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Te advent of the COVID-19 pandemic hasmarkedly afected energy valuations and fnancial markets. As such, this article aims to
scrutinize the dynamic interplay between stock market returns and crude oil prices, with a particular focus on China, factoring in
the second-moment efect of volatility spillover. Employing an EGARCH process to model the leverage impact on returns’
volatility, the analysis utilizes daily data spanning from January 30, 2020, to August 30, 2022, and incorporates causality-in-mean
and variance assessments. Empirical fndings indicate that the QDII-LOF benchmark, representing oil prices, exerts a substantial
infuence on stock market returns. Nevertheless, the complete sample reveals no discernible spillover efects attributable to oil
price fuctuations. Tese insights imply that the Chinese government’s actions should carefully weigh the ramifcations of
spillovers. Concurrently, investors are advised to attentively monitor the crude oil market when making portfolio allocation
decisions.

1. Introduction

Te exploration of the efects of crude oil price fuctuations
on China’s stock market returns during the COVID-19
pandemic is of paramount importance, as it provides
valuable insights into the intricate dynamics between energy
and fnancial markets in one of the world’s largest econo-
mies.Tis line of inquiry is particularly crucial given China’s
status as a signifcant energy consumer and its role in
shaping global oil demand patterns. Furthermore, un-
derstanding the interdependencies between crude oil prices
and China’s stock market returns during the pandemic
enables policymakers, investors, and other stakeholders to
make informed decisions in the face of unprecedented
economic challenges and market volatility. Te COVID-19
crisis, with its far-reaching consequences on energy demand,
supply chains, and macroeconomic stability, has amplifed
the need for a comprehensive investigation of the oil-stock

market nexus in the Chinese context. By delving into this
critical research area, scholars contribute to a richer un-
derstanding of the complex interplay between energy and
fnancial markets, ultimately facilitating the development of
robust and adaptive strategies to navigate the evolving
economic landscape. Amid the COVID-19 pandemic out-
break, China has experienced profound ramifcations across
numerous sectors, encompassing energy prices and stock
markets. Energy, as the cornerstone of China’s economic
growth and fnancial market efcacy, plays a pivotal role in
corporate production. Wang and Wu [1] noted that stock
market stability could be jeopardized when uncertainty
spawned signifcant energy price volatility. Chiarella et al. [2]
elucidated that such volatility could impact frms’ outputs
and profts by altering production costs and subsequently
causing stock price fuctuations. Conversely, energy prices
could infuence stock prices through mechanisms like
speculative demand and investor expectation efects.
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Traditionally, China has focused on stock market-
associated fnancial risks. Te innately elevated risk of the
stock market renders it vulnerable to the destabilizing forces
of both internal and external elements, including substantial
price shifts. Concurrently, stock market volatility can per-
meate other markets, ultimately culminating in the accu-
mulation or triggering of systemic fnancial perils.
Consequently, during the COVID-19 pandemic, it is crucial
to rigorously examine the volatility spillover nexus between
China’s energy and stock markets, elucidating the risk
transmission mechanisms between them. Tis insight will
aid governmental bodies in enhancing energy and stock
market price stability measures while mitigating fnancial
hazards.

Tis study aims to scrutinize the infuence of crude oil
price fuctuations on China’s stock market returns amidst the
COVID-19 pandemic, drawing from the comprehensive re-
search context outlined earlier. Utilizing the exponential
generalized auto-regressive conditional heteroskedasticity
(EGARCH) model alongside causality-in-mean and variance
tests for our empirical analysis, we employed daily data
spanning from January 30, 2020, to August 30, 2022. Te
results, underpinned by the QDII-LOF benchmark, indicate
a signifcant correlation between oil prices and China’s stock
market returns. However, when examining the entire sample,
we observed no substantial spillover ramifcations from oil
prices. Tis research not only ofers valuable insights for the
Chinese government and investors regarding the pandemic’s
impact on energy prices and stock market performance but
also enriches the existing academic discourse on the subject.

Moreover, this study presents two notable contributions to
the existing Chinese literature on the subject. Firstly, by
employing the exponential generalized auto-regressive con-
ditional heteroscedasticity, causality-in-mean, and variance
approaches, this work delves into the issue from a distinct
analytical perspective, thus augmenting the current body of
knowledge. Tis difers from previous Chinese research (Zhu
et al. [3]; Li et al. [4]; Luo and Qin [5]; Fang and You [6]; Ding
et al. [7]), which primarily utilized vector auto-regression,
Granger causality, structural vector auto-regression, and other
methodologies. Secondly, considering China’s status as the
world’s largest energy importer and the COVID-19 pandemic’s
origin, selecting China as the sample for examining this issue
ofers a more representative and insightful approach. Tis not
only complements existing literature (Bashir [8]; Katsam-
poxakis et al. [9]; Managi et al. [10]; Refai et al. [11]; Jareño et al.
[12]) but also broadens the scope of the ongoing discourse on
this subject.

Tis article unfolds in a meticulously structured manner,
with each section serving a distinct purpose. Section 2 delves
into a comprehensive review of relevant literature, setting
the foundation for the analysis. Section 3 outlines the robust
econometric methodology employed, ensuring the accuracy
and reliability of the study’s results. Section 4 presents the
fndings and engages in an insightful discussion, enhancing
readers’ understanding of the topic. Finally, Section 5
concludes the article by ofering thought-provoking con-
clusions and valuable policy implications, paving the way for
future research and policy development in this domain.

2. Literature Review

Teobjective of this section is to meticulously synthesize and
examine prior investigations concerning the repercussions
of crude oil shocks on stock market volatility, thereby
establishing a robust, credible, and impartial theoretical
basis for the present study. A unifed agreement has yet to
emerge within the diverse and extensive literature regarding
the precise impact of crude oil shocks on stock market
volatility.

Te COVID-19 pandemic has generated a wealth of
academic literature probing the infuence of crude oil price
shocks on stock market returns as researchers strive to
unravel the intricate interconnections between energy and
fnancial markets during this unprecedented global occur-
rence (Sharif et al. [13]; Alaoui Mdaghri et al. [14]; Abuzayed
et al. [15]; Ren et al. [16]; Salisu et al. [17]; Ren et al. [18]).
Foundational studies have explored the myriad pathways
through which variations in the price of crude oil afect stock
market returns, emphasizing factors such as cost, demand,
and expectations as pivotal drivers of this nexus (Phoong
et al. [19]; Wang et al. [20]; Duan et al. [21]; Managi et al.
[10]; Naeem et al. [22]). Te COVID-19 crisis has intensifed
these interactions, with the convergence of collapsing energy
demand, disrupted supply chains, and pervasive economic
downturns engendering unparalleled market dynamics
(Martins and Cró [23]; G. Tuna and V. E. Tuna [24]; Liu et al.
[25]).

Innovative methodologies have been harnessed to un-
tangle the complex linkages between crude oil prices and
stock market returns amid the pandemic. For instance, Bani-
Khalaf and Taspinar [26], and Lúcio and Caiado [27] have
detected negative correlations between crude oil price
shocks and stock market returns, positing that the drastic
decline in energy demand and the subsequent oil glut have
exerted downward pressure on both markets. In contrast,
Benlagha and El Omari [28], and Nham [29] have observed
positive associations, arguing that the resurgence in oil
prices following the initial collapse has invigorated stock
market performance. Tese investigations have employed
cutting-edge econometric techniques, such as vector error
correction models (Wang et al. [30]; Ren et al. [31]; Fareed
et al. [32]), dynamic conditional correlation models (DCC)
(Zhou et al. [33]), and wavelet coherence analysis (Tiwari
et al. [34]), to shed light on the multifaceted relationships
between crude oil prices and stockmarket returns during the
pandemic.

Troughout the COVID-19 pandemic, the interplay
between crude oil price shocks and stock market returns has
garnered signifcant scholarly interest. Pioneering studies by
Zhang et al. [35] laid the groundwork by identifying an
intensifed interdependence between oil prices, stock mar-
kets, and exchange rates through dynamic conditional
correlation and wavelet coherence models. Tis foundation
spurred a plethora of subsequent inquiries. For example,
Dutta et al. [36], Hung and Vo [37], and Salisu et al. [38]
adopted wavelet analysis to scrutinize the oil-stock market
relationship, while Salisu and Obiora [39], and Mezghani
and Abbes [40] deployed network-based approaches to
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examine the spillover efects between the two variables.
Furthermore, scholars such as Rowland et al. [41], Ding et al.
[42], and Umar et al. [43] have utilized cross-sectional,
copula, and Bayesian vector autoregression models, re-
spectively, to showcase the negative correlation between oil
prices and stock market performance during the pandemic.

As the body of literature on this topic continued to grow,
researchers began incorporating more advanced method-
ologies and data samples. For example, Kilic et al. [44] and
Apostolakis et al. [45] implemented time-varying parameter
and mixed data sampling models, providing further evi-
dence of the oil-stock market nexus. Additionally, Topcu
et al. [46], Chien et al. [47], and Li et al. [48] employed
Granger causality tests, panel vector autoregression, and
structural vector autoregression approaches, respectively, to
explore the impact of oil price shocks on stock market
returns across diferent countries. Meanwhile, Mzoughi et al.
[49], Liu et al. [50], and Abuzayed and Al-Fayoumi [51]
utilized quantile regression, machine learning, and asym-
metric nonlinear models to capture the heterogeneous re-
sponses of stock markets to oil price fuctuations.
Cumulatively, this vast and diverse literature, which also
includes notable contributions by Dogan and Inglesi-Lotz
[52], Goodell and Goutte [53], and Liao et al. [54], em-
phasizes the critical role of oil price shocks in infuencing
stock market returns during the COVID-19 pandemic.

