈ V(Gk1

+ Gk2
+ · · · + Gkn

) is
dGks

(gk) + r − ks, s � 1, 2, . . . , n and r � k1 + k2 + · · · + kn.
(e corona product Gk ∘Hl is acquired by taking Gk as a

single copy and k copies of Hl and by linking r-th vertex of
Gk to every vertex of r-th copy of Hl, where 1≤ r≤ k. (e
graph Gk ∘Hl has size and order k′ + kl′ + kl and k(1 + l),
respectively. (e degree formula of g ∈ V(Gk ∘Hl) is

dGk ∘Hl
(g) �

dGk
(g) + l, forg ∈ V Gk( ,

dHl
(g) + 1, forg ∈ V Hl( .

⎧⎨

⎩ (3)

(e Indu–Bala product Gk▼Hl is obtained from two
disjoint copies of Gk + Hl by linking the corresponding
vertices of two copies of Hl. (e order and size of Gk▼Hl are
2(k + l) and 2k′ + 2l′ + 2kl + l, respectively. (e degree of
g ∈ V(Gk▼Hl) is

dGk▼Hl
(g) �

dGk
(g) + l, forg ∈ V Gk( ,

dHl
(g) + k + 1, forg ∈ V Hl( .

⎧⎨

⎩ (4)

(e double graph D[Gk] is acquired by taking original
edge set of two copies V1(Gk) and V2(Gk) of V(Gk) and
linking each vertex in V1(Gk) with the linked vertices of
corresponding vertex in V2(Gk). (e strong double graph
SD[Gk] is acquired by taking two copies of V1(Gk) and
V2(Gk) of V(Gk) and linking each vertex in V1(Gk) with
closed neighborhood of corresponding vertex in V2(Gk).

Figure 1 depicts some graph operations. For more details
on these graph operations, see [5–14]. Also, we refer some
recent articles [15–19] on different kinds of descriptors.It is
an important and well-reputed problem to study and explore
the molecular topological descriptors of the graph opera-
tions in terms of the original graphs, say Gk and Hl, and this
also helps to explore the physicochemical properties of the
complex chemical structures which arise from these graph
operations. (e upper and lower bounds of any molecular
descriptors are the important information related to a
chemical graph. (ey determine the approximate possible
range of the invariant in the form of molecular structural
parameters. (ere are some bounds already available for the
inverse sum indeg (ISI) index regarding the number of
pendant vertices, size, radius, smallest and largest vertex
degrees, and smallest nonpendent vertex degree of a graph
computed in [3]. (e objective of this article is to determine
the bounds for inverse sum indeg index of some graph
operations including Cartesian product, tensor product,
strong product, composition, disjunction, symmetric dif-
ference, corona product, Indu–Bala product, union of
graphs, double graph, and strong double graph in the form
of original graphs, say Gk and Hl.

2. Applications of Graph Theory Concept and
Topological Indices in Chemistry

In 1936, Hosoya introduced the concept of graph termi-
nologies in chemistry and provided a modeling for mole-
cules. (is modeling contents lead to predict the chemical
properties of molecules, easy classification of chemical
compounds, computer simulations, and computer-assisted
design of new chemical compounds. As in current century,
chemists manipulate graphs on a daily basis using Table 1
terminologies for recent development in their research.

Graph hypothesis had investigated an interesting exer-
cise around in research. Compound graph speculation has
provided a collection of beneficial indices, for instance,
topological indices. (e Zagreb indices are the topological
indices that are correlated to a substantial computation of
fabricated characteristics of the particles and have been
investigated parallel to establishing the Kovats constants and
limit of the particles [20]. (e hyper Zagreb descriptor has a
strong bound between the security of direct dendrimers
besides the expanded medication stores and for establishing
the strain criticalness of cyclo alkanes [21]. To connect with
various physico-mix characteristics, Zagreb indices have
required deep control upon the essentialness of the den-
drimers [22]. (e Zagreb polynomials were determined to
happen for computation of the π-electron imperativeness of
the particles inside specific brutal verbalizations [23, 24].
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3. InverseSumIndegIndexofGraphOperations

In this section, we compute the inverse sum indeg index
of the Cartesian product, tensor product, strong
product, composition, disjunction, symmetric difference,
corona product, Indu–Bala product, double graph, and
strong double graph. (e relation between largest and

smallest degree of Gk to the degree of gk ∈ V(Gk) is as
follows:

dGk
gk( ≤ΔGk

,

dGk
gk( ≥ δGk

.
(5)

In the upcoming theorem, we calculate the bounds for
inverse sum indeg (ISI) index of Cartesian product.

Theorem 1. Let Gk and Hl be two graphs. <en,

M2 Gk ⊳Hl( 

2 ΔGk
+ ΔHl

 
≤ ISI Gk ⊳Hl( ≤

M2 Gk ⊳Hl( 

2 δGk
+ δHl

 
. (6)

The equalities hold if and only if Gk and Hl are regular.

Proof. Using the degree formula for a vertex of Gk ⊳Hl in
equation (1),

ISI Gk ⊳Hl(  � 

gk,hl( ) gk
′,hl
′( )∈E Gk⊳Hl( )

dGk⊳Hl
gk, hl( dGk⊳Hl

gk
′, hl
′( 

dGk⊳Hl
gk, hl(  + dGk⊳Hl

gk
′, hl
′( 

� 

gk,hl( ) gk
′,hl
′( )∈E Gk⊳Hl( )

dGk⊳Hl
gk, hl( dGk⊳Hl

gk
′, hl
′( 

dGk
gk(  + dHl

hl(  + dGk
gk
′(  + dHl

hl
′( 

≤
1

2 δGk
+ δHl

 


gk,hl( ) gk
′,hl
′( )∈E Gk⊳Hl( )

dGk⊳Hl
gk, hl( dGk⊳Hl

gk
′, hl
′( 

�
M2 Gk ⊳Hl( 

2 δGk
+ δHl

 
.

(7)

Similarly, we can evaluate

ISI Gk ⊳Hl( ≥
M2 Gk ⊳Hl( 

2 ΔGk
+ ΔHl

 
. (8)

(e above equalities hold if and only if factor graphs are
regular.

In the next theorem, we calculate the bounds for ISI
index of tensor product of Gk and Hl. □

(a) (b) (c) (d) (e)

(f ) (g) (h) (i) (j)

Figure 1: Graph operations: (a) P3 □P4; (b) P3 × P4; (c) P3 ⊠P4; (d) P4[P3]; (e) P4 ∘P3; (f ) P3 ∨P4; (g) P3 ⊕P4; (h) P3▼P4; (i) D[P4];
(j) SD[P4].

Table 1: Graph theory and chemistry dictionary.
Graph theory Chemistry
Graph Structural formula
Vertex Atom
Edge Chemical bond
Vertex degree Valency of atom
Tree Acyclic structure
Bipartite graph Alternant structure
Perfect matching Kekule structure
Adjacency matrix Huckel matrix
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Theorem 2. Let Gk and Hl be two graphs. <en,

M2 Gk( M2 Hl( 

ΔGk
ΔHl

≤ ISI Gk × Hl( ≤
M2 Gk( M2 Hl( 

δGk
δHl

. (9)

The above equalities hold if and only if both graphs are
regular.

Proof. Using the degree formula for a vertex in tensor
product of graphs in (1),

ISI Gk × Hl(  � 

gk,hl( ) gk
′,hl
′( )∈E Gk×Hl( )

dGk×Hl
gk, hl( dGk×Hl

gk
′, hl
′( 

dGk×Hl
gk, hl(  + dGk×Hl

gk
′, hl
′( 

� 

gk,hl( ) gk
′,hl
′( )∈E Gk×Hl( )

dGk×Hl
gk, hl( dGk×Hl

gk
′, hl
′( 

dGk
gk( dHl

hl(  + dGk
gk
′( dHl

hl
′( 

≤
1

2δGk
δHl



gk,hl( ) gk
′,hl
′( )∈E Gk×Hl( )

dGk×Hl
gk, hl( dGk×Hl

gk
′, hl
′( 

�
M2 Gk × Hl( 

2δGk
δHl

�
M2 Gk( M2 Hl( 

δGk
δHl

.

(10)

See (eorem 2.1 in [25]. Similarly, we can compute

ISI Gk × Hl( ≥
M2 Gk( M2 Hl( 

ΔGk
ΔHl

. (11)

(e above equalities hold if and only if factor graphs are
regular.

We derive the bounds of inverse sum indeg (ISI) index of
Gk ⊠Hl in the upcoming theorem. □

Theorem 3. Let Gk and Hl be two graphs. <en,

M2 Gk ⊠Hl( 

2 ΔGk
+ ΔHl

+ ΔGk
ΔHl

 
≤ ISI Gk ⊠Hl( ≤

M2 Gk ⊠Hl( 

2 δGk
+ δHl

+ δGk
δHl

 
.

(12)

The equalities hold if and only if both graphs are regular.

Proof. Using the degree formula of a vertex in strong
product of graphs in (1),

ISI Gk × Hl(  � 

gk,hl( ) gk
′,hl
′( )∈E Gk⊠Hl( )

dGk⊠Hl
gk, hl( dGk⊠Hl

gk
′, hl
′( 

dGk⊠Hl
gk, hl(  + dGk⊠Hl

gk
′, hl
′( 

� 

gk,hl( ) gk
′,hl
′( )∈E Gk ⊳Hl( )

dGk⊠Hl
gk, hl( dGk⊠Hl

gk
′, hl
′( 

dGk
gk(  + dHl

hl(  + dGk
gk( dHl

hl(  + dGk
gk
′( dHl

hl
′(  + dGk

gk(  + dHl
hl
′( 

≤
1

2 δGk
+ δHl

+ δGk
δHl

 


gk,hl( ) gk
′,hl
′( )∈E Gk ⊳Hl( )

dGk⊠Hl
gk, hl( dGk⊠Hl

gk
′, hl
′( 

�
M2 Gk × Hl( 

2 δGk
+ δHl

+ δGk
δHl

 
.

(13)

In a similarly way,
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ISI Gk ⊠Hl( ≥
M2 Gk ⊠Hl( 

2 ΔGk
+ ΔHl

+ ΔGk
ΔHl

 
. (14)

(e above equalities satisfy if and only if factor graphs
are regular.

In the upcoming theorem, we evaluate the bounds for
inverse sum indeg (ISI) index of Gk[Hl]. □

Theorem 4. Let Gk and Hl be two graphs. <en,

M2 Gk Hl ( 

2 lΔGk
+ ΔHl

 
≤ ISI Gk Hl ( ≤

M2 Gk Hl ( 

2 lδGk
+ δHl

 
. (15)

The equalities hold if and only if both graphs are regular.

Proof. Using the degree formula of an element of
V(Gk[Hl]) in (1),

ISI Gk Hl (  � 

gk,hl( ) gk
′,hl
′( )∈E Gk Hl[ ]( )

dGk Hl[ ] gk, hl( dGk Hl[ ] gk
′, hl
′( 

dGk Hl[ ] gk, hl(  + dGk Hl[ ] gk
′, hl
′( 

� 

gk,hl( ) gk
′,hl
′( )∈E Gk Hl[ ]( )

dGk Hl[ ] gk, hl( dGk Hl[ ] gk
′, hl
′( 

ldGk
gk(  + dHl

hl(  + ldGk
gk
′(  + dHl

hl
′( 

≤
1

2 lδGk
+ δHl

 


gk,hl( ) gk
′,hl
′( )∈E Gk Hl[ ]( )

dGk Hl[ ] gk, hl( dGk Hl[ ] gk
′, hl
′( 

�
M2 Gk Hl ( 

2 lδGk
+ δHl

 
.

(16)

In a similar way,

ISI Gk Hl ( ≥
M2 Gk Hl ( 

2 lΔGk
+ ΔHl

 
. (17)

(e above equalities hold if and only if factor graphs are
regular.

In the following theorem, we present the bounds for
inverse sum indeg (ISI) index of disjunction of Gk and
Hl. □

Theorem 5. Let Gk and Hl be two graphs. <en,

M2 Gk∨Hl( 

2 lΔGk
+ kΔHl

− ΔGk
ΔHl

 
≤ ISI Gk∨Hl( 

≤
M2 Gk∨Hl( 

2 lδGk
+ kδHl

− δGk
δHl

 
.

(18)

The equalities hold when factor graphs are regular.

Proof. Using the degree formula of an element of
V(Gk ∨Hl) in (1),

ISI Gk ∨Hl(  � 

gk,hl( ) gk
′,hl
′( )∈E Gk ∨Hl( )

dGk ∨Hl
gk, hl( dGk ∨Hl

gk
′, hl
′( 

dGk ∨Hl
gk, hl(  + dGk ∨Hl

gk
′, hl
′( 

� 

gk,hl( ) gk
′,hl
′( )∈E Gk ∨Hl( )

dGk ∨Hl
gk, hl( dGk ∨Hl

gk
′, hl
′( 

ldGk
gk(  + kdHl

hl(  − dGk
gk( dHl

hl(  + ldGk
gk
′(  + kdHl

hl
′(  − dGk

gk
′( dHl

hl
′( 

≤
1

2 lδGk
+ kδHl

− δGk
δHl

 


gk,hl( ) gk
′,hl
′( )∈E Gk ∨Hl( )

dGk ∨Hl
gk, hl( dGk ∨Hl

gk
′, hl
′( 

�
M2 Gk ∨Hl( 

2 lδGk
+ kδHl

− δGk
δHl

 
.

(19)
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Similarly, we compute

ISI Gk ∨Hl( ≥
M2 Gk ∨Hl( 

2 lΔGk
+ kΔHl

− ΔGk
ΔHl

 
. (20)

(e above equalities hold when both graphs are regular.
Next, we derive the bounds of inverse sum indeg (ISI)

index of Gk ⊕Hl. □

Theorem 6. Let Gk and Hl be two graphs. <en,

M2 Gk ⊕Hl( 

2 lΔGk
+ kΔHl

− 2ΔGk
ΔHl

 
≤ ISI Gk ⊕Hl( 

≤
M2 Gk ⊕Hl( 

2 lδGk
+ kδHl

− 2δGk
δHl

 
.

(21)

The equalities hold if and only if factor graphs are
regular.

Proof. Using the degree formula of a vertex of V(Gk ⊕Hl)

in (1),

ISI Gk ⊕Hl(  � 

gk,hl( ) gk
′,hl
′( )∈E Gk ⊕Hl( )

dGk ⊕Hl
gk, hl( dGk ⊕Hl

gk
′, hl
′( 

dGk ⊕Hl
gk, hl(  + dGk ⊕Hl

gk
′, hl
′( 

� 

gk,hl( ) gk
′,hl
′( )∈E Gk ⊕Hl( )

dGk ⊕Hl
gk, hl( dGk ⊕Hl

gk
′, hl
′( 

ldGk
gk(  + kdHl

hl(  − 2dGk
gk( dHl

hl(  + ldGk
gk
′(  + kdHl

hl
′(  − 2dGk

gk
′( dHl

hl
′( 

≤
1

2 lδGk
+ kδHl

− 2δGk
δHl

 


gk,hl( ) gk
′,hl
′( )∈E Gk ⊕Hl( )

dGk ⊕Hl
gk, hl( dGk ⊕Hl

gk
′, hl
′( 

�
M2 Gk ⊕Hl( 

2 lδGk
+ kδHl

− 2δGk
δHl

 
.

(22)

Similarly,

ISI Gk ⊕Hl( ≥
M2 Gk ⊕Hl( 

2 lΔGk
+ kΔHl

− 2ΔGk
ΔHl

 
. (23)

(e above equalities hold if and only if both graphs are
regular.

Next, we evaluate the bounds of inverse sum indeg (ISI)
index of join of n graphs. □

Theorem 7. Let Gk � Gk1
+ Gk2

+ · · · + Gkn
. <en,



n

s�1

M2 Gks
  + r − ks( M1 Gks

  + ks
′ r − ks( 

2

2 ΔGks
+ r − ks 

+
1
2



n

s≠j,s,j�1

2ks
′ + ks r − ks( (  2kj

′ + kj r − kj  

ΔGks
+ ΔGkj

+ 2r − ks − kj

≤ ISI Gk( ≤ 
n

s�1

M2 Gks
  + r − ks( M1 Gks

  + ks
′ r − ks( 

2

2 δGks
+ r − ks 

+
1
2



n

i≠j,s,j�1

2ks
′ + ks r − ks( (  2kj

′ + kj r − kj  

δGks
+ δGkj

+ 2r − ks − kj

.

(24)
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The equalities hold if and only if Gks
, for s � 1, 2, . . . , n,

are regular graphs.
Proof. We assume that |V(Gks

)| � ks, |E(Gks
)|| � ks
′ for s �

1, 2, . . . , n and r � k1 + k2 + · · · + kn. By using the degree
formula of a vertex in Gk given in (1),

ISI Gk(  � 

gkgk
′∈E Gk( )

dGk
gk( dGk

gk
′( 

dGk
gk(  + dGk

gk
′( 

� 

n

s�1


gkgk
′∈E Gks

( 

dGks
gk(  + r − ks  dGks

gk
′(  + r − ks 

dGks
gk(  + dGks

gk
′(  + 2r − 2ks

+
1
2



n

s≠ j,
s,j�1



gk∈V Gks
( 



gk
′∈V Gkj

 

dGks
gk(  + r − ks  − dGkj

gk
′(  + r − kj 

dGks
gk(  + dGkj

gk
′(  + 2r − ks − kj

≤ 

n

s�1


gkgk
′∈E Gks

( 

dGks
gk(  + r − ks  dGks

gk
′(  + r − ks 

δGks
+ δGks

+ 2r − 2ks

+
1
2



n

s≠ j,
s,j�1



gk∈V Gks
( 



v∈V Gkj
 

dGks
gk(  + r − ks  dGkj

gk
′(  + r − kj 

δGks
+ δGkj

+ 2r − ks − kj

� 
n

s�1

M2 Gks
  + r − ks( M1 Gks

  + ks
′ r − ks( 

2

2 δGks
+ r − ks 

+
1
2



n

s≠ j,
s,j�1

2ks
′ + ks r − ks( (  2kj

′ + kj r − kj  

δGks
+ δGkj

+ 2r − ks − kj

.

(25)

Similarly

ISI Gk( ≥ 
n

s�1

M2 Gks
  + r − ks( M1 Gks

  + ks
′ r − ks( 

2

2 ΔGks
+ r − ks 

+
1
2



n

s≠ j,
s,j�1

2ks
′ + ks r − ks( (  2kj

′ + kj r − kj  

ΔGks
+ ΔGkj

+ 2r − ks − kj

. (26)

(e above equalities hold if and only if Gks
,

s � 1, 2, . . . , n, are regular.
In the following theorem, we calculate the bounds for ISI

index of Gk ∘Hl. □

Theorem 8. Let Gk and Hl be k-vertex and l-vertex graphs.
<en,

k M2 Hl(  + M1 Hl(  + l( 

2 ΔHl
+ 1 

+
2l′ + l(  2k′ + kl( 

ΔGk
+ ΔHl

+ l + 1
+

M2 Gk(  + lM1 Gk(  + l
2
l′

2 ΔGk
+ l 

≤ ISI Gk ∘Hl( 

≤
k M2 Hl(  + M1 Hl(  + l( 

2 δHl
+ 1 

+
2l′ + l(  2k′ + kl( 

δGk
+ δHl

+ l + 1
+

M2 Gk(  + lM1 Gk(  + l
2
l′

2 δGk
+ l 

.

(27)
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The equalities hold if and only if both graphs are regular. Proof. Using the degree formula of a vertex in corona
product in (1),

ISI Gk ∘Hl(  � k 

hlhl
′∈E Hl( )

dHl
hl(  + 1  dHl

hl
′(  + 1 

dHl
hl(  + dHl

hl
′(  + 2

+ 
k

s�1


l

j�1

dHl
hlj

  + 1  dGk
gks

  + l 

dHl
hlj

  + dGk
gks

  + l + 1

+ 

gkgk
′∈E Gk( )

dGk
gk(  + l  dGk

gk
′(  + l 

dGk
gk(  + dGk

gk
′(  + 2l

.

(28)

From equation (2), we obtain

ISI Gk ∘Hl( ≤ k 

hlhl
′∈E Hl( )

dHl
hl(  + 1  dHl

hl
′(  + 1 

2 δHl
+ 1 

+ 
k

s�1


l

j�1

dHl
hlj

  + 1  dGk
gks

  + l 

δGk
+ δHl

+ l + 1

+ 

gkgk
′∈E Gk( )

dGk
gk(  + l  dGk

gk
′(  + l 

2 δGk
+ l 

�
k M2 Hl(  + M1 Hl(  + l( 

2 δHl
+ 1 

+
2l′ + l(  2k′ + kl( 

δGk
+ δHl

+ l + 1
+

M2 Gk(  + lk′ Gk(  + l
2
l′

2 δGk
+ l 

.

(29)

Similarly, we calculate

ISI Gk ∘Hl( ≥
k M2 Hl(  + M1 Hl(  + l( 

2 ΔHl
+ 1 

+
2l′ + l(  2k′ + kl( 

ΔGk
+ ΔHl

+ l + 1
+

M2 Gk(  + lM1 Gk(  + l
2
l′

2 ΔGk
+ l 

. (30)

(e above equalities hold only when Gk and Hl are
regular graphs.

Next, we evaluate the bounds for inverse sum indeg (ISI)
index of Indu–Bala product. □
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Theorem 9. Let Gk and Hl be k-vertex and l-vertex graphs.
<en,

M2 Gk(  + lM1 Gk(  + l
2
k′

ΔGk
+ l

+
2M2 Hl(  +(2l + 3)M1 Hl(  + 2l′ + l( (k + 1)

2
+ 4l′(k + 1)

2 ΔHl
+ k + 1 

+
2 4k′l′ + 2k′l(k + 1) + 2l′kl + l

2
k(k + 1) 

ΔGk
+ ΔHl

+ k + l + 1
≤ ISI Gk▼Hl( ≤

M2 Gk(  + lM1 Gk(  + l
2
k′

δGk
+ l

+
2M2 Hl(  +(2l + 3)M1 Hl(  + 2l′ + l( (k + 1)

2
+ 4l′(k + 1)

2 δHl
+ k + 1 

+
2 4k′l′ + 2k′l(k + 1) + 2l′kl + l

2
k(k + 1) 

δGk
+ δHl

+ k + l + 1
.

(31)

The equalities hold only when Gk and Hl are regular. Proof. Using the degree formula of a vertex in Indu–Bala
product in (1),

ISI Gk▼Hl(  � 2 

gkgk
′∈E Gk( )

dGk
gk(  + l  dGk

gk
′(  + l 

dGk
gk(  + dGk

gk
′(   + 2l

+ 

hlhl
′∈E Hl( )

dHl
hl(  + k + 1  dHl

hl
′(  + k + 1 

dHl
hl(  + dHl

hl
′(  + 2k + 2

⎡⎢⎢⎢⎢⎢⎢⎢⎣

+ 

gk∈V Gk( )



hl∈V Hl( )

dGk
gk(  + l  dHl

hl(  + k + 1 

dGk
gk(  + dHl

hl(  + k + l + 1
⎤⎥⎥⎥⎥⎥⎥⎥⎦ + 

hl∈V Hl( )

dHl
hl(  + k + 1 

2

2 dHl
hl(  + k + 1 

.

(32)

Using equation (2), then we have

ISI Gk▼Hl( ≤ 2 

gkgk
′∈E Gk( )

dGk
gk(  + l  dGk

gk
′(  + l 

2 δGk
+ l 

+ 

hlhl
′∈E Hl( )

dHl
hl(  + k + 1  dHl

hl
′(  + k + 1 

2 δHl
+ k + 1 

⎡⎢⎢⎢⎢⎢⎢⎢⎣

+ 

gk∈V Gk( )



hl∈V Hl( )

dGk
gk(  + l  dHl

hl(  + k + 1 

δGk
+ δHl

+ k + l + 1
⎤⎥⎥⎥⎥⎥⎥⎥⎦ + 

hl∈V Hl( )

dHl
hl(  + k + 1 

2

2 δHl
+ k + 1 

�
M2 Gk(  + lM1 Gk(  + l

2
k′

δGk
+ l

+
2M2 Hl(  +(2l + 3)M1 Hl(  + 2l′ + l( (k + 1)

2
+ 4l′(k + 1)

2 δHl
+ k + 1 

+
2 4k′l′ + 2k′l(k + 1) + 2l′kl + l

2
k(k + 1) 

δGk
+ δHl

+ k + l + 1
.

(33)

Similarly, we calculate
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ISI Gk▼Hl( ≥
M2 Gk(  + lM1 Gk(  + l

2
k′

ΔGk
+ l

+
2M2 Hl(  +(2l + 3)M1 Hl(  + 2l′ + l( (k + 1)

2
+ 4l′(k + 1)

2 ΔHl
+ k + 1 

+
2 4k′l′ + 2k′l(k + 1) + 2l′kl + l

2
k(k + 1) 

ΔGk
+ ΔHl

+ k + l + 1
.

(34)

(e equalities hold only when Gk and Hl are regular
graphs.

In the next theorem, we find the inverse sum indeg (ISI)
index of double graph. □

Theorem 10. Let Gk be a k-vertex graph. <en,

ISI D Gk (  � 8ISI Gk( . (35)

Proof. Using the degree formula of a vertex in D[Gk] in
equation (1), we acquire

ISI D Gk (  � 

gkgk
′∈E D Gk[ ]( )

dD Gk[ ] gk( dD Gk[ ] gk
′( 

dD Gk[ ] gk(  + dD Gk[ ] gk
′( 

� 4 

gkgk
′∈E Gk( )

2dGk
gk(   2dGk

gk
′(  

2dGk
gk(  + 2dGk

gk
′( 

� 8 

gkgk
′∈E Gk( )

dGk
gk( dGk

gk
′( 

dGk
gk(  + dGk

gk
′( 

� 8ISI Gk( .

(36)

In the upcoming theorem, we calculate the bounds for
inverse sum indeg (ISI) index of strong double graph. □

Theorem 11. Let Gk be an k-vertex graph. <en,

M2 SD Gk ( 

2 2ΔGk
+ 1 
≤ ISI SD Gk ( ≤

M2 SD Gk ( 

2 2δGk
+ 1 

. (37)

The equalities hold only when Gk is regular.

Proof. Using the degree formula of a vertex in SD[Gk] in
(1),

ISI SD Gk (  � 

gkgk
′∈E SD Gk[ ]( )

d SD Gk[ ]( ) gk( d SD Gk[ ]( ) gk
′( 

d SD Gk[ ]( ) gk(  + d SD Gk[ ]( ) gk
′( 

� 

gkgk
′∈E SD Gk[ ]( )

d SD Gk[ ]( ) gk( d SD Gk[ ]( ) gk
′( 

2dGk
gk(  + 1 + 2dGk

gk
′(  + 1

≤ 

uv∈E SD Gk[ ]( )

d SD Gk[ ]( ) gk( d SD Gk[ ]( ) gk
′( 

2 δGk
+ 1 

�
M2 SD Gk ( 

2 2δGk
+ 1 

.

(38)

Similarly, we compute

ISI SD Gk ( ≥
M2 SD Gk ( 

2 2ΔGk
+ 1 

. (39)

(e above equalities hold only when Gk is a regular
graph. □

4. Conclusion

In this paper, some graph operations including different
products, differences, union of graphs, double graph, and
strong double graph are studied. In particular, we have
found the sharp bounds for inverse sum indeg (ISI) index of
these operations of graphs.(e investigation related to other
significant predictors is still open.
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Let G be a simple graph of order n. +e matrixL(G) � D(G) − A(G) is called the Laplacian matrix of G, where D(G) and A(G)

denote the diagonal matrix of vertex degrees and the adjacency matrix of G, respectively. Let l1(G), ln− 1(G) be the largest
eigenvalue, the second smallest eigenvalue of L(G) respectively, and λ1(G) be the largest eigenvalue of A(G). In this paper, we
will present sharp upper and lower bounds for l1(G) and ln− 1(G). Moreover, we investigate the relation between l1(G) and λ1(G).

1. Introduction

We begin with the preliminaries which are required throughout
this paper. Let G be a simple graph with vertex set V � V(G)

and edge set E(G). +e integers n � n(G) � |V(G)| and ε �

ε(G) � |E(G)| are the order and the size of the graph G, re-
spectively. +e open neighborhood of vertex vi is
NG(vi) � N(vi) � vj ∈ V(G) | vivj ∈ E(G) , and the degree
of vi is dG(vi) � di � |N(vi)|. Let Kn be the complete graph of
order n andG be the complement of the graphG. LetΔ and δ be
themaximumdegree and theminimumdegree of the vertices of
G, respectively. +e eigenvalues of the adjacency matrix A(G),
are denoted by λ1(G)≥ λ2(G)≥ . . . ≥ λn(G). +e matrix
L(G) � D(G) − A(G), where D(G) is the diagonal matrix of
vertex degrees, is called the Laplacian matrix of G and rarely
appears in the literature. +e eigenvalues of Laplacian matrix G

are denoted as l1(G)≥ l2(G) ≥ . . . ≥ ln(G) � 0.+e Laplacian
matrix of a graph and its eigenvalues can be used in several
areas of mathematical research and have a physical interpre-
tation in various physical and chemical theories.+e adjacency
matrix of a graph and its eigenvalues were much more in-
vestigated in the past than the Laplacian matrix. Many related
physical quantities have the same relation toL(G); also, there
are many problems in physics and chemistry where the
Laplacian matrices of graphs and their spectra play the central
role. Recently, its applications to several difficult problems in
graph theory were discovered (see [1–7]).

Merris [8] discussed the Laplacian matrices of graphs. In
[9], some bounds are established for Laplacian eigenvalues of
graphs. Taheri et al. [10] presented some bounds for the
largest Laplacian eigenvalue of graphs. Patra et al. [11]
obtained bounds for the Laplacian spectral radius of graphs.
In [12], the authors investigated some bounds for the
Laplacian spectral radius of an oriented hypergraph. Chen
[13] established some bounds for λ1(G).

In this paper, we first present sharp upper and lower
bounds for l1(G) and ln− 1(G), and then we investigate the
relation between l1(G) and λ1(G).

2. Preliminaries

In this section, some fundamental results that are used in this
paper are recalled. We begin with the following result, which
plays a key role in this section.

Lemma 1 (see [14]). Let G be a graph of order n and size ε.
+en,



n− 1

i�1
li � 

n

i�1
li � trL(G) � 2ε,



n− 1

i�1
l
2
i � 

n

i�1
l
2
i � trL

2
(G) � 2ε + M1(G),

(1)
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where M1(G) � 
n
i�1 d2

i is the well-known graph invariant
called the first Zagreb index [15].

Favaron and Mahéo [16] proved the following result:

Lemma 2 (see [16]). Let G be a graph of order n. +en,

λ1 ≥

������


n
i�1 d

2
i

n



. (2)

The proof of the next result can be found in [17].

Lemma 3. Let G be a graph of order n. .en, l1 � l2 � . . . �

ln− 1 if and only if G � Kn or G � Kn.
Das in [18] proved the following lemma.

Lemma 4. Let G be a connected graph of order n≥ 3. .en,
l2 � l3 � . . . � ln− 1 if and only if G � Kn.

In [14], a class of real polynomials Pn(x) � xn+ a1xn− 1 +
a2 xn− 2 + b3 xn− 3+ . . . + bn, denoted as Pn(a1, a2), where a1
and a2 are fixed real numbers, was considered.

Theorem 1. For the roots y1 ⩾y2 ⩾ . . . ⩾yn of an arbitrary
polynomial φn(y) from this class, the following values were
introduced:

y �
1
n



n

i�1
yi,

Γ � n 
n

i�1
y
2
i − 

n

i�1
yi

⎛⎝ ⎞⎠

2

.

(3)

Then upper and lower bounds for the polynomial roots,
yi, i � 1, 2, . . . , n, were determined in terms of the intro-
duced values

y +
1
n

�����
Γ

n − 1



⩽y1 ⩽y +
1
n

�������
(n − 1)Γ


,

y −
1
n

��������

(i − 1)

n − i + 1
Γ



⩽yi ⩽y +
1
n

�������

(n − i)

i
Γ



, for i � 2, 3, . . . , n − 1.

(4)

3. Main Results

In this section, we will obtain some sharp upper and lower
bounds for l1(G) and ln− 1(G) involving the first Zagreb
index and order and size of graphs. Moreover, we investigate
the relation between l1(G) and λ1(G). +e first result is an
immediate consequence of +eorem 1 and Lemma 1.

Lemma 5. Let G be a graph of order n≥ 2 and size ε. .en,

2ε +

��������������������������

(n − 1) 2ε + M1(G)(  − 4ε2/n − 2


n − 1
≤ l1

≤
2ε +

�����������������������������
(n − 2) (n − 1) 2ε + M1(G)(  − 4ε2 



n − 1
,

(5)

2ε −
�������������������������������
(n − 2) (n − 1) 2ε + M1(G)(  − 4ε2 /2



n − 1
≤ ln− 1 ≤

2ε
n − 1

.

(6)

Here, we will obtain a lower and an upper bound for the
largest Laplacian eigenvalue l1 and the second smallest
Laplacian eigenvalue ln− 1, respectively.

Theorem 2. Let G be a graph of order n≥ 3 and size ε.
.en,

l1 ≥
2ε

n − 1
+

���������������������������������

1
(n − 1)(n − 2)

2ε(n − 1 + 2ε)
n − 1

+ 
n

i�1
d
2
i

⎛⎝ ⎞⎠




,

(7)

ln− 1 ≤
2ε

n − 1
−

���������������������������������

1
(n − 1)(n − 2)

2ε(n − 1 + 2ε)
n − 1

+ 
n

i�1
d
2
i

⎛⎝ ⎞⎠




,

(8)

and the equalities hold if and only if G � Kn or G � Kn.

Proof. For every fixed number t, we can write that



n− 1

i�1
li − (n − 1)lt

⎛⎝ ⎞⎠

2

� 
n− 1

i�1
li − lt( ⎛⎝ ⎞⎠

2

� 
n− 1

i�1
li − lt( 

2
+ 2 

1≤i≤j≤n− 1
li − lt(  li − lt( .

(9)

It is not hard to see that when t � 1 or t � n − 1, we get


1≤i≤j≤n− 1

li − lt(  li − lt( ≥ 0. (10)

Hence, we have



n− 1

i�1
li − (n − 1)lt

⎛⎝ ⎞⎠

2

≥ 
n− 1

i�1
li − lt( 

2
. (11)

So, we can write
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n− 1

i�1
li

⎛⎝ ⎞⎠

2

− 2(n − 1)lt 

n− 1

i�1
li +(n − 1)

2
l
2
t

≥ 
n− 1

i�1
l
2
i − 2lt 

n− 1

i�1
li +(n − 1)lt.

(12)

+is is equivalent to

l
2
t −

2lt
n− 1
i�1 li

n − 1
+


n− 1
i�1 li 

2

(n − 1)
2

− (n − 1)
≥


n− 1
i�1 l

2
i

(n − 1)
2

− (n − 1)
,

(13)

or

lt −


n− 1
i�1 li

n − 1
 

2

−


n− 1
i�1 li 

2

(n − 1)
2 +


n− 1
i�1 li 

2

(n − 1)(n − 2)
≥


n− 1
i�1 l

2
i

(n − 1)(n − 2)
.

(14)

+erefore, we have

lt −


n− 1
i�1 li

n − 1
 

2

≥
1

(n − 1)(n − 2)


n− 1

i�1
l
2
i −

1
n − 1



n− 1

i�1
li

⎛⎝ ⎞⎠

2

⎛⎝ ⎞⎠.

(15)

Hence, by using Lemma 1, we have



n− 1

i�1
li � 

n

i�1
li � trL(G) � 2ε, (16)



n− 1

i�1
l
2
i � 

n

i�1
l
2
i � trL

2
(G) � 2ε + M1(G). (17)

By combining inequalities (15)–(17), we get the following
inequality:

l1 −
2ε

n − 1
 

2
≥

1
(n − 1)(n − 2)

2ε −
4ε2

n − 1
+ 

n

i�1
d
2
i

⎛⎝ ⎞⎠.

(18)

By inequalities (5) and (6), we have

l1 −
2ε

n − 1
≥ 0, ln− 1 −

2ε
n − 1
≤ 0. (19)

+erefore, we have

l1 ≥
2ε

n − 1
+

���������������������������������

1
(n − 1)(n − 2)

2ε(n − 1 + 2ε)
n − 1

+ 
n

i�1
d
2
i

⎛⎝ ⎞⎠




ln− 1 ≤
2ε

n − 1
−

���������������������������������

1
(n − 1)(n − 2)

2ε(n − 1 + 2ε)
n − 1

+ 
n

i�1
d
2
i

⎛⎝ ⎞⎠




.

(20)

If the equality in (7) holds, then the inequality in (10)
must hold, and hence we have l1 � l2 � · · · � ln− 1 � 2ε/n − 1;
thus, by Lemma 3, we have G � Kn or G � Kn. Conversely, if

G � Kn or G � Kn, then it is not difficult to see that the
equalities in (7) and (8) hold.

Next, we present an upper bound for spectral radius of
the Laplacian matrix. □

Theorem 3. Let G be a connected graph of order n≥ 2 and
size ε. .en,

l1 ≤

��������������������������������
(16n − 16) 2ε + M1(G)( (n − 2) − 4ε2 


+ 8ε

8n − 8
. (21)

Proof. Applying Lemma 1, we can write

β ≔ 
n− 1

i�1
l
2
i � 2ε + 

n− 1

i�1
d
2
i � 2ε + M1(G), (22)

or

l
2
1 � β − 

n− 1

i�2
l
2
i ≤ β −

1
n − 2



n− 1

i�2
li

⎛⎝ ⎞⎠

2

� β −
2ε − l1( 

2

n − 2
. (23)

By inequality (23), we have

l
2
1 ≤ β −

4ε2 + l
2
1 − 4εl1

n − 2
. (24)

Using inequality (24), we get

l
2
1 1 +

1
n − 2

  +
4ε2

n − 2
−

4εl1
n − 2

− β≤ 0, (25)

or

l
2
1(n − 1) + 4ε2 − 4εl1 − (n − 2)β≤ 0. (26)

By inequality (26), we can write

l
2
1(n − 1) + 4ε2 − 4εl1 − 2ε(n − 2) − M1(G)(n − 2)≤ 0.

(27)

Solving this inequality leads to

l1 ≤

��������������������������������
(16n − 16) 2ε + M1(G)( (n − 2) − 4ε2 


+ 8ε

8n − 8
. (28)

Finally, we will describe a relationship between spectral
radius (l1) of the Laplacian matrix and the spectral radius
(λ1) of the adjacency matrix. □

Theorem 4. Let G be a connected graph of order n≥ 3 and
size ε. .en,

λ1 ≥

�����������������������������

l
2
1(n − 1)

n(n − 2)
+

4ε2

n(n − 2)
−

4εl1
n(n − 2)

−
2ε
n



, (29)

and the equality holds if and only if G � Kn.

Proof. By inequality (26) and Lemma 2, we have
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l
2
1(n − 1) + 4ε2 − 4εl1 ≤ (n − 2)β � (n − 2) 2ε + 

n

i�1
d
2
i

⎛⎝ ⎞⎠,

(30)

≤ (n − 2) 2ε + nλ21  � 2ε(n − 2) + n(n − 2)λ21. (31)

Now suppose that the equality holds in (29).+en, all the
inequalities in the proof must be equalities.

If the equality holds in (30), then inequality (23) must be
equality; in other words,

β − 
n− 1

i�2
l
2
i � β −

1
n − 2



n− 1

i�2
li

⎛⎝ ⎞⎠

2

, (32)

or



n− 1

i�2
l
2
i �

1
n − 2



n− 1

i�2
li

⎛⎝ ⎞⎠

2

. (33)

+erefore, by equality (33), we get

l2 � l3 � · · · � ln− 1. (34)

Hence, by Lemma 4, we get G � Kn. Conversely, one can
easily see that equality holds in (29) when G � Kn. □

4. Conclusion

In this paper, we established some sharp upper and lower
bounds for the largest eigenvalue and the second smallest
eigenvalues of Laplacian matrix involving the first Zagreb
index and order and size of graphs. Moreover, we investigate
a relation between the largest eigenvalues of Laplacian
matrix and the adjacency matrix.

+ere are still open and challenging problems for re-
searchers. For example, the problem of ABC matrix, GA
matrix, and so on remains open for further investigation.
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Let R be a commutative ring with nonzero identity and let Z(R) be its set of zero divisors. )e zero-divisor graph of R is the graph
Γ(R) with vertex set V(Γ(R)) � Z(R)∗, where Z(R)∗ � Z(R)\ 0{ }, and edge set E(Γ(R)) � x, y : x · y � 0 . One of the basic
results for these graphs is that Γ(R) is connected with diameter less than or equal to 3. In this paper, we obtain a few distance-based
topological polynomials and indices of zero-divisor graph when the commutative ring is Zp2q2 , namely, the Wiener index, the
Hosoya polynomial, and the Shultz and the modified Shultz indices and polynomials.

1. Introduction

Algebraic structures have been investigated significantly for
their nearby connection with representation theory and
number theory; likewise, they have beenwidely concentrated in
combinatorics [1, 2]. Despite the expansive theoretical research
in these areas, restricted rings and fields got consideration for
their applications to cryptography and coding theory.

In mathematical chemistry, a graphical structure of a
chemical compound is a representation of the structural
formula. In a chemical graph, vertices and edges represent
the atoms and their chemical bonds of the compound, re-
spectively. Molecular descriptors for a particular chemical
compound are calculated on basis of the corresponding
molecular graph. A topological index is a graph invariant
that is obtained from it. In [3], the first topological index,
namely, the Wiener index, was introduced. Nowadays, it is
widely used in QSAR (“Quantitative Structure Activity
Relationship”), whose properties are surveyed in [4, 5].

Topological indices are classified as degree based [6–9] and
distance based of graphs. Some well-known topological indices
based on the degrees of a graph are the Randić connectivity
index, Zagreb indices, Harmonic index, atom bond connec-
tivity, and geometric arithmetic index. )e Wiener index,
Hosaya index, and Estrada index are distance-based topological

indices [10, 11]. Topological indices formulate the criteria for the
development of compound structures, and numerical activities
on these structures extend multidisciplinary research. In what
follows, we cite some of them.

A relationship among the stability of linear alkanes and
the branched alkanes is examined using theABC index, which
helped in computation of strain energy for cycle alkanes
[12, 13]. )e GA index is more appropriate and efficient to
correlate certain physico-chemical characteristics for pre-
dictive power than the Randić connectivity index [14, 15].)e
Zagreb indices are powerful tools for the calculation of total
p-electron energy of the molecules with precise approxi-
mation [16]. )e degree-based topological indices are more
useful to examine the chemical characteristics of distinct
molecular structures. Eccentricity-based topological indices
are useful as a key for the judgement of toxicological, physico-
chemical, and pharmacological properties of a compound
through the structure of its molecules.)e study of the QSAR
is known for this sort of analysis [17]. By exploring [18, 19],
further applications of topological indices can be obtained.

1.1. Distance-Based Topological Indices and Polynomials.
In this section, we introduce the topological indices and
polynomials that will be obtained for the graphs studied in
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this paper. We recall some concepts from graph theory. Let
G be a (undirected) graph. If there is a path between any two
distinct vertices of G, then G is a connected graph. For two
distinct vertices x, y ∈ V(G), we denote d(x, y) the length of
a shortest path connecting x and y (d(x, x) � 0 and,
d(x, y) �∞ if no such a path exists). )e diameter of the
graph G is the maximum length of the shortest path con-
necting two distinct vertices of G, that is, diam(G) �

max d(x, y): x≠y ∈ V(G) . )e number of edges inci-
dence a vertex x of simple graph G is called the degree of the
vertex x, denoted as dx.

)e Wiener index [11] was introduced by Wiener in
1947 to illustrate the connection between physico-chemical
properties of organic compounds and the index of their
molecular graphs:

W(G) �
1
2


u∈V(G)


v∈V(G)

d(u, v). (1)

Randić [20] and Randić et al. [21] introduced a modified
version of the Wiener index that is used for predicting
physico-chemical properties of organic components. )e
new index was called the hyper-Wiener index and it is
defined as follows:

WW(G) �
1
2


u∈V(G)


v∈V(G)

d(u, v) + d(u, v)
2

 . (2)

)e Hosoya polynomial was introduced in 1989 [22].
)e definition is as follows:

H(G, x) �
1
2


u∈V(G)


v∈V(G)

x
d(u,v)

. (3)

Dobrynin and Kochetova [23], and independently,
Gutman [24] introduced a degree distance index, which is
known as the Schultz index. Let G be a connected graph and
du be the degree of u ∈ V(G). )en, the Schultz index or the
degree distance of G is defined as follows:

Sc(G) �
1
2


u∈V(G)


v∈V(G)

du + dv( d(u, v). (4)

Klavžar and Gutman defined, in [25], the modified
Schulz index of a graph as follows:

Sc∗(G) �
1
2


u∈V(G)


v∈V(G)

du · dv( d(u, v). (5)

Finally, Gutman, in [24], introduced two topological
polynomials, namely, the Schulz polynomial Sc(G, x) and
the modified Schulz polynomial Sc∗(G, x) as follows:

Sc(G, x) �
1
2


u∈V(G)


v∈V(G)

du + dv( x
d(u,v)

,

Sc∗(G, x) �
1
2


u∈V(G)


v∈V(G)

du · dv( x
d(u,v)

.

(6)

)e connection between the above polynomials and the
previous two indices is stated below:

Sc(G) �
zSc(G, x)

zx

x�1
,

Sc∗(G) �
zSc∗(G, x)

zx

x�1
.

(7)

1.2. Zero-Divisor Graphs. Let R be a commutative ring with
nonzero identity and let Z(R) be its set of zero divisors. )e
zero-divisor graph of R is the graph Γ(R) with vertex set
V(Γ(R)) � Z(R)∗, where Z(R)∗ � Z(R)∖ 0{ }, and edge set
E(Γ(R)) � x, y : x · y � 0 . As usual, an edge x, y  is
simply denoted as xy. Zero-divisor graphs were introduced
by Beck [2] in 1988 and then studied by Anderson and
Naseer in [26]. )ese authors were interested in colorings
and the original definition included all elements in R, even
the zero. Later on, Anderson and Livingston [27] made
emphasis on the relationship between ring-theoretical
properties and graph-theoretical properties and reformu-
lated the definition as it appears in the lines above. One of
the basic results in this relationship is the following one.

Theorem 1 (see [27]). Let R be a commutative ring. /en,
Γ(R) is connected with diameter less or equal to 3.

)e study conducted in [28, 29] may serve as a survey
that is very interesting to find the relation between ring-
theoretic properties and graph-theoretic properties of Γ(G).
Some applications and relation between algebraic theory and
chemical graph theory can be seen in [1, 18, 30]. In this paper,
we presented some results that interplay in the relation be-
tween a zero-divisor graph and chemical graph theory. )e
structure of the paper is as follows. In Section 2, we describe
the family of zero-divisor graphs of the form Γ(Zp2q2), where
p and q are different primes, and we also count pairs of
vertices that are exactly at distance i, for i � 1, 2, 3. In Section
3, we obtain theWiener index and theHosoya, the Shultz, and
the modified Shultz polynomials of Γ(Zp2q2). We also obtain
the Shultz and the modified Shultz indices of Γ(Zp2q2).

2. The Zero-Divisor Graph on Γ(Zp2q2)

Let us start by introducing some notation that will be used
along the paper. We assume that p and q are different
positive primes.

Lemma 1. Let 0≤ i, j≤ 2. Let Ai,j � (piqj) ⊂ Zp2q2 , for
0≤ i + j≤ 4 and Ai,j � ∅, otherwise. /en,

(i) |Ai,j| � p2− iq2− j

(ii) Ai+1,j ∪Ai,j+1 ⊂ Ai,j

(iii) Ai+1,j ∩Ai,j+1 � Ai+1,j+1, whenever i + j + 2≤ 4

/e vertices of Γ(Zp2q2) can be split into blocks such that
all vertices in the same block have the same behavior. From
this partition, we can easily describe the structure of Γ(Zp2q2),
that is, the content of the following lemma.

Lemma 2. For 0≤ i, j≤ 2 and 0< i + j< 4, let Bi,j �

Ai,j∖(Ai+1,j ∪Ai,j+1). /en,
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Bi,j



 �

p
2− i

q
2− j

− p
1− i

q
2− j

− p
2− i

q
1− j

+ p
1− i

q
1− j

, if max i, j  � 1,

q
2− j

− q
1− j

, if i � 2,

p
2− i

− p
1− i

, if j � 2.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(8)

Moreover,

(i) If i, j≥ 1, then Γ[Bi,j] is a clique. Otherwise, Γ[Bi,j] is
a set of independent vertices.

(ii) Let Bi,j and Bi′,j′ such that i + i′ � j + j′ � 2. )en,
the edges uv, u ∈ Bi,j and v ∈ Bi′,j′ , define a complete
bipartite graph.

According to the definition, all vertices in the same block
of the zero-divisor graph on Zp2q2 have the same degree. For
more details on this graph, see [30]. Let dij be the degree of
any vertex in Bi,j. Following the notation of the previous
lemma, we also conclude the following information.

Lemma 3. For 0≤ i, j≤ 2 and 0< i + j< 4, then

dij �

p
i
q

j
− i − j, if max i, j  � 1,

p
2
q

j
− j − 1, if i � 2,

p
i
q
2

− i − 1, if j � 2.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(9)

Figure 1 shows the structure of the zero-divisor graph
Zp2q2 . White vertices represent blocks of independent ver-
tices in Zp2q2 , whereas black vertices represent cliques.

)e structure shown in Lemmas 2 and 3 can be completed
by showing the distance between pairs of vertices, which only
depends on the block they belong to.)is information appears in
Table 1.

Let TPi(G), i ∈ Z and i> 0, the number of pairs of
vertices at distance i in a graph G.

Lemma 4. Let Γ(Zp2q2) be a zero-divisor graph; then,

TP1 Γ Zp2q2   � 3pq(p − 1)(q − 1) +
1
2

(pq − 1)(pq − 2).

(10)

Proof. )e size of Γ(Zp2q2) is given by
B1,2


 B2,0


 + B1,0


  + B2,1


 B0,2


 + B0,1


  + B2,0


 B0,2




+ E K B1,2| |+ B1,1| |+ B2,1| | 




.

(11)
)at is, by introducing the values described in Lemma 2,

the result follows. □

Lemma 5. Let Γ(Zp2q2) be a zero-divisor graph; then,

TP2 Γ Zp2q2   �
1
2

pq pq p
2

+ q
2

− 6  + p + q + 2 .

(12)

Proof. )e number of pairs of vertices at distance 2 is given
by the formula that follows:

TP2 Γ Zp2q2   �
B2,0


 + B1,0




2
  +

B0,2


 + B0,1




2
 

+ B1,1


 B2,0


 + B1,0


 + B0,2


 + B0,1


 

+ B2,1


 B2,0


 + B1,0


  + B1,2


 B0,2


 + B0,1


 ,

(13)

that is,

TP2 Γ Zp2q2   � B2,0


 + B1,0


 
B2,0


 + B1,0


 − 1

2
+ B1,1


 + B2,1


 

+ B0,2


 + B0,1


 
B0,2


 + B0,1


 − 1

2
+ B1,1


 + B1,2


 .

(14)

)us, by Lemma 2, we obtain the following expression:

TP2 Γ Zp2q2   � pq
p(q + 2)(q − 1) − 1

2
(q − 1) +

q(p + 2)(p − 1) − 1
2

(p − 1) . (15)

Hence, after simplification, the result follows. □ Lemma 6. Let Γ(Zp2q2) be a zero-divisor graph; then,

B1,0
B2,0 B1,1

B1,2 B2,1

B0,2

B0,1

Figure 1: )e structure of Zp2q2 .

Table 1: Distance between pair of vertices, according to the block
they belong to 1.

B1,0 B0,1 B2,0 B1,1 B0,2 B1,2 B2,1

B1,0 2 3 2 2 3 1 2
B0,1 3 2 3 2 2 2 1
B2,0 2 3 2 2 1 1 2
B1,1 2 2 2 1 2 1 1
B0,2 3 2 1 2 2 2 1
B1,2 1 2 1 1 2 1 1
B2,1 2 1 2 1 1 1 1
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TP3 Γ Zp2q2   � pq(p − 1)(q − 1)(pq − 1). (16)

Proof. )e number of pairs at distance exactly 3, TP3, is
given by the following expression:

TP3 Γ Zp2q2   � B0,1


 B2,0


 + B0,1


 B1,0


 + B0,2


 B1,0


.

(17)

)us, by Lemma 2, we get the result. □

3. Distance-Based Topological Indices and
Polynomials of Γ(Zp2q2)

Now, we are ready to state and prove the following theorems.

Theorem 2. /e Winner index of Γ(Zp2q2) is

W Γ Zp2q2   � 3p
2
q
2
(p − 1)(q − 1) + pq pq p

2
+ q

2
− 6  + p + q + 2  +

1
2

(pq − 1)(pq − 2). (18)

Proof. )e diameter of Γ(Zp2q2) is 3. )us, there are pairs of
vertices at distance 1, 2, and 3, and the Winner index can be
obtained as follows:

W Γ Zp2q2   � TP1 + 2TP2 + 3TP3. (19)

By Lemmas 4–6, we get TP1, TP2, and TP3, respectively.
)us, by introducing these values in (19), we get, after
simplification, the required result. □

Lemma 7. /e Hosoya polynomial of Γ(Zp2q2) is
((p2q2 − 1)/2) + (TP1)x + (TP2)x

2 + (TP3)x
3.

Theorem 3. /e Hosoya polynomial of Γ(Zp2q2) is

H Γ Zp2q2 , x  �
p
2
q
2

− 1
2

+ 3pq(p − 1)(q − 1) +
1
2

(pq − 1)(pq − 2) x

+
1
2

pq pq p
2

+ q
2

− 6  + p + q + 2 x
2

+ pq(p − 1)(q − 1)(pq − 1)x
3
.

(20)

Proof. )e result follows by Lemma 7 and by Lemmas
4–6. □

Lemma 8. /e Hyper–Wiener index of Γ(Zp2q2) is
2TP1 + 6TP2 + 12TP3.

Theorem 4. /e Hyper–Wiener index of Γ(Zp2q2) is

WW Γ Zp2q2   � 12p
2
q
2
(p − 1)(q − 1) + pq pq 3p

2
+ 3q

2
− 23  + 9p + 9q − 3  + 2. (21)

Proof. )e result follows by Lemma 8 and by Lemmas 4–6,
after some simplifications. □

Lemma 9. Let αij � |Bi,j|dij, where dij is the degree of any
vertex in Bi,j, 0≤ i, j≤ 2 and 0< i + j< 4. /en, the Schultz
polynomial of Γ � Γ(Zp2q2) � (V, E) is equal to

Sc(Γ, x) � α10 B0,1


 + B0,2


  + α01 B1,0


 + B2,0


  + α20 B0,1


 + α02 B1,0


 x
3

+ B0,1


 + B0,2


  α12 + α11(  + B1,0


 + B2,0


  α21 + α11(  + d12 − B1,2


  α20 + α10(  + d21 − B2,1


  α02 + α01(  x
2

+ 
u∈V(Γ)

d
2
ux + 2|E(Γ)|.

(22)
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Proof. Since the diameter of Γ is 3, 3 is by definition the
degree of Sc(Γ, x). )e 3rd coefficient of the polynomial is
given by

B0,1


 B1,0


 d10 + d01(  + B2,0


 B0,1


 d20 + d01( 

+ B0,2


 B1,0


 d02 + d10( .
(23)

)at is, α10|B0,1| + α01|B1,0| + α20|B0,1| + α01|B2,0| + α02
|B1,0| + α10|B0,2|. From this expression, we clearly obtain the
3rd coefficient that appears in the statement.

)e coefficients of x2 and x (see Table 1) are given,
respectively, by

s2 � 2
B1,0




2
 d10 + 2

B2,0




2
 d20 + 2

B0,1




2
 d01 + 2

B0,2




2
 d02

+ B2,0


 B1,0


 d20 + d10(  + B1,1


 B1,0


 d11 + d10(  + B1,1


 B0,1


 d11 + d01( 

+ B1,1


 B2,0


 d11 + d20(  + B0,2


 B0,1


 d02 + d01(  + B0,2


 B1,1


 d02 + d11( 

+ B1,2


 B0,1


 d12 + d01(  + B1,2


 B0,2


 d12 + d02(  + B2,1


 B1,0


 d21 + d10( 

+ B2,1


 B2,0


 d21 + d20( ,

s1 � 2
B1,1




2
 d11 + 2

B1,2




2
 d12 + 2

B2,1




2
 d21 + B1,2


 B2,0


 d12 + d20( 

+ B2,1


 B0,2


 d21 + d02(  + B1,2


 B1,0


 d12 + d10(  + B2,1


 B0,1


 d21 + d01( 

+ B0,2


 B2,0


 d02 + d20(  + B1,1


 B1,2


 d11 + d12(  + B1,1


 B2,1


 d11 + d21( 

+ B2,1


 B1,2


 d21 + d12( .

(24)

By doing similar transformations as above, we obtain the
2n and the 1st coefficient, respectively, that appears in the
statement. Finally, the independent term appears when we
apply the formula to each vertex. □

Theorem 5. Let p and q be different primes. /en, the
Schultz polynomial of Γ � Γ(Zp2q2) is equal to

Sc(Γ, x) � p(p − 1)q(q − 1) 2p
2
q + 2pq

2
− 4pq − p

2
− q

2
+ 2  x

3

+ pq 4p
3
q
2

+ 4p
2
q
3

− 3p
3
q − 12p

2
q
2

− 3pq
3

+ 2pq
2

+ 2p
2
q + 6pq + 2p

2
+ 2q

2
− 4  x

2

+ (p − 1)(q − 1) p
3
q + p

2
q
2

+ pq
3

+ 2p
2
q + 2pq

2
− 10pq + 4  +(p − 1) pq

2
− 2 

2


+(q − 1) pq
2

− 2 
2
x +(p − 1)(q − 1)(5pq − 2) +(p − 1) pq

2
− 2 

+ (q − 1) p
2
q − 2 .

(25)

Proof. Consider the formula obtained in Lemma 9. Note that


u∈V(Γ)

d
2
u � α20d20 + α02d02 + α10d10 + α01d01 + α11d11

+ α12d12 + α21d21

(26)

and 2|E(Γ)| � α20 + α02 + α10 + α01 + α11 + α12 + α21. By in-
troducing the values of |Bi,j|, dij (collected in Lemmas 2 and
3), and αij in terms of p and q, the result follows. □

Corollary 1. /e Schultz index or the degree distance of Γ �

Γ(Zp2q2) is equal to
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Sc(Γ, x) � 3p(p − 1)q(q − 1) 2p
2
q + 2pq

2
− 4pq − p

2
− q

2
+ 2  + 2pq

· 4p
3
q
2

+ 4p
2
q
3

− 3p
3
q − 12p

2
q
2

− 3pq
3

+ 2pq
2

+ 2p
2
q + 6pq + 2p

2
+ 2q

2
− 4 

+(p − 1)(q − 1) p
3
q + p

2
q
2

+ pq
3

+ 2p
2
q + 2pq

2
− 10pq + 4  +(p − 1) pq

2
− 2 

2

+(q − 1) pq
2

− 2 
2
.

(27)

Lemma 10. Let αij � |Bi,j|dij, where dij is the degree of any
vertex in Bi,j, 0≤ i, j≤ 2 and 0< i + j< 4. /en, the modified
Schultz polynomial of Γ � Γ(Zp2q2) � (V, E) is equal to

Sc∗(Γ, x) � α10α01 + α20α01 + α02α10 x
3

+
α10 α10 − d10( 

2
+
α20 α20 − d20( 

2


+
α01 α01 − d01( 

2
+
α02 α02 − d02( 

2
+ α20α10 + α11α10 + α11α01 + α11α20+

+ α02α01 + α02α11 + α12α01 + α12α02 + α21α10 + α21α20x
2

+
α11 α11 − d11( 

2


+
α12 α12 − d12( 

2
+
α21 α21 − d21( 

2
+ α12α20 + α21α02 + α12α10 + α21α01

+ α02α20 + α11α12 + α11α21 + α21α12x + 
u∈V

d
2
u.

(28)

Proof. Since the diameter of Γ is 3, 3 is by definition the
degree of Sc∗(Γ, x). )e 3rd coefficient of the polynomial is
given by

B0,1


 B1,0


d10d01 + B2,0


 B0,1


d20d01 + B0,2


 B1,0


d02d10,

(29)

that is, α10α01 + α20α01 + α02α10.
)e coefficients of x2 and x (see Table 1) are given,

respectively, by

s
∗
2 �

B1,0




2
 d

2
10 +

B2,0




2
 d

2
20 +

B0,1




2
 d

2
01 +

B0,2




2
 d

2
02 + B2,0


 B1,0


d20d10

+ B1,1


 B1,0


d11d10 + B1,1


 B0,1


d11d01 + B1,1


 B2,0


d11d20 + B0,2


 B0,1


d02d01

+ B0,2


 B1,1


d02d11 + B1,2


 B0,1


d12d01 + B1,2


 B0,2


d12d02 + B2,1


 B1,0


d21d10

+ B2,1


 B2,0


d21d20,

s
∗
1 �

B1,1




2
 d

2
11 +

B1,2




2
 d

2
12 +

B2,1




2
 d

2
21 + B1,2


 B2,0


d12d20

+ B2,1


 B0,2


d21d02 + B1,2


 B1,0


d12d10 + B2,1


 B01


d21d01 + B0,2


 B2,0


d02d20

+ B1,1


 B1,2


d11d12 + B1,1


 B2,1


d11d21 + B2,1


 B1,2


d21d12.

(30)

By doing similar transformations as above, we obtain the
2n and the 1st coefficient, respectively, that appears in the

statement. Finally, the independent term appears when we
apply the formula to each vertex. □
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Theorem 6. Let p and q be different primes. /en, the
modified Schultz polynomial of Γ � Γ(Zp2q2) is equal to

Sc∗(Γ, x) � p(p − 1)
2
q(q − 1)

2
(3pq − p − q − 1) x

3

+ (p − 1)
2
(q − 1)

2 8p
2
q
2

+
p
2
q + pq

2
 

2
− p

2
− q

2
− 11pq − p − q⎛⎝ ⎞⎠

⎧⎨

⎩

+
1
2

(p − 1)(q − 1) 6p
3
q
3

− 2p
3
q − 2pq

3
− 6p

2
q
2

− 4p
2
q − 4pq

2
− p

3
− q

3
− 3p

2


−3q
2

+ 10pq + 5p + 5qx
2

+ (p − 1)(q − 1) 13p
3
q
3

− 5p
3
q
2

− 2p
3
q − p

2
q
3



−8p
2
q
2

− 8p
2
q − 6pq

3
− 4pq

2
+ 14pq + 4p + 4q +

1
2

(p − 1)(p − 2) pq
2

− 2 
2

+
1
2

(q − 1)(q − 2) p
2
q − 2 

2
x +(p − 1) pq

2
− 2 

2
+(q − 1) pq

2
− 2 

2

+(p − 1)(q − 1) p
3
q + p

2
q
2

+ pq
3

+ p
2
q + pq

2
− 8pq + 4 .

(31)

Proof. Consider the formula obtained in Lemma 10. Recall
that u∈V(Γ)d

2
u � α20d20 + α02d02 + α10d10 + α01d01 + α

11d11 + α12d12 + α21d21. By introducing the values of |Bi,j|,
dij (collected in Lemmas 2 and 3), and αij in terms of p and
q, the result follows. □

Corollary 2. /e modified Schultz index of Γ � Γ(Zp2q2) is
equal to

Sc(Γ, x) � (p − 1)
2
(q − 1)

2 25p
2
q
2

− 2p
2
q − 2pq

2
− p

2
− q

2
− 14pq − p − q 

+(p − 1)(q − 1) 19p
3
q
3

− 5p
3
q
2

− 4p
3
q − p

3
− 14p

2
q
2

− 12p
2
q − 3p

2
− 8pq

3


−8pq
2

+ 24pq + 9p − q
3

− 3q
2

+ 9q +
1
2

(p − 1)(p − 2) pq
2

− 2 
2

+
1
2

(q − 1)(q − 2) p
2
q − 2 

2
.

(32)

4. Conclusion

)e structure of zero-divisor graphs of the form of
Γ(Zp2q2) is particularly interesting for studying distance-
based topological indices. First, because its diameter is
exactly 3, but also because there are defined blocks, with a
complete bipartite connection between them, of either
independent vertices or complete graphs (cliques). In
this paper, we have focused on the Wiener index and the
Hosoya, the Shultz, and the modified Shultz polynomials
of Γ(Zp2q2) and, finally, on the Shultz and the modified
Shultz indices of Γ(Zp2q2). For that reason, we have in-
troduced some notation that could be useful not only for
studying other distance-base topological indices of
Γ(Zp2q2) but also for other graphs of the form Γ(Zpmqn ),

for m, n positive integers. A key point in this notation is
the study of pairs that are exactly a distance one (the size
of the graph), two, or three. We think that a possible line
of future research should include the study of paths
connecting pairs of vertices a different distances and the
extension to other indices, as for instance, the Estrada
index.
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Let G be a graph with vertex set V(G) � v1, . . . , vn , and let di be the degree of vi. (e Zagreb matrix of G is the square matrix of
order n whose (i, j)-entry is equal to di + dj if the vertices vi and vj are adjacent, and zero otherwise. (e Zagreb energy ZE(G) of
G is the sum of the absolute values of the eigenvalues of the Zagreb matrix. In this paper, we determine some classes of Zagreb
hyperenergetic, Zagreb borderenergetic, and Zagreb equienergetic graphs.

1. Introduction

In this paper, G is a simple undirected graph, with vertex set
V � V(G) and edge set E � E(G). (e integers n � n(G) �

|V(G)| and m � m(G) � |E(G)| are the order and the size of
the graph G, respectively. For a vertex v ∈ V, the open
neighborhood of v is the set N(v) � u ∈ V|uv ∈ E{ } and the
degree of v is d(v) � |N(v)|. We write Pn, Cn, and Kn for the
path, cycle, and complete graph of order n, respectively. A
bipartite graph is a graph such that its vertex set can be
partitioned into two sets X and Y (called the partite sets)
such that every edge meets both X and Y. A complete bi-
partite graph is a bipartite graph such that any vertex of a
partite set is adjacent to all vertices of the other partite set. A
complete bipartite graph with partite set of cardinalities p

and q is denoted by Kp,q. (e complement G of G is the
simple graph whose vertex set is V and whose edges are the
pairs of nonadjacent vertices of G. (e line graph of a graph
G, written L(G), is the graph whose vertices are the edges of
G, with ef ∈ E(L(G)) when e � uv and f � vw in G. (e
line graph L(G) of a r-regular graph G with n vertices is
(2r − 2)-regular with nr/2 vertices.

