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It has been widely known that oxidative stress disrupts the balance between reactive oxygen species (ROS) and the antioxidant
system in the body. During pregnancy, the physiological generation of ROS is involved in a variety of developmental processes
ranging from oocyte maturation to luteolysis and embryo implantation. While abnormal overproduction of ROS disrupts these
processes resulting in reproductive failure. In addition, excessive oxidative stress impairs maternal and placental functions and
eventually results in fetal loss, IUGR, and gestational diabetes mellitus. Although some oxidative stress is inevitable during
pregnancy, a balancing act between oxidant and antioxidant production is necessary at different stages of the pregnancy. The
review aims to highlight the importance of maintaining oxidative and antioxidant balance throughout pregnancy. Furthermore,
we highlight the role of oxidative stress in pregnancy-related diseases.

1. Introduction

Several reproductive problems have been linked to oxidative
stress. Oxidative stress occurs when the body’s antioxidant
system is depleted owing to an excess of reactive oxygen spe-
cies (ROS). ROS are highly reactive molecules that are unsta-
ble and short-lived. These molecules contribute to the control

of signaling pathways, as well as cellular and physiological
processes [1]. However, excess ROS may cause cellular toxic-
ity [2]. Animals have an enzymatic antioxidant defense
mechanism that suppresses the formation of reactive oxygen
species (ROS). It is worth noting that cellular integrity is
maintained by a balance of enzymatic and non-enzymatic
antioxidant systems. When oxidative stress increases, both
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antioxidant systems are depleted resulting in reproductive
problems [3, 4]. Enzymatic antioxidants like glutathione per-
oxidase (GPx) and superoxide dismutase (SOD) are antioxi-
dants to neutralize free radicals. On other hand, the non-
enzymatic antioxidants such as vitamin C, vitamin E, plant
polyphenol, carotenoids, and glutathione interrupt free radi-
cal chain reactions. Importantly, antioxidants may have ther-
apeutic promise in the treatment of reproductive-related
problems [5].

ROS has a biological effect on various reproductive pro-
cesses, such as oocyte maturation, fertilization, embryo
development, pregnancy, as well as oocyte maturation and
fertility. A number of research studies, including animals
and humans, showed that ROS has been implicated with
female reproduction, particularly ovaries [6-8], fallopian
tubes [9] and embryos [10].

The primary function of the placenta is to exchange
nutrients and oxygen between mother and fetus. Therefore,
interference in these functions leads to hypoxia due to oxida-
tive stress. The disruption in placental function is due to
many factors resulting in pregnancy complications [11]. A
large number of studies reported that pregnancy problems
have been associated with overwhelming oxidative stress
from the placenta and or maternal tissues [12]. Other mech-
anisms are also implicated in the etiology of these complica-
tions; oxidative stress has evolved to regulate the cellular and
molecular pathways such as altered angiogenesis and inflam-
mation to mediate disease outcomes [13]. The oxidative sce-
nario develops due to increased ROS and depletion of the
antioxidant system [14]. Though the development of abnor-
mal oxidative stress leads to spontaneous abortion, idio-
pathic recurrent pregnancy loss and embryogenesis defect
[2, 15-18].

Oxidative stress has been linked to a number of meta-
bolic processes that affect animal health and performance
[19]. The study of oxidative stress has increased as a result
of its role in adverse pregnancy outcomes. Oxidative stress
exhibits dual functions, it aids in the maintenance of redox
balance and it plays a part in female reproductive processes.
As aresult, oxidative stress may aggravate IUGR, endometri-
osis, and other reproductive issues. Oxidative stress also reg-
ulates signaling networks including Kelch-like ECH-
associated protein 1, Nuclear factor erythroid 2-related fac-
tor 2 (Keapl-Nrf2), nuclear factor kappa-B (NF-xB), fork-
head transcription factors of the O class (FOXO) and
Mitogen-activated protein kinase (MAPK). Lastly, targeting
these pathways appears attractive as a potential therapeutic
strategy against pregnancy-related anomalies [5].

2. Oxidative Stress and Its
Regulatory Mechanism

ROS are oxidative metabolic byproducts that play an impor-
tant part in cellular activity. They are also implicated in a
number of pathological diseases, including in-vitro and in-
vivo pregnancy difficulties [20-25]. The factors responsible
for overproduction of ROS are ultraviolet radiation, cigarette
smoking, alcohol, non-steroidal anti-inflammatory medica-
tion, ischemia-reperfusion injury, chronic infections, and

Mediators of Inflammation

inflammatory diseases [26, 27]. The enzyme superoxide dis-
mutase converts the superoxide anion radical to hydrogen
peroxide and oxygen [28], and catalase eliminates hydrogen
peroxide when its quantities in the cell are higher [29]. Glu-
tathione reductase is found throughout the body tissues and
operates similarly to GPx. Using several systems; the GSR
enzyme reduced oxidized glutathione by utilizing NADPH
[30, 31].

The secondary defense is based on the GPx enzyme,
which possesses peroxidase activity and may eliminate lipid
hydroperoxides irrespective phospholipase A2 [32]. There
are also a number of oxido-reductases that catalyse thiol
and other protein reduction processes. Protective enzymes
against free radicals are produced once the cellular compo-
nents have been oxidatively damaged. For example, DNA
nuclear enzymes are known to protect DNA from oxidative
damage induced by free radicals [33]. Vitamin E functions as
a cofactor for glutathione peroxidase enzymes, and its pres-
ence in all cellular membranes suggests that it can protect
lipids from oxidation. The ascorbic acid-GSH redox couple
directly reduces the tocopherol radical. While [-carotene
functions in concert with vitamin E, which is a strong scav-
enger of free radicals, but f§ -carotene only works at low oxy-
gen pressure. Vitamin E, on the other hand, protects f3-
carotene against oxidative damage [34]. In addition, some
antioxidants work as free radical quenchers [35]. Early preg-
nancy deficiency in antioxidants has been associated with
the development of maternal-related disorders such as gesta-
tional hypertension, gestational diabetes, and other compli-
cations [36]. Therefore, the generation of ROS molecules
controls several signaling pathways that govern a variety of
cellular functions. The activation of these signals causes a
change in cellular function, which has a pathogenic effect
on the cell [37].

3. Oxidative Stress Scenarios in Pregnancy

In normal pregnancy, the developing tissues and organs of
the fetus require enough nutrition and oxygen. These pro-
cesses generate ROS in both maternal and fetal tissues that
influence fetal growth development. To provide a suitable
environment for the fetus and maternal body, the balance
between ROS and antioxidants could be maintained [38].
During pregnancy, the body undergoes numerous physio-
logical changes. The evidence of ROS formation in the sec-
ond trimester of pregnancy was assumed by the
researchers. Increased production of ROS occurs due to the
enhanced metabolism, high consumption of oxygen and uti-
lization of fatty acids. During third trimester of pregnancy,
increase insulin resistance, fat catabolism, and release of free
fatty acids resulting in enhanced production of hydrogen
peroxide [39]. Placental cells have a lot of mitochondria,
which are the main source of pro-oxygenates. The superox-
ide anion radical produces more radical species and their
generation rises as the pregnancy continues.

Several studies have found that oxidative stress is linked
to pregnancy complications that may influence fetal devel-
opment. The major causes are a lack of nutrition and oxygen
for developing fetuses, which causes hypoplasia and disrupts
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placental function [39, 40]. The difference in total plasma
antioxidants status between pregnant and non-pregnant
individuals has been observed, implying a low level in the
first phase of pregnancy. The total antioxidant capacity of
a pregnant woman increases during the second and third tri-
mesters, and by the last week of pregnancy, it has reached
the level of a non-pregnant woman. TAC activity increases
after the 8" week of pregnancy, and these changes are linked
to differences in plasma uric acid levels [41]. Furthermore,
reduced TAC levels in pregnancy have been linked to low
levels of serum albumin, bilirubin, and vitamin E [42]. As
result, it appears that plasma SOD activity is reduced during
pregnancy [43]. The SOD reduction promoted triglycerides,
total cholesterol, and low-density lipoprotein (LDL) choles-
terol levels in blood plasma. Therefore, SOD refers as indica-
tor of oxidative stress and lipid peroxide activity followed by
25 weeks of pregnancy. As a result, lipid peroxidation levels
in the blood are higher in pregnant women, serving as a
marker of oxidative stress. Previous studies have found that
supplementing pregnant individuals with the dietary vita-
mins, antioxidants, and minerals enhanced TAC activity
[42-44].

4. Oxidative Stress in Ovary, Uterus
and Placenta

Almost every stage of pregnancy is affected by ROS. ROS is
known to be the important regulator of ovarian cellular
activity [45]. The ROS positive impact has been already
mentioned. Previous studies showed that the presence of
SOD in ovary, copper-zinc SOD (Cu-Zn SOD) in granulosa
cells of follicles and manganese superoxide dismutase
(MnSOD) in luteal cells of the corpus luteum in rats [46].
The sources of ROS in the follicles are macrophages, leuko-
cytes and cytokines [26]. Ovulation is dependent on concen-
tration of ROS. ROS suppressors have been demonstrated to
interfere with the ovulatory process [47]. Follicles develop-
ment is associated with an increased metabolic function of
granulosa cells, particularly excess amount of cytochrome
P450 and steroidogenesis [48]. The presence of ROS in
pre-ovulatory follicles alters blood flow and finally leads to
follicle rupture [49]. Furthermore, FSH stimulates the syn-
thesis of estrogen, while the overexpression of CAT in devel-
oping follicles protects them from apoptosis, ensuring that
ovarian function is preserved [50]. Depletion of oxygen is
required for follicular angiogenesis [6]. The corpus luteum
contributes to functional luteolysis by producing ROS. Dur-
ing the luteal phase, both the ROS and antioxidants are
linked to progesterone production [51]. The beneficial
effects of ROS and antioxidants in female reproductive and
pregnancy outcomes are depicted in Table 1.

The developing fetus has a high energy requirement due
to the placental hyperactive metabolic rate, resulting in oxi-
dative stress [52]. Of note, that superoxide anions produced
by placental mitochondria appear to be the essential source
of ROS and lipid peroxidation in the placenta [53]. As the
pregnancy progresses, mitochondrial synthesis of lipid per-
oxides, free radicals, and vitamin E may also increase [54].
The placenta and large blood arteries mature slowly in the

second phase of the pregnancy. After that, maternal blood
pumps via interstitial space into the mother’s spiral artery
[54, 55]. Free radicals are abundant in placental tissues,
and oxidation occurs throughout the process. With the help
of antioxidant activity, the placenta can slowly adapt to the
environment after recovering from stress [40].

SOD activity decreases during the late luteal phase due to
increased amounts of lipid peroxide. Importantly, ROS are
known to have a role in numerous phases of the endometrial
cycle, and may also produce PGF, through NF-xB activation
[56]. Estrogen and progesterone levels dropped significantly
as a result of lower SOD expression. In a consequence, ROS
accumulates in the uterus, leading to implantation failure.
The basal level of ROS controls angiogenic activity in the
endometrium and results in endometrial regeneration dur-
ing each cycle. Thus, appropriate ROS concentration is crit-
ical for normal homeostasis. However, an increased level of
ROS from the placenta has been associated with
pregnancy-related disorders [57-59]. The TNF-a cytokine
that influences endothelial cell dysfunction and the antioxi-
dant Mn-SOD are both disrupted and have protective
effects. The production of cytokines and prostaglandins is
increased by ROS-related poor placental function, producing
endothelial cell injury and contributing to preeclampsia [60].

5. Regulation of Multiple Signaling
Pathways by Oxidative Stress

Oxidative stress has been linked to influence signaling path-
ways, particularly in reproductive diseases ranging from egg
production to ovulation. It alters immune system of the
uterus resulting in embryonic failure [61, 62]. Oxidative
stress has also been involved in regulating molecular path-
ways in reproductive disorders such as p38 MAPK, Keapl-
Nrf2, the Jun N-terminal kinase (JNK), the FOXO family,
and apoptotic pathways. Therefore, the research on this
aspect may yield new insights that might influence female
reproductive system.

Nrf2 is a signaling molecule that protects cellular func-
tion by acting as an antioxidant in response to oxidative
stress [63]. Physiologically, Nrf2 binds with Keapl in the
cytoplasm before being degraded by the proteasome [64].
Once the Nrf2 is activated, it translocate into nucleus, where
it activates several antioxidant genes [65]. In contrast, activa-
tion of antioxidant genes and restoration of vascular redox
homeostasis are required when OS is evident suggesting
the crucial function of Nrf2 [66]. The deficiency of Nrf2
induced fetal DNA damage and neurological discrepancies
and inactivation of Nrf2 were also exhibited inflammation
triggered trophoblastic apoptosis. Previous evidence showed
that Nrf2 plays an important role in pregnancy and protects
the fetus from OS in-utero [67]. The maternal immune sys-
tem is susceptible to Nrf2. Nrf2 is only decreased once the
full-term foetus is delivered in a normal pregnancy. When
a fetus is infected in utero, the Nrf2 expression is favorably
reduced [68]. In the case of OS-induced metritis, it is
expected that Nrf2 would be considerably decreased, and
Keapl would bind to Nrf2. Similarly, FOXO3 is essential
in the interaction between Keapl and Nrf2. In the absence
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TaBLE 1: Positive effect of ROS and antioxidant system in various events of female reproduction and pregnancy outcomes.

Oxidant/antioxidant compounds

Functional activity Species References

T expression of GSTm2

T GPX and GSR activities

Silence the expression of GPX4

| hydrogen peroxide and superoxide radical

T SOD1, GPX and GST activities in early
pregnancy

T CAT and GPX and oviduct GSH in estrus
cycle

T expression of SOD1 in early pregnancy
T CAT and GPX, and GSH in placenta tissues

T CAT, SOD and GPX in placental and fetal
tissues

T uterine peroxide at blastocyst attachment

Preparation of uterus for blastocyst implantation
Regulator of H,0, and cell death in placental progression
Influencing embryonic brain and heart functions

Control uterine contractions

Rescue Corpus luteum form apoptosis

Directions of luteal functions

Regulates hydrogen peroxide and activation of placental

Defense against ROS toxicity in feto-placental system

Mouse [130]
Sheep [131]
Mouse [132]
Humans [133]

Sheep [134]

Govern hydrogen peroxide during fertilization Cow [135]

Human [136]

differentiation Human [137]

Human [138]

Defense to negative effects of hydrogen peroxide actions Rat [139]

of FOXO3, Nrf2 is activated by AKT and protects cells
against OS [69]. Lastly, we hypothesized that OS causes
inflammation in the reproductive system, with FOXO3 play-
ing a role in the interaction between Keapl and Nrf2, which
may be used as a marker for OS insults.

NF-«B is an inert molecule, its family comprises five
transcription factors c-Rel, p50, p52, RelB and RelA (p65)
[70]. NE-B is a redox-sensitive transcription factor that is
the primary regulator of the inflammatory response [71].
Therefore, the beneficial effects of NF-«B are evident in
embryonic stress that activates NF-xB and other diverse
inflammatory cytokines which persuades apoptosis within
placenta [72]. Hence, it was concluded that NF-xB plays an
important role in the cell survival by releasing anti-
apoptotic genes. In normal conditions, NF-xB is bound to
inhibitory IxB proteins and remains inactive in the cyto-
plasm. The breakdown of IxB proteins activates NF-B, which
subsequently translocate into the nucleus and generates
desirable genes, whereas IxB proteins are mediated by the
IxB kinase (IKK) complex (IKKa and IKKp) [73]. Increased
expression of NF-«B in cultured endometrial stromal cells
has been found in reproductive diseases such as endometri-
osis [74]. Altered production of NF-«xB production has been
associated with inflammation. Endometriosis is a condition
induced by OS which increases the concentration of TNF-
a, resulting in inflammation thereby; NF-«B is activated.
Moreover, IL-1f3 activates NF-xB, which in turn produces
inflammatory cytokines [75], comprising macrophage
migration inhibitory factor (MIF) in endometrial stromal
cells [76] and TNF-« in immortalized epithelial (12Z) cell
line [77]. In summary, OS-mediated reproductive disorders
are caused by NF-«B activation.

FOXO1 and FOXO3 have been contributed to OS and
pregnancy. The FOXO subfamily of Forkhead transcription
factors is a direct downstream target of the PI3K/Akt path-
way [78]. The family of FOXO proteins is involved in differ-
ent biological processes such as proliferation, apoptosis,
autophagy, metabolism, inflammation, differentiation and
stress tolerance [79]. The FOXC1 displays a pivotal role in

reproduction and also mediates cyclic differentiation and
apoptosis in normal endometrium [80]. Recent studies have
shown that FOXO1 knockdown disrupts the expression of
over 500 genes in decidualized human endometrial stromal
cells [81]. Previous research has shown that FOXO tran-
scription factors can control multiple gene responses to
change hormone levels [82]. Besides, that FOXOL1 is also
responsible for the induction of decidual marker genes,
including WNT4, prolactin (PRL) and insulin-like growth
factor-binding protein 1 (IGFBP1) [83].

Three signaling molecules are triggered by the extracel-
lular milieu, including ERK, which is activated by inflamma-
tion and growth factors, and JNK and p38 MAPK, which are
mostly activated by stress and inflammation [84]. It has been
shown that ERK activation is increased in endometrial tis-
sue, suggesting that ERK may play a role in endometriosis
and phosphorylated ERK is increased in primary eutopic
epithelial cells [85]. ERK activation can also be influenced
by oxidative stress. In response to normal women, hydrogen
peroxide causes ERK phosphorylation in endometriotic stro-
mal cells [86].

