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To support the constraints of smart meters—low power and memory—of AMI network, RPL is considered as the most suitable
routing protocol to be implemented in practice. Network lifetime, PDR, and latency are the critical issues to be focused on and
addressed. Generally, single parent selection scheme cannot satisfy all expected performance requirements of RPL based on AMI
network due to tradeoff between workload balancing and transmission performance, PDR and latency. Moreover, the single
parent also suffers from the package size and transmission range. )en, multiparent solution is proposed to overcome these
demerits using multipath transmission strategy. Although the existing multiparent solutions, MELT and MAHP, overcome the
issue of transmission performance, they present low network lifetime since multiparent solution consumes high energy in data
transmission. In this paper, we propose an “empowered hybrid parent selection (EHPS)” that exploits the merits of multiparent
solution and the single parent with cognitive radio technology in a hybridizing scheme. To split the data packet efficiently under
multipath transmission strategy, a fuzzy AHP (FAHP) is adopted; therefore, EHPS balances the workload effectively and
maximizes the network lifetime over long transmission range and large data size. Moreover, by exploiting cognitive radio, EHPS is
flexible to the transmission range and data size since it achieves the highest transmission performance, highest PDR, and lowest
latency among others, while maintaining high network lifetime.

1. Introduction

With increasing electrical demands, the electrical grid shows
a tendency to be managed more efficiently, which cannot be
achieved by the conventional strategy based on a centralized
and manual management system. To alleviate the impair-
ment of conventional grid, a smart grid is being recognized
as the next generation of electrical grid which corroborates
communication and data processing technology with the
electrical grid. )erefore, smart grid achieves system effi-
ciency, reliability, and robustness of electrical generation
and distribution system. )e advanced metering infra-
structure (AMI) [1–5] is the crucial application of the smart
grid which manages information between utility and clients,
e.g., smart meters, through a local access point (data con-
centrator unit: DCU) using the two-way communication

method. Once the information can be exchanged between
smart meters and the DCU in both directions and in real
time, the smart grid is recognized as the self-monitoring and
self-healing system since simple troubleshooting and
repairing can be performed automatically without techni-
cian intervention.

In an AMI network, a number of low power andmemory
devices, smart meters, are interconnected in a multihop
manner through modern communication technology. )e
routing protocol is considered as a crucial function in the
AMI network that is used to ensure high communication
performance in terms of packet delivery ratio (PDR) and
latency. )e routing protocol for low power and lossy
networks (RPL) [6–13] is considered as the most suitable
routing protocol for AMI network according to its char-
acteristics as it has the ability to deal with lossy links, support
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communication in a point-to-multipoint and multipoint-to-
point manner, and provide a low energy consumption and
low bandwidth usage due to low signaling overheads [7].
Once the battery and memory are the limitation of the smart
meters [8], not only PDR and latency are determined, but
also the meter workload should be taken into account to
prolong a network lifetime and prevent information loss due
to a fast battery depletion issue.

Based on the RPL routing scheme, a smart meter for-
wards the data to the DCU through several relay nodes, i.e.,
the neighbor smart meters advertised by lower rank level. In
RPL, the relay node is known as a parent. If the workload is
not considered, the smart meter with a high workload will
deplete fast and before the maintenance session is per-
formed, which refers to an early depletion node. Generally,
the network lifetime is determined by the early depletion
node. )erefore, the utility loses the information to be used
for the electrical production planning and electricity billing
application.)en, eachmeter lifetime needs to be monitored
carefully and individually. On the other hand, to achieve the
objective of smart grid, a high transmission performance,
i.e., PDR and latency, is required.

PDR, the success data transmission rate, should be high
while the latency should be low to achieve a real-time ap-
plication [14]. )ese two metrics are affected by the quality
of the selected link of parent meters. If the link quality of
parent meter is low, the data packets may drop during the
transmission; then, the data retransmission is required.
)erefore, the smart meter must consume extra energy for
the data retransmission.

Parent selection is the vital function of the RPL that plays
an important role in avoiding the early depletion node while
maintaining the performance of the transmission. Currently,
the parent selection can be categorized into single selection
[15–23] and multiparent solution scheme [24–26]. Tradi-
tionally, parent selection of RPL determines the single
immediate parent by considering only a single metric, i.e.,
residual energy or expected transmission count (ETX). By
considering only the ETX [15–18], only the parent with the
highest quality is selected; then, it achieves a high PDR and
low latency. However, the batteries of the high quality
parents deplete much faster than the others. )erefore, the
early depletion node occurs. On the other hand, although the
parent selection based on residual energy [19, 20] balances
the workload perfectly, high PDR and low latency cannot be
met since the low quality parent is selected. Later, several
techniques [21–23] are proposed to address the issues by
taking energy into account. However, they cannot satisfy
overall performance.

On the contrary, the rate of PDR is affected by two
important factors: link quality and data package size. )e
link quality degrades on the transmission channel charac-
teristic and the transmission range. On the other hand, the
data package size depends on the application of AMI; i.e., the
package size for energy usage of household is much smaller
than that for energy usage of manufacturing, which causes a
decrease in the PDR rate and an increase in the latency. As
stated in RFC standard [13], once the single parent suffers
from the low rate of PDR, the multiple parent needs to be

considered to address the issue. Moreover, depending on
convergecast traffic of single parent scheme, there is always a
tradeoff between the transmission performance and the load
balancing ability since all of the data from a single node will
be transmitted to the immediate parent. Multiparent solu-
tion is proposed to address this tradeoff issue by splitting the
data into small packets and forwarding them to a number of
parents. )e multiparent based on ELT (MELT) [26] is
proposed by splitting the parents’ workload on an estimated
the expected lifetime (ELT) [23] according to the ELT of
bottleneck parents. However, the workload of MELT splits
on the fixed step; therefore, the workload of each parent is
not balanced comprehensively and effectively. Later, an
analytic hierarchy process (AHP) [27–31] is utilized for
multiparent selection (MAHP) [32] to improve the per-
formance of MELT by considering ETX, node remaining
energy, and hop count (HC) as the main criteria. However,
under fixed influence weights of criteria, MAHP cannot
achieve high network lifetime since the meters with different
rank have different workloads. )erefore, the influence
weight of energy-efficient criteria should be varied on the
ranking.

In this paper, we propose the empowered hybrid parent
selection (EHPS) algorithm of RPL for AMI network. )e
multiparent solution with fuzzy analytic hierarchy process
(FAHP) [33–35] and the cognitive radio [36, 37] are
exploited under hybridizing scheme to achieve high per-
formance of the three crucial metrics: network lifetime,
PDR, and latency. Cognitive radio is the advanced com-
munication technology that is proposed to deal with the
underutilization of spectrum resources. )e unlicensed user
is permitted to utilize the available licensed channel while
causing unnoticeable interference to the licensed user.
)erefore, the meter should be considered as the cognitive
device that can monitor the status of surrounding com-
munication channels and can adapt its parameter for using
on the selected channel.

)e contribution of this paper is threefold. First, network
lifetime is maximized through hybrid parent selection al-
gorithm. )e quality of parents is comprehensively analyzed
through the FAHP, which is an extended scheme of an
analytic hierarchy process (AHP) with the weight adapting
scheme where ETX, ELT, and expected transmission time
(ETT) are determined as the main criteria. )e meter’s
ranking is considered in adapting the influence of the energy
efficiency since themeters advertised by the lower rank come
at a cost of high workload; i.e., the lower rank meters have to
forward the data from their children. )en, the appropriate
size of data package is forwarded to each parent on its
quality. )erefore, the workload of each parent is balanced
effectively, and the network lifetime is prolonged.

Second, the issue of low PDR under long transmission
range is addressed by hybridizing the merits of multiple
parents and single parent with cognitive radio technology.
)rough multiparent solution, the PDR is improved by
forwarding a number of small packets to k parents since the
transmission error rate is affected by the size of transmitted
data. Moreover, under long transmission range, multiple
parents cannot achieve high performance of PDR and energy
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efficiency because the transmission error rate also increases
on the distance. )erefore, we exploit the cognitive radio
technology on the single parent scheme to address the
transmission range issue. Under cognitive radio technology,
the meter forwards data on available licensed channels
opportunistically. Although the meters should consume
higher transmission power as compared to the original
Zigbee [38] technology of RPL, we achieve high energy
efficiency and high PDR since the meter on Zigbee channel
wastes the energy on performing retransmission which also
gives low PDR. It should be noted that the single parent with
cognitive radio cannot achieve high energy-efficient per-
formance under short transmission range since multiple
parents can present high PDR at short transmission range.
Once the single parent with cognitive radio consumes the
energy usefully, the EHPS presents the highest network
lifetime under long transmission range.

)ird, the EHPS achieves the lowest latency since it
presents high PDR under hybridizing scheme. Under low
transmission range, a low latency is achieved by using
multiparent solution while the EHPS maintains low latency
under long transmission range using the cognitive radio.

)e remainder of this paper is organized as follows. In
Section 2, the details of RPL and parent selection methods
are introduced. )e issues of parent selection are described
in Section 3. In Section 4, EHPS algorithm is proposed and
described in detail. )e simulation results and the perfor-
mance evaluation are presented in Section 5. Conclusion is
presented in the final section.

2. Related Works

2.1. IPv6 Routing Protocol for Low Power and Lossy Networks
(RPL). RPL [6–13] is the routing standard for the lossy
network comprising low power and memory devices. It is
considered as the most suitable routing protocol to be
implemented with the smart meters of AMI network since
the RPL has the ability to deal with lossy links, support
communication in a point-to-multipoint and multipoint-to-
point manner, and provide a low energy consumption and
low bandwidth usage due to low signaling overheads [9].

)e key characteristic of RPL is the interconnection with
loop avoiding of RPL network—directed acyclic graphs
(DAG). )rough distance vector base routing, the RPL
constructs a rooted k-ary tree routing topology, destination-
oriented directed acyclic graphs (DODAG), according to
distance vector where the role of each node is advertised by
the rank. In k-ary tree topology, k is the number of children
for each parent. As illustrated in Figure 1, k is set to 3, so each
parent has 3 children.

In the DODAG construction andmaintenance process, a
root node—border router or data concentrator (DCU) of
AMI network—broadcasts the DAG information option
(DIO) message, which contains DODAG identifier, current
rank of the node, objective function (OF), and additional
information for path computation to neighbors. )e
neighbors who receive the broadcasted DIO message use the
received information to update their rank level, select the
immediate parent, and join the DODAG. )erefore, the

neighbor who selects the broadcasted DIO message as the
immediate parent is considered as the child node. )en, the
child node sends the feedback to its immediate parent using
destination advertisement object (DAO) message.

As illustrated in Figure 2, firstly, the root node broad-
casts DIOmessage to node 2, node 3, and node 4.)en, these
nodes update their rank level to “rank 1” and they select the
route node as the immediate parent by sending the DAO
message to the route node. Once node 2, node 3, and node 4
complete their DODAG joining process, they will broadcast
the DIO message to other neighbors, node 5 to node 9, for
further DODAG construction. On the other hand, if a node
needs to join the DODAG or needs to perform local route
maintenance when batteries of all candidate parents deplete,
the node exploits DODAG information solicitation (DIS) to
request route maintenance.)erefore, the nodes who receive
DIS message will broadcast DIO message to neighbors and
the requested node. It can be noticed that the level of rank of
a node is assigned according to the distance vector to the
root node. )e nodes with highest rank can transmit their
information to the root node in upward direction. To avoid
information looping, the node in the topology is not allowed
to transmit the DAO message to neighbors with the same
rank.

RPL also supports data transmission in an upward di-
rection; therefore, the smart meters can forward the in-
formation, such as energy usage, to the DCU via ancestor
meters. In the upward data transmission process, the child
meter exploits DAO message to transmit its information to
the DCU in a unicast manner. )e DAO message contains
the generated information and the target parents. )e im-
mediate parent who receives the DAO message will send an
acknowledgment message to the child node, generate a new
DAO message, and send the new DAO message containing
the message generated by the child to its parent. )e process
is repeated until the generated message reaches the target
parent. )erefore, the framework of RPL is suitable to be
implemented in the smart meters of AMI network. Once the
memory and battery are considered as the limitation of the
meters [8], not only the packet delivery ratio (PDR) and
latency are determined, but also the energy efficiency must
be taken into account.

2.2. Parent Selection. Parent selection plays the important
role in achieving a high requirement of data transmission of
AMI application where the PDR should be as high as 0.98
[14]. Generally, parent selections can be categorized into
single parent and multiparent method. Traditionally, the
first standard of RPL selects the parent based on a single
metric, expected transmission count (ETX) or residual
energy. In this paper, we consider that the parent selection
based on ETX is called “RPL.” )e RPL selects the parent by
determining the ETX metric where ETX is given as

ETX �
1

Df × Dr 
�

1
1 − p

, (1)

where Df is the probability that the packets are received by
the neighbor, Dr is the probability that the acknowledgment

Mathematical Problems in Engineering 3



packet is successfully received, and p is the error data
transmission rate.

It can be noticed that ETX is used to determine the
quality of parents from the perspective of the PDR. )e
parent will be declared to be of high quality if the ETX is as
low as 1. If the ETX is greater than 1, the quality of the parent
becomes worse. Even if the RPL achieves high PDR, it does
not take the workload balancing into account since the child
selects only the highest quality parent to be the immediate
parent. )e parent selection of the RPL is illustrated in
Figure 3 where the immediate parent is selected based on the
lowest ETX.

Later, the alternative metrics are considered for single
parent selection scheme. However, they cannot overcome
the tradeoff between the transmission performance and the
energy consumption. Moreover, they cannot achieve high
transmission performance affected by the data package size
and transmission range. )erefore, RFC standard [13] stated
that multiparent, multipath routing scheme should be
considered to address the single parent issues.)emultipath
routing scheme splits the data into small packets and for-
wards them to a number of parents. Multiparent solution
based on ELT (MELT) [26] is proposed to improve the
workload balancing while maintaining the PDR at high rate
by considering the expected lifetime of child node according
to the ELTof bottleneck parents. )e bottleneck meter has a
noticeably high workload and seems to be the first node
whose battery depletes. )e expected lifetime (ELT) of a
node (N) is considered as

ELT(N) �
Eres(N)

TN × ETX(N, P)/DATA RATE(  × PRadioTX (N)
,

(2)

where TN is the traffic generated by a considered meter and
its children, ETX(N, P) is the ETX of the meter and its

considered parent (P), and DATA_RATE is the transmission
rate.

It should be mentioned that the residual energy
(Eres(N)) can be calculated by

Eres(N) � Battery − Econs(N), (3)

where the energy consumption (Econs(N)) is given as

Econs(N) � TCPU × PCPU + TRadioRX(N) × PRadioRX(N)

+ TRadioTX(N) × PRadioTX(N),

(4)

where TCPU is the CPU processing time, PCPU is the power
consumption of CPU, TRadioRX(N) is the receiver processing
time, PRadioRX(N) is the power consumption of receiver,
TRadioTX(N) is the transmitter processing time, and
PRadioTX(N) is the power consumption of transmitter.

)erefore, parents’ workload is balanced according to
the expected lifetime of the node and the bottlenecks
through the traffic ratio (αp). Generally, the bottleneck nodes
are the nodes at rank 1. )e load balancing algorithm of
MELT is shown in Algorithm 1.

To determine the traffic ratio (αp), node N determines
the best parent iteratively to assign the highest traffic ratio.
Firstly, the minimum ELT of node N and bottlenecks are
estimated by increasing αp of considered parent individually
with the load balancing step (c). Secondly, the best parent
with the maximum expected lifetime (ELT) is determined.
)irdly, node N decreases αp of considered parent and
increases αp of other parents to investigate the expected
lifetime (ELT). Finally, the parent P with the maximum ELT
will be assigned the highest αp. )en, the illustration of
workload balancing of MELT is shown in Figure 4. MELT
benefits from the transmission of small packets, so it ach-
ieves high transmission performance, PDR and latency.

Rank 9

Rank 1

Rank 2

Rank 0Root

2

82

3 4

5 6 7 8 9

N N N N N 100

Figure 1: 3-ary tree topology of RPL network.
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Moreover, MELT addresses the instability of a single parent
scheme since all parents are utilized.

Multiparent selection adopts an analytic hierarchy
process (MAHP) [32] to assign the split data packets to each
parent based on its performance. Based on AHP algorithm,
firstly the main criteria must be defined, and then each
criterion undergoes a pairwise comparison according to the
assigned importance weights. In MAHP, ETX, node
remaining energy, and hop count (HC) are determined as
the main criteria. )en, the pairwise comparison matrix of
main criteria is constructed, and the weights of main criteria
are calculated using a normalized eigenvector. To generate
the traffic ratio of MAHP, the values of each main criterion
are determined as subcriteria, and the weights are calculated.
)en, the traffic ratio is generated by determining the ex-
pected performance of the main criteria weight

corresponding to subcriteria weight of each parent. By
comprehensive determining of parents’ quality, MAHP
improves the performance of MELT. )e illustration of
MAHP parent selections is depicted in Figure 5.

3. Problem Statement

Being associated with the application of the smart grid, net-
work lifetime, packet delivery ratio (PDR), and latency are the
major concerns of low power devices, such as smart meter, of
the network. )e network lifetime refers to the early depletion
node whose battery runs out faster than others and before the
maintenance session is performed.

Once the early depletion node occurs, the root node loses
the information from the early depletion node. )erefore,
the DCU cannot utilize the data to perform the further

DIO
DAO

Root Node 2 Node 3 Node 4 Node 5 Node 6 Node 7 Node 8 Node 9

Rank 0 Rank 1 Rank 2

Figure 2: Route construction of RPL.
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operation. On the other hand, based on a single parent
scheme, the transmission performance—PDR and
latency—is affected by the quality of the immediate parent
affected by the surrounding environment. )en, the parent
selection function of the RPL plays an important role in
avoiding the early depletion node while maintaining the
reliability and latency.

3.1. Network Lifetime. Depending on the tree structure of
RPL, each node is ranked according to the distance vector
between the node and the root node. )e node can only
forward the data to the neighbors who are advertised by the
different number of rank. By considering the traditional parent

selection scheme with a nonconsidering workload balancing
concept, the node selects the parent with the highest quality to
be the immediate parent which is selected during route con-
struction and maintenance session. Based on 3-ary tree
structure, as illustrated in Figure 1, each parent has three
children. For example, node 2 is considered as the parent of
node 5 and node 6, and it is considered as the candidate parent
of node 7. Node 3 is considered as the parent of node 7, and it is
considered as the candidate parent of node 6 and node 8. Node
4 is considered as the parent of node 8 and node 9, and it is
considered as the candidate parent of node 7.

It can be mentioned that, without taking into account the
nonbalancing concept, the node only forwards its data to the
best parent until the immediate parent is disabled due to
battery depletion. As depicted in Figure 6(a), by considering
node 2 and node 3, it can be noticed that node 2 consumes the
battery faster than node 3 because it has more children. With
the passing of time, node 2 will deplete faster than node 3 due
to battery depletion. )en, the local route maintenance is
performed, where the DIS message is broadcasted to neigh-
bors, as illustrated in Figure 6(b), by node 6 and it will select
node 3 as the immediate parent.)e dataflow of each node and
the loss of information from node 2 are shown in Figure 7.
Based on this scenario, the root node loses the information
from node 2 since node 2 does not have the power to transmit
its data. Moreover, node 5 wastes the battery usage for per-
forming the local route maintenance request, and node 6 will
havemore workload since it has to forward the data from node
5 to its immediate parent. Once node 6 gains its workload, its
battery will deplete faster than others and the root node will
also lose the information from node 6.

Since the workload balancing scheme is not taken into
account, the depleted node will occur before the network
maintenance session. )en, the utility will lose the infor-
mation from the early depletion nodes. )erefore, the
workload balancing scheme plays an important function for
the low power device network.

parent with ETX = ρ

1

2

B6 C9 D7

1.5

E4 F5 G7 H3 I8

2 1.5

1
11.51 3

2

Rank 1

Rank 0

Rank 2

1

Root
DODAG link to the preferred

Figure 3: Illustration of traditional RPL parent selection.

Data: N, c-the step of the load increase
Result: compute αp 

P∈Parents(N)
for i � 1 to c− 1 do
max elt⟵ 0;
for P ∈ Parents(N) do

//test this parent P with its new weight
αp⟵ αp + c;

//track the min ELT with this new weight
min elt⟵minB∈Bottlenecks(P) ELT(B){ };
min elt⟵ min min elt,ELT(N){ };
//is this parent the best one?
if maxelt < minelt then
max elt⟵ min elt;
preferred parent⟵P;

end
//test each parent before taking a decision
αp⟵ αp − c;

end
αparent max⟵ αparent max + c;

end

ALGORITHM 1: Load balancing algorithm of MELT [26].
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3.2. TransmissionPerformance. In practice, the smart meters
are considered as the static nodes; however, the quality of
data transmission—PDR and latency—is affected by the
surrounding environment, such as noise, distance between
the child meter and the immediate parent, and data size. In
general, PDR and latency are the two factors that relate to the
surrounding environment directly. )e environment be-
tween a child and a parent is bad; i.e., the noise is high and
the child node is far from the parent.)erefore, the quality of
received data by the parent will be low, and the received data
will be neglected since its quality is too low to be utilized.

)e packet delivery ratio (PDR) is the major factor that
is used to evaluate transmission performance. PDR refers
to the success transmission rate which is the ratio between
the data packets transmitted by the transmitter and the
packets received by the receiver. PDR should be high while
latency should be low to achieve a real-time application.
Generally, the transmission range and the size of data are
the two major factors that degrade the PDR and increase
the latency.

Once the distance between the child meter and parent is
far, the transmitted package drops during the transmission
and then the PDR decreases.)erefore, the retransmission is
required, which increases the latency, and the child meter
and parent meter must consume extra energy. )is extra
energy consumption refers to the energy inefficiency. On the
other hand, the data package size affects transmission
performance. Once the package size is high, the probability
of package drop during transmission increases. )erefore,
the PDR noticeably decreases on increasing package size
while latency increases.

As stated by RFC standard [13], since the single parent
scheme cannot meet the requirement of the transmission
performance for the long transmission range and large data
package size, the multiparent solution should be considered.

Although the multiparent solution presents higher
transmission performance with high workload balancing
than the single parent at long transmission range, a high
energy consumption and low network lifetime are con-
sidered as the major demerits. Moreover, over noticeably
long transmission range, the multiparent solution cannot
satisfy the requirements of a high PDR and low latency
due to the limited transmission channel, presents a low
network lifetime, and cannot achieve high energy
efficiency.

)erefore, in this paper, we proposed a hybrid solution
that adapts the parameter to transmit the data packet be-
tween the multiparent solution and the single parent with
cognitive radio based on the expected performance deter-
mined by the advanced multicriteria ranking method.

4. Empowered Hybrid Parent Selection

In this paper, we propose the empowered hybrid parent
selection (EHPS) algorithm to maximize the network life-
time and achieve a high packet delivery ratio (PDR) and low
latency using hybridizing scheme of themultiparent solution
and the single parent with cognitive radio.)e fuzzy analytic
hierarchy process (FAHP) [33–35] is exploited where the
expected transmission count (ETX), expected lifetime
(ELT), and expected transmission time (ETT) [22] are
determined as the main criteria, to analyze the quality of

x

C3C2C1

B5B4B3B2B1

N

1/4 1/4 1/2

3/41/8
1/81/3 1/3

1/3 3/8
1/21/8

Root

x is the traffic ratio of each parent.

Figure 4: Illustration of MELT load balancing scheme.
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Figure 5: Illustration of MAHP load balancing scheme.
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Figure 6: Continued.
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parent meters comprehensively. In FAHP, the fuzzy set is
exploited with the traditional AHP to address the un-
balance judgment scaling of traditional version. To
achieve high network lifetime, the workload balancing
capability is improved by using influence weight
adapting scheme. From our study, the energy con-
sumption increases on decreasing meter’s ranking in an
exponential manner. )erefore, our algorithm adapts the
influence of energy efficiency through ELT criteria

exponentially. Moreover, the single parent with cognitive
radio is adopted in a hybridizing scheme with multi-
parent solution to achieve a high PDR rate, high energy
efficiency, and low latency under a long transmission
range.

)e framework of EHPS is shown in Figure 8 which can
be categorized into offline and online mode. In an offline
mode, once the algorithm is activated, the three main cri-
teria—ETX, ELT, and ETT—are pairwise compared

Immediate parent
Candidate parent

Root

3 4

5 6 7 8 9

Rank 1

Rank 2

Rank 0

DIS DIS

DIS

(b)

Figure 6: Occurrence of early depletion node: (a) 3-ary tree structure of RPL network with node 2 disabled; (b) local route maintenance
session performed by node 5.

ACK
DATA
DIS

Root Node 2 Node 3 Node 4 Node 5 Node 6 Node 7 Node 8 Node 9

Rank 0
Rank 1 Rank 2

Disable

Figure 7: Framework of data transmission when node 2 is disabled.
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according to FAHP theorem to generate the main criteria
weight (mc). Depending on tree topology, the level of
energy consumption in each rank is different according to
the number of children; then, the requirement of work-
load balancing in each rank should be different. )erefore,
in our algorithm, we determine the effect of network
ranking as the factor for performing a pairwise com-
parison in multicriteria ranking process. )en, the pair-
wise comparison between ETX and ELT is varied based on
the number of rank; e.g., ELT factor in rank 4 should be
more important than ELTfactor in rank 5 because a parent
in rank 4 has a higher number of children than a parent in
rank 5.

In an online mode, firstly, the node receives the DIO
messages from a number of candidate parents, where the
message contains its ELT. Secondly, the node performs the ELT
calculation of those candidate parents by adding its traffic to
determine the actual ELTwhen the traffic of the node is taken
into account. If all candidate parents die, the node will
broadcast DIS message to request the local maintenance
process. Once the neighbors receive the DIS message, they will
transmit DIO message to the node. )en, the node will cal-
culate the load-balanced weight through FAHP procedure.

To calculate ELT, firstly, the data traffic from the node to
be transmitted to the parents is determined, where the data
traffic (T) is given by

All parents die

Offline mode Main criteria
weight generation

Online mode
DIO messages
from parents

Request for local
maintenance

Regenerate main
criteria weight

(mc)

DIO messages
from neighbors

Calculate load-
balanced weight

Calculate expected performance
of MP and CR using algorithm III

IPi, CHi

αEHPS

Figure 8: Framework of EHPS.
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T � Tnode + 
i∈Children(node)

Ti. (5)

Secondly, the energy consumption (E) of the node in-
cluded with the retransmission factor is calculated, which
can be expressed as

E(N) �
T × i∈Children(node)αi  × ETX(node, C)

Data rate
× PTX,

(6)

where αi is the traffic ratio in which the children forward the
packets to the node, PTX is the transmission power, and
Data_rate is the data transmission rate.

Finally, the expected lifetime (ELT) of node N is given as

ELT(N) �
Eres(N)

E(N)
. (7)

By exploiting FAHP theorem [35], firstly, pairwise
comparison is made on each main criterion; therefore,
weight of importance between criteria should be assigned.
As mentioned earlier, the effect of meter’s ranking where the
energy consumption changes exponentially is taken into
account, and it is determined as the multiplication factor
(mf) to be used in the pairwise comparison process. )en,
the mf can be derived as follows. )e exponential change of
energy consumption can be expressed as

y � Ce
bx

, (8)

where C is the constant value, b is the growth rate of ex-
ponential function, and energy consumption is considered
as the input data (x).

)en, the decaying exponential function can be rewritten
as

ln y � ln C + bx. (9)

)erefore, the fitting values can be given as

b �
n 

n
i�1 xi ln yi − 

n
i�1 xi 

n
i�1 ln yi

n 
n
i�1 x

2
i − 

n
i�1 xi( 

2 , (10)

where n is the amount of data.
In our algorithm, we utilize the exponential function

with the growth rate where influence of rank is taken into
account. )erefore, the multiplication factor (mf) is given as

mf � e
b Rankmax−Rankcurrent( ), (11)

where Rankmax is the maximum rank of the network and
Rankcurrent is the current rank.

)erefore, to determine the load-balanced weight of
EHPS (αEHPS � [αEHPS1, αEHPS2, . . . , αEHPSk

]), the structure of
multicriteria ranking according to FAHP algorithm is
constructed as depicted in Figure 9. In our proposed al-
gorithm, ETX, ELT, and ETT are determined as the main
criteria. )e actual values of each main criterion are de-
termined as the input of subcriteria.

)e framework of EHPS is illustrated in Algorithm 2.
Once the objective, main criteria, and subcriteria are defined,

firstly, each main criterion is pairwise compared to others by
constructing the M×M of pairwise comparison matrix (A),
where M is the number of main criteria. As mentioned
earlier, by taking mf into account, the pairwise comparison
matrix (A) can be given by

A �
1
mf

1 mf × a12 a13

a21 1 a23

a31 a32 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (12)

where a12 represents the weight of importance between ETX
and ELT, a13 represents the weight of importance between
ETX and ETT, and a23 represents the weight of importance
between ELT and ETT. In general, aji is the comparison of
importance between criteria where aji is equal to 1/aij. )e
scale of importance comparison is in the range of 9 to 1/9. For
example, if a12 is 1, ETX is as important as ELT. By taking the
multiplication factor (mf) into account, the importance of
ETX is changed based on the effect of rank level.

Secondly, the fuzzy comparison matrix (A) is generated
according to the pairwise comparison matrix (A) with respect
to the fuzzy triangular number which is shown in Table 1.

A �

d 11 · · · d 1n

⋮ ⋱ ⋮
d n1 · · · d nn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (13)

where n is three times the number of the main criteria which
is based on the fuzzy rule.