In essence, the prevailing literature suggests notable
correlations between oil prices and stock market perfor-
mance, as evidenced in numerous industrialized countries.
Tis study aims to explore the presence of such relationships
within the Chinese context. Specifcally, the objective of this
paper is to evaluate the infuence of oil price shocks on
China’s stock market returns, spanning the period from
January 30, 2020, to August 30, 2022. Employing the
EGARCHmodel and causality tests inmean and variance for
empirical analysis, our results substantiate the notion that oil
prices, as represented by the QDII-LOF benchmark, have
a signifcant impact on stock market returns. Contrarily,
when examining the entire sample, we observe no dis-
cernible spillover efects attributable to oil price fuctuations.
In conclusion, these novel fndings may enrich the existing
body of knowledge and ofer fresh insights into the complex
interplay between oil prices and stock market dynamics in
the Chinese market.

3. Econometric Methodology

In this study, we employ the exponential generalized
autoregressive conditional heteroskedasticity (EGARCH)
model, a powerful approach pioneered by Nelson [55], to
conduct rigorous empirical analyses.Te EGARCHmodel is
adept at capturing the leverage efect present in return
volatility series, thereby providing a robust framework for
examining the relationship between crude oil and stock
market returns. To ensure the validity of our analysis, we frst
establish the stationarity of the identifed stock market
return series and crude oil return series, denoted by stockt,

respectively. Subsequently, we apply the EGARCH model to
these two variables, as articulated in equations (1) and (3),
thereby ofering a comprehensive and incisive assessment of
the intricate interplay between the two series.

For the stock market returns,

stockt � μstock,t + δt, (1)

where [δt | δt− 1, δt− 2, δt− 3, · · · , stockt− 1, stockt− 2, stockt− 3, · · ·]

∈ (0, hstock,t); μstock,t denotes the mean of stockt; δt denotes
the residuals.

hstock,t � ω + β log hstock,t− 1 + α
δt− 1�����
hstock,t

􏽱

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

+ c
δt− 1�������

hstock,t− 1

􏽱⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠.

(2)

For the crude oil market returns,

oilt � μoil,t + εt, (3)

where [εt | εt− 1, εt− 2, εt− 3, · · · , oilt− 1, oilt− 2, oilt− 3, · · ·] ∈ (0,

hoil,t); μoil,t denotes the mean of stockt; εt denotes the
residuals.

hoil,t � ω + β log)hoil,t− 1 + α
εt− 1����
hoil,t

􏽱

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

+ c
εt− 1�����
hoil,t− 1

􏽱 . (4)

Ten, following He [56], it is assumed that At corre-
sponds to the information set At � (stockt; b≥ 0). Similarly,
it is assumed that Bt corresponds to the information set
Bt � (oilt; stockt; b≥ 0). As a result, oilt is regarded as the
cause of stockt in variance unless the following equation
holds:

E stockt − μs,t+1􏼐 􏼑
2

􏼚 At ≠ stockt+1 − μs,t+1􏼐 􏼑
2

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌Bt􏼕, (5)

where the causality-in-variance concept was developed by
Cheung and Ng [57], and it serves as the foundation for
equation (5). Calculating both the squared standardized
residuals, δt in equation (1) and εt in equation (2), is required
when using the causality-in-variance technique:

μt �
stockt − μstock,t􏼐 􏼑

2

hstock,t

� δ2t ,

]t �
oilt − μoil,t􏼐 􏼑

2

hoil,t
� ε2t .

(6)

In accordance with Hong [58], the following test sta-
tistics can be used in order to investigate any potential causal
association over a specifed lag (w):

Q �
T􏽐

T− 1
t�1 k

2
w

− 1􏽦ρ2μ](l) − C1T(k)
�������
2D1T(k)

􏽰 , (7)

where 􏽦ρ2μ](b) denotes the sample cross-correlation on the
period of lag (b). It is calculated as follows:
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􏽦ρ2μ](b) � 􏽦Cμμ(0) 􏽦C]](0)􏽨 􏽩
− (1/2) 􏽦Cμ](b). (8)

Te following are the results that the function of sample
cross-covariance yields:

􏽦Cμ](b) �

1
T

􏽘
T

t�b+1
􏽥μt

􏽦]t− b, b≥ 0,

1
T

􏽘
T

t�− b+1
􏽦μt+b 􏽥]t, b< 0,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(9)

where 􏽦Cμμ(0) � 1/T􏽐
T
t�1

􏽥μ2t ; 􏽦C]](0) � 1/T􏽐
T
t�1

􏽥δ2t .
In equation (7), k(l/W) denotes a weight function, and

the Barlett kernel is used for this purpose.

k
l

W
􏼠 􏼡 � 1 −

l

W
+ 1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
,with

k

(W + 1)
≤ 1. (10)

Otherwise,

k

W
� 0. (11)

Terefore,

C1T(k) � 􏽘
T− 1

l− 1
1 −

|l|

S
􏼠 􏼡k

2 l

W
􏼠 􏼡,

D1T(k) � 􏽘

T− 1

l− 1
1 −

|l|

T
􏼠 􏼡 1 − (|l| + 1)k

4 l

W
􏼠 􏼡􏼢 .

(12)

Drawing upon the work of Hong [58], the Q-statistic,
an essential component of the one-sided test, adheres to
an asymptotic normal distribution. Consequently,
employing the critical values corresponding to the right
tail of the normal distribution is deemed appropriate. Our
analysis proceeds with the calculation of the Q-statistic for
equation (7), followed by a comparison of the derived Q-
statistic value with the upper-tail critical value of the
normal distribution at a suitable signifcance level. Te
null hypothesis of no causality is rejected if the estimated
Q-statistic value surpasses the critical threshold. Notably,
numerous studies have delved into the time-varying re-
lationship between crude oil markets and stock market
returns. For instance, Lu et al. [59] employ a causality-
in-mean and variance test based on the time-varying
principle, utilizing rolling subsamples to capture the
evolving dynamics between these markets. Te test sta-
tistic is defned as follows:

Qt] �
S􏽐

S− 1
l�1 k

2
(l/W)

􏽦ρ2μ](l, S) − C1S(k)
�������
2D1s(k)

􏽰 , (13)

where k(l/W) denotes the weight function, namely, the
Barlett kernel.

C1S(k) � 􏽘
S− 1

l�1
1 −

|l|

S
􏼠 􏼡k

2 l

W
􏼠 􏼡,

D1S(k) � 􏽘
S− 1

l�1
1 −

|l|

S
􏼠 􏼡 1 −

(|l| + 1)

S
􏼢 􏼣k

4 l

W
􏼠 􏼡.

(14)

Qt] statistics belongs to the one-sided test. Te critical
values of the upper-tailed normal distribution are utilized. A
rolling sample (S) is used to calculate the time-varying Hong
test. According to Lu et al. [59], when the rolling sample size
is too small, the test will provide biased fndings. In contrast,
when the rolling sample is too large, detecting changes in
Granger causality would take a considerable amount of time.
Regarding an adequate rolling window, Lu et al. [59] provide
the following method for determining the optimal rolling
sample (S):

S �
2 z1− α/2 + z1− β􏼐 􏼑

2

μ0 − μ1/σ􏼂 􏼃
2 , (15)

where z1− s denotes the critical value of the signifcant level of
N (0, 1); α denotes the type I error probability; β denotes
Type II error probability; μ0 − μ1/σ denotes the standardized
diference between bothmean values. In amanner analogous
to equation (7), the Q-statistic will be computed. Ten, at an
appropriate level, the derived Q-statistic value is compared
to the normal distribution’s upper-tail critical value.Te null
hypothesis of no causality will be rejected if the estimated Q-
statistic value exceeds the critical value.

4. Findings and Discussions

China emerged as the epicenter of the COVID-19 pandemic,
reporting its frst cases on January 23, 2020. To scrutinize the
intricate relationship between oil prices and stock returns in
this unprecedented context, we employ daily time series data
from China spanning January 30, 2020, to August 30, 2022.
By using a consistent trading day across all samples, we
ensure a more accurate comparison of the number of trading
days. Te CSI 300 index serves as a representative proxy for
China’s stock market, while the DJ Global Oil & Gas
(W1ENE) index embodies the global oil market. Further-
more, the QDII-LOF (162411) index refects China’s oil
market. Tese indices were sourced from the reputable
website investing.com. To facilitate model estimation, the
return series is calculated by taking the frst diference of the
logarithm of the daily closing price series, thereby providing
a solid foundation for our in-depth analysis.

4.1. Basic Description. Table 1 presents the outcomes of the
essential descriptive statistical analyses conducted on each
variable under investigation. Tis comprehensive
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examination of the data ensures a rigorous and insightful
understanding of the underlying trends and patterns,
thereby providing a solid foundation for subsequent analysis
and interpretation.

Table 1 reveals several noteworthy observations about
the return series under investigation. Firstly, the daily mean
of the CSI return series is positive, while the W1ENE and
QDII-LOF return series exhibit negative daily means
throughout the study period. Among these, the CSI return
boasts the highest mean, with the QDII-LOF return sur-
passing the W1ENE return in terms of the mean value. Te
W1ENE return’s mean emerges as the lowest in the sample.
Meanwhile, the CSI return series displays the highest vol-
atility, as indicated by the standard deviation.

Intriguingly, all return series exhibit negative skewness
and positive kurtosis, signifying the presence of leptokurtic
distributions. Furthermore, the Jarque–Bera normality test
confrms that none of the return series follow normal dis-
tributions at a 1% signifcance level. Te Ljung–Box Q
statistics indicate autocorrelation in both the return and
squared return series. To assess the stationarity of all returns,
three distinct unit root tests—augmented Dickey–Fuller,
Phillips–Perron, and Kwiatkowski–Phillips–Schmidt–
Shin—were employed. Te results conclusively demonstrate
that all return series are stationary at the 1% signifcance
level, fulflling a critical prerequisite for subsequent
EGARCH model estimation.

4.2. (E)GARCH Model Estimation. Table 1’s insights enable
us to ascertain the presence of ARCH efects in all return
series, suggesting that the GARCH specifcation is aptly
suited for each series. Consequently, the EGARCH model is
employed for further empirical analyses. Model diagnostics
indicate that the EGARCH (1, 1) represents an ideal ft for
capturing the volatility inherent in each return series
comprehensively. Additionally, the mean equation sub-
stantiates that the optimal lag length for autoregressive
parameters, as determined by the Akaike information cri-
terion, is one. Te estimated outcomes are conveniently
displayed in Table 2 for further examination and
interpretation.