6. Contribution of Oxidative Stress in
Pregnancy Complications

6.1. Intrauterine Growth Restriction. Intrauterine growth
restriction (IUGR) is a pregnancy ailment in which an
underweight/incomplete fetus develops in the uterus [87].
The causes are multifactorial such as maternal, fetal, placen-
tal, infectious, or genetics [88]. About 76% of intrauterine
deaths have been associated with TUGR [89]. The most sig-
nificant cause of ITUGR is utero-placental dysfunction occurs
due to the congested maternal utero-placental blood flow
[90]. Proper functioning of the placenta requires greater
energy demand for cell growth, proliferation and metabolic
activity which in turn produce oxidative stress. Oxidative
stress plays an essential role against various stimuli which
influence placental function [91]. Cellular injury occurs as
a result of lipid peroxidation and fatty acid oxidation, and
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FIGURE 1: The Impact of Oxidative Stress on Pregnancy Outcomes.

it is mostly utilised to identify oxidative stress indicators
[92]. Evidence of IUGR in livestock has been raised through
environmental factors and affects goats, sheep, pigs and
other animals. Of note, that significant evidence of IUGR
exists in multi-fetal animals including pigs. It has been doc-
umented those animals with this condition have reduced
birth weight, postnatal growth, development and liver dys-
function [93]. A detailed description of IUGR occurrences
in clinical and health deviations is well been ascribed in
the previous studies [94-96]. More evidence is required to
be revealed the underlying molecular mechanisms.

6.2. Spontaneous Miscarriage and Recurrent Pregnancy Loss.
Spontaneous abortion can be classified as loss of pregnancy
before 20 weeks of gestation. The incidence may range from
8-20% in pregnancies and is due to chromosomal aberration,
which accounts for 50% of all miscarriages. While, the rest
are associated with congenital and uterine malfunctions,
infections, maternal diseases and unknown causes [97].

In early pregnancy losses, elevated levels of MDA and
lipid peroxides were observed in placental tissues in compar-
ison with controls. Previous studies have shown that over-
loading of ROS could lead to the premature and sudden
formation of maternal placental perfusion [2]. Other evi-
dence reported that oxidative stress damage the trophoblast
and ultimately leading to early pregnancy losses. The inci-

dence of oxidative stress occurred due to the depletion of
the antioxidants system and thus unable to scavenge free
radicals [87, 98]. Although there is diversity in previous
studies, it seems to be a relationship between ROS and anti-
oxidants in miscarriage. The abnormal placentation may
arise from syncytiotrophoblasts and may be vulnerable to
idiopathic recurrent pregnancy loss [97]. Oxidative stress
enables the potential to influence pregnancies due to the
depletion of antioxidant capacity within the body [99]. The
influence of oxidative stress in pregnancy problems is
depicted in Figure 1. The issue of recurrent pregnancy losses,
research gaps, and their treatment has been thoroughly
reviewed [100, 101].

6.3. Gestational Diabetes Mellitus (GDM). GDM is a type of
diabetes mellitus in which pregnant women develops glucose
intolerance to a different degree [102]. It was reported in 2-
5% of pregnancies while; data suggested the incidences
increased up to 18% in all pregnancies [103]. GDM develops
during the second trimester of pregnancy, causing fetal
macrosomia, perinatal mortality, and making mother vul-
nerable for T2DM [102, 104].

The pregnancy has been linked to an imbalance of pro
and anti-inflammatory mediators [105]. The levels of T cells
subsets were increased in women with GDM compared to
control healthy subjects whereas; T cells expressing CTLA-



4, a downregulation of the immune system which lightly
expressed in Tregs were suppressed [106]. Changes in the
Treg population suggest that the Treg pool in GDM is
becoming less active [76]. Thus, it suggests that the lack of
immune down-regulation helps maternal-fetal tolerance.
Although, the toll-like receptors TLR-2 and TLR-4 stimulate
inflammatory cytokines which were enhanced in peripheral
blood mononuclear cells of women with GDM [107]. Previ-
ous literature revealed the ambiguous results of TNF-« in
GDM condition [79, 82], but more descriptive role of
GDM is well-highlighted somewhere else [108]. An evidence
of oxidative stress-related problems during pregnancy is
well-reviewed by others [12, 109].

7. Antioxidant Approaches in Pregnancy

The detrimental effects of oxidative stress and ROS on
female reproduction system have been well illustrated for
since long [110]. It was suggested that the generation of
ROS is impaired by cytochrome P450 and corpus luteum,
which itself is considered a key source. The initiation of
oocyte maturation and others processes are mostly affected
by different levels of ROS and antioxidants [6]. Endometri-
osis and unexplained infertility conditions are also linked
to the OS [111].

Antioxidant supplementation possess positive effects
through a variety of pathways, including direct scavenging
of reactive oxygen species (ROS) and damage repair [112].
The protective effects on fertility consisting enhanced blood
circulation in endometrium, reduced hyperandrogenism,
lowered insulin resistance, and positive impact on prosta-
glandin synthesis and steroidogenesis [112-114]. A current
systematic review indicates the positive impact of antioxi-
dants in female fertility [115]. Antioxidants were also
involved in enhancing live birth weight and clinical preg-
nancy rates. Though, the evidence is poor with a slight
increase to high heterogeneity due to the trials on enrolled
women offering various kinds of antioxidants. Antioxidants
have shown various responses when they are taken alone
or in combination exerted a positive effect on pregnancy rate
[116]. Moreover, dietary/injectable source of antioxidants
during periparturient period provide beneficial effects on
pregnancy outcome and growth performance of suckling
kids of goats [117, 118].

There is evidence that increased antioxidant levels con-
front and scavenge ROS in women who have repeated abor-
tions as a result of ROS overload. Previous research has
found that women with recurrent abortion have higher
levels of lipoperoxides and lower amounts of vitamin A, E,
and beta carotene, suggesting the role of ROS. When com-
pared to healthy subject, glutathione activity was low in
women who had recurrent abortions [44, 119]. Moreover,
selenium concentration from hair samples was also signifi-
cantly reduced in recurrent abortion than the healthy preg-
nancies [120]. Increased glucose levels during pregnancy
cause teratogenic consequences due to chemical changes
and DNA rearrangements. Increased glucose causes the for-
mation of glycation products, which affect genomic function
and negatively regulate embryonic development. In diabetic
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pregnancy, changes in membrane lipids induce biological
prostaglandin events, and an enhanced level of ROS causes
dysmorphogenesis in the fetus [121]. A reduced level of lipid
peroxidation in women with GDM was reported due to
depletion of antioxidants activity. Hydroperoxide produc-
tion affects prostaglandin synthesis patterns, which may
result in morbidity owing to antioxidant depletion [122].
GDM also triggers oxidative stress in fetus, thus the intake
of antioxidants during pregnancy is essential factor for
improving pregnancy health [123]. Further, a detailed
description on the role of antioxidants in pregnancy is
well-discussed in the previous studies [2, 44, 124-129].

8. Conclusion

Antioxidant defense has been established to regulate the
generation of ROS; however the increased amount of ROS
cannot be controlled, resulting in oxidative stress. So, the
potential strategies of antioxidant to decrease ROS levels
are critical. According to a large number of studies, oxidative
stress is the primary contributing factor in a variety of preg-
nancy complications. Overstimulation of ROS can cause
hyperglycemia, IUGR, miscarriage, and spontaneous abor-
tion throughout all stages of pregnancy. Placental oxidative
stress is caused by a number of variables, including maternal
history, genetics, and environmental factors, and can lead to
negative pregnancy outcomes. Future research should focus
on improving the breakdown of intracellular ROS and
enhancing antioxidant bioavailability. Targeting signaling
molecules with natural bioactive compounds will be used
to minimize the occurrence of reproductive problems.
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Background. Gastrointestinal motility disorder is a common gastrointestinal disease, which seriously affects life quality.
Traditional Chinese medicine (TCM) has been widely used as an alternative therapy for gastrointestinal motility disorder.
Acacetin is a natural flavonoid compound that has antioxidant and anti-inflammatory, antidepressant, and anticancer
properties. However, the efficacy of Acacetin in the treatment of gastrointestinal motility disorders has not been studied. Our
aim was to investigate the mechanism of Acacetin-alleviated gastrointestinal motility disorder and its efficacy based on network
pharmacology. Methods. We performed network pharmacology to predict the active components, match Weishu decoction
(WSD) targets in gastrointestinal motility disorders, and investigate its potential pharmacological mechanisms. We performed
the GO and KEGG enrichment analysis. In vivo, we investigated the effects of Acacetin in the gastrointestinal motility disorder
model. Results. Based on network pharmacological method, the key active ingredient of WSD was identified as Acacetin, and
the enrichment signaling pathway was the PI3K-AKT signaling pathway. Acacetin and Mosapride accelerated gastric emptying
time, reduced gastric remnant rate, and increased small intestinal propulsion rate. The levels of GAS and MTL were increased
after using Acacetin. These results indicated that Acacetin could improve gastrointestinal motility disorders. Among them,
high-dose Acacetin showed a better effect. Acacetin could regulate protein and lipid metabolism in mice with gastrointestinal
motility disorder. Furthermore, Acacetin could modulate gastrointestinal inflammation and apoptosis. The detection of the
PI3K-AKT signaling pathway-related proteins showed that Acacetin improved gastrointestinal motility disorder by inhibiting
the activation of the PI3K-AKT signaling pathway. Conclusion. The key ingredient Acacetin in WSD could alleviate
gastrointestinal motility disorder by inhibiting the activation of the PI3K-AKT signaling pathway based on network
pharmacology analysis. The efficacy and safety of Acacetin treatment provide strong experimental support for the clinical
treatment of gastrointestinal motility disorder.

nausea and vomiting [3]. The most severe gastrointestinal
motility disorders may directly lead to intestinal failure [4].

Gastrointestinal motility disorder is a common gastrointesti-
nal disease that seriously affects the quality of life and socio-
economic costs [1]. It is characterized by abnormal motor,
sensory, or secretory functions that alter the intestinal func-
tion and lead to a significant disease burden [2]. Millions of
patients worldwide suffer from gastrointestinal motility dis-
orders, which include debilitating symptoms such as chronic

It has been reported that up to 80% of critically ill patients
suffer from gastrointestinal motility disorders. In critically
ill patients, gastrointestinal dysfunction or gastrointestinal
failure is associated with increased morbidity and mortality
[5]. In addition to movement disorders, the factors leading
to the decreased visceral perceptual threshold are common
in the pathogenesis of functional gastrointestinal diseases
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[6]. However, the pathogenesis of gastrointestinal motility
disorder remains unclear and may be closely associated with
gastrointestinal hypersensitivity, impaired food intake regu-
lation, delayed gastric emptying, lipoprotein metabolism,
and neuropsychological factors. Although many drugs have
been developed to treat gastrointestinal motility disorders,
very few drugs are currently available.

Traditional Chinese medicine (TCM) is the precious
treasure of the Chinese nation. Thousands of years of prac-
tical experience has made significant contributions to pre-
venting and treating human diseases [7]. At present, TCM
has been widely used as an alternative therapy for gastroin-
testinal motility disorders. Weishu decoction (WSD) con-
sists of Radix Bupleurum 10g, Cyperus rotundus 10g,
unripe bitter orange 10 g, Rhizoma Atractylodes 10 g, White
Peony 10 g, Fructus Toosendan 6 g, Rhizoma Corydalis 10 g,
Inula flowerlog 10g, and Charred medicated leaven 10g,
which can alleviate gastrointestinal motility disorder [8].
However, the exact mechanism of the WSD effect on gastro-
intestinal motility disorder remains unclear.

With the vigorous development of network pharmacol-
ogy in recent years, a new approach to finding therapeutic
drugs has emerged [9]. Network pharmacology is the com-
bined analysis of TCM preparations that provides a powerful
tool for establishing a “complex protein/gene-disease” net-
work and revealing the regulation principle of small
molecules [10]. Its core theory is a new holistic and system-
atic “network goal” method [11]. The holistic philosophy of
TCM has much in common with the core ideas of emerging
network pharmacology and network biology. It can system-
atically overcome the needs of complex diseases such as
cancer [12]. Therefore, this study was based on network
pharmacology to study the mechanism of WSD’s key active
ingredient on gastrointestinal motility disorder.

2. Material and Methods

2.1. Disease Target Identification and Network Establishment.
The TCMSP online database (https://tcmspw.com/tcmsp
.php) [13] was used to retrieve the ADME parameter informa-
tion of the components of WSD, and the components with
drug — likeness (DL) > 0.18 [14] were included to predict
the component targets. The included compounds were iden-
tified by the SwissTargetPrediction database (http://www
.swisstargetprediction.ch/) [15], and the target with probabil-
ity greater than 0 was finally contained. Taking “Gastrointes-
tinal motility disorders” and “disorders of gastrointestinal
motility (DGIM)” as keywords, human genes were searched
in the GeneCards database (https://www.genecards.org/)
[16], NCBI gene database (https://www.ncbi.nlm.nih.gov/)
[17], and OMIM database (https://www.omim.org/) [18].
Among them, GeneCards data filtered the median value of
the relevance score to obtain more relevant targets. In R soft-
ware analysis, all drug-protein targets and disease-related
proteins were classified into two independent groups. The
screened drug targets and disease targets were input into
the Venn 2.1. The common targets of drug diseases were
input into the String database (https://string-db.org/cgi/
input.pl) to construct the protein-protein interaction (PPI)
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network [19]. The species was set as “Homo sapiens,” and
the credibility was set as >0.9. In order to better understand
the complex interaction relationship between components,
diseases, and corresponding targets, a component-disease-
target network diagram was constructed based on the
included components, therapeutic diseases, and targets and
was imported into Cytoscape 3.8.0 to draw the network dia-
gram. Then, the topology analysis was carried out by Networ-
kAnalyzer [20]. Genes with a score greater than average were
selected as key targets by degree sorting. In this study, key
genes were screened through the MCODE analysis [21].

2.2. Bioinformatic Annotation. GO biological process (BP),
molecular function (MF), and cell component (CC) enrich-
ment were carried out on the common targets of drug dis-
eases, and the items with corrected P <0.05 were screened
using the String database. The ClusterProfiler, enrichplot,
and ggplot2 packages were installed, and the R 3.6.3 software
was used to make histograms and bubble plots. KEGG path-
way enrichment analysis was carried out on common targets
of drug diseases, and the items with corrected P < 0.05 were
also screened using the String database.

2.3. Establishment of DGIM Model. The adult SPF C57BL/6
male mice were raised in a temperature- and humidity-
controlled animal facility on a 12-hour light/dark cycle.
The mice were randomly divided into 9 groups with 12 mice
in each group. They were divided into the control group
(CG), the model group (MG), the low-dose Acacetin group
(LAG), the middle-dose Acacetin group (MAG), the high-
dose Acacetin group (HAG), the Mosapride group (MPG)
(positive control). Acacetin was purchased from Selleck
Chemicals (#S5318, Houston, Texas, USA), dissolved in
dimethyl sulfoxide (DMSO), and stored at -20°C. The model
of gastrointestinal motility disorder induced by atropine
[22]. Acacetin was orally administered 10, 25, and 50 mg/kg
for LAG, MAG, and HAG, respectively [23], and Mosapride
was orally administered 1.37 mg/kg for MPG [24]. Distilled
water (10 mL/kg) was given to the CG and MG. All treat-
ment groups were treated once a day for 14 days. On the
14th day, after taking the drugs for 1h, except the CG, the
other groups were injected with atropine 1.5mg/kg. After
30 min, all mice were orally administered 0.5mL of semi-
solid paste (0.2% CMC-Na and 5% carbon), and 30 min
later, blood was collected.

2.4. Gastric Remnant Rate and Small Intestinal Propulsion
Rate. The mice were orally administered 0.5 mL of semisolid
paste and were killed 30 min later. The difference between
total gastric weight and net gastric weight was the residual
weight in the stomach, and the percentage of residual weight
in the stomach and the weight of semisolid paste was the
gastric remnant rate (%). The small intestine of mouse was
put on the plane without traction, and the total length from
the pylorus to the ileocecal area and the distance from the
pylorus to the front end of carbon were measured. The per-
centage of the advancing length of semisolid paste and the
total length of the small intestine was the small intestinal
propulsion rate [25].
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2.5. Enzyme Linked Immunosorbent Assay (ELISA). ELISA
was performed to detect serum gastrin (GAS) and motilin
(MTL), serum protein metabolism indexes prealbumin
(PAB), ceruloplasmin (CER) and transferrin (TRF), and
lipid metabolism indexes triglyceride (TG), low-density lipo-
protein cholesterol (LDL-C), high-density lipoprotein cho-
lesterol (HDL-C), total cholesterol (TC), and inflammatory
factors TNF-a, IL-1f3, and IL-6 levels. The GAS, MTL,
PAB, CER, TRF, TNF-q, IL-1f3, and IL-6 were detected by
GAS (#CSB-E12743r, CUSABIO, China), MTL (#CSB-
E08208r, CUSABIO, China), PAB (MLBIO, China), CER
(MLBIO, China), TRF (#CSB-E12723r, CUSABIO, China),
TNF-a (#CSB-E11987r, CUSABIO, China), IL-1 (#CSB-
E08055r, CUSABIO, China), and IL-6 (#CSB-E04640r,
CUSABIO, China) ELISA kit according to the instructions.
The concentration of GAS, MTL, PAB, CER, TRF, TNF-a,
IL-1f3, and IL-6 was calculated using the Bio-Tek microplate
analyzer (MB-530, HEAES, China) by forming a standard
curve based on the provided values. The concentration of
TG, LDL-C, HDL-C, and TC were detected by the TG
(#A110-2-1, Nanjing Jiancheng Bioengineering Institute,
China), LDL-C (#A113-2-1, Nanjing Jiancheng Bioengineer-
ing Institute, China), HDL-C (#A112-2-1, Nanjing Jian-
cheng Bioengineering Institute, China), and TC (#A111-2-
1, Nanjing Jiancheng Bioengineering Institute, China) kit
according to the instructions.