)irdly, the fuzzy comparison matrix (A) performs
geometric means calculation (ri) which can be given as

ri � 

n

j�1

dij
⎛⎝ ⎞⎠

1/n

, i � 1, 2, . . . , n. (14)

Fourthly, the fuzzy weights are generated by performing
the vector summation of each ri and inversing each sum-
mation vector.)erefore, themaximum order (uwi), average
order (mwi), and minimum order (lwi) are obtained. )en,
the fuzzy weights (wi) can be obtained by

wi � ri ⊗ r1⊕ r2 ⊕ · · · ⊕ rn( 
−1

, (15)

where ⊕ is a direct sum and ⊗ is a dyadic product.
)en, the fuzzy weights are defuzzified by

dwi �
lwi + mwi + uwi

3
. (16)

Finally, the main criteria weight
(mc � [mc1

, mc2
, . . . , mcM

]) is generated by normalizing the
defuzzified vector (dw) when the normalized defuzzified
vector (dw) can be expressed as

mci
�

dwi


M
i�1 dwi

. (17)

After the main criteria weight is calculated, the sub-
criteria weights (sC

c � [sC
c1

, sC
c2

, . . . , sC
cm

]) of each main
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criterion are calculated as the main criteria procedures.
)erefore, the load-balanced weight
(αEHPS � [αEHPS1, αEHPS2, . . . , αEHPSk

]) is generated by com-
puting sc according to mc.

It should be mentioned that the load-balanced weight
of EHPS (αEHPS) can be expressed the quality of each
parent. )en, we select the lowest quality parent and
estimate its performance according to the cognitive radio
environment. )en, the expected quality of the selected

parent on cognitive radio is ELTCR, ETXCR, and ETTCR.
To compare the performance of multiparent solution and
the single parent with cognitive radio, the expected quality
of the multiparent solution—ELTMP, ETXMP, and
ETTMP—is calculated according to αEHPS. )erefore, the
expected quality of the selected parent on cognitive radio
and multiparent solution is considered as the input of
hybrid parent selection algorithm and used as the
subcriteria.

ETX ETTELT

ETX of candidate ETT of candidateELT of candidate

ETX of candidate ETT of candidateELT of candidate

Select optimal parent

Criteria

Objective

Sub
criteria

Figure 9: Structure of multicriteria ranking according to FAHP algorithm.

Input k,ELT, ETX and ETT
Output Load-balanced weight αEHPS 

if All candidate parents die then
Broadcast DIS message to perform local maintenance;
Increase the rank number of the node;

end
Calculate the multiplication factor (mf) according to the rank;
Calculate weight of main criteria mc  according to mf;
Calculate weight of subcriteria sC

c ;
for i ∈ k

αEHPSi
⟵ 0;

for j ∈ N

αEHPSi
⟵ αEHPSi

+ (s
j
ci

× mcj
)

end
end

Generate αEHPS by calculating sc according to mc;

ALGORITHM 2: Multicriteria load balancing algorithm.

Table 1: Interpretation of the significance of influence in triangular fuzzy scale [35].

Influence in a numeric scale Definition Triangular fuzzy scale
1 Equal significance (1, 1, 1)
3 Moderate significance (2, 3, 4)
5 Strong significance (4, 5, 6)
7 Very strong significance (6, 7, 8)
9 Extreme significance (9, 9, 9)
2

Intermediate values between two adjacent judgments

(1, 2, 3)
4 (3, 4, 5)
6 (5, 6, 7)
8 (7, 8, 9)
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As shown in Algorithm 3, the main criteria weight from
multicriteria load balancing algorithm is used as the main
criteria weight of hybrid parent selection. )en, subcriteria
weights (sC

h � [sC
hMP

, sC
hCR

]) are calculated, where sC
hMP

is the
subcriteria weight of multiparent solution and sC

hCR
is the

subcriteria weight of single parent with cognitive radio.
)erefore, the performance weight (Per � [Per1, Per2]) is
calculated, where Per1 is the expected performance of
multiparent solution and Per2 is the expected performance
of selected parent on cognitive radio. If the performance of
themultiparent solution is higher than the single parent with
cognitive radio, then the multiparent solution is activated
and the child meter forwards the data to multiple parents
according to αrEHPS. Otherwise, the child meter transmits
the DIS message to the selected parent to inform it about
changing of communication channel to the cognitive radio.
)e output of Algorithm 3 presents the selected parent and
the transmission technology as shown in Table 2.

5. Simulation Results

In this section, we simulate the performance of the
empowered hybrid parent selection (EHPS) algorithm under
3-ary tree topology of AMI network. )e performance of
EHPS is evaluated as compared to 3 former parent selection
methods: traditional RPL, multiparent selection based on
expected lifetime (MELT) [26], and multiparent selection
based on an analytic hierarchy process (MAHP) [32]. )e
three critical network performance metrics, packet delivery
ratio (PDR), latency, and network lifetime, are determined.
)e PDR and latency are used to determine the transmission
performance where PDR is the ratio of the packets trans-
mitted by the child meter to the packets received by the
parent meter. Latency is defined as the data transmission
time. As stated in [14], the required PDR, data reliability, for
transmitting the energy usage information is as high as 0.98.

5.1. Simulation Setup. To simulate the performance of
parent selection, based on 3-ary tree topology, the quality
of the middle parent is set to be the best where the
distance of the middle parent to the child is set to be less
than that of other parents. For example, as depicted in
Figure 1, node 3 is considered as the middle parent.
)erefore, the distance of node 3 to node 7 is less than the
distance of node 2 and node 4 to node 7. To investigate
the effect of path loss, the distance between the middle
parent and the child ranges between 10 and 80 meters.
)e specification of transmitter and receiver is based on
Zigbee module CC2500 [38]. All simulations are per-
formed on MATLAB. Other parameters are shown in
Table 3.

As described earlier, to generate the load-balanced
weight (αEHPS) of EHPS, firstly the pairwise comparison
between performance metrics is performed. In this paper, we
set the influence of each metric equally and adapt the in-
fluence of energy efficiency through the multiplication factor
(mf). )e mf is gathered by using (11), where b is estimated
from the meter lifetime when the workload of multiparent is

perfectly balanced; i.e., all parents share data packets equally.
)en, b is set to −0.5443.)erefore, the pairwise comparison
matrix (A) is given as

A �

1 mf 1

1
mf

1 1

1 1 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (18)

where

mf � e
− 0.5443 Rankmax−Rankcurrent( ). (19)

5.2. Performance Evaluation. Firstly, we determine the
network lifetime presented by each parent selection algo-
rithm as a function of the rank number and the distance
between child meter and parents. As depicted in Table 4, for
a single parent based on RPL algorithm, the number of rank
affects the decrease in network lifetime noticeably since the
number of forwarded packets by the parent node is corre-
sponding to the rank number. )e lower the rank advertised
by a node is, the higher the number of data packets from the
children and grandchildren meters is determined. On the
other hand, the transmission range also affects the network
lifetime. If the distance between a meter and parent meter
increases, the times of required data retransmission increase
due to the packet loss. )erefore, for RPL algorithm, the
network lifetime decreases when the distance is higher than
50m. When the distance is greater than 65m, the meter
wastes the energy for retransmission, so the network lifetime
is noticeably low.

As depicted in Tables 5 and 6, the network lifetimes of
MELT and MAHP are determined, respectively. Although
the multiparent solutions have the merits of efficient
workload balancing and high PDR, they also have the de-
merit of high energy consumption since the information
needs to be split and forwarded to a number of parents. On
the contrary, as shown in Table 7, EHPS algorithm considers
the quality of parents comprehensively through a fuzzy AHP
(FAHP) algorithm and through activating the cognitive
radio technology on the single parent scheme; therefore, it
overcomes the tradeoff between high energy consumption
and high transmission performance of multiparent solution
effectively. )erefore, the EHPS can maximize the network
lifetime under long transmission range environment.

Consequently, RPL algorithm presents the highest net-
work lifetime when the distance is lower than 50m. It should
be noted that retransmission is not performed at those
distances since the PDR is as high as 1. When the distance
increases, the data retransmission is required; therefore, the
network lifetime for RPL is noticeably low. Although, the
multiparent solutions—MELT and MAHP—present better
workload balancing performance by activating all candidate
parents when the data transmission is performed, they
present a lower network lifetime than the RPL algorithm
since they consume more energy in transmitting a number
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of small packets to multiple parents. On the other hand,
EHPS presents a network lifetime close to that of the RPL
algorithm when the distance is lower than 50m by hy-
bridizing the multiparent solution and the single parent with
cognitive radio technology. Moreover, with the merit of
cognitive radio, EHPS presents the highest network lifetime
when the transmission range is greater than 50m.

Secondly, we evaluate the PDR and latency of EHPS as
compared to RPL, MELT, and MAHP as a function of
distance at rank 9 during household data transmission. As
shown in Figure 10, the comparison of PDR is determined.
As a result, all algorithms present PDR as high as 1 when the

distance between meter and parent meters is lower than
50m. When the distance increases, the PDR of the RPL
algorithm is the worst since its performance suffers from
packet loss according to the package size and distance. On
the other hand, MELT, MAHP, and EHPS present higher
PDR since the data is split into small packets based on the
multiparent solution. Moreover, by our proposed cognitive
radio hybridizing scheme, EHPS presents the highest PDR
among others since it utilizes better transmission channel
opportunistically. )e single parent based on cognitive radio
is activated by the performance comparison to multiparent
solution through the proposed hybrid parent selection
algorithm.

As shown in Figure 11, the latency values of RPL, MELT,
MAHP, and EHPS are compared. )e simulation results
show that EHPS presents the lowest latency as compared to
others. By utilizing the cognitive radio continually, EHPS
can present efficient data transmission performance, high
PDR and low latency, while maximizing the network lifetime
since the quality of parents is determined comprehensively.
Moreover, by adapting the influence of energy-efficient
criteria on the rank number, the workload can be balanced
effectively.

)irdly, we evaluate the PDR and latency of EHPS as
compared to RPL, MELT, and MAHP as a function of
distance at rank 9 during manufacturer data transmission. It
should be mentioned that the interval of the energy usage of
manufacturer data transmission is 60min, and the data
package size is 1200 bytes which is much higher than the size
of household energy usage. As mentioned earlier, the data
package size affects the PDR, latency, and required
retransmission. As shown in Figure 12, the PDR of the RPL
algorithm decreases when the distance is 45m. Its PDR
noticeably decreases when the distance increases and reaches
0 at 80m. Although MELT and MAHP present much better
PDRs than the RPL, their PDRs are also noticeably low on
increasing distance due to the limited communication
channel. In addition, the PDRs of MELTand MAHP are 0 at
80m, the same as RPL algorithm.

As a result, EHPS overcomes the limited performance of
Zigbee communication channel by hybridizing the multi-
parent solution and the single parent with cognitive radio

Input ELTCR, ETXCR, ETTCR, ELTMP, ETXMP and ETTMP
Output Parent (IPi) and transmission channel (CHi)

Calculate weight of subcriteria sC
h ;

for i ∈ Channel
Peri⟵ 0;
for j ∈ N

Peri⟵Peri + (s
j

hi
× mcj

)

end
end
if Per1 >Per2 then
return IPi⟵ 1; CHi⟵ 1;//

else
return IPi⟵ 2; CHi⟵ 2;//

ALGORITHM 3: Hybrid parent selection algorithm.

Table 2: Interpretation of the outputs of Algorithm 3.

Subscripted
number (i) 1 2

CHi Zigbee CR
IPi All candidate parents Selected single parent

Table 3: Simulated parameters [38].

Parameters Value
Tx power 76.3mW
CR Tx power 100mW
Rx power 47.9mW
Idle power 900 nW
Sleep power 400 nW
Spectrum sensing power 65.83mW
DIO interval before data transmitting 90 seconds
Household data transmitting interval 15min
Manufacturer data transmitting interval 60min
Household data packet 318 bytes
Manufacturer data packet 1200 bytes
DIO message size 64 bytes
DAO message size 46 bytes
DIS message size 2 bytes
Transmission time of data packet 192 us
Transition time from sleep to active mode 970 us
Simulation time 3600min
Load balancing step of MELT 1/3
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Table 4: Network lifetime of RPL.

Distance (m)
Rank

2 3 4 5 6 7 8 9
10 8245 4620 2915 1990 1425 1100 860 695
15 8245 4620 2915 1990 1425 1100 860 695
20 8245 4620 2915 1990 1425 1100 860 695
25 8245 4620 2915 1990 1425 1100 860 695
30 8245 4620 2915 1990 1425 1100 860 695
35 8245 4620 2915 1990 1425 1100 860 695
40 8245 4620 2915 1990 1425 1100 860 695
45 8240 4620 2915 1990 1425 1100 860 695
50 8225 4605 2905 1985 1425 1095 860 695
55 8120 4540 2865 1960 1425 1080 845 680
60 7655 4230 2650 1805 1320 995 785 630
65 6170 3305 2040 1385 995 750 590 475
70 2525 1265 725 480 310 245 185 140
75 125 65 65 65 65 65 65 65
80 65 65 65 65 50 40 30 25

Table 6: Network lifetime of MAHP.

Distance (m)
Rank

2 3 4 5 6 7 8 9
10 7760 4240 2610 1750 1255 935 725 580
15 7760 4240 2610 1750 1255 935 725 580
20 7760 4240 2610 1750 1255 935 725 580
25 7760 4240 2610 1750 1255 935 725 580
30 7770 4250 2610 1750 1255 935 725 580
35 7770 4250 2610 1750 1255 935 725 580
40 7770 4250 2610 1750 1255 935 725 580
45 7770 4250 2610 1745 1255 935 725 580
50 7745 4240 2610 1720 1255 935 725 580
55 7645 4175 2575 1720 1230 915 720 570
60 7120 3890 2395 1605 1145 845 665 535
65 5400 2945 1805 1205 860 650 490 400
70 1565 905 605 420 305 235 185 125
75 65 65 65 65 65 65 65 65
80 65 65 65 65 65 60 45 35

Table 5: Network lifetime of MELT.

Distance (m)
Rank

2 3 4 5 6 7 8 9
10 6930 3725 2230 1485 1060 795 630 515
15 6930 3725 2230 1485 1060 795 630 515
20 6930 3725 2230 1485 1060 795 630 515
25 6930 3725 2230 1485 1060 795 630 515
30 6930 3545 2100 1385 975 725 570 450
35 6930 3545 2100 1385 975 725 570 450
40 6930 3545 2100 1385 975 725 570 450
45 6930 3545 2100 1385 975 725 570 450
50 6920 3535 2095 1385 975 725 565 450
55 6845 3485 2065 1365 965 720 555 440
60 6545 3305 1955 1285 905 665 530 420
65 5405 2645 1555 1005 705 535 400 305
70 1545 905 545 305 215 185 125 95
75 65 65 65 65 65 65 65 65
80 65 65 65 65 55 40 30 25
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technology. When the distance is lower than 55m, the
multiparent scheme is frequently activated since it consumes
less energy than the single parent with cognitive radio.When
the distance increases, the expected overall performance of
multiparent solution determined by FAHP is lower than that
using the cognitive radio. )erefore, the single parent with
cognitive radio is more activated.)en, the high PDR can be
maintained as much higher than others. As shown in Fig-
ure 13, EHPS presents the lowest latency as compared to
others for all transmission distance while other techniques
can perform data transmission when the distance is lower

than 75m. At 80m, RPL, MELT, andMAHP cannot forward
the data to the parent meter since the PDR is 0, so their
latency values are noticeably high.

From the simulation results, the empowered hybrid
parent selection (EHPS) algorithm is flexible to be used
under various sizes of data packages and distances. By
hybridizing usage of multiparent solution and the single
parent with cognitive radio, EHPS maximizes the network
lifetime under long data transmission range and presents the
highest PDR and lowest latency among others. In our
proposed algorithm, we follow the information exchange

Table 7: Network lifetime of EHPS.

Distance (m)
Rank

2 3 4 5 6 7 8 9
10 7845 4385 2640 1785 1350 1015 835 665
15 7845 4385 2640 1785 1350 1015 835 665
20 7845 4385 2640 1785 1350 1015 835 665
25 7845 4385 2640 1785 1350 1015 835 665
30 7810 4265 2660 1855 1385 1025 820 665
35 7810 4265 2660 1855 1385 1025 820 665
40 7810 4265 2660 1855 1385 1025 820 665
45 7810 4265 2660 1855 1385 1025 820 665
50 7805 4255 2660 1855 1385 1025 830 675
55 7685 4205 2620 1830 1375 1025 830 670
60 7165 3960 2470 1685 1335 1000 780 665
65 5455 3355 2105 1440 1190 905 750 665
70 2705 1385 785 545 545 365 305 305
75 65 65 65 65 65 65 65 65
80 65 65 65 65 65 65 65 65
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Figure 10: Comparison of PDR as a function of distance of household energy usage.
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according to the RPL mechanism where the message—DIO,
DAO, and DIS—for route construction and maintenance is
exchanged between nodes periodically. )erefore, the extra
overhead is not required. On the other hand, the complexity
of EHPS is bound at O(n3) where n is number of candidate

parents. Moreover, the EHPS does not suffer from a high
complexity of FAHP since the numbers of main criteria and
alternatives are low. Moreover, by determining the parents’
quality comprehensively through an adaptive FAHP scheme,
the workload can be balanced; then, it is facilitated for the
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electrical production planning and electricity billing
application.

6. Conclusion

In this paper, an “empowered hybrid parent selection (EHPS)”
is proposed to overcome the issues of the parent selections of
RPL for AMI network. In general, single parent and multi-
parent solutions suffer from the tradeoff between the network
lifetime and transmission performance. Even if the single
parent selection presents higher network lifetime than multi-
parent solutions, it gives worse transmission performance
under long transmission range and large data size. On the other
hand, multiparent solutions meet high transmission perfor-
mance but give low network lifetime due to the energy con-
sumption based on multipath strategy. By hybridizing the
merits of multiple parents and single parent with cognitive
radio technology, EHPS maximizes the network lifetime over
long transmission range and large data size. )rough the
proposed hybrid scheme with adaptive fuzzy analytic hierarchy
process (FAHP), EHPS balances the meter workload effectively
and is flexible with respect to the transmission range and data
size.
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During the last decades, the optimization of the maintenance plan in process plants has lured the attention of many researchers
due to its vital role in assuring the safety of operations. Within the process of scheduling maintenance activities, one of the most
significant challenges is estimating the reliability of the involved systems, especially in case of data scarcity. Overestimating the
average time between two consecutive failures of an individual component could compromise safety, while an underestimate leads
to an increase of operational costs. +us, a reliable tool able to determine the parameters of failure modelling with high accuracy
when few data are available would be welcome. For this purpose, this paper aims at comparing the implementation of three
practical estimation frameworks in case of sparse data to point out the most efficient approach. Hierarchical Bayesian modelling
(HBM), maximum likelihood estimation (MLE), and least square estimation (LSE) are applied on data generated by a simulated
stochastic process of a natural gas regulating and metering station (NGRMS), which was adopted as a case of study. +e results
identify the Bayesian methodology as the most accurate for predicting the failure rate of the considered devices, especially for the
equipment characterized by less data available. +e outcomes of this research will assist maintenance engineers and asset
managers in choosing the optimal approach to conduct reliability analysis either when sufficient data or limited data are observed.

1. Introduction

Several hazardous substances are handled inside process plants;
therefore, unforeseen events could produce fires, explosions,
and chemical releases that could generate enormous financial
loss and injuries or deaths of nearby employees and civilians
[1]. Among the potential causes, asset failure is often regarded
as the primary source of the aforementioned dangerous
phenomena [2]; hence, the equipment involved in process
industries should be adequately maintained to guarantee ap-
propriate standards of safety and reliability, while generating a
profit from the operations.

Over the past decades, safety and reliability requirements
have progressively increased [3], leading to significant de-
ployment of resources in maintenance activities [4]. +is
fundamental vision has resulted in the development of many
maintenance policies such as reliability-centered mainte-
nance (RCM) [5–11], risk-based maintenance (RBM)
[12–16], and condition-based maintenance (CBM) [8–11].
Within the development of a CBM plan, failure prognosis is
of prominent importance; thus, there is an ongoing effort on
condition monitoring and calculation of the remaining
useful life [17–19]. Zeng and Zio [18] developed a dynamic
risk assessment framework based on a Bayesian model to
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update the reliability of safety barriers as soon as new data
are collected. After updating the reliabilities, the risk indexes
are determined through an event-tree (ET). Another rele-
vant work by Chen et al. [19] proposes an integration be-
tween neuro-fuzzy systems (NFSs) and Bayesian algorithm
to predict the evolution of the operating condition of a given
system. +e approach is tested on two case studies, and the
results reveal a greater accuracy than other conventional
predictors (e.g., recurrent neural networks, NFSs, and re-
current NFSs).

To implement a proper maintenance plan based on
preventive actions, a crucial task is represented by the es-
timation of the probabilities of failure. During this phase, the
accuracy of the prediction is essential since overestimating
the failure rates could lead to greater resource consumption.
By contrast, an underestimation may delay the maintenance
actions, resulting in a riskier state of the operations. Con-
sequently, a great deal of research studies has been made to
provide accurate estimation procedures adopting different
tools such as fault tree analysis (FTA) [20], probability graph
paper [21], support vector machines [22], FORM (first-order
reliability method) [23], SORM (second-order reliability
method) [24], and Bayesian network (BN) [25]. To prove the
advantages and limitations of the estimation methodologies,
many researchers have also focused their efforts on com-
paring the results arising from the application of distinct
approaches [26–28]. Musleh and Helu [27] applied Bayesian
inference, MLE, and LSE to censored data samples. +e
results of this study pointed out the Bayesian estimator as the
best in terms of bias, mean squared error, and Pitman
nearness probability. A more recent work by BahooToroody
et al. [28] presented the comparison between the MLE and
the HBM in case of perfect repair and minimal repair. +e
authors tested the two approaches on an NGRMS, proving
that the Bayesian inference provides more precision in
failure modelling than the MLE. +e proposed frameworks
operate under condition of availability of sufficient data,
while the challenges arising from sparse and limited data
have not been addressed.

Within probability and reliability applications, data
scarcity is regarded as one of the main issues. Indeed, lack of
available data increases the uncertainties related to the es-
timation process [29], causing sometimes the inability to
find the probability distributions [30]. Sparse data could be
generated from many sources, such as the rarity of an event,
limited knowledge, missing data, and impropriate data
collection. Moreover, the implementation of maintenance
strategies also contributes reducing available data since
maintenance actions are performed to prevent failures from
happening [31]. Quite recently, a BN-based quantitative risk
assessment methodology was developed by Yang et al. [32].
In this work, a BN along with precursors are adopted to cope
with data scarcity, while the consequences are evaluated
through loss functions. +e classic Bayesian approaches can
partially compensate for limited data by incorporating prior
knowledge and expert judgments. However, under the
primary assumption of the work, they neglected the effect of
source-to-source variability of failure data in the process

model [33]. To overcome this limitation and simultaneously
deal with sparse data, HBM, along with precursor data, has
been extensively exploited by many academics [34–38]. Li
et al. [39] integrated the BN and the HBM for a dynamic risk
assessment of a submerged pipeline. In their study, the
classical BN is used to model the conditional dependencies
among primary events, while the hierarchical approach is
developed for predicting the probabilities associated with
basic events and the safety barriers. +e proposed meth-
odology can be updated as soon as new information becomes
available, by including them into the prior distribution
characterizing the HBM.

During the last years, the adoption of HBM has spread to
a broader audience thanks to the advances in open-source
Markov chain Monte Carlo (MCMC) sampling software
such as OpenBugs [40]. Examples of applications include
RBM planning [41, 42], condition monitoring [43, 44], and
probabilistic risk assessment [45, 46]. Recently, Abaei et al.
[47] presented an HBM-based methodology able to predict
the probability of failure of a tidal energy converter assuming
a homogeneous Poisson process (HPP) for the failure
modelling.

Despite all the ongoing efforts, there is still a need for a
sound tool able to deal with the uncertainties arising from
the lack of data in maintenance applications. Indeed, while
the literature provides many comparison studies among
distinct statistical methodologies when sufficient data are
observed, less interest has been devoted to the comparison of
estimation tools under the assumption of limited data
available. To this end, the main objective of this paper is to
provide a comparison between the Bayesian inference and
two classic estimation approaches (i.e., MLE and LSE) in the
event of data scarcity arising from frequent preventive
maintenance actions. +e methods are evaluated based on
their accuracy in the estimation process for the failure rate of
the components belonging to an NGRMS, which is chosen as
a case study.

1.1. Hierarchical Bayesian Modelling. +e first step required
to conduct a statistical inference is collecting “Data,” which
are defined as the observed values of a given process. Next,
“Information” is obtained by manipulating, evaluating, and
organizing “Data.” +e process of gathering “Information”
leads to acquire “Knowledge,” which is subsequently
exploited to perform “Inference” [48]. As stated by El-
Gheriani et al. [29], the HBM allows to carry out the in-
ference tasks through Bayes’ theorem, shown by

π1(θ|x) �
f(x|θ)π0(θ)

θf(x|θ)π0(θ)dθ
. (1)

Bayes’ theorem relies on the proportionality between the
posterior distribution, denoted by π1(θ|x), and the product
of the likelihood function and the prior distribution, re-
spectively, identified by f(x|θ) and π0(θ). +e prior dis-
tribution is usually named informative when it conceals
relevant information about the unknown parameter of in-
terest (θ), while it is regarded as noninformative when little
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or no information about θ is considered [49]. It is worth
mentioning that the HBM owes its name to the adoption of a
multistage or hierarchical prior distributions [50], given by
[51]

π0(θ) � 
∅
π1(θ|φ)π2(φ)dφ, (2)

where φ is a vector whose components are called hyper-
parameters, while π2(φ) is the hyperprior distributions,
representing the uncertainty of φ. Finally, π1(θ|φ) is referred
as first-stage prior distribution, which considers the vari-
ability of θ given a certain value of φ.

1.2. Maximum Likelihood Estimation. Given a random
sample y � (y1, y2, . . . , yn) arising from a stochastic pro-
cess, the objective of MLE is to determine the probability
distribution from which the sample is most likely to have
been generated. For this purpose, it is required to specify a
proper distribution for the sample data and its character-
izing parameters. Assuming that θ � (θ1, θ2, . . . , θn) is a
vector that lies within the parameter space, the most
probable parameters that define the probability distribution
of the observed data are obtained by maximising the like-
lihood function, illustrated by [28]

f θ1, θ2, . . . , θn|y(  � f1 θ1|y( f2 θ2|y( , . . . , fn θn|y( .

(3)

1.3. Least Square Estimation. As stated by Myung [52], the
LSE method is exploited primarily for descriptive purposes.
Its main goal is to define the parameters that generate the
most accurate description of the observed data. Let
y � (y1, y2, . . . , yn) be a sample of n observations and θ �

(θ1, θ2, . . . , θm) a vector of parameters. After choosing a
proper distribution for the model, the parameters that best-
fit the data are found byminimizing the sum of squares error
(SSE), shown by

SSE(θ) � 
n

i�1
yi − prdi(θ)( 

2
, (4)

where yi is the ith observation, while prdi(θ) is the pre-
diction of the model associated to the ith observation.

+e remainder of the paper is organized as follows:
Section 2 describes the steps of the proposed study. Section 3
illustrates the implementation of the methodologies to the
NGRMS, while Section 4 provides the discussion of the
results. At last, in Section 5, conclusions are presented.

2. Methodology

Within the reliability analysis process, the exploitation of
different estimation tools could lead to distinct results,
which may affect the adopted maintenance strategy. To this
end, the main goal of this paper is to investigate the ap-
plication of three estimation methodologies in case of few
data available, focusing mainly on the comparison between
the Bayesian approach and the classic approaches (i.e., MLE

and LSE). A brief overview of the framework is represented
in Figure 1.

+e first step (1) of the methodology is to collect failure
data generated by the considered process. Since the majority
of industrial equipment undergoes substantial preventive
maintenance, both Times To Failure (TTFs) and Censored
Times To Failure (CTTFs) are taken into account for the
study (1.1); moreover, the number of failures observed
during a specified time span is also considered (1.2). CTTFs
arise when preventive maintenance is performed or a given
component survives longer than the exposure time.

During the second phase (2), the failure model is
specified. In the present work, the HPP is adopted for
modelling the failure behaviour of the considered devices.
+e HPP describes a scenario where the interarrival times
between failures are independent and identically distributed
according to an exponential distribution. Due to the fre-
quent preventive measures that completely restore the life of
the active components, the assumption of constant failure
rate (i.e., number of failures independent upon a time) is
regarded as appropriate for this study.

Next, the third part (3) consists of selecting the desired
estimation tool, which is used to compute the failure rate of
each apparatus (4). +ree estimation methodologies are
evaluated in this paper: (i) HBM (3.1), (ii) MLE (3.2), and
(iii) LSE (3.3). +e results arising from the different methods
are then compared (5) to point out the most accurate and
precise estimator. A special focus on the comparison be-
tween the more recent Bayesian inference and the classic
approaches is presented.

2.1. Hierarchical Bayesian Modelling. Assuming an HPP for
the failure events of a given system, the number of failures x,
experienced during a timeframe equal to t, can be obtained
via

f(x|λ) �
(λt)

x
e

− λt

x!
, x � 0, 1, . . . , (5)

where λ is the intensity characterizing the Poisson distri-
bution, i.e., the unknown parameter of interest. As suggested
by Siu and Kelly [49], the first-stage prior representing the
variability of λ among different sources should be a beta
distribution, given by

π1(λ|α, β) �
βαλα− 1

e
− βλ

Γ(α)
, (6)

where α and β are the hyperparameters, which are con-
sidered as independent before including any observations
into the analysis [48]. After choosing the likelihood and the
prior distributions, theMCMC simulations are performed to
determine the posterior distributions of the hyper-
parameters. As a result, the posterior distribution of λ is also
obtained through the sampling procedure.