Table 2 provides a comprehensive summary of theGARCH
model outcomes, illustrating that both α and β successfully pass
the signifcance test at a 5% level. Te value of α serves as
a measure of the persistence of shocks, while β quantifes the
endurance of volatility clustering. Te c value captures the
negative leverage impact on conditional volatility, with all
estimation coefcients deemed signifcant at the 5% level.Tese
fndings imply that negative news has a considerably more
pronounced efect on volatility than positive news in both the
oil markets (as assessed by W1ENE and QDII-LOF) and the
stock market. Te policy implications of these results are
manifold. First and foremost, the prominence of negative news
in driving market volatility underscores the importance of
efective communication and transparency from policymakers
and market participants. Accurate and timely information
dissemination can mitigate the potential for negative news to
trigger panic and exacerbate market fuctuations.

Regarding the generalized error distribution, the pa-
rameter ] shapes the distribution’s form, with higher values
corresponding to lighter tails and lower values to heavier
tails. Table 2 reveals that the predicted stock return shape
parameter is less than 2, suggesting a distribution charac-
terized by fat tails. Tis fnding indicates that extreme events
and signifcant market movements occur more frequently
than anticipated under normal distribution assumptions.
Policymakers should, therefore, remain vigilant for such tail
risks and implement appropriate measures to strengthen the
resilience of fnancial markets against unexpected shocks.

Table 1: Results of basic descriptive statistics.

Variable & statistics CSI W1ENE QDII-LOF
Mean 0.0004 − 0.0014 − 0.0012
Standard error 0.0076 0.018 0.014
Skewness − 1.114 − 1.218 − 0.098
Kurtosis 7.440 8.736 5.143

Jarque–Bera 122.335 192.562 22.959
(0.000) (0.000) (0.000)

Observation 119 119 119

ARCH (8) 17.392 19.472 17.612
(0.026) (0.013) (0.024)

Q (36) 24.867 50.155 40.574
(0.919) (0.059) (0.276)

Qs (36) 11.340 49.413 52.794
(1.000) (0.067) (0.035)

ADF − 11.889 − 11.298 − 11.299
(0.000) (0.000) (0.000)

PP − 11.764 − 11.358 − 8.647
(0.000) (0.000) (0.000)

KPSS 0.051∗∗∗ 0.089∗∗∗ 0.088∗∗∗

Note: () stands for the p value; ARCH (8) stands for the LM conditional
variance test; ∗∗∗ stands for the 1% signifcant level; Q (36) and Qs (36)
represent the Ljung–Box serial correlation test, respectively.

Table 2: Results of (E)GARCH model estimation.

Coefcient & variable CSI W1ENE QDII-LOF

ω − 1.392 − 1.112 − 6.613
(0.094) (0.013) (0.012)

α 0.532 0.371 0.943
(0.004) (0.046) (0.000)

β 0.902 0.904 0.333
(0.000) (0.000) (0.025)

c
− 0.126 − 0.235 − 0.117
(0.018) (0.012) (0.048)

N
1.098 1.022 1.065
(0.000) (0.000) (0.000)

ln(L) − 231.370 − 247.927 − 230.594

Q(36)
26.473 32.963 32.722
(0.651) (0.324) (0.335)

Qs(36)
28.046 22.773 21.025
(0.826) (0.958) (0.978)

Note: ( ) stands for the p value; Q(36) and Qs(36) stand for the Ljung–Box
serial correlation test, respectively.
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Additionally, the Ljung–Box serial correlation test results
point to an absence of autocorrelation between the variance
and mean series. Tis observation implies that past returns
and volatilities may not necessarily provide reliable pre-
dictions for future market behavior. Policymakers should be
cautious about relying solely on historical data for fore-
casting and decision-making and instead adopt a more
holistic approach incorporating various economic in-
dicators, market sentiment, and global trends to assess
market risks and devise efective policy responses. In
summary, the GARCHmodel outcomes presented in Table 2
ofer valuable insights into the drivers of volatility in oil and
stock markets. Policymakers should consider these fndings
in formulating strategies to promote transparency, mitigate
tail risks, and enhance market resilience in the face of un-
certainties and potential shocks.

4.3. Causality-in-Mean and Variance. Tis subsection con-
ducts the causality-in-mean test utilizing the standardized
residuals derived from the EGARCHmodel, with the results
meticulously presented in Table 3.

Table 3 reveals a conspicuous absence of a causal con-
nection between QDII-LOF and W1ENE; however, it dis-
tinctly identifes a causality between QDII-LOF and CSI
across all lag periods. Tis observation highlights the impact
of QDII-LOF oil price fuctuations on China’s stock markets.
Given China’s signifcant consumption of QDII-LOF-type
oil, the existence of such a causal relationship is reasonably
anticipated. Consequently, understanding this relationship
bears crucial policy implications. To assess the volatility
spillover efects between the oil market and the stock market,
the causality-in-variance test employs squared standardized
residuals. Tese detailed results, presented in Table 4, ofer
valuable insights for policymakers. As China’s economy
continues to depend on oil imports, the interdependence
between oil prices and stock market performance necessi-
tates vigilant monitoring and proactive policy responses to
safeguard the stability of fnancial markets and the broader
economy. Policymakers should be cognizant of the potential
risks associated with oil price volatility and consider for-
mulating strategies to minimize its impact on stock market
returns. Tis might involve diversifying the energy portfolio
to reduce reliance on oil imports, increasing investment in
renewable energy sources, and encouraging industries to
adopt energy-efcient technologies. Additionally, pro-
moting fnancial market resilience by enhancing risk
management capabilities and strengthening regulatory
oversight could mitigate the adverse efects of oil price
fuctuations on stock market performance. In summary, the
observed causal relationship between QDII-LOF oil prices
and China’s stock markets, as evidenced by Table 3, un-
derscores the importance of comprehensive policy in-
terventions to manage the ramifcations of oil price
volatility. By heeding the results of the causality-in-variance
test displayed in Table 4, policymakers can better navigate
the intricate dynamics between the oil market and the stock
market, ultimately fostering greater economic stability and
growth.

As per the insights provided in Table 4, the volatility
spillover efect between the stock market and the oil market
remains indiscernible. Tis observation is attributed to the
null hypothesis of no causality failing to pass the conven-
tional signifcance test for all variables. Te absence of clear
volatility spillover efects between these markets has note-
worthy policy implications. Te lack of a discernible vola-
tility spillover efect suggests that shocks in one market may
not necessarily trigger immediate or signifcant re-
percussions in the other market. Consequently, policy-
makers should exercise caution in interpreting the
relationship between the stock market and the oil market, as
the implications may not be as straightforward as initially
anticipated. Tis fnding highlights the importance of
adopting a multifaceted approach when formulating policies
to manage market risks. Policymakers should consider both
the direct and indirect channels through which oil price
fuctuations may impact the stock market, and vice versa. In
doing so, they can develop targeted interventions to address
sector-specifc vulnerabilities and bolster the resilience of the
fnancial markets. Moreover, it is crucial for policymakers to
monitor macroeconomic indicators and global economic
trends, as these factors may infuence the dynamics between
the oil market and the stock market. Tis vigilance can
facilitate the early identifcation of potential risks and enable
timely policy responses to mitigate adverse efects on the
economy. In conclusion, the inability to identify a clear
volatility spillover efect between the stockmarket and the oil
market, as indicated in Table 4, underlines the need for
a nuanced understanding of the relationship between these
markets.

4.4. Discussion. Annually, China experiences fuctuations in
oil imports; however, since the advent of reform and
opening-up policies, both oil consumption and imports have
consistently grown. According to data from the China
Energy Administration, China’s oil consumption reached
737 million tons in 2020, with domestic production ac-
counting for 195 million tons. Consequently, imported

Table 3: Results of the causality-in-mean test.

Causality direction Lag1 Lag2 Lag3 Lag4
CSI⟶ W1ENE 0.012 0.267 0.097 0.064
W1ENE⟶ CSI 0.245 0.146 0.598 0.194
CSI⟶ QDII-LOF 1.297 1.149 0.175 2.260
QDII-LOF⟶ CSI 5.242∗∗ 8.838∗∗∗ 4.799∗∗ 8.160∗∗∗

Note:⟶ stands for the causality direction; ∗∗ stands for 5% signifcant
level; ∗∗∗ stands for 1% signifcant level.

Table 4: Results of causality-in-variance test.

Causality direction Lag1 Lag2 Lag3 Lag4
CSI⟶ W1ENE 0.172 2.717 1.352 0.104
W1ENE⟶ CSI 0.226 0.248 0.0569 0.194
CSI⟶ QDII-LOF 0.883 0.409 0.830 1.117
QDII-LOF⟶ CSI 1.512 1.108 0.118 0.067
Note:⟶ stands for the causality direction.
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crude oil constituted a staggering 73% of China’s total
consumption. Given China’s signifcant reliance on
imported energy, particularly crude oil, several factors
contribute to energy price fuctuations. Primarily, global
energy price volatility, especially crude oil prices, must be
considered. Tese prices are determined by supply and
demand variables in the international market. Similar to
other commodities, sophisticated auction markets and de-
rivatives exist to manage risk and facilitate speculation.
Terefore, supply and demand are not the sole contributors
to oil price fuctuations. Te heightened sensitivity of oil
prices to demand and supply shifts, along with the growing
utilization of oil as a fnancial asset, warrants further ex-
ploration. Te increased demand and supply sensitivity may
hinge on the potential for lower price elasticity, resulting in
heightened oil price volatility. Escalating global uncertainties
could contribute to declining price elasticity. Additionally,
the expanding use of oil as a fnancial asset may precipitate
oil price oscillations. Te growing employment of oil for
fnancial investments, hedging, and speculation could
heighten oil prices’ sensitivity to investor sentiment and
fnancial market information fows. However, no defnitive
evidence has established a link between oil’s role as a f-
nancial instrument and global oil price shifts, leaving the
inquiry unresolved (Alquist and Kilian [60], Kaufmann and
Ullman [61], and Liu et al. [62]). Notably, Van Robays [63]
and Lin and Bai [64] posited that local oil price volatility
could alter economic outlooks and, consequently, oil de-
mand, generating a secondary feedback efect. Lastly, fuc-
tuations in the value of the Chinese lira, which amplify the
impact of global oil price shifts on the domestic economy,
afect the cost of domestically produced petroleum products
in China. Secondly, although our empirical investigation is
limited to the relationship between global oil price shifts and
China’s stock market performance, we can postulate that
China’s retail energy prices have also experienced signifcant
increases. Tis can be attributed, in part, to the dependence
on energy product consumption taxes and the automotive
sector’s special consumption tax, both of which infuence
energy demand. Tese factors not only induce retail energy
price volatility but also generate regulatory uncertainty and
energy price instability.

