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The last edition of the International Conference on Structural
Engineering Dynamics (ICEDyn) 2013 took place in Sesim-
bra, a tiny fishing village in the Blue Coast Portugal, on the
17th–19th of June 2013, and was organized by the Instituto
Superior Técnico (IST), from the University of Lisbon, and
the Instituto de Engenharia Mecânica (IDMEC).

As it happened in previous editions of this biennial
scientific event, the conference embraces a large spectrum of
subjects that attract the interest of a wide community devoted
to engineering dynamics, where theory and experiment mix
very well. Common to all ICEDyn conferences is the high
scientific standard of the submitted articles. Senior scientists,
representatives of the industrial community, and young
students doing theirMaster or Ph.D. studies were encouraged
to meet and develop a healthy and stimulating interaction
around the same kind of interests and objectives.

Four international renowned scientists addressed key-
note lectures that preceded and framed the parallel ses-
sions that followed them: “Operational modal analysis” (R.
Brincker, Aarhus University, Denmark); “On the renewed
interest for the wave propagation approach to structural
dynamics” (J. R. F. Arruda, Universidade Estadual de Camp-
inas, Brazil); “Spatial information in autonomous modal
parameter estimation” (R. J. Allemang, University of Cincin-
nati, USA); and “Regular and chaotic dynamics of flexi-
ble plates” (J. Awrejcewicz, Łódź University of Technology,
Poland). The parallel sessions covered damage/SHM (3 ses-
sions), active control (2 sessions), experimental/operational
modal analysis (2 sessions), sound and vibration generated
by moving loads (2 sessions), aeronautics and aerospace

(2 sessions), smart materials in structural dynamics (2 ses-
sions), modelling, civil structures, nonlinear dynamics, ana-
lytical methods, connecting analysis and tests, and damping
and updating (2 sessions).

This special issue has been carefully prepared, in order
to meet the high standards of this publication and to reflect
the excellent outcome of ICEDyn 2013. Those authors who
had manifested an interest in publishing in SAV submit-
ted improved versions of their articles, which have passed
through a rigorous process of peer-reviewing (with at least
two reviewers and most of them with three reviewers); this
has contributed to the enrichment of the scientific quality
of those articles. From the initial 43 papers, a total of 29
papers have beenfinally selected to integrate the present issue,
covering various areas. It was a pleasure and an honor for us
to serve as Guest Editors for this special Issue. We hope that
readers will find the special issue exciting as well as useful
for stimulating further research activities and conjecturing
future trends in this area of structural dynamics.
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This paper reports on the modeling and on the experimental verification of electromechanically coupled beams with varying cross-
sectional area for piezoelectric energy harvesting. The governing equations are formulated using the Rayleigh-Ritz method and
Euler-Bernoulli assumptions. A load resistance is considered in the electrical domain for the estimate of the electric power output
of each geometric configuration. The model is first verified against the analytical results for a rectangular bimorph with tip mass
reported in the literature.The experimental verification of themodel is also reported for a tapered bimorph cantilever with tipmass.
The effects of varying cross-sectional area and tip mass on the electromechanical behavior of piezoelectric energy harvesters are
also discussed. An issue related to the estimation of the optimal load resistance (that gives the maximum power output) on beam
shape optimization problems is also discussed.

1. Introduction

The interest in converting vibrations into usable electrical
energy has increased over the past years [1–5]. Vibration
based energy harvesting is particularly useful for wireless
sensor nodes and remotely operated systems with limited
energy source. The aim is to provide electrical energy for
such systems by using the vibrations available in their
environment. Although different transduction mechanisms
can be used to convert vibrations into electricity, the recent
literature shows that piezoelectric transduction has drawn the
most attention [1, 3, 5].

The literature on piezoelectric energy harvesting includes
different models to represent the behavior of electromechan-
ically coupled harvesters. Such models range from lumped
parameter models [6, 7] to Rayleigh-Ritz type approximate
distributed parameter models [7–9] as well as analytical
distributed parameter solution attempts [10, 11]. The analyt-
ical distributed parameter solutions for unimorph [12] and
bimorph [13] piezoelectric energy harvester configurations

with closed-form expressions have been presented. The
convergence of the Rayleigh-Ritz type electromechanical
solution [7, 9] to the analytical solution given by Erturk and
Inman [12] was reported by Elvin and Elvin [14] when a
sufficient number of admissible functions were used.

The investigation into alternative configurations of elec-
tromechanical beams has also been reported in the literature.
Erturk et al. [15] presented a linear distributed parameter
model for predicting the electromechanical behavior of an
L-shaped piezoelectric energy harvester configuration. A
broadband harvester can be obtained when the first two
natural frequencies of the L-shaped beam are properly tuned.
The use of tapered cantilevers in order to improve the elec-
tromechanical behavior of piezoelectric energy harvesters has
also been investigated [16–22].The shape is changed from the
basic rectangular configuration towards a tapered or reversed
tapered geometry and the main motivation is to increase the
electrical power output.Themodeling of electromechanically
coupled beams with nonuniform width is presented in Dietl
and Garcia [21]. An optimal beam shape is determined by
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an optimization code. In the cited paper [21], as well as in
[2, 16, 22], the expression 1/𝜔𝐶𝑝(where 𝜔 is the excitation
frequency and 𝐶𝑝 is the equivalent capacitance of piezoce-
ramic layers) is employed for the optimum load resistance
(which gives maximum power output) of a piezoelectric
energy harvester. In general, the authors approximate the
eigenvalues and eigenvector of electromechanically coupled
beams with nonuniform width to the ones corresponding to
rectangular shape beams [18–20]. Recently, the solution of
eigenvalue problem of nonuniformwidth beams by using the
differential quadrature method has been presented and the
effects of beam shape on the structural natural frequencies
and mode shapes are discussed [23]. An important aspect,
the effect of load resistance on the electroelastic behavior of
variable-shaped harvesters, is only considered in Ayed et al.
[23].

An issue related to the estimate of the optimum load
from the equation 1/𝜔𝐶𝑝 was previously discussed [24] for a
rectangular (or squared) energy harvester configuration.The
piezoceramic layer of a piezoelectric energy harvester can be
represented as a current source in parallel with its internal
capacitance (Norton representation) or as a voltage source in
series with its internal capacitance (Thévenin representation).
For instance, in Norton representation, 𝑅opt = 1/𝜔𝐶𝑝 is
obtained only if a constant current amplitude oscillating at
a frequency 𝜔 is assumed. However, regarding the electrome-
chanical behavior of a piezoelectric energy harvesting previ-
ously discussed in the literature [13, 24, 25], the current source
in Norton representation is not constant, but it depends on
the load resistance, since the vibration response also depends
on the load resistance. The expression 𝑅opt = 1/𝜔𝐶𝑝 could
be obtained from the coupled equations that govern a piezo-
electric energy harvester [24] only if the electromechanical
coupling term was artificially removed from the mechanical
equation.

This paper reports on the modeling and experimen-
tal verification of electromechanically coupled beams with
varying cross-sectional area (tapered or reversed tapered)
for energy harvesting. The governing equations are for-
mulated by the Rayleigh-Ritz method and Euler-Bernoulli
assumptions. A load resistance is considered in the electrical
domain of the problem for the estimate of the electric
power output. The model is first verified against analyt-
ical electromechanically-coupled results of a rectangular
bimorph cantilever with tip mass under base excitation
reported in the literature [13]. The frequency response func-
tions (FRFs) obtained using the model presented in this
work are compared with the FRFs obtained analytically in
[13]. The model is also experimentally verified for a tapered
bimorph cantilever with tip mass. Finally, the effects of a
varying cross-sectional area (changing from a rectangular
beam to a tapered or reversed tapered configuration) and
tip mass on the electrical power output of piezoelectric
energy harvesters are discussed. The effects of the incorrect
estimate of the optimal load resistance (which provides the
maximum power output) from the expression 𝑅opt = 1/𝜔𝐶𝑝

on both the electromechanical behavior of each geometric
configuration and the beam shape optimization problem are
discussed.

M

R

y

z

x
w
(x
)

Figure 1: A bimorph piezoelectric energy harvester under clamped-
free boundary conditions.

2. Mathematical Model of a Piezoelectric
Energy Harvester with Varying Cross-
Sectional Area

Thederivation provided in this section is for a bimorphpiezo-
electric beam of uniform width along its length (rectangular)
or nonuniform width along its length (tapered or reversed
tapered). The bimorph harvester has a brass substructure
bracketed by two piezoceramic layers as shown in Figure 1
(for the rectangular beam). Each piezoelectric layer is covered
by continuous conductive electrodes that can be connected
either in series (when piezoceramic layers are poled in the
opposite direction) or in parallel (when piezoceramic layers
are poled in the same direction). In this work, the pairs of
electrodes covering each piezoceramic layer are connected in
series. In Figure 1, 𝑅 is the resistive load, 𝑤(𝑥) is the width of
the beam along the length (𝑥), and𝑀 is the tip mass attached
to the free end of the harvester.

The combination of Hamilton’s principle [26] and the
Rayleigh-Ritz method based on the Euler-Bernoulli beam
assumptions is used in the modeling approach of this paper.
The generalized Hamilton’s principle was applied by Hagood
et al. [27], who combined the Rayleigh-Ritz method with the
Euler-Bernoulli beam theory for active structural control.The
Rayleigh-Ritz formulation used by Hagood et al. [27] was
also implemented by duToit et al. [7] and Sodano et al. [8]
for predicting the electric power output of electromechan-
ically coupled Euler-Bernoulli beams in energy harvesting
problems. Dietl and Garcia [21] combined the Rayleigh-
Ritz method with the Euler-Bernoulli beam theory to model
electromechanically coupled beams with a varying cross-
sectional area in energy harvesting problems.

In the Euler-Bernoulli beam theory, the motion is
restricted to the transverse direction and the only nonzero
component of the displacement field u is 𝑦(𝑥, 𝑡). Further-
more, the beam strain is given by 𝑦(𝑥, 𝑡) and its partial
derivatives. In the Rayleigh-Ritz procedure, the displacement
𝑦(𝑥, 𝑡) of the beam can be written as the summation of the
modes and the temporal coordinate of the displacement as

𝑦 (𝑥, 𝑡) = 𝜑(𝑥)
𝑇q (𝑡) , (1)

where 𝜑(𝑥) is a matrix of assumed mode shapes and q(𝑡)
is the temporal coordinate of displacement. Here, the mode
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shapes are assumed to be an acceptable solution to an Euler-
Bernoulli beam under a clamped-free condition,

𝜑̃
𝑘 (𝑥) = cos𝛽𝑘

𝑥

𝐿
− cosh𝛽𝑘

𝑥

𝐿
− 𝜎𝑘 (sin𝛽𝑘

𝑥

𝐿
− sinh𝛽𝑘

𝑥

𝐿
) ,

(2)

where 𝐿 is the length of the beam and 𝜎𝑘 is expressed as

𝜎𝑘 =
sin𝛽𝑘 − sinh𝛽𝑘 + 𝛽𝑘𝑟 (cos𝛽𝑘 − cosh𝛽𝑘)
cos𝛽𝑘 + cosh𝛽𝑘 − 𝛽𝑘𝑟 (sin𝛽𝑘 − sinh𝛽𝑘)

, (3)

where 𝛽𝑘 is the natural frequency of the 𝑘th mode obtained
from the equation given by

1

𝑟
(cos𝛽 cosh𝛽 + 1) + 𝛽 (cos𝛽 sinh𝛽 − sin𝛽 cosh𝛽) = 0,

(4)

where 𝑟 is the ratio of the tip mass to the mass of the beam
(substructure and piezoceramic layers).

The general form for the 𝑘th mode shape must satisfy the
following equation

∫

𝐿

0

𝜑
2

𝑘
(𝑥) 𝜌𝑙𝑤 (𝑥) 𝑑𝑥 +𝑀𝜑

2

𝑘
(𝐿) = 1, (5)

where the mode shape is obtained as

𝜑𝑘 (𝑥) =
𝜑𝑘 (𝑥)

√∫
𝐿

0
𝜑
2

𝑘
(𝑥) 𝑑𝑥 + 𝑟𝜑

2

𝑘
(𝐿)

, (6)

and 𝜌𝑙 is the equivalent mass density given by

𝜌𝑙 = 𝜌𝑠ℎ𝑠 + 2𝜌𝑝ℎ𝑝, (7)

where 𝜌 is the mass density, ℎ is the thickness of the layer and
the subscripts 𝑠 and𝑝 represent, respectively, the substructure
and the piezoceramic layers.

Since piezoceramic layers are poled in the thickness
direction, the nonzero electric field component (𝐸), which
is assumed to be uniform along the thickness direction, is
expressed as

𝐸 = −
𝜕𝜓

𝜕𝑧
= −

𝑉

2ℎ𝑝

, (8)

where the electric potential (𝜓) is assumed to vary linearly
across the electrodes and 𝑉 is the voltage across the elec-
trodes.

The previous definitions for mechanical and electrical
variables should be used to define the terms in Hamilton’s
principle (please check Dietl and Garcia [21] or De Marqui
Jr. et al. [25] for details) to provide the electromechanically
coupled equations governing the beam:

M ̈q (𝑡) + C ̇q (𝑡) + Kq (𝑡) −Θ𝑉 (𝑡) = F (9)

𝐶𝑝𝑉 (𝑡) +
𝑉 (𝑡)

𝑅
+Θ
𝑇
̇q (𝑡) = 0, (10)

whereM is themass matrix,C is the dampingmatrix,K is the
stiffness matrix, Θ is the electromechanical coupling matrix,
F is the vector of mechanical forces (where F = p∗𝑎(𝑡), where
𝑎(𝑡) is the base acceleration in function of time and p∗ is
the input matrix to be defined later), 𝑇 represents the matrix
transpose when superscripted, an overdot represents the time
derivative, 𝑅 is the load resistance, q is the vector of modal
mechanical displacements, 𝑉(𝑡) is the voltage in function of
the time, and 𝐶𝑝 is the effective capacitance.

The mass matrix is defined as

M = ∫

𝐿

0

𝜌𝑙𝑤 (𝑥)𝜑 (𝑥)𝜑
𝑇
(𝑥) 𝑑𝑥 +𝑀𝜑 (𝐿)𝜑

𝑇
(𝐿) (11)

and the stiffness matrix is defined as

K =
𝐼0𝑤

𝑠
𝐸
𝑝

[∫

𝐿

0

𝑤 (𝑥)𝜑
󸀠󸀠
(𝑥)𝜑
󸀠󸀠𝑇

(𝑥) 𝑑𝑥] , (12)

where 𝑠𝐸
𝑝
is the compliance measured in a constant electric

field, (󸀠󸀠) represents the space derivative, and 𝐼0𝑤 is given by

𝐼0𝑤 =
𝐼𝑧𝑧 (𝑥)

𝑤 (𝑥)
, (13)

where 𝐼𝑧𝑧(𝑥) is the moment of inertia.
The damping matrix is assumed to be proportional to the

mass and stiffness matrices:

C = 𝛼M + 𝛽K, (14)

where 𝛼 and 𝛽 are the constants of proportionality.
The capacitance for a bimorph harvester in series connec-

tion case is given by

𝐶𝑝 =
𝜀
𝑆

33

2ℎ𝑝

∫

𝐿

0

𝑤 (𝑥) 𝑑𝑥, (15)

where 𝜀
𝑆

33
is the dielectric constant evaluated at constant

strain for an Euler-Bernoulli beam as

𝜀
𝑆

33
= 1730𝜀0 −

𝑑31

𝐸𝑝

(16)

and 𝜀0 is the permittivity in free space and 𝑑31 is the
piezoelectric coupling coefficient and 𝐸𝑝 is Young’s modulus
of the piezoceramic.

The electromechanical coupling matrix is given as

Θ = − (ℎ𝑠ℎ𝑝 + ℎ
2

𝑝
)

𝑑31

2𝑠
𝐸
𝑝
ℎ𝑝

[∫

𝐿

0

𝑤 (𝑥) 𝜑
󸀠󸀠
(𝑥) 𝑑𝑥] (17)

and the input matrix is

p∗ = ∫

𝐿

0

𝜌𝑙𝑤 (𝑥)𝜑 (𝑥) 𝑑𝑥 +𝑀𝜑 (𝐿) , (18)

with all variables previously defined.
Expressions for the electromechanical FRFs (voltage

across the resistive load, current passing through the resistive
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Table 1: Geometric and material properties of the bimorph harvester.

Length of the beam [mm] 50.8 Mass density of the substructure [kg/m3] 9000
Width of the beam on the clamped end [mm] 31.8 Mass density of the PZT [kg/m3] 7800
Width of the beam on the free end [mm] 31.8 Tip mass [kg] 0.012
Thickness of the substructure [mm] 0.14 (each) Proportional constant 𝛼 (rad/s) 14.65
Thickness of the PZT [mm] 0.26 (each) Proportional constant 𝛽 (s/rad) 10−5

Young’s modulus of the substructure [GPa] 105 Piezoelectric coupling coefficient 𝑑31 [pm/V] −190
Young’s modulus of the PZT-5A [GPa] 66 Permittivity of free space [pF/m] 8.854

load, electrical power output, and relative tip motion) can
be obtained from the equations of motion ((9) and (10)).
The excitation is due to the harmonic motion of the base in
the transverse direction, 𝑤𝐵 = 𝑌0𝑒

𝑗𝜔𝑡 (where 𝑤𝐵(𝑡) is the
base displacement, 𝑌0 is its amplitude, 𝜔 is the excitation
frequency, and 𝑗 is the unit imaginary number), and the
voltage output-to-base acceleration FRF can be obtained as

𝑉 (𝑡)

𝑎 (𝑡)

=
𝑉 (𝑡)

−𝜔
2
𝑌0𝑒
𝑗𝜔𝑡

= 𝑗𝜔(
1

𝑅
+ 𝑗𝜔𝐶𝑝)

−1

Θ
𝑇

× [−𝜔
2M + 𝑗𝜔C + K + 𝑗𝜔(

1

𝑅
+ 𝑗𝜔𝐶𝑝)

−1

ΘΘ
𝑇
]

−1

p∗

(19)

and the electric current FRF is obtained by dividing the
voltage FRF by the load resistance of the electrical circuit and
the electrical peak power FRF (since the voltage FRF is the
peak voltage FRF) is the product of the voltage and current
FRFs.

The relative tip motion FRF is defined as the ratio of the
amplitude of the displacement at the tip of the beam (relative
to the base) to the amplitude of the base displacement input
and it is obtained from (9) and (10) as

𝑤rel
𝑌0𝑒
𝑗𝜔𝑡

= 𝜔
2
[−𝜔
2M + 𝑗𝜔C + K + 𝑗𝜔(

1

𝑅
+ 𝑗𝜔𝐶𝑝)

−1

ΘΘ
𝑇
]

−1

p∗

(20)

and the tip velocity FRF is defined as the ratio of the
amplitude of velocity at the tip of the beam (relative to the
fixed frame) to the gravitational acceleration. This FRF is
easily obtained from the expression of the relative tip motion
FRF by using

Vrel = −
𝑗𝑔

𝜔
(1 +

𝑤rel (𝐿, 𝑡)

𝑌0

) , (21)

where 𝑔 is the gravitational acceleration.

3. Case Studies

This section presents three case studies and the electrome-
chanically coupledmodel described in Section 2 is employed.

In the first case, the model is verified against the analytical
results of a bimorph cantilever with tip mass reported in the
literature [13]. The experimental verification of the model is
then reported for a tapered bimorph cantilever with tip mass.
Finally, a discussion regarding the calculation of the optimal
load resistance (for maximum power output) is presented.
The effects of varying cross-sectional area, tip mass, and
estimate of optimal load resistance on the electromechanical
behavior and shape optimization problems of piezoelectric
energy harvesters are also discussed. It is important to
mention that, in the following discussions, the power output
is normalized per base acceleration (in terms of gravitational
acceleration), which is assumed to be smaller than that which
would cause failure in the different piezoelectric energy
harvesters considered in this work.

3.1. Verification against the Analytical and Experimental
Results for a Rectangular Bimorph Configuration. In the first
case study, the results obtained from our electromechanical
model presented for a rectangular cantilevered bimorph
with a tip mass under base excitation are compared with
the single mode analytical predictions of the closed-form
solution presented by Erturk and Inman [13]. The bimorph
harvester configuration has a brass substructure bracketed
by two PZT-5A layers. The piezoceramic layers are poled in
the opposite directions and therefore the combination of the
layers to the electrical load results in the series connection
case. The numerical input data of the bimorph is shown in
Table 1.

The voltage FRF is defined here as the voltage output per
gravitational acceleration (𝑔 = 9.81m/s2) to be in agreement
with the analytical voltage FRFs given by Erturk and Inman
[13]. Equation (19) is easilymodified to provide voltage output
per g. The voltage FRFs for the first mode of the harvester
obtained from our model are plotted in Figure 2(a) along
with the analytical solution and experimental results for eight
different values of load resistance (1, 6.7, 11.8, 22, 33, 47, 100,
and 470 kΩ). The voltage output increases with increasing
load resistance for all excitation frequencies according to the
present model and the analytical predictions. The analytical
model as well as our model has predicted such frequencies as
45.7Hz and 48.2Hz, respectively.

The mechanical vibration FRFs of the bimorph piezo-
electric harvester obtained by the present model and the
analytical model are shown in Figure 2(b). The tip velocity
FRF ((20) and (21)) is defined as the ratio of the amplitude
of velocity at the tip of the beam (relative to the fixed
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Figure 2: Voltage FRF (a) and tip velocity (FRF) (b) for eight values of load resistance.

Table 2: Geometric and material properties of the tapered bimorph harvester.

Length of the beam [mm] 50.8 Mass density of the substructure [kg/m3] 9000
Width of the beam at the clamped end [mm] 31.5 Mass density of the PZT [kg/m3] 7800
Width of the beam at the free end [mm] 7.25 Tip mass [kg] 0.00164
Thickness of the substructure [mm] 0.14 (each) Proportional constant 𝛼 (rad/s) 8.79
Thickness of the PZT [mm] 0.26 (each) Proportional constant 𝛽 (s/rad) 6.10−6

Young’s modulus of the substructure [GPa] 105 Piezoelectric coupling coefficient 𝑑31 [pm/V] −190
Young’s modulus of the PZT-5A [GPa] 66 Permittivity of free space [pF/m] 8.854

frame) to the gravitational acceleration.Themechanical FRFs
obtained by the present model are in agreement with the
analytical results. The vibration amplitude at the short circuit
resonance frequency is attenuated as the load resistance is
increased up to 100 kΩ due to the resistive shunt damping
effect associated with power generation. Approximately after
the value of 100 kΩ, increasing load resistance amplifies the
vibration amplitude at the open circuit resonance frequency.

3.2. Verification against the Experimental Results for a Tapered
Bimorph with Tip Mass. In this second case study, the results
from our approximate model for a tapered piezoelectric
energy harvester are verified against experimental results.
The bimorph harvester configuration has a brass substructure
bracketed by two PZT-5A layers. The piezoceramic layers
are poled in the opposite directions and therefore the series
connection case is studied. The geometric and material
properties for the tapered beam are given in Table 2. The
width of the beam at the clamped end is larger than the width
at the free end and it is assumed to vary linearly along the
length of the harvester.

Smallmagnets were attached at the free end of the tapered
harvester as a tip mass in the experiments. The base accel-
eration was measured at the clamped end (Accelerometer
Model 352C22, PCB Piezotronics), which is connected to a
shaker (Model 4810, Brüel & Kjær). A digital laser vibrometer
(Model PDV-100, Polytec) measures the tip velocity at the
free end. The electromechanical behavior is investigated by
using three different resistive loads (1 kΩ, 50 kΩ, and 1MΩ)

and the electromechanical FRFs were acquired through a
Data Acquisition System (Photon II All in One System, LDS
Dactron). Figure 3 shows the experimental setup.

The voltage FRFs for the first mode of the tapered har-
vester obtained from our model and the experimental results
are plotted in Figure 4(a). The experimental short circuit and
open circuit resonance frequencies for the tapered harvester
are 179.1 Hz and 189.1 Hz, respectively. The present model
has predicted such frequencies as 178.8Hz and 188.9Hz,
respectively. The tip velocity FRFs obtained by the present
model are in agreement with those of the experimental
results, as shown in Figure 4(b).

3.3. Effects of Tip Mass, Beam Shape, and Load Resistance
on the Electromechanical Behavior of a Piezoelectric Energy
Harvester. In the third case study, the effects of a varying
cross-sectional area (changing from a rectangular beam to a
tapered or reversed tapered configuration) and tip mass on
the electrical power output of piezoelectric energy harvesters
are discussed. Issues related to the estimate of the optimal
load resistance by using the expression 𝑅opt = 1/𝜔𝐶𝑝 on the
power output of each geometric configuration and on beam
shape optimization problems are also discussed.The piezoce-
ramic layers of the bimorph are poled in opposite directions
and therefore the series connection case is investigated. The
numerical input data of the base case studied in this section
(rectangular beam) are given in Table 1.

Two different conditions are investigated in this case. In
the first, the width of the clamped end (𝑥 = 0) is constant
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Figure 4: Model and experimental voltage FRFs (a) and tip velocity FRFs (b) for three values of load resistance.

(𝑤0 = 𝑤(0) = 31.8mm) and the width at the tip can
be modified (tapered beam). The width (or cross-section) is
linearly modified along the span, from 𝑤0 at the clamped
end to 𝑤(𝐿) = 𝑃𝑤0 at the free end. 𝑃 may assume values
from 0 (triangular beam) to 1 (rectangular shape), as shown
in Figure 5(a). In the second case, the width of the free end
(𝑥 = 𝐿) is constant (𝑤(𝐿) = 𝑤0 = 31.8mm) and the
width of the clamped end can be modified (reversed tapered
beam). The width (or cross-section) is linearly modified
along the span from 𝑤(𝐿) = 𝑤0 at the clamped end to
𝑤(0) = 𝑄𝑤0 at the free end, where 𝑄 may assume values
from 0 (reversed tapered beam) to 1 (rectangular shape),
as shown in Figure 5(b). The thickness and length of the
composite section (substructure and piezoceramic layers) are
constant in both cases and a tip mass is assumed in the free
end.

The power output in each case (tapered or reversed
tapered) is obtained for a range of values of tip mass and
𝑃 or 𝑄 (for each case), as well as for the optimum load
resistance of the short circuit resonance frequency of each
configuration. Although small values of parameters 𝑃 and
𝑄 are assumed in the analyses, note that 𝑃 → 0 and

𝑄 → 0 can lead to practical issues related to fabrication
and testing (tip mass position or clampling). The optimum
load resistances are estimated considering (1) the Norton or
Thévenin representation of the piezoelectric layers and (2) an
expression for the optimum load obtained from (9) and (10)
[23]. As previously discussed, when the Norton or Thévenin
representations of the piezoelectric layers are assumed, the
optimum load resistance is

𝑅opt =
1

𝜔𝑘𝐶𝑝

, (22)

where 𝜔𝑘 is the short circuit resonance frequency of the
desired mode. Such an expression is obtained when the
backward coupling is neglected in the equations that govern
the piezoelectric energy harvester. Therefore, the shift from
short to open circuit resonance frequency as well as the shunt
damping effect (trends reported in the previous case studies)
are not observed when the load resistance is changed from
short to open circuit conditions [23].
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By considering the electromechanically coupled equa-
tions ((9) and (10)) one should obtain the expression for the
optimum load as [23]

𝑅opt =
1

𝜔𝑘𝐶𝑝 [1 + (𝛾𝑘/2𝜁𝑘)
2
]

where 𝛾𝑘 =
Θ𝑘

𝐶𝑝𝜔𝑘
(23)

and 𝜔𝑘 is the short circuit resonance frequency of the desired
mode and 𝜁𝑘 is the damping ratio of the same mode and
Θ𝑘 is the modal electromechanical coupling of the mode.
The optimum load resistance can also be searched by the
calculation of the power output for a wide range of load
resistance until the optimal one is reached [15, 24] when the
system is excited at a target frequency. For instance, Figure 6
shows the variation of the optimum load resistance with
parameter 𝑃 for a piezoelectric energy harvester with tip
mass (basic data given in Table 1) excited at the short circuit
resonance frequency.The same load resistance is obtained by
searching for the optimum one and by using (23). However,
inaccurate predictions are obtained from (22).

The variation of power output (per squared based
acceleration) with parameter 𝑃 and tip mass is shown in
Figure 7. The excitation is due to the harmonic motion of
the clamped end in the transverse direction at the short

circuit resonant frequency of the first vibration mode of
each configuration. The maximum power output displayed
in Figure 7(a) is obtained from the power FRF defined
in Section 2 (obtained from the harmonic assumption in
(9) and (10)) and the optimum load resistance (for each
configuration) is calculated by using (23). Power increases
with increasing tip mass for any geometric configuration
(from rectangular to triangular harvester or 1 ≤ 𝑃 ≤ 0).
This is the expected behavior, since the fundamental vibration
mode of the harvester is considered in this base excitation
problem. It is important to note that the forcing term in the
base excitation is related to the inertia of the body itself;
therefore, larger mass values result in larger strains and
power output. Figure 7(a) shows that power output increases
with increasing 𝑃 for any tip mass. Therefore, the maximum
power output is obtained from the rectangular piezoelectric
energy harvester. This result contradicts the conclusions of
other papers [16–22]; however, the effect of load resistance
on the electromechanical behavior of a piezoelectric energy
harvester is an important aspect that has not been considered
previously. Ayed et al. [23] report the tapered beam as
the optimum one. However, no experimental verification is
provided and the open circuit condition (𝑅 = 10

6
Ω) is

reported as the optimum load resistance.
The maximum power output displayed in Figure 7(b) is

obtained from the power FRF defined from (9) and (10) with
the electrical term in the mechanical domain (9) artificially
set to zero. Therefore, the optimum load resistance (of each
configuration) is calculated by (22). It is noteworthy that the
power output in Figure 7(b) is larger than that in Figure 7(a).
It is important to remember that the shunt damping effect
was neglected in the simulations of Figure 7(b) (since electric
feedback was neglected in (9)). The maximum power output
in Figure 7(b) is obtained for the largest tip mass and for
𝑃 = 0.23. The simple representation of the piezoelectric
layers as constant electrical sources (Norton orThévenin rep-
resentations) leads to the incorrect estimate of the optimum
load resistance (Figure 6) as well as to the incorrect optimum
shape that provides the maximum power output in a beam
optimization problem.

Finally, the variation of the power output (per squared
based acceleration) with parameter 𝑄 and tip mass is shown
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Figure 7: Variation of power output (per squared based acceleration) with parameter 𝑃 and tip mass.
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Figure 8: Variation of power output (per squared based acceleration) with parameter 𝑄 and tip mass.

in Figure 8.The system is excited at the short circuit resonant
frequency of the first vibration mode of each configuration.
The maximum power output displayed in Figure 8(a) is
obtained by using the power FRF expression defined in
Section 2 (obtained from the harmonic assumption in (9) and
(10)) and the optimum load resistance (for each configura-
tion) calculated by (23). Power increases with increasing tip
mass for any geometric configuration (from rectangular to
reversed tapered beam or 1 ≤ 𝑄 ≤ 0). Power output increases
with increasing 𝑄 for any tip mass considered in the simu-
lations. Therefore, the maximum power output is obtained
from the rectangular piezoelectric energy harvester. One
should also note that power output dramatically drops (for
any tip mass) with decreasing 𝑄. In such a case, piezoelectric
material is being removed from the region ofmaximumstrain
of a cantilever, which reduces the electromechanical cou-
pling. The maximum power output displayed in Figure 8(b)
is obtained from the power FRF defined from (9) and
(10) with the electrical term in the mechanical domain (9)
artificially set to zero. The optimum load resistance (for
each configuration) is calculated with (22).The power output
in Figure 8(b) is larger than that in Figure 8(a). The shunt
damping effect is neglected in the simulations of Figure 8(b)
(since electric feedback is neglected in (9)).The power output
is quite similar in Figures 8(a) and 8(b) when 𝑄 → 0. In
this region, the electromechanical coupling decreases with
decreasing 𝑄 and the effect of the electrical feedback in (9) is
negligible. Therefore, for systems with small electromechani-
cal coupling (𝜃), the optimum load resistances obtained from

(22) and (23) are similar (or identical when 𝜃 → 0 in (23))
and the effect on the power output is negligible.

4. Conclusions

The modeling and experimental verification of electrome-
chanically coupled beams with uniform and varying cross-
sectional areas have been reported for energy harvesting.The
combination of Hamilton’s principle and the Rayleigh-Ritz
method based on the Euler-Bernoulli beam assumptions is
used in themodeling approach.The electromechanicalmodel
was first verified against the analytical and experimental
results for a rectangular bimorph under base excitation
reported in the literature. The electromechanical vibration
and voltage FRFs obtained from the presented model are in a
very good agreement with those obtained from the analytical
solution and experiments. In the second case, the model
was successfully verified against the experimental results of
a tapered bimorph with tip mass.

The effects of a varying cross-sectional area and tip mass
on the electromechanical behavior of piezoelectric energy
harvesters were also discussed for two conditions—tapered
and reversed tapered beams. Issues related to the determina-
tion of the optimum load resistance and the consequences on
beam shape optimization problems have also been addressed.
When the electric term is neglected in the mechanical
equation, the resulting expression for the optimum load
resistance (for maximum power) is inaccurate, especially for
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systemswith large electromechanical coupling.Moreover, the
power output is overestimated, since the shunt damping effect
is not present, and an incorrect optimum shape that gives
the maximum power output is obtained in a beam shape
optimization problem.
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The dynamical response of systems with shape memory alloy (SMA) elements presents a rich behavior due to their intrinsic
nonlinear characteristic. SMA’s nonlinear response is associated with both adaptive dissipation related to hysteretic behavior and
huge changes in properties caused by phase transformations. These characteristics are attracting much technological interest in
several scientific and engineering fields, varying from medical to aerospace applications. An important characteristic associated
with dynamical response of SMA system is the jump phenomenon. Dynamical jumps result in abrupt changes in system behavior
and its analysis is essential for a proper design of SMA systems. This paper discusses the nonlinear dynamics of a one degree of
freedom SMA oscillator presenting pseudoelastic behavior and dynamical jumps. Numerical simulations show different aspects of
this kind of behavior, illustrating its importance for a proper understanding of nonlinear dynamics of SMA systems.

1. Introduction

Shape memory alloys (SMAs) have unique thermomechani-
cal properties responsible for their use in several applications.
These remarkable properties are attracting technological
interest in science and engineering fields [1–3]. In terms of
applied dynamics, SMAs are being used in order to explore
adaptive dissipation associated with hysteresis loop and the
mechanical property changes due to phase transformation
[4, 5]. Moreover, the dynamical response of systems with
SMA actuators presents a unique dynamical behavior due to
their intrinsic nonlinear characteristic, presenting periodic,
quasiperiodic, and chaotic responses [4, 6–8]. Recently, SMA
constraints have been used for vibration reduction since it is
expected that the high dissipation capacity of SMAs changes
the system response producing less complex behaviors [9–11].
Another important application of SMA related to dynamical
system is the adaptive tuned vibration absorbers. The main
idea related to tuned vibration absorbers is the use of a
secondary system connected to a main system in order
to dissipate energy. In general, this idea has been used in
electrical transmission lines and structural systems. Although
this is very effective in tuned frequencies, it is difficult to

be applied when frequency variations occur. SMA can be
employed in order to confer adaptive behavior to this tuned
system, allowing its application when frequency variations
are expected [12].

Although SMA systems have interesting behaviors to
be exploited in dynamical applications, some characteristics
may be critical for practical situations. In this regard, the
design of SMA system has a huge importance, being nec-
essary in a deep investigation of the dynamical aspects of
the system. Besides chaos and multistability aspects that are
present in SMAdynamical systems, an important aspect is the
dynamical jump. Basically, dynamical jumps are associated
with nonlinear resonant response, causing abrupt changes
in system behavior, introducing unstable regions on system
response.

Bernardini and Rega [8] presented several aspects related
to dynamical jumps in SMA systems. Basically, the authors
investigated a one degree of freedom oscillator considering
both isothermal and anisothermal systems. It is shown that
nonregular responses occur around the jumps. In general,
multicomponent harmonic-balance method, path-following
technique, and Adams-Moulton algorithm were employed to
investigate the system response.
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This paper revisits the dynamical jumps in a one degree
of freedom SMA oscillator harmonically excited. The resti-
tution force is provided by an SMA element described by a
constitutive model with internal constraints [13]. Numerical
simulations are carried out showing different aspects of the
dynamical response of the system.Conclusions of this investi-
gation establish a relationship between dynamical jumps and
stress-strain relation of the SMA element.

2. Constitutive Model

The thermomechanical description of shape memory alloys
is the objective of numerous research efforts that try to
contemplate all behavior details [1, 2]. Here, a constitutive
model that is built upon Fremond’smodel that was previously
presented in some studies [6, 13–17] is employed. This model
considers different material properties for each phase and
four macroscopic phases for the description of the SMA
behavior.

Therefore, besides the total strain, 𝜀, and temperature, 𝑇,
it is necessary to define four internal variables that represent
volume fraction of eachmacroscopic phase:𝛽1 and𝛽2, related
to detwinned martensites, respectively, associated with ten-
sion and compression; 𝛽3 that represents the austenitic
volume fraction; and𝛽4 that represents the volume fraction of
twinnedmartensite. Since there is a constraint based on phase
coexistence,𝛽1+𝛽2+𝛽3+𝛽4 = 1, it is possible to use only three
volume fractions and the thermomechanical behavior of the
SMA is described by the following set of equations [13, 18]:

𝜎 = 𝐸𝜀 + [𝐸𝛼ℎ + 𝛼] (𝛽2 − 𝛽1) − Ω (𝑇 − 𝑇0) ,

̇𝛽1 =
1

𝜂1

{𝛼𝜀 + Λ 1 (𝑇) + (2𝛼𝛼ℎ + 𝐸𝛼
2

ℎ
) (𝛽2 − 𝛽1)

+ 𝛼ℎ [𝐸𝜀 − Ω (𝑇 − 𝑇0)] − 𝜕𝛽
1

𝐽𝜋} + 𝜕 ̇𝛽
1

𝐽𝜒,

̇𝛽2 =
1

𝜂2

{−𝛼𝜀 + Λ 2 (𝑇) − (2𝛼𝛼ℎ + 𝐸𝛼
2

ℎ
) (𝛽2 − 𝛽1)

−𝛼ℎ [𝐸𝜀 − Ω (𝑇 − 𝑇0)] − 𝜕𝛽
2

𝐽𝜋} + 𝜕 ̇𝛽
2

𝐽𝜒,

̇𝛽3 =
1

𝜂3

{−
1

2
(𝐸𝐴 − 𝐸𝑀) [𝜀 + 𝛼ℎ(𝛽2 − 𝛽1)]

2
+ Λ 3 (𝑇)

+ (Ω𝐴 − Ω𝑀) (𝑇 − 𝑇0) [𝜀 + 𝛼ℎ (𝛽2 − 𝛽1)]

−𝜕𝛽
3

𝐽𝜋} + 𝜕 ̇𝛽
3

𝐽𝜒,

(1)

where 𝜎 is the stress and 𝐸 = 𝐸𝑀 + 𝛽3(𝐸𝐴 − 𝐸𝑀) is the
elastic modulus while Ω = Ω𝑀 + 𝛽3(Ω𝐴 − Ω𝑀) is related
to thermal expansion coefficient. Note that subscript𝐴 refers
to austenitic phase, while𝑀 refers to martensite. Parameters
Λ 1 = Λ 2 = Λ = Λ(𝑇) and Λ 3 = Λ 3(𝑇) are associated with
phase transformation stress levels. Parameter 𝛼ℎ defines the
horizontal width of the stress-strain hysteresis loop, while 𝛼
controls the height of the same hysteresis loop.The terms 𝜕𝑛𝐽𝜋
(𝑛 = 𝛽1, 𝛽2, 𝛽3) are subdifferentials of the indicator function
𝐽𝜋 with respect to 𝑛. This indicator function is related to a
convex set 𝜋, which provides the internal constraints related

to the phase coexistence. With respect to evolution equations
of volume fractions, 𝜂1 = 𝜂2 = 𝜂 and 𝜂3 represent the internal
dissipation related to phase transformations. Moreover 𝜕𝑛𝐽𝜒
(𝑛 = 𝛽1, 𝛽2, 𝛽3) are subdifferentials of the indicator function
𝐽𝜒 with respect to 𝑛.This indicator function is associated with
the convex set 𝜒, which establishes conditions for the correct
description of internal subloops due to incomplete phase
transformations. These subdifferentials may be replaced by
Lagrange multipliers associated with the mentioned con-
straints [19].

Concerning parameter definitions, temperature-
dependent relations are adopted for Λ and Λ 3 as follows:

Λ =

{

{

{

−𝐿0 +
𝐿

𝑇𝑀

(𝑇 − 𝑇𝑀) , if 𝑇 > 𝑇𝑀

−𝐿0, if 𝑇 ≤ 𝑇𝑀;

Λ 3 =

{{

{{

{

−𝐿
𝐴

0
+
𝐿
𝐴

𝑇𝑀

(𝑇 − 𝑇𝑀) , if 𝑇 > 𝑇𝑀

−𝐿
𝐴

0
, if 𝑇 ≤ 𝑇𝑀,

(2)

where 𝑇𝑀 is the temperature below where the martensitic
phase becomes stable. Usually, experimental tests provide
information of 𝑀𝑠 and 𝑀𝑓, temperatures of the start and
finish of the martensitic formation.This model uses only one
temperature that could be an average value or, alternatively,
the 𝑀𝑓 value. Moreover, 𝐿0, 𝐿, 𝐿

𝐴

0
, and 𝐿

𝐴 are parameters
related to critical stress for phase transformation.

In order to describe the characteristics of phase transfor-
mation kinetics, different values of 𝜂 and 𝜂3 might be con-
sidered during loading, 𝜂𝐿 and 𝜂𝐿

3
, and unloading processes,

𝜂
𝑈 and 𝜂

𝑈

3
. For more details about the constitutive model,

see [13, 16]. All constitutive parameters can be matched from
stress-strain tests.

As it is well known, SMA devices demonstrate time-
dependent characteristics whichmeans that their thermome-
chanical response depends on the loading rate; see, for exam-
ple, [20, 21]. The proper modeling of this time dependency
can be performed by considering the thermomechanical
coupling terms in the energy equation. Reference [22] dis-
cusses the thermomechanical coupling and rate dependency
in SMAs.

The considered constitutive model has viscous charac-
teristic that allows the description of the thermomechanical
coupling avoiding the integration of the energy equation,
presenting useful results [15]. Reference [22] explores the
same idea showing the difference between a viscous model
and a rate-independent model with thermomechanical cou-
pling. Both models have the ability to describe pseudoelastic
behavior in SMA wires. This time-dependent aspect can be
controlled by the proper choice of model parameters.

3. Single Degree of Freedom Shape
Memory Oscillator

The dynamical behavior of SMAs is analyzed by consid-
ering a single degree of freedom oscillator (1DOF) with
two different forcing possibilities. Initially, a harmonic base
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Figure 1: Single degree of freedom oscillator: (a) harmonic base excitation and (b) harmonic force applied to the mass.
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Figure 2: Maximum system amplitude with V = 0.025m/s and a sine sweep of the forcing frequency.

excitation with prescribed velocity ̇𝑦(𝑡) = V sin(𝜔𝑡), as shown
in Figure 1(a), is considered. Then, a harmonic excitation
𝐹0(𝑡) = 𝑓 cos(𝜔𝑡) applied directly to the oscillator mass,
as presented in Figure 1(b), is analyzed. The motivation of
studying these two situations is the development of SMA
vibration absorbers and isolators. The oscillator presented
in Figure 1(a), for example, can be used to analyze classical
dynamical absorbers, which are attached to a primary system
that presents a harmonic response thatmust have its response
amplitude reduced.The oscillator of Figure 1(b), on the other
hand, can be used to analyze vibration reduction of systems
harmonically excited, which occurs in rotating machines due
to unavoidable unbalance. Therefore, the dynamical analysis
of these systems is an important start for the design of SMA
devices.

The SMA oscillator consists of a mass 𝑚 attached to a
shape memory element of length 𝑙 and cross-sectional area𝐴
and restitution force 𝐹𝑅 (Figure 1). A linear viscous damper,
characterized by a viscous coefficient 𝑐, is also considered in
order to represent dissipations different from the dissipation
associated with the SMA element.

The equation of motion of this oscillator may be formu-
lated by considering the balance of forces acting on the mass
as follows:

𝑚 ̈𝑢 + 𝑐 ̇𝑢 + 𝐹𝑅 = 𝐹0 cos (𝜔𝑡) , (3)

where 𝐹𝑅 = 𝜎𝐴, 𝑢 = (𝑥 − 𝑦), 𝐹0 = −𝑚V𝜔 in the case
of base excitation and 𝐹0 = 𝑓 when the force is applied
directly to the oscillator.The restitution force of the oscillator
is provided by an SMA element described by the constitutive
equations presented in the previous section [13]. Therefore,
the following equation of motion is obtained [4]:

𝑚 ̈𝑢 + 𝑐 ̇𝑢 +
𝐸𝐴

𝑙
𝑢 + (𝐴𝛼 + 𝐸𝐴𝛼ℎ) (𝛽2 − 𝛽1)

− Ω𝐴 (𝑇 − 𝑇0) = 𝐹0 cos (𝜔𝑡) ,
(4)

where volume fractions of evolution 𝛽1 and 𝛽2 are described
by the constitutive model presented in the preceding section
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Figure 3: Up-sweep jumps with V = 0.025m/s: comparison between frequency response and stress-strain curves.
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Figure 5: Maximum system amplitude with V = 0.075m/s and increasing the forcing frequency.
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and 𝜀 = 𝑢/𝑙. In order to obtain a dimensionless equation of
motion, the system’s parameters are defined as follows:

Ω =
Ω𝑅𝐴𝑇𝑅

𝑚𝑙𝜔
2
0

=
Ω𝑅𝑇𝑅

𝐸𝑅

; 𝛼 =
𝛼𝐴

𝑚𝑙𝜔
2
0

=
𝛼

𝐸𝑅

;

𝛼ℎ =
𝛼ℎ𝐸𝑅𝐴

𝑚𝑙𝜔
2
0

; 𝜔
2

0
=
𝐸𝑅𝐴

𝑚𝑙
;

𝜉 =
𝑐

𝑐𝜔0

; 𝜇𝐸 =
𝐸

𝐸𝑅

;

𝑉 =
V
𝜔0𝑙

; 𝜇Ω =
Ω

Ω𝑅

; 𝜔 =
𝜔

𝜔0

.

(5)

Note that dimensionless parameters and variables are
defined considering some reference values for temperature-
dependent parameters. This is done by assuming a refer-
ence temperature, 𝑇𝑅, where these parameters are evaluated.
Therefore, parameters with subscript 𝑅 are evaluated at this
reference temperature. These definitions allow one to define
the following dimensionless variables, respectively, related to
mass displacement (𝑈), temperature (𝜃), and time (𝜏):

𝑈 =
𝑢

𝑙
; 𝜃 =

𝑇

𝑇𝑅

; 𝜏 = 𝜔0𝑡. (6)
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Figure 7: Down-sweep jumps with V = 0.075m/s: comparison between frequency response and stress-strain curves.

Therefore, the dimensionless equation of motion has the
following form:

𝑈
󸀠󸀠
+ 𝜉𝑈
󸀠
+ 𝜇𝐸𝑈 + (𝛼 + 𝜇𝐸𝛼ℎ) (𝛽2 − 𝛽1)

− 𝜇ΩΩ(𝜃 − 𝜃0) = 𝛿 cos (𝜔𝑡) ,

𝛽
󸀠

1
=

1

𝜂
1

{𝛼𝜀 + Λ 1 (𝑇) + (2𝛼𝛼ℎ + 𝐸𝛼
2

ℎ
) (𝛽2 − 𝛽1)

+𝛼ℎ [𝐸𝜀 − Ω (𝑇 − 𝑇0)] − 𝜕𝛽
1

𝐽𝜋} + 𝜕 ̇𝛽
1

𝐽𝜒,

𝛽
󸀠

2
=

1

𝜂
2

{−𝛼𝜀 + Λ 2 (𝑇) − (2𝛼𝛼ℎ + 𝐸𝛼
2

ℎ
) (𝛽2 − 𝛽1)

−𝛼ℎ [𝐸𝜀 − Ω (𝑇 − 𝑇0)] − 𝜕𝛽
2

𝐽𝜋} + 𝜕 ̇𝛽
2

𝐽𝜒,

𝛽
󸀠

3
=

1

𝜂
3

{−
1

2
(𝐸𝐴 − 𝐸𝑀) [𝜀 + 𝛼ℎ(𝛽2 − 𝛽1)]

2
+ Λ 3 (𝑇)

+ (Ω𝐴 − Ω𝑀) (𝑇 − 𝑇0) [𝜀 + 𝛼ℎ (𝛽2 − 𝛽1)]

− 𝜕𝛽
3

𝐽𝜋 } + 𝜕 ̇𝛽
3

,

(7)

where derivatives with respect to dimensionless time are
represented by ()

󸀠
= 𝑑()/𝑑𝜏, 𝜂

𝑖
= 𝜂𝑖/𝜔0, and 𝛿 =

−𝑚V𝜔/𝑚𝑙𝜔2
0
= −𝑚V𝜔/𝐸𝑅𝐴 in the case of base excitation and

𝛿 = 𝑓/𝑚𝑙𝜔
2

0
= 𝑓/𝐸𝑅𝐴 when the force is applied directly to

the oscillator.

4. Numerical Simulation

This section presents a numerical investigation of the 1DOF
SMA oscillator. In order to deal with nonlinearities of the
SMA oscillator equations of motion, an iterative procedure
based on the operator split technique [23] is employed. Under
this assumption, the fourth-order Runge-Kutta method is
used together with the projection algorithm proposed in [6]
to solve the constitutive equations. The solution of the con-
stitutive equations also employs the operator split technique
together with an implicit Euler method.The calculation of 𝛽𝑛
(𝑛 = 1, 2, 3) considers that the evolution equations are solved
in a decoupled way. At first, the equations (except for the
subdifferentials) are solved using an iterative implicit Euler
method. If the estimated results obtained for 𝛽𝑛 do not satisfy
the imposed constraints, an orthogonal projection algorithm
pulls their value to the nearest point on the domain’s surface
[19]. On the other hand, the numerical integration of the
dynamical system uses the classical Runge-Kutta method.

Parameters used in the numerical simulations, presented
in Table 1, are the same used by Savi et al. [4]. These param-
eters are obtained by calibrating the model to experimental
results of a NiTi alloy. Simulations are carried out at a
temperature of 372K, where only austenitic phase is stable at
stress-free state.

The dynamical analysis of the SMA oscillator is mainly
focused on the investigation of the dynamical jumps.The idea
is to investigate numerical simulations related to sine-sweep
tests of the forcing frequency. In this test, system response
is investigated when the forcing frequency is increased
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Table 1: SMA parameters.

𝐸𝑅 (GPa) 𝐸𝑀 (GPa) 𝛼 (MPa) 𝛼ℎ 𝐿0 (MPa) 𝐿 (MPa) 𝐿0
𝐴 (MPa) 𝐿

𝐴 (MPa)
54 42 330 0.048 0.015 41.5 0.63 185
Ω𝐴 (MPa/K) Ω𝑀 (MPa/K) 𝑇𝑀 (K) 𝜂
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Figure 8: Maximum system amplitude with 𝛿 = 0.012 and
increasing the forcing frequency.

(up-sweep) or decreased (down-sweep) by some increment
value. For each forcing frequency, the system is numerically
integrated and the maximum amplitude in steady state is
considered. When the frequency is changed, the last state
at the previous forcing frequency is considered as the initial
condition for the new frequency. This brute-force procedure
is enough to identify dynamical jumps although it does not
allow the identification of unstable paths related to the system
response.

4.1. Harmonic Base Excitation. Initially, the SMA oscillator
subjected to base excitation is of concern with 𝜉 = 0.05.
Figure 2 presents the system response considering the sine-
sweep test of the frequency for V = 0.025m/s. It is noticeable
that there is one jump during the up-sweep while the down-
sweep presents two jumps. This behavior is caused by system
nonlinearities, specifically, hysteretic behavior. During the
up-sweep, dynamical jump occurs around 𝜔 = 0.77. During
the down-sweep, the first one occurs around 𝜔 = 0.59 and
the second one occurs around 𝜔 = 0.43. Bernardini and Rega
[8] identified similar situations with different approaches and
a different constitutive model.

In order to have a better understanding about the dynam-
ical jumps, an investigation is carried out establishing a
relation between jumps and phase transformations. Figure 3
shows up-sweep frequency response curves highlighting the
stress-strain curves for different forcing frequencies. It can be
observed that the jump occurs when phase transformations

start to occur.Therefore, linear stress-strain curve is changed
to a hysteretic behavior associated with incomplete phase
transformations. Note that, for frequencies smaller than 𝜔 =

0.76, the system has a linear behavior. By slightly increasing
the forcing frequency, the system presents a hysteretic behav-
ior. The hysteresis loop causes a significant increase of the
strain, which produces a dynamical jump. By continuing to
increase the forcing frequency the hysteresis loop starts to
become smaller until it disappears and the system presents
a linear behavior again.

Figure 4 shows the same analysis related to down-sweep
test. The first jump occurs when the system changes from
a situation where incomplete phase transformations are in
course to a new one where complete phase transformations
are occurring. This is noticeable by observing the presence
of the elastic response related to martensitic phase in the
stress-strain curve. Note that a very slight change around
𝜔 = 0.6 changes the stress level promoting complete
phase transformations, presenting an elastic response on the
martensitic phase. The second jump, on the other hand,
occurswhere phase transformation is not occurring anymore.
Note that, near 𝜔 = 0.44, phase transformations are not
occurring anymore causing an abrupt change from full loop
to linear case.

It should be pointed out that, for the analyzed range,
Figures 2–4 present a linear evolution of the frequency
responsewhen systemhas a linear response, without reaching
the hysteretic behavior. Afterward, when the system presents
a hysteretic response related to incomplete phase transforma-
tion, the response is associated with a nonlinear curve. The
transition between one behavior and the other modifies the
frequency response.

Now, the same analysis is carried out with a higher
velocity V = 0.075m/s. Figure 5 shows sine-sweep maximum
amplitudes of the SMA oscillator. Under this new condition,
the system presents two jumps during the up-sweep while
the down-sweep presents three jumps. During the up-sweep
(Figure 6), the first jump occurs when the response shifts
from a linear behavior to a nonlinear behavior with the
complete hysteresis loop. The second jump is related to
the transition from the complete phase transformations to
incomplete ones. Although the jumps are being caused by
changes in stress-strain curves, it should be highlighted
that the first jump, where the system goes from a complete
hysteresis loop to a linear behavior, is different from the
previous case.

Figure 7 establishes the comparison between jumps and
phase transformation for the down-sweep case. The first one
occurs around 𝜔 = 1.66, where the maximum amplitude
decreases slightly. It is noticeable that incomplete phase
transformation changes from a situation where internal
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Figure 9: Up-sweep jumps with 𝛿 = 0.012: comparison between frequency response and stress-strain curves.

subloops appear in stress-strain curves to a behavior without
internal subloops. The second jump takes place at 𝜔 = 0.8,
where no transition in stress-strain curve is observed. The
last dynamical jump occurs when the material shifts from
nonlinear behavior related to an incomplete hysteresis loop
to a linear behavior.

It is important to mention that when a dynamical jump
occurs, it is possible to have the transition between the
behaviors in stress-strain diagram immediately before the
dynamical jump. In Figure 7, for example, between the stress-
strain diagrams presented at 𝜔 = 0.84 (incomplete hysteresis
loop) and 𝜔 = 0.80 (complete hysteresis loop), there is a
complete hysteresis loop at 𝜔 = 0.82, where the response
amplitude is still low. This happens because the frequency
variation is very small and the amount of the energy that
increases from 𝜔 = 0.84 to 𝜔 = 0.92 is only sufficient
to complete the hysteresis loop. After the loop is complete,
even a very small increase of energy is enough to lead to
the dynamical jump. Probably, this behavior occurs only in
numerical simulations where a quasistatic variation of the
forcing frequency is possible. In experimental tests, this subtle
transition is probably not possible to be reached and only the
response after the jump is captured.

4.2. Harmonic Force Applied to the Mass. At this point, the
case where harmonic excitation is applied directly to SMA
oscillator mass is analyzed, with 𝜉 = 0.01. The main idea is to
establish a qualitative comparison between the responses of
both oscillators. The same order of magnitude for the forcing
parameters and viscous damping coefficient is considered.
Nevertheless, the forcing amplitude depends on the forcing
frequency in the case of base excitationwhile in the other case

the forcing amplitude is constant. Therefore, the qualitative
comparison tries to show different possibilities when each
forcing condition is considered.

Figure 8 presents system response considering the sine-
sweep of the frequency with 𝛿 = 0.012. During the up-
sweep test two jumps are observed while in down-sweep
three jumps are observed. In the up-sweep, presented in
Figure 9, the first jump occurs when the response shifts
from an incomplete hysteresis to a complete one. This jump
consists in a different situation compared with the equivalent
base excitation cases, where the transition related to the
first dynamical jumps is from linear behavior to nonlinear
behavior with complete hysteresis loop. The second jump is
related to the inverse transition, from complete to incomplete
loop.

Figure 10 establishes the comparison between jumps and
phase transformation for the down-sweep case with 𝛿 =

0.012. The first dynamical jump, which happens around 𝜔 =

0.65, is similar to the first jump of the down-sweep with base
excitation with V = 0.025m/s, when the transition from
incomplete to complete hysteresis loop occurs. The second
one occurs around 𝜔 = 0.36 in a transition from complete
to incomplete hysteresis loop. This situation is also verified
in the previous cases. The last dynamical jump, around
𝜔 = 0.18, occurs when the system goes from incomplete
hysteresis loop to linear behavior.This jump, with a transition
from incomplete hysteresis loop to linear behavior, consists
in a different situation compared with the equivalent base
excitation case.

It is important to mention that all regions related to
dynamical jumps are associated with coexistence of attrac-
tors, due to the different possibilities of response when
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increasing and decreasing the forcing frequency. This coex-
istence is associated with dynamical instability since small
perturbations can cause the system to jump from one behav-
ior to the other which is completely different. This kind of
behavior is critical to system response and is important to be
investigated.

5. Conclusions

This paper deals with the analysis of dynamical jumps in
a shape memory alloy system. Basically, a nonlinear one
degree of freedom oscillator with harmonic excitation is of
concern. Two different situations are treated: base excitation
and excitation applied directly to the oscillatormass.This sys-
tem presents several dynamical jumps and their occurrence
depends not only on the forcing amplitude—which depends
on the velocity in the case of base excitation—but also on the
way the forcing frequency ismodified.Numerical simulations
of the sine-sweep test are carried out showing that down-
sweep causes more dynamical jumps than up-sweep. These
jumps can be explained by phase transformation arguments,
observing stress-strain curves. In this regard, three possible
behaviors can be observed: linear behavior, minor hysteresis
loops related to incomplete phase transformation, and major
hysteresis loops related to complete phase transformation.
The transition between these three behaviors leads to changes
in system response, which can be a dynamical jump or a
modification in the frequency response of the system. It is
observed that the transition between linear and incomplete
hysteresis loops can lead to dynamical jumps ormodifications

in the frequency response of the system. All other transitions
lead to dynamical jumps.
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A new passive device for mitigating cable vibrations is proposed and its efficiency is assessed on 45-meter long taut cables through
a series of free and forced vibration tests. It consists of a unilateral spring attached perpendicularly to the cable near the anchorage.
Because of its ability to change the cable dynamic behaviour through intermittent activation, the device has been called state
switched inducer (SSI).The cable behaviour is shown to be deeplymodified by the SSI: the forced vibration response is anharmonicc
and substantially reduced in amplitude whereas the free vibration decay is largely sped up through a beating phenomenon. The
vibration mitigation effect is mainly due to the activation and coupling of various vibration modes, as evidenced in the response
spectra of the equipped cable.This first large-scale experimental campaign shows that the SSI outperforms classical passive devices,
thus paving the way to a new kind of low-cost vibration mitigation systems which do not rely on dissipation.

1. Introduction

Resonances of slender structures such as bridges, towers,
or cables are usually mitigated by dampers of various types
or/and dynamic absorbers [1–7]. In the case of cables, also
crossties are sometimes used, but they totally change the
original characteristics of the system [8]. Occasionally, these
passive devices may not be sufficient and are then substituted
by active or semiactive devices. All existing passive devices,
including nonlinear energy sinks (NES) [9–13], are based on
the same principle: part of the kinetic energy is transferred
from the structure to the device where it is dissipated.

An original strategy of vibration mitigation is proposed
which consists in attaching a unilateral spring perpendicu-
larly to the cable near the anchorage. Because of its ability
to change the cable dynamic behaviour through intermittent
activation, this new passive device has been called state
switched inducer (SSI). The scope of the present work is to
assess the efficiency of the proposed device through large-
scale testing and to understand how it operates. In fact, unlike
existing passive devices, the SSI cannot mitigate vibrations
through energy dissipation since it is purely elastic. A good
understanding of the phenomena involved is essential for
optimizing the device and identifying its limitations.

This paper is organised as follows. In Section 2, the SSI
concept is explained and its effect on the cable behaviour
is anticipated by using some established properties of non-
linear dynamic systems. Then, the experimental campaign
is described with special emphasis on the difficulties arising
from the very nature of the system. In Sections 4 and 5, a few
representative free and forced vibration tests are presented
and analysed. The observed behaviour of the equipped cable
is tentatively interpreted in Section 6, by means of an “equiv-
alent” SDoF bilinear oscillator. Finally, the SSI optimisation
is addressed in Section 7 where an empirical formula for
the most efficient switching position is proposed and fairly
verified experimentally.

2. The State Switched Inducer (SSI)

2.1. Basic Concept. Structural resonances are due to the
superposition of travelling waves. In the case of linear struc-
tures, this superposition results in a stationary wave. Since
travelling waves are symmetric, each reflected wave, at the
anchor of a cable, for example, superposes perfectly with
the incident one, giving a linear increment of the resonant
amplitude (Figure 1(a)). This is why any resonance needs
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Figure 1: (a) Cable resonance with low damping (blue curve fitting); (b) SSI principle.

a minimum number of excitation cycles to develop, possibly
up to a dangerous level.

Now, if travelling waves are not perfectly symmetric,
incident and reflected waves will not perfectly superpose.
The amplitude increment will be smaller and the resonance
phenomenon is reduced. Asymmetric travelling waves can be
obtained if the structure is in one dynamic state 𝑆 (stiffness𝐾
andmass𝑀) for half a period and in another dynamic state 𝑆󸀠
(stiffness𝐾󸀠 and possiblymass𝑀󸀠) for the successive (nearly)
half of the period. In a cable, this state switching can be
easily achieved by attaching a unilateral spring of stiffness𝐾𝑠
between the cable and the ground or the deck (Figure 1(b)).
This explains the name given to the proposed device: state
switched inducer (SSI).

A linear structure equipped with a SSI becomes a bilinear
oscillator, a system extensively studied in the literature. A
bilinear oscillator admits more basins of energy (peaks) in
the high frequency range than the corresponding linear oscil-
lator. This property naturally yields a positive effect of the
SSI: according to the Parseval theorem, conservative systems
receiving the same input energy have the same integral in the
frequency domain; thus, if peaks are more numerous for the
nonlinear oscillator, their amplitude and thus the resonances
are smaller than those for the corresponding linear oscillator.

Another interesting property of the SSI is the sudden
change of dynamic state at the switch time. Any such non-
linear behaviour (in electricity, acoustics, mechanics, etc.) is
known to generate harmonics. The amplitude of these har-
monics depends on the degree of nonlinearity introduced in
the system, but it is generally very small with respect to the
excited frequency. Thus, the proportion of energy subtracted
to the main resonant mode is usually insignificant. However,
if these harmonics are closed to natural modes of the struc-
ture, a substantial proportion of the energy can be transferred
to them: this phenomenon is called internal resonance. Taut
cables are good candidates to internal resonance since their
natural modal distribution is harmonic (𝑛th frequency =
𝑛 ∗ 1st frequency) at least for the first ten modes. Internal
resonances have been observed in other types of (geo-
metrically) nonlinear system with symmetric section when

the symmetry is broken [14, 15]. In particular, the energy is
then shown to be distributed among several modes even if
only one of them is excited.

2.2. Expected Effects. A cable equipped with a SSI is a con-
tinuous (MDoF) structure combining two nonlinearities
namely, a second-order effect in the cable (smooth nonline-
arity) and a unilateral contact in the SSI (piecewise nonline-
arity).The dynamic behaviour of nonlinear systems is known
to be complex even in the simplest case of the SDoF bilin-
ear oscillator. In fact, depending on the time variation and
amplitude of the loading, different kinds ofmotions, periodic,
quasiperiodic, chaotic, stable, or unstable, may coexist with
bifurcations leading to them. Through approximated meth-
ods, closed form solutions have occasionally been derived but
only for one or two DoF systems submitted to harmonic or
impulsive loading [16, 17]. In the present case, even numerical
models could easily fail to produce reliable solutions since
there is a huge uncertainty on the loading.

This explains why the design and assessment of the SSI
have initially been addressed in a purely experimental way,
taking into account the practical aspects and limitations of
this type of device. Essentially, the stiffness increment due
to the SSI should be acceptable for the cable anchorage. In
particular, this excludes the case of an impact oscillator and
leads to a weakly bilinear system (Δ𝐾 ≪ 𝐾𝑐, with 𝐾𝑐 =
Cable stiffness, and Δ𝐾 = (𝐾𝑠 + 𝐾𝑐)/𝐾𝑐), also extensively
studied in the literature.

Cable resonances are mainly due to parametric excita-
tions through the anchorage motion or to direct excitations
by a combination of wind and rain. In both cases, the loading,
usually assumedharmonic, can last from some seconds to one
minute and is followed by a free decay period.

The effect of the SSI on the cable response can be inferred
from published experimental and/or numerical analyses of
other nonlinear systems submitted to comparable inputs.
Nonlinear responses are remarkably well processed in [18–
20] mainly through wavelet analysis. For the same input,
while energy concentrates on one mode/frequency in linear
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Figure 2: (a) ELSA cable facility with zoomed views of the SSI attachments. (b) Transducers type and positions on the cable no. 1.

systems, the same energy is spread over different frequencies
in bilinear oscillators and most other nonlinear systems.This
distribution may occur contemporaneously (different fre-
quencies at the same time) or in cascade (different frequencies
at successive times). In both cases, resonances are mitigated
since the highest peak in the response spectrum is capped.
The energy transfer to higher modes has been evidenced in
structures with nonlinear attachment [11] or presenting geo-
metrical symmetry and light nonlinearity (e.g., plates, shells,
and cymbals) and when this symmetry is slightly broken
[14, 15]. A very good agreement has been found between com-
puted and measured energy flow, even if the significance of
this transfer is somehowhidden in the log graphs.This energy
transfer is however essential froma vibrationmitigation point
of view since, at equivalent energy, vibration amplitudes are
lower at higher frequency.

Whether and to which extent the SSI triggers the above-
mentioned effects in the cable can be assessed by comparing
the cable responses in different configurations: with SSI, with-
out SSI (free cable) and, possibly, with the SSI spring attached
permanently. In the sequel, these three cable configurations
are, respectively, referred to as “SSI cable,” “free cable,” and
“restraint cable.”

3. The Test Campaign

3.1. Description of the Specimens. In the ELSA facility, four
real cables of 45 meters and mass ∼450 kg each are installed
(Figure 2(a)). The performance of the SSI has been assessed
on two of them.

(i) Cable no. 1, grouted with wax and under a tension
of 250KN, was instrumented with in-plane (vertical
plane containing the cable) displacement transduc-
ers and accelerometers located at midspan, at the
attachment of the SSI and in three other locations
(Figure 2(b)). Since the SSI was expected to modify
the modal content of the cable, the output loca-
tions were chosen on or nearby the antinodes of
the first three modes. An out-of-plane accelerometer
was located on the cable at the same point of the
SSI attachment (7.2m) to measure the variation of
the ratio in-plane/out-of-plane acceleration (and dis-
placement deduced).

(ii) Cable no. 2, grouted with cement and under a tension
of 500KN, was instrumented at 11m from the bottom
anchoragewith one in-plane displacement transducer
and four accelerometers, two in-plane and two out-
of-plane. In fact, the tests performed on cable no. 1
showed that the contribution of the first three modes
could be adequately measured at this particular posi-
tion and that the out-of-plane cable motions were
substantial. An in-plane displacement transducer was
maintained at the attachment of the SSI.

In both cases, the SSI was attached to the cable at 7.2m
from the bottom anchorage and, at the other end, to a fixed
foundation or to a movable steel mass of 1300 kg so that
the attachment position could be changed easily along the
cable. The tension in the SSI was recorded by a load cell so
as to detect the switching times. The input force was applied
at 10m from the bottom anchorage and measured with a
dynamometer. It is worth underlining that such an input
location allows the effective excitation of any mode until the
3rd one at least.

As mentioned earlier, the SSI is a unilateral spring. In
practice, it is made of a linear spring and a unilateral contact
system connected in series. The unilateral contact system is
shown in Figure 1(b).The load cell and the screw are required
to regulate the gap (switching position) which can be set to a
positive or negative value. For positive gaps (clearance), the
spring is unloaded at equilibrium whereas, for negative gaps
(interference), the spring is in tension at equilibrium.

Two different SSI have been tested. On cable no. 1, the SSI
spring was a nitinol (nickel-titanium alloy) wire of diameter
2.5mm and length 4.2m (Figure 2(a), left). Initially, the wire
was intended to work as a shape memory alloy (SMA) and
had therefore been characterized and stabilized (Figures 3(a)
and 3(b)). However, during the cable tests, the wire turned
out to work simply as a super elastic spring (Figure 3(c)).
Nevertheless, it is not excluded that the hysteretic behaviour
of the SMA could be activated in the SSI in case of exceptional
excitation (e.g., tornado or heavy storm) so that the SMA
damping property at high strain (2% to 6%) could then also
contribute to mitigate large amplitude vibrations. In our case,
the SMA wire used was not adapted at the “high” frequencies
of cables oscillations. In order to fulfil the condition of
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Figure 3: (a) SMA characterisation setup; (b) SMA training curve; (c) SMA behaviour during a cable dynamic test.

significant hysteretic dissipation, the wire type and setup
must be optimized as described in [21], but it was not the aim
of this work.

On cable no. 2, a classical steel spring was used in the SSI
(Figure 2(a), right). Initially, the spring was connected to the
unilateral system through a steel bar which had however a
substantial mass likely to perturb the behaviour of the SSI. It
has been subsequently replaced by a much lighter steel cable
of diameter 4mm.

Whether based on a nitinol wire or a steel spring, the SSI
has a negligible mass; thus, unlike TMD and NES, it does
not represent an additional DoF. Each SSI is defined by two
parameters, spring stiffness and unilateral gap. Once installed
on a cable, the attachment position constitutes a third param-
eter.

The stiffness increase induced in the cable by the SSI
may be characterised by the transversal force/displacement
relationship at the attachment point. It can be computed

and/ormeasured on the equipped cable. In this latter case, the
attachment point can be lifted up with a crane (Figure 4(a))
or pulled down with the gap regulation screw. The force
displacement curve is directly given by the load cell and
displacement transducer installed on the SSI. In Figure 4(b),
the difference between the lift-up and pull-down slopes
reveals a substantial relative stiffness increase for cable no. 1
(Δ𝐾/𝐾𝑐 ≈ 60%) which seems inconsistent with the weak
bilinearity hypothesis, but this is a merely static (and local)
value. In fact, static and dynamic stiffness generally differ
for systems with more than one DoF. In dynamics, a more
appropriate measure of the (global) stiffness increase is given
by the increase of the squared fundamental frequency, which
can be computed and/or measured between the free and
the restraint configurations. For cable no. 1, the fundamental
frequency is found to increase by 11% between the free and
restraint configurations, which corresponds to a dynamic
stiffness increase of 23%. For cable no. 2, the increase is
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Figure 4: (a) Measurement of the static stiffness increase in cable no. 1. (b) Measured force/displacement curve.

approximately the same (+10% in frequency and thus +21% in
dynamic stiffness). The weak nonlinearity hypothesis is thus
reasonably verified.

3.2. Description of the Approach. The dynamic testing of the
SSI cable presents specific difficulties which are absent in the
other two configurations (free and restraint).

The first difficulty is to apply the most critical excitation
that is to say the input inducing the largest response of the
nonlinear structure and thus revealing the efficiency limit of
the SSI. Since such a critical input is asymmetric (frequency
alternatively tuned to each dynamic state), it is difficult to use
an electrodynamic actuator also because the cable response
has not the same frequency content as the input. Two types
of excitation have therefore been chosen: a snap-back test
which corresponds to an “autotuned” input and a manual
shaking inducing resonance, a technique commonly used
even for very long cables (up to 350m) as mentioned in [22].
The loading and all cable displacements and accelerations are
recorded by a dynamic data recorder (TEAC) so that critical
excitations and corresponding anharmonic cable responses
can be identified. During manual shaking, the input force is
also processed online by a dynamic signal spectrum analyser
(HP): different parameters (load frequency, maximum load
per cycle, and load integration on cycles) can be checked to
ensure immediately that the manual shaking is unbiased.

The second difficulty is to process and compare nonlin-
ear outputs (SSI cable) and linear ones (free and restraint
cables). The signals are processed mainly by Fourier trans-
form with an automatic modal extraction toolbox described
in [23] implemented under MATLAB. Even if some peaks in

the Fourier transform of a nonlinear response do not nec-
essarily represent actual modes, they nevertheless quantify
the resonances of a fictitious linear system having the same
response. Comparing the Fourier coefficients (frequencies,
damping ratios) and the amplitude of the cable response in
different configurations allows a better understanding of how
and how much the cable vibrations are mitigated by the SSI.
The SSI cable outputs are also processed in the time domain.
From the recorded switching times, any SSI cable signal can
be split up into two intermittent subsignals corresponding to
each dynamic state. The frequency and damping evolution
of each subsignal are then computed by a particular imple-
mentation of the logarithmic decrement method allowing
processing asymmetric signals as described in [24].

The third difficulty is to deal with tricky phenomena
inherent to nonlinear dynamics such as instabilities and
bifurcations. To avoid experimental errors, spurious effects,
andmisinterpretations, the tests have been repeated formany
different configurations (cable tension and grouting, SSI
device, input/output locations, loading intensity, etc.) and, as
mentioned before, the nonlinear outputs have also been pro-
cessedwith differentmethods, both in the time and frequency
domains. Since all results were checked to be consistent,
only a few selected tests are presented to support the drawn
conclusions.

4. Free Vibration Tests

4.1. Effect of the SSI. The same snap-back test (sudden release
of 700N at 10m from the lower anchorage) has been repeated
in the three configurations of cable no. 1. The displacement
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Figure 5: (a) Displacement and (b) associated spectrum at 37.8m on the free, constraint, and SSI cable no. 1.

signals recorded at 37.8mof the lower anchorage (∼30m from
the SSI attachment) and the corresponding displacement
spectra are displayed in Figure 5.

The initial displacement is the same for the free (blue)
and SSI (green) cables because the spring is then inactive
while it is lower for the constraint (red) cable because the
spring is always active. In the free and restraint cables, the
vibrations fade out very slowly but at a similar rate whereas,
in the SSI cable, they fade out much faster especially at the
beginning. In fact, after only 7 to 8 seconds, the vibrations
of the SSI cable are already damped (more than 25 s for free
and restraint cables) and remain the lowest in amplitude.
The response spectra for the free and restraint cables are
more or less proportional. In both cases, the first mode
is largely dominant, but the higher modes are also visible.
However, because of its higher dynamic stiffness (+23%) and
fundamental frequency (+11%), the restraint cable exhibits a
reduced spectrum with a shift to the right. Conversely, the
response spectrum for the SSI cable is markedly different in
amplitude: the first and secondmodes are substantially lower
in amplitude and are approximately at the same level. This
confirms the capping of the fundamental frequency through
energy transfer towards the higher modes, mainly from the
first to the second. In the time domain, this effect looks like a
strong damping enhancement, but a closer look at the signals
(zooming view in Figure 5(a)) confirms that the vibration
reduction is actually due to the strong activation of higher
modes, mainly the second one.

Tests repeated on cable no. 2 (Figure 6) are similar but
show a slightly weaker effect of the SSI which might be due to
the lower relative stiffness of the SSI or to less suitable value of
the switch position. Nevertheless, the principle is confirmed:
SMA hysteretic behaviour is not required at all in opposition
to what is reported in [25].

4.2. Importance of the Output Location. The test of Figure 5
is now represented at midspan (22.5m) in Figure 7. The SSI
effect (apparent damping enhancement) is also visible and,
more generally, is visible along the entire cable, as confirmed
by the other three output locations installed on cable no. 1.
However, the amplitude and frequency content of the cable
motion are known to vary along the cable in relation to the
nodes and antinodes of the activated modes. At 37.8m from
the lower anchorage, the four first modes are well detectable
whereas, at midspan, only odd modes can be detected. This
explains the difference observed between the two sets of
signals of Figures 5 and 7.

4.3. Equivalent Stiffening and Damping of the SSI. Since the
SSI appears to both reduce the vibration amplitude and
increase the damping, its effect can be quantified by comput-
ing and comparing the equivalent dynamic stiffness and
damping ratio of the cable in the different configurations.
The equivalent dynamic stiffness is computed as a mean of
the modal stiffness weighted by the modal participation.
Likewise, the equivalent damping ratio is computed as amean
of the modal damping ratios weighted by the modal partic-
ipation.

In practice, the modal parameters are extracted from
acceleration signals because of their quality at high frequency.
Free vibration tests are particularly suitable for this task
because the results are not perturbed by input irregularities.

In Figure 8, the results are shown for the snap-back test
carried out on cable no. 2 in the restrained and SSI con-
figurations. The equivalent stiffness and damping have been
derived from the in-plane acceleration signal recorded at
11.1m from the lower anchorage, that is, between nodes of
modes 4 and 5.Themodal parameters have been extracted for
18 peaks in a frequency range of 0–45Hz with a software of
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automatic modal extraction implemented for the fast impact
hammer testing method (FIHT) described in [23] under
MATLAB. The positive effect of the SSI is substantial even
if it refers to the less favorable case since the difference
between the restrained and SSI responses of cable no. 2 is
the least one and the switch position is not optimized for this
case.

5. Forced Vibration Tests

5.1. Effect of the SSI. Cable no. 1 has been submitted to forced
vibration tests in the free, restrained, and SSI configurations.
A rope was attached to the cable at 10m from the anchorage
and was manually pulled down, initially at the estimated
frequency of the fundamental mode or of a higher mode.
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Then, the shaking was adapted so as to fit the response
frequency; that is, the pulling force was applied only during
the downward motion of the rope. The pulling force, mea-
sured with a dynamometer, could be 100N or 200N and was
applied for either a short (5 s) or a long period (40 s). In the
latter case, the steady state response could be reached.

The effect of the SSI is again assessed by comparing
the cable responses under forced vibrations in the free,
restrained, and SSI configurations. Of particular interest are
the amplitude and frequency of the steady state response. In
Figure 9, the responses of the free and SSI cable no. 1 are com-
pared for a 40 s loading period at 100N on the first mode.The
amplitude of the steady state response is drastically reduced
by the SSI but only in displacement whereas the response in
acceleration is increased by the SSI, especially for negative
values, that is, when the SSI is activated. Again, this is due to a
transfer of energy from the fundamental mode to the higher
modes as evidenced on the acceleration spectrum in Figure 9;
the first mode is tremendously reduced while the 2nd and 3rd
modes are enhanced. Similar results obtained with an input
on the 2ndmode prove the robustness of the device: energy is
always transferred from the excitedmode to the highermodes
with however different sharing among the modes.

5.2. Equivalent Damping Estimate. After the shaking period,
the response of the cable was still recorded. This free decay
test differs from the snap-back test by the initial conditions:
the snap-back test starts from a static configuration under a
given load while the free decay test starts from the dynamic
(modal) configuration. However, it can be processed as in
Section 4.3 to derive another equivalent stiffness and damp-
ing.

The SSI operates as long as the displacement amplitude
is higher than the absolute value of the gap. For smaller dis-
placement amplitudes, the SSI cable oscillates as the free cable

(resp., restrained cable) if the gap is positive (resp., negative).
In Figure 10, the first graph shows the output of a short period
of shaking on cable no. 1 in the free, restrained, and SSI
configurations. The input force is 100N, the mode excited is
the first one, and the output position is at midspan. Since the
SSI gap was set to zero, the device works during all the decay
period but is not very efficient.The second graph refers to the
free decay following a long period of shaking and an output
position at 7.2m. The SSI gap was set to 1.6mm. For clarity,
only envelopes of displacements are reported in the amplitude
range 10–35mm. The SSI is particularly efficient in damping
the vibrations as long as the amplitude is higher than 15mm.
Below this amplitude value, the damping is less important and
when the amplitude falls below the gap position, the damping
is the same as that for the restrained cable for this switch
position chosen.

6. Tentative Explanation of the SSI Effect

The SSI concept relies on the mismatch (detuning) between
the excitation and the response. In fact, a sinusoidal input
force at a given frequency induces an unharmonic response
of a cable equipped with a SSI device, owing to the sudden
stiffness change at the switching times. Hereafter, this detun-
ing effect is tentatively explained and quantified on the basis
of a SDoF bilinear model of the equipped cable.

A cable equipped with a SSI device is a MDoF bilinear
system. According to [16, 26], the most critical sinusoidal
inputs for such systems are obtained for the so-called bilinear
frequencies. The 𝑖th bilinear frequency 𝑓𝑏

𝑖
is approximately

the harmonic average of the 𝑖th free and restrained frequen-
cies, 𝑓−

𝑖
and 𝑓+

𝑖
; that is,

𝑓
𝑏

𝑖
=
2𝑓
−

𝑖
𝑓
+

𝑖

𝑓
−
𝑖
+ 𝑓
+
𝑖

. (1)



Shock and Vibration 9

20 40 60 80 100

0

20

40

60

Time (s)

D
isp

la
ce

m
en

t (
m

m
)

−20

−40

−60

Long input period Fexi = 100N

 Acc. V1 [A]
Free cable

 Acc. V1 [A]
SSI cable

(a)

0 20 40 60 80 100

0

5

10

15

Ac
ce

le
ra

tio
n 

(m
/s

/s
)

Time (s)

−5

−10

−15

−20

−25

−30

s07: Fexi = 100N

 Acc. V1 [A]
Free cable

 Acc. V1 [A]
SSI cable

(b)

2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

3.5

4

Frequency (Hz)

Ac
ce

le
ra

tio
n 

(m
/s

/s
)

s07: Fexi = 100N×104

 Acc. V1 [A]
Free cable

 Acc. V1 [A]
SSI cable

(c)

Figure 9: Displacement (a), acceleration (b), and acceleration spectrum (c) for the free and SSI cable no. 1 (𝐹 = 100N on 1st mode).

This formulation is available for a zero clearance; the exact
formulation for a nonzero clearance is more complex and can
be found in [26]. However, depending on the switch position,
𝑓
𝑏

𝑖
may vary in the [𝑓−

𝑖
, 𝑓
+

𝑖
] range. Similarly, the 𝑖th mode

shape is a combination of the 𝑖th free and restrained mode
shapes and varies with the switch position. Basically, bilinear
frequencies/modes are to bilinear systems what eigenfre-
quencies are to linear systems. However, bilinear frequencies/
modes depend not only on the system characteristics (mas-
ses, stiffness, and switching position) but also on the input

amplitude. Moreover, for increasing amplitude, completely
differentmode shapesmay appear by bifurcation for the same
value of the bilinear frequency. These mode shapes combine
free and restrained mode shapes of different order (e.g., 𝑓−

𝑖

and 𝑓+
𝑖+1

). This phenomenon, called internal resonance, is
typical of nonlinear systems.

During any type of test with varying amplitude (e.g., free
decay after a snap-back or forced vibrations), the response of
a MDoF bilinear system is therefore extremely complex since
it is a varying combination of varying frequencies/modes.
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In particular, the influence of the switching position evolves
constantly, which makes any optimisation attempt difficult.
The task is much easier in the case of a test (or test period)
at nearly constant amplitude as the one shown in Figure 11
where, despite a slight beating, the cable displacement at the
SSI attachment can be considered periodic of period close to
𝑓
𝑏

1
(∼2Hz in our case). During a period, the displacement

appears distinctly composed of two parts separated by the
switching position: the bottom part (SSI spring inactivated)
recalls a sinusoidal curve of frequency 𝑓−

1
(=1.83Hz in our

case) whereas the upper displacement (SSI spring activated)
is rather close to a sinusoidal curve of frequency𝑓+

2
(=4.07Hz

in our case).Therefore, the steady state response is actually an
internal resonance of the mode no. 1 (free) and of the mode
no. 2 (restrained). Its shape is not the composition of two half
sines but the superposition of several harmonics giving a non
sinusoidal and asymetric wave.

To quantify the detuning effect due to this internal res-
onance, a bilinear SDoF system is considered which is sup-
posed to reproduce the observed steady state response of

the SSI cable under forced vibrations. To this end, the SDoF
system includes the main “ingredients” of the observed
response that is to say the free mode 1 and restrained mode 2.
The characteristics (mass, main stiffness, spring stiffness, and
switch position) are thus chosen so that

(i) the SDoF free frequency coincides with the first free
cable frequency 𝑓−

1
;

(ii) the SDoF restrained frequency coincides with the
second restrained cable frequency 𝑓+

2
;

(iii) a small damping ratio (measured on the first free
mode) is added through a linear dashpot;

(iv) the switching position measured from the equilib-
rium position can be varied.

The steady state response of this SDoF under a sinusoidal
input force of 100N has been computed for switching posi-
tions ranging from −4 cm to +4 cm and for input frequencies
ranging from 1.5Hz to 4.5Hz, thus including the free and
restrained mode frequencies. The numerical detuning effect
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is then computed by dividing the amplitude of this response
by the amplitude of the restrained SDoF response under the
same input. A 3D plot of the results obtained is shown in
Figure 12.

The computed detuning effect is substantial for the
chosen free and restrained frequencies. Other computations
performed for closer free and restrained frequencies (e.g., first
free and first restrained) lead to much lower detuning effects.
It can be noticed that very small increment in frequency and
chiefly in time (>20000 iterations/points of the curve) must
be used to obtain accurate results.

The largest detuning effect is obtained for two particular
switching positions of opposite sign: the negative one is
slightly more effective than the positive one and, for the most
critical frequency, gives a reduction of 18%with respect to the
restrained system and a much higher reduction with respect
to the free system.However, both computed values underesti-
mate the experimentalmeasurements on the cable. A possible
explanation could be that the SDoF system does combine the
appropriate modes in a nonlinear way but inappropriately:
the mode shape associated with the bilinear frequency does
not result from an internal resonance phenomenon. This
is why the resonant frequency varies continuously with the
switching position whereas, in the experiment, it remains
almost constant for a wide range of switching positions.

7. Optimisation of the Switch Position

Independent of the input frequency, the proposed SSI device
has always been found to mitigate the cable vibrations in
a more or less effective way though. In particular, the SSI
efficiency appears to depend on the form and amplitude of
the input signal. The problem thus remains to design the
SSI device that is to say to determine its most appropriate
characteristics to mitigate potentially dangerous vibrations
induced in a given cable by a set of possible excitations. In
the following, an empirical design formula is proposed which
gives the best switching position, once all other parameters

(cable characteristics, SSI stiffness, and maximum vibration
amplitude) are fixed.

From the experimental results obtained so far, the follow-
ing conclusions can be drawn.

(i) A stiffening of the cable is noticeable mainly dur-
ing the excitation phase and occurs through energy
transfer from the excited mode to higher modes. The
cable motions are reduced in displacement but not in
acceleration.

(ii) An increase of the cable damping ratio is noticeable
during the free decay phase and occurs through the
similar energy transfer phenomenon.

(iii) In weakly bilinear MDoF systems, the 𝑖th bilinear
frequency resulting from the combination of the 𝑖th
free and restrainedmodes is accompanied by sub- and
superharmonics which may activate higher bilinear
frequencies and trigger internal resonances between
free and restrained modes of different orders.

(iv) Under sinusoidal input, the detuning effect is substan-
tial if internal resonances are activated.

The aforementioned effects increase with the increasing
nonlinearity and also with the increasing velocity at the
switch time. For a given spring stiffness 𝐾𝑠 and a given SSI
attachment position 𝑑 (far from the nodes of the first cable
modes), the increase Δ𝐾𝑖 of the dynamic stiffness 𝐾𝑖 for the
𝑖th mode can be derived from a Galerkin approximation [27]
as follows:

Δ𝐾𝑖 = 𝐾𝑠 ⋅ sin
2
(
𝑖𝜋𝑥𝑑

𝐿
) , (2)

where 𝐿 is the cable length and 𝑥𝑑 is the distance of the
device attachment from the lower anchorage. However, this
stiffness increase should remain small to avoid excessive
energy transfer to the cable anchorages.The design of the SSI
device thus reduces to the optimisation of the switch position
SP for the maximum amplitude 𝐴 𝑖 allowable on the 𝑖th cable
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Figure 13: Variation of the reduction factor with respect to the switch position (4 different tensions of the spring).

mode (provided by the bridge designer) and a given stiffness
increase Δ𝐾𝑖. For a given spring (Δ𝐾𝑖) and a given amplitude
total 𝐴 𝑖, the amplitude is distributed between the two states
(𝑠1: soft, 𝑠2: stiff) of the cable and it reads as follows:

𝐴 𝑖 = 𝐴 𝑠1 + 𝐴 𝑠2. (3)

Two effects contribute to obtain a smaller displacement:

(1) themaximum transfer of energy to higher harmonics:
to transfer the maximum of energy on the harmonics
of the mode governing the motion, the velocity of
the cable has to be the maximum at the switch
event (impulse dF/.dt maximum). The velocity at the
switching time is the highest when the switch position
is at equilibrium of the cable (SP = 0). It means
that the displacement in the stiff state (𝑠2) is lightly
(because Δ𝐾𝑖 is small) smaller than in the soft state
(𝑠1);

(2) the critical sinusoidal input produces an increment of
displacement by resonance effect in each of the states
of the cables. To obtain the smaller increment of the
displacement in both states, the amplitudes 𝐴 𝑠1 and
𝐴 𝑠2 of the signal in each state must be equal. If the
stiffness is lightly different in each state, the switch

position must be an interference [26] which means
that the spring will have a small tension (SP = −𝑥) at
the equilibrium position. To calculate it, we start from
the switch position in zero; if we applied the same
force on the cable in each direction (or each state), we
have

𝐾𝑖𝐴 𝑠1 = (𝐾𝑖 + Δ𝐾𝑖) ⋅ 𝐴 𝑠2. (4)

It appears clearly that the displacement amplitude 𝐴 𝑠1 is
greater than 𝐴 𝑠2 of the quantity 2.SP = (Δ𝐾𝑖/𝐾𝑖) ⋅ 𝐴 𝑠2. To
obtain the same amplitude in each state, it is sufficient to
stretch the spring of a value equal to the switch position:

SP =
Δ𝐾𝑖

2𝐾𝑖

⋅ 𝐴 𝑠2. (5)

Then, using (3) and (4) to substitute 𝐴 𝑠2, we obtain the
switch position which gives the equal displacement in each
state:

SP =
Δ𝐾𝑖

2𝐾𝑖 + Δ𝐾𝑖

⋅ 𝐴 𝑖. (6)

It is clear from (6) that the switch position SP is amplitude
dependent for this second effect. Now, to reach the best
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efficiency of the device, we should respect the optima of the
two effects. Equation (6) shows that SP is a small proportion
of the amplitude maximum 𝐴 𝑖.

In the example of Figure 11, the amplitude 𝐴 𝑖 is about
30mm for an increment of stiffness Δ𝐾𝑖 equal to 23%. The
switch position is therefore equal to 10% of the amplitude
which is about 3mm. It is a small value and in that case
it could be adjusted with the value of SP = 0 of the first effect
(energy transfer) to benefit of both optima, at the half sum (3
and 0) =1.5mm.

This value gives the best SSI effect only on the given ampli-
tude of a given mode. For other modes and/or other ampli-
tudes of the same mode, the SSI effect is lower but remains
positive.

The validity of these two assumptions has been checked
by repeating the same forced vibration test with four different
values of the switching position. In Figure 13, the results
confirm that the greater displacement reductions with input
on mode 1 are obtained for the switch position SP given by
(6) and SP = 0.

The optimum is for SP = 1.6mm. The same tests were
conducted with a different level of excitation, not included in
this paper, showing again that when the two displacements in
each state are equal the reduction is optimal.

Even these results are in agreement with the previous
assumptions; much more cases should be studied to better
understand the behaviour of the cable equipped with the SSI
device.

8. Conclusion

The state switched inducer (SSI) is a unilateral spring which
slightly stiffens in an intermittent way the structure it is
connected to.The equipped structure thus becomes a bilinear
oscillator. An experimental campaign conducted on two full-
scale cables has shown that SSI devices reduce significantly
the steady state vibration amplitude under forced vibrations
and shorten drastically the free decay period. To the author’s
best knowledge, it is the first time that cable resonances could
be mitigated by a passive device without involving any dis-
sipation process but relying exclusively on some established
properties of nonlinear dynamic systems. Thanks to the
specific harmonic modal distribution of cables, SSI devices
trigger a substantial transfer of energy from the excitedmode
to the higher modes through the so-called internal resonan-
ces.

The SSI efficiency depends on the expected vibration
amplitude. An empirical formula for optimising the SSI
switching position for a given vibration amplitude has been
proposed and fairly verified experimentally. However, further
work based on numerical models with two or more DoFs is
needed to characterizemore accurately the SSI behaviour and
to improve its efficiency.

This first large-scale experimental campaign shows that
the SSI outperforms classical passive devices and opens the
way to a new kind of vibration mitigation systems. Last but
not least, SSI devices are cheap, very simple to install, and easy
to maintain. However, before any commercial used, further
testing is recommended so as to exclude undesirable effects

such as unexpected response to irregular excitation (wind/
rain) or large out-of-plane vibrations or whirling amplitudes.
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[15] E. C. Carvalho, P. B. Gonçalves, J. G. N. Del Prado Zenon, and
G. Rega, “The influence of symmetry breaking on the non-
planar vibrations of slender beams,” in Proceedings of the 15th
International Symposium on Dynamic Problems of Mechanics
(DINAME '13), M. A. Savi, Ed., ABCM, Rio de Janeiro, Brazil,
February 2013.

[16] A. V.Dyskin, E. Pasternak, and E. Pelinovsky, “Periodicmotions
and resonances of impact oscillators,” Journal of Sound and
Vibration, vol. 331, no. 12, pp. 2856–2873, 2012.

[17] Z. K. Peng, Z. Q. Lang, S. A. Billings, and Y. Lu, “Analysis
of bilinear oscillators under harmonic loading using nonlinear
output frequency response functions,” International Journal of
Mechanical Sciences, vol. 49, no. 11, pp. 1213–1225, 2007.

[18] S. Tsakirtzis, G. Kerschen, P. N. Panagopoulos, and A. F.
Vakakis, “Multi-frequency nonlinear energy transfer from lin-
ear oscillators to mdof essentially nonlinear attachments,” Jour-
nal of Sound and Vibration, vol. 285, no. 1-2, pp. 483–490, 2005.

[19] T. M. Nguyen, Non-linear dynamics of coupled mechanical
systems: model reduction and identification [Ph.D. thesis], Ecole
Nationale des Ponts et Chaussees, 2007, (French).

[20] F. Nucera, D. M. McFarland, L. A. Bergman, and A. F. Vakakis,
“Application of broadband nonlinear targeted energy transfers
for seismic mitigation of a shear frame: computational results,”
Journal of Sound and Vibration, vol. 329, no. 15, pp. 2973–2994,
2010.

[21] D. Tirelli and S.Mascelloni, “Characterisation and optimization
of shape memory alloys for seismic applications,” Journal de
Physique IV France, vol. 10, 2000.

[22] Federal Highway Administration (FHWA), “Chapter 3. Anal-
ysis, evaluation, and testing, wind-induced vibration of stay
cables,” Tech. Rep. FHWA-HRT-05-083, United States Depart-
ment of Transportation, 2007.

[23] D. Tirelli, “Modal analysis of small & medium structures by
fast impact hammer testing method,” Tech. Rep. EUR, 24964
EN, Joint Research Centre, Publications Office of the European
Union, Luxembourg, 2010.

[24] D. Tirelli, “A fast automated impact hammer test method for
modal parameter extraction (FIHT) implementation on a com-
posite bridge beam,” in Proceedings of the International Sym-
posium on Nondestructive Testing of Materials and Structures
(NDTMS '11), Istanbul, Turkey, May 2011.

[25] V. Torra, C. Auguet, A. Isalgue, G. Carreras, P. Terriault, and F.
C. Lovey, “Built in dampers for stayed cables in bridges via SMA.

The SMARTeR-ESF project: a mesoscopic and macroscopic
experimental analysis with numerical simulations,” Engineering
Structures, vol. 49, pp. 43–57, 2013.

[26] E. A. Butcher, “Clearance effects on bilinear normal mode
frequencies,” Journal of Sound and Vibration, vol. 224, no. 2, pp.
305–328, 1999.

[27] H. Li, M. Liu, and J. Ou, “Vibration mitigation of a stay cable
with one shape memory alloy damper,” Structural Control and
Health Monitoring, vol. 11, no. 1, pp. 21–36, 2004.



Research Article
Reduction of Structural Vibrations by Passive and
Semiactively Controlled Friction Dampers

L. Gaul and J. Becker

Institute of Applied and Experimental Mechanics, University of Stuttgart, Germany

Correspondence should be addressed to L. Gaul; gaul@iam.uni-stuttgart.de

Received 26 July 2013; Accepted 24 February 2014; Published 17 July 2014

Academic Editor: Nuno Maia

Copyright © 2014 L. Gaul and J. Becker.This is an open access article distributed under theCreative CommonsAttribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reduction of structural vibrations is of major interest in mechanical engineering for lowering sound emission of vibrating
structures, improving accuracy of machines, and increasing structure durability. Besides optimization of the mechanical design
or various types of passive damping treatments, active structural vibration control concepts are efficient means to reduce unwanted
vibrations. In this contribution, two different semiactive control concepts for vibration reduction are proposed that adapt to
the normal force of attached friction dampers. Thereby, semiactive control concepts generally possess the advantage over active
control in that the closed loop is intrinsically stable and that less energy is required for the actuation than in active control. In the
chosen experimental implementation, a piezoelectric stack actuator is used to apply adjustable normal forces between a structure
and an attached friction damper. Simulation and experimental results of a benchmark structure with passive and semiactively
controlled friction dampers are compared for stationary narrowband excitation. For simulations of the control performance,
transient simulations must be employed to predict the achieved vibration damping. It is well known that transient simulation
of systems with friction and normal contact requires excessive computational power due to the nonlinear constitutive laws and the
high contact stiffnesses involved. However, commercial finite-element codes do not allow simulating feedback control in a general
way. As a remedy, a special simulation framework is developedwhich allows efficientlymodeling interfaces with friction and normal
contact by appropriate constitutive lawswhich are implemented by contact elements in a finite-elementmodel. Furthermore, special
model reduction techniques using a substructuring approach are employed for faster simulation.

1. Introduction

Semiactive control strategies for vibration reduction
offer interesting alternatives to passive means of damping
enhancement or fully active vibration control (AVC). Hereby,
the term semiactive means that passive system properties,
such as friction, material damping, or fluid viscosity, are
actively controlled. This intrinsically eliminates the problem
of system destabilization due to spillover effects encountered
in AVC applied to flexible structures [1, 2]. Furthermore,
semiactive control is more energy-efficient than fully active
ones in general which is an important aspect from an
application point of view. In exchange of these advantages,
the achievable performance is limited by the effectiveness
of the underlying passive damping mechanism. Though,
they outperform passive vibration reduction means due to
their ability to adapt to the instantaneous vibration state

of the structure, this property links semiactive control
concepts to the research area of smart/adaptive structures
and adaptronics. Advantages over fully active control are
that semiactive control is inherently fail-safe, guarantees
stability, and introduces significant passive damping into
the mechanical system, for example, by the attached
friction damper in this contribution. Semiactive control
concepts are probably most often applied to magneto- or
electrorheological dampers, friction damping devices, or
actively tuned absorbers with variable-stiffness dampers; see
[3–11] for some examples. In this contribution, a semiactive
control concept for a friction damper which is able to reduce
structural vibrations of multiple modes is presented. The
specific idea of using friction in joints for vibration damping
by normal force control is reported first in [12], which
subsequently inspired several researchers; see, for example,
[13]. Two control algorithms for the semiactive vibration
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control of the normal force between a main structure
and attached damper exploiting dry friction damping are
investigated.The focus of this contribution is to damp several
structural modes of beam.

2. System Representation

2.1. Beam Structure. A beam-like friction damper element
is attached to a beam-like metal benchmark structure by a
normal screw and an adaptive screw.The principle is depicted
schematically in Figure 1; a picture of the experimental real-
ization is shown in Figure 2. One screw is strongly tightened
with a normal force of 𝐹𝑁,2 = 6000N whereas the normal
force 𝐹𝑁,1 of the adaptive screw can be controlled by means
of a piezoelectric ring stack actuator. For that purpose, the
control measures the acceleration close to the tip.

2.2. Finite-Element Modeling. The structure is discretized by
the finite-element (FE) method using ANSYS (Figure 3). The
beam and the friction damper are modeled as independent
substructures with solid elements having quadratic shape
functions. The mesh size is chosen in accordance with
Shannon’s theorem. At the interface identical meshes are
used to enable the application of a node-to-node contact
formulation. After assembly the established system matrices
in terms of mass and stiffness are transferred to MATLAB
using the StructuralDynamics Toolbox.This procedure offers
flexibility for applying different model reduction as well as
applying control techniques. Reducedmodels with aminimal
truncation error were found in a previous investigation and
for more details it is referred to [14, 15] at this point.