2.2. Maximum Likelihood Estimation. Under the hypothesis
of HPP, the probability distribution of failure interarrival
times, denoted by T, is given by the following equations:

Mathematical Problems in Engineering 3



F(t) � 1 − e
− λt

, (7)

f(t) � λe
− λt

, (8)

where λ represents the rate of arrival. As previously dis-
cussed, the MLE determines the parameters of the consid-
ered distribution by maximising the likelihood function,
which in case of exponential distribution is expressed by

L(λ) � 
n

i�1
λe

− λTi � λn
e

− λ
n

i�1 Ti( 
� λn

e
(− λnT)

, (9)

where n indicates the total number of failures, while T is
addressed as the mean of the interarrival times. +e esti-
mator of λ is then found via [28, 53]

λ �
1
T

�
n


n
i�1 Ti

. (10)

2.3. Least Square Estimation. Let the interarrival time of
failures follow a negative exponential distribution, described
by equations (7) and (8). +e LSE estimates the unknown
parameters by defining a straight line that minimizes the
sum of squared distances between the observed data and the
line itself. +erefore, the exponential distribution should be
rewritten in the form shown by

y � ax + b. (11)

After applying the logarithm to both sides of equation (7)
and some simplification, the following equation is obtained:

t �
−ln[1 − F(t)]

λ
, (12)

which represents a straight line with a � −1/λ and b � 0,
while y � t and x � ln[F(t)]. Let t � (t1, t2, . . . , tn) be a
sample of TTFs, and the estimation of λ is found by min-
imizing the SSE reported by

SSE(λ) � 
n

i�1
ti −

−ln 1 − F ti(  

λ
 

2

, (13)

where ti stands for the ith observed TTF, while F(ti) is
replaced by the median rank, expressed by [54]

F ti(  �
i − 0.3
n + 0.4

, ti, i � 1, 2, . . . , n t1 < t2 · · · < tn( . (14)

3. Application of the Methodology to NGRMS

To show a practical application of the three approaches and
compare their results, an NGRMS (Figure 2) is chosen as a
case study. A generic NGRMS is divided into four groups
and twelve main components, listed in Table 1.

+e natural gas distribution network is a complex in-
frastructure formed by pipes and apparatuses able to
withstand high-pressure values.+us, before distributing the
methane to the final users, the gas pressure must be reduced
to be suitable for the various utilities. To fulfill this task,
NGRMSs are usually installed along with additional sub-
sequent pressure reduction units. +e core of the plant is the
reduction group, in which the pressure regulator and the
pilot are tasked with reducing the pressure. During standard

1. Data collection

2. Develop a failure 
model

3. Selection of 
estimation tool

3.2. Maximum likelihood 
estimation

3.3. Least square 
estimation

3.1. Hierarchical 
bayesian modelling

1.1. Collect times to 
failure

1.2. Collect number of 
failures

4. Estimate unknown 
parameters of interest

5. Result comparison

Figure 1: Flowchart representing the steps of the presented study.
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conditions, the pressure is decreased by varying the cross-
sectional flow area of the pressure regulator, while the
downstream pilot is activated just in case a faster or more
accurate pressure reduction is required. +e solid and liquid
impurities that could be present in the gas flow are removed
by the filter, which is located upstream of the pressure
regulator. Since decreasing the pressure is always accom-
panied by a temperature reduction, the gas must be heated
before entering the pressure regulator to avoid the formation
of ice. To this end, a water flow is preheated by a boiler, and
subsequently, it is sent to an exchanger in which flows the
methane gas. At last, the measuring group evaluates the
natural gas’s most relevant parameters (e.g., pressure,
temperature, and mass flow), while the odorization group is
required to add a precise quantity of odorizer, usually tet-
rahydrothiophene (THT), to the gas flow.

3.1. Data Collection. To implement the approaches, the
operations of a real-life NGRMS were reproduced through
the AnyLogic simulation software (developed by +e

AnyLogic Company, http://www.xjtek.com), focusing on the
stochastic failure generation process. +e developed model
has an NGRMS located in Tuscany near Arezzo Town and a
maintenance centre in Prato Town (Figure 3), served by two
maintenance teams available 24/7. +e first maintenance
squad is tasked with preventive actions, while the second one
is in charge of the corrective actions. Agent-based modelling
and fifteen simulation run were adopted for this study. From
each run, the TTFs, the CTTFs, and the number of failures
were extracted to conduct the subsequent analysis (step 1 of
Figure 1). It is worthwhile mentioning that the failure rates
adopted for the simulation are chosen based on real expe-
rience; therefore, from now on, they are considered as “real”
parameters. As a result, such failure rates are also exploited
as reference values to compare the precision of the three
estimation approaches.

For the sake of conciseness, the estimation methods will
be presented in detail for the pressure regulator; however, a
summary reporting the obtained results for all the consid-
ered components will be discussed later through this study.
Table 2 shows the observed number of failures and the

Table 1: NGRMS’ main groups and components.

Group Component
Reduction Pressure regulator (PR)

Pilot
Filter

Measuring Pressure and temperature gauge (PTG)
Calculator
Meter

Remote control system (RCS)
Odorization THT tank

THT pipelines
Preheating Pump

Boiler
Water pipe (WP)

Medium-pressure
gas

High-pressure
gas

F

F

F

4

10

53

2

1

76

M O

# Component
1 Regulation group
2 Measuring group
3 Odorization group
4 Boiler
5 Pump
6 Valve 
7 Filter
8 Exchanger
9 Pressure regulator
10 Pilot

8 9

Figure 2: Schematic representation of an NGRMS.
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number of preventivemaintenance actions arising from each
simulation run for the pressure regulator. Each simulation
run is considered as a different source of the failure rate of
the components for the HBM. After this brief introduction,
step 4 of Figure 1 will be implemented in the next sections.

3.2. Hierarchical Bayesian Modelling. +e BN illustrated by
Figure 4 was adopted to predict the posterior distribution of
λ. +e aforementioned number of failures observed in each
source (Table 2) is denoted by Xi, while λi refers to the failure
rate of the i-th run. +e calculation of posterior distribution
in Bayesian will be carried out by MCMC simulation. +ree
chains, each starting from a distinct point in the parameter
space, were used to assure the convergence. +e sampling
from the likelihood and the prior distribution was conducted
with 105 iterations for each chain, preceded by 1,000 burn-in
iterations. +e estimated posterior distribution of α and β
along with their respective mean values is shown in Figure 5.
Furthermore, the correlation between the two parameters is
represented in Figure 6.

+eMCMC sampling process revealed a mean value of α
equal to 0.3863, with a 95% credible interval of (0.1156,
0.9065), while the mean of the posterior predicted distri-
bution for β is 1.68E+ 4 hours with the following 95%
credible interval: (2.12E+ 3, 4.52E+ 4).

+e caterpillar plot representing the 95% credible in-
terval for the failure rate of each source is illustrated in
Figure 7. As shown in Figure 7, the computed mean value
(red vertical line) of the posterior predictive distribution for
λ is 1.68E− 05 (per hour). Table 3 reports a summary of the
posterior distribution of every λi.

Due to the different number of failures and distinct
exposure time observed in each source, the mean failure
rate varies significantly from source-to-source. For in-
stance, the first source is characterized by the highest mean
failure rate of 5.69E-05 (per hour) since it has experienced
the highest number of failures (3) in the shortest timespan
(44,300 hours). By contrast, the tenth pressure regulator
owns the lowest mean failure rate equal to 3.59E.06 (per
hour), because no failure has been detected for a decade.
+e source-to-source variability is incorporated within the
aforementioned mean value of 1.68E− 05 (per hour).

Considering an exponential distribution for the inter-
arrival time of failures, the MTTF is given by the reciprocal
of the failure rate, as shown in

MTTF �
1
λ
. (15)

Following equation (15), the MTTF of the pressure
regulator is estimated. It emerged that the average time
between two subsequent failure states is 59,524 hours (about
six and a half years).

3.3. Maximum Likelihood Estimation. To perform this step
of the analysis, the statistical software called Minitab was
exploited. Minitab allows considering both the TTFs and the
CTTFs for the estimation of λ. +e MLE application pro-
vides a failure rate of 1.22E− 05 (per hour), which

corresponds to an MTTF equal to 82,060 hours (more than
nine years). +e resulting probability density function is
reported in Figure 8.

3.4. Least Square Estimation. As in the previous step,
Minitab was adopted for the LSE as well. +e intensity of the
Poisson process estimated by the LSE method is slightly
higher than the rate calculated via the MLE. +e calculation
depicted a λ equal to 1.28E− 05(per hour), equivalent to an
MTTF of 78,219 hours (slightly less than nine years). +e
exponential probability density function of failure inter-
arrival time corresponding to the estimated failure rate is
illustrated in Figure 9.

4. Discussion

In this section, step 5 of Figure 1 is presented. As described
by the previous section, applying the three approaches with
the same input data provided three different values for the
failure rate of the pressure regulator. +e HBM yields a
failure rate of λHBM � 1.68E− 05, which results in an MTTF
equal to 59,524 hours. On the other hand, it emerged that the
MTTFs calculated by the MLE and LSE approaches are
much higher than the Bayesian ones. Indeed, the MLE and
the LSE quantified an average time between two subsequent
failures of 82,060 and 78,219 hours, respectively.

+e real failure rate (i.e., the one adopted during the
simulation process) is λREAL � 1.64E− 05, corresponds to a
MTTF of 60,882 hours. Accordingly, the calculation revealed
a much accurate and precise Bayesian estimator with respect
to the other ones. Indeed, the real value is underestimated by
the HBM for 1,300 hours (about 54 days), while the other
estimations are more than 2 years longer compared to
MTTFREAL.

A summary of the Bayesian results and the other ap-
proaches is listed in Tables 4 and 5. +e comparison will be
discussed further for each group in the following sections.

+e estimated MTTFs are transformed into dimen-
sionless values through the average time between two
consecutive failures adopted for the simulation (i.e.,
MTTFREAL). +e results are shown in Table 6 and Figure 10.

4.1. Reduction Group. To illustrate the differences arising
from the three estimation methodologies, the cumulative
distribution functions (CDFs) of each approach were de-
veloped for the reduction devices (Figures 11 and 12). As
depicted by Tables 4–6, the HBM provided the most accurate
estimation for the failure rate of the pilot, while the MLE and
the LSE of the MTTF are, respectively, 129 days longer and
154 days shorter than the real value. Considering the filter,
the difference between MTTFREAL and MTTFHBM is just
17 hours, while both the MLE and the LSE overestimate the
average time between two consecutive failures. +e MLE
yields an MTTF which is 20 days longer compared to
MTTFREAL, whereas the mean time span between two failure
states is estimated by the LSE as 25 days longer than the real
one.
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4.2. Measuring Group. For the calculator, the HBM yields a
posterior mean interarrival time of failure equal to 68,027
hours, while the MLE and the LSE of MTTF are estimated at
88,825 and 80,837 hours, respectively. Given the real value of
73,233 hours, the HBM is the most accurate estimation tool
once again. +e Bayesian approach manifested its advan-
tages over the other methodologies for the PTG as well.
Indeed, the difference between MTTFHBM and MTTFREAL is

128 hours (about five days), while both the MLE and the LSE
overestimate the real mean time between two contiguous
failures by approximately 1,000 hours (41 days). On the
contrary, the application of LSE emerged as the most precise
for both the meter and the RCS. However, the Bayesian
inference demonstrated greater accuracy than the MLE for
these two devices. +eMTTFHBM of the meter is just 14 days
longer than the MTTF estimated by the LSE, while the

α β

λ1 λ2 λn

X1 X2 Xn

Figure 4: Developed HBM for estimating the failure rate of each device.

Figure 3: Map of the location of the simulated case.

Table 2: Number of failures, preventive actions, and exposure time for the pressure regulator in each source (simulation run).

Source Number of failures Number of preventive actions Exposure time (hours)
1 3 0 44,300
2 1 0 44,300
3 2 0 44,300
4 0 1 78,840
5 0 1 78,840
6 0 1 78,840
7 0 0 54,000
8 1 0 54,000
9 0 0 54,000
10 0 1 87,600
11 2 0 87,600
12 2 0 87,600
13 1 0 61,320
14 1 0 61,320
15 0 0 61,320
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discrepancy between the Bayesian prediction and the LSE
estimator for the RCS is equal to 12 days. Both the HBM and
the LSE showed an estimation error of about 5,000 hours

(208 days) and 1,500 hours (62 days) for the meter and the
RCS, respectively. +e CDFs of the measuring components
are represented in Figures 13 and 14.
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Figure 5: +e posterior probability density function for alpha (on the left) and beta (on the right).
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Figure 7: Predicted 95% credible interval for the failure rate of the pressure regulator in each source. +e black dots are the posterior means
of each source, while the red line represents the average of posterior means.
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Table 3: Statistical properties of the failure rate for each source of the pressure regulator.

HBM parameter Mean 2.5 percentile 97.5 percentile
λ1 5.69E− 05 1.29E− 05 1.36E− 04
λ2 2.30E− 05 1.29E− 06 7.53E− 05
λ3 3.98E− 05 6.07E− 06 1.07E− 04
λ4 3.91E− 06 1.57E− 12 2.33E− 05
λ5 3.92E− 06 1.61E− 12 2.30E− 05
λ6 3.95E− 06 1.80E− 12 2.32E− 05
λ7 5.28E− 06 2.06E− 12 3.10E− 05
λ8 1.97E− 05 1.10E− 06 6.40E− 05
λ9 5.27E− 06 2.60E− 12 3.09E− 05
λ10 3.59E− 06 1.56E− 12 2.12E− 05
λ11 2.29E− 05 3.49E− 06 6.05E− 05
λ12 2.30E− 05 3.50E− 06 6.04E− 05
λ13 1.78E− 05 9.91E− 07 5.82E− 05
λ14 1.78E− 05 9.78E− 07 5.82E− 05
λ15 4.77E− 06 2.16E− 12 2.79E− 05
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Figure 8: Interarrival time of failure distribution for the pressure regulator obtained via MLE.
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Figure 9: Interarrival time of failure distribution for the pressure regulator obtained via LSE.

Table 4: Real failure rate and failure rates estimated through the three approaches.

Component Real λ λ HBM λ MLE λ LSE
Pressure regulator 1.64E− 05 1.68E− 05 1.22E− 05 1.28E− 05
Pilot 2.18E− 05 2.18E− 05 2.04E− 05 2.37E− 05
Filter 9.67E− 05 9.69E− 05 9.26E− 05 9.15E− 05
PTG 5.17E− 05 5.20E− 05 4.91E− 05 4.96E− 05
Calculator 1.37E− 05 1.47E− 05 1.12E− 05 1.24E− 05
Meter 2.26E− 05 2.01E− 05 1.84E− 05 2.02E− 05
RCS 2.67E− 05 2.55E− 05 2.54E− 05 2.57E− 05
THT tank 1.08E− 05 1.02E− 05 8.18E− 06 9.42E− 06
THT pipeline 7.55E− 06 7.79E− 06 6.17E− 06 9.76E− 06
Pump 4.80E− 05 4.82E− 05 4.50E− 05 4.31E− 05
Boiler 3.16E− 05 3.24E− 05 3.19E− 05 3.25E− 05
Water pipe 7.40E− 06 5.49E− 06 4.11E− 06 4.48E− 06
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4.3. Odorization Group. +e CDFs built for the THT tank
and THT pipe are illustrated in Figure 15. +e Bayesian
approach proved its higher performance also for the com-
ponents belonging to the odorization group. +e MTTFHBM

of the THT tank is estimated at 98,039 hours, which is about
5,500 hours (about 230 days) shorter than MTTFREAL. +e
MLE model resulted in an average interarrival time of 13,9
years, while the LSE yields anMTTF of 12.1 years. Compared

Table 5: Real MTTF and MTTFs estimated through the three approaches.

Component Real MTTF MTTF HBM MTTF MLE MTTF LSE
Pressure regulator 60,882 59,524 82,060 78,219
Pilot 45,815 45,872 48,909 42,123
Filter 10,337 10,320 10,800 10,934
PTG 19,359 19,231 20,379 20,151
Calculator 73,233 68,027 88,825 80,837
Meter 44,248 49,751 54,343 49,400
RCS 37,492 39,216 39,392 38,928
THT tank 92,593 98,039 122,272 106,137
THT pipeline 132,363 128,370 162,050 102,454
Pump 20,848 20,747 22,231 23,219
Boiler 31,623 30,864 31,362 30,741
Water pipe 135,166 182,149 243,075 223,270

Table 6: Dimensionless mean time to failure (D-MTTF) for each estimation approach.

Component D-MTTF HBM D-MTTF MLE D-MTTF LSE
Pressure regulator 0.978 1.348 1.285
Pilot 1.001 1.068 0.919
Filter 0.998 1.045 1.058
PTG 0.993 1.053 1.041
Calculator 0.929 1.213 1.104
Meter 1.124 1.228 1.116
RCS 1.046 1.051 1.038
THT tank 1.059 1.321 1.146
THT pipeline 0.970 1.224 0.774
Pump 0.995 1.066 1.114
Boiler 0.976 0.992 0.972
Water pipe 1.348 1.798 1.652
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Figure 10: Developed dotplot of the D-MTTFs for each methodology. +e black dashed line represents the real MTTF.
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to the real value, the ML and the LSE estimators showed a
gap of about 30,000 hours (more than three years) and
13,000 hours (about 1.5 years), respectively. For the THT
pipe, a similar scenario is seen. Indeed, both the ML and LS
of MTTFs are about 30,000 hours longer than the real av-
erage time expected before experiencing a failure. By con-
trast, the HBM predicted a posterior mean value of 128,370
hours, which is close to the real mean interarrival time to
failure of 132,363 hours.

4.4. Preheating Group. +e water pipe is the component
associated with the worst estimations due to extreme data
scarcity (Figures 16 and 17). +e HBM yields a posterior
MTTF of 182,149 hours, which is five years longer than
MTTFREAL. +e MLE and the LSE also overestimated the
real average time between two consecutive failures by 12 and
10 years, respectively. Considering the boiler, the MLE es-
timator is the most accurate, with a discrepancy of just 300
hours (almost 13 days) compared to MTTFREAL. Never-
theless, the application of the HBM is more precise than LSE.
At last, the Bayesian inference emerged as the best estimator

for the pump, presenting a gap of 100 hours (four days) with
respect to the mean interarrival time of failure adopted for
the simulation. On the other side, an overestimation of 58
and 99 days is observed, respectively, for the MLE and the
LSE of the MTTF related to the pump.

4.5. Discussion: Maintenance Application. +e HBM has
proven itself as the most reliable estimator under limited
data, which concerns particularly the pressure regulator, the
calculator, the THT tank, the THTpipe, and the water pipe.
Indeed, these components are characterized by a longer
MTTF than the other apparatuses; therefore, fewer failures
are observed during the same time interval. +e Bayesian
predictions of the failure parameter for the aforementioned
devices show a better precision than the other estimation
methodologies. Moreover, the accuracy showed by the HBM
is also higher than the other approaches for most of the
devices.+e root mean square error (RMSE) is calculated for
eachmethod to demonstrate the last statements, as shown by
equation (18):
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Figure 11: Developed CDFs for the pressure regulator and the filter.
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Figure 14: Developed CDFs for the PTG and the RCS.
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Figure 15: Developed CDFs for the THT tank and the THT pipe.
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Figure 13: Developed CDFs for the calculator and the meter.
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where n denotes the number of components, while MTTFi is
the estimated average time between two consecutive failures
for the ith device. At last, MTTFREAL, i is the mean inter-
arrival time between failures adopted for the ith equipment
during the simulation. +e RMSE computed for the HBM
through equation (16) is equal to 13,892 hours, while the
RMSE of the MLE and LSE is estimated, respectively, at
34,420 and 27,761 hours. Accordingly, the exploitation of the
Bayesian method will result in a much safer maintenance
strategy without overlooking economic aspects by avoiding
premature maintenance actions.

5. Conclusions

Any maintenance policy is deeply affected by the previous
failure rate estimation process, which often suffers from
limited data. +us, one of the most significant challenges
associated with the reliability analysis is selecting a proper
estimation approach capable of producing accurate and

precise results in case of limited data. To this end, the ap-
plication of three estimation tools is investigated in this
paper, with a particular focus on the comparison between
the Bayesian inference and two common estimation
methodologies: the MLE and the LSE. +e three analyses
were tested on twelve components of an NGRMS, whose
operations were simulated through a simulation model to
extract failure data (i.e., TTF, CTTF, and the number of
failures). Under the assumption of HPP, the results high-
lighted a greater accuracy of the HBM, which emerged as the
most precise estimator for nine devices out of twelve. +e
advantages of the Bayesian estimator are especially evident
in the event of data shortage, associated with the devices with
greater MTTF. Indeed, the lack of data is partially com-
pensated by the HBM through the consideration of source-
to-source variability, which is disregarded by the MLE and
the LSE. On the other side, the MLE and LSE precision
improves for the equipment characterized by more data
available, up to taking the upper hand over the Bayesian
inference for the meter, the RCS, and the boiler. However,
the discrepancy between the Bayesian predictions and the
other estimations for these components are negligible since
almost no difference can be seen from their respective CDFs.
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Figure 16: Developed CDFs for the water pipe and the boiler.
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Considering all the above, adopting a Bayesian approach for
the reliability analysis will help to deal with sparse data,
resulting in a more efficient and effective maintenance plan.
Further developments can include the application of weakly-
informative kind of prior to the Bayesian model to incor-
porate some prior knowledge into the estimation
framework.
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+e data used to support the findings of this study are in-
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An essential step in the implementation of predictive maintenance involves the health state analysis of productive equipment in
order to provide companymanagers with performance and degradation indicators which help to predict component condition. In
this paper, a supervised approach for health indicator calculation is provided combining the Grey Wolf Optimisation method,
Swarm Intelligence algorithm, and Fuzzy Cognitive Maps. )e k-neighbors algorithms is used to predict the Remaining Useful
Life of an item, since, in addition to its simplicity, they produce good results in a large number of domains. )e approach aims to
solve the problem that frequently occurs in interpolation procedures: the approximation of functions belonging to a chosen class
of functions of which we have no knowledge. )e proposed algorithm allows maintenance managers to distinguish different
degradation profiles in depth with a consequently more precise estimate of the Remaining Useful Life of an item and, in addition,
an in-depth understanding of the degradation process. Specifically, in order to show its suitability for predictive maintenance, a
dataset on NASA aircraft engines has been used and results have been compared to those obtained with a neural network
approach. Results highlight how all of the degradation profiles, obtained using the proposed approach, are modelled in a more
detailed manner, allowing one to significantly distinguish different situations. Moreover, the physical core speed and the corrected
fan speed have been identified as the main critical factors to the engine degradation.

1. Introduction

Although predictive maintenance practices have existed for
many years, only recently, thanks to the emerging Industry
4.0 technologies with increasingly reliable and affordable
smart systems, it has become widely accessible [1]. It has
several advantages, including machine life increase by 3–5%,
reduced maintenance costs by up to 40%, and returns on
investment up to 10 times [2].

One of the most relevant steps in the prediction process
is the choice of the best approach for the item behaviour
assessment, such as data-driven or model-driven approach
[3]. In particular, according to the platform developed by
Patel et al. [4] for the application of Industry 4.0 principles to
the industrial reality, the data-analytic layer is crucial to
understand a plant functioning. Moreover, if properly
designed, it allows users to identify the presence of invisible

relations among data provided by the application layer [5]. It
is also true that, according to the “no free lunch” theorems, a
standard procedure for predictive maintenance does not
exist. Still, it must be chosen among those that best suit the
reality under analysis [6]. In any case, regardless of the
adopted process, for a more accurate and optimal prediction,
it is necessary to gather and analyse appropriately large
amounts of data within a time frame [7, 8] with consequent
problems deriving from the identification of the most ac-
curate health indicators. )e health of a system can be
defined as the deviation or degradation of an item behaviour
from its regular operating performance [9].

)e calculation of a suitable health indicator (HI) is
fundamental to establish a link between the deviation or
degradation of an item and its Remaining Useful Life (RUL).
)us, an accurate HI is a key for a more precise prediction
tool, guaranteeing its reproducibility [10, 11]. )is
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observation is the reason why many researchers focus their
activity on this issue ranging from supervised and unsu-
pervised algorithms [12, 13] to physical [14] and virtual [15]
HIs.

)e HI assessment needs the monitored parameters
provided by the physical data from sensors to be trans-
formed into information represented as indicators. )e
potential benefits include not only the reduction of the
quantity of data examined but also the maximisation of the
useful information content [16].

In this context, the proposed paper lays its foundations.
An approach for HI definition and calculation is provided
combining the Grey Wolf Optimisation (GWO) approach,
belonging to the set of Swarm Intelligence algorithms, and
Fuzzy Cognitive Maps (FCMs). Subsequently, the
k-neighbors algorithms are used to predict the item RULs.

)e proposed approach, in comparison to previous
studies presented in the literature, does not require
knowledge about the gradients of the cost function and
constrained functions, guaranteeing both reliable and robust
performance and easy implementation. Moreover, it ensures
extreme flexibility and adaptability to a given domain. It
allows an in-depth understanding of a specific issue; thanks
to the possibility of symbolically representing the rela-
tionships among all the involved variables.

To present the methodology and analyse its perfor-
mance, the rest of the paper is organised as follows. Section 2
briefly describes the analysed literature on Swarm Intelli-
gence algorithms and FCMs application to predictive
maintenance. Section 3, divided into three sections, focuses
on the explanation of the FCMs theory and GWO algorithm
functioning. It then explains the proposed algorithm steps,
underlining its benefits. Section 4 shows the results obtained
using a dataset provided by NASA regarding the RUL
prediction for aircraft engines and compares the results with
an Artificial Neural Network approach. Conclusions have
been drawn in Section 5.

2. Literature Review

As mentioned, research on predictive maintenance has
grown in recent years due to the development of Industry 4.0
technology. Hence, to gather the most relevant contributions
dealing with maintenance in general and FCMs and Swarm
Intelligence applications in particular, a systematical ap-
proach has been adopted. )e Scopus scientific database has
been selected, considering that all the papers have an
available full text written in English. All articles have been
read to assess their relevance and pertinence to the theme
developed in this study. In Table 1, the combination of the
keywords selected, the number of papers retrieved by
Scopus, and the ones chosen for this literature review are
reported.

In recent literature, several contributions deal with the
development of HIs aiming at predicting the need for
maintenance interventions. For example, some authors
propose the implementation of dashboards for the
monitoring of the equipment health status in the semi-
conductor manufacturing industry [17, 18], while others

focus on structural vibrations analysis [19] and RUL
prediction [20, 21]. Various techniques and methodolo-
gies can be found in the literary contributions: for in-
stance, Baraldi et al. [22] develop a differential evolution-
based multiobjective model aiming at defining the health
status of the system and adopting maintenance strategies;
other authors, instead, apply artificial neural networks
[23] or genetic algorithms [24] to model the health status
of the system.

To the best of the authors’ knowledge, there is no
evidence of scientific papers dealing with predictive
maintenance through the application of FCMs and Swarm
Intelligence (SI) approaches. At the same time, a con-
tribution can be found only through the application of SI
methods. Li et al. [25], indeed, applied a multiclass rel-
evant vector machine—optimised through the application
of the SI dragonfly algorithm—to predict the failures of a
diesel engine. Other SI applications to the maintenance
field can be found in existing literature, for example,
Zheng et al. [26] use the particle swarm optimisation to
predict the performance degradation of aeroengines,
considering aspects such as fuel consumption, rotor vi-
bration, and thrust loss. A similar perspective is adopted
by Hu et al. [27], in diagnosing the failures of a gearbox,
through the particle swarm optimisation and the kernel
extreme learning machine, and by Zhao and Liu [28] who
solved the same class of problems through the rough set
theory. Several further SI applications to the maintenance
field instead focus on the definition of the maintenance
scheduling [29–32]; R. [33].

Going into detail regarding the GWO algorithm, some
applications in the maintenance field can be found in the
literature: the majority of them focus on the cost efficiency
of the maintenance processes. For example, it is applied to
optimise the design and maintenance of photovoltaic
power plants [34] or to minimise maintenance costs of
heat and power systems [35–38]. Kumar et al. [39] focus
on both the reliability and the costs of a Space Shuttle,
through the implementation of a multiobjective GWO.
Dalla Vedova et al. [40], instead, compare different al-
gorithms, among which the GWO is for the RUL esti-
mation of an aircraft actuator, while Abdelghafar et al.
[41] optimise a support vector machine through the GWO
to improve the detection of satellite sensor failures. Some
works focus on the scheduling through the imple-
mentation of the GWO Algorithm: it can be applied to
solve job shop and maintenance scheduling problems [42]
as well as to block flow shop scheduling, considering fuzzy
processing times and dynamic maintenance strategies
[43, 44].