Our study’s fndings reveal that global oil price volatility
infuences China’s stock market returns, and in certain
subperiods of the sample, these fuctuations have notable
spillover efects on volatility. Tese results bear signifcant
regulatory implications. It can be inferred that government
actions, particularly frequent tax rate adjustments, con-
tribute to retail energy price fuctuations both directly and
indirectly through policy infuence and uncertainty gener-
ation. Tis is attributable to China’s substantial taxation on
gasoline and the high special consumption tax imposed on
the automobile industry and other products. In light of these
fndings, it is evident that the Chinese government levies
a heavy tax on gasoline. If such governmental eforts ex-
acerbate energy price volatility, they could negatively impact
risk management strategies employed by consumers and
businesses. Additionally, the Chinese government may al-
leviate some of the concerns by implementing policies that

facilitate the adoption of more stable alternative energy
sources. Tese measures could potentially contribute to
pollution reduction in major urban areas. However, it is
essential to recognize that alternative energy sources may
entail high costs, necessitating substantial direct expendi-
tures and investments in infrastructure. Furthermore, re-
lying on strategic oil reserves serves as another viable
approach to mitigating the impacts of signifcant global oil
price fuctuations and guarding against potential supply
disruptions. Te Chinese government can also explore the
potential of alternative renewable energy sources, such as
solar, wind, and other forms of sustainable energy, to
promote greater energy stability and resilience.

Te relationship between oil prices and stock market
performance encompasses multiple dimensions. Steady oil
prices contribute to the stabilization of production costs and
consistent cash fow, bolstering proft and dividend fore-
casts. Tis, in turn, may result in higher retained earnings,
increased investments, enhanced output, and employment,
as well as elevated stock values and overall economic growth.
Furthermore, consumers stand to reap additional benefts.
Investors need to be cognizant of global oil price trends and
the potential spillover efects in China when determining
their portfolio allocation. When oil prices exert both frst-
and second-moment impacts, the returns from in-
corporating oil commodities into a portfolio are constrained
in relation to both the oil price and traditional portfolio
income. Concerning the latter, diversifying investment
portfolios across various asset classes, including oil and
other fnancial instruments, can ofer valuable benefts for
investors. Tese policy discussions are particularly relevant
for countries akin to China in terms of dependence on
energy imports and geographic or natural advantages. By
addressing these considerations, investors and policymakers
can better navigate the complexities arising from the in-
terplay between oil prices and stock market performance,
ultimately fostering a more resilient and prosperous eco-
nomic landscape.

5. Conclusions

Tis research examines the dynamic relationship between
stock market returns and oil price fuctuations in China
during the COVID-19 pandemic, with particular attention
to volatility spillovers. Utilizing causality-in-mean and
variance tests on daily data from January 30, 2020, to August
30, 2022, the empirical analysis delves into this complex
interaction. Te results indicate that oil prices, as repre-
sented by the QDII-LOF benchmark, signifcantly infuence
stock market returns. However, when examining the entire
sample, no discernible spillover efects stemming from oil
prices are observed. Tese fndings echo the conclusions of
Cevik et al. [65], whose study on Turkey provided analogous
results, thereby reinforcing the outcomes of this
investigation.

Drawing from the empirical fndings, several policy
recommendations emerge. Firstly, policymakers and regu-
lators should closely monitor the relationship between oil
prices and stock market returns in order to proactively
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address potential risks and challenges arising from the
dynamic interaction during periods of economic un-
certainty. Secondly, encouraging investment in alternative
and renewable energy sources could helpmitigate the impact
of oil price fuctuations on stock market returns, promoting
economic stability and fostering sustainable growth.Tirdly,
maintaining and promoting fnancial market stability should
be a priority for policymakers, as this would help insulate
stock markets from the adverse efects of global oil price
movements during crises such as the COVID-19 pandemic.
Fourthly, promoting greater awareness among investors
about the relationship between oil prices and stock market
returns could enable them to make more informed decisions
when allocating their portfolios, potentially minimizing the
impact of oil price fuctuations on their investments. Fifthly,
policymakers should consider reviewing and adjusting fscal
policies related to oil taxation and consumption, as this
could reduce the impact of oil price fuctuations on stock
market returns and contribute to a more stable fnancial
environment. Lastly, strengthening international co-
operation among countries that are heavily reliant on oil
imports could facilitate the sharing of best practices and the
development of joint policy strategies to manage the eco-
nomic consequences of oil price fuctuations and their
spillover efects on stock markets.

Tis investigation presents two signifcant contributions
to the existing Chinese scholarship on the topic. Firstly, by
adopting the exponential generalized auto-regressive con-
ditional heteroscedasticity, causality-in-mean, and variance
methodologies, the study ofers a unique analytical lens,
thereby enriching the prevailing literature.Tis departs from
prior Chinese studies that largely relied on vector auto-
regression, Granger causality, structural vector auto-
regression, and other techniques. Secondly, given China’s
position as the world’s leading energy importer and the
origin of the COVID-19 pandemic, using China as a case
study provides a more illustrative and meaningful exami-
nation of the issue. Tis not only supplements existing lit-
erature but also expands the boundaries of the continuing
dialogue surrounding this matter.

Tis study, while ofering valuable insights, also presents
certain limitations that can guide future research in
promising directions. Firstly, the research exclusively ex-
amines the connection between energy price fuctuations
and the performance of the Chinese stock market. Future
scholars may build upon these fndings to investigate similar
relationships in other nations, particularly those that are net
importers of oil and energy resources. Secondly, although
escalating energy prices pose serious concerns for countries
dependent on these resources, this paper solely focuses on
the impact of such changes on stock market performance.
Indeed, energy price volatility may have far-reaching con-
sequences for various economies. Future research can delve
deeper into these aspects. Tirdly, instead of concentrating
solely on the COVID-19 pandemic, future researchers
should consider exploring the broader implications of
market volatility on the stability of energy supply, a critical
factor for the growth of the global economy. Fourthly, future
investigations could reevaluate these assertions employing

advanced methodologies, such as machine learning and
neural networks, potentially yielding more fascinating
conclusions. Lastly, within the scope of this study, we utilize
variable substitution as a means for conducting robustness
tests. Scholars in the future are encouraged to explore more
advanced and ftting methodologies for re-evaluating ro-
bustness tests, potentially yielding enhanced reliability in the
outcomes.

Data Availability

Te data presented in this study are available from the
authors upon request.

Conflicts of Interest

Te authors declare that they have no conficts of interest.

Acknowledgments

Tis research was supported by the Universities’ Humanities
and Social Science General Research Project of Henan
Province (2023-ZZJH-018), Research Start-Up Foundation
of Henan Finance University (2021BS009), and General
Project of the National Social Science Foundation in 2022
(22BJY202).

References

[1] X. Wang and C. Wu, “Asymmetric volatility spillovers be-
tween crude oil and international fnancial markets,” Energy
Economics, vol. 74, pp. 592–604, 2018.

[2] C. Chiarella, B. Kang, C. S. Nikitopoulos, and T.-D. Tô,
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Te spillover efect of the energy markets and the CET plays an important role in guiding the realization of two-carbon target;
using the network spillover methodology of Diebold, Yilmaz, Jozef Barunı´k, and Toma´sKrehlı´k, we examine both the static and
dynamic connectedness of CO2 emissions trading (CET) market, steam coal market, new energy, and traditional energy market in
China from early Dec 2013 to the end of July 2021. At last, we verifed the stability of the model and obtained the following
fndings: (1) the total spillover efect index is 13.91% between those markets, and it is mainly focused on short term. Moreover, the
dynamic spillover efect is time-varying, and it is greatly infuenced by the domestic and international environment; (2) the
connectedness of the CETmarket with other energy markets is neutral, the development of new energy market is strong, it is the
main transmitter to other markets, especially to the traditional energy market except for the steam coal market, and the coal
market is an efect transmitter. Tese results provide a theoretical reference for investors and policy makers who are concerned
with the return connectedness among the CET market, new energy market, and steam coal market in China.

1. Introduction

At present, global climate change has become one of the
greatest challenges and threats to human development. In
the process of economic development, the carbon dioxide
emission caused by energy consumption, especially fossil
energy consumption, is the main cause of global climate
change [1, 2]. Tus, over the past decade, global initiatives
are being taken to reduce the use of traditional energy to
clean energy for emission reduction [3]. Nevertheless, China
is facing great pressure in the energy structure trans-
formation. Statistically, steam coal accounts for 56% of
China’s total energy consumption, oil accounts for 18.7%,
and clean energy sources such as natural gas, hydropower,
wind power, nuclear power, and solar power generation
account for 25.3% in 2021. Although Chinese government
regards new energy development as an important strategic
development direction, coal will still be the main source of
energy in China in the future [4]. Furthermore, the in-
ternational community is increasingly attaching great

importance to the sustainable development of energy [5],
climate, and the environment which urge carbon emissions
to become the most urgent environmental problem in
China. So, in the next fve years, China is further deepening
energy price reform, especially the price of coal and other
fossil energy, which has become an important measure to
control the total energy consumption and improve energy
efciency [4].