2.6. Quantitative Real-Time PCR (qRT-PCR). The relative
expression levels of Bcl-2, Bax, Caspase-12, TNF-a, IL-18,
and IL-6 in the gastric antrum tissues were detected by qRT-
PCR. Total RNA was extracted by Trizol methods; RNA
was reversely transcribed into cDNAs in accordance with
the instruction of a reverse transcription kit (#4368814, Invi-
trogen, USA). SYBR Green qPCR mix (Invitrogen) was per-
formed to test gene relative expression in ABI 7900 system.
The relative level of the gene was calculated by 2724 method
with f-actin as the internal gene. The primer sequences used
in this study are shown in Table 1.

2.7. Western Blot. RIPA lysis buffer (#P0013B, Beyotime)
was applied to extract the total protein from the gastric
antrum tissues. The protein was mixed with the SDS-
PAGE loading buffer (#¥MB2479, Meilunbio) for 5min in
boiling water at 100°C. The proteins were separated by gel
electrophoresis and transferred to the PVDF membrane.
Then, they were sealed with 5% skim milk solution for 2h
at room temperature, and incubated with diluted primary
antibodies TNF-« (ab255275, 1: 1000, Abcam, UK), IL-1f3
(ab9722, 0.2 ug/mL, Abcam, UK), IL-6 (ab233706, 1: 1000,
Abcam, UK), Bax (ab32503, 1: 5000, Abcam, UK), Caspase-
12 (ab62463, 1pug/mL, Abcam, UK), Bcl-2 (ab182858, I:
2000, Abcam, UK), PI3K (ab191606, 1: 5000, Abcam, UK),
p-PI3K(ab182651, 1: 800, Abcam, UK), AKT (10176-2-AP,
1: 1000, Proteintech, USA), p-AKT (66444-1-Ig, 1: 5000, Pro-
teintech, USA), and S-actin (66009-1-Ig, 1: 5000, Proteintech,
USA) at room temperature for 90 min. The secondary anti-
body HRP goat anti-mouse IgG (SA00001-1, 1: 5000, Protein-
tech, USA) or HRP goat anti-Rabbit IgG (SA00001-2, 1: 6000,
Proteintech, USA) was incubated with the membrane at room

3
TaBLE 1: The primers used in this study.

Primer ID 5.3
TNF-a-F CCCCTCTATTTATAATTGCACCT
TNF-a-R CTGGTAGTTTAGCTCCGTTT
IL-1B3-F CAGCAGCATCTCGACAAGAG
IL-13-R AAAGAAGGTGCTTGGGTCCT
IL-6-F TCACTATGAGGTCTACTCGG
IL-6-R CATATTGCCAGTTCTTCGTA
Caspase-12-F ATAAAGAGCCAGATATTCTTCGT
Caspase-12-R TCACCCCTCTCAGTGGTCA
Bax-F TTGCTACAGGGTTTCATCCAGG
Bax-R GCTCCAAGGTCAGCTCAGGT
Bcl-2-F CTGGTGGACAACATCGCTCT
Bcl-2-R ATAGTTCCACAAAGGCATCCCA
B-Actin-F ACATCCGTAAAGACCTCTATGCC
B-Actin-R TACTCCTGCTTGCTGATCCAC

temperature for 90 min. The protein bands were detected by
the Chemiscope6100 system (Clinx Co., Ltd, Shanghai,
China). The integrated density of protein bands was deter-
mined by the Quantity One 4.6.2 software and corrected by
subtracting the measured integrated density with the back-
ground integrated density. 3-Actin was used as the internal
reference for detecting relative expression levels.

2.8. Immunohistochemistry (IHC). The expressions of PI3K,
p-PI3K, AKT, and p-AKT were detected by IHC in the gas-
tric antrum tissues of different groups. The slices were
roasted at 60°C for 12h. Then, the slices were dewaxed to
water and heated to repair the antigen. 1% periodic acid
was added, and the endogenous enzyme was inactivated
for 10 min at room temperature. The PI3K (ab151549, 1:
100, Abcam, UK), p-PI3K (ab182651, 1: 100, Abcam, UK),
AKT (10176-2-AP, 1: 100, Proteintech, USA), and p-AKT
(66444-1-Ig, 1: 100, Proteintech, USA) primary antibodies
were incubated overnight at 4°C. The secondary antibody
was incubated at 37°C for 30 min. DAB was used for color
development, hematoxylin was restained for 10 min, washed
with distilled water, and PBS returned to blue. All levels of
alcohol were dehydrated for 5min. After removal, it was
placed in xylene for 10 min. Then, it was sealed with neutral
gum and observed under the microscope. We selected the
location of the gastric antrum, taking a 400-fold field of view.
Image-pro-plus 6.0 analysis software was chosen for 10D
analysis. The average optical density (positive area IOD
under the field of view/tissue area under the field of view)
was performed to indicate the relative expression of PI3K,
p-PI3K, AKT, and p-AKT.

2.9. Statistical Analysis. Statistical analysis was performed
using GraphPad 8.0 software, and three independent exper-
imental data were expressed as mean + standard deviation
(SD). The unpaired T-test was used between the two groups
conforming to the normal distribution. The one-way



analysis of variance (ANOVA) was conducted among multi-
ple groups, followed by Tukey’s post hoc test. P < 0.05 was
considered statistically significant.

3. Results

3.1. The Assumed Targets of WSD. In this study, the TCMSP
online database (https://tcmspw.com/tcmsp.php) [13] was
used to retrieve the ADME parameter information of the
components of WSD, and the components with DL >0.18
[14] were included to predict the component targets. The
included compounds were identified by the SwissTargetPre-
diction database (http://www.swisstargetprediction.ch/)
[15], and the target with probability greater than 0 was
finally contained. As shown in Supplementary Table 1, a
total of 15 active components were included in WSD. We
showed the average physicochemical value of each
component, including the molecule weight (MW), the value
of partition coefficient between octanol and water (ALogP),
hydrogen-bond donors (Hdon), hydrogen-bond acceptors
(Hacc), oral bioavailability (OB), blood brain barrier (BBB),
DL, and fractional water accessible surface area of all atoms
with negative partial charge (FASA-). Supplementary Table 2
showed a total of 460 target compounds in WSD. Taking
“Gastrointestinal motility disorders” and “disorders of
gastrointestinal motility (DGIM)” as keywords, human
genes were searched in the GeneCards database (https://
www.genecards.org/) [16], NCBI gene database (https://
www.ncbinlm.nih.gov/) [17], and OMIM database (https://
www.omim.org/) [18]. Among them, the GeneCards data
filtered the median value of the relevance score to obtain
more relevant targets. After searching, 2691 genes were
found in the Genecards database, 3 genes were found in the
NCBI database, and 618 targets were found in the OMIM
database. After the combined deletion of these three
databases, 3216 genes related to gastrointestinal motility
disorders were obtained.

3.2. Network Analysis of Targets. In the R software analysis,
all drug-protein targets and disease-related proteins were
classified into the two independent groups. The screened
drug targets and disease targets were input into the Venny
2.1. As shown in Figure 1(a), a total of 228 common targets
were obtained from the Venny diagram of the screened drug
targets and disease targets. The common targets of drug dis-
eases were input into the String database (https://string-db
.org/cgi/input.pl) [19] to construct the PPI network. The
species was set as “Homo sapiens,” and the credibility was
set as >0.9. There were 228 nodes and 1017 edges in the
PPI network, and the average degree was 8.92. Figure 1(b)
showed the PPI network diagram of drug-disease common
targets. At the same time, we constructed the component-
disease-target network diagram (Figure 1(c)). To better
understand the complex interaction relationship between
components, diseases, and corresponding targets, a
component-disease-target network diagram was imported
into the Cytoscape 3.8.0 to draw the network diagram. Then,
the topology analysis was carried out by the NetworkAnaly-
zer [20]. In our study, we found 15 active ingredients. The
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higher the degree value was, the more important the compo-
nent was (Table 2). Among them, Acacetin had the highest
degree. Therefore, Acacetin might be the key active ingredi-
ent in WSD.

3.3. Predicting Functional Enrichment Analysis for WSD.
The R package provided for GO annotation enrichment
analysis, including the CC, MF, and BP analyses. GO anno-
tation showed that the drug-disease crossover proteins were
mainly related to the cellular response to drug, peptidyl-
tyrosine phosphorylation, peptidyl-tyrosine modification of
BP, the national cell body, synaptic membrane of CC, the
protein serine/threonine kinase activity, and protein tyrosine
kinase activity of MF (Figure 2(a)). In addition, KEGG
enrichment analysis was closely associated with the PI3K-
AKT signaling pathway, MAPK signaling pathway, and pro-
teoglycans in cancer (Figure 2(b)). Then, we drew the net-
work diagram of component-disease-pathway-target to
more intuitively show the multicomponent-multitarget
action characteristics of active ingredients of TCM in the
treatment of gastrointestinal motility disorders. As shown
in Figure 3, blue was the compound, including Acacetin,
Galangin, dihydrocapsaicin, Matairesinol, albiflorin, and
imperatorin. Yellow was the target of TCM, and green was
the top 20 pathways with the most significant enrichment.
Based on these predicted molecular mechanisms and the
network analysis results, we designed in vivo experiments
to test whether Acacetin could inhibit gastrointestinal
inflammation and apoptosis from alleviating gastrointestinal
motility disorders.

3.4. Acacetin Improved Gastrointestinal Motility in Mice. By
constructing the gastrointestinal motility disorder model, we
found that compared with the CG, gastric emptying was
delayed, gastric remnant rate was increased, and small intes-
tinal propulsion rate was decreased in the MG. Compared
with the MG, Acacetin and Mosapride accelerated gastric
emptying time, reduced gastric remnant rate, and increased
small intestinal propulsion rate. These results revealed that
Acacetin and Mosapride could improve gastrointestinal
motility, and high-dose Acacetin had the better effect
(Figure 4(a)). The results of ELISA showed that compared
with the CG, the contents of MTL and GAS in the MG
decreased significantly. Compared with the MG, the levels
of GAS and MTL increased after using Acacetin and Mosa-
pride (Figure 4(b)). These results indicated that Acacetin
could regulate the contents of GAS and MTL in mice with
gastrointestinal motility disorder, and the high-dose Acace-
tin had the better effect.

3.5. Acacetin Regulated Protein and Lipid Metabolism in
Gastrointestinal Motility Disorder Mice. To study whether
the alleviating effect of Acacetin on gastrointestinal motility
disorder was related to protein and lipid metabolism, we
used ELISA to detect indicators related to protein metabo-
lism and lipid metabolism. ELISA results showed that the
levels of PAB, CER, and TRF were decreased in the MG
compared with the CG. Compared to the MG, PAB, CER,
and TRF levels were significantly increased after Acacetin
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FIGURE 1: Network analysis of targets. (a) Venn diagram of screened drug targets and disease targets. (b) PPI network diagram of common
targets for drug diseases. The color and size of the node were adjusted according to the degree value. The larger the color, the deeper the
degree value; the thickness of the line, from thick to thin, indicated that the edge betweenness was from large to small. (c) Component-
disease-target network diagram. Among them, the lavender circle was the active ingredient, green was the target of drug action on the
disease, and orange was the disease.

TaBLE 2: The key ingredients in Weishu decoction.

Name Average shortest path length Betweenness centrality Closeness centrality Degree
Acacetin 2.411523 0.030515 0.414676 64
Galangin 2.427984 0.029059 0.411864 63
Dihydrocapsaicin 2.502058 0.027317 0.399671 56
Matairesinol 2.55144 0.022025 0.391935 51
Albiflorin 2.600823 0.015837 0.384494 42
Imperatorin 2.633745 0.012516 0.379688 38
Formononetin 2.699588 0.008011 0.370427 31
Guanosine 2.716049 0.008303 0.368182 30
Trehalose 2.823045 0.003325 0.354227 20
Chlorogenic acid 2.831276 0.001778 0.353198 17
Guanosine cyclic monophosphate 2.930041 0.000886 0.341292 11
Calycosin-7-O-beta-D-glucoside 2.888889 0.000502 0.346154

Loganic acid 2.938272 0.000189 0.340336 5

and Mosapride treatment (Figure 5(a)). Compared with the pared with the MG, serum TG level was decreased, and
CG, serum TG level was increased, and LDL-C, HDL-C, LDL-C, HDL-C, and TC levels were increased after Acacetin
and TC levels were significantly decreased in the MG. Com-  and Mosapride treatment (Figure 5(b)). These results
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FIGURE 2:

Bioinformatic analyzed of drug-disease intersection targets. (a) Gene ontology annotations. (b) KEGG annotation.

suggested that Acacetin could regulate the protein and lipid
metabolism of gastrointestinal motility disorder mice, and
the effect of high-dose Acacetin was the best.

3.6. Acacetin Regulated Gastrointestinal Inflammation and
Apoptosis. To investigate the effects of Acacetin on gastroin-
testinal inflammation and apoptosis, we first detected the
levels of inflammation-related indicators. Compared with
the CG, serum levels of TNF-a, IL-18, and IL-6 were signif-
icantly increased in the MG. Compared with the MG, the
levels of TNF-a, IL-1f3, and IL-6 were decreased after Acace-
tin and Mosapride treatment (Figure 6(a)). The effect of

omeer i o

Ficure 3: Component-disease-pathway-target network. Blue was
the compound, yellow was the target of traditional Chinese

medicine, and green was the top 20 pathways with the most
significant enrichment.

high-dose Acacetin was the best, indicating that Acacetin
could inhibit the inflammatory response. Next, we validated
the levels of apoptosis-related markers. qRT-PCR and
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Western blot results showed that, compared with the CG,
the expression of Bcl-2 was decreased, the expression of
Bax and Caspase-12 was increased, and the expression of
proinflammatory cytokines TNF-q, IL-1f3, and IL-6 was also
increased in the MG. Compared with the MG, the expres-
sion of Bcl-2 was increased, the expression of Bax and
Caspase-12 was decreased, and the expression of proinflam-
matory cytokines TNF-q, IL-1f3, and IL-6 was also decreased
after the treatment of Acacetin and Mosapride (Figures 6(b)
and 6(c)). These results suggested that Acacetin could regu-
late gastrointestinal inflammation and apoptosis.

3.7. Acacetin Improved Gastrointestinal Motility by
Inhibiting the Activation of the PI3K-AKT Signaling
Pathway. Based on the results of KEGG enrichment analysis,
we analyzed the role of Acacetin in the regulation of the
PI3K-AKT signaling pathway. Western blot and IHC were
performed to detect the expression of PI3K-AKT signaling
pathway-related proteins PI3K, p-PI3K, AKT, and p-AKT.
The results showed that Acacetin and Mosapride improved
the expression of p-PI3K and p-AKT. That was, by down-
regulating PI3K and AKT, the gastrointestinal motility dis-

orders were improved, and the effect of high-dose Acacetin
was better (Figures 7(a) and 7(b)). Overall, these data
revealed that high-dose Acacetin could improve gastrointes-
tinal motility disorders by inhibiting the activation of the
PI3K-AKT signaling pathway.

4. Discussion

Gastrointestinal motility disorder is a common gastrointesti-
nal disease that seriously affects life quality. Based on net-
work pharmacological methods, we conducted many
experiments. The results showed that high-dose Acacetin
could regulate the PI3K-AKT signaling pathway to inhibit
gastrointestinal inflammation and apoptosis and regulate
protein metabolism and lipid metabolism. It is helpful to
regulate the contents of GAS and MTL in mice with gastro-
intestinal motility disorders and improve gastric emptying
ability, which plays an essential role in alleviating gastroin-
testinal motility disorders.