FCMs have proved to be useful tools in supporting the
decision-making processes in the maintenance field. For
instance, they can be applied to verify the impact of
maintenance activities on a building’s energy efficiency [37]
or to identify the factors affecting human reliability during
the maintenance operations [45]. According to Gupta and
Gandhi [46], data coming from maintenance work orders
can be used to detect possible improvement areas in terms of
component design. Dynamic risk modelling is also
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performed through the FMCs: in Lopez and Salmeron study
[47], an FCM is built to assess the risk during the enterprise
resource planning of maintenance processes, while in
Jamshidi et al. [48], it is used to study the critical factors
related to the maintenance outsourcing. Damage detection
can also be performed through the FMCs. For instance,
Senniappan et al. [49] propose an application for the early
detection of damages in civil structures’ elements of support
based on an FCM, modelling both the knowledge obtained
from the domain experts and the existing literature. Instead,
Lee et al. [50] use rule-based FCMs based on the experts’
knowledge and experience to identify the factors acceler-
ating the deterioration of rubber components in order to
predict the maintenance timing and structure a diagnostic
process. In the work of Azadeh et al. [51], the FCM is used to
assess which factors among cognitive and temporal ones
have a more relevant impact on the execution of the
maintenance interventions. Similarly, maintenance errors
can be analysed through FCMs in order to highlight which
are the most critical and repetitive ones and recommend
modifications in the maintenance process or training [52].
Zhang et al. [53], instead, develop a robot dedicated to live
maintenance whose behaviour is predicted through an FCM.

According to the existing contributions, there is no
evidence of the joint implementation of FCMs and GWO,
even though both the methodologies have been successfully
applied to the maintenance field. Among the benefits har-
boured by the GWO, its ability to work in a dynamic en-
vironment is one of the most useful in this application field.
In parallel, the FCMs are useful for the qualitative simulation
of a modelled system. To sum up, the benefits harboured by
the joint implementation of the two techniques proposed in
this research approach are the flexibility and adaptability, as
well as the reliability and robustness of the performance.

3. The Research Approach

)e general scheme of a predictive maintenance procedure
proposed in this work is shown in Figure 1 and described
below.

(i) Preprocessing Data. Preprocessing means the
preparation of the dataset for analysis; it incorpo-
rates all the steps for dataset preparation. In this part
of the process, it is essential to get as much infor-
mation and indications as possible from the dataset.

(ii) Features’ Extraction. It is the step in which variables
are selected and/or the amount of data to be pro-
cessed is reduced, ensuring an accurate and com-
plete description of the original dataset.

(iii) Splitting Data. )is is an analytical step to under-
stand how to train the machine learning system in
the best way. As a matter of fact, within machine
learning systems, there are two parts: the first is the
training that, as the name may indicate, trains the
course and teaches it how to act. After this step, the
system is ready to perform what it has learned and
to test if the training completed in the previous step
was successful. )is is done through the score or
test. Given the significance that these two steps
assume, it is of fundamental importance to un-
derstand the best way to divide the available data
package in the right proportions.

(iv) Health Indicator Modelling. )e sensor readings,
reworked in the previous steps, are combined into a
single parameter called health indicator to be used
in the prediction of the adverse event.

(v) RUL Prediction. )e RUL equipment is carried out
in this work through the K-nearest neighbors
classifier [54] and Weibull fitting [55].

)e core activities of this work are the HI definition and
RUL Prediction. )e innovative proposed methodology to
develop these activities will be described in depth in Section 3.1.

Table 1: Summary of the selected literary contributions.

Keywords # of papers # of relevant papers
“Predictive maintenance” and “health indicator” 25 21
“Predictive maintenance” and “Fuzzy Cognitive Map(s)” and “Swarm Intelligence” — —
“Predictive maintenance” and “Fuzzy Cognitive Map(s)” — —
“Maintenance” and “Fuzzy Cognitive Map(s)” 42 10
“Predictive maintenance” and “Swarm Intelligence” 2 1
“Maintenance” and “Swarm Intelligence” 135 9
“Predictive maintenance” and “Grey Wolf” 1 —
“Maintenance” and “Grey Wolf” 33 10

Data
acquisition 

Preprocessing
data 

Features’
extraction 

Splitting
dataset 

Health indicator
modelling 

RUL prediction

Figure 1: General scheme for a predictive maintenance procedure.
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3.1. +e HI Modelling. )e proposed approach for the HI
modelling is performed by the combined use of FCM and a
Swarm Intelligence algorithm such as the GWO. Before
describing the proposed approach, the FCM and GWO
theories are briefly described in the following two sections.

3.1.1. +e FCMs’ Modelling. A cognitive map (CM) can be
thought of as a concept map reflecting mental processing,
comprised of collected information and several cognitive
abstractions, individually filtered, about regarding physical
phenomena and experiences [56]. Cognitive maps are visual
representations of an individual’s mental model constructs,
analogous to concept maps for representing human rea-
soning and knowledge or beliefs [7].)us, a generic problem
is considered, and an expert panel of experts is formed for its
in-depth analysis, since different individuals may face the
same question differently. According to their area of ex-
pertise through fuzzy logic, they model collective FCM
identifying concepts and relationships about regarding the
considered problem. In particular, concepts, in number of N,
are the FCM key elements that stand for the main char-
acteristics of the abstract mental model for whichever
complex system [57]. Once concepts are identified, experts
are asked to assign a numerical value wij (the weight of the
relation between concept ith and jth) for the W matrix,
which represents the influence of concept Ci on concept Cj.
According to equation (1), wij ranges in [–1, 1]. Specifically,
wij� 0 indicates no causality between concepts, wij> 0 in-
dicates causal Cj increases as Ci increases (or Cj decreases as
Ci decreases), and wij< 0 shows causal decrease or negative
causality (Cj decreases as Ci increases or Cj increases as Ci
decreases):

FCM �

w1,1 . . . w1,N

⋮ ⋱ ⋮

wN,1 . . . wN,N

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (1)

Although many studies exist concerning the dynam-
ical representation of an FCM, generally, the experts’
opinion aggregation of expert opinions for the collective
weight matrix modelling is performed using the SUM
method [58]. )en, overall linguistic weight is evaluated
using the centre of gravity (COG) defuzzification method
[59]. Some examples are presented by Bevilacqua et al.
[7, 60, 61] and Stylios et al. [62] where a unique credibility
value is assigned to each expert and a threshold function is
used in the aggregation. On the contrary, a modification of
the approach mentioned above has been provided by
Stylios and Groumpos [63] and Stylios and Groumpos
[64], introducing a corrective factor for the experts’
credibility evaluation. However, this approach does not
take into consideration the fact that, in a complex mul-
tidisciplinary problem, most experts have in-depth
knowledge of only parts of the problem and not the entire
issue [65].

Once the total weights’ matrix, W, has been designed, it
is possible to analyse the system behaviour through simu-
lations.)us, if Ai defines the instantaneous value of concept

Ci, its evolution over time can be evaluated computing the
influence of the related concepts Cj on the specific concept
Ci according to

A
k+1
i � f A

k
i + 

n

j≠ i

j�1

A
k
jwi,j

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (2)

where Aik+ 1 is the value of concept Ci at simulation step
k+ 1 and Ajk is the value of concept Cj at simulation step k.
Also, wij is the weight of the interconnection from concept
Cj to concept Ci and f is an appropriate threshold function
used to force the concept value to be monotonically mapped
into a normalised range [66]. Other equations can be used in
place of equation (2) as suggested by Mazzuto et al. [67] and
Osoba and Kosko [68].

An important topic in the FCM analysis is the indirect and
total causal effect evaluation (Axelrod, 1976), whose knowledge
allows an in-depth map analysis. )e indirect effect Ik of Ci
concept on Cj concept can be defined as shown in

Ik Ci, Cj  � min w Cp, Cp+1  . (3)

Ik is defined as the minimum numerical of the wij weight
along a single path between concepts ith to jth. At the same
time, the total causal effect T(Ci, Cj) (equation (4)) is the
maximum of the indirect effect of concept Ci on concept Cj:

T Ci, Cj  � max Ik Cp, Cp+1  . (4)

According to Bevilacqua et al. [7], equation (3) can be
described using the “weak ring in the chain” metaphor.
Indeed, it is necessary for the identification of ATO identify
concept concatenation as a chain where the weight wij is the
hardiness of each chain ring. In the presence of a weak ring
into the chain, it is not possible to consider it as a “resistant
chain,” and its total hardiness is quantified with the har-
diness of the weak ring. )erefore, once derived the value of
hardiness is derived from by equation (3), and equation (4)
allows defining the more resistant chain to be defined. Fi-
nally, the chain hardiness highlights the relevance of the first
concept in the concatenations affecting the top event.

In the proposed approach, the concepts of the FCM
represent the working conditions of the component to be
analysed, the sensor signals installed on the components,
and the HI of the component. )e FCM takes the advantage
of the situation to identify the relationships among all the
involved concepts in amatrix form to be used to calculate the
health indicator for the RUL prediction.

3.1.2. +e GWO Algorithm. Mirjalili et al. [69] introduced
the GWO, which mimics the hierarchy of leadership and the
mechanism for hunting grey wolf packs in the wild. )e
algorithm divides the agents (grey wolves) into four different
hierarchical categories called alpha (α), beta (ß), delta (δ),
and omega (ω), in the descending order.
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Each hierarchy has different roles to find solutions,
which in this case correspond to the prey. )e leaders of
the packs are the wolves called alphas. )e alpha is pri-
marily responsible for decisions about hunting, where to
sleep, and so on. )e alpha wolf is the dominant one, and
the pack must follow his orders. )e beta wolves identify
the second level in the hierarchy. )ey are subordinate
wolves that help the alpha in decision-making or other
pack activities. Moreover, a beta wolf must not only re-
spect the alpha but also command other lower level
wolves.

)e lower level grey wolf is the omega. )e ω plays the
role of scapegoat, and it helps to satisfy the entire pack
and maintain the dominant structure. Omega wolves
must always submit themselves to all other dominant
wolves. It may seem that the omega is not an essential
individual in the pack, but it is also true that the entire
pack faces internal struggles and problems if the omega is
lost. If a wolf is not an alpha, beta, or omega, it is called a
subordinate (or delta in some references). Delta wolves
must submit themselves to alphas and betas, but domi-
nate omegas. Scouts and hunters, for example, belong to
this category. )ey are responsible for guarding the
boundaries of the territory and warning the pack in case
of danger. Hunters help the alphas and betas to hunt prey
and provide food.

To mathematically model the social hierarchy of wolves
in the GWO design, α is therefore considered the most
suitable (optimal) solution. Consequently, the second- and
third-best solutions are named β and δ, respectively. )e
remaining candidate solutions are the ω ones.

In the GWO algorithm, α, β, and δ wolves impose the
rules of hunting and the ω ones follow them. In particular,
the hunt is composed of three main phases such as (i)
searching and chasing prey, (ii) surrounding and harassing
the victim until it stops moving, and, finally, (iii) attacking
the prey.

After spotting the possible prey, the wolves begin to
surround it and then move on to the attack. Equations (5)
and (6) model mathematically encirclement behaviour:

D � C · xp(t) − x(t)


, (5)

x(t + 1) � xp(t) − A · D, (6)

where D represents the difference between the position of
the prey and the predator, t denotes the current iteration, xp
specifies the location of the victim, and x indicates the wolf
location. Equations (7) and (8) allow one to calculate the A
and C values:

A � 2 · a · r1 − a , (7)

C � 2 · r2, (8)

where the components of a linearly decrease from 2 to 0
during each iteration and r1 and r2 are random arrays with
ranging in [0 1], and they allow wolves to reach any position
between the points, as illustrated in Figure 2.

As shown in Figure 2(a), a wolf in position (X, Y) can
update its location according to the prey’s position (X∗, Y∗),
and the same consideration is possible in 3D space
(Figure 2(b)), or in n dimension space.

It is assumed that alpha (best candidate solution), beta,
and delta have a better knowledge of the potential position of
the prey to simulate the hunting behaviour of wolves
mathematically. )erefore, the first three best solutions are
considered, and the other search agents (omega wolves) are
obliged to update their positions according to the location of
the best search agent [70].

As mentioned above, wolves end the hunt by attacking
their prey when it stops moving. If |A|< 1, the wolves begin
the attack phase by moving towards the victim. Wolves look
for prey mainly based on alpha, beta, and delta positions. In
this phase of research (exploration), the wolves move away
from each other to identify the different places of the prey
(solutions). )e vector A assumes values higher than one or
less than −1 and forces the research agent to diverge from the
victim.)is emphasises the exploration and allows the GWO
algorithm to search globally to find better prey.)us, once α,
β, and δ wolves are identified, all of the members’ pack
positions are updated according to

Dα � C1 · xα(t) − x(t)


, Dβ � C2 · xβ(t) − x(t)


,

Dδ � C3 · xδ(t) − x(t)


,

(9)

x1(t + 1) � xα(t) − A1 · Dα, x2(t + 1) � xβ(t) − A2

· Dβ, x3(t + 1) � xδ(t) − A3 · Dδ,

(10)

x(t + 1) �
x1(t + 1) + x2(t + 1) + x2(t + 1)

3
. (11)

Figure 3 describes the step to implement the GWO
according to the mentioned equations.

)e GWOhas the advantage of having few parameters to
initialise and be a flexible algorithm, so it can adapt to
various practical engineering problems. Indeed, only the
number of wolves in the pack (nPop) and the maximum
number of iteration (MaxIt) must be initialised. In Figure 3,
Iter is the current iteration. Moreover, the GWO can be
easily implemented, and thanks to its hierarchical structure,
which guarantees high accuracy in the solution.

Although recently introduced, the GWO has been used
in various fields of application. Das et al. [71] have tested the
GWO to optimise the parameters of a PID controller used
for speed control of a DC motor system. Komaki and
Kayvanfar [72] proposed the application of GWO to pro-
gram the optimal machining and assembly sequence to
minimise the completion time.)e results obtained with this
algorithm were then compared with other methods. )is
comparison revealed that the GWO provided better per-
formance. Nguyen et al. [73] used a multiobjective GWO to
solve the problem of node location in a wireless sensor
network. Various constraints were considered in the
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localisation model, including the limitation of spatial dis-
tance between nodes and the restriction of topology. )e
results of the simulations show significant improvements in
terms of localisation accuracy and rate of convergence to the
optimal solution, compared to those obtained with other
methods. Song et al. [74] used GWO to estimate the pa-
rameters of Rayleigh Waves (a type of elastic surface wave).

However, the research and development activities for
this algorithm are still at an early stage [75]. As previ-
ously stated, the GWO has a strong exploration capacity,
which can avoid convergence in excellent premises. )is
feature may lead the algorithm to slow convergence and
indeed led us to try GWO to define the wij values of the
FCM.

3.1.3. +e K-Nearest Neighbors Algorithm. An in-depth
analysis of the k-nearest neighbors (KNN) algorithm al-
lows underlining as it is simple and easy-to-implement
supervised machine learning algorithm used to solve both
classification and regression problems. Its functioning is
based on the similarity of the characteristics: the closer an
instance is to a data point, the more KNN will consider
them similar [76].

Once the HIs have been defined for each training unit, they
can be used as models representing the degradation profile,
from normal functioning to disruption. At this point, a set of
models Mi (with i� 1 to the number of items composing the
training dataset) is available and usable to predict the RUL.
)erefore, to find the most similar element, it is necessary to
measure the distance between the model Mi and Y� y1, y2, ...,
yr, which represents the HI of the test unit obtained through
consecutive observations. )e distance is calculated by the
Euclidean distance (depending on the problem under exam-
ination) or by the mean value of the absolute residual (used in
the proposed approach), as described by equations (11) and
(12). )us, the smaller the distance, the greater the similarity
between the data point and the instance to be predicted:

(a) (b)

Figure 2: )e pack hunting scheme [69].
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Figure 3: )e Grey Wolf flowchart.
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d xi, xl(  �
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xi1 − xl1( 
2

+ xi2 − xl2( 
2

+ . . . + xip − xlp 
2



,

(12)

d xi, xl(  � mean yi − yl


 , (13)

where yi is ith training model and yl is the l th testing one,
and each of them is composed of xi and xl components.

)en, the calculated distances are used as the argument
to evaluate the similarity weight, swi,l, between the testing HI
and all of the training ones considering

swi,l � exp −d xi, xl( 
2

 . (14)

Once obtaining the similarity weights among the testing
unit and training ones, it is possible to rank them in
descending order and identify the number of similar unit SU
as described in

SU � min(k, N), (15)

where N is the number of training units and k is an initial
fixed value. In particular, when k is small, it is limiting the
prediction region, forcing the classifier to be “more blind”
than the general distribution. On the contrary, a large k
reduces the impact of the variance caused by a random error
but runs the risk of ignoring small details that might be
relevant. For the proposed approach, initially, k is fixed equal
to 50. )us, having similar units, it is possible, considering
the relative end dates updated to the number of test samples,
to fit a Weibull distribution to find the RUL.

3.1.4. +e Procedure for HI Assessment. Figure 4 shows the
framework used to esteem the aircraft engine HIs and,
subsequently, to predict the RUL of the engine. )e pro-
posed algorithm can be classified within the condition
monitoring techniques. It consists of a general framework
and can be applied to any equipment. )e dataset, both
training and testing, are composed of the sensor readings of
the considered items.

In the “Time Indicator Modelling” phase, a lifetime in-
dicator (LTI) is defined. )e sample number of each piece of
equipment (that corresponds to the number of rows of the
dataset) represents its life duration.

)e main idea of LTI is to model a degradation profile
considering that, at the beginning of sampling, an item has
the maximum reliability value (equal to 1), and when the
disruption occurs, the item reliability has a minimum
amount (equal to 0). )e first value of LTI is equal to 1, and
the last one is equal to zero, according to

TIm
′ � DU Rm − 1 DU Rm − 2 . . . 0 , (16)

TIm(t)’′ �
TIm(t)

’

DU Rm

, (17)

LTIm(t) � TIm(t)′
 ′ + 1 − TIm(t � 1)′

 ′( , (18)

where DURm is the dataset length for the mth equipment.
Each element of TIm indicates the remaining cycle times to
the relative disruption at time t (then normalised in TIm”).
Hence, each value of LTIm decreases from 1 to 0. LTIm
represents the parameter to be esteemed and used in the
algorithm for the HI estimation. Table 2 shows an example of
LTI calculation.

)e “FCM Modelling” phase is the core of the proposed
approach to identify the HI. Figure 5 describes the iterative
phase for the HI calculation reviewing the general GWO
algorithm shown in Figure 3. In particular, the GWO al-
gorithm is used for defining the weight of the relation be-
tween concept ith and jth (wij values) of the FCM matrix.
)e concepts of the FCM represent the working conditions
of the equipment to be analysed, the sensor signals installed
on the equipment, and the last concept which is the HI. In
particular, since the purpose of the approach is the HI es-
timation using the FCM theory, the number of concepts
(NC) to be used is equal to the number of reduced dataset
variables’ number plus the HI (the algorithm output). )is
means that if the reduced dataset variables number is n,
NC� n+ 1.

)e iterative phase, shown in Figure 5, is executed for
each equipment belonging to the training dataset. In each
iteration, the final α wolf position is assumed as the tem-
porary FCMj and used as initial FCM for the next one. When
the terminal equipment has been analysed, the relative FCM
is considered as the optimal solution.

)e GWO algorithm is used to define the wij values of
FCM. )ese values randomly in the range [−1 1] or [0 1], as
required by the FCM theory, for each pack member. )en,
equation (1) calculates the relative cost. By analysing Fig-
ure 5, it is possible to highlight how the lifetime indicator
and the reduced dataset are used as input for the fitness
function calculation.

Assuming to have a reduced training dataset related toM
equipment, with nmain variables, it is divided inM reduced
subdataset, each one related to a specific equipment. )us, a
reduced subdataset RDm (the sensors’ readings of equipment
m withm� 1, 2, . . ., M) is available with the relative LTIm, in
the form expressed in

RDm �

Var
m
1,1 . . . Var

m
n,1

⋮ ⋱ ⋮

Var
m
1,f . . . Var

m
n,f

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, LTIm � lti1 . . . ltif .

(19)

)e term f identifies the instant in which the fault oc-
curred; n represents the progressive number of the main
reduced variables, and m is the number of considered
equipment.

)e pack members’ position, obtained through the
GWO application for a specific device, is given in the form of

FCMiter
p,m �

w1,1 . . . w1,NC

⋮ ⋱ ⋮

wNC,1 . . . wNC,NC

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (20)
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where p is the pth member of the pack (p� 1, 2, . . .nPop), iter
is the current iteration with iter≤MaxIt, and NC is the
concepts number for the FCM algorithm defined before.
)us, FCMiter

p,m is the relative position of the pth packmember
at the current iteration for the mth equipment.

By analysing Figure 5, it is possible to highlight the
presence of two main “for loop.” )e first one (external) is
referred to the number of available equipment (M) and the
second one (internal) to the maximum iteration number for
GWO (MaxIt).

At each iteration of the external loop (the iteration is
equal to the equipment number in the dataset), the LTI
related to a specific item is used as the benchmark for the
positional cost calculation (if the iteration is equal to one,
the LTI1 is examined). )is means that the external loop
has the objective of identifying the best FCMm for themth
equipment. In the internal loop, for the GWO applica-
tion, all the pack members take a position within the
domain space, updating it at each inner iteration. At the
end of the inner loop, the best position for the considered

item is identified (FCMm). )e obtained FCMm is used as
the initial position for the FCMm+1 identification (as long
as m <M) to improve its accuracy.

In the algorithm initialisation, FCM0
1 can be defined

randomly if there is no knowledge of the involved
equipment or a panel of experts cannot be established to
model it, as described for the classical FCM design ap-
proach, according to the experience of each professional
involved.

As mentioned before, equation (1) evaluates the fitness cost
value for each FCMiter

p,m.)is step is themost critical in thewhole
algorithm, as highlighted by Mazzuto and Stylios [77]. Indeed,
to calculate the cost connected to FCMiter

p,m
r, it is necessary to

consider all of the samples whichmake upRDm and LTIm.More
accurately, if RDm has f samples (as described above) as well as
LTIm, equation (1) has to be applied f times. Besides, since the
number of iteration (k) in equation (1) depends on the function
convergence or the fixed amount of repetition (FCMiter), the
fitness cost evaluation requires an iteration number equal to
(f · FCMiter). Considering nPop wolves and a maximum

Time indicator
modelling 

FCM modelling

Training health
indicator

definition 

Testing health
indicator

definition 

Prediction RUL

Training dataset

Testing dataset

Trained
FCM

Trained
FCM

Trained
HI

Tested
HI

Figure 4: )e proposed framework approach.

Table 2: An example of equations (16)–(18) application.

Steps description Equation application
Suppose machine 1 breaks after 10 sampling cycles; it follows that DU R1 � 10,
according to equation (16) TI1′ � 9 8 7 6 5 4 3 2 1 0 

According to equation (17), the relative normalised value TI’
′
1 � 0.9 0.8 0. 7 0.6 0.5 0.4 0. 3 0.2 0.1 0 

According to equation (18), the lifetime indicator LTI1 � 1 0.9 0.8 0.7 0.6 0.5 0.4 0. 3 0.2 0.1 
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iteration number for the GWO (MaxIt), the total number of
iterations for the identification of the optimal FCM is equal to
(f · FCMiter) · nPop · MaxIt.

Considering the pth pack member, once its position is
defined (FCMiter

p,m), its positional cost has to be calculated
according to equation (1) for the best position
identification.

)e main idea is to consider each sample in the reduced
dataset for a specific item (RDm) as the initial array A0 at the
specified iteration according to

A
0,j
m � Varm

1,j . . . Varm
n,j 0  , 4j � 1, 2 . . . f, m � 1, 2 . . . M.

(21)

)e null value is because the output is considered within
the set of FCM concepts, but it is the variable that needs to be
taken into consideration.

When the application of equation (1) reaches the con-
vergent, A

∗ ,j
m will be described by

A
∗ ,j
m � Varm

1,j . . . Varm
n,j HI

∗ ,j
m

  ,

j � 1, 2 . . . f, m � 1, 2 . . . M,

(22)

where Varm
1,j is the convergent value for the variable Varm

1,j

and HI
∗ ,j
m is the esteemed output for the sample at time j for

the mth engine.
Once all of the samples in RDm have been processed, a

final output array HI∗p,m for the pth pack member, equation
(23), will be available:

H
∗
p,m � HI

∗ ,1
m HI

∗ ,2
m . . . HI

∗ ,f
m

  , f, m � 1, 2 . . . M.

(23)

)us, the esteemed output HI∗p,m and the connected
LTIm can be used to calculate the fitness cost value (Citer

p,m),
for the pth pack member and themth item and at iteration
iter, using the root mean squared error formula, as
shown in

Start

Initialisation
wolf position 

Initialisation
grey wolf

parameters 

Fitness function
calculation 

α, β, and δ wolf
identification 

Reduced
Dataset (RDm) 

LifeTime
Indicator (LTIm)

m < M

Iter < MaxIt

α wolf identification

End

Update wolf
position using 7-9 

Update grey wolf
parameters 

Fitness function
calculation

using 2 

α, β, and δ wolf
identification Iter = Iter + 1

Reduced
Dataset (RDm)

LifeTime
Indicator (LTIm)

m = m + 1

Figure 5: Framework of the proposed methodology.

Mathematical Problems in Engineering 9



C
iter
p,m �

������������������


f
j�1 LTI

j
m − H

∗,j
p,m 

2

f




. (24)

)e root mean square error has been chosen because it
describes efficiently how concentrated the data is around the
line of best fit [78].

Finally, once the optimal FCM to be used for the HI
identification phases is identified, it is used to calculate the
HIs in the “Training Health Indicator definitions” and
“Testing Health Indicator definitions,” respectively.

4. Research Approach Application

To explain the proposed approach and to test its accuracy for HI
modelling, the Turbofan Engine Degradation Simulation
Dataset has been used. It is available online on the NASA
repository website (https://ti.arc.nasa.gov/tech/dash/groups/
pcoe/prognostic-data-repository/, last access July 21, 2020).

)e aircraft gas turbine engine has an integrated
control system, which consists of a fan-speed controller
and a set of controllers and limiters. In particular, it
includes three high-limit regulators aimed at preventing
the engine from exceeding its designed parameters [79].

Several categories of signals could be used, including
temperature, pressure, speed, and air ratio to monitor the
condition of the aircraft gas turbine engine. )e dataset is
composed of 21 sensors installed in the aircraft engine’s
different components, allowing the health conditions of the
aircraft engine to be monitored (see Figure 6). An excerpt of
the used dataset is shown in Table 3. To have a complete view
of the dataset, it is possible to refer to Saxena et al. [79] and
Xu et al. [80].

)e training dataset is made up of readings from 249
engines (for a total of 61249 rows and 26 columns), while the
testing dataset is made up of data from 248 engines (for a
total of 41214 rows and 26 columns). )e approach evalu-
ation has been carried out using Matlab 2019© installed on a
Intel® Core™ i7-6700HQ CPU @ 2.60GHz.

)e results of the proposed approaches have been compared
to those obtained using an artificial neural network, due to the
similarity between the Artificial Neural Network (ANN) and
FCM, in order to evaluate the performance of these approaches.
In light of this, to have comparable results, the initial dataset has
been standardised according to the working conditions and
then reduced through the trendability analysis [21] to guarantee
the impartiality of the data suitability obtained with the two
approaches. )e reduced dataset has been used as input for the
proposed approach and the ANN. More specifically, according
to Figure 6, the number of reduced sensors is equal to 8, such as
2, 3, 4, 8, 9, 11, 13, and 17 (see Table 4).

)ese sensors will be the concepts for the realised FCM
and the input for the ANN. Table 5 shows the nomenclature
used for each sensors, the concepts in FCM, and the input of
the ANN.

4.1. +e Proposed Approach Results. Once the training
dataset has been reduced, for each engine, according to

equations (16)–(18), the relative LTI array has been calcu-
lated (see Figure 7) to be used as output in the proposed
approach regarding the positional cost definition.

As far as the proposed approach is concerned, asmentioned
in Section 3.1.3, it can be initialised either using an FCM design
referring to the experience of an expert panel or with a random
matrix to be iteratively corrected. Due to the lack of availability
of the experts concerning the aircraft engine knowhow, for the
examined case study, a random initial FCM has been adopted.

Since the training dataset is composed of 249 engines, the
entire process has been carried out for 249 iterations during
which the FCM obtained in the previous iteration is corrected.
Figure 8 shows the convergence curves during the algorithm
iterations and highlights the final value of the last curve that
shows the minimum root mean square error equal to 1.6117.
Moreover, concerning the application of equation (2), the
hyperbolic tangent function has been chosen as the threshold
function f() with slope factor equal to 1.)emaximumnumber
of iterations for the positional cost calculus has been fixed equal
to 50 and an additional threshold value, equal to 10–3, has been
defined to potentially arrest the algorithm. )e required
training time to identify the final FCMhas been calculated to be
equal to 15 minutes due to the large numbers of samples
composing the dataset.

Table 6 shows the final wij values among the concepts of
the optimal FCM and the output of the proposed algorithm.
)e last row shows all null values being the last concept C9,
the HI, an output concept.

Analysing Table 6, it is possible to highlight the presence of
some low values (less than 0.1). It would be possible to filter the
final FCM so that these values could be considered null to
facilitate the HI calculus. However, the additional filtering
phase adds to the entire process a delay factor since the user

Index Symbol Description Units
1 T2

T24
T30
T50
P2

P15
P30

Total temperature at fan inlet
Total temperature at LPC outlet
Total temperature at HPC outlet
Total temperature at LPT outlet

Pressure at fan inlet
Total pressure in bypass-duct
Total pressure at HPC outlet

2
3
4

6
7

5

8 Nf Physical fan speed
Physical core speed9 Nc

10

HPT coolant bleed
LPT coolant bleed

Static pressure at HPC outlet
Ratio of fuel flow to Ps30

Corrected fan speed

Engine pressure ratio

Bypass ratio
Burner fuel-air ratio

Bleed enthalpy
Demanded fan speed

Demanded corrected fan speed

Corrected core speed

Epr
11
12
13
14
15
16
17
18
19
20
21

Ps30
Phi
NRf
NRc
BPR
farB

htBleed
Nf_dmd

PCNfR_dmd
W31
W32

°R
°R
°R
°R

Psia
Psia
Psia

Psia

rpm
rpm

rpm
rpm

rpm
rpm

—

—
—
—

pps/psi

lbm/s
lbm/s

°R
Psia
rpm

lbm/s

The Rankine temperature scale
Pounds per square inch absolute

Pounds per square inch

Revolutions per minute
Pulse per second

Pound mass per second

pps
psi

Figure 6: Sensors implemented in the aircraft engine [80].
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Table 3: An excerpt of the training dataset referring to Engine 1.