For each vertex v of a graph G, take a new vertex v′ and
join v′ to all vertices of G adjacent to v. (e graph S′(G) thus
obtained is called the splitting graph of G. (e cocktail party

graph CP(a) (for a≥ 3) is a graph obtained from the
complete graph K2a by deleting a perfect matching.

Any graph on n vertices, with n≥ 2, has at least two
vertices with the same degree. (e graphs with at most two
vertices with the same degree are called antiregular; for more
information, see [1, 17]. For any positive integer n, there
exists only one connected antiregular graph on n vertices,
denoted by An (see Figure 1).

(e adjacencymatrixA(G) of G is defined by its entries
as aij � 1 if vivj ∈ E(G) and 0 otherwise. Let λ1⩾λ2⩾ . . .⩾λn

denote the eigenvalues of A(G). (e energy of the graph G is
defined as

E � E(G) � 

n

i�1
λi


, (1)

where λi, i � 1, 2, . . . , n, are the eigenvalues of graph G.
(is concept was introduced by Gutman and is inten-

sively studied in chemistry, since it can be used to ap-
proximate the total π-electron energy of a molecule (see, e.g.,
[8, 9]). Since then, numerous other bounds forEwere found
(see, e.g., [11–14]).

(e Zagreb indices are widely studied degree-based
topological indices and were introduced by Gutman and
Trinajstić [7] in 1972. (e Zagreb matrix of a graph G is a
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square matrix Az(G) � [mij] of order n, defined in [10], as
follows:

mij �
di + dj, if the vertices vi and vj of G are adjacent,

0, otherwise.


(2)

(e eigenvalues of Az(G) labeled as z1⩾z2⩾ . . .⩾zn are
said to be the Zagreb eigenvalues or Az-eigenvalues of G and
their collection is called Zagreb spectrum or Az-spectrum of
G.

If z1, z2, . . . , zs are the distinct Zagreb eigenvalues of G

having the multiplicities m1, m2, . . . , ms, then the Zagreb
spectrum of G is denoted as

Spec Az(  �
z1 z2 . . . zs

m1 m2 . . . ms

 , (3)

where m1 + m2 + · · · + ms � n.
(e sum of all absolute Zagreb eigenvalues is the Zagreb

energy denoted by ZE(G) and defined in [10] as follows:

ZE � ZE(G) � 
n

i�1
zi


. (4)

Now, we prove the next lemma that will be needed to
obtain our results.

Lemma 1. For a complete graph Kn, the Zagreb eigenvalues
are −2(n − 1) and 2(n − 1)2 with multiplicities (n − 1) and 1,
respectively, and ZE(Kn) � 4(n − 1)2.

Proof. Let G be a graph with vertices v1, v2, v3, . . . , vn. (en,
the Zagreb matrix is as follows:

Az(G) �

v1 v2 v3 . . . vp

v1

v2

v3

⋮

vp

0 d1 + d2 d1 + d3 . . . d1 + dn

d2 + d1 0 d2 + d3 . . . d2 + dn

d3 + d1 d3 + d2 0 . . . d3 + dn

⋮ ⋮ ⋮ ⋱ ⋮

dn + d1 dn + d2 dn + d3 . . . 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(5)

Since, Kn is a regular graph of degree n − 1, we have

Az Kn(  �

0 2n − 2 2n − 2 . . . 2n − 2

2n − 2 0 2n − 2 . . . 2n − 2

2n − 2 2n − 2 0 . . . 2n − 2

⋮ ⋮ ⋮ ⋱ ⋮

2n − 2 2n − 2 2n − 2 . . . 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (6)

It can be easily seen that the Zagreb spectrum of Kn is as
follows:

SpecAz Kn(  �
2(n − 1)

2
−2(n − 1)

1 n − 1
⎛⎝ ⎞⎠. (7)

(erefore, by the definition of the Zagreb energy, we
have

ZE Kn(  � 4(n − 1)
2
. (8)

Gutman [5] introduced energy in 1978 and conjectured
that the complete graph Kn possesses the maximum energy
among all graphs with n vertices. Gutman [6] also proved
this to be false leading to the new concept of hyperenergetic
graphs.

υ1

υ2
υ3

υ4

υ5

υ6

A6

(a)

υ1

υ2

υ3

υ4

υ6υ7 υ5

A7

(b)

Figure 1: Two antiregular graph with vertices n � 6 and n � 7.
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A graph is hyperenergetic [6] if E(G)> 2n − 2, non-
hyperenergetic if E(G)< 2n − 2, and broderenergetic [4]
(other than Kn) if E(G) � 2n − 2. If E(G) � E(H), then
graphs G and H are equienergetic [2].

Following the above ideas, a graph G of order n is said to
be Zagreb hyperenergetic if ZE(G)> 4(n − 1)2, Zagreb non-
hyperenergetic if ZE(G)< 4(n − 1)2, and Zagreb broder-
energetic (other than Kn) if ZE(G) � 4(n − 1)2. If
ZE(G) � ZE(H), then two graphs G and H are called Zagreb
equienergetic.

In [10], the authors obtained some lower and upper
bounds for Zagreb energy, Das [3] presented some new
bounds for Zagreb energy, Rakshith [16] discussed the new
bounds for Zagreb energy, and Jahanbani et al. [15] obtained
new bounds for Zagreb energy.

In this paper, we study the Zagreb energy of line graphs,
Zagreb energy of complement graphs, and Zagreb hyper-
energetic, Zagreb borderenergetic, and Zagreb equienergetic
graphs. □

2. Main Results

In this section, we provide Zagreb energy of complement G

and Zagreb energy of line graph L(G) of a graph G, and
furthermore, we develop results to determine the nature of
graphs like complement G, line graph L(G), and splitting
graph S′(G) to be Zagreb hyperenergetic and Zagreb
borderenergetic.

We start with the following proposition that helps us to
obtain our results.

Proposition 1. Let G be an r-regular graph (r≥ 3) of order n

with Zagreb eigenvalues z1⩾z2⩾ . . .⩾zn. 1e Zagreb eigen-
values of Az(G) are 2(n − r − 1)2 with multiplicity one and
2(n − r − 1)(−zi/2r − 1), for i � 2, 3, . . . , n.

Theorem 1. Let G be an r-regular graph (r≥ 3) of order n

with Zagreb eigenvalues z1⩾z2⩾ . . .⩾zn. 1e Zagreb energy of
complement G is

ZE(G) � 2(n − r − 1) |(n − r − 1)| + 
n

i�2

−zi

2r
− 1 




⎛⎝ ⎞⎠.

(9)

Proof. Since G is r-regular, the complement G is (n−

r − 1)-regular. By Equality (4) and Proposition 1, we obtain

ZE(G) � 2|(n − r − 1)(n − r − 1)|

+ 
n

i�2
2(n − r − 1)

−zi

2r
− 1 





� 2(n − r − 1) |(n − r − 1)| + 
n

i�2

−zi

2r
− 1 




⎛⎝ ⎞⎠.

(10)

□

Theorem 2. For an r-regular graph G of order n, the
complement G is Zagreb non-hyperenergetic if r≥ 3.

Proof. From Equality (10), we have

ZE(G) � 2(n − r − 1) |(n − r − 1)| + 
n

i�2

−zi

2r
− 1 




⎛⎝ ⎞⎠.

(11)

It is easy to verify that

2(n − r − 1) |(n − r − 1)| + 
n

i�2

−zi

2r
− 1 




⎛⎝ ⎞⎠< 4(n − 1)

2
.

(12)

Hence, the complement G is a Zagreb non-hyperener-
getic graph. □

Proposition 2. Let G be an r-regular graph (r≥ 3) of order n

with Zagreb eigenvalues z1⩾z2⩾ . . .⩾zn. 1e Zagreb eigen-
values of Az(L(G)) are (8 − 8r) with multiplicity n(r − 2)/2
and 4(r − 1)(zi/2r + r − 2) for i � 1, 2, . . . , n.

Theorem 3. Let G be an r-regular graph (r≥ 3) of order n

with Zagreb eigenvalues z1⩾z2⩾ . . .⩾zn. 1e Zagreb energy of
line graph L(G) is

ZE(L(G)) � 4(r − 1) 
n

i�1

zi

2r
+ r − 2 





+|8 − 8r|
n(r − 2)

2
 .

(13)

Proof. (e line graph L(G) of a r-regular graph G is a
(2r − 2)-regular graph of order nr/2. By definition of Zagreb
energy and Proposition 2, we have

ZE(L(G)) � 
n

i�1
4(r − 1)

zi

2r
+ r − 2 





+|(8 − 8r)|
n(r − 2)

2
 

� 4(r − 1) 
n

i�1

zi

2r
+ r − 2 





+|(8 − 8r)|
n(r − 2)

2
 .

(14)

□

Theorem 4. Let G be an r-regular graph (r≥ 3) of order n

different from K2 andK3. 1en, L(G) is Zagreb non-
hyperenergetic.

Proof. Applying (eorem 3, we have
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ZE(L(G)) � 4(r − 1) 
n

i�1

zi

2r
+ r − 2 





+|(8 − 8r)|
n(r − 2)

2
 .

(15)

It is not hard to see that

4(r − 1) 
n

i�1

zi

2r
+ r − 2 




+|(8 − 8r)|

n(r − 2)

2
 

< 4
nr

2
− 1 

2
.

(16)

(us, L(G) is a Zagreb non-hyperenergetic graph. □

Remark 1. Note that the graphs K2 or K3 are Zagreb
borderenergetic.

Example 1. (e antiregular graphs A6 and A7 illustrated in
Figure 1 are non-hyperenergetic.

Let A6 be a graph with vertices v1, v2, v3, v4, v5, and v6.
(e Zagreb matrix of A6 is

Az A6(  �

v1 v2 v3 v4 v5 v6

v1

v2

v3

v4

v5

v6

0 6 0 0 0 0

6 0 7 9 8 8

0 7 0 6 0 0

0 9 6 0 7 7

0 8 0 7 0 6

0 8 0 7 6 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (17)

(erefore, the Zagreb spectrum of A6 is as follows:

SpecAz A6(  �
25.02 2.339 1.087 −6 −13.149 −9.297

1 1 1 1 1 1
 .

(18)

By the definition of the Zagreb energy, we have

ZE A6(  � 56.892. (19)

Analogously, we can see that

Az A7(  �

v1 v2 v3 v4 v5 v6 v7

v1

v2

v3

v4

v5

v6

v7

0 7 0 0 0 0 0

7 0 9 11 9 19 9

0 9 0 7 0 0 0

0 11 7 0 8 9 8

0 9 0 8 0 7 0

0 10 0 9 7 0 7

0 9 0 8 0 7 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (20)

(erefore, the Zagreb spectrum of A7 is as follows:

SpecAz A7(  �
34.501 −17.57 3.189 −11.737 1.094 −9.477 0

1 1 1 1 1 1 1
 . (21)

Hence, by the definition of the Zagreb energy, we have

ZE A7(  � 77.568. (22)

By definition and Equalities (19) and (22), we deduce
that A6 and A7 are non-hyperenergetic.

2.1. Some Classes of Zagreb Hyperenergetic and Zagreb
Equienergetic Graphs. (is section contributes some results
towards Zagreb hyperenergetic and Zagreb equienergetic
graphs.

Theorem 5. For a regular graph G, the splitting graph S′(G)

is a Zagreb hyperenergetic graph.

Proof. Let G be a graph with vertices v1, v2, v3, . . . , vp. (en,
the Zagreb matrix is as follows:

Az(G) �

v1 v2 v3 . . . vp

v1

v2

v3

⋮

vp

0 d1 + d2 d1 + d3 . . . d1 + dp

d2 + d1 0 d2 + d3 . . . d2 + dp

d3 + d1 d3 + d2 0 . . . d3 + dp

⋮ ⋮ ⋮ ⋱ ⋮

dp + d1 dp + d2 dp + d3 . . . 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(23)

Let v1′, v2′, v3′, . . . , vp
′ be the vertices added in G corre-

sponding to v1, v2, v3, . . . , vp to obtain S′(G) such that
N(vi) � N(vi

′). Note that the degree of vi
′ is di. (en, the
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Zagreb matrix of S′(G) can be written as a block matrix as
follows:

Az S′(G)(  �

2Az(G)
3
2
Az(G)

3
2
Az(G) 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(24)

or

Az S′(G)(  �

2
3
2

3
2

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⊗Az(G). (25)

(erefore, the Zagreb spectrum of S′(G) is as follows

SpecAz S′(G))(  �

2 −
��
13

√

2
 zi

2 +
��
13

√

2
 zi

p p

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(26)

where zi for i � 1, 2, 3, . . . , p are the eigenvalues of Az(G)

and 2 ±
��
13

√
/2 are the eigenvalues of 2 3/2

3/2 0 . (erefore,

by the definition of the Zagreb energy, we can write

ZE S′(G)(  � 

p

i�1

2 −
��
13

√

2
 zi





� 

p

i�1
zi



2 −

��
13

√

2
+
2 +

��
13

√

2
 

� 2ZE(G).

(27)

Hence, we have

ZE S′(G)(  � 2ZE(G). (28)

Equality (28) gives the desired result. □

Theorem 6. For n≥ 3, ZE(Kn) � ZE(Kn−1,n−1).

Proof. Consider the complete graph Kn and the complete
bipartite graph Kn−1,n−1 for n≥ 3.(e Zagreb spectrum of Kn

is

SpecAz Kn(  �
2(n − 1)

2
−2(n − 1)

1 n − 1
⎛⎝ ⎞⎠. (29)

(erefore, by the definition of Zagreb energy, we have

ZE Kn(  � 2(n − 1)
2

+| − 2(n − 1)|(n − 1) � 4(n − 1)
2
.

(30)

On the other hand, the Zagreb spectrum of Kn−1,n−1 is

SpecAz Kn−1,n−1  �
0 2(n − 1)

2 2(n − 1)(1 − n)

2n − 4 1 1
⎛⎝ ⎞⎠.

(31)

By the definition of Zagreb energy, we can write

ZE Kn−1,n−1  � 2(n − 1)
2

+|2(1 − n)|(n − 1) � 4(n − 1)
2
.

(32)

(us, from Equalities (30) and (32), the required result
follows. □

Theorem 7. For a≥ 3, ZE(K2a−1) � ZE(CP(a)).

Proof. (e Zagreb spectrum of the complete graph K2a−1 is

SpecAz K2a−1(  �
8(a − 1)

2
−4(a − 1)

1 2(a − 1)

⎛⎝ ⎞⎠. (33)

Also, the Zagreb spectrum of the cocktail party graph CP(a)

is

SpecAz(CP(a)) �
−8(a − 1) 8(a − 1)

2

(a − 1) 1
⎛⎝ ⎞⎠. (34)

(erefore,

ZE K2a−1(  � 8(a − 1)
2

+|8(1 − a)|(a − 1) � 16(a − 1)
2
,

(35)

ZE(CP(a)) � 8(a − 1)
2

+| − 8(a − 1)|(a − 1) � 16(a − 1)
2
.

(36)

Now, Equalities (35) and (36) lead to the result. □
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On the basis of Alpha Shapes boundary extraction algorithm for discrete point set, a grid partition variable step Alpha Shapes
algorithm is proposed to deal with the shortcomings of the original Alpha Shapes algorithm in the processing of nonuniform
distributed point set and multiconcave point set. Firstly, the grid partition and row-column index table are established for the
point set, and the point set of boundary grid partition is quickly extracted.+en, the average distance of the k-nearest neighbors of
the point is calculated as the value of α. For the point set of boundary grid partition extracted in the previous step, Alpha Shapes
algorithm is used to quickly construct the point set boundary. +e proposed algorithm is verified by experiments of simulated
point set and measured point set, and it has high execution efficiency. Compared with similar algorithms, the larger the number of
point sets is, the more obvious the execution efficiency is.

1. Introduction

From the traditional electronic total station, handheld satellite
positioning collector, to mobile (vehicle-mounted/airborne)
three-dimensional laser radar, modern spatial information
acquisition technology has entered the era of massive data at
the GB and TB level. How to store, process, and express
massive data efficiently has become a new challenge to the
related fields such as computer information technology (IT),
computer-aided design/manufacturing (CAD/CAM), geo-
graphic information (GIS) and remote sensing (RS), and even
building information modeling (BIM) [1–4]. +e boundary
information of the discrete point set is composed of discrete
points representing the original contour features of the
measured object. It is a basic and important technical work in
spatial data processing to quickly and efficiently construct the
boundary information from the discrete point set. Two-di-
mensional point set boundary information is the basic data of
land area statistics, road earthwork calculation, and other
engineering applications [5, 6]. +ree-dimensional point set
boundary information plays an important role in the process
of 3D model reconstruction [7–10].

To construct the boundary information of point set, it is
necessary to study the shape of point set composed of two-
dimensional or three-dimensional discrete points. From the

literature reading analysis, it is known that, since the 1970s,
scholars and experts at home and abroad have successively
carried out research work in this field and got good research
results. Graham [11] proposed a scanning algorithm for
determining the convex hull of a planar set, but the algo-
rithm is only effective for convex hull boundary and cannot
deal with the case of concave boundary; Jarvis [12] proposed
a numerical method based on two-dimensional convex hull
point set to express the contour geometry of two-dimen-
sional point set, but again it can only deal with convex hull
boundary; Sampath and Shan [13] improved R. A. Jarvis’s
algorithm, which can be used to deal with two-dimensional
discrete point concave boundary, but the algorithm is not as
efficient as the new algorithm proposed by subsequent re-
searchers. In the 1980s, Edelsbrunner et al. [14] gave a
rigorous mathematical definition on the “shape of a set of
points” based on two-dimensional plane point set and
proposed a point set boundary construction algorithm called
Alpha Shapes (AS). Based on rigorous mathematical defi-
nition, this algorithm can deal with complex discrete point
set boundaries including convex hull, concave points, and
holes. Ten years later, H Edelsbrunner extended the AS
algorithm [15] to be applied to three-dimensional point set
surface reconstruction, thus greatly expanding the scope of
the application of the algorithm. Jochem et al. [16] used the
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AS algorithm to automatically extract the building roof
from airborne LiDAR point cloud; Shen et al. [17] and Li
et al. [18] used the improved AS algorithm to extract
building contour; Wang et al. [19] used the improved
algorithm to extract edges from massive point cloud data
in mountainous areas; Li and Li [20] used the improved
algorithm to reconstruct the 3D surface model from the
point cloud data of handicrafts; Sun et al. [5] applied the
improved algorithm to extract the plot boundary from the
trajectory data points collected by the vehicle-mounted
satellite navigation receiver of agricultural machinery and
then finely measured the farmland area; Li et al. [21]
applied the algorithm to construct the tree crown three-
dimensional model; Fu et al. [22] applied the algorithm to
construct a three-dimensional model from jujube tree
point cloud.

2. Alpha Shapes Algorithm

2.1. Algorithm Content. In literature [14], Edelsbrunner
gave a rigorous mathematical definition of the geometric
shape of a two-dimensional plane point set, namely,
α-Shape. Let S be a two-dimensional planar point set, and
give any parameter α; the polygon zS extracted from S by
the AS algorithm rule is α-Shape, which can be used to
express the boundary contour of the point set, and its
precision is determined by the value of the parameter α.

Simplified AS algorithm steps are as follows:

Step 1: Input two-dimensional point set S � P1,

P2, . . . , Pn}, and calculate the point set average point
spacing d as the value of α.
Step 2: Traverse S, take Pi(i≤ n) as the center of the circle,
and take the length not greater than 2α as the radius R

to construct the search circle, and search the point
set Si � Pi

1, Pi
2, . . . , Pi

m (m≤ n), Si ⊆ S.
Step 3: Traverse Si and construct α-shape criterion to
determine whether line segment PiP

i
j(j≤m) is a

boundary edge. If so, add it to α-shape set and return to
Step 2. If not, proceed to the next point until the
traversal is complete and return to Step 2.
Step 4: After traversing S is complete, output α-Shape
collection.

+e simplified flow chart of Alpha Shapes algorithm is
shown in Figure 1.

Among these steps, the third step, “construct α-shape
criterion,” is the core step of the algorithm, and the rules are
as follows.

Draw a circle with radius R � α through two pointsPi, Pi
j

(as P1 and P2 in Figure 2). If no point in point set S falls into
the circle, the line segment PiP

i
j is the boundary line;

otherwise, it is the nonboundary line. +e judgment method
of whether a point in the point set S falls into the circle is
shown in Figure 2. According to formula (1), the center point
Pc is calculated, the point set S is traversed, and the distance
dk between each point (as Pk in Figure 2) and the center
point Pc is calculated. If dk < α, it indicates that a point falls
into the circle.

+e formula for calculating the coordinates of the center
point Pc can be obtained via the “distance intersection al-
gorithm” in Geomatics [23]:

xc � x1 + 0.5 x2 − x1(  + H y2 − y1( 

yc � y1 + 0.5 y2 − y1(  + H x1 − x2( 
. (1)

In the formula, H � ±
������������

(α/d)2 − (1/4)



,

d �

�������������������

(x2 − x1)
2 + (y2 − y1)

2


.
+e process of constructing point set boundary by AS

algorithm can be understood as a circle with radius R � α
rolling outside the edge of the point set S. When the value of
α is appropriate, the trajectory that the circle rolls through is
the boundary of point set S, as shown in Figure 3. At the
range of α ∈ (0,∞)， when α⟶ 0, all points in S are
boundary points; when α⟶∞, the convex hull of S is the
boundary; when the value of α is reasonable and the dis-
tribution of points in S is uniform, the AS algorithm can
construct the boundary of point set S in an ideal way. If the
value of α is too large, the turning angle of the lines con-
necting the boundary points would be replaced by a larger
blunt angle, resulting in a blunted effect at the corner, as
shown in the shaded area in Figure 3.

2.2. Algorithm Shortcomings. Compared with the previous
similar algorithms, AS algorithm has the advantages of
rigorous mathematical definition, the ability to deal with
complex two-dimensional point set boundary and three-
dimensional point set surface, and a wide range of appli-
cations, but there are also shortcomings. +e only parameter
α in the algorithm determines the fineness of the point set
shape, which needs to be manually input and adjusted
according to different scenarios. At the same time, the
unicity of parameter α determines that the algorithm is very
suitable for processing convex hull point sets with uniform
distribution density but cannot ideally deal with the two
following scenarios:

(1) For point sets with nonuniform density distribution
per unit area, such as the discrete points at the
farmland boundary collected by handheld or vehicle-
mounted satellite navigation receiver, and the three-
dimensional laser point cloud of bare tree branches,
the processing effect is not very ideal.

(2) For the point set composed of many concaves, such
as complex buildings, roads, water flow, and other
linear features, the processing effect in the concave
corner area is not perfect.+erefore, it is necessary to
improve and perfect the algorithm.

When applying AS algorithm to extracting building
contour, it is found in [17] that if the value of α is too small,
the building contour point set will be very fragmented; if it is
too large, the concave corner area of the building will be
distorted due to being excessively blunted (Figure 3).
According to different application scenarios, literatures
[5, 18] put forward an improved algorithm called “dual
threshold Alpha Shapes,” aiming at the specific problems
caused by the excessively single value of α. Based on the AS
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algorithm, literature [19] used the grid detection method to
quickly filter nonboundary points and proposed an algo-
rithm for fast extracting edges from massive point clouds.
However, the α value of the algorithm is fixed, which still
cannot overcome the specific problems caused by the single
value of α. Literature [20] proposed a surface reconstruction
algorithm using “self-adaptive step Alpha Shapes algo-
rithm,” which can automatically calculate different values
according to the point density of different regions of the
point set and better deal with the problem caused by

nonuniform point distribution. However, this algorithm
requires that every point in the point set has the same status
to participate in the search calculation, and there is still room
for the improvement of the execution efficiency. Based on
the algorithms proposed in literatures [14, 15], this paper
puts forward a grid partition variable step Alpha Shapes
(GPVAS) algorithm, which has higher computational effi-
ciency while solving the problems caused by nonuniform
distribution of point sets.

3. Grid Partition Variable Step Alpha
Shapes Algorithm

3.1. Algorithm Overview

+e main improvements of the GPVAS algorithm are
as follows:

(1) +e point set S is partitioned, the nonboundary grid
area is removed by fast filtering, and the boundary
grid point set SG is extracted.

(2) For points in point set SG, within the range of point
set S, variable step Alpha Shapes (VAS) algorithm
[20] is applied to construct the boundary shape of
point set S. Figure 4 shows the simplified flow chart
of GPVAS algorithm.

3.2. Extracting Boundary Grid Partition Point Set. +is step
consists of two steps: “grid partition” and “extracting point
set of boundary grid partition.” +e steps are as follows.

3.2.1. Grid Partitions. +e envelop rectangle G of point
set S is constructed, and its inflexion points are G1(Xmin,

Ymin), G2(Xmin, Ymax), G3(Xmax, Ymax) andG4(Xmax, Ymin),

respectively.

Start

End

Input point set 
S (number of points n) 

and inital α

Output α-shape
polygon set

i ≤ n
Search point set 

Si (number of points mi)

j ≤ mi

Construct α-shape criterion

Add line PiPj to the α-shape
polygon set

Line PiPj is the 
boundary edgej = j + 1

i = i + 1

N

Y

Y

N

YN

Figure 1: Simplified flow chart of Alpha Shapes algorithm.

Pk

Pc

P1

P2

dk

R = α

Figure 2: Sketch map of α-Shapes criterion.
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+e envelop rectangle G is divided into M × N grid
partition set G0 by the square grid with side length of d

(usually 2-3 times the average point spacing of point set S),
where

M �
Ymax − Ymin

a
  + 1,

N �
Xmax − Xmin

a
  + 1,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(2)

where M is the number of rows, N is the number of col-
umns, and the symbol [] is the integer of real numbers.

3.2.2. Extracting Point Set of Boundary Grid Partition. A
row-column index table is established for the point set S, and
the formula for calculating the row-column index value of
point Pi is as follows:

ri �
Yi − Ymin

a
 ,

ci �
Xi − Xmin

a
 ,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(3)

where ri is the row number in the grid partition where point
Pi is located and ci is the column number in the grid
partition where point Pi is located. +us, the mapping re-
lationship between point and grid partition is established, as
shown in Figure 5.

Traverse the grid, and quickly determine whether the
grid contains a point from the row-column index table of
point set S. If it contains a point, it is 1; otherwise, it is 0.

Traverse the grid, extract the point set G1 of boundary
grid partition (the diagonal filling grid shown in Figure 5),
and then quickly obtain the boundary grid point set SG

through the row-column index table of the point set S. +e
judgment rule of the boundary grid is that the boundary grid
contains points, and at least one of its eight adjacent grids
does not contain any point.

3.3. Extracting Boundary Grid Partition Point Set. Once the
value of parameter α in AS algorithm (i.e., the search step in
constructing α-shape) is set, it is constant throughout the
boundary construction process, which is the reason for the
unsatisfactory effect of the algorithm in dealing with the
nonuniform distribution point set or point set containing
concave points. Literature [20] proposed VAS algorithm and
used kd-tree to calculate the average distance of k-nearest
neighbors of the point as α value to participate in the
construction of α-shape. +e average distance of k-nearest
neighbors of a point is the average distance between the
nearest k number of points and the point in a point set. At
this point, the value of α is variable; when the point density is
large, the α value is small, which ensures the continuity of the
boundary and the high α-shape construction efficiency into
account; when the point density is small, the α value be-
comes larger, which can prevent boundary fragmentation
caused by the excessively small α value. However, in the
process of calculating α value and applying α value to
construct α-shape, the VAS algorithm needs to search the
entire S point set under the worst condition. +e time
complexity is O(n3), and the efficiency of the algorithm is
not ideal.

+e GPVAS algorithm proposed in this paper still adopts
the calculation steps of VAS algorithm, first calculating the α
value and then applying the α value to construct the α-shape.
+e biggest improvement of GPVAS algorithm lies in the
grid partition and point set row-column index table

Blunted Blunted

Figure 3: Building boundary of point set by Alpha Shapes
algorithm.

Start

End

Input point set 
S (number of points n)

Output α-shape
polygon set

Extract point set SG of 
boundary grid partition

Apply VAS algorithm to SG

Figure 4: Simplified flow chart of GPVAS algorithm.
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constructed based on the above steps. No matter whether it
is calculating α value or constructing α-shape, it is conve-
nient to take the grid where the target point or center point is
located as the center and search layer by layer from small to
large distance (as shown in Figure 6), which is equivalent to
arranging the point set S in ascending sort order according
to the distance value from the target point or center point.
+e experimental results show that the efficiency of the
algorithm is significantly improved.

4. Comparative Experiments

To intuitively verify the time efficiency of the algorithm, two
kinds of data are designed for experimental verification
based on AS algorithm, VAS algorithm and GPVAS algo-
rithm: one is the data point set of computer numerical
simulation (hereinafter referred to as the simulated point
set), and the other is the data point set of engineering
measurement (hereinafter referred to as the measured point
set).

4.1. Comparison of Simulated Point Sets. +e data of random
point set generated randomly by circular analytic formula
(4) according to the density of the upper semicircle point is 3
times that of the lower semicircle point, and the inner point
of the upper and lower semicircle is generated randomly
according to the uniform distribution, as shown in Figure 7.

S � (x, y)|(x − 1)
2

+(y − 1)
2 ≤ 1 . (4)

+e effective range of parameter k in the calculation of
the average distance of k-nearest neighbors in VAS algo-
rithm and GPVAS algorithm is [9, 24]. According to the
experimental statistics in literature [20], k � 20 is considered
to bemore ideal. In this paper, k � 20 is also used to calculate
the nearest neighbor average distance as α, and 2α is taken as
the grid edge length. +e experimental laptop is configured
as Intel(R) Core(TM) i7-10750H CPU@2.60GHz, 16 G
memory, and 64-bit Windows 10 operating system; ex-
perimental algorithm program is based on Microsoft Visual
Studio 2010 IDE, C# language; the simulation point set is

divided into four control groups (1000, 5000, 10000, and
20000) according to the number of points. +e experimental
results are shown in Table 1.

According to the comparison of experimental results in
Table 1, when the number of point sets is small, the efficiency
of VAS algorithm and GPVAS algorithm is lower than that
of AS algorithm. +e order of efficiency is as follows:
AS>VAS>GPVAS. +is is because the VAS algorithm and
GPVAS algorithm need to spend some time to dynamically
calculate the average distance of k-nearest neighbors as α
value before each execution of the α-shape criterion to filter
the boundary points. In addition, GPVAS also needs to
establish a grid partition and row-column index table for the
point set. As the number of points increases, the execution
efficiency of VAS algorithm and GPVAS algorithm begins to
improve. Compared with AS algorithm, the execution ef-
ficiency of VAS algorithm can be improved by 20%∼30%.
When the number of points increases, the efficiency of

0 1 2 3 4

0

1

2

3

Figure 5: Extracting point set of boundary grid partition by
GPVAS algorithm.

1st layer

2nd layer

Figure 6: Sketch map of layer-by-layer search by GPVAS
algorithm.

Figure 7: Circular nonuniform simulation point set.
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GPVAS algorithm increases rapidly. When the number of
points is 20,000, the execution efficiency increases by more
than 10 times. +e order of the execution efficiency of the
algorithm is GPVAS>VAS>AS. +is is because the time-
consuming distance budget time complexity of the AS al-
gorithm is O(n3), and the GPVAS algorithm is able to
construct the grid partition and row-column index table of
the point set with negligible extra storage space before the
α-shape criterion filtering the boundary point set with the
time complexity of O(n2), so as to quickly extract the
boundary point set. Compared with the increase in the total
number of point sets, the increase in the number of
boundary point sets constructed by grid partitioning is very
limited.

4.2. Comparative Study of Strip Terrain Points on Mountain
Highway. In order to verify the effectiveness of the

algorithm applied to the measured point set, this paper
selects the highway strip terrain data (Figure 8), which is
composed of more than 8000 GPS measuring points with a
total length of about 17 km in the mountainous area of
southern Anhui, and the average distance between the
measuring points is 28.513m. +ere are many curves in the
strip terrain data in mountainous areas, dense collection
points in undulating sections, and sparse collection points in
flat sections. +e density distribution of point set is not
uniform, and there are many concave areas, so it is an ideal
experimental data to verify the algorithm. +e experimental
results are shown in Table 2; Figures 8 and 9(a) to Figure 9(c)
(Figures 9(a)–9(c)) are the enlarged images of the bound-
aries extracted by different algorithms at highway curve in
Figure 8.

+e experimental results show that all the three algo-
rithms can be used to construct the boundary of experi-
mental data, and the construction efficiency is

Table 1: Comparison table of experimental results of different algorithms (simulated point set).

Algorithm Number of points α value (min/max) Execution time (ms)

AS algorithm

1000 0.360 245
5000 0.072 5128
10,000 0.036 26124
20,000 0.018 128356

VAS algorithm

1000 0.240/0.781 326
5000 0.048/0.156 4289
10,000 0.024/0.075 19356
20,000 0.012/0.039 96786

GPVAS algorithm

1000 0.240/0.781 861
5000 0.048/0.156 3243
10,000 0.024/0.075 6934
20,000 0.012/0.039 10189

Figure 8: Boundary of strip terrain points on mountain highway.

Table 2: Comparison table of experimental results of different algorithms (measured point set).

Algorithm α value (min/max) Execution time (ms)
AS algorithm 10m 16287
AS algorithm 30m 21458
VAS algorithm 8.6m/41.2m 11356
GPVAS algorithm 8.6m/41.2m 7127
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GPVAS>VAS>AS. Regarding the construction results,
GPVAS algorithm and VAS algorithm are almost the same
with good effect (Figure 9(c)), while the AS algorithm is
greatly affected by the set value of α. When the value of α is
small (10m in the experiment), the boundary is relatively
fine, and it is easy to form the boundary of holes in the area
of sparse points (Figure 9(a), where the diagonal filling area
is determined as the hole). When the value of α is large (30m
in the experiment), the boundary is relatively crude
(Figure 9(b)), and the algorithm execution efficiency is lower
than that when the value of α is small.

5. Conclusions

Based on the Alpha Shapes algorithm for extracting the
boundary of discrete point sets, this paper analyzes and

summarizes the previous research work. In view of the
shortcomings of Alpha Shapes algorithm in processing non-
uniform distributed point sets andmulticoncave point sets, this
paper proposes the grid partition variable step Alpha Shapes
algorithm, which is used to quickly construct the boundary of
point sets. +is algorithm has two main advantages:

(1) Establish grid partition and row-column index table
for point set, quickly filter nonboundary point
partition, and extract boundary grid partition point
set involved in subsequent α-shape construction;
compared with the increase in the total number of
point sets, the increase in the number of point sets of
boundary grid partition constructed by grid partition
is very limited, which is the main reason why GPVAS
algorithm can effectively deal with a large number of
point sets.

(a) (b)

(c)

Figure 9: Boundaries extracted by different algorithms at highway curve. (a) AS algorithm, α� 10m. (b) AS algorithm, α� 30m. (c) VAS,
GPVAS algorithm, α_min� 8.6m, α_max� 41.2m.
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(2) +e average distance of k-nearest neighbors of the
point calculated by kd-tree is used as the α value. In
the region with dense point distribution, the α value
is small, and, in the region with sparse point dis-
tribution, the α value is large, so that the algorithm
can well deal with the regional boundary with
nonuniform point distribution.

+e algorithm is verified by simulated point set and
measured point set, and the execution efficiency of the al-
gorithm is very high. Compared with similar algorithms, the
larger the number of point sets is, the more obvious the
efficiency improvement is. As an alternative algorithm, this
algorithm has been effectively verified in engineering sce-
narios such as land area statistics and road earthwork cal-
culation. In the field of 3D point cloud surface
reconstruction with broader application scenarios, this al-
gorithm has not been verified, which is also the follow-up
research direction of this paper.
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Studying the orbit of an element in a discrete dynamical system is one of the most important areas in pure and applied
mathematics. It is well known that each graph contains a finite (or infinite) number of elements. In this work, we introduce a new
analytical phenomenon to the weighted graphs by studying the orbit of their elements. Studying the weighted graph’s orbit allows
us to have a better understanding to the behaviour of the systems (graphs) during determined time and environment. Moreover,
the energy of the graph’s orbit is given.

1. Introduction

Let G be a graph of order N, E(G) � u1, u2, . . . , uN  be the
set of edges, and V(G) � v1, v2, . . . , vN  be the set of ver-
tices. We consider connected graphs with weights. An
(edge)-weighted graph W(G) is defined to be an ordered
pair (G, f), where GN is the underlying graph of order N

and

f: E⟶ R, (1)

is the weight function, which assigns to each edge u ∈ E(G) a
nonzero weight f(u). Every graph can be regarded as the
weighted graph with weight of each edge equal to one. -us,
weighted graphs are generalizations of graphs.

In this paper, we study the orbit of weighted graph for
given initial weight-edge u: � u1 � u2 � · · · � uN such as

Orb GN, f(u)(  � u, f(u), f
2
(u), . . . , f

n
(u): n ∈ N, u ∈ E(G) , (2)

and by Gn(W(G), f(u)) we denote the system graph’s orbit
of order N but in short, we will use only Gn. Usually, the
algebraic and topological peculiarities of graphs bring

information about it in present time, but studying graph’s
orbit shows how does graph behave during the time. Formore
details about discrete dynamical systems, we refer [1, 2].
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2. Linear and Chaotic Behavior of
Weighted Graphs

In this section, we discuss properties of the weighted graphs
necessary for other discussions.

We recall basic definitions.
A metric space defined over a set of points in terms of

distances in a graph defined over the V(G) is called a graph
metric. -e vertex set (of an undirected graph) and the
distance function form a metric space, if and only if the
graph is connected.

Let us assume that the function in (1) represents the distance
between vj and vj where i≠ j such as f(u) � max|dist(vi, vj)|,
i.e., metric edgemap overmetric space. One can easily check the
following statement.

Proposition 1. Let GN be a connected weighted graph of
order N and f(u) be a metric edge map. �en,

Case I. If f(u) is linear decreasing map, then the graph’s
orbit behaves like

G
n⟶ 0 as n⟶∞. (3)

In this case, we say that the graph is attracted and
denote it by Gn

A.
Case II. If f(u) is linear increasing map, then the
graph’s orbit behaves like

G
n⟶∞ as n⟶∞. (4)

In this case, we say that the graph is repelled and denote
it by G n

R.

Example 1. Let G � K3 and f(u) � (1/2)u with initial edges
u: � u1 � u2 � u3 � (1/2). -en, the orbit of (K3)

n is as
follows:

Orb K3( 
n
,
1
2

u  �
1
2
,
1
4
,
1
16

,
1
64

,
1
256

,
1

1024
, n � 0, 1, 2, . . . , 5 ,

(5)
and the attracted graph’s orbit (K3)

n for n � 1, 2, . . . , 5 is
shown in Figure 1.

Smilar to the above considered techniques, we will check
the orbit of K3 where f(u) � 2u with initial edges:

Orb K3( 
n
, 2u(  � 2, 4, 16, 64, 256, 1024; n � 0, 1, 2, . . . , 5{ },

(6)
and the repelled graph’s orbit of (K3)

n for n � 1, 2, . . . , 5 is
shown in Figure 2.

In what follows, we will consider a special case when
function (1) is a nonlinear chaotic map; here, the graph’s orbit
Gn shows unpredictable behavior.We say that the graph’s orbit
has chaotic index.

Since Lorenz discovered his nonlinear system in 1964 [3],
chaos had been studied as a system with conditions. After that,
chaotic maps find their way in many scientific branches.

Among the chaotic maps, a logistic map is the most studied
one.

-e logistic map is a polynomial mapping, and it was
popularized in 1976 [4] by the biologist Robert May as an
analogous discrete-time demographic model. Nowadays, the
logistic map is considered as the simplest nonlinear dy-
namical system in dimension one which is given by the
following expression:

xn+1 � μxn 1 − xn( , (7)

for x ∈ (0, 1) and μ ∈ [0, 4]. -e logistic map shows a very
special behavior which is complex and chaotic as one can see
in Figure 3.

Coming back to our issue, we will assume that the
function in (1) is logistic map such that un+1 � f(u) and

un+1 � μun 1 − un( . (8)

To better understand, we give the following examples.

Example 2. Let the parameter of (8) μ � 3.56995. In Table 1
and Figure 4, we observed that the graph’s orbit of (K3)

n for
n � 1, 2, . . . , 7 with initial edges u: � u1 � u2 � u3 � 0.25
shows a nonlinear behaviour under the action of logistic
map settled with the mentioned μ.

Example 3. -e Cayley’s orbit graph Cay(D16, S) of the
Dihedral group of order 16 when

S � a, a
7
, b , (9)

generated by logistic map considered in Example 2, is shown
in Figure 5.

υ2

υ1

υ3

Figure 1: Attracted graph’s orbit of K3.

υ1

υ2 υ3

Figure 2: Repelled graph’s orbit of K3.
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3. Energy of Weighted Graph’s Orbit

In this section, we are interested in studying one of the most
important topological graph indices for Gn which was
termed by graph energy.

Let W(G) be a graph of order N, and the adjacency
matrix of a weighted graph W(G) is the N × N matrix
A(W(G)) � (wi,j), where

wij �
w vi, vj , if vivj ∈ E(W(G)),

0, otherwise.

⎧⎨

⎩ (10)

-e matrix A(W(G)) is real symmetric, so all its ei-
genvalues are real. -e characteristic polynomial
Φ(W(G), λ) � |λI − A(W(G))| of the matrix A(W(G)) is
called the characteristic polynomial of the weighted graph
W(G). -e eigenvalues of A(W(G)) are called the eigen-
values of W(G). -e set of distinct eigenvalues of W(G)

together with their multiplicities is called the spectrum of
W(G). -e energy of weighted graph was defined in [5] as
follows:

E(W(G)) � 
N

i�1
λi


, (11)

where λ1, λ2, . . . , λN are the eigenvalues of A(W(G)).
-is graph invariant in (11) has important applications

in chemical graph theory and has been extensively studied.
Moreover, in chemical graph theory, if the underlying
molecule is a hydrocarbon, then G is a simple, unweighted
graph but if the conjugated molecule contains atoms dif-
ferent from carbon and hydrogen (in chemistry referred to
as “heteroatoms”), then G must possess pertinently weighted
edges (see [6]). -ese weights are usually positive valued, but
they may also be negative (for more details, we refer to
[7–12]).

Let us denote by M(A(Gn)) the set of the adjacency
matrices of graph’s orbit Gn for n ∈ N such that the elements
of each adjacency matrix depends on the order of considered
map and its nature (linear or nonlinear). -erefore, the
energy of Gn is the sum of the energies which is calculated by
the adjacency matrices in graph’s orbit that can be given by
the following formula:



n

l�0


N

i�0
λi


⎡⎣ ⎤⎦

l

. (12)

In particular, one can see that we have 5 different values
in graph’s orbit of (K3)

n considered in Example 1; this
means that we almost have 5 adjacency matrices for each one
and the energy of graph’s orbit is the sum of all energies
calculated for each adjacency matrix belonging to the cal-
culated orbit. -us, we have

E K
n
3,A  ≈ 2 + 1 + 0.25 + 0.0624 + 0.0156 + 0.004 � 3.332,

(13)

while the energy in case II is

E K
n
3,R  ≈ 8 + 16 + 64 + 256 + 1024 + 4096 � 5464. (14)

It is obvious that

E G
n
A( <E G

n
R( . (15)

More precisely, if map (1) is logistic map given by (8)
where μ � 3.56995 with initial edge u ∈ [0, 1], it follows that
the graph’s orbit Gn is chaotic and unpredictable. To have
more, we assume that the graph’s orbit Gn contains the
following adjacency matrices:

(1) A1(G(W)) is the adjacency matrix of the initial
weight edges of weighted graph G(W).

2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0
μ

1.0

0.8

0.6

0.4

0.2

0.0

x

Figure 3:-e bifurcation diagram of logistic map for x ∈ (0, 1) and
μ ∈ [0, 4].

Table 1: -e values of graph’s orbit of K3 under the action of
logistic map.

x0 � 0.24 x1 ≈ 0.6
x2 ≈ 0.8 x3 ≈ 0.5
x4 ≈ 0.8 x5 ≈ 0.5
x6 ≈ 0.8 x7 ≈ 0.5

υ1

υ1

υ2

υ2 υ3

υ3

υ1

υ2 υ3

υ1

υ3 υ2

0.25 0.25

0.25

0.6 0.6

0.6

0.80.5 0.80.5

0.80.5

if n is odd number if n is even number

Figure 4: Chaotic graph’s orbit of K3.
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(2) A2(G(W)) is the adjacencymatrix of weighted graph
G(W) obtained by the action of f(u).

(3) Aα(G(W)) is the adjacencymatrix of weighted graph
G(W) obtained by the action of f2n(u)(n ∈ N).

(4) Aβ(G(W)) is the adjacencymatrix of weighted graph
G(W) obtained by the action of f2n+1(u)(n ∈ N).

Hence, we can calculate the energy of graph Gn as
follows:

(1) If n is even, then

E G
n

(  � 
N

i�1
λi1



 + 
N

i�1
λi2



 +
n

2
  

N

i�1
λiα



 +
n

2
− 1  

N

i�1
λiβ



⎡⎣ ⎤⎦.

(16)

(2) If n is odd, then

E G
n

(  � 
N

i�1
λi1



 + 
N

i�1
λi2



 +
n − 1
2

  

N

i�1
λiα



 +
n − 1
2

  

N

i�1
λiβ



⎡⎣ ⎤⎦,

(17)

where λi1
, λi2

, λiα
, and λiβ

are the eigenvalues of A1, A2, Aα,
and Aβ, respectively. In particular, the energy of (K3)

n

considered in Example 2 is

E K3( 
n

(  ≈ 1 + 2.4 +(3)3.2 +(3)2 � 19. (18)

Moreover, by using formula (19), one can apply the
earlier results of weighted graph energy to their orbit’s
graph, i.e., to the set M(A(Gn)). Here, we are considering a
special class called bipartite weighted graphs for which the
characteristic polynomials are determined in the following.

Lemma 1. LetG be a bipartite weighted graph with n vertices.
�en,

Φ(G, q) � 
n/2

0
b(G, k)q

2k
(−1)

k
q

n− 2k
, (19)

where b(G, k)≥ 0 for all k.

Equation (19) is widely used in the theory of graph
energy for unweighted graphs and weighted bipartite graphs.
In [13], it was shown that if the graph G is a bipartite graph
with the characteristic polynomial as in (19), then from the
Coulson integral formula follows the energy of G:

E(G) �
2
π


∞

0

1
q
2 ln 

n/2

0
b(G, k)q

2k⎛⎝ ⎞⎠dq. (20)

-e energy in (20) holds equally for simple and bipartite
weighted graph. Moreover, the energy of weighted graphs
orbit can be calculated by using (20). In [14], it was shown

e

a

a2
a

a2

a2
a2

a3

a3

a3 a3

a4

a4

a4 a4

a5

a5

a5 a5

a6

a6

a6
a6

a7

a7

a7
a7

b
ab

a2b

a2b

a2b
a2b

a6b

a6b

a6b
a6b

a7b

a7b

a7b

a7b

a5b

a5b

a5b a5b

a3b

a3b

a3b a3b

a4b

a4b

a4b a4b

e

b
ab

n is odd n is even

e a

b
ab e

a

b

ab

Figure 5: Graph’s orbit of Cay(D16, S) in which the black color represents the graph status at the initial edge, the blue color represents the
graph status at the first order, the red color shows the graph status for odd orders, and green color shows the graph status for even orders.
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Table 2: Energy of some chemical systems represented by weighted graphs in Figure 6.

Object u N n E(Gn) Graph

Vinlye-chloride-like systems 0.4 3
2 6

Γ15 12.2
9 20.4

Pyrrole-like systems 0.2 5
2 19.6

Γ24 30.8
7 50.4

Pyridine-like systems 0.9 6
2 32.7

Γ35 47.4
8 71.1

1,1-Dichloro-ethylene-like systems 0.4 4
2 10.8

Γ45 20.2
8 30.9

2

5

9

2

4

7

2

5

8

2

5

8

2

5

8

Γ3 ≅

Γ4 ≅

Γ2 ≅

Γ1 ≅

Figure 6: -e graphs Γi, i � 1, 2, 3, 4.
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that the weighted star W(K1,N−1) on N vertices with wij on
the edge ek � (vi, vj), where 1≤ i, j≤N and 1≤ k≤N − 1,
can be obtained by the following.

E W K1,N−1   � 2
������������������

w
2
12 + w

2
13 + · · · + w

2
1N



. (21)

Proposition 2. �e energy of weighted star graph orbit is

E W K1,N− 1  
n

  � 2n 
n

l�0

���



N

r�1




w
2
1r

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

l

. (22)

-e proof is direct from (19) and (21).

4. Computational Studies on Weighted
Graph Orbit

Studying the dynamics of such physical element (molecular)
allows us to understand the behavior of it during determined
time and environment. To have a better insight into the
particularities of the weighted graph orbit, we investigate the
orbit of some chemical systems (as mentioned above, the
heteroatom systems can be represented by graphs with
weights) under the action of the logistic map given in (8)
with different times as shown in Table 2.

5. Conclusion

-e weighted graphs are very important in representing
many problems in complex networks, data structure,
chemical systems, urban engineering, and others. In
Proposition 1, we show that the introduced method of
studying the orbit of each weighted edge belongs to weighted
graph brings us more information about the behavior of the
consider dynamical systems. We show the relationship
between the weight function and the graph’s orbit with three
possible cases and compute some examples for better un-
derstanding their properties. By computing the energy of
graph’s orbit, we show the change of the energy of such a
system during the time which was given in Proposition 2.
Finally, we computed the energy of graph’s orbit of some
popular chemical systems.
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Topology of fullerenes, carbon nanotubes, and nanocones has considerable worth due to their effective applications in nano-
technology. *ese are emerging materials of practical application in gas storage devises, nanoelectronics devices, energy storage,
biosensor, and chemical probes. *e topological indices are graph invariant used to investigate the physical and chemical properties
of the compounds such as boiling point, stability, and strain energy through associated chemical graph of the underlying compound.
We computed recently modified Zagreb connection indices of nanocones CNC4(n),CNC5(n), and CNC6(n) and generalized our
findings up to a large class of CNCk(n). Topological characterization of nanocones via these indices is mathematically novel and
assists to enable its emerging use in nanotechnology. For computation and verification of results, we use Mathematica software.

1. Introduction

Carbon nanomaterials received considerable attention due
to their effective physical applications in nanotechnology [1]
as emerging materials of practical application. However,
carbon nanocones (CNCs) received considerable attention
after the discovery of free-standing structures or canonical
topology as cap on one end of nanotubes (CNTs) [2, 3].
CNCs are considered as alternatives of (CNTs) due to the
absence of potentially poisonous metal catalyst in synthesis
and mass production at room temperature [4]. Generally,
during the declamation of CNTs, strong acids are used in

order to close out metal catalysts. In this process, deficiency
is introduced with the hindrance of destructing the graphite
structure. On the contrary, the applications and properties of
CNCs are easy to approach. CNCs’ application as drug
delivery capsules [5] and gas storage devices increased their
significance. *roughout the years, this subject has been
developing scientific obsession with planar, curved, and
wrapped nanoscale structures, such as graphene, fullerenes,
and nanotubes. It has a strong technological interest just
because of their innovative structural, electronic, and me-
chanical properties. Curved carbon structures are used to
investigate growth and nucleation. Especially, pentagon
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presence in CNCs plays a vital role [6]. *e 60 declination
defect is detected when pentagon inserted in the graphite
sheet. *is is the key of CNCs’ formation with pentagon as
tip apex which leads us to the existence of nanotubes with tip
topology. *is type of defects in graphite networks is the-
oretically considered for study of electronic states [7]. CNCs
have free-standing structures with sharp edges because these
properties have applications in technology and electronics
[8]. In Figure 1, the canonical form of CNCs is shown in
Figure 1(a) and associated chemical graph is shown in
Figure 1(b). We are interested in the characterization of
CNCs using chemical graph theory.

1.1. Graph. Let G � (V, E) be a graph comprising set of

vertices V and E⊆ V

2  as the set of edges. A graph is called

the directed graph if the edges have some orientations. In a
multigraph, two vertices can share more than one edge. A
loop in a graph is an edge joining a vertex to itself. Graph is
called simple if it is not directed or multigraph and has no
loops.

1.2. ChemicalGraph0eory. Graph theory is considered as a
powerful tool in different areas of research such as in coding
theory, database management system, circuit design, secret
sharing schemes, and theoretical chemistry. Chemical graph
theory is the combination of chemistry and graph theory. It
develops a relationship between structure of organic sub-
stances and their physio-chemical properties through some
useful graph invariants with the help of their associated
molecular graph. *e molecular graph is a simple graph on
vertices which are representatives of atoms of corresponding
chemical substance and edges placed against the bonds
between atoms. Figure 2 depicts chemical graphs of some
hydrocarbons as benzene in Figure 2(a) and naphthalene in
Figure 2(b). *e theoretical study of underlying substance
using molecular graphs through graph invariants has ef-
fective applications in quantitative structure properties re-
lationship (QSPR) or quantitative structure activities
relationship (QSAR) investigation [9].

2. Topological Indices

Topological indices among graph invariants have a
special place and are used to estimate the physio-chemical
properties of chemical compound. A topological index is
considered as a function f: G⟶ R which maps each
graph of chemical structures into a numerical value and
have special place among other graph invariants due to its
estimation applicability for physio-chemical properties of
chemical compound. *e idea of topological indices was
first introduced by Wiener in 1947 during the work on
paraffin’s boiling points [10]. In 1972, Zagreb indices
were introduced by Ivan Gutman and Trinajstic [11].
Second Zagreb index was thought of by Hosoya et al. in
1975 [12]. *e first and second Zagreb indices are defined
as

M1(Γ) � 
uv∈E(Γ)

degu + degv( ,

M2(Γ) � 
uv∈E(Γ)

degu × degv( .
(1)

Recently, modified versions of Zagreb indices were in-
troduced and studied independently in [13–15]. *ese in-
dices based on connection number are assigned to the
vertices of graph. For more detail of topological indices, one
can refer to [16–18].

2.1. Connection Number. Let G be a graph. *e connection
number associated to the vertex u ∈ V(G) is the number of
distinct vertices at distance two from vertex u. It is denoted
by τu:

τu � | v ∈ V(G): d(u, v) � 2{ }|. (2)

2.2. ConnectionZagreb Indices. *e first ZC1(G) and second
ZC2(G) connection Zagreb indices are defined as

ZC1(G) � 
u∈V(G)

τ2u,

ZC2(G) � 
uv∈E(G)

τu × τv,
(3)

where ZC∗1 is another recently introduced graph invariant
over connection number [19]:

ZC∗1(G) � 
u∈V(G)

deguτu(  � 
uv∈E(G)

τu + τv( , (4)

where degu stands for degree of u ∈ (G) and τu is the
connection number assigned to u. Ali et al. [19] proved that,
for triangle and rectangle free graphs, connection number τu

assigned to a vertex u is τu � uv∈E(G)degv − degu.

2.3. Applications of Connection Zagreb Indices in Chemistry.
Applicability of ZC1(G),ZC2(G), and ZC∗1(G) is observed
by its good correlation with entropy of octane isomers [19].
Ali et al. [20] concluded that ZC∗1 has correlation coefficient
approximately 0.949 and 0.892 for acentric factor and en-
tropy, respectively, and ZC1 has a good correlation with
enthalpy. Javaid et al. studied T-sum graphs and graphs
constructed through graph operation using connection in-
dices [21–25]. *is contemplation recommends chemical
applicability of these indices as useful descriptor in QSAR
and QSPR investigation.

3. Materials and Methods

In this work, we use graph theoretic techniques adopted in
[21–25] to study the topology of the corresponding mo-
lecular graph of underlying compound for their insight
investigation. We used investigative procedure, vertex seg-
ment strategy, edge segment procedure, and degree tallying
strategy along with combinatorial enlisting techniques,
number theoretic logics, and edges and vertices partition
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according to the values associated to the vertices for desired
computation.

*roughout this work, we use standard graph theoretic
notations, graph G � (V, E), set of vertices V(G) and the set
of edges E(G) of a graph G with |V| order and |E| size of G,
degvi

as degree for vertex vi, and the number of edges in-
cident to vi. We draw graph of CNCk(n) using Mathematica
software for k � 4, 5, 6 and compute degree sequence for
different values of n. *rough observations, we listed pos-
sibilities for connection numbers assigned to the vertices and
determined vertex petition as well as edge partitions with
respect to connection number assigned to the vertices of
these graphs.

4. Results and Discussion

In this work, we compute connection Zagreb indices
ZC1(G),ZC2(G), and ZC∗1(G) of CNCs which are helpful in
their topological investigation and generalize our findings
up to a large class of CNCk(n). CNCk(n) are classified on the
basis of k, where k is the number of carbon atoms present in

the core of nanocones and n is the number of hexagon layers
around the core [26].

4.1. Results for CNC4(n). In [27], Ghorbani and Jalali
compute vertex PI index, Szeged index, and Omega Poly-
nomials, and Hayat and Imran [28] computed ABC4 and
GA5 of CNC4(n). In *eorem 1, we computed connection
Zagreb indices of CNC4(n). CNC4(n) for n � 3 is shown in
Figure 3.

Theorem 1. 0e ZC1,ZC2, and ZC∗1 of CNC4(n) are

ZC1 CNC4(n)(  � 144n
2

+ 128n + 8,

ZC2 CNC4(n)(  � 216n
2

+ 152n + 4,

ZC∗1 CNC4(n)(  � 72n
2

+ 80n + 16.

(5)

Proof. Let G � CNC4(n) be the graph of under consider-
ation CNCs. *e total number of vertices of CNC4(n) are
4(n + 1)2 and 2(3n2 + 5n + 2) edges. We made partition of
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Figure 2: Some hydrocarbons with associated chemical graphs. (a) Benzene with chemical graph. (b) Naphthalene with chemical graph.

(a) (b)

Figure 1: Carbon nanocones with associated chemical graph. (a) Canonical form of carbon nanocones. (b) Chemical Graph of carbon
nanocones.
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vertex set with respect to the connection number τu as
Vτu

(G). For this purpose, we draw graphs of CNC4(n) for
n � 1, 2, 3 using Mathematica and compute degree sequence
as 2, 3{ }. Degree sequence 2, 3{ } of CNC4(n) implies 3, 4, and
6 are the only possibilities of the connection numbers as-
sociated to the vertices of G and (3, 3), (3, 4), (4, 4), (4, 6),
and (6, 6) are the possibilities for the edges. For partition of
edges having the same end vertices connection numbers, we
use edge and vertex segment strategy along with edges and
vertex listing technique. *e following tabular calculation
enables us for this partition through induction.

*e numerical results of Table 1 depict
|V3(G)| � 8, |V4(G)| � 8n − 4, and |V6(G)| � 4n2. By using
this partition, we computed ZC1(CNC4(n)):

ZC1(G) � 
u∈V(G)

τ2u. (6)

Let Nτ � τu: u ∈ V(G) , and from vertex partition
Vτu

(G), we obtain

ZC1(G) � 
τu∈Nτ


u∈Vτu

(G)

τu � 
u∈V3(G)

τu + 
u∈V4(G)

τu + 
u∈V6(G)

τu,

ZC1(G) � 8(3)
2

+(8n − 4)(4)
2

+ 4n
2
(6)

2
,

ZC1 CNC4((n)(  � 144n
2

+ 16(8n − 4) + 72.

(7)

In Table 2, we list our observation for the number of
edges with similar end vertex connection number and
generalize our findings for arbitrary value of n.

*e generalization based on Table 2 provides edge
partitions as E(τu,τ v)(G): |E(3,3)(G)| � 4, |E(3,4) (G)| � 8,

|E(4,4)(G)| � 8(n − 1), |E(4,6)(G)| � 4n, and |E(6,6)(G)| � 2n

(3n − 1). Using this partition, we computed ZC2(CNCk(n))

defined as

ZC2(G) � 
uv∈E(G)

τuτv. (8)

Let Mτ � (τu, τv): uv ∈ G :

Figure 3: CNC4(3).

4 Mathematical Problems in Engineering



ZC2(G) � 

τu,τv( )∈Mτ


uv∈E τu,τv( )(G)

τuτv � 
uv∈E(3,3)(G)

τuτv + 
uv∈E(3,4)(G)

τuτv + 
uv∈E(4,4)(G)

τuτv + 
uv∈E(4,6)(G)

τuτv + 
uv∈E(6,6)(G)

τuτv,

ZC2(G) � 4(3 × 3) + 8(3 × 4) +(8n − 8)(4 × 4) + 4n(4 × 6) + 2n(3n − 1)(6 × 6),

ZC2(G) � 216n
2

+ 152n + 4.

(9)

Now, we compute ZC∗1(G) which is defined as

ZC∗1(G) � 
u∈V(G)

τudegu � 
uv∈E(u,v)(G)

τu + τv( .
(10)

Let Oτ � (τu, τv): uv ∈ E(G)  and

ZC∗1(G) � 

τu,τv( )∈Oτ


uv∈E τu,τv( )(G)

τu + τv(  � 
uv∈E(3,3)(G)

τu + τv(  + 
uv∈E(3,4)(G)

τu + τv(  + 
uv∈E(4,4)(G)

τu + τv( 

+ 
uv∈E(4,6)(G)

τu + τv(  + 
uv∈E(6,6)(G)

τu + τv( , s,

ZC∗1(G) � 4(3 + 3) + 8(3 + 4) +(8n − 8)(4 + 4) + 4n(4 + 6) + 2n(3n − 1)(6 + 6),

ZC∗1(G) � 72n
2

+ 80n + 16.

(11)

□
4.2. Results for CNC5(n). A. R. Ashrafi in [29] computed
winner index of CNC5(n). In *eorem 2, we computed
connection Zagreb indices of CNC5(n) whose chemical
graph for n � 3 is shown in Figure 4.

Theorem 2. 0e ZC1,ZC2, and ZC
∗
1 of CNC5(n) are equal to

ZC1 CNC5(n)(  � 180n
2

+ 160n + 10,

ZC2 CNC5(n)(  � 270n
2

+ 190n + 5,

ZC∗1 CNC5(n)(  � 90n
2

+ 100n + 20.

(12)

Proof. *e total number of vertices of G � CNC5(n) are
5(n + 1)2 and edges 5/2(3n2 + 5n + 2). Like CNC4(n), we
partitioned the vertex set as Vτu

(G) and the edge set as
E(τu,τv)(G) by using edge and vertex segment strategy along
with edges and vertex listing technique for desired partition.

*e computations in Table 3 depict |V3(G)| � 10,

|V4(G)| � 10n − 5, and |V6(G)| � 5n2. By using this parti-
tion, we compute ZC1(CNC5(n)) � ZC1(G) as

ZC1(G) � 
u∈V((G)

τ2u. (13)

Let Nτ � τu: u ∈ V(G) ; then, by using vertex set
partition V(τu), we obtain

ZC1(G) � 
τu∈Nτ


u∈Vτu

(G)

τu � 
u∈V3(G)

τu + 
u∈V4(G)

τu + 
u∈V6(G)

τu,

ZC1(G) � 10(3)
2

+(10n − 5)(4)
2

+ 5n
2
(6)

2
,

ZC1 CNC5(n)(  � 180n
2

+ 160n + 10.

(14)

In Table 4, we list our observation for the number of
edges with similar end vertex connection number and
generalize our findings for n.

*e generalization based on Table 4 provides edge
partitions as E(τu,τv) (G): |E(3,3) (G)| � 5, |E(3,4)(G)| �

10, |E(4,4)(G)| � 10(n − 1), |E(4,6)(G)| � 5n, and |E(6,6)
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Table 1: Vertex partition of CNC4(n) with respect to connection number τ.

n 1 2 3 4 5 6 7 8 9 10 . . . p

τu � 3 8 8 8 8 8 8 8 8 8 8 . . . 8
τu � 4 4 12 20 28 38 44 52 60 68 76 . . . 8p − 4
τu � 6 4 16 36 64 100 144 196 256 324 400 . . . 4p2

Table 2: Edge partition of CNC4(n) with respect to connection number τ.

n/|E(τu,τv)| 1 2 3 4 5 6 7 8 9 10 . . . n � p

|E(3,3)| 4 4 4 4 4 4 4 4 4 4 . . . 4
|E(3,4)| 8 8 8 8 8 8 8 8 8 8 . . . 8
|E(4,4)| 0 8 16 24 32 40 48 56 64 72 . . . 8(p-1)
|E(4,6)| 4 8 12 16 20 24 28 32 36 40 . . . 4p
|E(6,6)| 4 20 48 88 140 204 280 368 468 580 . . . 2p(3p − 1)

Figure 4: Chemical graph of CNC5(n) for n � 3.

Table 3: Vertex partition of CNC5(n) with respect to connection number τ.

n 1 2 3 4 5 6 7 8 9 10 . . . p

τ � 3 10 10 10 10 10 10 10 10 10 10 . . . 10
τ � 4 5 15 25 35 45 55 65 75 85 95 . . . 10p − 5
τ � 6 5 20 45 80 125 180 245 320 405 500 . . . 5p2

Table 4: Edge partition of CNC5(n) with respect to connection number τ.

n/|E(τu,τv)| 1 2 3 4 5 6 7 8 9 10 . . . n � p

|E(3,3)| 5 5 5 5 5 5 5 5 5 5 . . . 5
|E(3,4)| 10 10 10 10 10 10 10 10 10 10 . . . 10
|E(4,4)| 0 10 20 30 40 50 60 70 80 90 . . . 10(p-1)
|E(4,6)| 5 10 15 20 25 30 35 40 45 50 . . . 5p
|E(6,6)| 5 25 60 110 175 255 350 460 585 725 . . . 5p/2(3p − 1)
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(G)| � 5/2n(3n − 1). Using this partition, we computed ZC2
(CNC5(n)) and ZC∗1(CNC5(n)):

ZC2(G) � 
uv∈E(G)

τuτv. (15)

Let Mτ � (τu, τv): uv ∈ G ; then, by using vertex edge
partition E(τu,τv)(G), we obtain

ZC2(G) � 

τu,τv( )∈Mτ


uv∈E τu,τv( )(G)

τuτv � 
uv∈E(3,3)(G)

τuτv + 
uv∈E(3,4)(G)

τuτv + 
uv∈E(4,4)(G)

τuτv + 
uv∈E(4,6)(G)

τuτv + 
uv∈E(6,6)(G)

τuτv

� 5(3 × 3) + 10(3 × 4) +(10n − 10)(4 × 4) + 5n(4 × 6) + 5/2n(3n − 1)(6 × 6)

� 270n
2

+ 190n + 5.