A variety of hormones play a regulatory role in gastric
motility, among which GAS and MTL are the main hor-
mones associated with gastrointestinal motility disorders.
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FIGURE 6: Acacetin regulated gastrointestinal inflammation and apoptosis. (a) The levels of TNF-a, IL-1f, and IL-6 in serum of mice were
determined by ELISA. (b) qRT-PCR was performed to detect the mRNA expressions of inflammatory cytokines TNF-«, IL-1f3, and IL-6 and
apoptotic proteins Bcl-2, Bax, and Caspase-12. (c) Western blot was used to detect the protein expressions of inflammatory cytokines TNE-
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GAS is a crucial gastrointestinal hormone that is mainly
secreted by G cells [26]. GAS can biaxially regulate gastric
acid secretion to keep the gastric acid level in dynamic bal-
ance, and the physiological level of GAS could promote gas-
tric emptying [27]. MTL is a protein encoded by the MLNR
gene, which can cause the intense contraction of phase III of
interdigestive transitional complex movement, promoting
gastrointestinal muscle contraction and accelerating gastric
emptying [28]. Studies have found that Salsola Collina, an
edible plant, can promote gastric emptiness and intestinal
propulsion [29]. In the functional gastrointestinal disease
with weight loss, after using mirtazapine, the levels of GAS
and MTL will be significantly increased [30]. In this study,
the levels of GAS and MTL were increased after Acacetin
and Mosapride treatment. It suggested that Acacetin could
modulate GAS and MTL levels in gastrointestinal motility
disorder mice, and high-dose Acacetin has the best effect.
Serum PAB is an effective tool for evaluating malnour-
ished patients [31]. It has been reported that the level of
PAB in the study group was significantly higher than that
in the control group when parenteral nutrition was given
after the gastric cancer surgery [32]. CER is a kind of ferrous
oxidase in mammalian plasma and plays a vital role in the

iron metabolism [33]. TRF is thought to be the “delivery sys-
tem” for many beneficial and harmful metal ions to enter
cells [34]. It has been reported that patients with inflamma-
tory bowel disease have abnormal lipid metabolism com-
pared with healthy people [35]. In Crohn disease patients,
lipid profiles, lipoprotein concentration and composition,
and oxidation-antioxidant status are disturbed [36]. We
speculated that the abnormality of protein and lipid metab-
olism might be related to gastrointestinal motility disorders.
The results showed that after using Acacetin, the levels of
PAB, CER, and TRF were significantly increased, the levels
of LDL-C, HDL-C, and TC were increased, and TG level
was decreased. These results indicated that high-dose Acace-
tin could regulate protein metabolism and lipid metabolism
in gastrointestinal motility disorder mice, and high-dose
Acacetin has the best effect. The analysis of the correlation
between nutrient metabolic indexes and disease conditions
might be helpful to provide better clinical treatment and
improve prognosis.

During the occurrence of gastrointestinal motility disor-
ders, cytokines mediating the inflammatory response in the
injury area can secrete inflammatory factors. Acacetin has
antioxidant and anti-inflammatory effects [37]. In the study
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FIGURE 7: Acacetin improved gastrointestinal motility by inhibiting the activation of the PI3K-AKT signaling pathway. (a) The expression of
the PI3K-AKT signaling pathway-related proteins PI3K, p-PI3K, AKT, and p-AKT was detected by Western blot. (b) IHC was used to
measure the expression of PI3K, p-PI3K, AKT, and p-AKT in gastric antrum tissues. CG: control group; MG: model group; LAG: low-
dose Acacetin group; MAG: middle-dose Acacetin group; HAG: high-dose Acacetin group; MPG: Mosapride group; *P < 0.05 vs. CG;
P < 0.05 vs. MG; scale bar = 25 um; the magnification was 400 times; scale bar = 100 um; the magnification was 100 times.
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of cerebral ischemia-reperfusion injury, the expression of
TNEF-q, IL-1f, and IL-6 was significantly decreased after Aca-
cetin treatment compared with the middle cerebral artery
occlusion group [38]. Acacetin can inhibit the increase of
TNF-a, IL-6, and IL-1p in the lipopolysaccharide-stimulated
human periodontal ligament cells in a dose-dependent man-
ner and inhibit cell apoptosis [39]. In our study, the levels of
TNEF-q, IL-1f3, and IL-6 were decreased after using Acacetin,
while the expression of Bcl-2 was increased, and the expres-
sion of Bax and Caspase-12 was decreased. These results
suggested that Acacetin could regulate gastrointestinal inflam-
mation and apoptosis, and high-dose Acacetin has the best
effect. As a classical signaling pathway, the PI3K-AKT signal-
ing pathway plays a vital role in the diseases. Caulis Sargento-
doxae could regulate the PI3K-AKT signaling pathway to
exert anti-inflammatory effects [40]. PI3K could respond to
LPS and TNF-a, activate AKT, and affect NF-«B to produce
antiapoptotic and proinflammatory effects [41]. Our study
found that high-dose Acacetin improved gastrointestinal
motility disorders by inhibiting the activation of the PI3K-
AKT signaling pathway.

However, our study has some limitations. As shown in
Table 2, the degree of Acacetin was 64, and the degree of
Galangin was 63. The two compounds did not differ obvi-
ously in terms of topological parameters. Therefore, we also
should experimentally evaluate the therapeutic effect of
Galangin. However, due to the limitation of experimental
funds, we cannot experimentally evaluate the therapeutic
effect of Galangin at present. In the future, we will further
investigate the effect of Galangin on gastrointestinal motility
disorders and the mechanisms involved and compare the
efficacy of Acacetin and Galangin.

In conclusion, our findings suggest that high-dose Aca-
cetin regulates the PI3K-AKT signaling pathway to inhibit
gastrointestinal inflammation and apoptosis, regulate pro-
tein metabolism and lipid metabolism, and help regulate
the levels of GAS and MTL. Acacetin treatment has high
efficacy and safety, which could significantly improve the
gastrointestinal motility disorder mice, improve the ultra-
structure of gastrointestinal tissue, and inhibit the inflamma-
tory response. Our study provides strong experimental
support for the clinical treatment of gastrointestinal motility
disorders with Acacetin.
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Background. Hepatoblastoma (HB) is the most common liver malignancy in pediatrics, but the treatment for this disease is
minimal. This study is aimed at exploring the effect of FoxOl and SREBP-lc on HB and their mechanism. Methods.
FoxOl, SREBP-1c, FASN, ACLY, ACC, and MAGL expressions in tissue samples were detected by RT-qPCR and WB.
IHC was utilized to measure FASN content. Overexpression and knockdown of FoxOl and sSREBP-1c were performed on
Huh-6 cells. Cell proliferation, migration, and invasion were examined by CCKS8, scratch, and transwell assay. ELISA was
performed to test the ATP, FAO, NEFA, and Acetyl-CoA contents. ChIP was used to detect the interaction between
SREBP-1c protein and the FoxOl gene. In vivo tumorigenesis was conducted on mice. The morphology of tumor tissue
sections was observed by HE staining. Results. FoxO1 expression was downregulated in HB tissue, while the expressions of
SREBP-1¢, FASN, ACLY, ACC, and MAGL were upregulated. In Huh-6 cells and mouse tumor tissues, FoxO1 knockdown
resulted in increased cell proliferation, migration, and invasion and active fatty acid metabolism. On the contrary, after the
knockdown of SREBP-Ic, cell proliferation, migration, and invasion were weakened, and fatty acid metabolism was
significantly reduced. SREBP-1c¢ interacted with the promoter of the FoxOl gene. When FoxOl was knocked down, the
tumor tissue was more closely packed. After the knockdown of the SREBP-lc gene, the structure of tumor cells was
deformed. Conclusion. FoxO1 and SREBP-1c inhibited each other in HB, leading to the increase of intracellular fatty acid

metabolism, and ultimately facilitated the development of HB.

1. Introduction

Hepatoblastoma (HB) is a pediatric tumor caused by hepatic
progenitors or hepatoblasts. It is the most common liver
malignant tumor in pediatrics. Its annual incidence is 1.5
cases per million, accounting for about 1% of all childhood
cancers [1]. The primary treatment for HB is surgical resec-
tion, but about 60% of the tumors are unresectable at the
onset, so the therapeutic effect is minimal [2]. Therefore,
there is an urgent need to explore the pathogenesis of HB
and develop new therapeutic targets to improve the clinical
outcome of HB patients. One of the characteristics of cancer
cells is reprogramming fatty acid metabolism [3]. Variation
in lipid metabolisms, such as increased fatty acid uptake,
de novo lipogenesis, is closely related to the generation of

cancer cells [4]. The expression and activity of enzymes
involved in lipid metabolism are significantly increased in
many cancer cells, such as fatty acid synthase (FASN) and
Acetyl-coenzyme A carboxylase (ACC) [5]. FASN plays a
crucial role in lipid metabolism and has become an attractive
target in clinical cancer treatment [6]. However, the mecha-
nism of lipid metabolism in HB is still unclear.

The forkhead box-O1 (FoxOl) is a central regulator of
metazoan physiology and plays a role in cell cycle, prolifera-
tion, apoptosis, autophagy, stress resistance, DNA repair,
tumor inhibition, metabolism, and other cellular activities
[7]. FoxOl is tightly regulated by modifying its mRNA and
protein, and its expression is regulated by nutritional signals
in the environment [8]. Dysfunction of the FoxO1 pathway
leads to various metabolic diseases, including diabetes,
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obesity, nonalcoholic fatty liver disease, and atherosclerosis
[8]. FoxOl is also thought to inhibit the development of
osteosarcoma, but the mechanism of its inhibitory effect is
not precise [9]. FoxO1 also plays a vital role in fat metabo-
lism. It is reported that FoxO1 can slow down lipid deposi-
tion in the liver caused by stress response [10].

Sterol regulatory element-binding proteins are a class of
transcription factors that regulate lipid homeostasis by con-
trolling the synthesis of cholesterol, fatty acids, triglycerides,
and phospholipids [11]. Among them, sterol regulatory
element-binding protein-1c (SREBP-1c) is derived from
the SREBP-1c gene on chromosome 17 and mainly regulates
the synthesis of fatty acids and triglycerides [12]. It is an
essential link between oncogenic signals and tumor metabo-
lism [13]. Activation of SREBP-1c causes upregulation of
FASN, enhances fatty acid metabolism, and theoretically
promotes cancer development [14]. Geng et al. believed that
SREBP-1c-driven lipid metabolism could be targeted to treat
glioblastoma [15]. The regulatory pathway of FoxOl and
SREBP-1c in endometrial cancer was established [16].
FoxOl inhibited insulin-induced SREBP-1c promoter activ-
ity in goat mammary epithelial cells and the transcription of
SREBP-1c by the liver X receptor response element and
SREBP response element on the SREBP-1c promoter [17].
However, it is still elusive whether FoxO1 and SREBP-1c
play a role in regulating fatty acid metabolism in HB.

Derive from the above background, we wanted to
explore the effect of FoxO1 and SREBP-1c on HB cells and
study the mechanism of fatty acid metabolism in HB. There-
fore, we collected clinical samples of HB and paracancerous
tissues, purchased various HB cell lines, and conducted
in vitro and in vivo experiments. This study contributes to
our further understanding of the pathophysiology of HB
and is expected to provide a new approach for the clinical
treatment of HB patients.

2. Materials and Methods

2.1. Tissues and Cells. Clinical HB and paracancerous tissue
samples were collected from Xiangya Hospital and divided
into HB and control groups, with 5 samples in each group.
The Human Research Ethics Committee of Xiangya Hospi-
tal approved this study (No. AF/SQ202104798). HB cells
including HepG2 (bio-105877), HB611 (bio-73286), Huh-6
(bio-73060), and human normal liver cell WRL68 (bio-
53604) were purchased from Biobw and cultured in DMEM
medium (D5796, Sigma) containing 10% fetal bovine serum
(#10099141, Gibco) at 37°C and 5% CO,. In order to inves-
tigate the effect of FoxOl, Huh-6 cells were randomly
divided into 5 groups (the control, the oe-NC, the oe-FoxO1,
the si-NC, and the si-FoxO1 groups). In the second majority
of the study, Huh-6 cells were divided into 5 groups (control,
si-NGC, si-FoxO1, si-SREBP-1c¢, and si-FoxO1+si-SREBP-1c
groups) to study the effect of SREBP-1c.

2.2. Vector Recombination and Cell Transfection. The si-
FoxO1l and si-SREBP-1c vectors were obtained by integrat-
ing the shRNA sequence targeting human FoxOl or
SREBP-1c into a psi-LVRU6MP lentivirus vector (GeneCo-
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poeia). The human FoxO1 cDNA sequence was inserted into
the pCDH-CMV-MCS-EF1a vector (Epoch Life Science Inc)
to get the oe-FoxO1 vector. The empty psi-LVRU6MP lenti-
virus vector was used as the si-FoxO1 vector. The empty
pCDH-CMV-MCS-EF1a vector was the oe-FoxO1 vector.
Then, the constructed vector was transfected into 293 T cells
(HEK293T, Procell) to produce lentiviral solutions. These
lentiviral solutions were transfected into Huh-6 cells with
the assistance of 8 ug/mL of Polybrene (#H9268, Sigma-
Aldrich) [18]. Forty-eight hours after transfection [19], the
cells were further examined.

2.3. Real-Time Quantitative Polymerase Chain Reaction (RT-
qPCR). The trizol method was used to extract total RNA
from cells and tissues. cDNA was obtained by reverse tran-
scription using an mRNA reverse transcription kit
(#CW2569, Cowin Bio). Primer sequences of FoxOl,
SREBP-1c, FASN, ATP-citric acid lyase (ACLY), ACC,
monoacylglycerol lipase (MAGL), and p-actin were
designed (Table 1). Shanghai Sangon Biotech synthesized
the primers. Fluorescent dye was added to prepare the
PCR reaction system. DNA amplification was performed
by a fluorescent quantitative PCR apparatus (PIKOREAL96,
Thermo). The amplification and fusion curves of each gene
were obtained by real-time monitoring of fluorescence sig-
nals. 3-Actin was used as an internal reference. The relative
expression of genes was calculated using the 27T method.

2.4. Western Blot (WB). Total protein of cells and tissues was
extracted with RIPA lysate (#P0013B, Beyotime). The mixture
was bathed in water for 5min after the protein supernatant
was thoroughly mixed with the loading buffer. Then, the pro-
tein samples were isolated on gel and electrophoresis at a con-
stant pressure of 75V for 130 min. After electrophoresis, the
target protein was transferred to the nitrocellulose membrane.
The membranes were sealed and then incubated with primary
antibodies FASN (1:2000, 10624-1-AP, Proteintech), ACLY
(1:10000, 67166-1-Ig, Proteintech), ACC (1:4000, 21923-1-
AP, Proteintech), MAGL (1:5000, ab124796, Abcam), and
B-actin (1:5000, 60008-1-Ig, Proteintech) for 90 min. After
incubation, the membranes were washed with PBST. The
membranes and secondary antibody HRP goat anti-mouse
IgG (SA00001-1, 1:5000, Proteintech) or HRP goat anti-
rabbit IgG (SA00001-2, 1:6000, Proteintech) were then incu-
bated for 90 min. Finally, the strips on the membranes were
visualized using SuperECL Plus hypersensitive luminescence
solution (K-12045-D50, Advansta). Grayscale values for all
stripes were determined by Photoshop 2019. 3-Actin was used
as an internal parameter. The expression of the protein was
expressed by the ratio of the grayscale value of the target pro-
tein to that of the reference protein.

2.5. Immunohistochemistry (IHC). IHC detected the expres-
sion of FASN in tissues. Paraffin sections of HB and para-
cancerous tissues were made. After the sections were
deparaffinized and rehydrated, they were heated in a micro-
wave oven to repair the antigen. The endoenzymes were
inactivated by adding 1% periodate acid to the sections.
Then, sections and the anti-FASN antibody (10624-1-AP,
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TasLe 1: RT-qPCR primer sequences.

Gene Sequences (5'-3") Product length (bp)
F: ACTTCATCTCATTCTCCCTTCTGC
FoxO1 199
R: GCACAACTTACAGCTGGTTTTCAA
F: CCTCAGCCATCCAGAATCGG
ACLY 194
R: CTTCAGCCAGGACTTGACCC
F: GCTCCCTAGGAAGGGCCGTA
SREBP-1c 240
R: CACTCTTAGTTTTCCTTCCGTTT
F: CCTGGCTGCCTACTACATCG
FASN 102
R: CACATTTCAAAGGCCACGCA
F: CTCTTGGCCTTTTCCCGGTC
ACC 228
R: GTTATCCCCAAACCCAGGCA
F: TCCAGCATGCCAGAGGAAAG
MAGL 142
R: TGGGACACAAAGATGAGGGC
. F: ACATCCGTAAAGACCTCTATGCC
B-Actin 224
R: AGCACAGCCTGGATAGCAAC
TaBLE 2: FoxO1 primer sequences.
Primer Sequences (5'-3") Product length (bp)
) F: CAGAACCCCATGGCTAAGGTC 153
R: ATCTAATCCTGGCTCATTCCT
2 F: ACACTGAGGGTCCATCCCA 165
R: AGTTTTCACACTGAACTGTGCAT
3 F: TGTTAGACTTTGTAGCCGGACAG 125
R: TGGCCGATTCACAGATCAAGA
4 F: ACACTGGAAGACCTTTGCCTT 108
R: GAACAGCCCTCCACCTACCTT
5 F: GGATTGGGGTACAAGTCCAC 168
R: GGTTTCCTGATGTATTACCCAC
P F: CCCCATATTTCCACGAACTCCA .

R: AGGACAAATAACAAGCGACCTTC

1:100, Proteintech) were incubated overnight at 4°C and
then incubated with the second antibody for 30 min the next
day. The sections were rinsed with PBS solution and incu-
bated with DAB solution (ZSGB-BIO) for 5min at room
temperature. Sections were re-stained with hematoxylin for
5min. The sections were treated with alcohol and xylene
and sealed with neutral resin. Microscope (BA410T,
MOTIC) was used to capture images, and the image analysis
software was Image-Pro-Plus. The average IOD was calcu-
lated by the ratio of the cumulative optical density of the
positive expression site to the sample area in view.