In a generic way, the discretized structural dynamics of
the two substructures, namely, the main structure and the
attached friction damper beam, are given by

[
𝑀
(1)

0

0 𝑀
(2)] ̈𝑥 + [

𝐾
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0

0 𝐾
(2)]𝑥 +

[

[

𝐵
(1)

𝑇

𝐵
(2)

𝑇

]

]

𝐹
𝑐

𝑇
+ [

[

𝐵
(1)

𝑁

𝐵
(2)

𝑁
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]

𝐹
𝑐

𝑁

= 𝐵[
𝐹𝑁,1

𝐹𝑁,2
] + 𝐹exc,

(1)

where the nodal normal contact forces 𝐹𝑐
𝑁

and tangential
friction forces𝐹𝑐

𝑇
act as internal forces on the contact interface

between main structure and damper beam. On the right-
hand side, the external forces appear, namely, the two pairs of
clamping forces 𝐹𝑁,1, 𝐹𝑁,2 and dynamic excitation loads 𝐹exc
(later, 𝐹𝑁,1 is controlled).

Constitutive equations are implemented for the normal
contact and the tangential contact in the interface by node-
to-node contact elements. The former is a bilinear stiffness
relationship (Figure 4) that allows separation for a gap 𝑔 > 𝑔0
but penalizes penetration in two steps for 𝑔 < 𝑔0 and 𝑔 < 𝑔1.
For the friction an elastoplastic model is used, which can be
seen as two-dimensional version of a Jenkins element model
depicted in Figure 4 for the one-dimensional case, that is, a
series combination of a spring and a Coulomb element.

The nonlinear system of (1) is solved with the Newmark
scheme and Newton equilibrium iterations at each fixed time
step. Beforehand, substructure model reduction techniques
are employed to reduce the dimensions of the system. For
that purpose, an in-house simulation tool [14] is developed
to facilitate general feedback control simulation, which is not
supported by commercial FE codes. The model parameters
including the contact parameters are updated by comparison
of experimentally and numerically obtained FRFs (frequency
response function) with impulse hammer excitation that
cover a large range of constant clamping forces. An exemplary
FRF is shown in Figure 5 where the nonlinear effects become
visible by some unsymmetric peak forms (e.g., at 230Hz) and
some higher harmonics peaks. From the FRF, the damping
ratios are identified for the bendingmodes; see Figure 5.They
show good agreement between simulation and experiment
and significant damping is introduced by the friction damper
if they are compared to the modal damping ratios of less than
0.15% found without attached damper.

3. Semiactive Vibration Control

Two controllers each consisting of an appropriate nonlinear
control law plus an observer to estimate nonmeasurable
variables required by the control are introduced in the
following. The first control is denoted by hysteresis-optimal
control and ismotivated by experimental investigations.They
show that relatively simple dynamical friction models are
often capable of modeling the most dominant friction effects
in structures with local joints [16]. Among others, the Jenkins
element, as depicted in Figure 4, has proven its usability for
that purpose and serves as base for the control derivation.

3.1. Hysteresis-Optimal Control. For that, it is assumed that
the dominant damping effects are located in the contact area
close to the adaptive screw and can be modeled by a discrete
friction model. Then, the dissipated work𝑊𝑑 due to friction
during one vibration cycle is maximized to find the control.
For the chosen model, the dissipated energy

𝑊𝑑 = 4(𝑢rel,0 −
𝐹𝐶

𝑘𝑇

)𝐹𝐶 with 𝐹𝐶 = 𝜇𝐹𝑁 (2)

is maximized to yield the optimal normal force 𝐹𝑁 as a
function to the tangential contact stiffness 𝑘𝑇, the friction
coefficient 𝜇, and the relative sliding oscillation amplitude
𝑢rel,0:

𝐹𝑁 = 𝑓 (𝑢rel,0) =
𝑘𝑇𝑢rel,0

2𝜇
= 𝑘
∗

𝑇
𝑢rel,0. (3)

Note that similar algebraic expressions could be derived also
based on hysteresis loops of more complex friction models
involving more parameters. Equation (3) is interpreted as
control law to adjust the normal force 𝐹𝑁 = 𝐹𝑁,1 according to
Figure 1 to the structural vibration tangential amplitude. The
required actual vibration displacement amplitude 𝑢rel,0 can be
found under the assumption of monofrequent displacement
(with zero mean) by 𝑢rel,0 ≈ (𝜋/2𝑇) ∫

𝑡

𝑡−𝑇
|𝑢rel|𝑑𝜏 from
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Figure 1: Sketch of the benchmark structure (steel, 775mm length, 40mm width, and 3mm thickness) with adaptive friction damper beam
(steel, 160mm length, 40mm width, and 3mm thickness).

Figure 2: Photograph of the experimental setup with structure,
damper beam, piezoelectric stack, force cell, accelerometers, and
attached shaker stinger (cf. Figure 1).

FN,2
FN,1

Figure 3: Finite-element model (≈30000 DOFs and 632 nodes in
contact) in typical bending deformation with the two screws that
impose the external clamping force pairs 𝐹𝑁,1 and 𝐹𝑁,2.

the estimated signal 𝑢rel. The evaluation of the integral would
need large memory storage for the required integration time
much larger than the largest vibration period of interest;
hence it is efficiently approximated by a first-order lag
element (𝑃𝑇1), where the time constant𝑇1 prescribes how fast
the signal 𝑢rel,0 follows a change in the vibration amplitude:

𝑇1 ̇𝑢rel,0 + 𝑢rel,0 =
𝜋

2

󵄨󵄨󵄨󵄨𝑢rel
󵄨󵄨󵄨󵄨 . (4)

3.2. Model-Based Design of Nonlinear Observer. In general,
the required tangential displacement𝑢rel at the adaptive screw
cannot be measured which makes the design of a nonlinear
observer necessary which estimates it from available mea-
surements such as displacements, strains, or accelerations
and a simplified approximate simulation model without
having any information about the excitation forces.

This model is derived by rigid connection of the damper
beam at one end (𝐹𝑁,2) and neglect of the normal contact
between damper and base structure; instead appropriate
spring elements are introduced in normal direction in some
distance around the adaptive screw.The relativemotion at the

adaptive screw is used for the output definition of 𝑢̂rel. The
nonlinear observer is of the form

̇𝑧̂ = 𝐴𝑧̂ + 𝐵𝑇𝑓friction (𝐹𝑇,
̇𝑢̂rel, 𝐹𝑁) + 𝐵exc𝐹exc

+ 𝑙 (𝑦meas − 𝑦meas) ,

with 𝑦meas = 𝐶𝑧̂, 𝑢̂rel = 𝐶rel𝑧̂.

(5)

Hereby, the measurement output 𝑦meas denotes the velocity
measurement obtained by integration of the acceleration
in the experiment. The estimated output 𝑢̂rel replaces the
required variable 𝑢rel by the nonlinear control law (3). A
simple dynamic friction model 𝑓friction(⋅) is used to model
the friction 𝐹𝑇 at the adaptive screw, namely, a regularized
Coulomb friction model:

𝐹𝑇 = 𝑓friction (
̇𝑢̂rel, 𝐹𝑁) = 𝜇𝐹𝑁

2

𝜋
arctan (𝛼 ̇𝑢̂rel) , (6)

which depends on the relative velocity ̇𝑢̂rel with the regular-
ization parameter 𝛼 determined by simulation studies. The-
oretically, the use of more complex dynamic friction models
would be of interest; the hard real-time limitations imposed
by the fixed-step time-integration in the experiment and the
considered high frequencies forbid their application for the
investigated problem. The obtained estimation accuracy has
been verified in simulations that are also used to optimize the
observer. The linear system parts in (5) are obtained from
a simplified, linear FE model after modal truncation plus
a static correction step. With the required output variables,
mass and stiffness matrices 𝑀, 𝐾 and load vector 𝐹exc, this
simplified model reads with nonlinear inner force vector 𝐹𝐼
consisting of normal contact and friction forces

𝑀 ̈𝑥 + 𝐾𝑥 + 𝐹𝐼 = 𝛽exc𝐹exc, 𝑦meas = 𝛾meas𝑥,

𝑢rel = 𝛾rel𝑥.
(7)

Solving the associated eigenvalue problem (𝐾 − 𝜔
2
𝑀)𝜙 = 0

yields the eigenfrequencies 𝜔𝑘 and eigenvectors 𝜙𝑘 (𝑘 ∈ N+)

which allows a modal truncation to the first 𝑁 important
bending modes by the transformation 𝑥 = 𝑇𝑥

∗ with 𝑇 =

[𝜙1, 𝜙2, . . . , 𝜙𝑁]. For a real-time application, an observer of
low order is aspired. Additional information to identify
important bending modes which are observable can be
obtained by modal Gramians; see [15, 17]. This transforms
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the system matrices, 𝐼 = 𝑇
𝑇
𝑀𝑇 and Ω = 𝑇

𝑇
𝐾𝑇 = diag{𝜔2

1
,

𝜔
2

2
, . . . , 𝜔

2

𝑁
}, as well as the othermatrices in (5).With the state

vector 𝑧𝑇 = [ ̇𝑥
∗𝑇
, 𝑥
∗𝑇
] and some damping matrix Δ, these

linear system parts read

𝐴 = [
−Δ −Ω

𝐼 0
] , 𝐵𝑇 = [

−Θ
𝑇
𝛾
𝑇

rel
0

] ,

𝐵exc = [
Θ
𝑇
𝛽exc
0

] , 𝐶rel = [0, 𝛾relΘ] ,

𝐶meas = [0, 𝛾measΘ] .

(8)

After linearization around𝑢rel = 0,𝐹𝑁 = 0, the observer gains
𝑙 in (5) are determined by a Kalman design procedure from
the solution of the associated Riccati equation for appropriate
state andmeasurement noise variancematrices.The obtained
control loop is shown in Figure 6.

3.3. Lyapunov-Type Control. For the second proposed control
law, Lyapunov’s direct method is applied by choosing the
mechanical system energy as Lyapunov function 𝑉(𝑥) and
under the assumption of a discrete friction model with
controlled normal force [13]. It is imposed that its time
derivative 𝑉(𝑥) must be seminegative, which is directly
related to the differential form of the passivity condition.

Its absolute value is furthermore maximized for optimality
in the Lyapunov sense. Recalling the dynamics of a 1-DOF
system

𝑚 ̈𝑢rel + 𝑘𝑢rel + 𝐹𝑇 = 0, (9)

the passivity condition in terms of the friction force 𝐹𝑇 and
the relative velocity ̇𝑢rel

𝐹𝑇 ̇𝑢rel ≥ 0 ∀𝑡 (10)

ensures a power flow outwards of the controlled structure.
To enforce (10), a control law based on a Jenkins friction
model must depend on the actual friction force 𝐹𝑇. However,
in practice, for structures as the investigated one, it is almost
impossible to measure or estimate this force because of
the distributed friction interface and the high stiffnesses in
combination with the hard real-time constraints. Hence, the
Coulomb friction model according to 𝐹𝑇 = 𝜇𝐹𝑁 sign( ̇𝑢rel)
is assumed as a good approximation instead. For this, it can
be shown that a velocity-dependent bang-bang controller,
which switches continuously between the two possible states,
is optimal in the Lyapunov sense [13]; 𝐹𝑁 = 0 for | ̇𝑢rel| =
0 and 𝐹𝑁 = 𝐹𝑁,max for | ̇𝑢rel| ≥ 0. This approach is
appropriate in view of the high values for the tangential
stiffness 𝑘𝑇 found in the model updating before. Additional
regularization with a boundary layer 𝜀 to avoid chattering
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Figure 6: Closed control loop with hysteresis-optimal control law.

20 22 24 26 28 30
0

100

200

300

Frequency (Hz)

A
m

pl
itu

de
 (m

/s
2

N
)

(a) Mode 2, 𝐹exc,0 = 0.4N

Frequency (Hz)
60 65 70 75

0

20

40

60

80

100

A
m

pl
itu

de
 (m

/s
2

N
)

(b) Mode 3, 𝐹exc,0 = 3N

Frequency (Hz)
130 135 140 145 150 155 160

0

20

40

60

80

100

A
m

pl
itu

de
 (m

/s
2

N
)

(c) Mode 4, 𝐹exc,0 = 3N

Frequency (Hz)
20 22 24 26 28 30

0
100
200
300
400
500
600

A
m

pl
itu

de
 (m

/s
2

N
)

(d) Mode 2, 𝐹exc,0 = 0.4N

Frequency (Hz)
60 65 70 75

0
20
40
60
80

100
120

A
m

pl
itu

de
 (m

/s
2

N
)

(e) Mode 3, 𝐹exc,0 = 3N

Frequency (Hz)
130 135 140 145 150 155 160
0

50

100

150

200

250

A
m

pl
itu

de
 (m

/s
2

N
)

(f) Mode 4, 𝐹exc,0 = 3N

Figure 7: Hysteresis-optimal control: measured (top) and simulated (bottom) accelerance FRFs for controlled sine-sweep excitation with
(solid) and without (dashed) control (𝑘∗

𝑇
= 2.5 ⋅ 10

7N/m).

effects and introduction of the minimal normal force yields
the suboptimal law:

𝐹𝑁 =

{{

{{

{

max{
󵄨󵄨󵄨󵄨
̇𝑢rel
󵄨󵄨󵄨󵄨

𝜀
𝐹𝑁,max, 𝐹𝑁,min} for 󵄨󵄨󵄨󵄨 ̇𝑢rel

󵄨󵄨󵄨󵄨 < 𝜀

𝐹𝑁,max for 󵄨󵄨󵄨󵄨 ̇𝑢rel
󵄨󵄨󵄨󵄨 ≥ 𝜀.

(11)

Again, the required tangential relative motion must be
estimated by the previously introduced observer which now
estimated the relative velocity ̇𝑢rel instead of the displacement
𝑢rel. Note that theminimal andmaximal normal forces𝐹𝑁,min
and 𝐹𝑁,max are determined by the mechanical properties of
the adaptive screw.

4. Experiments and Simulation Results

The proposed controls are investigated for the benchmark
structure with a damper beam at 𝑥𝑑 = 0.545m away from

the fixture. For this position, significant relative displacement
between structure and damper is expected for the bending
modes 3, 4 and higher. For mode 2, much less relative motion
is expectedwhich explains the small damping values obtained
in the experiment and simulations, for example, for the
passive results in Figure 5. The first mode is not considered
because it cannot be excited by the available shaker. For
evaluation, accelerated FRFs from the excitation force (at 𝑥 =
0.325m) to the measured acceleration (at 𝑥 = 0.45m) are
compared.

4.1. Controller Implementation. A dSpace system running
at 21 kHz sampling frequency is used for the real-time
implementation.The observer is designed based on 7 normal
modes and uses the out-of-plane tip acceleration at 𝑥 =

0.765m as measurement variable 𝑦meas. In the experiment,
the prescribed force 𝐹𝑁 for the adaptive screw from (3) or
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Figure 8: Lyapunov-type control: measured (top) and simulated (bottom) accelerance FRFs for controlled sine-sweep excitation with (solid)
and without (dashed) control (𝜀 = 1/200m/s).

(11) must be tracked by an underlying force feedback control
loop to compensate nonlinearities, large-signal piezoelectric
effects, and creep effects in the screw threads as well as
decrease the inertia forces of the actuator and sensor masses
due to the structural vibrations. For that, a tracking controller
is employed which is combined from a feedforward term
derived from the static actuator voltage-force relationship
and a PID feedback control of the measured force. The
obtained actuator signal 𝑈𝑃 is filtered by a 30 kHz low-pass
filter to decrease the digitization noise before it is amplified
for the piezoelectric stack actuator. To maximize the stiffness
of the clamping of the piezoelectric actuators determining
the achievable stroke [2], strain gages directly embedded in
the bolt shaft (see Figure 6) measure the actual force instead
of strain-gage based ring force cells that would significantly
weaken the configuration. The applicable actuator stroke lies
between 𝐹𝑁,min = 40N and 𝐹𝑁,max ≈ 600N.

For the Lyapunov-type control, a piezoelectric force cell of
high sensitivity and bandwidth is added (cf. Figure 2) because
its high actuation dynamics requires a very high control
bandwidth which is difficult to realize with strain-gage based
force measurements due to the found signal-to-noise ratio
and delays originating from the necessary amplifiers.

4.2. Shaker Test Setup with Excitation Force Control. For
nonlinear mechanical structures, comparing FRFs requires
special care because the obtained FRFs are nonlinear. More
specifically, their resonance frequencies, peak amplitudes,
and peak forms depend on the excitation signal as well as
amplitudes. Consequently, the amplitude is controlled during
sine sweep measurements to make the excitation indepen-
dent of the structural impedance for consistent comparisons.

Very low sweep velocities (0.1 Hz/s) are employed to obtain
steady-state conditions which approximate step-sine testing
and to avoid interaction between the interesting effects of
the semiactive structural control and the shaker control. Due
to the very small relative displacements outside resonances,
the control is only effective close to resonances which allows
restricting the evaluation around the resonance frequencies
to save simulation and measurement time.

In Figures 7 and 8, FRFs with and without semiactive
control are shown for some typical excitation amplitudes
for the two control concepts. Similar results are obtained
for other amplitudes. It can always be seen that the control
strongly reduces the resonance amplitudes ofmultiplemodes.
However, for the second mode the obtained damping is quite
small in the active as well as the passive case.This is due to the
slight curvature of the beam at the lower modes which results
in a small relative motion in the interface. Additionally, this
fact implies that the obtained efficiency of the damper is
dependent on its position.

In the passive case, the minimal possible force 𝐹𝑁 =

𝐹𝑁,min is applied to the adaptive screw which still introduces
significant structural damping compared to the case without
attached damper. Experiments and simulation additionally
prove that the semiactive control never decreases the passive
damping effect at lower excitation amplitudes. Generally, the
agreement obtained between experiment and simulations
is rated very good in view of the well-known difficulties
encountered in the prediction of nonlinear damping of struc-
tures, especially for distributed friction with inhomogeneous
normal contact pressure distribution. Furthermore, some
imperfections of the excitation control cannot be avoided
as well as some changes in the contact parameters. The
Lyapunov-type control achieves higher vibration reduction
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than the hysteresis-optimal one in both experiments and
simulations, especially at smaller vibration amplitudes. It is
also suited to suppress broadband vibrations and relatively
robust to errors in the estimation, but, as a drawback, its high
dynamical actuation requires more power. Advantageously,
the hysteresis-optimal control could be implemented with
low dynamical actuators, for example, of different actuation
principles.

5. Conclusion

Multimodal, semiactive vibration controllers that adapt the
normal force applied to friction damper beams by piezoelec-
tric stack actuators are investigated for a generic benchmark
structure in experiments and simulations. They are shown to
efficiently damp structural resonances for different excitation
amplitudes and vibration modes. Which of the investi-
gated controller concepts suits best for a certain application
depends mainly on the actuator principle, the power consid-
erations, and whether the excitation being rather broadband
or narrowband. Based on the results of the beam experiment,
the proposed friction damper is used to reduce the vibrations
of machine tools [18].
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Recent work with autonomous modal parameter estimation has shown great promise in the quality of the modal parameter
estimation results when compared to results from traditional methods by experienced users. While autonomous modal parameter
estimation means slightly different things to different researchers and practitioners, for the purpose of this discussion, autonomous
will require an automated procedure which sorts and processes a large number of possible modal parameter solutions to yield one
consistent estimate with no user interaction after initial thresholds are chosen. In the work discussed, this final, consistent set of
modal parameters is identifiable due to the combination of temporal and spatial information in a 𝑧 domain state vector of relatively
high order (5–10). Since this 𝑧 domain state vector has both complex modal frequency and modal vector information as embedded
content, sorting consistent estimates from the multitude of possible solutions is relatively trivial. Because this 𝑧 domain state vector
can be developed from the results of anymodal parameter estimationmethod, possible solutions fromdifferent traditionalmethods
can be utilized in the autonomous procedure to yield one consistent set of modal parameters.

1. Introduction

The desire to estimate modal parameters automatically, once
a set or multiple sets of test data are acquired, has been a
subject of great interest for more than 40 years. In the 1960s,
when modal testing was limited to analog test methods,
several researchers were exploring the idea of an automated
test procedure for determining modal parameters [1–3].
Today, with the increased memory and compute power of
current computers used to process test data, an automated
or autonomous, modal parameter estimation procedure
is entirely possible and is being evaluated by numerous
researchers and users.

Before proceedingwith a discussion of the use and impact
of spatial information in autonomous modal parameter esti-
mation, some philosophy and definitions regarding what is
considered autonomous is required. In general, autonomous
modal parameter estimation refers to an automated pro-
cedure that is applied to a modal parameter estimation

algorithm so that no user interaction is required once the
process is initiated. This typically involves setting a number
of parameters or thresholds that are used to guide the
process in order to exclude solutions that are not acceptable
to the user. When the procedure finishes, a set of modal
parameters is identified that can then be reduced or expanded
if necessary.The goal is that no further reduction, expansion,
or interaction with the process will be required.

For the purposes of further discussion, the autonomous
modal parameter estimation procedure is simply an efficient
mechanism for sorting a very large number of solutions into
a final set of solutions that satisfies a set of criteria and
thresholds that are acceptable to the user.This user is assumed
to be very experienced and uses autonomous modal param-
eter estimation as a sophisticated tool to highlight the most
likely solutions based upon statistics. The experienced user
will realize that the final solutions may include unrealistic
solutions or nonoptimal solutions and further evaluation will
be required.
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2. Background
In order to discuss the impact and use of spatial information
in autonomous modal parameter estimation, some back-
ground is needed to clarify terminology and methodology.
This background has been provided in previous papers and
will only be highlighted here in terms of spatial information,
modal parameter estimation, and autonomousmodal param-
eter estimation.

2.1. Spatial Information. Spatial information, with respect
to experimental modal parameter estimation, refers to the
vector information and dimension associated with the inputs
and outputs of the experimental test. Essentially, this repre-
sents the locations of the sensors in the experimental test.
It is important to recognize that an experimental test should
always include multiple inputs and outputs in order to clearly
estimate different modal vectors and to resolvemodal vectors
when the complex natural frequencies are close, what is called
repeated or pseudorepeated roots.

Since the data matrix, normally involving frequency
response functions (FRF) or impulse response functions
(IRF), is considered to be symmetric or reciprocal, the data
matrix can be transposed, switching the effective meaning of
the row and column index with respect to the physical inputs
and outputs. Consider

[𝐻 (𝜔𝑖)]𝑁
𝑜
×𝑁
𝑖

= [𝐻 (𝜔𝑖)]
𝑇

𝑁
𝑖
×𝑁
𝑜

. (1)

Since many modal parameter estimation algorithms are
developed on the basis of either the number of inputs (𝑁𝑖)
or the number of outputs (𝑁𝑜), assuming that one or the
other is larger based upon test method, some nomenclature
conventions are required for ease of further discussion. In
terms of the modal parameter estimation algorithms, it is
more important to recognize whether the algorithm develops
the solution on the basis of the larger (𝑁𝐿) of𝑁𝑖 or𝑁𝑜 or the
smaller (𝑁𝑆) of𝑁𝑖 or𝑁𝑜, dimension of the experimental data.
For this reason, the terminology of long (larger of 𝑁𝑖 or 𝑁𝑜)
dimension or short (smaller of𝑁𝑖 or𝑁𝑜) dimension is easier
to understand without confusion.

Therefore, the nomenclature of the number of outputs
(𝑁𝑜) and number of inputs (𝑁𝑖) has been replaced by the
length of the long dimension of the data matrix (𝑁𝐿) and
the length of the short dimension (𝑁𝑆) regardless of which
dimension refers to the physical output or input. This means
that the above reciprocity relationship can be restated as

[𝐻 (𝜔𝑖)]𝑁
𝐿
×𝑁
𝑆

= [𝐻 (𝜔𝑖)]
𝑇

𝑁
𝑆
×𝑁
𝐿

. (2)

Note that the reciprocity relationships embedded in (1) and
(2) are a function of the common degrees of freedom (DOFs)
in the short and long dimensions. If there are no common
DOFs, there are no reciprocity relationships and the data
requirement for modern modal parameter estimation algo-
rithms (multiple references) will not bemet.Nevertheless, the
importance of (1) and (2) is that the dimensions of the FRF
matrix can be transposed as needed to fit the requirement
of specific modal parameter estimation algorithms. This
impacts the size of the square matrix coefficients in the

matrix coefficient, polynomial equation, and the length of the
associated modal (base) vector.

2.2. Modal Parameter Estimation. All modern, commercial
algorithms for estimating modal parameters from exper-
imental input-output data utilize matrix coefficient, poly-
nomial models. This general matrix coefficient, polynomial
formulation yields essentially the same polynomial form for
both time and frequency domain data. Note, however, that
this notation does not mean that, for an equivalent model
order, the associated matrix coefficients are numerically
equal.

For the frequency domain data case, this is
󵄨󵄨󵄨󵄨󵄨
[𝛼𝑚] 𝑠

𝑚
+ [𝛼𝑚−1] 𝑠

𝑚−1
+ [𝛼𝑚−2] 𝑠

𝑚−2
+ ⋅ ⋅ ⋅ + [𝛼0]

󵄨󵄨󵄨󵄨󵄨
= 0, (3)

where

𝑠𝑟 = 𝜆𝑟, 𝜆𝑟 = 𝜎𝑟 + 𝑗𝜔𝑟. (4)

For the time domain data case, this is
󵄨󵄨󵄨󵄨󵄨
[𝛼𝑚] 𝑧

𝑚
+ [𝛼𝑚−1] 𝑧

𝑚−1
+ [𝛼𝑚−2] 𝑧

𝑚−2
+ ⋅ ⋅ ⋅ + [𝛼0]

󵄨󵄨󵄨󵄨󵄨
= 0,

(5)

where

𝑧𝑟 = 𝑒
𝜆
𝑟
Δ𝑡
, 𝜆𝑟 = 𝜎𝑟 + 𝑗𝜔𝑟,

𝜎𝑟 = Re [
ln 𝑧𝑟
Δ𝑡
] , 𝜔𝑟 = Im [

ln 𝑧𝑟
Δ𝑡
] .

(6)

The size of the square, matrix coefficients ([𝛼]), and the
order of the polynomial (𝑚) vary with the algorithm. Once
the matrix coefficients ([𝛼]) have been found, the modal
frequencies (𝜆𝑟 or 𝑧𝑟) can be found as the roots of the
matrix coefficient polynomial (see (3) or (5)) using any one
of a number of numerical techniques, normally involving an
eigenvalue problem of the companion matrix associated with
the matrix coefficient polynomial.

When the modal frequencies are estimated from this
eigenvalue problem, a unique estimate of the unscaled modal
vector is identified from the associated eigenvector at the
same time. The length or dimension of this unscaled modal
vector is equal to the dimension of the square, alpha coeffi-
cients which, in general, is equal to𝑁𝑆 or𝑁𝐿.

In all cases, the size of the square, alpha coefficient
matrices ([𝛼]), and/or the size of the model order (𝑚) can
be varied to estimate multiple sets of solutions from the
same data. These multiple sets of solutions are generally
presented graphically in terms of consistency diagrams to
identify a final set of realistic solutions. For this reason, with
minor implementation differences, all of these algorithms
can take advantage of the consistency diagram as an aid in
identifying the correct complex modal frequencies from the
large number of estimates that are found.

The most commonly used modal identification methods
can be summarized as shown in Table 1.

All of the methods summarized in Table 1 have a com-
mon characteristic in that they involve a matrix coefficient,
characteristic polynomial of the form in (3) and (5). Once
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Table 1: Summary of modal parameter estimation algorithms.

Algorithm Domain Matrix polynomial order Coefficients
Time Freq. Zero Low High Scalar Matrix

Complex Exponential Algorithm (CEA) ∙ ∙ ∙

Least Squares Complex Exponential (LSCE) ∙ ∙ ∙

Polyreference Time Domain (PTD) ∙ ∙ 𝑁𝑆 × 𝑁𝑆

Ibrahim Time Domain (ITD) ∙ ∙ 𝑁𝐿 × 𝑁𝐿

Multireference Ibrahim Time Domain (MRITD) ∙ ∙ 𝑁𝐿 × 𝑁𝐿

Eigensystem Realization Algorithm (ERA) ∙ ∙ 𝑁𝐿 × 𝑁𝐿

Polyreference Frequency Domain (PFD) ∙ ∙ 𝑁𝐿 × 𝑁𝐿

Simultaneous Frequency Domain (SFD) ∙ ∙ 𝑁𝐿 × 𝑁𝐿

Multireference Frequency Domain (MRFD) ∙ ∙ 𝑁𝐿 × 𝑁𝐿

Rational Fraction Polynomial (RFP) ∙ ∙ ∙ 𝑁𝑆 × 𝑁𝑆

Orthogonal Polynomial (OP) ∙ ∙ ∙ 𝑁𝑆 × 𝑁𝑆

Polyreference Least Squares Complex Frequency (PLSCF) ∙ ∙ ∙ 𝑁𝑆 × 𝑁𝑆

Rational Fraction Polynomial-Z Domain (RFP-Z) ∙ ∙ ∙ 𝑁𝑆 × 𝑁𝑆

Complex Mode Indication Function (CMIF) ∙ ∙ 𝑁𝐿 × 𝑁𝑆

this is noted, all of these methods can be explained with a
common mathematical form. In previous papers, this has
been referred to as the UnifiedMatrix Polynomial Algorithm
(UMPA) model [4–7]. Since both the frequency and time
domain models are based upon functionally similar matrix
coefficient, characteristic polynomials, the UMPA (𝑚, 𝑛, V)
terminology can be used for models in both domains to
reflect the order of the denominator polynomial (𝑚), the
order of the numerator polynomial (𝑛), and the order of the
base vector (V) involved in the basic UMPA formulation.This
common approach to all algorithms is particularly useful in
autonomous modal parameter estimation procedures in that
multiple, different algorithms can be more easily combined
into a single solution approach. This is an extremely useful
concept when developing autonomousmodal parameter esti-
mation procedures and bringing solutions from all methods
together in one autonomous procedure. If the interested
reader is unfamiliar with any of the modal parameter estima-
tion algorithms cited in Table 1, the complete list of references
for each modal parameter estimation algorithm can be found
in one of the cited UMPA references [4–7].

Table 2 organizes the modal parameter estimation algo-
rithms from Table 1 into one of four categories. Algo-
rithms in each category have similar numerical structure
and performance characteristics. The methods highlighted
in bold font text in both tables are used together in a
single autonomous modal parameter estimation procedure
throughout the remainder of this paper. The highlighted
methods are chosen as representative of the characteristics of
all of the methods in their respective category in Table 2 and
are representative of methods used by most practitioners in
both research and commercial implementations.

As a matter of further clarification, two different Polyref-
erence Frequency Domain (PFD) algorithms were developed
independently in the 1980s. Both methods are low order,
frequency domain methods. PFD-1 is the designation for the
first order form and PFD-2 is the designation for the second

Table 2: Four corners of modal parameter estimation.

Time domain Frequency domain

Low order models
ITD

MRITD
ERA

PFD-1
PFD-2
PFD-Z
SFD

MRFD

High order models
CEA
LSCE
PTD

RFP
OP

PLSCF
RFP-Z

PolyMAX
AF-Poly

order form. A recent paper explains that the twomethods are
theoretically equivalent [8].

2.3. Autonomous Modal Parameter Estimation. The interest
in automatic modal parameter estimation methods has been
documented in the literature since at least the mid-1960s
when the primary modal method was the analog, force
appropriation method [1–3]. Following that early work, there
has been a continuing interest in autonomous methods that,
in most cases, have been procedures that are formulated
based upon a specific modal parameter estimation algo-
rithm like the Eigensystem Realization Algorithm (ERA),
the Polyreference Time Domain (PTD) algorithm, or more
recently the Polyreference Least Squares Complex Frequency
(PLSCF) algorithm or the commercial version of the PLSCF,
the PolyMAX method [4–7]. A relatively complete list of
autonomous and semiautonomous methods that have been
reported prior to 2010 can be found in a recent paper [9].The
interested reader should also review other similar methods in
more recent references [10–13].

Each of these past procedures has shown some promise
but has not yet been widely adopted. In many cases, the
procedure focussed on a single modal parameter estimation
algorithm and did not develop a general procedure. Most of
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the past procedural methods focussed on modal frequency
(pole) density but depended on limited modal vector data
to identify correlated solutions. Currently, due to increased
computational speed and availability of memory, procedural
methods can be developed that were beyond the compu-
tational scope of available hardware only a few years ago.
These methods do not require any initial thresholding of the
solution sets and rely upon correlation of the vector space of
hundreds or thousands of potential solutions as the primary
identification tool.

The discussion in the following sections of the use and
impact of spatial information in autonomous modal param-
eter estimation is based upon recent implementation and
experience with an autonomousmodal parameter estimation
procedure referred to as the common statistical subspace
autonomous mode identification (CSSAMI) method [9, 14–
16]. The strategy of the CSSAMI autonomous method is to
use a default set of parameters and thresholds to allow for
all possible solutions from a given data set. This strategy
allows for some poor estimates to be identified as well as the
good estimates. The philosophy of this approach is that it is
easier for the user to evaluate and eliminate poor estimates
compared to trying to find additional solutions. The reader
is directed to a series of previous papers in order to get an
overview of the methodology and to view application results
for several cases [9, 14–16].

Note that much of the background of the CSSAMI
method is based upon the Unified Matrix Polynomial Algo-
rithm (UMPA) described in the previous section.This means
that this method can be applied to both low and high order
methods with short or long dimension modal (base) vectors.
This also means that most commercial algorithms could take
advantage of this procedure. Note that high order matrix
coefficient polynomials normally have coefficient matrices of
a dimension that is based upon the short dimension of the
data matrix (𝑁𝑆). In these cases, it may be useful to solve for
the complete, unscaled, or scaled, modal vector of the large
dimension (𝑁𝐿). This will extend the temporal-spatial infor-
mation in the modal (base) vector so that the vector will be
more sensitive to change.This characteristic is what gives the
CSSAMI autonomous method a robust ability to distinguish
between computational and structural modal parameters.

3. Pole-Weighted Modal Vectors

When comparing modal (base) vectors, at either the short
or the long dimension, a pole-weighted vector can be
constructed independent of the original algorithm used to
estimate the poles andmodal (base) vectors. For a given order
𝑘 of the pole-weighted vector, themodal (base) vector and the
associated pole can be used to formulate the pole-weighted
vector as follows:
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Figure 1: Eighth order, pole-weighted vector (state vector) example.

While the above formulation (on the left) is possible, this
form would be dominated by the high order terms if actual
frequency units are utilized. Generalized frequency concepts
(frequency normalization or 𝑧 domain mapping) are nor-
mally used tominimize this issue by using the 𝑧 domain form
(𝑧𝑟) of the complex modal frequency (𝜆𝑟) as shown above
(on the right). The 𝑧 domain form of the complex natural
frequency is developed as follows:

𝑧𝑟 = 𝑒
𝜋∗(𝜆
𝑟
/Ωmax)

,

𝑧
𝑚

𝑟
= 𝑒
𝑚∗𝜋∗(𝜆

𝑟
/Ωmax)

.

(8)

In the above equations, Ωmax can be chosen as needed to
cause the positive and negative roots to wrap around the
unit circle in the 𝑧 domain without overlapping (aliasing).
Normally, Ωmax is taken to be five percent larger than the
largest frequency (absolute value of the complex frequency)
identified in the roots of the matrix coefficient polynomial.

Figures 1 and 2 are graphical representations of the
pole-weighted vector (state vector) defined in (7). In this
representative example, the modal (base) vector (at the
bottom of Figure 1) is a real-valued, normal mode that looks
like one period of a sine wave. The successive higher orders,
up to order eight, are shown in different colors moving up
the vertical axis of this figure. The effect of scaling of the
modal (base) vector by the higher powers of the 𝑧 domain
frequency value causes the base vector to rotate in the real and
imaginary space. Figure 2 shows the rotation effect clearly.
Note that the choice of the order (𝑘) of the pole-weighted
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Figure 2: Eighth order, pole-weighted vector (state vector) example,
top view.

vector, therefore, just generates additional length and rotation
in the pole-weighted vector and gives varying sensitivity to
comparisons between estimates. Furthermore, note that the
choice of order (𝑘) is independent of the modal parameter
estimation algorithm and the order of the matrix polynomial
used in the algorithm. State vectors are a natural part of the
numerical formulation for all modal parameter estimation
algorithms, but this pole-weighted vector (state vector) which
looks similar is not constrained by the algorithm. Note that
if the base vector is complex-valued, rather than real-valued,
each vector contribution to the pole-weighted vector will
contain this real versus imaginary scatter and Figure 2 will
present rotated, banded areas rather than the rotated lines in
this example.

The order (𝑘) of the pole-weighted vector (state vector) is
up to the user. Generally, if spatial dimension used to generate
the pole-weighted vector (𝑁𝑆 and/or 𝑁𝐿) is small, a higher
order will be required to discriminate betweenmodal vectors
that have similar spatial characteristics, maybe as high as 50
or 60. As the spatial dimension gets bigger, the model order
(𝑘) can be chosen more modestly. Essentially, the order (𝑘)
of the pole-weighted vector is inversely proportional to the
dimension of the base vector. Experience has shown that an
order of four or five is probably the minimum and that larger
choices for model order (𝑘) do not appear to cause any issues.
For the purposes of the examples used in this paper, the order
has been chosen to be ten, meaning orders of zero to ten
(eleven times the base vector) have been used to generate the
pole-weighted vectors.

While the order (𝑘) of the pole-weighted vector (state
vector) can be raised (𝑘 = 50 or 𝑘 = 60, e.g.) for a case
with minimal base vector dimension (two or three, e.g.),
this is generally not as desirable as using a larger base
vector (thirty, e.g.) raised to a more modest order (𝑘 = 5 or

𝑘 = 6, e.g.). In this example, the longer base vector would
have more independent spatial information contributing
to the pole-weighted vector. While this is intuitive and has
been observed to be the case, no formal study has taken
place concerning this issue. Using the longest base vector
seems to be the prudent approach, assuming that the data is
representative of the DOF space.

Since the magnitude of the 𝑧 domain frequency value
is unity, there is no magnitude weighting involved. This
rotation gives a method for a single vector to represent the
modal (base) vector shape together with the complex-valued
frequency. With respect to sorting and separating modal
vectors that have similar shapes but different frequencies or
similar frequencies but different modal vector shapes, this
becomes a powerful parameter, together with modal vector
correlation tools like the modal assurance criterion (MAC)
[17, 18], for modal parameter estimation and for autonomous
modal parameter estimation.

4. Multialgorithm, Extended
Consistency Diagrams

Consistency diagrams have historically been developed for a
specific modal parameter estimation algorithm. As such the
numerical implementation can be different as a function of
basis dimension (𝑁𝑆 or 𝑁𝐿), model order, and/or subspace
iteration. This would make it very hard to combine different
algorithms into a single consistency diagram. However, every
algorithm, at the point of the numerical implementation of
the consistency diagram, has multiple sets of complex modal
frequency and complex-valued modal vectors. The modal
vectors may be of different length (𝑁𝑆 or 𝑁𝐿) as a function
of algorithm.This potential mismatch in modal (base) vector
length can be solved by restricting the long dimension to the
DOFs of the short dimension or, more preferably, adding an
extra step in the solution procedure to estimate the missing
portion of the short dimension vectors, extending them to
the long dimension DOFs. The latter approach is used in the
following two figures as an example of extended consistency
diagrams based upon multiple modal parameter estimation
algorithms. In these examples, the results from the individual
algorithms are simply stacked into the extended consistency
diagram with common sorting and evaluation settings.

The data used for this, and all following examples in
this paper, is FRF data taken from an impact test of a steel
disc supported in a pseudo-free-free boundary condition.
The steel disc is approximately 2 cm. thick and 86 cm. in
diameter with several small holes through the disc.The center
area of the disc (diameter of approximately 25 cm.) has a
thickness of approximately 6 cm. There are seven reference
accelerometers and measured force inputs from an impact
hammer are applied to thirty-six locations, including next to
the seven reference accelerometers. The frequency resolution
of the data is 5 Hertz. While the disc is not as challenging
as some industrial data situations that contain more noise or
other complicating factors like small nonlinearities, the disc
has a number of pseudorepeated roots spaced well within
the 5 Hertz frequency resolution and a mix of close modes
involving repeated and nonrepeated roots which are very
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Figure 3: Extended consistency diagram, conventional version.

challenging. Based upon the construction of the disc, real-
valued, normal modes can be expected and the inability to
resolve these modes can be instructive relative to both modal
parameter estimation algorithm and autonomous procedure
performance. For the interested reader, a number of realistic
examples are shown in other past papers including FRF data
from an automotive structure and a bridge structure [9, 16].

Figure 3 is an example of using a conventional, sequential
sorting procedure involving criteria for frequency, damping,
andmodal vector consistency.The symbol designations in the
legend box identify consistency based upon separate user def-
initions regarding frequency; frequency and damping (pole);
and frequency, damping, and modal vector closeness. Modal
vector consistency is determined by using typical vector
correlation methods (MAC) [17, 18] to identify consistency.
In this type of consistency diagram, the only consistency
comparisons that are made compare the current model order
values to the previous model order values. This sequential
estimation of consistency allows for some parameter drift as
model order or algorithm is changed.

The figure includes a complex mode indicator function
(CMIF) for the FRF dataset in the background. The blue dia-
mond symbols indicate that modes have been identified with
consistent frequency, damping and modal vector estimates
as both model order and algorithm are changed. From the
CMIF plot in the background, it is clear that most of the
identified modes are closely spaced, repeated roots. For these
cases, there are two blue diamonds at each solution on top
of one another. The multialgorithm approach is sensitive to
the transitions between algorithms as the modal parameter
estimates and symbol designations are estimated sequentially
across these transitions.
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Figure 4: Extended consistency diagram, pole-weighted MAC
version.

Figure 4 is an example using a pole-weighted vector
(state vector) method of producing a similar consistency
diagram. This approach is easier to implement numerically
and provides equal or better results when compared to the
conventional approach for almost all cases. In this example,
every estimate from every matrix coefficient polynomial
solution from every algorithm is converted into a pole-
weighted vector of a specific order, in this case tenth order.
Then, the consistency diagram is developed by using the
same vector correlation methods (MAC) [17, 18] to iden-
tify consistency without a need for a separate consistency
comparison for frequency and damping (since the modal
frequency is included in the pole-weighted vector). A similar
set of symbols, as those used in Figure 3, are used to define
increased levels of vector consistency in terms of the MAC
value between all pole-weighted vectors.

Both methods work very well but the implementation
of Figure 4 is computationally easier and not subject to a
frequency drift in the symbol path that can occur in the
conventional implementation, shown in Figure 3, that is due
to frequency and damping variation with model order for
each algorithm. Note that the solid square symbols at the top
of both consistency diagrams represent the solution found
from the CSSAMI autonomous modal parameter estimation
procedure applied to the information represented by each
consistency diagram.

5. Autonomous Modal Parameter Estimation
with Extended Consistency Diagrams

The CSSAMI autonomous procedure utilizes all solutions
indicated by a symbol in the consistency diagram. If some
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Figure 5: Pole-weighted MAC of all consistency diagram solutions, before and after threshold applied.

symbols are not present, it means that the user has decided
not to view solutions identified by those symbols. This
provides a way to remove solutions from the autonomous
procedure that are clearly not reasonable. However, experi-
ence with the CSSAMI autonomous procedure has shown
that some solutions that are often eliminated by users in
an attempt to have a clear consistency diagram are often
statistically consistent and useful.

Figure 5 shows the solutions that are included in the
autonomous procedure. The graphical representation on the
left represents an auto-MAC matrix involving the pole-
weighted vectors for all possible solutions fromFigure 3 com-
pared to themselves. Naturally, the diagonal will be 1.0 but
when the off-diagonal terms are 1.0 or nearly 1.0, this means
that the pole-weighted vectors are consistent and represent a
cluster. The graphical representation on the right represents
the pole-weighted vectors that remain after a MAC threshold
(0.9) and minimum cluster size (4) limitations are imposed.
Each cluster that remains is evaluated, cluster by cluster, inde-
pendently to estimate the best modal frequency and modal
vector from that cluster. Note that both the positive fre-
quency and negative frequency (complex conjugate) roots are
included and identified separately as clusters. Figure 5 repre-
sents nearly 1000 solution estimates spanning four different
algorithms and 19 different solutions from each algorithm.

For the examples used in this paper, a minimum cluster
size is chosen to be four. This choice is up to the user and
generally should not be chosen too large. The philosophy is
to allow the autonomous procedure to identify all possible
clusters and then have the experienced user make the final
decision if some of the clusters yield nonphysical results.
These decisions can be made based upon statistics associated
with the cluster or physical characteristics of the modal
parameters. If the cluster size is too small, somemodal vectors
might be excluded. This would require the user to reprocess
the data looking for a missing modal vector. It is far easier for
the user to remove unwanted or nonphysical modes than to

try to find modes that have been marginally excited in the
data. The first column of Table 3 shows the cluster size for
each mode estimated from the autonomous procedure.

Once the final set of modal parameters, along with their
associated statistics, is obtained, quality can be assessed by
many methods that have been used in the past. The most
common example is to perform comparisons between the
original measurements and measurements synthesized from
the modal parameters. Another common example is to look
at physical characteristics of the identified parameters such
as reasonableness of frequency and damping values, normal
mode characteristics in the modal vectors, and appropriate
magnitude and phasing in the modal scaling. Other eval-
uations that may be helpful are modal assurance criterion
(MAC) evaluation of the independence of the complete
modal vector set, mean phase correlation (MPC) of each
vector, or any other method available. Naturally, since a
significant number of pole-weighted vectors are used in a
cluster to identify the final modal parameters, traditional
statistics involving mean and standard deviation are now
available. Some of these statistical methods are discussed in
the next section.

6. Statistical Evaluation Parameters

Statistical evaluation parameters can be estimated for each
common cluster of pole-weighted vectors on the basis of the
complex modal frequency, the modal vector, and the modal
scaling. The number of pole-weighted vectors will in general
be different in each cluster so the statistics will be based upon
the number of estimates available (sample size𝑁). Examples
of the statistics currently computed for eachmodal parameter
are described in the following sections.

6.1. Modal Frequency Statistics. The weighted modal fre-
quency for the cluster is found by constructing the pole-
weighted vector (typically 10th order) for each pole retained
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Table 3: Summary of autonomous modal parameter estimation statistics.

𝑁 Freq. (SV) Damp (SV) % Zeta MPC Freq. (Mean) Damp (Mean) Std. Dev. NMVR1% NMVR2% NSVR1% NSVR2%
69 362.356 −3.128 0.8633 0.9199 362.356 −3.128 0.1049 0.7686 6.3402 0.7686 6.3402
69 363.696 −3.403 0.9358 0.8915 363.696 −3.403 0.1112 1.2308 10.2036 1.2312 10.2062
71 557.008 −2.888 0.5184 0.9926 557.008 −2.888 0.1144 0.0810 0.6281 0.0812 0.6281
69 761.172 −5.091 0.6688 0.9701 761.172 −5.091 0.1345 0.8888 7.1128 0.8889 7.1129
70 764.175 −2.581 0.3377 0.9862 764.175 −2.581 0.0865 0.3335 2.2550 0.3337 2.2566
64 1222.940 −4.074 0.3332 0.8286 1222.940 −4.074 0.0855 0.9708 6.4450 0.9712 6.4492
67 1224.080 −3.962 0.3236 0.8316 1224.079 −3.962 0.1645 1.0343 8.3785 1.0338 8.3748
68 1327.955 −6.704 0.5048 0.8264 1327.953 −6.705 0.3577 1.2250 9.9197 1.2248 9.9176
57 1328.699 −5.421 0.4080 0.8169 1328.698 −5.421 0.1400 0.8649 6.3990 0.8645 6.3960
69 2019.161 −8.153 0.4038 0.9655 2019.163 −8.159 1.0262 1.0610 7.3389 1.0623 7.3411
56 2023.589 −7.525 0.3719 0.9481 2023.590 −7.525 0.5596 1.8525 11.7555 1.8518 11.7490
18 2321.822 −3.947 0.1697 0.7848 2321.819 −3.947 0.5460 3.3706 14.0340 3.3657 14.0137
4 2324.280 −3.537 0.1522 0.8555 2324.271 −3.537 1.3115 7.3179 13.3856 7.3251 13.3951
47 2337.946 −4.194 0.1794 0.9654 2337.945 −4.201 0.9058 0.9132 4.5838 0.9129 4.5811

in a cluster, then taking the SVD of the group of pole-
weighted vectors and selecting the singular vector associated
with the largest singular value. This chosen singular vector
contains both the shape and the modal frequency informa-
tion. The modal frequency is identified by dividing the first
order portion by the zeroth order portion of the vector in
a least squares sense. (Note that it is also possible to solve
the frequency polynomial which would result from using
the complete vector.) Also, for numerical reasons, the pole-
weighted vector is actually computed in the 𝑧 domain.

For comparison purposes, the actual mean value and
standard deviation of the poles (as well as the separate fre-
quency and damping means and standard deviations) which
were used in the computation of the weighted solution are
computed. Since these results are unweighted by the vector
characteristics, they may be somewhat different from the
vector weighted solution and provide comparative feedback
about the pole.

6.2. Modal Vector Statistics. In order to evaluate the quality
of the resulting modal vectors, several different parameters
(representing noise to signal ratios) are calculated. These
ratios are evaluated for both the original normalized vectors
and the pole-weighted (state extended) vectors and are
computed using the singular value decomposition of each of
the set of vectors.

6.2.1. Normalized Modal Vector Residual (NMVR). The first
modal vector parameter is evaluated by taking the total
residual magnitude (the Frobenius norm of the residuals)
divided by the magnitude of the principal vector magnitude.
In otherwords, the square root of the sumof the squares of the
residual singular values divides by the first (largest) singular
value. This provides an indication of the consistency of the
original contributing vectors. Small values tend to indicate
greater consistency. Large values indicate greater variance or

the possibility that more than one mode has been included in
a cluster. Consider

⌈𝜎⌋ = SVD ([𝜓1𝜓2 ⋅ ⋅ ⋅ 𝜓𝑁]) ,

NMVR1 =
1

𝜎1

(
∑
𝑁

𝑘=2
𝜎
2

𝑘

𝑁
)

1/2

.

(9)

The secondmodal vector parameter is evaluated by taking the
largest residual magnitude divided by the magnitude of the
principal vector magnitude. In other words, the second sin-
gular value divided by the first singular value. This provides
an indication of the consistency of the original contributing
vectors. A small value tends to indicate random variance. A
larger value can indicate a consistent modal contamination
of the original vectors, possibly caused by a second mode
included in the cluster:

NMVR2 =
𝜎2

𝜎1

. (10)

6.2.2. Normalized State Vector Residual (NSVR). The associ-
ated state vector parameters are calculated analogous to the
above except that the complete pole-weighted vector (state
vector) is used:

⌈𝜎⌋ = SVD ([𝜙1𝜙2 ⋅ ⋅ ⋅ 𝜙𝑁]) ,

NMVR1 =
1

𝜎1

(
∑
𝑁

𝑘=2
𝜎
2

𝑘

𝑁
)

1/2

,

NSVR2 =
𝜎2

𝜎1

.

(11)

6.3. Modal Scaling Statistics. If modal scaling (residue)
information is available in the original vectors, it can be
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applied to the principal pole-weighted vector such that the
consistency ofmodal scaling (ModalA) can also be evaluated.
By scaling the largest driving point response to unity, a
uniform, comparable value for Modal A is chosen. Since the
modal scaling parameter (Modal A) contains the physical
units and hence the relative contribution of each pole/vector
combination to the original data set, a means of evaluating
the significance and confidence in each estimate is possible.
Because the original vectors represent multiple scaled solu-
tions and since Modal A is a single scalar complex value
for each pole/vector combination, the statistical distribution
of Modal A (mean and standard deviation) of the original
cluster can be compared with the scaling estimated from
the pole-weighted (state extended) vector. The magnitude of
Modal A can be used to evaluate the contribution of this
vector to the total set of identified vectors. When the user
believes that the identified vectors should be normal modes,
the phase of theModal A can be used to evaluate the closeness
to a normal mode.

6.4. Example: Statistical Evaluation. Table 3 represents a
tabulation of themodal parameters found along with some of
the statistical information described in the previous sections.
Most of the indicators are quite good with the exception of
the modes in the region around 2320 Hertz. The fact that the
size of the clusters is much smaller (18 and 4) than all of the
other clusters is a quick way to identify possible problems.

Figure 6 shows the location of the complex modal fre-
quency estimates in the second quadrant of the 𝑆 plane. The
scatter in themodal frequency estimates is clearly identifiable.
However, the exact cause of the scatter is not definitive.

The two modes in this region, within one Δ𝑓, plus a third
mode within four Δ𝑓, are providing a difficult identification
problem. The spatial resolution of the sensors is also nearly
at a limit due to the complexity of the motion in the
modal vector.This contamination of themodal vectors, when
resolving close modal frequencies, will be discussed briefly in
the next section using some variations of themodal assurance
criterion (MAC).

7. Future Work: Resolving Modal
Vector Contamination

Much of the CSSAMI autonomous procedure, as well as
most commonly used modal parameter estimation methods,
utilize the traditional modal assurance criterion (MAC)
computation, restated in (12), to sort the numerous possible
solutions into clusters related to differentmodes or to identify
contamination between modal vectors:

MAC𝑐𝑑 =
󵄨󵄨󵄨󵄨󵄨
{𝜓𝑐}
𝐻
{𝜓𝑑}

󵄨󵄨󵄨󵄨󵄨

2

{𝜓𝑐}
𝐻
{𝜓𝑐} {𝜓𝑑}

𝐻
{𝜓𝑑}

=
{𝜓𝑐}
𝐻
{𝜓𝑑} {𝜓𝑑}

𝐻
{𝜓𝑐}

{𝜓𝑐}
𝐻
{𝜓𝑐} {𝜓𝑑}

𝐻
{𝜓𝑑}

.

(12)

The only difference in the CSSAMI autonomous modal
parameter estimation procedure is that the pole-weighted
vectors of an arbitrarily (user defined) order are constructed
and used in the MAC calculation so that the dimension
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Figure 6: Pole surface consistency, 2320 Hertz region.

of each vector is much larger. In this way, the clusters for
spatially undersampled modal vectors can be separated from
one another. Likewise, modal vectors associated with close
frequencies will be separated into distinct clusters. This is
done automatically once (1) the order of the pole-weighted
vector is chosen and (2) the lowest acceptable threshold
for MAC correlation is chosen. A third parameter is also
needed (3) to define the minimum number of modal vector
estimates required to define a cluster (otherwise clusters
of one or two will be identified that generally represent
spurious estimates based upon noise on the data). Normally
this minimum number of modal vectors to define a cluster
is greater when more estimates are available, as in the case
where multiple modal parameter estimation algorithms are
incorporated into the autonomous procedure. Figure 5 is a
graphical representation of the before and after information
gained from this MAC procedure.

Note that the CSSAMI autonomous procedure treats each
cluster of estimates independently and does not constrain
the final set of modal vector estimates in any way. At this
point in the autonomous procedure, the MAC computation
is again utilized to evaluate the quality of the solutions.
This begins with an evaluation of the MAC between all of
the modal vectors in the final set to ascertain whether the
modal set is an independent set of vectors.This often involves
including the estimates of the modal vectors associated with
the conjugate poles. Since the conjugate poles and vectors
are estimated separately, if nonconjugate relationships exist
between the associated modal vector estimates (between the
modal vector for pole and the modal vector of the conjugate
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pole), theMAC between these two associated vectors will not
be unity as expected. A number of users have noted that this
often correlates with modal vectors that are exhibiting some
unexpected, nonphysical characteristics.

Since much of the autonomous procedure is based upon
numerical processing methods like singular value decompo-
sition (SVD), solutions that are identified, based upon the
data associated with a cluster of estimates, have no physical
or causal constraint. An example of a physical or causal
constraint would be the expectation of real-valued, normal
modes for systems where no expectation of nonproportional
damping is likely. SVD methods will identify the most
dominant unitary (orthogonal and unit length) vectors in
a cluster, yielding a complex-valued vector. Experience has
shown that when modes are very close in frequency with
minimal spatial resolution, the complex-valued vectors will
still show significant dependence or correlation.

However, when these complex-valued vectors are exam-
ined closely, the nondominant portion of the complex-valued
vector often correlates very highly with one or more nearby
modal vectors.This can be examined by theMAC calculation
or several variants of the MAC calculation (like the weighted
MAC calculation defined in (14)). Identifying the potential
contamination of modal vectors is helpful to the thorough
understanding of themodal parameter estimation algorithms
and autonomous procedure as well as being instructive
for potential removal of the contamination. If some sort
of real normalization is desirable (to match up well with
an undamped analytical model, e.g.), understanding of the
contamination that is being removed is a prerequisite to any
procedure. Random contamination may simply be ignored,
smoothed, or averaged out, but if the contamination is related
to nearby modes, it may indicate that the modal parameter
estimation may need further evaluation or that more data is
required.

For this evaluation of the modal vector contamination,
it will be easiest to first rotate each complex-valued modal
vector to a real (or imaginary) dominant vector. This is done
by using a least squares method to identify the rotation of
the modal vector away from the real or imaginary axis and
then using the associated complex phasor to rotate each
original complex-valued modal vector to a new complex-
valued modal vector that aligns with the real or imaginary
axis. For all following discussions, the original complex-
valued modal vectors are rotated to be dominantly real-
valued. It is convenient, for display reasons, to also normalize
the new complex-valued modal vector to a unity maximum
or unity vector length. Naturally, this rotation and rescaling
must be considered in any final estimates of modal scaling.

To understand the nature of the possible modal vector
contamination in a complex-valued modal vector, three con-
ventional MAC calculations can be performed (1) between
the real parts of the modal vectors and the complex-valued
modal vectors (rMAC), (2) between the imaginary parts of
the modal vectors and the complex-valued modal vectors
(iMAC), and (3) between the real parts of the modal vectors
and the imaginary parts of themodal vectors (riMAC).These
three MAC calculations and the interpretation of these MAC
values will be sensitive to the rotation and normalization of

the complex-valued modal vector estimates. The following
use and discussion assumes that the complex-valued modal
vectors have been rotated so that the central axis of the
complex-valued modal vector is centered on the real axis.
These three MAC computations identify (1) that the real part
of the modal vector is the dominant part of the complex-
valued modal vector (rMAC), (2) that the imaginary part of
the modal vector is the dominant part of the complex-valued
modal vector (iMAC), and (3) that the real and imaginary
parts of the modal vector are, or not, related to one another.
All MAC computations in this case are, as always, bounded
from zero to one. If near normal modes are expected, (1) the
rMAC should be close to one, (2) the iMAC should be close
to zero, and (3) the riMAC should also be close to zero. Note
in the following definitions, complex-valued modal vectors
𝑐 and 𝑑 can again be any of the modal vectors that the user
wishes to include in the evaluation:

rMAC𝑐𝑑 =
(Re {𝜓𝑐}

𝐻
) {𝜓𝑑} {𝜓𝑑}

𝐻
(Re {𝜓𝑐})

(Re {𝜓𝑐}
𝐻
) (Re {𝜓𝑐}) {𝜓𝑑}

𝐻
{𝜓𝑑}

,

iMAC𝑐𝑑 =
(Im {𝜓𝑐}

𝐻
) {𝜓𝑑} {𝜓𝑑}

𝐻
(Im {𝜓𝑐})

(Im {𝜓𝑐}
𝐻
) (Im {𝜓𝑐}) {𝜓𝑑}

𝐻
{𝜓𝑑}

,

riMAC𝑐𝑑 =
(Re {𝜓𝑐}

𝐻
) (Im {𝜓𝑑}) (Im {𝜓𝑑}

𝐻
) (Re {𝜓𝑐})

(Re {𝜓𝑐}
𝐻
) (Re {𝜓𝑐}) (Im {𝜓𝑑}

𝐻
) (Im {𝜓𝑑})

.

(13)

Use of the above modifiedMAC evaluations indicate that the
imaginary part (contamination) of a given mode is strongly
related to the real part (dominant) of the modal vector
associated with its pseudorepeated root companion. This is
consistent with theory that explains the cause of a complex-
valued modal vector when two real-valued modal vectors are
close in frequency and misidentified as a single modal vector
[19].

The above MAC evaluations identify whether, and how,
the contamination of a complex-valued modal vector is
related to another of the identified modal vectors. However,
the MAC computation is normalized to vector length, vector
by vector, for the vectors used in the calculation. A weighted
MAC can be used to determine the scale of the contami-
nation. The following three definitions of the weighting for
each of the aboveMACcalculations limit the associatedMAC
value to a fraction of the zero to one scale. If near normal
modes are expected, (1) the weighting and rwMAC should
be close to one, (2) the weighting and iwMAC should be
close to zero, and (3) the combined weighting and riwMAC
should also be close to zero. Note in the following definitions,
complex-valued modal vectors 𝑐 and 𝑑 can again be any
of the modal vectors that the user wishes to include in the
evaluation:

rwMAC𝑐𝑑 = 𝑟𝑊𝑐 × rMAC𝑐𝑑

where 𝑟𝑊𝑐 =
(Re {𝜓𝑐}

𝐻
) (Re {𝜓𝑐})

{𝜓𝑐}
𝐻
{𝜓𝑐}

,
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iwMAC𝑐𝑑 = 𝑖𝑊𝑐 × iMAC𝑐𝑑

where 𝑖𝑊𝑐 =
(Im {𝜓𝑐}

𝐻
) (Im {𝜓𝑐})

{𝜓𝑐}
𝐻
{𝜓𝑐}

,

riwMAC𝑐𝑑 = 𝑟𝑊𝑐 × 𝑖𝑊𝑑 × riMAC𝑐𝑑.
(14)

At this point, now that the contamination of the complex-
valued modal vectors can be confirmed to be from the
dominant portion (real part) of other complex-valued modal
vectors and that the contamination is not significant, a
strategy for determining the best set of real-valued modal
vectors can be identified. One reasonable option would be
to place the real parts and imaginary parts of each complex-
valued modal vector into a matrix as separate real-valued
vectors. A singular value decomposition of this real-valued
matrix will yield real-valued singular vectors and the most
significant singular vectors, equal to the original number of
complex-valued modal vectors, associated with the largest
singular values can be utilized as the final set of real-valued,
normal modes. A simpler solution would be to eliminate the
imaginary parts since the scale of the contamination is shown
to be small.

8. Summary

With the advent of more computationally powerful comput-
ers and sufficient memory, it has become practical to evaluate
sets of solutions involving hundreds or thousands of modal
parameter estimates and to extract the common information
from those sets. In many cases, autonomous procedures give
very acceptable results, in some cases superior results, in a
fraction of the time required for an experienced user to get
the same result. However, it is important to reiterate that the
use of these autonomous procedures or wizard tools by users
with limited experience is probably not yet appropriate. Such
tools aremost appropriately used by userswith the experience
to accurately judge the quality of the parameter solutions
identified.

Future work will involve better numerical methods for
combining algorithms into single consistency diagrams and
autonomous methods for identifying the best causal (phys-
ical) solution are still needed. The application of MAC and
related weighted MAC estimates is helpful for detecting
contaminated modal vector solutions but numerical solu-
tion methods that identify both real-valued modal vectors
(normal modes) and complex-valued modal vectors, when
appropriate, are still needed. Initial positive results have been
obtained, with respect to removing this close mode con-
tamination, by constraining the modal participation factors
via real normalization [20]. If this problem can be resolved,
this would truly yield an autonomous modal parameter
estimation procedure.

Nomenclature

𝑁𝑖: Number of inputs
𝑁𝑜: Number of outputs

𝑁𝑆: Short dimension size
𝑁𝐿: Long dimension size
𝑁: Number of vectors in cluster
𝜆𝑟: 𝑆 domain polynomial root
𝜆𝑟: Complex modal frequency (rad/sec)
𝜆𝑟: 𝜎𝑟 + 𝑗𝜔𝑟
𝜎𝑟: Modal damping
𝜔𝑟: Damped natural frequency
𝑧𝑟: 𝑧 domain polynomial root
{𝜓𝑟}: Base vector (modal vector)
{𝜙𝑟}: Pole-weighted vector (state vector)
𝑟: Mode number
𝜔𝑖: Discrete frequency (rad/sec)
[𝐻(𝜔𝑖)]: FRF matrix (𝑁𝑜 × 𝑁𝑖)
[𝛼]: Numerator polynomial matrix coefficient
[𝛽]: Denominator polynomial matrix coefficient
𝑚: Model order for denominator polynomial
𝑛: Model order for numerator polynomial
V: Model order for base vector
Std. Dev.: Standard deviation
NMVR1: Normalized modal vector residual 1
NMVR2: Normalized modal vector residual 2
NSVR1: Normalized state vector residual 1
NSVR2: Normalized state vector residual 2
𝜎𝑟: Singular value 𝑟 from cluster
MAC: Modal assurance criterion
wMAC: Weighted modal assurance criterion.
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Nowadays, the time tomarket a new vehicle is crucial for every company as it is easier tomeet the customers’ needs and expectations.
However, designing a new vehicle is a long process which needs to take into account different performances. The most difficult is
to predict a dynamic behavior of a vehicle especially when such a big vehicles as urban buses are considered. Therefore, there is
a necessity to use a virtual model to investigate different performances. However, there is a lack of urban bus models that can
fully reflect a dynamic behavior of the bus. This paper presents a fully equipped urban bus model which can be used to study
a dynamic behavior of such vehicles. The model is based on innovative technique called cosimulation, which connects different
modeling techniques (3D and 1D). Such a technique allows performing different analyses that require small deformations and large
translations and rotations in shorter time and automatic way. The work has been carried out in a project EUREKA CHASING.

1. Introduction

In nowadays vehicle industry, time to market is a crucial
parameter. It is caused by an increasing number of customers’
needs and expectations to be met. However, vehicle design
is a long process, during which engineers need to take into
account many guidelines and fulfill all the requirements
connected to safety and comfort of the occupants. Predicting
the structural dynamic behavior is one of the most difficult
tasks, especially when such big vehicles as urban buses are
considered. Due to their size and complexity, experimental
derivation of comprehensive dynamic performances can
be very difficult and economically unjustified. However,
as vehicle dynamics is a very important performance, it
cannot be neglected in vehicle analyses. Therefore, there is
an opportunity to take advantage of numerical modeling and
simulations, to investigate structural performances under
different operational conditions. However, despite that fact,
there is a lack of engineering literature describing urban
bus virtual prototyping projects. Such a literature would
have been of help in understanding how to create models
that allow accurately predicting the dynamic behavior of the
bus. Standard vehicle design process provides short concept

design phase and very long prototype testing stage. However,
following van der Auweraer and Leuridan [1, 2], modern
product development is often based on virtual prototyping
according to the rule “Design Right First Time” [3]. It is
caused by the need for decreasing production costs and time
to market of new vehicle and improving the product quality
at the same time.

The main objective for the engineering design of pas-
senger vehicles is to develop models that perfectly reflect
the behavior of a real construction. Typically, to obtain
trustworthy structural dynamic response, modal analysis of
a real structure has to be performed [4, 5]. Modal analysis
is carried out to extract structural resonance frequencies and
spatial description of vibration patterns, called normalmodes
frequencies and shapes, respectively. Classical modal analysis
is based on a controlled excitation of a system vibration
and measurement of a structure response. This can be easily
simulated with a standard finite element approach. However,
due to the necessity of input forces measurements, classical
formulation has a limited use for a lot of large structures like
an urban bus, and it is more convenient to use a method
based on operational excitation, called operational modal
analysis [6]. Therefore, during the simulations, engineers try
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to recreate vehicle operating conditions to obtain the most
accurate results.

Virtual test rides can be modeled with multibody tech-
niques. Multibody models are used to model the dynamic
behavior of a vehicle, which may undergo large translational
and rotational displacements. For this reason, those models
can be used to simulate vehicles rides. Unfortunately, many
problems connected to dynamics cannot be solved by using
rigid body approximation of the structure. The necessity for
more reliable models describing the complex behavior of
mechanical systems undergoing large motions with small
elastic deformations forced the development of many power-
ful analysis techniques. One of the most popular is coupling
of rigid multibody systems and flexible components (mostly
finite elementmodels), supplemented by auxiliary 1D systems
[7].

For this reason, the authors decided to build a hybrid
urban bus model that was composed of a rigid-flexible struc-
tural multibody model, equipped with on-board intelligent
systems that have an influence on riding conditions and,
consequently, on the results of dynamic analyses.

The developedmodel can be used to evaluate a structure’s
behavior during virtual test rides, which can be carried out on
test lanes providing desired dynamic excitations and forcing
different maneuvers.

In this paper, an introduction to rigid-flexible body
coupling is provided in the beginning. The subsequent parts
describe the link between 3D spatial model and block 1D
modeling of the on-board systems and themodel itself. Such a
link is called cosimulation and is an innovative technique that
allows performing simulations from different engineering
domains (from vehicle dynamics to NVH analysis) in shorter
time and in automatic way.The paper describes hybrid urban
bus modeling process with underlined base model parts
like suspension, structure, and on-board systems. Simulation
results are then correlated with experimental data showing
correctness of the technique. Those chapters are then fol-
lowed by the discussion and conclusions.

2. Coupled Rigid-Flexible Multibody Model

Due to the fact that the full model has been developed with
LMS Virtual.Lab software, rigid and flexible equations of
motion are provided based on [8].

Multibody modeling technique has been developed to
simulate industrial and technological applications that are
made of interconnected components which exhibit relative
movement. These components are represented by sets of
bodies linked together by joints and coupling elements like
springs, dampers conjugated with constraints, and external
force components. The system has to be prepared in order
to allow motion in the desired direction to ensure required
operating conditions (Figure 1).

Rigid multibody systems are considered to have a fixed
frame of reference in which motion of the chosen points is
observed.

To describe rigid multibodymotion as a function of time,
generation of equations of motion is needed. However, for

Body 1 Body 2

Body 3

Joint

Force
 ele

ment

Figure 1: Multibody system.

large systems, it is a nontrivial task. For this reason, a lot
of formalisms have been developed. Numerical formalisms
especially play a significant role as they are used in computer
multibody codes which becomesmore andmore popular and
sophisticated [9].

The most popular formalism is one based on Newton-
Euler equations rewritten in thematrix form and used in LMS
Virtual.Lab [8]:

[
𝑀 Φ

𝑇

𝑞

Φ𝑞 0
] ⋅ [

̈𝑞

1
] = [

𝑄

𝑔
] , (1)

where𝑀represents amultibodymassmatrix,Φ𝑞 is a Jacobian
matrix of the vector of constrains relative to the generalized
coordinates 𝑞, and 𝑄 is a vector of applied forces while 𝑔 is
the constraint acceleration gamma term and 𝜆 is the vector of
Lagrange multipliers of the constraints. Equation (1) is then
solved inside Virtual.Lab with special integration codes.

Unfortunately, many dynamic problems cannot be solved
using only rigid body formulations. In case of small deforma-
tions, especially, to calculate structural dynamics, the linear
finite element modeling (FEM) method is employed. For
this reason coupling between multibody systems and finite
element models has become an issue. Finite element models
represent linear elastic deformation and can be integrated
with nonlinear, large rotations and translations (multibody
models). Different solutions for flexible multibody systems
can be found in [10].

In Virtual.Lab formulation, the coupled flexible-rigid
multibody models require a finite element analysis. The
flexibility is represented with a set of flexible body modes
which is a combination of normalmodes (to represent natural
vibration) and static ones (to represent loading and coupling
between bodies).
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Figure 2: Example of 1D model (block-diagram).

Equation of motion with applied flexibility leads to

[
[
[
[
[

[

𝑀𝑟 𝑀𝑟𝑓 Φ
𝑇

𝑞𝑟

𝑀𝑓𝑟 𝑀𝑓 Φ
𝑇

𝑞𝑓

Φ𝑞𝑟 Φ𝑞𝑓 0

]
]
]
]
]

]

⋅ [

[

̈𝑞𝑟

̈𝑢

𝜆

]

]

= [

[

𝑄𝑟

𝑄𝑓

𝑔

]

]

. (2)

Mass matrix𝑀 is divided into 𝑟-rigid part and 𝑓-flexible
part; the same applies for Jacobian matrixΦ of the constraint
equations. Apart from rigid generalized coordinates 𝑞, a vec-
tor of modal coordinates 𝑢 appeared; 𝜆 represents Lagrange
multiplier. On the right-hand side, vector of applied forces 𝑄
divided into 𝑄𝑟 forces applied on a rigid body and 𝑄𝑓 forces
applied on a flexible body (including body stiffness matrix)
and general constrain force 𝑔 are shown.

Thementioned set of flexible bodymodes can be obtained
in a large number of methods [8]. One of them is the Craig-
Bampton dynamic reduction [11]. This method combines
normal modes with static-constraint modes (𝑞, 𝑢𝑏) by Craig-
Bampton transformation matrix ΦCB which contains a fixed
base modeshape Φ𝐿 and a rigid body vector Φ𝑅:

𝑢 = ΦCB ⋅ {
𝑢𝑏

𝑞
} = [

𝐼 0

Φ𝑅 Φ𝐿
] ⋅ {

𝑢𝑏

𝑞
} . (3)

Modern coupling techniques are still under investigation.

3. 1D System Simulation

The one-dimensional modeling is a mathematical approach
in representation of components. In contrast to 3D CAE
modeling, this approach gives the capability to simulate
the behavior of systems before detailed CAD geometry is
available. Model components are described using validated
analytical models that represent the systems behavior. This
technique of modeling is also referred to as a block modeling
or a multiport modeling technique [12]. 1D models are
physical models of real systems that are described with
mathematical models (systems equation of motion).

One-dimensional models are created by linking individ-
ual physical elements together, creating a block diagram of
full system (Figure 2). In such a system, the signal flows
between individual components. Due to different mathemat-
ical representations of individual elements, the input signal
is transformed in a predefined manner, to form an output.
Those 1D models can be treated separately (solving their
equations of motion) or can be linked with 3D models by
cosimulationmethod linking the two solvers (1D and 3D) that
can run separately by embedding one set of equations into the
other, using only one single solver.

This solution is widely used among automotive engineers
especially to simulate electronic systems inside a vehicle [13].

Fo
rc

e (
N

)

Velocity (m/s)

Damper characteristic
Logarithmic (damper characteristic)

Rebound

Compression

Figure 3: Typical damper characteristic and its logarithmic approx-
imation.

One platform that provides a possibility to build 1D
models is LMS Imagine.Lab AMESim that is used in this
work.

4. Hybrid Urban Bus Model

4.1. Coupled Bus Multibody Model. The urban bus model
developed at AGHUST has been based on a real city bus con-
struction. Individual components have been modeled using
CAD geometry and characteristics and additional informa-
tion provided by themanufacturer.Themodel contains about
70 individual parts and about 90 kinematic joins.Thenumber
of general coordinates (including modal coordinates) is less
than 500.

In case of structural dynamics behavior, the suspension
is used only as a filter between the track and the bus
superstructure. Because of a high rigidity of the suspension
structural elements and the frequency band of interest, their
deformations were neglected. For this reason, all suspension
elements, excluding tires, have been prepared as rigid bodies.
Only coupling elements (dampers and bushings) have been
described with original characteristics to incorporate proper
stiffness and damping characteristics to the model. To obtain
accurate damping elements characteristics for the front and
the rear suspension, a logarithmic approximation has been
performed according to the following (Figure 3):

𝐹 = 𝑐 ⋅ ln (V) . (4)

𝐹 represents a rebound/compression damper force, 𝑐 is a
constant (depends on damper type), and V is a car body
vibration velocity relative to the wheels.



4 Shock and Vibration

To connect bus suspension elements, based on supplier
technical data, bushing elements are used. Those elements
provide an interface between two parts, damping the energy
transmitted through the bushing. Bus suspension bushings
are made of rubber separating the faces of two metal objects
while allowing a certain amount of movement.

To provide good simulation results, bus suspension bush-
ings have been modelled inside Virtual.Lab Motion software
as special connector element called bushing. This element
allows providing real bushing characteristics to the virtual
model as an excel file.

Such connectors minimize vibrations through the chassis
of the vehicle in virtual simulations like in the real vehicle.

Another important element that provides traction
between the vehicle and the road and absorbs shock is the
tire. Based on available information about tire characteristics
from the bus manufacturer, those components have been
modeled using a Virtual.Lab special tire module called
Complex Tire, which permits inputting tire parameters
like diameter, stiffness, damping, and so forth, in terms
of providing real ride conditions. Parameters values have
been taken from supplier data and adjusted to the values
that provide good correlation between real experiment and
simulation.

Unfortunately, because of missing measurement of real
bushing and tires, no correlation directly for those elements
has been done.

Urban buses are often equipped with a pneumatic sus-
pension where standard steal springs are replaced with air
cushions, filled with pressurized air. The main advantages of
using air springs over the standard steel-spring suspensions
in an urban bus are

(i) high comfort expressed by small deflections and
lower natural frequencies,

(ii) possibility of controlling the operation conditions, by
modifying the internal pressure value,

(iii) kneeling function—in case of buses this function
eases getting on and off the vehicle on stops [14].

Air springs have beenmodeled as combined damping and
stiffness forces elements controlled by ECAS (electronically
controlled air suspension) system. Such a configuration pro-
vided a possibility of applying real air spring characteristics
to the model.

Due to the fact that the scope of the investigations
was to measure bus driver’s comfort by means of structure
vibration level, the bus superstructure has been modeled as a
deformable element. Nastran finite element coding was used
to create a FEmodel based onCAD geometry. To simplify the
model, some of the elements like engine or gear have been
substituted with concentrated mass elements. Figure 4(a)
presents an urban bus suspension multibody model and
Figure 4(b) presents a coupled flexible-rigid urban busmodel.

4.2. Bus On-Board Systems. To ensure the most realistic
simulation conditions and obtain the most accurate response
of the analyzed urban bus, electronic auxiliary systems have
also been taken into consideration. Nowadays, vehicles are

equipped with electronic devices which improve ride quality
and safety. For a regular urban bus, the most important
are ABS/ASR and EBD (i.e., anti-lock braking system/anti-
slip regulation and electronic breaking force distribution)
to maintain safety during breaking maneuvers and ECAS
(i.e., electronically controlled air suspension) system which
controls the work of a pneumatic suspension [15]. To assure
a realistic prediction of the behavior of the bus in operating
conditions, the abovementioned systems have been applied
to the coupled multibody model.

As it was mentioned before, bus structure and suspension
have been modeled with 3D models (multibody and FE
models), which is necessary to simulate its dynamic behavior.
In case of on-board systems, it is not necessary to create 3D
models of electronic devices as the most important thing is
signal flow from the bus to the electronic units and vice versa.
For this reason, on-board systems have been modeled with
1D block diagrammethod in Imagine.Lab AMESim software.
To integrate 3D bus model and 1D electronic devices, a
cosimulation between Virtual.Lab and AMESim has been
used to exchange information between 3D and 1D models.

Such a cosimulation technique allows reducing simula-
tion time, increasing the realism of the virtual bus.

A brake assist (ABS/ASR and EBD) block diagram,
coupled with other parts of the model, is shown in Figure 5.
In this circuit, predefined ABS/ASR and EBD elements
have been used. The characteristic parameters have been
elaborated according to the data provided by the systems
manufacturers. The principles of the breaking maneuver,
used for the simulation of themodel equippedwith electronic
elements, are similar to realistic driver behavior. Multibody
solver sends a signal toAMESim,which contains information
about bus actual travelling velocity and angular velocities of
each wheel. Based on those, breaking torque for each wheel
is evaluated and resent to the leading model. Figure 6 shows
that, with break assistant system, the angular velocity of the
wheels is a nonzero value, while, without it, axes are blocked
in slippage.This underlines the importance of this system for
the passenger’s safety.

The second system applied to a coupledmultibodymodel
was ECAS. Figure 7 presents the ECAS numerical model.
This circuit has been fully developed at AGHUST.The inves-
tigated system has been equipped with 6 air cushions, two
connected to the front axle and four supporting the rear one.
This asymmetry is due to the unequalmass distribution—that
is, engine, gearbox, and auxiliary systems are located at the
back of the vehicle.

The ECAS system has beenmodeled using the inputs pro-
vided by the bus manufacturer. By virtue of submitted data,
there was a need for approximation of the received numbers.
The derivation of the mathematical models describing the
dynamical behavior of the air spring can be found in [16–
20]. In general, if isothermal process is assumed inside the air
spring, its static stiffness can be described by the following
[18]:

𝑘𝑠 =
𝑑𝐹

𝑑𝑥
= 𝑃

𝐴
2

𝑒

𝑉
+ (𝑃 − 𝑃𝑎)

𝑑𝐴𝑒

𝑑𝑥
, (5)
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(a) (b)

Figure 4: (a) Multibody bus suspension system; (b) rigid-flexible multibody bus model.
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where 𝐹 is an applied force, 𝑥 is an air sprig deflection
(difference between nominal and compressed air spring
height), 𝑃 is the absolute pressure inside the air spring, 𝑃𝑎 is
the atmospheric pressure,𝑉 denotes internal bellows volume,
and𝐴𝑒 is an effective area of an air spring (i.e., supported load
value divided by 𝑃).

Based on a manufacturer’s technical data, a regression
model approximating the static response of each air spring
was developed. To fit a curve on the obtained measurement
points, linear robust least squaresmethodhas been employed.
Standard least squaresmethod tends tominimize the squared
distance between the regression curve and the provided data
points; thus, it is sensitive to outliers. To omit that problem,
algorithm described by (6) [17] was implemented which
assigns a weighting factor to every measurement point. The
value is inversely proportional to the distance of themeasured
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points from the fitted polynomial curve; thus, the influence
of the outliers can be minimized. Furthermore, points which
are further than would be expected are ignored during the
regression process. Consider

𝑆 =

𝑛

∑

𝑖=1

𝑤𝑖(𝑦𝑖 − 𝑦𝑖)
2
, (6)

where 𝑤𝑖 is the weighting factor for the squared distance
between measured 𝑦𝑖 and fitted 𝑦𝑖 values. Measuring equip-
ment inaccuracies are supposed to be invariant in time;
hence, the variance of the acquired data should be constant.
If this assumption is violated, it is highly probable that input
data set contains some elements of poor quality. The weights
𝑤𝑖 are then applied to transform the variances to a constant
value. Results of approximation are visible in Figure 8.
Because of a strong nonlinearity of the abovementioned
characteristic and for simplification, the characteristic was
split into two separate regions: force generated by an inflated
air spring and force generated by a bump stop, after reaching
a critical deflection. The latter is expressed only as a function
of bump stop material stiffness.

Consistent with a measured air spring deflection
(received from a multibody model) and desired pressure,
corresponding force value is sent back to the base structure.
If the deflection falls below the specified value, the signal is
switched to the bump stop characteristics. If, on the other
hand, operational height is within the allowable tolerances,
compressed air flow is cut off and the air spring is working as
an inflated cushion.

Based on [18], the authors have introduced also an
appropriate damping coefficient to the analyzed bus model
to simulate not only air spring stiffness but also its damping
behavior.

Coupling between flexible and rigid bodies and link
with on-board systems block diagrams ensures real ride
conditions. Because of a juncture between different modeling
techniques, such a structure is called a hybrid model.

5. Simulations

The hybrid model described in a previous chapter has been
developed to perform structural dynamics analyses under
operational conditions.
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Figure 9: Comparison between numerical and experimental vibration acceleration as a function of frequency: (a) point A; (b) point B; (c)
point C; (d) point D.

In order to examine a usefulness of the developed model
for the structural measurements, virtual test has been per-
formed and compared with the real test ride on a test track,
which was combined from two different surfaces on its left
and right side. To obtain the needed data, the conditions of
the analysis were set the same as in the case of experiment;
that is, the traveling speed was set to 30 km/h. During the
experiment, the driver was obliged to keep the velocity
constant, but, because of many factors (e.g., speedometer
inaccuracy, irregular pavement conditions, etc.), thiswas only
a rough value. Nevertheless, as can be seen in Figure 9, the
results of numerical computations are in great correlation

with the data obtained experimentally. The peaks at 11 Hz
and their harmonics are the consequence of the form of the
test track surface, which was covered by regularly distributed
curbstones, and the vehicle’s speed. Other peaks are caused
by structural dynamic response.

Several measurement points located near the suspension
mountings (points A (Figure 9(a)) and B (Figure 9(b)))
and near the driver seat (points C (Figure 9(c)) and D
(Figure 9(d))) were chosen to collect the experimental data
during the tests.The obtained results were compared with the
output from the numerical computations, which is shown in
the examples in Figure 9.
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Figure 10: Hybrid urban bus model-stress Von Mises’s measure-
ment.

The differences are results of imprecise mapping of the
road due to its complicated shape. Inaccuracies can also
result from differences in placing the accelerometers on real
and virtual structures, which affects the output data strongly.
Another reason of the numerical and experimental data
variations can arise from the tire modelling technique. As
mentioned before, the tires have been modelled with the
specialized Virtual.Lab module, including proper features
like stiffness and damping. However, due to the complexity of
tire dynamic characteristics and the difficulties in modelling
the contact between the track and thewheels, those important
parameters can be only roughly approximated.

However, the developed model is precise enough to be
used for different measurements. For instance, the described
model can be used for stress and strain evaluation; hence,
the weakest regions can be pointed out. Figure 10 shows
an example of a stress distribution map. Such analyses are
extremely useful because they can reveal structural defects
in the very first phase and, hence, the problem can be solved
before the first prototype is released.

6. Conclusions

Urban buses have not yet been investigated thoroughly which
opens the way to many improvements that can be obtained
cheaply, by means of numerical methods. The presented
hybrid urban bus model is a link between different modeling
techniques which takes advantage of them in order to
solve complex structural dynamics problems. Utilization of
coupled flexible-rigid multibody model instead of dynamic
loads on finite element model only gives more reliable
representation of reality. Buses work on the streets and theirs
structures are extorted with road irregularities. Applying
such load conditions to a pure FE model is not a trivial
task. However, with the proposed model, it can be achieved
using an arbitrary track model and a contact connection
with tires. Hybrid urban bus model has been developed,
linking FE structure model (to make stress calculation on
it possible), rigid suspension multibody model (for vehicle
dynamics simulations with large translations and rotations),
and 1D modeling techniques of on-board electronic devices

(where time-consuming 3Dmodeling is not necessary). Such
a model is useful for analyses of structure behavior under
real, operational loads and optimizing in terms of vehicle
parameters.

Such a model has been simulated in terms of operational
conditions from real bus test on test truck. Results of
simulation and real experiments have been compared. The
comparison presented good correlation between data, which
means that model can be used for virtual prototyping of
urban buses.

The proposed multibody hybrid model can be used
instead of FE representation, ensuring more precise results;
due to application of realistic operating conditions, the usage
of commercial software ensures the availability of themethod.

The elaborated modeling technique can be also used in
the optimization problems, combining both structural and
vehicle dynamics, which is planned for the future.
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This paper presents selected results and aspects of themultidisciplinary and interdisciplinary research oriented for the experimental
and numerical study of the structural dynamics of a bend-twist coupled full scale section of awind turbine blade structure.Themain
goal of the conducted research is to validate finite elementmodel of themodified wind turbine blade sectionmounted in the flexible
support structure accordingly to the experimental results. Bend-twist coupling was implemented by adding angled unidirectional
layers on the suction and pressure side of the blade. Dynamic test and simulations were performed on a section of a full scale wind
turbine blade provided byVestasWind SystemsA/S.Thenumerical results are compared to the experimentalmeasurements and the
discrepancies are assessed by natural frequency difference andmodal assurance criterion. Based on sensitivity analysis, set of model
parameters was selected for the model updating process. Design of experiment and response surface method was implemented to
find values of model parameters yielding results closest to the experimental. The updated finite element model is producing results
more consistent with the measurement outcomes.

1. Introduction

Wind turbine blades must be designed to resist the extreme
load cases and fatigue loads from normal operation. Sudden
wind gusts are often too quick for the active pitch control
system to react and may shorten the fatigue life substantially.
This problem may be overcome by an aeroelastic tailoring
of the blades. Particular implementation of the anisotropic
composite material can introduce the bend-twist coupling
in the blade [1–4]. In [5] a new beam element, which
is able to take the behavior of anisotropic materials into
account, is developed and implemented into the aeroelastic
code HAWC2. This makes it possible to simulate wind
turbines with structural couplings in the blades.The coupling
causes the feathering blade to twist under the bending load
and as a result decreases the angle of attack. The original
wind turbine blade section made of composite material

was statically tested and modeled with model validation
analysis [6, 7]. Based on the analysis outcomes the bend-
twist coupling design of existing blade was modified by
means of additional composite material layers. In [8] an
overview of the statistical and modal analysis experiments
on the original and modified blade section is presented. In
this paper the updating of the modified wind turbine blade
section’s finite element model using experimental modal
analysis is presented. Finite element (FE) model updating
has become an important tool used in structural dynamics
[9, 10]. Anumber of FEmodel updating procedures have been
proposed [11–13]. Direct, noniterativemethods update the FE
model properties in one-step procedure [14]. The methods
based on sensitivity of the parameters solve the optimization
problem in an iterative procedure. Examples of application
of static strain measurements for FE model updating are
noted [15]. Multiobjective optimization technique applied
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Figure 1: Experimental set-up showing the wind turbine blade section mounted on the test rig with the coordinate system.

Table 1: Basic information about geometry and material properties used for modeling of supporting structure.

Geometry [mm] Pipes C-Shapes I-Shapes Plywood
Inner radius 170 Outer radius 160 Standard UPN 200 Two bolted standard UPN 200 Thickness 180

Emodulus [GPa] 200 200 200 13.2
Density [kg/m3] 7890 7890 7890 736
Poisson’s Ratio 0.3 0.3 0.3 0.01

to update the FE models of civil engineering structures
in structural dynamics is reported [16–18]. Iterative updat-
ing using sensitivity based methods requires large number
of computations of FE models with modified parameter
values [9, 19, 20]. Response surface method (RSM) based
meta-model is an approximation of the FE model which
could be replaced in the updating procedure [21, 22]. RSM
method is widely used in engineering applications [19, 23,
24]. Sections 2 and 3 of this paper present the structural
dynamics identification, which was performed by means
of experimental modal analysis. The RSM based FE model
updating procedure using design of experiment (DOE) to
estimate the structural parameters based onmeasurednatural
frequencies and mode shapes is presented in Section 4. The
FE model was updated and validated against experimentally
identified dynamic behavior of the modified blade section
with support structure.The influence of the support structure
dynamics on the test specimen is discussed.

2. Object of the Investigations

Theobject of investigation is an 8-meter long section cut from
a 23-meter wind turbine blade. Blade section is mounted in
the two root clamps (Figure 1).

The blade is a hollow structure with two shells. The two
shells form the suction and pressure side of the blade. To join
the two shells together the structural web is incorporated.
Investigated blade designed by Vestas has a load carrying
box girder.The original blade section was modified with four
layers of UD1200, which were laminated on the pressure and
suction side of the blade with the fibers angle of 25∘ to create
a measurable flapwise bend-twist coupling. The additional
layers were laminated as indicated in [6, 7]. Support structure
is built with use of cylindrical beams (steel pipes), “I” and
“C” shaped UNP-profiles, and airfoil contour-cut plywood

clamps. Geometry and material properties are presented in
Table 1.

3. Experimental and Numerical Investigation
of Structural Dynamics of Modified Blade
Section

The modified blade section was investigated by means of
experimental modal analysis. Particular focus was on the
influence of the support structure in the correlation analysis
between numerical and experimental modal models [25, 26].

3.1. Experimental Campaign and Results. Blade section was
excited with two electrodynamic shakers attached at the
tip end in the flapwise and edgewise directions. Frequency
response functions were measured and stored within 0 and
120Hz frequency range.

For adequate identification of the blade dynamic dis-
placement, accelerations of the vibrations were measured in
130 points. Thirteen equidistant measurement cross-sections
were defined along the span-wise direction (𝑍) every 0.5
(m). Each cross-section contains five measurement points
in which accelerations were acquired along the flapwise (𝑋)
and edgewise (𝑌) direction. These points are located at the
leading edge, trailing edge, on the line of airfoil maximum
thickness, and in the midpoints between the previous three.
Measurement directions were precisely defined based on the
CAD geometry of the blade section.

Model quality assessment was an integrated part of the
investigation. Except time invariance another conditionmust
be observed to satisfy of modal analysis assumptions: linear-
ity,Maxwell’s reciprocity principle, and observability. Possible
sources of nonlinearities within investigated structure are
material properties, geometrical properties, and the existence
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of bond connections verification of a superposition rule is one
of the methods of detecting nonlinearities. Linearity check
was done for the level of driving voltage ranging from 0.5
(V) to 2 (V) with a step of 0.5 (V). Results are presented in
Figure 2. Frequency response function (FRF) between input
signal and output spectrum defined as acceleration over force
remains constant independently of excitation voltage level.
This proves that the structure dynamic behavior is linear
within bandwidth of interest.

The reciprocity check is based on Maxwell’s principle,
which states that the FRFs obtained by applying the force
on point 1 and measuring the response in 2 and vice versa
should be the same.The results for the two checks performed
confirmed applicability of the reciprocity rule.

During the processing of the data, some significant noise
was observed in the acquired FRFs in the low frequency
region. The driving point coherence functions show a small
drop in this region, meaning a nonideal excitation (Figure 3).

The modal parameter identification technique was not
able to clearly stabilize modes in this region, possibly result-
ing in some local errors in the mode shapes below 7Hz. The
estimation provided natural frequencies, mode shapes, and
corresponding damping ratios in the frequency bandwidth 0–
60Hz. First five out of 12 identifiedmode shapes are provided
in Figure 4. MAC (modal assurance criterion) can be used to
compare twomodalmodels [27]. If a linear relationship exists
between the two complex vectors, theMAC value will be near
to 1. If they are linearly independent, the MAC value will be
small (near zero). Figure 5 shows a comparison between the
AutoMAC of the modal model obtained by considering only
the sensors on the blade and the one where also the response
of the supporting structure is included.

Low valued off-diagonal terms for the blade only model
ensure linear independence of estimated modal vectors. The
correlation between off-diagonal terms is increased when
including the supporting structure in the analysis.This is due
to the fact that the clamping is not perfectly rigid and the
support has its own dynamic behavior which influences the
measured response of the blade.

In Figure 5, red color corresponds to MAC value equal
100. Light green color reflects the MAC value 0. Modes
corresponding to frequencies 8Hz, 28Hz, 31Hz, and 33Hz
are related to dynamic properties of the supporting structure.
Additionally, appraisal of (a) and (c) in Figure 5 shows
that the numerical model basing solely on blade geometry
yields less distinctive mode shapes. Comparing Figures 5(a)
and 5(c), the correlation of the off-main diagonal terms of
the AutoMAC is lower which is a desired situation due to
distinction of mode shapes. The model producing undistin-
guished mode shapes is not suitable for model updating.

3.2. FE Model of the Blade Section with Support Structure.
The numerical model adopts MSC.Patran/Nastran blade FE
model (Figure 6). It is comprised of 8-noded shell elements
(Quad8) and the 20-noded solid elements (Hex20). This
model has approximately 600 000 degrees of freedom [6].The
original FE model of the blade was developed to study the
static response.The blade sectionwas fully fixed at the chosen

0.00 130.00
(Hz)

−50.00

50.00

F
F
F
F

FRF Drvp :1:+Y/Drvp: 1:+Y linearity check 05V
FRF Drvp :1:+Y/Drvp: 1:+Y linearity check 10V
FRF Drvp :1:+Y/Drvp: 1:+Y linearity check 15V
FRF Drvp :1:+Y/Drvp: 1:+Y linearity check 20V

g
/N

(d
B)

Figure 2: Linearity check for one of the points on the blade. Voltage
values = 0.5 V, 1 V, 1, 5 V, and 2V.

F
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(Hz)

1.00

0.81

A
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de

Coherence Drvp: 1:+X/Multiple
Coherence Drvp:2:−Y/Multiple

Figure 3: Coherence functions for the two driving points. It is used
as measure of the FRF quality. Ideally it should take value equal to 1.

cross-section near the boundary to represent the clamped
configuration of the test rig.

The boundary conditions which were adequately repre-
senting support structure in static analysis [6, 7, 28] were used
in the initial theoretical modal analysis. In the correlation
analysis of the test and FE modal models it turned out
that a nonnegligible discrepancy in mode shapes occurs.
Relatively light and flexible support (Figure 5(b)) has signif-
icant contribution on the mode shapes of studied structure
which can be observed in the MAC values (Figure 5(c)). In
order to eliminate abovementioned problem, an additional
support structure model had to be introduced into the blade
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Z

Mode 12: 57.2933Hz, 1.06%

(f) Bend-torsion, 𝜔 = 57.29Hz

Figure 4: Estimated experimental mode shapes of the modified blade section and support structure.

section test set-up FE model. The main assumption prior
modification of original FE model was to keep additional FE
model as simple as possible, due to the fact that numerical
model was yet relatively large, while making it possible to
correlate simulation results with measured data in all points
used in the test phase.

As it can be seen in Figure 6 left, the real supporting struc-
ture comprises of pipes, UNP-profiles, and support clams of
contour-cut plywood. Basic information about geometry and
material properties exploited in derived additional FE model
are presented in Table 1.

The additional FE model consists of beam elements
(CBEAM in Nastran notation), shell elements representing
plywood (QUAD8), elastic springs representing mountings

between beam elements (CELAS1), rigid bars connecting
plywood and I shape clamp beams (RBE2 and), and addi-
tional rigid bars with ends at position corresponding to the
position of measuring points from test setup (RBAR). Rigid
connection between plywood and I shapes is justified because
of the large difference in E modules of both materials. Rep-
resentation of FE-to-test matching with rigid bars does not
introduce additional stiffness to the system and is acceptable
as long as global mode shapes of support are of interest only.
After preparation of support FE model, both additional and
the original FE models were merged. Nodes at the interface
between blade and supporting structure, that is, between
plywood and outer surface of the blade, have restrained
rotational DOFs. Such an approach was taken because in the
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Figure 5: AutoMACmatrices for experimental modal models with sensors only on the modified blade section (a), support structure (b), and
blade section with support structure (c).

X
Y Z

Figure 6: FE model of the blade section clamped to the support structure. Yellow bulbs denote test and FE geometry correlation node
mapping.
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Figure 7: MAC matrix for test and FE simulation modal vectors of modified blade without support structure.

real structure interface between profile-cut plywood and the
blade is realized on approximately 200mm of width, while in
the numerical model only single row of nodes is used.

3.3. Correlation Analysis for the Simulation and Test Results.
Based on the estimated experimental modal model and
modified blade FEM analysis models the correlation analysis
can be applied.TheFEmodel should yield natural frequencies
values and mode shapes conforming to the measured. Modal
assurance criterion is used as the original-modified blade
simulation and also test-simulation correlation metrics.

The global coordinate system used to define the test
model differs from that used for the FE model. In order to
make the models match it is necessary to apply geometric
correlation by translation and rotation of the test model
(Figure 6). Next step is node mapping. The number of
measurement nodes is much less than the FE nodes. Modal
vectors are compared only for the nodes from FE which are
located closest to the measurement points. Only the portion
of the blade after the clamp is considered.

The blade section model was solved to compute mode
shapes in the 0–60Hz frequency bandwidth. Calculations
were carried out at the CI TASK, Academic Computer Center
inGdańsk on a 50Tflop cluster.Modal assurance criterionwas
calculated for the corresponding modes in order to associate
the closest numerical and experimental mode shapes The
procedure accounted for both natural frequency value and
the mode shape consistency (Table 2).

The following modes were investigated: 1st and 2nd
flapwise bending, 1st and 2nd edgewise bending, and 1st
torsional (Figure 4). The MAC matrix in Figure 7 clearly
shows that the off-diagonal terms are low valued which
confirms linear independence of estimated modal vectors.
The best test and simulation modal vectors consistency can
be observed for the 2nd flapwise mode (Table 2).

The consistency of the results can be recognized as satis-
factory; however the present differences need to be further

Table 2: Initial consistency of the modal model parameters.

Initial WT blade
TEST FE

Freq. 1 Freq. 2 MAC value Freq. 2−Freq.
1 (Hz)

Freq. 2−Freq. 1
(% of Freq. 1)

4.5 4.2 0.636 −0.24 −5.4

8.4 10.5 0.94 2.1 24.9

19.2 17.2 0.963 −2.03 −10.5

33.3 36.3 0.503 3.02 9.1

40.9 42.2 0.76 1.33 3.3

43.8 39.6 0.479 −4.2 −9.6

57.3 49.8 0.857 −7.5 −13.1

investigated. Observing the values of the MAC criterion
between test and simulation modes (Figure 7), differences
can be notified. They are caused by the influence of the
support structure and not perfectly excited 1st bendingmode.
Further investigation of observed differences is presented in
Section 4.

4. Updating of the Numerical Model to the
Test Results

Satisfactory conformity of the static tests and simulations
results has proven the validity of the FE model of modified
blade section. Structural dynamics analysis revealed the
unsatisfactorily large difference in between tests and simu-
lations. The main reason for these differences is associated
to the influence of the flexibility of the support structure.
It is complex structure constructed with numerous pipes
clamping rings, screwed I beams, and plywood. Part of
the structure is constrained to the next structure. For the
improvement of the FE model the three-step routine was
realized. In the first step sensitivity analysis of the model was
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Figure 8: Frequency sensitivity matrix graphically presenting normalized magnitude of the impact of selected design variables (inputs) on
the modes frequencies of interest (outputs).

computed in order to determinemodel parameters which are
most influential on the investigated modes. In the second
step the design of experiment (DOE) procedure to produce
statistical data tabulating input-output relationships. In the
third step the response surface model (RSM) is calculated to
determine how model parameters influences on the natural
frequencies. Study of responses obtained from particular
values of themodel parameters allows to update the FEmodel
of support structure.