(16)

For ZC∗1(G),

ZC∗1(G) � 
u∈V(G)

τudegu � 
uv∈E(u,v)(G)

τu + τv( .
(17)

Let Oτ � (τu, τv): uv ∈ E(G) :

ZC∗1(G) � 

τu,τv( )∈Oτ


uv∈E τu,τv( )(G)

τu + τv(  � 
uv∈E(3,3)(G)

τu + τv(  + 
uv∈E(3,4)(G)

τu + τv(  + 
uv∈E(4,4)(G)

τu + τv( 

+ 
uv∈E(4,6)(G)

τu + τv(  + 
uv∈E(6,6)(G)

τu + τv( 

� 5(3 + 3) + 10(3 + 4) +(10n − 10)(4 + 4) + 5n(4 + 6) +
5
2

n(3n − 1)(6 + 6) � 90n
2

+ 100n + 20.

(18)

□
4.3. Results for CNC6(n). In *eorem 3, we computed
connection Zagreb indices of CNCk(n), for k � 6. CNC6(n)

for n � 4 is shown in Figure 5.

Theorem 3. 0e ZC1,ZC2, and ZC
∗
1 of CNC5(n) are equal to

ZC1 CNC6(n)(  � 180n
2

+ 160n + 10,

ZC2 CNC6(n)(  � 270n
2

+ 190n + 5,

ZC∗1 CNC6(n)(  � 108n
2

+ 100n + 20.

(19)

Proof. *e total number of vertices of G � CNC6(n) are
6(n + 1)2 and 3(3n2 + 5n + 2) edges. Similar technique is

used as in CNC4(n) and CNC5(n) computation. We par-
titioned the vertex set as Vτu

(G) and the edge set as
E(τu,τv)(G).

*e computations in Table 5 give vertex partition
|V3(G)| � 10, |V4(G)| � 10n − 5, and |V6(G)| � 5n2. By
using this partition, we compute ZC1(CNC6(n)) � ZC1(G):

ZC1(G) � 
u∈V(G)

τ2u. (20)

Let Nτ � τu: u ∈ V(G) :

ZC1(G) � 
τu∈Nτ


u∈Vτu

(G)

τu � 
u∈V3(G)

τu + 
u∈V4(G)

τu + 
u∈V6(G)

τu,

ZC1(G) � 12(3)
2

+(12n − 6)(4)
2

+ 6n
2
(6)

2
,

ZC1 CNC6(n)(  � 216n
2

+ 192n + 12.

(21)

In Table 6, we list our observation for the number of
edges with similar end vertex connection number of
CNC6(n) and generalize for arbitrary value of n.

*e generalization based on Table 6 provides edge
partitions as E(τu,τ v)(G), |E(3,3) (G)| � 6, |E(3,4)(G)| �

12, |E(4,4)(G)| � 12(n − 1), |E(4,6)(G)| � 6n, and |E(6,6)(G)|
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� 3n(3n − 1). Using this partition, we computed
ZC2(CNC6(n)) and ZC∗1(CNC6(n)):

ZC2(G) � 
uv∈E(G)

τuτv, (22)

Let Mτ � (τu, τv): uv ∈ G ,

ZC2(G) � 

τu,τv( )∈Mτ


uv∈E τu,τv( )(G)

τuτv � 
uv∈E(3,3)(G)

τuτv + 
uv∈E(3,4)(G)

τuτv + 
uv∈E(4,4)(G)

τuτv + 
uv∈E(4,6)(G)

τuτv + 
uv∈E(6,6)(G)

τuτv

� 6(3 × 3) + 12(3 × 4) +(12n − 12)(4 × 4) + 6n(4 × 6) + 3n(3n − 1)(6 × 6),

ZC2 CNC6(n)(  � 324n
2

+ 228n + 6.

(23)

Now, for ZC∗1(G),

ZC∗1(G) � 
u∈V(G)

τudegu � 
uv∈E(u,v)(G)

τu + τv( .
(24)

Let Oτ � (τu, τv): uv ∈ E(G) :

ZC∗(G) � 

τu,τv( )∈Oτ


uv∈E τu,τv( )(G)

τu + τv(  � 
uv∈E(3,3)(G)

τu + τv(  + 
uv∈E(3,4)(G)

τu + τv(  + 
uv∈E(4,4)(G)

τu + τv( 

+ 
uv∈E(4,6)(G)

τu + τv(  + 
uv∈E(6,6)(G)

τu + τv( 

� 6(3 + 3) + 12(3 + 4) +(12n − 12)(4 + 4) + 6n(4 + 6) + 3n(3n − 1)(6 + 6),

ZC∗1 CNC6(n)(  � 108n
2

+ 192n + 24.

(25)

□

Figure 5: Graphical representation of CNC6(n).
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Table 5: Vertex partition of CNC6(n) with respect to connection number τ.
n 1 2 3 4 5 6 7 8 9 10 . . . p

τ � 3 12 12 12 12 12 12 12 12 12 12 . . . 12
τ � 4 6 18 30 42 54 66 78 90 102 114 . . . 12p − 6
τ � 6 5 24 54 96 150 216 294 384 486 600 . . . 6p2

Table 6: Edge partition of CNC6(n) with respect to connection number τ.

n/|E(τu,τv)| 1 2 3 4 5 6 7 8 9 10 . . . n � p

|E(3,3)| 6 6 6 6 6 6 6 6 6 6 . . . 6
|E(3,4)| 12 12 12 12 12 12 12 12 12 12 . . . 12
|E(4,4)| 0 12 24 36 48 60 72 84 96 108 . . . 12(p-1)
|E(4,6)| 6 12 18 24 30 36 42 48 54 60 . . . 6p
|E(6,6)| 6 30 72 132 210 306 420 552 702 870 . . . 3p(3p − 1)
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Figure 6: Comparison of results computed in*eorems 1–3. (a) Comparison of results regarding ZC1. (b) Comparison of results regarding
ZC2. (c) Comparison of results regarding ZC∗1 .

Mathematical Problems in Engineering 9



4.4.ComparisonofResults. In Figure 6, Figure 6(a) interprets
behavior of ZC1(G), Figure 6(b) of ZC2(G), and Figure 6(c)
of ZC∗1(G) for k � 4, 5, 6.

4.5. Results for CNCk(n). Graph shown in Figure 7 is the
associated chemical graph of CNCk(n) for arbitrary value of
k. It consists of a k-gon as the central core cycle with n layers
of hexagons around the core.

Theorem 4. 0e ZC1,ZC2, and ZC∗1 of CNCk(n) are

ZC1 CNCk(n)(  � 36kn
2

+ 32kn + 2k,

ZC2 CNCk(n)(  � 54kn
2

+ 38kn + k,

ZC∗1 CNCk(n)(  � 18kn
2

+ 20kn + 4k.

(26)

Proof. *e chemical graph of CNCk(n) has cycle of length k

corresponding to core of CNCk(n), where n represent the
number of layers of hexagons around the core. Total vertices
of CNCk(n) is k(n + 1)2 and edges is k/2(3n2 + 5n + 2) [30].

1
2
34

5
k

Figure 7: *e chemical graph of generalized carbon nanocone CNCk(n).
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Figure 8: *e graphical representation of connection Zagreb indices for generalized values of n and k. (a) *e graphical representation of
ZC1(CNCk(n)). (b) *e graphical representation of ZC2(CNCk(n)).
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For computation of ZC1 for generalized nanocone CNCk(n),
we used their edges and vertex partition. From the con-
struction of CNCk(n), it is clear that the connection number
associated to the vertices is 6 except the k(2n + 1) vertices of
outer layer of hexagons. So, the number of vertices with
connection number 6 is |V6(CNCk(n))| � k(n + 1)2 − k

(2n + 1) � kn2 � kn2.
In the outer layer of hexagons, two vertices at each

corner have connection number τu � 3 and all other have
τu � 4. So, |V3(CNCk(n))| � 2k and |V4(CNCk(n))| �

k(2n+1) − 2k � k(2n − 1). Similarly, all the edges other
than edges of the outer layer of hexagons have (6, 6)

as end vertex connection number, i.e., |E(6,6)(CNC
k(n))| � k/2 (3n2 + 5n + 2)− (3kn + k) � k/2 (3n2 − 1). *e
edges in the outer layer of hexagons are partitioned
as |E(3,3)(CNCk (n))| � k, |E(3,4) (CNCk(n))| � 2k, |E(4,4)

(CNCk(n))| � k(2n − 2), and |E(4,6)(CNCk(n))| � kn. We
use this vertex and edge partition and technique as used
in *eorems 1–3 for proof. Let G � CNCK(n) and
Nτ � τu: u ∈ V(G) :

ZC1(G) � 
u∈V(G)

τ2u,

ZC1(G) � 
τu∈Nτ


u∈Vτu

(G)

τu � 
u∈V3(G)

τu + 
u∈V4(G)

τu + 
u∈V6(G)

τu,

ZC1(G) � 2k(3)
2

+ k(2n − 1)(4)
2

+ kn
2
(6)

2
,

ZC1 CNCk(n)(  � 36kn
2

+ 32kn + 2k,

(27)

ZC2(G) � 
uv∈E(G)

τuτv,

ZC2(G) � 

τu,τv( )∈Mτ


uv∈E τu,τv( )(G)

τuτv � 
uv∈E(3,3)(G)

τuτv + 
uv∈E(3,4)(G)

τuτv + 
uv∈E(4,4)(G)

τuτv + 
uv∈E(4,6)(G)

τuτv + 
uv∈E(6,6)(G)

τuτv,

ZC2(G) � k(3 × 3) + 2k(3 × 4) +(2kn − 2k)(4 × 4) + kn(4 × 6) +
k

2
3n

2
− 1 (6 × 6),

ZC1 CNCk(n)(  � 54kn
2

+ 38kn + k,

(28)

1.5 × 106

1 × 106

500.000ZC
1

0
0

20

40
n

0

10

20

30

40

k

Modified first connection Zagreb index

Figure 9: *e graphical representation of ZC∗1(CNCk(n)) for generalized values k.
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ZC∗1(G) � 
u∈V(G)

τudegu � 
uv∈E(u,v)(G)

τu + τv( ,

ZC∗1(G) � 

τu,τv( )∈Oτ


uv∈E τu,τv( )(G)

τu + τv(  � 
uv∈E(3,3)(G)

τu + τv(  + 
uv∈E(3,4)(G)

τu + τv(  + 
uv∈E(4,4)(G)

τu + τv( 

+ 
uv∈E(4,6)(G)

τu + τv(  + 
uv∈E(6,6)(G)

τu + τv( ,

ZC∗1(G) � k(3 + 3) + 2k(3 + 4) +(2kn − 2k)(4 + 4) + kn(4 + 6) +
k

2
3n

2
− 1 (6 + 6),

ZC∗1 CNCk(n)(  � 18kn
2

+ 20kn + 4k.

(29)

Hence, the proof is completed.
*eorem 4 shows that connection Zagreb indices of

CNCk(n) increased by a factor k (number of carbon atoms
in the core). In Figure 8, Figures 8(a) and 8(b) interpret
computed results of ZC1(CNCk(n)) and ZC2(CNCk(n)),
respectively, for any value of k and 9 of ZC∗1(CNCk(n)). □

5. Conclusion

*e International Academy of *eoretical Chemistry
explored that any topological index is acceptable to es-
timate chemical properties of compounds if it has a sound
correlation with actual physio-chemical property of oc-
tane isomers. Customarily, octane isomers are adopted
for such investigations due to the huge number of
structural isomers of octane [31] for the acceptable sta-
tistical conclusion. Ali et al. [32] studied the correlation
efficiency of ZC∗1 for the physio-chemical properties of
octane isomers: entropy, boiling point, density, en-
thalpies, acentric factor, etc. *ey concluded that ZC∗1 has
a correlation coefficient approximately 0.949 and 0.892
for acentric factor and entropy, respectively. Correlation
of ZC1 with physical properties was studied by Jakkan-
navar and Basavanagoud [33] and found good with en-
thalpy. Possibility of large-scale production of CNCs [34]
and predictive ability of topological indices [35] en-
courages theoretical study of CNCk(n). We computed
connection Zagreb indices ZC1(G),ZC2(G), and ZC∗1(G)

of CNCk(n) for k � 4, 5, 6 in *eorems 1–3 and gener-
alized our finding up to large value of K in 4.4. *ese
results facilitate topological characterization of CNCk(n)

which is helpful in finding new applications in the
emerging field of nanotechnology.
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%e purpose of this paper is the study of simple graphs that are generalized Cayley graphs over LA-polygroups (GCLAP − graphs).
In this regard, we construct two new extensions for building LA-polygroups. %en, we define Cayley graph over LA-group and
GCLAP-graph. Further, we investigate a few properties of them to show that each simple graph of order three, four, and five
(except cycle graph of order five which may or may not be a GCLAP-graph) is a GCLAP-graph and then we prove this result.

1. Introduction

%e origins of graph theory can be traced back to Euler’s
work [1] on the königsberg bridges problem (1735), which
thusly prompted the idea of an Eulerian graph. Graph is a
mathematical portrayal of a grid and it portrays the rela-
tionship between lines and points.

%e idea of Cayley graph was introduced by Cayley [2] in
1878. Cayley graph has been widely studied in both directed
and undirected forms. To study the characteristics of Cayley
graphs, refer the papers [3–6].

First time Marty [7] introduced the concept of algebraic
hyperstructures, which is a suitable extension of classical
algebraic structures. Since then, a lot of works have been
written on this topic. For a brief analysis of this theory, see
[8,9]. In the books [10–13], we can see the applications of
hyperstructures in lattices, cryptography, graph, automata,
probability, geometry, and hypergraphs. A very good pre-
sentation of polygroup theory is in [14], which is utilized to
consider color algebra [15–17] and hypergraph theory in [18]
by Berge.

%e theory of left almost structures was first defined by
Kazim and Naseeruddin [19] in 1972. Subsequently,
Mushtaq and Kamran [20] established a new concept of left
almost group (nonassociative group) called LA-group. %e
theory of left almost hyperstructures was first introduced by

Hila and Dine [21] in the form of left almost semi-
hypergroups, which was further investigated by Yaqoob et al.
[22] and Amjad et al. [23]. In [24], Yaqoob et al. introduced
the concept of LA-polygroups.

Recently, Heidari et al. [25] introduced a suitable gen-
eralization of Cayley graphs that is defined over polygroups
(GCP − graphs) and showed that each simple graph of order
≥5 is a GCP-graph.

In this paper, we construct two new extensions for
building LA-polygroups. %en, we define the idea of Cayley
graph over LA-group and GCLAP-graph. In particular, we
proved some properties of them in order to show that each
simple graph of order three, four, and five (except cycle
graph of order five which may or may not be a GCLAP-
graph) is a GCLAP-graph.

2. Preliminaries and Notations

%is section contains some basic definitions of graph theory
(see [26]) and left almost theory (see [24]).

A graph is represented by Φ � (R, D), where R is the set
of vertices and D is the set of edges. Note that |R| is the order
of a graph and |D| in a graph is its size. %e graph Kn is
known as complete graph if every couple of vertices form an
edge, where n is the number of vertices. In specific, K1 is
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known as trivial graph and Nn is known as null graph having
no edges and n vertices.

If Φ � (R, D) is a graph such that
R � R′ ∪R″ andR′ ∩R″ � ∅, where R′ and R″ are subsets of
R and edges of the form d, f |d ∈ R′ andf ∈ R″ , then
Φ � Km,n is known as complete bipartite graph, where |R′| �

m and |R″| � n. In specific, K1,n is known as star graph. %e
complement of a simple graph Φ � (R, D) is denoted by Φ,
where Φ � (R, D) such that D � d, f | d, f  ∉ D . Let
Φ � (R, D) and Φ′ � (R′, D′) be two graphs. %en, Φ′ is
known as subgraph of Φ, if R′⊆R and D′⊆D. A subgraph
Φ′⊆Φ is known as induced subgraph, ifΦ′ contains each and
every edge d, f  ∈ D with d, f ∈ R′. Two graphs
Φ � (R, D) andΦ′ � (R′, D′) are said to be isomorphic, if ∃,
a bijection, c: R⟶ R′ such that z, a{ } ∈ D⇔
c(z), c(a)  ∈ D′. We denote this by Φ � Φ′. Let
Φ � (R, D) and Φ′ � (R′, D′) be two graphs. %en,
Φ∪Φ′ � (R″, D″), where R″ � R∪R′ andD″ � D∪D′ and
joint of two graphsΦ∨Φ′ � (R″, D″) with R″ � R∪R′ and
D″ � D∪D′ ∪ d, f |d ∈ R, f ∈ R′ . A graph Φ � (R, D)

having no self edges and no multiple edges is known as
simple graph.

Definition 1 (see [27]). IfΦ � (R, D) is a graph and we form
a sequence of vertices (ordered from left to right)
d1, d2, d3, . . . , dn such that there is just one edge between
every two succesive vertices and there are no other edges
known as path. A path on n vertices is denoted by Pn.

Definition 2 (see [27]). A graph is said to be a connected
graph if there exists at least one path between every two
vertices.

Definition 3 (see [27]). If all vertices have degree two of a
connected graph, then it is called a cycle. A cycle graph has n

vertices, represented by Cn.

Definition 4 (see [20]). A groupoid G is called a left almost
group, i.e., LA-group, if

(i) ∃e ∈ G such that e d � d for all d ∈ G,
(ii) ∀d ∈ G, ∃d∗ ∈ G such that dd∗ � e,
(iii) (wf)d � (df)w, ∀d, f, w ∈ G.

Example 1 (see [20]). Let Gn � t1, t2, . . . , tn  where n≥ 3,
under binary operation ∗ which is defined as

ti ∗ tj � tk, k ≡ (j + 1) − i(mod n). (1)

%en, (Gn, ∗ ) is an LA-group. For n � 5, we have the
Cayley (Table 1).

Definition 5 (see [24]). A multivalued system 〈L, ∘ , e,−1〉,
where e ∈ L −1, is a unitary operation and ∘ maps L × L into
the family of nonempty subsets of L which is called LA-
polygroup, if the following postulates hold for all d, f, w ∈ L:

(i) Left invertive law: (d ∘f) ∘w � (w ∘f) ∘d,
(ii) Reproducibility axiom: d ∘ L � L ∘d � L,

(iii) ∃ is a left identity L ∋ e such that f � e ∘f,
(iv) f− 1 ∘f∩f ∘f− 1  e,
(v) d ∈ f ∘w⟹f ∈ d ∘w− 1.

Example 2 (see [24]). Consider a finite set Qn �

t1, t2, t3, . . . , tn , where n≥ 3. %en, Qn is an LA-polygroup
under the following hyperoperation:

ti ∗ tj �

tj, for i � 1,

tk, for j � 1 and k ≡ 2 − imod Qn


,

Qn, for j≠ 1, i≠ 1, i � j,

Qn∖ t1 , for j≠ 1, i≠ 1, i≠ j.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(2)

For n � 5, we have the Cayley (Table 2).

Example 3 (see [24]). Consider L1 � 1, 2, 3, 4{ } with the
hyperoperation ∘ , given in Table 3.

%en, L1 � 〈 1, 2, 3, 4{ }, ∘ , 1,−1〉 is an LA-polygroup.
Notations. All LA-polygroups are represented by

L,M,N, . . . and the underlying sets are represented by
L, M, N, . . . Also, L∗ � L\ e{ } and A−1 � a−1: a ∈ A . Now,
we establish two new extensions for making LA-polygroups.

2.1. (I) Extension of an LA-Polygroup by a Set: L T{ }.
Suppose that 〈L, ∘ , e,−1〉 is an LA-polygroup and L∩T � ∅,
where T is a nonempty set. Put M � L∪T, e⊎ d � d, for
every d ∈M and ∀d, f ∈M∗ � d ∈M: d≠ e{ }; we define

d
−I

�
d

− 1
, if d ∈ L,

d, if d ∈ T,

⎧⎨

⎩

d⊎ e �
d ∘ e, if d ∈ L,

d, if d ∈ T,


d⊎f �

(d ∘f)∪T, if d, f ∈ L,

L∪T, if d � f ∈ T,

M
∗
, otherwise.

⎧⎪⎪⎨

⎪⎪⎩

(3)

%e system 〈M,⊎, e,−I〉 is known as the extension of LA-
polygroup L by a set T and represented by L T{ }.

Theorem 1. Let 〈L, ∘ , e,−1〉 be an LA-polygroup and T be a
nonempty set such that L∩T � ∅. 2en, L T{ } is an LA-
polygroup.

Table 1: LA-group.
∗ t1 t2 t3 t4 t5

t1 t1 t2 t3 t4 t5
t2 t5 t1 t2 t3 t4
t3 t4 t5 t1 t2 t3
t4 t3 t4 t5 t1 t2
t5 t2 t3 t4 t5 t1
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Proof. Suppose that L T{ } � M, L∪T � M, L∩T � ∅, and
d, f, w ∈M. If d, f, w ⊆ L∗, then

(d⊎f)⊎w � [(d ∘f) ∘w∪T]∪M
∗

� [(w ∘f) ∘ d∪T]∪M
∗

� (w⊎f)⊎d.

(4)

If exactly one of d, f, w ∈ L is equal to the left identity,
then

(d⊎f)⊎w � (d ∘f) ∘w∪T � (w ∘f) ∘ d∪T � (w⊎f)⊎d.

(5)

If exactly two of d, f, w ∈ L are equal to the left identity,
then

(d⊎f)⊎w � (d ∘f) ∘w � (w ∘f) ∘d � (w⊎f)⊎ d. (6)

If d, f, w ⊈ L, then (d⊎f)⊎w � M � (w⊎f)⊎ d.
%us, left invertive law holds. Now, we prove axiom (v) of
Definition 5. Let d, f, w ∈M such that w ∈ d⊎f, then

Case 1. If d, f, w ∈ L, then we have done.

Case 2. (a) If w ∈ L∗, then we have the following
possibilities:

(i) If d ∈ T and f ∈ L∗, then T⊆w⊎f− I⇒d ∈ w⊎f− I;
(ii) If f ∈ T and d ∈ L∗, then

d ∈ w⊎f− I � w⊎f � M∗⇒d ∈ w⊎f− I;
(iii) If d, f ∈ T, then

d ∈ w⊎f− I � w⊎f � M∗⇒d ∈ w⊎f− I.

Case 2. (b) If w � e, then w ∈ d⊎f⇒d � f− I and
w⊎f− I � e⊎d � d{ }⇒d ∈ w⊎f− I.
Case 3. (a) If w ∉ L and d, f ∈M∗, then

w⊎f− I
� M
∗
, if w≠f,

w⊎f− I
� M, if w � f.

⎧⎨

⎩ (7)

Hence, d ∈ w⊎f− I.
Case 3. (b) If w ∉ L andd � e, then w ∈ d⊎f⇒w �

f ∈ T and w⊎f− I � f⊎f− I � f⊎f � M, hence
d ∈ w⊎f− I.
Case 3. (c) If w ∉ L andf � e, then

w ∈ d⊎f � d{ }⇒w � d and w⊎f− I � w{ } � d{ }, hence
d ∈ w⊎f− I.

%us, condition (v) of Definition 5 holds and hence the
theorem is proved. □

Example 4. Let L2 � 〈 1, 2, 3, 4{ }, ∘ , 1,− 1〉 be an LA-poly-
group with the Cayley (Table 4).

%en, M2 � L2 5, 6{ }{ is an LA-polygroup with six ele-
ments and the Cayley (Table 5), where M2 � 1, 2, 3, 4, 5, 6{ }.

2.2. (II) Extension of an LA-Polygroup by a Set: L T{ }◇.
Suppose that 〈L, ∘ , e,− 1〉 is an LA-polygroup and L∩T � ∅,
where T is a nonempty set such that T � ∪ n

i�1ti (ordered
from left to right, i.e., t1, t2, t3, . . . , tn). Put L∪T � M and
e⊎ d � d, ∀d ∈M. We define

d
− I

�
d

− 1
, if d ∈ L,

d, if d ∈ T,

⎧⎨

⎩

d⊎e �
d ∘ e, if d ∈ L,

d, if d ∈ T,


d⊎f �

d ∘f, if d, f ∈ L,

ti, if d ∈ L, f � ti ∈ TOR d � ti ∈ T, f ∈ Lwhere 1≤ i≤ n,

ti, if d � ti, f � tj ∈ Twhere i> j,

tj, if d � ti, f � tj ∈ Twhere i< j,

L, if d � t1 � f ∈ T,

L∪Ai, if d � ti+1 � f ∈ Twhere 1≤ i≤ n − 1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(8)

Table 2: LA-polygroup.
∗ t1 t2 t3 t4 t5

t1 t1 t2 t3 t4 t5
t2 t5 Qn Qn\ t1  Qn\ t1  Qn\ t1 

t3 t4 Qn\ t1  Qn Qn\ t1  Qn\ t1 

t4 t3 Qn\ t1  Qn\ t1  Qn Qn\ t1 

t5 t2 Qn\ t1  Qn\ t1  Qn\ t1  Qn

Table 3: LA-polygroup.

∘ 1 2 3 4
1 1 2 3 4
2 4 2, 3, 4{ } 2, 4{ } 1, 2, 3{ }

3 3 2, 4{ } 1, 3{ } 2, 4{ }

4 2 1, 3, 4{ } 2, 4{ } 2, 3, 4{ }

Mathematical Problems in Engineering 3



where Ai � ∪ i
h�1 th . %e system 〈M,⊎, e,− I〉 is known as

the extension of LA-polygroup L by a set T and represented
by L T{ }◇.

Theorem 2. Let 〈L, ∘ , e,− 1〉 be an LA-polygroup and T be a
nonempty set such that L∩T � ∅. 2en, L T{ }◇ is an LA-
polygroup.

Proof. Suppose that L T{ }◇, L∪T � M, L∩T � ∅, and
d, f, w ∈M.

If d, f, w ⊆L, then clearly left invertive law holds.
If d, f, w ⊈L, then we consider the following cases:

Case 1. If w ∉ L and d, f ∈ L, then (w⊎f)⊎ d

� w � (d⊎f)⊎w.
Case 2. If w � sk, f � sj ∉ L, and d ∈ L, then

(d⊎f)⊎w � w⊎w � (w⊎f)⊎ d, if k � j,

(d⊎f)⊎w � w � (w⊎f)⊎d, if k> j,

(d⊎f)⊎w � f � (w⊎f)⊎d, if k< j,

(9)

Case 3. If w � sk, f � sj, d � si ∉ L in the following
way:

(i) such that k> j> i, then

(d⊎f)⊎w � si ⊎ sj ⊎ sk � sk

� sk ⊎ sj ⊎ si � (w⊎f)⊎ d,
(10)

(ii) such that i � j, then

(d⊎f)⊎w � si⊎sj ⊎sk � si⊎si � sk⊎sj ⊎si � (w⊎f)⊎ d, if k< i � j≠ 1,

(d⊎f)⊎w � si⊎sj ⊎sk � sk � sk⊎sj ⊎si � (w⊎f)⊎ d, if k> i � j,
(11)

(iii) such that j � k, then

(d⊎f)⊎w � si⊎sj ⊎sk � sj⊎sj � sk⊎sj ⊎si � (w⊎f)⊎ d, if i< j � k≠ 1,

(d⊎f)⊎w � si⊎sj ⊎sk � si � sk⊎sj ⊎si � (w⊎f)⊎ d, if i> j � k.
(12)

%us, left invertive law holds. Now, we prove axiom (v)
of Definition 5. Let d, f, w ∈M such that w ∈ d⊎f. %en, we
consider the following cases:

Case 1. If w ∈ T, then either w � d ∈ T or w � f ∈ T or
s1 ≠ d � f ∈ T:

(i) If w � d ∈ T, then d ∈ w⊎f− I � d⊎f− I � d{ },
(ii) If w � f ∈ T and d ∈ L, then L⊆f⊎f � w⊎f− I

⇒d ∈ w⊎f− I; if w � f ∈ T and d ∈ T, then w �

f � sj(j≠ 1) and L∪Aj−1⊆w⊎f− I⇒d ∈ w⊎f− I,
(iii) If s1 ≠ d � f ∈ T, then w⊎f− I � w⊎f �

f � d⇒d ∈ w⊎f− I.

Case 2. If w ∈ L, then d � f ∈ T and w⊎f− I � w⊎f
� f � d⇒d ∈ w⊎f− I.

%us, condition (v) of Definition 5 holds and hence the
theorem is proved. □

Example 5. Let L3 � 〈 1, 2, 3{ }, ∘ , 1,− 1〉 be an LA-polygroup
with the Cayley (Table 6).

%en, M3 � L3 4, 5{ }◇ is an LA-polygroup with five
elements and the Cayley (Table 7), where M3 � 1, 2, 3, 4, 5{ }.

%is is an LA-polygroup and not a polygroup.

3. Cayley Graphs over LA-Groups and LA-
Polygroups

Definition 6. Suppose that G is an LA-group and C is a
subset of G such that

Table 4: LA-polygroup.

∘ 1 2 3 4
1 1 2 3 4
2 3 2, 3{ } 1, 2{ } 4
3 2 1, 3{ } 2, 3{ } 4
4 4 4 4 1, 2, 3{ }

Table 5: LA-polygroup.

⊎ 1 2 3 4 5 6
1 1 2 3 4 5 6
2 3 2, 3, 5, 6{ } 1, 2, 5, 6{ } 4, 5, 6{ } M∗2 M∗2
3 2 1, 3, 5, 6{ } 2, 3, 5, 6{ } 4, 5, 6{ } M∗2 M∗2
4 4 4, 5, 6{ } 4, 5, 6{ } 1, 2, 3, 5, 6{ } M∗2 M∗2
5 5 M∗2 M∗2 M∗2 M2 M∗2
6 6 M∗2 M∗2 M∗2 M∗2 M2

Note that M∗2 � M2∖ 1{ } � 2, 3, 4, 5, 6{ }.
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(i) 1 ∉ C,
(ii) C− 1 � C; then, Cayley graph Cay(LAG, C) of G

relative to C is the simple graph which has vertex set
G and edge set

D � g, gs |g≠gs, whereg ∈ G and s ∈ C . (13)

Example 6. %e Cayley graphs of the LA-group
G5 � ( t1, t2, t3, t4, t5 , ∗ ) given in Example 1, with con-
nection sets t2  and t2, t3 , are shown in Figures 1 and 2.
For C � t2 , we have

t1, t1 ∗ t2  � t1, t2  t2, t2 ∗ t2 

� t2, t1  t3, t3 ∗ t2 

� t3, t5  t4, t4 ∗ t2 

� t4, t4  t5, t5 ∗ t2 

� t5, t3 .

(14)

For C � t2, t3 , we have

t1, t1 ∗ t2  � t1, t2  t3, t3 ∗ t2 

� t3, t5  t1, t1 ∗ t3 

� t1, t3  t4, t4 ∗ t3 

� t4, t5 .

(15)

Definition 7. Given an LA-polygroup L � 〈L, ∘ , e,− I〉 and
L⊆C≠∅ such that (C � C− I), say the connection set. %en,
we define the generalized Cayley graph over LA-polygroup
GCLAP(L; C) which is the simple graph having vertex set L

and the edge set

D � d, f |d≠f and (d ∘ e) ∘f∩C≠∅ . (16)

If we have an LA-polygroup L and a connection set C

such that GCLAP(L; C) � Λ, then the graph Λ is known as a
GCLAP-graph.

Here, we give few examples of GCLAP-graphs.

Example 7. %e generalized Cayley graph of the left almost
polygroup L4 � 〈 1, 2, 3, 4{ }, ∘ , 1,− 1〉, with connection set
C � 3, 4{ } which is shown in Figure 3, where”°” is defined in
Table 8.

Example 8. %e generalized Cayley graph of the left almost
polygroup L5 � 〈 1, 2, 3, 4, 5{ }, ∘ , 1,− 1〉 with connection set
2, 3{ } which is shown in Figure 4, where” ∘ ” is defined in
Table 9.

4. Which Simple Graphs Are GCLAP-Graphs?

First, we point out a few types of simple graphs that are
GCLAP-graphs. After that, we infer that each simple graph
of order three, four, and five (except cycle graph of order five
which may or may not be a GCLAP-graph) is a GCLAP-
graph.

Lemma 1. Every Cayley graph is a GCLAP-graph.

Proof. Since every LA-group is an LA-polygroup, therefore,
by Definition 7, the result holds. □

Lemma 2. Every complete graph of order at least three is a
GCLAP-graph.

Proof. Let 〈Qn, ∗ , t−1
1 〉 be an LA-polygroup, where n≥ 3 (as

defined in Example 2). %en, GCLAP(Qn; Qn∖ t1 ) are
isomorphic to the complete graphs on n vertices, where
n≥ 3. Hence, it is proved. □

Table 6: LA-polygroup.

∘ 1 2 3
1 1 2 3
2 3 2, 3{ } 1, 2, 3{ }

3 2 1, 2, 3{ } 2, 3{ }

Table 7: LA-polygroup.

⊎ 1 2 3 4 5
1 1 2 3 4 5
2 3 2, 3{ } 1, 2, 3{ } 4 5
3 2 1, 2, 3{ } 2, 3{ } 4 5
4 4 4 4 1, 2, 3{ } 5
5 5 5 5 5 1, 2, 3, 4{ }

t1

t3

t5t4

t2

Figure 1: Cay(LAG5, t2 ).

t1

t3

t5t4

t2

Figure 2: Cay(LAG5, t2, t3 ).
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Lemma 3. Show that each star graph of order at least three is
a GCLAP-graph.

Proof. Suppose that L � Gn tn+1 
◇, where n≥ 3 and Gn is

defined in Example 1. %en, Cayley table for L is given in
Table 10.

Now, by considering connection set C � tn+1 , we can
see that Sn � GCLAP(L; C). □

Lemma 4. If Φ is a GCLAP-graph. 2en, show that Φ∪ nK1
is also a GCLAP-graph, where n≥ 1.

Proof. LetΦ be a GCLAP-graph.%en, we have a left almost
polygroup L and a connection set C such that
Φ � GCLAP(L; C). Suppose that Φn � Φ∪ nK1 and
Zm � ∪m

t�1 zt . By Extension (II) and Definition 7, we have
Φ1 � GCLAP(L Z1 

◇
; C). Now, by using induction,

Φm � GCLAP(Q; C), where Q � L Zm 
◇ and C is a con-

nection set. Hence,Φm+1 � GCLAP(Q zm+1 
◇

; C). %us,Φn

is a GCLAP − graph for every n ∈ N. □

Definition 8. Let m ∈ 1, 2, 3, . . .{ } and q ∈ 2, 3, 4, . . . ,{

m − 1}. %en, the (m, q)-pseudo complete graph is known as
the complement of the graphSq ∪Nm−q and represented by
U(m, q). A graph Φ is known as a pseudocomplete graph if
Φ � U(m, q) for some m ∈ 1, 2, 3, . . .{ } and
q ∈ 2, 3, 4, . . . , m − 1{ }.

Example 9. Pseudocomplete graphs on five vertices are
shown in Figure 5.

Lemma 5. If m ∈ 1, 2, 3, . . .{ } and b, q ∈ 2, 3, . . . , m − 1{ },
then the following statements hold:

(i) U(m, q) is connected,
(ii) If q≠ b then U(m, q)≠ U(m, b),
(iii) A connected graph Φ of order m is a pseudocomplete

graph ⇔; it contains Km−1 as a subgraph.

Lemma 6. All pseudocomplete graphs are GCLAP-graphs.

Proof. Let Φ � U(m, q) be a pseudocomplete graph, where
m≥ 1 and q ∈ 2, 3, 4, . . . , m − 1{ }. Consider the LA-polygroup
L � Q3 4, 5, 6, . . . , m{ }{ }, where Q3 � 〈 1, 2, 3{ }, ∗ , 1,− 1〉,
given in Example 2, and the connection set
C � q + 1, q + 2, . . . , m . %en, GCLAP(L; C) is isomor-
phic to the graphSq ∪Nm−q. Hence, U(m, q) �

GCLAP(L; C). □

Definition 9. %e expansion of the graph Φ, represented by
Φ+, is the join of the graph Φ and K1, i.e., Φ+ � Φ∨K1.

Lemma 7. Show that the expansion of a GCLAP-graph is a
GCLAP-graph.

Proof. Let Λ � GCLAP(L; C), where L is a left almost
polygroup having n elements and C is a connection set.
Suppose that Q � L n + 1{ }{ }◇ and C′ � C∪ n + 1{ }. %en,
Φ+ � GCLAP(Q; C′). □

Definition 10. Let Φ � (G, D) be a graph, g ∈ G, and f ∉ G.
%e faulty join graph, represented by ∇g, is the graph such
that ∇g(Φ, f) � (G′, D′), where G′ � G∪ f  and
D′ � D∪ f, h : g≠ h ∈ G . Moreover, a graph is known as
∇1-graph if it is isomorphic to ∇1(Φ, f), where
Φ � GCLAP(L; C) such that L is a left almost polygroup
having n elements, f ∉ L ,and C is a connection set.

2

31

4

Figure 3: GCLAP(L4; 3, 4{ }).

Table 8: LA-polygroup.

∘ 1 2 3 4
1 1 2 3 4
2 3 1, 2, 3{ } 2, 3, 4{ } 2
3 2 2, 3, 4{ } 1, 2, 3{ } 3
4 4 3 2 1

4

32

5

1

Figure 4: GCLAP(L5; 4, 5{ }).

Table 9: LA-polygroup.

∘ 1 2 3 4 5
1 1 2 3 4 5
2 3 2, 3{ } 1, 2{ } 4 5
3 2 1, 3{ } 2, 3{ } 4 5
4 4 4 4 1, 2, 3, 4, 5{ } 4, 5{ }

5 5 5 5 4, 5{ } 1, 2, 3, 4, 5{ }

Table 10: LA-polygroup.

⊎ t1 t2 . . . tn tn+1

t1 tn+1
t2 tn+1
. Gn .
. .
. .
tn tn+1
tn+1 tn+1 tn+1 . . . tn+1 t1, t2, t3, . . . , tn 
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Lemma 8. Every ∇1-graph is a GCLAP-graph.

Proof. Suppose that Λ is a ∇1-graph having n vertices. So,
we have a left almost polygroup L having n elements and a
connection setC such thatΛ � ∇1(GCLAP(L; C), n + 1). Let
L n + 1{ }{ } � Q, then we have

∇1(GCLAP(L; C), n + 1) � GCLAP(Q; C). (17)
□

Hence, Λ is a GCLAP-graph.
Up to here, we have determined a few types of GCLAP-

graphs. Now, we confine ourselves to the graphs of order at
most five (except cycle graph of order five) and show that
every simple graph of order three, four, and five (except cycle
graph of order five which may or may not be a GCLAP-
graph) is a GCLAP-graph. In Appendix, we have shown all
simple connected graphs of order three, four, and five
(except cycle graph of order five) and denote them by
Ω1,Ω2, . . . ,Ω28.

Theorem 3. All simple graphs of order three, four, and five
(except cycle graph of order five which may or may not be a
GCLAP-graph) are GCLAP-graphs.

Proof. Suppose that Φ is a simple graph of order three, four,
and five (except cycle graph of order five). %en, as per the
connectivity of Φ, two cases can be thought of:

Case 1. If Φ is a connected graph, then we have six
subcases:

Subcase (i) (cycles and complete graphs):
Consider the LA-polygroup L4 as in Example 7. %en,
GCLAP(L4; 3, 4{ }) � Ω5, so Ω5 is a GCLAP-graph.
Also, since Ω2, Ω8, and Ω28 are complete graphs,
therefore, by Lemma 2, they are GCLAP-graphs.
Subcase (ii) (star graphs): %ink about LA-polygroup
L3 as given in Example 5, then GCLAP(L3; 2{ }) � Ω1.
Also, sinceΩ4 andΩ9 are star graphs, so by Lemma 3,
they are GCLAP-graphs.
Subcase (iii) (path graphs): Consider the LA-poly-
group L4 and LA-group G5 as defined in Examples 7
and 6, respectively. %en, Ω3 � GCLAP(L4; 2{ }),
so Ω3 is a GCLAP-graph. Also, since
Cay(LAG5, t2, t3 ) � Ω11, therefore, by Lemma 1,
Ω11 is a GCLAP − graph.
Subcase (iv) (pseudocompleted graphs): Definition 8
implies that Ω6,Ω7,Ω22,Ω25, and Ω27 are pseudocom-
plete graphs and by Lemma 6, they are GCLAP − graphs.

Subcase (v) (expansion graphs): %ink about the LA-
polygroup L4 as in Example 7 and
L6 � 〈 1, 2, 3, 4{ }, ∘ , 1,− 1〉, given in Table 11.

Ω12 � GCLAP L4; 4{ }( ( 
+
,

Ω16 � Ω1 ∪K1( 
+
,

Ω17 � GCLAP L6; 4{ }( ( 
+
,

Ω21 � Ω+
4 ,

Ω23 � Ω+
3 ,

Ω26 � Ω+
5 .

(18)

Definition 9 and above cases suggest that the graphs
Ω12,Ω16,Ω17,Ω21,Ω23, and Ω26 are expansion graphs
of GCLAP-graphs and by Lemma 7, we infer that they
are GCLAP-graphs.
Subcase (vi) (∇10 graphs):

Consider three LA-polygroups L4, L2, andL1 as in
Example 7, Example 4, and Example 3, respectively,
then the following isomorphisms hold:

Ω10 � ∇1 GCLAP L4; 4{ }( , 5( ,

Ω13 � ∇1 GCLAP L2; 2{ }( , 5( ,

Ω14 � ∇1 GCLAP L1; 3{ }( , 5( ,

Ω18 � ∇1 GCLAP L4; 2{ }( , 5( ,

Ω24 � ∇1 GCLAP L4; 2, 4{ }( , 5( .

(19)

%us, the graphs Ω10,Ω13,Ω14,Ω18, and Ω24 are
∇1-graphs. By Lemma 8, we conclude that they are
GCLAP-graphs. In the end, if we consider the left al-
most group G5 given in Example 6 and LA-polygroup,
L7 � 〈 1, 2, 3, 4, 5{ }, ∘ , 1,− 1〉 with the Cayley (Table 12).
%en, by Lemma 1, we conclude that
Ω19 � Cay(LAG5; a2, a3, a5 ) and hence the following
isomorphisms hold:

Ω15 � GCLAP L7; 3, 5{ }( ,

Ω20 � GCLAP L7; 3, 4{ }( .
(20)

%us, all simple connected graphs of order three, four,
and five (except cycle graph of order five which may or
may not be a GCLAP-graph) are GCLAP-graphs.
Case 2. If Φ is not connected. We have two subcases:
Subcase (i): ifΦ contains two nontrivial parts, thenΦ is
isomorphic to K2 ∪K2, K2 ∪Ω1, and K2 ∪Ω2. We have
K2 ∪K2 � GCLAP(L1; 3{ }), K2 ∪Ω1 � GCLAP(L7;

U (5, 2) U (5, 3) U (5, 4)

Figure 5: Pseudocomplete graphs on five vertices.

Table 11: LA-polygroup.

∘ 1 2 3 4
1 1 2 3 4
2 3 2, 3, 4{ } 1, 2, 4{ } 2, 3{ }

3 2 1, 3, 4{ } 2, 3, 4{ } 2, 3{ }

4 4 2, 3{ } 2, 3{ } 1, 4{ }
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Table 12: LA-polygroup.

∘ 1 2 3 4 5
1 1 2 3 4 5
2 2 1 3 4 5
3 4 4 1, 2{ } 5 3
4 3 3 5 1, 2{ } 4
5 5 5 4 3 1, 2{ }

Figure 6: Connected simple graphs Ω1,Ω2,Ω3, . . . .,Ω28.
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3{ }), and K2 ∪Ω2 � GCLAP(L7; 2, 5{ }), where L1 and
L7 are given in Example 3 and Subcase (vi), respectively.
Subcase (ii): if K1 is a subgraph ofΦ, thenΦ � nK1 ∪Λ,
for n≥ 1 and Λ is isomorphic to K2 ∪K2 or isomorphic
to Cay(LAG3, t2 ) or a connected graph of order <5.
By Lemma 4, we conclude that Φ is a GCLAP − graph
which completes the proof. □

%e question that usually comes to mind is what happens
if |Φ|> 5; we present this query as an open problem [28, 29].

Appendix

%ere are 28 connected simple graphs of order three, four,
and five (except cycle graph of order five) and they are
denoted by Ω1,Ω2,Ω3, . . . .,Ω28 as given in Figure 6.
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Virtual Reality games create an interactive platform for gaming and education for young people. While some longitudinal study
has studied the beneficial effects of VR games on learning, the problematic use of VR games by a significant number of learners has
become increasingly serious. (e current study investigated the mediating effect of behavioral desire and moderation of cyber
aggression on consumers’ VAD, which contributes to behavioral and psychological urge to use VR games. Data are from 367 VR
games users collected. Findings suggest that behavioral desire influences addictive behavior in the presence of a positive flow
experience. Furthermore, theoretical and practical implications in the context of VR-based games are also discussed in this
current research.

1. Introduction

Virtual Reality (VR) games consist of devices that monitor
the behavior of users and react to the sensory world,
intended to replicate the physical world. In recent in-
novations, VR has been made available to a broad cus-
tomer market and has widened its coverage to cover
fitness, arts, and entertainment as commercial value. It is
also believed that the entertainment industry will adopt
VR technology more frequently in the near future. Be-
sides, scientific research and theorizing of VR culture are
expanding along with VR technology advances [1].
Moreover, the Games industry is intending to adopt
immersive technology and it will be a game-changer in the
games industry.

(e early traces of technology of VR (previously known
as Sensoromoa) dates back to the 1960s, a period in which
color TV was the most recent advance in major media
production. Video game companies were brought to the
retail market in the mid-1990s with the first generation of
consumer-oriented products, although it took many decades
to grow [2]. (ough recently the trend of VR use is changed
to infotainment and entertainment and it is getting wide
attention from the consumers. (e global film industry has
cleverly adapted its technical innovation to plan, create, and
generate content that can provide its customers with the
greatest economic and psychological gains [3]. In different
sectors, a parallel increase in technical growth can be ob-
served [4]. Ineke also concluded VR as an important aspect
of the future entertainment environment. It must be
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remembered that even though various fields of education
and connectivity have been established by the VR industry,
entertainment is still a core element of technical interaction
in the face of diverse intentions. Most consumers, therefore,
seem to know VR as an interactive platform irrespective of
their particular intent [5].

Furthermore, many of the educational intuitions intend
to develop a Virtual Learning Environment (VLE) for better
results than the traditional way of learning. Moreover,
previous studies used the VR tool as a motivational tool for
education. Merchant et al. also stated, for example, that VR
increases the capacity of young people in schools and col-
leges to read [6]. Furthermore, Bergin counters the previous
statement that the VR environment encourages the students’
learning ability because of the media richness of the VR
environment. Moreover, Educational games will have a
positive impact on the users. Previous papers suggest that
VR brain games enhance the cognitive skills of the students
more than the traditional way of schooling [7]. Because of
the broad geographic penetration and business value, VR
technology is now a strategic informatics and entertainment
weapon, and many sectors, including e-commerce, real
estate, and sport, consider VR technology as an open
platform [8]. In the year 2020, the VR industry is projected
to hit US$ 120 trillion [9]. (e existence of VR is thus
observed to increase over the ITC spectrum [10]. Authors
claim that the transition from passive to active in associated
sectors will make it easier for relevant stakeholders to reach
optimum economic and psychological benefit [11]. In this
current study, authors have assumed that VR users will harm
their behavior, specifically addictive behavior among users.
(erefore, the objective of the current study to emphasize
VR driven consumers’ addictive behavior, which can help
map and recommend preventive measures to avoid addic-
tion and reduce the impact of overuse of VR-based games.

2. Literature

Numerous learning experiences have been provided through
virtual reality (VR). VR will potentially bring tremendous
possibilities in the future and is hence a tool to be regarded
and investigated at considerable length. VRs are being used as
virtual learning environments (VLE) in which students can
communicate with others while performing a variety of tasks
[12]. You may even learn new techniques, including spatial
socialization, networking, data processing, and even new
linguistic capacities. It is a heuristic method for engaging
students through real-time and creative concepts. It took
several years to reach the consumers’ use. In the early 1960s,
the first VR technology was introduced due to the high price it
was not possible to use for entertainment purposes but for
military andmedical training, whereas in themid-1990, it was
introduced to mass markets by the Gaming Industries and it
can be easily found anywhere in the market with little price.

Previous studies suggested that the companies need to
work on the display and the quality of the function to enhance
the users of VR gadgets, and it is the need of time to reduce the
price so that layman can easily use for their daily uses. Flow is
defined by a battle between real and actual challenges [13].

Moreover, a previous study indicated that once the user plays
best in both physical and mental states, they usually forget
entirely about their surroundings even the time they are
passing [14]. “(e users work in his/her maximum capacity
when they are inflowing. (e person works at maximum
capacity when they are in flow. If challenges start to surpass
skills, one becomes alert first and then anxious; if skills con-
tinue to exceed challenges, one relaxes first and then becomes
bored” [15]. Furthermore, the dimension of the theory of flow
is divided into nine elements: clear purposes, feedback in time,
the balance of challenges and skills, integration of behavior and
consciousness, removal of interference in consciousness,
freedom of control, loss of self-awareness, time-conscious
abnormalities, and its purposive knowledge [14]. Over time,
this same behavior will cause a person to worry for a moment
and then instantly relax in a state of flow [16]. Studies show that
perceived gratification occurs in a state of flow [17]. Persons
that can interact with the technology and believe that time
flows while focusing on its output are more likely to reach a
flow state. In reality, when people have fun, a feeling of dis-
tortion is especially common [18]. It is assumed that flow in the
games will lead to the desire to play more games frequently.
Prior research suggested that social games are involved in flow
and the fact that flow leads to the overuse of Internet appli-
cations that causes addiction to the games [19].

Compulsive gaming has become a significant and
growing social issue since the advent of online video games.
(e prevalence rates for teenagers range between five and ten
percent, depending on the definition of gaming addiction
[20, 21]. As a “condition to further research” in the Diag-
nostic and Statistical Manual of Mental Disorders (DSM-5),
the American Psychiatric Association (APA) agreed that
game dependence might pose a serious threat to adolescent
psychosocial development [22]. Addiction is thus a condi-
tion of uncontrollable conduct that induces the mind to
perform recurring tasks in a way that neglects to do its
everyday life acts. Zilberman, Yadid, Efrati, and Rassovsky
stated that addiction might impact the formulation of both
positive and negative life events [23]. Furthermore, in the
review of addictions and related psychological disorders
[24], E-sport (or e-game) is a phenomenon that simulta-
neously has the same effect as a type of entertainment and
sport and is experienced both online and offline [25]. Kuss
and Lopez-Fernandez pointed out that digital gaming is
another inherently addictive topic.

Gong, Zhang, Cheung, Chen, and Lee stated that online
games, social networks games, or Massively Multiplayer
Online Role Play Games (MMORP) are the core elements of
addictive behavior. Similarly, a previous paper by Mancini,
Imperato, and Sibilla stated that VR self-Discrepancy, Av-
atar identification will also lead to addictive behavior.
Furthermore, users wanted to enhance the skills and earn
more online outfits and types of equipment which cause
them serious addictive behavior.

3. Theoretical Framework

Research on Virtual Reality is ongoing through the ad-
vancement of VR-Technologies and the growth of the VR-
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Industrial, including architecture [26], medicine [27], and
training [28]. (e TAM was the most narrowly modified
model for customers’ expectative and system interventions
[29]. In multiple experiments, VR technology was used to
integrate external influences. (eories of technology ac-
ceptance focus primarily on advantages and ignore im-
portant consumer risk assessments [30, 31]. (e TAM2 [32],
UTAUT [33], and UTAUT2 [34] are examples of how
models for functional adaptation are built over time.
Nonetheless, no behavioral model relevant to technology
was appropriate for demonstrating the darker side of
technical advancement. In this research, the high media
richness appreciates the addictive aspect of consumers of VR
games. (e cognitive-behavioral model was renamed by
(Davis) to “Problematic Internet Use.”

(e Cognitive Behavioral Model is identified as the
problematic IT Use (PIT). In this model, user’s cognitions as
the main reason for abnormal behavior. Davis concentrated
on “pathological Internet usage” and “dysfunctional ele-
ments” of maladaptive cognitions. He also explained his
concept of two forms of PIU: basic and common. (e
particular PIU refers to the inappropriate use of the Internet
or the reliance on a certain form of utility, such as gaming,
the use of personal content, stocks traders, or auction ser-
vices. People with generalized PIU frequently spend more
time on quantities of online chat and e-mail without any
reason. (ey are possibly unadjustable and prefer social
contact online in the real world. Davis did not consider the
use of the Internet as a source of anxiety and depression but
believed PIU as the product of maladaptive, psychologically
induced cognitive processes. Caplan, based on the cognitive-
behavioral model [35], claims of the problem use of the
Internet includes maladaptive cognitions and abnormal
behavior and the renaming of “pathological Internet use” to
“problematic Internet use.” Prior studies demonstrate the
potential insight for understanding the role of dilemma IT
use of the cognitive-behavioral model [36, 37]. As a result,
this theory has been used more and more to investigate
various aspects of addictive activity such as online gaming
[19], online trading [36], and overuse of the Internet [38].
Authors also presume and try to validate that the cognitive-
behavioral paradigm is sufficient to describe addiction to VR
games. While the cognitive-compliance approach offers a
logical basis for the definition of addiction, clear variations
need to be taken into account to achieve a better inter-
pretation of features in various contexts [39].

3.1. Flow as Construct. Flow has been described as an ideal
experience, the best emotions, the most satisfying human life
experiences that derive from people’s perceptions of diffi-
culties and abilities in specific situations [13, 40]. Csiks-
zentmahalyi developed the theory of flow, which describes a
condition of concentration or complete absorption with
activity and the situation [41]. Moreover, cognitive ab-
sorption is characterized as a state of deep involvement with
IT based on flow theory [42]. Research indicates that cog-
nitive absorption adversely affects the conduct of users in the
use of the target information system. Csikszentmihalyi

explains the enjoyment of the citizens who do a thing that
gives little clear intrinsic incentive but is highly satisfying
and fulfilling. Such behaviors were inherently motivational
and their optimum experience was classified as “flow” [43].
(e sport is inevitable and the flow interaction of excellence
is play [43]. Moreover, flow is characterized as an “expe-
rience of the highest,” as it is a concentrated psychological
condition of pleasure (Enjoyment) and productivity [15, 42].
Performing time flies may be the most striking aspect of the
flow experience. (is finding was introduced into the flow
analysis by Csikszentmihalyi when he suggested that a
person’s knowledge of time is a predictor of flow. If a work
experience is strong and equal to the degree of competence
of the individual and whether they are, therefore, in the flow
stage, their subjective perception of time is less than the
objective time that has elapsed [44]. Moreover, pleasure
(enjoyment) motivates the curiosity about the behavioral
desire to show certain talent to others [45]. In addition,
previous studies indicate that heavy behaviors and loss of
self-regulation have a beneficial impact on the addiction to
the online game [46]. For instance, from a games per-
spective, too much involvement in flow through being
overabsorbed and involved can damage children as they may
obsess the state of pleasure but ignore self-care and inter-
personal relations [47]:

H1: individuals’ enriched flow experience in VR en-
courages consumers to have VR games addictive
behavior
H2: individuals’ enriched flow experience in VR en-
courages consumers to have a behavioral desire to use
VR games

3.2. Behavioral Desire. It can be argued that strong desires
can be pleasurably experienced if no negative consequences
are expected, but if potential benefits are also linked by guilty
feelings, a desire may be less pleasurable and even strained.
Andrade suggests that mental images are emotive.(is claim
is reinforced by the idea that neural sensitization mecha-
nisms can switch between love and openness to addictive
behaviors [48]. Rose et al. found some evidence that Website
(online games) approaches may affect adolescents’ diet and
physical behavior. (is can be partly because of the inter-
action’s uncertainty. Such improvements are not, however,
necessarily maintained over the medium or long term [49].
Furthermore, two forms can be conceptualized for a user’s
desire: the desire for the actions of a person and a desire for
the behavior [46]. (e second type of want (desire) is a
mutual desire rooted in an individual social group’s self-
concept and represents the drive to socialize with social
group members [46, 50]. In addition, previous studies in-
dicate that heavy behaviors and loss of self-regulation have a
beneficial impact on the addiction towards technology [46].

H3: behavioral desires of VR game users motivate
consumers to have VR games addictive behavior
H4: behavioral desire of VR games mediates the rela-
tionship between flow experience and VR game
addiction
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3.3. Cyber Aggression. Cyber aggression has been described
as a repetitive course of action involving intentional or
unwanted interpersonal violence mediated by ICT in an
attempt to threaten, insult, harass, and/or endanger the
target [51, 52]. (e self-perceived effect on teenagers is also
an issue in most conceptions of cyber aggression. Recent
studies have found that cyber aggression is not inherently
harmful or disturbing, while other studies have shown that
cyber aggression intervention can cause significant physical,
mental, educational, and social consequences [53]. (e
young person may contribute to understanding these high
rates of development and their initial capacity to awareness
of the moral, social, and legal consequences of cyber ag-
gression behaviors [54]. Previously published research ar-
ticles stated that aggression is directly related to game
addiction. Similarly, previous studies also suggest that cyber
aggression has nothing to do with game addiction behavior
in real life. Formerly, Kim, Namkoong, Ku, and Kim re-
ported Craig’s report stated that low self-esteem and neg-
ative evaluation of oneself are the good predictors of game
addiction and the total time spent on playing video games.
Similarly, it is assumed that Cyber Aggression can poten-
tially have a great impact on behavioral desire and simul-
taneously have influential power on users’ addictive
behavior towards the game addiction, specifically VR-based
games.

H5: the essence of Cyber aggression moderates the
relationship between VR games flow experience and its
addictive behavior

4. Materials and Methods

(e study tested the hypothesized model by using the
Preacher and Hayes process macro (Model 4). (e further
methodological aspects are discussed in detail in the fol-
lowing subsections. Although, in the field of quantitative
research, the applied mathematical research holds a variety
of approaches, i.e., [55, 56]. However, behavioral analysis is
mostly comprised of behavior modeling and hypothesis-
based study, as observed in the current research.

4.1. Instrument. (equantitative research approach adopted
the existing sources of literature to make the results credible
and valid for further study. (ree-item scale for CA is
adapted from Zhang and Sun, a five-item scale for EJ is
adopted from Ghazali et al., and the three-item scale for TD
is adopted from Im and Varma, whereas for BD authors
adapted a three-item scale from the study of Hsieh and Liao.
Similarly, author’s adapted five-item scales for CG from
Shapka and Maghsoudi and GA were measured by a three-
point scale as suggested by Gong, Yu, and Luqman to
emphasize customer VR addiction. To measure each model,
a Likert scale (1–Highly Disagree and 5, Highly Agree) was
adopted.

4.2.DataCollection. (e data were gathered from the user of
VR games who approached through the social networking

sites (SNS) (in particular Facebook). (e authors took the
stance of basic random sampling as (1) over the world
leading VR-based Facebook pages; as authors not considered
any of the controlled variables, i.e., gender and age group.
(e only condition authors followed is to find potential
candidates for the survey who have not restricted themselves
to accept unknown friend requests.

It is important to note that SNS limited and suspended
many data collector accounts during this data collection
process as SNS has stringent rules on submitting requests
from friends within a certain amount of time, particularly
the data collection period of seven months (mid of February
to mid of September 2020). Each of the respondents initially
been contacted with a brief introduction and purpose of the
study. Moreover, to enhance the data response, the authors
announced that the prize amount range from $1 to $10 in the
form of bitcoin. (e history of individuals consuming VR-
based games has been researched to check possible sample
candidates.(e remaining sample was submitted by the only
respondents who had a positive response. (e authors also
assume that the obtained sample is optimal for the analysis.
A total of 600 participants were invited for the survey.
However, 470 responses have been received after 30 con-
secutive weeks. During the initial data securitizing, 103
responses were eliminated for the incomplete responses. As
a result, only 367 responses were able to be examined. For
the nonresponse biases, authors inspected the initial subset
of 30 participants with the later participants. In this way, the
early and the later responses help authors to conclude that
there is no evidence of nonresponse biases found. A short
descriptive profile of the user of the VR-based game is shown
in Table 1.

5. Findings

To examine the reliability and validity of all constructions
and models, factor analysis was performed. Factor loading
for each variable, Cronbach-alpha (α), composite reliability,
and extracted average variance (AVE) of each variable
computed, as shown in Table 2.

In the next phase of analysis, the structural model is built
from the data with the help of SPSS-AMOS. (e initial and
the second-order index values of the model noted in the
satisfactory range as listed in Table 3. (e root means es-
timate noted over the continuum of 0.050 to 0.052 as within
a suggested acceptable range [57, 58]. In addition, the chi-
squares observed within the range of 3.436–4.319 in both of
the cases of CFA (first and second-order) and the model, are
as listed in Table 3. Moreover, all other fitness indices are
listed in Table 3.

(e Variance Inflation Factor (VIF) was estimated for all
constructs to analyze the multicollinearity effect. (e VIF
values recorded in Table 4 were less than the 10 cut-off values
as recommended by Hair et al. [59] Specifically, it ranged
from 1.287 to 1.451. (erefore, in the current study, mul-
ticollinearity was not a problem. (e common method bias
effect was measured to ensure the findings were reliable as
the data collection monoprocess was observed. (e Harman
single method score was determined as a part of dimension
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reduction [60]. (e highest variance reported for a single
factor in the current analysis was 33.074 percent, suggesting
that neither any proposed construct controlled the overall
model variance and common method biasness is not the
problem in this study. (e following section will lead to the
testing of the proposed hypotheses.

For examining the proposedmodel, SPSS-Process Macro
was used as suggested by Preacher and Hayes, and the study
examined the mediating effect of behavioral desire in case of
the relationship between the flow experience and VR-based
games addiction among youth. (e results concluded that
the richness of flow experience has the potential to increase

Table 1: Demographics of respondents.

Characteristic Detail Frequency In percentage

Gender Male 294 80.11
Female 73 19.89

Frequency of playing VR games (in a week)

Once 19 05.17
Two or three times 43 11.72
Four or five times 196 53.41

More than five times 109 29.70

(e most appealing attribute of VR games
Immersion 154 41.96
Interactivity 117 31.88

Sensory feedback 96 26.16

Table 2: Reliability analysis of the collected survey.

Construct Items Loadings CR CA AVE

Cyber aggression (CA)

CG1 0.879 0.923 0.923 0.706
CG2 0.866
CG3 0.858
CG4 0.828
CG5 0.767

Enjoyment (EJ)

EJ1 0.872 0.888 0.882 0.615
EJ2 0.801
EJ3 0.790
EJ4 0.743
EJ5 0.706

Cognitive absorption (CA)
CA1 0.899 0.924 0.765 0.802
CA2 0.894
CA3 0.893

Time distortion (TD)
TD1 0.804 0.835 0.906 0.628
TD2 0.791
TD3 0.783

Behavioral desire (BD)
BD1 0.867 0.885 0.900 0.718
BD2 0.845
BD3 0.831

VR game addiction (GA)
GA1 0.768 0.791 0.746 0.559
GA2 0.767
GA3 0.706

Maximum variance explained is 33.074%

Table 3: Fitness indices of the proposed model.

Fitness indices First order Second order Proposed model
Chi-square 625.366 688.084 820.596
Degree of freedom 182 188 190
Chi-square/degree of freedom 3.436 3.660 4.319
GFI 0.947 0.942 0.929
AGFI 0.927 0.922 0.905
NFI 0.956 0.951 0.942
TLI 0.959 0.956 0.945
CFI 0.968 0.964 0.955
RSMEA 0.050 0.052 0.058
Note. ∗∗∗ � Significance level of 0.001, ∗∗ � Significance level of 0.01, ∗ � Significance level of 0.05.
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VR game addiction among youth (H1: β� 0.501, p≤ 0.001)
and also helps to elevate the behavioral desire among youth
to get involved in VR games (H2: β� 0.139, p≤ 0.01).
Moreover, the findings also concluded that the behavioral
desire also positively affects VR games addiction among
users, which can potentially lead towards valuable practical
implications (H3: β� 0.277, p≤ 0.001).

In the meanwhile, the mediating effect of behavioral
desire is also noted as significant, which statistically un-
derlines the partial mediating behavior of behavioral desire
in the currently proposed settings. Particularly, the boot-
strapping results in the tabular format are listed in Table 5
and shown graphically in Figure 1.

(e hierarchal regression analysis was adopted to test the
proposed moderating effect of Cyber aggression on the
association between enriched flow experience and VR games
addiction among youth. (e findings are listed in Table 6
below. (e statistical findings revealed that the presence of
cyber aggression strengthens the relationship between flow
experience and VR games addiction among users (H5
β� 0.098, p≤ 0.05. Further, the slope test examined the
strength and nature of the moderating effect, as shown in
Figure 2.

6. Discussion and Conclusion

In this current study, the authors concluded that this study
implicates all the stakeholders (i.e., Education, Entertain-
ment, and Infotainment). Authors found that flow creates a
high level of addiction among the users when it mediates
with the behavioral desire, which means that behavioral
desires need to be more bifurcate. Likewise, in previous
studies, VR is widely used for entertainment purposes rather
than educational purposes; therefore, addiction through
behavioral desire also supports the stance of addiction be-
havior studies. It is worth mentioning that there are dark
aspects in VR that need to be sorted out. For entertainment

Table 4: External reliability analysis.

Construct Mean (SD) VIF CG EJ CA TD BD GA
CG 4.047 (0.606) 1.287 0.840
EJ 3.865 (0.738) 1.451 0.293∗∗ 0.784
CA 3.239 (0.804) 1.218 0.164∗∗ 0.362∗∗ 0.895
TD 3.800 (0.815) 1.233 0.271∗∗ 0.334∗∗ 0.326∗∗ 0.792
BD 3.578 (0.814) 1.420 0.430∗∗ 0.442∗∗ 0.163∗∗ 0.222∗∗ 0.845
GA 3.683 (0.667) — 0.479∗∗ 0.339∗∗ 0.153∗∗ 0.193∗∗ 0.402∗∗ 0.747

Table 5: Mediation analysis by using bootstrapping with the sampling size� 5000.

Hyp IV M DV Effect of IV on M Effect of M on DV Direct (c′) Indirect (a∗ b) Total effect (c) 95% (Cl) Mediation
H FL BD GA 0.501∗∗∗ 0.277∗∗∗ 0.202∗∗∗ 0.139∗∗∗ 0.341∗∗∗ (0.109, 0.172) Supported
Note. ∗∗∗ � Significance level of 0.001, ∗∗∗ � Significance level of 0.01, ∗ � Significance level of 0.05.