Id engine Cycle
Working
conditions Sensors

1 2 3 1 2 3 4 5 6 7 8 9 . . . 19 20 21
1 1 42.0 0.8 100.0 445.0 549.7 1343.4 1112.9 3.9 5.7 137.4 2211.9 8311.3 . . . 100.0 10.6 6.4
1 2 20.0 0.7 100.0 491.2 606.1 1477.6 1237.5 9.4 13.6 332.1 2323.7 8713.6 . . . 100.0 24.4 14.7
1 3 42.0 0.8 100.0 445.0 549.0 1343.1 1117.1 3.9 5.7 138.2 2211.9 8306.7 . . . 100.0 10.5 6.4
1 4 42.0 0.8 100.0 445.0 548.7 1341.2 1118.0 3.9 5.7 138.0 2211.9 8312.4 . . . 100.0 10.5 6.4
1 5 25.0 0.6 60.0 462.5 536.1 1255.2 1033.6 7.1 9.0 174.8 1915.2 7994.9 . . . 84.9 14.0 8.7
1 6 35.0 0.8 100.0 449.4 554.8 1352.9 1117.0 5.5 8.0 193.8 2222.8 8340.0 . . . 100.0 14.9 8.9
1 7 0.0 0.0 100.0 518.7 641.8 1583.5 1393.9 14.6 21.6 552.5 2387.9 9050.5 . . . 100.0 38.9 23.5
1 8 42.0 0.8 100.0 445.0 549.1 1344.2 1110.8 3.9 5.7 137.1 2211.9 8307.3 . . . 100.0 10.6 6.3
1 9 42.0 0.8 100.0 445.0 549.6 1342.9 1101.7 3.9 5.7 138.0 2211.9 8307.8 . . . 100.0 10.6 6.3
1 10 25.0 0.6 60.0 462.5 536.4 1251.9 1041.4 7.1 9.0 174.7 1915.2 8005.8 . . . 84.9 14.3 8.6
1 11 20.0 0.7 100.0 491.2 606.9 1478.0 1233.1 9.4 13.6 333.2 2323.7 8709.6 . . . 100.0 24.6 14.7
1 12 35.0 0.8 100.0 449.4 554.5 1366.0 1122.7 5.5 8.0 193.7 2222.8 8337.5 . . . 100.0 14.7 8.9
1 13 25.0 0.6 60.0 462.5 536.3 1257.8 1040.9 7.1 9.0 174.5 1915.3 8000.1 . . . 84.9 14.4 8.6
1 14 20.0 0.7 100.0 491.2 607.3 1470.3 1242.4 9.4 13.6 333.7 2323.7 8714.4 . . . 100.0 24.3 14.7
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 4: An excerpt of the reduced and normalised training dataset referred to Engine 1.

Id engine Cycle
Sensors

2 3 4 8 9 11 13 17
1 1 0.435 −1.385 −1.282 −0.608 −0.877 −1.207 −0.386 −0.327
1 2 −2.472 −0.888 −1.357 −1.660 −0.878 −1.416 −1.907 −2.277
1 3 −1.137 −1.432 −0.825 −0.357 −1.126 −1.311 −0.464 −0.929
1 4 −1.675 −1.717 −0.716 −0.524 −0.821 −1.242 −0.270 −1.531
1 5 −1.655 −0.935 −1.763 −0.911 −1.441 −0.861 −1.032 −1.272
1 6 −1.637 −1.837 −1.298 −1.059 −0.894 −1.579 −0.976 −2.293
1 7 −1.296 −0.753 −1.167 −1.106 −0.674 −1.691 −1.305 −0.970
1 8 −0.922 −1.274 −1.521 −0.357 −1.095 −1.520 −0.464 −0.929
1 9 0.155 −1.472 −2.530 −0.440 −1.066 −2.076 −0.347 −1.531
1 10 −1.007 −1.506 −0.723 −0.863 −0.621 −1.856 −0.808 −1.272
1 11 −0.879 −0.826 −1.855 −1.466 −1.102 −1.698 −1.433 −1.087
1 12 −2.132 0.199 −0.637 −1.020 −1.037 −1.543 −1.012 −1.063
1 13 −1.085 −0.487 −0.789 −0.626 −1.055 −1.110 −0.763 −1.272
1 14 −0.013 −1.985 −0.805 −1.368 −0.836 −1.487 −1.338 −0.492
1 15 −1.603 −0.284 −1.235 −0.863 −0.688 −1.069 −0.897 −1.969
1 16 −2.315 −1.459 −0.353 −1.514 −0.689 −1.769 −1.291 −2.277
1 17 −1.741 −2.353 −1.497 −1.383 −1.152 −1.489 −1.470 −0.721
1 18 −0.125 −1.193 −1.179 −0.273 −1.001 −1.172 −0.425 −0.929
1 19 −1.331 −1.684 −1.330 −1.612 −1.076 −1.275 −1.575 −1.087
1 20 −1.705 −0.936 −1.622 −1.612 −0.877 −1.275 −1.670 −1.087
1 21 −1.627 −1.728 −0.751 −5.281 −1.553 −1.015 −5.341 −1.550
1 22 −0.348 −1.623 −1.684 −1.514 −1.505 −1.557 −1.670 −1.087
1 23 −1.160 −1.553 −1.431 −1.039 −1.070 −1.319 −1.036 −1.550
1 24 −1.707 −1.503 −1.862 −0.721 −1.158 −1.027 −0.763 −2.666
1 25 −0.771 −1.574 −1.050 −0.566 −1.165 −1.172 −0.502 −0.929
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 5: Sensors nomenclature for FCM and ANN approaches.

Sensor 2 Sensor 3 Sensor 4 Sensor 8 Sensor 9 Sensor 11 Sensor 13 Sensor 17
FCM id C1 C2 C3 C4 C5 C6 C7 C8
ANN id I1 I2 I3 I4 I5 I6 I7 I8
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should define the filter threshold value properly through
specific algorithms, increasing the iteration time. Since the size
of the FCM concepts set, for the examined case study, is not so
big, the additional filter phase has been neglected.

)e final FCM can be graphically represented to evaluate
all the concatenations among concepts, as shown in Figure 9.

Once the final FCM has been obtained, the strength of
the concepts involved can be analysed so as to identify the
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Figure 7: LTI curves for the reduced training dataset.
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Figure 8: Convergence curves at each training iterations.

Table 6: )e identified FCM.

Concepts
C1 C2 C3 C4 C5 C6 C7 C8 C9

C1 — 0.090 0.016 −0.084 0.015 0.604 0.089 0.159 0.266
C2 0.106 — 0.405 0.509 −0.260 0.163 −0.255 0.069 −0.056
C3 0.091 0.045 — 0.173 0.029 0.420 0.322 0.749 0.022
C4 0.193 0.595 0.016 — 0.230 0.098 0.047 0.218 −0.042
C5 0.040 0.454 0.164 0.198 — 0.322 0.773 0.648 −0.998
C6 0.022 0.309 0.133 0.346 0.391 — 0.077 −0.892 −0.276
C7 0.320 0.293 0.166 0.770 1.000 0.555 — 0.790 −0.200
C8 0.171 0.122 −0.069 −0.156 0.239 0.153 0.329 — −0.062
C9 — — — — — — — — —
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main relevant ones and, through the critical path analysis,
identify those concepts that can be considered the leading
causes of the degradation profile for each engine.

Specifically, according to equation (3), Table 7 shows
the Total Effects’ matrix where the (i, j) values of this
matrix represent how much the concept indicated in the
rows affects the concept indicated in the columns.

)e most significant influence is related to the rela-
tionship between concept C7 (sensor number 13) and C1
(sensor number 2) with the strength value equal to 1. )is
relation means that C7, the Corrected fan speed, is the main
cause of the increase to C1 that is the Total temperature at the
LPC outlet.

Focusing on the degradation profile, the HI concept C9,
it is possible to highlight that concept C7, jointly with
concept C5 (sensor number 9, Physical core speed) have the
most significant weight since the strength value is equal to
-0.998. )is mean that the fan speed increasing is the rel-
evant cause of aircraft engine degradation.

Analysing in depth all the critical paths (Table 8) starting
from each concept of the FCM and ending in the conceptC9,
it is evident how the strength of the relationship between C7
and C9 is not a direct influence.)is is because C7 indirectly
affects C9 through the influence on C5. )us, C5 can be

considered the most relevant cause of aircraft engine deg-
radation. )is could be an important consideration for a
proper maintenance plan design.

Once the FCM has been analysed, it can be used to
calculate the HIs for each engine in the training dataset (the
first 50 HIs are shown in Figure 10) and also for the testing
dataset. In practical terms, the HI shape provides mainte-
nance managers with the real RUL value.

4.2. +e Comparison between the Proposed Approach with
ANN. Results of the proposed approach have been com-
pared to those obtained using an Artificial Neural Network.

C1

C2
C3

C6

C8

C4

C5

C9

C7

Figure 9: )e final FCM in the symbolic form.

Table 7: TEs matrix among all of the involved concepts.

Concepts
C1 C2 C3 C4 C5 C6 C7 C8 C9

C1 — 0.309 0.133 0.346 0.391 0.604 0.159 0.604 0.391
C2 −0.255 — 0.405 0.509 −0.260 0.405 0.322 0.405 −0.276
C3 0.320 0.309 — 0.346 0.391 0.420 0.329 0.749 0.391
C4 0.193 0.595 0.405 — −0.260 0.230 −0.255 0.230 −0.260
C5 0.320 0.454 0.405 0.770 — 0.555 0.773 0.773 −0.998
C6 0.193 0.391 0.309 0.346 0.391 — 0.391 −0.892 0.391
C7 0.320 0.595 0.293 0.770 1.000 0.555 — 0.790 −0.998
C8 0.320 0.293 0.166 0.329 0.329 0.329 0.329 — 0.329
C9 — — — — — — — — —

Table 8: Main paths affecting HI concept (C9).

Initial node End node TE
C1 C6 C5 C9 0.391
C2 C3 C6 C9 −0.276
C3 C6 C5 C9 0.391
C4 C2 C5 C9 −0.260
C5 C9 −0.998
C6 C5 C9 0.391
C7 C5 C9 −0.998
C8 C7 C5 C9 0.329
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)e ANNs were chosen for the comparison as this meth-
odology is one of the most used in literature for the eval-
uation of the HI and also due to the similarity with the FCM
method. As far as the ANN is concerned, the best results
have been obtained considering a two-level network com-
posed of ten neurons, respectively. Referring to the Lev-
enberg–Marquardt method [81] and using the mean squared
error as a performance indicator, Figure 11 shows how the
lower MSE is obtained at 60th epoch with a value ranging
between [10−2 10−1].

)e LTI shown in Figure 7 have been used to train the
ANN in order to obtain the HI estimation, as reported in
Figure 12.

)e HIs defined for the engines in the testing dataset
have been used for the RUL prediction using k-neighbors

algorithm. Table 9 shows an excerpt of the results. Specif-
ically, engines are reported in the ascending order in terms
of the FCM percentage error (%err FCM). )e second
column is the real RUL value for each machine (values
provided by NASA).

)e estimated RUL values by FCM and ANN (columns 3
and 4, respectively) underline how the proposed approach
performances are better than those obtained using ANN.

Figures 13 and 14 compare the Weibull distributions
derived from the similarity approach based on FCM and
ANN for HIs. )ese figures show, as an example, the case of
Engine 1. For all other engines, similar results have been
obtained.

)e RUL obtained by the ANN approach is affected by
an overestimation with respect to the FCM one. )us, few
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Figure 10: HIs’ curves for the first 50 engines of the training dataset through the proposed approach.
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Figure 11: Best validation performance of the used ANN used.
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involved curves allow the reduction of the variability range
for a likely prediction. )is is a typical problem of ANN that
has been overcome through the proposed method.

)e HIs defined using the proposed approach are more
accurate and, in addition, the algorithm provides significant
discrimination of all the considered aircraft engines (see
Figure 15). )us, small variations in the sensor readings
define quite distinct degradation profiles.

5. Discussion

)e proposed approach has the ability to operate in a dy-
namic environment with no significant difference in the

operation of the algorithm in steady state or dynamic mode,
guaranteeing a reliable and robust performance together
with an easy implementation.

At the same time, it requires particular attention by
users in defining all the involved parameters such as the
size of the dataset, the number of agents to be used to find
the final FCM, and the threshold values. Indeed, as
discussed, the total number of iterations and therefore the
total computational time to calculate HIs depends on
them. However, the analysed case study has highlighted
how this limitation can be overcome by applying, before
the algorithm initialisation, a dataset reduction to min-
imise the involved variables number.
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Figure 12: HIs’ curves for the first 50 engines of the training dataset through the ANN approach.

Table 9: An excerpt of estimated RUL for the testing dataset.

Id engine TrueRUL EsFCM EsANN %Err FCM %Err ANN
2 83 82.1 94.73 1.09% 14.13%
9 176 178.11 170.69 1.20% 3.02%
3 89 87.89 124.81 1.25% 40.24%
11 176 178.84 219.61 1.61% 24.78%
4 53 51.84 50.54 2.19% 4.64%
18 171 167.05 180.09 2.31% 5.32%
5 64 62.46 76.85 2.41% 20.08%
1 33 33.82 44.6 2.48% 35.15%
7 70 71.93 100.15 2.76% 43.07%
22 163 167.84 160.83 2.97% 1.33%
13 110 113.36 157.72 3.05% 43.38%
16 109 112.73 155.48 3.42% 42.64%
21 113 117.74 131.87 4.20% 16.70%
25 111 105.84 148.76 4.64% 34.02%
8 41 43.03 40.10 4.95% 2.20%
6 33 34.86 37.35 5.64% 13.18%
24 75 69.87 105.27 6.84% 40.36%
27 76 70.37 101.51 7.41% 33.57%
26 71 76.31 101.37 7.48% 42.77%
17 46 49.76 57.99 8.17% 26.07%
15 37 40.48 34.03 9.40% 8.03%
12 26 22.9 35.54 11.90% 36.69%
23 39 43.95 55.13 12.68% 41.36%
. . . . . . . . . . . . . . . . . .
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Figure 13: Engine 1, Probability Density Function, True RUL, and Estimated RUL with proposed approach (trueRUL� 33 and
estRUL� 33.82).
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Figure 14: Engine 1, Probability Density Function, True RUL, and Estimated RUL with ANN (trueRUL� 33 and estRUL� 44.60).
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Probably the most significant advantage of the swarm’s
intelligence is its ability to operate in a dynamic environ-
ment. )e swarm can continuously follow the path even for
rapidly evolving optimisation. In principle, there is no
significant difference in the operation of the algorithm in
steady state or dynamic mode [82]. Moreover, these algo-
rithms do not require knowledge, for example, about the
gradients of the cost function and constrained functions.
)ey guarantee reliable and robust performance together
with an easy implementation [83]. Specifically, as far as the
GWO is concerned, the most important one refers to the
small number of parameters needed for its implementation
and adjustment [84, 85].

At the same time, regarding the utilisation of FCMs, among
several advantages, the most important is their extreme flexi-
bility and adaptability to a given domain, allowing qualitative
simulation of a system once constructed. Furthermore, FCMs
symbolically represent knowledge, converting the relations
between the elements of a mental landscape to assess the impact
of these elements [86, 87].)e use of FCMs demonstrates other
additional benefits, including the use of fuzzy logic. Indeed, the
fuzzy set theory allows the incorporation of uncertainty due to
sparse and imprecise information [88]. A fuzzy value is a fuzzy
representation of a specific property when it is not precisely
known [89].)e fuzzy set theory and numbers are mainly used
to quantify the grade to which a property can be connected with
an object. It must not be confused with the concept of prob-
ability. Indeed, the causality among concepts is considered as a
certainty, since the concept of causality is not used to try to
identify or find relationships between factors such as structural
equation model and/or Bayesian nets [90].

6. Conclusion

In this paper, an innovative supervised approach that
combines a Swarm Intelligence algorithm, the GWO, and
FCMs is proposed for HI analysis and calculation. )is
approach allows maintenance managers to predict the RUL
of items through the use of k-neighbors algorithms as well as
to have an in-depth understanding of the degradation
process; thanks to the analysis of the main paths of concepts
that affect the HI. In order to enhance the operating reli-
ability and reduce maintenance costs, an integrated fault
diagnosis and prognosis framework that analyse the ma-
chinery degradation process is necessary.

In the proposed approach, the working conditions of the
engines and the sensor signals installed on engines become
the concepts of the FCM, while the GWO, a Swarm Intel-
ligence algorithm, has been used for defining the connection
weight among these concepts and the HI concepts.

A dataset provided by NASA that concerns the data of
aircraft engines has been used to test the proposed approach.
)e case used underlines a crucial aspect. Comparing the
results with those obtained through neural networks, the
proposed algorithm models, and all of the degradation
profiles in a more detailed manner allows one to significantly
distinguish different situations without imposing any
specified mathematical functions. )is consideration is re-
flected in fewer profiles that can be considered similar to the
case in question and, consequently, give a more precise
estimate of the RUL. Moreover, analysing the final FCM, the
physical core speed and the corrected fan speed have been
identified as the main critical factors to the engine
degradation.

Furthermore, the use of the FCM approach allows the
user to be able to analyse in an intuitive way the relationships
between the variables involved and thus have a greater
understanding of the degradation process, which is im-
possible for an ANN. Indeed, in an ANN, the variables
involved are the inputs for the system and the neurons
concatenation has no meaning to understand the process.
On the contrary, in an FCM, the variables are simultaneous
inputs and “neurons,” so their concatenation gives more
information about the process.

)e performance of the proposed approach has been
demonstrated using a NASA dataset, but it can also be
applicable to the other fault diagnosis and prognosis
equipment. A wide range of experiments will be per-
formed to investigate the robustness of the proposed
method in our next step research. At the same time, it is
evident how the proposed approach can be based not only
on a feature reduction but also on the determination of the
most useful items for the training phase. Indeed, con-
sidering all the variables involved for the algorithm ap-
plication (number of wolves, maximum iteration number
for the GWO, thresholds etc.), the total number of iter-
ations for the identification of the optimal FCM can be
very huge and time-consuming. For this reason, as further
development is crucial to design a preliminary step to be
used after feature extraction step.
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Figure 15: HIs’ comparison using FCM and ANN for Engine 1.
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Data Availability

To explain the proposed approach and to test its accuracy for
Health Indicator modelling, the Turbofan Engine Degrada-
tion Simulation Data Set has been used. It is available online
on the NASA repository website (https://ti.arc.nasa.gov/tech/
dash/groups/pcoe/prognostic-data-repository/, last access
July 21, 2020).
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,e gear fault signal has some defects such as nonstationary nonlinearity. In order to increase the operating life of the gear, the
gear operation is monitored. A gear fault diagnosis method based on variational mode decomposition (VMD) sample entropy and
discrete Hopfield neural network (DHNN) is proposed. Firstly, the optimal VMD decomposition number is selected by the
instantaneous frequency mean value. ,en, the sample entropy value of each intrinsic mode function (IMF) is extracted to form
the gear feature vectors. ,e gear feature vectors are coded and used as the memory prototype and memory starting point of
DHNN, respectively. Finally, the coding vector is input into DHNN to realize fault pattern recognition. ,e newly defined coding
rules have a significant impact on the accuracy of gear fault diagnosis. Driven by self-associativememory, the coding of gear fault is
accurately classified by DHNN.,e superiority of the VMD-DHNNmethod in gear fault diagnosis is verified by comparing with
an advanced signal processing algorithm.,e results show that the accuracy based on VMD sample entropy and DHNN is 91.67%
of the gear fault diagnosis method. ,e experimental results show that the VMD method is better than the complete ensemble
empirical mode decomposition with adaptive noise (CEEMDAN) and empirical mode decomposition (EMD), and the effect of it
in the diagnosis of gear fault diagnosis is emphasized.

1. Introduction

Gears are widely used in modern industrial machines and
play a key role. When the gear is damaged, the transmission
machinery will cause huge economic losses. ,e corre-
sponding vibration signal will be generated when the gear
runs under normal, wear, cracked, and broken teeth, which
contains abundant fault information [1]. ,erefore, it plays
an important role to monitor the running state of the gear,
which can be detected and replaced when the early weak
fault occurs.

,emost mature gear monitoring technology is based on
the vibration signal. When the gear is damaged, the cor-
responding vibration signal will change. ,erefore, it is only
necessary to collect the vibration signal of gear under the
corresponding fault state and extract the corresponding
feature, and then, the fault diagnosis of gear can be carried

out. ,e innovation of gear fault diagnosis technology is
based on the signal method. Traditional gear fault diagnosis
methods include time-frequency domain analysis. Classical
signal processing methods such as wavelet packet transform
(WPT), Hilbert–Huang transform (HHT), and short-time
Fourier transform (STFT) have been widely used in the field
of fault diagnosis [2]. Mohammed et al. [3] utilized the
vibration signal for gear fault diagnosis. Rafiee [4] utilized
autocorrelation of continuous wavelet coefficients (CWCs)
for gear fault diagnosis. ,ese traditional time-frequency
transforms are still insufficient in time-frequency resolution.
Empirical mode decomposition (EMD), local mode de-
composition (LMD), and other modern signal processing
methods have also been applied [5–7]. Rafiee et al. [8] in-
troduced an automatic feature extraction system for gear
and bearing fault diagnosis using wavelet-based signal
processing. However, EMD and LMD methods have
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problems such as mode-mixing and endpoint effect [9, 10]. In
order to effectively solve the mode-mixing and endpoint effect
of the EMD and the LMD, variational mode decomposition
(VMD) came into being [11]. VMD overcomes the short-
comings of the traditional signal adaptive decomposition
methods of EMD and LMD, which converts the signal de-
composition into a variational problem and solves the signal
adaptive decomposition by seeking the optimal solution of the
problem. However, the parameter combination of the penalty
factors and the number of decomposition should be determined
before VMD decomposition, which brings great difficulties to
the accurate decomposition of signals. Some researchers used an
optimization algorithm to optimize the parameter combination
of the penalty factors and the number of decomposition in the
VMD decomposition process. ,e genetic mutation particle
swarm optimization (GMPSO) algorithm to optimize the VMD
algorithm parameters is utilized by Ding [12, 13]. Experimental
results show that he GMPSO-VMD algorithm has a good
decomposition effect on the gear fault signal. ,e optimal
adaptive VMD decomposition algorithm can adaptively de-
termine the penalty factor and decomposition number in the
VMDalgorithm according to the time-frequency characteristics
of different fault signals [14]. A variationalmode decomposition
method based on a cuckoo search algorithm to adjust the
changes in internal parameters in VMD decomposition is
utilized by Yan and Jia [15], and the multicomponent signal
could be adaptively decomposed into a subsignal superposition
of inherent mode function. ,e VMD adaptive decomposition
algorithm [16] can be realized by adaptively adjusting the pa-
rameters of vibration signals of rotatingmachinery under VMD
decomposition, such as the optimal number of mode decom-
position and frequency bandwidth control.

,e intrinsic mode functions (IMFs) of the original fault
signal were decomposed by the VMD algorithm, the IMFs
contain abundant characteristic parameters, and different
characteristic parameters represent different physical mean-
ings.,erefore, selecting more effective feature parameters can
increase the recognition accuracy for subsequent fault diag-
noses. ,e vibration signal of rotating machinery is usually
nonlinear and nonstationary, which makes it very difficult to
extract fault features. Entropy value can be used as a very
effective parameter to extract fault features [17]. In order to
improve the fault identification accuracy of rolling bearing,
Chen applied the rapid sample entropy [18] and the improved
multiscale amplitude-aware permutation entropy (IMAAPE)
[19] to the feature extraction of rolling bearing diagnosis signal
and achieved good results. A milling flutter detection method
based on VMD and energy entropy is proposed by Liu et al.
[20]. In order to automatically detect the flutter frequency band
better, a flutter detection method based on energy entropy was
proposed.,e energy entropy value is taken as the fault feature
parameter to extract, and it is verified that the energy entropy
value can effectively express the flutter characteristics. ,ere-
fore, according to the advantages of simple sample entropy
calculation and fast calculation speed, this paper selects it to
extract the vibration signal feature of gear fault.

,e feature vectors after feature extraction can be used as
the input vectors in the fault diagnosis model. As a classifier,
support vector machine (SVM) has been studied by

researchers for a long time. VMD is used to extract features
from signals, and SVM is used for fault diagnosis.,e results
show that, under complex conditions, the proposed method
can also perform fault diagnosis more accurately [21, 22].
However, in the process of SVM classification, kernel
functions need to be solved according to specific problems
and are not self-adaptive. In addition, there are many deep
learning algorithms for fault diagnosis research, such as deep
belief network (DBN) [23], long short-term memory
(LSTM), deep self-encoder (DSE), deep convolution neural
network (DCNN), and other deep learning algorithms
[24–28] in recent years. However, the training time of the
deep learning algorithm is too long to make fault diagnosis
in time. ,e discrete Hopfield neural network (DHNN) is a
recursive neural network, which was first proposed by JJ
Hopfield [29]. Its operating mode is a binary system, and the
value of the network node is only 1 or −1. It is a neural
network model that can simulate human memory. In the
field of mechanical fault diagnosis, DHNN has not been
applied to gear fault diagnosis. So it is a new attempt to apply
DHNN to gear fault diagnosis.

Based on the shortcomings of the EMD and the LMD,
the optimized VMD is utilized to decompose the gear fault
vibration signal. ,e sample entropy value is extracted as the
characteristic parameter. Because the sample entropy is
sensitive to the change of signal chaos, the sample entropy as
the signal feature parameter is extracted by this paper. Based
on the above literature on deep neural network algorithms, it
is concluded that the deep neural network algorithm has too
long training time in fault diagnosis and cannot quickly
make fault diagnosis. ,erefore, this paper synthesizes the
shortcomings of the above literature. In order to quickly and
accurately diagnose faults, a gear fault diagnosis based on
VMD sample entropy and DHNN is proposed.

2. Experimental System and Methods

2.1. Experimental System. ,is section verifies the gear fault
diagnosis capability of the VMD-DHNN method under
different working conditions. ,is method mainly analyzes
the fault signals collected from the gear experimental test rig.
,e gear experimental test rig is shown in Figure 1. ,e
active and slave gears are all bevel gears, and the vibration
acceleration signals from the gearbox are collected by using
B&K data collector. Meanwhile, the sampling frequency and
sampling time of the experiment were 8192Hz and 0.25 s,
respectively. ,e test rig includes an electromagnetic speed
control motor controller, a three-phase asynchronous mo-
tor, two couplings, a reducer, an acceleration sensor, a B&K
data acquisition analyzer, and a laptop. ,e gear fault parts
are shown in Figure 2.

2.2. VMD Sample Entropy and DHNN Fault Diagnosis
Method. As mentioned in Introduction, the VMD is se-
lected in this paper to avoid the endpoint effect and mode
confusion of the EMD and the LMD. ,e VMD has the
advantage of high accuracy of the center frequency of each
IMF and fast calculation speed, while DHNN has the
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advantage of associative memory to speed up the calculation
speed and improve the accuracy. ,e effectiveness of the
method is verified by the measured gear fault diagnosis
experiment. ,e implementation steps of the VMD-DHNN
method are shown in Figure 3.

,e detailed steps of the VMD-DHNN method are as
follows:

(i) Step 1. ,e optimal number of the VMD decom-
position algorithm is selected.

(ii) Step 2. ,e optimized VMD algorithm is utilized to
decompose the gear fault signal.

(iii) Step 3. ,e sample entropy value is extracted from
each IMF, which form the feature vector of gear fault.

(iv) Step 4. ,e gear fault feature vectors are encoded.
(v) Step 5.,e encoded fault feature vectors are input to

DHNN for gear fault diagnosis.
(vi) Step 6. Output results.

3. Gear Fault Feature Extraction of VMD
Sample Entropy

3.1. VMDMethod. Dragomiretskiy and Zosso proposed the
VMD algorithm [11] in 2014.,e original gear signal f(t) is
decomposed into k IMFs xk(t) by the VMD algorithm. ,e
core of VMD is to construct an L2 norm equation, whose
formula is expressed as

min
uk{ }, ωk{ }
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where ωk is the center frequency of the IMFs and zt is the
differential symbol.

,e alternate direction method of multipliers (ADMM) is
used to calculate equation (2), and the optimal solution is
expressed as

x
n+1
k (ω) �

f(ω) − i≠kxi(ω) + λi(ω)/2 

1 + 2α ω − ωk( 
2 ,

ωn+1
k �


∞
0 ω|u(ω)|

2dω


∞
0 uk(ω)



2dω

,

(3)

(a) (b) (c) (d)

Figure 2: Gear fault parts: (a) normal gear; (b) gear with tooth crack; (c) gear with tooth wear; (d) gear with tooth break.

(1) (2) (3) (4) (5) (6)

(7)(8)

Figure 1: Gear experimental test rig: (1) three-phase induction motor; (2) electromagnetic speed control motor controller; (3) laptop; (4)
B&K data acquisition analyzer; (5) coupling; (6) acceleration sensor; (7) reducer; (8) coupling.
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where f(ω), xi(ω), and λ(ω) represent the Fourier trans-
form of f(ω), xi(ω), and λ(ω), respectively, and ε repre-
sents the discriminant accuracy.