On the other hand, in order to reduce carbon emissions,
countries internalize the externalities of carbon emissions by
establishing a carbon emission trading (CET) system. Since
the Kyoto Protocol and the Paris Agreement were signed,
Europe has set up the EU Emissions Trading System (EU
ETS), which has efectively reduced the intensity of carbon
emissions [6]. Since 2013, China has established eight pilot
carbon emission trading markets in Beijing, Shanghai,
Wuhan, Guangzhou, and so on. By October 2022, the cu-
mulative trading volume of the 8 pilot projects was close to
196 million tons and the cumulative turnover of the 8
provinces and cities exceeded 8.58 billion yuan. However,
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the grandfather rules focused on the historical emissions
lead to overallocation and low carbon prices. Te carbon
emission price is much lower than 100 CNY/ton. Terefore,
it is of great practical signifcance to study the correlation
mechanism and spillover dynamics between the CETmarket
and a specifc energy market to establish a perfect and
sustainable CET market [4].

Over the past few decades, because of its cleanliness, new
energy has received the favor of various countries. China has
taken the development of new energy industry as a national
strategy to be vigorously implemented. Te new energy
industry is of great signifcance for China to realize the
transformation of the energy utilization mode and the de-
velopment of green economy for the dual-carbon goal [7].

Te vigorous development of the new energy industry
will also attract the attention of investors in the capital
market. Investors are generally optimistic about the devel-
opment direction of new energy companies which refected
in the investment in the stocks of new energy companies.
Terefore, it has great signifcance for fnancial investors and
policymakers to acquaintance the new energy company
stock price infuence factors.

Above all, because the carbon emission rights have both
commodity and fnancial attributes in the fnancial markets,
the CET market has both resource allocation and fnancial
functions. Due to the link of economic fundamentals, there
are some connections between “carbon-fnance-energy”
markets by means of information transfer [8]. Te fnan-
cialization of the energy markets can refect the fundamental
links between energy markets through fnancialization
means so as to better deepen the energy price reform and
realize the transformation of green energy utilization. Tis
may be why the Chinese central bank has repeatedly pro-
posed to fnancialize the energy market and develop carbon
fnance to realize carbon control and emission reduction in
a market-oriented way. With increased globalization and
carbon fnancialization, the correlation between carbon
emission market and energy market is also strengthening.
Tis paper studies the connectivity spillover relationship
among the CET market, coal market, new energy market,
and the traditional energy market in China; the research
results can show the total spillover efect between the CET
market and the given energy markets which can further
show the important role of the CET market in the task of
emission reduction. On the other hand, the spillover efect of
each fnancial market can become an important investment
channel for the diversifcation of profts and risks, and it can
provide certain reference information for investors to make
investment decisions and hedge fnancial risks.

2. Literature Reviews

Te connectivity and the spillover efect between the CET
market and the energy market have attracted the attention of
many scholars. Numerous scholars have confrmed the re-
lationship between the CET market and the energy market
[4, 7]. Te existing literature about the connectivity between
CET and energy markets has conducted studies on diferent
aspects [9, 10]. Diferent energy markets have been selected

for the study, such as fossil fuel [11] and crude oil [12, 13];
scholar Yang Lu also studied the spillover efects between the
CETmarket and the cryptocurrencymarket [14]. A variety of
research methods have been involved, such as wavelet co-
herency [7], multiscale entropy [15], structural equation
modelling [16], quantile-on-quantile approach [17], multi-
scale analysis [6], and DCC-MVGARCH model [10]; it is
worth mentioning that electricity as an important part of
energy is of great signifcance to the energy transformation
and utilization and carbon emission reduction. In the
existing literature [18], we studied the role of peak-valley
electricity price and trait factors in the information spillover
mechanism between the European electricity market and the
carbon market, and the result proved the dominant role of
the electricity market [19]. We studied the value of re-
newable energy generation for emission reduction and
power supply [8]. We also studied the interaction among
Guangdong power, fossil fuel, and carbon market price and
confrmed the long-term cointegration relationship
among them.

On the other hand, the methods of DY index and BK
index have been widely used to measure the connectivity
among specifc objects [20]. After studying the related lit-
erature, these two methods have been applied in various
felds up to now, such as these methods can not only be used
to measure the total connectivity among all objects [21], but
it can also survey the pairwise connectivity [22] between
each two objects of the system which may contain multiple
objects and the net spillover efect of each object [23]; they
can not only be used to measure the objects’ connectivity
based on the time dimension [24, 25] but also on diferent
frequencies [26]; just because of the unique capabilities of
the DY and BK methods, this method system has been
widely used by scholars [27, 28].

In summary, there were massive studies about the
connectivity between CET and energy markets, while there
are few about the research among CET, steam coal, and new
energy markets [4]. In the few existing literature studies on
CET, coal market, and new energy markets, we have the
following research gaps. Firstly, most of the research is about
the bidirectional causality between the CETmarket and the
single energy market, but there is lack of simultaneous
studies on the interaction between multiple markets. Sec-
ondly, the research studies on the correlation among the
CET market, coal market, new energy market, and tradi-
tional energy market lack directional spillover and net
spillover of impact identifcation andmutual infuence of the
complex networks of all markets. Tirdly, the relationship
among the CET market, coal market, and the new energy
market should be measured from both static and dynamic
aspects, and whether the relationship between the CET
market and the given energy markets has time-varying
nature is worth exploring.

In order to fll the gap in the existing literature, this paper
studies the connectivity and spillover efect among CET,
steam coal, new energy, and traditional energy markets in
China based on the method of Diebold and Yilmaz [29]. Te
reason we elect this method is that it is independent of
element sorting [12]. Te aim of research is to explore the
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connectivity, especially the directional spillover efects and
net spillover efects between the various markets of the
research framework. Firstly, the paper analyses the char-
acteristics and the regular development of each market from
the perspective of time sequence, and then we constructed
the DY and BK indices to reveal the connectedness among
the CET market, coal market, new energy market, and
traditional energy market in the time and frequency domain.
Finally, we study the directional spillover index and the net
spillover index from a time-varying perspective.

Tus, the contributions to the existing literature are from
the following aspects: frst, the study from the perspective of
connectivity to research the total spillover efect, net spill-
over efect, and the pairwise spillover efect among the CET
market, coal market, new energy market, and traditional
energy market, this holistic research approach simplifes the
process of understanding the role of direct and indirect
efects between multiple markets. Second, the study surveys
the spillover efect between CET and energy markets from
the perspective of static and dynamic spillover efects, as well
as from the perspective of time dimension and the frequency
dimension, all of this further broaden the scope of research
on the given markets. Tirdly, we identifed the net in-
formation recipients and net information contributors in the
CET market, coal market, new energy market, and tradi-
tional energy market in the current Chinese context.

Te rest of this article is organized as follows: Section 3
illustrates various descriptions and data collection as well as
constructs the methodology of the DY and BK indexes. Te
preliminary analysis and the empirical results of the series of
CET prices, new energy market prices, traditional energy
prices, and coal prices are demonstrated in Section 4. In
Section 5, we analyzed the empirical fndings of the static
and dynamic spillover efects. Finally, the conclusion, the
policy implication, and the further work are summarized in
Section 6.

3. Data and Methodology

3.1. Data. Tis paper investigates the connectedness of the
CET market, new energy market, steam coal market, and
traditional energy market in China.

Considering that Beijing Carbon Exchange has been
running smoothly and efciently compared to other CET
markets since its inception, this study selects the CET price
in the Beijing Carbon Exchange as the proxy of the CET
market price. Moreover, the Chinese stock market has be-
come quite efcient through a series of institutional and
regulatory reforms after China’s accession to theWTO; thus,
the market data (e.g. prices) of the listed companies can
efectively refect the relevant information of the company
and the market expectation for future performance. Te
development of the new energy industry can be efectively
measured by its corresponding stock price movement; this
paper selects the CSI New Energy Index (CSINE), which is
composed of 80 companies listed on the Shanghai Stock
Exchange Composite and Shenzhen Stock Exchange
Composite.Te paper selects the CSI All Share Energy Index
and the steam coal price as the proxies of the traditional

energy market. Furthermore, according to the national data,
traditional energy consumption accounts for 75% of total
energy consumption in China, so this paper uses the CSI All
Share Energy Index (ASEI) as the proxy of the traditional
energy market. In particular, the paper investigates the
connectedness and spillover between the steam coal market
and three other markets. Since the futures price is a better
representation than the spot price, this paper selects the stem
coal futures price named COAL instead of the steam coal
spot price as the representation of the steam coal market.
Finally, the stability of the connection model is tested using
CSI energy, namely, CSIEN.

Te CET data were obtained from the China Beijing
Green Exchange (https://www.cbeex.com), and the steam
coal future contract price was obtained from Zhengzhou
Commodity Exchange (ZCE). Te CSI All Share Energy
Index (the ticker symbol is 000986) and CSI New Energy
Index (the ticker symbol is 399808) were obtained from the
database provided by Wind Information Co., Ltd. (WIND).
Because CET market trading is not continuous every work-
day, instead of utilizing daily data, we use weekly average data.
Te ASEI and CSINE indices use the weekly closing prices,
and the CET price and the coal futures price use the weekly
average of trades. Te data sampling period ranges from early
December 2013 to the end of June 2021, and a total of 353
observations are available. Te beginning point and data size
depend on the availability of data on the Beijing CETmarket.

3.2. Methodology. In this research, we explore the overall
connectivity, the directional spillover index, and the net
spillover index among CET, steam coal, new energy, and the
traditional energy. Firstly, we established VAR (vector auto
regression model) with indices of the markets we consid-
ered, and then we apply the measurement approaches for the
connectedness among diferent markets set up by Diebold
and Yilmaz [29], namely, the DY index, and Barunik and
Křehĺık [30], namely, the BK index. Tose indexes were
calculated on the basis of the generalized variance de-
composition (GVD) of the covariance-stationary VAR (p)
model, which is expressed by the following equation:

yt � 􏽘

p

i�1
Φiyt−i + εt. (1)

In equation (1), parameter yt is an N × 1 vector that
represents the endogenous variables,Φi is the autoregressive
coefcient matrices with dimension N × N, i is the lags of
the model, and εt is the model’s random error that is in-
dependent and identically distributed.