Cognitive 
absorption

Enjoyment

Time distortion

Behavioral desireR = 0.443 

Cyber aggression

Fl
ow

VR games addictionR = 0.443

0.277 ∗
∗
∗0.501∗

∗∗

0.202∗∗∗(0.139∗∗)

0.098∗

Figure 1: Graphical explanation of proposed model of the study.

Table 6: Moderating effect of cyber aggression over the association
between flow experience and VR games addiction.

Construct Model 1 Model 2 Model 3
Flow (FL) 0.341∗∗∗ 0.185∗∗∗ 0.219∗∗∗
Cyber aggression (CA) 0.470∗∗∗ 0.226∗∗∗
FL∗CA 0.098∗
F 97.927 113.081 167.111
R2 0.090 0.253 0.256
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purpose as it can be seen that it creates high addictive be-
havior so all the policymakers and legislators and suppliers
have their social responsibility and ethical responsibility to
tackle the addiction in the VR products as this study also
identify this issue. (e entertainment industry is changing
and adopting advanced technology like VR, so it is a need
time that there should be a proper policy so the dark aspects
of the entertainment industry through VR can also be
tackled. As in this study, Cyber aggression is needed to study
further as in this study; authors have found behavioral desire
as a mediator and Cyber Aggression as a moderator has
positive effects on addiction. Furthermore, theoretical and
practical implications are discussed further in the section
below.

6.1. Aeoretical Implications. (is research presented the
scholarly literature with in-depth and beneficial contribu-
tions. First of all, this research is the first of its kind to
understand the actions of VR game addiction. Previous
studies have been used other variables whereas in this
current study authors approach the gamers’ behavioral in-
tentions towards the VR-based Games specifically the ad-
diction behavior. Furthermore, in this paper authors used
the attributes of flow as proposed by (Cho) inquire and
understand the stance of the users towards the VR-based
games. Secondly, behavioral desire is taken as a mediator
while explaining the addiction behavior. It is used to check
the addictive behavior of gamers. It was not used before in
any research where it was used with the game’s addiction.
Moreover, few researchers adopted addiction with the be-
havioral model. Previous papers results indicated that ex-
cessive use of games is highly risky for the health of the
gamers not only physically but mentally [61].While previous
studies also concluded that flow has high influence on users’

addiction behavior. For instance, flow in cognitive ab-
sorption has an adverse effect on the users’ behavior. It can
be both negative and positive from a gaming perspective.
(e feeling of flow online is appealing to gamers. (erefore,
the ability to obtain the flow sensation may influence the
pace and length of gaming and therefore be involved in the
creation and maintenance of addictive behaviors [20, 62].
Moreover, Sherry indicated that the chance to witness flow
online may be a strong gaming motivator. Addiction is
sometimes called a desire; the high desire has a high
probability of addiction towards anything he wishes for.
Likewise, previous papers also support the stance of the
current paper, which suggested that flow has a beneficial
impact on the games’ addiction behavior on the users [63].
Moreover, previous papers also suggest that besides the
addiction, there are serious physical health concerns for
those who use games excessively [64]. In this current study,
authors have used behavioral desire, whereas, in previous
papers, authors did not find any evidence where behavior
desire has been used specifically in the context of the game’s
addiction. Moreover, flow-based factors, i.e., cognitive ab-
sorption, enjoyment, and time distortion, have been used in
the game’s addiction, but no study found where it has been
used in the context of VR-based game addiction. (erefore,
it is worth mentioning that it is also the novelty of this
current study. Furthermore, the purposed mediator (be-
havioral desire) partially mediates the proposed relation of
flow to addiction. (e study also concluded that Cyber
aggression is a psychological perspective that strengthens the
addictive behavior of the users in the case of VR. Authors
also found that psychological constructs dominate in cre-
ating addiction among the users and push them to use it
extensively.

6.2.Practical Implications. In this current study, the authors
found that flow creates a high level of behavioral desires
among the users. Similarly, previous papers suggested that
flow has a significant role in game addiction. In addition,
experts voiced significant questions about wellness and
Internet gaming addiction. Online gaming addictions were
reportedly causing mental health issues for gamers. In
particular, the claim among children is that game addiction
can influence learning and thinking. Similarly, the time and
demographic use of VR games can be limited. VR appli-
cations can be used for information rather than extreme
entertainment. As previous papers suggested that its games
can be used to develop the skills among the students and
youngsters, it can also be said that VR games need to be
improved in the context of learning to develop the IQ level
of youngsters and students specifically. VR application can
revise the algorithms and it can be restricted to a specific
time. If the users exceed the time limit, it can be shut down
itself. Flow is revolving around the users’ satisfaction.
Similarly, from the analysis of the current study results, it is
found that flow does affect the addiction behavior with the
help of behavioral desire. (erefore, the quality of the VR
games application can be improved to attract more users to
capture the global market. For the attraction of the users,
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Figure 2: Interaction plot for cyber aggression over the association
between flow experience and VR games addiction.
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developers need to develop more exciting characters in the
games and make them more realistic to the current world.
Balakrishnan and Gri suggested it is difficult to maintain
the consumer’s commitment to the Internet; thus, ad-
vanced features need to be built to draw consumers and
allow them to come back and play VR games with technical
advances. Moreover, it can harm the users’ behavioral
desire, which may disturb users’ daily behavior. It can be
taken into consideration that it will not disturb the users’
behavior. (erefore, lust full users may likely to have more
experience towards VAD. Moreover, applications can be
developing for psychological treatment, medical training
assistance and can be used for the learning purpose only.
Furthermore, VR-based applications can be designed
competitively so that users can have more time and use
their cognitive skills to enhance their IQ level and learn new
techniques, too, later on, use in their daily life. It is always
considered that computer games are mentally oriented,
which enhances the users’ skills, specifically competitive
games. Moreover, game developers can restrict games with
age factors as recently, the MPPOG (i.e., PUBG) has put
some restrictions on the Under 18 users. In this restriction,
users under 1are only allowed to play for 3 hours’ maxi-
mum in 24 hours. It is also advised for the VR game de-
velopers to put stricter restrictions on the users so they will
not get addicted to VR-based games. As mention above, VR
applications can be enhancing the cognitive skills of the
users by developing more brains using games rather than
games that waste the time of the users.

6.3. Limitation and Conclusion. In this current study, the
authors used the Cognitive-Behavioral model to scrutinize
the user’s addictive behavior towards VR-based games. In
the current context, the authors found that flow has the
loftiest probability for the admiring situation. Similarly,
flow has shown a significant impact on the user’s addiction
behavior towards the VR game’s addiction. Behavioral
desire is also found to be the source of creating addiction
among the users. Authors have some limitations while
conducting this research which could lead to new and
further studies. VR applications can be enhanced and also
improved so that users can use them and also recommend
them to others. VR should be used for academic and
training purposes rather than entertainment. (e authors
also suggest that further studies can carry out on specific
demographic and educational qualifications. In this paper,
education did not study, but it is advised that further
studies can be done to keep the education level of the users
and it can also be divided into developed and underde-
veloped nations. Other factors of flow can be studied with
other types of game addiction. While mapping the Cyber
aggression mediator role, it is found that it is not used
before with any type of addiction. At the same time, the
present study is the first to use cyber aggression in the
context of VR-based game addiction. Furthermore, in this
study, authors adopted a quantitative approach, while
further researches can also adopt the qualitative approach
as well for data collection and analysis.
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'e different distance-based parameters are used to study the problems in various fields of computer science and chemistry
such as pattern recognition, image processing, integer programming, navigation, drug discovery, and formation of different
chemical compounds. In particular, distance among the nodes (vertices) of the networks plays a supreme role to study
structural properties of networks such as connectivity, robustness, completeness, complexity, and clustering. Metric di-
mension is used to find the locations of machines with respect to minimum utilization of time, lesser number of the utilized
nodes as places of the objects, and shortest distance among destinations. In this paper, lower bound of local fractional metric
dimension for the connected networks is improved from unity and expressed in terms of ratio obtained by the cardinalities
of the under-study network and the local resolving neighbourhood with maximum order for some edges of network. In the
same context, the LFMDs of prism-related networks such as circular diagonal ladder, antiprism, triangular winged prism,
and sun flower networks are computed with the help of obtained criteria. At the end, the bounded- and unboundedness of
the obtained results is also shown numerically.

1. Introduction

For a connected network G, Salter introduced the concept of
resolving (locating) set with the cardinality of minimum
resolving set which is called the location number of G [1].
Harary and Melter introduced the concept of metric di-
mension for the connected networks [2]. 'e concept of
metric independence number mi(G) of a graph G is in-
troduced by Currie and Oellermann [3]. 'e metric di-
mension has been applied to solve the problems involving
percolation in hierarchical lattice [4], coin weighting, and
robot navigation [5]. It is also applied in subject of chemistry
to find the structures of chemical compounds having similar
characteristics in functional groups.'ese functional groups
play a vital role in chemical and pharmaceutical industries to
predict the various chemical properties of the molecular

compounds that are used in the drug discovery [6]. Metric
dimension of graph was formulated as integer programming
problem by Charterand et al. [6]. Fehar et al. studied the
metric dimension of Cayley digraphs [7]. For further studies
of metric dimension of convex polytopes, Caylay and
Toeplitz networks, see [8–11].

Currie and Oellermann defined the concept of fractional
metric dimension (FMD) as an optimal solution of the linear
relaxation of the integer programming problem (IPP) [3].
Later, Faher et al. presented the identical calculation of IPP
with the help of FMD [7]. Arguman and Matthew intro-
duced many different properties of FMD for connected
networks with respect to their order [12]. FMDs of hier-
archical product of graphs were computed by Feng and
Wang [13]. Liu et al. [14] computed the FMD of generalized
Jahangir graph. 'e concept of local fractional metric
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dimension (LFMD) is introduced by Aisyah et al. [15]. 'ey
also computed it for the connected networks which are
obtained by the operation of the corona product. 'e results
for the LFMDs of some cycle-related networks and rota-
tionally symmetric and planar networks can be found in
[16, 17]. Javaid et al. (2020) computed the sharp bounds of
LFMD of connected networks and illustrated the obtained
results with the help of wheel-related networks. 'ey also
compared the bounded- and unboundedness of the obtained
results [18].

In this paper, lower bound of LFMD for connected
networks is improved from unity and expressed in terms of
ratio obtained by the cardinalities of the under-study net-
work and the local resolving neighbourhood with maximum
order for some edges of network. In the outcome of the
obtained result, the LFMDs of prism-related networks as
exact values and sharp bounds are computed. 'e rest of the
article is organised as follows: Section 2 consists the pre-
liminaries, Section 3 consists of main results of LFMD of
connected networks, Section 4 deals with the local resolving
neighbourhoods of prism-related networks, Section 5
presents LFMD of prism-related networks and Section 6
consists of conclusion and comparison among the main
results.

2. Preliminaries

Let G � (V(G), E(G)) be a network with V(G) and E(G) as
set of vertices and edges, respectively. A walk is defined as a
sequence of alternating vertices and edges. A walk in which
the vertices are all distinct is a path between vertices a and b

and a closed path is called a cycle. For any two vertices a and
b ofG, the distance d(a, b) is the length of shortest path a ∼ b

in G. A pair of vertices a and b in a network is a connected
pair if there is a path between them and the network is a
connected network. For a connected network G and
e � ab ∈ E(G), a vertex x ∈ V(G) distinguishes two vertices
a and b if d(x, a) � d(x, b) is known as symmetric vertex.
Moreover, x resolves the edge e in G if d(x, a)≠ d(x, b). For
D � a1, a2, a3, . . . , an ⊆V(G) and x ∈ V(G), the k-tuple
metric form of D in terms of x is given by
r(x|D) � d(x, a1), d(x, a2), d(x, d3), . . . , d(x, an). 'e set
D becomes resolving set having n elements of graphG if each
pair of vertices in G bears a distinct metric form with respect
to D. 'e resolving set with least number of vertices is
referred as metric basis for G and cardinality of such re-
solving set is called metric dimension of G defined by

dim(G) � min |D|: D is resolving set of G . (1)

For an edge ab ∈ E(G), the local resolving neighbour-
hood (LRN) is defined as LR(ab) � x ∈ V(G): d{

(x, a)≠ d(x, b)}, where x ∈ V(G). A function is called an
upper local resolving function (ULRF) if f: V(G)⟶ [0, 1]

and f(LR(ab))≥ 1 for each LR(ab) of G, where
f(LR(ab)) � x∈LR(ab)f(x). On the other hand, a function
is called lower local resolving function (LLRF) if
Ψ: V(G)⟶ [0, 1] and Ψ(LR(ab))≤ 1 for each LR(ab) of
G, where Ψ(LR(ab)) � x∈LR(ab)Ψ(x). 'en, LFMD is

defined as dimlf(G) � τ, where τ is min{|f|: f which is the
upper local minimal resolving function of G} or max{|g|: g

is the lower local maximal resolving function of G}.
For 1≤ i≤ n, now we present some prism-related net-

works.'e circular diagonal ladder (CDLn) is obtained from
prism network Dn of order 2n and size 5n by adding some
double crossing edges aib(i+1) and a(i+1)bi, as shown in
Figure 1.'e antiprism network (An) of order 2n and size 4n

is obtained by prism network (Dn) by adding some crossing
edges aib(i+1), see Figure 2. 'e sun flower network (SFn) of
order 2n and size 3n, we mean a network, is isomorphic to
the network obtained from An by deleting edges bib(i+1), see
Figure 3 [19].

Theorem 1 (see [18]). Let G � (V(G), E(G)) be a connected
network. Let LR(e) be a local resolving neighbourhood for the
edge e of G. If |LR(e)∩Z|≥ α, ∀e ∈ E(G), then

1≤ dimlf(G)≤
|Z|

α
, (2)

where Z � ∪ LR(e): |LR(e)| � α{ }, α � min |LR(e)|: e{

∈ E(G)}, and 2≤ α≤ |V(G)|.

Proposition 1 (see [18]). Let G � (V(G), E(G)) be a con-
nected network. For each e ∈ E(G), if |LR(e)∩Z|≥ 2, then
dimlf � (|Z|/2), where Z � ∪ LR(e): |LR(e)| � 2{ }, and
LR(e) is a LRN set of e ∈ E(G).

3. Main Results

Main results of LFMD are as follows.

Proposition 2. Let G � (V(G), E(G)) be a connected net-
work and LR(e) be the local resolving neighbourhood set of
the edge e of G. For β � max |LR(e)|: e � E(G){ }, if
Y � ∪ LR(e): |LR(e)| � β ⊆V(G), then |LR(e)∩Y|≤ β for
each local resolving neighbourhood LR(e) of G.

Theorem 2. Let G � (V(G), E(G)) be a connected network
and LR(e) be the local resolving neighbourhood set. 6en,

|V(G)|

β
≤ dimlf(G), (3)

where β � max |LR(e)|: e ∈ E(G){ } and 2≤ β≤ |V(G)|.

Proof. Define Φ: V(G)⟶ [0, 1] as ϕ(v) � (1/β) for
v ∈ V(G). By Proposition 2, for e ∈ E(G), we have

ϕ(LR(e)) � 
x∈LR(e)

ϕ(x) � 
x∈LR(e) ∩V(G)

1
β

� |LR(e) ∩V(G)|
1
β
≤ 1.

(4)

'is shows that ϕ is a lower local resolving function
(LLRF). To show that ϕ is maximal, suppose on contrary,
there exists another LLRF Ψ such that Ψ(x)≥Φ(x), where
Ψ(x)≠Φ(x), for at least one x ∈ V(G). ∀x ∈ LR(e) such
that |LR(e)| � β, we have
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Ψ(LR(e)) � 
x∈LR(e)

Ψ(x)> 
x∈LR(e)

ϕ(x) � 1. (5)

'us, Ψ(LR(e))> 1. 'is shows that Ψ is not LLRF and
consequently ϕ is maximal LLRF. Let ϕ′ be another maximal
LLRF of G. 'en,

ϕ′


 � 
x∈V(G)

ϕ′(x). (6)

Now, we consider three cases (i) ϕ′(x)> (1/β) for each
x ∈ V(G), (ii) ϕ′(x)≤ (1/β) for each x ∈ V(G), and (iii)
ϕ′(x)> (1/β) for some x ∈ V(G).

Case 1: if ϕ′(x)> (1/β), for each x ∈ V(G). For
LR(e)⊆Y such that |LR(e)| � β, we have
ϕ′(LR(e) > 1). 'is shows ϕ′ is not LLRF. 'us, this
case does not hold.
Case 2: let ϕ′(x)≤ (1/β)∀x ∈ V(G). 'en,

ϕ′


 � 
x∈V(G)

ϕ′(x)≤
|V(G)|

β
� |ϕ|. (7)

Consequently,

dimlf(G) �
|V(G)|

β
. (8)

Case 3: assume that ϕ′(x)> (1/β) for some x ∈ V(G).
Suppose that S � t ∈ V(G): ϕ′(t)> (1/β)  and
Y � ∪ LR(e): |LR(e)| � β . We note that S∩Y � ∅;
otherwise, for |LR(e)| � β, ϕ′(LR(x))> 1 which im-
plies that ϕ′ is not a LLRF. Consider

ϕ′


 � 
x∈V(G)

ϕ′(x) � 
x∈Y

ϕ′(x) + 
x∈V(G)− Y

ϕ′(x). (9)

Since x∈V(G)− Yϕ′(x)≥x∈V(G)− Yϕ(x), therefore,

ϕ′


 � 
x∈V(G)

ϕ′(x) � 
x∈Y

ϕ′(x) + 
x∈V(G)− Y

ϕ′(x)≥ 
x∈Y

ϕ(x)

+ 
x∈V(G)− Y

ϕ(x) �
|V(G)|

β
� |ϕ|.

(10)

Consequently,

dimlf(G) � ϕ′


≥ |ϕ| �
|V(G)|

β
. (11)

'us, from all the cases,

|V(G)|

β
≤ dimlf(G), which completes the proof . (12)

Now, we present the following two corollaries as the
direct consequences of the above result.

Corollary 1. Let G � (V(G), E(G)) be a connected network,
LR(e) be LRN of e ∈ E(G), β � max |LR(e)|: e ∈ E(G){ },
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Figure 1: Circular diagonal ladder CDLn.
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Figure 3: Sun flower network SFn.
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α � min |LR(e)|: e ∈ E(G){ }, and X � ∪ LR(e): |LR(e)|{

� α}. If α � β and X � V(G), then

dimlf(G) �
|V(G)|

β
. (13)

Proof. Since α � β and X � V(G), therefore, by 'eorem A,
dimlf(G) � (|V(G)|/β). Also, by 'eorem 1, dimlf

(G) � (|V(G)|/β). Consequently,

dimlf(G) �
|V(G)|

β
. (14)

Corollary 2. Let G � (V(G), E(G)) be a connected network,
LR(e) be the LRN of e ∈ E(G), β � max |LR(e)|: e ∈ E(G){ },
α � min |LR(e)|: e ∈ E(G){ }, and X � ∪ LR(e): |LR(e)| �{

α}. If α � |X| and β � |V(G)|, then dimlf(G) � 1.

Proof. Since β � |V(G)|, then by 'eorem 2, 1≤ dimlf(G).
Also, as α � |X|, therefore, by 'eorem 1, dimlf(G)≤ 1.
Consequently, dimlf(G) � 1.

Remark 1. Corollary 2 strengthens the result proved in [18].

4. LRNs of the Prism-Related Networks

In this section, the local resolving neighbourhoods of prism-
related networks are classified.

Lemma 1. Let CDLn with n≥ 4 be a circular diagonal ladder
network, where n � 0(mod2) and |V(CDLn)| � 2n, where
1≤ i≤ n. We have

(a) |LR(ei)| � |LR(aibi)| � 2 and |∪ n
i�1LR(ei)| � 2n,

(b) |LR(ei)| � |LR(bib(i+1))| and |LR(bib(i+1))∩ ∪ n
i�1LR

(ei)|≥ |LR(ei)|,
(c) |LR(ei)| � |LR(aia(i+1))| and |LR(aia(i+1))∩ ∪ n

i�1LR
(ei)|≥ |LR(ei)|,

(d) |LR(ei)| � |LR(aib(i+1))| and |LR(aib(i+1))∩ ∪ n
i�1LR

(ei)|≥ |LR(ei)|,
(e) |LR(ei)| � |LR(biai+1)| and |LR(bia(i+1))∩ ∪ n

i�1LR
(ei)|≥ |LR(ei)|,

(f ) |LR(ei)| � |LR(aibi− 1)| and |LR(aib(i− 1))∩ ∪ n
i�1LR

(ei)|≥ |LR(ei)|.

Proof. Assume that ai and bi are inner and outer vertices,
respectively, for 1≤ i≤ n and n + 1 � 1(modn). We have the
following:

(a) Consider LR(aibi) � ai, bi  with |LR(ei)| � |LR
(aibi)| � 2. Moreover, |∪ n

i�1LR(ei)| � |V( CDLn)| �

2n.
(b) LR(bib(i+1)) � V(CDLn) − ai, a(i+1)  with |LR

(b(i+1)bi)| � 2n − 2> 2 � |LR(ei)| and |LR(bib(i+1))

∩ ∪ n
i�1LR(ei)| � 2n − 2> 2 � |LR(ei)|.

(c) LR(aia(i+1)) � V(CDLn) − bi, b(i+1)  with |LR(ai

a(i+1))| � 2n − 2> 2 � |LR(ei)| and |LR(aia(i+1))∩
∪ n

i�1LR(ei)| � 2n − 2> 2 � |LR(ei)|.
(d) LR(aib(i+1)) � V(CDLn) − a(i+1), bi  with |LR(ai

b(i+1))| � 2n − 2> 2 � |LR(ei)| and |LR(aib(i+1))∩
∪ n

i�1LR(ei)| � 2n − 2> 2 � |LR(ei)|.
(e) LR(bia(i+1)) � V(CDLn) − b(i+1), ai  with |LR(bi

a(i+1))| � 2n − 2> 2 � |LR(ei)| and |LR(bia(i+1))∩
∪ n

i�1LR(ei)| � 2n − 2> 2 � |LR(ei)|.
(f ) LR(bia(i− 1)) � V(CDLn) − a(i− 1), b(i+1)  with |LR

(bia(i+1))| � 2n − 2> 2 � |LR(ei)| and |LR(bia(i− 1))

∩ ∪ n
i�1LR(ei)| � 2n− 2> 2 � |LR(ei)|.

Lemma 2. Let CDLn with n≥ 5 be a circular diagonal ladder
network, where n � 1(mod2) and |V(CDLn)| � 2n, where
1≤ i≤ n. We have

(a) |LR(ei)| � |LR(aibi)| � 2 and |∪ n
i�1LR(ei)| � 2n,

(b) |LR(ei)|< |LR(bib(i+1))| and |LR(bib(i+1))∩ ∪ n
i�1LR

(ei)|≥ |LR(ei)|,
(c) |LR(ei)|< |LR(aia(i+1))| and |LR(aia(i+1))∩ ∪ n

i�1LR
(ei)|≥ |LR(ei)|,

(d) |LR(ei)|< |LR(aib(i+1))| and |LR(aib(i+1))∩ ∪ n
i�1LR

(ei)|≥ |LR(ei)|,
(e) |LR(ei)|< |LR(bia(i+1))| and |LR(bia(i+1))∩ ∪ n

i�1LR
(ei)|≥ |LR(ei)|,

(f ) |LR(ei)|< |LR(aibi− 1)| and |LR(aib(i− 1))∩ ∪ n
i�1LR

(ei)|≥ |LR(ei)|.

Proof. Assume that ai and bi are inner and outer vertices,
respectively, for 1≤ i≤ n and n + 1 � 1(modn), (3n + 1/2) �

1(modn). We have the following:

(a) Consider LR(aibi) � ai, bi  with |LR(ei)| �

|LR(aibi)| � 2. Moreover, |∪ n
i�1LR(ei)| � |V(

CDLn)| � 2n.
(b) As LR(bib(i+1)) � V(CDLn) − b(n+2i+1/2), a(n+2i+1/2),

ai, a(i+1)} with |LR(bib(i+1))| � 2n − 4> 2 � |LR(ei)|

and |LR(bib(i+1))∩ ∪ n
i�1LR(ei)| � 2n − 4> 2 �

|LR(ei)|.
(c) As LR(aia(i+1)) � V(CDLn) − a(n+2i+1/2), b(n+2i+1/2),

bi, b(i+1)} with |LR(aia(i+1))| � 2n − 4> 2 � |LR(ei)|

and |LR(aia(i+1))∩ ∪ n
i�1LR(ei)| � 2n − 4> 2 �

|LR(ei)|.
(d) As LR(aib(i+1)) � V(CDLn) − a(n+2i+1/2), b(n+2i+1/2),

a(i+1), bi} with |LR(aib(i+1))| � 2n − 4> 2 � |LR(ei)|

and |LR(aib(i+1))∩ ∪ n
i�1LR(ei)| � 2n − 4> 2 � |LR

(ei)|.
(e) As LR(bia(i+1)) � V(CDLn) − a(i), b(i+1), a(n+2i+1/2),

b(n+2i+1/2)} with |LR(bia(i+1))| � 2n − 4> 2 � |LR(ei)|

and |LR(bia(i+1))∩ ∪ n
i�1LR(ei)| � 2n − 4> 2 � |LR

(ei)|.
(f ) As LR(aib(i− 1)) � V(CDLn) − ai− 1, bi− 1, a(n+2i+1/2),

b(n+2i+1/2)} with |LR(bia(i+1))| � 2n − 4> 2 � |LR(ei)|
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and |LR(bia(i+1))∩ ∪ n
i�1LR(ei)| � 2n − 4> 2 � |LR

(ei)|.

Lemma 3. Let An with n≥ 4 be an antiprism network, where
n � 0(mod2) and |V(An)| � 2n and 1≤ i≤ n. We have

(a) |LR(ei)| � |LR(aibi)| and |LR(aib(i+1))| � n and
|∪ n

i�1LR(ei)| � 2n,
(b) |LR(ei)| � |LR(bib(i+1))| and |LR(bib(i+1))∩ ∪ n

i�1
LR(ei)|≥ |LR(ei)|,

(c) |LR(ei)| � |LR(aia(i+1))| and |LR(aia(i+1))∩ ∪ n
i�1

LR(ei)|≥ |LR(ei)|.

Proof. Assume that ai and bi are inner and outer vertices,
respectively, for 1≤ i≤ n, where n + 1 � 1(mod2),
(3n + 2/2) � 1(modn), and (3n/2) � 1(modn). We have

(a) LR(ei) � LR(aibi) � bi, b(n+2i+2/2), b(n+2i+2/2)+1,

b(n+2i+2/2)+2, . . . , b(n+i− 1), ai, a(i+1), a(i+2), . . . , a(n+2i−

2/2)} and LR(aib(i+1)) � b(i+1), b(i+2), b(i+3), . . . ,

b(2i+n/2), ai, a(n+2i+2/2), a(n+2i+2/2)+1, a(n+2i+2/2)+2, . . . ,

a(n+i− 1)} with |LR(ei)| � n. Moreover,
|∪ n

i�1LR(ei)| � |V(An)| � 2n,
(b) As LR(bib(i+1)) � V(An) − ai, a(n+2i/2)  with |LR(bi

b(i+1))| � 2n − 2> n � |LR(ei)| and |LR(bib(i+1 ))∩
∪ n

i�1LR(ei)| � 2n − 2> n � |LR(ei)|,
(c) As LR(aia(i+1)) � V(An) − b(i+2), b(n+2i+2/2)  with

|LR(aia(i+1))| � 2n − 2> n � |LR(ei)| and |LR(aia

(i+1))∩ ∪ n
i�1LR(ei)| � 2n − 2> n � |LR(ei)|.

Lemma 4. Let An with n≥ 3 be an antiprism network, where
|V(An)| � 2n with n � 1(mod2). For 1≤ i≤ n, we have

(a) |LR(ei)| � |LR(aibi)| and |LR(aib(i+1))| � n + 1 and
|∪ n

i�1LR(ei)| � 2n,
(b) |LR(ei)| � |LR(bib(i+1))| and |LR(bib(i+1))∩ ∪ n

i�1LR
(ei)|≥ |LR(ei)|,

(c) |LR(ei)| � |LR(aia(i+1))| and |LR(aia(i+1))∩ ∪ n
i�1LR

(ei)|≥ |LR(ei)|.

Proof. Assume that ai and bi are inner and outer vertices,
respectively, for 1≤ i≤ n, where n + 1 � 1(mod2),
(3n + 1/2) � 1(modn), (3n − 1/2) � 1(modn), and
2n − 1 � 1(mod2). We have

(a) LR(aibi) � ai, a(i+1), a(i+2), . . . , a(n+2i− 1/2), bi, b(n+2i

+1/2), b(n+2i+3/2), . . . , b(n+i− 1)} and LR(aib(i+1)) �

b(i+1), b(i+2), . . . , b(n+2i+1/2), ai, a(n+2i+1/2), a(n+2i+1/2),

. . . , a(n+i− 1)} with |LR(ei)| � n + 1. Moreover,
|∪ n

i�1LR(ei)| � |V(An)| � 2n.

(b) LR(aia(i+1)) � V(An) − (a(n+2i+1/2), b(i+1))  and |LR
(aia(i+1))| � 2n − 2> n + 1 � |LR(ei)|.

(c) LR(bib(i+1)) � V(An) − ai, b(n+2i+1/2)  and |LR(bi

b(i+1))| � 2n − 2> n + 1 � |LR(ei)|.

Lemma 5. Let SFn with n≥ 3 be a sun flower network, where
|V(SFn)| � 2n and n � 1(mod2). For 1≤ i≤ n, we have

(a) |LR(ei)| � |LR(aibi)| and |LR(bia(i+1))| � n + 1 and
|∪ n

i�1LR(ei)| � 2n,
(b) |LR(ei)| � |LR(aiai+1)| and |LR(aia(i+1))∩ ∪ n

i�1LR
(ei)|≥ |LR(ei)|.

Proof. Assume that ai and bi are inner and outer vertices,
respectively, for 1≤ i≤ n, where n + 1 � 1(modn),
n + 2 � 1(modn), (3n + 1/2) � 1(modn),
(3n − 1/2) � 1(modn), and 2n − 1 � 1(modn). Now, we
have

(a) LR(aibi) � ai, a(n+ 2i + 1/2), a(n+2i+1/2)+1, . . . , a

(n+i− 1), bi, b(n+2i+ 1/2), b(n+2i+1/2)+1, . . . , b(n+i− 1)} and
LR(bia(i+1)) � bi, b(i+1), b(i+2), . . . ., b((n+2i+1/2)), a(i+1),

a(i+2), a(i+3), . . . , a(n+i− 1)} with |LR(ei)| � n + 1.
Moreover, |∪ n

i�1LR(ei)| � |V(SFn)| � 2n.
(b) LR(aia(i+1)) � V(SFn) − a(n+2i+1/2), bi  and |LR

(aia(i+1))| � 2n − 2 with |LR(aia(i+1))| � 2n − 2> n +

1 � |LR(ei)| and |LR(aia(i+1))∩ ∪ n
i�1LR(ei)| � 2n − 2

> n + 1 � |LR(ei)|.

Lemma 6. Let SFn with n≥ 4 be a sun flower network, where
|V(SFn)| � 2n and n � 0(mod2). For 1≤ i≤ n, we have

(a) |LR(ei)| � |LR(aibi)| and |LR(bia(i+1))| � n + 1 and
|∪ n

i�1LR(ei)| � 2n,
(b) |LR(ei)| � |LR(aia(i+1))| and |LR(aia(i+1))∩ ∪ n

i�1LR
(ei)|≥ |LR(ei)|.

Proof. Assume that ai and bi are inner and outer vertices,
respectively, for 1≤ i≤ n, where n + 1 � 1(modn),
n + 2 � 1(modn), (3n + 1/2) � 1(modn), (3n/2) � 1(mod
n), and 2n − 1 � 1(modn). We have

(a) 2n − 1 � 1(modn) and LR(bia(i+1)) � bi, b(i+1),

b(i+2), . . . , b(n+2i/2), a(i+1), a(i+2), a(i+3), . . . , a(n+2i/2)}

with |LR(ei)| � n + 1. Moreover, |∪ n
i�1

LR(ei)| � |V(SFn)| � 2n.
(b) LR(aia(i+1)) � V(SFn) − b(n+2i/2), bi  and |LR

(aiai+1)| � 2n − 2 with |LR(aia(i+1))| � 2n − 2> n + 1
� |LR(ei)| and |LR(aiai+1)∩ ∪ n

i�1LR(ei)| � 2n − 2>
n+ 1 � |LR(ei)|.
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5. LFMD of Prism-Related Networks

'e LFMD of prism-related networks is computed as
follows.

Theorem 3. Let CDLn with n≥ 4 be a circular diagonal
ladder network and |V(CDLn)| � 2n. 6en,
dimlf(CDLn) � n.

Proof. Case 1: For n � 4, LRNs are as follows:
LR1 � LR(b1b2) � V(CDL4) − a1, a2 ,
LR2 � LR(b2b3) � V(CDL4) − a2, a3 ,
LR3 � LR(b3b4) � V(CDL4) − a3, a4 ,
LR1 � LR(b1b2) � V(CDL4) − a1, a2 ,
LR5 � LR(a1a2) � V(CDL4) − b1, b2 ,
LR6 � LR(a2a3) � V(CDL4) − b2, b3 ,
LR7 � LR(a3a4) � V(CDL4) − b3, b4 ,
LR8 � LR(a4a1) � V(CDL4) − b4, b1 ,
LR9 � LR(a1b2) � V(CDL4) − a2, b1 ,
LR10 � LR(a2b3) � V(CDL4) − a3, b2 ,
LR11 � LR(a3b4) � V(CDL4) − a4, b3 ,
LR12 � LR(a4b1) � V(CDL4) − a1, b4 ,
LR13 � LR(a2b1) � V(CDL4) − a1, b2 ,
LR14 � LR(a3b2) � V(CDL4) − a2, b3 ,
LR15 � LR(a4b3) � V(CDL4) − a3, b4 ,
LR16 � LR(a1b4) � V(CDL4) − a4, b1 ,
LR17 � LR(b1a2) � V(CDL4) − b2, a1 ,
LR18 � LR(b2a3) � V(CDL4) − b3, a2 ,
LR19 � LR(b3a4) � V(CDL4) − b4, a3 ,
LR20 � LR(b4a1) � V(CDL4) − b1, a4 ,
LR21 � LR(a1b1) � a1, b1 ,
LR22 � LR(a2b2) � a2, b2 ,
LR23 � LR(a3b3) � a3, b3 ,
LR24 � LR(a4b4) � a4, b4 .

As, for 1≤ i≤ 4, |LR(ei)| is 2 such that |LR(ei)|< |LR(es)|,
where 1≤ s≤ 20. Moreover, ∪ 4i�1LR(ei) � 8 and
|LRs ∩ ∪ 4i�1LRei| � |LRei| � 2. Define ϕ: V(CDL4)⟶
[0, 1] as ϕ(x) � (1/2) is a LRF with minimum cardinality for
each x ∈ V(CDL4). Consequently, by Preposition 1,
dimlf(CDL4) � (|V(CDL4)|/2) � 4.

Case 2: For n � 5, LRNs are as follows:
LR1 � LR(b1b2) � V(CDL5) − b4, a4, a1, a2 ,
LR2 � LR(b2b3) � V(CDL5) − b5, a5, a2, a3 ,
LR3 � LR(b3b4) � V(CDL5) − b6, a6, a3, a4 ,
LR4 � LR(b4b5) � V(CDL5) − b2, a2, a4, a5 ,
LR5 � LR(b5b1) � V(CDL5) − b3, a1, a3, a5 ,
LR6 � LR(a1a2) � V(CDL5) − b4, a4, b1, b2 ,
LR7 � LR(a2a3) � V(CDL5) − b5, a5, b2, b3 ,

LR8 � LR(a3a4) � V(CDL5) − b1, a1, b3, b4 ,
LR9 � LR(a4a5) � V(CDL5) − b2, a2, b4, b5 ,
LR10 � LR(a5a1) � V(CDL5) − b1, a3, b3, b5 ,
LR11 � LR(a1b2) � V(CDL5) − b4, a4, b1, a2 ,
LR12 � LR(a2b3) � V(CDL5) − b5, a5, b2, a3 ,
LR12 � LR(a3b4) � V(CDL5) − b1, a4, b3, a4 ,
LR11 � LR(a1b2) � V(CDL5) − b4, a4, b1, a2 ,
LR15 � LR(a5b1) � V(CDL5) − b3, a3, b5, a6 ,
LR16 � LR(a1b5) � a1, a2, a4, b2, b4, b4 ,
LR17 � LR(a2b1) � a2, a3, a5, b1, b3, b5 ,
LR18 � LR(a3b2) � a2, a3, a4, b1, b2, b4 ,
LR19 � LR(a4b3) � a2, a4, a5, b2, b3, b5 ,
LR20 � LR(a5b4) � a1, a3, a5, b1, b3, b4 ,
LR21 � LR(b1a2) � a2, a3, a5, b1, b3, b5 ,
LR22 � LR(b2a3) � a1, a3, a4, b1, b2, b4 ,
LR23 � LR(b3a4) � a2, a4, a5, b2, b3, b5 ,
LR24 � LR(b4a5) � a1, a3, a5, b1, b3, b4 ,
LR25 � LR(b5a1) � a1, a2, a4, b2, b4, b5 ,
LR26 � LR(a1b1) � a1, b1 ,
LR27 � LR(a2b2) � a2, b2 ,
LR28 � LR(a3b3) � a3, b3 ,
LR29 � LR(a4b4) � a4, b4 ,
LR30 � LR(a5b5) � a5, b5 .

As, for 1≤ i≤ 5, |LRN(ei)| � 2 such that
|LR(ei)|< |LR(es)|, where 1≤ s≤ 25. Moreover,
∪ 5i�1LR(ei) � V(CDL5); this implies |∪ 5i�1LR(ei)| � 10 and
|LRs ∩ ∪ 5i�1LRei|≥ |LRei| � 2. Define ϕ: V(CDL5)
⟶ [0, 1] such that ϕ(x) � (1/2) is the LRF with minimum
cardinality for each x ∈ V(CDL5). Consequently, by
Proposition 1, dimlf(CDL5) � (|V(CDL5)|/2) � 5.

Case 3: For n≥ 6 and 1≤ i≤ n by Lemma 1, |LR(ei)| �

2 � α and |R∩ ∪ n
i�1LR(ei)|≥ 2, where R are all other

LRNs. Define ϕ: V(CDLn)⟶ [0, 1] such that ϕ is the
LRF with minimum cardinality and |ϕ|< |ϕ′|, as
ϕ(v) � (1/2)∀v ∈ V(CDLn). V(CDLn) � ∪ LR(e):{

|LR(e) � 2}. Consequently, by Proposition 1,
dimlf(CDLn) � (|V(CDLn)|/2) � (2n/2) � n.

Theorem 4. Let An with n≥ 3 be an antiprism network,
where n � 1(mod2) and |V(An)| � 2n. 6en, dimlf(An),

n

n − 1
≤ dimlf An( ≤

2n

n + 1
. (15)

Proof. Case 1: For n � 3, LRNs are as follows:
LR1 � LR(a1a2) � a1, a2, b1, b3 ,
LR2 � LR(a2a3) � a2, a3, b1, b2 ,
LR3 � LR(a3a1) � a3, a1, b2, b3 ,
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LR4 � LR(a1b1) � a1, a2, b1, b3 ,
LR5 � LR(a2b2) � a2, a3, b1, b2 ,
LR6 � LR(a3b3) � a1, a3, b2, b3 ,
LR7 � LR(a1b2) � a1, a3, b1, b2 ,
LR8 � LR(a2b3) � a1, a2, b1, b3 ,
LR9 � LR(a3b1) � a2, a3, b1, b2 .

As, for 1≤ i≤ 9, |LR(ei)| � 4. Moreover, ∪ 9i�1LR(ei) �

V(A3) � 8 such that |∪ 9i�1LR(ei)| � 6 and |LRNs ∩ ∪ 9i�1
LR(ei)|> |LR(ei)| � 4. Define ϕ: V(A)3⟶ [0, 1] as ϕ(x) �

(1/4) is the LRF with minimum cardinality. Consequently,
by Corollary 1, dimlf(A3) � (|V(A3)|/4) � (3/2).

Case 2: For n � 5, LRNs are as follows:
LR1 � LR(b1b2) � V(A5) − a1, b4 ,
LR2 � LR(b2b3) � V(A5) − a3, b5 ,
LR3 � LR(b3b4) � V(A5) − a3, b1 ,
LR4 � LR(b4b5) � V(A5) − a4, b2 ,
LR5 � LR(b5b1) � V(A5) − a5, b3 ,
LR6 � LR(a1a2) � V(A5) − a4, b2 ,
LR7 � LR(a2a3) � V(A5) − a5, b3 ,
LR8 � LR(a3a4) � V(A5) − a1, b4 ,
LR9 � LR(a4a5) � V(A5) − a2, b5 ,
LR10 � LR(a5a1) � V(A5) − a3, b1 ,
LR11 � LR(b1a1) � b1, b4, b5, a1, a2, a3 ,
LR12 � LR(b2a2) � b2, b5, b1, a2, a3, a4 ,
LR13 � LR(b3a3) � b3, b1, b2, a3, a4, a5 ,
LR14 � LR(b4a4) � b4, b2, b1, a4, a5, a1 ,
LR15 � LR(b5a5) � b5, b2, b3, a5, a1, a2 ,
LR16 � LR(a1b2) � a1, a4, a5, b2, b3, b4 ,
LR17 � LR(a2b3) � a2, a5, a1, b3, b4, b5 ,
LR18 � LR(a3b4) � a3, a1, a2, b4, b5, b1 ,
LR19 � LR(a4b5) � a4, a2, a1, b5, b1, b2 ,
LR20 � LR(a5b1) � a5, a2, a3, b1, b2, b3 .

As, for 1≤ i≤ 10, |LR(ei)| � 6 such that
|LR(ei)|< |LR(es)| and 1≤ s≤ 10. ∪ 10i�1LR(ei) � V(A5); this
implies |∪ 10i�1LR(ei)| � 10 and |LRN∩ ∪ 10i�1
LRei|> |LRei| � 6. Define (ϕ: V(A)5)⟶ [0, 1] as ϕ(x) �

(1/6) is the LRF with minimum cardinality for each
x ∈ V(A5). Consequently, by 'eorem 1,
dimlf(A5)≤ (|V(A5)|/6)≤ (5/3).

As, for 1≤ i≤ 10, |LR(ei)| � 8, |LR(ei)|> |LR(es)|, and
1≤ s≤ 10. Moreover, ∪ 10i�1LR(ei) � V(A5). Define
(ϕ′: V(A)5)⟶ [0, 1] as ϕ′(x) � (1/8) is the LRF with
minimum cardinality for each x ∈ V(A5). 'erefore, by
'eorem 2, dimlf(A5)≥ (|V(A5)|/8)≥ (5/4). Consequently,

5
4
≤ dimlf A5( ≤

5
3
. (16)

Case 3: For n≥ 6 and 1≤ i≤ n by Lemma 4,|LR (ei)| �

n + 1 � α and |R∩ ∪ n
i�1LR(ei)|≥ n + 1, where R are all

other LRNs.'ere exists an ULRF ϕ: V(An)⟶ [0, 1],
|ϕ|< |ϕ′| which is defined as ϕ(v) � (1/α) ∀v ∈ V(An),
as V(An) � ∪ LR(e):{ |LR(e) � α}. Consequently, by
'eorem 1, dimlf(An)≤ (|V(An)|/n + 1)≤ (2n/n + 1).
Case 4: For |LR(bib(i+1))| � 2n − 2≥ |LR(ei)|, more-
over, ∪ 2n

i�1LR(ei) � V(An). 'ere exists a LLRF such
that ϕ′: V(A)n⟶ [0, 1] is defined as
ϕ′(x) � (1/2n − 2) for each x ∈ V(An). 'erefore, by
'eorem 2, we have dimlf(An)≥ (n/n − 1).
Consequently,

n

n − 1
≤ dimlf An( ≤

2n

n + 1
. (17)

Theorem 5. Let An with n≥ 4 be an antiprism network,
where n � 0(mod2) and |V(An)| � 2n. 6en,

n

n − 1
≤ dimlf A4( ≤ 2. (18)

Proof. Case 1: For n � 4, LRNs are as follows:
LR1 � LR(b1b2) � V(A4) − a1, a3 ,
LR2 � LR(b2b3) � V(A4) − a2, a4 ,
LR3 � LR(b3b4) � V(A4) − a1, a3 ,
LR4 � LR(b4b1) � V(A4) − a2, a4 ,
LR5 � LR(a1a2) � V(A4) − b2, b4 ,
LR6 � LR(a2a3) � V(A4) − b3, b1 ,
LR7 � LR(a3a4) � V(A4) − b2, b4 ,
LR8 � LR(a4a1) � V(A4) − b1, b3 ,
LR9 � LR(b1a1) � b1, b4, a1, a2 ,
LR10 � LR(b2a2) � b1, b2, a2, a3 ,
LR11 � LR(b3a3) � b2, b3, a3, a4 ,
LR12 � LR(b4a4) � b3, b4, a1, a4 ,
LR13 � LR(b2a1) � b2, b3, a1, a4 ,
LR14 � LR(b3a2) � b3, b4, a1, a2 ,
LR15 � LR(b4a3) � b1, b4, a2, a3 ,
LR16 � LR(b1a4) � b1, b2, a3, a4 .

As, for 1≤ i≤ 8, |LR(ei)| � 4 such that
|LR(ei)|< |LR(es)|, where 1≤ s≤ 8. Moreover, ∪ 8i�1LR(ei) �

V(A4) and |LRs ∩ ∪ 8i�1LR(ei)|> |LRei| � 4. 'ere exits an
ULRF ϕ: V(A)4⟶ [0, 1] defined as ϕ(x) � (1/4) which is
the LRF with minimum cardinality ∀x ∈ V(A4). Conse-
quently, by 'eorem 1, dimlf(A4)≤ (|V(A4)|/4)≤ 2.

As, for 1≤ i≤ 8, |LR(ei)| � 6 such that
|LR(ei)|> |LR(es)|, where1≤ s≤ 8. Moreover, ∪ 8i�1
LR(ei) � V(A4). 'ere exists a LLRF s ϕ′: V (A4)⟶ [0, 1]

which is defined as ϕ′(x) � (1/6) for each x ∈ V(A4).
'erefore, by 'eorem 1, we have dimlf

(A4)≥ (V(A4)/6)(4/3). Consequently,

4
3
≤ dimlf A4( ≤ 2. (19)
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Case 2: For n≥ 5, 1≤ i≤ n, by Lemma 3, |LR(ei)| � n �

α and |R∩ ∪ n
i�1LR(ei)|≥ n, where R are all other LRNs.

'ere exists an ULRF ϕ: V(An)⟶ [0, 1] which is
defined as ϕ(v) � (1/α)∀v ∈ V(An), as V(G)
� ⋃ LR(e): |LR(e) � α{ }. Consequently, by 'eorem 1,
dimlf(An)≤ (|V(An)|/n)≤ (2n/n) � 2.
Case 3: As, |LR(aia(i+1))| � 2n − 2, which is greater or
equal to the cardinalities of all other LRNs, moreover,
∪ 2n

i�1LR(ei) � V(An). 'ere exists a LLRF
(ϕ′: V(A)n)⟶ [0, 1] which is defined as
ϕ′(x) � (1/2n − 2)∀v ∈ V(An). 'erefore, by'eorem
2, dimlf(An)≥ (n/n − 1). Consequently,

n

n − 1
≤ dimlf An( ≤ 2. (20)

Theorem 6. Let SFn with n≥ 3 be a sun flower network and
|V(SFn)| � 2n. 6en,

n

n − 1
≤ dimlf SFn( ≤

2n

n + 1
. (21)

Proof. Case 1: For n � 3, LRNs are as follows:
LR1 � LR(a1a2) � a1, a2, b2, b3 ,
LR2 � LR(a2a3) � a2, a3, b3, b1 ,
LR3 � LR(a3a1) � a3, a1, b1, b2 ,
LR4 � LR(a1b1) � a1, a3, b1, b3 ,
LR5 � LR(a2b2) � a1, a2, b1, b2 ,
LR6 � LR(a3b3) � a2, a3, b2, b3 ,
LR7 � LR(a2b1) � b1, b2, a2, a3 ,
LR8 � LR(a3b2) � a1, a3, b2, b3 ,
LR9 � LR(a1b3) � a1, a2, b1, b3 .

As, for 1≤ i≤ 9, |LR(ei)| � 4 and
|LRNs∩ ∪ 9i�1LR(ei)| � |LR(ei)| � 4. 'ere exists an ULRF
ϕ: V(SF3)⟶ [0, 1] which is defined by ϕ(x) � (1/4),
∀v ∈ V(SF3). Consequently, by Corollary 1,
dimlf(SF3) � (3/2).

Case 2: For n � 4, LRNs are as follows:
LR1 � LR(a1a2) � a1, a2, a3, a4, b2, b4 ,
LR2 � LR(a2a3) � a1, a2, a3, a4, b1, b3 ,
LR3 � LR(a3a4) � a1, a2, a3, a4, b2, b4 ,
LR4 � LR(a4a1) � a1, a2, a3, a4, b1, b3 ,
LR5 � LR(a1b1) � a1, a4, b1, b2, b4 ,
LR6 � LR(a2b2) � a1, a2, b1, b2, b4 ,
LR7 � LR(a3b3) � a2, a3, b1, b2, b3 ,

LR8 � LR(a4b4) � a3, a4, b2, b3, b4 ,
LR9 � LR(a2b1) � a2, a3, b1, b2, b3 ,
LR10 � LR(a3b2) � a3, a4, b2, b3, b4 ,
LR11 � LR(a4b3) � a1, a4, b2, b3, b4 ,
LR12 � LR(a1b4) � a1, a2, b1, b2, b4 .

As, for 1≤ i≤ 8, |LR(ei)| � 5, such that
|LR(ei)|< |LR(es)|, where 1≤ s≤ 4. Moreover,
∪ 8i�1LR(ei) � V(SF4). 'ere exists (ϕ: V(SF)4)⟶ [0, 1]

defined as ϕ(x) � (1/5) which is the LRF ∀v ∈ V(SF4), as
V(SF4) � ∪ LR(ei): |LR(e) � 5 . Consequently, by 'eo-
rem 1, dimlf(SF4)≤ (8/5).

As, for 1≤ i≤ 4, |LR(ei)| � 6 such that
|LR(ei)|> |LR(es)|, where 1≤ s≤ 8. 'ere exists
ϕ′: V(SF4)⟶ [0, 1] defined as ϕ(v) � (1/6)∀v ∈ V(SF4),
which is the LLRF with maximum cardinality, where
|ϕ′|< |ϕ″|, as V(SF4) � ⋃ LR(e): |LR(e) � 6{ }. By 'eorem
1, dimlf(SF4)≥ (4/3). Consequently,

4
3
≤ dimlf SF4( ≤

8
5
. (22)

Case 3: As n≥ 5, 1≤ i≤ n, |LR(ei)| � n + 1 � α, and
|R∩ ∪ n

i�1LR(ei)|≥ n + 1, where R are all other LRNs.
'ere exists an ULRF ϕ: V(SFn)⟶ [0, 1] defined as
ϕ(v) � (1/α) ∀v ∈ V(SFn), as V(G)
� ∪ LR(e): |LR(e) � α{ }. Consequently, by 'eorem 1,
dimlf(SFn)≤ (|V(SFn)|/n + 1)≤ (2n/n + 1).
Case 4: As |LR(aiai+1)| � 2n − 2 which is greater than
the cardinalities of all other LRNs of SFn, there exists a
LLRF ϕ′: V(SFn)⟶ [0, 1] defined by
ϕ′(v) � (1/2n − 2), ∀v ∈ V(SFn), as V(G)
� ∪ LR(e): |LR(e) � 2n{ }. By 'eorem 2,
dimlf(SFn)≥ (n/n − 1). Consequently,

n

n − 1
≤ dimlf SFn( ≤

2n

n + 1
. (23)

6. Conclusion

In this article, we studied the various aspects of the LFMDs
for the different connected networks including the exis-
tence of the exact values, lower and upper bonds and
bounded- and unbounded behaviours. Mainly, the lower
bond of LFMD for the arbitrary connected networks is
improved from unity. As the applications of the main
result, LFMDs of the prism-related networks are as
follows:

(i) 'e exact value LFMD of C DLn is n and of A3 is
(3/2), where n≥ 4.

Table 1: LFMD of networks.

Networks LFMDs Comment
Antiprism network [An for n � 0(mod2)] (n/n − 1)≤ dimlf(An)≤ 2. Bounded
Antiprism network An, where n � 1(mod2) (n/n − 1)≤ dimlf(An)≤ (2n/n + 1). Bounded
Sun flower network SFn. (n/n − 1)≤ dimlf(SFn)≤ (2n/n + 1). Bounded
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(ii) 'e LFMDs of antiprism and sun flower networks
are computed in bounds, see Table 1.

Moreover, we note that, for n⟶ ∞, the computed
bounds are convergent which show their boundedness.
Now, we close our discussion by proposing the following
open problem: open problem. Characterize the connected
networks whose LFMDs is (|V(G)|/a), where a< |V(G)| is
some integral value.
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Graph convolutional network (GCN) is an efficient network for learning graph representations. However, it costs expensive to
learn the high-order interaction relationships of the node neighbor. In this paper, we propose a novel graph convolutional model
to learn and fuse multihop neighbor information relationships. We adopt the weight-sharing mechanism to design different order
graph convolutions for avoiding the potential concerns of overfitting. Moreover, we design a newmultihop neighbor information
fusion (MIF) operator which mixes different neighbor features from 1-hop to k-hops. We theoretically analyse the computational
complexity and the number of trainable parameters of our models. Experiment on text networks shows that the proposed models
achieve state-of-the-art performance than the text GCN.

1. Introduction

Text classification problem is a fundamental problem in
many natural language processing (NLP) applications, such
as text mining, spam detection, summarization, and ques-
tion-answering system [1–5]. Many deep learning ap-
proaches such as convolutional neural networks [6],
recurrent neural networks (RNN) [7], and long short-term
memory (LSTM) [8] are introduced to text classification.

Text could be constructed on a typical graph-structured
network, and graph networks have natural advantages for
processing such data. Scarselli et al. [9] proposed a graph
neural network, which was widely used for text classification
[10–12] and other NLP tasks [13]. Graph convolutional
network (GCN) [10], which is the extension of the CNN on
graph data, has shown good performance on text classifi-
cation than the traditional CNN [14]. Yao et al. [15] pro-
posed a text GCN to apply document nodes and weighted
edges to construct the text network graph, and their model

outperformed the state-of-the-art text classification
methods.

When the messages pass through the graph of the text
network, the node’s output is affected by not only the di-
rectly connected nodes but also the k-hop nodes [16]. To
obtain more neighbor node information, GCN models can
expand the receptive field by stacking multiple layers.
However, GNN models and GCN often suffer from the
oversmoothing issue [17, 18]. On the contrary, the repre-
sentation ability of the shallow network structure is clearly
insufficient.

To address the above issue, we propose a multihop
neighbor information fusion graph convolutional network
for text classification based on the GCN. In our model, we
propose a novel negative minimum value fusion operator to
fuse multihop neighbor information (MIF). To reduce the
computational complexity, we share the trainable weight
[19] among the multihop neighbor nodes. Our experimental
results show that our models achieve state-of-the-art
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performance in several citation text datasets with lower
computational complexity.

/e contributions of this paper are as follows. First, we
propose a novel negative minimum value fusion operator,
which fuses the feature information of multihop neighbors.
Second, we propose high-efficiency graph convolutional
network-based MIF to successfully capture k-hop neighbors
for nodes’ classification of the text dataset.

/e remainder of this paper is organized as follows. In
Section 2, the related works are reviewed. In Section 3, our
methods are proposed. In Section 4, the experimental results
are presented. Finally, we draw the concluding remarks in
Section 5.

2. Related Work

In this section, we will describe the related work about the
graph convolutional network text classification, and we also
introduce the related work about the multihop neighbor
information of graph convolutional networks.

2.1. Graph Convolutional Network. Gori et al. [20] first
proposed the concept of the graph neural network (GNN),
which was based on the recurrent neural network archi-
tecture. Micheli [21] developed the GNN by randomwalk on
the graph network [18]. Morris et al. [22] proved that the
graph neural network and 1D Weisfeiler-Leman had the
same ability to decompose nonisomorphic graphs.

Graph convolutional networks (GCNs) were developed
from convolutional neural networks [23]. However, it is
difficult to apply the GCN for large-scale graphs due to the
high computational burden of eigenvalue decomposition
[23]. Defferrard et al. [10] proposed a localized filter using
Chebyshev polynomial. Kipf and Welling [24] proposed
vanilla GCN, which achieves state-of-the-art classification
performance on the citation network. Niepert et al. [25]
proposed PATCHY-SAN to capture the information from
locally connected regions. Hamilton et al. [26] developed a
set of aggregate functions by sampling nodes in the neighbor
to address the limitation of transductive learning. Monti
et al. [27] contributed a unified framework for generalizing
convolution to non-Euclidean domains. Velickovic et al.
[28] leveraged masked attention to propose a graph atten-
tion network (GAT). Ding et al. [29] developed GAT and
achieved better classification performance.

Recent works have been proposed for capturing k-hop
neighbor information of nodes [30–33]. Zhou and Li [33]
proposed a new high-order convolution operator to cap-
ture k-hop neighbor information and developed adaptive
filtering to adjust the weights of the operator. Based on the
motif graph attention mechanism, Lee et al. [34] proposed
motif convolutional networks to capture k-hop interactive
information. Mao et al. [35] proposed a Siamese frame-
work to capture the k-hop information in the brain net-
work. Abu-El-Haija et al. [36–38] proposed several
versions of the mix-hop convolution to mix these features
of different order graph convolutions using a fully con-
nected layer.

2.2. Text Classification. Recently, deep learning models are
introduced into text classification, which achieve far better
performance than traditional models.

With the development of deep learning techniques,
increasingly deep learning models are applied for text
classification. Kim [39] developed several variants of the
CNN model for the text classification. Recurrent neural
networks (RNNs) [2, 7] are widely applied for text classi-
fication, showing better results than traditional models.

With the development of graph network models, many
researchers developed more GCN-based classification
methods [26, 40–42]. Zhaoa et al. [42] proposed the SDGCN
model to capture the interdependencies hidden in the data.
Liu et al. [43] developed TensorGCN to aggregate intragraph
and intergraph information of the text graph. However, Text
GCN [15] has a large number of parameters and high
computational complexity. We will propose a novel GCN-
based model to solve the issue in the Text GCN [15].

3. Method

In this section, we review the definition of related graph
notations and analyse the layer-wise propagation model of
the GCN in detail. /en, we develop a novel information
propagation method to capture and fuse the multihop
neighbor information. We propose two novel frameworks to
capture the rich information of the text network. Finally, we
analyse the computational complexity and parameter
quantities of our models.

3.1. Notations’ Definition. We assume graph signal X ∈ Rn×c

could be characterized by the node feature matrix of the
graph, where n and c represent the number of nodes and
feature dimensions, respectively. Let A be the adjacency
matrix representing its edge connection. We define the
normalized Laplacian matrix L as L � In − D− (1/2)AD− (1/2),
where In and D denote the identity matrix and the degree
matrix of the graph, respectively.

/e popular convolutional propagation model [24] is as
follows:

H
(l+1)

� ReLU D
− 1/2 A D

− 1/2
H

(l)θ(l)
 , (1)

where A is the adjacency matrix with self-loops, namely,
A � A + In. /e degree matrix D could be written as
Dii � j

Aij, where H(l) denotes the propagation matrix. If
l � 0, then H(0) � X, which means the input signal is con-
nected to the network./e trainable weight matrix θ(l) could
be optimized by gradient descent. We repeat the application
of the convolutional model to get the vanilla GCN [24]
framework.

Y � softmax D
− 1/2 A D

− 1/2ReLU D
− 1/2 A D

− 1/2
Xθ(0)

 θ(1)
 ,

(2)

where θ(0) and θ(1) present different weight matrices. /e
classification function is softmax. /e convolutional oper-
ator is essentially a linear combination of its own vertices
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and one-hop neighbourhood vertices to make the same
category of vertex features similar. Stacking two convolu-
tional layers makes the vertices of the same category more
closely connected and further eases the classification task.
However, when more layers are applied, the vertices of
different categories will be mixed and become indistin-
guishable, which is excessive smoothing [17, 18].

3.2. Multihop Neighbor Information Fusion with the Graph
Convolutional Operator

Definition 1 (multihop neighbor information fusion (MIF)).
It is assumed that matrix A denotes the regularized

adjacency matrix of graph G, where A � D
− 1/2 A D

− 1/2.

If A ∈ Rn×n, then A
(k) ∈ Rn×n. /e power matrix of A is

A
(k)

, A
(k− 1)

, . . . , A
(1)

, A
(0), where A

(0) denotes the identity
matrix. /e multihop neighbor information fusion operator
is to fuse the k-hop neighbor information with the element-
wise topological information which is preserved. /e MIF
operator is defined as follows:

Z
(l)

� − min A
(1)

H
(l)

Wl,
A

(2)
H

(l)
Wl, . . . , A

(k)
H

(l)
Wl ,

(3)

where A
(k)denotes the k-hop regularized adjacency matrix

and A
(k)

H(l)Wl represents the k-hop neighbor information.

Proposition 1. 9e multihop neighbor information fusion
operator is a topological preserved operator.

Proof. If A(k) ∈ Rn×n, then A(0),A(1) . . . ,A(k) ∈ Rn×n, and
the k-hop neighbor information in convolutional layer l

has the same dimension, A
(1)

H(l)Wl,
A

(2)
H(l)Wl, . . . ,

A
(k)

H(l)Wl ∈ Rn×r1. As defined in formula (3), the MIF
operator is the element-wise operation. /erefore, the di-

mension of Z(l) is equal to the dimension of A
(i)

H(l)Wl. /e
MIF operator preserves topological information.

/e MIF operator is an information aggregation layer
that is used to mix k-order adjacency information. /e
procedure of the calculation of MIF is as follows:

(1) Calculating the minimum value of these features
from different order graph convolutions:

P � min A
(1)

H
(l)

Wl,
A

(2)
H

(l)
Wl, . . . , A

(k)
H

(l)
Wl . (4)

We give a living example to show that the MIF operator
works. It is assumed that k � 3, namely, we obtain
the maximum 3-hop neighbor information. We

assume P1 � A
(1)

H(l)Wh �
1 7

− 1 0 , P2 � A
(2)

H(l)Wl �
− 2 2
3 4 , and P3 � A

(3)
H(l)Wl �

4 2
− 3 − 2 ;

then, the result is as follows:

P � min P1, P2, P3(  � min P
(i,j)
1 , P

(i,j)
2 , P

(i,j)
3   �

− 2 2

− 3 − 2
 .

(5)

(2) /e output of the MIF operator is defined as negative

for each element of P, namely, Z � − P �
2 − 2
3 2 .

Following DIFFPOOL [44], we use the topological
preserved operator MIF to improve the performance. □

3.3. MIF Propagation Model. To address the limitations of
the Text GCN, we propose a propagation model of multihop
neighbor information fusion graph convolution as follows:

H
(l+1)

� ReLU MIF A
(1)

H
(l)

Wl,
A

(2)
H

(l)
Wl, . . . , A

(k)
H

(l)
Wl  ,

(6)

where MIF(·) is defined in formula (4), A � D
− 1/2 A D

− 1/2,
and A

(k) denotes that A multiplies itself by k times, where
A

(j)
H(l)Wl is the j-hop graph convolution, and Wl is the

weight parameter matrix. In the MixHop model [36–38],
Abu-El-Haija et al. adopted different weights for different
A

(k). To reduce the computational complexity, we share the
weight in the same convolutional layer in the multihop
convolutional operator.

In formula (6), the convolutional layers combine the
multihop neighbor information from 1-hop graph convolu-
tion with k-hop graph convolution./e calculation procedure
is summarized in Algorithm 1. /e MIF has advantages
compared to Text GCN. MIF implements feature aggregation
on nodes and their k-hop neighbor nodes. /erefore, MIF
contains multihop neighbor information, in which it captures
more information than Text GCN. In summary, MIF merges
multihop neighbor information features while avoiding the
extra parameter number. /ose nodes in the same category
are more closely connected. Furthermore, the MIF operator
suppresses excessive weighting features while retaining fea-
tures with small weight values, which may prevent gradient
disappearance and gradient explosion problems.

3.4.GraphConvolutionalNetworkBasedonMIF. In Figure 1,
we propose a two-layer graph convolutional neural network
using theMIF layer./e first layer is the graph convolutional
layer with MIF, and the convolutional layer is represented as
follows:
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H � σ MIF A
(1)

XW1,
A

(2)
XW1, . . . , A

(k)
XW1  ,

(7)

where W1 is the weight parameter matrix between the input
layer and hidden layer.

/e second layer is the traditional graph convolution.
We set the nonlinear activation function σ between the two
layers as ReLU and achieve multiple classifications via
softmax after the second layer. /e network extends the 1-
hop graph convolution to k-hop graph convolution to
capture multihop neighbor interactive information. /e
output of our model is expressed as follows:

Z � softmax A ReLU MIF A
(1)

XW1,
A

(2)
XW1,

. . . , A
(k)

XW1)))W2), (8)

where W2 represents the weight parameter matrix between
the hidden layer and output layer. /e trainable weight pa-
rameters W1 and W2 would be updated by gradient descent.

In the preliminary network design, we compare how
many convolutional layers and hops fit to our model. /e
two-convolutional-layer network shows better performance
than the three and more convolutional layer network. When
we implement the multihop neighbor information fusion,
we observe that k � 2 is better for most text networks, while
k � 3 is better for a few networks. In further experiments,
when k≥ 4, the classification results would decrease.
Moreover, the larger the k value, the higher the computa-
tional cost. /erefore, we only discuss the cases of k � 2 and
k � 3 in our models.

When k � 2, our MIF operator fuses the 1-hop graph
convolutional layer and 2-hop graph convolutional layer.
/e 2-hop MIF graph convolutional layer (MIFGC-2) is as
follows:

Z � softmax A
(1) ReLU MIF A

(1)
XW1,

A
(2)

XW1   W2 .

(9)

When k � 3, the 3-hop MIF graph convolutional layer
(MIFGC-3) fuses from 1-hop to 3-hop convolutional layer.
/e NMGC-3 model is as follows:

Z � softmax A
(1)

ReLU MIF A
(1)XW1,

A
(2)XW1,

A
(3)XW1)))W2). (10)

/e cross-entropy loss is utilized as our model loss
function:

L � − 
l∈xL



M

m�1
YlM ln ZlM, (11)

where xL denotes the nodes set with labels and M represents
the number of classes. YlM denotes the real labels of tag
nodes, and ZlM denotes the probability value between 0 and
1 predicted by softmax.