According to reference [30], the optimal decomposition
number of the VMD is selected through the change in in-
stantaneous frequency mean value. ,is paper also selects
the optimal decomposition number of the VMD by the same
method. According to literature [11], the penalty factor α
and discriminant accuracy ε of the VMD algorithm are 2000

and 10-7, respectively. After repeated experimental analysis,
the optimal decomposition number k � 4.

3.2. Sample EntropyMethod. Sample entropy is an indicator
to measure the complexity of time series signals. ,e higher
the sample entropy value of the signal, the more complex the
signal. ,e sample entropy is calculated as follows:

(i) Step 1. A vector sequence with dimension m by
ordinal number is formed, Xm(1), . . . , Xm(N −

m + 1), wherexm(i) � (xm(i), xm(i + 1), . . . , xm(i +

m − 1)). ,ese vectors represent m consecutive
values of x starting at the point i.

(ii) Step 2. ,e distance between vector Xm(i) and
Xm(j) is defined, and d[Xm(i), Xm(j)] is the ab-
solute value of the maximum difference between the
corresponding elements, that is,

d Xm(i), Xm(j)  � max
k�0,1,...,m−1

(|x(i + k) − x(j + k)|). (4)

(iii) Step 3. For a given Xm(i), the number of
j(1≤ j≤N − m, j≠ i) is counted whose distance
between Xm(i) and Xm(j) is less than or equal to
threshold r, and it is called Bi. For 1≤ i≤N − m,
Bm

i (r) is defined as

B
m
i (r) �

Bi

N − m + 1
. (5)

(iv) Step 4. ,e average value of the Bm
i (r) is defined as

B
m

(r) �
1

N − m


N−m

i�1
B

m
i (r). (6)

(v) Step 5. ,e dimension to m + 1 is increased, the
number of j(1≤ j≤N − m, j≠ i) is counted whose
distance between Xm+1(i) and Xm+1(j) is less than or
equal to threshold r, and it is called as Ai. Am

i (r) and
is defined as

A
m
i (r) �

Ai

N − m + 1
. (7)

(vi) Step 6. ,e average value of the Am
i (r) is defined as

A
m

(r) �
1

N − m


N−m

i�1
A

m
i (r). (8)

So the sample entropy is defined as

SampEn(m, r, N) � −ln
A

m
(r)

B
m

(r)
 . (9)
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Figure 3: ,e flow chart of VMD sample entropy and DHNN gear
fault diagnosis.
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,e 16 sets of data in the four states were separately
decomposed by VMD. ,rough the previous analysis, the
original gear fault signal is decomposed into 4 IMFs, and
then, the sample entropy value of each IMF is extracted to
form the gear fault feature vector. G1 represents the normal
gear, G2 represents the gear with tooth wear, G3 represents
the gear with tooth crack, and G4 represents the gear with
tooth break. SampEn1 represents the sample entropy value
of the component IMF1, SampEn2 represents the sample
entropy value of the component IMF2, SampEn3 represents
the sample entropy value of the component IMF3, and
SampEn4 represents the sample entropy value of the
component IMF4. Table 1 shows the sample entropy values
of the IMFs.

In order to obtain a better classification effect, it is
preliminarily classified from the size range of the overall
sample entropy. ,e distribution of the size range of the
overall sample entropy is shown in Table 2.

,en, the entropy value range of the samples of normal
gear, gear with tooth wear, gear with tooth crack, and gear
with tooth break is divided from SE1–SE4 (see Table 3 for
details).

4. DHNN Fault Diagnosis Model

4.1. DHNN Method. ,is paper attempts to find a new
method of gear fault diagnosis and establishes a new di-
agnosis model for gear fault diagnosis. ,erefore, a new
method of discrete Hopfield neural network (DHNN) was
proposed to diagnose the entropy characteristics of gear fault
samples, so as to solve the problems of low fault diagnosis
accuracy and slow diagnosis speed of traditional methods.
,rough testing the established model, the results showed
that the algorithm had better detection and diagnosis results.

Due to its network structure and activation function set-
tings, DHNN has the functions of associative memory and
nonlinear mapping of information, classification, and recog-
nition. It has been widely used in the field of fault diagnosis.

After the VMD decomposition of the gear vibration
signal, the sample entropy value is extracted from each IMF
to form the feature vectors. ,en, it encodes the feature
vectors as the memory prototype and memory starting point
of the associative memory, respectively. ,en, the coding
vectors are input to DHNN for fault diagnosis.

,e design steps of this fault diagnosis model mainly
include the following eight steps, as shown in Figure 4.

4.2. Structure of DHNN. ,e DHNN is a binary input and
output binary neural network. Taking the DHNN network
structuremodel composed of 3 neurons as an example, as shown
in Figure 5, two layers of neurons are set, but only the first layer
of neurons is the actual neurons.,e first layer of neurons reads
the input signal of layer 0, and after weighted cumulative
summation, and then activates the sgn function to discriminate
and outputs the signal to the next step until the network reaches
steady state. ,e structure of DHNN is shown in Figure 6

Layer 0 is only the input layer of the DHNN, and it is not
the actual neuron, so layer 0 has no computing power. ,e

layer 1 is the actual neuron, whose function is to sum the
product of the input information and the weight coefficient
and produces the output information after the processing of
the nonlinear function sgn, where the original information
SEi is input from layer 1 to layer 0 for operation.

,e entropy value of the gear fault sample
SE � (SE1, SE2, . . . , SEi) and the neuron node state of
DHNN are 1 or −1; 1 means that the neuron is activated, and
−1 means that the neuron is inhibited. hi(t) is the weighted
cumulant input by the neuron at the moment. As calculated
by the following equation,

hi(t) � 
n

i�1
ωij − qi, j � 1, 2, 3, (10)

where ωij is the connection weight between neuron i and
neuron j, qi is the threshold of neuron i, and then, the next
state yi(t + 1) of neuron i is calculated as shown in the
following equation:

yi(t + 1) � sgn hi(t)(  �
1, hi(t)≥ 0,

−1, hi(t)< 0.
 (11)

Let yi(t) be the output value of neuron i at time t, and the
network feeds yi(t) back to the input terminal to become the
input value of neuron i at the next moment, thus obtaining
the output value of the network at the next moment
yi(t + 1), as shown in equation (12). After a certain number
of iterations of the network according to the calculation
method shown in equation (12), the network will converge to
a steady state. In this case, the output value of the network
should be the same as the output value at the previous
moment, as shown in equation (13):

yi(t + 1) � sgn hi(t)( , (12)

yi(t + 1) � yi(t). (13)

As it can be seen from the above equation, the output
value of DHNN is only 1 or −1, where 1 represents that the
neural network node is activated, and −1 represents that the
neural network node is suppressed.

4.3.DHNNEncodingRules. Firstly, the standard data set was
input into the DHNN for binary coding, and then, the
coding vectors were input into the DHNN for training. ,e
state of neurons in DHNN neural network is only 1 and −1,
and the coding of DHNN neural network needs to change
the state of neurons. So, it is necessary to code the evaluation
index when mapping to the state of the neuron. Coding rule:
when greater than or equal to the index value of a certain
level, the corresponding neuron state is set to “1;” otherwise,
it is set to “−1.” ,e four-grade evaluation indexes of gear
fault state are encoded as shown in the following table: •

represents the neuron state as “1,” which means greater than
or equal to the ideal evaluation index value of the corre-
sponding grade; otherwise, it is denoted by ∘ .

,e standard vector value of normal gear is defined here
as 1, the standard vector value of gear with tooth wear is 2,
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the standard vector value of gear with tooth crack is 3, and
the standard vector value of gear broken tooth is 4. ,e
standard vector value represents the position of the number
of columns where the state of the DHNN neuron is 1 in the
following binarization matrix: 1 represents the number of 1
in the first column and 2 represents the number of 1 in the
second column.,e data of normal, wear, crack, and broken
teeth of four groups of standard gears are selected for
encoding vectors, and the coding vectors is as follows:

Normal gear: sim 1 � 1 1 1 1 .

Table 1: Sample entropy values of each IMF.

State of the gear Signal sequence SampEn1 SampEn2 SampEn3 SampEn4

G1

1 0.6542 0.7433 0.8416 0.8176
2 0.7151 0.7666 0.8174 0.7689
3 0.7224 0.7483 0.7932 0.8600
4 0.7105 0.7698 1.1610 0.8194

G2

1 0.6871 0.7919 0.9700 1.0353
2 0.6903 0.7964 0.9545 0.9600
3 0.6847 0.8094 0.9436 0.9389
4 0.7001 0.7999 0.8822 0.9433

G3

1 0.7307 0.8161 0.9177 0.8973
2 0.7500 0.7711 0.8560 0.8839
3 0.7377 0.8300 0.8618 0.8748
4 0.7186 0.8232 0.8580 0.8604

G4

1 0.6514 0.8357 0.9759 0.7661
2 0.6679 0.8478 1.0348 0.8100
3 0.6622 0.8590 1.1180 0.7844
4 0.6198 0.7533 0.9809 0.8218

Table 2: Distribution of the size range and the mean value of the overall sample entropy value.

Sample entropy SampEn1 SampEn2 SampEn3 SampEn4
Numerical range 0.65–0.75 0.74–0.86 0.79–1.03 0.76–0.96
Mean value of the sample entropy 0.7 0.8 0.91 0.86

Table 3: Numerical range and the mean value of SE1, SE2, SE3, and
SE4 sample entropy values in various gear states.

State of the gear G1 G2 G3 G4
Numerical range of
SampEn1 0.70–0.72 0.67–0.70 0.72–0.75 0.65–0.67

Mean value of
SampEn1 0.71 0.685 0.735 0.66

Numerical range of
SampEn2 0.74–0.77 0.77–0.8 0.8–0.83 0.83–0.86

Mean value of
SampEn2 0.755 0.785 0.815 0.845

Numerical range of
SampEn3 0.79–0.85 0.97–0.97 0.85–0.91 0.97–1.03

Mean value of
SampEn3 0.82 0.97 0.88 1

Numerical range of
SampEn4 0.81–0.86 0.91–0.96 0.86–0.91 0.76–0.81

Mean value of
SampEn4 0.835 0.935 0.885 0.785

Entropy of component samples after VMD 
decomposition was extracted

Whole sample entropy value range was 
classified

Numerical range classification of sample 
entropy category was carried out

Classification is completed

Classified data are encoded

Training data were input to discrete hopfield 
neural network for training

Test data were input to discrete hopfield neural 
network for classification test

Classification result

Figure 4: DHNN step diagram.
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Gear with tooth wear: sim 2 � 2 2 2 2 .
Gear with tooth crack: sim 3 � 3 3 3 3 .
Gear with tooth break: sim 4 � 4 4 4 4 .
Next, binarization of the coding vectors:

Normal gear:sim 1 �

1 −1 −1 −1
1 −1 −1 −1
1 −1 −1 −1
1 −1 −1 −1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Gear with tooth wear:sim 2 �

−1 1 −1 −1
−1 1 −1 −1
−1 1 −1 −1
−1 1 −1 −1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Gear with tooth crack:sim 3 �

−1 −1 1 −1
−1 −1 1 −1
−1 −1 1 −1
−1 −1 1 −1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Gear with tooth break:sim 4 �

−1 −1 −1 1
−1 −1 −1 1
−1 −1 −1 1
−1 −1 −1 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,e remaining 16 groups of data were randomly divided
into three groups for gear fault status identification. Each
group of data contained 4 sample entropy vectors. ,e
following is the result of binarization of the remaining data:

Class 1 Class 2 Class 3 Class 4

Pre-sim 1 Pre-sim 2 Pre-sim 3 Pre-sim 4

Sim 1 Sim 2 Sim 3 Sim 4

(a)

Class 1 Class 2 Class 3 Class 4

Pre-sim 1 Pre-sim 2 Pre-sim 3 Pre-sim 4

Sim 1 Sim 2 Sim 3 Sim 4

(b)

Class 1 Class 2 Class 3 Class 4

Pre-sim 1 Pre-sim 2 Pre-sim 3 Pre-sim 4

Sim 1 Sim 2 Sim 3 Sim 4

(c)

Figure 5: CEEMDAN-DHNN gear fault diagnosis and identification results.
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sim 1 �

−1 −1 −1 1

1 −1 −1 −1

1 −1 −1 −1

1 −1 −1 −1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

sim 2 �

1 −1 −1 −1

1 −1 −1 −1

1 −1 −1 −1

−1 −1 1 −1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

sim 3 �

1 −1 −1 −1

1 −1 −1 −1

−1 −1 1 −1

1 −1 −1 −1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

sim 4 �

−1 1 −1 −1
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(14)

Selection standard of training samples of each com-
ponent of the entropy, which were selected from Table 1, is

. . .

. . .
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Figure 6: DHNN structure.
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the sample entropy of the signal sequence SampEn3 normal
gear, the gear with tooth wear and tear of sample entropy
SampEn2 signal sequence, the gear with tooth crack sample
entropy SampEn3 signal sequence, and the gear tooth
broken sample entropy SampEn1 input signal sequence to
the DHNN training, after waiting for neural network
training, and then, the remaining 12 group gears as the
unknown state data were input into the trained neural
network to identify the state. Before the sample entropy
value is input to the DHNN, the standard data group is
firstly binary coded, and then, the coding vectors are input
to the DHNN for training.

5. Gear Fault Diagnosis Based on the VMD
Sample Entropy and DHNN

,e 16 sets of sample entropy value data were binarized and
input to DHNN for network training as a standard sample.
,en, the remaining 12 sets of sample entropy values were

tested as the test data group. ,e above binarization matrix
was input into DHNN for classification and identification,
and the VMD-DHNN recognition results are shown in
Figures 7(a)–7(c).

Among them, class1 represents normal gear standard
data, class2 represents gear with tooth wear standard data,
class3 represents gear with tooth crack standard data, and
class4 represents gear with tooth break standard data. Pre-
sim1 represents the first test data, pre-sim2 represents the
second test data, pre-sim3 represents the third test data, and
pre-sim4 represents the fourth test data. Sim1 represents the
first test data classification result, sim2 represents the second
test data classification result, sim3 represents the third test
data classification result, and sim4 represents the fourth test
data classification result.

As shown in Figures 7(a)–7(c), 11 of the 12 test samples
of the DHNN model classifier correspond to the fault fea-
tures, and one of them is not recognized due to the unclear
features but is not recognized incorrectly.

Class 1 Class 2 Class 3 Class 4

Pre-sim 1 Pre-sim 2 Pre-sim 3 Pre-sim 4

Sim 1 Sim 2 Sim 3 Sim 4

(a)

Class 1 Class 2 Class 3 Class 4

Pre-sim 1 Pre-sim 2 Pre-sim 3 Pre-sim 4

Sim 1 Sim 2 Sim 3 Sim 4

(b)

Class 1 Class 2 Class 3 Class 4

Pre-sim 1 Pre-sim 2 Pre-sim 3 Pre-sim 4

Sim 1 Sim 2 Sim 3 Sim 4

(c)

Figure 7: VMD-DHNN gear fault diagnosis and identification results.
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In order to get the accuracy of gear fault identification
more clearly, the confusion matrix of VMD-DHNN clas-
sification results is made below. According to Figure 8,
normal gear, gear with tooth wear, and gear with tooth crack
faults are correctly classified, and there is a classification
error in the gear with tooth break fault. However, the failure
classification of gear with tooth break fault is not identified
as other gear fault types.

In order to verify the superiority of the VMD-DHNN
algorithm, the VMD-DHNN algorithm is compared with
complete ensemble empirical mode decomposition
adaptive noise (CEEMDAN)-DHNN algorithm and
empirical mode decomposition (EMD)-DHNN algo-
rithm in the accuracy of gear fault diagnosis. Firstly, the
training gear fault feature vectors are input into
CEEMDAN-DHNN and EMD-DHNN to obtain the gear
fault identification result. ,en, the test gear fault feature
vectors are input into the trained CEEMDAN-DHNN
and EMD-DHNN, and the classification result of gear
fault is obtained.

,e CEEMDAN-DHNN recognition results are shown
in Figures 5(a)–5(c).

As shown in Figure 5(c), the gear with tooth break fault is
identified as gear with tooth crack fault. ,e best recognition
rate of 91.67% was obtained using CEEMDAN-DHNN.

In order to get the accuracy of gear fault identification
more clearly, the confusion matrix of CEEMDAN-DHNN
classification results is made below. According to Figure 9,
normal gear, gear with tooth wear, and gear with tooth crack
faults are correctly classified, and there is a classification
error in the gear with tooth break fault.

,e EMD-DHNN recognition results are shown in
Figures 10(a)–10(c). It can be seen from Figure 10(c) that the
gear with tooth break fault is identified as gear with tooth
crack fault, the gear with tooth wear fault is identified as
normal gear, and the gear with tooth crack fault is identified
as the gear with tooth wear fault. ,e best recognition rate of
75% was obtained using EMD-DHNN.

In order to get the accuracy of gear fault identification
more clearly, the confusion matrix of EMD-DHNN classi-
fication results is given in Figure 11.

Table 4 shows the gear fault diagnosis accuracy of dif-
ferent signal decomposition algorithms combined with
DHNN and SVM.
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Figure 8: Confusion matrix of the VMD-DHNN classification results.
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Class 1 Class 2 Class 3 Class 4

Pre-sim 1 Pre-sim 2 Pre-sim 3 Pre-sim 4

Sim 1 Sim 2 Sim 3 Sim 4

(a)

Class 1 Class 2 Class 3 Class 4

Pre-sim 1 Pre-sim 2 Pre-sim 3 Pre-sim 4

Sim 1 Sim 2 Sim 3 Sim 4

(b)

Class 1 Class 2 Class 3 Class 4

Pre-sim 1 Pre-sim 2 Pre-sim 3 Pre-sim 4

Sim 1 Sim 2 Sim 3 Sim 4

(c)

Figure 10: EMD-DHNN gear fault diagnosis and identification results.

 

G
ea

r w
ith

 to
ot

h 
br

ea
k

G
ea

r w
ith

 to
ot

h 
cr

ac
k

G
ea

r w
ith

 to
ot

h 
w

ea
r

N
or

m
al

 g
ea

r

Predicted class

Gear with tooth break

Gear with tooth crack

Gear with tooth wear

Normal gear
Tr

ue
 cl

as
s

2 1

3

3

3

Figure 9: Confusion matrix of the CEEMDAN-DHNN classification results.
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6. Conclusions

In this paper, a VMD-DHNN method is proposed and
applied to nonstationary signal decomposition. Firstly, the
vibration signals of nonstationary gear fault are decomposed
by the VMD, and their center frequencies are accurately
separated. ,en, each decomposed IMF is an extracted
sample entropy value, and the extracted feature value is
formed into the feature vector. Finally, the gear fault feature
vector is input to DHNN for fault diagnosis.

,e optimized VMD algorithm can avoid the disad-
vantages of the EMD algorithm, and VMDhas the advantages
of fast operation speed and high-frequency accuracy of
separated IMFs center. ,e DHNN has the advantage of
associative memory and can further shorten the operation
time. ,e combination of VMD-DHNN can improve the
fault diagnosis time of gear and reduce the damage.

,e VMD-DHNN is more accurate in identifying faults
such as normal gear, gear with tooth wear, and gear with
tooth crack. ,is method can be further applied to defect
detection in additive manufacturing and welding. Moreover,
the intelligent optimization algorithm can be utilized to
optimize the parameters of VMD so that it can be adaptive to
decompose the signal.

,e limitation of this article is that we need to encode the
signal in advance and then diagnose the fault in the input to
DHNN, which may increase the complexity of the method.
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.is paper presents a prognostic method for RUL (remaining useful life) prediction based on EMD (empirical mode de-
composition)-ESN (echo state network). .e combination method adopts EMD to decompose the multisensor time series into a
bunch of IMFs (intrinsic mode functions), which are then predicted by ESNs, and the outputs of each ESN are summarized to
obtain the final prediction value. .e EMD can decompose the original data into simpler portions and during the decomposition
process, much noise is filtered out and the subsequent prediction is much easier. .e ESN is a relatively new type of RNN
(recurrent neural network), which substitutes the hidden layers with a reservoir remaining unchanged during the training phase.
.e characteristic makes the training time of ESN is much shorter than traditional RNN. .e proposed method is applied to the
turbofan engine datasets and is compared with LSTM (Long Short-TermMemory) and ESN. Extensive experimental results show
that the prediction performance and efficiency are much improved by the proposed method.

1. Introduction

Prognostics is an engineering discipline with regard to
predictive diagnostics, including calculation of the
remaining useful life based on the observed system condition
[1]. As machines are getting increasingly complicated,
prognostics for complex systems has attracted more sig-
nificant interest [2]. RUL prediction enables identifying
problems at an early stage, which makes it beneficial for
industries to make effective maintenance planning and re-
duce maintenance cost [1, 3]. Research techniques of RUL
have been adopted in various industrial objects, including
lithium-ion battery [4] and turbofan engine [5].

In general, the RUL prediction methods are typically
classified as physics-model based approaches, data-driven
approaches, and hybrid approaches, and data-driven
methods can be divided into statistical model based ap-
proaches and AI approaches further [6, 7]. Among them,
approaches based on the physical model [8, 9] generate an
explicit mathematical model of the degradation processes of
machinery. .e modeling process tends to be difficult be-
cause in-depth knowledge and rich experiment are required

[7]. .us, the methods are less used [6]. Compared with
physics-model based approaches, data-driven approaches
are easier to be implemented. .ey often extract features
reflecting the failure through mining the historical data.
Statistical model based approaches such as AR models [10]
and random coefficient models [11] describe the degradation
process by statistical or stochastic models. .e methods can
depict the uncertainty of the degradation process and its
influence on RUL prediction [6]. However, they are not good
at modeling for nonlinear systems, and AI approaches such
as ANNs [12, 13], NF systems [14], and SVM [15] can deal
with the issue. .ey operate RUL prediction through feature
extracting and data training without building the specific
model. In recent years, research about AI approaches for
RUL prediction has gainedmore andmore attention. Hybrid
approaches combine physics-model based approaches and
data-driven approaches to take advantage of different
approaches.

RNN (recurrent neural network) is a kind of AI ap-
proaches for RUL prediction, and it performs well for
forecasting tasks of time series data [16]. But the use of RNN
is limited due to the “fading memory” problem caused by
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gradient explosion or gradient dispersion. A variant of RNN
called LSTM (long short-term memory) was proposed
[17, 18]. Lots of research work based on LSTM has been
carried out, and good results are acquired [19–22].

Nevertheless, the traditional RNNs possess disadvan-
tages of computational burdens and being time consuming
because numerous parameters need to be trained. ESN (echo
state networks) can provide a solution to deal with the
problem [16]. ESN was first proposed in 2001 [23] and it is a
relatively new type of RNN. ESN has a randomly generated
reservoir, which remains unchanged during the training
phase and only a readout is trained [24]. .e characteristic
makes ESN consumes much less time for the training
process compared with traditional RNN such as LSTM. In-
depth research for RUL prediction based on ESN still needs
to be carried out [16]. Most of the existing research con-
centrates on optimization of the architecture and parameters
of ESNs to obtain a better prediction result [25, 26].

However, existing research lacks attention to the analysis
and mining of the original data. To deal with this,
decomposing the raw time series into subsequence is an
effective solution [27–30]. Reference [28] proposed an SDA
(secondary decomposition algorithm) to decompose the
original wind speed data into detailed components twice.
.e decomposition algorithms include WPD (wavelet
packet decomposition) and FEEMD (fast ensemble EMD).
.en an Elman neural network performed the prediction. In
[29], to mitigate the problem that the model cannot handle
environmental factors, a hybrid EMD-based prediction
model was proposed for wind speed and solar irradiation
forecasts. In [30], for chaotic time series prediction, PE
(permutation entropy) was adopted to analyze the com-
plexity of the IMFs decomposed by EEMD (ensemble EMD).
.e decomposed IMFs with similar complexities were
combined, so fewer inputs for prediction were gained. .en,
the ESNs performed the prediction and the ultimate results
were assembled.

Although the combination of signal decomposition and
ESN have performed well for forecasting problems, in recent
years, few related studies have been conducted. As far as the
authors know, they are not yet applied to RUL prediction. In
most cases, the prediction of RUL is based on multisensor
data and a large amount of noise needs to be filtered out.
Signal decompositionmethods can handle noise well exactly.
Inspired by this, this paper proposes a novel combination
method for RUL prediction based on EMD and ESN. EMD
can smooth the noisy data and decompose the time series
into a bunch of IMFs, which are then predicted by ESNs..e
outputs of the ESNs are summarized as the final RUL
prediction results. Besides, data processing methods in-
cluding GBDTfeature selection and Kalman filtering are also
adopted. .e proposed method is verified through a case
study on turbofan engines of aircraft. .e relevant data of
turbofan engines is collected from multiple sensors under
variable operating conditions. .e proposed method is
compared with ESN and LSTM [19]..e results demonstrate
the superiority of our proposed method. .e contributions
of this paper are as follows: (1) We introduce the idea of
signal decomposition to multisensor data processing for

RUL prediction. .e adoption of EMD has a good effect on
noise disposal, which provides a reference solution for re-
ducing the noise of the RUL prediction problem. (2) We
propose a combination method of EMD and ESN for RUL
prediction, which provides a new idea for RUL prediction
methods based on ESN. (3) We conduct a lot of experiments
on C-MAPSS datasets. During the process, some data
processing skills such as GBDTfeature selection and Kalman
filtering are adopted. .e results show that our proposed
method is well performed and effective for RUL prediction.

.e rest of this paper is organized as follows. Section 2
elaborates the methodology and presents our method.
Section 3 demonstrates our experimental process. Mean-
while, a comparison of models and results analysis is also
given. In Section 4, conclusion and highlights of future work
are drawn.

2. Methodology

2.1. Empirical Mode Decomposition. .e EMD [31] is the
core component of the Hilbert–Huang transform. It is an
adaptive time-frequency analysis method for processing
nonlinear and nonstationary time series. EMD can de-
compose time series into a group of IMFs without analysis in
advance. An IMF should satisfy two conditions: (1)
.roughout the data segment, the number of the extreme
points and that of the zero crossing points should be equal or
the difference is no more than 1; (2) .e mean of the upper
envelope formed by the local maximum points and the lower
envelope formed by the local minimum points is zero. .e
detailed steps of the EMD decomposition process are de-
scribed below.

(1) Assume the time series to be analyzed is x(t). Extract
all the local maxima and minima.

(2) Fit the maximum value points and minimum value
points by cubic spline interpolation, respectively, to
form the maximum value envelope emax(t) and the
minimum value envelope emin(t). .e mean value
of the extreme envelopes m(t) can be obtained:

m(t) �
(emax(t) + emin(t))

2
. (1)

(3) Subtract the mean value m(t) of the envelope from
the original time series x(t), and record the result as
y1(t).

y1(t) � x(t) − m(t). (2)

(4) Determine whether y1(t) is an IMF component
according to the above-mentioned judgement cri-
teria of the two conditions. If y1(t) does not meet the
conditions, treat y1(t) as the original data and repeat
the above steps until y1(t) satisfies IMF conditions.
At this time, take c1(t) � y1(t) and c1(t) as the first
IMF component of the time series x(t).
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(5) Take the remaining data r1(t) � x(t) − c1(t) as the
original time series and decompose it for k times
with the same principles as above to obtain the k −

order IMF and a residual. .e stopping criterion
includes the following: (i) .e residual r(t) is a
monotone function; (ii) the kth IMF or the residual
r(t) is smaller than the specified threshold; (iii) the
number of zero crossing points and extrema values
differs by 1 at most.

(6) Finally, x(t) can be described as follows:

x(t) � 
n

k�1
ck(t) + r(t), (3)

where ck(t), r(t) and n represent the kth IMF, the residual,
and the number of IMFs, respectively.

2.2. Echo State Network

2.2.1. Basic Structure of ESN. ESN is a relatively new type of
RNN, which replaces a reservoir for the hidden layers of
RNN [23]. It is able to catch the system’s dynamic behav-
iours and has intrinsic memory properties [16]. ESN uses the
reservoir to map input space to feature space, in which
neurons connect with each other randomly and sparsely.
Input, feedback, and connection in the reservoir matrix are
generated at random and remain unchanged during the
training process, so the only variable that needs to be trained
is the output matrix, which realizes computational savings.

As shown in Figure 1, ESN consists of a K units’ input
layer, a N internal units’ reservoir, and a M units’ output
layer. .e directed arrows represent the weight connections
of neurons. .e solid arrows indicate required connections,
while the dashed arrows denote that connections are pos-
sible but not required. At time step t , variables of the input
units are u(t) � (u1(t), u2(t), . . . , uK(t))T, of the internal
units are x(t) � (x1(t), x2(t), . . . , xN(t))T, and of the
output units are y(t) � (y1(t), y2(t), . . . , yL(t))T..e input
weight matrix Win ∈ RN×K represents the weights from
input units to internal units, and the internal weight matrix
W ∈ RN×N represents the weights between the internal units
and the feedback weight matrix Wback ∈ RN×L represents the
weights from the output units to the internal units. Acti-
vation functions such as sigmoid function and hyperbolic
tangent function are adopted in the reservoir and the output
layer. And at time step t the reservoir state can be acquired as
follows:

x(t) � f W
in

u(t) + Wx(t − 1) + W
back

y(t − 1) , (4)

where f � f1, f2, . . . , fN  are activation functions of the
internal units. .e ESN’s output equation can be obtained as
follows:

y(t) � f
out

W
inout

u(t) + W
out

x(t) + W
outout

y(t − 1) ,

(5)

and if we use Wout gen � Winout, Wout, Woutout  to indicate
all the connections to the output neurons, then the above
formula can be given as follows:

y(t) � f
out

W
out gen

[u(t); x(t); y(t − 1)] , (6)

where fout � fout
1 , fout

2 , . . . , fout
M  are also activation func-

tions for the output layer which are often chosen to be linear.
Moreover, [u(t); x(t); y(t − 1)] is a concatenation of the
input state, internal state, and the output state of the last time
step. .e dimension of the output weights Wout gen is
M × (K + N + M).