Moreover, the basic idea of the DY approach is using the
generalized variance decomposition technique. Te fol-
lowing DY approach can obtain the contribution of the
change of each variable to the other variables. Here, we
describe this contribution as the spillover index, and the
spillover index from market j to market i is denoted by
θij(H). Tis is the proportion of the H-step prediction error
variance of variable yi explained by variable yj. Terefore,
the value of θij(H) is from 0 to 1. Furthermore, as H in-
creases, θij(H) gradually tends to decrease until it stabilizes.
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Te signifcance of generalized variance decomposition is
that the analysis result will not be infuenced by the sequence
of variables in the VAR model, so we can obtain robust
analysis results. Te formula of θij(H) is defned as the
following equation:

θij(H) �
σ−1

jj 􏽐
H−1
h�0 ei
′Ah 􏽐 e

2
j􏼐 􏼑

􏽐
H
h�0 ei
′Ah 􏽐 Ah

′e2i􏼐 􏼑
, (2)

where Σ is the N × N variance matrix of the errors ε in the
VAR (p) model, σjj is the standard deviation of the error ε
shown in the jth diagonal element of Σ, and ei is an N × 1
selection vector with one as its ith element and zero
otherwise.

Because the sum of the composition of the own and
cross-variable variance is not unity, we normalized each
variance composition using the row sum, and the nor-
malized formula is given as follows in the equation:

􏽥θij(H) �
θij(H)

􏽐
N
j�1θij(H)

. (3)

In equation (3), 􏽐
N
j�1

􏽥θij(H) � 1 and 􏽐
N
i,j�1

􏽥θij(H) � N

are involuntary. 􏽥θij(H) shows the pairwise directional
connectedness from j to i visually at horizon H.

In order to better analyze the connectedness relationship
between variables, Debold and Yilmaz constructed a series of
network spillover indices on the basis of a generalized
variance decomposition matrix, and the details are as
follows:

C(H) � 100 ×
􏽐

N
i,j�1,i≠j

􏽥θij(H)

􏽐
N
i.j�1

􏽥θij(H)
,

�
􏽐

N
i,j�1,i≠j

􏽥θij(H)

N
.

(4)

We name C(H) the total spillover index of the system,
and it represents the total connectedness between each
market we consider. In this study, it can measure the
spillover efect of the CET market, new energy market,
traditional market, and coal market.

We denoted the pairwise directional spillover index from
market j to market i in the system as CH

i←j, so CH
i←j � 􏽥θij(H),

and CH
i←j is generally not equal to CH

j←i. Tus, we further
defne the net-pairwise directional index from market j to
market i as the deviation value between CH

i←j and CH
j←i

denoted as CH
ij , CH

ij � CH
i⟶j − CH

i←j and CH
ij � −CH

ji .
Terefore, it is natural that the total directional con-

nectedness from all other markets to market i is denoted as
Ci←∗(H), and the calculation formula is given as follows in
the equation:

Ci←∗(H) �
􏽐

N
j�1,j≠i

􏽥θij(H)

􏽐
N
ij�1

􏽥θij(H)
× 100,

�
􏽐

N
j�1,j≠i

􏽥θij(H)

N
× 100.

(5)

Te total directional connectedness to all other markets
from market j is denoted by C∗←j(H), and the calculation
formula is given as follows in the equation:

C∗←j(H) �
􏽐

N
i�1,i≠jθij(H)

􏽐
N
ij�1θij(H)

× 100,

�
􏽐

N
i�1,i≠jθij(H)

N
× 100.

(6)

Here, we focus on the net spillover efect of market i,
which is denoted as CH

i . Tis index measures the net
spillover from market i to all other markets.

4. Preliminary Statistical Analysis

Te change details of the coal futures price, the CET price,
the CSI new energy index, and the ASEI during the period of
early December 2013 to the end of July 2021 are presented in
Figure 1. Te fgure shows that there are diferent trend
details in the four markets starting in early December 2013.

It can be clearly noticed that the coal price continued to
fall from the end of 2013 to the end of 2015, and then the coal
price rapidly returned to normal levels in half a year.
Furthermore, the coal price rapidly increased after June
2020, which can be attributed to increased demand.
According to our investigation, the demand for electricity is
rising across the country as the economic recovery accel-
erates and heat persists in the postpandemic era period, and
70% of China’s power plants are coal-fred, which has
pushed coal prices soaring in turn. Te CETprice fuctuated
after June 2018 and fuctuated more in September 2019. Te
results can be attributed to President Xi setting the goal of
peak carbon use and carbon neutrality in the Seventy-ffth
Session of the United Nations General Assembly. For the last
three years, the CETprice has fuctuated considerably. In the
energy market, China has paid great attention to develop the
new energy industry in recent years, which has led to a food
of money into the new energy sector. Moreover, it can be
seen that the CSINE index has been rapidly increasing since
early 2020, and the traditional energy market has been
declining with shocks since the end of 2015, which may be
some of the results of the transition from traditional energy
to new energy.

Because the return price has better statistical charac-
teristics, the study treats the original data with formula Rt �

ln(Pt/Pt−1) to serve as the return index of the variable before
the preliminary statistical analysis.

Pt represents the weekly data of the CET price, coal
futures price, new energy index, and traditional energy frms
stock price. Terefore, in the following descriptive statistical
analysis and empirical analysis, the paper will adopt the
return series of the four markets for analysis.

Figure 2 shows the dynamic evolution of the CETmarket
returns, new energy market returns, coal market returns,
and traditional energy market returns. We clearly obtain the
fuctuation of each return series. Te coal price and the CET
price have more similar volatilities. However, in the early
days, the CETmarket fuctuated earlier than the coal market.
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For example, the CET market is middle in 2017, while the
coal market is in the middle early in 2018. However, in the
subsequent volatility, the two series’ movements are almost
synchronous. Tis suggests that markets are sufciently
fexible and efcient to refect market information. We can
also fnd that the volatility of the new energy market is
similar to the volatility of the traditional energy market. As
shown in Figure 2, the CSINE market and the traditional
energy market fuctuate more in the period of July 2015 to
April 2016, and the traditional energy market tends to be
stable. Furthermore, new energy has higher volatility than
the traditional energy market because increasingly more
felds have paid attention to the new energy feld in recent
years. Moreover, new energy is an inevitable choice to realize
green economy development.

Table 1 shows the descriptive statistics of the variables’
weekly returns. It is evident that the mean returns of the four
markets are all near zero. Furthermore, the standard de-
viation of the CET return price is the largest, while the
standard deviation of the coal market is the smallest, which
shows that the CETmarket has the largest volatility and the
coal market has the lowest volatility. Te skewness shows
that the skewness of the coal futures return price is similar to
a normal distribution, while the other three markets’ return
prices are negatively skewed. Furthermore, the kurtosis
coefcients of the four markets are greater than zero, which

means that they are all leptokurtic. Moreover, the J-B test is
a normality test based on the skewness and kurtosis, and the
results show that the test results are all signifcant at 1%
signifcance level, which indicates that the four return series
do not all obey the normal distribution.

Te stationarity of the four return series can be checked
by the augmented Dickey–Fuller (ADF) test. It is clear that
the T statistics of the above four variables are all less than the
corresponding critical values from Table 1. Terefore, the
null hypothesis is rejected at the 1% level, indicating that
there is no unit root in the return series of the CETprice, coal
futures price, new energy index, and traditional energy frm
stock, which are stationary series. Te KPSS test also ob-
tained the same conclusion, and this further confrms the
suitability of using the VAR model for analysis.

Figure 3 depicts a visual Pearson’s correlation matrix for
the four markets’ various return series. We note that the
color which changes from blue to red indicates the strength
of the correlation which changes from negative to positive.
First, it is found that there is a signifcantly strong and
positive correlation (0.63) between the traditional energy
market and the new energy market. As expected, the cor-
relation ship between the coal market and the traditional
energy market is positive (0.22). Because coal is a major part
of the traditional energy market, there is an inherent con-
nection between them. Judging from the current data, there
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Figure 1: Te price movement of the CETmarket, new energy market, coal market, and the traditional energy stock market. (a) Te price
movement of the CETmarket. (b)Te price movement of the new energy frms stock market. (c)Te coal future price movement of the coal
market. (d) Te price movement of the traditional energy frms stock market.
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is a weak negative correlation between the new energy
market and the traditional energy market, and there is
a weak correlation between the CET market and the new
energy market.

5. Empirical Results and Discussion

Our initial result of the signifcant correlation ship among
the CETmarket, traditional energy market, coal market, and
new energy market ofers some preliminary indication of the
network connectedness and spillover efects among the
markets we consider. In this section, we will utilize the
decomposition of the prediction error variance based on the
VAR model to construct the DY and BK indices. Te net-
work connectivity and spillover efects between each energy
market and the CETmarket are analyzed from both the static
and dynamic directions, flling the gap in the existing

literature in the related felds. Tis method can not only
measure the direct efect between the variables but can also
measure the directional parameters, which enables the more
detailed description of the interaction relationship between
the market pairs in the system.

5.1. Te Full-Sample Volatility of Spillover Analysis of Return
Series. We use the return series connectedness network to
Chinese environmental and energy to study their spillover
connectedness in a static environment. Following Jiang et al.
[7] and Lin and Chen [4] who examined the systemic
spillover of China’s CET market, coal market, and new
energy market using the multivariate wavelet
method, VAR(1)-BEKK-AGARCH(1, 1) and VAR(1)-DCC-
GARCH(1, 1) models were used. Firstly, the VAR (p � 2)

model was constructed based on the weekly data of China’s
coal futures price, CO2 emissions trading price, traditional
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Figure 2: Dynamics of sample returns price of the four markets during the periods of the frst week of December, 2013, and the last week of
July, 2021. (a) Dynamics of the CET returns. (b) Dynamics of the CSINE returns. (c) Dynamics of the COAL returns. (d) Dynamics of the
ASEI returns.

Table 1: Te descriptive statistics of the return series.