3.5. Computational Complexity and Parameters. Because the
actual running time is sensitive to hardware and imple-
mentations, we follow He and Sun [45] to adopt the the-
oretical time complexity to show the complexity rather than
the actual running time. For large-scale graph networks, it
is a huge challenge to directly calculate A

(k). /erefore, we
calculate A

(k)
XW1 with right-to-left multiplication. For

example, if k � 2, we calculate A
(2)

XW1 as A(A(XW1)).
A

is usually a sparse matrix with m nonzero entries. In for-
mulas (7)–(10), our graph convolutional layers adopt the
weight-sharing mechanism. /erefore, the calculation
procedure is efficient.

Since different hop graph convolutions share the same
weight in the same layer, the parameter quantities are con-
sistent with the 1-hop graph convolution. It is assumed that
A ∈ Rn×n, where n is the number of nodes; X ∈ Rn×r0 , where r0
is the feature dimensions, W1 ∈ Rr0×r1 , where r1 represents the
number of hidden neurons in the 1st layer, and W2 ∈ Rr1×r2 ,
where r2 represents the hidden neurons in the 2nd layer. /en,
output dimension in the 1st layer as the same, namely,
AXW1 ∈ Rn×r1 , A

2
XW1 ∈ Rn×r1 , and A

k
XW1 ∈ Rn×r1 .

/erefore, in the first convolutional layer of our proposed
model, the computational complexity is Ο(k × m × r0 × r1),
and the trainable parameters are Ο(r0 × r1). /e whole
computational complexity of our proposed model is Ο(k ×

m × r0 × r1 + m × r1 × r2) with Ο(
2
i�1 ri− 1 × ri) trainable

parameters. /e node feature dimension is far large than the
neural number, namely, r0≫ r2. /erefore, the computational
complexity of our network frameworks approximates
Ο(k × m × r0 × r1), and trainable parameters approximate
Ο(r0 × r1), respectively. It matches the computational com-
plexity and parameters of vanilla GCN [24]. Similarly, Text
GCN [15] takesΟ(1 × m × r0 × r1) computational complexity
and Ο(r0 × r1) trainable parameters.

4. Experiment

We will evaluate our NMGC-2 and NMGC-3 on text net-
works and compare our methods with the classic method
and deep learning methods, such as the embedding model,
CNN-based, LSTM-based, and GCN-based. We analyse the
terms of computational complexity and trainable parameters
in detail. We investigate the impact of network framework
parameters and training epochs on classification accuracy.

4.1. Datasets. We test our methods on five benchmark
corpora datasets including R52 and R8 of Reuters-21578, 20-
Newsgroups (20NG), Ohsumed, and Movie Review (MR).
According to the preprocessing steps by Yao et al. [15], we
process the text datasets and use the documents and words
as nodes to build the text graph. In Table 1, the statistics
characters of the datasets are described in detail.

4.2. Baseline and Experimental Settings. We compare with
the following baseline methods as in Yao et al. [15], i.e., CNN
with randomly initialized word vectors (CNN-rand) [39],
CNN with pretrained word vectors (CNN-pretrain) [39],
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predictive text embedding (PTE) [46], LSTM framework
(LSTM) [2], LSTM framework with pretrained word em-
beddings (LSTM-pretrain) [2], fast text classifier (fastText)
[47], fast text classifier with bigrams (fastText-bigrams) [47],
label embedding model with attention (LEAM) [48], simple
word-embedding model (SWEM) [49], graph CNN with
spline filter (GCNN-S) [23], graph CNN with Fourier filter
(GCNN-F) [50], and graph CNN with Chebyshev filter
(GCNN-C) [10].

We tune a series of hyperparameters’ (learning rate,
dropout rate, hidden units, and epochs) values to determine
the best hyperparameters of ourmodel on text networks./e
hyperparameters are reported in Tables 2 and 3. In our
NMGC-2 and NMGC-3 models, we set L2 regularization
factor as 0 and use Adam [51] to optimize the learning rate,
following Yao et al. [15].

4.3. Results’ Analysis. We compare our NMGC-2 and
NMGC-3 with other baseline methods in terms of test ac-
curacy. As shown in Table 4, the proposed model NMGC-2
or NMGC-3 achieves the highest classification performance
on datasets R52, R8, 20NG, and Ohsumed. Specifically, our
NMGC-2 obtains the best accuracy of 94.35%, 97.31%, and
69.21% on datasets R52, R8, and Ohsumed, respectively,
whereas our NMGC-3 obtains the highest accuracy of
86.68%on 20NG.

/e success of NMGC-2 and NMGC-3 is mainly due to
the following three aspects. (1) Our NMGC-2 and NMGC-3
models have the capability to capture the relations in terms
of word-word and document-word in the datasets. (2) Our
NMGC-2 and NMGC-3 make full use of the advantages of
the GCN. We implement the feature information aggrega-
tion on the node and its 1-hop neighbor information (each
layer) so that the node (word-word and document-word)
features in the same cluster are similar, which are easy to
classify. (3) Our NMGC-2 and NMGC-3 capture more and

richer feature information from 1-hop to k-hop neighbors,
which may circumvent the limitations of the GCN.

On dataset MR, CNN-pretrain [39] achieves the highest
classification result of 77.75%, which shows the model
consecutive and short-distance semantics because CNN-
pretrain [39] and LSTM-pretrain [2] model consecutive
word sequences, while our NMGC-2 and NMGC-3 ignore
the word orders. Another reason is that our NMGC-2 and
NMGC-3 models are difficult to propagate the information
among the nodes (word-word and document-word) on MR
with few edges.

Compared to Text GCN [15], our NMGC-2 and NMGC-
3 are better by a large margin in most cases, which dem-
onstrates the effectiveness of our method in terms of cap-
turing high-order interactive information.

4.4. Hidden Units’ Analyses of Our Method. To evaluate the
relationship between hidden units and the model perfor-
mance, we use different hidden units to conduct experi-
ments. We choose a representative set of hidden units as our
comparative experiments in balancing computational
complexity and classification performance. /e results are
summarized in Table 5. Specifically, our NMGC-2 uses the
best hidden units of 128, 64, 128, 128, and 64 to achieve the
higher accuracy on R52, R8, 20NG, Ohsumed, and MR,
respectively, whereas our NMGC-3 uses the best hidden
units of 128, 128, 128, 128, and 32 to achieve the better
accuracy on R52, R8, 20NG, Ohsumed, and MR, respec-
tively. We note that our NMGC-2 is always better than our
NMGC-3 in many cases for different hidden units. /is is
most likely that our NMGC-3 suffers from oversmoothing in
most cases. However, NMGC-3 outperforms NMGC-2 on
short MR with few edges because NMGC-3 considers
higher-order node information and propagates more label
information to the entire graph network. In most cases,
when the number of hidden units decreases, the accuracy of

input: A, H(l), W

output: H

for i� 1: k
Ti � A

i
H(l)

Pi � TiW � A
i
H(l)W

end
Z(l) � − min(P1, P2, . . . , Pk)

H � ReLU(Z(l))

ALGORITHM 1: MIF operation.

X H
X Z

A(1)ˆ A(1)ˆ

A(k)ˆ

W1

W2

Weight sharing

… …

… … …

Hk = A(k)XW1ˆ

A(1)HW2ˆ
H1 = A(1)XW1ˆ

MIF operator

MIF ReLU

So�max

Figure 1: /e proposed model.
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our method decreases, andmore epochs are required to train
our network.

4.5. Computational Complexity and Trainable Weight
Parameters. We design the weight-sharing mechanism to
share the weight in the proposed convolutional layer, which
reduces the number of parameters. When using weight
sharing, our calculations are very efficient. /is naturally
reduces the computational complexity. We design the
weight-sharing mechanism to avoid overfitting caused by
many parameters.

As shown in Table 6, we compare our method with Text
GCN [15] in terms of computational complexity and the
number of trainable weight parameters. /e detailed deri-
vation process of Comp. and Params. is analysed in Section
3.5. In Table 6, we observe that our NMGC-2 and NMGC-3
could match the computational complexity of Text GCN
[15]. In particular, for MR, NMGC-3 is about 1 time less
than Text GCN [15] in terms of computational complexity.
Interestingly, our models have the least parameters on all
datasets because we use the weight-sharing mechanism on
these convolutions from 1-hop graph convolution to k-hop
graph convolution and a smaller number of hidden units.

Table 4: Test accuracy on five text datasets./e benchmark results were reported by Yao et al. [15]./e accuracy values are the average result
of 10 runs.

Method R52 R8 20NG Ohsumed MR
CNN-rand [39] 85.37 94.02 76.93 43.87 74.98
CNN-pretrain [39] 87.59 95.71 82.15 58.44 77.75
PTE [46] 90.71 96.69 76.74 53.58 70.23
LSTM [2] 85.54 93.68 65.71 41.13 75.06
LSTM-pretrain [2] 90.48 96.09 75.43 51.10 77.33
fastText [47] 92.81 96.13 79.38 57.70 75.14
fastText-bigrams [47] 90.99 94.74 79.67 55.69 76.24
LEAM [48] 91.84 93.31 81.91 58.58 76.95
SWEM [49] 92.94 95.32 85.16 63.12 76.65
GCNN-S [23] 92.74 96.80 — 62.82 76.99
GCNN-F [50] 93.20 96.89 — 63.04 76.74
GCNN-C [10] 92.75 96.99 81.42 63.86 77.22
Text GCN [15] 93.56± 0.18 97.07± 0.10 86.34± 0.09 68.36± 0.56 76.74± 0.20
NMGC-2 (ours) 94.35± 0.06 97.31± 0.09 86.61± 0.06 69.21± 0.17 76.21± 0.25
NMGC-3 (ours) 93.83± 0.16 97.16± 0.10 86.68± 0.18 68.20± 0.35 76.36± 0.40

Table 1: Dataset statistics.

Dataset #training #test #docs #classes #words #nodes #length
R52 6532 2568 9100 52 8892 17,992 69.82
R8 5485 2189 7674 8 7688 15,362 65.72
20NG 11,314 7532 18,846 20 42,757 61,603 221.26
Ohsumed 3357 4043 7400 23 14,157 21,557 135.82
MR 7108 3554 10,662 2 18,764 29,426 20.39

Table 2: /e hyperparameters in NMGC-2.

Dataset Learning rate Dropout rate Hidden units Epochs
R52 0.005 0.4 128 800
R8 0.01 0.4 64 200
20NG 0.005 0.5 128 330
Ohsumed 0.005 0.4 128 410
MR 0.01 0.4 64 40

Table 3: /e hyperparameters in NMGC-3.

Dataset Learning rate Dropout rate Hidden units Epochs
R52 0.005 0.5 128 1300
R8 0.015 0.4 128 180
20NG 0.01 0.5 128 265
Ohsumed 0.01 0.6 128 210
MR 0.01 0.4 32 85
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5. Conclusion

In this work, we propose a new multihop neighbor infor-
mation fusion graph convolutional network on graph-
structured data. We develop a novel MIF operator to
combine the graph convolution features of multihop
neighbor information from 1-hop graph convolution to k-
hops. Experiments on text networks suggest that our models
are capable of encoding in terms of node features and global
graph topology in a way useful for graph classification. In
this setting, our models achieve performance improvement
compared to other methods while being computationally
efficient and with less trainable parameters. In future work,
we plan to study different fusion schemes and extend our
model to more datasets.
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Table 5: Comparison of hidden units.

Dataset Model Hidden units Epochs Test Acc.

R52

NMGC-2 (ours)
128 800 94.35± 0.06
64 1200 94.23± 0.20
32 2000 94.16± 0.14

NMGC-3 (ours)
128 1300 93.83± 0.16
64 1100 93.29± 0.26
32 2000 92.85± 0.37

R8

NMGC-2 (ours)
128 150 97.25± 0.13
64 200 97.31± 0.09
32 330 97.30± 0.13

NMGC-3 (ours)
128 180 97.16± 0.10
64 220 96.92± 0.08
32 300 96.69± 0.06

20NG

NMGC-2 (ours)
128 330 86.61± 0.06
64 480 86.55± 0.12
32 600 86.02± 0.12

NMGC-3 (ours)
128 265 86.68± 0.18
64 420 86.14± 0.19
32 540 85.64± 0.13

Ohsumed

NMGC-2 (ours)
128 410 69.21± 0.17
64 495 69.07± 0.28
32 795 68.46± 0.24

NMGC-3 (ours)
128 210 68.20± 0.35
64 305 67.50± 0.24
32 415 66.25± 0.35

MR

NMGC-2 (ours)
128 35 76.19± 0.43
64 40 76.21± 0.25
32 55 76.16± 0.26

NMGC-3 (ours)
128 50 76.27± 0.32
64 70 76.24± 0.11
32 85 76.36± 0.40

Table 6: Comparison of computational complexity and the number of trainable weight parameters. Comp. and Params. denote the
computational complexity and parameters, respectively. Constant numbers 1, 2, and 3 represent the hops of the graph convolutional
network, and constant numbers 200, 64, 128, and 32 denote the number of hidden units.

Method Comp. Params.
Text GCN [15] O(1 × m × r0 × 200) O(r0 × 200)

NMGC-2 (ours) O(2 × m × r0 × 64) (R8 and MR datasets)
O(2 × m × r0 × 128) (other datasets)

O(r0×64) (R8 and MR datasets)
O(r0×128) (other datasets)

NMGC-3 (ours) O(3 × m × r0 × 32) (MR dataset)
O(3 × m × r0 × 128) (other datasets)

O(r0× 32) (MR dataset)
O(r0×128) (other datasets)

Mathematical Problems in Engineering 7
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Gutman index of a connected graph is a degree-distance-based topological index. In extremal theory of graphs, there is great
interest in computing such indices because of their importance in correlating the properties of several chemical compounds. In
this paper, we compute the exact formulae of the Gutman indices for the four sum graphs (S-sum, R-sum, Q-sum, and T-sum) in
the terms of various indices of their factor graphs, where sum graphs are obtained under the subdivision operations and Cartesian
products of graphs.We also provide specific examples of our results and draw a comparison with previously known bounds for the
four sum graphs.

1. Introduction

'eory of topological indices (TIs) started when Wiener
discovered a close correlation between boiling points of
certain alkanes and sums of the distances among pairs of
vertices. Later, this calculated number was named Wiener
Index [1]. After 25 years, Gutman and Trinajstić discovered
degree-based indices (first and second Zagreb indices) which
they used to compute the total π-electron energy of con-
jugate molecules [2]. Following these discoveries, many
scientists began to introduce various TIs as invariant
numbers for the prediction of the certain properties of
molecular structures such as boiling point, freezing point,
volume, density, vaporization, and weight. Two deeper
approaches, namely, quantitative structures property rela-
tionships (QSPR) and quantitative structure activity rela-
tionships (QSAR) have also been used under the subject of
cheminformatics (combination of chemistry, mathematics,
statistics, and information sciences) and in conjunction with
TIs, to find correlation values between the physical struc-
tures and chemical properties of molecules, see [3–5].

TIs have been classified into three main classes
depending upon degrees of nodes (vertices), distances
among the vertices, and enumerative polynomials of the
molecular graphs. Distance-based TIs are generally con-
sidered more important than the others. Some of the dis-
tance-based TIs areWiener index [1], average distance index
[6], Harary index [7, 8], degree distance index, and the
Gutman index [9]. For more details, see [10–14].

In graph theory, various operations such as union, in-
tersection, addition, and Cartesian product are used to
obtain the new graphs. Yan et al. [15] defined four subdi-
vision-related operations S, R, Q, and T. 'ey applied these
operations on a connected graph G to obtain the four new
graphs S(G) (subdivided graph), R(G) (triangle parallel
graph), Q(G) (line superposition graph), and T(G) (total
graph), respectively. Afterwards, Das and Gutman [10] in-
troduced the F-sum graphs using the operation of Cartesian
product on the graphs F(G1) and G2, where
F ∈ S, R, Q andT{ }. Various hexagonal chains were later
derived from these F-sum graphs, which have been found
isomorphic to many chemical structures. 'ey also
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determined the Wiener indices of the following S-sum
(G1 + sG2), R-sum (G1 + RG2), Q-sum (G1 + QG2), and
T-sum (G1 + TG2) graphs.

Recently, Liu et al. [16] computed the first general Zagreb
indices of the F-sum graphs. Akhter and Imran [17] found
out the sharp bounds of the general sum-connectivity index
for F-sum graphs. Ahmad et al. [18] discovered the exact
formulae of the general sum-connectivity index for F-sum
graphs, by improving the bounds. An et al. [19] determined
the upper bounds of the degree distance indices for all the
F-sum graphs. Pattabiraman and Bhat [20] derived the
upper bounds of the Gutman index for all the F-sum graphs.
For more studies, we refer to [21–32].

In this paper, we obtain the exact values of the Gutman
index for the F-sum (G1 + sG2), (G1 + RG2), (G1 + QG2),
and (G1 + TG2) graphs. Moreover, the results are illustrated
with special classes of the F-sum graphs and a comparison is
drawn between the obtained exact values and the previously
known bounded values.

'e sections of paper are organized as follows. Section 2
comprises of preliminaries (some important definitions and
statements of related lemmas). Section 3 contains the main
result consisting of statements and proofs of theorems about
Gutman indices of F-sum graphs. Lastly, Section 4 covers the
applications of the main result to the computation of
Gutman indices of particular classes of the F-sum graphs and
a comparison among exact and known bounded values.

2. Preliminaries

We give a detailed consideration of two simple graphs G1
and G2. 'e degree of a vertex x(deg(x) or d(x)) is equal to
the number of vertices connected to it. For each
(x, y) ∈ V(G1 × G2), degree of the vertex (x, y) is denoted
by deg(x, y). 'e distance d(x, y) between two vertices
x, y ∈ V(G) is defined as the length of the shortest path
between both the vertices x and y. Further details can be
found in [33, 34].

Definition 1 (see [1]). 'e Wiener index W(G) of a con-
nected graph G is defined as

W(G) �
1
2


x,y∈V(G)

d(x, y). (1)

Definition 2 (see [11]). 'e degree distance index DD(G) of
a connected graph G is defined as

DD(G) �
1
2


x,y∈V(G)

d(x, y)(deg(x) + deg(y)) . (2)

Definition 3 (see [35]). 'e Gutman index GM(G) of a
connected graph G is defined as

GM(G) �
1
2


x,y∈V(G)

d(x, y)(deg(x)deg(y)) . (3)

Yan et al. [15] defined four special graphs derivable from
a given graph G by applying the four respective operations S,
R, Q, and T on the graph G as follows:

(i) Subdivided graph S(G) is formed from G if distance
of one between two adjacent pair of vertices is in-
creased by two after inserting a new vertex between
them. 'e vertices of G are named as black vertices,
while new vertices are called white vertices.

(ii) Triangle parallel graph R(G) is formed from G if the
new vertex corresponded to each edge of G is joined
with the end vertices of the each respective edge.'e
vertices of G are named as black vertices, while new
vertices are called white vertices.

(iii) Line superposition graph Q(G) is formed when two
white vertices obtained from S(G) are further joined
if incident edges of these white vertices have one
common end vertex in G.

(iv) Total graph T(G) is formed from R(G) by applying
the further operation Q on it.

Figure 1 illustrates the graphs obtained by the operations
S, R, Q, and T based on the path graph (P6).

Definition 4. Let F ∈ S, R, Q andT{ }. 'en, G1 + FG2 is
called a F-sum graph with vertex set V(G1 + FG2 �

(V(G1)∪E(G1)) × V(G2) and (u, v), (x, y) ∈ V(G1 + FG2)

are adjacent such that either u � x and (v, y) ∈ E(G2) or
v � y and (u, x) ∈ E(F(G1)).

Figure 2 shows instances of S-sum (G1 + sG2), R-sum
(G1 + RG2), Q-sum (G1 + QG2), and T-sum (G1 + TG2)

graphs. We now state some important lemmas which are
frequently used in the main results.

Lemma 1 (see [36]). Let G1 and G2 be two simple and
connected graphs.

(a) For F ∈ S, R, Q, T{ }, if both vertices (x, y) and (w, z)

are black, then d((x, y), (w, z)|G1 + FG2) � d(x, w|F

(G1)) + d(y, z|G2)

(b) If one vertex (x, y) is white and second (w, z) is black
with F ∈ S, R, Q, T{ }, then d((x, y), (w, z)

|G1 + FG2) � d(x, w|F (G1)) + d(y, z|G2)

Lemma 2 (see [36]). Let G1 and G2 be two simple and
connected graphs. If both vertices (x, y) and (w, z) are white
vertices and F � S or R, then

d (x, y), (w, z)|G1 + FG2(  �
2 +d y, z|G2( , If x � w,

d x, w|F G1(  + d y, z|G2( ( , If x≠w.
 (4)
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Lemma 3 (see [36]). Let G1 and G2 be two simple and
connected graphs. If both vertices (x, y) and (w, z) are white
vertices and F � Q or T, then

d (x, y), (w, z)|G1 + FG2(  �
2 +d y, z|G2( , If x � w,

1 + d x, w|F G1(  + d y, z|G2( ( , If x≠w, y≠ z.
 (5)

3. Main Results

'is section is devoted to providing main theorems on the
Gutman index of F-sum graphs (G1 + sG2), (G1 + RG2),
(G1 + QG2), and (G1 + FG2). Consider the set
V(G1) � u1, u2, u3, . . . , un  of black vertices with |E(G1)| �

k so that W � w1, w2, w3, . . . , wk  consists of white vertices

and V(G2) � v1, v2, v3, . . . , vm  with |E(G2)| � l. 'en,
V(G1 + FG2) � (ui, vj): 1≤ i≤ n, 1≤ j≤m}∪ (wi, vj):

1≤ i≤ k, 1≤ j≤m}, where F ∈ S, R, Q, T{ }.

Theorem 1. Let G1 and G2 be connected and simple graphs.
If (G1 + sG2) is the S-sum graph of G1 and G2, then

GM G1 + sG2(  � m
2GM S G1( (  + n

2GM G2(  + 4nkDD G2(  + 16k
2
W G2(  + 4k m

2
− m 

+ lm 
n

i,j�1
d ui, uj |S G1(   d ui(  + d uj   + 2l

2


n

i,j�1
d ui, uj |S G1(   + 4lm

k

r�1


n

i�1
d wr, ui( |S G1(  .

(6)

(a) (b)

(c) (d)

(e)

Figure 1: (a) P6, (b) S(P6), (c) R(P6), (d) Q(P6), and (e) T(P6).

(a) (b) (c) (d)

Figure 2: (a) (P4 + sP2). (b) (P4 + RP2). (c) (P4 + QP2). (d) (P4 + TP2).
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Proof. Case 1: when both vertices are black,

A �
1
2

 d ui, vp , uj, vq   deg ui, vp deg uj, vq 
G1 + sG2 ,

(7)

for i, j � 1 to n and p, q � 1to m. For S-sum
deg(ui, vp) � d(ui) + d(vp),

A �
1
2



n

i,j�1


m

p,q�1
d ui, uj |S G1(  + d vp, vq| G2(   d ui(  + d vp   d uj  + d vq  

�
1
2



n

i,j�1


m

p,q�1
d ui, uj |S G1(  + d vp, vq| G2(   d ui( d uj  + d ui( d vq  + d vp d uj  + d vp d vq  

�
1
2



n

i,j�1


m

p,q�1
d ui, uj |S G1(   d ui( d uj  + d ui( d vq  + d vp d uj  + d vp d vq  

+
1
2



n

i,j�1


m

p,q�1
d vp, vq | G2(   d ui( d uj  + d ui( d vq  + d vp d uj  + d vp d vq  

�
1
2



n

i,j�1


m

p,q�1
d ui, uj |S G1(   d ui( d uj   +

1
2



n

i,j�1


m

p,q�1
d ui, uj |S G1(   d ui( d vq  

+
1
2



n

i,j�1


m

p,q�1
d ui, uj |S G1(   d vp d uj   +

1
2



n

i,j�1


m

p,q�1
d ui, uj |S G1(   d vp d vq  

+
1
2



n

i,j�1


m

p,q�1
d vp, vq | G2(   d ui( d uj   +

1
2



n

i,j�1


m

p,q�1
d vp d vq | G2(   d ui( d vq  

+
1
2



n

i,j�1


m

p,q�1
d vp, vq | G2(   d vp d uj   +

1
2



n

i,j�1


m

p,q�1
d vp d vq | G2(   d vp d vq  .

(8)

Substituting 
m
p,q�1 d(vq) � 2lm, 

n
i,j�1 d(uj) � 2kn,

�
m

2

2


n

i,j�1
d ui, uj |S G1(   d ui( d uj   + lm 

n

i,j�1
d ui, uj |S G1(  d ui( 

+ lm 
n

i,j�1
d ui, uj |S G1(   d uj   +

1
2



n

i,j�1
d ui, uj |S G1(   

m

p,q�1
d vp d vq  

�
m

2

2


n

i,j�1
d ui, uj |S G1(   d ui( d uj   + lm 

n

i,j�1
d ui, uj |S G1(  d ui( 

+
1
2



m

p,q�1
d vp, vq | G2(   

n

i,j�1
d ui( d uj   + kn 

m

p,q�1
d vp, vq | G2(   d vq  

+ kn 
m

p,q�1
d vp, vq | G2(   d vp   + n

2GM G2( .

(9)
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Substituting 
n
i,j�1 d(ui)d(uj)  � 4k2 and p,q� 1m

d(vp)d(vq)  � 4l2,

�
m

2

2


n

i,j�1
d ui, uj |S G1(   d ui( d uj   + lm 

n

i,j�1
d ui, uj |S G1(   d ui(  + d uj  

+ 2l
2



n

i,j�1
d ui, uj |S G1(   + 4k

2
W G2(  + 2knDD G2(  + n

2GM G2( 

(10)

Case 2: when one vertex is white and the other is black,

B1 �
1
2

 d wr, vp , ui, vq   deg wr, vp deg ui, vq |G1 + sG2 . (11)

For r � 1 to k, i � 1 to n, and p, q � 1 to m and
deg(wr, vp) � 2,

B1 �
1
2



k

r�1


n

i�1


m

p,q�1
d wr, ui( |S G1(  + d vp, vq| G2(  (2) d ui(  + d vq  

� 
k

r�1


n

i�1


m

p,q�1
d wr, ui( |S G1(  dui(   + 

k

r�1


n

i�1


m

p,q�1
d wr, ui( |S G1(   dvq 

+ 
k

r�1


n

i�1


m

p,q�1
d vp, vq |G2 d ui(  + 

k

r�1


n

i�1


m

p,q�1
d vp, vq |G2 d vq 

� m
2


k

r�1


n

i�1
d wr, ui( |S G1(   dui(  + 2lm

k

r�1


n

i�1
d wr, ui( |S G1(   + 4k

2
W G2(  + knDD G2( .

(12)

'e summation of the distances between vertices with
different colours is twice the B1, i.e.,

B � 2m
2


k

r�1


n

i�1
d wr, ui( |S G1(   dui(  + 4lm

k

r�1


n

i�1

· d wr, ui( |S G1(   + 8k
2
W G2(  + 2knDD G2( .

(13)

Case 3: when both vertices are white,

C �
1
2

 d wr, vp , ws, vq   deg wr, vp deg ws, vq |G1 + sG2 . (14)
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'is summation consists of two parts C � C1 + C2 and
deg(wr, vp) � 2, where

C1 �
1
2

 d wr, vp , ws, vq   deg wr, vp deg ws, vq  |G1 + sG2: r � s, p≠ q ,

C2 �
1
2

 d wr, vp , ws, vq   deg wr, vp deg ws, vq  |G1 + sG2: r≠ s ,

C1 �
1
2

 d wr, vp , ws, vq   deg wr, vp deg ws, vq  |G1 + sG2

�
1
2

 2 + d vp, vq  (2)(2)|G1 + sG2 

� 4 
k

r,s�1,r�s



m

p,q�1,p≠ q

+2 
k

r,s�1,r�s



m

p,q�1,p≠ q

d vp, vq |G2 

� 4k m
2

− m  + 4kW G2( ,

C2 �
1
2

 d wr, vp , ws, vq   deg wr, vp deg ws, vq  |G1 + sG2, r≠ s 

�
1
2



m

p�1


m

q�1


k

r,s�1,r≠ s

d wr, ws( |S G1(   4{ } +
1
2



m

p�1


m

p�1


k

r,s�1,r≠ s

d vp, vq |G2  4{ }

� 2m
2



k

r,s�1,r≠ s

d wr, ws( S G1(   + 4 k
2

− k W G2( ,

C � 4k m
2

− m  + 4kW G2(  + 2m
2



k

r,s�1,r≠ s

d wr, ws( |S G1(   + 4 k
2

− k W G2( 

� 4k m
2

− m  + 2m
2



k

r,s�1,r≠ s

d wr, ws( |S G1(   + 4k
2
W G2( .

(15)
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Now, Gutman index of G1+sG2 is given by

GM G1 + sG2(  � A + B + C, i.e.,

GM G1 + sG2(  �
m

2

2


n

i,j�1
d ui, uj |S G1(   d ui( d uj   + lm 

n

i,j�1
d ui, uj |S G1(   d ui(  + d uj  

+ 2l
2



n

i,j�1
d ui, uj |S G1(   + 4k

2
W G2(  + 2knDD G2(  + n

2GM G2( 

+ 2m
2


k

r�1


n

i�1
d wr, ui( |S G1(   dui(  + 4lm

k

r�1


n

i�1
d wr, ui( |S G1(   + 8k

2
W G2( 

+ 2knDD G2(  + 4k m
2

− m  + 2m
2



k

r,s�1,r≠ s

d wr, ws( |S G1(   + 4k
2
W G2( ,

GM G1 + sG2(  � m
2 1
2



n

i,j�1
d ui, uj |S G1(   d ui( d uj   + 

k

r�1


n

i�1
d wr, ui( S G1(   2d ui(   + 2 

k

r,s�1,r≠ s

d wr, ws( |S G1(  ⎡⎢⎢⎣ ⎤⎥⎥⎦

+ n
2GM G2(  + 4knDD G2(  + 16k

2
W G2(  + 4k m

2
− m 

+ lm 

n

i,j�1
d ui, uj |S G1(   d ui(  + d uj   + 2l

2


n

i,j�1
d ui, uj |S G1(   + 4lm

k

r�1


n

i�1
d wr, ui( |S G1(  ,

GM G1 + sG2(  � m
2GM S G1( (  + n

2GM G2(  + 4nkDD G2(  + 16k
2
W G2(  + 4k m

2
− m 

+ lm 
n

i,j�1
d ui, uj |S G1(   d ui(  + d uj   + 2l

2


n

i,j�1
d ui, uj |S G1(   + 4lm

k

r�1


n

i�1
d wr, ui( |S G1(  .

(16)

□
Theorem 2. Let G1 and G2 are connected and simple graphs.
If (G1 + RG2) is the R-sum graph of G1 and G2, then

GM G1 + RG2(  � m
2GM R G1( (  + n

2GM G2(  + 6nkDD G2(  + 36k
2
W G2(  + 4k m

2
− m 

+ 2lm 
n

i,j�1
d ui, uj |R G1(   d ui(  + d uj   + 2l

2


n

i,j�1
d ui, uj |R G1(   + 4lm

k

r�1


n

i�1
d wr, ui( |R G1(  .

(17)

Proof. 1) When both vertices are black,

A �
1
2

 d ui, vp , uj, vq   deg ui, vp deg uj, vq 
G1 + RG2 , (18)

Mathematical Problems in Engineering 7



for i, j � 1 to n and p, q � 1to m. For R-sum
deg(ui, vp) � 2d(ui) + d(vp),

A �
1
2



n

i,j�1


m

p,q�1
d ui, uj |R G1(  + d vp, vq| G2(   2d ui(  + d vp   2d uj  + d vq  

�
1
2



n

i,j�1


m

p,q�1
d ui, uj |R G1(  + d vp, vq| G2(   4d ui( d uj  + 2d ui( d vq  + 2d vp d uj  + d vp d vq  

�
1
2



n

i,j�1


m

p,q�1
d ui, uj |R G1(   4d ui( d uj  + 2d ui( d vq  + 2d vp d uj  + d vp d vq  

+
1
2



n

i,j�1


m

p,q�1
d vp, vq | G2(   4d ui( d uj  + 2d ui( d vq  + 2d vp d uj  + d vp d vq  

� 2 

n

i,j�1


m

p,q�1
d ui, uj |R G1(   d ui( d uj   + 

n

i,j�1


m

p,q�1
d ui, uj |R G1(   d ui( d vq  

+ 
n

i,j�1


m

p,q�1
d ui, uj |R G1(   d vp d uj   +

1
2



n

i,j�1


m

p,q�1
d ui, uj |R G1(   d vp d vq  

+ 2 
n

i,j�1


m

p,q�1
d vp, vq | G2(   d ui( d uj   + 

n

i,j�1


m

p,q�1
d vp, vq | G2(   d ui( d vq  

+ 
n

i,j�1


m

p,q�1
d vp, vq | G2(   d vp d uj   +

1
2



n

i,j�1


m

p,q�1
d vp, vq | G2(   d vp d vq  .

(19)

Substituting 
m
p,q�1 d(vq) � 2lm and 

n
i,j�1 d (uj) �

2kn,

� 2m
2



n

i,j�1
d ui, uj |R G1(   d ui( d uj   + 2lm 

n

i,j�1
d ui, uj |R G1(  d ui( 

+ 2lm 
n

i,j�1
d ui, uj |R G1(  d ui(  +

1
2



n

i,j�1
d ui, uj |R G1(   

m

p,q�1
d vp d vq  

+ 2 

m

p,q�1
d vp, vq | G2(   

n

i,j�1
d ui( d uj   + 2kn 

m

p,q�1
d vp, vq | G2(   d vq  

+ 2kn 
m

p,q�1
d vp, vq | G2(   d vp   + n

2GM G2( .

(20)
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Substituting 
n
i,j�1 d(ui)d(uj)  � 4k2 and 

m
p,q�1

d(vp)d(vq)  � 4l2,

A � 2m
2



n

i,j�1
d ui, uj |R G1(   d ui( d uj   + 2lm 

n

i,j�1
d ui, uj |R G1(   d ui(  + d uj  

+ 2l
2



n

i,j�1
d ui, uj |S G1(   + 16k

2
W G2(  + 4knDD G2(  + n

2GM G2( .

(21)

Case 2: when one vertex is white and the other is black,

B1 �
1
2

 d wr, vp , ui, vq   deg wr, vp deg ui, vq 
G1 + RG2 . (22)

For r � 1 to k, i � 1 to n, and p, q � 1 to m and
deg(wr, vp) � 2,

B1 �
1
2



k

r�1


n

i�1


m

p,q�1
d wr, ui( |R G1(  + d vp, vq| G2(  (2) 2d ui(  + d vq  

� 2
k

r�1


n

i�1


m

p,q�1
d wr, ui( |R G1(   dui(  + 

k

r�1


n

i�1


m

p,q�1
d wr, ui( |R G1(   dvq 

+ 2
k

r�1


n

i�1


m

p,q�1
d vp, vq |G2 d ui(  + 

k

r�1


n

i�1


m

p,q�1
d vp, vq |G2 d vq 

� 2m
2


k

r�1


n

i�1
d wr, ui( |R G1(   dui(  + 2lm

k

r�1


n

i�1
d wr, ui( |R G1(   + 8k

2
W G2(  + knDD G2( .

(23)

'e summation of the distances between vertices with
different colours is twice the B1, i.e.,

B � 4m
2


k

r�1


n

i�1
d wr, ui( |R G1(   dui(  + 4lm

k

r�1


n

i�1

· d wr, ui( |R G1(   + 16k
2
W G2(  + 2knDD G2( .

(24)

Case 3: when both vertices are white, C can be cal-

culated similar to that in the previous theorem:

C � 4k m
2

− m  + 2m
2



k

r,s�1,r≠ s

· d wr, ws( |R G1(   + 4k
2
W G2( .

(25)

Now, Gutman index of (G1 + RG2) is given by
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GM G1 + RG2(  � A + B + C, i.e.,

GM G1 + RG2(  � 2m
2



n

i,j�1
d ui, uj |R G1(   d ui( d uj   + 2lm 

n

i,j�1
d ui, uj |R G1(   d ui( d uj  

+ 2l
2



n

i,j�1
d ui, uj |R G1(   + 16k

2
W G2(  + 4knDD G2(  + n

2GM G2( 

+ 4m
2


k

r�1


n

i�1
d wr, ui( |R G1(   dui(  + 4lm

k

r�1


n

i�1
d wr, ui( |R G1(   + 16k

2
W G2( 

+ 2knDD G2(  + 4k m
2

− m  + 2m
2



k

r,s�1,r≠ s

d wr, ws( |R G1(   + 4k
2
W G2( ,

GM G1 + RG2(  � m
2 2 

n

i,j�1
d ui, uj |R G1(   d ui( d uj   + 

k

r�1


n

i�1
d wr, ui( |R G1(   4d ui(  ⎡⎢⎢⎣

+2 
k

r,s�1,r≠ s

d wr, ws( |R G1(  ⎤⎥⎦ + n
2GM G2(  + 6knDD G2(  + 36k

2
W G2(  + 4k m

2
− m 

+ 2lm 
n

i,j�1
d ui, uj |R G1(   d ui(  + d uj   + 2l

2


n

i,j�1
d ui, uj |R G1(   + 4lm

k

r�1


n

i�1
d wr, ui( |R G1(  ,

GM G1 + RG2(  � m
2GM R G1( (  + n

2GM G2(  + 6nkDD G2(  + 36k
2
W G2(  + 4k m

2
− m 

+ 2lm 
n

i,j�1
d ui, uj |R G1(   d ui(  + d uj   + 2l

2


n

i,j�1
d ui, uj |R G1(   + 4lm

k

r�1


n

i�1
d wr, ui( |R G1(  ,

(26)

□
Theorem 3. Let G1 and G2 be two simple and connected
graphs. If (G1 + QG2) is the Q-sum graph of G1 and G2, then

GM G1 + QG2  � m
2GM Q G1( (  + n

2GM G2(  + n(6k − t)DD G2(  +(6k − t)
2
W G2( 

+
1
2

m
2

− m  (4k − t)
2

+ 16k − 7t  + lm 
n

i,j�1
d ui, uj |Q G1(   d ui(  + d uJ  

+ 2l
2



n

i,j�1
d ui, uj |Q G1(   + 2lm

k

r�1


n

i�1
d wr, ui( |Q G1(  deg wr, vp .

(27)

Proof
Case 1: when both vertices are black, A can be deter-
mined similar to that in Case 1 of 'eorem 1:

A �
m

2

2


n

i,j�1
d ui, uj |Q G1(   d ui( d uj   + lm 

n

i,j�1
d ui, uj |Q G1(   d ui( d uj  

+ 2l
2



n

i,j�1
d ui, uj |Q G1(   + 4k

2
W G2(  + 2knDD G2(  + n

2GM G2( .

(28)
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Case 2: when one vertex is white and the other is black,

B1 �
1
2

 d wr, vp , ui, vq   deg wr, vp deg ui, vq |G1 + QG2 . (29)

For r � 1 to k, i � 1 to n and p, q � 1 to m,

B1 �
1
2



k

r�1


n

i�1


m

p,q�1
d wr, ui( |S G1(  + d vp, vq| G2(   (deg wr, vp  d ui(  + d vq  

�
1
2



k

r�1


n

i�1


m

p,q�1
d wr, ui( |Q G1(  deg wr, vp dui +

1
2



k

r�1


n

i�1


m

p,q�1
d wr, ui( |Q G1(  deg wr, vp dvq

+
1
2



k

r�1


n

i�1


m

p,q�1
d vp, vq | G2(   deg wr, vp d ui(  +

1
2



k

r�1


n

i�1


m

p,q�1
d vp, vq | G2(   deg wr, vp d vq  

�
m

2

2


k

r�1


n

i�1
d wr, ui( |Q G1(  deg wr, vp d ui(  + lm

k

r�1


n

i�1
d wr, ui( |Q G1(  deg wr, vp 

+ 2k(4k − t)W G2(  +
1
2

n(4k − t)DD G2( .

(30)

'e summation of the distances between vertices with
different colours is twice the B1, i.e.,

B � m
2


k

r�1


n

i�1
d wr, ui( |Q G1(  deg wr, vp d ui(  + 2lm

k

r�1


n

i�1
d wr, ui( |Q G1(  deg wr, vp 

+ 4k(4k − t)W G2(  + n(4k − t)DD G2( .

(31)

Case 3: When both vertices are white,

C �
1
2

 d wr, vp , ws, vq   deg wr, vp deg ws, vq |G1 + QG2 . (32)
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'is summation consists of three parts
C � C1 + C2 + C3, where

C1 �
1
2

 d wr, vp , ws, vq   deg wr, vp deg ws, vq  |G1 + QG2: r � s, p≠ q ,

C2 �
1
2

 d wr, vp , ws, vq   deg wr, vp deg ws, vq  |G1 + QG2: r≠ s, p � q ,

C3 �
1
2

 d wr, vp , ws, vq   deg wr, vp deg ws, vq  |G1 + QG2: r≠ s, p≠ q ,

C1 �
1
2

 2 + d vp, vq   deg wr, vp deg ws, vq  |G1 + QG2: r � s, p≠ q ,

C1 � 
k

r,s�1,r�s



m

p,q�1,p ≠ q

deg wr, vp deg ws, vq   +
1
2



k

r,s�1,r�s



m

p,q�1,p≠ q

d vp, vq |G2  deg wr, vp deg ws, vq  ,

C1 � m
2

− m [16(k − t) + 9t] + W G2( [16(k − t) + 9t],

C2 �
1
2



m

p,q�1,p�q



k

r,s�1,r≠ s

d wr, ws( |Q G1(   deg wr, vp deg ws, vq  

�
m

2


k

r,s�1,r≠ s

d wr, ws( |Q G1(   deg wr, vp deg ws, vq  ,

C3 �
1
2



k

r,s�1,r≠ s



m

p,q�1,p≠ q

1 + d wr, ws( |Q G1(  + d vp, vq |G2  deg wr, vp deg ws, vq  

�
1
2



k

r,s�1,r≠ s



m

p,q�1,p≠ q

deg wr, vp deg ws, vq   +
1
2



k

r,s�1,r≠ s



m

p,q�1,p≠ q

d wr, ws( |Q G1(   deg wr, vp deg ws, vq  

+
1
2



k

r,s�1,r≠ s



m

p,q�1,p ≠ q

d vp, vq |G2  deg wr, vp deg ws, vq  

�
1
2

m
2

− m  (4k − t)
2

− (16k − 7t)  +
1
2

m
2

− m  

k

r,s�1,r≠ s

d wr, ws( |Q G1(   deg wr, vp deg ws, vq  

+ (4k − t)
2

− (16k − 7t) W G2( ,

C � m
2

− m (16k − 7t) + W G2( (16k − 7t) +
m

2


k

r,s�1,r≠ s

d wr, ws( |Q G1(   deg wr, vp deg ws, vq  

+
1
2

m
2

− m  (4k − t)
2

− (16k − 7t)  +
1
2

m
2

− m  

k

r,s�1,r≠ s

d wr, ws( |Q G1(   deg wr, vp deg ws, vq  ,

C �
1
2

m
2

− m  (4k − t)
2

+ 16k − 7t  +(4k − t)
2
W G2(  +

m
2

2


k

r,s�1,r≠ s

d wr, ws( |Q G1(   deg wr, vp deg ws, vq  .

(33)
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Now, Gutman index of (G1 + QG2) is given by

GM G1 + QG2  � A + B + C, i.e., (34)

using values of A, B, and C from Case 1, Case 2, and Case 3,
respectively,

GM G1 + QG2  �
m

2

2


n

i,j�1
d ui, uj |Q G1(   d ui( d uj   + lm 

n

i,j�1
d ui, uj |Q G1(   d ui(  + d uj  

+ 2l
2



n

i,j�1
d ui, uj |Q G1(   + 4k

2
W G2(  + 2knDD G2(  + n

2GM G2( 

+ m
2


k

r�1


n

i�1
d wr, ui( |Q G1(  deg wr, vp d ui(  + 2lm

k

r�1


n

i�1
d wr, ui( |Q G1(  deg wr, vp 

+ 4k(4k − t)W G2(  + n(4k − t)DD G2(  +
1
2

m
2

− m  (4k − t)
2

+ 16k − 7t 

+(4k − t)
2
W G2(  +

m
2

2


k

r,s�1,r≠ s

d wr, ws( |Q G1(   deg wr, vp deg ws, vq  ,

GM G1 + QG2  � m
2 1
2



n

i,j�1
d ui, uj |Q G1(  d ui( d uj  + 

k

r�1


n

i�1
d wr, ui( |Q G1(  deg wr, vp d ui( ⎡⎢⎢⎣

+
1
2



k

r,s�1,r≠ s

d wr, ws( |Q G1(   deg wr, vp deg ws, vq  ⎤⎥⎦ + n
2GM G2(  + n(6k − t)DD G2( 

+ W G2(  4k
2

+ 4k(4k − t) +(4k − t)
2

  +
1
2

m
2

− m  (4k − t)
2

+ 16k − 7t 

+ lm 
n

i,j�1
d ui, uj |Q G1(  d ui( d uj  + 2l

2


n

i,j�1
d ui, uj |Q G1(  

+ 2lm
k

r�1


n

i�1
d wr, ui( |Q G1(  deg wr, vp ,

GM G1 + QG2  � m
2GM Q G1( (  + n

2GM G2(  + n(6k − t)DD G2(  +(6k − t)
2
W G2( 

+
1
2

m
2

− m  (4k − t)
2

+ 16k − 7t  + lm 
n

i,j�1
d ui, uj |Q G1(   d ui(  + d uj  

+ 2l
2



n

i,j�1
d ui, uj |Q G1(   + 2lm

k

r�1


n

i�1
d wr, ui( |Q G1(  deg wr, vp .

(35)

□
Theorem 4. Let G1 and G2 be two simple and connected
graphs. If (G1 + TG2) is the T-sum graph of G1 and G2, then
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GM G1 + TG2(  � m
2GM T G1( (  + n

2GM G2(  + n(8k − t)DD G2(  +(8k − t)
2
W G2( 

+
1
2

m
2

− m  (4k − t)
2

+ 16k − 7t  + 4lm 
n

i,j�1
d ui, uj |T G1(   d ui( ( 

+ 2l
2



n

i,j�1
d ui, uj |T G1(   + 2lm

k

r�1


n

i�1
d wr, ui( |T G1(  deg wr, vp .

(36)

Proof
Case 1: when both vertices are black, A can be calculated

similar to that in Case 1 of 'eorem 2:

A � 2m
2



n

i,j�1
d ui, uj |T G1(   d ui( d uj   + 2lm 

n

i,j�1
d ui, uj |T G1(   d ui( d uj  

+ 2l
2



n

i,j�1
d ui, uj |T G1(   + 16k

2
W G2(  + 4knDD G2(  + n

2GM G2( .

(37)

Case 2: when one vertex is white and the other is black,

B1 �
1
2

 d wr, vp , ui, vq   deg wr, vp deg ui, vq |G1 + TG2 . (38)

For r � 1 to k, i � 1 to n, and p, q � 1 to m,

B1 �
1
2



k

r�1


n

i�1


m

p,q�1
d wr, ui( |T G1(  + d vp, vq | G2(  deg wr, vp  2d ui(  + d vq  

� 
k

r�1


n

i�1


m

p,q�1
d wr, ui( |T G1(  deg wr, vp d ui(  +

1
2



k

r�1


n

i�1


m

p,q�1
d wr, ui( |T G1(  deg wr, vp d vq 

+ 
k

r�1


n

i�1


m

p,q�1
d vp, vq | G2(  deg wr, vp d ui(  +

1
2



k

r�1


n

i�1


m

p,q�1
d vp, vq | G2(  deg wr, vp d vq 

� m
2


k

r�1


n

i�1
d wr, ui( |T G1(  deg wr, vp d ui(  + lm

k

r�1


n

i�1
d wr, ui( |T G1(  deg wr, vp 

+ 4k(4k − t)W G2(  +
1
2

n(4k − t)D D G2( .

(39)

'e summation of the distances between vertices with
different colours is twice the B1, i.e.,

B � 2m
2


k

r�1


n

i�1
d wr, ui( |T G1(  deg wr, vp d ui(  + 2lm

k

r�1


n

i�1
d wr, ui( |T G1(  deg wr, vp 

+ 8k(4k − t)W G2(  + n(4k − t)DD G2( .

(40)
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Case 3: when both vertices are white, C can be cal-
culated similar to that in Case 3 of 'eorem 3:

C �
1
2

m
2

− m  (4k − t)
2

+ 16k − 7t  +(4k − t)
2
W G2( 

+
m

2

2


k

r,s�1,r≠ s

d wr, ws( |Q G1(  

· deg wr, vp deg ws, vq  .

(41)

Now, Gutman index of (G1 + TG2) is given by

GM G1 + TG2(  � A + B + C, i.e., (42)

using values of A, B, and C from Case 1, Case 2, and Case 3,
respectively,

GM G1 + TG2(  � 2m
2



n

i,j�1
d ui, uj |T G1(   d ui( d uj   + 2lm 

n

i,j�1
d ui, uj |T G1(   d ui( d uj  

+ 2l
2



n

i,j�1
d ui, uj |T G1(   + 16k

2
W G2(  + 4knDD G2(  + n

2GM G2( 

+ 2m
2


k

r�1


n

i�1
d wr, ui( |T G1(  deg wr, vp d ui(  + 2lm

k

r�1


n

i�1
d wr, ui( |T G1(  deg wr, vp 

+ 8k(4k − t)W G2(  + n(4k − t)DD G2(  +
1
2

m
2

− m  (4k − t)
2

+ 16k − 7t  +(4k − t)
2
W G2( 

+
m

2

2


k

r,s�1,r≠ s

d wr, ws( |T G1(   deg wr, vp deg ws, vq  ,

GM G1 + TG2(  � m
2 2 

n

i,j�1
d ui, uj |T G1(   d ui( ( d uj  + 2

k

r�1


n

i�1
d wr, ui( |T G1(  deg wr, vp dui

⎡⎢⎢⎣

+
1
2



k

r,s�1,r≠ s

d wr, ws( |T G1(   deg wr, vp deg ws, vq  ⎤⎥⎦ + n
2GM G2(  + n(8k − t)DD G2( 

+ W G2(  16k
2

+ 8k(4k − t) +(4k − t)
2

  +
1
2

m
2

− m  (4k − t)
2

+ 16k − 7t 

+ 4lm 
n

i,j�1
d ui, uj |T G1(   d ui( ( 

+ 2l
2



n

i,j�1
d ui, uj |T G1(   + 2lm

k

r�1


n

i�1
d wr, ui( |T G1(  deg wr, vp ,

GM G1 + TG2(  � m
2GM T G1( (  + n

2GM G2(  + n(8k − t)DD G2(  +(8k − t)
2
W G2( 

+
1
2

m
2

− m  (4k − t)
2

+ 16k − 7t  + 4lm 
n

i,j�1
d ui, uj |T G1(   d ui( ( 

+ 2l
2



n

i,j�1
d ui, uj |T G1(   + 2lm

k

r�1


n

i�1
d wr, ui( |T G1(  deg wr, vp .

(43)

□
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4. Discussion and Conclusion

In this section, we apply the main results of Section 3 by
taking G1 equal to, firstly, Pn, and secondly, Cn, while G2 is
set equal to Pm. 'e Wiener index degree, distance index,
and Gutman index of Pn are W(Pn) � (n(n2 − 1)/6),

DD(Pn) � ((n(n − 1)(2n − 1))/3), and GM(Pn) � (((n − 1)

(2n2 − 4n + 3))/3), respectively. Now, we construct Tables 1
and 2.

'en, the following results are found by using 'eorems
1–4 and Tables 3 and 4:

GM Pn + SPm(  �
2m

2
(n − 1) 8n

2
− 16n + 9 

3
+

n
2
(m − 1) 2m

2
− 4m + 3 

3

+
4n(n − 1)m(m − 1)(2m − 1)

3
+
4mn(n − 1)(m − 1)(2m − 1)

3
+
8(n − 1)

2
m m

2
− 1 

3
+ 4m(n − 1)(m − 1)

+
4mn(m − 1)(n − 1)(2n − 1)

3
+
8(m − 1)

2
n n

2
− 1 

6
+
4m(m− )n(n − 1)(2n − 1)

3
,

GM Pn3 + RPm(  � 6m
2
n n

2
− 1  +

n
2
(m − 1) 2m

2
− 4m + 3 

3
+ 2nm(n − 1)(m − 1)(2m − 1)

+ 6(n − 1)
2
m m

2
− 1  + 4m(n − 1)(m − 1) +

4mn(m − 1)(n − 1)(2n − 1)

3
+
2(m − 1)

2
n n

2
− 1 

3

+
4mn(m − 1) n

2
− 1 

3
,

GM Pn + QP
m

  � 2m
2 3n

3
− 9n

2
+ 10n − 5  +

n
2
(m − 1) 2m

2
− 4m + 3 

3
+

mn(6n − 8)(m − 1)(2m − 1)

3

+
(6n − 8)

2
m m

2
− 1 

6
+

m
2

− m  (4n − 6)
2

+ 16(n − 1) − 14 

2
+
2m(m − 1) 2n

3
+ 3n

2
− 11n + 6 

3

+
2(m − 1)

2
n(n + 4)(n − 1)

3
+
2m(m − 1) 4n

3
− 3n

2
− n − 6 

3
,

GM Pn + TPm(  �
m

2 32n
3

− 96n
2

+ 115n − 66 

3
+

n
2
(m − 1) 2m

2
− 4m + 3 

3
+

mn(8n − 10)(m − 1)(2m − 1)

3

+
(8n − 10)

2
m m

2
− 1 

6
+

m
2

− m  (4n − 6)
2

+ 16(n − 1) − 14 

2
+
4mn(m − 1)(n − 1)(2n − 1)

3

+
2(m − 1)

2
n n

2
− 1 

3
+
2m(m − 1) 4n

3
− 3n

2
− n − 6 

3
.

(44)
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If Cn is cycle of n vertices, then the Wiener index, degree
distance index, and Gutman index of cycle are as follows:

W Cn(  �

n
3

8
, if n is even,

n n
2

− 1 

8
, if n is odd,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

DD Cn(  � GM Cn(  �

n
3

2
, if n is even,

n n
2

− 1 

2
, if n is odd.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(45)

Table 1: Wiener index, degree distance, and Gutman Index of F(Pn).

F W(F(Pn)) DD(F(Pn)) GM(F(Pn))

S ((2n(n − 1)(2n − 1))/3) ((2(n − 1)(2n − 1)(4n − 3))/3) ((2(n − 1)(8n2 − 16n + 9))/3)

R (((n − 1)(2n2 + 2n − 3))/3) 4(n + 1)(n − 1)2 6n(n − 1)2

Q ((2n(n − 1)(n + 1))/3) 4n3 − 6n2 + 2n − 2 2(3n3 − 9n2 + 10n − 5)

T ((n(n − 1)(4n + 1))/6) (2/3)(8n3 − 15n2 + 10n − 6) ((32n3 − 96n2 + 115n − 66)/3)

Table 2: 
n
i,j�1 d(ui, uj)|F(Pn) , 

k
r�1 

n
i�1 d(wr, ui)|F(Pn) , and 

N
i,j�1 d(ui, uj)|F(Pn) (dui + duj).

F 
n
i,j�1 d(ui, uj)|F(Pn)  

k
r�1 

n
i�1 d(wr, ui)|F(Pn)  

N
i,j�1 d(ui, uj)|F(Pn) (dui + duj)

S ((2n(n − 1)(n + 1))/3) ((n(n − 1)(2n − 1))/3) ((4n(n − 1)(2n − 1))/3)

R ((n(n2 − 1))/3) (n(n2 − 1)/3) ((2n(n − 1)(2n − 1))/3)

Q ((n(n − 1)(n + 4))/3) ((n(n − 1)(n + 1))/3) ((2(2n3 + 3n2 − 11n + 6))/3)

T ((n(n − 1)(n + 1))/3) ((n(n − 1)(n + 1))/3) ((2n(n − 1)(2n − 1))/3)

Table 3: Wiener index and degree distance of F(Cn).

F W(F(Cn)) DD(F(Cn)) GM(F(Cn))

S n3 4n3 4n3

R (n(n2 + 2n − 1)/2) n(n + 2)(3n − 1)
((n(9n

2
+ 12n − 4))/2) if n is even

((n(9n
2

+ 12n − 5))/2) if n is odd


Q (n(n2 + 2n − 1)/2) n(n + 2)(3n − 1)
((n(9n

2
+ 12n − 4))/2) if n is even

((n(9n
2

+ 12n − 5))/2) if n is odd


T ((n2(n + 1))/2) 4n2(n + 1) 8n2(n + 1)

Table 4: 
n
i,j�1 d(ui, uj)|F(Pn)  and 

k
r�1 

n
i�1 d(wr, ui)|F(Pn)  of F(Cn).

F 
n
i,j�1 d(ui, uj)|F(Cn)  

k
r�1 

n
i�1 d(wr, ui)|F(Cn) 

S (n
3/2) if n is even

((n(n
2

− 1))/2) if n is odd


(n
3/2) if n is even

((n(n
2

+ 1))/2) if n is odd


R (n
3/4) if n is even

((n(n
2

− 1))/4) if n is odd


((n
2
(n + 2))/4) if n is even

((n(n + 1)
2
)/4) if n is odd



Q ((n(n
2

+ 4n − 4))/4) if n is even
((n(n

2
+ 4n − 5))/4) if n is odd


((n

2
(n + 2))/4) if n is even

((n(n + 1)
2
)/4) if n is odd



T (n
3/4) if n is even

((n(n
2

− 1))/4) if n is odd


((n
2
(n + 2))/4) if n is even

((n(n + 1)
2
)/4) if n is odd
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It is very essential to know that, in cycle, dui � 2 and

deg wr, vp  �
2 if F � S orR,

4 if F � Q orT.
 (46)

'en, the following results are found by using 'eorems
1–4 and Tables 3 and 4:

GM Cn + SPm(  �
n
2
(m − 1) 2m

2
− 4m + 3 

3
+
4n

2
m(m − 1)(2m − 1)

3
+
8n

2
m m

2
− 1 

3

+ 4m(n − 1)(m − 1) + 4m
2
n
3

+(m − 1)

n
3
(5m − 1), if n is even,

n
3
(5m − 1) − n(m − 1) if n is odd,

⎧⎪⎨

⎪⎩

GM Cn + RPm(  �
n
2
(m − 1) 2m

2
− 4m + 3 

3
+ 2n

2
m(m − 1)(2m − 1)) + 6n

2
m m

2
− 1 

+ 4m(n − 1)(m − 1) +
m

2
n 9n

2
+ 12n − 4 

2
+(m − 1)n

2 n(7m − 1)

2
+ 2m  +

0 if n is even,

−
n(2m − 1)

2

2
if n is odd,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

GM Cn + QP
n

  �
n
2
(m − 1) 2m

2
− 4m + 3 

3
+ 2n

2
m(m − 1)(2m − 1) + 6n

2
m m

2
− 1  + 8n(n + 1) m

2
− m 

+
m

2
n 9n

2
+ 12n − 4 

2
+ n(m − 1)

n
2
(7m − 1)

2
+ 2n(5m − 1) − 6m + 2  +

0 if n is even,

− n

2
if n is odd,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

GM Cn + TPm(  �
n
2
(m − 1) 2m

2
− 4m + 3 

3
+
8n

2
m(m − 1)(2m − 1)

3
+
32n

2
m m

2
− 1 

3
+ +8n(n + 1) m

2
− m 

+ 8m
2
n
2
(n + 1) + n(m − 1)

n
2
(9m − 1)

2
+ 4mn  +

0 if n is even,

− n(m − 1)
2

2
if n is odd.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(47)

After deriving formulae, a comparison among the exact
values, computed values, and bounded values is also drawn
in Table 5.

Now, we close our discussion with the comments that
the upper bounds for the Gutman indices on the F-sum (S-
sum, R-sum, Q-sum, and T-sum) graphs are obtained in

Table 5: Comparision between exact, computed, and bounded values.

No. F-sum graph Exact value Computed value Bounded value
1 GM(P3 + SP2) 505 505 1024
2 GM(P3 + RP2) 689 689 2002
3 GM(P3 + QP2) 619 619 1393
4 GM(P3 + TP2) 907 907 2473
5 GM(C3 + SP2) 921 921 2832
6 GM(C3 + RP2) 1341 1341 3614
7 GM(C3 + QP2) 1617 1617 4052
8 GM(C3 + TP2) 2373 2373 6032
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[20]. In this paper, we considered for the improvement of the
already existing bounds and determined the exact values of
the Gutman indices for the F-sum graphs. However, the
problem is still open to find the exact values of other dis-
tance-based TIs for these sum graphs.
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Graph theory is a discrete branch of mathematics for designing and predicting a network. Some topological invariants are
mathematical tools for the analysis of connection properties of a particular network. +e Cellular Neural Network (CNN) is a
computer paradigm in the field of machine learning and computer science. In this article we have given a close expression to
dominating invariants computed by the dominating degree for a cellular neural network. Moreover, we have also presented a 3D
comparison between dominating invariants and classical degree-based indices to show that, in some cases, dominating invariants
give a better correlation on the cellular neural network as compared to classical indices.

1. Introduction

In advance technology, computer science networking, elec-
trical networks, and some biological networks have the
maximum ability to send and transfer useful data and in-
formation in a very small amount of time with accuracy. With
a rapid growth of networking science, many advanced and
connected complex interconnection networks have been
developed. Social networking, World Wide Web (WWW),
ecological networking, genetic interconnection networks, and
metabolic networks are such examples of complex advanced
networks. In information technology, these fantastic and
high-limit frameworks have become a need of time.

World Wide Web (WWW) is a framework between PC
systems and the internal network that employs convection
suites and known as Internet Protocol (IP). It is a planned to
assimilate business, government, and social structure of

neighbourhood extension. +ey are correlated and con-
nected by electronic and optical systems of remote orga-
nization. +e Internet passes a large amount of information
among different people through social media, newspaper,
electronic mail, and many applications such as skype and
Google meet [1, 2].

Graph theory has a large number of applications in many
areas of science such as engineering, computer science,
computer networking, software engineering, and electrical
and hardware engineering. An interconnection framework
or network with a finite number of nodes (computer sys-
tems) and the links (connections) between them can be
presented as a finite simple connected graph with a finite
number of vertices and edges. Inspired by the topological
descriptor’s ability to modify a chemical structure, many
researchers have decided to apply it to the networking
sciences [3].
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+eoretical approaches of graph theory to the field of
cheminformatics for describing topological properties of the
oxide and silicate network are given in [4–7]. A naturally
existing network of germanium phosphide and its topologies
is discussed in [8]. A hexagon star network is comparatively
described via valency-based topological descriptors in [9].
Ahmad et al. derived some degree-based polynomials for
swapped networks in [10]. An embedded form of benzene
ring in a p-type surface is topologically explained in [11].

2. Cellular Neural Network

A Cellular Neural Network or Cellular Nonlinear Network
(CNN) is a computing paradigm in computer science and
machine learning. It is very important in communication
between neighbouring units. Solving Partial Differential
Equations (PDEs), image processing, analyzing 3D surfaces,
and reducing problems in geodesic maps and sensory-motor
organs are some applications of the CNN.CNN processors are
the systems of finite fixed topology, locally connected fixed
location, and multiple inputs with a single output of nonlinear
processing units. In the CNN processor, each cell (processor)
has one output due to which it is communicated by other cells.
+e CNN processor was introduced by Leon Chua and Lin
Yang in 1988. In the original Chua Yang CNN processor (CY-
CNN), cells are weighted sum of different inputs whereas the
output was a piecewise linear function [12].

Topologically, cells can be arranged on an infinite plane
of a toroidal space. Some architecture topologies of the CNN
are the Multiple-Neighbourhood-Size CNN (MNS-CNN),
Multilayer CNN (ML-CNN), and single-Layer CNN (SL-
CNN).Mathematically, the relationship between cells and its
neighbours in the area of influence can be modeled by
Dominating Invariants (DIs).A CNN network can be pre-
sented as an array of p × q matrix in which each cell aij has
feed-forward synapses euv fuv which is the input and has
feed-back synapses guv huv which is the output of the
neighbourhood cell. Mathematically,

aij � −aij + 
uv∈Sij(τ)

euvfuv + 
uv∈Sij(τ)

guvhuv + zij, (1)

where wij: � input, zij: � threshold, aij: � cellstate, yij:

� output, i � 1, 2, . . . , p, j � 1, 2, . . . , q, 1≤ u≤p, 1≤ v≤ q,
and Sij is the sphere of influence to neighbourhood cells.

Sij � aij: max(|u − i|, |v − j|)≤ τ, 1≤ u≤p, 1≤ v≤ q ,

(2)
In the following, we are presenting a 3 × 3 CNN in which

a cell aij is locally coupled to auv, where

(u, v) � (i + 1, j + 1), (i + 1, j), (i + 1, j − 1),

(i, j + 1), (i, j − 1), (i − 1, j + 1), (i − 1, j),

(i − 1, j − 1).

(3)

Here, each of these is the first-degree neighbour of aij

[13, 14]. A depiction of the cellular neural network is shown
in Figure 1, and its presentation as a simple connected graph
on 6 × 6 cells is given in Figure 2.

3. Dominating Degree and the Cellular
Neural Network

A CNN can easily be depicted as a simple connected graph
with a finite number of cells and links between them with no
multiple edges. In a graph, the number of connections to a
cell is called its degree. In context of graphs, all the vertices
connected to its adjacent edges are called neighbourhood
vertices. Excluding a vertex and considering its neigh-
bourhood vertices gives open neighbourhood of the vertex
while on including the vertex and counting all the edges
adjacent to all vertices in neighbourhood gives us a closed
neighbourhood of the vertex.Graphically, a vertex domi-
nates all the edges in its close neighbourhood. So, here, we

Figure 1: A depiction of the cellular neural network.
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Figure 2: Cellular neural network CNN (6, 6).
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define the count of all such edges dominated by a vertex in its
closed neighbourhood as the dominating degree (ζp) of the
vertex (p). In other words, the total number of different
edges in the close neighbourhood of a vertex is its domi-
nating degree. In the previous section, for the CNN, Sij

represents the open neighbourhood and all
(u, v) � (i + 1, j + 1), (i + 1, j), (i + 1, j − 1), (i, j + 1), (i, j−

1) are its neighbouring cells for a cell aij. In the following, we
show a 4 × 4 CNN highlighting particularly a12 with its open
neighbourhood with all red-colored edges in Figure 3 and
closed neighbourhood with all green edges in Figure 4.