4.1. Sensitivity Analysis. Parameters of the original blade
section model were assumed to be constant and were not a
subject of updating analysis. 56 parameters characterizing the
support structure and additional composite unidirectional
layers model were defined as a design variable for the prelim-
inary sensitivity analysis.They comprisedmaterial properties
such as elasticity modulus, shear modulus and density of the
additional composite unidirectional layers, plywood clamps,
the rubber pads, the steel pipes, and the bushings. This study
was realized to:

(i) identify parameters (inputs) which have no impact on
the mode frequencies of interest (outputs);

(ii) identify inputs that cause significant change in the
outputs.

Outcome of the frequency sensitivity analysis is presented
in Figure 8. The total mass of the system was not known
therefore themass sensitivity was not computed. Based on the
outcomes of the analysis the set of 7 parameters was selected
as input variables for the design of experiment (Table 3).

Frequency sensitivity analysis provided information
about most influential material properties of the supporting
structure and additional composite layers. There are several
uncertainties related to unknown properties of support struc-
ture construction components (Figure 9). C shape beams are

Table 3: Updated parameters as variables in the model and their
initial values.

Name Initial
I Bush K1 2.96𝐸 7

Steel pipes E 2.09𝐸 11

Steel E 1.99𝐸 11

MAT9 7 G13 2.49𝐸 10

MAT9 7 G14 −1.57𝐸 10

MAT9 7 G24 −7.32𝐸 9

MAT9 7 G34 −6.85𝐸 9

MAT9 8 G56 −2.65𝐸 8

drilled; I shape clamp beams consist of two bolted C shape
beams, plywood properties, and connections of components.
Based on the frequency sensitivity analysis outcomes the
material properties of the supporting structure and additional
composite layers were selected to be updated parameters.

4.2. Design of Experiment. Computation of the FE model of
the system under investigation takes large number of hours
for a single run. Therefore applying optimization analysis
which would require large number of runs is not a best avail-
ablemethod ofmodel updating. In the systemwith numerous
variable inputs (factors) which affect the outputs (responses)
the design of experiment procedure can be used to gather
data. The result data is used to develop an approximate
model (such as response surfacemethod) linking outputs and
inputs. Experimental design which was used is full factorial.
It required computation of 2k combinations where k is a
number of factors.With 7 factors (Table 3) applied number of
runs was 128. It yielded 21 terms present in quadratic model.
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I and C type beams connections with pipes Connection model with bush type properties

Figure 9: Mountings of supporting structure modeled with steel pipes, steel, and bushing properties.
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Figure 10: Example of 3D scatter plot of two inputs (factors) impact on the output (response) 7th mode frequency.

Analysis of DOE data was performed to identify inputs
(factors) which introduce significant change in output
(response). For this purpose numerous scatter plots were
drawn and analyzed. Example of 3D scatter plot is shown
in Figure 10. It also allows to screen for response values
computed from model which are closest to the values
obtained frommeasurement.TheDOE scatter plot shows the
output (response) values for each level of each input (factor)
variable. It can be observed that the location and scale vary
for both within a factor variable (nominal, minimum, and
maximum) and between different factor variables (Young

modulus of steel pipes and Young modulus of steel bars).
Review of the scatter plots for number of variables allows
to identify important factors (inputs) and provides a ranked
list of important factors from a results of design of experi-
ment.

Next to the scatter plot the histogram plots were drawn to
present the distribution of the computed responses. It is pos-
sible to identify the center, spread, and outliers. Example of
the histogram plot for the 9thmode frequency is presented in
Figure 11. Vertical axis shows number of runs corresponding
to the response on horizontal axis.
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Figure 13: MAC matrix, test versus updated FE model of the blade with flexible support.

Table 4: Updated parameters and their final values.

Name Final
I Bush K1 3.289𝐸 7

Steel pipes E 1.9𝐸 11

Steel E 2.0𝐸 11

MAT9 7 G13 1.122𝐸 10

MAT9 7 G14 −1.424𝐸 10

MAT9 7 G24 −6.644𝐸 9

MAT9 7 G34 −6.225𝐸 9

MAT9 8 G56 −2.413𝐸 8

Histogram of 9th mode frequency shows the results
distribution is almost symmetric with most of the results
located in the proximity of nominal value. Data is not skewed
nor contains outliers and the distribution ismoderate tailed—
the number of runs is dying off out in the tails of the
histogram.

4.3. Response Surface Model. Based on design of experiment,
response surface method was computed using polynomial
model of several factors, including terms for quadratic cross-
products displayed in Figure 12.

The RSM methodology allows for further processing
of the DOE results. 3D graphs are plotted based on the
available design variables contributions. The inherent trend
of the factor-response multidimensional relationship was
computed for selected inputs applying Taylor polynomial.
Statistical model allows to approximate data and correctly
predicts the response without lengthy and costly simulation
runs.

Based on the analysis of the RSMmodel the values of the
FEmodel parameters (factors/inputs) were selected (Table 4).

As a result a correlation analysis of updated and validated
FE model shows significant improvement in comparison to
the results from original FE model (Figure 13). Test modes of
40.9 (Hz) and 43.8 (Hz) correspond betterwith the FEmodes.

Comparison of frequency value differences of initial
(Table 2) and final models (Table 5) shows that the highest
discrepancy between simulation and experimental frequen-
cies could be observed for torsional mode for both initial and
finalmodel. Frequency difference between FE initial and final
model for Test modes 4.5 (Hz) has decreased from −5.4% to
−2.2% and for 19.2 (Hz) mode from −10.5% to −7.3%.

5. Conclusions

This paper presents some results and aspects of the multi-
disciplinary and interdisciplinary research oriented for the
numerical study in updating of the finite element model
of a wind turbine blade section using experimental modal
analysis results.

Experimental test data examples were shown and used for
two purposes: firstly to evaluate the influence of the flexible
support structure ontomeasurement results of the bend-twist
coupled blade section and secondly to use the test results
for FE models updating. The common observation from dis-
played investigations is that the blade sectionmodel accuracy
strongly depends on the boundary conditions represented in
the model. Simple approaches based on constraining degrees
of freedom led to discrepancies in between experimental and
numerical results. Presented research introduced complex
parametric model of the flexible support structure which
led to more realistic structural behavior of the object-
support system. In detail the plywood plates and steel profiles
were included and contact elements were applied to model
the contact between the clamps and the blade section. As
expected that the more sophisticated support structure FE
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Table 5: Final consistency of the modal model parameters.

Final WT blade (versus initial)
TEST FE

Freq. 1 Freq. 2 MAC value Freq. 2−Freq.
1 (Hz)

Freq. 2−Freq. 1
(% of Freq. 1)

4.5 4.4 0.634 (0.636) −0.1 (−0.24) −2.2 (−5.4)
8.4 10.2 0.942 (0.94) 1.73 (2.1) 20.6 (24.9)
19.2 17.8 0.962 (0.963) −1.41 (−2.03) −7.3 (−10.5)
33.3 26 0.722 (0.503) −7.3 (3.02) −21.9 (9.1)
40.9 38.8 0.602 (0.76) −2.11 (1.33) −5.2 (3.3)
43.8 42.1 0.538 (0.479) −1.72 (−4.2) −3.9 (−9.6)
57.3 50.3 0.802 (0.857) −7.03 (−7.5) −12.3 (−13.1)

representation has improved the consistency in between test
and simulations. Design of experiment with response surface
model study allowed successful updating of the FE model
confirmed by modal assurance criterion. The comparison
of experimental and numerical models clearly shows the
influence of support structure flexibility.
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A predictive control strategy in conjunction with semiactive control algorithms is proposed for damping control of base-isolated
structures employing semiactive fluid dampers when subjected to earthquake loads. The controller considers the delays resulting
from the device’s dynamics and an observer for state estimation. Twenty artificial accelerograms were generated according to the
Eurocode 8 for the Portuguese territory and considered for the numerical simulations of the base-isolated structure representative
model. The results of a parametric study on a single degree of freedom model provide an indication for controller design in this
type of problems. To evaluate the effectiveness of the proposed strategies, the response of a 10-storey base-isolated dual frame-
wall building employing semiactive systems is compared with the original, passive solution and with an earlier proposed optimal
controller for this type of problems. It is shown that a well-tuned controller could outperform the original structure, the structural
system with a passive device (optimized) as well as with the semiactive optimal controller, in terms of relative displacement and
absolute acceleration reductions.

1. Introduction

Civil engineering structures are usually built as passive struc-
tures with no adaptability to uncertain dynamic loads like
earthquakes [1]. For structures that should be operational
during and immediately after the occurrence of those events,
such as hospitals, energy power stations, communication
centres, civil protection, and fire station buildings, among
others, special precautions should be taken. It is intended
that structural relative displacements (interstorey drifts) and
accelerations are small in order to avoid damage and protect
sensitive equipments from induced vibrations [2, 3]. New sys-
tems integrated in structures have been proposed to protect
them against earthquakes with passive, semiactive, and active
control technologies [4].

Semiactive (SA) control systems have received much
attention in recent years due to some notable advantages:
capacity of adapting its characteristics in real time, better
overall performance when compared with passive devices,
and lower operational power requirements, thus allowing for

battery operation. Semiactive devices are seen as controllable
passive devices that allow for adjustment of its mechanical
characteristics (damping, stiffness) in real time [5]. Magne-
torheological (MR) and fluid viscous dampers (FVD) are
typical examples of semiactive devices. MR fluids consist of
micron-sized particles in a carrier fluid (usually oil) whose
characteristics can be reversibly changed from a free-flowing
to a semisolid in milliseconds when subjected to a magnetic
field [5, 6]. A lot of investigations on this subject have been
done in the last years and several applications can be found
today [7–14]. The second type of devices (FVD) consists typ-
ically of a hydraulic cylinder filled with oil with a piston head
separating its two chambers. A hydraulic link with a control
valve is used to control the amount of fluid that flows from
one chamber to the other [5, 6]. Research projects and inves-
tigation with semiactive oil dampers are being made since
the 1990s and many applications with these devices can be
found all around the world, and especially in Japan [7, 15–
21]. In order to control the device’s behaviour several con-
trol strategies have been proposed: (i) sky-hook control [6],
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Figure 1: Hybrid system: base-isolated structure with semiactive fluid viscous damper.

(ii) optimal control [8, 9, 15, 16], (iii) control based on the
Lyapunov stability theory [8], (iv) bang-bang control [8],
(v) modulated homogeneous friction control algorithm [8],
(vi) sliding mode control [15, 17], (vii) fuzzy logic [9], (viii)
neural-network-based control [9], (ix) proportional plus
integral control [10], (x) force derivative feedback control [11],
quantitative feedback theory [12], and backstepping control
technique [12].

In order to accomplish those goals (reduce both accel-
erations and interstorey drifts) the base isolation concept
has been considered [2, 3]. However, under near field seis-
mic actions, base-isolated structures could face large dis-
placements at the base due to pulse-like ground motions
which make them vulnerable to structural damage [3]. An
alternative solution would be the use of hybrid systems.
Base isolation systems with passive devices like fluid viscous
dampers have been proposed and experimentally verified to
meet those goals [3, 22, 23]. Other approaches consisting
of base isolation with semiactive devices have also been
proposed to further improve more the system performance
[9, 11, 16, 17].

Predictive control is a strategy that has been successfully
implemented in petrochemical and process industry [24] and
is considered here for an application in semiactive control.
In this communication a variable fluid viscous damper is
studied for reducing vibrations in civil engineering structures
subjected to earthquakes using a predictive control strategy.
The results of numerical simulations using representative
models (single and multidegree of freedom models—SDOF
and MDOF) of typical building structures employing a
semiactive device excited by seismic actions at the base are
presented. Comparisons with the original structure, with
passive control and the optimal controller, show the potential
of using this strategy.

2. Problem Formulation

The reduction of vibrations induced by earthquakes in struc-
tures consists in adding damping bymeans of variable damp-
ing devices whose damping characteristics are controlled
by a predictive control strategy. Although several ways for
installation of these devices can be found [5], we will consider
a hybrid system consisting of SA devices in conjunction with
base isolation systems (Figure 1).

A satisfactory approach usually considered in the build-
ing’s modelling is that (i) each floor has very high stiff-
ness where the mass is concentrated; (ii) the connections
between floors are massless elements where the stiffness and
damping are concentrated. In base-isolated structures the
superstructure is constructed over a base floor which in
turn is supported by bearings. For the purpose of this study
bearings are modelled as linear elastic and viscous damping
elements. A simple model that represents the key responses
of civil engineering structures including the base isolation
system can be described by the mass M𝑠, stiffness K𝑠 , and
damping C𝑠 matrices. Considering the input ground motion
(acceleration) ̈𝑥𝑔 and the force 𝑓 developed by the additional
devices at the base, then the mechanical behaviour can be
represented by a 𝑛 degree of freedom model (base plus 𝑛 − 1

floors):
M𝑠 ⋅ ̈x𝑟𝑔 + C𝑠 ⋅ ̇x𝑟𝑔 + K𝑠 ⋅ x𝑟𝑔 = −M𝑠 ⋅ 1 ⋅ ̈𝑥𝑔 + G ⋅ 𝑓, (1)

where 1 is a unitary column vector; G is the matrix that
defines the input force location (for the present case G =

[−1 0 ⋅ ⋅ ⋅ 0]
𝑇, where the minus sign means that the force

is dissipative); and x𝑟𝑔 is the vector of relative displacements
to the ground. Additional damping is added at the base
level by additional devices, which can be passive, active,
or semiactive. The semiactive fluid viscous damper was
considered and its behaviour was described by the viscous
dashpot model with a variable damping coefficient [4, 15].
However, to include the dynamic behaviour of the damper
one must account the time response associated with its
operation (the time to develop the damping force after the
command to change the damping coefficient) [15, 17]. In
this type of devices the time response results in both valve
dynamics and hydraulic system dynamics.The total response
time can be described as the sum of pure time delays (or
dead time) and lag (or phase delay), which are designated
in [15] as static and dynamic response time, respectively.
In [17] the total time response is treated as time lag. Time
delays can change during operation (as damping increases
or decreases) and an average time delay considering both
operation processes is usually taken. In this work the device
total time response (or delay) is accounted as lag and thus the
viscous model is complemented with a first-order dynamic
system which results in the Maxwell model:

𝑇𝑑 ⋅
̇𝑓 + 𝑓 = 𝑐V ⋅ ̇𝑥𝑟, 𝑐min ≤ 𝑐V ≤ 𝑐max, (2)
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where𝑇𝑑 is the relaxation time, or time constant representing
an average of the device time response; 𝑓 is the damping
force; 𝑐V is the damping coefficient which can be changed
between a minimum and a maximum value; and ̇𝑥𝑟 is the
relative velocity between the cylinder case and the piston head
of the damper.

The system described by (1) can be represented in the
state-space form by

̇z = A ⋅ z + B ⋅ 𝑓 + E ⋅ ̈𝑥𝑔,

y = C ⋅ z + D ⋅ 𝑓,

A = [

[

0𝑛×𝑛 I
−M−1
𝑠

⋅ K𝑠 −M−1
𝑠

⋅ C𝑠
]

]

,

B = [

[

0𝑛×1
−M−1
𝑠

⋅ G
]

]

, E = [

[

0𝑛×1
−1

]

]

,

(3)

where z = {x𝑟𝑔, ̇x𝑟𝑔}
𝑇 is the state vector; C and D are defined

according to the quantities for output; for instance, if C =

A and D = B the outputs will be the relative velocities and
absolute accelerations; 0, I, and 1 are a null matrix, identity
matrix, and unitary vector, respectively.

3. Vibration Control

Figure 2 depicts the control loop considered in this work.
The force tracking control scheme makes use of a controller
and an algorithm to find the desired damping coefficient.
The idea is that the device’s force 𝑓 follows the desired force
𝑓𝑑 evaluated by the controller. A model predictive controller
(MPC) is used to find the desired control force. According to
the nature of the device, the algorithm assumes that it is only
possible to dissipate energy, and thus the damping coefficient
will be changed only when the desired force and damper
force have the same sign. With this strategy a linear model
of the plant (3) can be used and thus the calculation of the
desired force is relatively straightforward [24]. In Figure 2
SW determines the algorithm considered: with or without
feedback from the measured force.

3.1. Model Predictive Control Formulation. The MPC block
in Figure 2 uses the predictive control strategy based on a
linear model of the plant. The controller is formulated in the
discrete domain and the idea consists in predicting future
outputs from actual measurements and past inputs using
the plant’s model (predictor), comparing those outputs with
the reference values, and determining a sequence of input
trajectories that result from the solution of an optimization
problem (optimizer). Only the first input is applied to the
plant, and then the whole cycle of measurement, prediction,
and input calculation is repeated in the next sampling interval
(receding horizon). Since the states are not always available,
this strategy uses an observer to estimate the remaining states
(observer).

In the control loop of Figure 2 time delays can result from
the process of measurement, input computation, and input

SA device

Observer

f

SA algorithm Optimizer and
predictor

MPC controller

Plant/structure

Hybrid system

SW

c�

xg

fd
Ref = 0

y

ẑz

Figure 2: Proposed control loop: force tracking scheme using a
MPC controller with a semiactive (SA) algorithm.

application. The prediction model used in the MPC block
considers input delays since input action 𝑓 generated at time
𝑡 − 𝑇𝑑 (𝑇𝑑 is the device time delay) only takes effect at time 𝑡,
due to delays resulting from the force application (device). In
the present case, the MPC block will generate a desired force
𝑓𝑑(𝑘 − 𝑑) that will result in a force 𝑓(𝑘) applied by the device
𝑑 = 𝑇𝑑/𝑇𝑠 instants later (𝑇𝑠 is the sampling time), mainly due
to the time response of the SA device. Thus, the following
relationship is considered in the controller formulation:
𝑓(𝑘) = 𝑓𝑑(𝑘 − 𝑑). Measurement delays are assumed to be
small when compared to the input application delays and
thus are not considered in the formulation. Moreover, the
computations are assumed to occur during the control
interval𝑇𝑠 (or sampling period).When converting thismodel
to the discrete domain additional states are added. Then the
MPC block internal model in the state-space discrete-time
form is given by

z𝑎 (𝑘 + 1) = A𝑎 ⋅ z𝑎 (𝑘) + B𝑎 ⋅ 𝑓𝑑 (𝑘) + E𝑎 ⋅ 𝑎𝑔 (𝑘) ,

y (𝑘) = C𝑎 ⋅ z𝑎 (𝑘) ,
(4)

where 𝑘 is the time step derived from the discretisation
process with a sampling time 𝑇𝑠; z𝑎(𝑘) = {(z(𝑘))𝑇, 𝑓𝑑(𝑘 −

𝑑), . . . , 𝑓𝑑(𝑘 − 1)}
𝑇 is the state vector (dimension 𝑛𝑎 × 1)

including relative displacements and velocities, and the past
instant desired forces 𝑓𝑑(𝑘 − 𝑖), 𝑖 = 1, 2, . . . , 𝑑; 𝑓𝑑(𝑘) is the
actual desired force (scalar); 𝑎𝑔(𝑘) is the input groundmotion
(scalar); y(𝑘) is the output vector (dimension𝑚𝑎×1); andA𝑎,
B𝑎, E𝑎, andC𝑎 are the discretized state-space model matrices.
Using this model to predict the behaviour of the system
for a specific prediction horizon (HP steps) and considering
that the input force remains constant after a specific control
horizon (HC steps), then the output predictions are given by
the following equation [24]:

Y (𝑘) = Ψ ⋅ ẑ𝑎 (𝑘 | 𝑘) + Τ ⋅ 𝑓𝑑 (𝑘 − 1)

+Θ ⋅ ΔF𝑑 (𝑘) + Ξ ⋅ Α (𝑘) ,

(5)

where Y(𝑘) = {(ŷ(𝑘 + 1𝑘))
𝑇
, . . . , (ŷ(𝑘 + HP𝑘))𝑇}

𝑇

is the vec-
tor (dimension 𝑚𝑎 ⋅ HP × 1) of output predictions at instant
𝑘 for instant 𝑘 + 1 to 𝑘 + HP; ẑ𝑎(𝑘 | 𝑘) is the estimated state
vector at instant 𝑘 (when the full state vector is not availa-
ble); ΔF𝑑(𝑘) = {Δ

_
𝑓
𝑑(𝑘 | 𝑘), . . . , Δ

_
𝑓
𝑑(𝑘 + HC − 1 | 𝑘)}

𝑇 is
the vector (dimension HC × 1) of future force input moves;
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Δ𝑓𝑑(𝑘) = 𝑓𝑑(𝑘)−𝑓𝑑(𝑘−1);A(𝑘) = {𝑎𝑔(𝑘), 𝑎𝑔(𝑘 | 𝑘), . . . , 𝑎𝑔(𝑘+

HP − 1 | 𝑘)}
𝑇 is the vector (dimension HP × 1) of measured

and future disturbances (commonly assumed as constant and

equal to the lastmeasured value 𝑎𝑔(𝑘)); andΨ,Τ,Θ, andΞ are
constantmatrices derived from the plant’smodel:Ψ = C𝑎 ⋅A;
T = C𝑎 ⋅ B;Θ = C𝑎 ⋅ H; Ξ = C𝑎 ⋅ E; with

ℰ =

⌊

Ea 0 · · · 0
Aa · Ea Ea · · · 0

...
... ⋱

...
· Ea · Ea · · · Ea

⌈

⌊

⌈

T

T

ℋ =

Ba · · · 0... ⋱
...

j=HC−1
∑

j=0
· Ba · · · Ba

j=HC
∑

j=0
· Ba · · · Aa · Ba + ·

·
Ba

... ⋱
...

j=Hp−1
∑

j=0
· Ba · · ·

j=HP−HC
∑

j=0
· Ba

𝒞a = diag(Ca · · · Ca );

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

⌊

⌈

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

⌊

⌈

𝒜 = [(Aa)T · · · (AHP
a )

T
]

ℬ = [(Ba)T · · · (
j=HP−1
∑

j=0

Aja · Ba)
T

]
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(6)

The optimal input forcemoves can be obtained as the solution
of an unconstrained optimization problem (minimization)
with the following cost function [24]:

𝑉 (𝑘) =

HP
∑

𝑖=1

󵄩󵄩󵄩󵄩ŷ(𝑘 + 𝑖 | 𝑘)
󵄩󵄩󵄩󵄩

2

𝑄

+

HC−1
∑

𝑖=0

󵄩󵄩󵄩󵄩󵄩
Δ𝑓𝑑 (𝑘 + 𝑖 | 𝑘)

󵄩󵄩󵄩󵄩󵄩

2

𝑅
= ‖Y (𝑘)‖

2

Q +
󵄩󵄩󵄩󵄩ΔF𝑑 (𝑘)

󵄩󵄩󵄩󵄩

2

R
,

(7)

where 𝑄 is the matrix (dimension 𝑚𝑎 × 𝑚𝑎) that weights the
outputs and𝑅 (dimension 1×1) weights the inputmoves;Q is
the compound weight matrix (dimension𝑚𝑎 ⋅HP ×𝑚𝑎 ⋅HP)
with the weighting matrices 𝑄 in the diagonal; and R is the
compound weight matrix (dimension HC × HC) with 𝑅 in
the diagonal. The solution of this optimization problem can
be obtained by finding the gradient of the cost function and
set it to zero:

ΔF𝑑 (𝑘) =
1

2
H
−1

term ⋅ Gterm,

with Hterm = Θ
𝑇
⋅ Q ⋅Θ + R,

Gterm = 2 ⋅Θ
𝑇
⋅ Q ⋅ E (𝑘) ,

(8)

where Ε(𝑘) = −Ψ ⋅ ẑ𝑎(𝑘 | 𝑘) − Τ ⋅ 𝑓(𝑘 − 1) − Ξ ⋅ Α(𝑘) is the
tracking error (difference between the future target, which in
this case is zero, and the free response, ΔF𝑑(𝑘) = 0). In order
to guarantee the minimum solution the second derivative, or
the Hessian matrix of 𝑉(𝑘), should be positive definite. This
condition is verified if the weighting matrices are positive

definite or at least one is positive definite and the other is
semipositive definite.

If one cannot have access to the full state vector an
observer has to be used to estimate the state vector ẑ𝑎(𝑘 | 𝑘).
The observer is designed using the Kalman filter technique:
assuming that the plant is subjected to white noise distur-
bances (process noise 𝑎𝑔(𝑘) and measurement noise V(𝑘))
with zero mean and known covariance matrices, 𝐸[𝑎𝑔(𝑘) ⋅

𝑎𝑔(𝑘)
𝑇
] = 𝑄𝑜, 𝐸[V(𝑘) ⋅ V(𝑘)𝑇] = 𝑅𝑜, then the observer

gain K can be chosen to minimize the mean square state
estimation error [25]. The observer equations include the
time and measurement update and are given by

ẑ𝑎 (𝑘 + 1 | 𝑘) = A𝑎 ⋅ ẑ𝑎 (𝑘 | 𝑘) + B𝑎 ⋅ 𝑓𝑑 (𝑘) ,

ŷ (𝑘 | 𝑘 − 1) = C𝑎 ⋅ ẑ𝑎 (𝑘 | 𝑘 − 1) ,

ẑ𝑎 (𝑘 | 𝑘) = ẑ𝑎 (𝑘 | 𝑘 − 1) + K ⋅ [𝑦 (𝑘) − 𝑦 (𝑘 | 𝑘 − 1)] .

(9)

Manipulating the expressions of (9), the Kalman filter with
a stationary gain is obtained by solving the corresponding
Riccati equation with adequate covariance matrices:

ẑ𝑎 (𝑘 + 1 | 𝑘) = A𝑎 (I − K ⋅ C𝑎) ⋅ ẑ𝑎 (𝑘 | 𝑘 − 1)

+ B𝑎 ⋅ 𝑓𝑑 (𝑘) + A𝑎 ⋅ K ⋅ y (𝑘) ,

K = 𝑃𝑜 ⋅ C
𝑇

𝑎
⋅ [𝑅𝑜 + C𝑎 ⋅ 𝑃𝑜 ⋅ C

𝑇

𝑎
]
−1

,

𝑃𝑜 = E𝑎 ⋅ 𝑄𝑜 ⋅ E
𝑇

𝑎
+ A𝑎 ⋅ 𝑃𝑜 ⋅ A

𝑇

𝑎

− A𝑎 ⋅ 𝑃𝑜 ⋅ C
𝑇

𝑎
[𝑅𝑜 + C𝑎 ⋅ 𝑃𝑜 ⋅ C

𝑇

𝑎
]
−1

⋅ C𝑎 ⋅ 𝑃𝑜 ⋅ A
𝑇

𝑎
.

(10)

In order to find adequateMPC controller solutions, stable
closed-loop systems (linear counterpart, blocks SA device,
and algorithm with unitary transfer functions) should be
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chosen.The closed-loop system equations can be found using
the system’s expressions (4), observer expressions (9), and the
solution of the optimization problem (8). Only the first term
of the ΔF𝑑(𝑘) will be used:

Δ𝑓𝑑 (𝑘) = C1 ⋅ ẑ𝑎 (𝑘 | 𝑘) + C2 ⋅ 𝑓𝑑 (𝑘 − 1) + C3 ⋅ 𝑎𝑔 (𝑘)

with C1 = fr (−Tterm ⋅Ψ) ,

C2 = fr (−Tterm ⋅ T) ,

C3 = fr (−Tterm ⋅ Ξ ⋅ 1) ,

Τterm = (Θ
𝑇
⋅ Q ⋅Θ + R)

−1

⋅Θ
𝑇
⋅ Q,

(11)

where 1 is a unitary column vector and fr(⋅) denotes the
matrix first row. The closed-loop system is given by

[

z𝑎 (𝑘 + 1)

ẑ𝑎 (𝑘 + 1 | 𝑘)

] = [

A𝑎 + B𝑎 ⋅ (C1 ⋅ K ⋅ C𝑎 + (C2 + 1) ⋅ M01) B𝑎 ⋅ C1 ⋅ (I − K ⋅ C𝑎)

A𝑎 ⋅ K ⋅ C𝑎 + B𝑎 ⋅ (C1 ⋅ K ⋅ C𝑎 + (C2 + 1) ⋅ M01) (A𝑎 + B𝑎 ⋅ C1) ⋅ (I − K ⋅ C𝑎)
]

⋅ [

z𝑎 (𝑘)
ẑ𝑎 (𝑘 | 𝑘 − 1)

] + [

E𝑎 + B𝑎 ⋅ C3
B𝑎 ⋅ C3

] ⋅ 𝑎𝑔 (𝑘) ,

(12)

where I is the identity matrix and M01 is the matrix that
satisfies 𝑓𝑑(𝑘 − 1) = M01 ⋅ z𝑎(𝑘). A stable system must have
the dynamic matrix eigenvalues inside the unit circle. If all
the states are available, the estimated state will be substituted
by ẑ𝑎(𝑘 | 𝑘) = ẑ𝑎(𝑘 | 𝑘 − 1) = z𝑎(𝑘) and the terms involving
the observer gain K will cancel out in the above equations.

3.2. Control Algorithms. In the “SA Algorithm” block (see
Figure 2) two different control algorithms were considered:

(1) variable damping (VD) is adequate for use with
proportional valves since the damping can be changed
continuously between the minimum and the maxi-
mum values; the inverse of the device’s model (2) is
used to convert the desired force (𝑓𝑑) into a damping
value; to compute this value the algorithm also needs
access to the relative velocity ̇𝑥𝑟, the force derivative,
and the device’s physical limits (𝑐min ≤ 𝑐V ≤ 𝑐max);

(2) the clipped on-off (COO) is the other control algo-
rithm tested and this is a bang-bang control algo-
rithm adequate for use with dampers employing on-
off valves; this algorithm consists in applying the
maximum damping when the device’s force is smaller
than the desired one and both have the same sign; oth-
erwise the damping coefficient is set to the minimum
value; this algorithm is implemented according to the
following law [6, 8]:

𝑐V = 𝑐min + (𝑐max − 𝑐min) ⋅ 𝐻 [(𝑓𝑑 − 𝑓) ⋅ 𝑓] , (13)

where 𝐻[⋅] is the Heaviside step function. To imple-
ment this algorithm the device’s force must be mea-
sured.

4. Numerical Simulations

4.1. Structural Systems. In this section a model of the struc-
ture subjected to typical Portuguese seismic actions will
be used to test the effectiveness of the proposed control

strategies. Only the acceleration (base floor acceleration
for the MDOF system) will be used for feedback in the
controller. Comparisons with the original structure (without
any additional device), with the passive cases (the best one
and the one with the maximum damping considered for the
SA device), and with the semiactive case using and optimal
controllerwill be presented.Anonlinear fluid viscous damper
following the law 𝑓𝑃 = 𝑐𝑝 ⋅ ̇𝑥

𝛼

𝑟
was considered for the best

passive case.𝑓𝑃 is the passive damper force, 𝑐𝑝 is the damping
coefficient, ̇𝑥𝑟 is the relative velocity, and 𝛼 is the velocity
exponent (it was found that 𝛼 = 0.15 for the SDOF model
and 𝛼 = 1 for the MDOF model as the exponents that
lead to the best passive cases performance). The best passive
case is identified as the one having a damping coefficient
that provides the lowest mean peak acceleration (top floor
acceleration for theMDOFmodel). Figure 3 shows the typical
plot of the evolution of the responseswith the device damping
values (a) and the identified damping values for type 1 and
type 2 seismic actions corresponding to the best passive cases
(b).

A semiactive solution employing an optimal controller
(stochastic linear quadratic regulator [6]) with a unitary input
weight and an output weight on the base acceleration that
minimizes the mean peak acceleration for each set of seismic
actions [16] (referred as SALQRVD) was also considered
for comparison. Relative displacement and absolute accelera-
tions will be considered to evaluate the systems’ performance.

At first a SDOF system is used to model the first vibra-
tion mode of base-isolated structures (building supported
by bearings) considering that the base isolation system is
flexible and the superstructure (building structure) is rigid
enough as to be modelled as a rigid mass (base mass plus
superstructure’s mass). Base isolation systems are used to
reduce the structure’s natural frequency and deviate it from
the seismic input action frequency content. Common base
isolation systems are designed to have natural frequencies
bellow 1Hz. In order to evaluate the performance of several
base isolation systems the model’s properties considered in
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Figure 3: Simulation results for the SDOF model (𝑓𝑛 = 0.25Hz; 𝜉 = 10%) with a passive damper. (a) Evolution of responses versus passive
device damping for 10 type 1 seismic actions and the correspondent mean curve; (b) damping coefficients (for 𝛼 = 0.15) for the minimum
mean peak acceleration response function of system natural frequencies under type 1 and 2 seismic actions.
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Figure 4: Input groundmotions characteristic considered in the numerical simulations. (a) One of ten artificial accelerograms; (b) frequency
spectra of 10 accelerograms; (c) response spectra of 10 accelerograms.

the simulations were 𝑚 = 5750 kg (mass), 𝑓𝑛 = 0.25 to
1Hz (natural frequency), and 𝜉 = 0.1 (damping ratio). The
semiactive fluid damper can add additional damping between
𝜉min = 0.05 and 𝜉max = (1−𝜉)/2 = 0.45.Thedevice’s dynamics
is characterized by a time constant of 𝑇𝑑 = 0.05 s which
is an average of time delays found in [15, 17]. Two different
semiactive control strategies were considered depending on
the algorithm used, although both make use of the predictive
controller: (i) SAMPCVD, for a variable damping algorithm;
(ii) SAMPCCOO, when a clipped on-off algorithm is used. In
the end, a 10-storey base-isolated building (MDOF model) is
used to verify the effectiveness of the proposed strategies.

4.2. Input Action. The input actions considered in this work
were artificial accelerograms generated using the extreme
response spectrums provided in the Eurocode 8 for Portugal

[26]: type 1 (far field) seismic action; type 2 (near field)
seismic action. Ten accelerograms were generated for each
spectrum. The accelerograms were generated for zone 1, soil
type D, and structures of class II importance. The accelero-
grams and the spectrums are presented in Figure 4. It can be
seen that type 1 input action has a longer duration, is richer
in the lower frequencies (or higher periods), and has higher
amplitudes. It must be referred that if other specifications
were used, for example, ASCE 7 [27], the seismic hazard
would be described in a different way, especially for near-fault
applications.

4.3. SDOF Model Results. Numerical simulations were per-
formed in the time domain considering the generated arti-
ficial accelerograms as inputs. MATLAB/Simulink environ-
ment was used to run the simulations.
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Figure 5: (a) Simulation results for the SDOF model (𝑓𝑛 = 0.25Hz and 𝜉 = 10%) subjected to one type 1 accelerogram without devices, with
passive and SAMPCVD; (b) peak values’ statistics for 10 type 1 input time series.

The predictive controller described has several adjustable
parameters: weights (acceleration weight 𝑄 and input move
weight 𝑅), horizons (HP and HC), control interval (𝑇𝑠), and
observer dynamics (covariance matrices 𝑄0 and 𝑅0). The
weights and covariancematrices are 1×1 dimensionmatrices
since the controller’s internal model is characterized by one
input (desired force) and one output (acceleration); thus,𝑄 =

𝑞,𝑅 = 𝑟,𝑄0 = 𝑞0, and𝑅0 = 𝑟0. For nonlinear problems tuning
these parameters is a question of applying a set of “rules of
thumb” based on experience gained from simulations [24].
Following the methodology that will be described below,
adequate parameters for this kind of problems were found.
It will be shown that a well-tuned controller could improve
the system’s performance (relative displacement and absolute
acceleration) even better than the best passive solution, only
by changing the damping coefficient in “real time.” Typical
system’s responses are shown in Figure 5.

The control interval (or sampling period) should be ade-
quate to capture the system’s dynamics. Its value is delimited
by the time taken to solve the optimization problem and
by the inverse of the Nyquist frequency, obtained from the
smallest time constant of the system. It should also be small
enough so that the control input (desired force or damping)
responds quickly to the output changes. In contrast, the limit
is the passive case where damping is constant. An example of
the influence of this parameter on the system’s performance

(mean peak responses) can be found in Figure 6where a com-
parison with different values of control interval and predic-
tion horizons is presented for the SDOF case. It is shown that
higher control intervals lead to poor performances (increases
in relative displacements and absolute accelerations). Higher
control intervals also have a negative impact on the evolution
of responses with the prediction horizon. As the control
interval increases the range of prediction horizons that lead
to good performances gets smaller (see Figure 6(a)), and thus
as the control interval increases smaller prediction horizons
should be considered to achieve good responses. A control
interval (or sampling time) of 𝑇𝑠 = 5 ms was considered in
this work.

The observer was designed with a Kalman filter with
unitary covariance matrices. This solution is a compromise
between observer response in estimating the state vector and
control aggressiveness. A deadbeat observer would be prefer-
able but it could lead to aggressive control actions which
would compromise the overall performance of the system.

In order to identify the range of acceptable controllers
the closed-loop linear system counterpart was analysed. The
maximummoduli of the eigenvalues for the closed-loop sys-
temwere used to identify the systems’ stability: stable systems
have their eigenvalues inside the unit circle and thus their
moduli are less than one. Time delays 𝑑 were considered on
the simulations to compensate for the device dynamics 𝑇𝑑
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Figure 6: (a) SDOF system’s mean peak responses (𝑓𝑛 = 0.25Hz and 𝜉 = 10% for SAMPCVD with HC = 1 and 𝑟 = 1) evolutions with
control interval 𝑇𝑠 and prediction horizon HP, when subjected to type 1 seismic actions (10 accelerograms). (b) Ratios evolution with control
interval (relative to 𝑇𝑠 = 5ms) for HP = 50.

(time response). Figure 7(a) shows an example of the max-
imum moduli evolution with the acceleration weight 𝑞. It
can be seen that the desired solution lies in the range
𝑞
0.5

< 150. After that, each structural system with an SA
device was subjected to 10 accelerograms of each action type
and the mean peak values were evaluated. Applying this
procedure for different weights and horizons, combinations
of these parameters that lead to the best system’s response
were found. Figure 7(b) shows the evolution of system’s peak
responses with the controller acceleration weight 𝑞 for each
accelerogram (with 𝑟 = 1). The dashed vertical line indicates
the minimum of the mean peak acceleration curve. Using
this point as criteria to design the controller, reductions in
relative displacement and velocity are also achieved, which
leads also to reductions in base shear forces. Higher values
for this weighting parameter lead to poor performances in
terms of relative displacement and acceleration. In fact, for
higher acceleration weights the closed-loop system becomes
unstable as mentioned before, and the desired force resulting
from the controller goes to infinity which leads to poor
performance.

It was also found that an increase on the input move
weight 𝑟 slides those curves (responses versus acceleration
weight) to the right,meaning that the accelerationweight that
minimizes the acceleration response also increases. From the

analysis of the cost function (7) increasing the input move
weight relative to the output weights has the effect of reducing
the control activity. In the present study a unitary weight in
the input move was considered.

The results with different prediction and control horizons
showed similar responses although for higher prediction
horizons higher responses are obtained. Figure 7(c) shows
the typical evolution of the responses (mean peak values)
with this parameter. An almost constant evolution of relative
displacements and absolute accelerations were found with
the prediction horizon HP up to a value dependent on the
system’s natural frequency and control interval (HP = 70

for 𝑓𝑛 = 1Hz and 𝑇𝑠 = 5ms, and higher values of HP for
lower natural frequencies). Above those values the responses
increase (poor performances). Thus, prediction horizons
inferior to 70 were found to be adequate for the studied
cases. In fact, having found no significant influence of the
prediction horizon on the results in that range, the smallest
value is desired in order to reduce the order of the controller
(matrices dimension, solution of the optimization problem).
However, since the internalmodel has input delays to account
for the device’s response, one should assure that HP > 𝑑.
In the present study the instant delays are 𝑑 = 10 (50ms)
and thus the prediction horizon was set to HP = 50. In
what concerns the influence of the control horizon HC in the
results, no evidence of improvements was found for HC > 1,
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Figure 7: Result for system with 𝑓𝑛 = 0.25Hz and 𝜉 = 10% considering 𝑇𝑠 = 5ms, HC = 1. 𝑟 = 1 and 𝑑 = 10. (a) System eigenvalues’ moduli
(maximum values) evolution with acceleration weight; (b) system responses’ (peak values) evolution with acceleration weight when subjected
to type 1 seismic actions; (c) system responses’ (mean peak values) evolution with prediction horizon for different natural frequencies (𝑓𝑛 =
0.25 to 1.00Hz) for SAMPCVD, when subjected to type 1 seismic actions (10 input time accelerograms).

and thus the unitary value was considered in the subsequent
analysis.

Good performance is achieved with the parameterization
previously indicated since the device force follows very
closely the desired force, as is shown in Figure 8.

Having found the best parameters, the mean peak
responses for each structural system (with different natural
frequencies) were determined. Comparisons with the origi-
nal, passive (with a damping coefficient for the lowest mean
peak top floor acceleration), and semiactive with an optimal
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Figure 8: Simulation results for the SDOF model (𝑓𝑛 = 0.25Hz and 𝜉 = 10%) subjected to one type 1 accelerogram employing SA systems
with 𝑇𝑠 = 5ms, HP = 50, HC = 1, 𝑟 = 1, and 𝑑 = 10, with both VD (a) and COO (b) control algorithms.

controller are presented in Figure 9. It is shown that any
proposed system is better than the original one. In terms of
accelerations the proposed semiactive systems show the best
performance for structural systems with natural frequencies
below 0.6Hz for type 1 seismic actions, and below 1Hz for
type 2 seismic actions.This means that base isolation systems
should employ semiactive devices in detriment of passive
ones on such circumstances. It can also be seen that the
SA device controlled by an on-off algorithm almost reaches
the same performance of the variable damping algorithm.
This result shows that a simple solenoid valve can be used
instead of a proportional one, which in terms of practical
implementation leads to a less expensive solution. It was also
found that the proposed solution with an MPC controller
is slightly better than the one with an optimal controller in
terms of both relative displacements and accelerations. Thus,
the SA systems presented can provide reductions in relative
displacements (between 50 and 60%) when compared to the
original structure, improve the acceleration responses better
than the best passive case, and outperform the SA one with
an optimal controller.

Other numerical simulations were performed with struc-
tural systems of different properties (𝑚, 𝑘, and 𝑐). The main
difference found was on the optimal acceleration weight 𝑞.
Thus, for different structural systems this value should be

determined (with the proposed values for the other param-
eters) under a numerical analysis by finding first a range of
stable solutions and then considering a representative set of
accelerograms of the site where the structure is to be installed
to find the weight 𝑞 that leads to the best performance.

4.4. MDOF Model Results. A ten-storey base-isolated struc-
ture was considered to evaluate the effectiveness of the
presented strategies. The superstructure’s fundamental fre-
quency is 𝑓𝑠1 = 1.6Hz (representative of a 10-storey dual
frame-wall structure), and a damping ratio of 𝜉1 = 5% is
assumed. Each floor has a mass of 𝑚𝑓 = 10

5 kg. The stiffness
and dampingmatrices were determined considering constant
stiffness between floors and a stiffness proportional damping
matrix (C = 𝑎0 ⋅K), which correspond to stiffness and damp-
ing coefficients between floors of 𝑘𝑓 = 452.43 kN/mm and
𝑐𝑓 = 1.51 kN s/mm with 𝑎0 = 0.0033 s. The superstructure
is supported on a base isolation system with mass 𝑚𝑖 = 1.4 ⋅

𝑚𝑓 and laminated rubber bearings made of natural rubber
represented by a linear elastic and viscousmodel, with a target
frequency 𝑓𝑖 = 0.4Hz and an equivalent damping ratio of
𝜉𝑖 = 10%. The correspondent stiffness and damping coeffi-
cients were obtained assuming a rigid superstructure: 𝑘𝑖 =

7.20 kN/mm and 𝑐𝑖 = 0.57 kN s/mm.The base-isolated struc-
ture model is obtained after assembling the base isolation
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system and the superstructure models together. Figure 10
depicts the model under study. Considering the controller
parameters for the SDOF case, the MPC scheme was imple-
mented assuming a rigid superstructure and thus only the
base acceleration is used for feedback. After analysing the
closed-loop system the acceleration weight 𝑞

0.5
= 10

4

was chosen. Figure 11 and Table 1 show a comparison of

results with the original structure, the best passive (with
a damping coefficient for the lowest mean peak top floor
acceleration, 𝑐id = 1.1 kN s/mm, additional damping of 𝜉 =

0.19) case, the passive with maximum damping, 𝑐max =

2.58 kN s/mm (additional damping of 𝜉 = 0.45), and
with the semi-active manipulated by an optimal controller
(controller implemented considering a rigid superstructure
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Table 1: 10-storey base isolated building results. Comparison in terms of mean response peak values ratios: relative displacements, accel-
erations (at base and top) and base shear force V, in relation to the original structure; and peak device’s force ratio f/W in relation to the
structure’s weightW.

System Type 1 seismic action Type 2 seismic action
𝑥𝑟 base 𝑥𝑟 top 𝑎base 𝑎top V f/W 𝑥𝑟 base 𝑥𝑟 top 𝑎base 𝑎top V f/W

Passive 𝑐id 0.67 0.67 0.87 0.88 0.77 0.04 0.70 0.71 1.14 1.09 0.82 0.02
Passive 𝑐max 0.40 0.41 1.03 1.14 0.78 0.10 0.42 0.44 1.64 1.63 0.93 0.05
SALQRVD 0.60 0.60 0.83 0.85 0.70 0.05 0.64 0.64 1.07 1.07 0.75 0.02
SAMPCVD 0.65 0.66 0.77 0.78 0.70 0.04 0.69 0.70 0.91 0.89 0.75 0.02
SAMPCCOO 0.66 0.66 0.81 0.81 0.71 0.04 0.69 0.70 0.98 0.93 0.75 0.02

0 0.1 0.2 0.3
Ground Ground GroundGround

0

1

2

3

4

5

6

7

8

9

10

Fl
oo

r

 Rel. displacement (m)  Rel. displacement (m)

Mean peak values

1.4 1.6 1.8 2 2.2

0

1

2

3

4

5

6

7

8

9

10

0 0.05 0.1

0

1

2

3

4

5

6

7

8

9

10

Fl
oo

r

Mean peak values

0.6 0.8 1 1.2 1.4 1.6

0

1

2

3

4

5

6

7

8

9

10

0

5

10

15
Mean peak values

0

1

2

3

0

2

4

6
Mean peak values

0

5

10

Acceleration (m/s2) Acceleration (m/s2)

×105 ×105 ×105×106

V
(N

)

V
(N

)

F
de

vi
ce

(N
)

F
de

vi
ce

(N
)

Original SALQRVDsdof
Passive Ci
Passive Cmax

SAMPCVDsdof
SAMPCCOOsdof

Original SALQRVDsdof
Passive Ci
Passive Cmax

SAMPCVDsdof
SAMPCCOOsdof

aground = 4.5m/s2 aground = 3.8m/s2

Figure 11: 10-storey base-isolated building responses to 10 type 1 and type 2 accelerograms. Mean peak values in terms of relative displace-
ments, accelerations, base shear 𝑉, and device’s force 𝑓 for the systems under study.

with weighting values determined as for de SDOF case; see
Section 4.1).

The results show that all solutions can improve the struc-
ture’s relative displacements, with the maximum damping
passive device having the best performance for this parame-
ter. However, this solution has the disadvantage of increasing
the acceleration responses, especially for type 2 seismic
actions, with higher damper forces. The SA solutions appear
as an attractive answer to the problem since it is possible to
reduce the base relative displacementswithout compromising
and even improving the acceleration responses.The proposed
solutions perform also better in terms of acceleration than
the one considering an optimal controller to manipulate

the SA device. However, the last one has the disadvantage of
slightly increasing the accelerations more than the original
structure for type 2 seismic actions. In terms of displacement
at the base level, the optimal controller solution performs
better than the MPC-based ones. Even the best passive
solution (passive 𝑐id) has the inferior performance in terms of
absolute accelerations. All the solutions can reduce the base
shear forces transmitted to the structure at the base since part
of the seismic force is dissipated by the devices. Thus, higher
damper forces lead to lower base relative displacements. It is
shown also that SA device control forces (mean peak values)
are less than 5%of the structure’s weight.The results also show
that an SA devicemanipulated by an on-off algorithm (COO)
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can achieve similar results to that of a variable damping
algorithm (VD). Differences are less than 1% in terms of
relative displacements but major differences are found in
the accelerations, which can reach 7% for the base floor
acceleration when type 2 seismic actions are considered.

5. Conclusions

A force tracking scheme comprising a predictive controller
and a semiactive control algorithm is proposed for damping
control of semiactive fluid dampers employed in base isola-
tion systems subjected to earthquake loads. The controller
formulation includes the input delays resulting from the
device’s behaviour. Moreover, assuming that all the system’s
variables are not always available, the controller was formu-
lated using an embedded observer as well. The numerical
simulations show that a well-tuned controller can improve
the system’s performance (peak of relative displacement and
absolute acceleration) only by changing the damping in “real
time.” The proposed solution outperforms the original struc-
ture and the structural systemwith passive devices for natural
frequencies below 0.6Hz when subjected to several artificial
accelerograms generated according to current codes for the
Portuguese territory. The parametric study of a SDOF model
provided some indicators to tune the controller. However,
with the proposed tuning the acceleration weight always has
to be determined by numerical simulations of the closed-loop
system under several input accelerograms. Slightly better
performance was found with the proposed strategy when
comparedwith the solution provided by an optimal controller
to manipulate the SA device. When applied to a MDOF sys-
tem, a 10-storey base-isolated structure, better performance
than the original and passive cases, was also found in terms
of accelerations. The proposed solution also outperforms the
SA solution manipulated by an optimal controller in terms of
accelerations. In terms of relative displacements, the passive
case with maximum damper and the SA device manipulated
by an optimal controller provide better results but at the
expense of increasing the absolute accelerations.

It has been demonstrated that a predictive controller with
an adjusting damping rule can be effective in reducing earth-
quake induced responses using variable fluid dampers. The
range of controller acceleration weights is first determined
by the analysis of the closed-loop system and tuned through
numerical simulations using a representative number of
accelerograms (test functions) from the site of structures’
installation. Thus, the proposed strategies have potential
for future implementations in civil engineering structures
located in active seismic zones.
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This paper gives an overview of the main components of operational modal analysis (OMA) and can serve as a tutorial for research
oriented OMA applications. The paper gives a short introduction to the modeling of random responses and to the transforms
often used in OMA such as the Fourier series, the Fourier integral, the Laplace transform, and the Z-transform. Then the paper
introduces the spectral density matrix of the random responses and presents the theoretical solutions for correlation function and
spectral density matrix under white noise loading. Some important guidelines for testing are mentioned and the most common
techniques for signal processing of the operating signals are presented.The algorithms of some of the commonly used time domain
and frequency domain identification techniques are presented and finally some issues are discussed such as mode shape scaling,
and mode shape expansion. The different techniques are illustrated on the difficult case of identifying the three first closely spaced
modes of the Heritage Court Tower building.

1. Introduction

While in traditional experimental modal analysis (EMA) the
forces exciting the test specimen are controlled and normally
the testing is carried out in the laboratory, in OMA the
forces are just the ones that are naturally present during the
operation of the structure and the test should be carried
under the actual operating “in situ” conditions. For a civil
engineering structure forces thatmight be ambient forces like
wind and waves and for a mechanical structure that might be
the operating forces on an engine or a gearbox, in both cases
nothing is done to control temperature and other conditions
that might influence the result.

In OMA all modal parameters are to be determined
without knowing the excitation forces. Therefore it is nor-
mally assumed that the excitation forces are Gaussian white
noise, or at least that spectral densities of these forces are
all flat. It is not necessary to satisfy that assumption for the
actual physical forces because the physical forces acting on
the structure can be thought of as created by a linear filter
loaded by white noise, Figure 1. In this case we maintain
the assumption of white noise system input but add the

properties of a linear filter to the system that is going to
be identified. The properties of the filter do not change
the properties of the structural system to be identified,
Asmussem et al. [1], but of course we have to deal with the
challenge of separating the “modes” of the loading system
from the structural modes of interest.

In this paper we shall focus on the theories behind the
OMA technology. The paper can serve as a short overview of
the present knowledge of these theories andmethods.Details,
derivations, and more references and information related to
the treated subjects can be found in Brincker and Ventura
[2] and for a more broad description of the subject, in the
literature onOMA from the IMAC and IOMAC proceedings,
we refer the reader to [3, 4].

2. Random Modeling

Since in OMA we assume the forces to be unknown we need
to treat everything from a probabilistic point of view. Any
parameter that we are going to observe is considered as a
stochastic variable, say 𝑋, and is in principle only known in
terms of its probability density function 𝑝(𝑥). If we know the
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Figure 1: The commonly accepted assumption of white noise input
should be thought of as loading an imaginary linear filter that
produces the unknown forces.Thus the actual physical forces do not
need to be white noise or have a flat spectrum.

density function we can find, for instance, the mean 𝜇𝑥 and
variance 𝜎

2

𝑥
as follows:

𝜇𝑥 = ∫

∞

−∞

𝑥𝑝 (𝑥) 𝑑𝑥

𝜎
2

𝑥
= E [(𝑋 − 𝜇𝑥)

2
] = ∫

∞

−∞

(𝑥 − 𝜇𝑥)
2
𝑝 (𝑥) 𝑑𝑥.

(1)

However, since we seldom will know the density function in
OMA we use time averaging. If we have observed the signal
𝑥(𝑡), then we can calculate the mean and variance for that
signal using time averaging as, Newland [5], follows:

𝜇𝑥 =
1

𝑇
∫

𝑇

0

𝑥 (𝑡) 𝑑𝑡

𝜎
2

𝑥
= E [(𝑥 (𝑡) − 𝜇𝑥)

2
] =

1

𝑇
∫

𝑇

0

(𝑥 (𝑡) − 𝜇𝑥)
2
𝑑𝑡.

(2)

As a main rule in OMA, we cannot use the mean values for
much in practice due to large measurement errors in the low
frequency region, and therefore normally we will remove the
mean from the signals and calculate correlation based on the
resulting zero mean signals as follows:

cor [𝑥 (𝑡) , 𝑦 (𝑡)] = E [𝑥 (𝑡) 𝑦 (𝑡)] =
1

𝑇
∫

𝑇

0

𝑥 (𝑡) 𝑦 (𝑡) 𝑑𝑡. (3)

Since we are considering dynamic systems where the
response is a linear combinations of the responses to many
independent force impulses from the past, according to
the central limit theorem, a random structural response is
Gaussian or nearly Gaussian distributed. Therefore, since a
Gaussian distribution is totally described by its second order
properties (we discard the first order properties as explained
above), we only need second order properties to describe
random responses and in case of two signals 𝑥(𝑡) and 𝑦(𝑡)

all information is contained in the correlation functions

𝑅𝑥𝑦 (𝜏) = E [𝑥 (𝑡) 𝑦 (𝑡 + 𝜏)] = E [𝑥 (𝑡 − 𝜏) 𝑦 (𝑡)] ,

𝑅𝑦𝑥 (𝜏) = E [𝑦 (𝑡) 𝑥 (𝑡 + 𝜏)] = E [𝑦 (𝑡 − 𝜏) 𝑥 (𝑡)] .

(4)

The correlation functions possess the following symmetry
properties that rely on the fact that we assume stationary

signals and thus the time can be shifted arbitrarily so that
𝑅𝑥𝑦(𝜏) = E[𝑥(𝑡

󸀠
− 𝜏)𝑦(𝑡

󸀠
)] = 𝑅𝑦𝑥(−𝜏). In the general case of a

vector response containing the individual response channels
similarly we estimate the correlation function matrix as
follows:

R (𝜏) = E [y (𝑡) y𝑇 (𝑡 + 𝜏)] =
1

𝑇
∫

𝑇

0

y (𝑡) y𝑇 (𝑡 + 𝜏) 𝑑𝑡. (5)

Again we assume stationary conditions and we can also
calculate the correlation function matrix as E[y(𝑡 − 𝜏)y𝑇(𝑡)]
and we get the symmetry relation for the correlation function
matrix

R (−𝜏) = R𝑇 (𝜏) . (6)

3. Transforms

The many transforms used in signal processing and devel-
opment of methods and theories in OMA constitute a
problem for an easy introduction to the field. However, all the
transforms are closely related. The classical Fourier series

𝑦 (𝑡) = 𝑎0 +

∞

∑

𝑘=1

(𝑎𝑘 cos
2𝜋𝑘𝑡

𝑇
+ 𝑏𝑘 sin

2𝜋𝑘𝑡

𝑇
) (7)

is used to describe signals with the period 𝑇. However, it is
normal to write the series in the complex form

𝑦 (𝑡) =

∞

∑

𝑘=−∞

𝑌𝑘𝑒
𝑖Δ𝜔𝑘𝑡 (8)

that allows us to express the Fourier coefficients in the simple
way

𝑌𝑘 =
1

𝑇
∫

𝑇/2

−𝑇/2

𝑦 (𝑡) 𝑒
−𝑖Δ𝜔𝑘𝑡

𝑑𝑡. (9)

The Fourier coefficients 𝑌𝑘 are discrete functions of the
frequency due to the limited period𝑇. If we extend the period
to infinity we then get the Fourier integral and its inverse

𝑦 (𝑡) = ∫

∞

−∞

𝑌 (𝜔) 𝑒
𝑖𝜔𝑡

𝑑𝜔,

𝑌 (𝜔) =
1

2𝜋
∫

∞

−∞

𝑦 (𝑡) 𝑒
−𝑖𝜔𝑡

𝑑𝑡.

(10)

Just like periodic time functions result in discrete fre-
quency, periodic frequency functions result in discrete time
functions, thus assuming also periodic frequency functions
introduce the discrete Fourier series and discrete Fourier
transform

𝑦𝑛 =

𝑁

∑

𝑘=1

𝑌𝑘𝑒
𝑖2𝜋(𝑘−1)(𝑛−1)/𝑁

;

𝑌𝑘 =
1

𝑁

𝑁

∑

𝑛=1

𝑦𝑛𝑒
−𝑖2𝜋(𝑘−1)(𝑛−1)/𝑁

(11)
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in this formulationwith time and frequency shifted to comply
with Matlab preferences. For the discrete time case it is
important to note that according to the Shannon sampling
theorem, we do not lose any information about the signal in
between the sample points.

The Laplace transform can be seen as a generalization
of the Fourier integral where we limit our time functions
to the positive axis and multiply all time functions with an
exponential term so that all time functions are damped like
𝑦
󸀠
(𝑡) = 𝑒

−𝜎𝑡
𝑦(𝑡). We can then define the complex variable

𝑠 = 𝜎 + 𝑖𝜔 and the Laplace transform and its inverse

𝑌 (𝑠) = ∫

∞

0

𝑦 (𝑡) 𝑒
−𝑠𝑡

𝑑𝑡,

𝑦 (𝑡) =
1

2𝜋𝑖
∫

𝜎+𝑖∞

𝜎−𝑖∞

𝑌 (𝑠) 𝑒
𝑠𝑡

𝑑𝑠.

(12)

The 𝑍-transform can be seen as the transform corresponding
to the discrete series given by (8) and (9) but where we have
swapped time and frequency, and thus we have continuous
periodic frequency and discrete time

𝑌 (𝑧) =

∞

∑

𝑛=−∞

𝑦𝑛𝑧
−𝑛

. (13)

Here we have introduced the periodicity in the frequency
domain by defining the complex variable 𝑧 = 𝑒

𝑠Δ𝑡 and as
before for the Laplace transform we are dealing with damped
version of time functions using 𝑠 = 𝜎 + 𝑖𝜔.

The reason for using the transforms is their attractive
properties that they all have in common, like, for instance, the
convolution property (that convolution in the time domain
corresponds to multiplication in the transform domain)

ℎ (𝑡) ∗ 𝑔 (𝑡) ←→ 𝐻 (𝑠) 𝐺 (𝑠) (14)

here expressed for the Laplace transform.

4. Random Vibration

Random vibration is often characterized by the power spec-
tral density (PSD) function that for a time series 𝑥(𝑡) is
defined as the Fourier transform of the correlation function
𝑅𝑥(𝜏)

𝐺𝑥𝑦 (𝜔) =
1

2𝜋
∫

∞

−∞

𝑅𝑥𝑦 (𝜏) 𝑒
−𝑖𝜔𝜏

𝑑𝜏. (15)

The PSD is popular mainly because modes are clearly
indicated by spectral peaks and according to the Parseval
theorem; the area below a PSD for any frequency band is
equal to the variance of the corresponding time signal (band-
pass filtered to the same frequency band), and therefore
the PSD has a simple physical interpretation of energy
distribution (therefore the name “power” spectral density).

One of the most important equations in random vibra-
tions is the fundamental theorem that is relating the product

of the PSD matrix of the input and the FRF matrix of the
system to the PSD matrix of the response

G𝑦 (𝜔) = H̃∗ (𝑖𝜔)G𝑥 (𝜔) H̃𝑇 (𝑖𝜔)

= H̃ (−𝑖𝜔)G𝑥 (𝜔) H̃ (𝑖𝜔) .

(16)

The last equation follows from the identity H̃∗(𝑖𝜔) = H̃(−𝑖𝜔)

and from the fact that the transfer function is symmetric.
Other central relations in random vibrations are the

modal decompositions of the correlation function and PSD
function matrices. The modal decomposition of the correla-
tion function matrix is due to James et al. [6]. Expressing a
general response by its modal decomposition and assuming
white noise input where the correlations functions all degen-
erate to the Dirac delta functions it can be shown that the
correlation function matrix for negative timesR𝑦−(𝜏) and for
positive times R𝑦+(𝜏) is given by

R𝑦− (𝜏) = 2𝜋

𝑁

∑

𝑛=1

(b𝑛𝛾
𝑇

𝑛
𝑒
−𝜆
𝑛
𝜏

+ b∗
𝑛
𝛾
𝐻

𝑛
𝑒
−𝜆
∗

𝑛
𝜏
) ,

R𝑦+ (𝜏) = 2𝜋

𝑁

∑

𝑛=1

(𝛾𝑛b
𝑇

𝑛
𝑒
𝜆
𝑛
𝜏

+ 𝛾
∗

𝑛
b𝐻
𝑛

𝑒
𝜆
∗

𝑛
𝜏
) ,

(17)

where b𝑛 is the mode shape for mode 𝑛 and 𝛾𝑛 is a vector
describing the modal participation of the considered mode.
It is important to note that the negative time part of the
correlation function matrix R𝑦−(𝜏) is in fact a free decay
because it is written as a linear combination of modal
contributions (terms proportional to the mode shape times a
complex exponential), whereas the positive time part R𝑦+(𝜏)

is in fact only a free decay if it is used in its transposed form
so the terms 𝛾𝑛b𝑇𝑛 turn into the form b𝑛𝛾𝑇𝑛 and the response
becomes proportional to the mode shapes. This means that
whenever correlation functions are used as free decays, using
the positive part of the correlation functionmatrix, thematrix
must be used in its transposed form. It should also be noted
that if we had not followed the definition given by (5) but
instead defined the correlation matrix as R(𝜏) = E[y(𝑡 +

𝜏)y𝑇(𝑡)] which is common in some presentations of random
vibration theory, then because of stationarity this is equal to
E[y(𝑡)y𝑇(𝑡−𝜏)]. So this swaps the time of the solutions for the
correlation function matrix in (17), and thus in this case the
positive part of the correlation functionmatrix can indeed be
used as free decays without taking the transpose.

Thedecomposition in the frequency domain can be found
by taking the Fourier transformof (17) or by assuming awhite
noise input andusing the fundamental theorem (16), Brincker
et al. [7, 8],

G𝑦 (𝜔) =

𝑁

∑

𝑛=1

(
b𝑛𝛾𝑇𝑛

−𝑖𝜔 − 𝜆𝑛

+
b∗
𝑛
𝛾
𝐻

𝑛

−𝑖𝜔 − 𝜆
∗
𝑛

+
𝛾𝑛b𝑇𝑛

𝑖𝜔 − 𝜆𝑛

+
𝛾
∗

𝑛
b𝐻
𝑛

𝑖𝜔 − 𝜆
∗
𝑛

) .

(18)

As it appears, in the frequency domain we do not have a
modal decomposition that can be considered as a linear
combination of free decays from the system, because some
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terms are proportional to the mode shapes and some terms
are proportional to the modal participation vectors. This is
due to the fact that when taking the Fourier transform of (17)
the terms from the negative and the positive time axes get
mixed so that the first two terms in (18) are from the negative
time axis and the last two ones are from the positive time axis.

Including only the positive part of the correlation func-
tionmatrix in the Fourier transform defines the so-called half
spectrum matrix that consists only of the two last terms of
(18), and, as we can see, the half spectrummatrix is a spectral
representation of free decays, but again only in its transpose
form.

It is important to note that by using the transposed cor-
relation function matrix as free decays in any identification
technique—or using its counterpart in the frequency domain
as the corresponding half spectrum—we see that we have as
many free decays as we have sensors. Therefore OMA is so to
speak born as a multiple input technique. From (16) we can
see that a reduced rank of the input spectral density matrix
G𝑥(𝜔) will reduce the rank of the output spectral density
accordingly, so normally it is a common assumption in OMA
that the excitation of the structure is also multiple input, that
is, using many independent excitation sources.

5. Testing

The most important concerning the testing part is to make
a clear plan for the test, to secure that all measurements are
carried out well, all data have the required quality, and the
testing is well documented. For each data set that is to be used
for OMA it can be argued, see Brincker and Ventura [2], that
the total length of the time series should not be shorter than

𝑇tot >
20

2𝜍𝑓min
=

10

𝜍𝑓min
(19)

and the sampling frequency should not be smaller than

𝑓𝑠 > 2.4𝑓max, (20)

where 𝑓min is the smallest natural frequency that we are
looking for and 𝑓max is the largest. It is important to secure a
reasonable signal-to-noise ratio. This is done by making sure
that the noise floor of the sensors (and the total measurement
system) is well below the expected response level. Using
two sensors to measure the same signal, the PSD of the
measurement noise can be estimated as, Brincker and Larsen
[9], follows:

𝐺𝑛 (𝑓) = (1 − 𝛾12 (𝑓)) √𝐺1 (𝑓) 𝐺2 (𝑓), (21)

where 𝑦1 and 𝑦2 are the measured signals from the two
sensors, 𝐺1 and 𝐺2 are the corresponding auto spectral
densities, and 𝛾12 is the ordinary coherence between the two
signals.

6. Signal Processing

As we have concluded in Section 2, we extract the infor-
mation from the random signals by calculating correlation

functions. However before we do that we need to go through
some initial preprocessing steps as follows.

(i) Validate data quality (check for clipping, dropouts,
etc.).

(ii) Calibrate signals to refer to physical units.
(iii) Detrending (remove mean or slowly varying trend).

After this initial step the user might want to evaluate and
classify the operating condition during the test (for instance
one or many cars on a bridge), judge the stationarity of the
signals (make a time-frequency analysis), and finally evaluate
the presence of harmonics (if possible remove them). Some
optional preprocessing steps often used in OMA are

(i) adjustments of the sampling frequency (upsampling
and downsampling, also denoted decimation),

(ii) filtering to reduce the frequency band (low-pass,
band-pass, or high-pass filters),

(iii) integration/differentiation of signals.

The different kinds of filtering can be carried out using
digital FIR and IIR filters often used in electrical engineering.
However, in OMAwe do not need real-time filtering because
common practice is to store the raw data during testing and
to perform needed filtering afterwards. Because of this, FFT
filters might be considered due to small phase and amplitude
errors.

When the preprocessing has been performed the corre-
lation function matrix can be estimated by direct calculation
according to (6) adjusting the integration to fit the total time
length of the data 𝑇 = 𝑁Δ𝑡 and to take the sampling into
account which lead to the following simple and unbiased
estimator

R̂ (𝑘) =
1

(𝑁 − 𝑘) Δ𝑡

𝑁−𝑘

∑

𝑛=1

y (𝑛) y𝑇 (𝑛 + 𝑘) Δ𝑡

=
1

𝑁 − 𝑘

𝑁−𝑘

∑

𝑛=1

y (𝑛) y𝑇 (𝑛 + 𝑘) .

(22)

The tradition is to calculate the spectral density first by
segmenting the data and using Welsh method, Brandt [10]

Ĝ (𝜔) =
1

𝑆

𝑆

∑

𝑠=1

ỹ𝑠(𝜔)
∗ỹ𝑇
𝑠

(𝜔) , (23)

where ỹ𝑠(𝜔) is the Fourier transformed response of segment 𝑠.
The correlation function can then be found by inverse Fourier
transform. In OMA one should be careful with possible bias
on spectral function and correlation function estimates that
eventually might result in large errors in the damping values.
It is worth making some comments about bias and theWelch
formula for spectral estimation given by (23) because inmany
software implementations theWelch technique is the basis of
both spectral function and correlation function estimation.

It follows directly from (5) and the convolution property
of the Fourier series, corresponding to (14), that (23) is



Shock and Vibration 5

only a spectral density estimate under the assumption that
each data segment is periodic. Applying this technique
without any windowing on the data segments corresponds
to estimating the so-called circular correlation function in
the time domain, and this clearly will introduce bias on the
estimates. This bias is often denoted as “wrap-around” bias
due to the wrong correlation so introduced between the ends
of the data segment. In the frequency domain this leads to
blunting of the spectral peaks and since this can be seen
as energy “leaking” from the peaks to adjacent frequencies,
the phenomenon is also denoted as leakage bias. The bias
can be reduced giving the end points of the data segment
a smaller weight by applying a windowing function on the
data segments. This will reduce the leakage error but will not
completely remove it.

An alternative is to increase all data segments to double
size by zero padding. This corresponds to assuming that the
signal is zero outside of the data segment, which is also
wrong and introduces a bias, but it can be shown that this
bias is well defined and can be removed in the time domain
by dividing the circular correlation function estimate with
a triangular window. This correlation function estimate has
been known since the seventies and is often denoted as the
“unbiased” FFT estimate. The properties of this estimate are
very close to the properties of the direct estimate given by
(22).

Another unbiased alternative to the direct estimation
given by (22) or to zero padding is to use the random
decrement technique that allows for unbiased estimating of
both the correlation function and its derivative. It might also
be of interest to apply the random decrement technique in
cases where the user wants to apply only one single response
signal to check if modal parameters depend on the excitation
level of the structure.

In the later years it has become popular to skip the
negative part of the correlation functions so that according
to (17) when taking the Fourier transform to get the spectral
density the two first terms in (18) disappear and we obtain
a so-called half spectrum that is a spectral representation of
time domain free decays; see the discussion about this issue
in Section 4.This allows for application of curve fitters known
from traditional modal analysis.

7. Time Domain Identification

In time domain identification (TD-ID) it is normal to use
parametric models obtained by least square (LS) fitting. In
practice this is done by formulating an overdetermined set
of equations that is solved using the pseudo inverse of the
equation matrix. We will shortly summarize the ID recipes
when using some popular ID algorithms like the polyref-
erence (PR) technique, Ibrahim time domain (ITD), the
eigensystem realization algorithm (ERA), and the stochastic
subspace identification (SSI) technique.

In PR the free decays are established (taking columns
from the transposed correlation function matrix) by the

correlation functions and the free decays are then arranged
in a Hankel matrix, Vold et al. [11, 12],

H1 =

[
[
[
[

[

y (1) y (2) ⋅ ⋅ ⋅ y (𝑛𝑝 − 𝑛𝑎)

y (2) y (3) y (𝑛𝑝 − (𝑛𝑎 − 1))

...
... d

...
y (𝑛𝑎) y (𝑛𝑎 + 1) y (𝑛𝑝 − 1)

]
]
]
]

]

(24)

and a “Hankel matrix” with only a single block row

H2 = [y (𝑛𝑎 + 1) y (𝑛𝑎 + 2) ⋅ ⋅ ⋅ y (𝑛𝑝)] . (25)

Here the operating responses y(𝑛) are given in terms of
the discrete time 𝑡𝑛 = 𝑛Δ𝑡. The matrix containing the AR
matrices of the free decays

A = [A𝑛𝑎,A𝑛𝑎−1, . . . ,A1] (26)

is then found by the LS solution

Â = H2H
+

1
, (27)

whereH+
1
is the pseudo inverse ofH1. The modal parameters

can then be found by forming the companion matrix and
performing an eigenvalue decomposition. Thus PR is an
AR model-based technique. The order 𝑛𝑎 of the AR model
determines the number of modes in themodel. If the number
of measurement channels is 𝑛𝑐, then the number of rows and
column of the companion matrix is 𝑛𝑎 × 𝑛𝑐 and the number
of eigenvalues is then also 𝑛𝑎 × 𝑛𝑐 corresponding to 𝑛𝑎 × 𝑛𝑐/2

modes.
ARMA models where the response data can be modeled

directly have never become popular in OMA due to the large
convergence problems when several modes and channels of
data are present.

In ITD (in a modern formulation) a Hankel matrix is
formed with four block rows, Ibrahim [13–15],

H =

[
[
[

[

y (1) y (2) ⋅ ⋅ ⋅ y (𝑛𝑝 − 3)

y (2) y (3) ⋅ ⋅ ⋅ y (𝑛𝑝 − 2)

y (3) y (4) ⋅ ⋅ ⋅ y (𝑛𝑝 − 1)

y (4) y (5) ⋅ ⋅ ⋅ y (𝑛𝑝)

]
]
]

]

= [
H1
H2

] (28)

that is split in the middle defining H1 and H2. The system
matrix is then simply found by the LS solution

Â = H2H
𝑇

1
(H1H

𝑇

1
)
−1

, (29)

where H𝑇
1
(H1H𝑇1 )

−1 can be considered as the pseudo inverse
of H1. The modal parameters are found performing the
eigenvalue decomposition of the system matrix Â. This
matrix defines the model order. With the previous defined
variables, we see that the number of eigenvalues is 2 × 𝑛𝑐, and
the model has 𝑛𝑐 number of modes. This means that the ITD
model has a fixed model order corresponding to 𝑛𝑎 = 2 for
the AR model.
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In ERA twoHankelmatrices are formed, Juang and Pappa
[16] and Pappa et al. [17, 18],

H (0) =

[
[
[
[

[

Y (0) Y (1) ⋅ ⋅ ⋅

Y (1) Y (2) ⋅ ⋅ ⋅

...
...

Y (𝑠 − 1) Y (𝑠) ⋅ ⋅ ⋅

]
]
]
]

]

;

H (1) =

[
[
[
[

[

Y (1) Y (2) ⋅ ⋅ ⋅

Y (2) Y (3) ⋅ ⋅ ⋅

...
...

Y (𝑠) Y (𝑠 + 1) ⋅ ⋅ ⋅

]
]
]
]

]

(30)

and an SVD is performed on the first matrix

H (0) = USV𝑇. (31)

We can then estimate the observability and controllability
matrices as follows:

Γ̂ = U√S

Λ̂ = √SV𝑇
(32)

and finally the discrete time system matrix is estimated as
follows:

D̂ = Γ̂
+H (1) Λ̂

+
. (33)

The modal parameters are found performing the eigenvalue
decomposition of D̂, but in this case the eigenvectors must
be brought back to physical coordinates by the observation
matrix. It should be noted that using the number of block
rows of the block Hankel matrices equal to 𝑠 = 𝑛𝑎, the ERA
has the same number of modes as an AR model.

The above mentioned techniques are all based on using
the correlation functions as free decays. In SSI we use a
different approach and we use the responses to construct the
block Hankel matrix with 2𝑠 block rows, Overschee and de
Moor [19], Peeters [20], and Peeters and de Roeck [21]

H =

[
[
[
[

[

y (1) y (2) ⋅ ⋅ ⋅ y (𝑛𝑝 − 2𝑠 + 1)

y (2) y (3) ⋅ ⋅ ⋅ y (𝑛𝑝 − 2𝑠 + 2)

...
...

...
y (2𝑠) y (2𝑠 + 1) y (𝑛𝑝)

]
]
]
]

]

= [
H1
H2

] (34)

that is split in the middle defining H1 and H2. A projection
matrix is then formed by the LS solution

O = H2H
𝑇

1
(H1H

𝑇

1
)
+

H1. (35)

Parallel to the solution idea in the ERA we now take the SVD
of the projection matrix

O = USV𝑇 (36)

and we estimate the observability and Kalman state matrix

Γ̂ = U𝑛√S𝑛,

X̂ = √S𝑛V
𝑇

𝑛
.

(37)

The last matrix can be thought of as containing the initial
conditions of the free decays in the projection matrix. Finally
the discrete time system matrix and the observation matrix
can be found by solving a least squares problem and the
modal parameters are found performing the eigenvalue
decomposition of the system matrix. The number of eigen-
values of the SSI model is equal to 𝑠 × 𝑛𝑐, and the number of
modes in the model is then equal to 𝑠 × 𝑛𝑐/2.

8. Frequency Domain Identification

Frequency domain (FD) methods are mainly popular due
to their ability to appeal to our intuition by the nice plots
where we can inspect spectral peaks and have an idea about
modal participation by evaluating the height of each peak
and the damping by evaluating its width. But they tend
to suffer from bias problems due to leakage because even
though the spectral density can be estimated so that it
is asymptotically unbiased (bias is zero when information
approaches infinity), in practiceweneed to dealwith a limited
amount of information, and thus the leakage bias will tend
to lead to overestimation of the damping in the frequency
domain. Also the missing modal (free decay) decomposition
of the spectral density as given by (18) is a problem because
no commonly known identification techniques are designed
to deal with this form, but this problem can be solved by
working with the half spectral density functions. Similar to
what we did for time domain we shortly summarize the
ID recipes when using some popular ID algorithms in FD
like classical FD (also called basic FD), frequency domain
decomposition (FDD), and frequency domain polyreference
(FD-PR, also denoted Polymax).

In classical FD we have the simplest possible recipe,
Bendat and Piersol [22] and Felber [23]:

(i) natural frequency is estimated from the location of the
peak in the considered PSD;

(ii) damping is estimated from the width of the peak;
(iii) mode shape is estimated from any column or row in

the PSD matrix.

This works well only in case of well-separated modes. Also it
is a problem that the user has to deal with the large number
of PSD plots. In case of closely spaced modes an alternative is
the FDD recipe where the PSD matrix is decomposed using
SVD, Brincker et al. [7],

G𝑦 (𝑓) = USU𝐻 = U [𝑠
2

𝑛
]U𝐻. (38)

In this case the application is even simpler for the user
because he is only inspecting a single PSD plot, that is, a
plot of the singular values taken from the diagonal matrix S.
These singular values can be considered as a combination of
estimates of the modal coordinate auto-PSDs and the noise
in the operational data. Just like in classical FD, the natural
frequency can be estimated from the location of a peak in
the plot, but in the FDD the mode shape is estimated as the
first singular vector (first column inU) at the same frequency
line. A better frequency estimate of the natural frequency
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(and damping) can be found by modal filtering of the PSD
matrix isolating each modal coordinate in FD, taking the
modal coordinate PSD to time domain and finally finding
modal parameters from the 1DOF free decay, Brincker et al.
[24].

In FD-PR where the idea is to take the polyreference to
the frequency domain, we have the problem that we cannot
consider “just free decays” like in the TD, because in the
FD the whole time axis is transformed into every point in
the FD. Therefore in principle we have to deal with a full
ARMA model in the FD; that is, the free decay in the TD
resulting in a homogeneous equation of motion becomes a
nonhomogenous equation of motion in the FD, Parloo [25]
andPeters et al. [26, 27].The simplest possible case is achieved
assuming that the right hand side is a constant matrix (this
is of course only a reasonable assumption for a narrow band
estimator), Brincker and Ventura [2], and in this case the
corresponding recipe is quite simple. Taking the response to
be equal to the half spectrum transposed Y(𝑓) = G𝑇

𝑦
(𝑓) we

form the two Hankel matrices

H1 = [Y𝑛𝑎 (𝑓 (𝑘1)) ,Y𝑛𝑎 (𝑓 (𝑘1 + 1)) , . . . ,Y𝑛𝑎 (𝑓 (𝑘2))]

H2 = [I, I, . . . , I] .

(39)

The matrix containing the autoregressive matrices given by
(25) is found by the LS solution

Â = H2H
+

1
. (40)

And finally the modal parameters are then found by forming
the companionmatrix based on the autoregressive coefficient
matrices and performing an eigenvalue decomposition.

9. Example: The Heritage Court Tower Data

We will illustrate the OMA techniques on the well-known
case of operational data from the Heritage Court Tower
building.The case is described in detail in Dyck and Ventura,
[28].

The operational data was obtained using four datasets
measuring only horizontal acceleration; two sensors close
to the top of the building were used as references and the
remaining sensors were then roved down the building. The
first dataset applies 6 sensors placed close to the top of the
building, the second dataset applies 8 sensors, the six roving
sensors now moved downwards, the third dataset is similar
but the roving sensors again moved downwards the building,
and finally the fourth dataset includes 8 sensors where the six
roving sensors are now close to the bottom of the building.
All datasets have a total measurement time of 328 s and a
sampling frequency of 40Hz. Three sensors were used on
each measured floor.

The simplest way to graphically illustrate the operational
data is to make an FDD plot. The results for the first dataset
are shown in Figure 2 showing the lowest quarter of the
frequency band. The figure is also showing the results of the
FDD performing a modal filtering taking mode shapes as the
first singular vector of (38) in the points indicated in Figure 2.
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Figure 2: Results of using FDD to identify the first three modes on
the first dataset of theHCT case.The singular values of the SDmatrix
are shown in dotted line. In the plot the frequency lines where the
mode shape vectors are estimated are indicated by an asterisk and
the corresponding modal decomposition is shown in solid line.

As it appears the first three modes are in the frequency band
from 1.3 to 1.5Hz.

The expected excitation of the building is a combination
of wind, traffic, and excitation from people moving around
in the building, so it seems reasonable to assume that the
assumption ofmultiple input loading is fulfilled.Themultiple
input assumption is also supported by the fact that the SVD
plot in Figure 2 shows a relatively good modal separation
(sufficient rank of the spectral density matrix).

Since the lowest natural frequency is around 1.3Hz, and
if we assume the damping ratio to be around 1%, then
the total length of each record according to (19) should be
approximately 770 s. Thus the actual measurement time of
328 s is lower than the half of what is recommended by (19),
and since the three first modes of this example are relatively
closely spaced, it should be expected that we have some
difficulties identifying the three first modes of this structure
consistently. It, especially, should be expected that we have
difficulties identifying the modes for the datasets where the
roving sensors get close to the base of the building where the
response is low andwe have a decreasing signal-to-noise ratio
in the measurements.

The results of the identification of the first three modes
of dataset 1 are shown in Table 1 and the similar results for
dataset 4 are shown in Table 2.

For all the time domain identifications the modal par-
ticipation vectors 𝛾𝑛 in (17) are used to find the relative
modal participation factor 𝜋𝑛 as described in Brincker and
Ventura [2]. Similarly in the frequency domain the modal
participation vectors 𝛾𝑛 in (18) are obtained using the half
spectral density matrix including only the two last terms in
(18).

In the time domain the first three modes were isolated
using a band-pass filter with a center frequency of 1.35Hz, a
flat characteristic in a band around the center frequency with
a band width of 0.4Hz, and a roll-off band on each side with
a width of 0.4Hz.

For the AR, ITD, and ERA techniques the correlation
function matrices were estimated using the direct technique
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Table 1: Modal identification on dataset 1 of the Heritage Court Tower case.

Modal quantity Modal identification method
AR ITD ERA SSI FDD FD-PR

Mode 1, 𝑓𝑛, (Hz) 1.227 1.227 1.227 1.227 1.225 1.228
Mode 1, 𝜍𝑛, (%) 0.96 0.97 0.96 0.53 1.29 1.32
Mode 1, 𝜋𝑛, (%) 30.1 30.2 30.1 32.6 27.9 29.7
Mode 2, 𝑓𝑛, (Hz) 1.285 1.285 1.285 1.284 1.287 1.290
Mode 2, 𝜍𝑛, (%) 1.19 1.20 1.19 0.58 1.41 1.46
Mode 2, 𝜋𝑛, (%) 19.2 19.3 19.3 18.5 17.4 19.0
Mode 3, 𝑓𝑛, (Hz) 1.452 1.451 1.452 1.450 1.450 1.454
Mode 3, 𝜍𝑛, (%) 1.11 1.11 1.11 0.63 1.59 1.36
Mode 3, 𝜋𝑛, (%) 50.6 50.5 50.6 48.9 55.8 51.3

Table 2: Modal identification on dataset 4 of the Heritage Court Tower case.

Modal quantity Modal identification method
AR ITD ERA SSI FDD FD-PR

Mode 1, 𝑓𝑛, (Hz) 1.246 1.246 1.246 1.215 1.235 1.213
Mode 1, 𝜍𝑛, (%) 1.12 1.05 1.12 1.92 2.72 2.52
Mode 1, 𝜋𝑛, (%) 23.4 26.0 23.4 16.3 35.5 31.8
Mode 2, 𝑓𝑛, (Hz) 1.299 1.300 1.299 1.279 1.293 1.301
Mode 2, 𝜍𝑛, (%) 1.57 1.40 1.57 7.20 2.45 2.62
Mode 2, 𝜋𝑛, (%) 3.4 3.6 3.4 10.0 0.7 0.2
Mode 3, 𝑓𝑛, (Hz) 1.441 1.442 1.441 1.443 1.450 1.446
Mode 3, 𝜍𝑛, (%) 0.33 0.31 0.33 0.89 1.27 1.08
Mode 3, 𝜋𝑛, (%) 58.6 34.1 58.6 69.0 63.8 63.6

according to (22); the full correlation function matrix was
transposed as described in Section 4 and all columns (all
free decays) in the transposed correlation function matrix
were then used for the identification. For the first dataset
500 discrete time lags were used in the correlation function
matrix; however, for the last dataset where the modes are
somewhat more difficult to identify, 950 time lags were
used. For the AR, ITD, and ERA techniques a low model
(corresponding to 𝑛𝑎 = 2) order was used including 6 modes
for dataset 1 and 8 modes for dataset 4.

The PC algorithm using the stochastic algorithm 1 from
Overshcee and de Moor [19] was used for the SSI identifica-
tion. In SSI the need for an oversized model is larger than
for the previouslymentioned techniques and therefore in this
example a largemodelwith 𝑠 = 80 block rowswas used for the
estimation. This corresponds to a model with 240 modes for
the first dataset and to a model with 320 modes for dataset 4.
The SVDmatrices in (37) were reduced to the first 6 singular
values for the first dataset (corresponding to a reducedmodel
with only three modes) and to 18 singular values for the last
dataset (corresponding to a reducedmodel with ninemodes).
It was needed to use nine modes in the last dataset in order to
obtain a model including the three modes with a reasonable
participation factor.

In the frequency domain the modes were identified using
the FDD and the FD-PR technique. In both cases the spectral
density matrix was estimated taking the discrete Fourier

transform of the directly estimated correlation function
matrix.

As it is indicated earlier, it is good idea to start any
OMA with the simple FDD analysis, just looking at the
plot of the singular values; see Figure 2. As it appears three
singular values are peaking inside the interval 1-2Hz, while
the fourth singular value is flat. Therefore the fourth singular
value defines the noise floor; the first three singular values
describe the physics of the system and it can be concluded
that three modes are present in the considered frequency
band. As mentioned earlier, the singular vectors at the three
indicated points close to the three spectral peaks were chosen
as mode shape estimates, and the modal coordinates were
then found solving the equation y(𝑡) = Aq(𝑡), where the
matrixA contains the estimatedmode shapes and q(𝑡) are the
modal coordinates. We can find the solution to this heavily
overdetermined problem as the LS solution q̂(𝑡) = A+y(𝑡).
This can also be done in the frequency domain, and the
modal coordinate estimates are indicated by the solid lines in
Figure 2. The modal coordinates estimates in the frequency
domain can then be taken back to time domain by inverse
FFT and the frequency and damping can be found from the
modal coordinate correlation function by simple means (in
this case using simple ITD for one single channel of data).

The FD-PR identification was carried out based on the
half spectrum matrix estimated with 1025 frequency lines in
the whole frequency band up to 20Hz. The autoregressive
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Figure 3: Mode shapes of the HCT building found by AR identification and merging the mode shapes from the 4 data using the reference
DOFs. The units of the coordinate system are meters.

matrices were found using (40) over the frequency band
centered at 1.35Hz and with a band width of 0.6Hz. The
first dataset was identified using a model order of 𝑛𝑎 = 2

(corresponding to 6 modes for the first dataset); however, for
the last dataset in order to identify all three modes with a
reasonable modal participation, a model order of 𝑛𝑎 = 8 was
used (corresponding to 32 modes).

Using that each floor in the building is moving like a
ridged body in the horizontal plane the movements of all
points of a given floor can be estimated using only the
measured three horizontal components and the different
parts of the mode shape can be merged using the common
reference DOFs. The mode shapes of the three first modes
obtained by the different techniques are quite similar. The
mode shapes of the HCT building from the AR identification
are shown in Figure 3.

The differences in the identification can be discussed on
the basis of the results in Tables 1 and 2. For dataset 1 it
is clear that all techniques identify nearly the same natural
frequencies for all three modes. Concerning the damping
we can see a somewhat higher estimation uncertainty (as
expected), and we can see that frequency domain techniques
have a tendency to provide higher damping values than
the time domain techniques. The higher damping is most
probably due to leakage errors introduced by the discrete
Fourier transform of the correlation functions to frequency
domain. All techniques also agree that the relative modal
participation is around 30% for mode 1, it is around 19%
for mode 2, and it is around 50% for mode 3. The high
modal participation for all three modes secures the relatively
consistent identification results.

Considering the results of Table 2 we clearly see that this
case is somewhat more difficult. We have already mentioned
that in order to identify all three modes we needed to adjust

the identification; for instance, the time domain techniques
needed more time lags in the correlation functions, and the
SSI needed to include more singular values to have more
modes in the model. Even doing these adjustments in order
to improve identification accuracy, we clearly now see some
deviations of the natural frequencies. For the first mode we
see that SSI and FD-PR provide the value 𝑓1 = 1.215Hz,
whereas the AR, ITD, and ERA agree on 𝑓1 = 1.246Hz,
but we know from the results of dataset 1 that the right
natural frequency is 𝑓1 = 1.227. These deviations are quite
large to what would normally be expected. Modes 2 and 3
show smaller, but similar, deviations that are also larger than
normally expected. Larger deviations on the damping value
are observed and, for instance, the SSI provides an unrealistic
estimate of more than 7% damping. These difficulties are
most probably due to a small amount of data combined
with a smaller signal-to-noise ratio caused by having most
of the sensors close to the ground where the response is
small. Another important reason to the difficulties identi-
fying dataset 4 is that we see from Table 2 that the modal
participation of mode 2 is relatively weak.

This example stresses the need for good testing practice
making sure that an appropriate amount of data is taken and
that a good signal-to-noise ratio is present in all datasets.The
analysis of this example was carried out using the MATLAB
toolbox that comes with Brincker and Ventura [2].

10. Mode Shape Scaling and Expansion

The most commonly used method in mode shape scaling
is to make a mass and/or stiffness perturbation of the test
specimen and to use the corresponding change of natural
frequencies and mode shape to estimate the scaling factor
𝛼 that is defined as 𝛼 = 1/√𝑚, where 𝑚 is the modal
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mass. Many formulas exist, but the most general one is the
following, López-Aenlle et al. [29]:

𝛼
2

𝑗
=

(𝜔
2

0𝑗
− 𝜔
2

𝐼𝑖
) 𝑡𝑗𝑖

a𝑇
0𝑗

(𝜔
2
𝐼𝑖

ΔM + ΔK) a𝐼𝑖
, (41)

where the natural frequency 𝜔0𝑗 of mode 𝑗 in its unperturbed
state and the corresponding mode shape a0𝑗 and the natural
frequency 𝜔𝐼𝑖 of mode 𝑖 in its perturbed state and the
corresponding mode shape a𝐼𝑖 are used to find an estimate
of the scaling factor so that the corresponding mass scaled
mode shape 𝛼𝑗 = 𝛼𝑗a𝑗 can be defined.The terms 𝑡𝑗𝑖 are found
from the LS solution

T = [𝑡𝑗𝑖] = A+
0
A𝐼, (42)

whereA0 contains the unperturbedmode shapes andA𝐼 con-
tains the perturbed mode shapes. In principle this equation
is exact and the only approximation is due to the estimation
of the projection terms in (42). The first formulation of this
kind of equation is due to Bernal [30]. However, because of
the small changes ofmass and stiffness that are often used due
to practical reasons and because of the problems of detecting
these small changes due to measurement and ID noise, the
uncertainty on the scaling factor is often large and therefore
it might in many cases be more accurate to expand the mode
shapes and perform the scaling using the expanded mode
shapes on the FE mass matrix, López-Aenlle and Brincker
[31].

Mode shape expansion is based on the idea of fitting
a measured mode shape a with a limited number of mode
shapes (subspace) from an FE model. Given a fixed subspace
from the FEmodelwithmode shapes arranged inmode shape
matrix

B = [
B𝑎
B𝑑

] , (43)

where B𝑎 contains the DOFs corresponding to the experi-
ment (active DOF’s) and B𝑑 contains the remaining DOFs
in the FE model (deleted DOFs), we then have the classical
fitting problem

a ≅ B𝑎p (44)

that can only be approximately fulfilled since we are dealing
with overdetermined problem. We find the classical LS
estimate for the parameter vector

p̂ = B+
𝑎
a (45)

and we have now a smoothed version of the experimental
mode shape

â = B𝑎p̂. (46)

The smoothed version can be expanded to all DOFs in the FE
model just by including all DOFs in the FE mode shapes

â = Bp̂. (47)

The expanded version can be used for scaling as mentioned
above and in damage detection and updating. If the expanded
mode shapes are used for scaling together with the mass
matrix of the finite element model as mentioned above,
this provides a simple procedure for the scaling of OMA
mode shapes. Assuming that the mode shapes from the finite
elementmodel aremass scaled, themodalmass is obtained as
the inner product of the expanded experimental mode shape
over the mass matrix of the finite element model

𝑚 = â𝑇Mâ = p̂𝑇B𝑇MBp̂ = p̂𝑇p̂. (48)
The result follows from (47), the well-known orthogonality
principle, and the assumption of mass scaled FE modes so
that the inner product B𝑇MB is equal to the identify matrix,
Aenlle and Brincker, [32].

Using the above mentioned expansion assuming a fixed
subspace is equivalent to expansion using SEREP, O’Callahan
et al. [33]. One of the problems of the expansion as outlined
above is to know which modes should be included in the
subspace matrix B. It is obvious that the subspace should be
chosen minimal in order to obtain the best solution, (45),
and thus that the optimal choice of subspace must change
from mode to mode. This problem can be solved by the
local correspondence (LC) principle, Brincker et al. [34],
that states that any perturbed mode shape can be written as
a linear combination of modes of the unperturbed system
including only a few mode shapes around the corresponding
unperturbed mode.

11. Conclusions

Some of the main elements of operational modal analysis
(OMA) have been considered. It is argued that it is not
necessary to assume a white noise input in order to use OMA;
however, it is a central assumption in OMA that only second
order information is considered (correlation and spectral
density functions) and that the excitation is multiple input.
The theoretical solutions for the correlation function matrix
and the spectral density matrix are discussed and it is pointed
out that care should be taken in order to use the second order
information in a form that in fact represents free decays of the
system. The identification recipes for some commonly used
time domain and frequency domain techniques are presented
and their ability to identify the first three closely spaced
modes of the Heritage Court Tower building is illustrated.
Finally the important issues of mode shape scaling andmode
shape expansion are presented.
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This paper presents dynamic methodologies able to obtain concept models of automotive beams and joints, which compare
favourably with the existing literature methods, in terms of accuracy, easiness of implementation, and computational loads. For
the concept beams, the proposed method is based on a dynamic finite element (FE) approach, which estimates the stiffness
characteristics of equivalent 1D beam elements using the natural frequencies, computed by a modal analysis of the detailed 3D FE
model of the structure. Concept beams are then connected to each other by a concept joint, which is obtained through a dynamic
reduction technique that makes use of its vibration normal modes. The joint reduction is improved through the application of a
new interface beam-to-joint element, able to interpolate accurately the nodal displacements of the outer contour of the section, to
obtain displacements and rotations of the central connection node.The proposed approach is validated through an application case
that is typical in vehicle body engineering: the analysis of a structure formed by three spot-welded thin-walled beams, connected
by a joint.

1. Introduction

The virtual models obtained by computer-aided engineering
(CAE) tools play a fundamental role in the development
process of complex products, because they enable engineers
to predict various performance attributes, avoiding the use
of expensive physical prototypes and thus reducing the time
of design process. Particularly in the field of automotive
industry, the performances related to noise, vibration, and
harshness (NVH) are hard to improve in the last steps of
the development process without raising conflicts with others
vehicle requirements. For this reason, many researchers
have developed predictive conceptmodellingmethodologies,
which can be used to predict and improve the vehicle design
from the concept phase onwards.

This paper focuses its attention on concept modelling
techniques concerning the reduction in an equivalent simpli-
fiedmodel of the detailed vehicle body inwhite (BIW)model,
allowing to drastically reduce the required computational
resources and the time needed for its modifications.

The reduction of detailed 3D FE models can rely on dif-
ferent commercial FE solvers available today (such as Nas-
tran, Abaqus, and Ansys), which provide libraries of simpli-
fied elements (1D beam elements, superelements, etc.). In the
literature, there are several approaches able to simplify the
principal structural elements of a BIW, such as beam-like
structures and joints.

Regardingelementmodelshavingbeam-likeglobalbehav-
iour, main methodologies to reduce a 3D element into a 1D
element with equivalent characteristics can be grouped in
three categories: geometric, static FE-based, and dynamic FE-
based approaches.The geometric conceptmodellingmethods
rely on a geometric analysis of the beam cross-sections [1–3].
The mass and stiffness properties of the equivalent 1D beam
element are computed by analysing the mass distribution
along the section and considering whether the section has a
single or a multiconnected closed shape.

Instead, in the static FE-based methods [4, 5], a set of
static load cases is generated by applying bending, torsion,
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and axial loads at the end sections of each beam segment.
For some beam cross-sections, central nodes are created and
connected to the other nodes at the same cross-sections, by
means of multipoint constraint (MPC) elements, which are
of rigid type for the two end sections and of interpolation
type for the intermediate sections. In this way, external and
reaction loads are applied directly to the central node of the
end sections, and the rigid elements transfer them to the
rest of the structure, while the interpolating elements allow
estimating the linear elastic deformation of the beam central
line. Finally, the stiffness properties of the equivalent 1D beam
are estimated by applying the linear elastic load-deformation
relationships of the beam structure, starting from the static
deformations predicted by analysing the detailed 3D model.
A scheme illustrating the static FE-based method is shown in
Figure 1.

This work discusses an original method pertaining to the
last category, the dynamic FE-based approach [6], through
which the stiffness characteristics (e.g., quadratic moments
of inertia, torsional modulus, etc.) of equivalent 1D beam
elements are estimated using the natural frequencies com-
puted by a modal analysis of the detailed 3D FE model of the
structure. Its main advantages came from the fact that any
possible discontinuities and variations thatmay occur along a
beam and that affect its stiffness are taken into account during
the computation, so that the proposed method results in an
accuracy benefit as compared to prior art methods.

Automotive joints are the second main part of a BIW to
be conceptualized. Currently, the most usual techniques rely
on the reduction of a joint in a superelement (SE), which is
defined by reduced stiffness and mass matrices. In order to
guarantee structural continuity between beams and joints in
thewhole concept structure, an interface between the concept
1D beam model and the detailed 3D joint model is created
before applying joint reduction. The latter is then achieved
by condensing the joint stiffness and mass properties to the
nodes on the beam side of each beam/joint interface, as it will
be explained in Section 2.Therefore, in the reduction process,
the central nodes of the beam/joint interfaces represent the
master degrees of freedom (DOFs) to be preserved, while
the DOFs of the nodes belonging to the 3D FE structure
of the joint are removed (slave DOFs). Figure 2 shows a
typical BIW structure of a commercial vehicle and a typical
joint and beam-like member used in automotive bodies. In
the same figure, a graph showing the overall scheme of the
technique proposed here for 1D modelling of beams and
SE representation of joints is also illustrated. The reduction
techniques on SE can be categorized into two types: static or
dynamic. Guyan reduction [7] is the most common method
for static condensation. It returns an exact reduced stiffness
matrix and an approximated mass matrix, exploiting some
static considerations between the master nodes of the joint.
On the contrary, all the dynamic methods make use of the
vibration normal modes of the structure, but they differ
from each other for the applied boundary conditions and
for the selection of enrichment vectors in addition to the
normal modes. Two well-established examples are the Craig-
Bampton fixed interface [8] and MacNeal’s [9] approach. In
the former approach, which is used in the research presented

X

Y

Z

Fy

Fx Mz

Fz

Figure 1: Application of static FE-based method: loads, constraint,
and connection elements applied to the detailed 3D beam model.

Reduction of beam-like structures 
into equivalent 1D beam elements  
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superelements (SE)

Identifying of beam 
segments and joints
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A, I1, I2, I12 ,
DMIG
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Figure 2: Workflow for the creation of beam and joint FE concept
models.

here, the normal modes are computed with the structure
clamped at the connection interfaces, while the enrichment
vectors are determined as constraint modes. The latter meth-
od uses the normal modes of the component in free-free
conditions, while the enrichment vectors consist of residual
flexibility modes.

These dynamic reduction methods are reliable and easy
to implement. However, in the specific application of thin-
walled automotive joints, the accuracy of these methods
is strongly dependent on the type of connection models
that are used at each beam-joint interface. Rigid connection
elements, such as Nastran RBE2 elements [10], can make
the entire structure excessively stiff, while general-purpose
interpolation elements, such as Nastran RBE3 elements [10],
can lead to coarse inaccuracies especially with regard to the
torsional stiffness.