2.6. Cell Counting Kit-8 (CCK8) Assay. The cells were
digested with trypsin and resuspended in a DMEM medium.
Cells were seeded in a 5 x 10° cells/well density in a 96-well

plate of 100 uL per well. The plates were placed in an incu-
bator at 37°C and 5% CO, for preculture. 10 yL. CCK8 solu-
tion (NU679, Dojindo) was added to each well. Cells were
further incubated in the incubator for 4h. Bio-Tek micro-
plate analyzer (MB-530, HEALES) was used to measure the
absorbance at 450 nm.

2.7. Scratch Assay. Trypsin was used to digest the cells in the
logarithmic growth phase were digested into a single-cell
suspension. Cells were seeded into a 6-well culture plate at
a density of 5x 10° cells per well. The cells were cultured
at 37°C in a 5% CO, incubator for about 24 h until covered
with six-well plates. A scratch was made with a pipette tip
along the transverse line behind the six-well plates. The
plates were washed three times with PBS to remove
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Figure 1: Continued.



Mediators of Inflammation

Control-1 Control-2 Control-3

HB-3

The relative expression
of FoxO1
The relative expression
of AREBP-1c

WRL68
HepG2
HB611
HuH-6

WRL68

Control-4 Control-5

0.03 &

0.02

0.01 A

10D/Area of FASN

The relative expression

HepG2
HB611
HuH-6
WRL68
HepG2
HB611
HuH-6

)

F1GURE 1: FoxO1 expression was downregulated while SREBP-1c and fatty acid metabolism genes were upregulated in HB. (a) The relative
expression levels of FoxO1, SREBP-1c, FASN, ACLY, ACC, and MAGL were detected by RT-qPCR. (b) WB was used to measure the
expressions of FASN, ACLY, ACC, and MAGL. (c) IHC evaluated the expression levels of FASN. (d) RT-qPCR was performed to
examine the relative expressions of FoxO1, SREBP-1c, and FASN. The magnification is 100 or 400 times, and the corresponding scale
bar is 100 gm or 25 um; ¥P < 0.05 vs. the control group in (a—c); ¥P < 0.05 vs. the WRL68 group in (d). All experiments were performed

5 times.

scratched cells. Then, serum-free DMEM medium was
added. After being cultured for Oh, 24h, and 48Mh, the cells
were photographed under an inverted biological microscope
(DSZ2000X, Cnmicro).

2.8. Transwell Assay. Transwell chamber (#3428, Corning)
with a matrix gel (#354262, BD) was used to perform the
transwell assay. The cells were digested into single-cell sus-
pension with trypsin and resuspended in serum-free
medium to 2x 10° cells/mL. 100 uL cell suspension was
inoculated in the up-compartment, and 500uL 10%
DMEM/F12 medium (D8437, Sigma) was added in the
low-compartment. It was incubated in an incubator at
37°C for 48 h. The cells in the up-compartment were rinsed
with PBS solution. Cells were fixed with paraformaldehyde

for 20 min, and the membrane was removed. The membrane
was stained with 0.1% crystal violet for 5min. Cells on the
outer surface of the upper compartment were observed
under an inverted biological microscope. After decoloriza-
tion by acetic acid immersion, the cells’ absorbance at
550 nm was measured with a microplate analyzer [20].

2.9. Fatty Acid Metabolism Detection. Nanjing Jiancheng
Bioengineering Institute produced the ATP Assay Kit
(#A095-1-1), Nonesterified Free Fatty Acids Assay Kit
(#A042-2-1), and Triglyceride (TG) Assay Kit (#A110-1-1).
Human Fatty Acid Oxidase (FAO) ELISA Kit (#JL48747)
and Human Acetyl-Coenzyme A (Acetyl-CoA) ELISA Kit
(#JL32777) were purchased from Jianglaibio (Shanghai,
China). These kits were used to test adenosine triphosphate
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FiGure 2: Continued.
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F1GURE 2: FoxO1 deficiency led to upregulation of SREBP-1c expression and enhanced proliferation, migration, invasion of HB. (a) RT-
qPCR detected the relative expression levels of FoxO1, SREBP-1c, and FASN. (b) CCK8 assay was used to detect cell proliferation. (c)
Cell migration was evaluated by scratch assay. (d) Transwell assay was performed to examine cell invasion. The magnification is 100
times, scale bar = 100 ym; %P < 0.05 vs. the oe-NC group; “P < 0.05 vs. the si-NC group. All experiments were performed 3 times.

(ATP), FAO, TG, nonesterified fatty acid (NEFA), and
Acetyl-CoA in cells. Each step strictly follows the instruc-
tions of the manual. Finally, the light signal at the speci-
fied wavelength was detected with a microplate
analyzer [21].

2.10. Chromatin Immunoprecipitation (ChIP). ChIP Kit
(ab500, Abcam) was used to detect the direct interaction
between SREBP-1c and FoxOl. After the cells were
digested with trypsin, the cell suspension was incubated
with formaldehyde and glycine to cross-link the target
protein and the corresponding genomic DNA. Buffer D
and protease inhibitors were added to the cell suspension.
The mixture was ultrasonically crushed for 60s and centri-
fuged. Agarose gel electrophoresis was performed to ana-
lyze the DNA fragment size. Then, immunoprecipitation
was performed using agarose beads according to the
instructions. Finally, the agarose beads were suspended
with DNA purifying slurry to unlock the cross-linking
and purify the DNA. Six pairs of primers were designed
according to the FoxOl gene’s promoter (Table 2). RT-
qPCR amplified DNA, and Fold Enrichment was calcu-
lated using the 2"4““T method.

2.11. In Vivo Tumorigenesis. Eight-week-old female nude
mice (BALB/c, nu/nu) were purchased from the Animal
Center of Central South University. Mice were randomly
divided into 5 groups (n=9): the control, the si-NC, the
si-FoxO1, the si-SREBP-1c, and the si-FoxO1+si-SREBP-1c
groups. Then, they were kept in captivity free of pathogens
and given food and water at will. HepG2 cells were digested
with trypsin and resuspended in a sterile salt solution. An
equal number of HepG2 cells (2 x 10°) was subcutaneously
injected into the lower abdomen of nude mice [21]. Tumor
volume was measured weekly until the maximum volume
was 1000 mm”. All mice were sacrificed with the manual cer-
vical dislocation method. Tumor tissues were removed, mea-
sured, weighed, and further examined.

2.12. Hematoxylin and Eosin (HE) Staining. The tumor tis-
sues of mice were made into paraffin sections. The sections
were baked in the microwave oven at 60°C for 2 h. The sec-
tions were then deparaffinized in xylene and placed in 100%,
100%, 95%, 85%, and 75% ethanol for 5min at each stage.
The sections were soaked in distilled water and stained with
hematoxylin for 5min and eosin solution for 3 min. Then,
the sections were dehydrated in gradient alcohol and soaked
in xylene two times, each 10 min. Finally, they were sealed
with neutral gum (Sigma), and photos were taken with an
ordinary light microscope (BA210T, Motic).

2.13. Immunofluorescence (IF). A microwave oven was used
for baking the paraffin sections of mouse tumor tissues at
60°C for 2h. The sections were deparaffinized and rehy-
drated by xylene and multiple concentration ethanol solu-
tions. The slices were immersed in pH6.0 citrate buffer
(Wellbio). The citrate buffer was heated by the microwave
oven for 24 min. After the buffer liquid was cooled, the sec-
tions were immersed in sodium borohydride solution for
30min and Sudan Black solution for 5min. Sections were
sealed with 10% normal serum for 60 min. Sections were
incubated overnight with primary antibody FASN (1:50,
10624-1-AP, Proteintech) at 4°C. On the second day, sec-
tions were incubated with the secondary antibody at 37°C
for 90 min. Finally, sections were incubated with DAPI solu-
tion (Wellbio) at 37°C for 10 min and rinsed with PBS buffer.
Sections were sealed with buffered glycerin and observed
under a fluorescence microscope.

2.14. Statistical Analysis. Statistical analysis was performed
using SPSS 20.0 (SPSS Inc, USA). Data were presented in
the form of mean + standard deviation (X+SD). All experi-
ments were repeated at least three times. The Student ¢-test
was used to analyze the differences between the two groups.
Comparisons among multiple groups were conducted by
one-way analysis of variance, followed by Tukey’s post hoc
test. P < 0.05 was considered statistically significant.
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F1GURE 3: FoxOl deficiency enhanced fatty acid metabolism in HB. (a) ATP Assay Kit was used to detect the concentration of total cellular
ATP. (b) Human FAO ELISA Kit was adopted to examine FAO. (c) TG Assay Kit detected TG. (d) NEFA was examined with Nonesterified
Free Fatty Acids Assay Kit. (e) Cellular Acetyl-CoA level was evaluated with Human Acetyl-CoA ELISA Kit. “P < 0.05 vs. the oe-NC group;
*P < 0.05 vs. the si-NC group. All experiments were performed 3 times.

3. Results SREBP-1c, FASN, ACLY, ACC, and MAGL in clinical sam-

ples. As shown from Figure 1(a), compared with the control
3.1. FoxOl1 Expression Was Downregulated while SREBP-1c  group, the FoxO1 expression in the HB group was decreased,
and Fatty Acid Metabolism Genes Were Upregulated in HB.  and the SREBP-1c expression was significantly increased. At
In order to explore the changes of fatty acid metabolism in ~ the level of RNA and protein, the expression levels of fatty
HB, RT-qPCR and WB detected the expressions of FoxOl1, acid metabolism-related indexes (FASN, ACLY, ACC, and
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FI1GURE 4: FoxO1 and SREBP-1c inhibited each other and regulated Huh-6 cell functions. (a) RT-qPCR detected the relative expression levels
of FoxO1 and SREBP-1c. (b) ChIP was performed to detect the direct interaction between the FoxO1 gene and SREBP-1c protein. (c) CCK8
assay was used to detect cell proliferation. (d) Cell migration was evaluated by scratch assay. (e) Transwell assay was performed to examine
cell invasion. The magnification is 100 times, scale bar = 100 um; ¥P < 0.05 vs. the si-NC group, *P < 0.05 vs. the si-FoxO1 group, and
P <0.05 vs. the si-SREBP-1c group. All experiments were performed 3 times.

MAGL) in the HB group were higher than those in the con-
trol group (Figures 1(a) and 1(b)). IHC results showed that
FASN expression was upregulated in the HB group com-
pared with the control group (Figure 1(c)). As shown in
Figure 1(d), among the three kinds of HB, the difference in
gene expression between Huh-6 cells and normal liver cells
(WRL68) was the most significant, so Huh-6 cells were
selected for subsequent experiments.

3.2. FoxOl Deficiency Led to Upregulation of SREBP-Ic
Expression and Enhanced Proliferation, Migration, Invasion
of HB. In order to determine the effect of FoxOl on
SREBP-1 expression and cell function in HB, Huh-6 cells
with FoxO1 overexpression or knockdown were constructed.
RT-qPCR detected the expression levels of FoxO1, SREBP-
Ic, and FASN, and the results suggested that FoxO1 overex-
pression or knockdown cells were completed (Figure 2(a)).
Compared with the o0e-NC group, the expression of
SREBP-1c and FASN in the oe-FoxOl group decreased.
Compared with the si-NC group, the expression levels of
SREBP-1c and FASN in the si-FoxO1 group were increased
(Figure 2(a)). As shown in Figures 2(b)-2(d), cell prolifera-
tion, migration, and invasion abilities in the oe-FoxO1 group
were weaker than those in the oe-NC group. Compared with
the si-NC group, cell proliferation, migration, and invasion
abilities of the si-FoxOl group were enhanced. In other
words, FoxOl could inhibit the expression of SREBP-1c
and FASN and reduce the proliferation, migration, and inva-
sion abilities of Huh-6 cells.

3.3. FoxOl Deficiency Enhanced Fatty Acid Metabolism in
HB. Intracellular fatty acid metabolism in both overexpres-
sion and deletion of FoxO1 was examined to clarify the effect
of FoxOl on fat metabolism in HB. As shown in

Figures 3(a)-3(e), compared with the oe-NC group, ATP,
FAO, TG, NEFA, and Acetyl-CoA contents in the oe-
FoxO1 group decreased. In the meantime, compared with
the si-NC group, the contents of ATP, FAO, TG, NEFA,
and Acetyl-CoA in the si-FoxOl group increased
(Figures 3(a)-3(e)). These results suggested that FoxOl
could inhibit the uptake and production of ATP, TG, NEFA,
and Acetyl-CoA. It also inhibits the FAO. In other words,
FoxO1 inhibited fatty acid metabolism (including anabolism
and catabolism) in Huh-6 cells.

3.4. FoxOl and SREBP-Ic Inhibited Each Other and
Regulated Huh-6 Cell Functions. It has been previously con-
firmed that FoxOl has a regulatory effect on SREBP-1c and
HB. To further explore how FoxO1l and SREBP-1c work
together, Huh-6 cells that FoxO1 and SREBP-1c knockdown
at the same time or SREBP-1c knockdown alone were con-
structed. Figure 4(a) showed that SREBP-1c could inhibit
FoxO1l expression (fold change~1.65), and FoxOl also
inhibited SREBP-1c expression (fold change=~1.39). We
could see that SREBP-1c had a more substantial inhibitory
effect on FoxOl than FoxOl on SREBP-Ic
(fold change =~ 1.65 > 1.39). Then, ChIP was performed to
study whether there was a direct interaction between
SREBP-1c and FoxO1 gene. As shown in Figure 4(b), the
Fold Enrichment of primers 3, 4, and 5 was greater than 1,
indicating that the enrichment capacity of nonspecific
adsorption of antibodies was less than the specific action of
antibodies. It showed that SREBP-1c directly interacted with
sites 3, 4, and 5 of the FoxO1 gene’s promoter. Cell function
results exhibited that compared with the si-NC group, the
cells’ proliferation, migration, and invasion abilities in the
si-SREBP-1c¢ group were reduced. In contrast, those in the
si-FoxO1 group were enhanced (Figures 4(c)-4(e)). When
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F1GUrE 5: Coordinated regulation of FoxO1 and SREBP-1c regulated fatty acid in Huh-6 cells. (a) ATP Assay Kit was used to detect the
concentration of total cellular ATP. (b) Human FAO ELISA Kit was adopted to examine FAO. (c) TG Assay Kit detected TG. (d) NEFA
was examined with Nonesterified Free Fatty Acids Assay Kit. (e) Cellular Acetyl-CoA level was evaluated with Human Acetyl-CoA
ELISA Kit. ¥P < 0.05 vs. the si-NC group. All experiments were performed 3 times.

FoxOl and SREBP-1c were knocked down simultaneously,
cells’ proliferation, migration, and invasion abilities were
reduced. These results suggested that FoxO1 inhibited cell
proliferation, migration, and invasion, while SREBP-1c had
the opposite effect. Meanwhile, FoxO1 and SREBP-1c inhibit
each other, and their net effect in Huh-6 cells was to pro-
mote cell proliferation, migration, and invasion.

3.5. Coordinated Regulation of FoxOl and SREBP-Ic
Regulated Fatty Acid Metabolism in Huh-6 Cells. We have
demonstrated that FoxOl has a regulatory effect on
SREBP-1c and fatty acid metabolism in HB cells. To study
how FoxO1 and SREBP-1c play roles in regulating fatty acid
metabolism, we constructed Huh-6 cells that knocked down
both FoxO1l and SREBP-1c or knocked down SREBP-1c
alone for the detection of fatty acid metabolism-related indi-
cators. As shown in Figures 5(a)-5(e), compared with the si-
NC group, the contents of ATP, FAO, TG, NEFA, and
Acetyl-CoA decreased in the si-FoxO1+si-SREBP-1c group
and the si-SREBP-1c group, while that increased in the si-
FoxO1 group. These results indicated that the net effect of
FoxOl and SREBP-1c was to promote fatty acid metabolism
in HB cells.

3.6. Coordinated Regulation of FoxOl and SREBP-Ic
Facilitated the Progression of HB by Regulating Fatty Acid
Metabolism In Vivo. Previous experiments were all con-
ducted in vitro. Subcutaneous tumor-forming models of
nude mice were constructed, and tumor tissues were col-
lected to verify whether the results of the in vivo experiments
were consistent with those in vitro. Figure 6(a) showed that
the subcutaneous tumorigenesis model of nude mice was
successfully constructed. As shown from Figure 6(b), com-

pared with the si-NC group, the tumor volume and weight
of the si-FoxO1 group increased significantly, while those
of the si-SREBP-1c group decreased. RT-qPCR results dem-
onstrated that knockdown of FoxO1l and SREBP-1c genes
was successfully realized in tumor tissues (Figure 6(c)). As
shown in Figure 6(d), compared with the si-NC group, the
tumor tissue structure and morphology were regular and
tightly arranged in the si-FoxO1l group. In si-SREBP-1c
and si-FoxO1+si-SREBP-1c groups, the structure of tumor
tissues was damaged. Compared with the si-NC group, the
expression levels of FASN, ACLY, ACC, and MAGL in the
si-FoxO1 group were increased in the si-SREBP-1c¢ and si-
FoxO1+si-SREBP-1c groups were decreased (Figures 7(a)-
7(c)). Tumor tissue detection results showed that FoxOl
and SREBP-1c inhibited each other, and the net effect of
FoxO1 and SREBP-1c facilitated the progression of HB by
regulating fatty acid metabolism in vivo.