Variables Min. Mean Max. Std.
dev. Skewness Kurtosis J-Bera ADF (1%: −3.98) KPSS

CET −0.5258 0.0007 0.4731 0.0459 −0.7909 7.9573 363.45 −17.4487∗∗∗ 0.0236
CSINE −0.2077 0.0040 0.1415 0.0454 −0.6860 5.8925 150.32 −11.7935∗∗∗ 0.3272
COAL −0.0955 0.0012 0.1123 0.0285 0.01457 4.9498 55.769 −12.0409∗∗∗ 0.2197
ASEI −0.1533 −0.0004 0.1244 0.0359 −0.7524 5.9760 163.11 −12.6731∗∗∗ 0.0519
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energy market, and new energy index for which the model
lag order p � 2 was selected after comparing the model
results with the model’s Bayes–Schwarz Information Cri-
terion (BIC).Ten, we use the methods proposed by Diebold
and Yılmaz in the time domain and the method of BK in the
frequency domain to refect the mutual infuence and
spillover efects within the four markets and construct the
return spillover network based on the estimation of 100-
step-ahead error variance prediction, and the results are
shown in Table 2.

Table 2 is the net connectedness table for each market
during the entire period from early December 2013 to the
end of July 2021. Te predictive horizon H is 100weeks,
which is sufciently high so that it will not change with the
additional period, and the VAR lag order p is 2 weeks.

In Panel A, the (i, j) th element in the 4∗ 4 (from xi to
xj) matrix shows the estimated contribution to the forecast
error variance of variable i coming from market j, which
represents the 100-week-ahead forecast error variance of
market i due to the shock from market j. “FROM (j)” and
“TO (i)” represent the from-connectedness of market j and
the to-connectedness of market i, respectively, e.g., in the
line direction, steam coal return series’ forecast error vari-
ance was explained 98.65% by itself, while there was 1.29%
explained by ASEI which presented traditional energy, and
there was 1.29% forecast error variance which was explained
by other markets. Tere was 55.42% forecast error variance
of the shock of ASEI market which was explained by itself,
and the shock of CSINE market explained 37.74% forecast
error variance of the ASEI market. Tere is a total of 44.57%
of the forecast error variance which was caused by other
market shocks. Tis shows that the fuctuation of the energy
market has a great impact on the traditional energy market.
Tis can be interpreted as follows: new energy is an alter-
native product of traditional energy sources. With the in-
tensifcation of the global warming, the use of new energy
materials and products is becoming more and more popular,
so the use of traditional energy-related products decreases
accordingly. Tis impact efect will also be refected in the
corresponding stock market data. From the column

direction, we can see the shock of every market con-
tribute rate to the variance error decomposition in other
markets, such as there is 5.42% forecast error variance of
the ASEI explained by the steam coal market. Tere are
similar interpretations to other data in the Panel A. As
can be seen from Panel A, the degree of mutual infuence
between every two markets is inconsistent. In general,
the more stable the market, the less it is afected by other
markets and the smaller the value of “From” in Panel A
[26, 31].

Table 2 shows that the total spillover index is 13.91%,
which means that 13.91% of the variation in the system is
due to the interaction between variables. It is obvious that
for the CET market, the spillover efect from the coal
market is much greater than that from the CSINE and
ASEI markets. As for the traditional energy market, the
spillover efect from CSINE, which reaches 37.74%, is
much greater than those for other market indices. Overall,
the CSINE, which represents the new energy market, has
the largest spillover efect (9.54%), and this is mainly
because the new energy market has a high spillover efect
on the traditional energy market. Panel B shows the
pairwise directional connectedness among the four
markets, including the net-pairwise connectedness and
the conclusion. We fnd that the traditional energy market
is a recipient market, and the largest transmitter is the new
energy market in the system. As expected, this is because
these two markets have considerable substitution efects
on each other. Furthermore, the CET market in China is
neutral, and the spillover efect between the CET market
and other markets is nonsignifcant.

5.2. Analysis of the Static Return Spillover Efect Based on the
BK Index. Te abovementioned analysis in a static en-
vironment used the method of the DY index, and this
method can examine the connectedness at a specifc
time. In order to study the time and frequency dynamics
between the CET market and the energy markets in
China, we next focus on the method proposed by Barunı́k
and Křehĺık [30] to measure the spillover efects of the
return series of the CETmarket and the energy markets in
China.

Table 3 shows the empirical fndings of the return series
spillover between the CET market and the energy market
based on the BK index at diferent time frequencies. As
shown in Table 3, there are three diferent time-frequency
ranges, namely, Panel A, Panel B, and Panel C. Panel A is the
table of the overfow index in the short-term (1–5weeks)
frequency band, Panel B is the table of the overfow index in
themedium-term (5–20weeks) frequency band, and Panel C
is the table of the long-term (longer than 20weeks)
frequency band.

Regarding the results in Table 3, we focus on the
“FROM_ABS” statistics. Te total spillover index is 10.57%
in the short term, and following the time-frequency band
growth, the total spillover index dropped rapidly to 2.44% in
the medium term and 0.90% in the long term.Terefore, the
spillover efect has time-varying characteristics in the
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Figure 3: Visualization of the correlation matrix.
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system, and the spillover efect between those markets
mainly focuses on the short-term horizon.

Specifcally, Panels A, B, and C show that the steam coal
market is the largest spillover communicator for the CET
market, while the spillover efect for the CETmarket to the
energy market is nonsignifcant. Furthermore, the new
energy market is the largest spillover communicator for the
traditional energy market in the short term, medium term,
and long term.

5.3. Time-Varying Spillover Indices Analysis with Rolling-
Window Analysis. Full sample analysis is insufcient to
reveal the time variability of return series overfow; there-
fore, we measure the time variability of return series
overfow using the dynamic spillover index which is named
the DY index, and we use a rolling-sample estimation

method to estimate the VAR model with the rolling window
width W� 100weeks which is approximately two years, the
predictive horizonH is 100weeks, and the VAR lag order p is
2 weeks.

5.3.1. Dynamic Total Spillover Efect Analysis among the Four
Major Markets of China. Te total spillover index of the
return series in China’s four energy markets is shown in
Figure 4. On average, the total spillover index of the four
energy markets in China is 19.16%. From the analysis data,
we know that this level is mainly determined by the con-
nectedness between the traditional energy market and the
new energy market. Te total connectedness curve shows
that the total volatility fuctuates greatly in the case of
a rolling window of 100weeks and varies from 12.68% to
24.43% because the sample periods span seven years and

Table 2: Total spillover indices and net-pairwise indices among variety markets.

From (j)

To (i) COAL CET CSINE ASEI From-others FROM
Panel A: total spillover index within various markets
COAL 98.68 0.02 0.01 1.29 1.32 0.33
CET 5.32 94.25 0.39 0.04 5.75 1.44
CSINE 0.58 1.72 96.01 1.69 3.99 1.00
ASEI 5.42 1.41 37.74 55.42 44.57 11.14
To-others 11.32 3.15 38.14 3.02
TO 2.83 0.79 9.54 0.75 13. 1
Panel B: net-pairwise spillover index within various markets
COAL 0 −1.33 −0.14 −1.03
CET 1.33 0 −0.33 −0.34
CSINE 0.145 0.33 0 −9.01
ASEI 1.03 0.34 9.01 0
Net 2.5 −0.65 8.54 −10.34
Conclusion Net-transmitter Neutral Net-transmitter Net-recipient

Table 3: Te dynamic analysis of the static return spillover efect based on the BK index.

COAL CET CSINE ASEI FROM_ABS FROM_WTH
Panel A: corresponds to 1 week to 5weeks
COAL 70.32 0.01 0.01 0.91 0.23 0.29
CET 4.48 82.03 0.33 0.02 1.21 1.54
CSINE 0.25 1.52 73.51 1.33 0.77 0.98
ASEI 4.21 1.03 28.18 46.57 8.36 10.62
TO_ABS 2.24 0.64 7.13 0.56 10.57
TO_WTH 2.84 0.82 9.06 0.72 13.43
Panel B: corresponds to 5 to 20weeks
COAL 20.65 0.01 0.00 0.28 0.07 0.45
CET 0.62 9.06 0.05 0.01 0.17 1.09
CSINE 0.24 0.15 16.49 0.27 0.16 1.05
ASEI 0.88 0.28 7.00 6.56 2.04 13.05
TO_ABS 0.43 0.11 1.76 0.14 2.44
TO_WTH 2.77 0.70 11.28 0.89 15.63
Panel C: corresponds to 20 to inf weeks
COAL 7.71 0.00 0.00 0.01 0.03 0.46
CET 0.22 3.16 0.02 0.00 0.06 1.06
CSINE 0.10 0.05 6.00 0.09 0.06 1.07
ASEI 0.33 0.10 2.57 2.29 0.75 13.16
TO_ABS 0.16 0.04 0.65 0.05 0.90
TO_WTH 2.84 0.67 11.35 0.89 15.76
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great changes occurred in China’s energy sector during this
period. Starting in early December 2013, tremendous
changes occurred in China’s economy, and China’s GDP
increased from 9169.77 billion dollars in 2013 to 15711.53
billion dollars in 2020. China’s GDP growth rate remained at
approximately 6%, except for being 1% in 2020, which was
due to the impact of COVID-19 in that year. However,
China’s economic development has shifted from a stage of
rapid economic growth to a stage of high-quality develop-
ment. With the growing awareness of high-quality devel-
opment in China, the Chinese government has paid more
attention and invested more in the energy sector and made
increasingly more eforts to improve the energy environ-
ment, all of which inevitably had greater impacts on the
energy environment market. Figure 4 shows that there are
three obvious circles in this period.

Te frst circle, which maintained relatively high con-
nectivity, started at the beginning of 2016 and ended in mid-
2017. In this period, the Chinese government submitted to
the United Nations “Strengthening Action on Climate
Change—China’s Nationally Determined Contributions,”
which proposed that China’s C02 emissions would peak in
approximately 2030 and strive to reach the peak as soon as
possible. Te structural adjustment of China’s coal industry
began in early 2016. At this point, the price of products in the
energy industry will fuctuate sharply, and the risk will spill
over to other energy markets so that the volatility between
the markets will rise rapidly. Furthermore, various new
energy cars have gradually entered the public eye, and major
car companies have entered the new energy feld.