For this reason, a new multipoint constraint (MPC) con-
nection element is proposed and validated here, in order to
overcome the limitations of standard connection elements
and achieve more accurate concept models of automotive
joints. The proposed MPC allows correlating displacements
and rotations of the dependent node (i.e., the central node
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of the joint end section) with the displacements of the
peripheral section nodes. These relationships are based on
static considerations and return a transformation matrix,
whose implementation process is explained in detail. To
verify the improved accuracy of the proposed model, a
comparative analysis has been carried out between a structure
where concept joints are reduced by using rigid spiders
as connection elements and another where the new MPC
connection elements are employed.

The paper is organized as follows. Section 2 describes
the mathematical definition of the new connection element.
Section 3 describes the detailed 3D and the concept 1D FE
models of the spot welded structure that are used for vali-
dation purposes.The dynamic validation results are reported
in Section 4, demonstrating the improvements that can be
obtained using the proposed connection elements. Section 5
concludes the paper, by reviewing the results achieved and
providing an outlook on the foreseen next steps.

2. Definition of New MPC Connection Element

In this paper, a new MPC connection element is defined,
which enables to create an interface between the concept
1D beam model and the detailed 3D joint model, as shown
in Figure 3. For such purpose, the kinematic relationships
between the displacements and rotations of the beam node
(dependent node of the connection element) and the dis-
placements of the nodes of the detailed 3D FE model
of the joint at the interface section (independent nodes
of the connection element) are derived in the form of
a transformation matrix [𝑅], by using a static approach
based on equilibrium conditions [11]. The basic idea is to
obtain a second transformation matrix [𝑆] that defines the
relationship between the total forces at the central node of
the beam/joint interface and the nodal loads over the section,
considering theoretical stress fields resulting from the Saint-
Venant assumptions with respect to axial, bending, shear, and
torsion load-cases for a beam-like structure [12]. In linear
elastic field, this loads correlation can be inverted, returning
the searched kinematic relationship.

The transformation matrix [𝑆] is obtained by calculating
the product of two submatrices:

(i) the stress recovery matrix [𝑆1], which correlates the
sectional stresses applied to the nodes of shell ele-
ments and resultant loads applied on the central
node of equivalent 1D beam element, by using load-
stress relationships of Saint-Venant for beam-like
structures;

(ii) the form nodal load matrix [𝑆2], which links all the
nodal forces and the nodal stresses of the section, by
using the shape functions of linear finite elements.

In the next subsections each of these matrices is described
and explained in detail.

2.1. The Stress Recovery Matrix [𝑆1]. Starting from the sec-
tional load resultant at the interface, the stress recovery
matrix [𝑆1] is defined by the assumptions of linear elastic,
homogeneous, and isotropicmaterial. First, it is assumed that
the thickness is sufficiently small with respect to the cross-
section dimensions, which allows using the stress distribution
properties of thin-walled beams.

Furthermore, for a spot welded structure, which is open
in some cross-sections but closed in those regions where spot
welds are applied, the global behaviour can be assumed as
similar to that of closed section; for this reason, the stress
equations for closed thin-walled sections are used. For a 3D
beammodel, the stress-load relationship for each simple load
case can be written at the interface section, with respect to
a reference system placed on the centre of gravity, with 𝑧-
axis directed along the longitudinal neutral axis and 𝑥- and
𝑦-axes along the principal and secondary bending directions,
respectively. The matrix relation can be given as follows:

{𝜎} = [𝑆1] {𝐹} , (1)

where {𝜎} is the vector of nodal stresses, [𝑆1] is the stress
recovery matrix, and {𝐹} is the vector of total forces applied
to the central node. In particular, (1) for a generic rectangular
cross-section can be detailed as follows:

{{{{{{{{{{{{{

{{{{{{{{{{{{{

{

𝜏
(1)

𝑥𝑧

𝜏
(1)

𝑦𝑧

𝜎
(1)

𝑧

𝜏
(2)

𝑥𝑧

𝜏
(2)

𝑦𝑧

𝜎
(2)

𝑧

...

}}}}}}}}}}}}}

}}}}}}}}}}}}}

}

=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑆
∗(1)

𝑦

𝐼𝑦 (2𝑏
(1)
)

0 0 0 0 𝑝 (
1

2Ω𝑏
(1)
)

0
𝑆
∗(1)

𝑥

𝐼𝑥 (2𝑏
(1)
)

0 0 0 𝑞 (
1

2Ω𝑏
(1)
)

0 0
1

𝐴 tot
−
𝑦
(1)

𝐼𝑥

−
𝑥
(1)

𝐼𝑦

0

𝑆
∗(2)

𝑦

𝐼𝑦 (2𝑏
(2)
)

0 0 0 0 𝑝 (
1

2Ω𝑏
(2)
)

0
𝑆
∗(2)

𝑥

𝐼𝑥 (2𝑏
(2)
)

0 0 0 𝑞 (
1

2Ω𝑏
(2)
)

0 0
1

𝐴 tot
−
𝑦
(2)

𝐼𝑥

−
𝑥
(2)

𝐼𝑦

0

...
...

...
...

...
...

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

{{{{{{{{

{{{{{{{{

{

𝐹𝑥

𝐹𝑦

𝐹𝑧

𝑀𝑥

𝑀𝑦

𝑀𝑧

}}}}}}}}

}}}}}}}}

}

. (2)

The physical meaning of each parameter is given in Table 1.
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The superscript (𝑖) indicates the global node number. For
the transition region between two different values of thick-
ness, an average value is set at the node between two adjacent
shell elements. Note that the effects of individual loads are
considered uncoupled; in addition, the contribution of linear
shear stresses, perpendicular to the shear direction, are not
considered, because their global effect on displacements and
rotations of the central node is zero, as well as the global effect
of warping in torsion load cases [13]. Figure 4 shows the stress
distributions in these two cases.

2.2. The Form Nodal Load Matrix [S2]. The form nodal load
matrix [𝑆2] provides a relationship between nodal forces and
nodal stresses of the 3D beam model. First, the nodal loads
on one shell element 𝑘 at the interface are examined.This is a
bilinear 4-node shell element, then only two nodes (𝑖 and 𝑗)
must be considered for the interface (Figure 5).

The stress distributions on the interface of 𝑘 element are
found by averaging the nodal stresses of nodes 𝑖 and 𝑗. Then,
the average stresses of 𝑘 element, 𝑓𝑘

𝑥
, 𝑓𝑘
𝑦
, and 𝑓𝑘

𝑧
, in 𝑥, 𝑦, and

𝑧 directions, respectively, it can be written as follows:
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Since the average stresses at the interface are constant, the
nodal loads for 𝑖 and 𝑗 can be calculated by using shape
functions, yielding
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(4)

where 𝐴(𝑘) is the area of the element, 𝑁 indicates the shape
function, and 𝑠 is the local coordinate, useful to measure the
length of element.

The same relations are valid for all the other elements
along the interface and, then, an assembled matrix relation-
ship can be obtained between nodal forces and nodal stresses:

{𝑓} = [𝑆2] {𝜎} , (5)

where {𝑓} is the vector of total nodal forces, [𝑆2] is the form
nodal loadmatrix, and {𝜎} is the vector of total nodal stresses.
In extended notation, (5) can be rewritten as follows:
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. (6)

Note that, for open sections, the forces applied on internal
nodes receive the contribution of average stresses relating to
both adjacent elements; instead, external nodes belong to a
single element and then their values are considerably lower.
Therefore, by combining (1) and (5), it is possible to obtain
the relation between the total forces at the central node, {𝐹},
and the nodal forces on the outer contour of the section {𝑓}:

{𝑓}
3𝑛×1

= [𝑆2]3𝑛×3𝑛
[𝑆1]3𝑛×6

{𝐹}6×1 = [𝑆]3𝑛×6{𝐹}6×1, (7)

where 𝑛 denotes the maximum number of nodes on the
interface.

To obtain the [𝑅] matrix that relates 1D beam displace-
ments and rotations and 3D displacement values at the
interface, linear relations between forces and displacements
are assumed. In this way, it is sufficient to transpose [𝑆]:

[𝑅] = [𝑆]
𝑇
. (8)

The searched kinematic relationship can bewritten as follows:
[𝑅]6×3𝑛{𝑞}3𝑛×1

= {𝑄}6×1, (9)
where {𝑄}6×1 is the nodal displacements and rotations vector
of the beam node and {𝑞}

3𝑛×1
is the nodal displacements

vector of the 3D finite element model.
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Figure 3: The interface element (circled in red) between equivalent
1D beam model and detailed 3D joint model. The central node is
in yellow (dependent node on the beam side) while the peripheral
nodes are in red (independent nodes on the joint side).

3. Application Case

This section describes an application model, on which the
proposed new connection element has been validated. The
geometry of the reference 3D structure is described in
Section 3.1. Thereafter, Section 3.2 describes the 1D concept
model of the structure.

3.1. 3D Model Description. The 3D application model con-
sisted of three beams, connected with a joint. Each beam was
onemeter long and defined by two thin-walled sheets with C-
shaped section, whose geometry and dimensions are shown
in Figure 6(a).The cross-section had a vertical axis of symme-
try and the centre of gravity has been considered coincident
with the shear centre. This assumption is very important for
two reasons. First, because it allows reducing detailed 3D
beamswith the dynamicmethod using uncoupled differential
equations for flexural and torsional vibrations. Additionally,
it also allows considering the effects due to the various stresses
in the joint reduction as uncoupled. Since the sheet thickness
wasmuch smaller than the two transversal dimensions, it was
possible to mesh each beam member by using 4-node finite
shell elements. The three beams intersected in a joint, having
the same cross-section and alsomodelledwith shell elements.

Therefore, this structure was composed of two parts, the
upper and the lower parts, separated from each other. These
parts have been connected by a set of equally spaced welding
points along each of the longitudinal walls. The distance
between spot welds has been chosen according to the typical
layout in automotive beams, that is, equal to 100mm. Each
welding point has been created as a small Hexa solid element,
connected to corner nodes of flanges by generic interpolation
elements (Figures 6(b) and 6(c)).The Structures environment
of LMS Virtual. Lab software [14] has been used to create the
whole FE model.

The material assigned to the model, assumed homoge-
neous and isotropic, was typical steel with the following
properties:

(i) elasticity modulus: 𝐸 = 210000MPa;
(ii) Poisson’s ratio: ] = 0, 3;
(iii) mass density: 𝜌 = 7, 9 ⋅ 10−9 ton/mm3.

Table 1: Nomenclature for the [𝑆1]matrix.

𝐴 tot is the total area of the
thin-walled cross-section

Ω is the area encompassed by
the middle perimeter line

𝑥
(𝑖) and 𝑦(𝑖) are the position

coordinates of the ith node
𝑏
(𝑖) is the thickness average
value relating to the ith node

𝑆𝑥
∗(𝑖) and 𝑆𝑦

∗(𝑖) are the
cross-section static moments
about x- and y-axes for ith
node

𝐼𝑥 and 𝐼𝑦 are the cross-section
moments of inertia about x-
and y-axes

p is a factor equal to 1 on the
upper horizontal wall, −1 on
the lower, 0.5 on the nodes at
intersections, and 0 on the
vertical walls.

q is a factor equal to 1 on the
right vertical wall, −1 on the
left, 0.5 on the nodes at
intersections, and 0 on the
horizontal walls.

In order to compare the detailed 3D FE model and the
concept structure also in terms of modal shapes, a beam
centre line has been created in the 3D structure by defining
a proper number of central nodes, located at a distance of
100mm from each other along the longitudinal direction of
the beam. Each central node has been connected to the nodes
of detailed 3D model in the same cross-section (boundary
nodes) by an interpolation RBE3 element, so that the modal
displacements of each centre node have been estimated by
interpolation of the modal displacements of the boundary
nodes. Figure 7 shows the complete detailed 3D model of the
structure.

3.2. Concept Model Description. To define the concept struc-
ture, simplified concept models of the joint and of the
three beams were created. For the beams, a dynamic FE-
based method for the estimation of equivalent cross-section
properties was used [6].

The main advantage of the method is that it takes
into account all possible discontinuities and variations (like
spot welds) that may occur along a beam and that affect
its stiffness, especially under torsional loads. This method
consists of two principal steps:

(1) firstly, the natural frequencies of a given beam-
structure have been estimated by means of a modal
analysis of the detailed 3D FE model, in free-free
conditions;

(2) secondly, the cross-sectional stiffness properties were
obtained from the flexural and torsional frequencies,
using the differential equations of beam vibrations
[15].

In particular, an unconstrained nonlinear minimization
algorithm (the Nelder-Mead simplex algorithm [16]) was
used to estimate beam section properties. The implemented
objective function consisted of minimizing the squared
sum of differences between the frequencies reference vector,
obtained from the detailed 3D FE model, and a frequencies
vector, iteratively computed by applying non-linear equations
derived from the beammodalmodel [6]. For the spot-welded
beam model under study, the equivalent stiffness parameters
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Figure 4: Stress distribution along rectangular cross-sections, due to vertical shear (𝜏𝑧𝑥 and 𝜏𝑧𝑦 in (a)) and warping torsion (𝜎𝑧 in (b)): the
global effect of linear parts in the central node is zero.
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Figure 5: Profile of detailed 3D beammodel: a generic shell element
𝑘 and the two nodes at interface, 𝑖 and 𝑗 [11].

estimated for the 1D concept beams are listed in Table 2.
Figure 8(a) shows the concept model, before the joint is
reduced.

Instead, for the joint reduction, the Craig-Bampton fixed
interface technique was applied as follows; in the final
concept model the joint was represented by a SE, consisting
of a stiffness and a mass matrix condensed to a set of
master nodes, which includes one node on the beam side
of each beam/joint interface. Therefore, the Craig-Bampton
reduction was implemented with Nastran software [17], by
keeping theDOFs of the central nodes at the three beam/joint
interfaces as master and the DOFs of the nodes belonging to
the detailed 3D FE model of the joint as slave. Figure 8(b)
shows the concept structure, where an SE representation
of the joint replaces the detailed 3D joint model while
guaranteeing the structural continuity of the whole concept

Table 2: Equivalent beam properties estimated by the dynamic FE-
based method.

Parameters Values for 1D beam model
𝐴eq 178mm2

𝐾𝑥 0,144
𝐾𝑦 0,104
𝐼𝑥 69420mm4

𝐼𝑦 48164mm4

𝐼𝑡 25702,80mm4

𝐼𝑤 3,094e + 08mm6

model. Two different concept models of the joint have been
created: in onemodel, theCraig-Bamptondynamic reduction
was applied to the detailed 3D FE model with rigid RBE2
elements at each beam/joint interface; in the other model,
the proposedMPC elements were used to connect the central
node to nodes placed on the cross-section at each interface.

Note that the joint region has been defined in such a way
that the distance of each interface from the joint centre is
sufficiently large (100mm in this case) to avoid any violation
of the Saint-Venant beam assumptions. Note also that the
detailed 3Dmodel has over 60000 degrees of freedom (DoFs),
while the concept model has 180 DoFs only, which allows a
significant reduction of the computational time required by
the FE simulations.

4. Dynamic Validation

A dynamic analysis has been carried out, to show the
improvements on the predictive accuracy of the concept
structure with the proposed MPC connection elements. A
FE modal analysis in free-free conditions was performed
using Nastran software as FE solver, in order to compare, in
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Figure 6: Application model: cross-section geometry of beams (a), mesh of detailed 3D beam model with welding zones (b), and spot weld
model, with a central Hexa solid element connected to nodes of flanges by interpolation elements (c).

Table 3: Dynamic comparison between the original and the two-concept FE models, in terms of natural frequencies, % errors, and modal
correlation factors.

Mode n.
Frequency
3D model
(Hz)

Concept model with RBE2 Concept model with new MPC

Frequency 1D
model (Hz)

Frequency
difference (%)

3D − 1D
MAC values Freq. 1D

model (Hz)

Frequency
difference (%)

3D − 1D
MAC values

1 41,63 41,85 0,53% 0,99 40,40 −2,97% 0,99
2 55,46 55,55 0,17% 0,99 54,86 −1,09% 0,99
3 79,23 79,44 0,26% 0,99 78,77 −0,59% 0,99

1st Flex-Tors 4 188,52 229,57 21,77% 0,96 179,99 −4,53% 0,99
2nd Flex-Tors 5 196,49 225,76 14,90% 0,90 190,38 −3,11% 0,96

6 197,18 197,55 0,19% 0,97 194,60 −1,31% 0,98
7 256,67 256,90 0,09% 0,97 256,01 −0,26% 0,99

3rd Flex-Tors 8 266,65 396,93 38,73% 0,86 260,47 −2,32% 0,98
4th Flex-Tors 9 285,98 364,37 27,41% 0,62 280,23 −2,01% 0,90

10 293,74 292,37 −0,47% 0,95 289,72 −1,37% 0,97
11 382,43 397,78 4,01% 0,93 391,22 2,30% 0,84
12 410,85 417,10 1,52% 0,99 406,66 −1,02% 0,99

Average 9,09% 1,91%
Maximum 38,73% 4,53%
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Figure 7: Application case: detailed 3D FE model of the structure.

(a)

(b)

Figure 8: Concept model: before (a) and after (b) the reduction of
joint in SE. The three master nodes of SE are in yellow.

terms of natural frequencies and mode shapes, the detailed
3D model to two different concept models. In both concept
models, the properties of equivalent 1D beam elements have
been estimated by using the dynamic FE-based technique
described in Section 3.2. In the first concept structure, the
joint reduction has been achieved by using Craig-Bampton
technique and rigid RBE2 connection elements; in the second
one, the proposedMPC connection elements have been used.
Table 3 reports the natural frequencies of the first 12 global
modes estimated for the detailed and for the two equivalent
concept FE models, together with the percentage differences
between each concept model and the reference structure.
The diagonal values of the modal assurance criterion (MAC)
matrix [18], obtained in Noise and Vibration environment of
LMS Virtual. Lab, are reported as well.

It can be observed that the concept model with rigid
connection elements approximates very precisely the first
vibration modes, in terms of frequencies and MAC values,
concerning in particular axial and flexural vibrations; how-
ever, for flexural-torsional modes, significant differences

between the concept and the detailed 3D model can be
appreciated, with a maximum and an average value of 38.73%
and 9.09%, respectively. This means that the stiffness of
the joint is overestimated, especially when the interfaces
undergo torsional deformation. Instead, the second concept
structure, where the proposed MPC connection elements
have been used, shows good accuracy for all modes, with a
maximumand an average difference value of 4.53% and 1.91%,
respectively. In particular, for modes involving torsional
deformation at one ormore joint/beam interfaces, the second
concept model is up to 16 times more accurate than the first
concept model.

5. Conclusions and Outlook

In this paper, new concept modelling methodologies, enabl-
ing an improved accuracy of beam and joint concept models,
have been proposed and validated. For equivalent 1D beam
elements, a dynamic FE-based method was applied, able to
define equivalent characteristics of concept beam models,
starting from the flexural and torsional natural frequencies
of complex 3D beammodels. Instead, for joint concept mod-
elling, the Craig-Bampton dynamic reduction approach was
used. This method is very fast and accurate, but it is strongly
affected by the FE connection element between central and
peripheral nodes of the joint/beam interface sections. For
this reason, a new multipoint constraint connection element
has been defined and implemented, in order to interpolate
displacements of peripheral nodes and obtain displacements
and rotations of the centre node with an increased accuracy,
as compared to conventional connection elements, such as
rigid spiders.

To assess the accuracy of the proposed method, an
application case was analysed, consisting of a 3D structure
where three spot welded beams are connected by a joint with
the same cross-section geometry. By comparing two different
concept models (one using rigid RBE2 and the second using
the new MPC connection elements for the reduction of
joint in SE) with the detailed 3D model in terms of natural
frequencies andMAC values, it was proved that the proposed
method has a good predictive accuracy. This confirmed that
the proposed MPC connection elements permit to estimate
the mass and stiffness characteristics of the reduced joint
at each joint end section more accurately than with rigid
spiders.

The proposed methodologies have been developed with
the aim of enabling early predictions of static and dynamic
behaviours in vehicle bodies already in the concept phase of
the development cycle. However, it is worthy to notice that
such concept modelling techniques can be exploited also in
other application fields.

The next steps of this research will aim at extending
the applicability of the proposed method to structures with
general cross-section shape. If the assumption of double-
symmetry is removed, coupled effects of torsion and bending
must be taken into account while calculating both the
equivalent 1D beamproperties and the coefficient of theMPC
beam/joint connection elements.
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The paper is devoted to the study of dynamical behaviour of railway tracks as continuous systems (rails) supported by periodically
spaced sleepers and subjected to moving concentrated loads. Several cases of dynamical problems, where elastically supported
beams are excited by a moving concentrated force, are considered. In particular, the study is focused on interactions with structure
periodic in the space. Results on one-dimensional structures are extended to the case of a two-dimensional system. The problems
of stopping bands, passing bands, and mistuning are also mentioned.

1. Introduction

Nowadays, the load carrying capacity of trains, high-speed,
and environment protection against the noise force rapid
development of railway transportation. The classic and rein-
forced railway track is composed of two rails separated
from the sleepers by viscoelastic pads. There are numer-
ous simplifications in railway track modelling. The sleeper
spacing and ballast stiffness are usually treated as uniform
and repre- sented by constant parameters in the analyses.
The rails are modelled as the infinite Euler-Bernoulli or
Timoshenko beam models, sleepers by lumped masses or
elastic bodies (beams), and ballast as viscoelastic foundation.
The basic qualitative feature of the classic railway track
is the periodicity of sleeper spacing. The sleeper spacing
influences the periodicity of viscoelastic supports coefficient
and additional mass of sleepers with rotational inertia. In
the case of classic periodically supporting sleepers, one
can observe passing bands in the frequency of moving
and oscillating forces. The solution method which allows
determining the stopping and passing bands in the case
of tracks, proposed in [1], is based on direct application
of Floquet’s theorem. The motion of rails and sleepers in

selected parts of excitation period 𝑇 is shown in Figure 2. It
is visible that, for the boundary value of frequency between
passing and stopping bands, a qualitative change of solution
describing rails and sleepers’ vibrations occurs.Thewheel/rail
response, due to the parametric excitation by the varying
dynamic stiffness of a periodically supported rail, has been
studied using a spatially quasistatic method, based on the
fact that the speed of wave propagation in the rail is much
greater than the train speed, but as we can see in [1] or
[2] this assumption is not adequate. From the study of the
influence of random sleeper spacing [3] follows the fact that
the phenomenon of the pinned-pinned resonance may be
suppressed by the random sleeper spacing. Unfortunately,
the random ballast stiffness distribution has no influence on
the vibration behaviour. It seems to be obvious that some
randomness usually occurs, but the deterministic spacing
of supporting points can be the aim of engineering design.
The difference between the mutual kinetic excitation of two
wheelsets of the bogie in the stopping and passing band is
significant. The passing band in track with classic sleepers is
related to the rotation of rails in the classic fastening system.
Some changes are possible using mistuning or replacing the
single fastening system on the sleeper into the double-point
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Figure 1: Phase waves velocities 𝑉𝑓 versus wave number dependent on the beam parameters (inequality (3)).
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Figure 2:Waves in railway track as periodic structure-passing band
and stopping band.

one, which transforms the features of railway tracks. The
theory used in the investigation of the track dynamics is
limited to linear analysis despite nonlinear characteristics of
the pad. It is known that the wheelset dynamics in front
of the train is different from the wheelset dynamics in the
middle of the train. One of the reasons is connected with

the above mentioned nonlinearity of the fastening system
characteristics, in particular, the nonlinearity of the pad
which changes the reference point of oscillation. This change
is connected with a quasistatic preload under the train, which
can be substituted by a distributed load [4].

2. Classic Design of Track:
Response of Beam to Moving Load

The problem of a flexibly supported beam vibration, when
the beam is subjected to the moving distributed load, can be
composed of solution for the limiting case of load described
by the following Heaviside function 𝐹0𝐻(𝑥−𝑉𝑡) andmoving
concentrated oscillating force described by the function
𝐹1(cos𝜔𝑡)𝛿(𝑥 − 𝑉𝑡):

𝐸𝐼𝑤,𝑥𝑥𝑥𝑥 + 𝑇𝑤,𝑥𝑥, + 𝑚𝑤,𝑡𝑡 + ℎ𝑤,𝑡 + 𝑐𝑤

= 𝐹0𝐻(𝑥 − 𝑉𝑡) + 𝐹1 (cos𝜔𝑡) 𝛿 (𝑥 − 𝑉𝑡) ,
(1)

where 𝑤 is the beam displacement, 𝐸𝐼 is the beam stiffness,
𝑇 is the longitudinal compressive force in the beam, 𝑚 is the
mass density, ℎ is the damping coefficient, 𝑐 is the elasticity
coefficient of the foundation, 𝜔 is the frequency of the force
oscillation and 𝑉 is velocity of load motion.

The first case and the case of the beam on a viscoelastic
semispace were studied [4, 5]. The superposition of the
obtained solution allows studying various kinds of moving
loads distributed on a finite-length segment.The second term
describing moving and oscillating load was discussed in [2].
The case of the Timoshenko beam on an elastic foundation
subjected to uniformly distributed moving loads has been
studied by several authors; see, for example, [4, 6]

𝐸𝐼𝜑,𝑥𝑥 + 𝑘
󸀠
𝐴𝐺 (𝑤,,𝑥 − 𝜑) − 𝑚𝐼𝜑,𝑡𝑡 = 0,

𝑘
󸀠
𝐴𝐺 (𝑤,𝑥𝑥 − 𝜑,𝑥) − 𝑚𝑤,𝑡𝑡 − ℎ𝑤,𝑡 − 𝑐𝑤

= −𝐹0𝐻(𝑥 − 𝑉𝑡) + 𝐹1 (cos𝜔𝑡) 𝛿 (𝑥 − 𝑉𝑡) ,

(2)
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where 𝜑 is the angle of rotation of beam due to pure shear, 𝑘󸀠
is the shear coefficient, 𝐺 is the modulus of elasticity in shear,
𝐴 is the cross-sectional area, and ℎ is the damping coefficient.

The first stationary solution obtained for the case of the
Timoshenko beam on an elastic foundation was obtained by
Achenbach and Sun [6]. The solution obtained in [6] is valid
in full range of velocity but only for the set of parameters
fulfilling the following inequality:

𝐸 > 𝑘
󸀠
𝐺(1 + 𝑘

󸀠
𝐺𝐴
2
(𝐼𝑐)
−1
) . (3)

The dependence of phase velocity versus wave number in this
case is shown on left side of Figure 1, where wave velocities𝑉𝐸
and 𝑉𝐺 are expressed as in Figure 1.

The generalisation of the results obtained by Achenbach
and Sun and the discussion of qualitatively different travel-
ling wave solution depending on the beam parameters are
presented in [4]. The results of this study can be used for
determination of quasistatic preload under the train.

2.1. Response of Periodic Beam Structure to Moving Con-
centrated Loads. The guideways for high-speed vehicles
are composed of repetitive elements or cells which form
a periodic structure. The steady-state system response is
determined for a moving disturbances source in the form of
constant and periodic force (1).

The equation of motion is completed by interface condi-
tions at the supports which depend on the model assumed,
for example, for the railway track condition of continuity (4)
and equilibrium of vertical forces (5), which are required:

𝑤 (𝑛𝑙+, 𝑡) = 𝑤 (𝑛𝑙−, 𝑡) ;

𝑤,𝑥 (𝑛𝑙+, 𝑡) = 𝑤,𝑥 (𝑛𝑙−, 𝑡) ;

𝑤,𝑥𝑥 (𝑛𝑙+, 𝑡) = 𝑤,𝑥𝑥 (𝑛𝑙−, 𝑡) ;

(4)

𝑤,𝑥𝑥𝑥 (𝑛𝑙−, 𝑡) − 𝑤,𝑥𝑥𝑥 (𝑛𝑙+, 𝑡) = 𝑅 (𝑛𝑙, 𝑡) , (5)

while for the supports ofmaglevmodel, one requires continu-
ity of position, vanishing bending moment, and equilibrium
of vertical forces.

The solution method proposed in such a case is based
on the direct application of Floquet’s theorem to the differ-
ential equations of motion with periodic parameters [1, 7]
describing periodicity in space. Another approach (by the
use of perturbation method) for periodic mass and stiffness
distribution along the beamwas applied by Popp andMueller
[8] in order to approximate the sleepers in the track. In this
case, for the realistic system of parameters, the differences
were very small. With some extended study of railway
track and maglev track, we can state that the application of
Floquet’s theorem allows solving the problem of free and
forced vibration of periodic structures subjected to moving
load [1]. The motion of harmonic travelling load generates
the set of stopping or passing bands, but from engineering
point of view it is sufficient to take into consideration waves
corresponding to the first and second passing bands.

As examples of qualitative difference of solution in the
passing band and stopping band in Figure 2 are shown,

12

12

Figure 3: Two kinds of sleepers with different fastening systems.

Figure 4: Railway track with stiff type of sleepers with double-point
fastening systems.

the shapes of rail for two frequencies and time are 0,𝑇/8,𝑇/4,
and 3𝑇/8.

2.2. Mistuning and Change of the Track Periodicity. The
passing bands occurring in the track with classic sleepers in
the ballast or in slab track are related to the rotation of rails in
the classic fastening system. Some changes are possible using
mistuning or change of single fastening system described by
the conditions:

(𝑤,𝑥 (𝑛𝑙+, 𝑡) = 𝑤,𝑥 (𝑛𝑙−, 𝑡) ;

𝑤,𝑥𝑥 (𝑛𝑙+, 𝑡) = 𝑤,𝑥𝑥 (𝑛𝑙−, 𝑡)) .

(6)

This is possible by the change of sleepers with single support
to the systemof sleeperswith double-point fastening. It seems
to be successful in the change of railway track features. Such
sleepers were shown in Figure 3.

The sleeper with double-point fastening system is much
stiffer and heavier compared to the classic concrete sleeper
(Figure 4). The double-point fastening system influences
the periodicity track which becomes also double-periodic.
Additionally, the track with such sleepers is much more
convenient for the ballast [9], due to lower pressure. The ini-
tial experimental investigation of such sleepers and fasteners
confirms advantages in application for the high-speed trains’
lines. The results will be described in next papers.

A very important problem in railway engineering is
connected with the transition zones, when the foundation
stiffness changes more rapidly, that is, before or behind of the
bridge abutment, than the dynamical behaviour of sleepers
and ballast during exploitation which lead to the plastic



4 Shock and Vibration

n = 1 n = 2 n = 3

Figure 5: Scheme of track in transition zone with two types of
sleepers and fastening systems.
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Figure 6: Rotation of three sleepers with double-point fastening
during motion in the zone behind the bridge abutment.

deformations of the track. A simple model of such zones is
shown in Figure 5.

As an example, the results of numerical study of the
sleepers’ motion in the transition zone behind the bridge
and of the stiff sleepers with double-point fastening system
are shown in Figures 6 and 7. The speed of the vehicle is
assumed equal to 20m/s. In Figure 6, are shown some results
of three successive sleepers’ rotation, which are located in the
transition zone, just after the rigid foundation. We can see
that the response of consecutive sleepers is dependent on the
time and distance of the sleeper from the boundary of rigid
foundation.The vertical displacement of sleepers is presented
in Figure 7.

The above shown results indicate that use of sleepers
with double fastening system induces decreasing vertical
displacements and rotation of sleepers in comparison with
classic track (Figures 6 and 7). In Figure 8, a comparison of
the sleeper rotation of two different sleepers with different
types of fastening systems and different weights is presented.

The differences of sleepers’ rotation (Figure 8) and dif-
ferences of the rail rotation around the horizontal axis
perpendicular to the direction of vehicle motion (Figure 9)
for different fastening systems and different sleepers are
essential.

The research of railway track dynamics is carried out
intensively in several railway centres. However, in engi-
neering practice the attention and understanding of wave
phenomena is very limited.There are alsomuch simpler ways
to change the features of the track. One of them is mistuning
used by the change of geometry which can be supplemented
by the change of stiffness parameters. An example of change
of the spacing in order to obtain track with better dynamic
behaviour is shown in Figure 10. The optimal difference of
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Figure 7: Vertical displacement of the sleepers with double-point
fastening during motion in the zone behind the rigid base.
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fastening systems at the vehicle speed 20m/s.

distance between sleepers seems to be stochastic in definite
range but in engineering practice the spacing can be taken as
follows: 𝑑𝑖 = 𝑑1 + Δ 𝑖; Δ 1 = 0, Δ 2 = 25mm, and Δ 3 = 50mm
(Figure 10).

The change of stiffness parameters without change of
geometry can influence only the selected modes of travelling
waves. For example, the pin-pin mode is not sensitive to
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1 2 3 1 2 3

Figure 10: Scheme of rack with the change of sleeper spacing,
distances 𝑑𝑖 = 𝑑1 + Δ 𝑖.

1 1 12 2 2 2

Figure 11: Track mistuning by the change of sleeper spacing
(rotation of every second sleeper).

the stiffness of supports. That is why the change of spacing
ought to be used.The next possibility of change of periodicity
is loss of symmetry as the factor that eliminates the regularity
and periodicity of the motion. The change of periodic
property of the track due to change of geometry of sleeper
spacing can be obtained by rotation of every second or third
sleeper in the positive or negative direction; such an example
is shown in Figure 11.

It is also important that the length of the wheel circum-
ferences is about 3m (in classic track, it is equal to distance of
five sleepers). Also the dynamic coupling between both axles
of the bogie is important issue.

It can be done by application of “Y-shaped” sleepers made
of steel.This kind of sleepers is made of steel. Such spacing is,
similarly to the case shown in Figure 11, asymmetric to the
left and right wheels of the wheelset. The dynamic response
in this case is strongly dependent on vehicle speed [10].

The main advantages of the track with “Y-shaped” sleep-
ers are

(i) increased resistance to horizontal forces;
(ii) increased inertia by incorporation of the ballast into

the vertical and horizontal vibrations;
(iii) higher stiffness of the track becoming a plate-like

structure;
(iv) stabilization of the vehicle motion due to the alternate

periodic vertical stiffness of both rails—the vehicle
geometrical centre exhibits considerably lower oscil-
lations.

The principal idea of using the “Y-shaped” sleepers is to
increase the transversal stiffness and to enlarge the inertia
of the track by incorporating the ballast into the C-shaped
parts of sleepers. Experimental parts of the track exhibit lower

(600 + 230) × 1.5 = 1245
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00

Figure 12: Track “Y-shaped” sleepers spacing as visible above.
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Figure 13: Vertical displacements of the vehicle/track contact points
at the speed 30m/s [11, 12].
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Figure 14: Vertical displacements of the vehicle/track contact points
at the speed 50m/s [11, 12].

noise level. Numerical simulations show reduced vertical
amplitudes.The Y-type track is designed for moderate speed.

Some results of simulations for selected values of speed
are shown in Figures 12, 13, and 14. It is visible that, with
increasing speed and time of motion, the effect of synchro-
nization occurs. The next important dynamical feature is
associated with decreasing of vibration with the distance
between excitation points. Simulations show (Figures 15 and
16) that vertical displacements of rails in the front of the
contact points of the buggy are much larger in classic track
than in the case of track with “Y” shaped sleepers. The
great advantage of the “Y-shaped” track is connected with
application on curved track because of its higher resistance
to horizontal forces.



6 Shock and Vibration

0.0020

0.0015

0.0010

0.0005

0.0000
0 200 400 600 800 1000 1200 1400 1600 1800

Wheelset position (cm)

D
isp

la
ce

m
en

t (
cm

)

Classic

0.0030

0.0040

0.0050

0.0035

0.0045

0.0025

Y-type

Figure 15: Vertical displacements of rails registered 120 cm in front
of the contact points of the buggy for classic and “Y”-type track at
the speed 40m/s [12].
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Figure 16: Vertical displacements of rails registered 180 cm in front
of the contact points of the buggy for classic and “Y”-type track at
the speed 40m/s [12].

3. Conclusions

The periodicity of sleeper spacing is the basic qualitative
feature of the classic railway track [13, 14]. It influences
the periodicity of viscoelastic supports, coefficients, and
additional mass of sleepers with rotational inertia. In the case
of classic periodically supporting sleepers, we can observe
the passing bands in the frequency of moving and oscillat-
ing forces. The solution method which allows determining
the stopping and passing bands in the case of track with
periodically spaced sleepers and stationary motion is based
on direct application of Floquet’s theorem. The difference
between the mutual kinetic excitation of two wheelsets of
the bogie in the stopping and passing bands is significant.
Loss of the periodicity of spacing is connected to a mistuning
of wave propagation and irregular contact forces, which can
be positive, from the dynamical point of view, process for
vehicle-track interaction. In the case of transientmotion, as in
the case of a transition zone, an advantage of double fasteners

is obtained and visibly different sleeper motion dependent
on the distance is shown. The vertical displacements of
rails registered in front and behind of the contact points of
the buggy for classic and “Y”-type track show one of the
advantages of the track with “Y”-type sleepers.
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Nonlinear dynamics of flexible rectangular plates subjected to the action of longitudinal and time periodic load distributed on the
plate perimeter is investigated. Applying both the classical Fourier and wavelet analysis we illustrate three different Feigenbaum
type scenarios of transition from a regular to chaotic dynamics. We show that the system vibrations change with respect not only
to the change of control parameters, but also to all fixed parameters (system dynamics changes when the independent variable,
time, increases). In addition, we show that chaotic dynamics may appear also after the second Hopf bifurcation. Curves of equal
deflections (isoclines) lose their previous symmetry while transiting into chaotic vibrations.

1. Introduction

Plates as thin-walled structural members are widely applied
in various branches of industry, civil engineering, and fac-
tories producing measurement devices. Nowadays modeling
procedures and dynamics investigation are very complex
and require confirmation of the reliability and validity of
results obtained. One of the ways to get more reliable
results is to develop more adequate mathematical models for
studying of continuous mechanical systems. The developed
models are expected to exhibit important nonlinear effects
including the influence of geometric nonlinearity as well as
external load properties on the system chaotic dynamics.
Nonlinear vibrations of real continuous systems can be very
complicated. Majority of the signals (time series) obtained
through the numerical experiments are nonstationary ones;
that is, they strongly change in time. Therefore, in spite
of the traditional approaches, including FFT (fast Fourier
transform), additional methods are highly required. We
illustrate the advantages of application of wavelet transforms
for detecting and monitoring local properties of the analyzed
time series (signals). The latter approach allows for the
detection of local signal properties.

It is clear that modeling of plates/shells dynamics has a
long history, and there are numerous papers andmonographs
dedicated to this research area.We refer only to a few of them
more adequately fitting our research aims and the usedmeth-
ods. The existence of heteroclinic loops, Smale horseshoes,
chaotic dynamics, and symmetry breaking phenomena of a
nearly squared plate are discussed in [1, 2].

Chaotic vibrations of a shallow cylindrical shell subjected
to harmonic lateral excitation are studied via the Galerkin
approach allowing for a reduction of the initial infinite
problem to that of finite dimension (multiple degrees of
freedom) by Yamaguchi andNagai [3]. Luo derived analytical
conditions for the chaotic dynamics of axially travelling
thin plates using the incremental energy approach. Poincaré
mapping sections are used for monitoring of chaotic motions
in primary resonant and homoclinic separation zones [4].
Nonlinear dynamics of bimetallic circular plates under time-
varying temperature load is studied by Wang [5], where
the onset of chaos, transient chaos, period doubling, and
reversed period doubling scenario, among other items, are
illustrated and discussed. A transition from regular to wave
turbulence regime exhibited by thin plates harmonically
loaded is illustrated and discussed in references [6, 7].
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Figure 1: Plate computational scheme.

Transitions into the system with finite (many) degrees of
freedom chaotic dynamics are reported in a series of ref-
erences [8–12]. The advantages of wavelet-oriented analysis
of nonlinear vibrations of continuous mechanical systems
are described in [13]. Although we aim here at numerical
investigations, it should be noted that there is a possibility to
apply the method of an artificial perturbation parameter to
study nonlinear plate vibrations [14].

2. Differential and Difference
Governing Equations

The mathematical model of vibrations of a flexible rect-
angular plate (shown in Figure 1) with constant stiffness
subjected to the action of time periodic longitudinal load
distributed along the plate perimeter is constructed on the
basis of the kinematic Kirchhoff-Love approach taking into
account the nonlinear dependence between deformations
and displacements. We introduce small initial static load in
the initial time interval 𝑡 ∈ [0; 1]. In rectangular coordinates
the system of 3D space is presented in the following form:

Ω = {𝑥1, 𝑥2, 𝑥3 | (𝑥1, 𝑥2) ∈ [0; 𝑎] × [0; 𝑏] , 𝑥3 ∈ [−ℎ; ℎ]} ,

0 ≤ 𝑡 < ∞.

(1)

We apply the following nondimensional PDEs governing
dynamics of our plate:

1

12 (1 − 𝜇
2
)

(∇𝜆
4
𝑤) − 𝐿 (𝑤, 𝐹) +

𝜕
2
𝑤

𝜕𝑡
2

+ 𝜀
𝜕𝑤
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− 𝑞 (𝑥1, 𝑥2, 𝑡) = 0,

∇𝜆
4
𝐹 +

1

2
𝐿 (𝑤, 𝑤) = 0,

(2)

where
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4

=
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2
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2
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𝜕
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2
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𝐹
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(3)

are the nonlinear operators and 𝑤 and 𝐹 are the functions
describing deflection and stresses, respectively.

Simple boundary conditions are attached to (2):

𝑤 = 0;
𝜕
2
𝑤

𝜕𝑥1
2

= 0; 𝐹 = 0;
𝜕
2
𝐹

𝜕𝑥1
2

= 𝑝𝑥
2

for 𝑥1 = 0; 1;

𝑤 = 0;
𝜕
2
𝑤

𝜕𝑥2
2

= 0; 𝐹 = 0;
𝜕
2
𝐹

𝜕𝑥2
2

= 𝑝𝑥
1

for 𝑥2 = 0; 1,

(4)

and the following initial conditions are applied:

𝑤 (𝑥1, 𝑥2)
󵄨󵄨󵄨󵄨𝑡=0

= 0,
𝜕𝑤

𝜕𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑡=0

= 0. (5)

Equations (2)–(5) are reduced to the nondimensional
form using the following nondimensional parameters: 𝜆 =

𝑎/𝑏; 𝑥1 = 𝑎𝑥1, 𝑥2 = 𝑏𝑥2 are the nondimensional parameters
regarding 𝑥1 and 𝑥2, respectively; 𝑤 = 2ℎ𝑤 is the deflection;
𝐹 = 𝐸(2ℎ)

3
𝐹 is the stress function; 𝑡 = 𝑡0𝑡 is time; 𝑞 =

(𝐸(2ℎ)
4
/𝑎
2
𝑏
2
)𝑞 is the external pressure; 𝜀 = (2ℎ)𝜀 is the

damping coefficient; and 𝑝 = 𝐸(2ℎ)
3
𝑝 is the external lon-

gitudinal load. Bars over the nondimensional quantities are
already omitted in the governing equations. Additionally,
𝑎 and 𝑏 are the plate dimensions regarding 𝑥1 and 𝑥2,
respectively; 𝜇 is Poisson’s coefficient.

In “Mechanics” the degrees of freedom are understood as
the set of independent coordinates, which together with their
time derivatives describe the mechanical system state [15].
The choice of the number of degrees of freedomof the studied
system depends on a real system behavior. Since in majority
of the real world mechanical systems the constraints are not
absolutely stiff, the real number of degrees of freedom equals
a triple number of the atoms associated with the system
material volume. In the case of the continuous system we
deal with the infinite number of degrees of freedom. In many
cases in the engineering practice, approximations are used
which enable a drastic decrease of the degrees of freedom,
not exceeding six. It is clear that this drastic approximation
may lead either directly to erroneous results, that is decrease
of modes number.

Dynamical systems may exhibit four different types of
stationary regimes: equilibrium, periodic, quasiperiodic, and
chaotic dynamics.Thementioned regimes are associatedwith
attractors in the formof a stable equilibriumpoint, limit cycle,
and quasiperiodic attractor (multiple dimensional torus) as
well as strange chaotic attractor, respectively. Recall that the
quasiperiodic and chaotic attractorsmay appear in dynamical
systems with the space phase dimension being larger than
three.

In order to reduce a continuous system to the systemwith
lumped parameters regarding spatial variables 𝑥1 and 𝑥2, the
FDM (finite difference method) with approximation of 𝑂(ℎ

2
)

is applied, allowing us to consider flexible rectangular plates
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Table 1: Plate bifurcations.

Points 1st bifurcation 2nd bifurcation 3rd bifurcation 4th bifurcation
Difference between
theoretical and

computed value in %

12 𝑆0,𝑛 13.675 13.735 13.7465 13.74894

𝑑𝑛 5.217391 4.713115 0.22006

14 𝑆0,𝑛 13.44 13.49 13.500078125 13.502232

𝑑𝑛 4.96124. . . 4.67906679. . . ⋅ ⋅ ⋅ 0.21847

16 𝑆0,𝑛 13.27 13.323 13.334 13.33635

𝑑𝑛 4.818182 4.673519 0.21821

as the mechanical systems with infinite degrees of freedom.
The application of FDM to the continuous system yields the
following set of the difference-operator equations:
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(6)
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(7)

Equations (7) are supplemented with boundary condi-
tions (4), which have the following difference representation
(flexible nonstretched (uncompressed) ribs support):

𝑤𝑛,𝑗 = 0, 𝑤𝑛,𝑗 = −𝑤𝑛−2,𝑗, 𝐹𝑛,𝑗 = 0,

𝐹𝑛,𝑗 = 𝑝𝑥
2

+ 𝐹𝑛−2,𝑗,

𝑗 = 1, . . . , 𝑚 − 1,

𝑤𝑖,𝑚 = 0, 𝑤𝑖,𝑚 = −𝑤𝑖,𝑚−2, 𝐹𝑖,𝑚 = 0,

𝐹𝑖,𝑚 = 𝑝𝑥
1

+ 𝐹𝑖,𝑚−2,

𝑖 = 1, . . . , 𝑛 − 1,

(8)

and the following initial conditions:

𝑤𝑖𝑗 = 𝑓1 (𝑥1𝑘, 𝑥2𝑘) , 𝑤
󸀠

𝑛
= 𝑓2 (𝑥1𝑘, 𝑥2𝑘) ,

(0 ≤ 𝑘 ≤ 𝑛) .

(9)

After reduction to the normal form, (7)–(9) are solved
via the fourth-order Runge-Kutta method, where on each
time step we need to solve a large system of linear algebraic
equations regarding time, and a time step is yielded by the
Runge principle.

3. Numerical Results

One of the fundamental problems of nonlinear dynamics
concerns the existence of a threshold between chaotic and
multimode turbulent dynamics. In this work we address this
problem using a 2D continuous system as the plate, where
first we illustrate numerically the scenarios of transitions
from periodic to chaotic plate dynamics via period dou-
bling bifurcations. The computed Feigenbaum constant is
compared with the known value 𝑑 = 4.66916224 . . . (see
[16]) for different choice of the partition of spatial variables
while applying FDM. Values of the series 𝑞0,𝑛 and 𝑑𝑛 versus
partition numbers (points) used in FDM are given in Table 1.
Observe that an increase of the partition numbers implies
an increase of DoF (degrees of freedom) of the studied
system.The numerical analysis shows that the approximation
to 64 DoF (number of partitions 8) is not sufficient to
achieve reliable results regarding the dynamics of studied
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continuous mechanical systems in the form of rectangular
plates. An increase of DoF of the considered mathematical
model implies the earlier illustrated occurrence of the first
and successive period doubling bifurcations for the fixed
amplitude of the periodic load action. The same holds for
the case of chaotic dynamics. However, the obtained results
are not in good agreement with the theoretically obtained
Feigenbaum constant value. Applying partition number 12
we have good coincidence of the theoretical and computed
Feigenbaum constant (the difference is 0.22006%), and the
obtained result can be even improved through the increase of
the partition number. We have used further 14 points in all
computations while applying FDM.

As we have mentioned, we study regular and chaotic
dynamics of a rectangular plate simply supported subjected
to the periodic load action 𝑝𝑥

1

= 𝑝𝑥
2

= 𝑝0 sin𝜔𝑝𝑡 = 𝑝 on
the plate perimeter, where 𝜔𝑝 and 𝑝0 are the frequency and
amplitude of the external load, respectively.

Vibrations are studied in the time interval 𝑡 ∈ [0, 286],
for 𝜆 = 𝑎/𝑏 = 1, dissipation factor 𝜀 = 1, and the Poisson
coefficient 𝜇 = 0.3. Results obtained for the center of the
middle plate surface are generalized into the whole plate [13].
In the numerical experiment with the excitation frequency
𝜔𝑝 = 2.9 a new modified Feigenbaum scenario has been
obtained (see Table 2).

First of all it should be emphasized that already for
small values of the amplitude of the excitation load with the
frequency 𝜔𝑝 = 2.9, the plate vibrates at the frequency 𝜔1 =

1.45; that is, the first subharmonic vibration regime appears.
An increase of the amplitude of the longitudinal load forces
the plate to vibrate harmonically, but a further increase of this
parameter provokes the occurrence of frequencies associated
with the second bifurcation (𝜔3 = 0.725 and 𝜔2 = 2.175), and
the obtained frequencies have the power that is essentially
higher than that corresponding to the frequency 𝜔𝑝 = 2.9.
When the excitation amplitude achieves 0.749, new frequency
𝜔1 = 1.45 = 𝜔𝑝/2 appears. The power of frequencies 𝜔1 and
𝜔𝑝 are commensurable but essentially lesser than the powers
corresponding to frequencies 𝜔3 and 𝜔2. Therefore, after the
third bifurcation, the plate exhibits chaotic dynamics in the
whole time interval. The curves of equal deflection lose their
symmetry only in the chaotic plate vibration regime.

Since we study the squared plate (𝜆 = 1) and since the
same load is applied to all plate edges, the equal deflection
curves are called symmetric only if they have four axes of
symmetry.

A numerical experiment, where the excitation frequency
coincides with plate natural frequency (𝜔𝑝 = 𝜔0 = 5.8),
allowed us to monitor the Feigenbaum scenario to chaos
different from the so far illustrated scenarios (Table 3). Here
for small load amplitude we have harmonic vibrations, but
its increase implies the occurrence of the next bifurcation
and also an essential modification of vibration properties,
which is well characterized by the 2D wavelet spectrum for
𝑃 = 0.8. In the initial part of the studied time interval the
excitation frequency dominates, whereas for 𝑡 ≈ 50 a key role
plays 𝜔1 = 2.9 = 𝜔𝑝/2. Since in this case the change of the
system vibrations is realized via a narrow chaotic window,
then a direct application of the classical Fourier analysis to
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Figure 2: Chart of the character of plate vibrations.

this case is not suitable. Namely, it does not allow us to
monitor peculiarities of time evolutions of the frequency
characteristics of the studied vibrations.

It should be emphasized that in each of the considered
time intervals we compare the obtained results with the
wavelet spectrum, and the results obtained through different
methods, that is, the Fourier and wavelet analyses, coincide
with each other. The second bifurcation takes place for 𝑝 =

1.1 and it appears for 𝑡 ≥ 126. A further increase of
the excitation amplitude implies the occurrence of intermit-
tency windows, which finally pulls the system into chaotic
dynamics exhibited in the whole time interval. The so far
described process is well illustrated via the 2D frequency
wavelet spectra. Symmetry breaking of the curves of equal
deflections appears only in chaotic zones.

The scenario detected via a third experiment (𝜔𝑝 = 8.7)
begins, as in the previous case, with superiority of the first
bifurcation (Table 4). Then the spectrum is periodic and an
increase of the excitation frequency implies the occurrence
of the first and second bifurcations. It should be emphasized
that after the second bifurcation the intermittency windows
occur on the wavelet spectrum, which then play a key role
in the road to chaos. Another important observation is that
symmetry breaking of the curves having equal deflections
(isoclines) occurs already for the quasiperiodic vibrations,
and the vibrations associated with the second bifurcation
(𝑝 = 2.1) exhibit only two axes of symmetry. Chaotic plate
vibrations violate in full the previous symmetry of isoclines.

We follow here a recipe given by H. Poincaré, who
suggested to study instead of only one solution, a set of
solutions for the chosen control parameters. Here we take the
amplitude and frequency of the excitation acting on the plate
perimeter as two control parameters. In order to construct
a vibration type chart with the resolution 300 × 300, we
solved and analyzed 90 000 numerical problems (Figure 2).
Each of the tasks required a construction and study of time
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Table 2: Applied dynamic characteristics (𝜔𝑝 = 2.9).
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Poincaré map
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deflections 2D Morlet wavelet
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series (signals), phase and modal portraits, Poincaré maps,
Fourier and wavelet spectra, autocorrelation functions, and
the Lyapunov exponents. Owing to the results reported in
the chart, for small load amplitudes, a zone of damped
oscillations is observed. For small frequency values 𝜔 ≤ 2,
narrow subharmonic zones are interlaced with narrow zones

of periodic vibrations. An increase of the excitation frequency
implies an increase of the area of these zones and theirmixing
with chaotic zones. The occurrence of a large amount of
subharmonic vibrations corresponds to the physical aspect of
the studied process which can be treated as the reliability and
validity confirmation of the obtained numerical results.
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Table 3: Applied dynamic characteristics (𝜔𝑝 = 𝜔0 = 5.8).
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Table 4: Applied dynamic characteristics (𝜔𝑝 = 8.7).
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4. Concluding Remarks

In this work a simultaneous application of the Fourier and
wavelet analyses allowed us to construct three different
modifications of the classical Feigenbaum scenarios. It has
been reported and illustrated that the plate vibration type

undergoes qualitative changes not only in a standard way
through the changes of the values of system parameters but
also for the all fixed parameters; that is, vibrations change
qualitatively when time is increased. This problem refers to
estimation of the computational time unless an attractor is
finally achieved. We have shown in Table 3 (𝑝 = 1.1) that for
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simulation interval of the nondimensional time [0, 125] the
Fourier spectrum exhibits only two frequencies 𝜔𝑝 and 𝜔1.
However, within time interval (126,286) our investigated
systemundergoes a second bifurcation associatedwith occur-
rence of two additional frequencies, 𝜔2 and 𝜔3.

It has also been shown that chaos appears already after
the second Hopf bifurcation. It has been illustrated that in all
studied cases the symmetry breaking of the curves of equal
deflections (isoclines) occurs while transiting into a chaotic
regime.

The constructed vibration chart allows us to control
the dynamics of a studied continuous mechanical system.
Namely, one may choose parameters of the system keeping
its dynamics in a safe periodic regime. When the system
dynamics is shifted into a chaotic zone, this causes loss of its
stability and catastrophe.
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The design of the satellite attitude control system (ACS) becomes more complex when the satellite structure has different type
of components like, flexible solar panels, antennas, mechanical manipulators, and tanks with fuel. A crucial interaction can
occur between the fuel slosh motion and the satellite rigid motion during translational and/or rotational manoeuvre since these
interactions can change the satellite centre of mass position damaging the ACS pointing accuracy. Although, a well-designed
controller can suppress such disturbances quickly, the controller error pointing may be limited by the minimum time necessary to
suppress such disturbances thus affecting the satellite attitude acquisition. As a result, the design of the satellite controller needs
to explore the limits between the conflicting requirements of performance and robustness. This paper investigates the effects of
the interaction between the liquid motion (slosh) and the satellite dynamics in order to predict what the damage to the controller
performance and robustness is. The fuel slosh dynamics is modelled by a pendulum which parameters are identified using the
Kalman filter technique. This information is used to design the satellite controller by the linear quadratic regulator (LQR) and
linear quadratic Gaussian (LQG) methods to perform a planar manoeuvre assuming thrusters are actuators.

1. Introduction

The problem of interaction between fluid and structure is
important when one needs to study the dynamic behavior
of offshore and marine structures and road and railroad
containers partially filled with a fluid [1, 2]. In space missions
the sloshing problem appears when the spacecraft is spinning
and there is liquid inside it. An example is the damp device
involving fluid as the damping material, whose motion can
interact with flexible panels and/or manipulators [3]. An
interesting approach to analyze a rigid container mounted
on flexible springs interacting with a perfect fluid including
sloshing effects has been done by Lui and Lou [4].The success
of a space mission can depend on taking into account the
knowledge of the interaction between fluid motion (slosh)
and structure dynamics since this interaction can damage the
ACS pointing requirements. A space structure, like rockets,
geosynchronous satellites, and the space station, usually
contains liquid in tanks that can represent more than 40%
of the initial mass of the system. As a result, the first step to

design its ACS is to obtain a detailed dynamics model of the
space structure. When the fuel tanks are only partially filled
and suffer a transverse acceleration and/or rotational motion,
large quantities of fuel move uncontrollably inside the tanks
and generate the sloshing effects. Agrawal [5] has shown that
the dynamics interaction between the fuel motion and the
rigid and/or flexible body dynamics can result in some kind
of control instability. For minimizing these effects the ACS
must be designed using a robust control method in order to
assure stability and good performance to achieve the attitude
control system requirement [6].When a rigid-flexible satellite
with fuel tanks inside is subjected to large angle manoeuvre
its dynamics is only captured by complex nonlinear mathe-
matical model. Besides, the remaining flexible and/or liquid
vibration can introduce a tracking error resulting in a mini-
mum attitude acquisition time. Souza [7] has done a detailed
investigation of the influence of the nonlinearities introduced
by the panel’s flexibility into the ACS design. It was shown
that system parameters variation can degrade the control
system performance, indicating the necessity to improve
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the ACS robustness. An experimental controller robustness
and performance investigation was done by Conti and Souza
[8], where the estimation of the platform inertia parameters
was introduced as part of the platform ACS design. The
problem of designing satellite nonlinear controller for rigid
satellite has been done by Souza and Gonzales [9] using the
state-dependent Riccati equation (SDRE) method which is
able to deal with high nonlinear plants. Due to the complexity
of modeling the fluid and/or flexible dynamic of the system it
is common to usemechanical systems analogies that describe
this dynamic. Besides, if one needs to know some physical
parameters related with the slosh or the flexibility dynamics
it is common to obtain them by experimental apparatus or
some kind of estimating method such as Kalman filter [10].

2. Satellite with Sloshing Model

Thephenomenon of sloshing is due to themovement of a free
surface of a liquid that partially fills a compartment and this
movement is oscillating. It depends on the shape of the tank,
the acceleration of the gravity, and on the axial/rotational
acceleration of the tank. As a representative of the behavior
of the total weight of the system it is accepted that when
the mass of the liquid oscillates the mass center of the
rigid body also oscillates, thereby disturbing the rigid-flexible
part of the vehicle under consideration. As an oscillating
movement it is natural to consider the wave generated by
the movement of the liquid as a stationary wave in all
oscillation modes. Each mode of oscillation has a special
feature of this phenomenon under study and one observes,
in a quantitative sense, how much mass is displaced. Among
all the modes that cause the greatest disruption in the system
are the first and the second modes. Despite the fact that
oscillation has lower frequency it is capable of resulting in
violent shifting of the center of mass of the liquid creating
an oscillation in the system as a role. The other oscillation
modes act as a less aggressive and it may not even vary the
position of its center of mass due to the symmetry of the
wave which on average causes no displacement. Due to its
complexity, the sloshing dynamics is usually represented by
mechanical equivalents that describe and reproduce faithfully
the actions and reactions due to forces and torques acting
on the system. The main advantage of replacing the fluid
model with an equivalent oscillatingmodel [11] is simplifying
the analysis of motion in the rigid body dynamics compared
to the fluid dynamics equations. Due to the complexity of
establishing an analytical model for the fluid moving freely
within a closed tank, a simplified system is used, taking into
account the following criteria [6]: (a) small displacements,
(b) a rigid tank, and (c) no viscous, incompressible, and
homogeneous liquid. Under these conditions the dynamics
of the sloshing can be approximated by mechanical system
consisting of a mass-spring or pendulum. Consider a rigid
spacecraft moving in a fixed plane with a spherical fuel tank
and including the lowest frequency slosh mode. Based on the
Lagrange equation and the Rayleigh dissipation function one
can model systems using the mechanical mass-spring and
pendulum type system, respectively. Figure 1 shows a satellite

model where slosh dynamics is represented by its pendulum
analogous mechanical system, where the mass of the satellite
and the moment of inertia, regardless of the fuel, are given
by 𝑚 and 𝐼, respectively, and the mass equivalent of fuel and
its inertia moment are given by𝑀𝑓 and 𝐼𝑓, respectively. The
attitude control of the spacecraft is done by the force 𝑓 and
by the pitch moment𝑀. The constant thrust 𝐹 is responsible
for the orbital transfer of the spacecraft with respect to the
inertial reference system (𝑥, 𝑦, 𝑧) and it acts on the center of
mass of spacecraft in the longitudinal axis. Also it is given the
velocity of the center of the fuel tank 𝜐𝑥, 𝜐𝑧 and the attitude
angle 𝜃 of the spacecraft with respect to a fixed reference
(𝑋, 𝑌, 𝑍). Besides, 𝑉 represents the linear velocity and 𝜔

represents the angular velocity of the rigid body.The length of
the pendulum is 𝑎, the distance from satellite center of mass
to the pendulum connected point is 𝑏, and the angle of the
pendulum with respect to the spacecraft longitudinal axis is
𝜓, which is assumed in the equilibrium position (𝜓 = 0)

about the reference axis𝑋.

3. The Satellite Equations of Motion

The satellite equations of motion can be derived using the
Lagrange equations [10] given by

d
dt

(
𝜕𝐿

𝜕𝑉
) + 𝜔

× 𝜕𝐿

𝜕𝑉
= 𝜏𝑡,

d
dt

(
𝜕𝐿

𝜕𝜔
) + 𝜔

× 𝜕𝐿

𝜕𝜔
+ 𝑉
× 𝜕𝐿

𝜕𝑉
= 𝜏𝑟,

d
dt

(
𝜕𝐿

𝜕 ̇𝜓
) −

𝜕𝐿

𝜕𝜓
+
𝜕𝑅

𝜕 ̇𝜓
= 0.

(1)

Details of the equations of motion derivation can be found in
[12], where 𝐿 is the Lagrangian of the system, the generalized
coordinates are 𝑉 and 𝜔, 𝑅 is the Rayleigh dissipation
function, 𝜏𝑟 is the internal torque, and 𝜏𝑡 is the external
torque. Assume that 𝑅, 𝜏𝑟, 𝜏𝑡, 𝜔, 𝑉 are given by

𝑅 =
1

2
𝜀 ̇𝜓
2
; 𝑉 = [

[

V𝑥
0

V𝑧
]

]

; 𝜔 = [

[

0

̇𝜃

0

]

]

;

𝜏𝑡 =
[

[

𝐹

0

𝑓

]

]

; 𝜏𝑟 =
[

[

0

𝑀 + 𝑓𝑏

0

]

]

.

(2)

The position vector of the satellite mass center with respect to
the inertial reference system (𝑥, 𝑦, 𝑧) (see Figure 1) is

⃗𝑟 = (𝑥 − 𝑏) 𝑖 + 𝑧𝑘̂. (3)

Assuming the relations V𝑥 = ̇𝑥+𝑧 ̇𝜃 and V𝑧 = ̇𝑧−𝑥 ̇𝜃 the satellite
velocity is given by

̇⃗𝑟 = V𝑥 𝑖̂ + (V𝑧 + 𝑏 ̇𝜃) 𝑘̂. (4)

The position of the mass of fuel with respect to the inertial
reference system (𝑥, 𝑦, 𝑧) (see Figure 1) is given by

⃗𝑟𝑓 = (𝑥 − 𝑎 cos (𝜓)) 𝑖̂ + (𝑧 + 𝑎 sin (𝜓)) 𝑘̂. (5)



Shock and Vibration 3

b

�x

�z

X

x

𝜃

𝜓
𝛼

Z

z →
rf

→
r

M

F

f

Figure 1: Satellite model with slosh dynamics pendulum analogous mechanical system.

As a result, the mass of the fuel velocity is

̇⃗𝑟𝑓 = (V𝑥 + 𝑎 sin (𝜓) ( ̇𝜃 + ̇𝜓)) 𝑖̂

+ (V𝑧 + 𝑎 cos (𝜓) ( ̇𝜃 + ̇𝜓)) 𝑘̂.

(6)

The Lagrangian of the entire system is given by

𝐿 =
1

2
𝑚 ̇⃗𝑟
2

+
1

2
𝑚𝑓

̇⃗𝑟
2

𝑓
+
1

2
𝐼𝑓(

̇𝜃 + ̇𝜓)
2

+
1

2
𝐼 ̇𝜃
2
. (7)

Substituting (4) and (6) into (7), using the relations given by
(2), and performing the derivations of (1), one obtains the
satellite equations of motion given by

(𝑚 + 𝑚𝑓) ( ̇V𝑥 + V𝑧 ̇𝜃) + 𝑚𝑏 ̇𝜃 + 𝑚𝑓𝑎 (
̈𝜓 + ̈𝜃) sin (𝜓)

+ 𝑚𝑓𝑎(
̇𝜃 + ̇𝜓)
2

cos (𝜓) = 𝐹,

(8)

(𝑚 + 𝑚𝑓) ( ̇V𝑧 − V𝑥 ̇𝜃) + 𝑚𝑓𝑎 (
̈𝜃 + ̈𝜓) cos (𝜓)

− 𝑚𝑓𝑎(
̇𝜃 + ̇𝜓)
2

sin (𝜓)𝑚𝑏 ̈𝜃 = 𝑓,

(9)

(𝐼𝑓 + 𝑚𝑏
2
) ̈𝜃 + 𝑚𝑏 ( ̇V𝑧 − V𝑥 ̇𝜃) − 𝜀 ̇𝜓 = 𝑀 + 𝑏𝑓, (10)

(𝑚𝑓𝑎
2
+ 𝐼𝑓) (

̈𝜃 + ̈𝜓)

+ 𝑚𝑓𝑎 (( ̇V𝑥 + V𝑧 ̇𝜃) sin (𝜓)

+ ( ̇V𝑧 − V𝑥 ̇𝜃) cos (𝜓)) + 𝜀 ̇𝜓 = 0.

(11)

Assuming the relations 𝑎𝑥 = ̇V𝑥 + V𝑧 ̇𝜃, 𝑎𝑧 = ̇V𝑧 − V𝑥 ̇𝜃 and
substituting them into (8) and (9), one can isolate and obtain
the satellite accelerations given by

𝑎𝑥

=

𝐹 − 𝑚𝑏 ̇𝜃 − 𝑚𝑓𝑎 (
̈𝜓 + ̈𝜃) sin (𝜓) − 𝑚𝑓𝑎(

̇𝜃 + ̇𝜓)
2

cos (𝜓)
𝑚 + 𝑚𝑓

,

𝑎𝑧

=

𝑓 − 𝑚𝑓𝑎 (
̈𝜃 + ̈𝜓) cos (𝜓) + 𝑚𝑓𝑎(

̇𝜃 + ̇𝜓)
2

sin (𝜓) − 𝑚𝑏 ̈𝜃

𝑚 + 𝑚𝑓

.

(12)

All equations derived previously are nonlinear. However, in
order to design LQR and LQG controllers and estimate the
sloshing parameters using the Kaman filter technique one has
to get the linear set of equations of motion, which is obtained
assuming that the systemmakes smallmovements around the
point of equilibrium very close to zero; that is, (𝜃, ̇𝜃,𝜓, ̇𝜓) =

(0, 0, 0, 0).
Now, substituting (12) into (10) and (11) and assuming

the linearization conditions, one has the satellite equation of
motion given by

̈𝜃(𝐼𝑓 + 𝑚
∗
(𝑎
2
− 𝑏𝑎)) + 𝜓 (𝐼𝑓 + 𝑚

∗
𝑎
2
)

+ 𝑎𝑚
∗

𝑓
𝐹𝜓 + 𝜀 ̇𝜓 = −𝑎𝑚

∗

𝑓
𝑓,

̈𝜃(𝐼 + 𝑚
∗
(𝑏
2
− 𝑏𝑎)) − 𝑚

∗
𝑎𝑏𝜓 − 𝜀 ̇𝜓 = 𝑀 + 𝑏

∗
𝑓,

(13)

where 𝑏∗ = 𝑏𝑚𝑓/(𝑚 +𝑚𝑓), 𝑚
∗
= 𝑚𝑚𝑓/(𝑚 +𝑚𝑓), and𝑚

∗

𝑓
=

𝑚𝑓/(𝑚 + 𝑚𝑓).
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4. Kalman Filter (KF)

The Kalman filter estimates the instantaneous state of a
dynamic system from the reading of measurements. In other
words the Kalman filter is the optimal solution of minimum
variance, whichmeans that the equations of the Kalman filter
can be deduced from this premise [7]. The Kalman filtering
can be divided into two steps: time update and measurement
update.

4.1. Time Update. This step propagates the states and the
covariance of the time 𝑡𝑘−1 to 𝑡𝑘. For this it just integrates
the following equations, with the boundary conditions x𝑘−1 =
_x
𝑘−1 and P𝑘−1 = P̂𝑘−1. Herein P is the covariance matrix and

x is the vector state:

̇x = 𝑓 (x) , (14)

where 𝑓 is a nonlinear vector function of the state x and time
𝑓. Consider

̇P = FP + PF𝑡 + GQG𝑡, (15)

whereG is a matrix that adds noise to the system dynamic,Q
is the process noise covariance, and F is the Jacobian matrix
of 𝑓.

4.2. Measurement Update. This step updates the state and
covariance to the time 𝑡 due to the measurement y. Consider
the following:

K𝑘 = P𝑘H
𝑡

𝑘
(H𝑘P𝑘H

𝑡

𝑘
+ R𝑘)

−1

,

P̂𝑘 = (I − K𝑘H𝑘)P𝑘,

x̂𝑘 = x𝑘 + K𝑘 [y𝑘 − ℎ𝑘 (x𝑘)] ,

(16)

where 𝐾𝑘 is the filter gain, 𝐻𝑘 is the Jacobian matrix of ℎ
which in turn is a vectorial nonlinear function of the state,
and y is the measurement vector.

5. Linear Quadratic Gaussian (LQG)

This method is, basically, the union with the LQR [13] and
the Kalman filter. In the LQR method one assumes that all
states are available to be feedback but in reality that is not
true. Therefore, when there is any state that is not available
one has to use the Kalman filter to estimate it in order to be
a feedback.The separation principle ensures that each step of
this process can be made independently of each other; one
may first solve the LQR problem and then design the optimal
estimator (Kalman filter), or vice versa, so that the global
solution is always the same.

Assume a plant described by the linear state equations
given by

̇x (𝑡) = Ax (𝑡) + Bu (𝑡) + Γ𝑤,

y = Cx (𝑡) + 𝜐,

(17)

where x represents the state vector, the matrix A is the state
matrix, B is the input matrix, y is the output vector, C is the
output matrix, 𝜐 and 𝑤 are white noise, and u is the control
law. In the LQGmethod [14] the control law gain is obtained
by the LQR method and it is given by

K𝑐 = R−1B𝑇P𝑐, (18)

where R is real symmetric positive definite matrix and P𝑐 is
the symmetrical solution of the LQR Riccati equation given
by

A𝑇P𝑐 + P𝑐A − P𝑐BR
−1B𝑇P𝑐 +M𝑇QM = 0. (19)

Similarly the Kalman filter gain now is given by

K𝑓 = P𝑓C
𝑇V−1, (20)

where V is real symmetric positive definite matrix and P𝑓 is
the symmetrical solution matrix of the KF Riccati equation
given by

P𝑓A
𝑇
+ AP𝑓 − P𝑓C

𝑇V−1CP𝑓 + Γ
𝑇WΓ = 0, (21)

where P𝑐 = P𝑇
𝑐

≥ 0 and P𝑓 = P𝑇
𝑓

≥ 0 and Q,R,V,
andW are weight matrices which can be regarded as setting
parameters (tuning) that must be manipulated until they find
one acceptable response to the system.

A necessary and sufficient condition to guarantee the
existence of the K𝑐 and K𝑓 is if the system is completely
controllable and observable. The LQG method is more
realistic than the LQRmethod, since the states are not always
available to be feedback or need to be measurable with the
aid of sensors. The inclusion of the noise in the model which
represents imperfections of the system is also one advantage
of the LQG method.

6. Simulations and Results

The first simulation is the design of the control law using
the LQR and LQG control theories, for the spacecraft with
a partially filled tank, to account for the sloshing dynamics
by the mechanically analog pendulum type. The pendulum
physical parameters used in the simulations are as follows:
𝑚 = 600 kg, 𝑚𝑓 = 100 kg, 𝐼 = 720 kg/m2, 𝐼𝑓 = 90 kg/m2,
𝑎 = 0.3m, 𝑏 = 0.3m, 𝐹 = 500N, and 𝜀 = 0.19 kgm2/s.
The equations of motion that describe the dynamics of the
system are given by (13) which need to be put in state space
form. These equations describe the angular displacement of
the spacecraft and the angular displacement of the pendulum
and the initial conditions used are 𝜃 = 2

∘, ̇𝜃 = 0.57
∘
/s,𝜓 = 1

∘,
and ̇𝜓 = 0

∘.
Figures 2 and 3 show that the LQR control law perfor-

mance is better than the LQG and the reason is because the
first one considers that the sloshing variables are available to
be feedback which is not true.

The performance of the LQG control law is damaged
because the sloshing motion is controlled indirectly and
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Figure 2: Performance of the LQR control law.

−1

2

1

0

3

0 20 40 60 80 100 120

LQG

𝜃
(d

eg
)

t (s)

(a)

−1

−0.5

0.5

1

0

0 60 10020 40 80 120

LQG

̇ 𝜃
(d

eg
/s

)

t (s)

(b)

−10

−5

0

5

10

0 20 40 60 80 100 120

LQG

𝜓
(d

eg
)

t (s)

(c)

−10

−5

0

5

10

0 20 40 60 80 100 120

LQG

𝜓
(d

eg
/s

)

t (s)

(d)

Figure 3: Performance of the LQG control law.



6 Shock and Vibration

0
0

0.5

1

1.5

20 40 60 80 100

a + 𝜎
a − 𝜎a

a
(m

)

t (s)

(a)

0.02

0.08
0.06
0.04

0.1

0 20 40 60 80 100

𝜎

t (s)

(b)

Figure 4: The estimation of the rod length.
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the sloshing state variables are not available to be feedback
and they need to be estimated by the Kalman filter.

Now one uses the Kalman filter to estimate the rod
length of the pendulum using a database containing the
time evolution of the variables 𝜃 and ̇𝜃. The rod length 𝑎 is
now considered as state variable so one has a system with
five state variables which can be estimated. Using the same
control LQR law, it is possible to analyze the control system
performance during the estimation of the rod length. Besides,
one inserts a white noise in the measurements 𝜃 and ̇𝜃, given
by the noise process ]𝑘 = 𝑁(0, 0.001).

Figure 4 shows that the estimated value of the rod length
is 𝑎 = 0.33m, remembering that the “actual” value of the rod
is 0.3m. Figure 5 shows that plant of the system depends on
the estimation of the rod, since at the time that the rod length
is varying the position of the poles also moves.

Figures 6 and 7 show the LQR and the LQG controllers
during the rod length estimation. One observes that the
system is controlled in less than approximately 15 seconds
and that the slosh motion is more oscillatory with the LQG
controller. This is because the sloshing motion is controlled
indirectly and the sloshing state variables are being estimated
by the Kalman filter.
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Figure 6: LQR controller during the rod estimation.
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Figure 7: LQG controller during the rod estimation.

7. Conclusions

In this paper one described briefly the concepts of the
sloshing phenomenon which is associated with the dynamics
of a liquid moving into at partially fills reservoir. Deriving
the equation of motion of a spacecraft with liquid inside
the sloshing phenomenon is represented by its mechanical
analog of a pendulum type. One uses the Kalman filter
technique to estimate the pendulum length. One shows
that the performance of the LQR control is better than the
LQG control during the estimation process. The reason the
LQG control degraded is because the sloshing states need
to be estimated by the filter. This degradation was expected,
because as it has been demonstrated by [15] the introduction
of the Kalman filter degrades the stability margin of the LQG.
One way to improve the performance of LQG is to make
the dynamics of the filter faster than the dynamics of LQR.
However, this must be done carefully since this time will
depend on the on-board computer capacity. These results
show that control of spacecraft with sloshing and flexibility
is not an easy task and needs to be investigated better. One
has also observed that the estimation of the rod length alters
the plant of the system causing the poles to walk to and
from the imaginary system, leaving in the end the plant more
stable.
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Since 1995, we have beenmeasuring the in situ dynamic characteristics of different types of footbridges built in Portugal (essentially
steel and precast reinforced concrete decks) with single spans running from 11 to 110m long, using expedite exciting andmeasuring
techniques. A database has been created, containing not only the fundamental dynamic characteristics of those structures
(transversal, longitudinal, and vertical frequencies) but also their most important geometric and mechanical properties. This
database, with 79 structures organized into 5 main typologies, allows the setting of correlations of fundamental frequencies as
a negative power function of span lengths 𝐿 (𝐿−0.6 to 𝐿−1.4). For 63 footbridges of more simple geometry, it was possible to obtain
these correlations by typology. A few illustrative cases representing themost common typologies show that linear numerical models
can reproduce the in situmeasurements with great accuracy, not only matching the frequencies of vibration but also the amplitudes
of motion caused by several pedestrian load patterns.

1. Introduction

The great development of footbridges (also referred to as
“pedestrian bridges”) in Portugal in the last 2 decades
is related to the large amount of freeways or motorways
constructed in recent years and the need for pedestrians to
cross them. Also, footbridges were built over railways, in
railway stations, near shopping centers and schools, and so
forth. In a few cases, they were built as part of bicycle routes.
Footbridges are in general quite different from viaducts over
freeways, not only due to differences in the loading but also
because the former can profit more easily from the advances
in material developments and architectural creativity. In
general, they are lighter, built with high strength materials,
spanning quite large distances, and having a wide variety of
structural designs. They tend to become slender structures
with less mass, but they show more pronounced dynamic
effects due to possible resonance in the passage of pedestrians.
Large vibration amplitudes are in the range of discomfort, and
so this phenomenon deserves much attention to understand
the problems that may arise and the way they should be dealt
with.

This paper is divided into two parts. In the first part we
present and explore a database with in situ information on
frequencies of vibrations. The second part is dedicated to
numerical modelling of a few footbridges that were subjected
to in situ testing.

For several years, we have been building a database
on the main dynamic characteristics of different types of
footbridges built in Portugal. In this paper, we report a group
of 79 footbridges of different typologies, setting correlations
between the fundamental frequencies in the three orthogo-
nal directions and their larger span length, (Table 1 [1–5]).
We also look at numerical modelling of a few structures
representative of the most common footbridges in Portugal,
and compare the results of these models with those of in
situ testing, both for the fundamental frequencies and for
the amplitudes produced by given pedestrian loading. The
in situ experiments made consisted in single person walking,
jogging or running and jumping.

We summarize the work by Silva [6], partially presented
in Oliveira and Silva, [7], who has studied a steel and
a reinforced concrete (RC) deck footbridge, subjected to
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Figure 1: Largest span of analyzed footbridges (circular ribbon
footbridge not included).

a pedestrian-load pattern and to the seismic action corre-
sponding to the PortugueseCode [8]. Other analytical studies
made inmore complex structures [9] or as part of a campaign
for evaluating seismic vulnerability of typical footbridges [10]
are also synthesized.

This work aims to contribute to the understanding of
footbridge behavior under pedestrian loading, verifying the
reliability of standard structural analysis programs to obtain
a correct representation of these types of structures. This is
in line of recent studies merging analytical modelling with in
situ experiments (see [1]). The correlations obtained between
frequencies in the vertical direction and span lengths are
quite good for certain typologies and can therefore be used
as a first estimation for design or amplitude assessment.

Although in many cases the footbridges do not show
structural problems with pedestrian crossings, they may
notice excessive vibration problems under specific loading,
making the crossing uncomfortable and even scary. The case
that called attention to this phenomenonwas theMillennium
Bridge, in London. In the inauguration’s day, when thousands
of pedestrians crossed the footbridge, excessive horizontal
vibrations were observed caused by a synchronized trans-
versemovement of the crowd.This effect was known as “lock-
in effect” [11].

2. Main Footbridge Typologies
Existing in Portugal

The present database refers to 79 footbridges of several
geometric layouts, structural types, deck cross sections,
materials, and largest span length varying from 11 to 110m,
Figure 1. The most common typologies are the steel box-
girder deck and the precast RC deck with prestressed beams.
Other typologies used different materials such as fibre-glass
and timber or combinations of tubular supporting structures.
A classification of decks of the most common footbridge
typologies in Portugal (Figure 2), whose images are shown
in Figure 3, is as follows: (a) steel box-girders (BG) with
trapezoidal and rectangular cross sections; (b) steel truss into
a 2D or 3D special geometry; (c) RC lateral precast beams
with concrete slabs; (d) steel variable cross sections; and (e)
other types for larger spans, such as bow strings, suspended,

and cable-stay. In this category we also consider footbridges
of materials different from steel and RC.

Even though more than 50% of the reported footbridges
refer to the region of Lisbon, the author has selected a number
of cases in each typology in other regions of the country
to gain some statistical significance. Also, there is a set of
recently built footbridges, which represent landmarks in the
modern Portuguese scenario for their outstanding design,
such as the stress-ribbon in the FEUP Campus (Oporto) [1],
the “Pedro e Inês” in Coimbra [3], the circular footbridge in
Aveiro [5], the movable cable-stayed footbridge in Viana do
Castelo [4], the bow-string in Guarda [2], and the S-shape
Carpinteira footbridge in Covilhã [12], which were added to
the database for completeness. The main properties of some
of these structures were taken fromdata and results published
in the literature (see Table 1).

The above most common (a) to (d) typologies built in
Portugal are also seen in many other countries and, con-
sequently, the results presented herein may be extrapolated
outside Portugal. These footbridges, in a total of 63 cases, are
essentially single span long over an entire free-way, supported
in lateral columns or pillars, made of cylindrical hollow steel
or of RC precast elements, with cylindrical or elongated cross
sections.The access to the deck in an elevated level is made in
different ways, commonly by RC stairways or ramps, running
longitudinal with the axis of the footbridge (L), transversal to
it (T), or at an angle (LT). For bicycle routes generally there is
no ramp (N) and the deck sits directly in the abutments.

Foundations of columns vary from case to case but, in
general, they are made of concrete blocks. Connections at the
top of the columns and to the stairways or ramps also differ
quite considerably. But as the majority of these structures are
precast, these connections are weak points of the structure
especially for seismic loadings.

The dynamic characterization of these structures is of
most importance for a number of reasons. As they are slender
structures, with continuous distribution ofmass and stiffness,
most of them spanning lengths of 20 to 60m (Figure 1), the
passage of pedestrians may cause large amplitude vibrations.
In some cases, resonance effects in the vertical and/or
transverse directions, beyond becoming uncomfortable, they
may induce damage.

Frequencies and damping characteristics are probably
the most important parameters controlling the dynamic
behavior, together with the frequency of walking pedestrians
(number of people, velocity, synchronization of stepping,
etc.). The frequencies of the structure depend on the geom-
etry and mechanical properties. For geometry they vary
with the number of spans, the type of connections, the
lateral pathway (ramp and stairways in the longitudinal or
transversal directions), the height of columns, the width of
deck, and the curvature in elevation and its development in
plant. For mechanical properties, the main characteristics to
be accounted are the weight and the modulus of elasticity.

The main information contained in the database for each
one of the 5 above mentioned typologies refers to the follow-
ing parameters, obtained either from design drawings (a few
cases) or fromdirectmeasurements of structural elements: (1)
identification—name; (2) location—place; (3) construction
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Figure 2: Main structural deck types for footbridges in Portugal.

year; (4) height of deck; (5) width; (6) deck development;
(7) deck cross section; (8) largest span; (9) and (10) lateral
access; (11) to (13) frequencies of first mode in the transver-
sal, longitudinal, and vertical directions. Table 1 presents
this information for the 79 footbridges in the database,
the majority of them subjected to in situ dynamic testing.
The entire database contains more information such as the
designer/contractor; state of conservation; total length; num-
ber of spans; deck cross section and columns dimensions;
date of testing; other identified modal frequencies, especially
the ones with more pronounced effect; and amplitudes of
vibration for 1 pedestrian walking at “normal” speed. For
most cases, GIS information is used to locate the footbridge
and a photo or sketch is annexed.

3. In Situ Campaign and Analysis of Results

3.1. In Situ Experiments and Data Treatment. In situ expedite
experiments were performed with a single 3-component
accelerometric station equipped with a “force-balance” 3-
component sensors with a resolution below 0.5 × 10−2mg,
acquiring data at 200Hz. Samples of 60 sec duration were
averaged out after band-pass filteredwithButterworthwith 4-
poles between 0.03 and 25Hz. Sampleswere visually reviewed
to avoid the ones with anomalous spikes.

Data treatment consisted in analyzing peak acceleration
values, predominant frequencies of vibrations in the three
orthogonal directions through FFT techniques, and damping
from amplitude decay in a few cases. A cross examination of
results, together with the interpretation of modal shapes for
the most simple geometrical layouts, led to the identification
of first modal frequencies in the three directions of space
(T: transversal; L: longitudinal; V: vertical). For all analyzed
structures, damping is quite small with values varying in the
interval 1% > 𝜁 > 0.5%, even for large amplitude motions.
All these values were transported to the database. Whenever
an analytical model was available, identification of various
modal shapes was achieved with this single 3-component
instrument.

In several situations we repeat the in situ testing not only
to check the robustness of the readings, but also to use dif-
ferent resolution instrumentation. In the first measurements
we used 12-bit instruments with 100mg of full scale andmore

recently we used 18-bit at a 1000mg full scale, which allows a
much better signal/noise ratio. Frequencies were obtained in
general with an error of ±0.05Hz.

The experiments were of two types, with measurements
performed with the accelerometric station located at mid-
span and at quarter-span as follows:

(1) measurements for noise vibration produced by car
traffic passing underneath, for mode identification;

(2) measurements for a set of typified tests with the
passage of pedestrians at different velocities: (a) one
person at slow walking; (b) one person at normal
walking; (c) one person at fast walking; (d) one person
jogging (slow running); (e) forced vibration caused by
themovement of one person in resonance conditions;
and (f) impulsive action derived from “jumping.” For
details, see [6].

This technique, using a single instrument, can only be
used with confidence for footbridges with simple geometric
layouts, in which modes are easily separated into the three
directions and no interaction is taking place. For more
complex geometries, either in plan or in the vertical direction,
multiple instrumentation with common time is required for
identification of frequencies and modal shapes. The case of
the Ribeira da Carpinteira (Covilhã) footbridge, a S-shape
plan view with two lateral steel beams ([+] cross section) is
the situation where modes are coupled in the 3 directions of
space with an important participation of torsion of deck [12].
Only the frequencies were identified, but it was impossible
with a single 3-component instrument to assign them to any
particular mode shape with the exception of the first ones.
Most of the “other types” footbridges (Figure 2) fall into this
category.

3.2. Analysis of Results. The main results are presented in
Figure 4,where the frequencies of firstmode in theT, L, andV
directions are plotted against the largest span length. Various
representations are made to understand the correlation of
measured frequencies with the larger span. Most of the
footbridges can be considered as simple supported beams
with constant mass and stiffness. A curve fitting of the first
frequency of vibration (𝑓) versus the span length (𝐿) was
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(a) Steel box-girders (trapezoidal) (a1) Steel box-girders (rectangular) (b) Truss structure (2D) 

(b) Truss structure (2D) detail (b) Truss structure (3D) (b) Space triangle truss (3D)

(d1) Variable cross section deck (d1) Variable cross section deck
structure (steel box-girder)

(e) Bow string

(c) RC I + slab + I beam (c) RC I I beam (detail 1)+ slab + (c) RC I I beam (detail 2)+ slab +

structure (steel I + I)

Figure 3: Main typologies of footbridges in Portugal.

essayed for the frequency in each direction and for each
typology class (Figure 2). A power function (𝑓 = 𝑎 ×
𝐿
−𝛼
) was used. As expected, the correlation for the vertical

frequency of steel box-girders (Figure 4(e)) (especially if the
two larger curvature footbridges are eliminated from the plot,
𝑅
2
= 0.667, not presented in Figure 4) and RC footbridges

(Figure 4(g)) is much higher than for the other directions.
However, for steel truss structures, the existing variety, with
2D, 3D, and so forth cases, is so large that no correlation
can be observed even in the V direction. A more detailed
analysis entering with other parameters, namely, the mate-
rial and the location of stairways, would certainly increase

the correlation, especially in the T and L directions. But to
do that and keep some statistical insight we need to perform
more tests, increasing our database.

Even though the steel structures are much lighter than
RC, a comparison of their vertical frequencies shows similar
results (Figure 5). As the ratio (pedestrian)/(full dead-load)
is much higher for steel structures than for RC structures,
this causes higher amplifications in steel structures (see
Section 4.2).

Figure 6 shows that the V and L frequencies do not
correlate with each other, probably because the frequency in
the L direction depends verymuch on the stiffness of columns
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Figure 4: Frequencies of 1st mode in the three directions (T, L, and V) as a function of largest span: (a) to (c) all typologies for V, T, L, and
(d) V + L; (e) to (h) vertical for steel box-girders, truss structures, RC structures, and other structures, respectively. Red curves are explained
in Section 3.3.
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Figure 6: Correlation of V and L frequencies for all footbridges.

and on the position of stairs or ramps. If we took these
aspects into consideration, the correlations would probably
be much better. Numerical modelling, presented in Section 5
for various typologies and stairways locations, shows that
the analytical frequencies are very similar to the in situ
measurements in all three directions of space, precluding the
better above-mentioned correlation.

3.3. Estimating theNatural Vibration Frequency of Footbridges.
An empirical formula to compute the fundamental vertical
frequency of a footbridge would be very useful for a designer
to quickly assess its response to pedestrian crossing.

Let us consider a footbridge as a simple supported beam
(length 𝐿) with constant mass𝑚 per unit length and constant
inertia 𝐼, made of material with modulus of elasticity 𝐸.

The frequency (Hz) of the first mode is given by Clough
and Penzien [13]:

𝑓 =
1

2𝜋
× 𝜋
2
√
𝐸𝐼

𝑚𝐿
4

(1)

which corresponds to a sinusoidal shape. Higher modes
have frequencies 4, 9, and so forth times the fundamental
frequency. Assuming that the maximum deflection of the
beam under dead load should not surpass L/1000; then the
frequency is only function of 𝐿 and given by

𝑓 = 17.9 × 𝐿
−0.5
(𝑓 in Hz; 𝐿 in m) . (2)

For built-in supports (clamp-clamp), the first frequency is
about 2.27 times larger than for simple supported. And the
effect of changing the assumption of maximum deflection
permitted, or of the stiffening of the supports, would only
affect the initial constant, not the exponent of 𝐿.

Expression (2) is in the lower bound of decrease of
frequencywith length (𝐿−0.5). Usually the exponent, observed
from the fitting ([14], after in situ testing of 67 footbridges,
arrived to a fitting 𝑓 = 33.6 × 𝐿−0.73, exhibiting large dis-
persion and notmaking any distinction among typologies), is
higher denoting that frequency attenuates faster with 𝐿. Steel
box-girders attenuate with 𝐿−0.9, RC with 𝐿−1.4, and other
types with 𝐿−0.8. It means that the assumption of maximum
deflection which implies (3) given by

𝐼

𝑚
≅ 𝑓 (𝐿

3
) (3)

is not suitable and the ratio 𝐼/𝑚 is more likely proportional
to 𝐿2. In many cases the cross section varies along the
length, and the maximum deflection is not given by a
simple expression as used for the simple supported beam
with constant mechanical properties. Also the principle of
displacement-controlled design may not apply, prevailing a
constant extension (𝜀) assumption.

We plotted the values produced by (2) in Figures 4(e) and
4(h) to check the differences to the empirical fitting.

4. Characterization of Pedestrian Loading

The dynamic loading in footbridges is essentially due to
the passage of persons alone, in groups, randomly walking,
jogging, running, or a combination of all previous cases.
Also, sudden loads provoked by jumps, fall of objects, or
rhythm action may arise. Sometimes the passage of bicycles
or motorbikes may be observed. The “lock in effect” is
another resonant effect, induced by the bridge itself, which
influences the walking pattern. We will concentrate only on
the passage of a single person walking, jogging, or running.
Also excitation near to resonance by one single person
was also performed. However, the response of footbridges
for groups of pedestrians walking in rhythm or randomly
walking was not analyzed.

4.1. Pedestrian Loading Pattern. There are three levels to be
considered in the definition of pedestrian loading. The first
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Figure 7: (a) Force-time typical diagram for different movements: left-step frequency < 2.2Hz, right-step frequency > 2.2Hz; (b) variation
in time-space imposed by the walking movement [15].

Table 2: Frequency range (Hz) for different patterns of movement
(adapted from [14]).

Slow Normal Fast Total
Walk 1.4–1.7Hz 1.7–2.2Hz 2.2–2.4Hz 1.4–2.4Hz
Jogging 1.9–2.2Hz — — 1.9–2.2
Running — — 3.0–3.4Hz 3.0–3.4Hz

one attends to the frequency of movement, resulting from
a speed of 0.5m/s to 0.8m/s (for slow walk) to 3.5m/s (for
jogging-slow running) with a step size from 0.65m for slow
walk and not exceeding 1.7m for fast running (Table 2).

The second and third levels are related to the contact
form of the foot with the deck, with one vertical and two

horizontal components. This contact form depends on the
pattern ofmovement [2, 15]: the contact time between the foot
and the floor; the time interval among two consecutive steps;
the relation between the applied force and the pedestrian’s
weight; and the step length. Figure 7 shows the form of how
we applied the foot loading along the time-space.

We generated a load curve of the form shown in
Figure 7(a) and applied it at successive nodal points, at
different time intervals, Figure 7(b).

Whereas the vertical component of the load always applys
in each step due to the gravitational force in the same
direction, the horizontal action introduces a force alternating
to the right and left, according to the stepping foot.

These functions were programmed to be used with stan-
dard linear dynamic analysis software using the time history
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integration. For the L direction the intensity of loading is 50%
of V, whereas in the T direction it is between 3 and 10% of
V. The frequency in L direction is equal to the V direction,
whereas in T direction the frequency is half of the V direction
[16, 17].These patterns are also observed in the database of the
present work.

4.2. In Situ Amplitude Values. Table 3 and Figure 8 present
the values of the measured maximum amplitudes of motion
at mid-span for a group of 10 footbridges in the T, L, and V
directions, for the following loading conditions: (1) noise; (2) 1
person walking at “normal” pace (2Hz); (3) 1 person jumping
from 30 cm; and (4) excitation close to resonant conditions.
It is observed that amplitudes in the vertical direction are
almost 10 times the ones in the transversal direction, and
walking produces lower amplitudes than jumping or exciting
in resonant conditions.

Figure 9 shows the amplitudes by typology for 1 person
walking at “normal” pace. It is clear that RC structures have

much lower amplitudes than all other typologies. We can
look at these differences as a phenomenon of amplification,
in which the amplification of response for the same load type
of steel box-girders and steel truss is much larger than for RC
footbridges.

As far as amplitudes are concerned, if we take the
excitation amplitude given by the equivalent single degree
of freedom under resonant conditions, the values are also
similar to those indicated by measurements, for the low
damping observed (1% > 𝜉 > 0.5%).

5. Code Provisions and Acceptable
Comfort Levels

Currently, there are two different design procedures for
footbridges under dynamic loading, which are contemplated
by the international standards.

They are essentially based on discomfort and resonance:
(i) peak acceleration values in the vertical and horizontal
directions should not surpass certain limits for given load
patterns and (ii) fundamental frequencies should be outside
the so-called interval of critical frequencies. There are several
international recommendations practiced in various coun-
tries such as BSI [18], AASHTO [19], EN 1990, 2003 [20],
DIN-ENV [21], ISO 10317 [22], OHBDC, 1983 [23], or the
Japanese Footbridge Design Code, 1979 [24]. If the criterion
is based on the amplitude value, these recommendations
fix values quite different from one another [25], such as in
the case of a peak acceleration that should be below, say,
70mg in vertical and 10–20mg in horizontal, or a function
of the footbridge frequency, Figure 10(a) and Table 4. If
the criterion is separation of resonant conditions [26], the
recommendations are as shown in Figure 10(b). In a different
approach, Kazakevitch and Zakora [27] establish amaximum
load (𝑘), dependent on natural frequency (𝑓), to reduce the
resonance effect, given by 𝑘 = 4/(1 + 1.5𝑓2) kN/m2.
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Table 3: Amplitude values in mg of the measured maximum motion at mid-span for a group of 10 footbridges in the transverse (T),
longitudinal (L), and vertical (V) directions.

Name Length (m) Noise 1 person walk Jump Excitation Typology
T L V T L V T L V T L V

CP Gago Coutinho 28 0.5 0.5 0.9 2.5 2.5 12 8 5 109 Steel BG
Reĺogio Gomes Costa W 42 6.5 2.5 7 12 6 45 7 3 27 Steel BG
Braga NE 25 1.5 1 7 4 1.4 17 24 9.6 138 19 18 40 Steel truss
Av Gomes Costa (Leste) 30 1.8 2 7 5.2 5.4 32 36 7.1 79 6.7 7.6 97 Steel truss
Rego 46 3.3 1.1 5.5 4.8 1.9 7.5 10.6 10 77 4 8.1 76 Steel truss
Av. EUA Chelas Leste 25 0.2 0.2 0.2 0.8 1.3 2.8 2.7 1 24 RC
Entreposto Escola Herc Carvalho 20 2.6 4 31 RC
Vale Formoso (Chelas) 28 0.5 0.2 0.5 0.6 1 3.5 0.8 0.9 7.5 1.6 1.4 22 RC
Microsoft Porto Salvo 25 2.9 0.9 10.8 11 4.8 3.8 35 9.6 155 24 7.6 90 Other types
CC Vasco Gama Norte 75 1.6 1.9 4 5 5.2 12.5 Other types
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Table 4: Acceleration limits recommended in some codes (Figure 10(a)).

Regulation Vertical acceleration (m/s2) Horizontal acceleration (m/s2)
BS5400 [18] 𝑎max ≤ 0.5 ⋅ √𝑓 —
OHBDC (1983) [23] 𝑎max ≤ 0.5 ⋅ (𝑓0)

0.28 —
Eurocode [20] 𝑎max ≤ 0.7 𝑎max ≤ 0.2
Hong Kong (2002) [28] 𝑎max ≤ 0.5 ⋅ √𝑓 𝑎max ≤ 0.15

Živanović et al. [11], Heinemayer et al.[29], SÉTRA [30],
and HIVOSS Project [2] are three important references
summarizing topics and restrictions for comfort and safety of
footbridges. More recent advancements were produced and
are presented in publications such as Footbridge-2008 [31]
and Footbridge-2011 [32].

6. Dynamic Modelling

Four types of structures were the object of a detailed ana-
lytical study: two of them correspond to the most common
types built recently in Portugal, (1) a steel box-girder and
(2) a prefabricated RC I + I beam; the third (3) is a steel
inclined arch with a large span; and the fourth (4) is a RC I +
I beam, similar to (2) but with 3 spans and inclined stairways.
Essentially, we were interested in checking how analytical
models could be validated by in situmeasurements of several
modal frequencies. Also, for three cases, the response of the
footbridge for pedestrian crossing was compared with the
measured values.

In model definition several parameter values are uncer-
tain, such as the elastic material properties (𝐸, modulus of
elasticity) and the detail of boundary conditions including the
foundation stiffness. Another important issue is the level of
discretization of the model, represented in its finite element
(FE) description, which has to be sufficiently detailed to
account, for instance, with torsion. In this study we just
adjusted𝐸 and checked the boundary conditions.Model cali-
brationwas done taking into account themeasured frequency
for one specific mode shape, usually the fundamental one.
Once the analytical frequency of this mode is tuned to the in
situ measurement (sources of errors were essentially due to
the supporting connections), the other analytical frequencies
will adjust to the in situ identified frequencies, without need
for further corrections to the model.

6.1. Steel Box-Girder [6]. This structure, with 2.0m wide and
spanning 25.5m at a height of 5.2m, has a steel box-girder
deck supported in two cylindrical, partially hollow columns
and connected to 2 adjacent stairways, one at each side of the
deck (Figure 11). The main geometric characteristics of deck
cross section are the trapezoidal shape with 65 cm height and
the columns with diameter 𝜙 = 29.5 cm and thickness of
1.4 cm, filled up almost to the top with concrete.

The analytical model of this footbridge, including the
stairways, was made with SAP2000 [33], using both “beam”
and “plate” elements (Figure 11). Table 5 compares analyt-
ical and measured frequency values. With the exception
of torsion modes (which require the use of more than

one instrument), the agreement is very good, also for high
frequency modes.

This structure was also subjected to a set of in situ experi-
mental testings to determine the peak amplitude of motion
(𝑎max) for different situations as defined in Table 2. Table 6
presents the results for the three orthogonal directions and
marks the values exceeding the recommended limits accord-
ing to several codes. It is clear that inmany instances the limits
of discomfort are widely exceeded, especially for the cases of
stepping at a frequency close to resonance.

Tests of the model feasibility were made to reproduce the
walking of a person at different speeds, by comparing the
peak acceleration amplitudes obtained in the model with the
measurement in situ [6]. Even though difficulties arise in con-
trolling the experimental testing (correct speed, frequency
of walking), the results (Figure 12) show a good agreement
with the analytical model for the vertical direction. The
results are not so good for the longitudinal and transversal
directions, probably due to the difficulty in reproducing the
pedestrian loading in those directions. Also, in the in situ
case, the resonance situation was never attained with walking
experiments.

6.2. RC Structure [6]. The analyzed structure spans 25.6m,
has a height of approximately 5-6m, and is 2.0m wide,
Figure 13. The deck, formed by two precast and prestressed
I beams, ℎ = 1.23m, is supported by two RC columns.
Between the columns and beams there are neoprene pads.
The pavement is made of RC plates, with thickness of 13 cm,
supported on the lower flanges (Figure 13(b)). The columns
have rectangular cross section with variable dimensions
1.40 × 0.45m2 at the base and 0.7 × 0.45m2 at the top,
just below the opening up for the support of the deck
(Figure 13(c)).