4. Discussion

Metabolic reprogramming in cancer cells has been recog-
nized as one of the basic features of cancer [22]. In gastric
cancer, SREBP-1c is activated and fatty acid synthesis is sig-
nificantly increased [23]. Neoadipogenesis and fatty acid f3-
oxidation are very active in hepatocellular carcinoma [24].
Our analysis of clinical samples indicates that the expression
of FoxO1 was downregulated in HB tissues, and the expres-
sion of genes of SREBP-1c and key enzymes in fatty acid
metabolism were significantly upregulated. Naturally, the
activation of SREBP-1c and fatty acid metabolism is prelim-
inarily considered a significant characteristic of HB. FoxOl
degradation promotes cell proliferation in colon cancer
[25]. Interestingly, FoxO1l overexpression in esophageal
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Fiurg 6: Coordinated regulation of FoxO1l and SREBP-1c facilitated the progression of HB in vivo. (a) Photograph of subcutaneous
neoplasia in nude mice. (b) Volume and weight of tumor tissues. (c) The relative expression levels of FoxO1 and SREBP-1c were
detected by RT-qPCR. (d) HE staining was performed to observe tumor tissues. The magnification is 100 or 400 times, and the
corresponding scale bar is 100 um or 25 um; ¥P < 0.05 vs. the si-NC group. All experiments were performed 3 times.

cancer promotes tumor development by increasing macro-
phage infiltration [26]. After cervical cancer, the prolifera-
tion, migration, and invasion abilities are significantly
enhanced [27]. In summary, FoxOl has various functions
and regulates the progression of multiple types of cancer
through numerous pathways. In this study, we find that
the knockdown of FoxOl promotes the development of
HB. SREBP-1c is a crucial protein in fatty acid metabolism
[28]. It activates the transcription of FASN, a major fat-
generating gene, which promotes the growth of bladder can-
cer [29]. In our study, when SREBP-1c was knocked down,
the proliferation, migration, invasion, and division abilities
of HB cells were reduced, and the fatty acid metabolism level
was also significantly decreased.

In the study of diabetic cardiomyopathy, Ying et al.
found that FoxOl has a regulatory effect on fatty acid
metabolism [30]. The ATP level of cancer cells is much
higher than that of normal differentiated cells to meet
the energy needs of growth and proliferation [31]. Usually,
differentiated cells rely primarily on mitochondrial oxida-
tive phosphorylation to produce ATP, a process that uses
three main biofuels: glucose, glutamine, and fatty acids,
while the proliferation of cancer cells depends on the
FAO [32]. FAO is significantly enhanced in human glio-
blastoma, and inhibition of FAO leads to decreased intra-
cellular ATP level and viability [33]. We detected ATP and
FAO in HB. Results indicated that the knockdown of
FoxOl could significantly increase FAO in HB and keep
ATP at a high level. In other words, FoxOl deficiency
promotes catabolism of fatty acids in HB. Acetyl-CoA is
a precursor of fatty acid and cholesterol synthesis [34].
ACLY-dependent Acetyl-CoA production plays a crucial
role in the early stages of pancreatic neoplasia [35].
NEFAs are organic compounds with variable linear chain
lengths of 6-32 carbons and hydrophilic heads containing
a carboxylic acid, promoting colon, lung, skin, and breast
cancer [36]. Lipids stored in lung neutrophils are trans-

ported to metastatic tumor cells through the
micropinocytosis-lysosome pathway, which enhances the
survival and proliferation of tumor cells [37]. Our results
showed that FoxOl knockdown significantly increased
Acetyl-CoA, NEFA, and TG levels in HB. In other words,
FoxOl deficiency can promote the anabolism of fatty acids
in HB. Epigallocatechin gallate suppresses hepatic choles-
terol synthesis by targeting SREBP-2 through SIRT1/-
FoxOl signaling pathway [38]. In our study, FoxOl
knockdown accelerated HB cells’ energy production,
enhanced fatty acid metabolism, and ultimately promoted
the development of HB cells. This result is consistent with
previous studies.

Many studies have shown that FoxO1 could affect fatty
acid metabolism by regulating the expression of SREBP-1c.
For example, knockdown of FoxOl significantly increased
SREBP-1c and FASN in hepatitis C virus-infected cells
[39]. Deng et al. found that FoxOl could disrupt the
assembly of key components of the SREBP-1c promoter
transcription complex and inhibit the activity of the
SREBP-1c promoter, thereby inhibiting the expression of
SREBP-1c [40]. However, the mechanism by which FoxOl
plays a role in HB remained unclear. Through knockdown
and overexpression of FoxOl, our study proved that
FoxO1l could also inhibit the expression of SREBP-1c
and inhibit fatty acid metabolism in HB. Interestingly,
we found that SREBP-1c also had an inhibitory effect on
FoxOl (Figure 4(a)). There were few reports about the
inhibitory effect of SREBP-1c on FoxOl, so we performed
a ChIP experiment to prove the direct interaction between
SREBP-1c and FoxOl. Some studies also supported that
SREBP-1c could inhibit the expression of FoxOl through
indirect action. For example, Sajan et al. found that atyp-
ical protein kinase C activated by SREBP-1c inactivated
FoxOl via WD40/PROF (a scaffold protein)-associated
Akt in diabetes [41]. Therefore, it was essential to deter-
mine their net effect on HB growth. We knocked down
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FiGure 7: Coordinated regulation of FoxO1 and SREBP-1c regulated fatty acid metabolism in vivo. (a) The concentration of FASN was
detected by IF. (b) The relative expression levels of FASN, ACLY, ACC, and MAGL were evaluated by RT-qPCR. (c) WB was used to
measure the expressions of FASN, ACLY, ACC, and MAGL. The magnification is 400 times, scale bar = 25 ym; &P < 0.05 vs. the si-NC

group. All experiments were performed 3 times.

FoxOl and SREBP-1c simultaneously in Huh-6 cells and
found that fatty acid metabolism of Huh-6 cells was inhib-
ited, and cell function and tumor-forming ability were
weakened. In other words, coordinated regulation of
FoxOl and SREBP-1c could facilitate the progression of
HB by regulating fatty acid metabolism.

In this study, we found mutual inhibition of FoxOl
and SREBP-1c in HB. In addition, SREBP-1c could bind
to the promoter of FoxOl to regulate its transcription.
However, the mechanism of how FoxOl inhibits SREBP-
Ic expression remains unclear. As mentioned earlier,
SPREP-1c also inhibits FoxO1 expression through indirect
regulation. In HB, it is still unclear whether direct or indi-
rect regulation plays a dominant role. We were unable to
carry out a detailed study on this part because of insuffi-
cient experimental funds. In the future, we will conduct
a series of molecular biology experiments to refine our
research.

5. Conclusion

FoxO1 could slow down the progress of HB by inhibiting the
fatty acid metabolism while SREBP-1c promotes it. FoxOl
and SREBP-1c have an inhibitory effect on each other. Coor-
dinated regulation of FoxO1 and SREBP-I1c facilitated the
progression of HB by regulating fatty acid metabolism
in vivo and vitro. These findings provided a theoretical basis
for a better understanding of the mechanism of fatty acid
metabolism in HB. They helped to develop new targets for
the clinical treatment of HB.

Abbreviations

HB: Hepatoblastoma

FASN: Fatty acid synthase

ACC: Acetyl-coenzyme A carboxylase
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ACLY: ATP-citric acid lyase
MAGL: Monoacylglycerol lipase

TG: Triglyceride

FAO: Fatty acid oxidase
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Objective. Chronic obstructive pulmonary disease (COPD) is a common chronic disease and develops rapidly into a grave public
health problem worldwide. However, what exactly causes the occurrence of COPD remains largely unclear. Here, we are trying
to explore whether the high expression of p16 mediated by p300/Spl can cause chronic obstructive pulmonary disease through
promoting the senescence of endothelial progenitor cells (EPCs). Methods. Peripheral blood EPCs were isolated from
nonsmoking non-COPD, smoking non-COPD, and smoking COPD patients. The expressions of pl6, p300, and senescence-
related genes were detected by RT-PCR and Western Blot. Then, we knocked down or overexpressed Spl and p300 and used
the ChIP assay to detect the histone H4 acetylation level in the promoter region of p16, CCK8 to detect cell proliferation, flow
cytometry to detect the cell cycle, and f-galactosidase staining to count the proportion of senescent cells. Results. The high
expression of pl6 was found in peripheral blood EPCs of COPD patients; the cigarette smoke extract (CSE) led to the increase
of p16. The high expression of p16 in EPCs promoted cell cycle arrest and apoptosis. The CSE-mediated high expression of p16
promoted cell senescence. The expression of p300 was increased in peripheral blood EPCs of COPD patients. Moreover,
p300/Spl enhanced the histone H4 acetylation level in the promoter region of pl6, thereby mediating the senescence of EPCs.
And knockdown of p300/Spl could rescue CSE-mediated cell senescence. Conclusion. p300/Spl enhanced the histone H4
acetylation level in the p16 promoter region to mediate the senescence of EPCs.

1. Introduction

Chronic obstructive pulmonary disease (COPD) is a com-
mon chronic disease whose prevalence, disability rate, mor-
tality rate, and social burden caused by it have been
increasing year by year, developing into a severe public health
issue. At present, it is generally believed that smoking is the
major cause that induces COPD, while its pathogenesis has
not been fully elucidated yet. COPD is considered to be a dis-
ease of premature lung failure [1-4]. EPCs are precursor cells
of endothelial cells, which are differentiated from mesoderm
angioblasts and participate in human embryonic angiogene-
sis [5, 6]. Due to their differentiation into endothelial cells

and their biological characteristics such as secretion of vaso-
active substances, proliferation, homing, and migration,
endothelial progenitor cells (EPCs) play a very important
role in postnatal angiogenesis, reendothelialization, tissue
regeneration, and repair [7-9].

The p16 gene belongs to the INK4 gene famﬂy and con-
sists of four members: p16INK4A, pl5 NK4B p18 NKAC - and
p19™K*P which all have the biological characteristics of cell
growth inhibition and tumor suppression [10]. p16 is also
the second most common tumor suppressor gene just after
p53. It has been widely considered a familial melanoma gene,
whose immunohistochemistry has a clearly defined role in
certain pathological conditions [11]. Meanwhile, p16 has also
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been found to play a critical role in cell senescence. Cell
senescence is an irreversible block of cell growth. Biochemi-
cal and morphological changes occur during cell senescence,
including the formation of unique cell morphology, such as
flat cytoplasm [12]. Cell senescence is an irreversible arrest
of cell growth accompanied by biochemical and morpholog-
ical changes, which includes the formation of unique cell
morphology, such as flat cytoplasm [13]. pl6-mediated
senescence leads to chromatin recombination, which is asso-
ciated with the inhibition of genes regulated by transcription
factor E2F1 [13, 14]. Chromatin recombination in oncogene-
induced premature senescence is characterized by SAHF
(senescence-associated heterochromatin lesions), manifested
as dense nuclear DNA and concentrated H3K9 trimethyla-
tion [15, 16].

Studies have reported that the quantity reduction and
function recession of EPCs in the peripheral blood of COPD
patients is highly associated with the severity of the disease
[17]. In emphysema animal models, the proliferation, secre-
tion, and adhesion of bone marrow EPCs decreased, with
the expression of senescence marker pl6 (INK4a) in bone
marrow EPCs and lung tissues increasing, while the stem cell
antigen 1 (Sca-1) and c-Kit expression decreased [18]; mean-
while, the fact that cigarette smoke extract (CSE) can directly
induce the dysfunction of EPCs cultured in vitro and the
changes in the expression levels of the above-mentioned gene
suggest that EPC senescence and EPC gradual exhaustion
exist in smoking-related COPD [18-20]. The COPD mouse
model was further transplanted with allogeneic normal EPCs
through the trachea, the results of which showed that after
EPC transplantation, not only the lung function and emphy-
sema pathological changes of COPD mice were significantly
improved, the level and activity of matrix metalloproteinase
in bronchoalveolar lavage fluid and the apoptosis of alveolar
septum cells decreased, and the total antioxidant capacity
increased as well [20-24]. EPCs are a very promising vascular
health biomarker with broad application prospects and can
be used for the treatment of a series of clinical diseases [25].
Previous studies have revealed that the quantity and function
of EPCs in COPD patients might decrease, and increasing
p16 expression plays an important role in maintaining char-
acteristic cell cycle arrest [26-28]. In this study, we found
high expression of pl6 in the peripheral blood EPCs of
COPD patients, which would lead to an increase in the tran-
scriptional activity of p16.

Histone posttranslational modification is the main epige-
netic mechanism regulating the life process, and histone acet-
ylation is catalyzed by histone acetyltransferase [29]. Histone
acetyltransferase (HAT), like p300/CBP, is a key transcrip-
tional coactivator involved in regulating a variety of genes.
Activated HAT enables p300/CBP the ability to affect chro-
matin activity through nucleosome histone modification.
Current available data reveal that Spl and p300 perform
cooperative work in the transcriptional regulation of several
genes [30, 31]. Sp1, as a critical transcription factor in mam-
mals, is closely associated with the formation of the Sp1/HAT
complex [32, 33]. At the promoter of the eukaryote gene, Spl
is able to recruit histone acetylase (HAT) and deacetylase
(HDAC) concomitantly to regulate the histone acetylation
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in a dynamical and rapid way, thereby either to activate or
to repress gene expressions [34-36]. Previous literature
reported that p300 knockdown could reduce the expression
of B-galactosidase (f3-Gal) in endothelial cells and ease the
senescence-like changes of endothelial cells. However, very
limited researches were made upon the p300/Spl-mediated
high expression of p16 in endothelial progenitor cell senes-
cence and the development of chronic obstructive pulmo-
nary disease [37-39]. Therefore, in this study, we
conducted a more in-depth study focusing on this regulatory
mechanism.

2. Materials and Methods

2.1. Clinical Samples. This study was approved by the Third
Xiangya Hospital of Central South University (No. 2018-
056). We recruited three groups of subjects consisting of
18 nonsmoking non-COPD, 20 smoking non-COPD, and
20 smoking COPD patients. COPD patients were defined
in accordance with the standard of the Global Initiative
for ~ Chronic Obstructive Lung Disease criteria
(postbronchodilator FEV1/FVC < 0.7). COPD  patients
were in stable clinical state, with no evidence of respira-
tory infection or acute exacerbation for at least four weeks.
Patients with comorbidities like asthma, interstitial lung
disease, heart failure, and/or neuromuscular disease were
excluded from this study (for patient information, please
check Supplementary Table 1). The smoking history of
subjects was determined from the mean number of pack-
years of cigarette consumption. Venous blood samples
(10mL) were collected from subjects individually.

2.2. EPC Isolation and Identification. 58 human volunteers’
blood samples were successfully collected in this study. As
there were 3 groups, for each group, the blood samples were
collected from about 20 patients. The blood sample was col-
lected in 4-5 batches for each group, 4 to 5 patients each
batch. For each batch of collected blood samples, we mixed
the blood and took 20 mL to extract EPCs for experimenta-
tion. 20mL blood samples were diluted in EGM (Lonzo,
CC-3156) in 50 mL sterile centrifuge tube (1:1, v/v). The
same volume of diluent was added to the upper centrifuge
tube containing lymphocyte separation medium (Axis-
Shield). The test tube was centrifuged at 2500rpm for
30min at room temperature, and then, the intermediate
monocyte layer was collected and placed into an empty cen-
trifuge barrel using an aseptic suction. The cells were washed
twice with PBS, and the monocytes were collected. 10% FBS
or 5% pHPL and 10 U/mL heparin (Trevigen, 3450-048-08)
were added to the medium in order to avoid blood platelet
coagulation; then, the cells were cultured in 12-well plates
coated with rat tail-derived type 1 collagen (Termo,
A1048301) with EGM medium. After an overnight incuba-
tion, non-adherent cells were collected for replating. Pre-
heated medium was added to dilute cells, and cells were
isolated from 3 wells in a 12-well plate and 6 wells in a 24-
well plate, performed for three times. Then, the medium
was refreshed once a day for the first seven days and once
every other day for the next seven days. Later on, the medium
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was refreshed once every 2 or 3 days. EPCs were identified
through flow cytometry using CD34 (Abcam, ab64480),
CD133 (Abcam, ab19898), and VEGFR2 (Abcam, ab39256)
antibody. EPCs were detached, centrifuged, and washed
twice with phosphate-buffered saline (PBS) and then resus-
pended in Stain Buffer and counted. The cell suspension
was transferred to new 1.5 mL Eppendorf tubes, with roughly
5% 10* cells in each tube. 5 uL of CD34 and CD133 antibod-
ies and isotype controls was added to a 50 uL cell suspension
based on the concentrations of antibodies recommended in
the instructions of flow cytometry. After being mixed evenly,
the cell suspension containing antibodies was cultured in a
refrigerator at 4°C in full darkness for 30 min, triple washed
with precooled Stain Buffer, and centrifuged for 5min at
400g. The unbound antibodies were washed away. In the
end, cells were resuspended in flow tubes with 500 uL Stain
Buffer and detected by flow cytometry. The results of flow
cytometry were analyzed and processed by using Flow]Jo 7.6
software.