Te second circle began in mid-2017 and ended in Q4
2019, and China’s energy consumption structure changed
rapidly in this period. Te total returns connectedness shape
decreased from the highest value of 24.43% in mid-2017 to
the lowest value of 15.61% in mid-2018, jumped up to
a temporary high point and then quickly fell back to the
normal level. Tis small bump lasted only 2months, and
then the curve slowly rose to the end of the cycle at the end of
2019.Te reason for the fuctuation at the end of 2018 can be
ascribed to the infuence of crude oil price fuctuations. As
the impact of factors such as the resumption of U.S. sanc-
tions on Iranian oil exports continued to decline into early
2019, the signifcant uncertainty in the energy market during
this period resulted in a sharp increase of the spillover index
among the domestic energy markets.

Te third circle began in Q1 2020 and ended in mid-
2021. In this period, the total spillover index fuctuated
greatly, while the average level was relatively low. Tis
phenomenon is due to the infuence of COVID-19 on energy
consumption sectors and the economy at the beginning of
2020. Due to COVID-19, the national economy almost
halted and all energy consumption suddenly dropped until
the end of June 2020 when the COVID-19 epidemic im-
proved. China’s economic development gradually recovered,
and the spillover efect of major energy markets increased
sharply. Tis suggests that the impact of extreme events can
make markets more interconnected, and the four energy
markets have higher connectedness with each other over all
of 2020.

5.3.2. Total Directional Connectedness over Time. In this
section, we assess the dynamic total directional connect-
edness including the from-connectedness, to-
connectedness, and net connectedness for the four energy
markets in China. Figures 5–7 show each energy market’s
dynamic to-connectedness, from-connectedness, and net
connectedness, respectively.

Figure 5 shows the dynamic from-connectedness of the
CET market and energy markets. Generally, the from-
connectedness varies substantially across time and mar-
kets. It is obviously that the from-connectedness strength
of the CET market is lower than those of the other three
markets. From 2015 to 2017, the CETmarket had a higher
from-connectedness and a lower to-connectedness. Fig-
ure 6 shows that from 2018 to 2020, the from-
connectedness is lower, while the to-connectedness is
higher. Notably, at the beginning of 2020, the from-
connectedness hit rock bottom. Tis can be explained by
the impacts of COVID-19 on economy, and in turn, it
afects the four major energy markets. Ten, the from-
connectedness increased. In this system, the traditional
energy market has the largest form-connectedness and the
from-connectedness curve of the coal markets shows
a large change during the entire period.

Figure 6 shows the dynamics of the to-connectedness for
the CETmarket and three energy markets. We know that the
connectedness of the CETmarket is also lower. Furthermore,
the to-connectedness of the coal market and the new energy
market is higher compared to their from-connectedness, and
the traditional energy market is lower. Overall, the risk
spillover between the CET market and the energy market
fuctuates greatly, which indicates that the overall spillover of
the energy-carbon system presents signifcant time-varying
characteristics during the period of investigation.

Figure 7 shows the dynamics of the net connectedness
for the CETmarket and the energy market in China. In the
three circles, the CET market is a net receiver, net trans-
mitter, and net receiver, respectively, and the steam coal
market is always a net receiver, which may be because steam
coal is the major energy source in the energy industry. Te
traditional energy market is always a net receiver, which
indicates that traditional energy except for steam coal, such
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Figure 4: Dynamic total connectedness for China’s four major
markets in energy.
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Figure 5: Dynamic from-connectedness of the CETmarket, new energy market, coal market, and the traditional energy market in China.
Te results based on the rolling window width W at 100weeks, the predictive horizon H at 100weeks, and the VAR lag order p at 2weeks.
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as oil and gas, is a net receiver of spillovers. Te new energy
market is mainly a net transmitter of volatility connected-
ness or shocks. Te new energy industry is one of China’s
emerging strategic industries, and it has a very strong

momentum. In order to cope with the global warming trend,
new energy must be future energy.

In order to demonstrate the role of the CETmarket in the
fnancial market, this paper conducted a network analysis of
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Figure 6: Dynamic to-connectedness for the CETmarket, the new energy market, the coal market, and traditional energy market in China.
Te rolling window width W is 100weeks, the predictive horizonH is 100weeks, and VAR lag order p is 2 weeks. We note that the scales of
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the connectivity between CETmarkets in Beijing, Shanghai,
Shenzhen, Guangdong, and Hubei exchanges. Te data are
selected for the weekly closing price from June 2014 to July
2021. Te analysis results are shown in Table 4.

As we can see, there are 38.38 percent total variance
infuences from other trading markets in the system, which
can demonstrate that the CETmarket in China can infuence
each other. Te Beijing CETmarket has been most afected
by other markets, while the Shanghai CET market has the
biggest impact on other markets. In the given fve CET
markets, the Guangdong CETmarket price is most afected
by the CET market price in Shanghai. Te connectivity
between the major CET markets in China shows that the
carbon rights as a fnancial asset can efectively afect the
carbon emission price.

Our fndings are important for investors who have
bought equities such as energy company. For example, when
an investor owns a portfolio containing traditional energy
shares and new energy shares, the close relationship between
traditional shares and new energy shares reduces the di-
versifed return strategy, and the investor needs to make
appropriate adjustments to the trading strategy based on this
time-varying information. Moreover, our fndings about the
relationship among the CET market, coal market, new en-
ergy market, and the traditional energy market play an
important role in China’s scientifc and technological de-
velopment and environmental improvement. For example,
through the fuctuation of the CET price, enterprises can be
enforced to increase technological innovation to reduce
carbon emissions.

5.4. Robustness Tests. In order to test the robustness of the
aforementioned results, we use a variety of methods to test
the return series spillovers among the CET market, coal
market, new energy market, and the traditional energy
market in China as the robustness test about eliminating the
model assumptions’ condition was mentioned by Raquel
M. Gaspar. In the application of the connectedness network
proposed by Diebold and Yilmaz, there are three main
parameters, such as the predictive horizon H for variance
decomposition, the rolling windowwidthW for the dynamic
analysis, and the lag order p of the VAR model. In this
section, we will test the robustness of the abovementioned

Table 4: Total spillover connectivity between the major CET markets.

SZA SHEA HBEA GDEA BEA FROM
SZA 67.31 18.13 8.16 1.87 4.52 6.54
SHEA 14.53 66.39 0.87 0.43 17.77 6.72
HBEA 18.12 14.67 60.29 2.14 4.78 7.94
GDEA 19.34 20.06 18.33 36.87 5.41 12.63
BEA 5.9 13.95 1.46 1.44 77.24 4.55
TO 11.58 13.36 5.77 1.18 6.5 38.38
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Figure 8: Total spillover index chart of the VAR model in diferent H steps.
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Figure 9: Te dynamic total return spillover index based on
diferent rolling windows.
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results with diferent values of the three parameters and
variable substitution method to test the model.

Te results of the robustness test by the transformation
parameters are shown in Figures 8–10, respectively. It is
obviously refected that the trend of the curves is consistent
with the original results in diferent steps, diferent rolling
windows, and diferent VAR lags’ order.

In addition, we use the index of the CSI Energy Index to
replace the ASEI as the representative of the traditional
energy market and then recalculate the spillover index and
net-pairwise spillover index. Te results show that the total
spillover is 12.57 which is not far away from 13.91, and the
net-pairwise of each market is in line with the original re-
sults. All of the abovementioned methods demonstrate the
reliability of the original results.

6. Conclusion and the Policy Implication

With the intensifcation of the marketization process, the
relationship among the CET, coal market, new energy
market, and traditional market has been confrmed by many
scholars. In this paper, we describe the static and dynamic
infuence relationship between the CETmarket and the new
energy market, steam coal market, and the traditional
market by constructing the VAR model. We frst use the
method of DY indices to study the network connectivity of
the four markets in the temporal dimension, and then we use
the method of BK to study the connectivity of CET, new
energy, steam coal, and traditional in the frequency di-
mension; then, we study the dynamic connectivity among
the four markets through a rolling window approach. At last,
we test the result robust. Te conclusions and enlightenment
are as follows:

(1) From the static perspective, the results confrm the
spillover efect among the CET, new energy, steam coal, and
traditional energy with the total spillover efect index being
11.39% and the efect is mainly in the short term; (2) in all
the markets, it is neutral that the spillover relationship
among the CET, coal market, new energy market, and

traditional energy market, while the steam coal spillover to
CET is the highest with the spillover efect index being 1.33,
and obviously, with the development of the CETmarket, the
efect between them will be increased. New energy and the
steam coal energy are net transmitters, while the traditional
energy is a net receiver. (3) From the dynamic perspective,
the spillover efect among the given markets has a time-
varying characteristic, and the spillover index shows peri-
odic changes, and it is afected by the international and
domestic environment. Additionally, the results of the
pairwise net directional spillover efects show that the new
energy price returns play a dominant role in the total
connectedness, followed by coal futures price returns.
Furthermore, the traditional energy market plays the main
net receiver role. Because traditional energy includes oil and
gas without steam coal, we infer that the main net receiver is
the oil and gas market in China.

Te result indicates that the steam coal as the major
energy source of the Chinese industry has a strong
spillover efect, while new energy sources have strong
development momentum under the background of the
Chinese goal of carbon peak and carbon neutrality, and
the new energy industry has been accepted by all sectors as
an important way to achieve the dual-carbon goal in
China. At the present stage, the aforementioned results
also provide theoretical basis and support further research
studies on cross-market and cross-regional information
transmission and risk transmission mechanisms in the
future, and it also provides a perspective to understand the
connectivity and the spillover efect between the CET and
the relevant energy market. Te results can provide cer-
tain reference signifcance for marketing managers and
formulate corresponding policy guidance for the policy
markets, as well as for the investors. Tey can develop
appropriate portfolios and hedge funds based on the
connectivity results. In the future research, other com-
modity markets and a more broad range of data can be
added to the research framework or we can use other
methods to analyse the connectivity for the larger object.
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Figure 10: Dynamic total return spillover index with diferent VAR lags.
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