Concrete is a B45.1 for the beams and B30.1 for the
precast elements (plates, columns, and stairways). Stairways
run perpendicular to the bridge axis and are supported in
square columns at 1/3 height.

Similarly to what was done for the steel structure, we
compare in Table 7 results (SAP2000 [33]) of measurements
in situ for mode frequencies and present in Table 8, with
analytical values for peak acceleration amplitudes. Figure 14
shows the comparison for walking situations.

From the analysis of Tables 7 and 8 and Figure 14, we
can say that the analytical model reproduces quite well the
measurements in situ for frequencies, but not so accurately
for pedestrian loading. The difficulties in controlling with
accuracy the experimental conditions, in what concerns the
frequency of the excitation and the intensity of the pedestrian
steps, are the main reasons for the deviations observed.
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(a) (b)

Figure 11: Steel box-girder structure under study: (a) analytical model; (b) view of column, deck, and stairway.

Table 5: Comparison of frequencies (Hz) between measurements in situ and the analytical model.

Mode direction Measurements in situ Analytical model
Longitudinal 2.54 2.55
Vertical 3.42 to 3.52 3.52
Torsion about 𝑥 (longitudinal) ? 5.27
Torsion about 𝑧 (vertical) ? 5.74
Transversal 6.74 to 6.84 6.38

Table 6: Peak acceleration amplitudes for different tests.

Walking load 𝑎max (mg)
Vertical Longitudinal Transversal

1 Person∗—walk at 𝑓 = 1.8Hz 18.9 2.7 3.8
1 Person—walk at 𝑓 = 2.2Hz 29.1 5.2 6.1
1 Person—jogging at 𝑓 = 2.5Hz 38.2 20.2# 12.1
1 Person—jogging at 𝑓 = 3.3Hz 251.3† 16.5 21.4#

1 Person—jogging at 𝑓 = 3.7Hz 252.6† 12.5 24.5#

2 Person—walk at 𝑓 = 1.7Hz 26.3 6.4 5.8
2 Person—walk at 𝑓 = 2.1Hz 38.3 25.3# 7.0
2 Person—jogging at 𝑓 = 2.25Hz 74.4‡ 28.9# 19.0
3 Person—walk at 𝑓 = 2.1Hz 71.5‡ 29.1# 14.1
7 or 8 kids (30 to 40 kg)—slow walk 16.3 6.2 10.3
Noise 6.8 0.9 2.6
Jump 198.1† 21.1# 83.4#

Excitation in transversal direction (resonance) 27.9 3.2 15.5
Impulse in transversal direction 39.8 3.8 17.0
Excitation in vertical direction (resonance) 239.2† 11.7 16.1
∗74 kg.
†Values of vertical accelerations exceeding the less stringent limit (93.8mg); ‡the most stringent limit (66.7mg); #values exceeding the code ones for horizontal
vibrations (20mg, EN 1990 [20]).

Table 7: Comparison of frequencies (Hz) between measurements in situ and the analytical model.

Mode direction Measurements in situ Analytical model
Longitudinal 2.77 2.77
Vertical 3.79 3.34
Transversal 3.73 3.73
Torsion about 𝑧 (vertical) ? 5.71
Torsion about 𝑥 (longitudinal) 7.91 8.80
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Table 8: Peak acceleration amplitudes for different tests.

Walking load 𝑎max (mg)
Vertical Longitudinal Transversal

1 Person∗—walk at 𝑓 = 2.0Hz 7.3 1.7 2.9
1 Person∗—walk at 𝑓 = 2.2Hz 10.1 1.8 3.1
1 Person∗—walk at 𝑓 = 2.5Hz 8.3 4.9 8.0
1 Person∗—walk at 𝑓 = 2.6Hz 11.6 12.2 13.5
1 Person∗—walk at 𝑓 = 3.0Hz 15.5 7.8 15.8
1 Person∗—walk at 𝑓 = 3.7Hz 32.7 11.8 25.4†

2 Jumps at mid-span 61.1 34.2† 90.2†

Impulse in transversal direction 8.5 5.2 15.6
∗74 kg.
†Values exceeding the code limits for horizontal vibration (20mg). EN-1990 [20]).
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Figure 12: Comparison of amplitudes at mid-span (vertical accel-
eration) between in situ measurements and the analytical model: 1
person walking at various speeds (steel box-girder structure). Red
circles: analyticalmodel; blue squares; in situmeasurements; vertical
line at 2.2Hz separates “walk” from “running.”

Comparing the RC structure with the steel structure, we
see that the former is much more rigid, with peak values
almost 1/2 to 1/3 below the latter, depending on the direction
considered. This means that RC footbridges amplify much
more the response for the same loading characteristics than
the steel box-girders, as already mentioned in Section 4.2.

6.3. Passage between the Orient Station and the Shopping
Centre “CC Vasco da Gama”. This footbridge is located in
Avenue D. João II in Lisbon and makes the connection
between the Orient Station and the Shopping Centre Vasco
da Gama. There are two identical footbridges, with length of
86.6m and usable width of 2.4m. Each one is constituted
essentially by three tubular steel sections and thirty-seven
pieceswith variable “𝐼” section thatmake the connectionwith
the previous ones. Two of the tubular sections are straight and
support the bridge deck, while the third one forms an arch
that rises through the footbridge making an angle of 31.9∘ to
the ground. The deck and lateral guards are made by thick
glasses supported by secondary metallic profiles (Figure 15).

The footbridge is simply supported in the two extremes,
still having an intermediate support at 1/4 span, counted

from theWest side (Orient Station).Thematerial used for the
construction is the structural steel S355 (for details, see [9]).

The analytical model of this footbridge was made with
SAP2000 [33]. After defining all the structurewith 3D “beam”
elements, the remaining permanent load of 2.48 kN/m has
been applied, corresponding to the weight of the floor glasses,
the guards, and the small metallic profiles that support
the pavement glass plates. The final analytic model of the
footbridge is presented in Figure 15(b).

The frequencies of the first 15 modes obtained by the
analytical model and by in situ measurements are compared
in Table 9.

The first vibration mode corresponds essentially to a
vertical oscillation (Figure 16) and there is no significant
torsion. In the higher modes the significant displacements
are due essentially to lateral oscillations and rotation around
the several axes, sometimes occurring the coupling of trans-
lational and torsional modes.

It should be noted that, even though the two footbridges
connecting the Orient Station to Vasco da Gama Shopping
Centre are essentially identical, the in situ measured first
vibration frequency of the one located to the north is about
6% higher than the other to the south.

To simulate a pedestrian’s passage on the structure, the
load functions as mentioned in Section 4.1 were used to
represent the several movement types. For each analyt-
ical run the acceleration envelope was obtained for the
three directions. The computed accelerations for the several
movement types of a single pedestrian are always below
0.15m/s2 in the vertical and lateral directions. The value is
much lower than that required by the regulations for the
vertical direction. However, for the lateral direction, this
value corresponds exactly to the maximum limit indicated by
the Hong Kong Structures Design Manual for Highways and
Railways, [28].

In general, it is verified that the results from the
analytic model are conservative, because the acceleration
is, in most cases, larger than the values measured
experimentally. Table 10 shows the values obtained for
the “normal” walking with two different acceleration
transducers (number 133 and number LN874) to check the
robustness of the measurements. The measurements were
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(a) (b) (c)

Figure 13: RC structure under study: (a) analytical model; (b) deck cross section; (c) view of column, deck, and stairway.

Table 9: Comparison of frequencies (Hz) between the analytical model and measurements in situ.

MODES 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Analytical 0.84 1.23 1.48 2.23 2.59 3.30 3.56 4.22 4.89 5.27 5.49 6.04 6.53 6.98 7.52
In situ 0.88 1.7 3.12 3.55 4.52 5.06 5.66 6.59
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Figure 14: Comparison of amplitudes at mid-span (vertical accel-
eration) between in situ measurements and the analytical model:
one person walking at various speeds (RC structure). Red circles:
analytical model; blue squares: in situmeasurements; vertical line at
2.2Hz separates “walk” from “running.”

Table 10: Accelerationmeasured at 1/2 span for the normal walking.

Direction
Acceleration at 1/2 span [mg]

Measuring device Analytic model
133 LN874

Longitudinal 0.25 0.20 0.24
Lateral 2.00 2.00 2.00
Vertical 3.50 3.20 4.50

carried out at the same location but in a different epoch of
the year.

These acceleration obtained for one or two pedestrians is
below the maximum values indicated by the design guide-
lines, so for one or two persons the footbridge accomplishes
the regulations. However, it is foreseen that for people’s
groups these limits are no longer respected. According to
research related to the Millennium Bridge, there is a critical
number𝑁 of pedestrians needed to bring about the situation

of lateral lock-in where feedback of lateral forces cancels out
the positive action of damping of the structure, resulting in
unbounded growth of response [34]:

𝑁 =
8𝜋 ⋅ 𝑓𝑖 ⋅ 𝜉 ⋅ 𝑚𝑖

𝑘
, (4)

where 𝑓𝑖, 𝜉, and 𝑚𝑖 are lateral mode 𝑖 frequencies, damping,
and unit-normalized modal masses, and k is an empirical
constant estimated as 300Ns/m.

Considering that the vibration mode which has
significant lateral oscillation is mode 4, 𝑓 = 2.23Hz,
with a participation mass about 35% in this direction, the
estimated 𝑁 value for this footbridge is 6 pedestrians.
Assuming a structure total span of 87m (74m largest span),
it is easy to reach that number in normal conditions of use,
because the total time needed to cross the bridge, is very
large and many pedestrians can be present simultaneously.

The solution to this type of problem can be found
by introducing mass-tuning dampers, which will reduce
significantly the vibration levels compatible to the estimated
pedestrian flux [11, 35]).

6.4. Overpass RC Footbridge with Precast (I + slab + I). The
work developed by Oliveira [10] focuses on the vulnerability
of a footbridge located near Faro, south of Portugal, serving
as an overpass on EN125. This footbridge was chosen based
on its location, in a region of high seismic load. In a circle of
8 km there are 9 very identical footbridges, which vary only in
the span length and disposition of the lateral access that can
be in form of stairs or ramps. These ways of communication
are very important for the region in a scenario of catastrophe
caused by a seismic event, especially because EN125 is the
main route for accessing the hospital and for evacuating the
population in case of tsunami.

In here we concentrate only on the comparison of
frequency values from in situ and from a simplified analytical
model through a dynamic linear analysis with SAP2000 [33].
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(a) (b)

Figure 15: (a) Vision of the CC Vasco da Gama (Calatrava) structure; and (b) analytical model.
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Figure 16: First vibration mode with 𝑓 = 0.84Hz with predominant vertical movement: (a) front view; (b) from above; (c) lateral view.
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Figure 17: RC footbridge in Faro: (a) front view; (b) cross-section with precast (I + slab + I); (c) central column (longitudinal view);
(d) column-beam connection (units in m).
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Figure 18: Modes of vibration: (a) 1st longitudinal; (b) 2nd tranversal; (c) 3rd vertical, central span.

The whole structure consists of prefabricated elements of
reinforced concrete.The deck is 1.63m wide and 45.3m long,
developed in a straight line, divided in 3 spans, Figure 17.The
cross section of deck is made of precast RC (I + slab + I) and
columns have an elongated shape almost constant in height,
with 0.82 × 0.5m2 at the base, but forming an enlargement
when approaching the deck support.

The connection between the beams and columns is
provided by two vertical bars of 20mm on top of these
columns, crossing the ends of each beam through holes made
during themolding of the pieces.The holes were filled during
the assembly phase, by a grout. A neoprene plaque was
interposed between the column and the beam to distribute
the contact stresses.

The access to the deck is made through four flights of
stairs in each side. The stairs are almost perpendicular to
the deck. Each set of stairs is formed by an independent
prefabricated part, supported only on the ends.The steel used
in reinforcing concrete was A500NR.Three types of concrete
were used in this footbridge: C20/25 for the foundations,
C35/45 in the prestressed beams, and C25/30 in the other
parts.The concrete cover is 2.5 cm in the columns and beams
and 5 cm in the foundations elements. Each span of the deck
is formed by two prestressed reinforced concrete I beams.

The deck was modulated as a single bar with cross section
as given in Figure 17(a). This option has been taken to ensure
the simplicity of the model, considering that the links are
used to guarantee that the deck behaves as only one piece. To
simplify themodel, the section of the columnswas considered
constant, with 0.82×0.5m2. The height of the columns in the
model is equal to reality.The stairs were modulated as a beam
element with 1.6×0.2m2 and the stairs columnswith a square
section of 0.3 × 0.6m2 throughout its height.

The connection between the columns and other elements
was made through steel bars. To simulate the contribution
of these bars in the absorption of flexural moments, without
giving excessive rigidity to allow for some flexibility, the
modelling was done considering that on top of the columns
there is an elastic support given by springs, which absorb
some of the existing moments. These springs also help to
simulate the effect of the slab, because the beams have no
continuity above the columns, but the slab does.

The analysis of the in situ records led to the following
values (Figure 18 and Table 11): the first mode is longitudinal,
with a frequency of 2.2Hz; the second mode is transversal,
with a frequency of 2.6Hz; the third mode is vertical in
the central span (22m), with a frequency of 3.6Hz; the
right lateral span presents a vertical vibration mode with
a frequency of 10.7Hz; the left lateral span has a vertical
vibration mode with a frequency of 13.9Hz. The damping
ratio is 1.0%.

From Table 11 we can see an excellent agreement between
the in situ and the analytical model for different spans. It is
worth noting that the presence of stairways influences the first
two mode shapes (L and T directions).

7. Conclusions and Final Remarks

We have been creating a database with geometrical and
mechanical properties of many footbridges built in Portugal
in the last two decades, representing the most common
structural types. These structures, with larger spans varying
from 11 to 110m long, tend to become light and slender
structures made of diverse materials and cross sections.
They may show a pronounced dynamic amplification with
the passage of pedestrians due to possible resonant effects.
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Table 11: Comparison of frequencies (Hz) between measurements in situ and the analytical model.

Mode direction Span 22m Span 12.5m Span 10.7m
In situ Analytical In situ Analytical In situ Analytical

Longitudinal 2.2 2.25 — — — —
Transversal 2.6 2.69 — — — —
Vertical 3.58 3.51 10.7 10.64 13.5 14.5

These large vibration amplitudes may be excited to a point of
discomfort or even structural failure, and so the phenomenon
deserves special attention [7].

We present a simple method to derive the main dynamic
properties of these structures based on experimental in situ
testing for loading caused by pedestrian crossing, allowing
the estimation of most important frequencies and damping
and amplification factors. This database, with 79 structures
organized in 5 typologies, allow the setting of correlations of
fundamental frequencies as a negative power function of span
lengths 𝐿 (𝐿−0.5 to 𝐿−1.5), for different typologies and access
situations. An analytical expression for the vertical direction,
the sole direction exhibiting a reasonable correlation with
span length, (2), based on simplified assumptions, is in
the lower bound of attenuation with length (𝐿−0.5). Usually,
frequency decreases faster with 𝐿: steel box-girders attenuate
with 𝐿−0.8, RC with 𝐿−1.4, and “other types” with 𝐿−0.8.

The experimental results are essential to calibrate analyt-
ical studies (presented for four cases) and detect sources of
errors, essentially due to the supporting connections and a
few simplifications in the model. The localization and type
of stairways influences drastically the frequencies and modal
shapes, especially in the transversal and the longitudinal
directions of the structures and, consequently, the vibration
levels.

Once the analytical model has been calibrated for the first
frequency, agreement of other higher frequencies between
measured and modelling was very good.

In relation to amplitudes, the results are not always
so good, especially for RC structures, due to difficulty in
setting proper pedestrian loading, so that the loading model
well represents the in situ testing. Only with an accurate
measurement of the input loading during the pedestrian
passage, as Caetano et al. 2011 [1] tried to do, it would
be possible to get better matching results between in situ
and analytical modelling. Due to the difficulty in measuring
accurately the input of a single pedestrian loading, modern
guidelines are increasingly relying on the use of stochastic
models instead of single pedestrian loading [2].

Despite these small details which need improvements
in both the experimental techniques (for measuring the
dynamic applied forces) and in the analytical modelling, we
can say that both the used in situ expedite technique and
linear modelling are quite robust for footbridges of simple
geometry. For complex geometries in situ multiple instru-
mental setup is required for modal identification, together
with a force-measurement setup provoked by the pedestrian
passage.

We believe that the information contained in this
database, involving a number of different structural types,

allows the extrapolation of results to similar footbridges in
other countries.

As a final result of practical importance, the measured
peak acceleration values under pedestrian loading for steel
structures are well above the limits defined in the interna-
tional recommendations, especially for the case of jogging.
This aspect confirms the idea, already stated in previous
studies [7], that the majority of the steel footbridges in
Portugal and in particular in the region of Lisbon suffer of
excessive amplitude of vibration.

For the RC structures the situation is reversed. The
measured peak acceleration values under pedestrian loading
are well contained within the limits of the international
recommendations, causing a better sensation of comfort and
structural safety.

Several topics should be developed in future work:

(i) develop standard experimental techniques for routine
testing of footbridges based on simple methods as
the one presented to obtain the transfer function
of these types of structures, making use of in situ
load/deflection input and frequency/damping output
estimations;

(ii) use more parameters of the collected data to reduce
dispersion on the correlations;

(iii) from the convolution of the results obtained with the
passage of a single person, obtain a simple analytical
formula to estimate peak amplitude motion as func-
tion of number of people and velocity of crossing.
Stochastic representation of pedestrian crossing can
be analyzed in future work if we use the response of
a footbridge produced by a single person at different
speeds as a “green function” to obtain the stochastic
formulation;

(iv) develop dissipation systems to damp out the large
amplitudes of vibration observed in steel and long
spanned structures, as suggested by Caetano et al.
[35];

(v) estimate seismic vulnerability functions for these
structures, as their collapse over main road access
lines may be critical in case of earthquake emergency.
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[11] S. Živanović, A. Pavic, and P. Reynolds, “Vibration serviceability
of footbridges under human-induced excitation: a literature
review,” Journal of Sound and Vibration, vol. 279, no. 1-2, pp. 1–
74, 2005.

[12] J. Fonseca, C. Pinto, and C. Azevedo, “About construction and
dynamic behavior of Carpinteira footbridge,” in International
Conference of Footbridges (Footbridge ’11), pp. 378–379,Wroclaw,
Poland, 2011.

[13] R. W. Clough and J. Penzien, Dynamic of Structures, McGraw-
Hill, New York, NY, USA, 1975.

[14] H. Bachmann, ““Lively” footbridges—a real challenge,”
Bautechnik, vol. 81, no. 4, pp. 227–236, 2004.

[15] J. C. Vinagre, Análise Dinâmica de Pontes para Peões [M.S.
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The vibration control is an important area in the dynamic of structures that seeks to reduce the amplitude of structural responses
in certain critical frequency ranges. Currently, the scientific development leads to the application of some actuators and sensors
technologically superior comparing to the same features available on the market. For developing these advanced sensors and
actuators, smart materials that can change their mechanical properties when subjected to certain thermomechanical loads can
be employed. In this context, Shape memory alloys (SMAs) may be used for developing dynamic vibration dampers which are
capable of acting on the system providing proper tuning of the excitation frequency and the natural frequency. This paper aims
to analyze the behavior of the stiffness and damping of a SMA helical coil spring actuator coupled to a mechanical system of one
degree of freedom (1 DOF) subjected to an unbalanced excitement force and a temperature control system. By analyzing the effect
of these parameters on the structural response and considering the concept of complex stiffness, it can be possible to predict the
system’s behavior within certain acceptable ranges of vibration, already in the design phase.

1. Introduction

In the current stage of scientific and technological devel-
opment, design of structures becomes increasingly com-
plete and comprehensive to meet the diverse performance
requirements. Among these requirements, we highlight the
need for increasingly lighter and resilient structures, dynamic
behavior to ensure stability and accuracy, and attenuation
of vibrations to ensure the structural integrity and better
comfort [1].

Structural systems are constantly susceptible to excita-
tions that can lead to mechanical vibrations.These vibrations
are in most cases undesirable, because they can endanger the
structural integrity of the system itself and, in some cases, the
safety of users.

Recently, shape memory alloys (SMA) appear as poten-
tially viable actuators for vibration control. The shape
memory effect, superelasticity, and changes of mechanical
properties with temperature allow the application of these
smart materials in various fields of engineering [2]. However,

the behavior of SMA is nonlinear, which makes its modeling
and numerical simulation more complex, since the changes
of parameters such as temperature and excitation frequency
should be considered. This behavior requires further study
to determine the intrinsic characteristics of SMA such as
complex stiffness, which considers the energy dissipation per
cycle and the frequency dependence that lead to variations of
the structural damping.

The natural frequency depends on the mass and stiffness
of a mechanical system and SMA has the capacity to alter the
elastic modulus. Then, employing these smart materials, it is
possible to change the stiffness of a mechanical system and
consequently change resonance regions. Some studies indi-
cate that this effect can attenuate the amplitude of vibrations
in a critical frequency range for making the transition for
resonance; it also allows changing the vibration modes of the
structure [3].

SMAs are naturally classified as metallic materials with
high damping capacity, consequence of a hysteretic behavior
related to phase transformations of the material [2, 3].
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The damping factor of the system also changes with the
change of stress or temperature of the SMA actuator. How-
ever, the influence of damping vibration levels and system
response, due to a change in the SMA behavior, needs to be
further investigated and understood [4]. In many cases, for
vibration attenuation, SMAs are used in the form of helical
coil springs [3, 5–10].

Very recently, Aguiar et al. [5] realized an experimental
investigation of vibration reduction using SMA springs. The
vibration analysis revealed that SMA elements introduce
complex behaviors to the studied system and that different
thermomechanical loadings are of concern showing themain
aspects of the SMA dynamical response. The results establish
that adaptability due to temperature variations is defined
by a competition between stiffness and hysteretic behavior
changes. In another recent work, Aguiar et al. [6, 7] stud-
ied specifically the modeling, simulation, and experimental
analysis of SMA helical springs. Basically, it is assumed
that a one-dimensional constitutive model to describe its
thermomechanical shear behavior and, afterwards, helical
springs are modeled by considering classical approach. Savi
et al. [8] investigated the nonlinear dynamics of an adaptive
tuned vibration absorber (ATVA) with a SMA element. The
influence of the hysteretic behavior due to stress-induced
phase transformation of the SMA is considered. The hys-
teretic behavior introduces complex characteristics to the
system dynamics but also changes the absorber response
allowing vibration reduction in different frequency ranges.

SMA springs were investigated by Rackza [9] on a struc-
ture of controllable-stiffness springs which might be utilized
in vibration reduction systems, for example, in driver seats.
Mirzaeifar et al. [10] studied analytically and numerically
the pseudoelastic response of SMA helical springs under
axial force. Analytical and numerical results are compared
and it is shown that the solution based on the SMA curved
bar torsion gives an accurate stress analysis in the cross
section of the helical SMA spring in addition to the global
load-deflection response. Toi et al. [11] proposed a finite
element formulation for the analysis of superelastic behaviors
of SMA helical spring considering the asymmetric tensile
and compressive behavior and the torsional deformation.
The developed program has applied to the superelastic, large
deformation analysis of NiTi helical springs under tensile
loading and unloading.

In this paper, the effects of stiffness and damping of a SMA
helical spring actuator on the dynamic response of amechan-
ical systemof one degree of freedom (1DOF) subjected to free
vibration andharmonic excitation fromanunbalancedmotor
were studied. The main objective is to introduce the concept
of complex stiffness in a mechanical system incorporating
SMA, not explored in the aforementioned works.

2. Model of Unbalanced Rotating
and Complex Stiffness

The studied mechanical system is excited harmonically
through a motor with unbalanced rotating. This condition
can be simplified and better understood from the model

x(t) m

md
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𝜔

Figure 1: Physical model of unbalanced rotating system with one
SMA coil spring (𝑘, 𝑐).

of rotating unbalanced machines, illustrated in Figure 1. In
this physical model, 𝑘 and 𝑐 characteristics are a function of
temperature, provided by a SMA helical coil spring.

The equation that governs the system defined in Figure 1
is given by [12]

𝑚 ̈𝑥 + 𝑐 ̇𝑥 + 𝑘𝑥 = 𝑚𝑑𝑒𝜔
2 sin𝜔𝑡, (1)

where 𝑚𝑑, 𝑒, and 𝜔 are, respectively, the unbalanced mass,
imposed eccentricity, and excitation frequency. Solving (1),
the frequency response for this condition is given by

𝑚𝑋

𝑚𝑑𝑒
=

𝑟
2

√(1 − 𝑟
2
)
2
+ (2𝜁𝑟)

2

, (2)

where 𝑟 = 𝜔/𝜔𝑛 is the frequency ratio and 𝜁 = 𝑐/𝑐𝑐 is the
damping factor of the system [12].

Considering Figure 1 and a harmonic motion of the type
𝑥 = 𝑋𝑒

𝑖𝜔𝑡, the force is given by the sequence of the following
equations:

𝐹 (𝑡) = 𝑘𝑥 + 𝑐 ̇𝑥, (3)

𝐹 (𝑡) = 𝑘𝑋𝑒
𝑖𝜔𝑡
+ 𝑖𝑐𝜔𝑋𝑒

𝑖𝜔𝑡
, (4)

𝐹 (𝑡) = (𝑘 + 𝑖𝜔𝑐) 𝑥. (5)

From (4), the concept of complex stiffness can be estab-
lished as follows:

𝑘 (1 + 𝑖
𝑐𝜔

𝑘
) ,

𝑘
∗
= 𝑘 (1 + 𝑖𝜂) .

(6)

Here 𝜂 is called the loss factor and 𝑘
∗ is defined as

complex stiffness of the SMA coil spring actuator.
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The imaginary part of the complex stiffness, 𝑖𝜂, corre-
sponds to the energy dissipated in the system, since the loss
factor can be written as defined in the following equation:

𝜂 =
𝑐𝜔

𝑘
. (7)

The material loss factor can be determined by the equiv-
alent viscous damping factor, 𝜁eq, which can be obtained by
the relation of the logarithmic decrement for slightly damped
systems:

𝛿 ≅ 2𝜋𝜁eq ≅ 𝜋𝜂, (8)

𝜁eq ≅
𝜂

2
. (9)

From (9), the relation between the damping factor 𝜁eq and
the loss factor 𝜂 is 𝜂 ≅ 2𝜁eq.

3. Thermomechanical Properties of
the SMA Actuator

3.1. Elastic Modulus and Loss Factor of the SMA Material.
For the fabrication of the SMA coil spring, a NiTi wire
with 2.02mm in diameter supplied by Memory-Metalle
(Germany) was employed. In order to eliminate some of the
strain hardening of the supplied material, the NiTi SMAwire
was annealed at 400∘C for 30 minutes and cooled at room
temperature.This heat treatment at a temperature lower than
650∘C ensures a high elastic response of the manufactured
NiTi spring, on the order of 40% of its undeformed length,
even in the martensitic state. After this heat treatment, two
specimens were removed to determine some thermomechan-
ical properties of the SMA material.

The first sample with 1.5mm in length and 0.0065 g was
used to determine the phase transformation temperatures of
the NiTi SMA wire by DSC (differential scanning calorime-
try). The second sample with 31.2mm in length and 0.663 g
was used for two tests. In the first test, the sample was studied
using a dynamic mechanical analyzer (DMA, model Q800,
TA Instruments) at three different temperatures (30∘C, 50∘C,
and 70∘C) corresponding to regions with different crystalline
phases (martensite, mixture, and austenite). These experi-
ments were carried out in a single cantilever beam mode
by applying a tip force with variable oscillating frequency
(8 to 150Hz) for a constant amplitude deflection of 5𝜇m.
The second experiment performed with the second sample
was realized to verify the influence of the frequency on the
stiffness (elastic modulus) and damping (Tan 𝛿) for a range
of temperatures starting from 25∘C to 100∘C, for four different
frequencies (1Hz, 5Hz, 10Hz, and 12Hz).

3.2. Mathematical Model for the Stiffness of the SMA Spring.
In this work, the simplified mathematical Ikuta model [13]
was adapted to describe the behavior of the theoretical
stiffness of the SMA spring as a function of temperature and
simulate the experimental results. The following equations

represent, respectively, the stiffness behavior of the SMA
spring during heating and cooling:

𝑘SMA−𝐴

= 𝑘min + ((𝑘max − 𝑘min) −
(𝑘max− 𝑘min)

1 + 𝑒
((6,2/(𝐴

𝐹
−𝐴
𝑆
))⋅(𝑇⋅((𝐴

𝐹
+𝐴
𝑆
)/2)))

) ,

(10)

𝑘SMA−𝑀

= 𝑘min + ((𝑘max − 𝑘min) −
(𝑘max− 𝑘min)

1+ 𝑒
((6,2/(𝑀

𝑆
−𝑀
𝐹
))⋅(𝑇⋅((𝑀

𝐹
+𝑀
𝑆
)/2)))

),

(11)

where

𝑘SMA−𝐴 is stiffness of SMA spring during heating;
𝑘SMA−𝑀 is stiffness of SMA spring during cooling;
𝑘min is minimum stiffness of SMA spring;
𝑘max is maximum stiffness of SMA spring;
𝑀𝑆 is martensite start temperature;
𝑀𝐹 is martensite final temperature;
𝐴𝑆 is austenite starts temperature;
𝐴𝐹 is austenite final temperature;
𝑇 is spring temperature.

3.3. Damping Factor of theMechanical System. Theequivalent
damping factor 𝜁eq was calculated from the free vibration
response of the mechanical system with the SMA spring
subject to an input impulse given by an impact hammer
(PCB Piezotronics; model 086C03). From this excitement
was possible to obtain the envelope curve of exponential
nature that involves the signal and characterizes the decay of
displacements with time. For this, the method of logarithmic
decrement was employed, calculating the ratio between two
chosen signal amplitudes.

Previous studies [14, 15] show that the damping factor
for SMA material is generally less than 0.1. In this case, the
equation for calculating the damping factor by the method of
logarithmic decrement can be simplified and used as defined
by the following:

𝜁 = −
1

2𝜋𝑛
ln(

𝐴𝑛

𝐴1

) , (12)

where 𝑛 is the number of cycles, 𝐴1 is the amplitude of the
first cycle, and 𝐴𝑛 is the amplitude of 𝑛 cycle.

3.4. Forced Vibration Tests. Several tests were performedwith
the mechanical system subjected to a harmonic excitation in
order to compare the response of the system when the SMA
spring is in the martensitic phase (25∘C) and in the austenitic
phase (70∘C).

The system was excited in frequency ranges correspond-
ing to the two resonance frequencies (martensite and austen-
ite phases). Analyzing the structural responses in the time
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Figure 3: Transformation temperatures of the NiTi SMA wire
obtained by DSC.

and frequency domains for these conditions, it was possible
to analyze the system behavior and to better understand
how variations of parameters of the SMA actuator affect the
dynamic response of this typical mechanical model.

Figure 2 illustrates two typical frequency responses of the
system with unbalanced rotating using physical parameters
of the test bench.The blue curve represents the response with
the SMA spring at 25∘C (martensite phase), while the red
curve represents the response with the SMA spring at 70∘C
(austenite phase). Two peaks corresponding to the natural
frequencies and the influence of the stiffness and damping of
the SMA spring on the dynamic behavior of the system can be
verified.Theheating process increases the stiffness of theNiTi
SMA spring, causing an increase in frequency and reducing
the damping (resulting in a peak of higher amplitude).

20 40 60 80 100 120 140
3.5

4

4.5

5

5.5

6

El
as

tic
 m

od
ul

us
 (P

a)

Frequency (Hz)

(T = 30∘C)
(T = 50∘C)

(T = 70∘C)

×1010

Figure 4: Elastic modulus as a function of frequency for the NiTi
SMA wire at three temperatures: 30∘C, 50∘C, and 70∘C.

4. Results and Discussion

4.1. Thermomechanical Characterization of the SMA Wire.
The phase transformation temperatures were determined
using a DSC calorimeter (TA Instruments; model Q20). The
experiment was performed with a heating and cooling rate
of 5∘C/min and a temperature range between 0∘C and 100∘C.
Figure 3 shows the characteristic DSC peaks for the NiTi
SMAwire employed tomanufacture the SMAspring actuator.

The phase transformation temperatures obtained were
𝑀𝑠 = 56.7

∘C (martensite start) and𝑀𝑓 = 24.9
∘C (martensite

finish) during cooling and 𝐴 𝑠 = 30.5
∘C (austenite start) and

𝐴𝑓 = 61.5
∘C (austenite finish) during heating. Comparing

the two temperatures of the DSC peaks, it can be verified that
this NiTi SMA wire presents a low thermal hysteresis, of the
order of Δ𝑇 = 8∘C.

In parallel, two analyses of the dynamic behavior of the
NiTi SMA wire were performed using a commercial DMA
analyzer (TA Instruments; model Q800) in order to verify the
influence of the excitation frequency and temperature on the
elastic modulus and loss factor of the material. The results of
theseDMA tests with variable frequency are shown in Figures
4 and 5.

The increase of temperature in Figure 4 changes signif-
icantly the elastic modulus, which showed values of about
36GPa (30∘C), 41 GPa (50∘C), and 55GPa (70∘C), taking as
reference the frequency of 80Hz. The behavior of elastic
modulus as a function of frequency showed small variations,
mainly for the martensitic (30∘C) and austenitic (70∘C) stable
states, with a tendency to stabilize above 100Hz.

The behavior of the loss factor was the inverse of the
elastic modulus as pointed out in Figure 5. As expected
[14], a reduction in the measured values with increasing
temperaturewas verified.Thedamping in the austenitic phase
(70∘C) is smaller than the values measured in the martensitic
phase (30∘C). A variation of the loss factor was observed as
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a function of frequency with a tendency to increase linearly
for frequencies higher than 100Hz.

Figures 6 and 7 show the characteristic curves for theNiTi
SMA wire obtained with the DMA analyzer. The behavior
of elastic modulus is not much affected by the frequency,
being more dependent on the temperature. For example,
in Figure 6 for martensitic state (30∘C) the elastic modulus
increases of about 3GPa between 1Hz and 12Hz. However, a
considerable increase is observed in the elasticmodulus for all
frequencies along the phase transformation during heating.
This increase of elastic modulus with temperature indicates a
corresponding increase in the stiffness of the SMA material,
resulting in less energy dissipation at high temperatures by
the structure.

Figure 7 shows the behavior of the loss factor as a function
of temperature and frequency. It is observed that the highest
peaks of loss factor appear during the phase transformation
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Figure 7: Behavior of the loss factor of the NiTi SMA wire with the
change of excitation frequency.

for the lowest frequency (1Hz). Higher excitation frequencies
tend to inhibit the Tan 𝛿 peaks, so that for frequencies higher
than 5Hz peak values decrease rapidly.

The variation of stiffness and damping observed in Fig-
ures 6 and 7 is related to the internalmovements ofmartensite
variants into the SMAmaterial, with lower stiffness and high
damping in the martensitic phase compared to austenitic
phase [14, 15].

4.2. Characterization of SMA Spring Stiffness. In order to
stabilize the phase transformation of the SMA spring man-
ufactured from the NiTi wire, a thermal cycling procedure
was performed for training the spring actuator, as shown in
Figure 8. In this procedure, 500 cycles of heating and cooling
were performed in order to stabilize the behavior of shape
memory effect of the SMA spring. In a training cycle, theNiTi
SMA spring was heated to 80∘C and then immediately cooled
to 3∘C, under a constant load (dead weight).

For determining the SMA spring stiffness during heating
and cooling, a universal testing machine (INSTRON 5582)
equipped with a controlled heating chamber was used.
For this one, the NiTi SMA spring was subjected to five
cycles of compression loading and unloading, with 10mm of
maximum deflection in a temperature range between 25∘C
and 70∘C in steps of 5∘C. For this imposed displacement the
NiTi SMA spring presents an elastic response in both phases,
martensite (25∘C) and austenite (70∘C), without presenting
residual deformation. Table 1 shows the experimental results
of stiffness and the theoretical stiffness obtained with the
adapted Ikuta models (11) and (12).

Figure 9 shows the stiffness behavior of the NiTi SMA
spring as a function of temperature. It can be verified that
the stiffness increased 1.37 times at the end of heating when
compared with the initial value. For temperatures higher
than 60∘C the stiffness tends to stabilize, due to the fact that
from this point the crystalline structure of the SMA spring
is fully austenitic. Similarly, stabilization of stiffness can be
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Table 1: Stiffness of the NiTi SMA spring actuator as a function of
temperature.

Temperature (∘C) Stiffness (N/m)
Heating Cooling

25 2280.3 2396.3
30 2337.1 2382.5
35 2388.6 2474.8
40 2502.6 2654.1
45 2701.6 2907.4
50 2897.2 3044.7
55 3053.8 3110.3
60 3083.1 3128.4
65 3117.4 3137.6
70 3134.5 3144.4

Table 2: Main parameters of the experimental test bench.

Parameter Value
Total mass (kg) 0.4998
Unbalanced mass (kg) 0.006
Eccentricity (m) 0.033
Spring material NiTi SMA
Number of active coils 7
Undeformed spring length (mm) 34
Spring wire diameter (mm) 2.02
Spring effective diameter (mm) 12

obtained at temperatures below 25∘Cwhen the SMAgets fully
martensitic.

Comparing Figures 6 and 9 a qualitative similar behavior
is observed between the pure elastic modulus of the NiTi
SMA and stiffness of the smart spring as a function of
temperature.

4.3. Test Bench: Specifications and Control System. The exper-
imental set-up and fuzzy control system applied in this study
was developed by Aquino [16] and subsequently used by
Holanda [17]. This mass-spring system with 1 DOF is excited
by an unbalanced motor assembled on an aluminum bar
attached to the SMA spring.Themass is driven by two vertical
rods assembled into a steel plate through two linear ball
bearings. The rotational speed of the electrical motor was
controlled with a frequency inverter that allows adjustment
of the excitation in a range between 0 and 40Hz, including
the two regions of resonances. Figure 10 shows the test bench
developed for the experimental analysis.

Table 2 shows the specifications of the test bench showed
in Figure 10. The experimental test bench is composed by
(1) SMA spring; (2) unbalanced motor; (3) minicooler; (4)
electrical heating system for SMA spring (Joule effect); (5)
accelerometer; (6) impact hammer; (7) LabVIEW Interface.

The block diagram for temperature control of the NiTi
SMA spring is shown in Figure 11.The controller aims to send
information that will allow the activation of SMA actuator
by changing its temperature. The heating of the SMA spring
is realized in order to change the stiffness and consequently
change the natural frequency causing the system to leave
the resonance condition, leading to vibration reduction. The
temperature control of the NiTi SMA spring is based on
a fuzzy controller implemented in the LabVIEW software.
The heating was done by Joule effect and the cooling was
done by forced convection. The developed controller was
not able to carry out a temperature sweep considering, for
example, a sinusoidal temperature change. In this case, the
user indicated the desired temperature and the controller
is in charge of taking the system to that temperature and
to keep it constant. Figure 12 shows the system actuation
for temperature control of the NiTi SMA spring. A good
performance of the temperature control can be observed,
both for heating and cooling, with temperature stabilization
of the SMA spring according to the reference temperature.

4.4. Free Vibration Response. Figures 13 and 14 show the ex-
ponential decay of the system with SMA spring in two
selected conditions: 25∘C and 70∘C, respectively.

The damping transfered to the system by the SMA
spring is a function of temperature. For 25∘C the damping
factor (𝜁eq) measured was 0.0303, while for SMA spring at
70∘C the obtained value was 0.0194. In the condition of
Figure 13 the damping of the SMA spring is higher, and
consequently the decay of the displacements is faster than
that found in Figure 14. For the stiffness test and using the
same temperature range, the results shown in Figure 15 were
obtained, with the values of the damping factor of the system
of Table 3.

By analyzing Figure 15, it can be observed that the damp-
ing peaks appear during the phase transformation, between
40∘Cand 45∘C.At these temperatures, themeasured damping
factors were 0.0327 and 0.0324, respectively. The minimum
damping was verified at the austenitic phase (70∘C), with the
value of 0.0194. In the martensitic phase, the damping factor
measured was 0.0303.

The qualitative behavior of the damping factor shown
in Figure 15 is similar to the one of Tan 𝛿 for the SMA
wire measured in the DMA, as pointed out in Figure 7.
The damping peak verified during phase transformation is
observed mainly due to the transient character of this region,
which is related to accommodation of austenite-martensite
variants during thermally induced transformation.

4.5. Vibration Response with Temperature Control in the
Resonance Condition. In order to verify the reduction in the
amplitude of resonance for the two conditions of SMA spring
(martensite and austenite phases), themechanical systemwas
excited in the natural frequency and then the temperature
control was activated, heating or cooling the SMA spring.

In the first test, the system was put in resonance with the
SMA spring at 25∘C (blue curve) and then heated to 70∘C
(red curve). Figure 15 shows the time response for that test



Shock and Vibration 7

(a) (b) (c)

Figure 8: Details of thermomechanical cycling for training the NiTi SMA spring. (a) Cooling (∼3∘C); (b) delay; (c) heating by electrical
current (∼80∘C).
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Figure 9: Theoretical and experimental stiffness of the NiTi SMA
spring as a function of temperature.

1

2

3

4

5

6

7

Figure 10: Experimental test bench: (1) SMA spring; (2) unbalanced
motor; (3)minicooler; (4) electrical heating system (Joule effect); (5)
accelerometer; (6) impact hammer; (7) LabVIEW Interface.

condition. In the blue range of Figure 16 themaximumampli-
tudewas 6mm.After heating, the system got out of resonance
with maximum amplitudes of 2.7mm, corresponding to 55%
of reduction in the displacement levels. These amplitudes are
lower than 10mm, which was the displacement imposed for
SMA spring in elastic regime during the thermomechanical
characterization of stiffness as a function of temperature
(Table 1, Figure 9).

In the second test, the system was put in resonance
with the SMA spring at 70∘C (red curve) and then cooled
to 25∘C (red curve). Figure 17 shows the time response
for that test condition. In the blue range of Figure 17 the
maximum amplitude was 12mm. After heating, the system
got out of resonance with maximum amplitudes of 5.7mm,
corresponding to 60%of reduction in the displacement levels.
Typically, the linear region of a superelastic NiTi spring
corresponds to about 40% of its undeformed length, as can be
seen in the work of Aguiar et al. [7]. Then, as the amplitude
of vibration did not exceed 35% of the undeformed spring
length, it is estimated that there is no energy dissipation in the
system due to a possible stress-induced phase transformation
in the SMA spring. Tomake this hysteretic dissipation occurs
it is necessary to achievemuch higher strain levels in the SMA
spring.

Figure 18 shows the vibration levels measured when the
system is put into resonance at three different temperatures.
With increasing temperature and variation of damping of
the system, the amplitudes change. The damping is higher
in the martensitic phase, showing a slight peak in the region
of phase transformation, and is minimal in the austenite
phase, as pointed out in Figure 7. These characteristics can
be noted when considering the amplitude of vibrations at
the resonance zones. Lower amplitudes are observed at
45∘C, temperature where the maximum damping occurs. At
70∘C, the amplitudes are higher than the ones measured
previously due to the lower damping of the SMAspring in this
temperature range (25∘C to 45∘C). These amplitude signals
were collected separately, placing the system in resonance for
each temperature examined.



8 Shock and Vibration

̈x(t)∗

∑

∑

+

+−

−

Tm

T

Temperature
sensor

Controller SMA System
̈x(t)

T∗

Figure 11: Representation of the temperature control system for the SMA spring actuator.
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Figure 12: Performance of the temperature control system for the
SMA spring.

Table 3: Experimental damping factor of the mechanical system as
a function of temperature.

Temperature (∘C) Damping factor 𝜁eq
Heating Cooling

25 0.03037 0.02976
30 0.03096 0.03091
35 0.03124 0.03158
40 0.03179 0.03277
45 0.03241 0.03054
50 0.02823 0.02669
55 0.02465 0.02293
60 0.02048 0.02069
65 0.02027 0.02047
70 0.01947 0.02013

Table 4 allows verification of the validity of the relation-
ship between the loss factor and the damping factor, 𝜂 =

2𝜁eq. As this relationship is valid only when the system is
in resonance, the loss factor (14) of the NiTi SMA spring
was calculated from the simplification of (13), considering
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Figure 13: Impulse response of the mechanical system at 25∘C.

Table 4: Relationship between damping factor and loss factor for
the resonance condition.

Temperature (∘C) 2 ∗ damping factor (2𝜁eq) Loss factor 𝜂
25 0.06074 0.07204
30 0.06192 0.07265
35 0.06248 0.07529
40 0.06358 0.07643
45 0.06482 0.07635
50 0.05646 0.05988
55 0.0493 0.05043
60 0.04096 0.04268
65 0.04054 0.03810
70 0.03894 0.03385

the ratio of frequency equal to 1 (in resonance condition).
Consider

𝑋 =
𝐹0/𝑘

√(1 − 𝑟
2
)
2
+ (2𝜁𝑟)

2

, (13)

𝜂 =
𝐹0/𝑘

𝑋
. (14)
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Figure 14: Impulse response of the mechanical system at 70∘C.
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Figure 17: Time response of themechanical system in the resonance
conditionwith temperature variation and SMA spring initially in the
austenitic phase (red curve; 𝑓𝑛 = 12.70Hz).

Figure 19 represents graphically the values of damping
factor and loss factor of Table 4. Therefore, it is possible
to validate the relationship between the loss factor and the
damping factor defined by (10). In this case, errors smaller
than 12% were verified.

5. Conclusions

This paper investigated the thermomechanical characteriza-
tion of a shape memory alloy coil spring actuator, as well as
its application as vibration attenuator in amass-spring system
with single degree of freedom.Themain conclusions that can
be outlined from the obtained results are the following:

(i) The elastic modulus of the NiTi SMA wire increases
slightly with frequency. Furthermore, the modulus
increases significantly during phase transformation,
verifying the influence of a temperature increasing.
At about of 60% of the elastic modulus increasing
was observed when comparing the values of the
martensitic phase with the austenitic phase.

(ii) By the DMA analysis it was observed that increasing
the excitation frequency of the NiTi SMA wire leads
to a decay of the damping capacity (Tan 𝛿), much due
to decreased mobility in the crystalline structure.

(iii) The experimental SMA spring stiffness showed good
agreementwith the behavior estimated by the theoret-
icalmodel proposed by Ikuta et al. [13].The stiffness of
the SMA spring at the austenitic phase (hot) became
1.37 times higher than in the martensitic phase (cool).

(iv) The damping factor of the system measured experi-
mentally shows a maximum value at the martensitic
region (cool) and a minimum at the austenitic phase
(hot). The behavior of the damping is the opposite of
the stiffness and each of these parameters interferes
differently in the dynamic response of themechanical
system.

(v) The system showed distinct dynamic responses in
the different temperatures studied. With the SMA
spring at 25∘C the natural frequency of the systemwas
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Figure 18: Time response of the mechanical system in resonance for the SMA spring at three temperatures.
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Figure 19: Loss factor and damping factor of the mechanical system
as a function of temperature.

10.8Hz with maximum amplitudes levels of 6mm.
At this temperature the SMA spring presents smaller
stiffness and higher damping when compared with
the properties of the SMA spring at 70∘C. In this last
condition the resonance frequency shifted to 12.7Hz
and the maximum amplitude of displacement peaks
reached 12mm.

(vi) Analyzing the system responses in the time and
frequency domains was possible to prove the validity
of the relationship between the damping factor 2𝜁eq
and the loss factor 𝜂. There is a good agreement
between the theoretical formulation and experimen-
tal procedure employed.
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The aim of this paper is to apply both time- and frequency-domain-based approaches on real-life civil engineering structures
and to assess their capability for damage detection. The methodology is based on Principal Component Analysis of the Hankel
matrix built from output-only measurements and of Frequency Response Functions. Damage detection is performed using the
concept of subspace angles between a current (possibly damaged state) and a reference (undamaged) state.The first structure is the
Champangshiehl Bridge located in Luxembourg. Several damage levels were intentionally created by cutting a growing number of
prestressed tendons and vibration data were acquired by theUniversity of Luxembourg for each damaged state.The second example
consists in reinforced and prestressed concrete panels. Successive damages were introduced in the panels by loading heavy weights
and by cutting steel wires. The illustrations show different consequences in damage identification by the considered techniques.

1. Introduction

Modal identification and damage detection methods using
output-only measurements are very attractive in the field of
structural health monitoring (SHM) when the ambient exci-
tation is unknown (e.g., in civil engineering structures sub-
mitted to wind or traffic excitation). A review of vibration-
based health monitoring methods can be found in [1, 2].

For the purpose ofmodal analysis, time-domainmethods
such as the stochastic subspace identification (SSI) method
are currently applied. For damage detection, methods such
as Principal Component Analysis (PCA) and Second-Order
Blind Identification (SOBI) were also recently developed.
The robustness of these methods was improved by making
use of the Hankel matrix instead of the observation matrix
leading to the following variant approaches: Enhanced PCA,
Null Subspace Analysis (NSA), or Enhanced SOBI. Their
efficiency has been demonstrated in earlier studies mainly
on numerical examples and laboratory experiments [3, 4].
They were also tested successfully on industrial examples to
perform machine condition monitoring using a reduced set
of sensors [5].

The aim of this paper is to present some applications of a
PCA-based damage detection technique to civil engineering
structures.The first structure consists in the Champangshiehl
Bridgewhich is a two-span concrete box girder bridge located
in Luxembourg. Next, precast reinforced and prestressed
concrete slabs are considered. A sensitivity analysis for PCA
in the frequency domain is used for the purpose of damage
localization.

2. Dynamic Feature Extraction Using
Principal Component Analysis

Let us consider a dynamical system characterized by a set of
vibration measurements collected in the observation matrix
X:

X = [x1 x2 ⋅ ⋅ ⋅ x𝑘 ⋅ ⋅ ⋅ x𝑁] , x𝑘 ∈ R𝑚, (1)

where x𝑘 is the output vector at time step 𝑘,𝑚 is the number
of output sensors, and 𝑁 is the number of time samples.
Principal Component Analysis (PCA) aims to reduce the
dimensionality of the observed data while preserving most of
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2 Shock and Vibration

information contained in the data set [6]. This is realized by
finding 𝑝 principal axes, which allow a data projection onto
the 𝑝-dimensional subspace so that themean square distance
between the original points and corresponding projection is
minimal. The dimension 𝑝 corresponding to the number of
principal components defines the rank of matrix X and is
directly related to the order of the system. In practice, PCA
is often performed by singular value decomposition (SVD)
of matrix; that is,

X = UΣVT
, (2)

where U and V are orthonormal matrices, the columns of U
defining the principal components (PCs). The order 𝑝 of the
system is determined by selecting the first 𝑝 nonzero singular
values in Σ which have a significant magnitude (“energy”) as
described in [7].

The null subspace (NSA) and enhanced-PCA method
(EPCA) proposed in [3, 4], respectively, are variant methods
of the PCA method obtained by exploiting Hankel matrices
of the dynamical system [8]. The data-driven block Hankel
matrix is defined in (3), where 2𝑖 is a user-defined number
of row blocks, each block contains 𝑚 rows (number of
measurement sensors), and 𝑗 is the number of columns
(practically 𝑗 = 𝑁 − 2𝑖 + 1). The Hankel matrixH1,2𝑖 consists
of 2𝑖𝑚 rows and is split into two equal parts of 𝑖 block rows,
which represent past and future data, respectively. Compared
to the observation matrix X, the Hankel matrix is built
using time-lagged vibration signals and not instantaneous
representations of responses.This enables taking into account
time correlations between measurements when current data
depend on past data.Therefore, the objective pursued here in
using blockHankelmatrices rather than observationmatrices
is to improve the sensitivity of the detection method:

H1,2𝑖 =

[
[
[
[
[
[
[
[
[
[
[

[

x1 x2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ x𝑗
x2 x3 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ x𝑗+1
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

x𝑖 x𝑖+1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ x𝑖+𝑗−1
x𝑖+1 x𝑖+2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ x𝑖+𝑗
x𝑖+2 x𝑖+3 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ x𝑖+𝑗+1
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

x2𝑖 x2𝑖+1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ x2𝑖+𝑗−1

]
]
]
]
]
]
]
]
]
]
]

]

≡ [

H𝑝
H𝑓

] ≡
“past”
“future”

,

(3)

where the subscripts of H1,2𝑖 denote the subscript of the first
and last element of the first column in the block Hankel
matrix.

3. Damage Detection Based on
the Concept of Subspace Angle

The principal components contained in matrixU span a sub-
space, which characterizes the dynamic state of the system.
Without any damage or variation of environmental condi-
tions, the characteristic subspaceU remains unchanged. Any
change in the dynamic behaviour caused by a modification
of the system state modifies consequently its characteristic
subspace. This change may be estimated using the definition

𝜃
Reference

Current

Φ1,i

Φ1,0

Φ2,0

Φ2,i

Figure 1: Angle 𝜃 formed by active subspaces according to the
reference and current states, due to a dynamic change.

of subspace angles [9]. As illustrated by a two-dimensional
case in Figure 1, the concept of subspace angle can be seen
as a tool to quantify existing spatial coherence between two
data sets resulting from observations of a vibration system.
In the figure, an active subspace is built from two principal
components (column vectors) of matrix U.

4. Damage Detection in
the Champangshiehl Bridge

4.1. Description of the Bridge. The Champangshiehl Bridge
shown in Figure 2 is a two-span concrete box girder bridge
built in 1966 and located in the centre of Luxembourg. The
bridge has a total length of 102m divided into two spans of
37m and 65m, respectively. It is prestressed by 112 steel wires
as illustrated in Figure 2(b). Before its complete destruction,
the bridge was monitored and a series of damages were
artificially introduced as summarized in Table 1. The four
damage cases considered are illustrated in Figures 3(a)–3(d).

The measurement setup considered in the present work
is given in Figure 4. Ten sensors were located on each side
A and B of the deck (the distance between each sensor is
about 10m). Vibration monitoring under impact excitation
was performed on the healthy structure and at each damage
state. More detailed descriptions of the bridge can be found
in [10].

4.2. Analysis Results. The bridge may be analyzed through a
well establishedmodal identificationmethod proposed in [11]
which relies on the use of stochastic subspace identification
(SSI). Two first eigenfrequencies obtained for the four dam-
age cases (D1–D4) are compared to the eigenfrequencies of
the healthy structure as reported in Table 2.

Table 2 shows that the decrease of the eigenfrequencies
is proportional to the damage level for damage cases D1,
D3, and D4. Only damage case D2 exhibits a different
behaviour as the first eigenfrequency increases by an amount
of 1.6%with respect to the healthy case. Moreover, the second
eigenfrequency is affected by the larger decrease (5.42%) of all
the damage states. This is in good agreement with an earlier
analysis reported in [12].

The application of the concept of subspace angle on the
Champangshiehl Bridge data allows detecting all the damage
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Figure 2: The Champangshiehl Bridge.
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Figure 3: Damage scenarios.

Table 1: Description of the damage scenarios according to the cutting sections shown in Figure 2.

State Damage
Percentage cutting (100% equals all tendons in the defined section cut)

0.45 L Over the pylon
#0 Undamaged state

#1 Cutting straight lined tendons in the lower part, at
0.45 L (20 tendons) 33.7% 0%

#2 #1 + cutting 8 straight lined tendons in the upper part,
over the pylon 33.7% 12.6%

#3 #2 + cutting external tendons (56 wires) 46.1% 24.2%

#4 #3 + cutting 16 straight lined tendons in the upper part
and 8 parabolic tendons 46.1% 62.12%
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Table 2: Change in the eigenfrequencies (identified by SSI).

𝑓1 𝑓2

Value (Hz) Δ𝑓1 (%) Value (Hz) Δ𝑓2 (%)
Healthy 1.92 5.54
D1 1.87 −2.6 5.45 −1.62
D2 1.95 1.6 5.24 −5.42
D3 1.82 −5.21 5.39 −2.71
D4 1.75 −8.85 5.3 −4.33

A1 A2 A4A3 A5 A6 A7 A8 A9 A10
B1

B2 B3 B4 B5 B6 B7 B8 B9 B10

L = 65.5m 37.5m
103m

12
.5

m
Excitation position

Figure 4: Location of the sensors on the bridge deck.
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Figure 5: Damage detection results using EPCA.

cases (D1–D4) using the single first principal component
(PC) of the Hankel matrix. The detection remains good and
even more evident when 2, 3, and 4 PCs are used.

On the other hand, the use of more PCs (higher than
4) deteriorates the quality of the distinction between the
damaged and the healthy states. Indeed, the highest PCs
(associated with small singular values, that is, low energy)
come from noise present in the data and are not dynamic
features of the system. As an example, the detection results
obtained on the basis of 3 PCs are shown in Figure 5. In this
figure, a total of 20 tests were considered: eight tests on the
healthy structure (H) and twelve tests corresponding to the
four levels of damages D1–D4. It can be observed that all the
damage cases are well detected and that damage cases D2
present the largest damage indexes.

5. Damage Detection on Precast Panels

5.1. Description of the Panels. The two investigated panels are
manufactured by the Luxembourg company ECHOLUX and
both are of the same type (one prestressed concrete (PrC), one
special fabricated nonprestressed, reinforced concrete (RC)
for testing purposes only).They are made of concrete C50/60

with an elastic modulus of 42700N/mm2 and a measured
compressive strength of 58.3N/mm2 (quality control of man-
ufacturer). The quality of the reinforcement is St 1470/1670
and the corresponding elastic modulus 205000N/mm2. In
the upper section of the panel, there are 4 wires with a
diameter of 5mm and in the lower Section 12 wires with a
diameter of 7mm. Before testing, the concrete at the bottom
side in the middle of the slab along axis C (Figure 6(b))
was removed, as shown in Figure 6(a), to give access to the
reinforcement for the later procedures of cutting tendons.

Both static and dynamic tests were performed on the
slabs to compare their behavior in each condition [13]. The
dynamic responses were measured using impact testing. The
sample rate of the data acquisition is set to 200Hz; signals
were recorded during 8 seconds after the introduction of
impact. The measurements are set with a quite dense grid
(Δ = 14.55 cm, Figure 7) for the sake of studying damage
localization later. There are 45 impact points at each side of
the slabs and three accelerometers (Ref. 1–Ref. 3 in Figure 7)
are used to capture dynamic responses. So, in each condition,
we have 3 sets of data containing 90 signals.

Damages were introduced by static mass loading
(Figure 6(b)), cutting of steel wires and are resumed in
Table 3.

5.2. Analysis of the Results. Relating to frequency, damages
show influence principally on the first component. Table 5
presents the first eigenfrequency shift, identified by the peak
picking and SSI methods, respectively.

The results obtained in Table 5 for the RC slab show a
good agreement between the peak picking and SSI methods.
It shows a clear decrease of frequency values following the
increasing levels of damage. However, for the PrC slab,
the eigenfrequencies vary very slightly between different
conditions; only the intact state (#0) and the state before the
failure (#3∗) are clearly distinct. The values identified by SSI
cannot classify levels #0 to #2∗. This is consistent with the
observations and cracking described in Table 4: no change is
noticed between state #0 to #1∗. It reveals that, in comparison
with the RC slab, apparent damage occurs very late in the
PrC slab; the crack formation and hence the deformation
are negligible until failure, which makes the detection more
difficult.

Before the implementation of the static and dynamic tests,
cracking loads were calculated for each structure. For the
RC slab, the cracking load is expected for a load of two
steel weights (𝐺1 and 𝐺2 in Figure 6(b)) without cutting of



Shock and Vibration 5

∅ 7mm
1 2 3 4 5 6 7 8 9 10 11 12

1.20m

Steel reinforcement

0.
15

m

∅ 5mm

(a) Cross section of the panels

5.20m
6.40m

A C B

G1 = 8250N

0.82m 0.98m 0.80m 0.80m 0.98m 0.82m

G3 = 8417N
G4 = 8358N G2 = 8299N

Steel weight

Artificial damage
Slab

(b) Schema of loading and location of cracks (point C)

Figure 6: Panel structure and experiment schema.

Table 3: Damage scenarios.

Number Damage scenario Cutting percentage Remark
#0 Intact state-no damage — Later we consider states

#0, #0∗, #1∗, #2∗, #3∗.
∗denotes a state after
loading and then
removing of 4 heavy
weights from the slab
(shown in Figure 6(b))

#1 Cutting of 2 tendons (numbers 6 and 7-refer to
Figure 6(a)) 16.7%

#2 Cutting of 4 tendons (numbers 6, 7, 2, and 11) 33.3%

#3 Cutting of 6 tendons (numbers 6, 7, 2, 11, 4, and
9) 50%

#4 Cutting of 8 tendons (numbers 6, 7, 2, 11, 4, 9, 3,
and 10) 66.7%

Hammer impact test

Excitation
Measurement

201

101

245

145Ref 1 Ref 2 Ref 3

0.60m0.60m 2.60m2.60m
A BCΔ = 14.55 cm

6.40m

Figure 7: Measurement setup: impact point (101–145 and 201–245)
and accelerometer positions (Ref. 1–Ref. 3).

any wires. Contrarily, the cracking load for the PrC slab is
expected for an additional load of four steel weights (𝐺1, 𝐺2,
𝐺3, and 𝐺4) and cutting of 6 to 7 wires.

As presented in Figure 8, EPCA detects dynamic change
in the RC slab from the loading of 2masses, what corresponds
already to the cracking load, while visible cracks are noticed
only after the loading of 4 masses. Furthermore, the results
distinguish clearly the tests before and after cutting tendons:
larger subspace angles are obtained for the last cases. All
signals processed here were measured after a procedure of
charging then removing masses. Each condition is repre-
sented by 3 sets of measurement; one set of measurement in
the intact state is provided for reference data.

For the PrC slab, it is theoretically proven that the
cracking load can be reached much later with respect to the
RC slab. Only a hairline crack occurs after the loading of
4 masses in addition to the cutting of 4 tendons (#2∗). In
this circumstance, for a more precise comparison between
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Figure 8: EPCA detection for the RC slab (always unloaded state).

different conditions in the PrC slab, we examine only the
correlation of states after a procedure of loading then remov-
ing the 4 masses. All data refer to the intact state #0∗ after
removing the masses. As presented in Figure 9, the EPCA
method is able to detect well the damages caused in the slab.
As in the visible observations, subspace angles do not reveal
much difference between damages #1∗ to #3∗.

5.3. Localization of Damage. In this paper, damage local-
ization in beam-like structures is based on the use of
sensitivity analysis of measurements. A review on modal
updating methods including the sensitivity of both frequen-
cies and mode-shapes is given in [14]. Natural frequency
sensitivity has been used extensively for the purpose of
damage localization. However, most of the methods based
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Table 4: Description of damages.

Number Reinforced concrete (RC) slab Prestressed concrete (PrC) slab
#0 No damage No damage
#0∗ Appearance of a decisive crack pattern, large creep No crack observed
#1∗ No further cracks, current cracks grow and also creep No crack observed, no considerable deformation
#2∗ As above Appearance of a hairline crack, minimal deformation
#3∗ As above As above
#4∗ Collapse Collapse

Table 5: The shift of the first eigenfrequency (Hz) from the intact state until before the collapse (always unloaded state).

RC slab PrC slab
State #0 #0∗ #1∗ #2∗ #3∗ #0 #0∗ #1∗ #2∗ #3∗

𝑓 by peak picking 11 9.18 8.07 7.85 7.69 11.75 11.70 11.65 11.65 11.55
𝑓 by SSI 11 9.20 8.00 7.70 7.60 11.73 11.65 11.61 11.56 11.33

EPCA detection

Tests
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Figure 9: EPCA detection for the PrC slab (always unloaded state).

on frequency sensitivity with respect to damage variables
require an accurate analytical model. In [15], an extension of
the frequency sensitivity approach is proposed to eliminate
this requirement. However, an optimization procedure is still
needed to estimate the unknown systemmatrices through an
identified model using input-output measurement data.

Natural frequencies are known to be very efficient in
characterizing changes in dynamical systems. Mode-shapes
are considered efficient to recognize spatial changes, since
they condense most of the deformation database of the
structure. In the present work, the sensitivity of mode-shapes
is considered. However, the construction of an analytical
model is not necessary for the localization procedure.

5.3.1. Index for Localization. In the previous sections, the SSI
and EPCAmethods were used in the time-domain for modal
identification and damage detection. Damage may be located
based on the estimation of flexibility from the identified
mode-shapes as presented in [10]. In this section, Principal
Component Analysis (PCA) is used for damage localization
based on a sensitivity analysis in the frequency-domain.
The technique is described in earlier works [4, 16, 17] and is
summarized here briefly.

Let us consider the Frequency Response Functions
(FRFs)H𝑠(𝜔) for a single input at location 𝑠:

H𝑠 (𝜔) = [h (𝜔1) h (𝜔2) ⋅ ⋅ ⋅ h (𝜔𝑁)] , (4)
where vector h(𝜔𝑘) is of dimension 𝑚 (the number of
measured coordinates) and 𝑁 is the number of frequency
lines.The rows of H𝑠 represent the responses at themeasured
degrees of freedom (DOFs), while the columns are “snap-
shots” of the FRFs at different frequencies. We will assume
that the dynamical system matrices depend on a vector of
parameters p.This vector of parametersmay consist of system
parameters or state variables. We can assess its principal
components through Singular Value Decomposition (SVD)
as represented in (2). AsH𝑠 belongs to the frequency-domain,
the left singular vectors in U give spatial information, the
right singular vectors in V represent modulation functions
depending on frequency, and the diagonal matrix of singular
values Σ contains scaling parameters of descending order
𝜎1 > 𝜎2 > ⋅ ⋅ ⋅ > 𝜎𝑚. In other words, the SVD of H𝑠 separates
information depending on space and frequency.

From (2), a sensitivity analysis can be performed by
taking the derivative of the observation matrix H𝑠 with
respect to p:

𝜕H𝑠

𝜕p
=
𝜕U
𝜕p
ΣVT

+ U𝜕Σ

𝜕p
VT

+ UΣ𝜕V
T

𝜕p
. (5)

Through this equation, the sensitivity of the system dynamic
response shows its dependence on the sensitivity of each
SVD term. Junkins and Kim [18] developed a method to
compute the partial derivatives of SVD factors. Here, for the
sake of localization, we are more particularly interested in
spatial information contained in the left singular vectorU; its
sensitivity with respect to a parameter 𝑝𝑘 is simply given by
the following equation:

𝜕U𝑖
𝜕𝑝𝑘

=

𝑚

∑

𝑗=1

𝛼
𝑘

𝑗𝑖
U𝑗 with

𝛼
𝑘

𝑗𝑖
=

1

𝜎
2
𝑖
− 𝜎
2
𝑗

[𝜎𝑖 (U
T
𝑗

𝜕H𝑠

𝜕𝑝𝑘

V𝑖) + 𝜎𝑗(U
T
𝑖

𝜕H𝑠

𝜕𝑝𝑘

V𝑗)
T
] .

(6)
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Figure 10: Comparison of mode-shapes obtained by SSI and the sensitivity analysis (×: position of support).

It is shown in [18] that the diagonal coefficients 𝛼𝑘
𝑖𝑖
keep only

their imaginary part (their real parts are empty).
So, the sensitivity of the 𝑖th principal component can

be computed through coefficients 𝛼𝑘
𝑗𝑖
which depend on an

unknown 𝜕H𝑠/𝜕𝑝𝑘. It is proven in [16] that when the system
matrices are symmetric, if parameter of interest is some
coefficient 𝑘𝑒 of the stiffness matrix, the sensitivity of the FRF
matrix may be simply determined by the following formula:

𝜕H𝑠

𝜕𝑝𝑘

= −H𝑘
𝑒

⋅H𝑘
𝑒
,𝑠, (7)

whereH𝑘
𝑒

is just the row vector corresponding to coefficient
𝑘𝑒 in the FRF matrix in (4) and 𝐻𝑘

𝑒
,𝑠 is the 𝑠 element of this

vector.
Once 𝜕H𝑠/𝜕𝑝𝑘 has been computed, the sensitivity of

the left singular vectors is a good candidate for resolving
localization problems of linear-form structures, for example,
chain-like or beam-like structures. In eachworking condition
of the system, we can compute the sensitivity 𝜕U𝑖/𝜕𝑝𝑘. The

reference state is denoted by 𝜕U𝑖𝑅/𝜕𝑝𝑘, and the deviation of
the current condition may be assessed as follows:

Δ
𝜕U𝑖
𝜕𝑝𝑘

=
𝜕U𝑖
𝜕𝑝𝑘

−
𝜕U𝑖𝑅

𝜕𝑝𝑘

. (8)

The last vector allows themaximization of useful information
for damage localization.

5.3.2. Application on the Precast Panels. First, let us note
that the sensitivity analysis of the FRF data allows extracting
structural mode-shapes thanks to the principal component
vectors contained in matrix U. For the sake of conciseness,
only the signals coming from one slab side are used here
(from points 101 to 145 in Figure 7). Figure 10 compares
the mode-shapes identified through SSI and the sensitivity
analysis, respectively. It clearly shows that the mode-shapes
obtained by the sensitivity analysis are smoother than by
SSI. The SSI modes show larger variations at points of high
amplitude.

As stated before, damage produces a crack pattern in
the middle of the slab. So it is expected that the damage
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Figure 11: Damage localization in the RC slab for damage #2∗.

localization procedure will point out damage around this
zone, that is, along axis C passing through point 23 (see
Figure 7) which marks the middle of the slab.

Let us remind you that in PCA, a large number of data
are one of the requirements so that a principal component in
U converges to a modal vector; so a frequency range should
be chosen large enough for a sufficient observation of data in
H𝑠(𝜔). For the RC slab, the frequency range of [4Hz–26Hz]
corresponding to mode 1 is first selected to eliminate low-
frequency noise and higher frequency modes.

The results for |Δ(𝜕U1/𝜕𝑝𝑘)| shown in Figure 11 are
obtained from the set of measurement number 3. As the
sensor was located at point 38 for this set of measurement,
parameter 𝑝𝑘 is chosen to correspond to 𝑘38 according
to the 38th element of the “experimental” stiffness matrix.
The “undamaged” vector of 𝜕U1/𝜕𝑝𝑘 is extracted from
state #0 which is considered as reference. The diagrams of
|Δ(𝜕U1/𝜕𝑝𝑘)| in Figure 11 show for both modes 1 and 2 that
the highest peaks are located close to point 23 (axe C) where
the cracks gather. To take into account higher frequency
component (mode 2), the frequency range of [4Hz–50Hz] is
considered and the results are given in Figure 11(b). It should
be noticed that the first principal component representsmode
2 of the structure, as shown in Figure 10(b). Mode 2 which is
more dominant thanmode 1 is alsomore sensitive to damage.
If only mode 1 is used, damages are only detected in cases
#2∗ and #3∗ but they are detected in all cases #0∗–#3∗ when
mode 2 is used. For the sake of conciseness, only the results
for damage #2∗ are presented here as an example.

In the case of PrC slab, damages are detected much later
and less apparent than in the RC slab, just before its collapse.
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Figure 12: Damage localization in the PrC slab for damage #2∗,
based on mode 2.

It is confirmed by very small changes in frequencies under
different conditions.

The localization procedure does not give any interesting
outcome for the PrC slab when only mode 1 is considered.
However, as in the RC slab, the use of mode 2 also allows
a better localization. Damages #3∗ and #2∗ can be similarly
localized as shown in Figure 12. The peak does not arise
exactly at point 23 (along axis C) but in the neighboring area.
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6. Conclusion

Several variants of Principal Component Analysis have been
used in this study for detection and localization of damage.
The advantage of PCA over classical modal identification
methods relies on its easiness of use.The first results obtained
on the Champangshiehl bridge are very encouraging. Fur-
thermore, damage localization and the influence of environ-
mental conditions on the diagnosis will be considered. The
examples of the precast panels showed that the damages were
better distinguished on the basis of the first eigenfrequency
(especially for the RC slab) while they were localized in a
more effective manner using the second mode-shape.
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The vibro-acoustic modulation (VAM) technique is probably themost widely used nonlinearmethod for crack detection.TheVAM
method is based on the effect of modulation of high-frequency acoustic waves by a low-frequency vibration. The intensity of the
modulation is related to the severity of the damage and has been used so far as a damage index. The damage index simply based
on the amplitude of the first side bands in the spectral domain often leads to controversial results about the severity of the damage.
In this work, the nonlinear characteristics of the vibro-modulation were systematically investigated by employing time-frequency
analysis based on the Zhao-Atlas-Marks (ZAM) distribution. The results of the analysis show that the amplitude of the sideband
components is modulated by the low frequency vibration and the modulation amplitude depends on the size of the crack. Based
on the obtained results, a new damage index was defined in relation to the strength of the modulation. The new damage index is
more sensitive and robust and correlates better with crack size compared to the index based on the amplitude of the sidebands.

1. Introduction

Structures with inhomogeneities or defects exhibit strong
nonlinear vibrational and acoustical effects. In particular,
strong nonlinear effects were observed in structures with
cracks. These effects include the generation of higher har-
monics and intermodulation of a high-frequency acoustic
wave by a low-frequency vibration [1] and provide the foun-
dation for developing different techniques for nondestructive
testing.

The vibroacoustic modulation (VAM) method is based
on the fact that a high-frequency ultrasound probing wave
propagating in a structure is modulated by a low-frequency
vibration. The modulation is generated by the nonlinear
interaction of waves caused by the presence of the crack. The
mechanisms, however, behind these effects are still poorly
understood [2–4]. The phenomenon of VAM is usually
measured in the frequency domain and it is manifested as
sidebands around the carrier peak of the ultrasound wave at
frequencies equal to the sum and difference of the excitation

frequencies and their integer multiples. Modulation effects
have been observed in several applications. Ekimov et al. [5]
employed VAM of high-frequency torsional waves for crack
detection in a rod. Zaitsev et al. [6] presented applications
of nonlinear modulation for crack detection in structures
and discussed possible sources of nonlinearity in damaged
structures. Donskoy and Sutin [7] used VAM to investigate
the existence of cracks, delaminations, or poor quality bond-
ing. Further application of VAM techniques can be found in
Zagrai et al. [8] who studied crack detection in aluminum
plates. Duffour et al. [9] investigated the sensitivity of VAM
technique and compared the conventional damping test with
an impact-based vibroacoustic modulation. The majority of
the existing studies are related to the detection of damage in
metallic structures. More recently, studies of the application
of VAM techniques to composite structures [10, 11] and chiral
sandwich panels [12] have been reported.

When VAM is applied for damage detection, damage
indices are defined relating the size of the damage to
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the intensity of modulation. These indices rely on the ampli-
tude of the carrier frequency at the sidebands. Despite the
successful application of VAM in various damage problems,
it appears that the damage indices in the frequency domain
used so far are not accurate and in many cases provide
unreliable results [13].

The primary aim of the present work is to investigate
vibroacoustic modulation in the time-frequency domain by
employing time-frequency analysis based on the Zhao-Atlas-
Marks (ZAM) distribution, which has the advantage of sig-
nificantly reducing cross-terms between signal components,
through its cone-shaped kernel function. We hypothesized
that the characteristics of modulation responses in time
domain might be proved more sensitive compared to those
in the frequency domain and the combination of both could
lead to damage indices that are more sensitive and robust.
Furthermore, it is believed that the time-frequency analysis
of the modulation responses can highlight the underlying
nonlinearmechanisms and enablemore efficient applications
of the method for damage detection.

2. Methodology

2.1. Vibroacoustic Modulation (VAM) Technique. In struc-
tures with damage (e.g., cracks), strong nonlinear vibrational
and acoustical effects occur. Exploitation of these phenomena
has led to the formation of the vibroacoustic modulation
(VAM) technique, which is probably the most widely used
nonlinear, nondestructive testing (NDT) method for crack
detection. In particular, the VAM technique involves mon-
itoring of the amplitude modulation of a high-frequency
(𝑓𝐻) vibration field transmitted through a cracked speci-
men undergoing an additional low-frequency (𝑓𝐿) structural
vibration (typically one of the first structural modes). If the
specimen is undamaged and appropriately supported, the
two vibration fields do not interact. However if a crack is
present, then the low-frequency structural vibration slowly
opens and closes the crack. This periodically modifies the
dynamic characteristics of the system, hence, modulating the
amplitude of the ultrasound transmitted through a cracked
specimen.This modulation expresses itself as sidebands (𝑓±

𝑆
𝑘

)
around the high-frequency component 𝑓𝐻 at frequencies
equal to the sum and difference of the excitation frequencies
and their integer multiples, that is,

𝑓
±

𝑆
𝑘

= 𝑓𝐻 ± 𝑘𝑓𝐿, 𝑘 = 1, 2, 3, . . . . (1)
The intensity of the modulation is related to the severity of
the damage and has been used so far as a spectral FFT-based
damage index (DIFFT) in the form

DIFFT =
(
󵄨󵄨󵄨󵄨󵄨
FFT (𝑓−

𝑆
1

)
󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
FFT (𝑓+

𝑆
1

)
󵄨󵄨󵄨󵄨󵄨
)

2
󵄨󵄨󵄨󵄨FFT (𝑓𝐻)

󵄨󵄨󵄨󵄨

, (2)

where |FFT(𝑓±
𝑆
1
,𝐻
)| denote the FFT magnitude at the first left

and right sidebands and 𝑓𝐻, respectively.

2.2. Zhao-Atlas-Marks (ZAM) Distribution. Time-frequency
(TF) analysis provides the means for exploiting the energy-
related characteristics of the crack response signals that

may vary in both time and frequency. Many of the TF
approaches suffer from the effect of the appearance of cross-
terms, which deteriorate the discrimination power at the
TF domain. To avoid this distortion, the Zhao-Atlas-Marks
(ZAM) distribution [7] was adopted as a methodological tool
to express the information in a clearer way at the TF domain.
In particular, ZAM distribution belongs to the category of
quadratic time-frequency representations and, especially, to
the group of reduced interference distributions (RIDs). RIDs
are members of Cohen’s class and thus, for a time series𝑋(𝑡),
they can be described by the following general expression:

RID𝑋 (𝑡, 𝑓; Φ) = ∬
+∞

−∞

Φ (𝜉, 𝜏) 𝐴𝑋 (𝜉, 𝜏)

× 𝑒
−𝑗2𝜋(𝑓𝜏+𝜉𝑡)

𝑑𝜉 𝑑𝜏,

(3)

where 𝑡 and 𝑓 denote time and frequency, respectively, while
𝜏 and 𝜉 denote the delay and the doppler, respectively, in the
ambiguity plane.𝐴𝑋(𝜉, 𝜏) represents the ambiguity function,
which is associated with the Wigner-Ville distribution via
a two-dimensional Fourier transform [8]. Φ(𝜉, 𝜏) is the,
so-called, parameterization or kernel function. The ZAM
distribution is derived by choosing the kernel function as
follows:

Φ (𝜉, 𝜏) = ℎ (𝜏) |𝜏|
sin (𝜋𝜉𝜏)
𝜋𝜉𝜏
, (4)

where ℎ(𝜏) is a window function that leads to smoothing
along the frequency axis. Thus, the following expression can
be obtained that defines the ZAM distribution:

ZAM𝑋 (𝑡, 𝑓) = ∫
+∞

−∞

[ℎ (𝜏) ∫

𝑡+|𝜏|/2

𝑡−|𝜏|/2

𝑋(𝑠 +
𝑡

2
)

× 𝑋
∗
(𝑠 −
𝑡

2
) 𝑑𝑠]

× 𝑒
−𝑗2𝜋𝑓𝜏
𝑑𝜏.

(5)

ZAM distribution was selected among RIDs due to its advan-
tage of significantly reducing cross-terms between signal
components, through its cone-shaped kernel function (4)
[7]. In the present study, the ZAM-based TF representation
was computed under a 𝑁 × 𝑁 TF resolution; 𝑁 denotes the
number of samples of the signal. Smoothing was performed
using Hamming windows of𝑁/7-samples and𝑁/6-samples
for time and frequency, respectively.

2.3. ZAM-Based Modulation Effects Analysis. Taking the
ZAM distribution of the time series 𝑋(𝑡) of beam responses
to the VAM stimulation, that is, ZAM𝑋(𝑡, 𝑓), a more detailed
exploitation of the modulation effects can be achieved by
analyzing themean amplitude and fluctuation of ZAM𝑋(𝑡, 𝑓)
at the main sidebands (𝑓±

𝑆
𝑘

) around the high-frequency
component, that is, mean/fluct(|ZAM𝑋(𝑡, 𝑓

±

𝑆
1

)|), along with
the mean amplitude and fluctuation of ZAM𝑋(𝑡, 𝑓) at the
𝑓𝐻 excitation frequency, that is, mean/fluct(|ZAM𝑋(𝑡, 𝑓𝐻)|).
From this perspective, changes in the mean value and
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Figure 1: A schematic representation (a) and the actual realization (b) of the experimental setup.

the dynamic range of amplitude fluctuation, combined with
the inspection of the spectral characteristics of this fluc-
tuation, could correlate with the crack depth and provide
insight into the way the presence of the crack affects the beam
response during VAM stimulation.

3. Experiments

Tests were performed on Plexiglas beams to obtain nonlinear
modulation responses for further signal processing. The
beams used in the experiments had dimensions of 2 × 2 ×
40 cm and they were clamped between two heavy steel jaws.
To avoid additional damping and distortion due to couplings,
the beamwas excited with a force𝐹 by using a small voice coil
weighting 2 gr attached to the beam.The coil was placed in the
field of a permanentmagnet andwas excited by twowaveform
generators using sinus signals. A miniature transducer was
used to pick up the vibration response, which was transferred
to an acquisition system and stored for further analysis. A
very narrow cut was initially introduced to the beam. Next,
the beam was subjected to controlled dynamical loading
which caused crack propagation. Due to the structure of
Plexiglas, the propagation of the crack could not be accurately
controlled resulting in arbitrary crack depths. A Bruel and
Kjaer 4393 piezoelectric charge transducer was used for the
high-frequency excitation. A schematic representation and a
photo from the actual implementation set-up are depicted in
Figures 1(a) and 1(b), respectively. Initially, a fatigue crack of
7% depth was introduced at 𝑙𝑐 = 10mm from the clamped
end. Then, its depth was increased to 20% and finally to
45%.During the experiments two continuous sinewaveswere
simultaneously introduced to the beam.The first (𝑉HF(𝑡))was
the high-frequency ultrasound probe wave at 𝑓𝐻 = 31.3 kHz.
The secondwave (𝑉LF(𝑡))was the low-frequency vibration at a
frequency of 𝑓𝐿 = 92Hz, equal to the resonance frequency of
the intact beam. The sampling frequency used was 192 kHz.
Figure 2 depicts an excerpt from the measured response
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Figure 2: The experimental data excerpt (8192 samples, sampling
frequency 192 kHz) used in the ZAM analysis for the uncracked, 7%,
20%, and 45% of the crack depth cases ((a) to (d)).
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Figure 3: Results from the ZAM analysis of the experimental data of Figure 2 for 0% (a), 7% (c), 20% (b), and 45% (d) crack size, respectively.

for the uncracked and the three different crack depth cases
((a) to (d)), respectively. As it can be seen from Figure 1,
strongmodulation components are present and increase with
increasing crack depth.

4. Results and Discussion

Figure 3 shows the estimated ZAM𝑋(𝑡, 𝑓) of the data depicted
in Figure 2 for the four examined crack depths, that is, 0%,
7%, 20%, and 45%, zoomed in the area of the 𝑓𝐻 = 31.3 kHz.

Apparently, from these plots it is clear that a series of 𝑓±
𝑆
𝑘

sidebands is evident, with the𝑓±
𝑆
1

at𝑓−
𝑆
1

= 31208Hz and𝑓+
𝑆
1

=

31392Hzbeing themost noticeable, compared to the rest. It is
noteworthy that as the crack depth is increased towards 45%
(Figure 3(d)), a fluctuation at the 𝑓±

𝑆
1

frequencies is noticed,
whereas there is a more concentrated activity at𝑓𝐻 across the
time axis (in the form of peaks rather than frequency line

ridges), indicating, possibly, the existence of a “breathing-
crack” mechanism. It should be noted that the latter behavior
is also noticed in the time domain (see Figure 2), as we
move from the 0% to the 45% crack depth. More specifically,
the periodic behavior of the breathing mechanism is clearly
noticed in the modulated amplitude of the time series, with
a more profound example being the case of 20% crack depth
(Figure 2(c)), where the 92Hz imposed frequency is driving
the breathing effect. Nevertheless, when focusing at the high-
frequency area, as the subfigures of Figure 3 do, only the case
of 45% crack depth reflects the consequences of the breathing
effect at the central and side lobe-frequencies, as previously
described (see Figure 3(d)).

The amplitude of the estimated ZAM𝑋(𝑡, 𝑓) of Figure 3
at the corresponding VAM frequencies, that is, 31392Hz (a),
31300Hz (b), and 31208Hz (c) for each crack size (0%, 7%,
20%, and 45%), respectively, is depicted in Figure 4. From the
latter, it is clear that the ZAM𝑋(𝑡, 𝑓) amplitude is inversely
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Figure 4: The amplitude fluctuation of the ZAM transform at the
corresponding VAM frequencies, that is, 31392Hz (a), 31300Hz
(b), and 31208Hz (c) for each crack size (0%, 7%, 20%, and 45%),
respectively.

proportional to the crack depth, whereas the amplitude
fluctuation fluct(|ZAM𝑋(𝑡, 𝑓

±

𝑆
1,𝐻

)|) is highly increased as the
crack depth also increases. This might be justified when
taking into account the occurrence of nonlinear dissipation
effects due to “crack breathing” that are more pronounced
as the crack depth increases. Moreover, there is a clear
periodicity in the amplitude modulation for the case of 𝑓𝐻
(Figure 4(b)); a noticeable, yet not so intense, one is evident in
the amplitude modulation of 𝑓±

𝑆
1

. This is further examined in
Figure 5, where the spectrum of the amplitude fluctuation of
the ZAM transform at the corresponding VAM frequencies,
that is, 31392Hz (a), 31300Hz (b), and 31208Hz (c), for the
crack size of 45%, respectively, is illustrated.
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Figure 5: The spectrum of the amplitude fluctuation of the ZAM
transform at the corresponding VAM frequencies, that is, 31392Hz
(a), 31300Hz (b), and 31208Hz (c), for the crack size of 45%,
respectively.

As it is clear from Figure 5, the low excitation frequency
𝑓𝐿 = 92Hz modulates the amplitude of ZAM𝑋(𝑡, 𝑓𝐻)
(Figure 5(b)), whereas mainly the first harmonic of 𝑓𝐿,
that is, 2𝑓𝐿 = 184Hz, causes the amplitude fluctuation
|ZAM𝑋(𝑡, 𝑓

±

𝑆
1

)| (Figures 5(a) and 5(c), resp.).
Focusing at the 45% crack depth case, the frequency

modulation (fluctuation of ridges) seen in Figure 3(d) is
further examined. In particular, Figure 6 reveals the cor-
responding spectral characteristics of this modulation at
the corresponding VAM frequencies, that is, 31392Hz (a),
31300Hz (b), and 31208Hz (c).

Similarly to the spectral characteristics of the amplitude
modulation of ZAM transform seen in Figure 5, here the low
excitation frequency 𝑓𝐿 = 92Hz modulates the frequency
fluctuation |ZAM𝑋(𝑡, 𝑓

±

𝑆
1

)| (Figures 6(a) and 6(c), resp.),
whereas a coexistence of 𝑓𝐿 = 92 and 2𝑓𝐿 = 184Hz
modulates the frequency fluctuation of ZAM𝑋(𝑡, 𝑓𝐻) (Fig-
ure 6(b)). The separate damage indices (sDI) (all normalized
to the corresponding value of 45% crack depth case after
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Figure 6: The spectrum of the frequency modulation of the ZAM
transform at the corresponding VAM frequencies, that is, 31392Hz
(a), 31300Hz (b), and 31208Hz (c), for the crack size of 45%,
respectively.

bias elimination for the 0% crack depth case) based on the
1/|ZAM𝑋(𝑡, 𝑓)| (first row), the MAX-MIN range (second
row), the corresponding standard deviation (third row) of the
ZAM transform, and the normalized FFT magnitude (fourth
row), at the correspondingVAMfrequencies, that is, 31208Hz
(left column), 31300Hz (middle column), and 31392Hz (right
column), respectively, are shown in Figure 7. From the latter
it is deduced that the sensitivity of 1/|ZAM𝑋(𝑡, 𝑓)| according
to the crack depth change is significantly higher than all other
sDI, which mainly capture the transition from 20% to 45%
crack depth, exhibiting less efficient performance in tracking
smaller cracks.

Consequently, the mean value of the sDI for the case of
the 1/|ZAM𝑋(𝑡, 𝑓)| (Figure 7, first row) could be defined as
the most efficient ZAM-based DI, namely, DIZAM. Figure 8
depicts the DIZAM along with the DIFFT defined in (2).
Apparently, the DIZAM surpasses DIFFT in terms of higher
sensitivity in the crack depth change, as it better captures
crack changes, even in small crack depths.

When comparing the presented work with the one of
Zaitsev et al. [6], a similar behavior in the crack detection
could be identified. Both works conclude that the damage
index based on the amplitude modulation is better than
the one based on the frequency modulation. Nevertheless,
the latter damage index of [6] unexpectedly increases non-
monotonically as the severity of crack increases; here, as it is
derived from Figure 7 (second and third rows), the damage
indices based on the frequency fluctuation (range and std)
of the ZAM distribution increase monotonically with the
crack depth, exhibiting, though, reduced sensitivity in the
small cracks identification. This, in turn, is compensated
by the damage index based on the inverse of the ZAM
amplitude. Moreover, the analysis in [6] is prone to the
mode-mixing effect; that is, a single intrinsic mode function
(IMF) derived from the Empirical Mode Decomposition
employed in [6] consists either of signals of widely disparate
scales or a signal of a similar scale residing in different
IMF components. Mode-mixing is often a consequence of
signal intermittency, which could not only cause serious
aliasing in the time-frequency distribution, but alsomake the
physical meaning of individual IMF unclear [9]. Perhaps the
mode-mixing effect could be the reason for this unexpected
behavior of Zaitsev’s et al. [6] damage index based on the
frequency modulation. The proposed analysis here does not
produce any mode-mixing effect, as it is clearly shown in
the time-frequency distributions of Figure 3, making the
relevant damage indices more robust to any signal intermit-
tencies.

5. Conclusion

In this work, the investigation of the vibroacoustic modula-
tion of cracked beam is approached in the time-frequency
domain, using time-frequency analysis based on the Zhao-
Atlas-Marks (ZAM) distribution. ZAMs efficient time-
frequency representation of the vibrational information, with
reduced cross-terms between signal components through
its cone-shaped kernel function, allowed for detailed mon-
itoring of the VAM effects on beam behavior due to the
existence of a crack. The hypothesis adopted here, that is,
the characteristics of modulation responses in time domain
might be proved more sensitive compared to those in the
frequency domain and the combination of both could lead
to damage indices that are more sensitive and robust, was
proved valid. This was justified by the experimental results
derived when applying VAM on Plexiglas beams with a
varying crack depth of 0%, 7%, 20%, and 45%. Consider-
ing the responses at the ZAM domain and, especially, the
reduction of mean ZAM amplitude at the sidebands and
excitation high frequency with the increase of the crack
depth a new damage index was formed, that is, DIZAM.
The latter led to a more sensitive response compared to
the one based on the spectral characteristics of the beam
response, that is, DIFFT, better capturing crack changes, even
in small crack depths. The promising results presented here
enable more efficient applications of the proposed method in
nondestructive damage detection applications.
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Figure 7:The separate damage indices (sDI) based on the 1/|ZAM𝑋(𝑡, 𝑓)| (first row), the MAX-MIN range (second row), the corresponding
standard deviation (third row) of the ZAM transform, and the normalized FFT magnitude (fourth row) at the corresponding VAM
frequencies, that is, 31208Hz (left column), 31300Hz (middle column), and 31392Hz (right column), respectively. Note that, for the FFT-
based analysis, only the 31208Hz (left column) and 31392Hz (right column) were considered, since the FFT amplitude at the central high-
frequency (31300Hz) was used as a normalization factor. Moreover, in the ZAM-based analysis, all values were estimated for the time span
of 0.006–0.036 sec to avoid edge effects, while all data samples acquired (92001) were used in the FFT-based analysis to increase its frequency
resolution.
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Innovative methods for output-only estimation of the modal properties of civil structures are based on blind source separation
techniques. In the present paper attention is focused on the second-order blind identification (SOBI) algorithm and the influence
of its analysis parameters on computational time and accuracy of modal parameter estimates. These represent key issues in view
of the automation of the algorithm and its integration within vibration-based monitoring systems. The herein reported analyses
and results provide useful hints for reduction of computational time and control of accuracy of estimates. The latter topic is of
interest in the case of single modal identification tests, too. A criterion for extraction of accurate modal parameter estimates is
identified and applied to selected experimental case studies. They are representative of the different levels of complexity that can
be encountered during real modal tests. The obtained results point out that SOBI can provide accurate estimates and it can also be
automated, confirming that it represents a profitable alternative for output-only modal analysis and vibration-based monitoring of
civil structures.

1. Introduction

Time domain methods have been proved to be very effective
for operational modal analysis (OMA) purposes. They fit
a mathematical model to the (correlation functions of the)
observed data in order to extract the modal properties [1].
Thus, one of the main problems is related to the optimal
setting of the parameters of the model in order to obtain
reliable and accurate estimates of the dynamic properties.
In practical applications a conservative approach is usually
adopted. It is based on the overspecification of the order of the
model. This is set large enough to ensure the identification of
all physical modes. The amount of overspecification depends
on the characteristics of the analyzed dataset. Overmodeling
introduces spurious poles besides the physical poles. This
makes the modal parameter estimation more complicated.
The discrimination between physical and spurious poles
is usually based on the construction of the stabilization
diagram.

The automatic interpretation of the stabilization diagram
is still a challenge. Even if several research efforts have been

made to improve its quality (see, for instance, [2–5]) and to
automatically identify the physical poles (see, for instance, [6,
7]), the proposed methods are often computationally inten-
sive and require the computation of a number of parameters
and hard and soft validation criteria (see, for instance, [6]);
moreover, the reliability of results and the generality of the
methods are limited by the need of calibrating thresholds and
other analysis parameters for each monitored structure [7].
On the other hand, nonparametric methods do not require
the interpretation of stabilization diagrams and, as such, can
more easily be automated [8–10].

The use of blind source separation (BSS) techniques in
the context of OMA and structural healthmonitoring (SHM)
has been recently proposed [11–15]. BSS techniques extract
a set of signals, the so-called sources, from observations of
their mixtures [16] based on fairly general assumptions about
the sources and the mixing process. BSS techniques can be
classified as linear [17] or nonlinear [18], depending on the
type of combination of the sources. Moreover, static mixing
[17] and convolutive mixing [19] can be considered.
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An increasing number of applications in the field of
structural dynamics have recently appeared in the literature
[15, 20–22]. Even if the time response of structures is related
to the excitation through a convolutive mixture, the dynamic
response of a structure can also be interpreted as a static
mixture of sources (the modal coordinates) in the field
of modal identification [15]. The physical interpretation of
sources as modal coordinates becomes clear by comparing
the modal expansion of the dynamic response (1) with the
linear and static mixture of sources (2):

{𝑦 (𝑡)} = [Φ] {𝑞 (𝑡)} , (1)

{𝑦 (𝑡)} = [𝐴] {𝑠 (𝑡)} . (2)

In fact, the source signals {𝑠(𝑡)} play the role of the modal
coordinates {𝑞(𝑡)} and, on the analogy, there is a one-to-one
relationship between the modal matrix [Φ] and the mixing
matrix [𝐴]. Thus, in the context of modal identification,
BSS techniques aim at recovering the mixing matrix [𝐴],
holding the information about the mode shapes, and the
modal responses, here represented by the sources {𝑠(𝑡)}, from
their observed mixtures {𝑦(𝑡)}.

No mathematical model is assumed to describe the
process that produced the measured data. The mixing model
is the only assumption. Thus, BSS techniques can be referred
to as time domain, nonparametric methods for OMA. The
absence of stabilization charts to be interpreted or model
parameters to be set simplifies the automation and makes
BSS techniques an interesting alternative to the classical time
domain modal identification methods. Nevertheless, the use
of BSS techniques in structural dynamics is still a challenge
[14], and a performance assessment of BSS techniques in the
context of output-onlymodal identification of civil structures
is certainly of interest.

Some limits in the use of BSS for OMA can be traced back
to the basic assumptions of the different techniques, which
show different degree of compatibility with the dynamic
systems of interest. The applicability of principal component
analysis (PCA) to real case studies has been limited by the
need for information about the mass matrix [15]. Indepen-
dent component analysis (ICA) has been recognized to be
muchmore suitable thanPCA to vibration data processing for
modal identification purposes [15]. The main drawbacks are
related to the use of high-order statistics, whose computation
is time consuming and difficult in the presence of a scarcity of
data, and to the poormodal identification performance of the
method for systems characterized by damping ratios larger
than 1% [15]. Methods based on second-order statistics of the
observed signals assume that the sources are uncorrelated
for all delays and have different spectra. Among these,
the second-order blind identification (SOBI) algorithm [17]
has been recognized as a promising alternative for modal
parameter identification in a number of studies [20–22].
When SOBI is applied to vibration data, the real valued
mixing matrix implies real valued mode shape estimates.
This can be a drawback of the method in the presence
of complex modes. However, taking into account that the
basic assumptions of SOBI fit the needs of the output-only
identification of dynamics systems and that civil engineering

structures often show real modes, in the following sections
attention is focused on SOBI and its performance for OMA
of civil structures.

After a discussion about how SOBI can be adapted to
the analysis of random responses in the context of OMA,
the present study investigates the influence of the analysis
parameters on accuracy of modal parameter estimates and
computational time. The identification performance of SOBI
is also assessed against a number of experimental case studies
related to civil structures and characterized by increasing
degree of complexity. The final objective is the definition of
rules of thumbs for the application and automation of SOBI
in the context of OMA and vibration-based SHM of civil
structures.

2. SOBI and Modal Identification

Thebasics of SOBI are briefly reported in this section to high-
light, at the end, how the method has been herein adapted
to the analysis of random responses for OMA purposes. This
discussion puts in evidence the analysis parameters of the
algorithm.Their influence on the quality of modal parameter
estimates is investigated in the next section.

When some (additive) noise {𝑛(𝑡)} is present in the
measured response, (2) can be rewritten as

{𝑦 (𝑡)} = [𝐴] {𝑠 (𝑡)} + {𝑛 (𝑡)} . (3)

The 𝑙 recorded time histories are, therefore, modelled as a
linear combination of 𝑁𝑚 modal responses (the sources)
plus noise. As a consequence, if there are 𝑁𝑚 modes in the
frequency range under investigation, they can be identified
only if rank([𝐴]) = 𝑁𝑚. Since the mixing matrix has
dimension 𝑙 × 𝑁𝑚, this implies that the number of measure-
ment channels has to be larger than or equal to the number of
active modes: 𝑙 ≥ 𝑁𝑚. Thus, SOBI can be classified as a low-
order method for OMA. Moreover, since the columns of the
mixing matrix represent estimates of the mode shapes of the
structure under test, a judicious choice of sensor locations is
needed so that the observed mode shape vectors are linearly
independent and the rank of [𝐴] is preserved.

The issues related to the identifiability of a limited number
of modes can be mitigated through the repeated application
of band-pass filtering until the entire frequency range of
interest is investigated. However, this procedure leads to a
major increase in the time of analysis.

A fundamental assumption in SOBI is that the sources are
stationary, uncorrelated, and scaled to have unit variance, so
their covariance matrix is the identity matrix:

[𝑅𝑠𝑠 (0)] = 𝐸 {{𝑠 (𝑡)} {𝑠 (𝑡)}
𝑇
} = [𝐼] , (4)

where the superscript𝑇 denotes transpose.The additive noise
is assumed to be a temporally and spatially white stationary
random process, with

𝐸 [{𝑛 (𝑡)}] = {0} , (5)

[𝑅𝑛𝑛 (0)] = 𝐸 [{𝑛 (𝑡)} {𝑛 (𝑡)}
𝑇
] = 𝜎
2
[𝐼] . (6)
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If the added noise is also independent of the source signals,
this implies

𝐸 [{𝑛 (𝑡)} {𝑠 (𝑡)}
𝑇
] = [0] . (7)

The first step of the algorithm consists of whitening the signal
part of the observed data {𝑥(𝑡)} = [𝐴]{𝑠(𝑡)}. This is achieved
by applying a linear transformation to {𝑥(𝑡)} such that the
whitened data {𝑧(𝑡)} are uncorrelated and have unit variance:

{𝑧 (𝑡)} = [𝑊] {𝑥 (𝑡)} 󳨐⇒ [𝑅𝑧𝑧 (0)]

= 𝐸 [{𝑧 (𝑡)} {𝑧 (𝑡)}
𝑇
] = [𝐼] .

(8)

Thematrix [𝑊] defining this transformation is referred to as
the whitening matrix. From (8) and (4) it is easy to check that

[𝑅𝑧𝑧 (0)] = [𝑊] [𝐴] 𝐸 [{𝑠 (𝑡)} {𝑠 (𝑡)}
𝑇
] [𝐴]
𝑇
[𝑊]
𝑇

= [𝑊] [𝐴] [𝐴]
𝑇
[𝑊]
𝑇
= [𝐼] .

(9)

Thus, if [𝑊] is a whitening matrix, [𝐴󸀠] = [𝑊][𝐴] is an
𝑁𝑚 × 𝑁𝑚 unitary matrix. As a consequence, the mixing
matrix can be factored as the product of the inverse of the
whitening matrix and a unitary matrix (to be determined).

Whitening of the measured response {𝑦(𝑡)} also obeys a
linear model:

[𝑊] {𝑦 (𝑡)} = [𝑊] ([𝐴] {𝑠 (𝑡)} + {𝑛 (𝑡)})

= [𝐴
󸀠
] {𝑠 (𝑡)} + [𝑊] {𝑛 (𝑡)} .