On counting the number of connections in the closed
neighbourhood of a12, we will state it as a dominating de-
gree. Similarly, working on the same way on finding the
dominating degree of each cell and generalizing the cellular
neural network as a simple connected graph, we concluded
that it has total pq cells and total 4pq − 3p − 3q + 2 con-
nections in a CNN(p × q) graph. On calculating the
dominating degree for each cell in a p × q network with p

cells in an i-th row and q cells in j-th column, we finalize a
partition of dominating degrees of any two directly con-
nected cells. So, with p, q> 4, we concluded that there are
total 14 different types of connections based on dominating
degrees of two directly connected cells. Here, we will de-
scribe the number of these connections differentiated on the
basis of dominating degrees of two directly connected end
cells. Say two cells p and q are directly connected in a
CNN(p × q) with p, q> 4; then, their dominating degrees
will be ζp and ζq, respectively. We will express two directly
connected cells p and q as p ∼ q with dominating degrees as
ζp and ζq. +erefore, we have

|p ∼ q| � ζp, ζq |ζp � 52, ζq � 52 


 � 4pq − 19(p + q) + 90,

|p ∼ q| � ζp, ζq |ζp � 52, ζq � 43 


 � 6(p + q) − 56,

|p ∼ q| � ζp, ζq |ζp � 43, ζq � 43 


 � 2p + 2q − 16,

|p ∼ q| � ζp, ζq |ζp � 52, ζq � 35 


 � 4,

|p ∼ q| � ζp, ζq |ζp � 43, ζq � 35 


 � 8,

|p ∼ q| � ζp, ζq |ζp � 43, ζq � 28 


 � 6p + 6q − 56,

|p ∼ q| � ζp, ζq |ζp � 35, ζq � 28 


 � 8,

|p ∼ q| � ζp, ζq |ζp � 28, ζq � 28 


 � 2p + 2q − 2,

|p ∼ q| � ζp, ζq |ζp � 43, ζq � 23 


 � 8,

|p ∼ q| � ζp, ζq |ζp � 35, ζq � 23 


 � 8,

|p ∼ q| � ζp, ζq |ζp � 28, ζq � 23 


 � 8,

|p ∼ q| � ζp, ζq |ζp � 23, ζq � 23 


 � 4,

|p ∼ q| � ζp, ζq |ζp � 35, ζq � 15 


 � 4,

|p ∼ q| � ζp, ζq |ζp � 23, ζq � 15 


 � 8.

(4)

4. Dominating Invariants

Reti et al. referred neighbourhood-based topological in-
variants for first Zagreb and second Zagreb naming as
neighbourhood first Zagreb index NM1 and neighbourhood
second Zagreb index NM2, respectively [15]. On the same
lines, on relying definition of the dominating degree of a
vertex, we have defined some Dominating Topological In-
variants (DTIs). +ese invariants are computed on the basis
of the dominating degree of the node associated to a
network.

4.1. Dominating Randi’c Invariant. Taking any real number
α, dominating Randi’c invariant is computed as follows:

R
d
α � 

p ∼ q

ζp.ζq 
α
. (5)

4.2. Dominating Geometric Invariant. In a simple connected
network, the dominating geometric invariant is computed as
follows [16]:

G
d

� 
p ∼ q

2
����
ζp.ζq



ζp + ζq

. (6)
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Figure 3: Open neighbouhood of a12.
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4.3. Dominating Atomic Bond Connectivity Invariant. In a
simple connected network, the dominating atomic bond
connectivity invariant is computed as follows [17]:

ABCd
� 

p ∼ q

���������
ζp + ζq − 2

ζp.ζq



. (7)

5. Main Results

+is section includes our main results for the CNN(p × q)

network on dominating invariants. In [18], Imran et al.
explained some topological properties for Cellular Neural

Networks based on classical degree-based invariants. +ey
have derived some close results on Randi’c index, geometric
index, and atomic bond connectivity index for the CNN.In
this article, we have discussed some dominating invariants
computed on dominating degrees in the cellular neural
network and a 3D comparison between classical degree
indices and dominating invariants.

5.1. 8eorem. Consider Cellular Neural Network CNN(p ×

q) with p, q≥ 5 as a simple connected graph, then its
dominating Randi’c invariant for real values of
α � 1, −1, (1/2), (−1/2) is closely expressed as

R
d
1 � 10816pq − 25470(p + q) + 59096,

R
d
−1 �

676
pq

+
1046775
244985104

+
19535052347
1619964000200

,

R
d
(1/2)(CNN(p × q))

� 208pq +(−846 + 12
���
301

√
+ 12

���
559

√
)(p + q) +(3524

+ 112
�
5

√
+ 20

��
21

√
+ 16

���
161

√
− 112

���
301

√
+ 8

���
345

√
+ 8

���
455

√

−112
���
559

√
+ 8

���
805

√
+ 8

���
989

√
+ 8

����
1505

√
),

R
d
(−1/2)(CNN(p × q))

�
pq

13
+

3
���
301

√ +
3
���
559

√ −
3873
15652

 (p + q) +
147293
179998

−
4

���
301

√

43

+
4

7
�
5

√ +
4

5
��
21

√ +
4
���
161

√ +
8
���
345

√ +
2
���
455

√ −
28
���
559

√ +
8
���
805

√ +
8
���
989

√

+
8

����
1505

√ .

(8)

Proof. By using the dominating degrees of directly con-
nected cells p ∼ q and the computing definition of domi-
nating Randi’c invariant for α � 1, we have

R
d
1 � (52 × 52)(4 × p × q − 19(p + q) + 90) +(52 × 43)(6(p + q) − 56)

+(43 × 43)(2(p + q − 8)) + 4 ×(52 × 35) + 8 ×(43 × 35)

+(43 × 28)(6(p + q) − 56) + 8 ×(35 × 28) +(28 × 28)(2(p + q

−10)) + 8 ×(23 × 43) + 8 ×(23 × 35) + 8 ×(23 × 28) + 4

×(23 × 23) + 4 ×(35 × 15) + 8 ×(23 × 15).

(9)
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On computing, we have

R
d
1 � 10816pq − 25470(p + q) + 59096,

R
d
−1 �

1
52 × 52

 (4 × p × q − 19(p + q) + 90) +
1

52 × 43
 (6(p + q) − 56)

+
1

43 × 43
 (2(p + q − 8)) + 4 ×

1
52 × 35

  + 8 ×
1

43 × 35
  +

1
43 × 28

 (6(p + q) − 56)

+ 8 ×
1

35 × 28
  +

1
28 × 28

 (2(p + q − 10)) + 8 ×
1

23 × 43
  + 8 ×

1
23 × 35

 

+ 8 ×
1

23 × 28
  + 4 ×

1
23∗ 23

  + 4 ×
1

35 × 15
  + 8 ×

1
23 × 15

 .

(10)

On computing, we have

R
d
−1 �

676
pq

+
1046775
244985104

+
19535052347
1619964000200

,

R
d
(1/2) � (

������
52 × 52

√
)(4 × pq − 19(p + q) + 90) +(

������
52 × 43

√
)(6(p + q) − 56)

+(
������
43 × 43

√
)(2(p + q − 8)) + 4(

������
52 × 35

√
) + 8 ×(

������
43 × 35

√
)

+(
������
43 × 28

√
)(6(p + q) − 56) + 8 ×(

������
35 × 28

√
)

+(
������
28 × 28

√
)(2(p + q − 10)) + 8 ×(

������
23 × 43

√
) + 8 ×(

������
23 × 35

√
)

+ 8 ×(
������
23 × 28

√
) + 4 ×(

������
23 × 23

√
) + 4 ×(

������
35 × 15

√
) + 8

×(
������
23 × 15

√
).

(11)

On computing, we have

R
d
(1/2)(CNN(p × q))

� 208pq +(−846 + 12
���
301

√
+ 12

���
559

√
)(p + q) +(3524

+ 112
�
5

√
+ 20

��
21

√
+ 16

���
161

√
− 112

���
301

√
+ 8

���
345

√
+ 8

���
455

√

−112
���
559

√
+ 8

���
805

√
+ 8

���
989

√
+ 8

����
1505

√
),

R
d
(−1/2) �

1
������
52 × 52

√ (4 × p × q − 19(p + q) + 90) +
1

������
52 × 43

√ (6(p + q) − 56) +
1

������
43 × 43

√ 

(2(p + q − 8)) + 4
1

������
52 × 35

√  + 8
1

������
43 × 35

√  +
1

������
43 × 28

√ (6(p + q) − 56) + 8
1

������
35 × 28

√ 

+
1

������
28 × 28

√ (2(p + q − 10)) + 8
1

������
23 × 43

√  + 8
1

������
23 × 35

√  + 8
1

������
23 × 28

√  + 4
1

������
23 × 23

√ 

+ 4
1

������
35 × 15

√  + 8
1

������
23 × 15

√ .

(12)
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On computing, we have

R
d
(−1/2)(CNN(p × q)) �

pq

13
+

3
���
301

√ +
3
���
559

√ −
3873
15652

 (p + q) +
147293
179998

−
4

���
301

√

43

+
4

7
�
5

√ +
4

5
��
21

√ +
4
���
161

√ +
8
���
345

√ +
2
���
455

√ −
28
���
559

√ +
8
���
805

√ +
8
���
989

√ +
8

����
1505

√ .

(13)

□
5.2. Corollary. In dominating Randi’c invariant, α � 1, −1
are also known as dominating second Zagreb and domi-
nating modified second Zagreb invariants, respectively.

5.3.8eorem. Consider Cellular Neural Network CNN(p ×

q) with p, q≥ 5 as a simple connected graph, then its
dominating geometric invariant is closely expressed as

GAd
(CNN(p × q))

� 4pq +
24

���
301

√

71
+
24

���
559

√

95
− 15 (p + q) +

32
�
5

√

9
+
4

��
21

√

5

+
32

���
161

√

51
−
224

���
301

√

71
+
8

���
345

√

19
+
16

���
455

√

87
−
224

���
559

√

95
+
8

���
805

√

29

+
8

���
989

√

33
+
8

����
1505

√

39
+ 58.

(14)

Proof. By using dominating degrees of CNN(p × q) for two
directly connected cells p ∼ q and substituting the computed
formula for GAd, we get the desired result. □

5.4.8eorem. Consider Cellular Neural Network CNN(p ×

q) with p, q≥ 5 as a simple connected graph, then its
dominating atomic bond connectivity invariant is closely
expressed as

ABCd
(CNN(p × q)) �

���
102

√

13
pq + 3

���
93
559



+ 3
���
69
301



+
3

�
6

√

14
+
4

��
21

√

43
−
19

���
102

√

52
 (p + q)

+ 16
����
19
1505



+ 16
���
2
115



+ 16
���
3
115



− 28
���
93
559



+ 2
��
17
91



+ 4
��
7
23



−
15

�
6

√

7
+
16

�
7

√

35


+
8

��
11

√

23
− 4

���
483
43



+
4

���
305

√

35
−
32

��
21

√

43
+
45

���
102

√

26
+

64
���
989

√ .

(15)

Proof. By using dominating degrees of CNN(p × q) for two
directly connected cells p ∼ q and substituting the computed
formula for ABCd, we get the desired result.

In light of all the abovementioned theorems, we state the
following proposition basing on the fact that the dominating
degree in a graph is closely related to closed neighbourhood
of a vertex. □

5.5. Proposition. Let G be a simply connected graph with
finite order and size; if G is free from C3 as its subgraph, then
any network or structure isomorphic to G will give equal

topological results regarding neighbourhood indices and
dominating invariants.

6. Graphical Comparison

In this section, we will provide a 3D graphical comparison
between dominating invariants and classical degree-based
indices.

Graphical comparison shows that, for α � 1, (1/2)

(Figures 5 and 6), dominating Randi’c invariant is faster
than classical degree-based Randi’c index and has better
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topological properties over the cellular neural networks
as dominating invariants are computed on the domi-
nating degree of a cell over its neighbouring cells.
Similarly, the dominating geometric invariant is faster

than the classical degree-based geometric index as shown
in Figure 7. In Figures 8–10, Randi’c invariant for α �

−1, (−1/2) and the atomic bond connectivity invariant are
compared, respectively.
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Figure 5: Comparison between dominating Randi’c invariant and
classical Randi’c index for α � 1.
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Figure 6: Comparison between dominating Randi’c invariant and
classical Randi’c index for α � (1/2).
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Figure 7: Comparison between the dominating geometric in-
variant and classical geometric index.
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Figure 8: Comparison between dominating Randi’c invariant and
classical Randi’c index for α � −1.
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7. Conclusions

According to the mathematical analysis and comparison
carried out by graphical analysis, we concluded that the

dominating-degree-based invariants have better predicting
ability. Our results show that dominating-degree-based
invariants show faster and more predicting ability for the
cellular neural network. +is may led to help far better
analysis to predict topological properties of the cellular
neural network in the future.
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A vertex subset F⊆V(G) is a cyclic vertex-cut of a connected graph G if G − F is disconnected and at least two of its components
contain cycles. +e cyclic vertex-connectivity κc(G) is denoted as the cardinality of a minimum cyclic vertex-cut. In this paper, we
show that the cyclic vertex-connectivity of the (n, k)-star network Sn,k is κc(Sn,k) � n + 2k − 5 for any integer n≥ 4 and k≥ 2.

1. Introduction

Let G � (V, E) be a simple connected graph, where V and E

are the vertex set and the edge set, respectively. G[H] is an
induced subgraph by H⊆V, whose vertex set is H and whose
edge set consists of all the edges of G with both ends in H.
For any vertex v, define the neighborhood NG(v) � u ∈ V|{

(u, v) ∈ E}. Let S⊆V(G) and the set ∪ v∈SNG(v)∖S is denoted
by NG(S). We use N(v) to replace NG(v), N(S) to replace
NG(S), and N[S] to replace NG[S]. A graph G is said to be
k-regular if d(v) � k for any vertex v ∈ V. For any subset
F⊆V(G), G∖F or G − F denotes the graph obtained by
removing all vertices in F from G. If there exists a
nonempty subset F⊆G such that G∖F is disconnected,
then F is called a vertex-cut of G. +e connectivity κ(G) is
the minimum number of vertices whose removal results
in a disconnected graph or only one vertex left. Let δ(G)

and g(G) denote the minimum degree and the girth of G,
respectively. As usual, we use Kn and Cn to denote the
complete graph and the cycle of order n, respectively.

In this work, we study a kind of restricted vertex-con-
nectivity known as the cyclic vertex-connectivity. A vertex
subset F ⊂ V is a cyclic vertex-cut of G if G − F has at least
two components containing cycles. Not all connected graphs
have a cyclic vertex-cut.+e cyclic vertex-connectivity κc(G)

of a graph G is the cardinality of the minimum cyclic vertex-
cut of G. When G has no cyclic vertex-cut, the definition of
κc(G) can be found in [1] using Betti number. A graph G is

said to be κc-connected if G has a cyclic vertex-cut. Similarly,
changing “edge” to “vertex,” the cyclic edge-connectivity
λc(G) of graph G can be defined.

+e definition of the cyclic vertex- (edge-) connec-
tivity dates to Tait in attacking four color conjecture [2]
and the graph colouring [2, 3]. It is used in many classic
fields, such as integer flow conjectures [4] and n-ex-
tendable graphs [5, 6]. In many works, the cyclic vertex-
connectivity has been studied. Cheng et al. [7] studied the
cyclic vertex-connectivity of Cayley graphs generated by
transposition trees. Yu et al. [8] obtained the cyclic
vertex-connectivity of star graphs. For more research
studies on the cyclic vertex-connectivity, see [7, 9–11] for
references.

+is paper focuses on the cyclic vertex-connectivity of
the (n, k)-star network Sn,k. We will show that κc(Sn,k) �

n + 2k − 5 for any integer n≥ 4, k≥ 2 and find out the
minimum circle vertex-cut structure of the (n, k)-star net-
work Sn,k.

2. Some Preliminaries

We provide the definition of the (n, k)-star graph Sn,k and its
structural properties, which are useful for the following
discussion.

For convenience, let 〈n〉 � 1, 2, . . . , n{ } and V(n, k) �

q1q2 · · · qk: qi ∈ 〈n〉, qi ≠ qj, 1≤ i≠ j≤ k  for any integers n

and k with 1≤ k≤ n. Clearly, |V(n, k)| � n!/(n, k)!.
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Definition 1 (see [12]). +e (n, k)-star graph, denoted by Sn,k

(see Figure 1), is a graph with the vertex-set V(n, k) and the
edge set defined as follows:

(1) A vertex q1q2 · · · qi · · · qk is adjacent to the vertex
qiq2 · · · q1 · · · qk through an edge of dimension i,
where 2≤ i≤ k (i.e., exchange q1 with qi)

(2) A vertex q1q2 · · · qi · · · qk is adjacent to the vertex
yq2 · · · qi · · · qk through an edge of dimension 1,
where y ∈ 〈n〉∖ q1, q2, . . . , qk  (i.e., replace q1 by y)

+e edges of type (1) are referred to as i-edges, and the
corresponding neighboring vertices are called i-neighbors.
+e edges of type (2) are referred to as 1-edges, and the
corresponding neighboring vertices are called 1-neighbors.
Let Si

n,k be induced by all the vertices having the symbol i in
one of the rightmost k − 1 positions of Sn,k. Clearly, Sn,k can

be decomposed into n subgraphs Si
n,k and Si

n,k � Sn−1,k−1,
where 1≤ i≤ n and 2≤ k≤ n.

Lemma 1 (see [13]). 'e (n, k)-star graph Sn,k has the fol-
lowing properties:

(1) Sn,k is a graph of degree n − 1 with n!/(n − k)! vertices
and (n − 1)n!/2(n − k)! edges.

(2) Sn,1 � Kn, Sn,n−1 � Sn, and Sn,n−2 � ANn, where Kn is a
complete graph, Sn is a n-dimensional star graph, and
ANn is a n-dimensional alternating group network.

(3) E(i, j) is the set of all cross edges between any two
subgraphs Si

n,k and S
j

n,k (i≠ j ∈ 〈n〉), and
|E(i, j)| � ((n − 2)!/(n − k)!).

(4) For any two vertices u and v in Sn,k,

|N(u)∩N(v)| �

n − k − 1, if (u, v) ∈ E Sn,k  is 1 − edge,

1, if (u, v) ∉ E Sn,k  andN(u)∩N(v)≠∅,

0, otherwise.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(1)

Lemma 2 (see [13]). Sn,k is a (n − 1)-regular (n − 1)-con-
nected graph.

Theorem 1 (see [14]). Let F be a faulty vertex set of
Sn,k (n≥ 5, k≥ 3, n − k≥ 2) with |F|≤ n + 2k − 6. 'en, the
survival graph Sn,k\F satisfies one of the following conditions:

(1) Sn,k\F is connected
(2) Sn,k\F has two components, one of which has exactly

one vertex or two vertices with one 1-edge
(3) Sn,k\F has three components, two of which are

singletons

Lemma 3 (see [13]). If a cycle has a length at least 6 in an
Sn,k, then it contains one i-edge, 2≤ i≤ k.

Theorem 2 (see [8]). For any integer n≥ 4, κc(Sn) �

6(n − 3).

3. Main Result

By Lemma 1 and+eorem 2, we know Sn,n−1 � Sn if k � n − 1
and κc(Sn) � 6(n − 3). +us, we determine the value of
κc(Sn,k) with n − k≥ 2 for n≥ 4, k≥ 2.

Lemma 4. For n≥ 4, the girth of Sn,2 is 3 and the edges of
every 3-cycle are 1-edges.

Proof. Choose any vertex u1 from Sn,2 and make it as
u1 � q1q2. Since n≥ 4, there exist qi, qj ∈ 〈n〉\ q1, q2  and
qi ≠ qj. From the definition of Sn,2, we have two vertices u2 �

qiq2 and u3 � qjq2 in V(Sn,2) and u1u2, u2u3,

u3u1} ∈ E(Sn,2). Clearly, u1u2u3u1 is one 3-cycle, and all the
edges of it are 1-edges. Hence, the lemma holds. □

Lemma 5. Let C be any cycle of length 3 in Sn,2 (n≥ 4). 'en,
|NSn,2

(C)| � n − 1.

Proof. From Lemma 4, we can suppose
C � (q1q2)(q3q2)(q4q2)(q1q2). Let
S � q5q2, q6q2, . . . , qnq2 ⊆V(Sn,2), then |S| � n − 4. By the
definition of Sn,2, we have

NSn,2
q1q2( \ q3q2, q4q2  � S∪ q2q1 ,

NSn,2
q3q2( \ q1q2, q4q2  � S∪ q2q3 ,

NSn,2
q4q2( \ q1q2, q3q2  � S∪ q2q4 .

(2)

So,

NSn,2
(C)



 � S∪ q2q1, q2q3, q2q4 


 � n − 4 + 3 � n − 1. (3)
□

Lemma 6. Let C be a 3-cycle of Sn,2 (n≥ 4). 'en, NSn,2
(C) is

a cyclic vertex-cut of Sn,2.

Proof. Clearly, Sn,2 − NSn,2
(C) is disconnected and contains

C as a connected component. In order to prove the lemma, it
suffices to show that the subgraph H � Sn,2 − NSn,2

[C] has a
cycle. In fact, we can prove a stronger property δ(H)≥ 2 as
follows.

Suppose C � (q1q2)(q3q2)(q4q2)(q1q2). By Lemma 5,
NSn,2

(C) � S∪ q2q1, q2q3, q2q4  and S � q5q2,

q6q2, . . . , qnq2}. If δ(H)≤ 1, and then there exists a vertex
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v ∈ V(H) satisfying NH(v) � 1 and v ∉ S∪ q2q1, q2q3,

q2q4}. Since Sn,2 is n − 1-regular, v ∈ V(H) has at least n −

2 (≥ 2) neighbors in NSn,2
(C). Let v1 and v2 be two distinct

vertices in NSn,2
(v)∩NSn,2

(C)⊆S∪ q2q1, q2q3, q2q4 .
If v1, v2 ∈ S, without loss of generality, let v1 � qiq2,

v2 � qjq2, where qi, qj ∈ q5, q6, . . . , qn  and qi ≠ qj. By
Definition 1, all the edges in Sn,2 are i-edges or 1-edges. Since
vv1, vv2 ∈ E(Sn,2), v � qsq2, and qs ∈ q5, q6, . . . ,

qn}∖ qi, qj . It means v ∈ S, contradicting v ∉ S∪ q2q1,

q2q3, q2q4}.
If v1 ∈ S and v2 ∈ q2q1, q2q3, q2q4 , without loss of

generality, then let v1 � qiq2 and v2 � q2qj, where qi ∈ q5,

q6, . . . , qn} and qj ∈ q1, q3, q4 . Since vv1, vv2 ∈ E(Sn,2),
v � qjq2, and qj ∈ q1, q3, q4 , it means v ∈ C, contradicting
v ∈ H � Sn,2 − NSn,2

[C].
If v1, v2 ∈ q2q1, q2q3, q2q4 , clearly, if vv1 ∈ E(Sn,2), then

vv2 ∉ E(Sn,2). If vv2 ∈ E(Sn,2), then vv1 ∉ E(Sn,2), similarly,
contradicting vv1, vv2 ∈ E(Sn,2).

From the above discussion, we know that δ(H)≥ 2.
Furthermore, NSn,2

(C) is a cyclic vertex-cut of Sn,2.
Combining Lemma 5 and 6, we have the following

theorem. □

Theorem 3. For any integer n≥ 4, κc(Sn,2) � n − 1.

Proof. Let C be a 3-cycle in Sn,2 and F � NSn,2
(C). By

Lemmas 5 and 6, F is a cyclic vertex-cut of Sn,2. Hence,
κc(Sn,2)≤ |F| � n − 1. By Lemma 2, κ(Sn,2) � n − 1. We have
κc(Sn,2)≥ κ(Sn,2) � n − 1, and then κc(Sn,2) � n − 1. □

Theorem 4. For any integer n≥ 5, k≥ 3, n − k≥ 2, and
κc(Sn,k) � n + 2k − 5.

Proof. Let F be a faulty vertex set of Sn,k with |F|≤ n + 2k − 6.
By +eorem 1, Sn,k − F is connected or Sn,k − F is discon-
nected, and at most one of its component contains cycles.

Hence, κc(Sn,k)≥ n + 2k − 5. To prove the converse, we need
to find a cyclic vertex-cut F of Sn,k with |F| � n + 2k − 5.

Suppose v � q1q2 · · · qk ∈ V(Sn,k), we have two vertices u,
w such that vu and vw are 1-edges by n − k≥ 2. Without loss
of generality, we can assume u � qk+1q2 · · · qk and
w � qk+2q2 · · · qk. From the definition of Sn,k, we have
uw ∈ E(Sn,k). Hence, C3 � uvwu in Sn,k. Let A �

qjq2 · · · qk| j � k + 3, k + 4, . . . , n , then A �

NSn,k
(u)∩NSn,k

(v)∩NSn,k
(w) and |A| � n − k − 2. Since

u, v, w have another k − 1 i-neighbors in Sn,k∖A, respectively,
|NSn,k

(C3)| � |A| + 3(k − 1) � n − k − 2 + 3(k − 1) � n+ 2k−

5. Clearly, Sn,k − NSn,k
(C3) is disconnected and contains C3

as a connected component. In order to find a cyclic vertex-
cut, it suffices to show that Sn,k − NSn,k

[C3] has a cycle. In
fact, we can prove δ(Sn,k − NSn,2

[C3])≥ 2. Suppose that there
exists one vertex x of Sn,k − NSn,k

[C3] with dSn,k−NSn,k
[C3](x) �

1. Since Sn,k is n − 1-regular (n − 1≥ 4), |NSn,k
(x)∩

NSn,k
(C3)|≥ 3.
If x is adjacent to one neighbor vertex of u, v, and w,

respectively, it means there are three vertices u′, v′, and w′
such that u′ ∈ NSn,k−C3

(u), v′ ∈ NSn,k−C3
(v), w′ ∈ NSn,k−C3

(w),
and u′, v′, w′ ⊆NSn,k

(x)∩NSn,k
(C3). +en, all of

uu′, vv′, andww′ are i-edges. Let u′ � qsq2 · · · qk+1 · · · qk,
v′ � qtq2 · · · q1 · · · qk, w′ � qmq2 · · · qk+2 · · · qk and
s, t, m ∈ 2, 3, . . . , k{ }. By the definition of Sn,k, we know x is
adjacent to at most one of u′, v′, and w′, a contradiction.

If x is adjacent to two neighbor vertices of u and one
neighbor vertex of v, it means there are three vertices u1, u2,
and v1 such that u1, u2 ∈ NSn,k−C3

(u), v1 ∈ NSn,k−C3
(v), and

u1, u2, v1 ⊆NSn,k
(x)∩NSn,k

(C3). From the definition of Sn,k,
both uu1 and uu2 are 1-edges and x � qtq2 · · · qk+1 · · · qk,
t ∈ k + 3, k + 4, . . . , n{ }. Furthermore, x ∈ N(C3), a con-
tradiction with x ∈ Sn,k − NSn,k

[C3].
If x is adjacent to three neighbor vertices of u, it means

there are three vertices u1, u2, and u3 such that
u1, u2, u3 ∈ NSn,k−C3

(u) and u1, u2, u3 ⊆NSn,k
(x)∩NSn,k

(C3).
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Figure 1: Some examples of the (n, k)-star graph S3,1, S4,1, S4,2, and S5,2
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From the definition of Sn,k, all of uu1, uu2, and uu3 are 1-
edges and x � qtq2 · · · qk+1 · · · qk and t ∈ k + 3, k + 4, . . . , n{ }.
Furthermore, x ∈ N(C3), a contradiction with
x ∈ Sn,k − NSn,k

[C3].
From the above discussion, we know that

δ(Sn,k − NSn,2
[C3])≥ 2. +en, Sn,k − NSn,k

[C3] contains a
cycle, and NSn,k

(C3) is a cyclic vertex-cut of Sn,k with
|NSn,k

(C3)| � n + 2k − 5. Hence, κc(Sn,k)≥ n + 2k − 5. +e
theorem holds.

Combining +eorems 3 and 4, we have the following
theorem. □

Theorem 5. For any integer n≥ 4, k≥ 2, and κc(Sn,k) �

n + 2k − 5.

4. Conclusion

In this paper, we determine the cyclic vertex-connectivity of
the (n, k)-star network Sn,k. We can consider the cyclic
vertex-connectivity of other graphs and the cyclic edge-
connectivity of the (n, k)-star network Sn,k in our future
research.
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For an ordered subset Qe of vertices in a simple connected graph G, a vertex x ∈ V distinguishes two edges e1, e2 ∈ E, if
d(x, e1)≠d(x, e2). A subset Qe having minimum vertices is called an edge metric generator for G, if every two distinct edges of G

are distinguished by some vertex of Qe. 'e minimum cardinality of an edge metric generator for G is called the edge metric
dimension, and it is denoted by dime(G). In this paper, we study the edge resolvability parameter for different families of Möbius
ladder networks and we find the exact edge metric dimension of triangular, square, and hexagonal Möbius ladder networks.

1. Introduction

A simple connected graph G � (V, E) with vertex set and
edge set V and E, respectively. For two vertices a1, a2 ∈ V,
the distance d(a1, a2) between vertices a1 and a2 is the count
of edges between them. A vertex v ∈ V is said to distinguish
two vertices a1 and a2, if d(v, a1)≠d(v, a2). A set Q ⊂ V is
called a resolving set of G, if any pair of distinct vertices of G

is distinguished by some element of Q. A resolving set of
minimum cardinality is named as metric basis, and its
cardinality is themetric dimension ofG, denoted by dim(G).
A vertex v ∈ V and an edge e � a1a2 ∈ E, and the distance
between v and e is defined as
d(e, v) � min d(a1, v), d(a2, v) . A vertex x ∈ V distin-
guishes two edges e1, e2 ∈ E, if d(x, e1)≠d(x, e2). A subset
Qe having minimum vertices from a connected graph G is an
edge resolving set for G, if every two distinct edges of G are
distinguished by some vertex of Qe. 'e minimum cardi-
nality of an edge resolving set for G is called the edge metric
dimension and is denoted by dime(G).

In 1975, the idea of metric dimension was delivered by
Slater [1], he named the metric generators as locating sets
which relates to the problem of uniquely recognizing the

position of intruders in networks. On the same idea, in 1976
the concept of metric dimension of a graph was indepen-
dently introduced by Harary and Melter in [2], and these
time metric generators were named as resolving sets. One
can think that instead of distinguishing two distinct vertices
of graph according to chosen subset of vertices, two edges
can be distinct with the same subset of vertices. For this
concept, Kelenc et al. [3] introduced a new parameter named
as the edge metric dimension. In this, they used graphmetric
to identify each pair of edges by the distance of graph to a
chosen subset of vertices.

As far as the idea of metric dimension is extensively
studied and used in different fields of science as applications,
Chartrand et al. in [4] relate the metric dimension of graph
with the drug discovery and pharmacological activity,
Khuller et al. in [5] try to put thinking that a robot can be
shifted from Euclidean space to graph structure and left his
thought as an application of metric dimension in robot
navigation, and the metric dimension of Hamming graphs
leads Chvátal to the analysis of mastermind games and opens
the doors for researchers to view application of metric di-
mension in complex digital games [6], and in [7, 8], Erdös
and Lindström assume that the metric dimension can be
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used in various coin-weighing problems. Resolving sets have
served as inspiration for many theoretical studies of graphs.

'e edge metric dimension is the natural generalization
of resolving set, and readers are directed towards the in-
teresting literature containing the metric dimension of
different classes of graphs for example, Ali et al. [9, 10]
studied the metric dimension of Möbius networks and some
other cycle-related graphs, Kuziak et al. [11] discussed the
strong metric dimension of graphs, Liu et al. [12, 13] dis-
cussed the metric dimension of cocktail party, Toeplitz, and
jellyfish graphs, and some cycle-related graphs were studied
with the concept of metric dimension by Ahmad et al. [14].
Recently, the edge metric dimension becomes a very com-
mon topic in resolvability and a lot of families of graphs are
studied. Koam and Ahmad [15] studied edge metric di-
mension of barycentric subdivision of Cayley graph. 'e
convex polytope graph was discussed by Zhang and Gao in
[16] and Ahsan et al. in [17]. Yang et al. discussed some
chemical structures related to wheel graphs in [18]. Raza and
Bataineh did comparative analysis between metric and edge
metric dimension in [19]. Moreover, some interesting study
of edge metric dimension can be found in [20, 21], where
Okamoto et al. studied the local metric dimension and Yero
briefly discussed the definition of metric and its related
concepts. Mixed metric dimension is another type of di-
mension which satisfies the conditions of metric and edge
metric dimensions simultaneously. Mixed metric dimension
of different families of graphs is studied and gives their exact
values, such as Raza et al. studied the mixed metric di-
mension different rotationally symmetric graphs and gave

their exact values [22], Raza and Ji computed the mixed
metric dimension of the generalize Petersen graph P(n, 2)

[23], and results on mixed metric dimension of some path-
related graphs are discussed by Raza et al. in [24].

In general, the edge metric dimension of a graph is NP-
hard [3].'ere is no general relation betweenmetric and edge
metric dimension of graphs but, in [3], Kelenc et al. inquired
about the families of graphs which have dim(G) � dime(G),
dim(G)< dime(G), and dim(G)> dime(G). In this paper, we
find the edgemetric dimension of different families ofMöbius
ladder networks and give a comparison between the metric
and edge metric dimension of these families, in the response
of this question.

Definition 1. 'eminimum number of edges h between two
vertices a1, a2 of a cycle (sub) graph is called as h-size gap
between a1, a2.

2. Edge Metric Dimension of Möbius
Ladder Network

Möbius ladder MLψ is built by a grid of ψ × 1, and this grid is
twisted at 180∘; now, paste the extreme most left and right
paths of vertices as seen in Figure 1. It contains ψ-horizontal
cycles of order four. 'e metric dimension of MLψ is three
[9], and in our first result, we prove that the edge metric
dimension of MLψ is four.

Theorem 1. Let MLψ be aMöbius ladder network with ψ ≥ 3.
4en,

dime MLψ  � 4. (1)

Proof. Consider the edge resolving set Qe � ρ1, ρ2,

ρ (ψ+3/2)⌊ ⌋, ρψ+1}, to prove that the dime(MLψ) � 4, first of all,
we show that dime(MLψ)≤ 4, and for this claim, following
are the distances of all edges with respect to edge resolving
set:

d ρωρψ+ω, ρ1  �

ω − 1, if ω � 1, 2, . . . ,
ψ + 2
2

 ,

ψ + 3
2

  − ω +
ψ − 1
2

 , if ω �
ψ + 3
2

 , . . . ,ψ,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

d ρωρω+1, ρ1(  �

ω − 1, if ω � 1, 2, . . . ,
ψ + 2
2

 ;

ψ + 4
2

  − ω +
ψ − 1
2

 , if ω �
ψ + 4
2

 , . . . ,ψ.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

d ρψ+ωρψ+ω+1, ρ1  �

ω, if ω � 1, 2, . . . ,
ψ
2

 ;

ψ − 1
2

  − ω +
ψ + 2
2

 , if ω �
ψ + 2
2

 , . . . ,ψ − 1.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ρψ + 1

ρψ + 4ρψ + 3ρψ + 2ρψ + 1

ρψ

ρ2ψ

ρ1

ρ1

ρ2 ρ2 ρ4

Figure 1: Möbius ladder network MLΨ.
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d ρ2ψρ1, ρ1  � 0,

d ρ2ψρ1, ρ2  � 2,

d ρ2ψρ1, ρ (ψ+3/2)⌊ ⌋  �
ψ
2

 ,

d ρωρψ+ω, ρ2  �

1, if ω � 1;

ω − 2, if ω � 2, 3, . . . ,
ψ + 5
2

 ;

ψ
2

  − ω +
ψ + 7
2

 , if ω �
ψ + 7
2

 , . . . ,ψ.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

d ρωρω+1, ρ2(  �

0, if ω � 1;

ω − 2, if ω � 2, 3, . . . ,
ψ + 4
2

 ;

ψ + 6
2

  − ω +
ψ − 1
2

 , if ω �
ψ + 6
2

 , . . . ,ψ.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

d ρψ+ωρψ+ω+1, ρ2  �

1, if ω � 1;

ω − 1, if ω � 2, 3, . . . ,
ψ + 3
2

 ;

ψ + 5
2

  − ω +
ψ − 1
2

 , if ω �
ψ + 5
2

 , . . . ,ψ − 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

d ρωρψ+ω, ρ/ ψ+3/2⌊ ⌋  �

ψ
2

 , if ω � 1;

ψ − 1
2

  − ω + 2, if ω � 2, 3, . . . ,
ψ + 3
2

 ;

ω −
ψ + 5
2

  + 1, if ω �
ψ + 5
2

 , . . . ,ψ.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d ρωρω+1, ρ ψ+3/2⌊ ⌋  �

ψ − 1
2

  − ω + 1, if ω � 1, 2, . . . ,
ψ + 1
2

 ;

ω −
ψ + 3
2

 , if ω �
ψ + 3
2

 , . . . ,ψ,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

d ρψ+ωρψ+ω+1, ρ ψ+3/2⌊ ⌋  �

ψ + 1
2

  − ω + 1, if ω � 1, 2, . . . ,
ψ + 1
2

 ;

ω −
ψ + 3
2

  + 1, if ω �
ψ + 3
2

 , . . . ,ψ − 1,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

d ρωρψ+ω, ρψ+1  �

ω − 1, if ω � 1, 2, . . . ,
ψ + 2
2

 ;

ψ + 4
2

  − ω +
ψ − 1
2

 , if ω �
ψ + 4
2

 , . . . ,ψ,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

d ρωρω+1, ρψ+1  �

ω, if ω � 1, 2, . . . ,
ψ
2

 ;

ψ − 1
2

  − ω +
ψ + 2
2

 , if ω �
ψ + 2
2

 , . . . ,ψ,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

d ρψ+ωρψ+ω+1, ρψ+1  �

ω − 1, if ω � 1, 2, . . . ,
ψ + 2
2

 ;

ψ − 1
2

  − ω +
ψ + 4
2

 , if ω �
ψ + 4
2

 , . . . ,ψ − 1,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

d ρ2ψρ1, ρψ+1  � 1.

(2)
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From the above given representation of all edges with
respect to edge resolving set Qe, no two edges have the same
representation, and it proved that dime(MLψ)≤ 4.

Now, on contrary, dime(MLψ) � 3 implies that the
cardinality of edge metric generator Qe

′ is three, following is
some discussion for this contradiction:

Case 1: if the first two vertices with zero-size gap and
last two vertices with any arbitrary size of gap are
selected in the edge metric generator Qe

′ � ρ1, ρ2, ρω 

with 3≤ω≤ψ, then it implies the same representations
in the edges d(ρ1ρψ+1|Qe

′) � d(ρ1ρ2ψ|Qe
′), and it is

concluded that we cannot take these types of vertices in
the edge metric generator with cardinality three.
Case 2: if all three vertices with any arbitrary size of gap
are selected and Qe

′ � ρω, ρj, ρk  with 1≤ω, j, k≤ψ,
then it implies the same representations in the edges
which are d(ρ1ρψ+1|Qe

′) � d(ρ1ρ2ψ|Qe
′), and it is also

concluded that we cannot take these types of vertices in
the edge metric generator with cardinality three.
Case 3: now, the vertices with index ψ + 2≤ω, j, k≤ 2ψ
with any of the gap-size are chosen and
Qe
′ � ρω, ρj, ρk , then it implies the same representa-

tions in the edges which are
d(ρ1ρ2|Qe

′) � d(ρ1ρψ+1|Qe
′), and again, we conclude

that we cannot take these types of vertices in the edge
metric generator with cardinality three.
Case 4: now, the vertices ρω, ρj, ρk ∈ V(MLψ) are
chosen with any of the size of gap, then there exist an
edge from lower horizontal edges and another edge
from upper horizontal edges having the same repre-
sentations to each other with respect to the selected
edge metric generator, i.e.,
d(ρpρp+1|Qe

′) � d(ρψ+pρψ+p+1|Qe
′) where 1≤p≤ψ − 1,

and finally, we concluded that with any gap-size in the
edge metric generator with cardinality three is not

possible, which implies the contradiction that
dime(MLψ)≠ 3. Moreover, this proves the double in-
equality which is

dime MLψ  � 4. (3)
□

3. EdgeMetric Dimension ofHexagonalMöbius
Ladder Network

Hexagonal Möbius ladder HMLψ is built in [25], it can be
constructed by dividing each horizontal edge of a square grid
by inserting a new vertex, it becomes a grid of ψ × 1 with
each cycle having order six, and now, twist this grid at 180∘
and paste the extreme most left and right paths of vertices as
shown in Figure 2. 'is graph contains ψ-horizontal cycles
of order six. 'e metric dimension of the hexagonal Möbius
ladder network is three [25]. In this section, we proved that
edge metric dimension is also three for the hexagonal
Möbius ladder network.

Theorem 2. Let HMLψ be a hexagonal Möbius ladder
network with ψ ≥ 2. 4en,

dime HMLψ  � 3. (4)

Proof. Consider the edge resolving set Qe � ρ1, ρ2, ρ2ψ 

when ψ � 2, 3, Qe � ρ1, ρψ+1, ρ2ψ  when ψ ≥ 4(even), and
Qe � ρ1, ρψ , ρ2ψ  when ψ ≥ 5(odd). To show that the
dime(HMLψ) � 3, we will use the method of double in-
equality. For dime(HMLψ)≤ 3, following are the distances of
all edges with respect to edge resolving set.

Distances of all vertices with respect to ρ2 are as follows:

d ρωρψ+ω, ρ2  �

1, if ω � 1, andψ � 2;

ω − 2, if ω � 3, andψ � 2;

1, if ω � 1, andψ � 3;

ω − 2, if ω � 3, 5, andψ � 3,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

d ρωρω+1, ρ2(  �

0, if ω � 1;

ω − 2, if ω � 2, 3, . . . ,ψ + 2;

2ψ + 2 − ω, if ω � ψ + 3,ψ + 4, . . . , 2ψ,

⎧⎪⎪⎨

⎪⎪⎩

d ρ2ψ+ωρ2ψ+ω+1, ρ2  �

2, if ω � 1, 2;

ω − 1, if ω � 3, 4, . . . ,ψ + 1;

2ψ + 2 − ω, if ω � ψ + 2,ψ + 3, . . . , 2ψ − 1.

⎧⎪⎪⎨

⎪⎪⎩

d ρ4ψρ1, ρ2  � 2,

d ρ4ψρ1, ρ1  � 0,

d ρωρψ+ω, ρ2ψ  �

1, if ω � 1, 3 andψ � 2;

1, if ω � 1, 5 andψ � 3;

3, if ω � ψ � 3.

⎧⎪⎪⎨

⎪⎪⎩
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d ρωρψ+ω, ρ1  �

ω − 1, if ω � 1, 3, . . . ,ψ + 1, andψ even;

2ψ + 1 − ω, if ω � ψ + 3,ψ + 5, . . . , 2ψ − 1, andψ even;

ω − 1, if ω � 1, 3, . . . ,ψ, andψ odd;

2ψ + 1 − ω, if ω � ψ + 2,ψ + 4, . . . , 2ψ − 1, andψ odd,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

d ρωρω+1, ρ1(  �
ω − 1, if ω � 1, 2, . . . ,ψ + 1;

2ψ + 1 − ω, if ω � ψ + 2,ψ + 3, . . . , 2ψ.


d ρ2ψ+ωρ2ψ+ω+1, ρ1  �
ω, if ω � 1, 2, . . . ,ψ;

2ψ − ω, if ω � ψ + 1, . . . , 2ψ − 1.


d ρωρψ+ω, ρψ  � |ψ − ω|, ω � 1, 3, . . . , 2ψ − 1,

d ρωρω+1, ρψ  �
ψ − ω − 1, if ω � 1, 2, . . . ,ψ − 1;

ω − ψ, if ω � ψ,ψ + 1, . . . , 2ψ.


d ρ2ψ+ωρ2ψ+ω+1, ρψ  �
ψ − ω, if ω � 1, 2, . . . ,ψ − 1;

ω − ψ + 1, if ω � ψ,ψ + 1, . . . , 2ψ − 1,


d ρ4ψρ1, ρψ  � d ρ4ψρ1, ρψ+1  � ψ,

d ρ4ψρ1, ρ2ψ  � 2,

d ρωρψ+ω, ρψ+1  �
ψ − ω + 1, if ω � 1, 3, . . . ,ψ + 1;

ω − ψ − 1, if ω � ψ + 3,ψ + 5, . . . , 2ψ − 1,


d ρωρω+1, ρψ+1  �
ψ − ω, if ω � 1, 2, . . . ,ψ;

ω − ψ − 1, if ω � ψ + 1, . . . , 2ψ.


d ρ2ψ+ωρ2ψ+ω+1, ρψ+1  �
ψ − ω + 1, if ω � 1, 2, . . . ,ψ;

ω − ψ, if ω � ψ + 1,ψ + 2, . . . , 2ψ − 1,


d ρωρψ+ω, ρ2ψ  �

1, if ω � 1;

ω + 1, if ω � 3, 5, . . . ,ψ − 1, andψ ≥ 4 (even);

2ψ − ω, if ω � ψ + 1,ψ + 3, . . . , 2ψ − 1, andψ ≥ 4 (even);

ω + 1, if ω � 3, 5, . . . ,ψ − 2, andψ ≥ 5 (odd);

2ψ − ω, if ω � ψ,ψ + 2, . . . , 2ψ − 1, andψ ≥ 5 (odd),

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

d ρωρω+1, ρ2ψ  �

ω + 1, if ω � 1, 2, . . . ,ψ − 1;

2ψ − 1 − ω, if ω � ψ,ψ + 1, . . . , 2ψ − 1;

0, if ω � 2ψ,

⎧⎪⎪⎨

⎪⎪⎩

d ρ2ψ+ωρ2ψ+ω+1, ρ2ψ  �

ω + 1, if ω � 1, 2, . . . ,ψ − 1;

2ψ − ω, if ω � ψ,ψ + 1, . . . , 2ψ − 2;

2, if ω � 2ψ − 1.

⎧⎪⎪⎨

⎪⎪⎩

(5)

It is clear to see that the representations of all edges with
respect to edge resolving set Qe are distinct, and it is proved
that dime(HMLψ)≤ 3.

Now, for dime(HMLψ)≥ 3, the contradiction method
implies that dime(HMLψ) � 2.

If two vertices are chosen with any arbitrary size of gap
and Qe
′ � ρω, ρj  with 1≤ω, j≤ 4ψ, then it implies the same

representations in the edges which are either d(ρpρψ+p|Qe
′) �

d(ρ2ψ+qρ2ψ+q+1|Qe
′) where 1≤p, q≤ 2ψ − 1 and p � odd or

d(ρpρp+1|Qe
′) � d(ρ2ψ+pρ2ψ+p+1|Qe

′) where 1≤p≤ 2ψ − 1,
and it is also concluded that we cannot take vertices in edge
metric generator with cardinality two. So, it is not possible
that dime(HMLψ) � 2, which implies that
dime(HMLψ) � 3. □

4. Edge Metric Dimension of Triangular
Ladder Network

'e ladder network can be built by the cross product of two
path graphs Lψ � Pψ × P2. Triangular ladder TLψ is built by
inserting new edges of Lψ vertices ρωρω+1 where ω is even
indices. 'is graph contains 2ψ − 2-cycles of order three
shown in Figure 3. Following is the edge metric generator of
this network.

Theorem 3. Let TLψ be a triangular ladder network with
ψ ≥ 3. 4en,

dime TLψ  � 4. (6)
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Proof. Let Qe � ρ1, ρ2, ρ2ψ−2, ρ2ψ−1  be the edge resolving
set. To show that the dime(TLψ) � 4, we will prove first for
dime(TLψ)≤ 4, following are the representations of all edges
with respect to edge resolving set:

d ρωρω+1, ρ1(  �

ω − 1
2

, if ω � 1, 3, . . . , 2ψ − 3;

ω + 2
2

, if ω � 2, 4, . . . , 2ψ − 4,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

d ρωρω+2, ρ1(  �

ω − 1
2

, if ω � 1, 3, . . . , 2ψ − 3;

ω + 2
2

, if ω � 2, 4, . . . , 2ψ − 4,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

d ρωρω+1, ρ2(  �

ω − 1
2

, if ω � 1, 3, . . . , 2ψ − 1;

ω − 2
2

, if ω � 2, 4, . . . , 2ψ − 2,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

d ρωρω+2, ρ2(  �

1, if ω � 1;

ω − 1
2

, if ω � 3, 5, . . . , 2ψ − 3;

ω − 2
2

, if ω � 2, 4, . . . , 2ψ − 2,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d ρωρω+1, ρ2ψ−2  �

ψ − 2 −
ω − 1
2




, if ω � 1, 3, . . . , 2ψ − 1;

2ψ − ω − 2
2

, if ω � 2, 4, . . . , 2ψ − 2;

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

d ρωρω+2, ρ2ψ−2  �

2ψ − ω − 3
2

, if ω � 1, 3, . . . , 2ψ − 5;

1, if ω � 2ψ − 3;

0, if ω � 2;

ω − 4
2

, if ω � 4, 6, . . . , 2ψ − 2,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d ρωρω+1, ρ2ψ−1  �

2ψ − ω − 1
2

if ω � 1, 3, . . . , 2ψ − 1;

2ψ − ω − 2
2

if ω � 2, 4, . . . , 2ψ − 2;

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

d ρωρω+2, ρ2ψ−1  �

2ψ − ω − 1
2

, if ω � 1, 3, . . . , 2ψ − 3;

2ψ − ω
2

, if ω � 2, 4, . . . , 2ψ − 2.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(7)

Above given representations of all edges with respect to
edge resolving set Qe are unique, and it is proved that
dime(TLψ)≤ 4. Now, for dime(TLψ)≥ 4, choose on contrary
which implies that dime(TLψ) � 3. Analogously, the car-
dinality of edge metric generator Qe

′ is three, following is
some discussion for this contradiction:

Case 1: if all vertices with any arbitrary size of gap are
selected and Qe

′ � ρ1, ρω, ρj  with 3≤ω, j(odd)≤
2ψ − 1, then it implies the same representations in the
edges which are d(ρ2ρ3|Qe

′) � d(ρ3ρ4|Qe
′), and it is

concluded that we cannot take vertices like this in the
edge metric generator with cardinality three.
Case 2: if all vertices with any arbitrary size of gap are
selected and Qe

′ � ρω, ρj, ρk  with 1≤ω, j, k(odd)≤
2ψ − 1, then it implies the same representations in the
edges which are either d(ρ1ρ3|Qe

′) � d(ρ2ρ3|Qe
′) or

d(ρpρp+1|Qe
′) � d(ρqρq+2|Qe

′) where 2≤p, q(even)≤
2ψ, and it is also concluded that we cannot take vertices
in the edge metric generator with cardinality three.
Case 3: if all vertices with any arbitrary size of gap are
selected and Qe

′ � ρω, ρj, ρk  with 2≤ω, j, k(even)≤
2ψ, then it implies the same representations in the
edges which are d(ρ1ρ2|Qe

′) � d(ρ2ρ3|Qe
′), and it is also

concluded that we cannot take vertices in the edge
metric generator with cardinality three.
Case 4: now, the vertices ρω, ρj, ρk ∈ V(TLψ) without
choosing the size of gap, then there exist an edge from
joining edges and another one edge from upper hor-
izontal edges having the same representation to each
other with respect to the decided edge metric generator,
i.e., d(ρpρp+1|Qe

′) � d(ρqρq+2|Qe
′) where 2≤p, q(even)

≤ 2ψ, and finally, we concluded that we cannot take any
type of vertices with any gap-size in the edge metric
generator with cardinality three, which implies the
contradiction that dime(TLψ)≠ 3, Moreover, this
proves the double inequality which is

dime TLψ  � 4. (8)
□

ρ2ψ – 1ρ2ψ – 3

ρ2ψ – 2

ρ1

ρ2ψ

ρ3 ρ5 ρ7

ρ2 ρ4 ρ6 ρ8

Figure 3: Triangular ladder network TLψ .

ρ2ψ + 1

ρ2ψ + 7ρ2ψ + 5ρ2ψ + 3ρ2ψ + 1

ρ2ψ – 1

ρ4ψ – 1

ρ1

ρ1

ρ3 ρ5 ρ7

Figure 2: Hexagonal Möbius ladder network HMLψ .
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5. EdgeMetricDimension of TriangularMöbius
Ladder Network

Figure 3 shows a triangular ladder network; now, twist this
network at 180∘ and paste the extreme most left and right
paths of vertices, and it will come up to a new type of graph
named as triangular Möbius ladder graph TMLψ . 'is graph
contains 2ψ − 2-horizontal cycles of order three, which can
be seen in Figure 4. Following results are the edge metric
dimension of the triangular Möbius ladder network.

Theorem 4. Let TMLψ be a triangular Möbius ladder net-
work with ψ ≥ 5. 4en,

dime TMLψ  � 4. (9)

Proof. Consider the edge resolving set Qe � ρ4, ρ5, ρ6, ρ7 ,
when ψ � 5, Qe � ρ1, ρ4, ρψ+2, ρψ+3 , when ψ ≥ 6(even), and
Qe � ρ3, ρψ−1, ρψ+2, ρ2ψ−2 , and when ψ ≥ 7(odd). To show
that the dime(TMLψ) � 4, we will use the method of double
inequality, for dime(TMLψ)≤ 4, following are the repre-
sentations of all edges with respect to the edge resolving set.

When ψ � 5,

d ρωρω+1, ρ4(  �

1, if ω � 1, 2,

ω − 3
2

, if ω � 3, 5, 7,

ω − 4
2

, if ω � 4, 6, 8,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

d ρ2ψ−2ρ2, ρ4  � d ρ2ψ−3ρ2, ρ4  � d ρ2ψ−1ρ1, ρ4  � 2,

d ρωρω+2, ρ4(  �

2 − ω, if ω � 1, 2,

ω − 1
2

, if ω � 3, 5,

ω − 4
2

, if ω � 4, 6, 8,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

d e1, ρ5(  �

5 − ω
2




if ω � 1, 3, 5, 7,

4 − ω
2

if ω � 2, 4, 6,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

d ρ2ψ−2ρ2, ρ5  � d ρ2ψ−1ρ1, ρ5  � 2, d ρ2ψ−3ρ2, ρ5  � 1,

d ρωρω+2, ρ5(  �

ω; if ω � 1, 2,

0; if ω � 3, 5,

1; if ω � 4, 6,

⎧⎪⎪⎨

⎪⎪⎩

d ρωρω+1, ρ6(  �

5 − ω
2




if ω � 1, 3, 5, 7,

6 − ω
2




, if ω � 2, 4, 6,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

d ρ2ψ−2ρ2, ρ6  � d ρ2ψ−1ρ1, ρ6  � 1,

d ρ2ψ−3ρ2, ρ6  � 2,

d ρωρω+2, ρ6(  �

2
ω

; ω � 1, 2,

1; ω � 3, 5,

0; if ω � 4, 6,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

d ρωρω+1, ρ7(  �

1; if ω � 1,

7 − ω
2

; if ω � 3, 5, 7,

6 − ω
2

; if ω � 2, 4, 6,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

d ρ2ψ−2ρ2, ρ7  � d ρ2ψ−1ρ1, ρ7  � 1,

d ρ2ψ−3ρ2, ρ6  � 0,

d ρωρω+2, ρ6(  �

5 − ω
2

; if ω � 1, 3, 5,

2; if ω � 2, 4

1; if ω � 6.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(10)

When ψ ≥ 6(even),

d ρωρω+1, ρ1(  �

ω − 2
2

; if ω � 1, 3, . . . ,ψ − 1,

2ψ − ω − 3
2

; if ω � ψ + 1,ψ + 3, . . . , 2ψ − 3,

ω
2

; if ω � 2, 4, . . . ,ψ,

2ψ − ω
2

; if ω � ψ + 2,ψ + 4, . . . , 2ψ − 4,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d ρ2ψ−2ρ2, ρ1  � d ρ2ψ−3ρ2, ρ1  � 1,

d ρ2ψ−1ρ1, ρ1  � 0,

d ρωρω+2, ρ1(  �

ω − 2
2

; if ω � 1, 3, . . . ,ψ − 1,

2ψ − ω − 1
2

; if ω � ψ + 1,ψ + 3, . . . , 2ψ − 5,

ω
2

; if ω � 2, 4, . . . ,ψ − 2,

2ψ − ω − 2
2

; if ω � ψ,ψ + 2, . . . , 2ψ − 4,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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d ρωρω+1, ρ4(  �

1; if ω � 1, 2,

ω − 3
2

; if ω � 3, 5, . . . ,ψ + 3,

2ψ − ω + 3
2

; if ω � ψ + 5,ψ + 7, . . . , 2ψ − 3

ω − 4
2

; if ω � 4, 6, . . . ,ψ + 2,

2ψ − ω + 2
2

; if ω � ψ + 4,ψ + 6, . . . , 2ψ − 4.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d ρ2ψ−2ρ2, ρ4  � d ρ2ψ−3ρ2, ρ4  � d ρ2ψ−1ρ1, ρ4  � 2.

(11)

When ψ ≥ 7(odd),

d ρωρω+2, ρ4(  �

2 − ω; if ω � 1, 2,

ω − 1
2

; if ω � 3, 5, . . . ,ψ + 1,

2ψ − ω + 1
2

; if ω � ψ + 3,ψ + 5, . . . , 2ψ − 5,

ω − 4
2

; if ω � 4, 6, . . . ,ψ + 2,

2ψ − ω + 2
2

; if ω � ψ + 4,ψ + 6, . . . , 2ψ − 4,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d ρωρω+1, ρψ+2  �

ψ − 2
2

; if ω � 1,

ψ − ω + 1
2




; if ω � 3, 5, . . . , 2ψ − 3,

ψ − ω − 2
2




; if ω � 2, 4, . . . , 2ψ − 4,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d ρ2ψ−2ρ2, ρψ+2  � d ρ2ψ−3ρ2, ρψ+2  � d ρ2ψ−1ρ1, ρψ+2  �
ψ − 4
2

,

d ρωρω+2, ρψ+2  �

ψ − ω + 1
2

; if ω � 1, 3, . . . ,ψ − 1,

ψ − ω + 3
2

; if ω � ψ + 1,ψ + 3, . . . , 2ψ − 5,

ψ − ω
2

; if ω � 2, 4, . . . ,ψ,

ω − ψ − 2
2

; if ω � ψ + 2,ψ + 4, . . . , 2ψ − 4,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d ρωρω+1, ρψ+3  �

ψ − 4
2

; if ω � 1,

ψ − ω + 3
2




; if ω � 3, 5, . . . , 2ψ − 3,

ψ − 2
2

; if ω � 2,

ψ − ω + 4
2




; if ω � 4, 6, . . . , 2ψ − 4,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d ρ2ψ−2ρ2, ρψ+3  � d ρ2ψ−1ρ1, ρψ+3  �
ψ − 4
2

,

d ρ2ψ−3ρ2, ρψ+3  �
ψ − 6
2

,

d ρωρω+2, ρψ+3  �

ψ − 2
2

; if ω � 1, 2,

ψ − ω + 1
2




; if ω � 3, 5, . . . , 2ψ − 5,

ψ − ω + 2
2

; if ω � 4, 6, . . . ,ψ,

1; if ω � ψ + 2,

ω − ψ − 2
2

; if ω � ψ + 4,ψ + 6, . . . , 2ψ − 4.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(12)

It is clear to see the distinct representations of all edges
with respect to edge resolving set Qe, and it is proved that
dime(TMLψ)≤ 4.

Now, for dime(TMLψ)≥ 4, choose the contradiction
method, and it implies that dime(TMLψ) � 3. Now, the
cardinality of edge metric generator Qe

′ is three, following is
some discussion for this contradiction:

Case 1: if three vertices with any arbitrary size of gap are
selected and Qe

′ � ρω, ρj, ρk  with
1≤ω, j, k(odd)≤ 2ψ − 3, then it implies the same
distances in the edges which are either
d(ρ1ρ2|Qe

′) � d(ρ1ρ2ψ−1|Qe
′), and it is also concluded

that we cannot take vertices in the edge metric gen-
erator with cardinality three.
Case 2: if all vertices with any arbitrary size of gap can
choose such as Qe

′ � ρω, ρj, ρk  with
2≤ω, j, k(even)≤ 2ψ − 2, then it implies the same
distances in the edges which are
d(ρ1ρ2|Qe

′) � d(ρ2ρ3|Qe
′), and it is also concluded that

we cannot take vertices in the edge metric generator
with cardinality three.
Case 3: now, the vertices ρω, ρj, ρk ∈ V(TMLψ) without
choosing the size of gap, then there exist an edge from
joining edges and another one edge from upper hor-
izontal edges having the same distances to each other
with respect to the decided edge metric generator, i.e.,
d(ρpρp+1|Qe

′) � d(ρpρp+2|Qe
′) where 2≤p(even)≤ 2ψ

−4 or d(ρpρp+2|Qe
′) � d(ρqρq+1|Qe

′) where 1≤p(odd)

≤ 2ψ − 5, and finally, we concluded that we cannot
take any type of vertices with any gap-size in the
edge metric generator with cardinality three,
which implies the contradiction that dime(TMLψ)

≠ 3, Moreover, this proves the double inequality which
is

dime TMLψ  � 4. (13)
□
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6. Conclusion

In the response of the question proposed by Kelenc et al. [3],
in this article, we discussed some networks which have
dim(G) � dime(G). Hexagonal Möbius ladder has three
metric and edge metric dimensions. Triangular ladder, tri-
angular Möbius ladder, and Möbius ladder fall in the cat-
egory which have dim(G)< dime(G). Moreover, there is no
change in the metric dimension and edge metric dimension
of triangular ladder graph after making it triangular Möbius
ladder and have dime(G) � dim(G) + 1 � 4.
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Accessibility, robustness, and connectivity are the salient structural properties of networks. *e labelling of networks with
numeric numbers using the parameters of edge or vertex weights plays an eminent role in the study of the aforesaid
properties. *e systems interlinked in a network are transformed into a graphical network, and specific numeric labels
assigned to the converted network under certain rules assist us in the regulation of data traffic, bandwidth, and coding/
decoding of signals. Two major classes of such network labellings are magic and antimagic. *e notion of super (a, 0) edge-
antimagic labelling on networks was identified in the late nineties. *e present article addresses super (a, 0) edge
antimagicness of union of the networks’ star Sn, the path Pn, and copies of paths and the rooted product of cycle Cn with
K2,m. We also provide super (a, 0) edge-antimagic labelling of the rooted product of cycle Cn and planar pancyclic
networks. Further, we design a super (a, 0) edge-antimagic labelling on a pancyclic network containing chains of C6 and
three different symmetrically designed lattices. Moreover, our findings have also been recapitulated in the shape of 3-D
plots and tables.

1. Introduction

In this section, we shall define our problem and explain the
objective of this study in Section 1.1, followed by Section 1.2,
consisting of the definitions and results which we will use in
our findings. Some previously performed work in this area
will also be discussed in this section. Moreover, Section 1.3
concerns with applications of antimagic and magic labelling
in various branches of networking, engineering, and com-
puter science.

1.1. Problem Definition and Objective of the Study. In the
fields of networking and computer science, the magic and
antimagic labelling on networks are designed due to their
extensive applications. Numerous results have been ob-
tained on numeric labelling of several operations on
networks such as Cartesian, lexicographical, corona, and
modular products of various kinds of connected networks

(see [1,2] for instance). *e present article addresses super
(a, 0) edge-antimagic labelling of the rooted product of
K2,m and Cn taking its disjoint union with the star, path,
and copies of paths. We shall also design super (a, 0) edge-
antimagic labelling on rooted product of specifically
designed planar pancyclic networks with cycle Cn.
Moreover, we shall design super (a, 0) edge-antimagic
labelling on planar pancyclic networks containing chains
of C6 and three different symmetric lattice networks
(notated as L1

n, L
2
n, and L3

n). Except lattice networks, in-
terestingly, all networks discussed in this note are planar.
*e overlapping probability of various networking ele-
ments minimizes in the course of planar networks. In
organizations, this issue of entities’ overlapping is one of
the major reasons of inefficiency. *e test ready antimagic
labellings obtained in this note on particular networks can
be utilized in various projects of computer science and
engineering admitting suitable and equivalently designed
schemes of networking.

Hindawi
Mathematical Problems in Engineering
Volume 2021, Article ID 5562544, 22 pages
https://doi.org/10.1155/2021/5562544

mailto:javaidmath@gmail.com
https://orcid.org/0000-0001-7241-8172
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/5562544


1.2. Definitions and Preliminaries. Some useful definitions
and preliminary results in the context of this note shall be
discussed in this section.We will also mention some relevant
studies previously done in this field.

An ordered 2-tuple comprising two sets, i.e., set of nodes
termed as vertex set V(G) and connection between these
vertices termed as edge set E(G), is called a network G,
where E(G) is contained in V(G) × V(G). A network G can
either be connected or consists of connected components.
We will consider nonempty and simple networks
throughout, having V(G) as its vertex set and E(G) as its
edge set with order |V(G)| � p and size |E(G)| � q. *e
network G in this case is termed as a (p, q)-network. Ref-
erence [3] is referred to for further discernment into the
network terminologies.

A labelling is a function that maps +ive integers (non-
zero) onto the component(s) of a network under specified
constraints. If the components include vertices and edges
both, then this labelling is termed as total. *e labellings are
referred to as vertex or edge labellings if they cover, re-
spectively, V(G) or E(G) alone in the domain. Magic and
antimagic labelling are two main classes of labelling. Pre-
cisely, equal or unequal vertex/edge weights refer to magic or
antimagic labellings, respectively.

Definition 1. For a (p, q)-network G � (V(G), E(G)), the
bijective function δ form V(G)∪E(G) onto 1, 2, . . . , p + q 

is termed as (a, d) edge-antimagic total labelling with the
constraint that the edge weights δ(x) + δ(xy) + δ(y), for
each xy ∈ E(G), constitute a sequence of consecutive positive
integers, where a is the minimum edge weight and common
difference is d. G is referred to be an (a, d) edge-antimagic
total network, if such a labelling exists.

Definition 2. A super (a, d) edge-antimagic total labelling is
in fact an (a, d) edge-antimagic total labelling in which
minimum labels 1, 2, . . . , p are assigned to vertices of the
(p, q)-network G. G is termed to be a super (a, d) edge-
antimagic total network in this case.

In Definitions 1 and 2, the minimum edge weight a

becomes constant c at d � 0, for all edges xy ∈ E(G), which
is referred to as magic sum or magic constant for the net-
work G.