2.3. Western Blot. The cells were washed three times with pre-
cooled PBS, lysed with RIPA lysate, and centrifuged at
12000 rpm for 10 min; then, the supernatant was gathered
for detecting protein concentration using a BCA detection
reagent (Beijing Kangwei Century Biotechnology Co., Ltd.,
CWO0014). After electrophoresis with voltage altered from
60V to 120V, the protein was transferred to the PVDF mem-
brane using wet-to-electric transfer. Following that, the
membrane was blocked using 5% skim milk-TBST and cul-
tured overnight at 4°C with primary antibodies as follows:
anti-Collal (CST, 84336; 1:1000), MMP3 (Abcam,
ab52915; 1:1000), MMP13 (Abcam, ab39012; 1:1000),
Pall (Abcam, ab7205; 1:1000), and GAPDH (Thermo,
AM4300; 1:5000). Subsequently, the membrane was cul-
tured with horseradish peroxidase-labeled goat anti-rabbit
IgG (Beijing CoWin Biosciences, China). Afterwards,
Tanon™ High-sig ECL Western Blotting Substrate (Shanghai
Tanon Co., Ltd., 180-501) was used to develop the film, and
the gray value was detected by Image] (NIH). Thereafter,
the protein level was expressed by the ratio of the gray value
of the target bands to that of the internal reference
(GAPDH).

2.4. RNA Extraction and RT-PCR. Total RNA was extracted
by TRIzol (Thermo Fisher, 15596026) and reverse-
transcribed into ¢cDNA by PCR amplification instrument
(Bio-Rad). Subsequently, real-time quantitative RT-PCR
experiments were conducted using ABI 7500 quantitative
PCR instrument (ABI 7500, Thermo Fisher), with reaction
conditions set as follows: predenaturation at 95°C for
10 min, 40-cycle denaturation at 95°C for 10s, annealing at
60°C for 20, and extension at 72°C for 34s. Then, the sam-
ples were analyzed using either PCR or quantitative PCR.
The primer pairs of p16 were as follows: sense 5 -TTCCTG
GACACGCTGGT-3' and antisense 5'-CAATCGGGGAT
GTCTGAG-3'. The primer pairs of p300 were as follows:
sense 5 -GACCCTCAGCTTTTAGGAATCC-3' and anti-
sense 5 -TGCCGTAGCAACACAGTGTCT-3'. The primer

pairs of B-actin were as follows: sense 5 -TCGTGCGTGAC
ATTAAGGAG-3' and antisense 5'-ATGCCAGGGTACAT
GGTGGT-3'. The primer pairs of Collal were as follows:
sense 5'-GCAGCTGGGTCCTCAGAAT-3" and antisense
5'-CAGTTCCCCAGTTCCACTTC-3'. The primer pairs of
MMP3 were as follows: sense 5'-CAGACTTGTCCCGTTT
CCAT-3' and antisense 5'-GGTGCTGACTGCATCA
AAGA-3'. The primer pairs of MMP13 were as follows:
sense 5'-CAGACTTGTCCCGTTTCCAT-3' and antisense
5'-GGTGCTGACTGCATCAAAGA-3'. The primer pairs
of Pall were as follows: sense 5'-TCTACAACAACGGATT
GCCGTCC-3' and antisense 5'-CACGGTGTTCTTCACC
GCGTGC-3'. Data were analyzed using the 2744 method
with B-actin acting as the internal control.

2.5. Cell Cycle Analysis by Flow Cytometry. Cells were
digested with trypsin, fixed with 70% ethanol, preserved
and stored overnight at 4°C, then suspended in 50 yL phos-
phate buffer with 0.5 4L and 10 ug/mL RNase A and 150 uL
propidium iodide. Following that, cell DNA content was
quantified using FACSCalibur (BD Biosciences, San Jose,
CA, USA).

2.6. Chromatin Immunoprecipitation. ChIP protocol has
been described previously [40] with antiacetyl H4 (Millipore,
06-866) antibody used. The samples were assessed by either
PCR or RT-QPCR.

2.7. Cell Transfection. Before cell transfection, EPCs were
seeded into 24-well plates, and 0.5mL contained approxi-
mately 1x10° cells. Plasmid transfection was performed
using Lipofectamine™ 2000 (Thermo Fisher, 1668030) based
on the Lipofectamine 2000 transfection instructions. RNAi
Max (Invitrogen, 13778075) was transfected with 50 nmol/L
siRNA in serum-free and antibiotic-free medium according
to the manufacturer’s protocol. The siRNA sequences were
as follows: Spl siRNA 1: CCUGGAGUGAUGCCUAAUA
TT; Spl siRNA 2: CCAGCAACAUGGGAAUUAUTT;
p300 siRNA 1: GCAGCUCAACCAUCCACUATT; p300
siRNA 2: GCAAACAAUCGAGCGGAAUTT; and plé
siRNA: AGAACCAGAGAGGCTCTGA.

The medium was changed to the complete growth condi-
tion 6 hours after transfection; then, the cells were harvested
72 hours after transfection.

2.8. Immunofluorescence. The cells were washed twice using
PBS (5min each), fixed with 4% paraformaldehyde for
15 min, incubated with 0.5% Triton/PBS for 6 min, blocked
(10% goat serum, 0.05% NaNj, 0.2% Triton, and diluted with
PBS at 37°C for 30 min), and incubated with primary anti-
body overnight at 4°C. Following that, the cells were incu-
bated with a fluorescent secondary antibody (Thermo
Fisher) in full darkness for 1 hour, stained with DAPI for
5min and sealed. Finally, a confocal microscope (Leica
SP5) was used to take pictures of the cells, or a fluorescence
microscope was used to observe the cells.



2.9. 3-Gal Staining. Basing on the manufacturer’s protocol,
cells were stained with SA-[-gal activity using a cell senes-
cence detection kit (Millipore, KAA002). Then, positive
staining was quantified using Image] and Image Pro Premier
software.

2.10. Cell Counting Kit-8 (CCK8) Assay. Each plate was inoc-
ulated with cells basing on the experimental group set. The
cells in the logarithmic growth phase were made into cell sus-
pension, and the inoculation density was set as 3 x 10* cells/
mL, and 100 uL cell suspension was placed in a 96-well plate
with three replicate wells which were inoculated in each
group. 100 uL of culture medium was used as blank control
and incubated at 37°C overnight in a 5% CO, incubator. A
Cell Counting Kit-8 (CCK8) and serum-free DMEM were
mixed with a volumetric ratio of 1:10 and added to the test
wells at a dose of 100 uL/well, then incubated at 37° C for
1h in a 5% CO, incubator. The absorbance at 450 nm was
measured using a microplate reader, with the plate values
recorded.

2.11. Luciferase Experiment. p300 and Sp1 were cotransfected
with the luciferase vector driven by a pl6 promoter. The
505 bp fragment of p16 was amplified by PCR with p16F 5
-CCAAACAC-CCCGATTCAATTTGGCA-3" and p16R5’-
CCGCTGCCTGCTCTACCCCTCTCC-3" primers to pro-
duce the luciferase reporter plasmid of pl6 promoter. The
PCR fragment was cloned into PCR 2.1-TOPO vector, and
the sequence was verified. After 48h of transfection, the
Luciferase Reporter Assay System (Thermo) was used for
detection, and the specific steps were in accordance with
the corresponding kit instructions. The cell culture medium
in each hole was discarded, and 100 uL 1 x celllysate was
added to each hole. The cell lysate was oscillated on a shaker
for 30 min, and the impurities were precipitated by centrifu-
gation (1200 rpm, 1 min). A total of 20 uL of cell lysate was
added to each well of the opaque 96-well plate, and 100 uL
of luciferase detection reagent II (LAR II) and 100 yL of sea
kidney luciferase reagent were added in turn according to
the instructions. Tecan Infinite F200/M200 luciferase activity
value (R) of each well was detected by Tecan Infinite
F200/M200 multifunctional microplate reader, and the F/R
value was used as the relative activity value of each well for
statistical analysis.

2.12. Statistical Analysis. All the data were presented as
mean * standard deviation. The data of two groups were
compared with a T test, and the data of multiple groups were
analyzed using one-way analysis of variance (ANOVA). Data
analysis was conducted using SPSS17.0 (SPSS, Inc., Chicago,
Illinois, USA) and GraphPad Prism 8.0 (GraphPad Software,
San Diego, California, USA). Statistical significance was
assumed when P <0.05 while significantly difference was
confirmed when P < 0.01.

3. Results

3.1. High Expression of p16 Occurred in Peripheral Blood
EPCs of COPD Patients. As a fundamental cytokine, pl6
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can regulate the cell senescence process. In order to explore
the expression of p16 in peripheral blood EPCs of nonsmok-
ing non-COPD, smoking non-COPD, and smoking COPD
patients, we firstly isolated peripheral blood EPCs of these
patients and identified those isolated cells by flow cytometry
(Figure 1(a)). Then, we detected the expression of p16 in dif-
ferent groups by RT-PCR and Western Blot, whose results
showed that the mRNA and protein levels of p16 were signif-
icantly increased in peripheral blood EPCs of COPD patients
(Figures 1(b) and 1(c)). Then, we further verified whether
CSE would lead to the increase of pl6. We cultured EPCs
from the peripheral blood of nonsmoking and non-COPD
patients with different concentrations of CSE. RT-PCR
results showed that the expression of p16 increased gradually
with the increase of CSE concentration. Meanwhile, Western
Blot results showed that the protein level of pl6 increased
significantly with the increase of CSE concentration
(Figures 1(d) and 1(e)).

3.2. High Expression of p16 in EPCs Inhibited Cell Activity
and Promoted Cell Cycle Arrest. We then detected the prolif-
eration of EPCs in nonsmoking non-COPD, smoking non-
COPD, and smoking COPD patients. The CCK8 assay
showed that the proliferation ability of EPCs in smoking
COPD patients decreased markedly (Figure 2(a)). Further,
we knocked down p16 in EPCs of smoking COPD patients
and found that the low expression of p16 could rescue the
decrease of endothelial progenitor cell activity in those
patients (Figure 2(b)). While the CSE treatment was con-
ducted, we found during the meantime that knocking down
the expression of pl6 in EPCs could effectively block the
inhibitory effect of CSE on cell proliferation (Figure 2(c)).
We further analyzed the cell cycle of EPCs in nonsmoking
non-COPD, smoking non-COPD, and smoking COPD
patients, the results of which showed that G1/S phase transi-
tion arrest occurred in the EPCs of all the smoking COPD
patients (Figure 2(d)). Moreover, we knocked down p16 in
EPCs of smoking COPD patients, finding that the low
expression of p16 could rescue the G1/S phase arrest of EPCs
in those patients (Figure 2(e)). At the same time, we knocked
down pl6 in CSE-treated non-COPD EPC cells, and we
found that knocking down p16 could inhibit the G1/S phase
arrest caused by CSE (Figure 2(f)).

3.3. CSE-Mediated pl16 Overexpression Promoted Cell
Senescence. To investigate the effect of the high expression
of p16 on senescence of endothelial progenitor cells, we per-
formed B-Gal staining and detected the expression of
senescence-related genes. The [-Gal staining experiment
revealed that CSE could promote the senescence of EPCs.
We also found that knocking down the expression of p16 in
EPCs could inhibit the cell senescence caused by CSE
(Figure 3(a)). Immunofluorescence staining demonstrated
that CSE promoted the high expression of Lampl, which
indicated the increase of lysosomes, the high autophagy of
cells, and increasing senescence degree of EPCs, while knock-
ing down p16 would reduce the expression of Lamp1 to a cer-
tain degree (Figure 3(b)). Meantime, we also detected the
expression of senescence-related genes. Senescence-related
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FiGurek 1: High expression of p16 in EPCs of COPD patients. (a) Peripheral blood EPCs were isolated from nonsmoking non-COPD patients.

Flow cytometry verified that the isolated cells were peripheral blood endothelial cells. (b) RT-PCR was used to detect the expression of p16 in
peripheral blood EPCs of nonsmoking non-COPD, smoking non-COPD, and smoking COPD patients. (c) Western Blot was used to detect

the expression of p16 in peripheral blood EPCs of nonsmoking non-COPD, smoking non-COPD, and smoking COPD patients setting each

group with 20 samples. (d) Peripheral blood EPCs from nonsmoking non-COPD patients were treated with different concentrations of CSE,
and the expression of p16 was detected by RT-PCR. (e) Peripheral blood EPCs from nonsmoking non-COPD patients were treated with

different concentrations of CSE, and the expression of p16 was detected by Western Blot. *p < 0.05, **p < 0.01, and ***p < 0.001.
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FiGURE 2: High expression of p16 in EPCs promoted cell cycle arrest and apoptosis. (a) Peripheral blood EPCs were isolated from nonsmoking
non-COPD, smoking non-COPD, and smoking COPD patients, and cell proliferation was detected by CCK8. (b) Peripheral blood EPCs of
smoking COPD patients were isolated, p16 was knocked down by siRNA, and cell proliferation was detected by CCK8. (c) Peripheral blood
EPCs from nonsmoking non-COPD were treated with 5% CSE, p16 was knocked down by siRNA, and cell proliferation was detected by
CCKS8. (d) Peripheral blood EPCs were isolated from nonsmoking non-COPD, smoking non-COPD, and smoking COPD patients, and
cell cycle was detected by flow cytometry. (e) Peripheral blood EPCs from smoking COPD patients were isolated, siRNA knocked down
p16, and cell cycle was detected by flow cytometry. (f) Peripheral blood EPCs from nonsmoking non-COPD patients were treated with 5%
CSE, p16 was knocked down by siRNA, and cell cycle was detected by flow cytometry.

genes Collal, MMP3, MMP13, and Pall were highly
expressed in EPCs treated with CSE, while the expressions

of those genes were inhibited with pl6 knocked down
(Figures 3(c) and 3(d)).

3.4. Increased Expression of p300 Promoted the High
Expression of p16. Previous studies reported that p300 could
regulate the transcriptional activity of pl6, and the high
expression of p300 could promote cell cycle arrest [41]. We
also discovered that among nonsmoking non-COPD, smok-
ing non-COPD, and smoking COPD patients, the expression
of p300 in the peripheral blood progenitor cells of smoking
COPD patients was remarkably higher than that of the other
two groups (Figure 4(a)). When the cells were treated with
CSE and the expression of p300 was knocked down, the
expression of pl6 was also decreased as revealed by RT-
PCR and Western Blot results (Figures 4(b) and 4(c)). When
the small molecule inhibitor of p300 (C646) was added to the

EPCs treated with CSE, we found that the decrease of p300
activity could inhibit the expression of pl6 to some extent.
All those together suggest that in the high expression of p16
mediated by CSE, p300 is very likely to be a potential tran-
scriptional regulator in the upstream of p16.

3.5. p300/Sp1 Regulated p16 Transcriptional Activity. Previ-
ous studies suggested that p300 functions as a transcriptional
coactivator to regulate many cellular responses such as cell
cycle progression and cellular differentiation, and this pro-
cess relies on the transcriptional factor Spl. Meanwhile, Spl
directs the formation of preinitiation complexes to -464 to
-452 bp region of the p16 promoter [41, 42]. In order to val-
idate whether this signaling pathway could also regulate the
senescence of EPCs mediated by CSE, we firstly overex-
pressed different amounts of p300 in EPCs and detected the
activity of the pl6 promoter by luciferase assay. We found
that pl6 promoter activity increased with the increase of



siNC-Ctrl i sip16-Ctrl

siNC-Ctrl siNC-CSE sip16-Ctrl sip16-CSE 8 o X

100 m - 100pm

siNC-Ctrl
siNC-CSE
sip16-Ctrl

1t

Relative gene mRNA expression

Pall

Collal
MMP3
MMP13

(©

Mediators of Inflammation

80 4 _kx

—_ EEES

xX

=2 60 -

'TJ T

]

4

540—

8

[s¥

= .

L?20

Q.