(10)

From the covariance matrix of the observed mixture

[𝑅𝑦𝑦 (0)] = 𝐸 [{𝑦 (𝑡)} {𝑦 (𝑡)}
𝑇
] = [𝐴] [𝐴]

𝑇
+ 𝜎
2
[𝐼] , (11)

the following equation is obtained:

[𝐴] [𝐴]
𝑇
= [𝑅𝑦𝑦 (0)] − 𝜎

2
[𝐼] . (12)

Combining (10)with (12) and taking into account (4), (6), and
(7), it is possible to show that the whitening matrix [𝑊] can
be derived from the covariancematrix [𝑅𝑦𝑦(0)], provided that
the noise covariance matrix is known or can be estimated.

From a practical point of view, once the measured data
have been centralized by removal of themean value fromeach
component of {𝑦(𝑡)}, whitening is obtained as follows. First of
all, the eigenvalue decomposition of [𝑅𝑦𝑦(0)] is computed:

[𝑅𝑦𝑦 (0)] = 𝐸 [{𝑦 (𝑡)} {𝑦 (𝑡)}
𝑇
] = [𝑉] [𝐷] [𝑉]

𝑇
, (13)

where [𝑉] is the matrix of eigenvectors and [𝐷] is the
diagonal matrix of eigenvalues. If only the 𝑁𝑚 largest
eigenvalues 𝑑1, . . . , 𝑑𝑁

𝑚

and the corresponding eigenvectors
{V1}, . . . , {V𝑁

𝑚

} of [𝑅𝑦𝑦(0)] are retained, the average of the
remaining 𝑙 − 𝑁𝑚 eigenvalues yields an estimate 𝜎2 of the
noise variance, under the assumption of white noise [17].
The whitened signals are then computed from the largest
eigenvalues and the corresponding eigenvectors as

{𝑧 (𝑡)} = ([𝐷𝑁
𝑚

] − 𝜎
2
[𝐼𝑁
𝑚

])
−1/2

[𝑉𝑁
𝑚

]
𝑇

{𝑦 (𝑡)}

= [𝑊] {𝑦 (𝑡)} ,

(14)

where [𝐷𝑁
𝑚

] is the submatrix of [𝐷] holding only the 𝑁𝑚
largest eigenvalues, [𝑉𝑁

𝑚

] is the submatrix of [𝑉] collecting
the eigenvectors corresponding to the𝑁𝑚 largest eigenvalues
of [𝑅𝑦𝑦(0)], and the whitening matrix is given by

[𝑊] = ([𝐷𝑁
𝑚

] − 𝜎
2
[𝐼])
−1/2

[𝑉𝑁
𝑚

]
𝑇

. (15)

In (6) the noise variance is assumed to be the same for all
channels in agreement with the original formulation of the
method [17]. However, in practical applications the noise
distribution can vary from sensor to sensor, even if it is
typically assumed that two sensors show uncorrelated noise
(see, for instance, [23]). Moreover, sensor noise is often 1/𝑓-
type noise rather than temporally white noise. The white
noise assumption is needed to get an estimate 𝜎2 of the noise
variance as the average of the smallest 𝑙 − 𝑁𝑚 eigenvalues
of [𝑅𝑦𝑦(0)]; see (14), (15), and (16). However, as clarified at
the end of this section, the estimation of the noise variance
before the extraction of the sources can be avoided for
OMA purposes. In fact, SOBI is applied to estimate the
correlation functions of both the sources and the noise. The
discrimination betweenmodal responses and noise is carried
out in a second stage. Thus, the different noise distributions
do not affect the modal identification performance of the
method in practical applications.The assumption of spatially
white noise is not a limiting factor in the context of OMA.
However, froma general point of view, the blind identification
problem when [𝑅𝑛𝑛(0)] is a full matrix can be solved by
carrying out a robust whitening, based on the decomposition
of a linear combination of a set of covariance matrices taken
at nonzero time lags [24], instead of the classical whitening
given by (13) and (15).

Once the whitened signals have been obtained, the
following 𝑝 time-shifted covariance matrices have to be
computed:

[𝑅𝑧𝑧 (𝜏𝑘)] , 𝑘 = 1, . . . , 𝑝. (16)

In order to estimate the sources and the mixing matrix,
SOBI carries out an approximate joint diagonalization of
those 𝑝 time-shifted covariance matrices according to the
joint approximate diagonalization (JAD) technique [17]. The
objective of the JAD is to find the unitary matrix [Ψ]

that approximately diagonalizes the time-shifted covariance
matrices. An optimization problem is defined with respect
to the matrix [Ψ] that minimizes the sum of all off-diagonal
terms of [Ψ]𝑇[𝑅𝑧𝑧(𝜏𝑘)][Ψ](𝑘 = 1, . . . , 𝑝) for the 𝑝 time-
shifted covariance matrices:

min
[Ψ]

𝑝

∑

𝑘=1

off ([Ψ]
𝑇
[𝑅𝑧𝑧 (𝜏𝑘)] [Ψ]) . (17)

The solution to the minimization problem is found by
means of a numerical algorithm based on the Jacobi rotation
technique [17]. Two parameters have to be set: the number 𝑝
of time-shifted covariance matrices to be jointly diagonalized
and the threshold 𝑡 used to stop JAD. Concerning the
threshold 𝑡, the problem of its setting has been analyzed
in [25], showing that very small values for 𝑡 have no sense
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because the diagonality criterion is approximate itself. Thus,
it is usually unnecessary to push the accuracy of the rotation
matrix to the machine precision. Setting the value of 𝑡 to the
square root of the machine precision is sufficient. Concern-
ing the number 𝑝 of time-shifted covariance matrices, the
diagonalization performance improves when 𝑝 increases and
it rapidly converges in most cases [17]. Once the matrix [Ψ]
has been obtained, the demixing matrix [𝑈] and the mixing
matrix [𝐴] can be computed:

[𝑈] = [Ψ]
𝑇
[𝑊] , (18)

[𝐴] = [𝑊]
+
[Ψ] , (19)

where the superscript + denotes pseudoinverse. The result-
ing sources are shift-uncorrelated because the matrices
[𝑅𝑠𝑠(𝜏𝑘)] are nearly diagonal. The sources are obtained as
follows:

{𝑠 (𝑡)} = [𝑈] {𝑦 (𝑡)} . (20)

The mode shapes of the structure are obtained from the
columns of the mixing matrix. The technique for the estima-
tion of natural frequencies and damping ratios depends on
the type of data used formodal identification. In the literature
SOBI has been applied to free responses, impulse responses,
and responses to random excitation [20–22]. In the first two
cases, the estimation of natural frequencies and damping
ratios from the obtained sources is straightforward. In fact,
taking into account that the free vibration response can
be expressed as a sum of exponentially decaying sinusoids,
fitting this expression to the data allows the estimation of
the modal parameters (refer to [22] for more details). In the
case of response to random excitation, while the estimation
of natural frequencies from the identified sources is again
straightforward, this is not the case of damping ratios, whose
estimation requires the knowledge of the applied random
excitation [20]. However, the extension of SOBI to the
analysis of random responses for the estimation of modal
parameters including damping is immediate by recognizing
that also the correlation function can be expressed as a sum
of decaying sinusoids. This is the same basic assumption
adopted by the NExT-type procedures [1]. In this case, there
is no need to recover the sources, because natural frequencies
and damping ratios can be directly estimated from their
correlations 𝑅𝑠𝑠(𝜏𝑘) as obtained from the JAD.

A simplified approach to the estimation of the modal
properties by SOBI in the case of random response can be
outlined as follows.

(i) Compute the whitening matrix [𝑊] from the cen-
tralized dataset according to (13) and (15); since the
number of modes is not known a priori and the
criterion for appropriate selection of the number𝑁𝑚
of eigenvalues to be retained is still debated, it is
possible to set 𝑁𝑚 = 𝑙; thus, 𝑙 sources are extracted
from the data even if the number of modes is likely
lower than 𝑙; as a result, the sources associated with
the actual structural modes have to be selected in a
second stage based, for instance, on the error in fitting

the correlations 𝑅𝑠𝑠(𝜏𝑘) with exponentially damped
harmonic functions; this approach was originally
proposed in [20] for the analysis of impulse responses.

(ii) Compute the whitened dataset {𝑧(𝑡)}.
(iii) Compute the time-shifted covariance matrices

[𝑅𝑧𝑧(𝜏𝑘)] and select 𝑝 of them to apply the JAD.
(iv) The JAD of the 𝑝 time-shifted covariance matrices

[𝑅𝑧𝑧(𝜏𝑘)] with 𝑘 = 1, . . . , 𝑝 provides the unitary
matrix [Ψ], which allows the computation of the
mixing matrix [𝐴] according to (19) and the autocor-
relations 𝑅𝑠𝑠(𝜏𝑘);

(v) Natural frequencies and damping ratios are finally
estimated; different approaches can be adopted, such
as regression on zero-crossing times and logarith-
mic decrement, or single-degree-of-freedom (SDOF)
curve fitting estimators; the use of SDOF curve fitting
estimators allows the computation of the fitting error;
this makes a quantitative selection of the correlations
associatedwith actual structuralmodes in the absence
of noise rejection in the computation of the whitening
matrix possible; the selection of the number of time
lags 𝑝 now plays a primary role in the process, since
it not only is responsible for the matrix [Ψ] but also
defines the length of the correlation functions𝑅𝑠𝑠(𝜏𝑘);
thus, taking into account the physics of the problem,
𝑝 has to be set as a function of the period of the
fundamental mode so that a sufficient number of
cycles are present in the correlation of the source
associated with the fundamental mode; a criterion for
setting of 𝑝 is given in Section 3.

(vi) The mode shapes are obtained from the columns
of the mixing matrix corresponding to the source
correlations selected in the previous step of analysis.

It is interesting to note that, unlike the other two-stage
modal identification methods, SOBI provides the mixing
matrix and, therefore, themode shape estimates, first; natural
frequencies and damping ratios are obtained in a second stage
through postprocessing of the obtained sources. Finally, it is
worth pointing out that SOBI can identify distinct, eventually
closely spaced modes but it shows serious limitations in the
presence of repeated modes [26].

3. Performance Assessment of SOBI for
OMA of Civil Structures

In this section the effect of the parameters 𝑝 and 𝑡 on
accuracy of modal parameter estimates and computational
time of SOBI is investigated. SOBI is applied to OMA of
selected case studies. Both simulated and real datasets have
been considered. The final objective is the definition of rules
of thumbs for the application and automation of SOBI for
output-only modal analysis and vibration-based SHM of
civil structures. The problem of the definition of criteria
and approaches to reject the noise and, therefore, define in
advance the expected number of modes is out of the scope of
the present paper. SOBI is herein applied in order to extract



Shock and Vibration 5

2000N/m2000N/m 2000N/m 2000N/m 2000N/m 2000N/m 4000N/m

5kg 5kg 5kg 5kg 5kg 10kg

F
c2c1 c3 c4 c5 c6 c7

X4 X5 X6X1 X2 X3

Figure 1: The benchmark 6-DOF system.

a number of modes equal to the number of measurement
channels, as mentioned in the previous section.The obtained
source correlations can represent both modal responses and
noise sources. However, noise sources are distinguishable
from modal responses [20] (this makes the definition of
noise rejection mechanisms less critical in SOBI with respect
to parametric time domain modal identification methods,
which try to fit a model to the measured system response)
and they can be eliminated in the second stage of the analysis
aimed at estimating the natural frequencies and damping
ratios. After the selection of the sources associated with
modal responses, in this study the natural frequency of the
𝑖th mode is estimated by a linear regression on the zero-
crossing times of the associated correlation function 𝑅𝑠𝑠(𝜏𝑘),
while damping ratio is calculated through the logarithmic
decrement technique on the analogy with another well-
establishedOMA technique, the enhanced frequency domain
decomposition (EFDD) [27].

Sensitivity analyses have been carried out in order to
assess the effect of the parameters governing the JAD (the
number 𝑝 of time-shifted covariance matrices to be jointly
diagonalized and the threshold 𝑡 used to stop the numerical
procedure) on accuracy and computational time of SOBI
when it is applied to output-only modal analysis. The first
analyzed record is represented by the simulated response to
a Gaussian white noise applied to degree-of-freedom (DOF)
number 1 of the 6-DOF system shown in Figure 1. Rayleigh
damping is adopted. Assuming 1% damping for the first and
the last mode, the following proportionality constants have
been obtained: 𝑎0 = 0.1523 for the mass matrix and 𝑎1 =

4.15𝐸−4 for the stiffness matrix.Themodal properties of the
system are reported in Table 1.The response of the system has
been simulated at all the six DOFs and it has been sampled
at 100Hz and decimated at 10Hz before processing. White
noise has also been added to the time series in order to
simulate measurement noise. A signal-to-noise ratio of 5 dB
has been considered. The adopted sampling frequency after
decimation results in the extraction of four modal responses
and two noise sources.

The results obtained from the application of SOBI to
the simulated data have then been validated against oper-
ational response measurements of a number of real civil
structures. Good quality data from a reinforced concrete
structure characterized by well-separated modes (the Tower
of the Nations in Naples [28]) and a reinforced concrete
structure characterized by two closely spaced modes (the
School of Engineering Main Building in Naples [29]) and
noisy data from a masonry bell tower characterized by two
closely spaced modes (S. Maria del Carmine Bell Tower in
Naples [30]) are the considered benchmark record.They have

Table 1: Modal properties of the simulated 6-DOF system.

Mode number Natural frequency [Hz] Damping ratio [%]
I 1.509 1.00
II 2.823 0.80
III 3.810 0.81
IV 4.737 0.87
V 5.593 0.95
VI 6.167 1.00

been used also to validate an innovative automated OMA
procedure in [9].The selected real test cases are representative
of modal identification problems typically encountered in
civil engineering and characterized by different degree of
difficulty. Reference modal parameters have been extracted
from these records by well-established techniques, such as
frequency domain decomposition (FDD) [31] and stochastic
subspace identification (SSI) [1, 32], which have provided very
consistent estimates.

The results of the sensitivity analyses on the simulated
dataset are presented first. According to these results, some
rules of thumbs for the application of SOBI to modal
identification are defined and applied to the real case studies.
Validation of the effectiveness of the proposed criterion
for the selection of 𝑝 is based on comparisons with the
modal estimates provided by FDD and SSI. Even if SOBI
and its variants have already been applied to the modal
identification of real civil structures [33], this study represents
an interesting example of systematic application of SOBI
to modal identification problems typically encountered in
civil engineering and characterized by different degree of
difficulty.

Concerning parameter settings, a careful literature review
has provided a recommended value for 𝑡, as discussed in the
previous section. However, this value has been determined
according to a theoretical framework and not in view of
the application of SOBI to output-only modal analysis and
vibration-based SHM. Even if the computational time might
not be a problem for single modal identification tests, its con-
trol can be of interest for continuous, automated monitoring.
The computational time can range from fractions of seconds
to several minutes or hours depending on the settings of 𝑡
and 𝑝 and the number of measurement channels. Figure 2
shows the dependence of the computational time from 𝑝 and
𝑡 for a real dataset consisting of 12 measurement channels. As
expected, the larger the number of measurement channels,
the higher the computational time of the algorithm, and it
increases when 𝑝 becomes larger and 𝑡 decreases.
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The assessment of the influence of 𝑡 and 𝑝 on the modal
identification results can provide effective hints to ensure
accuratemodal estimates or to reduce the computational time
with little or no accuracy losses. To this aim, the simulated
dataset has been processed by SOBI, and the identifiedmodes
in the range 0–5Hz have been compared with the theoretical
values for different settings of 𝑡 and 𝑝. The cumulative
frequency scatter 𝐽𝑓 and the cumulative discrepancy between
corresponding mode shapes 𝐽𝑠

𝐽𝑓 =

𝑁
𝑚

∑

𝑖=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑓
SOBI
𝑖

− 𝑓
ref
𝑖

𝑓
ref
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⋅ 100,

𝐽𝑠 =

𝑁
𝑚

∑

𝑖=1

[1 −MAC ({𝜙
SOBI
𝑖

} , {𝜙
ref
𝑖
})] ⋅ 100

(21)

quantify the accuracy of the modal identification results. In
(21) 𝑁𝑚 is the number of identified structural modes, while
the MAC between theoretical and estimated mode shapes is
computed as per its definition [34]. The plot of 𝐽𝑓 + 𝐽𝑠 versus
𝑝 and 𝑡 for the simulated dataset is shown in Figure 3(a). It is
possible to recognize that accuracy is mainly influenced by 𝑝,
while a weak variation with 𝑡 can be observed. In particular,
for 𝑡 not larger than 1𝐸 − 8, results do not change anymore.
This limit value for 𝑡 is expected to be data dependent.
However, similar sensitivity analyses carried out on real
datasets provided the same results. Even if it is impossible
to extrapolate a general rule, the obtained results seem to
confirm that this value can be assumed as reference to obtain
very stable results. Moreover, the little effect of 𝑡 on the accu-
racy of estimates allows setting a threshold larger than 1𝐸− 8
in order to reduce the computational time. The obtained
results suggest that 𝑡 can be increased up to 1𝐸 − 4 with
negligible effects on the obtained modal parameter estimates
and relevant reduction of computational time, in particular
when the number of measurement channels is large. Above
that value the approximations start inducing major effects
on the estimates. Concerning the effect of 𝑝 on accuracy,

Figure 3(a) shows that the overall accuracy first improves and
then gets worse for increasing values of 𝑝. This is an effect of
the trend of 𝐽𝑓 versus 𝑝, since 𝐽𝑠 monotonically and slowly
decreases with increasing values of 𝑝 (even if for a single
mode the 𝐽𝑠 versus 𝑝 plot could not be monotonic), as shown
in Figure 3(b). This is consistent with the higher robustness
of SOBI to noise with respect to other BSS methods based on
second-order statistics, such as AMUSE [35].This robustness
is the result of the joint diagonalization of several time-shifted
covariance matrices instead of the eigenvalue decomposition
of a single covariance matrix evaluated at a certain time lag.
On the other hand, the trend of 𝐽𝑓 is probably due to the
fact that the larger the value of 𝑝, the larger the effect of the
disturbance beyond a certain decay level. As a final result, an
optimal setting of 𝑝 able to maximize the overall accuracy of
modal estimates can be obtained from the minimum of the
𝐽𝑓 + 𝐽𝑠 function.

Repeating the sensitivity analysis for different values
of the sampling frequency, in order to reduce or increase
the number of modes in the frequency range of interest,
the trend of the 𝐽𝑓 + 𝐽𝑠 function is kept, but the value
of 𝑝 corresponding to its minimum changes, as expected.
However, when the sampling frequency changes by a factor
of 𝑥, the optimal setting for 𝑝 changes by the same factor.
Attention has been therefore focused on the source associated
with the fundamental mode, which is obviously present in
all the analyses, and on the decay level associated with the
optimal value of 𝑝. The decay level was found to be the same
for different values of the sampling frequency. In particular,
it was in the order of 10% of the maximum amplitude of the
first cycle occurring at 𝜏𝑘 > 0 (for 𝜏𝑘 = 0 𝑅𝑠𝑠 is always equal to
one).Thus, the time to observe a given amplitude decay rather
than the number of samples is responsible for the accuracy of
estimates. This is consistent with the change of the optimal
setting of 𝑝 with the adopted sampling frequency and with
the increasing effect of noise when 𝑝 becomes too large.

The analysis of the decay level associated with the optimal
setting of 𝑝 seems to suggest the following rule for its
evaluation. The optimal value of 𝑝 can be determined in a
couple of iterations by applying SOBI for a generic value of 𝑝
and changing it in a way able to achieve a ratio of about 10%
between the amplitudes of the last (depending on the value
of 𝑝) and the first cycle (at 𝜏𝑘 > 0) of the source correlation
associated with the fundamental mode (Figure 4).

This rule has been validated through its application to
real datasets. Taking into account the influence of 𝑡 on the
accuracy of modal parameter estimates, a value of 1E-8 has
been adopted in the analyses. The obtained modal identi-
fication results are reported in Table 2 in comparison with
reference estimates. A very good agreement can be observed,
confirming that the proposed rule makes an effective setting
of the analysis parameters able to provide accurate output-
only modal identification results possible.

In order to validate further the proposed rule for the
setting of 𝑝, the real datasets have been analyzed also for
different values of 𝑝. The function 𝐽𝑓 + 𝐽𝑠 versus 𝑝 (Figure 5)
has been evaluated around the estimated optimal value of
𝑝. The reference values of the natural frequencies and mode
shapes are those provided by the SSI method (however,
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Figure 3: Sensitivity of overall accuracy (a) and mode shape accuracy (b) to 𝑝 and 𝑡.

Table 2: Test cases, modal identification results, and comparisons.

Case study Characteristics 𝑙 (𝑓𝑠 [Hz], 𝑝) Mode number 𝑓SOBI [Hz] 𝑓ref [Hz] 𝜉SOBI [%] 𝜉ref [%] MAC

6-DOF system Simulated data 6 (10, 400)

I 1.51 1.51 0.97 1.00 0.998
II 2.82 2.82 0.73 0.80 0.999
III 3.81 3.81 0.88 0.81 0.999
IV 4.73 4.74 0.81 0.87 0.998

Tower of the Nations
(Naples)

Well-separated
modes 8 (5, 360)

I 0.81 0.81 0.36 0.40 ≈1
II 1.38 1.38 0.97 1.17 ≈1
III 1.66 1.66 0.69 0.63 ≈1

School of Engineering
(Naples)

Closely spaced
modes 12 (10, 400)

I 0.92 0.92 1.23 1.32 ≈1
II 0.99 0.99 1.17 1.02 0.999
III 1.30 1.30 0.58 0.64 ≈1

S. Maria del Carmine Bell
Tower (Naples)

Closely spaced
modes, noisy data 12 (5, 300) I 0.70 0.70 0.96 0.92 ≈1

II 0.76 0.76 0.92 0.83 ≈1
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Figure 4: Illustration of the rule of thumbs for setting of 𝑝.

similar results have been obtained considering as reference
estimates those provided by the FDD method). Figure 5
shows that the proposed rule is able to properly evaluate the
optimal setting of 𝑝 even in the case of real datasets.

The proposed approach for the optimal setting of 𝑝
can easily be automated and used for the development of

SOBI-based automatedOMAprocedures for vibration-based
SHM. It is worth pointing out that the possibility of automati-
cally setting the analysis parameters without any preliminary
calibration is a fundamental requirement for the development
of automated OMA procedures. An effective control of
computational efforts is possible by appropriate setting of t,
taking into account that it negatively affects the accuracy of
modal parameter estimates beyond the limit value of 1𝐸 −

4. Thus, the present paper provides a contribution towards
the development of innovative automated OMA procedures
able to satisfy widely accepted target criteria reported in the
literature [6, 7, 9]. However, automated OMA based on SOBI
is out of the scope of the paper.

4. Conclusions

In the present paper the applicative perspectives of SOBI for
OMA of civil structures have been discussed. Attention has
been focused on SOBI because of its interesting performance,
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real dataset: “School of Engineering in Naples”).

among the BSS methods, in the field of output-only modal
identification and vibration-based SHM. In fact, the moder-
ate complexity and computational demand of the algorithm
and the separation ofmodal contributionsmake it suitable for
automation and integration into SHM systems. In this per-
spective the influence of the JAD parameters on accuracy of
modal estimates and computational time has been analyzed.
The performed sensitivity analyses have made the definition
of rules of thumbs for their optimal setting possible. These
rules have also been validated against real datasets. The
selected real case studies were representative of the different
degree of complexity of modal identification test cases usu-
ally encountered in civil engineering. The good agreement
between the modal property estimates provided by SOBI and
those obtained by well-established OMA techniques, such as
FDD and SSI, confirms SOBI as a valid alternative for output-
onlymodal identification of civil structures.The results of the
analyses reported in this paper have also provided the basis
for the rational development of SOBI-based automatedOMA
procedures able to provide accurate estimates and effective
control of computational efforts. However, the development
of automated OMA procedures based on SOBI is out of the
scope of the paper. It will be the object of future studies.
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This work presents a strategy to control nonlinear responses of aeroelastic systems with control surface freeplay. The proposed
methodology is developed for the three degrees of freedom typical section airfoil considering aerodynamic forces fromTheodorsen’s
theory. The mathematical model is written in the state space representation using rational function approximation to write the
aerodynamic forces in time domain.The control system is designed using the fuzzy Takagi-Sugenomodeling to compute a feedback
control gain. It useds Lyapunov’s stability function and linear matrix inequalities (LMIs) to solve a convex optimization problem.
Time simulations with different initial conditions are performed using a modified Runge-Kutta algorithm to compare the system
with and without control forces. It is shown that this approach can compute linear control gain able to stabilize aeroelastic systems
with discontinuous nonlinearities.

1. Introduction

The requirement for more accurate tools for predictions of
nonlinear effects has motivated many research groups to
investigate aeroelastic systems considering nonlinearities. In
particular, the problem involving freeplay in control surfaces
has called attention of various researchers because it can be
a cause of limit cycle oscillation (LCO) leading to serious
consequences such as fatigue, pilot handling/ride quality,
confined manoeuvrings envelope, weapon aiming of military
aircraft, and induced flutter.

Another motivation to consider control surface freeplay
is that the requirements for aircraft design according to mil-
itary specification can be quite difficult to achieve in prac-
tice, increasing the manufacturing and maintenance costs.
Considerable experimental and analytical efforts have been
devoted to obtain representative aeroelastic models and
develop methodologies to study the freeplay problem.

In this context, many works in literature have presented
studies to understand and characterize nonlinear aeroelastic
behaviour. Conner et al. [1, 2] presented results for a typical
airfoil section based on time domain simulations.The authors
showed accuracy between numerical and experimental data.
Tang and colleagues published theoretical and experimental
results considering an aeroelastic apparatus and the high
order Harmonic Balance methods [3]. This method was
introduced by Kryloff and Bogoliuboff in 1947 and it has been
studied by different researchers as shown in [4–8].

Kholodar and Dickinson studied the effects of aileron
freeplay in different configurations of a real aircraft [9]. Time
domain simulations were used to confirm the limit cycles
previously predicted using the Harmonic Balance method.
Also considering similar approaches, Anderson and Mortara
presented results for the F-22 aircraft including control
surface freeplay [10]. The authors discussed the limits of
freeplay to keep the system stable. Recently, Abdelkefi and
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Figure 1: Typical section airfoil.

colleagues performed numerical and experimental investiga-
tions using a pitch and plunge rigid airfoil supported by a
torsional spring. The authors studied different mathematical
representations of freeplay nonlinearity, such as polynomial
expansion and hyperbolic tangent [11, 12]. Also considering a
two degrees of freedom airfoil, Guo andChen employedmul-
tivariable and Floquet theories to detect the fold bifurcation
and amplitude jump phenomenon in supersonic flow [13].

Several control strategies with focus on LCO suppression
on aeroelastic systems have been developed in these last years.
Kurdila et al. [14] presented an extensive review of non-
linear control methods for high energy LCO. Experimental
works on controlling aeroelastic apparatus are presented in
[15, 16]. In [17] Li et al. designed a suboptimal controller
using the state-dependent Riccati equation considering cubic
nonlinearity. Adaptive filters cut-off frequency with feedback
gain has also been used to suppress limit cycles and chaotic
motions [18]. The authors investigated an augmented con-
troller with time delay parameter to determine regions of
instabilities in closed-loop configurations.

This paper proposes a control strategy based on fuzzy
Takagi-Sugeno (FTS) solved using linear matrix inequalities
(LMIs) to control the LCO of a nonlinear aeroelastic system.
Techniques based on LMIs have been used to solve linear
aeroelastic problems, mainly considering structural uncer-
tainties [19, 20]. However, their application for solving non-
linear aeroelastic problems is rarely found in the literature.
The advantage of using LMIs to design a control strategy is
based on the robust interior point algorithms that provides a
guarantee for finding optimal solutions, if that exists.

The aeroelastic system is formulated in state space form
and is integrated in time domain using the forth order Runge-
Kuttamethod andHénon’s technique [21]. Hénon’s technique
is used to locate the switching points in the procedure
of numerical integration, as discussed herein. Theodorsen
aerodynamic forces are transformed to time domain using
rational function approximation. However, the proposed
approach is valid for other aerodynamic theories. Finally,
numerical simulations are performed on the benchmark
airfoil problem to demonstrate that LMIs combined with FTS
modeling can be used to design controllers for nonlinear
aeroelastic problems.

Transition point

𝛽(t)

T𝛽(t)

𝛿𝛿

Figure 2: Freeplay nonlinearity.

2. Aeroelastic System with Freeplay

The typical section airfoil shown in Figure 1 with a trailing
edge control surface is normally used to represent an aeroe-
lastic system with three degrees of freedom that includes
pitch 𝛼(𝑡), plunge ℎ(𝑡), and control surface rotation 𝛽(𝑡). This
modeling was previously proposed in [22]. The structural
properties of this system are represented by the springs
𝑘𝛼, 𝑘ℎ, and 𝑘𝛽, structural damping, and inertial properties.
Theodorsen theory is used to compute the aerodynamic
forces; however, the same control strategy could be adopted
for other aerodynamic theories [22, 23].

The nonlinear discontinuity (freeplay) is considered to
occur in the control surface spring 𝑘𝛽. So that the equation
of motion for this system can be represented by

M ̈u (𝑡) +D ̇u (𝑡) + F (K, u, 𝑡) = 𝑞Qu (𝑡) + B𝑜𝑐u𝑐 (𝑡) , (1)

where M and D are, respectively, the structural mass and
damping matrices, Q is a matrix of aerodynamic coefficients
that depend on the airfoil geometry, 𝑞 = (1/2)𝜌𝑉

2 is the
dynamic pressure, and 𝜌 is the air density and 𝑉 is the
airspeed. B𝑜𝑐 is a matrix of input (forces or moments). The
vector u(𝑡) = {ℎ(𝑡) 𝛼(𝑡) 𝛽(𝑡)}

𝑇 represents the physical dis-
placements and u𝑐(𝑡) is the control force. The vector F rep-
resents the elastic restoring moment which depends on the
control surface restoring moment 𝑇𝛽(𝑡) shown in Figure 2.

By considering a freeplay amplitude of 2𝛿, the elastic
restoring moment can be written as

F (K, u, 𝑡) = {𝐹ℎ(𝑡) 𝑇𝛼(𝑡) 𝑇𝛽(𝑡)}
𝑇 such that

𝐹ℎ (𝑡) = 𝑘ℎℎ (𝑡) ,

𝑇𝛼 (𝑡) = 𝑘𝛼𝛼 (𝑡) ,

𝑇𝛽 (𝑡) = 0 if 󵄨󵄨󵄨󵄨𝛽 (𝑡)
󵄨󵄨󵄨󵄨 ≤ 𝛿,

𝑇𝛽 (𝑡) = 𝑘𝛽 [𝛽 (𝑡) − 𝛿] if 󵄨󵄨󵄨󵄨𝛽 (𝑡)
󵄨󵄨󵄨󵄨 > 𝛿.

(2)
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The expressions in (2) are rearranged in amatrix form and
the nonlinear function𝑓nl is introduced such that the stiffness
is defined as a nonlinear structural stiffness matrix Knl given
by

Knl =
[

[

𝑘ℎ 0 0

0 𝑘𝛼 0

0 0 𝑘𝛽𝑓𝑛𝑙

]

]

󳨐⇒ F (K, u, 𝑡) = Knlu (𝑡) , (3)

where

𝑓nl = 0 if 󵄨󵄨󵄨󵄨𝛽 (𝑡)
󵄨󵄨󵄨󵄨 ≤ 𝛿,

𝑓nl = 1 −
𝛿

𝛽 (𝑡)
if 󵄨󵄨󵄨󵄨𝛽 (𝑡)

󵄨󵄨󵄨󵄨 > 𝛿.

(4)

2.1. Representation in State Space Form. In order to obtain a
nonlinear state space model, a rational function is used to
write the aerodynamic forces in time domain. Jones in 1940
solved this problem using a rational function approximation
to approximate unsteady aerodynamic loads for the typical
section [24].

After Jones’ work, different formulations have been used
to approximate generalized aerodynamic forces for arbitrary
motion, as, for instance, the approach based on Chebyshev’s
polynomials introduced by Dinu and colleagues with focus
on aeroservoelasticity [25]. Karpel proposes the Minimum-
State method with accuracy per model order superior to
previous works, but it is more complicated and computing-
time consuming because it involves nonlinear problems [26].
Vepa proposes a numerical technique based on Padè approx-
imation and according to the author the main advantage of
this method is that it can be generalized to three-dimensional
lifting surfaces [27]. Recently, Biskri and colleagues present a
very interesting method based on a combination of the Least
Squares (or Roger’s approach) andMinimum-State methods,
of which themain idea is tominimize the number of lag terms
without passing through a long iterative algorithm [28].

In this paper Roger’s approach is used. This approxi-
mation involves identifying every matrix Q𝑗 shown in (5)
using a Least Square algorithm as proposed by Roger [29]
and summarized in [30]. The approximation contains a
polynomial part representing the forces on the typical section
acting directly connected to the displacements u(𝑡) and their
first and second derivatives. Also, this equation has a rational
part representing the influence of the wake acting on the
section with a time delay. Consider

Q (𝑠) ≈ [

[

2

∑

𝑗=0

Q𝑗𝑠
𝑗
(
𝑏

𝑉
)

𝑗

+

𝑛lag

∑

𝑗=1

Q(𝑗+2) (
𝑠

𝑠 + (𝑏/𝑉) 𝛽𝑗

)]

]

u (𝑠) ,

(5)

where 𝑠 is the Laplace variable, 𝑛lag is the number of lag terms,
𝛽𝑗 is the 𝑗th lag parameter (𝑗 = 1, . . . , 𝑛lag), and 𝑏 is the
aerodynamic semichord.

Substituting (5) into (1) and considering (3) it is possible
to write the equation of motion for the aeroelastic system in
state space format:

̇x (𝑡) = Anlx (𝑡) + Bu𝑐 (𝑡) , y (𝑡) = Cx (𝑡) , (6)

where x(𝑡) = { ̇u(𝑡) u(𝑡) u𝑎(𝑡)}
𝑇 is the state vector and u𝑎(𝑡)

are states of lags required for the approximation of matrixQ.
The matrix of outputs C = [CV C𝑑 C𝑧] has dimension 2𝑚 ×

𝑚(2 + 𝑛lag), where CV and C𝑑 are, respectively, the velocity
and displacement output matrices and the submatrix C𝑧 has
only zeros to complete the matrix dimension, and 𝑚 is the
number of degrees of freedom. MatrixAnl is presented in the
following form:

Anl

=

[
[
[
[
[
[
[
[
[
[

[

−M−1
𝑎
D𝑎 −M−1

𝑎
K𝑎(nl) 𝑞M−1

𝑎
Q3 ⋅ ⋅ ⋅ 𝑞M−1

𝑎
Q(2+𝑛lag)

I 0 0 ⋅ ⋅ ⋅ 0
I 0 (−

𝑉

𝑏
)𝛽1I 0 ⋅ ⋅ ⋅

...
... 0 d ⋅ ⋅ ⋅

I 0
... ⋅ ⋅ ⋅ (−

𝑉

𝑏
)𝛽𝑛lag

I

]
]
]
]
]
]
]
]
]
]

]

,

(7)

where

M𝑎 = M − 𝑞(
𝑏

𝑉
)

2

Q2, D𝑎 = D − 𝑞(
𝑏

𝑉
)Q1,

K𝑎(nl) = Knl − 𝑞Q0, B = [M−1
𝑎

B𝑜𝑐 0]𝑇,

(8)

where M𝑎 and D𝑎 are, respectively, the aeroelastic mass and
damping matrices, K𝑎(nl) is the nonlinear aeroelastic stiffness
matrix, B is the input matrix, I is an identity matrix, and 0 is
a matrix of zeros with appropriated dimension.

2.2. Time Integration. To calculate the time response of the
system with freeplay a modified 4th order Runge-Kutta
algorithm using Hénon method is used. Hénon method is
necessary in order to identify changes in the stiffness due to
the freeplay. This approach is used to minimize integration
errors mainly with respect to the phase shifts.

Themain idea considered inHénon’s method is to change
the independent variable (time) to the degree of freedomwith
freeplay (a spacial variable) always that the stiffness changes
with the freeplay region. In these cases, the time becomes
the dependent variable and the integration step is done in
the degree of freedom related to the freeplay. The size of
the step is the amount necessary for this degree of freedom
to coincide with the transition points shown in Figure 2.
Once the control surface position is the transition point,
the system of equations is rewritten considering the time as
the independent variable. See complementary information in
[2, 21, 31].
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3. Development of Fuzzy
Takagi-Sugeno Controller

A fuzzy model uses rules, which are linguistic IF-THEN
statements involving fuzzy sets, fuzzy logic, and fuzzy infer-
ence. These rules play a key role in representing expert
control/modeling knowledge and experience and in linking
the input variables of fuzzy controllers/models to output
variable (or variables). To explain the procedure, consider
the open loop nonlinear aeroelastic system described in
following form:

̇𝑥𝑖 (𝑡) =

𝑁

∑

𝑗=1

𝑓𝑖𝑗 (x (𝑡)) 𝑥𝑗 (𝑡) , (9)

where u𝑐 = 0,𝑁 = 𝑛(2 + 𝑛lag), 𝑖 = 1, . . . , 𝑁, and 𝑓𝑖𝑗(x(𝑡)) = 𝑓𝑘

represents the 𝑘th nonlinear function, where 𝑘 = 1, . . . , 𝑁nl ≤

𝑁
2.
The nonlinear system described by (9) can be represented

by the Takagi-Sugeno model using the following rule:

Rule 𝑖:

if 𝑧1 (𝑡) is 𝑀𝑖1 and . . . and 𝑧𝑝 (𝑡) is 𝑀𝑖𝑝

Then ̇x (𝑡) = A𝑖x (𝑡) , y (𝑡) = Cx (𝑡) , 𝑖 = 1, . . . , 𝑟,

(10)

where𝑀𝑖𝑗 is the fuzzy set and 𝑟 is the number of model rules;
𝑧1(𝑡), . . . , 𝑧𝑝(𝑡) are known premise variables that in general
may be functions of the state variables, external disturbances,
and/or times. Each linear model represented by A𝑖 is called a
subsystem [32].

Taniguchi et al. [33] present a simple method to identify
the subsystems. The basic idea is to write each nonlinear
function𝑓𝑘 as a linear combination of its maximum𝑓

max
𝑘

and
minimum 𝑓

min
𝑘

values both given, respectively, by

𝑓
max
𝑘

= max [𝑓𝑘 (x (𝑡))] ,

𝑓
min
𝑘

= min [𝑓𝑘 (x (𝑡))] .
(11)

From these maximum and minimum values, each non-
linear function can be represented by

𝑓𝑘 (x (𝑡)) = [𝑔
min
𝑘

(x (𝑡))] 𝑓min
𝑘

+ [𝑔
max
𝑘

(x (𝑡))] 𝑓max
𝑘

, (12)

where

0 ≤ 𝑔
min
𝑘

(x (𝑡)) , 𝑔
max
𝑘

(x (𝑡)) ≤ 1,

𝑔
min
𝑘

(x (𝑡)) + 𝑔
max
𝑘

(x (𝑡)) = 1,

𝑔
min
𝑘

(x (𝑡)) =
[𝑓𝑘 (x (𝑡)) − 𝑓

max
𝑘

]

[𝑓
min
𝑘

− 𝑓
max
𝑘

]
then,

𝑔
max
𝑘

(x (𝑡)) = 1 − 𝑔
min
𝑘

(x (𝑡)) .

(13)

If [𝑔min
𝑘

(x(𝑡))+𝑔max
𝑘

(x(𝑡)) = 1], ∀𝑘 = 1, . . . , 𝑁nl, then each
nonlinear function can be conveniently written as

𝑓𝑘 (x (𝑡))

=

𝑁nl

∏

𝑗=1,𝑗 ̸=𝑘

{𝑔
min
𝑗

(x (𝑡)) + 𝑔
max
𝑗

(x (𝑡))}

× {[𝑔
min
𝑘

(x (𝑡))] 𝑓min
𝑘

+ [𝑔
max
𝑘

(x (𝑡))] 𝑓max
𝑘

} ,

(14)

or

𝑓𝑘 (x (𝑡)) =
𝑟
1

∑

𝑗=1

𝑁𝑗 (x (𝑡)) 𝑓
min
𝑘

+

(2
𝑁nl )

∑

𝑗=𝑟
1
+1

𝑁𝑗 (x (𝑡)) 𝑓
max
𝑘

, (15)

where 𝑟1 = 2
(𝑁nl−1) and𝑁𝑗(x(𝑡)) is given by

𝑁𝑗 (x (𝑡)) =
𝑁nl

∏

𝑘=1

𝑔
(⋅)

𝑘
(x (𝑡)) ,

2
𝑁nl

∑

𝑗=1

𝑁𝑗 (x (𝑡)) = 1, (16)

and the superscript (⋅) indicates the combination between
maximum and minimum values for each 𝑘th function
𝑔
(⋅)

𝑘
(x(𝑡)).
Considering that Anl = Anl(𝑓1, 𝑓2, . . . , 𝑓𝑁nl) and substi-

tuting each 𝑓𝑘 according to (15), the nonlinear equation of
motion (17) is rewritten after some rearrangement as

̇x (𝑡) = (

2
𝑁nl

∑

𝑗=1

𝑁𝑗 (x (𝑡))A𝑗) x (𝑡) + (

2
𝑁nl

∑

𝑗=1

𝑁𝑗 (x (𝑡))B𝑗) u𝑐 (𝑡) ,

(17)

where each linearmatrixA𝑗 is the original nonlinearmatrix at
which the𝑁nl functions𝑓𝑘 are substituted by the combination
ofmaximumandminimumvalues𝑓max

𝑘
and𝑓min
𝑘

. In this case
B𝑗 = B ∀𝑗.

Particularly for the typical section including freeplay
nonlinearity, there are three nonlinear functions (𝑁nl = 3)

into the matrix Anl and they are given by

𝑓1 = 𝑎nl(1,6) = −M−1
𝑎(1,3)

[𝑘𝛽𝑓nl − 𝜌0.5𝑉
2Q0(1,3)] ,

𝑓2 = 𝑎nl(2,6) = −M−1
𝑎(2,3)

[𝑘𝛽𝑓nl − 𝜌0.5𝑉
2Q0(2,3)] ,

𝑓3 = 𝑎nl(3,6) = −M−1
𝑎(3,3)

[𝑘𝛽𝑓nl − 𝜌0.5𝑉
2Q0(3,3)] ,

(18)

where 𝑎nl(𝑖,𝑗) indicates an element into matrix Anl and the
subscripts (𝑖, 𝑗) indicate the 𝑖th row and 𝑗th column in each
respective matrix. These functions 𝑓𝑘 depend on 𝑓nl which is
illustrated in Figure 3.
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Figure 4: Linear flutter analysis: 𝑉-𝑓 diagram.

3.1. Closed-Loop Takagi-Sugeno Controller. In this section a
feedback control strategy is used to control the amplitude
of oscillation in the control surface. The feedback force is
obtained by applying a feedback gain to the state systems
states, such that the control inputs are given by u𝑐(𝑡) =

−Gx(𝑡), where G is the feedback gain matrix. The feedback
gain is calculated using linear matrix inequality to solve
Lyapunov’s function for stability, in this case

̇x (𝑡) = [

[

2
𝑁nl

∑

𝑗=1

𝑁𝑗 (x (𝑡)) (A𝑗 − B𝑗G)]

]

x (𝑡) , (19)

𝑉𝐿 = (

2
𝑁nl

∑

𝑗=1

𝑁𝑗 (x (𝑡)) [A𝑗 − B𝑗G] x (𝑡))
𝑇

Px (𝑡)

+ x(𝑡)𝑇P(

2
𝑁nl

∑

𝑗=1

𝑁𝑗 (x (𝑡)) [A𝑗 − B𝑗G] x (𝑡)) < 0,

(20)
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Figure 5: Linear flutter analysis: 𝑉-𝑔 diagram.

Table 1: Physical and geometric properties of the 2D airfoil.

Parameter Value
Semichord—𝑏 0.15m
Airfoil mass—𝑀 5.0 kg
Air density—𝜌 1.225 kg/m3

𝑐 0.6%
𝑎 −0.4%
𝑥𝜃 0.2m/m
𝑟𝛽 (6.25 × 10

−3
)
−1/2m/m

𝑥𝛽 0.0125m/m
𝑟𝜃 (0.25)

−1/2m/m
Plunge frequency—𝑓ℎ 3.0Hz
Pitch frequency—𝑓𝜃 4.5Hz
Control surface deflection—𝑓𝛽 12.0Hz
Parameters of lag—𝛽𝑗 (𝑗 = 1, . . . , 4) 0.2, 1.2, 1.6, 1.8
Reduced frequency—𝑘 [0.1, 2.0], Δ𝑘 = 0.1

where 𝑉𝐿 = x𝑇Px is the Lyapunov function. The stability of
this system is assured if there is a positive-definite matrix
P such that the inequality of (20) is true. After some
rearrangement this equation can be rewritten such as [32]

x𝑇 (𝑡)
2
𝑁nl

∑

𝑗=1

𝑁𝑗 (x (𝑡))

× [(A𝑗 − B𝑗G)
𝑇

P + P (A𝑗 − B𝑗G)] x (𝑡) < 0,

(21)

and finally, the solution of this inequality is equivalent to the
solution of all the following inequalities satisfied simultane-
ously [34]:

(A𝑗 − B𝑗G)
𝑇

P + P (A𝑗 − B𝑗G) < 0 𝑗 = 1, . . . , 2
𝑁nl

. (22)
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Inequality (22) is not linear: then considering X = P−1,
G𝑥 = GX, it is possible to write the following linear matrix
inequality:

XA𝑇
𝑗
− G𝑇
𝑥
B𝑇
𝑗
+ A𝑗X − B𝑗G𝑥 < 0 𝑗 = 1, . . . , 2

𝑁nl

such that G = G𝑥X
−1
.

(23)

Although the control gain G has been computed using
inequality (23), the required control force u𝑐(𝑡) can exceed
desired limits. In this case, the control gain is multiplied by a
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Figure 8: Linear equivalent stiffness from the HBM.
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Figure 9: LCO frequencies obtained from the HBM.

constant 𝑔 between the interval [0 1], conveniently adjusted
during the control design. The control force is rewritten as

u𝑐 (𝑡) = 𝑔u𝑐 (𝑡) or u𝑐 (𝑡) = −𝑔Gx (𝑡) . (24)

4. Numerical Application

To illustrate the method, numerical simulations were per-
formed using the three degrees of freedom airfoil section for
which the equations of motion are presented by Theodorsen
et al. in [23]. The structural mass, stiffness, and aerodynamic
forces matrices can be found in [17, 22, 35].

Initially, the linear flutter boundary was found extracting
the eigenvalues from the state space dynamic matrix without
freeplay. After that preliminary verification, the first order
harmonic balance method (HBM) was used to predict the
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LCOamplitudes.Different researchers have usedHBMmeth-
ods to study limit cycles oscillations in aeroelastic systems, as
shown in [3, 6, 36, 37].
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Figure 12: Case 1: control surface rotation (|𝛿| = 0.6
∘ and 𝑉 =

12.5m/s).

4.1. Linear Flutter Boundary. Figure 1 illustrates the model
and its physical and geometric properties are presented in
Table 1. Figures 4 and 5 show, respectively, the classical 𝑉-𝑓
and𝑉-𝑔 diagrams for the linear flutter solution. According to
these results flutter speed is equal to 12.7m/s.

4.2. LCO Preliminary Predictions. After the preliminary lin-
ear analysis to identify the flutter boundary, the first order
HBM was used to predict the LCO amplitudes. The results
shown in Figures 6 and 7 were obtained by extracting the
eigenvalues from the matrix Anl defined for different values
of equivalent stiffness 𝑘eq, that is, the control surface stiffness
assuming values from zero to 𝑘𝛽. The values of 𝑘eq/𝑘𝛽 are
shown in Figure 8, where the nonlinear function𝑓nl assumed
a unitary value and the control force u𝑐(𝑡) = 0. The HBM
also provided an estimate for the first harmonic of the system
response according to Figure 9.

4.3. Controller Design. Using the methodology described in
Section 4, three nonlinear functions were used to describe
the aeroelastic system with freeplay (𝑓𝑘, 𝑘 = 1, 2, 3). These
functions were computed assuming themaximumoscillation
amplitude equal to five degrees; that is, −5∘ ≤ 𝛽(𝑡) ≤ 5

∘.
Figure 10 shows a comparison between their actual values and
computed values by (12).

This leads to eight (23) dynamic matrices that are written
combining the maximum and minimum values of these
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Figure 13: Case 1: phase plan (|𝛿| = 0.4
∘ and 𝑉 = 12.5m/s).
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functions, such that
A1 = A (𝑓

max
1

, 𝑓
min
2

, 𝑓
min
3

) , A2 = A (𝑓
max
1

, 𝑓
max
2

, 𝑓
min
3

) ,

A3 = A (𝑓
min
1

, 𝑓
max
2

, 𝑓
min
3

) , A4 = A (𝑓
min
1

, 𝑓
min
2

, 𝑓
min
3

) ,

A5 = A (𝑓
max
1

, 𝑓
min
2

, 𝑓
max
3

) , A6 = A (𝑓
max
1

, 𝑓
max
2

, 𝑓
max
3

) ,

A7 = A (𝑓
min
1

, 𝑓
max
2

, 𝑓
max
3

) , A8 = A (𝑓
min
1

, 𝑓
min
2

, 𝑓
max
3

) .

(25)
The results shown in this section were obtained consider-

ing two different freeplay amplitudes and a time step equal

to 0.001 seconds. To compute the control gain, a column
input matrix was used to represent an actuator applying
force on the control surface (B𝑜𝑐 = {0 0 1}

𝑇). Also, it was
considered that the parameter 𝑔 is equal to 1.0 for all cases.
However, in particular for experimental applications where
limitations exist on the actuator force, the parameter 𝑔 can
be conveniently chosen between ]0, 1[.

For the cases in which the freeplay amplitude was |𝛿| =
0.4
∘, the initial conditionswere𝛽(0) = 0.9

∘ and 2.5∘. Similarly,
for the cases in which |𝛿| = 0.6

∘, the initial conditions were
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Figure 15: Case 2: control surface rotation (|𝛿| = 0.4
∘ and 𝑉 =

13.1m/s).

𝛽(0) = 1.3
∘ and 3.5

∘. These values were defined based on the
results obtained from the HBM, as discussed in Section 4.2.

Two different conditions of airspeed were considered to
demonstrate the method. Different controllers were designed
for each case. In first case was chosen a condition of stable
limit cycle for each freeplay amplitude. In the second one,
unstable limit cycles were chosen in order to evaluate the
effectiveness of the approach. Consider if all neighboring
trajectories approach the LCO, it is stable; otherwise, the LCO
is unstable. Definitions and a detailed discussion about stable
and unstable limit cycles can be found in [38].

Case 1 (stable LCO). In the first case 𝑉 = 12.5m/s was
considered for both freeplay amplitudes. Figures 11 and 12
show that the uncontrolled system response exhibits a limit
cycle oscillation with first harmonic around 3.7Hertz and
amplitude approximately equal to 1 degree. It is possible
to note in those figures that although the first order HBM
cannot predict, the system response exhibits a dominant
component around 15Hertz. In addition, the plunge andpitch
degrees of freedom behavior can be observed in the phase
plan shown in Figures 13 and 14. In these cases of stable
LCOs the designed controllers were able to suppress the limit
cycles.The appendix presents details involved to compute the
Fourier transform when Hénon’s technique is used for the
time integration process.

Case 2 (unstable LCO). In this case was considered 𝑉 =

13.1m/s for both freeplay amplitudes. Figures 15 and 16 show
that the uncontrolled system response exhibits an unstable
limit cycle. However, the controller gains computed using
the proposed approach are able to suppress those nonlinear
responses. To improve the comprehension, Figure 17 shows a
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Figure 16: Case 2: control surface rotation (|𝛿| = 0.6
∘ and 𝑉 =

13.1m/s).
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Figure 17: Case 2: zoom selection area for the control surface
rotation (|𝛿| = 0.6

∘ and 𝑉 = 13.1m/s).

zoom selection area for the control surface rotation consider-
ing the second freeplay amplitude.

For this second case the plunge and pitch degrees of
freedom behavior can be observed in the phase plan shown
in Figures 18 and 19. Finally, Figure 20 shows the control force
for 𝛿𝐹 = 0.6

∘ and similar results were obtained for the other
cases. Note that the parameter 𝑔 < 1.0 can be chosen in order
to decrease the required control forcemainly for the first time
steps.

5. Conclusions

This paper presents a methodology to control limit cycle
oscillations in a typical section airfoil with control surface
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∘ and 𝑉 = 13.1m/s).

freeplay. The idea was to use the fuzzy Takagi-Sugeno mod-
eling to describe the nonlinear aeroelastic system through
linear matrix inequalities. The closed-loop problem was
written using a convex space and a linear control force was
computed using convex optimization. A linear flutter analysis
was performed to identify the flutter boundary. Also, the first
order harmonic balance method was solved to predict the
limit cycle oscillation envelope. After these first predictions
two freeplay amplitudes were defined and two airspeeds
were chosen to demonstrate stable and unstable limit cycles.
Finally, numerical simulations presented different nonlinear
aeroelastic responses comparing the controlled and uncon-
trolled system.The results show that fuzzy TS modeling is an
efficient tool for solving this kind of problem.

Appendix

The integration process involving Hénon’s technique can
result in different time steps, as discussed in Section 2.2 and
shown in Figure 21. However, in order to apply the Fourier
transform to compute the system responses in frequency
domain, it is necessary to keep a constant time step. In this
case, after using the amount 𝑑𝑡󸀠 to identify the transition
point shown in Figure 2, another time integration can be
performed considering the time step (𝑑𝑡 − 𝑑𝑡

󸀠
). Then, the

system response for the constant time step cannot include
that preliminary point obtained using𝑑𝑡󸀠.This procedurewas
employed to compute the responses plotted in Figures 11 and
12.
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Feedback linearisation is a well-known technique in the controls community but has not been widely taken up in the vibrations
community. It has the advantage of linearising nonlinear system models, thereby enabling the avoidance of the complicated
mathematics associated with nonlinear problems. A particular and common class of problems is considered, where the nonlinearity
is present in a system parameter and a formulation in terms of the usual second-order matrix differential equation is presented.The
classical texts all cast the feedback linearisation problem in first-order form, requiring repeated differentiation of the output, usually
presented in the Lie algebra notation. This becomes unnecessary when using second-order matrix equations of the problem class
considered herein. Analysis is presented for the general multidegree of freedom system for those cases when a full set of sensors and
actuators is available at every degree of freedom and when the number of sensors and actuators is fewer than the number of degrees
of freedom. Adaptive feedback linearisation is used to address the problem of nonlinearity that is not known precisely. The theory
is illustrated by means of a three-degree-of-freedom nonlinear aeroelastic model, with results demonstrating the effectiveness of
the method in suppressing flutter.

1. Introduction

The effects of nonlinearity are everywhere to be seen in
nature and it is true to say that many problems in structural
dynamics are nonlinear, but in the past it has been convenient
and easier to assume linearity. This linear analysis approach
has necessarily led to conservative design of engineering
structures that operate dynamically. In the last few decades
the need to assume linearity has been increasingly challenged,
mainly because of the high cost of fuel and materials and the
need to preserve the earth’s valuable natural resources.This is
particularly true of the aerospace industries where the need
to produce lightweight, fuel efficient aircraft is an unremitting
pressure on design engineers. One problem is, of course, that
nonlinear dynamic analysis is complicated and the useful
linear-analysis methods, such as modal decomposition, are
not applicable.

Inevitably active control will increasingly be seen as a
solution for problems of nonlinearity in elastomechanics
and aeroelasticity. One option is to design lightweight, fuel
efficient aircraft and use active control to nullify the effects

of the nonlinearity. By this approach, well-understood linear
analysis methods can still be used. Feedback linearisation,
described, for example, by Isidori [1], is a technique now
well established in the active control community. Depending
upon the implementation it is able to completely or partially
linearise the nonlinear system. In the latter case there remains
a (generally nonlinear) subsystem with dynamics that must
be investigated to ensure stability. Of course, the linear part
can be used for the attainment of a chosen control objective
using conventional linear time invariant (LTI) techniques.
An important aspect of feedback linearisation is that for the
desired control objectives to be met precisely, the nonlinearity
must be known in terms of its physical location, its type (e.g.
cubic, quartic, free-play, etc.), and the numerical values of its
parameters. This seems initially to pose a serious restriction
on its application, but fortunately there exist techniques, such
as adaptive feedback linearisation, that are able to account for
incorrectly estimated nonlinear terms.

It is apparent from the literature that the feedback
linearisation method, which holds much promise, has found
only very limited application in active vibration suppression.
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Examples include Fossen and Paulsen [2] who applied adap-
tive feedback linearisation to the automatic steering of ships.
In aeroelasticity, Ko and his colleagues [3–5] used feedback
linearisation methods (including adaptation) and carried out
a series of wind-tunnel tests on a two degree of freedom aero-
foil with either one or two control surfaces. They found that
with an erroneous nonlinear parameter, but without adapta-
tion, their system reached a nonzero equilibrium, rather than
the zero equilibrium that is usually sought. Monahemi and
Krstic [6] employed adaptive feedback linearisation to update
the aerodynamic parameters in their nonlinear model and
thereby suppress wing-rockmotion, a phenomenon triggered
primarily by aerodynamic nonlinearities. Poursamad [7]
implemented a hybrid neural-network controller for antilock
braking with adaptive feedback linearisation to handle non-
linear and time-varying brake parameters. Bechlioulis and
Rovithakis [8] developed a multiple-input, multiple-output
tracking controller with adaptive feedback linearisation and
Shojaei et al. [9] demonstrated the ability of adaptive feedback
linearisation in aiding effective trajectory tracking in the
presence of both parametric andnonparametric uncertainties
in wheeled robots. Tuan et al. [10] designed a controller based
on partial feedback linearisation of the nonlinear dynamics of
a 3D overhead crane.

In this paper the problem of active control of nonlinear
systems of the form

A1 ̈x + A2 ̇x + A3x + fnl (x, ̇x) = Bu, (1)

representative of nonlinear vibration problems in elastome-
chanics and aeroelasticity, is considered.The vectors x, ̇x, and
u typically contain the state variables and inputs, respectively.
The nonlinearity fnl is given as a function of x and ̇x and the
matricesA1,A2,A3,B represent the usual system parameters.
This class of problem, characterised by the second-order
matrix differential equation with additional nonlinearity
confined to the left-hand side of (1), prevails to a very large
extent in engineering mechanics and is therefore worthy of
the special attention devoted to it in this paper. The classical
output feedback linearisation [1] may be greatly simplified in
the case of elastomechanical or aeroelastic systems described
by (1). In particular,

(i) the essential theory is carried out entirely using the
second-order matrix differential equation familiar
to structural and aero-structural dynamicists, with
the result that the need for repeated differentiation,
usually described using the Lie-algebra notation, is
rendered unnecessary,

(ii) a linear transformation applies between the state
variable in (1) and the coordinates of the linearised
system,

(iii) cancellation of the whole of the open-loop system
dynamics (not just the nonlinear terms) results in a set
of independent linear single degree of freedom sys-
tems for the application of conventional LTI control
methods,

(iv) complete linearisation may be achieved with an equal
number of actuators and sensors. If the number of

actuators and sensors is less than the dimension of the
system, then there will remain a nonlinear subsystem
of dimension equal to the difference between the
dimension of the full system and the number of
sensors (and actuators). This subsystem can be made
independent of the linearised part and methods are
described to check its stability.

(v) Adaptive feedback linearisation is described for the
treatment of an incorrect estimate of the nonlinearity.
This makes use of Lyapunov stability criteria and
results in a parameter update rule that evolves with
time to ensure stability of the system.

The method is illustrated by means of a three degree of
freedom aeroelastic system consisting of a flexible wing
described in terms of two assumed modes in bending and
torsion and a third degree of freedom that describes the
angularmotion of an underslung pylon-engine assembly.The
parameters and dimensions of the system are carefully chosen
to have realistic values.

2. Active Feedback Linearisation

Feedback linearisation [1] is a process whereby a nonlinear
system is rendered linear by virtue of active control. Unlike
Jacobian linearisation, it is exact, and does not entail an
approximation at any stage. The method is implemented by
transforming a nonlinear system into a linear one. For the
class of second-order systems given by (1) considered in this
paper,

̈x = f (x, ̇x) + Gu, f (x, ̇x) = Ψx +Φ ̇x +Ωfnl,

Ψ = −A−1
1
A3, Φ = −A

−1

1
A2, Ω = −A

−1

1
, G = A−1

1
B,
(2)

becomes

̈z = Ψz +Φ ̇z + Gu. (3)

In these equations u and u are, respectively, the actual (or
physical) input applied to the nonlinear system and the so-
called “artificial” input to the linear system. The matrices Ψ,
Φ, G are dependent on the chosen inputs u. The mapping
from the nonlinear domain to the linearised domain is
achieved through a nonsingular, linear, coordinate transfor-
mation. The actual input is designed to neutralise the effect
of the nonlinearity, a procedure which can sometimes be
achieved in full, and sometimes partially, as will be explained
theoretically and by means of illustrative examples.

The process is quite straightforward for elastomechanical
and aeroelastic systems described by second-order matrix
differential equations with nonlinearity in the system param-
eters. The method described by Isidori [1] allows for greater
generality, including nonlinearity in the input and output
as well as in the system parameters, which is not required
here and its omission leads to simplifications which aid the
understanding of an otherwise fairly complicated procedure.

The feedback linearisation procedure classically, using the
Lie algebra, entails repeated differentiation of each of the
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outputs with respect to time, until the input terms appear.
The classical procedure is greatly simplified in the case of
second-order matrix systems such as those in elastomechan-
ics or aeroelasticity, as explained in the sequel. The present
work addresses two cases. The first case is that of complete
input-output linearisation, meaning a full complement of
outputs and inputs at every degree of freedom of the system.
In this case, since the number of outputs is equal to the
dimension of the system, it is possible to linearise the entire
nonlinear system. The complete dynamics of the original
system are preserved during the transformation. In the
second case, an incomplete systemof equal numbers of inputs
and outputs is assumed. In this case, as the number of inputs
and outputs is less than the dimension of the overall model
only a partial linearisation of the system can be achieved.The
portion that remains untransformed will contribute to what
is known as the internal dynamics, whose stability must be
ensured for stability of the overall closed-loop system. This
is achieved by examining the stability of the zero dynamics
[1], which is obtained by setting all coordinates of the lin-
earised subsystem to zero in the expressions for the internal
dynamics. Expressions for the latter are obtained such that
their time-derivatives are orthogonal to the inputs, rendering
the zero dynamics uncontrollable.The zero dynamics may be
either linear or nonlinear.

2.1. Complete Input-Output Linearisation (𝑛-Inputs, 𝑛-
Outputs). In the present case the number of inputs and
outputs is equal to the dimension of the system.Thematrices
and vectors of the original nonlinear system, given in (2),
have the dimensions Ψ, Φ, Ω, G ∈ R𝑛×𝑛; x, u, f ∈ R𝑛×1 and
those given by the desired linearised equation (3) by Ψ, Φ,
G ∈ R𝑛×𝑛; z, u ∈ R𝑛×1. The first step is to choose the vector
of actual inputs that cancels the nonlinearity,

u = G−1 (u − f (x, ̇x)) . (4)

It can be seen that the nonlinearity is indeed cancelled by
substituting (4) into (2). In fact, this is a special case where
not only the nonlinearity, but also the complete open loop
dynamics is cancelled by the choice of actual input.The result
is the linearised system of independent, second-order, single
degree of freedom equations

(

̈𝑥1

̈𝑥2

...
̈𝑥𝑛

) =(

𝑢1

𝑢2

...
𝑢𝑛

). (5)

In fact, these equations are a special case of single degree of
freedom equations, where each equation is simply a double
integrator. Equation (5) is a particular form of (3), where
also it is seen particularly that x = z. The simplicity of (5)
is an advantage of the complete cancellation of the open-
loop dynamics in (4). The choice of the artificial input u
necessarily depends upon the control objective, for example,
the assignment of a pair of complex conjugate poles in each of
the systems in (5) to avoid resonances. Whatever the control

objective is, it will result in the determination of gains defined
here in terms of negative feedback as

𝑢1 = − [𝜍1 ]1] {
𝑥1

̇𝑥1
}

𝑢2 = − [𝜍2 ]2] {
𝑥2

̇𝑥2
}

...

𝑢𝑛 = − [𝜍𝑛 ]𝑛] {
𝑥𝑛

̇𝑥𝑛
} .

(6)

In this special case where the entire open loop dynamics are
cancelled, the control results in a closed-loop system that is
comprised of 𝑛 decoupled, single degree of freedom subsys-
tems. Then, having defined the artificial inputs, the actual
inputs that provide the desired linearisation are determined
from (4). It is seen that the nonlinearity in (2) is neutralised
and the closed-loop system is indeed linear with the required
dynamics.

If the actual input were chosen to cancel the nonlinearity
alone (not the complete open-loop dynamics), then (4)would
be replaced by

u = G−1 (u −Ωfnl) , (7)

and the linearised equations would remain coupled (unlike
(5)) and consequently the gains in (6) would take a different
form, as

{{{{

{{{{

{

𝑢1

𝑢2

...
𝑢𝑛

}}}}

}}}}

}

= −

[
[
[
[

[

𝜍11 ]11 𝜍12 ]12 ⋅ ⋅ ⋅ 𝜍1𝑛 ]1𝑛
𝜍21 ]21 𝜍22 ]22 ⋅ ⋅ ⋅ 𝜍2𝑛 ]2𝑛
...

...
...

... d
...

...
𝜍𝑛1 ]𝑛1 𝜍𝑛2 ]𝑛2 ⋅ ⋅ ⋅ 𝜍𝑛𝑛 ]𝑛𝑛

]
]
]
]

]

×

{{{{{{{{{{

{{{{{{{{{{

{

𝑥1

̇𝑥1

𝑥2

̇𝑥2

...
𝑥𝑛

̇𝑥𝑛

}}}}}}}}}}

}}}}}}}}}}

}

.

(8)

Clearly, there are a greater number of control gains in (8)
than in (6), whichmeans that there is more control flexibility,
which might be used, for example, to assign the eigenvectors
as well as the eigenvalues.This may be readily achieved using
methods such as that presented in [11] and is illustrated
through a numerical example later on.

2.2. Partial Input-Output Linearisation (𝑚-Inputs,𝑚-Outputs,
𝑚 < 𝑛). The inputs and outputs (actuators and sensors),
u, x(1:𝑚) ∈ R𝑚×1, in equal numbers are now fewer than
the dimension of the system. Linearisation results in similar
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expressions to those obtained for the complete input-output
case presented above. Equation (2) is now rewritten as

{{{{{{{{{

{{{{{{{{{

{

̈𝑥1

...
̈𝑥𝑚

̈𝑥𝑚+1

...
̈𝑥𝑛

}}}}}}}}}

}}}}}}}}}

}

=

{{{{{{{{{

{{{{{{{{{

{

𝑓1 (x, ̇x)
...

𝑓𝑚 (x, ̇x)
𝑓𝑚+1 (x, ̇x)

...
𝑓𝑛 (x, ̇x)

}}}}}}}}}

}}}}}}}}}

}

+

[
[
[
[
[
[
[
[
[

[

𝑔1,1 ⋅ ⋅ ⋅ 𝑔1,𝑚

... d
...

𝑔𝑚,1 ⋅ ⋅ ⋅ 𝑔𝑚,𝑚

𝑔𝑚+1,1 ⋅ ⋅ ⋅ 𝑔𝑚+1,𝑚

... d
...

𝑔𝑛,1 ⋅ ⋅ ⋅ 𝑔𝑛,𝑚

]
]
]
]
]
]
]
]
]

]

{{

{{

{

𝑢1

...
𝑢𝑚

}}

}}

}

,

(9)

and the coordinate systemwhichmaps the original nonlinear
system to the partially linearised system may be expressed as

(𝑧1 𝑧2 ⋅ ⋅ ⋅ 𝑧𝑚)
𝑇
= (𝑥1 𝑥2 ⋅ ⋅ ⋅ 𝑥𝑚)

𝑇
, (10)

which is identical to the full output feedback case, except
of course that there are now only 𝑚 outputs. Further (𝑛-𝑚)
coordinates are needed and are chosen as coefficients of the
orthonormal basis of the null space of G𝑇

(1:𝑛,1:𝑚)
so that

(

𝑥1

...
𝑥𝑛

) = V(
𝑧𝑚+1

...
𝑧𝑛

),

V𝑇V = I(𝑛−𝑚)×(𝑛−𝑚), V𝑇G(1:𝑛,1:𝑚) = 0,

V ∈ R𝑛×(𝑛−𝑚).

(11)

As with the full output feedback case, it is now necessary to
choose actual inputs so that the nonlinearity is eliminated.
This is achieved by

u = [G1:𝑚,1:𝑚]
−1
(u − f(x, ̇x)(1:𝑚,1)) ,

f(x, ̇x)(1:𝑚,1) = Ψ(1:𝑚,:)x +Φ(1:𝑚,:) ̇x +Ω(1:𝑚,:)fnl,
(12)

and substitution of (12) into the upper partition of (9) leads
to𝑚 independent linear second-order systems with artificial
inputs u = {𝑢1 ⋅ ⋅ ⋅ 𝑢𝑚}

𝑇, expressed as

(

̈𝑧1

̈𝑧2

...
̈𝑧𝑚

) =(

̈𝑥1

̈𝑥2

...
̈𝑥𝑚

) =(

𝑢1

𝑢2

...
𝑢𝑚

). (13)

Then by combining (9), (10), and (11) it is found that

{{

{{

{

̈𝑧𝑚+1

...
̈𝑧𝑛

}}

}}

}

= V𝑇
{{

{{

{

𝑓1 (z, ̇z)
...

𝑓𝑛 (z, ̇z)

}}

}}

}

+ V𝑇G(1:𝑛,1:𝑚)
{{

{{

{

𝑢1

...
𝑢𝑚

}}

}}

}

, (14)

so that from (11),

{{

{{

{

̈𝑧𝑚+1

...
̈𝑧𝑛

}}

}}

}

= V𝑇
{{

{{

{

𝑓1 (z, ̇z)
...

𝑓𝑛 (z, ̇z)

}}

}}

}

, (15)

which ensures uncontrollability of the nonlinear internal
dynamics (15).

The stability of the complete system is then determined
by the zero dynamics, which are generally nonlinear, obtained
by setting to zero in (15) the external coordinates (𝑧1, . . . , 𝑧𝑚)
of the partially linearised system in (13). The equations of
the zero dynamics and their stability will be addressed for a
specific aeroelastic example in the sequel.

As before, the artificial inputs in (13) may be chosen as
a linear combination of the instantaneous displacement and
velocity to fulfil a control objective. When the zero dynamics
are found to be globally stable, then the desired control
behaviour is unaffected by the nonlinearity confined to the
internal dynamics.

3. Aeroservoelastic Model

The governing equation of aeroservoelastic systems takes the
usual form [12] given by

A ̈q + (𝜌𝑉B +D) ̇q + (𝜌𝑉2C + E) q + fnl (q) = fext, (16)

where A,D, E are the inertia, structural damping, and struc-
tural stiffnessmatrices, respectively,B,C are the aerodynamic
damping and aerodynamic stiffness matrices, respectively,
and 𝜌, 𝑉 are air density and velocity, respectively, (the
present B is different from the input distribution matrix, also
denoted byB, in Section 1).The vector q contains generalised
coordinates describing the motion of the system, whereas
the vector fext contains externally applied generalised forcing
terms, including control forces and gusts. The nonlinearity
is confined to fnl(q). Modified aerodynamic strip theory is
used to compute the lift and pitch moment and an additional
unsteady aerodynamic derivative term is included to account
for significant unsteady effects [12], which appears in the
matrixB. In practice, the aerodynamicmatrices are frequency
dependent [12] and the time domain model would need to
include aerodynamic states to account for this. The approach
used is perfectly adequate for low speed, high aspect ratio
wings. The system consists of a wing with an underslung
engine attached by a pylon. Aerodynamic forces/moments
acting on the pylon-engine arrangement are assumed to be
negligible compared to those acting on the wing.

In the analysis presented here the wing deflection is
described in terms of two assumed modes and a further gen-
eralised coordinate representing the angular displacement of
the engine about the axis of the wing.The assumedmodes are
depicted in Figure 1, which also shows the coordinate system
with its origin at the root, leading edge of the wing.

The vertical deflection of the wing 𝜁(𝑥, 𝑦) is then given by

𝜁 = 𝑦
2
𝑞1 + 𝑦 (𝑥 − 𝑥𝑓) 𝑞2, (17)
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Mode 1 (bending) Mode 2 (torsion)

x

y

𝜁

Figure 1: The two deflection patterns assumed for the flexible wing.

where 𝑞1, 𝑞2 are generalised coordinates that quantify the
amount of bending and torsion modes present in the overall
deflection, and 𝑥𝑓 is the 𝑥-coordinate of the wing flexural
axis.The pylon-engine is modelled as a rigid body, connected
to the wing by a nonlinear stiffness. A sketch of the pylon-
engine and also the complete wing-pylon-engine systemmay
be found in [13].

The pylon-engine rotational degree of freedom 𝜗pe is
the deflection of the pylon-engine relative to the wing. The
absolute rotation 𝜃pe may be obtained by adding the wing
twist angle at the engine attachment location, 𝜒2, to 𝜗pe.
The absolute pylon-engine rotation becomes a coordinate
in the assumed-modes domain, 𝑞pe = 𝜃pe. The coordinate
transformation matrix T is defined by

{

{

{

𝜁1

𝜒2

𝜗pe

}

}

}

= [

[

𝑦
2

1
0 0

0 𝑦2 0

0 −𝑦2 1

]

]

{

{

{

𝑞1

𝑞2

𝑞pe

}

}

}

, (18)

where 𝜁1 and 𝜒2 denote the vertical displacement at point
“1” (the intersection of the wing flexural axis with the local
𝑥-axis at the point of attachment of the pylon to the wing)
and the angular wing twist at point “2” (the intersection
of the quarter-semi-span with the quarter-chord). The 𝑦-
coordinates of points 1 and 2 are identical (𝑦1 = 𝑦2). The
system matrices, A, B, C, and E are given in terms of the
parameters of the wing and pylon-engine system in [13],
whereas vectors f𝑐 and fnl may be found in Appendix A in
this paper. Note that in the present text, 𝑘𝑇, 𝐾𝑇 are used to
describe the coefficients of the linear and cubic components
of coupling stiffness, respectively, which is different to the
notation used in [13].

4. Numerical Simulation

The dimensions and parameters chosen for the model are
given in [13], with 𝐾𝑇 = 300 × 𝑘𝑇. For the flexible wing, the
values chosen are based on those used in a numerical example
given in [12]. The dimensions and mass of the pylon-engine
arrangement are chosen to be representative of a real aircraft
(e.g. [14]).

The three degree of freedom aeroservoelastic model is
used initially to determine the flutter speed of the linear
system. Then, the cubic hardening term, 𝐾𝑇, is included in
the torsional spring connecting the wing to the pylon-engine,

and the nonlinear time-domain response to initial conditions
is produced at an air speed just above the flutter speed.

The aeroservoelastic matrices are given in general terms
in [13] and expressed here in terms of specific parameter
values in consistent units (to three significant figures) as

A𝑤 = 10
5 [

[

9.49 0.0633 0

0.0633 0.0942 0

0 0 0

]

]

,

E𝑤 = 10
8 [

[

1.10 0 0

0 0.142 0

0 0 0

]

]

,

Ape = 10
3 [

[

4.76 0 1.51

0 0 0

1.51 0 0.647

]

]

,

Epe = 10
6 [

[

0 0 0

0 1.90 −0.958

0 −0.958 0.511

]

]

,

B = 104 [
[

2.98 0 0

−0.229 0.0169 0

0 0 0

]

]

,

C = 103 [
[

0 4.97 0

0 −0.406 0

0 0 0

]

]

.

(19)

A simplification in thematrix subscripts previously defined in
[13] has beenmade here.The control force distributionmatrix
is given (as a function of air speed) by

f𝑐 = 10
2 [

[

−3.19𝑉
2
−2.89𝑉

2
0

−0.302𝑉
2
−0.120𝑉

2
−0.0188

0 0 0.01

]

]

×

{

{

{

𝛽1

𝛽2

𝑇pe

}

}

}

,

(20)

where 𝛽1 and 𝛽2 are control surface (flap) angles and 𝑇pe is a
control torque applied directly to the pylon-engine assembly.
The nonlinear internal force is given by

fnl = 10
8
{

{

{

0

−2.87

1.53

}

}

}

𝜗
3
, 𝑦2 = 𝑦1 = 1.875. (21)



6 Shock and Vibration

0 20 40 60 80 100 120 140
2
4
6
8

Air speed (m/s)N
at

ur
al

 fr
eq

ue
nc

y 
(H

z)

Mode 1 (bending)
Mode 2 (engine)

Mode 3-(torsion)

(a)

0
1
2

Mode 1 (bending)
Mode 2 (engine)

Mode 3-(torsion)

D
am

pi
ng

 ra
tio

 (%
)

0 20 40 60 80 100 120 140
Air speed (m/s)

(b)

Figure 2: 𝑉-𝜔 and 𝑉-𝜁 plots for the wing-pylon-engine model.
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Figure 3: Steady-state LCO in 𝜗pe response.

Further information on the general form of the control and
nonlinear spring forces can be found in Appendix A.

4.1. Uncontrolled Linear System: Natural Frequencies, Damp-
ing and Flutter Speed. The structural modes in the linear
model (nonlinearity neglected) occur at 1.71Hz (bending),
4.06Hz (pylon-engine mode), and 6.83Hz (torsional). It is
evident from Figure 2 that flutter occurs at an airspeed of
77.6ms−1, involving coupling of the pylon-engine mode and
wing bending modes.

4.2. Nonlinear Time-Domain Response. Thenonlinear system
is simulated at an airspeed of 80ms−1, just above the flutter
point, under the application of the initial conditions 𝜁1 =
0.333mm, 𝜒2 = 0.00333 rad, and 𝜗pe = 0.05 rad. These values
have been chosen as they are representative of typical physical
displacements one might expect in practice, for the wing-
pylon-engine system specified in [13]. The resulting response
of the system clearly exhibits limit cycle oscillation (LCO).
A sample of the response for the 𝜗pe coordinate is shown in
Figure 3.

For comparison, the simulated response for the 𝜗pe
coordinate just below the linear flutter speed, at an airspeed
of 75ms−1, is shown in Figure 4. As expected the response
continues to decay and converges to the origin.

In the following section, linearising feedback control
is applied to the nonlinear model in the assumed-modes
domain. In the examples considered, the control objective
is the assignment of the poles of the system. Judicious
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𝜗
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Figure 4: Decaying response, just below linear flutter speed.

placement of the poles can be used to increase the flutter
speed of the system, thereby increasing the flight envelope.
Of course, other control objectives could be used instead.The
resulting linearised system consists of the uncoupled single
degree of freedom subsystems referred to previously in (5).
Two cases are considered: those of 3 inputs and 3 outputs
(denoted 3I3O) and of 2 inputs and 2 outputs (denoted 2I2O)
which are representative of the analysis in Section 2.

4.3. Feedback Linearisation: 3I3O Case. The poles of the
system are assigned for the uncoupled linearised system in (5)
(by cancellation of the entire open-loop dynamics) and with
feedback law (6), so that the natural frequencies and damping
values are given by

𝜔1 = 0.93Hz, 𝜉1 = 0.01,

𝜔2 = 2.9Hz, 𝜉2 = 0.01,

𝜔3 = 4.95Hz, 𝜉3 = 0.01,

(22)

at an air speed of 80ms−1. The first mode is predomi-
nantly wing bending, the second is pylon-engine defor-
mation and the third is mainly the twisting motion of
the wing. With initial conditions the same as the uncon-
trolled case (Section 4.2), namely 𝜁1 = 0.333mm, 𝜒2 =
0.00333 rad, and 𝜗pe = 0.05 rad and in the absence
of any nonlinear parameter error the poles of the lin-
earised system are assigned exactly. The system response
now decays to zero as shown in Figure 5, whereas the
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Figure 5: Feedback linearisation: response at 80ms−1 (assumed-
modes coordinates).

uncontrolled nonlinear system exhibited a limit cycle.
The required control surface and actuator inputs are shown
in Figure 6, where it can be seen that the input magnitudes
are feasible in practice.

Now, suppose the linearising control is chosen to cancel
the nonlinearity alone, in which case the linearised equations
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Figure 6: Control surface deflection angles and actuator torques for
exact feedback linearization.

generally remain coupled, resulting in a greater number of
control gains in (8) and greater control flexibility as explained
in Section 2.1. One is then able to assign eigenvectors cor-
responding to the assigned poles. The same pole-placement
above is now implemented, with the following respective
eigenvectors assigned:

k1 = {1 1 0}
𝑇
, k2 = {1 −1 0}

𝑇
, k3 = {0 0 1}

𝑇
.

(23)

Thus, it is desired to deliberately couple the bending and
torsion in the first twomodes, whilst leaving the pylon-engine
mode decoupled. The resulting closed-loop responses and
control inputs are shown in Figures 7 and 8, respectively.

It is evident from the first two plots in Figure 7 that a
mixing of modes has occurred, as these two responses now
contain multiple harmonics. The third coordinate, however,
remains unchanged. This is expected, as the eigenvector
assignment commanded that the pylon-engine mode should
remain uncoupled. It can also be seen from the first two
plots in Figure 8 that the required control surface deflections
have increased; it is easier to control the uncoupled modes
than the deliberately coupled ones. Thus, in the case of
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Figure 7: Feedback linearisation with cancellation of nonlinearity only and with eigenvector assignment: response at 80ms−1 (assumed-
modes coordinates).

the three degree of freedom wing-pylon-engine system there
is some merit in using feedback linearisation to cancel
the entire open loop dynamics despite the loss of control
flexibility. For the remainder of this simulation and those
appearing later on, only the case where the entire open loop
dynamics are cancelled will be considered.

When a +40% error in 𝐾nl is incorporated, and the
closed-loop response is simulated based on the above feed-
back parameters and with the same initial conditions, an
unstable response sets in from the very beginning, as seen
in Figure 9. The nonlinear spring, connected between wing
twist and rotation of the pylon-engine assembly, is not
capable of suppressing the response (in the assumed-modes
coordinates) into a limit cycle. The problem of error in the
nonlinear parameter is of practical importance, since it is
seldom possible to be precise in estimating the magnitude of
nonlinear terms. This problem is addressed in the sequel.

4.4. Feedback Linearisation: 2I2O Case. The three degree of
freedom system is now considered to be instrumented with

only two inputs, trailing edge control-surface (flap) angles
𝛽1 and 𝛽2, and two outputs, discrete wing displacement 𝜁1
and twist 𝜒2. In this case there is no control torque 𝑇pe. The
measurement of 𝜗pe is necessary, but only for determination
of f(z, ̇z). The zero dynamics of the 2I2O aeroservoelastic
problem are given in Appendix B and stabilised by the
introduction of structural damping

D mod = 10
5 [

[

2.05 0.0103 0.00220

0.0103 0.0767 −0.00282

0.00220 −0.00282 0.00356

]

]

, (24)

which corresponds to 1% of modal damping. The intro-
duction of structural damping increases the flutter speed
of the system from 77.6ms−1 to 95.05ms−1, and thus the
simulation is carried out above the new speed, at 97.5ms−1.
Pole-placement is specified such that

𝜔1 = 0.93Hz, 𝜉1 = 0.01,

𝜔2 = 4.95Hz, 𝜉2 = 0.01.

(25)
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Figure 8: Control surface deflection angles and actuator torques for
exact feedback linearisation: cancellation of nonlinearity only, with
assignment of eigenvectors.

As before, feedback linearisation successfully places the poles
to the desired values and the transient response shown in
Figure 10 is obtained.

It is evident from the third subplot in Figure 10 that
the coordinate 𝑞pe eventually stabilises because the zero
dynamics of the system are stable. When a +40% error in
𝐾nl is incorporated and the closed-loop response is simulated
based on the same feedback parameters instability does not
occur (as in the 3I3O case) but a degradation in performance
is observed in Figure 11 where it is seen that the control fails
to eliminate an LCO.

5. Treatment of Nonlinear Parameter Error:
Adaptive Feedback Linearisation

The treatment of error in the numerical value of a nonlinear
parameter is carried out using adaptive feedback linearisa-
tion, which makes use of Lyapunov stability theory. It results
in an updating rule for the erroneous parameter, which
evolves with time. This approach ensures that the system

remains stable; the original control objectives might be com-
promised because of evolution of the nonlinear parameter
estimate. This might be acceptable in many cases depending
upon engineering judgment.

An erroneous estimate, f󸀠nl, is now assumed in place of the
true nonlinear force vector, fnl. The corresponding erroneous
input is then determined, by comparison with (2) and (4), as

u󸀠 = G−1 (u − f󸀠 (x)) , f󸀠 (x) = Ψx +Φ ̇x +Ωf󸀠nl, (26)

and substituting (26) into (2) leads to

̈x = u +Ω𝜀, 𝜀 = fnl − f󸀠nl. (27)

Recall (6) from Section 2.1 earlier.Thismay be combined into
a single equation

u = Γ{x
̇x} , Γ ∈ R

𝑛×2𝑛
. (28)

The artificial inputs may be expressed in terms of the state
variables, x, by using the above equation together with the
coordinate transformation

z = T𝑧𝑥x (29)

defined in (10) and (11).
Thus,

u = Γ󸀠 {x
̇x} = [Γ

󸀠

1
Γ
󸀠

2
] {

x
̇x} , Γ

󸀠
= Γ𝑧 [

T𝑧𝑥 0
0 T𝑧𝑥

] , (30)

and the second-order equation of the closed-loop system is
then cast as

̈x = Γ󸀠
1
x + Γ󸀠
2
̇x +Ω𝜀. (31)

Equation (31) shows that the nonlinear parameter error
results in an input to the closed-loop system. Itmay be readily
shown, for the 3I3O system, that

Γ
󸀠

1,𝑧
= −[

[

𝜍1

𝜍2

𝜍2

]

]

, Γ
󸀠

2,𝑧
= −[

[

]1
]2

]2
]

]

. (32)

The system is then represented in state-space as

̇z = Αz + Δ𝐾𝑇𝜗
3

peBΩ(T(3,:))
𝑇
,

Α = [
0 I
Γ
󸀠

1,𝑧
Γ
󸀠

2,𝑧

] ,

B = [0I] , z = {z
̇z} ,

(33)

where T is defined in (18) and where the erroneous nonlinear
parameter is given by

𝐾
󸀠

𝑇
= 𝐾𝑇 + Δ𝐾𝑇, (34)

𝜀 = Δ𝐾𝑇𝜗
3

peΩ(T (3,:) )
𝑇

. (35)
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Figure 9: Feedback-linearisation with nonlinear parameter error: response at 80ms−1.

It is conceivable that this additional (unknown) input may
potentially destabilise the system, or at least degrade the
control performance. This possibility may be eliminated by
accounting for the nonlinearity errors using an adaptive
algorithm. Such an algorithm seeks to guarantee asymptotic
stability of the closed-loop response.

A scalar Lyapunov function 𝑉 in z, Δ𝐾𝑇 may be defined,
such that asymptotic stability of the closed-loop system is
guaranteed by ensuring that 𝑉 > 0 and its time-derivative
𝑉 < 0 [15]. Such a function may be used as a basis for
computing a parameter update law. The Lyapunov function,

𝑉 (z, Δ𝐾𝑇) = z𝑇Pz + Δ𝐾2
𝑇
> 0 (36)

is considered, where P = P𝑇 ≻ 0. Differentiating the above
equation with respect to time, one obtains

𝑉 (z, Δ𝐾𝑇) = ̇z𝑇 (P + P𝑇) z + 2Δ𝐾𝑇
d (Δ𝐾𝑇)

d𝑡
. (37)

Now, by combining (33) and (37) and expanding and rear-
ranging

𝑉 (z, Δ𝐾𝑇) = z𝑇 (A𝑇P + PA) z

+ 2Δ𝐾𝑇(
d (Δ𝐾𝑇)

d𝑡
+ 𝜗
3

peT(3,:)Ω
𝑇B𝑇Pz) ,

(38)
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Figure 10: Feedback-linearisation: response at 97.5ms−1 (assumed-modes coordinates).

it becomes evident that

d (Δ𝐾𝑇)
d𝑡

= −𝜗
3

peT(3,:)Ω
𝑇B𝑇Pz (39)

eliminates the second term on the right-hand-side of (38),
resulting in

𝑉 (z, Δ𝐾𝑇) = z𝑇 (A𝑇P + PA) z. (40)

Now, from the definition ofΔ𝐾𝑇 in (34) and knowing that the
actual nonlinear parameter𝐾𝑇 is constant, it is seen that

d (Δ𝐾𝑇)
d𝑡

=
d (𝐾𝑇)
d𝑡

−

d (𝐾󸀠
𝑇
)

d𝑡
= −

d (𝐾󸀠
𝑇
)

d𝑡
. (41)

Combining (41) and (39), an update law for𝐾󸀠
𝑇
corresponding

to the latter equation is obtained as

d (𝐾󸀠
𝑇
)

d𝑡
= 𝜗
3

peT(3,:)Ω
𝑇B𝑇Pz. (42)

Thus, the initially assumed value𝐾󸀠
𝑇
of the nonlinear param-

eter is continually updated at each time step. Effectively,
this increases the dimension of the state vector by 1, as 𝐾󸀠

𝑇

becomes part of the system state. Now, choosing P such that
for arbitraryQ ≻ 0,

Q = − (A𝑇P + PA) , (43)

it becomes clear that by substituting the above equation into
(40), 𝑉 is rendered negative-definite, as required.

For the 2I2O case, an identical approach may be followed
to obtain similar expressions. The definition of z changes to
z = {z(1 : 2) ̇z(1 : 2)}

𝑇, and the parameter update rate becomes

d (𝐾󸀠
𝑇
)

d𝑡
= 𝜗
3

peT(3,:)Ω
𝑇

(1:2,:)
B𝑇Pz. (44)

The matrices A and B become

Α = [
0 I2×2
Γ
󸀠

1,𝑧
(1:2,1:2)

Γ
󸀠

2,𝑧
(1 :2,1:2)

] , B = [ 0
I2×2
] . (45)
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Figure 11: Feedback-linearisation with nonlinear parameter error: response at 97.5ms−1.

An important consideration in the 2I2O case is the
asymptotic stability of the zero dynamics, considered in
Appendix B, which is required for the adaptive scheme to
work. For the particular 2I2O configuration considered, the
presence of structural damping ensures stability of the zero
dynamics, thus enabling application of the adaptive method.

Example: Stabilisation of the Aeroelastic System Using Adap-
tive Feedback Linearisation. The instability shown in Figure 9
may be avoided altogether by implementing the adaptive
controller described in Section 5 above. In the 3I3O case, the
resulting controlled response, for the same initial conditions,
is shown in Figure 12.

A comparison of Figure 12 with Figure 5 shows that
the controlled responses are similar, but not identical.
Although adaptive feedback linearisation destroys the

original pole-placement, it can be seen that the controlled
response is stable. In fact, the adaptive controller successfully
drives the responses to zero for values of |𝜗pe|max (set as
an initial condition) up to around 0.0735 rad. The required
control in this case is accomplished through achievable
control surface deflection angles (≈11∘) and actuator torque
magnitude (55 kNm).

In the case of the 2I2O system, the system response with
adaptation shown in Figure 13 should be compared to that
in Figure 11, for feedback linearisation without adaptation
and the same error in the cubic stiffness parameter. The
degradation of the system to LCO is completely removed in
Figure 13.

It can also be seen that the controlled responses, as well
as the response of the uncontrolled coordinate converge to
zero when the adaptive controller is implemented. In fact,
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Figure 12: 3I3O system with adaptive feedback linearisation: response at 80ms−1.

this convergence takes place rapidly. When converted to the
physical domain, the resulting magnitudes of the coordinates
occur within acceptable limits (maximum values of 0.33mm,
0.24∘, 2.92∘ for 𝜁1, 𝜒2, 𝜗pe, resp.). As before, it is found that the
control surface deflections required to achieve the responses
shown in Figure 13 are feasible (𝛽1, 𝛽2 ≈ 30

∘).

6. Conclusions

Nonlinear systems are ubiquitous in vibrations engineering
and aeroelasticity, but the analysis is mathematically intricate
and complicated. The paper presents the feedback linearisa-
tion methodology, whereby a nonlinear system is rendered
linear bymeans of active control. Having neutralised the non-
linearity, the system may be treated using well-understood
linear analysis methods such as modal decomposition, which
generally cannot be applied to nonlinear systems directly.

The technique is formulated using the second-order repre-
sentation of elastomechanical and aeroelastic systems with
stiffness nonlinearity, familiar to the vibrations community.
This has certain advantages over the conventional state-space
formulation in that repeated output differentiation, usually
described using the Lie algebra notation, is unnecessary.
The purpose of the linearising controller is to cancel the
nonlinearity completely and therefore it results in a truly
linear system, rather than linearisation about an operating
point limited to small perturbations, or quasi-linearisation as
with describing functions. The controller may be designed to
cancel the nonlinearity only or to cancel the complete open-
loop dynamics. In the former case there is shown to be greater
control flexibility, but the latter case is found to have some
merit in the particular example considered of a flexible wing-
pylon-engine system with decoupled bending, torsional, and
pylon-engine modes.
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Figure 13: 2I2O system with feedback linearisation: response at 97.5ms−1.

Exact feedback linearisation requires knowledge of the
nonlinearity and when every degree of freedom of the
system is available formeasurement (and actuation) and then
linearisation may be achieved completely. When fewer than
the full set of degrees of freedom is available formeasurement
and actuation, then the system can generally be partitioned
into independent linear and nonlinear subsystems, with the
dimension of the latter being the difference between the
number of degrees of freedom and the number of sensors
and actuators. If the nonlinear subsystem is stable, then
the dynamics of the linear subsystem may be controlled as
required. The problem of an imprecisely known nonlinear
term was addressed using adaptive feedback linearisation,
resulting in a parameter update rule that evolves in time to
ensure stability. It requires an additional state variable to do

this and is likely to be more expensive than using feedback
linearisation without adaptivity.

Feedback linearisation techniques were illustrated using
a three degree of freedom aeroelastic model consisting of a
flexible wing and a rigid pylon-engine system attached to
the wing via a nonlinear torsional spring with pole place-
ment of the fully linearised and partially linearised system
corresponding to the measurement (and actuation) at three
degrees of freedom (3I3O) and twodegrees of freedom (2I2O)
respectively. The parameters of the system were chosen care-
fully to represent a real aircraft. Adaptive linearisation was
applied successfully to compensate for a nonlinear parameter
error in the case of 3I3O, and in the 2I2O case the nonlinear
subsystem was found to be stable. The magnitudes of the
aileron deflection angles were physically realisable.
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Appendices

A. Control Forces and Nonlinear Spring Forces

Control forces are applied to the wing-pylon-engine system
by means of control surfaces. It is assumed in this work that
two control surfaces (different from [14]) are available, the
first (closest to the wing root) spanning 85% of the length
of the wing and the second spanning the remaining length
(the contribution of the control surfaces to the dynamics of
the overall system is neglected). The widths of the first and
second control surfaces are assumed to be 20% and 33.33%
of the chord length, respectively.These particular dimensions
have been chosen so as to optimise the distribution of work
performed by each control surface. In addition to the ailerons,
it is assumed that a separate actuator is available to apply
a torque 𝑇pe directly on the engine rotational degree of
freedom.The forcing vector is found to be

f𝑐 =
[
[
[
[
[

[

−
1

6
𝑟𝛼
3
𝑎𝐶,1𝑠𝑤 −

1

6
𝑟 (1 − 𝛼

3
) 𝑎𝐶,2𝑠𝑤 0

1

4
𝑟𝛼
2
𝑏𝐶,1𝑐𝑤

1

4
𝑟 (1 − 𝛼

2
) 𝑏𝐶,2𝑐𝑤 −𝑦2

0 0 1

]
]
]
]
]

]

×

{

{

{

𝛽1

𝛽2

𝑇pe

}

}

}

= Bu,

(A.1)

where 𝑟 = 𝜌𝑉
2
𝑐𝑤𝑠
2

𝑤
, 𝛼 = 0.85 and each surface will

have its own deflection angle 𝛽1, 𝛽2 and set of aerodynamic
parameters 𝑎𝐶, 𝑏𝐶, which are the rates of change of lift
coefficient and moment coefficient, respectively, with respect
to control surface deflection angle.

A cubic hardening nonlinearity is assumed in the tor-
sional spring connecting the pylon-engine to the wing. The
nonlinear force developed in the spring may be expressed as

𝑓nl = 𝐾𝑇𝜗
3

pe, (A.2)

where𝐾𝑇 is the stiffness coefficient of the cubic nonlinearity.
The overall nonlinear force vector then takes the form

fnl = T𝑇(
0

0

𝑓nl

) = (

0

−𝑦2𝑓nl
𝑓nl

) , (A.3)

with T defined in (18).

B. Zero Dynamics Expressions (2I2O Case)

In the 2I2O configuration and using (11),

{

{

{

𝑧1

𝑧2

𝑧3

}

}

}

= [

[

1 0 0

0 1 0

𝜎1 𝜎2 𝜎3

]

]

{

{

{

𝑥1

𝑥2

𝑥3

}

}

}

, (B.1)

where

𝜎1 = (𝑔21𝑔32 − 𝑔31𝑔22) , 𝜎2 = (𝑔31𝑔12 − 𝑔11𝑔32) ,

𝜎3 = (𝑔11𝑔22 − 𝑔21𝑔12) ,

(B.2)

and 𝑔𝑖𝑗 denotes the 𝑖𝑗th term of thematrixG.Then, by invert-
ing the transformation matrix T𝑧𝑥, the following expressions
are obtained:

𝑥1 = 𝑧1, 𝑥2 = 𝑧2, 𝑥3 = −
𝜎1

𝜎3

𝑧1 −
𝜎2

𝜎3

𝑧2 +
1

𝜎3

𝑧3.

(B.3)

Then, from (15) and differentiating the bottom row of (B.1) it
is found that

̈𝑧3 = 𝜎
𝑇f (z, ̇z) , 𝜎

𝑇
= {𝜎1 𝜎2 𝜎3} , (B.4)

where

f (z, ̇z) = Φ{ ̇𝑧1 ̇𝑧2 (−
𝜎1

𝜎3

̇𝑧1 −
𝜎2

𝜎3

̇𝑧2 +
1

𝜎3

̇𝑧3)}

𝑇

+Ψ{𝑧1 𝑧2 (−
𝜎1

𝜎3

𝑧1 −
𝜎2

𝜎3

𝑧2 +
1

𝜎3

𝑧3)}

𝑇

+Ω fnl (z) ,

fnl (z) = 𝐾𝑇(−𝑦2𝑧2 + (−
𝜎1

𝜎3

𝑧1 −
𝜎2

𝜎3

𝑧2 +
1

𝜎3

𝑧3))

3

× (T(3,:))
𝑇
.

(B.5)

Evidently, the internal dynamics expressions in (B.4) are
nonlinear. Now, the zero dynamics may be obtained by
setting to zero the coordinates corresponding to the external
dynamics (i.e. the partially linearised system). In this case,
the external coordinates are 𝑧1, 𝑧2, ̇𝑧1, ̇𝑧2 so that the zero
dynamics are given by

̈𝑧3,𝑧𝑑 =
1

𝜎3

𝜎
𝑇
Ψ(:,3)𝑧3,𝑧𝑑 +

1

𝜎3

𝜎
𝑇
Φ(:,3) ̇𝑧3,𝑧𝑑

+
1

𝜎
3
3

𝐾𝑇𝜎
𝑇
Ω(T(3,:))

𝑇
𝑧
3

3,𝑧𝑑
,

(B.6)

where the subscript “𝑧𝑑” signifies that the coordinates are
specified under zero dynamics conditions.

Zero Dynamics Equilibrium Point Analysis. To obtain the
equilibrium points of the zero dynamics, it is necessary to set
̈𝑧3,𝑧𝑑 = ̇𝑧3,𝑧𝑑 = 0. Equation (B.6) then produces

(𝜎
𝑇
Ψ(:,3) + 𝐾𝑇𝜎

𝑇
Ω(T(3,:))

𝑇
𝑧
2

3,𝑧𝑑
) 𝑧3,𝑧𝑑 = 0, (B.7)

which provides the two solutions

𝑧3,𝑧𝑑 = 0, 𝑧3,𝑧𝑑 = ±√−
𝜎
𝑇
Ψ(:,3)

𝐾𝑇𝜎
𝑇Ω(T(3,:))

𝑇
. (B.8)

It is found that the term inside the square root is always
negative, and therefore the second solution for 𝑧3,𝑧𝑑 is
inadmissible.Thus, the only possible equilibrium point of the
zero dynamics is the trivial solution

{
𝑧3

̇𝑧3
}

𝑧𝑑

= {
0

0
} . (B.9)
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Thenature of the above equilibriumpointmay be determined
by examining the eigenvalues of (B.6), evaluated at the
equilibrium point,

𝑠
2
−
1

𝜎3

𝜎
𝑇
Φ(:,3)𝑠 −

1

𝜎3

𝜎
𝑇
Ψ(:,3)

−
1

𝜎
3
3

𝐾𝑇𝜎
𝑇
Ω(T(3,:))

𝑇
𝑧
2

3,𝑧𝑑

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑧3,𝑧𝑑 = 0

̇𝑧3,𝑧𝑑 = 0

= 0,

(B.10)

or

𝑠
2
−
1

𝜎3

𝜎
𝑇
Φ(:,3)𝑠 −

1

𝜎3

𝜎
𝑇
Ψ(:,3) = 0. (B.11)

The roots are found to be complex with negative real parts,
thus revealing the type of equilibrium point to be a stable
focus.
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A new method for the synthesis of structures with prescribed target natural frequencies and mode shapes is presented. The
introduction of a modal Rayleigh quotient approximation based on the target mode shapes is the means to propose a structural
synthesis problem whose solution is free from eigenvector sensitivity analysis. The frequencies and mode shapes can be adjusted
as close as possible to the desired target values, while minimizing the total mass. Several examples corroborate the efficacy of the
proposed method.