.us, we can use ESN � Win, Winout, Wr, Wout, Woutout,

Wback} to depict the ESN and the weights Winout, Woutout,
and Wback are optional. All the weights except the output
weights Wout gen are initialized randomly and remain un-
changed during the training process. Only the weights
Wout gen need to be trained.

2.2.2. Key Parameters of ESN

(1) Reservoir size (N): .e reservoir size N represents
the number of neuron units in the reservoir, which is
very important and has a great influence on the
performance of ESN [32]. If N is chosen to be too
small, the network may not fit the expected output
fully, while a too large reservoir may cause data
overfitting and calculation consumption. .e choice
of N should take the complexity and effectiveness of
the network into account to meet specific task
requirements.

(2) Spectral radius (ρ(Wr) or SR). .e spectral radius
represents the maximum absolute eigenvalue of the
internal weight matrix (W) of the reservoir. It de-
cides the memory capacity of the ESN. If it is too
small, the previous input has little effect on the
present output, and the reservoir has a poormemory.
If it is too large, the state of the reservoir may be
unstable during the iteration process. It is not suf-
ficient but necessary that the setting ρ(Wr)< 1 can
guarantee ESP (echo state property) in most cases
[33]. ESP can ensure the network state is uniquely
decided by the input history [26].
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u3
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y2
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x1

x2

x3 ...

xN ...

Win Wout
W

WbackWinout Woutout

K input 
units

L output 
units

N internal units of 
dynamical reservoir

Figure 1: Basic structure of ESN.
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(3) Sparsity (D): Different from most neuron networks,
the neurons in the reservoir are not fully connected
and the sparsity denotes the sparse degree of the
neurons in the reservoir. In a general way, the D is
selected around 0.1 to guarantee the reservoir has
enough dynamic properties [34]. When D is selected
as 1, the neurons in the reservoir is fully connected
and the ESN has evolved into a traditional RNN at
this time.

(4) Input scaling (αWin ): .e input scaling factor αWin is a
parameter that can realize a scaling transform to the
input weight matrix Win and it influences the degree
of linearity of the responses of the reservoir units
[35]. .e larger αWin is, the more nonlinear the re-
sponse is. It is usually chosen to be within the interval
[0, 1].

2.2.3. Training Steps of ESN. Assume that a training sample
is (u(t), y(t)), which contains t time steps. .e general
training steps of ESN are depicted below.

(1) Initialize the parameters of ESN. .e ESN weights
Win, Wr, Wout  are randomly initialized first. To
satisfy the requirement of ESP (echo state property),
the Wr is scaled by the scaling factor αWr to meet
ρ(Wr)< 1. .e state variables x(0) also need to be
initialized.

(2) Update and collect the internal states of the reservoir.
.e internal states can be updated according to
equation (4) driven by input signals u(t) and the
internal state of the last time step x(t − 1). .e state
variables before the time step kmin − 1 should be
abandoned to eliminate the influence of initial states
on the network performance, which is called the
washout phase. .e state variables after kmin are
collected.

(3) Compute the output weights. .e output weights
Wout are computed according to equation (5) to
minimize the target function.

2.3.CombinationModelBasedonEMD-ESN. A combination
model based on EMD and ESN is adopted in this paper,
comprising decomposition of EMD, prediction of the ESNs,
and summation of the separate outputs. .e process is
demonstrated in Figure 2.

First, the raw time series has been denoised to obtain
cleaner results, which are then taken as inputs to be
decomposed by EMD into IMFs adaptively. .e IMFs are
arranged from high to low frequency and the complexity of
the IMFs is reduced greatly; thus the analysis and modeling
of each IMF are much easier.

Second, we use multiple ESNs to train and predict
decomposed IMFs. .e training steps are illustrated in
Section 2.2.3. A sampling window is used to construct
samples of the training and testing datasets, which are
taken as inputs to train the ESNs. Each ESN gives an
output.

Finally, the outputs of the ESNs are assembled to obtain
the final prediction result of the RUL.

3. Experimental Study

3.1. Experimental Setup

3.1.1. C-MAPSS Dataset. .e dataset used to support the
findings in this paper have been deposited in the “Turbofan
Engine Degradation Simulation Data Set," NASA Ames
Prognostics Data repository [36], which contains simulated
degradation data for turbofan engine [37]. .ere are 4 sub-
datasets in the C-MAPSS dataset denoted as FD001, FD002,
FD003, and FD004. Each dataset contains multivariate time
series data under different kinds of operational conditions and
fault modes. It is also separated into a training set and a testing
set, as shown in Table 1. Each row is a snapshot of the run-to-
failure records taken within a single time cycle. It contains 26
columns, which represent an engine ID, a current operational
cycle number, 3 operational settings, and 21 sensor values,
respectively. Each engine unit’s initial state is unknown but is
considered to be healthy. As the operational cycle number
increases, the engine units begin to degrade at some point,
which is also unknown. For the training set, the engines run
till a failure occurs and the whole snapshots of degradation
data can be acquired. While for the test set, the degradation
ends sometime prior to a failure. .e goal is to predict the
number of remaining operational cycles (RUL) for the test set
to verify our proposed method.

3.1.2. Data Preprocessing

(1) Sensor Data Selection and Normalization. .ere are 21
sensor measurements contained in the C-MAPSS dataset.
However, not all variables are closely related to the RUL
prediction. We analyze the correlation between sensor data
and the RUL values to select important features using GBDT
(gradient boost decision tree). GBDT is a kind of ensemble
learning algorithm with the decision tree as its basic esti-
mator. It performs well when used for feature selection and
can output the relative importance of the features, which is
shown in Figure 3. .e results are ranked according to
relevance from high to low, and the top 10 sensor mea-
surements are selected as the data to be analyzed next.

As different ranges of sensor values are generated, min-
max normalization has been used to normalize the original
data and limit it within the interval [0, 1].

xi,j
′(t) �

xi,j(t) − min xi,j 

max xi,j  − min xi,j 
, (7)

where xi,j(t) is the original sensor measurement of the jth
sensor of the unit i. min(xi,j) andmax(xi,j) represent the
minimum value and the maximum value of the unit i. xi,j

′(t)

is the normalized value.

(2) Samples Constructed through Time Window. In order to
construct training samples of the ESNs, a time window is
used, sliding along the processed sensor data. As shown in
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Figure 4, the length of the time window is time step. Each
time the time window slides forward for one time-unit, an
overlap exists in the two adjacent samples. .e RUL value of
the last time step is taken as the label of the training sample.
Assume that the maximum life cycle of the equipment is L

and the length of the time window is l, then the number of
training samples we can obtain is L − l + 1.

3.1.3. Performance Metrics. To evaluate the performance of
our proposed method, a score function and RMSE are used
at the same time in this paper. Equation (8) denotes the
definition of the scoring function.


n

i�1
e

− hi/13( ) − 1 , when hi < 0,



n

i�1
e

− hi/10( ) − 1 , when hi ≥ 0,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(8)

where n is the total number of the testing data samples, and
hi � RULi − RULi(for the ith data point estimated RUL
− true RUL). More penalty is given to overestimation than
early predictions by the function since in a real industrial
scene, late maintenance may result in more severe conse-
quences than untimely maintenance.

RootMean Squre Error(RMSE) is defined as equation
(9), which is a widely used evaluation metric for RUL es-
timation. RMSE gives an equal penalty to both early and late
predictions..e difference between the scoring function and
the RMSE function can be seen in Figure 5.

RMSE �

����

1
n



n

i�1




h
2
i . (9)

3.1.4. RUL Target Function. In practical prognostic appli-
cations, the accurate RUL values of the turbofan engines are
unknown, which is different from our simulation experi-
ment data as it contains the specific RUL value of each cycle
[22]. In a system, the degradation of the equipment for the
initial period of time is negligible until it runs for a certain
time. So, the initial state of the engines is often taken as
healthy and a piecewise linear RUL target function is
adopted for the prediction. As shown in Figure 6, the
maximum RUL value is limited to a constant value of 130
cycles [19, 38], which represents that we neglect degradation
in the initial cycles and the linear decline of the RUL value
starts from the time cycle of the number 130.

3.1.5. Prognostic Procedure. .eprognostic procedure can be
depicted in Figure 7. First, the raw data is preprocessed in-
cluding Kalman filtering, data normalization, and sensor data
selection to obtain cleaner data. .en, the processed data is
selected through time window sliding and training samples
are constructed. Next, the time series is decomposed by EMD
and multiple IMFs and a RES are obtained, which are then
trained by ESNs of the same number. Finally, the output of
each ESN is added up to get the final prediction result.

3.2. Experimental Procedure and Performance Analysis

3.2.1. Experimental Procedure and Comparation. In this
section, we take FD001 dataset as an example to demonstrate
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Figure 3: Relative importance ranking of the features in
train_FD001 by GBDT.
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Figure 2: Flowchart of the combination model based on EMD-ESN.

Table 1: Information of the C-MAPSS dataset.

C-MAPSS data set FD001 FD002 FD003 FD004
Engine units for training 100 260 100 249
Engine units for testing 100 259 100 248
Operating conditions 1 6 1 6
Fault modes 1 1 2 2
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the experimental procedure. .en, the proposed method is
employed on the C-MAPSS data set and is compared with
LSTM [17] and basic ESN. Finally, a results analysis is given.

(1) 9e Time Window Length Selection Experiment. An ex-
periment is carried out to select the most appropriate length
of the time window to construct training samples. As we can
see in Figure 8, the corresponding relations between the time
step and RMSE are shown. As the time step increases, the
trend of RMSE is generally downward. .is can explain that
to a certain degree, the more historical data training samples
take, the more accurate the prediction is. .e minimum
cycles of the test dataset are only 31, so we choose 30 as the
length of the time window in this paper. Besides, when the
length grows more than 30, the decline of RMSE is not that
much. In some research based on the C-MAPSS data set, the
length of the time window is also chosen to be no more than
30 [19, 21, 22, 25, 26].

(2) 9e EMD Decomposition. After the process of feature
extraction by GBDT and sampling by the time window, the
10 sensor measurements are then decomposed by EMD..e
decomposition result of the training set of FD001 is shown in
Figure 9. .ere are 4 IMFs and a RES generated, which have
simpler information each and can be synthesized into the
original time series. .e decomposition results are taken as
the input of the ESNs next. Much noise can be filtered out
during the decomposition process, which is beneficial for
prediction improvement.

(3) 9e ESN Training Experiment. As depicted in Sections
2.2.2 and 2.2.3, to train ESN, we need to set some parameters,
i.e., the reservoir size N which influences dynamics of the
system, the spectral radius SR which decides the ESP (echo
state property) of the reservoir, the sparsity D to represent
the connection degree of the neurons, and the input scaling
αWin to scale the input signal. Besides, in this paper, the
regularization coefficient λ is used to prevent overfitting.
With the grid search strategy, the parameters of the ESN are
set as the values in Table 2.

.e training process of the ESN can be divided into two
subprocesses, which includes preliminary training and
weights calculation. .e preliminary training process is for
the purpose to eliminate the effects of the initial network
state on the training process..e weights calculation process
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is to calculate the Wout illustrated in Section 2.2.3, which is
taken as a linear regression process. .e learning algorithm
adopted in this paper is RR (Ridge Regression). .e hy-
perbolic tangent function is chosen as the activation func-
tion in this paper, which can be expressed as equation (10).
.e response curve is demonstrated in Figure 10. .e ac-
tivation can make the network have good nonlinearity.

f(x) �
e

x
− e

− x

e
x

+ e
− x . (10)

.e overall prediction results are shown in Figures 11
and 12, which demonstrate the prediction of ESN and EMD-
ESN, respectively. As we can see in the figures, the models of
ESN and EMD-ESN have both acquired good results.
However, the prediction accuracy is enhanced by EMD-
ESN. .e circumstances of overpredicting have also been
reduced, which is encouraged in the PHM (prognostics and
health management) applications because delay mainte-
nance may cause major damage and cost. Besides, it can be
discovered that when the actual RUL values are relatively
small, an overprediction situation is more likely to happen.

One of the reasons for the problem may be that the amount
of historical data is small.

3.2.2. Results Comparison and Analysis. In the experiment,
the prediction performance and efficiency of EMD-ESN,
LSTM, and ESN are compared..e experimental results and
analysis are discussed below.

(1) Results Comparison of Prediction Performance. .e re-
sults of the prediction performance of different models are
revealed in Table 3. .e performance metrics include Score
and RMSE, which are depicted in Section 3.1.3..e length of
the time window is 15 for LSTM and is 30 for ESN and
EMD-ESN. Although more historical training data often
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Figure 9: Decomposition results of the processed data in train_FD001.

Table 2: Parameter setting of the ESN.

Optimal parameter Value
Reservoir size N 0.9
Spectral radius SR 500
Sparsity D 0.2
Input scaling αWin 0.05
Regularization coefficient λ 0.0001
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Figure 10: .e response curve of the activation function.
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Figure 12: .e prediction results of EMD-ESN for 100 units in test_FD001.

Table 3: Prediction comparison on C-MAPSS data set. .e IMP over LSTM represents an improvement of EMD-ESN over LSTM
(IMP � 1 − EMD − (ESN/LSTM)), while the IMP over ESN represents improvement of EMD-ESN over ESN
(IMP � 1 − EMD − (ESN/ESN)).

Data set
FD001 FD002 FD003 FD004

Score RMSE Score RMSE Score RMSE Score RMSE
LSTM [21] 338 16.14 4450 24.49 852 16.18 5550 28.17
ESN 359 13.92 748 13.33 4971 23.72 2912 16.88
EMD-ESN 184 10.63 293 8.85 299 11.54 525 9.87
IMP over LSTM (%) 45.56 34.14 93.41 63.86 64.91 28.68 90.54 64.96
IMP over ESN (%) 48.75 23.64 60.83 33.61 93.99 51.35 81.97 41.53
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Figure 11: .e prediction results of ESN for 100 units in test_FD001.
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lead to improvement of results, we get a significant gain in
prediction result of our proposed method. As we can see in
Table 3, the EMD-ESN method proposed in this paper
performs best on the four C-MAPSS datasets, whether it is
for Score or RMSE. For Score, IMP over LSTM of our
proposed method is up to 93.41% on FD002 and IMP over
ESN is up to 93.99% on FD003. For RMSE, IMP over LSTM
of our proposed method is up to 64.96% on FD004 and IMP
over ESN is up to 51.35% on FD003. We can conclude that
the proposed method can improve the prediction effect to a
large extent. When we take Score as the performance
metrics, the improvement effect is particularly obvious.

For RMSE, the ESN has also performed better than the
LSTM on all the datasets. However, for Score the LSTM
performs better than the ESN on FD001 and FD003. .e
situation demonstrates that overpredicting tends to be
generated by the ESN, especially for FD001 and FD003,
which contain just 1 operational condition. Different from
the ESN, our proposed method has improved the over-
predicting situation, which can also be seen by comparing
Figure 12 with Figure 11. In Figure 12, the situations of
overprediction are less than those in Figure 11, obviously.
Besides, there is a substantial improvement for the EMD-
ESN on FD004, which is the most complicated dataset

Table 4: Training time comparison on C-MAPSS data set.

Data set FD001 (s) FD002 (s) FD003 (s) FD004 (s)
LSTM [21] 6540.53 17159.43 7649.63 15494.50
ESN 34.58 105.80 47.84 91.57
EMD-ESN 419.40 1318.06 508.97 1262.64
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Figure 13: RUL prediction for engine unit examples of C-MAPSS dataset. (a).e example is unit 12 in test_FD001. (b).e example is unit 7
in test_FD002. (c) .e example is unit 9 in test_FD003. (d) .e example is unit 12 in test_FD004.
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containing 6 operating conditions and 2 fault modes..is all
shows that the EMD-ESN can filter out redundant signals or
noise, in which EMD plays a crucial role. .is inspires us
that the signal decomposition technology can be adopted in
the RUL prediction to deal with noise.

(2) Results Comparison of Prediction Efficiency. In addition
to results comparison of prediction performance, the
training time comparison is also performed, and the results
are demonstrated in Table 4. As we can see in Table 4, the
training time of the ESN and the EMD-ESN are significantly
saved compared with the LSTM, which means fewer com-
puting resources are required. Although the EMD-ESN still
takes more training time than the ESN, which consumes a
certain time for the EMD decomposition process, the pre-
diction improvement is also considered, especially for data
with much noise. .is shows the necessity to adopt EMD to
decompose the raw sensor data.

(3) Sample Examples of RUL Prediction. In Figure 13, the
RUL prediction of a sample engine unit for each dataset is
illustrated. We can see that the prediction for the four ex-
amples all perform well, with an unobvious trend for
overpredicting. It can also be seen that for each unit, the
preceding period prediction is generally not as good as the
following period prediction..is can be explained by the fact
that with the increase of the training data, the accuracy is
becoming higher.

In this section, the prediction performance and efficiency
are compared between LSTM, ESN, and the proposed EMD-
ESN, and result analysis is performed..rough experiments,
the superiority of our proposed method is verified.

4. Conclusions

Prognostic of RUL contributes to timely maintenance and
less cost consuming. In this paper, we propose a combi-
nation method of EMD and ESN to predict the RUL. .e
proposed EMD-ESN method is performed on the turbofan
engine multisensor time series, which demonstrates the
validity, accuracy, and effectiveness of our method. .e
EMD decomposes the raw time series to obtain portions
with simpler information, which can be easily trained by the
ESN further. .e output of each ESN is summarized to get
the final prediction value. Compared with the LSTM and the
basic ESN method, the prediction effect of the EMD-ESN
method is greatly improved, especially for data with much
noise. Besides, the computing time is largely reduced.

However, there is still a lot of research to be conducted
and some of the directions are as follows:

(1) Although the adoption of EMD improves the pre-
diction effect, it also consumes more time. It is
necessary to study how to improve prediction ac-
curacy and save computing resources at the same
time.

(2) EMD is one of the signal processing methods in the
time and frequency domain, and there are many
other relative methods such as wavelet packet

decomposition. .e adoption of relative methods
into noise data processing is also worthy of further
study.

Data Availability

.e dataset used to support the findings in this paper have
been deposited in the “Turbofan Engine Degradation Sim-
ulation Data Set,” NASA Ames Prognostics Data repository,
which contains simulated degradation data for turbofan
engine developed by NASA. .e dataset can be found
through the link https://ti.arc.nasa.gov/tech/dash/groups/
pcoe/prognostic-data-repository/.
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)emost commonly used probabilistic model in reliability studies is the Perfect Renewal Process (PRP), which is characterized by
the condition or type of maintenance represented: once the maintenance activities are executed, the equipment is restored to its
original condition, leaving it “as good as new.” It is widely used since it represents an optimistic state when an item is replaced,
assuming a perfect operational condition of the item after the maintenance. Some models have been developed for determining
optimum preventive maintenance (PM) based on different criteria, and almost all aimed at PRP reliability modeling. )e
contribution of this paper is to analyze a model for determining the optimal preventive maintenance policy for a long time run
under PRP and developing a general and chart-based tool for the problem, making it easier to solve the day-to-day practice and
operation of equipment. As a result, a generalized chart was developed to support maintenance decisions through the elaboration
of an original isometric table and complemented with a step-by-step methodology to determine the optimum time in which the
preventive maintenance activities must be implemented. In most cases, these types of maintenance activities will consider a
replacement activity.

1. Introduction

Preventive maintenance is primarily intended to avoid high
costs incurred due to unplanned maintenance activities, which
usually causes higher downtimes, direct costs, and most times
catastrophic determining events for business continuity.

Because of the need for planning PM activities at the
industry level, a direct requirement emerges in consequence:
knowing when to perform these activities. Since the PM has
considerable importance in safety-critical processes, where
the occurrence of a failure has a high impact, most of the
developed models are intended to replace the equipment
[1–3]. In this sense, most of the policies are based on
constant age replacement of equipment, i.e., constant wear
time after the equipment entry into operation; this occurs
because all devices are under the same condition when they
enter as new. Considering that, in the industry, the amount

of equipment that only has replacement as a solution for the
failure is frequently high, the operators and engineers related
to this equipment have to do a lot of exhaustive calculations
to find the best policies of replacement. Most of those
aforementioned operations, which are also cited in this
paper, involve at least calculating nonclosed integrals by
Riemann sum.

Given the above considerations, this research focuses on
analyzing an optimization model with constant age PM on
repairable systems and getting a simple way to approach the
procedures involved in this optimization process.

In the maintenance management context, a repairable
system can be defined as “a system that after failing to
develop an activity can be restored properly functioning
satisfactorily by some method” [4].

Depending on the type of maintenance that is given to
the equipment, it is possible to find 5 cases [5,6]:
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(a) Perfect maintenance: maintenance operation re-
stores the equipment to a status of “as good as new.”

(b) Minimum maintenance: maintenance operation
restores the equipment to a status of “as bad as old.”

(c) Imperfect maintenance: maintenance operation
restores the equipment to a status of “worse than
new but better than old.”

(d) More than perfect maintenance: maintenance op-
eration restores the equipment to a status of “better
than new.”

(e) Destructive maintenance: maintenance operation
restores the equipment to a status of “worse than old.”

Cases (d) and (e) have little presence in reality [6]; almost
all correspond to specific events in the equipment life and are
highly unlikely to present a series of repairs to such standard.

In case (a), the most widely used model that fits precisely
the described scenario is the Perfect Renewal Process (PRP)
[6,7]; in case (b) a Nonhomogenous Poisson Process
(NHPP) [6,7] is used, among others. In the case of (c),
various models of failure processes, including variants of
generalized geometric processes (for details, see [8]), have
been developed; if, besides, the effect of the repair is con-
sidered to be limited due to a constant value, then the general
repair model is obtained and applied for this particular case
[9]; in the same way, the Generalized Renewal Process (GRP)
model developed by Kijima and Sumita [10] has been used.

)e current intense international competition, the need
for faster innovation, and the structural organizational
changes in response to new information and manufacturing
technologies are still surprising [11]. In response to this
phenomenon, the increasing importance of effective
maintenance planning is fueled by increasing automation of
processes, so that a substantial part of the total costs of
industrial assets is today directly or indirectly related to
maintenance [12].

In this sense, maintenance personnel need simple and
general methods for the design of maintenance programs
and optimization policies [13]. Also, the decision-making
tools are needed to give quick but precise answers, sim-
plifying an intricate application of the theory, capable of
offering standardized values and ideally easy to read, exe-
cute, and interpret.

Considering the motivations established above, the main
contribution of this research is the elaboration of a practical
tool for obtaining fast and reliable information for the
decision-making process in maintenance management, by
developing a generalized chart-based tool to obtain optimal
preventive maintenance times in single-unit systems. Based
on the knowledge gathered from the literature review, there
are no references related to the development and use of
chart-based tools that allow a practical approach to obtain
optimal preventive maintenance times.

Besides, it is possible to realize that the models developed
for equipment replacement can only be used for elements
maintained under Perfect Renewal Process modeling, con-
sidering that their condition is “as good as new” once they
begin its operational functions.

)e research is structured as follows: Section 2 states the
problem and its necessity in the industry, Section 3 presents
the state of the art related to the PRP modeling and the
chosen long-run cost minimization model. Section 4 de-
velops the generalized chart-based proposal solution for the
problem, starting with a mathematical analysis of the
problem and ends with presenting the results. Finally,
Section 5 presents the discussion, potentialities, and
conclusions.

2. Problem Statement and Motivation

Specialized literature reveals that the industry continues to
demand methodologies, approaches, and tools to better
understand machine inefficiencies [14]. Specifically, in the
maintenance management area, the continuous develop-
ment of technical systems and the increasing dependence on
equipment have generated an increasing interest in effective
maintenance activities [15]. In this sense, it becomes nec-
essary not only to determine the maintenance activity to be
executed but also to optimize the execution intervals of said
activities and correctly model the random behavior of the
failures.

)is approach is targeted at the traditional Perfect Re-
newal Process (PRP), which is a complement to the existent
solution procedures and is also easy to understand when
searching and getting the optimal PM time value. Although
this stochastic process for the randommodeling of failures is
elementary, it is the starting point for the elaboration and
conceptualization of more sophisticated, but also more
complex, models.

According to [16], if the purpose of maintenance models
is to increase the knowledge of the data, this knowledge
should be organized so that the end-user, maintenance
personnel, can use it. Current models for getting the optimal
time of a PM activity imply exhaustive calculation to get
solutions, mainly because of the evaluation of the objective
function to be minimized. )is means that when it is re-
quired to establish the optimization procedure for the
equipment, the computation operations of these values can
become expensive in terms of time and resources used for
this task. Something that also must be considered is the fact
that the nature of the problem is completely analytical,
requiring an advanced domain of calculus and engineering
skills by the user to face and solve the problem.

Considering the previous observations, the motivation
that guides this research is to find a practical solution to be
used quickly, which ideally uses graphical support to find a
quick convergence process for an optimal solution.

3. State of the Art

3.1. Literature Review. Maintenance management has be-
come increasingly relevant within business management,
becoming one of its essential functions and also one of the
critical aspects within the operational phase of asset man-
agement given the current conditions and needs of a highly
competitive market and the increasing automation of its
processes. In this context, maintenance optimization
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consists of the development and analysis of mathematical
models to optimizemaintenance policies [15]; this process is,
therefore, essential for the decision-making process in asset
management.

In this sense, the correct modeling of the failure process
is relevant, as well as the different units or components of the
system on which the maintenance activities will be carried
out. A wide variety of failure process models have been
developed and extended over the past three decades
addressing different characteristics of failure processes,
namely, geometric processes [17], renovation processes [10],
virtual age models [18], arithmetic models of intensity re-
duction (ARI), and arithmetic reduction of age (ARA) [19],
among others. To determine the different extensions and
generalizations that have been made, Wu et al. [8] elaborate
a review of the extensions of the geometric processes, from
which it follows that the general repair models are derived
from a particular case of the generalized geometric
processes.

Regarding the relevant investigations carried out in
recent years, the research developed by Mullor et al. [20]
considers establishing the failure distribution experimen-
tally, disaggregating a specific and independent model for
each component of the equipment, and also associating an
imperfect maintenance model with each case. In other
words, the model developed in said research considers
multiple failure modes depending on the different compo-
nents that integrate the equipment, addressing the implicit
assumption that modeling considers a unique degradation
process.

To address this assumption in turn, [21] develops a
multi-dependent system degradation process modeled by a
copula function and influenced by the environment, using
finite analysis for performance evaluation of life cycle cost.
While these studies address single-unit systems, [22] pro-
poses a new failure process model for a series component
system. For this problem, a distinction is made between the
real system, the mathematical model, and the system made
up of virtual components.

)e previous research works address maintenance ac-
tivities considering that the failure is self-announcing. )e
research carried out by Liu et al. [23] considers addressing
condition-based maintenance (CBM) policy, and therefore
the failure or condition of the equipment can only be de-
tected under the inspection, which is referred to as a soft
failure. )e problem addressed considers both a system and
a sensor in a degraded state, so the traditional maintenance
policy without considering this fact may be operating in a
suboptimal state.

)e investigations detailed above are based on the de-
velopment and application of stochastic processes and often
multiple-objective or cost optimization models, with all the
complexity that this involves. Based on the classifications
used in the literature of the field, the proposed research is
framed on the development of a practical tool to obtain
optimal maintenance preventive maintenance intervals for
single-unit systems and thus a single degradation process,
considering perfect maintenance for preventive mainte-
nance activities and minimal maintenance for corrective

maintenance actions. Considering the above, said interval is
calculated based on the optimization of the expected cost in
the long term for said activities.

3.2. Maintenance Tools for Decision Making. Related to the
problem previously stated, other graphical tools for sup-
porting decision making in the area of operational reliability
have been developed.

One of the classic management tools for decisionmaking
is Pareto diagram. Although this tool is widely used in
management, this diagram is not only used to prioritize risk
in quality control but also to get Pareto-efficient borders to
optimize maintenance costs. In this sense, this tool allows
considering the impact of costs from spare parts to
downtime and outages [24]. Since the available resources are
always scarce and considering the increasing search for
integrating different areas within the organization, the
search for a Pareto-efficient solution can even be carried out
to address a multicriteria objective function [25].

)e GAMM (Graphical Analysis for Maintenance
Management) is a method and maintenance management
decision-making tool to visualize and analyze equipment
dependability data in a graphical form [26]. One of the
advantages of this method is that it supports decision
making in the overall maintenance management, through
the visualization and graphic analysis of data; for the ap-
plication of the method, a relatively simple database is
enough to generate the graphic support of this tool, con-
sisting in scatter diagrams, bubble charts, and graphs to
measure the correlation between each of the equipment
reviews and the existing level of equipment reliability before
these [27].

)e Graphical Analysis for Operation Management
(GAOM) is a maintenance and operation management tool
that is also built from an integrated database but considers
three main types of information: maintenance interventions,
production, and time. All this information is processed
together with values of the key performance indicators for
the subsequent development of an integrated and exhaustive
graphic analysis of the decision-making process [28].