O_
= B = [
03803
O O 9 9
Z zZ =& &
7 B 7 ]

()

kR

Relative intensity
[N
1

i

siNC-Ctrl
siNC-CSE
sip16-Ctrl
sip16-CSE

—~
o
=

sip16-CSE

Collal
MMP3
MMP13

Pall

Relative protein levels

GAPDH

Collal
MMP3
MMP13
Pall

B siNC-Ctrl [l sip16-Ctrl
B siNC-CSE sip16-CSE

(d)

F1GURE 3: CSE-mediated high expression of p16 promoted cell senescence. (a) Peripheral blood EPCs from nonsmoking non-COPD patients
were treated with 5% CSE, p16 was knocked down by siRNA, and the proportion of senescence cells was counted by 3-galactosidase staining.
(b) Peripheral blood EPCs from nonsmoking non-COPD patients were treated with 5% CSE, p16 was knocked down by siRNA, and the
expression of Lamp1 was detected by immunofluorescence. (c) Peripheral blood EPCs from nonsmoking non-COPD patients were treated
with 5% CSE, p16 was knocked down by siRNA, and the expressions of senescence-related genes Collal, MMP3, MMP13, and Pall were
detected by RT-PCR. (d) Peripheral blood EPCs from nonsmoking non-COPD patients were treated with 5% CSE, p16 was knocked
down by siRNA, and the expressions of senescence-related genes Collal, MMP3, MMP13, and Pall were tested by Western Blot. *p <

0.05, **p < 0.01, and ***p < 0.001.

p300 expression (Figure 5(a)). Overexpression of Spl could
also promote the transcriptional activity of the p16 promoter
(Figure 5(b)), while knockdown of p300 or Sp1 would inhibit
the transcriptional activity of the p16 promoter (Figure 5(c)).
We overexpressed or knocked down p300/Spl in EPCs and

found that overexpression of p300/Spl promoted the high
expression of pl16 in EPCs, while knockdown of p300/Spl
inhibited the expression of p16 (Figures 5(d) and 5(e)). ChIP
assay displayed that overexpression of p300/Spl promoted
histone H4 acetylation in the pl6 promoter region, while
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FIGURE 5: p300/Sp1 regulated p16 transcriptional activity. (a) Different amounts of p300 were overexpressed in EPCs, and the activity of the
p16 promoter was detected by luciferase. (b) Different amounts of Sp1 were overexpressed in EPCs, and the activity of the p16 promoter was
detected by luciferase. (c) p300/Sp1 were knocked down in EPCs, and the activity of the p16 promoter was detected by luciferase. (d) p300/Sp1
were overexpressed or knocked down in EPCs, and the expression of p16 was detected by RT-PCR. (e) p300/Sp1 were overexpressed or/and
knocked down in EPCs, and the expression of p16 was tested by Western Blot. (f) p300 was overexpressed or/and knocked down in EPCs, and
the level of histone H4 acetylation in the p16 promoter region was detected by ChIP assay. (g) Sp1 was overexpressed or/and knocked down in
EPCs, and the level of histone H4 acetylation in the p16 promoter region was detected by the ChIP assay. All the EPCs used in this figure were
from nonsmoking non-COPD patients. *p < 0.05, **p < 0.01, and ***p < 0.001.

knockdown of these two genes had the opposite effect
(Figures 5(f) and 5(g)). The above results indicated that
p300/Spl were jointly involved in the high expression of
pl6 in EPCs mediated by CSE.

3.6. Low Expression of p300/Sp1 Inhibited CSE-Mediated Cell
Senescence. To further testify that p300/Spl regulates the
high expression of pl6 in EPCs mediated by CSE, we
knocked down p300 or Spl in EPCs treated with CSEs. Both
B-Gal staining and Lamp1 immunofluorescence experiments
demonstrated that knocking down p300 or Sp1 could inhibit
cell senescence mediated by CSE to a certain extent
(Figures 6(a) and 6(b)). Similarly, flow cytometry results also
showed that knocking down p300 or Spl inhibited the cell
cycle arrest of EPCs (Figure 6(c)). At the same time, we also
detected the expression of senescence-related genes Collal,
MMP3, MMP13, and Pall, finding that knockdown of p300
or Spl could also inhibit the CSE-mediated high expression
of those senescence genes to a certain degree (Figures 6(d)
and 6(e)). Further, we also performed the rescue experiment.
We knocked down p300 or Spl in CSE-treated EPCs and
overexpressed pl6. We found that after overexpressing p16,
the mRNA and protein levels of senescence-related genes
Collal, MMP3, MMPI13, and Pall were significantly
increased, indicating that CSE regulated the expression of
p16 through p300 or Spl, thereby causing the senescence of
EPCs (Figures 6(f) and 6(g)).

4. Discussion

COPD is the most common respiratory system disease and
the fourth leading cause of death all over the world. It is fea-
tured by progressive airflow obstruction, which is a response
to harmful particles or gases, especially cigarette smoke, and
is related to the chronic inflammatory process of airway and
lung parenchyma [43]. The pathogenic mechanism of COPD
has not been fully uncovered yet. Our study found that p16
expression increased in EPCs of COPD patients, which
inhibited cell activity, promoted cell cycle arrest, and
enhanced senescence of vascular endothelial cells. Vascular
EPCs are important biomarkers of vascular health. Previous
studies have indicated that there exists a certain degree of
vascular EPC reduction in COPD patients. Our study sug-
gested that decreased EPCs were highly likely to be caused
by increased p16 expression induced by smoking. Further-
more, we found that CSE increased the expression of
p300/sp1, which in turn mediated the increase of p16 expres-
sion in EPCs. Importantly, our study demonstrated that CSE
truly promoted the progress of COPD, providing a theoreti-
cal basis for explaining the pathogenesis of COPD.

Histone acetyltransferase p300 is a transcription activa-
tor, which was originally discovered in the search for the ade-
novirus carcinogenic transcription factor EIA binding
protein, and later, it was demonstrated to have histone acetyl-
transferase activity [44, 45]. Both the lung tissues of mice
exposed to cigarette smoke and the human bronchial
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FIGURE 6: Low expression of p300/Spl inhibited CSE-mediated cell senescence. (a) Peripheral blood EPCs were treated with 5% CSE,
p300/Spl were knocked down by siRNA, and the proportion of senescence cells was counted by [3-galactosidase staining. (b) Peripheral
blood EPCs were treated with 5% CSE, p300/Sp1 were knocked down by siRNA, and the expression of Lampl expression was detected by
immunofluorescence. (c) Peripheral blood EPCs were treated with 5% CSE, p300/Spl were knocked down by siRNA, and cell cycle
distribution was detected by flow cytometry. (d) Peripheral blood EPCs were treated with 5% CSE, p300/Spl were knocked down by
siRNA, and the expressions of senescence-related genes Collal, MMP3, MMP13, and Pall were detected by RT-PCR. (e) Peripheral blood
EPCs were treated with 5% CSE, p300/Spl were knocked down by siRNA, and the expressions of senescence-related genes Collal,
MMP3, MMP13, and Pall were tested by Western Blot. (f) Peripheral blood EPCs were treated with 5% CSE, p300/Sp1l were knocked
down by siRNA, p16 was overexpressed, and the expressions of senescence-related genes Collal, MMP3, MMP13, and Pall were detected
by RT-PCR. (g) Peripheral blood EPCs were treated with 5% CSE, p300/Sp1 were knocked down by siRNA, p16 was overexpressed, and
the expressions of senescence-related genes Collal, MMP3, MMP13, and Pall were tested by Western Blot. All the EPCs used in this
figure were from nonsmoking non-COPD patients. *p < 0.05, **p < 0.01, and ***p < 0.001.

epithelial cells induced by CSE display an upregulation of the ~ reported that the activated ubiquitin-proteasome pathway in
histone H4K12 acetylation level. Knockdown of p300 can  lung cancer cells could result in the degradation of histone ace-
reduce the expression of 3-galactosidase and slow down the  tyltransferase p300. It is also worth studying whether there
senescence-like modifications of endothelial cells [46]. In this ~ exists a smoking-induced deubiquitinase activation in the body
study, we found that p300 upregulated the expression of p16.  that could promote the senescence of EPCs to participate in the
The increase of histone acetyltransferase p300 in COPD may  process of COPD through stabilizing the expression of p300
be involved in the pathogenesis of COPD by upregulating the ~ protein, upregulating the acetylation level of histone H4K12,
acetylation level of histone H4K12, thereby activating the  and activating the transcription of senescence-related factors.
expression of senescence-related factors and promoting the The study limitations mainly lie on the limited patient
senescence of EPCs. Since p300 is a transcription activator,  population covered by the analysis. The COPD patients
it is also worth studying whether p300 will activate other  selected in this study were mainly acute exacerbations includ-
transcription factors in addition to p16. Meanwhile, we did  ing no stable patients. Meanwhile, since we studied endothe-
not know exactly why there existed a high expression of  lial progenitor cells extracted from the peripheral blood of
p300 in peripheral blood EPCs of COPD patients. multiple patients and did not specifically compare the activ-

Histone modifying enzymes are regulated by the ubiquitin- ity of p300/p21 in endothelial progenitor cells of patients
proteasome degradation pathway. Ubiquitination modification =~ with grade A-D COPD, our study could not fully represent
is regarded as the signal of protein degradation [47]. And in the entire clinical spectrum of COPD patients.

cells, the ubiquitin-proteasome pathway is the main pathway It has been reported that in patients with early COPD, the
for ATP-dependent protein-selective degradation, which ~ number of EPCs increases, and EPCs contribute to the repair
mainly functions on some regulatory proteins with short half-  and reconstruction of pulmonary vessels, while in patients

life and some structural abnormalities, misconfigurations, or ~ with late COPD, the number of EPCs in circulation decreases
damaged proteins in cells to regulate cell activities [48, 49]. [52-54]. In this study, we did not explore whether the num-
Rom et al. [50] found that cigarette smoking exposure could ~ ber and function of circulating EPCs in four patients chan-
activate the ubiquitin-proteasome pathway, leading to skeletal ~ ged. Follow-up studies will explore the above issues more
muscle protein degradation and cell damage. Jeong et al. [51] in-depth.
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In general, our study found increased expressions of p16
and p300 in peripheral blood EPCs of COPD patients, and
CSE would lead to the increase of pl6. In addition,
p300/Sp1 enhanced the histone H4 acetylation level in the
pl6 promoter region to mediate the senescence of EPCs.
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Background. Long noncoding RNAs (IncRNAs) have critical regulatory functions in biological and pathological activities during
osteosarcoma progression. It is important to elucidate the expression pattern and reveal the underlying mechanisms of the
newly identified IncRNAs. Methods. Herein, we screened the differentially expressed IncRNAs in osteosarcoma tumors and cell
lines using IncRNA microarray. The candidate IncRNA was further verified by qRT-PCR, and the association of gene expression
with clinicopathological features was evaluated by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. The
targeting miRNA was identified using starBase analysis, and the competing endogenous RNA (ceRNA) network was established
by STRING. Overexpression and silence of RNA were detected by qRT-PCR. Osteosarcoma cell proliferation was measured
with CCK-8 assay, and the migration and invasion were evaluated with Transwell assay. Colony formation assay was observed.
Flow cytometry evaluated the cell cycle. Western blot was performed to detect the mitotic markers and apoptosis-related
proteins. A nude mouse tumor formation experiment was used to evaluate osteosarcoma progression in vivo. Cooverexpressing
miR-34b-3p with RAD51 reversed the miR-34b-3p-induced changes in proliferation, the cell cycle, the expression of H2A X,
and that of apoptosis-related proteins. Results. HCG9 was identified as osteosarcoma-associated IncRNA. Osteosarcoma tissues
and cell lines expressed higher levels of HCG9 as compared to normal tissues and osteoblasts, and high expression of HCG9 was
further proved to be related to metastasis and the grade of osteosarcoma in clinical cases. Knockdown of HCGY inhibited the
proliferation, migration, and invasion of osteosarcoma cells. miR-34b-3p was identified as the target of HCGY9, and RAD51
acted as a potential target of miR-34b-3p. Cooverexpressing miR-34b-3p with HCGY partially suppressed the HCG9-stimulated
proliferation, migration, and invasion of osteosarcoma cells in vitro and delayed the tumor progression in vivo. Conclusion. We
discovered that IncRNA HCG9 promoted the proliferation of osteosarcoma cells via suppressing miR-34b-3p. Our study
provides novel biomarkers and potential therapeutic targets for osteosarcoma treatment.

With the increasing knowledge of molecular pathogenesis,
gene therapy has emerged as a controlled, targeted, and spe-

Osteosarcoma is the most common primary bone malig-
nancy that occurs predominantly in adolescents [1]. Despite
the advancement in diagnosis, chemotherapy, and surgical
techniques, the prognosis of osteosarcoma remains poor.
The long-term survival rate of localized osteosarcoma is
77%, while this disease becomes more lethal when metastasis
occurs, with the long-term survival rate dropping to 26%
according to the American Cancer Society. Although the
underlying molecular mechanism of osteosarcoma remains
unclear, extensive efforts have been expanded to explore
more targeted and localized treatment for osteosarcoma [2].

cific treatment for osteosarcoma [3, 4].

Over 90% of the human genome does not encode pro-
teins, recognized as “noncoding RNAs” (ncRNAs) [5]. Long
noncoding RNAs (IncRNAs) are a class of ncRNAs that con-
tain over 200 nucleotides. Increasing pieces of evidence have
shown that dysregulated IncRNA gene expression is associ-
ated with tumor progression [6-8]. The first study on
IncRNA in osteosarcoma was performed by Li et al., who
identified over 400 upregulated and 798 downregulated
IncRNAs in osteosarcoma by IncRNA expression microarray,
providing valuable potential biomarkers for osteosarcoma
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[9]. Gao and Lian reported that IncRNA MALAT1 was an
independent prognostic factor of osteosarcoma [10], and
another IncRNA, H19, was also proved to be associated with
osteosarcoma progression [11]. HCG9 is also known as the
human leukocyte antigen complex group 9 gene, and studies
have reported that HCG9 was related to lung squamous cell
carcinoma [12] and nasopharyngeal carcinoma [13]. How-
ever, the role of HCG9 in osteosarcoma remains unknown.

One of the major functions of IncRNAs is acting as com-
peting endogenous RNAs (ceRNAs) to regulate IncRNA/-
miRNA/mRNA crosstalk [14]. The ceRNA hypothesis was
proposed by Salmena et al. [15]. They hypothesized that
IncRNAs are complete for the miRNA binding sites via par-
tial complementarity, which leads to a decreased miRNA
activity for mRNA regulation. Since then, many researchers
have validated this theory [16]. In osteosarcoma specifically,
Pan et al. reported that IncRNA FBXL19-AS1 sponged
miR-346 to regulate osteosarcoma cell proliferation [17].
Zheng et al. connected the IncRNA SNHG3/miR-151a-
3p/RAB22A functioning axis to regulate osteosarcoma inva-
sion and migration [18]. However, many potential IncRNA/-
miRNA regulations have not yet to be identified.

In this study, we performed IncRNA microarray analysis
and identified HCG9 as one of the differentially expressed
IncRNAs in osteosarcoma tissues. To our knowledge, this is
the first report to associate HCG9 with osteosarcoma pro-
gression. We established a ceRNA network, and the targeting
miRNA miR-34b-3p was pinpointed. The interaction
between HCG9 and miR-34b-3p was validated with bioinfor-
matic analysis and molecular biological analysis, and we also
reported that RAD51 was the potential downstream mRNA
targeted by miR-334b-3p. The impact of HCG9 knockdown
and overexpression on osteosarcoma cells in vitro and tumor
progression in vivo was evaluated. Our results provided novel
biomarkers of osteosarcoma and revealed the theoretical
basis of the underlying mechanisms.

2. Materials and Methods

2.1. IncRNA Microarray Chip and Bioinformatic Analysis.
IncRNA gene expressions in osteosarcoma tissues and para-
carcinoma tissues were analyzed. The GSE21257 dataset
from the GEO database (https://www.ncbi.nlm.nih.gov/gds/
) was used as the reference. Univariate Cox regression analy-
sis was used to identify the differentially expressed IncRNAs.
A minimum X-fold change in gene expressions between
tumor tissue and normal tissue with P < 0.05 was screened.
The Cancer Cell Line Encyclopedia database was used as
the reference to validate HCG9 expression in cancer cells.

The osteosarcoma survival information was used to gen-
erate Kaplan-Meier separate survival analysis and log-rank
tests for the correlation between HCGY expression and sur-
vival rates. Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway analysis was conducted to establish the
association between HCGY and clinicopathological features
of osteosarcoma.

The ceRNA network was generated by assessing the
interaction among proteins with STRING (2017 release) in
the standard combined score > 0.4. The visualization of the
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protein-protein interaction (PPI) network was obtained with
Cytoscape software (version 3.6.1). Molecular Complex
Detection (MCODE, version 1.31) was adopted to identify
the significant modules and the top-ranked genes in the
PPI network.

2.2. Tissue Collection. A total number of 47 patients who
received tumor removal surgeries from the Second Xiangya
Hospital were recruited. 15 pairs of osteosarcoma and para-
carcinoma tissues were collected from the patients who con-
sented to all the investigations in this study. Patients were all
informed and signed written consent before surgery. All pro-
cedures and tissue collection protocols were approved by the
Institutional Review Board of the Second Xiangya Hospital.
Tissue specimens were stored in liquid nitrogen or fixed in
10% formalin before the execution of experiments.

2.3. Cell Culture and Transfection. Osteoblast cell line
hFOB1.19 and osteosarcoma cell lines U20S, MG-63, and
MNNG/HOS were all purchased from ATCC (Manassas,
VA). Cells were cultured in Dulbecco’s Modified Eagle’s
Medium (DMEM) (Gibco) containing 10% fetal bovine
serum in a 5% CO, atmosphere at 37°C. For cell transfection,
HCGY9 overexpressing plasmid, HCG9 small interfering
RNAs (siRNAs), and negative controls were purchased from
Thermo Fisher Scientific Inc. miR-34b-5p mimics and nega-
tive controls were purchased from Qiagen. The transfection
was performed using Lipofectamine 2000 (Thermo Fisher
Scientific, Waltham, MA) according to the manufacturer’s
protocol. Cells were harvested for characterization at 48
hours posttransfection.

2.4. Transwell Assay. Cell migration and invasion were both
assessed with the Transwell system. For migration assay, 2
x 10* cells were suspended in 100 uL serum-free DMEM
and seeded in the upper chambers of an 8 yum pore size
Transwell plate (Corning, USA). For invasion assay, the
upper chamber of an 8 ym pore size Transwell plate was
pre-coated with the Matrigel™ Matrix (BD Biosciences, CA,
USA), and 2 x 10* cells were seeded and cultured in serum-
free DMEM.

For both assays, a total volume of 500 uL 