1. Introduction

Optimization of dynamic systems is an inverse eigenvalue
problemwith the goal of tailoring the response of a system by
estimating the needed change in the design variables to
achieve a desired change in the natural frequencies of the
structure. The structural synthesis with the inclusion of ine-
quality frequency constraints has been extensively explored
in the past in many different works reported in the literature
[1]; however the need remains to create an effective method
to include not only prescribed frequencies but also prescribed
mode shapes in the optimization process.There are important
instanceswhere the adjusting of frequencies andmode shapes
to given prescribed values is desirable, such as the synthesis
of aircraft under aeroelastic constraints or model updating,
where an analytical or numerical model is improved based
on modal test data [2, 3].

Structural design tailoring applied to simple mass and
spring systems has been extensively reported in the literature.
For instance, Yee and Tsuei [4, 5] have proposed methods of
shifting the desired eigenfrequencies using the forced re-
sponse of the system and modal analysis. Mass matrix modi-
fication has been proposed to achieve desired natural fre-
quencies [6] while the use of concentrated mass elements to

shift eigenfrequencies of a rectangular plate has been pro-
posed in [7]. Sivan andRam [8] have used orthogonality prin-
ciples to obtain modified stiffness and mass matrices. Glad-
well [9] introduced an inverse approach for both the discrete
and continuous structures. Mottershead [10] has investigated
the concept of resonance and adding mass or springs to the
dynamic system.

In other related researches, studies have been reported on
the simultaneous assignment of mode frequency and shape,
by developing approaches based on both modal data [11] and
system physical models [12]. Examples include the assign-
ment of natural frequencies to amulti-degree-of-freedomun-
damped system using an added mass connected by springs
[13], the assignment of natural frequencies and antiresonan-
ces by beam modification [14], and the structural modifica-
tion of a helicopter tail cone [15]. Gladwell and Movahhedy
[16] obtained the set of necessary and sufficient conditions to
ensure positive mass and stiffness parameters for a three-de-
gree-of-freedom case study.

In Richiedei et al. [17], a convex optimization approach is
proposed. A linear matrix difference equation is set based on
satisfying the Rayleigh quotient using linearizations of the
system stiffness andmassmatrices in terms of the design vari-
ables. The residual of the resulting system of linear equations
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2 Shock and Vibration

in the design variables is then used to form a convex objec-
tive function.Themethod candealwith general finite element
models and has no need of eigenvector sensitivities but is
limited in the context of structural synthesis, since it is indif-
ferent to the structural and nonstructural mass mobilized in
the solution, thus presenting a difficulty of integration with a
general structural synthesis tool; besides it can only deal with
linear constraints.

Although itmay be immediate towrite the statement of an
optimization problemwhere themode shapes are prescribed,
the solution of such a problem may not be an easy task, since
directional optimization demands eigenvector sensitivity
analysis, which is expensive. Also, and perhaps mainly, nu-
merical difficultiesmay arise due to complexmodal structural
behavior of the system, a common feature of many real life
finite element discretizations.

A theoretically consistent method for the structural syn-
thesis with prescribed target frequencies and mode shapes
seems to be inexistent in literature. If such a method could
avoid the use of expensive eigenvector sensitivity analysis,
it might be used with great advantage. The objective of the
present work is to create an effectivemethodwith strong con-
vergence capability for the structural synthesis of general sys-
tems with prescribed target free vibration natural frequencies
(𝜔𝑗, 𝑗 = 1, . . . , 𝑝) andmode shapes (𝜑

𝑗
, 𝑗 = 1, . . . , 𝑝), without

the use of eigenvector sensitivities. While it is not mandatory,
it is also desirable for the structure to have minimummass.

2. Synthesis Based on Modal Rayleigh
Quotient Approximation

The natural free vibration eigenproblem for a discrete system
can be written as follows:

(K − 𝜆𝑗M)𝜑𝑗 = 0 𝑗 = 1, . . . , 𝑛, (1)

where 𝜆𝑗 = 𝜔
2

𝑗
is the eigenvalue corresponding to the natural

frequency 𝜔𝑗. The natural frequencies are related to corre-
sponding mode shapes by means of the Rayleigh quotient,
such that

𝜆𝑗 = 𝜔
2

𝑗
=

𝜑
𝑇

𝑗
K𝜑
𝑗

𝜑𝑇
𝑗
M𝜑
𝑗

𝑗 = 1, . . . , 𝑛. (2)

The Rayleigh quotient is classically used to approximate the
fundamental frequency of a system and also in algorithms for
solution of eigenproblems.

In this work there are 𝑠 prescribed pairs of target natural
frequencies andmode shapes, (𝜔𝑗,𝜑𝑗), that are to be imposed
on the structure. Therefore, we seek an optimal solution x∗
that will satisfy

(K∗ − 𝜆𝑗M
∗
)𝜑
𝑗
= 0 𝑗 = 1, . . . , 𝑠, (3)

where the eigenvalue 𝜆𝑗 = 𝜔
2

𝑗
. The target eigenvalues are re-

lated to the target mode shapes by the Rayleigh quotient:

𝜆𝑗 =

𝜑
𝑇

𝑗
K∗𝜑
𝑗

𝜑
𝑇

𝑗
M∗𝜑
𝑗

𝑗 = 1, . . . , 𝑠. (4)

The symbol ∗ indicates that the stiffness and mass matri-
ces are computed at the optimal solution. It may be possible
to satisfy (3) and (4) if we have the appropriate parameters or
design variables to adjust in the system we are dealing with.

We define a modal Rayleigh quotient approximation
(MRQA), based on the target mode shapes and the current
structural stiffness and mass as follows:

𝜇𝑗 =

𝜑
𝑇

𝑗
K𝜑
𝑗

𝜑
𝑇

𝑗
M𝜑
𝑗

𝑗 = 1, . . . , 𝑠. (5)

The MRQA quantifies the approximation to the target
mode shape 𝜑

𝑗
at the current design, whereK andM are sup-

posedly calculated. This quantity has in it a great deal of the
dynamical structural behavior of the system and can be very
helpful.

TheMRQA can be used to define the following first state-
ment of our synthesis problem, where we want to generate a
structure that will have its eigenvalues and mode shapes the
closest possible to the prescribed target pairs (𝜆𝑗,𝜑𝑗), 𝑗 =
1, . . . , 𝑠 as follows:

min
𝑝

∑

𝑗=1

{𝑎𝑗 (𝜇𝑗 − 𝜆𝑗)
2

+ 𝑏𝑗(𝜆𝑗 − 𝜆𝑗)
2

} . (6)

s.t. 𝜇𝑗 =

𝜑
𝑇

𝑗
K𝜑
𝑗

𝜑
𝑇

𝑗
M𝜑
𝑗

𝑗 = 1, . . . , 𝑠, (7)

(K − 𝜆𝑗M)𝜑𝑗 = 0 𝑗 = 1, . . . , 𝑠. (8)

The objective function contains the residuals between the
target frequency eigenvalues (𝜆𝑗) with both the eigenvalues
associated to the system natural frequencies (𝜆𝑗) and the
MRQA (𝜇𝑗). The 𝑎𝑗 and 𝑏𝑗 are adequate weighting factors.
In the synthesis defined by (6)–(8) we will adjust the design
variables and thus the stiffness and mass matrices, such that
𝜇𝑗 and 𝜆𝑗 will both converge to the natural prescribed target
frequency eigenvalues,𝜆𝑗. For instance, admitting that during
the optimization iterations the MRQA will converge to the
target frequency eigenvalue (𝜇𝑗 → 𝜆𝑗) implies that themode
shape will also converge to 𝜑

𝑗
; that is, we will have 𝜑

𝑗
→ 𝜑
𝑗
.

The problem above is well posed in the sense that it will
have a high probability of producing a solution which is the
best possible in fulfilling the specified frequencies and mode
shapes, but it has no mention of limiting the structural or
nonstructural mass mobilized during the solution, and so a
probability exists such that a nonoptimal structure in terms
of mass and structural weight can be created. Limiting the
masses could be an alternative to be exploited, but for now
this will be left as an open issue.

The problem statement can be modified with the inclu-
sion of a term containing the structural and nonstructural
masses in the objective function so that we can synthesize a
system that best fits the prescribed target frequencies and
mode shapes but does it with minimum expending of mass.
The following new augmented statement of the problem is
then proposed with the inclusion of the mass (𝑀) in the
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Table 1: Target frequencies (Case 1).

Mode 𝜆𝑗 = 𝜔
2

𝑗
𝑓
𝑗
(Hz)

1 425.2 3.28
2 8396.6 14.58
3 47992.1 34.87

Table 2: Target mode shapes (Case 1).

Mode 1 0.000 0.330 0.622 0.842 0.971 1.000 0.930 0.776 0.555 0.289 0.000
Mode 2 0.000 0.437 0.625 0.408 −0.070 −0.576 −0.918 −1.000 −0.833 −0.469 0.000
Mode 3 0.000 0.228 0.197 −0.182 −0.454 −0.189 0.411 0.897 1.000 0.644 0.000

objective function and also range constraints for the frequen-
cies eigenvalues and the MRQAs:

min 𝑀+

𝑝

∑

𝑗=1

{𝑎𝑗(𝜇𝑗 − 𝜔
2

𝑗
)
2

+ 𝑏𝑗(𝜆𝑗 − 𝜔
2

𝑗
)
2

} , (9)

s.t. 𝑝𝜔
2

𝑗
≤ 𝜆𝑗 ≤ 𝑞𝜔

2

𝑗
𝑗 = 1, . . . , 𝑠, (10)

𝑝𝜔
2

𝑗
≤ 𝜇𝑗 ≤ 𝑞𝜔

2

𝑗
𝑗 = 1, . . . , 𝑠, (11)

𝜇𝑗 =

𝜑
𝑇

𝑗
K𝜑
𝑗

𝜑
𝑇

𝑗
M𝜑
𝑗

𝑗 = 1, . . . , 𝑠, (12)

(K − 𝜆𝑗M)𝜑𝑗 = 0 𝑗 = 1, . . . , 𝑠. (13)

The use of the mass augmented objective function of (9)
instead of (6) may lead to a compromise solution in which
the system mass is minimized but the adjustment between
the frequencies and mode shapes to their prescribed values
may not be the best. Thus, the range constraints are added
((10)-(11)) so that the problem statement is now given by (9)–
(13). Range constraints are used instead of strict equality
constraints for two reasons. Firstly, satisfaction of equality of
frequencies andmode shapes to their prescribed target values
may not be possible depending on the design variables used
for the synthesis [3]. Also, because the numerical optimiza-
tion solution tends to be harder for strict equality constraints,
even for the case where they are realizable. Here the multi-
pliers 𝑝 ≤ 1 and 𝑞 ≥ 1 are parameters defining the ranges;
for example, 𝑝 = 1 − 𝛿 and 𝑞 = 1 + 𝛿, where 𝛿 is adjusted
during the optimization, departing from say 𝛿 = 0.1, and
closing the rangewith say 𝛿 = 0.0001. Experiencewith simple
cases now shows that good solutions can be obtained adjust-
ing the ranges smoothly, by means of solving a sequential
optimization with decreasing ranges such that in the 𝑖th opti-
mization problem 𝛿

(𝑖)
= 𝑟 𝛿

(𝑖−1), where 𝑟 < 1; for example,
0.1 ≤ 𝑟 ≤ 0.5. Because of the new constraints we can choose
the weights 𝑎𝑗 and 𝑏𝑗 to be null, so defining a cleaner mass-
only objective function.

3. Simply Supported Beam

A simply supported beam of length 𝐿, with rectangular cross
section (𝑏, ℎ), is shown in Figure 1. It has five concentrated

m1 m2 m3 m4 m5

0.2L 0.2L 0.2L0.2L 0.1L 0.1L
h

b

Figure 1: Beam with concentrated masses.
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Figure 2: Target mode shapes (Case 1).

masses which are design variables, positioned along its cen-
troidal axis. Also the beam depth, ℎ, is a design variable. The
beam behavior includes just in-plane bending which obeys
the Euler-Bernoulli theory, without rotary inertia effects.The
beam natural free vibration analysis is done by the Rayleigh-
Ritz method, using a sine series for the deflections with ten
terms. The length of the beam is 𝐿 = 5m, the modulus of
elasticity is 𝐸 = 70Pa, and the material density is 𝜌 =

2500 kg/m3.
To optimize the beam for minimum total mass, we have

six design variables (ℎ, 𝑚1, 𝑚2, 𝑚3, 𝑚4, 𝑚5). Three study
cases are defined which differ from each other mainly due to
the prescribed target values of frequencies and mode shapes.

3.1. Case 1. In this case the beam section width is 𝑏 = 50mm.
The target values of frequencies are those in Table 1, while
Table 2 has the target mode shapes.

The frequencies and mode shapes of Tables 1 and 2 were
chosen to be the same that can be obtained when the beam
has the following properties: ℎ = 0.2m, 𝑚1 = 200 kg, 𝑚2 =
90 kg, 𝑚3 = 50 kg, 𝑚4 = 30 kg, and 𝑚5 = 10 kg; this will be
called the reference design.

The target mode shapes are illustrated in Figure 2, where
a tendency to symmetry of mode 1 exists while modes 2 and 3
are a mix of symmetric and antisymmetric parts, making the
structural synthesis problem harder when compared to a case
with only purely symmetric or antisymmetric modes.

The optimization problem is defined by (9)–(13); however
we use the simpler objective function corresponding to mass
minimization only, that is, with 𝑎𝑗 = 𝑏𝑗 = 0, 𝑗 = 1, . . . , 3.
A sequential optimization solution was implemented with
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Table 3: Optimal design variables (Case 1).

ℎ (m) Mass 1 2 3 4 5
0.075 (kg) 77.61 34.07 20.11 9.89 0.00

Table 4: Optimal frequencies and MRQA (Case 1).

Mode 𝜔
2

𝑗
𝜆𝑗 % Error 𝜇𝑗 % Error

1 425.2 425.2 0.01 425.2 0.01
2 8396.6 8397.5 0.01 8395.8 0.01
3 47992.1 47987.3 0.01 47996.9 0.01

Table 5: Optimal mode shapes (Case 1).

1st mode 0.000 0.329 0.620 0.840 0.970 1.000 0.931 0.776 0.555 0.289 0.000
2nd mode 0.000 0.442 0.635 0.424 −0.053 −0.564 −0.912 −1.000 −0.834 −0.471 0.000
3rd mode 0.000 0.243 0.210 −0.182 −0.467 −0.205 0.406 0.902 1.000 0.647 0.000

Table 6: Sequential optimization iteration history (Case 1).

(a)

Iter. 𝑝 𝑞 𝑀 (kg) Max 𝑔𝜆 Max 𝑔𝜇
0 0.5 2 1125. 5.4𝐸 − 01 4.3𝐸 − 01

1 0.5 2 23.59 −3.9𝐸 − 01 1.3𝐸 − 06

2 0.95 1.1 77.70 5.9𝐸 − 08 2.3𝐸 − 08

3 0.99 1.01 130.31 4.2𝐸 − 08 5.4𝐸 − 10

4 0.999 1.001 167.60 2.5𝐸 − 09 4.9𝐸 − 09

5 0.9999 1.0001 188.46 8.7𝐸 − 10 9.0𝐸 − 10

(b)

Iter. ℎ (m) 𝑚1 (kg) 𝑚2 (kg) 𝑚3 (kg) 𝑚4 (kg) 𝑚5 (kg) ∑𝑚𝑗 (kg)
0 0.2000 200 200 200 200 200 1000
1 0.038 0.00 0.00 0.00 0.00 0.00 0.00
2 0.058 18.31 1.01 17.78 4.49 0.00 41.59
3 0.067 46.32 14.34 24.54 3.46 0.00 88.67
4 0.072 66.70 27.11 21.76 7.01 0.00 122.58
5 0.075 77.61 34.07 20.11 9.89 0.00 141.68

varying 𝑝 and 𝑞, having the iteration history presented in
Table 6, which will be discussed later.

The optimal values of the six design variables used to
minimize the mass and satisfy the target frequencies and
mode shapes are presented in Table 3 and correspond to
the total mass of 188.46 kg, from which 141.68 kg is made
of concentrated masses. The optimal beam has a depth of
0.075m.The optimal solution is remarkable from the point of
view of reduction of the structural and nonstructural masses,
when compared to the reference design where the beam
depth is 0.020m and the nonstructural mass is 380 kg.

Table 4 has the eigenvalues (𝜆𝑗) and the values of the
MRQA (𝜇𝑗) obtained for the optimal design, where an almost
perfect matching is seen with the target values 𝜔2

𝑗
, with devi-

ations around only 0.01%.
Table 5 presents the optimal mode shapes obtained, hav-

ing a very close agreement with the target modes of Table 2.

−1
−0.6
−0.2
0.2
0.6
1

Figure 3: Optimal and target mode shapes (Case 1).

This could be anticipated from the closeness between the
MRQA (𝜇𝑗) and 𝜔

2

𝑗
of Table 4. As a matter of fact, the possi-

bility of achieving this matching is the basis of the solution
proposed in this work.

The excellent agreement between optimal and target
mode shapes can be seen from Figure 3. The optimal mode
shape curves which are marked and the target unmarked can
barely be distinguished one from the other.
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Table 7: Target frequencies (Case 2).

Mode 𝜆𝑗 = 𝜔
2

𝑗
𝑓
𝑗
(Hz)

1 121.97 1.76
2 2569.53 8.08
3 10350.41 16.19

Table 8: Target mode shapes (Case 2).

Mode 1 0.000 0.319 0.605 0.827 0.963 1.000 0.937 0.786 0.565 0.295 0.000
Mode 2 0.000 0.461 0.707 0.594 0.191 −0.339 −0.790 −1.000 −0.910 −0.536 0.000
Mode 3 0.000 0.522 0.611 0.082 −0.492 −0.488 0.050 0.697 1.000 0.697 0.000

−1
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0.2
0.6
1

Figure 4: Optimal and target mode shapes (Case 2A).

It is instructive to look at Table 6 with the nice optimi-
zation iteration history. Each one of the five iterations corre-
sponds to given values of the constraints range parameters 𝑝
and 𝑞, which were quickly found by trial and error. The sec-
ond row has the initial design and from the third row on the
optimal results after the optimization for the corresponding
𝑝 and 𝑞 parameters. The total mass presented in the fourth
column of Table 6 decays in the first iteration and then grows
rapidly with the tightening of 𝑝 and 𝑞. The optimization
behavior was excellent, allowing the use of rapidly decreasing
constraint ranges. Furthermore, the optimizationwould fail if
the tightening of 𝑝 and 𝑞was very sharp or the starting values
of 𝑝 and 𝑞 were too tight. In the fifth column the maximum
constraint violation for the constraints in normalized form of
(10) is presented as follows:

max 𝑔𝜆 = max(1 −
𝜆𝑗

𝑝𝜔
2

𝑗

, −1 +

𝜆𝑗

𝑞𝜔
2

𝑗

) . (14)

Similarly results of the 6th column correspond to (11).
The constraints are always satisfied at the optimum of every
iteration. The second row of Table 6 has the initial design
(iter = 0), with a constraint violation of 54% associated with
𝑝 = 0.5 and 𝑞 = 2.0, the values used to solve the first iteration,
at the end of which the constraints became satisfied (iter = 1).
The solution was obtained with the Solver in Excel.

In the solution presented, the adjustable range constraints
were very effective, leading to results as if equality constraints
had been imposed, corresponding to 𝛿 = 0.0001.

3.2. Case 2. Here 𝑏 = 0.03m and the target frequencies are
smaller, given in Table 7, with the target mode shapes of
Table 8.

The values from Tables 7 and 8 can be obtained from the
ref-erence design: ℎ = 0.05m, 𝑚1 = 𝑚2 = 30 kg, and 𝑚3 =
𝑚4 = 𝑚5 = 10 kg.

Table 9: Optimal design variables results (Case 2A).

ℎ (m) Masses 1 2 3 4 5 ∑𝑚𝑗

0.030 (kg) 5.50 1.32 5.80 0.02 0.67 13.31

Table 10: Optimal frequencies and MRQA (Case 2A).

Mode 𝜔
2

𝑗
𝜆𝑗 % Error 𝜇𝑗 % Error

1 121.97 124.1 1.8 124.2 1.9
2 2569.5 2572.4 0.1 2564.6 −0.2
3 10350.4 10345.2 −0.1 10363.2 0.1

The problem of (9)–(13) has the same six design variables
of Case 1. The beam depth is constrained, with ℎ ≥ 0.03m.
This time both solutions are going to be examined: without
(Case 2A) and with (Case 2B) the range constraints.

For the case without range constraints, we use the weights
𝑎𝑗 = 𝑏𝑗 = 1/(𝜔

2

𝑗
). The optimum design, obtained using the

same initial design of Case 1, is given in Table 9.
The optimal frequencies and MRQA obtained in this run

are given in Table 10, showing a very satisfactory agreement
between the target 𝜔2

𝑗
and the optimal values of 𝜆𝑗 and 𝜇𝑗,

with errors smaller than 2%.
The optimal mode shapes for the case without range

constraints are given in Table 11.
In Figure 4 the optimal mode shapes are depicted in the

curves with marks against the unmarked curves of target
modes shapes.We can see that thematching is reasonable but
not perfect.

The optimal solution for Case 2B with range constraints
is given in Table 12. It was obtained using as initial design
the solution of Case 2A and the range constraints with 𝛿 =
0.0001. As can be observed the solution is very distinct from
the one in Table 9 in terms of the design variables values.
Besides, the total optimal nonstructural mass is considerably
bigger now.

The optimal frequencies andMRQA are given in Table 13,
showing an almost perfect matching between the target 𝜔2

𝑗

and the optimal values of 𝜆𝑗 and 𝜇𝑗.The comparison between
Tables 10 and 13 shows that in Case 2B the solution is con-
siderably more precise.

The optimal mode shapes given in Table 14 and depicted
in Figure 5 have a close agreement with the target values of
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Table 11: Optimal mode shapes (Case 2A).

1st mode 0.000 0.315 0.598 0.819 0.958 1.000 0.940 0.791 0.569 0.297 0.000
2nd mode 0.000 0.576 0.880 0.745 0.273 −0.314 −0.784 −1.000 −0.910 −0.537 0.000
3rd mode 0.000 0.329 0.368 0.016 −0.382 −0.392 0.108 0.729 1.000 0.700 0.000

Table 12: Optimal design variables results (Case 2B).

ℎ (m) Masses 1 2 3 4 5 ∑𝑚𝑗

0.0333 (kg) 7.83 5.24 5.34 1.09 1.50 21.00

Table 13: Optimal frequencies and MRQA (Case 2B).

Mode 𝜔
2

𝑗
𝜆𝑗 % Error 𝜇𝑗 % Error

1 121.97 121.96 0.01 121.98 0.01
2 2569.5 2569.3 0.01 2569.8 0.01
3 10350.4 10349.4 0.01 10350.4 0.01

Table 14: Optimal mode shapes (Case 2B).

1st mode 0.000 0.317 0.602 0.823 0.961 1.000 0.938 0.788 0.567 0.296 0.000
2nd mode 0.000 0.510 0.780 0.656 0.222 −0.333 −0.790 −1.000 −0.908 −0.535 0.000
3rd mode 0.000 0.419 0.479 0.046 −0.432 −0.433 0.088 0.719 1.000 0.699 0.000

Table 15: Target frequencies (Case 3).

Mode 𝜆𝑗 = 𝜔
2

𝑗
𝑓
𝑗
(Hz)

1 157.91 2
2 1934.44 7
3 8300.34 14.5

−1
−0.6
−0.2
0.2
0.6
1

Figure 5: Optimal and target mode shapes (Case 2B).

Table 8. It is worth comparing Figure 5, from the case with
range constraints, with Figure 4, from the case without them.
It is clear that the solution with range constraints results in
better adjusted mode shapes.

3.3. Case 3. Now the beam has the same target mode shapes
of Case 2 (see Table 8) but different target frequencies accord-
ing to Table 15.

The target frequencies were set trying to make Case 3
harder than Case 2.This was done by keeping the same target
mode shapes of Case 2 but imposing target frequencieswhich
are not scalable from Case 2. With this in mind, Table 15 was
created looking at Table 7 and doing the following: increasing
the first target frequency from 1.76Hz to 2Hz, decreasing the

second target frequency from 8.08Hz to 7Hz, and decreasing
the third from 16.19Hz to 14.5Hz.

The optimization now was done by adjusting the param-
eters 𝑝 and 𝑞, resulting in the iterations shown in Table 16.
The parameters could be decreased up to a corresponding
𝛿 = 0.03; values below this would not produce a feasible
solution. The values of 𝑝 = 1 − 𝛿 and 𝑞 = 1 + 𝛿 used to solve
the sequential optimization are given, with the remark that
for iter = 0 the values have only the purpose of computing
the maximum constraint violations in the initial design.

Table 17 shows that the eigenvalues and the MRQAs for
the optimal design could be reasonably adjusted to the target
values, with a maximum error of 3%.

The mode shapes also were satisfactorily adjusted as
Table 18 shows, when compared to the target values of Table 8.

In Figure 6 continuous lines are the prescribed target
mode shapes and the lines with marks are the optimal mode
shapes. The first mode is practically the same of the target
mode; the second mode seems to be a better fitting to the
prescribed target mode than is the third mode. This is the
case where to obtain a better adjusting for the second and
third modes more design variables would be necessary, such
as additional point masses or eventually a beam with variable
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Table 16: Sequential optimization iteration history (Case 3).

(a)

Iter 𝑝 𝑞 𝑀 (kg) Max 𝑔𝜆 Max 𝑔𝜇
0 0.9 1.1 108.75 2.08𝐸 − 01 2.08𝐸 − 01

1 0.9 1.1 23.03 4.95𝐸 − 08 −4.44𝐸 − 02

2 0.95 1.05 24.03 1.59𝐸 − 08 −2.70𝐸 − 12

3 0.97 1.03 186.09 1.94𝐸 − 08 −7.50𝐸 − 10

(b)

Iter ℎ (m) 𝑚1 (kg) 𝑚2 (kg) 𝑚3 (kg) 𝑚4 (kg) 𝑚5 (kg) ∑𝑚𝑗 (kg)
0 0.0500 30.0 30.0 10.0 10.0 10.0 90.0
1 0.0300 4.46 0.00 2.87 0.000 4.45 11.78
2 0.0300 5.58 0.00 3.12 0.000 4.08 12.78
3 0.0606 74.21 0.00 37.31 11.64 40.23 163.38

Table 17: Optimal frequencies and MRQA (Case 3).

Mode 𝜔
2

𝑗
𝜆𝑗 % Error 𝜇𝑗 % Error

1 157.9 153.2 3.0 153.9 2.5
2 1934.4 1992.5 3.0 1969.0 1.8
3 8300.3 8549.4 3.0 8051.3 3.0

Table 18: Optimal mode shapes (Case 3).

Mode 1 0.000 0.318 0.601 0.818 0.955 1.000 0.947 0.803 0.583 0.306 0.000
Mode 2 0.000 0.587 0.909 0.792 0.346 −0.224 −0.722 −1.000 −0.961 −0.580 0.000
Mode 3 0.000 0.397 0.430 −0.080 −0.737 −0.970 −0.455 0.435 1.000 0.763 0.000

−1
−0.6
−0.2
0.2
0.6
1

Figure 6: Optimal and target mode shapes (Case 3)

depth. However, the important emphasis here is that this re-
sult is expected to be very close to the best possible approxi-
mate solution for the problem using the same six design vari-
ables used for the solution presented.

4. Concluding Remarks

A new method that is theoretically consistent was presented
for the synthesis of structures with prescribed target frequen-
cies and mode shapes. It avoids the use of eigenvector sensi-
tivity and seems to have excellent convergence potential. Its
application to a simple beamled to very encouraging results.
It must be tested in more complex synthesis problems for
mode and frequency adjusting,wherewe anticipate that it will
provide significant advantages compared to many methods
presented in the literature.
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Time-variant systems can be found in many areas of engineering. It is widely accepted that the classical Fourier-based methods
are not suitable for the analysis and identification of such systems. The time-variant frequency response function—based on the
continuous wavelet transform—is used in this paper for the analysis of time-variant systems.The focus is on the comparative study
of various broadband input excitations.The performance of the method is tested using simulated data from a simpleMDOF system
and experimental data from a frame-like structure.

1. Introduction

Vibration analysis and dynamic testing traditionally rely
either on time-domain or frequency-domain approaches.
However, many engineering systems exhibit time-variant
behaviour. Examples include aircraft with different config-
urations of control surfaces during take-off and landing,
deployable space structures and manipulator, tooth gear
systems in mesh, or robot manipulator arms with mod-
ulator/demodulator cascade controllers. It is well known
that the classical parametric and nonparametric methods
are not suitable for the analysis and identification of such
systems. Therefore various approaches have been developed
for the analysis time-variant systems, as overviewed in [1,
2]. Wavelets are particularly attractive for the analysis and
identification of time-variant systems thanks to their time-
frequency (or rather time-scale) nature. Previous work in
this area includes various applications in structural dynamics
such as damping estimation [3–6] or nonlinear system
analysis [7]. The method presented in [8] is an evolutionary
approach and is also used for modal identification. Time-
scale approaches have been used also for online identification
procedures based on adaptive wavelets [9–13]. An overview
of different wavelet-based approaches can be found in [13–
15]. Some research work has been done to extend the
classical input-outputmodal analysis to time-variant systems.

However, the majority of the proposed methods are adaptive
approaches, developed mainly in control engineering, signal
processing, and mathematics, as discussed in [1]. More
recently, the time-dependent frequency response function
(FRF) has been proposed [16–18] for the analysis and identi-
fication of time-variant systems.Themethod utilises wavelets
[16, 18] and time-frequency transformations/distributions
[17] for the calculations of time-dependent FRFs.

Since the classical, that is, Fourier-based FRF is by defini-
tion the Fourier transform of the output divided by the
Fourier transform of the input, the only condition in this
analysis for the input signal is that it should be Fourier-trans-
formable. Virtually the majority of physically realisable sig-
nals satisfy this restriction. Therefore the choice of excitation
signals is nearly endless. From a linear system theory point of
view the estimated FRF should be independent of the nature
of excitation. Also, it is important that all vibrationmodes are
excited. Therefore a broadband excitation—such as Gaussian
white nose, chirps, or impacts—are used in practice. More
information on various classical excitation signals used in
modal analysis can be found in [19, 20]. There is no doubt
that broadband excitation should be used also for the analysis
of time-variant systems since time-variation is unknown.
However, in this case the choice of excitation is no longer
arbitrary as some important features could go undetected.
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This paper aims to compare various forms of broadband
excitation in the time-dependent FRF used for analysis of
time-variant systems.The structure of the paper is as follows.
Section 2 briefly describes the continuous wavelet transform
for the sake of completeness. The time-dependent, wavelet-
based FRF is presented in Section 3. Various broadband
excitation signals used in the paper are described in Section 4.
The FRF-based analysis for a simulated time-variant system
is presented in Section 5. Similar analysis for an experimental
system is given in Section 6. Finally the paper is concluded in
Section 7.

2. Continuous Wavelet Transform

For the sake of completeness this section briefly describes
the continuous wavelet transform. The material given in this
section provides only very basic mathematical definitions
with some important comments relevant to the analysis in the
current investigations. More information about the method
can be found in [21–23].

The continuous wavelet transform is used to divide a
continuous time function into set of elementary functions
called wavelets. Unlike the Fourier transform, this transform
has the ability to construct a time-scale representation of
a signal. This representation can be transformed into the
time-frequency domain in engineering applications. One of
the most desirable parameters of all time-frequency repre-
sentations is a good localisation of events simultaneously in
time and frequency. Other desirable properties are related
to time and frequency resolutions. All these parameters
are limited by the Heisenberg uncertainty principle. This
principle states that the combined time-frequency resolution
product has a lower bound. In other words both resolution
parameters, time and frequency, cannot be arbitrarily small
simultaneously.The continuous wavelet transform offers very
good time-frequency localisation with variable time and
frequency resolutions that depended on the so-called scale
parameter. Mathematically, the CWT can be defined as

𝑋𝜔 (𝑎, 𝑏) =
1

√|𝑎|

∫

∞

−∞

𝑥 (𝑡) 𝜓
∗
(
𝑡 − 𝑏

𝑎
)𝑑𝑡, (1)

where 𝑏 is translation indicating locality, 𝑎 is a scale parameter
providing frequency resolution, and 𝜓(𝑡) is a continuous
function called the mother wavelet. The normalisation √|𝑎|
in the above equation ensures that the integral energy given
by each translated and dilated wavelet is independent of the
scale parameter 𝑎. It is important that the mother wavelet
satisfies the so-called admissibility condition given by

∫

∞

−∞

󵄨󵄨󵄨󵄨Ψ (𝑓)
󵄨󵄨󵄨󵄨

2

󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨

𝑑𝑓 < ∞, (2)

where Ψ(𝑓) is the Fourier transform of 𝜓(𝑡). This is required
to obtain the inverse wavelet transform given by

𝑥 (𝑡) =
1

𝐶𝜓

∬

∞

−∞

𝑊𝜓 (𝑎, 𝑏)
1

√|𝑎|

𝜓
∗
(
𝑡 − 𝑏

𝑎
)(

𝑑𝑎 𝑑𝑏

𝑎
2
) . (3)

When time-frequency localization is required from the wa-
velet transform, the mother wavelets must be also a window
function. This additionally means that

∫

∞

−∞

󵄨󵄨󵄨󵄨𝜓 (𝑡)
󵄨󵄨󵄨󵄨 𝑑𝑡 < ∞. (4)

Many different wavelet functions can be employed in the
time-scale analysis. In this paper the complex Morlet wavelet
function defined as

𝜓 (𝑡) = 𝑒
−|𝑡|
2
/2
𝑒
𝑗𝜔
0
𝑡 (5)

was used as the mother wavelet. Graphical representation
of the complex Morlet wavelet in the time and frequency
domain is given in Figure 1. This clearly shows limitations
when the Morlet wavelet is used for time-frequency anal-
ysis. The frequency domain localisation is defined by the
bandwidth of the Morlet wavelet function. As it may seem
harmless in this particular example, one has to remember
that, with scaling of the analysing wavelets, the ratio of
frequency bandwidth to the central frequency will remain
constant. Thus, when, for example, the central frequency of
the analysed signal equals 50Hz, the wavelet transform will
“see” the signal in the 40–60Hz frequency range. Therefore
one has to be very careful when closed vibration modes are
analysedwith the CWT. In practice shift and scale parameters
can be selected adequately to provide correct analysis. This
problem is discussed in more details in [3, 5, 16].

3. Wavelet-Based Frequency
Response Function

This section briefly describes the wavelet-based FRF intro-
duced in [16–18]. The formal definition is followed by a short
description of numerical implementation together with some
practical comments related to averaging.

3.1. Definition. The classical FRF can be extended intuitively
for time-variant systems to provide time-frequency localisa-
tion capability. When the analysis is limited to small periods
of time that exhibit time-invariant behaviour, time-variations
are negligibly small and the time-dependent FRF can be
defined as [16–18]

𝐻(𝑡, 𝜔) =
𝑌 (𝑡, 𝜔)

𝑋 (𝑡, 𝜔)
=
TF [𝑦 (𝑡)]
TF [𝑥 (𝑡)]

, (6)

where TF denotes the time-frequency transformation (or
distribution if, for example, the Wigner-Ville transform is
applied) in the above equation. The work presented in this
paper utilises the continuous wavelet transform—defined
in Section 2—to obtain input and output time-frequency
spectra needed to calculate the time-dependent FRF. Despite
the fact that (6) has a relatively simple form, the entire
calculation procedure is not straightforward. It is clear that,
for values of TF[𝑥(𝑡)] that are close to zero, the𝐻(𝑡, 𝜔) tends
to infinity. This is why additional postprocessing is required
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Figure 1: Complex Morlet wavelet function.

to avoid the above problem. In practice, the randomGaussian
white noise 𝑁 is added to the input and output time signals
to form biased (noisy) inputs 𝑥𝑖(𝑡) and outputs 𝑦𝑖(𝑡) as

𝑥𝑖 (𝑡) = 𝑥 (𝑡) + 𝑁𝜇,𝜎2 (𝑡) ,

𝑦𝑖 (𝑡) = 𝑦 (𝑡) + 𝑁𝜇,𝜎2 (𝑡) ,

(7)

where 𝜇 and 𝜎2 are the mean and variance of the Gaussian
distribution, respectively. Then, the relevant time-frequency
spectra are calculated using the selected transformation to
receive

𝑋𝑖 (𝑡, 𝜔) = TF [𝑥𝑖 (𝑡)] ,

𝑌𝑖 (𝑡, 𝜔) = TF [𝑦𝑖 (𝑡)] .
(8)

Finally, the results are averaged to obtain the expected values,
that is,

𝐸 [𝑋 (𝑡, 𝜔)] =
1

𝑁

𝑁

∑

𝑖=1

𝑋𝑖 (𝑡, 𝜔) ,

𝐸 [𝑌 (𝑡, 𝜔)] =
1

𝑁

𝑁

∑

𝑖=1

𝑌𝑖 (𝑡, 𝜔)

(9)

and assembled to receive the time-dependent FRF as

𝐻(𝑡, 𝜔) =
𝐸 [𝑌 (𝑡, 𝜔)]

𝐸 [𝑋 (𝑡, 𝜔)]
. (10)

3.2. Numerical Implementation. In practice numerical imple-
mentation is composed of several steps. Firstly, the autopower
functions of input and output signals have to be defined as

𝐺𝑋𝑋 (𝑡, 𝜔) = 𝑋 (𝑡, 𝜔)𝑋
∗
(𝑡, 𝜔) ,

𝐺𝑌𝑌 (𝑡, 𝜔) = 𝑌 (𝑡, 𝜔) 𝑌
∗
(𝑡, 𝜔) ,

(11)

where the superscript “∗” in the above equations indicated
a complex conjugate.These wavelet-based autopower spectra
show how the power in a signal is distributed over the entire
time-frequency plane. Both functions could be also used to
judge the quality of acquired input and output signals. By
analogy, the so-called wavelet-based cross-power spectrum
can be defined as

𝐺𝑋𝑌 (𝑡, 𝜔) = 𝐺𝑌𝑋 (𝑡, 𝜔) = 𝑋 (𝑡, 𝜔) 𝑌
∗
(𝑡, 𝜔) . (12)

At this point it is possible to compute the wavelet-based FRF.
This can be done using different well-known estimators such
as 𝐻1, 𝐻2, or 𝐻V. In this paper the 𝐻1 estimator based on
wavelet auto- and cross-power and spectra is used as

𝐻1 (𝑡, 𝜔) =
𝑌 (𝑡, 𝜔)𝑋

∗
(𝑡, 𝜔)

𝑋 (𝑡, 𝜔)𝑋
∗
(𝑡, 𝜔)

=
𝐺𝑌𝑋 (𝑡, 𝜔)

𝐺𝑋𝑋 (𝑡, 𝜔)
. (13)
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Figure 2: Impact excitation given in the time, frequency, and combined time-frequency domains.

In practice it is advisable to perform averaging of cross- and
autopower spectra, as this improves signal-to-noise ratios
leading to more reliability. Thus the relevant expected values
are calculated, that is,

𝐸 [𝐺𝑌𝑋 (𝑡, 𝜔)] =
1

𝑁

𝑁

∑

𝑖=1

𝐺𝑌𝑋
𝑖
(𝑡, 𝜔) ,

𝐸 [𝐺𝑋𝑋 (𝑡, 𝜔)] =
1

𝑁

𝑁

∑

𝑖=1

𝐺𝑋𝑋
𝑖
(𝑡, 𝜔) ,

(14)

and finally assembled to receive the wavelet-based FRF as

𝐻1 (𝑡, 𝜔) =
𝐸 [𝐺𝑌𝑋 (𝑡, 𝜔)]

𝐸 [𝐺𝑋𝑋 (𝑡, 𝜔)]
. (15)

Since the 𝐻1 estimator is a complex function additional
postprocessing is needed to obtain the amplitude of the
wavelet-based FRF. This is simply done by calculating the
absolute value of FRF; that is,

𝐻1magnitude
(𝑡, 𝜔) = abs (𝐻1 (𝑡, 𝜔)) . (16)

This function is used to analyse time-variant systems in
the following sections. The process of averaging is quite
important in the entire procedure, as explained in [16]. It is
also important to note that the phase can be also estimated
from the wavelet-based FRF, as shown in [17]. However this
characteristic is not used in the current investigations.

4. Input Excitation for Analysis of
Time-Variant Systems

This section presents various excitation signals used in the
analysis of time-variant systems. Three commonly known

broadband signals and one newly proposed signal are com-
pared in the time, frequency, and combined time-frequency
domains.

Impact excitation is one of the most widely used forms of
excitation in modal analysis. Figure 2 shows that the analysis
of impact excitation signal in the time domain gives perfect
localization in time, and the analysis in the frequency domain
indicates that this excitation exhibits a truly broadband
nature. These two important properties are also visible in
the combined time-frequency plane. The major drawback
associated with this excitation is related to the fact that the
system is excited only once for a short period of time. The
response is quickly damped and when (15) and (16) are used
the relevant input-output wavelet-based FRF analysis will be
limited only to such a short period of time.

Another commonly used excitation—which is considered
to be broadband—is a chirp excitation. Figure 3 shows that
the analysis of this excitation in the frequency domain
indicates its broadband nature for a predefined range of
frequencies. The time-domain representation of the chirp
signal does not reveal immediate interesting features. How-
ever, in practice, frequency localisation could be more or less
found by analysing zero-crossings and calculating relevant
periods of oscillations. This indicates that a chirp is not truly
broadband when only small parts of signal are considered.
This behaviour is more visible in the time-frequency domain,
where the analysis shows which frequency components are
present at a given time.

White noise is considered to be a broadband excitation.
However, this is only true when the excitation signal is
long enough to be ergodic. Figure 4 shows the stationary
behaviour of the Gaussian white noise excitation in the time
domain. However, if one considers only a small part of this
signal, the stationary and broadband behaviour is not so
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Figure 3: Chirp excitation given in the time, frequency, and combined time-frequency domains.
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Figure 4: White noise excitation given in the time, frequency, and combined time-frequency domains.

obvious. This is particularly visible in the combined time-
frequency domain where the energy distribution of the white
noise signal varies with time and frequency from high to near
zero amplitudes.

A new type of broadband excitation is proposed in this
section. The proposed excitation is composed of randomly
distributed series of impacts. Such excitation is broadband
at given time instances and provides continuous inflow of
energy to the analysed system, as illustrated in Figure 5.
This is advantageous when the excitation is compared with

the classical impact excitation illustrated in Figure 2. The
continuous inflow of energy enables one to observe system
dynamic properties and their variations with time.

5. Numerical Simulations and Results

5.1. Simulated MDOF System. A simple two-degree-of-free-
dom (2-DOF) system was used to compare the performance
of input excitation signals in the analysis of time-variant
systems.The system consisted of heavily dampedmass-spring
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Figure 5: Random impact excitation in the time, frequency, and combined time-frequency domains.

elements. One of the masses involved was varying in time;
the mass was decreasing linearly with time. All other relevant
physical parameters were constant. The values of physical
parameters used were 𝑚 = 10 kg, 𝐾1 = 3000000N/m, 𝐾2 =
800000N/m, 𝐶1 = 150N/(m/s), and 𝐶2 = 350N/(m/s). The
𝑀1 mass element was decreasing linearly in time following
the function 𝑀1(𝑡) = 16–12t kg. Clearly, this resulted in the
increment of the relevant natural frequencies. Theoretical
natural frequencies are equal to 40Hz and 80Hz (for 0 s)
increasing to 160Hz (for 1 s) with cubic dependence on
time. Figure 6 gives a schematic diagram of the simulated
system. Numerical simulations were performed using the
MATLAB/Simulink platform. The sampling frequency was
equal to 1 kHz in all simulations.

5.2. System Identification Results. This section describes sys-
tem identification results for the simulated time-variant
system described in Section 5.1. The focus is on the anal-
ysis of varying natural frequencies. Numerical calculations
were performed within the MATLAB platform, following
the procedure described in Section 3. Signal averaging was
used in order to smooth out different disturbances that had
impact on the amplitude of the wavelet-based FRF. Four
different excitations—described in Section 4—were tested.
The classical FRF was also computed for comparison.

Figure 7 shows the results for the impact excitation. The
response of the system in the time domain reveals heavy
damping in the simulated system; the envelope amplitude
decays relatively quickly. The classical FRF clearly exhibits
two vibrationmodes.The first natural frequencywas found to
be around 39Hz whereas the second natural frequency could
be estimated around 83Hz. There is very little indication
about possible time-variant behaviour, as expected. The sec-
ond FRF component is more wideband and slightly skewed

C1 C2

K1 K2

M(t) m

Figure 6: Schematic diagram of the 2-DOF system used in numer-
ical simulations.

(or asymmetrical). This could indicate some nonlinearity
and/or time-variance. Also, it is very difficult to observe any
time-variant behaviour in the amplitude contour plot of the
wavelet-based FRF. Harmonic oscillations are dampened too
quickly. Some indication on the varying nature is visible in
the second vibration mode.

The second considered input signal was a chirp excitation.
The results for this excitation are presented in Figure 8. This
excitation is renowned for its frequency evolution over time.
Therefore both vibration modes are excited not earlier than
the chirp sweeps through the relevant natural frequencies.
The first natural frequency was found to be around 39Hz,
whereas the second natural frequency was estimated around
104Hz. The amplitude of the wavelet-based FRF does not
indicate any time-varying nature of the system.

White noise excitation differs qualitatively from impact
and chirp excitation as it provides energy continuously
through the entire excitation time. However, amplitude ex-
citation levels vary for given frequencies. Thanks to this
property it is possible to observe time-varying nature of the
analysed mechanical system in Figure 9. Although the classi-
cal FRF is not clear, two vibration modes can be observed in
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Figure 7: Simulated results obtained for the impact excitation in the time, frequency, and combined time-frequency domains.
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Figure 8: Simulated results obtained for the chirp excitation in the time, frequency, and combined time-frequency domains.

the amplitude of the wavelet-based FRF. The latter can be
used to estimate the natural frequencies. The first natural
frequency was found to be around 39Hz whereas the second
natural frequency was found to vary between 80 and 150Hz.
The only problem is that the curves displaying vibration
modes in the amplitude of the wavelet-based FRF are broken
and do not show uniform energy distribution.

The random impact excitation consists of repeated
impacts in order to introduce more energy into the system.
The amplitude of impacts was constant whereas the repletion

time was random in this type of excitation. The results are
presented in Figure 10. The time-domain response of the
system exhibits five repeated impact responses. However,
periods of these impacts are different; that is, the frequency
involved increases. The classical FRF displays correctly only
the first vibration mode. The time-variant nature can be
clearly observed in the amplitude contour plot of the wavelet-
based FRF.Thefirst natural frequencywas found to be around
39Hz whereas the second natural frequency was estimated
to vary between 80 and 150Hz. Similarly to the white noise
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Figure 9: Simulated results obtained for the white noise excitation in the time, frequency, and combined time-frequency domains.
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Figure 10: Simulated results obtained for the repeated impact excitation in the time, frequency, and combined time-frequency domains.

excitation, the curves displaying vibration modes in the
amplitude of the wavelet-based FRF are broken. However this
time the energy distribution for all impacts is more uniform.

In summary, the noise and repeated impact input signals
were the only out of the four excitations tested that were
able to reveal time-variant nature of the analysed system in
the amplitude of the wavelet-based FRF. Therefore these two
excitations were further tested using the experimental data,
as described in the next section.

6. Experimental Application and Results

A simple experiment was conducted to obtain time-variant
vibration data. A frame-like structure—shown in Figure 11—
with a tank attached to the free end was used in this
experimental work.The vertical armwas 80 cm long, whereas
the horizontal arm was 60 cm long. The tank was filled
with 3 kg of sand. The tank was draining when vibration
measurements were taken using one accelerometer mounted
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Figure 11: Experimental time-variant test rig.

in the middle of the vertical arm of frame. Accelerometer was
measuring vibrations in horizontal direction. Varyingmass of
the tank contributed to time-varying behaviour of the entire
system. The system was excited with a modal hammer and
electrodynamic shaker. The middle of metal block joining
horizontal and vertical arms was used as excitation point.
Excitation was executed in horizontal direction. Due to
the time-varying nature of analysed phenomena, identical
multiple measurements—required for averaging—were not
possible. Therefore Gaussian white noise was used to corrupt
the data. The relevant responses were then calculated using
(7). In order to improve the visibility of the results, the
entire analysis was limited only to the frequency range from
230 to 300Hz. The amplitudes of wavelet-based FRFs were
calculated. Contour plots together with ridges were used for
the analysis of the system.The latter exhibits amplitude where
the largest energies are concentrated.These areas correspond
to vibration modes. These ridges were calculated following
the procedure described in [24].

The results for the noise excitation are shown in Figure 12.
Two vibration modes can be observed in the analysed
frequency range. The first mode can be seen for the entire
period of time, that is, between 0 and 80 s. Its frequency varies
from the initial value of 276Hz (for 0 s) to the final value
of 256Hz (for 80 s). After 5 s the second mode appears. The
frequency of thismode remains relatively unchanged and can
be estimated as approximately equal to 290Hz. The results
for the repeated impact excitation are given in Figure 13.
These results reveal almost the same time-variant behaviour.
Only one mode can be observed initially. Its frequency varies
from 275 to 259Hz. Then this mode splits into two modes.
The frequency of the new (i.e., second) mode again remains
relatively unchanged and can be estimated as 290Hz; this
mode was not visible until 25 s probably due to high damping
of the structure. The response amplitude decayed very fast
when the impact excitation was used. That was not the case
when the white noise excitation was applied. In summary,
both types of excitation used, that is, the Gaussian white
noise and random repeated impacts, have revealed correctly
the varying nature of the analysed system. One important
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Figure 12: Experimental results obtained for the white noise
excitation in the combined time-frequency domain.
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Figure 13: Experimental results obtained for the repeated impact
excitation in combined time-frequency domain.

feature can be observedwhen Figures 12 and 13 are compared.
The natural frequency of the first analysed mode shifts
downwards more rapidly, that is, from 276 to 256Hz, when
the noise excitation was used in Figure 12.

An additional comment is needed here regarding the
change of frequency when mass of structure decreased. It is
well known that, for a simple 1-DOF system, the decrease of
mass results in the increase of natural frequency. However,
this basic theoretical relation does not need to hold for com-
plex MDOF systems, especially for systems where the major
mass is concentrated in one part of the structure. Although
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this is a common problem found in experimental modal
analysis, the observed effect needs further investigations.

7. Conclusions

The wavelet-based FRF was used for the analysis of time-
variant systems. The performance of the method was com-
pared for four different types of broadband excitation.
Numerical simulations and experimental test data were used
in these investigations. A simple heavily dampened 2-DOF
systemwith a time-varyingmass was simulated. A frame-like
structure with an attached tank was used for experimental
tests.

The results show that—for the case investigated—it is
impossible to identify time-varying nature of system with the
use of impact and chirp excitation. These two excitations do
not excite the system continuously in a proper broadband
manner. Identification of time-varying systems was possible
with the use of two other excitations applied, that is, the
white noise and random impact excitations. Both excitations
correctly identified time-varying nature of the systems inves-
tigated.

It is important to note that the effect of excitation signals
was investigated only for the amplitude of the wavelet-
based FRF. Future work should involve the analysis of FRF’s
phase and other modal parameters (than natural frequency).
Furthermore, more complex experimental systems should be
investigated.
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This paper presents a multistage multipass method to identify the damage location of a continuous bridge from the response of
a vehicle moving on the rough road surface of the bridge. The vehicle runs over the bridge several times at different velocities
and the corresponding responses of the vehicle can be obtained. The vertical accelerations of the vehicle running on the intact
and damaged bridges are used for identification. The multistage damage detection method is implemented by the modal strain
energy basedmethod and genetic algorithm.Themodal strain energy basedmethod estimates the damage location by calculating a
damage indicator from the frequencies extracted from the vehicle responses of both the intact and damaged states of the bridge. At
the second stage, the identification problem is transformed into a global optimization problem and is solved by genetic algorithm
techniques. For each pass of the vehicle, the method can identify the location of the damage until it is determined with acceptable
accuracy. A two-span continuous bridge is used to verify the method.The numerical results show that this method can identify the
location of damage reasonably well.

1. Introduction

The safety of bridge structures is very important to economic
development of all countries, so it is very important to
make sure that the bridges are in good condition. Various
damage detection techniques have been developed to meet
this need [1, 2]. The aerospace and offshore oil industries
conducted early damage detection since the late 1970s and
1980s, respectively, while, in the civil engineering community,
structural health monitoring is a relatively vibrant area of
current research [3]. Recording the vibration of the struc-
tures, extracting modal properties, and then identifying the
damage from changes of the structural properties are the
most popular methods among them [4]. This is based on
the assumption that commonly measured modal parameters
(notably frequencies, mode shapes, and modal damping) are
functions of the physical properties of the structure (mass,
damping, and stiffness). Therefore, changes in the physical
properties, such as reductions in stiffness resulting from the
onset of cracks or loosening of a connection, will cause
detectable changes in these modal properties. Changes in

modal properties or properties derived from these quantities
are being used as indicators of damage [1]. One issue of
primary importance is the dependence on prior analytical
models and/or prior test data for the detection and location
of damage [1]. Damage detection methods in time domain
can overcome this problem to certain extent. The time-
domain approach has becomemore popular in recent years to
examine nonstationary signals [5]. In the short-time Fourier
transform method, the total time interval is divided into
shorter time intervals for the fast Fourier transform to be
applied to each interval. This time windowing method nar-
rows down the time to that of the interval where the damage is
located [6]. However, the constraints of the uncertainty prin-
ciple limit the obtainable resolutions considerably, prompting
the emergence of an alternative approach in multiresolution
analysis termed wavelet transform [7]. Wavelet transform
allows variable-size windows and this is why it is also called
a mathematical microscope.This property makes it a suitable
method for detection of damage from a response [8]. There
are several other methods used for damage detection. One
of them, the genetic algorithm, is modified for use in this
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study. Genetic algorithms (GAs), originally developed by
Holland, are search algorithms based on the mechanics of
natural selection and natural genetics [9]. GAs are different
from traditional optimization procedures in four ways: (a)
GAs work with a coding of the parameter set, but not the
parameters themselves; (b) GAs search from a population
of points instead of a single point; (c) GAs use objective
function information instead of derivatives or other auxiliary
knowledge; and (d) GAs use probabilistic transition rules
instead of deterministic rules [10]. Since structural damage
detection can be transformed into optimization problems,
GAs can be used to do the damage detection.

The above-mentioned methods identify the conditions of
a bridge through acquiring the bridge response by putting
sensors on the bridge. It is also possible to detect the
conditions of the bridge by putting sensors on the passing
vehicle. Identifying the damage using the vehicle response
has certain advantages over putting sensors on the bridge.
Firstly, the vehicle is both a sensor and an exciter. It is
much more convenient as it makes the closure of bridge
much shorter or even unnecessary. Secondly, it is not much
influenced by the locations of damage and distributions of
sensors because the vehicle runs over and detects the whole
bridge. Yang et al. extracted bridge frequencies fromamoving
vehicle [11–13]. Inspired by this work, Bu et al. proposed a
damaged detection method based on the dynamic response
sensitivity analysis and regularization technique [5]. Nguyen
and Tran [14] applied wavelet transform to the displacement
history of a moving vehicle. Zhang et al. [15] extracted
the mode shapes square from the response and conducted
damage detection. The above work did not consider the
roughness of the bridge, which would be a very important
factor affecting the vibration of the vehicle. The authors
previously applied a modal strain energy based damaged
detection method to analyze the response of the vehicle [16]
and came up with two possible locations of the damage.
This is due to the limitation of the frequency-based damage
detection methods [17]. The authors also conducted damage
detection using wavelet transform from the response of the
vehicle [18]. This paper will consider the influence of the
roughness in the vehicle-bridge interaction system on the
damage identification.The strategy is a combination ofmodal
strain energy basedmethod andGA techniques.Modal strain
energy based method can narrow down the search space for
GA algorithms to save computational time and improve the
chance of getting the correct solution.

2. Vehicle-Bridge Interaction System

Figure 1 shows the sketch of a typical vehicle-bridge inter-
action system. It contains a continuous bridge and a vehicle
running over it at a constant speed. The bridge is modeled
using the finite element method and the vehicle is modeled
as a mass-spring-damper system.The vehicle model contains
five parameters.Thebody is simulated by a concentratedmass
𝑚2, the spring stiffness 𝑘2, and the damper 𝑐2. The wheels are
simulated using a concentrated mass 𝑚1 and the stiffness 𝑘1
of the spring connecting the wheel and the road surface.

k1

k2 c2

m1

m2

�

x

L1

u

q2

q1

L2

Figure 1: A typical vehicle-bridge interaction system.

2.1. Equation of Motion. When the vehicle moves from one
end of the bridge to the other end at a constant speed, both
the bridge and the vehicle will vibrate vertically. A vector
𝑢𝑏(𝑡) is used to denote the vertical displacements of a series of
nodes in the finite element model of the bridge. Its first and
second derivatives with respect to time 𝑡, that is, ̇𝑢𝑏(𝑡) and
̈𝑢𝑏(𝑡), are, respectively, the vertical velocity and acceleration

of the corresponding nodes. The symbols 𝑞1(𝑡) and 𝑞2(𝑡)

denote the vertical displacement of the wheel and the car
body, respectively. As they interact with each other by the
contact force, the vibration of the vehicle is influenced by the
vibration of the bridge and vice versa. So this is a coupled
vibration system. It is assumed that the mass of vehicle is
insignificant compared to that of the bridge. The governing
equation of motion derived using the fully computerized
method is expressed as

[
𝑀𝑏 0

0 𝑀V
]{

̈𝑢𝑏

̈𝑞V
} + [

𝐶𝑏 𝐶𝑏V
𝐶V𝑏 𝐶V

]{
̇𝑢𝑏

̇𝑞V
} + [

𝐾𝑏 𝐾𝑏V
𝐾V𝑏 𝐾V

]{
𝑢𝑏

𝑞V
}

= {
𝑃𝑏

𝑃V
} ,

(1)

where 𝑞V = [𝑞1 𝑞2]
𝑇 is the vertical displacement of the

vehicle; ̇𝑞V and ̈𝑞V are the corresponding velocity and accel-
eration;𝑀𝑏 and𝐾𝑏 are the mass and stiffness matrices of the
bridge obtained by the finite element method, respectively;
the damping matrix of the bridge is modeled using Rayleigh
damping as 𝐶𝑏 = 𝛼𝑐𝑀𝑏 + 𝛽𝑐𝐾𝑏, where 𝛼𝑐 and 𝛽𝑐 are the
damping factors;

𝑀V = [
𝑚1 0

0 𝑚2
] ,

𝐶V = [
𝑐2 −𝑐2

−𝑐2 𝑐2
] ,

𝐾V = [
𝑘1 + 𝑘2 −𝑘2

−𝑘2 𝑘2
]

(2)

are, respectively, the mass, damping, and stiffness matrices
of the vehicle model; 𝐶𝑏V, 𝐶V𝑏, 𝐾𝑏V, and 𝐾V𝑏 are the coupling
damping and stiffness matrices; 𝐾V𝑏 = [−𝑘1 0]

𝑇 and 𝑃𝑏 and
𝑃V are the external loads added to the bridge and vehicle,
respectively, due to gravity forces, surface roughness, and so
forth. Equation (1) can be solved using Newmark-𝛽method,
Wilson-𝜃method, or similar to calculate the responses of the
vehicle and the bridge.
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2.2. Modeling of Roughness. The random road surface rough-
ness of the bridge can be described by a kind of zero-mean,
real-valued, and stationary Gaussian process as [19]

𝑟 (𝑥) =

𝑁
𝑇

∑

ℎ=1

𝛼ℎ cos (2𝜋𝜔ℎ𝑥 + 𝜙ℎ) , (3)

where

𝛼
2

ℎ
= 4𝑆𝑟 (𝜔ℎ) Δ𝜔,

𝜔ℎ = 𝜔𝑙 + (ℎ −
1

2
)Δ𝜔, ℎ = 1, 2, . . . , 𝑁𝑇,

Δ𝜔 =
𝜔𝑢 − 𝜔𝑙

𝑁𝑇

,

(4)

in which 𝜔𝑙 and 𝜔𝑢 are the lower and upper cut-off spatial
frequencies, respectively.The power spectral density function
𝑆𝑟(𝜔ℎ) can be expressed in terms of the spatial frequency 𝜔ℎ
of the road surface roughness as

𝑆𝑟 (𝜔ℎ) = {
𝛼𝜔
−𝛽

ℎ
for 𝜔𝑙 < 𝜔ℎ < 𝜔𝑢

0 elsewhere,
(5)

where 𝛼 is a spectral roughness coefficient and the value of
𝛽 is determined based on the classification of road surface
condition according to ISO specification [20].

The contact force 𝑓𝑐 between the vehicle and the bridge
can be written as

𝑓𝑐 = − (𝑚1 + 𝑚2) 𝑔 + 𝑘2 (𝑟 (𝑥 (𝑡)) + 𝑢𝑏
󵄨󵄨󵄨󵄨𝑥=V𝑡 − 𝑞1) . (6)

The above equation implies that the roughness and the ver-
tical displacement of the corresponding point influence the
contact force in a similar manner. If the height of roughness
is obviously larger than the value of the displacement of the
bridge, the roughness dominates the contact force. So, to
identify the information of the bridge, the response of the
bridge should be at least comparable to that of roughness.

2.3. Measurement Noise. Measurement noise should also be
considered to make the simulation closer to reality. Damage
detection is carried out assuming that the signal is contami-
nated by 5% white noise as shown in

̈𝑞
𝑚

V = ̈𝑞V (1 + 5%𝜂) , (7)

where ̈𝑞
𝑚

V is the simulated measured response of vehicle and
𝜂 is a normally distributed random array with zero mean
and unit variance.Themeasurement noise does influence the
response and identification, but its influence is much smaller
than that of roughness.

3. Multistage Multipass Damage
Detection Method

This method contains two stages which are modal strain
energy based method and modified genetic algorithm
method. At the first stage, the modal strain energy based

method is simple and fast in roughly estimating the location
of damage so as to narrow down the search domain for the
second stage. The vehicle can run over the bridge several
times and get a series of vehicle responses.Multiple passes are
used because different properties of the vehicle and speeds
will excite the bridge slightly differently, which will help
guarantee the correctness of the identification.

3.1. Modal Strain Energy Based Method. Several modal prop-
erties based methods are developed for damage detection.
Modal strain energy based method is selected because it is
very effective and can estimate the location of the damage if
only the frequencies of the damaged structure are available
[21–23]. For the intact bridge, the first few mode shapes can
be simulated by finite element method or obtained by field
tests. If changes in mass are neglected, the fractional change
in the 𝑖th eigenvalue due to damage is given by

𝑍𝑖 =
𝜔
∗2

𝑖
− 𝜔
2

𝑖

𝜔
2
𝑖

=
𝑓
∗2

𝑖
− 𝑓
2

𝑖

𝑓
2
𝑖

, (8)

where 𝜔𝑖 is the 𝑖th circular frequency, 𝑓𝑖 = 𝜔𝑖/(2𝜋) is the
corresponding frequency, and the asterisk denotes those of
the damaged state.

For an MDOF structural system of 𝑁𝐸 elements and
𝑁 nodes, the damage may be predicted by the sensitivity
equation

𝑁𝐸

∑

𝑗=1

𝐹𝑖𝑗𝛼𝑗 = 𝑍𝑖 (9)

in which 𝛼𝑗 ∈ [−1, 0] is the fractional reduction in stiffness
of 𝑗th element and the fraction of modal energy or sensitivity
for the 𝑖th mode concentrated at the 𝑗th element, 𝐹𝑖𝑗, is given
by

𝐹𝑖𝑗 =

∫
𝑥
𝑗+1

𝑥
𝑗

𝐸𝐼 {𝜑
󸀠󸀠

𝑖
(𝑥)}
2

𝑑𝑥

∫
𝐿

0
𝐸𝐼 {𝜑
󸀠󸀠
𝑖
(𝑥)}
2
𝑑𝑥

, (10)

where 𝜑󸀠󸀠
𝑖
(𝑥) is the second derivative of the 𝑖th mode shape

of the bridge; 𝐸 and 𝐼 are the elastic modulus and moment
of inertia of the bridge, respectively; and 𝑥𝑗 and 𝑥𝑗+1 are the
coordinates of the 𝑗th and (𝑗+1)th nodes that are the left and
right nodes of the 𝑗th element, respectively. In practice, only
themodal amplitudes at limited nodal points are available. By
interpolation using spline functions and the element modal
amplitude values from the mode shapes of the finite element
model, one can generate the function 𝜑𝑖(𝑥) as necessary.

For any two modes 𝑚 and 𝑛, one may obtain the ratio of
sensitivities calculated from (9) as

𝑍𝑚

𝑍𝑛

=

∑
𝑁𝐸

𝑗=1
𝐹𝑚𝑗𝛼𝑗

∑
𝑁𝐸

𝑗=1
𝐹𝑛𝑗𝛼𝑗

=

𝐹𝑚1𝛼1 + 𝐹𝑚1𝛼1 + ⋅ ⋅ ⋅ + 𝐹𝑚𝑞𝛼𝑞 + ⋅ ⋅ ⋅ + 𝐹𝑚𝑁𝐸𝛼𝑁𝐸

𝐹𝑛1𝛼1 + 𝐹𝑛1𝛼1 + ⋅ ⋅ ⋅ + 𝐹𝑛𝑞𝛼𝑞 + ⋅ ⋅ ⋅ + 𝐹𝑛𝑁𝐸𝛼𝑁𝐸

.

(11)
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Assuming that damage occurs only at element 𝑞, then 𝛼𝑗 = 0
when 𝑗 ̸=𝑞, but 𝛼𝑗 ̸=0when 𝑗 = 𝑞.The relationship associated
with the𝑚th and 𝑛th eigenvalues can be established as

𝑍𝑚

𝑍𝑛

=

𝐹𝑚𝑞

𝐹𝑛𝑞
. (12)

If𝑁𝑀modes are measured, (12) can be extended to

𝑍𝑚

∑
𝑁𝑀

𝑘=1
𝑍𝑘

=

𝐹𝑚𝑞

∑
𝑁𝑀

𝑘=1
𝐹𝑘𝑞

. (13)

Based on the above equation, an error index 𝑒𝑚𝑗 can be
developed as

𝑒𝑚𝑗 =
𝑍𝑚

∑
𝑁𝑀

𝑘=1
𝑍𝑘

−

𝐹𝑚𝑗

∑
𝑁𝑀

𝑘=1
𝐹𝑘𝑗

, (14)

where 𝑒𝑚𝑗 = 0 indicates in particular that the damage is
located at the 𝑗th element using the𝑚th modal information.
To account for all available modes, one can form a single
damage indicator for the 𝑗th member as

𝐷𝐼𝑗 = [

𝑁𝑀

∑

𝑖=1

𝑒
2

𝑖𝑗
]

−1/2

. (15)

The damage is located at element 𝑗 if𝐷𝐼𝑗 approaches the local
maximumpoint. It has been validated that the damage can be
detected if the surface of the road is assumed to be smooth
[16].

3.2. Empirical Mode Decomposition. For this frequency-
based method, it is important to extract frequencies from the
vehicle response. To help identify the frequencies accurately,
several signal processing techniques are used, including com-
mon filtering techniques and empirical mode decomposition
(EMD) proposed by Huang et al. [24]. EMD is used to
decompose a signal into a series of intrinsic mode functions
(IMFs). Given a set of measured data 𝑋(𝑡), the algorithm
of the EMD, characterized by the sifting process, is briefly
described below.

(a) Identify all the local maxima and minima of the data
X(t) and then compute the corresponding interpolat-
ing signals by cubic spline curves. These signals are
the upper and lower envelopes of the signal. All the
extrema should be covered in these two envelopes.
Let 𝑚1 denote the mean of the upper and lower
envelopes. The difference between the data and the
mean𝑚1 is

ℎ1 = 𝑋 (𝑡) − 𝑚1. (16)

(b) Ideally, ℎ1 should be the first IMF component. If ℎ1
does not satisfy the IMF requirements [24], treat it
as the original data and repeat the first step until the
requirements are satisfied. The first IMF component
obtained is designated as 𝑐1.
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Figure 2: A typical profile of roughness.
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Figure 3: Vertical acceleration of the vehicle running on intact and
damaged bridges.

(c) By subtracting 𝑐1 from the original data, one obtains
the residue 𝑟1 as

𝑟1 = 𝑋 (𝑡) − 𝑐1. (17)

(d) Repeat the above sifting processes to obtain the next
IMFs. Once an IMF is obtained, remove it from the
signal until the predetermined criteria are met: either
when the component 𝑐𝑛 or the residue 𝑟𝑛 becomes
too small to be physically meaningful or when the
residue 𝑟𝑛 becomes amonotonic function fromwhich
nomore IMF can be extracted. Consequently, the data
𝑋(𝑡) is decomposed as

𝑋 (𝑡) =

𝑛

∑

𝑖=1

𝑐𝑖 + 𝑟𝑛. (18)

Thus, a decomposition of the data into 𝑛-empirical modes
is achieved. The process is indeed like sifting: to separate
the finest local mode from the data first based only on the
characteristic time scale. The sifting process, however, has
two effects: (a) to eliminate riding waves and (b) to smooth
uneven amplitudes. Applying fast Fourier transform to these
IMFs, it is easy to extract higher frequencies.

3.3. Modified Genetic Algorithm. Damage detection can be
transformed into an optimization problem. The element
stiffness and parameters of roughness can be treated as
unknowns. It is assumed that the properties of the bridge
without damage are known.The objective function can be set
as the difference between the responses of the vehicle running
on the bridge at the current and the intact state as

𝑒 =
󵄩󵄩󵄩󵄩
̈𝑞
𝑚𝑢

2
− ̈𝑞
𝑠

2

󵄩󵄩󵄩󵄩2
. (19)
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Figure 4: Damage indicator when damage is inflicted at (a) fourth element and (b) tenth element.

The nature of randomness of GA makes it possible for a false
alarm to occur sometimes, but multiple passes will prevent
this. The responses can be divided into two parts. The first
stagemakes use of the results from the first part and identifies
the location of damage. Usually, this part should at least
contain responses from three passes. The GA will roughly
identify the location of damage based on these responses.
If the identified locations from these passes are the same,
no further action is needed. If the result shows that the
identified locations from the responses are different, these
potential locations will be provided to the second stage. Such
a way will greatly reduce the possibility of false alarm and
may reduce the search domain. The population size and
generation used in the GA will thus be reduced, which will
save the computational time.

4. Numerical Study

A two-span continuous bridge is used to demonstrate the
damage detection strategy. The properties of the bridge are
spans 𝐿1 = 𝐿2 = 25m, Young’s modulus of the material 𝐸 =
2.75 × 10

10N/m2, density 𝜌 = 3333 kg/m3, and the moment
of inertia 𝐼 = 0.12m4. The damping is not considered for
the moment and the length of elements for finite element
analysis is 1.25m. For the 5-parameter vehicle, the relevant
values are chosen as follows:𝑚2 = 19840 kg, 𝑘2 = 1×10

5N/m,
𝑐2 = 2 × 10

3Ns/m, 𝑚1 = 160 kg, and 𝑘1 = 1 × 10
5N/m.

The simulated roughness is shown in Figure 2 as described
in the next subsection. The speeds of the vehicle to obtain
the vehicle responses are 0.6m/s, 0.8m/s, 1m/s, 1.2m/s, and
1.4m/s. The time step for integration is 0.001 second. The
damage is modeled as a stiffness reduction at one element of
the beam. In this paper, the position of the damage is selected
around the first quarter point and middle of the first span
of beam which correspond to the fourth and tenth elements
of the beam, respectively. The stiffness reduction is set to be
30%. For convenience, the stiffness reduction is reflected in

the equivalent Young modulus instead of the presentation of
results of damage detection.

4.1. Profile of Roughness. When the values of 𝛼, 𝛽, 𝜔𝑙,
𝜔𝑢, and 𝑁𝑇 are set to be 1 × 10−8m2/(m/cycle), 0, 0.05
cycle/m, 2 cycle/m, and 1024, respectively, and two sets of
𝜙𝑘 are randomly generated, two profiles of roughness are
constructed. One of them is shown in Figure 2.

4.2. Damage Detection at the First Stage. The vertical accel-
eration of the vehicle can be calculated from (1). When the
speed is 1m/s, the vehicle response is shown in Figure 3. Fast
Fourier transform is applied to extract frequencies from these
responses. The first five frequencies of both the intact bridge
and the damaged bridge can be obtained.Modal strain energy
based method is applied to do the damage detection at the
first stage. Figure 4 with two peaks each implies that there
might be two damaged locations even though the damage is
inflicted at one single element. The two nearest elements to
each peak are regarded as potential locations of damage.Thus,
there are totally four possible solutions for each case.

4.3. Damage Detection at the Second Stage. Thefirst stage can
limit the locations of damage to certain elements though it
cannot confine the damage to a single element. This will help
narrow down the search domain for the subsequent work. For
example, Figure 4 shows that the damage may be at the 4th
element or the 37th element, which indicates that the second
stage only needs to determine which of the two the elements
is damaged.

The responses are divided into two parts according to
the speeds of the vehicle. The first part contains responses
when the vehicle runs at speeds of 0.6m/s, 1m/s, and 1.4m/s,
while the remaining responses belong to the second part.
Applying GA to the first part, the identified values of Young’s
modulus of elements are shown in Figure 5. The location
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Figure 5: Identified equivalent Young’s modulus from first part for damage at (a) fourth element and (b) tenth element.

of damage is determined from the three passes when the
damage is inflicted at the 4th element. However, the location
for the second case of damage is not yetwell determined. Even
though this stage does not limit the damage to one element, it
not only eliminates half of the possibilities but also provides
more information on the profile of roughness. Analyzing the
second part of the response using GA, the location of the
damage can be determined as shown in Figure 6.

5. Conclusions

A multistage multipass strategy is proposed to identify the
location of damage from the response of a vehicle moving
over a bridge considering the road surface roughness. The
frequencies of the bridge are extracted with the help of
empirical mode decomposition first. Modal strain energy
based damage detectionmethod is then applied to explore the
possible damage locations. The potential locations obtained
are then given toGAs for further investigation.The algorithm
simultaneously identifies the stiffness of each element and
the profile of roughness. The numerical study shows that this
combined method can successfully determine the location of
damage of a two-span continuous bridge when one element is
assumed to be damaged. The measurement noise influences
the damage detectionmuch less significantly than roughness.
For multiple locations of damage, further work is needed.
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Figure 6: Identified equivalent Young’s modulus from second part
for damage at tenth element.
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Structural blast design has become a necessary part of the designwith increasing terrorist attacks. Terrorist attacks are not the one to
make the structures important against blast loading where other explosions such as high gas explosions also take an important place
in structural safety.Themain objective of this studywas to verify the structural performance levels under the impact of different blast
loading scenarios.The blast loads were represented by using triangular pulse for single degree of freedom system.The effect of blast
load on both corroded and uncorroded reinforced concrete buildings was examined for different explosion distances. Modified
plastic hinge properties were used to ensure the effects of corrosion. The results indicated that explosion distance and concrete
strength were key parameters to define the performance of the structures against blast loading.

1. Introduction

Most of the design codes consider essentially the seismic,
wind, rain, and snow loads. Blast loads have different place
in engineering when they are compared with other loads.
Even the fundamentals of blast and seismic design depend
on dynamic behaviour and energy dissipation approaches;
the design of blast and the response of the structures against
blast loads are extremely different than other well-known
loads. Unlike seismic and wind loads, blast loads have a short
duration, generally in milliseconds (ms). With increasing
terrorist attacks on military buildings, blast design has kept
its popularity to develop new design codes. From military
buildings, blast design has started to be adopted for residen-
tial buildings to resist the gas explosions in huge and closed
areas. Thus, the first blast design code has been developed by
FEMA 427 [1]. OnMarch 20, 2003, the United States attacked
Iraq. Over 4,000 US soldiers died in that war. Most of those
deaths occurred with suicide truck bomb that exploded in
front of military buildings. Figure 1 shows a typical effect of
blast load on Canal Hotel in Baghdad, Iraq, in 2003. The
buildingwas heavily damaged by using trinitrotoluene (TNT)
which exploded at a nearby distance.

If an explosion distance is pretty close and the building
walls are not designed by shear walls, the blast also affects the

interior side of the buildings. Such an explosion was done by
couple car bomb attacks in central Baghdad in 2007. Fifty-
nine people died as a result of explosions. Twenty people
out of fifty-nine were located inside of the building. For
an explosion outside a building, the exterior envelope (i.e.,
wall, reinforced concrete members, and glass) is the critical
line of defence that separates the people, operations, and
contents inside the building from the air-blast effects outside
the building [2]. Unfortunately, most of the buildings in Iraq
were ill-suited to resist the blast loads which could have saved
the people that were located inside of the buildings. Not only
the reinforced concrete buildings but also bridges, railways,
and roads are under the blast risk. Exploded blast load on
major bridges in Baghdad caused collapse to the whole truss
steel frames and concrete asphalt. Within a short period of
explosion, connections of the steel bars were melded with
crushed concrete. The released potential energy with blast
load is much more effective on steel structures when it
is compared with reinforced concrete buildings since steel
structures provide little resistance to thermal energy. While
the blast load causes the steel structures to melt, it turns
the concrete into sand and dust by exceeding yield strength
of concrete. At this point not only the amount of the blast
load but also the pressure of the wave to the surface of
concrete and explosion distance take an important place for
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2 Shock and Vibration

Figure 1: Destroyed reinforced concrete building by blast load [15].
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Figure 2: Schematic of a blast load [4].

structures. When a response of a building from blast load
is considered, natural period of vibration of the structure is
the vital parameter for a given explosion. Ductile elements
made of steel and reinforced concrete absorb a lot of strain
energy [3].The effects of blast on reinforced concrete and steel
structures have been widely studied by many researchers. To
the knowledge of the author, the effects of corrosion with
blast loads on reinforced concrete buildings have not been
studied.Therefore, in this study, different blast load scenarios
were performed for uncorroded and corroded reinforced
concrete buildings to investigate the effect of blast loads
with corrosion. Performance levels of the reinforced concrete
buildings were obtained under the effect of blast loads. The
impacts of the blast waves on the surface of the structural
members were simulated.

2. Blast and Loadings

Blast can be defined as a rapid phase of a created pressure by a
sudden release of energy.This energy provides a blast wave in
different shapes. The general generated blast wave has been
formed in a hemispherical form away from the blast site as
shown in Figure 2.

In this study, the peak static overpressure was calculated
based on the model developed by Smith and Hetherington
[4]:

for 𝑃𝑠 > 10 bar 𝑃𝑠 =
6.7

𝑍
3
+ 1

for 0.1 < 𝑃𝑠 < 10 bar 𝑃𝑠 =
0.975

𝑍
+

1.455

𝑍
2

+
5.85

𝑍
3
,

(1)

where 𝑍 is the scaled distance (ft/lb1/3) and it can be
calculated by the following equation. In (2) 𝑅 and 𝑊 denote
the explosion distance (ft) and the explosives weight (lb) in
TNT, respectively:

𝑍 =
𝑅

𝑊
1/3

. (2)

Idealized pressure-time history of a blast load and compar-
ison between free-field, or side-on, and reflected pressure-
time histories are shown in Figure 3. In Figure 3(a), 𝑃𝑜

is the ambient pressure, 𝑃so is the peak positive side-on
overpressure, 𝑃−so is the peak negative side-on overpressure,
𝑃𝑠(𝑡) is the time varying positive overpressure, 𝑃−

𝑠
(t) is the

time varying negative overpressure, 𝑃𝑟 is the peak reflected
overpressure, 𝐼𝑠 is the positive-phase-specific impulse (the
integration of the positive phase pressure-time history), and
𝑖
−

𝑠
is the negative-phase-specific impulse (the integration of

the negative phase pressure-time history).
The velocity of a wave (𝑈𝑠) and the maximum pressure

were calculated based on the model proposed by Smith and
Hetherington [4]. Consider

𝑈𝑠 = √
6𝑃𝑠 + 7𝑃𝑜

7𝑃𝑜

⋅ 𝑎𝑜,

𝑞𝑠 =
5𝑃
2

𝑠

2 (𝑃𝑠 + 7𝑃𝑜)
,

(3)

where 𝑎𝑜 is the ambient air pressure ahead of wave, 𝛾 is the
specific heat ratio, and 𝜌 is the density of air. The reflected
pressure, 𝑃𝑟, was then calculated by following equations:

𝑃𝑟 = 2𝑃𝑠 + (𝛾 + 1) 𝑞𝑠,

𝑞𝑠 =
1

2
𝜌𝑠𝑢
2

𝑠
,

𝑢𝑠 =
𝑎𝑜 ⋅ 𝑃𝑠

𝛾𝑃𝑜

[1 + [
𝛾 + 1

2𝛾
] .

𝑃𝑠

𝑃𝑜

]

−1/2

,

𝑃𝑟 = 2𝑃𝑠 [
7𝑃𝑜 + 4𝑃𝑠

7𝑃𝑜 + 𝑃𝑠

] .

(4)

In this study, four different explosion distances (i.e., 6m,
12m, 18m, and 24m) were defined with having the same
amount of 150 kg TNT.Themass specific energy for TNTwas
equal to 4520 kJ/kg.

3. Material Modelling

In order to perform the blast load with combined corrosion
effects, stress and strain relationships of concrete and rein-
forcement bars were defined by user. In this study we used the



Shock and Vibration 3

Positive
p Negative phase hase

Duration Duration

Ambient
Pr

es
su

re

Time after explosion

Pso

Po
P−so

i−oPositive impulse,

Negative impulse, i−o

t−otot = 0

P−s (t)

Ps(t)

ta + to + t
−
otata

ta

+ to

(a)

Pr
es

su
re

Duration, 
Time

Duration,  

Pso

Po

Pr

Positive
p

Negative phase 
hase

t−o

to

to

to + t
−
o

(b)

Figure 3: (a) Blast wave pressure-time graph. (b) Blast load and comparison [4].

model with more than 30 years developed by Kent and Park
[5] to model the stress and strain relationships of concrete.
Basically, this model by Kent and Park [5] has two segments.
For the first segment (A-B), the curve reaches maximum
stress level which is equal to 0.002. After reaching maximum
stress, two different other segments occur (B-C, B-D) where
two straight lines indicate different behaviour of concrete
for confined and unconfined concrete. Figure 4(a) shows
Kent and Park [5] model for the stress-strain relationship of
reinforced concrete sections. In this studyMander’s [6]model
was used for the modelling of stress-strain relationship of
reinforcement bars. Mander [6] proposed a model which can
be used for both softer and harder steel. The model includes
linear elastic region up to yield, elastic-perfect-plastic region,
and strain hardening region. Mander’s model [6] controls
both strength and ductility where descending branch of the
curve that first branch increase linearly until yield point

and then the curve continues as constant. Figure 4(b) shows
the model proposed by Mander [6] for stress and strain
relationships of reinforcement bars.

The steel and concrete classes were selected as S420
(420MPa) and C40 (40MPa), respectively. Elastic modulus
of concrete (𝐸𝑐 = 3250√𝑓

󸀠
𝑐
+ 14000MPa) was calculated

according to Turkish standards 500 [7], and the elasticmodu-
lus of steel (𝐸𝑠) was taken as 200,000MPa. A corrosion rate of
0.40 𝜇A/cm2 was assumed to be used in analyses. A corrosion
rate in mm/year was converted to 𝜇A/cm2 by considering
that 1 𝜇A/cm2 is equal to 0.0116mm/year. Three major effects
(i.e., loss in cross-sectional area of reinforcement bars, reduc-
tion in concrete strength, and bond-slip relationships) of
corrosion were taken into account. Reduction in concrete
strength was calculated based on the model developed by
Yalciner et al. [8]. The model developed by Yalciner et al.
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Figure 4: (a) Stress-strain relation of reinforced concrete [5]. (b)
Stress-strain relation of steel bars [6].

[8] provides calculation of the reduction in concrete strength
as a function of corrosion rate or mass loss. The volume of
corrosion rust is generally 2 to 4 times larger than the volume
of original reinforcement [9]. The porous zone around the
reinforcing bars is filled with this corrosion product which
results in internal pressure on the surrounding concrete. As
a consequence of volumetric expansion inside of concrete,
the concrete strengths reduce as a function of corrosion rate
which occurs due to increased width. The model developed
by Yalciner et al. [8] to calculate the increased width of the
structural members due to corrosion is given in

𝑏𝑓 − 𝑏0

= 𝑛bars (
4𝜋𝑑𝑠 (𝑡)

(1 − ]𝑐) /(𝑎/𝑏)
√𝛼

+ (1 + ]𝑐) (𝑏/𝑎)
√𝛼

−
2𝜋𝑏𝑓𝑡

𝐸ef
) .

(5)

In (5), 𝑏𝑓 is the width increased by corrosion cracking, 𝑏0
is the section width in the virgin state, 𝑛bars is the number
of the bars in the top layer (compressed bars), 𝑑𝑠(𝑡) is the
thickness of corrosion product form, ]𝑐 is the Poisson’s ratio
of concrete, 𝑓𝑡 is the tensile strength of concrete, 𝐸ef is the
effective elastic modulus of concrete (𝑎 = (𝑑𝑏 +2𝑑0)/2), 𝑑𝑏 is
the diameter of reinforcement bars, 𝑑0 is the thickness of the
annular layer of concrete pores, 𝑏 is the outer radii of the of
the thick-wall cylinder (𝑏 = 𝑆/2), S is the rebar spacing, and
𝑐5 and 𝑐6 are boundary conditions as proposed by Li et al. [10].
Once the corrosion rate is known, the reduction in concrete
strength can be predicted by using the model developed by
Yalciner et al. [8]. Yalciner et al. [11] in another study also
developed a corrosion model to predict the ultimate bond
strength of uncorroded and corroded reinforcement bars as
a function of three different concrete cover depths and two
different concrete strength levels for different given corrosion
levels by using accelerated corrosion method and performed
pull-out tests. In this study to calculate the ultimate bond
strength of uncorroded structural members, the developed
model by Yalciner et al. [11] was used by given (6). In (6), 𝑓󸀠

𝑐

is the concrete compressive strength, 𝑐 is the concrete cover
depth, and 𝐷 is the diameter of a steel bar:

𝜏𝑏𝑢 = −2.7143 + 0.3621𝑓
󸀠

𝑐
+ 2.3296 (

𝑐

𝐷
) (MPa) . (6)

In order to calculate and predict the ultimate bond
strength of corroded structural members, the following
model developed by Yalciner et al. [11] was used. In (7) devel-
oped bond strengthmodel by Yalciner et al. [11] considers the
limits of corrosion levels for the ascending branchwhen cover
to diameter ratios are equal and greater than two. Consider

if 𝑐

𝐷
≥ 2, {

0 ≤ 𝐶𝐿 ≤ 1.4 for 𝑓
󸀠

𝑐
= 23MPa

0 ≤ 𝐶𝐿 ≤ 0.68 for 𝑓
󸀠

𝑐
= 51MPa

𝜏𝑏𝑢 = 𝑒
(0.01572𝑓

󸀠

𝑐
+0.22957(𝑐/𝐷)+0.13946𝐶

𝐿
+1.75913)

(MPa) .

(7)

Calculated bond strengths of structural member were used
to predict the slippage of reinforcement bars. For doing
this a well-known slip model developed by Alsiwat and
Saatcioglu [12] was used. In the model developed by Alsiwat
and Saatcioglu [12], the development length was divided
into four regions, based on the state of the steel stress-
strain relationship (i.e., an elastic region, a yield plateau,
a strain hardening region, and a pull-out cone region).
Alsiwat and Saatcioglu [12] suggested thatonce extension of a
reinforcement bar is calculated, slip rotation can be calculated
by using moment-curvature relationships given by

𝜃𝑠 =
𝛿ext
𝑑 − 𝑐

, (8)

where 𝑑 is the section depth, c is the neutral axis of assessed
section, and𝛿ext is the extension of a bar. Calculated reduction
in concrete strength (see (5)), loss in cross-sectional area, pre-
dicted bond strength (see (6) and (7)), and slip rotations (see
(8)) were used tomodify themoment-curvature relationships
of defined structural member.
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4. Blast Analyses and Results

Calculated moment-curvature relationships were used
to define the force-deformation relationships. Force-
deformation behaviour was defined by using a described
standard by FEMA-356 [13]. Figure 5 shows force-
deformation relationships to define the behaviour of a
plastic hinge by FEMA-356 [13]. On Figure 5 labelled A, B,
C, D define force-deformation behaviour which is detail
explained by FEMA-356 [13].

The lengths of the plastic hinges (𝐿𝑝) were calculated
according to Park and Paulay [14] by

𝐿𝑝 = 0.5𝐻, (9)

where 𝐻 is the related section depth of element. As men-
tioned earlier, four different explosion distances (i.e., 6m,
12m, 18m, and 24m) were defined. For this purpose a
reinforced concrete building was modelled. The results of
the blast effect with combined corrosion damage on building
were discussed for designed shear wall as shown in Figure 6.

The first explosion was done with an explosion distance
of 6m and continued with other distances. The results
clearly indicated that effect of blast regarding the damage of
reinforced concrete building and the resistance of concrete
is much more important than the reinforcement bars. At
this point, the role of the reinforcement bars on concrete
was corrosion. If the reinforcement bars were corroded,
with increased cracks within the concrete as a function
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Figure 7: Blast load with a 6m explosion: (a) uncorroded shear wall
and (b) corroded shear wall.

of corrosion rate caused to increase the effect of the blast
load. After the first explosion, the results of the energy
contributions of the kinetic + strain, damping, and hysteretic
energies as well as the total energy are shown in Figure 7. In
Figure 7 the hysteretic energy was an indication of structural
damage resulting from the application of the blast load.

As shown in Figure 7(a), structural damage resulting
from the application of the blast load was less when it was
compared with corroded shear wall due to crack width of
concrete caused by corrosion. The results of exploded TNT
for 18m and 24m for both uncorroded and corroded cases
were given in Figures 8 and 9, respectively.

In Figure 8, as it was expected, with increased explo-
sion distance, damage to structure was reduced. Moreover,
percentage contribution of the hysteretic energy to the total
energy was higher for corroded shear wall. The recorded
relative percentages of hysteretic energy of uncorroded and
corroded concrete members were 3.42% and 7.00%, respec-
tively. These percentages were reduced to zero percentages
with an increased explosion distance by 24m at the same
period of 0.15ms (see Figure 9). Structural damage resulting
from the application of the blast load having 0.2ms was 1.5%
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Figure 8: Blast load with 18m explosion distance: (a) uncorroded
shear wall and (b) corroded shear wall.

and 2.38% for uncorroded and corroded concrete members,
respectively. When two different explosion distances were
compared, the recorded 24.23% of relative percentage of hys-
teretic energy was reduced to zero percentage with increased
explosion distance from 6m to 24m within 0.10ms.

5. Conclusion

The effects of blast load on corroded and uncorroded rein-
forced concrete buildings were studied for different explosion
distances.The results clearly indicated that structural damage
was reducedwith increased explosion distances by depending
on amount of TNT that was used in current study. Performed
blast loads and obtained results showed that effect of corro-
sion did not play a major role in the percentage contribution
of the hysteretic energy to the total energy by reduction in
cross-sectional area of reinforcement bars. Increased crack
width of concrete due to corrosion played a major role
in the case of corroded structural member. Reduction in
cross-sectional area of reinforcement bars directly caused
premature yielding of reinforcement bars.Thus, a few amount
of energy absorption has been lost during blast load. Since the
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Figure 9: Blast load with a 24m of explosion distance: (a) uncor-
roded shear wall and (b) corroded shear wall.

yield and compressive strength of concrete were vital param-
eters, slippage of reinforcement bars due to corrosion against
blast load with a very close explosion distance measured
in milliseconds did not influence the performance of the
structure. It is believed that the methodology described here
will be a guideline for further studies andnovel investigations.
Therefore, buckling problems and particularly irregularities
of buildings under the effect of blast loads do require further
studies.The lessons learned from terrorist events in the recent
past could guide us in the design and in the risk assessment
of buildings considering their vulnerability to blast loading.
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An algorithm to assess transversal cracks in composite structures based on natural frequency changes due to damage is proposed.
The damage assessment is performed in two steps; first the crack location is found, and afterwards an evaluation of its severity
is performed. The technique is based on a mathematical relation that provides the exact solution for the frequency changes of
bending vibration modes, considering two terms.The first term is related to the strain energy stored in the beam, while the second
term considers the increase of flexibility due to damage. Thus, it is possible to separate the problems of localization and severity
assessment, which makes the localization process independent of the beams cross-section shape and boundary conditions. In fact,
the process consists of comparing vectors representing the measured frequency shifts with patterns constructed using the mode
shape curvatures of the undamaged beam. Once the damage is localized, the evaluation of its severity is made taking into account
the global rigidity reduction.The damage identification algorithmwas validated by experiments performed on numerous sandwich
panel specimens.

1. Introduction

Composites consist of two or more constituents with quite
different physical and/or chemical properties, separately and
distinctively identifiable within the structure. Unlike natural
materials, which have predefined properties, composites are
elaborated to fulfill predefined needs, permitting a new
approach in structural design. Among composites, sandwich
structures are a special class; they are manufactured by sheets
with different mechanical and physical properties, disposed
in a spatial distribution that provides the sandwich composite
with high shear stiffness and high bending stiffness to weight
ratio. Under static and dynamic loads in various environ-
ments, sandwich structures related problems are studied from
the mid of the last century. The main attempts are focused
on bending and buckling [1–3], optimal design [4–6], shock
resistance [7, 8], and vibrational behavior [9–12]with identifi-
cation of natural frequencies and/or elastic parameters of the
sandwich structures. Recentworks are devoted to detection of

damage in sandwich beams or plates, with different core types
and damage configurations [13–16]. Most actual damage
detection methods, even for isotropic structures, are difficult
to be applied due to the fact that no analytical solution
to quantify frequency changes due to damage is available.
Furthermore, the damage assessment algorithm has to be
an adapted function of boundary conditions and mechanical
and geometrical structure characteristics.

Our previous research work [17–20] permitted contriving
a mathematical relation that permitting predicting the values
of the natural frequencies for damaged beams with any
crack type and configuration.This technique is applicable for
beams having any support type and slenderness. Based on
this technique, we developed a damage detection algorithm
that uses the frequency shifts of the weak-axis transversal
vibration modes. Because the frequency shift is expressed
by two terms, where the first term depends on the damage
location and the second on its depth, it is possible to separate
the problem of localizing the damage and evaluating its
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severity. Consequently, we proposed a damage detection
method, which is performed in two steps, that is, first
identifying the damage location and afterwards estimating its
severity. This paper presents an extension of the method for
multilayered beams.

2. Vibration of Sandwich Beams

Since the aim of the researchwas to establish a proper damage
detection method for composite beams, we analyzed first
the dynamic behavior of these types of structures. For the
analysis, we consider a sandwich beam, having length 𝐿,
width 𝑏, and height ℎ, composed of top and upper steel faces
with thickness 𝑠 and foam core with thickness 𝑐 as shown
in Figure 1. The material parameters of the steel faces are
mass density 𝜌𝑠; Young’s modulus 𝐸𝑠; and Poisson’s ratio 𝜇𝑠.
The foam core has mass density 𝜌𝑐, Young’s modulus 𝐸𝑐, and
Poisson’s ratio 𝜇𝑐.

For a symmetrical cross-section like that presented in
Figure 1, the core flexural rigidity measured around the
neutral axis 𝑂𝑦 is given by [4]

(𝐸𝐼)core =
𝐸𝑐𝑏𝑐
3

12
. (1)

For the two faces, each of cross-sections 𝐴 𝑠 = 𝑏𝑠, with the
weight center placed at distance 𝑑 = (𝑐+𝑠)/2 from the neutral
axis 𝑂𝑦, the flexural rigidity measured around this axis is as
follows:

(𝐸𝐼)faces = 2𝐸𝑠 (
𝑏𝑠
3

12
+ 𝐴 𝑠𝑑

2
) . (2)

The equivalent flexural rigidity (𝐸𝐼)eq of the sandwich beam
is the sum of the rigidities of the faces and the core around
the neutral axis 𝑂𝑦. It can be expressed as follows:

(𝐸𝐼)eq =
𝐸𝑠𝑏𝑠
3

6
+
𝐸𝑠𝑏𝑠(𝑐 + 𝑠)

2

2
+
𝐸𝑐𝑏𝑐
3

12

=
𝑏

12
[2𝐸𝑠𝑠
3
+ 6𝐸𝑠𝑠(𝑐 + 𝑠)

2
+ 𝐸𝑐𝑐
3
] .

(3)

The linear mass for one face is 𝑚̂𝑠 = 𝜌𝑠𝐴 𝑠 = 𝜌𝑠𝑏𝑠, while the
linear mass for the core is 𝑚̂𝑐 = 𝜌𝑐𝐴𝑐 = 𝜌𝑐𝑏𝑐; thus, the linear
mass for the sandwich beam is as follows:

𝑚̂eq = 2𝜌𝑠𝑏𝑠 + 𝜌𝑐𝑏𝑐. (4)

Consequently, using relations (3) and (4), the equation of
motion for an Euler-Bernoulli beam, neglecting the effect of
damping, is given by

𝜕
4
𝑤

𝜕𝑥
4
+

𝑚̂eq

(𝐸𝐼)eq
⋅
𝜕
2
𝑤

𝜕𝑡
2
= 0 or

𝜕
4
𝑤

𝜕𝑥
4
+

12 (2𝜌𝑠𝑠 + 𝜌𝑐𝑐)

2𝐸𝑠𝑠
3
+ 6𝐸𝑠𝑠(𝑐 + 𝑠)

2
+ 𝐸𝑐𝑐
3
⋅
𝜕
2
𝑤

𝜕𝑡
2
= 0.

(5)

Considering that the vertical displacement 𝑤 depends on
distance 𝑥 and time 𝑡, and the evolution in time is harmonic,
𝑤 can be written as follows:

𝑤 = 𝑋 (𝑥) ⋅ 𝑇 (𝑡) = 𝑋 ⋅ sin𝜔𝑡. (6)
After derivation and substitution in relation (5), one obtains
the following:

𝑋
𝐼𝑉
−

𝑚̂eq𝜔
2

(𝐸𝐼)eq
𝑋 = 0. (7)

Denoting 𝑚̂eq𝜔
2
/(𝐸𝐼)eq = 𝛼

4, we find the solution as follows:

𝑋 = 𝐶1 sin𝛼𝑥 + 𝐶2 cos𝛼𝑥 + 𝐶3 sinh𝛼𝑥 + 𝐶4 cosh𝛼𝑥. (8)
After three derivations, one obtains the system of equations
as follows:

𝑋 = 𝐶1 sin𝛼𝑥 + 𝐶2 cos𝛼𝑥 + 𝐶3 sinh𝛼𝑥 + 𝐶4 cosh𝛼𝑥

𝑋
󸀠
= 𝛼 (𝐶1 cos𝛼𝑥 − 𝐶2 sin𝛼𝑥 + 𝐶3 cosh𝛼𝑥 + 𝐶4 sinh𝛼𝑥)

𝑋
󸀠󸀠
= 𝛼
2
(−𝐶1 sin𝛼𝑥 − 𝐶2 cos𝛼𝑥

+ 𝐶3 sinh𝛼𝑥 + 𝐶4 cosh𝛼𝑥)

𝑋
󸀠󸀠󸀠
= 𝛼
3
(−𝐶1 cos𝛼𝑥 + 𝐶2 sin𝛼𝑥

+ 𝐶3 cosh𝛼𝑥 + 𝐶4 sinh𝛼𝑥) .
(9)

If we consider the beam as a cantilever, the boundary
conditions are 𝑋(0) = 𝑋󸀠(0) = 0 and 𝑋󸀠󸀠(𝐿) = 𝑋󸀠󸀠󸀠(𝐿) = 0;
thus we obtain the characteristic equation as follows:

1 + cos 𝜆 ⋅ cosh 𝜆 = 0, (10)
with 𝜆 = 𝛼𝐿, which permits calculating the 𝜆𝑖 values for 𝑖
vibrations modes. Multiplying the expression of 𝛼4 with 𝐿4
and substituting the values of 𝜆𝑖 and the angular frequencies
𝜔𝑖, consequently the natural frequencies of the undamaged
cantilever beam are obtained as follows:

𝑓𝑖 =
𝜆
2

𝑖

2𝜋
√
(𝐸𝐼)eq

𝑚̂eq𝐿
4
or

𝑓𝑖 =
𝜆
2

𝑖

2𝜋𝐿
2
√
2𝐸𝑠𝑠
3
+ 6𝐸𝑠𝑠(𝑐 + 𝑠)

2
+ 𝐸𝑐𝑐
3

12 ⋅ (2𝜌𝑠𝑠 + 𝜌𝑐𝑐)
.

(11)

Equation (8) shows that the dynamic behavior of a sandwich
beam is similar to that of a homogeneous beam in terms of
mode shapes, while the natural frequencies are different.This
feature was used for the design of a damage detectionmethod
applicable to sandwich beams.
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Figure 2: (a)Mode shapes, curvature, and natural frequency shift curves for bendingmode 7, (b) the behavior of slices placed on characteristic
point on the beam, and (c) the representation of function 𝜒 for the same bending vibration mode.