Reviewing the scientific literature, we found that the use
of generalized chart-based tools is applied in a wide variety
of research fields (see, e.g., [29–32]). )is reveals the existing
potential and effective utilization of this type of instruments,
which can be exploited in the field of maintenance
management.

3.3. Perfect Renewal Process. )emodeling under the Perfect
Renewal Process is characterized by considering the perfect
operational condition of the equipment (AGAN) after
maintenance activity execution. )is means that the
maintenance activity was fully effective in the rejuvenation
process of the equipment such that it returns the equipment
to its original condition [6, 7, 10].

A complete renovation implies that the time between
failures or any unit for which reliability is calculated has no
trend over the total time and is independent and identically
distributed (i.i.d.) throughout the entire planning horizon.
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)e PRP modeling is the simplest of all, but at the same
time it is the one with the greatest limitations in terms of its
implementation, not faithfully representing the behavior of
most mechanical and electrical equipment. However, PRP
modeling is ideal for items that cannot be repaired, con-
sidering that after failing there is no way to restore the
functionality of these items, and therefore they must be
replaced. )us, whenever a failure occurs, the item is
replaced by a new one, describing exactly the operational
scenario of PRP. In this model, the failure rate is charac-
terized by the following expression:

λ(t | t≥T) �
f(t − T)

1 − F(t − T)
. (1)

Here, f(t) corresponds to the p.d.f. of the operating times,
λ(T) the failure rate at the elapsed time T since the start of
the operation, and ti is the i-th operation time.

In the case applied to the 2-parameter Weibull distri-
bution, the basic expressions are

F(t) � 1 − e
− (t/α)β

,

R(t) � e
− (t/α)β

,

f(t) �
β
α

t

α
 

β− 1
e

− (t/α)β
.

(2)

A graphical representation of how failures occur under
this modeling is shown in Figure 1, which seeks to represent
the independence in the occurrence time of the failures.

)rough the use of the inverse function, it is possible to
generate a random time value with the following expression:

ti � α
������
− ln(u)

β


, (3)

where ti represents the time between failures and u a uni-
formly random variable in the [0, 1] interval.

3.4. Optimal PreventiveMaintenance in PRP. )eWang and
Christer model [33] is the most widely accepted and is based
on the minimization of the expected cost in the long run. For
this analysis, it is required to consider two possibilities:

(a) )e equipment fails before performing PM
(b) )e equipment survives until it has performed the

maintenance activity

Since under modeling PRP, times are identically and
independently distributed, and the p.d.f. of the times be-
tween failures is the same for all cases, which is also the main
difference from NHPP and GRP repairable models. )is
feature makes the probability of occurrence for both the first
and second cases the same over time, so there is a single
optimum time in which the PM activity is performed.

)e occurrence of each of these scenarios implies in-
curring certain maintenance operations, which have a
particular cost and time associated with each case. Namely,
in case of no failing before PM (case (b)), the equipment
works continuously up to an arbitrary interval tp, executing

only the PM activity immediately after this event. )e above
can be represented mathematically by establishing that the
random variable related to the time of occurrence of the
failure tf takes a greater value than the moment of execution
of the PM activity tp. Meanwhile, in case (a), the occurrence
of the early failure does not allow the preventive mainte-
nance activity to be executed at instant tp, being necessary to
carry out repair tasks at the instant of time tf, in which the
failure occurs. Mathematically speaking, time becomes a
random variable called tf and is represented by the trun-
cated distribution of the times between failures, bounded
above by value tp. Figure 2 provides a summary of the
previously stated cases. Additionally, the probability asso-
ciated with each case is clearly shown in Figure 3.

Since in case (b) the operating time is tp, for case (a) the
expected time of operation is given by

E t | t< tp  �


tp

0 (t · f(t))dt

F tp 
. (4)

)emodel also considers a differentiated cost for each of
the two cases, where the cost of case (a) is usually larger than
case (b), being an unplanned task. )is defines Cc presented
to the cost of case (a) (corrective cost) and Cp for case (b)
(preventive cost).

Considering that each of the cases has different lengths,
the model suggests minimizing the cost per time rate ([$/t]).

For a certain tp, the expected cost of C is given by the
following expression:

E[C] � F tp  · Cc√√√√√√√√
Case(a)

+ R tp  · Cp√√√√√√√√
Case(b)

.
(5)

Besides, the expected duration after each maintenance
activity is

E[t] � F tp  ·


tp

0 (t · f(t)dt)

f tp 
⎛⎝ ⎞⎠

√√√√√√√√√√√√√√√√√√√√√√
Case(a)

+ R tp  · tp√√√√√√
Case(b)

.
(6)

E[t] � 
tp

0
(t · f(t))dt

√√√√√√√√√√√√
Case(a)

+ R(t) · tp√√√√√√
Case(b)

.
(7)
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Figure 1: Failure rate in PRP.
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)us, the expected cost per unit of time can be expressed
as

E
dCt tp 

dt
⎡⎣ ⎤⎦ �

F tp  · Cc + R tp  · Cp


tp

0 (t · f(t))dt + R tp  · tp

. (8)

4. Research Proposal

To develop the methodology, firstly it is required to take the
model from the previous point to tangible terms and sim-
plify the number of parameters included. In the case de-
scribed by two-parameter Weibull distribution, the expected
cost per unit of time corresponds to

E
dCt tp 

dt
⎡⎣ ⎤⎦ �

1 − e
− tp/α( 

β

  · Cc + e
− tp/α( 

β

· Cp


tp

0 t · (β/α)(t/α)β− 1e− (t/α)β dt
√√√√√√√√√√√√√√√√√√√√√√√√

k

+e
− tp/α( 

β

· tp

.

(9)

Here, the k variable corresponds to

k � 
tp

0
t ·

β
α

t

α
 

β− 1
e

− (t/α)β

 dt. (10)

By changing the variables for the defined k part,

t
β

αβ
  � u,

αβu 
(1/β)

� t,

αβu 
(1/β)

βu
du � dt.

(11)

Replacing the integration limits,

t � tp ⟶ u �
tp

α
 

β

,

t � 0⟶ u � 0,

(12)

and considering that (t/α) � u(1/β),

k � 
tp/α( 

β

0
αβu 

(1/β)
·

β
α

 u
(1− 1/β)

e
− u

·
αβu 

(1/β)

βu
du,

k � 
tp/α( 

β

0
αβu 

(1/β)
·

β
α

 u
(1− 1/β)

e
− u

·
αβu 

(1/β)

βu
du

� 
tp/α( 

β

0
αu

(1/β)
·

β
α

 uu
(− 1/β)

e
(− u)

·
αu

(1/β)

βu
du.

(13)

)us, k satisfies that

k � α
tp/α( 

β

0
u

(1/β)
e

− udu

� α
tp/α( 

β

0
u

(1/β+1)− 1
e

− udu
√√√√√√√√√√√√√√√√√√√√

c 1/β+1, tp/α( 
β

 

,

k � α · c 1/β + 1,
tp

α
 

β
⎛⎝ ⎞⎠,

(14)

where the c(a, x) function represents the lower incomplete
gamma function:

c(a, x) � 
x

0
u

(a− 1)du. (15)

)is leads to formulating expression (8) as follows:

E
dCt tp 

dt
⎡⎣ ⎤⎦ �

1 − e
− tp/α( 

β

  · Cc + e
− tp/α( 

β

· Cp

α · c ((1 + 1)/β), tp/α 
β

  + e
− tp/α( 

β

· tp

.

(16)

)en, the objective is to minimize the long-run expected
cost; i.e.,

All the
cases

P = F (tp)

(a)
tf < tp

(b)
tf = tp

P = R (tp)

Figure 2: Cases representation.
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Figure 3: p.d.f. of time between failures.
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Min
tp∈R+

:
1 − e

− tp/α( 
β

  · Cc + e
− tp/α( 

β

· Cp

α · c (((1 + 1)/β)), tp/α 
β

  + e
− tp/α( 

β

· tp

. (17)

Before continuing, it is important to consider that the
value of tp is determined byCc,Cp, β, and α, and it is possible
to simplify the expression stated in (17) by using the rate
between Cc and Cp and using a single value for α that only
impacts the size of tp. It is clear that α and tp have a direct
proportionality. In other words, for the ratio between costs
for each different β, there is a tp which is directly propor-
tional to α. Considering that it is possible to formulate a
change of variable

tp
′ �

tp

α
 , (18)

this further simplifies the denominator, since it represents
the expected duration.

At this point, the rate

p �
Cp

Cc

 , (19)

is defined, with the purpose of diminishing the variables
involved in the objective function stated in (17). Finally, the
function depends only on tp

′ and p, stated as follows:

Min
tp∈R+

:

1 − e
− tp
′( 

β

  · Cc + e
− tp
′( 

β

· pCp

α · c (((1 + 1)/β)), tp
′ 

β
  + e

− tp
′( 

β

· tp
′

. (20)

It is also important to note that, using the lower in-
complete gamma function, it is possible to rewrite it as

c(a, x) � P(a, x) · Γ(a). (21)

Here, P(a, x) is the cumulative distribution function of a
gamma distribution probability with a scale parameter equal
to 1 and a shape parameter equal to a. )is change greatly
improves the possibility of reaching a better solution, given
that most calculation software has already defined the
function approximations for the probability distribution
function of gamma and the gamma function itself. )en, the
equivalence between the variables is

a � 1 +
1
β

 ,

x � tp
′ 

β
.

(22)

)en, by changing the corresponding variables

c
1 + 1
β

 , tp
′ 

β
  � P

1 + 1
β

 , tp
′ 

β
  · Γ

1 + 1
β

 ,

(23)

and applying all the mentioned changes, expression (17) is
equal to

Min
tp
′∈R+

:
Cc

α
·

1 − e
− tp
′( 

β

· (1 − p)

P ((1 + 1)/β), tp
′ 

β
  · Γ((1 + 1)/β) + e

− tp
′( 

β

· tp
′

,

(24)

which is equivalent to solving the following expression:

Min
tp
′∈R+

:
1 − e

− tp
′( 

β

· (1 − p)

P ((1 + 1)/β), tp
′ 

β
  · Γ((1 + 1)/β) + e

− tp
′( 

β

· tp
′

. (25)

4.1.Constant FailureRateAnalysis. First, an analysis is made
for the value of β � 1, with a value p � 0, so the preventive
cost is zero, an extreme case value applied to expression (8):

E
dCt tp 

dt
⎡⎣ ⎤⎦ �

1 − e
− tp/α( 

β

  · Cc + e
− tp/α( 

β

· Cp

α · c ((1 + 1)/β), tp/α 
β

  + e
− tp/α( 

β

· tp

. (26)

By simplifying

α � 1,

p �
Cp

Cc

  � 0,

β � 1,

(27)

and replacing the values

E
dCt tp 

dt
⎡⎣ ⎤⎦ � Cc

1 − e
− tp 

c 2, tp  + e
− tp · tp

, (28)

evidently the expected cost minimization for a given time
value does not depend on Cc; this is a scale parameter for the
problem. )en, the problem becomes

Min
tp∈R+

:
1 − e

− tp 

c 2, tp  + e
− tp · tp

. (29)

However,

c(2, t) + e
− t

· t � 
t

0
s
2− 1

e
− sds

√√√√√√√√√√
w

+e
− t

· t.
(30)

Taking the indefinite integral of the w part

w �  s
2− 1

e
− sds, (31)

it is possible to develop the integral by
parts udv � uv −  vdu, making the changes of variables

u � s,

dv � e
− sds,

du � ds,

v � − e
− s

.

(32)

)is leads to
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w � − e
− s

s +  e
− sds � − e

− s
s − e

− s
+ C( , (33)

in the definite form


t

0
s
2− 1

e
− sds � − e

− s
s − e

t

0
� − e

− t
(t + 1) + 1.


(34)

So

c(2, t) + e
− t

· t � 
t

0
s
2− 1

e
− sds + e

− 1
· t

� − e
− t

(t + 1) + 1 + e
− t

· t 

� 1 − e
− t

.

(35)

)erefore, expression (29) is equal to

1 − e
− tp 

c 2, tp  + e
− tp × tp

�
1 − e

− tp 

1 − e
− tp

� 1 ∀tp

 > 0. (36)

)e latter demonstrates and verifies that it is indifferent
to the time when PM is performed: the cost will be the same.
With this result, it is possible to establish that if the PM cost
is not null but less than the cost of corrective maintenance, it
will never be desirable to carry out a PM activity, so it is
better to wait for the occurrence of the failure since it will
decrease the cost per operating time. )is because it has just
been proven that a PM cost of zero is indifferent to when PM
is executed.

4.2. Nonconstant Failure Rate Analysis. Again, we start from
expression (8) as:

E
dCt tp 

dt
⎡⎣ ⎤⎦ �

1 − e
− tp/α( 

β

  · Cc + e
− tp/α( 

β

· Cp

α · c ((1 + 1)/β), tp/α 
β

  + e
− tp/α( 

β

· tp

.

(37)

We consider a special case, where

α � 1,

p �
Cp

Cc

  � 0.

(38)

)en, we replace the values in expression (8):

E
dCt tp 

dt
⎡⎣ ⎤⎦ � Cc

1 − e
− t

β
p

c (1 + 1)/β, t
β
p  + e

− tβ
· tp

. (39)

Based on the above, the value of tp that satisfies the
slightest expected cost per unit of time is the same as the
solution of the following expression:

Min
tp∈R+

:
1 − e

− t
β
p

c (1 + 1)/β, t
β
p  + e

− t
β
p · tp

. (40)

To mathematically analyze this problem is quite com-
plex, mainly due to an iterative integration problem. In this
sense, it is interesting to note that if the shape parameter of
the Weibull distribution tends to zero, then

lim
β⟶0

c
1 + 1
β

 , t
β
p  � 0. (41)

)erefore, the minimization of the objective function ex-
pression becomes trivial, considering an expected cost that
tends to a null value. )is means that maintenance activities
are avoided since, for β ∈ [0, 1], they are unproductive. )is
situation could be resolved by a search algorithm in space
β> 1, which estimates that the best way to solve the situation
is to develop an algorithm to find the optimal time directly
for the original function and obtain a graphical tool with the
results of this algorithm. )e development of this tool is
presented in the next section.

4.3. Development of the Generalized Charts. Considering the
defined requirements of the problem in the above sections, it
has been justified that a graphical tool is really necessary.)e
problem has been simplified, and it is now possible to
generalize the problem considering β, p, and α. )is amount
of variables tells us that it could be possible to plot all the
solutions of the problems on a chart, which is the challenge
of this section.

4.3.1. Search Algorithm. With regard to the function already
defined, it must be remembered that the parameters that
alter the problem are β and p, given that α is a scale pa-
rameter that is extracted and generalized with value 1. In
other words, without loss of generality, it is possible to use
for this purpose the expression in (25) considering that
tp � tp
′. Once these optimal values for this standard tp value

are obtained, then it is enough to only scale the value from
the estimation of the shape parameter α to obtain the
practical optimal PM time value. Establishing the previous
observations, we have developed an algorithm for finding
optimal PM time for different values of β and p.

)e time exploring ranges from t � 0 to t � 10− 5α. With
α � 1, the initial value is t � 10− 5 time units. )e maximum
scan time is given by the value of t that contains the (1 − δ)

cases for the probability distribution function,
t � F− 1(1 − δ). )en, δ would be the percentage of the
highest values of t that are not being considered for the
analysis. )us, temax value as the maximum exploring time
remains as

temax � F
− 1

(1 − δ) � α
������
− ln(δ)

β


. (42)

)is expression is represented in Figure 4.
As expected, δ should have a small value for the sample

to be valid. In this research case, 99.9% of the cases have been
explored, which implies a value of δ � 0.001.)e steps in the
value of t are also defined, which defines the resolution of the
search. Also, certain steps numbers, n1 and n2, are defined,
each one with a different space search as shown in Figure 5.
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As shown in the previous illustration, the first search
space is defined at interval [0, F− 1(1 − δ)]. )is space is
explored by a number of discrete steps n1, which is given by

n1 �
F

− 1
(1 − δ)

r1
, (43)

where r1 corresponds to the range for each consultation
of a new value for the objective function. )e second
search space has new n2 and r2, corresponding to the
number of values to be explored and the of value the
range between each observation. A value of n1 � n2 � 103
was used for this study, with a final resolution of a rate
close to 10-6.

It is important to note that this algorithm is tunable in
terms of the size of sample spaces and the number of as-
sessments in space in order to reduce the total number of
assessments and for overall better resolution. For this
publication, this is not very significant and could be studied
in another case where the objective is to optimize the op-
timization algorithm.

Once an optimal value is found in the first search space
and topi value is obtained, we proceed to define the second
search space corresponding to segment [topi − r1, topi + r1].
)is range is again explored in n2 equidistant points. Within
this range, it is shown that the lowest value of the objective
function value is defined as the smallest topt found in the
second search space as the optimal value for preventive

intervention to the original α value, which for simplification
has been α� 1. )is topt has been denominated standard
optimal time to PM.

4.3.2. Results of Algorithm for PRP. )e previous algorithm
has been run for different values of β and p as indicated in
4.3.1. A 3D-chart representation of several solutions has
been obtained and presented in Figure 6.

)e chart in Figure 6 has been modified, so that areas
where the optimal value of PM time gives inconsistent re-
sults, such as an undefined value or a value greater than the
MTBF, are not considered. Besides, the grid used for the
graph is reduced with respect to the resolution of the
generalized chart to improve the visualization. Although this
figure represents a first approach prior to obtaining gen-
eralized charts, important conclusions were obtained from
the result:

1 )ere is a clearly defined area where it is convenient to
perform PM on modeling PRP.

2 )ere is no time for PM for values of β< 1. It is not
convenient to perform PM, independently of the ratio
between the cost and the cost preventive correction, p.

Under the criterion, preventive activity is not performed
within 0.1% of the highest times; the results have shown that,
in in 99.91% of cases, the optimal values for a given β and p
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space by the algorithm
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Figure 4: Explored space in the c.d.f. by the algorithm.
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0

Figure 5: Search algorithm.
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are within the search range, previously established by the δ
variable. )e results are then consistent with the assump-
tions used.

In Figure 7, the boundary zone to run optimal PM is also
presented. )e entire area under the dashed curve corre-
sponds to the pair of values for p and β, in which it is
convenient to implement the PM policy in a fixed time,
which is considered throughout this work. )e area above

the curve corresponds to the possibilities where it is not
convenient to have a policy of fixed-time PM.

Finally, a generalized chart has been developed as a result
of this research, which is shown schematically in Figure 8
and presented in detail in the appendix. Since the most
common values for the beta parameter are β ∈ (1, 2], the
generalized charts for this range are incorporated in detail in
Appendix A, using a 0.01 step for each adjustment. For
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Figure 6: Optimal preventive time for PRP modeling.
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Figure 7: Limit possibilities for preventive maintenance under PRP modeling.
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general purposes, generalized charts for β ∈ (1, 5] are also
incorporated in Appendix B considering a step of 0.05 for
each β value.

)is chart contains a generalization of the optimization
for different parameter values. In other words, to obtain the

optimal time of replacement for a 2-parameter Weibull
distributed lifetime of an item, first, the p parameter is
needed, i.e., the relation between PM cost and corrective
maintenance cost. )en, it is necessary to find the corre-
sponding curve for the β value of the distribution. Once the

Optimal values for topt
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Figure 8: Chart representation for optimal values searching.
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Figure 9: General scheme of slurry pumps.
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intersection is located, it is necessary to scroll horizontally to
the left to find the corresponding topt value. )is t value is
generalized considering α � 1, and then the tp optimal value
will be tp � α · topt. If there is no intersection between the p

parameter and the β corresponding curve, it is not conve-
nient to perform a PM activity.

5. Case Study

5.1. Description of the Process. )e case study and application
of the purposed methodology are focused on one of the slurry
pumps (P1) of a mining process, which is essential for the
continuity of the process (critical) and is exposed to a high-stress
job, especially by the transfer characteristics of highly abrasive
and corrosive flow, high solids content, and strong acidity.

A slurry pump is a rugged heavy-duty pump intended
for aggressive or abrasive slurry solutions typically found in
the mining industry with particles of various sizes. )ese
pumps increase the pressure of a liquid and solid particle
mixture (commonly called slurry) through centrifugal force
(a rotating impeller) and convert electrical energy into slurry
potential and kinetic energy. In Figure 9, a general scheme of
the pump is presented.

5.2. 9e Proposed Methodology. In the following are pre-
sented the steps of the proposed methodology, as well as the
historical collection of failure data to obtain the required
parameters, applied in the case study mentioned. (Table 1)

Step 1 Trend test
Slurry pump P1 has registered the following 30
times between failures, measured in hours and
presented in order of occurrence.

First of all, as the literature [34] proposes, it is required to
evaluate a trend test; the most commonly used is the Laplace
Trend Test [34, 35], which gives a test statistic z that has to be
compared with the standard normal distribution because it
fits approximately to n standard normal random variable.
)e z value is calculated by

z �


n
i�1 ti/n(  − to/2( 

to

�����
1/12n

√ . (44)

Here, to is the total elapsed time, n is the number of times,
and ti is the total elapsed time to element i.

And the null H0 and alternative Ha hypotheses consider
the following:

Table 1: Times between failures for slurry pump P1 in hours.

No. of failures Time between failures (h) No. of failures Time between failures (h)
1 434.09 16 375.05
2 226.04 17 496.48
3 266.67 18 649.41
4 681.33 19 540.68
5 1127.85 20 491.59
6 634.69 21 947.31
7 474.84 22 718.78
8 38.72 23 953.63
9 31.89 24 182.2
10 711.52 25 391.55
11 726.9 26 327.71
12 574.15 27 986.04
13 1043.54 28 352.53
14 336.54 29 631.86
15 771.23 30 680.52

Table 2: Corrective maintenance cost for each failure in USD.

No. of failures Cost of the failure (USD) No. of failures Cost of the failure (USD)
1 1132.71 16 847.8
2 972.75 17 1049.03
3 853.58 18 474.86
4 789.41 19 1740.39
5 836.97 20 1041.64
6 994.39 21 898.1
7 1274.33 22 594.43
8 528 23 1539.22
9 847.06 24 1496.3
10 1140.66 25 1375.55
11 1010.95 26 748.04
12 468.01 27 877.48
13 1045.29 28 793.51
14 1493.85 29 430.25
15 1320.56 30 1375.03
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H0: no trend (z � 0).
Ha: deteriorating trend (z> 0).
Ha: improving trend (z< 0).

Evaluating the expression gives a value of z � − 0.0953.
From the standard normal tables with a significance level of
0.10, the critical value is equal to 1.645. If the z value satisfies
− 1.645< z< 1.645, then we would fail to reject the hy-
pothesis of no trend. Since z � − 0.0953, then is not possible
to say that a trend exists, so PRP modeling is applicable.

Step 2 Distribution fitting

Once PRPmodeling is properly justified it is necessary to
adjust the parameters for the 2-Weibull distributions for this
modeling. )e most traditional method is to estimate the
parameters maximizing the likelihood. )e likelihood
function is expressed through the joint probability as

P xi in xi, xi + dx  , ∀i ∈ 1, . . . n{ }(  � 
n

i�1
f xi; θ( ,

L(θ) � 

n

i�1
f xi; θ( ,

(45)

where θ corresponds to the vector of parameters of the
distribution related to f(t) and xi corresponds to the i-th
realization of the sample. As the desired maximum is the
likelihood between data and a p.d.f.:f(t | θ), the values of the
vector θ have to be adjusted with the objective function to
meet that maximum. Conceptually, it is to find the pa-
rameters that adjust better to a sample xi, . . . , xn so that the
likelihood of the values provided in a random sampling is
maximum: P(xi in[xi, xi + dx] ,∀i ∈ 1, . . . , n{ }).

)en, the parameters θ for this case α, β  that provide
maximum likelihood are those that meet [36, 37]

α �


n
i�1 ti( 

β

n
⎛⎜⎜⎝ ⎞⎟⎟⎠

(1/β)

. (46)


n
i�1 ti( 

β ln ti( 


n
i�1 ti( 

β

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠ −
1
β

  �
1
n

  

n

i�1
ln ti( . (47)

Here, ti is the observed time between successive failures and
n is the total number of failures.

Solving the above equations, the estimators are
α � 632.04 and β � 1.99.
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Figure 10: Step 1 for use of the proposed chart.
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Step 3 Calculating the cost related parameter

In relation to the cost for the historical failure data, the
costs of the corrective interventions have been collected in
Table 2, expressed in (USD).

)e average corrective cost is 999.67 (USD), and it is
known that the preventive activity has a cost of 160 (USD),
so the value of p is given by

p �
c0(USD)

999.67(USD)
≈ 0.16. (48)

Step 4 Chart use

)is step is composed of substeps. In this stage, the
proposed chart in the appendix is needed. )e substeps are
the following:

(1) With the value of p, go to the abscissae axis, in this
case 0.16.

(2) Find the corresponding β value: In this case, we
consider 1.99≈ 2. Follow the corresponding line for
the value of p in vertical sense up to the intersection
with the corresponding β curve.

(3) Once the intersection is found, move horizontally to
the left and find the standard topt value.

(4) Calculate the optimal tp time with the product
between the standard topt value and α.

)e steps are schematically represented in Figures 10–12.
Following Step 4, we find that the optimal tp value when

performing the preventive activity is at
tp � 0.443 · α � 279.99(h). )en, the PM policy is ready to
be implemented. Notice that, for other values of β, an in-
terpolation could be useful between the curves.

6. Discussion

It is interesting to analyze how the solution changes with
altering one of the parameters of the problem. Sensitizing
this to the shape parameter β, for different values of p, a
chart has been developed and shown in Figure 13.

)e unplotted area reveals the fact that it is not con-
venient to perform PM activities.

In the case of sensitizing the values of the standard op-
timal PM time t for different values for the scale parameter α,
considering the same β and p values, we find that there is a
direct relation, and this has been shown in Section 4.

From the results, it can be stated that if there are two
kinds of equipment, Equipment A and Equipment B, both
with the same β and p values, Equipment A with scale
parameter αA, and Equipment B with scale parameter αB,
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Figure 11: Step 2 for use of the proposed chart.

Mathematical Problems in Engineering 13



0.443

0.50

0.45

0.40
0.10 0.12 0.14 0.16 0.18 0.20

t op
t

p = Cp/Cc

Optimal results for tp

β = 1.6

β = 1.7

β = 1.8

β = 1.65

β = 1.75

β = 1.85
β = 1.9

β = 1.95
β = 2.0
β = 2.05
β = 2.1
β = 2.15
β = 2.2
β = 2.25

β = 2.3
β = 2.35
β = 2.4
β = 2.45
β = 2.5
β = 2.55

3

Figure 12: Step 3 for use of the proposed chart.
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Figure 14: Optimal values for β ∈ [1.01, 1.25] (part 1).
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Figure 15: Optimal values for β ∈ [1.01, 1.25] (part 2).
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Figure 16: Optimal values for β ∈ [1.26, 1.5] (part 1).
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Figure 17: Optimal values for β ∈ [1.26, 1.5] (part 2).
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Figure 18: Optimal values for β ∈ [1.51, 2.00] (part 1).
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Figure 19: Optimal values for β ∈ [1.51, 2.00] (part 2).
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Figure 20: Optimal values for β ∈ [1.05, 1.55] (part 1).
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Figure 21: Optimal values for β ∈ [1.05, 1.55] (part 2).
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Figure 22: Optimal values for β ∈ [1.6, 2.55] (part 1).
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Figure 23: Optimal values for β ∈ [1.6, 2.55] (part 2).
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Figure 24: Optimal values for β ∈ [2.6, 4.55] (part 1).
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Figure 25: Optimal values for β ∈ [2.6, 4.55] (part 2).
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and the optimal tp for Equipment A is tp,A, then the optimal
tp for Equipment B is tp,B � (αA/αB ) · tp,B.

7. Conclusion

From the present research, it is possible to conclude that,
under PRP modeling and minimal long-run cost of main-
tenance in items, there is a boundary zone of possible
combinations of p and β parameters in which it is conve-
nient to perform this kind of activity.

Moreover, it has been shown from the solution for the
optimization problem that a general solution could be ob-
tainable by a chart that contains enough information to get
the optimal PM time for those combinations of p and β
parameters, for which it is convenient to perform PM under
PRP modeling. )e solution to the problem is provided in
the appendix.

)is solution has enormous potential because the tasks
of the person in charge related to the determination of the
policies of preventive maintenance or replacement are re-
duced drastically. Now, this person does not need the an-
alytical skills and deep understanding of the mathematical
problem that could cause considerable errors. )is method
indeed dramatically reduces the possibility of making cal-
culation mistakes.

Nowadays, increasing competitiveness is a requirement
in the industry; this research is a contribution in terms of
expediting processes and accelerated insertion of good
policy implementation as the optimal preventive mainte-
nance, and also in terms of education of reliability.

Future research based on the elaboration of this type of
instrument can be extended in general to other types of
maintenance currently addressed in the literature, such as
the consideration of imperfect maintenance, and, in turn,
this tool can be applied and adapted for different models of
failure processes that consider these characteristics, for
example, NHPP and GRP models. Regarding the latter, the
challenge will be to correctly manipulate and reduce the
number of parameters that models include. Another area of
future research addresses the development and imple-
mentation of generalized chart-based tools for maintenance
models that consider a delay time stage, including in this way
monitoring information on the equipment that conforms to
the system to be analyzed.

Appendix

A. Optimal Results for PM Standard
Time (β ∈ (1, 2])

Figures 14–19 show optimal results for PM standard time
(β ∈ (1, 2]).

B. Optimal Results for PM Standard
Time β ∈ [1.05, 4.55]

Figures 20–25 show optimal results for PM standard time
β ∈ [1.05, 4.55] .
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