Definition 3. A network G is termed as a pancyclic network if
it contains cycle of every order from 3 to |V(G)|.

Definition 4. Let G1 and G2 be two simple networks. *e
network obtained by taking |V(G1)| copies ofG2 and then for
each point (vertex) vj in V (called the root vertex) (G1), vj is
being replaced with the jth copy of G2, termed as the rooted
product of the networks G1 and G2. It is notated as G1°G2.

Further in the article, the abbreviations are being used as
given in. Table 1.

We further provide some specific definitions within the
corresponding section of our main results’ section.

*e idea of magic labelling on networks was identified by
Sadlácek in 1963 [4]. *e notion of antimagic labelling, for
vertex sums of networks, was presented by Ringel and

Hartsfield [5] later. Kotzig and Rosa brought into the light
the concept of magic valuations of networks in [6] which was
in fact the (a, 0)-EAM total labelling on networks (studied
by Ringel and Llado [7] in 1996). *e notion of S-(a, 0)-
EAM total labelling of networks was defined by Enomoto
et al. [8] with the terminology super edge-magic labelling.
Simanjantuk et al. highlighted (a, d)-EAM total labelling of
networks in [9] in year 2000.

*e literature of (a, 0)-EAM total labelling of networks
includes the following interesting and useful conjectures.

Conjecture 1. All trees admit (a, 0)-EAM total labelling [6].

Conjecture 2. All trees admit S-(a, 0)-EAM total labelling
[8].

Graph theorists, in the support of Conjecture 2, have
been rectifying several particular classes of trees. Using an
encryption of a computer programme, this conjecture has
been verified for the trees having at most 17 vertices by Lee
and Shah [10]. Specifically, the derivations can be seen for
stars, subdivided stars [11, 12, 13, 14, 15],w-trees [16, 17, 18],
banana trees [19], caterpillars [20], subdivided caterpillars
[21], and the union of books and stars [22]. Further relevant
works can be found in [23–25]. However, this conjecture is
still open for working. Enomoto et al. proved that if a simple
(p, q)-network G is S-(a, 0)-EAM total, then 2p − 3 is at
least q [8]. *ey further derived that the network Km,n is
S-(a, 0)-EAM total ⇔m or n is 1. Figueroa-Centeno et al.
derived that the union of networks K1,m ∪K1,n is S-(a, 0)-
EAM total if either m � η1(n + 1) or n � η2(n + 1) [26]. *e
network Cn is also proved to be S-(a, 0)-EAM total only if
n ≡ 1(mod 2) in [8]. In [27], C3 ∪Cn has been proven to be
S-(a, 0)-EAM total only when 6≤ n ≡ 0(mod 2). *e gen-
eralized prism Dm,n is proven to be S-(a, 0)-EAM total for all
odd values of m in [28]. Baig et al. classified a class of planar
pancyclic networks in [29] and exhibited its S-(a, 0)-EAM
total labelling for all possible values of the parameters in-
volved. An immensely advantageous lemma on S-(a, 0)-
EAM total networks is as follows. Liu at al. studied the
bounds of the minimum and maximum edge weights for
super (a, d)- EAM total labelling on a generalized class of
subdivided caterpillars in [30] for various values of d. In [31],
Ahmad et al. studied the super (a, 0)-EAM total labelling of
certain Toeplitz graphs combined with isolated vertices nK1,
for various values of n (also known as super edge-magic
deficiency of networks). *e properties and existence of
super (a, d) vertex-antimagic labelling of regular graphs
have been discussed in [32]. In [33], Ahmad et al. con-
structed the α- labelling, a special case of graceful labelling
(labelling in which distinct edge weights are considered with
respect to the difference of vertices’ labels) on trees, and
transformed this labelling to edge-antimagic vertex labelling

Table 1: Notations and their abbreviations used in the article.

Terminology Abbreviation
(a, d) edge-antimagic (a, d)-EAM
Super (a, d) edge-antimagic S-(a, d)-EAM
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of trees. In [34], S-(a, 0)-EAM total labelling on the graphs
G∪ nK1 has been studied, where G represents the unicyclic
graph, whereas S-(a, 0)-EAM total labelling of networks like
zig-zag triangle and disjoint union of combs and stars has
been studied in [35].

Lemma 1 (see [28]). A (℘,I)-network G is S-(a, 0)-EAM
total if and only if there is a bijection δ: V(G)⟶ 1, 2,{

. . . ,℘} such that the set S � δ(x) + δ(y)|xy ∈ E(G)  con-
sists of I consecutive integers. In such a case, δ extends to an
S-(a, 0)-EAM total labelling of G with magic constant R �

℘ + I + s, where s � min(S) and S � R − (℘ + 1),R − (℘+

2), . . . ,R − (℘ + I)}.

In Lemma 1, the sum δ(x) + δ(y) is called as edge sum
for each edge xy ∈ E(G). *is lemma will be used frequently
in our derivations, as it keeps this sufficient to label the
vertices of a network only to make the network S-(a, 0)-
EAM total, if the edge sums are positive consecutive integers.
*e following result is also very pertinent as far as S-(a, 0)-
EAM total networks are concerned.

Theorem 1. A simple network G admits an S-(a, 0)-EAM
total labelling⇔ G admits an S-(a-|E(G)| + 1, 2)-EAM total
labelling [36].

1.3. Applications in Networking, Computer Science, and
Engineering. In software engineering, network labelling
keeps on attaining an improved role in the security codes’
encryption in order to encounter the attacks of trojans onto
the precious data designed by hackers and also in designing of
algorithm that helps the transmission of data to various
networks and similar devices. *e configurations of software
in the encryption of their updated version is being improved
by the use of reference labels and test ready labels nowadays.
For connected components of networks in binary graphics,
the mechanism which is predominantly nurturing the crea-
tion of clearer graphics involves labelling [37]. *e study of
magic labelling has been appearing to be more useful grad-
ually in the data mining. *e task of collection of data for the
derivation of latest information gets more uncomplicated by
designating equal weightage data as a single element. Re-
sultantly, in organizations, the data mining task is becoming
facile and more simplistic with far less consumption of time
and effort due to the usage of magic labelling.

1.3.1. Networking. *e primary hallmarks in networking
are the functioning and optimization of the networks that
demand management, construction, and concrete plan-
ning of networks at its base. Wireless and wired net-
working are two fundamental types of networking. *e
importance and large-scale usage of wired networking
cannot be denied in the present era as well. *e appli-
cation of robust tools like network labelling is getting
attention due to an escalation in the usage of wireless
networking, in order to attain more precision in this field
(see [38]). *e modern era is of network communication
whose part and parcel is radio transmission. *e

interference, making the job of channel assignment more
complicated, is one of the major concerns in radio
transmission. *e transmission of concurrent networks
that are constraint-free, admitting same instance sur-
facing, is the central reason of this unwanted interruption
[39,40]. *e magic labelling assists in the allotment of
constant weights to the networks that are concurrent.
Such interferences are eliminated by using this procedure.
*e radio labelling on networks is playing a tremendous
part in the reduction of interference issue in wireless
networking from the last decade or so. For the automatic
routing in networks, the (a, 0)-antimagic labelling is
particularly very useful. In this regard, a suitable constant
edge-weight function is designed on a particular network,
which helps routing for automatic detection of the suc-
ceeding node in the network (see [41]).

1.3.2. Telecommunication. In modern era, telecommuni-
cation involves most successful application of network
labelling commercially [42]. In network telecommuni-
cation, a utility coverage region is split into a polygonal
area described as a cell. Such a cell serves as a separate
station. Using its radio transceiver, the base cell is
designed to be a hub with the capacity to interface with
other mobile stations. *e defiance task here for the base
cell is to facilitate with the ability to re-use utmost
channels, avoiding any violation of the constraints. *is
challenge is being tackled by assigning a label to each user,
while the communication loop of this user acquires a
distinct label. Resultantly, any pair of communication
terminals identifies the link label of connection path
automatically by simple use of graceful antimagic or
magic labelling.*e label of the path specifies uniquely the
two users which it interlinks conversely (see [43]).

1.3.3. Urban Planning. Consider the wheel W6, the helm
H6, and prism D5 in Figure 1 as a specific example. *e
edges of the networks W6 and H6 are labelled with
consecutive labels ranging from 1 up to the size of the
network such that the label appearing on all the vertices is
distinct, i.e., we are provided here with the vertex anti-
magic labelling of the networks, whereas with edge weight
29 (constant), edge-magic labelling on D5 is given [44,45].
As an example, the chambers are identified by point
(vertices) and admissible pathways to approach these
chambers are identified by edges, in a surveillance design
of highly secured building. A total disturbance in the
labelling will occur if a person attempts to breach a single
legal pathway. *e magic constant, in the scenario of
design like D5, gets disordered promptly in case of vio-
lation in the pathway. *is disorder, through program-
ming software, will abruptly alert to the security
concerned that the legitimate pathway has been breached.
Once such magic or antimagic labellings are designed on a
network, they can be used for surveillance of all the
networks having the same hubs and connections. Anti-
magic and magic labelling both are equally valuable in this
regard. In urban planning, this is one of the large-scale
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usages of the concept of labelling. *at is, as a model for
surveillance of the extensively secure areas, these label-
lings perform their distinct role [46].

1.3.4. Robotics. *e routing and functioning of inducted
robots at places like restaurants and factories in the form
of production lines and machine units derive assistance
by making use of any such suitable labelling function. In
order to keep robotic components kinetic or make
them stationary, these labelling functions assist to opt
which operation to be skipped at which instant and vice
versa. *e antimagic labelling and distance-based di-
mensions alike tools help to minimize the time and
maximize the accuracy of robots in their routing [47]. In
the industry, these tools are causing a massive reduction
in the cost.

2. Main Results

*is section contains our main findings. It is divided into
four subsections further. In Section 2.1, the S-(a, 0)-EAM
total labelling on the union of K2,m ∘Cn with copies of
paths, the star, and the path shall be designed, whereas in
Section 2.2, we derive an S-(a, 0)-EAM total labelling on
the rooted product of network Cn and pancyclic networks
H1 and H2 (planar also). Further, S-(a, 0)-EAM total

labelling of planar pancyclic network Γn and symmetric
lattice networks L1

n, L2
n, and L3

n shall be exhibited in
Sections 2.3 and 2.4, respectively.

2.1. S-(a, 0)-EAM Total Labelling of the Disjoint Union of
Cn°K2,m and Pn, Sn, and mP2. Our main motivation to ex-
plore the findings in this section is the following open
problem of Ngurah et al. [48].

Open Problem. For n≥ 2 and m≥ 3, is there any S-(a, 0)-
EAM total labelling of nK2,m?

In fact, the rooted product Cn°K2,m contains n copies of
the complete bipartite network K2,m. A cycle Cn is a 2-
regular network of order n, whereas the complete bipartite
network K2,m is class-wise regular in which one partitioned
class of vertices is 2-regular and other is m-regular, where
|V(K2,m)| � m + 2.

Theorem 2. For 2≤m ≡ 0(mod 2) and 3≤ n ≡ 1(mod 2),
the network (Cn ∘K2,m)∪K1,n ∪ (n − 1/2)K1 admits an
S-(a, 0)-EAM total labelling having a � 3mn + 8n + 2.

Proof. Consider the network G1 � (Cn ∘K2,m)∪K1,n ∪ (n −

1/2)K1 with connection scheme as below:

V G1(  � x
i
j: 1≤ i≤ n 1≤ j≤m ∪ yi, zi: 1≤ i≤ n 

∪ pi: 1≤ i≤ n ∪ ci: 1≤ i≤ (n − 1/2) ∪ c{ },

E G1(  � yix
i
j: 1≤ i≤ n, 1≤ j≤m 

∪ zix
i
j: 1≤ i≤ n, 1≤ j≤m ∪ cpi: 1≤ i≤ n 

∪ yiyi+1: 1≤ i≤ n − 1 ∪ y1yn .
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Figure 1: Vertex-antimagic total labelling of the wheel W6 and helm H6 and edge-magic labelling total of the prism D5 [44,45].
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Here, |V(G1)| � (7n + 2mn + 1/2) and |E(G1)| � 2n(m +

1). Define a labelling f1: V(G1)⟶ 1, 2, . . . ,{ (7n + 2mn +

1/2)} as

(i) For m � 2:

f1 x
i
j  �

5n + i

2
, j � 1, i ≡ 1(mod 2), 1≤ i≤ n,

4n + i

2
, j � 1, i ≡ 0(mod 2), 2≤ i≤ n − 1,

n(m + 2) − (i − 1), j � 2, 1≤ i≤ n.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

(ii) For m> 2:

f1 x
i
j  �

5n + i

2
, j �

m

2
, i ≡ 1(mod 2), 1≤ i≤ n,

4n + i

2
, j �

m

2
, i ≡ 0(mod 2), 2≤ i≤ n − 1,

n(m + 2) − (i − 1), j �
m

2
+ 1, 1≤ i≤ n,

n(j + 3) − (i − 1), 1≤ i≤ n, 1≤ j≤
m

2
− 1.

nj − (i − 1) + n: 1≤ i≤ n,
m

2
+ 2≤ j≤m.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

(iii) *e remaining labels for m≥ 2 are as follows:

f1 yi(  �

i + 2n + 1
2

, i ≡ 1(mod 2), 1≤ i≤ n,

i + 3n + 1
2

, i ≡ 0(mod 2), 2≤ i≤ n − 1,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f1 zi(  �

n(m + 1) +
i + 2n + 1

2
, i ≡ 1(mod 2), 1≤ i≤ n,

n(m + 1) +
i + 3n + 1

2
, i ≡ 0(mod 2), 2≤ i≤ n − 1.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f1 pi(  � i, 1≤ i≤ n,

f1(c) �
7n + 2mn + 1

2
,

f1 ci(  � mn + 3n + i, 1≤ i≤
n − 1
2

.

(4)
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All edge sums generated by the labelling scheme f1
constitute a sequence of consecutive integer (5n + 3/2), (5n+

5/2), (5n + 7/2), . . . , (4mn + 9n + 1/2). So, by Lemma 1, f1
extends to an S-(a, 0)-EAM total labelling of the network G1
having magic constant a � 3mn + 8n + 2.

Theorem 3. For 3≤m ≡ 1(mod 2) and 3≤ n ≡ 1(mod 2),
the network (Cn ∘K2,m)∪K1,n ∪ (n − 1/2)K1 admits an
S-(a, 0)-EAM total labelling with a � 3mn + 8n + 2.

Proof. Consider G2 � (Cn ∘K2,m)∪K1,n ∪ (n − 1/2)K1, a
network with odd m as follows:

V G2(  � x
i
j: 1≤ i≤ n, 1≤ j≤m ∪ yi, zi: 1≤ i≤ n 

∪ pi: 1≤ i≤ n ∪ ci: 1≤ i≤ (n − 1/2) ∪ c{ },

E G2(  � yix
i
j: 1≤ i≤ n, 1≤ j≤m ∪ zix

i
j: 1≤ i≤ n, 1≤ j≤m ∪ cpi: 1≤ i≤ n 

∪ yiyi+1: 1≤ i≤ n − 1 ∪ y1yn .

(5)

Here, |V(G2)| � (7n + 2mn + 1/2) and
|E(G2)| � 2n(m + 1). We define a labelling
f2: V(G2)⟶ 1, 2, . . . , (7n + 2mn + 1/2){ } as follows:

(i) For m � 3:

f2 x
i
j  �

5n + i

2
, j � 2, i ≡ 1(mod 2), 1≤ i≤ n,

4n + i

2
, j � 2, i ≡ 0(mod 2), 2≤ i≤ n − 1,

n(m + 2) − (i − 1), j � 3, 1≤ i≤ n,

4n − (i − 1), j � 1, 1≤ i≤ n.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

(ii) For m> 3:

f2 x
i
j  �

5n + i

2
, j �

m + 1
2

, i ≡ 1(mod 2), 1≤ i≤ n,

4n + i

2
, j �

m + 1
2

, i ≡ 0(mod 2), 2≤ i≤ n − 1,

n(m + 2) − (i − 1), j �
m + 3
2

, 1≤ i≤ n,

n(j + 3) − (i − 1), 1≤ i≤ n, 1≤ j≤
m − 1
2

.

nj − (i − 1) + n: 1≤ i≤ n,
m + 5
2
≤ j≤m.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)
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(iii) *e remaining labels for m≥ 3 are as follows:

f2 yi(  �

i + 2n + 1
2

, i ≡ 1(mod2), 1≤ i≤ n,

i + 3n + 1
2

, i ≡ 0(mod2), 2≤ i≤ n − 1,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

f2 zi(  �

n(m + 1) +
i + 2n + 1

2
, i ≡ 1(mod2), 1≤ i≤ n,

n(m + 1) +
i + 3n + 1

2
, i ≡ 0(mod2), 2≤ i≤ n − 1,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

f2 pi(  � i, 1≤ i≤ n,

f2(c) �
7n + 2mn + 1

2
,

f2 ci(  � mn + 3n + i, 1≤ i≤
n − 1
2

.

(8)

All edge sums generated by the above labelling scheme
f2 constitute a sequence of consecutive integer
(5n + 3/2), (5n + 5/2), (5n + 7/2), . . . , (4mn + 9n + 1/2). By
Lemma 1, f2 extends to an S-(a, 0)-EAM total labelling of
the network G2 having a � 3mn + 8n + 2.

Theorem 4. For 2≤m ≡ 0 (mod2) and 3≤ n ≡ 1 (mod2),
the network (Cn ∘K2,m)∪ nP2 admits an S-(a, 0)-EAM total
labelling with a � (6mn + 17n + 3/2).

Proof. Let G3 � (Cn ∘K2,m)∪ nP2 be a network for
nn ≡ 1(mod 2) with vertices:

V G3(  � x
i
j: 1≤ i≤ n, 1≤ j≤m ∪ yi, zi: 1≤ i≤ n 

∪ pi, qi: 1≤ i≤ n ,

E G3(  � yix
i
j: 1≤ i≤ n, 1≤ j≤m ∪ zix

i
j: 1≤ i≤ n, 1≤ j≤m 

∪ piqi: 1≤ i≤ n 

∪ yiyi+1: 1≤ i≤ n − 1 ∪ y1yn .

(9)

Here, |V(G3)| � n(m + 4) and |E(G3)| � 2n(m + 1). A
labelling function f3: V(G3)⟶ 1, 2, . . . , n(m + 4){ } is
defined as follows:

(i) For m � 2:

f3 x
i
j  �

1
2

(5n + i), j � 1, 1≤ i≤ n, i ≡ 1(mod2),

1
2

(4n + i), j � 1, i ≡ 0(mod2), 2≤ i≤ n − 1,

n(m + 2) − (i − 1), j � 2, 1≤ i≤ n.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(10)

(ii) For m> 2:

f3 x
i
j  �

1
2

(5n + i), j �
m

2
, i ≡ 1(mod2), 1≤ i≤ n,

1
2

(4n + i), j �
m

2
, i ≡ 0(mod2), 2≤ i≤ n − 1,

n(m + 2) − (i − 1), j �
m

2
+ 1, 1≤ i≤ n,

n(j + 3) − (i − 1), 1≤ i≤ n, 1≤ j≤
m

2
− 1.

nj − (i − 1) + n: 1≤ i≤ n,
m

2
+ 2≤ j≤m.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)

Mathematical Problems in Engineering 7



(iii) *e remaining labels for m≥ 2 are as follows:

f3 yi(  �

i + 2n + 1
2

, i ≡ 1(mod2), 1≤ i≤ n,

i + 3n + 1
2

, i ≡ 0(mod2), 2≤ i≤ n − 1,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f3 zi(  �

n(m + 1) +
i + 2n + 1

2
, i ≡ 1(mod2), 1≤ i≤ n,

n(m + 1) +
i + 3n + 1

2
, i ≡ 0(mod2), 2≤ i≤ n − 1.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f3 qi(  �

n(m + 1) +
5n − i + 2

2
: i ≡ 1(mod2), 1≤ i≤ n,

n(m + 1) +
6n − i + 2

2
: i ≡ 0(mod2), 2≤ i≤ n − 1,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f3 pi(  � i, 1≤ i≤ n.

(12)

All edge sums generated by the above labelling scheme f3
constitute a sequence of consecutive integer (5n + 3/2), (5n+

5/2), (5n + 7/2), . . . , (4mn + 9n + 1/2). So, by Lemma 1, f3

extends to an S-(a, 0)-EAM total labelling of the network G3
admitting magic constant a � (6mn + 17n + 3/2).

Theorem 5. For 3≤m ≡ 1(mod2) and 3≤ n ≡ 1(mod2), the
network (Cn ∘K2,m)∪ nP2 admits an S-(a, 0)-EAM total
labelling with a � (6mn + 17n + 3/2).

Proof. Consider the network G4 � (Cn ∘K2,m)∪ nP2, for
odd m with the construction:

V G4(  � x
i
j: 1≤ i≤ n, 1≤ j≤m ∪ yi, zi: 1≤ i≤ n 

∪ pi, qi: 1≤ i≤ n ,

E G4(  � yix
i
j: 1≤ i≤ n, 1≤ j≤m 

∪ zix
i
j: 1≤ i≤ n, 1≤ j≤m ∪ piqi: 1≤ i≤ n 

∪ yiyi+1: 1≤ i≤ n − 1 ∪ y1yn .

(13)

Here, |V(G4)| � n(m + 4) and |E(G4)| � 2n(m + 1).
Define a function f4: V(G4)⟶ 1, 2, . . . , n(m + 4){ } as
follows:

(i) For m � 3:

f4 x
i
j  �

1
2

(5n + i), j � 2, i ≡ 1(mod2), 1≤ i≤ n,

1
2

(4n + i), j � 2, i ≡ 0(mod2), 2≤ i≤ n − 1,

n(m + 2) − (i − 1), j � 3, 1≤ i≤ n,

4n − (i − 1), j � 1, 1≤ i≤ n.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(14)

(ii) For m> 3:

f4 x
i
j  �

1
2

(5n + i), j �
m + 1
2

, i ≡ 1(mod2), 1≤ i≤ n,

1
2

(4n + i), j �
m + 1
2

, i ≡ 0(mod2), 2≤ i≤ n − 1,

n(m + 2) − (i − 1), j �
m + 3
2

, 1≤ i≤ n,

n(j + 3) − (i − 1), 1≤ i≤ n, 1≤ j≤
m − 1
2

.

nj − (i − 1) + n: 1≤ i≤ n,
m + 5
2
≤ j≤m.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(15)
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(iii) *e remaining labels for m≥ 3 are as follows:

f4 yi(  �

i + 2n + 1
2

, i ≡ 1(mod2), 1≤ i≤ n,

i + 3n + 1
2

, i ≡ 0(mod2), 2≤ i≤ n − 1,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f4 zi(  �

n(m + 1) +
i + 2n + 1

2
, i ≡ 1(mod2), 1≤ i≤ n,

n(m + 1) +
i + 3n + 1

2
, i ≡ 0(mod2), 2≤ i≤ n − 1,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f4 qi(  �

n(m + 1) +
5n − i + 2

2
, i ≡ 1(mod2), 1≤ i≤ n,

n(m + 1) +
6n − i + 2

2
, i ≡ 0(mod2), 2≤ i≤ n − 1,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f4 pi(  � i, 1≤ i≤ n.

(16)

All edge sums generated by the above labelling scheme
f4 constitute a sequence of consecutive integer
(5n + 3/2), (5n + 5/2), (5n + 7/2), . . . , (4mn + 9n + 1/2). So,

by Lemma 1,f4 extends to an S-(a, 0)-EAM total labelling of
the network G4 admitting a � (6mn + 17n + 3/2).

Theorem 6. For 2≤m ≡ 0(mod2) and 3≤ n ≡ 1(mod2), the
network (Cn ∘K2,m)∪Pn+1 admits an S-(a, 0)-EAM total
labelling with a � (6mn + 17n + 3/2).

Proof. Consider the network G5 � (Cn ∘K2,m)∪Pn+1, for
n≥ 3 odd, with connections:

V G5(  � x
i
j: 1≤ i≤ n, 1≤ j≤m 

∪ yi, zi: 1≤ i≤ n ∪ pi: 1≤ i≤ n + 1 ,

E G5(  � yix
i
j: 1≤ i≤ n, 1≤ j≤m 

∪ zix
i
j: 1≤ i≤ n, 1≤ j≤m ∪ y1yn 

∪ pipi+1: 1≤ i≤ n ∪ yiyi+1: 1≤ i≤ n − 1 .

(17)

Here, |V(G5)| � 3n + mn + 1 and |E(G5)| � 2n(m + 1).
A labelling f5: V(G5)⟶ 1, 2, . . . , mn + 3n + 1{ } is defined
as follows:

(i) For m � 2:

f5 x
i
j  �

1
2

(4n + i + 1), j � 1, i ≡ 1(mod2), 1≤ i≤ n,

1
2

(3n + i + 1), j � 1, i ≡ 0(mod2), 2≤ i≤ n − 1,

1
2

(2mn + 3n − 2i + 3), j � 2, 1≤ i≤ n.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(18)

(ii) For m> 2:

f5 x
i
j  �

1
2

(4n + i + 1), j �
m

2
, i ≡ 1(mod2), 1≤ i≤ n,

1
2

(3n + i + 1), j �
m

2
, i ≡ 0(mod2), 2≤ i≤ n − 1,

1
2

(2mn + 3n − 2i + 3), j �
m

2
+ 1, 1≤ i≤ n,

1
2

(2nj + 5n − 2i + 3), 1≤ i≤ n, 1≤ j≤
m

2
− 1,

1
2

(2nj + n − 2i + 3): 1≤ i≤ n,
m

2
+ 2≤ j≤m.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(19)
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(iii) *e remaining labels for m≥ 2 are as follows:

f5 yi(  �

n + i + 2
2

, i ≡ 1(mod2), 1≤ i≤ n,

2n + i + 2
2

, i ≡ 0(mod2), 2≤ i≤ n − 1,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f5 zi(  �

n(m + 1) +
n + i + 2

2
, i ≡ 1(mod2), 1≤ i≤ n,

n(m + 1) +
2n + i + 2

2
, i ≡ 0(mod2), 2≤ i≤ n − 1,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f5 pi(  �

i + 1
2

, i ≡ 1(mod2), 1≤ i≤ n,

1
2

(2mn + 5n + i + 1), i ≡ 0(mod2), 2≤ i≤ n + 1.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(20)

All edge sums generated by the above labelling scheme
f5 constitute a sequence of consecutive integer (3n + 5/2),

(3n + 7/2), (3n + 9/2), . . . , (4mn + 7n + 3/2). *erefore, by
Lemma 1, f5 extends to an S-(a, 0)-EAM total labelling of

the network G5 admitting magic constant a � (6mn + 13n+

7/2).

Theorem 7. For 3≤m ≡ 1(mod2) and 3≤ n ≡ 1(mod2), the
network (Cn ∘K2,m)∪Pn+1 admits an S-(a, 0)-EAM total
labelling with a � (6mn + 13n + 7/2).

Proof. Consider the network G6 � (Cn ∘K2,m)∪Pn+1, for
both m and n≥ 3, as follows:

V G6(  � x
i
j: 1≤ i≤ n, 1≤ j≤m 

∪ yi, zi: 1≤ i≤ n ∪ pi: 1≤ i≤ n + 1 ,

E G6(  � yix
i
j: 1≤ i≤ n, 1≤ j≤m 

∪ zix
i
j: 1≤ i≤ n, 1≤ j≤m ∪ y1yn 

∪ pipi+1: 1≤ i≤ n ∪ yiyi+1: 1≤ i≤ n − 1 .

(21)

Here, |V(G6)| � 3n + mn + 1 and |E(G6)| � 2n(m + 1).
A labelling f6: V(G6)⟶ 1, 2, . . . , 3n + mn + 1{ } is
designed as follows:

(i) For m � 3:

f6 x
i
j  �

1
2

(4n + i + 1), j � 2, i ≡ 1(mod2), 1≤ i≤ n,

1
2

(3n + i + 1), j � 2, i ≡ 0(mod2), 2≤ i≤ n − 1,

1
2

(2mn + 3n − 2i + 3), j � 3, 1≤ i≤ n,

1
2

(7n − 2i + 3), j � 1, 1≤ i≤ n.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(22)

(ii) For m> 3:

f6 x
i
j  �

1
2

(4n + i + 1), j �
m + 1
2

, i ≡ 1(mod2), 1≤ i≤ n,

1
2

(3n + i + 1), j �
m + 1
2

, i ≡ 0(mod2), 2≤ i≤ n − 1,

1
2

(2mn + 3n − 2i + 3), j �
m + 3
2

, 1≤ i≤ n,

1
2

(2nj + 5n − 2i + 3), 1≤ i≤ n, 1≤ j≤
m − 1
2

,

1
2

(2nj + n − 2i + 3), 1≤ i≤ n,
m + 5
2
≤ j≤m.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(23)
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(iii) *e remaining labels for m≥ 3 are as follows:

f6 yi(  �

n + i + 2
2

, i ≡ 1(mod2), 1≤ i≤ n,

2n + i + 2
2

, i ≡ 0(mod2), 2≤ i≤ n − 1,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

f6 zi(  �

n(m + 1) +
n + i + 2

2
, i ≡ 1(mod2), 1≤ i≤ n,

n(m + 1) +
2n + i + 2

2
, i ≡ 0(mod2), 2≤ i≤ n − 1,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

f6 pi(  �

i + 1
2

, i ≡ 1(mod2), 1≤ i≤ n,

1
2

(2mn + 5n + i + 1), i ≡ 0(mod2), 2≤ i≤ n + 1.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(24)

*e edge sums generated by the above labelling scheme
f6 constitute a sequence of consecutive integer (3n + 5/2),

(3n + 7/2), (3n + 9/2), . . . , (4mn + 7n + 3/2). By Lemma 1,
f6 extends to an S-(a, 0)-EAM total labelling of the network
G6 having magic constant a � (6mn + 13n + 7/2).

Observations. *e network Cn is S-(a, 0)-EAM total for
n ≡ 1(mod2) only [8], pointing out that C4 is not S-(a, 0)-
EAM total. *e networks in *eorems 2, 4, and 6 contain
interesting substructures. Keeping m � 2 fixed for these
results, S-(a, 0)-EAM total families of networks involving n

copies of C4 can be obtained. For instance, S-(a, 0)-EAM
total labelling (again by using Lemma 1) of
(C5 ∘C4)∪K1,5 ∪ 2K1, (C5 ∘C4)∪ 5P2, and (C5 ∘C4)∪P6 is
presented in Figure 2.

*e following results from *eorems 2–7 are direct
consequences of *eorem 1.

Theorem 8. ∀m≥ 2 and 3≤ n ≡ 1(mod2), (Cn ∘K2,m)∪
K1,n ∪ (n − 1/2)K1 admits an S-(mn + 6n + 3, 2)-EAM total
labelling.

Theorem 9. ∀m≥ 2 and 3≤ n ≡ 1(mod2), (Cn ∘K2,m)∪
nP2 admits an S-((2mn + 13n + 5/2), 2)-EAM total labelling.

Theorem 10. ∀m≥ 2 and 3≤ n ≡ 1(mod2), (Cn ∘K2,m)∪
Pn+1 admits an S-((2mn + 9n + 9/2), 2)-EAM total labelling.

2.2. S-(a, 0)-EAM Total Labelling of Rooted Product of Pan-
cyclic Networks with Cn. *e present section deals with

S-(a, 0)-EAM total labelling of the rooted product of two
specific planar non-isomorphic pancyclic networks and the
cycle Cn.

A specific pancyclic network H1 is defined as follows.

Definition 5. H1 is a pancyclic network having the following
construction.

V H1(  � y, x1, x2, x3, x4, x5, x6, z ,

E H1(  � x1x3, x3x5, x2x4, x4x6, x1x2,

· x3x4, x5x6, x2x3, x4x5∪ yx1, yx2, zx5, zx6 .

(25)

Theorem 11. For n ≡ 1(mod2), the rooted product Cn ∘H1
admits an S-(a, 0)-EAM total labelling having magic constant
a � (45n + 3/2).

Proof

(i) For n � 1, C1 ∘H1 � H1. *e vertex labelling
y, x1, x2, x3, x4, x5, x6, y, z: 2, 1, 4, 3, 6, 5, 8, 7} ex-
tends to an S-(24, 0)-EAM total labelling of Cn ∘H1,
by Lemma 1.

(ii) For n≥ 3.

Consider the network Cn ∘H1 with |V(Cn ∘H1)| � 8n

and |E(Cn ∘H1)| � 14n connected as per the following
scheme:

V Cn ∘H1(  � xi, vi: 1≤ i≤ n ∪ yi, zi, wi: 1≤ i≤ 2n ,

E Cn ∘H1(  � yiyi+1, wiwi+1, zizi+1: 1≤ i≤ 2n − 1, i ≡ 1(mod2) 

∪ yizi, ziwi: 1≤ i≤ 2n ∪ xixi+1: 1≤ i≤ n − 1 

∪ x1xn ∪ ziyi+1, wizi+1: 1≤ i≤ 2n − 1, i ≡ 1(mod2) 

∪ xiy2i− 1, xiy2i, viw2i− 1, viw2i: 1≤ i≤ n .

(26)
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Consider a labelling ψ1: V(Cn ∘H1)⟶ 1, 2, . . . , |V{

(Cn ∘H1)| � 8n} defined as

ψ1 xi(  �

i + 1
2

, i ≡ 1(mod2), 1≤ i≤ n,

i + n + 1
2

, i ≡ 0(mod2), 2≤ i≤ n − 1,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ψ1 yi(  �

6n − i + 2
2

, i ≡ 0(mod2), 2≤ i≤ 2n,

6n + i + 1
4

, i ≡ 1(mod4), 1≤ i≤ 2n − 1,

4n + i + 1
4

, i ≡ 3(mod4), 3≤ i≤ 2n − 3,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ1 zi(  �

16n + i

4
, i ≡ 0(mod4), 4≤ i≤ 2n − 2,

12n + i + 3
4

, i ≡ 1(mod4), 1≤ i≤ 2n − 1,

18n + i

4
, i ≡ 2(mod4), 2≤ i≤ 2n,

14n + i + 3
4

, i ≡ 3(mod4), 3≤ i≤ 2n − 3,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ1 wi(  �

12n − i + 1
2

, i ≡ 1(mod2), 1≤ i≤ 2n − 1,

26n + i + 2
4

, i ≡ 0(mod4), 4≤ i≤ 2n − 2,

24n + i + 2
4

, i ≡ 2(mod4), 2≤ i≤ 2n,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ1 vi(  �

15n + i

2
, i ≡ 1(mod2), 1≤ i≤ n,

14n + i

2
, i ≡ 0(mod2), 2≤ i≤ n − 1.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(27)
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(a)
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6
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19
9

24
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7
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25
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8
23

1 5432
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28 26292730

(b)

18

19

4
9

17
7

22

16

12
5

20
10

15
8

23

13

14

6
21

1 325224

11

26

(c)

Figure 2: An S-(a, 0)-EAM total labelling (using Lemma 1) of the cyclic networks (a)(C5 ∘C4)∪K1,5 ∪ 2K1, (b) (C5 ∘C4)∪ 5P2, and (c)
(C5 ∘C4)∪P6.

12 Mathematical Problems in Engineering



All edge sums generated by the above labelling scheme
ψ1 form a sequence of consecutive integer
(n + 3/2), (n + 5/2), (n + 7/2), . . . , (29n + 1/2). *erefore,
by Lemma 1, ψ1 extends to an S-(a, 0)-EAM total labelling of
the network Cn ∘H1 having magic constant (45n + 3/2).

Definition 6. We define a pancyclic network H2≇H1 having
vertex set:

V H2(  � y, x1, x2, x3, x4, x5, x6, z ,

E H2(  � x1x3, x3x5, x2x4, x4x6, x1x2, x5x6, x2x3, x4x5 ∪ yx1, yx2, zx5, zx6, yz .
(28)

Theorem 12. For n ≡ 1(mod2), the rooted product Cn ∘H2
admits an S-(a, 0)-EAM total labelling with magic constant
a � (45n + 3/2).

Proof

(i) For n � 1, C1 ∘H2 � H2.
(ii) For n≥ 3.

Consider Cn ∘H2 with |V(Cn ∘H2)| � 8n and
|E(Cn ∘H2)| � 14n with the following connection:

V Cn ∘H2(  � xi, vi: 1≤ i≤ n ∪ wi, yi, zi: 1≤ i≤ 2n ,

E Pn ∘H2(  � yiyi+1, wiwi+1: 1≤ i≤ 2n − 1, i ≡ 1(mod2) 

∪ yizi, ziwi: 1≤ i≤ 2n ∪ xixi+1: 1≤ i≤ n − 1 ∪ x1xn 

∪ ziyi+1, wizi+1: 1≤ i≤ 2n − 1, i ≡ 1(mod2) 

∪ xiy2i− 1, xiy2i, viw2i− 1, viw2i, xivi: 1≤ i≤ n .

(29)

*e labelling scheme for n � 1 and n≥ 3 is the same as ψ1
designed in *eorem 11.

A direct derivation from*eorem 1 is given as follows.

Theorem 13. For n ≡ 1(mod2), Cn ∘H1 and Cn ∘H2 are
S-((17n + 5/2), 2)-EAM total.

2.3. S-(a, 0)-EAM Total Labelling of a Pancyclic Class of
Networks: Extension of a Result Appearing in [29]. In [29],
Baig et al. provided a result regarding S-(a, 0)-EAM total
labelling of a pancyclic class of networks involving chains of
cycle C4. Here, we shall introduce a pancyclic family of
networks involving chains of cycle C6, while our point of
convergence is the S-(a, 0)-EAM total labelling of this class.
*us, we further extend the results of Baig et al. [29].

Definition 7. Ge pancyclic network Γn is a network with
order |V(Γn)| � 6n and |E(Γn)| � 12n − 3, with structure as
follows:

V Γn(  � zi, xi, yi: 1≤ i≤ 2n ,

E Γn(  � yiyi+1, xixi+1, zizi+1: 1≤ i≤ 2n − 1 ∪ xiyi, xizi, yizi: 1≤ i≤ 2n .
(30)

Figure 3 reveals general formation of Γn.
In Figure 4, we have shown the network Γ2 and its

contained cycles of orders 3, 4, . . . , 12.
In the upcoming result, we show that the pancyclic

network Γn is S-(a, 0)-EAM total.

Theorem 14. For all positive integers n, the pancyclic net-
work Γn is S-(a, 0)-EAM total having magic constant 18n.

Proof

(i) For n�1, the labelling z1,z2,x1,x2,y1, y2:3,5,2,4,1,6}

extends to an S-(18,0)-EAM total labelling of Γ1 by
Lemma 1.

(ii) For n≥ 3.

Define here a labelling g: V(Γn)⟶ 1, 2, . . . , 6n{ } as

g xi(  �
3i: i ≡ 1(mod2), 1≤ i≤ 2n − 1,

3i − 1: i ≡ 0(mod2), 2≤ i≤ 2n,


g yi(  �
3i − 2: i ≡ 1(mod2), 1≤ i≤ 2n − 1,

3i: i ≡ 0(mod2), 2≤ i≤ 2n,


g zi(  �
3i − 1: i ≡ 1(mod2), 1≤ i≤ 2n − 1,

3i − 2: i ≡ 0(mod2), 2≤ i≤ 2n.


(31)

All edge sums generated by the above labelling scheme
constitute a sequence of consecutive integers
3, 4, . . . , 12n − 1. *erefore, by Lemma 1, g extends to an
S-(a, 0)-EAM total labelling of Γn having magic constant
a � 18n.

Again from*eorem 1, we have a direct consequence as
follows.

Theorem 15. For all positive integers n, the pancyclic net-
work Γn admits an S-(6n + 4, 2)-EAM total labelling.
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2.4. S-(a, 0)-EAM Total Labelling of Symmetric Lattice
Networks

Definition 8. Consider a tripartite network T having vertex-
edge connections as follows:

V(T) � x, y, z, u, v, w ,

E(T) � uv, vw, xy, yz, uy, wy, xv, zv, vy .
(32)

In this section, we study the S-(a, 0)-EAM total labelling
of symmetric lattice networks L1

n, L
2
n, and L3

n. *ese sym-
metric lattices contain n copies of the tripartite network T .

Definition 9

(i) For n � 1, L1
1 � T .

(ii) For n≥ 2.

Ge lattice network L1
n is a network with order 6n and size

12n − 3 defined as follows:

V L
1
n  � xi, yi, ci: 1≤ i≤ 2n .

E L
1
n  � ciyi+1, cixi+1, ciyi, cixi: 1≤ i≤ 2n − 1, i ≡ 1(mod2) 

∪ cici+1: 2≤ i≤ 2n − 1 ∪ xixi+1, yiyi+1: i ≡ 0(mod2), 2≤ i≤ 2(n − 1) ,

∪ ciyi− 1, cixi− 1, ciyi, cixi: i ≡ 0(mod2), 2≤ i≤ 2n .

(33)

Figure 5 illustrates the general formation of the lattice
network L1

n, ∀ n ∈ N.

Theorem 16. For all positive integers n, the lattice network
L1

n is S-(a, 0)-EAM total having magic constant 18n.

Proof

(i) For n � 1: the vertex labelling x1, c1, y1, x2, c2, y2:

3, 1, 2, 5, 6, 4} extends to an S-(18, 0)-EAM total la-
belling of L1

1, by Lemma 1.
(ii) For n> 1.

We are defining a labelling φ1: V(L1
n)⟶ 1, 2, . . . , 6n{ }

as follows:

φ1 xi(  �
3i: i ≡ 1(mod2), 1≤ i≤ 2n − 1,

3i − 1: i ≡ 0(mod2), 2≤ i≤ 2n,


φ1 yi(  �
3i − 1: i ≡ 1(mod2), 1≤ i≤ 2n − 1,

3i − 2: i ≡ 0(mod2), 2≤ i≤ 2n,


φ1 ci(  �
3i − 2: i ≡ 1(mod2), 1≤ i≤ 2n − 1,

3i: i ≡ 0(mod2), 2≤ i≤ 2n.


(34)

All edge sums generated by the above labelling scheme
constitute a sequence of consecutive integers 3, 4, . . . ,

12n − 3. So, by Lemma 1, φ1 extends to an S-(a, 0)-EAM
total labelling of L1

n admitting magic constant 18n.

Definition 10

(i) For n � 1, L2
1 � T .

(ii) For n≥ 2.

x1

y1

z1

x2

y2

z2

x3

y3

z3

x4

y4

z4

x2n–1

y2n–1

z2n–1

x2n

y2n

z2n

Figure 3: *e general formation of the pancyclic network Γn.

C3 C4 C5 C6 C7

C12C11C10C9

C8

Γ2

Figure 4: *e network Γ2 having order 12 and its contained cycles C3, C4, . . . , C12.
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Ge lattice network L2
n having order 10n − 4 and size

20n − 11 is defined as follows:

V L
2
n  � xi, yi: 1≤ i≤ 2n ∪ ci: 1≤ i≤ 2(2n − 1) ∪ ui, vi: 1≤ i≤ n − 1 .

E L
2
n  � ciyi+2/2, cixi+2/2, ciyi/2, cixi/2: 2≤ i≤ 2(2n − 1), i ≡ 2(mod4) 

∪ ciyi+2/2, ciyi+3/2, cixi+2/2, cixi+3/2: i ≡ 1(mod4), 1≤ i≤ 4n − 3 

∪ cici+1: 1≤ i≤ 4n − 3, i ≡ 1(mod4) ∪ uivi: 1≤ i≤ n − 1 

∪ xiui/2, yivi/2: 2≤ i≤ 2(n − 1), i ≡ 0(mod2) 

∪ uix2i+1, viy2i+1, uic4i− 1, vic4i− 1, uic4i, vic4i: 1≤ i≤ n − 1 

∪ cici+1: i ≡ 0(mod2), 2≤ i≤ 4(n − 1) .

(35)

In Figure 6, we have presented the general formation of
the lattice network L2

n, ∀ n ∈ N.

Theorem 17. For all positive integers n, the lattice network
L2

n is S-(a, 0)-EAM total with magic constant 30n − 12.

Proof

(i) For n � 1: the vertex labelling x1, c1, y1, x2, c2, y2:

3, 1, 2, 5, 6, 4} extends to an S-(18, 0)-EAM total la-
belling of L2

1, by Lemma 1.
(ii) For n> 1.

A labelling φ2: V(L2
n)⟶ 1, 2, . . . , 10n − 4{ } is defined

as follows:

φ2 xi(  �
5i − 2: i ≡ 1(mod2), 1≤ i≤ 2n − 1,

5i − 5: i ≡ 0(mod2), 2≤ i≤ 2n,


φ2 yi(  �
5i − 3: i ≡ 1(mod2), 1≤ i≤ 2n − 1,

5i − 6: i ≡ 0(mod2), 2≤ i≤ 2n,


φ2 ci(  �

1
2

(5i − 3): 1≤ i≤ 4n − 3, i ≡ 1(mod4),

1
2

(5i + 2): 2≤ i≤ 4n − 2, i ≡ 2(mod4),

1
2

(5i − 1): 3≤ i≤ 4n − 5, i ≡ 3(mod4),

1
2

(5i): 4≤ i≤ 4(n − 1), i ≡ 0(mod4),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ2 ui(  � 10i − 1, 1≤ i≤ n − 1,

φ2 vi(  � 10i − 2, 1≤ i≤ n − 1.

(36)

All edge sums generated by the above labelling
scheme constitute a sequence of consecutive integers
3, 4, . . . , 20n − 9. So, by Lemma 1, φ2 extends to an
S-(a, 0)-EAM total labelling of L2

n having magic constant
30n − 12.

Definition 11

(i) For n � 1, L3
1 � T .

(ii) For n≥ 2.

x2n–1

y2n–1

c2n–1

x2n

y2n

c2n

x6

y6

c6

x5

y5

c5

x4

y4

c4

x3

y3

c3

x2

y2

c2

x1

y1

c1

Figure 5: *e general formation of the lattice network L1
n,∀ n ∈ N.
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Ge lattice network L3
n having order 10n − 4 and size

20n − 11 is defined as follows:

V L
3
n  � xi, yi: 1≤ i≤ 2n ∪ ci: 1≤ i≤ 2(2n − 1) ∪ ui, vi: 1≤ i≤ n − 1 ,

E L
3
n  � ciyi+2/2, cixi+2/2, ciyi/2, cixi/2: 2≤ i≤ 2(2n − 1), i ≡ 2(mod4) 

∪ ciyi+2/2, ciyi+3/2, cixi+1/2, cixi+3/2: 1≤ i≤ 4n − 3, i ≡ 1(mod4) 

∪ xiui/2, yivi/2: i ≡ 0(mod2), 2≤ i≤ 2(n − 1) ∪ cici+1: 1≤ i≤ 4n − 3 

∪ uix2i+1, viy2i+1, uic4i− 1, vic4i− 1, uic4i, vic4i: 1≤ i≤ n − 1 .

(37)

Figure 7 illustrates the general form of the lattice net-
work L3

n, ∀ n ∈ N.

Theorem 18. For all positive integers n, the lattice network
L3

n is S-(a, 0)-EAM total with magic constant 30n − 12.

Proof. For L3
n, the labelling design is similar as in *eorem

17.

3. Illustration through Examples and Proposed
Open Problems

3.1. Examples. *e S-(132, 0)-EAM total labelling of
(C5 ∘K2,6)∪K1,5 ∪ 2K1 and S-(163, 0)-EAM total labelling
of (C7 ∘K2,5)∪K1,7 ∪ 3K1 are presented, respectively, in
Figures 8(a) and 8(b). In Figure 8(a), the parameters are
{n � 5, m � 6} and a � 132, while in Figure 8(b), the pa-
rameters are {n � 7, m � 5} and a � 163. *ese are perfect
according to our depiction of the magic constants in the
proofs of *eorems 2 and 3.

Similarly, Figures 9 and 10 illustrate *eorems 4 and 5
and *eorems 6 and 7, respectively, for the values of the
parameters given in each. *e values of a here are perfectly
similar as depicted in our main findings.

Figures 11(a) and 11(b) illustrate *eorems 11 and 12,
respectively, for n � 5.

Figure 12 reveals an example of *eorem 15 corre-
sponding to parameter n � 3.

Figures 13–15 refer to the illustration of S-(a, 0)-EAM
total labelling of lattice networks L1

5, L
2
4, and L3

4 (*eorems
16–18).

Due to facilitation of Lemma 1, edge labels are not
needed to be provided in all of the above illustrative
figures. As the edge sums constitute a sequence of +ve
consecutive integers, assigning the remaining labels
q, q − 1, . . . , p + 2, p + 1  to the edges in ascending or
descending order will generate S-(a′, 2) or (a, 0)-EAM
total labelling on that network, respectively, where a

(magic constant) and a′ (minimum edge weight) attain
some suitable values accordingly. More precisely,
according to Lemma 1, this vertex labelling, consisting of
consecutive integers, extends to an S-(a, 0)-EAM total
labelling of the networks.

3.2. Open Problems. *e open problems relevant to the
findings (*eorems 2–7) of Section 2 are proposed as follows:

(i) For 2≤ n ≡ 0(mod2), obtain any S-(a, 0)-EAM total
labelling of the (Cn ∘K2,m)∪K1,n ∪ (n − 1/2)K1.

(ii) For 2≤ n ≡ 0(mod2), obtain any S-(a, 0)-EAM total
labelling of (Cn ∘K2,m)∪ nP2.

(iii) For 2≤ n ≡ 0(mod2), obtain any S-(a, 0)-EAM total
labelling of (Cn ∘K2,m)∪Pn+1.

(iv) For 2≤ n ≡ 0(mod2), determine S-(a, 0)-EAM total
labelling of G1, G2, G3, G4, G5, and G6 for any other
magic constants (i.e., for any other value of a) than
computed here.

(v) For l,m and n positive integers, determine any
S-(a, 0)-EAM total labelling for the following
networks:

(1) (Cn ∘K2,m)∪K1,ℓ
(2) (Cn ∘K2,m)∪ lP2
(3) (Cn ∘K2,m)∪Pl

Open problems related to *eorems 11 and 12 are given
as follows:

(i) For 2≤ n ≡ 0(mod2), find any S-(a, 0)-EAM total
labelling of Cn ∘H1.

(ii) For 2≤ n ≡ 0(mod2), find any S-(a, 0)-EAM total
labelling of Cn ∘H2.

(iii) For 3≤ n ≡ 1(mod2), determine some S-(a, 0)-
EAM total labelling of Cn ∘H1 and Cn ∘H2 with a
different magic constant than obtained here, i.e., for
any other value of a.

x2n–2

y2n–2

c4n–5

x6

y6

c10c9c8

x5

y5

c7

u2

v2

c6

x4

y4

c5

x3

y3

c4

u1

v1

c3

x2

y2

c2

x1

y1

c1

un–1

vn–1

c4n–4

u2n–1

y2n–1

c4n–3

x2n

y2n

c4n–2

Figure 6: *e general formation of the lattice network L2
n,∀ n ∈ N.
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v1
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c4n–4
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c4n–2

Figure 7: *e general formation of the lattice network L3
n,∀ n ∈ N.
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Figure 8: An S-(132, 0)-EAM total labelling of (C5 ∘K2,6)∪K1,5 ∪ 2K1 (←A) and an S-(163, 0)-EAM total labelling of (C7 ∘K2,5)∪K1,7 ∪ 3K1
(←B).
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Figure 9: An S-(134, 0)-EAM total labelling of (C5 ∘K2,6)∪ 5P2 (⟶A) and an S-(165, 0)-EAM total labelling of (C7 ∘K2,5)∪ 5P2 (⟶B).
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Figure 10: An S-(126, 0)-EAM total labelling of (C5 ∘K2,6)∪P6 (⟶A) and an S-(154, 0)-EAM total labelling of (C7 ∘K2,5)∪P8 (⟶B).
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Figure 11: An S-(114, 0)-EAM total labelling of C5 ∘H1(⟶ A) and C5 ∘H2(⟶ B).
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Figure 12: An S-(54, 0)-EAM total labelling of Γ3.
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Figure 13: An S-(90, 0)-EAM total labelling of the lattice network L1
5.
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Figure 14: An S-(108, 0)-EAM total labelling of the lattice network L2
4.
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Figure 15: An S-(108, 0)-EAM total labelling of the lattice network L3
4.
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4. Synopsis and 3-D Comparison of the Magic
Constants and Minimum Edge Weights

*is section consists of the synopsis (Section 4.1) and 3-D
graphical plots and comparison of the magic constants (a)
and minimum edge weights (a′) of our findings (Section
4.2).

4.1. Synopsis. Table 2 exhibits the computational results of
our findings. *e possible parameters for which we have
determined S-(a, 0) and S-(a′, 2)-EAM total labellings are
indicated through parameters column head.

4.2. Graphical Behavior of theMagic Constants andMinimum
EdgeWeights. Figure 16 shows the graphical comparison of the
magic constants (⟶A) andminimumedgeweights (⟶B), in
3-D, of the networks M1 � (Cn ∘K2,m)∪K1,n ∪ (n − 1/2)K1,

M2 � (Cn ∘K2,m)∪ nP2, M3 � (Cn ∘K2,m) ∪Pn+1, Cn ∘H1,
Cn ∘H2, Γn,L1

n,L
2
n, andL

3
n, respectively.Moreover, Figure 16(a)

shows that the most dominant layer is the one with green color.
It interprets that among the magic constants of the networks
discussed in this note, (Cn ∘K2,m)∪ nP2 attains highest values
with the increase of the values of the parameters.

Figure 17 illustrates the relative 3-D comparison of the
magic constants and minimum edge weights (corresponding
to d � 2) of the networks (Cn ∘K2,m)∪K1,n ∪ (n − 1/2)K1,

Table 2: Synopsis of main theorems.

Network Parameters a (d� 0) a′(d � 2) Planar V nonplanar
(Cn ∘K2,m)∪K1,n ∪ (n − 1/2)K1 m≥ 2, odd n≥ 3 8n + 3mn + 2 6n + mn + 3 Planar
(Cn ∘K2,m)∪ nP2 m≥ 2, odd n≥ 3 (1/2)(17n + 6mn + 3) (1/2)(13n + 2mn + 5) Planar
(Cn ∘K2,m)∪Pn+1 m≥ 2, odd n≥ 3 (1/2)(13n + 6mn + 7) (1/2)(9n + 2mn + 9) Planar
Cn ∘H1 and Cn ∘H2 n is odd (1/2)(45n + 3) (1/2)(17n + 5) Planar
Γn ∀ n ∈ N 18n 6n + 4 Planar
L1

n ∀ n ∈ N 18n 6n + 4 Nonplanar
L2

n and L3
n ∀ n ∈ N 30n − 12 10n Nonplanar
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Figure 16: Comparison of the magic constants (⟶A) and the minimum edge weights (⟶B) of M1, M2, M3, Cn ∘H1, Cn ∘H2, Γn, L1
n, L

2
n,

and L3
n, for m≥ 2 and 3≤ n ≡ 1(mod2).
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Figure 17: Continued.
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(Cn ∘K2,m)∪ nP2, (Cn ∘K2,m)∪Pn+1, Cn ∘H1, Cn ∘H2, Γn,
L1

n, L
2
n and L3

n, for different values of the parameters.

5. Conclusion

In the present article,

(i) We have designed S-(a, 0)-EAM total labelling of
the rooted product of cycle Cn and complete bi-
partite network K2,m taking its disjoint union with
paths and stars. *e findings are related to the open
problem on nK2,m provided by Ngurah et al. in [48].

(ii) We have provided S-(a, 0)-EAM total labelling of
rooted product of Cn and pancyclic networks H1
and H2.

(iii) We have extended the result provided in [29] by
Baig et al. through exhibiting S-(a, 0)-EAM total
labelling of pancyclic network Γn involving chains
of C6.

(iv) We have exhibited S-(a, 0)-EAM total labelling of
symmetrically designed lattice networks L1

n, L
2
n, and

L3
n.

(v) We have illustrated our findings through 3-D
graphical comparison.

(vi) For further working in this field, several research
problems have also been opened.

(vii) *e obtained schemes are now all set to serve as test
ready labellings for programmers, networking
professionals, and engineers to avail them where
they find these appropriate.
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Recently, Wu in 2018 established interesting results in the framework of interval spaces. He initiated the idea of near-fixed points and
proved some related basic results in metric interval, norm interval, and hyperspaces. In 2015, Khojasteh et al. gave the concept of
simulation functions and studied some fixed-point results inmetric spaces.Motivated by this work, we give some near-coincidence point
results in norm interval spaces using the concept given by Khojasteh et al. Examples are also provided for the validation of the results.

1. Introduction

Many researchers are still showing high interest in the field
of metric fixed-point theory. .ey are working in different
directions and generalizing the remarkable results in this
area [1–4]. .e first one who took interest in this area was
Poincare. Later, Brouwer established a (topological) fixed-
point theorem. .e metric fixed-point theory attracts re-
searchers due to its applications in both applied and pure
mathematics. .ere are many applications of metric fixed-
point theory in the existence of solutions for nonlinear
systems. In 1922, Banach [5] established a remarkable result,
known as the Banach contraction principle (BCP).

.is BCP was modified and generalized in different
forms and structures. Among them, there are dislocated
quasi metric spaces [6], cone metric spaces [7], generalized
metric spaces [8], controlled metric spaces [9], orthogonal
partial b-metric spaces [10], etc.

Khojasteh et al. [11] modified the contractive condition
by introducing the concept of a simulation function

S: [0,∞) × [0,∞)⟶ R. Later, Roldan Lopez de Hierro
et al. [12, 13] extended the stated concept and investigated
some coincidence point results in metric spaces. With the
help of a simulation-type function, Argoubi et al. [14] gave
interesting results in partial ordered metric spaces. Alharbi
et al. [15] made a generalization by combining the concept of
simulation and admissible functions in the related literature.
Alsubaie et al. [16] proved some common fixed-point results
for two mappings in the setting of metric spaces by using the
concept of a simulation function. Alqahtani et al. [17] proved
fixed-point results by introducing the concept of a bilateral
contraction which is a combination of Ćirić- and Caristi-
type contractions. In [18], the authors studied the existence
and uniqueness of a common fixed point in the setting of b-
metric spaces, by using the concept of extended Z-con-
tractions associated with an ψ− simulation function. In [19],
the authors established results on the existence of best
proximity points of certain mappings using simulation
functions in complete metric spaces. Later, Karapinar [20]
presented some fixed-point results by defining a new
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contractive condition via admissible mappings imbedded in
a simulation function.

Recently, Wu [21] initiated the concept of interval
spaces. .ese spaces contain all closed bounded intervals
over the set R. Over the interval spaces, he defined a metric,
as well as a norm using the equivalence relation Ω

�
. .ese

spaces are called metric intervals and norm interval spaces,
respectively. He studied near-fixed-point results in metric
intervals, as well as in norm interval spaces. After this, he
gave the concept of a hyperspace, which is a space containing
all possible subsets of a vector space. He defined null sets, as
well as the equivalence relation Ω

�
in a hyperspace and

defined a norm over this type of spaces. He also presented
near-fixed-point results in hyperspaces. For more details, see
[22–24].

Inspired by the work done in [11, 21, 22], we established
some near-coincidence point results in metric interval and
hyperspaces [25] via a simulation function. We also pre-
sented some near-coincidence point results in norm interval
spaces via a simulation function. For validation of results
and definitions, some examples are provided.

2. Preliminaries

In this section, some basic definitions and results are stated
related to the existing literature.

2.1. Interval Spaces. Let I be the set containing all close
bounded intervals of the form [σ, υ], where σ, υ ∈ R and
σ ≤ υ. Also, σ ∈ R is considered as an element [σ, σ] ∈ I [21].

.e binary operation of addition and scaler multipli-
cation is stated as follows:

[σ, υ]⊕ σ′, υ′  � σ + σ′, υ + υ′ ,

k[σ, υ] �
[kσ, kυ], k≥ 0,

[kυ, kσ], k< 0.


(1)

Due to the inverse property, the above space does not
fulfill the condition of a conventional vector space. For
[σ, υ] ∈ I, the subtraction

[σ, υ]⊖[σ, υ] � [σ, υ]⊕[− υ, − σ] � [σ − υ, υ − σ] (2)

does not give the zero element [0, 0]. So the inverse of [σ, υ]

does not exist. For the above deficiency, the null set was
defined by Wu [21] as follows.

2.2. Null Set. .e null set contains all the elements of the
type [− σ, σ], and so it is defined as follows:

Ω � [σ, υ]⊖[σ, υ]; [σ, υ] is an element of I{ }, (3)

or

Ω � [− α, α]; α≥ 0{ }. (4)

2.3. Binary Relation Ω
�
. We write [σ, υ]Ω

�
[σ′, υ′] iff there

exist ω1,ω2 ∈ Ω such that

[σ, υ]⊕ω1 � σ′, υ′ ⊕ω2. (5)

Clearly, we can have [σ, υ] � [σ′, υ′]⇒[σ, υ]Ω
�

[σ′, υ′] by
taking ω1 � ω2 � [0, 0]. However, the converse is not true in
general.

Proposition 1 (see [21]). Ω
�
is an equivalence relation.

According to the equivalence relation Ω
�
, the equivalence

class of almost identical intervals is defined as 〈[σ, υ]〉 �

[p, q] ∈ I: [σ, υ]Ω
�

[p, q]  for any [σ, υ] ∈ I.

2.4. Norm Interval Space. .e pair (I, ‖ · ‖) fulfilling the
following axioms is called a norm interval space [21]:

(i) ‖[σ, υ]‖ � 0 implies [σ, υ] ∈ Ω
(ii) ‖α[σ, υ]‖ � |α|‖[σ, υ]‖

(iii) ‖[σ, υ]⊕[σ′, υ′]‖≤ ‖[σ, υ]‖ + ‖[σ′, υ′]‖ for all
[σ, υ], [σ′, υ′] ∈ I, where I contains all close
bounded intervals over R with the null set Ω and
‖ · ‖ is a real-valued mapping on I

We say that the null condition is satisfied by ‖ · ‖ if the
condition (iii) is replaced by

‖[σ, υ]‖ � 0 if and only if [σ, υ] ∈ Ω. (6)

‖ · ‖ is said to satisfy the null equalities if for all ω1,ω2 ∈ Ω
and [σ, υ], [σ′, υ′] ∈ I, the following equalities hold:

(1) ‖([σ, υ]⊕ω1)⊖([σ′, υ′]⊕ω2)‖ � ‖[σ, υ]⊖[σ′, υ′]‖
(2) ‖([σ, υ]⊕ω1)⊖([σ′, υ′])‖ � ‖[σ, υ]⊖[σ′, υ′]‖
(3) ‖([σ, υ])⊖([σ′, υ′]⊕ω2)‖ � ‖[σ, υ]⊖[σ′, υ′]‖

Definition 1. If (I, ‖ · ‖) is a norm interval space, then

(i) .e mapping ‖ · ‖ is said to satisfy the null super-
inequality if

‖[σ, υ]⊕ω‖≥ ‖[σ, υ]‖, for any [σ, υ] ∈ I andω ∈ Ω.

(7)

(ii) .e mapping ‖ · ‖ is said to satisfy the null sub-
inequality if

‖[σ, υ]⊕ω‖≤ ‖[σ, υ]‖, for any [σ, υ] ∈ I andω ∈ Ω.

(8)

(iii) .emapping ‖ · ‖ is said to satisfy the null equality if

‖[σ, υ]⊕ω‖ � ‖[σ, υ]‖, for any [σ, υ] ∈ I andω ∈ Ω.

(9)

Example 1. Let ‖ · ‖ be a nonnegative real-valued function
defined on I by

‖[σ, υ]‖ � |σ + υ|. (10)

.en, (I, ‖ · ‖) forms a norm interval space such that ‖ · ‖

satisfies the null equality.
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Proposition 2 (see [21]). Let (I, ‖ · ‖) be a norm interval
space such that ‖ · ‖ satisfies the null super-inequality. Ben,
for any [σ, υ], [σ′, υ′], [σ1, υ1], [σ2, υ2], . . . , [σm, υm], we have

[σ, υ]⊖ σ′, υ′ 
����

����≤ [σ, υ]⊖ σ1, υ1 
����

���� + σ1, υ1 ⊖ σ2, υ2 
����

����

+ · · · + σm, υm ⊖ υ, υ′ 
����

����.

(11)

Proposition 3. Let (I, ‖ · ‖) be a norm interval space; then,
the following hold:

(i) If ‖ · ‖ satisfies the null equality, then for all
[σ, υ], [σ′, υ′] ∈ I,

[σ, υ] Ω
�
σ′, υ′  implies ‖[σ, υ]‖ � σ′, υ′ 

����
����. (12)

(ii) For any [σ, υ], [σ′, υ′] ∈ I,

[σ, υ]⊖ σ′, υ′ 
����

���� � 0, implies [σ, υ]Ω
�
σ′, υ′ . (13)

(iii) If ‖ · ‖ satisfies the null super-inequality and null
condition, then for any [σ, υ], [σ′, υ′] ∈ I,

[σ, υ]Ω
�
σ′, υ′ , implies [σ, υ]⊖ σ′, υ′ 

����
���� � 0. (14)

For proof of the above propositions, see [21].

Definition 2. Let (I, ‖ · ‖) be a norm interval space. A se-
quence [σn, υn] 

+∞
n�1 is said to converge to a limit [σ, υ] if and

only if

limn⟶∞ σn, υn ⊖[σ, υ]
����

���� � 0. (15)

Proposition 4. Consider a norm interval space (I, ‖ · ‖) with
the null set Ω.

(i) If the null super-inequality holds for ‖ · ‖, then the
convergence of the sequence [σn, υn] 

+∞
n�1 to [σ, υ] and

[σ′, υ′] simultaneously implies 〈[σ, υ]〉 � 〈[σ′, υ′]〉
(ii) If the null equality holds for ‖ · ‖ and the sequence

[σn, υn] 
+∞
n�1 converges to [σ, υ], then for any

[σ′, υ′] ∈ 〈[σ, υ]〉, the given sequence will also con-
verge to [σ′, υ′]

Definition 3. Consider the norm interval space (I, ‖ · ‖) with
the null set Ω, where ‖ · ‖ satisfies the null equality. If
[σ, υ] ∈ I is the limit of the sequence [σn, υn] 

+∞
n�1, then

〈[σ, υ]〉 is called the class limit. We can also write

lim
n⟶∞

σn, υn  � 〈[σ, υ]〉. (16)

Proposition 5 (see [21]). In the norm interval space (I, ‖ · ‖)

if the null super-inequality holds for ‖ · ‖, the class limit is
unique.

Definition 4. A sequence [σn, υn] 
+∞
n�1 in a norm interval

space (I, ‖ · ‖) is called a Cauchy sequence if and only if for
any ε≥ 0, there exists K ∈ N such that

σn, υn ⊖ σm, υm 
����

����< ε, (17)

for m, n>K with m≠ n. If every Cauchy sequence is con-
vergent in I, then I is complete.