3. Exact Solution for the Frequency Changes
due to Damage

The effect of a crack on the natural frequency of a certain
transversal vibration mode depends on its position on the
beam and its geometry, namely, orientation, depth, and
width. For transversal cracks with a given location on the
beam, the depth increase produces a frequency decrease.
On the other hand, a transversal crack with given depth
and width produces different frequency shifts for a certain
vibration mode when it has different locations along the
beam. Similarly, a crack placed in a certain location will
produce different frequency shifts for different vibration
modes; for example, there are several locations in which
the damage will not produce a frequency change at all.
This phenomenon happens due to the fact that beam slices
are placed in locations where a mode shape curvature has
inflection points that undergo no bending and consequently
do not contribute to the strain energy stored in the beam for
that mode.Thus, when a crack does not lead to loss of energy,
the natural frequency of that mode is not affected. On the
contrary, a slice placed in a location where the mode shape

curvature of a certain vibration mode exhibits local extrema
is able to accumulate important amount of strain energy.

Therefore, a crack placed on that location essentially
modifies the natural frequencies of that vibration mode. In
this paper an example of a cantilever beam, fixed on the left
end (𝑥 = 0), is presented.

Figure 2(a) shows the beammode shape and its curvature
for bending mode 7, with stress on two characteristic points,
namely, one of the curvature’s inflection points A and one
of its local maxima B. Herein, it is also presented as a
curve reflecting the damaged beam’s frequencies for all
possible crack locations along the beam. From Figure 2(a),
one observes the good correlation between the characteristic
points (i.e., inflexion and local extrema) and the frequency
shifts tendency.

Figure 2(b) depicts the behavior of the slices placed on the
above mentioned characteristic points. Obviously, the slice
placed on an inflection point (e.g., point A) just rotates, being
not subjected to bending.This means that no energy is stored
in that slice so that a crack located in this location does not
affect the global behavior of the beam in mode 7. This means
that no energy decrease takes place; thus no frequency change
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occurs. On the other hand, it can easily be observed that a
crack placed on slice that undergoes severe bending (i.e., high
values of the curvature), like that placed on point B, produces
an important frequency decrease. This fact is justified by the
expression of the strain energy stored in a slice:

𝑑𝑈𝑖 (𝑥) =
1

2
𝐸𝐼(𝜙
󸀠󸀠

𝑖
(𝑥))
2

𝑑𝑥, (12)

where 𝑈𝑖(𝑥) is the strain energy stored in the slice, 𝑑𝑥 is
located at distance 𝑥 from the fixed end for the vibration
mode 𝑖, and 𝜙󸀠󸀠

𝑖
(𝑥) is the mode shape curvature for mode

𝑖 at that location. Consequently, the frequency change of a
vibrationmode 𝑖 due to a certain crack depends on the energy
stored in the affected slice, that is, the square of the mode
shape curvature. This means that knowing the effect of a
crack placed in the location where the local stored energy
(or the curvature square) attends the global maxima, it is
possible to find the crack influence on any other position by
considering the normalized stored energy in that location.
For the cantilever fixed point at 𝑥 = 0, the normalized stored
energy in any location is calculated by using the following
relation:

𝑑𝑈𝑖 (𝑥) =
𝑑𝑈𝑖 (𝑥)

𝑑𝑈𝑖 (0)
=

(𝜙
󸀠󸀠

𝑖
(𝑥))
2

(𝜙
󸀠󸀠
𝑖
(0))
2
= (𝜙
󸀠󸀠

𝑖
(𝑥))

2

. (13)

Since this paper focuses onEuler-Bernoulli beams,we can use
the “normalized curvature square” instead of the “normalized
stored energy.”

The similarity between the frequency shift curves due to
damage and the expression 𝜒 = (1 − (𝜙󸀠󸀠

𝑖
(𝑥))
2
) is obvious as

can be seen in Figures 2(a) and 2(c). This fact demonstrates
that the frequency shift due to a crack placed on the beam is
controlled by the normalized curvature square. Evidently, the
deeper the crack, the higher the frequency decrease. Based
on these observations, we determined a relationship that
indicates the frequency shift for any bending vibration mode
𝑖, damage depth 𝑎, and location 𝑥 and any beam support type
[21]. The relation is presented as follows:

𝑓𝑖−𝐷 (𝑥, 𝑎) = 𝑓𝑖−𝑈 ⋅ [1 − 𝛾 (0, 𝑎) ⋅ (𝜙
󸀠󸀠

𝑖
(𝑥))

2

] . (14)

The notations used are 𝑓𝑖−𝑈 for the frequency of the undam-
aged beam,𝑓𝑖−𝐷(𝑥, 𝑎) for the frequency of the damaged beam
with a crack of depth 𝑎 at the position 𝑥 on the beam, 𝛾(𝑎)
for a function representing the maximum stiffness reduction
(for cantilever beams, it is at the fixed end), and 𝜙

󸀠󸀠

𝑖
(𝑥) for the

normalized mode shape curvature having values between −1
and 1. From previous researches, we found the relation for the
damage severity as [14]

𝛾 (𝑎) = 1 − √
V𝑈max (𝑎)

V𝐷max (𝑎)
, (15)

where V𝑈max(𝑎) is the deflection of the undamaged beam and
V𝐷max(𝑎) is the deflection of the damaged beam, under own
weight, respectively.

The function 𝛾(𝑎) has the same meaning as the massless
torsional spring of stiffness 𝜅(𝑎) used in many papers to
model the damage. In these papers, see, for instance, [21–27],
the spring constant is expressed using the empirical expres-
sions of local compliance 𝑃(𝑎) from fracture mechanics as
follows:

𝜅 =
1

𝑐
for 𝑐 = ℎ

𝐸𝐼
𝑃 (𝑎) , (16)

where 𝑎 = 𝑎/ℎ is the dimensionless damage depth and 𝑐 is
the damage severity. In the works of Liebowitz and Claus [21],
Liebowitz et al. [22], Rizos et al. [23], or Caddemi and Caliò
[24], the local compliance has the following form:

𝑃 (𝑎) = 5.346 ⋅ [1.862 ⋅ (𝑎)
2
− 3.95 ⋅ (𝑎)

3
+ 16.375 ⋅ (𝑎)

4

− 37.226 ⋅ (𝑎)
5
+ 76.81 ⋅ (𝑎)

6

− 126 ⋅ (𝑎)
7
+ 172 ⋅ (𝑎)

8

− 143.97 ⋅ (𝑎)
9
+ 66.56 ⋅ (𝑎)

10
] .

(17)

Ostachowicz andKrawczuk [25] instead proposed the follow-
ing expression:

𝑃 (𝑎) = 6𝜋(𝑎)
2
[0.6384 − 1.035 (𝑎) + 3.7201(𝑎)

2

− 5.1773(𝑎)
3
+ 7.553(𝑎)

4

−7.332(𝑎)
5
+ 2.4909(𝑎)

6
] .

(18)

Other expressions of the local compliance are given by Bilello
[26]

𝑃 (𝑎) =
𝑎 (2 − 𝑎)

0.9(𝑎 − 1)
2

(19)

and by Chondros et al. [27], who have created a lumped
cracked flexibility model equivalent to their continuous
model as follows:

𝑃 (𝑎) = 6𝜋 (1 − ]2) [0.6272(𝑎)2 − 1.04533(𝑎)3 + 4.5948(𝑎)4

− 9.9736(𝑎)
5
+ 20.2948(𝑎)

6

− 33.0341(𝑎)
7
+ 47.163(𝑎)

8

− 40.7556(𝑎)
9
+ 19.6(𝑎)

10
] .

(20)

Figure 3 presents the comparison between the curves plotted
using (15), expressed in respect to the dimensionless damage
depth 𝑎 and the functions 𝑃(𝑎) determined from fracture
mechanics. From Figure 3, we observe a good concordance,
which validate our approach.

Opposite to the equations presented in the literature,
valid just for rectangular cross-sections, (14) contrived by
the authors permits correlating damage depth and severity
for any cross-section shape. Furthermore, it is applicable for
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Figure 3: Comparison of relations used to express the rigidity loss
due to damage versus the dimensionless damage depth.

composites with constant rigidity 𝐸𝐼 in the healthy state,
like sandwich panels or some continuous fiber reinforced
composites.

To prove the validity of (14) for some types of composites,
simulations were carried out for a cantilever steel beam and a
similar sandwich beam (Figure 4), respectively. The damage
having the width 𝛿 = 0.5mm is placed in the vicinity of the
fixed end and the dimensionless depth 𝑎/ℎ varying from 0.1
to 0.9.The results obtained for the two types of structures are
presented in Figure 5.

It should be mentioned that, for the steel beam, the
damage severity indicator increases constantly until it reaches
the value 1 for the theoretical value of damage 𝑎 = ℎ as
presented in Figure 5(a). For the sandwich beam, until the
damage does not rift the steel face, the damage severity indi-
cator takes low values. Once the face is completely separated,
the damage severity indicator increases dramatically. At this
point, the crack extension produces slow increase of the
severity indicator, until the bottom steel sheet is reached. If
the crack is extending in the bottom steel sheet, the damage
severity indicator increases faster with the dimensionless
damage depth 𝑎/ℎ until it reaches a unit value for the
theoretical case 𝑎 = ℎ. These aspects are depicted in
Figure 5(b).

4. A Two-Step Damage Assessment Method
Based on Pattern Recognition

From (14), we can deduce the frequency shift Δ𝑓𝑖 for any
bending vibration mode 𝑖, damage depth 𝑎, and location 𝑥
as follows:

Δ𝑓𝑖 = 𝑓𝑖−𝑈 − 𝑓𝑖−𝐷 (𝑥, 𝑎) = 𝑓𝑖−𝑈 ⋅ 𝛾 (0, 𝑎) ⋅ (𝜙
󸀠󸀠

𝑖
(𝑥))

2

(21)

and the relative frequency shift Δ𝑓∗
𝑖
of a bending vibration

mode as the ratio between the frequency shift and the
frequency of the undamaged beam in that mode as

Δ𝑓
∗

𝑖
(𝑥, 𝑎) =

𝑓𝑖−𝑈 − 𝑓𝑖−𝐷 (𝑥, 𝑎)

𝑓𝑖−𝑈

= 𝛾 (0, 𝑎) ⋅ (𝜙
󸀠󸀠

𝑖
(𝑥))

2

. (22)

A novel two-step method to localize and evaluate damage
severities was developed based on the contrived relation (22).
Considering this relation, at one location on the beam and
for 𝑛 vibration modes, we obtain a series of 𝑛 terms, in the
form of Δ𝑓∗

𝑖
(𝑥, 𝑎) = 𝛾(0, 𝑎) ⋅ (𝜙

󸀠󸀠

𝑖
(𝑥))

2

, with 𝑖 = 1 ⋅ ⋅ ⋅ 𝑛.
Dividing 𝑛 terms to the highest value of the series, the severity
coefficient 𝛾(𝑎) is eliminated and the normalized relative
frequency shifts Φ𝑖(𝑥) = Δ𝑓

∗

𝑖
(𝑥, 𝑎)/max((Δ𝑓∗

𝑖
(𝑥, 𝑎))

2
) for

that location are obtained as follows:

Φ1 (𝑥) =

(𝜙
󸀠󸀠

1
(𝑥))

2

max (𝜙
󸀠󸀠

𝑖
(𝑥))

2
,

Φ2 (𝑥) =

(𝜙
󸀠󸀠

2
(𝑥))

2

max (𝜙
󸀠󸀠

𝑖
(𝑥))

2
,

...

Φ𝑛 (𝑥) =

(𝜙
󸀠󸀠

𝑛
(𝑥))

2

max (𝜙
󸀠󸀠

𝑖
(𝑥))

2
.

(23)

The series in (23), for which we nominate Spectral Damage
Location Index (SDLI), is now independent of depth 𝑎.
Consequently, it characterizes only the crack location 𝑥.
Thus, patterns for any damage location can be analytically
calculated using the normalized curvature squares as shown
in Figure 6, that is, the energy distribution along the beam.
It has to be mentioned that only the mode shapes of the
healthy beam and the corresponding curvatures are consid-
ered, because the mode shapes change insignificantly due to
damage. This was proved by vision-based damage detection
methods [28], where a subpixel approach is necessary to
highlight the mode shape changes.The values extracted from
the normalized curvature squares have to be normalized
again, thus becoming the highest value, that is, the unit.These
patterns can be represented as histograms, as depicted in
Figure 7.

On the other hand, the frequency shifts can be deter-
mined by measurements. Suppose that, by starting monitor-
ing a beam, the measured frequencies for undamaged beam
are 𝐹𝑚
𝑈
: {𝑓
𝑚

1−𝑈
, . . . 𝑓
𝑚

𝑖−𝑈
, . . . 𝑓
𝑚

𝑛−𝑈
} and for damaged beam are

𝐹
𝑚

𝐷
: {𝑓
𝑚

1−𝐷
, . . . 𝑓
𝑚

𝑖−𝐷
, . . . 𝑓
𝑚

𝑛−𝐷
}, with 𝑖 = 1 ⋅ ⋅ ⋅ 𝑛. Applying (14)

for the two series𝐹𝑚
𝑈
and𝐹𝑚
𝐷
, we obtain the relative frequency

shift for 𝑛 modes, that is, 𝑛 dimensionless values: 𝐹∗𝑚 :

{Δ𝑓
∗𝑚

1
, . . . Δ𝑓

∗𝑚

𝑖
, . . . Δ𝑓

∗𝑚

𝑛
}. These values can be normalized



6 Shock and Vibration

 
 a

L 

h O 

z 

x 

O 

z 

x 

y 

Figure 4: Sandwich beam with damage.

0.5

0.4

0.3

0.2

0.1

0

Dimensionless damage depth a/h 

Steel

0.2 0.4 0.6 0.8 1

D
am

ag
e s

ev
er

ity
𝛾
(0

,a
/h

)

(a)

0.8

0.6

0.4

0.2

0

Dimensionless damage depth a/h  

Steel SteelFoam

0.2 0.4 0.6 0.8 1

D
am

ag
e s

ev
er

ity
𝛾
(0

,a
/h

)

(b)

Figure 5: Damage severities versus dimensionless damage depth for (a) the steel beam and (b) the sandwich beam.

by dividing them by the highest value of the series. The
mathematical formulation is presented as follows:

Ψ1 =
Δ𝑓
∗𝑚

1

max (Δ𝑓∗𝑚
𝑖
)
,

Ψ2 =
Δ𝑓
∗𝑚

2

max (Δ𝑓∗𝑚
𝑖
)
,

...

Ψ𝑛 =
Δ𝑓
∗𝑚

𝑛

max (Δ𝑓∗𝑚
𝑖
)
.

(24)

Comparing the series Ψ obtained using relation (24) with
numerous seriesΦobtained from relation (23) by considering
a large number of locations𝑥 along the beam, one can find the
location 𝑥𝐶 where the terms of the two series match together.
Thus, the crack location is found using only information
about the frequency shifts in several vibration modes (deter-
mined by measurements), compared with patterns derived
from the squares of the healthy beammode shape curvatures
of that vibration modes.

The algorithm can be used for all beams with any support
type, simply choosing the adequate mode shape curvatures.
Our researches revealed that the number of elements Φ𝑖
involved in the analysis should be from six to ten; more
elements are especially necessary when there are modes for
which the measured results are not reliable.

Once the damage location 𝑥 is identified, it is possible
to evaluate its severity indicator 𝛾(0, 𝑎) by rewriting (22) as
follows:

𝛾 (0, 𝑎) =
Δ𝑓
∗

1
(𝑥, 𝑎)

(𝜙
󸀠󸀠

𝑖
(𝑥))

2
. (25)

The relative frequency shift for mode one Δ𝑓∗
1
(𝑥, 𝑎) is known

from measurements, while the term defining the damage
position (𝜙

󸀠󸀠

𝑖
(𝑥))

2

is determined as the first member of the
SDLI. As soon as the severity indicator 𝛾(0, 𝑎) is known,
the dimensionless damage depth can be determined from
diagrams like that presented in Figure 5(a) or 5(b). It has to be
mentioned that (25) can be applied for any bending vibration
mode, since 𝛾(0, 𝑎) is mode independent.
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Figure 8: Experimental stand.

5. Experimental Results and Validation
of the Method

To prove the method’s validity for composite structures, a
series of experimental tests were performed on sandwich
beams. The experiments presented in this paper are per-
formed on a cantilever beam. The boundary conditions were
realized by mounting one of its ends in a rigid support (see
Figure 8). The measurement system used for the vibration
signal acquisition involved was programming environment
LabVIEW, in which a virtual instrument was developed, in
order to acquire the time history of acceleration and realize
the spectral analysis [29, 30]. This virtual instrument is
designed to find the natural frequencies with high accuracy,
though early damage detection implies observation of small
frequency changes.

The sandwich beam has the following dimensions: length
𝐿 = 1000mm, width 𝑏 = 110mm, and height ℎ = 30mm
and composed of top and upper steel faces with thickness
𝑠 = 1mm and foam core with thickness 𝑐 = 28mm. Our
researches include tests on beams with different thicknesses
in order to confirm the theory. The material parameters of
the steel faces are mass density 𝜌𝑠 = 7850 kg/m3, Young’s
modulus 𝐸𝑠 = 2.0 ⋅ 10

11N/m2, and Poisson’s ratio 𝜇𝑠 = 0.3.
For the foam core the similar values are mass density 𝜌𝑐 =
30 kg/m3, Young’s modulus 𝐸𝑐 = 1100N/m2, and Poisson’s
ratio 𝜇𝑐 = 0.42.
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Figure 9: Identification of the crack location using the Minkowski
Distance.

To find out the natural frequencies for the first six weak-
axis bending vibrationmodes, wemeasured the accelerations
on transversal direction. The accelerometer was placed near
the free end of the beam, as shown in Figure 8, in a location
assuring reasonable displacement. A transversal force was
applied on the beam to bring the mechanical system out of
its equilibrium position. By suppressing that force, the beam
started to vibrate. We recorded the acceleration values for
the undamaged beamanddetermined the natural frequencies
for the first six bending vibration modes. The process was
repeated until trustful frequency values were obtained. The
results can be improved by replacing the accelerometer on
certain points, where the maximum displacement for the
corresponding mode is obtained. Afterwards damage with
different depths was produced and new series of measure-
ments were realized.The obtained results for a damage depth
of 6mm placed close to the fixed end are presented in Table 1,
together with that obtained for the undamaged beam. One
observes that for the damaged beam some frequencies show
higher changes comparing to the undamaged case, while for
other frequencies the changes are not so important. This
makes it possible to precisely identify damage location and
afterwards its severity by using an algorithmdeveloped by the
authors [31].

Using themeasured natural frequency values of theweak-
axes bending vibrations for the undamaged and damaged
case, one can calculate the relative frequency shift Δ𝑓

∗

𝑖
(𝑥)
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Table 1: Measured natural frequencies and corresponding shifts for the analyzed beam.

Mode i Natural frequency 𝑓𝑖 Relative frequency shift Δ𝑓∗
𝑖

Damage location indexΦ𝑖
Undamaged [Hz] Damaged [Hz] Percentage [%] Normalized [—] 𝜙

󸀠󸀠

𝑖
(0.285) [—] Normalized [—]

1 15.42 13.782 10.62257 0.827801 0.3815 0.765766
2 94.65 93.048 1.692552 0.131898 0.0721 0.220433
3 261.39 231.114 11.58269 0.902622 0.4107 0.947873
4 498.45 478.91 3.92015 0.305492 0.3913 0.346499
5 803.61 793.584 1.24762 0.097225 0.0531 0.111715
6 1163.13 1013.874 12.83227 1 0.4552 1

in percentage and normalized values with the highest value
of the series; the results are also presented in Table 1. It is
evident that whereas the relative frequency shift expressed
in percentage provides information about the location and
depth of damage, the results expressed in dimensionless
provide information about the damage location exclusively.
For a precise location, it is recommendable to compare first
the normalized values obtained from measurements with
that obtained analytically and also normalized, for numerous
damage locations. To find the location of damage, a program
realized by the authors was involved; it uses the Minkowski
distance of second order to compare histograms [32]. The
damage location was found at distance 𝑥 = 0.285mm (or
𝑥/𝐿 = 0.285) from the fixed end, as is shown in Figure 9.

Table 1 presents in the last column the damage location
index values for the first six vibration modes calculated for
damage placed at 𝑥 = 285mm from the fixed end. One
can observe the good concordance between the normalized
relative frequency shifts and the normalized SDLI values.
Therefore, damage location is reduced to a pattern recogni-
tion problem.

Once the damage location is identified at 𝑥 = 285mm,we
can calculate the term defining the damage position (𝜙

󸀠󸀠

𝑖
(𝑥))

2

for mode one and afterwards the damage severity indicator
𝛾(0, 𝑎). The evaluation of damage depth is made by finding
the value of the dimensionless damage depth 𝑎/ℎ on a curve
similar to that presented in Figure 5(b), for which the damage
severity indicator 𝛾(0, 𝑎) takes the value 0.1283. Thus we
estimate the damage penetrated the foam core and a cross-
section reduction due to damage above 45%. Dimensional
measurements confirmed a damage depth around 14mm,
representing a cross-section reduction of almost 50%.

Tests were performed successfully on sandwich beams,
for a large series of damage scenarios.

6. Conclusion

Research performed by the authors, presented in this paper,
reveals that damage localization in sandwich panels can
be successfully done using the relation contrived by the
authors for isotropic materials. Difference appears by the
evaluation of damage severity, where the curves representing
the severity indicator versus dimensionless damage depth
have another allure, given by the mechanical and geometrical
characteristics of the constitutive layers.

On the other hand, the relative frequency shifts for
sandwich structures with foam core attend higher values as
that of steel beams.Thismakes damage detection and location
in composite beamsmore facile compared to steel beams, but
estimation of damage severity more difficult.
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The experimental study of damping in a time-varying inertia pendulum is presented.The system consists of a disk travelling along an
oscillating pendulum: large swinging angles are reached, so that its equation of motion is not only time-varying but also nonlinear.
Signals are acquired from a rotary sensor, but some remarks are also proposed as regards signals measured by piezoelectric or
capacitive accelerometers. Time-varying inertia due to the relative motion of the mass is associated with the Coriolis-type effects
appearing in the system,which can reduce and also amplify the oscillations.The analyticalmodel of the pendulum is introduced and
an equivalent damping ratio is estimated by applying energy considerations. An accurate model is obtained by updating the viscous
damping coefficient in accordance with the experimental data. The system is analysed through the application of a subspace-based
technique devoted to the identification of linear time-varying systems: the so-called short-time stochastic subspace identification
(ST-SSI). This is a very simple method recently adopted for estimating the instantaneous frequencies of a system. In this paper, the
ST-SSI method is demonstrated to be capable of accurately estimating damping ratios, even in the challenging cases when damping
may turn to negative due to the Coriolis-type effects, thus causing amplifications of the system response.

1. Introduction

The analysis and simulation [1] of mechanical systems with
imposed relative motion of components are challenging:
time-varying inertia, created by a mass sliding along a
rotating member, is associated with Coriolis-type effects.
The relative movement can excite or reduce the structure
vibration, providing new means or techniques for active
amplification or attenuation of vibrations. A variable length
mathematical pendulum was used in [2] to examine the
concept of controlling the motion of a system through mass
reconfiguration, that is, by sliding a mass towards and away
from the pivot. A variable length pendulum has also been
considered in [3], where a rigorous qualitative investigation
of its equation is carried out without any assumption on
small swinging amplitudes. In [4] a physical pendulum was
considered to present a technique in which a radially moving
mass is treated as a controller to attenuate the pendulum
swings. A moving mass is a proper characteristic of a time-
varying system, which is in general one of the sources of
nonstationary signals. Another source can be, in case of a
pendulum, nonlinearity due to its large swinging amplitudes.
The oscillations are also associatedwith the effective damping

ratio, which is explicitly determined in [4] from energy
considerations in terms of the mass motion pattern and
the pendulum parameters. This is only one of the several
techniques that can be adopted to estimate the damping ratios
of a system and in fact it can be seen as part of the larger
problem of dynamic identification, as it is actually proposed
in this paper.

During the last years, many efforts have been spent in
studying nonstationary signals. Among the first works on
the identification of time-varying systems, [5, 6] introduced
the concept of pseudonatural frequencies that are obtained
by the time-varying state transition matrix. The work in [7]
proposed a recursive algorithm, based on subspace methods,
to identify the state matrices and consequently to determine
themodal parameters. Other important approaches are those
based on the Kalman Filter [8], or the parametricmethods as,
for example, the FS-TARMA [9], which is an extension of the
classical ARMA techniques. In [10], a Short-Time Stochastic
Subspace Identification (ST-SSI) approach has been defined,
based on the “frozen” technique, where the classical subspace
identification [11] is applied to a sequence of windowed parts
of the signal.

Hindawi Publishing Corporation
Shock and Vibration
Volume 2014, Article ID 314527, 9 pages
http://dx.doi.org/10.1155/2014/314527

http://dx.doi.org/10.1155/2014/314527


2 Shock and Vibration

The ST-SSI method can be applied to different kinds of
nonstationary systems in order to estimate the instantaneous
frequencies and, for example, it has been used to estimate
the frequency in practical systems showing nonlinear effects
[12]. However, instead of extracting a series of time-varying
linear models, the identification of a whole parametric non-
linear model is an important instrument for many purposes.
Among the past and recent developments [13], the nonlinear
subspace identification (NSI) method has been developed
in [14] and improved in [15] for identifying large systems
with lumped nonlinearities. Both the ST-SSI and the NSI
methods have been applied in [16] for estimating the swinging
frequency of an experimental time-varying inertia pendu-
lum, whose dynamics is governed by a nonlinear equation of
motion due to large swinging amplitudes.

The same pendulum is considered in this paper for
investigating a suitable model of damping. The paper starts
with the description of the experimental set-up. Signals are
acquired from a rotary sensor, but some remarks are also
proposed for signals measured by piezoelectric or capacitive
accelerometers. After the introduction of the analytical equa-
tion of motion, the energy approach of [4] and the ST-SSI
method are briefly described and applied for estimating the
equivalent damping ratio. When the mass is fixed, the energy
approach is employed for updating the preliminary model
in order to fit the experimental data. Three moving-mass
cases are finally analysed to demonstrate that the estimates
of the damping factors obtained by means of ST-SSI are
very accurate, when compared with those obtained by an
analytical model and by the energy approach.

2. Experimental Set-Up

The structure under test is a pendulum with time-varying
inertia: a disk on a cart can slide along a runner, while the
pendulum is swinging. This structure cannot be considered
simply as a linear time-variant system, the equation of
motion of the pendulum being nonlinear for large swinging
amplitudes.

2.1. Description. An overview of the design of the structure
is presented in this section, together with a description
of the instrumentation used for data acquisition. Further
details about the experimental set up and the measured
characteristics of the considered elements can be found in
[16]. The pendulum is formed by a thin aluminium runner
allowing the sliding of a cart which can host an added
mass: the motion of the mass varies the pendulum inertia.
Moreover, in order to avoid a nonoptimal clamp between
the runner and the shaft due to the large deformability of
aluminium, a small metallic plate has also been added at
the root of the aluminium beam, near the hinge, to limit its
transverse vibrations.

The travelling mass is a steel disk of mass 𝑚𝑚 =

0.5025 kg, whose motion is regulated by a hand-driven
counterbalancingmass.The latter is connected to themoving
mass through a system of pulleys and a cable that can
be considered as nonextendible. The complete structure is

shown in Figure 1(a): the main supports, plates, pulleys,
bearings, and precision shaft are visible.

The sensors can also be seen in Figure 1(a). A triaxial and
four monoaxial accelerometers have been mounted along the
beam.The triaxial accelerometer, a PCB 356B18 piezoelectric
sensor (ICP), is used to express some practical considera-
tions in Section 2.2. To show typical measurement errors,
some data sets have been acquired by adding a capacitive
accelerometer to the system (not shown in the figure),
in the same position of the ICP sensor. Each monoaxial
accelerometer is a Brüel & Kjær 4507 B 004 piezoelectric
sensor, used to measure the transversal vibrations (along the
𝑧 axis in Figure 1(b)) of the pendulum [16].Their signals have
not been analysed in this paper.

A direct measure of the angular position of the pendulum
is given by a Penny+Giles SRS280 sealed rotary sensor, with
an accuracy of ±1% over 100∘, connected to the precision
shaft. A Celesco PT1A linear potentiometer, with amaximum
extension of 1.2m, has been connected to the counterweight
(see Figure 1(a)).The position of the travellingmass along the
runner can be simply obtained from this measure.

All signals have been acquired and recorded with a
sampling frequency of 256Hz by using an OROS acquisition
system, with 32 channels and antialiasing filter.

2.2. Remarks about the Accelerometers. In this section some
remarks about the signals measured by the accelerometers
are proposed, together with a comparison with the rotary
sensor recordings. In the following, 𝜃(𝑡) is the output of
the rotary potentiometer, which is very accurate at these
low frequencies; thus the use of supplementary sensors is
not needed to describe the dynamics of the SDOF system.
However, accelerometers are mounted to give some useful
guidelines in case a potentiometer is not available. A piezo-
electric sensor (ICP) is not suited to measure the radial
acceleration of the pendulumunder exam, because it removes
the DC component of the output, which is nonnull. This is
why a capacitive accelerometer was chosen for comparison.

To show the difference, the two accelerometers have been
mounted on the beam in the same position 𝑠𝑎 = 0.93m, with
radial direction (the 𝑥 axis in Figure 1(b)). The signal 𝜃(𝑡)
of the rotary sensor has been numerically differentiated in
order to obtain ̇𝜃(𝑡), which is used for computing the “actual”
value of the radial acceleration 𝑎𝑟(𝑡) = 𝑠𝑎

̇𝜃(𝑡)
2, shown in

Figure 2(a). The signals acquired by the accelerometers are
represented in Figure 2(b): the ICPmeasurement 𝑎𝑟,ICP(𝑡) has
zero mean and its value is zero for 𝜃 = 0 and ̇𝜃 = 0 (at the end
of time history), while the capacitive sensor output 𝑎𝑟,cap(𝑡)
is asymmetric and its value tends to 𝑔 for 𝜃 = 0 and ̇𝜃 = 0.
Clearly, none of the two behaviours can be associatedwith the
actual value of radial acceleration.

Another remark arises from Figure 2(b): the effect of the
gravitational acceleration 𝑔 on the measured signals must
be taken into account and removed in order to get the
correct value of the radial acceleration. This is due to the
fact that the measurement axes of the accelerometer on the
pendulum have an orientation that largely changes over time,
while most of dynamics applications do not show such a
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Figure 2: (a) Actual value of the radial acceleration. (b) Measured radial accelerations, by the capacitive and the ICP sensor.

behaviour. A “cleaning” operation can be thought of as being
trivial, but it cannot be performed on signals from classical
ICP accelerometers, because of the continuous component
removal described above. When the capacitive sensor signal
is considered as “corrupted” by the presence of 𝑔, an estimate
(indicated by ∧) of the actual radial acceleration is obtained
after cleaning:

𝑎𝑟,cap (𝑡) = 𝑎𝑟 (𝑡) + 𝑔 cos 𝜃 (𝑡) (1a)

CLEANING
󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀→ 𝑎𝑟,cap (𝑡) = 𝑎𝑟,cap (𝑡) − 𝑔 cos 𝜃 (𝑡) . (1b)

Figure 3(a) shows a comparison between the actual radial
acceleration 𝑎𝑟(𝑡) and the estimate (1b): an almost perfect
correspondence is now obtained. A similar approach can be
adopted if the tangential direction (the 𝑦 axis in Figure 1(b))
is considered. By differentiating again the signal ̇𝜃(𝑡) in order
to obtain ̈𝜃(𝑡), the “actual” value of the tangential acceleration
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𝑎𝑡(𝑡) = 𝑠𝑎
̈𝜃(𝑡) has been computed. The capacitive estimate

𝑎𝑡,cap(𝑡) can be obtained from the measured signal 𝑎𝑡,cap(𝑡)
as 𝑎𝑡,cap(𝑡) = 𝑎𝑡,cap(𝑡) − 𝑔 sin 𝜃(𝑡). The comparison between
the actual tangential acceleration and the capacitive estimate
is shown in Figure 3(b): again, a perfect agreement can be
observed. In conclusion, an angle measurement is necessary
in this kind of problems.

2.3. Equation of Motion. The system shown in Figure 1(b)
consists of a rigid bar with no flexural effects; the pendulum
is simply a nonlinear SDOF system.

From the rotational equilibrium of the system, the equa-
tion of the swinging motion is

(𝐼up + 𝑚𝑚𝑠(𝑡)
2
) ̈𝜃 (𝑡)

+ (𝑐V + 2𝑚𝑚𝑠 (𝑡) ̇𝑠 (𝑡)) ̇𝜃 (𝑡) + (𝑃up + 𝑔𝑚𝑚𝑠 (𝑡)) sin 𝜃 (𝑡)

= 𝐼tot (𝑡)
̈𝜃 (𝑡) + 𝐶tot (𝑡)

̇𝜃 (𝑡) + 𝑃tot (𝑡) sin 𝜃 (𝑡) = 0,
(2)

in which the subscript “up” refers to the quantities not
depending on the mass position 𝑠(𝑡). These have been
estimated by means of the Nonlinear Subspace Identification
(NSI) method in [16], in which an updating procedure was
performed to build an accuratemodel tuned on themeasured
results. The angle swept by the pendulum is indicated by 𝜃(𝑡)
whilst 𝑠(𝑡) is the distance of the disk from the hinge. Other
terms appearing in (2) are the gravitational acceleration 𝑔 =

9.81m/s2 and a viscous damping coefficient 𝑐V. Given the
value𝑚𝑚 = 0.5025 kg of the travellingmass, model (2) can be
completely defined by exploiting the results obtained in [16]:
𝐼up = 0.1292 kgm2; 𝑃up = 1.8380 kgm2 s−2; moreover, an
overall estimate of 𝑐V = 0.035 kgm

2 s−1 is used for preliminary
comparisons.

The analytical form of the time-variant viscous damping
ratio is then defined as

𝜁 (𝑡) =
𝐶tot (𝑡)

2√𝐼tot (𝑡) 𝑃tot (𝑡)
. (3)

3. Methodologies

Two methodologies are adopted in this paper for obtaining
estimates of the equivalent viscous damping ratio. The first,
based on energy considerations, is evaluated as a baseline for
updating the model and is used for comparisons with the
second technique, based on subspace identification.

3.1. Energy Considerations. A method for deriving an esti-
mate of the damping ratio, which is briefly described in this
section and used for successive comparisons, can be found
in [4]. The normalised total energy of the pendulum with
moving mass can be written as

𝐸 (𝑡) =
1

2

̇𝜃(𝑡)
2
+ 𝜔𝑠(𝑡)

2
(1 − cos 𝜃 (𝑡)) , (4)

where𝜔𝑠(𝑡)
2
= (𝑃up+𝑔𝑚𝑚𝑠(𝑡))/(𝐼up+𝑚𝑚𝑠(𝑡)

2
) is related to the

“instantaneous” frequency (whenmass𝑚𝑚 is at location 𝑠(𝑡)).
The two terms of 𝐸(𝑡) can be interpreted as the normalised
kinetic and potential energies of the pendulum, respectively.
In [4] a mathematically equivalent form of (2) is rewritten,
involving 𝐸(𝑡) and its rate of change; then, an integral form
is considered over one swinging period 𝑇 and the following
approximation of the damping ratio for the pendulum with
moving mass is defined:

𝜁 ≅
1

4𝜋

𝐸 (0) − 𝐸 (𝑇)

𝐸 (0)
. (5)
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Thus, the damping ratio is defined in (5) by the nor-
malised energies that can always be calculated for a given set
of conditions at the beginning (represented by 𝐸(0)) and at
the end (𝐸(𝑇)) of each cycle. In this way, a single value for 𝜁
can be obtained at each cycle, in order to get an approxima-
tion of the “instantaneous” damping ratio expressed by (3).
This method has two main limitations: (i) every estimate of 𝜁
from (5) can be obtained only if exactly a cycle is considered;
(ii) equation (5) involves the application of (4), which implies
full knowledge of the pendulum parameters and the mass
motion pattern, contained in the definition of 𝜔𝑠(𝑡).

3.2. Subspace Identification. The procedure for the identifi-
cation of linear time-varying systems is called Short-Time
Stochastic Subspace Identification (ST-SSI) [10, 17].The basic
idea of the method consists of windowing the signal into
many parts and considering the system as time-invariant in
each time window: the process is called frozen technique.

If the output data are measured at discrete times with
a sampling interval Δ𝑡 and the input is a discrete signal
characterised by a zero-order hold between consecutive
sample points, the discrete-time state-space model of a
general linear time-varying system at a time instant 𝑡 = 𝑟Δ𝑡

can be obtained. The frozen technique considers constant
state matrices during each time step, so that the following
representation can be adopted:

{
𝑥 (𝑟 + 1) = 𝐴 (𝑟) 𝑥 (𝑟) + 𝐵 (𝑟) 𝑢 (𝑟) + 𝑤 (𝑟)

𝑦 (𝑟) = 𝐶 (𝑟) 𝑥 (𝑟) + 𝐷 (𝑟) 𝑢 (𝑟) + V (𝑟) (6a)

FROZEN TECHNIQUE
󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀→ {

𝑥 (𝑟 + 1) = 𝐴𝑥 (𝑟) + 𝐵𝑢 (𝑟) + 𝑤 (𝑟)

𝑦 (𝑟) = 𝐶𝑥 (𝑟) + 𝐷𝑢 (𝑟) + V (𝑟) ,
(6b)

where 𝐴(𝑟) and 𝐵(𝑟) are not constant and in general their
closed forms are unknown [6]; 𝑥(𝑟) is the state vector, 𝑢(𝑟)
the input vector, and 𝑦(𝑟) the output vector;𝑤(𝑟) and V(𝑟) are
process and measurement error, respectively. The complete
time record is split into time windows (frozen system), whose
length corresponds to a period 𝑇 (about 400 samples) for
comparing the ST-SSI results with those obtained through
the energy approach of previous Section 3.1: such a restriction
to a cycle, however, is not a limitation of the present ST-SSI
method. Usually, the windows are almost completely over-
lapped except for a sampling period Δ𝑡 (or a multiple) and
their length can be arbitrarily chosen. If window lengths are
short, the data-driven subspace method [11] is preferred with
respect to the covariance-driven version [18], which needs
more samples to obtain accurate results. Subspace methods
do not need any a priori knowledge of the system parameters,
as they identify the state-space matrices of (6b) starting
from the measured system responses. Natural frequencies
and damping ratios are then extracted by computing the
eigenvalues of the identified matrix 𝐴 in every window. An
extensive study about the time-varying swinging frequency
of the pendulum has been performed in [16], in which the
contribution of nonlinearity was analysed by means of the
Nonlinear Subspace Identification (NSI) method [14]. This
paper is focused on the more challenging topic of damping.

4. Results

In this section the results are presented. At first, the mass
is fixed and preliminary considerations about the model are
drawn: the overall estimate of the viscous damping coefficient
is updated to fit the experimental results and an accurate
model is thus obtained. Then, three moving-mass cases are
considered and the results obtained by the ST-SSI method
are validated by comparisons with the method in [4] and the
updated analytical model.

4.1. Fixed Mass. By considering the mass fixed in 𝑠(𝑡) =

𝑠 = 49 cm (and obviously ̇𝑠(𝑡) ≡ 0), (5) can be applied
and the obtained damping factors can be used to compute
estimates for the viscous damping coefficient, at each cycle.
These values can be then compared with the overall estimate
𝑐V = 0.035 kgm2 s−1, defined by a preliminary nonlinear
identification [16].The comparison is shown in Figure 4(a): it
is clear that a constant 𝑐V value is not proper for representing
the experimental evidence. An updating procedure is then
carried out for obtaining a new model in which the viscous
damping coefficient is no more constant: indeed it is a
function of the rootmean square (RMS) of angular velocity in
each cycle, named ̃̇𝜃. The updating simply consists of a poly-
nomial fitting of the viscous coefficients obtained through
the energy considerations of Section 3.1. In particular, the
variable 𝐶tot is updated to 𝐶tot = 𝑐V(

̃̇𝜃) + 2𝑚𝑚𝑠(𝑡) ̇𝑠(𝑡) and,
consequently, the analytical form (3) of the viscous damping
ratio changes into the following “updated” version:

𝜁up (𝑡) =
𝐶tot (𝑡)

2√𝐼tot (𝑡) 𝑃tot (𝑡)
. (7)

Figure 4(a) shows the behaviour of 𝑐V during a swinging
decay: as expected, it accurately fits the energy approach
estimates. In Section 4.2, the new damping model (7) will be
the baseline for comparisons in more complicated situations
involving the mass moving along the beam.

In order to have a better visualisation of the experimental
damping characteristic, the damping force 𝐹V = 𝑐V(

̃̇𝜃)
̃̇𝜃 is

represented in Figure 4(b) as a function of ̃̇𝜃. Two zones
can be distinguished: for small angular velocities (̃̇𝜃 <

0.05 rad s−1) a Coulomb friction is prevalent, while for larger
angular velocities the contribution of the viscous damping is
more evident.

4.2. Moving Mass. In this section three moving-mass cases
are considered, in order to show the results obtained by
means of the ST-SSI method. In Figure 5 the measured mass
positions along the beam and the swinging amplitudes over
time are shown, for each case.

4.2.1. Case 1. The mass is moving downwards, from the
top to the middle of the beam (Figure 5(a)). No evidence
of increasing swinging amplitudes due to the Coriolis-type
effect can be observed in Figure 5(b), since the velocity ̇𝑠 is
positive.
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Figure 4: Fixed-mass case. (a) Viscous coefficient as a function of time, during a swinging decay. (b) Damping force as a function of ̃̇𝜃 at each
cycle.

Case 1 is useful for demonstrating once again the need
for the updating procedure performed in Section 4.1. Esti-
mates of the damping factors, obtained through the energy
approach of Section 3.1 and the ST-SSImethod of Section 3.2,
are compared with the overall estimate of (3) in Figure 6(a):
the energy-approach and the ST-SSI estimates are similar,
but there is no correspondence with the overall estimate. The
same estimates can be compared with the updated value of
(7) in Figure 6(b): a good level of agreement can be observed,
confirming the reliability of the damping model obtained in
Section 4.1 for a fixed mass. As a general remark emerging
fromFigure 6, the ST-SSImethod gives slightly overestimated
values of damping, with respect to those obtained by the
energy approach.The reason is themodel order 𝑛 selected for
representing the state-space model (6b): in this paper it has
been fixed to 2 for simplicity, but more accurate estimates of
damping can be obtained by increasing 𝑛 and by investigating
the results by means of stabilisation diagrams.

4.2.2. Case 2. The mass is moving downwards and upwards,
in an almost regular way (Figure 5(c)). An excitation of the
swinging amplitudes due to the Coriolis-type effect can be
observed in Figure 5(d) at about 10 seconds, since the velocity
̇𝑠 is negative and large enough to change the sign of 𝜁up
in (7). A less clear excitation can also be observed after 20
seconds. These qualitative considerations are confirmed by
the damping factors represented in Figure 7(a). The energy-
approach and the ST-SSI estimates are compared with the
updated value of (7): an excellent agreement can be observed
for the ST-SSI estimates.

4.2.3. Case 3. This is the more challenging case: the mass is
moving along the beam, in a more irregular way especially
from 5 to 12 seconds (Figure 5(e)). From a detailed inspection

of Figure 5(f), four zones are recognised, in which an ampli-
fication of the swinging amplitudes due to the Coriolis-type
effect can be observed: they are marked by letters A, B, C,
and D. In particular, zones A and B are short and could be
difficult to distinguish, but the representation of the damping
factors in Figure 7(b) can be useful in this sense. In fact,
Figure 7(b) reveals the four zones in which the equivalent
damping factor is negative and these are found to correspond
to those of Figure 5(f). Moreover, in Figure 7(b) the energy-
approach and the ST-SSI estimates are compared with the
updated value of (7): the ST-SSI estimates are very accurate.

As a final consideration, observe that Figures 7(a) and
7(b) are represented on the same scale: Case 3 appears to
be more challenging also because larger and fast-varying
values of damping factors are involved. However, results
are satisfactory even in such a complicated case, in which
high mass velocities cause substantial changes in the system
dynamics.

5. Conclusions

The experimental study of damping in a time-varying iner-
tia pendulum is presented. The system consists of a disk
travelling along a pendulum: this relative motion, which is
associated with Coriolis-type effects, can be exploited for
attenuation or amplification of the pendulum oscillations.
At first, signals measured by piezoelectric or capacitive
accelerometers are compared with the output of a rotary
sensor: for swinging systems like the pendulum under exam,
the piezoelectric sensor is not suited because it removes the
DC component of the output. The effect of gravitational
acceleration can be taken into account and correctly removed
from the measured signal of a capacitive acceleration, but
angle measurement is needed.



Shock and Vibration 7

0 5 10 15 20

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Time (s)

M
as

s p
os

iti
on
s

(m
)

Ca
se

 1

(a)

A
ng

le
𝜃

(∘
)

0 5 10 15 20

0

10

20

30

40

−10

−20

−30

−40

Time (s)

(b)

Ca
se

 2

0 5 10 15 20 25

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Time (s)

M
as

s p
os

iti
on
s

(m
)

(c)

A
ng

le
𝜃

(∘
)

0 5 10 15 20 25

Time (s)

0

10

20

30

−10

−20

−30

(d)

Ca
se

 3

0 5 10 15 20 25

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Time (s)

M
as

s p
os

iti
on
s

(m
)

(e)

A
ng

le
𝜃

(∘
)

0 5 10 15 20 25

Time (s)

0

10

20

30

−10

−20

−30

A 

B

C

D

(f)

Figure 5: Moving mass. (a, b) Case 1. (c, d) Case 2. (e, f) Case 3. (a, c, e) Mass position along the beam. (b, d, f) Swinging amplitude over
time.
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Figure 6: Moving-mass Case 1. Estimates of the damping factors, compared with the overall estimate of (3) (a) and with the updated value
of (7) (b).
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Figure 7: Estimates of the damping factors, compared with the updated value of (7). Moving-mass Case 2 (a) and Case 3 (b).

The analytical equation of motion is then introduced
and the theoretical viscous damping coefficient is updated in
order to obtain an accurate damping model. The updating
procedure investigates the approach of a published work
in which the damping ratios are derived from energy con-
siderations, provided that the system parameters and the
mass motion pattern are known. The system is analysed

through the application of the Short-Time Stochastic Sub-
space Identification (ST-SSI), which is very simple and does
not require any a priori knowledge about the system.The ST-
SSI estimates of the damping factors are compared with those
obtained by an analytical model and by the energy approach.
Three moving-mass cases are presented, to demonstrate that
the ST-SSI estimates are very accurate even in the challenging
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cases in which damping may turn to negative due to the
Coriolis-type effects.
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Vibration-based structural health monitoring is based on detecting changes in the dynamic characteristics of the structure. It is
well known that environmental or operational variations can also have an influence on the vibration properties. If these effects
are not taken into account, they can result in false indications of damage. If the environmental or operational variations cause
nonlinear effects, they can be compensated using a Gaussian mixture model (GMM) without the measurement of the underlying
variables.Thenumber ofGaussian components can also be estimated. For the local linear components,minimummean square error
(MMSE) estimation is applied to eliminate the environmental or operational influences. Damage is detected from the residuals after
applying principal component analysis (PCA). Control charts are used for novelty detection. The proposed approach is validated
using simulated data and the identified lowest natural frequencies of the Z24 Bridge under temperature variation. Nonlinearmodels
are most effective if the data dimensionality is low. On the other hand, linear models often outperform nonlinear models for high-
dimensional data.

1. Introduction

In structural health monitoring (SHM), changes in damage-
sensitive features are an indication of damage. Also other
sources of deviation are often present, for example, environ-
mental or operational variability. If these effects are not taken
into account, they can result in false identifications of damage
or a loss of sensitivity to detect minor damage. It is important
to distinguish between the two sources of changes in the
dynamic characteristics. One option is to make a physical
model of different environmental or operational phenomena,
but it can be too expensive and inaccurate. An alternative is to
include the normal variability in the training data and build a
model solely based on the data. Using multivariate statistics,
the environmental or operational effects can be eliminated
even without measuring the underlying variables (see [1] and
the references therein). Also a third source of change in the
monitoring data is sensor fault. Kullaa [1] proposed a unified
model to distinguish between the three sources of changes in
a monitoring system.

Most of themodels assume linear correlation between the
measured variables or features. However, the environmental

or operational variations often cause nonlinear effects. For
example, as the temperature falls below zero, its influence on
the natural frequencies can change abruptly.This often results
also in nonlinear correlation between the features, especially
if the data dimensionality is low. On the other hand, a linear
model may be sufficient with a large data dimensionality,
because the correlation structure may become linear [1].
There are only few studies of nonlinear models. Kullaa [2]
used the mixture of factor analyzers [3] model to compensate
the nonlinear effects. A similar approach was used by Yan
et al. [4] having local PCAmodels for local regions in the data
space. Sohn et al. [5] used an autoassociative neural network
that can be thought as a nonlinear PCA [6]. Figueiredo et al.
[7] applied the Bayesian approach to amixturemodel and the
Mahalanobis squared distance for the mixture components.

A nonlinear model is studied in this paper. A Gaussian
mixture model (GMM) is proposed in Section 2 to compen-
sate for the nonlinear effects. It is based on the mixture of
linear models, each modelling a region in the input space.
The approach needs a clustering algorithm to assign each
new measurement to the corresponding class. Clustering
can be performed independently of the local linear models.
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Therefore, clustering is first performed identifying aGaussian
mixture model followed by local linear models to eliminate
the underlying effects within each class. The number of
classes is often unknown but can also be estimated.Minimum
mean square error (MMSE) estimation is applied to the local
linearmodels, which is described in Section 3.Damage can be
detected from the residuals between the data and the model.
Damage detection is discussed in Section 4.

The first applications in Section 5 are numerical studies,
in which the objective is to validate the proposed approach.
Section 5.3 shows the experimental results of the Z24 Bridge,
in which the natural frequencies varied due to the tempera-
ture. Finally, concluding remarks are given in Section 6.

2. Gaussian Mixture Model (GMM)

Let x be the multivariate measurement data (also subse-
quently called variables), which can be time series (e.g.,
acceleration or strains) froma simultaneously sampled sensor
network, or a feature vector comprising identified dynamic
properties of the structure (e.g., natural frequencies or mode
shapes). Nonlinear data are not normally distributed and
cannot be modelled as a single Gaussian distribution. One
may try a mixture of Gaussian components, in which the
distribution can be written as a linear superposition of 𝐾
Gaussian densities in the form [8]

𝑝 (x) =
𝐾

∑

𝑘=1

𝜋𝑘𝑁(x | 𝜇
𝑘
,Σ𝑘) , (1)

which is called amixture of Gaussians. EachGaussian density
𝑁(x | 𝜇

𝑘
,Σ𝑘) is called a component of the mixture and has its

ownmean𝜇
𝑘
and covarianceΣ𝑘.The parameters𝜋𝑘 are called

mixing coefficients, which are positive and are summed to
one.

The first step is to identify the model parameters. The
difficulty lies in the fact that the data points are unlabeled; that
is, it is typically not knownwhich component was responsible
for generating each data point. The data labels can be con-
sidered as latent variables and the expectation-maximization
(EM) algorithm can be used to identify the mixture model.
It is momentarily assumed that the number of components is
known.

The EM algorithm is iterative and consists of two steps:
the E step and the M step. In the expectation step, or E step,
the model parameters are held fixed and the posterior proba-
bility of the component 𝑘 (latent variable) given the data point
x is evaluated. In the maximization step, or M step, the latent
variables are assumed to be known, and themodel parameters
are obtained by maximizing the log-likelihood function.

A𝐾-dimensional binary random variable z is introduced
having a 1-of-𝐾 representation in which a particular element
𝑧𝑘 is equal to 1 and all other elements are zero. For an
observation x𝑛, 𝑧𝑛𝑘 denotes the 𝑘th component of z𝑛.

The algorithm is outlined as follows. In the E step, the
expected value of the indicator variable 𝑧𝑛𝑘 under the pos-
terior distribution is

𝐸 [𝑧𝑛𝑘] =
𝜋𝑘𝑁(x𝑛 | 𝜇𝑘,Σ𝑘)

∑
𝐾

𝑗=1
𝜋𝑗𝑁(x𝑛 | 𝜇𝑗,Σ𝑗)

. (2)

In the M step, the model parameters are updated to max-
imize the log-likelihood function, resulting in [8]

𝜇
new
𝑘

=
1

𝑁𝑘

𝑁

∑

𝑛=1

𝐸 [𝑧𝑛𝑘] x𝑛,

Σ
new
𝑘

=
1

𝑁𝑘

𝑁

∑

𝑛=1

𝐸 [𝑧𝑛𝑘] (x𝑛 − 𝜇
new
𝑘

) (x𝑛 − 𝜇
new
𝑘

)
𝑇
,

𝜋
new
𝑘

=
𝑁𝑘

𝑁
,

(3)

where𝑁 is the number of observations and

𝑁𝑘 =

𝑁

∑

𝑛=1

𝐸 [𝑧𝑛𝑘] . (4)

The log-likelihood is then evaluated:

ln𝑝 (X | 𝜇,Σ, 𝜋) =

𝑁

∑

𝑛=1

ln{
𝐾

∑

𝑘=1

𝜋𝑘𝑁(x𝑛 | 𝜇𝑘,Σ𝑘)} . (5)

The steps are repeated until the log-likelihood converges.
It is not guaranteed that the algorithm converges to the global
maximum.Therefore, it is often advised to run the algorithm
a couple of times with different initial guesses of 𝜇

𝑘
and Σ𝑘

to find a satisfactory maximum. An example of convergence
to a local maximum is given in Section 5.1. Another problem
is that the number of components is often unknown. To that
end, different models can be identified by varying𝐾, and the
model resulting in the highest log-likelihood is chosen. In
order to avoid overfitting, a penalty term −(1/2)𝑀 ln𝑁 is
added to the log-likelihood [8], where 𝑁 is the number of
training samples and𝑀 is the number of model parameters:

𝑀 = 𝐾[1 + 𝑝 +
𝑝 (𝑝 + 1)

2
] , (6)

where 𝑝 is the data dimensionality.
Once the model parameters are identified and fixed, the

objective is to decide if the new data are generated by the
model (undamaged) or by another model (damage). To this
end a residual is estimated, which is the difference of the true
data point and that estimated by the model:

r𝑛 = x𝑛 − 𝐸 [x̂𝑛 | x𝑛] , (7)

where

𝐸 [x̂𝑛 | x𝑛] =
𝐾

∑

𝑘=1

x̂𝑛𝑘𝑝 (𝑧𝑛𝑘 = 1 | x𝑛) . (8)
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The last term in the RHS of (8) is obtained using Bayes’
theorem:

𝑝 (𝑧𝑛𝑘 = 1 | x𝑛) =
𝑝 (𝑧𝑛𝑘 = 1) 𝑝 (x𝑛 | 𝑧𝑛𝑘 = 1)

∑
𝐾

𝑗=1
𝑝 (𝑧𝑛𝑗 = 1) 𝑝 (x𝑛 | 𝑧𝑛𝑗 = 1)

=
𝜋𝑘𝑁(x𝑛 | 𝜇𝑘,Σ𝑘)

∑
𝐾

𝑗=1
𝜋𝑗𝑁(x𝑛 | 𝜇𝑗,Σ𝑗)

,

(9)

which is the same as (2). The first term in the RHS of (8) is
given by the local linear model, which in this paper is the
minimum mean square error (MMSE) estimate for each
component [9]:

x̂𝑛𝑘 = 𝜇𝑘 + A𝑘 (x𝑛 − 𝜇𝑘) , (10)

where the coefficient matrixA𝑘 is composed of rows estimat-
ing the variable corresponding to that row using the remain-
ing variables. Therefore, the diagonal components of A𝑘
are zero. The MMSE estimation is discussed in the next
section.

3. Local Linear Models Using
MMSE Estimation

With enough redundancy, a subset of observation x can be
estimated using the remaining variables. Each observation is
divided into observed variables v andmissing variables u. It is
assumed here that u is the 𝑖th variable 𝑥𝑖 and the remaining
variables are collected in vector v:

x =
{

{

{

k𝑎
u
k𝑏

}

}

}

, k = {k𝑎k𝑏
} . (11)

The partitioned covariance matrix Σ of the training data
is

Σ = [
Σ𝑢𝑢 Σ𝑢V
ΣV𝑢 ΣVV

] = [
Γ𝑢𝑢 Γ𝑢V
ΓV𝑢 ΓVV

]

−1

, (12)

where the precision matrix Γ is defined as the inverse of the
covariance matrix Σ and is also written in the partitioned
form. A linear minimum mean square error (MMSE) esti-
mate for u | k (u given v) is obtained byminimizing themean
square error (MSE)

MSE = 𝐸 [(u − û)𝑇 (u − û)] (13)

resulting in [9]

û = 𝐸 (u | k) = 𝜇𝑢 − Γ
−1

𝑢𝑢
Γ𝑢V (k − 𝜇V)

= 𝜇
𝑢
+H (k − 𝜇V) ,

(14)

where 𝜇
𝑢
and 𝜇V are the mean of u and v, respectively, and

H = −Γ
−1

𝑢𝑢
Γ𝑢V. The error covariance is

cov (uk) = Γ−1
𝑢𝑢
. (15)

An MMSE model is estimated for each mixture compo-
nent. For component 𝑘, the estimate of variable 𝑥𝑖 is given by
(14).Then, the 𝑖th row of matrixA𝑘 in (10) is composed of the
partitioned row matrixH and a zero:

[A𝑘]𝑖,∙ = [H𝑎 0 H𝑏] . (16)

The partitioning should be clear from (11). The zero
element hits the diagonal inA𝑘, originating from the fact that
𝑥𝑖 is not used to estimate itself, but all the remaining variables
are only used. Therefore, the diagonal elements of matrix A𝑘
are all zeros. The other rows of A𝑘 are obtained similarly by
estimating all variables in turn using the remaining variables.
Matrix A𝑘 is estimated for each mixture component 𝑘.

To show the relation between (10) and (14), compute the
estimate of the 𝑖th variable 𝑥𝑖 for a fixedmixture component 𝑘
using (10). For clarity, the component index 𝑘 is omitted.
Consider

x̂𝑖 = 𝜇𝑖 + [H𝑎 0 H𝑏] (x − 𝜇)

= 𝜇
𝑖
+ [H𝑎 0 H𝑏]

{

{

{

k𝑎 − 𝜇𝑎
u − 𝜇
𝑢

k𝑏 − 𝜇𝑏

}

}

}

= 𝜇
𝑖
+ [H𝑎 H𝑏] {

k𝑎 − 𝜇𝑎
k𝑏 − 𝜇𝑏

}

= 𝜇
𝑖
+H (k − 𝜇V) ,

(17)

which is equal to û in (14).

4. Damage Detection

Using the mixture model for damage detection introduces an
issue of residual scaling, because each class may have a differ-
ent error variance (15).Therefore, the residual of each variable
within each class is divided with the corresponding standard
deviation, which is the square root of (15). Also the data
dimensionalitymay be too high for statistical reliability (curse
of dimensionality). Therefore, the first principal component
scores [10] of residual (7) are used for damage detection.
Control charts [11] are used for damage detection. The
control chart used in this study is the Shewhart chart [11], and
the plotted variable is the subgroupmean of successive obser-
vations. It is believed that the robustness of damage detection
increases, because (1) additional variability due to environ-
mental or operational influences can be removed, in this
paper using a nonlinear model; (2) PCA is applied to the
residuals avoiding the curse of dimensionality; and (3) con-
trol charts utilize averaging for better statistical reliability.

5. Experimental Results

The proposed nonlinear model and the subsequent SHM
functions are applied to two numerical studies and the
experimental data of the Z24 Bridge.

5.1. Five Gaussian Components. The first numerical example
is a mixture of five Gaussian components in a two-dimen-
sional space. Each component has 10,000 data points. This
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Figure 1: Training data (a) and test data (b) with a change in mean. The identified GMMmodel is shown in red.

example was chosen because the model assumptions are
satisfied. In addition to damage detection, the objective is to
test the model identification performance and the number of
components selected by the algorithm.

The data were created as follows.The data dimensionality
was two and the number of components was five. For each
component 𝑘, the components of the mean vector 𝜇

𝑘
were

sampled from a uniform random distribution between −10
and 10. The covariance matrix was generated by first gener-
ating the variances of the principal directions, resulting in a
diagonal covariance matrix:

D = [
𝜆1 0

0 𝜆2
] , (18)

where 𝜆1 and 𝜆2 were uniform random variables, 𝜆1 varying
between 1 and 2 and 𝜆2 varying between 0.01 and 0.5. This
diagonal covariance matrix was then rotated in a random
orientation 𝜑, resulting in covariance matrix Σ𝑘:

Σ𝑘 = UDU𝑇, (19)

where

U = [
cos𝜑 sin𝜑
− sin𝜑 cos𝜑] . (20)

The data were then generated by sampling from a multi-
variate Gaussian distribution

𝑁(x | 𝜇
𝑘
,Σ𝑘) . (21)

Once data from each component were generated, all data
were concatenated and random permutation was applied to
randomize the data labels.

The data are plotted in Figure 1. The training data are the
first 10,000 data points shown in Figure 1(a) which were used
to identify the model. Because the number of components is
often unknown, different models were identified varying the

number of components between 1 and 10.The log-likelihoods
with the penalty term are plotted in Figure 2(a) for
different number of components. The maximum was
correctly found with a five-component model. It should be
noted that sometimes the components were not correctly
identified, but the solution converged to a local maximum
(Figure 2(b)).Therefore, it is suggested that the identification
is repeated until a satisfying model is obtained, and the
model with the highest log-likelihood is selected.

Damage was an equal shift in mean for all components. A
bias vector x𝑑 = [0.5 −0.25]

𝑇 was added to each data point.
The damaged data were the last 25,000 data points plotted
in Figure 1(b) together with the identified model for the
training data.The shift of mean can be visually observed.The
residuals were estimated for all data points and the first prin-
cipal component scores were used for the control chart. The
Shewhart chart was designed with a subgroup size 100 and
the in-control samples 1–10,000.The shift inmean was clearly
detected (Figure 3).

5.2.Three Piecewise Linear Components. The second example
is a more realistic one in which the data are continuous with
piecewise linear correlation between the twomonitored vari-
ables. The piecewise linear regions are not necessarily Gaus-
sian. Also, the variances are different in each region.

The data were created as follows.The data dimensionality
was two and the number of piecewise linear components was
three. Variable 𝑥1 was uniformly distributed between 0 and 1.
Variable 𝑥2 was a piecewise linear function of 𝑥1:

𝑥2 = 𝑎𝑘 + 𝑏𝑘𝑥1, (22)

where the parameters and their validity regions are given
in Table 1. Gaussian noise was added to the variables, with
the standard deviations within each component shown in
Table 1.

The test data came from a limited region of component 2.
The first half of the test data was healthy and the second half
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Figure 2: Log-likelihood with the penalty term (a) and an identified GMMmodel (in red) converged to a local maximum (b).
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Figure 3: Shewhart control chart for damage detection.

Table 1: Parameters of the three linear components (22).

Class 𝑘 𝑥1,min 𝑥1,max 𝑎𝑘 𝑏𝑘 𝜎1 𝜎2

1 0 0.4 7 −0.2 0.01 0.02
2 0.4 0.6 6.4 1.3 0.02 0.01
3 0.6 1.0 7.84 −1.1 0.04 0.03

included damage, which was a shift in mean. A bias vector
x𝑑 = [0.1 −0.05]

𝑇 was added to those data points.
The data are plotted in Figure 4. They consist of 20,000

data points in a two-dimensional space. The first half is
randomly distributed in all three regions (Figure 4(a)), but
the last 10,000 data points are confined to the middle region
(Figure 4(b)).

The training data include a larger variability than the
test data. This is also more realistic as the training typically

consists of monitoring under a full range of environmental
or operational conditions, while the test data often come from
a limited number of measurements at more or less constant
conditions.

The training data were the first 5,000 data points.
The model identification suggested 7 Gaussian components
(Figure 5(a)), which are plotted in Figure 4.

Data points 10,001–15,000 are from the undamaged case,
and data points 15,001–20,000 are from the damaged case
with a shift in mean shown in Figure 4(b) together with the
identified model for the training data.

The residuals were estimated for all data points and the
first principal component scores were used for damage detec-
tion. The Shewhart chart was designed with a subgroup size
100 and the in-control samples 1–5,000. Damage was clearly
detected with no false alarms (Figure 5(b)).

5.3.The Z24 Bridge. Thedata in the last case are the four low-
est identified natural frequencies of the Z24 Bridge (see [12]
for details) shown in Figure 6. Their pairwise correlation is
plotted in Figure 7. It was reported that the frequencies varied
considerably due to environmental effects and can be seen to
be nonlinearly correlated. The physical reason was the dif-
ferent behaviour of the bridge below and above the freezing
point.

Progressive damage test scenarios were introduced: set-
tlement of pier, spalling of concrete, landslide at abutment,
failure of a concrete hinge, failure of anchor heads, and rup-
ture of tendons [12].The first damage was introduced around
measurement number 3517, shown with a vertical dashed line
in Figure 6.

The training data were the first 3,000 samples shown in
blue in Figure 7 and with another vertical dashed line in
Figure 6. The training algorithm suggested 6 Gaussian com-
ponents (Figure 8). After identifying the Gaussian mixture
model, the residuals were estimated for all data points and
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Figure 4: Training data (a) and test data (b) with a change in mean. The identified GMMmodel is shown in red.
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Figure 5: Log-likelihood with the penalty term (a) and Shewhart control chart for damage detection (b).
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Figure 6: Identified lowest natural frequencies of the Z24 Bridge.
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Figure 7: Correlation between the four lowest natural frequencies of the Z24 Bridge. Blue symbols indicate the training data.
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Figure 9: Shewhart control charts for damage detection using GMM (a) and a corresponding linear model (b).

the first principal component scores were used for damage
detection. The Shewhart control chart was designed with a
subgroup size 4 and the in-control samples 1–3,000. Dam-
age was clearly detected (Figure 9(a)). The control limits
are probably too tight resulting in several false alarms. In
particular, a few false indications can be observed just prior to
damage. Some activity was reported as the settlement system
was installed [12], which may have changed the natural
frequencies. Another control chart is shown in Figure 9(b)
after using a corresponding linear model (with one compo-
nent only). Compared to the chart in Figure 9(a), it can be
concluded that GMM outperformed the linear model in this
case.

6. Conclusion

AGaussianmixturemodel was proposed to eliminate nonlin-
ear environmental or operational influences from structural
health monitoring data. The main advantages are that (1) the
measurement of the underlying variables is not necessary, (2)
the number of Gaussian components can be estimated, (3)
the GMMmodel can be identified independently of the local
linear models, and (4) it is a data-based method; no finite
element model is needed. The main disadvantages are that
the EM algorithm is not guaranteed to find the global maxi-
mumand that the trainingmay be quite slow.Nonlinearmod-
els are most effective if the data dimensionality is low. Linear
models often outperform nonlinear models for high-
dimensional data [1]. The number of environmental or oper-
ational variables is usually relatively small. Therefore, their
influences on the data are virtually located in a low-dimen-
sional subspace, and a linear analysis is capable of removing
this subspace from the subsequent analysis, thus eliminating
the environmental or operational effects from the data.

Once the GMMmodel was identified,MMSEwas applied
to each component to take into account the local linear

correlation.TheMahalanobis distance or whitening transfor-
mation [13] could also be applied to the linear components.

The question of how small damage can be detected was
not addressed in this study. Detection performance depends
on the signal-to-noise ratio (SNR), in which signal is the
shift or variance change due to damage and noise is often the
measurement error or more generally everything that cannot
be explained by the model. SNR should be as low as possible.
In this study, noise was decreased by building an accurate
model for nonlinear data.

Damage detection comprises several functions and mod-
els, many of which are classical. Also, many methods have
been applied to SHM by the author and other researchers.
This paper focused on the residual generation when the data
are nonlinearly correlated. The remaining functions were
merely referred to by name.
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Impedance-based structural health monitoring technique is performed by measuring the variation of the electromechanical
impedance of the structure caused by the presence of damage. The impedance signals are collected from patches of
piezoelectric material bonded on the surface of the structure (or embedded). Through these piezoceramic sensor-actuators, the
electromechanical impedance, which is directly related to the mechanical impedance of the structure, is obtained. Based on the
variation of the impedance signals, the presence of damage can be detected. A particular damage metric is used to quantify the
damage. Distinguishing damage groups from a universe containing different types of damage is a major challenge in structural
health monitoring.There are several types of failures that can occur in a given structure, such as cracks, fissures, loss of mechanical
components (e.g., rivets), corrosion, and wear. It is important to characterize each type of damage from the impedance signals
considered. In the present paper, probabilistic neural network and fuzzy cluster analysis methods are used for identification,
localization, and classification of two types of damage, namely, cracks and rivet losses. The results show that probabilistic neural
network and fuzzy cluster analysis methods are useful for identification, localization, and classification of these types of damage.

1. Introduction

Failures occurring in industrial equipment and structures in
general are associatedwith friction, fatigue, impact, and crack
growth or with other reasons. For an appropriate functioning
of the system, the failure should be located and repaired
timely. In general terms, the problem of damage monitoring
consists in locating and measuring the fault and estimating
the remaining life of the system (damage prognosis). One
of the most important ambitions of modern engineering
is to perform structural health monitoring in real time in
structural components of high cost and considerable respon-
sibility.Thus, the creation or improvement of techniques that
enhance the accuracy and reliability of the tracking process is
highly desirable and is the subject of several studies both in
industry and academic environments [1].

There are several techniques for monitoring the occur-
rence and propagation of structural damage. One of these

techniques is the so-called impedance-based structural
healthmonitoring [2].The basic idea behind this technique is
monitoring the changes in the mechanical impedance of the
structure as caused by the presence of damage. As the direct
measurement of themechanical impedance of the structure is
a difficult task, the method uses piezoelectric ceramics (PZT
patches) bonded to or incorporated into the structure, allow-
ing the measurement of the electromechanical impedance.
As this measure is related to the structure variation of the
impedance signals, the presence of damage can be detected.
A particular damage metric is used to quantify the damage
[3].

The impedance-based SHM technique was first proposed
by Liang et al. [4] and subsequently themethod was extended
by Chaudhry et al. [5, 6], Sun et al. [7], Park et al. [8–11],
Giurgiutiu and Zagrai [12], Soh et al. [13], Bhalla et al. [14],
Giurgiutiu et al. [15, 16], Moura Jr. and Steffen Jr. [17], Peairs
[18], Moura Jr. [19], and Neto et al. [20].
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Distinguishing damage groups from a universe contain-
ing different types of damage is amajor challenge in structural
health monitoring. There are various types of failures, which
may occur in a given structure, such as cracks, fissures, loss of
joining components (rivets), corrosion, and wear. In the case
of composite structures delamination is a major concern. It is
important to characterize each type of damage for defining
appropriate correction efforts. In order to distinguish the
different damage types, probabilistic neural network and
fuzzy cluster analysis methods for classification can be used
[21, 22].

An artificial neural network is a mathematical model,
computational model, or metamodel that mimics the struc-
ture by using functional aspects of biological neural networks.
It consists of an interconnected group of artificial neurons
and processes information by using a connectionist approach
for computation [23]. In most cases an artificial neural
network is an adaptive system that changes its structure based
on external or internal information that flows through the
network during the learning phase. Modern neural networks
can be understood as nonlinear statistical data modeling
tools. They are usually used to model complex relationships
between input and output or to find patterns in data [23].
There are several types of artificial neural network; one of
them is the probabilistic neural network.This artificial neural
network can be used for classification tasks. The network
is an implementation of the statistical algorithm called
kernel discriminate analysis [24] in which the operations are
organized into a multilayered feedforward network with four
layers, namely, the input layer, pattern layer, summation layer,
and output layer [25].

Fuzzy clustering is an unsupervised learning operation
that aims at decomposing a given set of objects into subgroups
or clusters based on similarity.The goal is to divide the dataset
in such a way that objects or cases belonging to the same
cluster are as similar as possible, whereas objects belonging
to different clusters are dissimilar [26]. The main potential of
clustering is to detect the underlying structure in data, not
only for classification and pattern recognition, but also for
model reduction and optimization.

In the present paper, the probabilistic neural networks
and the fuzzy cluster analysis methods are used for identi-
fication, localization, and classification of damage in metallic
aeronautic structures.The impedance signalmeasurement set
is used as the input of the probabilistic neural network and
the output is the type of damage (crack, rivet loss, or pristine
condition). The Gustafson-Kessel fuzzy clustering algorithm
was also implemented. The impedance signal measurement
set is used as the object to be classified by the fuzzy cluster
analysis algorithm and the results represent the type of
damage. The results show that the methods are useful for
identification, localization, and classification of damage.

1.1. Probabilistic Neural Network. Artificial neural networks
are parallel distributed systems composed of simple process-
ing elements (neurons) that calculate given mathematical
functions (usually nonlinear). Such units are arranged in
one or more layers and interconnected by a large number of
connections, usually unidirectional. In most models, these

connections are associated with weights, which store the
knowledge represented in the model and consider the input
received by each neuron in the network. The operation of
these networks is inspired by a physical structure designed
by nature, the human brain [27]. There are different types of
neural networks; the probabilistic neural network is one of
them [25].

The probabilistic neural network is predominantly a
classifier. It is based on the probability distribution function,
and is an implementation of a statistical algorithm known as
kernel discriminating analysis [24], in which the operations
are organized into a multilayered feedforward network with
four layers, namely, the input layer, pattern layer, summation
layer, and output layer. The architecture for this system is
shown in Figure 1.

When a sample X is presented, the input layer distributes
this sample to the pattern layer neurons (second layer). The
function described in the following equation is calculated for
each j-neurons of the i-class in the pattern layer:

𝑓𝑡𝑖,𝑗 (𝑋) =
1

(2𝜋)
𝑑/2
𝜎
𝑑
𝑖

exp[

[

−(𝑋 −𝑊𝑖,𝑗)
𝑇

(𝑋 −𝑊𝑖,𝑗)

2𝜎
2
𝑖

]

]

,

(1)

where 𝑓𝑡𝑖,𝑗(𝑋) is the contribution of the j-neuron in the i-
class; 𝜎 is the transfer function and𝑊𝑖,𝑗 is the weight of the
j-neuron of the i-class. In each i-neuron of the summation
layer the contribution of each neuron of the pattern layer that
belongs to the i-class is added. In the output layer, the sample
X is associatedwith the class with the highest probability [25].

The training process consists in a unique step, that is,
the weight of each pattern layer neuron is formed by the
characteristic vector of each training sample [25].

1.2. Fuzzy Cluster Analysis Method. In clustering analysis
the sampled points (or the population) are divided into a
quantity of defined groups by using the similarities between
these members. In many fields of knowledge, these clustering
techniques have been used to distinguish groups by their
features [28]. The clustering analyses can be divided into
two subclassifications, the hierarchical and nonhierarchical
clustering techniques [28]. Both methods considered in the
present contribution are nonhierarchical techniques.

The nonhierarchical techniques find directly the 𝑁 ele-
ments of the 𝑘 clusters or groups in such a way that these
partitions follow two criteria, namely, the similarity (or
internal cohesion) and separation of the formed groups [28].
The Gustafson-Kessel algorithm is based on the behavior of
the objective function. The basic idea considers an objective
or evaluation function that assigns to each possible cluster
partition a quality or error value that has to be optimized.
The optimal solution is the cluster partition that obtains the
best evaluation. In this sense, an optimization problem is
to be solved when cluster analysis is performed [29]. The
corresponding objective function is given by

𝐽 =

𝑘

∑

𝑖=1

𝑁

∑

𝑗=1

(𝑢𝑖𝑗)
𝑚

𝑑
2
(𝑥𝑗, V𝑖) , (2)
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Figure 1: Probabilistic neural network architecture.

(a) (b)

(c)

Figure 2: Aluminum aircraft panel equipped with eight PZT patches.

Table 1: States of the aircraft panel.

Number State Description Measurements number
1 Baseline The panel with all rivets 1–200
2 Damage 1 The panel without one of the rivets (Figure 2(c)) 201–400
1 Baseline The panel with all rivets 401–600
3 Damage 2 The panel with all rivets and localized corrosion 601–800
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Figure 3: Initial degree of pertinence for aircraft panel.

Table 2: Probabilistic neural network for damage classification.

Layer Number of neurons
Input 190
Pattern 570
Summation 3
Output 1

Baseline Damage 1 Damage 2
Training set 360 180 180
Test set 40 20 20
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Figure 4: Final degree of pertinence for the aircraft panel.

where V𝑖 is the center of the cluster i, 𝑥𝑗 is the data j, 𝑑(𝑥𝑗, V𝑖)
is the distance between 𝑥𝑗 and cluster center V𝑖, m is the
fuzzy parameter, and 𝑢𝑖𝑗 is the probability of the element 𝑥𝑗
to pertain to the cluster 𝑖. The objective function constraints
are presented in the following:

0 ≤ 𝑢𝑖𝑗 ≤ 1, (3)

𝑘

∑

𝑖=1

𝑢𝑖𝑗 = 1, ∀𝑗 = 1, . . . , 𝑁. (4)

Mahalanobis distance used in the Gustafson-Kessel (GK)
algorithm and the corresponding formulation is presented in
the equation below.This technique provides greater flexibility
to adapt to the shape and dimensions of each cluster but
has higher computational complexity [28]. Consider the
following:

𝑑
2
(𝑥𝑗, V𝑖) = (𝑥𝑗 − V𝑖)

𝑇

𝑃𝑖 (𝑥𝑗 − V𝑖) , (5)
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Figure 5: Aluminum aircraft window containing ten PZT patches.

where 𝑃𝑖 are the fuzzy covariance matrices that are obtained
from

𝑃𝑖 =

∑
𝑁

𝑗=1
𝑢
𝑚

𝑖𝑗
(𝑥𝑗 − V𝑖) (𝑥𝑗 − V𝑖)

𝑇

∑
𝑁

𝑗=1
𝑢
𝑚
𝑖𝑗

. (6)

The process consists in minimizing the objective function,
(4), and the results obtained are the cluster centers V and the
pertinence matrix u.

2. Case Study Number 1:
Aluminum Aircraft Panel

The first test presented in this work corresponds to an
80 × 80 cm aircraft panel, as shown in Figure 2(a). The
structure was tested by using eight PZT patches to capture
the impedance signals. A first type of damage was simulated
by removing a rivet located close to PZT3, as shown in
Figure 2(c). After the measurements have been made for this
state, the rivet was reattached at its former position. Then, to
simulate a corrosion type of damage, hydrochloric acid was
spread in the vicinity of the rivet. A localized corrosion area
was obtained (see Figure 2(c)).

A description of each state of the structure is presented
in Table 1. Two hundred (200) measurements were taken for
each state. Every measured signal contains 200 points.

To classify damage, the impedance signals measured in
the panel were used as inputs of the neural networks. Eight
probabilistic networks (one for each PZT) were implemented
to analyze the structure. All these networks were built with
the same architecture, since they were all intended to the
same purpose (classifying the damage in the panel). The
descriptions of the networks together with their training sets
are presented in Table 2. The results obtained with the test
set for each of the eight probabilistic neural networks are
presented in Table 3. The error percentages found in damage
classification for PZT1, PZT2, and PZT6 were greater than
48%, which means that they did not detect the damage. The
PZT3 and PZT4 showed error percentages greater than 10%,
although it should be noted that the damage 1 (loss of the
rivet) was perfectly detected by both of these patches (PZT3
and PZT4). PZT3 and PZT4 were dedicated to this specific
damage. The PZT5, PZT7, and PZT8 had error percentages
smaller than 4%, similar to the results obtained for simpler
structures (beam and plate) [30]. One can thus conclude that
these three PZT patches succeeded to properly detect the
types of damage that were inserted into the structure.

The initial degrees of pertinence for the Gustafson-Kessel
algorithm are shown in Figure 3. After several iterations
(Table 4) the algorithmwas interrupted by the convergence of
the process for every PZT patch that was used. One may then
observe the final degree of pertinence as shown in Figure 4.
The results of PZT1, PZT2, and PZT6 confirm again that these
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Table 3: Classification of test set of probabilistic neural networks for each PZT patch in the aircraft panel.

Baseline Damage 1 Damage 2 Error%

PZT1 ✓ 23 10 5
52,5%M 17 10 15

Total 40 20 20

PZT2 ✓ 20 9 8
55%M 20 11 12

Total 40 20 20

PZT3 ✓ 35 20 16
11,25%M 5 0 4

Total 40 20 20

PZT4 ✓ 32 20 14
17,5%M 8 0 6

Total 40 20 20

PZT5 ✓ 40 19 18
3,75%M 0 1 2

Total 40 20 20

PZT6 ✓ 40 20 18
48,75%M 19 8 12

Total 40 20 20

PZT7 ✓ 40 20 19
1,25%M 0 0 1

Total 40 20 20

PZT8 ✓ 40 20 18
2,5%M 0 0 2

Total 40 20 20

Table 4: Optimization results of the Gustafson-Kessel algorithm for the aircraft panel.

Iteration Initial objective function value Final objective function value
PZT1 139 3173,262 446,395
PZT2 102 831,342 118,823
PZT3 67 532244,526 5803,566
PZT4 47 602945,975 2788,759
PZT5 18 186,055 95,991
PZT6 131 3644,445 1594,554
PZT7 13 1041994,032 23013,747
PZT8 25 1452335,476 10885,113

PZTs failed to detect damage and thus made the classification
impossible. The PZT3 and PZT4 correctly identified the
damage 1; nevertheless the damage 2 was impossible to be
distinguished from the Baseline. Finally, the PZT5, PZT7, and
PZT8 managed to correctly classify the two types of damage
with a degree of pertinence greater than 80%.

3. Case Study Number 2:
Aluminum Aircraft Window

A second aircraft structure was used to test the artificial
intelligence techniques in structural health monitoring for
damage classification. For this aim a window located in an
aluminum aircraft structure, as illustrated in Figure 5(a),

was used. Due to the size and complexity of the structure,
ten PZT patches were considered in the experiment. This
number of PZT patches was arbitrary since no preliminary
study was performed to optimize the test configuration. Since
the beginning of the tests, the PZT10 showed poor stability
and repeatability and has therefore been ignored in the test.
To simulate two different types of damage in the structure,
two experiments were performed as follows. First, a weight
was added to the structure as shown in Figure 5(b). Second,
after the mentioned weight was removed, one of the clamps
(located close to the PZT2) was removed (Figure 5(c)). For
every state of the structure 200 measurements were made as
shown in Table 5. For every measurement 200 points were
taken.
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Table 5: States of the aircraft window.

Number State Description Measurements number
1 Baseline Window with all the clamps 1–200
2 Damage 1 Window with all the clamps and the weight 201–400
1 Baseline Window with all the clamps 401–600
3 Damage 2 Window with one clamp missing near PZT2 (Figure 5(c)) 601–800

Table 6: Classification of test set of probabilistic neural networks for each PZT patch of the aircraft window.

Baseline Damage 1 Damage 2 Error%

PZT1 ✓ 21 8 12
48,75%M 19 12 8

Total 40 20 20

PZT2 ✓ 36 16 20
10%M 4 4 0

Total 40 20 20

PZT3 ✓ 20 3 7
62,5%M 20 17 13

Total 40 20 20

PZT4 ✓ 19 7 13
51,25%M 21 13 7

Total 40 20 20

PZT5 ✓ 21 8 13
47,5%M 19 12 7

Total 40 20 20

PZT6 ✓ 17 9 9
56,25%M 23 11 11

Total 40 20 20

PZT7 ✓ 40 19 20
1,25%M 0 1 0

Total 40 20 20

PZT8 ✓ 33 15 20
18,75%M 7 8 0

Total 40 20 20

PZT9 ✓ 33 15 20
11,25%M 7 5 0

Total 40 20 20

Table 7: Optimization results of the Gustafson-Kessel algorithm for the aircraft window.

Iteration Initial objective function value Final objective function value
PZT1 130 107992,545 13922,783
PZT2 44 1951882,844 3723,708
PZT3 112 11418,915 1011,319
PZT4 131 14063,77 1106,733
PZT5 105 73130,147 3914,543
PZT6 83 187017,9 8330,349
PZT7 9 209498,097 1474,566
PZT8 101 71861,057 7189,752
PZT9 40 149831,047 652,42
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Figure 6: Initial degrees of pertinence for the aircraft window.

In this case, nine probabilistic networks were imple-
mented (one for each PZT) to analyze this structure as shown
in Table 2. The results obtained with the test set for each one
of the nine probabilistic neural networks are presented in
Table 6.

The damagemisclassification percentages of PZT1, PZT3,
PZT4, PZT5, and PZT6 were greater than 48%. These PZT
patches are not meant to detect damage.The types of damage
(structural modifications in this case) were inserted in the
back panel and the PZT patches were bonded to the rein-
forcing beams. The PZT2, while installed in a reinforcement

beam, was able to detect the damage 2 without errors; this
success is due to the fact that this sensor is close to the
clamp position.The PZT8 and PZT9 detected only the clamp
removal without errors, with an overall error percentage of
less than 20%. Finally, the PZT7, which was bonded directly
onto the panel and close to the removed clamp, was able to
identify all states with an error percentage of 1.25%.

The initial degrees of pertinence for the Gustafson-Kessel
algorithm are shown in Figure 6. After several iterations
(Table 7), the algorithm was interrupted by the convergence
of the process for each of the PZT patches. The final degrees
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Figure 7: Final degrees of pertinence for the aircraft window.

of pertinence are shown in Figure 7. The results of the PZT1,
PZT3, PZT4, PZT5, and PZT6 confirm once again that
these PZT patches failed to detect damage, which made the
classification impossible due to the position of the patches on
the structure.The PZT2, PZT8, and PZT9 correctly classified
damage 2, with a degree of pertinence of 99%. However, the
damage 1 was impossible to discriminate from the baseline.
Finally, for the PZT7, the Gustafson-Kessel algorithm was
able to correctly classify all measurements with a degree of
pertinence greater than 95%.

4. Conclusion

The probabilistic neural network and fuzzy cluster analysis
methods were applied to real-world structures in the context
of impedance-based structural healthmonitoring for damage
detection, localization, and classification purposes inmetallic
aeronautic structures. Impedance signal responses were used
as the input of the probabilistic neural network. The output
was the type of damage (crack, rivet loss, or pristine condi-
tion). The Gustafson-Kessel fuzzy clustering algorithm was
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also implemented. The results demonstrated the efficiency of
these techniques in accomplishing these tasks. It should be
pointed out that the tests were performed at constant room
temperature (approximately 20∘C). The PZT patches that
presented the largest error percentages for both techniques
used were the ones that did not succeed to detect damage due
to their inappropriate location along the structure [30]. This
means that the location of the PZT patches is amajor concern
in impedance-based structural health monitoring. Further
studies will focus on temperature compensation regarding
its influence on the damage classification approach. Also, the
authors have designed a compact network signal analyzer for
electromechanical impedancemeasurements, which includes
post-processing computation for damage metrics calculation
and temperature compensation, aiming at on board/online
structural health monitoring.
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Damage detection techniques using vibrations are based on measuring the changes in the vibration parameters of a structure. This
paper studies the viability of the spectral entropy as a new damage detection parameter to detect the presence of damage in a
composite fiber reinforced polymers (CFRP) plate. To carry out this study, the vibrations in a CFRP plate with and without damage
were measured and the correlation between damage and spectral entropy has been researched.

1. Introduction

Structural health monitoring (SHM) is very important in
aerospace industry due to the high responsibility of the
aeronautical structures and their high maintenance costs. So,
the developing of reliable damage detection techniques with
aerospace application is a very important issue. As composite
structures are becoming very important in aerospace engi-
neering, because their high stiffness and less weight, it is very
interesting the investigation of damage detectionmethods for
them.

This paper investigates the use of a new damage detec-
tion technique in a composite plate. The damage detection
technique is based on the use of the entropy of the frequency
response function (FRF), which is called spectral entropy
(SE), as damage index. The FRF of a structure depends of its
geometry and materials, and it is well known that a fracture
or a crack produces a change in the FRF [1], which can be
used to identify the damage. But in the FRF there is a lot of
information, and it is necessary to analyse all this information
to detect the damage. Usually the information is reduced in
some way to have only one parameter which can be used as
damage index.The SE is another way to do it. It is the entropy
of the FRF, so it is a single parameter that characterizes the
amplitude distribution of the FRF. The principal advantage
over other damage indexes based on changes in the natural

frequencies is that the SE depends on the distribution of
amplitude of the FRF. So, a shift or a change in the global
amplitude of the FRF due to external factors does not affect
the value of the SE, making it very robust against a change in
ambient conditions.

To evaluate the performance of the SE as a damage index,
an experiment has been carried out.The vibrations of a CFRP
plate with and without damage have been measured, and the
FRF and SE have been obtained. As a final result, a correlation
between the damage and SE has been found.

2. Experimental Description

The properties of the CFRP plate used in the experiment
are listed in Table 1. The plate was excited with a random
vibration of frequencies up to 1500Hz by means of a piezo-
electric actuator. The vibrations of the plate were measured
with four piezoelectric sensors located symmetrically around
the center of the plate. The actuator was located at the center
of the plate. The positions and properties of the sensors
and actuators are shown in Table 2. The four sides of the
plate were clamped to a rigid frame on an antivibration
table. Piezoelectric sensors were connected with STP cables
to the Brüel and Kjær PULSE input channels in order to
cancel out electromagnetic interference (EMI) and crosstalk
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Figure 1: Plate under study and experimental arrangement.
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Figure 2: Dimensions of the CFRP plate and positions of the
damage (P1, P2, and P3) and the actuator (A1).

Table 1: Properties of the CFRP plate.

Side (a) length 85 cm
Side (b) length 65 cm
Longitudinal Young’s moduli 1.50 × 10

11 Pa
Transversal Young’s moduli 1.15 × 10

10 Pa
Poisson’s ration 0.42
Shear moduli 5.0 × 10

9 Pa
Density 1560 kg/m3

Mass 4.75 kg
Layer thickness 0.188mm
Number of layers 12
Stacking sequence [0/90]3S

between neighbouring pairs and external sources. The input
signal was also generated with the PULSE output port. The
piezosystem EPA-104 amplifier boosted the PULSE output
signal to the actuator. To minimize the EMI and electrical
noise, all equipment, connection boxes, cable shields, and the
frame were connected to an independent ground system. To

reduce the influence of external vibrations, the frame was
fixed to an antivibration table and the measurements were
carried out at night with minimal ambient noise. Figure 1
shows the plate with the attached sensors, actuator, and
damage locations.

The damagewas simulated bymasses attached to the plate
with weights, 6.7 g (M1), 12.8 g (M2), 24.7 g (M3), 39.6 g (M4),
85.8 g (M5), and 192.9 g (M6), at three different positions
shown in Table 3. In Figure 2 can be seen a diagram of the
different positions of the damage in the plate. The plate
was placed in a horizontal position and the mass was put
on it without any fixing mechanism. The amplitude of the
vibrations was low, so the mass stayed in its position while
the experiment was performing. As the mass was free, it is
possible that it can “jump” on the plate when it goes down.
During the experiment no evidence of this jumpwas noticed.

This kind of damage has the advantages of being very well
controlled and nondestructive, which is especially important
to validate damage detection and evaluation methods. Fur-
thermore, the addition of masses produces a rise of the local
density, whose effect in the vibrational behaviour of the plate
is similar to a reduction of the stiffness, as the vibrational
frequencies depends on √𝑘/𝜌, where 𝑘 is the stiffness and is
the density. More details of the experiment can be found in
[2, 3].

3. Spectral Entropy

Entropy is a thermodynamic magnitude that can be used to
calculate the quantity of energy that cannot be transformed
intowork. From amicroscopic point of view, it is ameasure of
the disorder of a system. Entropy is used too in information
theory, where it is related with the uncertainty in a random
variable, where it is called Shannon entropy. For our pur-
poses, we are going to use the interpretation of entropy as
a measure of the disorder of a system but applying it to the
frequency distribution of a signal. The Shannon entropy can
be calculated with the equation:

𝐸 = −

𝑁

∑

𝑖=1

𝑝𝑖 log (𝑝𝑖) , (1)

where 𝑝𝑖 is the probability of the system of being in the state
𝑖 and𝑁 is the total number of states.

In order to use (1) to calculate the SE, the FRF is
normalized and then each frequency peak is considered a
state 𝑖 and its amplitude is assumed to be its probability 𝑝𝑖.
So, the SE is calculated using the expression:

SE = −
𝑁

∑

𝑖=1

𝐴 (𝑓𝑖)

𝐴𝑇

log(
𝐴 (𝑓𝑖)

𝐴𝑇

) , (2)

where 𝐴(𝑓𝑖) is the amplitude of the frequency peak 𝑓𝑖 and
𝐴𝑇 = ∑

𝑁

𝑖=1
𝐴(𝑓𝑖). Only the peaks in the FRF are taken into

account in the calculation of the SE.
The SE measures the disorder of the amplitude distribu-

tion. If all the energy is concentrate in few frequencies, the
FRF is very ordered and the SE has a low value. In the same
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Figure 3: FRFs used as examples of the dependency of SE with the amplitude distribution. Their values of SE are 3.163, 3.108, and 3.443.
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Figure 4: Examples of experimental FRFs. The examples correspond to the sensor 1 with the damage in position P1. In the figure, the added
mass is indicated.
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Figure 5: Variation of𝐷1 with attached mass. (a) Damage in position P1. (b) Damage in position P2. (c) Damage in position P3.

way, if the energy is distributed over many frequencies, the
FRF is very disordered and the SE has a high value. Taking
this into account, the SE can be seen as an indicator of the
complexity of the vibration, as it will bemore complex ifmore
frequencies are involved in the movement.

As an example, in Figure 3 three normalized FRFs can
be seen. The first one has only two frequencies of the same
amplitude, and its SE is 3.163. The second one has the same
frequencies as the previous one but one of them has higher
amplitude than the other one, so it is more ordered and its SE
has a value of 3.108, which is lower than the first one.The third
FRFhas three frequencies of equal value and its SE is 3.443. As
the energy is distributed over more frequencies, the FRF is
more disordered than the first one, so its SE is higher.

The SE can be used as damage index under the assump-
tion that damage changes the amplitude distribution in the

FRF of the structure. That is, if there is only a change in
the value of the natural frequencies, but they have the same
amplitude as the original ones, then their SE will be the
same.The SEwill change if the new frequencies have different
amplitude than the previous ones.

To obtain the FRF the structure must be excited with
an external force (input) and the vibration in a point of the
structuremust bemeasured (output).The input energy is dis-
tributed between the different natural frequencies depending
on physical characteristics of the structure and the position of
the actuator and the sensor. The amplitude of each frequency
peak of the FRF shows which part of the input energy
corresponds to that frequency.

Physically, damage decreases the stiffness of the region
of the structure where it is located. It modifies the physical
characteristics of the structure and the way that it vibrates,
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Figure 6: Variation of SE with the added mass in position 1 for: (a) Sensor S1; (b) Sensor S2; (c) Sensor S3; (d) Sensor S4.

Table 2: Properties and positions of piezoelectric sensors and actuators.

Use Ceramics Electrode Thickness Diameter Positions Notation
Actuator PIC255 Ag 0.5mm 20mm (42.5, 32.5) cm A1

Sensor PIC151 Ag 0.5mm 10mm

(24.5, 21.5) cm S1
(24.5, 43.5) cm S2
(60.5, 21.5) cm S3
(60.5, 43.5) cm S4

Table 3: Added masses and comparison with the total mass of the
plate.

Added masses (g) Percentage of the mass of the plate
6.7 0.14
12.8 0.27
24.7 0.52
39.6 0.83
85.8 1.81
192.9 4.06

enhancing some frequencies and weakening others. So, the
SE of the structure will change in the presence of damage.

Up to the authors’ knowledge, the SE has not been used
before to identify damage from vibrations in structures.
Similar parameters with the same name have been used in
other scientific fields, for example, in medicine [4, 5], ecology
[6], genomics [7], and acoustics [8], but usually in each
different application the SE is defined in a different way. In
acoustic emission it has been usedwith the nameof frequency
entropy to analyze the obtained signals [9]. A parameter
that is similar to SE is the wavelet entropy (WE), which is
the Shannon entropy of the wavelet energy obtained from
the continuous wavelet transform [10] or of the different
frequency bands obtainedwith the discretewavelet transform
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Figure 7: Variation of SE with the added mass in position 2 for (a) Sensor S1; (b) Sensor S2; (c) Sensor S3; (d) Sensor S4.

[11]. TheWE have been used successfully to detect damage in
structures [12].

4. Experimental Results

The experiment was repeated 15 times in the undamaged case
and 5 times in each damaged plate to minimized ambient
and random errors. The sample frequency was 4096Hz and
the frequency content of the excitation signal was up to
1500Hz.The power spectral densities (PSD) of the excitation
and the output were computed using Matlab and the Welch
algorithm.The PSD of the output were divided by the PSD of
the excitation to obtain the FRF. Some examples of FRFs of
the plate with different added mass can be seen in Figure 4.

The change of these experimental FRFs with damage
has been studied in previous works [2, 3]. This change was
quantified using the following parameter:

𝐷1 =

𝑓
𝑖
=𝑓max

∑

𝑓
𝑖
=𝑓min

√
󵄨󵄨󵄨󵄨󵄨
FRFundamaged (𝑓𝑖) − FRFdamaged (𝑓𝑖)

󵄨󵄨󵄨󵄨󵄨
. (3)

The difference between the FRF of the intact and damaged
plate increases with damage, so 𝐷1 can be used as damage
index. In Figure 5 it is shown the variation of 𝐷1 with the
added mass for each damage location. It can be seen that the

change in the FRF increases very fast with low damage, but
for massed higher than 39.6 g,𝐷1 remains almost constant in
all cases.

To study the performance of the SE as a damage index, it
was computed for each experiment, and for each undamaged
and damaged plate the mean and standard deviation were
calculated. The variation of the SE with the added mass for
each position of the damage is shown in Figures 6, 7, and 8,
where error bars are added to show the standard deviation
due to the different experiments.

As can be seen in Figures 6–8, there is a trend of the
SE with the added masses. With damage in positions 1 and
3, the tendency is that the SE rises with mass, but not in
monotonic form. On the other side, with damage in position
2, the tendency is that the SE decreases with mass, except in
the case of sensor 4, which oscillates instead of having a trend.
This means that damage in positions 1 and 3 produces more
relevant frequencies in the FRF; that is, the energy distributes
between more frequencies in the FRF. In the opposite side,
with damage in position 2 there are less relevant frequencies.
Using SE as a measure of the complexity, damage in positions
1 and 3 makes the vibration more complex, while damage in
position 2 decrease its complexity.

This different behaviour of the SE with damage location
can be explained by taking into account that the presence
of a mass in a point of the plate makes its movement more
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Figure 8: Variation of SE with the added mass in position 3 for (a) Sensor S1; (b) Sensor S2; (c) Sensor S3; (d) Sensor S4.

difficult. So the normalmodes with an antinodewhich is near
the damage location will be disturbed, and their influence in
the vibration will decrease. In positions 1 and 3 the disturbed
modes must be the principal ones, so the influence of less
important modes is enhanced and the complexity of the
vibration is higher. In the case of position 2, the disturbed
modes have probably low relevance in the vibration andmore
energy goes to the principal ones, making the movement less
complex. The damage index 𝐷1 has the same behaviour in
the three damage locations because it measures the difference
between the FRFs of the undamaged and damaged plates, so
this difference always increases with added mass.

For low added mass the SE changes very quickly, but for
masses around 39.6 g and 85.8 g it becomes almost constant.
It seems that when we have a high value of mass, a further
increase does not change the amplitude distribution in the
FRF and the SE remains constant. The same behaviour was
found for damage index 𝐷1, which is a direct measure of the
change in the FRF. So it seems that the FRF changes very little
when a certain value of damage is reached.The reason for this
saturation of the damage indexes can be that, as have been
said before, an increase of the mass in a point of the plate
decreases itsmovement. For a low value of themass, the point
can still move. But for a high value, there is a strong limitation
of the movement and it remains still. As it cannot move, a
further increase of the mass will not have any effect on it.

It is possible that the results can be influenced by the fact
that the masses were not fixed to the plate, but it seems that
it is not the case. The possible jump of the mass on the plate
could introduce a nonlinear effect that increases with weight.
In the experimental results, for low masses the SE follows a
trend and for high masses it has an approximately constant
value. If the effect of the jumps had been important, the SE
would have increasedwith highmasses as the FRFwould have
been more complex.

5. Conclusions

The importance of composite structures in aerospace indus-
try is increasing in the last years, making the development
of damage identification methods adapted to this kind of
materials necessary. A new damage detection technique has
been experimentally tested on a CFRP plate. It is based on
the use of the spectral entropy (SE) of the vibrations of the
CRFP structure as damage index. This parameter measures
the energy distribution between the resonant frequencies of
the plate and is related with the complexity of the vibration.
It has been proved that the SE changes with damage, and this
change is higher than the variations in SE due to different
measures of the FRF. Furthermore, the variation in the SE
with damage follows a trend: the SE increases or decreases
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(depending of the location) as damage increases. It means
that the SE can be related with the quantity of damage in a
given position and with more research, with its localization.
In our experimental tests it was found that the variation of
SE with damage is not always mononotic, which can make it
difficult for it to be used in a real situation. It can be due to
our experimental arrangement, or damage implementation,
or to other reasons. To clarify this point and improve our
understanding of the theoretical behaviour of the SE, a
numerical investigation must be carried out.

The advantage of the SE over other damage indexes based
on FRF is that a change in the ambient or external conditions
of the structure (e.g., the temperature) can produce a change
in the amplitude of the FRF or a translation of it, so many
false positives can appear. The SE is insensitive to these
changes, which makes it a very promising damage index for
SHM, although more theoretical and experimental research
is necessary.
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