Definition 5. A complete norm interval space (I, ‖ · ‖) is
called a Banach interval space.

Example 2. Let ‖ · ‖ be a nonnegative real-valued function
defined on I by

‖[σ, υ]‖ � |σ + υ|. (18)

.en, (I, ‖ · ‖) forms a Banach interval space such that
‖ · ‖ satisfies the null equality.

Definition 6. Let F be a self-mapping on I. .en, the point
[σo, υo] ∈ I is called a near-fixed point of F if and only if
F[σo, υo]Ω

�
[σo, υo].

Definition 7 (see [11, 12]). A function S: [0,∞)×

[0,∞)⟶ R is called a simulation function if the following
conditions hold:

S1. S(0, 0) � 0
S2. S(α, β)< β − α for all α, β> 0
S3. If αn , βn  are two sequences in (0,∞) such that
limn⟶∞αn � limn⟶∞βn > 0 and αn < βn for all n ∈ N,
then

lim
n⟶∞

supS αn, βn( < 0. (19)

By (S2), we must have

S(α, α)< 0. (20)

.e following are some interesting examples of simu-
lation functions:

(i) S(α, β) � χ(β) − Υ(α) for all α, β ∈ [0,∞) where χ
and c are continuous on [0,∞) such that c(α) �

χ(α) if and only if α � 0 and c(α)< α≤ χ(α) for all
α> 0. If we take c(β) � λβ and χ(α) � α, then
S(α, β) � λβ − α.

(ii) S(α, β) � β − χ(β) − α for all α, β ∈ [0,∞) where χ
is continuous on [0,∞) such that χ(α) � 0 if and
only if α � 0 (see Example 2.2 in [11]).

(iii) S(α, β) � βχ(β) − α for all α, β ∈ [0,∞) where χ is a
mapping such that limα⟶r+χ(t)< 1 for all r> 0 [12].

(iv) S(α, β) � η(β) − α for all α, β ∈ [0,∞), where η is an
upper semicontinuous function so that η(α)< α for
all α> 0 and η(0) � 0 [12].
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3. Results and Discussion

Proposition 6. In an interval space I with the null set Ω,
[σ, υ]Ω

�
[σ′, υ′] iff σ′ − σ � υ − υ′.

Proof. Let us suppose that [σ, υ]Ω
�

[σ′, υ′]; then, by defini-
tion, there exist [− k, k] and [− h, h] in Ω such that

[σ, υ]⊕[− k, k] � σ′, υ′ ⊕[− h, h], (21)

that is,

[σ − k, υ + k] � σ′ − h, υ′ + h . (22)

.is implies that

σ − k � σ′ − h,

υ + k � υ′ + h,

σ − σ′ � k − h,

υ − υ′ � − k + h,

σ − σ′ � k − h,

υ − υ′ � − (k − h).

(23)

Putting the values of k − h from the 1st equality in the
second equality, we have

υ − υ′ � − σ − σ′( , implies σ′ − σ � υ − υ′. (24)

Conversely, now, let us suppose that σ′ − σ � υ − υ′;
then, we have to show that

[σ, υ]Ω
�
σ′, υ′ . (25)

Hence,

σ′ − σ � υ − υ′ � k,

σ′ − σ � k,

υ − υ′ � k,

σ � σ′ − k,

υ � υ′ + k,

(26)

which implies

[σ, υ] � σ′ − k, υ′ + k ,

[σ, υ] � σ′, υ′ ⊕[− k, k],
(27)

and so from the last equality, we have

[σ, υ]Ω
�
σ′, υ′ . (28)

□

Example 3. Taking the intervals [3, 7] and [4, 6], we have
4 − 3 � 7 − 6 � 1 and hence by the above function, we have
[3, 7]Ω

�
[4, 6]. For verification, take ω1 � [0.0] and

ω2 � [− 1, 1]. .en,

[3, 7]⊕[0, 0] � [4, 6]⊕[− 1, 1]. (29)

Definition 8. For a point [σ, υ] ∈ I, if F[σ, υ]Ω
�

g[σ, υ], then
the point [σ, υ] is called a near-coincidence point of F and g.

Example 4. Taking the function F[x, y] � [x2 − 1, 2y2 + 1]

and g[x, y] � [x2, 2y2], then we can verify that [3, 5] is the
near-coincidence point for the functions defined above.

Definition 9. If F and g are two self-mappings over (I, ‖ · ‖)

such that

lim
n⟶∞

Fg σn, υn ⊖gF σn, υn 
����

���� � 0, (30)

then the mappings are called compatible.

Definition 10. If Fg[σ, υ]Ω
�

gF[σ, υ] for all [σ, υ] ∈ (I, d),
then F and g are called commuting mappings.

Definition 11. F is a (Z‖·‖, g)-contraction in (I, ‖ · ‖) cor-
responding to a simulation function S ∈ Z if

S F[σ, υ]⊖F σ′, υ′ 
����

����, g[σ, υ]⊖g σ′, υ′ 
����

���� ≥ 0, (31)

for all [σ, υ], [σ′, υ′] ∈ I such that g[σ, υ]Ω
≠

g[σ′, υ′].

Example 5. Define the mappings F and g as
F[x, y] � [x2 − 1, 2y2 + 1] andg[x, y] � [x2, 2y2]; then, F

satisfies the criteria of (Z‖·‖, g)-contraction in (I, ‖ · ‖)

according to the simulation function S(s, t) � λt − s, where
λ≥ 1.

Definition 12. For a sequence [σn, υn]  in the Banach in-
terval space (I, ‖ · ‖), if

g σn+1, υn+1 ( Ω
�

F σn, υn ( , for all n≥ 0, (32)

then the sequence is known as a Picard (F, g) sequence at the
point [σo, υo].

Theorem 1. Let F[σ, υ] � [f1(σ), f2(υ)] and
G[σ, υ] � [g1(σ), g2(υ)] be two self-mappings over the in-
terval space I, where f1(σ)≤f2(υ) and g1(σ)≤g2(υ) for all
σ ≤ υ. If σ is a coincidence point for f1 and g1 and υ is a
coincidence point for f2 and g2, then [σ, υ] is a near-coin-
cidence point for F and G.

Proof. As σ and υ are coincidence points for f1, g1 and f2,
g2, respectively, we have

f1(σ) � g1(σ),

f2(υ) � g2(υ).
(33)

.is implies that

f1(σ), f2(υ)  � g1(σ), g2(υ) ,

f1(σ), f2(υ) Ω
�

g1(σ), g2(υ) ,

F[σ, υ]Ω
�

G[σ, υ].

(34)
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Hence, a near-coincidence point for the mappings F and
G is [σ, υ] over the interval space I..e converse of the above
statement is not true in general, because [f1(σ),

f2(υ)]Ω
�

[g1(σ), g2(υ)] does not imply f1(σ) �

g1(σ) andf2(υ) � g2(υ). □

Example 6. Taking the function F[x, y] � [x2, |y| + 1] and
G[x, y] � [|x|, y2 + 1], then clearly − 1 is a coincidence point
for x2 and |x| and 1 is a coincidence point for |y| + 1 and
y2 + 1. So, [− 1, 1] is a near-coincidence point for F and G

since F[− 1, 1] � [1, 2] � [1, 2] � G[1, 2]. For justifying the
converse of the above statement, we can verify that
[− (1/2), (1/2)] is a near-coincidence point for F and G, but
− (1/2) and (1/2) are not coincidence points for x2 and |x|

and |y| + 1 and y2 + 1, respectively. As F[− (1/2), (1/2)] �

[(1/4), (3/2)] and G[− (1/2), (1/2)] � [(1/2), (5/4)], to prove
that [− (1/2), (1/2)] is a near-coincidence point; we have to
show [(1/4), (3/2)]Ω

�
[(1/2), (5/4)]. Taking ω1 � [0, 0] and

ω2 � [− (1/4), (1/4)], we have
1
4
,
3
2

 ⊕[0, 0] �
1
2
,
5
4

 ⊕ −
1
4
,
1
4

 . (35)

Lemma 1. Let F[σ, υ] � [f1(σ), f2(υ)] and
G[σ, υ] � [g1(σ), g2(υ)] be two self-mappings over the in-
terval space I, where f1(σ)≤f2(υ) and g1(σ)≤g2(υ) for all
σ ≤ υ. If g1(σ) − f1(σ) � f2(υ) − g2(υ) for some [σ, υ] ∈ I,
then [σ, υ] is a near-coincidence point for F and G.

Proof. Using Proposition 6, g1(σ) − f1(σ) � f2(υ) − g2(υ)

implies that [f1(σ), f2(υ)]Ω
�

[g1(σ), g2(υ)], i.e.,

F[σ, υ]Ω
�

G[σ, υ]. (36)

Hence, it is proved that [σ, υ] is a near-coincidence point
for F and G. □

Lemma 2. Consider a Banach interval space I with a
(Z‖·‖, g)-contraction F. If [σ, ]] and [σ′, ]′] both are the near-
coincidence points for F and g, then

F[σ, ]]Ω
�

g[σ, ]]Ω
�

g σ′, ]′ Ω
�

F σ′, ]′ . (37)

Furthermore, the equivalence class of a near-coincidence
point is unique if F or g is injective.

Proof. Let [σ, ]] and [σ′, ]′] be two near-coincidence points
of F and g. .en, we have

F[σ, ]]Ω
�

g[σ, ]],

F σ′, ]′ Ω
�

g σ′, ]′ .
(38)

In the above requirement, the two equalities are clear.
We only need to show that g[σ, ]]Ω

�
g[σ′, ]′]. On the

contrary, let us suppose that g[σ, ]]Ω
�

g[σ′, ]′]; so we have

g[σ, ]]⊖g σ′, ]′ 
����

����≥ 0. (39)

As the mapping F is a (Z‖·‖, g)-contraction, by defini-
tion, we have

0≤ S F[σ, ]]⊖F σ′, ]′ 
����

����, g[σ, ]]⊖g σ′, ]′ 
����

���� 

� S g[σ, ]]⊖g σ′, ]′ 
����

����, g[σ, ]]⊖g σ′, ]′ 
����

���� .
(40)

.e last inequality is a contradiction to (20) in the
definition of the simulation function, i.e., S(r, r)< 0, where
r> 0. So our supposition is wrong and we accept that
g[σ, ]]Ω

�
g[σ′, ]′].

Hence, we prove that

F[σ, ]]Ω
�

g[σ, ]]Ω
�

g σ′, ]′ Ω
�

F σ′, ]′ . (41)

Furthermore, let F be injective; then, the equivalence
class of a near-coincidence point is unique. By the above
work, we have

F[σ, ]]Ω
�

g[σ, ]]Ω
�

g σ′, ]′ Ω
�

F σ′, ]′ . (42)

It implies that

F[σ, ]]Ω
�

F σ′, ]′ . (43)

As F is injective, [σ, ]]Ω
�

[σ′, ]′]. It further implies that
〈[σ, ]]〉 � 〈[σ′, ]′]〉. □

Theorem 2. Consider a (z‖·‖, g)-contraction F in the Banach
interval space (I, ‖ · ‖) where ‖ · ‖ satisfies the null equality
and F and g are continuous and compatible mappings.
Assume that the space is satisfying the CLR(F,g) property.
Ben, a near-coincidence point exists for F and g.

Proof. As the space (I, ‖ · ‖) satisfies the CLR(F,g) property,
i.e., there exists a Picard sequence [σn, ]n] , such that

g σn+1, ]n+1 Ω
�

F σn, ]n , for all n≥ 0. (44)

.ere are two possibilities: either the sequence [σn, ]n] 

contains a near-coincidence point, or it converges to the
near-coincidence point. We will take the case that the se-
quence does not contain a near-coincidence point. Hence,

g σn, ]n Ω
�

F σn, ]n Ω
�

g σn+1, ]n+1 , for all n≥ 0. (45)

.e result will be proved in the following steps.
First of all, we will show that

lim
n⟶∞

g σn, ]n ⊖g σn+1, ]n+1 
����

���� � 0. (46)

As F is a (z‖·‖, g)-contraction, by CLR(F,g) property and
condition (ii) of a simulation function, we have

0≤ S F σn, ]n ⊖F σn+1, ]n+1 
����

����, g σn, ]n ⊖g σn+1, ]n+1 
����

���� 

� S g σn+1, ]n+1 ⊖g σn+2, ]n+2 
����

����, g σn, ]n ⊖g σn+1, ]n+1 
����

���� 

< g σn, ]n ⊖g σn+1, ]n+1 
����

���� − g σn+1, ]n+1 ⊖g σn+2, ]n+2 
����

����.

(47)

.is implies that

0< g σn+1, ]n+1 ⊖g σn+2, ]n+2 
����

����< g σn, ]n ⊖g σn+1, ]n+1 
����

����.

(48)
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.e sequence ‖g[σn, ]n]⊖g[σn+1, ]n+1]‖  is nonnegative
and decreasing, so it converges to a limit, say Ł, i.e.,

lim
n⟶∞

g σn, ]n ⊖g σn+1, ]n+1 
����

���� � Ł. (49)

We have to show that Ł � 0. On the contrary, let us
suppose that Ł> 0. Consider the sequences with the same
limit rn � ‖g[σn+1, ]n+1]⊖g[σn+2, ]n+2]‖  and
sn � ‖g[σn, ]n]⊖g[σn+1, ]n+1]‖  such that rn < sn for all
n ∈ N.

Now, by condition (iii) of the simulation function, we
have

0> limsup
n⟶∞

S rn, sn( ( 

� limsup
n⟶∞

S g σn+1, ]n+1 ⊖g σn+2, ]n+2 
����

����,

g σn, ]n ⊖g σn+1, ]n+1 
����

����.

(50)

It is a contradiction because

S g σn+1, ]n+1 ⊖g σn+2, ]n+2 
����

����, g σn, ]n ⊖g σn+1, ]n+1 
����

���� > 0.

(51)

.us, Ł � 0. .at is,

lim
n⟶∞

g σn, ]n ⊖g σn+1, ]n+1 
����

���� � 0. (52)

Next, we will show that the sequence g[σn, ]n]  is a
Cauchy sequence. Let us suppose, on the contrary, that
g[σn, ]n]  is not Cauchy. So there will exist εo > 0 such that
for all N ∈ N, there exist positive integers m, n such that

g σn, ]n ⊖g σm, ]m 
����

����> εo. (53)

We can construct two partial subsequences g[σnk
, ]nk

] 

and g[σmk
, ] k{ }]  such that no ≤ nk ≤mk and

g σnk
, ]nk

 ⊖g σmk
, ]mk

 
�����

�����> εo, for all k ∈ N. (54)

Let mk be the smallest positive integer in
nk, nk + 1, nk + 2, . . . . .en,

g σmk− 1, ]mk− 1 ⊖g σnk
, ]nk

 
�����

�����≤ εo, for all k ∈ N. (55)

Also, mk > nk from (54), so mk ≥ nk + 1 for all k ∈ N. But
mk � nk + 1 is not possible taking into account (52) and (54)
simultaneously. So, we have mk ≥ nk + 2 for any k ∈ N. It
follows that nk+1 <mk <mk+1 for all k ∈ N. From (54) and
(55), we have

εo < g σmk
, ]mk

 ⊖g σnk
, ]nk

 
�����

�����

≤ g σmk
, ]mk

 ⊖g σmk− 1
, ]mk− 1

 
�����

����� + g σmk− 1
, ]mk− 1

 ⊖g σnk
, ]nk

 
�����

�����

≤ g σmk
, ]mk

 ⊖g σmk− 1
, ]mk− 1

 
�����

����� + εo, for all k ∈ N.

(56)

.erefore,

lim
k⟶∞

g σmk
, ]mk

 ⊖g σnk
, ]nk

 
�����

����� � εo. (57)

Also,

lim
k⟶∞

g σmk+1
, ]mk+1

 ⊖g σnk+1
, ]nk+1

 
�����

����� � εo. (58)

As F is a (Zd, g)-contraction associated with S,

0≤ S F σmk
, ]mk

 ⊖F σnk
, ]nk

 
�����

�����, g σmk
, ]mk

 ⊖g σnk
, ]nk

 
�����

����� 

� S g σmk+1
, ]mk+1

 ⊖g σnk+1
, ]nk+1

 
�����

�����, g σmk
, ]mk

 ⊖g σnk
, ]nk

 
�����

����� 

< g σmk
, ]mk

 ⊖g σnk
, ]nk

 
�����

����� − g σmk+1
, ]mk+1

 ⊖g σnk+1
, ]nk+1

 
�����

�����.

(59)

.us,

0< g σmk+1
, ]mk+1

 ⊖g σnk+1
, ]nk+1

 
�����

�����< g σmk
, ]mk

 ⊖g σnk
, ]nk

 
�����

�����.

(60)

Let

rn � g σmk+1
, ]mk+1

 ⊖g σnk+1
, ]nk+1

 
�����

�����,

sn � g σmk
, ]mk

 ⊖g σnk
, ]nk

 
�����

�����.
(61)

Clearly, rn, sn > 0, limn⟶∞rn � limn⟶∞sn � εo, and
rn < sn.

So by S3,

0≤ limsup
k⟶∞

S g σmk+1
, ]mk+1

 ⊖g σnk+1
, ]nk+1

 
�����

�����,

g σmk
, ]mk

 ⊖g σnk
, ]nk

 
�����

�����< 0,

(62)

which is a contradiction. .us, g[σn, ]n]  is a Cauchy se-
quence in (I, d).

.at is, g[σn, ]n]  is a Cauchy sequence. Now, as the
space is complete, the sequence g[σn, ]n]  will converge to a
limit [σ, ]]. Since the mappings F and g are continuous, one
writes

g σn, ]n ⟶ [σ, ]], impliesgg σn, ]n ⟶ g[σ, ]],

g σn, ]n ⟶ [σ, ]], impliesFg σn, ]n ⟶ F[σ, ]].

(63)

.e compatibility of the mappings yields that

lim
n⟶∞

Fg σn, ]n ⊖gF σn, ]n 
����

���� � 0. (64)

Consider

‖F[σ, ]]⊖g[σ, ]]‖ � lim
n⟶∞

Fg σn, ]n ⊖gg σn+1, ]n+1 
����

����

� lim
n⟶∞

Fg σn, ]n ⊖gF σn, ]n 
����

����,

‖F[σ, ]]⊖g[σ, ]]‖ � 0.

(65)

From the above function, we have F[σ, ]]Ω
�

g[σ, ]]; i.e.,
[σ, ]] is a near-coincidence point of F and g. □

Example 7. Consider the two continuous self-mappings F

and g in the Banach interval space (I, ‖ · ‖) defined by
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F[σ, υ] � [2σ − 4, 2υ + 4].

g[σ, υ] � [σ − 2, υ + 2].
(66)

.e function F is a (z‖·‖, g)-contraction according to the
simulation function S(s, t) � λt − s, where λ≥ 2. Also, the
functions F and g are compatible. .e sequence
[(− 1/n), (1/n)] is a Picard sequence, i.e.,

g σn+1, υn+1 ( Ω
�

F σn, υn ( , for all n≥ 2,

g
− 1

n + 1
,

1
n + 1

  Ω
�

F
− 1
n

,
1
n

  ,

− 1
n + 1

− 2,
1

n + 1
+ 2 Ω

�

− 2
n

− 4,
2
n

+ 4 .

(67)

We can easily show that g([σn+1, υn+1])Ω
�

F([σn, υn]), for all n≥ 0, by taking ω1 � [(− ((2n2 + 3n +

2)/(n(n + 1)))), ((2n2 + 3n + 2)/n(n + 1))] and ω2 � [0, 0].
.en,

− 1
n + 1

− 2,
1

n + 1
+ 2 ⊕ −

2n
2

+ 3n + 2
n(n + 1)

,
2n

2
+ 3n + 2

n(n + 1)
 

�
− 2
n

− 4,
2
n

+ 4 ⊕[0, 0].

(68)

If we replace the compatibility of mappings by com-
muting mappings, then the following corollary can be stated.

Corollary 1. Consider the continuous and commuting
mappings F and g in the Banach interval space (I, ‖ · ‖) such
that the criteria of Z-contraction is satisfied by F. Assume that
CLR(F, g) property holds in I; then, a near-coincidence point
exists for F and g.

Corollary 2. Consider a Banach interval space (I, ‖ · ‖) with
two self-mappings F and g. Ben, a near-coincidence point
exists for F and g if

F[σ, υ]⊖F σ′, υ′ 
����

����≤ λ g[σ, υ]⊖g σ′, υ′ 
����

����, (69)

for all [σ, υ], [σ′, υ′] ∈ I, where g[σ, υ]Ω
≠

g[σ′, υ′] and
λ ∈ [0, 1).

Proof. Taking the simulation function S(σ, υ) � λυ − σ for
all σ, υ ∈ [0,∞) and λ ∈ [0, 1), according to the above
condition, we have

F[σ, υ]⊖F σ′, υ′ 
����

����≤ λ g[σ, υ]⊖g σ′, υ′ 
����

����,

for all [σ, υ], σ′, υ′  ∈ I.
(70)

It implies that

0≤ λ g[σ, υ]⊖g σ′, υ′ 
����

���� − F[σ, υ]⊖F σ′, υ′ 
����

����

≤ S F[σ, υ]⊖F σ′, υ′ 
����

����, g[σ, υ]⊖g σ′, υ′ 
����

���� .
(71)

.e last inequality allows to say that F is a
Z‖·‖ − contraction, and hence, by .eorem 2, there will be a
near-coincidence point for F and g. □

Corollary 3. Consider a Banach interval space (I, ‖ · ‖) with
self-mappings F and g such that

F[σ, υ]⊖F σ′, υ′ 
����

����≤ g[σ, υ]⊖g σ′, υ′ 
����

����

− Φ g[σ, υ]⊖g σ′, υ′ 
����

���� 

∀[σ, υ], σ′, υ′  ∈ I,

(72)

whereΦ is a lower semicontinuous function defined on [0,∞)

so that Φ− 1(0) � 0; then, F and g have a near-coincidence
point in I.

Proof. It suffices to take the simulation function S(σ, υ) �

υ − Φ(υ) − σ for all σ, υ ∈ [0,∞). .en, we can easily prove
that F is a z − contraction. So by .eorem 2, there exists a
near-coincidence point for F and g. □
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López-de-Hierro, and J. Mart́ınez-Moreno, “Coincidence
point theorems on metric spaces via simulation functions,”
Journal of Computational and Applied Mathematics, vol. 275,
pp. 345–355, 2015.

[13] A. F. Roldan Lopez de Hierro, E. Karapinar, and D. O’Regan,
“Coincidence point theorem on quasi metric spaces via
simulation functions and application to G-metric spaces,”
Journal of Fixed Point Beory and Applications, vol. 20, no. 3,
p. 112, 2018.

[14] H. Argoubi, B. Samet, and C. Vetro, “Nonlinear contractions
involving simulation functions in a metric space with a partial
order,” Journal of Nonlinear Sciences and Applications, vol. 8,
pp. 1082–1094, 2015.

[15] A. S. S. Alharbi, H. H. Alsulami, and E. Karapinar, “On the
power of simulation and admissible functions in metric fixed
point theory,” Journal of Function Spaces, vol. 2017, Article ID
2068163, 7 pages, 2017.

[16] R. Alsubaie, B. Alqahtani, E. Karapınar, and A. F. Roldán
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LetΛ be a numerical semigroup and I ⊂ Λ be an irreducible ideal of Λ. )e graph GI(Λ) assigned to an ideal I of Λ is a graph with
elements of (Λ\I)∗ as vertices, and any two vertices x andy are adjacent if and only if x + y ∈ I. In this work, we give a complete
characterization (up to isomorphism) of the graph GI(Λ) having metric dimension 2.

1. Introduction

In algebraic combinatorics, the study of graphs associated
with algebraic objects is one of the most important and
fascinating fields of research. During the last couple of
decades, a lot of research is carried out in this field.)ere are
many papers on assigning graphs to rings, groups, and
semigroups [1–6]. Several authors [7–13] studied different
properties of these graphs including diameter, girth, dom-
ination, metric dimension, central sets, and planarity.

We start by defining some basic concept related to graph
theory. A graphG � (V(G), E(G)) has a vertex set V(G) and
the edge set E(G). )e cardinality of the vertex set and edge
set is called the order and size of G, respectively. A path in G

is a sequence of edges u1u2, u2u3, . . . , uk−1uk. A graph G is
connected if every pair of vertices x, y ∈ V(G) is connected
by a path. )e distance between two vertices x, y ∈ V(G) is
denoted by d(x, y) and is the length of the shortest path
between them. )e diameter of G is denoted by d(G) and is
defined as the largest distance between the vertices of G. Let
U � u1, u2, . . . , ur  be an ordered subset of V(G). )en, the
r−tuple (d(u, u1), d(u, u2), . . . , d(u, ur)) is the representa-
tion u with respect to U. )e vertex u is said to be resolved by
U if (d(u,u1),d(u,u2), . . . ,d(u,ur)≠(d(v,u1), d(v,u2), . . . ,

d(v,ur))) for any vertex v ∈V(G). )e set U is called re-
solving set of G if distinct vertices of G have distinct rep-
resentations with respect to U, and it is called basis of G if it
is a resolving set with minimal cardinality. )e metric di-
mension of G, denoted by μ(G), is the cardinality of basis.
)e concept of metric dimension was introduced by Slater
[14] and later studied by Harary andMelter [15]. It has many
applications, for example, robot navigation [16], pharma-
ceutical chemistry [17, 18], sonar and coast guard long range
navigation [14], and combinatorial optimization [19].

Let N be set of nonnegative integers. A subset Λ ⊂ N is
said to be numerical semigroup if the following holds:

(1) 0 ∈ Λ
(2) x + y ∈ Λ for all x, y ∈ Λ
(3) N\Λ is finite

It is easy to observe that the numerical semigroup is a
commutative monoid.)us, the set of numerical semigroups
classifies the set of all submonoids of (N, +). )e elements of
the set N\Λ are called gaps of Λ, and the largest element of
this set is known as Frobenius number. Note that every
numerical semigroup is finitely generated; that is, there exist
a set A � a1, a2, . . . , at  such that Λ � 〈A〉 � n1a1 + . . .
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ntat: n1, . . . nt ∈ N}. Moreover, every numerical semigroup
has a unique minimal system of generators. )e cardinality
of the minimal system of generators is called embedding
dimension of Λ. It is denoted by eΛ. A subset I of numerical
semigroup Λ is ideal (integral ideal) of Λ if for all x ∈ I and
s ∈ Λ and the element x + s ∈ I. An ideal I is called irre-
ducibly ideal if it cannot be written as intersections of two or
more than two ideals which contained it properly. For more
details on theory of numerical semigroup, the interested
readers can refer to [20].

Recently, several authors studied the metric dimension
of the graphs associated with the algebraic objects. Sol-
eymanivarniab et al. [21] gave some metric dimension
formula for annihilator graphs. Bailey et al. [22] studied the
constructions of resolving sets of Kneser and Johnson graphs
and provided bounds on their metric dimension. Faisal et al.
[23] studied the metric dimension of the commuting graph
of a dihedral group. )e metric dimension of a zero-divisor
graph of a commutative ring was studied in [13], while the
metric dimension of a total graph of a finite commutative
ring was studied in [24]. For more results on the metric
dimension, we refer the readers to [25–30].

2. Notation and Preliminaries

Let Λ � 〈A〉 be a numerical semigroup, where
A � a1, a2, . . . , an  is the minimal system of generators of
Λ. )en, every x ∈ Λ has a representation of the form
u1a1 + u2a2 + · · · + unan, where u1, u2, . . . , un are nonnega-
tive integers. Let 1≤p≤ n be a fixed integer. We say that an
element x ∈ Λ has a p-representation if there exist
ai1

, ai2
, . . . , aip

∈ A and ui1
, ui2

, . . . , uip
positive integers such

that x � ui1
ai1

+ ui2
ai2

+ · · · + uip
aip

; that is, x can be written
as linear combination of exactly p generator of Λ. Let Λp

denote the set containing all the elements x ∈ Λ, which have
a p representation. It is easy to see that

Λ � ∪ n

p�1 Λp. (1)

Note that an element x ∈ Λ may have more than one p

representations. For an element x ∈ Λp, we use the notation
Σp if it has a unique p representation and Σp,1,Σp,2, . . . ,Σp,r

if it has r number of p representations. Let Σp ∈ Λp, then
there exist two p-tuples, the coefficients p tuple
(ui1

, ui2
, . . . , uip

) ∈ Zp
> 0, and the generators p-tuple

(ai1
, ai2

, . . . , aip
) ∈ Zp

> 0 such that Σp � ui1
ai1

+ ui2
ai2

+ · · · +

uip
aip

. We denote the coefficient and generators p tuple of an
element Σp by c(Σp) and g(Σp), respectively. Also, the j-th
component of c(Σp) and g(Σp) is denoted by cj(Σp) and
gj(Σp), respectively. By using the above notations, for any
x ∈ Λ, we define

Λp(x) � Σp: Σp � x ,

Λ(x) � ∪ n

p�1Λp(x).
(2)

For a p-representation Σp � ui1
ai1

+ ui2
ai2

+ · · · + uip
aip

,
we set

B Σp  � vi1
ai1

+ vi2
ai2

+ · · · + vip
aip

: 0≤vij
≤uij

, 1≤j≤p .

(3)

Lemma 1. With the notations defined above, we have

B(x) � ∪
Σp∈Λ(x)

B Σp . (4)

Proof. )e proof of this lemma follows from the definition
of B(x).

Let Λ be a numerical semigroup and I ⊂ Λ be irreducible
ideal ofΛ. Binyamin et al. [31] assigned a graph to numerical
semigroup Λ and studied its properties. Peng Xu et al. [32]
assign a graphGI(Λ) to the ideal I of numerical semigroupΛ
with vertex set V(GI(Λ)) � (Λ\I)∗ and two vertices x, y are
adjacent if and only if x + y ∈ I. Barucci [33] showed that
every irreducible ideal I of numerical semigroup Λ can be
expressed in the form Λ\B(x), where B(x) � y ∈ Λ:

x − y ∈ Λ}, for some x ∈ Λ. Hence, the vertex set of the
graph GI(Λ) is the set vi: i ∈ B∗(x)  for some x ∈ Λ. Peng
Xu et al. [32] proved that the graph GI(Λ) is always con-
nected and diameter 2. )e aim of this paper is to find all the
graphs GI(Λ) having metric dimension 2. )e following
result by Chartrand et al. [18] gives bound on the order of
graph with given metric dimension k and diameter d. □

Theorem 1. Let G be a graph with metric dimension k and
|V(G)| � n. Let d be the diameter of G. 6en, |V(G)|≤ dk + k.

Hence, to find graphs GI(Λ) with metric dimension 2, it
is enough to classify all graphs GI(Λ) of order less than or
equal to 6. In the next section, we give bounds for the graphs
GI(Λ) of orders 4 and 5.

2.1. Bounds for the Graphs GI(Λ) of Orders 4 and 5

Lemma 2. Let Λ � 〈A〉 be a numerical semigroup of em-
bedding dimension n≥ 2. 6en, |GI(Λ)|≠ 4, if one of the
following holds:

(1) Λp(x)≠∅ for some p≥ 3.
(2) |Λ1(x)|≥ 3.
(3) |Λ2(x)|≥ 2.
(4) Λ1(x) � ∅ and |Λ2(x)| � 1.
(5) |Λ1(x)| � 2 and |Λ2(x)| � 1.

Proof

(1) If Λp(x)≠∅ for some p≥ 3, then there is a
p-representation Σp of x in Λp(x). )is gives
g1(Σp), g2(Σp), g3(Σp), g1(Σp) + g2(Σp), g1(Σp) +

g3(Σp), g2 (Σp) + g3(Σp), x ∈B∗ (Σp)⊆B∗(x).
)is implies |GI(Λ)|≠ 4.
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(2) If |Λ1(x)|≥ 3, then there are Σ1,1,Σ1,2, . . . ,

Σ1,r ∈ Λ1(x) with r≥ 3. We assume that g(Σ1,1)<
g(Σ1,2)< · · · <g(Σ1,r) and then c(Σ1,1)≥ 5. )is
gives g(Σ1,1), 2g(Σ1,1), 3g(Σ1,1), 4g(Σ1,1), 5g(Σ1,1)

∈B∗(Σ1,1), and therefore, |GI(Λ)|≠ 4.
(3) If |Λ2(x)|≥ 2, then we have Σ2,1,Σ2,2, . . . ,

Σ2,s ∈ Λ2(x) with s≥ 2. One can easily see that
B∗(Σ2,1)∪B

∗(Σ2,2)∪ . . . ∪B∗(Σ2,s) must contain
g1(Σ2,1), g2(Σ2,1), g1(Σ2,2), g2(Σ2,2), g1(Σ2,1)+

g2(Σ2,1) and g1(Σ2,2) + g2(Σ2,2). )erefore,
|GI(Λ)|≠ 4.

(4) Lemma 1: If Λ1(x) � ∅ and |Λ2(x)| � 1 then there
is the unique 2-representation Σ2 of x. Now if
Λp(x)≠∅ for some p≥ 3 then from (1), it follows
that |GI(Λ)|≠ 4, and if Λp(x) � ∅ for all p≥ 3, then
gives B∗(x) � B∗(Σ2). So if c(Σ2) � (1, 1), then
|GI(Λ)| � 3; otherwise, |GI(Λ)|> 4. Consequently,
|GI(Λ)|≠ 4.

(5) If |Λ1(x)| � 2 and |Λ2(x)| � 1, then we can assume
Σ1,1,Σ1,2 ∈ Λ1(x) and Σ2 ∈ Λ2(x). )is gives
g(Σ1,1), g(Σ1,2), g1(Σ2), g2(Σ2), g1(Σ2) + g2(Σ2) are
in B∗(x), and therefore, |GI(Λ)|≠ 4. □

Lemma 3. Let Λ � 〈A〉 be a numerical semigroup of em-
bedding dimension n≥ 2. 6en, |GI(Λ)|≠ 5, if one of the
following holds:

(1) Λp(x)≠∅ for some p≥ 3.
(2) |Λ1(x)|≥ 2.
(3) |Λ2(x)|≥ 3.
(4) |Λ1(x)| � 1 and |Λ2(x)| � 2.

Proof. )is lemma can be proved in a similar way as we
proved Lemma 2. □

2.2. Computation of Irreducible Ideals for the GraphsGI(Λ) of
Orders 4 and 5

Lemma 4. Let Λ � 〈A〉 be a numerical semigroup of em-
bedding dimension n≥ 2. If |GI(Λ)| � 4, then x is one of the
following:

(1) x � 4g(Σ1).
(2) x � 3g(Σ1,1) and x � 2g(Σ1,2).
(3) x � 2g(Σ1) and x � g1(Σ2) + g2(Σ2).

Proof. If |GI(Λ)| � 4, then from Lemma 2, it follows that
x ∈ Λ satisfies one of the following conditions:

|Λ1(x)|≤ 2 and Λp(x) � ∅, ∀p≥ 2.
|Λ1(x)| � 1, |Λ2(x)| � 1 and Λp(x) � ∅, ∀p≥ 3.

If |Λ1(x)| � 1 and Λp(x) � ∅, ∀p≥ 2, then x has a
unique 1-representation Σ1. By Lemma 1, we get
B∗(x) � B∗(Σ1) � g(Σ1), 2g(Σ1), . . . , c(Σ1).g(Σ1) . As
∣GI(Λ) ∣ � 4, it follows that c(Σ1) � 4. )is gives case (1).

Now if |Λ1(x)| � 2 and Λp(x) � ∅, ∀p≥ 2, then there
are exactly two 1-representations, say Σ1,1 and Σ1,2 of x.
Assume that g(Σ1,1)<g(Σ1,2), then c(Σ1,2)< c(Σ1,1) and
c(Σ1,1) is not a multiple of c(Σ1,2). )en, it follows from
Lemma 1 that

B
∗
(x) � B

∗ Σ1,1 ∪B∗ Σ1,2  � g Σ1,1 , 2g Σ1,1 , . . . , c Σ1,1 .g Σ1,1  ∪ g Σ1,2 , 2g Σ1,2  . . . , c Σ1,2 .g Σ1,2  

� g Σ1,1 , 2g Σ1,1 , . . . , c Σ1,1 .g Σ1,1 , g Σ1,2 , 2g Σ1,2 , . . . , c Σ1,2 .g Σ1,2  .
(5)

We show that B∗(Σ1,1)∩B
∗(Σ1,2) \ c(Σ1,2).g

(Σ1,2)} � ∅. Let p.g(Σ1,1) � q.g(Σ1,2) for some q<
p< c(Σ1,1) with q � 2, 3, . . . , c(Σ1,2) − 1. )en, p.g(Σ1,1)

+(c(Σ1,1) − p).g(Σ1,1) � c(Σ1,1).g(Σ1,1), and we get
q.g(Σ1,2) + (c(Σ1,1) − p).g(Σ1,1) � x. )is gives Λ2(x)≠∅,
a contradiction. )erefore, we have
|B∗(x)| � c(Σ1,1) + c(Σ1,2) − 1. As |GI(Λ)| � 4, c(Σ1,1) � 3
and g(Σ1,2) � 2 is the only possibility. )is gives case (2).

Let |Λ1(x)| � 1 � |Λ2(x)| and Λp(x) � ∅, ∀p≥ 3. )en,
we can assume Σ1 ∈ Λ1(x) and Σ2 ∈ Λ2(x) are the only
possible 1-representation and 2-representation of x, re-
spectively. By (2) in Lemma 2, we have c(Σ2) � (1, 1). In this
case, it is easy to see that B∗(x) � g(Σ1), 2g(Σ1), . . . ,

c(Σ1).g(Σ1), g1(Σ2), g2(Σ2)}. )en, |B∗(x)| � 4 gives
c(Σ1) � 2 and we get case (3). □

Lemma 5. Let Λ � 〈A〉 be a numerical semigroup of em-
bedding dimension n≥ 2. If | GI(Λ)| � 5, then x is one of the
following:

(1) x � 5g(Σ1).
(2) x � 2g1(Σ2) + g2(Σ2).
(3) x � g1(Σ2,1) + g2(Σ2,1) and x � g1(Σ2,2) + g2(Σ2,2).
(4) x � 3g(Σ1) and x � g1(Σ2) + g2(Σ2).

Proof. Given that |GI(Λ)| � 5, then from Lemma 5, it
follows that x ∈ Λ satisfies one of the following conditions:

|Λ1(x)| � 1 and Λp(x) � ∅, ∀p≥ 2.
|Λ2(x)|≤ 2 and Λp(x) � ∅, ∀p≠ 2.
|Λ1(x)| � 1, |Λ2(x)| � 1 and Λp(x) � ∅, ∀p≥ 3.
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)ese possibilities can be checked in a similar way as we
did in Lemma 4 to get the required result. □

3. Graphs GI(Λ) with Metric Dimension 2

Theorem 2. 6ere are exactly 5 nonisomorphic graphs
GI(Λ) with metric dimension 2.

We prove)eorem 2 in a sequence of following lemmas.

Lemma 6. 6ere are exactly 2 nonisomorphic graphs GI(Λ)
with 4 or less vertices and metric dimension 2.

Proof. It is trivial to note that no such graph exists for
|GI(Λ)| � 2, 3.

Now if |GI(Λ)| � 4, then from Lemma 4, we have the
following possibilities:

(1) x � 4g(Σ1) with Λp(x) � ∅, ∀p≥ 2.
(2) x � 3g(Σ1,1) � 2g(Σ1,2) with Λp(x) � ∅, ∀p≥ 2.
(3) x � 2g(Σ1) � g1(Σ2) + g2(Σ2) with Λp(x) � ∅,
∀p≥ 3.

If (1) holds, then I � Λ\B∗(4g(Σ1)), and therefore,
GI(Λ) is isomorphic to the graph given in Figure 1. So
metric dimension of GI(Λ) is 2.

Now if (2) or (3) holds, then either I � Λ\B∗(3g(Σ1,1))

or I � Λ\B∗(2g(Σ1)). In both cases, GI(Λ) is isomorphic to
the graph given in Figure 2, and therefore, metric dimension
of GI(Λ) is 2. □

Lemma 7. 6ere are exactly 3 nonisomorphic graphs GI(Λ)
with 5 vertices and metric dimension 2.

Proof. If |GI(Λ)| � 5, then from Lemma 5, we have the
following possibilities:

(1) x � 5g(Σ1) with Λp(x) � ∅, ∀p≥ 2.
(2) x � 2g1(Σ2) + g2(Σ2) with Λp(x) � ∅, ∀p≠ 2.
(3) x � g1(Σ2,1) + g2(Σ2,1) � g1(Σ2,2) + g2(Σ2,2) with
Λp(x) � ∅, ∀p≠ 2.

(4) x � 3g(Σ1) and x � g1(Σ2) + g2(Σ2) with
Λp(x) � ∅, ∀p≥ 3.

If (1) holds, then I � Λ\B∗(5g(Σ1)), and therefore,
GI(Λ) is isomorphic to the graph given in Figure 3.

Now, if (2) holds, then I � Λ\B∗(2g1(Σ2) + g2(Σ2)),
and therefore, GI(Λ) is isomorphic to the graph given in
Figure 4.

If (3) or (4) holds, then I � Λ\B∗(g1(Σ2,1) + g2(Σ2,1))

or I � Λ\B∗(3g(Σ1)). In both cases, GI(Λ) is isomorphic to
the graph given in Figure 5.

For all these 3 cases, one can easily show that metric
dimension of GI(Λ) is 2.

Finally, it is required to check all the graphs GI(Λ) of
order six having metric dimension 2. Binyamin et al. [34]
proved that if |GI(Λ)| � 6, then GI(Λ) is isomorphic to one
of the graphs given in Table 1. Now, it is easy to see that all
the graphs given in Table 1 have metric dimension 3. □

Figure 1: Graphs GI(Λ) When x � 4g(Σ1) with Λp(x) � 0,
∀p≥ 2.

Figure 2: Graph GI(Λ) for the remaining two cases.

Figure 3: Graphs GI(Λ) When x � 5g(Σ1) with Λp(x) � 0,
∀p≥ 2.

Figure 4: Graphs GI(Λ) When x � 2g(Σ2) with Λp(x) � 0,
∀p≠ q2.

Figure 5: Graph GI(Λ) for the remaining two cases.
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Connectivity is a key theory in fuzzy incidence graphs (FIGs). In this paper, we introduced connectivity index (CI), average
connectivity index (ACI), andWiener index (WI) of FIGs.,ree types of nodes including fuzzy incidence connectivity enhancing
node (FICEN), fuzzy incidence connectivity reducing node (FICRN), and fuzzy incidence connectivity neutral node (FICNN)

are also discussed in this paper. A correspondence between WI and CI of a FIG is also computed.

1. Introduction and Preliminaries

Zadeh [1] presented the theory of fuzzy set (FS) to resolve
complications in tackling with precariousness. Since then,
the FS theory becomes a rich area in multiple disciplines,
including mathematics, computer science, and signal pro-
cessing. ,e theory of graphs has been considered to play a
vital role in dealing with real-life situations. A graph is an
easy way of expressing information, including the rela-
tionship between different objects. ,e objects are shown by
nodes, and relations are represented by edges. In this paper,
all graphs are finite, simple, without loops, and undirected.
When there is a lack of certainty in the illustration of the
objects and their association, we need to draw a fuzzy graph
(FG) model. Zadeh’s FS provided a productive ground for
the theory of FGs which has been proposed by Rosenfeld [2].
In a graph, the strength of connectedness (SC) between any
two vertices is either 0 or 1, whereas in FG, it is a real number
∈∈[0, 1].,e study of FGs leadsmany scientists to contribute
in this field, such as Yeh and Bang [3] studied the concept of
FGs independently and discussed its applications in clus-
tering analysis. Bhattacharya and Suraweera [4] discussed an
algorithm to compute the max-min powers and property of
FGs. Bhutani [5] worked on automorphism of FGs. Mor-
deson [6] introduced fuzzy line graphs. Bhutani and
Rosenfeld [7, 8] studied strong arcs as well as fuzzy end

nodes in FGs. Sunitha and Vijayakumar [9, 10] defined fuzzy
trees and fuzzy blocks in FGs. Samanta et al. [11] inaugu-
rated completeness and regularity of generalized FGs.
Samanta and Pal [12] studied fuzzy planner graphs. Mathew
and Sunitha [13] classified the edges of a FG as an
α − strong, β − strong, and δ − edge. Mathew and Sunitha
[14, 15] presented vertex, edge connectivity, and cycle
connectivity in FGs.Mathew et al. [16] initiated saturation in
FGs, and Binu et al. [17] explored CI and its application in
FGs. Binu et al. [18] investigated CI of FG and its application
to human trafficking. For some other significant works on
graphs and FGs, one may refer to [19–25].

Wiener [26] was the first who investigated WI when he
was studying about the boiling point of paraffin. After the
landmark work of HaroldWiener aboutWI, in the middle of
1970s, new results related to WI were described. In graphs,
WI has been studied in different fields such as Chemistry,
Mathematics, and Physics. Binu et al. [27] discussed WI of
FG and its application to illegal immigration networks.

FGs are unable to provide any information on the effect
of a vertex on edges of the graph. ,erefore, this disad-
vantage opens a way to introduce FIGs. FIGs talk about the
effect of a vertex on an edge. Dinesh [28] presented the idea
of FIGs. For example, if vertices show different residence
societies and edges show roads joining these residence so-
cieties, we can have a FG expressing the extent of traffic from

Hindawi
Mathematical Problems in Engineering
Volume 2021, Article ID 6682966, 7 pages
https://doi.org/10.1155/2021/6682966

mailto:liujiabaoad@163.com
https://orcid.org/0000-0002-8691-1088
https://orcid.org/0000-0002-9620-7692
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/6682966


one society to another. ,e society has the maximum
number of residents and will have maximum ramps in
society. So, if c and d are two societies and c d is a road
joining them, then (c, c d) could express the ramp system
from the road c d to the society c. In the case of an un-
weighted graph, c and d both will have an influence of 1 on
c d. In a directed graph, the influence of c on c d represented
by (c, c d) is 1, whereas (d, c d) is 0. ,is idea can be gen-
eralized by FIGs. Mordeson [29] studied numerous con-
nectivity perceptions in FIGs. Malik et al. [30] explained
different uses of FIGs. Mordeson et al. [31] proposed a fuzzy
incidence (HTML translation failed) blocks along with their
applications. Mordeson andMathew [32] discussed different
connectivity ideas in FIGs.

,e motivation of our work is that CI, ACI, and WI of
FGs exists in literature, but these indices are unknown for
FIGs. ,ese indices will make a way to study different
properties of FIGs at length. ,is is why we propose these
concepts for FIGs. Our work will open the new doors for
many researchers to study FIGs in detail. ,e outline of this
paper is as follows. In Section 1, we provide elementary
definitions, results, and expressions of FIGs, which are re-
quired for the development of the content. In Section 2, we
discuss CI of FIGs. Section 3 describes certain boundaries for
CI of FIGs. CI of vertex and edge deleted fuzzy incidence
subgraph (FIS) is illustrated in Section 4. Section 5 explains
ACI and its characteristics. In Section 6, we discuss WI of
FIG and a relationship between connectivity andWI. Below,
we present some preliminary definitions from [17, 19, 32].

Let G be a simple graph with vertex set V(G) and edge set
E(G). ,en, an incidence graph (IG) is given by G � (V,

E, I), where I⊆V × E. An IG is shown in Figure 1, and if
(u, uv) is in IG, then (u, uv) is said to be an incidence pair or
pair. Assume an IGG � (V, E, I). A sequence v0, (v0, v0v1),

v0v1, (v1, v0v1), v1, . . . , vn− 1, (vn− 1, vn− 1vn), vn− 1vn, (vn, vn− 1
vn), vn is said to be a walk. It is closed if v0 � vn. A walk is
called a path if it has all distinct vertices. An IG is said to be
connected if all pair of vertices are joined by a path. An edge
ab is said to be a fuzzy bridge (FB) if the deletion of ab ∈ θ∗
lessens the SC between some pair of vertices in G.

In this paper, minimum is represented by ∧ and max-
imum is expressed by ∨.

Definition 1. Consider a graph G � (V, E), and η and θ are
fuzzy subsets of V and E, respectively. Assume V × E has a
fuzzy subset ψ. If ψ(v∗, e∗)≤ η(v∗)∧θ(e∗) for every v∗ ∈ V

and e∗ ∈ E, then ψ is called a FI of G.

Definition 2. Assume a graph G � (V, E) and (η, θ) be a
fuzzy subgraph of G, if ψ is a FI of G, then G � (η, θ,ψ) is
called a FIG of G.

Definition 3. Consider a FIGG � (η, θ,ψ). ,en,
H � (κ,ϕ,Ω) is a FIS of G if κ⊆η, ϕ⊆ θ and Ω⊆ψ.

Definition 4. AssumeG � (η, θ,ψ) is a FIG. A FI path λ from
g to h, g, gh ∈ η∗ ∪ θ∗, is defined as a sequence of elements
η∗, θ∗, and ψ∗ beginning with g and closing with h. ,e

minimum value of ψ(x, xy) is called incidence strength (IS),
where (x, xy) ∈ λ.

In FIG, the incidence paths (IPs) can take distinct forms.
u0 � (u0, u0u1), u0u1 is an IP of length one. u0 � (u0,

u0u1), u0u1, (u1, u0u1)u1 is an IP of length two.

Definition 5. Consider G be a FIG. An incidence pair
(a, ab) is strong if ψ(a, ab)≥ ICONNG− (a,ab)(a, ab) where
ICONNG− (a,ab) (a, ab) shows the highest IS of a − ab. If
ψ(a, ab)> ICONNG− (a,ab)(a, ab), then the pair is called
α − strong. If ψ(a, ab) � ICONNG− (a,ab)(a, ab), then this
type of pair is β − strong. If an incidence pair is α − strong
or β − strong, then this kind of pair is a strong pair. If
HTML translation failed, then this type of pair is called
δ − incidence pair.

Definition 6. Assume G be a FIG. If all pairs of λ are strong,
then an IP λ in G is called strong IP.

Definition 7. Consider G � (η, θ,ψ) be a FIG. H � (κ,ϕ,Ω)

is called a subgraph of G if κ(a) � η(a) for all a ∈ κ∗,
ϕ(ab) � θ(ab) for all ab ∈ ϕ∗, and Ω(a, ab) � ψ(a, ab) for
all pair (a, ab) ∈ Ω∗.

Proposition 1. If H is a FIS of G, then ICONNH(a,ab)

≤ ICONNG(a,ab).

Definition 8. A FIG of G is said to be complete if ψ(a, ab) �

η(a)∧θ(ab) for every (a, ab) ∈ ψ∗.

Definition 9 (see [19]). ,e distance d(u, v) between two
vertices u, v ∈ V(G) is the minimum number of edges in a
path between u and v in G.

u

v w

x

Figure 1: Incidence graph.
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Definition 10. In a graph G, a path of shortest length is called
geodesic.

Definition 11. (see [19]). WI of a graph G is the sum of
distances between all pairs of vertices of G. ,en, the WI of a
graph G is given by W(G) � u,v∈V(G)d(u, v).

2. Connectivity Index of Fuzzy Incidence Graph

Connectivity is a common parameter associated with a
network. ,is section includes the introduction and formula
to calculate CI of FIG. For easiness, in the coming sections,
we will take η(a) � 1 for every a ∈ η∗.

Definition 12. LetG � (η, θ,ψ) be a FIG.,e CI of G is given
by

CI(G) � 
a,b∈η∗

η(a)η(b)ICONNG(a, b),
(1)

ICONNG(a, b) is the maximum value of ISs for all the
possible IPs between a and b.

Example 1. Assume G is a FIG given in Figure 2 having
η∗ � i, j, k, l ; θ(ij) � 0.8, θ(ik) � 0.4, θ(jk) � 0.7, θ(kl) �

0.9;ψ(i, ij) � 0.7,ψ(j, ji) � 0.5,ψ(i, ik) � 0.3,ψ(k, ki) � 0.2,

ψ(j, jk) � 0.3,ψ(k, kj) � 0.7,ψ(k, kl) � 0.7, and ψ(l, lk) �

0.3 with CI(G) � 2.0.

,e connectivity indices of subgraphs of FIGs can never
be surpassed that of the FIGs. ,erefore, a subgraph H of
FIGG will have to be less than or equal to CI than the CI(G).
,is is shown in the coming proposition.

Proposition 2. If H � (κ,ϕ,Ω) is a FIS of G � (η, θ,ψ), then
CI(H)≤CI(G).

Proof. Let a, b ∈ κ∗. As H � (κ, ϕ,Ω) is a FIS ofG � (η, θ,ψ),
κ(a) ≤ η(a). Also, if H is a FIS of G, then ICONNH(a, b) ≤
ICONNG(a, b) for any two a, b ∈ κ∗. ,is implies
a,b∈κ∗κ(a)κ(b) ICONNH(a, b)≤a,b∈η∗η(a)η(b) ICONNG

(a, b) which implies CI(H)≤CI(G). □

Example 2. Consider G be a FIG provided in Figure 3 having
η∗ � i, j, k , θ(ij) � 0.8, θ(ik) � 0.4, θ(jk) � 0.7;ψ(i, ij) �

0.7,ψ(j, ji) � 0.5,ψ(i, ik) � 0.3,ψ(k, ki) � 0.2,ψ(j, jk) �

0.3,ψ(k, kj) � 0.7. It is a subgraph of a FIG given in Example
1 (Figure 2) with CI 1.1.

3. Bounds for Connectivity Index of Fuzzy
Incidence Graph

,is section discusses some bounds for the CI of FIGs. Every
FIG has a different CI. ,erefore, all FIGs have different
bounds for the CI. From all FIGs, the complete FIGs will
have the highest CI. It is shown in the next theorem.

Theorem 1. Consider a FIG, G having |η∗| � n, then
0≤CI(G)≤CI(G″), where G″ indicates a complete FIG.

Proof. Assume G is a FIG. If |θ∗| � 0, then CI of G � 0. Let
G″ be the complete FIG having |η∗| � n and η″(a) � η(a).
,en, θ(a, b)≤ θ″(a, b). Also, ICONNG(a, b)≤
ICONNG″(a, b). ,is implies 0≤CI(G)≤CI(G″). □

Example 3. Assume G″ is a complete FIG given in Figure 4
having η∗ � i, j, k , θ(ij) � 0.8, θ(ik) � 0.4, θ(jk) � 0.7,

ψ(i, ij) � 0.8,ψ(j, ji) � 0.8, ψ(i, ik) � 0.4, ψ(k, ki) � 0.4,ψ
(j, jk) � 0.7 and ψ(k, kj) � 0.7. We get CI(G″) � 2.2.

4. Vertex-Deleted and Edge-Deleted Fuzzy
Incidence Subgraphs with
Connectivity Indices

,is section talks about the deletion of some edge or vertex
of any FIG will become a cause of reducing a CI of FIG. An
edge deleted and vertex deleted subgraph of a FIG will have
small values of CI. ,e CI of FISs relies upon the nature of
vertex or edge deleted.

Example 4. Let G � (η, θ,ψ) be the FIG given in Figure 5
with η∗ � p, q, r, s, t , θ(pq) � 0.7,θ(pr) � 0.5,θ(qr) �

0.9,θ(rs) � 0.3,θ(rt) � 0.5,θ(st) � 0.6;ψ(p, pq) � 0.6,ψ (q,

qp) � 0.7,ψ(p, pr) � 0.4, ψ(r, rp) � 0.2, ψ(q, qr) � 0.8,ψ(r,

rq) � 0.6,ψ(r, rs) � 0.2,ψ(s, sr) � 0.3, ψ(r, rt) � 0.5,ψ(t, tr)

� 0.4,ψ(s, st) � 0.6, and ψ(t, ts) � 0.4. After calculation, we
get CI(G) � 4.6, whereas CI(G − qr) � 3.0 and CI(G−

rt) � 3.4. Here, we conclude that deletion of some of the
incidence pair reduces CI(G).,is motivation leads us to the
following result.

Theorem 2. LetG � (η, θ,ψ) be a FIG and G∗ � (η∗, θ∗,ψ∗)
be the FIS of G by deleting an incidence pair (a, ab) ∈ ψ∗.
Den, CI(G∗)<CI(G) iff (a, ab) is a FB.

i (1)

j (1) k (1)

l (1)

0.8

0.7

0.4
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0.7

0.3

0.2

Figure 2: A fuzzy incidence graph with CI � 2.0.

Mathematical Problems in Engineering 3



Proof. Consider a pair (a, ab) be a FB. ,en, according to
definition of FB, ICONNG− (a,ab)(a, b)< ICONNG(a, b),
which shows that CI(G∗)<CI(G). Conversely, assume that
CI(G∗)<CI(G). Now, consider three different cases:

Case 1: consider a δ − pair, ψ(a, ab), and then
ψ(a, ab)< ICONNG− (a,ab)(a, b) which implies
ICONNG− (a,ab)(a, b)< ICONNG(a, b). ,is implies
CI(G∗)<CI(G).
Case 2: consider a β − strong incidence pair ψ(a, ab).
,en, ψ(a, ab) � ICONNG− (a,ab)(a, b) which means
that there is an another strongest path a, (a, ab),

ab, (b, ab), b different from the edge ψ(a, ab). ,e IS

does not affect when we delete ψ(a, ab). ,is means
CI(G∗) � CI(G).
Case 3: consider an α − strong incidence pair ψ(a, ab).
,en, ψ(a, ab)> ICONNG− (a,ab)(a, b). ,is means an
edge ab is the only strongest path whose strength is
equal to ψ(a, ab). From this, it is obvious that
CI(G∗)<CI(G). As by definition α, strong arcs are FBs.
,is means if CI(G∗)<CI(G), then ab is a FB. ,is
shows that CI(G∗)<CI(G) iff uv is a FB. □

5. ACI of FIG

We measure the average flow in the network to check how
much flow is stable in the network.,erefore, in this section,
we are going to introduce a new parameter named ACI of
FIG. Assume the FIG given in Example 1.

Example 5. Assume G is a FIG given in Example 1 (Figure 2)
having η∗ � i, j, k, l , θ(ij) � 0.8, θ(ik) � 0.4, θ(jk) � 0.7,

θ(kl) � 0.9;ψ(i, ij) � 0.7,ψ(j, ji) � 0.5,ψ(i, ik) � 0.3,ψ (k,

ki) � 0.2,ψ(j, jk) � 0.3,ψ(k, kj) � 0.7,ψ(k, kl) � 0.7 and
ψ(l, lk) � 0.3 with CI(G) � 2.0. G contains 4!/((4 − 2)!2!) �

6 pairs of nodes with ACI(G) � CI(G)/6 � 2/6 � 0.33.

Definition 13. Consider a FIG. ,e ACI of FIG is given by

ACI(G) �
1
n

2
⎛⎝ ⎞⎠


a,b∈η∗

η(a)η(b)ICONNG(a, b).

(2)

Definition 14. Assume a FIG and z ∈ η∗. z will be FICRN of
G if ACI(G − z)<ACI(G). We call z a FICEN if ACI
(G − z)>ACI(G). z will be FICNN if ACI(G − z) �ACI(G).

Example 6. Let G be a FIG given in Figure 6 with
(HTML translation failed), θ(ij) � 0.3, θ(ik) � 0.8, θ(jk) �

0.7, θ(jn)) � 0.5, θ(kl) � 0.9, θ(lm) � 0.8;ψ(i, ij) � 0.3,ψ(j,

ji) � 0.2, ψ(i, ik) � 0.4, ψ(k, ki) � 0.6, ψ(j, jk) � 0.6, ψ(k,

k j) � 0.7, ψ(j, jn) � 0.5,ψ(n, nj) � 0.4, ψ(k, kl) � 0.8,ψ(l,

lk) � 0.2,ψ(l, lm) � 0.3, and ψ(m, ml) � 0.7. ACI(G) �

0.3, ACI(G − i) � 0.29, ACI(G − j) � 0.25, ACI(G − k) �
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Figure 3: Subgraph of the fuzzy incidence graph in Figure 2.
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Figure 4: A complete fuzzy incidence graph.
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Figure 5: Fuzzy incidence graph with CI 4.6.
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0.11,ACI(G − l) � 0.36,ACI(G − m) � 0.34,ACI(G − n) �

0.29. ,erefore, i, j, k, and n are FICRNs; l and m are
FICENs.

In the following proposition with the help of CI, we
classify these nodes:

Proposition 3. Consider a FIG. Let z ∈ η∗ having
n � |η∗|≥ 3. Assume q � CI(G)/CI(G − m). z is a FICEN iff
q< (n/(n − 2)). z is a FICRN iff q> n/(n − 2). z is a FICNN
iff q � n/(n − 2).

Proof. Let z be FICNN of FIG.,en, ACI(G) � ACI(G − z),

that is, CI(G)/ n

2  � CI(G− z)/ n − 1
2  and CI(G)

/CI(G − z) �
n

2 / n − 1
2 , which implies

CI(G)/CI(G − z) � n/(n− 2). By reversing the argument, the
sufficient part can easily be proved. In similar manners, the
other two cases can be solved. □

Definition 15. Let G be a FIG. G will be FI connectivity
enhancing graph if G contains minimum one FICEN. If G

contains no FICEN and has minimum one FICRN, then we
call it FI connectivity reducing graph. We call G a FI
connectivity neutral graph if all nodes of G are neutral.

6. Wiener Index of FIG

In this section, we establish the concept of WI. WI is a
topological index used in different fields like medicine,
communication, and cryptology. A proper definition to
calculate WI of FIG is given next.

Definition 16. Let G be a FIG. WI of G can be calculated as

WI(G) � 
a,b∈η∗

η(a)η(b)ds(a, b),
(3)

where ds(a, b) represents weights of those strong geodesics
from a − b whose sum is minimum.

Example 7. Consider G be a FIG given in Figure 7 with
η∗ � i, j, k , θ(ij) � 0.7, θ(ik) � 0.8, θ(jk) � 0.7;ψ(i, ij) �

0.6, ψ(j, ji) � 0.6, ψ(i, ik) � 0.8, ψ(k, ki) � 0.8, ψ(j, jk) �

0.6,ψ(k, kj) � 0.6. Here, each incidence pair is a strong pair.
Because i − j is a geodesic, it is a strongest path from i − j.
Similarly, i − k and j − k are all strongest paths. ,us,
WI(G) � 4.

Assume a FIG. Let H be the FIS of G. ,en, it is not
necessary that WI(H)≤WI(G). It can be seen in the next
example

Example 8. Let H � (κ, ϕ,Ω) is a FIS (see Figure 8) of G �

(η, θ,ψ) (in Figure 7) such that ϕ(ik) � 0 and ϕ(ij) �

0.7, ϕ(jk) � 0.7,Ω(i, ij) � 0.6,Ω(j, ij) � 0.6,Ω(j, jk) � 0.6,

Ω(k, jk) � 0.6. Geodesic from i to k is i, j, k. ds(i, j) �

ψ(i, ij) + ψ(j, ij) � 1.2 Similarly, ds(i, k) � 2.4, ds(j, k) �

1.2. ,en, WI(H) � 4.8 and WI(G) � 4<WI(H) � 4.8.

Link between WI and CI of a FIG
In FIGs, it could be noted that CI will be less than WI.

Example 9. Consider a FIG given in Figure 9 with η∗ �

i, j, k, l , θ(ij) � 0.8, θ(ik) � 0.4, θ(jk) � 0.7, θ(kl) � 0.9;

ψ(i, ij) � 0.5,ψ(j, ji) � 0.7,ψ(i, ik) � 0.3,ψ(k, ki) � 0.2,ψ
(j, jk) � 0.3,ψ(k, kj) � 0.7,ψ(k, kl) � 0.7, and ψ(l, lk) � 0.3.
,is FIG contains each pair strong except ψ(i, ki) � 0.2
because ICONNG− (i,ki) � 0.3. For (i, k) ∈ η∗ × η∗∖ψ(i, ki).
Now, CI(G) � 0.5 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 � 2 and
WI(G) � 1.2 + 2.2 + 3.2 + 1 + 2 + 1 � 10.6 ,us, CI(G)<
WI(G).

Theorem 3. Assume a FIG having |η∗|≥ 3. Den,
WI(G)>CI(G).

Proof. Consider a FIG with |η∗|≥ 3. For every a, b ∈ η∗, the
sum of membership values of every strong incidence pairs
connecting a and b is ds(a, b), whereas the minimum
membership value of all strong incidence pairs is
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j (1) k (1)

0.7

0.7

0.8

0.6

0.6
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Figure 7: Fuzzy incidence graph with WI(G) � 4.
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Figure 6: Fuzzy incidence graph with FICRNs and FICENs.
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ICONNG(a, b), which means ICOONG(a, b)< ds(a, b). ,is
implies a,b∈η∗η(a)η(b)ICONNG(a, b)<a,b∈η∗η(a)η
(b)ds(a, b). Hence, CI(G)<WI(G). □

Theorem 4. Assume a complete FIG, G with |η∗| � 2, and
(a) � (b) � 1. Den, 2CI(G) � WI(G).

Proof. Consider G be a complete FIG with |η∗| � 2 and
(a) � (b) � 1. ∃ ,ere exist a strong path P″ which is the
strongest path in complete FIG, G. For any two nodes
a, b ∈ η∗, the sum of membership values of incidence pair in
the only strongest path P″ connecting a with b is ds(a, b),
whereas the minimum membership value of incidence pair

of P is ICONNG(a, b). ,is implies
2 ICONNG(a, b) � ds(a, b). ,us, 2a,b∈η∗η
(a)η(b)ICONNG(a, b) � a,b∈η∗η(a)η(b)ds(a, b). Hence,
2 CI(G) � WI(G). □

Example 10. Let G be the complete FIG, as shown in Fig-
ure 10. Here, u, v ∈ η∗ and θ(uv) � 0.3,ψ(u, uv) �

0.3,ψ(v, vu) � 0.3. Clearly, CI(G) � 0.3 and WI(G) � 0.6.

7. Conclusion

Connectivity is an essential parameter attached to a net-
work. ,e idea of connectivity is inseparable from the
theory of FIGs. In this paper, we have come up with dif-
ferent results about WI and CI of FIGs. Relevant examples
related to WI and CI of FIGs are too obtained. In this
article, CI, ACI, and WI of FIGs linked with networks are
expressed. Nodes of FIGs are classified as FICRN, FICEN,
and FICNN by using these incidences. Various types of
FIGs are also obtained. A crucial relationship between CI
andWI of FIG is derived too. Our objective is to enlarge our
research work to soft FIGs, bipolar FIGs, threshold FIGs,
competition FIGs, regular FIGs, and q-rung FIGs. More
similar results and applications will be reported in up-
coming papers.
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Figure 9: Fuzzy incidence graph with CI<WI.
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